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Preface

This book is a concise introduction to the stochastic calculus of variations (also known
as Malliavin calculus) for processes with jumps. It is written for researchers and gradu-
ate students who are interested in Malliavin calculus for jump processes. In this book,
‘processes with jumps’ include both pure jump processes and jump-diffusions. The au-
thor has tried to provide many results on this topic in a self-contained way; this also
applies to stochastic differential equations (SDEs) ‘with jumps’. This book also con-
tains some applications of the stochastic calculus for processes with jumps to control
theory and mathematical finance.

The field of jump processes is quite wide-ranging nowadays, from the Lévy mea-
sure (jump measure) to SDEs with jumps. Recent developments in stochastic analysis,
especially Malliavin calculus with jumps in the 1990s and 2000s, have enabled us to
express various results in a compact form. Until now, these topics have been rarely dis-
cussed in a monograph. Among the few books on this topic, we would like to mention
Bichteler—Gravereaux-Jacod (1987) and Bichteler (2002).

One objective of Malliavin calculus (of jump type) is to prove the existence of the
density function p(x, y) of the transition probability of a jump Markov process X;
probabilistically, especially the very important case where X; is given by a (It6, Marcus,
Stratonovich ...) SDE, cf. Léandre (1988). Furthermore, granting the existence of the
density, one may apply various methods to obtain the asymptotic behaviour of p;(x, y)
as t — 0 where x and y are fixed. The results are known to be different, according to
whether x # y or x = y. We also describe this topic.

The starting point for this book was July 2009, when Prof. R. Schilling invited me
to the Technische Universitdt Dresden, Germany, to teach a short course on Malliavin’s
calculus for jump processes. He suggested that I expand the manuscript, thus creating
abook. Prof. H. Kunita kindly read and commented on earlier drafts of the manuscript.
The author is deeply indebted to Professors R. Schilling, M. Kanda, H. Kunita, J. Picard,
R. Léandre, C. Geiss, F. Baumgartner, N. Privault and K. Taira.

This book is dedicated to the memory of the late Professor Paul Malliavin.

Matsuyama, December 2012 Yasushi Ishikawa
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Preface to the second edition

The present edition is an expanded and revised version of the first edition. Several
changes have been added. These changes are based on a set lectures given at Osaka
city university and the university of Ryukyus, and on seminars in several universities.
These lectures were addressed to graduate and undergraduate students with interests
in Probability and Analysis.

In 1970s Professor P. Malliavin has begun analytic studies of the Wiener space;
he gave a probabilistic proof of the hypoellipticity result in PDE theory due to L. Hor-
mander. The method he used on the Wiener space is called stochastic calculus of vari-
ations, now called Malliavin calculus. The spirit of Malliavin’s work was clarified by
J.-M. Bismut, S. Watanabe, I. Shigekawa, D. Nualart and others.

In 1980s and 1990s the movement of stochastic calculus of variations on the
Wiener space has been extended to the Poisson space by J.-M. Bismut, J. Jacod, K.
Bichteler-]. M. Gravereaux-]. Jacod and others. Due to the development of the theory
by them, problems concerning integro-differential operators in the potential theory
have come to be resolved. The author has encountered with these techniques and the
atmospher in Strassburg, Clermont-Ferrand, La Rochelle and Kyoto.

The main purpose of this monograph is to summarize and explain analytic and
probabilistic problems concerning jump processes and jump-diffusion processes in
perspective. Our approach to those problems relys largely on the recent developments
in the stochastic analysis on the Poisson space and that of SDEs on it. Several pertur-
bation methods on the Poisson space are proposed, each resulting in the integration-
by-parts formula of its own types.

The analysis of jump processes has its proper value, since processes with discon-
tinuous trajectories are as natural as processes with continuous trajectories. Professor
K. Itd has been interested, and has had a sharp sense, in jump processes (especially in
Lévy processes) from the period of his inquiry for the theory of stochastic integration.
The theory of stochastic calculus of variations for jump processes is still developing.
Its application will cover from economics to mathematical biology, although materials
for the latter is not contained in this volume.

It is three years since the first edition has appeared. There have been intense ac-
tivities focused on stochastic calculus for jump and jump-diffusion processes. The
present monograph is an expanded and revised version of the first edition. Changes
to the present edition are of two types. One is the necessity to correct typos and small
errors, and a necessity for a clearer treatment of many topics to improve the expres-
sions or to give sharp estimates. On the other hand, I have included a new material. In
Chapter 31 have added Section 3.6.5 which treats the analysis of the transition density.
In particular it includes a recent development on the Hérmander type hypoelliptic-
ity problem for integro-differential operators related to jump-diffusion processes. The
notes at the end of the volume are also extended.
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VIl —— Preface to the second edition

During the preparation of the 2nd edition I am indebted to many professors and
colleagues in contents and in motivation. Especially, I am indebted to Professors H.
Kunita, M. Tsuchiya, E. Hausenblas, A. Kohatsu-Higa, A. Takeuchi, N. Privault and R.
Schilling.

A major part of this work was done at Ehime university (1999-) with the aid of
Grant-in-Aid for General Scientific Research, Ministry of Education, Culture Sports,
Science and Technology, Japan (No. 24540176). I take this opportunity to express my
sincere gratitude to all those who related.

The year 2015 is the centennial of the birth of late Professor K. It6. The develop-
ment of [td’s theory has been a good example of international cooperation among peo-
ple in Japan, Europe and U.S. I hope, in this way, we would contribute to peace and
development of the world in the future.

Matsuyama, October 2015 Yasushi Ishikawa
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0 Introduction

A theme of this book is to describe a close interplay between analysis and probability
via Malliavin calculus. Compared to other books on this subject, our focus is mainly
on jump processes, especially Lévy processes.

The concept of (abstract) Wiener space has been well known since the 1970s. Since
then, despite a genuine difficulty with respect to the definition of the (abstract) Wiener
space, many textbooks have been published on the stochastic calculus on the Wiener
space. It should be noted that it is directly connected to It&’s theory of stochastic differ-
ential equations, which It6 invented while inspired by the work of A. N. Kolmogorov.
Already at this stage, a close relation between stochastic calculus and PDE theory has
been recognised through the transition probability p¢(x, dy), whose density p:(x, y) is
the fundamental solution to Kolmogorov’s backward equation.

Malliavin calculus started with the paper [159] by P. Malliavin (cf. [160]). One of
the motivations of his paper is the problem of hypoellipticity for operators associated
with stochastic differential equations of diffusion type. At the beginning, Malliavin’s
calculus was not very popular (except for his students, and a few researchers such as
Bismut, Jacod, Shigekawa, Watanabe and Stroock) due to its technical difficulties.

Malliavin’s paper was presented at the international symposium in Kyoto organ-
ised by Prof. K. It6. At that time, a close relation began between P. Malliavin and the
Kyoto school of probability in Japan. The outcome was a series of works by Wata-
nabe [217], Ikeda—Watanabe [82], Shigekawa [199], and others.

The relation between Malliavin calculus for diffusion processes and PDEs has
been deeply developed by Kusuoka and Stroock [137-139] and others.

On the other hand, Paul Lévy began his study on additive stochastic processes
(cf. [152]). The trajectories of his processes are continuous or discontinuous. The ad-
ditive processes he studied are now called Lévy processes. The discontinuous Lévy
processes have an infinitesimal generator of integro-differential type in the semi-
group theory in the sense of Hille-Yosida. Such integro-differential operators have
been studied in potential theory, by e.g. Ph. Courrége [45] and Bony-Courrége—
Priouret [34]. The latter paper is related to the boundary value problem associated
with integro-differential operators.

The theory developed following that of Fourier integral operators and pseudodif-
ferential operators (cf., e.g. [35]).

My first encounter with Malliavin calculus for jump processes was the paper by
Léandre [140], where he proves

p(t,x,dy) _ P(X; € dylXo = x)
t t
as t — 0, if the jump process X; can reach y by one single jump (y # x). Here, n(x, dy)
denotes the Lévy kernel. This result has been generalised to the case of n jumps, n =
1,2,...in[85], independently of the work by Picard.

~ n(x, dy)
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2 — |Introduction

When I started my research in this field, I was inspired by the close relation be-
tween the theories of integro-differential operators and jump type Markov processes.
Consequently, my own research on the short time asymptotics of the transition density
plays an important role in this monograph.

Later, Malliavin calculus has found new applications in the theory of finance.

The presentation of the contents follows the historical development of the theory.
The technical requirements of this book are usual undergraduate calculus, probability
and abstract measure theory.

Historically, the theory was started by Bismut. The approach by Bismut is based
on the Girsanov transform of the underlying probability measure. From an analytic
point of view, the main idea is to replace the Radon-Nikodym density function in the
Girsanov transform of measures induced by the perturbation of the continuous tra-
jectories by that induced by the perturbation of the discontinuous trajectories. Subse-
quently, the theory was extended to cover singular Lévy measures using perturbation
methods (Picard).

Most textbooks on Malliavin calculus on the Wiener space (e.g. [160, 199]) adopt
a functional analytic approach, where the abstract Wiener space and the Malliavin
operator appear. I do not use such a setting in this book. This is partly because such
a setting is not very intuitive, and partly because the setting cannot directly be trans-
ferred to the Poisson space from the Wiener space. This is also discussed in Section 3.4.

In the spirit of potential theory and (nonlocal) integro-differential operators,
I have adopted the method of perturbations of trajectories on the Wiener—Poisson
space. This perspective fits well to the Markov chain approximation method used in
Sections 2.2, 2.3, and to the technique of path-decomposition used in Section 3.6.
Hence, it constitutes one of the main themes of this book.

In our approach, both in the Wiener space and in the Poisson space, the main
characters are the derivative operator D; or the finite difference operator D,,, and their
adjoints & or 8. The derivative operator is defined to act on the random variable F(w)
defined on a given probability space (Q, &, P).

In the Wiener space, Q = Cy(T)is the space of continuous functions defined on the
interval T equipped with the topology given by the sup-norm. The Malliavin derivative
D(F(w) of F(w) is then given in two ways, either as a functional derivative or in terms
of a chaos expansion, see Section 3.1.1 for details. The definition via chaos expansion
is quite appealing since it gives an elementary proof of the Clark—Ocone formula, and
since the definition can be carried over to the Poisson space in a natural way; details
are stated in Section 3.2.

Here is a short outline of all chapters.

Chapter1
In Chapter 1, I briefly prepare basic materials which are needed for the theory. Namely,
I introduce Lévy processes, Poisson random measures, stochastic integrals, stochas-
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Introduction =—— 3

tic differential equations (SDE) with jumps driven by Lévy processes, It6 processes,
canonical processes, and so on. Some technical issues in the stochastic analysis such
as Girsanov transforms of measures, quadratic variation, and the Doléans stochastic
exponential are also discussed. The SDEs introduced in Section 1.3 are time indepen-
dent, i.e. of autonomous (or ‘Markovian’) type.

In this chapter, technical details on materials concerning SDEs are often referred
to citations, as our focus is to expose basic elements for stochastic analysis briefly.
Especially, for materials and explanations of diffusion processes, Wiener processes,
stochastic integrals with respect to Wiener process, readers can refer to [115].

Chapter 2

The main subject in Chapter 2 is to relate the integration-by-parts procedure in the
Poisson space with the (classically) analytic object, that is, the transition density func-
tion. I present several methods and perturbations that lead to the integration-by-parts
formula on the Poisson space. I am particularly interested in the Poisson space since
such techniques on the Wiener space are already introduced in the textbooks on Malli-
avin calculus. The integration-by-parts formula induces the existence of the smooth
density of the probability law or the functional. Analytically, ‘existence’ and ‘smooth-
ness’ are two different subjects to attack. However, they are obtained simultaneously
in many cases. I present several upper and lower bounds of the transition densities as-
sociated with jump processes. Then, I explain the methods to find those bounds. The
results stated here are adopted from several papers written by R. Léandre, J. Picard
and by myself in the 1990s.

One motivation for Sections 2.2, 2.3 and 2.4 is to provide the short time asymptotic
estimates for jump processes from the view point of analysis (PDE theory). Readers
will find sharp estimates of the densities which are closely related to the jumping be-
haviour of the process. Here, the geometric perspectives as polygonal geometry and
chain movement approximation will come into play. Compared to the estimation of
the heat kernels associated with Dirichlet forms of jump type, such piecewise methods
for the solution to SDEs will give more precise upper and lower bounds for transition
densities. In Section 2.5, I provide some auxiliary materials.

Chapter 3

In Chapter 3, I study the Wiener, Poisson, and Wiener—Poisson space. Here, I use
stochastic analysis on the path space. In Section 3.1, I briefly review stochastic calcu-
lus on the Wiener space using the Malliavin—Shigekawa’s perturbation. I introduce the
derivative operator D and its adjoint 6. In Section 3.2, I discuss stochastic calculus on
the Poisson space using Picard’s perturbation D. In Section 3.3, I introduce perturba-
tions on the Wiener—Poisson space, and define Sobolev spaces on the Wiener—Poisson
space based on the norms using these perturbations. A Meyer’s type inequality for the
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adjoint operators on this space is explained in detail. This chapter is the main part in
the theoretical aspect of stochastic analysis for processes with jumps.

In Sections 3.5 (General theory) and 3.7 (Itd processes), I define the composition
@ - F of a random variable F on the Wiener—Poisson space with a generalised func-
tion @ in the space 8’ of tempered distributions, such as @(x) = (x—K)* or @(x) = 8§(x).
These results are mostly new. In Section 3.6, [ investigate the smoothness of the density
of the processes defined on the Wiener—Poisson space as functionals of It6 processes,
and inquire into the existence of the density.

Chapter 4

Chapter 4 is devoted to applications of the material from the previous chapters to prob-
lems in mathematical finance and optimal control. In Section 4.1, I explain applica-
tions to asymptotic expansions using the composition of a Wiener—Poisson functional
with tempered distributions. In Section 4.1.1, I briefly repeat the material on compo-
sitions of the type @ o F given in Sections 3.5, 3.7. Section 4.1.2 treats the asymptotic
expansion of the density, which closely relates to the short time asymptotics stated
in Sections 2.2, 2.3. In Section 4.2, I give an application to the optimal consumption
problem associated to a jump-diffusion process.

Itried to make the content as self-contained as possible and to provide proofs to all ma-
jor statements (formulae, lemmas, propositions, ...). Nevertheless, in some instances,
I decided to refer the reader to papers and textbooks, mostly if the arguments are
lengthy or very technical. Sometimes, the proofs are postponed to the end of the cur-
rent section due to the length. For the readers’ convenience, I tried to provide several
examples. Also, I have repeated some central definitions and notations.

How to use this book?

Your choices are:

— Ifyou are interested in the relation of Malliavin calculus with analysis, read Chap-
ters 1and 2

— If you are interested in the basic theory of Malliavin calculus on the Wiener—
Poisson space, read Chapters 1 and 3

— If you are interested in the application of Malliavin calculus with analysis, read
Chapter 4 in reference with Chapter 1.

I hope this book will be useful as a textbook and as a resource for researchers in prob-
ability and analysis.
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1 Lévy processes and Itd calculus

Happy families are all alike; every unhappy family is unhappy in its own way.
Lev Tolstoy, Anna Karenina

In this chapter, we briefly prepare the basic concepts and mathematical tools which
are necessary for stochastic calculus with jumps throughout this book. We consider
Poisson processes, Lévy processes, and the It calculus associated with these pro-
cesses. Especially, we consider SDEs of Itd and canonical type.

We first introduce Lévy processes in Section 1.1. We provide basic materials to SDEs
with jumps in Section 1.2. Then, we introduce SDEs for It6 processes (Section 1.3) in the
subsequent section. Since the main objective of this article is to inquire into analytic
properties of the functionals on the Wiener—Poisson space, not all of the basic results
stated in this chapter are provided with full proofs.

Throughout this book, we shall denote the Itd process on the Poisson space by x;
or x¢(x), and the canonical process by Y;. The expressions X;, X(t) are used for both
cases of the above, or just in the sense of a general It6 process on the Wiener—Poisson
space.

1.1 Poisson random measure and Lévy processes

In this section, we recall the basic materials related to Poisson random measure, Lévy
processes and variation norms.

1.1.1 Lévy processes

We denote by (Q, F, P) a probability space where Q is a set of trajectories defined on
T = [0, T].Here, T < coandwemeanT = [0, +oo)inthecase T = +co.Inmost cases, T
is chosen finite. However, the infinite interval T = [0, +c0) may appear in some cases.
F = (Fe)ter is a family of o-fields on Q, where F; denotes the minimal o-field, right
continuous in t, for which each trajectory w(s) is measurable up to time ¢.

Definition 1.1. A Lévy process (z(t))ter on T is an m-dimensional stochastic process

defined on Q such that?

1. z(0)=0a.s.

2. z(t) hasindependent increments (i.e. for O < tg < t; < --- < ty, t; € T, the random
variables z;, — z;, , are independent)

1 Here and in what follows, a.s. denotes the abbreviation for ‘almost surely’. Similarly, a.e. stands for
‘almost every’ or ‘almost everywhere’.
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6 —— Lévy processes and Itd calculus

3. z(t) has stationary increments (i.e. the distribution of z¢,, — z; depends on h, but
not on t)

4, z(t) is stochastically continuous (i.e. forall t € T \ {0} and all € > 0 P(|z(t + h) -
z(t)] >€) - 0ash — 0)

5.  z(t) has cadlag (right continuous on T with left limits on T \ {O}) paths.

Here, m > 1. In case m = 1, we also call z(t) a real-valued process.

We denote
Az(t) = z(t) — z(t-) .

The same notation for A will be applied for processes X¢, My, X¢, . . . which will appear
later.

We can associate the counting measure N to z(t) in the following way: for
A € B(R™\ {0}), we put

N(t,A) = ) 1a(Az(s),t>0.
O<s<t
Note that this is a counting measure of jumps of z in A up to the time ¢. As the path is
cadlag, for A € B(R™ \ {0}) such that A ¢ R™ \ {0}, we have N(¢t, A) < +oo a.s.
A random measure on T x (R™ \ {0}) defined by

N((a, b] x A) = N(b, A) - N(a, A) ,

where a < band T = [0, T], is called a Poisson random measure if it follows the Pois-
son distribution with mean measure E[N((a, b] x A)], and if for disjoint (ai, b;] x
Als ey (ar; br] X Ar € B(T X (Rm \ {0}))5 N((aly bl] X Al)s .. -:N((ar; br] X Ar) are
independent.

Proposition 1.1 (Lévy—It6 decomposition theorem, [192] Theorem 1.42). Let z(t) be
a Lévy process. Then, z(t) admits the following representation

t t
z(t) = tc+ oW(t) + J J’ zN(dsdz) + J’ J zN(dsdz) ,

|1z|<1 |z|>1

fora.e. w forall t € T. Here, c € R™, g is an m x m-matrix, (W(t))¢tet, W(0) = O is an
m-dimensional standard Wiener process, N(dtdz) is a Poisson random measure with
the mean measure N(dtdz) = E[N(dtdz)], and N(dtdz) = N(dtdz) — N(dtdz). Here,
processes W(t) and t — (jot f|z|< Z2N(dsdz) + fot flzlzl zN(dsdz)) are independent. Fur-
thermore, this representation is unique.

A remarkable point of this result is that the definition of Lévy process contains no
assertion for the probability law of the process z(t).

By this proposition, N(., .) derived from z(t) defines a Poisson random measure
on T x (R™ \ {0}). Here, we use the notation of stochastic integrals j(; IzN(dsdz)

and jot f zN(dsdz). The precise meaning of these integrals is postponed to Section 1.2.
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Poisson random measure and Lévy processes = 7

However, it should be noted here that the Wiener process W(t) and the Poisson ran-
dom measure N(dtdz) are adapted to the original filtration (J;) generated by the Lévy
process z(t).

We take the mean measure

u(A) = E[N(1,A)], A € BR™\ {0}). (6RY;

This (deterministic) measure is called the Lévy measure associated to z or to N. Note
that u enjoys
(1 Alz1*)u(dz) < +co . (1.2)
R™\{0}
The compensated Poisson random measure associated to N is defined by

N(dtdz) = N(dtdz) - dtu(dz) .
In particular, if u(dz) satisfies
J |z|u(dz) < +o0,
|z|>1

then z(t) can be written in the compact form

t
z(t) = tc' + oW(t) + j zN(dsdz) ,
0 R™\{0}

where ¢/ = c + j|z|21 zu(dz).
We remark that

E[N((s, ] x A1)N((s, t] x A2)] = N((s, t] x (A1 N A)) = (t - )u(A1 N Ay)

holds due to the independence property ([127] Proposition 2.1).

A measure u on R™\ {0} is a Lévy measure associated to some Lévy process if and
only if it enjoys the property (1.2). Indeed, we have the following Lévy—Khintchine
representation.

Proposition 1.2.
1. Letz be a Lévy process on R™ \ {0}. Then,

E[e!$:2(0)] = ot¥(&) | £eR™, (1.3)
where

(&) = i(c, &) - %(5, ooTé) + j(e“iz) —1-i(&, 2)1gp)pldz) . (14)

Here, c € R™, 00T is a nonnegative definite matrix and U is a measure which satis-

fies (1.2).
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8 = Lévyprocessesand It6 calculus

2. Given ¢ € R™, a matrix 06" > 0 and a o-finite measure p on B(R™ \ {0}) satis-
fying (1.2), there exists a process z for which (1.3) and (1.4) hold. This process z is
a Lévy process.

For the proof, we use formulae

E[e/WO)] = gm3t600™)

E [ RIGH I 2N<dsdz>>] —expt J (e'®?) —1-1i(, Z))H(dz)] .

|z|<1

and

E [e“f’fé Jiaes ZN(deZ’)] —expt J (€62 _ 1)y(dz)] .

|z|>1

Please refer to Theorem 8.1 in [196], and Section O in [105]. In the above statement,
(a, b) denotes the inner product of a and b.

Let Dy, = {t € T; Az(t) # 0}. Then, it is a countable subset of T a.s. Let A ¢ R™\ {0}.
In case u(A) < +oco, the process Dy > t = Yot ry(s)ea O(s,02(s)) i called a Poisson
counting measure associated to the Lévy process z(t) (or, the Lévy measure u(dz)) tak-
ing values in A. The function D, 5 t — p(t) = Az(t) is called a Poisson point process
associated to the Lévy process z(t).

The notion of Poisson point process is defined in a general setting using point func-
tions. A point function p is a mapping from D, to R™ \ {0}, where D,, is a countable
subset of T. The function p defines a counting measure N, on T x (R™ \ {0}) by

Np((0,t] x A) =#{s e Dp;s < t,p(s) € A}, t >0,A ¢ BR™\ {0}).

A point process p on R™\ {0} is a random variable p on Q consisting of point functions.
A point process p is called Poisson if N,(dtdz) is a Poisson random measure on T x

(R™\ {0}).

1.1.2 Examples of Lévy processes

1. Poisson process
A Poisson process N; with intensity A > 0 is a nonnegative integer-valued process
defined on [0, +00) which satisfies the following conditions:
(@) No=0,AN; =N;-N;_isOor1
(b) Fors < t, Ny — N; is independent of .
(c) Forallty, t;andalls > 0, N¢,.s — Ny, has the same distribution as Ny, +s — Ny, .
(d)
P(N; = k) = %(At)ke"“, k=0,1,2,....
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We can choose a version which has cadlag paths. In fact, the property (iv) follows
from (i) to (iii), cf. [192] Theorem I1.23. We put (iv) for simplicity. The Lévy measure u
of the Poisson process is the point mass Aé;1;, and b = 0, 0 = 0.

A Poisson process appears quite naturally as a counting process of (discrete)
events whose waiting times are independent and identically distributed (i.i.d.)
random variables with exponential distribution.

Compound Poisson process

Consider a compound Poisson process Y; = Zf;l Yy, where (Yy), k=1, 2,...are
i.i.d. random variables with a common finite distribution u on R™ \ {0} and N;
denotes a Poisson process with the intensity A > 0, independent of (Y;). Then, Y;

has a representation
t

Y = j j zN(dsdz) ,
0 R™\{0}

where N(dsdz) denotes a Poisson random measure on T x (R™\ {0}) with the mean
measure Adsu(dz).

Stable process

A Lévy process such that its Lévy measure y, given by

u(dz) = CaW ,
is called a symmetric stable process, where a € (0, 2).
If the measure y is given by

' z dz
u(dz) = cpa <E> —lZlm“" ,
where a(-) is defined on $™ ! and a(-) > 0, the process is called an asymmetric
stable process. In case m = 1, u takes the form

dz

u(dz) = (c-1gz<op + C+1{z>0})W s

where c_ >0, ¢, > 0.

Wiener process

A continuous process W(t) is called a Wiener process (or Brownian motion) if

(i) for 0 < s < t < +00 W(t) — W(s) is independent of W(s),

(ii) for 0 < s < t < +00 W(t) — W(s) has a Gaussian random variable with mean
zero and variance (t — s)M for a given nonrandom matrix M.

It is called a standard Wiener process if M = I (identity matrix).

A Wiener process W(t) (on another probability space) such that W(0) = 0 satisfies
the conditions (1-5) of Definition 1.1. Hence, it is a (continuous) Lévy process.

A Wiener process has a scaling property that if ¢ > 0, then ¢ W(ct) is indistin-
guishable from W(t) in the sense of distribution.
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10 —— Lévy processes and It6 calculus

Now, we proceed by presenting It6’s formula.

Proposition 1.3 (1t6’s formula (I), [173] Theorems 9.4, 9.5).
1. Let X(t) be a real-valued process given by

¢
X(t)=x+tc+aW(t) + j j W2)N(dsdz),t =20,
0 R\{0}

where y(z) is such that IR\{O} Y(2)?u(dz) < co. Let f : R — R be a function in C>(R),
and let

Y(t) = fX(0)) .

Then, the process Y(t), t > 0 is a real-valued stochastic process which satisfies

ay(t) = —f(X(t))C dt + —f(X(t))O'dW(t) ) I ]20

+ j [f(X(t)+y(Z))—f(X(t))—d—i(X(t))y(Z) u(dz) dt

R\{0}

(X(t))o? dt

[f(X(t-) + p(2)) - fIX(t-))] N(dt dz) .
R\{0}

2. Let X(t) = (X (b), ..., X4(t)) be a d-dimensional process given by
t
X(t) = x + tc + aW(t) + J jy(z)N(dsdz) ., t20.
0

Here, ¢ € R4, ¢ is a d x m-matrix, Y2) = [yij(2)] is a d x m-matrix-valued func-
tion such that the integral exists, W(t) = (W(¢), ..., wa(t)T is an m-dimensional
standard Wiener process, and

N(dtdz) = (N1(dtdzy) - 1z, <pyu(dz1)dt, . . ., Ny (dtdzy)
- 1z <ym(dzy)dt) ,

where Nj’s are independent Poisson random measures with Lévy measures y;, j =
1,...,m. Thatis, X(t) is given by
. m m {
Xi(0) = x; + tei + Yy, oyWy(o) + Y. J J yi@Nidsdz), i=1,....d.
j=1 J=10 R\j0)

Let f : R? > R be a function in C2(R4), and let

Y(6) = fX(®)) .
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Poisson random measure and Lévy processes = 11

Then, the process Y(t), t > O is a real-valued stochastic process which satisfies

dy(t) = Z —(X(t )c; dt + Z Z —(X(t )ai; dWj(t)

11]1

2
(X(t )ooT); dt

1 d
320
» j [f(X(t)JrYi(Zj))—f(X(f))

J=1Ryjo)

d
-2 a—f X()yi(@) | ui(dz) dt

+y j [f(X(t—) +Y (@) - f(X(t—))]Nj (dtdz)) .

J=1R(o}
Here, ¥/ denotes the j-th column of the matrix y = [y;].

For the precise meaning of the stochastic integrals with respect to dW(t) and N(dtdz),
see Section 1.2.

Example 1.1. Let b =0, y(z) =0, 0 = 1 and f(x) = x2. Then, It6’s formula leads to

j W(t) dW; = %(W(T)z -T.
T

1.1.3 Stochastic integral for a finite variation process
A Lévy process z(t) is said to have a finite variation if the total variation

()2 (1) 0

is finite a.s. on every compact interval of [0, +00). If it is not so, the process is said to
have infinite variation.
We introduce the Blumenthal-Getoor index of the Lévy process z(t) by

|2|¢ = sup Z

n>1k1

B=inf {6 >0; J |Z|5y(dz) < +00

|z|<1

The index takes values in [0, 2]. Itis known (cf. [40, 81]) thatif B < 1, then z has a finite
variation path a.s., and if 8 > 1, then z has an infinite variation path a.s.

We shall define the stochastic integral jst flu, w)dz(u, w) first for the finite varia-
tion process and then for the infinite variation process, where f is a bounded, jointly
measurable function.
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12 —— Lévyprocesses and It6 calculus

Definition of stochastic integral for finite variation (FV) processes
For a FV process z(t), we define

t
I(t,w) = jf(u, w)dz(u, w)

as a Lebesgue—Stieltjes integral (w-wisely, a.s.), where f is bounded and jointly mea-
surable.

This is a Stieltjes integral of f by dz(u) given w-wise. In case that u — f(u) has
a continuous path a.s., it is called a Riemann-Stieltjes integral.

If z(t) is a FV process and if f(., w) is differentiable a.s., then we have, in fact the
usual rule of the change of variables:

t
flz(0)) - f(z(0)) = jf'(Z(S))dZ(S) a.s.
0

For the integral using the infinite variation process, we need the predictable property
for u — f(u, .) and that of semimartingales. For these, see Section 1.2.2.

In the following sections of this chapter, we use the notion of a stochastic differ-
ential equation (SDE) with respect to the Lévy process z(t). The precise definition and
the properties of the solution are postponed to the next section.

Due to a recent development by T. Lyons [156, 157], there is a possibility to define
“stochastic integrals” w-wisely by using the (iterated) Young integrals of processes of
finite or infinite variation not using the integration by semimartingales. The theory is
called the rough path theory, and it uses the notion of p-variation norm and spaces.
See also [53].

Indeed, similarly to (1.5), we can define the p-variation

P p
» _ th) [ tk-1)
A= 2 () (5 o
for p > 1. All components in the series
1,241, 2 (1), ...) (1.7)

of the iterated integrals zX(¢) = j0<u1< e dzu) @ ... @ dz(ui), k = 1,2,... are
measured by the p-variation norm. The series, viewed as multiplicative functionals
of t, are called rough paths. The stochastic integral

t
j h(s)dz(s)
0

with respect to the integrator dz(s) of finite p-variation can be embedded into the the-
ory of integration using rough paths.
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The space D
Let T = [0, T], T < +oo. D = D(T) denotes the space of all functions defined on T with
values in R™ or R? that are right continuous on [0, T) and have left limits on (0, T]
(cadlag paths). All discontinuities of an element f in D are of the first kind. Further,
for any element f in D, it has at most countably many discontinuities. See [28] Lemma
12.1.

We introduce a topology on D(T) by introducing the Skorohod metric dr defined
by

dr(f, 8) = irrlfsttg) {If(t) - g(x (@) +1(t) - ti},

where T moves over all strictly increasing, continuous mappings of T to T such that
7(0) = 0, 7(T) = T. The topological space (D(T), dt) is called a Skorohod space.
The space (D(T), dr) is separable, and by choosing an equivalent metric dy it is com-
plete ([28] Section 12).

D([0, +00)) denotes the space of all cadlag paths on [0, +00). It is a Fréchet space
metrisable with the metric

1 .
F (1 A d[oyn](fx g)) ’

D18

d(f, g) =

n=1

and the topological space (D([0, +00)), d) is complete and separable. Here dfo,n] de-
notes dy with T = [0, n].
If we adopt the sup-norm (as in [104])

21
d°(f,g) =Y — (1/\ sup |f(s) —g(S)I) ,

n=1 2" s€[0,n]

the space (D([0, +00)), d*®) is complete, but it is not separable. We will encounter this
space again in the next section and in Section 2.5.3.

1.2 Basic materials for SDEs with jumps

In this section, we study stochastic differential equation (SDE) with jumps. We begin
with the definitions of the martingale, semimartingale, and the stochastic integral. We
treat usual (Itd’s) SDEs and Marcus’ canonical SDEs. Solutions to these two SDEs are
different from each other. The “canonical” integral is introduced by Marcus [164], and
has been developed by Kurtz, Pardoux and Protter [134].

1.2.1 Martingales and semimartingales

Let (Q, F, P) be a probability space. A family (F¢)¢et of sub o-fields of F is called a fil-
tration if F5 c F; for all s < t. A filtration (F¢)¢er is said to satisfy the usual conditions
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if ¥ contains all null sets of F and if it is right continuous. Below, we consider prob-
ability spaces equipped with filtrations which satisfy the usual conditions.

A stochastic process (X¢)¢et is said to be adapted if X; is F;-measurable for all ¢.
It is called progressively measurable if the function X : [0, t] x Q is B([0, t]) ® F;-
measurable for all ¢ > 0. A progressively measurable process is adapted. Conversely,
in case t — X, is a cadlag process, if (X;)¢er is adapted then it is progressively measur-
able. ([14] Exercise 1.3.)

An adapted process M; having cadlag (right continuous with left limit) paths is
called a martingale if it satisfies the following two conditions:

(1) M;eLlY(P),teT 2.1
(2) if s<t then E[M{F]=Ms, ass.,, s, teT. 2.2

In case that,

if s<t then E[M{JFs]>Ms, as., s,teT,
X, is called a submartingale. In case that

if s<t then E[M{F] <M, a.s.,, s,teT,

X, is called a supermartingale.
A random variable T : Q — [0, +00] is said to be a stopping time if the event
{T < t} € F¢for every t € T. The set of all stopping times is denoted by 7. Let 0 =
To<Ti <...<T, <...beasequence of stopping times such that T, — +oo a.s. An
adapted process M; such that, for some sequence of stopping times as above, M;ar, is
a martingale for any n is called a local martingale. A martingale is a local martingale.
A process X; is called a semimartingale if it can be written as

Xt=X0+Mt+At,

where M; is a local martingale with My = O and A; is an adapted cadlag process of
finite variation (FV) with Ag = 0, a.s. In particular, an adapted FV process having a
cadlag path is a semimartingale. A martingale is a semimartingale.
The one-dimensional standard Poisson process N; is a semimartingale since it can
be written as
N t= N t+t,

where N; = N; — t is a local martingale, even a martingale.

For a pure jump Lévy process z(t), the compensated Lévy process z(t) = z(t) —
fé ds [ zu(dz) is a local martingale if [ |z|u(dz) < +oo.

A Lévy process is a semimartingale by the Lévy-Itd decomposition theorem.

If X is a martingale, then there exists a unique modification Y of X which is cadlag.
See the Corollary in [192] Chapter 1.2.
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1.2.2 Stochastic integral with respect to semimartingales

We would like to define the stochastic (Itd) integral fst h(s)dX, by

t t t
Jh(u)qu - j h(s)dMy + jh(s)dAu :
S S S

where h(u) is a (locally) bounded predictable process.

A process h is said to be predictable if it is measurable with respect to the o-field P
on Q x R,. Here, P denotes the o-field generated by adapted processes whose trajec-
tories are left continuous with right limits.

As t — A; is a finite variation process, the second term on the right-hand
side above is given as in the beginning of Chapter 1 (Section 1.1.3). We shall define
|2 h(s)dM, in what follows.

We denote by 0 = tp < t; < t; < ... < t, a sequence of times. An elementary
process h(t) is a process

n-1
h(t) = holioy(t) + Y Ril(t,,t,1(0)
i=0
where h; is F-measurable and |h;| < +co a.s. We denote by S the set of elementary
processes, endowed with the topology given by the uniform convergence in (¢, w). We
define the integral I(h) of an elementary process h € S with respect to the martingale M
having cadlag path by

n
I(h)(t) = h(0)Mo + Y hi(My,,nt = Mine) -
i=0
I(h) is called the stochastic integral of h with respect to M.
Then, I(h) has the following properties:
1. If M; = W(t) (Brownian motion) or M; = N; (compensated Poisson process), then
I(h)(t) is a martingale. That is,

E[I(h)()|Fs] = I(h)(s),s < t.

2. I2(h)(¢) - J(; h2(s)d[M]; is a martingale.
3. E[’(h)(t)] = E[fot h?(s)d[M];].

Here, [M] denotes the quadratic variation of M (see just below for the definition).
For the proof of (1), see [190] Proposition 2.5.7. It follows from (3) that h +— I(h) ex-
tends to an isometry from the space of elementary processes equipped with the norm
on (progressively measurable) adapted processes in L2(Q x [0, +00), P x d[M];) into
L?(Q, F, P).2 We state this more precisely in (i)—(iii) below.

2 Two Psin the two L2 spaces are distinct. Here, we use the same symbol, supposing that no confusion
occurs.
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We denote by A the set
A ={heL*(Qx][0,+00), P x d[M]s) ;
there exists a sequence of elementary functions h,
such that h, — hin L*(Q x [0, +00), P x d[M]s)} .
We can then define for h € A, that is,
I(h) = lim_I(hy), I(h) = ICh - 110,0) -

We denote by D the space of adapted processes with cadlag paths with the Sko-
rohod topology. It can be observed that the process I(h) for h € S takes values
inD.
It is known (cf. [47]) that A contains all predictable processes h such that
E [j(;)o h?(s)d[M]s] < +oo. Hence, for h € A, the previous properties (1-3) for
I(h) hold true.
More precisely, we first extend I(-) : S — D to I(-) : L — D, where L denotes the
space of adapted processes with caglad paths (left continuous paths with right
limits) endowed with the topology given by the uniform convergence in probabil-
ity on compact sets (ucp-topology, for short). Here, we say a sequence (hy) con-
verges to h in the ucp-topology if for each ¢ > 0,

sup |hn(s) - h(s)| — 0

O<s<t
in probability.
For the proof of this extension, we use the fact that the elements in S are dense
in L in the ucp-topology, that bounded elements in L are dense in L, and that the
bounded elements in L can be approximated by the bounded elements in S in the
ucp-topology ([192] Theorems II.10, IL.11.).
We then extend I(.) : L - DtoI(.) : A — D. The map I is well-defined for each
h e A.
In case M; = W(t) or M; = N;, we extend I(.) thus obtained to I(.) : L2(Q x
[0, +00), P x d[M]s) — D by using the L?-isometry (3) above. Here, we use the
fact that A is dense in LZ(Q x [0, +c0), P x d[M]s) and the bounded convergence
theorem.
To prove this statement, we first approximate an element in L?(Q x [0, +c0), P x
d[M]s) by a sequence of bounded adapted processes in the L2-norm, and then we
approximate the bounded adapted process by a sequence of elementary processes
in the L2 norm. For the precise argument, see [190] Proposition 2.5.3. Indeed, inte-
grals of predictable and adapted versions coincide with each other. The extension
I(h) does not depend on the choice of the sequences. To prove this, we need the
completeness of space of the square integrable martingales.

The extension I : LZ(Qx[0, +c0), Pxd[M]s) — D thus obtained is called the stochastic
integral.
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Quadratic variation process
We introduce the quadratic variation process that was previously mentioned. The fol-
lowing result is due to P.-A. Meyer:

Theorem 1.1 ([192] Theorem Il1.11).

1. Let X be a cadlag supermartingale with Xo = 0 such that the class of random vari-
ables {X;; T € T} is uniformly integrable. Then, there exists a unique, increasing,
predictable process A with Ay = 0 and a uniformly integrable martingale M; such
thatXt = Mt —At.

2. Let X be a cadlag submartingale with X, = O such that the class of random vari-
ables {X;; T € T} is uniformly integrable. Then, there exists a unique, increasing,
predictable process A with Ay = 0 and a uniformly integrable martingale M; such
thatX[ = M[ +At.

Remark 1.1. We have a similar decomposition
Xt = Mt —At (resp. Xt = Mt +At)

without the above mentioned uniform integrability condition, but with replacing M;
to be a local martingale ([192] Theorem II1.16).

Let M be a square integrable martingale, null at 0 and bounded in L2. Then, by Doob’s
inequality,
E [supM?] <4E[M3,] < +00.
t

Hence, M tz is a submartingale which satisfies the above property. By Theorem 1.1, there
exists a unique, increasing, predictable process A with Ag = 0 such that

Xt=Mt+At.

Proposition 1.4 (cf. [194] Theorem IV.26). Let M be a square integrable martingale
such that My = 0. Then, there exists a unique increasing process [M], [M]o = 0, such
that

1. M? —[M] is a uniformly integrable martingale,

2. A[M]; = (AM¢)? for any t.

The process [M] is called the quadratic variation process of M. An intuitive meaning
of [M] is given by
. 2
(M) = lim > {My - Mg, }
1
where t!' = t A 2L"

By the two decompositions above, we see that A; in Theorem 1.1(2) coincides with
the compensator of [M];. Namely, the compensator is a predictable FV process, null
at 0, such that [M]; — A; is a local martingale. We write it by (M), and call it the
conditional quadratic variation, or simply angle bracket of M.
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18 =— Lévy processes and It6 calculus

The processes [M]; and (M) coincide if t — M; is continuous a.s.
We can decompose
M=M+M?,
where M€ is the continuous part and M? is the purely discontinuous part. The
quadratic variation process [M]; can be decomposed into continuous and discon-

tinuous parts by
[M]; = [M]e+ ) (AM;)* .

O<s<t
Hence, we can decompose
[M] = [M]° + [M]“ .
Here, [M]¢ = [M€] and [M]¢ = [M9], where [M9] = ¥,_..(AM;)?.
The property (2) of I(h) above implies that [I?(h)]; = jé h2(t)d[M];.
For square integrable martingales M, N such that M, = 0 and Ny = O, the
quadratic covariance process [M, N] is given by

1
(M, N] = Z([M +N]-[M-N]). (23)
Using this notation, we have
[M, N] = [M, N]° + [M, N]*.

For a continuous semimartingale X = Xy + M+ A, we have [X] = [M] since [A] = 0.
For a general case we put

(X]e = [XJe+ ) (4Xs)*.

O<s<t

For two semimartingales X, Y, we put

MJ?=%M+H—M—H)

as above. An important property for [X, Y] is d[X, Y] = 0 if X is a continuous semi-
martingale and Y is a continuous process of finite variation ([194] p.62).
Let P(M); be a predictable (previsible) process

P(M)¢ = E[[M].|1F¢-] .

It is called previsible projection of [M]. The dual previsible projection (M) of [M] is
similarly defined. See [194] Section VI1.21. {M); is simply called the angle barcket pro-
cess of M. If M is continuous then [M] and (M) coincide with each other.

By the above definition (2.3) and since I(h)(t) — J(; h2(s)d[M]s, I(g)%(t) -

fé g%(s)d[M]s are uniformly integrable martingales, we have

t
HMLR@L=JM9ﬂ9ﬂMh
0

(cf. [47] Chapter 3).
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In summary, we have the following properties of the stochastic integral I(h), h €
L?(Q x [0, +00), P x d[M]s).

Properties of the stochastic integral I(h):
1. For constants a, fand h, g € L2(Q x [0, +00), P x d[M]s),

I(ah + Bg) = al(h) + BI(g), a.e.

2. ForO<tij<th<t3

j}h(t) dM; = Th(t) dM; + Th(t) dM; .

t ty ty

3. tw— I(h)(t) is an adapted process.
. I(h)(0) =0a.s.
5. If M; = W(¢t) or M; = Ny, then t — I(h) is a martingale, and hence

E[I(h)(t)] =0, t>0.

t t
U] = th(s)lzd[M]s , (), 1)) = jh(s)g(s)d[M]s .
0 0

Below, up to the end of this subsection, (F;) denotes the filtration generated by the
Lévy process z(t) satisfying the usual conditions.

We can introduce the integral with respect to N in terms of the z variable (Pois-
son random measure) by introducing that by elementary Poisson measures. See [127]
Section 2.1. Then, for

I(p) = j(p(z)N((s, tlxdz), I@)= Jl/)(Z)N((S, t] xdz),

we have

(@), [y = (¢ - 5) j PDP@u(d2) .

Here, ¢ and 1) are measurable functions such that

j(|go<z)|2 + (@) P)u(dz) < +oo .

We can define an integral

t
J J h(s, 2)N(dsdz)
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by starting from simple predictable processes

h(t,z) = Zwi(z)lu,.,t,.ﬂ](t) ,

and then approximating a measurable h(t, z) such that

¢
E {J J |h(s,z)|2dsy(dz):| < +00.
0

Indeed, first we remark

; 2
E <J j lp(z)N(drdz)>

5 | = f j W2 (2)N(drdz)

~(t-s) j Y2 (@u(dz) ,

if P(z) is Fs-measurable.
For h(t, z) = Y; Yi(2)1(t,¢,,,1(t), where ); are F,-measurable, we write

¢
j j h(s, z2)N(dsdz) = Z Yi(2)(N((0, tiy1 At] x dz) = N((O, t; A t] x d2)) .
5 i

Then, by (2.5),

E [ M j h(s, 2)N(ds dz)l

This implies the L?-isometry

] Eujh(s,z)N(dsdz) :

t

2

E

t
J j h(s, z)N(dsdz)

¢
=E [J j h?(s, z)N(ds dz):| .

(2.4)

(2.5)

(2.6)

We denote by L? (N) the set of all predictable functionals h(s, z) satisfying the con-

dition (2.4). The next assertion follows by the standard argument.

Proposition 1.5. Simple predictable processes h with the property (2.4) are dense in

L2(N).

By this proposition, any element h in L?(N) can be approximated by the stochastic

integral of the form (2.6) in L2(N).

We have the following martingale representation theorem due to Kunita—Wata-
nabe. This result can be compared in the world of L?>-martingales with the Lévy-Itd

decomposition theorem (Proposition 1.1) in the world of Lévy processes.
We assume m = 1 for simplicity.
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Theorem 1.2 (Kunita—Watanabe representation theorem, cf. [121, 192] Theorem IV.43).
Let M; be a locally square integrable martingale defined on (Q, F, P). Then, there exist
predictable, square integrable processes ¢(t), Y(t, z) such that

t t

M = Mg + j P(s)dW(s) + j j U(t, z)dN(dsdz) .

0 0
In the above assertion, we take F = (F¢)¢et, Where F; is the minimal sub o-field on
which W(s) and N((0, s] x E), s < t are measurable for each E c R™ \ {0}.

1t6’s formula for the Lévy process (Proposition 1.3) can be extended to the follow-

ing form.

Theorem 1.3 (It6’s formula (1), [192] Theorems 11.32, 11.33).
1. Let X(t) be a real-valued semimartingale and let f be a C? function on R. Then,
f(X(t)) is a semimartingale, and it holds that

t

fX(®) = f(X(0)) + Jf’(X(S )dX(s) + %Jf"(X(S )X, X]g

0 0

+ Y [fX(s) - fiX(s-)) - f' (X(s)AX(s)] .

O<s<t

2. LetX(t) = (XX(t), ..., X4(t)) be a d-dimensional semimartingale, and letf : R? - R
be a function in C2(R?). Then,

Y(t) = fX(1))

is a semimartingale, and the following formula holds:

d t
d )
Y(t) - Y(0) = z j )j: (X(s=))dX'(s)
0

=1 J

1 d
t3 2
i,j=1

t
Jaa ydix', X'
0

d
0 .
+ ) [f(X(S)) - fX(s-) - ) a—)’;(X(s—))AX%s)
O<s<t i=1 1

It gives theoretically a good perspective if we rewrite the formula in the following form,
in view of [X, X] = [X, X]¢ + [X, X]9. We give it in one dimensional case (1):

N~

t t
fX(1) = f(X(0)) + Jf'(X(S—))dX(S) + Jf"(X(S—))d[X, Xls
0 0

! 1 1"
+ Y IfX(s) - fiX(s-) - f(X(s))AX(s) - 5f (X(s-))(AX(s))*] .

O<s<t
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1.2.3 Doléans’ exponential and Girsanov transformation

The above formula can be regarded as an equation with respect to the process X(t).
Such an equation is called a stochastic differential equation (SDE).
A typical example is Doléans—Dade (local martingale) exponential to the Doléans’

equation
t

Xe=1+ JXS_dMS ,
0

where M is a local martingale, My = 0. The solution is
1
EM); = exp {M; - S [M, M)} Toce(1 + AM,) exp(-AM) .

If M is a locally square integrable martingale such that AM; > —1 and if it holds

that
E {exp(%(MC)TJr [Zf(AMﬁ])} < 400, 2.7)

t<T

then £(M); is a martingale for t € T. Here, f(x) = (1 + x)log(1 + x) — x and ¢ denotes
the compensator of ¢. This result is due to Lépingle and Mémin [151] Theorem IIL1. In
case () t;T_;TA/M ¢)) = 0, this condition is called the Novikov condition. We remark the
use of the conditional quadratic variation in the condition.

In particular, if M; = AW(t), A € R, then

/12
EAW); = exp (AW(t) - 7t> .

Then, t — £(AW); is again a local martingale.

Girsanov transformation of measures, martingale exponential (Change of variables)
The following Girsanov transformation of the underlying probability measures plays
an essential role in the perturbation of trajectories in Section 2.1.1. We assume the
processes are real-valued (cf. [151], see also [173] Theorem 12.21, [66] p. 149).

Theorem 1.4.
1. Letf(t,z), t €T,z e R\{0} be apredictable process such that 6(t, z) < 1, and

j j {|log(1 - 6(t, 2))|* + 6(t, 2)*} dtu(dz) < +co ,
T

and let u(t), t € T be a predictable process such that IT u(t)2dt < +oo.

EBSCChost - printed on 2/10/2023 4:50 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



Basic materials for SDEs with jumps = 23

We put

t t
Zi = exp { j u(s)dwes) - % j u?(s)ds
0 0

¢
+ J’ J’ log(1 - (s, 2))N(dsdz)

+

j{(log(l -0(s, 2)) + 9(s,z))}dsy(dz)} .

Ot ©

We further assume that it holds the Lépingle—Mémin condition:

E [exp (% J u?(t)dt

T

+ j j [~ e, 2))log(1 - 6(¢, 2) + (¢, z)}dty(dz)):| <+00. (28)
T

Then, t — Z; is a martingale, and
ElZr]=1.

Hence Q(A) = E[14.Z7] defines a probability measure on (Q, F) such that Q(A) =
E[14.Z¢] for A € F;. That is,

da|
ﬁ 5, = Zt s t>0.
2. Let
Ni(dtdz) = 6(t, z)dtu(dz) + N(dtdz)
and

dWq(t) = —u(t)dt + dW(t) .

Then, N1 is a martingale counting measure with respect to Q, and W is a continuous
martingale with respect to Q.

Remark 1.2.
1. Tosee Z; is a martingale, we use the Lépingle—Mémin result above. The condition

(2.7) is implied by our assumption (2.8). We put

¢ ¢
Ut) = | u(s)dwis) - 0(s, z)N(dsdz) .
Juoans- ||
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Then, AU(t) = -6(t, z) > —1. We can show by It0’s formula with f(x) = e* that
dZs = Z,_dU(t)

with Zy = 1. Hence,
Zt = E(U)¢

by the uniqueness of the Doléans’ exponential.
If we assume a uniformity condition in ¢, that is,

lu(t) < C and |6(t,z)| < Clz|, z € supp U

for some C > 0, then Z; is a positive martingale.

2. In Section 2.1.1 below, we introduce a perturbation method using the Girsanov
transform of measures. Bismut [30] used the expression for Z; in terms of SDE
above, whereas Bass et al. [15] used the expression £(M);.

3. Under the assumption that (F;) satisfies the usual conditions, N; = N¢|;1 is not
necessarily a compensated Poisson random measure with respect to Q, and W is
not necessarily a Brownian motion with respect to Q (cf. [26] Warning 3.9.20).

Let z(t) be a one-dimensional Lévy process with the Lévy measure u(dz) : z(t) =
fé sz (dsdz) being a martingale. Here, we assume that supp u is compact. We put
0(t, z) = 1 - eXZ where a(t) is fixed below. Then,

log(1 - 6(t, 2)) + 0(t, 2) = a(t) -z + 1 — 202
=—(e"""-1-a(®)-z) .

Furthermore, we choose u(t) = 0. Then,

¢ t
Z: = exp { a(s) - zN(dsdz) - (e“(s)'z —-1-a(s) ~z) dsy(dz)}
I I

0

on F;. We see u(t) and 0(t, z) satisfy the above mentioned condition for the uniformity
for abounded a(t). Hence, putting a new measure dQ by dQ = Z;dP on J;, the process
z1(t) = jé j zN1(dsdz) is a Lévy process which is a martingale under Q.

Here, we can choose a(t) to be some deterministic function. In particular,

dL .
a(t) = d—q(h(t)) )

where L(q) denotes the Legendre transform of the Hamiltonian associated with the
process z(t):
H(p) =log E[e?*V)]

and h(t) is an element in the Sobolev space WHP(T), p > 2. This setting is used in the
Bismut perturbation in Section 2.1.1.

From now until Section 2.5, we are mainly interested in the processes which are
obtained as a solution to the SDE driven by pure jump Lévy processes, and we may not
consider those driven by Lévy processes having the diffusion part.
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1.3 It6 processes with jumps

In this section, we introduce an Itd SDE driven by a Lévy process, and processes de-
fined by it. A solution to an Itd SDE is called an Itd process.

Let z(t) be a Lévy process, R™-valued, with Lévy measure u(dz) such that the char-
acteristic function y; is given by

Yil§) = B0 = exp (~3(6.0079 + [ (€169 - 1216, 21 ) td2)

We may write

t
z(t) = (z1(t), . . ., zm(t)) = cW(t) + J J z(N(dsdz) — 1yz1<1-1(dz)ds) ,
0 R™\{0}

where N(dsdz) is a Poisson random measure on T x R™ \ {0} with mean ds x p(dz).
We denote the index of the Lévy measure u by §, that is,
B = inf{a > 0; J |z|*u(dz) < +co} .
|z|<1

We assume
1zI?u(dz) < +00 (3.1)
R™\{0}
temporarily for simplicity.
We can write the SDE in a general formulation on Q. That is, consider an SDE

t t t
X =x+ j b(X, )ds + j f(Xo)dW(s) + j j e(Xs_, 2)N(dsdz) . ()
0 0 0 R™\{0}

Here, we assume
IbO)I < K@ +IxD), If0Ol <KL +1IxD), 18(x, 2)| < K(2)(1 + |x]) ,
and
Ib(x) - b(y)l < Lix-yl,

Ifx) - f)l < Lix-yl,
lg(x,2) - gy, 2)| < L(2)Ix -yl .

Here, K, L are positive constants, and K(z), L(z) are positive functions, satisfying

{KP(2) + LP (2)}u(dz) < +o0,
R™\{0}

where p > 2. In Section 4.1, we will use the SDE of this form as a financial model.
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Theorem 1.5. Assume x is p-th integrable. Under the assumptions on b(x), f(x), g(x, z)
above, the SDE has a unique solution in LP. The solution is a semimartingale.

The proof depends on making a successive approximation (X}') of the solution, and
on estimating
E[sup [X[*! - X7|P] .
teT
We omit the detail ([127] Section 3 and [192] Theorem V.6).

To state the notion of the weak solution of (x), we prepare for the enlargement (F ;)
of (F¢), where (F¢) denotes the original filtration generated by z(t). Here, (Zﬂ) satisfies
the following properties:

1. JF;cJiforeacht

(& ;) satisfies the usual conditions

W(t) is a Brownian motion with respect to 3’;

N(dtdz) is a Poisson random measure with respect to 3’;
x is F,-measurable.

nos W

If we can find a process X; which is F ;-measurable for some (F ;) as above, such that
Xo and x have the same distribution, and that X; satisfies (+) for some Lévy process
Z(t), then it is called a weak solution. A solution X; to () is called a strong solution if it
is an adapted process (to (F;)) and if it is represented as a functional of the integrator
z(t)and x: X = F(x, z(.)).

A strong solution is a weak solution. Few results are known for the existence of
strong solutions in case that z(t) is a general semimartingale. For the uniqueness of
the solution (in the strong and weak senses), see [192] Theorems V.6, V.7.

Definition 1.2. We say the pathwise uniqueness of the solution to (*) holds if for any
two solutions X', X? to (+) defined on the same probability space and driven by (the
same Brownian motion and) the same Poisson random measure N(dtdz), it holds that

P(sup [X} - X7|=0)=1.
teT
There are several conditions known so as that the pathwise uniqueness holds for the
solution to the SDE (x). See [13, 80]. See also [210].

Proposition 1.6 (Yamada-Watanabe type theorem).

1.  If the equation (x) has a weak solution and the pathwise uniqueness holds, then it
has a strong solution.

2. If the equation (*) has two solutions X', X? on two distinct probability spaces
(Q1, F1, PY), i = 1, 2, then there exist a probability space (Q, F, P) and two adapted
processes X}, X? defined on (Q, F, P) such that the law of X! coincides with that of
X,i=1,2and X', i =1, 2 satisfy (») on (Q, F, P).
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For the proof of this result, see [202] Theorem 137. The proofin [202] is rather complex.
In case that the SDE is driven only by the Wiener process, the result is called “Barlow’s
theorem”. See [192] Exercise IV.40 (p. 246 in Second edition).

In what follows, we consider, in particular, the following SDE on the Poisson space
with values in R? of It type

t

xe(x) = x + J b(xs(x))ds + z Pxs-(x), 4z(s)) ,  Xo(x) =x. (3.2

0 s<t

Here, Y ¢ denotes the compensated sum, that is,

t

Zy(x Az(s)) = lim Y, Az(s)) —st j Y(x, 2)pu(dz)

s<t s<t,|Az(s)|=€ 0 lzze

(cf. [106] Chapter II). Functions (x,z) : R x R" — R?and b(x) : RY — R? are
C*-functions whose derivatives of all orders are bounded, satisfying y(x, 0) = 0.
Equivalently, we may write x¢(x) as

¢
x¢(x) = jb (xs(x))ds + j j Y(xs-(x), 2)N(ds dz)
0 |zj<1

t
+j j YxXs-(x), 2N(ds dz) , (3.3)
0

|1z]>1

where N denotes the compensated Poisson random measure: N(dsdz) = N(dsdz) —
dsu(dz), b’ (x) = b(x)- JIZIz 1 y(x, z)u(dz), where the integrability of y(x, z) with respect
to 11721} dp(2) is assumed. We abandon the restriction (3.1) hereafter, and resume con-
dition (1.2).

We assume that the function yis the following form:

_ 0y -
px, z) = E(X’ 0)z + P(x, 2) (G.4)

for some y(x, z) = o(|z]) as z — 0. We assume further
(A.0) that there exists some O < 8 < 2 and positive C;, C, such thatasp — 0,

C1p*PI < I zzTu(dz) < Cop*7FI.

lzl<p
(A.1)
(@) Foranyp > 2andany k € N9\ {0},
ak
le(x,Z)Ipu(dZ) < C(1L+x)P, Supj o k(x z) u(dZ) <+00.
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(b)  There exists 6 > 0 such that
T
inf 42T <a—y(x, 0)) <a—y(x, 0)) z;x e R4 > 6|z
0z 0z

on R™,
(A.2) We assume, for some C > 0,

inf >C.

xeR4,zesupp p

det <I + a—y(x, Z))
ox

Due to the previous result (Theorem 1.5), the SDE (3.3) has a unique solution x;(x). Fur-
thermore, the condition (A.2) guarantees the existence of the flow ¢s¢ (x)(w) : R - R4,
Xs(x) — x¢(x) of diffeomorphisms forall 0 < s < t.

Here, we say ¢s¢(x)(w) : RT — RY, x5(x) — x(x) is a flow of diffeomorphisms if it
is a bijection a.s. for which ¢g(x) and its inverse are smooth diffeomorphisms a.s. for
each s < t. We write ¢(x) of x(x) if s = 0.

We remark that at the jump time ¢ = T of x:(x),

Xt (X) = Xr_(X) + Ax7(X) = X7_(X) + YP(x7-(X), Az(T)) .
Hence, 5 5 5
a(Pr(X) = <I+ a_XY(Xr—(X),AZ(T))) (a—xfpr_(X)) ,

and this implies

d -1 d -1 d
(awx)) =<a<pr_<x)) (uay(xf_(x),z\z(r)))

This describes the movements of the coordinate system induced by x — x;(x). We ob-
serve that in order for the map x — @¢(x) to be a diffeomorphism a.s., it is necessary
thatx — x+7y(x, z) is a diffeomorphism for each z € supp u. Otherwise, we cannot ad-
equately connect the tangent space at x,_(x) to that at x(x) = x¢(x) + p(x;-(x), Az(1)).
To this end, we assume (4.2).

-1

LP-estimates
The LP-estimate for the solution of (3.2) is not easy in general. Here, we provide a sim-
ple one. Suppose x¢(x) is given by

¢
x¢(X) = x + bt + J’ jy(z)N(drdz) .
0

Under the integrability of y(z) with respect to 1yz>1;.du(z), we have the following L?
estimate for x¢(x).
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Proposition 1.7 (cf. [127] Corollary 2.12). For p > 2, we have

E [ sup Ixs(x)lp] < Cp{lxlp + |b|Pt

0<s<t
/2

+ t(j Iy(Z)Izy(dZ)>p + tj Iy(Z)Ipy(dZ)} ,

for some Cy, > 0.

Jacobian

In order to inquire the flow property of x.(x), we need the derivative Vx;(x) = ‘”‘f £ (x)
of x¢(x). It is known that under the conditions (4.0-A.2), the derivative satisfles the
following linear equation:

Proposition 1.8. Under the assumptions (A.0-A.2), the derivative Vx(x) satisfies the
following SDE:

¢
Vxi(x) =T+ j Vb' (x5_(x))dsVxs_(x)
0

Vy(xs_(x) 2)N(dsdz)Vxs_(x)

+
o_iw
m —

+

O'——s~

J Vp(xs-(x), z)N(dsdz)Vxs_(x) . (3.5)
1z]>1

Proof. We skip the proof for the differentiability since it is considerably long ([127]
Theorem 3.3). The SDE for which Vx;(x) should satisfy is given as below.
Let e be a unit vector in R4, and let

X'(t) = %(xt(x +e) - xi(x)), O<|A<1.

Then, X'(t) satisfies the following SDE

¢ ¢ ¢
X'(t)=e+ | bi(s)ds + Yi(s, 2)N(dsdz) + Yi(s, 2)N(dsdz)
Jpiase] ] I

|z|<1 |z|>1

where

1 ! !
X(b (xs-(x + Ae)) - b’ (xs-(x))) ,

, 1
yi(s, 2) = X(Y(Xs—(x +e), z) - Y(xs-(x), 2)) .

bj(s) =
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We let A — 0. Then, by the chain rule,
}irr(l) b} (s) = Vb' (xs-(x)) - Vxs_(x)a.s. ,

and
}irr(l) Yi(s, 2) = Vp(xs—(x), 2) - Vxs—(x)a.s.

for each s. Hence, we have

¢
Vxe(x) =1+ JVb’(xS_(x))dsts_(x)
0

Vy(xs_(x), 2)N(dsdz)Vxs_(x)

+
ol_‘n*
|/\%

'—a

t

+ j Vy(xs_(x), z)N(dsdz)Vxs_(x) . O
0

The equation (3.5) is fundamental in considering the stochastic quadratic form (an

analogue of Malliavin matrix for the jump process). See Chapter 2.

The derivative Vx:(x) depends on the choice of e € R?, and is indeed a direc-
tional derivative. We denote the Jacobian matrix by the same symbol, namely, Vx;(x) =
Viex¢(x).

Let m = d. Here is an expression of det Vx.(x) which will be useful in the analytic

(volume) estimates.
Let

|z|>

d 9
Z— H(xs(x))ds

[det(I+Vy(xS x), 2)) - z ai (xs-(x), 2) | dsu(dz)

i=1

¢
+ J J [det(I + Vy(xs-(x), 2)) — 1] N(ds, dz) ,
0

1z|>1

t
M, = j j [det(I + Vy(xs(x), 2)) - 1] N(dsdz) .
0 |z|<1

We then have

Lemma 1.1.
det(Vx¢(x)) = expA¢ - E(M); . (3.6)
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Proof. By It0’s formula applied to det «Vx,(x),

—b'l(xs(x)) det(Vxs(x))ds
oX;

i=1 !

¢
det(Vx:(x)) =1+ J
0

¢
+ J j [ det(I + VY(xs-(X), 2))VXs—(x))
0 |zj<1
— det(Vxs_(x))|N(dsdz)
¢
+ j j [det((I + Vy(xs-(x), 2))VXs_ (X))
0
- det(Vxs_(x))]N(dsdz)

t
+j
0

d
o .
=2 50 s-(3), 2) det(Vxs- ()| dsp(dz)
i=1 !

j [ det((I + Vy(xs-(x), 2))VXs-(x)) — det(Vxs_(x))
<1

|z

t
=1+ jdet(sz_(x))d(AS + Ms) .
0

Here we used the formula
% det(A + tBA)|¢—o = tr Bdet A

in the right-hand side. Hence, we apply the Doléans’ exponential formula and Gir-
sanov’s theorem (Theorem 1.4) from Section 1.2.3. In view of [A, M] = 0, [A+M] = [M],
we have the assertion. O

Using (3.6), it is possible to show the boundedness of E[sup,.t det(Vx,(x))P] by a con-
stant which depends on p > 1 and the coefficients of the SDE (3.2). (cf. [224] Lemmas
3.1,3.2)

Inverse flow

Using the Jacobian Vx(x), we can show the existence of the inverse flow xt‘l(x) as
a representation of the flow property. By the inverse mapping theorem, this is due to
the (local) invertibility of the Jacobian Vx;(x).
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32 — Lévy processes and It6 calculus

Associated to the above mentioned process Vx;(x) = U(t):

¢ ¢
U(t) = JVb'(xs_(x))U(s)ds + j j Vy(xs-(x), 2)U(s)N (dsdz)
0

0 |z|<1

¢
+j J Vy(xs-(x), 2)U(s)N(dsdz) ,
0

|z|>1

we introduce
V(t) = -Ut) + [U, UIf + Y (I+AU(s))  (AU(s))* .
O<s<t
Then, ¥; = (Vx¢(x))~! follows the SDE, satisfying

t
VYe=1+ j Ys_dV(s)
0

([192] Theorem V. 63).
More precisely, this reads for x;(x), solving (3.3) as

(Vxe ()t

t
I- j(sz<x))-1Vb’(xs(s))ds
0
t
+ j (Vx5 () Vo (xs(0)) ™! = I + Vyp(xs(x), 2)}dsp(dz)
0|z

lzI<1

IN

(Vxs- (X)) MV (xs-(x)) ™! - 1N (dsdz)

+
O~
A ——

|zl

(VXs- () {Ve,(xs_(x)) ™" - IN(dsdz) .

1
1z]>1

t
+J’
0

Here, ¢, (x) = x + y(x, 2).

EBSCChost - printed on 2/10/2023 4:50 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



EBSCChost -

2 Perturbations and properties of the probability law

Let me have men about me that are fat; Sleek-headed men and such as sleep o’ nights: Yond
Cassius has a lean and hungry look; He thinks too much: such men are dangerous.
W. Shakespeare, Julius Caesar, Act 1, Scene 2

In this chapter, we briefly sketch the perturbation methods in the Poisson space and
their applications. Namely, we relate Lévy processes (and SDEs) to perturbations for
functionals on the Poisson space. The perturbation induces the integration-by-parts
formula which is an essential tool leading to the existence of the smooth density of
the probability law.

In Section 2.1, we reflect several types of perturbations on the Poisson space.
In Sections 2.2, 2.3, granting the existence of the density, we present the short time
asymptotics from both above and below the density function p¢(x, y) obtained as
a result of the integration-by-parts calculation, which uses a perturbation method
given in Section 2.1. We can observe distinct differences in the short time bounds of
densities from those obtained for diffusion processes with analytic methods.

The existence of the smooth density is closely related to the behaviour of the
Fourier transform p(v) as |[v| — oo of the density function y — p¢(x, y). We will in-
quire into the existence and behaviour of p;(x, y) more precisely in Sections 3.3, 3.6,
relating to the SDE with jumps.

In Section 2.4, we give a summary on the short time asymptotics of the density
functions of various types. Section 2.5 will be devoted to the auxiliary topics concern-
ing the absolute continuity of the infinitely divisible laws and the characterisation of
the “support” of the probability laws in the path space.

2.1 Integration-by-parts on Poisson space

We are going to inquire into the details on the absolute continuity and on the smooth-
ness of the transition density for the functionals given as solutions to the SDE of jump-
diffusion type, by using Malliavin calculus for processes with jumps. In Malliavin cal-
culus, we make perturbations of the trajectories of processes with respect to the jump
times or to the jump size and directions.

Our general aim is to show the integration-by-parts formula for a certain d-
dimensional Poisson functional F. The formula is described as follows. For any
smooth random variable G, there exists a certain LP-random variable determined
from F and G, denoted by H(F, G), such that the equality

E[0¢(F)G] = E[¢p(F)H(F, G)] 1.1
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holds for any smooth function ¢p. Formula (1.1) is called an integration-by-parts for-
mula. We will show in this section that the formula holds for “non-degenerate” Pois-
son functionals in various cases.

The formula can be applied to proving the existence of the smooth density of the
law of F. Indeed, let pr(dx) denote the law of F. Its Fourier transform pr(v) is writ-
ten by E[¢, (F)], where ¢, (x) = exp(-i(x, v)). We apply the formula above k times by
setting ¢ = ¢, and G = 1, and thus

E[o¥ ¢, (F)] = E[0¥ ¢, (F)H(F, 1)]
= ... = El¢y(F)H(F, H(F,--- , H(F, 1))] .

Since |¢p,(F)| < 1 holds for all v € R4, the above formula implies that there exists
a positive constant Cy such that

|E[0X ¢y (F)]| < C, Vv 1.2)

for each multi-index k.
Since ok, = (-i)klvk¢,,, we have

VKIIPF(V)I < Cky WV

for each k, where pr(v) = E[¢p,(F)]. Hence,

LN ol
<E) Je i"'v'pr(v)dv
is well-defined for I such that || < |k| — d ([194] Lemma (38.52)).

Then, the theory of the Fourier transform tells us that pr(dx) has a density pg(x)
and the above integral is equal to O pr(x). This result is closely related to analysis and
the classical potential theory.

The original Malliavin calculus for diffusion processes by Malliavin ([160]) began
with this observation, and the aim was to derive the integration-by-parts formula on
a probability space. The aim of early works by Bismut ([29, 30]) for jump processes was
also the same. In this perspective, one of the most important subjects was to decide
which kind of perturbation on the trajectories should be chosen in order to derive the
integration-by-parts formula.

Malliavin’s approach uses the Malliavin operator L and makes a formalism for the
integration-by-parts. It has succeeded in the analysis on the Wiener space, and sig-
nified the importance of the integration-by-parts formula. Bismut’s approach, on the
other hand, uses the perturbation of trajectories by making use of the derivative op-
erator D, and then makes use of the Girsanov transform of the underlying probability
measures to show the integration-by-parts formula. We adopt Bismut’s approach in
this section.

Bismut’s approach was originally developed on the Poisson space under the con-
dition that the Lévy measure u of the base Poisson random measure has a smooth
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density function. Accordingly, along the idea of the Bismut’s approach, the condition
has been relaxed by Picard to accept singular Lévy measures where we use the differ-
ence operator. See Section 3.3 for Picard’s approach.

Malliavin’s approach can adopt general functionals on the Wiener (and on the
Poisson) space. On the other hand, Bismut’s approach, in the formulation treated in
this book, can only adopt those Poisson functionals which appear as solutions to SDEs
with jumps. For an interpretation of the use of Malliavin’s approach to the solutions
of SDEs with jumps on the Poisson space, see [25] Section 10.

Remark 2.1. Bismut also considered the approach regarding the Poisson process as
a boundary process of a diffusion process in a higher dimensional space, that is, the
method of subordination ([32] and [144]). The calculation is a bit messy. We will not
adopt this approach.

2.1.1 Bismut’s method

In this subsection, we assume the Lévy measure y has a density with respect to the
Lebesgue measure. The Bismut method is the way to make a variation of the intensity,
i.e. the density of the Lévy measure. We can use the Girsanov transform of the under-
lying probability measures of the driving Lévy processes to make perturbations on the
jump size and the direction, leading to the integration by parts formula. This method
has been initiated by Bismut [30], and has been developed by Bichteler et al. [25, 27]
and Bass [15]. Although the idea is simple, the calculation using this method is a bit
complicated.

We denote by Q; the set of continuous functions from T to R™, by F; the smallest
o-field associated to W’s in 21, and by P; the probability of W for which W(0) = 0 and
W(t) := w(t) behaves as a standard Wiener process (Brownian motion). The triplet
(Q1, F1, Py) is called a Wiener space.

Let Q5 be the set of all nonnegative integer-valued measures on U = T x (R™ \ {0})
such that w(T x {0}) = 0, w({u}) < 1 for all u, and that w(4) < +oo if N(A) < +co,
A € U. Here, u = (t, z) denotes a generic element of U, U denotes the Borel o-field on
U, and N(dtdz) = dtu(dz), where p is a Lévy measure. Let F, be the smallest o-field
of Q, with respect to which w(A) € F,, A € U. Let P, be a probability measure on
(Q,, F>) such that N(dtdz) := w(dtdz) is a Poisson random measure with intensity
measure N(dtdz). The space (Q,, F>, P,) is called the Poisson space.

Given a € (0, 2), let zj(t) be the independent, symmetric jump processes on R
such that z;(0) = 0, j = 1, ..., m. We assume they have the same law, and that they
have the infinitesimal generator

Lo(x) = J [p(x +2) - (p(x)]lzl‘l‘“dz, xeR, o e CFR).
R\{0}
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36 —— Perturbations and properties of the probability law

We put g(2)dz = |z|"17%dz, that is, u(dz) = g(z)dz is the Lévy measure of zj(t) having
the law of a symmetric a-stable process.

The assumption for the Lévy measure u to be the a-stable type plays an essential
role in this method. See the proof of Lemma 2.2 below.

[A] Integration by parts of order 1

(Step 1)
The symmetric Lévy process zj(s) has a Poisson random measure representation

zj(s) = 6[ ijj(dsdz) ,

where Nj(dsdz) is the compensated Poisson random measure on R associated to z;(s),
with the mean measure
ds x g(z)dz . (1.3)

Here,
g(z)dz = |z| 1 %dz, ae€(0,2).

We denote by P the law of zj(s), j=1,--- , m.
Let the process xs(x) be given by the following linear SDE, that is,

dxs(x) = XL Xj(xs-(0) dzj(s) + Xo(xs(x))ds
xo(x) =x.

Here, the X;(x)s denote d-dimensional smooth vector fields on R4 whose derivatives
of all orders are bounded, j = 0, 1, .. ., m, satisfying

Span(Xl, ooy Xm) = Tx(Rd)

at each point x € R,
We assume assumptions (4.0) to (A.2) in Section 1.3 for x;(x), with b(x) = Xo(x)
and y(x, z) = Zj"il Xj(x)z;. In particular, (A.2) takes the following form: for some C > 0,

inf
xeR4,zesupp u

0X;(x
i )Z]’> >C, j=1,...,m.

ox

det <I +

We denote by ¢ the mapping x — xs(x).

We use the Girsanov transform of measures, see Section 1.2.3 above (cf. [25] Sec-
tion 6). Let v = (v, --- , viy) be a bounded predictable process on [0, +0c0) to R™. We
consider the perturbation

9?:2,-n—>z,~+/tv(z,-)v,~, AeR,j=1,...,m.

EBSCChost - printed on 2/10/2023 4:50 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



EBSCChost -

Integration-by-parts on Poisson space = 37

Here, v(.) is a C2-function such that
v(zj) ~ z]2

for zj small, j = 1, ..., m. We consider the above transformation for |A| as sufficiently
small.
Let N;‘(dsdz) be the Poisson random measure defined by

t t
J J(;[J(Z)N"(dsdz J jd)(@"(z Nj(dsdz), ¢eCPR), AcR.  (L4)
0 0

It is a Poisson random measure W1th respect to P.

We set A?(z) 1+A/ (z)v,} S)), and

t

m t
7} = exp [Z «“ jlogA;‘(z,-)N,-(dsdz,-) - jds J(A}(zj) - 1)g(Zj)de} l . (5)
0

j=1 0

We will apply m-dimensional version of Theorem 1.4 in Section 1.2. It implies that Zf‘
is a martingale with mean 1. We define a probability measure P! by PA(A) = E[Z}14],
A € ;. Then, due to (1.5), the compensator of Nj(dsdz;) with respect to P is
dsA]{t (zj)g(zj)dz;.

Furthermore, we can compute the compensator of N}f‘(dsdz,-) with respect to P* as
follows. We have

{ t
B “ j ¢(Zj)N]4(dsdz,-):| - gP lJ’ J' ¢(9j(z}-))N,~(dsdz,~)}
0 0
= fJ’ ¢(9j(Zj))Af(Zj)g(z,-)dzj X (1.6)

Setting y; = Gf(zj), we find by the definition that the above integral is equal to
t [ ¢(yj)g(y;)dy;. Consequently, the compensator of N;t(dstj) with respect to PA
is equal to dsg(zj)dz;. Hence, as Poisson random measures, the law of N;‘(dsdzj)
with respect to P! coincides with that of Nj(dsdz;) with respect to P. Consider the
perturbed process x; A(x) of xs(x) defined by

{dxé(x) =Y Xj(Xﬁ—(X))dZ?(S) + Xo(x}(0)ds 1.7)

xé(x) =x.

Here, z"(t) Io sz"(dsdz) Then, EP[f(x;(x))] = EP'[f(x}(0)] = EP[f(x}(x))Z}], and
we have 0 = EP [f(xt (x) )ZA] fe C°°(Rd) A result of the differentiability of ODE can
be applied jump by jump to show that for || small, we have

0 ax}‘(x) o
aN”‘t"‘) Dy fix}(x (;A , feCPRY.
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38 — Perturbations and properties of the probability law

We would like to differentiate E[f o x?(x)] at A = 0. To this end, we introduce the
following notion.

Definition 2.1. A family (GMpea of processes is called F-differentiable at O with deriva-
tive oG if

1. supser |G € NpeooL? forall A € A and

2. “ SUDyet |G’t -G°-90G- A' “LP =o0(A))asA - Oforallp > 1.

Lemma 2.1.
1. The family ()dt (x)) is F-differentiable at A = 0.
2. The family (Z?) is F-differentiable at A = 0.

Proof. (i) By the assumption that Xo(x), Xj(x), j = 1, ..., m are smooth vector-valued
functions whose derivatives of all orders are bounded, the assumption (A’-2) in [25]
Section 6-a is met with b(x) = Xo(x), c(x, z) = Xj(x)zj, j = 1, . .., m. We use the differ-
entiability result ([25] Theorem 6-24) to assert that x? (x) is F-differentiable at O.

(ii) As noted in Section 1.2, Zﬁ is the solution of the SDE

dz} = ﬁ Jz{‘_ (1-4}) @N;(dtdz) .
j=1

The jump coefficient y(x, z) = x(1 - A]’.‘)(z) and the Lévy measure p(dz) = g(z)dz sat-
isfy the conditions (A.0-A.2) in Section 1.3. Hence, we have the L?-estimate (Proposi-
tion 1.7) for Z} for A € (-1, 1). By applying [25] Theorem 6-24 again, we see that (Z) is
F-differentiable at A = 0. O
As G* = xﬁ (x) is F-differentiable, we have by (ii) for 0G

A_ GO

A

sup -0G =0(1) asdA—O0.

teT

Lp

The first term on the left-hand side should be finite for all A € A by (i), and oG is
uniformly integrable with respect to A in a neighbourhood of A = 0. We write

1 ax?(x)

(= AeA,

and put H; = Hfl 1=0 hereafter. We give an explicit form of H; later.

(Step 2)
We can take differentiation % under the expectation on both sides of the equation

EP[f0x (0)] = EP' [f ()] = EP[fc} (x)) 2]

to have 5
EP[Dyf(x¢(x)) - H] = —EP[f(Xt(X))ﬁZ?h:O] : 1.8)
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Here, on the right-hand side of (1.8), from (1.5), we obtain

m t
ZA|A o= | [ TR dvist )V’V( V) Ny (dsdz) - dsgzpdz] . (19)
j=1 0

Here,

t
J j 8(z)) [Nj(dsdz)) - dsg(z))dz]

2 , g'(Azj(s))
= szg vj -V (Az;(s)) + v - v(Azj(s))g(Tj’(s))

We write R = aAZ [1=0 below.
Here, we have

Lemma 2.2. With a suitable choice of v fixed later,
|H'|eL?, p=1,t>0. (1.10)

This lemma is proved at the end of this subsection.

With the choice of v; below (given in the proof of Lemma 2.2 below), we can regard
H, as a linear mapping from R9 to R? which is non-degenerate a.s. See (1.24) below. By
the inverse mapping theorem, we can guarantee the existence and the differentiability
of the inverse of H’l for |A| as small, which we denote by H}l -1, H?’_l = [H?]‘l.

(Step 3)

We carry out the integration-by-parts procedure for Fﬁ (x) = flx} (x))H}l ~1 as follows.
Recall that we have E [F?(x)] =FE [F?(x) . Zﬁ]. Taking the F-derivation 2 31l1=0 for both
sides yields

0 -
= E[Dxf(x¢(x))H; " H] + E f(Xt(X))aH?’ Ylazo

+ E[f(x¢(x))H; -Ry] . (1.11)
Here, ;AHA 1 1s deflned bV(aA i ane , ey = trace [e — (= H’1 "1(MH" e )H/l =1 ,e)l,
e € R4, where 2 siH 1s the second F-derivative of x; (x) defined as in [25] Theorem 6-
44, As H* is F—dlfferentlable atA = 0, we put DH; = & H}|r-0. Then S H o =

~-H;'DHH[!.

This yields the integration-by-parts formula
[Dyf(xe(x))] = ELf(xe ()] (112)
where

# = H'DH.H;' - H; 'R, . 1.13)
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Lastly, we compute H; ' DHH;'. By the argument similar to that in [29] p. 477, we
have

DH: =) o; {Z(go;-lxj)(x)v’(Azj<u))v,~<s)v(Az,~<u))v,~(s)}

j=1 s<t
- z o} {Z M;l)(t, S)V(Az; (s))} (say). (1.14)
j=1 s<t
Here,
Y vidziMVt, )| eLP, p=1, (1.15)
s<t
j =1,---,m.
Combining (1.10), (1.15) (t = 1)
E[Dxf(x1(0)] = E[f(Xl(X))J{(ll)] . (1.16)

This leads our assertion of order 1.

[B] Higher order formulae and smoothness of the density

We can repeat the above argument to obtain the integration-by-parts formulae for
higher orders by a direct application of the above method. Instead of describing the
detail, we will repeat the argument in [A] in a general setting, and paraphrase the
argument mentioned in the introduction to Section 2.1.

Let g(w>) be a functional on (Q,, ¥5, P,), and put

G° = g(N(dudz)), G' = g(NMdudz)) for A+0. (1.17)

Theorem 2.1. Suppose that the family (GA)AE(—l,l) is F-differentiable at A = 0. Then, we
have an integration-by-parts formula

E[Dyf(F)G°] = E[f(F)}(F, G°)] (1.18)
for any smooth function f. Here,
H(F, G°) = (H{'DHH;* - H;'R;) G° - H; 3G, (1.19)

A
where 0G = 95| 1.

Proof. We put & = f(F}).H"! with FA = x}(x). Using Girsanov’s theorem (Theo-

rem 1.4), we have
E[®°G°] = E[®"Z;:G"], (1.20)

where Z{‘ is given by (1.5).
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We take A = O after derivating the two sides, and obtain
0= EIDSPH HiG) + E [fP) 2 HY 1o
+ E[f(F)H;'R(G°] + E [f(F)H;l :—AGMA:O]
using (1.8), (1.9).

This leads to the integration-by-parts formula (1.18) with

0 -1 _ 4 0
H(F, GO)=—<ﬁHt |A:O+Ht1Rt> GO_HtlﬁGAh:o- O
The formula (1.16) is obtained from this theorem by putting G = 1.
If we apply the above result with G° = H(F, 1) and G* = H(F?, 1) for A # 0, then
the family (G*)¢(-1,1) is F-differentiable at A = 0 by (1.10). This leads to the second
order formula

E[Df(F)] = E[Dxf(F)}(F, 1)] = E[f(F)H(F, H(F, 1))] .

Repeating this argument, we obtain the integration-by-parts formulae of higher
orders. We then can prove the smoothness of the density pr(x) as explained in the
introduction to Section 2.1.

Proof of Lemma 2.2

Proof. Part (i) We begin by computing H{‘ = aa_);ﬁ atA=0.
We recall the SDE (1.7)
m
dG" =) X;(G (x)dz] (t) + Xo(GY)dt, (1.7)

j=1

where z?(t) = j(; j ZN;‘(dsdz). Recalling the definition of 19]’.1 (zj) = zj + Av(zj)vj, we take
differentiation with respect to A of both sides of (1.7), and put A = 0. Then, H; = H ? =
0G is obtained as the solution of the following equation, that is,

m (& ox;
H=Y {Z (5206)) Hedzi) + X Kixswiomaz, (s))}
j=1 Usst s<t

¢
+ j %(xs_)Hs_ds (1.21)
0x
0

(cf. [25] Theorem 6-24).
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42 — Perturbations and properties of the probability law

Then, H; is given according to the method of variation of constants, similar to the
Duhamel’s formula ef4+B) = etA(1 + j(f e~sABesA+B)ds) with B corresponding to the
second term in the right-hand side of (1.21), by

{ 2 Z( Ps-(x) >_1 {i <1+ ;_XXJ(Xs—(X))Azj(s)>_1}

] =1 s<t j=1

X V(Azj () Xjr (xs-(X))vjr (s)} (1.22)

(cf. [25] (637), (7-16)).

In the above equation, qu denotes the compensated sum, and ¢; denotes the
push-forward ¢; Y(x) = (6% (0))Y(x) by ¢, thatis, ¢} = (6% (x)). Below we will also
use the following notation; ¢; ~1 denotes the pull back o} 1yx)= (%(pt(x))‘1 Y(x:—(x))
by ¢, where

a -1 a -1 m a -1
(a—xwx)) =(a—x¢t_(x)) {j_zl(na—xxj(xt_(x)m.z;(t)) }

We remark H; is the F-derivative of x} 4(x) to the direction of v;j. Notice also that we
can regard H; as a linear functional: R - R by (using the above notation)

(H:, p) = <<p2‘ >y V(AZ]‘(5))((P;_1Xj)(x)vj(5)sp> , peR. (1.23)

j=1s<t

Furthermore, the process v; may be replaced by the process ¥; with values in T, (RY),
which can be identified with the former one by the expression v; = (vj,q), q € R,
Thatis, vj = 7;(q).

We put

a -1
v = (54)5()«)) X;(xs_ ()

in what follows. Using this expression, H; defines a linear mapping from Ty (RY) to
T(R%) defined by

g Hi(q) = 9f ) Y v(Azi(s)(@s " X)) 0vi(q) - (1.24)
j=1s<t

We shall identify H; with this linear mapping.
Let K¢ = K¢(x) be the stochastic quadratic form on R? x R%:

Ki(p,q) = ) Y v(Azi(9){(p; X)), p)(q, (03 X)) -

j=1s<t
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Here, v(z) is a function such that v(z) ~ |z|? for |z| small. For 0 < s < ¢, Ks,t = K ¢(:, *)
is the bilinear form

Ksep, @) = ). ) vAzj@) (@ X))(x), p)(g, (037 X)) - (1.25)

j=1s<ust

That is, K¢ = Ko,t. Let K¢(p) be the quadratic form associated to K;(p, q):

K@) =Y Y v(Az(s)){(9:  X)X), p)?* .

j=10<s<t
We associate it with H:(q) in (1.24) with ¥;(p) above. O

Proof. Part (ii) Since sup,; I%(ps(x)l € LP for all p > 1 by [87] (1.4), we only have to
show
E[K; (Pl < C(p), veSit,

We may put t = 1, and we write K1 (v) as K;.
We shall show
P{K;" > 07"} = P{Ky < 1} = 0v,k(n™) (1.26)
as n — 0. Here, and in what follows, for n > 0 small, we write fj(n) = 0;(1) if
limy, 0 fi(n) = O uniformly in i, and fi(n) = 0;(n®) if (fi(n)/n?) = 0;(1) forallp > 1.
Furthermore, since P(supks% |(a§’;‘” 1 > %) = 0x(n®) (cf. [143] (1.11)), it is sufficient
to show, for some r > O,

P{K(k+1)p(V) = Kiy (V) < nr|?kn} = 0y,k(1) (1.27)

for (k + 1)y < 1. Here 7 = |(2&2)-1|-1y,
To this end, it is enough to show

(k+1)n
p J ds1,00) J dvg(k, n)(u) <N"?|Frn t = 0vi(1) (1.28)
kn [ul>n"

for some r; > 0, r, > 0, r; > ry suitably chosen. Here, dvs(u) = dvs(k, n)(u) is the
Lévy measure of AK; given Ty, for s > kn (i.e. ds x dvs(u) is the compensator of AK;
with respect to dP).

Indeed, since

t

Y =exp Z 1(y,00)(AKs) — J ds J (et = 1)dvs(u)

kn<s<t kn ul>nr
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is a martingale (given Fy;), we have

P { Z 1(yr,00)(AKs) = 0|§kn}

kn<s<(k+1)n
(k+1)n
<E exp[ j ds j (el - 1)dvs(u)]
kn [ul>n"
(k+1)n
: {w;[ J dsl(,lrl,oo)< J dvs(u))] > 11’2} Frn
kn lul>n"
(k+1)n
+E[exp[ J ds J (el - 1)dvs(u)]
kn lul>n"
(k+1)n
: {w;[ j dsl(,l—rl,oo)< J dvs(u))] < 11’2} gkn] .
kn lul>n"

By (1.28), the right-hand side is inferior to

(k+1)n
ox(1) +E exp[ J ds J (e‘l—l)dvs(u)]
kn lul>n"
(k+1)n

:{w; J dsl(,l—n,oo)( J dvs(u))>nr2}
kn

[ul>n"

< oyk(1) +expl(e™ - 1)(n" x n")] = 0y,k(1)
since n">™ — oo as 1 — 0. Hence, we have (1.27). O

The proof of (1.28). For each vector field X, we put the criterion processes

-1
Cr(s,X,v,k,n) = <<%> X(xs-(x)), 17> ,

d
Cr(s,v,k,m) = ) ICr(s, X, v, k, )
j=1

fors e [kn, (k+1)n]. By dv;(X, v, k, 1), we denote the Lévy measure of Cr(s, X, v, k, ).
To get (1.28), it is sufficient to show that for the given n > 0, there exist integers
n = n(n), n1 = n1(n) such that
(k+1)n
P J dslgpn,e0)(Cr(s, v, k, 1)) < ™ Fry t = 0v,k(1) . (1.29)
kn
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Indeed, consider the event {Cr(s,v, k,n) = ¢ > 0, s € [kn, (k + 1)n]}. Then, we

can show on this event
dvs(k, n)(u) > Cn~*"? (1.30)
lul>n"

for n > 0 small. Here, a > 0 is what appeared in the definition of g(z).

This is because dv;(k, n)(u) is the sum of transformed measures of gj(z) by the
mapping

Fit:z - v2){er 1 X;(0), 7).

Since v(z) is equal to |z|? in a neighbourhood of 0,

J Jdvt(k, nu) =C, Tg,-(z)dz

lzI>n" n'?

for each j. By the definition of g(z), the right-hand side is equal to
C1 j lz|1"%dz > Cp~ 72,
,lr/z

Hence, we can choose r > 0 such that Cp=®"/2 > " for n small, and thus

(k+1)n
J ds1im 00 J’ dvs(k, m)(w) | =n" (1.31)
kn [ul>n"

for some r; > 0, r, > rq on this event.

Following (1.29), the probability of the complement of this event is small (= 0¢,x(1)).
Hence, (1.28) follows.

To show (1.29), note that it is equivalent to

(k+1)n
P J’ dslim,e0)(Cr(s, v, k, ) > ™ |Fiy ¢ =1 - 0y1(1) . (1.32)
kn
This is proved similarly to [87] Section 3, and we omit the detail. O

Remark 2.2. According to [143] Section 3, the result (1.28) follows under a weaker con-
dition (URH) (cf. Section 2.5.1). If Y; = x¢(x) is a canonical process in Section 2.5.1, we
do not need the condition (4.2).

2.1.2 Picard’s method

Picard’s method is also a way to make a variation of the jump intensity, however it
is more general. That is, in the previous method for the jump size perturbation, the
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key assumption is that the Lévy measure u has a density g which is differentiable. In
case that this assumption fails (e.g. the case of the discrete Lévy measure), we have
to use a completely different method for the perturbation. Picard [181] has introduced
a method of perturbation using the difference operator based on the previous work by
Nualart-Vives [171].

We put ¢(p) = flzlsp 2|2 u(dz), p > 0, which is supposed to satisfy the order con-
dition

() =2cp® as p—0 (*)

for some ¢ > O and a € (0, 2). Here, we remark, contrary to the Bismut’s case, the Lévy
measure can be singular with respect to the Lebesgue measure.

Remark 2.3. The order condition is a non-degeneracy condition for the Lévy measure.
It is a basic requirement in the stochastic calculus for jump processes by Picard’s
method. The quantity 2 — a is called the characteristic exponent. The power a de-
scribes the order of concentration of masses or “weight” of y around a small neigh-
bourhood of the origin. Indeed, suppose we extend p to ji = a 6;0; + yonR™, a > 0,
and we interpret a > 0 as though the continuous (Wiener) component is nonempty.
Let @(p) = J|z|3p |z|21(dz). Then, the condition (x) holds for @ (p) with a = 0.

In the sequel, we will study a stochastic calculus of variations (Malliavin calculus) on
the Poisson space (Q;, ¥, P>).

We work on Q, for a moment, and will denote by w elements of Q; in place of w,.
In the sequel, we set u = (t, z) and N(du) = N(dtdz), N(du) = N(du) — N(du). Here,
u is a Lévy measure on R™ such that u({0}) = 0 and me(lzl2 A 1Du(dz) < +oo.

On the measurable space (U x Q,, U ® F3), we put the measures u*, u~ by

ut(dudw) = N(w, du)P(dw) ,
u (dudw) = N(w, du)P(dw) .
Let |ju| =p* +u~.
Next, we shall introduce the difference operator D, u € U, acting on the Poisson

space as follows.
Foreachu = (t,z) = (t,z1,...,2m) € U,wedefineamap ¢ : Q, — Q, by

e w(E) = w(En{u}),
ands{; : .Qz - .Qz by
et w(E) = w(E N {u}) + 1p(u) .

Here, w(E) denotes de value of the random measure on the set E. We write £ w = woed,
respectively. These are extended to Q by setting e} (w1, w) = (w1, €L w).
We observe

if u; #u, then 831 0832 = sgi oegi, 01,0, € {+, -}
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and

831 0822 = 8213 91; 92 € {+s _} .

It holds €,w = w a.s. P, for N-almost all u since w({u}) = 0 holds for almost all
for N-almost all u. Also, we have £};w = w a.s. P, for N-almost all u.

In what follows, we denote a random field indexed by u € U by Z,,. LetJ c U x T,
be the sub o-field generated by the set AXE, A € U, E € F4c. Here Fp for B € U denotes
the o-field on Q, generated by N(C), C c B.

We remark that for Z,, positive, Z, o€}, and Z, o€, are J-measurable by the definition
of ef.

We cite the following property of the operators €}, €.

Lemma 2.3 ([182] Corollary 1). Let Z, be a positive, u*-integrable random field. Then,
we have

E H ZuN(du)] E U Zyo s;N(du)] ,
E U ZuN(du)] - E U Zyo s;N(du)] .
The difference operators D, for a F,-measurable random variable F is defined by
DyF=Fog-F. (1.33)

Since the image of P, by &} is not absolutely continuous with respect to P,, D, is not
well-defined for a fixed u. However, it is defined by N(u) ® P,-almost surely due to
Lemma 2.3.

Since D, is a difference operator, it enjoys the property

D,(FG) = FD,G + GD,F + D,FD,G ,

assuming that the left-hand side is finite a.s. See (2.11).
The next proposition is a key to the integration-by-parts (duality) formula which
appears below.

Proposition 2.1([182] Theorem 2). Let Z.,Z2 be processes such that Z.D,Z2 and
Z2D,Z} are |ul|-integrable. Then, we have

E[ j Z;Duzgzv(du)] - E[ JZﬁDuZ}lN(du)] - E[ JDMZ}lDuZﬁN(du)] .
Proof. We see

E[ Jz},Dung(du)] =E

J Z},Dung(du)] - E[ J Z},Duzgzv(du)]

-] [ (712 Duziivaw| - B [ Zibuziscan |

=E ID,,Z},Duzﬁzv(du)]
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due to Lemma 2.3. If we interchange Z! and Z2, we have another equality. O
This leads to the following proposition.

Proposition 2.2 ([182] Corollary 5). Let F be a bounded variable, and let Z,, be a ran-
dom field which is u*-integrable. Then, we have

(1) E[ JZMDUFN(du)] =E[FJ (Zu os;)N(du)]
) E[ JZL,DMFN(du)] - E[FJ (Zyo€;) N(du)] .
In particular, if Z,, is 3-measurable,
E[ j ZL,DL,FN(du)] - E[F j ZMN(du)] .
Proof. The assertion (2) is obtained from the previous proposition and Lemma 2.3 by

putting Z} = Fand Z2 = Z,. Assertion (1) is obtained similarly by putting Z. = Z,,
Zﬁ = F and from the assertion (2). O

The adjoint & of the operator D = (D, )ycy is defined as follows.
We denote by S the set of the random fields Z, which are J-measurable, bounded,
and of compact support. Let

S = {Z e L2 (UxQ,,7,u7); thereexistZ, €8,Z, — Zin ||.||} )
Here, |.|| is given by
1Z1? = E[ J |Zu|2N(du)] N E[ (j ZuN(du)>2 ] .
For Z € 8, we define 6¢(Z) by
E[F80(2)] = E[ JZuDuFN(du)]

as an adjoint operator of D, where F is bounded and of compact support. The last
assertion of Proposition 2.1 implies that the mapping Z — j Z,N(du) can be extended
to the elements in §. Hence, we define §,(Z) as above for Z € S.

Let Z, € L2(Ux Q7,U® F>, u~) be such that | Z|| < +co. We denote by Z the set of
all such random fields Z,,. We observe

Zyo€gg €8.

1 It means it is zero outside of a set which is of finite y~ measure.
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Hence, we put
6(Z) = 60(Zy ~ &)

to extend 8, to 8. In view of the last assertion of Proposition 2.2, we are ready to define
the adjoint operator.
We set for Z € Z,
6(Z) = jzu o g, N(du) . (1.34)
U
By Proposition 2.2 and by the definition of 5, the operator satisfies the adjoint property

E[F6(2)] =E [j D FZ,N(du) (1.35)

U

for any bounded F,-measurable random variable F ([181] (1.12)).

Remark 2.4. The origin of the operators €}, €, are s;r, &7, respectively, used in [172,
182], where &; = ¢, ;, and €; = £, ;). A main point in those days was to show the du-
ality formula using the operator D; given by D(F = F o €] — F o £7. Nualart-Vives [172]
showed the duality formula (1.35) for D; by using the chaos decomposition on the Pois-
son space. We will discuss this topic in Section 3.2.

We have the Meyer’s type inequality (Theorem 3.4 in Section 3.3), and the operator &
is well-defined on the Sobolev space Dy o, for k > 0 and p > 2. This implies D,, is
closable for p > 2. (For the Sobolev space Dy, over the Wiener—Poisson space, see
Section 3.3.)

In the remaining part of this subsection, we shall briefly sketch how to derive the
integration-by-parts setting using these operators.

We introduce a linear map Qp by

QpY = —— J (DuF)Dy YN(du) . (1.36)
»(p)
A(p)
Lemma 2.4. The adjoint of Op exists and is equal to
QX =6,(DF)'X), (1.37)
where 1 1
6,(2) = —6(21 =—jZo£‘Ndu. 1.38
0(Z) ) (Z14(p)) (p(p)A() u o £;N(du) (1.38)
P

Here A(p) ={u=(t,2) € U; |z| < p}.

Let f(x) be a C2-function with bounded derivatives. We claim a modified formula of in-
tegration by parts. Concerning the difference operator D,,, we have by the mean value

theorem,
1

DL((G)) = (DuG)T J f(G + 6D, G)do (1.39)
0
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for a random variable G on the Poisson space. This implies
Opf(F) = Rpaf(F)

1
JE T R - A
+<p<p)A(LD“F‘DuF) <J{af<F+9DuF> af(F)}de>N<du). (1.40)

Here,

R, J DyF(D,F)"N(du) . (1.41)

Alp)

" 90

Use (1.40) and then take the inner product of this with S, X. Its expectation yields
the following.

Proposition 2.3 ([95] Analogue of the formula of integration by parts). For any X, we
have

E[(X, of(F))] = E[Q;(SpX)f(F)]

1
1 ~ ~ - ~
-—E|| X, D,F(D,F)T F + 0D F) - Of(F)}d6 | N(d . (142
5 spAi) (DuF) Q«aﬂ + D) - Of(F)} 9) @ || . @42

Here, S, = R;,l.
Remark 2.5. If F is a Wiener functional, then the formula is written shortly as
E[(X, of(F))] = E[Q"(R™'X)f(F)] = E[6((R"' X, DF))f(F)] . (1.43)

See [95] for details.

On the other hand, if Rp is not zero or equivalently Op is not zero, we have a re-
maining term (the last term of (1.42)). We have this term even if Z; is a simple Pois-
son process N; or its sums. However, if we take f(x) = e/ w e R?\ {0}, then
of(x) = ie!™-Yw and

ei(w,F+9DuF) _ ei(w,F) — ei(l—@)(w,F)Du(ei(w,GF))

Hence, we have an expression of the integration-by-parts for the functional
E[(X, w)ox(e'™ )] = E[(Q; + R} ,)S,X - /™ P, vw. (1.44)
Here,

. 1
1

R; Y = "o J’ (S(ei(l‘e)(W’F))(pDF(DF)TY), ei(e‘l)(W’F)w) de . (1.45)

We will continue the analysis using this method in Section 3.3.
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2.1.3 Some previous methods

Apart from perturbation methods by Bismut and Picard (stated in Sections 2.1.1, 2.1.2)
on the Poisson space, there are previously examined perturbation methods which are
intuitively more comprehensive. We will briefly recall two of them in this section.

Bismut method (2)

Apart from the Bismut method in Section 2.1.1, a very naive integration by parts for-
mula based on Bismut’s idea (perturbation on the jump size and the direction) can be
carried out. See P. Graczyk [40, 73] for more details.

In effect, Graczyk has applied this method on a nilpotent group G. Here, we adapt
his method to the case G = R? for simplicity. A key point of this method is that we
can explicitly describe the probability law of the jumps caused by the Lévy process by
using the Lévy measure.

Let m = d. We consider a jump process given by the stochastic differential equa-
tion (SDE)

d
dxi(x) = Zdezj(t) , xo(x)=x.
j=1

Here, X]fs denote d-dimensional vectors in R4 which constitute a linear basis, and
zj(t)’s are scalar Lévy processes. That is,

x¢(x) =Az(t) + x, Xxo(x)=x.

Here, Aisadxd-matrix A = (X1, ..., Xgq),and z(t) = (z1(¢), .. ., z4(t)). By taking a lin-
ear transformation, we may assume A is a unitary matrix without loss of generality.
We choose a positive function p € C*, 0 < p < 1such that p(z) = 1if |z| > 1,
p(z) = 0if|z| < 3. We put p,(z) = p(2), 1> 0.
We would like to have the integration-by-parts formula

E[f(cr(0)] = Elfxr(0) - M), a=1,2,..., feC®.

This can be done by elementary calculus as below. We put T = 1 for simplicity. In fact,
Graczyk [73] has studied a kind of stable process on a homogeneous group. Viewing
R4 as a special case of a nilpotent group, we mimic his calculation to illustrate the
idea in the simple case.

(Step 1)
Let v(z) be a C2-function such that

v(z) ~ 2? (1.46)

for |z| small. Choose € > 0 and fix it.
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Let N].e(dsdz) be the Poisson counting measure with mean measure

ds x g¢(z)dz = ds x p2¢(2)g(2)dz .

d
where Nf = Iol IN]?(dsdz), and by S1, S, - -, the jump times of N€. Let {(eq, --- , eq)
be a standard basis of R?, and let (&4, - - , &4) = (Aeq,--- , Aeg).

Let x¢ be the solution of the SDE

We write (s) = Jg ijje(dsdz),j =1,---,d. Wedenote by N = N¢ = N¢ +--. + N¢

d
axs = ) X;dz{(s), xG=x. (1.47)
j=1

First, we integrate by parts with respect to the process {x$}. We shall calculate the
expectation of

d
(Df(x5), ey = Y D,f(x)e,
r=1

below. Here and in the following calculation, we use Df and D.f in the sense
(g—é)izl,m,d and ;_){,’ respectively.
Since IAzf(s)I > € uniformly, we have

d d d
E [pn ( Y Y Y vz ()X, er:>2> x Y (Df(x5), e»}

r'=1s<1j=1 r=1

- i P(N = n)E| py i
n=1

r'=1k

d
) v(Az§ (Sk)

1j=

M:

d
x (X, em)?) Y (DFS), en)] -

r=1
We introduce the following notations to simplify the argument:

d

X*v)(1) = Z Y Yv(azi(s)) (Xj,en)?
r'=1s<1j=1
d n d
Xxv=1) 3 Yv(AzS)) (X, er)

r'=1i=1j=1

—.
Il

d d
X ==Y Y v(4z{(SK) (X, en)?

r'=1j=1

Then, X v = Y}_, (X * V)i, and

d n d
DY Y v(AZS)) (Xj ep) =Y (X xv)i.

r'=1i#kj=1 i#k
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In the right-hand side of the above formula, we freeze the variable Azl?(sk) and
view it as z, € supp g€, showing that

E[--]= zn:zd:E[(%)(X*V)k(Df(xl ]

n d d d 2
P Qi X * V)i + Y0 v(ze)(Xe, €r)7)
= E
2 ; 2 “( YisrX # V)i + X9 v(ze)(Xe, er)? )

d
x 1 Y vze)(Xe, er) } (Df(x5), er) x

r'=1

8°(ze) dzf] _
| &¢(ze)dze
Here, we make an integration by parts on R¢ with respect to z,, viewing x§ as a func-
tional of z = (21, . . ., z4). To this end, we compare Df(x$(2)) = %(xi(z)) with %(f °
X6)(z) = DXE(2)) - ""1 5(2). Here 23.(2) = Aif |z > €,i = 1,..., d.

Then, we have

J'...dze

Y PrTiaeX V)i + T5_, v(ze)(Xe, e))
(ZiaeX + V)i + 58, vz Xe, €)2)

Pr(TigX x )i+ Ty vze)(Xe, €r)?)

2
(ZisaX )i+ By vize) (K €2

O IS vz xe, en?
% 3% Y v(ze)(Xe, ey

r'=1

d
2 € ge (Zf)
x {Zl v(ze)(Xe, er) }ﬂxl)—J L

J'<pr1(21qbk(X * V)i + Z,r v(ze){Xe, er’) ))
Z,#k(X * V)i + Y9, v(ze)(Xe, ep)?

g P e i & 285} e j £ (Z; - (1.48)
We suppress below the superscript € for simplicity. Note that we have
V., (W(ze)(Xe, )2 - g(20)} = Vs, IV(ze) - g(ze)} X (Xe, &n)2 . (1.49)
We put
& = % , (1.50)
Pp(X =v) (1) pp((X = v) (1)) (1.51)

T @)  (Xev) )2
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Then, we have the following expression:
[pn((X ) (1)) x Z<Dﬂx1 ]

N d d d
=-E [d’l {Z Z Z o {V(ze)(Xe, &)°HAze(Sk))

d
x { z V(Azp(Si)){Xe, €r'>2]’f(Xi)H

r'=1
N g V2 iv(ze) - g(ze)} 2l gue
_E [‘Do {é;;{(T)m@(sk» x (Xe, ) }f(xl) .
We put (cf. (1.48), (1.49))
d 9
P1,02) = ), S (D(Xe, 80)°H2) (1.52)

r=1

WW@%&@{

Yal2) = g(2)

Then,

d
E [pr,((X % v) (1)) ) (Df(x,), e»”

r=1
d d
< ||ﬂ|oo{E[ @, Z Z 1,0(Az¢(5)) { Y v(Aze(s))(Xe, e">2H]
+E[ CDO

r'=1
Hence, we can let € — 0 to obtain

d d
Yy Z{wzmzf(s)xxe,é»zm} .
s<lé=1r=1

d
E [pn«x *v) (1)) Y (Dftxa), e»]

r=1
d d
=-E [‘Pl (Z Y 1,e(Aze(s)) x < Y v(Aze(s))(Xe, er'>2>>f(Xi)]
s<1¢=1 r'=1
, , (1.53)
-E[Z%(Z Y 1, (Aze(s)) x (Xe, &) )f(Xi)] :
r=1 <l¢=1
In the left-hand side of (1.53), we can show
-1

[(X * V) (1)] el’, p>1. (1.54)
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The proof proceeds similarly to Lemma 2.2, and we omit the detail. Indeed, we consider
the form

d d
te ) > Y vAZ(9))(X), en)?

r'=1s<tj=1

instead of K¢(p), and the idea of the proof is the same as in Section 2.1.1.

(Step2,n — 0)
By the last expression, we have

d
‘E [pn«x V) (1) Y (Df(x1), e»”
r=1

< Iflloo {E[
d d
E [ @, {Z Y Y, Aze(s))(Xe, aﬁH” ,

s<1lé=1r=1
and the right-hand side is independent of > 0. By (1.54),
{Zf,zl Y1 Z]’-izl v(Azj(s)):-- Y2} > 0 a.e. Hence, by letting n — 0, we have

d d
@) ) wl,e(AZe(s)){ Y vdze(s)(Xe, e,f>2}H

s<1¢=1 r'=1

d d
[ ( 22 vaz](s )(X;, e,:)2> Y (Dfxa), e»}

r=1
d
E [ Y (Dftx1), e»] (1.55)
r=1

in LP.

On the other hand, Y, ¥4, ¥y o(Aze(s))(Xe, er)? € LP, p > 1,and
Ys<i zf}:l Y, (Aze(s)){Xe, e,)2 € LP, p > 1, since v(-) and v'(-) are C* and have com-
pact support. Hence, we can let  — 0 in the above as before, and we have

d
E [Z(Df(xl), e»] = E[f(x;)71] (1.56)
r=1

where

d d
Hi=[X =) D] x Y Y Py ,Aze(s) Y (Xe, ep)?
s<1¢=1

r'=1
d d
—[(X *v) (D] ZZZ (Az¢(s))(Xe, &,)°

We have an integration-by-parts formula of order 1.
Calculation for the integration by parts of order 2 is similar, and we omit the detail.
We can proceed to the higher order calculation in a similar way.
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Time shifts
Consider a one-dimensional standard Poisson process Ny and denote one of its jump
times (jump moment) by T. We consider the shift of the jump times of N;. This works
in principle since the inter jump times of the Poisson process has an exponential law
which has smooth density. We can compare this method with the previous ones by
Bismut which make shifts with respect to the jump size (and direction) of the driving
process.

It was first studied by E. Carlen and E. Pardoux [43] in 1990, and subsequently
(and presumably, independently) by R.]. Elliot and A. H. Tsoi [56] in 1993. Elliot and
Tsoi have obtained the following integration-by-parts formula:

T
oG
E lg(r) jxsds:| =-F [(Z stNs) G(T)] ,

0 s=0

where G(t) denotes some suitable function and T denotes a jump time. Note that the
right-hand side = —E[§(u)G(T)] in the contemporary notation.

Subsequently, V. Bally et al. [8] has proceeded along this idea. Namely, let
T1, To, ... be the successive jump times of N; and let F = f(T,,..., T,) be a func-
tional of N. The gradient operator D = D; is given by

n
0
DiF =Y ~—f(T1,..., Tn) Liz>g) - (1.57)
5 oxi

This gradient operator is a differential operator and enjoys the chain rule. This is
a main point of this operator, compared to the difference operator D, which appeared
in Section 2.1.2.

However, by operating D again to both sides of (1.57), D2F contains the term
D1yr,54, which is singular. This is the price one pays for enjoying the chain rule. As
aresult, there are some problems with respect to showing the smoothness of the den-
sity. Precisely, since we can not expect the iterated use of the operator, we can not
apply the higher order derivatives at the same point of time within this theory.

In Bally et al. [8] [9], to avoid the iterated use of the operation by D, a more moder-
ate expression of the gradient operator using the approximation procedure is adopted.
We introduce it below.

Let us introduce dumping functions (71;) which cancel the effect of singularities
coming from D2F, D3F, ... in the manner of (1.57). Namely, let a;, b;, i = 1,2,...,m
be random variables on Q, such that —co < a; < b; < +00, and consider weight
functions (71;) such that 0 < 71; < 1, m; is smooth on (a;, b;), i(a;) = mi(b;) = 0, and
that 71; > O on (a;, b;), i = 1, 2, ..., m. We remark that the intervals (a;, b;) are not
necessarily distinct.

For F = (T4, ..., Tm), we give the dumped derivative by

DIF = 71;- 0if(T1, .. ., Tm) - (1.58)
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Let D"F = (D7F)i-1,...,m, and call them  derivatives. Then, we can use D”F in place
of DF in (1.57) (viewed at t = Tj;).
One advantage of this notation is that it is a differential operator, and thus it still
satisfies the chain rule
DT¢(F) = ¢'(F)-DTF (1.59)

for F=f(T1,..., Tp).
The other advantage is that, due to the dumping effect of 71; at each edge of (a;, b;),
we can obtain the integration-by-parts formula: for F,, = f(T1, ..., Tn),

E[0Pg(Fm)] = ElgFm)Hy], B=1,2,... (1.60)

where Hl’g" is a random variable defined by using D”.
More precisely, consider a functional F = f((T;)) on Q; of the form

AT =Y (T1s s Ty -

j=1

Here, J(w) is an integer-valued random variable on Q,.
A functional F of such form with some f € C° is called a simple functional. The
set of simple functionals is denoted by S. Here, we put

C',‘, = {f ; f admits partial /7 derivatives up to order k on (a;, b;)

w.r.t. each variable t;} ,

and C = ni‘;lC’,‘,. A sequence U = (Uj;) of simple functionals U; € S is called a simple
process. The set of simple processes is denoted by P in this subsection.
The adjoint operator § of D™ is defined for U € P by

6i(U) = -0i(m;U;) + Uil{p,>0107 log py
and

J
8(U) =) 6i(U).
i=1

Here, py denotes the density of the law of (T4, ..., Tj) with respect to the Lebesgue
measure on {J = j}. We assume {p; > 0} is open in R/ and p; € C® on {p; > 0}. We
remark that 77; is a localization factor (weight), and thus it is expected that

IU_, supp 7; ¢ supp p; on {J = j.
Then, we have
Proposition 2.4. Under the above assumption
E[(D"F, U)] = E[F&(U)] (1.61)
forFeS,Uce®?.

See [9] Proposition 1.
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Repeating this calculus and using the chain rule (1.59), we reach the formula (1.60)
under the assumption that

E[ly(PF)IP] < +co forallp > 1.

Here,
Y(F) =0~ (F)

with o(F) = Z 1(D"F )2. In particular, H" = §(y(F)D™F) for § = 1.
The formula (1. 60) gives

pr, )| < VIPE [|Hp|]

by choosing g(x) = e{®), Instead of letting F,, — F in L2(Q,) as m — +oo, we would
show

supE |[HY

up [| f H < +00

with a suitable choice of (77;). This implies
prv)l < CA+ W) P2, p=1,2,...

as desired.

The time stratification method by A. Kulik [119, 120] can also be regarded as a vari-
ation of the time shift method. See also Fournier [64].

In the process of inquiring into the Fock space representation of the Poisson space,
Nualart and Vives [171] have introduced the translation operator

‘I’t(w) =w + 5{[} N

where w is a generic element in the Poisson space. This operation can be viewed as
adding a new jump time at t to w associated to N.. This operator induces a translation
of the functionals by

¥ (F)(w) = Fw + 8(y) - F(w) .

This operation leads to the difference operator D, by Picard [181]. Confer Section 2.1.2.

2.2 Methods of finding the asymptotic bounds (I)

In this section and the next, we recall some results stated in Sections 2.1.1, 2.1.2 and, as-
suming the existence of a transition density p¢(x, y) for the process X;, we explain var-
ious ideas of finding the asymptotic bounds of the density function p¢(x,y)ast — 0
based on methods employed in the proof. Here, X; denotes a solution of some SDE.
The analysis to lead the existence and smoothness of the density function is carried
out throughout Chapter 3.
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The estimate is closely related, as will be seen in proofs, with fine properties of
the trajectories in the short time, and thus with the perturbation methods stated in
the previous section. Also, from an analytical point of view, it provides fine properties
of the fundamental solution in the short time associated with the integro-differential
equation.

In this section, we construct Markov chains which approximate the trajectory of
X:. Throughout this and the next sections, we confine ourselves to the case of the It
process X; = x¢(x) given in Section 1.3. In the proof of Theorem 2.3 (b) below, we in-
troduce a supplementary process xs(r, S¢, x) which is obtained from x;(x) by directing
the times (moments) of big jumps of xs(x) during [0, t]. We will encounter this again
in Section 3.6.4.

Our method stated in this and in the next section is not effective to lead the large
time (¢t > 1) estimate of the density, and we can not obtain sharp results in such a case.
We do not mention this case in this book.

2.2.1 Markov chain approximation

Let z(s) be an R™-valued Lévy process with Lévy measure p(dz): IRM (1212 A D)u(dz) <
+00. That is, the characteristic function ) is given by

Wi(v) = E[e'"#)] = exp(it(v, c) + tj(e““) ~1-i(v, 2)1yz<1)p(d2)) -

We may write z(s) = cs+ J(f ij\{O} z(N(dudz) — duly<1;.u(dz)), where N is a Poisson
random measure with mean duxu(dz). Let p(x, z) : R“xR™ — R? and b(x) : R — R4
be C* -functions, whose derivatives of all orders are bounded, satisfying y(x, 0) = 0
We carry out our study in the probability space (Q, (F¢)¢=0, P), where Q =D([0,+00])
(Skorohod space), (F¢)e0o = filtration generated by z(s), and P = probability measure
on w of z(s). That s, u(dz) = P(z(s + ds) — z(s) € dz|z(s))/ds.
Consider the following SDE studied in Section 1.3, that is,

t

xe(x) = x + J b(xs(x))ds + z Pxs-(x), Az(s)) . 2.1)

0 s<t

Equivalently, we may write x¢(x) as

t ¢
x¢(x) = jb (xs(x))ds + J J’ P(xs-(X), z)N(dsdz)
0 |zl<1

t
+J j P(xs-(x), z)N(dsdz) , 2.2
0

1z|>1
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where N denotes the compensated Poisson random measure: N(dsdz) = N(dsdz) —
dsu(dz), b’ (x) = b(x)—flzIZ ) y(x, z)u(dz), where the integrability of y(x, z) with respect
to 1¢)z>1}.du(z) is assumed. We remark that

_9y -
Yx, 2) = E(X’ 0)z + y(x, 2) (2.3)

k
(&) e

for some @ > v 1 and for k € N on {|z| < 1}. Here 8 > 0 is what appeared in (4.0).
Throughout this section, we assume the following four assumptions; (4.0~A.2)
in Section 1.3, and

for some y(x, z) such that

< Cilzl”

(A.3) (3-a)If0 < B < 1, we assume that ¢ = Ilzlsl zu(dz), b=0and forallu € S%°1,

j (2, U)* 1 ((zuy>0)(2)u(d2)=p> P (2.4)
{lzl<p}
asp — 0.
(3-b) If B = 1, then
lim sup zu(dz)| < +00. (2.5)
€0 {e<|z|<1}

Then, equation (2.1) (resp. (2.2)) has a unique solution. This follows from the fact that
(2.1) can be written in the form (in It6 integral)

dx(x) = dO:(xt-(x)), Xo(x) =0, (2.6)

where

t

@t<y)=b’(y)t+j j Y. 2)N(dsdz) + j Y. 2N(dsdz) b
0 |lzIs1 |z|>1

and that equation (2.6) has a unique solution due to [123] Theorem 3.1. Furthermore,
due to the inversibility assumption (A.2), there exists a stochastic flow of diffeomor-
phisms denoted by ¢s (s < t) : R? — R? such that x;(x) = ¢ ¢(xs(x)), which is in-
versible ([140] Section 1, [25]; see also [192] Theorem V.65 for the simple case y(x, z) =
X(x)z).

We cite the following basic result due to Picard [184] using the perturbation stated
in Section 2.1.2.

Proposition 2.5 ([184] Theorem 1). Under the conditions (A.0~A.3), x¢(x) has a C}°-
density for each t > 0 which we denote by y — p¢(x, y).
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Methodologies leading to the existence of the smooth density under various condi-
tions have much developed following this result. We shall go a bit into detail in Sec-
tions 3.5, 3.6.

The following result is an extension of Theorem 1 in [184] to the above mentioned
process.

Theorem 2.2 (general upper bound). The density p¢(x, y) satisfies the following esti-
mate:

(a) sup pe(x, y) < Cot_l% ast — 0, forsome Cy > 0, 2.7
X,y

™I

pex, x) =t~ as t — O uniformly in x. (2.8)

(b) For all k € N4 there exists Cy > O such that

(kl+d)

sup |p§k)(x, y)| < Cyt P ast — 0, (2.9
X,y

where p'®) denotes the k-th derivative with respect to y.

Below, we give a refinement of this theorem (Theorem 2.3) and provide the proof (Sec-
tion 2.2.2).

We can give examples that the supremum in (a) is in fact attained on the diagonal
{x = y} (diagonal estimate):

d
pe(x,x)<t # ast—0

uniformly in x. It is well known in the case of a one-dimensional symmetric stable
process with index = a that the density function satisfies p¢(0) ~ Ct'/*as t — 0 ([84]
Section 2-4).

The estimate above is more exact than the one by Hoh-Jacob [79] using functional
analytic methods: there exist C > 0, v € (1, +00) such that

suppe(x,y) <Ct™ ast—0.
X’y

Below, we construct a Markov chain associated to x;(x). Let v(dz) be the probabil-
ity measure on R given by

_ (2P ADu(dz)
[ (1212 A Dp(dz)

Then, dv ~ du (¢ and v are mutually absolutely continuous), and the Radon—-Nikodym
derivative g—; is globally bounded from above.

Consider a series of functions (4,)%,, A, : R4*™" — RY defined by Ag(x) = x
and App1(X, X1, .+« o, Xns1) = An(X, X1, o oy Xn) + YA, X1, o5 Xn), Xne1). Fixx € R4,
We put 8, to be the support of the image measure of u®" by the mapping (x4, . . ., x5) —
Ap(X, X1, ..., Xn), and 8 = | J,, Sp.

v(dz) (2.10)
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Definition 2.2 (accessible points). Pointsin 8, regarded as points in R4, are called ac-
cessible points. Points in § \ § are called asymptotically accessible points.

Intuitively accessible points are those points which can be reached by x;(x) by only
using a finite number of jumps of z(s). We remark that § is not necessarily closed,
although each §,, is.

We define for each x the mapping Hy : supp p4 — Px = x + {y(x, 2); z € supp u}
by z = x + Y(x, z). Let PV = {y ¢ P, ;21 € Py,zi € P, ,i=2,...,n-1},n =
1, 2,...(zo = x). Then, Pil) = Py, and Pi") can be interpreted as points which can be
reached from x by n jumps along the trajectory x;(x). Given x, y € R4 (y # x), let a(x, y)
be the minimum number [ such that y € PE(I) if such [ exists, and put a(x, y) = +oco if
not. Or equivalently, a(x, y) = inf{n; y € Ux<nSk}.

To be more precise, we introduce a concrete “singular” Lévy measure of z(s) which
has already been described in [209] Example 3.7. Let u(dz) = Y2, kn6ia,(dz) be an
m-dimensional Lévy measure such that (a,; n € N) and (k,; n € N) are sequences of
points in R? and real numbers, respectively, satisfying
(i) |an| decreasesto O asn — +co,

(i) kn >0,
(iii) Y520 knlan|? < +oo.

For this Lévy measure, we can show the unique existence of the solution x;(x) of
(2.2) ([209] Theorems 1.1, 2.1), and the existence of the density under the assumptions
(A.0-A.3).

We further assume that

N = N(t) = max{n; |an| > t$}=log (%) ) (2.11)
Part (b) of the next theorem can be viewed as an extension of Proposition 5.1 in [183].

Theorem 2.3 ([89], Theorem 2). Assume u is given as above. Let y # x.
(a) Assumey € 8, thatis, a(x, y) < +oo. Then, we have

pe(x, y):t“(x’y)‘d/ﬁ ast— 0. (2.12)

(b) Assumey € 8\ S(a(x, y) = +00). Suppose b(x) = 0 and let B’ > B. Then, log p:(x, y)
is bounded from above by the expression of type I = I'(t):

I' = -min i (w,, log(i> + log(wn!)> +0 (log(%)loglog(%)) (2.13)
n=0

tky
as t — 0. Here, the minimum is taken with respect to all choices of ag, . . ., ay by &,
forn=1,2,...,ny and ny € N such that
|y_AYl1(X’ 61,-'-’ fn1)| < tl/ﬂl ’ (2-14)

where w,, = # of a,, in the choice and n, = Zﬁl:o Wh.
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We remark that in finding the above minimum, the conditions (2.11) and (2.14) work
complementarily. That is, as t > O gets smaller, (2.14) becomes apparently more strict,
whereas we may use more combinations of a;’s to approximate y due to (2.11). Since
B' > B, the condition (2.14) does not prevent Ay, (x, &1, . . ., &,) from attaining y as
t — 0,usingay, . . ., ay under (2.11). We also remark that if x and a, are rational points
(e.g. m=1,x =0, a, = 27"), then the result (b) holds for almost all y € 8(= [0, 1])
relative to the Lebesgue measure, whereas for t > 0, y — p¢(x, y) is smooth on § due
to Proposition 2.5.

2.2.2 Proof of Theorem 2.3

In this subsection, we prove Theorem 2.3. The main idea is to replace the Lévy mea-
sure u by another probability measure v which is absolutely continuous with respect
to u, and consider another process X, of pure jump (bounded variation) whose Lévy
measure is proportional to v. The Markov chain which approximates the trajectory
of x_is constructed on the basis of x .

First, we prove two lemmas which are essential for our estimation. These lemmas
are inspired by Picard [184].

Lemma 2.5 (lower bound for accessible points). Let (¢,)nen be the R?-valued indepen-
dent and identically distributed random variables obeying the probability law v(dz)
given by (2.10), independent of z(s). We define a Markov chain (Uy)nen by Ug = x and
Un+1 = Un + YUy, &ns1), n € N. Assume that fory € RY, there exist some n > 1,
Y= Yn =0and c > O such that forall € € (0, 1], P(|U, - y| < €) > ce€?. Then, we have

pe(x,y) > Ct DB g5t 0. (2.15)

We notice that the lower bound on the right-hand side depends on (n, y,). Put
g(x, dz) = d(H;v)(2), z € Py \ {x}, where Hiv=vo H;l. Then, we have an expression
of the probability above:

P(|Un—y|se)=j--- j L iz yice)(Zn)E0X dZ1). . znotrdzn) . (2.16)
P, P

Zn-1

Hence, the condition P(|U, — y| < €) > ce? implies:

y can be attained with the singular Lévy measure (dim supp v = 0) if y = 0.

In order to obtain the upper bound, we introduce the perturbation of the chain.

Let (¢n)nen be a series of smooth functions: R? — R4, We define another Markov
chain (Vi)nen by Vo = @o(x) and Vyyq1 = Vi + (@n41 © P)(Vi, Ens1). Furthermore, we
define the series of real numbers (@y,),en by

Dp= sup (o) -yl +lo ) -1)). .17)
k<n,yeRd
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Under these preparations, we have:

Lemma 2.6 (upper bound). Choosey # x. Assume there exist a sequence (Yn)neN, Yn €
[0, +00], and a nondecreasing sequence (Ky)nen, Kn > 0, such that the following condi-
tion holds true for each n and for any (p1)y_, satisfying @, < Kn: V,, defined as above
satisfies with some C,, > O that

if yn<+oo, then P(|V,-y|l<e€)<Cue™ forall €>0, (2.18)
and
if yn=+0c0, then P(V,-yl<e)=0 for €>0 small (2.19)

Furthermore, we put I' = ming(n + (yn — d)/p). Then we have:
1. IfT < +oo, then ps(x,y) = O(t) ast — 0.
2. IfT = +oo, then forany n € Np¢(x,y) =o(t")ast — 0.

Note that I' depends implicitly on the choice of (K,). Whereas, for each n, the bigger
Y gives the better upper bound.

Given the perturbations (¢;), we define QS(O) = {po(x)} and the sequence (Qi"))
successively by

QY = {zn-1 + (P ° P)(Zn-1,2); Z €SUPP V, Zn_1 € QU V)
forn = 1, 2,.... Hence, the set Qi") can be interpreted as the points which can be
reached from x by V,,, and we have

P(|[Vh-yl<e€)

= J’ j 1z, 10u(zn)-yi<e}(Zn)8(@o(X), dz1). . .8(Pn-1(Zn-1), dzn) (2.20)

Poo 0P pn-1(zn-1)

forn = 0,1,2,.... We remark that if y ¢ Pi") (n > 1), then by choosing ¢, such
that the size @, of perturbations is small enough, we can let y ¢ Qg("). Therefore, by
choosing Ky > 0 small and € > 0 small, y, may be +oco in the above.

Proofs of Lemmas 2.5, 2.6, and that of Lemma 2.7 below will be provided in the

next subsection.

Proof of statement (a) of Theorem 2.3.
Forn > a(x,y), we have P(|U, — y| < €) > c for € € (0, 1] since u has point masses.
Hence, p;(x, y) > Ct**¥)=4/B by Lemma 2.5.
For the upper bound, if n < a(x, y), then by choosing K, small, we have y ¢ QE(").
That is,
P(|V,-yl<€)=0 fore > 0small,

and we may choose y, = +oo in (2.18) and (2.19). On the other hand, if n > a(x, y),
then we must choose y, = 0in (2.18) (¢, = id must satisfy it).
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Hence, we may choose I' = a(x, y) — d/f in the conclusion. These imply

pe(x, y)=txCxN-dIf .21)
O

Proof of the statement (b) of Theorem 2.3.
We set 8¢k = ([0, t]k/ ~) and 8¢ = I>08¢,k, Where >0 denotes the disjoint sum
and ~ means the identification of the coordinates on the product space [0, t]¥ by the
permutation.

Let r = r(t) = /B, We denote by z(s) the Lévy process having the Lévy measure
M. 1z5n(2). Thatis, 2'(s) = Y, Az(U)1{az(u)>r}- The distribution Pt,, of the moments
(instants) of jumps related to z'(s) during [0, t] is given by

f(St)dP¢r(S¢)
{#S¢=k}

= {(fjl{|z|>r}(z)ﬂ(d2))k(%) exp(4jl{|z|>r}(z)ﬂ(dz)) }

t

t
><tikJ---Jf(sh---,sk)d81---dsk,
0O O

(2.22)

where f is a function on 8; x (a symmetric function on [0, t1%). Given S; € 8;, we intro-
duce the process x;(r, S¢, x) as the solution of the following SDE:

xXs(1, S¢, X) = x - j du j 12151 (2)y(xu (1, St, x), 2)u" (dz)
0

+ Yy (586 %), 027 W)+ Y YXs - Sux), &), (2.23)

us<s Si€S¢,S8i<S

where (£})nen denotes a series of independent and identically distributed random
variables obeying the probability law

"(dz2) = .
' [ 1yz15ry(2). u(dz)

We remark that xs(r, S¢, x) is a martingale for each 0 < r < 1 due to the assump-
tion b(x) = 0. We define a new Markov chain (Uy)nen by U = xand U},; = Uy +
YUy, &) m e N.

We can prove, due to Proposition 2.5, that under (A.0) through (A.3), the law of
xs(r, S¢, x) for (ds-a.e.) s > O has a C}° -density denoted by ps(r, St, X, ¥).

Indeed, let 0 < s < t. In the case S; = ), we can choose 1, <y.u(dz) for the
measure pu(dz) in Proposition 2.5. Hence, we have the existence of the density for the
law ps(r, 0, x, dy) of xs(r, 0, x) (= xs(r, St, X)|s,=p): ps(r, 0, X, dy) = ps(r, 0, x, y)dy.
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Next, we consider the general case. Since 2" (s) and 2" (s) are independent, we have
by the Markov property that the law pg(r, S¢, x, dy) = P(xs(r, S¢, x) € dy) of xs(r, S¢, X)
is represented by

ps(r, Se, x, dy) = jdz(’) J Ps, (1,0, x, 2082y, dz1)
P,
20

X j dz} J Ds,-s, (1, 0, 21, 2))8r (2, dz2)
P,
%

' ' '
. j dan_l J’ ps,,l—s,,l,l(r, 0, zn,-1, Zn1_1)gr(zn1_1: dzy,)

P,
an—l

X pt—Snl (rs @, an ’ d)’)

if S¢ € 8¢,n,. Here, gy(x, dz) = P(x + y(x, &) € dz).
On the other hand, once again, we have by the independence of Z’(s) and 2’ (s),

ps(x, dy) = jps(r, Se,x, dy)dPe.,(Se) ,
8¢

using the factorization of the measure N (cf. [106] p. 71). By Proposition 2.5, the left-
hand side has a density ps(x, y) with respect to dy. Hence, ps(r, St, x, dy) is absolutely
continuous with respect to dy (dPt,,-a.s.). Hence, we have by the derivation under the
integral sign,

Ps(, y) = j(ps(r, St, x, dy)/dy))dPe.r(Se) .
8¢

We denote by ps(r, St, x, y) the derivative ps(r, S¢, x, dy)/dy(y) which is defined
uniquely dP; ,®dy-a.e. (Since dP;,,|s, , is the uniform distribution on 8,x, ps(r, S¢, x, )
is defined uniquely as ds®dy-a.e.) Sincey — ps(x, y) is smooth, soisy — ps(r, S¢, x, y)
ds-a.s., and hence p;(r, S¢, X, y) is defined as a smooth density ds-a.e.

Thus, by taking s = t,

o0
Pt y) = [ pulr St x P50 = Y pulkirx,y) (2.24)
S k=0
where
pelk, 1 x,y) = j ity St %, Y)dPy(S0) .
Stk
Hence,

pe(x, y)dy = EFer[P(xe(r, St, x) € dy)]
= EPo B [P(x(r, S, X) € dy|St, &1, ..., 8ts)] - (2.25)

EBSCChost - printed on 2/10/2023 4:50 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



Methods of finding the asymptotic bounds () —— 67

Foreach S; € 8, we put n; = kif S; € 8¢ . We then have
P(x¢(r, S¢, x) € dy|Sy)
= EWO™ [P(xe(r, Se, x) e dy < ly - Ul | < P 1S, &1, .., &)

+ BV PO(r, S0 e dy s ly - Uy | > 1S, &L, 601 (226)

ryeny

First, we have to compute P(ly- U}, | <tYF')=E®O™ [P(ly-U, |<tVF &, .., & )]
for a given y = x(r, S¢, x) with S; € 8; »,. We denote, by the random variable Wy, the
number of a, in (&));2;.

Given n; € N, let (wn)lr\l’:0 and w, € N U {0} be a series of integers such that n; =
¥, Wyn. We then have

P(foralln < N, W, =wyand |y - Uy, | < t1/F"
< —(tky)"me~tn |
n=0 Wr!

since each W, is a Poisson random variable with mean tk,. Hence,

logP< foralln <N, W, = wpand |y - Uy, | < tl/ﬂ,)

(wnlog(1/(tky)) + log(wy!) + tky)

(wr log(1/(tkn)) + log(wy!) + O(1) . (2.27)

N
<Y
n=0
5
n=0
We introduce the set W of all (w,,)f;’:O such that for some n; € N, Uj, directed by
the following condition (*) satisfies [y — Uy, | < tl/ﬁ', that is,
(*) wp = (#of a,’swhich appearinéj, ..., {;1) and ny = Zl,y:l Wy .

Then, from (2.27), it follows that

there exists (w,) € Wsuch that foralln < N,
log P g
Wy =wyand |y - Uy, | < Y8

N
< —mvgn z (wnlog(1/(tky)) +log(wy!)) + Odog [W]). (2.28)
n=0

On the other hand, we have
P(Wy, > N> and |y - U}, | < tY/F') < ce™™’ < Ceclos1/0)’ (2.29)

since Wy, is a Poisson variable with mean tk,. Since this is very small relative to the
probability above, we may put the restriction w, < N3 and n; < N*. Hence, we may
write |[W| = O((N?)V), and

log |'W| = O(N log N) = O(log(1/t)loglog(1/t)) .
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Let x¢(r, 0, x) denote the process defined by (2.23) with S; = ), and p¢(r, 0, x, y) as
its density. By Theorem 2.2 (a), p¢(r, 9, x,y) < C t=4/B as t — 0, and this implies, for a
given S¢ € 8¢ n,, &7, ..., &, that P(x¢(r, S¢, x) € dylSe, &1, ..., &) /dy = O(t~4/F) as
t — 0. Since z"(u) and (§]) are independent, by (2.24) and Fubini’s Theorem, we have

log (Ept‘rlS,’nl
E¥ [P (xe(r, Se,x) e dy : ly - Up | < 718, &1, .., &) /dy)
N
< log (t-d/ﬁ exp ( - my%]n z (Wnlog(1/(tky)) + log(wy!))
n=0
+ O(log(1/t)log log(l/t))>>

N
< —mvi]n z (wn log(1/(tky)) +log(wy,")) + O(og(1/t) loglog(1/t)) . (2.30)
n=0

For the second term of (2.26), we have the following lemma, whose proof s given later.

Lemma 2.7. Giveny = x(r, S¢, x), St € 8t,n, and U;l =An (x, &, .., 5,’,1), there exist
k > 0 and Cy > O such that for every p > k,

EPlson EOO° [p(ly - ULl > 1S &L )]
< n1Co exp[-(p - k)(log(1/t))?]
ast — 0.

Givenéy,..., 5;1,wehave, as above, EP"'ISLM [P(x¢(r, S¢, x) € dy|St, &7, .. ., {;1)/dy] =
O(t-%P) as t — 0. We integrate this with respect to (u")*™ on {ly - UY, | > t/F'}. Since
z"(u) and (5{ ) are independent, by Lemma 2.7, we then have

EPurlsen g™ [P(xe(r, Se, ) e dy = ly - UL | > tVFs,, &1, ..., &0 )] /dy
< n1Cht™ 4B exp[-(p - k)(log(1/))?], ast — 0.
We get
log (EP bl
EW) [P(xc(r,Se,x) edy :ly-Up|> tVFS,, &1, ., &)l /dy)
<-(p- k)(log(l/t))2 + rlllllg\)l(’* logn; +log C(’) + O(log(1/t))

< —(p - k)(log(1/0))* + 0(log(1/t))

since maxy, <y« logn; = log N* = 0(log(1/t)). Since p > k is arbitrary, this can be
neglected in view of the right-hand side of (2.30) and (2.26).
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ryeny [

After summing up EP"’l““fv"l EW ...] withrespectton; =0, ..., N*, we get

log (Ept,rlngNllSt‘k EW) [p (xt(r, St,x) € dylSt, &1, ..., {;S[)] /dy)

N
<- mMgnngO (wn log(1/(tkn)) +log(wy!))

+ O(log(1/t)log log(1/t)) + O(log(1/t)) . (2.31)

In view of (2.25), (2.31),

N

log pe(x,y) < - mmi;n,; (wnlog(1/(tkn)) +log(wy!))

+ O(log(1/t)loglog(1/t)) . (2.32)

Since there is no difference between the trajectories of the deterministic chain
An,(x, 1, ..., &) and Uy, obtained by using {a,;n = 0, ..., N} under (2.11), we
have the assertion. O

In Section 2.5.4, we will see the image of (Markov) chain approximations using planar
chains.

2.2.3 Proof of lemmas

In this subsection, we give proofs of lemmas 2.5, 2.6, and 2.7 which appeared in the
previous subsection.

(A) Proof of Lemma 2.5
To show Lemma 2.5, we prepare several sublemmas.
We recall that u satisfies (A.0). As stated above, we introduce a probability mea-
sure v by
V(d2) = (22 A Dp(dz)
J (212 A D)p(dz)

Then, u ~ v. Let 1/c be the upper bound of g—;.
We decompose z(s) into an independent sum

z(s) = z(s) + Z(s) ,

where Z(s) is a Lévy process with the Lévy measure cov which is a pure jump process,
and Z(s) is a Lévy process with the Lévy measure y — cov. Let N = N(t) the number of
jumps of z before time ¢, and let r = r(t) = t'/A.
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We further decompose Z(s) into an independent sum Z(s) = Z'(s) + Z'(s) as

Z'(s) = ) AZW1yazayisn
and
Z'(s) = Z(s) - Z'(s) -

Then, 2, Z', Z" are chosen to be independent processes, making z = z + Z" + Z'.
We introduce three processes xg(x), xs )(x) Xs(x) by using (3.2) in Chapter 1, and
replacing z(.) with Z", Z + Z", Z, respectively.
Let
={w;ZL =0, se[0,t]}.

By (A.0), we have
P(I) >c¢c; >0

by using the small deviations property ([90], cf. Section 2.5.4). We observe x; = xgr)

on I'. Hence, it is sufficient to estimate the density of xgr) at y for the lower bound.
Here, we give three sublemmas.

Sublemma 2.1. Let h > 0 and k € N% Denote by p¢(x, y) the density of x;(x). Then,
|prr/3h(x’ VI < Crpr~ 1K+ for 0 < r < 1.

Proof. Let h > O and r > 0. We put Xj(x) = r X7
jg’ br(X}, (X)) AR Y5y oy Yr (X (x), AZ" (W)Wt x, where 27 (t)= 1 Z7(rPt), b, (y) =P~ 1 b(ry)
and yr(x, {) = %y(rx, r{). Assumption (A.3) (3-b) is used here to guarantee that the
scaled drift parameter ¢, = rB-1(c - I{r<l a<1) (y(d()) is finite. Then, by the definition
ofh— xh(x) P(xh(x) ed )|x0(x) ) P(xrﬁh(x) € dy).

On the other hand, y +— b,(y) is C};° (we use here the assumption for the case
a < 1). y(x, {) satisfies the assumptions (A.O) ~ (A.3) uniformly in r. Hence, by Propo-
sition 2.5, (X}, (x); r > 0) have C}’-densities pn(¥, y : r) which are uniformly bounded
with regards to r > 0. Hence, by the above relation, p, ,sp(3,y : 1) = rdph(,, 9
This implies |p, s5(3,y : 1) < Cyr9. Estimates for the derivatives with respect to y
follow by differentiating the equality. O

h(x) X, (x) satisfies xh(x)

The next two sublemmas are cited from [184].

Sublemma 2.2 ([184] Lemma 8). There exists a matrix-valued function A such that
xﬁr)(x) = X¢(x) + ZA(S z(.)) y(xs(x) 0)AZ{ + o0 (tﬂ)
s<t
incase § + 1, and
X0 = xe(x) + ZC:A(S, 2(.))( %y()‘(s(x), 0)AZ] + b()"cs(x))ds) +o (t%)
s<t

in case § = 1. A(s, 2) and its inverse are bounded by some C(n) on {N = n}.
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Sublemma 2.3 ([184] Lemma 6). Consider a family of R?-valued infinitely divisible ran-
dom variables @i indexed by t > 0 and i € J, and another family of R4-valued random
variables Y:. We assume

(i) Yf has a C}) transition density uniformly in (t, i).

(ii) 1Y! -6l — 0ast — O uniformly in i.

(ili) The drift parameter of 0} is uniformly bounded.

(iv) We denote by yﬁ the Lévy measure of Qﬁ. There exists a compact K ¢ R™ such that
supp yﬁ c K uniformly in i, the measure lezyi(dx) is bounded uniformly in (t, i),
and }1’; satisfies the condition (A.0), or (A.3) (3-a) if B < 1 uniformly, respectively.

Then, the density of Y; is bounded away fromzero ast — 0 on any compact set uniformly

ini.

Proof of Lemma 2.5. (continued)
PutA,={N=n}n{T, < %}. Here, T1, T>, ... are jump times of Z.
On the set A,,, Z has n jumps on [0, 2] and no jump on [ , t]. We have

P(Ay) = ct™ withc>0,

since the left-hand side is greater than & (A,)"e™" > L,(A,)" w1th At £ xv(RY\ {0}).
On the other hand, the conditional law of xg )(x) given (z, x; /z(x)) c01nc1des with

the transition function of x; )(x) on [ , t]. We apply Sublemma 2.1 to see that the con-

oo ”(x)

ditional density of X i = given Z is uniformly Cj ! on Ay. By the definition of

X¢(x), the process

Ue = — (") - &)

t1/B

satisfies the same property. By Sublemma 2.2 applied to the process Uy, Uy is equiva-
lent to an infinitely divisible variable

1

¢
B <J’A(S xs(x)) y(xs(x) 0)dZ’> +0(1)
0

conditionally on Z(t).
We use Sublemma 2.3 (the index i is the path Z) to obtain that
P(U; € dz|Z) = cdz
on A,, z in a compact set. This implies
P(xgr)(x) edylz)>ct¥Bdy on {ly-x)|<tPinA,.

This implies
P (x) € dy) = ct-YBP(%(x) - ] < tY8, Ay)dy . 2.33)
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On the other hand, each jump AZz(t) of Z(t) is independent with the common law
v, and the jumps are independent of (T;). Hence, conditionally on A,, the variables
X¢(x) and U, have the same law. Thus,

P(1%(x) -yl < Y8, Ap) = P(IU, - y| < 1B, Ay)
= P(|Uy - y| < tYB) x P(Ap) > ct™V/F (2.34)

From (2.33) and (2.34), we get the conclusion. O

(B) Proof of Lemma 2.6
Note that if y is not an accessible point, then y is not in the support of U,,. By choosing
the size of K, small enough, it is not in the support of V,,. Hence, we can take y, = +oo
for any n, and hence I' = +co.

It is sufficient to prove the case y, < +oo.

To show Lemma 2.6, we again prepare several sublemmas which are cited
from [184].

Sublemma 2.4 ([184] Lemma 9). Consider a family of d-dimensional variables H admit-
ting uniformly Cll7 densities p(y). Then, for any q > 1,

E[|H|] + 1 )1“‘“”

p(Y)SCq< 1+|y|q

Sublemma 2.5 ([184] Lemma 10). Consider the pure jump process z'(s) and X% (x) as de-
fined above forr = r(t) = tY/F. Let N = N(t) be the number of jumps of 2" before t. Then,
forany A > 0, we have

P(IX;(x) — yl < APy < c(1 + AL + NE)eI+BId
forsome L > 0.

Sublemma 2.6 ([184] Lemma 11). With the same notation as in Sublemma 2.5, for any
k € N9, the conditional density p(y) of x; given z" satisfies

PP ) < Crt KB exp(CiN)
for some Cy > 0.

Sublemma 2.7 ([184] Lemma 12). With the same notation as in Sublemma 2.5, for each
q = 1, we have
Ellx¢(x) - it(X)Iqlér]“q < thl/ﬁ exp(cgN) .

Proof of Lemma 2.6. (continued)
Let
H = exp(CN)(x, - x)/t}/F .
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Here, the constant C is chosen large enough so that the conditional density of H
given 2" is uniformly C}, which is possible due to Sublemma 2.6. By Sublemma 2.7,
the conditional moments of H given Z" are at most of exponential growth with respect
to N. Hence, we apply Sublemma 2.4 to obtain that for each g > 1,

P(H € dh|z")/dh < cq(1 + |h|)"9 exp(cgN) .
Hence, the conditional density p(y) of x;(x) satisfies
BW) < cqt™Plexp(cgN)(1 + tPly - %{(x)| exp(CN)) ™}
< cqt ™ Plexp(cgN)(1 + VP ly — X ()71}

due to Sublemma 2.6.
The density p¢(x, y) is the expectation of p(y). To this end, we apply the distribu-
tion identity

E[Z9 =q j uI'P(Z > u)du, Z>0.
0
Then, we have

(o)
pe(x, y) < gcgt P J ui=tP(1 + tYBly — x5 (x)| < exp(cyN)/u)du
0

)
< thl" j ul g [(1 +NE 4y exp(chN)) X 1{N2(logu)/cq}] du
0

by Sublemma 2.5.

The variable N = N(t) is a Poisson variable with bounded exponential mean.
Hence, the expectation above is uniformly o(u~*) for any k asu — +oo, and uniformly
O(u~r)asu — 0. Hence, the integral is bounded for g > L. O

(C) Proof of Lemma 2.7
We fix 0 < r < 1, and put &(r,:,x) = x + p(x,-) when - is occupied by the random
variables &;.

Choose S; = () and consider the process s — xs(r, §, x) as the solution of (2.23).
Given (s, y), the solution for s, > s; with the initial value z at s = s; is given by
a smooth stochastic semiflow ¢, s, (2). Thisis proved in [67]. Assuming y = x(r, S¢, X),
St € 8¢,n,, we shall estimate |U}, — x¢(r, S¢, X)|, and show that for p > kand ¢ < 1,

EPulsen EWOT [PUT — xi(r, St, 00| > VP18, &1, .., &0)]
< n1Co exp[-(p - k)(log(1/t))?] . (2.35)

We first recall that U{,l and x¢(r, S¢, x) can be represented by

Up, = An (G &L 8n) = (0 éh, ) o€ (g pn) om0 6 (1 6,,%)
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and
Xl’(ry Sty X) = ¢t"1,t ° é’(r’ é’;l’ ) ° qbtnlfl;tnl ot
° 5 (r’ 55’ ) ° ¢f1,tz ° 5 (r’ gi’ ) ° (]50,[1()() .

(1) Case ny = 0. In this case, S¢ = () and U}, = x. The process x(r, 0, x) is a martingale
whose quadratic variation [x(r, 0, x), x(r, #, x)]; is bounded by

t r
j du J{y(xu_(r, 0, %), O u(dq)
0

-r

2
9y 2
st-(Zth}}o a—((x,OD -J(( ADpu(d) < kt

for some k > 0, which is uniform in 0 < r < 1 and x. We have that, for given p > k and
t<1,

P( sup |xs(r, 0, x) — x| > tl/ﬁ'> < Co exp[-(p - k)(log(1/t))?] (2.36)

0<s<t,x

with Cy not depending on x, r, and hence the assertion follows for this case.
Indeed, by the upper bound of exponential type ([150] Theorem 13),

P( sup |xs(r, 0,x) —x| > C) < 2exp [—AC + l()lS)Zkt(l +expAS)
0<s<t,x 2
for C > 0, A > 0. We choose C = pSlog(1/t) and A = (log(1/t))/S. Then,

P( sup |xs(r, 0, x) — x| 2pSlog(1/t))

0<s<t,x
< 2exp[-p(log(1/t))* + (log(1/0)* kt + k(log(1/1))*]
< Coexp[-(p - k)(log(1/t))*] as t—O0.

We choose S = (1/p)t!/B. Then,

P( sup |xs(r, 0, x) — x| > tl/ﬁ’>

0<s<t,x

< P< sup |xs(r, 0, x) — x| = t1/B log(l/t))

0<s<t,x
< Co exp[-(p - k)(log(1/6)*],

ast — 0. Here, 8’ > B and the constant Cy does not depend on x, r.

(2) Case ny > 1. Assume S¢ = {t1,...,tp,} witht; < ... < ty,. Given &7, ..., §} , we
put
In1 = Ul):ll _Xt(r’ St’ X)
and
o8 oy
M = -\, G, ) 1 = I S \Ay ’ 1 ’
max(s&a aX(r ¢, x) ) max(s;’lg) + aX(x O” )
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which exists by the assumption on y. Here, || - | denotes the norm of the matrix. In
rewriting the above, by an elementary calculation, we have

In, | < sup [$t,,,e(V) -yl + MSI;p [ty 1,80, V) = VI

+ M SUP [y, 2 b0, (V) = Y1 + ..+ M™ sUP o, (0) —XI .

We assume |I,,| > 1P, Then, for somej € {1,...,n1},

SUp 4.1.4) = Y1 > (1/n)M ™ eVE

Indeed, if for all j, sup, |,_,.,(y) - y| < (1/ny))M ™ ¢/, then
In, | < sup [bt,,,e(0) -yl + MSI;p 1Dt 1,t0, V) =V
+ M SUP [ty 2,0 (V) = Y1+ .+ M 5P Igbo,r, (0) = x|
< (A/n)M MtV 4 (U n )M EYE 4 (1)t < BB
which is a contradiction. Hence,
EPvlsen BOO™ [P (11| > €/P1S, &1, ..., £4,150)]

< EPrlsin [P(there exists j such that
sup ¢y, 1, () — vl > (1/ny)M " t1F)]
y

< an< sup |xs(r, 0, x) - x| > (1/n1)M-"1t1/ﬂ’> )

0<s<t,x
We choose " = B (ny) such that B < " < B’ and tYF < t1/F" < (1/ny)Mm /B <
t1/#" for t > 0 small. Then, by the proof of (2.36),

EPtlsen OO [P (1L | > €715, &7, ., £0)]

< n1P< sup |xs(r, 0, x) - x| > tl/ﬁ”)
0<s<t,x

< n1Co exp[-(p - k)(log(1/1))*]

as t — 0. This proves (2.35). O

2.3 Methods of finding the asymptotic bounds (lI)

Assume x(x) is an It6 process given by (3.2). In this section, we use an approxima-
tion method called the polygonal geometry method. Intuitively, we make polygonal
lines along with the trajectories of jump paths connecting jump points in between,
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instead of chains described in the previous section. This intuitive view will help us
to understand the support theorems stated in Section 2.5. In contrast to the Markov
chain method, this method is applied (at least here) only to the case where the Lévy
measure has a density.

By using this method, we can obtain similar results on the short time asymptotic
bounds of the density. Statements are simple compared to those obtained by the pre-
vious method, although the conditions are more restrictive.

2.3.1 Polygonal geometry

We assume, in particular, the following assumptions on the Lévy measure y(dz):
u(dz) has a C*-density h(z) on R™ \ {0} such that

supp h(-) c{zeR™; |z| <},

where0 < ¢ < +o0,

min(lzlz, 1) h(z)dz < +o0 ,

R™\{0}
2
j <M>dz<+oo fore>0, 3.1
h(z)
|z|>€
and that
h(z) = a <i> |z e (.2)
|z]

in a neighbourhood of the origin for some a € (0, 2), and some strictly positive function
a(-) e C®(S™ 1),

Here, we are assuming the smoothness of the Lévy measure. This is due to the
fact that we employ Bismut’s perturbation method. The latter half of the condition in
(3.1) is also the requirement from this method. It may seem too restrictive, however,
this method will well illustrate the behaviour of the jump trajectories, as will be seen
below.

We repeat several notations that appeared in Section 2.2. Set

Py=x+y(x,supp h) =x +{y(x,2); z € supp h} .

Then, each P, is a compact set in R? since y is bounded. For each y ¢ Ré(y # x), we
put
a(x,y)=lx,y)+1.
Here, lo(x, y) denotes the minimum number of distinct points z1,...,2; € R4 such
that
z1 €Py,ziePy ,, i=2,...,landye Py (z0=X). (3.3)

We always have a(x, y) < +oo for each given x, y € R4(x # y) by (3.2) and (A.1).
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We set
8(x,2) = h(H;'(2)) |UY) ' (x, Hy'(2))| forz e Py\ (3.4)

and g(x, z) = 0 otherwise. Here, we put Hy : supp h — Py, z = x + y(x, 2)(= z), and
Jy = (0y/9z)(x, z) is the Jacobian matrix of y. The kernel g(x, z) is well-defined and
satisfies

J f(2)g(x, z)dz = j fx+y(x,2)) h(z)dz, for f e C(Py). (3.5)

That is, g(x, dz) = g(x, z)dz is the Lévy measure of x;(x); supp g(x, -) ¢ Py by defini-
tion.

Remark 2.6. An intuitive view of the polygonal geometry is that one can cover polyg-
onal lines connecting x and y € R? by a sequence of “small balls” P,,’s with z;’s at
the jump points of x¢(x) and connecting those z;’s by piecewise linear lines. Histor-
ically, the polygonal geometry method has been employed earlier than the Markov
chain method. In the Markov chain approximation setting, assumptions stated in (3.1)
are not necessary.

Theorem 2.4 ([85]). Under the assumptions (3.1, 3.2) and (A.1, A.2), we have, for each
distinct pair (x, y) € RY for which x = a(x, y)(< +00),

}i_r)r(l) Pt(;fk, ) _ c.
where
C=Cx,y,x)
) {(m!) {odzrfy,_ dmagtez- gz}, w22,
gx,y), k=1

The proof of this theorem will be given below.

2.3.2 Proof of Theorem 2.4

Decomposition of the transition density
In this section we give a decomposition of p¢(x, y), which plays a crucial role. We partly
repeat a similar argument to what appeared in Section 2.2.2.

Given e > 0, let ¢ : R™ — Rbeanon-negative C*°-function such that ¢(z) = 1if
|z| > eand ¢¢(z) = 0if |z| < €/2. Let z¢(e) and z;(e) be two independent Lévy processes
whose Lévy measures are given by ¢¢(z) h(z)dz and (1 — ¢¢(2))h(z)dz, respectively.
Then the process z(t) has the same law as that of z;(€) + z;(e). Since the process z;(€)
has finite Lévy measure on R™\ {0}, the corresponding Poisson random measure N;(€)
on [0, +00) x (R™ \ {0}) counts only finite times in each finite interval [0, t]. We set
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8¢k = ([0, t]¥/ ~)and 8; = I>08¢,k, Where x> denotes the disjoint sum and ~ means
the identification of the coordinates on the product space [0, t] by the permutation.
The distribution ﬁt,e of the moments (instants) of jumps related to Ng(¢) in [0, t] is

given by
[ rs0apaiso = (¢ [ seomerdz) () exo ([ petomeraz) |
{#S¢=k}
xtikj--jf(sl,---,sk)dsl---dsk, 3B.7)

where f is a function on 8; x (a symmetric function on [0, ).

Let J(e) be a random variable whose law is ¢(z) h(z)dz/ (f ¢e(2) h(z)dz), and
choose a family of independent random variables J;(€), i = 1, 2, --- having the same
law as J(€). Choose O < s < t < +00. For a fixed S; € S, we consider the solution of the
following SDE with jumps:

xs(€, St, X) = X + i ¥ (xu-(€, St, x), Az, (€))

us<s
+ ) YXs,(€, St, %), Ji(€)) - (3.8)
S;i€S¢,Si<S
Then, the law of xs(e, S¢, x) has a smooth density denoted by ps(e, S¢, x, ¥) (cf. [140]
p.87). Then,
Ps(y) = | pste, St x, ) dPre(S) (39)
St
because z:(€) and z;(e) are independent, which is written in a decomposed form (by

putting s = t)
N-1

pe(,y) = Y pi(i, €, %) + pi(N, €,%,y) , (310)
i=0

where
peli, €,%,y) = j (e, Sty X, y) dPye(S0)

Sti

and p¢(N, €, x, y) is the remaining term. Then, it follows from the definition and (3.7)
that

Pk, e,x,) = 1/k) - exp (4] g2 haz) - ([ et nz)

t t
><J...jpt(e,{sl,...,sk},x,y)dsk...dsl. (3.11)
0 0
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We denote by x(€, 0, x) the process in (3.8) with S; € 8¢, and its density by
ps(€,0,x,y).

For the random variable J(¢) introduced above, there exists a density g¢(x, z) such
that P(x + y(x, J(€)) € dz) = g¢(x, z)dz. Indeed, g¢(x, z) is given by

bell (2))2x, 2)

[ $e(2) h(z)dz (.12)

8e(x,z) =

where g(x, z) is the density of the Lévy measure of x(x) (cf. (3.4)). Note that by defi-
nition, supp ge(x, ) C Py, and that g¢(x, z) is of class C*® whose derivatives are uni-
formly bounded (since g(x, z) only has a singularity at x = z). Now, foreach sy < --- <
Sk < t, we have

pt(e,{81,...,sk},x,y)=J’dz(’) J dn---jdz;(_l J dzy
P, P,

%0 Zl-1

{psl(e, 0, X, 25)8e(20, 21) Psy—s, (€, 0, 21, 218 (2], 22)
X Dsy-s,(€,0, 22, 25) -+ 8e(Zy_1» 2k) Pe-s, (€, 0, Zk, y)} . (B.13)

Indeed, the increment xs,.,(€, {S1, ..., Sk}, X) — X5,(€,{S1, ..., Sk}, x) has the same
law as that of x,(e,®,x) — x on (0,41 — s;) fori = 0,...,k(so = 0,Sks1 = 1),
and x(s,1y)- (€, {1, . . . , Sk}, X) is going to make a “big jump” (i.e. a jump derived from
Ji+1(€)) atu = sj;1 — s; according to the law g¢ (x(s,,,)- (€, {S1, - - - » Sk}, X), 2) dz.

Lower bound
Let €. = sup{e > 0; {|z| < €} c supp h} > 0, and choose O < € < €.. First, we note that
for each 1 > 0 and a compact set K, uniformly in y € K, we have

lirr(l) j ps(e,0,z,y)dz =1, (3.14)
s—
{z;lz-yl<n}

by Proposition 1.2 in Léandre [140]. Then, we have:

Lemma 2.8. Let X be a class of nonnegative, equicontinuous, uniformly bounded func-
tions whose supports are contained in a fixed compact set K. Then, given § > 0, there
exists a to > O such that

isrg Jf(Z)pt_s(e, 0,z,y)dz > fly) -6 (3.15)

foreveryf e X,y e Kand every t € (0, to).
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Proof. Given 6 > 0, choose 1 > 0 so that |f(z) — f(y)| < §/2 for each |z - y| < 1. Then,
Jf(Z)pt_s(e, 0,z,y)dz > j fliz)pe-s(e, 0, z,y)dz
{z5lz-yl<n}

- j (F(2) - F)Pes (€, 0, 2, y)dz + f¥)
{z;lz-yl<n}

x j Pes(e, 0, 2, y)dz
{z;lz-yl<n}

> (fy) - 6/2) j Pes(e, 0,2, y)dz .
{z;lz-yl<n}

By (3.14), we can choose ty > 0 so that if t < ¢, then

dnt j Pes(e, 0,2,)dz } (F) - 6/2) > fy) 6 forally e K. O

{z;1z-yl<n}

Now, we choose an arbitrary compact neighbourhood U(x) of x and arbitrary compact
sets K1, -+ , Ki—1 of R%, and set

K = {8e(zh, ), 8z, s+ 1 8z g, )
zo € U(x), 2} €Ky, 2 € Kk_l} .

Since X has the property in Lemma 2.8 (cf. (3.15)), it follows from (3.13) that for every
6 > 0, there exists ty > 0 such that for every 0 < t < to,

Dpe(€,{51, ..., Sk}, X, ¥)

> jpsl(e, 0, x, z4)dz, j dzy .- J dz;_,(8e(zy, 2}) - 6)

U LS Ky_1
o (ge(zp_1,¥) - 6) . (3.16)
However, for each fixed n > 0, we have
1' i f J’ ’ ’ ’ ! d ) = 1 b 3-17
tl—r};l)slsltgceRd Ds, (€,0, x, z5)dz, 3.17)
{Ix—zgl<n}

by (2.13) in [140]. Therefore, for every sufficiently small ¢ > 0, it holds that

P, 151, -+, SKd X, y) = (1 - 6) J JdZ'ldeQ---

Ux) K1 k>

j dz)_,(8c(zg, 21) — 6)(8e(2), 25) = 6) -+ (8e(2}_1,¥) - 6) . (3.18)

Ki-1
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Combining (3.11) with (3.18), we have
hmlnf( )pt(k €,X,Y)

> (1/k)- (1-6)- (jqbe(z h(z)dz)k

xjdz;jdzg--- J dz;_,

K1 K2 Ki-1

{(ge(x, 2)) - 8)(ge (2}, 25) - 6) -+ (8e(z)_1, ¥) - B)} (3.19)

Since § > 0 and Ky, --- , Kx—1 are arbitrary, and since supp ge(zl 1) C quil, i=
1,---,k-1,wehave

11m1nf< )pt(k €,X,Y)

> (1/KY) - (j be(2) h(z)dz)k

X j dz, J dz; - j dzx_18¢(x,21)8e(21,22) - 8e(Zk-1,V) - (3.20)

Px Pz Pz_p

Hence, it follows from (3.10) that

e 1
hrt%nf<ta(xy )p (%)

> (1/ate ) - ([ ¢e@ h(z)dz)k

X J dz J dz; - j dzi—18¢(X, 21)8e(21, 22) -+ 8e(Zk-1, ) . (3.21)

Px Pz Pz

Since € > 0 is arbitrary, in view of (3.12), we have

.. 1
lim inf ( ra5y) )pt(x y)

t—0
> (1/a(x, y)Y) J dz, j dzy --- J dzy-1
{8(x,z1)8(z1,22) - - 8(2k-1, )} - (3.22)

The proof for the lower bound is now complete.

Upper bound
The proof of the upper bound lim sup,_,(1/t**Y))p(x, y) is rather delicate and is car-
ried out in the same way as in [140], but it is a little more tedious in our case.

First, we choose and fix N > a(x, y) + 1. Noting that sup{p¢(e, S¢, x, y); #S; = 2,
x,y € R%} < C(e) (cf. [140] (3.23)), we have:
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Lemma 2.9. Foreverye > 0andt > 0, we have

sup pe(N, €, x,y) < C(e) tV . (3.23)
yeRd

Proof. Recall that
PeN, €, %, ) = j (e, St X, y) APy (S .
Sz\(U?Z)l St‘i)

Since
Pt e(#S¢ = N) < C(e)tV

by the Poisson law, we have

Pe(N, €,X,y) < sup pe(€, St, X, )Py ¢ (#S > N)
#S=N

< sup{pi(e, S, X, ¥); #5¢ 2 2, x,y € R C(e)t"
< C(e)C(e)t" . O
Lemma 2.10. For everyp > 1 and any n > O, there exists € > O such that forall t < 1

and every €' € (0, €),

sup pe0,€',x,y) < C', )t . (3.24)
|x=yl=n

Combining Lemma 2.9 with Lemma 2.10, we see that it is sufficient to study p¢(k, €, x, y)
for1 < k < a(x, y). For a given n > 0, make a subdivision of the space

_ ! ! d d
A={(zo,zl,...,zk_1,zk)eR x -+ xR%; 21 ePzg,zz eszl,-u ,zkePZ:k_l}

asA = Uiz:k;l Ai(n), where

Al(n)z{(zg,zl, ceesZy g, 21) € R % .x RY

5 Z1 ePzé,zz ePZrl,u- , Zk ePZ:k_1
and [x -zl <, |z1 - Zy| <, |z = Zhl <, lzk -yl <}

Ay ={(zh> 21, -+, 241, 2K) € R X xRY 21 € Py 2y € Pyyyee 2k € Py
and |x-zgl <n,lz1 -2}l > n,lz2 -2yl <,z -yl <},

and

Aper(={(2> 21, .+ Z}_;, 2k) € R x---x RY

;21 ePzg,zz ePzrl,m ,
zke Py and |x-zpl >n,lz — 240 > nlz2 -2zl >0, lzk -yl > n},
and we shall classify those divisions into four cases:
[A] = {Ai(); |z =yl > n}
[B) = {Aim)s lx -z >n and |z -yl <n},
(€1 ={A1} = {lix-zp| < m.ler -z < mp 2o =zl <o
lzik =yl < n}}
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and

[D] = {Ai(n); Ix - zg| < nand |z - y| < n} \ {A1 ()} .
We put
Iyt (€, {8150+ o5 Skb X, Y)

= Y [ {pate g zps s e, 021.2)
ADEIN 11y

8e(2h, 22)Ps,-s,(€, 0, 22, 25) X -+ X 8e(Z)_y» Zi)Pe-s, (€, 0, 2k, y)}
dzdz),_, ...dzidz), [N]=I[A]I[B],[C],[D]. (3.25)

Then, in view of (3.13), we have

pe(€, {s1,..., Sk} X, Y)
= (ItaL,en + 181,60 + I1cr,en + Iip,ep) (€, {51, - -, Sib, X, y) - (3.26)

since supp (ge(2;_4,7)) c Py~ for i=1,--- k.
Lemma 2.11. Forany (x,y) € RE¢xR¥)\ A (A = {(x, x); x € R%}), any {s1, ..., sk}, any
n > 0and any p > 1, there exists € > 0 such that if0 < €' < e and t < 1, then

(Lantn + 1816 + Iipnen) (€1, 451, 5 Sk X, y) < C(€', m, K, p)EP

Proof. The proof is essentially the same as that in [140] Proposition IIL.4, but is a little
more complicated.
First, note that there exists € > O such thatif 0 < ¢/ < eand t < 1, then

P { sup |xs(e', 0, x) - x| > 11} <c(e,n,pt? (3.27)

O<s<t

([140] Proposition 1.4 and Lepeltier—Marchal [150] Lemme 17). Then, we observe

I[B],t,r[(ely {Sl, ceey Sk}, X, Y) < Cl(el, n, k,p)tp .

Next, let G, : RY — R%, x — x+Y(x, z). If z € int(supp h), then G, defines a diffeo-
morphism by (4.2). Let G;l denote its inverse mapping, and put y(x, z) = G;l(x) - X,
z € int(supp h). Since y(x, z) is a bounded, C*-function both in x and z, (4.1) and
(A.2) imply that J(x, 2) is also bounded, and C* in x € R4 and z ¢ int(supp h). Note
that y(x, 0) = 0 since Go(x) = x. For fixed € > 0, put

Se = sup{h"/(x, Z)|; X € Rd,z € int(supp (1 — ¢¢) - h)} .

The following estimate, also obtained by Léandre [140] Proposition 1.3, is used in the
estimate of Ija) ¢ (€', {S1, ..., Sk}, X, ¥):
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for every p > 1, and every n with S¢ < n,

lim sup sup(1/s?) J ps(e, 0, x,y)dx < +co . (3.28)
s—0  yeRd
{xslx=yl>n}

Since S — 0 as € — 0, it follows from (3.25), (3.28) that
Iiay,e (€ {s1, - . o sib, %, y) < Ca(€', n, k, p)EP .
Using the inequality (3.27), we can prove a similar estimate for
Iipy,en(€ {s1, .o ou i x, ) . O

Noting Lemma 2.11, we only have to study I[C],t,,l(e’, {s1,..., 5k}, x,y) for each small
n>0andO < €' <e Puta(x,y) = k(1 < k < +00). Then, we have:

Lemma 2.12. Ifnissmalland 1 <i < x = a(x, y), then

Iicy,en(€', St, X, y) = 0 for S¢ € 8, (3.29)
and hence
j I[C],t,r[(el, S[, X, y)dP[,ef(S[) =0. (330)
St

Proof. Let Qy,,,; and Qy,; be as follows:
Qx,p,i = {z € Rd;ﬂ(zg,zl,z’l,--- ,zlf_l,zi) eRYx...xRY,
Z1 ePzé,zz ePZrl,u- s Zi Ele{il s
|X‘26| <n,lz —Z’1| <n,lz —Z'ZI <N, lzi—zl < n} s
Qx,i = {Z eR%3(z1, - ,zii1) e RIx---xRY,

z1€Py,zy €Pyyyo 211 € P, 2 € Pz,-_l}

= U{Pzi,ﬁzl € Py, ,Zi1 EPZH} .

Here, we put zo = x. Then, Q,; is a closed set in R? since each P, is compact and
zj = Py, is continuous. Observe that Qy,,,; > Qx,i foralln > 0, and ﬂn>o Qx,n,i = Qx,i-
Thatis, y € Qy,jifand only if y € Qy,y,; for all n > 0. Since supp (ge’ (zh, ) c PZ; for
j=0,---,i-1, we observe

I[C],t,r[(ers Sta X, Y)

= j {psl(E’, 0, X, z5)8e' (2 21)Ps,-s, (€', 0, 21, 2])

A1(m)
! ! ! ! !
8e'(21,22)Ps;-s,(€, 0, 22, 25) X -+ X 8er (2;_1» Zi)Pt-s; (€, 0, zi, y)}

dzidz_, ...dz1dz . (3.31)
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In view of the condition in Qy,,;, we see that
ify ¢ Qx,y,i then Ijcy,e n(€’, St, x,y) = 0. (3.32)

Recall that a(x, y) = x and i < k. By the definition of a(x, y) in Section 2.3.1, we have
that y ¢ Qy,i, which implies y ¢ Qy,y,; for every sufficiently small > 0. Hence,
I[C],t,n(e’, St, x,y) =0for St € 8,;ifi < k = a(x, y). Thus,

J’ I[C],t,r[(el, S[, X, y)dpt,er(St) =0. O
St,i

Lemma 2.13. Let X be a class of nonnegative, equicontinuous, uniformly bounded func-
tions whose supports are contained in a fixed compact set K. Let the constants n > 0 and
€' > 0 be those appearing inIic),¢,4 (€', St, x, y) and (3.32), respectively. Then, for every
6 > 0, there exists to > O such that

sup J f(@)pe-s(€',0,z,y)dz < fly) + 6 (3:33)
= {z;lz-yl<n}

foreveryf e X,y e Kand every t € (0, ty).

Proof. For a given § > 0, there exists n; = n1(K, X, §) > 0 such that |f(z) - f(y)| < 6/4
for each |z - y| < 1. We may assume 7171 < n by choosing small 6. Then, we have

sup | f@pese, 0,2, y)dz
s<
{z;lz-yl<n}
ssup | faps(e',0.z.y)dz
<
o=t {z31z=yl<ni}
psup [ f@pes(e 0.2z (3.34)
<t
’ {zni<lz-yl<n}
The first term can be estimated as in Lemma 2.8 by f(y) + 6/2 for t € (0, t;) for some

t1 > 0. As for the second term, since > 0 is arbitrary in (3.14) and since all f’s in X
are uniformly bounded, there exists ¢, > 0 such that

sup J f@)pe-s(€', 0, z,y)dz < §/2
<t
’ {z;n1<|z-yl|<n}

foreveryf e X,y e Kand t € (0, t).
Letting t, = min{t,, t,} > 0, we have the assertion. O

Choose an arbitrary compact neighbourhood U(x) of x and arbitrary compact sets
K1, , Ke_1 of R9such that {z; |z—-x| < n} ¢ U(x)and that Qx,pi<Kii=1,---,x-1.
Set

X = {ge’(z(,), s ge’(zlp )y :ge’(Z;_l, s
zy € UX), 2y € Ky, , 2, | € K1}
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To apply Lemma 2.13, we should be a little more careful since ¢’ > 0 depends on
the choice of > 0 by Lemma 2.11. Since X has the property in Lemma 2.13, for a given
8 >0,n>0,¢ >0, there exists ty > 0 such that for every 0 < t < to,

sup j 8er(zi 1, 2)Pe-s(€', 0, zi, z})dz; < 8o (2}_y, 2}) + 6, (3.35)
s<

{lzi—z{|<n}
forzy € Ux),z}_; € Ki-1,i=2,++ , k(2 = y).

From (3.35), we have, in view of (3.31), for O < ¢t < tq,

Iiclen (€, {51, - - sch X, y)

< j pSl(ela ma Xa Z’O)dz(,) j dZ,1 J’ dZ:(—l

Ux) Ky Ky-1

{825, 2)) + 8) - (ger(Zh 1, y) + )} . (336)

Hence, by (3.17),
lir?_il)lp(l/t") j % j (j Pe(2) h(Z)dZ)K

x Iicy,en (e’, {s15 ... Skh X, y) dsy - ds;

< (j b (2) h(z)dz)K j dz, J dzy - j Az

{ger (X, 21) + 6)(8er (21, 22) + 6) -+ (8er (2k=1,Y) + )} . (3.37)

Since § > O and K4, --- , Ky are arbitrary, we have, in view of Lemma 2.9 (with
N = x + 1), Lemmas 2.10 and 2.11, 2.12 and (3.10), (3.11), (3.26), that is,

lintrl sup (ti,()pt(x, y)
< (1/x)- (J be(2) h(z)dz)K

X szl j dz - J dzy_1{8e (X, 21)8e (21, 22) - - - et (Z-1, V)} (3.38)

Px Pzy Pz
Letting ¢/ — 0, we have, in view of (3.12),
1
lim sup (—)pt(x, )
t—0 tx
< (1/k!") x jdzl j dzy -
Px Pzy

X J dzy—1 8(x, z1)8(z1, 22) ---8(zx-1,Y)} - (3.39)

Pze_p

The proof for the upper bound is now complete.
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The statement of Theorem 2.4 is immediate from (3.22) (with k = a(x,y)) and
(3.39). The condition on the continuity of the Lévy measure has well illustrated the
nature of the polygonal method. O

2.3.3 Example of Theorem 2.4 - easy cases

In this subsection, we are concerned with the constant in the upper bound of p;(x, y)
as t — 0, mentioned in Theorem 2.4. We shall restrict ourselves to a simple Lévy pro-
cess to exhibit the virtue of the polygonal method.

Example 2.1. Let d = m = 2, and let a smooth radial function n satisfy supp n =
{x; |x| < 1} and n(x) = 1 in {x; |x| < 1/2}. Put

h(z) = n(2)|z| 7%, a€(0,1), forzeR?\{0}, (3.40)

that is, h(z)dz is the Lévy measure for a truncated stable process (cf. [73], Section 3)
with index a € (0, 1). Then, h satisfies (3.1) with ¢ = 1 and (3.2). Let y(x, z) = z, and
let x¢(x) be given by
xe(x) =x + ZAz(s) . (3.41)
s<t

Then, Py = x + supp h = x + B(1)(B(1) = {x;|x] < 1}), and g(x, z) is reduced to
g(x, z) = h(z - x) (cf. (3.4)).

Let xo = (0, 0) and choose yo = (e, 0) so that 1 < e < 2. We then have a(xg, yo) =
2. The constant C(xg, Yo, 2) is calculated as follows:

C(x0, Y0, 2) = jg(xo,z)g(z, yo)dz = j hz-xo)h(yo —2)dz.  (342)
Py, B{1)

The integral (3.42) makes sense. Indeed, if z = 0, then h(yq — 0) = h(yg) = 0. Since
Yo € {x;|x| > 1}, by the continuity of x — Py, there exists § > 0 such that if |z— x| < 8,
and then yo ¢ supp (g(z,-)). That is, g(z,y0) = O for z € {z;|z — xo| < &}, and this
implies that the integral exists.

Example 2.2. Let m = d. Let z1(t),--- , z4(t) be an independent one-dimensional
truncated stable processes (stationary martingales with jumps), whose common char-
acteristic function is given by

W) = exp | ¢ j (€= _ 1~ i(z, v)h(z)dz
R\{0}

That is,

t+
zj(t)=j j Ny(dsdz), j=1,--.d,
0 R\{0}
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where Nj(dsdz)’s denote the compensated Poisson random measures on [0, +00) X
(R \ {0}), having the common mean measure h(z)dz x ds: Nj(dsdz) = Nj(dsdz) -
h(z)dz x ds. Here, the Lévy measure h(z)dz is given by

h(Z) = rI(Z)Izl_l_a, a e (1, 2)’ Z € R\{O} s (3-43)

where 7(z) € C3°(R), 0 < n(z) < 1, supp 1 = {z;|z| < ¢}, and n(2) = 1in {z; |z| < §} for
some O < ¢ < +00.

Let eg, e1, . .., eq be constant vectors in R? such that (e, --- , e4) forms a basis
of ToRY. Given x € R4, consider the jump process x;(x) given by

d c
Xe() =x+ ) Y ejAzj(s) + eot = X + e1z1(t) +--- + eaza(t) + eot , (3.44)
j=1s<t
where Y ¢ denotes the compensated sum stated in Section 1.3. As a linear combination
of truncated stable processes z;(t),--- , z4(t) and a uniform motion egt, x:(x) pos-
sesses a transition density p¢(x, y) which is C*® with respect to y(y # x) fort > 0
(cf. [143]).

In [84], the lower bound of p;(x, y) as t — 0 for given distinct x, y is obtained for
processes including the above type. However, the analysis to obtain the upper bound
for p¢(x, y) is somewhat complicated. This is because in order to get the upper bound,
we have to track all the possible trajectories of x;(x), each having a Lévy measure
which is singular with respect to the d-dimensional Lebesgue measure. To do this,
we make use of a kind of homogeneity of the process, which is due to the vector fields

e, - , eq being constant, and make a combinatorial discussion. For this purpose, we
prepare the following notation.
Let
I(d) = {(i1,--- ,iq);i1,--- ,ig=0o0r1} . (3.45)

ForI = (i1,---,iq) € J(d), we put |I| = the length of I = i + --- + ig. We put I' =
(i, ,i)) € J(d) for I = (i1, - , iq) in the following way: i]f = 1ifij = 0 and i]f =0
otherwise. We write I = (i1,--- ,iq) < J = (1,--- ,ja) for ] € I(d) if i, < j,, v =
1,---,d.Consider a sequenceb = (I, --- , I;) of elements of I’s in J(d). We denote by
8(k, ¢) the following family of sequences:

8k, &) ={b=(I1, -, Il -+ Ll =k, [[| 2 1,j=1,---, ¢} . (3.46)

Forb = (I1,--- , I,) € 8(k, £), we put the weight w(b) and the a-weight w,(b) of indices
Ii,---, Ip as follows: w(b) = [I1]| + --- + |I¢], wa(b) = Zf:1(|1,| - L/ a).
Consider the parallelepiped of R? built on the basis (e1, - , eq)

Q={tie1 +---+tgeq;tj € (supp h),j=1,---,d} ,
and put Py = x + Q. Similarly, define sets
Q' = {ti,e1 +--- + ti,eq; ti, € (supp h)ifi, = 1, t;, = 0if i, = O}
and PL = x+ Q' for I = (i1, --- ,iq) € I (d).
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For each y € R4(y # x), we put
Bx,y) =€o(x,y) +1. (3.47)

Here, €o(x, y) denotes the minimum number of distinct points z1,--- , z¢ € R4 such
that z1 € Px,z, € P;,,--- ,z¢ € P;,, andy € P,,. This means thaty € R4 can be
joined to x by a polygonal line with £€4(x, y)-corners passing along the combination of
the parallelepipeds Py U Pz, U---U Py, . . Furthermore, we put

B(x,y) = min {w(b);b = (I, , 1) € (U(), € = Bx, y)

I
such that z; € P)I(1 ,Z) € PZ, e, Zeoq € P

andy € PZ,l forsome zq, -+ ,zp_q € Rd} , (3.48)

Pa(x,y) = min {wa(b);b = (I, , 1e) € (I(AD)°,

¢ =B(x,y), w(b) = x, y)} . (3.49)

We remark that B(x, y) < dB(x, y) with B(x, y) < +oo (since ¢ > 0), and that p(x, y) <
B(x,y). In case ¢ = +o0, we always have B(x, y) = 1(x # y).

We fixx e R9and I = (i, --- , iq) € J(d) in what follows. We assume |I| = b, and
denote by ij,--- , i, the nonzero indices i, arrayed in numerical order. Consider the
mapping

b
Hy : (supp W — Pl (tir, -, ti) > X+ Y tirei; (3.50)
r=1

This introduces the Lévy measure dul, on PL by
Jf(z)dyf((z) = J---jf(x+ tirejr +--- + ti;ei;)
P,
Xh(ti;)“-h(tiz)dti; ---dl’i; s (3.51)

for f € C(PL). We abbreviate this by u! (dz) for simplicity. Here, dz denoted the volume
element induced on P} by

dz = |de'i A---Ande'b|, zePl (3.52)

where (de'l, - -- , de's) denotes the covector field on Pf( correspondingto (e;:, -+ , eir ).
Since dy{((z) is the measure transformed from h(t1)®---®h(tp)dt; - - - dtp by the linear
mapping

HL:(t1,- ,tp) — x+ A (ty, - , tp),
Al = (€iry ey ei;)), it possesses the density with respect to dz, which is C* with
respect to z € PL \ {x} and x € RY. We shall put

I
glix,z) = %(z) ifze PL\{x},g'(x,z) =0 otherwise. (3.53)
z
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Explicitly,
g'x,z2)=(h®---®h) ((H)I()_1 (z)) |[]H)I(]_l| , zePL\{x}. (3.54)

Obviously, we have for I* = (1,1,---,1), g (x,z) = g(x, z), the density of the
original Lévy measure of x(x).

Proposition 2.6. For each x,y € R4(y # x), suppose that the numbers A = B(x,y),
K= B(x, y) and p = p4(x, y), defined as above, are finite. If x > d — 1, then we have

1
limsup(—)pt(x, y)<C.
t—0 tP

The constant C has an expression

C= Y a0 | dzn | dzsl oz gty
I1,.Ip)ES (K,8)
Asesk, Iy <<l p{(l ple-1

Ze-1
Here, we put c(I1, -+ , Ip) = (K!IL, (1/rj1)).c* (i, €), where 1 = #{r € {1,---, &) iy =
1} for Iy = (i1, -+ , irq) and

t t
cr(k, ) = limsup(i> J ds, j dsy--- j dse
t—0 tP

0 S1 Se-1

ILI-1-11,/a o r
{511 g, _gllF1-Inia (g, _ g, )Hel-1 |Ig|/a} )

The proof of this proposition depends on Léandre’s method in [140], and on some
discussions in [84, 85]. A crucial idea in our proof is the (intuitive) notion of polygonal
trajectories. A polygonal trajectory is a trajectory obtained from a piecewise linear line
whose segment from a corner point z; to the next corner point z;,; is parallel to some
combination of vectors contained in {eq, --- , e4}. It should be noted that in a small
time interval, there is a tendency that the process x;(x) makes use of those trajectories
which jump as few times as possible and stay at a point until just before the moment
of the next jump.

Intuitively, B(x, y) above can be interpreted as the minimum number of jumps by
which the trajectory can reach y from x along a polygonal line, and B(x, y) corresponds
to the weight of such a line. We need another notion of a-weight p,(x, y) of a line for
considering the factors which ‘stay’ in the same corner point at each jump moment,
and this gives the real power in t. The decomposition of jumps to those factors which
really jump and to those that stay in is carried out in terms of indices I and I'.
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Examples of Proposition 2.6
We shall provide some simple examples of Proposition 2.6.

Example 2.3. Letd=2,c=1,e; = bixl,e2= aiXZ,xo=(0,0)andy0=(e,f),0<e<

1,0 < f < 1. Clearly, B(xo, Yo) = 1, B(x0, Yo) = 2, and we have 8(2, 1) = {((1, 1))}, and
hence p4(xo, yo) = 2. We have

C = C(x0, Y0, 2,1,2) = c((1, 1))g™" (X0, yo) = h(e)h(f) < +0o .
In this case, we know exactly that

pe(x0, ¥0) = pr(@)p:(f) ~ h(e)h(Ht? ,

as t — 0 (cf. [84]). Hence, the constant is the best possibility.

Example 2.4. Letd = 2,¢c = 1, e; = bixl’ e, = aixz,xo = (0,0) and yo = (e, 0),

0 < e < 1.Clearly, B(xo, Yo) = B(Xo, o) = 1,and wehave §(1, 1) = {((1, 0)), (0, 1))} =
{(I1), (I2)}, and hence p4(xp, yo) =1 — 1/a. We have

C=Clxo,y0,1,1,1-1/a)= )  c(Dg'(xo,Yo0)
(Ne8(1,1)

= c(I1)g" (x0, yo) + c(I2)g"™ (x0, yo)

:<1}l>h(e)<+oo

since yo ¢ P \ {xo}.
In this case, we know exactly

1 1 1
Pi(x0, Yo) = pi(€)pi(0) ~ ;T(l + a) h(e)t-}

ast — 0 (cf. [225], (2.211)). Here, 21(1 + 1) = 1iply < 1pd) < (1_%) for all
1 < a < 2, and hence our constant is overestimated. ’

Example 2.5. Letd = 2,c = 1, e; = bixl’ e, = ai)(z’ Xo = (0,0) and yo = (e, 0),
1 < e < 2. Then, B(xo, yo) = B(X0, Yo) = 2. We have

8(2,2) ={((1,0),(1,0)),((1,0),(0, 1)), ((0, 1), (1,0)), ((0, 1), (0, 1))} ,

and hence p,(x0, o) = 2 - 2/a.
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We can calculate C(xg, yo, 2, 2, 2 — 2/a) as follows:

Ctro¥0,:2,2.2-2/@ = ¥ clli, )% { | 8706 228" (2, yo)dz2

(I1,13)€8(2,2) I

L=y P
= c((1,0,1,0) [ g0, 22080 22, o)z
PO
+ (0,1, 0,1) [ g°V00, 208V 22, y0)z:
PO
=A+B (say).
For A, we have, for z; = (u, v),
g19(x0, 22) = h(u - 0) ifue(-1,1),
=0 otherwise ,
g19(z,, y0) = h(e - u) ifeew-1,u+1),
=0 otherwise ,

and dz, is reduced to du. Hence, A = c((1,0), (1,0)) [, h(u)h(e - w)du.
For B, we have, for z; = (u, v),

gV (xo, z2) = h(v - 0) ifve(-1,1), u=0
=0 otherwise ,

2V (z3,y0) = h(-v) ifve(-1,1), u=e
=0 otherwise ,

and dz is reduced to dv. Hence, B = ¢((0, 1), (0, 1)) f_ll h(v - 0) x 0dv = O since

Yo ¢ PES:&; \ {(0, v)} for -1 < v < 1. Hence,

)B(l—%,Z—%)x Jl h(u)h(e — u)du < +oo .

1
C(z0,Y0,2,2,2-1/a) = ( 1
e-1

1
a

Here, we used

t t
c((1,0),(1,0)) = z—'thsup( 212/a>xjdsljdsz{ 152 - sV

210!
1
:( >B<1-1,2-1),
1_% a a

(=}
©n
-

where B(p, q) denotes the Beta-function.
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Example2.6. Letd = 2,c = 1,e; = =%, e, = aixz’ Xo = (0,0),y0 = (3, 7).

_ ox;°
Then, B(xo,Y0) = 2, B(x0,Y0) = 4. We have 8(4,2) = {((1,1), (1, 1))}, and hence
PaXo0,Y0) = 4
We can calculate C(xo, yo, 2, 4, 4) as follows:

C(x0,Y0,2,4,4)

- Y e dod |z | dzgm) g o)

Iy, Tp)E€S (4,6),204 v .
Iy <<l 1 -1
15slp Py P

- Y o) [ g zgt e ydn s Y clihb)

(I1,12)€8(4,2) (I1,1,13)€8(4,3)
<k pf(%) I1<hy<3

x j dz; j dzs g1 (x, z2) g (22, 23) 8" (23, o)
Piz

11
p 2

X0

+ Z cl, b, I3, 1)

(I1,17,13,14)€8 (4,4)
I1<h<l3<l,

X I dz; J dz; J dz4g" (x, 22)8" (22, 23)8" (23, 24)8" (24, Vo)
Py P2 P

=A+B+C (say).

We have, for z, = (u, v),

dv h(u)h(v)h 3 u) h (% - v) .

0 e,

1
A=c(1,1),0, 1))Jdu

We observe
84, 3)n{b=(I,L,15) € @2)’;I <L < I5}
=1{((1,0),(1,0),(1,1)),((0, 1), (0, 1), (1, 1))} ,

and hence for z; = (u, v), z3 = (w, t), we have

B =c((1,0), (1,0),(1,1)) jl du T {h(u 0)h(w — u)h(_ —w)h(%)}
-1 u-1
+¢((0,1), 0, 1), (1, 1)) jl dv Tldt {h(v —0)h(t - V)h (% - W) h (;)}
-1 u-1

=0+0
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since h(%) = h(%) = 0. The term C turns out to vanish for a similar reason. Hence,

fdu J1 dvh(u)h(v)h(— - u) h (% - v) .

C(x0,Y0,2,4,4) 7

-L\IH

Here, we used

c((1,1),(1,1)) = ><hmsup(%>

¢ ¢
41

S0 nsup | 7 de1J’d3251(52 - 51)
0

S1

1\/1 ., 1
=oxtimsun () (5¢') = 7

2.4 Summary of short time asymptotic bounds

By using the integration-by-parts formula and the Fourier formula, we can show the
existence of a smooth density for the probability law associated with a process X;,
which derives from the SDE with jumps.

In this section, we provide a summary of various types of the short time bounds
of the density function p(x, y) with given x, y. Results are basically proved in similar
ways to what was stated in the previous sections or in the references therein. Hence,
we omit the proof of each case. These bounds are closely related to the short time
behaviour of X;.

2.4.1 Case that y(dz) is absolutely continuous with respect to the m-dimensional
Lebesgue measure dz

In this subsection, we assume that x;(x) is given in Section 1.3.

Case that the coefficient y(x, z) is non-degenerate
Proposition 2.7 ([184]). The density p¢(x, y) satisfies the following estimate:

(@) suppix,y) < Cot_/% ast — 0, (4.1)
X’y

(b)  pelx, X):t_% ast — O uniformlyinx. (4.2)

Proposition 2.8 ([85]).
(1) off-diagonal estimate
Assumey € 8, that is, a(x, y) < +0o. Then, we have

pe(, )=tV ast—0. 4.3)
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(2) diagonal estimate
pe(x, x):t_% as t — O uniformlyinx . 4.2)

These results have been mentioned in Theorems 2.2 (a), 2.3, respectively.

Case that the coefficients are degenerate
There is no result at this point.

2.4.2 Case that p(dz) is singular with respect to dz

Now, we introduce a concrete “singular” Lévy measure of z(s) which has already been
described in [209] (Example 3.7), and in [25] (Section 2). Let p(dz) = Y72 knbiq,}(d2)
be the d-dimensional Lévy measure such that (a,;n € N) and (k,;n € N) are se-
quences of points in R? and real numbers, respectively, satisfying

(i) |ay| decreasestoOasn — +co,

(i) kn >0,

(iii) Y520 knlan|? < +oo.

For this Lévy measure, we can show the unique existence of the solution x;(x) or Y;
given in Sections 1.3, 2.5.1 (below), respectively, and the existence of the density func-
tions under some of the assumptions ([126, 181]). We further assume that

N = N(t) = max{n; |ay| > £/#}=log (%) . (4.4)

Case that the coefficients are non-degenerate
Proposition 2.9 ([89, 93]). (1) off-diagonal estimate
(@) Assumey € 8§, thatis, a(x, y) < +oo. Then, we have

P, y)=t® B gs t 0. (4.5)

(b) Assumey € 8\ 8(a(x,y) = +00). Suppose b(x) = 0 and let B’ > B. Then,
log p¢(x, y) is bounded from above by the expression of type I' = I'(t):

= —miné(wn log (%) + log(wn!)> +0 <log<%>loglog (%)) , (4.6)

and is bounded from below by the expression of type

(/P <log<%>>2 +0(10g(7))

with some c > 0 independent of B and y as t — O.
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Here, the minimum in (4.6) is taken with respect to all choices of ao, . . ., ay by &, for
n=1,2,...,ny and n; € Nsuch that
Y = An 06 &1, En)l < 6P (4.7)

where w,, = # of a,, in the choiceand n; = Zﬁl:o Wy, where (4,)72, An : Ré+mxn _, pd
are functions defined by

Ao(x) =x,
{Anﬂ(x, X1y ooy Xns1) = An( X1, ooy Xn) + PARK, X1, oo oy Xn), Xnat) -
(2) diagonal estimate
pe(x, x):t_% as t — 0 uniformly in x. 4.2)"

These results have been mentioned in Theorems 2.2 (b), 2.3.

Case that the coefficients are degenerate

(The result has only been obtained in the case that X, is a canonical process as defined
in Section 2.5.1. See [101] for a case of It process.)

(1) off-diagonal estimate

Consider, in particular, a singular Lévy measure

m
H=Zﬂj=
j=1

Here, T} pj = yjo ].‘1, yj is a 1-dimensional Lévy measure of form Y ;> ; kn6(+4,}(.) and
Tj:zj— (0,...,0,2,0,...,0). Welet

m

T]-* M. (4.8)
1

1) =Y kn(6ia,y () +8ay()),j=1,...,m (4.9)
n=0

where
kn=p"8, Be(0,2), and a,=p™".

Here, p denotes an arbitrary prime number.

Proposition 2.10 ([91]). Let u be given by (3.8) above. Let y # x. Under certain assump-
tions, we have the following estimates for the density p:(x, y).
(a) Assumey € 8, thatis, a(x, y) < +oo. Then, we have

pe(x,y) < CtON-dB g5t 0,

(b) Assumey € 8\ 8(a(x,y) = +00). Then, log p¢(x, y) is bounded from above by the
expression of type

Irt)+0 (log(%)log log(%)) (4.10)

ast — 0.
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Here, a(x, y) is defined as above, and I'(t) is given similarly to (4.6). Namely the chain
(Ap), above is replaced by (C,)$2, given below: let (Cy)nen, Cn : R4*™" — RY be
a deterministic chain given by

Col0) =x,
Cnr1(X3 X1, « o s Xne1) = Cn(X3 X1, -« o5 Xn)
5 0)
+ an+1Xi (Cn(x;x1, ..., Xn))
j=1

+ {Exp ((ZXE{LXJ (Cn(x;x1,5 .. .,xn))>
j=1

m .
~ Cn X1s e Xn) = Y X0 X (CaX X1, - .,xn))}

j=1
< 0)
= Exp anuXi (Cnx;x1, .., x) | - (4.11)
j=1
(2) diagonal estimate
pe(x, x):t_% as t — 0 uniformly in x . 4.2)!"

2.5 Auxiliary topics

In this section, we state some topics which are related, but not directly connected, to
Malliavin calculus of jump type. In Section 2.5.1, we state Marcus’ canonical processes.
In Section 2.5.2, we state the absolute continuity of the infinitely divisible laws in an
elementary way. In Section 2.5.3, we state some examples of chain movement approx-
imations of Section 2.2.2. In Section 2.5.4, we state the support theorem for canonical
processes. The proofs of the results in Sections 2.5.2, 2.5.4 are carried out by utilising
classical analytic methods, and we omit the details.

2.5.1 Marcus’ canonical processes

In this section, we introduce Marcus’ canonical process ([164]), or geometric process,
and the stochastic analysis on it.

Let X4, ..., X,y be C*®, bounded vector-valued functions (viewed as the vector
fields on RY), whose derivatives of all orders are bounded. We assume that the re-
stricted Héormander condition for X4, --- , X;; holds, that is,

(RH) Lie(X1, -, Xm)(x) = Ty(RY) forall x € RY .
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We also introduce the space of vectors 2, k=0, 1, 2, ... by
ZO = {Xl, ey Xm}

and
Se=1{[X;, Y;i=1,...,m,Y € Z}_1}.

Here, [X, Y] denotes the Lie bracket between X and Y.
We say the vectors satisfy the uniformly restricted Hormander condition if there
exist No € Nand C > 0 such that

No
(URH) Y Y W Y(0)? = Chv)?
k=0YeZy

forall x ¢ R and all v € R¢.
Let Y¢(x) be an R4-valued canonical process given by

m
dYi(x) = Y X;(Y-(x)) o dzj(t), Yo(x) =x (5.1)
j=1
with z(t) = (z1(¢), . . ., zm(1)).
The above notation can be paraphrased in It6 form as

dYi(x) = Y Xj(Yr-(x))dz;(t)
j=1

+ \|Exp (ZAzj(t)X,-> (Y- (%)) = Y (x) - ZAzj(t)Xj(Yt_(x))} . (52

j=1 j=1

Here, the second term is a sum of terms of order O(|Az(s)|?), which in effect takes into
account all higher order variations of z(t) at time s, and ¢(¢, x) = Exp (tv)(x) is the
solution flow of the differential equation

d
d—(f(t, x) = v(g(t,x)), P(0,x) =x.
In (5.1), (5.2), we have omitted the drift (and the diffusion) term(s) for simplicity. In

a geometrically intrinsic form on a manifold M = RY, the process Y; can be written by

dY; = Exp (Z dzj(t)xj(yt_)> 0, Yox)=x.

j=1

According to this model, a particle jumps from x along the integral curve (geo-
metric flow) described by ¢(s, x) instantly, that is, the particle moves along ¢(s, x)
during O < s < 1 outside of the real time t and ends up at Exp (sv)(x)|s=1. In this sense,
a canonical process Y; is a real jump process with a fictitious auxiliary process, and Y;
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is connected to this continuous process through the fictitious time. The fictitious time
can also be viewed as idealized time which man can not observe. In this perspective
a canonical process is a continuous process on the idealized time interval which is
partially observed.

The equivalence between (5.1) and (5.2) implies that the canonical process is also
an It0 process (refer to (5.3) below).

In [134], the process Y:(x) is called “Stratonovich” stochastic integral due to the
last correction term on the right-hand side of (5.2). However, it is different from the
original Stratonovich integral. In [134], they used this name since two integrals re-
semble each other in spirit. The difference lies in the fact that Y;(x) uses a geometric
flow as correction term instead of the algebraic average in the original one. We mimic
their notation odz(t) in this book. (Some papers use the notation ¢dz(t) instead of it.)
The SDE (5.1) has a unique solution which is a semimartingale ([134] Theorem 3.2). By
pe(x, dy) we denote the transition function of Y(x).

The main point of introducing this process is that the solutions are the flows of
diffeomorphisms in the sense explained in Section 1.3 (cf. [123] Theorem 3.1, [134] The-
orem 3.9). It is shown (cf. [134] Lemma 2.1) that Y(x) can be represented as

m t t
Ye(x) = +ij](ys ) )dz,(s)+Jh(s Ys_(x))d[z]2 (5.3)
=lo 0

[

where
Exp (Y12, Azj(8)X;) (%) — x = ¥;L; Azj(s)X;(x)

|Az(s)|
is a Lipschitz process in s with a bounded Lipschitz constant, and [z]g = Zj"ll (zj, zj]g
denotes the discontinuous part of the quadratic variation process. An intuitive mean-
ing of this formula is as follows. At each jump time t of z, we open a unit length interval
of fictitious time, over which the state Y;_(x) changes continuously along the integral
curve Exp (r Zj"ll Azj(H)X;)(.), 0 < r < 1 to the state

h(s, x) =

m
Y:(x) = Exp <ZAZ}'(t)X]’> (Ye-(x)) .
j=1

Viewing this expression, the canonical process Y; seems to be near to the Fisk-
Stratonovich integral of h (cf. [192] Chapter V.5). However, it differs from the Fisk—
Stratonovich integral in that the latter cares only for the continuous part of the
quadratic variation process of z, whereas the former also cares for the discontinu-
ous part of it.

Hence, an intuitive view of the canonical process is that as the It6 integral takes
care of, up to the second order of discontinuities, Az(t) of the integrator, the canonical
process also takes care of the higher orders (Az(t))", r = 1, 2, ... of discontinuities in
terms of the exponential function in h(t, x). This enables us to naturally treat the jump
part geometrically. See the support theorems in Section 2.5.4.
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For the Jacobian process VY;(x) and its inverse process (VY;(x))~1, we refer to [95]
Lemma 6.2, [128] Lemma 3.1.
For this process, we have the following:

Theorem 2.5 ([128] Theorem 1.1). Under the uniformly restricted Hormander condition
(URH) on (X, j =1, ..., m) and a non-degeneracy condition (A.0) on u, the density of
the law of Y exists for all x e R4 and all t > 0: ps(x, dy) = pt(x, y)dy.

Equation (5.2) is a coordinate free formulation on SDEs with jumps. See [134] for the
precise definition for this type of integrals for semimartingales. We shall call it a canon-
ical SDE driven by a vector field valued semimartingale Y(t) = Z]-’Zl 7 (t)X;, according
to Kunita [123, 124, 128].

2.5.2 Absolute continuity of the infinitely divisible laws

As it is called, the infinitely divisible law (ID) on R is the probability law which has
power-roots of any order in the sense of convolutions. That is, 7 is an ID law if for any
n, there exists a probability law 77, such that

TT=TIp % -+ % My . (5.4)

We recall the Lévy—Khintchine formula which characterises the Fourier transform
of the ID law. The law 7 is an ID law if and only if there exist a € R, b > 0 and a o-finite
measure u satisfying IR\{O}(l A |x|2)y(dx) < 00, for which 71 can be written as

22 ]
f(A) = exp | iald - % + J (e’AX -1- i/1x1{|x|51})y(dx) . (5.5)
R\{0}

By (5.5), this ID law is the law of X;. Here, (X{)¢0 is a Lévy process. More precisely, this
process is given by the Lévy-It6 decomposition

t t
X¢=at+bW; + E! J xN(dsdx) +J J xN(dsdx) . (5.6)

[x|<1 1x|>1

Here, W is a real Brownian motion, N is a Poisson measure which has the density
dsu(dx) on R* x R.

Here, we see by the infinite divisibility that for a Lévy process X; such that X; ~ 7,
every X has an infinitely divisible law ¢, and it is given by

b2A?

fre) = expt | iad - 22 4 j (€ = 1 - iAx1 yeny ) () (57)

R\{0}
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(X¢ ~ ). As we shall see below, the parameter ¢ is important to inquire into the ab-
solute continuity of the ID law. The next theorem due to W. D6blin characterises the
continuity of the ID laws.

Theorem 2.6. Let i1 be an ID law whose characteristic function is given by (5.5). m is
continuous if and only if b # 0 or p is an infinite measure.

Then, we have the following corollary.

Corollary 2.1. Let i be an ID law whose characteristic function is given by (5.5). 7 is
discrete if and only if b = 0 and p is a finite or discrete measure.

In what follows, we assume 7 contains no Gaussian part (b = 0). For a Lévy measure y,
let f1(dx) = (|x|> A 1)u(dx).

Theorem 2.7 (Sato [195]). Let i1 be an ID law whose characteristic function is given by
(5.5). Assume b = 0 and that y is an infinite measure. Suppose that there exists some
p € Nsuch that pi*P is absolutely continuous. Then, m is absolutely continuous.

This theorem assumes a (very weak) smoothness for the Lévy measure. This assump-
tion is used in stochastic calculus of variations developed by J.-M. Bismut (cf. [160]).
A weak point of this theorem is that it excludes the discrete Lévy measure. The follow-
ing theorem admits the case for a discrete Lévy measure and holds under a weaker
assumption on small jumps.

Theorem 2.8 (Kallenberg [111]). Let m be an ID law whose characteristic function is
given by (5.5), and let b = 0. If

lim e?|log e| L fi(-¢, €) = +00, (5.8)
€—

then i has a C™ density whose derivatives of all orders decrease at infinity.

We introduce a weaker assumption:

lim iélf e?|logel fi(-€,€) > 2. (5.9)
€—

Since cos x ~ 1 — x2/2(x — 0), it follows from the above calculation that
71(2)] < 1217197 2] > o0,

and hence 7 is absolutely continuous by a Fourier lemma.

Conversely, let 77 be the law of X;. We do not know a priori if X1/, is absolutely
continuous under (5.9).

Indeed, we only see by (5.7)

7t1/2(2)| < 2173492 2] - o0,

whereas 711/, may not be integrable. As we shall see in Theorem 27.23 in [196], it hap-
pens that X; is absolutely continuous and Xj, is not.
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The condition (5.9) is very weak; apart from the condition on the logarithmic rate
of convergence of ji(—€, €) to0 as € — 0, itis quite near to the infiniteness of u. Indeed,
if

lirerl_jélf e2ji(-€,€) >0, (5.10)
then u is an infinite measure. However, the converse of this assertion is false, and there
exists an infinite measure which does not satisfy (5.10) nor (5.8).

Proposition 2.11. For each k, there exists an infinite measure y such that

2K p(-e,€)=0.

lim inf ¢
e—0
By considering a sequence which grows sufficiently rapid, we can control the rate of
convergence as we wish. The proposition seems to contradict the assertion of Kallen-
berg (cf. [111] Section 5), however, it is repeatedly stated in the introduction in [169].
This is since the infinite measure satisfies

lirr(l)e‘zllog €l'fi(-e,€) = +c0, r>1.
€—

Given Theorem 2.6, we can consider the following condition which is more strong
with respect to the infiniteness of u:

j 1Z%u(dz) = +00, a€(0,2).

|z|<1

It seems this condition may lead to the absolute continuity of 77 in the case that (5.10)
fails. However, it is not true as we see in the following

Proposition 2.12 (Orey [178]). For any a € (0, 2), there exists a Lévy measure u such
that
j 2%u(d2) = +00 and j 12Pu(dz) <o, B>a (.11)
|z]<1 |z|<1
for which the ID law m given by (5.5) under the condition b = 0 is not absolutely contin-
uous.

It may seem that in Orey’s Theorem a special relation between atoms in the Lévy mea-
sure and their weights might be preventing 7 from being absolutely continuous. In
reality, there is nothing to do between them. We can show the following counter ex-
ample.

Proposition 2.13 (Watanabe [218]). Let c be an integer greater than 2, and let the Lévy
measure be

+00
u= Z Anbicny .
n=0

Here, we assume {an; n > 0} to be positive and bounded. Then, the ID law & given by
(5.5) and the condition b = 0 is not absolutely continuous.
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In Propositions 2.12, 2.13, the support of u constitutes a geometric sequence, and the
integer character c plays an important role. Proposition 2.13 holds valid even if c is
a Pisot-Vijayaraghavan number [218]. This is the number u € (1, co) such that for
some integer-coefficient polynomial (with the coefficient in the maximal degree 1), it
satisfies F(u) = 0, where the absolute values of all the roots of F = 0 except u are
strictly smaller than 1. For example, u = (V/5 + 1)/2 with F(X) = X2 - X — 1. By the the-
orem of Gauss, Pisot-Vijayaraghavan numbers are necessarily irrational. In the case
that the support of the Lévy measure consists of a geometric sequence, several families
of algebraic numbers play an important role so that 7 becomes absolutely continuous.
For a recent development of this topic, see [219].

Unfortunately, no necessary-and-sufficient condition is known for y with respect
to this family of numbers so that the corresponding ID law becomes absolutely con-
tinuous.

The following criterion is known:

Proposition 2.14 (Hartman-Wintner). Let u be a discrete Lévy measure and be infinite,
and let t be an ID law given by (5.5). Then, m is pure and is either singular continuous or
absolutely continuous.

For the proof of this theorem, see Theorem 2716 in [196]. (It is a special case focussed
on the discrete measure, and the proof is easy.)

Some results in the multidimensional case
To make representations simpler, we study ID laws having no Gaussian part. In
(R4, |IID, let the Fourier transform 7 of an ID law 7 be

(A) = exp | i{a, A) + J @M 1 i, ) au(d) |, AeRY. (5.12)
RA\{0}

Here, a € R?, and 71 is a positive measure such that [(|x|*> A 1)u(dx) < co, and

(, ) is an inner product corresponding to |.|. Many results in the previous section also

hold true in the multidimensional case since they do not employ the speciality that the

dimension is one. For example Theorems 2.6 and 2.7, where ji(dx) = (|x|?> A 1)u(dx),
hold true in any dimensions. Conversely, under the assumption that

lirr(l) e?|loge|a(Be) = +00, (5.13)
€—
where B, denotes a ball with the centre origin and the radius €, Theorem 2.8 is no

longer true. This is because

. 1
7(2) < exp-| 3 j K, 2)Ppdw) |
Bl/z
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and hence we can not appropriately estimate (u, z) from below. However, if, instead
of (5.13), we have the uniform angle condition

2

1irr(1) € I(v, x)|>u(dx) = +c0, uniformlyinv e §4°1, (5.14)
€—

[{v,x)|<€e

then again by Theorem 2.8, we can prove that 7 defined by (5.12) has a C*®°-density
whose derivatives of all orders vanish at infinity.

A weak point of Theorem 2.8 is that it requires a certain isotrophic property of
the measure u. Indeed, if there exists a hyperplane H such that y is finite on R\ H,
then 71 charges a hyperplane with positive probability and hence it is not absolutely
continuous.

We say a measure p on S9! is radially absolutely continuous if the support of p
is not contained in any hyperplane, and if for some positive function g on S%-1 x R*,
it holds that

u(B) = j p(dé) Jg({, r1g(ré)dr (5.15)
gd-1 0
for all Borel sets B € B(R?). This decomposition applies for self-decomposable Lévy
measures. For details on this important ID law, see [196] Chapter 15. We say u satisfies
the divergence condition if it holds that

1
Jg(é’, rydr =+oco p—a.e. (5.16)
0

Note that (5.16) is weaker than (5.14) since it just asserts the infiniteness of y with re-
spect to each direction.

Theorem 2.9 (Sato [195]). Let i be an ID law for which the characteristic function given
by (5.12) satisfies (5.15), (5.16). Then, m is absolutely continuous.

See [196] pp. 178-181 for the proof of this theorem. The proof uses induction with re-
spect to the dimension and Theorem 2.7. The condition (5.15) is a very restrictive as-
sumption since it requires the absolute continuity of the radial part of u through g. We
may consider whether this condition can be weakened.

Another weak point of Theorem 2.9 is that it excludes the case that the support
consists of curves which are not lines. In order to correspond to this case, we introduce
the notion of generalised polar coordinates.

Definition 2.3 (Yamazato [220]). We say u is absolutely continuous with respect to
curves if there exist a finite measure p supported on S ¢ $4-! and a positive function g
such that for a Borel set B € B(R?), it holds that

u(B) = j p(dd) jg(f, N1p(pE, N)dr .
gd-1 0
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Here, ¢ : S x (0, +00) — R4\ {0} is a generalised polar coordinate in the sense that [0)
is a measurable bijection, and ¢(¢, 0+) = 0, @ (¢, 1) = £, 0,¢(., &) exists and does not
vanish for all €. For each vector space H, the set {r > 0;0,¢p € H} is either an empty
set or (0, 0o). For Fx(¢1, ..., &) = {(r1, ..., rv); (@¢(&;, 1)) being linearly independent
and (0,9(&;, r;)) being linearly dependent }, it holds that Leb(Fy (&1, ..., &)) = O
fork>2and &y,...,¢& €S.

The next result is a partial generalisation of Theorem 2.9.

Theorem 2.10 ([220]). Let m be an ID law corresponding to a Lévy measure p which is

absolutely continuous with respect to curves. m is absolutely continuous in the following

two cases:

(1) u is not supported on any hyperplane, and u(H) = 0 or +oo for each vector sub-
space H.

(2) For each hyperplane P, y(Rd \ P) is infinite, and u(H) = O for each (d - 2)-dimen-
sional vector space H.

Recently, a refinement has been obtained by Yamazato himself. Let ji(dx) = % u(dx).
The symbol Ay denotes the Lebesgue measure induced on the linear space H by re-

striction.

Proposition 2.15 ([221] Theorem 1.1). Assume there exists anintegerr > 1 such that the

following two conditions hold:

(@) p is represented as a sum u = Y32, Uk, where yy is concentrated on a linear
subspace Hy and has no mass on any proper linear subspace of Hy and satisfies
()" << Ap,.

(b) It holds that

[ee]

D (ur(K))" = +o0

k=1
for every (d — 1)-dimensional linear subspace K of R4. Then, m is absolutely contin-
uous.

A related work [120] has been done by Kulik.

2.5.3 Chain movement approximation

Below, we provide concrete numerical results concerning Theorem 2.3 (b) for calculat-
ing the functional I'(t). In this case, the point y isin 8 \ § for x in each case. We remark
N(t) — +ooas t — 0. Hence, we can use, as t goes to 0, a,’s of smaller magnitude in
the approximation to y. The corresponding values Cmin or Min will represent the esti-
mated values I'(t) for each ¢ in the tables. (Cmin stands for “compensated minimum”,
whereas Min is used to represent the minimum when the effect of the compensator
term O(log(4)loglog(})) is too faint.)
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Table 2.1. Finding the minimum in case (a).

B B t N Cmin Wo, ..., Wy
1.5 2.25 0.02 3 2.216128 1030
1.5 2.25 0.002 4 5.348213 10302
1.5 2.25 0.0002 6 17.541525 1030407
1.0 1.5 0.02 4 5.029539 10301
1.0 1.5 0.002 6 23.253883 1030503
1.0 1.5 0.0002 8 31.925063 104100205
0.5 0.75 0.02 8 15.405371 104100101

0.5 0.75 0.005 10 35.587829 10410040301
0.5 0.75 0.003 11 39.123768 104100500000

Table 2.2. Finding the minimum in case (b).

B B t N Min Wo, ..., Wy
1.5 225 0.005 5 23.689470 002040
1.5 225 0.002 5 34.708675 002050
1.5 2.25 0.001 6 43.785296 0150001
1.0 1.5 0.005 7 31.582738 01501000
1.0 1.5 0.002 8 38.913063 015010000
1.0 1.5 0.001 9 46.760826 01501000010

This may also be viewed as examples of approximation of the trajectory of x:(x)
ast — 0 by the chain (4,). We can imagine the asymptotic behaviour of the density
function associated with the processes below as ¢ — 0, which is a rapid decrease.
In the tables, the last column wy, ..., wy denotes the number of a,’s for each n =
0, ..., N used by the chain to approximate the point y up to the time ¢.

(@ Letd = m = 1, y(x,{) = { (this means x(x) is a Lévy process). Let x = 1,y =
V2. We assume p = Y2 kn8g, is given by a, = (-3)™", k, = 3™, B € (0,2),
and assume B’ = 1.5p8. We calculate Cmin = min Zf;’zo(w,l log(%) + log(wy!)) -
log()loglog(}) and the (wy)Y_; which attain it (Table 2.1).

11
(b) Letd = m = 2, y(x,{) = A{ where A = (ff).Letx: (1,1),y = (vV2, V3). We
5%

assume Y = Y2, knbq, is given by a, = ((-2)™",(-3)™), kn = n?, and assume
B’ = 1.58. We find Min = min Y_ 3¢ (w, log(zt-) +log(wy!)), and the (w,)Y_,
which attains the minimum (Table 2.2).

(€) Letd = m = 2, y(x,{) = A{ where A = (}9). Let x = (1,1), y = (V2, V3). We
assume Y = Y20 knbg, is given by a, = ((-2)™",(-3)™), kn = n?, and assume
B' = 1.5B8. We find Min = min 21::0 Zil(wrl log(%) +log(wy!)), and the (W")IrY:O
which attains the minimum (Table 2.3).
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Table 2.3. Finding the minimum in case (c).

ﬁ ﬁ’ t N Min Wo,..., WN
1.5 2.25 0.005 5 16.916603 110001
1.5 2.25 0.002 5 35.500575 111202
1.5 2.25 0.0001 8 87.584560 112402010
1.0 1.5 0.005 7 37.696668 11110600
1.0 1.5 0.002 8 51.635773 112402010
1.0 1.5 0.001 9 61.627516 1124030000

2.5.4 Support theorem for canonical processes

In this section, we provide a support theorem for a canonical process Y; given in Sec-
tion 2.5.1. We construct “skeletons”indexskeletons (p? for Y by using Marcus’ integral.
The result is closely related to the trajectories of Markov chains treated in Section 2.2.
We assume the condition (A.0) for u and the restricted Hérmander condition (RH) for
X;j(x)'s. In comparison with the proof of short time asymptotic bounds of the transi-
tion density stated in the previous section, we can observe the fine behaviours of the
jump process.

First, we construct skeletons as follows. Let u(t) = (uy(t), ..., un(t),0<t<T
be an R™-valued, piecewise smooth, cadlag functions having finite jumps. It is decom-
posed as u(t) = u(t)+u(t), where u(t) is a continuous function and u(t) is a purely
discontinuous (i.e. piecewise constant except for isolated finite jumps) function.

For n > 0, we put

Uy = {u e Dy u(t) = uSn(t) + ud(t),

u(t) = Y Au(S). Lgerzgeny(Au(s), us1() = ~lp.t} . (5.17)
s<t
Here, weputly = [, ., zu(dz), and D = D(T,R™). Put U = Upsolly. The set Uis

called the space of skeletons.
To express U in the configuration space, we put further

Vy={v=va, n 21} = {(t, 20), 2 1};
{t,} is a strictly increasing sequence of R* with limit + co, and
{zn} a sequence in the support of u such that n < |z,| < 1} .
Note that there is a one-to-one correspondence between U, and V, by putting

Vi 3 (tn, zn) > u(t) = ~Ipt + Y zp € Uy .

ty<t

Given u = u € Uy, we put a trajectory (p? e D' = D(T,R%) by

m
d(p'g = ZXj ((p?) o du;(t), (pg =X. (5.18)
j=1
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The solution starting from x at t = s is a piecewise cadlag smooth function (p'g, t>0,
satisfying for any f which is bounded smooth the equation

m t
£(ol) =0+ Y. | Xiftgausn

j=0

+ Y {Exp <ZAU?(T)Xj>f((P?—)—f(§D?_)

s<r<t j=1

- Auf(r)xjf«p?_)} . (519)

j=1
holds. The function (p'g can be viewed as the image of a skeleton u. We put
= {p}; ol is as above}

and 8* = Urle(oyl)sz.
For u, v € U, a Skorohod metric dt on D is defined by

dr(u,v) = ir}tlfszujp{lu(/t(t)) -v(®l + 1t - AW}, (5.20)

where the infimum is taken for all homeomorphisms A of the interval T. We identify
dr with dy in Section 1.1.3 so that we regard the space (D, dt) to be complete. The
Skorohod metric on D’ is similarly defined and is also denoted by dr. The support of
the Lévy process Z is defined by

supp Z ={u e D; forall§ >0 [P({w;dr(Z,u) < 6}) >0]}. (5.21)
The support of the canonical process Y is similarly defined by
supp Y.(x) ={p € D'; foralle > 0 [P{w; dr(D(x), @) <€})>0]}. (5.22)

By 8%, we denote the closure of $* in (D', dr).
We define the approximating processes Z(t), Yf for each 17 > 0 as follows. Let

t

Z(t) = J J zN(dsdz) ,
0 n<jzl<1

and Y is given by

m
avl =Y XY dzvi(n), Yi-=x. (5:23)
=1

Furthermore, the complementary process 2!

t
Z'(t) = J j zN(dsdz) (5.24)
0 0<|z|<n

printed on 2/10/2023 4:50 PMvia . Al use subject to https://ww.ebsco.confterms-of-use



Auxiliary topics = 109

and ¥} is given by

m
dyy = Y X;(Yy) o dZM(t), Vg = x.. (5.25)
j=1

Note that dZ(s) = dZ"(s) + dZ"(s), and d[Z]s = d[Z"]s + d[Z"]s. Hence, we have
a decomposition

m t
Xj(Ys_)dZ;(s) - ZJX](YU )dZ}!(s)
0

-3
|

[

+ [ nes, veoaiz, - Jh”(s,Yg_)d[Z”]s
0

=1

~.

m t
=) [ - xryazis)
0

t
+ J{h(s, Ys_) - RU(s, YL )Id[ZM]s + ¥7 . (5.26)
0

We now state our basic assumptions concerning “small deviations”.
Setting, for every 0 < p < 1,

uZ = jz u(dz) , (5.27)
p<lzl<n

we say that Z is quasisymmetric if for every n > 0, there exists a sequence {1} decreas-
ing to O such that

|ur,| — 0 (5.28)

as k — +o0o. This means that for every n, the compensation involved in the martingale
part of Y7 is somehow negligible, and of course this is true when Z is really symmetric.

(H.1) For every > O such that (5.28) does not hold, there exists y = y? > 1 and
a sequence {1y} decreasing to 0 such that

ap, = o(1/lul),

where a;,’ is the angle between the direction uz and supp p on {|z| = yn}, thatis, when
it can be defined.

Notice first that it always holds in dimension 1 (with ag , = 0). Besides, it is verified
in higher dimensions whenever supp u contains a sequence of spheres whose radius
tends to O (in particular, a whole neighbourhood of 0), or when the intersection of
supp pu with the unit ball coincides with that of a convex cone.

For technical reasons, we also suppose that y satisfies the following non-degen-
eracy and scaling condition, which implies the condition (A.0) in Section 1.3:
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(H.2) There exists § € [1, 2) and positive constants C;, C; such that for any p < 1,

Clpz‘ﬁl < jzz*y(dz) < Czpz’ﬁl.
lzl<p

Besides, if § = 1, then

lim sup zu(dz)| < +oo.
=0 n<lz|<1

The inequalities above stand for symmetric positive-definite matrices. This means
(H.2) demands both the non-degeneracy of the distribution of (point) masses around
the origin, and, the way of concentration of masses along the radius. We notice that if
(v, .) stands for the usual scalar product with v, they are equivalent to

1w 232 udz) =7
lzl<p

uniformly for unit vectors v € S™ 1. (Here, = means the quotient of the two sides is
bounded away from zero and above as p — 0.) In particular, 8 = inf{a; J|z|s1 |z|*
u(dz) < +oo} (the Blumenthal-Getoor index of Z), and the infimum is not reached.
Notice finally that the measure u may be very singular and have a countable support.
The condition (H.2) implies the non-degeneracy condition for the matrix B in section
35witha=2-p.

We now state our main theorem:

Theorem 2.11. Under (H.1), (H.2), we have supp Y.(x) = 8*. Here,”means the closure
in d-topology.

The condition (H.1) is crucial to the small deviations property: for any € > 0 and any
t>0,

P(suplel < e) >0,

s<t

and is related to the distribution of supp u.

This is an adapted assertion to canonical processes of the support theorem due to
Th. Simon [200] for It6 processes. For the proof of this theorem, see [90].

The support theorem helps us a lot in showing the strict positivity of the density
function y — p¢(x, y) ([94] Section 4).
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You must take your chance, And either not attempt to choose at all Or swear before you choose,
if you choose wrong Never to speak to lady afterward In way of marriage: therefore be advised.
W. Shakespeare, The Merchant of Venice, Act 2, Scene 1

In this chapter, we inquire into the stochastic calculus on the Wiener—Poisson space.
The Wiener—Poisson space is the product space of the Wiener and the Poisson spaces.
By the Lévy-It6 decomposition theorem (cf. Proposition 1.1), a general Lévy process
lives in this space.

In Section 3.1, we study the Wiener space. Stochastic analysis on the Wiener space
has been developed by Malliavin, Stroock, Watanabe, Shigekawa, and others, prior to
that for the Poisson space. In Section 3.2, we study the Poisson space. Compared to
the Wiener space, there exist several tools to analyse the Poisson space, and we shall
introduce them accordingly.

Section 3.3 is devoted to the analysis on the Wiener—Poisson space. We construct
Sobolev spaces on the Wiener—Poisson space by using the norms induced by sev-
eral derivatives on it. It turns out in Sections 3.5, 3.7 below that these Sobolev spaces
play important roles in showing the asymptotic expansion. In Section 3.4, we con-
sider a comparison with the Malliavin operator (a differential operator) on the Poisson
space.

In Sections 3.5, 3.7, we state a theory on the composition of Wiener—Poisson vari-
ables with tempered distributions. This composition provides us with a theoretical ba-
sis regarding the content of Section 4.1. In Section 3.6, we state results on the density
functions associated with the composition theory for Itd processes and on (Hé6rman-
der’s) hypoellipticity result in the jump-diffusion case.

In place of the integration-by-parts formula in Chapter 2, duality formulas (1.35)
in Chapter 2 and (1.11) in Chapter 3 will play crucial roles in this chapter. Throughout
this chapter, we denote the Wiener space by (Q1, F1, P1) and the Poisson space by
(Q,, F>, Py) in order to distinguish the spaces.

3.1 Calculus of functionals on the Wiener space

In this section, we briefly reflect on the basic facts of the Wiener space. We state
the chaos expansion using the Hermite polynomials first. We state this section quite
briefly and confine ourselves to those materials which are necessary to state a general
theory of the stochastic calculus. Proofs for several propositions are omitted.

Several types of Sobolev norms and Sobolev spaces can be constructed on the
Wiener space. However, we will not go into detail on these Sobolev spaces in this sec-
tion, and postpone it to Section 3.3.

printed on 2/10/2023 4:50 PMvia . Al use subject to https://ww.ebsco.confterms-of-use



EBSCChost -

112 — Analysis of Wiener-Poisson functionals

Below, we denote a function of 1-variable by f(t), and a function of n-variables by
fu(te, ..., ty). If we write f;(t), it means it is a function of the variable ¢ with an index i.

We denote by W(t) a 1-dimensional Wiener process (standard Brownian motion)
on Qi with filtration (1 ¢)tet. For fu(t1, ..., tn) € L?(T™), we denote by I,(fn), Jn(fn)
the following iterated integrals:

In(f) = jfnm, o bWt - dW(t)
TVl
t
jfnm, o b)) dWEL) - dW(t) . (L)
0

Tnth) = |

T

ot— ~

They are called Wiener chaos. The above J,(fy) is also written by

fa(ts, .., t)dW(t) ®--- @ dW(ty) . 1.2)

O<ty<<ty_1<T

Here, f,(t1, ..., ty) can be chosen as a symmetric function on T".

We denote by L?(T") the subspace of L*(T") consisting of symmetric functions on
T If f, € L2(T"), then I,(fn) = n'Jn(f,). Furthermore, if f, € L2(T"), then f, € L2(T").
Here,

- 1
fn(tl, Y tn) = m an(to(l), ooy ta(n)) s
o

where o denotes a permutation of {1, ..., n}.
The following chaos expansion is known.

Proposition 3.1. Any F € L?>(Q1) = L?(Q1, F1, P1) can be expressed by
(o)
F= Z In(fn) (1-3)
n=0

for some (f,). Here, fo = E[F] and Iy = id, and (f,) are uniquely determined in L?(T")
up to the symmetry among {t1, . . ., ty}. Especially, (f,) can be chosen symmetric.

We omit the proof. See [170] Theorems 1.1.1, 1.1.2. The orthogonal projection IT,(F) of
F on the n-th Wiener chaos is given by II,(F) = I,,(f,). An important property in (1.3)
is that I,(f,) and I,;(fn) are orthogonal if n # m under the Wiener measure ([170]
p- 9). Hence, it is effective in recovering the input from the output developed in the
way above. This is called the Wiener kernel method.

In order to compute I,(f,), we need an orthonormal basis on the Wiener space.
The one often used is the Hermite polynomials (h,(x)). The first six Hermite polyno-
mials are

ho(x) =1, hi(x) = x, ha(x) =x* -1,

hs(x) = x> - 3x, ha(x) =x* —6x? + 3, hs(x) = x°> - 10x3 + 15x .
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The formal definition is due to the generating function exp(6x — 62/2), that is,
(o] 6}'[
Y hn(x)= = exp(6x - 6°/2).
= n!

It is interesting to observe that the even order h, are even functions, and the odd
order h,, are odd functions.

By using Hermite polynomials, we can write for m € N and for nonnegative inte-
gers ay, ...,y suchthata, +---+ay, = n,

L7 &- &fp™) = I hay (1L ()

where f; € L?(T). Here, f&g denotes the symmetrised tensor product of f and g.
See [173] Proposition 1.8 for the proof.
In particular, we have

n! j f(t1) -+ f(tn)dW(ty). . .dW(ty)

O<ty<-+<tp_1<T

"y (%

Here, |fl = |flz2 denotes the L2-norm on T.

), n=1,2,....

3.1.1 Definition of the Malliavin—Shigekawa derivative D;

In this subsection, we introduce the Malliavin—-Shigekawa derivative D; on the Wiener
space in two ways.

Definition of the derivative D; (1)
Let I, (f) = ij(t)dW(t). In case F is given by F = g(I1(f1), ..., [1(fn)), where g is
a polynomial of n-variables, we define the derivative D(F by

D(F = ) 0ig(1(f1), - . o, L (fa))fi(t) - (1.4)

i=1
It is also called the gradient operator.
To see the legitimacy of this definition, we observe

d
EF(wl + th)|¢=0 = (DF, h)

= lim < (U (f2) + €0, 1),y T ) + €4 1)~ 8L (), - D) -

Here, (., -) denotes the paring in L2(T).
We remark that D; is a differential operator. That is, it holds

D¢(FG) = FD{G + GDF .
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Definition of the derivative D; (2)
For F = Y0 In(fa) € L?(Q1), we put

(e8]
DeF = Y nlp-1(fa(,8), FeD{. (1.5)
n=0

Here, we put

D} = { = X Intho) Z" (= DUl o, <+oo} :

That is, D(F is obtained simply by removing one of the stochastic integrals, inserting
the free variable ¢, and by multiplying n. Here, D is a mapping from D(ll)2 to L2(TxQ4),
and it is a closable, unbounded operator.

In view of the expression of F in (1.5) as a superposition of higher order movements
of W(t) (n = 1, 2,...) along the time, it well represents the nature of the “derivative”
of F at a fixed time t.

The two definitions (1), (2) of D; coincide with each other on the Sobolev space
D(ll)2 We sketch the key idea of the proof here.

(i) Case that fu(t1, ..., tn) = fo(t1, ..., ty) = f(t1) --- f(t,) for some f € L2(T). In this
case, we have

L(f® = n! j f(tr) - flt)dW(t)- --dW(ty)

0<t1<-<tp_1<T

T
— AR < o Jf(t dW(t)) n=1,2,.... 1.6)

Here, h,(.) is a Hermite polynomial, and hence
hl,(x) = nhy_1(x) . 1.7)
Hence,

Didy(fn) = nly_1(fu(, 1) = nIn—l(f®n_1)ﬂt)

_ n-1
=nlfl" " hn-1 < T Jf(t)dW(t)>f(t) (1.8)

for f®(tq, ..., ty) = f(t1)--- f(ty). These imply

fo
Detn <I|ﬂ| Jf“)dw(t)> <I|ﬂ| | ﬂtmw(”) il

. fv
= Mhtn-1 < T J f “)dW‘”> m-
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This leads to

n n-1
D, <<jf(t)dW(t)> ) —n <jf(t)dW(t)> O, n=1,2,... (19
T T

by induction. We observe here the original definition of D; for polynomials.
(ii) For the general case, we put

fn = gf“l@...@gﬁlﬂm ,

where (£;) are elements from a complete orthonormal system (c.0.n.s.) of L%(T) and
ay + -+ ay = n. By [102] Theorem 4.1, we have

In(fn) = hal(Il(fl))"'ham(Il(gm)) .

Since any f, € L?(T") can be approximated by a linear combination of f;, of the above
form, we have the assertion.

The statement for the converse direction is obvious in both cases from (1.1) with
In(fn) = n'n(fn), and from (1.4) with D¢Iy(fn) = nln_1(fu(, 1)) for fi = f&.

Hence, they coincide on all the polynomials of I1(f). Since (hn(I1(¢}))) forms
a complete orthonormal system (c.0.n.s.) of L?(Q1, P1), this implies that they coin-
cide.

Higher order derivatives Dﬁ ¢, are inductively defined for k = 1, 2, ...

.....

Examples
D) g0 =x, fls)=1,

W(T) = j 1dW(s) = g([ﬂs)dww)) .
T

T

Then,
DW(T) = (x)' -f(t)=1.

() g =x, f(s) =s.

Dy <Jde(s)> = Dtg<jde(s)> =) -fity=t.

T T
This can be also written as

DI (f) = To(f() = t.

In computing the kernels f, in (1.3), we have
1
fa=—EID"Fl, n=0,1,2,....

The proof is just as in the case of a Taylor expansion.
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For F = W(t)?, we have, for example,
fi(ty) = E[Dy W(t)’] = 3E[W(D*11(0,0(t1) = 31[0,(t1) ,
fa(ti, ) = %E[thtz W(t)’] = 3E[W(t)]110,(t1)110,6(t2) = O,
f3(t1, 2, t3) = %E[Dz,tz,@ W(6)?] = 1(0,5(t1)1[0,6(t2)1[0,6(t2) -

This implies

t
W? = deW(t1)+3! J dW(t)dW(t;)dW(t3)
0 O<ty<t <t
~3W,+6 J AW(t1)dW(ty)dW(ts) .

O<ti<ty<t

For the multivariate case, we have

(46 0f5) = I i (1 )

withaj + -+ am = n, aj € {1, ..., n}. Here, fi € L*(T).

Clark-Ocone formula
The statement of the Clark-Ocone formula on the Wiener space is as follows. F ¢ D(ll)2
can be written by

F=E[F]+ qu(t)dW(t)
T

due to the chaos expansion, where ¢(t) is an adapted process. This ¢ (t) can be written
as E[D¢F|71,:]. That is, we have the

Clark-Ocone formula:
Any F € L?(Q4) can be represented by

F = E[F] + J POAW(L) . (1.10)
T

ForF € D(lly)z, it holds that ¢(t) is a.e. equal to the predictable projection of D¢F.
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Proof. We write F = Y I(f,) with f, € L2(T"). Then, by the definition (1) of Dy,

j [DeFIF1, JdW(E) =
T

E[Z Iy (Fa(-, 1)1, t] dw(t)

NE[In_1(fn(, )T, 1dW(t)

Mg

=
]
Ju

18

nlpt (fals 0+ 155750 0)) dWC)

=
I
-

Mg

n(n = 1)W1 (fals 0 - 157570 dW(0)

=
]
-

- — --1n_H »—1-._H --n_H

Z nn(fa() = Y In(fn)

n=1 n=1
= Y In(fa) ~Io(fo) = F - E[F] .
n=0

Here, 1%1,[](&, ceotn) = 1jo,q(t1) -+ 110, (tn)-
In the above, we used the property

ElIn(fo)F1,0,6] = In (f - 173y -

See [173] Proposition 3.11 for the proof of this property.

3.1.2 Adjoint operator § = D*

We can define the adjoint operator & of D; on L?(T x Q1) by

E[FS(u)] = E [I u(t)Dtht:| .

T

(1.11)

The operator 6 is called a divergence operator. When u(t) is a process, 6(u) is also
called a Skorohod integral of u. In case u(t) is an adapted process, it coincides with the

It6 integral.

The operator § can be characterised as follows using the chaos expansion. Let

ut) = Y In(fu(-s t)
n=0

be a process such that E[|u(t)|?] < +oo for t € T. Here,

fn('a t) =fn+1(t1: v tn, tn+1)|tn+1:t

with ¢ fixed.
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Then,
8u) = Y Inua (fals 1)) . (1.12)
n=0

Here, f,,(-, t) is the symmetrisation of f,,.1 regarding t,.1 as a parameter t given by

fn+1(t1y CE) tn, tn+1)|t,,+1:t .

Properties of §
We confine ourselves to the special case where the process u(t) has the form

u(t) = Fh(t)

where F ¢ D(ll)2 and h € L%(T). In this case, §(u) is calculated by

am):nﬂm—jummnm.
T
Especially, 6(h) = I; (h).
In general it is known that, in case u(t) is a progressively measurable process, 6(u)
coincides with the It6 integral:

am:jumdwm.
T

Furthermore, if u(t) € D(ll,)z, then (D;u(.))ser is Skorohod integrable, I; (D;u) € L2(Tx Q4),
and the following commutativity relation holds:

mww»=uw+jnm@mwwu
T

or shortly
D¢6(u) = 6(Deu) + u(t) .

The proofs of these properties depend on the chaos representation described
above. See [170] Section 1.3.

Following Malliavin’s approach [160], we can introduce the notion of the Ornstein—
Uhlenbeck operator over the Wiener space in the following way. We introduce the
Ornstein—Uhlenbeck semigroup (T¢)ss0 on L?(Q1) given by

T«(F) = i e "I, (F), FelL’(Q).
n=0

Here, IT,(F) denotes the projection of F to the space of n-th Wiener chaos.
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Especially, in the case F = X, where

X = Jf(t)dW(t) ,

T

T¢(F) = p; is given by

pe(u) = Jf(e‘tu +V1- e‘wa) Pi(dw) (1.13)

(o

where P;1(du) denotes the Wiener measure. To introduce the Sobolev spaces, we use
the operator C = —v-L instead of D:

CF = i —/nII,(F) .
n=0

Here, L denotes the infinitesimal generator of the semigroup T, called the Ornstein—
Uhlenbeck operator, and given by

(o]
LF = ) -nlI,(F).
n=0
Malliavin [160] and Nualart [170] (Chapter 1) use this notation. However, we prefer
to use the derivative operator D, in the sense of (1) on the Wiener space (Bismut’s
approach). In fact two approaches give equivalent definitions of the Sobolev space.
We return to this topic in Sections 3.3, 3.4.

3.2 Calculus of functionals on the Poisson space

In this section, we state some basic facts on the Poisson space which will be necessary
in the later sections. The representation of a (multidimensional) Poisson functional is
closely related to the chaos expansion on the Poisson space. Readers can also refer
to [190] and [173].

As in the case of the Wiener space, there are two contexts in analysing the Poisson
space; either by the gradient operator or by the chaos expansion. We prefer to use the
gradient operator D below since it is helpful for constructing the Sobolev spaces in
Section 3.3.

3.2.1 One-dimensional case
In this subsection, we denote by N(dtdz) the Poisson random measure with mean
measure dt61;(dz), which is associated with the standard Poisson process.

In case of 1-dimensional Poisson space, we can introduce two kinds of “deriva-
tive” operators on it.
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For w, € Q,, we denote by Q(t, w,) the random measure on T: Q(t, w,) =
N([0, t] x-) - t.
For fy(t1, ..., tn), we denote by I,(f,,) the iterated integral

T tha ty
n! j j ---jfnm,...,tn)dQ(tl)---dQ(tn). 2.1)
tn—l tn—Z 0

We have the following chaos representation property.

Lemma 3.1 ([1] Theorem 5.3). Any F € L?(Q», 5>, P») can be expressed by
(o)
F= Z In(f) 2.2)
n=0

for some f,, € L%(T").

We introduce two notions of the derivative on the Poisson space.
For F = Y72 In(fn), we have

DYF = Y nln_1(fals 1)) . 2.3)
n=0

Although the definition (2.3) is apparently the same as (1.5), the notion is “far” in
spirit from D; in the Wiener space. Because, in case

F=f(Ty,...,Ty) = f1(6¢11})5 - - -, 11(8¢1,)))

=f <J’ 61, dQ(t1), . . ., j 6{T,,}dQ(tn)>

T T

is represented by F = I,,(f,), where f,, is symmetric, we can show

n
DYF =Y 1y rgOU(T1, ooy Thcts 6, Tiy ooy Tnod) = f(T1, o, To)k . (24)
k=1

Here, T; denotes the j-th jump moment of N.

Indeed, by putting g(t1,...,tn) = 8r,y(t1) ® --- ® 8;r,1(tn), we extend g to
gty ..ot o tho1) = 81y (81)® - 881,y (tk-1)®8 (1 (1) @8 (1, (t1)®- - -®8 7, ;1 (tn-1),
andto g(ty, ..., th-1) = 6i73(t1)®- - ® 81, 11 (tk=1) ® 6413 (tk) ®- - - ® 64T, ;1 (tn-1). Then,

DNF =n(n-1)!

T tx ty
x “jjf B(tr, el ta)dQtD) - AQ(E) - dQtn1)

0o o0

0
T t

[ [ ess tn_l)dom)---da(tn_l)}
0

0
:f(Tla LS Tk—la t, Tks ey Tn—l) _f(Tls ey Tn)
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in case Ty_1 < t < Ty. Here, weregard f,, o 8(t1, ..., th-1) = fno8(t1, ..., th-1, Tn).
Note that D{V is a difference operator instead of a differential operator. According
to the notation of [181], D?’ should be written as D,1).
Another operator, Dy, is given by

n
D¢F ==Y 110,1,)(00kf(T1, . .., Tn)
k=1

= akf(Tl,-'-’ Tn) (2.5)
Ni<k<n

for F = f(T1,..., Ty) and f € CY(T™). We remark that a factor “~” is multiplied to
the form of the gradient operator D given in Section 2.1.3. This is due to the tradition
from [43]. It is consistent with (2.6) below.

Note that this is “near” to the original definition of D, in the Wiener case. Indeed,
it is a differential operator, and it satisfies the derivation property D:(FG) = GDF +
FD,G, and the chain rule.

If we put pu(t) = P(N; = n) = L¢"e™,

1
! _ n-1,-t _ = ¢n -t
pa(t) = (n—1)!t e !t e

= Pn-1(t) = pa(t) .
Using this property, we can directly show, for F = f(T4, ..., Tn),
E[DNF|F,] = E[DF|F;] (2.6)

(cf. [190] Proposition 7.2.7, [98]). This means they have the same adapted projection.

In view of (2.4) and (2.6), we observe why the time shift method (explained in
Section 2.1.3) using the differential operator with respect to the jump times works well
on the Poisson space in the one-dimensional case.

Charlier polynomials

In the Poisson space, the role played by Hermite polynomials in the Wiener space will
be played by Charlier polynomials. Charlier polynomials are a kind of Laguerre poly-
nomials. We introduce them in the following way.

Definition 3.1. Charlier polynomials C,(k, t) of order n and parameter ¢t > O are de-
fined recursively by

Colk, ) =1,

Cilk,t)=k-1,

Clk,t) =k> -2 +k+1, keR, t=0,
Cur1(k, t) = (k—n—t)Cn(k, t) - ntCp_1(k, t), n=1,2,....
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Then, C,(k, t) satisfies the following properties:

Proposition 3.2.

L Cu(k+1,0) - Calk, t) = =22 (k, 0),
2. Cplk+1,t) - Cn(k,t) = nCp_1(k, t),
3. Cpilk, t) = kCp(k—1,t) — tCr(k, t)
fort>0,keN.

Proof. See [190] Proposition 6.2.9.
A remarkable property of the Charlier polynomials is the expression

Ca(Ne, ) = I (187,)

where the right-hand side is defined by

Lo(fy) = n! j Faltss . . t)dQ(t1) - dQ(tn)

O<ty<ty<-<ty

with f = 177" .
The Charlier polynomials are orthogonal with respect to the Poisson distribution.
Indeed,

0 l’k
(Cals 1), C s ey =€) Fcn(k; )Cm(k, t)
k=0 "

= E[Ca(Nt, )C(Ny, 0] = E [In (1% ) Im(157) ]

= 1ip=mn!t" .

Using this property, we can make a chaos expansion (unique representation) of some
type of Poisson functional by using (multivariate) Charlier polynomials. Refer to [190]
Lemma 6.2.10. O

3.2.2 Multidimensional case

We introduce another Poisson random measure for the multidimensional case on Q5:

N(dtdz) = ¥ 8, zy(dtdz) , (ti,zi) € Tx (R™\{0}), @7
ieN

and
N(dtdz) = N(dtdz) — u(dz)dt ,

where u is a Lévy measure.
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For hn = hn(tl,Zl’ tZ’ Z2y e ey tn: Zn) € LZ(T X (Rm \ {O}))®n’ let

Io(h) =h,
Ii(hy) = J J hi(t, 2)N(dtdz) ,
T R™\(0}
In(hn) = nJ’ J Iny (”Ft,z)hn)N(dtdZ) , n=2,3,... 2.8)
T Rm\{0}

where
n?[,z)hn(tl 5215« v e bn-1, Zn—l) =
hn(t1, 21, ..y the1, Zno1, £, 2) 100, (E1) - - 110, (En=1) -
We recall the difference operator (perturbation due to Carlen-Pardoux, Picard) D, by
DyF(w;) = F(w; o &) - F(w>) ,

where u = (t, z). Here, the operator ¢} is given in Section 2.1.2.
Note that if F is represented as

F=Y In(hn),
n=0

then D, F is given by the operation
Dit,»)In(hn) = nln_1(hn(-, t, 2)), p(dz)dt - a.e., (29)

provided that the right-hand side is well-defined.
The idea of the proof is the same as in the case of (2.4). We sketch it below.
We put

B ={(t, 21tz € @ RTANODs 6 6 D))
Since 14, (t1, 21, - - -, tn, Zn)0y¢t,23(dtidzi) 6y, )(dtjdz;) = 0,1,j=1,...,n,

D(t,z)In(hn) = D(t,z) J’ hu(t1,z1, ..., tn, Zn)N(dtldzl)"'N(dtndZn)
Ap

= | hn(t1,2z1,..., tn,zn)H,f’zl(wz(dtidzi) - dtip(dzi)

>

n

+ (1= 02({(t, DD, (dtidz))

- j Ma(ts 21, -« tas Z0)N(dt1d21) - N(dtndzy)
Ay
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124 — Analysis of Wiener-Poisson functionals

= (1 - w2({(t, 2)})

n
X Z j hn(tlazla ) ts Zy ooy tnazn)Hk¢iN(dtdek)
i=1
An—l

=1 -w({(t, D)) Y In-1(hn(s t, 2,9)) -

i=1
Since we can take h, to be symmetric, we have

D(t,z)In(hn) = 1{w2({(t,z)}):0}n1n—1(hn G, tz,7) .

Since N({(t, z)}) = 0, we have the assertion. For the precise result, see [190] Proposi-
tion 6.4.7.
Furthermore, we have the following “chain rule” in the difference form.

Lemma 3.2. For F, and ¢ continuous such that ¢(F) € L*(Q,) and @(F + DyF) ¢

L*(U x Q),
Dy@(F) = @(F o &}) - 9(F) = @(F + DyF) - ¢(F) . (2.10)
The proof uses the Fourier decomposition of ¢(F) into L? components. See [173] The-
orem 12.8.
Example 3.1.
®
o N,
D¢N = Dy Z 1(1y,+00)(8) = Z L1, Tl () = Litenyy -
k=1 k=1
(2) Incase
ht,z) =z, F= j JzN(dtdz) - Z(T),
T
we have

D(t,Z)F = IO(h(s t, Z)) = h(ta Z) =z.
(3) We have the following property for the operator D,,
Dy(FG) = FD,G + GD,F + D,FD,G , .11
assuming that the left-hand side is finite a.s. Indeed,

LHS. = (FG)ogl —FG = (Fog})- (Gog}) —FG
= (DyF + F)(D4G + G) - FG .

Choosing G = F and using induction, we have

DyF" = (Fog})"-F"= (F+D,F)" - F". (2.12)
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(4) For &, F + 0, we have

) G _Gogy G _ FGog;-GFog

“F~ Fogt F  F-Focg}
F(D,G+G)-GDF+F) FD,G-GD,F
= — = —. (2.13)
F-Fog, F.Fog

For higher order differences for the quotient, we iterate the above formula.

Example 3.2.
(1) Let
F=2Z(T) = zN(dtdz) .
[

Then,
Dt,»F* = (F + Dt,,)F)* - F?
=(Z(D +2)* -Z(T)? =2Z(N)z +2*.
(2) Let G = exp(F), F = [ [ h(t)zN(dtdz), h € L*([0, T]). We then have
D(t,2)G = D(t,)(exp(F)) = exp(F + Dt,)F) - exp(F)
= exp(F + h(t)z) - exp(F) = exp(F) - (e"% - 1) = G(e"¥7 - 1),

that is, the chain rule.
B) fm=1and F = (Z(T) - K)*, K > 0, then

D(t,F = (Z(T) + Dt,»Z(T) - K)* - (Z(T) - K)*
=(Z(M+z-K*"- (T -K".

3.2.3 Characterisation of the Poisson space

In this subsection, we seek the basis of L2(Q>).
Let G be the collection of functions

n
{g = Z hj(t)1g;(2) € L*(dA);
j=1

BinBj=0(+j), ¢t~ hj(t)continuous, A(B;) < +oo} .

Here, A(dtdz) = dtu(dz) = N(dtdz).
Let M be the subspace of L?(Q,) spanned by the functions of the form

exp 1[ Jg(t, z)N(dtdz) - j j(eg(t,z) -1-g(t, z))/t(dtdz)} , 8(t,z)e§.

T T
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We remark
n
e$t—1 =3 ("0 - 1). 15(2)
j=1

ifg(t,z) = Z}’Zl h;j(6)1p,(2) € G, z € U B;.
Theorem 3.1 (Surgailis [205]). A function g € L?(dA) satisfies

e8I ) (dsdz) < +oo (2.14)
{u;g(u)=1}

if and only if
exp “ j g(s, z)N(dsdz)} e L*(Q,).

T
Furthermore, we have

exp <“ Jg(s,z)N(dsdz) - J J(eg(s’z) -1- g(s,z))/\(dsdz)}

T

T
i il (é)(eg’“’z’ - 1)>

for some gj € .

Hence, under (2.14), we can take the “basis” of L2(Q2,) in the form of exponential func-
tionals. For an example of (2.14), assume the case that the tail of the Lévy measure is
rapidly decreasing.

Lemma 3.3.
M2 = [2(Q,). (2.15)

Proof. Let G € L?(Q,). Assume

E[GH] =0 forall HeM.

ool ]

Then,

=

forall¢1,...,cn € R, g1,...,8n € G, n > 1. Suppose n and g1, ...,8n € G are fixed.
Then, the Laplace transform of the signed measure on R"

V(B) = E[G1p(N(g1), - - -, N(gn))]

is identically zero. Hence, v = 0.
Hence, E[G1x] = O for all X which is measurable with respect to the o-field gen-
erated by N(g), g € . This implies G = 0. O
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Characterisation of the Poisson space via chaos decomposition
It is shown that

(0]

L*(Q2) =P Cn»

n=0
where
Cn={In(fa); fn € &"L*(dN)} .

This is because each element g in M is described as a limit in L%(dA) of multiple
stochastic integrals by Theorem 3.1, and to Lemma 3.3.

Examples in case m = 1
() 2(t) = [, [ z2N(dsd2). Let y(¢) = 2%(t). Then, by It&'s formula

dy(t) = I 2u(dz)dt + j(zz(t—) + 2)zN(dtdz)

(cf. (a + b)2 = a® = 2ab + b?). Hence,

t

yi(t) = 22 (t) = tjzzy(dz) + j J(Zz(t—) +2)zN(dtdz)
0
t ty—

¢
= tjzzy(dz) + J JzzN(dtdz) + E! j 6[ J 221z, N(dt>dz;)N(dt1dzy) .

(2 Letz(t) = xo + bt + fé zN(dsdz). The local time L1(x) of z(¢) at level x up to the
time T is given by

Lr(x) = j&(z(t))dt .
T

The local time L¢(x) can be expanded into chaos as ([173] Theorem 14.8)

t

(o)
11 - -
L()=) —— J J J an(sl,zl, <+ s Sny Zn)N(ds1dz1)---N(dsndzy) ,
2 n!
n=0 0 0
where
(81,21, ..., 8n,2n) = j J(H]{Ll(emzi - 1)h(t, A, X)l{bmax(sj)})d/\dl’
T

with
h(t, A, x) = exp {t I(emz -1-iAz)u(dz) - i)lx} .
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Clark—Ocone formula on the Poisson space
Using Theorem 3.1 above, we can derive the Clark—Ocone formula on the Poisson space
separately, that is,

Theorem 3.2 (cf. [190] Proposition 6.7.1). Forany F ¢ D(12)2

F = E[F] + j JE[D“,Z)FHt]N(dtdz) . (2.16)
T

Here,
D(lz,)z = {Zln(gn) ;Y ni(n- DUgnl2 2 qn < +00} .
n n

Proof. LetF € D(12)2 We can choose by Theorem 3.1 F,, such that F, — F in L%(Q5),

where
n 1 k
Fp=1+ kzl ik X)(es? - 1)

j=1

for some (gj) = (gn,j). We put

Yo - J L, (e81%) — 1)N(dt;dz)) .

O<ty<-<ty<T

Then,
m_ 1 ¢
n .
V= | Qe -
]:

by the remark at the beginning of Section 3.2.3.
Since the solution to the Doléans—Dade equation

t
Yy =1+ j Y (e8(9) — 1)N(dsdz) 2.17)
0

is unique, and hence Y(T") satisfies
De Y = (82 — 1)yl
we only have to show the following (2.18) in order to assert
E [ Dy Y{15:] = (P (e84 - 1) (2.18)

However, since Y(T") is a martingale, we have (2.18). O

Remark 3.1. Any F € L?(Q,) can be represented by

F=E[F] + I jE[D(t,z)Fm]N(dtdz) . (2.19)
T
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See Privault [189], Chapter 6, Section 7. See also Lgkka [154]; however, this paper
is justified only for d = 1 and for F € D(lz)2 In this paper, he used the functionals

exp {J j h(t)y(z)N(dtdz) - J’ J’(eh(t))'(z) _1- h(t)y(z))/l(dtdz)} (2.20)

T T

as the “basis”. Here, y(z) = e* - 1(z2 < 0), 1 -e7?(z > 0).
The expression (2.9) implies that D, is a closable operator on D(lz)2

3.3 Sobolev space for functionals over the Wiener—Poisson space

In this section, based on the perturbation operators introduced above, we construct
Sobolev spaces over the Wiener, the Poisson, and the Wiener—Poisson spaces.

3.3.1 The Wiener space

The derivative operator
LetK; = L3(T;R™). For f = (f1, ..., f™) e Ky, we set

Wi = Y [ Foaw's).

i=1
T
By P1, we denote the collection of random variables X written as

X :g(W(fl)9 ey W(fn)) ’

where g(x1, ..., X,) isbounded B(R")-measurable, smoothin (x4, ..., X,), n € N. The
Malliavin—-Shigekawa derivative of X is an m-dimensional row vector of a stochastic
process given as in Section 3.1 by

DX =Y Ewi, ... Wi . G1)
1. 9%

The operator D : L2(Q4, F1, P.l) — L2(Q4;K;) is a closed and unbounded operator.
For (t1,...,tj) € T/, we set D]tl,...,t; = D¢, -+ Dy;. Let | be a non-negative integer and
p = 1.Norms | - |o,,p for a random variable X € P; are defined by

1/p

p/2
1 .
IXlo,1,p = E[XP1+ Y E <j |pix| dt) 3.2

j=1

T

where D]t = D]A,...,t,-’ and dt = dt; --- dt;. Let Do ;,, be the completion of P; with respect
to the norm | - |o,7,p:

5 I,
Do,1p="P1 P,
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Then, Do,1,, ¢ LP(Q4, F1, P1) and operators Di,j=1,...,1are extended to Do,;,p in
an obvious way.

This space is equivalent with those introduced by the norm using the square root
of the Ornstein—Uhlenbeck operator L:

|Flp = (I - L)'Fl,,

(cf. [170] Proposition 1.5.3).
Remark 3.2. The two definitions of D; described in Section 3.1.1 coincide with each

other on Dy 1,5. See [173] Theorem A.22.

The adjoint operator § of D has been introduced in Section 3.1.2. The operator § is
a closable operator from L2(Q4; K1) to L2(Q4, F1, P1). The random variable §(U) co-
incides with the Skorohod integral of U = {U;} with respect to W(t). The operator § is
sometimes called a divergence operator. For a process U, we introduce a norm by

1/p

/2
! e P
Wlo,ip:=| Y E J|DtUt| dtdt . (33)
i

Ti+1

The following inequality (continuity of the divergence operator), obtained as
a corollary to the Meyer’s type inequality, plays a fundamental role (cf. Nualart [170]
Proposition 1.5.4).

Theorem 3.3. Letl > O and p > 1 be fixed. Suppose that |Ullo,1,, < +0co. Then, there
exists a positive constant ¢ = c(l, p) such that

16(D)lo,1,p < clUllo,1+1,p -

See also Lemma 3.4 below.

3.3.2 The Poisson Space

Set U =T x (R™\ {0}),
Ap):={uelU; vy <p},

o(p) := jy(u)zfv(du)= j 1212 u(dz) ,
A(p) {lzl<p}

where y(u) = |z| foru = (¢, z). We repeat that the measure y satisfies an order condition
if there exists 0 < a < 2 such that

lim inf #) >0. (3.4)
p—)O plX
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We introduce compound measures M(du), M(du) and M(du; du) in the following
way.
Let
1
p(1)

on the off-diagonal points {(u, u) = (uy, ..., ux, u);u; # u,i=1,...,k}, and put

M(du) := YW 1aq)y@)N(du), M(du) = M(duy)--- M(dug)

M(du; du) = M(du)M(du)

on{(u,u)=(ug,...,ux, u;uij #u,i=1,...,k}.
We put
k
M(du; du) = ) M(du®) @ M(du).8 -
i=1
on the k-dimensional diagonal points {(u, u) = (u4, ..., uy, u);forsome i u; = u},
where u® = u \ {u;} viewed as a (k — 1)-vector.

We have introduced the operator D, on the random fields defined on U x Q, in
Section 2.1.2. The operator D thus introduced is essentially the same as what has been
introduced in Section 3.2.2. The operator D viewed as that D : L2(Q,) — L%(Q;K>)is
a closable operator (cf. [181], p. 487 Remark). Here, K, = L2(U, N).

Letu=(u1, ..., ux) =((t1, z1), . . ., (tk, z)) = (t, Z). We set |u| = |z| = maxi<i<k |zil
and p(u) = |z1|--- |zx|. We define &f; = & ool and Dy = Dk = Dy, -+~ Dy,.

Here are some calculation rules concerning D. We start from

(1) D(XY) = (DX)Y + X(DY) + (DX)(DY) ,

(2) Xogh =DyX+X.

From (1), we deduce
D*(XY) = D(D(XY)) = D{(DX)Y + X(DY) + (DX)(DY)}
= (D*X)Y + (DX)(DY) + (D’X)DY
+DXDY + XD?Y + DXD?*Y
+(D?X)DY + (DX)D?Y + (D*X)(D?Y),
and that
D(XYZ) = D((XY)Z) = D(XY)Z + XYDZ + D(XY)DZ
= (DX)YZ+X(DY)Z + (DX)(DY)Z + XYDZ

+(DX)Y(DZ)+ X(DY)(DZ) + (DX)(DY)(DZ) .

In general we can write for u = (ug, ..., Ux)

DuiXy - Xp} = D Dy, X1 -+ Dy, Xy .

uy,..., U, CU,U; U-Ull, =t

Note that the sum can include terms for the empty set. cf. [191] (3.3.4).
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Using (1), we can confirm
Dy(XY) = (XY) o} —XY = (Xo gl )(Yoe)) - XY .
From (2), we deduce
Xogh ogf =Xogf )ogh =Dy, X+X)og),
=Dy, Dy, X +X) + Dy, X + X
=Dy, Dy X+ Dy, X+ Dy, X+ X.

Using D, let us introduce norms

» 1/p
DKFI” .
U i(du) ,

y(u)

k
IFliop = | IFlgop+ ) E j

1—

=t Laay

wherek=1,2,...andp > 1. For ¢ € C3°(U), we set

N(op) = j(p(t, z)N(dtdz), N(p)= J’(p(t, z)N(dtdz) .
U U

Let P, be the collection of random variables X written as

X=f(N((P1)s---;N((Pn)),

where f(x1, ..., X) is bounded B(R")-measurable, smooth in (x1, ..., Xy).
Let Dy,o,p be the completion of P, with respect to the norm | - [x,0,p:
Dk,O,p _ ggzl‘lk‘o‘p )
Then, Dy0,p € LP(Q,, F>, P,). Operators D{,, u = (ug,...,uj), j=1,..., lare ex
tended to Dy o,p in an obvious way.
The adjoint operator 5 of D, in L2(T x Q,) is introduced in Section 2.1.2. It is also
called divergence operator.
We introduce another norm for a random field V = V, such that Vs o) = 0, and
V, is integrable with respect to N = N — N as follows:

1/p
) Vo P
Wigo, = | [ |05/ icaw (35)
,0, Y(u)
A(1)
incasek=0,andfork > 1
1/p
» k D{;,Vu p B

VI = 1% E M(du; d . .
Vo, = {1V, + 32 | | M dw (3.6)

A(1)¥ xA(1)
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We denote x, = 14(p). We have the following inequality:

Theorem 3.4 (Theorem 3.2 in [95]). Let k be a nonnegative integer and let p > 2 be an
even number. There exists a positive constant ¢ = c(k, p) such that for any s > 2 and
0 < p < 1, the inequality

18(VXp) k0.0 < €0(B) T = VX0l 0. kepys (37)
holds for all integrable V.

Proof. Step 1 We first consider the case k = 0. Let p > 0 and Z; , be the random field
mentioned above. Set Z, = Zyy o€y Ly, © £y, and

Alp)={u=(t,2) e U; |z| <p}.

Then, we have
B(Zux,)P = j ZuN(duy)- - N(duy) . (3.8)
Aoy

We divide the domain A(p)? of the integral into a disjoint union of subsets as fol-
lows. Let {I1, ..., I} (g < p/2) be a family of disjoint subsets of {1, 2, . . ., p} such that
|[In] = 2 for h = 1,...,q, where |Iy| denotes the cardinal number of the set Iy. We
denote by A the set of all such {I1, .. ., I;}’s and the empty set. We set

Stteatg = { 1, up) € A
u; = yj holds if and only if i, j € I for some I, € {I4, .. .,Iq}} .

Then, Sy,,..., 1} are disjoint with each other and the union of these sets as {I1, .. ., I}
runs in A is equal to A(p)?. Thus, integral (3.7) is written as a sum of the integrals
whose domains are the sets Sy, ..., 13- In the following, we fix a domain Sy, .. ,; and
consider the integral on this set. Set ] = {1, ..., p} - UZ:1Ih- Werepresentu € Sy, .1}
as (uy,, ..., ur, uy), where each uj, = (uy,,...,uy,) is an |I|-dimensional vector
with the same component and u; € U" with r = |J|. Then, 2¢q + r < p. Furthermore,
(ur, ..., up,uy) € S97, where S7*" = {(ul, .. upyy) € AP # u]f for any
i#j}

Functions Zu, u € A(p)P, for example, can be regarded as functions of (uy,, ...,
uj,, uj) € ST Furthermore, the |I;| fold product measure N(duy,)--- N(duj,) coin-
cides with N(duy,) on the set Sy, .. 1,}- Therefore, the above integral (3.8) is written
as

8(Zuxp)l = ). J ZyN(duy,)--- N(duy,)N(duy) . 39)
4 g
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134 — Analysis of Wiener—Poisson functionals

The expectation of each term on the right-hand side is computed as

E [ j ZyN(duy,) -+ N(du;,)N(duy)

Sq+r

:E[ J DuZuo €l o €8, N(duy,)-- N(dus )N(duy) | . (3.10)
Sq+r

See Lemma 2.3 in Section 2.1.

Now, set W, = Z;(f); and Wy = Wy, --- W,,. On the domain S7*', the inequal-
ity
|Du;Zu| =pug)--- 'Y(up)|Du/ Wu|
| Dy, Wl
p-2q-r 2., 2 2 1Py Wal
<p Plug,)” - plug,) yay) )
holds if [u| < p. Therefore, (3.10) is dominated by
Dy Wyoel| . . .
c1pP247E J MM(du,l) -+ M(duy,)M(duwy) |, (3.11)
Yuy)
Sa+r
|Du1 Wu"s\“

where ¢; = (1)?" and v = {uy,, ..., us,}. We shall estimate o)
On ST, Wy is written as Wy = ([T7., W“f,-) (i Wy, ), where W“f,- = (Wuli)”f'.
Note the formulas

D(XY) = (DX)Y + X(DY) + (DX)(DY),

Xogh =DyX+X,
Xogy oy =Dy Dy, X+ Dy X+Dy, X +X

and

Dy, (XY) o &}, = Dy, Dy, (XY) + Dy, (XY)
= Dy, (Dy, XY + XDy, Y + Dy, XD, Y)
+Dy, XY + XDy, Y + Dy, XDy, Y
= (Du,Duy X)Y + Dy, XDy, Y + Dy, Dy, XDy, Y + (Dy, Dy, VX
+Dy, YDy, X + Dy,Dy, YD, X
+ (Du, Dy, X)Dy, Y + (Dyy, Dy, Y)Dyy, X
+ (Duy Duy X) (Do Do, Y) + (D, X)Y + XDy, Y + Dy, XDy, Y .

Then, If)u, Wy o &y | is dominated by the sum of terms

|Dy, Dy, Wyl
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for which v; ¢ v. Each of these terms is dominated by the sums of [T/_, [D4  Dii , Wy,
where uy,; € uy, and v;; € v, and the summation (denoted by Y *) is taken for all non-
negative integers k;, [; satisfying k; <r,l; <qand ki +---+kpy >rand ly +---+1, > q.
Furthermore, we have the inequality y(uj) > ]_[?:1 g, )p(vy,;) for [u ;| < 1, |v ] < 1.
Therefore, we have

|Du, Wu o £yl u

) ZH

Then, (3.11) is dominated by the sum of the terms

DVI IDuk i Wul

PVL)YUg) (3.12)

p Dli .Dk,- W .
p-20-1f J v Mui |\ or 0 3 iedws in(d
" qu (g P(V1,i)Y(Ug,i) > (dur,) (duj,)M(duy)

q+r
< cpP 2 T p(p) ¥

XEL;@

where cz =0 (p(l) . Here, we applied Hélder’s inequality with respect to s, s’ > 1
where 1 5+ 1 = 1. Since p(p) > cp® holds for 0 < p < 1, we have the inequal-

SI
ity

~ li ~ ki ~
DVI,iDuk,i Wui

s 1/s
M(duy,)--- M(duz,)M(duy) , (3.13)
PV (g, i) !

20— a+r o i
pP 2q To(p) ¥ Spa(p/Z q T/Z)(p(p)(qﬂ)/s
< C(P(p)p/Z—q—r/2+(q+r)/S’ < C(p(p)’%(l—l/S) .

The last inequality follows since £ —g - 5+ LF = & -2 4+ r(3 - 1) > & - L forany
q < p/2 and s > 2. Therefore, (3.13) is dommated by the sum of

1/ps
=L ®/ki 13 ps
DVliDukiWux 'y
——— M(dvy,;, dug,;; du;)

p
% (1-1/s) -
c3p(p) 'TIE J’ PV Pk, )

i=1 A(p)li”‘i*l

DuZu — Du Wu

Since I; + k; < p and since Yy — )

a.s., the above is dominate by

cap(P) 22y, 115 0.ps)P

We have thus shown the inequality (3.7) in the case k = 0.
Step 2 Next, consider the case k = 1. Note the commutation relation of §and D:

D&(Zxp) = 8(DZxp) + Zx, -
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136 —— Analysis of Wiener—Poisson functionals

(The commutation relation is explained simply by using the chaos decomposition.
See [190] Proposition 4.1.4.) Then, we get

I
SzP{iEHS(D;(i))(p)p]M(du)+EL[ pM(du)” .

We can compute the integrand E (16 ( b ZX” )|P] similarly as before. Then, the first term
on the right-hand side is dominated by the sums of the terms

D.8Zxp) [
y(u)

M(du):|

ZuXp
pu)

& (p+1)s
2 l,' D k,' Duzui
DVI,iD“k,i < y(up)p(u) )

p
2 (1-1/s)
cp(p) [1E Y(V1,1) y(Uk, i)

i=1

STTxA(p)

1/(p+1)s

X]_VI(duIl, ey, dqu, dll]; du)

<c'9P)F VIWZN 15 10 -

The second term is dominated by ¢(p)/'(I1Zx, 15.0.ps)° < (p(p)L/2~1/2s) Zy 15.0.p5) -
Therefore, the inequality (3.7) holds in the case k = 1.

Step 3 Next, consider the case k = 2. Again, by the commutation relation, we
have

Dy, Dy, 8(Zxp) = Dy, (Du, (62p)) = Du,(8(Du, Zxp) + Du, Zu, Xp)
= S(DUZDWZXP) + Dulzuz)(p + DuzDulzthP .
Therefore, the calculation is obtained as a combination of the above cases.
Repeating this argument, we get (3.7) for any k. The proof is complete. O
Remark 3.3. The norms |Fli,p, | VI o » above on the Poisson space are not unique
candidates. We can also consider a BMO-type norm
1/p
1 TN
Flko,p = | 1FIG o, + 3 Z j |D§ F|” M(du) ,
R DT
which is more weak than |F|,o,p. For a random field V = V,,, we can take

Valliy "
u ~
j —— K0P

VI ., = T

du)
A1)

Under these settings, we have another expression for Theorem 3.4.
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3.3.3 The Wiener-Poisson space

We set (Q, F) to be the product measure space (i.e. Q = Q1 x 25, F = F; ® F5), and
denote w = (w1, w;) € Q. We consider the product probability measure P = P; ® P, on
(Q, F). The completion of F with respect to P is denoted by F. Sub o-fields F; ® {§, Q5}
and {0, Q1} ® ¥, are identified with F; and F>, respectively. The space (Q, F, P) is
called the Wiener—Poisson space. We write W(t)(w) = W(t)(w1) = w1(t), N(dtdz)(w) =
N(dtdz)(w;) = w,(dtdz).

We define K := K; @ K;. Then, K is a Hilbert space with the inner product

(h1, h) = (f1, f2)x, + (81, 82)k,

where h; = f; ® g; € K. We regard the operators D; and D, as D; @ id and id & D, re-
spectively. Notice that the operators &3 are also extended to Q by setting € (w1, w,) =
(w1, €Ewy). Let us introduce the operator Dy, ) as

Dty :=Dr@Dy : L2(Q) — L*(Q; K) ;
forX = Y%, XVx0 ¢ p = P, P, where X\ ¢ L2(Q;) and X\ € L2(Q,), we have
DiewX = Z (DtX(li)X(zi) eaX(li)DuX(zi))
i=k

if X(li) and X(zi) are in the domain of D and of D, respectively. The operator Dy ) is
a closed and unbounded operator.
Fort=(t1,...,t¢), u=(ug,..., Uy, let

Dtw = Ditu) *** Ditoyun) Dity ) »

where each component on the right-hand side is given by the above.
Let P = P; ® P,. The spaces P1, P, identify with P; ® 1, 1 ® P, respectively. For
p=2,
Dk,l,p — j)l'lk,z,p ,
where
p/2 1/p

dt M(du)

D{lel/F 2

y(u)

k 1
Fliip = IFIg,,+ Y D E J J
k'

1-11'=0 A\

The operator D¢,y is continuously extended to Dy, ,. Let
D = 02?1:0 Np=2 Dk,l,p .
We regard the operators 6 and § as 6 ® id and id ® 6. We regard the spaces Dom ()
and Dom (§) as Dom () ® L2(Q,) and L2(Q;) ® Dom (6), respectively. We define the
operator & by
6=606.
Then, duality equalities (1.35) and (1.11) yield:
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138 —— Analysis of Wiener—Poisson functionals

Proposition 3.3. For Z = U; @ V,, € L?(Q ; K) such that V(; 0y = 0, suppose that U; ¢
Dom (8) and V,, € Dom (). Then, for any H € D1 1,2, we have

E[H3(Z)] = E H D.H Updt + j D.HYV, N(du)] : (3.14)

We introduce norms || {l,i,p, | I}, " For U; € L?(Q; K;), we define | Ullk,1,p to be

p/2 1/p
DI'DX U, [’ )
Wl = | 1015, , + Z Z E j j —at | dncaw
=11'=0 (1)k’ T +1 Y
(3.15)
For V,, € L?(Q;K>) such that Vit,0) = 0, we define || V";,I,p to be
! o'v.l> 7. r
Vg, = Y E J [J t u dt:| (du) (3.16)
1=0 | 41, yw)

incase k=0, and for k> 1,

VI 1

= ||V||OOP+ZZE j [I

r—
=ir= AW xA1

p 1/p

Dl’Dle 2 2
—t-u 9 dtl M(du; du)

pa)y(u)

For Z = U; ® V,,, we define the norm || Z||y,1,p to be

1
2

1Zl,1,p = (10N 1 + IV 1)
Forn>0,p > 2,

nglp {UtELZ(-Q Ky); ||U||klp<+oo}’
Dklp {Vu e 2(@:K2) 5 Vieoy = 0, VI, < +00}
- - gp-@

and
D, = Nieo Np=2 Dy -
The next lemma verifies the continuity property of adjoint operators.
Lemma 3.4. Letk,l be nonnegative integers and let p > 2 be an even number.
(i) Suppose that U = {U;} € Dk Lp* Then, there exists a positive constant ¢ = c(k, 1, p)

such that
16(D),1,p < Ul 141,p - (3.17)
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(ii) SupposethatV ={V,} € D;f; Then, there exists a positive constant c = c(k, 1, p)
such that for any s > 2 and O < p < 1, the inequality

18(VX)lk 1o < PO F IVXoIT 1. hrpys - (3.18)

Proof for (i). If Z; = GZ;, where G is F,-measurable and Z; is F1-measurable. Then
Meyer’s type inequality implies

I6(GD)IG 1 < PIGZIG s a.s. w2 (P2). (3.19)

Taking the expectation with respect to P,, we obtain the same inequality for Z = GZ.
Observe that any {Z;} can be approximated by a sequence {Z}'} which are written as
linear sums of GZ; mentioned above. Then the inequality holds for any F-measurable
process Z;. Note that D and § are commutative. Repeating this argument to {DXZ}, we
can show that there exists a positive constant ¢ such that

16(Dlk,1,p < I Zlli,141,p » (3.20)
holds. O
Proof for (ii). Inview of Theorem 3.4, the assertion for the case [ > 1 for each k remains
to be shown.

Step 1 First, suppose k = 0and [ = 1. Since D and 6 are commutative, we have D;6(Z) =
5(D;Z). Therefore, we have

p/2

E <I |Dt8(Z)|2dt> - j j E[5(D1, 2+ 8(Dy, ,2)2)dty -+ dty . (321)
T Tp/2

The integrand 6(D¢,Z)?--- 8(D;,,Z)? can be written similarly as (3.9). Set D, W, =

l;éf;‘ o£5. Then, E[§(D,Z)? -+ 8(Dy,,,Z)?] is dominated by sums of the following terms:

2| pli pki N
Sa+r i=1 V(Vl,i))’(uk,i)
=1 <k .
D‘;' Dul’ D, W,

Li

x | —= || M(duy,) - M(dug,)M(duy), (3.22)
Y(Vlyi)y(uk,i)

where v;;, v}, ¢ vand ug;, u; ; € uy. Integrate the above by dt; --- dt,/, over T?/2,
and use Fubini’s theorem and then the Schwarz inequality. Then, it is dominated by
Sk 2

2 1/2
p/2
e [ 5 H< J dti)
T
D!, D! Dy Wy,

Sq+r i=1
J' ‘;;1 w; dt: M(du ) M(du )M(dll )
y(v;,i)y(u;(’i) i I I ]

Dz’il,ibﬁi,iDti Wuzm
YV YU, i)

12
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Dflil,iblkll;(,ini WNZH
YV, y(Ug,i)

2 7
dti>

2 ps/2 1/ps

p/2
cawormnfi( (]
Sa+r T

i=1

M(duy,) - M(duy, ) A(duy))™

Dg,Dﬁg _Dti WuZi ~ ~ -~
y jE J% dt; M(duy,)--- M(dur,)M(duy)
YV Dy )

Sa+r

< c5(@() 222115 4 o) - (3.23)

Therefore, the inequality (3.18) holds for k = 0and [ = 1.
Step 2 Next, for the case k = 1, I = 1. Using D;8(2) = 8(D;Z), D8(Zx,,) = 8(DZx)+Zxp,
we can write

D¢D&(Zx,) = Di(8(DZx,) + Zxp) = 8(D¢DZx,) + DeZx, - (3.24)

2 = 2 2
[ dt<4 ”a(_DfDuZuXp) at [ |2l
7 : pu) 3 yu)

In order to estimate the term
2 p/2
dt> M(du) | ,

Hence,

DDy 8(Zxp)
Y(u)

= (DtDuZuXp )

oL (Jp(25

we prepare the following.

We choose a permutation o of {1, .. ., p} and fix it, and write (ugs (1), . . ., Ug(p)) bY
(u1, ..., up), where u; € A(p). We divide (uq, .. .,(;;p) into 2 cosets, and denote it by
(U1,1, U1,2, U2 15 U2,2, + - 5 Upj2,15 Upj2,2)- We put A’ = (i1, uin), i=1,...,p/2 and

2
Ay =1A0, ..., 4%y
Let g, denotes the number k such that ux,1 = ug,» in A,. Furthermore, let J, =
{ug, ..., upi\ Ui{A(zl); Ui1 = U;,2}, and r, = p — 24>, coinciding with the cardinal of the
set /5.
Let

+r
ng 2= {(ula ceey uq2+r2) H

ifu; = ug,;, thenug 1 # ugz forallk =k;, 1=1,...,q2 + 12} .

For the first term on the right-hand side of (3.24), we begin by estimating

it

8(th)u’Z)(p)

2 p/2
dt Mdu', (3.25)
pu')
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where
|6(D¢Dyw Zxp)1> = 82 (DeDy Zy,) = j (DeDwr ZXp) (s uyyM(duy; dus) .
a9
Here,
(DeDw Zxp) uy,uy) = (DeDur Zu Xp © 5;1)(DtDu’Zu2Xp ° 5;2) >

and M(duy; dus) = N(du1)N(du) on {(uy, uz); u; # us} and M(duq; dus) = N(duy)
on {(u, uz); u; = uy}. Hence, (3.25) is equal to the sum of

M(duq; duy)dt | M(du') (3.26)

JHP/Z J’J (DtDu’ZXp})\(ul,uz)
i=1 y(ul)z

A(p) T 40

with respect to the choice of A,. We shall calculate

duRuy!

A(p) \ T A(Zi)

p/2
(DtDu’ZXp)(ul,uz)

)2 M(duy; duy)dt Mdu') | . (3.27)

_ Luoty

We write Wul. = S i =1, 2. Note that (3.27) can be written as

(Df1Du’ZXP5(u(1”,u(2U)

(1) 1)
J E J j s Mdu; dud)dty
20 T A(p)?
(D¢ f)urZ)(pj ®/2) /2 .
J P ) M@uP?; daulP)dty, | | Biau).
yu')?
T A(ZP/Z)

Note that (3.10) holds. In view of (3.22), the above is bounded by

- . A
J E Iﬁ Di’ilibﬁiiniDu' W, D";iD“;iDtiDUI Wy
Cl ‘ .’ . ! : ! ’ ! !
R VL)Y, )y’ YV Dy )y’)
M(duy) -+ M(dug,+r,) M(du')dt,---dty), , (3.28)

' Go+1 /
where Vi,i, V) ; C S577*\ J; and uy ;, w; <)o
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Calculating as above, (3.28) is dominated by

~Ii ~ki ~ ~
Dy, Dy, Dt; Dy W,

p/2 2 2
I \P2—2q>-r Uni_1 )
cip [ =] <J ot dtl>
smvriap  F1\7 PV P, ) yu’)
2 7

B b DyDyW
I 1 Pt u' Wy, _
Vi Wi dti ]M(dul v duq2+r2; du,) . (3.29)

.J Y(V;,i))’(ui,i))’(”')

We use Holder’s inequality, and (3.29) is bounded by

p/2
P11 - 11 ~ p
o) D TTUZ 21,5 = €1 (90)2 F1ZxpN 7251, )
i=1
Summing up with respect to the permutations o and divided by ,,C,, we have the

upper bound with respect to the first term.
For the second term, we see

pzaol? , \
E J(J t2uXp dt> (du)
A(p) \T

p(u)
’ 11 ~ b
< 0 (12X 15,1, 55 < (202 NZKp 17 1 p5)

as above.
Step 3 Next, consider the case k = 0,1 = 2.
Since D¢, D¢,8(Z) = 8(D¢, Dy, Z),

p/2
= 2
E <J|Dt1Dt26(ZXp)| dtldt2>

TZ
= j j E[8°(Di,Dt,2xp) - 82 (Dy,, , Dty Zxp) | diy -+ dty . (3.30)
T2 T2

The integrand 62(Dy, D¢, Zxp) -+ 6 (Dt,,-,D¢,,ZXp) can be written similarly as (3.9).
Then, similarly to the case k = 0, I = 1, (3.30) can be bounded from above by

p/2 bt p& p, by W | v
capP24-T j E j Vi Pug Pt Pt Wi dt: 1dt:
S ) !}(ﬁ YLD, ) radti2
Y .2 1/2
Dvl; Dul;( -Dt;,lDtl!‘Z Wuzi ) ) R R R
J’ - ; ; dti,1dti,2 M(duh)u-M(dulq)M(du])
YV )Y )

T2

< 5 (@) N2yl 5 )P -
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Therefore, we have the assertion for k = 0,1 =2
Step 4 Next, consider the case k = 1, [ = 2. By the commutation relation, we have

D¢, Dy, D8(Zx)) = Di, D¢, (8(DZx,,) + ZXp) = 8(Dy,De, DZx,,) + Dt, D, Zx,p -

Hence, the calculation is similar to the above case.

Step 5 In general, DiD’,;ZXp can be written as a sum of terms of the form
1. 8(DIDK zx,), K <k,and

2. DIDKZx,, K <k

by using the commutation relation. Terms of the form (2) can be estimated directly by
the norm || Z||x+p, 1, (k+p)s- For the term of the form (1),

~ ~ ! 2
j I8LDY x| dty -+ dty
T!
can be calculated as in Step 2, and taking the expectation in terms of §, we have the

desired estimate. The proof is complete.
End of proof of Lemma 3.4. O

From Lemma 3.4, we immediately have

Theorem 3.5. Let 0 < p < 1. For U = {Uy} € D;j’lp, and V = {V,} ¢ D (l , we set
Z, = U Vy,. For any k,1 € N, and any even number p > 2, there exists a posmve
constant C = C(k, 1, p) such that for any s > 2,

8ok < € (10l te1,p + 9O F IV IRt hapys) (331
holds.

We denote by D;< Lp the analytic adjoint space of Dy, p. That is, the normed space of
continuous linear forms on Dy ;,, with the adjoint norm | - |;( Lp given by

@l ), = sup @, G).

Gli,p=1

Here, (-, -) denotes the paring representing the bounded liner functional (@, -). We put
! ! ! !
Do 1p = YecoPk 1,p Dioo,p = Ui2 ODklp’ Dy = Uk Up>2 Dklp
Spaces

~ ~ ~ ~ ~ ~ I
Dklp’DooIp = U2 ODklp’Dkoop =Up ODklp’D _Ukloup>2Dklp

are defined similarly.
We can regard F € Dy, as a linear continuous functional:

G — E[FG]
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whenever the right-hand side is finite. The norm of this linear continuous functional
induced by F is
|F|§<,,,p = sup |E[GF]|.
|Glr,1,p=1
Here, E denotes the expectation with respect to P.
The following condition plays a crucial role in verifying that F has a smooth den-

sity.

Definition 3.2 (The condition (ND)). We say that a random variable F satisfies the con-
dition (ND) if forall p > 1, k > 0, there exists § € (5, 1] such that

sup sup sup
pe(0,1) verd, TeAk(p)
Ivl=1

-1 p

E||l mZv)+o@™ J (v, DuF)* 1yp, pieppyN(dU) | o] | <+00, (3.32)
Alp)

where X is the Malliavin’s covariance matrix X = (; j), where X j = IT (D¢F;, D¢Fj)dt.

The part ((v, V) +@(p)! IA(p) . --N(du)) is regarded as a Malliavin matrix on the
Wiener—Poisson space. We remark that we require the stability of the Malliavin ma-
trix under the secondary perturbation by &7 of the Malliavin matrix.

Intuitively, this condition implies that in each direction, at least one of the two
derivatives is non-degenerate in probability. The part (---)~! is what we can regard
as the inverse of the Malliavin matrix composed with diffusion and small jumps in
the Wiener—Poisson space. In the condition (ND) above, we require the finiteness of
it in the LP-sense under additional outer perturbations by 7 € A(p)¥ of any order
k = 1, 2,.... The reader may remember the outer perturbation of the Markov chain
introduced in Section 2.2.2 by using the functions (¢,).

The condition above will be used in the composition of F with distributions in
Section 3.5.

We finally remark that under the condition (ND), we can take an even number kg
such that k—lo < % - 1. We put

a 1
q0=1—ﬁ(1+k—0>>0. (3.33)

This quantity will play a crucial role in Sections 3.5, 3.6.

3.4 Relation with the Malliavin operator

On the Wiener space, there are two approaches which lead to the integration-by-parts
formula: one is using the (Malliavin—Shigekawa) derivative operator D; and the other
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is using Malliavin operators due to Stroock and Malliavin. One can proceed in an anal-
ogous way on the Poisson space by using the Malliavin operator. We remark that we
then require that the Lévy measure u has a smooth density function: u(dz) = g(z)dz.
Let R denote the set of all functions of form @ = f(N(¢1), ..., N(¢,)), where f €
C?(R") is having derivatives of polynomial growth, and ¢; are test functions on U.
Alinear operator L on R C Np<100L? is called a Malliavin operator if it satisfies the
following:
®
E[¢LY] = E[PLPl, P e R.

(2) the bilinear operator defined by
(¢, ¥) = L(py) - Ly - YL

is nonnegative. (This operator is called a carré-du-champ operator.)
(3) For® = (¢',...,¢") e R"and F € C>(R"),

n 2
L(F o @) :zai o - L(¢)+ Z aaax F(@)I(¢', ).
i=1 ]

More precisely, L is given on the Poisson space for @ = f(N(¢1), . . ., N(¢y)) by

1
L0 =3 2. 5 /W@, - NpwIN(pegi + Dep - (Dz))

M
Q/|Q/

.. AT
uzl axlax, fN(1), -, Nigm)N(@Dz i (Dz)") - (4.)

(cf. [25] (9-2)). Here, D, = a ~, 4, denotes the Laplacian with respect to the z-variable,
p(z) is some function such that p(z) € Np>1LP and D,p(z) € Np>1L?, and N(y))

[ [ ¥t DN(dtdz).
In this way, on the Poisson space, we can introduce the derivative operator Dy;,»)

for @ = f(N(¢1), ..., N(¢n)) by
_ L, 0
Da® = Y LN, ..o Npw). it 7). (42
i=1 "t

One can then show that the operator I'(¢, ¥), given by

I, ) = j j Doy (D) pRIN(dtdz)

T

is a carré-du-champ operator (cf. [25] Section 12-3)). This setting will result in the
derivation of the integration-by-parts formula.

On the other hand, we also have the difference operator D, on the Poisson space
as introduced in Section 2.1.2 by

DD =Doct-D. (4.3)
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By the mean value theorem,

&[0 - i i
o=y —){N(<p1+6Du<p1),...,N(<pn+9Du<pn))d9-DuN(<pi), u=(tz). (44)

i=1

O t—_—

This operator will also result in the derivation of an analogue of the integration-by-
parts formula (cf. [95] (3.4.16)).
We shall compare (4.2) and (4.4). The operators D and D are apparently similar.
However, D,f is estimated by the mean value of f{(.), and the norm
Dogi-@f
R e

J p(u)

is taken with respect to the mean value of @ o &} and @, instead of the differential
value which is associated with the derivative operator D¢ ). Hence, consequences
in the analysis based on two approaches on the Poisson space (i.e. one is based on
®(t, » and I above, the other is based on D,) may not strictly coincide with each other
in general. Especially regarding the case that the Lévy measure y being singular (e.g.
M=% Ckbiay), the operator Dy, ) may not apply since we can not take the derivative
of u(dz).

On the other hand, using the framework of (1)-(3) above, one can develop the
analysis of the transition semigroup in terms of the carré-du-champ operator. Namely,
by utilising the theory of nonlocal Dirichlet forms. One can show the existence of the
density for the transition semigroup. We will not treat this topic in this book. See, for
example, [37].

pyof

(4.5)

3.5 Composition on the Wiener-Poisson space
() - general theory

In this section, we make a composition T o F of a Wiener—Poisson functional F with
a tempered distribution T. One motivation for doing it is to make asymptotic expan-
sions for functionals F = F(¢) defined on the Wiener—Poisson space, where F(€) de-
pends on a small parameter €.

The density function pr(x) of F can formally be defined by E[6(F)] = (6x(F), 1),
where Dirac’s delta function 8y is an element of the tempered distributions 8'.

To this end, we construct, in Section 3.5.1, a series of spaces $,,, in 8' which ex-
haust 8', that is, Un=18_om = 8'. We remark that S,,, is a weighted Sobolev space,
for which the degree of the smoothness and that of decrease at infinity are symmetric
with respect to the weight. In Section 3.5.2, we provide a sufficient condition so that
the non-degeneracy condition (ND) holds in terms of the kernels.
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3.5.1 Composition with an element in 8’

We denote by § the space of rapidly decreasing C®-functions defined on R? after
L. Schwartz. For ¢ € 8, we introduce a new norm, that is,

lollzm = (j > {|<1—A)f(1+|y|2)f¢|2}dy> (5.1)

i+j<m
form=1,2,...Welet8,,, bethe completion of S with respect to this norm. We remark

Sc&mm=1,2,...
We introduce the dual norm || [-2 of [@ll2m by

IYl-2m= sup  [(@,P)l, (5.2)
(pESZM’"‘P"bn:l

where (@, ) = j (p(x)ll_)(x)dx. We denote by S_,,, the completion of 8 with respect to
the norm ||y ||-2,. Furthermore,

Sco = Nm=182ms  S—_co = Um=18_2m -

We denote by 8’ the space of tempered distributions (the dual space of §). We cite
the following representation theorem.

Proposition 3.4 ([163] Theorem 2.14). For each @ ¢ §', there exist k,m € N and
(fa), fa € L>(RY) such that

@=(1+1x)" Y Dal0).
|alsm
Using this result, we can prove the following:

Proposition 3.5. We have
8=8c0, 8 =80

Proof. For the second statement, we prove 8’ ¢ §_o, since S_y,, ¢ 8’ foreachm =
1,2,...
Let |@|om be the norm defined on 8 by

1/2
|plom = (Z j 1 -8ipw)|’ dy) : (53)

ism

This norm is equivalent, by the Plancharel equality, to the norm |¢|3,, given by

, 1/2
|15 = (Z I(l + V%) o)) dy) . (5.4)

i<sm
We denote by H>,, the completion of 8 by this norm. Let H_,,, be the dual space

of Hyp, with the dual norm |@|Z,,,. Since |@|5,, < [@ll2m, we have 8, € Hop for m =
1,2,...Thisimplies H 3, C S_om.
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Let @ be any element of §'. By the proposition above (Proposition 3.4), @ can be
decomposed as
D=1+ x> (5.5)

for some k, m ¢ Nand @' € H_,,,. We may assume k < m by choosing a large m. Take
any @ € Sym, then (1 + |x|>)* @ € Hyim-r).
Since (1 + [x|2)¥@', @) = (@', (1 + |x|?)Xp), we have

1L+ X)X o < 1D |2 (m-r) Sup (1 + 1XI2)* @l 20m-r)
[ Zm:1

< C|(D’|_2(m_k) < +00.

Hence, @ = (1 + |x|2)*@’ € 8_2(m-k)- This proves the assertion.
The first statement follows directly from the definition of 8. O

Remark 3.4. Watanabe [216] used the norm
l@ll2m = 11 + [XI* = 4)"ploo (5.6)

instead of |.|., in the analysis on the Wiener space. We can show further that 8’ can
be decomposed into the sum of subspaces characterised by this norm as

S, = Umzlé_zm .
Here,
c2m = {g €8';A Mg e C, thereexists g, € $

such that [A™"g, - A™™g|e, — O(n — +oo)} ,

where C is a space of continuous functions decreasing to O at infinity, and A = (1 +
|x]? — A). This gives one way to define the composition of a Wiener—Poisson functional
with an element in 8’ (cf. [223]).

Here, on the other hand, we use the Fourier transform on the Wiener—Poisson
space based on the L? theory to define the composition. Thus, we use the (weighted)
Sobolev norm as above.

We define the Fourier transform of ¢ € 8 by

P(v) = Fo(x) = (%)d j e op(y)dy .

The Fourier transform for i € 8’ is properly defined. It is well known that
F78=8, 78 =8".

If a characteristic function ¢p(v) = E[e!"F)] of a random variable F is smooth and
of polynomial decay (rapidly decreasing) at infinity, then it belongs to 8, and hence
the density function pr(x) = F¢p(x) of F exists and belongs to S.
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In what follows, we put
Ye(v) = E[e'"PG] (5.7)

for G € Dy,. We also write e, (x) = ei* in what follows.
We recall the condition (ND) for a Wiener—Poisson functional F given in Sec-
tion 3.3.3 (Definition 3.2).

Proposition 3.6. Let F € D, and assume the condition (ND). Then, for any n € N, there
existk,l € N,p > 2 and C = Cy,1,p > O such that

IE(Gey(P)l < CL+ M) (Gl plFI p sup QT (58)

for [v| = 1. Here, we put B, = A(lv| %),

. 2 .

QdFwm =V, Y V) —— J |e"P<P —1|" N(dw),

|V|2<P(| I ; ) g,
and y = (IT(DtF)i(DtF)f dt), where qo > O is what appeared in (3.33).
Remark 3.5. Under the condition (ND), sup,»; Supyep E [1QF (v)™ o £}|P] is finite for
allp>1,k=0,1,2,...since there exists 0 < ¢ < 1 such that
J |e!DaF) _ 112N (du) > J |V, DuP)* 1, p1< 2 N(du)

BV Bv
for [v| > 1.
Proof. Let

; (v De)

VW
(e=iDuF) _ 1) 1p (u)

[vIZp(IvIF)QF ()

ZFvy=zfw) =

Zv) = Zwv) =

where B, = A(Jv[ 7).
We set ZF(v) = ZF(v) @ ZF (v). Since

ev(F) = (Z"(v)D¢ ® ZF (v)Dy), ev(F)) 12 (nyer2(i) »

we have
E[Ge,(P)] = Ele,(F){6(ZF (v)G) + 8(ZF (v)G)}] .
Hence,
Ele,(F)G] = Ele,(F)8(ZF8(ZF --- 5(ZF6(GZF))---))] .
Here,

8ZF(v) = 6(ZF () +8(ZF ) .
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Here, we use the following:

Lemma 3.5. Under the condition (ND), for any k,1 € N, p > 2, there exists C > 0 such
that

16ZF(V)G)lk,1,p < » ||F|k 142,3p f‘fp 1QF (V) i 141,3pIGlie 1+1,3p »
v|>1

162" (v)G)|klp_|| o (v ) Bl 5D 1QF ) MGl - (59)

lv|>1

Herek! =k+p+1,p' =3(k + p)ko.

Proof of Lemma 3.5
The first inequality follows from the extended Meyer’s type inequality (Lemma 3.4),
and from Holder’s inequality:

|XYZ|I< I+1,p = C|X|k 1+1, 3p|Y|k 1+1 3p|Z|k 1+1,3p -

For the second inequality, we use Lemma 3.4 (2) in Section 3.3 as V), = ZFwv)G =
ZF (v)G1yj<py-15)- Then, we have

- - JINTTE 5 -
BT WG)litp < co (V7)) T IZFNGI 1 oyt -

Here, we use a Holder’s inequality

i N C _
1ZE )G, sprts S ———— VW11 QF ) it 111Gl 1
V(I #)

where F,,(v) = (e!"DuP) — 1)15 (.
We use the mean value theorem

1
Dup(G) = (Dw G) J (G + 6Dy G)dO
0

for G = (v, Dy F) and Y (x) = e'X — 1. Furthermore, we parametrise u = [vI~YBi for
sufficiently large |v|. As |u| < [v|"*/# with 4 < B < 1, we have |v|"*/# < |v|™, and

Do (PP _ 1)|2 N (du)

By (u)
1 2
- j ||<|| Duw b F)jal/)(f)uF+9Dur(v,DuF))d9 N(du)
By (u) 0
v 2
<v?- vt j ’(II Duwby F) N(dii) .

||<1
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Hence, || F,, (v)||;+p Lp S C|V||Flksp+1,1,p'- Combining this with the above, we have the
assertion for the second inequality. O

The above inequalities can be regarded as Poincaré inequalities in the Wiener and
Poisson spaces.
Due to this lemma, we can show

18(GZF)|k,1,p
< con (1o (M) 7 Bl % 10F0) Gl
Observe ) ) e
o mq)(lvl 1) <cpre.

Combining these inequalities, and using this estimate repeatedly, we have the
conclusion of Proposition 3.6. O

Remark 3.6. If we restrict the range of u € A(1)X to u € A(p(v))X, where p(v) is a
function of v in the form of a negative power of |v|, in the norms |.|x,;,, and ||.||;, 1p> We
can relate p(v) to the decay order of |v| in the right hand side of (5.8) in place of |v|~%°.
Confer with [77] Lemma 4.4.

We have the following proposition (cf. [130] Lemma 2.14]):

Proposition 3.7. Let F € D, satisfy the (ND) condition. For any m, there existk, l,p > 2
and Cp, > 0 such that

@ o Il < Cm ( ¥ ia+ |F|2)ﬁ|k,z,p> 1@l-2m (5.10)

B<m
forp € 8.
Proof. We have

E[p(F)G] =E U e "Ppwydv - G]
_ J(i)(V)E [ei(v,F) . G] dv = I@(V)lﬁG(WdV .

Step 1 We assert Y € S . Indeed, we observe

d
1-8Pype(v)=E [G(l + Z(Fj)z)ﬁei(vﬂ} .

j=1
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Here, by Proposition 3.6, for each n, there exist k, [, p so that the right-hand side is
dominated by

d B
<1 + Z(Fj)2>
j=1

Here, go € (0, 1) is chosen independent of n in (3.33).
Hence,

)—nqo/Z

C |Glk,1,p/2 (1 +v)?

k,,p/2

< c’(1 + |F|2)B‘klp 1Gligpp (1 +v12) "2

I(1+ V)92 (1 = AP (V)] < CIL + IFI2)Pli 1, pl Gl 1p -
We move n < 2m/qo, then by (5.1), we observe

IW6lam < Co( Y 1A+ IFPPliip)lGlictp, m=1,2,...

p<m

with some k = kp,, I = Iy, p = pmm. This implies P € Sco.
Step 2 The assertion (5.10) holds.

We observe
lp o FIL,I,p = sup |E[p - FG]|

|Glr,1,p=1

< sup U lpG(V)(p(V)dV’
|G|k,l‘p:1

< sup |Yelaml@l-2m
|G|k,l‘p:1

< Ca( Y 1A+ IFPP it @l-2m -

B<m
Hence, we have (5.10). O

The above formula implies that for @ € §_,,,;, and F € D, we can define the composi-
tion @ o F as an element of D_. Since Up>18-_2m = 8', we can define the composition
@oFfor® e 8 andF € D,.

Definition 3.3. Suppose that F satisfies (ND). For a distribution T € 8', the composite
T o F is the linear functional on D, which is defined by

(ToF,G)=g(IT,E[Ge'])s, GeDy.
Due to the proof in Proposition 3.6, we have the following result for ¢ (v):

Proposition 3.8. Let F € D, satisfy the condition (ND), and let G € D,. Forany n € N,
there exist k,1 € N, p > 2 and C > O such that

_49
Yol < C(A +vI%) ZO"IFIZ,,,I,IGIk,I,p, vi=1. (5.11)

Choose G = 1. As stated in the introduction to Section 2.1, the above proposition im-
plies that F has a smooth density pr(y).
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3.5.2 Sufficient condition for the composition

Let F be a Wiener—Poisson variable.
Condition (R) We say F satisfies the condition (R) if for any positive integer k =
0,1,2,...andp > 1, the derivatives satisfy

m
sup E Z sup |0, D¢ ,F o e5IP + z sup |az,az,Dt FoehlP | <+o0.
teT,ucA(1)k i=1 lzI<1 i,j=1lzl<1

We recall ¢(p) = j|2|<p |z|2u(dz), and assume that the Lévy measure satisfies the
order condition in (3.4). Let B be the infinitesimal covariance, that is, a non-negative
symmetric matrix which satisfies

(v, Bv) < (v, Bpv), veR"™\{0}forO<p<po,

for some pg > 0. Here B, is a matrix

_ 1 T
B, = o) IZlJ;p zz' u(dz) .

We remark that such a matrix B exists (eventually one may take B = 0). However we
do not know we can choose B > 0 (positive definite) even if B, > 0 foreach 0 < p < po.
One sufficient condition for this is due to Picard—Savona [185]: there exist 0 < a < 2
and ¢, C > 0 such that

cp®ul® < J (u, z)*u(dz) < Cp%|ul?
|zi<p

holds for any u € R™ and 0 < p < 1. Indeed, if we chooseu = ej,j = 1, ..., m (unit
vectors), then
mcp® < J |z|2u(dz) < mCp*®
lzl<p
Hence
(u, Bpu) = J (u, 2)*u(dz) > Cpc!pl > c|ul?

lzi<p

( )

for some ¢’ > 0.
Even if it exists positive, the choice of B may not be unique. In this case we choose
one and fix it.
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We now require sufficient conditions for the condition (ND). To this end, we intro-
duce

R= j D:F(D:F)Tdt = 5F .

K = [ (0D, 0F)B(dD; oF)Tdt .

Ky = | 0D¢,0FB,(0D¢,0F)Tdt, p>0.

T
l
l

Here, 0D¢ oF = 0,D¢ .F|,-0.

Furthermore,
Q) = (', R+ KW,

Q(v) = (v, R+ KV,

where v/ = Ve R, p > 0.

Definition 3.4.

(1) We say F satisfies the (ND2) condition if R + K is invertible and if for any integer k
and p > 1 such that

sup E[(v,(R+ K)o glv)P] < +00.
veR4,|v|=1,ucA(1)k

(2) We say F satisfies the (ND3) condition if R + K is invertible and if for any integer k
and any p > 1, there exists pg > 0 such that

sup sup Ell(v, (R +Kp) o €fv)P|] < +00 .
0<p<po veRd,|v|=1,ucA(1)k

Lemma 3.6. Assume F satisfies the condition (R). Then, we have the following.
(i) The condition (ND2) implies the condition (ND3).
(ii) The condition (ND3) implies the condition (ND).

Proof. (i) Indeed,
v, R+ K,)v)

= v j DtFDtFT+(aDt,OF)% J zzTu(dz)(0D¢ oF)T ¢ dt |v
T o |z|<p

>c <v, <I {D¢FDFT + (3D,0F)B(0D;,0F)"} dt) v>
T

> C'(v, R+ K)v)

for 0 < p < po, for some C' > 0.
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(ii) Let

1 - N
Hmm=QWFu&mw+a5jX%DJVMmmmNMM
Alp)
where v/ = v/|v|.
We shall prove that there exists C > 0 such that for some &, > 0,

sup E “Tp(v)"l o e;|p] <C sup E [|Qp(v)-1 o e;|”] (5.12)
0<p<6y, 0<p<6y,
holds for all u.

If (5.12) is verified, it implies the condition (ND). Indeed, if the condition (ND3)
holds, then there exists pg = 6(’) > 0 such that the right-hand side of (5.12) is finite.
Therefore, (left-hand side of (5.12)) < +co. Hence, we have the condition (ND).

We fix v and write T, Q, for T,(v), Q,(v), respectively. Take 8o > 0. We introduce
arandom variable 7 = 7(v, u) for v € S and |u| < 1 by

1
T=inf{p6(0,50);|Tp°£:;—0p°£:;|2 Eonsﬁ} .

We write 7 = §pif{...} = 0.
We have 1
Tepp o &g = Eonsz.

Since p — ¢@(p)T, is continuous and nondecreasing, we have

@(T ADp)
T,o&l >
P (p)

+
T-[-/\p ° Su .

Hence,
1o(tAp)

T,oc& >
PP 2 9

Qpnr © €4a.5 .

By the Schwarz inequality, we have

(1777 2] = 2(ela52-))* (£ (-225)]) "

o(T Ap)

We claim

2p\ 2
sup sup <E[<—(P(p) ) ])P <+oo, k=1,2,.... (5.13)
[v|=1 |u|eA(p)k @(T Ap)

If this is verified, then we have the assertion (5.12).
To show (5.13), it is sufficient to show that for any p > 1, there exists a positive
constant ¢, > 1 such that for all vand u,

P(t<p)<cp?, 0<p<ép.
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On the set

E(p) ={ sup |D,F| <pﬁ} ,
I(t.2)l<p

we have

|Tp/\r ° 5:; - Qp/\r ° 3:”
1

=9 rD j |(v, D, F)? o €5 - (v, 0D oF.2)% o 5| N(dw), u=(t,2).

A(pAT)

Due to the condition (R), the integrand is dominated by the term
lzPo(t, z,v),

where @(t, z, u) is a nonnegative random variable satisfying

sup sup E
teT |ul<1

sup @(t, z, u)‘*”] < +00
|Z|S60

foranyp > 1.
We put
Y= |Tp/\r °€:; - Qp/\r °5:;| .

Then, the above implies that for any p > 1, there exists c; > 0

E[¥". 1g4)] < c1p®P T (5.14)

if p < 8¢ for any v and u.
Then, combining the condition (ND3) and (5.14), we have

4p
Qpnr © &

for p < § for all u and v. Hence, by Chebyschev’s inequality,

P(E(p) n (av > %me oe;» <c3p™, p<éo.

On the other hand,
E(p)° = { sup |D(t,z)F| zpﬁ} .
|(t,2)|<p

Then, again by Chebyschev’s inequality,

sup|(t,z)|<p |DuF|

2p'
o ) } < cup® PP < cup®, p <8y

P(E(p)) < E [(
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for some §; > 0 which are sufficiently small, where p’ = %. Here, we again used the
condition (R). These imply P(t < p) < (c3 + ¢c4)p*? forp < 5(’) =0g N1

We put m(x) = P(t < x). Then m(x) < Cx“P. By the order condition we have
¢@(p) = cp“. Hence

E|(—Lt ”
[((p(pAr)) 1“”]_

<

(—— )P m(d)
p(x)

¢ (%)zap m(dx) < C2(p)

O O—

This implies

E [( ¢g)(i)r) >2p]

<P(t 2p)+9(p)PE [(

1/2

2p 1/2
1 <+o00, O<p<1.
oA r)) TS"] P

Hence, we have the assertion (5.13). O

Proposition 3.9. We assume the conditions (R) and (ND2).
(1) For each n, there exist C > 0 and k, 1, p such that

IELGe (Pl < €1+ VY H (Gl plFIE S0P HQ W s 1= 1.
v|>1

Here,
QFw) =", ZFV) + ;_1 J le'DuP) 112N (du) .
VPe(vI?) 5,
@

sup {Q¥ (W)} i 1,p < +00
lv|>1

foreachk, 1, p.
Proof. By Lemma 3.6, the condition (ND) holds. Then, the remaining part of the proof
for (1) is the same as that of Proposition 3.6.

Next, we show the finiteness of |QF (v)~1| k,1,p- Indeed, under the condition (ND),
SUP|y|>1 SUPyepk E[1QF(v) 1o &}|P]is finite forall p > 1, k,1 = 0, 1, 2, ... since there
exists 0 < ¢ < 1 such that

PO PASN ~ ~
[ 2P 1" ftaw) > ¢ [ 100 DuPIP 15, M)
B, By

for |v] > 1. This proves the assertion of Proposition 3.9. O
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3.6 Smoothness of the density for It6 processes

In this section, we choose F to be X;, where t — X; denotes an Itd process from Sec-
tion 1.3. We seek conditions that induce the condition (ND) for F. Normally, the exis-
tence of big jumps of the driving process for X; will disturb the condition (ND) to hold.
To this end, we decompose the trajectory of X; into parts with small jumps and parts
having big jumps. The reader will find a technique based on the same idea which is
used in Section 2.2. The case for canonical SDEs will be treated in Section 4.1.1 below.

In this and the next sections, we assume that supp y is compact in R™ and that
T < +00.

3.6.1 Preliminaries

To this end, we divide the jumps of the driving Lévy process into “big” and “small”
parts. We consider the process X} which is given as a solution to an SDE driven only by
small jumps. We put F' = X}, and show that the condition (NDB) (see below) implies
the condition (ND) for F'.

We also show the existence of smooth density for F = X; under such conditions.
For the proof, we use an analogue of the integration by parts formula.

We recall an It6 process X; given in Section 1.3 by the SDE

t t

¢
Xi=x+ j b(X,)dr + J o(X,)dW(r) + j Jg(X,_,z)N(drdz) .
0 0 0

Here, the coefficients b, 0 and g are infinitely times continuously differentiable with
respect to x and z, and are assumed to satisfy the conditions in Section 1.3. Further-
more, in this section, all derivatives of b, g, g of all orders (> 1) are assumed to be
bounded. Especially, the function g is assumed to satisfy

IVig(x, 2)| < LU(2)

for some positive functions L*(z) such that lim,_,o L*(z) = 0, and that j LYz u(dz) <
+0o for all p > 2 and all multi-indices a.
Under these conditions, the SDE above has a unique solution under any initial
condition x.
The flow condition means
inf yldet(l +Vg(x,z))|>C>0.

X,ZESUpp

A sufficient condition for the flow condition is
Condition (D):
sup |Vg(x,z)| <c (6.1)

X,ZESUpp U

forsome O < c < 1.
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This condition corresponds to the condition (A4.2) in Section 1.3 with g replacing y.
The condition (D) implies that the map x — x + g(x, z) is a diffeomorphism for all z,
and this, in turn, results in that t — (x — X(x)) is a flow of diffeomorphisms a.s.
(cf. [192] Theorem V.10.65). Here, X;(x) signifies that the process X; starts from x at
t=0.

The Lévy measure u is said to have a weak drift if the limit lim._,o je
exists, i = 1, ..., m. We assume u has a weak drift.

We first show that F’, composed only of small jumps, satisfies the condition (ND)
under a positivity condition (NDB) (Theorem 3.6 below). We have shown in Proposi-
tion 3.8 above that, under the condition (ND), for any G € Dy, and any n € N, there
exists C > 0 such that

zip(dz)

<|z|<1

|E[Gey(F")]| < C(1 + [v|?)2na0 (6.2)

for all |v| > 1, where go > O is what appeared in Proposition 3.8.
For a general F, we recover it from F' by adding big jumps as finite perturbations.
We state that the estimate (6.2) is valid for general F in Proposition 3.12 below.
To show these assertions, we choose and fix a small 6o > O so that (6.1) holds for
|z| < 6o. That s,
sup |Vg(x,2z)| <c.

X,|z|<6¢
Constants involved in the calculation below will not be uniform in 6y, however this
does not cause difficulty since we do not tend to §; — 0. Quite often, it will be conve-
nient to take 8o = 1. We decompose the Lévy measure y into the sum u' + u'’, where

p'(dz) = 1(0,5,1(121)u(d2) ,
1" (dz) = 1(5,,+00)(I2)p(d2) .
Accordingly, we decompose N(dtdz) as N'(dtdz) + N"'(dtdz).
We decompose the probability space (2, F, P) as follows: Q = Q'xQ", F = F'x5",
P=P' xP" Here,Q=0,,F=F,and P = P,.
Let z;' be a Lévy process given by N (dtdz) defined on (2", 5", P"").
We denote by X; the solution to the SDE

t
X, =x+ [ bty - | gt 2udz) | ar

1<|z|

t t
+ j a(X))dW(r) + J j g(X), z)N(drdz). (<1} -
0 0 |z|<

|1z|<1

Here, the existence of -[1<|z| g(x, 2)u(dz) is assumed for each x. We write X; ¢ = X; o
X ;)‘1 for s < t. Then, X; is a solution to the SDE driven by

¢
X[eaj J g(x, z)N(drdz) . (6.3)
0

|z|>1
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That s,
! + ! ! !
Xe=Xioeu=Xp, toPz, 0 Xp, 1,0 0Pz 0 Xy,

where u = ((t1,21),...,(tn, 2Zn)), t1 < t < --- < t,, denoting the moments of big
jumps such that |z;| > 1 and ¢,(x) = x + g(x, z). Thus, the function ¢ plays the role of
a connector.

Since o(x), g(x, z) satisfy the linear growth condition with respect to x, we can
prove the Condition (R) for F' = X7.

Lemma 3.7. For any positive integer k and p > 1, the derivatives satisfy

m m
sup  E| ) sup|o;De X oeflP + ) suplo;,0;D¢ X ogflP | < +o0, (6.4)
teT,ucA(1)k i=1 121 i,j=1lzI<1

where X' = X,.
Proof. We see
DuX' = X} 1o 2(X\_(0) - X, (X1 (X)) -

Hence, 0;,D¢,.X’, 9,0, D;,.X" are written by using the flow property as

02Dt X" = VX 1(Xi_(x))0,8(X;_(%), 2) ,
az,-az,-Dt,zX, = VXLT(X;_(X))az,- az,-g(X;_(X), z),

respectively. Hence, we see that

m m p
E[(zSup|aziDt,zX'o£;|+ z sup|aziaziDt,zX'o£;|> :|

i=1 1211 i,jzllzlsl

is dominated by

1
2

A g R (C A O

where C > 0isindependent of ¢, u. Here we use Sobolev inequality to show the bound-
edness of sup|,<; 10z, D¢, X" o €fl, ...
Next we show for each k, p,

sup E[IVX] (0ol ] < C’
ucA(1)k

and
sup E[IX}oefl?] < C'(1+Ix)*
ucA(1)k
for some C’ > 0.
We consider the case t = 0, X ;,T(x) =X ’T(x) only, since the discussion is similar in
other cases. We put ér = X ’T(x) o &,. Notations ¢&;, &;,r are defined similarly.
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We recall the original SDE for X}, and denote it simply by
t
X =x+ j XX, dr) .
0

First we assume o(x)a(x)T > 0. The Malliavin-Shigekawa derivative of &7 satisfies
the following linear SDE

T
Dty = 0(&) + j VY&, dr).Det,-
t

where Y(x) = X o €. See [25] (6-25).
On the other hand,

T

VE (&) =1+ j VY&, dr)\VEe,- (&) .

t

Comparing these two, due to the uniqueness of the solution to the linear SDE, the
solution to the above SDE is given by

De&r(x) = V&, 1(§r(x)0(§¢(x)) -

Since x — 0(x) is of linear growth, for any k € N and p > 2 there exists a positive
constant C such that the solution D;é1(x) satisfies
sup E[IDe&T(0)P] < C(1 + [x])P .
ueA(1)k

This proves the second assertion.

As V&(x) satisfies the linear SDE above, we apply the argument for V2&,(x) =
V(V&:(x)). Then we obtain the first assertion.

Next we consider the case g(x)o(x)T = 0. Calculation using the operator D, is
similar. See [101] Lemma 4.5. Hence, we have (6.4). O

3.6.2 Big perturbations

Letuy = (t1,21) € U} = T x{z;|z| > 1}. Then,

! ! !
Xt°€(+ =Xt° Ptyz 0 Xy, 0

t1,21)

where
¢t1,21 (X) =X+ g(X, Zl) -1

1 The operation by ¢ does not depend on t. We write ¢, , to indicate the moment of the operation.
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Foru = (us, ..., un) = ((t1, 21), . . ., (tn, zn)) € U} x--- x U], we put

Ity 1 '
Xioeu =Xt 10 PtazaoXp 0,00 Pty,zy 0 Xy, -

Based on this decomposition, we introduce the conditional randomization as fol-
lows. We write

Xi=Xioey =X{og by tist<tni, (6.5)

where q(u) = (q(u1), ..., q(uy)) is a Poisson point process with the counting mea-
sure N (dtdz) and t,, = inf{t; N"'((0, t] x R™) > n}. The reader can recall a similar
decomposition of the density in Section 2.3.2 ((3.16)).

As noted above, we first analyse the small jump part X’ of X, and then perturb it
by big jumps due to g(u).

LetF' = X’T(x). Then,

F’ o SZZ = X;,T o ¢t,Z OX;,(X) .
Hence,
Dt,zF’ = X;,T ° ¢t,z(XL) - X;T(XL)
= VX 1(P,6:(X1))V2e,0:(X;)

for some 0 € (0, 1).
This implies F' € Dy 0, by Lemma 3.7, and finally we observe F’ € Do,. Further-
more, we have
azf)t,zF,'z:O = VX;,T(X;_)G(X;_) .

Here, G(x) = V,g(x, 2)|z-0-
In view of this, K, R in Section 3.5.2 turn into

K, = j VX; 1(X{)G(X{_)B,G(X)'VX, p(X; ) dt,
T

and

R = j VX; (Xt )o(X{)o(Xi ) 'VX; (X ) dt,
T

respectively. Then,

R +K, = j VX, (X)) Co(X| VX, p(X; ) d,
T

where
Co(x) = a(x)a(0)T + G(OB,G(x)T .
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Furthermore, K turns into
K' = j VX, (X} )G(X{ )BG(X; )'VX, p(X; ) dt .
T

Then,
R +K = j VX, 1(X{)CX[ VX, (X ) dt .
T

Here,
Cx) = ()T + GX)BG(X)T .

We remark C,(x) > G(x)B,G(x)T, and that
R'+K'SR'+K;,, 0<p<po. (6.6)
Let
QW =0 R +K'W),
Q) = (', (R"+ Ky,
corresponding to Q(v), Q,(v) in Section 3.5 where v/ = T
Definition 3.5. We say F satisfies the condition (NDB) if there exists C > 0 such that
(v, Cx)v) > Clv|? (6.7)
holds for all x.

Theorem 3.6. Assume the condition (NDB) holds for F'. Then, the condition (ND) in Sec-
tion 3.3.3 holds for F'.

Due to Proposition 3.7, the composition @ o F' of @ ¢ 8’ and F' is justified. The proof
of this theorem consists of the following two propositions (Propositions 3.10, 3.11).

Proposition 3.10. Assume the conditions (NDB) and (D). Then, for each N € N, the
family {X}(X)}xeqx<n; Satisfies the condition (ND2) for p > 2.

Proof. The matrix C(x) satisfies (6.7). By the expression of R! +K [’,, by Jensen’s inequal-
ity ( [} fis)ds)™* < 1 [} f(s)"ds for f(.) > 0) and (6.6), we have

Q) ogl

IN
O
~
N
|
-
o
™
s+

1 _112
< ﬁ J’ |(VxX;’T(X;(X)) 085) 1| dt, 0< p<po-
T

Hence,

(NI

B[00 oes] < = [ E[Jwt i o e [7] at.
T
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Here, we have
1
~112r]2
sup E“(VXX;,T(X;(X))os;) | ] < +00 (6.8)
ueA(1)k

fork =1, 2,.... Hence, we have the assertion.
We prove (6.8) below. We introduce a matrix-valued process U%!(u), t < u < T by

t,r—

Ut () = ij(x’ ())dr + JVU(XL,_(X))dW(r)
t t

t
+ j j VeX,, (x),2)N(drdz) .

Then, the matrix-valued process
@*(u) = VX; ,(x)

satisfies the linear SDE

u
@*t(u) =1+ J AU @ () .
t

That is, @ is the Doléans’ exponential (stochastic exponential) £(U)"*.

Since b, 0 and g are assumed to be 3’ functions, the coefficients Vb(x), Vo(x) of
U*!(u) arebounded, and |Vg(x, z)| < K1(z), where K1 (z) satisfies j K'Y (2)P u(dz) < +co
for any p > 2. Then, by the uniqueness of the Doléans’ exponential and by the direct
expression of it ([192] Section V.3),

sup E[|@*tw)P]1 < +00, p>2.
xeR4,te[0,T],t<u<T

We observe
I+ AU (r) =1+ Vg(X{ ,(x),2), z=q().

Therefore, the matrix I + AUX!(r) is invertible by the condition (D).
Let V*!(u) be the process given by

Volu) = UM ) + (UL, TP+ ) T+ AU ) AU ). (69)

t<r<u

Here, [U*!, U*!]¢ denotes the continuous part of the matrix-valued process
(TE (UK, (UxH9],).
We introduce another matrix-valued process ¥*{(u), t < u < T by the SDE

POl u) =1+ j POl (r-)dvoi(r) .
t
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That is, ¥*{(u) = &(V*?!),. The process ¥*{(u) is the inverse of @*!(u), that is,
Yolu) = (VX ,(x))7! ((192] Corollary to Theorem II 38).
We can write ¥%{(u) in the form

poly) = j Yol r-)Vb' (X ,_(x))dr + j PR r-)Vo(X; ,_(x)dW(r)
t t

+ j j Yol r-)Vh(X; ,_(x), 2)N(drdz) ,
t

where Vb’ is the drift part determined by (6.9), and h is given by the relation I + h =
(I+g)7L. As the coefficients Vb'(x), Vo(x) and Vh(x, z) are bounded functions (due to
the condition (D)), we have

sup E[l¥* )Pl < +00, p>2.
xeR4,te[0,T), t<u<T

By using the argument in [95] (Lemma 6.3 and (6.17)), we have the assertion (6.8). O
Proposition 3.11. The condition (ND2) for F' implies the condition (ND) for F'.
Proof. This proposition follows directly from Lemma 3.6 and (6.4). O

In view of Propositions 3.10, 3.11, we see that the condition (ND) holds for F' = X
under (NDB) and the assertion in Theorem 3.6 holds.

3.6.3 Concatenation (l)

In this and the next subsection, we show the assertion (6.2) with F’ replaced by F = X;.

Proposition 3.12. Under the condition (NDB), for any G € D, and any n € N, there
exists C > O such that
|E[Ge,(F)]| < C(1 + [v|?)" 2" (6.10)

forall |v| = 1, where qq > O is what appeared in Proposition 3.8.

Choosing G = 1, this assertion implies that F has a smooth density function pr under
the condition (NDB). See the introduction of Section 2.1

To show Proposition 3.12, we first claim the following proposition, where F’ satis-
fies the condition (D). We put

~ _1
E,={ sup |D,F|<|vI*}=E(v|?).
ueA(Iv|-1/8)

Proposition 3.13. Assume the condition (NDB). Then, for any n € N, there exist k, l € N,
p =2andC = Cy,p > O such that

|E[Gey(F").1, ]|

2\-1 ' ~1-1 -
< C(1L+ V) 2" |Gl pfIF' I}, x sup 1@ W)IE b VIzp™.
v,0<p<po
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We remark that there exists 0 < ¢ < 1 such that QF (v) > COI,VI-/% (v) if |ID F'| < |v|7L,
where QF (v) is given in Proposition 3.6 (Section 3.5.1) for F = F'. Then, this proposition
is proved as Proposition 3.6.

According to (6.5),

(R + K;,) oy =R+K, as.dP. (6.11)
Since F’ and N" are independent, by the above proposition, we have

E[Ge,(F).1,] = E" [E'[Ge,(F' o £}).1,]]

< C(1 + V122" |Glg 1

~ 2n
x E" HIF' ogf2% 4+ sup |Ql(v)oe! H ) (6.12)
alicLp V,O<p<p0| p ali,Lp

Our objective below is to show the finiteness of the right-hand side of (6.12) under
the conditions (NDB). If (6.12) holds, choosing G = 1, we have the exponential decay
of the characteristic function.

In (6.12) we see

2n
[ 1P oegin ap"@ < ([1F o5 ,dP" @) = 1P,

This norm is finite for all k, [, p. We can check it by a direct calculation as in Proposi-
tion 3.16 below.
It remains to show

. 2
sup J |Q[’J Yy £;|k"l ) dP"(q) < +o0 (6.13)
v,0<p<po .

under (NDB).
To prove this assertion, we begin with the case q(u) = 0.

Proposition 3.14.

Y -1 A/
|2, ) |k,,,p < Cie1,pl QM 1,2(k+ 1)1+ 1)p
1
~ _ 2(k+1)(1+1)p ~ 2(k+Dp
x Zn;_1<1+EU|Q,’,(v) Lol | M(du,-)] ‘”) ,
(u;)
where u; runs over all subsets ofu = {u1, ..., ux}, uj € A(1) such thatu; U---Uus = u.

Proof. Case (k, I) = (0, 1). Since D;Q' (v)"! = -%S—’(;V)), we have

=1 =1 A1 Al (=112
Q) 1, < Co1p1QWo,1,2p1Q' V)G 0.4 -
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_ ; A Al-1 - DQwm
Case (k, ) = (1, 0). Since D,,Q"(v)™* = Ta )£+,we have

L
4p

|(~2,',(V)_1|1’0’p < C1,0,p1Q, (110,29 ( [|Qp(V)_1|4p])
(e -]
< Cll’o’p|é;)(v)|1,0,2p( “Q (V)_ll ])#

X <1 +E “ |Q[’,(v)‘1 o£;;|4p I\A/I(du)])# .

S

In what follows, we write Q for O;, for simplicity. In the general case,

Q

DiQ_ Z( 1 Qr+1 ’

where the sum is taken with respect to all the choices of (I, ..., l;), l; = 1 such that
i +---+l,=LHere, |t| =land |tj| = [;,j=1,...,7
Hence, by the formula in Section 3.3.2withn =r + 1,

DDIQ = Y DuD{ Q- Dy Dy QDy, QY

upUuy U---Uu,=u
_ z ngn (r,s)Y ko ----- L Q—(r+1) o ‘9;0

! !

r,..1
Here, Y = Yk1 ,; is written by

.....

l/

Ll I . I .
Yko ..... S (Dt,Q DtIQ>.DtiQOSu1 ”.thQogus )

and Y ; denotes the sum with respect to all the choicesofuo, ..., us c {uq, ..., ui} =
for which |uj| = kj,j=0,...,s. Weremarkr < land s < k.
To see this, we can calculate, for k = 2, u = (u1, u>), D,Q'(v)™! as

DuzDulo_l(V) = Duz (‘Du_lQJr)
= -Du,Du, Q- (Q- Qogl) ™t ~ Dy QD (Q- Qoel )

- Duzbulo . Duz(Q Qo 8;1)_1
- I-I-1I (say).

Here,

I=D,Q-((Q-Qeef) ol -(Q-Qogf)™")
=Dy, Q- (Qogy, - Qogy o€f) " =Dy Q-(Q-Qogy ),
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and terms I, III are calculated similarly. Hence, terms D,, Q, Dy, Dy, Q arise from the

term Du Q1. Further, let A = Q, B = Q"+, Then, we have
Dy,Dy,(D,A-B) = wDiA-B+DyD,A-Dy,B+Dy,,D,DiA-Dy,B

Dy,D
+Dy,DiA-Dy,B+DiA-Dy,DyB+Dy,DA-Dy, Dy B
+

+

bl

w, Dy, D¢A - Dy, B+ Dy, DtA - Dy, Dy, B
Dy,Dy,D¢A - Dy,Dy,B.

Noting that D,,,B = B €;;, — B, we have the above expression for Y.
We have

I I 2 p 1/2p
Ykl,...,lz )
J J ;(’u)’ =| dt M(du) < |Q|k,l,(s+1)(r+1)p < C|Q|k,l,(k+1)(l+l)p .
|

Here, C > 0 does not depend on v.

On the other hand,
1/2p
E[ [ a0 ey | ft(auo)]
2(s+1)(r+1)p 1/2(s+1)p
<Y IE U ot ee M(du))
(1))
These prove the assertion. O

Due to the assumption (NDB), we have desired finiteness in the case g(u) = () by Prop-
sition 3.10.

Using Proposition 3.14, we have the following result for F' = X}(x) which is more
precise than Proposition 3.6 in Section 3.5.1.

Proposition 3.15. Let F' and G satisfy the same assumption as Proposition 3.13. We have
then for each n there exist k, 1 ¢ N, p, p' > 2 and C > 0 such that for |v| > 1

|E[Gey(F)]| < C(1 + vl )“nqo(lF,|k+1 1+1,2(+ 1) (k+ D)p

{ZH (1L sup (@) 206 gl () )|
(uy) <p<po

+ By (F)|Gligtps VI >p7P . (6.14)
Here @, (F') = sup;et @p,¢(F') where

1 ~
@y t(F')= sup —E[ sup [DyF'|P],
0<p<po Pp o<r<t,|z|<p

and u; runs over all subsets of {u1, ..., ux}, uj € A(1),j=1,...,ssuchthat luy| +--- +
lus| =k, [uj| = 1 fors < k.
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Proof. We recall
Q" ) = (v, RV) + ———— [ 1elDF) 1P R(dw)
VI2@(vI™?) 5

and
Al R BRE 2 W
Qp(v) - (V ’ (R +Kp)v )
where v = 2, v € R%, p > 0.
We start from Proposition 3.6

[B(Gev ()l < O+ V) 16kl 1, 0R 107 ()l (615
for |v] > 1.
We need a bound for E[QF' (v)]. We have, since QF (v) > QF' (v).1g, > c Q' , (v)
vl B

forsomeO<c<1,
E[Q" \)P.15,] < cPEIQ; ()71, (6.16)

where p = |v|_/l*.
Hence by Proposition 3.14,

! _ !
1QF W)L 1E, linp < CrotplQF WMlion 2061y 1)p

1
x {z H}?Zl <1 +FE [J |QFl(V)_1 ° ezj|2(k+1)(l+1)pM(duj)j| 20k bp )} .

(u5)
(6.17)
In the expression (6.17), first we have
ﬁ/‘lilfi 10" Wl 2 yts1p < C|F'|i+1,l+1,2(k+1)(l+1)p : (6.18)
See [77] (6.9).
Second, we treat the the expression E[. . .] in (6.17).
E[J’ Q" )P o &, M(dwy)) T (6.19)

< E[J’ sup Ql’,(v)“f7 ° e;ilf/[(duj)] T ,
0<p<po

where we choose p = 2(k + 1)(1 + 1)p. This implies

F' N1 n 1\2n
Q" (v) '1Ev|k,l,pSC|F Ik+1,l+1,2(k+1)(l+1)p

~ . N Z(kil)p "
R PRI 1+EU sup Q;,(V)‘pos;.M(duj)] )
0<p<po /

(u;)
(6.20)
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170 —— Analysis of Wiener—Poisson functionals

We have also
E[e™)G(1 - 15,)]

< P( sup IDuF'| = IvI™)IGlo,o,>
uel0,t]xA(|v|-1/F)
|V|_p /
W ————®@pr «(F)|Glo,0,2

203", t<F’)|G|o 0,2 < V729" Dy (F')|Glo,0,2

(

< vl

holds if p’ = p/, is chosen so that p’ >

Combining these we have the assertlon. O
Remark 3.7. We can show @, (F') < +oo foreachp > 2.

Indeed, we recall F' = X} and we write X{ , = X o (X;)~'. We prove

sup @p (F') < +o0.
x,teT

We write D, F' by D, . X;.
Using the process YZ(x), where

Yf—r = Xz),t—r ° ¢Y,Z(X’—r,0(x)) - X,—r,t—r(x) ’

thelawof {YZ ;0 <r < t,|z] < 1}»c01nc1desw1ththelawof{D,ZX0 p0<r<t, |zl <1}
The process Y7, satisfies the integral equation

r

Y2 (0 = Y:+ jb(X_,O) + [ o, awis)
0

o7

~

-r t-r

J jG(s Z)N(dsdz') + J jG(s z dsy(dz)

where
Y5 =X, o) - X, 0 =8, 0,2
and
G(s,2') = g(Xp s o przo X, 0, 2) - 8(X, 5, 2) .

The fourth term of the right hand side is a martingale. Therefore, by Doob’s in-
equality, we have for some ¢ > 0
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t Pq
E[sup |Y7 IP1<c {E[IYSI”] +E [(I Ib(X'_,,S)Ids>

o<r<t
0

|

t
E!’ J G(s,z')N(dsdz")

t p/2 -

+E <J|0(X'_,,S)|2dW(s)> +E
0 L
t

p/2
+E IG(s,Z’)Izdsy(dz')>
(!

Each term of the right hand side can be estimated directly, and we can show that

sup E[sup |Y7 ,(x0)IP] < +c0.
x,teT  O<r<t

Since z — Y7, is differentiable, and since any moments of the derivatives are
uniformly bounded with respect to x and t, we can show that there exists a positive
constant ¢’ such that

sup E[sup |Y7 ,(x) - Yfir(x)lp] <cz-Z]P
x,teT  O<r<t

forany |z| < 1, |Z'| < 1, by a similar argument. Similarly, we have

sup sup E[sup |01 Y7 ,(0)|P] < +00,
x,teT|z|<1  O<r<t

and

sup E J sup |aisz_,(x)|sz < 400
x,teT O<r<t

|z|<1

for |i| = 1, 2, where i denotes a multi-index. By Sobolev’s theorem there exists a posi-
tive constant C such that

sup E[sup sup [0} YZ (0)P] < C,

x,teT  O<r<t|z|<1

for [i| = 1. Since Y? (x) = 0, this implies

sup E
x,teT

sup sup
o<r<t|z|<1

z

YZ (%) |p] <C

This implies

1 .
sup sup — E[sup sup ID,,ZX;_,(X)IP] < +400.
x,teT 0<p<po P O<r<t|z|<1

This proves the assertion.

This completes the proof of Proposition 3.12 in case q(u) = 0.
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172 — Analysis of Wiener—Poisson functionals

3.6.4 Concatenation (Il) - the case that (D) may fail

Finally, we consider the case that F may not satisfy the condition (D). That is, the case
q(u) # 0. We still assume that supp u is compact in R™ and that T < +co.

To verify (6.13) in this general case, we construct a process X' (x, S¢, t) as follows.
Here again, we encounter the methodology in Section 2.3.2. By S; = {s1, ..., Sk}, we
denote the jump times of z/ in [0, t].

Let 8¢ = [O, t]k' / ~, where ~ means the identification of (sq, .. ., si’) by permu-
tation. Let 8¢ = ITjr>08¢, k.

The law P; of the moments of the big jumps related to z is given by

jf(st)dmst) (6.21)

= (t J y”(dz))k, % exp (—t J y”(dz)) X t% J-~-jf(sl, ve.y Spr)dsy -+ dsp

= (Jy”(dz))kl % exp (—tjy”(dz)) X J-~-If(sl, ve.ySir)dsy - dsp

if #S; = k', where f is a symmetric function on [0, t]k'.
Let S¢ € 8;. We introduce a new process X' (x, S;, t) by the SDE:

t
X%LSbO=X+J{b@KLS“n)—jg@%msannqmm}dr
0

¢ ¢
+ j o(X'(x, S¢, r)dW(r) + J Jg(f(’(x, S¢, r-), 2)N' (drdz)
0 0

+ Y gX(x, S si-), &) -

S;€St,Si<t

Here, (¢;) are independent and identically distributed, obeying the probability law

" dZ
H;,’(dz) = M .
f y”(dz)
We put
F, = X,(X’ Sty t) ’
identifying q(u) = ((t1, z1), - . ., (tx', zi)) with (S¢, (&;)). Then, F' can be regarded as
!
Fro 5. ) )
By using this notation, we can identify Q;,(v) o 52 with Q;,(v)(S ¢+). Hence, our ob-
jective is to show:

Proposition 3.16. Assume the condition (NDB). Then,
sup ([ £'[ [ |20 (03" ftdw ] dP"(@)) < 4o,
lv|=1

uecA*, k=1,2,..., (6.22
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for each even number p' > 2. Here, the expectation with respect to the measure P' is
denoted by E'.

Proof of Proposition 3.16. Step 1. In case k = 1, with u; = (t1, z1),

Bl ot . X’
Frogg =X t° Ptz o Xy, (X)

where
$e,z2(00 =x+8(x,2) .
We remark
broX) =x, Vi (%) = V28(x,2) .
Hence,

Dh,ZlX, = X;bt ° ¢f1,21 ° X;l_(X) - X;bt ° le—(x)
= VXfl,t(¢t1,9z1 (Xil_))Vz¢t1,9z1 (X;1 )Z1

for 6 € (0, 1), and
oDy, oX' = VX, . (X! )V.g(X,,0) = VX (X, )G(X,).

We see X’ € D1,9,p, and finally X’ € D,.
Hence,

- ~ 1 - - - -
QS ° £y, = QS 2 5 <v', j {VXL,tG(XZl )zl<a(X£)a<X£)T
T
+G(X;)BpG(X;)T>z1T G(X{l)T(VXfl,t)T}dtv') , lzl<1.
Then, since Q,(v)(S¢) = 0,

J VXZI,t(X)G(Xfl)h<0(X;)0(X;)T
T

QS ey <c <V’, (
-1
+G(X;)B,,G(X;)T)z{G(Xgl)T(vX;ht(x))Tdt)v’) .
Here, we have

E[|(v:,.100) ] < Cexplepte - )} 6.23)

Indeed, let ¢ ¢ denote the stochastic flow generated by X’ (x, S¢, t). Consider the
reversed process

-1
Zs = ¢(t—s)—,t .
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174 — Analysis of Wiener—Poisson functionals

Then, Zs(S;) satisfies the (backward) SDE between big jumps

Si+1

Zs(St) =y - J {b(Zu(St)) + j(—go(Zu(St), z) + ZZ]’Vj(Zu(St)))H’(dZ)} du
S j=1

Sit+1 Si+1

- j O(Zu(Se) AW, + j jgo(zuxst),z)N’(dudz),

Zsi- =Y, Si <8 <Siy1.

Here, g is such that x +— x + go(x, z) is the inverse map of x — x + g(x, z) for i’ a.e.
z,and Vj(x) = % g(x, z)|;=0. Then, [67] Theorem 1.3 implies the assertion (6.23).
]
The finiteness of the term

E'U

o, ( J VX}, (G} )21 (0(XDa(XDT
T

+G(X})B, G(X;)T)z{ G(Xi, )T(VXfl,t(x))Tdt)v')‘l

P
M(du,)

for all |v'| = 1 holds as follows.
It is sufficient to show the finiteness of
E “ ( jVXfl,t(x)G(Xfl 21 (o(Xpa(xp”
T

-1 p’
+G(X})B, G(X;)T)z{G(Xgl )T(vX;bt(x))Tdt)

M(dul)l )

We have

(

1 - . o
<2 j (VX{l,t(x)G(X;1 )Zl(a(Xf)a(X;)T
T

———

VXfl,t(X)G(Xﬁl)21<U(X§)0(X;)T

-1
; G(X;)BpG(XQ)T)ZIGO?&)T(Vxﬁ,t("))T‘“ )

-1
+G(X})B, G(X;)T)z{ G(X{l)T(VXfl,t(x))T> dt.
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Here, we used the Jensen’s inequality (F fT fsyds)™ < % fT f(s)~1ds for a positive
function f. We integrate the right-hand side with respect to M(du; ). Then, we have

J

( J V&, (00GX )z (0(XDa(XT
T

-1
+G(X;)BpG(X;)T)leG(X;1)T(VXfl,t(x))Tdt) M(duy)

= % J J (fo{l,t(x)G(X{1 )zl(a(X;)a(X;)T
T
-1
* G(XQ)BG(XE)T)ZI(VXL,t(X)G(Xﬁl))T> dtil(duy) .

Let A; > 0 denote the minimum eigen value of C(x). Due to (NDB), we may assume
it does not depend on x. Then,

E [ﬁ J J <VXt1,t(X)G(Xt1 )21 (oKX
T

-1
+G(Xf)BG(X;)T)le(VX;ht(x)G(X;l))T> dtM(dul)]

<F U % J)lzllzllzdt]\?[(dul)j|
T

1
< ﬁA;lc’ T’°E'[1] = C'A{' < +00, ae. P’

uniformly in v by (NDB). Here, C' > 0 does not depend on p. From this, it follows that

E’“

-1
+G(X}))B, G(X;)T)zIG(Xél)T(VXil,t(x))Tdt)

( j V(006K )z (oKD"
T
pl

M(dul):| <+o00, a.e. P’

uniformly in v for p’ > 2.
These imply

E'lsup [ 10080 o &5, P Bt(duy))
< C(q(u))M(A(1)) < +c0, a.e.P”

by Proposition 3.9, where p’ > 2,0 <t < T.
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176 —— Analysis of Wiener—Poisson functionals

We shall integrate the right-hand side with respect to the measure dP;(S;)® )7 ’1’. We
put C1(t) = EX[C(q(u))]. Then, C1(t) < C1(T) < +oo since 7 is a bounded measure
and since supp y is compact.

For the general case #S; = k', we proceed as above by replacing V'1' (dzq) with
py(dz1)®---ou! (dzi). Since (¢;) are independent and identically distributed, having
a bounded law, we have

EEOY [C(qu)] < Lok, K =1,2,...

where q(u) = ((t1,21), ..., (t, 2K)), 0 < t; < --- < tg < t. Summing up with respect
to the Poisson law, we have, in view of (6.21),

S Ko s 1 K
! —tC ! ! ! —tC
€ e O = ) o (tcCi)Fe
k'=0 K'=0
S 1 '
< z —(tCC1(t))k e—tccl(t)el’ccl(l’) < etccl(l’)
k'
K'=0
< eTeCi( |

where we put ¢ = ]1'1'({|Z| > 1}). Hence, we have the assertion (6.22) for k = 1.
Step 2. Similarly, in the general case, foru = (uy, ..., ux) = ((t1, 21), - - ., (tk, Zx)),

A o !
Floeg=Xp 1o Ptizo X 0 btz ° Xo.t, -

DuF’ = F’ ° S:—l - F, = VX;k,t((P[k,eka(Ik—l))vz¢tk,9kzk(lk—1) et
et VX;Z,t3 (¢t2,0222 (Il))vz¢t2,9222 (Il)
: ngl,tz (¢t1,9121 (Xél_))vz(;btl,elzl (Xﬁl_)zl R ®Z,

0; €(0,1),i=1,..., k. Here,
I = VX; 1, (@e,,0,2(XE, Vi, 0,2, (X7, )
and I; are defined inductively by
I =VX; o (D6.02,Tic))Vee 0,2 Ti1) s i=2,...,k.
Hence,

aD(t,O)F’ = azDuIE"z:O
=X, Jic1)GUko) -+~ VXL,  U1)GUDVEL, (X GX) ).

Here,
J1=VX, (X )6X: ),
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and J; is defined inductively as
Ji=VXi o Ui-0)GUi1) s i=2,...,k.
We have

Qp()(S) = &5 — Qp(V)(S)

1 - o~
> E(v’, J {azDuF'

T z=0

2180z (oXDoX)"

+ G(X;)BPG(X;)T) (azDuF’|z:021 ®:-- ®Zk)T }dtv') s
lz1] < 1,...,0zkl < 1.

Then, since Q,',(V)(S ¢) =0,

QS ogh < k| v, j VX, G, VX! G )

ti-1,tk ti-1
O<t1<...<ty<t<T

VX, (0)GX} )z ®- @zk(a(X;)U(X;)T + G(X;)BpG(X;)T)(z1 ® oz
-1

-~ ~ - -~ - ~ T
(VX}, G OVX], G, )+ VX, (0GR dts.. .dtk>v'
We have, asinthecasek =1,

VX;k,tG(X;k)VX' G(X;k—l) - VX;MZ (X)G(X;l)

ti-1,tk
O<t<...<ty<t<T

718 @z (0(XDoXDT + GXDB,GEDT) (z1 @ @ z)T
-1

S S S S S S T
(vX;, GXL)VX; | GX[ )---VXL (0GX])) dt...dt

ti-1,tk
1
T2k

O<t<...<ty<t<T

7218 @z (0(XDoX)T + GXNBGENT) (z1 -+ 021)"

< VX G(X} VX

ti-1,tk

G(X] )---VX;th(X)G(X;l)

k-1

-1
(vX}, .GX{ VX, . GX, )'-'inl,tz(X)G(Xﬁ))T> dty...dty.

ti-1,tk ti-1
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Hence,

E U |(---)‘1|M(du)]

1

! -k 2 2

< J— N

< CypE T2k J A% z1] |zl
O<ty<...<ty<t<T

VX;kth(ng)VX’ G(X; )---VX;l’tz(x)G(Xgl)

ti-1,tk ti-1

(0XDo(XDT + GXDBGEX)T)
- . - - - . T
(Vi (GXL VXL GXi ) VXL (0GX})) dt

< CipA¥ < +00, ae. P

uniformly in v.
Calculating as in the case that k = 1, these amount to imply

~ 2(k !
sup E! [j |Q[7J(V)(St)—1 o 8:—1| (k+1)p

lv|=1

M(du)] < CLlq) A" < +00, a.e. P"

for p’ > 2. Integrating the right-hand side with respect to dP¢(S) ® (1} )®*S, we have
the assertion (6.22). This concludes that the assertion (6.13) makes sense, and the as-
sertion (6.2) holds for general F. O

End of proof of Proposition 3.12.

3.6.5 More on the density

In this subsection we treat two special topics concerning the density function asso-
ciated to the SDE of jump type. First one is Hormander type hypoellipticity theorem
associated to jump-diffusion processes. The second one is the assertion that the den-
sity function is in 8.

Existence of density under (UH) condition

We treat linear SDE and prove the existence of the smooth density under a condition
on degenerate vector fields which appear as ‘coefficients’ of driving processes in the
SDE. The topic is special since the degeneracy is focused on the coefficients rather
than the driving processes themselves. To this end we need some knowledge from the
geometry in R?. We denote the vector fields on R¢ by V; in place of Xj, according to
the custom in the geometry.

For a technical reason we assume the Lévy measure has a special form:

u(dz) = |z|"™ %dz,, (6.24)
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in some neighbourhood of 0, where 0 < a < 2. Here we are continuing the assumption
that supp p is compact.
We consider the SDE of It6 type

dX; = b(X,, Oydt + Y Vj(Xe, HAW(E) + Ig(xt_, t, z)N(dtdz) . (6.25)
j=1

Here the time-dependent coefficients b(x, t), Vj(x, t) and g(x, t, z) satisfy the condi-
tions for b(x), f(x) and g(x, z) in Section 1.3 globally in ¢, respectively. The dependence
of these terms on ¢ plays an important role below.

Assume also the condition (D). The order condition for y is satisfied, and the ex-
istence of

bo(x, t) = 213% J g(x, t, z)u(dz) < +oo . (6.26)
|z|>6

follows, both from (6.24).

We put

Vo(x, t) = b(x, 1) - > Z] 3 06 09706 6 = bo(x, 1)
Then the solution X of (6.25) can also be written as one given by

m
dX: = Vo(X¢, t)dt + z Vi(X¢, £) o dW(E) + girr(l) J g(Xi_, t, z)N(dtdz) . (6.27)

j=1 |2[>6

Here V;(t) = Vj(x, t) = o’ is a vector field which has been introduced in Section 3.6.1,
j=1,..., m. Further we introduce vector fields V,-(x, t) by

m
Vit t) = ) 540, Ot
k=1

where
a9(x, t) = GU(x, t) = 0,,8'(x, t, 2)|z=0

and 7;; are given by (1) = B1/2 (square root of the non-negative matrix B), where B
appeared in Section 3.6.2.
We introduce spaces of vector fields as follows.

So={Vi(0), Vi(0),j=1,...,m},

- 0 _ -

Se= {av“) +[Vo(t), V(O1, [V; (). V(OL, [V;(0).V(®)],j=1,...,m, V(t) € Zk_l} ,
k=1,2,...

Here [+, -] denotes the Lie bracket. Namely, [Xj, Xi] = X].VXk - X} Xj, where X].VXk de-
notes the covariant derivative of X in the direction of X;.
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Remark 3.8. If Vj(x, t) = Vj(x),j = 1,..., m then £ V(t) =

We introduce two non-degeneracy conditions, which are generarizations of the con-
ditions (RH) and (URH), respectively. The difference is whether the drift vector and its
brackets are used or not.
We say the vectors satisfy the condition (SH) (strong Hormander condition) if there
exists Ng € N such that
(SH) span(U°Si) = TyR?

forallx e R%and t € T.
We say the vectors satisfy the condition (UH) (uniform Hérmander condition) if
there exist No € Nand C > 0 such that

No
(UH) ) ) 0, V(x, t)* > Clv)?
k=0 Ve}:"k
forallx e R4, t e Tand v € RY.

Remark 3.9. The condition (URH), introduced in Section 2.5.1, implies (UH) and the
condition (UH) implies (SH). If Ng = +oo and Vy = 0, then the condition (SH) is re-
duced to (RH) with Vj(t) = V},j=1,...,m

Theorem 3.7. Assume the condition (6.24) and (D). If the condition (UH) holds, then the
solution of the SDE (6.25) satisfies (ND); hence there exists a smooth density.

We fix § > 0. We put
Vi(x, t) = b(x, t) - Z (x tyol(x, t) - j gx, t, z)u(dz) .
|z|>6
The solution X; of (6.25) can also be written as the one given by
m
dX; = Vy(Xe, tydt + ) Vi(Xe, t) o dW(D)
j=1

+ J’ g(Xi_, t, 2)N(dtdz) + J g(X;_, t,z)N(dtdz) . (6.28)

|z|<6 |z|>6
Let X} be the truncated process given as a solution of the SDE driven by the Wiener

process and by small jumps, given by

m
dX; = Vy(X}, Odt + Y Vi(X}, ) o dW(E) + J gX)_, t, 2)N(dtdz) . (6.29)

j=1 12l<8

By the condition (D), x — X ; (x) satisfies the flow property.
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Let g°(t) be the Poisson point process associated to N(dtdz), and let g(t) be the
restriction of g°(¢) to the subdomain Dy = {t € T;|q°(t)| > 6}. Then it holds X;(x) =
X;(x) osg a.s.Henceif Dy = {0 <71 <73 <...} then

!
Xi(x) = X;’,,_l,t o Pr,y,q(ras) ©° Pryg(ry) © X7, ()

for Tp-1 <t < Ty. Here ¢ ,(x) = x + g(x, t, 2).
A modified family of vector fields Y}, k = 0, 1, 2, ... is given as follows.

Y(,) = 20 = {I/](t)’ V](t),} =1,..., m} s

Y = (L'V(8), [Vj(t), VO, [Vj(t), VD], j=1,....m, VY },
k=1,2,...

Here

! a ! 1 L
L) = 5 VD) + [Vo (D), V(O] + 5 Y L), Vi), V)]
j=1

¥ j {171 V(E) - V() - [VE(D), V(OTIu(d2) ,
0<|z|<6

where ¢;7'V(t) is the pull-back of V(x,t) by the mapping ¢;.: ¢;;'V(x,t) =
(%qﬁt, (X)L V(:,2(x), t), and VE(¢) is the vector field such that the coefficients coin-
cide with g(x, t, z). The operator £’ creates an extended drift vector associated to V(t)
in the Lie algebra generated by Vj(¢), f/j(t).

The following condition (MUH)s (modified uniform Hérmander condition) is a gen-
eralization of the condition (NDB).

Definition 3.6. We say the condition (MUH)s holds if there exist Ny € Nand C; > 0
such that

Ny
DY VX, 1) 2 Cilvf?

k=0 ver;
forallx e RY, t e Tand v € R4,
Here 0 < § < 8y, and 6 > 0O is fixed temporarily.

Remark 3.10. (1) The choice of families of vector fields (Y;()k may not be unique. If
Vo(x, t) is not void, we can choose families of vector fields (£) as in Kulik [118], mak-
ing use mainly of the parts [V(t), f/j(t)] and £'V(t).

(2) In case there is no jump part, Bismut [29] proved the existence of a smooth
density under a general Hormander condition. In case there is no diffusion part,
Léandre [143] proved the existence of a smooth density under the condition (URH).
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Proof of Theorem 3.7. This theorem is a corollary of the following two assertions.
(A) (UH) implies (MUH); for 0 < 6 < 6.

(B) (MUH)s implies (ND).

Then the statement of Theorem is due to Proposition 3.8.

Proof of assertion (A). We construct a new families of vector fields (Y%) k- The family
(Y%) x is defined as Y, replacing £’ by £° given as follows:

L£Ov(t) = %V(t) + [Vo(D), V(D] + %Z[Vj(t), Vi@, V(D] .
j=1

Then it holds that for any n € N

linear span of U}_, x c linear span of UZ"3' Y. (6.30)
Indeed, if V € £y = Yo then 2 V(t)+[Vo, V] = £LOV -1 Y72, [Vj, [V}, V] is in the linear
span of U;_Y¥. This implies that the linear span of £o U £; ¢ linear span of U;_, Y.
Repeating this argument we have (6.30).
Due to the assumption (6.24) on the existence of the weak drift the linear span of
UZ"1Y? is contained in the linear span of Uz"¢!Y} assuming the former is full rank.
Hence if the bilinear form associated to V’sin 2y, k = 0, ..., ng is uniformly pos-
itive definite, then the bilinear form associated to V’s in Y;<, k=0,...,n; isalso uni-

formly positive definite for n; = 2ng + 1. This proves the assertion. O
Proof of assertion (B). We define Oy (x, t) for V ¢ Utolf;( and O(x, t) by

Ny
Ov(x, t) = X1V, 01X, V(x, 0}, 006t =) Y Ovx, b).
k=0 veY}

Here where X; “1V(x, t) is the pull-back of V(x, t) by the mapping x — X:(x):
X;“lV(x, t) = (%Xt(x))‘1 V(X¢(x), t). Then the assertion (B) for (6.25) is due to the
following proposition. The proof of the assertion (B) is complete granting the follow-
ing proposition. O

Proposition 3.17. (i) If the condition (MUH)s holds, then
II(x) = VX:(0)0(x, t)(VX¢(x))T
is invertible a.s., and it satisfies

sup sup El(v, H(x)V)™? o gf] < +00 (6.31)
|x|<N veSd-1,ucA(1)k

for some p > 1.
(i) Granting that (6.31) holds, the (ND) condition holds.
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Proof of Proposition 3.17 (i).
[I] We first prove the assertion for X; = X; Functionals Oy (x, t), O(x, t), II1(x) for X; =
X; are denoted by @;,(x, t), @'(x, t), II' (x) respectively. Choose B > 0 so that 8 >
max(ﬁ, 8), where a is the degree in the order condition. Choose arbitrary h € N
and fix it.
(Step 1) Case k = 0. First we show
sup sup  E[(v, ' (x)v) P ogl] < +c0 (6.32)
|x|<N veSd-1,ucA(1)k
for k = 0.
A basicidea is to use dilation, that is, re-scaling the space parameter according to
the rank of the Lie algebra. See [167]. To realize this, the step of dilation is chosen to

be %, where f is given as above. We introduce events E;, i =0, ..., n; and F by
Ei= z J’lYV(t)lzdt<€ﬁ72i ’ i:Oa la---s n,
VEYI{ T
and

F=EonEin---NEp, .

Here Yy (t) = Yy(v, t) = vIX': ' V(x, ) and O < € < €1, where €, = minoggnl(kli)ﬁ
Here k; is the number of elements of Ylf.
We have a decomposition

2i+1

Eo=(EoNE{)U(E1NES)U---U(Ey, 1 NEy )UF,

where Eq = {(v, @' (x)v) < €}. Hence

P(Ep) < nlil P(E;nE{ ;) +P(F). (6.33)
i=0
We have for some C > 0
sup sup P(E;n(Ei1)°)<Ce", O<e<eri=1,...,n1-1. (6.34)
|X|<N yesd-1
We have also for some C; > 0
sup sup P(F) < Ce?™" 0<e<e;. (6.35)

|x|<N veSd-1
These assertions are due to the finitude of n; in (MUH)s. We prove them below.
By (6.34), (6.35),

sup sup P(Eg) < C'eP™" o0<e<e. (6.36)

|x|<N veSd-1

Since Eg = {(v, ©'(x)v) < €}, we have

sup sup P((v, IT'(x)v) P o }) < C'eP™h o0<e<e,
[x|<N veSd-1
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for p < hB~2™1/2. Indeed, (6.36) implies

sup E[|det 0' ()79 < +c0 .
|x|<N

As | det IT' (x)| = | det VX' (x)|2| det O (x)|, and since

sup E[| det VX' (x)|*"/4] < +c0
|x|<N

due to the flow property, we have the assertion above.
Hence we have the assertion (6.32) in case k = 0.

Proof of assertions (6.34), (6.35). For the proof of (6.34), we use inequalities of Norris
type. We fix i. We observe that Yy /(t) satisfies

dYy(t) = ay(t)dt + fy()dW(t) + gy (t, z2)N(dtdz) ,

where
ay(t) =vIX;1L'V(x, 0)

fr(t) = VTX; VL), V(O100, -+, vIX T [Vin(E), V(D](0)

and
gv(t,z) =vIX; i .

Given V € Y} and 0 < € < €1, put

Ay(e) = {J’ Ifv(OPdt < eﬁ_ﬂ} ,

—2(i+1 1
Bv(e)=1 lay(®)] dt+j|fv<t)|2dt+j|§v(t)|2dt<eﬁ ‘ )-k—} ,

-

and  Cy(e) = “ lay(6)*dt + j fv(O1dt + j gv(t)*dt < eﬂ‘“”“} ,
T T

T

where

gv(6))? Z|vTX* LV, VOI001* .
j=1

Then
EinEf,; ¢ Uyey'{Av(e) N By(e)}

C Uyer {Av(e) n Cr(e)°} .

We put & = #”*"” s0 as that &8 = ¢f™, and apply Lemma 3.8 below (with y = (x, v))
below for EY(€) = Ay(€) and F¥(€) = Cy(e) with p = f%*1h.
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Then we have

sup  P(Av(e)nCy(e)°) < CeP < Ce", 0O<e<ey.
|x|<N,veSd-1
Therefore
sup  P(Ein(Eiz1)) < Ce", O<e<eq.

|x|<N,veSd-1
Here C = C;. Since h € N is arbitrary, we choose C = max;-o,...n, C; and the
assertion (6.34) follows.

For the proof of (6.35) we proceed as follows.

Let K(x,v) = Zk o TZVEY:k |Yv(®)|2dt. If w € F = FXY then K(x, v)(w) < (n; + 1)
eP™™ by definition. Therefore F*'V ¢ {K(x, v) < (n1 + 1)ef ™" }.

On the other hand, we have by (MUH)s there exists ¢; > 0 such that

Tj(x)
K(x,v) = j vTXQ*_lH(x, t)X;*_lvdt
0
Th(%)
> cq j VIVX:(x)"12dt
0

>c1(Mp+1) 2 Th(x) .
Here H(x, t) = Y, Yver; Vix, OV(x, t)T, and Tx(x) is the stopping time of order h
with respect to N and k = 0. That is,
Th(x) = inf{t € T; |X}(x) — x| = My, or [VX} ()| > Mp} AT,

where My = (N + 1)(K + 1)" and K > 0 is such that

Sup |g(X, ts Z)l + |VXg(Xs ts Z)l < I( .
x,t 1+ x|

Therefore if we choose y so that (n1 + 1)eﬁ*2"1 =c1(Mp + 1)‘2y, we have
{K(x,v) < (n1 + 1)ef"™} < {Tp(x) < 4}

Consequently,
P(F*Y) < P(Th(x) < ) < cpyt = Cref ™M

for all |x| < N, v € S4°1, Here we used the lemma 3.9 below. This proves the assertion
(6.35). O

Lemma 3.8. Let YY(t), t € T be a semimartingale given by the following SDE:

[

t m t
YH(E) = Y + J a¥(s)ds + Y J F(s)dWi(s)
0 =g
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t t

+ J j gY¥(s, z2)N(dsdz) + j J g¥(s, z)N(dsdz) .
0 |zI<8 0 |8]>6
Let € > 0. We introduce events EY(¢), FY(€) by

E¥(e) = “ ! [2dt < eﬁ} ,

T

F¥(e) = <“{Ia”(t)l2 +IfY(O1 +18Y(0)%}dt < 6} .
T

Here B > O such that B > max(5*,8) and g¥(t) = 0gY(t)BY/2, where 9g¥(t) =

£ gV(t, 2)|z-o.
We further assume a?(t) above satisfies the SDE

t
av(t) =y + j b¥(s)ds + [ a¥(s)dW(s)
0

C—~

t
+J
0

¢
j hY(s, z)N(dsdz) +j J hY(s, z)N(dsdz) .
<6 0

k4 |6]>6

We put

rY sY
2 2 2 2 2 2 2 2 4 4
6" = lla?1” + IbYI1° + IFYI= + 1a¥1° + Y117 + IRYIZ + l0g”I1* + oRY| +||—|Z|2|| +"_|z|2” .

Herer? =g¥ -y, zjogY,s¥ = hY - ¥1, zj0hY, and || - || denotes the sup-norm such as

IfYIl = sup IfY(®)l, Il = sup [r¥(t,2)l,....
teT teT,|z|<6

Assume E[(8Y)P] < +co for any p > 1. Then for each p > 1 there exists a C, > 0

such that
sup P(EY(e) N FY(€)€) < Cpe? (6.37)
Y

forany e > 0.
The proof of this lemma is due to Komatsu-Takeuchi’s estimate [116] and a subtle cal-
culation. We give the proof at the end of this subsubsection.

The following lemma is used to prove assertion (6.35) above.

Lemma 3.9 ([131]). Let N > 1, k € N. Then for any h € N there exists a Cy, > 0 such that

sup  P(Th(x) o & < €) < Cpe”
|X|<N,ueA(1)k

forO<e<1.
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The proof of this lemma depends on the decomposition of the event according to the
measurament of displacement X f(x) -xorVX ; (x)—1. See [131] Lemma 3.1 for the proof.

We continue the proof of Proposition 3.17 (i).

(Step 2) Case k > 1.

We consider the case k = 1. Let u = (s1, z1) and put Yy(¢) = vTX;"‘lV(x, t) o gf,
Y =YL, Y.ver, Yv(t). We introduce events

Ei= { ) jIYv<t)|2dt< e‘“"} ;

VeY| T
i=0,1,...,n;. We observe
Yv(t) =vIX;7Vix, ), (s1>t)
Yvt) =vIX; 1 Vi, 6, (s1<0).
Here if s; < t then X; 1% 1 V(x, t) satisfies

t
X or Vi t) = X3 V(x, s1) + jx;“lz’w;—lwx, nidr

S1

m t
vy [ X790 0, vileodwi o)

j=1sl

+j J XY iV, 1) — ¢ V(x, N (drdz)
S1|z|<6

t
; J J X pE i VX, 1) - 5 V(x, IN(drdz) .
S1|z|>6
Then as in Step 1 we can show
sup sup P(Ein (Ei1)°) <Cet, i=1,...,nm -1 (6.38)
|x|<N veSd-1
forO<e<eq.
We put F = E1 n--- n Ep,. We shall prove
sup sup P(F) < Cef ™" . (6.39)

[x|<N vesd-1
To this end, set K(x, v) = [, |Y(t)|*dt. Then it is written
S1
RO v) = jvTx;*‘lH(x, O, vt

0
T

o [V g e o0t g v

S1
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By the assumption (MUH)s, there exists ¢; > 0 such that
VIH(x, v = cilv2, vIgi U Hx, 02 v = ci|vI?,

fort € T, |x| < Mp, u € A(1). Here H(x, t) and My, are as above. Then we have (6.39) as
in Step 1.
Using (6.38), (6.39) we can show
sup sup P(Eq) < C"ef™™h
|X|<N ye§d-1
for 0 < € < €1. We have the assertion (6.32) for k = 1 as in Step 1.
We can verify the case k > 2 similarly.

[II] Next we consider the case X¢(x) = X;(x) ° sg. We write II(x) = IT'(x) o sg. We
show the case k = 0 only, since the cases for k > 1 are similar to the above.
We have

sup sup P(Ejoey N (Epioe)))<Ce", i=1,...,n1-1 (6.34)
|x|<N veSd-1
as in (6.34) (first part).
We have also
sup sup P(Fo¢}) < ceP™M 0<e<e. (6.35)’
|x|<N veSd-1

Indeed, put K'(x, v) = Y1y [ ¥ yeyr Yy ()17 dt. Then by (MUH);

K'(6v) = G j WVIVX2dt .

T
Hence 1
K'(x,v) ! < —j vX!2dt
(x,v) C.T2 ] VX
T

by Jensen’s inequality. By Chebyschev’s inequality

h
E[K'(x,v)™! ogg] < mE <I [VX} o £;|2dt> eh
T

forh > 1.
Since F ¢ {K'(x,v) < (g + 1)ef ™},
P(Fogl) < P(K'(x,v) o€} < (ny +1)ef ™) < C'ef™h

for |x| < N, v € S4-1. Hence we have (6.35)'.
By (6.34)', (6.35)', we have in view of (6.33)

sup sup E[(v, 0'(x)v) P o £]] < C'eP™h 0<e<ey, (6.40)

|X|<N veSd-1

forp < hf=2M/2.
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Hence

sup sup E[(v, IT' x)v)™? ogg] < C'eP™h o<e<e, (6.41)

|X|<N veSd-1
for p < hB~2™ /2. Indeed, (6.40) implies

sup  E[|det®'(x)| P/ og}] < +00.
|x|<N,ucA(1)

As |det IT' (x)| = | det VX' (x)|2| det © (x)|, and since

sup  E[|det VX'(x)| P4 o g4] < +0o0
|X|<N,ucA(1)
due to the flow property, we have the assertion (6.41).
AsTI(x) = IT'(x) o eg a.s., we have the assertion (6.32) for p < h=2™ /2.
Since h € N is arbitrary, we have the assertion forall p > 1. O

Proof of Proposition 3.17 (ii). The assertion follows as in Theorem 3.6 with O(x, t) re-
placing C(x). O

End of proof of Theorem 3.7 O

Proof of Lemma 3.8. In order to prove this lemma we need the following estimate due
to Komatsu-Takeuchi.

To apply it we introduce below a parameter v, and assume it satisfies % <v< %
temporary, due to a technical reason. After the sublemma below is confirmed with this
restriction, we then choose instead 5 < v < 75, 3= < v < 15 and so on, and we apply
the (modified) sublemma consecutively. Finally we see the assertion is valid for all

1
O<v<8.

Sublemma 3.1 ([116] Theorem 3). Let v be an arbitrary number such that 0 < v < %.
There exist a positive random variable £(A, y) satisfying E[E(A, Y)] < 1, and a positive
constants C, Co, C1, C; independent of A, y such that the following inequality holds on
the set {6Y < A?'} forall A > 1 and y:

1
A2

1

2 [ {irrer a =

T

}dt+ logE@, p) +C

> CoAl™ j la¥(6)12dt + CLA>2Y j YR dt
T T

FCAZ2Y j j {|gV(t, D12 A Aiz} dt u(dz) . (6.42)
T

To prove Lemma 3.8, we choose O < 1 < 1 so small that

4
2-2v-a(l+n)> =
L
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holds, where f3 is what appeared in the statement of Lemma 3.8. Then we can choose
anr > 1 such that

1 1
— \Y4 .
4777 2 v_al+n 1-4v

The restriction above of the value of v reflects here to the restriction on the value
ofa,sothat0 <a <2(1-v)< 18—5 < 2. However, as we noted above, v can be chosen
smaller consecutively, and the argument is valid for all given a such that 0 < a < 2.

First we consider the last term of RHS of (6.42). As g¥(¢, 0) = 0, the function z —
g¥(t, z) can be written as g¥(t, z) = agY(t)z + r¥(t, z) for some rY(¢, z). Then

1 1
1g¥(t, 2)1* A |gY(t 2)12 A w0 2))%,

and hencefor0 <k < A

j(|gY<t 212 A u(dz)>j 18(¢, 2)I2 A )u(dz)

lzI<§
1 z [r¥(t, z)|
>3 | (10802 P A s ) iuan - (5 ) | (5 ) (22 p(dz)
lzI<% lz1<%
1 K K\ /xk\2| rY
> 20 (%) | (|agy(t)ﬁ|2A—)m(dz) (D) |5 -

X
|ZISI

where @(p) = |z|2u(dz) and H1p(dz) is a probability measure given by ji,(dz) =

i IIZISP
ooy LitzizpiH(d2).
We put A = e"and x = e"". Then
% — ey (6.43)
and @(%) > C4e¥3+0" by the order condition. Since ||I I* < A% on {67 < A%}, the
last term of (6.42) dominates

Cae ™ 7[0gY (t)Beamr 08" (1)| - 50U,

on {6Y < A%} due to (6.43). Here B, is the covariance matrix of the Lévy measre y on
{lzl < p}.
Hence (6.42) implies

—a4r j{|YV(t)|2 A€e}dt + €V log E(e", y) + C

T
> Coe "1™ 4V)J|ay(t)|2dt+ C1e77%" zv)jlfy(t)lzdt
T T
+ CzC e r(2- 2v)€a(1+)1)r J |agy(t)BagV(t)T|dt _ CZ Cse—(2—2v)€(2+a)(l+r)r .
T

Here B denotes the infinitesimal covariance.
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We set
p=rmin{l-4v,2 -2v-a(l+n)}-1

according to the choice of r above. Then p > 0. The above inequality yields

el J{m(mz Aeydt + € log £, ) + C
T

> Coe™ 1) j{w(mz FIFYOF + [8Y©O1P)dt - Cre e
T
on {6Y < €7}, where r' = 2(1 + n)r > 1.
We put
Gy ={0">e ™} ={0V" >¢eT},

Gy = {6"<e™™}In { j{|YY<t-)|2Ae2’}dt<e/’ } n { j{|ay(t)|2+|fy<t)|2 +|§Y(t)|2}dt>e} :

T T

Then it holds
EY(e)nF¥(e)* c GYu G .

Therefore the left hand side of (6.37) is dominated by sup,,{P(G%) + P(Gg)}.
We will calculate them seperately. We have by Chebyschev’s inequality

sup P(G?) < ePE[(sup 8")P/™] < cpe? .
Y Y

On the other hand, due to (6.42)
Gh c (&€, )" = exp(—€P™" + Coe™P - CrePe’ - C)}.
By Chebyschev’s inequality again

supP(G}Z}) < eCexp(ef*" - Cee” + Cye‘pe”‘l) x E[E(eT, y)erv] .
Y

We have c
_ e 6
el + CrePe" 1 < € P

holds for € < €, for some €g > 0. Since E[£(e™", )¢ ] with 0 < € < 1, we have for
anyp >1

sup P(G}) < eCexp <—&e‘p> < cp€?
p 2
for any O < € < €g. These prove the assertion (6.37). O

Remark 3.11. In the above expression, the symbol £(A, y) is a phantom. In reality it is
written as an exponential of Wiener and Poisson integrals. See [116] Lemma 5.1.
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Density in 8
By Proposition 3.12, F has a smooth density pr(y) under the condition (NDB). In case
that F € D, and it satisfies the condition (ND), we can show it is also rapidly decreas-
ing.

Indeed, let @(v) = E[e,(F)] be the characteristic function of F. Then, ¢(v) is rep-
resented by

pWv) = I e "pp(y)dy .

Hence, p
1 .
) =(55) [ pwav.,
and p
2\joa (1 alal [ -itvy) j o
A+l = (52) D je L-2)Vipw)dv,  (644)

if the right-hand side is finite. Here, a is a multi-index, v¥ = v‘fl -~-vgd and j =
0,1,2,...
We show it is legitimate below. Since 0%e, (F) = i/¥ F®e,(F), and since

j
(1-A4Yvp(v) = E[(1 - AYVv?e,(F)] = ) ;CE[(-A)'(v"e,(F)}] ,
i=0
we have
(1= v p)] < Cla, (L + |v|?)790/2+1al

by Proposition 3.9 (G = 1) and due to that F € L? for all p > 1. Choosing a sufficiently
large n (depending on a and j), we see that the right-hand side of (6.17) is finite.

This implies that pr(y) is rapidly decreasing as |y| — +oo.

Showing this property of the density function is characteristic to our method using
Fourier analysis. We continue the analysis on the density in Section 4.1.2.

3.7 Composition on the Wiener-Poisson space
(I1) - It processes

Let F = X;, where X is a general Itd process given in Section 3.6.1. We again assume
the order condition for the Lévy measure u. Formulae (6.10) and (6.12) suggest that for
any n € N, there exist some k = k,, l = l,,, p = pp and C > O such that

sup |E[Ge,(F)]l < C(1 + [v|?)~ %" (71)
|Glr,1p=1

Indeed, calculating as in Theorem 3.2in [77] for F = F' o &g, and putting G = 1, we can
show:

Proposition 3.18. For any n € N there exist some k,l € N, p > 2 such that it holds
lev (P}, < C'(1+ V%)~ % (72)
for some C = Cy,j,p,n under the condition (NDB).
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Composition on the Wiener—Poisson space (Il) — It processes =— 193

We give a sketch of the proof.

We put
ey _ i D)
TR
L VP2V ey (-DuF!) - Dxao
Vulv) = QW ’
where 1

QW) =02+ ley(DyF) - 11*N(du) ,

N
P
WVI2QUVEP) 4oy

where v/ = I%

As p(1) < 1 and p(q(u)) > 1,
QV)(S) o &5 = Q' (V) o &) o &h .

Hence, to show (7.2), we first write F = F' o e;(u) and show the estimate for F’ viewing
q(u) as a parameter, and then integrate it with respect to the big jumps g(u) = (S¢, (&))-
Here, we have:

Lemma 3.10. Suppose that F' satisfies (ND). Then, we have, forany k,l e Nand p > 2,

sup([VI |U' (V)llk,1,p) < +00,
|v|>1

sup([v] @(IvIF)] ViWlig ) < +oo. (7.3)

lv|=1

This lemma follows as in Lemma 4.4 in [77]. The use of this lemma is justified by The-
orem 3.6.

Let
Z'=UeaV.

Then, we have
D,wev(F') = ((iv, DF') @ (e, (DF') — 1) ey (F') .
Hence, one can check the identity
ev(F') = (U'@ V', Dirwen(F)),

where K = L2(T, R™) @ L2(U, N).
This leads to

EP'[Ge,(F')] = EP' [(GZ' , D(.yev(F))k] = E¥ [B(GZ")e, (F')] .
Iterating this argument, we have

E”'[Ge,(F")] = EP'[8(GZ')e,(F")] = EP'[8(Z'8(Z' --- 8(Z'8(GZ"))))ey (F')] .
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194 — Analysis of Wiener-Poisson functionals

Hence, in order to show (7.2), it is sufficient to show that for each n, there exist
k,1 € N, an even number p > 2, k', ' € N, an even number p’ > 2, and C > 0 such
that
n
sup 1|8(Z’oSES(Z'oe;“.S(Z'erB(GZ’oe;»))
K1 p! =

k,Lp
<C(1+ v %, (74)
Indeed, for n = 1, we have by the inequality (Theorem 3.5) that
16(GZ' (V)lk,1,p

1

%1—m)|

_1y 2 N
< (160 s+ (M) 16V a0 ot itrpre )

< C|G|k+p,l+1,2p,p(v)
U -5y : -y ~
(1T Dllksp, 1,2 + U TNV O ) IR p 111, 2000p100)
< C,|G|k+p,l+1,2p|V|_qO s

where in the second inequality, we have used the Schwarz inequality, and in the last
one, we have used the previous lemma (Lemma 3.10) and the order condition. Hence,
we have the assertion for k' = k+p,l' =1+ 1and p' = 2p.

Suppose that the assertion holds for n — 1. Then, we have

] 3287 - 8Z5GZ))) \k l
LD

1y 3(1eg) o B
sC<||6<U’)||k,z+1,p+<o(|v| )R ||6(V')||k+p,,,(k+p)k0>
n-1
18(Z"---8(Z'8(GZ'))) Ik, 1+1,2p

< ClGli, v, p V|90 |~ 9001 < Cly|~2om |

where the second inequality follows from the assumption of the induction. Hence, we
have the assertion for F' by induction.

SinceF = F' °£;(u) and since P; 1 (S)® (u"")®*St is a bounded measure, we integrate
the above inequality with respect to this measure and obtain (74). This proves the
assertion (7.2) for F. O

Hence, although F (instead of F') may not satisfy the condition (ND), we can define
the composition @ o F of F with @ e 8’ under (NDB) due to (7.2). This leads to the
asymptotic expansion of the density (Section 4.1.2) under a condition equivalent to
(NDB).
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4 Applications

Incessant is the change of water where the stream glides on calmly: the spray appears over
a cataract, yet vanishes without a moment’s delay. But none of them has resisted the destructive
work of time.

Kamo no Chomei (1155-1216), Hojoki/The Ten Foot Square Hut (Japanese classic)

In this chapter, we provide some applications of jump processes and their stochastic
analysis given in the previous sections.

In Section 4.1, we give an asymptotic expansion of functionals which can be
viewed as models of financial assets. Namely, we apply composition techniques de-
veloped in Section 3.5 to a functional F(¢) of the solution X; = S¢(€) to the canonical
SDE with parameter € > 0. A notion of the asymptotic expansion in the space D. is
introduced, and is applied to F(¢) as € — 0. We take @ in the space 8' of tempered
distributions. We shall justify the asymptotic expansion

Do F(e) ~fo+€eft + €2 fo+--- in DL, .

The expansions are based on formal Taylor expansions with respect to the power of €.
However, they are justified quantitatively using the three parameter norms introduced
in Section 3.3.

Taking the expectation, the above gives the asymptotic expansion of the value

E[® o F(€)] ~ Elfo] + €E[f1] + €2E[f2] + -+~ .

Especially in case @(x) = e, (x) = e!(*Y, this result gives the asymptotic expansion of
the density function

p(e,y) ~ Po(y) + €p1(y) + €2 pa(y) + -+ ,

which is closely related to the short time asymptotic estimates stated in Theorems 2.2,
2.4 and Proposition 2.6 in Sections 2.2, 2.3. We treat this topic in Section 4.1.2. In Sec-
tion 4.1.3, we provide some examples of the asymptotic expansion which often appear
in applications in the theory of finance. In Section 4.1, we denote the solution of the
SDE by S; or S¢(€) instead of X;, according to the custom in the financial theory.

Section 4.2 is devoted to the application of a finance theory for jump processes to
the optimal consumption problem. Although the problem is one-dimensional, it pro-
vides us with a good example of the interplay between the probability theory (stochas-
tic analysis) and the PDE theory (boundary value problem).

4.1 Asymptotic expansion of the SDE

In this subsection, we apply composition techniques developed in Sections 3.5, 3.7 to
a functional F(€) of the solution S¢(€) to the canonical SDE with parameter € > O.
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196 —— Applications

In economic models, the process which represents the asset price is often com-
plex. We would like to analyse the behaviour of it by inferring from simple ones. In
our model below, S¢(1) = S¢(€)|e=1 is the target process, and € > 0 is an approxima-
tion parameter (coefficient to random factors).

We expand in Section 4.1.1 the composition @ o S;(¢) with @ € §' by

DoSie) ~fo+efi+€ o+ .

Each term f; in the above has a proper financial meaning according to the order j.
Based on this expansion, the expansion of the transition density function (Sec-
tion 4.1.2) will be helpful in practical applications.

We consider an m-dimensional Lévy process Z; given by

t t
Z¢=bt+oW(t) + E! J zN(dsdz) +J J zN(dsdz) ,

|z|<1 |z|>1

where b € R™ and ¢ is an m x m matrix such that oo = A.
Let € € (0, 1] be a small parameter. Let S(¢) be a d-dimensional jump process
depending on €, given as the solution to the canonical SDE

dSi(e) = ao(Se(€)) + € ) ai(Si(€)) e dZ}, So(e) = x
i=1

That is, S¢(€) is given by

t m t
Se(€) = Sole) + j ao(Ss_(eNds +e Y Jal(SS (€))a3j o dW(s)
0 0

i,j=1
t
ved |
0

t
j (% (Ss_(€)) - Ss_(e))N(dsdz) +j j (% (Ss_(€)) - Ss_(€))N(dsdz)
< 0

|z|<1
t
o
0

Here, a;(x),i = 0, 1,..., m are bounded C* functions from R4 to R? with bounded
derivatives of all orders, and -dW/(s) denotes the Stratonovich integral with respect
to the Wiener process W/(t). Here, ¢? denotes a one parameter group of diffeomor-
phisms (integral curve) generated by Y, z;a;(.), and ¢% = ¢Z|s—1. We may also write
Exp (t Z;’ll z;a;) for ¢%. Obviously, the coefficient function ¢ (x) depends on ai(x)'s
See Section 2.5.1 for details on canonical SDEs.

We remark that our asset model above adapts well to the geometric Lévy model
(cf. [69] Section 2, [175] Section 2.2). The jump term represents the discontinuous fluc-
tuation of the basic asset with parameter €. In our model, each jump size of the driving

|z|>1

j (@5 (Ss-(€)) - Ss-(€) = Y ziai(Ss-(e)))N(dsdz) ¢ . (1.1)

lzi<1 i=1
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Poisson random measure N is not necessarily small, but the total fluctuation given as
the stochastic integral of N is controlled by the small parameter € > 0.

Remark 4.1. By transforming the Stratonovich integral into the It6 integral, (1.1) can
be written simply as

t m ¢
S¢(e) = So(e) + j ao(Ss-(e))ds + € z Jal(SS (€))0ijdW(s)
0 Lj=1g

t
ej j(d)i (Ss—(€)) - Ss_(e)N(dsdz), (1.2)
0

where
1 m
ao(x) = ao(0) + € AZI Vai(x)ai(x)o}
i.j=

m
+e€ J (95 (%) - x)u(dz) + I (@00 - x =) ziai(x))u(dz)
2]>1 |zl<1 i=1
We also remark that our model is slightly different from those studied in [114, 132]
and [222], where the drift coefficient dq also on depends € when transformed into It6
form.

It is known that (1.1) has a unique global solution for each €. We sometimes omit € and
simply write S; for S¢(€).

One of our motivations in mathematical finance is to make a composition @(St(€))
with some functional @ appearing in the European call or put options, and lead an
asymptotic expansion

O(S1(€) ~ fo + €fr + €fr +---

in some function space. Note that the above is not a formal expansion, but it is an
expansion in terms of the Sobolev norms introduced in Section 3.3.

As expanded above, errors from the deterministic factor are arranged in terms of
the order of the power of €. As € — 0, each coefficient of €/ will provide a dominant
factor at its power j in the model.

We recall m x m matrices B, and B by

1
B, = —— J zzTu(dz) ,
) a
lzl<p
=1lim 1nf B,,

p—0 P
provided that the Lévy measure satisfies the order condition. We set B = 0 if u does
not satisfy the order condition. The Lévy process is called non-degenerate if the matrix
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A + Bis invertible. We define a d x m matrix C(x) by (a;(x), . . ., am(x)). We choose the
same quantity go = 1 - %(1 + k—lo) > 0 asin (3.33) (Section 3.3) and fix it.

4.1.1 Analysis on the stochastic model

We introduce a basic assumption on A + B, where A = go”:

Assumption (AS) There exists ¢ > 0 such that for all x € R4, it holds that
(v, COO(A + B)C(x)Tv) = clv]* .

Remark 4.2. (1) This assumption corresponds to (NDB) in Definition 3.5 (Section 3.6).

(2) Assume d = 1.If Sg(e) = x > 0 and A > 0, then the (Merton) model stated
in (1.1) can be interpreted to satisfy the assumption (AS) with C(x) = x and g(x, z) =
@3 (x) — x. Indeed, in this case, the process S¢(¢) hits {0} only by drift and the diffusion
factors, and once it hits {0}, it stays there afterwards.

We denote by S¢(€) the solution to (1.1) starting from So(€) = x at t = 0. It is known
that it has a modification such that S¢(¢) : R — R?is a C® diffeomorphism a.s. for
all t > 0 (cf. Fujiwara—Kunita [67]).

In order to simplify the notation, we introduce the following assumption:
Assumption (AS2)

j |97 (x) — x|p(dz) < +co forallx e RY .
|1z|>1

Then, we have | me\{O}{qbi(x) -x - Y, ziai(x)1{z<13}u(dz)| < +oo for all x € RY.

We note that S¢(0) is given by the ODE S5:(0) = So(0) + jot ap(Ss(0))ds, Sp(0) = x.
We put

1
Fi(e) = E(St(e) - 5:(0)),
and let
F(e) = Fr(e),

where T < +00. In the sequel, we sometimes suppress € in S¢(¢) for notational sim-
plicity.

We can calculate the stochastic derivatives easily. Indeed,

m
D(F = (VSt,T(St—) (Z ai(St_)aij>, ji=1,..., m), a.e. dtdP,
i=1

where VS;, 7(x) is the Jacobian matrix of the map S;,7(x) : RY — R%,and S, ; = S;o S5 1.
Further, since

disst,T(X +e(@i(x) - x)) = VSt r(x + e(@i(x) - X))dis(x + e(¢%(x) — x))

= VSt 1(x + €(@Z(0) - x))e Y ziai(pi(x))

i=1
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we have
D¢ F = %(st,T(St— +e(@5(St-) — St2)) — St,7(S¢-))
= VS, 7(St- + €(@(Se-) = S¢-)) izz’ai(qﬁé(st-)) ,
i=
by the mean value theorem, where 8 € (0, 1). Due to the above, we have
0D oF(€) = 0,D¢ ,F(e) . = VS:,1(Se=)(a1(S¢=)s - . oy am(Se2)), a.e. dtdP.
2=

Repeating this argument, we find F € D.,. (See Section 3.3 for the definition of the
Sobolev space D,.)
Due to [192] Theorem V.60 we have:

Lemma 4.1 (cf. [95] Lemma 6.2). Assume (AS) and (AS2). The Jacobian matrix VS is
invertible a.s. Both |VSgs ¢| and |(VSs, 01| (norms of these matrices) belong to L for any
p > 1. Further, there exist positive constants ¢, and C, such that

E[IVSs,(P] + E[I(VSs,) ' P] < Cpexp cp(t - 5) (1.3)

holds for any x and s < t, and € > O sufficiently small.
Furthermore, we have:

Lemma 4.2. For any k € N, there exist positive constants c;, and C;, such that

sup E[|(VSscoep) ' IP] < Cpexpey(t-s), (1.4)
ucA(1)k

with any p > 2, holds for any x and s < t, and € > O sufficiently small.

Remark 4.3. In [95], we have assumed that the support of u is compact. However, the
assertion can be extended to R™ under the assumption (AS2).

Proof of Lemma 4.2. We will Show supyez 1y« [(VSs, ¢ © e)elP,p>2.Fork=1,we
write
(VSs,co€0) ™ = (VSs,0) 7t o g = Du(VSs,) ™! + (VS50 7t

.....

For general u = (uy, ..., uy), (VSs,t)‘1 o g} is a sum of terms f)ul.1
i1,...,i1€{1,...,k},1<k.

As |(VSs,)7'| € LP by Lemma 4.1, we will show supyea iy [Du(VSs,)7?| € L?,
u=(ug,...,u)fork=1,2,....

u, (VSs,0)~, where

printed on 2/10/2023 4:50 PMvia . Al use subject to https://ww.ebsco.confterms-of-use



200 — Applications

We recall that the inverse matrix (VS S,t)‘l satisfies a.s. the SDE

t
(VSs. )t =1- j(vss,r_)-lvaowr_)dr
S

- €
i,

t
j(vss, Y 1Vay(S, ) oy dWir)
S

NANGE

-

+e€ J(vss,,_)-1 {(Vg3(S, )t -1} N(drdz) . (1.5)

e

Let k = 1 and let u = (51, z1). Since D, (VS;_)~! = 0if t < s1, we assume ¢ > s;.
Then, D, (VS;-)~* should satisfy

t
Dy(VSe) ™t = (Vg5 (Ss, )t~ I - jDu((VSr—)_l -Vao(S,-))dr

S1

m t
e ,Zl j Du((VS,-)™ - Vai(S, ) oy dWir)
i,j=1g,

™
—

Jf)u{(VSr-)_l(Vqﬁi(Sr-))_1 - DIN(drdz) .

S1

We will show [D,(VS:)"!| € LP. Let 7,,n = 1, 2,... be a sequence of stopping
times such that 7, = inf{t > s;|D,(VSs,)"t| > n} (= T if the set {---} is empty). In
the following discussion, we denote the stopped process D, (VS S,t,\rn)‘l as D, (VS)™L.
However, constants appearing in the inequalities do not depend on n, nor on u.

Drift term We have
Du((VS;-)™! - Vao(Sy-))
= f)u(vsr—)_1 <Vao(Sy-) + (VSr—)_l : Duvao(sr—) + f)u(vsr—)_1 'Duvao(sr—) ,

and
Dy(Vao(Sy-)) = (DySy-)TV?ao(S,- + 6Dy, S,-)

for some 6 € (0, 1) by the mean value theorem. Since Vay is a bounded function, we
have the inequality

|

t
j Du(VS,.) 1Vao(S, )dr
S

t b t
<cE j|Du(vsr_)—1|dr } <c jE[lDu(VS, Yy YP1dr .
S S
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|

Similarly, since V24, is a bounded function,

]

t
< jE[|<vs,_)‘1|P|Dus,_|P]dr
S

t
j I(VS,-) M |DySy_|dr

S

t
j(vsr_)-lDuvadsr_)dr
S

— 201

t
< ¢ [B1VS) P )PP ENDLS -1 dr

1 .1
where o+ s

P t
} <c" j E[(VS,.) Y P1dr .

S

t
j(vsr_)—lbuvadsr_)dr
S

|

As for the third term,

|

t
j IDu(VS,) |1DyS,-|dr

S

t
jDu(vsr_)—lbuva()(sr_)dr

S

|

= Il),pl > 1, p» > 1. Since E[|D,S,-|P?] < +co for all p, > 1, we have

t
< j E[1Du(VS,_) IP|DyS,-IP1dr .
S

Hence, we have

E [
as above.
Diffusion term We have

t
jDu(vsr_)—lbuva()(sr_)dr

S

p t
} <c" j E[|Dy(VS,-) "t Pldr

Dy((VS,-)™t - Vai(S,-)) =

Du(vsr—)_1 -Vai(S;-) + (VSr—)_1 -DyVai(Si-) + Du(vsr—)_1 -DyVai(S-) .

Then,

t
[ Duws, )t vai(s,oydwi(r)

|

We have

S

Dy(Vai(Sy-)) = (DuSy-)'V2ai(S,- + 6'DyS,-)
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for some @’ ¢ (0, 1) as above. Hence,

|

as above. The third term is bounded similarly.

t
| st Duvaisoyawm

S

p t
l < j E[1Du(VS,)"P')dr

S

Jump term We have

Duf(VS;-) M (V5 (S, = D} = Du(VS,) (Vi (S )7 = D)
+ (VS Du(V5 (Sr-) 7! = D) + Du(VS,) . Du(VRE (SNt = D)

|

t
j j Du(VS,-) " (Ve (S,)) ) - D2 N(drdz)

Then,

|

t
j jDu(vsr_)-l(vdJi (S, — DN(drdz)

IS1

p/2

<cE

t
+c’EUj|Du<vs,_)-1<V¢i<sr_))-l-I)|pN<drdz)} . (16)

We remark

sup J [(VZ ()™ - I1*u(dz) < +o0, sgpj (Vg% ()™ - II*u(dz) < +00 .

Hence, the right-hand side of (1.6) is dominated by ¢ jst E[ID,(VS,_)~1P]dr.
We remark (Vgp3)™! = V((¢3)™!) = V() by the inverse mapping theorem.
Hence,

Du(V¢§(Sr—))_1 - I) = Du(V¢IZ(Sr)) = V(PIZ(Ssl,r ° ¢Iz(sr)) - V(PIZ(Ssl,r)

= V2917 (Ss,,r o 9gi(S1) - VSs,1(hgi (S1) ® Y (~zi)ai(dy (S)))
i=1

= _(Vssl,r(¢;ﬁ(Sr)))TV2¢IZ(Ssl,r ° ¢5ﬁ(sr)) : Z Ziai((p;ﬁ(sr))
i=1

for some 6" € (0, 1). By this expression,

t
E [j j (VS,-)  Du(VeE (S,))"1 - DIPN(drdz)

S
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t
<cE U j (VS )M P - 1(YSs,,r(dgh (SOIP

x| V217 (Ss,r o hgn (SO - | Y. ziai(pyi (S)IPN(drdz) |
i=1

We have E[sup, [VSs,,/(¥)IP] < +00, sup, f V217 (0)Pu(dz) < +oo, and

m
sup | 1Y 2wz < 400, p>2.
X, i=1

Hence, the right-hand side of the above formula is dominated by ¢’ jst E[l(VS,)~LP]dr.
Finally,
p }
t

j j IDu(VS,) 1 Du(V (S,))" — D2 N(drdz)

S

j jDu(vsr_)*Du(vasi (S, - DN(drdz)

p/2

<cE

t
+CE [j | s, Du v (! - 1)|PN(drdz)] .
S
Due to similar arguments as above, both terms are dominated by
t
¢ [ EuDu(vs. ) tPiar
S

Since we know E[|(VS,-)"1|P] < +co for all p > 1, the whole terms are dominated
by

t
¢ [ EuDu(vs,ytpar.
S
Hence, by Lemma 4.1,
t
E[IDu(vS) '] < ¢ +ec [ E[IDu(vS,'P] dr
S

Hence,
E[|D,(VS:)™YP] < cexpec(t —s)

by the Gronwall’s lemma. As the constants can be chosen, not depending on n nor
onu, we let n — +o0o to obtain the assertion for k = 1.
Repeating this argument, we have the assertion of the lemma. O
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By the differentiability of z — ¢?Z, we can see that D; ,F is twice continuously differ-
entiable with respect to z = (z4, . . ., Zm) a.s.

Writing S¢(e) = X; in the form in Section 3.6, o(x), b(x) and g(x, z) are given by
o(x) = €(a1(x), . .., am(x))o, do(x) and g(x, 2) = e(¢{ (x) - x) = e(Exp (X%, zia;) (x) -
x), respectively. Since all derivatives of a;(x)s are bounded and satisfy the linear
growth condition, we are in the same situation as in Section 3.6.1.

The condition (NDB) is satisfied by (AS), and S¢(€) enjoys the flow property since it
is a canonical process. Regarding F(¢) = %(S r(€) — S7(0)) where S7(0) = Exp (Tap)(x)
is deterministic, we see, by Lemma 3.7 from Chapter 3, the condition (R) holds for F(¢)
for each € > 0. That s, for any positive integer kand p > 1, derivatives satisfy 0 < € < 1

m m
sup  E| ) sup [0,D¢.F(e)oefl’ + ) supldzd,D F(e) o el
teT,ucA(1)k i=1 lzil<1 i,j=1l2I<1

<+00. (1.7)

We put the Malliavin covariance R(€) concerning the Wiener space depending on
€>0by
R(e) = thF(e)(DtF(e))Tdt. (1.8)
T
The Malliavin covariance R(€) is then represented by

R(e) = Jvst,T(st_)C(st_)AC(St_)Tvst,T(st_)Tdt, a.s.dpP. (1.9)
T
We put
K(e) = I(aDt,OF(e))B(aDt,OF(e))Tdt. (1.10)
T

Then, the covariance K(e) is written as
K(e) = JVSt,T(St_)C(St_)B(C(St_))TVSt,T(St_)Tdt, a.s.dP . (1.12)
T

Furthermore, we put

Ky(e) = JaDt,OF(e)Bp(aDt,OF(e))Tdt, a.s.dP (L12)
T

for p > 0. Note that f(,,(e) can be written as

Bp() = | —= V5, 2(S)CSe )2z (CSe)TVSe (S )TN (du) . (113)
90

We introduce the following condition to guarantee the existence of the composi-
tion @ o F(¢) with @ ¢ 8’ uniformly in €.
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Definition 4.1. We say F(e) = (F.,..., F9) satisfies the condition (UND) (uniformly
non-degenerate) if for all p > 1 and any integer k, there exists € (5, 1] such that it
holds that

limsup sup supesssup E[|((v, Z(€)v)

€—0 pe(0,1) ver? ueAk(p)
lv|=1

+@(p)™ J (v, DuF(€))I* 1y, rieyj<ppy N(dW) ™ o £41P] < +00,
Alp)

where Z(€) = (i j(€)), Zij(€) = [, DtF'(e)D;F/(€)dt.

In [77], we put 1, b p(e))<p) iR Place of 1¢p p,
condition.

We are treating a series of random variables with parameter € defined on the
Wiener-Poisson space. We set the topology among them by using the order of € as
it tends to O in terms of the | - | ; , norms. We define the asymptotic expansion in Do,
and in D) in terms of the order of €.

(e)1<pt}- Here, we have strengthened the

Definition 4.2. Let G(¢) be a Wiener—Poisson variable. We write
G(e) = 0(e™) in Dg
if G(€) € D, for € € (0, 1], and if for all k, [ > 0 and for any p > 2, it holds

limsu
€—0

|G(E)k,1,p
P—m <@

Definition 4.3.
(1) We say that F(¢) has the asymptotic expansion

o0
F(e)~ ) €fj in Dy
j=0
if it holds that
(@) F(e),fo,f1, - € D forany e.
(ii) For any nonnegative integer m,
m
F(e)- ) €'f,=0(™") in De.
v=0

(2) We say that @(¢) € D! has an asymptotic expansion
o) .
D(e) ~ Y €@, in Dy,
j=0

if for any m > 0, there exist k = k(m) > 0, = I(m) > 0 and p > 2 such that for
some @(¢), g, @1, D3, ..., Py €D} it holds that

1 L.
limsup —|P(e) - Y €D,li1n < +00.
0 €m+1 VZO sLD
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Remark 4.4. In (1), the topology for (F(€)) is a weak topology given as an inductive
limit in m of those given by the strong convergence with respect to the | - |,;,,-norm up
to the order m = 1, 2, 3, ..., where the index (k, [, p) is arbitrary. On the other hand,
in (2), the topology for (®(¢)) is a weak topology given as an inductive limit in m of
those given by the *-weak topology induced on D;<,1, , (the topology on D;<,1, , of point-
wise convergence with respect to the | - |;<y l,p-norm) up to the order m=1,2,3,...,
where the index (k, I, p) is as above.

Lemma 4.3. (1) IfF(e) € Dy and G(€) € Dy, € € (0, 1], are such that

F(e)~ Y €f; in Dq
j=0
and
(2] .
G(e) ~ z €gi in Dy,
j=0

then H(e) = F(e)G(e) satisfies

(e8]
H(e)~ ) €hj in De
j=0

and h;’s are obtained by the formal multiplication:

ho = gofo, h1 = gof1 + 81fo, h2 = gof2 + 81f1 + &2f0, ...

(2) IfF(e) € Do, and @(€) € DL, € € (0, 1], such that
F(e)~ Y €f; in Dq
j=0
and -
D(e) ~ Y dd; in D,
j=0
then ¥(€) = F(e)®D(¢) satisfies
W)~ Y €V in D,
j=0
and ¥;’s are obtained by the formal multiplication:

Yo = fo@o, V1 = Pof1 + Difo, Y2 = DPofr + P1f1 + Dafo, ...

The proof of this lemma is similar to that of [82] Proposition 9.3(i), (iii).
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The following is the main assertion.

Theorem 4.1 ([77] Theorem 5.5). Suppose F(¢) satisfies the condition (UND), and that
F(e) ~ Z]‘?:O ejfj in Doo. Then, for all @ € §', we have @ - F(€) € DL has an asymptotic
expansion in D] :

@ o F(e) ~ Z z —_(an ) o fo - (F(e) = fo)"

m=0 |n|=m

~@y+€eDy +€°Dy+--- in D
Here, @y, @1, @, are given by the formal expansion

d
Do = Do fo, 1= fi0x D) fo,

i=1

@, = Zfz(axlab) ofo+= Z fifl (0%, @) < fo »

i=1 l]1

d
@5 = ng 04 ®) o fo+ 2 3 FIfL, 0o Sor gy Y RO ® o

i,j=1 l]k:l

In case m=d =1, the condition (UND) holds under the assumption thatinf,cg a(x) > 0.
See [77] Theorem 7.4. This theorem is proved at the end of this subsection.

Before applying this theorem directly, we introduce another non-degeneracy con-
dition:

Definition 4.4. We say F(e) satisfies the condition (UND2) if R(€) + K(e) is invertible
and if for any integer k and p > 1 such that

limsup sup  E[(v, (R(e) + K(€)) o €;v)P] < +00 . (1.14)
€—0  |y|=1,ucA(1)¥

We claim:
Proposition 4.1. The assumptions (AS), (AS2) imply the condition (UND2).
Proof. By (1.9), (1.11) and by (AS), we have

W, (R(€) + K(€)) o £5v) = C J WT(VSerob)Pdt .
T

Since we have, by the Jensen’s inequality,

t -1 t
< jf(s)ds> Hﬂs ylds

0 0

~|
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for a positive function f{(.),

) 1
v (Ree) + K@) o i)™ < = j (v, (VSe.1 o £0))72dt
T

1

< ———— | (VS rogl)722at .
CTZMZJK Lreeh)

T
In the last inequality, we used the inequality [vIVS; 1o f|™! < |(VS¢, 1o &8)72/IvI.
Hence, by taking v for |v| = 1,

sup  E[(v, (R(e) + K(€)) o gfv) PP

|lvl=1,ueA(1)k
< 1 +y-12p]1/P
<—— | sup E[[(VS,rogp)1??] " at.
CT ucA(1)k
T
The last member is dominated by a positive constant Cp x > 0 by Lemma 4.2. O

Furthermore, we have:
Proposition 4.2. The condition (UND2) for F(€) implies the condition (UND) for F(e).

Combining Propositions 4.1 and 4.2, we can use the theory of composition given in
Section 3.5, and lead to the asymptotic expansion using Theorem 4.1 under the non-
degeneracy of the coefficients.

To prove the above proposition, we prepare the following notion.

Definition 4.5. We say F(e) satisfies the condition (UND3) if R(€) + K(¢) is invertible
and if for any integer k and any p > 1, there exists py > 0 such that

limsup sup  sup  E[|(v, (R(€) + Kp(€)) o e5v) P[] < +00. (1.15)
€—>0  0<p<po [v|=1,ucA(1)k

The proof of Proposition 4.2 consists of the following two lemmas.

Lemma 4.4. For F(e), the condition (UND2) implies the condition (UND3).

Lemma 4.5. The condition (UND3) for F(¢) implies the condition (UND) for F(¢).
Proof of Lemma 4.4. The proof proceeds in a similar way to Lemma 3.6 (i) (Section

3.5.2), replacing K’, K , with K(e), K, (€), respectively. Indeed,
v, (R(e) + Kp(e))v)

1
=(v j VS, (St )C(Se) | A+ — j 2z u(dz) | (C(Se-)TVSer(Se)T T | v
o)

T lzl<p
> C'(v, (R(e) + K(e))v)

for 0 < p < po, for some C’ > 0. Then, we use the uniformity with respect to € € (0, €o)
in (1.15). O
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Proof of Lemma 4.5. The proof also proceeds as in Lemma 3.6 (ii). Here, we introduce
a stopping time T = (v, u, €) by

1
T = inf {p € (0, 80); [Ry(€) o £ — Ty(€) o €4 > S T(€) o g;} ,

instead of the 7 in the proof of Lemma 3.10. Then, we use the uniformity with respect
to € in (UND3). O

We claim first that S¢(€) can be expanded as

Se(€) ~ Y €"sn(t) in Do (1.16)
n=0
and then show the explicit formula for s, (). This leads to the nontrivial asymptotic
expansion
Fi(€) ~ ) €'fa(t) in Do,
n=0
where F¢(€) has appeared above.
To this end, we would put
), _ 9"Se(€) _
S;(e) = Sen n=1,2,3,...

and denote
An(t) = 8" (@)lezo, n=1,2,3,...

If these terms are calculated properly in D, we will have
1
Se(€) ~ St(0) + €A1 (t) + €2 S7A2(0) + -+ (1.17)

and hence 1 1
Fi(e) ~ A1(t) + e?Az(t) +€? §A3(t) 4o (1.18)

To verify the claim (1.16), we prepare the following lemmas.

Lemma4.6. Let O < so < T. Let Y5, t(€), 0 < so < t < T be a semimartingale of the

form
t t t
Yoy (€)= Yo, 50(€) + jgr(e)dr + jfr(e)dW(s) N j j hy(e, 2)N(dsdz) ,

where Y s, (€) is Fs,-measurable for each O < € < 1, and g,(€), f;(€), h.(€, z) are pre-
dictable processes for each (e, z) € (0, 1) x R™. Suppose that for eachp > 2,

sup E[|Ys,,s,(€)IP] < +00
O<e<1
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and that

2
sup E[ sup [Ys,,r(€)]°] < +00.
O<e<l  so<r<T

Further, suppose that there exists a nonnegative predictable process n¢(€), so <t < T,
such that for each t € (sqg, T,

Igi(e) < C ( Supt|Yr—(€)| + nt(6)> , (1.19)
Ife(e)l < C( sulztIYr_(e)I + nt(€)> , (1.20)
and
p
j |he(e, 2)[Pu(dz) < Cp < Supt|Yr—(€)| + nt(€)> (1.21)

forany p > 2. Then, we have

sup |Yr(e)l

So<r<T

T 1/p
<Cy | 1sy50lp + E [j mr(e)wdrl
p

So

Proof of this lemma follows from the similar argument in Lemma 7.1 of [76] and we omit
the details.

Lemma 4.7. For each p > 2, there exists Cp > O such that

E

sup |Ss(e) - Ss(€1)|p] < Cple-e1l? (1.22)

0<s<T

and
Ss(€) - Ss(e1)  Ss(€) — Ss(e2)
€—-€1 €—-€

E[ sup p] <Cpler - €7 . (1.23)
0<s<T
Proof. One can check that the process S(e) - S(e1) satisfies the condition in Lemma 4.6
with Y; = S¢(€) — S¢(€1), So = 0, Ys,,5, = 0 and n¢(€) = |e — €1](1 + S¢—(e)|). Hence,
Lemma 4.6 shows (1.22).

We shall prove (1.23);

Yoo Se(€) — Se(e1)  Si(€) — Se(e2)
t-= €—€1 €—€

= 6|E g dr + jfrdW(r) + j J h,(z)N(drdz) ,
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where
_ a0(Sr(€)) — ao(Sr(e1))  ao(Sr(€)) — ao(Sr(€2))
& = €-€1 €-6€; ’
_ x €ai(Sie) —eraiSi(er) < eai(Si(e) — €2ai(Si(e2)
h(z) = i €ai(S;-(€))zi - €1ai(Sr-(€1))zi
i1 €-€
~ i €ai(Sr-(€))zi - €2ai(Sy-(€2))zi
i=1 €-€ .
Put

St-(€) - St-(€2)
€E—€)

ne = (1 + )|st_<e1) _Se(e2)|

from (1.22), and thus we have
E[ sup |’ls|p] < Cley - eafP.
0<s<T

Hence, all we have to do is to show that g;, f;, and h;(z) satisfy the conditions in
Lemma 4.6. We shall only prove (1.20) since we can similarly show (1.19) and (1.21),
that is,

Ifil < i 0yl e 5D — aiSe(e) _  ailSe(e) - ai(St_(ez))‘
i,j=1 €—-€1 €-6
< - _ T
< AZI |0l {(St‘(ee) - Z—(el) _ St—(ez - Z—(Q))
i,j=

1
x I [Vai(S¢-(€) + 6(S¢-(€) - S¢-(€1)))] dO
0

T 1
+ (M> [ vaitsi-(e2) + 05c- () - Se-(e2)
€E—€) 5
+ Vai((Se(er) + 0Se_(€) - st_<e1)))1d9H

m
+ Y logller - el
i,j=1

Se-(€) - Si-(€2)
€—-€

IVailleo -

The mean value theorem shows that the first term is dominated by
St-(€) — Se-(e1)  Se-(€) — Se-(€2)

Vaileo
€—-€1 €—-€
Se-(e) - S¢_(e
N e [DRCIEAS]
< C(Ye-l +1e) -
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The second term on the right-hand side in the above is also dominated by 7;. Hence,
ft satisfies the condition in Lemma 4.6. O

By this lemma, we can use Lemma 1.1in [67] to see € — S¢(€) is continuously differen-
tiable on (0, 1]. Inductively, we can see that € — S¢(€) is infinitely times differentiable.
Hence, S(" (€)= & 5‘(6) is well-defined forn = 1, 2, .

By using these prehmmary results, we can show the following proposition.

Proposition 4.3. Foralln>1allk,l>0andp > 2, we have
sup [S"(€)lk1p < +00 . (1.24)
O<e<1

In particular, A, in(1.18) areinLP,n=1,2,3,....

Proof. We use induction.

Casen = 0.
The assertion holds, that is, first, since it holds that for each k > 0,1 > 0 and
p=1,

E “ IDL,S(e)lPdt’ | < +o0,
T B

Disi(e)
E j | ——— ) [PM(du) | < +oco

A(1)k

for each € > 0, by Theorem 2.2.1 in [170] and by the proof of [181] Lemma 3.3, respec-
tively. Secondly, it holds since the continuity property holds with respectto 0 < € < 1
as given in Lemma 4.8.

Casen > 1.

Step 1 Assume the assertion (1.24) holds for n > O with k,1 =0, 1, 2, ... and with
p = 2. We shall show

sup SV (e)kip < +00, k, 1=0,1,2,....

O<e<1

To this end, we put

n+1

F3(€) = 77 80(S5(6)) - Vato(S5(6)) e,

n+1

Fae,2) = o (€ (S5 (€) - S5-(6)

e (Z 2iVa;(Ss-(€)ST ™ (e) - Sé"_”)(e)) :

i=1
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n+1 m m
Pe=2 (e Y ai(ss(e))>oi,~—e Y Vai(Ss(€).5  (e)ay; .

1
dem* ij=1 ij=1
By decomposing the first term, F §_(e, z) can be written as a linear sum of terms

m
> zV'aiSs-(@)SE)* 0@ (S, 1=0,...,n
i=1

and

m
€Y ziV' (S-S @@ (ST, I'=1,...,n+1 (1.25)
i=1

forly,..., I, € {0, ..., n}. Similarly, F;(€) can be written as a linear sum of terms

m
Y ViaiSse)S)h @ o (S8) Moy, 1=0,...,n
i,j=1

and
m

e Y V'aiSse)s)El @ @ (S8 oy, I'=1,...,n+1 (1.26)
ij=1

forly,..., 1, €{0,...,n}
Hence, by the assumption of the induction

DIDXF2(e, 2)

dt| | M(du) < +c0, k,1=0,1,2,..., (1.27)
Yu)

sup sup j E j
0<e<10<s<T /
T

DIDEF3 () [P .
tYu 5(6‘) dt | M(du) < +c0, k,1=0,1,2,....

an s, | ] 228

0<e<10<s<T
A(1)k T!

Step 2 We write u = (s1, z1) € A(1). Since DMSE"”)(e) = 0 for s; > t, it remains to
show
D(Sl,zl)sgm—l)(e)

M(du) < +co
|z

p

sup sup
0<e<10<t<T
A(1)N((0, ]xR™\{0})

in order to show the assertion for k = 1,1 = 0.
To this end, let S5, (€, z1) = D,S""V(e), 51 < t. By the change of variables for-
mula, we have D, f(F) = (f)uF)T(fO1 f!(F + 6D, F)d6). Hence, we observe that S, ((€)
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satisfies

m
Ssi.e(e, z1) = DyF2 (€, 21) + € Y ziVai(Ss, (€)) - ST V() + Y, ¢

i=1

t1

+ j j(D Ss(€)TV2ao(Ss-(€) + 6D, Ss(€))Ss, s (€, 21))dOds (1.28)
S10
t m

+ j ” Z (DuSs(€)"V?ai(Ss-(€) + 0D, Ss_(€))Ss, s-(€, 21)zidON(dsdz)
t1 m

N ”e Y (DuSs(€)TV2ai(Ss-(€) + 0Dy Ss-(€))Ss, 5- (€, 21)05dOAWI (s)
$10 i,j=1

where

Ysl,t =

—_—

{Du(Fsl(e)) +Vao(Ss-(€))Ss, s-(€)

1
J(D Ss(€))TV2ao(Ss_(€) + BD,Ss_ (e))S("+1)(6)d9} ds
0

{ m
a8 1Du<F§_(e)) +e Y Zi(Vai(Ss_(€)Ss,,5(€)

$1 i=1

+ | (DuSs(e))TV2a;i(Ss_(€) + 6Dy Ss_ (e))S n1) (e)d@)} N(dsdz)

1
|
{ (F3_(e) +€ Z 0;(Vai(Ss(€))Ss, ,5-(€)

i,j=1
1
4 J(D S5(€))TV2a;(Ss_(€) + 6Dy Ss_(€))S™Y (e))} AW(s) .
0
We recall that F§_(e, 2), Fg(e) can be written as a sum of the terms of the form

(1.25), (1.26), respectively. We write it below as DG = G and S ﬁO)(e) = S¢(¢) for abbre-
viation. We apply Lemma 4.6 for Y = ¥ with s¢ = s and

kjE{O,l},lsk0+...+k,,<n
Then, we have
T 1/p
sup ||¥s, ¢l < CE j In(|Pdr < +00. (1.30)
0<si<t<T o

Here, we have used the assumption of the induction at the last inequality.
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Step 3 By the smoothness of ag, ai, . . ., a,n and by the assumption of the induc-
tion, we have

|(DuSs(€))TV2a0(Ss(€) + 0D Ss(€) Dy ST V(e)] < CIDuSs(©)13s,.5-(€, 21)] ,
1
HKDuss(e» 204(Ss_(€) + 0D, Ss(€))ziDu S (€) P dB(dz)
0
< CIDWSs(©)P 55,5 (6,200, p>2,

and

|03(DuSs(€)TV2ai(Ss_(€) + 0D, S5(€)Dy ST (e)|
< Cloyil1DuSs(€)lISs,.s-(€, 21)] -

It follows from (1.27) that

Fgl—(ea Zl) < (n+1) v
sup STt Z —L_Va;(Ss,(€))Ss. " (€)| M(du) < +o0 . (1.31)
si<t p(u) ( )
A1) p
Hence, we apply a similar argument to Lemma 4.6 with s9 = s, ¢ = f/sl,t +

|DyS¢(€)1.1Ss, ¢ (€, z1)], and

m
Ysos0 = F2,(€,21) + € Y ziVai(Ss, ()55, (€),  Ys,.0 = Ss,.1(€,21)
i=1

and we have

S , _
sup E J sup 1222%L € b
O<e<1 b sy<t<T pu)
FZ (6 Zl) m ( 1) P
<C j S e ) L vai(Ss, (6))Sy (e) b M(du)
i { Y) Z () o
) p
t
Mr py
+ | E|su ds
J r<spJ Yu)
S1 A1)
This implies by (1.30), (1.31) that
t
sup s§'1+1)(e)| < C+I<j sup |S,_(e)] sup |sY (e)| ds,
s<t 1,0,p 5 r<s 1,0,p; r<s 1,0,p,
where p1 > 1, po > 1, p_1 + p% = 117' By the assumption of the induction,

| sup,<s |Sr-(€)ll1,0,p, is uniformly finite, where p, > 1 can be chosen arbitrarily
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close to p. Hence,

¢
SC+K'I

S1

ds.

sup |S
s<t

n+1 (€)|

sup S
r<s

n+1 (€)|

1,0,p 1,0,p

This implies

(n+1)
sup sup [S; (€)l1,0,p < +0O.
0<e<10<t<T

Step 4 Repeating this argument, we have

sup sup |SE"+1)(6)|k,0,p <400, k=0,1,2,....
O<e<10<t<T

We also have the assertion

sup sup |S§"+1)(e)|0,1,p <+o0, 1=0,1,2,...
0<e<10<t<T

due to Theorem 7.1in [161].
Repeating this argument, we obtain the assertion. O

From this proposition, we see that SE")(e) , n=1,2,...can be calculated as a solu-
tion to the SDE which derives from (1.2):

t t
n dn m dn .
S™(e) =J S a0(Se-(e)ds + Y. j 2 (€ai(S, (©)oydWi(s)
0 Lj=1g
t
N j j £ (S, (€)) - Ss_(e)}N(dsdz), S(e)=0, n=1,2,...
0

(cf. [25] (5-25)).
In particular, Sgl)(e) satisfies the following SDE:

t t
sM(e) = j(vao(ss_(e))521_)(e) + 1y (S, (€)ds + jal(s (€)oydWi(s)
0 Lj=lg
m t
+e ) JVa (Ss_(€))S (€)oydW(s)
i,j=1 0
+ J J(qbi (Ss_(€)) = Ss_(€))N(dsdz)
0
t
eJ J{v¢§(ss_(e) DS (e)N(dsdz), S €) =0.
0
Here,

h1(x) = (Go - ao)le=1(x) .
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Puttinge =0, fo = S(Tl)(O) = S(Tl)(e)lezo is given by the following SDE:

S(Tl)(O) = I(Vao(Ss_(O))Sél_’(O) +h1(Ss-(0)))ds + Z jai(Ss_(O))Uidej(S)
T Lji=1g
" J j(qﬁ (S5-(0)) - Ss_(0)N(dsdz), S(0)=0. (1.32)
T

We recall that t — S¢(0) is deterministic, and compare the SDE above with (1.2)
with € = 1. As we assume (AS) and (AS2), we see that f; satisfies the condition (ND)
by Propositions 3.10, 3.11.

Proposition 4.4 (cf. Hayashi [76]). We have

00 1 (n
Si(e) ~ Y €"—5{"(0) (133)
=0 :

=

in Dyo.

Proof. Since

o0l emt ( m g(m+1)
See)- Y € 50 = — J(l—@) SV (ed)ae,
Z° nl vl

we have by Proposition 4.2

m
1
Sie)- Y e"—S{©) < Cp sup [s{" V)| e,
o kLp O<e<1 k,l,p
and hence the assertion. O

The flow property of S;(e) follows in Proposition 4.2 with g(x,z) = ¢3(x) — x, and
assumption (AS) corresponds to the condition (NDB). Hence, condition (UND) holds
for S¢(¢) (and for F¢(¢)) for € € (0, 1], due to Propositions 3.10, 3.11.

Hence, we can make the composition @ o F¢(¢) in D/ for @ ¢ §', and by Theo-
rem 4.1, we have its asymptotic expansion for @ ¢ §'. For example, taking @ to be
ev(.), we will have an asymptotic expansion of the characteristic function, leading to
the asymptotic expansion for the density function for F¢(€).

We give some examples of the composition in Section 4.1.3.

Proof of Theorem 4.1.

(Step 1)

We first give a proof for the case @ € H_.,. Let @ € H_,;,. We prepare the following
lemma.
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Lemma 4.8 ([77] Lemma 5.6). Assume F(g) ~ Z}’fo Ejfj in D, and that F(€) satisfies
the uniform condition (ND). Put

Ru(& €) = e(F(e) - ¥ efT(’:‘))(is, F(e) - fo)" .

In|l<m
Then, for any m > 1 and s > O, there exist natural numbers k > 1,1 > 0 and a real
number r > 2 such that
E[GRp (-
lim sup J sup M(l +]&)5d¢ < 0.
€—0 |Gli1,r=1 emt
{1€1=1}

Using this lemma, we shall prove Theorem 4.1. For the proof of this lemma, see [77]
Section 6.

Fix m € N. By the definition of the composition (Def. 3.5.6), we have

|@oF(e)- ) (%a“db) o fo(F(€) = fo) lk1.p

Injsm

= Sup
|G|k,l‘p:1

< Y (D) fo(F(e) - ol G>’

In|<m

= sup
|Glr,1,p=1

Y (T, E[G(FE) -~ fo)" €f(fo)]>‘

In|<m

= sup |<3'(P,E[GRm(f,€)]>|.
|Glr,1,p=1

The right-hand side of the last equality is dominated by

<10l sup [ +1g2rlE1GRAC enPa] .

Thus, the lemma above proves the assertion of Theorem 4.1.
(Step 2)
Next, we prove the theorem in the general case @ € 8'. As stated in Section 3.5.1, @ can
be decomposed as
@ =1+ |x))ke'
for some k, so € Nand @' € H_,5,. We assume k < sp by choosing large so. Choose
Sg > So + k, and regard @' € H_,¢.
0
We repeat the calculation in Step 1 with @ replaced by (1 + Ix|)k®'. As

I+ XDy < ClD |1

-2(sy-k)

(see the proof of Proposition 3.5), the last term in Step 1 is replaced by

Cl®'|g,, -1 sup |E[GRm(, )]l -
|G|k,l‘p:1

Hence, the assertion is proved.
Computing the coefficients of each power of €, we obtain the explicit form of
@Dy, Dy, .. .. O
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4.1.2 Asymptotic expansion of the density

As an application, we state the asymptotic expansion of the density p(e, y) of F(e) =
FT(€).
Since S7(0) is deterministic, F(e) = %(S 7(€)—S7(0)) has an asymptotic expansion

© .
F(e) ~ ) €f;
j=0
in D, by Proposition 4.4.
We put F(0) = S(Tl)(e)lezo = fo. By Proposition 4.3, F(0) € Dy, and by Proposi-
tion 4.4,

|F(€) - F(O)lk,1,p — 0 (e —0)

for all k, I, p. Furthermore, by the expression (1.32) in Section 4.1.1, F(0) also satisfies
conditions (AS), (AS2), and hence the condition (ND) by Propositions 3.10, 3.11. By
Proposition 3.12, F(0) has a rapidly decreasing smooth density p(y).

Since St(¢) satisfies the conditions (AS), (AS2), St(€) given above satisfies the con-
dition (UND2) by Proposition 4.1. Combining this with the fact that F(0) above satisfies
the condition (ND), we see F(¢) = %(ST(e) - S7(0)) satisfies the condition (UND2). By
Proposition 3.12, F(e) has a rapidly decreasing smooth density p(e, y) for each € suffi-
ciently small.

We have the following proposition.

Proposition 4.5. We assume assumption (R) and condition (UND2).
(1) For each € and each n, there exist C > 0 and k, 1, p such that

IE(Gey(F(ENI] < C1+ V) 2161kt I, 5up HQ" W) it
v|>

Here,

1

Q) = (v/, sFOV!) 4 j el WDuF©) _ 112K (du) .

-1
VI2@(vI?) 5

@

lim sup sup {QF O W)} x.1,p < +00
e—0 |v[>1

foreach k, 1, p.

The proof proceeds similarly to Proposition 3.9. Here, the second assertion follows
from condition (UND2). We omit the details.
We denote by @€, ¢ the characteristic functions of F(e), F(0) respectively:

¢°(v) = Eley(F(e))], ¢(v) = E[ey(F(0))] .
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As stated at the end of Section 3.6,

ple,y) = (%)d J e e (v)dv

and

d
(1+ Y2 Vop(e, y) = (%) (i)l j N1~ A)vE )y .

Here, a is a multi-index, v¥ = v'fl --~v3d, andj = 0,1, 2,.... The same calculation
proceeds to @(v), p(y), thatis,

1+ lyl?Yvep(y) = (%)d(—i)'“' j e V(1 - AY Vi p(v)dv .

Proposition 4.6. Foreachj € N, N € N and each multi-index 8, we have

a

lim sup (1 + |y|*)|Vep(e,y) - Vip(y)| = 0.

e—0 lylsN

Proof. By Proposition 4.5, we have for n sufficiently large
(1 - AYVvEQE(V)| < C(e)(1 + |v|?)9o/2+al

where
sup C(€) < +0o .
€

Due to the above expressions on @€ and ¢,

sup I(1+ yI2YV¥(p(e, y) — p))

IA

(%)d j (1 - AV (pE(v) - @(v))ldV .

The left-hand side goes to 0 as € — 0 due to the Lebesgue’s convergence theorem by
choosing n sufficiently large so that (nqg)/2 > d + 1 + |a] in Proposition 3.8. O

Remark 4.5. More naively, the density p(e, y) has an expression
p(e,y) = E[6,(F(e))] ,
using 6,(.) € 8'. See [82] Section V.10.

We can show further that p(e, y) has an asymptotic expansion

ple,y) ~ Y €pi(y)
j=0

ase — 0.
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Proposition 4.7. Foreachm =1,2,...and N € N, we have

lim sup — sup < 400 (1.34)

15t ple,y) - Ze’p,(y

j=0

for some rapidly decreasing smooth pj(y),j=0,1,2,....

Proof. First, we show that the p;(y)’s above are smooth. Indeed, take @(.) = e¢(.) and
apply Theorem 4.1. Then, we have

es(F(€)) ~ Do + €1 +€*Dy +--- in D,

where
d .
@ = es(fo), @1 = Zfi(axief) * fo
¢2 _Zfz(ax,e.f f0+ z flfl(axx]e{)oan
i=1 1} 1
1 d
®3 _Zf3(ax,ef f0+2| Zflfz(aXx,ef) f0+ flflfl(axx,xkef)oan (1-35)
i=1 i,j=1 1]k:1
and fj € Doo. Here,
des() = i1&e() €8, (1.36)

and f, satisfies (ND), hence the composition o5 e  fo is justified as an element in D,.
Here, we used Lemma 4.3 for the well-definedness of each @;.
By Proposition 3.18 (Section 3.7),

Eles(fo)ll < Cn(1 +18%) 2"

for any n € N. More precisely, let m be any nonnegative integer. Due to (1.36),
Lemma 4.7, and by Proposition 3.8 (Section 3.5), for each n, there exist k = k(n),
1 =1(n), p = p(n) and C = C,, > 0 such that
|E[ff* @& fm " 05es(fo)]|
_%
< CA+ 1) Mol plff™ ®- @ I,
< C A+ FAL, o Ul ool (137)

where s; > 0,5 = 51 + ...+ Sy < m and we used Holder’s inequality. We apply this
estimate to (1.35). Then, we observe that for each n, there exists C; = Cj(n) > 0 such

that
E[@j]] < C;(1 + 187" %", j=0,1,...,m. (1.38)
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This proves that p;(y) are smooth.
Next, we show the assertion (1.34). Since

pey)=(2) [ omeqrenas,

m. d . m.
p(e,y)—Ze’pj(y)=(%> je-“y’f)E[e;(F(e))—Zef@,- dé, (1.39)
j=0

j=0

we put
m
gm(&) = eg(F(e)) - ) ;.
j=0
We divide the region of integration in (1.39) into two parts.

(i) {1§] < 1}

By the expression in Theorem 4.1,

m

1 . n
gm(&) = es(F(e)) - mém —ec(fo)(ig, Fle) - fo)
= Y erlfo)ig Fie) - fo)"
nj>m+1

Hence,

Ellgn@®N<e™ ) = i [

j=m+1

(i, —(F(€) fo)

]

cemt Y] |£|JEH (F©) - fo)

]

j= m+1
Since F(e) ~ Y55, €/f; in Do,
hmsupEH (F(e) - fo) ]<K1
for some K; > 0. Similarly, since F(e) Zl o€ )in Dw,j=1,2,...,

j .
limsupEH%(F(e)—fo) ]<K’2, j=m+1,m+2,...

e—0

for some K, > O for € small. Here, we used Holder’s inequality.
Hence, the series is absolutely convergent and is bounded by €™+1h,,(¢) for 0 <
€ < €9, Where hy,(£) is continuous and €y > O (depending on m).
Hence,
E[lgn(@®)]] < €™ hn(é), O<e<eo, |<1. (1.40)
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(ii) {141 = 1}

We use Lemma 4.8 in Section 4.1.1. By Lemma 4.8, for any s > 0,
IElgm(®]l < Cse™ (1 + 18272, €€ (0,e1), 18 =1 (1.41)

for some €; > 0 (depending on m).
Hence, by (1.40) and (1.41),

m

pe,y) - Y €pj(y)
=0

d
m+1 m+1 ~1 2 _%
<(2) J € hn(§)ds + I eI+ g T dE T (142)
{igl<1} {14121}

for 0 < € < €9 A €1, for some C' = C'(e1, s, m) uniformly in y. Since s is arbitrary,
taking sup, <y on both sides, we have the assertion.
End of proof of Proposition 4.7. O

4.1.3 Examples of asymptotic expansions

In this section, we give some concrete examples of the asymptotic expansions @ o F(¢)
for several @ ¢ &' verified in Section 4.1.2.
Assume that a functional F(¢) of St(€) has an asymptotic expansion

(o)
F(e) ~ z €gi in D .
j=0

Then, by Theorem 4.1, we have the asymptotic expansion

o0 dn
O(FE) ~ ) %(qu’) ° g - (F(e) - go)" ~ fo + €fi + €fy + - .
n=0 ""°

Here, the f;’s are calculated as in Theorem 4.1.

(D Lletd=1.@ =6 € s'.
We recall
(@0 g, G) = (D, GE[e'"9]),

by the definition of the composition. In particular,
E[@(2)] = (D(g), 1) = (D, GE[e'"#)]), .
Here, @ denotes the Fourier transform of @;

D) = FOW) = % J e {O@(x)dx .
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We have )
Fbiop = 5~
Hence,
. 1 X
og, = 61, E i1\ = <—,E i(v,g) > ,
(810} ° &, G) = (Fbyo}, ELGe'™9)]) 5 E1Ge!™®)]

and
E[6(0; gl = (610108 1)
= —<1 E[e'"9]) = JE[el(Vg]dv.

Similarly, denoting 6 = 6}, we have

F6 = VTS = iv—r, T8 =——12, ...
2 2
Then,
f0:®og0:50g0’
fi=819" 280 =281(6"80),
1

fo=8@ g0+ —g1®” °80=828"og0+ ig%cS” °go,

and hence

E[6 o F(e)] = (6 F(e), 1) (1.43)
~ (8080, 1) +€(g16" o fo, 1) + €*{(1g16" 080, 1) + (26" 080, 1)} +--- .

Here,
_ (R Freihedyy - L i(v,80)
<6°g0a 1)—(6,E[€ ])‘E E[e ]dvs
(816" =80, 1) = (§', Elg1e'"*)]), = <iv, E[gle“v’g(”]}
14
g16" 50, 1) = (87, E[gie ™)), = <—v E[ ey
v
and

_ . i .
(826" 80, 1) = (71, Elgoe ")), = ( 5-v, Elgae™#) )
1%

In summary, we have the asymptotic expansion for §(F(e)) as above.
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If we take F(e) — x instead of F(e), E[80} o (F(€) — x)] = E[8(x ° F(€)] denotes the
density p(x, €) of F(e). The above formula gives an asymptotic expansion of p(x, €)
with respect to € > 0.

(@ Letd =1, D(x) = Y(x) = 10
We have — . 1
i i
FYw) = 2mv-i0 2n (p vy 17'[6)

Here, p.v. denotes the Cauchy’s principal value defined by

(pvl o) - j PW) - 9(0) ¢(0) - J @dv.

lv|<1 |v|>1

Similarly to (1), we have

1 1 1
FY' = ivFY = —(..— ‘6>=—,
13% Vzﬂ pVV+l7T o

. 1 )
FY" = V2FY = vzﬁ (p.v.; + imS) = sz ,

Hence, we can calculate, as in (1),

(¥ o0, 1) = (7, Ele &) = = ((pv.o + in8) , Elei#])

) 1 )
(81" 20, 1) = (71, Elg1e™™®]), = ( 5—v, Elgie™=0)])
v
1 — . i 1 .
(387" 80,1) = (77, Elgie 1) = (3w Elzgte*®])
and

_ ) 1 )
(82" 0 g0, 1) = (¥, E[g2e/80)]), = <Z E[gzel<v’g°>1>

v

These make an asymptotic expansion

E[Y o F(e)] =(Y - F(g), 1)

1
~(Yogo,1) +e(g1Y o fo, 1) + € {<§ng” ° 80, 1> +(g1Y’ ° go, 1>} +
(1.44)

(3) Letd = 1 and Fy(e) = $(©5(0)
We consider the local time of F(€) at x via Donsker’s delta function:

L1 = [ 810/(Fule) - de .
T
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We remark that
Oix} o Ft(€) = 810}(- — X) o F¢(€) = 810} (Ft(€) — x) .
Then, by (1),

S0 (Fe(€)) ~ 6 o (0(t) — x) + €6" o (go(t) — 1)1 (8)
1 n !
e? {ig%(t)cs o (80(t) - %) + 82(H8" o (go(t) - x)} ¥
= fo(t) + ef1(t) + €2 fr(t) +--- . (1.45)

Hence, we have an asymptotic expansion

Li(x, ) = j o1 (Fe(e) - x)dt

T
j Atlfo(t) + ef1 (D) + €2fo(6) + -}

T

Jfo(t Ydt + € Jfl(t)dt +ée jfz(t)dt Foe
T T

using the expressions in (1).

(4)Letd=1.Let ®1(x) = (x —K);, = (x—K)Y(x — K) € $_1. Here, K > 0.

We write @1(x) = ¥1(x — K), where ¥1(y) = y - Y(y). Here, we have F@;(v) =
FI¥1( - K)](v) = e KFP, (v), where Fg = 8.

Hence,

FY1(v) = FIxY(0)](v)

= 1F[(-ix)Y(x)] —li FY(x)]

dv
;4 - 1 1 (d 1\ .
dv2n (pv 1ﬂ6>—%<5<p.v.;>+m6> .
This makes
F@110) = e (L pv. L) 1 ins!)
! 2mdv Ty ’

Similarly, in the case that @,(x) = (x — K)%r = ¥Y(x - K) € S_5, where ¥,(y) =
y? - Y(y), K > 0, we have the following calculation:

FIP21v) = FAEYOI(v) = -FI(-D*Y(X)](v)

d? i [ d? 1\ . oy
= (dz) [Y]()— (dv2<p.v.;>+m5).

1 A

Here, we have the derivatives of p.v.1 = (v;! - v=1). Here, x}, x* are defined by

s

‘v
(x’l, = Jx"<p(x

0
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oA, ) = (L, (=),

A A LA A

respectively. These are defined for A € C\ {-1, -2, ...}, however, x; — x2, x} + x! are

well-defined at A = -1, -2, respectively. Furthermore, we have

d -n -n-1 6(n)

ax_ =nx_"" - W(X) s
d -n _ -n-1 (_1)n (n)
L =TT T(S (x) .
Hence,
vio 44
aPVv T Tav'-
=v2-8§-(v?2-68)=-(v;?+v?).
Hence,
d? 1 _
Py =g )
1 1
=- {—2v13 +=6"+2v7 - —6"} =20v;? -v33).
2 2
In summary,

e 1
FO, = e — (w2 +v? - inb'
! 271( * - )
FD, = e‘“K"L(Z(v;3 v +ins"y.
2
For the derivatives, we have

F@]] = ivF[@;], FID}] = (v)*F[Di] = v TF[D], ....

We remark also

vevit = Y(), vl = Y(-v),
vZovi2 = Y(v), vZov2 =Y(-v),
and
vovii=vit, vevi=vtth oLl

Calculating as above, fori = 1, 2, we have

fo=Di°go,
fi=81D} 8o,

1
fr=8:D}ogo+ ig%@l" ° g0,

L
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and hence
E[®; - F(e)] = (D; > F(e), 1) (1.46)
~ (@i g0, 1) + €(g1Dj o fo, 1) + €*{(381 D} 280, 1) + (82D} go, 1)} ++--, i=1,2.
Here,
(D1 ° 8o, 1)

. ) 1
_ weoy _ _ (kv L -2 i(
— (D, Bl = - (e v - in8), e
(81@] >80, 1)
=<¢;'1, g1e’(”g°)]> <e"KV Vit +vo iﬂvé’),E[g1ei(V’g°’]>v,
1
<§g%@'1'°go,1>

= % <e_iKV%(Y(V) + Y(—V) _ iﬂv2 6,) [gz el Vgo)]>

v

and

(820} ° g0, 1)

<(D’ gzel(v go)]> <e—1KV zlﬂ(v;l vt —invé' ), [gzei(v,go)]>

v

Similarly, we have

(@2 °80,1)
= (@, E[e"™9]) = <e"’K"ﬁ(2(v;3 -v3)+ in6"),E[ei(V’gO)]> ,
14

(81D} ° g0, 1)
= (@}, Elgrel1)

1 )
=- <e"K"—(2(v12 -v22) +invs"), E[gle’("’g")]> ,

14
gltprzr ogOa 1>
i

=~ (et -vih +inmv?8"), Elgie' ™)) |,
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and

(820} g0, 1)
- <E§72, E[gzei(v’gO)]>

14

1 )
- <e"K"E(2(v12 —v2) 4 invs"), E[gze’("’gO)]>

v

4.2 Optimal consumption problem

In this section, we will consider an optimal consumption problem associated to the
jump-diffusion process as an application of the analysis of jump-diffusion processes.

The process z(t) below models some kind of asset price (e.g. stock price, price of
precious metals, price of immobile property,...) whose trajectory may not be continu-
ous. The owner of this asset would like to consume it based on the dividends optimally
before it ruins.

The objectives here are to find the expected future value of this assetatt = 0 :
z(0) = z, and to seek the optimal consumption policy. In this section, we use classical
stochastic analysis as a tool instead of the stochastic analysis of variations.

We construct a Hamilton-Jacobi-Bellman (HJB) equation with a one-sided bound-
ary condition and solve it by the penalty method.

4.2.1 Setting of the optimal consumption

We assume an asset process z(t) evolves according to the one-dimensional SDE of
jump-diffusion type

dz(t) = {f(z(t)) - pz(t) - c(O}dt — oz(t)dW(t)

T 2(t-) J (€5 — VN(dtd() + 2(t-) I (€ — )N(dtd)), 2(0)=z>0 (2.1)
Q<1 [=1

on a complete probability space (Q, F, P). Here, {W(t)} denotes the standard Brow-
nian motion (Wiener process), and N(dtd{) denotes a Poisson random measure on
[0, +co) xR with the mean measure dtu(d(), and N(dtd{) = N(dtd{)—dtu(d{) denotes
the compensated random measure. That is, u(d(¢) is a measure satisfying fR\{O} (1A]2|2)
u(d¢) < +o0o. Especially, it can be a singular measure such as a sum of point masses.

The trajectory may hit (—co, 0] due to the drift part {f(z(t)) - fiz(t) — c(¢t)}. Thus, we
set the stopping time

T, = inf{t > 0; z(t) < 0} .
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The boundary condition states that the process z(t) must stay at {0} after 7.
We assume ji € R, 0 > 0, and that the growth function f(z) satisfies

f(2) : Lipschitz continuous, increasing and concave, f(0) =0 . 2.2

Our motivation is to maximise the expected utility

J(©)=E [j e-ﬂfU(c(t))dt] (2.3)

0

over the class C, with the above-mentioned condition that (2.1) has a nonnegative solu-
tion z(t) a.s. for z(0) = z > 0. Here, the set C denotes the set of nonnegative consump-
tion policies ¢ = {c(t)} such that it is a nonnegative adapted cadlag process satisfying

t
jc(s)ds <00, Vt=0, a.s. (2.4)
0

The (potential) function U(.) is regarded as a utility function following the so-called
Gossen’s (Inada’s) law (B.3) below which relates to the consumption rate c(t), so that
the hasty investor would like to maximise his or her utility, and  denotes the dumping
rate of the utility as time goes by. The optimal value of J(c) as a function of z = z(0) is
called the value function and is denoted by v(z):

v(z) = supJ(c) .
ceC
Intuitively, we would like to maximise the expected utility (2.3) as long as the asset
process (2.1) remains positive a.s.
We state the setting more precisely. We assume

supp M c [0, +00) (B.1)

j (el - Hu(df) < +oo, (B.2)
11>1

and put

- j (€ - 1-¢ 1ge)p(dd)
R\{0}

which plays the role of intrinsic drift.

The assumption (B.1) means that, starting from z > 0, the process z(t) diffuses
around {z} (when ¢ > 0), increases (goes rightward) by jumps, or moves by drift. It
dies when it reaches {0} at t = T, due to the drift. Otherwise, it might remain in (0, co).
Technically, we impose (B.1) since we admit the degeneracy of the second order term
(o = 0). Otherwise, this condition will be avoidable. See [71].

printed on 2/10/2023 4:50 PMvia . Al use subject to https://ww.ebsco.confterms-of-use



EBSCChost -

Optimal consumption problem = 231

An intuitive interpretation for (B.1) is that the asset is based on a saving account
which bears dividends (sporadic incomes) whose return per unit is described by Azz((t? .
An example in economics associated with this problem is described in the Appendix
(ii).

Under (B.2), z(t) can be written by

dz(t) = {f(z(0)) - uz(t) - c(t)}dt — oz(t)dW(t) + z(t-) J(e¢ - 1)N(dtd)) ,
2(0)=2z20, (2.5)

where yu = ji + flqd(e( - 1-{)u(dq) - 7. Note that e — 1 > 0 and that by writing ez =
z + (€5 - 1)z, the third term on the right-hand side of (2.5) is of the Lévy—Khintchine
form associated with the jump (e - 1)z.

To find the value function v(z), we consider the one-dimensional Hamilton—
Jacobi-Bellman (HJB for short) equation of integro-differential type on [0, +00):

Lv(z) + (W' () =0, z>0, v(0)=0 (2.6)

(cf. (2.8) below).
Here, L is an integro-differential operator given by

Lv(z) = -Bv(z) + %0222 V' + (flz) — uz)v’'

+ J{V(z +Y(z, ) - v(z) -V (2) - Yz, Qhu(d , (2.7)

where § > 0,0 = 0, Y(z,({) = z(ef - 1), U € R, and f(z) is a function on [0, +00)
satisfying (2.2). We write
Lv=-Bv+Lyv

in the sequel.
The symbol U(x) is the Legendre transform of (the negative potential) -U(-x), i.e.

U(x) = max{U(c) - cx} .
c>0
Further, U(c) is assumed to have the following properties:

U € C([0, 00)) N C2((0, 0)),  U(c) : strictly concave and increasing on[0, co) ,
U'(c) : strictly decreasing, U’'(co) = U(0+) =0, U'(0+)=U(c0) =co. (B.3)

However, a difficulty arises in the case (2.7) where there exists a degeneracy in
the HJB equation. Namely, the second order term will degenerate at z = 0, or even the
coefficient 0 may be identically zero. To avoid this difficulty and obtain the value func-
tion, we use an analytic method. Namely, we first construct v(z) as a weak solution,
and then show the uniqueness and the existence of it as the solution.

printed on 2/10/2023 4:50 PMvia . Al use subject to https://ww.ebsco.confterms-of-use



232 — Applications

Since L satisfies the positive maximum principle, L can be viewed as a pseudod-
ifferential operator with the symbol a(x, ) given by

alx, & =a;(x, & +ax(x, &),
where
@069 = B~ 307 E + (0 - 0§
ar(x, &) = j{ef‘fﬂx’o S iy QWD

The symbol of Ly is given by (a1 (x, &) + B) + ax>(x, &).

By (B.1), the process z(t) has no negative jumps. In this setting, it is known that
the “trace” v(0+) = lim,_,0+ v(2) exists finite for the original nonlocal boundary value
problem on R

Lviz) + U(0'(2) =0, z>0, v(z)=0, z<0. (2.8)

By this reason, it suffices to consider the equation (2.8) replacing v with v.1{9,+c0),
interpreting v(z) = 0, z < 0 with v(0) = v(0+) = 0, which is (2.6). The above property
for L of being able to take the trace safely at the boundary is called the transmission
property. See [83, 206].
Finally, we remark that we can rewrite (2.6) as
1 . 1
(B + E) v(z) = Lov(z) + UV (2)) + EV(Z)’ z>0 (2.9)
v(0) =0,

for € > 0 which is chosen later (see the proof of Lemma 4.10). Whereas, we remark
that when comparing (2.6) and (2.9), € > 0 is merely an apparent parameter. We shall
show later that the solution v = v is approximated by the solution u = uy,¢ of

(B + %) u(z) = Lou + Uy (2)) + %u(z), z>0 (2.10)

u0)=0,
where Uy (x) = max{U(c) - cx;0 < ¢ < M}and M > 0.

4.2.2 Viscosity solutions
We solve the problem in terms of viscosity solutions. In this subsection, we shall pre-

pare notions which are necessary below, and show (existence and) uniqueness results
for the viscosity solution v of (2.6).
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First, we introduce the notion of superjet J>*v(z) and subjet J%~v(z) of v at z as
follows:

v(y) - v(2) - p(y - 2) - 3qly — zI? }
p <o},

J**v(z) = {(p, q) € R%;limsu .
y—z ly - z|

2=y 2y V) = V(2) =Py -2) - 3qly -z
Jov(z) = {(p, q) € R lim inf T sol .
Let

1
F(z,u,p, q, B*(z,u,p), B1(z, u, p)) = —Pu + 5022261 + (f2) - u2)p
+BY(z,u,p) + Bi(z, u,p) + U(p) ,

and

F(Zs u,p,q, Bl(zs usp)sBl(Zs u’p))
= maX{F(Zy u,p,q, Bl(Zy uyp), Bl(Zy uyp))’ _p} s

where
B'(z,u,p) = j {u(z +y(z, Q) —u(z) - p - Yz, Oiu(dg) ,
1g1>1
and
Bi(z,u,p) = j {uz +y(z, §) —u(z) - p - Yz, Oiu(d}) .
Ig1<1

The following definition is due to [11] and [175].

Definition 4.6. Let a function v € C([0, c0)) satisfy v(0) = 0.

(1) The function v is called a viscosity subsolution of (2.6) if for all z € (0, co) and all
¢ € C%((0, 00)) such that if v(z) = ¢(z) and if z is a local maximum point of v - ¢,
the following relation holds:

F(z,v,¢'(2), 9" (2), B (z,v, ¢’ (2)), B1(z, 9, $'(2))) 20, z>0.

(2) The function v is called a viscosity supersolution of (2.6) if for all z € (0, co) and
all ¢ € C%((0, 00)) if v(z) = ¢(2) and if z is a local maximum point of v — ¢, the
following relation holds:

F(z,v,¢'(2), 9" (2), B'(z, v, ' (2)), B1(z, p, $'(2))) <0, z>O0.

(3) Ifvisboth a viscosity subsolution and a viscosity supersolution, it is called a vis-
cosity solution.

printed on 2/10/2023 4:50 PMvia . Al use subject to https://ww.ebsco.confterms-of-use



EBSCChost -

234 =— Applications

Remark 4.6. The direction of the inequality in (1) and in (2) above depends on the
definition of the form of second order operator F cf. [11]. For alternative definitions of
viscosity solutions, see [20] and [5].

To show the statements below, we need a comparison theorem for jump-diffusions.
We cite it as a lemma which follows as a corollary to [179] Theorem 3.1.

Letz'(t), z2(t) be processes in R given by (2.1) with the initial conditions z! (0) =z;,
z2(0) = z3, and the drifts by (t,z) = f1(2) — p1z - c(t), ba(t, 2) = f2(2) — paz — c(t),
respectively. We put no boundary condition for z/(¢)’s. We assume (2.2), (2.4), (B.1)
and (B.2).

Lemma 4.9 ([179] Theorem 3.1). Under the conditions above on o, c(t) and on f =
f1, f>, we have the comparison result

(za=z1 and by(t, 2) = bi(t, 2)) = 2%(s) = z(s) for sel[t,T], a.s.
foranyt<T.

Indeed, conditions (H3.1), (H3.2), (2.15) in [179] are met with o(t, z) = 0, b(t, z) = f(z) -
uz —c(t), and y(¢,z, {) = z(e% - 1). However, we have to use this result adequately for
our setting since the above result is stated for the processes on [0, T] where T > 0 is
fixed, whereas we put the boundary condition z(¢t) = 0 for t > 1, i = 1, 2, which
corresponds to the Dirichlet boundary condition v(z) = 0, z < 0 in (2.8). To this end,
we proceed in the following way.

Since T > 0 is arbitrary in the above, we let T — +co and we use it only for
0 < s < T, ATy, aslong as T,1 A T, is finite. Then, we have our assertion of the
comparison for our processes for 0 < s < 1,1 A 7,2 directly from the lemma since
(due to (B.1)) the boundary condition has no effect with respect to the jump term up to
T, AT,. Forthe case 7,1 < s < T,2, on the other hand, we observe z2(s) > 0 whereas
z1(s) = 0, and hence the assertion.!

This lemma can also be shown by a calculation similar to [82] Section VL.1.

HJB equation
We note that (2.10) is the HJB equation associated with the optimisation problem
Tz
up(z) = sup E [I e (B+OYU(ct) + %uM(z(t))}dt , M>0, (2.11)
ceCy

where €y denotes the class of all nonnegative, integrable, F;-adapted processes ¢ € C
such that 0 < ¢(t) < Mforall t > 0. By (2.8), we have z(t) = z(t A T,) = O for each

1 In [179], it is assumed IZ u(d{) < +oo for Z c R\ {0}. However, this condition can be replaced by
JZn U(d{) < +oo for each compact Z, c R\ {0} such that Z, — R\ {0}. See the argument on p. 378
of [179].
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¢ € Gy because c(t) is identified with c(t)1{t<r,} in (2.6). Taking x so that
O<k<p, (2.12)
we can choose a constant A > 0 by concavity such that
flz) —kz< A. (2.13)

We assume
K+u<pB. (B.4)

Furthermore, we observe by (B.3) and (2.13) that the linear function
p(z)=z+B (2.14)

satisfies

- Bo(2) + Lop(2) + U9’ (2))
<-BB+A+U@1)<0, z>0 (2.15)

for some constant B > 0. Let B denote the space

B ={h;h ismeasurableon [0, +oc0) and satisfies that there exists C, >0
forany p >0 suchthat|h(z) - h(2)| < Cplz - Z| + p(@(2) + ¢(2)) ,
z,Z€[0,00)}. (2.16)

We put the norm ||h|| = sup,.q |h(2)|/@(z) < co on B. The space B is a Banach space.

Remark 4.7. Functions hin B can also be regarded as those defined on R by extending
to be zero outside of [0, +00). This extension is irrelevant to the boundary value at 0
due to the transmission property from the right. See the argument around (2.8) above.

Lemma 4.10. We assume that there exists a concave function p € BnC 2((0, +00)) such
that

-BY(2) + Lo(z) + UW'(2)) <0, z>0,
Y'(2)>0,z>0 and YO)=0. (2.17)

Under (B.3), (2.2), and (B.4), for each M > 0, there exists a unique solution u = uy; € B
of (2.11) for any € > 0.

Remark 4.8. The condition (2.17) refers to the existence of a C2 function related to the
viscosity supersolution of (2.11). The existence of such a function, given Lo, depends
on the form of U. Analytically, we assume the existence of a Lyapunov function asso-
ciated to the equation. Instead of providing a sufficient condition for the existence of
Y € B n C? to (2.17), we give an example for it after the proof.
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Proof. We divide the proof into three steps.

Step 1 We first show that
sup E [j e B+ U(c(t) + élp(z(t))}dt} <P(2), (2.18)
ceCy o
sup E [e"F*)7|z(1) - 2(0)] - Lruzry | < 212 - 21, (2.19)
ceCy

for any stopping time 7, where {Z(t)} is the solution of (2.1) subject to ¢ € €y with
z(0) = z. It is easily seen that

t t
E lj(z(s)lp'(z(s)))zdsl < CE [jz(s)zdsl <00.
0

0
This yields that

t t
Me(t) := Je_(ﬁ+%)Slp'(z(s))oz(s)dW(s) + J J e~ (B+2)s
0

0
{Y(z(s-) + Y(z(s-), Q) — P(z(s-)) — P’ (z(s-))y(z(s-), HIN(dsd{)

is a local martingale on [0, 7,] conditioned that 7, < +co. Hence, by (2.17) and (2.5),
Itd’s formula gives

0 < E[e” B+ 2(¢ A 1,))]

tAT

=y +E l j e (P+o)s {— (B + %) P(z(s))
0

+ (f(2(s)) = pz(s) — c(sHY' (z(s)) + %022(8)2111”(2(5))
+ j{l,b(z(s—) (s, ) — la(s) - ' (2(5-)) - (o), (@) ds

+ M(EN TZ)]

AT,
J e—(ﬁ+%)s{U(C(S))+ %lp(z(s))}ds} . (2.20)

0

Sl/)(z)—E[

Thus, we deduce (2.18).

Next, we show (2.19). We set Z(t) = z(t) — z(t). (The notation Z(t) is temporarily
used in this subsection, as long as it makes no confusion with the original Lévy pro-
cess.) Let K(t) be the process given by

dK(t) = (x + K(t)dt — oK(6)dW(¢) + K(t-) J(e( -1)N(dtd), K(©)=|z-2|,

which is nonnegative a.s. Then, by Lemma 4.9 |Z(t)| < K(t)a.s., 0 < t < T, A T3.
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We choose € > 0 and fix it. Then, we have

E[e PO \2(r AT2) - 2T AT Lrzracrs
= E[e\2(0)]. Lpreriersy ]
<E [e‘(ﬁ+%)TK(T)]

=|z-Z|E |exp {— (ﬁ + %)T + (K +u)T — oW(T) - %021

|
+ “(N(dtdo —Tj(e(— 1—Ou(dOH
0

< |z - 2|E[exp{-oW(7) - %021 + j j (N@dtadd) -t J’(e( —1-Qu(dd}]
0

=lz-2|.
Next, we set Z(t) = z(t vV 73). Then, we have on {75 < +00},
tVTs tVTs tVTs
z(t) = z(13) + J [f(z(r)) — pz(n)ldr - J c(r)dr - J oz(r)dW(r)
z z z e,
" J Jz(r—)(e( — )N(drd)

t t
< 2(t5) + j[f(.%(r)) ~ pE(ndr - j o2(r)dW(r)

t
+ J Ji(r—)(e( - 1)N(drdQ) a.s.
Hence,
tAT, AT,
Z(EAT3) < 2(T3) + J (x + w)z(ndr - j oz(r)ydW(r)
) ) AT,
. J Ji(r—)(e( ~ DN(drd))
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t t
=2z(T3) + J(K + Wz lypcrydr — J 0zZ(N 1<,y dW(r)

Tz

t
; j Jz(r—)(d ) 1per, N(drd))
t t )
< K(13) + J’(K F WA AT, dr - j 03(r A T2)dW(r)

t
. j JZ((r AT2)=)(e8 - DN(drd))

on {73 < 00, T3 < T}, A.S.
Since

t t
K(tvT1s) = K(t3) + J(K + WK(r v tz)dr - J oK(t v 13)dW(r)

t
. j JK((r v T3)-)€ -~ DN(drd))

on {13 < 00, T3 < T}, by the argument just after Lemma 4.9, we have
Z(tAT,) <K(tVT3)
on{t < T,, T3 < Tz, Tz < +oo}. Then,
0<z(t) <K(t) on {r3<t<T1,;} a.s.
Therefore, we have
E[e ) |z(r ATo) - 21V 1) L ir,crerat |

= Ele”F*9)72(1) - 201 r,<rcr)]

= Ele™ PO 2(1) Lircrery]

< EleF+a)TK()] <z - 2 .

These imply (2.19).
Step 2 Next, we define for each € > 0, M > 0,

Tyh(z) = sup E U e (B+1)t {U(c(t)) + %h(z(t))} dt} for he®,  (221)

ceCy

and show that Ty is a contraction

Ty : By — By 2.22)
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where
Byp={heB:0<h<g,h(0)=0}.
By (2.18), it is easy to see that Tyth(0) = 0 < Tyh < ¢ and that | Tph| < oo for
h € B,. Since z(0) > 0, we note by (2.5) that z(t) = 0 if t > 7. Hence, by (2.16), we
have
T,

|Tmh(z) - Tuh(Z)| < |sup E [Je"(ﬁ+%)t{U(c(t)) + %h(z(t))}dt
0

Tz

_ je—(ﬁ+%)f{U(c(t)) + %h(i(t))}dl‘}

0

ssupE[ j e~ Bty (c(t))dt

TNTz

+ J e—(ﬁ+%)f%|h(z(t)) - h(é(t))ldt]
0

Tz

<supE [ e~ BHO(c(t) )dt:|
C

T,AT3

€

+ S supE [I e~ B+t z(p) —Z(t)ldt]
0

+= supE [J e P Otp(z(t) + <P(Z(t))}df]
0

=J1+J2+]3, say.

By (2.16), we can take sufficiently small € > O such that
oo 1/2
E[sup [Me(B)]] < C| oFE [I e‘z(ﬁ+%)52(s)2ds:|
! 0
+EL[ [ e (a(s) + izl )
0

~(z(s-)) - P’ (z(s-))y(z(s-), o}|2u<dods1”2> < +00.

Then, by the optional stopping theorem,

EMc(t,AT3)] =0
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By using (2.17), according to the same line as (2.20), we have in view of (2.6),
J1 < Ele"B+DEN Dy z(1, A 12)) - e B+ DTy (o(r,)
= El{e (FrO® )y (21, A 12) - e PO P21 rscr]
< Elfe"FrOTy(z(1)) - e PO (o) rer] -
Indeed, in case z < z, wehave z(t) < z(t)a.s.by Lemma 4.9. Hence 17,<r,} = 0, and
J1 <0.In case z > Z, we have z(t) > z(t) a.s. Then, 75 < 7., and e BT < o= (B+E)T:

Asz(t;) =0, 2(13) = 0, wehave P(z(1,)) = P(2(13)) = Y(0) = 0. Hence, the right-hand
side is dominated by

sup E[e”(P+e)T(Cyl2(15) - 2(T3)] + p(@(2(12)) + 9E(T))H  (r<1,)]

<2Cplz - 2| + p(p(2) + @(2))

by using that i) € B, and by (2.18), (2.19).
Moreover, by (2.19),
J2 <2Cylz - Z/e .

Also, we recall that Z(t) = 0 if t > 75. Hence, by (2.19),

J5 < p(@(2) + 9(0) + 9(2) + 9(0)) < 2p(p(2) + @(2)) .
Therefore, we get Tyh € By, which implies (2.22).
Step 3 Now, we have
Elpt A1) < 9(2) .
Indeed, by It0’s formula, we have
t
Elzit)] <z + JE[f(z(s)) — uz(s)lds + E[martingale] .
0
Since f is strictly concave, E[f(z(s))] < f(E[z(s)]). Hence, by the assumption (2.12),

(2.13), we can conclude.
Hence,

ceCy

|Tahy (2) — Tuho(2)| = sup E [j e-“**%)f%ml(z(t)) - hz(Z(t))Idt}

< sup E [ j e’(ﬁ+%)t%||h1 - h2||<P(Z(t))dl‘]

ceCy
1

< geypih - hallo@ < I - hallo(@)

Therefore, by the contraction mapping theorem, Ty has a fixed point upy € By,. This
completes the proof. O
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Example of (2.17). We assume

U(c) = %c’(o <r<1).

Then, U(x) = 1;’xﬁ , X > 0. Furthermore, we see that

%azr(r—1)+(x—y)rs0<ﬁ.

Then, we can choose R > 0 for which

1

B-{ic’rr-1)+(x-wr+(1-nR=}>0

holds.

We choose (z) = %z’. Then, i satisfies i'(z) = Rz"~! > 0, z > 0 and 1(0) = 0.
Since Y''(z) = R(r — 1)z"2 is continuous on (0, +co), P isin B N C2.

Furthermore, we have

Yz + Yz, ) - h(2) - P (@) - 1z, §)
= g{(z + Yz, Q) — 2" -2 Yz, O}
=R{(z+0Y(z, ) -2z, () <0
since r < 1 where 0 € (0, 1) is given by the mean value theorem. Hence, the integral

(o)

Yz + Yz, Q) - P2) - P'(2) - Yz, H}u(d)

[SYS—

(o]

=R j{(z +0p(z, O) 1 - 2z, Qu(d) <0, z>0.
0

This implies
- BY(2) + Lopp(2) + UW' (2))
< —BE;Z’ + %O'ZR(T -1)z" +R(f(z) —uz)z" 1 + %Rﬁz’ .
The right-hand side of the above is dominated by
R 1,2 L r
7{—ﬁ+ 50°r(r-=1) + (k- pr+ (1 -rR+1}z" <0

on (0, +00). Hence, the condition (2.17) is met.

Theorem 4.2. We assume (B.3), (2.2), (B.4) and (2.17). Then, u = uy € B of (2.11) is
a viscosity solution of (2.10) and is concave.
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Proof. In this proof, we assume the dynamic programming principle (Bellman princi-
ple) that u(z) is continuous on [0, co) and satisfies

u(z) =

ceCy

T,AT
sup E [ j e B+OUCc(t) + %u(z(t))}dt +e BTNy, AT)) | (%)

for any bounded stopping time 7.
By the above, we assume u is in C([0, 00)). Then, we prove that u is a viscosity
solution of (2.10) in the following way.

(@) u is a viscosity supersolution.
Let z € O c (0, 00), where O is an open interval. Choose any ¢ € C?(0) such that
¢(z) = u(z) = coand u > ¢ in 0. We can assume ¢y = 0 without loss of generality.
Let m € [0, 00). Choose € > 0 so that z — em € O. Since the jumps of z(t) are only
rightward, z — u(z) is nondecreasing. Hence,

¢(2) = u(z) > u(z-em) > p(z —em) .
This implies —-m¢’(z) < 0. Hence,
F(z,u,p,q,B'(z,v,p), B1(z, ¢, p)) <0

forp = ¢'(2), g = ¢" (2.
Take c(t) = ¢ € Cy. Let 7, be the exit time of z(¢t) from 0,(z) = {z';]z - 2'| < 1}
(0, 00). By the dynamic programming principle (),

AT,
uz) > E [ j e~ (B+3)s(U(c(s)) + %u(z(s))}ds + e BTNy (2(¢ A r,))] .
0

We replace u by ¢ by u(z) = ¢(z) and by using the ordering u > ¢ in 0. Then, we have,
by the It&’s formula and (2.10),

AT,
0>E [ j e~ (B+3)s{U(c(s)) + %u(z(s))}ds + e BrONTy (7(¢ A r,))] —p(2)

0
AT,
> E[ j e (F+e)s(U(c) + Lop(z(s)) + %qﬁ(z(s)) — e’ (2(s))}ds
0
> min (LoY) + ~$() - ' () + V)] x E | —— (1—e-<ﬁ+%)““'>)] .
yeO,(z) € ‘B + c

Dividing the last inequality by ¢ and taking successively the limits as ¢ — 0 and
r — 0, we have L¢p(z) - c¢' (z) + U(c) < 0. Maximising the right-hand side over ¢ € Cy,
we have
F(z,u,p,q,B'(z,v,p),B1(z,,p)) <0, z>0
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and
F(Zs uspsqul(stsp)sBl(Zs¢sp))SOD Z>O

with p = ¢'(2), g = ¢"'(2). Hence, u is a subersolution of (2.10).

(b) u is a viscosity subsolution.

Letz € O c (0, 00). Let ¢ € C%(0) be any function such that ¢(z) = u(z) andu < ¢
on O.

Assume that the subsolution inequality for ¢ fails at z. Then, there existsan € > 0
such that F(¢) = F(z,u, p, q, B*, B1) < —€ and -¢(y) < —€ on some ball 0,(z) ¢ O
with p = ¢'(2), g = ¢" (2).

We apply the inequality that there exists a constant > 0 and ¢y > O such that

t/\TV‘C
E| e B+otpz(t ATh)) + j e‘(ﬁ+%)S{U(C(s))+%u(z(s))}ds
0
< ¢P(2) - nt

holds for all ¢ € (0, tg] and any ¢ € € ( [110] Lemma 4.4.3, [99] Proposition 2.5). Here,
1"¢ denotes the exit time of z(t) from 0,(z) by c.

Fix t € (0, tp). By the dynamic programming principle (), we have that there
exists ¢ € Gy such that

u(z) <
tAT"C

E | e (Bt gzt nT™)) + j e-<ﬁ+%)S{U<c(s))+%u(z(s))}ds +%nt
0

foreach T = €.
Asu < ¢ in O, we have

u(@) < ¢(z) - nt + %nt = p(2) - %nt.

This is a contradiction.

To see the concavity of u, we also recall Ty h(z) of (2.21). We prove below Tjrh(z)
is concave if h is concave. Moreover, by induction, T} h is concave for any n > 1. By
Lemma 4.10, we have

Tyh—u as n—oo.

We can choose h(z) = 0(z) € B,, where 0(z) denotes the function identically equal to
zero. Then, we can conclude the assertion.

To this end, we fix h € B, and assume it is concave.

Choose distinct points z1, z, in (0, co), and choose z; (t), z; (t) starting from these
points, respectively. For each § > 0, we choose c1(t), c2(t) in €y, corresponding to
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z1(t), 2z (t), respectively, satisfying

Tyh(zi) -6 < E [Je‘(ﬁ+%)t{U(ci(t)) + %h(zi(t))}dtl , i=1,2.
0

Let 0 < A < 1, and we put c () = Aci(t) + (1 — A)c,(t). We shall show below that
ci(t) € Cy, and that

E [ j e B+ U (ca(t)) + %h(Z"(t))}dfl
0

> AE [ J e B+ U ey () + %h(zl(t))}dt]

0

+(1-ANE [ j e‘(/”%)t{U(cz(t)) + %h(zz(t))}dt:| .
0

Here, z°(t) is the solution to the following SDE:
dz°(t) =
(f(z° (1)) — uz°(t) — ca(t))dt — oz° () dW(¢) + 2°(¢) J(e( - 1)N(dtd)),
2°(0)=Az1 + (1 -A)z, .
We put z)(t) = Az1(t) + (1 - A)z2(t), and 75, = 74, V Tz,. We then have
0<z(t) <2°(t), a.s.

Indeed, using the concavity and Lipschitz continuity of f(.),

t
E[(za() -2 ()] < E [J(f(ZA(S)) - f(z°(9))). 1{zA(s)zz°(s)}dS:|

0
t

< Cr | El(za(s) - 2°(s))"1ds .
0

Here, Cy denotes the Lipschitz constant. By Gronwall’s inequality, we have the asser-
tion. This implies cj(t) € Cy.
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By this comparison result, using the monotonicity of and the concavity of U(.), h(.),

Tyh(Az; + (1= N)zy) > E J e BT (D) + %h(z"(t))}dt
0

>E j e B+ U (D) + %h(z;l(t))}dt

0
Tz, s 1
+(1-ANE j e HU(c2(t) + Eh(zz(t))}dt
0

These imply that T)rh(z) is concave. Therefore, this yields that u is concave. [

Remark 4.9. The proof of the Bellman principle () in the general setting (i.e. without
continuity or measurability assumptions) is not easy. Occasionally, one is advised to
decompose the equality into two parts:

(i)

u(z) < sup E [limsup J e BT c(t) + %u(z(t))}dt

ceCy z'l >z

4 e BN Y (o A T>>} ‘

and the converse

(ii)

u(z) > sup E [lirpinf j e PO U(c(t)) + %u(z(t))}dt

ceCy o

+ e‘(ﬁJ’%)TZ’“u(z(Tz: A ‘r)):| .

The proof for (i) is relatively easy. The proof for (ii) is difficult if it is not assumed to be
continuous.

This principle is proved in the diffusion case in [110] Theorem 4.5.1, and in a two-
dimensional case for some jump-diffusion process in [96] Lemma 1.5.

The next result provides a verification theorem for finding the value function in terms
of the viscosity solution for (2.6).
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Theorem 4.3. We assume (B.3), (2.2), (B.4) and (2.17). Then, there exists a concave vis-
cosity solution v of (2.6) such that 0 < v < ¢.

Proof. Let0 < M < M'. By (2.21), we have Tyh < Ty h for h € B. Hence, uy must
have a weak limit, which is denoted by v:

uyTv as M — co.

It is clear that v is concave and then continuous on (0, co). We shall show v(0+) = 0,
where the existence of the left-hand side is guaranteed by the transmission property.
It follows from (2.21) and (2.18) that

v(z) < supE “ e~ B+OUUct) + %v(z(t))}dt] <pz), z20.

ceC

Hence, for any p > 0, there exists ¢ = (c(t)) € C which depends on z such that

vz)—p < E “ e‘(ﬁ+%)tU(c(t))dt:| +E [I e‘(/“%)t%v(z(t))dt} .

0 0

First, let

t
N(t) = zexp <(K + )t — oW(t) - %azt + j j {N(dsd{)

0
- f j(d _1- Oy(dOds) .
0

Since z(t) < N(t) for each t > 0 by the Gronwall’s inequality, and since

E

sup NZ(S)] < +00
O<s<t

for each t > 0, we see by (2.9) that

E[e {(B+0)@ (7, p's))

T,NS
—z+E [ J e~ (T _(B + %)z(t) + flz(t)) — uz(t) - c(t)}dt
0
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By (B.4), we then choose € > 0 so that f'(0+) + u < B + 1/e. Then, by letting s — +co
and z — 0, we get

E [Je-(ﬂ+%)fc(t)dt]

0

<2+E [ j e-<ﬁ+%)ff(z(t))dt]

0
Tz

<z+E [I e~ B+ N (t)dt
0

- 0.

On the other hand, by the concavity (B.3) of U(.), for each p > 0, there exists
Cp > O such that
Ux) < Cox+p (2.23)

for x > 0. Then, letting z — 0 and then p — 0, we obtain

Tz

E [j e—(ﬁ+%)fU(c(t))dt] < C,E [j e—<ﬁ+%>fc(t)dt] +—L__o.

1
0 Brz

0

Thus, by the dominated convergence theorem,

v(0+),

v(0+) <E “ e-<ﬂ+%>f3v(0+)dr] <
€ Be+1

0

which implies v(0+) = 0. Thus, v € C([0, 00)).
By Dini’s theorem, uj; converges to v locally and uniformly on [0, co). Therefore,
by the standard stability results (cf. [10] Proposition II.2.2), we deduce that v is a vis-

cosity solution of (2.9) and then of (2.6). O

Comparison
We give a comparison theorem for the viscosity solution v of (2.6).

Theorem 4.4. Letf;, i = 1, 2 satisfy (2.2) and let v; € C([0, 00)) be the concave viscosity
solution of (2.6) for f; in place of f such that O < v; < ¢. Suppose

fish. (2.24)

Then, under (B.3), (2.2), (B.4) and (2.17), we have

Vi <Vy.
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Proof. Let
pv(z)=2"+B.

By (2.12), (B.4), we first note that there exists 1 < v < 2 such that
1
-B+ Eazv(v—1)+xv—yv<0. (2.25)

Hence, by (2.12), (2.13), ¢,(z) satisfies

1
- Bou(z) + 502224;;'(2) +(f2(2) - u2)9y(2) - J{fp'v(Z) Yz, OIu(d))
<(-B+ %azv(v —1)+xv-uv)z' +Avz" ' BB <0, z>20 (2.26)

for a suitable choice of B > 0.
Suppose that v1(zg) — v2(z0) > 0 for some zy € (0, co). Then, there exists n > 0
such that
S;I;Op[m(Z) - Vv2(2) - 2npy(2)] > 0.
Since, by the concavity of v, it holds that
v1(2) - v2(2) - 2n9y(2) < 9(2) - 2npy(2) > -0 as z — +0o.

It implies that we can find some z € (0, co) such that

sup[vi(z) - v2(2) - 2n@y(2)] = v1(2) - v2(2) - 2ney(2) > 0.

z>0

Define "
Yn(z,y) =vi(2) —va(y) - Elz —yI? - n(pv(@ + @y ()

for each n > 0. It is clear that
¥n(z,y) < 9(2) + 9(y) - n(@v(2) + @y(y)) = —0c0 as z+y — +00.
Hence, we can find (z,, yn) € [0, c0) x [0, 0co) such that
¥n(zn, yn) = sup{¥n(z,y) : (2, ¥) € [0, 00) X [0, c0)} .
Since

Wo(Zn, Yn) = V1(2n) = V2 (Vn) - gm — Yl = n(@y(zn) + 9u(yn))
>v1(Z) - v2(2) - 2ney(2) > 0, (2.27)

we can deduce

§|zn — Yal < Vi(zn) = Va(n) = N(@(Zn) + 9y (yn))
< (P(Zn) + (P(Yn) - rl(‘Pv(Zn) + (Pv()/n)) <M
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for some M > 0. Thus, we deduce that the sequences {z, + y,} and {n|z, - y,,lz} are
bounded by some constant, and

|zn —ynl > 0asn - co.
Moreover, we can find
Zn—>2¢€[0,00) and y, —>Z2ze€[0,00) as n— oo

for some Z € [0, +00), taking a subsequence if necessary. By the definition of (z,, y»),
we recall that

n
¥n(zn, yn) = vi(zn) = v2(¥n) - Elzn ~ynl? = n(@v(zn) + Gv(¥n))
2 v1(zn) = v2(2zn) — 2n@y(2zn) ,
and thus

n
E'Zn —ynl? < Vva(zn) = va(yn) + N(@v(zn) = Py(yn)) = 0 as n— co. (2.28)

2 > 0asn — co.

Hence, n|z, - yn
Passing to the limit in (2.27), we get
vi(2) - v2(2) -2ney(2) >0 and 2>0. (2.29)

Next, let V1 (2) = vi(2)-ney(z) and V,(y) = v2(y)+n¢,(y). Applying Ishii’s lemma
(cf. [46], [61] Section V.6) to

n
¥n(z,¥) = V1(2) - Va(y) - Sz -y,
we obtain g1, g, € Rsuch that

(n(zn = yn), q1) € J**Vi(zn),
(n(zn = yn), q2) € J* " Valyn) ,

1 0 a1 0 1 -1
—3n<0 1)3(0 _q2>s3n<_1 1) (2.30)

where
Az, —» z,
jz’iVi(Z) = (ps q) : 3(pr; qr) € ]z’iVi(Zr) ) s l = 1, 2 .
(Vi(Zr),ph Qr) - (Vi(Z),p, CI)
Recall that

J2*vi(2) = {(p + n9y(2), 4 + 19} (2)) : (p, q) € T Vi(2)},
J2vay) = {0 -ne, ), a - el ) : (0, @) € ] Va(y)}.
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Hence, by (2.30),

(1, q1) = (0(Zn - Yn) + NQy(2n), 41 + NP, (zn)) € T v1(2n)
(P2, 32) := (W(zn = Yn) = NP, (¥Vn), 42 = NPy Yn)) € J> V2 (yn) -
By the definition of viscosity solutions, we have

1 _
- Bvi(zn) + 5022,2411 + (f1(zn) - Uzn)P1

+BY(zn, v1,p1) + B1(zn, p1, ) + U(p1) 2 0,
1, 5.
= Bvalyn) + 50%Ynd2 + (F2(yn) — Wyn)b2
+BY(yn, v2, p2) + B1(yn, $2, 93) + U(p2) < 0.

Here, the C? functions ¢+, ¢, satisfy that ¢’ (zn) = p1 = n(zn — yn) + Q. (zn),
v1—¢1 has a global maximum at z,, and ¢’2(yn) =Py = N(Zn—Yn)-NP,(Yn), v2— P, has
a global minimum at y,,, respectively. Furthermore, due to [5] Lemma 2.1, there exists
a monotone sequence of functions (¢4, x(2)), P1,k(2) € C? such that v4(z,) = ®1,k(zn),
and v1(z) < ¢1,x(2) < P1(2), P1,k | vi(2)(k — o0) forz = z4 + Y(zn, (), { = 0. We
can also take such a sequence (¢, x)(z) of C? functions such that v,(z) > ¢7 x(z) >
¢2(Z), ¢2,k T VZ(Z)(k - OO) forz = Yn + Y()’n, O’ ( 2 0.

Putting these inequalities together, we get

.B[Vl(zn) = va(yn)]
< %02(23.6‘11 - Vi)
+{(fi(zn) — uzn)D1 — (F2(yn) — yn)P2} + {U(Pp1) - U(p2)}

+ j {(vi(zn + Y20, Q) = Va(¥n + Y¥n> ) — (V1(zn) = v2(¥n))
1>1

- (P1-Y2n, O — P2 - Y(Yn, O)Iu(d?)

" j {(@1(2n + Yzns O) = P2 ¥n + Yms O))
[¢<1

—(P1(zn) — P2(yn)) - (¢,1(Zn) W Zn, - ¢’2()’n) “YVn> Ou(dg)

=sh+L+1I3+1,+Is, say.

We consider the case where there are infinitely many z, > y, > 0. By (2.28) and (2.30),
it is easy to see that

1
L < 502{3n|zn —ynl? + n(Z20Y (zn) + V20U (yn))}

— 0nz?pl/(2) as n— .

By monotonicity and p; > p,,
I3<0.
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By (2.24), we have f1(zn)(zn — yn) < f2(zn)(zn — yn). Hence,

I < (fa(zn) —fZ(Yn))n(Zn - VYn) - }Ul(Zn - Yn)z
+ N{(f1(zn) = Uzn)@y(zn) + (F2(Yn) — Wyn) @, (Yn)}
— N(f1(2) + [2(2) - 2u2)py(2) as n— oco.
As for the term I, we have
Ios [ A1+ 90z ) = 1)) = (B2 + 10, ) - $20v)
[¢>1
- (01 - Y2n, ) = D2 - Y¥n, OIu(dQ)
-l | e oua).
[¢>1
Similarly,
Is < JK¢ﬂ%+y%hm—¢ﬂﬁn—@ﬂh+ymhm—¢ﬂhn
[¢=<1
— (V(zns OB} (Zn) — YVn, QP (V) Iu(d)
— -2 | pl@yE oud.
[f<1
Thus, by (2.26),

BV - a2
< {3020l + () - k0L - [ 0@ e, Putda)]
< 2nBey(2)

due to (2.25). This is contrary to (2.29). Suppose that there are infinitely many y, >
zn = 0. By concavity, we have v;i(y,) > vi(zn), i = 1, 2, and thus

vi(Yn) = V2(2n) 2 vi(zn) = va(yn) .

Hence, the maximum of ¥, (z, y) is attained at (y,, z,). Interchanging y, and z,, in the
above argument, we again get a contradiction as above. Thus, the proof is complete.
O

Remark 4.10. In view of (2.5), we observe that the value of v(z) will increase in the
presence of the jump term (i.e. 7 > 0).

4.2.3 Regularity of solutions

In this subsection, we shall show the smoothness of the viscosity solution v of (2.6) in
case g > 0.
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Theorem 4.5. Under (B.3), (2.2), (B.4), (2.17) and that ¢ > 0, we have v € C%((0, 0))
and v'(0+) = co

Proof. We divide the proof into six steps.
Step 1 By the concavity of v, we recall a classical result of Alexandrov (cf. [2] and [36,
61]) to see the Lebesgue measure of (0, co) \ D = 0, where

D = {z € (0, ) : vis twice differentiable at z} .
By the definition of twice differentiability, we have
'@),V"2) e V) n]*v(z), VzeD,

and hence
Bv(z) = Lov + U(V'(2)) .
Let d*v(z) denote the right-hand and left-hand derivatives respectively:

d*v(z) =lim XY gy i YO VD)
vz y-z yiz Y-z

Define r*(z) by
Bv(z) = 0222 r*(2) + (fz) — uz)d*v(z)
+ j{v(z +Y(z, Q) = v(z) - d*v(2) - Y(z, Ohu(d) + U(d*v(2))
forall ze (0,00). (%x%)

Since d*v = d"v = v on D, we have r* = r~ = v" a.e. by the formula above. Further-
more, d*v(z) is right continuous by definition, and so is r*(z). Hence, it is easy to see
by the mean value theorem that

v(y) - v(z) = | d*v(s)ds,

dtv(s) —d*v(z) = | rt(t)dt, $>z.

N%U} N%%

Thus, we get

R(v;y) :={v(y) - v(z) - d*v(2)(y - 2) - %ﬁ(Z)Iy —z1*}/ly - 2?

(d*v(s —d"v(z) - ' (2)(s - 2))ds/|y - z|?

'——s

y
Hj(r (t)—r (z))dt} ds/ly-z> -0 asy|z.

z
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Step 2 We show that U(z) is strictly convex. Suppose it were not true. Then,
U(zo) = §U(z1) + (1 - &)U(z) (2.31)

forsomez; # 2,0 < & <1andzg = éz1+(1-¢)z,.Let m;, i = 0, 1, 2 be the maximiser
of U(z;). By a simple manipulation, m; = (U")"1(z;). It is clear (since mg # m;) that

U(Zi) = U(m;) - mijzi > Uimg) —moz;, i=1,2. (2.32)

By (2.31), we observe that the equality in (2.32) must hold. Hence, we have mg = m; =
m> and then z; = z,. This is a contradiction.

Step 3 We claim that v(z) is differentiable at z € (0, co) \ D. It is a well-known fact in
convex analysis (cf. [44] Example 2.2.5) that

ov(2) = [d¥v(2), d"v(2)], vz € (0, c0) ,

where 0v(z) denotes the generalised gradient of v at z and d*v(x), d”v(x) are given
above. Suppose d*v(z) < d"v(z), and set

p=&d*viz)+(1-&d v(z),
P=&rt(z)+(1-Or(z), 0<é&é<1.

If it were true that
limsupR(v;y) >0,

y—z
then we can find a sequence y, — z such that lim, ., R(v; yn) > 0. By virtue of the

result in Step 1, we may consider that y,, < yn4+1 < z for every n, taking a subsequence
if necessary. Hence, by the definition of R(v; y),

lim v(yn) = v(2) - d*v(z)(yn — 2) S

0.
n—co [yn -2l

This leads to the contradiction d*v(z) > d~v(z). Thus, we have lim supy_,; R(v;y) <0,
and (d*v(2), r* (2)) € J>*v(z). Similarly, we observe that (d~v(z), r~(z)) € J>*v(z). By
the convexity of J>*v(z), we get

B, 1) €J>"V(z) .
Now, by Step 2, we see that
Up) < E0(d*v(2) + (1 - U v(2)),
and hence, by (),
Bv(z) > %0222? + (fz) — uz)p

+ J{V(z +Y(z, Q) - v(z) - p- Yz, Qu(d)) + UP) .
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On the other hand, by the definition of the viscosity solution,

Bv(z) < %azzzq +(flz) - uz)p
+ J{V(z +Y(z, ) —v(z) - p- Yz, Qu(d)) + U(p) ,
V(p,q) € *Hv(2) .
This is a contradiction. Therefore, we deduce that ov(z) is a singleton, and this im-

plies v is differentiable at z.

Step 4 We claim that v/(z) is continuous on (0, o). Let z, — zand p,, = V'(z) — p.
Then, by the concavity
v(y) <v(z) +p(y —2), Vy.

Hence, we see that p belongs to D*v(z), where

DYv(z) = {p € R: limsup Yy) = vi@) - ply = 2) < 0} .
y—z ly -z

Since dv(z) = D*v(z) and Jv(z) is a singleton by Step 3, we deduce p = v'(z). This
implies the assertion.

Step 5 We set u = v'. Since it holds that

Bv(zn) = 5023 ) + (few) - pznu(zn)

+jwurmumo—v@n—m%yyumomm0+ﬁwumu

zZn €D,

the sequence {u'(z,)} converges uniquely as z, — z € (0, 00) \ D, and u is Lipschitz
near z (cf. [44]). We recall that ou(z) coincides with the convex hull of the set, that is,

ou(z) = {q eR:q-= nlLrEou,(Z”)’Z” €D — z} .

Then,

Bv(z) = %azzzq + (f(z) - uz)u(z)

+jww+ﬂzorwuruuyﬂzowmo+Mmmu
Vq € ou(z) .

Hence, we observe that ou(z) is a singleton, and then u(z) is differentiable at z.
The continuity of u'(z) follows immediately as above. Thus, we conclude that u ¢
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C%((0, 00)), and hence (0, co) \ D is empty.
Step 6 Suppose V'(z) < 0. Then, by (B.3), we have
U(v'(2)) =

This is contrary to the equality (**) in view of the conclusion in Step 3. Thus, we de-
duce v'(0+) > 0, and by (B.3) again, v'(0+) = co. O

4.2.4 Optimal consumption
In this subsection, we combine the optimal consumption policy ¢* with the optimisa-

tion problem (2.3). We assume o > O throughout this subsection in order to guarantee
the existence of a C2-solution.

Lemma 4.11. Under (B.3), (2.2), (B.4) and (2.17), we have
lim inf E[e Plv(z(t))] = 0 (2.33)

foreveryc e C.

Proof. By (2.15), we can choose 0 < 8’ < B such that
-Bo@) + = 02 20" (2) + (f(2) - p2)¢’' (2) (2.34)

+ j{(p(Z +9(z, Q) - 0(2) - @' (2) - Yz, Ou(d) + U(p'(2)) < 0. z>0.

Here, ¢(z) = z + B. Hence, 1t6’s formula gives

t
ElePlo(z(t)] < p(2) + E [j ePs(-p+ ﬁ’)cp(z(s))ds] ,
0

from which
(B-B"E U e P p(z(s)) dS] <oo.

0

Thus,
liminf E[e Pl (2(t))] =
t—o0

By Theorem 4.3,

v(z) < @(2),
which implies (2.33). O
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Now, we consider the equation:
dz*(t) = (f(z* (t)) — uz* (t) — c*(t))dt + az* (t)dW(t)
+z*(t-) j(e( - 1)N(@dtd)), z*(0)=z>0, (2.35

where
c*(t) = (U (" (t-))1jrery - (2.36)

Here, c*(t) is the consumption rate which maximises the Hamilton function (associ-
ated with L) operated to v. For a typical case U(c) = %c’ (re(0,1)),

() = (V' (@ (t-))TT. Ljter,ny -

Lemma 4.12. Under (B.3), (2.2), (B.4) and (2.17), there exists a unique solution z* (t) > 0
of (2.35).

Proof. Let G(2) = f(z*) - uz — (U")"1(v'(z*)). Here, z+ = max(z, 0). Since G(z) is Lips-
chitz continuous and G(0) = 0O, there exists a solution y(t) of

dy(t) = G(y(0))dt + oy (O)dW(t) + x(t-) J(e¢ - 1)N(dtd), x(0)=z>0. (2.37)

Define
') =x(tATy) 20.
We note by the concavity of f that G(z) < C,1z* + C; for some C1, C, > 0. Then, we
apply the comparison theorem (Lemma 4.9) to (2.37) and to 2(t) given by
dz(t) = (C1z2(0)* + Cr)dt + az(t)dW(t) + z(t-) I(e( - 1)N(dtd)) ,
2(00=z>0 (2.38)

to obtain 0 < z*(t) < z(t) forall 0 < t < T+ A T;. Furthermore, it follows from the
definition that 7,- = 7, and hence

d2* (1) = Lyery | 2" () - 2" (€) = ¢* (Bt + 02* () AW(D)
2" (t-) J'(e( _D)N(dtd)] .

Therefore, z*(t) solves (2.35).

To prove the uniqueness, let Z(t) be another solution of (2.35). We notice that the
function z — G(2) is locally Lipschitz continuous on (0, co). By using Theorem 1.5 in
Section 1.3, we can get

Z5(NTy ATz) = Z(EAN T ANT3) .

Hence,
Ty = Tz, z'(t) =z(t) for t< T, .

This implies z* (t) = Z(t) forall 0 < t < T,-. O
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We assume the SDE (2.35) has a strong solution. As it will be expected from (2.6), the
optimal consumption policy is given as follows.

Theorem 4.6. Let the assumptions of Theorem 4.5 hold. Then, an optimal consumption
c* = {c*(t)} is given by (2.36).

Proof. Weset { = s A1,- foranys > 0, and let {, = ¢ Ainf{t > 0;|z*(¢)] <
% or |z*(t)| > n}. By (2.6), (2.35) and It0’s formula, we have

Ele Pov(z* (¢a-))]
n 1

=v(z) + E“ e’ﬁt{—ﬁv(z) + V' (@) 1jt<r 1 [f(2) —puz - c* ()] + Eazzzv"(z)
0

+ J{V(z +9(z, Q) - v(z) - V' (2) - Yz, Oiu(d{)

z:z*m}dt + M)

G
=v(z) -E j e Ptuc* (t)dt | ,
0

where {, = { A 1, for some localising sequence of stopping times 7, T oo of the
local martingale M(t) with M(0) = 0. From (2.34), (2.38) and Doob’s inequalities for
martingales, it follows that

E [Stjp e Py (z* ((n—))]

<E [ sup e‘ﬁ’q)(z*(r—))]

0<r<s

S

1/2
<@(z)+2C| oF {J(e‘ﬁtz*(t))zdtl
0

+E [ [ [0 @)+ @0
0
1/2
- (" (t-) - @' (z* (t-)) - pz* (t-), Olzu(dodt}
s 1/2 s
< @) +2C| oE [Ji(t)zdtl +E [j j e 2P p(E(t-) + Y3 (o), )
0 0

1/2
- (&(t-)) - @' (2(t-)) - P&(t-), Olzy(d()dt] < +00.
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Therefore, letting n — oo, by the dominated convergence theorem, we get

¢
Ele Pv(z"({-)] = v(2) - E j e PU(c* (t)dt
0

By (2.33), we have
lim inf E[e PNy (2% (s A T4 -))]
= liggle[e‘ﬁsv(z* (s-)) : Tz 25]=0.

Passing to the limit, we deduce

v(z) = E[ j e‘ﬁtU(c*(t))dt] =J(c").

0

By the same calculation as above, we can obtain
T,

J(c)=E Ue‘ﬁtU(c(t))dt} <v(z), ceC.

0

Due to the comparison theorem (Theorem 4.3), we remark that the solution v(z) of (2.6)
must be unique. Hence, we have the assertion. The proof is complete. O

4.2.5 Historical sketch

The origin of the topic goes back to Merton [162]; See Appendix (ii). As for the jump-
diffusion type control problem, the paper [212] has studied a model (X;) given by

dXt =},ldt+0'dW(t)—dZt—dI<t, XO_ =X.

Here, Z; denotes a cadlag (jump) process corresponding to the company’s spending
(paying dividends to the stock holders), 0 > 0 and K; corresponds to the activity to
invest. The expected utility is measured up to time T in terms of Z; by

E U e‘ﬁtdZt:|

T

instead of the consumption rate c(t) composed in the utility function. The paper [49]
studies, in a similar framework, the control in switching between paying dividends
and investments. The paper [74] studies the same model X, but the expected utility is

measured by
E [U(J e"“dZt)] ,

T
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where U(.) is a utility function. Here, they measure the gross amount of dividends up
to time T by U(.) instead of the consumption rate c(t), which makes some difference in
the interpretation. In these papers, the main perturbation term is the diffusion (Brow-
nian motion). On the other hand, Framstad [65] has studied a model (X;) given by

dX; = Xe_(u(Xe)dt + o(X)dW(D) + j (X, ON(dtd) - dH,

in the Wiener—Poisson framework. Here, H; denotes a cadlag process corresponding
to the total amount of harvest up to time ¢, and a(.) > 0. Under the setting that the
expected utility is measured by

’

(o]
E [ j e PtdH,

to

he describes that the optimal harvesting policy is given by a single value x*, which
plays a role of a barrier at which one reflects the process downward. The paper [74]
also leads to a similar conclusion. A related recent paper is [3].

For recent development concerning the Maximum principle in the jump-diffusion
setting, see [176].
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A friend of Diagoras tried to convince him of the existence of the gods, by pointing out how many
votive pictures tell about people being saved from storms at sea by dint of vows to the gods, to
which Diagoras replied that there are nowhere any pictures of those who have been shipwrecked
and drowned at sea.

Marcus Tullius Cicero (106—43, BC), De natura decorum III 89

(i) Notes

For basic materials which are supposed to be preliminary in this book a reader can
see [39] and [194].

Chapter1

Composition of Chapter 1 is compact. For details and proofs on basic materials con-
cerning stochastic processes, stochastic integrals, and SDE of diffusion type, see the
classical [82]. The materials in Section 1.1 are well known. See [196]. The materials
in Section 1.2 are mainly due to [127, 192] and [47]. The materials in Section 1.3 are
also due to [127]. For the precise on the stochastic flow appeared in Section 1.3, see [4]
Section 6.4. Additionally, the equivalence between (3.2) and (3.3) is justified by Theo-
rem 6.5.2 in [4]. For SDEs on manifolds, see [4, 58].

Chapter 2

There are two approaches to stochastic processes. One is based on macroscopic view
using functional analytic approach, by e.g., Kolmogorov, Malliavin—-Stroock; the other
is based on microscopic view tracking each trajectory, by e.g., Itd, Bismut and Picard.
We adopted the latter one.

Section 2.1.1 is due to [87]. Section 2.1.2 is due to [181, 182] and [95]. A part of Sec-
tion 2.1.3 is due to [56] and to [8, 9]. Historically, the Bismut’s method (2) stated in
Section 2.1.3 was developed before the one stated in Section 2.1.1. It has evolved to
cover the variable coefficient case in a fairly general setting. See [116]. There are some
attempts to analyse jump processes as boundary processes (e.g. [32]), however these
results have not been much fruitful.

Sections 2.2, 2.3 are based on [85, 89, 143, 183] and [184]. Historically, the polyg-
onal method stated in Section 2.3 was developed before the Markov chain method in
Section 2.2. In those days the author did not know the idea to seperate the big jump
part of the driving Lévy process by the magnitude O(t}/#), and used simply the con-
stant threshold €. The proof of Sublemma 2.3 in Section 2.2 is closely related to the
strict positivity of the densities for infinitely divisible random variables, mentioned at
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the end of Section 2.5.4. Upper bound of the density for not necessary short, but still
bounded, time interval is given in [185].

Section 2.5.2 is adapted from [97]. As for numerical results stated in section 2.5.3,
calculating the constant C = C(x, y, k) in Theorem 2.4 numerically is not an easy task
in general. Especially if the function g(x, y) has singular points, numerical calculation
of iterated integrals in (3.6) is known to be heavy. Section 2.5.4 is due to [90, 91].

Chapter 3

For details on the iterated integral expressions of Wiener (-Poisson) variables treated
in Section 3.1, see [190]. For the Charlier polynomials stated in Section 3.2, also
see [190]. As for the well-definedness of multiple integrals with respect to Lévy pro-
cesses, see [112].

The contents in Section 3.3 are mainly based on [95]. The definition of the norms
|Flk,1,p> |1Ullk,1,p in Section 3.3.3 is based on the idea that we take the projection of the
Wiener factor of F first, and then measure the remaining Poisson factor after, both in
the sense of LP norm. We can consider other norms as well on the Wiener—Poisson
space. Indeed, by taking another Sobolev norm for the Wiener factor, it is possible
that the framework of showing the estimate for 5(V) can be carried over to show the
estimate of §(U), where it has been carried out using Meyer’s type inequality (The-
orem 3.3) in the framework of Ornstein—-Uhlenbeck semi-group. Up to present, there
seems to exist no decisive version of the definition for the norms on it. Section 3.4 is
due to [25].

Our theory on stochastic analysis stated in Sections 3.5-3.7, and basic properties
of Lévy processes stated in Chapter 1, are deeply related with the theory of Fourier
analysis. The contents of Sections 3.5, 3.7 are due to [77, 95, 130]. In Section 3.5.1 the
iteration procedure using the functional e, (F) = e!F) works effectively. It will be
another virtue of Malliavin calculus, apart from the integration-by-parts formula in
the Wiener space. Indeed, as stated in the latter half of Section 3.6.5, employing the
Fourier method it has turned out that the integration-by-parts formula is not a main
tool in showing the smoothness of the transition density.

The origin of the theory stated in Sections 3.5-3.7 is [181]. Between [95] and [77]
there has been a quest for finding a proper object in the Poisson space, which may
correspond to Malliavin matrix in the Wiener space. The theory is also closely related
to [170] Section 2.1.5. A related topic is treated in [173] Chapter 14.

The contents of Section 3.6 are inspired by [130]. The result can be extended to the
non-Markovian process:

t t t
X = j b(X,, r)dr + Ja(Xr, rdw, + J Jg(X,, r, z)N(drdz) .
0 0 0
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The paper [130] tries to analyse SDEs of this type. The method used in Section 3.6.4 is
new.

The former part of Section 3.6.5 is mainly due to [131]. This part is added in the
second edition, so the SDE here is based on the setting that the vector fields depend
on t. There are cases where the density function exists despite that the stochastic co-
efficients are fairly degenerate and the (ND) condition fails for the solution of a SDE.
We are often required delicate estimates in such cases, see e.g., [50]. The extension
of the theory stated in the former half of this subsection to the case for other types of
Lévy measures is not well known. The inclusion of this subsection is also due to au-
thor’s recent interest in It6 process on manifolds, as It6 process with big jumps does
not satisfy the condition (D) in general.

Chapter 4
Section 4.1is based on [77]. A related work is done by Yoshida [223] and by Kunitomo
and Takahashi [132, 133]. The result in Section 4.1.2 is new. Section 4.1.3 is also new.
Section 4.2 is based on [96, 99]. The existence of ‘trace’ at the boundary for the
value function can be justified analytically using the theory of pseudo-differential op-
erators [206]. The control theory with respect to jump processes is developing. See,
e.g. [110] and Kabanov’s recent papers.
During 2013-2015 the author and Dr. Yamanobe considered an application of
Malliavin calculus to stochastic action potential model in axons [100]. But the content
is not included in this volume.

(ii) Ramsey theory

We are concerned with a one-sector model of optimal economic growth under uncer-
tainty in the neoclassical context. It was originally presented by Ramsey [193] and has
been refined by Cass [41]. See also [63].

Define the following quantities:

y(t) = labour supply at timet >0,
x(t) = capital stock at time t > 0,
A = the constant rate of depreciation (written as § in the text), A >0,
F(x,y) = production function producing

the commodity for the capital stock x > 0 and the labour forcey > 0.

We now state the setting in the model. Suppose that the labour supply y(t) at time ¢,
and the capital stock x(t) at t are governed by the following stochastic differential
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equations
dy(t) = ry(t)dt + ay(t)dW(t) , y0)=y>0, r+0,0=0, (A1)

dx(t) = (F(x(t), y(t)) — Ax(t) — c(t)y(t))dt + x(t-) J (e* - 1)N(dtd?)
<1
+ x(t-) J (€5 — )N(dtd)), x(0)=x>0. (A2)
g1

An intuitive explanation is as follows. Suppose there exists a farm (or a company,
a small country, ...) that makes economical activities based on labour and capital. At
time ¢, the farm initiates production which is expressed by F(x(t), y(t)). At the same
time, he or she has to consume the capital at the rate c(t), and the capital may de-
preciate as time goes by. The second and third terms on the right-hand side of (A.2)
correspond to a random fluctuation in capital.

Under this interpretation, we may even assume that the labour supply y(t) is con-
stant, and consider the optimal consumption under the randomly fluctuated capital.
This assumption has projected economical meaning since the labour supply is not
easy to control (i.e. make decrease) in short time.

This type of problem is called the stochastic Ramsey problem. For reference,
see [70]. We denote by V(x, y) the value function associated with x(t) and y(t). The
HJB equation associated with this problem reads as follows:

1
BV(x,y) = 502)/2 Vyy (X, y) + ryVy(x, ¥) + (F(x, y) = AX) Vx(x, y)

v j{V(e%c, Y) = Vx,y) = V(x, y) - x(&5 — Dhu(dQ)
+ UV (X, y)Y), V(0,y)=0, x>0, y>0. (A.3)

We seek the solution V(x, y) in a special form, namely,

wLw=w@,z=§. (A4)

Then, (A.3) turns into the form (2.6)—(2.7) in Section 4.2 with f(z) = F(z*, 1),y =r -
7+ A - 0?. Here, we assume the homogeneity of F with respect to y: F(x, y) = F( ’;‘, 1)y.
We can show that V(x, y) defined as above is a viscosity solution of (A.3), and that if
o0 > 0, thenitisin C2((0, c0) % (0, 00)). This derives the optimal consumption function
in a way of Section 4.2.4. The condition z(t) > O, t > 0 a.s. implies that the economy
can sustain itself.

Although it is not implied in general that we can find the solution of (A.3) as in
(A.4) in the setting (A.1)-(A.2), under the same token as above (i.e. the labour supply
is constant), the problem will correspond to what we have studied in the main text.
That is, we can identify the value function in the form v(z) = V(z, 1).
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