

Л.Н. Коробова, А.В. Шинделов

МИКРОБНЫЙ ОТКЛИК ВЫЩЕЛОЧЕННОГО ЧЕРНОЗЕМА НА ПРЕВЫШЕНИЕ НОРМЫ ГЕРБИЦИДНОЙ НАГРУЗКИ

Ключевые слова: гербициды, выщелоченный чернозем, гербицидный стресс, микроорганизмы, численность, структура сообщества, микроскопические грибы, токсикогенные виды, фитотоксичность почвы.

Пестициды относят к существенным загрязнителям среды, но применение их обусловлено объективной необходимостью. В Западной Сибири в условиях значительной засоренности посевов яровой пшеницы обязательным технологическим приемом стало применение гербицидов. Считают, что в ближайшие двадцать лет другой альтернативы для получения высоких урожаев не будет [1]. При этом химическая прополка является резервом повышения продуктивности посевов при строгом соблюдении норм и условий применения препарата. Если гербицидная обработка сопровождается превышением дозы препарата или его двойным наложением на посев при проходах опрыскивателя, в агроценозе может возникнуть пестицидный стресс.

В этом случае задачей экологизации земледелия становится выяснение реальных издержек химизации растениеводства, уровень которых можно определить по чувствительному к малейшим изменениям среды микробному сообществу почвы [2, 3]. Оно является неотъемлемым компонентом биогеоценозов, формирует структуру почвы и определяет интенсивность биологического круговорота веществ в агроландшафте и уровень продуктивности растений [4, 5].

Цель работы — изучить отклик микробного сообщества выщелоченного чернозема на применение гербицидов в дозах, рекомендованных производителями и завышенных в 2 и 3 раза.

Объекты и методы

Исследования провели в 2011-2012 гг. в северной лесостепи Приобья в полевом и лабораторном опытах. Почва — чернозем

выщелоченный среднемощный тяжелосуглинистый с содержанием гумуса 4,47% и рН 7,6.

В 2011 г. (тёплом и недостаточно увлажнённом) в полевом опыте высевали сорт яровой пшеницы Новосибирская 29. Срок посева – 18 мая, норма высева семян – 5 млн/га. Предшественник – пшеница по пшенице. В опыте применяли баковую смесь гербицидов дианата и гренча в дозах 0,15 г/га + 10 г/га, а также превышенных в 2 и 3 раза. Дианат (дикамба, ВР, д.в. диметиламинная соль) и гренч (СП, д.в. метсульфурон-метил) рекомендованы в зональных технологиях для подавления двудольных сорняков. Контролем служил вариант без гербицидной обработки. Размер делянок – 230 м^2 , повторность – трехкратная, размещение - рендомизированное.

Изучали численность микроорганизмов, участвующих в круговоротах азота и углерода, и структуру сообщества микромицетов. Микробиологические учеты провели 3 раза за вегетацию: до посева семян, через один и два месяца после химической прополки. Образцы отбирали из слоя почвы 0-20 см. В лабораторных опытах исследовали фитотоксическое последействие изученных гербицидов на тест-растения редиса.

Результаты исследований

Весной исходная почва отличалась относительной сбалансированностью процессов минерализации и микробиологического синтеза почвенного органического вещества, невысокой азотфиксацией, нитрификацией и денитрификацией и слабым разложением легкодоступных углеродсодержащих соединений, о чем косвенно свидетельствовала высокая численность разлагающих гумус олигокарбофильных микроорганизмов. Основную роль в минерализации органического вещества играли активные гидролитики: бактерии и актиномицеты, в то время как роль грибного сообщества в этом процессе была ослаблена. К середине июля в структуре микробовминерализаторов контрольного варианта доминирующую роль стали играть актиномицеты. Азотфиксация, нитрификация и особенно денитрификация в почве усилились, увеличилось обилие олигонитрофилов (величина К_{олиготрофности} возросла с 0,9 до 4,1) и снизилось содержание доступного для растений азота.

Гербицидная нагрузка замедлила развитие всех групп почвенных бактерий, участвующих в круговороте азота: аммонификаторов, азотфиксаторов, денитрифицирующих и нитрифицирующих бактерий (табл. 1). Численность этих микроорганизмов на фоне рекомендуемой дозы препаратов оказалась сниженной в 2,2-4,0 раза, на фоне двойной и тройной дозы - в 2,8-40 раз. Чувствительностью к степени гербицидной родов нагрузки отличались бактерии Azotobacter, Bacillus, Clostridium, Nitrosomonas и Nitrobacter, что согласуется с данными других исследований [6-8].

Микроорганизмы круговорота углерода на внесение повышенных доз гербицидов отреагировали по-разному: обсемененность почвы актиномицетами уменьшилась (табл. 1), а микроскопическими грибами существенно увеличилась: на фоне двойной дозы — в 2,1 раза, тройной — в 5,4 раза

(табл. 2). Изменился видовой состав микроорганизмов. Так, в контроле среди актиномицетов преимущественно встречались группы бело- и желтоокрашенных, а в почве с рекомендуемой дозой препаратов – белые и черные. Увеличение дозы препаратов выше рекомендуемой привело к устойчивому развитию только группы Albidus.

В грибном сообществе применение повышенных доз дианата и гренча привело к уменьшению общего видового богатства и развитию видов, образующих фитотоксические вещества: Penicillium rubrum, P. purpurogenum, P. funiculosum, Fusarium oxysporum и др. (табл. 2, рис.). Токсины данных грибов негативно влияют на микроорганизмы почвы и через почву угнетающе действуют на растения [9], снижая фотосинтетическую активность растений и нарушая обменные процессы, что для сельскохозяйственных культур влечет падение урожайности.

Суммарное присутствие токсинов в почве через месяц после применении препаратов выявили по их биологическому действию на проростки редиса сортов Парат и Ризенбуттер. На фоне завышенных доз препаратов ростовые процессы редиса и его всхожесть нарушались сильнее, чем при рекомендованной дозе, что свидетельствует о наличии в почве к моменту формирования зерновки слабого токсикоза (табл. 3).

Таблица 1 Влияние гербицидной нагрузки на численность микрофлоры почвы через месяц после применения препаратов

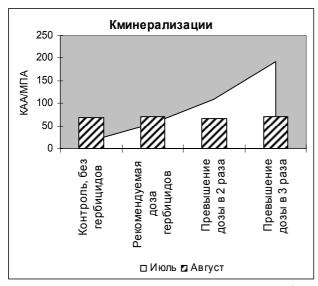
Эколого-трофические группы микроорганизмов	Контроль, без гер- бицидов	Рекомен- дуемая доза гер- бицидов	Превы- шение дозы в 2 раза	Превы- шение дозы в 3 раза
Бактерии, усваивающие органический азот, КОЕ, млн/г сух. почвы	8,3	2,6*	2,0*	0,8*
Азотфиксаторы, % обрастания комочков	89,3	40,0*	32,0*	34,7*
Нитрифицирующие бактерии, тыс/г почвы	4,3	1,1*	0,7*	1,3*
Денитрификаторы, тыс/г почвы	140,0	30,0*	3,5*	3,5*
Актиномицеты, КОЕ, млн/г сух. почвы	2,0	0,7*	1,0*	0, 05*

Примечание. $P_{0,05}$ по сравнению с контролем.

Таблица 2
Влияние повышенной гербицидной нагрузки
на почвенные грибы через месяц после химической прополки

Показатель	Контроль, без гербицидов	Рекомендуемая доза препаратов	Превышение дозы в 2 раза	Превышение дозы в 3 раза		
Видовое разнообразие						
Общее число видов	10	11	8	8		
Виды Fusarium	1	2	2	2		
Виды Penicillium	5	6	6	7		
Численность, КОЕ, тыс/г сух. почвы						
Всего	6,3	5,3	13,0*	34,0*		
Fusarium	0,6	0,6	1,6	4,3*		
Penicillium	4,3	4,0	11,3	25,3*		
Из них токсикогенные P. rubrum + P. purpurogenum	0	0,6	2,3	20,7*		

Примечание. $P_{0,05}$ по сравнению с контролем.


Фитотоксические эффекты в выщелоченном черноземе через месяц после применения повышенных доз гербицидов


Вариант	Параметры роста редиса			
вариант	всхожесть, %	длина корней, см	длина ростков, см	
Контроль, без гербицидов	96,7	4,28	4,12	
Рекомендуемая доза препаратов	86,7	3,93	3,73	
Превышение дозы в 2 раза	86,0	3,71	3,45	
Превышение дозы в 3 раза	83,3	3,53	3,44	
HCP ₀₅	9,3	0,44	0,49	
Степень влияния, %	38,5	51,3	44,9	

В почве с нарушенным регламентом гербицидной обработки, судя по значениям коэффициентов минерализации и олиготрофности, в середине июля шла более глубокая минерализация органического вещества, активно размножались олигонитрофильные микроорганизмы, довольствующиеся небольшим количеством доступного азота в почве, а также олигокарбофилы, сами участвующие в разложении перегнойных и гумусовых веществ (рис.).

Баланс между разложением остатков и микробным синтезом органического вещества почвы под влиянием гербицидной нагрузки нарушился. Микробная трансформация органических остатков в органическое вещество почвы (о которой судили по ко-

эффициенту Π_{M} [10]) оказалась сильно подавленной (табл. 4): на фоне рекомендуемой и двойной дозы препаратов – в 3,8-4,9 раз, на фоне тройной дозы – в 10,4 раз. Резкое снижение скорости трансформации связано с угнетением гербицидами развития аммонификаторов (табл. 1) и процесса иммобилизации азота. Его характеризует соотношение численности микробов, усваивающих органический азот, к микробам, усваивающим минеральный (МПА/КАА). В контроле соотношение составило 0,059, на фоне рекомендуемой дозы гербицидов – 0,017, при превышении дозы в 2 раза - 0,009, при превышении дозы в 3 раза – 0,005 (что меньше контроля на порядок).

Примечание. $K_{\text{олиготрофности}} = (HA+\Gamma A)/M\Pi A$

Рис. Активность микробного сообщества чернозема выщелоченного через 1 и 2 месяца после применения повышенных доз гербицидов

Таблица 4

Интенсивность трансформации органических соединений (Π_{M}) в черноземе выщелоченном при превышении дозы гербицидов

Вариант	Июль	Август
Контроль, без гербицидов	7,3	11,7
Рекомендуемая доза гербицидов	1,5	11,6
Превышение дозы гербицида в 2 раза	1,9	9,5
Превышение дозы гербицида в 3 раза	0,7	8,8

Примечание. $\Pi_{M} = (M\Pi A + KAA)x(M\Pi A / KAA)$.

К августу различия в активности почвенного микробного сообщества между вариопыта постепенно снизились (рис. 3), лишь скорость микробиологических превращений азотсодержащих соединений в вариантах с нарушением регламента применения гербицидов восстановилась частично. На фоне рекомендуемой дозы гербицидов она выровнялась с контролем, на фоне двойной дозы гербицидов достигла 81,2% от контрольных значений, на фоне тройной дозы - 75,2% (табл. 6). Для вариантов с гербицидными остатками сохранились обеднение видовой структуры грибного сообщества и выраженное доминирование численности токсикогенных видов.

Выводы

- 1. Гербицидная нагрузка ухудшает экологическое состояние выщелоченного чернозема, снижая численность агрономически полезных микроорганизмов и повышая насыщенность фитотоксичными формами грибов.
- 2. В микробном сообществе, испытавшем гербицидный стресс, идет глубокая минерализация органического вещества, активно размножаются олиготрофные микроорганизмы и снижается пул аммонификаторов.
- 3. Дестабилизация микрофлоры под влиянием повышенных гербицидных нагрузок продолжается менее 60 сут. Более длительные негативные последствия установлены для процесса трансформации растительных остатков в органическое вещество почвы и для структуры грибного сообщества.

Библиографический список

- 1. Кирюшин В.И. Экологизация земледелия и технологическая политика. М., 2000. 473 с.
- 2. Звягинцев Д.Г. Почва и микроорганизмы. – М.: Изд-во МГУ, 1987. – 256 с.
- 3. Мишустин Е.Н. Ассоциации почвенных микроорганизмов. М.: Наука, 1975. 106 с.
- 4. Емцев В.Т. Почвенные микробы и деградация ксенобиотиков // Перспективы развития почвенной биологии. М.: МАКС-Пресс, 2001. С. 77-78.
- 5. Полякова А.В. Бактерии азотного обмена как индикаторы химического загрязнения // Экология и биология почв. Ростов-на-Дону, 2003. С. 75.
- 6. Коробова Л.Н., Танатова А.В. Реакция почвенной микрофлоры на длительное применение разных по уровню интенсификации технологий // Сиб. вестник с.-х. науки. 2010. № 2. С. 17-21.
- 7. SeyboldM C.A., Herrick J.F., Brejda J.J. Soil resilience: a fundamental component of soil quality // Soil Sci. 1999. № 164. P. 224-234.
- 8. Szabolcs I. The concept of soil resilience. In: Soil resilience and sustainable land use // Eds. D.J. Greenland, I. Szabolcs. Wallingford: CAB International, 1994. P. 33-39.
- 9. Мирчинк Т.Г. Почвенная микология. M.: Изд-во МГУ, 1988. 220 с.
- 10. Муха В.Д. О показателях, отражающих интенсивность и направленность почвенных процессов // Сб. науч. тр. Харьковского СХИ. Харьков, 1980. Т. 273. С. 13-16.

УДК 633.1:631.527:581.5

В.А. Сапега, **С.В.** Сапега

ОЦЕНКА ПАРАМЕТРОВ СРЕДЫ ПУНКТА ИЗУЧЕНИЯ СОРТОВ ЗЕРНОВЫХ КУЛЬТУР

Ключевые слова: продуктивность среды, дифференцирующая способность среды, типичность среды, урожайность, зерновые культуры.

Введение

Важным принципом адаптивной селекции и ее существенной отличительной особенностью должна быть единая стратегия сред на всех этапах селекционного процесса [1].

Основными параметрами, характеризующими пригодность среды как фон для отбора, являются следующие: типичность среды (t_k) ; дифференцирующая способность среды $(\delta^2_{\text{ДССК}})$; продуктивность среды (d_k) ; повторяемость вышеперечисленных параметров среды по годам и при изменении набора генотипов.

Под типичностью конкретной среды (t_k) понимается ее способность сохранять ранги генотипов, полученные при их усредненной