ЛЕСНОЕ ХОЗЯЙСТВО

В.А. Усольцев, В.В. Крудышев, И.С. Лазарев

МЕЖВИДОВЫЕ И РЕГИОНАЛЬНЫЕ ОСОБЕННОСТИ ФИТОМАССЫ ПЯТИХВОЙНЫХ СОСЕН НА ВОСТОКЕ ЕВРАЗИИ

Ключевые слова: фитомасса кедровников, фракционный состав, региональные различия, видовые особенности.

Введение

В последние годы происходит смена парадигм в лесопользовании - от ресурсной к биосферной, когда на первый план выступает не столько лесосырьевая, сколько экологическая роль лесов [1]. Вместе с тем возрастает роль лесов в качестве альтернативного источника энергии. Установлено, что ежегодно депонируемое лесным покровом количество углерода в 8 раз превышает нынешнее годовое потребление энергии [2], а лесами России депонируется ежегодно 8,2 млрд т условного топлива [3]. Кедровые леса Дальнего Востока занимают огромные территории, и необходима оценка их углерододепонирующей способности и, прежде всего, фитомассы насаждений.

Кедры сибирский (Pinus sibirica Du Tour), корейский (P. koraiensis S. et Z.) и кедровый стланик (P. pumila (Pall.) Regel) входят в состав рода Pinus L. как пятихвойный подрод Haploxylon. Кедр сибирский произрастает от предгорий северного Предуралья на западе до водораздела Лены и Амура на востоке и от низовий Енисея на севере до границы с Монголией на юге. Кедр корейский растет в основном в горных лесах Дальнего Востока, а вне России он встреча-

ется в горах Северо-Восточного Китая, Кореи и в центральной части острова Хонсю. Кедровый стланик является эдификатором и основным представителем темнохвойных лесов северо-востока Сибири от Байкала до Камчатки и Сахалина. Распространен кедровый стланик также в горах Большого и Малого Хингана, в высокогорьях Корейского полуострова и центральной части о. Хонсю в Японии. Кедровый стланик образует монодоминантную формацию - кустарникообразные непроходимые высокогорные леса. В отличие от кедров сибирского и корейского, это кустарник с изогнутым в основании стволом, с широко распростертыми ветвями и вытянутыми тонкими и редкооблиственными побегами с очень мелкими шишками. Промышленного значения он не имеет, но играет важную экологическую и биосферную роль [4].

Цель работы – выявить межвидовые различия фитомассы древостоев, сформированных кедрами сибирским и корейским, а также региональные различия фитомассы кедрового стланика в пределах их ареалов.

Объекты и методы исследований

С целью выявления межвидовых и региональных различий фитомассы пятихвойных сосен нами сформирована база данных. В нее включены данные о фитомассе темнохвойных лесов с преобладанием кедра си-

бирского, полученные нами в среднетаежной подзоне Урала на 13 пробных площадях [5], а также взятые из литературных источников данные 98 пробных площадей, заложенных в древостоях кедра сибирского (Урал, Западная Сибирь, Средняя Сибирь, Алтай и Забайкалье), 47 пробных площадей - в древостоях кедра корейского (Дальний Восток России, Северо-Восточный Китай и Южная Корея) и 35 определений фитомассы в зарослях кедрового стланика, в том числе 12 – для северной тайги Дальнего Востока, 9 – для южной тайги в подгольцовом поясе Забайкалья и 14 - для подгольцового пояса в зоне широколиственных лесов Японии.

Результаты и их обсуждение

Поскольку фитомасса древостоя определяется его морфоструктурой, а различия морфоструктуры в пределах одного вида могут превышать таковые между видами, непосредственное сравнение фитомассы древостоев кедров сибирского и корейского ничего не даст, поскольку выявленные различия могут быть обусловлены не столько биологическими особенностями пород, сколько локальными различиями в морфоструктуре.

Поэтому выявление биологически обусловленных различий в фитомассе двух видов кедра необходимо выполнять при одних и тех же показателях морфоструктуры, т.е. при одинаковых значениях возраста, средних высот и диаметров, густоты и запаса стволовой древесины. Для этого применено многофакторное уравнение, включающее в качестве независимых переменных названную совокупность показателей морфоструктуры, а видовые различия опосредуются бинарной переменной X [6]:

In
$$(P_i/M) = f(\ln A, \ln H, \ln D, \ln N, X)$$
. (1) Здесь и далее P_i — фитомасса в абсолютно сухом состоянии стволов с корой, коры стволов, скелета ветвей, хвои, корней и нижнего яруса (соответственно P_S , P_{SB} , P_B , P_F , P_R и P_U , $\tau/\tau a$); M — запас стволовой древесины, $M^3/\tau a$; M — возраст древостоя, лет; M — средняя высота деревьев, M ; M — средний диаметр, M и M — число стволов, тыс. экз/га. Бинарная переменная M = 0 для кедра сибирского и M = 1 — для кедра корейского.

Применен рекурсивный принцип, согласно которому уравнение (1) совмещается с возрастными трендами массообразующих показателей и запасов стволовой древесины:

$$lnH = f(lnA, X) \rightarrow lnD = f(lnA, lnH, X) \rightarrow$$

$$\rightarrow lnN = f(lnA, lnH, lnD, X) \rightarrow$$

$$\rightarrow lnM = f(lnH, lnD, lnN, X).$$
 (2)

Это обеспечивает последовательное накопление региональных различий в возрастной динамике массообразующих показателей и запасов стволовой древесины по цепочке взаимозависимых уравнений. Путем табулирования уравнений (2) и затем (1) составлена таблица возрастной динамики морфометрических показателей и фитомассы кедров сибирского и корейского (табл. 1). Оказалось, что по совокупности пробных площадей древостои кедра сибирского и корейского относятся к разным классам бонитета — соответственно, IV и V, со средней высотой в 100-летнем возрасте, соответственно, 16, 5 и 14,9.

Средняя высота кедра сибирского по отношению к корейскому выше на 11%, средняя густота, напротив, ниже на 13% и запас стволовой древесины выше на 33%. Фитомасса стволов в коре выше на 11%, хвои и ветвей — напротив, ниже, соответственно, на 16 и 55%. В итоге суммарная надземная фитомасса различается на 4%, а общая (надземная и подземная) — всего на 2%. Эти различия находятся в пределах точности оценки.

Для выявления региональных различий фитомассы кедрового стланика упомянутые три региона закодированы блоковыми фиктивными пе-ременными [6]. Каждый блок переменных (X1, X2), представляющий группу пробных площадей, приходящуюся на данный регион, повторяется в исходной матрице экспериментальных данных столько раз, сколько имеется пробных площадей в регионе. За исходный уровень продуктивности принят север Дальнего Востока, для которого X1 = 0, X2 = 0; для Забайкалья — X1 = 1, X2 = 0 и для Японии — X1 = 0, X2 = 1. Рассчитаны уравнения:

$$lnP_i = f(X1, X2, lnH, lnM).$$
 (3)

Применен рекурсивный принцип, согласно которому уравнение (3) совмещается с возрастными трендами средней высоты и запаса стволовой древесины кедровостланика согласно уравнениям (4):

$$lnH = f(X1, X2, lnA) \rightarrow lnM =$$

= f(X1, X2, lnA, lnH). (4)

Это обеспечивает последовательное накопление региональных различий в возрастной динамике массообразующих показателей и запасов стволовой древесины по цепочке взаимозависимых уравнений (4) и (3). Последовательным табулированием рекурсивных систем уравнений (4) и (3) для кедрового стланика по задаваемым значениям возраста получены возрастные тренды средних высот, запасов стволов и показателей фитомассы по каждому региону (табл. 2).

Таблица 1 Таблица возрастной динамики фитомассы кедров сибирского и корейского

лет	į.	, z ,	j	1 _			þ	Оитомас	са, т/га		
Возраст, л	Средняя вы- сота, м	Средний диаметр, с	Густота, тыс. экз/га	Запас ство- лов м³/га	стволов						
					всего	коры	хвои	ветвей	надземная	корней	всего
				Кедр сибирсі	кий				•	•	
20	2,8	3,8	1,137	3,7	1,2	0,6	1,01	0,68	2,9	0,6	3,5
40	7,0	8,8	0,981	29	10,4	2,4	3,18	3,51	17,1	3,7	20,7
60	10,7	13,7	0,879	76	28,5	5,0	4,46	6,00	38,9	8,7	47,6
100	16,5	22,0	0,722	193	74,8	10,7	5,23	8,57	88,6	19,9	108,4
140	20,4	28,6	0,628	302	118,9	15,6	5,29	9,80	134,0	29,5	163,5
180	23,1	33,6	0,573	393	155,7	19,4	5,27	10,7	171,7	37,2	208,9
220	24,9	37,5	0,543	465	185,6	22,5	5,30	11,7	202,6	43,2	245,8
260	26,2	40,5	0,527	524	209,9	25,0	5,39	12,8	228,0	48,0	276,1
320	27,3	43,7	0,523	593	238,3	27,8	5,64	14,7	258,6	53,8	312,4
380	27,9	45,9	0,533	644	259,8	30,1	6,00	17,0	282,9	58,2	341,0
				Кедр корейс	кий						
20	2,5	3,7	1,407	3,01	1,18	0,5	1,17	1,40	3,8	0,57	4,3
40	6,3	8,4	1,142	22,2	9,53	1,9	3,65	7,38	20,6	3,41	24,0
60	9,7	13,0	1,009	57,6	25,7	3,8	5,17	12,88	43,8	7,99	51,8
100	14,9	20,8	0,826	144,9	67,2	8,0	6,20	19,06	92,4	18,25	110,7
140	18,4	27,0	0,721	226,8	106,90	11,7	6,38	22,29	135,6	27,20	162,8
180	20,8	31,7	0,661	295,1	140,4	14,6	6,44	24,80	171,6	34,38	206,0
220	22,5	35,3	0,629	350,6	167,7	16,9	6,53	27,32	201,6	40,09	241,7
260	23,7	38,1	0,613	395,7	190,1	18,8	6,69	30,10	226,9	44,71	271,6
320	24,7	41,1	0,610	448,8	216,4	21,0	7,04	34,95	258,4	50,17	308,6
380	25,2	43,1	0,624	489,1	236,6	22,7	7,53	40,75	284,9	54,40	339,3

Таблица 2 Возрастное изменение фитомассы кедрового стланика в трех географических зонах

D	C	Запас стволов, м ³ /га	Фитомасса , т/га							
Возраст, лет	Средняя высота, м		стволы	хвоя	ветви	надземная	корни	нижний ярус	всего	
			ДАЛЫ	ний восто	К, северна	я тайга				
20	0,77	4,8	2,3	0,76	0,43	3,46	1,27	5,82	10,6	
60	1,51	17,3	8,1	1,53	1,49	11,15	5,34	3,77	20,3	
100	2,02	30,9	14,5	2,13	2,63	19,27	10,23	3,12	32,6	
140	2,43	45,1	21,1	2,65	3,82	27,61	15,63	2,77	46,0	
180	2,77	59,4	27,9	3,12	5,02	36,03	21,33	2,55	59,9	
		3AE	АЙКАЛЬСК	РАНЧОЛ ВА	ПРОВИНЦ	ИЯ , южная та	йга			
20	0,75	5,7	2,7	0,90	0,51	4,08	1,52	5,92	11,5	
60	1,47	20,4	9,6	1,81	1,77	13,14	6,40	3,84	23,4	
100	1,97	36,4	17,1	2,52	3,14	22,74	12,29	3,17	38,2	
140	2,37	53,1	24,9	3,14	4,55	32,60	18,79	2,82	54,2	
180	2,70	70,0	32,8	3,69	5,97	42,49	25,64	2,59	70,7	
	•	9	ПОНСКИЕ (OCTPOBA, 1	ироколист	твенные леса				
20	0,40	20,5	9,6	4,63	2,10	16,33	6,43	8,89	31,7	
60	0,79	73,6	34,5	9,34	7,36	51,24	27,14	5,73	84,1	
100	1,06	131,6	61,8	12,99	13,03	87,77	52,16	4,74	144,7	
140	1,27	191,3	89,8	16,15	18,84	124,77	79,46	4,22	208,5	
180	1,45	252,5	118,5	19,02	24,78	162,34	108,62	3,87	274,8	

Выводы

1. Накопление запасов общей фитомассы и составляющих ее фракций в древостоях кедра сибирского и корейского происходит на всем исследованном возрастном интервале от 20 до 380 лет. Фитомасса стволов кедра сибирского при прочих равных усло-

виях выше, чем кедра корейского, а масса кроны, напротив, ниже. В целом, как по надземной, так и по общей фитомассе на единице площади древостоев, различия кедров сибирского и корейского практически отсутствуют.

- 2. Накопление запасов общей фитомассы, а также массы хвои в кедровостланиках происходит на всем исследованном возрастном интервале от 20 до 180 лет; в 20 лет запасы фитомассы составляют 22-32%, в 40 лет 39-45, в 60 лет 58-62% к запасам в возрасте 100 лет. Фитомасса нижнего яруса (куда входят живой напочвенный покров и подлесок), с возрастом кедровостланиковых зарослей понижается.
- 3. Региональные соотношения фракционной структуры фитомассы кедровостлаников для возраста 100 лет (табл. 2) показывают, что запасы общей фитомассы закономерно возрастают по зональному градиенту в последовательности: северная тайга Дальнего Востока, южная тайга Забайкалья, субтропики Японии, составляя, соответственно, 33, 38 и 145 т/га. Аналогичная закономерность имеет место для всех фракций.

Библиографический список

1. Уткин А.И. Углеродный цикл и лесоводство // Лесоведение. – 1995. – № 5. – С. 3-20.

- 2. Parresol B.R. Biomass // Encyclopedia of Environmetrics. Vol. 1. Chichester: John Wiley & Sons, 2002. P. 196-198.
- 4. Уткин А.И., Пряжников А.А., Карелин Д.В. Экология кедрового стланика с позиций углеродного цикла // Лесоведение. 2001. № 3. С. 52-62.
- 5. Усольцев В.А., Лазарев И.С., Крудышев В.В., Сенчило Н.В. Количественная и квалиметрическая составляющие биологической продуктивности кедровников Урала // Сборник научных трудов ученых и специалистов факультета экономики и управления УГЛТУ. Вып. 3. Екатеринбург: УГЛТУ, 2012. С. 261-270.
- 6. Дрейпер Н., Смит Г. Прикладной регрессионный анализ. М.: Статистика, 1973. 392 с.

*** * ***

УДК 630*421+630*524.34

Ю.М. Алесенков, Г.В. Андреев, С.В. Иванчиков

СТРОЕНИЕ ПО ЗАПАСУ ПОСЛЕВЕТРОВАЛЬНОГО ЕЛЬНИКА ХВОЩОВО-МЕЛКОТРАВНОГО

Ключевые слова: средний Урал, послеветровальный ельник хвощово-мелкотравный, распределение запаса древостоя по диаметру и категориям состояния.

Введение

Ранее опубликованные работы посвящённые изучению структуры первобытных ельников Среднего Урала, не раскрывали особенностей строения по запасу основных лесообразующих пород [1, 2],. Характеризуется строение по запасу основных лесообразующих пород модельного объекта — пихто-ельника хвощово-мелкотравного.

Цель исследований — показать результаты изучения количественных показателей распределения запаса древостоя основных лесообразующих пород в ельнике хвощовомелкотравном, затронутым катастрофическим ветровалом в 1995 г.

Объекты и методика исследований

Объект исследований детально охарактеризован в природно-географическом отношении ранее [1, 2]. Перечислительная таксация в разновозрастных древостоях была выполнена по методикам [3, 5, 7-9]. Исследования были проведены на постоянной пробной площади в разновозрастном ельнике хвощово-мелкотравном. Индекс лесорастительных условий — 362 [4]. Состав растущего древостоя 4ЕЗК2Б1П, полнота 0,56, запас растущей части 125 м³/га.

Для вычисления запаса деревьев ели и пихты по ступеням толщины и по категориям состояния использовались данные соотношения высот и диаметров, опубликованные ранее [2], модельные деревья с использованием метода скользящего диаметра [8], а также региональные [5] и всеобщие объёмные таблицы [7].