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1 Weak convergence of stochastic processes

Introduction

The study of limit theorems in probability has been important in inference in statistics.
The classical limit theorems involved methods of characteristic functions, in other
words, Fourier transform. One can see this in the recent book of Durrett [8]. To study
the weak convergence of stochastic processes, one may be tempted to create concepts
of Fourier’s theory in infinite dimensional cases. However, such an attempt fails, as
can be seen from the work of Sazanov and Gross [14]. The problem was also solved
by Donsker [5] by choosing techniques of weak convergence of measures on the space
of continuous functions by interpolating the partial sum in the central limit theorem.
If we denote for X, ..., X, i.i.d. (independent identically distributed random variable
with zero expectation and finite variance)

Sym=Xi+...+ X ymwherem=1,2,...,n,

)

and S, ; = 0. One can define

s - Symifu=0,1,...n
™4 7| linear if ue[m - 1, m]

Then, the continuous process Sy, ,, te[0, 1] generates a sequence of measures on
C[0, 1] if we can prove, with appropriate definition P, converges weakly to the measure
P given by Brownian motion on C[0, 1], we can conclude that

max |S, ;| converges to max |W(¢)|
o<t<1 ’ o<t<1
and

:—+maxS —mmSnm

R,
Vn Vn 1smsn n,m <t<1

converges to

max W(t) — min W(t),
1<t<1 0<t<1

giving more information than the classical central theorem. One can also prove

empirical distribution function, if properly interpolated,

n

Z 1(x; < x), xeRR,
1

Fn(x) =

S|
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satisfies

\/HSI)J(p |F(x) = FOOl,

which converges to the maximum of the Brownian bridge max,.., IW(t) - W(1)I,
justifying the Kolmogorov-Smirnov statistics for F continuous distribution function
of X;. We prove these results using convergence in probability in C[0, 1] space of S[n.]
to W[.] in the supremum distance in C[0, 1]. For this, we used the embedding theorem
of Skorokhod [23]. We follow [8] for the proof of this theorem of Skorokhod.

As we are interested in the convergence of semi-martingales to prove the statistical
limit theorems for censored data that arise in clinical trials, we introduce the following
Billingsley [2] convergence in a separable metric (henceforth, Polish space). Here we
show the compactness of the sequences of probability measures on Polish space using
the so-called tightness condition of Prokhorov [22], which connects compactness
of measures with a compact set having large measures for the whole sequence of
probability measures. We then consider the form of compact sets in C[0, 1] using the
Arzela-Ascoli theorem. We also consider the question if one can define on the space
of functions with jump discontinuity D[0, T] a metric to make it a Polish space. Here
we follow Billingsley [2] to present the so-called Skorokhod topology on D[0, T] and
D[0, co). We then characterize the compact sets in these space to study the tightness
of a sequence of probability measures. Then we use a remarkable result of Aldous [1]
to consider compactness in terms of stopping times. This result is then exploited to
study the weak convergence of semi-martingales in D[0, co).

Following Durrett and Resnick [9], we then generalize the Skorokhod embedding
theorem for sums of dependent random variables. This allows us to extend weak
convergence result, as in Chapter 2, to martingale differences [3]. Using the work of
Gordin [13], one can reduce a similar theorem for stationary sequences to that for
martingale differences. If one observes that empirical measures take values in D[0, 1]
and we try to use the maximum norm, we get a nonseparable space. Thus, we can ask
the question, “can one study weak convergence of stochastic processes taking values
in non-separable metric spaces? This creates a problem with measurability as one can
see from Dudley-Phillip’s [7] work presented in [18]. To handle these problems, we
study the so-called empirical processes following Van der Vaart and Wellner [25]. We
introduce covering numbers, symmetrization, and sub-Gaussian inequalities to find
conditions for weak convergence of measures.

We begin chapter 2 by constructing a measure on IR” to get a stochastic process.
We then construct a Gaussian process with given covariance. We obtain sufficient
conditions on the moments of a process indexed by T = R to have a continuous
version. Using this, we construct Brownian motion. Then we prove the Skorokhod
embedding theorem for sums of independent random variables. It is then exploited
to obtain a convergence in C[0, 1] of the functions of the sum of independent random
variables as described earlier. As a consequence of the central limit theorem in CJ[O0, 1],

printed on 2/10/2023 4:51 PMvia . Al use subject to https://ww.ebsco.confterms-of-use



EBSCChost -

1 Weak convergence of stochastic processes = 3

we prove using [20] the results of [11] and the convergence of symmetric statistics. The
chapter ends by giving a weak convergence of probability measures and Prokhorov’s
tightness result on a Polish space. In chapter 3, we study compact sets in C[0, 1] and
use them to get alternate proof of theorems similar to the one in chapter 2 using
weak convergence in Polish spaces. This is followed by studying the topology of
Skorokhod on D[0, T] and D[0, co) and proving that these are Polish spaces. Again,
we study the compact sets and prove the result of Aldous. Chapter 4 studies the weak
convergence of semi-martingales, which requires Lenglart [16] inequality to prove
compactness using the result of Aldous. As a consequence of this, we derive weak
convergence of Nelson and Kaplan-Meier estimates by simplifying the proof of Gill [12].
We do not present convergence of the Susarla-Van Ryzin Bayes estimate [24], but it
can be obtained by similar methods as shown in [4]. For convergence of Linden-Bell
estimates arising in astronomy, see [21] where similar techniques are used. Chapter 5
considers limit theorems as in chapter 2 using generalization of Skorokhod theorem
from [9]. Limit theorems in chapters 2 and 5 use techniques given in Durrett’s book [8].
Chapter 3 follows the presentation in the book of Billingsley [2], and chapter 4 uses the
simplified version of techniques in [17] (see also [15]). We present in the last chapter
the convergence of empirical processes using the techniques mentioned above taken
from [25].

Acknowledgments

The first version of this presentation was typed by Mr. J. Kim. Professor Jayant
Deshpande encouraged me to write it as a book to make it available to wider audiences.
Professor U. Naik-Nimbalkar read the final version. I thank all of them for their
help in preparing the text. Finally, I thank Dr. K. Kieling for suggesting the format
presented here.
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2 Weak convergence in metric spaces

We begin in this chapter the process of associating a probability measure on the
function space R” for any set T given a family of probability measures on R%, S ¢ T
finite set with certain conditions. This allows us to define a family of real random
variables {X,, teT} on a probability space (Q, F, P). Such a family is referred to as
a stochastic process. This idea originated from the work of Wiener (see [19]) in the
special case of Brownian motion. Kolmogorov generalized it for the construction of
any stochastic process and gave conditions under which one can find a continuous
version (cf. section 2.5), that is, a stochastic process with continuous paths. We use
his approach to construct Brownian motion. We explain it in the next section.

2.1 Cylindrical measures

Let {X;, t € T} be family of random variable on a probability space (Q, F, P). Assume
that X, takes values in (X;, A;). For any finite set S c T,

Xs=[]X0As=QA,Qs=Po (X, teS)",

teS teS
where Qs is the induced measure. Check, if ITgg : Xg — X for S ¢ S, then
Qs = Qg ° g 2.1)

Suppose we are given a family {Qg, S < T finite-dimensional}, a probability measure
where Qg on (Xg, Ag). Assume they satisfy (2.1). Then, there exists Q on (X, Ay) such
that

Q-II§' = Qs,
where Xy = []rer X¢, Ap = ‘T(Usa Cs)a Cs = II5'(As).
Remark: For

S c T, finite, C € Cy

define Qy(C) = Qs(A), where C = IT;'(A)
as Cg = I15'(Ag)

We can define Q, on [ Js.7 Cs. Then, for C € Cg and Cg, then by (2.1),
Qo(C) = Qs(4) = Qg (4),

and hence Q, is well-defined.
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2.1 Cylindrical measures = 5

Note that as
Cs, UCs, U---UCg CCg s, -
Q, is finitely additive on | Js.; Cs. We have to show the countable additivity.

Definition 2.1: A collection of subsets K ¢ X is called a compact class if for every
sequence {Cy, k = 1,2, --- n}, n finite,

n (o]
(Ci#0=[)Cr#0
k=1 k=1

Exercise 1: Every subcollection of compact class is compact.

Exercise 2: If X and Y are two spacesand T : X — Y and K is a compact classin Y,
then T71(K) is a compact class in X.

Definition 2.2: A finitely additive measure y on (X, A,) is called compact if there
exists a compact class K such that for every A € A, and € > 0, there exists C, € K,
and A, € A, such that

A, cC.cA and uA-A4,)<e.
We call K is y-approximates A,.
Lemma 2.1: Every compact finitely additive measure is countably additive.
Proof: Suppose (X, Ay, u) is given. There exists a compact class K that is
u-approximates A,. Let {A,} ¢ A, suchthat A, \, 0. We need to show that u(4,) \v 0.
For given e > 0, let B, € Ay and C,, € K, such that
€
B,cC,cA, and u(A,-B, < i

Suppose u(A,) does not go to 0, i.e., for all n, u(A,) > e. Since we know that

(an-(18) =W ()4) - (182) <5
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6 —— 2 Weak convergence in metric spaces

Next, for all n

n
(B #0,
k=1
and hence, we have for all n
n
(Ci#0,
k=1
which implies
(1Ci#0
k=1
since C; € K and K is compact. Therefore, it follows that
(Ao [ Ci #0
k=1 k=1

implies

Jim 4, 0,

which is a contradiction.

2.2 Kolmogorov consistency theorem

Suppose S c T is finite subset and Qg is measure on (Xg, Ag) satisfying consistency
condition (2.1). Let (X{y> Ay, Q) be a compact probability measure space. For each
t € T, there exists a compact class K, ¢ A, and K,, Q; approximates A,. Then, there
exists a unique probability measure Q, on (X7, Ay) such that

Ig : Xy — Xg, and Qg © 1'[;1 = Q.
Proof: Define
D={C:C=1II,'(K),K e K, t € T}.

Let
{I1(C,),i=1,2...}

be a countable family of sets and

B, = U H;il(cti)
ti=t
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2.2 Kolmogorov consistency theorem == 7

Ifthe countable intersection of {B,, t € T}is empty, then B, isempty for some ¢,. Since
K, is a compact class and all C;, € K, , we get a finite set of ¢;’s (¢; = ¢,). Let us call it
J for which

Uc,=0o=Jm'c,)=0

tie] tie]

Since D is a compact class, K as a countable intersections of sets in D is a com-
pact finitely additive class. We shall show that Q, is a compact measure, i.e., K
Q,-approximates C,. Take C € C,and ¢ > 0. For some S c T,

C = IT5'(B).
Choose a rectangle
[l cB
tesS
so that for 4; € A,
QsB-[4)<:
¢ 2
€S
— — €
Q5" (B) - TI' [ TAD) < 5.
tesS
For each t, choose K, € K, such that K, c A; and
QA < QK + —— s
et 8T cardinality(S)

Let

K =1I,sK; for K, € K,.
Then, K ¢ C and

Qo(115'(B) - I T Kp)) = Qo(115'(B- [T 40)

teS teS

+Qo(115" ([T 40 - ' [T k)

teS teS
<E.

Q, extends to a countable additive measure on ¢(C).

(X; =R, R, or a complete separate metric space.)
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8 =—— 2 Weak convergence in metric spaces

Example: T = N, X; = R.
Suppose

Qn = ® Q{t}-

te{1,2,..., n}

Then, there exists {X,,, n € N} of random variables defined on R®.

Example: T = [0, 1].
Let {C(t, s), t, s € T} be a set of real valued function with C(¢t, s) = C(s, t) and

Y a,a,C(t,s)=0

t,seS

for S finite. ({a;, t € S} ¢ R) Let Qg be a probability measure with characteristic
function for t € R?

o, (1) = exp (- %t’ ), (2.2)
S

where

Z - <C(u’ V))u,ves

S

Q; satisfies the condition of Kolmogorov consistency theorem. Therefore, there exists
{X;, t € T}, a family of random variables such that joint distribution of {X,, teS} is Qs.

Example: Take t, s € [0, 1] and C(t, s) = min(¢, s).

1

cit, s) = j 10,0/) - 10,4 (W)

0
= min(t, s)

LetS = {t}, ..., t,}, {a;, ..., a,} ¢ R. Then,
1
Z a,a]C(tl, t}) = Z aiaj JO 1[0,[1,](11) . 1[0’tj](u)du
i.j i

1 n

= L (Zail[o,[i](u))zdu
i1

>0

since Y ) a;a;C(t;, t;) is non-negative definite. Therefore, there exists a Gaussian
process with covariance C(t, s) = min(t, s).
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2.3 The finite dimensional family for Brownian motion =——— 9

2.3 The finite dimensional family for Brownian motion

Given covariance function C(t, s) = C(s, t) with s, t € T, and for all {a;, ..., a;} and
{t,, ..., t;} c T, such that

Y apa;Cty, t) 2 0,
k.j

then there exists a Gaussian process {X;, t € T} with EX, = 0 for all ¢ and C(¢, s) =
E(X.X,).

Example: C(¢t, s) = min(¢, s), and T = [0, 1].

1
min(t, s) = JO Lo, qW) - 15 g (W)du
= EX. X,

There exists {X;, t € T} such that C(¢, s) = E(X,X,) = min(¢, s).

Since X, is Gaussian, we know that
X, € L*(Q, F, P).
_ 52
Let, with SPL denoting closure in L, of the subspace generated by
712
MX)=SP (X, teT),

Consider the map
I(X;) = 1;0,4(u) € Ly([0, 1]) (Lebesgue measure).
I'is an isometry. Therefore, for (¢, ..., t,) with ¢, < ... < ¢,

I(X,, - X, ) = 1(X,,) - I(X,, ) (because I is a linear map)
= 1j0,61 (W) = o,y (W)

= L0 @)

te— i

Fork #j,

1
BOE, =X, ), = X,) = [ L0001, 0l
0

Xy, — X, is independent of Xy =X, if (¢, t] N (&4, t;] = 0 because
(e ] N (G, 4] =0 = EX,, - X, )(X, - X, )=0.

{X,, t € T} is an independent increment process.
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10 —— 2 Weak convergence in metric spaces

Givent, =0,X,=0,t, <t <... < t,, wehave

o[ 1 S
P(th =X, <X k=1,2..,n)= HJ e Tt dy,.
k=1

-0 \/Zﬂ(tk - tk*l)

Using transformation

Y, =X,
Y, =X, - X,
Ytn = th tr1

we can compute the joint density of (X by oo X ,n).

1 1S (X - X))’
f (Xqy eees Xpy) = exp|-=- )y —————|.
Koo Xy ) V1 n HZ:l hﬂ(tk—fm) 2}; (e — tey)
Define
(t,x, B) = — J 0 . £20
,X, Eye— e ) =
P V2rt JB Y
and

p(t, s, x, B) = p(t - s, x, B).

Exercise: Provefor0 =t, <t; < ... < t,

Qu, o, By o By) = [ oo | p(ty b0, 0,dy)

Pty = b, 1, dy,) - p(p(E, = ty1s Yno1s AYn))-

Suppose we are given transition function p(t, s, x, B) withx < t. Assumethats < t < u
p(u,s,x,B) = Jp(t, s, x, dy)p(s, t, y, B) (C-Kolmogorov condition).
Then,forO=t¢, <t <...<t,

.....

Q.1 (Byx---xBy) = L ---JB p(ty, to, x, dy;)

n

p(t29 t1; Y1, d}/z) o p(p(trp tn_l, Yn-1» dyn))'
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2.4 Properties of Brownian motion = 11
(Use Fubini’s theorem): For this consistent family, there exists a stochastic process
with Q as finite dimensional distributions.

Exercise 2: Check that p(t, s, x, B) satisfies the above condition.

Q'(X, € B, X, € B,) = jB Q' (X, € BylX, = y)Q" » X;\(dy),

1
where

Q*(X,, € BylXy, ..., X, ) = p(ty, toy, X, , B,) (Markov).
The Gaussian process with covariance

min(t, s), t,s,e[0,1]

has independent increments and is Markov.
Remarks: Consider
- X(w) € ROV

~ C[0,1] ¢ a(C(R1My)

C[0,1] is not measurable, but C[0, 1] has Q;(C[0, 1]) = 1 (outer measure).

2.4 Properties of Brownian motion

Definition 2.3: A Gaussian process is a stochastic process X, t € T for which any finite
linear combination of {X;} has a Gaussian distribution.

Notation-wise, one can write X ~ GP(m, K), meaning the random function X is
distributed as a GP with mean function m and covariance function K.

Remark:
X ~ N(py, 0)2()
Y ~ N(uy, 0%)

Z=X+Y
Then, Z ~ N(u, 03), where

2 2 2
Yz = px + py and oy = oy + 0y + 2py yOxOy.
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12 —— 2 Weak convergence in metric spaces
Proposition 2.1: Given covariance C(t,s)= C(s,t) with s,te€ T and for all
{a;,...,aq;} cRand {ty, ..., (,} c T

Y awa;C(ty, t) 2 0,
k,j

then there exists a Gaussian process such that
{X;, t e T}withforall ¢, EX, = 0, C(t, s) = E(X;, X,)
Example: For C(t, s) = min(t, s) and T = [0, 1], we recall the properties of the associa-

ted Gaussian process.
In this example,

min(t, s) = Ll Lo, 5 (W)du
= EX X,
Thus, there exists {X,, t € T}, which is a Gaussian process, such that for all ¢
EX, =0, and C(t, s) = E(X;, X;) = min(t, s).
Since X, is Gaussian, we know that
X, € L*(Q, K P).
Let
M(X) = S_PLZ(Xt, t € T) (SP means “span”).
Consider the map I : M(X) — ﬁ{l[o,t](u)’ t € [0, 1]} such that
I(X) = 10,4 (w)
and
(Y ax,) =Y adX,).
Proposition 2.2: ] is a linear map.
Exercise: Prove Proposition 2.2.

Proposition 2.3: I is an isometry
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2.4 Properties of Brownian motion = 13

Proof: Since {X,, t € T} is Gaussian,

Var(X[k - X[H) = Var(th) + Var(th) - 2Cov(th, X, )

t

= C(ty, ty) + Cty_q, tiq) — 2C(t_qs ty)

= tk + tk—l - 2tk—1

= tk - tk—l'
Therefore,
W =X, I = [ 06, - %, )P
[0,1]

=EX, - X, )

= Var(th - th_l)

= tk - tk—l'
Also,

(X)) = IX, DIIZ, = g0,y ) = 110, 1IN,
= ¢, cq@IIZ,
=t — b

2
= [1Xy, = Xg 1,

This completes the proof.

Exercise: I can be extended by continuity on M(X) onto L*([0, 1], A)

We call I"}(f) the stochastic integral of f with respect to Brownian motion for
feL*([0,1], A).

Suppose that ¢, < ... < t;. Then,

1 (th - X[H) =1 (th) -1 (thfl) (since I is an linear map)

= 10,09 (W) = 1po,¢,_ (W)

=1 e (W)
X, — Xy, isindependent of X, - X, if
(s el N (8, 4] = 0.
Proposition 2.4: If X, - X,  isindependent of X 6= Xt then

E(X, - X, )X, - X, ) =0.
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14 — 2 Weak convergence in metric spaces

Proof: For k # j,

E(X, - X, )X, - X, )

[kl

1
= J’O 1(fk71,tk](u)l(l;;pfj](u)du
=0.

Suppose {X;, t € T}isan independent increment process such that ¢, = 0, X, = 0, and
to < t; < ... < t,. Then, X, - X,  is Gaussian with mean 0 and variance ¢, - t;_;.

n
<xpk=1,2.,n)=[]PX, - X, <x)

P(X, - X,
k=1
ﬁ J»x _ yi
—e mdyk.
k=1 7~ \/27‘[(1’,( - tk 1)
Let
t = 4
ty 6 Xf1
Ytn = th - tn,l
Then,
1 1 O = x5’
Fityoky, Xts woes Xp) = 5——————€xp [_5 Z o= 1)
H \/Zﬂ(tk - tk—l) k=1 kT Tk

k=1

2.5 Kolmogorov continuity theorem

For each t, if P(X, ¢« = X;) = 1, then we say the finite dimensional distributions of X cand
X, are the same. We call X, a version of X,.
Proposition 2.5: Let {X,, t € [0, 1]} be a stochastic process with

E|X, - X,|f < C|t - s|"* with C, a, f > O.
Then, there exists a version of {X;, t € [0, 1]}, which has a continuous sample paths.
Corollary 2.1: The Gaussian process with covariance function

C(t, s) = min(t, s), t,s € [0,1]
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2.5 Kolmogorov continuity theorem = 15

(has independent increment and is Markovian) has a version that is continuous.

E(X, - X,)* = EX; - 2EX X, + EX?
=t-25+S
=|t-s|

E(X, - X,)" = 3[E(X, - X,)°]
=3t - s’

We shall denote the continuous version by W,.
Proof of Proposition 2.5: Take 0 < y < % and & > O such that
1-0A+a-pPy)>1+6.
ForO<i<j<2%and|j-il <2%,
Y P(|X,.2,n ~ Xl > [(j - i)2‘"]”) < CY'[( - 27" P ™ (by Chevyshev)
i, i,
— szn[(1+8)—(1—6)(1+a—ﬁy)]
< 00,

where (1+6)-(1-8)1+a- By) = —pu.
Then, by the Borell-Cantelli lemma,

P(1Xjn = Xipal > [ = D27) =0,
i.e., there exists ny(w) such that for all n > ny(w)
Xjpn = Xl < [(G - D27
Let t; < t, be rational numbers in [0, 1] such that

t,—t, < 27000

=02 -2P - 2P (n<p <. <Pp)
=2 -2 - 2% (n< g < ... <qp)
ty<i2" <2 <t

Let

h(t) = ¢ for 2700 < < 7070,
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16 —— 2 Weak convergence in metric spaces

Then,
|th - Xipn| < C,RQ@T)
|X[2 ~ Xy a| < R
X, - X, | < Csht, - 1)
and

—PkY
'Xiz-"—zfvl—...—z-l’k = Xipgn g ypia | S 27

Under this condition, the process {X;, t € [0, 1]} is uniformly continuous on rational
numbers in [0, 1].
Let

v : (Qq, Cq,) — (C[0, 1], 0(C[0, 1])),

which extends uniformly continuous functions in rational to continuous function
in [0, 1].
Let P is a measure generated by the same finite dimensional on rationals. Then

P=Poy™

is the measure of X, version of X,.
For {X;, t € [0, 1]}, there exists a version of continuous sample path. In case of
Brownian motion, there exists a continuous version. We call it {WW,}.

{Wi, — Wy, t € [0, co]} is a Weiner process.

2.6 Exit time for Brownian motion and Skorokhod theorem

It is well known that if X, ..., X, are independent identically distributed (iid) random
variables with EX; = 0 and EX; < co, then

converges in distribution to standard normal random variable Z. This is equivalent
to weak convergence of Y, to Z, i.e., Ef(Y,) — Ef(Z) for all bounded continuous
functions for IR. If we denote by

X, +...+X
Yom= % andY,,=0

printed on 2/10/2023 4:51 PMvia . Al use subject to https://ww.ebsco.confterms-of-use



2.6 Exit time for Brownian motion and Skorokhod theorem = 17

and define interpolated continuous process

Yymt=mel0,1,...n}
Ynt =

linear if te[m — 1, m]

form = 0,1, 2, ...n and we shall show that Ef(Y, ,,; — Ef(W.) for all bounded conti-
nuous functions for C[0,1] with {W(¢), te[0, 1]} Brownian motion. In fact, we shall use
Skorokhod embedding to prove for any € > 0

P(sup |Y,, g - W(t)| >€) - 0
0<t<1

as n — oo, which implies the above weak convergences (see Theorem 2.3).
Let

T is called “stopping time” if
fr<ther.
Define
F.={A:An{r<tieF"}.

Then F, is a o-field. % is a standard normal variable.
Define

T, =inf{t : W, = a}.
Then, T, < co a.e. and is a stopping time.

Theorem 2.1: Let a < x < b. Then

b-x
b-a’

P(T,<Ty) =
Remark: W, is Gaussian and has independent increment. Also, for s < ¢
E(W, - W(|F,)=0

and hence {W,} is martingale.
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18 —— 2 Weak convergence in metric spaces

Proof: Let T = T, A T},. We know T, T, < oo a.e., and

WTa = a, al’ld WTb = b.

Since {W,} is MG,
EWr = EW,
=X
=aP(T, < T,)+b(1-P(T, < Tp)).
Therefore,
b-x
P(T,< T, = b a

{W,, t € [0, co]} is a Weiner Process, starting from x with a < x < b. We know that

E(W, - W) |IFY) = EW, - W)

=(t-5).
Also,
E(W, - W) IFYy = EWZFY) - 2EW W |FY) + EW2IFY)
= EW}|F}Y) - w?
= EW? - W2FY)
= (t-239).
Therefore,

EW? - t|IFY) = w? -,

and hence {(Wf —t), t € [0, co]} is a martingale.
Suppose that x =0 and a <0 < b. Then T =T, A T, is a finite stopping time.
Therefore,

TAt

is also stopping time.

EW;,,~TAt) =0
Eo(W3) = E,T
EW; = ET
= a’P(T, < T))) + b*(1 - P(T, < T}))
=-ab
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2.6 Exit time for Brownian motion and Skorokhod theorem =— 19

Suppose X has two values a, b with a < 0 < b and

EX = aP(X =a) + bP(X = b)
=0

Remark:

a
b -

PX=a)=

b and P(X = b) = -
-a
Let T = T, A T},. Then, W has the same distribution as X. We denote

L(Wy) = L(X)

or

Wr=p X

2.6.1 Skorokhod theorem

Let X be random variable with EX = 0 and EX? < co. Then, there exists a FtW-stopping
time T such that

L(W;) = L(X)and ET = EX.

Proof: Let F(x) = P(X < x).
0

EX=O=>J

—00

udF(u) + ro vdF(v) =
0
= - JO udF(u) = ro vdF(v) =
—00 0

Let y be a bounded function with y(0) = 0. Then,

C I y(x)dF(x)
R

o( | wodrm + jooo Y dFw)

o

I y(v)dF(v) J N -udF(u) + J_Ooo y(u)dF(u) L vdF(v)
I

0
dF(v) j AF () (vy() - uy(v).
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20 —— 2 Weak convergence in metric spaces

Therefore,

(o) 0
J WOOdF(x) = C‘lj dF(v)J AF W) (v (u) - uy(v)
R 0 -0

0

_ ¢! L‘X’ dF(v) J AFu)(v - u) [v Ly - oy,

Consider (U, V) be a random vector in R? such that
P[U, V) = 0,0)] = F({o})

and for A ¢ (-o0, 0) x (0, c0)
P((U, V) e A) = C! J J AF)dF()(v — u).
A

Ify=1,
P((U, V) € (-00, 0) x (0, 00))

- C‘lro dF () jo AF(u)(v — )
0

—00

0

" arw [ arww-w [ oyw - oy

y(x)dF(x)

-,
J dF(x)

and hence, P is a probability measure.
Let u < 0 < v such that

u
_u.

v
py,v({u}) = v —u and py y({v}) = =y
Then, by Fubini,

[ weadreo = £ [yoom,av.
On product space Q x &/, let

W(w,w') = Wy(w)
(U, V)(w, ") = (U, V).

Ty,y is not a stopping time on F[W
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2.7 Embedding of sums of i.i.d. random variable in Brownian motion = 21

We know thatif U=uand V =v
L(Ty,v) = LX).
Then,

ETyy = Ey vE(Ty y|U, V)
=-EUV

0 [’}
_ct j AF()(~1) J AFV(Y — 1)
00 0

= - jm dF(v)(~u) [c*l ro vdF(v) - u]
0

0
= EX%.

2.7 Embedding of sums of i.i.d. random variable in Brownian
motion

Let ¢, € [0, c0). Then,
{W(t+ty)— W(ty), t =0}

is a Brownian motion and independent of F, .
Let 7 be a stopping time w.r.t. FtW. Then, one can see that

W: (w) = WT(w)+t(w) - Wr(w)(w)
is a Brownian motion w.r.t. F/¥ where
w w
F'={BeF:Bn{r<t}eF/}forallt<0}.
Let V,, be countable. Then,

{w: Wi(w) € By = | {w: W(t+t,) - W(ty) € B, T = to}.

toeVp

ForA e FY,

PUW;, ... W;) € BInAl = Y P{(W,,.... W) € BJnAN{T = to}]

toeVy

Y P((W;, ..., W;) € By) - PAAN {r = t})

toeVy

(because of independence)
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22 —— 2 Weak convergence in metric spaces

= P((W;,.., W;) €B,) Y P(AN{r=to})

toeVy

= P((W;, ..., W) € By)P(A)
Let T be any stopping time such that

{0, ifr=0;
T, =

k  sc k-1 k
s lfz—nST<2—n.

k k+1
Ifz—n <t< S

{rngt}={rgzﬁn}e|:k cF,.

Claim:F. cF, .

Proof: Suppose C € F, = {B: Bn {z < t} € F;}. Then, since 25,, <t,

Cn{rgt}=Cm{rg5}eF

2Yl

k GF[.

on

This completes the proof.
Wy =W, ., - W, isaBrownian Motion for each n, independent of ..

T,

Theorem 2.2: Let X|, ..., X,, bei.i.d. with EX; = 0, EXI-2 < oo for all i. Then, there exists
a sequence of stopping time T, = 0, T}, ..., T, such that

L(S,) =L(W¢g),
where (T; — T;_,) arei.i.d.
Proof: (U, V}), ..., (U, V,,) i.i.d. as (U, V) and independent of W,.

T, =0, T, = inf{t > T;_,, Wer, - Wy

k—

€ (U, Vb

T, - Ty, arei.id.
L(X;) = L(Wy)

L(Xz) = L(VVT2 - WTI)

L(X,) = L(Wy - Wy ).
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2.8 Donsker’s theorem = 23

Then,
Sn W(T,)
() =t(=%)
W(T,/n-n)
- ()

Assume EX = 1. Then
T
7" —a.s. E(Tl) = EX% =1,

and hence

Elts

2.8 Donsker’s theorem

X1 -+ Xy, are iid. for each n with EX, , =0, EX,ZLm <co,and S, , =X, +--- +
Xnm = Wen, where 7, is stopping time and W is Brownian motion. Define

Sym» fu=me{0,1,2,...,n}
Sn,u =

linear, ifu € [m -1, m].
Lemma 2.2: If T[’;IS] — sfors € [0, 1], then with sup norm || ||, on C[O, 1],
[1Sn,in) = W()lle — O in probability.
Proof: For given € > 0, there exists & > 0(1/8 is an integer) such that
P(IWt - Wl <e, forallt,s € [0,1], |t - 5| < 26) >1-¢€ (2.3)
1, is increasing in m. For n > N§,
P(lehs - kol < 8,k =1,2, ..., é) >1-e¢
since 1},;; — s. For s € ((k - 1)3, k8), we have

n n
Tins) =S 2 Tnge-nye) ~ kO
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24 — 2 Weak convergence in metric spaces

T["ns] -5< T[nnka] - (k-1)4.
Combining these, we have for n > N§

P( sup Ir["ns] -s| < 26) >1-¢e.

0<s<1

For w in event in (2.3) and (2.4), we get for m < n, as W =Sy ms

|WT,';, - W% <e.
Fort = m;" with0 < 6 <1,
Sn.ine) = Wt| SA=0)Sym—Wn|+6|Sy i~ Wi
+(1 - 0)|W% _ W[| + el Wr,;u B W[|.

For n > N; with 1 < 25,
P(11Sy1ns) ~ Willoo = 2€) < 2c.

Theorem 2.3: Let f be bounded and continuous function on [0,1]. Then

Ef(Su 1) = EF(WC)).

Proof: For fixed € > 0, define

Gs = {W, W' € C[0,1] : |W - W'||, <& implies [f(W) - F(W')] < e}.

Observe that G5 T C[0,1] asd | O. Then,

‘Ef(sn,[n.]) - Ef(W()

Since P(G§) — 0 and P(]IS,, () - W()I| > 8) — 0 by Lemma 2.2.
For

fx) = max [x(t)],
we have

max

S[nt] . . . .
ax|—— —>mtax|W(t)|1n distribution
n
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2.9 Empirical distribution function

and
S e e
max |—=| — max |W(t)| in distribution.
1<ms<n \/ﬁ t
Let
Ra = 1+ mas S - min, S
Then

R, .
W :>weakly g;?g W(t) - (I;Igltlgl W(t)

We now derive from Donsker theorem invariance principle for U-statistics

[nt] )@ [nt]
1+ —‘) =yn
(%) 2

i=1

NI

1<i;<<ip<n

25

where X; are i.i.d. and EXI2 < 00. Next, using CLT, SLLN, and the fact P(maxlj—%l > €)

— 0,
[nt] 0x. [nt] 0X.
log[ <1+—1>] = 10g<1+—1>
H7)] - % Vi
[nt] 0 [nt] y2 3 [nt] 3
X X; X;
= 92_1_9_2_1+9_ it B
Svn 235 n 3 {GnVn
2
= OW(t) - e—t,
2
and hence

d GXi GW(I)—ﬁt
H (1 + ﬁ) = e .
2.9 Empirical distribution function

Let us define empirical distribution function

n
F,(x) = % Y 1X;<x), xeR.
i=1

Then Glivenko-Cantelli lemma says

sup |F,(x) = FO)| =4, 0.
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26 —— 2 Weak convergence in metric spaces

Assume F is continuous. Let U; = F(X;). For y € [0, 1], define

n

- 1
G(y) = — Y 1F(X) <.

i=1

Then by 1-1 transformation,

Vasup [F,(x) - F)| = vn sup [G,(y) - yl.
x y€[0,1]

Let Uy, U,, ..., U, be uniform distribution and let U ; be order statistic such that

U(l)(a)) <--- < U(n)(w).

Next,
f(U(l)’ ceey U(n)) :f(Un’(l)’ ceey Un.(n))
St Uy s ooes W) = fyy oy, Uy e wy) iy <ty <l <y

|1, ifue(0,1]%
“ o, ifu¢o,1]"

For bounded g,

— (uy...uy)
B0 U) = 3 [ B )

X f(un(l), e uﬂ(n))dul.--dun.

So we get

nl, ifu, <uy <0 < uy;

0, otherwise.

fop,.u, (W5 ooy ) = {

Theorem 2.4: Let e; be i.i.d. exponential distribution with failure rate A. Then

L(U,, ... Uy ) = |_<ZZ1 ZZ" )

n+l1 n+1

where
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2.9 Empirical distribution function

Proof: First we have

n+l
Ao T uid iy > 05

fel,,. (U, ..., un+1) =

+€n41

0, otherwise.
Lets; —s; y =u;fori=1,2,...,n+1. Then

n+1

—(s;=S;_1)A
2102,y (St weos Span) = [ [Ae7E 500
i=1

Let
S; .
v;=——fori<n
Srz+1
Visl = Snat-
Then

n
fvgv,. ("1 Vi) = 1_[(/\e_lv"”(v"_v"‘l))/\e_AV"“(l“’n)
13000 Vg1 >t Unt
i=1

_ An+1 e—)\v"v,,ﬂ—/\pv,,ﬂJr/\Lv,,vn,r1 V:H

Exercise: Integrate with respect to v,,,, to complete the proof.

m
D, = vn max |- - —
lsmsn | Z, 4 n
— n max Zm mZn+1
Zplsmsn|ain n +/n

n Z,-m mZ,,—-n
— max m _ e

Z 4y 1smsn \n n +n

n Zn+1 - Zn
7 max (Wa(0) - t(w, () + S )|

where

Z,—m . m
m_—  ift=7%;
Wn(t) = '\m "
linear, between.

We know that n/Z,,; —,, Aand

n 1)
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and hence by Chevyshev’s inequality,

Since max(-) is a continuous function and
(W) =W, ) =p (W) - WD),

we have for A = 1

n Zo1—Z
D, = max |W, (t) - t( W, (1) + =L _~n
n a1 lsmsn n(D ( n() \Vn )
—asl —>p0

=p max |W(t) - tW(l)'.
0o<t<1

The process {W(t) — tW(1), 0 < t < 1} is called Brownian Bridge.
Observe,

P(W,, <, W, < X, ..o, Wy, < Xp, Wy = 0)
P(W,, < x, W, <X, ..., Wy, < x;) - P(W, = 0)
P(Wt1 < xp, Wy, € X9, 00, Wy, < X0 |[W() = 0)

P(W, =X, W, € 2,0 Wy, < X, W(D) = 0)
P(W, = 0)

P(W,, <%, Wy, < X, s Wy, < ).
{W?} is called Brownian Bridge if

EW?W? = E(W, - tW(Q) (W, - sW(1))
= min(t,s) — st —ts + ts
=s(1-1)

fors<t.

The above calculations show the conditional distribution of Brownian Motion
given {W(1) = 0} is the distribution of {W°, 0 < ¢t < 1}.
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2.10 Weak convergence of probability measure on Polish space = 29

2.10 Weak convergence of probability measure on Polish space

In chapter 3, we shall discuss the weak convergence in the space of functions with
jump discontinuities with a topology that makes it a Polish space. This will be applied
in chapter 4 for the weak convergence of semi-martingales. To make this book self-
contained, we present to the readers the weak convergence of probability measures
on Polish space.

Let (S, p) be a complete separable metric space. {P,}, a sequence of probability
measure on B(S), converges weakly to P if for all bounded continuous function on X

I fdp, — I fdpP

and we write P, = P. Let B(S) = S.

Theorem 2.5: Every probability measure P on (S, S) is regular, that is, for every S-set
A and every e there exist a closed set F and an open set G such that F c A ¢ G and
P(G-F)<e.

Proof: Denote the metric on S by p(x, y) and the distance from x to A by p(x, A) =
inf{p(x,y) : y € A}.If Ais closed, we can take F = Aand G = A% = {x: p(x, A) < 8} for
some &, since the latter sets decrease to A as § | 0. Hence, we need only show that
the class G of S-sets with the asserted property is a o-field. Given sets A4, in G, choose
closed sets F, and open sets G, such that F, c A, c G, and P(G, - F,) < ¢/2"". If
G =, G, andif F = |J F,, with n, so chosen that

n<ng

P(UF,I—F) < g
n

then F c|J,A, ¢ G and P(G - F) <e. Thus, G is closed under the formation of
countable unions; since it is obviously closed under complementation, G is a o-field.

Equation (2.5) implies that P is completely determined by the values of P(F) for
closed sets F. The next theorem shows that P is also determined by the values of f fap
for bounded, continuous f. The proof depends on the approximation of indicator I
by such an f, and the function f(x) = (1 — p(x, F)/e)" works. It is bounded, and it is
continuous, even uniformly continuous, because |f (x)-f(y)| < p(x, y)/e. x € Fimplies
f(x) =1, while x ¢ F° implies p(x, F) > € and hence f(x) = 0. Therefore,

Ie(x) < f(x) = (1 - p(x, F)/e)* < Ie(x). (2.5)

Theorem 2.6: Probability measures P and Q on S coincide if and only if f fdp = j fdQ
for all bounded, uniformly continuous real functions f.

Proof: (=) Trivial.
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30 —— 2 Weak convergence in metric spaces

(<) For the bounded, uniformly continuous f of (2.5), P(F) < f fdp = j fdQ <
Q(F°). Letting € | 0 gives P(F) = Q(F), provided F is closed. By symmetry and (Theo-
rem 2.5), P = Q.

The following notion of tightness plays a fundamental role both in the theory of
weak convergence and in its applications. A probability measure P on (S, S) is tight if
for each e there exists a compact set K such that P(K) > 1 - €. By (2.5), P is tight if and
onlyif foreach A € S

P(A) =sup{P(K) : K c A, Kiscompact.}

Theorem 2.7: If S is separable and complete, then each probability measure on (S, S)
is tight.

Proof: Since S is separable, there is, for each k, a sequence A;,, A,,, ... of open
1/k-balls covering S. Choose n; large enough that

P(UAk,.)>1—§.

i<ny

By the completeness hypothesis, the totally bounded set

MU A

k>11i<ny

has compact closure K. However, clearly, P(K) > 1 - e. This completes the proof.

The following theorem provides useful conditions equivalent to weak conver-
gence; any of them could serve as the definition. A set A in S whose boundary 0A
satisfies P(0A) = O is called P-continuity set. Let P,, P be probability measures on
X, B(X)).

Theorem 2.8 (The Portmanteau theorem): The following are equivalent.
1. For bounded and continuous f

lim I fdp, - I fdPp.
2. For closed set F

lirnnﬁsolgp P,(F) < P(F).
3. ForopensetG

li,ﬂ(i){}fpn(G) > P(G).
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2.10 Weak convergence of probability measure on Polish space =—— 31

4, Forall set A with P(0A) =0
nli_gloPn(A) = P(A).
1 ]\
1/k

Proof: (1)— (2) : Let f,(x) = y(p(x, F)), with y,(x) given by the above graph.
First of all, we know that

i) N 1p(x).
Then, for any é > 0, there exists K such that for all k > K

lim sup P,,(F) = lim sup J 1zdP,
n—-oo n—oo
< limsup J fidP,
n—oo
- pm [,

- [ fuap
< P(F) + 6.

The last inequality follows from the fact that
L f£,dP ~ P(F).
As a result, for all § > 0, we have
liI,fLSOE}p P, (F) < P(F)+34.
@-0)
Let G = F°. Then, it follows directly.
(2) + (3) — (4) trivial.

(4) — (1) Approximate f let simple functions f,, of sets A with P(A) = P(A).
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32 —— 2 Weak convergence in metric spaces

Theorem 2.9: A necessary and sufficient condition for P, = P is that each subse-
quence {P, } contain a further subsequence {P, ,,} converging weakly to P.

Proof: The necessary is easy. As for sufficiency, if P, does not converge weakly to P,
then there exists some bounded and continuous f such that f fdP, does not converge
to f fdP. However, for some positive e and some subsequence P, ,

> €

‘ j fdp, - J fdP

for all i, and no further subsequence can converge weakly to P.

Suppose that h maps X into another metric space X', with metric p’ and Borel
o-field B(X'). If his measurable X /X', then each probability P on (X, B(X)) induces
on (X', B(X")) a probability P o h™* defined as usual by P - h™}(4) = P(h"!(A)). We
need conditions under which P, = P implies P, o h™' = P o h™'. One such condition
is that h is continuous: If f is bounded and continuous on X', then fh is bounded and
continuous on X, and by change of variable, P, = P implies

j fQ)P, o k™ (dy) = j F(h())P(dx) — j F(h(x))P(dx) = j f)P o k7 (dy)
X! X X X!

(2.6)
Let D, be discontinuity set of h.

Theorem 2.10: Let (X, p) and (X', p') be two Polish space and
h:X = X'
with P(D;,) = 0. Then, P,, = P implies

P,oh = Poh™.
Proof: Since

h'(F) c h"}(F) c D, u h™\(F),

lim sup P, (h”'(F)) < lim sup P, (h1(F))
< P(D, uh™(P))
< P(h"Y(F)) (since D,, is a set of P-measure zero).
Therefore, for all closed set F,

limsup P, o h"'(F) < Po h™'(F),
n—-oo

and hence, by Theorem 2.8, the proof is completed.
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Let X,, and X be random variables(X -valued). Then, we say X,, —p Xif Po X' =
PoX'.
Observation: If X, — X and p(X,, ¥,) —, 0, then
Y, —p X.
Remark: We use the following property of limsup and liminf.
limsup(a, + b,) < limsup a, +limsup b,,
n—00 n—00 n—00
and
liminf(a, + b,) > liminfa, + liminfb,.
Proof: Consider closed set F. Let F* = {x : p(x, F) < €}. Then, F° \, Fase — 0 and

X, ¢ F} = {w: X,(w) ¢ F}
= {w: p(X,(w), F) > €}

Therefore,

we (X, ¢ FIn{pX,, Y, <e = pX,(w), F) > eand p(X,(w), Y () <€

= p(Y,(w), F) > 0 (draw graph.)

= Y, (w) ¢ F
2welY, ¢ F}
Thus,
Xy ¢ FEn{p(Xy, ¥y) < e} < {Y, ¢ F}.
Therefore,

P(Y, € F) < P(p(X,, Y,) > €) + P(X,, € F°).
Let PY = Po Y, and P* = Po X'. Then, forall € > 0,

limsup P, (F) = limsup P(Y,, € F)
n—.oo n—-.oo

< limsup P(p(X,,, Y,,) > €) + limsup P(X,, € F°)
n—oo _ n—oo

—>p0

- printed on 2/10/2023 4:51 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



EBSCChost -

34 — 2 Weak convergence in metric spaces

= limsup P(X,, € F°)

n—oo

= P(X € F°) (since X,, =p X).
Therefore, for all closed set F, we have

lim sup P) (F) < PX(F),
n—oo

and hence, by Theorem 2.5,
Pl — PX,

which implies Y,, =5 X.
We say that a family of probability measure IT c P (X) is tight if, given € > 0, there
exists compact K, such that

P(K.) >1-eforall P eII.

2.10.1 Prokhorov theorem

Definition 2.4: II is relatively compact if, for {P,} c II, there exists a subsequence
{P,,} c TI and probability measure P (not necessarily an element of IT), such that

P, =P.

Even though P, =P makes no sense if P(X) < 1, it is to be emphasized that we do
require P(X) =1 and we disallow any escape of mass, as discussed below. For the
most part, we are concerned with the relative compactness of sequences {P,}; this
means that every subsequence {Pni} contains a further subsequence {Pni(m)}, such that
P, (my = P for some probability measure P.

Example: Suppose we know of probability measures P, and P on (C,C) that the
finite-dimensional distributions of P, converges weakly to those of P: Pnnal,...,tk
Pﬂt_ll,...,tk for all k and all ¢, ..., t;. Notice that P, need not converge weakly to P.
Suppose, however, that we also know that {P,} is relatively compact. Then each {P,}
contains some {P, ,} converging weakly to some Q. Since the mapping theorem
then gives P, 7', = Qm'  and since P’ o by assumption,
we have Pr.! | =Qn  forallt,..,t. Thus, the finite-dimensional distribu-
tions of P and Q are identical, and since the class C; of finite-dimensional sets
is a separating class, P = Q. Therefore, each subsequence contains a further sub-
sequence converging weakly to P, not to some fortuitous limit, but specifically to
P. 1t follows by Theorem 2.9 that the entire sequence {P,} converges weakly to P.
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Therefore, {P,} is relatively compact and the finite-dimensional distributions of P,
converge weakly to those of P, then P,, = P. This idea provides a powerful method
for proving weak convergence in C and other function spaces. Note that if {P,} does
converge weakly to P, then it is relatively compact, so that this is not too strong a
condition.

Theorem 2.11: Suppose (X, p) is a Polish space and IT c P (X) is relatively compact,
then it is tight.

This is the converse half of Prohorov’s theorem.

Proof: Consider open sets, G, ~ X. For each € > 0, there exists n, such that for all
Pell

P(G,) >1-e.
Otherwise, for each n, we can find P, such that P,(G,) <1 - €. Then by by relative
compactness, there exists {Py} € IT and probability measure Q € IIsuch that P, = Q.
Thus,
Q(G,) < liminfP, (G,)
i—o00 !
< liminf P, (G, ) (since n; > n and hence G,, ¢ G,,)
i—00 1 1 1
<l-e€
Since G, » X,

1=0Q(X)

lim Q(G,)
<l-e,

which is contradiction. Let A K, M=12,.. be open ball with radius ki, covering
X (separability). Then, there exists n; such that for all P € II,

Then, let
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36 —— 2 Weak convergence in metric spaces
where (Vo1 Uicn, Ax, is totally bounded set. Then, K, is compact(completeness), and
P(K,)>1-e.

Remark: The last inequality is from the following. Let B; be such that P(B;) > 1 - .
Then,

€ oy €
P(B;) >1- 5 = P(B;) < 5
= P(UZBY) < e

= P(NZB;) >1-e.

2.11 Tightness and compactness in weak convergence

Theorem 2.12: If IT is tight, then for {P, } c TI, there exists a subsequence {Pn,-} c{P,}
and probability measure P such that

P, = P.

n;
Proof: Choose compact K; ¢ K, c ..., such that for all n

1
Pn(Ku)>1_H

from tightness condition. Look at | J,, K,,. We know that there exists a countable family
of open sets, A, such that if x € U, K, and G is open, then

xeAcAcG
for some A € A. Let
H = {0} U {finite union of sets of the form AN K, u =1, A € A}.

Then, H is a countable family. Using the Cantor diagonalization method, there exists
{n;} such that forall H € H,

«(H) = lim P, (H).
i—o00 !
Our aim is to construct a probability measure P such that for all open set G,

P(G) = sup «(H). 2.7
HcG
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Suppose we showed (2.7) above. Consider an open set G. Then, for € > 0, there exists
H, c G such that

P(G) = sup a(H)
HcG
<a(H,)+e€
=limP, (H) +€
1
= liminf P, (H,) + €
1

< lim‘ian,,i(G) +€
1

and hence, for all open set G,
P(G) < liminf P, (G),
i 1

which is equivalent to P, = P.
Observe H is closed under finite union and

1. «(H,) <a(H,)ifH, c H,

a(H UH,) = a(H;,) +a(H,)if H,NH, =0

a(H, U H,) < a(H,) + a(H,).
Define for open set G

B(G) = sup a(H). (2.8)
HcG

Then, «(@) = f(#) = 0 and S is monotone.

Define for M ¢ X

y(M) = inf B(G).

Then,

(M)

5O

= Azféé(?;;g““’))

Y(G) = Glgg B(G)
= B(G)

M is y-measurable if forall L ¢ X

y@) = yM L)+ p(M 0 L).
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We shall prove that y is outer measure, and hence open and closed sets are
B-measurable.
y-measurable sets M form a o-field, M, and

Yinm

is a measure.
Claim: Each closed set is in M and

p= Y|B(X)
open set G

P(G) = y(G) = B(G).

Note that P is a probability measure. K, has finite covering of sets in A when K, € H.

1> P(X)
= B(X)
= sup «(K,)
1
“swp(1-)
=1.

Step 1: If F c G (F is closed and G is open), and if F ¢ H for some H € H, then there
exists some H, € H such that

HcH,cG.

Proof: Consider x € Fand A, € A such that
xeA, cA, cG.

Since F is closed subset of compact, F is compact. Since A, covers F, there exists finite
subcovers Axl, Ax2 ) ey Axk. Take

k
Hy = U (Ax,- n Ku)'
i=1
Step 2: 3 is finitely sub-additive on open set. Suppose H ¢ G, U G, and H € H. Let

F,={xeH:px, G)) = p(x, G5)}

F, = {x € H: p(x, G5) > p(x, G)}.
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If x € F, but not in G,, then x € G,, and hence x € H. Suppose x is not in G,. Then
x € G5, and hence, p(x, G5) > 0. Therefore,
0 = p(x, Gy) (since x € Gy)

< p(x, Gy),
>0

which contradicts x € F;, and hence contradicts p(x, G7) > p(x, G5). Similarly, if x €
F, but not in G,, then x € G,. Therefore, F, c G, and F, c G,. Since F;’s are closed, by
step 1, there exist H, and H, such that

F,cH cG
and

F, cH, c G,.

Therefore,

a(H) < o(H,) + a(H,)
B(G) < B(Gy) + B(G).
Step 3: 8 is countably sub-additive on open-set H c | J, G,,, where G, is an open set.

Since H is compact (union of compacts), there exist a finite subcovers, i.e., there exists
n, such that

HCUG,,

n<ng
and

a(H) < B(H)

<f( U 64)

n<ng

= > B(Gy)

n<ng

=) B(Gy)-

Therefore,

B(LUGn) = sup a(H)

n HCU" Gn

sup ) B(Gy)

Hcu,G, n

Y B(G,).

IA
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Step 4: y is an outer measure. We know y is monotonic by definition and is countably
sub-additive. Given € > 0 and subsets {M,} c X, choose open sets G,, M, c G, such
that

B(Gy) < y(M,) + 5
{(Um) < 8(Us,)
= ) B(Gy)
= Y y(M,) +e.
n
Step 5: F is closed G is open.
B(G) = y(F n G) + y(F° n G).
Choose € > 0 and H; € H, H; c F® n G such that
a(H)) > B(GNF) —e.
Chose H,, such that
a(Hy) > B(H; N G) —e.
Then, Hy, H; ¢ G,and Hy n H, = 0,

B(G) = a(Hy U Hy)
= a(H,) + a(H;)
> BH;NG)+BF NG) -2
> p(FNG) +y(F° N G) - 2e.
Step 6: If F € M, then F are all closed. If G is open and L ¢ G, then
B(G) = y(FNL)+y(F°nL).
Then,

inf B(G) > inf (p(F N L) + p(F° N L))
= p(L) = p(FNL) + p(F N L).
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3 Weak convergence on C[0, 1] and D[0, 00)

We now use the techniques developed in sections 2.10 and 2.11 to the case of space
C[0, 1], which is a complete separable metric space with sup norm. In later sections,
we consider the space of functions with discontinuities of the first kind. Clearly,
one has to define distance on this space denoted by D[0, 1], such that the space is
complete separable metric space. This was done by Skorokhod with the introduction
of the topology called Skorokhod topology. In view of the fact that convergence of
finite dimensional distributions determines the limiting measure and the Prokhorov
theorem from chapter 2, we need to characterize compact sets in C[0, 1] with sup norm
and DJ0, 1] with Skorokhod topology, which is described in section 3.4. The tightness
in this case is described in section 3.7.

3.1 Structure of compact sets in C[0, 1]

Let X be a complete separable metric space. We showed that IT is tight if and only if II
is relatively compact. Consider P, is measure on C[0, 1] and let

Ty (0 = (X(ty), ..., x(6)

and suppose that

-1 -1
Pyo Tty = Po Tty

does not imply

P, — P

n

on C[0, 1]. However, P, o 7r,. , = Pom, . and {P,} is tight. Then, P, = P.

5

Proof: Since tightness is implied (as we proved), there exists a subsequence {Pni} of
{P,} such that the sequence converges weakly to a probability measure Q,i.e P, = Q.
Hence, by Theorem 2.9, P,,; o ﬂt_:--tk — Qo n;ﬁ_lk, Giving P = Q.
However, all subsequences have the same limit. Hence, P,(—)P.
What is a compact set in C[0, 1]?

3.1.1 Arzela-Ascoli theorem

Definition 3.1: The uniform norm (or sup norm) assigns to real- or complex-valued
bounded functions f defined on a set S the non-negative number

flloo = Iflleo,s = sup{lf(x)l : x € S}.
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42 — 3 Weak convergence on C[0, 1] and D[0, c0)

This norm is also called the supremum norm, the Chebyshev norm, or the infinity
norm. The name “uniform norm” derives from the fact that a sequence of functions
{f,} converges to f under the metric derived from the uniform norm if and only if f,
converges to f uniformly.

Theorem 3.1: The set A ¢ C[O0, 1] is relatively compact in sup topology if and only if

(i) sup|x(0)| < co.
xeA
(i) lim ( sup W,(8)) = 0.

Remark (modulus of continuity): Here

w,(8) = sup |x(t) — x(s)I.

|s—t|<é

Proof: Consider function

f:C[0,1] - R,
such that f(x) = x(0).
Claim: f is continuous.

Proof of claim: We want to show that for € > 0, there exists § such that

X = ylleo = tsglz]{IX(t) - y(Ol} < & implies |f(x) - f(¥)| = [x(0) - y(0)| < 8.

Given € > 0, let 6 = €. Then, we are done.
Since A is compact, continuous mapping x — x(0) is bounded. Therefore,

sup |x(0)| < oo.
xeA

wx(%) is continuous in x uniformly on A and hence
1
lim wx(—) =0.

n—oo n

Suppose (i) and (ii) hold. Choose k large enough so that

supw, () =sup ( sup Ix(s) - x(0))

XxeA k7 xea st
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is finite. Since

k . o
IX(O] < [x(0)] + ) ‘X(%) _ X((z kl)t)|,
i=1

we have

« = sup (sup Ix(t)I) < 00.

0<t<1 * x€A

Choose € > 0 and finite e-covering H of [-«, a]. Choose k large enough so that

(b <e.

Take B to be finite set of polygonal functions on C[0, 1] that are linear on [%, ] and
takes the values in H at end points.

Ifx e Aand 'x(%)' < a so that there exists a point y € B such that

() -)

i
k

then
<2 forte [%, %]

ly(i,;) -x(®

y(t) is convex combination of y(i,'(), y(’%), so it is within 2¢ of x(¢t), ||x - yl|., < 2¢, Bis
finite, B is 2e-covering of A. This implies A is compact.

Theorem 3.2: {P, } is tight on C[O0, 1] if and only if
1. Foreach # > 0, there exists a and n,, such that for n > n,

P,({x: 1x(0)| > a}) <y

2. Foreache,n > 0, there exists 0 < § < 1and ng such that for n > n,
P.({x:wy(d) =€}) <ny
Proof: Since {P,} is tight, given § > 0, choose K compact such that

Py(K)>1-1.
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Note that by the Arzela-Ascoli theorem, for large a
K c {x:|x(0)| < a}
and for small §
K c{x:wy5) <e}.

Now, C[0, 1] is a complete separable metric space. So for each n, P,, is tight, and hence,
we get the necessity condition. Given # > 0, there exists a such that

P({x : [x(0)] > a}) <
and e, 5 > O, there exists § > 0 such that
P,({x:w,(8) = €}) <.

This happens for P,, where n < n, with ny, is finite. Assume (i) and (ii) holds for all n.
Given #, choose a so that

B = {x:|x(0)| < a},
a satisfies for all n
P,(B)>1-7,

and choose §; such that

By = {x: w, (&) < %}

with

n

Pn(Bk) >1- 2—k.

Let K = A where

A=Bn([B)

k

K is compact by Arzela-Ascoli Theorem,

P(K)>1-29.
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3.2 Invariance principle of sums of i.i.d. random variables

3.2 Invariance principle of sums of i.i.d. random variables

Let X;’s be i.i.d. with EX; = 0 and EX? = ¢”. Define

1 1
th(w) = ﬁs[m](w) + (nt - [nt])mx[nt]ﬂ'

Consider linear interpolation

Sk n

Wy = — where W" € C[0, 1] a.e. P,,.
n n
Let
X
[nt+1]
= (nt - [nt]) - .
Ve = (nt = [nt]) oy

Claim: For fixed t, by Chevyshev’s inequality, as n — oo

lVnt_)o

Proof of Claim:

o+/ne )

P(lyyele) = P<|X[nt+u' ” (nt - [nt])

ElX sl
< I [nt+1]|

o’ne?
(nt-[nt])?

_ (nt - [nt])?

By CLT,

Since % — t, by CLT,

Sine _ Sing X\/[Ylf]
ovn o+[nt] Vn

by Slutsky’s equation. Therefore,

=p VtZ

W} =p ViZ.
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Then,

1
(Wsn’ th - W:) = m(s[ns]’ S[nt] - S[ns]) + (V/ns’ Ve — lVns)

=p (N}, N,).

Since Sj,5; and S,y — Sps) are independent, N; and N, are independent normal with
variance s and t — s. Thus,

(Wg, Wp) = (W, (W} = W) + W)
=p (N}, N; + N,).

The two-dimensional distributions of (W'),o.1; converges to two dimensional dis-
tributions of Brownian Motion. We consider similarly k-dimensional distributions of
(W{)¢e0.1) converge to those of Brownian Motion.

We considered two-dimensional. We can take k—dimensional. Similar argument
shows that

(W}, ..., W) =p finite dimensional distribution of Brownian motion.

Now, we have to show that P, is tight. Recall the Arzela-Ascoli theorem.

Theorem 3.3: {P, } is tight on C[O0, 1] if and only if
1. Foreach# > 0, there exists a and n, such that for n > n,

P,({x : 1x(0)| > a}) > 7.
2. Foreache,n > 0, there exists O < § < 1and n, such that for n > n,
P,({x:w,(8) = €}) <n.

Theorem 3.4: Suppose0 = t, < t; <--- < t,=1and

min(¢; — t;_4) = 0. (3.2)
I<i<v
Then for arbitrary x,
w, () < Bmax( sup |x(s) - x(ti_l)l) (3.3)
Isisv Mg <s<t;
and for any P on C[0, 1]
P(x:w,(8) 23¢) < Y P(x: sup |x(s)—x(t; )| 2 e). (34)
i=1 ti_1<S<t;
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Proof: Let m denote the maximum in (3.3), i.e.

m= max( sup |x(s)—x(ti_1)|).

Isisv M ¢ <s<t;
Ifs, tliein I; = [t;_, t;]. Then

[x(s) = x(O)] < |x(s) = x(t;_)| + [x(£) = x(£;_1)]

< 2m.
Suppose s, t lie in adjoining intervals I;_; and I;. Then,

[x(s) = x(O)] < 1x(s) = x(t;_)| + 1x(t;) — x(E;_)I + [x(£) — x(&)]
< 3m.

Since

min(¢; - t;_y) = 6.
1<i<v

forsand ttobesuchthat|s — t| < 8, s and t should lie in the same interval or adjoining
intervals. Therefore,

w,(8) = sup |x(t) — x(s)I|

|s—t|<é
< max { sup [x(t) — x(s)|, sup [x(t) - x(s)|}
s,tesame interval s,teadjoining interval
< 3m.

This proves (3.3). Note that if X > Y, then
P(X > a) > P(Y > a).
Therefore,

P(x : w,(8) > 3¢) < P(B Ir<1ax( sup |x(s) - x(ti_l)l) > 36)

<
ISV Mt <s<t;

=P

/N

X: max(tsup Ix(s)—x(t,-_l)l) >e>

1<i<v i_1SS<t;

P(x : sup |x(s) — x(t;_))| > e).

ti1<s<t;

Il
.M<

|
—_

This proves the theorem.
Condition (ii) of the Arzela-Ascoli theorem holds if for each e, 5, there exists
8 € (0,1) and n, such that forall n > n,

%P,I(x: sup |x(s) - x(t)| > e) > 1.

t<s<t+é
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48 —— 3 Weak convergence on C[0, 1] and D[0, co)

Now apply Theorem 3.4 with ¢t; = ié for i < v = [1/8]. Then by (3.4), condition (ii) of
Theorem 3.3 holds.

3.3 Invariance principle for sums of stationary sequences

Definition 3.2: {X,,} is stationary if for any m,

(Xii’ ey Xik) :D (Xii+m9 (RS Xik+m)'

Lemma 3.1: Suppose {X,,} is stationary and W" is defined as above. If

lim limsup/\zP( I{laXISkl > Aax/ﬁ) =0
<n

A—00 n—oo

then, W™ is tight.

Proof: Since Wj = 0, the condition (i) of Theorem 3.3 is satisfied. Let P, is induced
measure of W", i.e. consider now P, (w(d) > €), we shall show that for alle > 0

s 13 (8) —
(ls% lim sup Pn(w > e) =0.

n—.oo
If
min(t; - t;_;) = 6,
then by Theorem 3.4,
P(w(W",8)>3e)< Y P sup |W!-W}| =€)
(e, 236) < 3 p( sup, W - Wi =)

Take t; = %, 0=my <m; <---<m, =n. W} is polygonal and hence,

IS, =S, |
sup |[W'-W'= max — Mo
ti1<S<t; mi_y<ksm; avn

Therefore,
v ISk = S|
P(wW",8)>3¢)< ¥ P[ max ———— >
(ww", 82 3¢) < (| max = = )

IA
.Mf

Il
[uN

P( max S-S, |2 ox/ﬁe)

m;_y<k<m;

Il
.M<

I
—

P( max |S;| > a\/ﬁe) (by stationarity).

ksm;—m;_4
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3.3 Invariance principle for sums of stationary sequences = 49

This inequality holds if

- ——>0forl<i<w.
n

m; My
n
Take m; = imfor 0 <i < vand m, = n. For i < v choose § such that
m; —m;_, =m2né.
Letm = [nd], v = [2]. Then,

and

Therefore, for large n

P(W(W",8) > 36) < ZP(k max |S;| > a\/ﬁe)

v
i1 SMi—mj

< vP( Ilr(lgnxlskl > 0\/56)
< gP( ma}nxlskl > o\/ﬁe).

k<

Take A = T Then,
n 4)?
P(w(W",8) 2 3¢) < 5P max|s,| = Ao V).
By the condition of the Lemma, given ¢, > 0, there exists A > 0 such that
4)?
—- limsup P( max|S,| > Aa\/ﬁ) <.
€ n—oo k<n

Now, for fixed A, 8, let m — oo with n — oco.
Look at X, i.i.d. Then,

lim limsupP( max|S,| > Ao\/ﬁ) =0.
A—-00  n—oo k<n

We know that

p( max|S,| > «) < 3135%P(|su| > %)
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50 —— 3 Weak convergence on C[0, 1] and D[0, co)

To show

lim lim sup )LzP( max|Sy| > Aa\/ﬁ) -0, (4),
<n

A—00 n—oco

we assume that X; i.i.d. normal, and hence, S, /Vk is asymptotically normal, N. Since
we know

EN* 30
P(IN| > 1) < S Ta T

we have for k < n, (% > 1)
P(ISi| > Aavn) = P(VKIN| > Ao v/n)

3
AT

<

k) islarge and k, < k < n. Then,

P(IS;| > Aavn) < P(IS;| > Ao Vk)
3

S_

A4°
Also,

E|S,[/d?
An
k,
<

P(IS,| > Aovn) <

and hence, we get the above convergence (A) is true.

3.4 Weak convergence on the Skorokhod space
3.4.1 The space D[O0, 1]

Let
x:[0,1] - R

be right-continuous with left limit such that
1. forO<t<1

lim x(s) = x(t+) = x(¢t)
s\t
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3.4 Weak convergence on the Skorokhod space = 51

2. forO<t<1

lim x(s) = x(t-).
s/t

We say that x(t) has discontinuity of the first kind at t if left and right limit exist.
Forxe Dand T c [0,1],

w,(T) = w(x, T) = sup |x(s) — x(t)I.

s,teT

We define the modulus of continuity

w,(8) = sup w,([¢, t+9))

0<t<1-6

Lemma 3.2 (D1): For each x € D and ¢ > 0O, there exist points 0 =t, < t; <---
<t,=1land w,([t;_, t;) <.

Proof: Call ¢;’s above §-sparse. If min;{(t; - t;_;)} >, definefor 0 < § < 1

wi(8) = w'(x, 8) = infmax w,([t;_y, t;))-
{t;} 1<i<v

(If we prove the above lemma, we get x € D, (lsirré W;(é) =0.)

Ifs < %, we can split [0, 1) into subintervals [t;_;, t;) such that
O<(ti—t_) <28

and hence,
wo(8) < w,(20).
Let us define jump function
j(x) = sup |x(t) — x(t-)I.
o<t<1

We shall prove that

w,(8) < 2wi(8) +j(x).
Choose §-sparse sequence {t;} such that

W ([t ) < Wi(8) +e.
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52 —— 3 Weak convergence on C[0, 1] and D[0, co)

We can do this from the definition

we(8) = w'(x, 8) = infmax w,([t;_y, t;,))-
{t;} 1<i<v

If |s—t| < §, thens, t € [t;_;, t;) or belongs to adjoining intervals. Then,

wi(8) +e, if s, t belong to the same interval;

|x(s) — x(8)] {

2w, (8) + € +j(x), if s, t belong to adjoining intervals.
If x is continuous, j(x) = 0 and hence,

W, (8) < 2w, (8).

3.4.2 Skorokhod topology
Let A be the class of strictly increasing functions on [0, 1] and A(0) = 0, A(1) = 1. Define

d(x, y) = inf{e : 31 € A such that sup |A(t) — t| < e and sup |x(A(t)) — y(t)| < €}.
t t

d(x, y) = 0 implies there exists A, € A such that 1, (t) — ¢ uniformly and x(1,(t)) —
y(t) uniformly. Therefore, with

A= 11l = sup IA(®) -
te[0,1]
lx =y oAl = sup [x(t) = yAWD)
te[0,1]
d(x,y) = inf (110 =1l VIlx - y « M)

If A(t) = ¢, then

1. d(x,y) =sup |x(t) — y(t)] < oo since we showed |x(s) — x(t)| < w;(8) < 00.
2. d(x,y) =dy, x).

3. d(x,y) = 0onlyif x(t) = y(t) or x(¢t) = y(t-).

IfA,A, e Aand A, 04, € A
Ay oAy = III < [|Ay = 111 + 114, = 11l
If 14, A, € A, then the following holds:

1. Ao, €A
2. Ay Ay =Tl < (A =TI + 1A, = 111
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3.5 Metric of D[O, 1] to make it complete = 53

3. Ix=zoAo AN < lx =y oAyl +1ly — z 0 Ayl
4, d(x,z)<d(x,y)+dy,z).

Therefore, Skorokhod topology is given by d.

(D[0,1],d) is not complete. To see this, choose x,, = 1[0,2%](0 and A, be such that
A,(1/2") = 1/2"*! and linear in [0, 1/2"] and [1/2"*", 1] then || x,,,;0\,, — X,, || = O and ||
A, = Il = 5. Meanwhile, A,,(1/2") # 1/2", then || X, = X, || = 1and d(x,, X,,;) =
1/2", i.e. x,, is d-Cauchy and d(x,, 0) = 1.

Choose A € A near identity. Then for ¢, s close, Mt) "(5)

is close to 1. Therefore,

/\(t) A(S)
-5

II)LII =sup |log € (0, ).

s<t

3.5 Metric of D[0, 1] to make it complete

Let A € A (A is non-decreasing, A(0) = 0, and A(1) = 1). Recall

II° = sup | 1og X021 ¢ (0, co).

s<t

Consider d°
d°(x,y) = inf{e > 0: 31 € A with ||A||° < e and sup |x(t) - y(A(D))] < €}
t
-1 0 —_ o
= g{{llhll Vlx -y e All}
since, foru > 0,

lu-1] < els¥ _1,

we have
sup |A(t) —t| = sup t MO - MO) -1
o<t<1 o<t<1 t-0
M 1.

For any v, v < e¥ — 1, and hence
d(x,y) < e _q,
Thus, d°(x,,, y) — 0 implies d(x,, y) — O.

Lemma 3.3 (D2): If x, y € D[0, 1] and d(x, y) < 8%, then d°(x, y) < 48 + w'.().
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54 — 3 Weak convergence on C[0, 1] and D[0, co)

Proof: Take € < § and {¢;} —sparse with
w,([tiq, £) < WL(8) +€ Vi.
We can do this from definition of w)’((é). Choose u € A such that

sup Ix(t) - y(u()] = sup Ix(u™' () - y(t)] < & (3.5)

and

sup |u(t) — t| < 8% (3.6)
t

This follows from d(x, y) < &°. Take A to agree with y at points t; and linear between.
u ' o A fixes t; and is increasing in t. Also, (4" o 1)(¢) lies in the same interval [t; j, t;).
Thus, from (3.5) and (3.6),

X(6) = YD < x(€) = x((u™ o D)(ED] + Ix(( ™" o D)(B) = y(AD)]

= w.(0) +e+ 5.

< % < 48 + wi(8). A agrees with y at t;’s. Then by (3.5), (3.6), and (¢; — t;_;) > &
(6—sparse),

[A(t) = Atiy) = (& — tiy)| < 2687
<28(t; - t;y)
and

[(A(8) = A(s)) = (t - 5)| < 20t - s]

for t, s € [t;_;, t;) by polygonal property. Now, we take care of adjoining interval. For
Uy, Uy, Us

[(A(u3) = Auy)) = (U3 — upl < [(Mus) = Muy)) — (us — ux)l + 1(Auy) - Awy)) — (U, — uy)l-
If t and s are in adjoining intervals, we get the same bound. Since for u < %

[log(1 + u)| < 2u,

we have

log(1 - 26) < log w < log(1 + 26).
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3.5 Metric of D[O, 1] to make it complete = 55

Therefore,

AMt) — A(s)
t-s

AI° = su? log <48
S<

and hence, d° and d are equivalent. Now, we shall show that DO is separable and is
complete.
Consider o = {s,} with0 =s, <--- < s; =land define A, : D — D by

(Agx)(t) = x(Sy1)
for t € [s,_4,s,) with1 < u < kwith (A,x)(s;) = x(1).
Lemma 3.4 (D3): If max(s, — s,_;) < &, then
d(A,x, x) <8V WL ().

Proof: Let A x = x. Let {(t) =s,_; if t € [s,_;,s,) with {(1) = s, =1. Then, x(t) =
x(¢(t)). Given € > 0, find d—sparse set {t;} such that

W, ([tig, ) < Wi (8) +e
for all i. Let A(t;) be defined by
1. Aty) = S;-
2. Mty =s,ift; € [s,_4,S,), where
ti-t.1,>62s,-5,4.
Then, A(t;) is increasing. Now, extend it to A € A by linear interpolation.

Claim:

1%(t) - x(A7(8)) = [X((0) = xA ")

< Wi (8) +e.

Clearly, if t =0, or t =1, it is true. Let us look at O < t < 1. First we observe that
{(t), A"}(t) lie in the same interval [¢; ;, t;).(We will prove it.) This follows if we shows

t<{(Oifft; <A7(0)
or equivalently,

t > L) ifft; > A7(0).

This is true for ¢; = 0. Suppose t; € (s,_y, S,] and {(¢) = s; for some i. By definition, {(t)
t < {(t)isequivalenttos, < t.Since tj € (sy_1, Sy1, A(Ey) = s,. This completes the proof.
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3.6 Separability of the Skorokhod space

d°-convergence is stronger than d-convergence.

Theorem 3.5 (D1): The space (D, d) is separable, and hence, so is (D, d°).

Proof: Let B, be the set of functions taking constant rational value on [qu1’ %] and
taking rational value at 1. Then, B = U; B, is countable. Given x € D, € > 0, choose k

such that ; < e and Wx(]l()' Apply Lemma D3 with ¢ = {%} Note that A,x has finite
many values and

d(x, A x) < e.

Since A, x has finitely many real values, we can find y € B such that given d(x, y) < ¢,
d(A,x,y) <e.

Now, we shall prove the completeness.

Proof: We take d°-Cauchy sequence. Then it contains a d°-convergent subsequence.
If {x,} is Cauchy, then there exists {y,} = X} such that

1
do(yn’ yn+1) < 2_"

There exists y, € A such that

0 1
Lo llull® < 2.

2.

SUP Y (6) = Yni(n ()] = sup 1V (4 () = Vysa ()]

1
< —.

2"

We have to find y € D and A,, € A such that
Il — 0
and
YA, () = y(2)

uniformly.
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3.6 Separability of the Skorokhod space =—— 57

Heuristic (not a proof): Suppose y,(1;'(t)) — y(t). Then, by (2), y,(u, (A;1,(0)) is
within % of y,,,; (A}, (1)). Thus, y,(A;(£)) — y(t) uniformly.
Find A, such that

Vale L) = v A1),

i.e.
b Ay = Ay -
Thus,
An = /\n+l.un

= /\n+2[’ln+1."ln

= Unsalniabn.
Proof: Since

e' -1<2u,

forO<u< %,wehave

sup M) — ¢ < e’ —1.
t

Therefore,

Sl‘tlp |(‘un+m+1[’ln+m e ”n)(t) - (Hner.uer—l I [’ln)(t)l < Sl;lp |.un+m+l (s) = sl

S 2||/"n+m+1||0
1

T onim”

For fixed n,

(/"n+m."‘n+m—1 e P‘n)(t)

converges uniformly in t as n goes to co. Let

/\n(t) = nllijlgo([’lwrml‘wrm—l Tt [’ln)(t)‘
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Then, A, is continuous and non-decreasing with 1,(0) = 0 and 1,(1) = 1. We have to
prove ||)\n||0 is finite. Then, A, is strictly increasing.

(.un+ml"n+m—1 e .“n)(t) - (.un+m[4n+m—1 e .un)(s)
t-s

log

0
< ”Mmm["m—m—l e [’tn”

(since A,, € A, [[A,]|° < c0)

< lttomll® + 1ty

(since [[A,A,]1° < 11A4]1° + 112,11°)
< F.

Let m — oo. Then, ||)t,,||0 < % is finite, and hence, A, is strictly increasing. Now,
by (2),
sup Y () = Yu Qg (O)] < SUD Yn(S) = Yivsa (tn(9))]
1

< —.
on

Therefore, {yn(/\;l(t))} is Cauchy under supnorm and
Ya () > y() € D

and hence converges in d°.

3.7 Tightness in the Skorokhod space

We turn now to the problem of characterizing compact sets in D. We will prove an
analogue of the Arzela-Ascoli theorem.

Theorem 3.6: A necessary and sufficient condition for a set A to be relatively compact
in the Skorohod topology is that

sup ||x]| < co (3.7)
X€A
and
lim SUP, Wy (8) = 0. (.8)
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3.7 Tightness in the Skorokhod space =—— 59

Proof of sufficiency: Let

o = sup||x]|.
xeA
Given e > 0, choose a finite e-net H in [-«, «] and choose & so that § < e and w),(8) < €
for all x in A. Apply Lemma 3.4 for any ¢ = {s,} satisfying max(s, - s,_;) <d: x € A
implies d(x, A,x) < 2e. Take B to be the finite set of y that assume on each [s,_;, s,) @
constant value from H and satisfy y(1) € H. Since B contains a y for which d(x, 4,x),
it is a finite 2e-net for A in the sense of d. Thus, A is totally bounded in the sense of d.
However, we must show that A is totally bounded in the sense of d°, since this is the
metric under which D is complete. Given (a new) €, choose anew § sothat 0 < 8§ < 1/2
and so that 48 + w},(8) < € holds for all x in A. We have already seen that A is d-totally
bounded, and thus, there exists a finite set B’ that is a §>-net for A in the sense of d.
However, by Lemma 2, B’ is an e-net for A in the sense of d°.
The proof of necessity requires a Lemma 3.3 and a definition.

Definition 3.3: In any metric space, f is upper semi-continuous at x, if for all € > 0,
there exists § > 0 such that

px,y) <8 = f(y) <f(x) +e.
Lemma 3.5: For fixed 8, w'(x, §) is upper-semicontinuous in x.
Proof: Let x, 8, and € be given. Let {t;} be a §-spars set such that w, [t;_;, t;) < w)’((6) +€

for each i. Now choose # small enough that § + 2 < min(¢t; - ¢;_;) and # < €. Suppose
that d(x, y) < 5. Then, for some A in A, we have

sgp ly(t) = x(AD)] < n,

sup I/\_lt -tl<y
t

Lets; = A7't;. Thens;—s; ; > t;— t;_;— 2y > 8. Moreover, if s and t both lies in [s;_j, 5;),
then As and At both lie in [¢;_4, t;), and hence |y(s) — y(£)| < [x(As) — x(At)| + 2 <
w,(8) + € + 241. Thus, d(x, y) < nimplies W;,(é) < Wi (8) + 3e.

Definition 3.4 (d-bounded): A is d-bounded if diameter is bounded, i.e.

diameter(A) = sup d(x, y) < co.
Xx,yeA
Proof of necessity in Theorem 3.6: If A~ is compact, then it is d-bounded, and since
sup; [x(t)| is the d-distance from x to the O-function, (3.7) follows. By Lemma 3.1,
w'(x, 8) goes to 0 with & for each x. However, since w'(:, §) is upper-semicontinuous
the convergence is uniform on compact sets.
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Theorem 3.6, which characterizes compactness in D, gives the following result. Let
{P,} be a sequence of probability measure on (D, D).

Theorem 3.7: The sequence {P,} is tight if and only if these two conditions hold:
We have

lim lim sup P, ({x : [l > a}) = 0 (3.9)
a—oo n
(ii) for each ¢,
(slim lim sup Pn({x twL(8) = e}) =0. (3.10)
—00 n

Proof: Conditions (i) and (ii) here are exactly conditions (i) and (ii) of Azela-Ascoli
theorem with ||x|| in place of |x(0)| and w' in place of w. Since D is separable and
complete, a single probability measure on D is tight, and so the previous proof goes
through.

3.8 The space D[0, co)

Here we extend the Skorohod theory to the space D, = D[0, co) of cadlag functions
on [0, 00), a space more natural than D = D[0, 1] for certain problems.

In addition to D, consider for each ¢ > O the space D, = D[O0, t] of cadlag functi-
ons on [0, t]. All the definitions for D, have obvious analogues for D, : sup,, |x(s)I,
Ay M, d2, d,. All the theorems carry over from D, to D, in an obvious way. If
x is an element of D, or if x is an element of D, and t < u, then x can also be
regarded as an element of D, by restricting its domain of definition. This new cadlag
function will be denoted by the same symbol; it will always be clear what domain is
intended.

One might try to define the Skorohod convergence x,, — x in D, by requiring that
d%(x,, x) — 0 for each finite, positive t. However, in a natural theory, x,, = T 1-1/m)
will converge to x = Iy ;) in D, while d%(x,, x) = 1. The problem here is that x is
discontinuous at 1, and the definition must accommodate discontinuities.

Lemma 3.6: Let x,, and x be elements of D,. If d°(x,, x) — 0 and m < u, and if x is
continuous at m, then d2,(x,,, x) — O.

Proof: We can work with the metrics d, and d,,. By hypothesis, there are elements 1,
of A, such that

||/\n _I”u - 0
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and

[Ix, — xA4ll, — O.

Given €, choose § so that |t — m| < 26 implies |x(t) - x(m)| < €/2. Now choose n, so
that, if n > ny and ¢t < u, then |1t - t| < § and |x,(t) — x(A,¢)| < €/2. Then, if n > n,
and [t - m| < §, we have |A,t — m| < |A,t - t| + |t — m| < 26 and hence |x,(t) — x(m)| <
1x,(t) = x(A, )] + |x(A,,t) — x(m)| < €. Thus

sup |x(t) - x(m)| <€, sup |x,(t)-x(m)| <e, fornz=n,. (B.11)
|t-m|<8 [t-m|<6

If

(i) A,m<m,letp,=m-1;

(i) A,m>m,letp, = A’l(m - %),

(iii) A,m = m, let p, = m.

Then,

(1) |pn - ml = %;

e -1 -1 -1 1
(ii) Ip,-ml=<|A,(m-n")~-(m-n")++;
(i) |p, — m| = m.

Therefore, p,, — m. Since

[Appn —m| < |Aypy = Dyl + Dy — M,

we also have A,p,, — m. Define y, € A, so that y,t = A,t on [0, p,] and y,m = m,
and interpolate linearly on [p,, m]. Since y,m = m and y, is linear over [p,, m],
we have |p,t — t| < |A,p, — Pl there, and therefore, u,t — t uniformly on [0, m].
Increase the n, of (3.11) so that p, >m — d and A, p, >m - § for n > n,. If t < p,,,
then [|x,,(t) — x(u,t)| = |x,(t) = x(A,,0)] < ||Ix,, — xA,|l,- Meanwhile, if p, <t <m and
nx=nyg, thenm=>t>p,>m-08and m > y,t > y,p, = A,p, > m - 8, and therefore,
by (3.11), |x,, () = x(u, )| < 1%, (t) —x(mM)|+]x(m)—x(u,t)| < 2e. Thus, |x,(t) - x(u,t)| — O
uniformly on [0, m].

The metric on D, will be defined in terms of the metrics d?n(x, y)for integral m,
but before restricting x and y to [0, m], we transform them in such a way that they are
continuous at m. Define

1, ift<m-1;
g.y=1m-t,ifm-1<t<m; (3.12)
o, t>m.

For x € D, let x™ be the element of D, defined by

X"(t) = g, (Ox(t), t=0 (3.13)
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Now take
d2 (x,y) = Z 27"MAAdL (XM, Y™). (3.14)
m=1

If d° (x, y) = 0, then d3(x, y) = 0 and x™ = y™ for all m, and this implies x = y. The
other properties being easy to establish, dgo is a metricon D ; it defines the Skorohod
topology there. If we replace d by d,, in (3.14), we have a metric d,, equivalent
to d..

Let A , be the set of continuous, increasing maps of [0, co) onto itself.

Theorem 3.8: There is convergence d°,(x,, x) — O in D, if and only if there exist
elements A, of A , such that

sup|A,t—t| -0 (3.15)
t<oo
and for each m,
sup |x,(A,t) — x(¢t)| — 0. (3.16)
t<m

Proof: Suppose that dgo(x,,, x) and d, (x,, x), go to 0. Then there exist elements A} of
A, such that

€r = 1T =A% VIIXg A = x™||,, > O

for each m. Choose I, so that n > I, implies €)' < 1/m. Arrange that l,, < l,,,,, and
forl,, <n<l,,,, let m, = m. Since l,, <n < l,,,;, we have m,, - nand e, < 1/m,,.
Define

y t_{/\'r:’"t, ift <my;
" t+ATn(my,) - m,, ift > m,,.

Then, |A,t - t| < 1/m, for t > m, as well as for t < m,,, and therefore,

1
sup|A,t—-t| < — — 0.
tpln Im—>

n

Hence, (24). Fix c. If n is large enough, then ¢ < m,, — 1, and so

1
mn“c < — _)O’

n

X, An = Xlle = |IXgm Ay = X

which is equivalent to (3.16).
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Now suppose that (3.15) and (3.16) hold. Fix m. First,
Xy Ant) = 8 )Xy (Ayt) = g (OX(8) = X™(8) (3.17)

holds uniformly on [0, m]. Define p, and y, as in the proof of Lemma 1. As before,
ppt — t uniformly on [0, m]. For t < p,,, IX™(t) — x; (0] = [xX™(t) — x7(A,t)], and
this goes to 0 uniformly by (3.17). For the case p, < t < m, first note that [x™(u)| <
gn(w)llx|l,, for all u > 0 and hence,

X" () = X ()] < Em(OlIX[ 1y + i (et IXie - (3.18)

By (3.15), for large n, we have A,(2m)>m and hence ||x,l|,, < ||X,A,lloms and
1%, A0l = 11X]lom bY (3.16). This means that ||x,||,, is bounded(m is fixed). Given
€, choose ng so that n > n;, implies that p, and u,p,, both lies in (m — e, m], an interval
on which g, is bounded by €. If n > n, and p, <t < m, then t and y,t both lie in
(m - €, m], and it follows by (3.18) that |x™(t) — x; (u, )| < €(lIxIl,, + lIX,ll,). Since
[1x,l,, is bounded, this implies that |x™(t) — X} (¢,t)| — 0 holds uniformly on [p,,, m]
as well as on [0, p,,]. Therefore, d?n(xn'", x™) — 0 for each m and hence dgo(xn, x) and
d,(x,, x) go to 0. This completes the proof.

Theorem 3.9: There is convergence d° (x,, x) — 0 in D, if and only if d_ (x,,, x) — 0O
for each continuity point ¢ of x.

Proof: If d° (x,,, x) — 0, then d°_(x", x™) — 0 for each m. Given a continuity point
of x, fix an integer m for which t < m - 1. By Lemma 1 (with t and m in the roles of m
and u) and the fact that y and y™ agree on [0, t], d?(xn, X) = d?(xnm, x™) — 0.

To prove the reverse implication, choose continuity points ¢, of x in such a way
that t,, T co. The argument now follows the first part of the proof of (3.8). Choose
elements A7/ of A, in such a way that

€ = I} =1, v [Ix Ay -xllg, =0

for each m. As before, define integers m,, in such a way that m,, — coand ey < 1/m,,
and this time define A,, € A by

AMnt, ift <t
Agt=1"n" M
t, ift>ty,.

The |A,t — t| <1/m, for all ¢, and if c < tm,» then [Ix,A, — xll. = lIx,Apm = x|, <

1/m, — 0. This implies that (3.15) and (3.16) hold, which in turn implies that
dgo(xn, x) — 0. This completes the proof.
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3.8.1 Separability and completeness

For x € D, define y,,x as x™ restricted to [0, m]. Then, since d° (Y, X, YmX) =
d% (x, x™), v, is a continuous map of D, into D,,. In the product space IT = D; x
D, x ---, the metric

pla, B) = z 2im(1 A d?n(“m’ ﬁm))
m=1

defines the product topology, that of coordinatewise convergence. Now define v :
D, — IIby yx = (y1X, yoX, ...):

Ym:Dy — Dy, w:Dy — I
Then d2 (x, y) = p(yx, yy) : v is an isometry of D, into II.
Lemma 3.7: The image yD, is closed in II.

Proof: Suppose that x,, € D, and a € I1 and p(yx,, ) — 0; then d>, (X, a,,) — O for
each m. We must find an x in D, such that « = yx-that is, «,, = y,,x for each m.
Let T be the dense set of ¢ such that for every m > ¢, «,, is continuous at t. Since
d% (x", &) — 0, t € TN[0, m] implies x7'(t) = g,(£)x,,(t) — e, (t). This means that for
every t in T, the limit x(t) = lim x,,(t) exists (consider an m > t + 1, so that g,,(t) = 1).
Now g,,()x(t) = «,,(t) on TN[O, m]. It follows that x(t) = «,,(t) on TN[0, m-1], sothat x
can be extended to a cadlag function on each [0, m — 1] and then to a cadlag function
on [0, co]. Now, by right continuity, g, ()x(t) = «,,(t) on [0, m], or y,,x = x™ = a,,.
This completes the proof.

Theorem 3.10: The space D, is separable and complete.

Proof: Since II is separable and complete, so are the closed subspace yD_, and its
isometric copy D, . This completes the proof.

3.8.2 Compactness

Theorem 3.11: Set A is relatively compact in D, if and only if, for each m, y,A is
relatively compact in D,,,.

Proof: If A is relatively compact, then A is compact and hence the continuous image

v,,A is also compact. But then, y,,A, as a subset of y,,4, is relatively compact.
Conversely, if each v,,4 is relatively compact, then each m is compact, and

therefore, B = y;A x y,A x --- and E = yD_, N B are both compact in II. But x € A
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implies yx € y,,A for each m, so that yx € B. Hence wA c E, which implies that yA is
totally bounded and so is its isometric image A. This completes the proof.

For an explicit analytical characterization of relative compactness, analogous
to the Arzela-Ascoli theorem, we need to adapt the w'(x, §) to D,. For an x € D,,,
define

w, (x,8) = infrlnax w(x, [t ), (3.19)
<i<v

where the infimum extends over all decompositions [t;_;, t;),1 < i < v, of [0, m) such
that ¢, — t;_; > 6 for 1 < i < v. Note that the definition does not require ¢, - t,_; > §;
Although 1 plays a special role in the theory of D,, the integers m should play no special
role in the theory of D .

The exact analogue of w'(x, &) is (3.19), but with the infimum extending only
over the decompositions satisfying ¢, — t;_; > § for i = v as well as for i < v. Call this
w,,(x, §). By an obvious extension, a set B in D,, is relatively compact if and only if
sup, lIxll,, < co and lims sup, w(x, §) = 0. Suppose that A c D, and transform the
two conditions by giving y,, A the role of B. By (Theorem 3.11), A is relatively compact
if and only if, for every m

sup ||x™|],, < 00 (3.20)
xeA
and
lim sup w,,,(x™, &) = 0. (3.21)
8—0 xeaA

The next step is to show that (3.20) and (3.21) are together equivalent to the condition
that, for every m,

sup ||x|],,, < 00 (3.22)
xeA
and
lim supw/,(x, 8) = 0. (3.23)
-0 xeA

The equivalence of (3.20) and (3.22) follows easily because |[x™||,, < |Ixll,, <
|[X™ ] s1- Suppose (3.22) and (3.23) both hold, and let K,, be the supremum in (3.22).
If x € Aand § < 1, then we have [x"(t)| < K,,,6 for m — § < t < m. Given ¢, choose § so
that K,,,0 < €/4 and the supremum in (3.23) is less than ¢/2. If x ¢ A and m - ¢ lies in
the interval [t;_,, t;) of the corresponding partition, replace the intervals [t;_,, t;) for
i > j by the single interval [¢;_;, m). This new partition shows that w,,(x, §). Hence,
(3.21).
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That (3.21) implies (3.23) is clear because w/, (x, 8) < W, (x, 8): An infimum incre-
ases if its range is reduced. This gives us the following criterion.
Theorem 3.12: A set A € D is relatively compact if and only if (3.22) and (3.23) hold
for all m.
3.8.3 Tightness

Theorem 3.13: The sequence {P, } is tight if and only if there two conditions hold:
(i) For each m

lim lim sup P, ({x : lIxll,, 2 a}) = 0. (3.24)
a—coo n
(ii) For each m and €,
lign lim sup Pn({x cwh(x,8) > e}) =0. (3.25)
n

There is the corresponding corollary. Let
Jm(X) = sup x(¢) - x(t-)I. (3.26)
<m

Corollary 3.1: Either of the following two conditions can be substituted for (i) in
Theorem 3.13:
(i) For each t in a set T that is dense in [0, c0),

lim lim sup Pn({x s |x(t)] = a}) =0. (3.27)
a—oo n

(ii”) The relation (3.27) holds for t = 0, and for each m,
lim lim sup Pn({x (X)) = a}) =0. (3.28)
a—oo n

Proof: The proof is almost the same as that for the corollary to Theorem 3.7.

Assume (ii) and (i’). Choose points t; such that 0 =t, <t; <---<t,=m, t; -
tiy>8for1<i<v-1,and wylt,, t;) <w,(x,8) +1for1<i<v.Choose from T
points s; such that0 = s, <5y <--- <5 =mands; - s;_; <dforl<j< k. Letm(x) =
maxo ;g |x(s;)l. If ¢, - ¢,_; > &, then |[|x]], < m(x) + w),(x,8) + 1, just as before. If
t, - t,; <8(andé < 1,sothatt, ; > m-1), then||x||,,_; < m(x)+w,,(x, 8)+1. The old
argument now gives (3.24), but with ||x||,, replaced by ||x||,,_;, which is just as good.

In the proof that (ii) and (i’) imply (i), we have (v - 1) < m instead of v§ <!.
However, v < md~! + 1, and the old argument goes through. This completes the proof.
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3.8.4 Aldous’s tightness criterion
Consider two conditions, assuming (3.24).

Condition 1°. For each e, n, m, there exist a §, and an n, such that, if § < §, and
n > ny, and if 7 is a discrete X" —stopping time satisfying = < m, then

P(|X:

T+6

- Xl z€) <. (3.29)

Condition 2°. For each ¢, n, m, there exist a § and an n,, such that, if n > n,, and if iy
and 1, are a discrete X"—stopping time satisfying O < 7; < 7, < m, then

P(IX: - X[ 2 e, 1 - 7 <8) <7. (3.30)

Theorem 3.14: Conditions 1° and 2° are equivalent.
Proof: Note that 7 + § is a stopping time since
fr+d<ti={r<t-8 e Fm

In Condition 2°, putt, = 7, 7; = 7. Then it gives Condition 1°. For the converse, suppose
that 7 < m and choose §, so that § < 28, and n > n, together imply (3.29). Fix an
n>n, and a é < §,, and let (enlarge the probability space for X") 6 be a random
variable independent of F" = ¢(X;, : s > 0) and uniformly distributed over J = [0, 25].
For the moment, fix an x in D, and points ¢, and ¢, satisfying O < t; < t,. Let u be the
uniform distribution over J, and let I = [0, 8], M; = {s € J : |x(t; + s) — x(t;)| < €}, and
d=t,—t,.
Suppose that

t,—t; <8 (3.31)
and

u(My) = P(6 e My) > =, fori=1,2 (3.32)

ESN VY]

If u(M,nI) < 7, then u(M,) < 7, whichis a contradiction. Hence, u(M,nI) > 7, and for
d(0 < d < 8), w(My+d))) < p((MynD)+d) = p(MynD) L. Thus s(My) +u(My+d)J) >
1, which implies u(M; n (M, + d)) > 0. There is therefore an s such that s € M; and

s — d € M,, from which follows

Ix(t,) - x(t,)] < 2. (3.33)
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Thus, (3.31) and (3.32) together implies (3.33). To put it another way, if (3.31) holds but
(3.33) does not, then either P(6 € M) > % or P(0 € M3) > % Therefore,

P(|X:2 ol =27 - Tl<8)SZZ:P[ ( vo— Xo| z elF" )2%]

=1

2

Z ( 0 T |2€)-

Since 0 < 0 < 26 < 26, and since 6 and F" are independent, it follows by (3.29) that
the final term here is at most 8#. Therefore, Condition 1° implies Condition 2°,
This is Aldous’s theorem:

Theorem 3.15 (Aldous): If (3.24) and Condition 1° hold, then {X"} is tight.

Proof: By Theorem 3.13, it is enough to prove that

. . ! n —
Jim lim sup P(wm(X ,0) 2 e) = 0. (3.34)

Let A, be the set of nonnegative dyadic rationals* j /2% of order k. Define random
variables 7, 7', ... by 75 = 0 and

7 =min{t € A : 7], <t <m, |X} X |>e},

with 7] = m if there is no such ¢. The 7}’ depend on €, m, and k as well as on i and n,
although the notation does not show this. It is easy to prove by induction that the 7"
are all stopping times.

Because of Theorem 3.14, we can assume that condition 2 holds. For givene, 5, m,
choose §' and ny, so that

P(|X: - X2 |2 e 1 -1 <8') <7
fori>1andn > n,. Since 7' < m implies that |X] - X | >, we have
P(T{I<m,‘r{l—1‘i"_1§6'>§11, i>1,n2n,. (3.35)
Now choose an integer q such that g6 > 2m. There is also a § such that

P(rf<m,rf—ri"_1s8)sg, i>1,nz2n,. (3.36)

1 Dyadic rational is a rational number whose denominator is a power of 2, i.e. a number of the form
a/2b, where a is an integer and b is a natural number; for example, 1/2 or 3/8, but not 1/3. These are
precisely the numbers whose binary expansion is finite.
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However,
q
P( {r <m, 7 -1, < 6}) <n, n2xng. (3.37)
i-1

Although 7' depends on k, (3.35) and (3.37) hold for all k simultaneously. By (3.35),
E(t —1ylty <m) = 8'P(z]! -7y = &'|t) < m)
> 8’(1 - W)
and therefore,

n n
m > E(qurq < m)

> q8’(1 - —P(r[;n< m)).

q
= ZE(T-" - 1iylTy; <m)

Since g8’ = 2m by the choice of g, this leads to P(r;‘ < m) = 2y. By this and (3.37),

q
P<{Tj; <mpu|Jfrf <m, 7 -7}, < 8}) <3q, k=1,nz=n, (3.38)

i-1

Let A,,k be the complement of the set in (3.38). On this set, let v be the first index
for which 77 = m. Fix an n beyond n,,. There are points ¢¥(z]") such that 0 = ¢tk < ...
<tf=mandtf -tk >8for1<i<v.|X! - X" <eifs,tlie in the same [t} , tF) as
wellasin A . If A, = limsup; 4, , then P(A,) > 1- 37, and on A, there is a sequence
of values of k along which v is constant (v < q), and for each i < v, tf‘ converges to
some t;. However, 0 = t, < --- < t, =m, t; — t;_; > 8 for i < v, and by right continuity,
X} — X7| < eif s, t lie in the same [t;_, t;). It follows that w'(X", §) < € on a set of
probability at least 1 — 35 and hence (3.34).
As a corollary to the theorem we get.

Corollary 3.2: If for each m, the sequences {Xg} and {j,,,(X")} are tight on the line, and
if Condition 1° holds, then {X"} is tight.

Skorokhod introduced the topology on D[0, co) to study the weak convergence of
processes with independent increment. Semi-martingales are generalizations of these
processes. In the next chapter, we shall discuss the weak convergence of semi-
martingales.
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4 Central limit theorem for semi-martingales
and applications

As stated at the end of chapter 3, Skorokhod developed the theory of weak convergence
of stochastic processes with values in D[O, T] to consider the limit theorems (or
invariance principle) with convergence to process with independent increments. Since
these are special classes of semi-martingales that have sample paths in D[0, co0),
we now study the work of Liptser and Shiryaev [17] (see [15]) on weak convergence
of a sequence of semi-martingales to a limit. We begin with the definition of semi-
martingales and their structure, including semi-martingale characteristics [15]. Based
on this, we obtain conditions for the weak convergence of semi-martingale sequence
to alimit. We begin with some preliminary lemmas, which will be needed in the proofs.
We end the chapter by giving applications to statistics of censored data that arises in
survival analysis in clinical trials.

4.1 Local characteristics of semi-martingale

In this chapter, we study the central limit theorem by Lipster and Shiryayev. We
begin by giving some preliminaries. We consider (Q, {F,}, F, P) a filtered proba-
bility space, where F = {F,, t > 0} is a non-decreasing family of sub o-field of F,
satisfying ()., F; = Fs. We say that {X, F} is a martingale if foreach ¢, X, € X = {X,} c
L,(Q, F;, P)and E(X(t)|F,) = X, a.e. P. WLOG, we assume {X;, t > 0}is D[0, co) valued
(or a.s. it is cadlag) as we can always find a version. A martingale X is said to be
square-integrable if sup;, EXf < 00. We say that {X;, t > 0} is locally square integrable
martingale if there exists an increasing sequence o, of (F,)-stopping times such that
0 <0, <ooa.e. lim, o, = co, and {X(t A 0,)1, .0} is @ square integrable martingale.
A process (X, F) is called a semi-martingale if it has the decomposition

Xi=Xo+M;+ A4,

where {M,} is local martingale, M, = 0, A is right continuous process with 4., A, F;-
measurable and has sample paths of finite variation. We now state condition of A to
make this decomposition unique (called canonical decomposition). For this we need
the following. We say that a sub o-field of [0, co) x Q generated by sets of the form
{(s,t] xA,0<s<t<ooand A € F,} and {0} x B(B € F,) is the o-field of predictable
sets from now on called predictable o-algebra P. In the above decomposition, A is
P-measurable then it is canonical.

We remark that if the jumps of the semi-martingale are bounded, then the
decomposition is canonical.

We now introduce the concept of local characteristics.
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Let (X, F) be a semi-martingale. Set with AX(s) as jump at s,

X(t) = ) AX()1(|AX(5)] = ).

s<t
The X(t) = X(t) - X(t) is a semi-martingale with unique canonical decomposition
X(t) = X(0) + M(t) + A(t),
where (M, F) is a local martingale and A is predictable process of finite variation.
Thus,
X(t) = X(0) + M(t) + A(b) + X(¢).
Let
w(0, tAn{ix| 2 e}) = ) 1(AX(s) € A, |AX(s)| > €)
and v((0, t];- n {|x| > €}) its predictable projection. Then for each € > 0, we can write

with v as a mesaure generated on v(*x0)

1
X(t) = X(0) + M'(t) + A(t) + J
0

J xv(ds, dx),
|x|>€

where (M', F) is a local martingale. Now the last two terms are predictable. Thus, the
semi-martingale is described by M’, A, and v. We thus have the following.

Definition 4.1: The local characteristic of a semi-martingale X is defined by the triplet
(4, C,v), where

1. Aisthe predictable process of finite variation appearing in the above decomposi-
tion of X(t).
2. Cisacontinuous process defined by C,

C =X, K]f = <Mc>t-

3. visthe predictable random measure on R, x R, the dual predictable projection of
the measure y associated to the jumps of X given on ({0}°) by

uw, dt, dx) = Y 1(AX(s, W) # 0)8s ax(s w(dt, dX)

s>0

with &8 being the dirac delta measure.
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4.2 Lenglart inequality

Lemma 4.1 Mcleish lemma: Let F,(t),n=1,2,... and F(t) be in D[0, co) such that
F,(t) is increasing in t for each n, and F(t) is a.s. continuous and for each ¢ > 0, there
exists t, — t such that F,(t,) — F(t). Then,

sup |F,(t) - F(t)] — O,
t

where sup is taken over a compact set of [0, o).

Proof: WLOG, choose compact set [0, 1] : For € > 0 choose {t,,1=0,1,..., k} for fixed
k > 1/e such that ty, — i€ and F,(ty) —p F(ie)asn — co. Then

Njyq

sup |F(t) = F(O)] < sup |[Fy(t,,, ) - Fu(t,)] + sup [Fy(t,) - F(t,)

+sup |[F,(ty, ) - F(t,)] +e.
1

As n — oo, choose € such that |F((i + 1)e) — F(i¢)| is small.
We assume that A, is an increasing process for each ¢ and is F;-measurable.

Definition 4.2: An adapted positive right continuous process X; is said to be
dominated by an increasing predictable process A if for all finite stopping times T
we have

EX; <EA;

Example: Let M? is square martingale. Consider X, = M. Then, we know X,— < M >,
is a martingale, and hence, X;— < M > is a martingale. Thus,
EX;—-<M>;)=EX,=0
=2 EX;=E<M>;

Let
X{ =sup X
s<t

Lemma 4.2: Let T be a stopping time and X be dominated by increasing process A (as
above). Then,

P(X;>0) < @

for any positive c.
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Proof: Let S = inf{s < TAn: X, > c}, clearly S < T A n. Thus,

EA; > EAg (since A is an increasing process)

> EX; (since X is dominated by A)

> J XsdP (since Xg > Oon {X7,, > c})
Xan>ch
>c-P(X7,, >C)

Therefore, we let n go to co, then we get

EA;>c-P(X7 > 0).

Theorem 4.1 (Lenglart Inequality): If X is dominated by a predictable increasing
process, then for every positive c and d

PX;>0) <

M + P4y > d).

Proof: It is enough to prove for predictable stopping time T > 0,
PX; 20 < %E(AT_ Ad)+P(Ar_ = d). (4.1)

We choose T' = co. Then T’ is predictable, o, = n and apply to X[T = X;ar for T finite
stopping time X% = Xz,
To prove (4.1)

PX; 2¢0)=P(X;_ 2c¢,Ar_<d)+P(X;_2c,Ar_>d)

<PX; 20)+PAr.>d) (4.2

LetS = inf{t : A, > d}.Itis easy to show that S is a stopping time. Also, S is predictable.
On{w:Ar_ < d}, S(w) = T(w), and hence

WA, <d)X; < XE"TAS)_.
By (4.2), we have

P(X;_ >c¢)<P(X;_>c)+P(A;_>d)

< P(X} s> )+ P(Ar_ > d)
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Lete >0,e < cand S, ~ SAT. Then,

P(X(zps)- 2 €) < liminf P(Xg > ¢ —¢) (by Fatou’s lemma)

IN

1
—— lim EA; (byLemma 4.2)
c—enooo on

1
:EA(SAT) ( by Monotone convergence theorem)

Since e is arbitrary,

. 1 1
P(X(1ps)- 2 €) < ;EASH < EE(A(SAT)_)

1
—E(A
c ( (T—/\d))

IN

This completes the proof.

Corollary 4.1: Let M € Mioc((F[), P) (class of locally square integrable martingale).
Then,

1
P(sup [M,| > a) < ;E(< M >; Ab) + P(< M > b)
t<T

Proof: Use X, = [M,>,c=a’>,b=d, A, =< M >,.
Lemma 4.3: Consider {F', P}. Let {M"} be locally square martingale. Assume that
<M >—, f(b),

where f is continuous and deterministic function (hence, f will be an increasing
function). Then, {P o (M™)~!} on D[0, co0) is relatively compact on D[0, co).

Proof: It suffices to show for constant T < oo, and for any # > O there exists a > 0
such that

sup P(sup |M}| > a) < 1. (4.3)
n t<T

For each T < oo and 7, € > 0, there exist n,, § such that for any stopping time " (w.r.t
(FH,T"<T,7"+86 < D).

sup P( sup M, , - M"nl >€) <. (4.4)

T,
nzng 0<t<d
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Observe that by corollary to Lenglart inequality,
P(sup [M{| > a) < %E(< M" >; Ab) + P(< M" >1> b)
t<T

Let b = f(T) + 1, then under the hypothesis, there exists n,; such that forall n > n,
P(< M" >7> b) < g

Thus, forn = n,

sup P(sup |M}| > a) s b ﬂ + ZP(sup |M"| > a).
n t<T o1 t<T

Choose a large to obtain (4.3).

We again note that M, , — M, is a locally square integrable martingale. Hence, by
Corollary 4.1 and triangle inequality

P(sup IMI,, - M{| > ¢) < %E(( <M'>_s—-<M"'>, )/\b)
0<t<d €
+P(<M" S5 — < M" >,2b)
1 n n
S—ZE(sup(<M S — <M >t)/\b>
€ t<T
+P(sup|<M">t+5—<M">t|2b)
t<T
<

%E( sup |M?+5 —f(t+ 8)| A b)
€ t<T

+ %E( sup |M? —f(t+ 6)| A b)
€ t<T

+ 2 sup If(t +6) - (O
€% t<T

b
+P(st1<1¥)|<M >ee — f(E+0)] > 32 )
b
n
+P( gp|<M >t—f(t)|2§2b>

+1(suplfic +6) - ﬂm>—)

+P(sup|<M Se — < M" >t|>b)
t<T

Using the McLeish lemma, each term goes to 0. This completes the proof.
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If our conditions guarantee that for a locally square integrable martingale the
associated increasing process converges, then the problem reduces to the convergence
of finite-dimensional distributions for weak convergence of {M}} to the convergence
of finite-dimensional distributions.

4.3 Central limit theorem for semi-martingale

Theorem 4.2: Let {X"} be a sequence of semi-martingale with characteristics
(B"[X", X", v") and M be a continuous Gaussian martingale with increasing process

<M >.
(i) Foranyt > 0ande € (0, 1), let the following conditions be satisfied:
(A)
t
I J- Vv'(ds, dx) -, 0
|x|>€
(B)
B+ Y | x(ishdn -, 0
o<s<t 7 Ixlse
©

. 2
<X" >+ L Jl | X*v'(ds, dx) - Z ( Jl | xv"'({s}, dx)) —p< M >,
X|<e X|<€

O<s<t

Then X" = M for finite dimension.
(ii) If (A) and (C) are satisfied as well as the condition

sup
O<s<t

Be ¥ [ ),

o<uss 7 IXI<e

-5 0 (4.5)
for any t and € € (0, 1], then X = M in D[O, T].

Proof: Let 4" be as defined in Section 4.1 and v" be associated predictable projection.
Fore € (0, 1],

Xt ) ( 0<s L<|x|<1 xv ({S},dx)> + (Bt + Z JIXISE xv ({s}, dX))

O<s<t

( xu"(ds, dx) + J J (u" —v"(ds, dx))
IXI>1 0 Je<|x|<1
(X"C + (u" —v"(ds, dx))
|x|<e

= af'(e) + B} (€) + ' (e) + A'y(e).
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where
i@ =Y [ s do
O<s<t e<|x|<1
Bl&) =B+ Y j ({5}, dx)
O<s<t - IXl<e
t t
i (e) = J J xu"(ds, dx) +J J’ (u" —v")(ds, dx)
0 Jix|>1 0 Je<|x|<1
t
A't(e) = X;“ + J I (u" —v")(ds, dx).
0 Jix|<e
By (A) we have
sup ag (€) —), 0.
s<t
By (B) we have
B (e) —, 0.
By (4.3) we have
sup B (e) —,, 0.
s<t
Let

Y7 =yl (e) + A'i(e).

It suffices to prove Y" — M on D[0, T] for each T(by the decomposition ¥" does not
depend on €). Next, we have

sup |y} (e)] < JOT LX|>1 |x|u" (ds, dx) + IT me u'(ds, dx) + ITJ V'(ds, dx). (4.6)

o<t<T 0 0 Jix>e

Note that the second term on RHS — 0 by Lenglart inequality and the third by (A).
Therefore, if we can show that the first term of RHS goes to 0, then supg .t
[y}'(e)| — 0. We have

T
[ ] s a0 = ¥ IAX .
0 Jixi>1 0<s<T
For d € (0, 1),
{ Y IAXE L gaxepsy >5} C{ Y Lgaxzy >5}-

0<s<T 0<s<T

- printed on 2/10/2023 4:51 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



78 = 4 Central limit theorem for semi-martingales and applications

and

T

z Ljaxnps1) = j

0<s<T 0

| wds.ax -, o0.
x|>1

by Lenglart inequality. Therefore, by (4.6), we have

sup |y; (e)] — 0.
0o<t<T

Now, only thing left is to show that
A(e) - 0
T

ale = xi+ |

J x(u" - V")(ds, dx).
0 Jix|<e

Since (4" - v") is martingale and X" is martingale, A" is martingale. Since A"(e) €

Mioc ((F™), P),
t
<AMe) > = < X" >, +J J x"v"(ds, dx)
0 Jix<e
2
-y (j xV"(is}, dx))
O<s<t  Jlxlse
— <M >
by condition (C).
By McLeish lemma,
sup| < A"(e) > - <M >, | —, 0. 4.7)

t<T

We showed sup,.r ly; (€)] — 0. Combining this with (4.7), we have

max(supl <A"(e) > — <M >, |,sup |ytn(e)|> -0
t<T t<T

Then, there exists {e,} such that

sup| < A"(e,) > —<M>| >0, suply'(e)l —0 (4.8)
t<T t<T

M? = A';(en), Yt" = Ar;(en) + y["(en).
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It suffices to prove that M" = M. {M} = A'/(¢,)} is compact by Lemma 4.3 and (4.7). It
suffices to prove finite-dimensional convergence.

Let H(t),0 <t < T be a piecewise constant left-continuous function assuming
finitely many values. Let

N{ = Lt H(s)dMy, N,= Lt H(s)dM;.
Since M is Gaussian, N is also Gaussian.
Remark: Cramer-Wold criterion for finite-dimensional convergence
FelVt _, FeiNr — o= Iy HA(5)d<M>
Let A be predictable, A € A;,(F, P)

e(A), = e’ [T a+a4)e™.

O<s<t

Then e”t will be a solution of dZ, = Z,_dA, by Dolean-Dade’s work. If m € M, then
t

1
A[=—§<mc>t+J’

j (€ — 1 ix)v, (ds, dx).
0 JR-{0}

Lemma 4.4: For some a >0 and c € (0,1), let <m > < a, sup,|Am,| < c. Then
(e(A,), F,) is such that

le(A)l = exp( - i_acz)

. -1
and the process (Z;, F;) with Z; = e’mt(e(A) t) is a uniformly integrable martingale.
We will use the lemma to prove

. . T
EezN; R EezNT _ e_% ) Hz(s)d<M>s.

Case 1: Let us first assume < M" >;< a and a > 1+ < M >. Observe that
1. By(4.7),< N"'>—><N>.

2. A% < 26,

3. |ANY| < 2)e, = d,,, where A = max,.; |H(s)|.

We want to prove

Eexp (iN; + % <N >p ) - 1. (4.9)
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80 —— 4 Central limit theorem for semi-martingales and applications

- -1
Let A7 be increasing process associated with N7'. Let Z, = e'™ (e(A")t) . Choose n,,
such that d,, = 21¢, <1/2. By Lemma 4.4, Z" is a martingale with EZ} = 1. To prove
(57) is equivalent to proving

. . 1 iN" -1 . 1
nh—>ngo (Eexp (1N¥+§<N>T)—Ee‘NT(e(A")T) ) = OFexp (1N§+§<N>T) — 1. (4.10)

Thus, it is sufficient to prove

1

e(An)T N €_2<N>T.

Recall

j (e —1- ix)¥"(ds, dx).
Ix|<d,

Let

o = j (€™ —1- ix)7"({t}, d).
|x|<d,

Since (e —1-ix) < x%/2, we have o < dﬁ/z. Therefore,

n 1 T 2-~n
z lex, | —J J xv"(dt, dx)
2 Jo Jixi<a,

o<t<T

Then,

H 1+ oc;l)e_"‘;1 — 1.
o<t<T

By definition of e(A),, it remains to prove

1

T .
= <N" >, —J I (e® —1-isx)¥"(ds, dx) —, = <N >p.
2 IXl<d,

NI =

0

By observation (a) and the form of < N >, it suffices to prove

T .
J I (e®* - 1-isx)v"(ds, dx) —, 0.
o Jixisd, P
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. 3
B _1-isx+ % [2) < ¢ %,

We have, since |(e

T . X2 d T ,
J I ((e’s" —1-isx) + —)On(ds, dx) < 2 J J x“v"(ds, dx)
0 Jixiza, 2 6 Jo Jixisa,
P
< Z” <N">;p
dn 2
< A
< ha
— 0.

To dispose of assumption, define
7, =min{t < T :< M" >>< M > +1}.

Then 7, is stopping time. We have 7, = T if < M" >,<< M >; +1. Let M" = M}, _ . Then

thT,

v 2 2
<M" >p< 1+ < M >p +€, < 1+ < M > +¢;

and

lirrlnP(l <M'> -<M>|> e) <limP(z, > T) = 0.

Next,

a7l AT N iNn
lim Ee'™ = lim E(e'Nf - e'NWn) + nllm Ee™Nirm
—00

n—oo n—oo

AT AT .
= lim E(e'NT - elN“fn) + Ee'Nr

n—oo

= Ee'™r.

The last equality follows from

lim

iNg _ NG, . _
Tim E(e L ) <2 lim P(z, > T) = 0.

This completes the proof.

4.4 Application to survival analysis

Let X be a positive random variable. Let F and f be cumulative distribution function
and probability density function of X. Then, survival function F is defined as

F&)=P(X>t)=1-F(t)
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Then, we have

P(t<X<t+Al)
Pt<X<t+AtlX>t)=——— "

F(®)
Lt+At dF(s)
 F@®
Since we know
1 t+At
~ jt fo0ds — f(b).
as At — 0, hazard rate, is defined as
h(t) = f(_t)
F(t)
d -
T log F(t).

Therefore, survival function can be written as

F(t) = exp ( - Lt h(s)ds).

If the integrated hazard rate is given, then it determines uniquely life distribution. For
example, think about the following:

T = sup{s: F(s) < 1}.

Consider now the following problem arising in clinical trials.

Let

1. X, ...., X, beiid F (life time distribution)

2. U,....,U, be iid measurable function with distribution function G with
G(00) < 1, which means U; are not random variable in some sense.

Now, consider

1. indicator for “alive or not at time s”: 1(X; < U;, X; A U; < s).

2. indicator for “alive and leave or not at time s”: U;1(X; A U; < s).

3. indicator for “leave or not at time s”: 1(X; A U; = s).

and o-field

Fl' = o({1X; < U, ;AU <5), ULG AU < 9), I0GAT; 2 8), s < 1= 1,2, 1)),

F/' is called information contained in censored data.
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Let

t
B(t) = L h(s)ds.

If B(t) is an estimate of f3(t), then we can estimate survival function. The estimator of
survival function will be

}::'(t) — e—B(l)’
which will be approximately be

[1(1-d(Bs)).

s<t

This is alternate estimate of survival function, which is called, Nelson estimate.
Let
n
N, (6) = Y 1X; < U, X, AU; < 1)
i=1
n
Yo(t) = Y 1X AU 2 B).

i=1

Then, B(t), which is called Breslow estimator, will be

o - [ A0l Ji~ aFes)
v T Fo

Now, we consider another estimator of survival function, which is called the Kaplan-
Meier estimator. It will be

AN, (s)
g(l_ Y, (s) )

Gill [12] showed the asymptomatic properties of the Kaplan-Meier estimator.
We can show that

o PO _ H (1 ~ ANH(S))I _ O(l) (4.11)

s<t Y, (s) n

using following lemma.
Lemma 4.5: Let {«"(s), 0 < s < T, n > 1} be real-valued function such that
1. {s € (0,u]: «"(s) £ 0} is P-a.e. at most countable for each n.

2. Yocsen la"(s)] < C with C constant.
3. supg,fla"(s)l} = O(a,), where a, \ O as n goes co.
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Then,

[Ta-a"sy- ] e™®

O<s<t O<s<t

sup

t<u

= 0(a,).

Proof: We choose n, large such that for n > n, O(a,) < % Since

[T@-a"s)e”® = exp( Y log(l-a"(s)) + a"(s))

O<s<t O<s<t

= exp( Z Z ( (oc ()Y ) (by Taylor expansion.),

0<s<t j=2

for n > n,, we have

[Ta-a"sne”™ -1

O<s<t

|ew( ¥ )|

O<s<t j=2

>y HT(a"(s))" :

O<s<t j=2

<e

where

0 ( 1)j+2 . .
Ay Z%(a”(s))] <p<ov Y Z( s a"(s)).

O<s<t j=2 O<s<t j=2

For large n,

1y+2 j
Z Z( 1) a"(s))| < Z Z '“ (S)|
0<s<t j=2 0<s<t j=2
<sup|oc (s)| Z |o" (s)|Z( ) ;
=0(ay) 0<S<tst-M <o

— 0.

Yocs<t | (8)| < t - M holds since |«"(s)| will be bounded by M.
To prove (4.11), we let

a'(s) = s<T

Y, (s)’

and

AN(s) =0, s>T.

We get a,, = 1/n using the Glivenko-Cantelli theorem.
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4.5 Asymptotic distribution of [§(t) and Kaplan-Meier estimate

X; and Uj; are defined as previously. Again, define N, (t), Y, (¢) as
N, ()= )Y 1(X; < U, X; AU; < )

1X;AU; 2 0).

= 10

Yn(t) =

Il
SN

Then,

~

B(t) = j h(s)ds

[ 75
J’ dF(s)

o 1-F(s)

o [LdN,(s)
PO = .[0 Y,(s)

Using the above lemma, we can show that the difference between Kaplan-Meier and
Nelson estimates is asymptotically of order %

(=}

sup
t<u

ANL(S)\ g
Y(s)) ¢

(-

s<t

AN, (s) L dN,(s)
[M0-557)- exp (- | Yo(5) )‘

s<t

- op(;).

sup

t<u

Let
Q,(s) =PX;AU; <55, X, <U))
H(s) = PX, AU, <5)
L[t doys)
PO = L A-HGs)

Assume that X (with F) and U (with G) are independent. Then,

AQy(s) =P(s<X AU <s+As, X, <))
=P(s<X,<s+As,X, <))
=P(s<X;<s+As,U; 25+ As)
=P(s<X;<s+As)-P(U; =25+ AS)

dQ,(s) = (1~ G(s-))dF(s).
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Similarly,
(1-H(s-)) =1 - G(s-))1 - F(s)). (4.12)

Then,

C(f dQy(s)
A0 = L - H-)

_ Jt (1- G(s-))dF(s)
o (1-G(s=))(1- F(s))
_ Jt dF(s)
o (1-F(s))’

Lemma 4.6 (PL 1): Let
Ftn: U({l(Xl < Ui’Xi A Ui < S), Ull(Xl N Ui < S), 1(Xl N Ui > S),S < t, i = 1, 2, ey n}).

Suppose we have
1. (N,(D), F[‘) is a point process and

dQl(S) }

t
[N,(0) - L A e

is martingale.
and

3 t an, (6
2' ﬂn(t) = 0 Yn(t) .

Then, m,(t) = ﬁn(t) — B,(t) is a locally square integrable martingale, and increasing
process < m,, >; will be

<m, > —r L _dQ(s)
" o Yu(s) (1- H(s-))

Remark: If X and U are independent, from (4.12), we have

dQ,(s) dF(s)

(1-H(s-) 1-F(s)

Let us assume that {X;} and {U,} are independent and

dQ,(s)

t
An(t) = JO Yn(S)m
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4.5 Asymptotic distribution ofB(t) and Kaplan-Meier estimate =— 87

From the previous theorem we know that m, (t) = (Bn(t) — (1)) is a locally square
integtrable martingale with

(1 dQ,(s)
<M e = L Y, (s) (1- H(s-))"

Hence
VB, () = Bi(8)) =45 1r

where Y, is a Gaussian martingale

(" n dQ,(s)
(Vmy), = L v, (-Hs) 0

L[t doys)
G0 = L A-Hs)y?
r, = Cy(b).

Also (m,), = A, (t) which gives by Glivenko-Cantelli Lemma (m,); = 0, (%) Using
Lenglart inequality we get

sup|,(s) - Bu(s)| —» 0. (4.13)

Hence ﬁn(s) is consistent estimate of integrated hazard rate under the independence
assumption above. We note that under the assumption

(" dF(s)
A0 = L 1-F(s))

and
1 dF(s)

GO = L - Fs)(1-6()

With 1 = inf{s : H(s-) < 1}, the above results hold for all t < 7 only.

Lemma 4.7:1.For t < 1y
sup

sl (-, i) - (L, i )| e

© dF(s) " dN,(s) © dF(s)
vn [exp<‘ Jo a —F(s))) ‘exp<‘ L Y, (s) )] o "e"p<‘ L 1- F(s)))

in D(O, t] for t < T, with y as above.
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Proof: Using Taylor expansion we get

exp (— r &> — exp(—B,(1)

o A-F(s))
. C dF(s) e BO-ROF
—exp( [, — ))H(ﬁl(t) Buten + PO e hn)}

with h,, is a random variable satisfying S,(t) A f,(t) < h, < B,(t) V B,(t). Since for
t < 1y, exp(-h,,) is bounded by convergence of supsgt(ﬁn(s) = Bi(s)) —, 0, the result
follows. To prove the second part, note that

VAB () = Ba()? = VAR () = B (Bi() = Bu() =p y-0=0

by Slutsky theorem and the first term converges in distribution to y.

Theorem 4.3 (R. Gil): Let F,(t) = qu(l - AN((S)) Then under independence of
{X;}, {U;}, we get that

n(F,() - F() _
1- F(‘) VO

in D[O, t] for t < 7.
Proof: We have exp(-,(t)) =1 - F(t) for t < 75. Hence by previous Lemma

\/_

= Foyy P ~ (1= FO) =p

Although we do not present it here, similar techniques work to study so-called Linden-
Bell estimator which arises in the study of truncated data (e.g. in randomly starting
clinical trials). The latter has applications in astronomy. Interested readers are referred
to ([26], [21]).
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5 Central limit theorems for dependent
random variables

When one collects data, the observed sample could produce dependent random
variables. A simplest example of this could be

Sn,m =

~M=

Xn,m’

which could be a martingale for each n. These kind of theorems were first considered
by Billingsley [3]. A major breakthrough for convergence of interpolated S,, [, ;; was
obtained by Dvoretsky [10]. Gordin [13] showed that for second-order stationary
processes with “mixing” condition, the central limit problem can be reduced to that
for martingales. We show, following Durrett and Resnick [9], that one can derive the
convergence of the interpolated sequence associated with the martingale central limit
theorem, which can be obtained by their extension of the Skorokhod embedding theo-
rem and using the work in [8] to obtain convergence in the of the interpolated sequence
associated with the stationary sequence central limit problem of the Brownian motion.
This proves weak convergence of such sequence in C[0, 1].

In this chapter, we study the central limit theorems for dependent random
variables using the Skorokhod embedding theorem.

Theorem 5.1 (Martingale central limit theorem (discrete): Let {S,} be a martingale.
Let S, = 0 and {W(t), 0 < t < oo} be Brownian motion. Then there exists a sequence
of stopping time, 0 =T, < T, < T, --- < T,, with respect to F[W such that

(So»--sSp) =g (W(Ty), ..., W(T,)).

Proof: We use induction.
T, = 0.
Assume there exists (T, ..., T_;) such that
(Sos -5 Sic1) =g (W(Ty), ..., W(T, ).
Note that the strong Markov property implies that {W(T,_, + t) - W(T,_,),t >0} isa
Brownian motion, independent of F/*. Look at the regular conditional distribution of

Sy — Sk_q given S = Sg, ..., Sg_; = Sk_1- Denote it by

W(Sos - Sii3B) = P(Si = Sict € BISo = So» - Skt = Sy ) for B € (B(R)).
S0 (So» 1>+ Sicis B) = P(Sy = Sy € BISg., Sy )
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Since S, is a martingale, we have
0 = E(S - SecalSos - -» et ) = nyk(so, ey Spp dx).

By Skorokhod’s representation theorem, we see that for a.e. S = (S, ..., S;_;), there
exists a stopping time 7;(exist time from (U,, V)) such that

W(T)_y + T5) = W(Ti_y) = W(Ty) =4 (Sos -+ » Skps *)-
Welet T = T)_; + 75, then
(Sgs S15+++5Si) =g W(Ty), ..., W(T})),
and the result follows by induction.

Remark: If E(S; - S;_,)* < 0o, then
~ 2
E(%)Sor.- i) = Jx U(Sos s Siys dX)

since W} - t is a martingale and 7 is the exit time from a randomly chosen interval
(Sk—l + Uk’ Sk—l + Vk)'

Definition 5.1: We say that X, ,,, F, ,,1< m < n, is a martingale difference array if
X,.mis F, ,, measurable and E(X,, ,,|F, ,, ;) = 0for1 < m < n, where F, , = {0, Q}.

Notation: Let

| Sk, ifu=keN;
@ = | linear on u, if u € [k, k + 1] for k € N.

and

s [Sue ifu=keNj
™ 7 | linear on u, if u € [k, k +1].

Consider X, ,,(1 < m < n) be triangular arrays of random variables with

EXpp =0

Sn,m = Xn,l Tt Xn,m'
We shall use the following fact:

Spm = W(ty)
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and
r["ns] —p sfors e [0,1],

then 1S, (uy = Wlloy —p O-

Theorem 5.2: Let {X,, ,,, F,, ,} be a martingale difference array and S, ,, = X, +--- +
X, m- Assume that

L |Xpml <e,forallm,ande, —» 0asn — oo

2. With V= X7 E(X2 (lFgen)s Vg — tforall ¢,
Then S, ,, = W().

Proof: We stop V,, , first time if it exceeds 2 (call it k,) and set X, , = 0, m > k,. We
can assume without loss of generality

Vin<2+ 531
for all n. Using Theorem 5.1, we can find stopping times T,, ;, ..., T, , so that
(0, Sn,l’ ceey Sn,n) :_@ (W(O)) W(Tn,l)) cre W(Tn,n))'

Using Lemma 5.1 and the above equality, it suffices to show that T, |, —p t for each
t.Let

tum = Tnom = Tnmo1 With (T, o = 0).
Using the Skohorod embedding theorem, we have

E(tn,m“:n,m—l) = E(sz,man,m—l)'
The last observation with Hypothesis 2 implies
[nt]
z E(tn,man,m—l) —p t.
m=0
Observe that

2 [
E<Tn,[nt] - Vn,[nt]) = E( ( tn,m - E<tn,man,m—l) ))

any two terms are orthogonal

2

=
fin?

3
N

[nt]

2
z E(tn,m - E(tn,man,m1)>

m=1
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[nt]

< Z E(ti,man,m—l)

m=1
[nt]
< Y C-E(X},|Fymt) (we will show

m=1
that C = 4.)
[nt]
<y CeiE(sz,man,m—l) (by Assumption 1)
m=1

= Cefl Vin
< Cefl(Z + eﬁ) — 0. (5.1)

Since L? convergence implies convergence in probability,

2
E(Tn,[nt] - Vn,[nt]) — 0

and

Vn, ] — pt
together implies

Tn,[nt] i Pt'
Proof of (5.1): If  is real, then
1, w\ _
E( exp (6(W(t) - W(s)) - S0t s))lFS - 1.

Since

E( exp (9W(t) - %Gzt) FSW) = exp (GW(s) - %625),

we know that { exp (GW(t) - %62t>, F[W} is a martingale. Then, forall A € F),

ElA( exp (9W(S) - %6%)) = L (exp (GW(S) - %st)>dP

- L exp (OW(t) - %Hzt)dP

(by definition of conditional expectation)

_ ElA( exp (GW(t) - %Gzt)).
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Take a derivative in 6 and find a value at 6 = 0.

Number of derivative

W(t) is MG
W2(t) - tis MG (5.2)
W3(t) - 3tW(¢) is MG

WA(t) - 6tW2(t) + 3t% is MG

AW N R

For any stopping time 7,
E(W*(z) — 6tW?(z) + 37°) = 0.

Therefore,

EW! - 6E(tW?) = -3EW?
= EW? < 2E(zW?).

Since

T

EGW?) < (E12>1/2 : (EW‘*)I/2
by Schwartz Inequality, we have
(1512)1/2 < 2(EWj)”2.
Therefore,
E(8, nlFams) < 4E(Xp [ Frmos)-

Theorem 5.3 Generalization of the Lindberg-Feller theorem: Let {X, ,,,F, ,} be a
martingale difference arrayand S, ,, = X, ; +--- + X, ,,. Assume that

L Vg = Zﬁtl] E(Xi,len,kq) —pt.
2. V() = e E(X2 u1(1 Xl > €)|Fpmt) —p O, foralle > 0.

Then S, ,, = W().
Foriid. X, , and t = 1, we get the Lindberg-Feller theorem.

Lemma 5.2: There exists ¢, — 0 such that €2 V(e,,) —p O.

Proof: Since V(e) — p 0, we choose large N, such that
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S 1
for m > N,,. Here we choose €, = ;. with n € [Ny, Ny,,;). For § > -, we have

P(e;f?(e,,) > 8) < P(mzﬁ(i) > l) <L
m m m

This completes the proof of lemma.
Let

Xpm = Xom1( Xy ml <€)

Xn,m = Xn,m1(|Xn,m| > en)

nm = Xn,m - E(in,man,m—l)'

St

Lemma5.3: S, ,; = W()

Proof: We will show that X, ,, satisfies Theorem 5.2.

|Xn,m| = Yn,m - E(}_(n,man,m—l)|

K| + [E(Xsnl P

< 2, — 0.

<

and hence, the first condition is satisfied. Since

Xn,m = Xn,m + Xn,m’
we have
—2 R
E(Xn,m“:n,m—l) = E((Xn,m _Xn,m)len,m—1)
= E(Xﬁ,m = 2Ky K + Xn,m)2||:n,m_1)

= E(X} olFaumct) ~ E(Xo P ) (5.3)

The last equality follows from E(X,,,m)A(,,’m|F,,,m_1> = E(}A(i,m|Fn’m_1). Since X,, ,, is
a martingale difference array, and hence, E(X, ,|F, ;) = 0. The last observation
implies E(Ymm|Fn,m_1) = —E()A(n’m|Fn,m_1), and hence,

[E(RunlFrns)] = [E(RunlFons)

<E (Xflm | Fn,m,l) (by Jensen’s inequality).
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Therefore,

IN

[E()_(n,man,m—l):lz i E(X)Z‘l,man,m—l)

1 m=1

Vie,)

i M=

—>PO

by given condition. Finally,

E(Xn manm 1) i E()_(f!,man,m—l)

1 m=1

- Z E(Xn,m“:n,m—l)2

m=1

M=

3
il

(by the conditional variance formula)

n

= Zl (E(Xfl,man,m—l) - E(Xfl,m“:n,m—1>>

m=

1 _ 2
- z E(Xn,man,m—l)
m=1

(from equation (5.3))

- i E(X, plFamot) - i E(X, | Frms)
=

m=1

[l

M= =

1

3
I

As f/(en) 2, 0 and the last term converges to zero in probability, we get

n n

Jim, 3. E(X [ Foinr) = im, 3 E(X5plFonr)

m=1 m=1

Since

[nt]

V",["l] = Z E(Xi,man,m—l) —p t,
m=1

we conclude that

[nt]

Y E(X lFum) =0t

m=1

This show that the second condition is satisfied, and this completes the proof.
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Lemma 5.4:

”Sn,(n-) - §rz,(n-)”oo = il |E(Xn,m||:n,m—1>|-
m=

Proof: Note that if we prove this lemma, then, since ., _, |E (Xn,man,m—l)| —p O(we
will show this), and we construct a Brownian motion with ||S -WwWQO)ll,, — 0, the
desired result follows from the triangle inequality.

Since X, , is martingale difference array, we know that E (Y,,,m|F,,,m_1) =
~E(X,, ;n|Fn.m1), and hence,
n
)

m=1

n,(n-) | |oo

E(Xn,m I Fn,m—l)

E(Xn,m l Fn,m—l)

E(|%,m||Fym-1 ) by Jensen

IA
D= INs EM

n
2
S Z E(Xn,m“:n,m—l)
m=1
. X2 X2
GE Xyl > €0 Xy < — = —1)
en en

V(e
B €

n

—, 0 (by Lemma 5.2).

On {|X, | < €,,1 < m < n}, we have Y,,ym = X, m»and hence, S, () = §n,(n.). Thus,

(n]
1Sn,tmy = Snmolloo = 1S,y = Sy + Z E(Xn,m|Fn,m—1)”oo

m=1
(n] _
< Y [E(XnmlFrmat )| =2 O-
m=1
Now, to complete the proof, we have to show that Lemma 5.3 holds on {|X,, ,,| > €,,1 <
m < n}. It suffices to show that
Lemma 5.5:

P(|Xn,m| > ¢€,, forsomem,1<m< n) — 0.
To prove Lemma 5.5, we use Dvoretsky’s proposition.

Proposition 5.1 (Dvoretsky): Let {G,} be a sequence of o-fields with G, c G,,;. If
A, € G, for each n, then for each § > 0, measurable with respect to G,

p( Lnj AnlGo) <&+ P( i P(A |Gy ) > 81y ) (5.4)

m=1 m=1

EBSCChost - printed on 2/10/2023 4:51 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



5 Central limit theorems for dependent random variables = 97

Proof: We use induction.
n=1
We want to show

P(4,]G,) < 6 + P(P(4,/Gy) > 61G, ). (5.5)

Consider Qg = {w: P(4;|G,) <8}. Then (5.5) holds. Also, consider Qg ={w:
P(A,|G,) > 8}. Then
P(P(4,]G,) > 816, ) = E(1(P(4,1G,) > 8)IG, )
=1(P(4,16y) > 6)

:l,

and hence (5.5) also holds.
(ii)n>1
Consider w € Q. Then

P('Y. P(A1G,_) > 81Go) = P(P(A,]Go) > 816y )
m=1
= 1Q$(w)
=1.

Then, (5.4) holds. Consider w € Q. Let B,, = A,, N Q. Then, form > 1,

P(By|Gy-1) = P(Ay N Qe[Gypy)
= P(A|Gpry) - P(QCypy)
= P(AplGpy) - 199(‘0)
= P(AGp1).

Now suppose y = 8 — P(B,|G,) > 0 and apply the last result for n — 1 sets (induction
hypothesis).

p( Lnj B,|G,) <y +P( i P(By|Gyy) > YIG, ).

m=2 m=2

Recall E(E(XIGO)lGl) = E(X|Gy) if G, c G,. Taking conditional expectation w.r.t. G,
and noting y € G,

p( QZBMGO) < P(y +P( i P(B,,[G,,;) > yIGl)|GO)

m=2
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=y+ P( P(BmIGm—l) > YlGO)

M= E1M=

—yp+ P( P(B,,|G,, ;) > 5|Go)-

1

3
I

Since UB,, = (UA,,) N Qg, on Qg we have

n n

Y P(B,lGyy) = Y P(AylGpy)-

m=1 m=1
Thus, on Q,

n n
P(|J AnlGo) <8 - P(4,1Go) + P( Y. P(AylGpy) > 81y )-
m=2 m=1

The result follows from

n n

P(|J 4nlGo) < P(4116o) + P( | An[Go)
m=1 m=2

using monotonicity of conditional expectation and 1,5 < 1, + 15.

Proof of Lemma5.5: Let A, = {|X, ,,| > ¢,}, G,, = F,, ,,, and let § be a positive number.
Then, Proposition 5.1 implies

n
P(X,,ml > €, for somem < n) <8+ P Y P(Xyul > €l Fymy) > 9).

m=1

To estimate the right-hand side, we observe that “Chebyshev’s inequality” implies

n n
Y P(X, > €l Fpmy) <€ Y EXy IFpmy) =0

m=1 m=1

so lim sup P(|X,, | > €, for some m < n) < 6. Since § is arbitrary, the proof of lemma
and theorem is complete.

Theorem 5.4 (Martingale cental limit theorem): Let {X,,, F,} be a martingale difference
sequence, X,, ,, = X,,/vn, and V; = ¥*_, E(X§|Fn_1). Assume that

1. Vi/k —po?,

2. 17 S E(X21(1X,] > evi)) — 0,

Then,
S

Vi = oW(").
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Definition 5.2: A process {X,,, n > 0} is called stationary if
{Xm’XmH’ ...,Xerk} =9 {Xo, ’Xk}
for any m, k.

Definition 5.3: Let (Q, F, P) be a probability space. A measurable map ¢ : Q — Q is
said to be measure preserving if P((p‘lA) =P(A)forallA e F.

Theorem5.5: If X, X;, ...isastationary sequenceand g : RY — Rismeasurable, then
Y, = g(Xy, Xi41, . .) is a stationary sequence.

Proof: If x € RN, let g, (%) = g(Xy, X415 - -.), and if B € RN let
A={x:(gy(x),8((x),...) € B}
To check stationarity now, we observe:

P({w: (Yo, Y,..) € BY) = P({0: (8(Xo, X, .- ), (X, Xy ), --.) € BY)
= P({w: (g6(X), &(X), ...) € B})

(
P({
(

: (Xo, Xy, ..) € A})

S

P

{w: Xy, Xpp15.-) € A})
(since X,, X, ... is a stationary sequence)

= P({w: (Y, Yyy,..) € BY).
Exercise: Show the above equality.

Definition 5.4: Assume that 6 is measure preserving. A set A € F is said to be invariant
if6'A = A. Denoteby | = {4in F, A = 0'A} in measure.

Definition 5.5: A measure preserving transformation on (Q, F, P) is said to be ergodic
if 1 is trivial, i.e., forevery A € I, P(A) € {0, 1}.

Example: Let X, X;, ... be the i.i.d. sequence. If Q = RY and 6 is the shift operator,
then an invariant set A has {w : w € A} = {w : Ow € A} € 6(X;, X,, ...). Iterating gives

Ae()o(X,, Xppys-.) =T, the tail o-field

n=1

EBSCChost - printed on 2/10/2023 4:51 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



100 —— 5 Central limit theorems for dependent random variables

sol ¢ T.Forani.i.d. sequence, Kolmogorov’s 0-1 law implies T is trivial, so I is trivial
and the sequence is ergodic. We call 0 the ergodic transformation.

Theorem 5.6: Let g: RY - R be measurable. If Xy, Xq, ... is an ergodic stationary
sequence, then Y, = g(X,, X;,;, - ..) is ergodic.

Proof: Suppose X,, Xi, ... is defined on sequence space with X, (w) = w,. If B has
fw: (Y, Yy,..)eB={w: (Y}, Y,,...) € B}, then A ={w:(Y,,Y;,...) € B} is shift
invariant.

Theorem 5.7 (Birkhoff’s ergodic theorem): For any f € L,(P),

n

1
% f(6™w) — E(f|G) a.s. and in L,(P),
0

3
I

where 6 is measure preserving transformation on (Q,F,P) and G={A ¢ F c07!
A=A}
For the proof, see [8].

Theorem 5.8: Suppose {X,, n € Z} is an ergodic stationary sequence of martingale
differences, i.e., o> = EX3 < oo and E(X,|F,_) =0 with respect to F, = o(X,,,
m<n).LetS, =X, +---+X,. Then,

S
@ eW().

vn

Proof: Let u, = E(X3|F,_,). Then u, can be written as 6(X,,_;, X,,_,, - . .), and hence, by
Theorem 5.6 u,, is stationary and ergodic. By Birkhoff’s ergodic theorem (G = {@, Q}),

n
1 Z u,, - Eug = EX(ZJ =o’as.
n m=1
The last conclusion shows that (i) of Theorem 5.4 holds. To show (ii), we observe

@ & EC( > ) = © 5 E(3i1(101> )

m=1 m=1
(because of stationarity)
= E(X31(1X%,] > evn)) = 0
by the dominated convergence theorem. This completes the proof.
Let’s consider stationary process, (with &;i.i.d., E¢; = 0 and EE,'2 < 00)
(o]

X, = z Ckfn—k

k=0
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with
(oe]
2
Z ) < 00.
k=0

If&; arei.i.d., X, is definitely stationary, but it is not martingale difference process. This
is called moving average process. What we will do is we start with stationary ergodic
process, and then we will show that limit of this process is the limit of martingale
difference sequence. Then this satisfies the conditions of martingale central limit
theorem. Note that in our example, EXfl < oo for all n.

If X, is stationary second-order, then r(n) = EX, X, is positive definite.

We can separate phenomenon into two parts: new information(non-
deterministic) and non-new information (deterministic).

2
EX, X, = J e™dF(1),
0

where F is the spectral measure. In case X, = Yo Cién_r» then F <« Lebesgue
measure.
In fact, we have the following theorem:

Theorem 5.9: There exist ¢; and ¢ such that
. 12
- fle™) = |ee™)]

_ (p(ei/\) — ziio (—:kel‘kl
if and only if
2
j log fO)dF(A) > —co.
0

Now we start with {X,, : n € Z} ergodic stationary sequence such that
- EX,=0,EX) < oco.
Y2 IE(XGIF_p)Il; < oo.

The idea is if we go back, then X, will be independent of X,,.
Let

H, = {Y € F, with EY’ < 00} = LXQ, F,,, P)
K,=1{Y e H,withEYZ=0forallZ e H, ;} = H,o H,_,.

Geometrically, Hy > H , > H ,... is a sequence of subspaces of L? and K, is the
orthogonal complement of H,,_;. If Y is a random variable, let

0"Y)(w) = Y(0"w),
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i.e., 0 is isometry(measure-preserving) on L. Generalizing from the example
Y :f(X,j, ...» X;), which has 6"Y :f(X,H., ...» Xp.), it is easy to see that if Y € Hy,
then 0"Y € Hy,,, and hence Y € K; then 6"Y € K

n+je
Lemma 5.6: Let P be a projection such that X; € H_; implies PH_]_X]. = X;. Then,

GPH_1X]' = PHOXi+1
= PHOQX]'

Proof: Forj < -1,

HPHin]' = GX] = X}'+1.

X

We will use this property. For Y € H_;,
X;- Py X;1Y
= (X;- Py X;,Y),=0
= (H(X}- - Py X;), GY)2 = 0 ( since @ is isometry on L?)
Since Y € H_;, 0Y generates H,,. Therefore, for all Z € H,, we have
((ox; - 0Py X)), 2)2 -0
= (6X; - OPy_X;)L1Z
= GPH_IX} = PHOGX] = PH()Xj+1'

We come now to the central limit theorem for stationary sequences.

Theorem 5.10: Suppose {X,,, n € Z}is an ergodic stationary sequence with EX,, = 0 and
EX? < 0. Assume

D EXIF_ I, < 00

n=1
LetS, =X, +...+X,. Then
S
AU RN aW()

vn

where we do not know what o is.
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Proof: If X, happened to be in K, since X,, = 0"X,, € K,, for all n, and taking Z =1, €
H,_;, we would have E(X,1,) = 0forall A € F,_; and hence E(X,|F,_;) = 0. The next
best thing to having X,, € K, is to have

Xy =Yy +Zy-0Zy (%)

with Y, € K, and Z, € L*. Let

(o)
Zy = Y E(XjIF_,)
j=0

0Z, = Z E(X;,41Fo)

M8'

Yo = ) (EX1Fo) - EGIF ).
j=0
Then we can solve () formally
Y, + Zy — 0Z, = E(X,|Fy) = X,. (5.6)

We let

X = i 0"X, and T, = i 0"Y,.

1 m=1 m=1

||
M=

3
I

We want to show that T, is martingale difference sequence. We have S, = T,, + 0Z, —
0"*'Z,. The 6™Y,, are a stationary ergodic martingale difference sequence (ergodicity
follows from Theorem 5.6), so Theorem 5.8 implies

T
m oW(-), where o’ = EY(Z,.

Vn
To get rid of the other term, we observe

0z
29 L 0as.
Vn

and

nz P(|0™'Z,| > evi)

m=0

nP(|Zo] > evn)

-2 2
<€ E(ZOI{|Z()|>E\FH}) — 0.

P( max |6'"+IZ|>6\/_)

0<m<n-1

IN
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The last inequality follows from the stronger form of Chevyshev,
E(Zél{lzobe‘m}) > eznP(|ZO| > GVE).

Therefore, in view of the above comments,

n oVn yn  m
S5 Twor g
n n

S T
= lim = = lim — = eW(.).
v oW(-)

Theorem 5.11: Suppose {X,,, n € Z}is an ergodic stationary sequence with EX,, = 0 and
EX? < co. Assume

Y IEXGIF_p)ll; < oo,

n=1

LetS, =X, +...+X,. Then

S,
S oW(),

Vn
where

o’ = EXg +2 ) EXoX,.

n=1

If Y2, EX,X, diverges, theorem will not be true. We will show that Y>; |[EX(X,| < co.
This theorem is different from previous theorem since we now specify o°.

Proof: First,

[EXoX,0| = [E(EXoXlFo) )|
< E|XoE(X,IF,)|
< 1X,ll; - ||[E(XIFo)||, ( by Cauchy Schwarz inequality )
= [|1X,ll; - |[[E(XoIF_)||, (by shift invariance ).

Therefore, by assumption,

Z |EX0Xn| < IXoll, Z ||E(XO|F—m)||2 < 0.
n=1 n=1
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Next,

n n
ES; =) Y EX;X,
j=1 k=1
n-1
= nEXy +2 Y (n - mEXoX,,.

m=1

From this, it follows easily that

ES?

[ee)
2 - EXg+2 ) EXoX,,.

m=1

To finish the proof, let T, = ¥ _, 0™ Y,, observe ¢° = EY;, and

n'ES, - T,)’ = n"'E(6Z, - 0" Z,)’
2
3EZ}

n

-0

since (a - b)? < (2a)* + (2b)%.
We proved central limit theorem of ergodic stationary process. We will discuss
examples: M-dependence and moving average.

Example 1. M-dependent sequences: Let X,, n € Z be a stationary sequence
with EX, = O,EXfl < 00. Assume that o({X;,j < 0}) and o({X;,j = M}) are inde-
pendent. In this case, E(X,|F_,) =0 for n > M, and Zﬁio IE(XolF_Il; < co. Let
F_ o = Npo({X;,j 2 M}) and Fy = o({X;,j < k}). If m — k > M, then F__ LF,. Recall
Kolmogorov O-1law. If A € F; and B € F__, then P(A n B) = P(A) - P(B). Forall A ¢
UgFis A € o(U Fp). Also, A € F__,where F__, ¢ U,F_,.Therefore, by Kolmogorov 0-1
law, P(An A) = P(A) - P(A), and hence, {X, } is stationary and ergodic. Thus, Theorem
5.8 implies

S
—""r’l” = oW(),
where

M
0’ =Ey+2 ) EXoX,.

m=1

Example 2. Moving average: Suppose

X =) i where Y ¢} < oo,
k>0 k=0
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and &;, i € Z are i.i.d. with E¢; = 0 and ng = 1. Clearly, {X,} is a stationary sequence
since series converges. Check whether {X,,} is ergodic. We have

(o(iXy m < n}) c[)o({&, k < n});

n n

therefore, by Kolmogorov 0-1law, {X,,} is ergodic. Next, if F_,, = o({,,, m < —n}), then

NEXoIF_)IL = 11). il

k=n
1/2
-(Xa)

k=n

If, for example, ¢, = (1 + k)7, [|E(X,|F_)Il, ~ ">, and Theorem 5.11 applies if
p > 3/2.

LetG,H c F, and

«G,H)= sup {|P4nB)-P@A)PB)}.
AeG,BeH

If « = 0, G, and H are independent, « measures the dependence of two o-algebras.

Lemmab’.7: Letp, g, r € (1, co] with1/p+1/g+1/r = 1, and suppose X € G, Y € H have
E|X?, E|Y|? < co. Then

1/r
|[EXY - EXEY| < 8||X||p||Y||q(a(G, H)) .
Here, we interpret x° = 1 for x > 0 and 0° = 0.
Proof: If « = 0, X and Y are independent and the result is true, so we can suppose
o > 0. We build up to the result in three steps, starting with the case r = co.

(@.r=00

|[EXY — EXEY| < 2||X]|,|IY1l,-

Proof of (a): Holder’s inequality implies |[EXY| < ||X 1,11l and Jensen’s inequality
implies

IX11,11Y1l, > |EIXIE|Y]| > [EXEY];

thus, the result follows from the triangle inequality.
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(b)X,Y e L™

|[EXY — EXEY| < 4||X|| o [1Y [l o(G, H).

Proof of (b): Let 17 = sgn(E(Y|G) - EY) € G. EXY = E(XE(Y|G)), so

|EXY - EXEY| = |E(X(E(Y|G) — EY))]
< |IXllEIE(Y|G) - EY]|
= [IXlloE(mE(Y|G) - EY)
= |IXlloo (E(#Y) — EREY).

Applying the last result with X = Y and Y = # gives
|E(Yn) — EYEq| < ||Y|lo|E(Cn) — ECEnl,
where { = sgn(E(y|H) - En). Nown =1, - 1zand { = 1. - 1p, so

|E({n) - ECEn| = |P(ANC)-P(BNnC)-P(ANnD)+P(BnD)
—-P(A)P(C) + P(B)P(C) + P(A)P(D) — P(B)P(D)|
< 4a(G, H).

Combining the last three displays gives the desired result.
(c)g=co,1/p+1/r=1

1-1/p
|EXY — EXEY)| s6||X||p||Y||OO(oc(G,H)) .

Proof of (c): Let C = a 7||X]|,, X; = X1x1<c)» and X, = X - X,.

|[EXY - EXEY| < |EX,Y - EX,EY| + |[EX,Y - EX,EY]|
< 4aClYlleo + 2/ Yl E1Xo|

by (a) and (b). Now
EIX,) < CPVE(XP1y<c) < CPTEIXP.
Combining the last two inequalities and using the definition of C gives
[EXY - EXEY| < 4a" P ||X|I, 1Yl + 201 ¥ lloa P IXILP*,

which is the desired result.
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Finally, to prove Lemma 5.7, let C = oc‘l/qIIYllq, Y = Yy<0)s andY,=Y-Y,.

|[EXY — EXEY| < |EXY, - EXEY,| + |[EXY, - EXEY,|
< 6CIIXI|,a ™7 + 21XI1, 1Y lo,

where 6 = (1-1/p) ! by (c) and (a). Now
ElY)’ < CTPE(Y |1 jy<c) < COEIY|%.
Taking the 1/6 root of each side and recalling the definition of C
1Y,llg < CCON Y17 < olT009 1)),
so we have
|EXY - EXEY| < 60”9 Y||, |11, + 211 X[ o4 ]|/ O/9,

proving Lemma 5.7.
Combining Theorem 5.11 and Lemma 5.7 gives:

Theorem 5.12: Suppose X,,, n € Z is an ergodic stationary sequence with EX, = 0,
E|X0|2+6 < 0o. Let a(n) = a(F_,,, 0(X,)), where F_, = ¢({X,,,, m < —n}), and suppose

o0
Z “(n)5/2(2+5) < oo.

n=1

IfS, =X, +---X,, then

S
™ - oW(),

vn

where

o’ = EXg +2 ) EX,X,.

n=1
Proof: To use Lemma 5.7 to estimate the quantity in Theorem 5.11 we begin with

IE(XIF)II, = sup{E(XY) : Y € F, |[Y]l, =1} (%).

Proof of (*): If Y ¢ F with ||Y||, =1, then using a by now familiar property of
conditional expectation and the Cauchy-Schwarz inequality

EXY = E(E(XY|F)) = E(YE(X|F)) < |[EXIF)IIIY]],

Equality holds when Y = E(X|F)/||E(X|F)|l,.
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Letting p = 2 + § and g = 2 in Lemma 5.7, noticing

13
qg 22+9)

1
1,1
r b
and recalling EX,, = 0, showing thatif Y ¢ F_,

[EXo Y1 < 81Xol15,51l Y Ila(r)*/ 3+,
Combining this with (*) gives

NEXoIF_Il, < 8||Xo||2+506(n)6/2(2+8),

and it follows that the hypotheses of Theorem 5.11 are satisfied.
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6 Empirical process

We have so far considered the weak convergence of stochastic processes with values
in complete separable metric spaces. The main assumption needed to study such
convergence in terms of bounded continuous functions is that the measures be defined
on Borel subsets of the space. This influences theorems like the Prokhorov theorem.
In other words, the random variables with values in separable metric spaces. If we
consider the space D[0, 1] with sup norm, we get non-separability. We note that if we
consider the case of empirical processes

X, () = Va(F,(t) - t),

where F .(t) is the empirical distribution function of i.i.d. uniform random variable,
then the above X, is not a Borel measureable function in D[0, 1] with sup norm
if we consider the domain of X, (., w) with we[O, 1]? Thus, the weak convergence
definition above cannot be used in this case. Dudley [6] developed an alternative weak
convergence theory. Even this cannot handle the general empirical processes, hence
some statistical applications. One therefore has to introduce outer expectations of
X, of possibly non-measureable maps as far as limit of X,, is Borel measureable. We
shall also consider convergence in probability and almost sure convergence for such
functions. We therefore follow this idea as in [25]. A similar idea was exploited in the
basic paper on invariance principle in non-separable Banach spaces by Dudley and
Phillips ([7], see also [18]).

Let (Q, A, P) be an arbitrary probability space and T : Q — R an arbitrary map.
The outer integral of T with respect to P is defined as

E*T=inflEU: U > T, U : O — R measurable and EU exists}.

Here, as usual, EU is understood to exist if at least one of EU* or EU" is finite. The
outer probability of an arbitrary subset B of Q is

P*(B) =inf{P(A): A > B, A € A}

Note that the functions U in the definition of outer integral are allowed to take the
value oo, so that the infimum exists.

The inner integral and inner probability can be defined in a similar fashion.
Equivalently, they can be defined by E,T=-E*(-T) and P,(B)=1 - P*(B),
respectively.

In this section, D is metric space with a metric d. The set of all continuous,
bounded functions f : D — Ris denoted by C;, (D).
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Definition 6.1: Let (Q,, A,, P,), « € I be a net of probability spaces, X,, : Q, — D, and
P,=Po X;l. Then we say that the net X, converges weakly to a Borel measure L, i.e.,
P, = Lif

E'fX,) — deL, for every f € C,(D).

Theorem 6.1 (Portmanteau): The following statements are equivalent:
@ P,=1L;
(i) liminfP,(X, € G) = L(G) for every open G;
(iii) limsup P*(X, € F) < L(F) for every closed set F;
(iv) liminfE, f(X,) > f fdL for every lower semicontinuous f that is bounded
below;
(v) limsupE*f(X,) < j fdL for every upper semicontinuous f that is bounded
above;
(vi) limP*(X, € B) =lim P, (X, € B) = L(B) for every Borel set B with L(dB) = 0.
(vii) liminfE, f(X,) > f fdL for every bounded, Lipschitz continuous, non-
negative f.

Proof: (ii) and (iii) are equivalent by taking complements. Similarly, (ii) and (v) are
equivalent by using f by —f. The (i) = (vii) is trivial.

(vii) = (ii) Suppose (vii) holds. For every open G, consider a sequence of Lipchitz
continuous functions f,, > 0 and f,, T 1; (f,,(x) = md(x, D — G) > 1, then

liminf P, (X, € G) > liminfE, (f(X,)) > j fndL.

Letting m — oo, we get the result.
(ii) = (iv) Let f be lower semicontinuous with f > 0. Define

mZ

fu = Y(/m)g, G; = {x: f(x) > i/m}.

i=1
Thenf,, < fand|f,,(x)-f(x)| < 1/mwhen x < m. Fix m, use the fact G, is open for all i,

P(X € G,) = medL.

mZ
liminf E,f(X,) > iminf E, £, (X,) 2 ) %
i=1

Let n — oo, we get (iv) for non-negative lower semi continuous f. The conclusion
follows.

Since a continuous function is both upper and lower continuous (iv) and (v) imply
(i). We now prove (vi) is equivalent to others. Consider (ii) = (vi). If (i) and (iii) hold,
then

L(int B) < liminf P, (X, € int B) < limsup P*(X, € B) < L(B).

If L(6B) = 0, we get equalities giving (vi).
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(vi) = (iii) Suppose (vi) holds and let F be closed. Write F¢ = {x : d(X, F) < €}. The
sets oF¢ are disjoint for different € > 0, giving at most countably many have non-zero
L-measure. Choose €,, | 0 with L(0F°") = 0. For fixed m,

limsup P*(X,, € F) < limsup P*(X, € F ") = L(Fem).
Let m — oo to complete the proof.

Definition 6.2: The net of maps X, is asymptotically measurable if and only if
E*f(X,) - E.f(X,) —» 0, foreveryf e C,(D).

The net X, is asymptotically tight if for every e > O there exists a compact set K, such
that

liminf P, (X, € K°)>1-¢, foreveryd > 0.

Here K° = {y € D : d(y, K) < 8} is the “8-enlargement” around K. A collection of Borel
measurable maps X, is called uniformly tight if, for every e > 0, there is a compact K
with P(X, € K) > 1 - ¢ for every a.

The § in the definition of tightness may seem a bit overdone. Its non-asymptotic
tightness as defined is essentially weaker than the same condition but with K
instead of K°. This is caused by a second difference with the classical concept of
uniform tightness: the enlarged compacts need to contain mass 1 — ¢ only in the
limit.

Meanwhile, nothing is gained in simple cases: for Borel measurable maps in a
Polish space, asymptotic tightness and uniform tightness are the same. It may also
be noted that, although K?° is dependent on the metric, the property of asymptotic
tightness depends on the topology only. One nice consequence of the present tight-
ness concept is that weak convergence usually implies asymptotic measurability and
tightness.

Lemma 6.1: (i) X, = X, then X, is asymptotically measurable.
(ii) If X, = X, then X, is asymptotically tight if and only if X is tight.

Proof: (i) This follows upon applying the definition of weak convergence to both f
and —f.

(ii) Fix e > 0. If X is tight, then there is a compact K with P(X € K) > 1 — €. By the
Portmanteau theorem, liminf P, (X, € K% > P(X € K%), which is larger than 1 — ¢ for
every § > 0. Conversely, if X, is tight, then there is a compact K with liminfP_ (X, €
K)>1-e. By the Portmanteau theorem, P(X € K_S) >1-e.Letd | O.
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The next version of Prohorov’s theorem may be considered a converse of the
previous lemma. It comes in two parts, one for nets and one for sequences, neither
one of which implies the other. The sequence case is the deepest of the two.

Theorem 6.2 (Prohorov’s theorem): (i) If the net X, is asymptotically tight and asym-
ptotically measurable, then it has a subnet X, 5 that converges in law to a tight Borel
law.

(ii) If the sequence X,, is asymptotically tight and asymptotically measurable, then
it has a subsequence X,,], that converges weakly to a tight Borel law.

Proof: (i) Consider (E*f(X,))sec, ) @s @ net in product space

[T 1l Iflleo]s

feCy(D)

which is compact in product topology. Hence, the net has convergent subnet. This
implies there exist constants L(f) € [-|lfll, lIfllo] such that

E"f(Xy5) — L(f) for f € Cy(D).

In view of the asymptotic measurability, the numbers are the limits of corresponding
E.f(X,). Now,

Lfi+f) < lim(E*fl(Xa(ﬁ)) + E*fZ(sz(ﬁ)))
= L(fy + L(f)
= lim(E*fl(Xa(ﬁ)) + E*fZ(X(x(ﬁ)))
< L(fy +£).

Thus, L: C,(D) — R is a additive, and similarly L(Af) = AL(f) for « € R and L is
positive. L(f) > Ofor f > 0.Iff,,, | 0, L(f,,,) | O.Toseethis, fixe > 0. Thereisa compact
set K such that liminf P, (X, € K% >1 - ¢ for all § > 0. Using the Dini theorem, for
sufficiently large m, |f,,(x)| < € for all x € K. Using compactness of K, there exists
8 > 0, such that |f,,(x)| < 2¢ for every x € K°. One gets A, < {X, € K°} measurable
(Lix exsy)« = 14, - Hence,

L(f) = UmEf,y(X)" (g exs))-

+(1{XaeK6})* < 2€ + ||f1"006.
Thus, L is a measure.

(ii) For m € N, K, is a compact set with liminfP, (X, € Kfn) >1- % for § > 0.
Since K, is compact, the space C,(K,,) and {f : f € C,(K,,), If ()l < 1, for x € K,,,} are
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separable. Using Tietze’s theorem, every f in the unit ball of C,(K,,) can be extended
to an f in the unit ball of C,(D). Hence, ball of C, (D) the restrictions of which to K,,
are dense in the unit ball of C,(K,,). Pick such a countable set for every m, and let =
be countably many functions obtained. For a fixed, bounded f, there is a subsequence
X,,j such that E* f (X";) converges to some number. Using diagonalization, one obtains
a subsequence such that

f*f(an) — L(f) for fe=.

with L(f) € [-1,1].

Let f € C,(D) taking values in [-1, 1]. Fix € > 0, and m. There exists f,, € = with
If(x) = fn()| <€ for x € K,,,. Then as before there exists § > 0 such that |f(x) —
fm(@)] < eforevery x € K‘sm. Then,

IE*f(Xn) - E*fm(Xn)l < Elf(Xn) _fm(Xn)I*(l{XneK;;n})*
+2P* (X, ¢ K°) < 2¢ + %

for n sufficiently large. Then E* f(Xn}_) has the property that, for # > O, there is a
converging subsequence of numbers that is eventually with distance #. This gives
convergence E*f (an) to a limit following as in the proof of (i) we can get the result.

Remark: Let D, ¢ D and X and X, take values in D,. Then X, — X as maps in D, iff
X, — X as maps in D if D and D, are equipped with the same metric. This is easy
from Portmaneteau theorem (ii) as each G, < D, open is of the form G n D, with G
openin D.

6.1 Spaces of bounded functions

A vector lattice F ¢ C,(D) is a vector space that is closed under taking positive parts:
if feF, then f =f v 0 € F. Then automatically f v g € F and f A g € F for every
f,g € F. A set of functions on D separates points of D if, for every pair x # y € D,
thereis f € F with f(x) # f(y).

Lemma 6.2: Let L, and L, be finite Borel measures on D.

(i) If [ fdL, = [ fdL, for every f € C,(D), then L = L,.

Let L, and L, be tight Borel probability measures on D.

(i) If f fdL, = j fdL, for every f inavectorlattice F ¢ C, (D) that contains the constant
functions and separates points of D, then L, = L,.

Proof: (i) For every open set G, there exists a sequence of continuous functions with
0 < f,, T 1. Using the monotone convergence theorem, L,(G) = L,(G) for every open
set G. Since L,(D) = L,(D), the class of sets {A : L;(A) = L,(A)} is a o-field 2 open sets.
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(ii) Fix € >, take K compact so that L,(K)L,(K) > 1 — €. Note that by the Stone
Weirstvass theorem, = (containing constant and separating points of K) lattice ¢
C,(K) is uniformly dense in C, (k). Given g € C,(D) with 0 < g <1, take f € =, with
lg(x) — f(x)] < efor x € K. Then

| jgdL1 - Jgszl <| J(f A1) dL, - inf(f AD)*dL, + €.

This equals 4e as (f A1)* € =. Hence, one can equals 4e as (f A1)" € =. Hence, one can
prove [ gdL, = [ gdL, forall g € C,(D).

Lemma 6.3: Let the net X, be asymptotically tight, and suppose E*f(X,)-E,f(X,) — O
for every f in a subalgebra F of C,(D) that separates points of D. Then the net X, is
asymptotically measurable.

Proof: Fix e > 0 and K compact such that lim sup P* (X, ¢ K°%) < eforall 8 > 0. Assume
without loss of generality that = contains constant functions. Then restrictions of the
function =into K are uniformly dense in C;,(K) as before. Hence, given f € C, (D), there
exists g € = with |[f(x) —g(x)| < % for x € K. As K is compact one can show there exists
ad > Osuch that |f(x) - g(x)| < § for x € K°. Let {X, € k°}, be a measurable set. Then
PO, \ {X, € K%},) = P*{X, ¢ K°) and for « large

P(f(X,)" - f(Xa)).] > €}

Let T be an arbitrary set. The space I®(T) is defined as the set of all uniformly
bounded, real functions on T: all functions z : T — R such that

llzll7 := sup |z(¢)] < o0
teT

It is a metric space with respect to the uniform distance d(z,, z,) = ||z, — z,l|7-

The space I°(T), or a suitable subspace of it, is a natural space for stochastic
processes with bounded sample paths. A stochastic process is simply an indexed
collection {X(t) : t € T} of random variables defined on the same probability space:
every X(t) : QO — Ris ameasurable map. If every sample path ¢t — X(t, w) is bounded,
then a stochastic process yields a map X : Q — [*°(T). Sometimes, the sample paths
have additional properties, such as measurability or continuity, and it may be fruitful
to consider X as a map into a subspace of I°°(T). If in either case the uniform metric
is used, this does not make a difference for weak convergence of a net, but for
measurability it can.

In most cases, a map X : Q — I°(T) is a stochastic process. The small amount
of measurability this gives may already be enough for asymptotic measurability. The
special role played by the marginals (X(t,), ..., X(t;)), which are considered as maps
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into R¥, is underlined by the following three results. Weak convergence in [*°(T) can
be characterized as asymptotic tightness plus convergence of marginals.

Lemma 6.4: Let X, : O, — [°°(T) be asymptotically tight. Then it is asymptotically
measurable if and only if X (¢) is asymptotically measurable for every t € T.

Lemma 6.5: Let X and Y be tight Borel measurable maps into °°(T). Then X and Y
are equal in Borel law if and only if all corresponding marginals of X and Y are equal
in law.

Theorem 6.3: Let X, : O, — [*°(T) be arbitrary. Then X, converges weakly to a tight
limit if and only if X, is asymptotically tight and the marginals (X(t,), ..., X(¢;)) con-
verge weakly to a limit for every finite subset ¢, ..., t; of T. If X, is asymptotically tight
and its marginals converge weakly to the marginals (X(¢,), ..., X(¢;)) of a stochastic
process X, then there is a version of X with uniformly bounded sample paths and
X, =X

Proof: For the proof of both lemmas, consider the collection F of all functions f :
[®°(T) — R of the form

f(2) = g(z(ty), ..., 2(t;)), g€ Cy®RY), t,,...,t, € T,k eN.

This forms an algebra and a vector lattice, contains the constant functions, and
separates points of [°°(T). Therefore, the lemmas are corollaries of Lemmas 6.2 and
6.3, respectively. If X, is asymptotically tight and marginals converge, then X, is
asymptotically measurable by the first lemma. By Prohorov’s theorem, X, is relatively

compact ||z||; = sup |Z(t)| < co. To prove weak convergence, it suffices to show that
teT
all limit points are the same. This follows from marginal convergence and the second

lemma.

Marginal convergence can be established by any of the well-known methods
for proving weak convergence on Euclidean space. Tightness can be given a more
concrete form, either through finite approximation or with the help of the Arzela-
Ascoli theorem. Finite approximation leads to the simpler of the two characterizations,
but the second approach is perhaps of more interest, because it connects tightness to
continuity of the sample paths t — X (t).

The idea of finite approximation is that for any e > O, the index set T can be
partitioned into finitely many subsets T; such that the variation of the sample paths
t — X, (t) is less than € on every one of the sets T;. More precisely, it is assumed that
for every €, > 0, there exists a partition T = Uf-‘:l T; such that

lim sup P*( sup sup |X,(s) - X,(t)| > e) <. (6.1)

i s,teT;
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Clearly, under this condition, the asymptotic behavior of the process can be described
within error margin €,# by the behavior of the marginal (X,(¢,), ..., X,(¢;)) for
arbitrary fixed points t; € T;. If the process can thus be reduced to a finite set of
coordinates for any €, # > 0 and the nets or marginal distributions are tight, then the
net X, is asymptotically tight.

Theorem 6.4: A net X, : Q, — I°°(T) is asymptotically tight if and only if X_(¢) is
asymptotically tight in R for every ¢t and, for all ¢, % > O, there exists a finite partition
T= Uf.‘zl T; such that (6.1) holds.

Proof: The necessity of the conditions follows easily from the next theorem. For
instance, take the partition equal to disjointified balls of radius é for a semi-metric
on T as in the next theorem. We prove sufficiency.

For any partition, as in the condition of the theorem, the norm ||X,||; is bounded
by max;|X,(t;)| + ¢, with inner probability at least 1 — #, if t; € T; for each i. Since a
maximum of finitely many tight nets of real variables is tight, it follows that the net
[1X, |7 is asymptotically tight in R.

Fix { > 0 and a sequence ¢, | 0. Take a constant M such that lim sup P*(||X,,||; >
M) < {, and for each € = ¢,, and y = 27", take a partition T = UfleT ; as in (61). For the
moment, m is fixed and we do not let it appear in the notation. Let z,, ..., z, be the
set of all functions in I*°(T) that are constant on each T; and take on only the values
0, tep, ..., t[M/ey €, Let K, be the union of the p closed balls of radius ¢,, around
the z;. Then, by construction, the two conditions

IX,llr <M and  sup sup |X,(s) - X,(t)]| < €y

i s,teT;

imply that X, € K,,. This is true for each fixed m.

Let K =5 K,.. Then K is closed and totally bounded (by construction of the
K,, and because ¢ | 0) and hence compact. Furthermore, for every & > 0, there is an
m with K% > nmlel-. If not, then there would be a sequence z,, not in K?, but with
zy € Np_ K; for every m. This would have a subsequence contained in one of the balls
making up K;, a further subsequence eventually contained in one of the balls making
up K,, and so on. The “diagonal” sequence, formed by taking the first of the first
subsequence, the second of the second subsequence, and so on would eventually be
contained in a ball of radius ¢,, for every m, hence Cauchy. Its limit would be in K,
contradicting the fact that d(z,,, K) > é for every m.

Conclude that if X, is not in K?, then it is not in N_, K; for some fixed m. Then

m
limsup P* (X, ¢ K°) < limsup P*(X“ ¢ nmlei) i+ YoM,
i=1

This concludes the proof of the theorem.
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The second type of characterization of asymptotic tightness is deeper and relates
the concept to asymptotic continuity of the sample paths. Suppose p is a semi-
metric on T A net X, : Q, — [®(T) is asymptotically uniformly p-equicontinuous in
probability if for every €, # > O there exists a § > 0 such that

limsupP*( (511p8|X «(8) = X, ()] > e) <.
o p(s,t)<

Theorem 6.5: A net X, : Q, — [®(T) is asymptotically tight if and only if X (¢) is
asymptotically tight in R for every t and there exists a semi-metric p on T such that
(T, p) is totally bounded and X, is asymptotically uniformly p-equicontinuous in
probability. If, moreover, X, = X, then almost all paths t — X(t, w) are uniformly p-
continuous; and the semi-metric p can without loss of generality be taken equal to any
semi-metric p for which this is true and (T, p) is totally bounded.

Proof: (<). The sufficiency follows from the previous theorem. First, take 6 > 0 suffi-
ciently small so that the last displayed inequality is valid. Since T is totally bounded,
it can be covered with finitely many balls of radius §. Construct a partition of T by
disjointifying these balls.

(=). If X, is asymptotically tight, then g(X,) is asymptotically tight for every
continuous map g; in particular, for each coordinate projection. Let K; c K, ¢ ... be
compacts with liminf P, (X, € K} )1 - 1/m for every e > 0. For every fixed m, define a
semi-metric p,, on T by

Pm(s, t) = sup |z(s) —z(t)|, s,teT.

zeK,,

Then (T, p,,) is totally bounded. Indeed, cover K,, by finitely many balls of radius #,
centered at z,, ..., z. Partition R¥ into cubes of edge #, and for every cube pick at
most one t € T such that (z,(¢), ..., z,(t)) is in the cube. Since z,, ..., z; are uniformly
bounded, this gives finitely many points ¢, ..., t,. Now the balls {t : p(t, ¢;) < 3#} cover
T: tis in the ball around ¢; for which (z,(t), ..., z;(t)) and (z,(t;), ..., z,(¢t;)) fall in the
same cube. This follows because p,,(¢, t;) can be bounded by 2sup, g inf; ||z - z;l| +
sup; |z;(t;) - z;(¢)|. Next set

ps, t) = Zz (P (s, ) A).

Fix n > 0. Take a natural number m with 27™ < y. Cover T with finitely many p,,-
balls of radius #. Let t;, ..., t, be their centers. Since p; < p, < ..., there is for every
tat; with p(t, t;)) < Yr, 27 p(t, t;) + 27™ < 24. Thus, (T, p) is totally bounded for p,
too. It is clear from the definitions that |z(s) — z(t)| < p,(s, t) for every z € K,,, and
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that p,, (s, t) A1< 2" p(s, t). Also, if ||z, — z||; < € for z € K,,, then |z,(s) — z,(t)] <
2¢ + |z(s) — z(t)| for any pair s, t. Deduce that

K¢ ¢ {z: sup |z(s) — z(t)| < 3e}.

m
p(s,t)<2™™Me

Thus, for given e and m, and for § < 2",

.. 1
11%1an*(P25£6 X, (s) - X, (t)| < Be) >1- p

Finally, if X, = X, then with notation as in the second part of the proof, P(X € K,,) >
1 — 1/m; hence, X concentrates on Uy~ K,.. The elements of K,, are uniformly p,,-
equicontinuous and hence also uniformly p-continuous. This yields the first state-
ment. The set of uniformly continuous functions on a totally bounded, semi-metric
space is complete and separable, so a map X that takes its values in this set is tight.
Next if X, = X and X is tight, the X, is asymptotically tight and the compacts for
asymptotical tightness can be chosen equal to the compacts for tightness of X. If X has
uniformly continuous paths, then the latter compacts can be chosen within the space
of uniformly continuous functions. Since a compact is totally bounded, every one of
the compacts is necessarily uniformly equicontinuous. The combination of these facts
proves the second statement.

6.2 Maximal inequalities and covering numbers

We derive a class of maximal inequalities that can be used to establish the asymptotic
equicontinuity of the empirical process. Since the inequalities have much wider
applicability, we temporarily leave the empirical framework.

Let y beanondecreasing, convex function with y(0) = 0 and X arandom variable.
Then the Orlicz norm || X ”w is defined as

[1X1l, = inf{C >0: Ew(%) < 1},

Here the infimum over the empty set is co. Using Jensen’s inequality, it is not difficult
to check that this indeed defines a norm. The best-known examples of Orlicz norms
are those corresponding to the functions x — x? for p > 1: the corresponding Orlicz
norm is simply the L,,-norm

1x11, = (E1x?) "
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For our purpose, Orlicz norms of more interest are the ones given by v,,(x) = e’ —1
for p > 1, which give much more weight to the tails of X. The bound x” < y,,(x) for all
nonnegative x implies that || X]| » < 1IXI |wp for each p. It is not true that the exponential
Orlicz norms are all bigger than all L,-norms. However, we have the inequalities

X1, < IIXIl, (og2)"*™,  p<gq

I1X1l, < pYIXIl,,

Since for the present purposes fixed constants in inequalities are irrelevant, this
means that a bound on an exponential Orlicz norm always gives a better result than a
bound on an L,-norm.

Any Orlicz norm can be used to obtain an estimate of the tail of a distribution. By
Markov’s inequality,

1

MM>msdwmwmwzwmmm»saﬁﬁm3

Fory,(x) = e —1, this leads to tail estimates exp(-Cx?) for any random variable with
a finite ¥p-norm. Conversely, an exponential tail bound of this type shows that || X| |wp
is finite.

Lemma 6.6: Let X be a random variable with P(|X| > x) < Ke ™ for every x, for
1/
constants K and C, and for p > 1. Then its Orlicz norm satisfies ||X||% < ((1 +K)/C) p.

Proof: By Fubini’s theorem,

x| 0
E(emxw _ 1) -F J De%ds = JP(|X| > s'P)De" ds
0 0

Now insert the inequality on the tails of |X| and obtain the explicit upper bound

1/
KD/(C-D). This s less than or equal to 1 for D~'/? greater than or equal to ((1+K) /C ) p.
This completes the proof.

Next consider the y-norm of a maximum of finitely many random variables. Using
the fact that max |X;|” < } |X;|”, one easily obtains for the L,-norms

1/p
maxXi“ = | E max X? <m'P max || X;||,.
1<ism p 1<ism ! 1<ism

A similar inequality is valid for many Orlicz norms, in particular the exponential ones.
Here, in the general case, the factor m"P becomes w‘l(m).
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Lemma 6.7: Let y be a convex, nondecreasing, nonzero function with y(0) =
and limsup, ,_,, y(X)y(y)/y(cxy) < co for some constant c. Then for any random
variables X;, ..., X,,,

maxX|| =< Ky (m) max| X,

1<i<m

for a constant K depending only on v.

Proof: For simplicity of notation, assume first that y(x)y(y) < y(cxy) forall x, y > 1.
In that case, y(x/y) < y(cx)/y(y) forall x > y > 1. Thus, for y > 1and any C,

Xl y(clXil/C) IXily, 1%l
maxq/( )_max[W +1//(C—y)1{c—y<l}]

< y WE) 1//(CIX I/C) (D).

Set C = cmax ||Xi||V, and take expectations to get

max |X;] m
Ey| —— 1
w( Cy ) v(y) D).

When (1) < 1/2, this is less than or equal to 1 for y = v (2m), which is greater than 1
under the same condition. Thus,

-1
max X;|| <y @m)c max|IXill,-

By the convexity of y and the fact that y(0) = 0, it follows that y~'(2m) < 2y~!(m).
The proof is complete for every special y that meets the conditions made previously.
For a general y, there are constants o < 1and 7 > 0 such that ¢(x) = oy(zx) satisfies
the conditions of the previous paragraph. Apply the inequality to ¢, and observe that
X1, < IXlls/(o7) < IXIl, /o.

For the present purposes, the value of the constant in the previous lemma is
irrelevant. The important conclusion is that the inverse of the y-function determines
the size of the y-norm of a maximum in comparison to the y-norms of the individual
terms. The y-norms grows slowest for rapidly increasing . For y(x) = e’ — 1, the
growth is at most logarithmic because

y,'(m) = (log(1 + m))""?

The previous lemma is useless in the case of a maximum over infinitely many varia-
bles. However, such a case can be handled via repeated application of the lemma via
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a method known as chaining. Every random variable in the supremum is written as
a sum of “little links,” and the bound depends on the number and size of the little
links needed. For a stochastic process {X; : t € T}, the number of links depends on the
entropy of the index set for the semi-metric

d(s, t) = [1Xs = Xqll,,-

The general definition of “metric entropy” is as follows.

Definition 6.3 (Covering numbers): Let (T, d) be an arbitrary semi-metric space. Then
the covering number N(e, d) is the minimal number of balls of radius € needed to
cover T. Call a collection of points e-separated if the distance between each pair of
points is strictly larger than e. The packing number D(e, d) is the maximum number
of e-separated points in T.

The corresponding entropy numbers are the logarithms of the covering and
packing numbers, respectively.

For the present purposes, both covering and packing numbers can be used. In all
arguments one can be replaced by the other through the inequalities

N(e, d) < D(e, d) < N(g d).

Clearly, covering and packing numbers become bigger ase | 0. By definition, the semi-
metric space T is totally bounded if and only if the covering and packing numbers are
finite for every e > 0. The upper bound in the following maximal inequality depends
on the rate at which D(e, d) grows as € | 0, as measured through an integral criterion.

Theorem 6.6: Let v be a convex, nondecreasing, nonzero function with y(0) =0
and limsup, ,_,., ¥(X)y(y)/y(cxy) < co, for some constant c. Let {X,:t € T} be a
separable stochastic process with

[1X _Xt”w < Cd(s,t), foreverys,t

for some semi-metric d on T and a constant C. Then, for any #, § > 0,

7
|| sup |xs-xt|H sK[Ju/"l(D(e, d))de + Sy (DX(y, d)) |,
d(s,t)<é 14 o

for a constant K depending on y and C only.
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Corollary 6.1: The constant K can be chosen such that

where diamT is the diameter of T.

diamT
sup |X, - Xt|||w <K I v {(D(e, d))de,
S,
0

Proof: Assume without loss of generality that the packing numbers and the associa-
ted “covering integral” are finite. Construct nested sets T, c T; ¢ --- ¢ T such that
every T; is a maximal set of points such that d(s, t) > ;12‘f for every s, t € T;, where
“maximal” means that no point can be added without destroying the validity of the
inequality. By the definition of packing numbers, the number of points in T; is less
than or equal to D(27, d).

“Link” every point t;,; € T},; to a unique t; € T; such that d(t;, t;,;) < 727, Thus,
obtain for every t,,; a chain t,;, t;, ..., t, that connects it to a point in T,. For
arbitrary points s;,;, t,; in Ty,;, the difference in increments along their chains can
be bounded by

k k
|(X5k+1 - Xso) - (kan - Xfo)| = | ;)(Xsfﬂ - XS/‘) - Z(:)(Xtin - Xy
J= )=

]

)

k
< ZZ max |X, - X, |
j=0

where for fixed j the maximum is taken over all links (u, v) from Tj,,t0 T;. Thus, the jth
maximum is taken over at most #},, links, with each link having a y-norm [|X, - X, Il,,
bounded by Cd(u, v) < Cy27. It follows with the help of Lemma 6.7 that, for a constant
depending only on y and C,

S,teTiy

k : .
max |(X, - X,,) - (X, - Xt0)|||w <K Yy 0w, dyn2?
j=0
n
< 4K J v {(D(e, d))de. ©6.2)
0

In this bound, s, and t, are the endpoints of the chains starting at s and ¢,
respectively.

The maximum of the increments |X; - X, | can be bounded by the maximum
on the left side of (6.2) plus the maximum of the discrepancies X, — X, | at the end of
the chains. The maximum of the latter discrepancies will be analyzed by a seemingly
circular argument. For every pair of endpoints s, f, of chains starting at two points in
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T, within distance § of each other, choose exactly one pair s;,4, t;,; in Tj,q, With
d(Sgs1» te1) < 8, whose chains end at s, t,. By definition of T, this gives at most
D*(n, d) pairs. By the triangle inequality,

X, - X | < (X, ~ Xq,) — (X, - X, )l + X .

Sk+1 st Sk+1 - th+1
Take the maximum over all pairs of endpoints s, t, as above. Then the corresponding
maximum over the first term on the right in the last display is bounded by the
maximum in the left side of (6.2). It y-norm can be bounded by the right side of this

equation. Combine this with (6.2) to find that

max X . -X X -X
s,tETkH,d(s,t)«Sl( s = Xsy) = (X = X))l

,

n
< 8K I ¥~ (D(e, d)de + || max |X,, - X, ]|,
0

Here the maximum on the right is taken over the pairs s;,4, t;,; in T},; uni-
quely attached to the pairs s, t, as above. Thus the maximum is over at most
D*(, d) terms, each of whose y-norm is bounded by 4. Its y-norm is bounded by
Ky™'(D*(n, d))8.

Thus, the upper bound given by the theorem is a bound for the maximum of
increments over Ty,,. Let k tend to infinity to conclude the proof. The corollary follows
immediately from the previous proof, after noting that, for # equal to the diameter of
T, the set T, consists of exactly one point. In that case s, = ¢, for every pair s, ¢, and
the increments at the end of the chains are zero. The corollary also follows from the
theorem upon taking # = § = diamT and noting that D(y, d) = 1, so that the second
term in the maximal inequality can also be written 61//‘1(D(;1, d)). Since the function
€ y/’l(D(e, d)) is decreasing, this term can be absorbed into the integral, perhaps at
the cost of increasing the constant K.

Although the theorem gives a bound on the continuity modulus of the process, a
bound on the maximum of the process will be needed. Of course, for any ¢,

diamT
+K I v (D(e, d))de.
0

[sup x| < 1%,
t

Nevertheless, to state the maximal inequality in terms of the increments appears
natural. The increment bound shows that the process X is continuous in y-norm,
whenever the covering integral f: v (D(e, d))de converges for some > 0. Itis a small
step to deduce the continuity of almost all sample paths from this inequality, but this
is not needed at this point.
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6.3 Sub-Gaussian inequalities

A standard normal variable has tails of the order x™! exp (—é) and satisfies P(|X| > x)

< 2exp (— ";) for every x. In this section, we study random variables satisfying similar
tail bounds.

Hoeffding’s inequality asserts a “sub-Gaussian” tail bound for random variables
of the form X = } X; with X, ..., X,, i.i.d. with zero means and bounded range. The
following special case of Hoeffding’s inequality will be needed.

Theorem 6.7 (Hoeffding’s inequality): Let aj, ..., a, be constants and ¢, ..., €, be

independent Rademacher random variables, i.e., with P(¢; = 1) = P(¢; = -1) = 1/2.
Then

x2
P(l Zeiail > X) < 2e
for the Euclidean norm ||al|. Consequently, || ¥ €;all,, < Véllall.
Proof: For any A and Rademacher variable e, one has Ee’ = (¢! + e™) < e,\z/z, where

the last inequality follows after writing out the power series. Thus by Markov’s
inequality, for any A > 0,

_ n e 2l
P( Zeia,- > x) < e MEeMXin i ¢ (T llall =M

The best upper bound is obtained for A = x/||a||* and is the exponential in the
probability bound of the lemma. Combination with a similar bound for the lower
tail yields the probability bound. The bound on the y-norm is a consequence of the
probability bound in view of Lemma 6.6.

A stochastic process is called sub-Gaussian with respect to the semi-metric d on
its index set if

XZ
P(IX, — X,| > x) <2e 2%, foreverys,te T,x>0

any Gaussian process is sub-Gaussian for the standard deviation semi-metric d(s, t) =
(X — X;). Another example is Rademacher process

n

n

X, :Zaiei, aeR
i=1

for Rademacher variables ¢, ..., €,,. By Hoeffding’s inequality, this is sub-Gaussian for
the Euclidean distance d(a, b) = ||a — b||.
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Sub-Gaussian processes satisfy the increment bound ||X; — X t||1,,2 < V6d(s, t).
Since the inverse of the y,-function is essentially the square root of the logarithm, the
general maximal inequality leads for sub-Gaussian processes to a bound in terms of
an entropy integral. Furthermore, because of the special properties of the logarithm,
the statement can be slightly simplified.

Corollary 6.2: Let {X, : t € T} be a separable sub-Gaussian process. Then for every
§>0,
B

E sup |X,- X, < Kj \log D(e, d)de,

d(s,t)<é8
(s,t) o

for a universal constant K. In particular, for any ¢,

(o]

ESL[lp Xl < EIX, |+ I(J vlog D(e, d)de.

0

Proof: Apply the general maximal inequality with y,(x) = e —1and n = 4. Since
v, (m) = y/log(1 + m), we have y;"(D*(8, d)) < V2y,"(D(3, d)). Thus, the second term
in the maximal inequality can first be replaced by \/561//‘1(D(;1, d)) and next be
incorporated in the first at the cost of increasing the constant. We obtain

5
| sup 1x,-x,, SKJ\/log(1+D(e, d))de.
0

d(s,t)<6

Here D(e, d) > 2 for every e that is strictly less than the diameter of T. Since log(1+m) <
21log m for m > 2, the 1inside the logarithm can be removed at the cost of increasing K.

6.4 Symmetrization
Lete,, ..., €, bei.i.d. Rademacher random variables. Instead of the empirical process
1 n
fr= Py =Pf = 3 (F(X)) - Pf),
i1
consider the symmetrized process

1 n
fr Pof == Y ef (X,
i=1
where ¢, ..., €, are independent of (X, ..., X,). Both processes have mean function
zero. It turns out that the law of large numbers or the central limit theorem for one
of these processes holds if and only if the corresponding result is true for the other
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process. One main approach to proving empirical limit theorems is to pass from P, — P
to P, and next apply arguments conditionally on the original X’s. The idea is that, for
fixed X, ..., X,;, the symmetrized empirical measure is a Rademacher process, hence
a sub-Gaussian process, to which Corollary 6.2 can be applied.

Thus, we need to bound maxima and moduli of the process P, — P by those
of the symmetrized process. To formulate such bounds, we must be careful about
the possible nonmeasurability of suprema of the type ||P,, — P||. The result will be
formulated in terms of outer expectation, but it does not hold for every choice of an
underlying probability space on which X, ..., X,, are defined. Throughout this part,
if outer expectations are involved, it is assumed that Xj, ..., X,, are the coordinate
projections on the product space (X", A", P"), and the outer expectations of functions
Xy, ..., X)) = h(Xy, ..., X,,) are computed for P". thus “independent” is understood in
terms of a product probability space. If auxiliary variables, independent of the X’s,
are involved, as in the next lemma, we use a similar convention. In that case, the
underlying probability space is assumed to be of the form (X", A", P") x (Z,C, Q)
with X, ..., X,, equal to the coordinate projections on the first n coordinates and the
additional variables depending only on the (n + 1)st coordinate.

The following lemma will be used mostly with the choice ®(x) = x.

Lemma 6.8 (symmetrization): For every nondecreasing, convex ® : R — R and class
of measurable functions F,

E*o(|IP, - Pllg ) < E0(2IIP)lI ),
where the outer expectations are computed as indicated in the preceding paragraph.

Proof: Let Y, ..., Y, be independent copies of Xi, ..., X,, defined formally as the
coordinate projections on the last n coordinates in the product space (X", A", P") x
(Z,C,Q) x (X", A", P"). The outer expectations in the statement of the lemma
are unaffected by this enlargement of the underlying probability space, because
coordinate projections are perfect maps. For fixed values X, ..., X,,

1 n
1Py =Pl = sup 7| 3 (70X ~ EF(Y,)

.1
< By sup | () - f(¥)].

where E}, is the outer expectation with respect to Y, ..., ¥, computed for P" for given,
fixed values of X, ..., X,,. Combination with Jensen’s inequality yields

1 n *Y

o(11P, - Pl ) < EY<D(||; Y (Fx) - F)|| )

i=1
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where *Y denotes the minimal measurable majorant of the supremum with respect to
Yy, ..., Y, still with X;, ..., X,, fixed. Because @ is nondecreasing and continuous, the
»Y inside @ can be moved to Ey. Next take the expectation with respect to X;, ..., X,,
to get

o(1IP, - Pll) < E}E’;@(H%i(ﬂ&) —f(Yi>)||F)-
i=1

Here the repeated outer expectation can be bounded above by the joint outer expec-
tation E* by Fubini’s theorem.

Adding a minus sign in front of a term (f(X;) — f(Y;)) has the effect of exchanging
X; and Y;. By construction of the underlying probability space as a product space, the
outer expectation of any function f(X, ..., X,,, Y3, ..., Y,,) remains unchanged under
permutations of its 2n arguments, hence the expression

E° <1><||— ei(FX) - F0)|| )
is the same for any n-tuple (ey, ..., e,) € {-1, 1}". Deduce that

(S P||F)<EE“®(|| &(F(X) - F(D)|| )

Use the triangle inequality to separate the contributions of the X’s and the Y’s
and next use the convexity of ® and triangle inequality to bound the previous
expression by

s o (25 Yo ) « Sui0( 2 Yeron], )

By perfectness of coordinate projections, the expectation Ey y is the same as Ey and
E7 in the two terms, respectively. Finally, replace the repeated outer expectations by
a joint outer expectation. This completes the proof.

The symmetrization lemma is valid for any class F. In the proofs of Glivenko-
Cantelli and Donsker theorems, it will be applied not only to the original set of
functions of interest, but also to several classes constructed from such a set F. The
next step in these proofs is to apply a maximal inequality to the right side of the lemma,
conditionally on X, ..., X,,. At that point, we need to write the joint outer expectation
as the repeated expectation E}E,, where the indices X and ¢ mean expectation over
X and € conditionally on remaining variables. Unfortunately, Fubini’s theorem is
not valid for outer expectations. To overcome this problem, it is assumed that the
integrand in the right side of the lemma is jointly measurablein (X;, ..., X,;, €, -.., €,)-
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Since the Rademacher variables are discrete, this is the case if and only if
the maps

Ky ) = | Y et )| 63)
i=1

are measurable for every n-tuple (e, ..., e,) € {-1, 1}". For the intended application of
Fubini’s theorem, it suffices that this is the case for the completion of (X", A", P™).

Definition 6.4 (measurable class): A class F of measurable functions f: X — R
on a probability space (X, A, P) is called a P-measurable class if the function
(6.3) is measurable on the completion of (X", A", P") for every n and every vector
(ess ..., €,) € R™.

6.4.1 Glivenko-Cantelli theorems

In this section, we prove two types of Glivenko-Cantelli theorems. The first theorem
is the simplest and is based on entropy with bracketing. Its proof relies on finite
approximation and the law of large numbers for real variables. The second theorem
uses random L;-entropy numbers and is proved through symmetrization followed by
a maximal inequality.

Definition 6.5 (Covering numbers): The covering number N(e, F, || - ||) is the minimal
number of balls {g : ||g—f|| < €} of radius e needed to cover the set F. The centers of the
balls need not belong to F, but they should have finite norms. The entropy (without
bracketing) is the logarithm of the covering number.

Definition 6.6 (bracketing numbers): Given two functions [ and u, the bracket [I, u] is
the set of all functions f with I < f < u. An e-bracket is a bracket [I, u] with [Ju-1|| < €.
The bracketing number Nj;(e, F, || - ||) is the minimum number of e-brackets needed
to cover . The entropy with bracketing is the logarithm of the bracketing number. In
the definition of the bracketing number, the upper and lower bounds u and [ of the
brackets need not belong to F themselves but are assumed to have finite norms.

Theorem 6.8: Let F be a class of measurable functions such that N (e, F, L;(P)) < co
for every € > 0. Then F is Glivenko-Cantelli.

Proof: Fix € > 0. Choose finitely many e-brackets [I;, u;] whose union contains F and
such that P(u; - I;) < € for every i. Then for every f € F, there is a bracket such that

(P,-P)f <(P,-Pu;+Pu;—f)<(P,-Plu; +e¢

printed on 2/10/2023 4:51 PMvia . Al use subject to https://ww.ebsco.confterms-of-use



EBSCChost -

130 — 6 Empirical process

Consequently,

sup(P,, - P)f <max(P, - P)u; +e€.
feF t

The right side converges almost surely to ¢ by the strong law of large numbers
for real variables. Combination with a similar argument for inf; (P, — P)f yields
that limsup ||[P, — P||¢ < e almost surely, for every ¢ > 0. Take a sequence ¢, |
0 to see that the limsup must actually be zero almost surely. This completes the
proof.

An envelope function of a class F is any function x — F(x) such that |f(x)| < F(x),
for every x and f. The minimal envelope function is x — sup;|f(x)|. It will usually be
assumed that this function is finite for every x.

Theorem 6.9: Let F be a P-measurable class of measurable functions with envelope F
such that P*F < co. Let Fy; be the class of functions f1{F < M} when f ranges over F.
Iflog N(e, Fy, Li(P,)) = 0p(n) forevery eand M > 0, then ||P, - P||- — 0 both almost
surely and in mean. In particular, F is Glivenko-Cantelli.

Proof: By the symmetrization lemma, measurability of the class F, and Fubini’s
theorem,

E*||P, - Pllg < 2E4E,

7 Lo,

< 2ELE,

n
% Zeif(Xi)”FM +2P*F{F > M}
1

i=

by the triangle inequality, for every M > 0. For sufficiently large M, the last term
is arbitrarily small. To prove convergence in mean, it suffices to show that the first
term converges to zero for fixed M. Fix X, ..., X,,. If G is an e-net in L,(P,) over F,,,
then

1 n
- i;e,-f(X,-)HFM <E,

EE

% i;eif(Xi)HG + €.

The cardinality of G can be chosen equal to N(e, Fy, L,(P,)). Bound the L,-norm on
the right by the Orlicz-norm for y,(x) = exp(x?) - 1, and use the maximal inequality
Lemma 6.7 to find that the last expression does not exceed a multiple of

l n
\/1 +log N(e, Fy, Li(P,)) 1;‘:161(]3;) ||; ;eif(Xi)H%lX +¢, (6.4)
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where the Orlicz norms || - ”1//2|X are taken over ¢, ..., €, with X, ..., X,, fixed. By
Hoeffding’s inequality, they can be bounded by /6/n(P,f*"?, which is less than
v6/nM. Thus, the last displayed expression is bounded by

V1 +10g N(e, Fy, Ll(Pn))\/gM fepe

It has been shown that the left side of (6.4) converges to zero in probability. Since it
is bounded by M, its expectation with respect to X, ..., X,, converges to zero by the
dominated convergence theorem. This concludes the proof that ||P, — P|| in mean.
That it also converges almost surely follows from the fact that the sequence ||P,, - P||=
is a reverse martingale with respect to a suitable filtration.

Fact: Let F be class of measurable functions with envelope F such that P*F < co.
Define ), be the o-field generated by measurable functions h : X* — R that are
permutation symmetric in first arguments. Then

E(”Pn_P”*F'ZrHl)Z||Pn+1_P||*|: a.s.

6.4.2 Donsker theorems

Uniform entropy: In this section, the weak convergence of the empirical process will
be established under the condition that the envelope function F be square integrable,
combined with the uniform entropy bound

| sup flog NeeliFlo,. F. Ly(@)de < co. 6.5)
0

Here the supremum is taken over all finitely discrete probability measures Q on (X, A)
with ||F ||f),2 = IdeQ > 0. These conditions are by no means necessary, but they
suffice for many examples. The finiteness of the previous integral will be referred to
as the uniform entropy condition.

Theorem 6.10: Let F be a class of measurable functions that satisfies the uniform
entropy bound (6.5). Let the class Fs = {f —g:f,g € F, |If — gllp, < 6} and F(fo be

P-measurable for every § > 0. If P*F? < oo, then F is P-Donsker.

Proof: Let §,, | O be arbitrary. By Markov’s inequality and the symmetrization lemma,

" 2 .1 &
P(G,lle,, > ) < JE ﬁ;ei f(Xi>||F6n.
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Since the supremum in the right-hand side is measurable by assumption, Fubini’s
theorem applies and the outer expectation can be calculated as ExE.. Fix X, ..., X,,. By
Hoeffding’s inequality, the stochastic process f — {n"/2 Yo ef(X;)} is sub-Gaussian

for the L,(P,,)-seminorm
1 n
Wfll, = = D F2X)).
nig

Use the second part of the maximal inequality Corollary 6.2 to find that

= ieif(Xi)HF < J \log N(e, Fy,, Ly(P,)de.
=1 n o

For large values of ¢, the set F;_fits in a single ball of radius € around the origin, in
which case the integrand is zero. This is certainly the case for values of € larger than
0,,, where

6’ = sup A1 ||—Zf (X)“

Furthermore, covering numbers of the class F4 are bounded by covering numbers of
F. ={f-g:f,g € F}.Thelatter satisfy N(e, F,, L,(Q)) < N%(e/2, F, L,(Q)) for every
measure Q.

Limit the integral in (6.5) to the interval (0, 0,), make a change of variables, and
bound the integrand to obtain the bound

O/ IIFl,
sup \/log N(ellFllg2, F, Ly(Q))del|Fll .

0

Here the supremum is taken over all discrete probability measures. The integrand
is integrable by assumption. Furthermore, ||F||, is bounded below by ||F,||,, which
converges almost surely to its expectation, which may be assumed positive. Use the
Cauch-Schwarz inequality and the dominated convergence theorem to see that the
expectation of this integral converges to zero provided 8,, —p- 0. This would conclude
the proof of asymptotic equicontinuity.

Since sup{Pf*: f € Fs,} — 0and Fs ¢ F, itis certainly enough to prove that

IP.f* - Pflle_ —p- O.

This is a uniform law of large numbers for the class F(fo. This class has integrable
envelope (2F)? and is measurable by assumption. For any pair f, g of functionsin F,

P,If> - g°| < P,If — gI4F < |If - glI,||4Fl],.
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It follows that the covering number N (e||2F]| Ifl, F(fo, L,(P,))is bounded by the covering

number N(el||F|l,, Fo»> Lo(P,)). By assumption, the latter number is bounded by a
fixed number, so its logarithm is certainly op(n), as required for the uniform law of
large numbers, Theorem 6.8. This concludes the proof of asymptotic equicontinuity.

Finally, we show that F is totally bounded in L,(P). By the result of the last
paragraph, there exists a sequence of discrete measures P, with ||[(P, — P)f 2”':00
converging to zero. Take n sufficiently large so that the supremum is bounded by €’.
by assumption, N(e, F, L,(P,)) is finite. Any e-net for F in L,(P,) is a V2e-net in L,(P).
This completes the proof.

6.5 Lindberg-type theorem and its applications

In this section, we want to show how the methods developed earlier of symmetrization
and entropy bounds can be used to prove a limit theorem for sums of independent
stochastic processes Z,;, f € F with bounded sample paths indexed by an arbitrary
set F. We need some preliminarily results for this purpose.

Lemma 6.5.1: Let Z,, Z,, ...Z, be independent stochastic processes with mean 0. With
|| ||z denoting the sup norm on F, we get

* 1 = * = * =
E oI Y eiZille) < @1 Y Zille) < E* QI ) &(Zi - i)
i=1 i=1 i=1

for every non-decreasing, convex @ : R — R and arbitrary functions y4; : F — R.

Proof: The inequality on the right can be proved using techniques as in the
proof of symmetrization Lemma and is left to the reader. For the inequality
on the left, let Y,,Y,,...Y, be independent copy of Z,,...Z, defined on

n n

(T1CX;, a;, P)x(Z, G, Q)x [1(X;, a;, P;) (the ¢;’s are defined on (Z, G, Q)) and depend
i=1 1

on the last n co-ordinates exactly as Z,, ...Z,, depend on the first n coordinates. Since

EY;(f) = 0, the LHS of the above expression is the average of
1 n
E* (15 Y &lZi(f) - EYi(Dlle),
i=1

where (e;...e,) range over {-1, 1}
By Jenssen’s inequality

E; y0(15 XL elZi(H) - Yi(Dllg)
< E; @15 YL 1Zi() - YiOllle)-

Apply triangle inequality and convexity of ® to complete the proof.

printed on 2/10/2023 4:51 PMvia . Al use subject to https://ww.ebsco.confterms-of-use



EBSCChost -

134 — 6 Empirical process

Lemma 6.5.2: For arbitrary stochastic processes Z,, ...Z,,, arbitrary functions y,, ...p,:
F >R,andx >0

B.OP (Y. Zillg > x)

i=1

n
< 2P (411 Y &(Z; - w)lle > x)

i=1
n

and f,(x) < inf;P(1 ¥, Z;(f)| < x/2).In particular, this is true for i.i.d. mean O processes
i=1

and ,(x) =1- 4X—"zs;,tpfvar(Zl(f)).

n
Proof: Let Y, ...Y, beindependent copy of Z;, Z,, ...Z, as defined above. If || } Z;|| >
1

x, then there is some f for which
n
1Y ZiHl > x.
1
Fix a realization of Z,, ...Z,, and corresponding f. For this realization,

B < Py(1) Yi(f)l < x/2)

i=1

n 1
< Py1) Yi(f) = Y Zi(Hl > x/2)

i=1 i=1

< Pyl Y.(Y;: = Z)llg > x/2).

i=1

The far left and far right sides do not depend on a particular f, and the inequality
between them is valid on the set

n
1Y Zllg > x}.
1
Integrate both sides with respect to Z,, ...Z, over the set to obtain
n n
BP(IIY. Zill > x) < PyPy (I Y (Y; - Z))| > x/2).
i=1 i=1
By symmetry, the RHS equals

n
E.PyPL(1 Y &(Y; - Z)llg > x/2).

i=1
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In view of triangle inequality, this is less than or equal to
n

2P (Il Y e(Y; — )l > x/4).
1

Assumingi.i.d. Z, ...Z,, one can derive the inequality from Chebyshev inequality.

Proposition 6.5.3: Let O < p < co and X;, ...X,, be independent stochastic processes
indexed by T. Then there exist constants C,, and O < g, < 1such that

* P * p —1 I3
E I;(lngIISkII < Cy(E I?SIXIIX;(II +F  (4p) ),

where F ! is quantile function of max,_, ||S,l|*. If X;, ...X,, are symmetric, then there
exist K, and (0 < v, <1 such that

E*|IS,IIP < K,(E* max |Ix; [P + G\ (v,)")
k<n

where G™! is quantile function of ||S,||*. For each p < 1, the last inequality has a
version for mean zero processes.

Proof: This is based on the following fact due to H6ffman-Jgrgensen.

Fact: Let X;, ...X,, be independent stochastic processes indexed by an arbitrary set.
Then for A, > 0

(1) P*(max |[S;|| > 31 +#) < P*(max||S,|| > \)* + P*(max ||x,|| > 7).
k<n isK<n k<n
If X;, ...X, are independent symmetric, then
2 PE(ISall > 24 +1) < 4P (IS, 11 > 1) + P*(I?(anX”Xk” > 7).

Proof of Proposition:
Take A = 5 = t in the above inequality (1) to find that for t > 0

E" max ||S,|P < 4° jP*(maX [|Sill > 4t)d(tP)
k<n k<n

< (4t +4° JP*(IISkII > 6%d(t) + 47 JP*(I?aXHXkH* > td(t")
<n
t t

< (4P + 4P P (max ||S;|| > t)E" max ||S,||P + 4’ E" max ||X;||I’. (6.6)
k<n k<n k<n
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Choose ¢ such that 4” P*(max;., ||Sill > t) < 1/2 we get the inequality. Similar argu-
ments using inequality (2) gives the second inequality.

The inequality for mean-zero processes follows using symmetrization using the
inequality above. Then one can using desymmetrization as by Jensen inequality
E*||S, | isbounded by E*(||S,,— T,||") if T, is sum of n independent copies of X;, ...X,,.

For each n, let Z,,...Z,, m, be independent stochastic processes indexed by
a common semi-metric space (F,P). These processes are defined on a product
probability space of dimension m,,. Define random semi-metric

mll
dr(f, 8) = Y (Zu(f) - Zu(@).
i=1
The condition below in Theorem 6.5.1 is random entropy condition.
Theorem 6.5.1 (Lindberg): For each n, let Z,,...Z,, m, be independent stochastic

processes indexed by (F, P) (a totally bounded semi-metric space).
Assume

mn
(@) ZE*(||Zni||f:{||Zni|||: >n) — 0 foreachsn > 0
1
(b) Foreach (f,g)e, F®F
m"
Y E(Zy(f), Z(g)) — C(f, g) finite
1

© sup Y E(Zu(f) - Zy(@)* — ford, | 0
p(f,8)<8, 1

8?’[

) j Jlog N(e, f, dnyde > 0 for 5, | 0

0

n

Then the sequence Y (Z,; - EZ,;) is asymptotically p-equicontinuous. It converges in
i=1

distrubtion in I*°(F).

Proof: The condition (a) implies Lindberg condition for {Z,;(f), i = 1, 2...m,} and using
(b) we get marginal distributions of sum converge to a Gaussian process.

Set Z°. = Z,; — EZ,; and let 8, | O arbitrary. For fixed t and n large, Chebychev
inequality and (c) give the bound

n
P(| Y (Zpi(F) = Zpi(@))] > £/2) < 1/2
i=1
for f, g with P(f, g) < §,,. By Lemma 6.8, for sufficiently large n,

m)’l
P*( sup | Y.(Zy(f) - Zpi()] > 1)
p(f.8)<6, 1
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<4P( sup | Y &(Zu(F) = Zu(@)] > t/4).
p(f,8)<6, 1

For fixed values of processes Z;, ...Z,, m, define A < R™" as a set of all vectors.

(Zni(f) - Zni(g), --'an,l(f) - ann (g))

when f, g are in the set {(f, g)eFxF, P(f, g) < §,}. By Hoffding inequality (Theorem
6.7), the stochastic process {) ¢;a;, aeA} is Gaussian for Euclidean metric on A,,.
By Corollary 6.9

E. sup | (Zulf) - Zu(@)

p(f.8)<8, im1
(o]
Sj log N(e, A, || [)de,
0

where || || is the Euclidean norm. The integrand can be bounded using N(e, 4,,, || |]) <
N?(e/2, F, dn). If, in addition,

2 PR P
0, = supZai = IIZaiIIAn,
aedy j=1 i=1

then for € > ®,, the set A, fits in the ball of radius ¢ around the origin and the
integrand vanishes. From entropy condition (d) and this, we conclude that the integral
converges to zero in outer probability if ®,, — 0in probability. Under the measurability

mYl
assumption, this gives equicontinuity of } Zgi.
1

By the Lindberg condition, there exist a sequence #,, | 0 such that
E*NIY a{llZyll > ny}lla, = O.
Thus, without loss of generality, we can assume ||Z,;|| < #, to show ©, %o.

Fix Z,, ...Z,y, and take e-net b, for A, with Euclidean norm. For every aeA,,
there is a beB,, with

n
| Y eail =1 ela; - b)Y’ +2) (a; - byeb; + Y bf] < € + 2€l|bl| + 1) ¢;bil.
i

By Hoffding inequality, Y e;b; has orlicz norm for ¥, bounded by a multiple of
n
(X, bHY? < ,(X b?)2. Apply Lemma 6.7 to the third term on the right and substitute

1
sup A, for sup over B,,.

E |l Y eaill <€ +2ell Y aill + \1+1og|B,ln,ll Y. a;ll); .
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The size of the e-net can be chosen
IB,| < N*(¢/2, F, dn)

by entropy condition d, this variable is bounded in probability.
Conclude for some constant, K

P(|Y eailly, > t) < P*(B,| > M) + K/t[€® + (€ + 1, \log M)XE|| Y a;lly?).

For M, t sufficiently large, the RHS is smaller than 1 — v, for the constant v, in
Proposition 6.5.3. More precisely, this can be achieved for M such that

P'(B,| > M) < (1-v,)/2

and t = (1-v,)/2and tis equal to (1 — v;) times the numerator of second term. Then ¢
is bigger than v-quantile of || ), eiafl la,- Thus, Proposition 6.5.3 gives

E|| ZeiafIIAn < E|| max afllAn +t <l + € + (e +n,\log M)(E]| z a?”An)(l/z).
Now (c) gives || ¥, EafllAn — 0. Combining this with Lemma 6.5.1, we get
EllY aflla, <Ell Y €ajlly, +0(1) < 8+ 8(Ell Y aill,,)

for & > max(e®, €) and sufficiently large n.
Now for ¢ > 0, ¢ < & + §+/c implies

C < (6 + 6%+ 48)2.

Applying this to ¢ = E|| Y afllA" to conclude E|| ZafHAn — 0asn — oo.

Example 1: One can look for X;...X,, i.i.d. random variables
Zyi(f) = n"Pf(X)

with f measurable functions on the sample space. From the above theorem, we get
that F is Donsker if it is measurable and totally bounded in L,(P), possesses a square
integrable envelop and satisfies with P, equal to distribution of X;...X,

6)’(

j NG, F, L(P,))de & 0.

0
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If F satisfies the uniform entropy condition in section 6.5, then it satisfies the above
condition. Thus, Theorem 6.10 is the consequence of the above theorem.

Example 2: The Lindberg condition on norms is not necessary for the CLT. In combina-
tion with truncation the preceding theorem applies to more general processes. Choose
stochastic processes Z;...Z,, m, with

mﬂ
Y P(1Zylle > n) — O fory > 0.
1
Then truncated processes Z,;, n(f) = Z,;(f)UI|1Z,;1| < u} satisfy
my m, P
Y Zui =Y Zuiyn = 00 I(F).
1 1

Since this is true for every # > 0, it is also true for #, | O sufficiently slowly. The
processes Z, ; . satisfy Lindberg condition. If they or their centered version satisfy
other conditions of Theorem 6.5.1, then the sequence

my
Z(Zni - EZni,n,,)
1

converges weakly in [*°(F). The random semi-metrics d,, decrease by truncation.
Thus, one can get the result for truncated processes under weaker conditions.

We now define measure-like processes. In the previous theorem, consider index
set F as a set of measurable functions f : x — IR on a measurable space (x, a) and the
distance be in L,(Q). Q finite measure: assume

) Jsgp \/logN(eIIFIIQYZFLZ(Q))de < oo.
0

Then the preceding theorem yields a central limit theorem for processes with incre-
ments that are bounded by random L,-metric on F. We call Z,; measure-like with
respect to random measures p,,; : f

(ZnilF) - Zyi()) < j(f — @) duyf, 8 cF.

For measure-like processes d,, is bounded by L,(} p,;)-semi-metric and entropy
condition there can be related to uniform entropy condition.

Lemma 6.5.3: Let F be a class of measurable function F. Let Z,, ...Z,,, m,, be measura-
ble processes indexed by F. If F satisfies uniform entropy condition (1) for a set Q that
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mfl
contain measures p,; and ) szdyni = 0,(1) then entropy condition d) of Theorem
1

6.5.11s satisfied.

mn
Proof: Let u, = Y u,;. Since d,, is bounded by L,(y,)-semi-metric we get
i=1

5, S/1Fl
() [logNe.Frdydes | \iog NCelFll, F. Lol delIFll,
0 0

on the set where ||F||;24n < 00. Denote by

3
J® = | sup \log N(elFllg,, F. L(Qde
0

on the set where ||F|| w >N the RHS of the equation () is bounded by J(8,/1)0p(1)
which converges to zero for # > 0. On the set where ||F]| uy <1, We have the bound
J(oo)n as n is arbitrary we get the result.

Example 1: Suppose we have independent processes Z,, ...Z,, m, are measure line.

Let F satisfy uniform entropy condition. Assume for some probability measure
Pwith [ F?dP* < co

mn
E'Y J Ffu.l{j F’du,; >n} — 0forn — 0
1
and

mn
sup E*ZJU—g)Zdyni —0asé, |0
[1f-8llp,2<6n 1

and
J Frdp,; = 0,(1).

then we get that condition of Theorem 6.5.1 (d) is satisfied and other conditions imply
the other conditions as

1Zpille < Zu(H1+4 I F'du,, for any f.
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my
This gives Y (Z,,—EZ,;) converges in [ (F) if covariance functions converge point-wise
1

and measureability conditions as satisfied.
Example 2: Consider in the above example Z,; = c,,;6, where for each n, (c,; constant)
X, ...X,, m, are independent random variables is a measurable space (x, a) with

induced measures P,; with f fdP,; exist for each element f of a class of measurable
functions f : x —» IR. We can consider weighted empirical process

my
Gu(f) = Y. culfXu) — [ fP,).
i=1
Suppose MaXygicm, [cpil = O
mn
Z CniPni <P
1

for P a probability measure P with EI",F2 < co. Note that Z;; are measure-like with
Uni = cii6xm,. Then we get under measurability condition G, converges weakly to a
Gaussian process on [*°(F). In addition, we can prove that the limiting process has
uniformly continuous sample paths with respect to L,(P)-semi-metric.
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