УДК 635.63:631.527 (571.12/.17)

Н.Н. Чернышева, В.Г. Высочин, Д.П. Ощепко

ОЦЕНКА ПЕРСПЕКТИВНЫХ СОРТООБРАЗЦОВ ОГУРЦА В УСЛОВИЯХ ОТКРЫТОГО ГРУНТА ЗАПАДНОЙ СИБИРИ

Ключевые слова: сорт, гибрид, селекционный образец, урожайность, фенологическая фаза, дегустационная оценка, биохимический состав.

Введение

Расширение сортимента огурца в регионах Сибири актуально в силу ряда причин: существенно различающихся природноклиматических и почвенных условий, вкусов потребителя, технологий производства и переработки продукции. Кроме того, следует иметь ввиду, что на устаревшие сорта падает спрос, а по многим из созданных не производятся семена или их количество ограничено.

В последние десятилетия большое значение приобретают сорта и гибриды интенсивного типа плодоношения, универсального назначения, обладающие устойчивостью к наиболее распространенным в регионе болезням, высокой товарностью плодов и, таким образом, конкурентоспособные на рынке.

Поэтому целесообразно проводить селекционную работу огурца с целью создания сортов и гибридов, пригодных для возделывания в условиях Сибирских регионов.

Целью работы являлась сравнительная оценка перспективных сортообразцов огурца в условиях открытого грунта Алтайского края.

В задачи исследований входило:

- проведение фенологических наблюдений с целью отбора наиболее скороспелых форм;
- описание морфологических признаков растений и плодов;
- учет урожая с выделением товарной и нетоварной его части;
- оценка сортообразцов на устойчивость к основным в регионе болезням;
- оценка биохимического состава и вкусовых качеств плодов.

Работа выполнена в 2011-2012 гг. на Западно-Сибирской овощной опытной станции ВНИИО Россельхозакадемии (г. Барнаул Алтайского края).

Объекты и методы

В питомнике конкурсного сортоиспытания изучали 5 селекционных образцов в сравнении со стандартом — сортом Серпантин.

Технология возделывания общепринятая для данной зоны. Схема посева двухстрочная 75+150 см. Густота стояния растений 140 тыс. шт/га. Размещение делянок последовательное в один ярус. Площадь учетной делянки — 10 м². Количество повторений — 4.

В процессе роста и развития растений огурца проводили регулярные наблюдения и биометрические измерения. При фенологической оценке отмечали даты посева, начальных и массовых всходов, цветения женских и мужских цветков, начала, конца и период плодоношения. Морфологическое описание проводили по методике ВИР [1], учет урожая - весовым методом поделяночно, дегустационную оценку плодов в свежем и соленом виде - по методике государственного сортоиспытания [2]. Биохимический анализ плодов проводили в лаборатории станции, определяя содержание сухого вещества методом высушивания до абсолютно сухого веса, сахара – по Бертрану, витамина С – по Мурри, нитратов - ионоселективным методом. Оценку устойчивости к болезням вели на естественном инфекционном фоне, статистическую обработку данных – по методу дисперсионного анализа [3].

Результаты и их обсуждение

По результатам фенологических наблюдений в среднем за 2 года все образцы (кроме 1331) по периоду всходы-цветение женских цветков были на уровне стандарта – 33-34 сут. (табл. 1).

У образца 1331 женское цветение наступило на 3 сут. позже. По периоду всходыплодоношение все образцы за исключением 1331 также были на уровне стандарта – 42-43 сут. Плодоношение образца 1331 наступило на 5 сут. позже, чем у стандарта.

Период плодоношения в зависимости от образца составил 40-45 сут.

Образец 1426 имеет короткую длину плети, остальные образцы среднеплетистые. У всех изученных образцов формировались плоды различной формы, длиной 9-11 см, зеленой окраски, с белыми полосами. Поверхность у большинства образцов крупнобугорчатая, за исключением 1331, у которого средний размер бугорков, и 1426 с мелкими бугорками. Стандарт Серпантин и образец 1474 имеют черное опушение, остальные образцы — белое.

Урожайность является одним из основных факторов, определяющих целесообразность возделывания сорта в том или ином регионе. Она зависит от множества факторов: сорта, плодородия почв, агротехники, климатических условий, развития болезней и др.

По результатам учета урожая в среднем за 2 года за первые 10 сут. плодоношения выделились образцы 1469, 1428 и 1474 с урожайностью 19,7; 14,7 и 17,5 т/га соответственно, что превышает урожайность стандарта на 13,7 т/га (табл. 2).

По товарной урожайности все образцы превысили значение стандарта 24,7 т/га. По уровню товарности плодов выделилось 2 образца: 1331 — 91,8% и 1426 — 92,2% против 88,1% у стандарта. Товарность плодов остальных образцов колебалась в пределах 87,9-90,1%, что на уровне стандарта.

Все изученные образцы имели меньше плодов, пораженных болезнями, чем стандарт. Масса товарного плода в зависимости от образца составила 67-82 г.

При изучении сортообразцов нужно учитывать не только урожайность, но и вкусовые достоинства плодов.

При оценке биохимического состава плодов в среднем за 2 года выявили следующее. По содержанию сухого вещества и общего сахара на уровне стандарта были образцы 1331 и 1474, витамина С — 1428 и 1426. По содержанию нитратов в плодах два образца 1426 и 1474 имели наименьший показатель — 71 и 76,2 мг/кг соответственно (табл. 3).

Наивысшую оценку вкусовых качеств свежих плодов (4,9 балла) получил образец 1331, соленые плоды наиболее вкусными были у образца 1474 – 5 баллов.

Таблица 1 Продолжительность фенофаз огурца, в среднем за 2011-2012 гг.

Образец	Число суток от всходо	Период плодоношения,		
Ооразец	цветения женских цветков	плодоношения	сут.	
Серпантин, st	33	42	45	
1469	33	42	45	
1331	36	47	40	
1428	33	42	41	
1426	33	42	45	
1474	34	43	45	

Таблица 2 Урожайность огурца, в среднем за 2011-2012 гг.

Образец	Урожайность, т/га				Пораженность	Macca
	за 10 суток плодоношения	товарная	%κst	Товарность, %	плодов болез- нями, %	товарно- го плода, г
Серпантин, st	13,7	24,7	100	88,1	11,4	73
1469	19,7	35,1	142,1	87,9	10,5	65
1331	9,4	29,6	119,8	91,8	7,5	82
1428	14,7	25,1	101,6	90,1	8,6	67
1426	12,3	26,3	106,5	92,2	7,8	74
1474	17,5	31,2	126,3	89,3	10,0	77

 HCP₀₉₅ 2011 г.
 2,6

 HCP₀₉₅ 2011 г.
 3,4

Таблица 3 Результаты биохимического анализа и оценки вкусовых качеств плодов огурца, в среднем за 2011-2012 гг.

	Содержание				Дегустационная оценка плодов, балл	
Образец	растворимо- го сухого вещества, %	общего са- хара, %	витамина С, мг%	нитратов, мг/кг сы- рой массы	свежих	соленых
Серпантин, st	4,5	2,67	12,48	116,0	4,6	4,9
1469	4,2	2,49	11,39	100,0	4,6	4,5
1331	4,46	2,74	11,34	186,8	4,9	4,8
1428	4,02	2,51	12,97	86,4	4,6	4,6
1426	4,3	2,56	13,09	71,0	4,7	4,9
1474	4,6	2,76	10,7	76,2	4,8	5,0
ПДК				150		

Выводы

- 1. В результате фенологических наблюдений по скороспелости выделились образцы 1469, 1428 и 1426, у которых период от всходов до плодоношения составил 42 сут.
- 2. По результатам морфологического описания образец 1426 имеет короткую длину плети, остальные образцы среднеплетистые, плод длиной 9-11 см, зеленой окраски, с белыми полосами. Поверхность у большинства образцов крупнобугорчатая, за исключением образцов 1331, у которого средний размер бугорков, и 1426 с мелкими бугорками. Стандарт Серпантин и образец 1474 имеют черное опушение, остальные образцы белое.
- 3. Лучшим по содержанию сухого вещества (4,%) и общего сахара (2,76%) был образец 1331, а по содержанию витамина С (13,09 мг%) и наименьшему накоплению нитратов (71 мг/кг) 1426. Наивысшую

- оценку вкусовых качеств свежих плодов (4,9 баллов) получил образец 1331, соленые плоды наиболее вкусными были у образца 1474 5 баллов.
- 4. По устойчивости к комплексу болезней на естественном инфекционном фоне выделился образец 1331, который имел 7,5% пораженных плодов.
- 5. Наибольшая урожайность получена у образца 1469 35,1 против 24,7 т/га у стандарта.

Библиографический список

- 1. Методические указания по изучению и поддержанию коллекции огурца. Л.: ВИР, 1977. 26 с.
- 2. Литвинов С.С. Методика полевого опыта в овощеводстве. М.: ВНИИО, 2011. 648 с.
- 3. Доспехов Б.А. Методика полевого опыта. М.: Колос, 1985. 416 с.

УДК 634:582.973.1

В.И. Усенко, Г.А. Прищепина

АНАЛИЗ СЕЛЕКЦИОННО-ГЕНЕТИЧЕСКИХ ОСОБЕННОСТЕЙ LONICERA CAERULEAE EDULIS В УСЛОВИЯХ АЛТАЙСКОГО ПРИОБЬЯ

Ключевые слова: жимолость синяя, Lonicera caerulea Edulis, соплодия, стерильность, фертильность, самонесовместимость, опыление, сорта и гибриды, результаты исследования.

Введение

В литературе имеются сведения о самобесплодности Lonicera caerulea Edulis [1]. Цветки жимолости протогиничны [2].

Самонесовместимость (самостерильность, или физиологическая несовместимость) выражается у большинства растений в подавлении прорастания пыльцы на рыльце пестика той же особи при автогамии или гейтеногамии. Под самонесовместимостью понимается неспособность фертильных семенных растений продуцировать зиготы после самоопыления [3]. Это ограничение обеспечивает популяции размножение преимущественно путем перекрестного опыления, а значит, и свободное перекомбинирование наследственных факторов, лежащих в основе эволюционной пластичности вида, гибридную мощность организма. Самонесовместимость - это а) неспособность пыльцевых зерен прикрепляться к поверхности рыльца пестика; б) неспособность пыльцевых зерен прорастать и расти на рыльце собственного пестика; в) подавление (ингибиция) роста пыльцевых трубок в столбике пестика. В зависимости от того пыльца (гаметофит) или материнское растение (спорофит) детерминирует реакции несовместимости между пыльцевым зерном (пыльцевой трубкой) и поверхностью рыльца столбика или другими тканями пестика цветка, различают гаметофитный или спорофитный типы несовместимости [4].

Изучению самонесовместимости у жимолости синей посвящены работы многих исследователей. Установлено, что образцы этого вида относятся к самостерильным растениям, при их принудительном самоопылении в пределах клона плоды не завязываются вовсе или завязываются мелкие бессемянные плоды или плоды с невыполненными семенами с низкой всхожестью. Самонесовместимость проявляется в остановке роста пыльцевых трубок в нижней половине столбика пестика, что согласно Lewis, Richards указывает на гаметофитный тип реакции несовместимости, присущий L. caerulea [5-7].

Чистой автогамии в природе у *L.* caerulea быть не может, так как строение цветка и