УДК 532.536:631.6

В.И. Лобанов, С.В. Макарычев, С.В. Демиденко, В.А. Демин

ВЛИЯНИЕ ПОЛОСНОГО СНЕГОЗАДЕРЖАНИЯ НА ТЕМПЕРАТУРНЫЙ РЕЖИМ ЧЕРНОЗЕМОВ В ЗИМНИЙ ПЕРИОД

Ключевые слова: влага, миграция, мерзлота, снегозадержание, температура, влагонакопление, черноземы, капилляры, изотерма, профиль.

Введение

Климатические условия Алтайского края способствуют длительному сезонному промерзанию, которое создаёт значительные температурные градиенты, обусловливающие подток и аккумуляцию жидкой и парообразной влаги в промерзающие верхние горизонты. Однако количественная сторона процесса накопления влаги, а также характер и форма её передвижения остаются не вполне ясными.

Некоторые авторы (Глобус А.М. и др.) отмечают, что суммарный подток влаги к промерзающему слою состоит из трёх слагаемых: пародиффузионного потока, термокапиллярного потока, обусловленного резким уменьшением потенциала влаги при образовании льда. Последний они считают преобладающим [1].

Процессы зимней миграции влаги в почвах Сибири к настоящему времени изучены недостаточно. Исследования В.Е. Горяева показали, что процесс накопления влаги в мёрзлом слое почвы в зимний период зависит от высоты стояния грунтовых вод, проявляясь отчётливо лишь случаях, когда мёрзлая толща находится в зоне действия капиллярного питания [2].

Н.А. Мосиенко по данным метеостанции с. Родино рассчитал, что накопление влаги с октября по март в верхнем метровом слое суглинистого чернозёма Кулунды при уровне грунтовых вод 3,5-6,0 м составляет от 28 до 72 мм, причём это увеличение, по его мнению, обусловлено жидкой почвенной влагой [3].

Данные В.П. Панфилова указывают на то, что накопление влаги зимой происходит в основном слое 0-50 см. В супесчаных каштановых почвах зафиксировано незначительное накопление воды в верхнем промерзающем слое. Эти же опыты

свидетельствуют о малой подвижности дискретной влаги в почвах лёгкого механического состава [4].

Методы исследований

В этой связи нами в зимний период было изучено формирование гидротермического режима в чернозёмах юго-восточной части Алтайского края на фоне полосного снегозадержания.

Наибольшее содержание гумуса в чернозёмах отмечено в верхнем слое (25 см), где оно составляет 6-7%, тогда как в подпахотном лишь от 3 до 4%. Основными носителями гумуса в лессовых чернозёмах служат фракции мелкой пыли и ила, но эродированность их снижает содержание органического вещества в наиболее дисперсных частицах.

Исследованные чернозёмы имеют среднесуглинистый профиль. Илистые частицы в большем количестве находятся в нижележащих слоях. При этом наименьшее число их наблюдается в верхнем пахотном слое, что свидетельствует о переносе ила нисходящим потоком влаги, возникающим в условиях промывного водного режима.

Объемная масса почвы гумусо-аккумулятивного горизонта составляет 1100 кг/м. С глубиной она увеличивается.

Эти чернозёмы отличаются высокой влагоёмкостью. Так, в пахотном слое наименьшая влагоёмкость (НВ) достигает 31,5% от массы почвы, уменьшаясь с глубиной до 17,7% (гор. ВО). Такая водовместимость позволяет удержать практически всю влагу атмосферных осадков в тёплое время года. Большая часть почвенной влаги в корнеобитаемом слое хорошо доступна растениям. Влажность завядания в чернозёмах лежит в пределах 13,7 (гор. Ап, А)-9,1% (гор. ВСк).

Удельная теплоёмкость пахотного слоя составляет 1194 Дж/кг×К, в то время как в обеднённых органикой горизонтах она оказывается ниже — около 1000 Дж/кг×К.

Некоторое увеличение плотности чернозёма с глубиной, т.е. изменение условий молекулярного переноса тепловой энергии, послужило главной причиной снижения температуропроводности. Коэффициент теплопроводности в профиле при абсолютно сухом состоянии остаётся практически неизменным и составляет 0,40 Вт/м×К.

Результаты исследований

Зимний мерзлотно-температурный режим лессовидных чернозёмов оказывает значительное влияние на характер их гидротермического состояния в весеннелетний период. Здесь важно подчеркнуть, что в формировании сезонных особенностей водного и связанных с ним теплофизического и биологического режимов чернозёмов большая роль принадлежит снежному покрову, мероприятиям по снегозадержанию и использованию талых вод на полях.

Из рисунка 1 следует, что, распространение изотермы в почвенном профиле вплоть до конца декабря на различных агрофонах одинаково.

К этому времени нулевая изотерма проникла на глубину 50 см. Температура - 10°С достигла глубины 15 см. К началу февраля нулевая температура была отмечена на глубине 1 м, в то время как изолиния -10°С стабилизировалась на 15 см. Причиной этого послужило формирование устойчивого снежного покрова мощностью 40-50 см, сыгравшего роль теплоизолятора, при этом почвенный профиль охладился до +3°С на глубину до 2,5 м.

На контрольном участке была отмечена более высокая стабилизация температурного режима. Так, изотермы -2; О и +3°С с начала декабря перестали распро-

страняться вниз по профилю и до конца февраля фиксировались, соответственно, на глубинах 30; 50 и 100 см. Наиболее заметна статичность температурного режима была на отметке 1 м, где сформировалась постоянная температура -3°С. На контроле нулевая изотерма не опускалась ниже 50 см. В этом важную роль сыграл снежный покров, достигший высоты 70 см.

Проведённое в начале февраля снегозадержание внесло свои коррективы. Так, на оголённом участке нулевая изотерма продолжала опускаться вниз по профилю и к середине марта достигла 130 см. Температуры -2 и -10°С проникли, соответственно, на глубину 80 и 30 см.

В то же время под валками снега глубина распространения изолиний 0 и -2°C составила лишь 100 и 50 см, а охлаждение верхнего слоя до -10°C полностью исчезло. Здесь начал формироваться более тёплый температурный режим.

Следует отметить, что время проведения снегозадержания (начало февраля) сильно запоздало, морозы ослабели, и почвенный профиль на оголённых участках оказался недостаточно промороженным — только до 130 см, тогда как для чистоты эксперимента требовалось 200-250 см.

Процесс размораживания деятельного слоя почвы 1 м под валками снега протекал быстрее и закончился в начале апреля, в то время как на оголённых участках — на 10-12 дней позднее. Естественно, и положительные изотермы в первом случае быстрее распространялись вниз по профилю. Температура -10°С достигла глубины 1 м к началу мая. На промороженных участках слой почвы 1 м прогрелся до +10°С лишь в двадцатых числах мая.

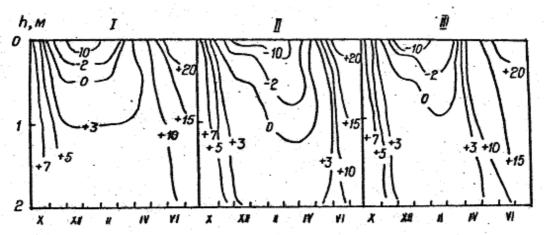


Рис. 1. Термический режим черноземов, °C: I — контроль; II — оголенный участок; III — под снежным валком

Распространение изотермы +15°С также задержалось практически на две недели. Естественно, что при этом сказались и погодные условия – прохладная весна. Тем не менее различия в агрофонах в зимне-весенний период оказались закономерными, а во второй половине июня исчезли. Чередование более прогретых участков почвы впоследствии сказалось на всходах. Здесь они были более высокими и густыми, чем на промороженных местах.

Различный температурный режим агрофонов в конце зимы и весной отразился на формировании водного режима и на влагонакоплении. Перед уходом под зиму на всех участках, где проводилось наблюдение, влагосодержание в почве было почти одинаковым (рис. 2). Верхний слой 30 см увлажнён до 45% от массы почвы. В нижних горизонтах содержание влаги составляло 19-22%. В этот период влагозапасы на контроле оказались равными 811 мм, на агрофоне – 800 мм. В конце декабря наблюдалось некоторое перераспределение влагозапасов. При этом на контрольном участке они снизились до 666 мм, на агрофоне – до 684 мм. Здесь следует учесть то обстоятельство, что контрольный участок находился на возвышенном месте, и в конце декабря за счёт понижения уровня грунтовых вод, верхний слой 1 м оказался частично обезвожен-

Проведённое 5-7 февраля полосное снегозадержание способствовало промерзанию оголённых участков и, как следствие, миграции влаги из нижних слоев, расположенных на глубине 90-150 см, в верхний слой 30-50 см, т.е. в зону промерзания. Тем не менее удалённость ка-

пиллярной каймы грунтовых вод (уровень грунтовых вод 6-7 м) и недостаточное промерзание не позволили влаге в достаточном количестве проникнуть в зону промерзания и накопиться здесь. В результате повышения влагосодержания в верхнем слое было обеспечено обезвоживание нижних горизонтов.

Поскольку к моменту таяния под снежными валками сформировался более благоприятный термический режим, почва здесь быстрее оттаяла, что способствовало лучшему впитыванию снеготалых вод. В итоге под валками наблюдалось интенсивное влагонакопление. Так, в слое 1,5 м влаги оказалось больше на 52 мм по сравнению с промороженными участками почвы.

Заключение

Таким образом, удаление снежного покрова на отдельных участках пашни приводит к дополнительному промерзанию почвенного профиля, что отражается на режиме влагонакопления. На промороженных участках влага мигрирует из нижних слоев в зону промерзания, хотя грунтовые воды в эту миграцию не были вовлечены. Поэтому данную технологию целесообразно проводить на полях с неглубоким залеганием грунтовых вод, чтобы капиллярная кайма могла оказаться в зоне промерзания. Кроме того, для рационального использования применяемой технологии необходимо проведение снегозадержания в первой половине зимы, во время сильных морозов, и периодическое удаление снега с оголённых ранее участков.

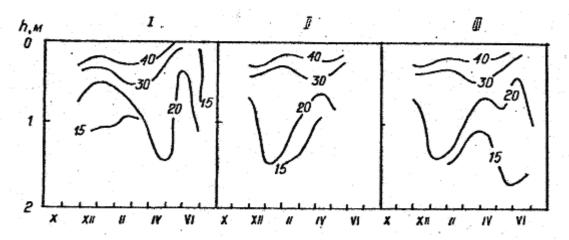


Рис. 2. Водный режим черноземов, % (от массы почвы): I — контроль; II — оголенный участок; Ш — под снежным валком

Библиографический список

- 1. Глобус А.М. Термодинамика почвенной влаги / А.М. Глобус; пер. и ред. А.М. Глобуса. Л., 1966. 437 с.
- 2. Горяев В.Е. О механизме миграции почвенной влаги / В.Е. Горяев // Экологические проблемы использования водных и земельных ресурсов на юге Западной Сибири. Барнаул, 1977. С. 180-182.
- 3. Мосиенко Н.А. Агрогидрологические основы орошения: на примере Зап. Сибири, Урала и Сев. Казахстана / Н.А. Мосиенко. Л.: Гидрометеоиздат, 1984. 215 с.
- 4. Панфилов В.П. Физика почв Западной Сибири / В.П. Панфилов. Новосибирск, 1971. 316 с.

УДК 631.6:631.4

С.В. Макарычев, И.В. Шорина

ФОРМИРОВАНИЕ ТЕМПЕРАТУРНОГО РЕЖИМА ЧЕРНОЗЁМА ВЫЩЕЛОЧЕННОГО НА СКЛОНАХ ПРИОБСКОГО ПЛАТО

Ключевые слова: температурный режим, чернозём выщелоченный, катена (склон), склоновые земли, сумма температур, суточное колебание температуры.

Введение

Изучение гидротермического режима как одного из основных факторов почвенного плодородия необходимо при возделывании сельскохозяйственных культур на склоновых землях. Температурный и влажностный профили почвы, их сезонная и суточная изменчивость, а также амплитуда колебаний характеризуют определенный почвенный климат [1].

Тепловой режим почв оказывает сильное влияние на интенсивность процессов почвообразования, урожайность сельско-хозяйственных культур и продуктивность естественных фитоценозов [2]. В то же время рост и развитие растений, применяемая технология оказывают сильное влияние на трансформацию лучистой энергии солнца и на потоки тепла, поступающие к поверхности почвы, а также на теплообмен в её профиле [3].

Объекты и методы

Для выявления особенностей формирования температурного режима в черно-

земах выщелоченных нами в 2005-2007 гг. были проведены исследования на склонах разной экспозиции, расположенных в учебном хозяйстве «Пригородное».

При этом на разных элементах катены (склона) измерялась температура на глубинах 0, 5, 10, 15, 20, 50, 100 см в 13:00 один раз в декаду, а также ежемесячно в течение суток в 7:00,10:00, 13:00, 16:00, 19:00,1:00, 7:00, 10:00.

Результаты и их обсуждение

Суточные колебания температуры почвы на различных элементах катены представлены на рисунке 1.

Полученные данные показали, что суточное изменение температуры носит синусоидальный характер как на поверхности, так и на глубине до 20 см по всему склону. Максимальные суточные колебания температуры наблюдались на поверхности почвы. С увеличением глубины происходило смещение максимумов суточных колебаний температур и уменьшались их амплитуды. В то же время на глубине более 50 см температура почвы по всей длине склона в течение суток практически не изменилась.

Известно, что в пахотном слое происходит наиболее интенсивный теплообмен между почвой и приземным слоем возду-