Chus

ОРЛОВА Татьяна Николаевна

ЭФФЕКТИВНОСТЬ ПРИМЕНЕНИЯ ПРОБИОТИЧЕСКОГО ПРЕПАРАТА «ПРОПИОНОВЫЙ» В РАЦИОНАХ ЦЫПЛЯТ-БРОЙЛЕРОВ

06.02.08 — кормопроизводство, кормление сельскохозяйственных животных и технология кормов

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата сельскохозяйственных наук

Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего образования «Алтайский государственный аграрный университет»

Научный руководитель: доктор сельскохозяйственных наук, профессор

Хаустов Владимир Николаевич

Официальные оппоненты: Жучаев Константин Васильевич, доктор

биологических наук, профессор, Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный аграрный университет», декан биолого-технологического

факультета

Багно Ольга Александровна, кандидат сельскохозяйственных наук, доцент, Федеральное государственное бюджетное образовательное учреждение высшего образования «Кузбасская государственная сельскохозяйственная академия», доцент кафедры зоотехнии

Ведущая организация: Федеральное государственное бюджетное образовательное учреждение высшего образования «Курганская государственная сельскохозяйственная академия имени Т.С. Мальцева»

Защита диссертации состоится 24 декабря 2020 года в 9^{00} часов на заседании диссертационного совета Д 220.002.04 при ФГБОУ ВО «Алтайский государственный аграрный университет» по адресу: 656049, Алтайский край, г. Барнаул, Красноармейский проспект, 98, факс 8 (3852) 62-83-96, E-mail: sve-burceva@yandex.ru

С диссертацией можно ознакомиться в библиотеке ФГБОУ ВО «Алтайский государственный аграрный университет», с материалами по защите диссертации на сайте: http://www.asau.ru/ru/podgotovka-kadrov-vysshej-kvalifikatsii/ob-yavleniya-o-zashchite-dissertatsij/5187-orlova-tatyana-nikolaevna

Автореферат разослан « » октября 2020 г.

Ученый секретарь диссертационного совета

Dype-

Бурцева Светлана Викторовна

1 ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Уже на протяжении нескольких десятилетий птицеводство занимает одно из лидирующих положений в сельском хозяйстве, как в России, так и во всем мире. Мясо птицы — это не только вкусный, но и полезный продукт, который обладает диетическими свойствами благодаря более низкому содержанию жира и более высокому содержанию белка в мышечных волокнах, а также наличию в своем составе минералов, макро- и микроэлементов. Кроме того, белок мяса птицы более полно усваивается организмов человека, нежели белок, содержащийся в мясе других сельскохозяйственных животных. Однако повышенный спрос на мясо птицы связан не только с его биологической ценностью, но и относительно низкой стоимостью данного продукта (Кочиш И.И. и др., 2007; Темираев Р.Б. и др., 2012; Злепкин Д.А. и др., 2013; Нефедова В.Н. и др., 2017; Коновалов К.В. и др., 2019; Логвинов О.Л., 2019).

При этом безусловным лидером по объемам производства продуктов птицеводческих предприятий является мясо цыплят-бройлеров, которые обладают высокими темпами роста и высокой продуктивностью, позволяющей за достаточно короткий период (35-42 дня) увеличить их живую массу в 50-55 раз. За такое непродолжительное время их иммунная система не успевает полностью сформироваться, что создает дополнительные угрозы для здоровья, продуктивности и сохранности птицы (Супрунов О.В., 2000; Васильев А., 2011; Фисинин В.И. и др., 2011; Крылова Н., 2013).

Одной из наиболее частых причин снижения продуктивности и падежа цыплят-бройлеров являются заболевания желудочно-кишечного тракта (ЖКТ), в результате которых происходит нарушение баланса микрофлоры ЖКТ с преобладанием условно-патогенных и патогенных микроорганизмов. В конечном итоге, это приводит к сбою в работе отделов ЖКТ и ухудшению состояния всего организма, нередко заканчивающимся падежом птицы. Поэтому для поддержания нормального физиологического состояния и высокой продуктивности цыплят-бройлеров важно, чтобы микрофлора ЖКТ находилась в равновесии и могла выполнять свои многочисленные важные функции для организма (Антипов В.А., Субботин В.М., 1980; Брылин А.П., Малышев А.П., 2006; Чхенкели В.А. и др., 2012; Грозина А.А., 2014; Фисенко Н.В., 2018).

Основным способом борьбы с условно-патогенными и патогенными микроорганизмами ЖКТ цыплят-бройлеров долгое время являлись кормовые антибиотики. Однако в настоящее время применение данных веществ в кормлении сельскохозяйственной птицы сводится к минимуму, а в некоторых странах и вовсе запрещено по ряду таких причин, как подавление помимо патогенных микробов полезной микрофлоры, появление антибиотикоустойчивых штаммов патогенов, накопление антибиотиков в мясе птицы (Рябчик И., 2012; Рядчиков В.Г., 2014; Джавадов Э.Д., 2017; Маркин Ю., Нестеров Н., 2018, 2019; Singer R.S. et al., 2003).

На сегодняшний день в птицеводстве альтернативой кормовым антибиотикам выступают пробиотики. Пробиотические культуры, входящие в состав данных препаратов, подавляют развитие патогенных и сдерживают на безопасном уровне условно-патогенные бактерии, а также поддерживают на нормальном уровне полезную микрофлору. Механизм действия пробиотиков изучается специалистами разных стран. Доказано, что микроорганизмы-пробионты оказывают положительное

влияние на физиологический статус птицы на системном уровне, активизируют защитные свойства организма, повышая тем самым устойчивость молодняка и взрослой птицы к неблагоприятным факторам внешней среды, в том числе и к инфекционным заболеваниям (Куриленко А.Н., Крупальник В.Л., 1986; Хорошевский М.А., Афанасьева А.И., 2003; Лысенко С.Н. и др., 2007; Бузлама С.В. и др., 2007; Волкова И., 2014; Фисинин В.И. и др., 2017; Маркин Ю., Нестеров Н., 2018, 2019; Егоров И. и др., 2019; Abdel-Raheem S.M. et al., 2012).

В связи с этим разработка новых пробиотических препаратов и изучение их действия на продуктивность и физиологическое состояние сельскохозяйственной птицы является актуальным направлением.

Степень разработанности темы. Ряд российских и зарубежных исследований подтверждают положительное влияние пробиотиков на физиологическое состояние и продуктивность сельскохозяйственной птицы (Пышманцева Н.А., 2010; Матросова Ю.Н., 2011; Зарытовский А.И. и др., 2015; Шарипова А.Ф., Хазиев Д.Д., 2015; Овчарова А.Н., Петраков Е.С., 2018; Хитрый Ф.Н., Прохоров О.Н., 2020; Biloni A. et al., 2013; Abdel-Rahman H. et al., 2013; Bai S. et al., 2013).

В настоящее время остаются не изученными вопросы, связанные с эффективностью использования разных концентраций чистых культур пропионовокислых бактерий в кормлении цыплят-бройлеров.

В наших исследованиях впервые дается оценка эффективности использования пробиотического препарата «Пропионовый» на физиологические и продуктивные показатели цыплят-бройлеров.

Цель и задачи исследований. Цель работы заключается в изучении влияния пробиотического препарата «Пропионовый» на продуктивные качества и физиологическое состояние цыплят-бройлеров.

В задачи исследований входило:

- 1. Изучить влияние некоторых доз пробиотического препарата «Пропионовый» на сохранность и продуктивные качества цыплят-бройлеров.
- 2. Исследовать действие препарата «Пропионовый» на морфологические и биохимические показатели крови цыплят-бройлеров.
- 3. Выявить влияние скармливания некоторых доз препарата «Пропионовый» на переваримость и использование основных питательных веществ рационов цыплят-бройлеров.
- 4. Определить экономическую эффективность выращивания цыплятбройлеров при различных дозах внесения препарата «Пропионовый» в комбикорма.

Научная новизна. Впервые проведены комплексные исследования по использованию пробиотического препарата «Пропионовый», в состав которого входят штаммы *Propionibacterium freudenreichii* spp., в рационах цыплят-бройлеров. Изучено влияние различных дозировок исследуемого препарата на продуктивность и качество мяса птицы, на морфологические и биохимические показатели крови. Определена оптимальная доза внесения препарата «Пропионовый» в рационы цыплят-бройлеров, которая наиболее эффективна для производства с экономической точки зрения.

Теоретическая и практическая значимость работы. В результате проведенных исследований научно обоснована и экспериментально доказана эффективность использования пробиотического препарата «Пропионовый», взамен кормово-

го антибиотика, в рационах цыплят-бройлеров для поддержания физиологического состояния и повышения продуктивности птицы.

Даны практические рекомендации производству по использованию пробиотического препарата «Пропионовый» при выращивании цыплят-бройлеров. Результаты исследований внедрены в ООО «Кузбасский бройлер» Кемеровской области.

Включение пробиотического препарата «Пропионовый» в комбикорм цыплятбройлеров позволяет увеличить живую массу птицы на 2,32%, сохранность поголовья — на 2,02%, снизить затраты корма на 1 кг прироста живой массы на 2,87% и получить экономическую эффективность в размере 2,83 рубля от одной головы.

Методология и методы исследования. Для достижения поставленной цели и решения отдельных задач применяли стандартные зоотехнические, гематологические, биохимические, статистические и экономические методы исследований. Данные, полученные в ходе исследований, обработаны методом вариационной статистики с применением компьютерной программы Microsoft Exelle.

Основные положения, выносимые на защиту:

- 1. Сохранность цыплят-бройлеров при использовании пробиотического препарата «Пропионовый».
- 2. Живая масса, скорость роста и химический состав мяса цыплят-бройлеров при скармливании им пробиотика.
- 3. Использование основных питательных веществ рационов цыплятами-бройлерами с использованием пробиотика.
- 4. Морфологические и биохимические показатели крови цыплят-бройлеров под влиянием пробиотического препарата «Пропионовый».
- 5. Экономическая эффективность использования пробиотического препарата «Пропионовый» в рационах цыплят-бройлеров.

Степень достоверности и апробация результатов исследований. Полученные результаты обоснованы достаточным количеством наблюдений с использованием общепринятых зоотехнических, гематологических, биохимических и микробиологических методов исследования. Достоверность полученных результатов подтверждена статистической обработкой.

Основные положения диссертационной работы доложены и одобрены на Международной научно-практической конференции «Наука и инновации: векторы развития» (г. Барнаул, 2018); на Международной научно-практической конференции «Кормопроизводство, продуктивность, долголетие и благополучие животных» (г. Новосибирск, 2018); на І этапе Всероссийского конкурса на лучшую научную работу среди студентов, аспирантов и молодых ученых высших учебных заведений по направлению «Зооветеринарные науки» (г. Барнаул, 2019); на XVI Международной научно-практической конференции «Пища. Экология. Качество» (г. Барнаул, 2019); на VIII научно-практической конференции «Актуальные направления сельскохозяйственной науки в работах молодых ученых» (г. Барнаул, 2019); на III межрегиональной научно-практической конференции (с международным участием) «От биопродуктов к биоэкономике» (г. Барнаул, 2019); на II Российской (Национальной) научно-практической конференции «Перспективы внедрения инновационных технологий в АПК» (г. Барнаул, 2019).

Публикация результатов исследований. По теме диссертации опубликовано 16 печатных работ, которые отражают основное содержание диссертации, в том числе 4 статьи – в рецензируемых журналах, рекомендованных ВАК РФ.

Личное участие автора. Автор сделала обзор научной литературы по теме диссертации, овладела современными методами исследований. Лично организовала и провела научно-хозяйственные опыты, производственную проверку, проанализировала полученные результаты, научно обосновала выводы и предложение производству.

Объем и структура диссертации. Диссертационная работа состоит из введения, обзора литературы, материалов и методов исследований, результатов исследований, обсуждения результатов исследований, заключения, списка литературы и приложений. Диссертация изложена на 127 страницах, в том числе текстовая часть на 96 страницах, содержит 27 таблиц, 5 рисунков и 3 приложения. Список литературы включает 242 источника, в том числе 66 на иностранных языках.

2 МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЙ

Диссертационная работа выполнена на кафедре частной зоотехнии ФГБОУ ВО «Алтайский государственный аграрный университет» в 2016-2020 гг. Экспериментальные исследования проведены в период с 2017 по 2019 гг. в условиях ООО «Кузбасский бройлер» Кемеровской области. Объектом исследования являлись цыплята-бройлеры кросса «Hubbard ISA F-15».

С целью изучения влияния пробиотического препарата «Пропионовый» на продуктивные качества и физиологическое состояние цыплят-бройлеров проведено два научно-хозяйственных опыта и производственная проверка в сочетании с балансовым опытом.

Целью первого и второго опытов явилось изучение влияния некоторых доз пробиотического препарата «Пропионовый» на продуктивные качества, физиологическое состояние цыплят-бройлеров и выбор оптимальной дозы пробиотика. Проведению двух научно-хозяйственных опытов предшествовали лабораторные исследования пробиотического препарата «Пропионовый», которые были проведены на базе лаборатории микробиологии отдела «Сибирский научно-исследовательский институт сыроделия» (СибНИИС) ФГБНУ «Федеральный Алтайский научный центр агробиотехнологий» (ФАНЦА) и в КГБУ «Алтайский краевой ветеринарный центр по предупреждению и диагностике болезней животных». Схемы опытов представлены в таблице 1.

Экспериментальный пробиотический препарат «Пропионовый» был разработан сотрудниками лаборатории молока и молочных продуктов отдела СибНИИС ФГБНУ ФАНЦА. Штаммы пропионовокислых бактерий (ПКБ) вида *Propionibacterium freudenreichii spp.*, входящие в состав препарата, были взяты из «Сибирской коллекции микроорганизмов» (СКМ) отдела СибНИИС. В качестве субстрата для культивирования, получения биомассы пропионовокислых бактерий была использована молочная сыворотка.

Лабораторные исследования препарата «Пропионовый» проводили по нижеперечисленным методикам:

Количество пропионовокислых бактерий в 1 см³ препарата (КОЕ/см³) на разных сроках хранения (1, 30, 60, 90, 120 суток) определяли путем посева серийных

десятикратных разведений препарата на твердую дифференцированную среду для ПКБ (MP 2.3.2. 2327 – 08).

Отсутствие условно-патогенных и технически-вредных микрооганизмов (бактерии группы кишечной палочки (БГКП), маслянокислые бактерии (МКБ)) на разных сроках хранения (1, 30, 60, 90, 120 суток) препарата – путем посева разведений препарата на дифференцированные среды Кесслер и Ласса (MP 2.3.2.2327-08).

Отсутствие в препарате посторонних, нетипичных для пропионовокислых бактерий клеток – микроскопированием (МР 2.3.2. 2327 – 08).

Выживаемость штаммов пропионовокислых бактерий, входящих в состав препарата «Пропионовый», при воздействии на него среды с разными значениями активной кислотности определяли посредством внесения 1 см³ препарата «Пропионовый» в пробирки с лактатной питательной средой, имеющей разные значения активной кислотности (8,0; 7,0; 6,0; 5,0; 4,0; 3,0; 2,0 ед. рН). После выдерживания пробирок в термостате при 41°C в течение 90 минут был проведен микробиологический посев содержимого каждой пробирки на численность ПКБ (МР 2.3.2. 2327 – 08).

Антагонистическую способность штаммов ПКБ, входящих в состав препарата «Пропионовый», по отношению к условно-патогенным микроорганизмам (Escherichia coli spp. и Clostridium perfringens spp.) определяли методом «желобка» и перпендикулярных штрихов при совместном культивировании (МУ ВНИИМС 01.86.02. – 89).

Определение концентрации витамина B_{12} , вырабатываемого штаммами ПКБ в составе препарата «Пропионовый», проводили по модифицированной методике биологического факультета МГУ (Егорова Н.С., 1976).

Экспериментальную работу по применению пробиотического препарата «Пропионовый» в рационах цыплят-бройлеров проводили согласно методическим рекомендациям ВНИТИП: методики проведения научных и производственных исследований по кормлению сельскохозяйственной птицы (2013) и рекомендациям по кормлению сельскохозяйственной птицы (2009). Для проведения научно-хозяйственных опытов по методу групп-аналогов были сформированы контрольная и три опытные группы цыплят-бройлеров суточного возраста. В первом опыте в каждой группе содержалось по 198 голов, во втором опыте — 80. Содержание цыплят-бройлеров — клеточное. Условия содержания и кормления цыплят соответствовали всем необходимым требованиям. Забой птицы был произведен в возрасте 39 дней в первом опыте и 40 дней — во втором опыте. Основной рацион для цыплят-бройлеров всех подопытных групп был представлен полнорационным сбалансированным комбикормом: 1-4 дней — ПК-5-0; 5-14 дней — ПК-5-1; 15-28 дней — ПК-5-2; 29-33 дня — ПК-6-1; 34-39(40) дней — ПК-6-2.

Первая контрольная группа получала основной рацион (OP) хозяйства, состоящий из полнорационного комбикорма, в состав которого был включен кормовой антибиотик. В опытных группах с 1 по 4 день цыплята получали такой же основной рацион, как и цыплята контрольной группы. Начиная с 5-го дня в рационы цыплят опытных групп вместо кормового антибиотика добавляли пробиотический препарат «Пропионовый» в дозах, указанных в схеме исследований. Внесение необходимого количества пробиотика осуществляли путем смешивания его с комбикормом непосредственно перед скармливанием. Так как пробиотический препарат «Пропионо-

вый» имеет жидкую форму, то его внесение в основной рацион осуществлялось методом распыления из пульверизатора.

Таблица 1 – Схема опытов

Лабораторные исследования пробиотического препарата «Пропионовый»:							
лаоораторные исследования пробиотического препарата «тропионовыи». микробиологические показатели							
Прород				тиноокого пропорожо			
Проведение научно-хозяйственных опытов по включению пробиотического препарата «Пропионовый» в рационы цыплят-бройлеров							
	Труппа, рацион, доза пробиотика, мл/100 г корма (мл на голову) в сутки						
Возраст	1 руппа. 1-я	, рацион, доза пробиоти	Ka, MJ/1001 Kopma (MJI	на голову) в сутки			
птицы,		2-я опытная	3-я опытная	4-я опытная			
дни	контроль-	Kahiidii0 K-2	у-и опытная	кънтили к-+			
	ная						
Научно-хозяйственный опыт №1 (n=198) Основной							
1-4		OP	OP	OP			
1-4	рацион (OP)	Or	Or	Or			
	. /	ОР + 1,60 мл/100 г	ОР + 2,30 мл/100 г	ОР + 3,00 мл/100 г			
5	OP	(0,35 мл/гол.)	(0,50 мл/гол.)	(0,65 мл/гол.)			
		ОР + 1,00 мл/100 г	ОР + 1,50 мл/100 г	ОР + 2,00 мл/100 г			
6-10	OP	(0,50 мл/гол.)	(0,70 мл/гол.)	(0,90 мл/гол.)			
		ОР + 1,00 мл/100 г	ОР + 1,50 мл/100 г	ОР + 2,00 мл/100 г			
11-20	OP	(0,80 мл/гол.)	(1,20 мл/гол.)	(1,60 мл/гол.)			
		ОР + 1,20 мл/100 г	ОР + 1,70 мл/100 г	ОР + 2,20 мл/100 г			
21-30	OP	(1,40 мл/гол.)	(2,00 мл/гол.)	(2,60 мл/гол.)			
21.20	OD	ОР + 1,40 мл/100 г	OP + 2,00 мл/ 100 г	ОР + 2,60 мл/100 г			
31-39	OP	(2,10 мл/гол.)	(3,00 мл/гол.)	(3,90 мл/гол.)			
		OP + 1,60-1,40	OP + 2,30-2,00	OP + 3,00-2,60			
5-39	OP	мл/ 100Γ ,	мл/100 г	мл/100 г			
		(0,35-2,10 мл/гол.)	(0,50-3,00 мл/гол.)	(0,65-3,90 мл/гол.)			
Научно-хозяйственный опыт №2 (n=80)							
1-4	OP	OP	OP	OP			
5	OP	${ m OP} + 3{,}00$ мл/ 100 г	${ m OP} + 4{,}00$ мл/ 100 г	${ m OP}$ + 5,00 мл/100 г			
J	OI	(0,65 мл/гол.)	(0,87 мл/гол.)	(1,08 мл/гол.)			
6-10	OP	${ m OP}$ + 2,00 мл/100 г	${ m OP}$ + 2,70 мл/100 г	OP + 3,5 мл/100 г			
0-10	OI	(0,90 мл/гол.)	(1,20 мл/гол.)	(1,50 мл/гол.)			
11-20	OP	${ m OP}$ + 2,00 мл/100 г	${ m OP}$ + 2,70 мл/100 г	${ m OP} + 3{,}50~{ m мл}/100~{ m \Gamma}$			
11 20	Or	(1,60 мл/гол.)	(2,13 мл/гол.)	(2,67 мл/гол.)			
21-30	OP	${ m OP} + 2{,}20$ мл/ 100 г	${ m OP} + 3{,}00$ мл/ 100 г	${ m OP} + 3.7 \; { m мл}/100 \; { m \Gamma}$			
21 30	V1	(2,60 мл/гол.)	(3,47 мл/гол.)	(4,33 мл/гол.)			
31-40	OP	OP + 2,60 мл/100 г	ОР + 3,60 мл/100 г	ОР + 4,50 мл/100 г			
21 10	0.1	(3,90 мл/гол.)	5,20 мл/гол.	(6,50 мл/гол.)			
- 10	0.7	OP + 3,00-2,60	OP + 4,00-3,60	OP + 5,00-4,50			
5-40	OP	мл/100 г	мл/100 г,	мл/100 г			
		(0,65-3,90 мл/гол.)	(0,87-5,20 мл/гол.)	(1,08-6,50 мл/гол.)			

Действие пробиотического препарата «Пропионовый» на продуктивные качества и физиологическое состояние цыплят-бройлеров изучали с помощью следующих показателей:

- сохранность цыплят-бройлеров путем ежедневного учета падежа;
- живую массу птицы определяли проводя индивидуальные еженедельные взвешивания до утреннего кормления по 45 голов из каждой группы с последующим расчетом абсолютного и среднесуточного приростов живой массы;
- затраты комбикорма на 1 кг прироста живой массы рассчитывали посредством ежедневного учета расхода кормов в каждой группе с последующим пересчетом на 1 кг прироста живой массы;
- химический состав образцов мяса определяли с использованием общепринятых, стандартных методик зоотехнического анализа: первоначальную влагу высушиванием в сушильном шкафу при температуре 65°C, гигроскопическую влагу высушиванием в сушильном шкафу при температуре 105°C (ГОСТ 9793-2016), общую влагу расчетным методом; содержание сырого протеина по методу Къельдаля (ГОСТ 25011-2017), сырого жира экстрагированием бензином в аппарате Сокслета (ГОСТ 2342-2015), сырой золы методом сухого озоления сжиганием в муфельной печи при температуре 450-500°C (ГОСТ 31727-2012);
- морфологические и биохимические исследования крови проводили по общепринятым стандартным методам. Пробы крови для морфологических и биохимических исследований отбирали из подкрыльцовой вены до кормления цыплят от пяти голов из каждой группы. Морфологические показатели определяли путем подсчета эритроцитов и лейкоцитов в камере Горяева, гемоглобин гемоглобинцианидным методом; биохимические показатели с помощью готовых наборов реактивов и автоматического анализатора «BioChem SA»: общий белок биуретовым методом, альбумины, глобулины и кальций унифицированным колориметрическим методом, холестерин ферментативным методом, глюкозооксидазным методом, фосфор молибдатным методом.
- убойный выход определяли отношением массы потрошеной тушки к живой массе птицы перед убоем;
- сорт тушек и соответствие мяса по химическому составу установленным нормам по Γ OCT 31962-2013.

По результатам научно-хозяйственных опытов на базе ООО «Кузбасский бройлер» была проведена производственная проверка по применению пробиотического препарата «Пропионовый» в рационах цыплят-бройлеров кросса «Hubbard ISA F-15». Схема производственной проверки представлена в таблице 2.

Таблица 2 – Схема производственной проверки (n=540)

1 wound 2 Chang in conspect to the interest of the constant of					
Возраст птицы,	Группа, рацион, суточная доза пробиотика				
дни	Контрольная	Опытная			
1-4	OP	OP			
5	OP	OP + 3,00 мл/ 100 г (0,65 мл/гол.)			
6-10	OP	OP + 2,00 мл/ 100 г $(0,90$ мл/гол.)			
11-20	OP	OP + 2,00 мл/ 100 г ($1,60$ мл/гол.)			
21-30	OP	OP + 2,20 мл/ 100 г ($2,60$ мл/гол.)			
31-40	OP	OP + 2,60 мл/ 100 г ($3,90$ мл/гол.)			

На базе производственной проверки был проведен балансовый опыт. Проведение балансового опыта осуществлялось согласно рекомендациям ВНИТИП

(2013). С этой целью было сформировано 2 группы по пять голов в каждой. Возраст цыплят на момент постановки опыта составил 30 дней. Данный физиологический опыт проводился в течение 10 дней: 7 дней подготовительный период и 3 дня учетный. Химический состав комбикорма и помета определяли по следующим методикам: влагу — по ГОСТ Р 54951-2012, азот и сырой протеин — по ГОСТ 13496.4-93, сырой жир — по ГОСТ — 13496.15-2016, содержание кальция — оксалатным методом, фосфора — колориметрическим методом (Лаврова Г.П., Машкина Е.И., 2006), БЭВ и органическое вещество — расчетным путем. Разделение азотистых веществ помета, на азот кала и азот мочи, осуществляли по методу М.И. Дьякова (Овсяников А.И, 1976). Коэффициенты переваримости основных питательных веществ, использование азота, фосфора и кальция определяли также согласно методике ВНИТИП (2013).

Экономическая эффективность была рассчитана с учетом основных затрат, которые понесло предприятие за время выращивания птицы и дополнительно полученной продукции по общепринятой методике (Г.М. Лоза и др., 1980).

Цифровой материал исследований обработан методом вариационной статистики по Е.К. Меркурьевой (2009) с использованием персонального компьютера и программы Microsoft Excel. Результаты считали достоверными при: *p<0,05, **p<0,01, ***p<0,001.

3 РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

3.1 Лабораторные исследования пробиотического препарата «Пропионовый»

Оценка микробиологических показателей пробиотического препарата «Пропионовый» в разные периоды его хранения на протяжении 120 суток показала отсутствие в нем посторонней микрофлоры (БГКП, МКБ и др.). Содержание пропионовокислых бактерий находилось на терапевтически значимом уровне (не менее 10^6 КОЕ/см³).

В результате проверки препарата «Пропионовый» на выживаемость клеток ПКБ в условиях разных значений рН установлено, что при выдержке препарата «Пропионовый» при 41° С в течение 90 минут, количество микроорганизмов составило 10^{9} КОЕ/см³ в благоприятных условиях (6,0-8,0 ед. рН) и 10^{6} - 10^{7} КОЕ/см³ – в неблагоприятных условиях (2,0-4,0 ед. рН) для развития ПКБ. Даже при самом низком значении активной кислотности (2,0 ед. рН) содержание ПКБ находилось на терапевтически значимом уровне (не менее 10^{6} КОЕ/см³).

Проверка многоштаммовой культуры ПКБ, входящей в состав пробиотического препарата «Пропионовый», на антагонистическую активность в отношении условно-патогенной микрофлоры показала следующие результаты: многоштаммовая культура ПКБ, включающая штаммы P. freudenreichii spp. задерживала рост тест-культур E. coli в количестве 10^6 - 10^7 КОЕ/см³ и полностью подавляла рост тест-культуры Cl. perfringens в количестве 10^8 - 10^9 КОЕ/см³.

Исследование многоштаммовой культуры ПКБ, входящей в состав препарата «Пропионовый», на способность продуцировать витамин B_{12} показала, что в 1 см³ культуральной жидкости содержится 1 мкг данного витамина.

Анализ препарата «Пропионовый» на токсичность и патогенность показал, что данный пробиотик нетоксичен и непатогенен.

3.2 Влияние пробиотического препарата «Пропионовый» на продуктивные качества и физиологическое состояние цыплят-бройлеров (первый опыт)

3.2.1 Кормление цыплят-бройлеров

Затраты комбикорма, обменной энергии и протеина за весь период опыта представлены в таблице 3.

Таблица 3 – Затраты комбикорма, обменной энергии и протеина

Показатель		Груг	ппа	
	1-я кон-	2-я опытная	3-я опытная	4-я опытная
	трольная			
Затраты комбикорма за период	3,71	3,69	3,69	3,68
опыта на 1 голову, кг				
Затраты комбикорма на 1 кг при-	1,74	1,72	1,71	1,69
роста живой массы, кг				
Затраты обменной энергии	22,84	22,57	22,44	22,18
на 1 кг прироста, МДж				
Затраты сырого протеина за пе-	805,29	800,95	800,95	798,78
риод выращивания на 1 голову, г				
Затраты сырого протеина на 1 кг	377,68	373,34	371,17	366,83
прироста, г				

За период опыта на одну голову в контрольной группе было затрачено 3,71 кг комбикорма, что на 0,54-0,81% больше, чем в 3-й и 4-й опытных группах. Минимальные затраты корма были отмечены в 4-й опытной группе и составили 3,68 кг. На каждый килограмм прироста живой массы цыплята бройлеры контрольной группы в среднем затрачивали 1,74 кг кормов и 377,68 г сырого протеина, что на 1,15-2,87% больше, чем в опытных группах.

3.2.2 Сохранность поголовья и динамика прироста живой массы цыплят-бройлеров

Динамика живой массы цыплят-бройлеров представлена в таблице 4.

Таблица 4 – Динамика живой массы цыплят-бройлеров, г (M±m)

Возраст	Группа			
птицы, дни	1-я контрольная	2-я опытная	3-я опытная	4-я опытная
1	41,85±0,61	41,91±0,59	41,64±0,60	41,12±0,61
7	182,60±1,50	181,50±1,49	181,70±1,54	182,70±1,53
14	436,90±2,86	436,80±2,74	440,60±2,84	447,10±2,85*
21	860,70±5,71	866,20±5,71	871,60±5,25	876,50±5,51*
28	1297,60±7,30	1304,00±7,26	1318,90±7,27*	1319,30±7,19*
35	1852,60±9,44	1869,90±9,54	1878,00±9,30	1884,20±9,27*
39	2177,00±11,67	2188,25±11,63	2200,00±11,45	2220,00±11,56*

Здесь и далее: разность с контролем достоверна при *p<0,05; **p<0,01; ***p<0,001

Живая масса цыплят-бройлеров во всех группах к концу опыта была на уровне 2177,00-2220,00 г, что соответствовало установленным нормам для данного кросса.

Наибольшая средняя живая масса 2220,0 г была получена в 4-й опытной группе, что выше контроля на 1,98% (p<0,05).

Абсолютный прирост в 39 дневном возрасте цыплят выше всего оказался в 4-й опытной группе и составил 2178,88 г, что больше относительно 1-й контрольной группы на 2,05%, 2-й опытной группы – на 1,53% и 3-й опытной группы – на 0,95%. Среднесуточный прирост цыплят-бройлеров за весь период опыта составил в контрольной группе – 56,19 г, во 2-й опытной группе – 56,48 г, в 3-й опытной группе – 56,80 г, в 4-й опытной группе – 57,34 г. Максимальная разница наблюдалась между 1-й контрольной и 4-й опытной группами и составила 2,05%.

В наших исследованиях сохранность цыплят-бройлеров была на уровне 96,46-98,48%. При этом сохранность поголовья выше всего оказалась в 4-й опытной группе, что выше контроля на 2,02%. Сохранность цыплят 2-й и 3-й опытных групп превышала показатели контрольной группы на 1,05 и на 1,58% соответственно.

3.2.3 Мясная продуктивность цыплят-бройлеров

Убойный выход при глубокой разделке тушек в 1-й контрольной группе составил 69,86%. В опытных группах было выявлено повышение убойного выхода потрошеных тушек в сравнении с контрольной группой на 0,16% у цыплят 2-й опытной группы, на 2,05% — в 3-й опытной группе (p<0,05) и на 2,30% — у птицы 4-й опытной группы (p<0,01).

Выход продукции первого сорта во всех группах составил 100% (ГОСТ 31962-2013).

3.2.4 Химический состав мяса цыплят-бройлеров Химический состав мяса цыплят-бройлеров представлен в таблице 5.

Таблица 5 – Химический состав мяса цыплят-бройлеров, % (M±m)

Tuoninga 2 Timini teekini eee tab initea gamaat epointepob, 77 (171–111)						
Показатель		Группа				
	1-я контрольная	2-я опытная	3-я опытная	4-я опытная		
	Грудные мышцы					
Общая влага	$74,78\pm0,04$	74,29±0,04*	73,67±0,04**	73,30±0,04**		
Сухое вещество	25,22±0,04	25,71±0,04*	26,33±0,04**	26,70±0,04**		
Сырой протеин	22,32±0,06	22,84±0,03*	23,53±0,02**	24,02±0,06**		
Сырой жир	1,85±0,02	1,81±0,01	1,71±0,01*	1,57±0,01**		
Сырая зола	1,05±0,01	$1,06\pm0,01$	1,09±0,01	1,11±0,01*		
	Бед	ренные мышцы				
Общая влага	75,69±0,05	75,42±0,05	74,59±0,04**	74,47±0,03**		
Сухое вещество	24,31±0,05	24,58±0,05	25,41±0,04**	25,53±0,03**		
Сырой протеин	18,84±0,04	19,26±0,06*	20,49±0,07**	20,65±0,04**		
Сырой жир	4,62±0,02	4,40±0,02*	3,99±0,02**	3,93±0,01**		
Сырая зола	0,85±0,02	$0,92\pm0,02$	0,93±0,01	0,95±0,02		

У цыплят опытных групп было отмечено достоверное увеличение содержания сырого протеина в грудных мышцах — на 0.52-1.70%, в бедренных — на 0.42-1.81%. Минимальное содержание сырого жира было получено в 4-й опытной группе, где разница с контролем составила в грудных мышцах 0.28% (p<0,01), в бедренных—0.69% (p<0,01).

3.2.5 Морфологические и биохимические показатели крови цыплят-бройлеров

В возрасте 39 дней морфологические показатели крови цыплят-бройлеров во всех группах находились в пределах физиологической нормы: эритроциты — $(2,26-2,37)\times10^{12}$ /л, гемоглобин — 77,80-81,00 г/л, лейкоциты — $(24,12-24,66)\times10^{9}$ /л. Между контрольной и опытной группами не было отмечено достоверных различий.

Биохимические показатели крови цыплят-бройлеров приведены в таблице 6.

Таблица 6 – Биохимические показатели крови цыплят-бройлеров, (M±m)

Возраст птицы, дни Группа Группа 4-я опытная 3-я опытная 4-я опытная 4-я опытная 4-я опытная 4-я опытная 2-я опытная 3-я опытная 4-я опытная 9 опытная					
Общий белок, г/л 28					
28 42,90±0,61 43,08±0,47 43,33±0,63 43,54±0,4 39 53,02±0,69 53,54±0,66 53,70±0,76 53,90±0,4 Альбумины, г/л 28 18,21±0,35 18,30±0,21 18,41±0,25 18,58±0,2 39 20,38±0,31 20,49±0,26 20,50±0,27 20,87±0,2 Глобулины, г/л 28 24,69±0,55 24,78±0,45 24,92±0,73 24,96±0,2 39 32,64±0,70 33,05±0,65 33,20±0,85 33,03±0,4 Альбумино-глобулиновый коэффициент. 28 0,74±0,02 0,74±0,01 0,74±0,02 0,74±0,0 39 0,62±0,01 0,62±0,01 0,62±0,02 0,63±0,0 Кальций, ммоль/л 28 2,47±0,04 2,50±0,05 2,57±0,03 2,64±0,04 39 3,79±0,06 3,82±0,05 3,83±0,04 3,86±0,0 Фосфор, ммоль/л 28 2,04±0,06 2,06±0,07 2,11±0,06 2,13±0,0 39 2,83±0,05 2,84±					
39 53,02±0,69 53,54±0,66 53,70±0,76 53,90±0,00					
Альбумины, г/л 28					
28 18,21±0,35 18,30±0,21 18,41±0,25 18,58±0,3 39 20,38±0,31 20,49±0,26 20,50±0,27 20,87±0,3 Глобулины, г/л 28 24,69±0,55 24,78±0,45 24,92±0,73 24,96±0,3 39 32,64±0,70 33,05±0,65 33,20±0,85 33,03±0,4 Альбумино-глобулиновый коэффициент. 28 0,74±0,02 0,74±0,01 0,74±0,02 0,74±0,0 39 0,62±0,01 0,62±0,01 0,62±0,02 0,63±0,0 Кальций, ммоль/л 28 2,47±0,04 2,50±0,05 2,57±0,03 2,64±0,04 39 3,79±0,06 3,82±0,05 3,83±0,04 3,86±0,0 Фосфор, ммоль/л 28 2,04±0,06 2,06±0,07 2,11±0,06 2,13±0,0 39 2,83±0,05 2,84±0,03 2,84±0,04 2,84±0,0 Кальций-фосфорное отношение					
39 20,38±0,31 20,49±0,26 20,50±0,27 20,87±0,2					
Глобулины, г/л 28 24,69±0,55 24,78±0,45 24,92±0,73 24,96±0,3 39 32,64±0,70 33,05±0,65 33,20±0,85 33,03±0,4 Альбумино-глобулиновый коэффициент. 28 0,74±0,02 0,74±0,01 0,74±0,02 0,74±0,0 39 0,62±0,01 0,62±0,02 0,63±0,0 Кальций, ммоль/л 28 2,47±0,04 2,50±0,05 2,57±0,03 2,64±0,04 39 3,79±0,06 3,82±0,05 3,83±0,04 3,86±0,0 Фосфор, ммоль/л 28 2,04±0,06 2,06±0,07 2,11±0,06 2,13±0,0 39 2,83±0,05 2,84±0,03 2,84±0,04 2,84±0,0 Кальций-фосфорное отношение					
28 24,69±0,55 24,78±0,45 24,92±0,73 24,96±0,3 39 32,64±0,70 33,05±0,65 33,20±0,85 33,03±0,4 Альбумино-глобулиновый коэффициент. 28 0,74±0,02 0,74±0,01 0,74±0,02 0,74±0,0 39 0,62±0,01 0,62±0,02 0,63±0,0 Кальций, ммоль/л 28 2,47±0,04 2,50±0,05 2,57±0,03 2,64±0,04 39 3,79±0,06 3,82±0,05 3,83±0,04 3,86±0,0 Фосфор, ммоль/л 28 2,04±0,06 2,06±0,07 2,11±0,06 2,13±0,0 39 2,83±0,05 2,84±0,03 2,84±0,04 2,84±0,0 Кальций-фосфорное отношение					
39 32,64±0,70 33,05±0,65 33,20±0,85 33,03±0,4 Альбумино-глобулиновый коэффициент. 28 0,74±0,02 0,74±0,01 0,74±0,02 0,74±0,0 39 0,62±0,01 0,62±0,01 0,62±0,02 0,63±0,0 Кальций, ммоль/л 28 2,47±0,04 2,50±0,05 2,57±0,03 2,64±0,04 39 3,79±0,06 3,82±0,05 3,83±0,04 3,86±0,0 Фосфор, ммоль/л 28 2,04±0,06 2,06±0,07 2,11±0,06 2,13±0,0 39 2,83±0,05 2,84±0,03 2,84±0,04 2,84±0,00 Кальций-фосфорное отношение					
Альбумино-глобулиновый коэффициент. 28 0,74±0,02 0,74±0,01 0,74±0,02 0,74±0,0 39 0,62±0,01 0,62±0,01 0,62±0,02 0,63±0,0 Кальций, ммоль/л 28 2,47±0,04 2,50±0,05 2,57±0,03 2,64±0,04 39 3,79±0,06 3,82±0,05 3,83±0,04 3,86±0,0 Фосфор, ммоль/л 28 2,04±0,06 2,06±0,07 2,11±0,06 2,13±0,0 39 2,83±0,05 2,84±0,03 2,84±0,04 2,84±0,0 Кальций-фосфорное отношение					
28 0,74±0,02 0,74±0,01 0,74±0,02 0,74±0,0 39 0,62±0,01 0,62±0,01 0,62±0,02 0,63±0,0 Кальций, ммоль/л 28 2,47±0,04 2,50±0,05 2,57±0,03 2,64±0,04 39 3,79±0,06 3,82±0,05 3,83±0,04 3,86±0,0 Фосфор, ммоль/л 28 2,04±0,06 2,06±0,07 2,11±0,06 2,13±0,0 39 2,83±0,05 2,84±0,03 2,84±0,04 2,84±0,0 Кальций-фосфорное отношение					
39 0,62±0,01 0,62±0,01 0,62±0,02 0,63±0,0 Кальций, ммоль/л 28 2,47±0,04 2,50±0,05 2,57±0,03 2,64±0,04 39 3,79±0,06 3,82±0,05 3,83±0,04 3,86±0,0 Фосфор, ммоль/л 28 2,04±0,06 2,06±0,07 2,11±0,06 2,13±0,0 39 2,83±0,05 2,84±0,03 2,84±0,04 2,84±0,0 Кальций-фосфорное отношение					
Кальций, ммоль/л282,47±0,042,50±0,052,57±0,032,64±0,04393,79±0,063,82±0,053,83±0,043,86±0,0Фосфор, ммоль/л282,04±0,062,06±0,072,11±0,062,13±0,0392,83±0,052,84±0,032,84±0,042,84±0,0Кальций-фосфорное отношение					
28 2,47±0,04 2,50±0,05 2,57±0,03 2,64±0,04 39 3,79±0,06 3,82±0,05 3,83±0,04 3,86±0,0 Фосфор, ммоль/л 28 2,04±0,06 2,06±0,07 2,11±0,06 2,13±0,0 39 2,83±0,05 2,84±0,03 2,84±0,04 2,84±0,0 Кальций-фосфорное отношение					
39 3,79±0,06 3,82±0,05 3,83±0,04 3,86±0,0 Фосфор, ммоль/л 28 2,04±0,06 2,06±0,07 2,11±0,06 2,13±0,0 39 2,83±0,05 2,84±0,03 2,84±0,04 2,84±0,0 Кальций-фосфорное отношение					
Фосфор, ммоль/л 28 2,04±0,06 2,06±0,07 2,11±0,06 2,13±0,0 39 2,83±0,05 2,84±0,03 2,84±0,04 2,84±0,0 Кальций-фосфорное отношение					
28 2,04±0,06 2,06±0,07 2,11±0,06 2,13±0,0 39 2,83±0,05 2,84±0,03 2,84±0,04 2,84±0,0 Кальций-фосфорное отношение					
39 2,83±0,05 2,84±0,03 2,84±0,04 2,84±0,0 Кальций-фосфорное отношение					
Кальций-фосфорное отношение					
28 1,21±0,03 1,22±0,04 1,22±0,03 1,24±0,0					
39 1,34±0,03 1,34±0,01 1,35±0,03 1,36±0,0					
Глюкоза, ммоль/л					
28 9,92±0,07 9,89±0,09 9,77±0,09* 9,44±0,10					
39 10,40±0,05 10,27±0,07 10,18±0,10 10,10±0,0					
Холестерин, ммоль/л					
28 1,89±0,03 1,89±0,03 1,86±0,03 1,79±0,0					
39 1,87±0,02 1,86±0,02 1,84±0,02 1,76±0,02					

В опытных группах была отмечена тенденция на увеличение общего белка, альбуминов и глобулинов. У птицы 3-й и 4-й опытных групп отмечено достоверное снижение концентрации глюкозы в крови на 2,12 и 2,88% соответственно (p<0,05). Достоверная разница с контрольной группой по содержанию холестерина — 5,88% (p<0,05) выявлена в 4-й опытной группе. Все исследуемые биохимические показатели крови цыплят-бройлеров в контрольной и опытных группах находились в пределах физиологической нормы.

3.2.6 Экономическая эффективность применения пробиотического препарата «Пропионовый» в рационах цыплят-бройлеров

В ходе первого опыта наибольший валовый прирост живой массы был получен в 4-й опытной группе и составил 424,76 кг, что на 4,23% выше контроля. В этой же группе были отмечены самые низкие затраты корма на 1 кг прироста живой массы цыплят-бройлеров – 1,69 кг, что на 2,87% ниже относительно контрольной группы. Экономическая эффективность в 4-й опытной группе составила 547,26 рублей с опытного поголовья или 2,76 рубля в пересчете на одну голову.

3.3 Использование пробиотического препарата «Пропионовый» в рационах цыплят-бройлеров (второй опыт)

Результаты первого опыта дали основания для увеличения суточной дачи пробиотического препарата «Пропионовый». При этом во втором опыте повторно была введена максимальная доза пробиотика из первого опыта 0,65-3,90 мл/гол. (или 3,00-2,60 мл/100 г комбикорма) – 2-я опытная группа, в 3-й опытной группе доза была увеличена на 30%, а в 4-й опытной группе – на 60%, относительно 2-й опытной группы.

3.3.1 Кормление цыплят-бройлеров

За период второго научно-хозяйственного опыта на каждого цыпленка 1-й контрольной и 3-й опытной группы в среднем было израсходовано 3,98 кг комбикорма, во 2-й опытной группе -3,96 кг, в 4-й опытной группе -4,00 кг. В контрольной группе на 1 кг прироста живой массы цыплят было затрачено 1,74 кг комбикорма, 377,68 г – сырого протеина и 22,84 МДж обменной энергии, что на 2,87% превышает данные показатели относительно 2-й опытной группы, на 2,35% – относительно 3-й опытной группы и на 1,75% — относительно 4-й опытной группы.

3.3.2 Сохранность поголовья и динамика прироста живой массы цыплят-бройлеров

Динамика живой массы цыплят-бройлеров в ходе второго опыта представлена в таблице 7.

Таблица	а 7 – Динамика жи	вой массы цыплят-	-оройлеров, г (M±r	n)
Возраст		Γ	руппа	
птицы,	1-я контрольная	2-я опытная	3-я опытная	4-я

Возраст	Группа				
птицы,	1-я контрольная	2-я опытная	3-я опытная	4-я опытная	
дни					
1	42,06±0,61	42,03±0,59	42,03±0,60	42,06±0,64	
7	182,30±1,50	181,70±1,48	183,00±1,50	182,10±1,53	
14	471,50±2,90	482,50±3,01*	484,00±2,96**	485,20±3,21**	
21	855,30±5,54	872,10±5,54*	875,10±5,58*	873,60±5,56*	
28	1371,80±7,41	1396,50±7,55*	1393,80±7,33*	1394,50±7,71*	
35	1905,10±9,36	1932,10±9,28*	1932,80±8,99*	1935,90±9,32*	
40	2332,80±14,29	2388,27±13,66**	2386,09±13,77*	2382,24±13,99*	

На момент окончания опыта наиболее высокие показатели по живой массе были отмечены у цыплят 2-й опытной группы – 2388,27 г, что на 2,38% выше в сравнении с контрольной группой (p<0,05), где живая масса птицы составила 2332,80 г. Между опытными группами отмечались незначительные различия в пределах 0,10-0,26%. Абсолютный прирост цыплят-бройлеров контрольной группы составил 2290,74 г, что на 2,42% ниже относительно 2-й опытной группы, на 2,33% — относительно 3-й опытной группы и на 2,16% — относительно 4-й опытной группы. Среднесуточный прирост в контрольной группе составил 58,74 г, во 2-й опытной группе — 60,16 г, в 3-й опытной группе — 60,10 г, в 4-й опытной группе — 60,00 г. Сохранность поголовья во всех подопытных группах находилась в диапазоне 97,50-98,75%. Наиболее высокой сохранностью характеризовались цыплята опытных групп, в которых сохранность поголовья была на 1,25% выше относительно контроля.

3.3.3 Мясная продуктивность цыплят-бройлеров

Убойный выход при глубокой разделке тушек в 1-й контрольной группе составил 69,99%. В опытных группах убойный выход потрошеных тушек находился в пределах 72,18-72,20%, что выше контроля на 2,19-2,20% (p<0,01). Все тушки были отнесены к 1-му сорту (ГОСТ 31962-2013).

3.3.4 Химический состав мяса цыплят-бройлеров

Химический состав мяса цыплят-бройлеров представлен в таблице 8.

Таблица 8 – Хим	ический состав мяса цыплят-бройлеров, % (M±m)
П	F.

			1 / /		
Показатели	Группа				
	1-я контрольная	2-я опытная	3-я опытная	4-яопытная	
Грудные мышцы					
Общая влага	74,76±0,29	73,07±0,21**	73,13±0,24**	73,10±0,23**	
Сухое вещество	25,24±0,29	26,93±0,21**	26,87±0,24**	26,90±0,23**	
Сырой протеин	21,24±0,06	23,54±0,05**	23,57±0,05**	23,55±0,04**	
Сырой жир	2,94±0,02	2,27±0,02**	2,18±0,01**	2,24±0,01**	
Сырая зола	1,06±0,01	1,12±0,01*	1,12±0,01*	1,11±0,01*	
	Бедре	нные мышцы			
Общая влага	75,62±0,05	74,42±0,05**	74,40±0,04**	74,45±0,05**	
Сухое вещество	24,38±0,05	25,58±0,05**	25,60±0,04**	25,55±0,05**	
Сырой протеин	18,87±0,03	20,64±0,05**	20,69±0,04**	20,67±0,04**	
Сырой жир	4,64±0,01	3,96±0,01***	3,95±0,01***	3,93±0,01***	
Сырая зола	$0,87\pm0,01$	0,98±0,02*	0,96±0,01*	0,95±0,01*	

У цыплят опытных групп было отмечено достоверное повышение сухого вещества в грудных мышцах — на 1,63-1,69% (p<0,01), в бедренных мышцах — на 1,17-1,22% (p<0,01). Содержание сырого протеина в опытных группах было выше относительно контрольной группы на 1,90-1,94% (p<0,01) — в грудных мышцах и на 1,77-1,82% (p<0,01) — в бедренных мышцах. Содержание сырого жира в опытных группах было снижено по сравнению с контролем на 0,67-0,71% (p<0,001).

3.3.5 Морфологические и биохимические показатели крови цыплят-бройлеров Морфологические показатели крови цыплят-бройлеров представлены в таблице 9.

Таблица 9 – Морфологические показатели крови цыплят-бройлеров, (M±m)

Группа	Возраст птицы, дни	Гемоглобин, г/л	Эритроциты, $10^{12}/\pi$	Лейкоциты, $10^9/\pi$
1-я контрольная	28	75,20±1,07	2,20±0,02	24,26±0,52
	39	78,80±1,16	2,28±0,03	24,90±0,59
2-я опытная	28	79,80±1,11*	2,29±0,02*	24,38±0,62
	39	82,80±1,02*	2,40±0,02*	24,22±0,66
3-я опытная	28	80,20±1,36*	2,31±0,02*	24,34±0,50
	39	84,00±1,30*	2,42±0,03*	24,18±0,60
4-я опытная	28	80,80±1,36*	2,32±0,03*	24,33±0,50
	39	84,80±1,07*	2,43±0,03*	24,16±0,59

На момент окончания опыта в опытных группах в сравнении с контрольной группой содержание гемоглобина было выше на 5,08-7,61% (p<0,05), эритроцитов — на 5,26-6,58% (p<0,05). Биохимические показатели крови цыплят-бройлеров представлены в таблице 10.

Таблица 10 – Биохимические показатели крови цыплят-бройлеров, (M±m)

Таолица 10 — виохимические показатели крови цыплят-ороилеров, (W=III)						
Возраст птицы,	1					
дни	1-я контрольная	2-я опытная	3-я опытная	4-я опытная		
Общий белок, г/л						
28	43,20±0,55	43,78±0,56	43,72±0,51	43,74±0,51		
39	53,18±0,69	$54,12\pm0,52$	54,05±0,53	54,01±0,51		
	A	льбумины, г/л				
28	18,32±0,30	$18,72\pm0,29$	18,68±0,29	18,70±0,26		
39	20,82±0,26	21,40±0,25	21,38±0,29	21,34±0,24		
	Γ.	лобулины, г/л				
28	24,88±0,51	25,06±0,33	25,04±0,49	25,04±0,37		
39	32,47±0,71	32,71±0,35	32,67±0,49	32,67±0,33		
	Альбумино-гл	обулиновый коэф	фициент			
28	$0,74\pm0,02$	$0,75\pm0,01$	$0,75\pm0,02$	$0,75\pm0,01$		
39	0,64±0,02	0,66±0,01	0,66±0,01	0,65±0,01		
Кальций, ммоль/л						
28	2,50±0,03	2,70±0,03**	2,70±0,03**	2,71±0,03**		
39	$3,77\pm0,03$	3,89±0,03*	3,88±0,03*	3,90±0,03*		
	Фо	осфор, ммоль/л				
28	2,03±0,02	2,14±0,03*	2,16±0,04*	2,15±0,03*		
39	2,77±0,03	2,83±0,02	2,83±0,02	2,84±0,03		
Кальций-фосфорное отношение						
28	1,23±0,01	1,26±0,01	1,25±0,02	1,26±0,02		
39	1,36±0,02	1,37±0,02	1,37±0,02	1,37±0,02		
Глюкоза, ммоль/л						
28	9,91±0,05	9,43±0,04**	9,42±0,03**	9,40±0,03**		
39	10,43±0,04	10,12±0,03**	10,10±0,04**	10,09±0,04**		
	Холе	естерин, ммоль/л				
28	1,91±0,02	1,80±0,02*	1,81±0,02*	1,79±0,02*		
39	1,88±0,02	1,76±0,02*	1,74±0,03*	1,74±0,03*		
L			•			

У птицы опытных групп было установлено снижение концентрации глюкозы в пределах 2,97-3,26% (p<0,01), холестерина — на 6,38-7,45% (p<0,05). Содержание кальция в сыворотке крови цыплят опытных групп было выше относительно контрольной группы на 2,92-3,45% (p<0,01).

В опытных группах отмечена тенденция на увеличение концентрации общего белка на 0,83-0,94%, альбуминов – на 0,52-0,58%, глобулинов – на 0,20-0,24%, фосфора – на 2,17-2,53% в сравнении с контрольной группой.

3.3.6 Экономическая эффективность включения пробиотического препарата «Пропионовый» в рационы цыплят-бройлеров

Валовый прирост живой массы в контрольной группе составил 178,60 кг, что на 3,49-3,76% ниже относительно опытных групп (184,84-185,31 кг). Общие затраты на комбикорм и пробиотик в расчете на 1 кг прироста живой массы во 2-й опытной группе были снижены по сравнению с контрольной группой на 0,52%. В 3-й и 4-й опытных группах общие затраты были выше относительно контрольной группы на 0,93 и 2,42% соответственно, что связано с увеличением расхода пробиотика. Наибольшая экономическая эффективность была получена во 2-й опытной группе и составила 236,15 рублей с опытного поголовья или 2,95 рубля в пересчете на одну голову.

3.4. Основные результаты производственной проверки 3.4.1 Кормление цыплят-бройлеров

Затраты комбикорма на 1 голову в контрольной группе были равны 4,00 кг, в опытной группе — 3,97 кг. Затраты на 1 кг прироста живой массы в контрольной группе составили: комбикорма — 1,74 кг, сырого протеина — 377,68, обменной энергии — 22,84 МДж, что на 2,87% больше относительно опытной группы.

3.4.2 Продуктивные качества цыплят-бройлеров

Основные показатели продуктивности цыплят-бройлеров, полученные в ходе производственной проверки, представлены в таблице 11.

Tr ~ 11	$\boldsymbol{\Box}$	~ ~
Таблина ГГ	- Продуктивные показатели ц	LITHUT-UNOUTHOUD
таолица тт	продуктивные показатели ц	

Показатель	Группа		
	1-я контрольная	2-я опытная	
Живая масса цыплят-бройлеров, г:			
в начале опыта	41,97±0,61	41,84±0,59	
в конце опыта	2338,36±13,29	2392,71±13,06**	
Абсолютный прирост, г	2296,39	2350,87	
Среднесуточный прирост, г	58,88	60,28	
Сохранность поголовья, %	97,22	98,52	

Введение в рацион цыплят-бройлеров опытной группы пробиотика способствовало увеличению живой массы на 2,32% (p<0,01), сохранности — на 1,30%, среднесуточного прироста — на 2,38%, абсолютного прироста — на 2,37%.

3.4.3 Результаты балансового опыта

Данные по переваримости питательных веществ и использованию азота, кальция и фосфора представлены в таблице 12.

Таблица 12 – Переваримость питательных веществ, использование азота,

кальция и фосфора (М±т), %

Показатель	Группа					
	Контрольная	Опытная				
Коэффициенты переваримости питательных веществ рациона						
Органическое вещество	75,91±0,61	78,37±0,47*				
Сырой протеин	76,68±0,45	79,52±0,40*				
Сырой жир	62,36±0,24	63,61±0,22*				
Сырая клетчатка	13,14±0,26	14,55±0,27*				
БЭВ	82,69±0,23	83,59±0,24*				
	Использование азота					
От принятого	71,87±0,46	73,85±0,44*				
Использование кальция						
От принятого	48,62±0,26	49,51±0,27				
	Использование фосфора					
От принятого	43,99±0,28	44,43±0,30				

Включение препарата «Пропионовый» в опытной группе способствовало достоверному повышению переваримости органического вещества на 2,46%, сырого протеина — на 1,84% (p<0,05), сырого жира — на 1,25% (p<0,05), сырой клетчатки — на 1,41% (p<0,05), БЭВ — на 0,90% (p<0,05), а также увеличению степени использования азота от принятого на 1,98% (p<0,05).

Результаты балансового опыта согласуются с результатами контрольных взвешиваний, при которых цыплята опытной группы на момент окончания опыта имели среднюю живую массу на 54,35 г больше относительно контрольной группы.

3.4.4 Экономическая эффективность применения пробиотического препарата «Пропионовый» в рационах цыплят-бройлеров

Экономическая эффективность результатов производственной проверки представлена в таблице 13.

Таблица 13 – Экономическая эффективность результатов производственной проверки

Показатель	Контрольная группа	Опытная группа
Валовый прирост живой массы, кг	1204,98	1250,33
Затраты корма + пробиотика/антибиотика, руб.	28,88	28,75
Себестоимость 1 кг продукции, руб.	71,31	70,99
Полная себестоимость продукции, руб.	87543,01	90364,59
Выручка от реализации продукции, руб.	117976,20	122327,61
Чистый доход, руб.	30433,19	31963,02
Экономическая эффективность в расчете на опыт-	-	+1529,83
ное поголовье, руб.		
Экономическая эффективность в расчете на 1 го-	-	+2,83
лову, руб.		

Включение пробиотического препарата «Пропионовый» в рационы цыплятбройлеров способствовало повышению валового прироста живой массы в опытной группе на 3,76% и снижению себестоимости продукции на 0,45%, что позволило получить дополнительную прибыль в размере 2,83 рубля от одной головы.

ЗАКЛЮЧЕНИЕ

На основании проведенных исследований можно сделать следующие выводы:

- 1. Включение в рацион цыплят-бройлеров препарата «Пропионовый» в дозах 0,35-2,10 и 0,50-3,00 мл/гол. (или 1,60-1,40 и 2,30-2,00 мл/100 г корма) не приводило к существенному увеличению живой массы в убойном возрасте, скорости роста, сохранности птицы и снижению затрат корма.
- 2. Использование в составе рациона цыплят-бройлеров препарата «Пропионовый» в дозе 0,65-3,90 мл/гол. (или 3,00-2,60 мл/100 г корма) способствовало увеличению живой массы на 1,98-2,32% (p<0,05), сохранности птицы на 1,25-2,02% и снижению затрат корма на 1 кг прироста на 2,87%.
- 3. Увеличение суточной дозы препарата «Пропионовый» до 0.87-5.20 и 1.08-5.50 мл/гол. (или 4.00-3.60 и 5.00-4.50 мл/100 г корма) не приводило к увеличению их продуктивных качеств (живой массы, скорости роста, сохранности, затрат корма на 1 кг прироста) по сравнению с дозой 0.35-3.90 мл/гол. (или 3.00-2.60 мл/100 г корма).
- 4. Введение в рационы цыплят-бройлеров препарата «Пропионовый» в дозе 0,65-3,90 мл/гол. (или 3,00-2,60 мл/100 г корма) увеличило выход потрошеных тушек на 2,19-2,30%.
- 5. Исследования биохимического состава мяса показали, что применение пробиотического препарата «Пропионовый» повысило содержание сырого протеина в грудных мышцах на 2,30-2,33% (p<0,01), в бедренных мышцах на 1,77-1,82% (p<0,01), одновременно снизилось содержание сырого жира в грудных мышцах на 0,67-0,76% (p<0,01), в бедренных мышцах на 0,68-0,71% (p<0,001).
- 6. Применение препарата «Пропионовый» оказало стимулирующее действие на биологические процессы кроветворения. При этом у цыплят опытных групп отмечено достоверное (p<0,05) увеличение содержания гемоглобина на 5,08-7,61%, эритроцитов на 5,26-6,58%. В сыворотке крови было выявлено увеличение содержания кальция на 2,92-3,45% (p<0,05), снижение концентрации глюкозы в пределах 2,97-3,26% (p<0,05), холестерина на 6,38-7,45% (p<0,05).
- 7. По результатам балансового опыта установлено, что добавка препарата «Пропионовый» в дозе 0,65-3,90 мл/гол. (или 3,00-2,60 мл/100 г корма) способствовала достоверному повышению коэффициентов переваримости органического вещества на 2,46% (p<0,05), сырого протеина на 1,84% (p<0,05), сырого жира на 1,25% (p<0,05), сырой клетчатки на 1,41% (p<0,05), БЭВ на 0,90% (p<0,05), а также увеличению степени использования азота от принятого на 1,98% (p<0,05).
- 8. По результатам производственной проверки при использовании пробиотического препарата «Пропионовый» в дозе 0,65-3,90 мл/гол. (или 3,00-2,60 мл/100 г корма) экономическая эффективность составила в пересчёте на 1 голову 2,83 руб.

Предложение производству

С целью повышения продуктивности и качества мяса цыплят-бройлеров целесообразно включать в их рацион пробиотический препарат «Пропионовый».

Суточная доза пробиотика 0,65-3,90 мл/гол. (3,00-2,60 мл/100 г корма), является оптимальной и позволяет увеличить живую массу птицы в убойном возрасте на 1,98-2,32%, сохранность птицы — на 1,25-2,02% и снизить затраты корма на 1 кг прироста живой массы на 2,87%, а себестоимость продукции — на 0,45%.

Перспективы дальнейшей разработки темы

Дальнейшие исследования будут направлены на разработку пробиотического препарата «Пропионовый» в сухом виде и в виде капсул, а также на изучение влияния включения таких вариантов пробиотика в рационы сельскохозяйственной птицы.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ В рецензируемых журналах, рекомендованных ВАК РФ:

- 1. **Орлова Т.Н.** Влияние пробиотического препарата «Пропионовый» на продуктивные качества цыплят-бройлеров кросса HUBBARD F-15 / Т.Н. Орлова, В.Н. Хаустов, Е.Ф. Отт // Кормление сельскохозяйственных животных и кормопроизводство. -2019. -№ 3 (164). C. 26-31.
- 2. **Орлова Т.Н.** Влияние пробиотического препарата «Пропионовый» на морфологический состав крови цыплят-бройлеров / Т.Н. Орлова, В.Н. Хаустов // Вестник Алтайского государственного аграрного университета. 2019. № 7 (177). С. 148-151.
- 3. **Орлова Т.Н.** Влияние пробиотического препарата «Пропионовый» на продуктивные качества и гематологические показатели цыплят-бройлеров / Т.Н. Орлова // Вестник Новосибирского государственного аграрного университета. -2019. -№ 3 (52). C. 98-104.
- 4. **Орлова Т.Н.** Влияние пробиотического препарата «Пропионовый» на убойный выход цыплят-бройлеров / Т.Н. Орлова // Вестник Алтайского государственного аграрного университета. -2020. -№ 8 (190). C. 101-104.

Публикации в других изданиях:

- 5. **Орлова Т.Н.** Повышение продуктивных качеств цыплят-бройлеров при скармливании пробиотического препарата «Пропионовый» / Т.Н. Орлова, В.Н. Хаустов // Вестник Алтайского государственного аграрного университета. 2018. № 9 (167). С. 109-113.
- 6. **Орлова Т.Н.** Пробиотический препарат для птицеводства на основе пропионовокислых бактерий / Т.Н. Орлова, Р.В. Дорофеев, В.Н. Хаустов // Аграрная наука сельскому хозяйству: сб. материалов XIII Междунар. науч.-практ. конф. (Барнаул, 15-16 февраля 2018 г.). Барнаул: РИО Алтайского ГАУ, 2018. С. 286-288.
- 7. **Орлова Т.Н.** Эффективность применения пробиотического препарата «Пропионовый» в кормлении цыплят-бройлеров / Т.Н. Орлова, В.Н. Хаустов // Наука и инновации: векторы развития: сб. науч. статей Междунар. науч.-практ. конф. молодых ученых. Барнаул: РИО Алтайского ГАУ, 2018. Кн.1. С. 171-173.
- 8. **Орлова Т.Н.** Влияние препарата «Пропионовый» на продуктивные качества цыплят-бройлеров / Т.Н. Орлова, Е.Ф. Отт, В.Н. Хаустов // Кормопроизводство,

- продуктивность, долголетие и благополучие животных: материалы Междунар. науч.-практ. конф. (Новосибирск, 25 октября 23 ноября 2018 г.) Новосибирск: Изд-во ИЦ НГАУ «Золотой колос», 2018. С. 114-116.
- 9. **Орлова Т.Н.** Изучение гематологических показателей крови цыплят-бройлеров при введении в их рационы пробиотического препарата «Пропионовый» / Т.Н. Орлова, В.Н. Хаустов // Пища. Экология. Качество. сб. материалов XVI Междунар. науч.-практ. конф. (Барнаул, 24-26 июня 2019 г.). Барнаул: Изд-во Алтайского государственного университета, 2019. С. 103-106.
- 10. **Орлова Т.Н.** Влияние пробиотического препарата «Пропионовый» на показатели крови цыплят-бройлеров / Т.Н. Орлова, В.Н. Хаустов // Научные исследования молодых ученых для АПК Сибири, Дальнего востока и Казахстана: материалы VIII региональной науч.-практ. конф. с междунар. участием (Барнаул, 19 июля 2019 г.). – Барнаул: Изд-во ООО «АЗБУКА», 2019. – С. 150-154.
- 11. **Орлова Т.Н.** Пробиотический препарат «Пропионовый» в рационах цыплят-бройлеров / Т.Н. Орлова, Е.Ф. Отт // От биопродуктов к биоэкономике: материалы III межрегион. науч.-практ. конф. с междунар. участием (Барнаул, 7-8 ноября 2019 г.). Барнаул: Изд-во Алтайского государственного университета, 2019. С. 167-171.
- 12. Хаустов В.Н. Влияние пробиотического препарата «Пропионовый» на зоотехнические и физиологические показатели цыплят-бройлеров / В.Н. Хаустов, **Т.Н. Орлова** // Перспективы внедрения инновационных технологий в АПК: сб. статей II Российской (Национальной) науч.-практ. конф. (20 декабря 2019 г.). Барнаул: РИО Алтайского ГАУ, 2019. С. 79-82.
- 13. **Orlova T.N.** Efficacy of probiotic preparation based on propionic acid bacteria in the diets of broiler chickens / T.N. Orlova, V.N. Haustov // «AgroSMART Smart solutions for agriculture»: International scientific and practical conference. 2019. P. 682-690.
- 14. **Орлова Т.Н.** Изучение морфологических и биохимических показателей крови цыплят-бройлеров при введении в их рацион пробиотического препарата «Пропионовый» / Т.Н. Орлова, В.Н. Хаустов // Аграрная наука сельскому хозяйству: сб. материалов XV Междунар. науч.-практ. конф. (Барнаул, 12-13 марта 2020 г.). Барнаул: РИО Алтайского ГАУ, 2020. Кн.2. С. 212-214.
- 15. **Орлова Т.Н.** Влияние применения пробиотического препарата «Пропионовый» на гематологические показатели крови цыплят-бройлеров / Т.Н. Орлова // Вестник молодёжной науки Алтайского государственного аграрного университета: сб. науч. тр. Барнаул: РИО Алтайского ГАУ, 2019. № 1. С.84-86.
- 16. **Орлова Т.Н.** Повышение убойного выхода и изменение химического состава мяса цыплят-бройлеров при применении пробиотического препарата на основе пропионовокислых бактерий / Т.Н. Орлова // Итоги и перспективы развития агропромышленного комплекса: сборник Междунар. науч.-практ. конф. (с. Соленое Займище, 21-22 мая 2020 г.). с. Соленое Займище: Изд-во ФГБНУ «ПАФНЦ РАН». 2020. С. 745-748.

Подписано в печать 22.10.2020 г. Формат 60*84/16 Бумага для множительных аппаратов. Печать ризографная. Гарнитура «Times New Roman». Усл. печ. л. 1. Тираж 100 экз. Заказ № 8.

РИО Алтайского ГАУ 656049, г. Барнаул, пр. Красноармейский, 98 тел. 203-299