Полученная модель обеспечивает безошибочный прогноз в 21 и 65% случаях с отклонением на 1 ранг.

Выводы

Пахотные угодья района исследований расположены на склонах различной экспозиции с крутизной от 5 до 7°. Они представлены черноземами выщелоченными малогумусными среднесуглинистыми.

Распределение влаги в почвенном профиле по элементам склона различно. Наиболее увлажненными являются средние и нижние части склона как в пахотном, так и подпахотном горизонтах.

Существенное влияние на урожайность возделываемых культур оказывают почвенно-физические факторы. Доля влияния влагосодержания почвы составляет 33%, теплопроводности — 25, суммы температур в слое 0-50 см — 17, температуры поверхности почвы — 12%.

Таким образом, знание параметров плодородия почв в конкретных природных условиях и их влияние на урожайность позволяет более эффективно использовать земельные ресурсы, не допуская при этом снижения их плодородия.

Библиографический список

1. Вильямс В.Р. Почвоведение. — М.: Изд-во с.-х. лит-ры, 1949. — Т. 1. — 447 с.

2. Бурлакова Л.М. Плодородие Алтайских черноземов в системе агроценоза. – Новосибирск: Наука СО, 1984. – 88 с.

- 3. Белоусов А.А. Кинетика минерализации органического вещества при внесении соломы в почву. Красноярск, 2000. С. 5-19.
- 4. Агроклиматические ресурсы Алтайского края. Гидрометеоиздат, 1971. 155 с.
- 5. Болотов А.Г. Измерение температуры почвы с помощью технологии 1-Wire // Вестник Алтайского государственного аграрного университета. 2012. № 11. С. 29-30.
- 6. Болотов А.Г. Определение теплофизических свойств почв с использованием систем измерения ZETLab // Вестник Алтайского государственного аграрного университета. 2012. № 12. С. 48-50.
- 7. Вадюнина А.Ф., Корчагина З.А. Методы исследования физических свойств почв. М.: Агропромиздат, 1986. 416 с.
- 8. Пузаченко Ю.Г., Карпачевский Л.О., Взнуздаев Н.А. Возможности применения информационно-логического анализа при изучении почвы на примере ее влажности // Закономерности пространственного варьирования свойств почвы и информационно-статистические методы их изучения. М.: Наука, 1970. С. 103-121.

УДК 636:631.416.9 (571.15)

С.Ф. Спицына, А.А. Томаровский, Г.В. Оствальд

ПОВЕДЕНИЕ МИКРОЭЛЕМЕНТОВ В СИСТЕМЕ ПОЧВА – РАСТЕНИЯ ПШЕНИЦЫ В РАЗЛИЧНЫХ ЗОНАХ АЛТАЙСКОГО КРАЯ

Ключевые слова: яровая пшеница, почвенно-климатические зоны, микроэлементы, коэффициент биологического поглощения микроэлементов растениями пшеницы в разных зонах Алтайского края, подвижные формы микроэлементов, вынос микроэлементов яровой пшеницей.

Введение

Яровая пшеница — ведущая зерновая культура Алтайского края. Климатические условия края в основном соответствуют требованиям яровой пшеницы. Важной агроэкологической предпосылкой производства яровой пшеницы на значительной части

края является сумма активных температур в период вегетации, которая, как правило, удовлетворяет требованиям этой культуры. Не в полной мере требованиям пшеницы соответствуют гидротермические условия, вариабельность которых в значительной степени определяет изменчивость урожайности как по зонам, так и по годам. Например, в зоне сухой степи негативное влияние на урожайность пшеницы оказывают дефицит влаги и высокие температуры в критические периоды. В зоне лесостепи снижению урожайности способствуют переувлажнение и недостаточная обеспеченность растений теплом.

Главный резерв климата края — фотосинтетически активная радиация (ФАР). Яровой пшеницей она используется не полностью, в том числе и из-за отсутствия должного отношения к удобрениям. Оптимизация питательного режима яровой пшеницы с помощью макро- и микроудобрений в условиях края способствует повышению урожайности яровой пшеницы и лучшему использованию ФАР [1-5]. Микроэлементы, активизируя фотосинтез, способствуют мобилизации из почвы и удобрений основных элементов питания (N, P, K, S). Они увеличивают чистую продуктивность фотосинтеза и урожайность яровой пшеницы.

Современные системы земледелия и удобрений предусматривают применение средств, способствующих преодолению таких неблагоприятных явлений, как засуха. Этими средствами являются микроэлементы [1, 2, 7, 8]. Повышение засухостойкости растений пшеницы под действием микроэлементов связано с увеличением вязкости цитоплазмы, содержания в ней связанной воды и степени гидратируемости коллоидов. Это приводит не только к повышению урожайности пшеницы, но и к улучшению ее качества, в частности, к увеличению белковости зерна и содержания клейковины [1, 6-8].

Для решения вопроса о применении микроудобрений в конкретных зонах Алтайского края необходимы научные разработки, связанные с выявлением наиболее дефицитных микроэлементов для растений пшеницы в конкретных почвенно-климатических условиях.

Целью работы является обобщение имеющихся сопряженных данных о содержании микроэлементов в почвах зон и растениях пшеницы, выявление специфики поведения их в системе: почва — растения в различных почвенно-климатических зонах Алтайского края и определение наиболее дефицитных микроэлементов для растений пшеницы.

Объекты, условия и методы исследований

Место проведения исследований — зоны и подзоны Алтайского края: 1а — Западно-Кулундинская подзона — зона каштановых почв сухой степи; 16 — Восточно-кулундинская подзона — подзона южных черноземов засушливой степи; III — Приобская зона — зона обыкновенных и выщелоченных черноземов умеренно засушливой и колочной степи; IV— Бийско-Чумышская зона — зона выщелоченных черноземов и серых лесных почв средней лесостепи.

Объектами исследования были зональные почвы перечисленных зон, яровая пшеница и микроэлементы: медь (Cu), молибден

(Mo), марганец (Mn), цинк (Zn), кобальт (Co), бор (B).

Методологической основой в работе послужили сопряженные наблюдения и учеты в системе почва - растения пшеницы с применением современных и традиционных химических и физико-химических методов.

Результаты исследований и их обсуждение

Поведение микроэлементов в системе почва — растения зависит в первую очередь от их содержания в почве, которое влияет на накопление их растениями. Микроэлементный состав растений является одним из систематических признаков, который формируется эволюционно и передается по наследству.

Анализ данных о содержании микроэлементов в растениях Алтайского края показал, что яровая пшеница характеризуется генетическим своеобразием, проявляющемся, в том числе, в микроэлементном составе (табл. 1). Так, в зерне пшеницы по сравнению с кукурузой и разнотравьем меньше меди, марганца, кобальта и бора и больше цинка. Солома пшеницы по сравнению с зерном содержит меньше меди и цинка и больше марганца, кобальта и бора.

Поглощение микроэлементов растениями не всегда находится в прямой пропорциональной зависимости от их содержания в почве. Интенсивность поглощения микроэлементов растениями определяется избирательностью растений. Для выявления избирательности поглощения элементов растениями Б.Б. Полынов (1945), а затем А.И. Перельман (1975) предложили использовать коэффициент биологического поглощения (КБП), который представляет собой частное от деления количества элемента в золе растений на его содержание в литосфере, материнской породе или почве [9].

Анализируя данные о коэффициентах биологического поглощения микроэлементов растениями пшеницы в зонах Алтайского края, можно выявить те из них, которые поглощаются растениями особенно активно, т.е. элементы, для которых характерны самые высокие КБП (табл. 2). В среднем по Алтайскому краю наиболее высоким средним КБП обладает цинк (КБП = 14.8). На втором месте по КБП стоит молибден 6,4), третьем медь $(KB\Pi =$ на (КБП = 2,9), на четвертом – марганец $(KБ\Pi = 0,9)$, на пятом – бор $(KБ\Pi = 0,7)$, на шестом – кобальт (КБП = 0,1). Высокие КБП, как, например, у цинка, свидетельствуют о том, что элемент активно поглощается растениями независимо от высокого или низкого содержания его в почве, так как он биологически значим, и растения используют

имеющиеся у них механизмы для его накопления в достаточных количествах [10]. Этот элемент можно считать наиболее дефицитным для растений в данных условиях и приоритетным при разработке системы микроудобрений. Низкие КБП, как, например, у кобальта, говорят о низкой биологической значимости его для данной культуры.

Анализ КБП говорит о том, что в целом по Алтайскому краю во всех зонах наиболее дефицитным элементом для растений яровой пшеницы является цинк, который можно считать главным лимитирующим фактором, тормозящим получение высокой урожайности яровой пшеницы. В меньшей степени дефицитным при определенных условиях для растений яровой пшеницы в некоторых зонах края могут быть молибден, медь и, реже, марганец, кобальт и бор.

Средние данные о содержании микроэлементов в почвах края недостаточны для решения вопроса о необходимости применения микроудобрений в конкретном случае. Необходимы знания о поведении микроэлементов в системе почва — растения в каждой почвенно-климатической зоне, где КБП могут изменяться в соответствии с различным содержанием элемента в почве, с содержанием элемента в растениях и в связи с масштабами участия данного элемента в метаболизме растений, в том числе в процессах преодоления ими неблагоприятных климатических факторов. В связи с почвенно-кли-матической спецификой зон недостаток наиболее дефицитных микроэлементов может проявиться в большей или меньшей степени. Так, в Западно-Кулундинской зоне КБП по цинку (10-40 мг/кг) особенно велики, что сопряжено с низким содержанием его в почве валовым (20-50 мг/кг) и достаточно высоким содержанием в растениях.

Другой элемент — молибден, судя по КБП, показал себя наиболее дефицитным, лимитирующим урожайность в Бийско-Чумышской лесостепной зоне (КБП = 9.2 мг/кг).

Во всех зонах края КБП < 1, наблюдаемые у марганца, кобальта и бора, говорят о том, что резервные количества этих элементов, имеющиеся в почвах, не только не используются, но и могут быть избыточными.

Таблица 1 Содержание микроэлементов в растениях зон Алтайского края, мг/кг

Зона	Объект	Cu	Мо	Mn	Zn	Со	В
Сухая степь (1a)	зерно	<u>4-7</u>	<u>0,3-0,6</u>	<u>40-50</u>	<u>30-50</u>	0,05-0,2	<u>1,4-2,0</u>
	пшеницы	6	0,5	45	40	0,1	1,7
	солома	<u>3-5</u>	0,2-0,4	<u>40-60</u>	<u>20-30</u>	0,05-0,3	<u>2,0-2,5</u>
	пшеницы	4	0,3	50	25	0,2	2,2
	разнотравье	<u>4-8</u>	0,4-0,9	<u>30-90</u>	<u>15-30</u>	<u>0,1-0,3</u>	<u>2-8</u>
		7	0,7	60	20	0,2	5
	кукуруза	<u>5-12</u>	<u>0,1-0,4</u>	<u>40-80</u>	<u>20-40</u>	<u>0,1-0,3</u>	<u>2-6</u>
		9	0,3	70	30	0,2	4
Засушливая степь (16)	зерно	<u>5-7</u>	0,3-0,6	<u>40-50</u>	<u>30-50</u>	0,05-0,2	<u>1,4-2,0</u>
	пшеницы	6	0,5	45	40	0,1	1,8
	солома	<u>3-5</u>	0,2-0,4	<u>45-65</u>	<u>20-30</u>	0,05-0,3	<u>2,0-2,4</u>
	пшеницы	4	0,3	50	25	0,2	2,2
	разнотравье	<u>4-8</u>	<u>0,5-1,0</u>	<u>40-120</u>	<u>15-35</u>	<u>0,1-0,3</u>	<u>4-9</u>
		7	0,8	80	25	0,2	6
	кукуруза	<u>5-11</u>	<u>0,5-1,0</u>	<u>40-100</u>	<u>20-40</u>	<u>0,1-0,3</u>	<u>2-8</u>
		8	0,6	70	30	0,2	5
Умеренно засушливая степь (III)	зерно	<u>4-7</u>	<u>0,3-0,6</u>	<u>50-70</u>	<u>30-40</u>	0,05-0,2	1,5-2,0
	пшеницы	6	0,5	60	35	0,1	1,8
	солома	<u>4-6</u>	0,3-0,5	<u>60-80</u>	<u>20-30</u>	0,05-0,3	1,5-2,5
	пшеницы	5	0,4	70	25	0,2	2,0
	разнотравье	<u>3-8</u>	<u>0,3-0,5</u>	<u>40-125</u>	<u>15-30</u>	<u>0,1-0,3</u>	<u>4-7</u>
		5	0,4	85	25	0,2	5,0
	кукуруза	<u>3-9</u>	<u>0,3-0,5</u>	<u>40-120</u>	<u>20-40</u>	<u>0,1-0,2</u>	<u>2-6</u>
		6	0,4	80	35	0,1	4
Лесостепь (IV)	зерно	<u>5-8</u>	<u>0,4-0,6</u>	<u>50-70</u>	<u>30-50</u>	0,08-0,1	<u>1-3</u>
	пшеницы	7	0,5	60	40	0,2	2,0
	солома	<u>5-9</u>	0,4-0,5	<u>60-100</u>	<u>25-50</u>	0,1-0,3	<u>1-4</u>
	пшеницы	8	0,4	80	30	0,2	3,0
	разнотравье	<u>5-9</u>	<u>0,3-0,6</u>	<u>50-120</u>	<u>20-30</u>	<u>0,1-0,3</u>	<u>3-5</u>
		7	0,5	85	25	0,2	4,0
	кукуруза	<u>5-7</u>	0,2-0,5	<u>60-100</u>	<u>20-40</u>	<u>0,1-0,3</u>	<u>1-4</u>
		8	0,4	80	30	0,2	3,0

Примечание. Числитель – пределы колебаний, знаменатель – среднее содержание, мг/кг.

Таблица 2 Коэффициенты биологического поглощения микроэлементов растениями яровой пшеницы в различных природных зонах Алтайского края

Микроэлементы	Cu	Мо	Mn	Zn	Со	В				
Западно-Кулундинская зона (1а)										
Валовое содерж. (N), мг/кг	18-24	1,0-1,1	800-1100	20-50	10-17	30-60				
Содержание в зерне пшеницы (/), мг/кг	4-6	0,3-0,4	40-50	30-47	0,05-0,06	0,7-1,0				
Содержание в золе зерна (I_3) , мг/кг	68-100	5,1-6,8	680-850	500-800	0,8-1,0	12-17				
КБП	2,8-5,5	4,9-6,8	0,6-0,8	10-40	0,05-0,1	0,2-0,6				
Средний КБП по зоне	4,1	5,8	0,7	25	0,07	0,4				
Восточно-Кулундинская зона (16)										
Валовое содерж. (N), мг/кг	40-53	0,8-1,0	1000-1200	50-70	14-23	50-70				
Содержание в зерне пшеницы (/), мг/кг	5-7	0,3-0,4	48-52	30-50	0,05-0,10	1,6-1,7				
Содержание в золе зерна (I_3) , мг/кг	85-120	5,1-6,8	810-880	500-850	0,8-1,7	27-28				
КБП	1,6-3,0	5,1-8,5	0,7-0,8	7,1-17,1	0,05-0,10	0,4-0,5				
Средний КБП по зоне	2,3	6,0	0,7	12	0,07	0,04				
Приобская зона (III)										
Валовое содерж. (N),мг/кг	30-45	1,0-2,0	1000-1100	50-90	13-18	48-80				
Содержание в зерне пшеницы (/), мг/кг	3-7	0,3-0,4	35-70	20-35	0,05-0,1	1,5-2,0				
Содержание в золе зерна (I_3) , мг/кг	50-120	5,1-6,8	590-1100	340-600	0,8-1,7	22-34				
КБП	1,1-4,0	4,0-7,1	0,5-1,2	8,2-17,1	0,04-0,2	0,7-1,3				
Средний КБП по зоне	2,6	5,5	0,8	13,2	0,12	1,0				
Бийско-Чумышская зона (IV)										
Валовое содерж. (N), мг/кг	19-40	0,7-1,2	700-900	50-70	7-15	70-120				
Содержание в зерне пшеницы (/), мг/кг	5-6	0,4-0,5	60-70	30-40	0,05-0,1	2-3				
Содержание в золе зерна (I_3) , мг/кг	80-106	7,1-8,8	1060-1240	530-710	0,8-1,7	35-53				
КБП	2,0-5,6	5,9-12,6	1,2-1,8	7,5-14,2	0,05-0,2	0,3-0,8				
Средний КБП по зоне	3,8	9,2	1,5	11,0	0,12	0,5				
Средний КБП по Алтайскому краю	3,2	6,6	0,9	15,3	0,09	0,6				

Итак, судя по высоким коэффициентам биологического поглощения, наиболее дефицитным для яровой пшеницы элементом во всех зонах Алтайского края является цинк. Менее дефицитны молибден и медь. Эти элементы могут быть использованы в составе удобрений без особой осторожности с учетом возможного их дефицита при соответствующем выносе. Марганец, кобальт и бор, судя по КБП, дефицитными для яровой пшеницы могут быть значительно реже, и применять их нужно только в крайнем случае и лишь при наличии серьезного научного обоснования с учетом содержания в почве подвижных форм и выноса.

Для научного обоснования необходимости применения под яровую пшеницу тех или иных микроэлементов необходимо использовать данные об их выносе этой культурой реальными урожаями с учетом содержания их в зерне, соломе и подвижных форм в почве по зонам. Для этого нами были определены запасы подвижных форм микроэлементов в корнеобитаемом слое почв зон (А) и вынос их яровой пшеницей (В) с учетом средней урожайности за 43 года в каждой из зон края. Эти величины составили в Западно-Кулундинской зоне (1а) 6,8 ц/га, в Восточно-Кулундинской зоне (1б) — 10,8 ц/га, Приобской зоне (III) —

11,9 ц/га, в Бийско-Чумышской зоне (IV) — 12,6 ц/га (табл. 3). Судя по данным, по всем микроэлементам, кроме цинка, во всех зонах края наблюдается значительное преобладание запасов микроэлементов над реальными выносами яровой пшеницей. Самое значительное преобладание наблюдается по кобальту (48000-190000 раз). Остальные элементы по этому признаку можно расположить в ряд: Mn>Cu>B>Mo>Zn.

Судя по этим данным, значительное преобладание запасов над выносами менее всего вероятно для цинка (34-81 раз). Если при этих расчетах использовать не среднюю многолетнюю урожайность для каждой зоны, а максимальную, то дефицитность цинка для яровой пшеницы станет более вероятной. Эту вероятность увеличат учет в выносе соломы и предыдущие выносы за 50-100 лет при монокультуре.

Сопоставление запасов микроэлементов в корнеобитаемом слое с вероятным выносом их яровой пшеницей выявило наиболее дефицитный элемент — цинк. Для остальных элементов дефицитность менее вероятна, но появляется возможность проявления по отношению к ним барьерных механизмов у растений и антагонистических воздействий их на другие элементы.

Вынос микроэлементов зерном яровой пшеницы при соответствующих средних уровнях урожайности по зонам, г/га

Микроэлементы		Мо	Mn	Zn	Со	В			
Западно-Кулундинская зона (la)									
Содерж. в почве подв. форм, мг/кг		0,1	90	1,1	2,9	0,6			
Запасы в слое 0-20 см, г/га (А)		0,2	180	2,2	5,8	1,2			
Среднее содер. в зерне пшеницы, мг/кг		0,4	45	40	0,05	0,8			
Вынос с 1 га в г на 1 га (В) при ур. 6,8 ц/га		0,28	30,6	27,2	0,03	0,5			
Отношение запасов «А» к выносу «В»		714	5900	81	190000	2400			
Восточно-Кулундинская зона (Іб)									
Содерж. в почве подв. форм, мг/кг	7,8	0,1	140	0,9	2,7	0,6			
Запасы в слое 0-20 см, г/га (А)	15,6	0,2	280	1,8	5,4	1,2			
Среднее содер. в зерне пшеницы, мг/кг	6,0	0,4	50	40	0,07	1,6			
Вынос с 1 га в г/га <i>(В)</i> при ур. 10,8 ц/га		0,4	54	43	0,08	1,7			
Отношение запасов «А» к выносу «В»		500	5185	34	67500	705			
Приобская зона (III)									
Содерж. в почве подв. форм, мг/кг	5,3	0,1	100	0,9	2,4	0,5			
Запасы в слое 0-20 см г/га (А)	10,6	0,2	200	1,8	4,8	1,0			
Среднее содер. в зерне пшеницы, мг/кг	6,0	0,4	60	30	0,1	1,8			
Вынос с 1 га в г на 1 га (В) при ур. 11,9 ц/га	7,1	0,5	71	35,7	0,1	2,1			
Отношение запасов «А» к выносу «В»	1492	400	2816	50	48000	476			
Бийско-Чумышская зона (IV)									
Содерж. в почве подв. форм, мг/кг	8,0	0,1	78	1,7	2,5	1,3			
Запасы в слое 0-20 см, г/га (А)		0,2	156	3,4	5,0	2,6			
Среднее содер. в зерне пшеницы, мг/кг		0,5	65	35	0,1	3,0			
Вынос с 1 га в г на 1 га (В) при ур. 12,6 ц/га		0,7	82	44	0,1	3,8			
Отношение запасов «А» к выносу «В»		286	1900	77	50000	684			

Особая значимость цинка для растений яровой пшеницы в условиях Алтайского края была подтверждена в полевых опытах, проводимых в различных зонах Алтайского края с микроудобрениями. В этих опытах самым эффективным по урожайности был цинк [1-5].

Выделение этого элемента как наиболее биологически значимого для растений яровой пшеницы дает возможность сузить круг микроэлементов, подлежащих наиболее вероятному применению в растениеводстве, что способствует соблюдению экологических требований, так как некоторые микроэлементы относятся к тяжелым металлам, и их применение нужно аргументировать с точки зрения дефицитности, биологической значимости и экологической безопасности.

Выводы

- 1. Зерно пшеницы по сравнению с соломой, кукурузой и разнотравьем характеризуется более высоким содержанием цинка и более низким – марганца, кобальта и бора.
- 2. Коэффициенты биологического поглощения элементов растениями пшеницы из почвы во всех зонах Алтайского края наиболее высоки по цинку.
- 3. Отношения запасов микроэлементов растениями пшеницы из почвы к выносу наиболее низки у цинка и наиболее высоки у кобальта.

4. Проявление цинка, как наиболее значимого и дефицитного микроэлемента для яровой пшеницы, было подтверждено в опытах, проводимых в различных зонах Алтайского края.

Библиографический список

- 1. Спицына С.Ф. Микроэлементы в системе: почва-растение и эффективность микроудобрений в алтайском крае: автореф. дис. ... докт. с.-х. наук. М., 1992. 28 с.
- 2. Поспелова И.Н. Поведение цинка в системе: почва-растение на территории Алтайского Приобья и эффективность цинковых удобрений под яровую пшеницу на фоне фосфорных удобрений: автореф. дис. ... канд. с.-х. наук. Барнаул, 2004. 15 с.
- 3. Москвитин А.С. Влияние азотных удобрений, сульфата цинка и гербицидов на урожайность и качество зерна яровой пшеницы в условиях Алтайского Приобья: автореф. дис. ... канд. с.-х. наук. Барнаул, 2005. 18 с.
- 4. Бахарев В.Г. Оценка обеспеченности почв микроэлементами и оптимизация питательного режима яровой пшеницы в условиях умеренно-засушливой и колочной степи Алтайского края: автореф. дис. ... канд. с.-х. наук. Барнаул, 2011. 18 с.
- 5. Кострицына М.Н. Влияние серы и цинка на урожайность и качество яровой пше-

ницы на фоне макроудобрений: автореф. ... канд. с.-х. наук. – Барнаул, 2007. – 18 с.

- 6. Чернавина М.А. Физиология и биохимия микроэлементов. М., 1970. 310 с.
- 7. Шаронов Т.В. Влияние микроэлементов на некоторые физиологические показатели пшеницы при различной влажности почвы // Микроэлементы в сельском хозяйстве и медицине: тез. докл. VI Всесоюзного совещания. Т. 1. 1970. С. 378.
- 8. Старцева А.Б. Влияние фосфора на обмен веществ, засухоустойчивость и про-

дуктивность яровой пшеницы // Изв. Каз. фил. АН СССР, сер. биол. – 1963. – Вып. 9. – С. 59-68.

- 9. Перельман А.И. Геохимия ландшафта. – 1975. – С. 341.
- 10. Спицына С.Ф., Томаровский А.А., Оствальд Г.В. Зависимость содержания цинка в растениях от его содержания в почвах Алтайского края // Вестник АГАУ. 2013. № 9 (107). С. 20-23.

УДК 631.452 (571.15)

Г.Г. Морковкин, Т.В. Байкалова, Н.Б. Максимова, В.И. Овцинов, Е.А. Литвиненко, И.В. Дёмина, В.А. Дёмин

СОВРЕМЕННОЕ СОСТОЯНИЕ И ДИНАМИКА НЕКОТОРЫХ СВОЙСТВ ПОЧВ СУХОЙ И ЗАСУШЛИВОЙ СТЕПИ АЛТАЙСКОГО КРАЯ

Ключевые слова: каштановые почвы, черноземы южные, морфология почв, гранулометрический состав, дефляция, реакция почвенного раствора, подвижный фосфор, обменный калий.

Введение

Сельскохозяйственное использование почв, как правило, приводит к возникновению и развитию в них негативных процессов, нарушающих нормальное функционирование, снижающих плодородие и экологическую устойчивость. При этом в почвах нарушается естественный баланс элементов питания и органического вещества, изменяются многие химические, физические и биологические свойства. Знание состояния почвы необходимо для правильного выбора технологических операций и их параметров возделывании сельскохозяйственных культур, а также для своевременного принятия мер по охране почвенного покрова. Поэтому сельскохозяйственное использование почв всегда должно сопровождаться контролем за их состоянием [1-3]. В связи с этим изучение временной динамики состояния параметров плодородия почв по природно-почвенным зонам Алтайского края является актуальным.

Объекты и методы исследований

Объектом исследований является почвенный покров двух природно-почвенных зон Алтайского края, в границах которых расположена большая часть пахотных угодий: зоны каштановых почв сухой степи и зоны черноземов засушливой степи.

Климат территории сухой степи отличается резкой континентальностью с жарким летом и холодной продолжительной зимой. Безморозный период продолжается 120-130 дней. Весна и первая половина лета обычно засушливые. Сумма положительных температур воздуха (выше +10°C) равна 2200-2400°C, сумма осадков за этот же период – 140-160 мм, гидротермический коэффициент по Г.Т. Селянинову (ГТК) равен 0,8-0,6 [4].

Зональными почвами являются каштановые и темно-каштановые почвы супесчаного, легко- и среднесуглинистого гранулометрического состава. Преобладает подтип каштановых почв. Более 20% от площади зоны приходится на солонцеватые каштановые почвы разных подтипов [5].

Засушливая степь характеризуется теплым климатом с дефицитом увлажнения. Безморозный период длится 115-120 дней. Сумма температур воздуха выше +10°C –