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INTRODUCTION

The influence of a great teacher and a superb mathematician is 

measured by his published work, the published works of his students, 

and, perhaps foremost, the mathematical environment he fostered and 

helped to maintain. In this last regard Ralph F o x ’s life was particularly 

striking: the tradition of topology at Princeton owes much to his lively 

and highly imaginative presence. Ralph Fox had well defined tastes in 

mathematics. Although he was not generally sympathetic toward topo

logical abstractions, when questions requiring geometric intuition or 

algebraic manipulations arose, it was his insights and guidance that 

stimulated deepened understanding and provoked the development of 

countless theorems.

This volume is a most appropriate memorial for Ralph Fox. The con

tributors are his friends, colleagues, and students, and the papers lie in 

a comfortable neighborhood of his strongest interests. Indeed, all the 

papers rely on his work either directly, by citing his own results and his 

clarifications of the work of others, or indirectly, by acknowledging his 

gentle guidance into and through the corpus of mathematics.

The reader may gain an appreciation of the range of F o x ’s own work 

from the following bibliography of papers published during the thirty-six 

years of his mathematical life.

L. Neuwirth

PRINCETON, NEW JE R S E Y  

OCTOBER 1974

vii
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SYMMETRIC FIBERED  LINKS 

Deborah L . Goldsmith

0. Introduction

The main points of this paper are a construction for fibered links, and 

a description of some interplay between major problems in the topology of 

3-manifolds; these latter are, notably, the Smith problem (can a knot be 

the fixed point set of a periodic homeomorphism of S ), the problem of 

which knots are determined by their complement in the 3-sphere, and 

whether a simply connected manifold is obtainable from S by surgery on 

a knot.

There are three sections. In the first, symmetry of links is defined, 

and a method for constructing fibered links is presented. It is shown how 

this method can sometimes be used to recognize that a symmetric link is 

fibered; then it reveals all information pertaining to the fibration, such as 

the genus of the fiber and the monodromy. By way of illustration, an 

analysis is made of the figure-8 knot and the Boromean rings, which, it 

turns out, are symmetric and fibered, and related to each other in an 

interesting way.

In Section II it is explained how to pass back and forth between dif

ferent ways of presenting 3-manifolds.

Finally, the material developed in the first two sections is used to 

establish the interconnections referred to earlier. It is proved that com

pletely symmetric fibered links which have repeated symmetries of order 2 

(e .g ., the figure-8 knot) are characterized by their complement in the 

3-sphere.

I would like to thank Louis Kauffman and John W. Milnor for conversa

tions.

3
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4 DEBORAH L. GOLDSMITH

I. Symmetric fibered links 

§1. Links with rotational symmetry

By a rotation of S we mean an orientation preserving homeomorphism
o

of S onto itself which has an unknotted simple closed curve A for 

fixed point set, called the axis of the rotation. If the rotation has finite 

period n, then the orbit space of its action on S is again the 3-sphere,
o o

and the projection map p : S -> S to the orbit space is the n-fold cyclic
o

branched cover of S along p(A).

An oriented link L C S3 has a symmetry of order n if there is a rota

tion of S3 with period n and axis A, where AH L = <j>, which leaves 

L invariant. We will sometimes refer to the rotation as the symmetry, 

and to its axis as the axis of symmetry of L.
o

The oriented link L C S is said to be completely symmetric relative 

to an oriented link L Q, if there exists a sequence of oriented links 

Lq, L j ,•••, = L beginning with L Q and ending with L n = L , such

that for each i  ̂ 0, the link L- has a symmetry of order n̂  > 1 with
o o

axis of symmetry Â  and projection p^: S -> S to the orbit space of the 

symmetry, and — p^(Lp. If L Q is the trivial knot, then L is

called a completely symmetric link. The number n is the complexity of 

the sequence. Abusing this terminology, we will sometimes refer to a 

completely symmetric link L of complexity n (relative to L Q) to indi

cate the existence of such a sequence of complexity n.

Figure 1 depicts a completely symmetric link L of complexity 3, 

having a symmetry of order 3.

L, L, L ,  L .

Symmetry of orrkr 3 Symmetry of order A Symmefry of order a. frW id krtoi

Fig. 1.

 EBSCOhost - printed on 2/10/2023 4:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



SYMMETRIC FIBER ED  LINKS 5

§2. Symmetric fibered links
O • ^

An oriented link L C S is fibered  if the complement S — L is a 

surface bundle over the circle whose fiber F  over 1 e S1 is the interior 

of a compact, oriented surface F  with dF = L.

Such a link L is a generalized axis for a link L 'C  S3 — L if L '
o

intersects each fiber of the bundle S — L transversely in n points. In 

the classica l case  (which this generalizes) a link L 'C  R3 is said to have 

the z-axis for an axis if each component L/- has a parametrization L ^(6) 

by which, for each angle 0 Qf the point L \(Qq) lies inside the half-plane 

0 = 0^ given by its equation in polar coordinates for R3 . We will define 

L to be an axis for L 'C  S3 if L is a generalized axis for L ' and L  

is an unknotted simple closed curve.

We wish to investigate sufficient conditions under which symmetric 

links are fibered.

LEMMA 1 (A con stru c tion ) .  Let L ' be a fibered link in the 3 -sphere and 

suppose p : S3 -> S3 is  a branched covering of S3 by S3 , whose branch 

set is a link B C S3 — L'. If L ' is a generalized axis for B, then 

L = p—1(L ')  is a fibered link.

O , o
Proof. The complement S — L fibers over the circle with fibers F g , 

s e S1 , the interior of compact, oriented surfaces Fg such that <9Fg = L'. 

Let Fg = p_ 1 (Fg) be the inverse image of the surface Fg under the 

branched covering projection. Then dFs = L  and Fg — L, s e S1 , is a 

locally trivial bundle over S1 by virtue of the homotopy lifting property 

of the covering space p : S3 — (L U p_1 (B)) -» S3 — (L'U B). Thus S3 — L 

fibers over S1 with fiber, the interior of the surface F^.

REM ARK. An exact calculation of genus (F ^ )  follows easily from the 

equation x(F\ — p_ 1 (B)) = n y (F j — B) for the Euler characteristic of the
^   -j o  o

covering space F  ̂ — p (B) Fj — B. For example, if p : S -* S is a 

regular branched covering, L has only one component and k is the
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6 DEBORAH L. GOLDSMITH

number of points in the intersection B H Fj of B with the surface , 

we can derive the inequality: genus (F j) > n genus (F j) + ^

From this it follows that if k > 1, or genus (F^) > 0, then genus ( F j )  > 0 

and L is knotted.

Recall that a completely symmetric link L C  S3 (relative to L Q) is

given by a sequence of links L q, L j y ,  = L such that for each i  ̂ 0,

the link has a symmetry of order n- with axis of symmetry A ,̂ and 
3 3such that P j : S -> S is the projection to the orbit space of the symmetry.

o
THEOREM  1. L et L C S be a completely symmetric link relative to the 

fibered link Lq, defined by the sequ en ce of links L q ,L 1,*“ , L 11 = L. If 

for each  i  ̂ 0, the projection p^(L^) of the link is a generalized  

axis for the projection p-(A-) of its axis of symmetry, then L  is a non

trivial fibered link.

Proof. Apply Lemma 1 repeatedly to the branched coverings p* : S -> S 

branched along the trivial knot pj(A-) having p^(L-) ^  for general

ized axis.

The completely symmetric links L which are obtained from a sequence 

L 0 , L 1 , " - , L n = L satisfying the conditions of the theorem, where L Q is 

the trivial knot, are called completely symmetric fibered links.

E X A M P L E S .  In Figure 2 we see a proof that the figure-8 knot L is a 

completely symmetric fibered knot of complexity 1, with a symmetry of 

order 2. It is fibered because p(A) is the braid o2 *ai closed about 

the axis p(L). The shaded disk F  with <9F = L Q intersects p(A) in 

three points; hence the shaded surface F  = p” *(F ), which is the closed  

fiber of the fibration of S3 — L over S1 , is the 2-fold cyclic branched 

cover of the disk F  branching along the points F  H p(A), and has 

genus 1.

In Figure 3, it is shown that the Boromean rings L is a completely 

symmetric fibered link of complexity 1, with a symmetry of order 3.
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SYMMETRIC FIBER ED  LINKS 7

This link is fibered because p(A) is the braid a2^ al c ôse<  ̂ about the 

axis p(L). The surface F  = p- 1 (F ) which is the closed fiber of the 

fibration of S3 — L  over S1 is not shaded, but is precisely the surface 

obtained by Seifert’s algorithm (see [12]). It is a particular 3-fold cyclic  

branched cover of the disk F  (shaded) branching along the three points 

F  fl p(A), and has genus 1.
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8 DEBORAH L. GOLDSMITH

trivial knot f j j . ?  knot Boro mean ring* *  Compkttly Symmttrlc fiUredt
link

Fig. 4.

Finally, we see from Figure 4 that these two examples are special 

cases of a class of completely symmetric fibered links of complexity 1 

with a symmetry of order n, obtained by closing the braid bn, where 

b = a2

II. Presentations of 3-manifolds 

There are three well-known constructions for a 3-manifold M: M may 

be obtained from a Heegaard diagram, or as the result of branched covering 

or performing “ surgery” on another 3-manifold. A specific construction 

may be called a presentation ; and just as group presentations determine 

the group, but not vice-versa, so M has many Heegaard, branched covering 

and surgery presentations which determine it up to homeomorphism.

Insight is gained by changing from one to another of the three types of 

presentations for M, and methods for doing this have been evolved by 

various people; in particular, given a Heegaard diagram for M, it is known 

how to derive a surgery presentation ([9]) and in some ca se s , how to 

present M as a double branched cover of S3 along a link ([2]). This 

section deals with the remaining case , that of relating surgery and branched 

covering constructions.

§1. The operation of surgery

Let C be a closed, oriented 1-dimensional submanifold of the oriented 

3-manifold M, consisting of the oriented simple closed curves 

An oriented 3-manifold N is said to be obtained from M by surgery on 

C if N is the result of removing the interior of disjoint, closed tubular
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SYMMETRIC FIBER ED  LINKS 9

neighborhoods of the c - Js and regluing the closed neighborhoods by 

orientation preserving self-homeomorphisms <£• : <9T̂  -> dT  ̂ of their 

boundary. It is not hard to see that N is determined up to homeomorphism 

by the homology classes  of the image curves ^ (m p  in Z),

where m- is a meridian on dT- (i.e ., m̂  is an oriented simple closed  

curve on dTj which spans a disk in and links c  ̂ with linking 

number +1 in Tp. If ŷ  is the homology class in HjOJT-jZ) repre

sented by 0j(m -), then let M(C;y 1 ,•••,y^) denote the manifold N ob

tained according to the above surgery procedure.

When it is possible to find a longitude on <9T̂  (i.e ., an oriented 

simple closed curve on dT- which is homologous to c- in and links 

c- with linking number zero in M), then y  ̂ will usually be expressed as 

a linear combination rm- + s£^, r, s € Z, of these two generators for 

H ^ d T ^ Z ), where the symbols m̂  and serve dually to denote both 

the simple closed curve and its homology class. An easy fact is that for 

a knot C in the homology 3-sphere M, M(C;rm + s£) is again a homology 

sphere exactly when r = ± 1.

§2. Surgery on the trivial knot in S3
o

An important feature of the trivial knot C C S  is that any 3-manifold 

S3 (C; m + k£), k € Z, obtained from S3 by surgery on C is again S3 . To
o

see this, decompose S into two solid tori sharing a common boundary, 

the tubular neighborhood T 1 of C, and the complementary solid torus 

T 2 . Let <f>: T2 -» T2 be a homeomorphism which carries m to the curve 

m + k£; then 0  extends to a homeomorphism cfe : S3 -> S3(C; , + k£).

Now suppose B C S3 is some link disjoint from C. The link 

B C S3(C;m + k£)' is generally different from the link B C S3 . Specifically, 

B is transformed by the surgery to its inverse image <£- 1 (B) under the 

identification (f> : S3 -> S3(C; m + k£). The alteration may be described in 

the following way:

Let B be transverse to some cross-sectional disk of T 2 having I 

for boundary. Cut S3 and B open along this disk, and label the two
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10 DEBORAH L. GOLDSMITH

copies the negative side and the positive side of the disk, according as 

the meridian m enters that side or leaves it. Now twist the negative 

side k full rotations in the direction of — and reglue it to the positive 

side. The resulting link is 0 - 1 (B).

For example, if B is the n-stringed braid b e B n closed about the 

axis C, where B n is the braid group on n-strings, and if c is an 

appropriate generator of center (Bn), then B C S 3(C ;m +k£) is the 

closed braid b • cK  Figure 5 illustrates this phenomenon. In Figure 6 it 

is shown how to change a crossing of a link B by doing surgery on an 

unknotted simple closed curve C in the complement of B.

B O 3 6 c  S 3(  Cj m - s i )

Be S 3 ( C >W- ^ )

Fig. 5b.

5J 8= S’ ( C; K- X)

Fig. 6.
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SYMMETRIC FIBER ED  LINKS 11

§3. The branched covering operation

For our purposes, a map f :N -» M between the 3-manifolds N and M 

is a branched covering map with branch set B C M, if there are triangula

tions of N and M for which f is a simplicial map where no simplex is 

mapped degenerately by f, and if B is a pure 1-dimensional subcomplex 

of M such that the restriction

f | N - f - 1 (B) : N — f- 1 (B) -» M —B

is a covering (see [5]). The foldedness of the branched covering f is 

defined to be the index of the covering f | N —f— *(B).

We will only consider the case  where the branch set B C M is a

1-dimensional submanifold, and the foldedness of f is a finite number, n. 

Then f and N are determined by a representation 77  ̂(M—B) -> S(n) of 

the fundamental group of the complement of B in M to the symmetric 

group on n numbers (see [4]). Given this representation, the manifold N 

is constructed by forming the covering space f': N'-> M — B corresponding 

to the subgroup of 77̂  (M—B) represented onto permutations which fix 1, 

and then completing to f : N -> M by filling in the tubular neighborhood of 

B and extending f' to f.

A regular branched covering is one for which f': N'-> M — B is a regu

lar covering, or in other words, one for which the subgroup of 77̂ (M—B) 

in question is normal. Among these are the cyclic branched coverings, 

given by representations 77̂ (M—B) -> Z n onto the cyclic group of order n, 

such that the projection f : N -» M is one-to-one over the branch set. Since 

Z n is abelian, these all factor through the first homology group

77-1 ( M — B) -> H1(M—B; Z) -> Z n .

Does there always exist an n-fold cyclic branched covering N -> M 

with a given branch set B C M? The simplest case  to consider is the 

one in which M is a homology 3-sphere. Here H1(M—B ;Z )  ^  Z©Z©***©Z  

is generated by meridians lying on tubes about each of the components of

 EBSCOhost - printed on 2/10/2023 4:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



12 DEBORAH L. GOLDSMITH

the branch set. Clearly all representations of H^M—B; Z) onto Zn 

which come from cyclic branched coverings are obtained by linearly ex

tending arbitrary assignments of these meridians to ± 1 . This guarantees 

the existence of many n-fold cyclic branched coverings of M branched 

along B, except in the case n = 2, or in case B has one component, 

when there is only one.

Should M not be a homology sphere, an n-fold cyclic covering with 

branch set B will exist if each component of B belongs to the n-torsion 

of H1 (M; Z), but this condition is not always necessary.

§4. Commuting the two operations

If one has in hand a branched covering space, and a surgery to be per

formed on the base manifold, one may ask whether the surgery can be 

lifted to the covering manifold in such a way that the surgered manifold 

upstairs naturally branched covers the surgered manifold downstairs. The 

answer to this is very interesting, because it shows one how to change 

the order in which the two operations are performed, without changing the 

resulting 3-manifold.

Let f : N -> M be an n-fold branched covering of the oriented 3-manifold 

M along B C M given by a representation cf> : 771 (M—B) -» S(n), and let 

M(C;y 1 ,•••,y^) be obtained from M by surgery on C C M, where 

C fl B = cj>. Note that the manifold N —f- 1 (C) is a branched covering 

space of M —C branched along B C M —C, and is given by the representa-

tl0n <f> = 4>°i : (Tj(M -[CU B]) -  S(n) ,

where i : 77̂  (M — [CU B]) -* 771 (M—B) is induced by inclusion. Now let the 

components of f_ 1 (T-) be the solid tori T-j, j = l ,- -* ,n ., i = l ,- - - ,k ;  

on the boundary of each tube choose a single oriented, simple closed  

curve in the inverse image of a representative of y^, and denote its 

homology class in H ^ d T .jjZ ) by y - .
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THEO REM  2. Suppose y- ,***,y- are precisely  the cla sses among
1 r

y h a v e  a representative all of whose lifts are clo sed  curves; 

let B '=  C — U C; . Then  f : N -» M induces a branched covering
i = i

f ' :  N(f- 1 (C );y jj j = 1 , - ,  iij, i -  1 , - ,  k) -  M (C;yl f - , y k)

of the surgered manifolds, branched along B U B'C M(C; y1 ,•••, y^). The 

associated representation is <$>': (M(C; y1 ,♦••, y^) — [B U B ']) -> S(n),

defined by the commutative diagram

n1 (M -  [C s  yk) -  [ B U B l ) ^ S ( i i )

and off of a tubular neighborhood f_ 1 (UTp of the surgered set , the maps 

f and f' agree.

Proof. One need only observe that the representation cf> does indeed

factor through ^ (1^ (0 ; y1 ,•••, y ^ )— [BU B ']) because of the hypothesis

that there exist representatives of y- ,•••»>': all of whose lifts are closed
11 Ar

curves.

The meaning of this theorem should be made apparent by what follows.

E X A M P L E .  It is known that the dodecahedral space is obtained from S 

by surgery on the trefoil knot K; in fact, it is the manifold S3(K; m—2).

We will use this to conclude that it is also the 3-fold cy clic branched
o

cover of S along the (2 ,5 )  torus knot, as well as the 2-fold cyclic  

branched cover of S3 along the (3 ,5 )  torus knot (see [6]). These pre

sentations are probably familiar to those who like to think of this homology 

sphere as the intersection of the algebraic variety {x eC  * : z ?  + x2 + xf = Oi 

with the 3-sphere ix e C 3 : |x| = li.

According to Figure 7, the trefoil knot K is the inverse image of the 

circle C under the 3-fold cy clic branched cover of S along the trivial
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14 DEBORAH L. GOLDSMITH

knot B. By Theorem 2, S3(K;m—£) is the 3-fold cyclic branched cover 

of S3(C;m —3f) branched along B C S3(C; m—3 £). Since C is the trivial 

knot, S3(C;m —3 f) is the 3-sphere, and B C S3(C; m—3£) is the (2 ,5 )  

torus knot, as in Figure 5a. We deduce that the dodecahedral space is 

the 3-fold cyclic branched cover of S3 along the (2 ,5 )  torus knot.

A similar argument is applied to Figure 8, in which the trefoil knot is 

depicted as the inverse image of a circle C under the double branched 

cover of S along the trivial knot B. By Theorem 2, the space  

S3(K; m— £) is then the 2-fold cyclic branched cover of S3(C;m —2£) 

along B C S3(C;m —2 f), which according to Figure 5b is the (3 ,5 )  torus
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knot. Hence the dodecahedral space is the 2-fold cyclic branched cover 

of S3  along the (3 ,5 )  torus knot.

The following definition seems natural at this point:

D E FIN IT IO N . Let L be a link in a 3-manifold M which is left invariant 

by the action of a group G on M. Then any surgery M(L; ,*•*, y^) in 

which the collection { y ^ ^ y ^ l  of homology classes is left invariant by 

G, is said to be equivariant with respect to G.

The manifold obtained by equivariant surgery naturally inherits the 

action of the group G.

TH EO REM  3 (An algorithm). Every n-fold cyclic branched cover of S 

branched along a knot K may be obtained from S3  by equivariant surgery  

on a link L  with a symmetry of order n.

Proof. The algorithm proceeds as follows.

Step 1. Choose a knot projection for K. In the projection encircle 

the crossings which, if simultaneously reversed, cause K to become the 

trivial knot K'.

Step 2. Lift these disjoint circles into the complement S — K of the

knot, so that each one has linking number zero with K.

Step 3. Reverse the encircled crossings. Then orient each curve ĉ

so that the result of the surgery S3 (c^; m + £) is to reverse that crossing

back to its original position (see Figure 6 ).
k 3

Step 4. Let C = U c  ̂ be the union of the oriented circles in S — K',
3 3 i = 1 3

and let p : S -> S be the n-fold cyclic branched cover of S along the 

trivial knot K'. Then if L = p- 1 (C), it follows from Theorem 2 that the
q

n-fold cyclic branched cover of S along K is the manifold

S3 (L ; rjiiij + ,• • • , rkmk + 2fc) obtained from S3  by equivariant surgery on

the link L , which has a symmetry of order n.

E X A M P L E  (Another presentation of the dodecahedral space). In Figure 9,
3 3 3let p : S -» S be the 5-fold cyclic branched cover of S along the

 EBSCOhost - printed on 2/10/2023 4:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



16 DEBORAH L. GOLDSMITH

Step I •

K

S+epa.

Step 4

L= f ' ( C )

trivial knot K'. Then if L = p 1 (C) as in step 4 of Figure 9, the 5-fold
o

cyclic branched cover of S along the (2 ,3 )  torus knot K is the mani

fold S3 (L ; m 5  — £5 ) obtained from S3  by equivariant surgery

on the link L.

III. Applications 

We will now derive properties of the special knots constructed in 

Section I. Recall that a knot K is characterized by its complement if no 

surgery S3 (K;m + kl?)> k € Z and k  ̂ 0 , is again S3 . A knot K is said 

to have property P if and only if no surgery S3 (K;m + kf!), k e Z and
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k  ̂ 0, is a simply connected manifold. A fake 3-sphere is a homotopy
o

3-sphere which is not homeomorphic to S .

TH EO REM  4. L et K be a completely symmetric fibered knot defined by

the sequence of knots KQ, K j,---, Kn = K, such that each  K ,̂ i  ̂ 0, is

symmetric of order n̂  = 2. Then  K is characterized by its complement.

T H EO REM  5. L et K be a completely symmetric fibered knot of com

plexity 1, defined by the sequ en ce  KQ, Kj = K, where K is symmetric

of order nj = n. / /  K is not characterized by its complement, then there 

is a transformation of S3  which is periodic of period n, having knotted
o

fixed  point set. If a fake 3-sphere is obtained from S by surgery on K, 

then there is a periodic transformation of this homotopy sphere of period n, 

having knotted fixed  point set.

T H EO REM  6.  L et  K be a completely symmetric fibered knot. Then if 

K does not have property P , there exists a non-trivial knot K'C S 

such that for some n > 1, the n-fold cyclic branched cover of S3  

branched along K' is simply connected.

It should be pointed out that the property of a knot being characterized  

by its complement is considerably weaker than property P . For example, 

it is immediate from Theorem 4 that the figure- 8  knot is characterized by 

its complement, while the proof that it has property P is known to be 

difficult (see [7]).

The following lemmas will be used to prove Theorems 4-6.

LEMMA 2.  The special genus of the torus link of type (n, nk), k  ̂ 0 ,  is  

bounded below by
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n2 (kl - 4 
4 if n even 

if n odd, k even  

Ikl(n+l)- 2 )  
4 

if n odd, k odd . 

Proof. T h e  s p e c i a l  genus of a n  oriented link L i s  defined here t o  b e  t h e  

infimum of a l l  geni of connected,  oriented sur faces  F local ly f la t ly  em- 

bedded in D4, whose oriented boundary d F  is the  link L C dD4. T h i s  
* 

s p e c i a l  genus,  which wi l l  be  denoted g (L), s a t i s f i e s  a n  inequality 

where a ( L )  i s  the  s ignature,  p(L) i s  t h e  number of components and 

q(L) i s  t h e  nullity of t h e  link L ( s e e  [81 or [lo]). T h e  lemma wil l  b e  

proved by calculat ing o ( L ) ,  p(L) and q(L), where L i s  t h e  torus link 

of type (n, nk), k > 0 ( s e e  [61); then t h e  resul t  wil l  automatically follow 

for torus links of type (n, nk), k < 0 ,  s i n c e  t h e s e  a r e  mirror images of 

the  above. 

In what follows, assume k > 0 .  

2 2 - n  k a (L)  = - 
2 

if n even  

(i) 
k(1-n2) 

2 
if n odd 

T h e  s ignature o ( L )  is the  s igna ture  of any 4-manifold which i s  the 

double branched cover  of D~ along a spanning sur face  F of L having 

the  properties described above ( s e e  [81). T h e  intersect ion of t h e  algebraic  

variety I x e c 3  : x: + x i k  + x: = 61, for smal l  8, with the  4-ball 

{ x c c 3  : 1x1 5 11 is s u c h  a 4-manifold. I t s  s ignature is ca lcu la ted  by 

Hirzebruch ([3l) t o  be  a+- a-, where 
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i i 
d = # i ( i l l i 2 ) : o <  il < n ,  O< i 2 <  nki s u c h  that  0 + + < 1 (mod 2) 

nk 2 

il i2  1 a-=#l(il , i2):0< il  < n ,  O< i2 < nk) s u c h  that  + - + - < 0 (mod 2 ) .  
nk 2 

In other words,  if we  consider  t h e  l a t t i ce  points{($ , 2): O <  i l  < n, 0' i2 < nk 

in t h e  interior of t h e  unit square  of t h e  xy-plane, and divide t h e  unit square  

9 into posi t ive and negat ive regions 

a s  in F igure  10,  then u+ is the 

(0,8 total  number of points interior t o  

the  posi t ive regions,  6 i s  the  

number of points interior t o  the 

(4 '@ (1 ,  f i )  negat ive region, and their differ- 

e n c e  of - u- is given by the  

) X formulae in (i). 

(K,o) ( j > ~ l  
Fig .  10. 

( i i )  v(L) = n-1 if n even 

n if n odd, k e v e n  

1 if n odd, k odd . 

T h e  nullity of a link L i s  def ined t o  be  one more than t h e  rank of the  

f i rs t  homology group H1(M; R )  of t h e  double branched cover  M of s3 
branched a long  L;  it  follows that  q(L) is independent of the  orientation 

of L .  T h e  resul t  in  ( i i )  c a n  b e  e a s i l y  obtained from any  of the  known 

methods for ca lcu la t ing  nul l i t ies  ( s e e  [ I l l ) .  

(ii i)  p(L) = n . 

Substituting t h e s e  quant i t ies  into t h e  inequality g ives  t h e  des i red  

lower bounds for g * ( ~ ) .  Note tha t  excep t  for the  (2, + 2 )  torus l inks,  

none of t h e  non-trivial torus l inks of type (n,nk) h a s  s p e c i a l  genus 0. 
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In the next few paragraphs, B n denotes the braid group on n strings; 

a single letter will be used to signify both an equivalence class of braids, 

and a representative of that equivalence class ; and the notation b will 

stand for the closure of the braid b (i.e ., the link obtained by identifying 

the endpoints of b).

LEMMA 3. If b e  B n(n > 3) is a braid with n strings which clo ses to 

the trivial knot, and c € B n is a generator of the center of the braid 

group B fl, then the braid b • c^, k e Z and k  ̂ 0, closes to a non

trivial knot.

Proof. F irst observe that if and b2  are n-stranded braids which 

have identical permutations and which close to a simple closed curve such
* — * —  i

that g (b1)=  g1 and g (b2) = g2 > then the closed braid bx • b2  is a 

link of n components whose special genus g (bj“ • b2) < gj + g2 - This 

is illustrated schematically by Figure 11. Imagine that the two abutting 

cubes are 4 -dimensional cubes I4  and I4 , that their boundaries are S3 , 

and that the closed braid b | (i= l,2 ) is positioned in I4  as shown, with 

the intersection bj H b2  consisting of n arcs. Span each closed braid 

b- by a connected, oriented, locally flatly embedded surface of genus ĝ  

in the cube I4 . The union of the two surfaces is then a surface in I4  =

1̂  U I2 , whose boundary in the 3-sphere <9l4  is the closed braid bj" 1 *b2 .

Fig. 11.
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The boundary 1 • b2  has n components because the braid b] " 1 • b2  

with n strings has the trivial permutation; hence attaching the two sur

faces at n places along their boundaries does not increase the genus
—— —— ——

beyond the sum g 1 + g2 - The conclusion that g (bj" *b2 ) <  gx + g2  is 

immediate.

Now suppose the conclusion of the lemma is false; i .e ., for some 

braid b e B n and k e Z, k  ̂ 0 , both b and b • c^ close to a trivial 

knot. Applying the result with bj = b and b2  = b • c^, we reach a con

tradiction of Lemma 2, which is that g*(c^) < 0 + 0 ,  where c^ is the 

torus link of type (n, nk) n > 3. Therefore Lemma 3 must be true.

Now for the proofs of the theorems:

Proof of Theorem 4. Let K '= Pn(K) and B = Pn(A n). Then K is the 

inverse image P ^ O O  of the completely symmetric fibered knot K'
o o

under a 2-fold cyclic branched cover pn : S -> S branched along the un

knotted simple closed curve B having K' for generalized axis. The 

knot K' — Kn _ 1 also has repeated symmetries of order 2, and its com

plexity is one less than that of K. Suppose K is not characterized by 

its complement. Then a 3-sphere S3 (K;m + k£), k f Z and k  ̂ 0, may
o

be obtained from S by surgery on K. According to Theorem 2, this 

3-sphere is the 2-fold cyclic branched cover of S3 (K/;m + 2k£) branched 

along B C S3 (K'; m + 2k£). By Waldhausen ([13]), S3 (K';m + 2k£) must be 

S3  and B C  S3 (K;m + 2k£) must be unknotted.

We will proceed by induction on the complexity of K. If K has com

plexity 1, then B is some braid b e B n closed about the axis K'.

Since K' is unknotted, S3 (K';m + 2k£) is again S3 , and B C S3 (K'; m + 2k£) 

is the closed braid b • c 2  ̂ in S3 , for some generator c of center (B n) 

(recall Section II, §2). This simple closed curve is knotted, by Lemma 3, 

which is a contradiction.

Next suppose that every knot of complexity n < N meeting the re

quirements of the lemma is characterized by its complement, and let K
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have complexity N. From the induction hypothesis it follows that K' is 

characterized by its complement, and that S3 (K/;m + 2k£) cannot be S3 , 

which is a contradiction.

Hence K must have been characterized by its complement.

Proof of Theorem 5 . Let B = pjCAj) and K '= PjCK). Then pj : S3  -> S3

is an n-fold cyclic branched cover of S along the trivial knot B, such

that B is a braid b € B n closed about the axis K', and K = p“ 1 (K/).

If K is not characterized by its complement in S3 , then S3 (K;m + k£)

is the 3-sphere for some k 6  Z, k  ̂ 0. It follows from Theorem 2 that

S3  is the n-fold cyclic branched cover of S3 (K;m + nk£) branched along

B C S3 (K';m + nk£). Now since K' ~  KQ is unknotted, the manifold

S3 (K';m + nk£) is S3  and the simple closed curve B C S3 (K'; m + nk£) is

the closed braid b • c 11̂ , for some generator c of the center of the braid

group B n. This closed braid is knotted by Lemma 3!

Similarly, if a fake 3-sphere S3 (K;m + k£) may be obtained from S3

as the result of surgery on K, then this homotopy 3-sphere is the n-fold
nkcyclic branched cover of the 3-sphere along the knot b -c

Proof of Theorem  6 . The knot K is defined by a sequence ,-*-,Kj = K.

Let = Pj(K-) and = P^(Ap. Then there are n^-fold cyclic
O o

branched coverings p^: S -> S branched along the unknotted simple 

closed curves B- having for generalized axis, 0 < i < j, such that 

K- = p 1  ( K ^ 1). If K does not have property P , then a homotopy 

sphere S3 (K;m+kQ> k e Z and k  ̂ 0, may be obtained from S3  by 

surgery on K. This homotopy sphere is the nj-fold cyclic branched 

cover of S3 ( K ^; m + njk£) branched along B j_ 1 C S3(K j _ 1; m +n-k£).

It is easy to show that the manifold S3 (K 'j_ 1 ; m+ njk£) — S3 (Kj_ 1 ; m + njk£) 

is simply connected, and so on, down to S3 (Kj ; m+ nj ••• n3 n2 k£). Now 

S3 (K1 ;m + nj ••• n2 k£) is the nj-fold cyclic branched cover of the manifold 

S3 (K̂ '0 ; m-t- nj ••• n2 n1 k£) branched along BQ C S3 (K'0 ; m + nj ••• ^ n jk Q .

Let B 0  be the braid b e B n closed about the axis K^. Then the
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homotopy sphere S3 (K1; m + nj ••• n3 n2 kf) is the n^fold cyclic branched

3  n .^ -n^^k
cover of S' branched along the knot b -c  J , where, as usual,

c is some generator of center (Bn).
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KNOT MODULES 

Jerome Levine

Among the more interesting invariants of a locally flat knot of codimen

sion two are those derived from the homology (with local coefficients) of 

the complement X. Since, by Alexander duality, X is a homology circle, 

one can consider the universal abelian covering X -> X and the homology 

groups Hq(X), which we denote by A^, are modules over A = Z [ t ,t - 1 ]. 

There is also product structure which will be brought in later.

The modules lA^! have been the subject of much study. In the cla ssi

cal case  of one-dimensional knots the Alexander matrix (see [F ]) gives a 

presentation of A 1 . The knot polynomials and elementary ideals are then 

derived from the Alexander matrix but depend only on A ^ These considera

tions generalize to higher dimensions (see [L 1]). The Q[t, t- 1 ]-modules 

SAq®z Q| are completely characterized in [L 1] — this is a relatively simple 

task since Q[t, t 1 ] is a principal ideal domain. We will be concerned 

here with the integral problem.

There is quite a bit already known; we refer the reader to [K], [S], [G], 

[Ke], [T l ] .  It is the purpose of this note to announce an almost complete 

algebraic characterization of the {A^} — except for the case  q = 1 .

In addition we will derive a large array of invariants of a more tractable  

nature from the iA^l and try to give an exact description of their range. 

Some of these invariants are already known, but many are new. Finally, 

we will be able to show that these invariants completely determine A^, 

under certain restrictions. In this case  the invariants consist of ideals, 

ideal c lasses and Hermitian forms over certain rings of algebraic integers.

25
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§ 1 . Module properties of {A^i

It is well-known that is finitely generated, as A-module, and 

multiplication by the element t - 1  e A defines an automorphism of Aq 

(see e.g. [K]). But the deepest property is that of duality. This has been 

observed in many ways, but I would like to present a new formulation 

which seems like the most suitable.

The duality theorem of [Mi] yields the isomorphism:

(1) Hq(X) *  (X,<9X) .

In this equation, n is the dimension of the knot (a homotopy sphere which 

is a smooth submanifold of Sn+2) and H ^ X jdX ) is the homology of the 

cochain complex H om ^C^X, dX), A). and C^(X,dX) are con

sidered as left A-modules and the right action of A on A puts the
ijc  ̂ ^

structure of a right A-module on H ^ X ^ X ). Hq(X) denotes the right 

A-module defined from the original left A structure by the usual means: 

a\ = Aa, where A e A, a e Hq(X) and A -> A is the anti-automorphism of 

A defined by f(t) -» f(t- 1 ). Now (1) represents an isomorphism of right 

A-modules.

We now use the universal coefficient spectral sequence (see e.g. [M; 

p. 323]) to reduce H ^ X ^ X ) to information about YL^(X,dX). Since A 

has global dimension 2  and the SA î are A-torsion modules, the spectral 

sequence collapses to a set of short exact sequences. Using (1) and the 

trivial nature of dX, we derive the following exact sequences for 0< q < n :

(2) 0 -  ExtA(An_ q )A) -> Aq .  Ext\(A n+1_ q) A) .  0 

and

Aq = 0 , for q > n .

To properly interpret (2) we define T^ to be the Z-torsion submodule 

of A , and F  = A /T  . It is not hard to show that T is finite (see
4  4  4  4  2  4

[K]). It can then be shown that Exty^(Aj,A) is a Z-torsion module and 

depends only on while E xt^ (A -,A ) is Z-torsion free and depends

on F j . As a result, (2) can be rewritten:

 EBSCOhost - printed on 2/10/2023 4:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



KNOT MODULES 27

(3) T q «  ExtA^T n - q ^ )  for 0 < q < n, Tq = 0 for q > n .

(4) Fq «  Exty^(Fn+1_ q, A) for 0 < q < n, Fq = 0 for q > n  .

§ 2 . Product structure on JAq!

The chains of X admit an intersection pairing with values in A (see  

[Mi], [B]) which satisfies the Hermitian property: a-/3 = (— l)^^n+2 _<̂ ^ -a ,  

when a e Cq(X), /3 e Cn+2 __q(X). This induces a Hermitian pairing in the 

usual way on H ^ X ), but, since Aq is A-torsion, this pairing is trivial.

One can then define a linking pairing: Aq x An+1_ q -> Q(A)/A where 

Q(A) is the quotient field of A, in a manner entirely analogous to the 

usual linking pairing in the Z-torsion part of the homology of a manifold.

This is just the Blanchiield pairing (see [B], [Ke], [T 2]). Under the 

canonical isomorphism Hom^(A, Q(A)/A) «  E xt^ (A ,A ), for any A-torsion 

module A, the isomorphism (4) is adjoint to the Blanchfield pairing 

(which vanishes on Z-torsion). The Hermitian property of this pairing 

yields the following strengthening of (4);

(4)' If n = 2q—1, the isomorphism of (4) corresponds to a pairing 

< , > : Fq x Fq -» Q(A)/A satisfying the Hermitian property:

< a ,/3 >  = ( - l ) q + 1  < /87a> .

One can define a more obscure linking pairing on the Z-torsion:

[ , ]  :T q x T n_ q -» Q /Z , which is Z-linear, (— symmet ri c and

admits t as an isometry i.e. [ ta ,t /3 ]  = [a,/3]. In the case  of a fibered

knot (see [S]) T is the Z-torsion subgroup of H (F ), where F  is the 
4 4

fiber, and [ , ]  coincides with the usual linking pairing on H ^ F ). This
2

pairing relates to (3) as follows. It can be shown that Exty^(T,A) % 

Homz (T ,Q /Z ), canonically, as A-modules, for any finite A-module T.

It turns out that, under this isomorphism, the isomorphism of (3) is adjoint 

to [ , ] .  The symmetry of [ , ]  yields a strengthening of (3):

(3)/ If n = 2q, the isomorphism of (3) corresponds to a Z-linear pairing

[ ,  ] :  T q x Tq -> Q /Z satisfying the symmetry property [a,/3] = (—l)^[j8 ,a].
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§3. Obstructions to smoothness of 3 -dimensional knots

If < ,> A q X A q  -» Q(A)/A is the pairing of (4)', when q is even, 

Trotter defines an associated unimodular, even, integral quadratic form A 

(see [T 2]). The signature <r(A) is a multiple of 8 . A smooth, or even 

P L  locally flat, knot bounds a submanifold M of Sn + 2  and it is not 

hard to see that a  (A) is the signature of M. We conclude from Rohlin’s 

theorem:

(5) If n = 3, the quadratic form associated to the pairing < , > Of (4 )' 

has signature = 0 mod 16, when the knot is smooth or P L  locally  

flat.

There do exist topological locally flat knots for which cr(A) ^ 0 mod 16 

(see [CS] or [Ka]).

§4. Realization Theorem: We now present our main geometric result.

TH EO REM . Suppose that {F q , T ! is a family of finitely generated  

A-modules on each of which t—1 is an automorphism. Suppose, further

more, that Fq is Z-torsion free , Tq is finite and they satisfy  (3), (3)',

(4) and (4)', for a certain n > 1, and (5) if n = 3. We also  

assume T 1 = 0 .

Then there exists a smooth n-dimensional knot in (n+2)-space with 

Fq,Tq and the pairings < ,>  of (3)' and [ , ]  of (4)' as the associated  

knot modules and linking pairings.

REM ARKS:

(i) One can realize many T 1  ̂ 0 using the twist-spinning construc

tion of Zeeman [Z].

(ii) In the case  n = 3, I do not know which (F2 ,< ,> ) not satisfying

(5) can be realized by topological knots.

(iii) In the case n = 2q—1, q > 2, the isotopy class of the knot is 

completely determined by (F  ,< ,> )  when X is (q—l)-connected  

(see [Ke] or [L 2] and [T 2]).
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(iv) This theorem includes previous results of [K], [G], [Ke]. In par

ticular, it is interesting to compare the middle-dimensional results 

of [K] and [G], which are stated in terms of presentations of Fq 

or T q.

§5. Algebraic study of iT qi

We now turn to the algebraic consideration of the modules Fq, Tq and 

pairings < , > [ , ] .  We will attempt to extract reasonable invariants, de

termine the range of these invariants and, in some cases , use the invariants 

to classify.

Let T be a finite A-module. We may, without loss of generality,

assume T is p-primary for some prime number p. Consider the associated

modules:

(^  Ker p1 p1 + 1  T

These are modules over the principal ideal domain Ap = Z /(p ) [t, t""1].

P r o p o s i t i o n .

(i) There is a natural exact sequ en ce of A ̂ -module:

0 —» T(i+1)L  T(i) —-> T(i) T (i+1) —* 0 .

(ii) Given any finite collection  iT-, T 1! of A^-modules together with 

exact seq u en ces : 0 -> Tj+ 1  -> Tj -> T 1 -> T 1 + 1  -* 0, there exists a 

finite p-primary A-module T such that T ^  «  Tj, T ^  «  T* 

and the exact sequ en ce of (i) corresponds to the given one.

The modules T ^ ,  T ^  are described entirely by polynomial in

variants in Ap. These include the local Alexander polynomials con

sidered in [K] and [G]. The proposition makes it a straightforward matter 

to write down the range of these invariants for T q if q < ~  n.

When n = 2q, there is more to be said. For example, let A. =

T q / p T(-+1y The pairing [ , ]  of (3)' yields a non-singular
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(—1 ̂ -symmetric pairing A- x A. -> Z /(p ), for which the action of t is an 

isometry. Conversely, given iA-i with such pairings, there exists T 

with a pairing [ , ]  inducing the given ones. Now it is not too difficult 

to determine those Ap-modules A. which admit such pairings. It is 

interesting that one obtains different answers for q even and odd and, 

therefore, the possible Tq, for n-dimensional knots where n = 2 q, are 

not identical.

Of course, the polynomial invariants derived here do not classify the 

module Tq, in general.

§6 . Algebraic study of iFqi

Let F  be a finitely generated A-module which is Z-tors ion-free.

Let e A be an irreducible polynomial and define:

F(<£, i) = Ker t^ /K er 0 * - 1 ; then F (0 , i) is a A/(<£)-module .

Multiplication by <f> induces a monomorphism: cf> : F(<£, i) -> F(<£, i—1). 

Suppose R = A /(0 )  is a Dedekind domain (for example, if <j> is quadratic 

this will happen when the discriminant of 0  is square-free) (see also  

[T 1]). Then the {F(<£,i)S or, even better, the quotients F(<£, i— ,i)

yield invariants of F  in the form of ideals in R, ideal c la sse s , and 

ranks. These include all the rational invariants [L I ]  and the ideal class  

invariants of [FS], and the ideals are certainly related to the elementary 

ideals of F  in A (see [F]). Furthermore, it is not difficult to determine 

the range of these invariants, for q < ^-(n+1), by constructing F  to 

realize any collection of iF(<£, i)S.

The effects of the duality relations (4), (4 ) ' on these invariants seems 

complicated, in general. This is also true of the question of classifica 

tion. Both of these problems are made manageable by imposing a 

“ homogeneity” restriction on F .

Suppose F  is ^-primary i.e . <£r F  = 0, for some r. Then we may 

consider F  as a module over A / (0 r) = S. Let SQ be the localization  

of S at the prime — SQ is a principal ideal domain. Then
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F C F ® s S0  (because F  is Z-torsion free). Now F ® S Q «  2  F j , where
i <  r

F̂  is a free So/ ( 0 1 )-module. We say F  is homogeneous of degree  d if 

F̂  = 0 for all i  ̂ d. (I’d like to thank David Eisenbud for this formulation 

of homogeneity.)

PR O PO SIT IO N .

(i) If F  is homogeneous of degree  d, then the isomorphism class  

of F  is determined by the isomorphism class of the nested  

sequ en ce of R-modules:

F O M )  -  F ( < M - 1 )  -  ••• -  F ( < M )  .

All the F (0 ,  i) are R-torsion free modules of the same rank.

(ii) Given any seq u en ce : -» -»----- » of R-forsion free

modules of the same rank, there is a homogeneous -primary 

K-module F  of degree  d, whose associated sequence  

F (0 ,  d) ->---- - F (0 ,  1) is isomorphic to the given one.

We are still assuming R is Dedekind. If the class number of R is 

zero, i.e. it is a principal ideal domain, the classification of the nested 

sequence iF ( 0 , i)S can be formulated in terms of row-equivalence of 

matrices over R. If the rank of the F ( 0 , i )  is one, the iF(<£,i)i are 

just a sequence of ideals in R, determined up to scalar multiplication.

Note that SQ = Q[t, t - 1 ] / ( 0 r) and so the condition of homogeneity 

can be formulated in terms of the polynomial invariants of [L l].

Of course these results extend to sums of homogeneous modules.

Suppose n = 2q—1, and F  has a pairing < ,>  as in (4)'. If <j> is 

relatively prime to <f>, then < ,>  pairs the 0-primary component of F  

to the 0-primary component (when F  is the sum of its 0-primary com

ponents, over all 0 ) .  No further restriction is imposed on the 0-primary 

component by the existence of < ,> .
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If 0 , 0  are associate elements of A we may assume 0 = 0  (see  

[L 1]). F ( 0 , 1) inherits a (—1) ^ + 1  -Hermitian non-degenerate pairing from 

< ,>  which we denote by:

< , > ':  F ( 0 , 1) x F ( 0 , 1) -> So/ ( 0 )  = Q(R)

the quotient field of R.

PR O PO SIT IO N . Suppose F  is  homogeneous <f)-primary of degree d, 

where 0  = 0 . Then

(i) F ( 0 , i )  is dual to F ( 0 ,d —i+1) under i.e . < F (0 ,  i),

F (0 ,d —i-hl)> C R and the induced pairing < , X  : F (0 ,i ) x  

F ( 0 ,d —i+1) -> R is non-singular.

(ii) The injections 0  : F (0 ,  i+1) -* F (0 ,  i) and F (0 ,d —i+ l)-> F (0 ,d —i) 

are adjoint with respect to < , >• and < , >-+1.

(iii) The isomorphism class of (F ,<  ,> ) is determined by that of the 

system  ({F (0 , i)S, < , >').

(iv) Given < ,> ' on F ( 0 , 1) satisfying (i), (ii), there exists < ,>  

on F  inducing it.

Thus the isomorphism classes of such (F , < , >) correspond to the 

isomorphism classes of torsion-free R-modules B equipped with a non

degenerate (non-singular, if d is odd) (—1) ^ + 1  -Hermitian pairing and a 

sequence*of submodules of equal rank: C B(j_ 1 C ---C Bc = B, where

d = 2 c—1 or 2 c —2, by setting B  ̂ = F (0 ,i ) .

A solution of the local classification problem i.e. over the completions 

of R, can be derived from [J],

The simplest case  is rank one. The lB^! are fractional ideals of R; 

the (—1) ^ + 1  -Hermitian pairing corresponds to a non-zero A e Q(R) such 

that A = ( - l ) q + 1  A and:

= R if d odd ,
(*) ABB

C R if d even .
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Equivalence becomes {B^,Ai ~  {/x B^, A//x/x!, for any non-zero /x e Q(R) 

(compare [T l]) . For example, if <f> is quadratic we may write cf> = at2  + 

(1—2 a )t  + a, for an integer a; R is Dedekind if and only if 4a—1 is 

square-free. The class number of R is a divisor of the class number of 

the ring of algebraic integers RQ in the algebraic number field generated 

by a root of cf>. Condition (*) is never satisfied if q is even and d odd. 

Otherwise such a A exists for any B.

If a = pm, for some prime p, the computations become reasonable. 

For example, the class number of R is 1/m times the class number of 

R0 , and for q and d odd, for each B, there are two (for m odd) or 

four (for m even) inequivalent Hermitian forms. If d is even, there are 

an infinite number of inequivalent forms. We record here the non-trivial 

class numbers of R for pm < 125:

class number pm

2 13, 23, 29, 31, 47, 49, 64, 67, 121

3 53, 71, 83

4 73, 89 .

BRANDEIS UNIVERSITY

REFEREN CES

[B.] Blanchfield, R. C .: Intersection theory of manifolds with operators
with applications to knot theory, Annals of Math. 65 (1957), 340-356.

[C.S.] Cappell, S., and Shaneson, J . :  On topological knots and knot 
cobordism, Topology 12 (1973), 33-40.

[F .] F o x , R. H.: A quick trip through knot theory, Topology of
3-manifolds, Ed. M. K. Fort, Jr. Prentice-Hall, Englewood, N. J .

[F .S .] Fox, R. H., and Smythe, N.: An ideal class  invariant of knots,
Proc. A.M.S. 15 (1964), 707-709.

[G.] Gutierrez, M.: On Knot Modules, Inv. Math.

[J .]  Jacobowitz, R .: Hermitian forms over local fields, Amer. J . of
Math. 84 (1962), 441-465.

 EBSCOhost - printed on 2/10/2023 4:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



34 JEROME LEVINE

[Ka.] Kato, M.: Classification of compact manifolds homotopy equivalent 
to a sphere, Sci-papers College general Educ., U. of Tokyo 22
(1972), 1-26.

[Ke.] Kearton, C.: Classification of simple knots by Blanchfield duality, 
Bull. A.M.S. 79 (1973), 952-956.

[K.] Kervaire, M.: Les noeuds de dimensions superieures, Bull. Soc.
Math. France 93 (1965), 225-271.

[L 1 ] Levine, J . :  Polynomial invariants of knots of codimension two,
Annals of Math. 84 (1966), 537-554.

[L 2 ] -------------- : Algebraic classification of some knots of codimension
two, Comm. Math. Helv. 45 (1970), 185-198.

[M.] Mac Lane, S.: Homology, Springer-Verlag, Berlin, 1963.

[Mi.] Milnor, J . :  A duality theorem for Reidemeister torsion, Annals of
Math. 76 (1962), 137-147.

[S.] Sumners, D.: Polynomial invariants and the integral homology of
coverings of knots and links, Inv. Math. 15 (1972), 78-90.

[T l] Trotter, H. F .:  On the algebraic classification of Seifert matrices,
Proceedings of the Georgia Topology Conference 1970, University 
of Georgia, 92-103.

[T 2]   : On S-equivalence of Seifert matrices, Inv. Math. 20
(1973), 173-207.

[Z.] Zeeman, E. C.: Twisting spun knots, Trans. A.M.S. 115 (1965),
471-495.

 EBSCOhost - printed on 2/10/2023 4:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



THE THIRD HOMOTOPY GROUP 
OF SOME HIGHER DIMENSIONAL KNOTS

S. J .  Lomonaco, Jr.

0 . Introduction

In 1962 Fox [1] posed the problem of computing the second homotopy
4- 0group of the complement S — k(S ) of a (4,2)-knot as a Z tt̂ -module. 

Although Epstein [3] had previously shown that n2 as an abelian group 

(without Zt^-action) was algebraically uninteresting, Fox pointed out that 

this might not be the case  when the action of 7T1 on n2 is considered. 

Since then some progress has been made. In [6 , 7, 8 ] a presentation of 

the second homotopy group of an arbitrary spun knot [5] was calculated as 

a Z n^-module and found to be algebraically non-trivial. In particular,

THEOREM 0. If k(S2) C S4  is a 2-sphere formed by spinning an arc a 

about the standard 2-sphere S2  and  (x^ ,*•*, x n : r1 ,•••, rm) is a presenta

tion of 7Tl (S4  —k(S2)), then

( X l ’ " ’ X n : S  <‘9rj/(9xi>X i = 0 ( ° <  j < “ ))

zs a presentation of 7t2 (S4  — k(S2)) as a Zn^-module, where rQ = 

r0 (x i ,- -* ,x n) is the image of the generator of 77̂ (S2 —a) under the inclu

sion map and the symbols dr^/dx^ denote the images of Fox’s derivatives

[9] in tt1 (S4  -  k(S2)).

Little appears to be known about the higher dimensional homotopy 

groups. In this paper a procedure is given for computing a presentation of 

773  of a spun knot as a Zn^-module. Specifically,

35
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TH EO REM  1. Let (S4 ,k(S2)) be defined as in Theorem 0 above. Then 

773 (S4  — k(S2 )) is isomorphic as a Zn^-module to r ( 772 (S4  — k(S2)), where 

r  denotes a functor defined by J . H. C. Whitehead [10, 11] and later 

generalized by Eilenberg and MacLane [12, 13]. H ence, as a 

Zn^-module is determined by nx and n2 .

C O R O LL A R Y  2. If tt2 ^ ^ en n 3  a s Pun knot as a group (i.e ., 

without Zn ̂ -structure) is free abelian of infinite rank. Otherwise, 773  = 0 .

THEOREM 3. L et  k(S2) C S4  be a 2-sphere formed by spinning an arc a 

about the standard 2-sphere S and (xj ,•••, xn : rx rm) be a presenta

tion of 77j(S 4  — k(S2)). L et  rQ = r0(x1 ,- - - ,x n) be the image of the genera

tor of 77-^S2  — k(S2)) under the inclusion map and and <9r-/(9xj be as 

in Theorem 0. Then as a Zn^-module, 773 (S4  — k(S2)) is generated by the

where [X^, gX^] is the Whitehead product of X  ̂ and gXj and y (X p is

symbols
y(Xp, [Xj, gXj] (1 < i, j < n; g 6 77X)

subject to the relations

2 y(X.) = [ X . ^ ]
1  < i, j < n

0  < k < m

[Xi)g Xj] = gtXj, g - 1x i ]

3 2 *represented by the composition of the Hopf map S -* S with a representa

tive of X^.

Applications of the above theorem to specific examples can be found 

in the last section of this paper.
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I would like to thank Richard Goldstein for his helpful comments 

during the preparation of this paper and also Peter Kahn for suggesting 

the above more general formulation of Theorem 0.

REM A RK . The methods of this paper may easily be extended to p-spun 

knots.

I. Definition of a Spun Knot
2  o

Let S be a standard 2-sphere in the 3-sphere S and let a be a 

polyhedral arc with endpoints lying on S2  and with interior lying entirely
■j ry

within one of the two components of S — S . (See Figure 1.)

If a is spun about S2  holding S2  fixed, a knotted 2-sphere k(S2) 

in S4  is generated [5]. If one would like to think of the spinning as 

taking place in time, then at time 0 , the arc a would appear on the 

right of the 2-sphere as indicated in the figure. It would then immediately 

vanish into another 3-dimensional hyperplane and after rotating through 

180° suddenly reappear inside S2  as indicated by the dotted arc on the 

left of Figure 1. Again it would disappear into another 3-dimensional 

hyperplane and rotate through the remaining 180° until it suddenly re- 

appeared on the right closing up the knotted 2-sphere k(S ).

ii. 3̂ = r > 2)

The complement X = S4  — k(S2) of an arbitrary spun knot (S4 ,k(S2))
3 2will not be examined in more detail. Let X Q = S — k(S ) be the 

3-dimensional cross-section shown in Figure 1, and X+ and X _  denote 

the closures of the two components of X — X Q. Let p : X -» X be the 

universal covering of X and X  ̂ = p_ 1 (X^) for i = +, 0, and — .

Since 7r1 (X^) -> 77'1 (X) are all onto, it follows from the homotopy 

sequence of the fibration

77* (X) -  X- -  Xj

that X- is connected and

1  -  7 7 *  (X*) -  7 7 *  (X-) -  7 7 *  (X) -  1
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is exact for i = +, 0, and — . Moreover, since 771 (X+) -> ^ ( X )  is an 

isomorphism onto [5], it follows that X+ are simply connected, and hence 

are the universal covers of X+. Thus,

LEMMA. The lift X 0  of X 0  to the universal cover of X is connected  

and ^ (X q )  is the kernel of 7r1 (X Q) -> tt^X ). Moreover, the lifts X+ of 

X+ are the universal covers of X+.

Since X+ and X__ both collapse to the right half of X Q via a deforma

tion arising from the spinning, Hurewicz’s theorem coupled with the 

asphericity of knots [4] yields that Hn(X+) = 0  for n > 1. Hence, from 

the Mayer-Vietoris sequence for the triad (X; X+, X _ ), we have 

Hn(X) -  Hn_ 1 (X Q) for n > 2. Thus,

L e m m a . H2 (X) ~  Hx(X0) and

Hn(X) = 0 for n >  2 .

Proof. Since X collapses to a 3-dimensional CW-complex [8 ], the last 

part of this lemma is obviously true for n > 3. H3 (X) a* H2 (XQ) can be 

shown to be equal to zero by an analysis of the following decomposition 

of x 0.
± r\

Let X Q denote the closure of the two components of X Q — S . Then
j i r j

X Q = Xq U X Q and X Q 0  = Xq fl X Q is S minus the two endpoints of a.

Hence, X Q 0  is a homotopy 1-sphere and ^ (X q q ) is infinite cy clic.

Since 7t 1 (Xq) -> tt1 (X) is an isomorphism onto [5], it follows from the 

homotopy sequence of the fibration

771 (X) Xq -> X”

~ + r .. 
that X Q are simply connected. Applying the asphericity of knots L4J, we 

~ +
have that H2 (X Q) = 0. After inspecting the Mayer-Vietoris sequence for 

the triad (X Q; Xq, X “ ), we have
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H2 (X0) -  H l(X00) .

Since the image of a generator of ^ i(X 00) in ct̂ X )  has a linking number
2

of ± 1 with respect to k(S ), n1 (X Q0) n ^ X )  is a monomorphism. Thus, 

from the homotopy sequence of the fibration

ni (X) -> x 00 -> x 00 ,

we have that X Q 0  is simply connected. Hence, H3 (X) “  H2 (X Q) =^H1 (X 00) 

= 0.

With the above lemma and J .H . C. Whitehead’s Certain E xact Sequence 

[ 1 0 , 1 1 ], we have
* n W  ~  for n > 3 .

Hence, T3 (X) = r ( 772 (X)), where T is an algebraic functor defined by 

J .H .C . Whitehead [10, 11] and later generalized by Eilenberg and MacLane 

[12, 13]. This formula gives an effective procedure for computing ^ ( X ) .

In summary, we have

TH EO REM  1. 7r3 (S4 -k ( S 2)) — r ( 77-2 (X)). H ence , the third homotopy group 

of a spun knot as a Zn^-module is determined by the first and second  

homotopy groups. As an abelian group, it is determined solely by n^.

From [3], tt2 (X), if non-zero, is free abelian of infinite rank. Since 

I"1 never decreases the rank of a free abelian group, we have

C O R O L L A R Y  2. The third homotopy group of a spun knot as a group is 

free abelian of infinite rank if the second homotopy group is non-zero. 

Otherwise, it is zero.

III. Whitehead’s Functor 

A more detailed understanding of J .  H. C. Whitehead’s functor T  

[10, 11] is needed to compute a presentation of n^(X). Very briefly, T 

is defined as follows. (For more details see [10, 11].)
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Let A be an additive abelian group. Then T(A) is an additive 

abelian group generated by the symbols

iy(a)!a e a

subject to the relations

y(—a) = y(a) (1)

y(a + b + c) -  y(b + c )  -  y(c + a) -  y(a + b) ^
+ y(a) + y(b) + y(c) = 0 .

Define [a,b ] by

y(a + b) = y (a )+  y(b) + [a,b ] .

Then, [a ,b ] is a measure of how close y is to a homomorphism.

The following relations are consequences of (1) and (2).

y(0) = 0 

2y(a) = [a, a]

[a ,b  + c] = [a ,b ] + [a, c]

[a ,b ] = [b ,a]

y(2 a0 = 2 ><aP + 2 [ai>aj]
\ i /  i i<j

y(na) = n2y(a) .

A proof of the following theorem can be found in [10, 11].

THEOREM. If A is an additive abelian group with generators a- arid 

relations b j , then T(A) is an additive abelian group with generators

lyCapi U { [ai , a-]!
J i< j

and relations

iy(bj) = Oi U {[aj, bj] = 0} .
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Finally, if A admits a group of operators W, then so does T(A), 

according to the rule
wy(a) = y(wa)

for w f W and a € A.

IV. Computation of ^3 (S4  — k(S2))

From Section II, 7t3 (X) ^  r ( 772 (X)), and from Section III, is

generated by

* nd -

In [10 ,11 ] J .H . C. Whitehead demonstrates that '] is the Whitehead 

product of £  and and that y (f )  is represented by the composition 

of the Hopf map S3  -> S2  with a representative of f . Hence, we have

TH EO REM  3. Let k(S2) C S4  be a 2-sphere formed by spinning an arc a
r\

about the standard 2-sphere S and (xj ,*••, xn : rj ,*•*, rm) a presentation 

of 7Tx(S4  — k(S2 )). L et Tq = r0 x̂ l , “ ' , x n̂  be the image of the generator of 

^ ( S 2  — k(S2)) under the inclusion map and X  ̂ and dr^/dxj be as in 

Theorem 0. Then as a Zn^-module, 7r3 (S4  — k(S2)) is generated by the 

symbols
y(X p, [Xj, gX^ (1 < i, j < n; g 6 n j

subject to the relations

2y(Xi) = [X ifX .]

y ( 2 n i (* k /axi>x j ) = 0

1  < i, j < n 

0  < k < m 

g e rrt
[X i -g  X  ( * k /5 x i>x j ]  = 0 
L j J

[Xj.gXj] = g tx - .g -^ j] ,

where [X-, gX-] is the Whitehead product of X  ̂ and  gXj and y(Xj) is 

represented by the composition of the Hopf map S3  -> S2  with a repre

sentative of X^.
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V. Examples 

E X A M P L E  1. If the trefoil is spun about S2 , then 

7r! (S4  — k(S2)) = |a, b : baba_ 1 b_ 1 a _ 1 1

77«(S — k(S )) = |B : (1—a+ba)B = 0

773 (S4 - k ( S 2 ))  =

2y(B) = [B, B]

(1—a+ba)y(B) = -  [B, baB]

[B,gB] -  [B.gaB] + [B.gbaB] = 0

[B,gB] = g [B ,g ~ 1 B]

where [B, gB] is the Whitehead product of B and gB and y(B) 

(Hopf map)o B. (See Figure 2 .)

E X A M P L E  2. If the square knot is spun about S , then 

77'1 (S4  — k(S2)) = |a,b,c : baba- 1 b- 1 a —1, ca c a - 1 c _ 1 a _ 1 1

7T9 ( S 4 - k ( S 2 ))

773 (S 4 - k ( S 2 ))

B,  C : (1—a+ba)B = 0 = (l-a+ ca)C |

2y(B) = [B ,B ], 2y(C) = [C,C]

(1—a+ba)y(B) = -  [B,baB]

(1—a+ca)y(C ) = — [C,caC]

[B,gB] -  [B,gaB] + [B.gbaB] = 0 

[C,gB] -  [C,gaB] + tC.gbaB] = 0 

[B,gC] -  [B,gaC] + [B,gcaC] = 0 

[C,gC] -  [C,gaC] + [C,gcaC] = 0 

[B,gB] = g[B ,g- 1 B], [C,gC] = g[C ,g~ 1 C] 

[B,gC] = g t C .g - ^ ]

y(B) 

y(C) 

[B ,g B ]: 

[C,gC] 

[B,gC] 

[C.gB]

where g ranges over .

COMMUNICATIONS RESEARCH DIVISION 
INSTITUTE FOR D EFEN SE ANALYSES 
PRINCETON, NEW JE R S E Y  

AND
STATE UNIVERSITY OF NEW YORK 
ALBANY, NEW YORK
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Figure 2. Spun Trefoil
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OCTAHEDRAL KNOT COVERS 

Kenneth A. Perko, Jr.

One of F o x ’s continuing interests was the investigation of noncyclic 

covering spaces of knots, i .e .,  those which belong to a homomorphism of 

the knot group onto a noncyclic group of permutations [2]. Unfortunately, 

criteria for the existence of such coverings are still rather rare [7, Ch. VI; 

10]. With the help of his suggestions on Lemma 1, we derive (geometri

cally) a necessary and sufficient condition for a knot group to have a 

representation on the symmetric group of degree four..

TH EO REM . A knot group admits a homomorphism onto S4 if and only if 

it admits one onto S3 ,

“ Only if” follows trivially from the homomorphism £  of S4  on S3  

obtained by factoring the former over its normal subgroup isomorphic to 

the four group [4]. To prove sufficiency, we show that any homomorphism 

h of a knot group on S3  may be lifted to an H on S4  such that U^=h. 

There are two types of H: those which send all meridians to elements of 

period 2 (simple H), and those which send them to elements of period 4 

(locally cyclic H). Let M3  be the branched 3-fold (dihedral) covering 

space of S3  associated with an arbitrary h [2, §§4-5].

LEMMA 1. h lifts to a simple H if and only if H1 (M3 ;Z )  maps homo- 

morphically onto Z 2 *

LEMMA 2. h lifts to a locally cy clic  H whenever some odd multiple of 

the branch curve of index 2 in M3 is strongly homologous to zero.

47
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If the condition of Lemma 2 is not satisfied, then that of Lemma 1 is 

satisfied by mapping this branch curve to the generator of Z 2 . This 

proves the theorem, modulo the lemmas.

Proof of Lemma 1 . Let i symbolize (jk) and —i symbolize (i4) where 

Ii, j, k! = I 1, 2 , 3l. Then £  maps ± i to i. h may be thought of as an 

assignment f of symbols i = 1 ,2 ,3  to segments of a knot diagram 

(x ,y ,z  at each crossing) such that f(x) + f(z) = 2f(y) mod 3, where y 

is the overpass [2, §1]. Consider, at each crossing, the cellular decom

position of M3 discussed in [8]. (C/. [7, Ch. III].) Let x ,y ,z  represent 

also the 2 -cells which lie beneath corresponding segments and are visible
o

on the right from the (i+l)th (mod 3) copy of S . Branch relations for 

H1(M3 ;Z )  insure that the other 2-cells adjoining the branch curve of 

index 2 are homologous to —x , —y , —z. At a crossing where f(x) = f(y) 

the Wirtinger-like homology relation is x—2y + z ~  0, while at a crossing  

where f(x)  ̂ f(y) it is x + y + z ~  0. This may be verified by examining 

the various possibilities. Clearly H1(M3 ;Z )  maps homomorphically onto 

Z 2  precisely when there exists a mapping m of all x, y, z on integers 

|0 , li  such that all these relations are congruent to 0  mod 2  (i.e ., there 

are either none or two l ’s at the second type of crossing and m(x)=m(z) 

at the first). If we interpret m(x) = 1 as placing a minus sign before 

f(x), we see that these conditions are identical with those for the exist

ence of a lifted, simple H. Again, this may be verified by examining the 

various possibilities.

Proof of Lemma 2. Now let i symbolize (ij4 k) and —i symbolize 

(ik4j) where i = j - 1  = k—2 mod 3. Again, £  maps ± i  to i. Here, how

ever, it is necessary to distinguish between two different types of cross

ing where f(x)  ̂ f(y), depending on whether the segment x for which 

f(x) = f(y)—1 mod 3 lies to the right or left of y. At a crossing of the 

first type, the associated equation for constructing a hypothetical 2 -chain 

which bounds t times the curve of index 2 is x + y + z = t. (Cf. [8 , §2].)  

For the second, it is x + y + z = 2t. At a crossing where f(x) = f(y), it is
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x —2y + z = 0. Here, of course, we let x , y ,  z represent also the dummy 

coefficients assigned to the 2-cells x , y , z .  Coefficients of the other

2-cells adjoining this branch curve are then t—x, t—y, t—z by the branch 

equations. If all of these equations have a solution (in integers) for some 

odd t, then we may assign signs + or — to each f(x) according as the 

congruence class mod 2 of the coefficient x is 1 or 0, and such an 

assignment will yield a lifted, locally cyclic H. Again, this latter asser

tion may be verified by examining the various possibilities to see that the 

behavior of the sign of the symbols ± i is reflected by these equations 

(interpreted as congruences mod 2) at each type of crossing.

It may be conjectured that every h lifts to a locally cyclic H.

From the coset representations of (abstract) S4 which belong to its 

nonconjugate subgroups [1] we may construct, for each H, a partially 

ordered set of connected covering spaces of S , branched along the knot, 

which cover each other as indicated below:

The covering maps may be thought of as the identification of corresponding 

points in various copies of S3 . Cf.  [9].

In view of the recent result of Hilden [3] and/or Montesinos [6], these  

coverings may be relevant to the classification problem for 3-manifolds. 

Note that any H is consistent with the D-operations of [5], discovered 

independently by Fox and adverted to in [2, §4].

NEW YORK, NEW YORK
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SOME KNOTS SPANNED BY MORE THAN ONE UNKNOTTED
SURFACE OF MINIMAL GENUS

H. F . Trotter

§1. Introduction
O

A spanning surface of a tame knot K in S is a tame orientable sur

face F  embedded in S3  with K as the unique component of its boundary. 

We call two such surfaces directly equivalent if there is an orientation-
o

preserving homeomorphism of S onto itself that carries one surface onto 

the other and preserves the orientation of K. They are said to be 

inversely equivalent if there exists such a homeomorphism reversing the
o

orientation of K (but still preserving that of S ), and are equivalent if 

they are either directly or inversely equivalent. (We shall not be con

cerned here with the stronger notion of equivalence under isotopy leaving 

K fixed.)

In this paper we give some examples of knots with spanning surfaces 

of minimal genus that fall into more than one (direct) equivalence class . 

Examples of knots of this kind have been given by Alford, Schaufele, and 

Lyon [ 1 ,2 ,6 ] .  The inequivalent surfaces exhibited in these examples 

have complements which are not homeomorphic. The contrary is true in 

our examples. In fact, all the surfaces that we consider are “ unknotted” 

in the sense of having complements which are handlebodies.

We prove inequivalence by showing that the Seifert matrices of the 

relevant surfaces are not congruent. (Thus we have some “ natural”  

examples of matrices which are S-equivalent [11] but not congruent.) This 

matrix condition is of course only sufficient for inequivalence, not neces

sary. It can be shown to hold for infinitely many knots of genus one. Al

though I am sure that it holds for infinitely many knots of every genus, I 

have no proof of the fact.
51
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In Section 2 we describe the (generalized) pretzel knots which furnish 

our examples, and in Section 3 discuss their Seifert matrices and related 

algebraic invariants. Section 4 describes the method used to prove non

congruence of the matrices, and Section 5 summarizes the arithmetic in

volved in our examples.

§2. Pretzel knots and surfaces

For (p1 ,***,Pn) an n-tuple of integers, let F C p j /^ p ^  be the sur

face consisting of two horizontal disks (lying one above the other like the 

top and bottom of a vertical cylinder) joined by n twisted but unknotted 

vertical bands, where the ith band in order has |p̂ | half-twists, right or 

left-handed according to the sign of p^. Figure 1 shows an equivalent 

surface in a form that is easier to draw. Let K(p1,--*, pn) be the knot or

F (5 , 3 ,1 ,1 ,  —3)

Fig. 1.
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link formed by the boundary of F(pj ,*••, pn). Reidemeister [8 ] called  

knots of the form K(p1 ,p 2 ,p 3) “ pretzel knots” and it seems appropriate 

to extend the terminology.

F  is orientable if and only if all the p̂  have the same parity, and 

the boundary of F  has more than one component if they are all even, or 

if they are all odd and n is even. We therefore assume from now on that 

n and all the p̂  are odd. F (p 1 ,- - - ,p n) is then an orientable surface of 

genus h, where n = 2 h + 1 .

Let us say that (<li qn) is a cy clic rearrangement of (Pi>***,Pn) 

if there is some k such that q- = pj+  ̂ for all i, interpreting the sub

scripts modulo n. (This is not quite the same thing as a cyclic permuta

tion, since the p̂  need not be distinct.) The following statement is 

obvious from the construction of F .

(2 . 1 ) If ( q ] y > q n) is a cyclic rearrangement of (p1 ,***,pn) then 

F (q 1 ,**, » qn) anc? F(pj ,•••, pn) are directly equivalent.

Contemplating the effect on Figure 1 of a 180° rotation about a vertical 

axis lying in the plane of the paper makes the following clear.

(2.2) F (p 1 ,-- - ,p n) and F (pn,--*,p 1) are inversely equivalent.

Let us call an n-tuple (px , pn) fully asymmetric if the only re

arrangements of it that yield a directly equivalent surface are the cyclic  

rearrangements. In later sections we shall prove:

(2 .3) The n-tuples ( 5 ,3 ,1 )  and (5, 3 , 1 ,1 ,1 )  are fully asymmetric.

The same method of proof can presumably yield many more examples, but 

individual calculations are required in each case , and it is difficult to 

draw general conclusions. I conjecture that all n-tuples (with n and all 

the p̂  odd) are fully asymmetric, unless both + 1  and — 1  occur in the 

n-tuple. (In the latter case  the surface has an “ unknotted” handle that 

can be moved around freely.) I have, however, no solid supporting evidence.
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It follows from (2 .2) that if (P i» '“ >Pn) is fully asymmetric, and 

(qi>**’ ,q n) is a rearrangement of it, then F (q 1 , - - ,q n) is inversely 

equivalent to F (p 1 ,--- ,p n) if and only if ( q ^ ’^qn) is a cyclic rearrange

ment of (pn, •••,?!). Thus (2.3) amounts to the following assertions.

(2 .4) F (5 , 3 ,1 )  and F ( 5 , 1, 3) are not directly equivalent but are in

versely equivalent.

(2 .5) No two of F (5 , 3 ,1 ,1 ,1 ) ,  F ( 5 ,1 ,3 ,1 ,1 ) ,  F ( 5 , 1 ,1 , 3 ,1 ) ,  and 

F ( 5 , 1 ,1 , 1, 3) are directly equivalent, but the first and fourth are 

inversely equivalent, and so  are the second and third.

Figure 2 illustrates an obvious equivalence between the knots 

K(---, p, l,-**) and K(--*, 1, p,--*). More generally, any p- equal to 1 or 

— 1  can be permuted freely in the n-tuple without changing the equivalence 

class of the associated knot. (See Conway’s remarks on “ flyping” in [5], 

and the operation of type 1).5 of Reidemeister [7].) As immediate conse

quences of (2 .4) and (2 .5) we have:

(2 .6) The knot K ( 5 ,3 ,l )  has unknotted spanning surfaces of minimal 

genus falling into at least two distinct cla sses under direct equiva

lence.

(2 .7) The knot K(5, 3 ,1 ,1 ,1 )  has unknotted spanning surfaces of mini

mal genus falling into at least four cla sses under direct equivalence, 

and into at least two cla sses under equivalence.

Similar examples obviously arise from any fully asymmetric n-tuples 

that contain 1  or — 1  (with the exception of trivial cases like

( 3 ,1 ,1 ,1 ,1 )  for which all rearrangements are cyclic).

§3. Seifert matrices of pretzel surfaces

Let F  be a spanning surface of genus h for the oriented knot K.

The Seifert form of F  is a bilinear form Sp defined on the homology 

group H1 (F ) by taking Sp (u ,v ) to be the linking number in S3  of a
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cycle representing u and a translate in the positive normal direction to 

F  of a cycle representing v. (The positive direction is to be determined 

by some convention from the orientations of S3  and K.) A Seifert matrix 

for F  is obtained by choosing a basis for H j(F ) and setting

vij = Sp(Uj,Uj) ôr 1  -  lf j -  A different choice of basis gives a 

matrix W such that W = PV P ' with P  an integral unimodular matrix.
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The integral congruence class of its Seifert matrices is thus an invariant 

of F .

Let n = 2 h + 1  and consider the surface pn) where p- =

2 k* -I- 1. The cycles ui>***>u2 h> where û  runs up the (i+ l)st band and 

down the ith, form a basis for HjCF). Define V(p1 ,***,pn) to be the 

Seifert matrix for F  with respect to the basis (—l ) 1+ 1 u^. (Putting the 

alternating sign in here keeps minus signs out of the matrix.) Following 

around u* one encounters p̂  + p^+ 1  half twists or k̂  + k*+ 1  + 1  full 

tw ists. Thus (with appropriate choice of sign convention for linking num

bers) the diagonal entry v^ is k* + k^+ 1  + 1. Cycles representing u* 

and U|+ 1  run in the same direction along the (i+ l)st band and intersect 

once on F . When one of them is pushed off in the positive direction, the 

linking number is k*+ 1  + 1 ; when the other is pushed off, the linking 

number is k̂ +1. We assume conventions to have been chosen so that

vi i+ 1  = ^i+l + anc* vi+l i = ki+1 ’ ^ en * anc* j differ by more than 
1, U| and Uj do not meet or link and v*j = Vj* = 0.

The following observations are not relevant to the rest of the paper, 

but seem to be worth commenting on.

(3 .1) The determinant of V(p1 ,-**,pn) is

n  0 4 * « - n  ki ■
i = l  i= l

The proof is a straightforward induction on n. Note that the formula in

(3.1) is a symmetric function of the p*. There is even more symmetry in 

the situation.

(3 .2) The Alexander polynomial, the signature, and the Minkowski units 

of K(p1 ,-**,pn) are independent of the order of the p^.

Since the type of K itself is unchanged under cyclic permutation, so are 

these invariants. The n-cycle (1 2 ---n) and the transposition (1 2)
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generate the whole symmetric group, so we need only examine what happens 

when pj and p2  are exchanged. We temporarily adopt the notation p̂  = 

2a f l ,  p2  = 2 b + l, p3  = 2 c + l .  The upper left corner of V(p1 ,p 2 ,---) is 

then
a + b+ 1  b + 1

b b + c + 1

Now subtract the first row from the second, change the sign of the first 

row, and perform the corresponding column operations. The resulting 

matrix is integrally congruent to the original and has the 2 x 2  matrix

a + b + 1  a

a + 1  a + c + 1

in its upper left corner, and is otherwise unchanged. It is the same as 

V(p2 , P i , - )  except that the entries a and a+1 are reversed in position. 

Now the signature and Minkowski units depend only on V + V', so they 

are unchanged [10]. The Alexander polynomial is det(tV —V')- Every 

non-zero term in the determinant of any tridiagonal matrix M must contain 

mi i+ 1  ^  ** conta ins [> so the determinant is not affected if the two

elements are exchanged. Hence the Alexander polynomials of KCp^p,^,--*) 

and K C p^p^"*) are the same.

Proposition (3 .2) gives an easy way of constructing presumably dis

tinct knots which cannot be distinguished by the “ cla s s ica l” invariants.

§ 4 . A necessary condition for congruence of Seifert matrices

If V is a Seifert matrix then ( V - V ' ) - 1  exists and has integer 

entries. Define
r v = v c v - v t 1 .

Then if W = PVP', with P  and P - 1  integral, r w = PVP'CPCV-VOP' ) - 1  

= p r v p - 1 , so for V and W to be integrally congruent it is necessary  

that r y  and r w be integrally similar.
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Let 0 (z )  = d e t( r  —zl) be the characteristic polynomial of T. Similar 

matrices of course have the same characteristic polynomial. The theory 

of integral similarity is fairly simple when 0  is irreducible (as happens 

in our examples), and a brief self-contained account of this case  can be 

found in [9], which has references to further literature. The rest of this 

section is taken almost directly from [9].

We consider matrices with a given irreducible characteristic poly

nomial 0 .  Let L  be the field Q (£) obtained by adjoining a root £  of 

cf> to the rationals, and let R be ring Z [£]  generated by £.

The row class  of L  can then be defined as the class of the ideal of 

R generated by the determinantal cofactors of the elements of the first 

row of V — £ l .  (Two ideals A, B of R are in the same class if aB = 

bA for some non-zero a, b in R. When R is the full ring of algebraic 

integers in L , this coincides with the usual definition of ideal classes  

in a Dedekind ring.) The theorem that we shall use states that two 

matrices having 0  for characteristic polynomial are similar if and only 

if they determine the same row class.

§5. Calculations

The theory and methods of calculation used here can all be found in [3].

Let X = V(5, 3 ,1 )  and Y = V (5 ,1 ,3 ) . Then

f  4 2~] y [ 2 - £  - 4 ~

r3 ii r 1  ~c - 3  ~H  2J rv - K 2
where £  is a root of 0 (z )  = z 2  — z + 6 . The discriminant of 0  is —23, 

which is square-free, so R = Z [£ ] is the full ring of integers in h  = Q (£), 

and the ideal c lasses of R form a group. The cofactors of the first row 

in r x  - £ l  are - l - £  and 2 , so the ideal A = [ 2 , l  + £ ]  represents 

the row class of Fx . Similarly, B = [2 f£ ] represents the row class of r y .
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It is easy to check that AB, A3 , and B 3 are the respective principal 

ideals (2), ( l + £ ) ,  and ( 2 —£)• Writing “  — ” for the relation of 

class equivalence, we therefore have A3 — B3 — AB =* 1, so B ^  A2 . 

Thus A ^  B only if A is principal. The norm of A is 2, and if it 

were principal, its generator would have to be an element of norm 2.

This is impossible because the norm of x + y £  is x2 + xy + 6y2 , which 

does not represent 2. Hence the row classes A and B are not the 

same, X is not congruent to Y, and we have proved (2 .4), which is 

equivalent to the first half of (2 .3).

Now let W, X , Y , Z be V(5, 3 , 1 , 1 , 1 ) ,  V ( 5 , 1, 3 , 1 , 1 ) ,  V( 5 , l ,  l , 3 , l )  

and V ( 5 , 1, 1 , 1 ,  3) respectively. Then, for example,

"■4 2 0 0 " ]  [" 2 -C  - 4  0 - 4 “

1 2  1 0  2 - 1 - C  0 - 2
W = and L  -  ( U

0 0 1 1  w 1  0  i - C  - 1

_0  0 0 1 J  |_  1 0 1

where £  is a root of £>(z) = z 4 — 2z3 + 12z2 — l lz  + 6. Generators for 

the ideal representing the row class of Tw are — £ 3 — 1, 2 £ 2 —4 £ + 2,

— £ 2 + l ,  and £ 2 +£.  It turns out to be an ideal of norm 8.
r\

The polynomial <f>(z) can be written as i/r(w) = w — llw  + 6, where 

w = z ( l —z). Then £  is a root of £ 2 + £  + co where w is a root of tjr, 

and K = Q(cu) is a quadratic subfield of L = Q (0 -  The discriminant of 

K over Q is 97 and of L over K is 1—4o>, which has norm 53. 

Since both discriminants are square-free, R = Z [ £ ] is the full ring of 

integers in L and its ideal classes form a group.

The prime 2 factors into the ideals A = [2, 1 + <H, B = [ 2 , £ ] ,  (both 

of norm 2), and C = [ 2 , £ 2 + £ + l ]  (of norm 4). AB = ( 7 £ 2 — 7£+  4) and 

A5 = (l  + £ )  are principal ideals, so A — B _1 and A5 — 1. The ideal 

given above, generated by the cofactors of the first row of r w — £  I is 

equal to A3 , and similar calculations give A2B,  AB2 , and B 3 as the 

prime factorizations of the ideals obtained from X, Y, and Z. Conse

 EBSCOhost - printed on 2/10/2023 4:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



6 0 H. F . TROTTER

quently the row classes associated with W, X , Y, and Z are the 

classes represented by A3 , A, A4 , and A2 . If these are all distinct 

then no two of W, X, Y , and Z are congruent, and (2 .5) and the second 

half of (2 .3) follow.

Otherwise A is a principal ideal generated by some element a. The 

ideals (a5) and ( l  + £ )  are equal, so a 5  = u(l + £ )  for some unit u. L  

is a totally imaginary field of degree 4, so its units are of the form ±en 

for some fundamental unit e. The fundamental unit of K = Q(cu) = Q(\/97) 

can be found in tables (e.g. in [4]); expressed in terms of co it is rj = 

—655 + 1138a>. (This can in fact be shown to be a fundamental unit for L, 

but we do not need that fact.) There are two homomorphisms f, g of R 

onto Z /3 1 Z , characterized by f ( £ ) = 7  and g (< 0 = —6. Under both f 

and g, co maps to —11 and 77 to 2. The fifth powers modulo 31 are 

±1, ±5, and ±6 . Since 2 is not a fifth power modulo 31, 77 is not a 

fifth power in R. Hence every unit is some power of 77 times a fifth 

power, and if u(l + £ )  has a fifth root for any unit u, then so has one of 

y}\1 + £ ) ,  0 < i < 4. Under g, l + £  maps to —5 which is a fifth power, 

so ̂ ( l  + C)  cannot be a fifth power unless 5 divides i. Under f, i + c

maps into 8 , so l  + £  is not itself a fifth power. This exhausts the

possibilities, and we conclude that A cannot be principal.

There is perhaps some interest in indicating the result of an example 

in which the Seifert matrices turned out to be congruent. For the surfaces 

F ( l ,  5, 7, - 3 ,  - 3 )  and F ( l ,  7, - 3 ,  - 3 ,  5) the Seifert matrices are

" 3  3 0 O l [~4 4 0 0 “

2 6 4 0  3 2  - 1  0
W = and V =

0 3 2 - 1  0  - 2  - 3  - 1

_ 0  0 - 2  - 3  J |_0 0 - 2  1 _

Then W = PVP', with
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39 -1 5 1 - 1 9 - 2 2

37 - 1 0 6 - 2 - 1 6

2 2 - 3 7 1 0 - 6

39 - 1 4 4 - 1 6 - 2 1

P is not the only matrix which will transform V into W, but it can be 

shown to be the “ sm allest”  one that will do so. One may conclude that 

congruence of Seifert matrices is not always determinable by inspection.

The calculations reported here were first done while the author held a 

visiting appointment in the Mathematical Sciences department at the 

T. J .  Watson Research Laboratories of the IBM Corporation. Extensive  

use was made of the A PL interactive programming system, which is very 

well adapted to calculation with small matrices. It is feasible to verify 

the assertions made in this section by hand calculation, but the partly 

trial and error process of arriving at them could hardly have been carried 

out without mechanical assistance. It is also a pleasure to acknowledge 

the pleasant and stimulating atmosphere of the Laboratories.
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GROUPS AND MANIFOLDS CHARACTERIZING LINKS 

Wilbur Whitten

Let L denote the tame link Kj U-* - U in the oriented three-sphere 

S3 , and let p and 77 be fixed integers; p, arbitrary; 77 = ±2. For each  

of i = 1 ,• • •, /x, let be a closed, second-regular neighborhood of , 

and let K- be a tame knot in Int . For i  ̂ j, we assume that H Vj 

= 0 . We also assume that V- has order greater than zero with respect to 

K-(i= I,***,p); that is , each meridional disk of meets K. . We set  

R(L) = Kj U .-.U K  and we call R(L) a revision of L. If, for each of 

i = 1,•••,/*, the knot bounds a disk Dj that lies in Int V-, that has 

exactly one clasping singularity, and that has as its diagonal, p as 

its twisting number, and 77 as its self-intersection number [13, §20, p. 232], 

then we shall denote R (L) by D (L ;p ,77), which we call the (p,77)-double 

of L; we call D̂  a clasping disk. In this paper, we prove that the group 

of D (L ;p ,77) characterizes the (ambient) isotopy type {L i of L when 

p > 1; see the announcement [25] for an outline of the proof.

I recently proved the same result for knots in S3  [24]. J .  Simon had 

previously characterized a knot’s type by the free product of two, suitably 

chosen, cable-knot groups [18]. The “ doubled-link” characterizations, 

presented here and in [24] and [25], are, however, more direct, cover links 

as well as knots, and yield characterizations of amphicheiral knots [24 

and 25, Corollary 2 .3]. Moreover, because ^ ( S 3  — D(L; p,  77)) characterizes 

jL i, so does S3 - D ( L ;p ,  77); see [24, Theorem 2 .1 , p. 263] and Corollary 2.2 .

§1. Preliminaries

Throughout this work, the three-sphere has a fixed orientation; all 

mappings are piecewise linear; all submanifolds, subpolyhedra; and all

63
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regular neighborhoods, at least second regular. If L  is a link in S3 , 

then {L ! denotes the (ambient) isotopy type of L ; L * , the mirror image 

of L. The complement C of an open solid torus in S3  is a toral solid ; 

if a core K of the solid torus is knotted, the manifold C is a K-knot mani- 

fold. The complement of p(>  1) mutually disjoint, open, solid tori in S 

is a p-link manifold.

Let Uj and U2  denote solid tori in S . The orientation of S in

duces an orientation in each of Uj and U2 . A homeomorphism Uj -> U2  

that preserves these orientations and that maps a longitude of Uj onto a 

longitude of U2  is faithful.

All links are to be oriented, but the orientation of a link has no bearing 

on either the link’s type or the link’s isotopy type. For a knot K, a 

meridian-longitude pair (m,A) of oriented, simple, closed curves is always 

oriented with respect to K; that is, m has linking number +1 with K, 

and A and K are homologous in some second-regular neighborhood of K.

LEMMA 1.1. Let  L be a link in S3 , and let R (L) be any revision of L. 

Then L is splittable if and only if R (L) is splittable.

Proof. If L  is splittable, there is a polyhedral 2-sphere S in S3  with 

disjoint complementary regions C 1  and C2  such that S ^ C jU S U C ^ , 

such that L  H S = 0 ,  and such that L H Cj  ̂ 0  (j = 1, 2). There is an 

autohomeomorphism h of S that is isotopic to the identity, that leaves 

each knot fixed point for point, and that moves each solid torus 

away from S; that is, S H h(V-) = 0  (i= 1,***,p). Evidently, R (L )flh _ 1 (S) 

= 0  and R(L) fl h"”1^ ) ^  0  (j = l ,2 ) ;  hence, R(L) is splittable.

Now suppose that L is unsplittable; we can assume that p > 1. Let 

G = 771 (S3  —L), and let Q- = ^(V - — JC )(i = l,--*,/x). Because L is un

splittable, the group G is indecomposable; that is, G is not the free 

product of two nontrivial groups [12, Theorem (27.1), p. 19]. If p̂  is a 

meridian of \A , then /x- U K- is unsplittable because Vj has order 

greater than zero with respect to . Evidently, Q| «  n1  (S3  — (/x- U Kp); 

hence, is indecomposable; see [ 1 2 ] (loc. cit.).
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Set g i = 771(S3 - ( K 1 U ...u K i U K i+ 1U ...U K /x) ) ( i = l , . . . , ^ - l ) ,  set

§ 0  = G, and set g^ = n 1  (S3 — R(L)). Because each of the links L and

fi1  U K 1 is unsplittable, one can easily prove, with the loop theorem and

the Dehn lemma, that the inclusion dVj (S3 — Int (Vj U---U V )) induces

a monomorphism ^ (d V j) -> 77̂  (S3 — Int(Vj U---U V^)); the inclusion dŴ  ->

Vj — K i , a monomorphism n^(dV^) -> Qx. Because ^ ( S 3  — Int (VjU**-U V ))

^  G, the Seifert-van Kampen theorem implies that g j  «  G * Qj.
7r10 vi>

But the free produce of two indecomposable groups amalgamated over a 

nontrivial group is itself indecomposable [8 , p. 246]. Thus, is inde

composable.

Suppose, for some i = I , - - * ,p— 1, that g - is indecomposable. Then, 

clearly, Kj U---U K- U K^+ 1  U*-U is unsplittable. Because U

K- ! is also unsplittable, we have g : , n % g : * Q:, <. But g .
1+1 1+1 ^ i 0 v i+i)

and Qi + 1  are indecomposable, hence, so is gj+i* Induction now implies 

that g^  is indecomposable; hence, R (L) is unsplittable [12] (loc. c it .) , 

concluding the lemma’s proof.

REM A RK . In the foregoing proof, we saw that, if L  is unsplittable, then 

so is U---U K 1 U K .  Permuting indices, one can, therefore, show,1 [1 — I [A
for i = l , •••,/* and for K Q = 0  = K^+1,

u-.-u Ki x UKjU Ki+1 u---u K

is unsplittable, if L  is unsplittable.

L e m m a  1.2. Let L  and L '  be links in S3 , and let (p,rj) and (p',rj') 

be pairs of integers; p and p', arbitrary; r\ and rj', in \2 , — 2 \. If 

lLl = lL'S, if p = p', and if rj = r\, then {D (L ;p, rj)\ = }D (L ';p',

Conversely, if {D(L; p, rj)\ = }D(L'; p', then {L ! = { L / }; further

more, p = p' and 77 = rj' unless

(1) some component of D(L; p, 77) is a maximal unsplittable sub

link of D (L ;p , 7/) and
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(2 ) Kj is either the trivial or the figure-eight knot.

In particular, {D(L; p, 77)! = iD(L'; p', 77')} if and only if ({L j, p, 77) = 

d L ' ! , p ' 77') , provided that the number of components of h  is > 2  and 

that D (L ;p ,7/) is unsplittable.

Proof. Assume that I Li = {L '! ,  that p = p't and that 77 = 77' The links 

L and L ' then have the same number of components; we have L = 

K ^U -'-U K  and L ^ K ^ U - U  K' say. For each of i = 1,•••,/*, letr" r**
V- be a closed regular neighborhood of ; V'. , a closed regular neigh

borhood of K '-. We assume that V- H Vj = 0  = V'- H V j , if i  ̂ j.

Because {L i = {L 'i ,  there is an orientation-preserving autohomeomor- 

phism hj of S3  and there is a permutation p of {l,-* -,/x ! such that 

k1 (Vi)= V p (£ ) (i=  1 ,- - - ,ft). The knots hjCKp and K p(i) are (p,77>-doubles 

of ^ p (i) 0 =  I*'"*/*)- W. Graeub has shown that, for any knot K, the 

system ({K5,p, 77) determines {D (K ;p ,77)| [6 , p. 47]. Hence, for each of 

i=  1 , — , p, there is an orientation-preserving autohomeomorphism <£• of 

S3  taking h^K -) onto

We examine the map <£• . According to our definition of a doubled 

knot, there are clasping disks Y- and Y ̂  in Int V' ^  such that 

h1(Kp = dYx and K = dY\ • Each of Yi and Y j  has a line segment 

as its set of singularities. On Ŷ  lays a core kj of V meeting

in exactly two points and containing the set s  ̂ of singularities of 

Y^; similarly, there is a core k  ̂ of V p ^  on Y'* containing the singu

larities s'i of Y ' . . There is an orientation-preserving autohomeomorphism 

cf>ii of S3  acting as the identity on S3  — Int and taking (k ,̂ s^)

onto (k ^ s 'j)  [13, Lemma 1, p. 158]. Beginning at Step 2 on p. 47 of [6 ], 

one can see how Graeub constructs an autohomeomorphism < ^ 2  ^

leaving k  ̂ fixed point for point and mapping ^ iO ^ ) onto Y • . We set 

<£i = < ^ i 2  4 ii l .

Choose a simplicial decomposition for V p(j) containing some triangu

lation of Y \ . If the natural number n is sufficiently large, the closure 

of the nf/i-regular neighborhood of Y^ belongs to both Int V p ^  and
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Int (^»i2 (Vp(i))) (= Int (0i(V p(i)))). The polyhedron N- is a handlebody, 

the singular disk Y^ is a strong deformation retract of N- , and the 

group ^ i (Y j )  ^  Z. Hence, is a solid torus.

The core of V p^  and of <£j(V'p^ )  belongs to Int N j. I claim

that k'i is also a core of N^. Let c* be a core of N -. If k is a knot

in a solid torus V, let 0 y (k) denote the order of V with respect to k.

We have O y  (k'p = Oy . N(Cj)0 N (k'p [13, Theorem 3, p. 175]. Be- 
p(i) p(i) i

cause Oy / (k'p = 1, we also have 0 V' ( c )  = 1 = 0 N (k'p. Hence,
P(i) p(i) i

there exist knots d- and e- such that c  ̂ = d̂  # k  ̂ and k  ̂ = e- # c-

[13, Theorem 2, p. 171]. Therefore, c  ̂ = (d- # ep  # c^ . Because factori

zation is unique in the semigroup of oriented-knot types, dj # is 

trivial. But this implies that each of d- and e- is trivial [5, p. 142]. 

Consequently, k  ̂ is a core of [13, Theorem 2, p. 171].

We now construct an autohomeomorphism of S3  that takes

onto V and that acts as the identity on N. . Define 

^AjKS3  -  Int (<£i(Vp(i)))) = 4 $  |(S3  -  Int (<£j(V p(i)) »  and = 1 .  The

inclusion <9(<£j(Vp(j))) p(i)) "  induces an isomorphism

^1 0 (<^i(Vp(i)» )  -  ^ i(^ i(V p(i) ) - Int Nj); the inclusion d(V'p^ )  -  

— Int Nj, an isomorphism ^ (^ (V p ^ p ) p (i)"^ nt ^ p . Hence, the

isomorphism ( ^ ^ ( ^ ( V p(ip ))* induces an isomorphism 371 C0 V — 

Int Np -> Int Np. There is a homeomorphism ip'-x : (<£pV p(ip  —

Int Np -> (^ p (i)~^nt Hp inducing the latter isomorphism [21, Corollary 

6 .5 , p. 80]. Because leaves k  ̂ pointwise fixed, p^dO^jCV p(j)))

takes a meridian-longitude pair onto a meridian-longitude pair. Therefore, 

i/r'. takes meridian-longitude pairs for each of <£pV p(jp  and N- onto 

meridian-longitude pairs for each of V a n d  N-, respectively.

But this means that ^  jldO^CV p( i ) ) - I n t  Np and p^ p  -

Int Np differ on d V U  dN̂  by a map o-x such that each of OjldVp^  

and a-|dN  ̂ is isotopic to the identity [ 1 1 ]; that is, there is an auto

homeomorphism a- of U (9N- such that <j- is isotopic to the

identity and such that i on <9(<^(Vp(ip) U <9N-. Because
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each of d W and (9N̂  is collared in V — Int , the map a . can

be extended to an autohomeomorphism of V — Int N j. We set

p(l)) ”  Int N-) = to complete the definition of i .

We now define h2 |(S3  -  In t(V p(1 )U ..-U  V p^ ) )  = 1 and (h2 |Vp(i)) = 

(('Aj^’pIV^p(i)) (i=  l . -“ .ft)- Then the autohomeomorphism h = h2 h1 of S3  

takes D (L;p ,?7 ) onto D(L'; p,rj), thereby finishing the proof of the 

lemma’s first conclusion, (\L\,p,rj) determines iD(L; p, rj)\.

Now, the “ converse.” H. Seifert showed in [17; § § 9 ,1 0 ,1 1 ; pp. 77-79] 

that, when L is a knot, jD (L ;p ,?7 )! determines { L {; that, when L is a 

nontrivial knot, {D (L ;p ,77)l also determines each of p and rj; and that, 

when L is unknotted, D (L ;p ,7/) is amphicheiral, if {D(L; p, 77)̂  does 

not determine (p,rj). Finally, H. Schubert proved that the only amphicheiral, 

doubled knots are the trivial knot and the figure-eight knot [14, Theorem 5, 

p. 145]; this completes the lemma’s proof when p = 1.

Assume now that p > 2, and suppose that D (L ;p ,7/) is unsplittable.

For each of i = l , - * * ,p ,  let Y- and Y'- be clasping disks that K-

bounds; assume that Y- C Int Vj and that Y  ̂ H Y j = 0  when k  ̂ j.

Lemma 1.1 and the unsplittability of D(L; p,r/) imply that L is also un

splittable. Hence, S3  — In tC V ^ —U V ) is boundary irreducible, and 

there is an orientation-preserving autohomeomorphism of S3  moving Y'- 

onto Y^(i= I,-**,p ) and leaving each point of D (L ;p ,7/) fixed. Seifert 

essentially constructed such a homeomorphism in his proof in [17] of 

Lemmas 5 and 7; for our proof, one need make only minor changes in 

Seifert’s work. Therefore, if p > 2 and if D (L ;p ,7/) is unsplittable, 

then {D(L; p, 77)! determines the triple ({L?, p, 77); cf. [17, §9, p. 77].

Finally, suppose that {DCLj; p, D(Lm; p, 77)! is the set of maxi

mal unsplittable sublinks of D (L ;p ,77). We have seen that \D(L,yp,rj)\ 

determines { L j! (j = l,-**, m); consequently, \D(L;p,rj)\ determines ! l ! ,  

because L = L 1 U ---U L m. If, furthermore, no D (L j;p ,77) satisfies  

simultaneously the conditions ( 1 ) and (2 ) of the hypothesis, then 

{D(Lj ; p, 77)? determines (p, 77) as well as f L j! (j = I,-*-, m); therefore, 

jD(L; p, 7])\ determines ( {L } ,p , 7/), as claimed, completing the lemma’s 

proof.
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§ 2 .  The characterizations

Let L denote the link K jU —U K ^ in S3 , let D (L ;p,rj) be the 

(p,7/)-double of L , and, for each of i = 1, — , pt, let W- be a closed  

regular neighborhood of K. . We assume that C Int V- (i=  1,••*,//), and 

we set C3(L ;p ,7 ?) =  S3 -In t(W 1 U--.U W ).

THE ORE M 2 . 1 .  Let  L  and L ' be links in S3 , and let p and 77 be

fixed  integers; p, arbitrary; 77 = ±2. Then  L and L ' are of the same 

(ambient) isotopy type if and only if 77̂  (C3(L ; p, rj)) «  7t1(C3(L >; p, rj)).

C O R O L L A R Y  2 . 2 .  Let  L  and L ' be links in S3 , and let p and 77 6 e  

fixed  integers; p, arbitrary; 77 = ±2.  Then  L  and L ' belong to the same 

(ambient) isotopy type if and only if C3(L ; p,  77) s  C3(L'; p, 77).

Proof. The necessity follows from Lemma 1 . 2 ;  the sufficiency, from 

Theorem 2 . 1 .

Proof of Theorem 2 .1 . Lemma 1 . 2  immediately establishes the necessity. 

To prove the sufficiency, we assume, henceforth, that ^ ( C  (L;p,77)) 

ffl(C3(L 'ip .r,)).

Let L 1 ,--* ,L m be the maximal unsplittable sublinks of L , and sup

pose m > 1. Applying Lemma 1 . 1 ,  one can easily show that 

DCLj ; p, 77),---, D (Lm;p , 77) are the maximal unsplittable sublinks of 

D(L; p, rf). Hence, jt^C 3^ ;  p,rj)) = ^1 (C 3 (L 1 ; p, rj)) *•••* n’1 (C 3 (L m; p, 77)); 

furthermore, each factor is indecomposable [ 12 ,  Theorem ( 2 7 . 1 ) ,  p. 19] .  

Since TTjfC^Ljp, 77)) ss 77-x(C 3 (L'; p, 77)), we have ^ ( ^ ( L ' j p ,  77)) =

Gx*•••* Gm, with Gj 77j ( C 3 ( L j ; p ,  77))  (j= l ,- -- , m). Therefore, D (L ';p ,77> 

is splittable [12]  (loc. c it.). Let D(L'X; p, 77) , - ••, D(L'm'; p, 77) be the maxi

mal unsplittable sublinks of D (L ';p ,77); we have m'> 1, and L x, - - - , L m' 

are the maximal unsplittable sublinks of L'. Setting G k ?7 X(C3(L  k; (>,?])) 

(k = l,-- - ,m /), we have JTl (C 3 (L /;p ,r ]) )=  G x *•••* G'm'- Each factor G'k 

is indecomposable because of [ 12 ]  (loc. c it .) . Therefore, m = m', and
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% = for some rearrangement (GA ,-“ ,GA ) of
J J K1 m

(G'i >■"> G'm) [8 , p. 245]. Consequently, 771 (C 3 (L ,'k ; p,  j/)) *  ^ (C ^ L jjp ,^ ))  

(j = l,--* ,m ); thus, if the sufficiency of our condition holds for each pair 

(Lj> L k.) (j= l ,- -- , m) of unsplittable links, then it holds for the pair 

(L , L ')  of splittable links, because, for any link L , if the maximal un

splittable sublinks are then the collection 1 \ L 1 },*••, lL mi }

determines {L i, as one can easily prove.

We shall, therefore, assume not only that 7^ (0 3 (L;p,r/)) ^ tt (L';p ,rj)), 

but also that each of L and L ' and, hence, each of D (L;p,7/) and 

D (L ';p ,7/) is unsplittable. Finally, note that the number of components 

in each of L , L\ D(L; p, 77), and D(L'; p,rj) is p; we shall assume that 

p > 1 , because the theorem is true when p = 1  [24].

Now, some notation. We have L ' = K j U---U and D(L'; p,rj) =

K x U-.-U K^. For each of i = 1, — , t̂, set = dVj, and let Wj denote 

a closed regular neighborhood of K -(=  D (K'-jp,^)); assume that 

\rk n W j = 0  when k ^ j .  Set C ' = C 3 (L'; p, 77) = S3  -  Int QN\ U—U W ') 

and set C = C 3 ( L ;p , 77). Also, set M = S3  -  Int(Vi U --U  V ) and set 

Ai = Vj -  Int Wj (i= 1 ,---,p).

The space M is an aspherical p -link manifold and A- is an aspheri-

cal 2-link manifold [12] (loc. cit.). We have C = (•••((MUT A 1 )U T A9)-**)
1 1  1 2  z

U t ^ p ’ ^ or eac  ̂ °f f = se * M- = C — Int . The link

K jU .-.u  K ^ jU K jU  Ki+1 u---u K is unsplittable; see the remark preceding 

Lemma 1.2, p. 65. Furthermore, each A- is a deformation retract of an un

splittable 2-link’s complement. Thus, because p > 1, each of and 

A. (i= l,***,p) is boundary irreducible. Moreover, it is not hard to show 

that none of the inclusion-induced monomorphisms ^ (T p  -> ^(M -) and 

^iCTp -> ^(A ^) (i= 1 , - - - ,P) is surjective, because there is only one link 

whose group is free abelian of rank two [9]. Therefore, for each of 

i = 1 , — , pt, it follows that 77̂ (C) «  77  ̂(Mp * 7r1 (A^) and that this
* l(T i)

group is a nontrivial free-product with amalgamated subgroup.
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Because 771 (C ') »  ^ ( C )  and because each of C ' and C is aspheri- 

cal, there exists a homotopy equivalence f : C'-> C; cf. [10, p. 93], Set 

T = U---U T . A result of J .  R. Stallings and F . Waldhausen [20,

Lemma 1.1, p. 506] guarantees the existence of a mapping g :C '-»  C with 

the following properties:

( 1 ) g -  f;
(2) g is transverse with respect to T; that is, there exist product 

neighborhoods U(g_ 1 (T)) and U(T) such that g maps each  

fiber of U(g_ 1 (T)) homeomorphically onto a fiber of U(T);

(3) g—1 (T) is a compact, orientable, and, as we shall se e , discon

nected  surface properly imbedded in C';

(4) if F  is any component of g—1 (T), then ker (tt-(F) -» 77j(C'))

= 1 0  = 1 ,2 ).

We divide the remainder of the proof into seven parts.

1. For each of i = I ,---, p, the space  g_ 1 (T-) is not empty.

If g_ 1 ( T p = 0 ,  then either g(C') C or g(C ') C A- , because 

separates C. Let x be a point in C', and let y be a point in . When a 

suitable path is chosen from y to g(x), then either g^C^CC^x)) C ^(M ^y) 

or g ^ jC C ^ x)) C 771 (Ai, y), depending on whether g(C') C IV̂  or g(C')

C A|, Thus, x)) is a proper subgroup of 7r1 (C ,y ), because

77̂ (0 , y) is a nontrivial free-product with amalgamation. But g is a 

homotopy equivalence (by ( 1 )); therefore, = ^ ( C ,  y), yield

ing a contradiction.

We digress to prove a lemma needed in part 2 .

LEMMA 2.3 . Any properly imbedded, incom pressible annulus A in C is 

boundary parallel.

Proof. Let a and /3 denote the components of dA, and suppose that

a C <9W- and j8 C <9W; . Assume that A is in general position with re- 
*» 1 J2

spect to Tj^ = dVj^; the components of A PI Tj are mutually disjoint,
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simple, closed curves. Because T- is incompressible in C and because
•'l

D(L;p,77) is unsplittable, we can remove those curves in A fl T_- bound-h
ing disks in A. Assuming this has been done, choose the curve a ' in

A'fl Tj cobounding with a a subannulus A' of A properly imbedded

in V- — Int W; ; we are assuming, of course, that A fl T- still has h h h
curves in it. The winding number of a in Vĵ  is 0 [13, Theorem 4,

p. 175]. Thus, because a ' ~  ±a  in V: , the winding number of a' in
•'l

Vj is 0. But if a curve is on the boundary of a solid torus, then the 

curve's winding number and order coincide [13, Lemma 1, p. 170]. There

fore, the order of V- with respect to a ' is 0, and so a ' either bounds J1
a disk in T- or is a meridian of V; .h h

Clearly, the incompressibility of A prevents a ' from bounding in

Tj ; thus, a ' is a meridian. Because the winding number of a in Vj

is 0, the linking number of a 'U  a is also 0 [23, p. 374]. Thus, two

trivial knots with linking number 0 bound the annulus A'; hence, A' is

planar [7, p. 136], implying that a 'U  a is splittable. Hence, the order

of W- with respect to a must be 0, because, otherwise, the order of J1
V,- with respect to a would be > 0 because the order of V: with re-

1 v  1spect to X ; is 2 [13, Theorem 3, p. 175; Lemma 2, p. 238], and
1Ov (a ) > 0 implies that a'U  a is unsplittable. Therefore, either a

h
bounds a disk on <9W- or a is a meridian of W- . Certainly, a does h Ji
not bound on dW; . But if a is a meridian of W- , then a 'U  JC hash h h
linking number ±1, which is a contradiction. Consequently, A fl Tj

must now be empty; hence, = j2 and A C Int Vj (j = jj = j2), because

T; separates W; and when L  ̂ j9 .Jl 1̂ h  l z
We now have <9A = a U fl C dWj as well as A C Int Vj . Neither a 

nor /3 bounds a disk on dWj; therefore, a U /3 bounds two annuli, A  ̂

and A2 , on cMj.

I claim that there exists a toral solid X  ̂ and a 2-link manifold X 2 

such that V- -  Int W* = X x UAX 2 . To see this, consider the torus A 1  U A. 

There are toral solids, Uj and U2 , such that S = Uj ^ a 1UA^2* ^
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both Wj and S3 — Int Vj belong to the same solid, say U2 , then, ob

viously, the claim holds: take X x = Ux and X 2 = Vj -  Int (Uj U Wj). On 

the other hand, suppose Wj C U j, say, and suppose S3 — Int Vj C U2 . 

Then A2 separates U j, and so there is a toral solid X 1  such that 

Uj = Xj UA Wj ; note that dX^ = A2 U A. But S3 — Int X j is a toral 

solid containing both Wj and S — Int Vj. Because this situation is 

analogous to the first case  with both Wj and S3 — Int Vj in U j , the 

claim’s proof follows.

Suppose X j is a knot manifold. Then X j belongs to a polyhedral 

3-cell in Vj [1, Lemma 1, p. 226]. Consequently, Ov (a) = 0 = Ov  (/3) 

[13, Theorem 1, p. 171]. Because Ov (a) = Ov (Kj) Ow (a) and because 

Ov .(K:) = 2, we see that Ow (a) = 0. Thus, because a does not bound
j J j

on dWj, each of a and /3 must be a meridian of Wj. But if V^0 2  ̂ is
o

a second-regular neighborhood of a clasping disk D in S with trivial 

diagonal, with p = 0, and with rj = +2, then there is a homeomorphism 

e : (Vj,JCj) (V^0 2 y  <9D); each of e(a) and e(/3) is a meridian of <9D, 

the knot <9D is trivial, and e (X 1) is a knot manifold. Therefore, the 

trivial knot is the composite of two knots one of which is nontrivial. B e

cause this is impossible [5, pp. 141-142], X 1 is a solid torus.

Suppose now that the inclusion-induced homomorphism 7r1(A)^7r1(X 1) 

is not surjective; we shall deduce a contradiction. Assume that dX̂  ̂ =

Aj U A. The space Xj UA Wj is, evidently, a toral solid. If Xj UA Wj1 j i j
were a knot manifold, then we could find a 3-cell in Vj containing it [1]

(loc. c it .) , implying that Ov (K -)=  0 [13, Theorem 1, p. 171]. Because
j

Ov .(Kj) = 2, however, the space X 1 UA W- is a solid torus. If x is a 
j 1

generator of ^ ( X j ) ,  and if y is a generator of ^(W j), we have

tt1(X 1 UA Wj) = |x,y :xP  = y^|. Because A is incompressible, we have

p  ̂ 0; because the inclusion-induced homomorphism 77̂  (A) -> 771(X 1) is

not surjective, we have p  ̂ ±1. Therefore, because UA Wj) «  Z,
1

we have q = ±1; first, q is certainly not 0; second, if q t  { 0 , 1 , — li, 

then |x,y: x^^y^l is the group of a torus link different from a trivial knot 

[5, p. 144]. Because q = ±1, the inclusion-induced homomorphism
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* i(A i)  -> tt1  (W j) is surjective, and so Ow (a) = 1. Thus, Oy (a) = 

° v .( Kj)°w .(« ) = 2. 3 3

Now let k be a core of X j . We have Oy (a) = Ox  («)O v (k), the

order Ox  (a) is clearly |p|, and |p|  ̂ 1; therefore, 2 = |p| Ov (k), the 
1 j

order Ox  (a) = |p| = 2, and Oy (k) = 1. If Wv (k) denotes the winding

number of k in V :, then Wv (k) = 1, because Ov (k) = 1 [13, Lemma 1,
i j

p. 170]. Thus, because Wy (a) = Wx ^(a)Wy (k) [13, Theorem 4, p. 175] 

and because Wv (a) = Wv (Jv )Ww (a) = 0, we have Wx  (a) = 0. But
j j j 1

a C dX1 ; thus, Wx ^(a) = Ox  (a) = 2 and Wx  (a) = 0 — an absurdity. 

Consequently, the inclusion-induced homomorphism 771(A) -̂ 771(X 1) is 

surjective. Thus, the inclusion A -> X is a homotopy equivalence [22]; 

therefore, A is boundary parallel in C [15, Theorem 3 .1 , p. 168].

2. We can assume that each component F  of g_ 1 (T-) and, hence, 

each component of g- 1 (T) is a torus that is not boundary parallel.

Because g — f, the mapping g is a homotopy equivalence; thus, 

g * :77l ( C ') is an isomorphism. Moreover, because T- is incom

pressible in C, property (4) implies that ^ ( F )  is isomorphic to a sub

group of ^ (T i). Therefore, because F  is orientable, it is either a 

2-sphere, a disk, an annulus, or a torus. Property (4) implies that 

= 0, so that F  is not a 2-sphere. If F  is a disk, one can construct a 

map g': C'-> C satisfying the properties (1) through (4) and the property 

that g'""1^ )  has fewer components than g_ 1 (T|); see the second para

graph in [24, 2, p. 265]. Therefore, we can assume that F  is either an 

annulus or a torus.

Suppose F  is an annulus. Because D (L ';p ,rj) and L / are un

splittable, and because p > 1, Lemma 2.3 applies to C', and so F  is 

boundary parallel. As when F  was a disk, we now easily replace g by 

a map g' satisfying the properties (1) through (4) and the further property 

that g '^C T -) has fewer components than g_ 1 (T-). Thus, we can assume 

that F  is not an annulus, and that, therefore, each component of g_ 1 (Tp 

is a torus. Finally, we can assume that the torus F  is not boundary
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parallel, because, otherwise, we could “ remove” it in the obvious way; 

cf. [24, 2].

3. For each of i = 1, — and for each component F  of g_ 1 (T-), 

we can assume that g|F is a homeomorphism.

Let x be a point on F . The homomorphism (glF)^ : 771(F,x)-^

77"i (T ,̂ g(x)) is a monomorphism, because g has properties (4) and (1) and 

because T- is incompressible in C. Hence, g|F is homotopic to a 

covering map k :F  -» ([16], [21, Lemma 1 .4 .3 , p. 61]). Because g is

transverse with respect to Tj., this homotopy extends to a homotopy 

iht i (0 < t < 1) of g that is constant off a small product neighborhood of

F . Note that h j*  is an isomorphism. Now 771(F ,x ) C h ^(771(T^,h1(x))); 

therefore, h j* (tt'1(F ,x ))  = ^ ( T - ,  h1(x)) ([3, Theorem 1, p. 575] or [15, 

Theorem 1.3, p. 161]). Thus, k = h1 |F is a homeomorphism, verifying 3.

4. For each of i = l,--* ,/x , we can assume that g“  1(Tp is connected.

The proof is inductive. If g ~ 1(T 1) is connected, the first inductive 

step, for i = 1, is complete. Otherwise, suppose that g— 1(T 1) is dis

connected. The construction of a map g \  C'-> C with the same properties,

(1) through (4), as g, but with g//_1(T 1) having fewer components than 

g“ 1(T 1), involves essentially three steps. F irst, construct a path a in 

C' so that a and g_ 1 (T 1) meet only in the endpoints of a — each end

point on a different component of g_ 1 (T 1) — and so that ga is a null- 

homotopic loop in C. Second, split C' along g- 1 (T 1); the path a be

longs to some component X resulting from this splitting. Using a , con

struct a homotopy from g to g' taking X onto T j . Third, using g  ̂

construct a map g"'C'^> C such that g" satisfies properties (1) through

(4), such that g "- 1 (T )C  g- 1 (T), and such that g//” 1(T 1) contains 

exactly one component less than g ~ 1(T 1). We shall omit the details of 

this construction, because these details are in [4, §6, p. 155].

If necessary, we continue the constructions inductively — an induction 

within the original one — and we obtain a map hj : C '-* C such that 1^
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satisfies properties (1) through (4), such that hJ"1(T )C  g- 1 (T), and such 

that hj"1(T 1) contains exactly one component. Note that h ^ fT -)^  0 ,  

for any i, for the same reason that g—1(Tp  ̂ 0  (see 1). The remaining 

steps in the original induction are now clear, completing the proof of 4, 

and we can assume that g_ 1 (T) has exactly p components, 

with g- 1(Ti) = r i ( i = i , - ,# £ ).

LEMMA 2.4 . Any properly imbedded, incom pressible annulus A in A- 

is boundary parallel.

Proof. Because the inclusion-induced homomorphism ^ (A .)  -» ^ ( C )  is a 

monomorphism and because A is incompressible in A^, it follows that 

A is also incompressible in C. The proof of Lemma 2 .3 , therefore, shows 

two things: (1) we cannot have one component of dA in T- and the 

other component of dA in dW-; (2) if dA C dW- , then A is boundary 

parallel. Thus, we shall assume that dA C T^.

Now Â  is homeomorphic to a link manifold of a Whitehead link 

(Figure 1 depicts a Whitehead link) each of whose components is trivial.

As one can readily see, such a link is interchangeable. Consequently, 

there is an autohomeomorphism 0  of Â  taking T- onto dŴ  and 

taking dWj onto T - . The foregoing paragraph implies that 0(A ) is 

boundary parallel; therefore, A itself is boundary parallel, concluding
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LEMMA 2.5 . Every properly imbedded, incom pressible torus in 

A • (i = 1 , • • •, p) is boundary para llel.

Proof. Let S be a properly imbedded, incompressible torus in A- not 

parallel to <9Ŵ, let V" be a knotted solid torus in S3 , and let h : V-^V" 

be a faithful homeomorphism. The torus h(S) is obviously incompressible 

in S3  — Int(h(W^)) as well as in h(Ap. Hence, there is a knot manifold 

H and a solid torus B such that S3  = 1) U ^ SjB. The torus <9B( = h(S)) 

is not parallel to h(<9(Wp); thus, a core of B must be a companion of 

h(D(K|; p, 77)). But this implies that dB is parallel to h(T|) [13, Lemma 3, 

p. 238] and, therefore, that S is parallel to T  ̂ which establishes the lemma.

5. (a) There are mutually disjoint, solid tori, , such that

dV'-x = T'- and such that C Int V'- (i= for a suitable change in

the s ubscripts of W \ , • • •, W' .

(b) Setting M'= S3  — IntCV^ U---U V' ), we have M' =  M, and we 

can assume that g|M' is a homeomorphism.

Let x- be a point in T'- . There are submanifolds and A^ of 

C' such that C / =M /-U T /A ^ ; because T'- is incompressible in C',

7T1 (C /,x i) = TTjCM'j.xj) * Now g_ 1 (Ti) = T /i , g* is an
^1 (T i,x i)

isomorphism, and (Mi, g(xA) * ^ 1  (^ :, g(x-)) is a nontrivial
^(TpgCXi))

free-product with amalgamation; therefore, one of the sets g(M'*) and 

g(A/.) belongs to M̂ , and the other belongs to A-. Assume that C M-

and g C A p c A j. Then C 7r1 (Mi,g(xi)) and g^Or^A'^xj)) C

771 (Ai,g(xi)). Because g^ is an isomorphism and because g+(^i(T  j,xj))

= ^iCT^gCxj)) (because of 3), we have g^C^iCM^x^)) = 771(Mi,g(xi)) and 

g ^ iC A 'j^ i))  = 7Ti(Ai,g(xi)) [2, Proposition 2 .5 , p. 485]. But /i\ is 

either a toral solid or a link manifold; therefore, A', is a 2-link manifold, 

because its group is that of a link with two components. Consequently,

<JA'j = T'x U dW'x for some W'• with i replacing j. Set V j = A'. U .
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To prove that V^ is a solid torus, we first show that the following 

supposition leads to an absurdity. Suppose A', contains a properly im

bedded, incompressible torus Q'- that is not boundary parallel. We have

is clearly either a knot manifold or a link manifold. As we have seen,

771(A".) «  ^ (A -) . Hence, [12, Theorem (27.1), p. 19] implies that A', is 

a deformation retract of an unsplittable 2-link’s complement, because Â  

has this property (recall that Â  is a deformation retract of the complement 

of a Whitehead link). Therefore, A', is irreducible; consequently, each  

of X- and Y- is irreducible, because Q'- is incompressible in A'. . Thus, 

each of X- and is aspherical.

If the inclusion-induced monomorphism ^ (Q  j) ^ ( X j )  is surjective, 

then the asphericity of X- implies that the inclusion map Q j -* Xj is a 

homotopy equivalence [22]. Therefore, Xj s  Q j x I [15, Theorem 3 .1 , 

p. 168]. But then Qr- is boundary parallel, contrary to our supposition. 

Thus, the inclusion-induced monomorphism ^ (Q  p ^ ( X p  is not sur

jective; similarly, the inclusion-induced monomorphism ^ (Q 'p  -> ^i(Yp

is not surjective; therefore, tf-. (X p  * Y )  is a nontrivial free-
1  1  ^ ( Q  )  1  1

product with amalgamation.

Because the 2-link manifold A', is irreducible, it is aspherical. As 

we have seen, (glA'p^ : (A p  -> 7r1(Ap is an isomorphism. Consequently,

g|A'. is a homotopy equivalence [22]. Let r': A- -» A', be a homotopy in

verse of g|A  ̂. There is a mapping r :  A. -> A', satisfying the following 

properties: (1) r »  r'\ (2) t is transverse with respect to Q '-;

(3) r~  1(Q'p is a compact orientable surface properly imbedded in A .;

(4) if S is any component of r"_1(Q/p , then ker(77j(S)->77j(Ap)= 1 (j = 1,2).

Because tt* (X p  * 7r1 (Y*) is a nontrivial free-product with amalga-
^l(Q P

mation, r '^ Q 'p  is not empty; the proof is similar to that in step 1. 

Property (4) implies that ?71(S) is isomorphic to a subgroup of ^ (Q 'p , 

because is incompressible in A'- . Hence, S is either a 2-sphere, 

a disk, an annulus, or a torus. It is neither a 2-sphere nor a disk (cf. the 

proof of step 2).
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If S is an annulus, Lemma 2 .4  says that it is boundary parallel. But 

then, as in the proof of 2, we could “ remove” it. Thus, we can assume 

that S is not an annulus; therefore, it is a torus. Moreover, we can 

assume that this torus is not boundary parallel, because otherwise, we 

could “ remove” it; cf. [24, 2]. Thus, if A', contains a properly imbedded, 

incompressible torus that is not boundary parallel, then so does A^, con

tradicting Lemma 2.5.

We interrupt the proof of 5 to prove the following lemma.

LEMMA 2.6 . The linking number of K • with any clo sed  curve on 

T /i( = a v p  is zero.

Proof. Let c be any closed oriented curve on T ̂ , and let <£(c,K p  

denote the linking number of c and K • . Let (a ,/3 ) denote a meridian- 

longitude pair for the toral solid V"- . Orient each of a and /3, and 

assume that a ~  0 in S3 — Int V j and that /3 ~  0 in Vr- . Furthermore, 

if V'i is a knot manifold, assume that /3 is homologous to a core of 

S3 — Int V'- . There are integers a and b such that c ~  aa + b/3 on T"- . 

Now ^ ( S 3 -Q S u K p )  «  ^ (A 'p  ^  771(Ai), and 77j(Ap is the group of a

2-link with linking number 0; moreover, a 2-link’s Alexander polynomial 

determines (independent of the link) the absolute value of the linking num

ber [19]. Thus, £ ( / 3 ,K p = 0 .  Furthermore, £ ( a ,J C p = 0 , because a 

bounds in S3 — Int . But £ ( c ,K  •) = a £ (a ,K  •) + b £ (/3 ,K  •), and the 

lemma follows.

Continuing the proof of 5, we let D'- be a clasping disk spanning 

and missing K j when j  ̂ i. Seifert’s proof of Lemma 7 in [17, p. 75] 

yields an ambient isotopy holding D(h'; p f rj) fixed and moving into 

Int V 'j. To insure that Seifert’s work can be applied here, we need only 

note that T'j(=<9Vj) is incompressible in C ' and that the linking number 

of K\ with any closed curve on T'- is zero; see Lemma 2.6 .

Assume now that D'- C Int V'- . There exists a solid torus Nr* such 

that D'• C Int and such that the diagonal k'* of D'- is a core of N ̂
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[13, Proof of Theorem 1, p. 235]. Because D ̂  is obviously a strong 

deformation retract of NT- (see [13] (loc. cit.)), we can assume that 

N'. C Int V'- ; evidently, we can also arrange for W'- to be in Int N'- . 

Because N'- has order 2 with respect to [13, Lemma 2, p. 238] and 

because D(L,';p,rj) is unsplittable, is incompressible in C ' and,

hence, incompressible in A'- . Because <9N̂  is not parallel to <9W'- and 

because, as we have proved, every properly imbedded, incompressible 

torus in A', is boundary parallel, <9N'- is parallel to T'- . But this im

plies that T'j( = dV p is compressible in V . Therefore, V j is a solid 

torus. Consequently, A'j =  N'- — Int W'- . Furthermore, there is a faithful 

homeomorphism (N'-,K •)-> (V-,K-), which one can easily construct with 

results in [6, pp. 47-54]. Therefore, N'- — Int W"- =  A. , and so A j ^  A . .

Because g(A'.) C A. C V| (i=  1, — , /x) and because V- H Vj = 0  when

i  ̂ j, we obviously have V'- H V '• = 0  when i ^ j. This concludes the 

proof of 5 (a).

To prove 5(b), notice in the first paragraph of this step 5 that g(M j) 

and that (glM'j)^ : ^ (M ^ , x x) -» ^1(M1, g(x1)) is an isomorphism. 

Notice also that = (M  ̂ -  Int V'2 ) UT / A'2 and that = (M1  -  Int V2) 

U T A 2 . Now (glM^)^ is an isomorphism, (g|M/1)5je(771(M/1 — Int V 2 ,x2 ))

C ^ ( M j - I n t  V2 , g(x2)), and (g|M'1)s|e(7r1(A'2 , x2)) = tt1(A2 , g(x2)); thus

-  Int V 2 ,x 2 )) = ^ (M j -  Int V2 , g(x2)); that is, n 1 QIL\ -

Int V 2) «  7t1 (M1 - I n t  V2) [2, Proposition 2 .5 , p. 485].

Arguing inductively, we see that 771(M/1 — Int (V'2 U---U V^)) «  ^ (M j 

- I n t  (V2 U-.-U V )); that is, (glM')* : ^ ( M ') -* ^ (M ) is an isomorphism.
p .

The mappings g|T^ (i = 1, — , /x) are homeomorphisms. Therefore, there 

exists a homotopy from g to a map g': C C such that (g |M ) :  M -> M 

is a homeomorphism and such that the homotopy is constant on C — Int M 

[21, Theorem 6 .1 , p. 77]. Thus, M '^  M, and we can assume that g|M' 

is a homeomorphism, concluding 5 (b )’s proof.

6. (a) For each of i = 1, — , ft, we have A^ s  A j .

(b) If k- is a core of V'. , then Jkj U---U k̂ S = iL 'i .
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From the proof of 5 (a ), we know that Ar. s  A^; this proves 6 (a). To 

prove 6 (b), recall that the diagonal of the clasping disk , used 

in the proof of 5 (a ), is a core of N'* and that N'- fl N j = 0  whenever 

i  ̂ j. The definition of a doubled link (see the introduction) implies that 

D (L ';p ,77) = D(k/1 U-*-U k'^ ;pf rj). Lemma 1.2 now implies that { U —U 

= {L 'i . Assuming that D'- has been moved into Int V'j (i = 1,• • - , /x), we 

see that k  ̂ is also a core of V'- . There is an autohomeomorphism of 

S3  acting as the identity on S3  — Int (V'j U---U V^) and taking k'- onto 

k- ( i= l ,- -* ,p )  [13, Lemma 1, p. 158]. Therefore, !kx U---U k^! =

{k j  U---U k' } = iL 'j , proving 6 (b).

7. The links h ' and L  belong to the same (ambient) isotopy type.

The proof of 7 is similar to the proof of 6  in [24]. Recall that p and 

rj are fixed integers; p, arbitrary; rj = ±2. We shall prove 7 for p arbi

trary and rj = +2. The claim then holds for the pair (p ,—2): first notice 
*

that D(L ; —p f —rj) is the mirror image of D(L; p,rj); hence, if 

ffl(C 3 (L ;p f - 2 ) )  *  ffl(C 3 ( L ' ;p , - 2 ) ) ,  then Wl(C3 (L * ;-p ,+ 2 ))  *  ^ ( C 3 (L '*  - 

whence \h ! = iL ' \ and, therefore, ! l !  = {L 'h  Thus, to prove 7, it 

suffices, by 6 (b), to prove that { kx U---U k^i = iLl when rj = +2.

Set Gj = 77 j (A'.) and set G2  = 7t 1 (A-). Choose a basepoint of G  ̂

on T'-; choose a basepoint of G2  on T - . Now read a presentation for 

Gj (j = 1, 2) from Figure 1.

O
REM A RK . We shall assume that the orientation of S has been chosen 

so that the twist knot of Figure 1 has rj = +2.

We have

(*) Gj = luj.Zj.Xj : Z j U j Z ^ u r 1 , Uj = .

The pair ( u j ,z x) is a meridian-longitude pair in the link manifold M'; 

the pair (u2 , z 2), a meridian-longitude pair in M. Now abolish the sub

scripts in G2 . Because g|M' is a homeomorphism, we can assume that 

gs|e(z1)=  urz v and that g*(ui )  = u-  z^. Notice, however, that if

■P,+2)),
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a : G -> G/G' is the canonical abelianization of G, then the second rela

tion for Gj in (*) becomes [ct(z)]^ = 1 under the homomorphism 

C tg^G i -» G/G'. The integer q is, therefore, zero, because a (z )  is a 

free generator of G/G'. Consequently, g\M' matches meridians with 

meridians or their inverses; hence, kj U---U and L and, therefore,

L ' and L (by 6 (b)) are equivalent.
o

The orientation of S induces an orientation in each of V j and V-; 

in turn, the oriented solid torus V j induces an orientation in T'- ; the 

solid torus V*, an orientation in T j . A pair of transverse, simple, 

closed curves on T^ oriented with respect to k̂  represents the meridian- 

longitude pair (u j j Zj ); a similar pair of curves on T  ̂ oriented with 

respect to K- represents the pair (u ,z). Each of these pairs of curves 

has intersection number +1 or each has intersection number —1, because 

there is an orientation-preserving homeomorphism e : V'- -> Vj satisfying 

e*(ul )  = u an(* e*(z i )  = z * Therefore, to prove that {k jU -’-U k^! = {L l, 
we suppose that g does not preserve the intersection number; that is, we 

suppose that one of the following holds: (a) g ^ Z j) = z, g*(ux) = u” 1 ;

(b) g*(Z l) = z - 1 , g * (u i)= u .

If S is a subset of a group H, then <S> denotes the consequence 

(or normal closure) of S in H. Set I = G1/<  z 1uj”^>+1̂ > and set 

Q = G/< zu ^ +1^>. A straightforward argument shows that g+(< z 1û “^>+1^>) 

= < z u ^ +1)> in either case  (a) or case  (b). Hence, g^ induces an isomor

phism r -> Q.

If H is a knot group, let ^ H(t) denote its Alexander polynomial. We 

have A p(t) = t2 — t + 1 and A ^(t) = — (2p + l)t2 + (4p+3)t — (2p+l). Ob

viously, Ap(t) /  ^Q (t), unless p = - 1 .  Therefore, neither (a) nor (b) 

can hold when p /  — 1.

To prove that neither (a) nor (b) holds when p -  —1, set p -  — 1 in 

the presentation (*), set 2  = G1/<  ZjUj"1 > (= \u±, Xj : u1 = 

x 1uj-2x “ 1u^xj'1u]-2x 1uf|), and set 6  = G /<zu> ( ^  Z). The isomor

phism g^, in either case , induces an isomorphism 2  -> 0. But A>?(t) =

2t2 -  3t + 2 and A$(t) = 1, showing that 2  ^  0. Consequently, neither
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(a) nor (b) can occur; thus, ikj U---U k̂ S = {L ! and, therefore, SL'i = {L i, 

completing the theorem’s proof.
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HNN GROUPS AND GROUPS WITH CENTER  

John Cossey and N. Smythe

We shall show that if H is a subgroup with nontrivial center of a 

group in a certain class G, then H is an extension of a free group by a 

subgroup of the rationals. The class §  is described in Section 1; essen 

tially it consists of groups which can be constructed by a sequence of 

free products with amalgamation and HNN-constructions with free amalga

mated and associated subgroups, starting with free groups. The class §  

contains all torsion-free 1-relator groups, and also fundamental groups of

3-manifolds with incompressible boundary, in particular knot groups and 

link groups. The proof is modelled on [8], but note that we do not assume 

H to be finitely generated.

§1. For our own convenience in the definition of the class §  we shall 

follow the development of the subgroup theorem for HNN-groups given in

[13], summarized below. The reader familiar with this theory as developed 

by Karrass, Pietrowski and Solitar [8] or Cohen [4] should have little dif

ficulty with translation.

A diagram of groups (D, A) consists of

(i) a (connected) directed graph D

(ii) for each vertex v of D, a group Ay

(iii) for each directed edge e of D leading from the vertex Ae to 

the vertex pe, a homomorphism Ag : A^e -> A .

The mapping cylinder of (D, A) is a group m(D, A) given by

generators : U A U it :e  an edge of DS
v f D  v e

87
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relations : relations of Ay, teAe(a )te 1 = a for a £ A^e

t0 = 1 for e € T

where T is a maximal tree in D.

The isomorphism type of m(D, A) is independent of the choice of T. 

If each A0 is a monomorphism then each vertex group Ay is embedded 

in the mapping cylinder in the obvious manner; in this case  the mapping 

cylinder is called the graph product of (D, A).

If D is a tree, the mapping cylinder is simply the colimit of (D, A); 

the graph product in this case  is called a “ tree product” by Karrass and 

Solitar (although their tree is slightly different). For the diagram

the graph product is A *c  B, the free product of A and B amalgamating 

f(C) with g(C).

For the diagram

the graph product is the HNN-construction with base K and associated  

subgroups f(L) and g(L), i.e.

The mapping cylinder has a universal description in the category of 

groupoids [13]; its description in the category of groups is complicated by 

the non-uniqueness of the maximal tree T. However we only need here 

the fact that there is a homomorphism from the mapping cylinder of (D,A) 

onto the colimit of (D, A), the kernel of which is normally generated by

L

g

K

< K, t : tf (L )t_1 = g(L)> .
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ite '.e an edge of D}. Thus if we are given a group G and homomorphism 

<f>w ' Ay -> G for each vertex v, such that each diagram

commutes, then there is a uniquely determined homomorphism from the 

mapping cylinder of (D, A) into G.

As developed in [13], the theory of mapping cylinders allows groupoids 

at the vertices of a diagram; in particular we need to allow disjoint unions 

of groups to occur. An example should suffice to illustrate how the map

ping cylinder is then obtained. Consider the diagram

A U B

C U D

the vertices being disjoint unions of groups A and B, C and D re

spectively. Suppose f(A )C C , g (A )C C , f(B) C C and g(B) C D. The 

diagram can then be expanded to a diagram in which only groups appear at 

each vertex

f A

The mapping cylinder (or graph product) of the original diagram is 

then defined to be the mapping cylinder of this expanded diagram.

The subgroup theorem for graph products can now be stated.
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TH EO REM  1. Suppose M is the graph product of a diagram (D ,A) and 

H is a subgroup of M. Then  H is the graph product of a diagram (D,B), 

where the vertex groupoid B y is a disjoint union of groups dAyd-1  fl H, 

with d ranging over a set of double coset representatives for M mod (H,A), 

The edge maps B Q are induced from the maps A0 .

(The theorem also holds for mapping cylinders with an appropriate 

modification to allow for the fact that Ay is not necessarily embedded 

in M in this ca se .)

Finally we come to the description of the class § .  Let § 0 be the 

class consisting of the trivial group alone. If § n_ i  has been defined,

§ n is to consist of graph products of diagrams

L

0
K

where L is a disjoint union of free groups

K is a disjoint union of members of § n_ j  •

(Thus consists of all free groups, contains free products of 

free groups with amalgamations, e tc .)  Let §  = U § n. It is an immediate 

corollary of the subgroup theorem stated above that §  is clo sed  with 

respect to subgroups.

It is a consequence of work of Magnus (see [11]) that §  contains all 

torsion-free 1-relator groups. It is a consequence of work of Haken ([6]; 

see also Waldhausen [14]) that fundamental groups of 3-manifolds with 

incompressible boundary, in particular knot groups and link groups, are 

in § .

Note that every group G e §  has cohomological dimension < 2 since  

a 2-complex which is a K(G, 1) can be constructed.
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§2. TH EO REM  2. Let  H be a group in §  having non-trivial center. 

Then there is a homomorphism <$> from H into the rationals 2 ,  whose 

kernel is a free group. If H is non-abelian, then the centre of H is 

infinite cy clic and is mapped monomorphically by cf>.

Proof. Note firstly that if H is abelian, then it is either free abelian of 

rank at most 2 or is locally infinite cy clic (hence isomorphic to a sub

group of 2) ([5], Theorem 5, p. 149). Thus in the following we may 

assume H is non-abelian.

We may assume H e and that the theorem is true for members of 

Thus H is a graph product of a diagram

where L is a disjoint union of free groups

K is a disjoint union of members of § n_ 1 •

Expand this diagram to one in which groups occur at each vertex. In 

this expanded diagram we have

«  § n -  ̂ -groups Ka , for a in a set of vertices A

(ii) free groups L^g, for j8 in a  set of vertices B

(iii) for each /3 e B, two edges from /3 to vertices in A with 

corresponding injections f̂ g : L̂ g -> K^g and ĝ g : L̂ g -»

Within B choose a subset B ' such that the complete subgraph con

taining A U B / is a tree. The graph product S of this subdiagram is a

tree product which is embedded in H, and H may be regarded as an

HNN-construction with base S, that is , the graph product of the diagram
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Case 1: B = B '= 0 .

Then A must be a singleton \a\ and H = e § n_ j .  The result 

follows from the induction assumption.

C ase 2: B = B7 0.
Then H = S, a free product of the groups amalgamating the sub

group f^g(L^g) in with the subgroup g^g(L^g) in K^g. Then the

center of H, ZH, is contained in the intersection , f^g(L^g) of all 

these amalgamated subgroups.

Hence each L̂ g has nontrivial center. Since L^  is free, it must be 

infinite cyclic. Thus ZH is infinite cyclic. Furthermore each Ka con

tains ZH so has nontrivial center. By the induction assumption, if Ka 

is non-abelian there is a homomorphism cj>a :K a 2  which is one to one 

on the center of Ka . If Ka is abelian, there is a homomorphism 

<f>a : Ka -» 2 which is one to one on ZH. Since L̂ g is cy clic, cf>a is 

one to one on f^g(L^g), for a = f/3, and on g^(L^g), for a = g/3.

The tree product S can be built up inductively vertex by vertex. Then 

we can inductively construct a map <f)'a : Ka -> 2 as follows. Suppose we 

have defined for a in a subset A' of A, and a *  is a vertex of A 

joined to A/ via a vertex /3 of B , for example

Define </>'a * = q • 4>a * where q = <f>'a tp(x)/<t>a *g p (x )

for x a generator of L̂ g .

Thus for all /S e B. The collection }<fi'a :a e A l  there

fore induces a homomorphism <f> ■ S -> 2  which is one to one on the center.
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The kernel of is free; this can be seen using a cohomological argu

ment or directly, from the subgroup theorem. Thus, since (ker cf>) x ZH 

is a subgroup of H, ker 0  can have cohomological dimension at most 1; 

the Swan-Stallings theorem tells us that ker 0  is free. Alternatively, 

the subgroup theorem says that ker <£ is a graph product of a diagram

K*

where each group in L *  is of the form (ker <£) fl d L g d - 1  =  (ker <£) fl L̂ g 

= { l i ,  and each group in K* is of the form (ker cf>) fl dKa d-1  =  (ker <f>)

H Ka = ker 0 a which is free; the graph product of such a diagram is free.

Case 3: B \ B '^  0 ,  ZH H SH = 1.

Then H/SH is freely generated by Sto : (3e B \B 'S , with nontrivial 
Hcenter. Hence H/S is infinite cy clic.

By the cohomological argument given above, S is free. Since H is 

assumed non-abelian, S is non-trivial so the cohomological argument 

also gives us that ZH has cohomological dimension 1. Thus ZH is 

infinite cy clic. It is mapped monomorphically by the quotient map to H/S .

C a se 4: B \ B ' = l / 3 !, ZH n SH /  1.

Suppose ZH is not contained in S . Now H is a split extension 

of SH by < tyg >; suppose tjgx e ZH, with m /  0, x e SH. Then 

SH H < t o x >  = 1, so H contains SH x < t g x > .  Hence SH has 

cohomological dimension at most 1, and is therefore free. But ZH fl S 

/ l ,  so SH has non-trivial center, and so must be infinite cy clic. Now 

there is only one non-abelian extension of an infinite cyclic S ( = < a >  , 

say) by that is

<t^>a : tl8 at/8 1 = a _ 1 >  •

2
But the center of this group is <t^g>, which does not meet < a >  = S .
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Thus ZH C SH. We shall in fact show that ZH C S. SH is a graph 

product of an infinite diagram

that is to say, a free product of conjugates of S amalgamating conjugates 

of f£}(Lg) with conjugates of g^O^g). The center of S is therefore 

contained in the intersection of all these conjugates. In particular L has 

non-trivial center so must be infinite cyclic. Therefore ZH is infinite 

cyclic and is contained in S. The arguments of cases 1 and 2 apply to S; 

hence there is a homomorphism 0  : S -» 2  which is one to one on ZH.

Let z e ZH fl f^g(Lg), z £  1; then g^Cf^C2)) = = z • Since

L̂ g is cy clic, t̂ g must act trivially on f^g(L^g) mod ker 0  and 0f^g = 0 ĝ g 

There is therefore an extension of 0  to a homomorphism 0  : H -* 2  which 

is one to one on fjgO^g), therefore on ZH. By the previous argument 

using cohomological dimension or the subgroup theorem, ker 0  is free.

Case  5: B \ B ' has more than one element.

Then H is a free product of groups <t^g,S>, |8 f B \ B ' amalgamated 

over S. Hence ZH C S. Choose /3Q e B \ B ' and let SQ = < S,t^g : /3^ /3Q>. 

Then H is the graph product of

The argument for case  4 shows that ZH is cyclic, ZH is contained in 

f/3 (L^g ) and t̂ g commutes with f̂ g (LjgQ)- Hence as in the previous 

case  there is a map 0  : S -> 2  which is one to one on ZH, which may be 

extended to 0  : H -» 2  by setting 0(t^g) = 1 for all /S. This map 0  is 

one to one on ZH and has free kernel. q.e.d.
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§3. As an application of Theorem 2, we derive two results about embed

ding knot groups in other knot groups due to Chang [3].

We start by proving

TH EO REM  3. L et G e § ,  and suppose that G has a non-abelian sub

group H with the properties (i) ZH /  1 and (ii) H is either normal or 

of finite index in G. Then either ZG / l ,  or G has a free normal sub

group F , with G /F  isomorphic to a subgroup of the rationals extended  

by an automorphism of order 2 acting invertingly (so that if G is 

finitely generated, G /F  is isomorphic to the infinite dihedral group).

Proof. Note first that if H is of finite index, so is H = Hn.
g<rG u

From Theorem 2, if ZH /  1, ZHQ /  1, and so we may assume that H 

is normal in G.

Since ZH is normal in G, and infinite cy clic, the centralizer of ZH 

in G, C say, is also normal, and G/C is isomorphic to a subgroup of 

Aut(ZH). Thus |G/C| = 1 or 2, and if G = C, ZH < ZG and we are 

finished.

Hence suppose |G/C( = 2. New ZC /  1, and hence C has a free 

normal subgroup F  with C /F  isomorphic to a subgroup of the rationals.

We claim F  = F  fl x F x - 1 , where x e G \C , and hence F  is normal in

G. Put E = F  x ZC; then C /E  is periodic, and hence so is C /E n x E x - 1  

But E fl x E x ~ 1 = ( F f l x F x - 1 ) fl ZC, and so C /F  fl xFx""1 is infinite 

cyclic-by-periodic. On the other hand C /F  fl x F x - 1  is isomorphic to a 

subgroup of C /F  x C /x F x - 1 , and contains a subgroup isomorphic to 

Z x Z  if F / F f l  x F x - 1 . Thus we get F  = F  fl x F x - 1 .

We now have C /F  locally cy clic and G /F  non-abelian. If xe G \ C ,
ry

then it is easy to check that x e F , and that conjugation by xF  inverts 

the elements of C /F .

The next lemma is easy to establish: we include a proof for com

pleteness.
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LEMMA 4. Suppose H is normal or of finite index in the group G = Zm * Z n 

and H is isomorphic to Zf * Zg , where m,n, r, s are integers, and 

neither m nor n is 1, at least one of m, n is not 2, and at least one 

of r ,s  is not 1. Then  H = G.

Proof. By the subgroup theorem, H is the graph product of the diagram

la la -1  HHl

where A is a set of (double) coset representatives for G mod (H, 1), B 

is a set of double coset representatives for G mod (H ,Z m), and C is a 

set of double coset representatives for G mod (H, Z n). The map f sends 

the component a l a - 1  D H corresponding to a € A into the component 

p Z m/ 3 - x fl H corresponding to the double coset H/3Zm containing a. 

Similarly for g.

Since H =  Z f * Z g , there can be no loops in this diagram, for other

wise H would contain a free factor. Furthermore exactly two of the 

factors /3Zm/3- 1  PI H, yZny~ 1 0  H are non-trivial.

Now, if H is normal /3Zm/3— 1 fl H =  Z m H H for all /3. Thus there 

can be at most two elements in B, and hence H has finite index in G.

Thus* we need only consider the case  H of finite index in G. If 

H = < x ,y  :x s = yr = l > ,  then x must be contained in a conjugate of Z m 

or of Z n: say x e gZmg_1 > and so r divides m. The image of H in 

the quotient group Z m/ r * Zn is finite and of finite index, and hence 

m = r. Similarly, s = m or s = n. Let |A| = a, |B| = b, |C| = c. From

Kurosh [10] p. 63, the number of cosets of H contained in the double

coset H/3Zm is precisely the index of /3Zm/3~ 1  fl H in j S Z ^ " 1 .

If just one of the / S Z ^ - 1  fl H is non-trivial, then precisely one of

the yZny~ 1 H H is non-trivial and we get
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(b -l)m  + 1 = a = ( c - l ) n  + 1 .

If two of the j8Zmj8~1 H H are non-trivial, then all the yZ ny~ 1 H H are 

trivial, and so
(b—2) m + 2 = a = cn .

But the diagram is connected and has no loops, and so its Euler 

characteristic is 1. Since there are a + b + c vertices and 2a edges, we 

have b + c — a = 1. These equations quickly give a contradiction.

We are now in a position to prove

THEOREM 5 (Chang [3]). L et  H be the group < a ,b :a m = bn>, m, n

coprime, and let G be a knot group containing H either as a normal

subgroup or a subgroup of finite index. Then  G = < A,B : Am = B n >, and 
h ha = A , b = B , where h is prime to mn.

Proof. Since G is a knot group it follows from Theorem 3 that ZG 4 1, 

and so by Burde and Zieschang [2] G has generators A ,B  such that
t £

G = < A ,B :A  = B  > with k,£ coprime.

Thus G/ZG =  * Zg, and clearly a non-cyclic subgroup of such a

group has trivial center. Thus ZH = ZG H H, and so HZG/ZG =  Zm * Z n.

From Lemma 4 we conclude HZG = G, giving H normal in G, and, 

by a suitable change of generators if necessary, k = m, I = n, and H =

< AU,B V : Aum = Bvn>, where (u,m) = (v,n) = 1. But Aum = Bun = Bvn, 

and so u = v, and the result is proved.

§4. R e m a r k s :

1. Karras, Pietrowski and Solitar prove in [9] that every finitely 

generated (free-by-infinite cy clic) group with non-trivial center lies in § .

2. If H is a finitely generated group with center in § ,  then H is 

the split extension of a finitely generated free group by an infinite cyclic  

group. It follows that H is finitely presented.

3. There do exist non-abelian groups H with center in §  with H /H / 

isomorphic to a non-cyclic subgroup of the rationals. The subgroup
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generated by iyax 2 y~~a :a  a positive integer! in the one relator group 

< x,y : yx2y_1 = x4 > is an easy example.

4. The subgroups of a group with center in §  are either groups with 

center or free groups. It follows that all the finitely generated subgroups 

of such a group are finitely presented, or, groups with center in §  are 

coherent.

Unfortunately not every group in §  is coherent. For F2 x F2 , the 

direct product of two free groups of rank 2, is in §  and it is well known 

that F2 x F2 is not coherent.

It is known that knot groups are coherent (Scott [12]): it is still not 

known if one-relator groups are coherent. It would be interesting to be 

able to distinguish the coherent groups in § .

5. It follows from the previous remarks that the groups H with non

trivial center in §  are locally indicable, and hence the integral group 

ring of H has no zero divisors and only trivial units (see Higman [7]).

6. In defining the class § ,  we restricted the “ amalgamating and 

associated” subgroups L to be free. We could allow L to belong to 

any class of groups which (i) is closed under subgroups and (ii) for 

which the only groups with non-trivial center are infinite cyclic (for in

stance, choose L as a subgroup of a parafree group [1]), provided we 

restrict ourselves to groups of cohomological dimension two. We have not 

however come across any interesting new groups this way.

7. Finally, we would like to pose the question which provoked the 

results of this paper: namely is Theorem 2 true for groups of cohomologi

cal dimension two, or, put in a slightly different way, if G has
/ ✓ * cohomological dimension 2, and ZG £ 1, is G free?

JOHN COSSEY
AUSTRALIAN NATIONAL UNIVERSITY 

N EVILLE SMYTHE
AUSTRALIAN NATIONAL UNIVERSITY

Added in proof: R. Bieri has verified this conjecture for a c la ss  of groups 
slightly wider than finitely presented groups.
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QUOTIENTS OF THE POWERS OF THE AUGMENTATION IDEAL
IN A GROUP RING*

John R. Stallings

Introduction

Let r  be a commutative ring with 1; G a group, e :TG -> F  the 

augmentation of the group ring taking G -> 1; J  = Ker e , the augmentation 

ideal. This paper shows how to compute the quotient groups J n/ J n+1 

(as well as the multiplicative structure of the graded ring consisting of 

these quotient groups). This is done in terms of a spectral sequence 

whose boundary maps are homology operations on groups/with certain 

functorial properties. We can obtain the spectral sequence either ab

stractly, in terms of the cobar construction on K(G, 1), or practically  

(losing a certain amount of homological data) in terms of a presentation 

of G. We give an application to a group-theoretic problem. In particular, 

following a suggestion of R. Lyndon, we give an example of a group with 

n generators and one relation, which cannot be mapped homomorphically 

onto a free group of rank 2.

Some of this paper was suggested by Brian K. Schmidt’s thesis [8], 

which computed the additive structure of T G /J11 in terms of a presenta

tion of G.

§1. The basic idea

Let P = ix : r! be a presentation of G. Let F  = F ix ! be the free 

group with basis ix !. Let I be the augmentation ideal in F F .  For

This work was done under the auspices of the Miller Institute for B asic R e
search, the National Science Foundation, and the University of California, Berkeley.
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w f F , let w = 1 — w. The graded ring associated to the filtration of P F

by powers of I is well-known to be the T-tensor algebra on the free

T-module X generated by the elements ixi. Let R be the free T-module

generated by Irl, which will here be confused with the T-sub-module of

r F  generated by {ri. Then FG is the quotient of T F  by the 2-sided

ideal generated by R. Recall that J  is the augmentation ideal in TG.

Then: 0  0

J / J  *  1 /(I + R) ,

2
which is the cokernel of a certain map dQ : R -» I/I  ^  X. This defines 

additionally a map

R ® X + X®R -  X ® X  «  I2 / I 3 .

The cokernel of this is

I2 /( I 3 + R I+IR) .

To obtain J 2 / J 3 we have to factor the above by something more, 

namely R Fl I , which comes from the kernel K of dQ. There is then 

a map
dx : K -> Coker (R®X + X®R -> X ® X ) ,

whose cokernel is isomorphic to J 2/ J 3 .

The description of J 3 / J 4 is even more complex: F irst factor 

X ® X ® X  by the image of R ® X ® X  + X ® R ® X  + X ® X ® R . Then factor 

this by the image of the kernel of R®X + X ® R -> X ® X . Then factor this 

by the image of the kernel of K -* Coker (R®X + X®R -> X ® X ). In the 

end, J 3/ J 4 will be isomorphic to something like this:

I3/( I 4 + (RI2 + IRI + 12R) + (RI + IR) fl I3 + R n  (I3 + RI + IR) D I3) .

E tc. We shall arrange these successively more complex computations 

into a spectral sequence.

§2. Some notations 1 conventions

P = ix : r! will be a presentation of G; T a commutative ring with 

1; TG the group ring; J  its augmentation ideal. Modules, tensor
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products, e tc ., will be construed to be over T . II means “ product,” i .e ., 

infinite direct product, while II means “ coproduct” or infinite direct sum. 

Also, A + B usually means direct sum.

X will denote the free module with basis \x\ in 1-1 correspondence 

with the generators in P. R will denote the free module with basis irl 

in 1-1 correspondence with the relators in P.

If M is a module, M° = I\ mn+1 = M®Mn, and T(M) = II Mn is
n > 0

the tensor algebra of M, whose multiplication is given by the canonical

isomorphism T(M) = II Mn is the completed tensor
n > 0

algebra, which is the topological algebra obtained from T(M) by comple

tion with respect to the descending sequence of two-sided ideals

z k = I I  M"  •
n > k

A basic fact, due to Magnus [5 ,4 ]  is that if T F  is the group ring of

the free group on the generators of P , then its completion with respect

to the powers In of its augmentation ideal is isomorphic to T(X), the 

isomorphism being given by x <-> 1 — x.

§3. The spectral sequ en ce from a presentation

Let A, or A(P), be the completed tensor algebra T(X + R).

Define K 1  = X , K2 = R , Kn = 0 otherwise. Then A is the product 

of terms called:

AP, ' II V '"e\  '
i l+ ---+ ip=q

Here, A °0 = T . Note that the product of A^q and Ars is contained in

A ^  .q+s
We define A _ p = APq

A- P , .  ‘  II A-P.q * <K1 + K2>P '
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Let B denote the uncompleted tensor algebra T(X + R), which is the 

coproduct of the A ^ .

An element a e A ^  will be said to have total degree n(a) = — p+q.

An element in B has total degree n if it is a sum of finitely many ele

ments of total degree n. An element of A has total degree n if it is in

the closure of the elements of B with total degree n; 0 has any total 

degree. Note that the elements of A of total degree 0 form a sub-algebra 

isomorphic to T(X).

A homomorphism of F-modules, 0  : B -> A is said to be a derivation, 

if it is zero on AQ0 = F , and if:

0 (a® /3) = 0 (a )® ;8  + ( - l ) n(a)a® 0(j3 ) .

We define d : A -> A as follows:

(1) d(X) = 0.

(2) <9|R is defined on the basis {ri thus: r -> 1 — r e T F  -> A, by

completion. In other words, dr  is the infinite series, in terms

of the Fox derivatives Dj = d /d x j ,  and augmentation e : T F  ->F.

dt = 2  ( - D n(eD i - Di W )i i  .
l n l n

Cf. [4].

(3) <9|B is the unique derivation extending the map already defined.

(4) d is the unique continuous extension of this to A.
r\ ry

Now, we note that <9 = 0 ,  since <9 is a derivation on B and <9 = 0

on X + R which generates B.

If we define Or = II A_p  ̂, then $  is a decreasing filtration on

A, and <9$ r C O r. P~ r

Also note that <9 lowers total degree by 1.

Now, what we have, consisting of A, d, $ ,  is a filtered chain-

complex. It leads therefore to a spectral sequence E r_p q> where:

E r is an algebra .

E °  «  A , and E ° «  B as an algebra.
P>4 P>4
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The boundary maps:

dt ' E -P,q E —p—r,q+r—1

are themselves derivations induced by d, and E r+1 is the homology of 

(E r,d r).

Furthermore, the shape of the possibly non-zero terms in E r_p q is 

of interest: Except for the term E rQ Q = F ,  we have E r_p  = 0 unless 

q > p and p > 1. We say that such a spectral sequence is an upper upper 

left octant spectral sequence.

3.1. E p »  EP4-1 «  »  E°°-P,P -P,P ~P,P

This is true for any upper upper left octant spectral sequence. We refer 

to this as convergence on the anti-diagonal. In general, there will be no 

convergence phenomenon elsewhere.

The presentation { x :r l  determines a 2-dimensional cell-complex K. 
There is a single 0-cell e Q, a 1-cell for each generator x, and a 2-cell 

for each relator r; the attaching map of the boundary of the 2-cell is 

determined by the recipe that r gives as a word in the generators. The 

smash product #n(K, e Q) is the n-fold Cartesian product Kn, modulo the 

subspace consisting of all points having at least one coordinate equal to e Q

3.2 . E '_ p q *  Hq(#P(K,e0) , r )  .

This can be proved by noting that E °_ p   ̂ is just the chain complex of 

#P(K, e Q), because dQ is a derivation and coincides with the boundary 

map of the chain-complex of (K, e Q) on E ° _ j  * .

§4. Functorality on presentations

Let P = {x : r! and Q = {y : s ! be two presentations. We shall define 

a notion of map from P to Q that will induce a homomorphism of spectral 

sequences E (P ) to E(Q).

If {ul is a set then F{u{ will denote the free group with that set as 

basis. A map f : P  -> Q consists of two group homomorphisms:
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cf> 1  : F ix ! -> Fiy !

0 2 : F ix , r ! ■* F ly ,s i

satisfying these rules: Define dp : F ix , r i -> F ix !, by x -> x  and r, as 

basis element of F {x ,r i ,  -> r as a word in Ixh Define dg similarly. 

Then we must have:

<£1 dp = dg<£2 and |lx! = </>2 |{xl

£ 10 2 (r) is a product of terms of the form ws w~

where w e Fly ! and e = +1 or —1.

defines, by extension to the completed group rings, a homomor

phism fj : X -> T(Y), which is the 0-degree part of A(Q).

0 2 gives one a way to define a map f2 : R -> the 1-degree part of 

A(Q), as follows: If

<t>2 (x) = n  wi s iEiwi_ i
define i = l

= ( e j - D / 2  and 11- = ] J  'w j- 1  .
i<j

Then

n 0  

l - 0 2 (r) =  e j n j wj s j j ( l - S j ) W j _1 .

j = l

6 \So, let Uj = dg( £ j IT j Wj s j J) and Vj = Wj , both being taken as being 

elements of T(Y). Then we define:

n

f2<?) = 2  V j vj

j = l

The fact that c^dp = dg <£2 now implies that fx + f2 : X + R -> T(Y + S) = 

A(Q) commutes with d in A(P) and A(Q). Extend fj + f2 to a con

tinuous algebra homomorphism f# : A(P) -> A(Q). Since the two boundary 

maps in A(P) and A(Q) are derivations which commute with f# on 

generators of A(P), it follows that f# is a chain-mapping.
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So in the end we have f# : A(P) -> A(Q), commuting with d, preserv

ing total degree and filtration. Thus, f# defines a map of spectral 

sequences f^ : E (P ) -» E(Q).

4 .1 . With these definitions, the spectral sequence is a functor from the 

category of presentations and presentation maps to the category of upper 

upper left octant spectral sequences.

To show that the map of spectral sequences induced by the composi

tion of two presentation maps is the composition of the two induced maps 

of spectral sequences is an exercise in keeping your head while the 

indices proliferate and will be omitted.

4 .2 . If the map f : P  -> Q induces a homology isomorphism of the two- 

dimensional complexes of the presentations, then

f# : E r(P) -  E r(Q)

is an isomorphism for r > 1 .

This follows from 4.1 and 3 .2 .

In particular, the complex of P can always be subdivided into a semi- 

simplicial two-dimensional complex, giving a presentation Q in which all 

relators are of the form
r : x ; x- X; = 1  .

h  *2 *3

In such a complex:

4 .3 . <9r =  (—X: ® X- + X :  + X j  - x -  ) ® (1 — x* )
h  l2 *1 *2 *3 *3

,-1

§5. Cobar construction [1] [9]

A coalgebra A (over the commutative ring T) is:

(1) A graded module with An = 0 for n < 0 and AQ = F .  By A 

we mean A 1 + A 2 -\ . By e : A -> T is meant A -> A/A.

(2) A chain-complex, with d : An -> A such that d2  = 0 and 

dA1 -  0.
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(3) With a diagonal map A : A -» A® A, which is a chain-mapping 

(relative to the usual d on A®A, such that <9(a®/3) =

(da)0/3 + (— l)dima a®(9j8), that is strictly associative:

(A ® lA)o A = ( 1 A ® A)o A ,

and for which 8 is a 2 -sided co-unit:

(£ ® 1 a )° A  = ( 1 A ® s ) °  A = 1 A .

These equations have to be interpreted in terms of the standard identifica

tions of various tensor products, where 1A is the identity map on A.

The example of a coalgebra one needs to have in mind is the chain- 

complex of a semi-simplicial complex K which has only one vertex, and 

which is provided with the Alexander-Cech diagonal:

n

A(ff0 --n> = £  a 0 - - . i ® ai .- n  ' 
i = 0

Here ^ . . .k  is the semisimplicial analogue of that face of the convex 

simplex with vertices (x 0 ,* -- ,x n) which has the vertices (xj,-*-, x^).

We now construct the tensor algebra T = T(A), giving it the bigrada

tion where T ^  is the coproduct of the terms

A- ® ...® A .
i V

over all positive p-tuples ii  ̂ »ip such that i1 + ***+ ip = q. As in the

earlier construction, T__p = T ^  is distributed over the upper upper left 

octant.
The homomorphism d : A -> A restricts to d : A -> A. We extend this 

to a derivation d : T(A) -> T(A). As before, a derivation is a homomor

phism D : T(A) -> T(A), such that

D(a®/3) = D(a)®/3 + ( - l ) n(a )a®DQ3)

where a e T ^  and the total degree n(a) = —p + q.
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The resultant d : T -> T maps -> T** j and satisfies d2  = 0.

It differs from the “ usual <?” on by sign differences; nevertheless,

the homology groups of these two boundary maps are isomorphic.

Let e :A ® A -> A ® A  be defined by

e(a® /3) = ( — 1  )^ a® /3 , where a <r A^ .

The diagonal map A determines a diagonal map A -* A® A, and we de

fine Aj to be the composition

A -> A®A -?> A®A .

Then Aj maps A -> T(A) and so extends to a unique derivation 

Aj : T(A) -> T(A). This derivation maps T ^  to

The assumption that A is a chain-mapping implies now that Â <9 + 

(9Aj = 0  on elements of T 1 ^, and thence by induction on p, using the 

fact that Aj and d are derivations, it can be proved in general.

The assumption that A is associative now implies that A j 2  = 0 , 

first on T 1 ^, and then by induction on p, using the fact that Â  ̂ is a 

derivation, on T * ^ .

In summary:

a : TPq -* TPq_ x and ^  : TPq -> TP+1q 

are derivations.

d2 = 0 , A x 2  = 0 , Ax <9 + dAx = 0 .

Therefore, defining D = <9 + Ax we see that = 0, D is a derivation, 

and D lowers total degree by 1.

We are now in the standard situation of a double complex; so there is 

a spectral sequence using p as the filtration degree.

E r is a graded algebra with a derivation

dr : E  —p,q ■* E  —P—r,q+r—l
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induced somehow from D, with respect to which, the homology of E r is

E r+1.

E °_ p  q *  T pq(A), on which d0  = d .

E ‘ - P, ,  -  V SP)

E is an upper upper left octant spectral sequence, and so there is 

convergence on the anti-diagonal.

E is obviously a functor of coalgebras A and appropriately de

fined coalgebra maps.

§5.1. Suppose A and B are coalgebras and cf>: A -> B is a map of 

coalgebras such that cf>̂  : H^A) -* H1 (B) is an isomorphism and 

<f>̂ : H2 (A) -> H2 (B) is onto. Then in the induced map of spectral sequences 

<£# : E(A) -> E(B ), for r > 1;

E r -> E r is an isomorphism, and P>P PrP

E r « 1 -> E r « is onto.-p ,p + l -p ,P ^ l

I.e ., is isomorphic on terms of total degree 0 and epimorphic on 

terms of total degree 1 .

The proof is by induction on r, using the hypothesis for r = 1 and 

the fact that the terms of total degrees 0 and 1 in E 1 can be described 

(by the Kunneth formula) in terms of H^A) and H2 (A). The induction 

step is an ordinary diagram-chasing argument using the 5 -lemma.

5.2. C O R O L L A R Y . If <f> * is isomorphic on H1 and epimorphic on H2 , 

then E ~ _ p;p(A) *  E ~ _ p#p(B).

5.3. C O R O L L A R Y . If A is the coalgebra of a semisimplicial complex K 

with one vertex, and 77  ̂(K) = G, and B is the coalgebra of the semi-

simplicial Eilenberg-M acLane space K(G, 1), then E°°_ p(A) «  E°°_ _(B).

This is because there is a map satisfying 5.2 from K to K(G, 1).
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Now consider the Eilenberg-MacLane space K(G, 1). In a sense, the 

coalgebra of K(G, 1) is the bar-construction of TG. Our spectral 

sequence is the cobar construction of this. The result, if there is any 

justice, should be equivalent to TG. This is a theorem of E . Brown [2].

The key point to note is that on a 2-simplex (g|h), a basis element 

of A 1 2 , the total boundary D is

D(g|h) = - (g )®  (h) + (g) + (h) -  (gh) .

The first term here is derived from the diagonal map, the rest from the 

boundary map in the semisimplicial complex K(G, 1). It follows that the 

map
(g l )® ---® (gn) -> ( i _ g l) . . . ( i - g n)

from the terms of total degree 0 in the cobar construction to the ring PG

exactly annihilates the image of D. Thus the total O-dimensional homology

of the cobar construction is TG, and the filtration on it is that of the

powers of the augmentation ideal. It follows that the E°°__n term is
P>P

then J*VjP+ 1. Combined with 5.3 , this shows:

5 .4. TH EO REM . If A is the coalgebra with coefficients T  of a one- 

vertex sem isimplicial complex K, and J  is the kernel PG -> T , where

G = 77y (K), then
E °°_ P)p(A) *  J P / J ^ 1

§ 6 . Comparison of the two spectral sequ en ces

Given a presentation P , we subdivide it to obtain a homologically 

equivalent presentation Q whose complex K can be considered to be 

semi-simplicial. By 4 .2 , we have E r(P) ^  E r(Q) for r > 1. Comparing 

the boundary formula 4.3  of E r(Q) with the boundary formula in the cobar 

spectral sequence of K, we see there is an isomorphism taking the ele

ment r of E(Q) to <7 ® (1 - T ) “ 1 in E(K), where r = xyz- 1 , o is the

2-simplex corresponding to r and T is the 1-simplex corresponding to z, 

and E(K) is the completion of E(K) in the p-filtration. The composed 

map defines an isomorphism E r(P) «  E r(K) for r > 1.
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Hence, by 5.4:

6 .1 . TH EO REM . Let  E (P ) be the spectral sequence defined in §4 for the

presentation P of a group G. Then , where J  is the augmentation ideal

in the group ring TG,  ̂  ̂ .
E P- p,p<P> *  J P/ J P+1 •

§7. A group-theoretic application

Suppose G is a group with a presentation with just one relator, P =

jx 1 ,*•*, x R : r = li. We want to investigate the question: Onto which free

groups can G be mapped?

A free group F  of rank m has a presentation Q = 

no relators. If h : G -» F  is a homomorphism onto, there are maps of 

pre

sentations
a : P -> Q , /3 : Q P

such that a/3 : Q Q is the identity map, in other words a and h are

retractions.

Now, with a given coefficient ring F , we can write, when 

1 — r e Ik\ Ik+1,

1

modulo I^+ 1. Thus, in the spectral sequence E (P ), the derivations dg 

are all zero for s < k — 1 , and

)(**) dk_ j(? )  = 2  =

We think of 77, which is a homogeneous form of degree k in non

commuting variables, as a sort of homology operation.

Since a : P -* Q is forced to be trivial on r, and the spectral se 

quence is functorial, it follows that
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Now suppose aX| = S b ^ -y j. The fact that a is a retraction implies, if 

r  is an integral domain, that the nxm matrix (bjj) = B has rank m.

Furthermore, we could follow a by any automorphism a , Q -> Q, and the

same would be true of ya as is true of a . The result is to multiply B

on the right by an arbitrary invertible mxm integer matrix. Thus, if the 

ring r  is one of the prime fields Zp we can fix it up so that B is in 

column echelon form.

7.1. For r  = Zp a necessary condition that G can be mapped onto a 

free group of rank m is that for the form rj defined by (** ), there is a 

matrix B = (b - )  over T of size nxm and rank m, in column echelon

form, such that .

( 2  V i ’ - ’ 2 bn j y j )  = 0 •

I .e .,

a- b- • •••b- • v* = 0
^  V M c  h h  'k ) k yh  yJk

I.e ., for every k-tuple of integers jfc € X  mL

^  a- : b: • ---b- • = 0  .
^  1 l ,,#1k 1 J 1 kJk

i l ' “ ’ ik
a i ,n ]

7.2 . Suppose the group G has the presentation

P = {x 1 ,***,xn : x xe ••• x ne = 1}, where e > 1 .

Then if G can be homomorphically mapped onto a free group of rank m,

it follows that m < n /2 .

kProof. Select a prime p dividing e. Therefore e = qf where q = p

and f ^ 0 mod p. Then with coefficient ring Zp, where x = 1 — x,

i —r =

= f(x 1 (l + - "  + xnq) modulo I^ 1 .
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So, in the form 77 all the coefficients are zero except for those whose 

indices are all the same, in which case  the coefficient is f.

Now if (b * j) = B is an nxm matrix of rank m in column echelon 

form and we take the k-tuple jj ,•••, = s ,s ,-*-, s ,t  in 7 .1 , we find that

for all s , t e [ 1 , m], n

<#> r 2  bisi - ‘ bi t .  0 .

i= l

The matrix C = (cgj) with c g  ̂ = hjg <̂ " ' 1 is obtained from B by trans

posing and setting every non-zero entry to 1. Since B is in echelon 

form, C has the same rank, namely m.

Since f /  0  in Z^, the equation (#) says:

C • B = 0 .

Thus the row-space of C is contained in the null space of B. The 

dimensions of these are m and n —m, respectively, and so m < n — m, 

or m < n /2 , as asserted.

Note that, conversely, by mapping the odd generators to themselves, 

the even generators to the inverse of the preceding one, but the last one 

to 1  if n is odd, we can retract the above group onto a free subgroup of 

rank (n—1 ) / 2  or n /2 , whichever is an integer.

Another interesting example is this (a similar thing was pointed out to 

me by R. Lyndon in a letter about 15 years ago): Let [u,v] = uvu_ 1 v_ 1 . 

Given an integer n, for 1 < i < j < n, let { a - i  be n (n - l ) /2  pairwise 

distinct powers of 2. Let c be a power of 2 at least as large as each  

a - . Define e-j = c /a  -  .

Define an expression

(!) rCx^-'-.Xjj) = J J  [ x j X  Xj lj] l j  .

i< j

The product has to be taken in some fixed order, which is not going to 

make any difference for our purposes.
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Define a group G now by the presentation:

P = !x 1 ,- - - ,x n : r(x1 ,- - - ,x n)=  li  .
t

7.3 . The above-defined group with one relation cannot be mapped onto a 

free group of rank 2.

Proof. Take T = Z 2 . In the spectral sequence E (P ) all boundary maps 

are zero until d2 c _ 1 is reached, and then

d2 c - l (^  = = ] £  (xj l j xj 1J’ + x j lj .

i < j

If there were a retraction G -> Fiu,vi, we would have an m x2 matrix of 

rank 2 (by) with

(*) ^ 1 1  ̂+ bi2^»,,#»bnl" + bn2^ = 0 *

We can analyze each summand of this expression somewhat. Suppose 

p,q,  r , s  e Z2 and a is a power of 2. Look at

(pu + qv)a (ru + sv )a + (ru + sv)a (pu + qv)a .

We can say the following:

(1) The coefficient of u2a is pa ra + ra pa = 0 and similarly the 

coefficient of v2a is 0.

(2) The coefficient of ua va is pa s a + ra qa = ps + rq = 

Determinant of (p,q; r,s).

(3) If k divides a and t = a /k  > 1, and f = t /2 ,  (of course, 

k, t, f are powers of 2), then the coefficient of (u^v^) is:

(pk qk)f (rk s k)f + (rk s k)f (pk qk)f = 0 .

Therefore, in the expression (*) above, the coefficient of the term

_ a -  _a- • •
(u 1 J V
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comes solely from the ij-th summand of rj, and is therefore, by (2 ) above,

bil bj2 + bjl bi2 '

This must be zero for every pair i, j with i < j. Thus, every 2 x 2  sub

determinant of B is zero, and so B has rank at most one.

7.3 can be rephrased in the following rather curious form:

7.4 . If F  is a free group, and x 1 ,--* ,x n £ F  then ix 1 ,-**,xn! generates 

a cyclic subgroup if and only if (where r is given by (!) above)

r(xi r -- ,x n) = 1  .

Proof. Sufficiency is 7 .3 , since every subgroup of F  is free. N ecessity  

follows from the fact that r would be in the commutator subgroup of the 

cyclic subgroup.

Another remark. If one makes an expression i by replacing the com

mutators in r by the expression:

< U, V> = (uv)2 u2 V2

then the resulting form in the one-relator group with this relation r '=  1 , 

is identical with that for r, and so the result 7.3 holds for this group 

also. Every generator of the group occurs in r with only positive ex 

ponents .

§ 8 . Related questions

The examples in §7 are simple in the sense that they could have been 

described without spectral sequences. This is probably true of any sp ec

tral sequence argument that only depends on facts about the first non

vanishing df. One unsolved problem is therefore to derive interesting 

group-theoretic results using the machinery derived here in a more essen

tial way.

For another thing, it is my impression that Milnor’s isotopy invariants

[6 ] can be described in terms of the spectral sequence of the fundamental 

group of the complement of a link. But this is not perfectly clear.

 EBSCOhost - printed on 2/10/2023 4:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



THE AUGMENTATION IDEAL IN A GROUP RING 117

Finally, Rips [7] has shown that there is a difference between the 

“ dimension subgroups’ 7 and the terms of the lower central series. This 

paper has discussed powers of the augmentation ideal, which are related 

to the dimension subgroups. It would be worthwhile to describe some 

computable spectral sequence which would compute the quotient groups 

of the lower central series. There should be a map of that spectral se 

quence into the one defined here, and then homological algebra should be 

developed sufficiently for one to perceive clearly why it is that when 

torsion appears in the quotients of the lower central series it is possible 

for the lower central series to differ from the dimension series. My idea 

for this is to substitute the Curtis spectral sequence [3] for the cobar 

construction; this would probably converge on the anti-diagonal to the 

quotients of the lower central series. The problem would be, how to com

pute with the Curtis spectral sequence, at least to the point of going 

through the Rips example in detail? And how to describe a similar spectra] 

sequence in terms of generators and relations?
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KNOT-LIKE GROUPS 

Elvira Rapaport Strasser

Abstract

If K is a knot, the fundamental group of its complement in the three- 

sphere is called a knot group. Every knot group having finite presenta

tions, has one consisting of one more generator than the number of defining 

relations; that is, a presentation of deficiency 1. Abelianized, the knot 

group is free cyclic. I call a finitely presented group, G, knot-like if it 

has these two properties.

If G is knot-like, G' its commutator subgroup, and G'/G" is finitely 

generated, then G'/G" is free (Abelian) and its rank is equal to the degree, 

d, of the Alexander polynomial of G [8 ]. If G is actually a knot group, 

and G' is finitely generated, then G' is free of rank d; the proof [7] is 

topological.

Let P be a presentation of deficiency 1 of the knot-like group G; 

then P gives rise to a presentation of G' as a product of groups , 

i : 0, and a certain presentation of HQ. Let M be the deficiency

of the presentation of HQ so gotten, and suppose P such that M is 

least possible. The main result of the present paper is that any two of 

the following conditions imply the third: 1. G' is finitely generated;

2. G' is free; 3. M = d. For one-relator presentations, either of the first 

two conditions implies the rest.

While d is independent of the presentation of a group, M is not: 

d < M and G may have presentations Pj and P 2  of deficiency 1 such 

that Mj > d, M2  = d.

119
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§ 1 . Introduction

Let P *  = (x, an; present the group G for which the

factor commutator subgroup, G/G', is cyclic. Then I will say that G is 

knot-like. It is no loss of generality to assume that the a-symbols are 

elements of the commutator subgroup, G'; that r̂  has the form a^Cj for 

some elements Cj of G' [4]; and that G/G' is generated by the coset 

containing x. Then the set of all conjugates, xJa-s^  i : l,*-*, n, 

j : 0, ±1, — , generates G', and the r̂  can be expressed as words in 

these conjugates.

Set P *  = (x, a; r), so that a is an n-tuple of symbols a^, and r 

an n-tuple of words in x and a. Set x ^ a ^  = a -  ; let Rq be the re

write of r as an n-tuple of a^--words, and the rewrite of the n-tuple 

x krxk. Then
P  = ( a j j ; R j , i : l , - " ,  n, j : 0 ,± 1 , - - - )

is a presentation of G'; it makes sense to speak of a -  as an element 

of G'.

All terms used in the sequel without definition may be found in [5]. 

Take all defining relators reduced and cyclically reduced, and suppose 

that R q contains a* m but not â   ̂ if k < m^. Suppose further that

regardless of first subscripts, t is the smallest second subscript occur

ring in the rewrite of r^  then the rewrite of x ^ x *  contains â  0  for 

some i but no negative subscripts. Replacing rt by x ^ x *1 and pro

ceeding similarly with the rest of r makes m- non-negative for each i.
nu -m i

If now mx /  0, then replacing a x by x a xx everywhere in r 

leads to a rewrite containing a  ̂ q s o  that m̂  = 0. Similarly for the re

maining . If M is the sum of the numbers M* , i : l,***, n, then the

“ spread” of the a -̂ in RQ is M.

If the ay  are allowed to commute — that is, if the second commuta

tor subgroup, G ", of G is factored out — then R q will consist of

words of the form
w  =  ( a i ( P  l ° ( a u )  1 1 “ * a l , M 1 ( a 2 0 ^  2 0 ‘ * ‘
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for certain integers by, b, etc. For a moment write x^ap^ as (apx in 

P *. Then w becomes

M1
(3 l )b lCKaj)b l l x • ■ • (aj )bx (a2)b 20 • • • 

which can be written as

MI
(a i )b 10+ b l l x+' ” +bx (a2)b 20 ••• .
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Then, modulo G",

P 11(x) P 10(X) P 1n(X)
, = (ax) llV  (a2) 12V y - ( a n) ln '

p n00 p i«(x)
rt -  (a,) “  “  •

Let P (x) = x Ĉcq + c^xh— + c^x^) be the determinant of the n xn  matrix 

of the P* j(x), so that d < M  and Cq + Cj X+^-h- c^x  ̂ is the Alexander 

polynomial of G. The constant c Q is zero only if P (x) is zero. But 

this cannot happen: since r̂  = a  ̂ modulo G', the exponent sum of a- 

in r̂  is 1, and the exponent sum of aj in r̂  is zero for j  ̂ i, so tha 

setting x = 1 in the expression for r̂  given above reduces it to â  and 

so P (l )  = 1. That is, P (x) is not the zero polynomial, and so c Q  ̂ 0, 

and c^  ̂ 0. While M varies with the presentation, d is an invariant of 

G [1].

From the presentation P of G' one gets a presentation of a certain

group u  -  r P  ^H 0 " âl,0^al,l,*“,al,M1» a2,0^” ,a2,M2»'‘*,an,Mn  ̂K 0' •

The deficiency of this is (M + n)— n = M.

Adding the integer t to all second subscripts in HQ gives a group

Ht = (a l ,t ' * *' a l ,M j+t ’ a2,t ’*‘*, a n,Mn+ t ; *

Clearly, the union of the is the presentation P  of G'.

An element of H0 is 1 in G' if it is consequence (product of con

jugates) in G' of the members of the n-tuples of relators R Q, R+i>*"
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in G'; it is 1 in HQ if it is consequence of the relators RQ in HQ.

In general, then, HQ is not a subgroup of G'. But there is a normal sub

group, call it Kq, in H0 such that Hq/K q is subgroup of G' Similarly 

for the Ht . Writing H* for these factorgroups, one gets a presentation 

of G/ as a free product of the H* with amalgamated subgroups as 

follows.

Let Hqj be the subgroup of Hq generated by every symbol in Hq 

except the â  M , i : I,--*, n; and let Hq2 be the subgroup of Hq gener

ated by all but the â  0 , i : l ,* * ,n .  Then mapping each a -  into â  -+1 

changes Hqj into Hq2 and this mapping is an isomorphism since it 

corresponds to a conjugation by x in G. The subgroups H* j are simi

larly defined for j : 1,2 and all integral t .

Let a ĵ of H* 1 be matched with a- j+1 of H*+1 1; this gives an 

isomorphism. Let a -̂ of H *2 be matched with a -  of H*+ 1 1 ; this 

also gives an isomorphism and provides an identification of the subgroup 

H *2 of H* with the subgroup H*+1 1 of H*+1 along that isomorphism.

§ 2 .  An example

Let G be a one-relator group and P * = (x, a; r) a presentation of it

with a = a 1 and r = r, = a2x “ 1ax2a ~ 1x “ 3a ~ 1x2 , so that r = a modulo G'. 
1 1  —1 2  

The rewrite of r in the exponential form is a2+x x x . The rewrite

of x “ 1r“ 1x is ax +1~x “ 2 x . Modulo G', this can be written as aL x̂ ,̂

with L(x) =  x 3 - x 2 - 2 x +  1 the Alexander polynomial of G. Replacing r

by x “ 1r~ 1x in P *, one gets

R 0 = a 3 a 0 a 2 1q1 2

and

R 0 = (a 0 ' a l ' a 2> a 3 ’ R 0> •

Then

R01 = <a0 ’ a l ' a2 ’ )

R 02 = (a l ’ a 2 ' a 3 ; ^

 EBSCOhost - printed on 2/10/2023 4:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



KNOT-LIKE GROUPS 123

(that is, free groups of rank 3 because of [3]); d = M = = 3 , and

m = m1 = 0.

Though Hq. is free of rank 3 in view of the Freiheitssatz, in this 

case  inspection is sufficient to establish this fact. For example one can 

argue that R0 and the symbols a x , a2 , a3 freely generate the symbols 

a 0 , a i> a 2 > a 3  so that H0 is free on a x , a2 , a3 . But then HQ is con

tained in H02 and vice versa.

HQ1 a n d  HQ2 a r e  i s o m o r p h i c  u n d e r  t h e  m a t c h i n g  o f  a i i n  HQ1 w i t h

a *+ 1  in  H02 s o  G' i s  t h e  f r e e  p r o d u c t  o f  t h e  w i t h  a m a l g a m a t e d  s u b 

g r o u p s

Hi,2 = (a i+l ’ a i+2’ ai+3; > of Hi = (a i ' - « a i+3; R i}
and

Hi+l, l  = <ai+1, a i+3; ) of Hi+1 = (ai+1, - , a i+4; Ri+1)

in the “ natural” way.

The presentation P of G/ is (aj; Rj, j : 0, ±1,---), or

P = (a .; a3+:ja .a j+1.aj-+2j , i : 0 ,± l , - - - )  .

In this example one can get rid of all aj and of P that are not

in Hq by using Tietze transformations. When only HQ is left, one more 

Tietze transformation reduces it to HQ1 (or HQ2). So G' is free of 

rank 3 and any triple a^ , ai+2 Senerales

§3. Summary of results 

Let G be knot-like.

If G' is finitely generated, is G' free? For knot groups the answer 

is in the affirmative; the rank of G' is then the degree, d, of the 

Alexander polynomial [7]. The proof is topological, based on the van 

Kampen theorem, available since there is a knot. If G is only knot-like, 

it is known only that when G'/G" is finitely generated then it is free of 

rank d [8].

More generally, one can ask when is G' free.
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For presentations with one defining relation, the answer is complete 

(Theorem 2): exactly when it is finitely generated. For one relator 

presentations of these groups M turns out to be an invariant of G and 

so d = M. (Lemma 5.)

On the other hand, if G' is free of rank t, then there exists a 

presentation with d = M = t since G is extension of a free group F̂  by 

a free cyclic group. In the general case , one would therefore like to have 

a presentation P *  of G of deficiency 1 for which M — d is as small 

as possible (this number is non-negative as d < M). As this runs into the 

unsolved problem of finding the deficiency of a group [9], the condition 

M = d had to be used. This condition forces a Freiheitssatz for many- 

relator presentations by weeding out cases where we cannot tell at the 

present state of our knowledge of these matters whether certain subgroups 

are free. If a knot-like group were such that every presentation P * of 

deficiency I gave d < M then this group would be weeded out. I do not 

know whether such a group could have either a free or a finitely generated 

commutator subgroup. I think not. That is, I suspect that a free G' is 

finitely generated, as in the one-relator case.

An example of G having a presentation P * with d < Mj and another 

presentation P 2 with d = M2 (M̂  representing for the moment the value 

of M for P *) is easily concocted. The following one has G'= F2 .

and M = 3. Rewriting the relators modulo H'0 gives them the form

P * = (x, a, b, c ; c *a *x * a x ,x  *a *xb *x *b x,x  1b 1cx)

gives

and the determinant of
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is x(x — 3x+ 1). Thus d = 2. The Alexander polynomial is x^—3 x + l .

G is the fundamental group of Listing 's knot (4 crossings).

Another presentation

P| = (x ,a ,b ; b“ 1a ~ 1x ~ 1a x ,x “ 1a ~ 1xb~1x “ 1bx)

gives

H0 = (a o> ^0 ’ a i > ;  b0 1aQ 1a1 , a1 1bQ bj) 

and M2 = 2 = d.

The lemmata in the next section, while they give a little more informa

tion, lead to the following theorems.

G will be knot-like, P *  a presentation of deficiency 1, G' the com

mutator subgroup, and M the ensuing deficiency of the presentation HQ.

TH EO REM  1. Suppose M is least possible for all presentations P *  of 

G. Then any two of the following three statements imply the third. (1) G' 

is finitely generated. (2) G' is free. (3) The degree of the Alexander 

polynomial of G is M.

T H EO REM  2. For one-relator P *  either of the first two statements in 

Theorem 1 implies the rest.

T h e o r e m  3 . Let wCa^O and w (a i j+ 1 ) both be elements of Hq. Then 

Hq is a subgroup of G' if and only if for all such pairs, either both are 

relators in Hq or neither is.

The last theorem means that from knowledge of HQ alone, one can deter

mine the factor group H0/K Q which is subgroup of G'.

Conversations with colleagues at York University, Downsview, Ontario, 

especially with Abe Karrass enabled me to put the material of this paper 

in the present improved form.
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§4. Proofs

G will be a knot-like group in a fixed presentation, P *. The proofs 

will be based on a series of lemmata.

LEMMA 1. If G' is finitely generated then HQ  ̂ contains a full set of 

generators of G'.

Proof. Let H* be the subgroup of G' generated by the elements of H^. 

If the lemma holds for Hq 1 then it holds for HQ j . I will prove it for the 

former.

As subgroups of G', H* and H*+1 are isomorphic under matching 

each a-j of H* with â  j+1 of H*+1. Therefore G' is the free product 

of the subgroups H* with H* 2 and H*+1 1 amalgamated along this 

isomorphism. Writing G' = U *H * for this, the segments
A  4

S? = H* * H* *••• * Hf* and S* = H* * H *. * ••• * H *t
1 U A 1 A A 1 - t  A A A

are seen to be subgroups of G' for every t.

As G' is finitely generated there is a non-negative number t for

which S* contains a full set of generators of G' and so it is isomorphic 

to G'. Therefore, in S*+1 -  S* * H*+1 there are n relations, one for 

each i, of the form ai = w*, and the element wi is in S*.

Now the amalgamation in S*+1 (as a product of two groups given 

above) is along an isomorphism identifying the subgroup H *2 °f S* 

with H*+1 j of H*+1. Therefore, if some element w of S* equals an 

element v of H*+1 then w must be in H* 2 and v must be in 

Thus, the n relations a i M.+t+i = Wj imply that for each i there exist 

elements v̂  in H*+1 x such that

a i,Mi+t+l = v i* is a relation  in Ht*+1 

* ^
and there exist elements û  in Ht 2 such that
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Wj = u- is a relation in H* ,

and Uj = Vj under the amalgamation in S*+1 = S* These give

the relations

ai,NL+t+l = vi ’ 1 ' in Ht+i ’

expressing a iM-+t+l as an e *emenL vi » ^t+1 1 ’ that is the vi

contain no symbols aj j^.+t+l ôr any T

For any integer k, t ie  groups Hq and are isomorphic under

matching a  ̂ f of Hq and a  ̂ r+  ̂ of H^, i :  l ,- -- ,n . Then, for any non

negative number p similar results obtain for the subgroups

H* * H* *••• * H* whenever q+p = t; the latter are conjugate to the PA  PA  A 4
subgroup S*. It follows that there exist elements, v ,̂ in HQ  ̂ such that 

a i m = i : l ,-* - ,n  are relations in Hq

and the v̂  contain none of the aj M .

Similar considerations, starting with , yield elements ẑ  in 

Hq 2 such that
a i 0 = z i ’ * ' are relations in Hq

and the contain none of the aj Q.

By the same token, like relations hold in each H^.

Then, in G', one can express a  ̂ as an element in Hq  ̂ and so 

one can express every element of H * x in H j ^  Likewise, the a- _ 2 

are equal to elements of H * 1? and so H *2 can be expressed in the 

generators of Hq 1? etc. Similarly for â  M , j j -+1, and so forth.

This shows: Hq j , qua subgroup of G' is actually G', so that 

Hq j contains a full set of generators of G', which proves Lemma 1.

Note that Hq j is a factor group of HQ  ̂ so that if HQ  ̂ itself is 

a subgroup of G' it is G' in the sense indicated.

LEMMA 2. Hq  ̂ and Hq 2  are isomorphic under matching the a ĵ in 

Hq j with the a  ̂ j+1 in HQ 2 if and only if Hq is a subgroup of G'.
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Proof. It is clear from the definition of the H- • that the groups Hn t 

anc* **1,1 are isomorphic in G' under matching the ai j of HQ j and 

the a j j+ i  of Hj j .  If now HQ 1 is isomorphic to HQ 2 in the required 

manner, then matching the a- j of HQ 2 with the â  j of Hj j is an 

isomorphism. A similar statement holds for all the groups Hq. But then 

G' is the free product of the with 2 and H^+1  ̂ amalgamated 

along this isomorphism, and so is a subgroup of G' for each integer

q. As the converse is obvious, this proves Lemma 2.

LEMMA 3. If d = M then Hq 1 and HQ 2 are free of rank M.

Proof. Let GQ be the free group generated by the symbols a  ̂ j which 

belong to HQ j ,  so that GQ has rank M. Then

H0 = (G0 . a i,M^ 1 ’ R0) *

R0 consists of n relators, say RQ = wx,*•*, wn. Let b̂ - be the exponent 

sum of in Wj, so that (b^-) is an n xn  matrix; let Dx be its

determinant. It follows from a theorem of Gerstenhaber and Rothaus [2] 

that if ^ 0 then G0 is a subgroup of HQ. But in that case  Gq = Hq j

and so HQ 1 is free of rank M.

Replacing HQ 1 by HQ 2 in this argument and Dj by the like deter

minant, D2 , for the a i 0 , gives the same result for HQ 2 . If now d = M

then by the remarks of Section 1 about the coefficients of the Alexander 

polynomial, c d is Dj and c Q is D2 , so that Dj  ̂ 0 and D2  ̂ 0.

Thus the HQ j are free of rank M, and Lemma 3 is proven.

LEMMA 4. If G' is finitely generated and HQ is subgroup of it, then G' 

is free of rank d = M.

Proof. By Lemma 1, HQ 1 contains a full set of generators of G' and by 

assumption it is a subgroup of G'. Therefore Hq  ̂ is a presentation of G.
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Since the set of relations = v- , i : l,* '* , n, with the v- elements

of H0 j , found in the proof of Lemma 1, hold in HQ, the words a]"Jj 

are relators in HQ. The determinant of the exponent sums of the â  M 

in these words is not zero. It follows easily that the like determinant, D j, 

for the n-tuple of relators R q is also not zero. As in the proof of Lemma 3, 

one gets that HQ j is free of rank M. Therefore, G/ is free of rank M.

As the Abelianized commutator subgroup, G'/G", is free of rank d [8], 

this proves: G' is free of rank M = d, as Lemma 4 claims.

Concerning the matrix of the exponent sums for the â  M in R q,

respectively of those of the a i Q in RQ, it is true not only that they are

non-singular but that their determinants are ±1. For if the normal closure,

N, of n elements, w1 ,---,w n, of a free group F  contains a subset

s l ’ *” , s n some r̂ee generating set of F , then it easily follows that

the normal closure of s 1 ,-* - ,s n is again N. (See for example [4] or [5].)

LEMMA 5. If G' is finitely generated and free then there is a presenta

tion, P * , of G for which M = d.

Proof. Let G/ be free on the generators >"’>&<$- Then G is defined

by the number d and the automorphism which the element x in 

(x, a 1 a^; R) = G induces in G':

x " 1a ix = wi(a 1,--* ,a d), i : l ,--* ,n  .

The relator set R consists of the words x “ 1aj_1xw^. Their rewrites as 

a--w ords have the form aT*Wj(aj Q,a 2 o '” ‘ ,a d (P> anc* so ^ i =  ̂ an(*

M = 2  = d, as claimed.

LEMMA 6 . If G' is free and there exists a presentation of G for which 

M = d, then G' is finitely generated.
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Proof. Let P *  be the presentation for which M = d. By Lemma 3, HQ 1 

and HQ 2 are free of rank M and isomorphic under matching a- j of 

H0 i and a j j+ j  of HQ 2 . -  Similarly for Hq and H _q for all natural q.

By Lemma 2 then, H- and every product Sf = Hn * H, * ••• * Hf withi i  u a  1 A A l
H- 2 and Ĥ +1  ̂ amalgamated, is a subgroup of G'. By assumption, G'

is free so these groups are free. In particular, SQ = HQ presents a free

group. Since c Q £  0, elementary considerations of the group Hq/H  q 

show that Hq has rank d = M. Further, since M is the deficiency of 

the presentation HQ of this free group (there are M + n generators and 

n defining relators), the defining relator set RQ must be an independent 

set (in the strong sense that the normal subgroup N in HQ = F /N  is not 

the normal closure of any n—1 of its elements). The same holds for each  

n-tuple Rq. The following then is immediate.

As Hq presents a free group, F^, of rank d, one can put

S 1 = (Ho> a i ,M -+ l ' * : n» R i )  = (F d' a i,M^+l' i :  I'***' n;

and this is a free group. The presentation has deficiency d and the de

fining relators are independent. Thus the rank of Sj is again d. Simi

larly, Sj. is free of rank d for each t.

If the sequence St C St+1 C ••• of free groups of fixed rank is infinite, 

then the limit group is not free [6]. Since the latter is contained in G , 

then G' is not free. Under the assumption that G' is free, the sequence 

must therefore terminate: there is a non-negative number k such that 

S j ^  = Sk for all natural h.

Now let
S j = (S^> i • 1 * * * *» H j )  ,

S_2 = _2 > i • 1> ” ‘ H__2̂  *

etc. These groups form a sequence

S _ ! C S _2 C
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Using the fact that c Q  ̂ 0, the same arguments lead to the conclusion 

that this sequence breaks off: for some q. Thus

must be G' and so G' is finitely generated. This proves Lemma 6.

LEMMA 7. If G' is finitely generated and M = d then G' is free of 

rank d.

Proof. By Lemma 3, HQ  ̂ and HQ 2 are free of rank M. Then HQ 1 

is isomorphic to HQ 2 under matching a  ̂ j of HQ 1 and a- j+1 of 

H0 2 . By Lemma 2, then HQ is subgroup of G'. Since G' is finitely 

generated, Lemma 4 applies, and G' is free of rank d, as claimed.

As the last three lemmata cover the statements in Theorem 1, its 

proof is now complete.

To prove Theorem 2, let (aQ, a i aM; R q) °ne-relator pre

sentation Hq obtained from the one-relator presentation P * of G. The 

word R q, reduced and cyclically  reduced, contains the symbols a Q and 

aM by assumption. Therefore [3] HQ 1 and HQ 2 are free subgroups of 

Hq, isomorphic under matching â  of HQ  ̂ with a-+1 of Hq 2 . Simi

larly for all pairs H^ 2 and H^+1 1 . Then Lemma 2 is applicable and 

so Hq is a subgroup of G', with G' the free product of the H^ with 

amalgamation, U £  H^, along the indicated isomorphism.

If G' is finitely generated then Lemma 4 applies and so G' is free 

of rank d = M.

On the other hand, if G' is free, so is the subgroup HQ =

(a0 , a i ,•••, aM; Rq) and its rank is M or M +l. Since P *  has deficiency 

1, R q is not the empty word, and so the rank is M. Similarly for Hx =

(a l  >* * * > aM+i» Ri)* Th®n s i = (H 0 ' a M + l; R l )== H0 X H1 is also a sub
group and free, and its rank is M or M + l. Were the rank M + l, then — 

Hq being free of rank M — Sx would be (HQ, aM+1;) = (a 0 ," * ,aM+1; RQ) 

so that Rj would be a consequence of RQ in the free group generated 

by a Q,• • •, aM+i • But confains ao anc* does not, so -  again by
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the Freiheitssatz — this is impossible [3]. It follows that Sj is free of 

rank M.

The same holds for all subgroups St = St_ x * H ,̂ for any natural t.

As in Lemma 6, the sequence of the St breaks off: = S^+1 for some k.

Similarly for S _ 1 = (H0 , a _ 1; R _ 1), etc. Thus G' is finitely generated.

It follows from this that Lemma 4 applies, and so the rank of G' is 

M = d. This proves Theorem 2.

It remains to deduce Theorem 3.

If Hq is a subgroup of G' then HQ 1 and HQ 2 are subgroups of

G' and so of G. Then, in G, HQ 2 = X _1HQ jX, with w(a  ̂ j+1) =

x “  w(a| -)x for ell elements w of G', as claimed.
J

If both w(a- 0  and w(a - • t ) are relators in Hn, or else neither is, 

then matching of the a i • of HQ 1 with the ai -+1 of HQ 2 produces 

the isomorphism of Lemma 2 and so HQ is a subgroup of G' This com

pletes the proof.

Thus, one can — in theory — read off Hq what to factor out of it to 

make it a subgroup of G':

Suppose that w(aj j) contains no symbols ak,M^ ôr anV  ̂ anc* 

v(a- j) contains no symbols a^ 0 for any k, and that both words are re

lators in Hq. Form the factorgroup (HQ; w(a  ̂ j+ i), v(aj j _ i ) ) ;  f^en 

apply the same operation to the new group using some further word w 

and/or v*. Let Hq be the largest factorgroup of HQ that is closed  

under this operation. Then Hq satisfies the assumptions of Theorem 3, 

and so it is a subgroup of G'.

R e m a r k . If there are no such w and/or v then HQ is a subgroup

with H0 j free, so G' is the free product of the Hq with amalgamated

free subgroups H • as in the case  M = d.
4>J

For example, the group

(x, a; x _ 3 ax - 2 ax5ax- 2 a - 1 x - 3 a - 1 x 4a - 2 x)
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gives

H0 = (a 0 , , , , , a 5 ; a 3 a 5a 0 a 2 a 5 a l 2 )

with M = 5, d = 3. Since a Q and a 5 are present in every relator [3],

Hq is subgroup of G'. This HQ presents a free group but G' is neither 

free nor finitely generated.

STATE UNIVERSITY OF NEW YORK, STONY BROOK
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ON THE EQUIVALENCE OF HEEGAARD SPLITTINGS OF 
CLOSED, ORIENT A BLE 3-MANIFOLDS

Joan S. Birman*

I. Introduction

L et Xg be a oriented handlebody of genus g, and let = r(^g) 

be a homeomorphic image of Xg, with an orientation inherited from that 

on Xg. If <9Xg and <9Xg are identified via an orientation-reversing 

homeomorphism, then the resulting oriented 3-manifold M is said to be 

represented by a Heegaard splitting of genus g. To make this explicit we 

will assume that 8 : dXg -» <9Xg is an arbitrary but henceforth fixed 

orientation-reversing homeomorphism which extends to an orientation- 

reversing homeomorphism of Xg -> Xg, and that <f> : dXg -* dXg is 

orientation-preserving. Then we may identify dXg and (5Xg by the rule

(1) rdcf>(p) = p , Vp f <?Xg

to obtain a 3-manifold Xg U^X'g. H two Heegaard splittings Xg U^X'g 

and Xg U ^ X g  define homeomorphic 3-manifolds, we will write cf> =ifz.

It is immediate that cf> = if/ if the isotopy classes of <f> and if/ coincide. 

The Heegaard splittings Xg U ^ X g  and Xg U^X'g will be said to be

(i) strongly equivalent, denoted <f> S  if/, if there is an 

orientation-preserving homeomorphism h : Xg U ^ X g -» Xg U ^X g  

such that h(Xg) = X g, h(X'g) = X'g;

(ii) equivalent, denoted <f> «  if/, if there is an orientation- 

preserving homeomorphism h : Xg U^X g -» Xg bJ^X'g such 

that either h(Xg) = Xg, h(X'g) = X g  or h(Xg) = X g , h(Xg) = Xg.

Supported in part by NSF Grant No. GP 32893.
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(iii) weakly equivalent, denoted cf> ~  if/, if there is a homeomor

phism h : X g  -» X g such that either h(Xg) = X g,

h(x g) = X g or h(Xg) = X g , h (X g) = X g.

Note that cj> ^  ifs zz if/ ==> ~  if/ => ~ ifr. These definitions place

equivalence relations on the class of all Heegaard splittings of any given 

genus.

It was proved by Waldhausen in [8] that all Heegaard splittings of the 

same genus of S , and also that all Heegaard splittings of the same
9  1 9  1genus of the n-fold connected sum ft (S x S ) of n copies of S x S ,

n
are strongly equivalent. In this paper we study the corresponding question 

for other closed orientable 3-manifolds. We begin by establishing 

(Theorem 1) that each strong equivalence class (respectively equivalence 

cla ss , weak equivalence class) of Heegaard splittings may be identified 

with a double coset (respectively two double co sets, four double cosets) 

modulo a certain subgroup 5 ,  in the group ffltg of isotopy classes of 

orientation-preserving homeomorphisms of dXg; invariants of these 

double cosets will then be invariants of Heegaard splittings. We then pro

ceed to study in Section II, computable invariants of double cosets in 

21Jg mod 3 ,  (see Theorems 2 and 3). These ideas are applied first in 

Corollary 2.1 to classify the equivalence classes of Heegaard splittings 

of genus 1, and again in Corollary 2.2 to prove that Waldhausen’s results 

do not generalize to arbitrary 3-manifolds, by exhibiting a 3-manifold of 

Heegaard genus 2 which admits two weak equivalence classes of genus 2 

Heegaard splittings.1 Thus, in general, cf> = if/ does not imply <j> ~

After this manuscript was completed, we learned that similar examples of com
posite manifolds that admit more than one weak equivalence c la ss  of Heegaard 
splittings had been obtained earlier by Engmann [ l l ] ,  using different methods.
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In Section III we discuss the use of our methods to determine finer in

variants of Heegaard splittings than those given in Theorem 2. We will 

show that there is a natural generalization of the integer pairs (p,q) 

which are known to characterize the lens spaces up to homeomorphism to 

a set of 4 mutually related g x g  matrices (P ,Q ,R ,S )  of integers which 

are invariants of strong equivalence (resp. equivalence, weak equivalence) 

classes of Heegaard splittings of genus g > 1. Theorem 3 treats the 

problem of distinguishing between classes of Heegaard splittings on the 

basis of our integer matrices, however the solution is not as neat as the 

classica l solution for the case  of the lens spaces, and is not given in 

closed form.

Methods which are similar to those used here were used earlier by 

Reidemeister [7] to study topological invariants of closed orientable 

3-manifolds. His approach was to utilize the fact that all Heegaard split

ting of a 3-manifold are stably-equivalent [7 ,1 0 ]. The relationship 

between stable equivalence and equivalence is discussed in Section IV, 

together with a brief review of Reidemeister’s earlier results.

II. Heegaard Splittings and Double Cosets

Let denote the group of isotopy classes of self-homeomorphisms 

of a closed, orientable surface <9Xg of genus g, and let SWg denote 

the subgroup of those classes which are represented by maps which pre

serve orientation. Let 3  denote the subgroup of 90t consisting ofo &
those mapping classes which have representatives that extend to homeo- 

morphisms of X g. Note that § g  is naturally isomorphic to the group of 

outer automorphisms, Out 77-jdXg, of n l dXg.

If 0  : <9X -> <9X , we will use the symbol (f>̂  for the induced auto- 

morphism of ^ d X g , and $  for the isotopy class of cj>. Recall that 8 

was a fixed orientation reversing homeomorphism of dXg -» ^Xg. We assert:

Similarly, and A denote the isotopy cla sse s  of i/f and 8 .
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TH EO REM  1. Let  X g U ^ X 'g and X U ^ X ' be Heegaard splittings. 

Then :

(i) <f> if and only if $  and are in the same double coset

in 9Kg (mod 5 g).

(ii) if and only if is in the same double coset as <1>

or A $ _ 1 A_ 1 .

(iii) c6 ~  Vj if and only if 1* is in the same double coset as O

or A f c ^ A - 1 or $ - x or A<M- 1 .

Proof. Suppose that <f> S  i{f, and that h :X g U ^ X g  -> ^ g U ^ X g  *s the

homeomorphism which defines the equivalence. (Thus h is orientation- 

preserving.) Let hQ = h |Xg, h q = h|Xg, hj = h0 |<9Xg, h^ = h'0 |<9Xg,

= r|<9Xg. order for h to be well-defined on dXg = dXg it is neces

sary that the diagram

d> ft T1dxg — 2 —  dxg dxg    ax'g

\b ft T1
axg — 0 -  axg — 2—  axg    axg

be commutative, that is

(2) if/ = S“ 1 rJ“1h/1 r1 S0h][‘ 1 .

Since S“ 1rj“1h'1r1£ and hj^1 are each orientation-preserving homeomor- 

phisms of dX which extend to X , this implies
o o

(3) »  = ^ 2 , ^ 2 ( S g .

Conversely, if (3) is satisfied, then (2) is likewise satisfied, and we

may use the extensions of 1rJ"1h^r15 and hj 1 to construct a homeo

morphism h which defines an equivalence between the Heegaard splittings.
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Next, suppose that there is an orientation-preserving homeomorphism

h :X g U0 X g " X g U^ X g suchthat h<X g ) = X g and h(X g ) = X g‘ Let 
h0 ,h 1 ,h '0 ,h '1,T1 be defined as before. In order for h to be well-defined

on a x  h is now necessary that the diagram

■ S r i
a x g — a x g    a x g ----------   a x  g

hl h',

T\ 8 ’AAX' - ---- -—  AX  dx a -  —  dXa
g g g g

be commutative, that is

(4) i/f = S- 1 r“ 1h1 8 - 1 §<A- 1 S_ 1 r~ 1h'1_1 .

Since 1 and rj"1h'1~ 1 are each orientation-preserving homeo-

morphisms of d X -> <9Xg which extend to the solid handlebody, we have:

(5) V = ZV Z2 e S g .

Exactly as before, if equation (5) is satisfied, then we may construct a 

homeomorphism h which defines the required equivalence between the 

Heegaard splittings, with h(Xg) = X a n d  h(X g) = X g.

The remaining cases are similar. If the equivalence is via an

orientation-reversing homeomorphism h which maps Xg -» Xg, then i[/

and 0  are again related by equation (2), but now S“ 1rj“1h/1r1</> and 

h ^ 1 are orientation-reversing homeomorphisms of <9Xg which extend to 

Xg. However, we may rewrite equation (2) as

(6) <A = .

Now, £ - l r 5T1h/i 7’i and ^hj-1 are each orientation-preserving homeomor

phisms of ^Xg -> dXg which extend, hence
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(?) 0  = ( ^ x a o a - 1) ^ ) ,  € v e 2 £ g g .

In the last case  equation (4) applies, but since h is orientation reversing, 

the products 5 ~ 1r^"1h1 and 5 ~ 1r“ 1h/1“ 1 are each orientation-preserving 

homeomorphisms of dXg -> dXg which extend to Xg. ||

In order to apply Theorem 1, we will make use of the natural repre

sentation of § g  in the automorphism group of the first homology group 

H^dXg). Invariants of double cosets (modulo the image of S  ) in that 

group will then be invariants of equivalence classes of Heegaard splittings.

To fix conventions, choose generators co- and g/j , 1 < i < 2g, for 

77^^Xg and n^dX' , making the choice so that r maps representatives

of Co • onto representatives of co': for each 1 < i < 2g. Suppose also
g

that the co ■ satisfy the relation tt Lcl> cl> i . = 1» and that if
j = l J J &

l : <9Xg -> Xg is the homomorphism induced by inclusion, that her is

the normal closure N in nl dXg of taj+gJ 1 < j < gS-

Choose any element $  c § g , and let 0 :  dXg -»<9Xg be a homeomor

phism which represents $ .  Suppose that the action of 0^  on n ^ X ^  is 

given by

(8) = coi ll(° 2 12 c°2g2g m odW idX^Tr^Xg] ,

for each 1 < i < 2g. Then we may define an anti-homomorphism a : ->

Aut H10 X g )  by the rule

(9) a ($ )  = ||ejjlL a 2 g x 2 g  matrix of integers.

This definition is independent of the choice of the representative 0  of 

$  because maps which are isotopic to the identity induce the identity 

automorphism on Hj((9Xg).

The symplectic group Sp(2g, Z) is the group of all 2 g x 2 g  matrices 

of integers M which satisfy the condition

(10) MJM = ± J , where J  = f  * 1  , M = transpose of M .
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LEMMA 2.1 . The anti-homomorphism a maps onto Sp(2g,Z). The sub 

group a@0^) of Sp(2g, Z) is the subgroup of the matrices M for which

(11) MJM = +J .

If g = 1, then a is an anti-isomorphism from ^  onto G L(2,Z).

Proof. See [5, p. 178]. ||

L e m m a  2.2 . Let 

(12)

where O denotes a g x g  block of zeros. Then the group 3 g  is the 

sem i-direct product of its normal subgroup © and subgroup U, where

(13) U = |d(U) = , U = transpose of U, det U = ±1

(14) Q ( F(S) =

[ r  :]•

S symmetric J .

Moreover, a maps 3 g  onto 3  .

Proof. The symplectic condition (11) implies that if M e 3fg, then the 

matrices U, V in (12) have the property UV = I, hence V = U” 1. It 

then follows that we may rewrite M e 3 g  in the form

1
<

1
1

1
C! 1 °

.

I UW I WU-1

1
Gl 1 °,

r o G I
I

1--
-- O G l 1 o 1 1 o 1 l o lc

(15)

Since M e Sp+(2g, Z), and also D(U) e Sp+(2 g ,Z ), it follows that the 

matrices F(UW) and F(WU- 1 ) in (15) are also in Sp+(2g, Z), and there
t - 1fore also satisfy equation (11). This implies that UW and WU" * are 

mmetric, hence 3  ̂

and subgroup U.

symmetric, hence 3 g is the semi-direct product of its normal subgroup
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To see that a maps 3  onto 3 ,  it suffices to show that U and & &
and © are generated by the images under a of elements in 3  . Accord- 

ing to [4], an element 0  6 3 g if and only if, for every representative 0  

of 0 ,  it is true that 0*(N ) = N, where N is the normal closure in 

77i<9Xg of ta j+g; 1 < j < gl.

According to [2, p. 85], generators of U are the matrices D(U^), i =

1 ,2 ,3  whose U^’s are the g x g  matrices:

(16) Uj =

o o 1

- 1 1 10
001— 0

U 2 = U 3 =
11 •. 0

000--1
_100-0_ 0 ■ L 0 L

These matrices are induced by the following automorphisms of 7T^dXg :

(17) i = l,***,g -T ,g + l,*-*, 2 g - l ,  <Dg -*6>lf (o2 g ^cog+1

(18) 0 2 : o>1 ^ g+ l^ l 1

if k  ̂ 1, g + 1 .

(19) 0 3 : a>1 -> co1co2cog+2co2 lc° l 0}20)g+2c°2 l(iJl *

1 2

>g+l a)l co2cog+2co2 la )l lc02c°g+ 20)2 1°Jg-hlC0l C02C0g^2C02 ̂ 1  1
OJu -> coi if k £  1, 2, g + 1 .

Since 0 i (N) = N for i = 1 ,2 ,3  the assertion is true for U.

Generators of © are the set of matrices F(S) whose S’s are the

5ijmatrices Srt = Hs-H, 1 < r < t < g, where = 0 if i ^ r  or t, while

s rt = Sfr = 1* The matrix in © belonging to F(Sfr) is induced by the 

following automorphism of n^dXg :
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(20) <£rr  ̂ : cot -* fit>r‘Ug+r , ^ ct>k if k ^ r

while for 1 < r < t < g, the matrix F(Srj.) is induced by:

(2 1 ) ^ r t ^ ^ k  wk if r , t , g + r , g + r + l , - - - , g  + t - l ,

wr -  K >  K + l  ' ' '  " t^ g + t^ t '1 ' ' ’ “V l )

0Jt ■* ( " g + V r 1 ' ’ ' wr+l wg+rwr+ l'' ‘ wtwg+t>

“ g+r -» K + l  •' • " t ' v V t ' 1' ■ • - 7 +> g +r 

K + l ' ‘ ‘ " t "  g + t ^ f 1 ‘ ’ "m-1 )

° v k  -  K + i - ^ g + V r 1- ^ 1! )

(<t)k 1" ' ‘v V g + r ^ r + l ' ' '  wk)

(ruk+1 • ” a>ta>g+tc o ^  • • • wk+\ )

( " k ^ - ’ ^ r + W + V r + l ’ - ^ ^ g + k ) '  k = r + l , - , t - l  .

Since (N) = N for each pair (r ,t )  of interest, the assertion is like

wise true for ® . Hence Lemma 2.2  is true. ||

LEMMA 2.3 . Let  $>, e9Wg, with g >  2. Then

(i) 0  ^  if/ only if a(^l) is in the same double coset in 

Sp(2g, Z) modulo 3 g as a(3>).

(ii) <f> «  x/f only if a(V) is in the same double coset as a(3>) 

or a{A3>"1A " 1).

(iii) <j> ~  xjj only if a (^) is in the same double coset as a ($ )  

or or a ( 0 ’~*) or a(AOA *).

{If g = 1, the conditions above are not only necessary but also sufficient.)

Proof. This is an immediate consequence of Theorem 1, Lemma 2.1 and 

Lemma 2.2 . ||

 EBSCOhost - printed on 2/10/2023 4:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



146 JOAN S. BIRMAN

LEMMA 2.4. Let  O e am  ̂suppose that

<22) “ <*> ■ [p  q]  '
Then

<23, * ] .  « « • -• > . [J  - * ] .  « * » A , - [ j  - S ] .

Proof. Since a ^ )  < Sp(2g, Z), and $  e 9Ji^, equation (11) tells us that

(24) a(3> ) = (a ($ ))_1 = J _ 1 a ( $ ) J [J  1 ] '

To see that a(A$>A-  ) and a(A<5~ A“  ) have the stated forms, recall 

that 5 can be any orientation-reversing homeomorphism of <9Xg which 

extends to an orientation-reversing map of Xg. By Lemma 2 .1 , every 

symplectic matrix M which satisfies the condition MJM = —J lifts to an 

orientation-reversing homeomorphism of dXg. It then follows that the 

matrix

(25 , . ( A ,  .  [ - ' q ° ]

lifts to an orientation-reversing homeomorphism of <9Xg which extends to 

Xg. The remaining assertions of Lemma 2.4  follow immediately. ||

We are now ready to determine invariants of double cosets modulo 3 g 

in Sp(2g, Z). Note first that the negative identity matrix belongs to 3gi 

and second, that, for any g x g  matrix P , one may always find unimodular 

matrices Uq,V q such that

rt>l
P2

(26) u oPVo =1 J ;  where pt | pi+1, l  < i < r -1  < g, pr_ j  ^ 0,

and pt =•••= pg = 0.
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(See, for example, [6, p. 26].) Hence, by multiplying the four matrices 

given in Lemma 2 .4  on the left by D(U0) and on the right by D(VQ), and 

possibly also on the right by the negative identity matrix, we may choose 

representatives of the double cosets of a(5>), a(AO_ 1 A ~ 1), « ( $ “ *), and 

a(A<t>A) of the form:

™  / Ri  S A  ( ^  M  M  /~Ri S i
\ P 1 Q i / '  \ p ! P 1 /  \ P 1 - P 1 /  \ P 1 -Q i

where P 1 = UqPV q 1 has the form given in (26), and where Qj = UQPV 0 ,

r ^ u - ' r v - 1 , s ^ u ^ s v , .

LEMMA 2 .5 .  The diagonal entries in P j  are invariants of the double 

cosets modulo 3^  of the four matrices in (27).

Proof. By Lemma 2 .2 , the group 3  is the semi-direct product of its nor

mal subgroup U and subgroup @, hence every element £  e 3  can be 

written in the form

(28) f  = F(S)D(U) = D (U )F(U - 1 SU- 1 )

for some unimodular matrix U and some symmetric matrix S. Now, if 

M 6 Sp(2g, Z) is any of the matrices in (27), the effect of multiplying M 

on the left by F (S 1)D (U1) and on the right by D(U2)F (S 2) will be to 

replace P 1 by P 2 = U j P jU J 1 . Since P 1 and P 2 have the same ele

mentary invariants, Lemma 2.5  is true. ||

(REM A RK . It is easy to see that the matrix P j  in each lower left box in

(27) is a matrix of integral one-dimensional homology for 

Hence if px = ••• = pk = 1, 1 < Pk+1,***, Pr_i> and pr =- - -  = pg = 0, 

then g — r + 1  is the Betti number of X g U ^ X g  anc* Pk+l, ‘ ” 'P r - l  are 

the coefficients of torsion.)
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T h e o re m  2. L et  0 , 0 'r 3 K g, and suppose that

A necessary condition for 0 = 0 '  is that the elementary invariants of the

submatrices P and  P '  coincide. If they coincide, and if the elementary 

invariants of P are not all 0, and if Pj = p, then cj> «  only if

(33) det Q' = — det R(mod p) and det R '=  — det Q(mod p).

Proof. Let U j, U2 be any pair of unimodular matrices which satisfy the 

condition

and let Sj and S2 be arbitrary symmetric matrices. Then, left multipli

cation of the matrices in (27) by F (S 1)D(U1) and right multiplication by 

D(U2)F (S 2) will not disturb the normal form of P j in any of the matrices 

in (27). Consider, first, the effect of the latter operation on a (0 )  in (27). 

It will be replaced by

(30) det Q' = det Q(mod p) and det R ' = det R(mod p);

% <£' only if either (30) is satisfied, or

(31) det Q' = det R(mod p) and det R ' = det Q(mod p);

cjt> ~  cf>' only if either (30) or (31) are satisfied, or

(32) det Q '= — det Q(mod p) and det R '=  — det R(mod p),

or

(34)

(35)
R2 = + S1P 1 ,

q 2 = u j - ^ u - 1 + p 1s2 .

Since p|p̂  for each diagonal entry p̂  in P j ,  it then follows that:
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(36) det Q2 = det QjOnod p) = det Q(mod p) 

det R2 = det R^mod p) = det R(mod p) .(37)

A similar argument applies to the remaining cases. ||

We wish to use Theorem 2 to establish that there are 3-manifolds 

which admit more than one weak equivalence class of Heegaard splittings. 

The example we construct will be a connected sum of lens sp aces, hence 

as a first step we use Theorem 2 to examine equivalence classes of 

Heegaard splittings of lens spaces.

Lens spaces are 3-manifolds of Heegaard genus 1 which have finite 

cyclic fundamental groups. We consider, then, two 3-manifolds X  ̂

and X j U ^ X 'j ,  where and

/ /
(38) : cô  -> &>5l&>2 ’ 601 ~*col co2

with p > 1. Thus, X 1 U(̂ )X /1 is the lens space L (p ,q) and X 1 U ^ ,X ^

is the lens space L (p ,q '). We assert:

C O R O L L A R Y  2.1 .

(i) <j> S  cf>' iff q' = q(mod p),

(ii) cf> & <f>' iff q' = q(mod p) or qq = l(mod p),

(iii) cf> ~  cf>' iff q '= ± q (m o d ‘p) or q q = ± l(mod p).

Moreover, <fi ~  cj>' iff cf> = <f>'.

Proof. By results in [1], the lens spaces L(p,q) and L(p/,q/) are homeo

morphic iff q = ±q(mod p) or qq = ± l(mod p), and in view of the fact 

that rq — ps = rq ' — p s '=  1, these are precisely the conditions given in 

Theorem 2 for weak equivalence of <j> and </>'• To see that the conditions 

of Theorem 2 for cf> «  <f>' and cf> ~  <f>' are not only necessary

but also sufficient if g = 1, one need only produce the homeomorphisms

co 2 oj
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which define the equivalence, and this is easily done by examining the 

proof of Theorem 1, which is constructive, and using the fact that a is 

an anti-isomorphism if g = 1. ||

As a second application of Theorem 2, we prove that Heegaard split

tings are not unique, by exhibiting a 3-manifold of Heegaard genus 2 

which admits two weak equivalence classes of Heegaard splittings.

C O R O L L A R Y  2.2 . Let be represented by home omor phis ms

which induce the automorphisms:

'  3(42) col ~̂ cl>1co3co1

oj2  co2̂ cô co2

- 1  3 2co3  ->C0 j (co^co3coj )

2 4 - 1  
oj4  -> (co4(U2) ^2

Then X 2 U0 X 2  is homeomorphic to X 2  U ^ ,X 2 , but the H eegaard  

splittings cf> and <f>' are not weakly equivalent.

Proof. Consider the lens sp ace  L (7 , 2 ), which admits equivalent 

Heegaard splittings X jU ^gX ^  and X jU ^ X 'j ,  defined by the automor-

(41)

4 2
: c o i  Cl>i c o 2  8#  • W j  o j 2

7 4
co2  co^ co2  •
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By Corollary 2 .1 , /3 and 8 are equivalent, but not strongly equivalent. 

Hence there is an orientation-preserving homeomorphism h : XjU^gX'j -> 

XjU gX^ such that h(X1) = X\, K X ^ ) = X v

The connected sum M#M' of two closed oriented 3-manifolds M,M' 

is defined in the following manner: remove a 3-cell D from M, and a 

3-cell D' from M', and identify dD with dD' by an orientation- 

reversing homeomorphism. If M and M' are defined by Heegaard split

tings, one may always choose the 3-cells D and D' so that they inter

sect the Heegaard surfaces in discs on dD and dD' respectively. Then 

M#M' will also have a natural representation as a Heegaard splitting, in

duced by the Heegaard splittings of M and M'. We will carry this out 

explicitly in the case  where M and M' are each copies of L (7, 2).

Let ^ (d X j-d is c )  be the free group freely generated by cô ,cc>2 » 

where the boundary of the deleted disc represents the homotopy class of 

Then jS^, 8^ lift to automorphisms of

^ (d X j-d is c )  defined by:

: co  ̂ -» 0)^0)2^ i : -^001^2^1

^  ^  i  / v  / s  ^ 3  2  ^  ^  ^ 2  ^  ̂ ___i
CO 2  CO j (CO | CO 2Cl) ̂  ) CO 2 -* (cÔ Cl>2) CO ̂

We may now define two isomorphisms from ^ (d X j-d is c )  into 771(dX2) 

by the rules

J* : ^iCdXj-disc) -* ir1(dX2) k  ̂ : 771(dX1-disc) -> 771(dX2)

co i  -> co i  co i  -» co 2

c o 2  -> c o 3 c o 2  -> co^  .

Now define automorphisms and <f>'̂  of 7r1(dX2) by

0*("P = U/3J*1 K>. i = 1.3 
k ^ k - V j ) ,  i = 2 , 4  

0 > i >  = i=l ,3
i = 2 > 4  •
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 ̂ Note that care is needed in this definition, because if M  ̂ denotes the 
3-manifold which is homeomorphic to M but oppositely oriented, then M#M and 
M#M/ are not homeomorphic. In our definition, the first and second copies of 
L (7 ,2 ) in the two cases  are coherently oriented, so that our connected sums define 
homeomorphic 3-manifolds. This would not be the case  if and 8  were weakly 
equivalent, but not equivalent splittings.

 ̂ We restrict our attention here to strong equivalence, however the results are 
easily modified to include the four cases  considered earlier.

4 0 1 0
0 2 0 1
7 0 2 0
0 7 0 4

Then 0^  and 0'^ each define Heegaard splittings of genus 2 of th< 

3-manifold L(7, 2) # L (7, 2 ) .3 To see that these are not weakly equiv 

lent Heegaard splittings, we apply Theorem 2. Observe that

Then, p = 7, det Q = 4, det R = 16, det Q' = 8, det R '=  8. Since none 

of the congruences (3 0 )-(3 3 ) is satisfied, it follows that $  7̂  This 

proves Corollary 2.2 . ||

REMARK.  After this manuscript was completed, we learned that similar 

examples of composite 3-manifolds which admit more than one weak 

equivalence class of Heegaard splittings had been obtained earlier by 

Engmann [11]. Her methods are different than those used here.

III. Finer Invariants of Equivalence C lasses of 
Heegaard Splittings

In this section we study the question of determining finer invariants 

of the double coset modulo Fg of an element A = a (0 )  in the group 

Sp(2g, Z). In view of the results in Section II, any such invariants will 

also be invariants of the equivalence class of Heegaard splittings which 

are strongly equivalent to 0 . 4 If

4 0 1 0
0 4 0 1
7 0 2 0
0 7 0 2

aCt)(44) a(3>)
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(44) a ($ )  = A =

then one such set of invariants were shown in Lemma 2.5 to be the ele

mentary divisors of P . Therefore we may without loss of generality 

assume that P is in Smith normal form, and restrict our attention to

leave P invariant. This is equivalent to the restriction that in consider-

attention to left multiplication by elements D(U) and right multiplication 

by elements D(V), where U and V satisfy the condition

We begin by considering the case  where P is singular. The diagonal 

entries of P will be denoted p jy j p g *

LEMMA 3.1 . Suppose that pf = pf+1 = ••• = p = 0, but Pr_ i   ̂ 0. Let  

A± be matrix obtained from A by deleting rows r through g and g+r  

through 2g from A. Then  Aj is in Sp(2(r— 1), Z) and invariants of Aj 

mod are invariants of A mod 3 g .

Proof. Since A is in Sp(2g,Z), it satisfies equation (11). Equivalently, 

the g x g  blocks R, S, P , Q satisfy:

Since pr = pf+1 = ••• = pg = 0, equations 46.1 and 46.2 imply that A de

composes as:

multiplication of A on the right and the left by elements in 3 g  which

ing multiplication by elements of the subgroup Ug of 3 g  we restrict our

(45) UP = PV .

(46) 46.1  PQ = QP 46.4 RQ -P S  = I

46.2 RP = PR 46.5 RS = SR

46.3 RQ —SP = I 46 .6  QS = SQ .

Rl 0 2 S, S2 
P 3 R 4 ^ 3  ^ 4

P 1 ° 2  Ql ^ 2  
- 0 3 0 4 0 3 Q4 -

R l » S l » P l » Q l  are  ( r - l ) x ( r - l )  

02, S 2, Q 2 are  ( g - r + l ) x ( r - l )  

R 3, S 3, 03 are  ( r - l ) x ( g - r + l )  

R 4 » S4 » ° 4 » Q 4  are  ( g - r + l ) x ( g - r + l )

R S
P Q
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where the blocks labeled 0  denote blocks of zeros. Equation (46 .3) now 

implies that R 4 Q4  = I4 > the (g—r+ l)x(g —r+1) identity matrix. Hence 

det R4  = ± 1 and R4  = Q 71 . Define the unimodular matrix U# by

Uff
L ° 3 R„

The D(U )A is equivalent to A and has the simpler block decomposition

(47) A# = D(U#)A =

p i °2 S X S 2_
R3 *4 s#S3 s#4
pl °2 Qi q2

_°3 °4 °3 14_

In any further modifications of A# mod 3 g  we may now restrict ourselves 

to modifications which not only preserve the normal form of P , but also  

preserve the blocks 0 2  and I4  in R, and the blocks 0 3  and I4  in Q. 

Let Aj be the 2(r— l)x 2 (r— 1) matrix

L P l Qi.

The fact that A# satisfies equations (46) is now seen to imply that Aj 

satisfies the corresponding conditions, hence Aj is an element of 

Sp(2(r—1), Z).

We consider now the effect on A 1 of left and right multiplication of 

A# by elements D(U), D(V) which preserve the normal form of P and 

the partial normal forms of R and Q. The condition that left multiplica

tion of A# by D(U) and right multiplication by D(V) not alter P is 

given by equation (45). This implies that U and V have the block de

compositions

U
U2 _

V =
' V x V 2 _

- ° 3 U 4 - _ ° 3 V4_

where Uj P j = P^Vj. The condition that the normal forms of Q and R
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be preserved then implies that U4 V4  = I4 , hence det U4  = det V4  = ± 1  

and V4  = U " 1 . This, in turn, implies that det Uj = det Vx = ± 1 . It then 

follows that left (respectively right) multiplication of A# by D(U) 

(respectively D(V)) has the same effect on A 1 as left (right) multiplica

tion of Aj by D(Uj) (D(Vj)), where DOLJj) and D(Vj) denote elements 

of S p (2 (r -l) ,Z ).

Left (respectively right) multiplication of A# by elements F (L ) (or F(K )) 

will not change the normal form of P or the partial normal forms of Q 

and R, no matter how one chooses the symmetric matrices L  and K. 

Moreover, if L and K are partitioned as before into blocks, then the 

effect on Ax of replacing A# by F (L ) A# F(K ) is the same as the 

effect of replacing Aj by F (L j )  Aj F (K j). This proves Lemma 3 .1 . ||

REM A RK . Modifications in A  ̂ mod S r _ 1 do not, in general, preserve 

the subblocks Q2 , R^, S j , S2 , or S4  of A#. However, each modifica

tion of Aj lifts to a modification of A#, defined by setting U2  = V2  = 0 2  

and U4  = V4  = I4 . Moreover, subsequent modifications of A# with 

U 1 = Vi = 1̂  and L 1 = = Oj will then leave any normal form which

we find for Ax invariant, hence it is possible to treat the subblock Aj 

separately from the rest of A#.

LEMMA 3 .2 .  The matrix S 1 in the upper right corner of any matrix which 

is ^equivalent to Aj and has its P 1 in Smith normal form is de

termined by the remaining entries.

Proof. This is an immediate consequence of the fact that every symplectic 

matrix must satisfy the six equations (4 6 .1 )-(4 6 .6 ) , and since is 

diagonal and non-singular, equations (46.3) and (46.4) determine S1 

uniquely.

Since P j is in normal form, and since by Lemma 3.2 the matrix 

need not be considered further, we have reduced the problem of finding 

invariants of A 1 mod S f _ 1 to that of studying the effect of equivalence
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mod t5r_ j on Qt and R j. The most general type of modification which 
we must consider is one which replaces Qj and Rj with

(48) Q* = + P j Kj

R* = + L j P j

where U1 and Vj. satisfy (45), i.e. U jP j = P j V j ,  also det Uj =

det = 1 , and where Kj and L j are arbitrary (r— l ) x ( r - l )  symmetric

matrices.

It will now be helpful to note the effect of (45) and (46) on the indi

vidual entries of admissible Ulf V1? Q1# R j. Let m1 ,***,mr _ 2  denote 

the ratios of the diagonal entries of P x , i.e.

(49) pt+i -  Ptmf t = 1 ,2 , —,r - 2  .

Let Ux = llujjll, Vj = H Vj j 11 * Qj = Ikijll, Rj = lUjjll. Then (45) is 

equivalent to the conditions

(5 0 ) Vji = uijmimi+1

V•• = u- • 
11 11

uij = vjimjmj+l mi— 1
if i > j •

Similarly, the symmetries imposed on Qj and Rj by virtue of equations 

(46.1) and (46.2) imply that

*ji = qijmimi + f ” mj - i  if i <c i

r ij = r jimjmj+l - mi - i  if i > j -

LEMMA 3 .3 .  Let  A j Aj  be matrices in S p ( 2 ( r - 1 ) ,  Z )  which have the 

block form

Ai  =
~Rt V > II ~R 1 S 'l"

_p i Q i.
X

_p l Qi_

Suppose also that P 1 is non-singular, and is in Smith normal form. Con
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sider the sets  C of all ordered pairs of matrices (Q*, R*), as defined in 

(48) and also the corresponding set  C ' of all ordered pairs (Q '*, R '*).

Let  E , E ' denote the congruence class of C, respectively  C ' mod pr—1, 

where congruence means congruence elementwise of the individual matrices 

in C, C'. Then A^, A^ are in the same double coset mod S J. _ 1 if and 

only if the sets  E and E ' coincide.

Proof. It is a consequence of the remarks following the proof of Lemma 3.2  

that Aj and A^ are in the same double coset mod if and only if

C coincides with C ' If C and C ' coincide, then it is clearly necessary

that E and E ' coincide. To see that the converse is also true, suppose 

that E and E ' coincide. Then, for some admissible U1, V^, K^, as 

above it must be true that

(52) Q\ ^ U jQ jV j + PjK^m od pr - 1 )

(53) R\ s  U r ^ ^ - 1 + L ^ O n o d  p ^ )  .

Since p^lpf x for each i = 1, — , r—2, and since Kx and L j range over

all possible symmetric integer matrices, we now assert that by possibly 

choosing a new pair of symmetric matrices K2 , L 2  the congruences of 

(52) can be made equalities:

(54) Q\ *  U 1 Q1 V 1 + P 1 K1 + P xK2

(55) R'i = U ^ R ^ 1 + h 1P 1 + L 2 P 1 .

This is immediate for entries which are on and above the main diagonal in 

(52) and those which are on and below the main diagonal in (53). It is 

true for every entry because of the symmetries imposed by equations (51). 

Thus C and C ' have an element in common, which implies that the 

entire sets C and C' coincide, since the entire set can be computed 

from any one entry. ||
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In the computation of the sets E and E't it was necessary to first 

calculate the matrices Q* and R* in (48) over the integers, and then 

reduce elementwise modpr_ x. This means that \J1 and V1 are re

quired to range over the infinite set of pairs Uj j Vj  in SL(r—1 ,2 )  which 

satisfy (50). However, it is immediate that we can restrict our attention

to admissible pairs in the finite group S L (r - l ,Z ^  ), where IL and
pr - l  1

V-̂  are now restricted to matrices which satisfy equations (50) mod pf x .

Thus the sets E and E ' of Lemma 3.3  may be computed by a finite pro

cedure.

The finite set E may now be replaced by a particular member of E , 

which will be regarded as a representative of the class . For example, one 

might select such a representative by ordering the matrices Q* and 

choosing a “ sm allest” one; such an ordering may be based on an ordering 

of the individual entries q -  of the array of matrices in E . This repre

sentative then defines a unique matrix

which we will define to be the normal form for A j .

TH EO REM  3. The matrix A 1 0  in (56) is an invariant of the class of 

Heegaard splittings which are strongly equivalent to cj>.

Proof. This is an immediate consequence of Lemmas 3.1,  3 .2 and 3.3  

and the discussion following the proof of Lemma 3 .3 . ||

REM ARK. Having chosen the matrix A1 0  = F (L 1 )D(U1) Aj D(V1 )F (K 1) 

one may now enlarge A1 0  to a suitable modification of the matrix A# of 

(4 7 ), by replacing the deleted blocks (appropriately modified) to obtain a 

new representative AQ of the equivalence class of A mod 5 g in 

Sp(2g, Z). We are then free to make further modifications in AQ, but 

subject to the new restriction that the subblocks corresponding to A^ 0
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remain unaltered. It is possible to solve this problem, in order to select 

a unique double coset representative for A mod however we omit 

that derivation because it is complicated, and not of sufficient interest 

since we do not know when the procedure will yield topological invariants 

of X U ^ X ' . That question cannot be settled until one settles the diffi

cult question of uniqueness of Heegaard splittings which is raised by the 

example of Corollary 2.2.

A weaker set of invariants, which may also be computed from our sym- 

plectic matrices, and which are true topological invariants, will be dis

cussed in the next section.

IV. Stable Equivalence 

If X g U ^ X g  is a Heegaard splitting of a 3-manifold M, then it is 

always possible to increase the genus of the Heegaard splitting by form-
o o

ing the connected sum M # S , where S denotes the 3-sphere, which 

is assumed to be represented by a Heegaard splitting X 1 U^gXj ,  and 

where the 3-balls B and B ' which are removed from M and S3  in 

order to define M # S3  are chosen in such a way that B H <9X̂  and 

B 'D  dXĵ  are each discs. Iterating this process, we may form a splitting 

we denote 0  of M of any genus g+n.  Two Heegaard split

tings 0 , 0 '  are of M of genus g and h are said to be stably equivalent 

if there exist integers n, m, with g+n = h+m,  and splittings 

and oi S3  such that 0  # 1̂ #  ••• #/3n % 0 ' # 0 j# •••

This concept is of some interest because it was proved by Singer [10] 

that any two Heegaard splittings whatsoever of a 3-manifold are stably 

equivalent. Thus stable equivalence implies topological equivalence.

We now wish to determine how the additional freedom which is 

allowed under stable equivalence alters the admissible operations which 

preserve the equivalence class of the symplectic matrix A = a(3>) asso ci

ated with a Heegaard splitting 0 .  R ecall that if 0 , 0 '  are Heegaard 

splittings of genus g, with A = a (^ ), A' = then 0  S  0  only if
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A and A' have identical P-blocks, and also only if there exist g x g  

symmetric matrices L and K, and g x g  unimodular matrices U, V 

satisfying equation (45), such that A = F(L)D (U ) A'D(V)F(K). (See 

Theorem 1 and Lemma 2 .2 .)  Our next result says, essentially, that the 

identical condition is necessary for <f> =</>', however the requirement 

that U and V be unimodular is replaced by the less restrictive condition 

that there exist n xn  unimodular matrices, for some integer n > g, say  

U0 , Vq, such that matrices which play the roles of D(U) and D(V) can  

be obtained from D(Uq) and D(Vq) by striking out rows 1 through n—g 

and n+1 through 2n—g + 1 , and the corresponding columns.

We illustrate this with the example of Corollary 2.2. Recall that the 

Heegaard splittings (/> and cj>' of Corollary 2.2 both define the manifold 

L (7 ,2) # L (7,2). The desired equivalence between the matrices a(O) and 

a (O') may be obtained by choosing n = 3 and

The precise statement of the conditions for stable equivalence is 

given below. It includes the additional freedom that and may be 

splittings of distinct genus.
Let and X ^ l ^ X '^  be Heegaard splittings, with

It will be assumed that P q, P q are in diagonal form, with diagonal

delete rows 1 through t and k+1 through k + t+ 1  and the correspond

ing columns from A0 to obtain a new matrix A. Similarly, for A'. Sup

pose then that

entries Pi>-">Pk an  ̂ Pi>‘” >PV ^  P x - ’" - P t _ »̂ ^ut Pt+1 ^
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Let g -  k—t and let g '~  k'—t'. A necessary condition for <f) = </>' is that 

P = P'. This implies that g' -  g.

THEOREM  4 .  A necessary  condition for (£>=<£>' is that there exist  g x g  

symmetric matrices L , K and n xn  unimodular matrices U0 , V Q, for 

some n > g, such that if D(U) and D(V) a re  the 2 g x 2 g  matrices ob

tained by striking out rows 1 through n - g  and n + 1  through 2 n ~ g + l  

and the corresponding columns from D(UQ) and D(VQ), then

A = F (L ) D(U) A' D(V) F(K) .

In the above, the submatrices U, V obtained from Uq, VQ by striking out 

the first n—g row's and columns are required to satisfy equations (50).

Proof. Note that if cj> -  then HjCXjjU^, X jj), hence

the diagonal matrices Pq ,P 'q  can differ only in having a different number 

of unit entries on the main diagonal. Considering A0  first, suppose

Q0 = Ihijil a^d R 0 =11^11.

Define symmetric matrices KQ = ||k-|| and L Q = ||£-j|| by the rules 

k — = — qij if i < j, i = 1 , — , t and k -  = 0  if i < j  and i = t+l, -*- ,g;  

also — ri - if i > j and j = 1 , — , t and = 0  if i > j  and
TR* S

j = t + l . - , g .  Let A* = F (L 0) A0  F (K 0) = ° ° . Then A* is the
L/o

symplectic matrix associated with a Heegaard splitting of genus k which 

is strongly equivalent to <£>. By our choice of L q and Kq the matrices 

R* and Qq will be bordered top and left by t rows and t columns of 

zeros. It then follows from (46.3) that Sq will be bordered top and left 

by t rows and columns of zeros, except for — l ’s on the main diagonal. 

Since any matrix which arises from a Heegaard splitting of this same

3 -manifold, e.g. A'0 , may be brought to a similar partial normal form, 

except possibly with additional borders of zeros and l 's ,  we may with

out loss of generality assume that any further modifications do not alter 

the blocks of zeros and l ’s . We may therefore concentrate our attention

 EBSCOhost - printed on 2/10/2023 4:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



162 JOAN S. BIRMAN

on the submatrices A and A' defined in the statement of the theorem 

(which were left unaltered in the multiplication by F (L Q) and F(K Q)). 

We must however keep in mind that the freedom to change the size of A 

and A' may introduce a new freedom in the choice of L , K, U and V. 

The choice of L and K will not present any problem, since every sym

metric matrix restricts to a symmetric matrix when one deletes the first 

row and column. However the matrix obtained from a unimodular matrix 

by a similar deletion may no longer be unimodular, hence we require the 

condition given in Theorem 4 for the choice of U and V. ||

TH EO REM  5 (a generalization of a result due to Reidemeister, [7]). Let  

be Heegaard splittings of genus k and h, and let A and A ' be 

the deleted matrices defined before the statement of Theorem 4, with 

P = P ' If P is singular, perform the additional deletions d escribed  in 

Lemma 3 .2 , to obtain submatrices of A and A ' which we will denote by 

the symbols A1 and  A^. Denote the diagonal entries of P j by 

Pl,***,Pg,  with Pi = i = 2,  — ,g,  and let e i = g c d ^ ,  mi_ 1),

i = 2 , * - - , g ,  with e 1 = p1 . Let  Ilix , x = l , - - - , x i be the ordered array of 

distinct prime factors of ei . Let  Qj = ||q̂ .|| and Rj = ||rjj||. D efine 

two arrays of quadratic characters y-x and z^x by the rules:

1. I f  n i x lqi i (  then yix = 0

If  n ix |rii , then z ix = 0

2. If I l j / q j j ,  then yix = (q ^ lll^ )

11 * V rii’ then z ix = <rii'n ix> ’
where the symbol (a|b) is the Legendre symbol.5 Then, 4>=4>' only if

the ordered arrays y x̂ and z-x coincide .

Proof. We examine the manner in which q -  and r -  are altered by the 

admissible operations in Theorem 4. Note that, by Lemma 3.1,  we may

 ̂ L et a, b be coprime integers. Then (a|b) = 1 if there exists an integer x 
such that x^ = a(mod b). If no such integer x exists , then (a|b) = —1.
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restrict our attention to the submatrix which is obtained by deleting the 

rows and columns which are associated with zero diagonal entries in P . 

(Thus our invariants are associated with the torsion subgroup of the 

homology group of the manifold.)

Replacing A by F(L)D (U ) A D (V)F(K), we find that Rt go 

over to UQjV + PK, + L P . Since pjk^ = Ejjpj s  0 (mod IIix),

we may restrict our attention to the matrices UQjV and U—̂ RjV-

The entry q -  will be replaced by
g g

q«  = 2  2  uik % tvti •
k = l  t = l

This sum decomposes as:
g

qfi = Uiilii vii + 2 2  uikqktvti + 2 2 uik qkt vti
k< i t=  1 k > i t > i

+ 2  2  uik % tvti + 2  uik % ivii
k > i  t < i k > i

+ 2  ui i qi t vti + 2  ui i qi t vti ■
t > i t <  i

From equations (50) and (51), we now note that

uii = vii if k < i, then mi_ 1 |uik 

if t < i, then H i-^lq^  

if t > i, then n^|vt * 

if k > i, then mil^ki *

Thus q*i = q^u?j(mod II-X), and our assertion follows.

If R* = U” 1 R 1 V""1 , then Rx = VR*U. Thus, exactly as above, we

find that r^ = r^u^m od IIix), and our theorem is proved. ||

The quadratic characters yix discovered by Reidemeister, and 

described in Theorem 5, were interpreted by Seifert [9] to be linking
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invariants of the torsion subgroup of Hx (X^ X'^). One expects that

other integer invariants can be associated with those blocks of the matrix 

A# in (47) which are related to the infinite part of ^CX^U^X'^), i.e . the 

subblocks R3 , Q2 , and S2 , S3 , S^. However, lacking a normal form 

for the submatrix Aj of A# under the general operations allowed in 

Theorem 4, it appears to be a difficult problem to determine such 

invariants.6

COLUMBIA UNIVERSITY and BARNARD CO LLEG E  
NEW YORK, NEW YORK 10027
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The present paper outlines a solution to the following problem of Fox

[4]: When is the p-fold branched cy clic covering space of a manifold, 

with a manifold branching set, again a manifold? The solution of this 

problem has many consequences for the study of cyclic group actions on 

manifolds. A few examples of applications are described below in Section 1. 

In Section 2 we study branched cyclic covers of S3 and relate a result on 

these to the classica l P. A. Smith conjecture and the above problem of Fox.

§1. Solution of F o x ’s problem

Let Mn and Wn+2 be P. L . manifolds with M compact and f:M->W 

a P .L . embedding which is proper, i.e . f(<9M) = dW fl f(M). A branched 

cyclic covering space of W along M is a simplicial complex Y equipped 

with a simplicial map n : Y -> W so that Y is a branched cover of W along 

M [4] with 77- 1 (M) =  M a P .L . homeomorphism and Y — M -> W—M a 

regular covering space with a finite cyclic group of covering translations. 

Note that we do not assume that f(M) is a locally-flat submanifold of W.

It is easy to see that in general W has a p-fold cyclic cover branched 

along M if and only if there is a c lass  of order p in H^W—M; Zp) 

which under the composition of the natural maps H^W—M; Zp) -»

H *(dE; Zp) -> H2(E,<9E; Zp) goes to a mod p Thom class [3] of the regu

lar neighborhood E of M in W, with <9E = dE — interior (dW H E). If

W = E is a regular neighborhood of M, this condition just means that the

integral Thom class of E , defined by analogy with the Thom class of a

bundle, is divisible by p.

*
This research was supported by NSF grants.
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Fox observed that if Mn is a locally-flat submanifold of Wn+2, Y is 

certainly a manifold [4]. A precise but entirely local answer to F o x 's  

problem for P .L . but not necessarily locally-flat submanifolds can be 

given as follows. Regard M as a subcomplex of a triangulation of W.

For any point in the interior of an i-simplex A^ of M, the link pair in 

(M,W) is the i-th suspension of a P .L . locally flat knot pair (Sn“ 1 _ i , 

gn+l-i^ [ 1 1 ], Let Xa be the manifold which is the p-fold cyclic cover 

of Sn+1~{ along this locally-flat Sn _1~*. It is easy to see that Y is a 

P .L . manifold if and only if each such Xa is a sphere. While this re

duces F ox 's problem to questions about locally-flat P .L . submanifolds, 

it is too local to be very useful in applications.

We are thus led to a reformulation of F o x ’s problem. First note that 

outside of a regular neighborhood of the branching set M, Y is certainly 

a manifold. Thus, F o x 's  problem is solved by determining which branched 

cyclic covers of a manifold regular neighborhood E n + 2  of Mn are again 

P .L . manifolds. Two manifold oriented regular neighborhoods Eq+ 2  and 

E j + 2  of Mn are said to be concordant if there is an oriented regular 

neighborhood V of M x 1 which restricts to regular neighborhoods E 1 

of M x 1 and —E Q of M x 0. Recall the classifying space for oriented 

regular neighborhoods BSRN2  constructed in [3] using results of [11] and 

analyzed using methods of [2]. See also [6 ], [1]. Concordance classes of 

manifold oriented codimension two regular neighborhoods of M are in 1 

to 1 correspondence with elements of [M,BSRN2 1. Theorem 1 provides 

a global answer to the following formulation of F o x 's  problem. Which P .L . 

oriented manifold regular neighborhoods of M are concordant to regular 

neighborhoods which have manifold p-fold cyclic covers branched along M? 

In applying Theorem 1 it is useful to recall that if fQ ' M -» Wn + 2  is a P .L . 

embedding, n > 4, with E Q the regular neighborhood of f0 (M) in W, 

and E^ is a manifold regular neighborhood of M which is concordant to 

E Q, then there is an ambient concordance of fQ in W to a P .L . embed

ding fj with E^ P .L . homeomorphic to a regular neighborhood of

fx(M) [3].
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THEOREM  1. There exists a classifying space  BSRN0  p equipped with 
Z z

a natural map n : BSRN2  p BSRN2  such that an oriented manifold regu

lar neighborhood Eq+ 2  of the P .L . manifold Mn is concordant to an 

oriented manifold regular neighborhood E t of M with a manifold p-fold

branched cy clic cover if and only if the map g : M -> BSRN9  which classi-
Z

fies  E 0  lifts to a map g :M -»BSR N 2 p so  that ng is homotopic to g.

zThis classifying space for branched cyclic covers BSRN2  p has non-

finitely generated homotopy groups in even dimensions greater than 2. To
Z

see this, note that an element of 77̂ (BSRN2  p) is represented by a regular 

neighborhood E 1-1-2 of S1, which after being modified within its concord

ance class  may be assumed to be locally-flat except possibly at one point 

P of S1. The p-fold cyclic branched cover of the link pair of P in 

(S ^ E 1̂ 2) is then, by the local criteria for branched covering spaces to 

be manifolds discussed above, a sphere equipped with a semi-free 

action with a knot as fixed points. This construction defines a map which

is an isomorphism (except for i = 2, when it has kernel Z) of 
Z

77i(BSRN2  p) to the groups of concordance classes of <<(i+2)-dimensional 

counterexamples to the P. A. Smith conjecture”  defined and algebraically  

analyzed in [2, §11]. In particular, n-2 i(BSRN2  p) is not finitely gener

ated for i > l ,  n-2 i+1 (BSRN2 P )=  0 for p odd, and ff2 (BSRN2  p) = Z if

the classica l P.A . Smith conjecture is true for Z actions on S . Thus,
z

as a consequence of [13], 7t2 (BSRN2  2 ) = Z.

The detailed homotopy type of BSRN2  p can be studied by combining 

the homology surgery method of studying codimension two embedding 

problems of [2 ], the global approach to non-locally flat embeddings de

veloped in [3 ] and generalizations of the characteristic variety theorem 

developed by Sullivan [12] to study G /P L . That the characteristic 

variety theorem could be generalized to spaces other than G /P L  was 

observed by J . Morgan and by L. Jones.

As an application of Theorem 1 we will consider the following problem: 

Which oriented closed manifolds Mn are the codimension two fixed points
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of semi-free actions on Sn+2? Theorem 3 which answers this problem 

will combine the following criteria for M to have a P .L . embedding in 

Sn + 2  with the condition that M be a Z p-homology sphere which is im

posed by P.A . Smith theory.

THEO REM  2 [3],  Let Mn be a clo sed  P . L .  manifold with nn+i(^M) -* 

Hn+i(S M ) onto. Then there is a P . L .  embedding M C Sn+2.

The relationship between the dimension k of the non-locally flat 

points of the embedding of Mn in Sn 'l~2  and the characteristic c lasses  

of M, developed in [3] shows that in many cases k must be at least 

n—4. Note that if Mn does have a P .L . embedding in Sn+2, then by 

the Thom-Pontrjagen construction, 77n+2 (£ 2 M) Hn+2 (£ 2 M) is onto.

The following result is a kind of converse to P.A . Smith theory. Re

lated results were obtained by L. Jones in high codimensions [7],

TH EO REM  3. Let  Mn be a Z p homology sphere with 77n+1 ( 2 M) 

Hn+1 (2M) surjective. Assume that H2 (M; Z 2) = 0. Then there exists a 

sem i-free P .L . action of Z p on Sn + 2  with M as fixed points.

Many M which satisfy the hypothesis of this theorem do not have 

locally-flat embeddings in Sn+2. If the condition in Theorem 3 on the 

surjectivity of the Hurewicz map is dropped, we can still show, for n odd, 

that there is a Z p homology sphere Vn + 2  with a semi-free Zp action  

and with M as fixed points. The condition on H2 (M ;Z 2) arises from 

the 3-dimensional P.A . Smith conjecture in a manner which will be de

scribed below.
Z p

Another result which follows from Theorem 1, an analysis of BSRN2  p 

and methods of [2], [3] is the following:

TH EOREM  4. Let  Wn + 2  be an oriented compact P . L .  manifold equipped  

with a sem i-free Z p action, p odd, with fixed  points M C interior (W),
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M an oriented clo sed  P .L . manifold with H2 (M ;Z2) = 0. Then if n zs 

odd or if n1(W) = 0, for every closed  P .L . manifold NT homotopy equiva

lent to M, there exists a compact P .L . manifold W', equipped with a 

sem i-free P .L . Z  ̂ action with M' as fixed  points, with (W', <?W') equi- 

variantly homotopy equivalent to (W,<9W).

The conditions on H2 (M ;Z2 ) in the above results arise in the follow-
z

ing way. In proving Theorems 3 and 4, we study a natural map of BSRN2  P 

to G /P L  and attempt to find a splitting of it. In particular, on the level 

of the second homotopy groups, we are trying to find a splitting of the map 

which assigns to a knot which is a counterexample to the classica l P.A. 

Smith conjecture its Arf invariant. We thus propose the following weak 

form of the P.A . Smith conjecture, whose truth would imply the necessity  

of the conditions on H2 (M; Z 2).

WEAK P.A . SMITH C O N J E C T U R E .  L et  K C S 3 , K — S1 be the fixed  

points of a P .L . action on S3 , p odd. Then is AK(—1) = ± 1 

(modulo 8 ), where AK(t) is the Alexander polynomial of the knot K C S 3?

Fox [5] studied restrictions on AK(t). However as his methods, which 

involve expressing homology in terms of AK(t), apply in high dimensions, 

where for p odd the weak P.A . Smith conjecture is false [2], they alone 

will not suffice.

A result on tt2 (BSRN2  P) is indicated at the end of Section 2 below.

§2. C yclic branched covering of S

Let jS C S3  be a knot. Let V be a Seifert surface of with link

ing form L v . Let L be a matrix for L v  with respect to some basis.

Let L ' denote the transpose of L . If £  is complex number of norm 1,

let = L  + L ' — f L  -  f  _ 1 L ' .
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Then K̂ r is a Hermitian form over the complex numbers; let ° ^ 0 )  

denote its signature. Let 2 (/3 ,p ) be the p-fold cyclic branched cover of 

S along /3, with the induced orientation.

TH EOREM  5. The p-fold cyclic cover 2 (/3 ,p ) bounds a parallelizable 

manifold with signature p__j

2  •
i = 1

£  a primitive p ^  root of unity.

N O TES:

1. o g ( f i ) =  o- i ^ ) .

2. The function :(/3) is actually a cobordism invariant of /3.

3. cr^(/3) is continuous in except possibly at the negatives of 

the roots of the Alexander polynomial of /3.

4 . The manifold constructed to bound 2  = 2 (/3 ,p ) is simply connected 

and has even middle betti number.

5. Analogous results are true in high dimensions.

Theorem 5 has been obtained independently by L. Kauffman [14].

Proof of Theorem  5. Consider

P = /3 x  I U  V x  0 C S3  x  I |J D4  =* D4  .
^ x 0  S3 x 0

Then the p-fold cyclic branched cover Q of D4  along P is a 4-manifold 

with boundary 2 (/3 ,p ). Clearly

Q = (2  x I) U p(D4) ( J  P x D 2

P x S 1

where 2  is the part of 2  lying over the closure of the complement of a 

tubular neighborhood of and p(D4) is attached to 2 x 1  along the 

subset of its boundary pS3  = S3  U ••• U S3  consisting of p copies of the
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closure of the complement of a tubular neighborhood of V in S . (If 

7r:->S3 is the projection, 7r|77 1 (S3 — V) is the trivial p-fold covering 

space.)

Let Q = 2x1 U pD4  C Q. By excision H2 (Q) =  H2 (Q,pD4) s  

H2 (p(V xI, Vx d l ) )  s  HjCpV). Moreover, the mapping H2 (Q) -> H2 (Q) is 

surjective, as the composite

H2 (Q, Q) H2 (P x D 2 , P x  S1) — > H j(P x  S1) — > Hj(Q)

d
z

I = linking number with P , is a monomorphism. Hence Q and Q have
A o

the same index. Since Q is an unbranched cover of a subset of S , it 

is parallelizable, i.e . for x e H2 (Q), x-x = 0 (2 ). Hence Q is also  

parallelizable.

A basis of H2 (Q) is obtained by pushing circles representing a basis 

of Hj(V) in each component of in 2 x 0  to each of the boundary

components of a neighborhood of 77—1V and making the results bound in 

the corresponding copy of D4 . With respect to the basis thus obtained 

from the basis of HjV used to obtain L from L v , it is easy to see  

that the intersection form on H2 (Q) has the matrix

'L + I /  - L  0
- V  L+L/ 0 ...............

0 - L '  L+L' - L

n
- L  0 

Let H be the matrix

1 1 ^ 2i

j  f p - i i
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where ^ is a primitive root of 1  and I is the identity matrix of 

the same size as L. Then H'KH is the matrix

and H'H = pi. The theorem follows.

N O T E . One can easily show that the intersection form on H2 (Q) has the

From this and Poincare Duality, we may recover all known results on H ^X ). 

E X A M P L E :  /3 = trefoil knot, p = 5. Then

so that crgQ3) = - 2  = cr_ x (y8 ) for

f  = e 2nit, 1 /6  < t < 5 /6  ,

and

ag(J3) = 0  if - 1 / 6  < t <  1 / 6  .
4

Thus X r(j8 ) = - 8 .

In fact, it is well known [10] that the 5-fold branched cyclic cover of 

31 is binary dodecahedral space (“ Poincare sp ace” ).

As a consequence of Theorem 5 and Rohlin’s Theorem [9], and results 

of [2 ] the natural periodicity map 7t2 (BSRN2  p) -> 7r6 (BSRN2  p) is seen to 

be not surjective.
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ON THE 3-DIMENSIONAL BRIESKORN MANIFOLDS M (p,q,r)

John Milnor

§1. Introduction

Let M = M(p, q, r) be the smooth, compact 3-manifold obtained by 

intersecting the complex algebraic surface

Z l P  +  Z 2 < +  z 3 r  =  0

of Pham and Brieskom with the unit sphere | z j 2  + |z2 |2  + |z3 |2  = 1. 

Here p ,q ,r  should be integers > 2 .  In strictly topological terms, M 

can be described as the r-fold cyclic branched covering of the 3-sphere, 

branched along a torus knot or link of type (p, q). See 1.1 below.

The main result of this paper is that M is diffeomorphic to a coset 

space of the form II\G where G is a simply-connected 3-dimensional 

Lie group and II is a discrete subgroup. In particular the fundamental 

group 772 (M) is isomorphic to this discrete subgroup II C G. There are 

three possibilities for G, according as the rational number p_ 1  + q_ 1  + 

r_ 1  — 1 is positive, negative, or zero. In the positive case  discussed in 

Section 4, G is the unit 3-sphere group SU(2), and II is a finite sub

group of order 4(pqr)~’ 1 (p~ 1 + q"~1 + r- 1  — 1)~2 . (See Section 3 .2 .)  In the 

negative case  discussed in Section 6 , G is the universal covering group 

of S L (2,R ). The proof in this case  is based on a study of automorphic 

forms of fractional degree. In both of these cases the discrete subgroup 

II =  7 7^(M) can be characterized as the commutator subgroup [ r , r ]  of a 

certain “ centrally extended triangle group” T C G. [See Section 3. This 

result has also been obtained by C. Giffen (unpublished).] The centrally 

extended triangle group T has a presentation with generators yi>Y 2 >y$ 

and relations

175
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Y l P = y2q = V$ = Y 1 Y2 Y3 •

(Compare [Coxeter].) It follows that M is diffeomorphic to the maximal 

abelian covering space of the 3-manifold T \G .

These statements break down when p""1 + q_1 + r " 1 = 1. However, 

it is shown in Section 8 that M can still be described as a coset space  

n\ G  where G is now a nilpotent Lie group, and II is a (necessarily  

nilpotent) discrete subgroup. The proof is based on a more general fibra- 

tion criterion. (Section 7 .)

The author is indebted to conversations with J .  -P . Serre, F . Raymond, 

and J . Joel.

H ISTO RICAL REMARKS. The triangle groups were introduced by 

H. A. Schwarz in the last century. [Three-dimensional analogues have 

recently been constructed by W. Thurston (unpublished).] The study in 

Section 5 of automorphic forms clearly is based on the work of Klein, 

Fricke, Poincare and others. The manifolds M = M(p,q, r) and their 

(2n—l)-dimensional analogues were introduced by [Brieskorn, 1966]. He 

computed the order of the homology group H1(M; Z), showing that M has 

the homology of a 3-sphere if and only if the numbers p, q, r are pairwise 

relatively prime. From the point of view of branched covering manifolds, 

this same result had been obtained much earlier by [Seifert, p. 222]. Those 

Brieskorn manifolds with p” 1 + q- 1  + r- 1  > 1 have long been studied by 

algebraic geometers’. Compare the discussion in [Milnor, 1968, §9.8] as 

well as [Milnor, 1974]. Those singular points of algebraic surfaces with 

finite local fundamental group have been elegantly characterized by 

[Prill] and [Brieskorn, 1967/68]. Those with infinite nilpotent local 

fundamental group have been elegantly classified by [Wagreich]. For 

other recent work on such singularities see [ArnoTd], [Conner and 

Raymond], [Orlik], [Saito], and [Siersma]. The work of [Dolgacev] and 

[Raymond and Vasquez] is particularly close to the present manuscript.

To conclude this introduction, here is an alternative description of 

M(p, q, r). Recall that the torus link L(p, q) of type (p, q) can be
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defined as the set of points (z x ,z 2) on the unit 3-sphere which satisfy  

the equation

z l P + z2q = 0 •

This link has d components, where d is the greatest common divisor of 

p and q. The n-th component, 1 < n < d, can be parametrized by setting

Z x =  e (t/p ) , Z 2 =  e((t + n + i - ) / q )

for 0 < t < pq/d, where e(a) stands for the exponential function e2?ria. 

Note that this link L(p, q) has a canonical orientation.

LEMMA 1 .1 .  The Brieskom  manifold M(p, q, r) is homeomorphic 

to the t-fold cyclic branched covering of S , branched along a 

torus link of type (p, q).

Proof. Let VC C3 be the Pham-Brieskorn variety ZjP + z 2  ̂ + z 3r = 0, 

non-singular except at the origin. Consider the projection map

(z l>z 2 ’ z 3̂  ^  i > z2^

from V —0 to C2 — 0. If we stay away from the branch locus z 1P + z2G* = 0, 

then clearly each point of C2 - 0  has just r pre-images in V. In fact 

these r pre-images are permuted cyclically  by the group 0  of r-th roots 

of unity, acting on V —0 by the rule

co : (z 1 , z 2 , z 3) h- (z1, z 2 ,a)z3)

for ci>r — 1. Thus the quotient space Q \(V —0) maps homeomorphically 

onto C2 — 0. It follows easily that V —0 is an r-fold branched cyclic  

covering of C2 - 0 ,  branched along the algebraic curve ZjP + z2  ̂ = 0.

Now let the group R+ of positive real numbers operate freely on 

V — 0 by the rule
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for t > 0. Since every R+-orbit intersects the unit sphere transversally 

and precisely once, it follows that V - 0  is canonically diffeomorphic to 

R+ x M (p,q,r). Note that this action of R+ on V - 0  commutes with the 

action of £2.

Similarly, letting R+ act freely on C2 - 0  by the rule t : ( z 1 , z 2 ) m  

(t1 , t 1//( ẑ2), it follows that C2 - 0  is canonically diffeomorphic to

R+ x S3 . The projection map V — 0 -> C2 -  0 is R+-equivariant. There

fore, forming quotient spaces under the action of R+, it follows easily  

that M (p,q,r) is an r-fold cyclic branched covering of S3 with branch 

locus L(p,q). ■ (Compare [Durfee and Kauffman], [Neumann].)

§ 2 . The Schwarz triangle groups 2  D £

This section will be an exposition of classical material due to 

H. A. Schwarz and W. Dyck. (For other presentations see [Caratheodory], 

[Siegel], [Magnus].) We will work with any one of the three classica l sim

ply connected 2-dimensional geometries. Thus by the “ plane’ ’ P we 

will mean either the surface of a unit 2-sphere, or the Lobachevsky plane 

[e .g ., the upper half-plane y > 0 with the Poincare metric (dx2 + dy2) /y 2], 

or the Euclidean plane. In different language, P is to be a complete, 

simply-connected, 2-dimensional Riemannian manifold of constant curva

ture +1, —1, or 0.

We recall some familiar facts. Given angles a ,/3 ,y  with 0<a,/3,y<77, 

there always exists a triangle T bounded by geodesics, in a suitably 

chosen plane P , with interior angles a ,/3 , and y. In fact P must be 

either spherical, hyperbolic, or Euclidean according as the difference 

a + fi + y - j r  is positive, negative, or zero. In the first two cases the area 

of the triangle T is precisely \a + fi + y — t t \ , but in the Euclidean case  

the area of T can be arbitrary.

We are interested in a triangle with interior angles 7r/p, 77/q , and 

t t / t  respectively, where p, q, r > 2 are fixed integers. Thus this triangle 

T = T(p, q, r) lies either in the spherical, hyperbolic, or Euclidean plane 

according as the rational number p_1 + q-1  + r” 1 -  1 is positive, nega

tive, or zero.
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D EFIN IT IO N . By the full Schwarz triangle group 2 *  = 2 * (p , q ,r )  we will 

mean the group of isom etries of P  which is generated by reflections  

° l  ’ ° 2 ’ a3 in the three edges of T(p, q, r). We will a lso  be interested in 

the subgroup 2  C 2  of index 2, con sisting  of all orientation preserving  

elem ents of 2  .

REMARK 2.1 . Before studying these groups further, it may be helpful to 

briefly list the possibilities. Let us assume for convenience that p < q < r. 

In the spherical ca se  p-1  + q—1 + r- 1  > 1, it is easily seen that (p,q,r) 

must be one of the triples

( 2 ,3 ,3 ) ,  ( 2 ,3 ,4 ) ,  ( 2 ,3 ,5 ) ;  or (2 ,2 , r)

for some r > 2. The corresponding group 2(p , q, r) of rotations of the 

sphere is respectively either the tetrahedral, octahedral, or icosahedral 

group; or a dihedral group of order 2r. The area of the associated triangle 

T can be any number of the form 7 7 / n  with n > 2. In the Euclidean case  

p- 1  + q-1  -t- r_1 = 1, the triple (p ,q , r) must be either

( 2 ,3 ,6 ) ,  ( 2 ,4 ,4 ) ,  or ( 3 ,3 ,3 )  .

For all of the infinitely many remaining triples, we are in the hyperbolic 

case  p_1 + q_1 + r- 1  < 1. The area of the hyperbolic triangle T can 

range from the minimum value of (1 — 2- 1  — 3_1 — 7 ~ 1)n  = 77/42 to values 

arbitrarily close to n.

The structure of the full triangle group 2  = 2  (p ,q , r) is described  

in the following b asic  assertion . R ecall that 2  is generated by reflec

tions 0 ^ , 0 2* 0 3  in the three edges of a triangle T C P  whose interior 

angles are 7 7 / p ,  7 7 / q ,  and tt/t.

T h e o r e m  2 .2  (Poincare). The triangle T itself serves as
*

fundamental domain for the action of the group 2  on the 

“ plane”  P . In other words the various images cr(T) with 

<7 e 2 *  are mutually disjoint except for boundary points, and
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cover all of P. This group 2  has a presentation with gen er

ators a j , (^2 ’ <J3  and relations

^  = ff32 = 1
and

1 ° 2  )P = = (a3ffi )r = 1  •

Here it is to be understood that the edges are numbered so that the 

first two edges e x and e 2  enclose the angle of 7 7 / p ,  while e 2  and e 3  

enclose the angle of 7 7 /q ,  and enclose t t / t .

Proof of 2 .2 . Inspection shows that the composition cr1o2 *s a r° tat i°n 

through the angle 2n/p  about the first vertex of the triangle T, so the 

relation {0 ^ 0  = 1 is certainly satisfied in the group 2 .  The other

five relations can be verified similarly.

Let 2  denote the abstract group which is defined by a presentation 

with generators and with relations a *2  = 1  and =

(0 ^ 3 )^ = (£ 3 ^ )r = 1. Thus there is a canonical homomorphism a m o 

from 2  onto 2  , and we must prove that this canonical homomorphism 

is actually an isomorphism.

Form a simplicial complex K as follows. Start with the product 

2 x T ,  consisting of a union of disjoint triangles 5 x T ,  one such triangle 

for each group element. Now for each o and each i = 1 ,2 ,3  paste the

i-th edge of S x T  onto the i-th edge of a o^ x  T. More precisely, let K 

be the identification space of 2  x T in which (a , x) is identified with 

( S J . ,x )  for each a  6  2 ,  for each i=  1 ,2 ,3 ,  and for each X f e - C T .  

Using the relation a *2  = 1, we see that precisely two triangles are 

pasted together along each edge of K.

Consider the canonical mapping 2  x T -> P  which sends each pair 

(a ,x )  to the image a (x )  (using the homomorphism a H- 0  from 2  to 

the group 2  of isometries of P). This mapping is compatible with the 

identification (cj, x) s  (crcrj,x) for x c e- since the reflection fixes 

e- . Hence there is an induced map
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f : K -> P .

We must prove that f is actually a homeomorphism.

First consider the situation around a vertex {o, v) of K. To fix our 

ideas, suppose that v is the vertex e x H e2 of T. Using the identifi

cations
(a, v) ■= ( a a ^ v )  = (ScjjCT^v) = ( 5 a 1a2a 1 ,v ) ••• ,

together with the relation = we see that precisely 2p triangles

of K fit cyclically  around the vertex (o, v). (These 2p triangles are 

distinct since the 2p elements , o1o2 , >'"> ^  maP

to distinct elements of 2  .) Now inspection shows that the star neighbor

hood, consisting of 2p triangles fitting around a vertex of K maps 

homeomorphically onto a neighborhood of the image point o(v) in P . The 

image neighborhood is the union of 2p triangles in P , each with interior 

angle n/p  at the common vertex cr(v).

Thus the canonical map f : K -> P is locally a homeomorphism. But it 

is not difficult to show that every path in P can be lifted to a path in K. 

Therefore f is a covering map. Since P is simply connected, this im

plies that f is actually a homeomorphism. The conclusions that 2  maps
;|c

isomorphically to the group 2  , and that the various images o'(T) cover 

P with only boundary points in common, now follow immediately. ■

REMARK 2.3 . More generally, following Dyck, one can consider a convex 

n-sided polygon A with interior angles w/p1 ,«-*,7r/pn. Again A is the 

fundamental domain for a group 2 *  = 2*(A ) of isometries which is gener

ated by the reflections in the edges of A with relations

= (a i a i+ i)Pl = 1

for all i modulo n. In fact the above proof extends to this more general 

case  without any essential change.
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C O R O L L A R Y  2.4 . In the spherical ca se  p"”1 + q“ * + > 1,

the full triangle group 2  (p,q, r) is finite of order 4 /(p ~ 1 + 

q ^  + r”-1 — 1). In the remaining ca ses  p_1 -f q " 1 + f 1 < 1,
■ 5(C

the group 2  (p, q, r) is infinite.

Proof. Since the various images o (T) form a non-overlapping covering
V *of P , the order of 2  can be computed as the area of P divided by the 

area of T. ■

Recall that 2  denotes the subgroup of index 2 consisting of all 

orientation preserving isometries in the full triangle group 2  . Setting

T1 ~ °\°2* 7 2 ~ a2°V r3 ~ (73<Jl *

note that the product

71 72 73 = a l a 2 a 2 ° 3 ° 3 a l

is equal to 1.

C O R O L L A R Y  2 .5 .  The subgroup 2 ( p , q ,  r) has a presentation 

with generators r2 , r 3 and relations rxp = r2q = Tz ^ 7\r2TZ = **

Proof. This corollary can be derived, for example, by applying the 

Reidemeister-Schreier theorem. [More generally, for the Dyck group de

scribed in 2.3 we obtain a presentation with generators Ti> " '*Tn anc* 

relations
Pi .  pn

Tn n = r l r2 " ' Tn ~

Details will be left to the reader. ■

We conclude with three remarks which further describe these groups 2 .

See for example [Weir].
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REMARK 2.6 . Using 2 .2 , it is easy to show that an element of the group 

2  has a fixed point in P if and only if it is conjugate to a power of 

Tl>r 2 > or r3 * #ence every element of finite order in 2  is conjugate to 

a power of t1$t2 or t3 . Therefore the three integers p, q, r can be 

characterized as the orders of the three conjugate classes of maximal 

finite cyclic subgroups of 2 .  (Caution: In the spherical case  these 

three conjugate classes may not be distinct. In fact in the spherical case, 

since each vertex of our canonical triangulation of P is antipodal to 

some other vertex, it follows that each r- is conjugate to some tT 1 

where j may be different from i.)

Here we have used the easily verified fact that every orientation 

preserving isometry of P of finite order has a fixed point.

TH EO REM  2.7 (R. H. Fox). The triangle group 2(p , q, r) con

tains a normal subgroup N of finite index which has no elements 

of finite order.

[Fox] constructs two finite permutations of orders p and q so that 

the product permutation has order r. The subgroup N is then defined as 

the kernel of the evident homomorphism from 2  to the finite group gener

ated by these two permutations. Using 2.6 we see that N has no elements 

of finite order. ■

Note also that N operates freely on P ; that is, no non-trivial group 

element has a fixed point in P . Hence the quotient space N \ P  is a 

smooth compact Riemann surface which admits the finite group 2 /N  as 

a group of conformal automorphisms. To compute the Euler characteristic 

y(N \P) of this Riemann surface, we count vertices, edges, and faces of 

the canonical triangulation of N \ P , induced from the triangulation of 

2.2 . This yields the formula

X ( N \ P )  = (p- 1 +q - 1 + r- 1  - 1 )  order (2 /N ) .
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In the hyperbolic cage p 1 + q- 1  + r_1 < 1, it follows that the triangle 

group 2  3 N contains free non-abelian subgroups. For N is the funda

mental group of a surface of genus g > 2, hence any subgroup of infinite 

index in N is the fundamental group of a non-compact surface and there

fore is free.

Note that a given finite group 0  can occur as such a quotient 2 /N  

if and only if is generated by two elements, and has order at least 3.

For if $  is generated by elements of order p and q, and if the product 

of these two generators has order r, then 2(p , q, r) maps onto 0 ,  and 

it follows from 2.6 that the kernel has no element of finite order. As an 

example, the triangle group 2 (2 , 3, 7) maps onto the simple group of 

order 168. (Compare [Klein and Fricke, pp. 109, 737] as well as [Klein, 

Entwicklung •••, p. 369].) Hence this simple group operates conformally 

on a Riemann surface N \ P  whose genus g = 3 can be computed from 

the equation 2 — 2g = 168 (1 — 2 -1  — 3_1 — 7_ 1 ).

More generally let A be any discrete group of isometries of P with 

compact fundamental domain. (That is, assume that there exists a com

pact set K C P with non-vacuous interior so that the various translates 

of K by elements of A cover P , and have only boundary points in 

common.) Then A also contains a normal subgroup N of finite index 

which operates freely on P . (See [Fox] and [Bungaard, Nielsen]. A much 

more general theorem of this nature has been proved by [Selberg, Lemma 8].)  

Again the Euler characteristic x(N  \ P ) of the smooth compact quotient 

surface is directly proportional to the index of N in A. In fact, the 

ratio x(N  \P)/order (A/N) can be computed as a product x ( B a ) x ( P )  

where the rational number x(By^) is the Euler characteristic of A in the 

sense of [Wall], and where x (P )  = (—l ) n rank Hn(P) is the usual Euler

characteristic, equal to 1 or 2. Now assume that A preserves orientation.

The quotient S = A \ P  can itself be given the structure of a compact 

Riemann surface, even if A has elements of finite order. (Compare 6 .3 .)

In general there will be finitely many ramification points, say X j^-^x^eS. 

Let > 2 be the corresponding ramification indices. Then classi-
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cally the data (S; ri>“ ’>rk) provides a complete invariant for

the group A. That is: a second such group A' is conjugate to A with

in the group of orientation preserving isometries of P if and only if the 

Riemann surface S '=  A '\ P  is isomorphic to S under an isomorphism 

which preserves ramification points and ramification indices. The triangle 

group 2(p, q, r) corresponds to the special case  where S has genus zero 

with three ramification points having ramification indices p, q, r.

REMARK 2.8. It is sometimes possible to deduce inclusion relations 

between the various groups 2(p , q, r) by noting that a triangle T(p, q, r) 

can be decomposed into smaller triangles of the form T(p', q' r')* For 

example if p = q one sees in this way that

2(p , p, t) C 2 (2 , p, 2r)

as a necessarily normal subgroup of index 2. Similarly, taking p = r one

sees that ^
2 (2 ,p ,2 p )  C 2 (2 , 3 , 2P)

as an abnormal subgroup of index 3. However, not all inclusions can be 

derived in this manner. A counterexample is provided by the inclusion 

2 (2 , 3, 3) C 2 (2 , 3, 5) of the alternating group on four letters into the alter

nating group on five letters.

§3. The centrally extended triangle group T(p,q,r)

As in the last section, let P denote either the Euclidean plane or 

the plane of spherical or hyperbolic geometry. Let G denote the con

nected Lie group consisting of all orientation preserving isometries of P. 

Then we can form the coset space G /2  where

2  = 2(p , q, r) C G

is the triangle group of Section 2. Clearly G /2  is a compact 3-dimensional 

manifold. To compute the fundamental group tt1(G /2 ) it is convenient to 

pass to the universal covering group G of G.
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D EFIN IT IO N . The full inverse image in G of the subgroup 2  C G will 

be called the centrally extended triangle group V = T(p, q, r).

Evidently the quotient manifold G /2  can be identified with G/ V,  

and hence has fundamental group 77̂  (G /2 ) s  T.

To describe the structure of V,  let us start with the isomorphism 

G/C =  G of Lie groups, where the discrete subgroup C =  ^ (G ) is the 

center of G. In the spherical case , where G is the rotation group S 0(3), 

it is well known that this fundamental group C is cyclic of order 2. In 

the Euclidean and hyperbolic cases we will see that C is free cyclic.

Evidently T , defined as the inverse image of 2  under the surjection 

G -> G, contains C as a central subgroup with T /C  =  2 .  [In fact one 

can verify that C is precisely the center of T .] The main object of this 

section is to prove the following.

LEMMA 3.1. The centrally extended triangle group V  = F(p ,q,r) 

has a presentation with generators Y\>y2 >Y’$ an(  ̂ r e â tions y ^  =

X 2 q =  yJ =

Proof. We will make use of the following construction. Choose some

fixed orientation for the * ‘plane’ ’ P. Given a basepoint x and a real

number 0 , let —
rx (0) e G

denote the rotation through angle 0 about the point x. Thus we obtain 

a homomorphism Tx R -> G which clearly lifts to a unique homomorphism

■«: r  -  °

into the universal covering group. Since Tx(277) is the identity element 

of G, it follows that the lifted element

rx (27r)  .  G
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belongs to the central subgroup C. We will use the notation c = xx {2n )rC .

In fact C is a cy clic group generated by c , as one easily verifies by

studying the fibration _  _  .
G -  P G /S1

defined by the formula g”L- > g(x). Here S1 denotes the group 7X(H) C G
consisting of all rotations about x. In the Euclidean and hyperbolic 

cases , since P is contractible, it follows that the fundamental group 

^ ( S 1) =  Z maps isomorphically onto G) =  C.

Note that this element rx (27r) e C depends continuously on x, and 

therefore is independent of the choice of x.

Now recall that the subgroup 2  C G is generated by the three rotation:

r l = 7Vl(277/p)> 72 = 7 v2 2̂n' / q^ r3 = r) ’

where v1 ,v 2 ,v 3 are the three vertices of T. It follows that the inverse 

image F  C G is generated by the three lifted rotations

y l = rVi(2ff/p), y2 = r (2n-/q), y3 = tv^(2jr/t) , 

together with the central element c. Clearly

Y l P = Y2q = Yz = c  •

Next consider the product y x Y ^ z ' Since T\Trf  z = ^  ^ *s c êar

Z l^2 ^ 3  belongs to C, and hence is equal to c^ for some integer k.

We must compute this unknown integer k.

It will be convenient to work with a more general triangle, with arbi

trary angles. In fact, without complicating the argument, we can just as 

well consider an n-sided convex polygon A C P with interior angles

a . Here we assume that 0 < a { < t t .  If denotes the reflection

in the i-th edge (suitably numbered), then o ^  = 1, and therefore

(a l£72)(<72CT3) ••• (a n_ i 0 n) ( 0n0 l-* = 1 •
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Lifting each rotation

ai°i+l = \ & i >  ( 5

to the element

yi = Tv p a 0  € G '

it follows that the product y1y2 * " y n belongs to the central subgroup C. 

Now as we vary the polygon A continuously, this central element 

Y\ " * y n must a *so varY continuously. But C is a discrete group, so 

yj •**yn must remain constant.

In particular we can shrink the polygon A down towards a point x, 

in such manner that the angles tend towards the angles

y31 , — , /3n of some Euclidean n-sided polygon. Thus the element 

y- = ry (2ap  e G tends towards the limit rx (2/3-), while the product 

y l •••y tends towards the product rx (2/3j + ••• + 2j8n). Therefore, using 

the formula
01  + ‘ "  + 0n  = (n -2 )^

for the sum of the angles of a Euclidean polygon, we see that the constant 

product yj #,,yn must be equal to

rx((n-2)27r) = c n~ 2 .

Finally, specializing to the case n = 3, we obtain the required identity

Y1 Y2 Y3  = c ‘
Thus we have proved that T is generated by elements y v  yv  y3 , 

and c which satisfy the relations

y i p = y2q = y3 = y iy 2y3 = c  •

Conversely, if f  denotes the group which is defined abstractly by 

generators y x, y2 > y3> c and corresponding relations, then certainly the 

element c e  T generates a central subgroup C, with quotient T /C  

isomorphic to 2  by Section 2 .5 . Thus we obtain the commutative 

diagram
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^  2with A abelian. Therefore, in the spherical case, the group C gen er

ated by c 2 maps injectively into the abelianized group T / I P , T].

In the Euclidean and hyperbolic ca se s , C is free cy clic, hence C maps 

isomorphically to C, and it follows that V  maps isomorphically to T.

In the spherical case , since C is cyclic of order 2, we must prove 

that c = 1 in order to complete the proof. This relation can be verified 

by a case by case  computation. (Compare [Coxeter].) There is an alterna

tive argument which can be sketched as follows.

To prove that c = 1, it suffices to show that c maps to 1 in the 

abelianized group F/[r,r]. For clearly T is a central extension of the 

form
i  ̂c2  ̂r  ̂r  ̂ i .

Such a central extension is determined by a characteristic cohomology 

class in H (T ; C ). Consider the universal coefficient theorem

0 -* E x tO ^ r .C 2) -  H2( r ; c 2) -  Hom(H2r , C 2) -  0

[Spanier, p. 243]. The group H2r  is zero by Poincare duality, since the 

finite group F  is fundamental group of a closed 3-manifold. Therefore 

our extension is induced from an element of Ext(H^T, C2), or in other 

words from an abelian group extension of the form

0 -* C2 -> A -> H1T 0 .
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But a straightforward matrix computation shows that c maps to an 

element of order m(p * + q * + r  1 — 1) in this abelianized group, where 

m is the least common multiple of p, q, r. In all of the spherical cases  

this product is 1 or 2, so c 2 = 1. ■

REM ARK. Similarly for the Dyck group of Section 2 .3  one obtains a central 

extension with generators Y i r “ ,y n and with relations

y j Pl = ...  = ynPn = c and yl ••• yn = c n_2 .

C O R O L L A R Y  3.2 . The abelianized group F / [ r , r ]  has order 

|qr+pr+pq-pqr| = pqr |p-1  + q- 1  + r- 1  -  1|.

Here we adopt the usual convention that an infinite group has “ order”  

zero. Thus the commutator subgroup has finite index in T if and only if 

p""1 + q” 1 + r_1 A 1. To prove this corollary, we apply the usual theorem 

that the order of an abelianized group with n generators and n relations 

is equal to the absolute value of the determinant of the n xn  relation 

matrix. Taking the three relations to be = ^' Y 1 Y2 Y3 Y2

= ^  relati°n matrix becomes

~ l - p  1 1 ~

1 1 - q  1

1 1 l - r _

with determinant qr + pr + pq -  pqr, as required, m

In the spherical case  p 1 + q~* + r 1 > 1, since V has order 

4/(p _1 + q~~* + r~* — 1) as a consequence of 2 .4 , it follows that the com

mutator subgroup [ r , r ]  has order 4/(pqr(p * + q * + r  1 — 1) )•

One case  of particular interest occurs when p, q, r are pairwise rela

tively prime. In this case  the index i = |qr+ pr+ pq -  pqr| of [ r ,T ]  in 

r  is relatively prime to pqr. Therefore, using 2 .6 , it follows that for any
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element y of T which has finite order modulo the center C there exists  

an element y 1 of (T ,F ]  having the same finite order modulo [ T ,r ]  H C. 

It then follows that the three integers p, q, r are invariants of the group 

[ r ,T ] .  Namely, they can be characterized as the orders of the maximal 

finite cyclic subgroups of [ r , r ]  modulo its center [ r , r ]  H C.

§4. The spherical case p—1 + q—1 + r""1 > 1

This section gives a concrete description of the Brieskorn manifolds 

M (p,q,r) in the spherical case . Since the conclusions are well known, 

the presentation is mainly intended as motivation for the analogous argu

ments in Section 6.

Let r  be any finite subgroup of the group SU(2) of unimodular 2x2 

unitary matrices, acting by matrix multiplication on the complex coordinate 

space C2 . Note that SU(2) acts simply transitively on each sphere 

centered at the origin.

D E FIN IT IO N . A complex polynomial f(z) = f(zp  z 2) is T-invariant if

f(y(z)) = f(z)

for all y e  T and all z e C2 . Let Hp’ 1 denote the finite dimensional 

vector space consisting of all homogeneous polynomials of degree n 

which are T-invariant. More generally, given any character of T , that 

is any homomorphism
X : T -> U (l) C C - C - 0  

n v
from r  to the unit circle, let Hp denote the space of all homogeneous 

polynomials f of degree n which transform according to the rule

f(y(z)) = x (y )f(z ) •

Note that the product of a polynomial in H p ^  and a polynomial in H p’^

belongs to the space Hp+m,*^\ Thus the set of Hp*" for all n and x
* ,*

forms a bigraded algebra, which we denote briefly by the symbol Hp .
0,1 1

This bigraded algebra possesses an identity element 1 e Hp .
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LEMMA 4.1. Let  II = [F ,T ]  be the commutator subgroup of T.

Then the space  Hjj of Il-invariant homogeneous polynomials 

of degree  n is equal to the direct sum of its subspaces  H p^  

as x  varies over all characters of V.

Proof. Since every character of T annihilates II, it follows that 

Hp^- C Hĵ J' . On the other hand, since II is normal in T , it follows 

that the quotient group T /II operates linearly on In fact, for each

Il-invariant homogeneous polynomial f and each y e T let fy denote 

the polynomial
z h> f(y(z)) .

(Thus r  acts on the right.) This new polynomial is also Il-invariant

since 1
(fy)n  = (f(y 77 y ))y  = fy

for 77 e II. Clearly fy = fy' whenever y = y ' mod II. Since F /I I  is 

finite and abelian, it follows that 1 splits as a direct sum of eigen- 

spaces corresponding to the various characters of T /II. ■

n v1
Now consider a homogeneous polynomial f € Hp for some n and x-  

According to the fundamental theorem of algebra, f must vanish along n 

(not necessarily distinct) lines F 1 ,***,Ln through the origin in C2 .

Given these lines, the polynomial f is uniquely determined up to a multi

plicative constant. Evidently each element of the group T must permute 

these n lines. Conversely, given n lines through the origin which are 

permuted by T , the corresponding homogeneous polynomial f(z) of 

degree n clearly has the property that the rotated polynomial f(y(z)) is 

a scalar multiple of f(z) for each group element y. Setting

f(y(z))/f(z) = x(y)

we obtain a character x  of F  so that f € H p^ .

Let us apply these constructions to the centrally extended triangle 

group F  = T (p ,q , r) of Section 3; where p_1 + q_1 + r-' 1 > 1. To do
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this we must identify SU(2) with the universal covering group G of 

Section 3. In fact, SU(2) operates naturally on the projective space  

P = P X(C) of lines through the origin in C2 . Or rather, since the central 

element —I carries each line to itself, the quotient group G = SU(2)/1±I} 

operates on P, which is topologically a 2-dimensional sphere. Choosing 

a G-invariant metric, we see easily that P will serve as model for

2-dimensional spherical geometry, with G as group of orientation preserv

ing isometries and G = SU(2) as universal covering group.

Let k = 2 /(p _ 1  + q*” 1 + r“ * — 1) denote the order of the quotient group 

2  = r /f ± l i .  Then, by 2 .6 , nearly every orbit for the action of 2  on P  

contains k distinct points. The only exceptions are the three orbits con

taining the three vertices of the triangle T. These three exceptional 

orbits contain k/p, k/q, and k/r points respectively. 

k/p>Xi
Let f1 e Hp , for appropriately chosen X\> be polynomial 

which vanishes on the k/p lines through the origin corresponding to the 

orbit of the first vertex of T. Similarly construct the polynomials

k /q ,Y 2  k /r ,X 3
f2  c Hp and f3  € Hp , each well defined up to a multiplicative

constant. We will need some partial information about these three

characters X\> X 2 ’ anc* ^ 3 *

LEMMA 4.2 . The three homomorphisms X p ^  U (l) con

structed in this way satisfy the relation X iF  ~ X.2  ̂ = •

Proof, Let y \ > "',y 'k  € T be a set of representatives for the cosets of 

the subgroup i±l! C T. Then to each linear form £(z) = + a 2 z 2  we

can associate the homogeneous polynomial

f(z) = £(y'k(z))

k>Xoof degree k. The argument above shows that f e Hp for some Xo* 

Evidently this character Xo ^eP^n^s continuously on the linear form £, 

and hence is independent of £. Now specializing to the case  where £(z)
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vanishes at the line corresponding to one vertex of the triangle T , we 

see easily that y ^  = x 2q = X3r = X 0 ■ ■

REMARK.  The characters themselves can be computed by the methods 

of Section 6 .1 . In fact, writing , p2 , p3 in place of p, q, r, the charac

ter X {(yp  is equal to e C -k /^ P j )  for i ^ j  and to e (l/p j)e (~ k /2p jP j)  

for i = j.

We are now ready to prove the following basic result.

LEMMA 4 .3 . T hese three polynomials f1? f2 , f3 generate the
 ̂ j|>

bigraded algebra Hp* . They satisfy a polynomial relation 

which, after multiplying each  fj by a suitable constant if n e c e s 

sary, takes the form f^P + f2  ̂ + f3r = 0.

n y
Proof. Let f e Hp be an arbitrary non-zero element of the bigraded 

algebra. Then f must have n zeros in P = P ^ C ). If one of these zeros 

lies at the i-th vertex of the triangle T , then clearly f is divisible by 

f• . If f does not vanish at any vertex of T, then it must vanish at some 

point x € P  which lies in an orbit with k distinct elements. Choose

k,Y0
A /  0 so that the linear combination f j P + Af2q e Hp also vanishes 

at x, and hence vanishes precisely at the points of the orbit containing x. 

Then f is divisible by fxp + Af2 Now it follows easily by induction on 

the degree n that f can be expressed as a polynomial in the f^.

A similar argument shows that the polynomial f3r is divisible by 

fjP + Af2  ̂ for suitably chosen A  ̂ 0, say

f3r = A'(fxp + Xf2q) .

Multiplying each fj by a suitable constant, we can put this relation in 

the required form f1p + f2  ̂ + f3r = 0. ■
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R EMARK.  More precisely, one can show that the ideal consisting of all 

polynomial relations between the f- is actually generated by f i P + 1 2  ̂+^3 ** 

Compare 4 .4  below.

Now let V denote the Pham-Brieskorn variety consisting of all triples 

(vl>v2 ' v 3 ) € wit  ̂ V1 P + v2 q + v 3 f = Evidently the correspondence

z h* (f1 (z ) ,f 2 (z ) ,f 3 (z))

maps C2  into V.

Let II = [ r , H  denote the commutator subgroup of T . Since every 

character of V  annihilates II, we have f^(tz(z)) = f^(z) for n e II. There

fore (fx , f2 » 3̂ ) maps the orbit space II\ C 2  into V.

LEMMA 4 . 4 .  In fact, this correspondence IIz h> ( f j ( z ) ,  f2 (z ) ,  f3 (z ) )  

maps the orbit space  II\ C 2  homeomorphically onto the Pham- 

Brieskorn variety V.

Restricting to the unit sphere in C2 , we will prove the following 

statement at the same time.

T H EO REM  4 . 5 .  The quotient manifold II\ S 3  or II\SU(2) is 

diffeomorphic to the Brieskorn manifold M(p, q, r).

The orbit space II \S3  can be identified with the coset space 

H\SU(2) since SU(2) operates simply transitively on S .

Proof. F irst consider two points z' and z" which do not belong to the 

same II-orbit. Choose a (not necessarily homogeneous) polynomial g(z) 

which vanishes at z", but does not vanish at any of the images n(z').

Setting = g(n-1(z))g (7T2(z)) ••• gOm(z))

where II = \n1 ,•••,nm\, it follows that h is Il-invariant and h (z')^h(z")- 

Expressing h as a sum of homogeneous polynomials and applying 4 .1 , we
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obtain a polynomial f e H p ^  for some n and y  satisfying the same 

condition f(z') ^ f(z"). Finally, applying 4 .3 , we see that one of the f̂  

must satisfy f^ z ')  ̂ f^z"). Thus the mapping (fx , f2 , f3) embeds II\ C 2 

injectively into V.

Note that each real half-line from the origin in C2 maps to a curve

t (tk /Pf1(z ) ,tk /% ( z ) , t k /rf3 (z))

in V which intersects the unit sphere of C3 transversally and precisely  

once. Therefore we can map the unit sphere of C2 into M = M(p, q, r) by 

following each such image curve until it hits the unit sphere, and hence 

hits M. Thus we obtain a smooth one-to-one map from the quotient II \S3 

into M.

But a one-to-one map from a compact 3-manifold into a connected

3-manifold must necessarily be a homeomorphism. Therefore II\ S 3 maps 

homeomorphically onto M. It follows easily that II\ C 2 maps homeomor- 

phically onto V, thus proving 4.4.

Now let us apply the theorem that a one-to-one holomorphic mapping 

between complex manifolds of the same dimension is necessarily a diffeo- 

morphism. (See [Bochner and Martin, p. 179].) Since the complex manifold 

II \C2 —0 maps holomorphically onto V —0, this mapping must have non

singular Jacobian everywhere. It then follows easily that the mapping 

n\s3 -> M is also a diffeomorphism. ■

§5. Automorphic differential forms of fractional degree

This section will develop some technical tools concerning functions 

of one complex variable which will be needed in the next section. Some 

of the concepts (e .g ., “ labeled” biholomorphic mappings) are non-standard.

It is common in the study of Riemann surfaces to consider abelian 

differentials (that is, expressions of the form f(z)dz) as well as quad

ratic differentials (expressions of the form f(z)dz2). More generally, for 

any integer k > 0, a differential (= differential form) of degree  k on an 

open set U of complex numbers can be defined as a complex valued
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function of two variables of the form

<£(z,dz) = f(z)dzk ,

where z varies over U and dz varies over C.

To further explain this concept, one must specify how such a differ

ential transforms under a change of coordinates. In fact, if g : U Ux is 

a holomorphic map, and if 0 1(z 1,d z 1) = f1(z1)d z 1k is a differential on 

Ux, then the pull-back <£ = g ( 0 X) is defined to be the differential

0 (z ,d z )  = <?S1(g(z),dg(z)) = f1(g(z))g(z)kdzk

on U. Here g(z) denotes the derivative dg(z)/dz. This pull-back opera

tion carries sums into sums and products into products.

We will need to generalize these constructions, replacing the integer k 

by an arbitrary rational number a. There are two closely related diffi

culties: If a is not an integer, then the fractional power dza is not 

uniquely defined, and similarly the fractional power g(z)a is not uniquely 

defined.

To get around the first difficulty we agree that the symbol dz is to 

vary, not over the complex numbers, but rather over the universal covering 

group C of the multiplicative group C of non-zero complex numbers.
/v •

Since every element of C has a unique n-th root for all n, it follows 

that the fractional power dza is always well defined in C .

/"V/.
REMARK.  This universal covering group C is of course canonically 

isomorphic to the additive group of complex numbers. In fact, the ex

ponential homomorphism e(z) = exp(277iz) from C to C lifts uniquely

to an isomorphism ^
e : L -» C

of complex Lie groups. The kernel of the projection homomorphism 

C -» C is evidently generated by the image e^l).

We are now ready to describe our basic objects.
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D EFIN IT IO N , a  differential (= differential form) of degree a on an open 

set U C C is a complex valued function of the form

<£(z,dz) = f(z)dza

* ** •
where z varies over U and dz varies over C . Here it is understood

/V,

that the fractional power dza is to be evaluated in C and then projected 

into C to be multiplied by f(z). In practice we will always assume that 

f is holomorphic, so that <j> is holomorphic as a function of two variables. 

Note that the product of two holomorphic differentials of degrees a and /3 

is a holomorphic differential of degree a + /3.

In order to define the pull-back g (c£) of a differential of fractional 

degree, we must impose some additional structure on the map g.

D E FIN IT IO N . By a labeled holomorphic map g from U to Uj will be

meant a holomorphic map z h* g(z) with nowhere vanishing derivative,

together with a continuous lifting g of the derivative from C to C .

More precisely, .
g : U -> C

must be a holomorphic function whose projection into C is precisely the 

derivative dg(z)/dz. (Alternatively, a labeling could be defined as a 

choice of one single valued branch of the many valued function 

log dg(z)/dz on U.) Given two labeled holomorphic maps

g : U -> Uj and gx : Ux -> U2 ,

the composition gxg : U -> U2 has a unique labeling which is determined 

by the requirement that the chain law identity

(gig) (z) = g(z)gj(g(z))

should be valid in C .

Now consider a labeled holomorphic map g : U -» Uj together with a 

differential
<̂ 1(z 1 ,d z 1) = f1(z1)d z 1a
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on U j. The pull-back g ( 0 X) is defined to be the differential

<£(z,dz) = cf>1(g (z ),g (z )d z )

on U. Note that this pull-back operation carries sums into sums and 

products into products. Furthermore, given any composition

g Siu —1— ux -----> u2

of labeled holomorphic maps, the pull-back ( g ^ )  ( 0 2) a differential 

on U2 is clearly equal to the iterated pull-back g (gj ( 9 2 )).

Let r  be a discrete group of labeled biholomorphic maps of U onto 

itself.

DEFINITION. A holomorphic differential form <£(z,dz) = f(z)dza on U 

is r -automorphic if it satisfies

y*W>) = 0

for every y e V . More generally, given any character y  : T -> U (l) C C , 

the form is called y-automorphic if

y (0 )  = x(y)<£

for every y. (Thus the T-automorphic forms correspond to the special 

case  x  = !•) Note that a form <£(z,dz) = f(z)dza is x - aut ° morphic ^  

and only if f satisfies the identity

f (y (z ) )y (z f  = y {y )i{z )

for all y e  V  and all z e U.

Evidently the X 'aut ° morphic forms of degree a on U form a com-
a ~\y

plex vector space which we denote by the symbol Ap . In this way we
SjC 5jC

obtain a bigraded algebra Ap’ , where the first index a ranges over 

the additive group of rational numbers and the second index y  ranges 

over the multiplicative group H om (F,U (l)) of characters. This algebra 

p ossesses an identity element 1 e Ap . It is associative, commutative, 

and has no zero-divisors so long as the open set U is connected.
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REMARK.  The classical theory of automorphic forms of non-integer 

degree is due to [Petersson]. (Compare [Gunning], [Lehner].) It is based 

on definitions which superficially look rather different.

Suppose that we are given a normal subgroup of T .

LEMMA 5 . 1 .  If N C F  is a normal subgroup, then the quotient

r /N  operates as a group of automorphisms of the algebra A * '1

with fixed point set  Ap* . If the quotient group T /N  is finite

abelian of order m, then each  Aa ’ splits as the direct sum
N

of its subspaces Ap^- as y  varies over the m characters of 

r  which annihilate N.

The proof is easily supplied. (Compare 4 . 1 . )  ■

C O R O L L A R Y  5 . 2 .  If N C T  is a normal subgroup of finite 

index m, then every cf> c A^'1 has a well defined “ norm”

(Xl V ) - * '  (ymV )  * Apa ,\  Here y l f ---,ym are to be repre

sentatives for the cosets of N in T.

Again the proof is easily supplied. ■

It will be important in Section 6 to be able to extract n-th roots of 

automorphic forms.

LEMMA 5.3. L et <f>(z,dz) = f(z)dza be a y-automorphic form.

If f p o ssesses an n-th root, f ( z ) = f 1(z)n where f  ̂ is holo- 

morphic, then the form 0 1(z ,d z )=  f1(z)dza ^n is itself 

y  ̂ -automorphic for some character y j of V satisfying y ^ n = y .

Proof. For any group element y, since the holomorphic forms and
^  3|c

y (<$>]) both have degree a /n , the quotient y is a well defined

meromorphic function on U. Raising this function to the n-th power we
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obtain the constant function y (<£)/<£ = y(y). Therefore y ( 0 1) / 0 1 must 

itself be a constant function. Setting its value equal to X x(y), it is easy  

to check that X i is a character of T with Xi*1 = x* ■

As open set U, let us take the upper half-plane P consisting of all 

z = x + iy with y > 0. Then every biholomorphic map from U to itself 

has the form
z h* z '  = (gnZ + g12) /(g 21z + g22)

where

"8 ll g12~

_ g 21 g 2 2 _

is an element, well defined up to sign, of the group S L (2,R ) of 2 x 2
 o

real unimodular matrices. The derivative d z/d z is equal to (g21z-fg 22)

It follows easily that the group G consisting of all labeled biholomor

phic maps from P to itself can be identified with the universal covering 

group of S L (2 ,R ). This group G contains an infinite cyclic central sub

group C consisting of group elements which act trivially on P . The 

generator c of C is characterized by the formulas

c(z) = z, c (z )= 'e ( l ) ,  c(z)a = 'e(a) h> e 2rTla in C .

A group 2  C G of conformal automorphisms of P is said to have 

compact fundamental domain if there exists a compact subset K C P with 

non-vacuous interior so that the various images cr(K) cover P , and are 

mutually disjoint except for boundary points. We will be interested in sub

groups of G whose images in G = G/C satisfy this hypothesis.

LEMMA 5.4. L et  r  C G be such that the image r  = F / ( r n C )  

in G operates on the upper half-plane P  with compact funda

mental domain. Then V is discrete as a subgroup of the L ie  

group G, and the coset space  T \ G  is compact. This group 

F  necessarily  intersects the center C non-trivially.

 EBSCOhost - printed on 2/10/2023 4:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



2 0 2 JOHN MILNOR

Proof. As noted in Section 2.7 there exists a normal subgroup N C F  of 

finite index so that N = N/N fl C operates freely on P. The orbit space  

under this action, denoted briefly by the symbol N \ P , is then a smooth 

compact surface S of genus g > 2 with fundamental group 

7r1(S) =  N =  NC/C. Here NC denotes the subgroup of G generated by 

N and C.

Since the group G/C operates simply transitively on the unit tangent 

bundle T j(P )  of P , it follows easily that the coset space (NC)\G can 

be identified with the unit tangent bundle T j(S) of the quotient surface 

N \ P. In particular this coset space is compact, with fundamental group

NC s  771 (T x (S)) .

Hence the abelianized group NC/[NC,NC] = NC/[N,N] can be identified 

with the homology group Hj (Tj (S)).

It follows that N must intersect C non-trivially. For otherwise NC 

would split as a cartesian product N xC  with N = N/N fl C =  ^ (S ) .

Hence T j(S) would have first Betti number 2g + 1, rather than its actual 

value of 2g.

(Carrying out this argument in more detail and using the Gysin sequence 

of the tangent circle bundle (see [Spanier, p. 260] as well as [Milnor and 

Stasheff, pp. 143, 130]), one finds that the kernel of the natural homomor

phism from H1(T 1(S)) onto H1(S) is cy clic, with order equal to the 

absolute value of the Euler characteristic X'(S) = 2 —2g. Identifying these 

two groups with NC/[N, N] and N /[N ,N ] =  N C/[N ,N ]C respectively, we 

see that this kernel can be identified with C /[N ,N ] fl C. Therefore the 

element c 2 ""2  ̂ of C necessarily  belongs to the commutator subgroup 

[N,N] C N.)

Thus N has finite index in NC, so N \G is also compact, and it 

follows that r  \G is compact. ■

REM ARK. Conversely, if T C G is any discrete subgroup with compact 

quotient, then one can show that the hypothesis of 5.4 is necessarily
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satisfied. Such subgroups F  can be partially classified as follows. Re

call from Section 2 .7  that the image T = T C /C  is completely classified  

by the quotient Riemann surface T \ P  together with a specification of 

ramification points and ramification indices. But T has index at most 

2g —2 in the full inverse image TC of T . Therefore, for each fixed T  

there are only finitely many possible choices for T .

To show that automorphic forms really exist, we can proceed as follows. 

Again let T satisfy the hypothesis of 5.4 and let N C T  be normal of 

finite index m, with N/N H C operating freely on P .

LEMMA 5 .5 . If a is a multiple of m, then the space Ap 1 is 

non-zero. In fact, this space contains a form cf> which does not 

vanish throughout any prescribed finite (or even countable) sub

set of P .

Proof. Recall that A ^ 1 can be identified with the space of holomorphic 

abelian differentials f(z)dz on the quotient surface S = N \ P  of genus 

g > 2. By a classica l theorem, this space has dimension g. Furthermore, 

using the Riemann-Roch theorem, the space of abelian differentials 

vanishing at some specified point of S has dimension g— 1. (Compare 

[Springer, pp. 252, 270].) Clearly we can choose an element i/f of this 

g-dimensional vector space so as to avoid any countable collection of
jjc jjj J-Q J.

hyperplanes. Now the norm cf> = y 1 (<A) e A p’ of Section 5.2

will be non-zero at any specified countable collection of points. Setting 

a = km, it follows that € Ap 1 has the same properties. ■

The density of zeros of an automorphic form can be computed as 

follows. We will think of the upper half-plane P  as a model for the 

Lobachevsky plane, using the Poincare metric (dx2 + dy2) /y 2 , and its 

associated area element dxdy/y2 .

Again let T / r  fl C operate on P  with compact fundamental domain. 

Let x  : r  ^ U (l) be a character of finite order. (The hypothesis that y  

has finite order is not essential. It is made only to simplify the proof.)
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LEMMA 5 .6 . If <t> e A p ^  is a non-zero automorphic form, then 

the density of zeros of 0  is a /2n . More explicitly: the number 

of zeros of cj> in a large disk of Lobachevsky area a, each 

zero being counted with its appropriate multiplicity, tends 

asymptotically to aa/2n as a -» °o.

In particular it follows that a > 0.

Proof. Again we may choose a normal subgroup N of finite index so that 

N = N/N fl C operates freely on P. Furthermore, after raising cf> to 

some power if necessary, we may assume that the character y  is trivial 

and that the degree a -  k is an integer. By a classical theorem, the 

number of zeros of a k-th degree differential in a compact Riemann surface 

N \ P  of genus g >  2 is equal to (2g —2)k, where k is necessarily non

negative. (For the case  of an abelian differential f(z)dz, see for example 

[Springer, pp. 252, 267]. Given such a fixed abelian differential, any k-th 

degree differential on N \ P  can be written uniquely as h(z)f(z)^dz^ 

where h is meromorphic on N \ P , and hence has just as many zeros as 

poles.)

Since the quotient N \ P  has area (2g — 2)277 by the Gauss-Bonnet 

theorem, it follows that the ratio of number of zeros to area is k/277, as 

asserted. ■

REM ARK. If 0 ^ 0  is a form in A p X C then it follows that the

number of zeros of cf> in N \ P  is equal to (2g —2 )a . In particular,

(2g —2 )a  is an integer. Thus we obtain a uniform common denominator 

for the rational numbers a which actually occur as degrees.

The algebra of N-automorphic forms can be described rather explicitly  

as follows. Let k be the order of the finite cyclic group C/N fl C.

LEMMA 5.7. If the rational number a is a multiple of 1 /k ,  

thet7’ dim A®’1 > (2g — 2 )a  + 1 — g ,
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with equality whenever a > 1. In particular, this vector space is 

non-zero whenever a > i-. On the other hand, if a is not a 

multiple of 1/k , then A^'1 = 0.

It follows incidentally that (2g —2)/k  is necessarily an integer.

The following will be proved at the same time.

LEMMA 5.8. If a is a multiple of 1/k and a > g /(g —1), then 

given two distinct points of N \ P  there exists a form in A^’1 

which vanishes at the first point but not at the second.

Proof. For any form 0  of degree a the identity

c (<£) = e(a)<£

is easily verified. Thus if 0  is N-automorphic and non-zero, with c^ fN , 

then it follows that e(ka) = 1. Hence a must be a multiple of 1/k.

Conversely, if a is a multiple of 1/k , then it is not difficult to con

struct a complex analytic line bundle £ a over the surface S = N \ P  so  

that the holomorphic sections of f a can be identified with the elements 

of A^'1 . For example, the total space of £ a can be obtained as the 

quotient of P x C  under the group N/N fl C which operates freely by the 

rule v\(z, w) h> (i'(z), i>(z)~~a w). Every holomorphic section z h> f(z) of 

the resulting bundle must satisfy the identity = i>(z)“ a f(z) appro

priate to N-automorphic forms of degree a. Note that the tensor product 

® g P  can be identified with £ a+P.

To compute the Chern class  c ^ i ^ )  we raise to the k-th tensor 

power so that holomorphic cross-sections exist as in 5 .5 , and then count 

the number of zeros of a holomorphic section as in 5 .6 . In this way we 

obtain the formula
c ^ ^ t S ]  = (2g — 2 )a  .

Now let us apply the Riemann-Roch theorem as stated in [Hirzebruch, 

p. 144]: For any analytic line bundle £  over S,
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dim (space of holomorphic sections) > C j(£)[S ] + 1 —g ,

Taking f  = £ a this yields

dim A^’1 > ( 2 g - 2 ) a  + 1 - g

as asserted.

To decide when equality holds, and to prove 5 .8 , it is perhaps easier 

to use the older form of the Riemann-Roch theorem, as described in 

[Springer] or [Hirzebruch, p. 4]. Choosing some fixed 0   ̂ 0 in A^'1 , 

any element of A^'1 can be obtained by multiplying 0  by a meromorphic 

function h on N \ P  which has poles at most on the (2g — 2 )a zeros of 

0 .  More precisely the divisors (h) and (0 )  of h and 0  must satisfy  

(h) > (0 )  According to Riemann-Roch, the number of linearly indepen

dent h satisfying this condition is > deg(0) + 1 — g, with equality 

whenever the degree (2g —2 )a  of (0 )  is greater than the degree 2g —2 

of the divisor of an abelian differential. This proves 5.7.

If we want this form h0 to vanish at z ' [or at both z ' and z"], 

then we must use the divisor ( 0 ) “ 1z / [respectively ( 0 )~ 1z /z //] in 

place of ( 0 ) _ 1 . A brief computation then shows the following. If the 

degree (2g — 2)a — 2 of the divisor ( 0 ) z /'“1z^_1 satisfies

( 2 g - 2 ) a  -  2 > 2g -  2 ,

or in other words if a > g /(g — 1), then the space of forms in A n 1 

which vanish at z ' [respectively at z' and z"] is equal to (2g —2 )a —g 

[respectively ( 2 g -  2 )a  - 1 - g ] .  Since these two dimensions are different, 

there is a form which vanishes at z ' but not z". ■

REMARK. More generally consider the vector space A^^ where p is 

an arbitrary character of N. Suppose that y = ĉ  is an element of the 

intersection N fl C. Then the appropriate equation

i(y(z))y(z)a = f(z)p(y)
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takes the form f(z)e(ja) = f(z)p(c^). Evidently there can be a solution 

f(z)  ̂ 0 only if the rational number a and the character p satisfy the 

relation
e(ja) = p(cJ)

for every c-' in N H C. Conversely, if this condition is satisfied, then 

the argument above can easily be modified so as to show that

dim A ^ P > (2 g —2 )a  + 1 - g  ,

with equality whenever a > 1.

In the next section we will need a sharp estimate which says that 

“ enough’’ automorphic forms exist. To state it we must think of an auto- 

morphic form 0  explicitly as a function

0 (z ,w ) = f(z)wa
/■w ,

of two variables, where z e P and w e C . Let the groups T C G operate 

freely on P x C  by the rule

g(z , w) = (g(z), g(z)w) .

With this notation, the statement that <f> is T-automorphic can be ex 

pressed by the equation

0(y (z ,w )) = 0 (z ,w )

***.
for all y € V , z e P, and w e C .

THEOREM 5.9 . With F  as in 5 .4 , two points {z\ w') and 

(z", w") of P x C  belong to the same T-orbit if and only if 

<£(z', w') = (^(z^wO for every F -automorphic form cf>.

Proof. F irst consider the corresponding statement for the normal subgroup
J

N C T  of Section 2 .7 . If <£(z', w') = <£(z", w") for every 0 f A N' note 

that z' and z" belong to the same N-orbit. For otherwise by 5.8 there 

would exist a form cf> e A^’1 which vanishes at z ' but not z".
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Thus there exists k N  with v (z") = z'. Note that 

4>{z', w') = 4>{z", w") = w"))

CL 1 ^ «
for every N-automorphic form <f> € AN' . Defining the element e>(u) e C 

by the equation v(z" = (z'f w' e^u)), note that

cf>(z\ w"e(u)) = <t>(z', w 0e(au) .

Setting this equal to 0 (z ', w '), we see that e(au) = 1 whenever <£ is 

non-zero at z\ By 5 .8 , a can be any sufficiently large multiple of 1/k. 

Therefore u must be a multiple of k, say u = nk. Hence the correspond

ing power c 11 is in N; completing the proof that (z', w') and (z", w") 

belong to the same N-orbit. In fact c""~uv(z", w") = (z', w')-

To prove the corresponding assertion for T we will make temporary 

use of inhomogeneous automorphic forms, that is, elements of the direct 

sum 0  a n 1 , to be summed over a. Given points (z', w') and (z", w") 

not in the same T-orbit, consider the m images y^(z',z") where

y i ,- - - ,y m represent the cosets of N in T . The above argument con- 
1

structs forms <£j e AN with

<£j(z",w") /  ^(yjCz', w')) •

Subtracting the constant <£j(z", w") e A ^ 1 =  C from each <£j, we obtain 

an inhomogeneous form which vanishes at (z", w') but not at yj(z', w')- 

Now almost any linear combination (f> of vanish at

(z", wO but not anywhere in the T-orbit of (z', w')- Hence the norm

<A = y j* (< £ )" , y m* (0 ) f © A p 1

of Section 5.2 will vanish at (z", w") but not at (z', w')- Expressing iJj  

as the sum of its homogeneous constituents, clearly at least one must 

take distinct values at (z", w") and (z', w')* ■
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§6. The hyperbolic case p- 1  + q_1 + r—1 < 1

The computations in this section will be formally very similar to those 

of Section 4. However, automorphic forms will be used in place of homoge

neous polynomials.

Let r  be the extended triangle group T (p ,q ,r) of Section 3, with 

p_1 + q- 1  + r- 1  < 1 so that T can be considered as a group of labeled 

biholomorphic maps of the upper half-plane P. Recall that T  has gener

ators yi>Y 2 >y3  which represent rotations about the three vertices of the 

triangle T C P .  With this choice of T , the characters y  which actually 

occur for non-zero X"aut ° morphic forms can be described as follows. We 

continue to use the abbreviation e(a) = e^nla.

LEMMA 6 .1 . L et y  3 character of the extended triangle 

group r .  If 0 ^ 0  is a y-automorphic form of degree  a , then

X(yO = e((k + a )/p )

where k is the order of the zero of 0  at the first vertex of the 

triangle T. The values x (y 2) an(t X(Y3 ) can ^e computed 

similarly.

In particular, if 0  does not vanish at the first vertex of T, then 

X (Y i)=  e (a/p ).

Proof. Since y 1 = r^ ^ T r/p ) is a lifted rotation through the angle 277/p,

the derivative equals e'Cl/p), hence the fractional power y 1(v1)a

in C projects to the complex number -  e(a/p ). Setting 0(z ,d z)

= f(z)dza , and substituting the Taylor expansion

f(z) = a (z -V j)^  + K z - V j ) ^ 1 + •••

in the identity

f i y ^ z ^ y ^ z f  = y t y j f  (z)
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we obtain

a (e (l/p )(z  — v1))ke(a/p ) + ••• = xCy^aCz -  vx)k + ••• .

Hence e (k /p )e(a /p ) = yCyj) as asserted. ■

Define a rational number s by the formula s ” 1 = 1 — p_1 — q_1 — r_ 1 .

Thus 77/ s  is the Lobachevsky area of the base triangle T. Define a

character Xo ^  ^y f°rmulas

X o fri)  = e (s / P)> X o ^  = e (s /c l), X0(y3) = e (s / r ) •

The necessary identities

x 0(y ip) = xo<y2q) = X o ^ 3 r) = x 0Cyiy273>

are easily verified.

CL X
C O R O L L A R Y  6.2 . If the automorphic form cf> e Ap does not 

vanish at any vertex of the triangle T, then the degree a must 

be a multiple of s , and the character y  must be equal to

Xo“ / s -

Proof. By 6.1  we have x (y x) = e(a /p ), x (y 2) = e(a Al)> X (y3) = e(a /r). 

Hence the relations

y i p = y2q = y sr = Y W a

of Section 3.1 imply that x (y 1)p = x (y 2)q = = e m u s t  be e(lual to

x ( y i ) x ( y 2)x (y 3) = e((p- 1 +q - 1  + r_ 1 )a )  = e ( ( l - s - 1 )a )  .

Therefore e (a /s )  = 1, or in other words a must be a multiple of s . The 

equation y  = X o * ^  clearly follows. ■

Now we can begin to describe the algebra Ap’ more explicitly.
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LEMMA 6.3. With r , s ,  and y n as above, the complex vector 
s , y 0 .

space  Ap has dimension 2. This space contains one and 

(up to a constant multiple') only one automorphic form which 

vanishes at any given point of P.

Proof. We begin with the basic existence Lemma 5.5 . For some a there 

exists a form 0  <r Ap which is non-zero throughout any specified finite 

subset of P. In particular we can choose 0  to be non-zero on the three 

vertices of T. By 6 .2 , the degree a of this 0  must be a multiple of s , 

say a = ks.

Let us count the number of zeros of 0 .  Since the triangle T has 

Lobachevsky area (1 — p_1 — q- 1  — r_1 )n  = 77/ s ,  it follows that a funda

mental domain T U a (T ) for the action of T /T  fl C on P has 

Lobachevsky area 277/s .  But the number of zeros of 0  per unit area is 

k s/2 77 by 5 .6 . Therefore the number of zeros of 0  in the fundamental 

domain T U <j(T) is precisely equal to k. [Here each pair of zeros z 

and y(z) on the boundary of the fundamental domain must of course be 

counted as a single zero. Note that 0  does not vanish at the corners of 

the fundamental domain.] In other words there are precisely k (not neces

sarily distinct) zeros of 0  in the quotient space T \ P .

Next note that this quotient space T \ P  can be given the structure of 

a smooth Riemann surface. If we stay away from the three exceptional 

orbits, this is of course clear. To describe the situation near the vertex 

v  ̂ it is convenient to choose a biholomorphic map h from P onto the 

unit disk satisfying K v j)  = 0. Then the coordinate w = h(z) can be 

used as a local uniformizing parameter near Vj. Since the rotation y 1 

of P about Vj corresponds to the rotation

hy1h“ 1(w) = e (l/p )  w

of the unit disk about the origin, it follows that a locally defined holomor- 

phic function of w is invariant under this rotation if and only if it is 

actually a holomorphic function of wp. Hence wp can be used as local
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uniformizing parameter for the quotient surface T \ P  about the image of 

vr  The other two vertices are handled similarly. Note that a meromor- 

phic function on T \ P  having a simple zero at the image of v  ̂ corre

sponds to a T-invariant meromorphic function on P having a p-fold zero 

at each point of the exceptional orbit F v j .

Topologically, this quotient T \ P  can be identified with the “ double” 

of the triangle T. Hence it is a surface of genus zero. More explicitly, 

following Schwarz, V \ P  can be identified biholomorphically with the 

unit 2-sphere by using the Riemann mapping theorem to map T onto a 

hemisphere and then applying the reflection principle.

Since T \ P  is a compact Riemann surface of genus zero, it possesses

a meromorphic function with k arbitrarily placed zeros and k arbitrarily
ks, 1

placed poles. Starting with the non-zero form e Ap ' constructed

above, we can multiply by a T-invariant meromorphic function h which

has poles precisely at the k zeros of cf>, and thus obtain a new form 
ks 1if/ = h(f> e Ap ' whose k zeros can be prescribed arbitrarily in T \ P .

In particular we can choose iff so as to have a k-fold zero at one point 

of r\P, and no other zeros. (To avoid confusion, let us choose this 

point to be distinct from the three ramification points.) Then by 5.3 this
S Y

form has a k-th root \f/1 e A p *  for some character x> and by 6.2 the 

character x  must be precisely Xo* Evidently the form ifr̂  has a simple 

zero at just one point of T \ P .
s>XnSimilarly we can choose iff 2 e Ap u which vanishes at a different

point of T \ P . Then iff* and iff2 are linearly independent. A completely
s,X o

arbitrary element ^  0 of Ap must have precisely one simple zero

in r \ P ,  using 5.6. Choosing a linear combination + X2iff2 which

vanishes at this zero, we see that the ratio iff /(X^iff^ + X2iff2 ) € rePre_

sents a holomorphic function defined throughout T \ P , hence a constant.
s,XoThus if/1 and \ft2 form a basis for Ap , and this space contains 

precisely one 1-dimensional subspace consisting of forms which vanish 

at any prescribed point of T  \ P . ■
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The structure of Ap' can now be described as follows

LEMMA 6.4 . With V  = r (p ,q , r) as above, the bigraded algebra 
* *

Ap’ is generated by three forms

i  s /p ,X i  ,  As/q-X2 , sA.Xa
0  i £ p  1 ^2  ̂ L  1 ^3  ̂ p

where X\>X2, 'X-3 are characters satisfying

Xip = x2q = x 3r = Xo •

The automorphic form <£• has a simple zero at each point of the 

orbit Tv^, and no other zeros. T hese three forms satisfy a 

polynomial relation 0 ^  + = 0.

REMARK. The meromorphic function —0 1P / 0 3r is the Schwarz triangle 

function, which maps the quotient Riemann surface T \ P biholomorphi- 

cally onto the extended complex plane, sending the three vertices of T 

to 0, 1 and respectively.

Proof of 6 .4. To construct we use 6.3 to construct a form 0  in 
s

Ap' which vanishes only along the orbit of v-̂ . This form must have 

a p-fold zero at Vj by 5.6  or by the proof of 6 .3 . Since P is simply 

connected, it follows that 0  possesses a holomorphic p-th root 0 j .  

Then 0 1 is itself an automorphic form by 5.3. The rest of the proof is 

completely analogous to the proof of 4 .3 . ■

Let II denote the commutator subgroup of T(p, q ,r). Then by 3 .2 ,
* 1

5.1 and 6.4  the graded algebra Ajj' is generated by the three forms

C O R O L L A R Y  6.5 . The coset space  II\G  is diffeomorphic to 

the Brieskorn manifold M(p, q, r).
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Proof. Let VC C3 be the Pham-Brieskorn variety z ^  + z ^  + z3r = 0, 

singular only at the origin. Since the three functions 0 2 , 0 3 on 

P x C  satisfy the relation 2  ̂ + cf>̂ T = 0, and are never simul

taneously zero, they together constitute a holomorphic mapping

C -  V-OC C between complex 2-dimensional manifolds. 

Recall from Section 5 .9  that the groups II C G operate freely on P x C  

by the rule g : (z, w) h* (g(z), g(z) w). Setting z = x + iy  and identifying 

w with dz, this action preserves the Poincare'metric |dz|2/y 2 = |w|2/y 2 . 

In fact, G operates simply transitively on each 3-dimensional manifold 

|w|/y = constant. Since II is a discrete subgroup of G, it follows that 

the quotient I I\ (P x C  ) is again a complex 2-dimensional manifold.

Since each <£• is II-automorphic, the triple <̂ 2 , <̂ 3 give rise to

a holomorphic mapping ^
<D : n \ ( P x C ‘) -> V - 0

jJ; J
on the quotient manifold. By 5 .9 , since the <£• generate , this 

mapping 0  is one-to-one. Hence by [Bochner and Martin, p. 179], $  

maps n \ (P x  C ) biholomorphically onto an open subset of V — 0. (It 

will follow in a moment that the image of $  is actually all of V — 0.)

Choosing a base point (z 0> 1) in P x C  , map the coset space II\G  

into the Brieskorn manifold M(p,q, r) = V fl S5 as follows. For each  

coset Ilg the image $ (IIg(z0 , 1)) is a well defined point (z 1, z 2 , z 3) 

of V —0. Consider the curve

t m (t1/ Pz1,t1/(lz 2 ( t1/ r Z3) = $ ( n g(z0,t 1 / s ))

through this point in V - 0 ,  where t > 0. Intersecting this curve with 

the unit sphere, we obtain the required point 'P(IIg) of M(p, q, r). It is 

easily verified that ^  is smooth, well defined, one-to-one, and that its 

derivative has maximal rank everywhere. Since II\G is compact while 

M(p, q, r) is connected, it follows that ¥  is a diffeomorphism. ■

COROLLARY 6 .6 .  The Brieskorn manifold M(p, q, r) has a 

finite covering manifold diffeomorphic to a non-trivial circle  

bundle over a surface.
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Proof. Choosing N C lI  as in 2 .7 , it is easily verified that N \G fibers 

as a circle bundle over the surface N \ P . ■

This corollary remains true in the spherical and nilmanifold cases .

CONCLUDING REMARKS. It is natural to ask whether there is a generali

zation of 6.5 in which the group II is replaced by an arbitrary discrete  

subgroup of G = S L (2 ,R ) with compact quotient. It seems likely that 

such a generalization exists:

CONJECTURE. For any discrete subgroup T C  G with compact quotient,
jjc J   ^

the algebra Ap of F-automorphic forms is finitely generated.

Choosing generators for this algebra, it would then follow

from 5 .9  that the k-tuple embeds the complex 2-manifold

r \ ( P x C  ) into the complex coordinate space CK It is conjectured that 

the image in is of the form V —0 where V = Vp is an irreducible 

algebraic surface, singular only at the origin. Intersecting this image Vp 

with a sphere centered at the origin, we then obtain a 3-manifold diffeo- 

morphic to T \G .

In general it is not claimed that Vp embeds as a hypersurface. Pre-
o 1 *.1

sumably Vp can be embedded in C only if the algebra Ap happens 

to be generated by three elements.

Note that this surface Vp is weighted homogeneous. That is, if each  

variable Zj is assigned a weight equal to the degree of cj>j , then Vp 

can be defined by polynomial equations fCz ,̂*••, z^) = 0 which are homoge

neous in these weighted variables.

Not every weighted homogeneous algebraic surface can be obtained in 

this way. Here is an interesting c lass  of examples. Start with an alge

braic curve S of genus g ^ 2 together with a complex analytic line 

bundle £  over S with Chern number Cj < 0. Let V (£) be obtained 

from the total space E (£ )  by collapsing the zero-section to a point. 

Applying the Riemann-Roch theorem to negative tensor powers one

can presumably construct enough holomorphic mappings V (f ) -* C to em-
p  k

bed V (f ) as a weighted homogeneous algebraic surface in some L .

Added in proof: See [Serre, p. 20-13].
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CONJECTURE. The algebraic surface V (£) obtained in this way is 

isomorphic to Vp for some discrete T  C G if and only if some tensor 

power £  is isomorphic to the tangent bundle r(S).

For each fixed S there are uncountably many line bundles £  with 

negative Chern number. Only finitely many of these (the precise number 

is k2  ̂ for each k dividing 2g —2) satisfy the condition that the k-th 

tensor power is isomorphic to r(S).

§7. A fibration criterion

In this section p, q, r may be any integers > 2.

LEMMA 7.1 . / /  the least common multiples of (p, q) of (p, r)

and of (q, r) are all equal:

£.c.m .(p,q) = £.c.m .(p ,r) = £.c.m.(q, r) ,

then the Brieskorn manifold M(p, q, r) fibers smoothly as a

principal circle bundle over an orientable surface. ■

The precise surface B and the precise circle bundle will be deter

mined below.

At the same time we show that the complement of the origin in the 

Pham-Brieskorn variety z 1p + z 2q + = 0 fibers complex analytically

as a principal C -bundle over the Riemann surface B. In other words 

this variety V can be obtained from a complex analytic line bundle £  

over B by collapsing the zero cross-section to a point.

One special case  is particularly transparent. If p = q = r, then the 

hypothesis of 7.1 is certainly satisfied. The equation Z jP + z2p + z 3  ̂=  ̂

is then homogeneous, and hence defines an algebraic curve B in the com

plex projective plane P 2(C). Clearly the mapping ( z j ,z 2 ,z 3) h> (z 1 :z2 :z3) 

fibers M (p,q,r) as a circle bundle over B.

Proof of 7 .1 . Starting with any values of p, q, r, let m denote the least 

common multiple of p ,q , and r. Then the group C of non-zero complex
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numbers operates on the variety z ^  + z2q + z3r = 0 by the correspondence 

u : (z1 ,z 2 , z 3) h  (xim /Vzl f um /% 2>um/Tz3)

for u /  0. Restricting to the unit circle |u| = 1 and the unit sphere 

!z l J 2 + lz2^2 + lz 3 2̂ ~ we obtain a circle action on M = M (p,q,r).

Let us determine whether any group elements have fixed points in M 

or in V - 0 .  If

(um /Pz1 ,u m /% , u m/rz 3) = (z1, z 2 , 2 3) e V - 0  ,

then at least two of the complex numbers Z j , z2 , z3 must be non-zero, 

hence at least two of the numbers um//p, um//q, um//r must equal 1. If the 

three integers m/p, m/q, m/r happen to be pairwise relatively prime, then 

it clearly follows that u = 1.

Thus, if m/p, m/q, m/r are pairwise relatively prime, we obtain a 

smooth free C action on V —0 restricting to a smooth free circle action  

on M = M (p,q,r). Evidently M fibers as a smooth circle bundle over the 

quotient space S1 \M = B, which must be a compact, orientable,

2-dimensional manifold. In fact, using the alternative description

B = C '\ ( V - 0 )

we see that B has the structure of a complex analytic 1-manifold. (The 

two quotient spaces can be identified since every C -orbit intersects the 

unit sphere precisely in a circle orbit.)

Since an elementary number theoretic argument shows that m/p, m/q, 

m/r are pairwise relatively prime if and only if the hypothesis of 7 .1  is 

satisfied, this completes the proof. ■

To compute the genus of the surface B = S1 \M = C \(V — 0), we 

describe it as a branched covering of the 2-sphere P *(C ) by means of 

the holomorphic mapping

f : (um /PZ l,u m/ciz2 ,u m/rZ3) h . ( z ^ z ^ )  .
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Clearly f is well defined. A counting argument, which will be left to the 

reader, shows that the pre-image of a general point of P 1(C) consists of 

precisely pqr/m points of B. Thus f is a map of degree pqr/m from 

B to P ^ C ).

There are just three branch points in P ^ C ), corresponding to the 

possibilities z  ̂ = 0, z2 = 0, and z3 = 0 respectively. The preimage 

of a branch point contains qr/m, or pr/m, or pq/m points respectively. 

Again the count will be left to the reader.

Now choose a triangulation of P ^ C ) with the three branch points 

(0 : 1), (1 : 0), and (—1 : 1) as vertices. Counting the numbers of vertices, 

edges, and faces in the induced triangulation of B, we easily obtain the 

following.

LEMMA 7.2. Let  p ,q ,r  be as in 7.1, with least common multi

ple m. Then the surface  B = S*\M has Euler characteristic

X(B) = (qr + pr + pq -  pqr)/m = pqr(p~1 + q " 1 + r~ 1 -  l)/m .

In particular the sign of x (B )  is equal to the sign of p""1 + q""1 + r””1 — 1. 

The genus g can now be recovered from the usual formula x  ~ 2 — 2g.

Note that the genus satisfies g > 2, except in the four special cases  

( 2 ,2 ,2 ) ,  ( 2 ,3 ,6 ) ,  ( 2 ,4 ,4 ) ,  and ( 3 ,3 ,3 ) .  (Compare Section 2 .1 .)

To determine the precise circle bundle in question, we must compute 

the Chern class
Cl = Cl( f ) 6 H (B; Z)

or equivalently the Chern number C j(f )[B] of the associated complex 

line bundle £. (The Chern class c x can also be described as the Euler 

class of £. Using the Gysin sequence ([Spanier, pp. 260-261], [Milnor 

and Stasheff, p. 143]), one sees that H^M; Z) is the direct sum of a 

free abelian group of rank 2g and a cyclic group of order |c1(̂ r)[B]|.)

To compute c  ̂ we consider the map

F  . (z j t z 2 1 z3) I—* (Z lp,z 2^)
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from V —0 to C2 — 0. Thus we obtain a commutative diagram

V - 0  ------^-----»- C2 -  0

B — £------► P ^ C )

where the right hand vertical arrow is the canonical fibration (z 1,z 2 ) 

(z1 : z 2) with Chern number —1, associated with the Hopf fibration 

S3 ->S2 .

This map F  is not quite a bundle map, since inspection shows that 

each fiber of the left hand fibration covers the corresponding fiber on the 

right m times. To correct this situation we must factor V — 0 by the 

action of the subgroup a c c

consisting of all m-th roots of unity. Thus we identify (z 1, z 2 , z 3) with 

com /Pzl t com /% ,c o m /rz3 for each com = 1, obtaining a new commutative 

diagram __

f i \ ( V - 0 )  ------- C2 - 0

B   ---------- P ^ C )

where F  is now a bundle map. Since f has degree pqr/m, it follows 

that the new C ’-bundle f l \ ( V - 0 ) - * B  has Chern number -pqr/m . But 

this new bundle can be described as the C -bundle associated with the 

m-fold tensor product of the original complex line bundle £.

Therefore has Chern number c 1(^ )[B] = -pqr/m 2 .

Recapitulating, we have proved the following.

T h e o r e m  7 . 3 .  If the hypothesis

m = £.c.m .(p, q) = £.c.m .(p ,r) = £.c.m .(q ,r)
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of 7.1 is satisfied, then the Brieskorn manifold M(p, q, r) fibers 

as a smooth circle bundle with Chern number —pqr/m2 over a 

Riemann surface of Euler characteristic pqr(p~* -f-q'”' 1 + r~ 1 — l)/m .

The number pqr/m2 can be described more simply as the greatest 

common divisor of p, q, r.

The negative sign of the Chern number has no particular topological 

significance, but is meaningful in the complex analytic context, since £  

is a complex analytic line bundle with no non-zero holomorphic cross- 

sections.

Note that the Euler characteristic of B is always a multiple of the 

Chern number of In general it is a large multiple, for it is not difficult 

to show that the ratio satisfies

X (B )/Cl(£ )[B ] = m C l-p -1 —q - 1 —I " 1) > m/6

in the hyperbolic case . Hence this ratio tends to infinity with m. There

fore the genus of B also tends to infinity with m.

Here are two examples to illustrate 7.3.

E X A M P L E  1. For any g > 0, the manifold M(2, 2 (g + 1), 2 (g + 1)) fibers 

as a circle bundle with Chern number —2 over a surface of genus g. 

Similarly, for any g >  1, the manifold M(2, 2g+ 1, 2(2g+ 1)) fibers as a 

circle bundle with Chern number —1 over a surface of genus g.

E X A M P L E  2. The Brieskorn manifolds M(p, q, r) are not all distinct. For 

example, M(2, 9 ,1 8 )  and M(3, 5 ,1 5 )  are diffeomorphic, since each fibers 

as a circle bundle with Chern number —1 over a surface of genus 4.

CONCLUDING REM ARK. If it is known that M(p, q, r) fibers as a circle  

bundle over a surface, does it follow that the hypothesis of 7.1 must be 

satisfied? The lens spaces M (2,2 ,r) with r > 3  provide counter

examples. These fiber as circle bundles with Chern number ± r  over a 

surface of genus zero. (Presumably there is no associated analytic fibra-
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tion of V —0?) However, these are the only counter-examples. In the 

cases p_1 + q_1 + r""1 > 1, this can be verified by inspection. Thus we 

need only prove the following.

LEMMA 7.4 . In the hyperbolic ca se  p_1 + q_1 + r_1 < 1, if 

M(p, q, r) has the fundamental group of a principal circle bundle 

over an orientable surface, then the hypothesis of 7.1 must be 

satisfied.

The proof can be sketched as follows. F irst note that the fundamental 

group of a principal circle bundle over an orientable surface, modulo its 

center, has no elements of finite order. Now consider the fundamental 

group II = II(p,q, r) of Section 6. The center of II is precisely equal to 

II H C. As noted in 2 .6 , an element of T /C  D 11/11 fl C has finite order 

if and only if it is conjugate to a power of y i»y 2» or 7$ modulo C. To 

decide which powers of say y 1 belong to II, we carry out a matrix com

putation in the abelianized group T /II. (Compare Section 3 .2 .)  Setting 

p = £ .c.m .(q ,r), it turns out that the order k of y 1 modulo II is given by

k = p / ^ l - p - 1  - q _1 - r - 1 ) = -fx(mod p) .

Evidently the element y ^  of II belongs to II H C if and only if k is 

a multiple of p, or in other words if and only if p is a multiple of p. 

Thus l l /l l  fl C has no elements of finite order if and only if

£.c.m.(q, r) = 0 (mod p) ,

and similarly

£.c.m.(p, r) = 0 (mod q) ,

£.c.m.(p, q)= 0 (mod r) .

Clearly these conditions are equivalent to the hypothesis of 7 .1 . ■
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§8. The nil-manifold case p 1 + q 1 + r  1 = 1

As noted in 2 .1 , we are concerned only with three particular cases .

The triple (p ,q ,r) , suitably ordered, must be either ( 2 ,3 ,6 )  or ( 2 ,4 ,4 )  

or ( 3 ,3 ,3 ) .  Clearly each of these triples satisfies the hypothesis of 7 .1 . 

Hence by 7.3 the corresponding manifold M = M(p, q, r) is a circle bundle 

over a torus. The absolute value of the Chern number of this circle bundle 

is the greatest common divisor of p, q, r which is either 1, or 2, or 3 

respectively.

But any non-trivial circle bundle over a torus can also be described 

as a quotient manifold N/N^ as follows. Let N be the nilpotent Lie  

group consisting of all real matrices of the form

1 a c"

0 1 b

0 0 1

and let be the discrete subgroup consisting of all such matrices for 

which a, b, and c are integers divisible by k. (Here k should be a 

positive integer.) Then the correspondence

A h> (a mod k, b mod k)

maps N/N^ to the torus with a circle as fiber. The first homology group

H^N/Nj^; Z) a  Nk/[N k,N k]

is isomorphic to Z© Z © (Z /k ), so the Chern number of this fibration 

must be equal to ±k. Thus we obtain the following three diffeomorphisms

M (2,3, 6) s  N/Nx 

M(2, 4 ,4 )  s  N/N2 

M (3,3 ,3 )  s  N/N3 .

It must be admitted that this proof is rather ad hoc. I do not know whether 

there exists a more natural construction of these diffeomorphisms.

THE INSTITUTE FOR ADVANCED STUDY
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SURGERY ON LINKS AND DOUBLE BRANCHED COVERS OF S3 

Jo se  M. Montesinos

§0. Introduction

This paper deals with the relationship between 2-fold cyclic coverings 

of S branched over a link and closed, orientable 3-manifolds which are 

obtained by doing surgery on a link in S3 . In Theorem 1 it is shown that 

every 2-fold cyclic branched covering of S3 can be obtained by doing 

surgery on a “ strongly invertible’ ’ link, that is, a link L  which has the 

property that there is an orientation preserving involution of S3 which 

induces in each component of L an involution with two fixed points.

This result has some interesting consequences. Let K be a non-trivial
q

knot in S . Then Theorem 1, which is a constructive result, allows us to
3 ~ 3

obtain a link L in S such that the 2-fold covering space K of S

branched over K can be obtained by doing surgery on L. Note that if L 

has property P , then K cannot be a counterexample to Poincare Con

jecture because tt(K)  ̂ 1. Thus, every simply connected 2-fold cyclic  

covering of S3 is S3 iff every strongly invertible link has property P 

(Corollary 1). As a second consequence of Theorem 1 we obtain a new 

proof of a result established earlier by Viro [25] and also by Birman and 

Hilden [2], that every closed, orientable 3-manifold of Heegaard genus 

< 2  is a 2-fold cyclic branched covering of S3 (Corollary 2). In Corol

lary 3 we will sharpen Theorem 1 showing that every 2-fold cyclic  

branched covering of S3 can be obtained by doing surgery on a member 

of a special family of strongly invertible links in S .

Let L be a link such that there is an orientation preserving involu

tion of S3 with fixed points which induces an involution in each com

ponent of L. Let M be a manifold that is obtained by doing surgery

2 2 7
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on L. We will see in Theorem 2 that M is a 2-fold cyclic covering of a 

manifold that is obtained by doing surgery on a link in S3 . As an applica

tion of Theorem 2, it is shown that each manifold that is obtained by 

doing surgery on a noninvertible pretzel knot or on the noninvertible 

“ borromeans rings” is a 2-fold cyclic branched covering of a 2-fold cyclic  

branched covering of S3 . This yields some insight into the answer to a 

question (Question 3) raised by Birman and Hilden.

The construction of the link L in Theorem 1 uses some knot modifi

cations, defined by Wendt, which have the effect of changing K into the 

trivial knot. Having in mind the purpose of finding, for a given knot K, 

if 7 7 - ( K )  is or is not trivial, we define in Section 3 some modifications of 

a knot which generalize Wendt's modifications. These modifications have 

the effect of exhibiting K as a manifold which is obtained by doing
o

“ generalized surgery” on a link in S , that is, removing n disjoint 

solid tori from S3 and replacing each torus with a special “ graph- 

manifold” which is bounded by a torus. The advantage of this is that if 

a link has property P , then a counterexample to the Poincare conjecture 

cannot be obtained by doing generalized surgery on it (Theorem 4).

This fact allows us, in Section 4, to establish that there cannot be a 

counterexample to the Poincare Conjecture among the 2-fold cyclic cover

ings of S3 which are branched over the knots of Kinoshita-Terasaka 

(Section 4 .1 ), or over Conway's 11-crossing knot with Alexander poly

nomial 1 (see Section 4 .2 ), or over a special class of closed 3-braids 

(see Section 4 .3 ) first studied by Birman and Hilden.

In Section 5 it is established that graph-manifolds are in the Poincare 

Category, This fact was used earlier in the paper, in the proof of 

Theorem 4.

Acknowledgement. I would like to express my deep gratitude to Professor 

J .  S. Birman for her valuable suggestions and comments in reading my 

manuscript.
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§1. Statement of the problems

In this section we will discuss several interesting questions which 

have been posed by Ralph Fox and others about the Poincare" Conjecture 

and related matters. These questions will serve to motivate the main re

sults of this paper, which are given in Sections 2, 3, 4 and 5, below.

Let L denote a link in S3 , and let L denote the 2-fold cyclic
o

covering space of S branched over L. Since 2-fold branched covering 

spaces are in many ways especially simple (see [ 2 ,5 ,6 ,  1 5 ,2 5 ,2 7 ]) , one 

might like to know how they are related to the class of all closed, orient-

able 3-manifolds? Ralph Fox has proved [6] that the 3-dimensional torus
1 1 1  3S x S x S is not a 2-fold cyclic branched cover of S . However he has

given a conjecture [6, Conjecture A'] that implies an affirmative answer

to the question:

Question 1. Is every closed, orientable, simply-connected 3-manifold a
o

2-fold cyclic branched cover of S ?

This appears to be a deep and difficult question, and, as will be seen  

below, it may even be equivalent to the Poincare Conjecture.

Now, in [17], [18] it was shown that there are Seifert fiber spaces, 

different from S1 x S 1 x S 1 , which are not 2-fold cyclic coverings of S3 . 

However, all of them, are 2-fold cy clic coverings branched over a 3-sphere 

with handles [18].

Question 2. Is every closed, orientable 3-manifold a 2-fold cyclic cover

ing branched over a 3-sphere with handles?

If Question 2 has an affirmative answer, then each closed , orientable

3-manifold M with HX(M) Unite is a 2-fold cyclic covering of S , be

cause the lift to M of a non-separating 2-sphere (in S with g > 0 

handles) must be a non-separating closed, orientable surface in M. Thus 

H2(M) and HX(M) are infinite. Then, an affirmative answer to Question 2 

implies an affirmative answer to Question 1.
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Note that a 3-sphere with g > 0 handles is a 2-fold cyclic branched 

covering of S3 . Joan S. Birman and Hugh M. Hilden have suggested that 

it is reasonable to ask the following question, which looks like a weaker 

question than Question 2.

Question 3. Is every closed, orientable 3-manifold a 2-fold branched 

cyclic covering of a 2-fold branched cyclic covering of • • • of a 2-fold 

branched cyclic covering of S3?

It was observed by Birman and Hilden that if the answer to Question 3 

is affirmative, then F o x ’s argument [5] implies that if a counterexample 

exist to the Poincare Conjecture, then there is also a counterexample 

which is a 2-fold branched cyclic covering of S3 .

Thus an affirmative answer to one of the three above questions would 

reduce the investigation of the Poincare^ Conjecture, to the case  of 2-fold 

cyclic coverings of S .
•3

Now, the trivial knot is the only knot which has S as associated  

2-fold cyclic covering branched over it [27]. On the other hand, if L has 

more than one component, then HjCL)  ̂ 0 [6] and if L = L 1 # L 2 is a 

composite knot, then n(L ) = ^ (L j) * ^(L2) [15, Theorem V .5 .3 .]. Thus, 

one is led to consider the following Conjecture (see [15, Conjecture 1.1.1.]):

C O N JE C T U R E  1. If N is a non-trivial prime knot, then n(N)  ̂ 1.

If one searches for a counterexample to Questions 2, 3, then one need 

not consider Seifert fiber spaces or closed graph-manifolds (“ Graphen- 

mannigfaltigkeiten, ” see [26]) because all of them are 2-fold cyclic  

coverings of S3 with handles.1 I suggest looking for M among the 

closed, orientable 3-manifolds obtained by doing surgery on a knot in S .

1 In [18] this was proved for Seifert manifolds and for graph-manifolds M 
represented by a graph A(M). Of course, this can be extended to each closed  
graph-manifold according to [26, Satz 6 .3 , p. 88] and [ l5 , Teorema V .5 .3 .]  and 
[25; 3.10].
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Therefore, in this paper, we explore the relationship between 2-fold cyclic  

coverings of S branched over a link and closed, orientable 3-manifolds
o

which are obtained by doing surgery on a link in S .

§2. Surgery on links and double branched covers of S3
3Let L be a link in S . L is called strongly-invertible if there is an 

orientation-preserving involution of S which induces in each component 

of L an involution with two fixed points. Every strongly-invertible link 

L is invertible, but I do not know if every invertible link is a strongly- 

invertible link.

TH EO REM  1. L et M be a closed, orientable 3-manifold that is obtained 

by doing surgery on a strongly-invertible link L of n components. Then 

M is a 2-fold cyclic covering of S3 branched over a link of at most n+1 

components. Conversely, every 2-fold cy clic branched covering of S 

can be obtained in this fashion.

O
Proof of Theorem 1. Let S be represented as Euclidean space with an 

ideal point at infinity. It can be supposed without loss of generality [27], 

that there is an axis E in S3 such that the axial symmetry u with re

spect to E induces in each component of L an involution with two 

fixed points. For the sake of brevity, the first part of Theorem 1 will be 

proved for a knot N in S .

Let U(N) be a regular neighborhood of N such that u induces an 

involution in U(N) (a typical case  is illustrated in Figure la ). Let V 

be the solid torus, as represented in Figure lb, and let u' be the sym

metry with respect to the axis E'. There is a homeomorphism xfi of 

(9U(N) onto <9V such that (u'|<9V)i/r = 0-(u|<9U(N)).

Let <f> now be a homeomorphism of <?V onto dU(N). Then ifr<& is 

an autohomeomorphism of <9V and it can be supposed (by composing <f>, 

if necessary, with an isotopy) that
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E

Fig . lb.
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Thus 0(u'|dV) = ^ - 1 (u l5 V )^ 0  = (u|<9U(N))0.

Then, the space M obtained by pasting V to S3 — U(N) by means 

of is compatible with the involutions u and \i, and admits an

£ involution u", induced by u

and u'. The orbit-space of 

(S3—U(N)) U V under u" can be 

obtained by adjoining the orbit 

space of V under u' (which is 

a ball) to the orbit-space of 

S3 — U(N) under u, which is S3 

minus a ball (see in Figure lc  a 

fundamental set for the action of 

u on U(N)). Then M is a
o

2-fold cyclic covering of S , 

branched over the image of 

E — (ab + cd) + (AB + CD) (see  

Figures la  and lb). This is a
o

link in S which has, at most, 

two components.

Conversely, suppose that M is a 2-fold cyclic covering of S ,

branched over a link L. We consider two ways to modify this link, by re
's

moving certain solid balls from S and sewing them back differently. 

First, it is possible, by applying modifications of type Wj (see Figure
o o

2a), to change a given link L in S into a knot K in S . Then, by

 ̂ This result is contained implicitly in [3], and is proved in [2], [25] and [l8 ]. 
In [2] and [25] this result has been generalized for orientable surfaces of genus 
g = 2. For g > 2  this generalization is not true in general (see [6] and [l7 ]).
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Fig . 2a .

Fig . 2b.

applying further modifications of type W2 (see Figure 2b), it is possible 

to change the knot K into the trivial knot T (see [28]). Let n be the 

minimal number of modifications of type W1# W2 that are necessary in 

order to change the given link L into the trivial knot T.

It may be supposed that these modifications are set up in the inner of 

n disjointed balls of S3 (see Figure 2). Note that the

2-fold cyclic coverings of B- branched over B| H T are solid tori. Thus, 

in order to build up L it is sufficient to do surgery along n solid tori 

in T = S3 .

Let Bj be the 2-fold cyclic covering of B j , branched over Bj fl T.
n

Then U Bj can be interpreted as a regular neighborhood of a strongly- 
i = 1
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O ~

invertible link in S . Thus, L can be obtained by doing surgery on a 

strongly-invertible link in S3 which has, at most, n components. □

Recall that a link L in S3 has property P when it is not possible 

to obtain a counterexample to the Poincare Conjecture by doing surgery 

on it.

C O R O LL A R Y  1. Conjecture 1 is true iff every strongly invertible link 

has property P. □

As property P is known to be true for many links [1], [8], [23], 

Corollary 1 implies that Conjecture 1 can be established for a large family 

of knots. In Section 4 we will apply Theorem 1 in this way to establish  

that there cannot be a counterexample to the Poincare"Conjecture among
o

the 2-fold coverings of S which are branched over the knots of Kinoshita- 

Terasaka (see Section 4 .1 ), or over Conway’s 11-crossing knot with 

Alexander polynomial 1 (see Section 4 .2 ), or over a special class of 

closed 3-braids (see Section 4 .3).

We now give a different application of Theorem 1. Let g > 1 be an 

integer. Let L be a link in R3 = S3 -  (one point) made up of a disjoint 

union of circles, each being one of the following: (i) a circle of radius 

< 1, center at (2n + 1, 0, 0) where 0 < n < g, and lying in the x, z 

plane, or (ii) a circle of radius < 1, center at (2n, 0, 0) where l< n < g ,  

and lying in the x ,y  plane, or (iii) a circle of radius < 2, center at 

(2n, 2 ,0 )  where 1 < n < g, and lying in a parallel plane P n to the y ,z  

plane. We assume also that the annulus determinated by two concentric 

components of L must be cut by some other component in exactly one 

point. Let £ g be the family of links defined in this way, for a given g.

It was proved by Lickorish [13] that every closed, orientable 3-manifold 

of genus g may be obtained by doing surgery on a link in the class £ g.

Let £ " be the subfamily of £  consisting of those links whose com- 

ponents in Pn have radius 2. Note that a link in £ g is strongly- 

invertible.
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Since for g < 2, then according to Theorem 1, we obtain

another proof of the following result by Viro [25] and Birman and Hilden [2]:

C O R O LL A R Y  2. Every closed, orientable 3-manifold of genus < 2  is a

2-fold cyclic branched covering of S3 . □

COROLLARY 3. Each 2-fold cyclic covering branched over S3 can be 

obtained doing surgery on a link in for some g > 1 .

Proof of Corollary 3. F irst, we recall the definition of a “ plat on 2m
o o

strings.” If we represent S as R + <*>, then the x ,y  plane separates 

S in two balls B j and B2 , B̂  ̂ containing the positive part of axis z.

Let C be a collection of m circles in the x ,z  plane of radius 2 and 

centers at points ( l  + 5i, 0, 0), where 0 <  i<  m—1. Let f be any 

orientation-preserving autohomeomorphism of dB^ which keeps the set 

C f> dB± fixed as a set. Since f is isotopic to the identity map in dB j, 

there is an autohomeomorphism F ':  dB1 x  [0 ,1 ]  -> (9Bx x  [0 ,1 ]  such that 

F '(x ,t )  = (x',t), F '( x ,l )  = (x ,l )  and F '( x , 0 ) = (fx,0). Then F '  is extended 

by the identity map outside ^Bj x [0,1] to an autohomeomorphism F  of 

B j. The subset L = FCC H Bj) U (C H B 2), which is a link in S3 , is 

called a plat on 2m strings (for further details, see [2]). It is a known 

result (see, for instance, [2 ]) that every link type is represented by at least 

one plat. Note that F(C  fl (dBx x [0 ,l]))  is a geometric braid on 2m strings. 

Thus a plat on 2m strings can be exhibited as a geometric braid on 2 m 

strings by joining the initial points in pairs, and also the terminal points 

in pairs.

The proof of Corollary 3 may be illustrated by the following example 

(the general case  is left to the reader). Let us consider the plat on 8  

strings of Figure 3a. It is possible to change L  into the trivial knot by 

removing ten solid balls B j(i=  !.,•••, 10) from S3  and sewing them back 

differently (see Figures 3a, 3b, 4a). Note that the 2-fold covering of B  ̂

branched over B  ̂ fl L  or B  ̂ fl T are solid tori. It is clear that we can
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obtain L by doing surgery on the link in £ 3  of Figure 4b. In general, 

if L  is a plat on 2 m strings then L can be obtained by doing surgery 

on a link in £ /,n _ 1 .3  □

As a consequence of Corollary 3 we have:

C O R O LL A R Y  4 . Conjecture 1 is equivalent to the Conjecture that each 

member of £  g > 1, has property P .

To explore further the implications of Theorem 1, observe that if there 

is a closed, orientable 3-manifold M which gives a negative answer to 

Questions 2 or 3, it must be obtained by doing surgery on a link which is 

not strongly invertible. This suggests that one study Questions 2 or 3 

by studying the 3-manifolds obtained by doing surgery on a non-invertible 

link.

Let L  be a link in S3  and let suppose that there is an orientation- 

preserving involution u in S3 , with fixed points, which induces an in

volution in each component of L. Let L ' be the link consisting of those 

components of L  for which the number of fixed points of u is different 

from two. Let p : S3  -> S3  the 2-fold cyclic branched covering of S3  

defined by u.

TH EO REM  2. Every manifold obtained by doing surgery on a link L  is 

a 2-fold cyclic covering branched over a manifold obtained by doing 

surgery on p(L')-

REM ARK. Theorem  1 is  a s p e c ia l  c a s e  of Theorem  2 .

 ̂ J .  S. Birman has pointed out to me that it is interesting to note that the class  
of 3-manifolds which are obtained by doing surgery on links in <£ are exactly  
the c la ss  of 3-manifolds which are ‘ ^-sym m etric”  in the notation of [2].
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Proof of Theorem 2. For the sake of brevity, suppose that L has only 

one component and that either u is without fixed points in L or leaves 

each point of L fixed. Let U(L) be a regular neighborhood of L , such 

that u induces in U(L) an involution. Let u' = u|dU(L).

Let V be a solid torus (see Figure 5) whose core C is a circle in 

the x ,y  plane with center 0 and radius one. Let z(resp . v) be the 

involution of V induced by the symmetry with respect to axis 

0 Z (resp. C). There is a homeomorphism if/ of dU(L) onto <9V such 

that zif/ = \f/u. Let p = i/r- 1 P and m = i/r- 1 M be a pair of simple 

oriented curves in dU(L) (see Figure 5).

We now paste V to S3 — U(L) in the way that M is homologous to 

am + /3p, where a and /3 are coprime integers. It is easy to see that 

there is a homeomorphism cf> of <9V onto dU(L) such that cf>(M) ~  am + 

j8p and cf>~1 i f / zi/r(f>, that is c£- 1 u'cf>, is equal to z if a is odd, or 

is equal to v if a is even.

Let W be the space obtained by pasting S3 -  U(L) to V by 0 .

The map <j> is compatible with the involutions u and z (or v, as the 

case may be). Thus, there is an involution u" of W, the orbit-space of 

which is obtained by adjoining the orbit-space of u (that is S minus a

solid torus) with the orbit-space of z (or v, as the case may be), which

is a solid torus. □

Z

X

y

Fig . 5
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As an application of Theorem 2 consider the pretzel knot K(p, q, r) 

(see [24]). If any of the numbers p, q, r is even, it is clear that K(p,q,r) 

is a strongly-invertible link. Thus, one obtains a 2-fold cyclic covering 

branched over S3 by doing surgery on K (p ,q ,r). If the numbers p, q, r 

are all odd, then there is an involution u of S which induces in the 

knot K (p ,q ,r) an involution without fixed points. (A typical case  is 

illustrated in Figure 6a). Thus, every manifold that is obtained by doing 

surgery on K(p, q, r) is a 2-fold cyclic covering branched over a manifold 

that is obtained by doing surgery on the trivial knot p(K(p, q, r)), where 

p is the covering defined by u (see Figure 6b). As the trivial knot is 

strongly-invertible it follows that the manifold obtained by doing surgery 

on K(p, q, r), (p, q, r odd), is a 2-fold cyclic covering of a 2-fold cyclic
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3
covering of S . This confirms Question 3. Note that Trotter has shown 

that K(p, q, r) is non-invertible if p, q, r are distinct odd integers, each 

to greater than one. The author does not know whether the manifolds ob

tained by doing surgery on these knots are also representable as 2-fold 

cyclic branched covering of S3 .

As a second application, consider the manifold obtained by doing 

surgery on the “ borromeans rings,’ ’ B, illustrated in Figure 7. If we re

move the solid tori U (L j), U(L2 ), U (L3) from S3 and sew them back in 

such a way that the curves h j, h2 , h3 are identified with meridians, then 

we obtain S1 x S1 x S1 [12], which is not a 2-fold branched cyclic cover

ing of S3 [6]. This shows that B is not a strongly invertible link. But 

the axial symmetry with respect to axis E (see Figure 7) induces in each  

component of B an involution. Then, by Theorem 2, every manifold that 

is obtained by doing surgery on B is a 2-fold cyclic branched covering 

of a manifold that is obtained by doing surgery on the trivial knot and this

confirms Question 3. For instance, S1 x S1 x S1 is a 2-fold cyclic  
1 2branched covering of S x S .

It is interesting to note that not only is B non-invertible,4 but also  

there is no orientation-preserving involution of S3 which induces an invo

lution in each component of B and which keeps fixed exactly two points 

of B.

To the au thors knowledge, this fact has not been established elsewhere in 
the literature. To prove it, let F 2 = { x ,y /— i be the group of the link formed by 
the components L j ,  L2* The group F 2 is a free group on two generators and the 
element xyx~~*y—* is represented by the loop h^. If <f> is an automorphism of 
F 2 , then by [l4 , Theorem 3.9, p. 165], 0 (x y x ~ 1y “ 1) = w(xyx“ 1y “ 1) £ w ~1, where 
w is a word in x, y which can be assumed to be reduced. Now, let us assume that 
B is an invertible link. Then there is an automorphism (£> of F 2 that carries x 
to a conjugate of its inverse, carries y to a conjugate of its inverse and carries  
xyx~ *y~ * to its inverse (compare [29]). The abelianizing homomorphism X maps 
F 2 onto the abelian group Z ® Z , and cf> induces an automorphism (f> of Z © Z . 
It is easy to see that £ is equal to the determinant of the matrix of 0  with re
spect to Xx, Xy. Therefore, it follows that w (xyx“ 1y ~ 1)w 1 = yxy x . But 
induction on the length of w shows that this is impossible. Thus B is a non- 
invertible link. The same argument implies that there is not an orientation- 
preserving involution of S3 which induces an involution in each component of B 
and which keeps fixed exactly two points of B.
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At this point, it may be useful to remark there is a possibility of 

existence of a knot N such that there is no orientation-preserving involu- 

tion of S which induces an involution on N. One of these possible 

knots seems to be 8 17 (see [4] and [19]).

§3. Generalized surgery on links

In this section we will define modifications of the projection of a link 

L that generalize the modifications W1 ,W 2 introduced earlier and also 

the ones defined in [10]. These modifications have the effect of exhibiting

L as a manifold which is obtained by doing generalized surgery on a link
3 3in S , that is, removing n disjoint solid tori from S and replacing

each torus with a special “ graph-manifold’ ’ which is bounded by a torus. 

The advantage of this is that if a link has property P , then it will be 

shown that a counterexample to the Poincare Conjecture cannot be ob

tained by doing generalized surgery on it (Theorem 4). This fact will 

allow us to establish Conjecture 1 for a large set of knots (see Section 4).

Let R be a finite tree with a distinguished vertex v(R) (the origin 

of R). The tree is to be valued as follows: each vertex of R is labeled 

either with a hyphen, or with an arbitrary integer, in such a way that each 

vertex labeled with a hyphen belong to exactly one edge, and the origin 

v(R) is always labeled with an integer. Each edge of R is labeled with 

a pair of coprime integers (ct,/3) where 0 < /3 < a. We call R a valued 

tree.

We will describe a procedure for assigning to each valued tree R a 

manifold W(R), such that <9W(R) is a torus with a fixed oriented fiber, 

and moreover such that W(R) is a 2-fold cyclic covering of a 3-ball B, 

which is branched over a system of curves L(R) such that dL(R) is the 

set l a ,b ,c ,d !  of Figure 8. To do this, we need some definitions.

Let M(s, m) be a manifold obtained as follows. Let M be the 

S1 -bundle over S2 which admits a section, and let H be a fiber of M. 

Suppose that S2 and H have a fixed orientation. We remove m + 2 

fibered solid tori Vj from M, i = —1, 0, !,•••, m. Then, S2 cuts dVj
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in a meridian curve m̂  of V- and we give to m̂  the orientation induced 

by S2 — int . Let us take in a fiber , with the orientation in

herited from H. In order to obtain M(s,m) we now paste a solid torus

in such a way that its meridian curve is homologous to m̂  + s h j , i = —1.
m

The boundary of M(s,m) is U <9V: , and m̂  , h- are fixed oriented
i = 0 1 1

curves in <?V| . M(s,m) is a 2-fold cyclic covering of B — int 

branched over the curves L (s , m) of Figure 9 (for further details on the 

construction, see [18, Section 2 and Section 3]).

Let B be the ball of Figure 8. We define an autohomeomorphism t 

of <9B as the composition of a rotation, of angle 7t/ 2 about the axis E 

which transforms a to d, and a symmetry with respect to the equatorial 

plane (see Figure 8). We define an autohomeomorphism v of dB as 

follows. Let D be a disc in dB which contains in its interior the 

points c , d and is disjoint from a, b (see Figure 8). Then, v|D is
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/><o

Fig. 9.

defined to be a “ tw is t / ’ holding D fixed, in the direction that is indi

cated in Figure 8, in order to move c to d. Now v is extended by the 

identity map outside D.

Now let a ,j6  be two coprime integers. If a//3 is the continued 

fraction
n 4. _ L  1  L

rn+ +j +i ’

we define an autohomeomorphism g(a,/3)  of <9B as the composition 

g(a, /3) = vn tvmt ••• tv̂  tv*, where v° is the identity map. Let f(a,/3) = 

g (a ,/3 )t. Extend the homeomorphisms t ,v  to B. Then, g(a,/3) and 

f(a,/S) admit an extension to B, which we denote with the same symbols 

g(a,/3), f(a,/3).

We are now ready to define W(R) and L(R) by induction on the num

ber n of vertices of R which are labeled with an integer.
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Let v(R) be labeled with the integer s. Let us suppose also that 

v(R) belongs to m edges and that t| is labeled with (ai ,j8j).

Let U| denote another vertex of tj and assume that u^, where 1 < i < r, 

is labeled with a hyphen and that Uj , where r + 1 < j < m, is labeled 

with an integer. Then, Uj , r + 1 < j < m, is the “ beginning” of a valued 

tree Rj .

Let v(Rj) = Uj . Note that the number of vertices of Rj which are 

labeled with an integer is < n. W(R) is defined inductively, pasting the 

r solid torus Vj,*-*, Vr and the m—r manifolds W(Rj), r + 1 < j < m, 

to M(s,m) in such a way that a meridian curve of V- is homologous to 

a^m- + jŜ h- , and the oriented fiber, fixed in dW(Rj), is homologous to 

ajnij + /3jhj . Note that in dW(R) = dVQ, the oriented fiber hQ remains 

fixed. Then L(R) is obtained replacing f(a^, jS-) (L (s , 0) fl B^), where 

1 < i < r, by L (s , 0) fl Bj and replacing g(aj , )Sj)L(Rj), where

r + 1 < j < m, by L (s ,0 ) fl Bj (see Figure 9). As an illustration of this

process see the example of Figure 10.

Let L be a link in S3 having m components N1,---,N m. We will 

say that a 3-manifold M is obtained by doing general surgery m times 

on L if M is obtained by removing from S3 a regular neighborhood 

U(N-) of N j, 1 < i < m, and replacing it with W(Rj), where Rj is some

valued tree, by pasting dW(Rj) to d(S3 — U(Nj)).
-3 3

Let L  be a link in S and let us suppose that there is a ball B in S

such that d (B H L ) is the set ia ,b ,c ,d i  (see Figure 8) and B fl L is a

system of curves g (a ,/8 )L (R ), where R is an arbitrary valued tree and 

a ,/3  are an arbitrary pair of coprime integers. We will say that has made 

a general modification on L , if we replace B fl L for the pair of curves 

C^, C2 of Figure 8. Let m be the minimum number of general modifica

tions which have to be applied to L  in order to change L into the 

trivial knot. It is clear that L has been obtained by doing general 

surgery on a strongly-invertible link in S3 of m components.

The following theorem is proved in the same way as Theorem 1:
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vW>i)
ii

u A

R,

-4

(3,1)

F ig . 10b.

Fig . 10c. Fig . lOd.

TH EO REM  3. Every manifold that is obtained by doing general surgery on 

a strongly-invertible link is a 2-fold cy clic branched covering of S3 .

The following theorem indicates a useful application of general surgery.

TH EO REM  4. If M is a simply-connected 3-manifold that is obtained by 

doing general surgery on a link L  with property P , then M = S .
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In order to prove Theorem 4 we first need the following Lemma:

LEMMA 1. Every homotopy 3-ball that lies in a graph-manifold is a 3-ball.

We defer the proof of this lemma until Section 5.

Proof of Theorem 4 . We are going to demonstrate the theorem by induction 

on the number n of graph-manifolds distinct from a solid torus which are 

introduced by surgery. If n = 0, there is nothing to prove, thus let n > 0. 

Let L j be a component of L such that a regular neighborhood, U (L j), 

of L j has been replaced by a graph-manifold W(R) which is not a solid 

torus. If 77-(M) = 1, then <9U(Lj) bounds in M a homotopy solid torus 

([1] and [8; Lemma 5 .1]). If W(R) were a homotopy solid torus, it would 

be a solid torus (by Lemma 1), hence M — int W(R) is a homotopy solid 

torus. Then, 77(M—int W(R)) is an infinite cyclic group with one generator 

which is represented by a simple curve C in d(M—int W(R)). We paste a 

solid torus to M — int W(R) in such a way that C is a meridian curve of 

it. Thus we have built a manifold M', with Tr(M') = 1, which is obtained 

from S by doing surgery on the link L , and replacing n—1 components 

of L by n—1 graph-manifolds which are not solid tori. By the induction 

hypothesis, M'= S3 and thus M—int W(R) is a solid torus. Therefore,

M is a graph-manifold. Making use of the result of Lemma 1 we conclude 

that Theorem 4 is true. □

With the purpose of justifying the definitions of general modifications 

and general surgery, we make the following remarks. Let K be a non

trivial knot in S3 . If we wish to check Conjecture 1 for K, we can, for 

instance, apply m modifications of type W2  in order to change K into the 

trivial knot. Then, K is a manifold that is obtained by doing surgery on 

a strongly invertible link in S3 of m components. By doing this in all 

possible ways, we obtain a family <£(K) of links in S3 such that K 

can be exhibited as a manifold obtained by doing surgery on an arbitrary 

member of £(K ). Let m(K) be the minimal number of modifications of
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type W2 which we have to apply to K in order to change K into the 

trivial knot. We define £  (K), m'(K), in the same way as £ (K ) and 

m(K), but replacing modifications of type W2 for general modifications. 

Thus K can be exhibited as a manifold obtained doing general surgery 

on an arbitrary member of £  (K).

As a consequence of Theorem 4, if a member of £  (K) has property P , 

then 77-(K) ^ 1. On the one hand m'QC) < m(K) and this makes it easier 

to check Conjecture 1 for K in many ca se s , especially when m'(K) = 1, 

because property P has been intensively studied for knots. On the other 

hand, £(K ) C £  (K) and this increases our possibilities of finding a link 

with property P such that K is obtained by doing general surgery on it.

It could happen that m'(K) = 1 ,  for every non-trivial knot K. If this
o

was so, then every 2-fold cy clic covering branched over a knot of S , 

would be obtained by doing general surgery on a strongly-invertible knot
o

of S . Then, Conjecture 1 would be equivalent to the conjecture that 

every strongly-invertible knot has property P.

§4. Applications

If one seeks a counterexample to the Poincare Conjecture among the
o

2-fold branched coverings of S , it is natural to examine covering spaces 

which are branched over knots which share deep properties with the 

trivial knot. One such property is that the trivial knot has Alexander poly

nomial A(t) = 1. Note that if a knot N has Alexander polynomial A(t) = 1, 

then N is a homology 3-sphere.

1. Kinoshita-Terasaka knots

Let us consider the knots of Kinoshita-Terasaka [11, p. 149] k(p,2n) 

(k(3, 6) is illustrated in Figure 11a or lib ). All of them have Alexander 

polynomial A(t) = 1. Note that k (3 ,6 ) can be obtained from the link of 

Figure 11c by substituting for C ^ (i= l ,2 ,3 ) .  Thus [18] k (3 ,6) is 

the graph-manifold that is represented (in Waldhausen’s notation) by the 

graph of Figure 12, where p = 3, n = 2. In general, for k(p,2n), k(p,2n)
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H O

n

Fig . 11a. Fig . l ib .

F ig . 11c.

F ig . 12.
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is the graph-manifold represented by the graph of Figure 12. Thus, by 

Lemma 1, k(p,2n) cannot give a counterexample to the Poincare Conjec

ture.

2. Conway’s 11-crossing knot

Let L be the knot, with Alexander polynomial A(t) = 1 ,  of Figure 

13a, which was discovered by J . Conway in his enumeration of the non

alternating 11-crossing knots [3] (see also [20, p. 615]).

The trivial knot T can be obtained by doing one general modification 

in L (see Figure 13a, b). The 2-fold cyclic covering B(resp C) of the 

ball B(resp. C) branched over B fl L (resp . C flL )  is a solid torus. 

Then, L can be obtained by removing C from T = S3 and sewing it 

back differently. The position of the ball C with respect to the trivial 

knot T is shown in Figure 14a. Then, C is a regular neighborhood of 

the square knot (Figure 14b). Thus, L can be obtained by doing surgery 

on the square knot, hence tt(L)  ̂ 1, because a composite knot has

property P ([1], [8]).

Fig . 13a. Fig . 13b.

Fig . 14a. Fig . 14b.
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-2/m-vi

c sr

Fig . 15b. Fig . 15c.

3. The 3 -braid knots (o^cr]"1) (<71a2 )6m, m> 1

In [2] is is proved by Birman and Hilden that if Conjecture 1 is true 

for the knots ( ^ c r ^ X c r ^ ) 6111, m > 1 then Conjecture 1 is true for every

3-braid knot. We prove now that Conjecture 1 is true for the knots 

(cr2cr~1) (<7i0-2)6m, m > 1. For the sake of brevity, let L  be the knot
1 1 o

(a2°T  ) (° i  ° 2 ) Figure 15a, b. The trivial knot T can be obtained

by doing one general modification in L  (see Figure 15b, c). The 2-fold 

cyclic covering B(resp. C) of the ball B(resp. C) branched over 

B fl L (resp . C flL )  is a solid torus. The position of the ball C with 

respect to the trivial knot T is shown in Figure 16a. Then, C is a 

regular neighborhood of the twist knot T 3 (Figure 16b). Hence L can 

be obtained by doing surgery on the twist knot T 3 , hence X L )   ̂ 1 

because a twist knot has property P ([1], [8]).

A similar argument applies to the case  where m is arbitrary. In 

general, the 2-fold cyclic covering branched over the 3-braid knot 

(<72* r 1) ( a i a 2)6m can ke obtained by surgery on the twist knot T 2m_ 1-
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Fig. 16b.
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£<

Fig . 17a. Fig . 17b. Fig . 17c.
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4. Generalized doubled knots

Let L be the knot of Figure 17a. L is a strongly-invertible knot 

because the symmetry u with respect to the axis E leaves L invariant.

Then, p(L) is the path C of Figure 17b. As a composite knot has 

property P  ([1], [8]) then Conjecture 1 is true for the family of links of 

Figure 17c, where R is an arbitrary valued tree and where a ,/3  are an 

arbitrary pair of coprime integers. As the same argument can be applied 

to an arbitrary strongly-invertible composite knot, we obtain in particular, 

that Conjecture 1 is true for every doubled knot (a fact proved by alge

braic methods by Giffen [7]).

The same method can be applied to an arbitrary strongly-invertible 

link with property P (examples of these can be found in [l] , [8] and [23]).

5. The idea illustrated in the following example may be useful. Let N 

be the knot of Figure 18 and let us consider a plane P with cuts N in 

the set i a ,b ,c ,d i .  Thus P divides S3 into two balls A, B. The 2-fold 

cyclic covering A(resp. B) of A(resp. B), branched over A flN  

(resp. B flN ) is the complement of a regular neighborhood of a non-trivial 

knot in S3 (see Section 4 .4 .) . Then, N can be obtained by pasting dA 

to dB. According to [1] and [8; Lemma 5.1] 77(N)  ̂ 1.

3 3Let p : S -» S be the 2-fold cyclic branched covering induced by u.

f

A B

Fig . 18.

 EBSCOhost - printed on 2/10/2023 4:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



256 JOSE M. MONTESINOS

§5. Demonstration of Lemma 1 *

Recall that the only simply connected Seifert manifold is S3 [22].

On the one hand, every graph-manifold with boundary is a submanifold 

of a graph-manifold without boundary. On the other hand, every graph- 

manifold without boundary is [26, Satz 6.3] a connected sum of lens- 

spaces and reduced graph-manifolds ( “ Reduzierte Graphenmannigfaltig- 

keiten,” see [26, 6 .2]). Then, according to [9] and [26, Satz 7 .1 ], Lemma 1 

will be proved if we can show that a simply-connected, reduced, closed  

graph-manifold is S3 .

A reduced graph-manifold is either defined by a graph A(M) (see  

[26; 9]), or is a torus-bundle over S1 , or is a Seifert manifold over S2 

with three exceptional fibers. Thus, according to [9], it is sufficient to 

prove Lemma 1 for closed, reduced graph-manifolds M defined by a graph 

A(M). All of them [18; 7.5] are 2-fold cyclic coverings branched over a

3-sphere with g handles. If the graph A(M) is not a tree, or if any of 

the vertices of A(M) are valued with a triple ( g j , 0 , S j ) ,  g j  > 0 ,  then 

g >  0 ,  hence H^M) ^  0 .  If the graph A(M) is a tree with its vertices 

valued with triples ( g j , 0 ,  S j ) ,  g j  < 0 ,  then M is a 2-fold cyclic cover

ing branched over a link L of S3 [18; 7 .3]. This link L has more than

one component if g j  < 0  for any j [18; §3]. In this case , we have

H1(M)^ 0 .  Then, let M be represented by a tree A(M) whose vertices 

are valued with triples ( 0 , 0 ,  S j ) .  For [26, 9 .2 .3 ., 9 .2 .4 .a), b) and c)] the 

vertices of A(M) either are of order > 3 ,  or are valued with a hyphen 

but there is always a vertex of order > 3 .  We are going to prove Lemma 1, 

for those manifolds, by induction on the number m of vertices of order 

> 3 .  If m = 1, M is a Seifert manifold and there is nothing to prove.

Assume that m > 1. Then, there is a torus in M that splits M into two

reduced graph-manifolds, Mj, M2 , corresponding to the graphs A(Mj), 

A(M2 ) respectively. In order to build A(MX), A(M2) it is sufficient to

In this section we will follow the notation of Waldhausen in [26].
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remove from A(M) an edge which joins two vertices of order > 3 and to 

value these vertices again with (0 ,1 , - ) .  Then, A(Mp, i = 1 ,2 , has at 

least one vertex of order > 2, valued with ( 0 , 1 , - ) .

According to [1], [8; Lemma 5 .1 ], if 7t(M) = 1, then either Mj or M2 

is a homotopy solid torus. We may assume that is a homotopy solid 

torus. Then, may be considered as a submanifold of either a Seifert 

manifold with three exceptional fibers, or a graph-manifold that is repre

sented by a graph with n < m vertices of order > 3. Thus, by the induc

tion hypothesis and according to [9; 2 .2 ], is a solid torus. But then, 

[26; Satz, 9.4] A(MX) is a graph which has exactly one vertex of order 

zero, valued with ( 0 ,1 , —). This is a contradiction, hence nQA) /=■ 1. □

Therefore, a simply connected graph-manifold is S .
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PLANAR REGULAR COVERINGS OF 
ORIENTABLE CLOSED SURFACES

C. D. Papakyriakopoulos 

§1. Introduction

In 1963 this author reduced the Poincare"conjecture to two other con

jectures ([7], p. 251). The first of those conjectures is a special case of 

the group theoretic Conjecture 1 of ([8], p. 205). A special case  of Con

jecture 1 was proved by Karrass, Magnus and Solitar ([4], p. 57). Elvira 

Rapaport proved Conjecture 1 in full generality ([9], p. 506). In a recent 

paper Eldon Dyer and Vasquez ([1], pp. 348-349) proved the algebraic 

topological and stronger Conjecture Y  of ([8], p. 205).

However, Maskit ([6], p. 342, ££. 2-7) gave a new proof and a simpler 

statement of our key theorem ([7], p. 290), so that only the second of the 

two conjectures ([7], p. 251) is needed for the reduction of the Poincare 

conjecture. That second conjecture leads us to the following problem.

P R O B L E M . Let N be an orientable closed surface of genus at least two. 

Let g be an element of the fundamental group F  of N, and let N be 

the regular covering of N corresponding to the normal closure G of g 

in F . /s  N planar?

The Planarity theorem of Maskit ([6], p. 351) is a theorem of structure, 

and describes a way of obtaining any planar regular covering of any com

pact surface closed or not. However, that theorem does not seem to be 

directly applicable to our problem. So we will try to find another way of 

solving our problem. We observe that N is planar if and only if the inter

section number of any two loops on N is zero, see No. 11 of this paper. 

We also observe that N and the loops on it depend on g. Thus, we need

26 1
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a formula which will give us the intersection number of any two loops on 

N by means of g. The equation with right hand side zero and left hand 

side the right hand side of the formula will give the solution of our 

problem.

We find such a formula, and actually in the case  where G is the nor

mal closure in F  of a finite or infinite sequence g1 ,g 2 r ” of elements 

of F , see Theorems 10.13 and 11.1 of this paper. Thus, the problem 

posed above is solved in theory. However, the result provided by the 

solution is not sufficient to solve the second conjecture of ([7], p. 251), 

see Section 5 at the end of this paper.

The main theorems of this paper are Theorems 10.13 and 11.1. The 

first of those theorems provides us with the intersection  and expansion 

formulas, and the second provides us with a more explicit expansion 

formula and the necessary and sufficient conditions that N be planar.

The core of those formulas is the operator A, which is defined by means 

of Fox-derivatives ([3], p. 550). The definition of A and the way we 

obtain the formulas are involved, and in the sequel of this Introduction we 

will try to explain things briefly.

In Section 2, which is preparatory, we first define the notion of conju

gation in No. 1. The conjugate of a group ring element is obtained by 

replacing every element of the group by its inverse. In No. 2 we define 

the notion of inner product in a group ring, the natural way. In No. 3 anti- 

derivations are defined. The conjugate of an anti-derivation is a deriva

tion. In No. 4 biderivations are introduced. A biderivation is a map on 

two variables, it is a derivation with respect to the left variable and anti- 

derivation with respect to the right variable. In No. 5 biderivations in a 

free group ring are examined and proved to be of a special form, see  

Theorem 5.3 . In No. 6 some propositions concerning biderivations are 

proved, Theorem 6.3  will be needed in Section 4.

In Section 3 we study intersection theory on N, and we obtain the 

intersection formula (8.5). This is an indispensable formula for Section 4, 

which expresses the intersection number of two 1-chains on N as a sum
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of inner products of their coefficients. Section 3 was inspired by Reide- 

meister’s paper [10]. However, we emphasize that he neither obtains a 

formula nor does he introduce the inner product. The notion of inner 

product, though so simple and natural, is of decisive importance in obtain

ing the formulas needed to solve our problem.

The following Section 4 is the main part of our paper. In No. 9 we 

introduce the operator A, and in No. 10 after elaborate work we obtain 

the intersection formula (10.11) and the expansion formula (10.12). Those 

formulas are expressed with the help of the operator A and the inner 

product. We then obtain the first main Theorem 10.13, the proof of which 

is based on formulas (10.11) and (10.12). Finally in No. 11, we obtain 

the second main Theorem 11.1, which provides a more explicit expansion 

formula, and the necessary and sufficient conditions that N be planar. 

Thus, the second main theorem provides us with a solution of our problem. 

The proof of the second main theorem is based on the first one and 

Theorem 6.3 of Section 2.

We finish our paper with Section 5, where we formulate a conjecture. 

The solution of that conjecture will provide us with a proof of the 

Poincare" conjecture.

The paper is dedicated to the memory of Ralph Fox. A small sign of 

the gratitude the author feels to Ralph, for helping him to come to Prince

ton and stay here.

1. Conjugation.

Let r  be a finite or infinite denumerable group with elements g- , 

i = 1 ,2 , ••• . We denote by Z[r] the integral group ring of T . Thus any 

element r of Z [T ] is of the form

§2. Operations in Group Rings

i

where only a finite number of m̂  are different from zero. We write

 EBSCOhost - printed on 2/10/2023 4:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



2 6 4 C. D. PAPAKYRIAKOPOULOS

r = S  migi ’ gi = gi 1
i

and we call it the conjugate of r. We also denote ( ~ )  by (•••)"", i.e. 

The following hold.

(1.1) m = m, for any element m of Z .

(1 .2) r = r ,  for any element r of Z [T ] .

(1.3) r+~s =F-i- s , for any two elements r, s of Z [F ]  .

(1 .4) rs = s F  .

For any finite number of elements rj , j = l,-**,n  of Z [T ] we have

<i s > ( x f - S v  ( n ' i ) "  = n f k
J J j k

where k = n,-*-, 1.

Let 0 “: r  -> V ' be a homomorphism of the group T into another 

finite or infinite denumerable group V', This induces a ring-homomorphis 

if/ : Z[r] Ztrl.  (N.B. for the sake of simplicity, instead of denoting 

the ring-homomorphism by iff, say, we denote it simply by if/, see ([3], 

p. 548).) The following holds.

(1 .6) if/(r) = 0(17), for any element r of Z [T ] .

We define r° to be the sum of the coefficients of r, where r is 

given at the starting of this No. 1, i .e .,

i

see ([3], p. 549, ££. 18-20). A final remark is that the conjugation was 

introduced by Reidemeister ([11], p. 23, £.8).

2. Inner product

Let ĝ  and gj be two elements of T , we define the inner product 

of them by
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( 2 1 )  g i ° g j  = 5 ij> i, j = 1,2,-**

Sjj being the Kronecker index. Let now r and s be two elements of

z[ri
r = S mi8i> s = 2 njgr  i .j  = 1 ,2 ,— •

i j

We then define the inner product of them by

r o s = ^  minjCgjOgj) = ] £  .
i j  i

This is an element of Z , i .e ., integer. We observe that the operation ° 

is a map ° : Z [F ]  x Z [T ] -> Z, and that, generally, it does not behave 

naturally under a homomorphism of T . However, the following hold, 

where r, s and t are elements of Z [T ].

(2 .2) The inner product is bilinear, i .e .,

(r+1) ° s  = r ° s  + t ° s  

r ° ( s  + t) = r ° s  + r ° t  .

(2 .3) The inner product is symmetric, i .e .,

r ° s = s ° r .

(2 .4) r ° s = r ° s  .

(2.5) mr ° ns = m n(r°s), m, n e Z .

(2 .6) rt ° s = r ° st, tr ° s = r ° ts .

(N.B. prove it first for t ( T , and then pass to the general ca s e .)

3. Anti-derivations.

Fox ([3], p. 549) introduced the notion of derivation in Z [T ]. This 

is a map D  : Z l T ]  -> Z tT ] with the following two properties, where r, t 

are elements of Z [T ].
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(3 .1) D(r + t) = Dr + Dt (linearity) .

(3 .2) D(rt) = (D r)t° + r(Dt) .

We now introduce the notion of anti-derivation in Z [T ]. This is a 

map D ': Z[r] -* Z [T ] with the following two properties, where r, t are 

elements of Z [T ].

(3.3) D '(r+ t) = D'r + D't (linearity) .

(3 .4) D'(rt) = (D 'r)t°  + (D 't)r .

It is easily seen that D' is an anti-derivation if and only if D' is a 

derivation, where D'(r) = D r. Therefore anti-derivations have properties 

similar to those of derivations.

4. Biderivations

A biderivation in Z [T ] is a map 0 : Z [ T ]  x Z [T ] ->Z[T] with the 

following two properties, where r , s , t  are elements of Z [T ].

(4 .1) 0 (r  + t ,s )  = 0 ( r ,s )  + 0 ( t , s )

0 ( r ,s  + t) = 0 (r , s) + 0 (r , t) (bilinearity)

(4.2) 0 ( r t ,s )  = 0 (r , s ) t °  + r 0 ( t ,  s)

0 ( r ,s t )  = 0 (r , s ) t °  + 0 (r , t )s  .

Thus, 0  is a derivation with respect to the left variable, and anti- 

derivation with respect to the right variable. Hence the following proper

ties hold.

(4 .3) 0 (m ,t)  = 0 (t,m ) = 0, m f Z .

(4.4) © ( ] £  mjrj, ^  ©(ri)S j)
V i  j /  i,j

mj, rij e Z , r j ,S j f Z [ r ]  .

(4 .5) @ (f , t) = -  f 0 (f , t),

@(t , f )  = _  @ (t,£ )f, t e Z [ r ]  .
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( 4 .6 ) 0 ( f , g )  = f 0 ( f ,g ) g , f , g e T  .

(4 .7) A linear combination over Z of biderivations in Z [F ]  is a bi

derivation in Z[r].

5. Biderivations in a free group ring

Let now X be a free group on free generators x 1,- - - ,x n, (n < °o). 

The following is a biderivation in Z[X],

The operator, obtained from the right hand side of the equality (5 .1) by 

deleting r and s , is a biderivative with matrix ||0y||, where

The general biderivative in a free group ring is provided by (5 .1) accord

ing to the following theorem.

THEOREM 5.3. If 0  is a biderivation in the free group ring Z[X], then 

© is defined by (5 .1) and (5 .2).

Proof. Let us consider the following biderivative

where i, j = l , - - , n .  As usual, by the length £(u) of an element u of X 

we mean the number of letters in the reduced word representing u. The 

following hold

(5.1)
r, s , £ Z[X], i, j =

where %— is the Fox-derivative ([3], p. 550), and
* 4

(5.2) j = © (xi ( Xj), i, j = !,•••, n .
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© * (X i ,X j)  = © (X j.X j)

© * (x i ,X j )  = -  8 * ( x .,X j )X j  by (4 .5 )

=  -  ® ( x i ; X j ) X j  =  0 ( x i ( X j )

© % i , X j )  = -  X jO ^ X j .X j )  by (4 .5 )

= - ^ © ( X j . X j )  = ® (X j,X j)

© ^ X j .X j)  = x i @ * (x i ,X j ) x j  by ( 4 .6 )

= ^ © (X j.X jO X j = © (X j.X j)  .

From  the ab ove and (4 .3 ) ,  it fo llow s th at £(u) + £(v) ^ 2 im plies 0 ( u ,  v)
sje

= 0  (u, v ), w here u and v are  elem en ts of X . We now p roceed  by 

induction.

( 5 .4 )  (In d uctive h y p o th e sis ). Suppose th at £(u) + £(v) < m (>  2 )  im plies  

0 ( u ,v )  = 0  ( u ,v ) ,  for any two elem en ts u, v of X .

L e t  us now su p p o se  th at u', v ' are  two elem en ts of X , su ch  th at 

£(u ') + £ (v ') = m. If e ith er £(u ') or £ (v ') = 0 then, by ( 4 .3 ) ,

0 *(u ', v ')  = 0  = 0 (u', v ')  .

T h u s, from now on we ca n  su p p o se  th at both £ (u ') and £ (v ') are  ^ 1. 

We h ave to  co n sid er two c a s e s ,  £ (u ') > 1 and = 1.

L e t  us firs t  su p p ose th at £ (u ') > 1. T hen u '=  uw, w here u, w ,uw  

a re  reduced w ords, su ch  th at

£(u ') = £(u) + £(w), £(u) and £(w) > 1  .

T h e follow ing hold

0 (u ',  v ')  = 0 ( u ,  v ')  + u 0 ( w ,v ' )  by ( 4 .2 )

= 0 * ( u ,  v ')  + u 0 * ( w ,  v ')  by ( 5 .4 )

= 0 * ( u ',  v ')  by (4 .2 )  .

L e t  us now su p p o se th at £ (u ') = 1. Then £ (v ') > 1. T hus v '  = vw ,

w here v , w , v w  are  reduced  w ords, su ch  th at
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£(v') = £(v) + £(w), £(v) and £(w) ^ 1 .

The following hold

0(iT, v ') = 0(u ', v) + 0(u ', w) v by (4.2)

= 0*(u ', v) + 0*(u ', w)v by (5.4)

= 0*(u ', v ') by (4 .2) .

Hence, for any two elements u ,v  of X , we have

(5.5) 0 (u ,v )  = 0 *(u , v) .

Let now r, s be two elements of Z[X]. Then we have the following, 

where m̂ , nj are elements of Z and u^,vj are elements of X,

r = 2  miui ’ s = 2 njVj -
i j

By (4 .4) and (5 .5), the following hold

® (r .s ) = ^  minj ®(uj, Vj) 
i,j

= 2  minj vj>
i.j

= ® * (r ,s )  .

This completes the proof of our theorem.

6 . Special properties of biderivations

Let X be a free group on free generators x 1 , - - - , xn, (n < <*>), and let 

P = nu£ be a finite product where u is an element of X and e = ± 1. 

Then the following “ chain rule” holds

1 u 1
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where u ranges over all the different to one another u’s appearing in 

the product P. Here some explanation is needed: We consider the differ

ent to one another u’s as representing free generators of a free group and 

we apply Fox-derivatives. Formula (6 .1) follows from ([3], p. 549, (1 .5) 

and (1.6)) and reductions.

LEMMA 6.2 . Let ® be a biderivative in the free group ring Z[X], and

be two products, where u and v are elements of X. Then the following

u,v

where the sum ranges over all the different to one another u’s and v ’s 

appearing in P and Q respectively.

Proof. By Theorem (5.3), and (5 .2), we have

let
P = IIu5 , Q = IIve , s, e = ± 1

holds

- 2  ( 2 S  £ ; ) • < * • * by(61) 
-2 (2£$) •*■•*]> 2 l £  b y ( 1 ' 4 )

i,j  \ u /  v J

by (5 .1)

U , V

This completes the proof of our lemma.
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TH EO REM  6.3 . Let if/ : X -> F  be a homomorphism of a free group X on 

free generators x 1 , - - - , xn, (n < ©o), in a denumerable group V. Let

p = n ^ w f 1 Ui, q = n vf £j ivj * §i>ej = 11
i j

be two products, i = l , -*- ,p and j = l , - - - ,q,  where u-,Vj are elements 

of X,  and W|,Zj are elements of ker if/. Then the following holds

tA©(P,Q) = SjEjiACujOCw^zpvj)
if j

where © is a biderivative in Z[X].

Proof. By Lemma 6 .2  the following holds

5 0

where u (or v) runs over all the different to one another elements of X 

appearing in the finite sequence u ,̂w  ̂ (or Vj,Zj). By (1 .6), we have

<A©(p,Q) = ^  ^ ( 5̂ ) |A®(U>V)'Â 1

where if/ : Z[X] -> Z [F ]  is the ring-homomorphism induced by the group 

homomorphism if/.

We now observe that the set, which u (or v) ranges over, consists 

of all w^’s (or Zj’s) which are different to one another, and all u ’̂s 

(or v j’s) which are different to one another and do not appear as w^s 

(or z j ’s). If u (or v) is one of the Wj’s (or z j ’s) say wk (or z^), 

then the following holds

(If) = 2 8̂ (û ’ (or = 2 ê (v)
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where 1 < A < p (or 1 < p < q) and such that (or = zg). If

U is none of the W -’s  for z . ’s l  thpn thf* fn llnw ino r holds

From the above we obtain the following, where the sum ranges over 

all pairs k, I such that, w^ (or zg) ranges over all different to one 

another w- ’s (or Zj’s),

where i = p and j = l , - -*,q.  This completes the proof of our

Let now P be a product as of Theorem 6.3 . We define the following 

elementary transformations of P.

(i) Deletion of a factor u^wi 1u^, where ŵ  = 1.

(ii) Insertion of a factor uwu, such that u e X, w = 1.
8- S h _

(iii) Deletion of two factors û w- û  and u^w  ̂ u^, such that

i ^ h, Uj = uh, wj = wjj, and Sj + = 0.

(iv) Insertion of two factors uwu and uwu, such that u e X ,

w e ker i{j . (N.B. the inserted factors need not be neighboring 

in the final product.)

A product which is obtained from P by a finite number of the above 

elementary transformations is called homologous to P . Under the hypoth

eses of Theorem 6.3 the following holds.

THEOREM 6.4 . If P" and Q" are products homologous to P and  Q

i/f®( P, Q)  =

 ̂5i £jiA(ui 0(wi ,Zj)vj)

theorem. Q.E.D.

respectively , then
^©(P",Q") = tA@(P,Q) •
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If P ' and Q' are products similar to P and Q respectively , then

<A0(PP', Q) = ^ © (P ,Q ) + \j/ 0 (P ', Q)

</r0(P,QQ') = <A ® (P, Q) + i/f 0 ( P , Q') .

Finally, we have

<A©(P,Q) = -<A©(P,Q), <A@(P,Q) -  -<A@(P,Q) .

The proof of the theorem follows from Theorem 6.3 and No. 4. We now 

observe that P and P" (or Q and Q") represent the same element of

H ^ keri/^ Z ) = ker if//[ket if/, ker if/] .

This justifies the term homologous. We finally observe that, the operator

if/® behaves like an intersection theory operator.

7. Topological considerations

Let N be an orientable closed surface of genus p > 2. We denote 

by j8p a fundamental system of N based at a point o,

and let a * , /3 * ,•••,<!*,/3* be the dual to it based at a point o*. The 

first system defines a fundamental polygon of N shown in (Figure 1),

§3. Intersection Theory

0 /

<*i
0

f t

0 p

0

Fig.  1
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Fig. 2
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the picture indicates also the orientation of N we are going to consider. 

In (Figure 2) is shown how the a , / 3 ’s are arranged around o.

Let us write F  = N, o), let G be a normal subgroup of F , and 

H = F / G.  We denote by N the universal covering surface of N, and by 

N the regular covering surface of N corresponding to G. The surfaces 

N and N have orientations induced by that of N. Thus we have the 

following diagram

where q, q, q are the projections, and the corresponding covering transla

tions are G, H, F  respectively.

We select a point o on N lying over o, and we denote by 

a j , p - , a - , j 8 j  paths on N lying over a- , j8^,a- ,p^ respectively as 

shown in (Figure 3), where aj ,b- are the elements of F  defined by the 

loops a^,/3j respectively, i = l , * * * , p .  We also lift the path oo (see  

(Figure 2)) and we obtain the path oo , on N, see (Figure 3). By means 

of the projection q, we obtain o ^ ^ p ^ a ^ p ^ o o  on N.

For the sake of convenience we denote by p 1$ p2>'"> P2 0 - I  ’ ^2p (or

P1’ P2 ’ ' " > P 2 v - l ’ P2p) the lo°Ps a l ' ^ l ' " ' <ap '^P ( ° r a l > P l - ‘” ’ a p 'Pp)
respectively. The following hold concerning intersection numbers.

( 7 .1 )  I s C p ^ p * )  = S j - , I s C p j .p * )  = S jj

i, j = l , - - - , 2p,  where 8 -  is the Kronecker symbol.

8. The intersection formula

Let x  : F  -> H be the natural epimorphism, and let us denote the 

right cosets of F  mod G by GfQ/<, where fQK are the representatives, 

k = 1 , 2 , *“ (the sequence is finite or infinite, and fQ1 = 1). We write

X (G W  = V
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5|C ^
Let y ,o  be paths on N based at 0 , 0  and composed of loops
* ~ *

and their inverses respectively, i = l , - - - ,2p.  Let y ,8  be the

paths on N based at o, fo and lying over y ,S  respectively, where
A »  ^  jjc *• *je ^

f € F . We write y = q(y) and 8 = q(8 ). These are paths on N based
~ ~ jfc  ̂  ̂s|c

at o, ho respectively, where h = y (f). Let c , d and c , d be the 

1-chains corresponding to the paths y ,8  and y ,8  respectively. The 

following hold

(8 .1) 1 1

£ = 2  X(ti)Pi d* = ^  y ( s J p *

where i = l , - - - , 2 p  and r^,s* or x ( rj ) ,X(s {) are elements of the integral 

group ring Z [F] or Z[H] respectively. We observe that q , s  ̂ can be 

written as follows

ri = 2  ( 2 miA/zBp ) f0X 

(8.2) A "

2 (2 ni foA

where g^ e G, m ^  and n ^  ( Z, and the indices A,p have a finite 

range. Thus, we have

(8.3)

* (ri} = 2  ( 2  mi v )  hA’ x ( s i} = 2  ( 2  n u p)
A V ^ /  A V / z 7

hA

2  mi AhA = 2  "i= AhA •
A A

By (8 .1) and the above formulas the following hold

■ 2 ( 2  5* -  2 ( 2 n‘^ ) p‘ ‘

= 2 miAhAPi = 2 niAhAP* •
i,A i,A
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Concerning intersection numbers the following hold

I s ( c , d * ) =  I s / ] £ m iXh xpi(

\ a  i.v }

= 2  mi A V Is(hAPi’ V ] * >
i , j ,A,l/

where i, j = l , - - - , 2p,  i' has the range of A, and the range of A is de

fined by (8 .2). We now observe that

Is(hx p i,h v p*) = 1 or 0

in case  i = j, A = v or any other case  respectively, see (7.1). Hence, 

we have

(8.4) Is (c ,d * ) = ^  miAniA
i,A

where i = l , -*- ,2p,  and the range of A is defined by (8.2).

We now consider the following sums of inner products, making use of

(8 .3), where i, j = 1, — , 2p, /x has the range of A, and the range of A 

is defined by (8.2).

2  x ( ri> ° = 2  ( 2  mi AhÂ  ° ( 2  ’V V )  

= 2 S miAnip(hA ° V
i A ,fi

= 2  2  mi AniA
i A

= 2  miAniA • 
i,A

The right hand side of the above equalities hold by (2 .2), (2 .5), and (2.1). 

Hence, by (8 .4), we obtain the following intersection formula
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(8 .5) Is (c ,d *) = xCrj) ° X (Si), i = l , - - , 2 p
i

where r^,Sj are defined by (8.1).

§4. The Main Formulas and Planar Coverings

9. The basic biderivatives

We now are going to introduce some biderivatives, which are indispen

sable in obtaining the main formulas.

Let $  = (a1 , b 1 ,*--, ap,bp), p ^ 2, be a free group of rank 2p, and 

let Z[<I>] be the integral group ring of 0 .  We write

Al ( r , s )  =

(9.1) 1

+

K j a '  ai) s i[  * S : 8ibi l q

where i=  l,***,p and r , s  e Z [0 ]. The operator Aj is a biderivative in 

ZM>], see No. 5. We also write

(9.2) A2(r , s)  =

where i = j 1, — j = l , - - - , p—1, and the operator d^ is defined as 

follows

dk = (ak- 1 )  + (bk_1)’ k = 1 ’" ' - P -

The operator A2 is a biderivative in Z[4>], as it can be proved easily. 

Finally, we write

(9.4) A (r,s ) = A jCr.s) + A2(r , s )  .

The operator A is a biderivative in Z [$ ], by (4 .7), and it appears in 

the main formula.
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For any two elements r ,s  of the integral group ring Zl<X> 1 the follow

ing formula holds

(9 .5) ^ (d jO d ^ s  = AjCr,s) + A jCs.r), i=  l , - - , p  .
i

This is proved by computing the two sides of the formula and comparing 

them. The computation makes use of (9 .1), (9 .3), (1 .2 ) and (1 .5), and is 

straightforward.

The matrix of each one of the A 7s is of the form

II (aa) (ab) II 

II (ba) (bb) I

where (aa), (ab), (ba), (bb) are “ submatrices77 pxp.  The matrix of 

Aj has all its other entries zero, except those on the main diagonals of 

the “ subm atrices.77 Each one of the “ submatrices77 of A2 has all its 

entries on and above the main diagonal zero. Hence, each of the “ sub- 

m atrices7 7 of A has all its entries above the main diagonal zero, i.e. ,  

each of the “ submatrices77 of A is of triangular form.

10. The general ca se

In the present No. 10 we keep the notation and conventions introduced 

in Nos. 7, 8 and 9. We thus have

$  p H

where co and y  are epimorphisms, and

F  = ^ . b ^ - . a p . b p  : J J  [a^bj]^ , i = l , - , p >  2 .

i

We also have the following sequence

z [$ ] z [f ] z [h ]

concerning the integral group rings.
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Let now y , y  be two loops on N based at o, and composed of 

loops a i , ^ i and their inverses, i = l , - - * , p .  Let y , y '  be the paths on 

N based at o and lying over y , y '  and let c , c '  be the 1-chains corre

sponding to y , y '  respectively. Let finally w, w'  be the words in 

a j»b*Js corresponding to the loops y , y / respectively. By a formula due 

to Fox ([2], p. 521) we have

c = ^  [<u(uj)aj + oj(vi)/3 i], i = l , - - - , p
i

(10.1) c '  = [M(u'j)aj +

. __ dw „ dw / dw' ' c?w'
Vi 3 b ?  i d a l’ Vi = 5b7 '

To be able to apply formula (8 .5), we have to deform y on N to a
*  *  s|e *

loop y based at o and composed of loops a- , and their inverses,

i = l , - - - ,p.  This is done by deforming y on N. We observe that y is
~ £  ~ £

composed of paths f a p f | 8 j ,  where f 6 F  and s = ± l ,  i = 1,•••,?.
~ £  ~ ~ * £

If fa- appears in y, we then replace it by the path fX: , see (Figure
~£ - ~*£

4). If f /3 ̂  appears in y, we then replace it by the path fY| , see
_  3|c ~  sje „  -  jJc

(Figure 5). We thus obtain a new path y on N, such that y = q(y )
SjC

is a loop based at o , composed of loops ctj,^3j and their inverses,

i = and y* is homotopic to y on N. The 1-chains correspond

ing to fX *, fY* are fA*, fB* respectively, where

jjc ~  ̂   ~
Aj = ( l - a j ) a j  + ajbj/3j

+ ( 1 - a j )  ^  [ ( l - a j ) a J  + ( 1 - b p ^ p

(10.2) J

B *  = ( l - a j - b j ) a *  + ( 1 - b j ) ^ *

+ (1 — bj) [ ( l - a j ) a j  + (1 —b j)^ j]
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 ̂ ĵc
where j = 1,• • •, i—1. Hence the 1-chain c  corresponding to y is , by 

(10.1),

(10.3) c *  = £  [a>(uj)A* + a>(vj)B*], i =  l , - - - ,p .
i

Before applying (8 .5), we have to evaluate the right hand side of the 

last formula using (10.2). For the sake of convenience we write

(10.4) cu(w) = z co( u^ = x i co(v^) = yi

c o ^ )  = a i ^ (bp  = bj

where i = I,-*-,  p. By (10.3) and (10 .2) we have

5 * = 2  ( x i(1- a i)“ i ' + x ia i M f
i

+ y j d - a j - b p a *  + y ^ l- b j ) ^ *

+ ^  [ x j d - a ^ d - a p a *  + x jd -a jK l-b jO /S *

+ y j(l—bj) (1—aij)a* + y ^ l-b j)  ( l-b j) /3 * ]^  

where j = 1, — , i—1 and i = 1, — , p. From this we obtain

S* = 2  ( {  xi<1“ aP  + y i ( l - a i - bi)
i

+ ^  [x j ( l -a j )  + y j ( l - b p ] ( l - a i) | a*

(1° .5 )  i _

+ J x ia ibi + y id -b p

+  ̂[x j ( l -a j )  + y j(l—bj)] (1—bj) J ̂ i)
j

where j = i + 1, — , p and i = 1 , --.p.  That the right hand sides of the

last two equalities are equal can be seen by computing the coefficients
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of a x and (3j . By the fundamental formula of the free differential calcu

lus ([3], p. 551, (2 .3)), we have

» - ■ - 2  <*!->>

1 by (10.1)

= ^  tui(a i—1) + VjCbj—1)]
i

where i = l ,* * ,p .  By applying the group ring homomorphism co, we 

obtain

^  [ x j ( l -a j )  + y j(l—bj)] = (1 -z )  + [ x ^ a - l )  + y ^ b j-l)]

+ o ( 2 dkw)

where j = i-hl, — ,p  and k = 1, — , i—1, see (9.3).

Replacing the left hand side of the above equality by the right hand 

side in (10.5), and performing reductions we obtain the following

C* = ]£ ^|(1—z)(l—ai)~xi(l—aj)—yjbja'j + ^  d-w^ ( 1 -a p  J a*
i j

+ | (1—z)(l—bj)—xjCl—aj—bj)—yj(l—bj) + a> djW^ (1—bj) | /3j ̂
j

where j = l , - - - , i —1 and i = 1,-• •, p. We now write

Uj = (1—w)(l—a’j) — Uj(l—aj) — Vjbjaj + (1-aj)

Vj = (1—w)(l—bj) — Uj(l—aj—bj) — Vj(l—bj)+ ̂ 2 djW)
j

where j = I,-*-, i—1 and i = 1,***, p. From the last three equalities and

(10.4) we obtain the following

2 8 4  C. D. PAPAKYRIAKOPOULOS
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This is the 1-chain corresponding to the path y on N based at o , 

and such that y = q(y ) is a loop on N based at o , composed of
* r> *loops 0 4 , P i and their inverses i = 1 , — , p, and

(10.7) y * =* y on N

$
i.e ., y is homotopic to y on N.

We now are ready to apply formula (8.5). Let us consider the paths 

y', fy which are based at o, fo , where f e F . We write y ' = q (y 0  and 

y = q(y ), whence q (fy  ) = h y  , where h = x (0 -  We observe that 

y', h y* are paths on N based at o, ho* respectively. Let c ^ h c  be
/v - A

the 1-chains corresponding to y ',h y  respectively. By (10 .1) and (10.6)

S' = 2  [xw(u/i)“ i + X<w(v i>^j]
i

h e *  = ^  [hxtuC U ^a* + 1iyw C V j)^*]

where i = 1, — , p and h e H. By (8 .5), wd have 

Is (he', c * )  = Is(c', he )

= [yo)(u j) ° hy<i>(Uj) + x a (v 'j)  ° h y o )^ )]  
i

where i = !,•••,p. By (2 .6 ), (2 .2) and (1 .6), we obtain

Is(hc',c*) = [h°x<y(Ui)X*>(u'i) + hoXw(v i)X w(v/i)]
i

= b<w(Ui)x<i>(u'i) + yoj(Vj) ycol̂ 'j)]
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where i = l,***,p. Hence the following holds

(10.8) Is(hc',c*) = h ° [U ill j + V jvj]
'  i

where i = l ,-* - ,p , h e H, u'j and Vj are given by (10.1), and Uj, Vj are 

given by the formulas preceding (1 0 .6 ).

We now have to compute the second factor of the right hand side of

(10.8). We write

(10.9) K = 2  [Ui“ i + V ' i ] ’ 1 = 1’ - ’ P •
i

From this and the formulas defining Uj and V j , after performing some 

rearrangement, we obtain

K = (1 -w ) ^  [(I - af)Ui + ( 1 - V v j ]
i

-  ^  [ u i ( l - a i ) u " i  +  V j b j a j u j  +  u ^ l - a j - b j ) v j  +  v ^ l - b j )  v  j ]

i

+  ^  t ( l - a j ) u j  +  ( l - b j ) v j ]

i j '

where j = 1, — , i—1 and i = l , - - - ,p .  By (1.5), (10.1) and (9 .3), the 

following holds

( l -a j)u 'j  + ( l-b j)v 'j  = -  d ^ ,  i = l , - , p  .

By the fundamental formula of the free differential calculus ([3], p. 551,

(2.3)) and (9.3) we have

( 1 0 . 1 0 ) w ' - l  = ^  djw', i = l ,  --,p  •
i

From the last two equations and (1.5) we obtain

£  [ ( l - a ^ u j  +  ( l - b ^ v  j ]  =  1  -  w
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w here i = l , - - - , p .  By (1 .5), (1 .2), (10 .1) and (9 .1) th e follow ing holds  

[ u ^ l - a ^ U j  + V jbjajU j + u ^ l - a — b j ) v \ +  v ^ l - b j ) v ' j ]  = A j(w ',w )

i

where i = l,***,p . From the last five equalities, we have

K = ( 1 —w ) ( l —w ') — A j(w ', w) — djW^ d-w'

i j

where j = 1, — , i—1 and i=  l ,-* -,p . By (10.10), where now w/ is re

placed by w, we obtain

PLANAR REGULAR COVERINGS 287

K = ( 1—w ) ( l —w ') — A 1(w /, w) — ^w — 1 — ^  djW^ d-w '

where j = i,***,P and i = 1, — , p. By (10.10) and (1 .5 ), the following hold

K = ( l - w ) ( l - w /) -  A j(w ',w ) -  (w—1 ) d4w ' + djw^ d ^ '

i i J

K = ( 1 —w )( 1 —w ') — A 1 (w/, w) — (w—1 ) ( w '- l )  + djW)  ^iw/

= -  A x(w', w) + X ( S  djW)  diw/

where j = i,--*,p  and i = l ,- * - ^ .  From the above we obtain

K = -  A 1(w /, w) + ^  (djw) djW' + ^  djw\ dkw
k j

where j = k+1,-*-, p, k = l , - - - ,p — 1 and i = 1, — , p. By (9 .5), (9 .2) and

(9 .4), we have
K = A (w ,w ') .

From the above equality, (10 .9) and (10.8), we obtain the following 

intersection formula

(10.11) Is (he', c * )  = h ° ytc)A(w, w') .
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From this we have the following expansion formula

(10.12) xa>A(w, w') = ^  Is (h c ',c* )h

where the sum runs over all elements h of H. This sum is finite, be

cause y and y' are compact. The last formula is obtained by observing 

that the left hand side is an element of Z[H], and then computing the 

coefficients by use of (10.11) and the formulas for inner products.

We now summarize things: Let N be an oriented closed surface of 

genus p  ̂ 2, with base point o, and let

F  = ( a j . b j , - . a p , b p : J J  [ a j .b j ] ^  , i = l , - , p

i

be the fundamental group of N, see (Figures 1 and 2). Let G be a 

normal subgroup of F , let N be the regular covering surface correspond

ing to G, and let o be a point on N lying over o. Let y ,y '  be two 

loops on N based at o, and let w ,w ' be words in a ,̂ b̂  defining the 

elements of F  represented by y ,y '  respectively. I .e ., w ,w ' are ele

ments of the free group <D = (a^bj.-.Bp.bp)

of rank 2p. Let y ,y ' be two paths on N based at o and lying over 

y ,y ' respectively.

THEO REM  10.13. If the elements of F  defined hy w ,w ' belong to G, 

then y, y ' are loops, and the following formulas hold

Is (h y 'y )  = hoyo)A (w ,w r)

X<aA(w,w')= Is(h y ',y)h  

where the sum runs over all h e H = F /G .
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Proof. Without any loss of generality we can suppose that y ,y '  are loops 

composed of in accordance with the words w ,w ' respectively.
/•s ̂

In the present case , because of (10.7), y is a loop homotopic to y on 

N. Let us denote by c , c '  the 1-cycles corresponding to y , y ' respec

tively. The following hold

Is(h y ',y ) = Is(h y ',y *) = Is(hc', c * )  .

From the above, (10 .11) and (10.12), follow the formulas of our theorem.

REMARK 10.14. Let us now consider the special case  G = F . Then 

H = 1, N = N, q = identity, y = y and y ' = y'. Thus, the formula of 

Theorem 10.13 becomes now

(<wA(w,w'))° = Is(y ',y)

see No. 1, or ([3], p. 549, ££. 18-20).

11. Planar coverings

We now suppose that the group G, of the previous No. 10, is the 

normal closure in F  of the finite or infinite sequence of elements

o)(wj),a>(w2 ),**•» where w1 ,w 2 ,--- are words of the free group 3>. Thus,

H = F /G  = ^a1 ,b 1 , " - , a p,b p : J J  [ai ,b i] ,w 1 ,w 2 ,---

i

where i = l , - - , p .  Hence H = ^ /G 0 , where G0 is the normal closure in 

$> of the elements w0 ,w 1 ,w 2 ,---, and wQ is the product of the commuta

tors.

Let now w ,w ' be two elements of Gq, then the following hold

8 £ 
w = u n  » ' - n

k j

where u-, v- are words of <!>, ^  and Aj are positive, and £j are 

± 1 , the range of the indices k and j is finite, and u, v are products
s\

of transforms of w0 in 3>, 0 = ± 1.
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Let y ,y '  be two loops on N representing the elements &>(w), co(w') 

of F  respectively. The loops y ,y '  are those of Theorem 10.13.

THEOREM 11.1. If the group G is the normal closure in F  of the e le 

ments &>(w1),co(w2 ),-*,» then

Is(h y ',y)h  = ^  Sk£jxr«o(ujcA.Cw , wA. ) v-> 

h k, j

where h runs over all elements of H = F /G . Finally, N is planar if 

and only if
X«A (wk, wf ) = 0

where k , v  =  1 ,  2 , - * -  .

Proof. Let us denote by yQ, y\. loops on N based at o represent

ing the elements cj(w0),co(w//^),o>(w^ ) of F , and let be

the loops on N based at o and lying over y n ,y u *Y\ respectively.
k i

Then, y 0 is contractible in N, because o>(w0) = 1. Thus, by Theorem 

10.13, we have the following

X«A (w 0,w 0) = Is(hy0 ,y 0)h = 0

X<yA(w0 ,w^_) = £  Is(hyx.»y0)h =  0

^wA(wfxk’ wo) = 2 Is(hyo»y/ik̂ h= 0

where the sums run over all h 6 H. By Theorem 6.3 and the above three

equalities, the following holds

X«A (w ,w ')  = Ske jX « (u k A(w^k' w-V.)vj) • 

k,j

By Theorem 10.13, we have the following
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X<yA(w,w') = Is (h y 'y )h  .

The last two formulas imply the first formula of our theorem.

By ([5], p. 140, 26-29 and p. 165, ££. 15-17), it is easily proved

that N is planar if and only if the intersection number of any two loops 

on N based at o is zero. If N is planar, then we apply the first 

formula of our theorem for the special case  w = w^, w' = w^ and we have

Xa>A(vtK,v/v) = ^  Is(h y ',y ) = 0, k , v  = 1,2,■■■ .

If the second formulas of our theorem hold, then by the first formula the

following holds  ̂ ^
Is ( y »  = 0

for any two loops y ,y ' on N based at o. Hence, N is planar. This 

completes the proof of our theorem.

REMARK 1 1 .2 .  In the c a s e  of a c tu a l  com putations,  Theorem 6 . 4  may turn 

out to be very useful som etim es.

§5. A Conjecture

The formulas of Theorem 11.1 provide us with a solution of the problem 

we posed in the Introduction. However, as we have already mentioned 

there, the result provided by the solution is not sufficient to solve the 

second conjecture of ([7], p. 251). Nevertheless, our formulas may be 

very helpful for a solution of the conjecture we express in the sequel.

Let us suppose that, on the oriented closed surface N of genus at 

least two, we have two oriented simple closed curves A, B meeting at 

only one point with intersection number one. Let A' be an oriented 

simple closed curve on N homologous to B. Let X, Y and X ' be the 

primary simple closed geodesics on N, corresponding to A, B and A' 

respectively ([7], p. 270, Lemma (12.2)). Let o^, k = l,-*-,2m + l 1),

be the common points of X and X'f and let X^ and X  ̂ be the loops 

with base point o^ defined by X and X ' respectively. Let finally w^
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be the element of F  = 771(N,o^) corresponding to the commutator [X ^ X ^ ]. 

Under the above hypotheses we formulate the following conjecture.

CONJECTURE. There is a k (;> 1 and <; 2m-t-l) such that the regular 

covering of N, corresponding to the normal closure of w^ in F , is 

planar.

This conjecture implies the second conjecture of ([7], p. 251), but not 

conversely. That conjecture is more delicate. Hence, a proof of the above 

conjecture would imply a proof of the Poincare'conjecture.

PRINCETON UNIVERSITY
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INFINITELY DIVISIBLE ELEMENTS IN 3-MANIFOLD GROUPS 

Peter B. Shalen

An element g of a group is said to be divisible by an integer n if 

g = x n holds for some element x in the group. We will say that g is 

infinitely divisible if it is divisible by infinitely many different integers.

L. Neuwirth ([5], Problem S) has asked whether a knot group can have 

infinitely divisible elements other than the identity. We show that it can

not; more generally, we show that the fundamental group of a compact, 

orientable, irreducible, piecewise-linear 3-manifold M has no infinitely 

divisible elements £ 1, provided that M is almost sufficiently large in 

the sense of Waldhausen (see Section 7 for definitions). This is the 

theorem of Section 7. A weaker result in this direction was obtained in [2].

The result cannot quite extend to an arbitrary compact 3-manifold M 

since a lens space (for example) has a finite fundamental group, and any 

element of finite order in a group is clearly infinitely divisible. However, 

one can make the

C O N J E C T U R E  (Cf. [20], p. 87). Every compact, irreducible, orientable, 

piecewise-linear 3-manifold with infinite fundamental group is almost 

sufficiently large.

Now it follows from Moise’s triangulation theorem ([8], [9]; also [1]; 

and [13]) and a theorem of Kneser’s ([5]; see [7] for a good discussion) 

that for any compact, orientable 3-manifold M, ^ (M ) is isomorphic to 

a finite free product of infinite cyclic groups and fundamental groups of 

compact, irreducible, orientable 3-manifolds. It is easy to see that an 

infinitely divisible element in a free product must be conjugate to an

293
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2 9 4 P E T E R  B. SHALEN

infinitely divisible element of some factor. Using the theorem of Section 7, 

the above conjecture would therefore imply that an element of 77̂  (M) is 

infinitely divisible only if it has finite order. By considering the orient- 

able double cover, one could extend this result to the non-orientable case  

(cf. Lemma 13 in Section 7 below).

It should be noted that the compactness hypothesis is essential, since 

there exists an open subset of Euclidean 3-space whose fundamental 

group is isomorphic to the additive group of rational numbers (see [3]).

The proof of the theorem depends heavily on Haken’s theory of hierar

chies; the only facts needed are contained in [20], and we review them in 

Section 7. An arbitrary sufficiently large manifold can be built up from 

one or two 3-cells by successive application of a boundary-gluing process. 

Using this, the proof of the theorem reduces to comparing the divisibility 

properties of elements of an incompressible (cf. Section 1) piece of the 

boundary of a 3-manifold, with the divisibility properties of the same ele

ments regarded as lying in the fundamental group of the 3-manifold. This 

is done in Sections 2 - 4  for boundary pieces that are not tori, and in Sec

tion 5 for tori. The results obtained in the two cases (Prop. 2 of Section 2 

and Prop. 3 of Section 5) are rather different. The problem of extending 

the results of Sections 2 - 4  directly to tori is related to the problem dis

cussed in Section 3 after the definition of an “ envelope. ”

I would like to thank W. Jaco  and B. Evans for pointing out the proof 

of Proposition 1 of Section 1 based on Waldhausen’s generalized loop 

theorem, which is much simpler than my original proof. They had obtained 

a similar result independently. I would also like to thank F . Waldhausen 

for a series of interesting discussions on the unsolved problem discussed  

in Section 3. Finally, I am indebted to Marcelo Kupferwasser and to the 

referee for correcting a good many errors in the original typescript.

§0. Conventions

We work in the piecewise-linear (P L ) category everywhere (except 

in Section 4 where we briefly consider the simplicial category). Thus all
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manifolds, maps, home omorphis ms, homotopies, isotopies, e tc. are under

stood to be P L . A surface  is a connected 2-manifold. A disc  is a (P L ) 

2-cell; an arc is a (P L ) 1-cell; tori, annuli, e tc. have the usual P L  struc-
o

tures. The boundary and interior of a manifold M are written dM and M. 

On the other hand, if X is a subset of a space Y, the frontier and (set- 

theoretic) interior of X in Y are denoted Fr X and Int X (or F ry X 

and IntY X).

By a simple curve we mean simply a (P L ) 1-sphere. On the other 

hand, a singular curve is a (P L ) map of the standard 1-sphere S1 (bound

ary of the standard 2-simplex) into a space (polyhedron). A singular curve 

which is 1—1 will sometimes be called a parametrized simple curve, or a 

parametrization of its image.

In any connected polyhedron P , there is a bijective correspondence 

between (free) homotopy classes of singular curves in P , and conjugacy 

classes in ^ ( P ) .  (Here, as in other statements that are independent of 

the choice of a basepoint, we suppress the basepoint.) T H E  CO N JUG A CY  

CLASS ASSOCIATED WITH A SINGULAR C U R V E  G  W ILL B E  W RITTEN  

[cr]. If the singular curves o, t are such that [r] = [g]^, k an integer, we 

will say that r is homotopic to a k-th power of o. (Operations in a 

group such as raising to the k-th power are clearly defined on conjugacy 

cla s se s .)  We will say that r is a k-th power of o if r(S1) = ^ (S1), and 

t is homotopic to a k-th power of g  in the space ^(S1). Singular curves 

g  and r are said to be anti-homotopic if r is homotopic to a minus-first 

power of g. A singular curve is homotopic to a power of a simple curve y 

if it is homotopic to a power of an orientation of y. A singular curve is 

contractible if it is homotopic to a constant map; a simple curve is con

tractible if a parametrization of it is contractible.

Two embeddings f, g : P -> Q are isotopic if there is a map H : P x  I^Q , 

such that for all t e l  the map Hj.: P -> Q defined by H .̂(p) = H(p, t) is 

an embedding, and such that Hq = f, Ĥ  = g. They are ambient-isotopic 

if there is a homeomorphism h : Q -» Q, isotopic to the identity, such that
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h 0 f = g. Two simple curves are isotopic if they have isotopic orienta

tions; two arcs a, /3 C Q are isotopic with endpoints fixed  if there is a 

homeomorphism j :a  -»/3 which is isotopic in Q to the inclusion, under 

an isotopy which is constant on da.

An (n—l)-manifold N contained in a n-manifold M is 2-sided  if 

there is an embedding c : N x [ - 1 ,1 ]  -> M such that c(N x [ - 1 ,  l])  is a 

neighborhood of N in M, and c(n, 0) = n for all n e N. Such an embed

ding c is called a collar neighborhood of N. If N is 2-sided in M, 

then in particular N fl dM = dN. If N is 2-sided in M and f : M'-> M is 

a map, M' a manifold, we say that f is transversal to N if f_ 1 (N )= N' 

is a 2-sided submanifold of M', and if there exist collar neighborhoods 

c , c '  of N ,N ' such that f(c '(N 'x  it!)) C c (N x {t!)  for all t e [— 1 ,1 ], It is 

well-known that transversality is a “ general-position” condition: for ex

ample, if M/ is compact, f:M'->M is such that f(dM ')^dM , N is

2-sided in M, and f|dM' is transversal to dN C dM, then f can be 

approximated (in the metric sense, say) by a map which agrees with f on 

dM and is transversal to N. (These facts will be used only for dimen

sions < 3 .)

The fundamental results of Papakyriakopoulos on 3-manifolds — Dehn’s 

lemma, the loop theorem and the sphere theorem ([11], [12]; see also [14],

[16]) are crucial for the arguments in this paper. Many of the applications 

are made via two corollaries which we state below, with references or in

dications of proofs, as Principles 1 and 2.

D EFIN ITIO N . Let T be a surface in a connected 3-manifold M such 

that either T is 2-sided or T C dM. We say that T is incompressible 

in M if T is neither a disc in dM nor the frontier of a 3-cell in M, 

but ttjCO -»7*1 (M) is injective. More generally, if a 2-manifold T is 

either 2-sided in M or contained in dM, T is incom pressible in M if 

each of its components is incompressible.

P R IN C IP L E  1. Let M be a connected 3-manifold, and let the 2-manifold 

T be either 2-sided in M or contained in dM. Assume that T is neither
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8 disc in (9M nor the frontier of a 3-cell in M. Then T is incompressi

ble if, and only if, for every disc A C M such that A fl T = <9A, <9A 

bounds a disc in T.

Proof. The “ only if” assertion follows from the elementary fact that a 

contractible simple curve in a 2-manifold always bounds a disc. The 

“ if” assertion is essentially the second sentence of 2 .B .1  on p. 14 of

[17]. (A slight paraphrase of this sentence is, “ if T is a compact

2-sided surface in a 3-manifold M and cannot be reduced, then ^ ( T )  -> 

^ (M ) is injective.” The statement that T “ cannot be reduced” is pre

cisely  the hypothesis of our assertion; and the compactness of T is not 

used in the proof of the second sentence of 2 .B .I .)

DEFINITION. A homotopy 3-cell is a compact, contractible 3-manifold 

whose boundary is a 2-sphere.

P R I N C I P L E  2. Let M be a connected, orientable 3-manifold. We have 

772(M) = 0 if and only if every 2-sphere in M bounds a homotopy 3-cell 

in M.

Proof. This is proved in the same way as Theorem 2 on p. 5 of [7], ex

cept that the term “ c e ll” is replaced in both its occurrence by “ homotopy

3 -ce ll,” and the reference to the Poincare hypothesis is deleted. The 

fact that a simply connected 3-manifold bounded by a 2-sphere is a 

homotopy 3-cell follows from Poincare duality and the Hurewicz theorem.

Finally we use the following general conventions. All unlabeled 

homomorphisms (e.g. n,1(X) -» ^ ( Y ) )  are understood to be induced by in

clusion. The Euler characteristic of a finite polyhedron P is denoted 

X(P)- We use c(x) to denote the conjugacy class of an element x of a 

group, and < x >  to denote the subgroup generated by x.

§1. Divisibility of loops in boundary surfaces

We define a notion of divisibility  for conjugacy classes  in the funda

mental group of a surface, and prove a result (Proposition 1) to the effect
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that the divisibility associated to a curve in the boundary of a 3-manifold 

depends only on its homotopy class in the manifold. The proof of Proposi

tion 1 given here is due to W. Jaco  and B. Evans; it uses Waldhausen’s 

generalization of the loop theorem [19].

LRMMA 1. Let  G be the fundamental group of an orientable surface.

Any g e G  —{1} can be written as x11, where x is primary in G and 

n > 0; moreover, n and x are uniquely determined by g.

Proof. This is obvious if G is free abelian. We can therefore assume 

G = fl’1(T ,p ), where the surface T is not a torus. Let (T, p) be the 

based covering corresponding to the centralizer of g in G. Then T is 

an orientable surface, not a torus, and tt1(T) has non-trivial center.

In particular, T cannot be closed. Hence 7T1 (T) is free. As ^ ( T )

has a center, it has rank 1. Thus the centralizer of g in G is infinite

cy clic, and the lemma follows.

DEFINITION. In the situation of Lemma 1, x is called the primary root, 

and n the divisibility of g in G. As n obviously depends only on the 

conjugacy class c(g) of g, it may also be called the divisibility  of 

c(g). The divisibility of a singular curve a  in a 2-manifold T is the 

divisibility of [o] C 7r1(Ta ), where T a is the component of T contain- 

ing ^(S1).

C O R O L L A R Y  1. If an element of ttjCT), T an orientable surface, is 

divisible by an integer k, its divisibility in 771 (T) is an integer divisi

ble by k.

COROLLARY 2. If g e ^ ( T )  has divisibility k, then gm has divisi

bility |m|k for any integer m  ̂ 0.

In particular gm and gm have the same divisibility only if m = ±m'. 

Hence:
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C O R O L L A R Y  3 .  A cy clic subgroup of ^ ( T )  contains only two elements 

of a given divisibility.

The next lemma is well-known and may be proved in the same style as 

Lemma 1.

LEMMA 2. If T is an oriented surface, a conjugacy class in 7 71(T), 

represented by a non-contractible parametrized simple curve in T, is  

primary.

PROPOSITION 1. L et T be an incom pressible 2-manifold in the bound

ary of an orientable 3-manifold M. Then any two non-contractible singu

lar curves in T , that are freely homotopic in M, have the same 

divisibility in T.

Proof. Assume the assertion false. Then there are singular curves o^,o2 

in T , homotopic in M, with respective divisibilities m1 ,m 2 in T, 

where nij < m2 . Write T^(i = 1,2) for the component of T containing 

cr^S1). F ix  a basepoint t 6 T2< We may take o2 to be based, so that it 

defines an element g2 of ^ ( T ^ t ) ,  and denote by x the primary root 

of g2 in ^ (T ^ , t). The infinite cy clic subgroup < x >  of 77j(M) deter

mines a covering space M of M with a canonical basepoint t. Let p 

denote the covering projection and let a 2 be the lifting of o2 based at t. 

Identify 77̂  (M) with Z in such a way that x = 1. As Z is abelian, 

every free homotopy class  of singular curves in M defines an integer. 

Clearly o2 defines the integer m2 .

By the covering homotopy property, the based lifting o2 of ov, to M 

is freely homotopic in M to some lifting o1 of crlf  which again repre

sents the integer m2 if regarded as a loop in M. The components T^,T2 

of p—1(T) that contain o ^ o^  are incompressible but have non-trivial 

fundamental groups; thus «  ^ (T ^ )  »  Z, and by orientability T 1
o

and T2 are open annuli.
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I claim that there exist non-contractible parametrized simple curves 

£l>^2 in Ti ' T2 that are homotopic in M. This is trivial if T , = T„.
~ o o » I Z

If T 1 =j=T2 , the open subsets of dM are disjoint and contain

the mutually homotopic closed curves ox, a2 which are non-contractible

in M. The claim therefore follows from the theorem of [19].

Now since T 2 is an annulus and nx(T 2) -* nx(M) is surjective by

construction, <f2 represents an integer u = ± l .  Hence so does ^ . Let
— /, » j, .  ~ m i-\ u  ̂ -j
0^ ( 1 ) = q , and let g x be based at q; then the loop *crj  represents

0, and is therefore null-homotopic in T j . It follows that [ax] is divisi

ble by m2 in and therefore that [cr ]̂ is divisible by m2 in

n’1(T J ); thus m2 jm1 by Corollary 1 to Lemma 1, and the assumption 

m̂  < m2 is contradicted.

§ 2 .  Divisibility of boundary curves in the interior

D EFIN IT IO N . A 3-manifold pair is a pair (M ,T), where M is a con

nected 3-manifold and T C  (?M is a surface. (M,T) is acceptable  if 

7t2 (M)= 0, M is orientable, and T is compact and incompressible (Sec

tion 0).

N.B. We may have <9T  ̂ 0 .

D EFIN ITIO N . Let (M ,T) be a 3-manifold pair, and let c(g)  ̂ {1} be a 

conjugacy class in ?r1(T) having divisibility k. If the image of c(g) 

in itx(M) is divisible by some integer i  > 2k, c(g) will be called  

special (with respect to (M, T)).

The object of Sections 3 and 4 is to prove:

PROPOSITION 2. Let  (M ,T) be an acceptable pair. Them

(a) Any special conjugacy class in n x{T) can be represented by 

a power (Section 0) of a parametrized simple curve in T.

(b) If T is not a torus, then any finite set of special conjugacy 

cla sses in ^ ( T )  can be represented by a set of powers of 

disjoint parametrized simple curves.
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Now it is well-known and easy to prove that for any compact orientable 

surface  T , there is an integer N(T) such that T cannot contain more 

than N(T) disjoint, non-homotopic, non-contractible simple curves.

Assuming the truth of Proposition 2, a set of special conjugacy classes  

c l , ’ **, c n *n can be represented by powers of disjoint parametrized

simple curves y 1 in T. If we assume in addition that the c-

all have the same divisibility k, Corollary 3 to Lemma 1 of Section 1 im

plies that at most two of the y  ̂ can lie in any given cyclic subgroup of 

77’1(T); hence by the fact just recalled, n < 2 N(T). In particular we 

obtain the

C o r o l l a r y  t o  P r o p o s i t i o n  2 .  If (M ,T) is  an acceptable pair and 

T is not a torus, 77̂ (T) contains only finitely many special conjugacy  

cla sses having a prescribed divisibility in 77̂  (T).

It is this group-theoretical conclusion that is used in the proof of our 

main* result.

§3. Cutting and pasting

This section is preliminary to the proof of Proposition 2. It is 

assumed in this section and the next that (M ,T) is an acceptable pair.

The following technical notion is central to the argument:

D E FIN IT IO N . Let cr be a non-contractible singular curve in T. An 

envelope for o is a compact 3-manifold K C M, such that

(i) every component of dK is a torus and

(ii) the conjugacy class [a] C 77^(3), where B is the component 

of <9K containing cr, is special with respect to the

3-manifold pair (K ,B ).

Set A = K fl dM. The envelope K is called normal if the following 

extra conditions hold:
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(iii) A = T if T is a torus, and A is an annulus otherwise; and
o

(iv) the 2-sided 2-manifold (<?K)— A is incompressible in M.

If a has an envelope, it is said to be enveloped.

The obvious examples of enveloped curves are obtained as follows:

Let (M0 ,T q) be a 3-manifold pair, and let B C T 0 be an annulus. Let
0 1y be a non-contractible simple curve in <9(D x S ) such that

[y] C 771(D2 x S1) has divisibility > 2. In the disjoint union of M0 and
2 i o t

D x S  , identify B with a regular neighborhood of y in d(D x S  );
o

this gives a 3-manifold M, and we can set T = (T Q U d(D2 x S X)) -  B.

It is easy to find conditions guaranteeing that (M, T) is acceptable. In 
2 1this case  D x S is clearly a (normal) envelope for any non-contractible

o in d(D2 x S X) -  B.

The most vexed (and vexing) question left open in this paper is whether
2 1every enveloped singular curve has an envelope homeomorphic to D x S . 

This could perhaps be settled by F . Waldhausen’s unpublished “ torus - 

annulus theorem .'’

LEMMA 3. An enveloped singular curve has a normal envelope.

Proof. Let o have the envelope K. By enlarging K if necessary, we 

may assume that K fl dM is a 2-manifold. We may further assume that 

K fl (9M is connected and is contained in T; for if this is not the case , 

we can modify K by a (non-ambient) isotopy which is constant on a regu-o
lar neighborhood N of cr^S1) in K fl dM, and moves (d K )-N  into M.

To prove the lemma we must choose K so that (a) the surface A =

K fl dM is a torus or annulus, (b) A = T if T is a torus, and (c) each
o

component of (dK) — A is incompressible.

We claim, first, that if either (a) or (c) fails to hold, then o has an 

envelope K', such that K' H dM is again a surface in T, but such that 

M — K' has fewer components than M —K; and that if K satisfied (b), 

then so will K'.

 EBSCOhost - printed on 2/10/2023 4:58 PM via . All use subject to https://www.ebsco.com/terms-of-use



IN FIN ITELY DIVISIBLE ELEMENTS IN 3-MANIFOLD GROUPS 305

therefore • J  is divisible by £. So if • J were ± 1  or ± 2 , then 

£ > 2k > 0 would divide either k or 2k, which is impossible. Thus (*) 

is proved.
o

Write A 'j( i= l ,2 )  for the 2-sided annulus Bj — A jC M , where B i is 

the component of (9Ki containing A^. We will say that a 2-sided arc a 

in an annulus A traverses A if the endpoints of a lie in different com

ponents of dA. The lemma is proved by distinguishing two ca se s , accord

ing to whether (I) each arc, which is a component of A^ H A'2 , traverses 

both A\ and A '2 , or (II) some component of A'x fl A '2 is an arc which 

does not simultaneously traverse A\ and A'2 ,

Proof in C ase I. By hypothesis, ^A1 = dA\ has non-empty and trans

versal intersection with dA2 = dA'2 , in particular, dA  ̂ intersects A2 , 

and an arbitrary component of 0 A 1) fl A2 is an arc /3, 2-sided in A 2 , 

The endpoints of /3 lie in dAj fl dA2 = dAj fl dA2 - The components 

a , a *  of A\ PI A 2  containing these endpoints must be arcs by trans- 

versality (A^ and A'2 are components of Fr Kj and Fr K2). Since we 

are in case  I, a and a *  must traverse A^. It follows that a U a *  is 

the frontier in A\ of a disc [“ rectangle” ] R C A^, such that /3 C R.

The boundary of R consists of a , /3, a *  and another arc fd*CdA\ = dA1,

We claim that dR C K2 - In fact, by construction we know that a U a*

C A 2  and /3 C A2 - Hence, by transversality, K2 contains some neigh

borhood of a U /3 U a *  in R. Thus if /3* were not contained in A2 =
°  °  sk ' /

K2 fl dM, j8* would intersect dA2 = dA'2 ; and for any x e /3 fl dA'2 , 

the component a Q of A\ H A'2 containing x would be an arc, again by 

transversality. But Oq would be contained in R, since it could not 

intersect a or a * . Furthermore, since we are in case  I, a Q would
o

traverse A^. Hence a Q would have an endpoint in /3. This is impossi

ble; for since fd is 2-sided in A2 , we have /3 H d A 2 — 0 .  Thus the 

claim is proved.
By transversality, the component J of A  ̂ H K2 containing dR is 

a 2-sided surface in K2 , and J  C R. Since A j 3 J  is 2-sided in M
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we have J  fl A2 C J  fl <9M C dR. This shows that the intersection number 

y2 * J  in K2 is numerically equal to the intersection number y2 • dR in 

B 2 (both are defined up to sign).

We can now show that /3 and /3* do not both traverse A2 . To do 

this, consider the simple curve dR C B 2 . Here B 2 is the union of the 

annuli A2 and A 2 , whose intersection is their common boundary; and 

dR consists of the disjoint arcs a and a * , which are 2-sided in A 2 , 

and the disjoint arcs /3 and /3*, which are 2-sided in A2 . Furthermore, 

since we are in case  I, a and a *  both traverse A 2 . If, in addition, 

both /3 and /3* were to traverse A2 , <9R would have intersection num

ber ± 2  with y2 , since y2 represents a generator of H1(A2 ). By the 

last paragraph we would have y2 • J  = ± 2 in K2 , contradicting the above 

observation (*).

Let bj be one of the arcs /3 ,/3*, chosen so as not to traverse A2 . 

Then bj is an arc contained in A2 H dh± and 2-sided in A2 , and its 

endpoints lie in a single component C of dA2 . Hence there is an arc 

b2 C C such that bj U b2 bounds a disc A C A2 , and the lemma is 

proved in Case I.

Proof in case II. In this case  we may assume, by symmetry, that some 

component of A\ fl A 2 is an arc a which does not traverse A\. Hence 

there is an arc bx C dA\ such that a U b1 bounds a disc [“ hemi-disc” ] 

Hi C A j. We may suppose a to be chosen so that Hj is minimal, i.e. 

contains no other arcs which are components of A\ fl A 2 . Thus (by
o

transversality) b 1 will contain no points of dA\ H dA'2 = dAx H dA2 .

It will be shown presently that a cannot traverse A 2 . This will im

ply the lemma via the following argument. Since a does not traverse A 2 , 

there is ap arc b2 C <9A2 such that a U b2 bounds a disc H2 C A 2 .

Now bx U b2 C T is a simple curve, since b1 contains no points of 

dA\ H <9A2 . On the other hand, the existence of the discs U1 and H2 

guarantees that br and b2 are each isotopic in M, with endpoints 

fixed, to a. Hence bx U b2 is contractible in M; since T is incom

pressible, b 1 U b2 must bound a disc A C T ,  as required.
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It remains to show that a cannot traverse A 2 . For this purpose, 

observe that since C dA-, contains no points of dA1 fl <?A9, we have
o I  Z

either (i) bj C A2 , or (ii) bj C T —A2 . We will assume that a 

traverses A 2 , and derive separate contradictions in the subcases (i) 

and (ii).

F irst suppose that (i) holds. Then a and bj are 2-sided arcs in 

A 2  and A2 respectively, and they have the same endpoints in dA2 = 

dA '2  (since a U b 1 =<9H1). Hence if we assume that a traverses A 2 , 

it follows that bx traverses A2 , and the simple curve dU1 = a U bj 

has intersection number ± 1  with y2 in the torus A2 U A 2 = B 2 C K2 . 

Now the component J  of A j fl K2 that contains dHj is a 2-sided 

surface in K2 , by transversality, and J  C H j. Since A^ 3 J  is 2-sided 

in M, we have J  fl A2 C J  fl dM C It follows that J also has inter

section number ± 1  with y2< But this contradicts (*) once again.

Finally, suppose that (ii) holds. Let L be a regular neighborhood of
o

b1 in T —A2 , such that L H dA2 is a regular neighborhood of 

bj fl (9A2 = dbj in dA2 - Then L is a disc and intersects A2 in two 

arcs, which lie in different components of dA2 . Since T is contained 

in the boundary of the orientable manifold M, and is therefore orientable, 

it follows that L U A2 is a disc with one handle.

On the other hand, let L * be a regular neighborhood of a in A'2 . 

Since da = <9bt , we may choose L * so that L * H dA2 = L fl dA2 . The 

frontier of L  (resp. L *) in T - A 2 (resp. A 2) consists of two arcs 

P j ,p 2 (resp. p*, P2 ); we may index these arcs so that <9pj = <9p*(i= 1,2). 

Now the existence of the disc Hx guarantees that a is isotopic to bx 

in M, with endpoints fixed. It follows that pi is isotopic to p* in M 

with endpoints fixed, for i = 1 ,2 .

Assume that a traverses A 2 * Then A'2 — L *  is a d isc, whose 

boundary consists of P*>P2' an(  ̂ ŵo °iiier arcs r i , r 2 ^ ^
clear that the boundary of the disc-with-handle L U A2 is precisely  

pt U U p2 U rT  Since pi is isotopic to p * ,d (LU  A2) is isotopic to 

the boundary of the disc A'2 - L * ,  and is therefore contractible in M.
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But T is incompressible, and so d(LU A2 ) must bound a disc in T. 

Thus T contains a disc and a disc with one handle having the same 

boundary. This is impossible, since we observed at the beginning of 

this argument that T cannot be a torus. This contradiction completes 

the proof.

C O R O L L A R Y .  Assume that T  is not a torus. Let  o w . a  be en-l ' 1 n
veloped singular curves. Then the o • are homotopic to powers of d is

joint simple curves.

Proof. It is enough to show that the cr- are homotopic to enveloped 

curves o 'x , which have normal envelopes K- (1 < i < n) such that the 

sets d(K^ndM) are disjoint. For then, since T is not a torus, the 

normality of the K- will imply that the sets fl dM are annuli; and 

since a 'j  lies in H dM, a'^ will be homotopic to a power of either 

component of d(K^ndM).

Inductively we may assume that o1 ,*••, already have normal

envelopes K1 ,--- ,K n_ 1 such that d(Kj H dM),***, dOK^j fl dM) are dis

joint. Now by Lemma 3, a has a normal envelope Kn. By taking Kn 

in general position we may suppose that d(Kn HdM) intersects 

d(Kj PI dM) U ••• U ^(Kn_ 1 H dM) transversally. If the number v of points 

in the latter intersection is > 0, we will show how to homotop to a 

curve cr*, which has an envelope K* such that d(K*HdM) intersects 

<9(Kj fl dM) U ••• U d(Kn_ 1 fl dM) transversely in fewer than v points. By 

induction on v, this will prove the corollary.
o

Since v > 0, Lemma 4 gives a disc A C T  with dA = bj U bn, where 

bj C d(Kj fl dM) for some j < n, bn C d(Kn n dM), and bj U bn = dbj = dbn. 

Among all such discs let A be taken to be minimal with respect to in

clusion. Then A is disjoint from d(Kx fl dM) U ••• U d(Kn fldM).

Hence if U is a small neighborhood of A in T, there is a homeo

morphism J  : T -> T, isotopic to the identity rel ( T - U ) ,  such that
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J(d(Kn ndM)) has exactly v—2 intersections with d(K^ H <9M) U ••• U 

^(Kn_ 1 H(9M), all transversal. Extend J  to a P L  homeomorphism 

J  : M -» M, and set a* = J  ° an, K* = J  (Kn).

§4. A tower

We use a “ tower” argument — following ideas of Papakyriakopoulos 

([12]), as refined by Shapiro, Whitehead and Stallings ([14], [16]) — to 

produce a converse to Corollary 1 to Lemma 3 of Section 3. Combined 

with the corollary to Lemma 4, Section 3, this will prove Proposition 2, 

which was stated in Section 2.

It will be useful in what follows to distinguish between simplicial 

com plexes and polyhedra: by a (finite-dimensional) polyhedron we under

stand a subset of a Euclidean space which is the underlying set |L| of 

some (locally finite, geometric) simplicial complex L. Similarly, we dis

tinguish between simplicial maps and piecew ise-linear (P L ) maps: a map 

f : P  -> P' of polyhedra is P L  if there are simplicial complexes L , L', 

with |L| = P , |L'| = P', such that f “ i s ” a simplicial map from L to L'.

DEFINITION.  Let L  and L ' be finite simplicial complexes, and let 

0  : L -> L ' be a simplicial map. The complexity of 0  is the number of

unordered pairs iv ,w ! of vertices of L such that 0 (v ) = 0(w ).

Whereas:

DEFINITION.  Let P ,Q  be polyhedra, and suppose that P is compact. 

The complexity of a P L  map f : P -> Q is the sm allest integer v for 

which there exist simplicial complexes L , L ' with |L| = P , |L'| = f(P)

C Q, such that f “ i s ” a simplicial map of complexity v from L to L'.

We will write v(f) for the complexity of f.

The significance of this notion of complexity (a measure of the failure 

of a map to be 1—1) lies in the following lemma, essentially due to 

Stallings. R ecall that a lifting of a P L  map to a P L  covering spaces is 

P L . A covering space is trivial if the covering projection is a homeomor

phism.
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LEMMA 5. L et  f : P  -* Q be a P L  map of polyhedra, where P is com

pact, and suppose that f(P)) -> ^ (Q ) is surjective. If f has a lifting 

f to a given non-trivial P L  covering space Q of Q, then v(f) < v(f).

Proof. Let L and L ' be simplicial complexes such that |L| = P ,

|L'| = f(P), and f : L -» L ' is a simplicial map of complexity v(f). Let 

p : Q -> Q be the covering projection, and let f(P) denote the component 

of p_ 1 (f(P)) that contains f(P). Then f(P) is a covering space of f(P). 

Hence f(P) can be identified (piecewise-linearly) with |L'|, where L ' 

is a simplicial complex, in such a way that p|f(P) is a simplicial map 

from L ' to L'\ and the lifting f : L -» L ' is automatically simplicial.

To prove the lemma, it suffices to show that this simplicial map 

f : L -» L ' has complexity less than i/(f), which is the complexity of the 

simplicial map f : L -> L'. Since f = f ° p, any two vertices of L which 

have the same image under f also have the same image under f; so 

f : L -» L ' has complexity < v(f). If equality held, then p|f(P) would be

1—1 and would therefore map f(P)) isomorphically onto 7r1(f(P)).

Since by hypothesis n l (f(P)) -> 77!(Q) is surjective, it would follow that 

7Ti(Q) -> 77!(Q) were surjective, contradicting our hypothesis that Q is 

connected and non-trivial.

It is assumed for the remainder of this section that (M, T) is an 

acceptable pair. Note that if M is a finite covering space of M and T 

is a component of the induced covering space of T, then (M ,T) is 

again an acceptable pair.

LEMMA 6.  L et o be a non-contractible singular curve in T. Let  M 

be a 2-sheeted  covering space of M, and let T be a component of the 

induced covering space of T. Assume that o has a lifting o to T, 

and that [o\ C 771(T) has the same divisibility as [o] C 771(T). Finally, 

assum e that o is enveloped. Then o is homotopic in T to an en

veloped singular curve.
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F irst suppose that (a) does not hold. Let B Q denote the component 

of dK that contains A; then since B 0 is a torus, ^ (A )  -» ^ (B g )  can

not be injective. Hence some component C of dA bounds a disc
o

A C B 0 - A ;  as T is incompressible, C must also bound a disc D C T. 

But since A is connected and contains the non-contractible curve a , we
o

must have DC T — A. Now A U D is a 2-sphere, and by Principle 2 of 

Section 0 it bounds a homotopy 3-cell E ; since K is connected and 

contains the non-contractible curve a, it can intersect E only in A.

We may set K' = K U E , proving the claim in this case .

Now suppose that (a) holds but that (c) does not. Then some com-
o

ponent S of (dK) — A fails to be incompressible. Now it follows from 

(a) that A is incompressible; for T is incompressible, ^ ( T )  is torsion 

free, and A contains a non-contractible curve. Hence if A is an annulus,
o

the annulus A' C (<9K) — A which has the same boundary as A is also  

incompressible, since its generating curve defines the same conjugacy 

class in ^ (M ) as the generating curve of A. Therefore S must be a 

torus. As S is not incompressible, we may use Principle 1 of Section 0 

to replace a non-contractible annulus in S by two d iscs, thus producing 

a 2-sphere S' C M. Then S' is homologically trivial, since 772(M) = 0, 

and therefore S is also homologically trivial. It follows that S bounds 

a compact P L  3-manifold R C M—K. We can set K' = K U R , and the 

claim is proved in this case  as well.

It follows from the claim just proved that a has an envelope Kj 

satisfying (a) and (c). Then K t is normal unless (b) fails to hold, i.e. 

unless T is a torus but Ax = Kx fl <9M is an annulus. In this case , let 

K2 be a regular neighborhood of Kj U T. K2 clearly is an envelope for 

a and satisfies (b).

Hence by the claim proved above, a has an envelope K3 satisfying

(a) and (c), and (b) as well.

C O R O L L A R Y  1. If a is enveloped then [a] is special with respect to

(M, T).
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A converse to Corollary 1 will be proved as Lemma 7 of Section 4.

C O R O L L A R Y  2. An enveloped curve is homotopic in T  to a power (S e c

tion 0) of a parametrized simple curve.

Proof. Every singular curve in a torus or annulus is homotopic to a power 

of a parametrized simple curve

LEMMA 4. Let  K1 ,K 2 be normal envelopes for singular curves o ^ ,o 2 

in T. Set = K- fl dM (i = 1,2) and suppose that dAj and <9A2 inter

sect each other transversally. If (dA j) (1 (dA2)  ̂ 0 ,  then there exists a 

disc A C T  whose boundary is of the form bj U b2 , where b̂  C dA  ̂ is 

an arc (i= 1,2), and bj H b2 = dbj = db2 .

Proof. By taking Kx and K2 in general position, without altering A 1

and A2 , we may assume that Fr Kj and Fr K2 (which by normality are

2-sided 2-manifolds) intersect transversally.

By hypothesis Aj and A2 have non-empty boundaries. Since the 

envelopes K 1 and K2 are normal, it follows that Aj and A2 are annuli
o

and that T is not a torus. Let y i C Ai be a simple curve carrying a 

generator of HjCAj). Any 2-sided surface in K4 has an integer intersec

tion number with y- , defined up to sign. We claim that

(*) No 2-sided surface in (i = 1,2) can have intersection

number ± 1  or ± 2  with y • .

To see this, fix orientations of ŷ  and of the 2-sided surface J C K- ,

so that the intersection number ŷ  • J  is a well-defined integer. Let

k > 0 denote the divisibility (Section 1) of the singular curve oi in dK|. 

Since is in A j, it is a ±k-th power (Section 0) of y-v Hence oi • J = 

± k(yi -J ) .  On the other hand, since oj is special in Ki by the defini

tion of an envelope, [ô \ is divisible by some integer £ > 2k in 77̂ (Kj);
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Proof. Let r : M -» M denote the (non-identical) covering transformation.
2 ~Then r = 1, but r has no fixed points. Let p : M -> M denote the

covering projection.

By Lemma 3 of Section 3, a has a normal envelope K. Set A = K PI

dM C T. By taking K in general position we may assume that dA and

d(rA) intersect transversally. (Of course this condition, and the following

seven paragraphs, are vacuous in the case  that A is a torus.)

We claim that if dA fl d(rA)  ̂ 0 ,  then there is a disc A C T  such
o

that (i) dA is a union of two arcs bx C dA and b2 C d(rA), (ii) A is 

disjoint from dA and from d(rA), and (iii) A fl rA = 0 .

To prove this, first apply Lemma 4 of Section 3, placing tildes on M 

and T, and taking a± = o, <j2 = t o , Kj = K, K2 = rK. This shows that 

there is a disc A satisfying (i). If A is taken to be minimal among all 

discs satisfying (i), then by transversality [cf. proof of Corollary to 

Lemma 4, Section 3] it will satisfy (ii) as well.

The proof of the claim will be completed by showing that (iii) follows 

from (i) and (ii).
o

If (iii) does not hold, then either rA or d(rA) intersects A. In the
o ~

first case , since A is a component of the set dM — (dA U d(rA)), which is
o o

invariant under r, we must have rA = A. Hence rA = A, and the 

Brouwer fixed-point theorem implies that r has a fixed point. This is a 

contradiction.

Now suppose that d(rA) intersects A. Then either rbj or rb2 

intersects A. Suppose for example that rbj fl A ^ 0 .  Since bj is the 

closure of a component of dA — d(rA), rb  ̂ is the closure of a component 

of d(rA) — dA. The only sets which intersect A and which may be com-
~ o

ponents of d(rA) -  dA are b2 and y -  b2 , where y is the component 

of d(rA) containing b2 - If Tbl = b 2 , then the simple curve bx U b2 is 

invariant under r. But A is the only disc in dM whose boundary is 

bj U b2 ; for otherwise the component of dM containing o would be a

2-sphere, and b would be contractible. Hence we again conclude tA = A,  

and again we have a contradiction.
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Finally, suppose that rb  ̂ = y — b2 , where y is a component of 

d(rA). Note that since to a is a non-contractible singular curve in the 

annulus rA, it is homotopic in tA to a k-th power (k > 0) of some 

parametrization yQ of y. Since [yQ] C ^ ( T )  is primary by Lemma 2 of 

Section 1, k is the divisibility of [a] in ^ ( T ) .  On the other hand, 

since bj U b2 bounds a disc A C T, y is isotopic to the simple curve
o o

bj U (y - b 2); and the latter is invariant under r, since rbj = y — b2 .

Hence [p °y 0] C ^ ( T )  is divisible by 2, and [p°cr] = [o] C ^ ( T )  is

divisible by 2k. But by hypothesis, [a] has the same divisibility in 

7t1(T) as [a] in ^ ( T ) ,  namely k. But this contradicts Corollary 1 to 

Lemma 1 of Section 1.

From the claim just proved we can deduce that if dA fl <9(rA) ^ 0, 
then there is a singular curve o '  homotopic to o on T , and a normal 

envelope K' for o', such that if we set A '= K' fl dM, dA' and r(dA') 

intersect transversally and in fewer points than dA and r(dA). In fact, 

the claim implies that there is a P L  homeomorphism f): T -> T, isotopic 

to the identity rel dT, such that f)(dA) H f)(d(rA)) contains four points 

fewer than dA H d(rA). We can extend f) to a P L  homeomorphism

I): M ^ M which is P L  isotopic to the identity. Then o ' =  f) ° o and 

K '=  f) (K) are the required curve and envelope.

We may therefore assume that

(1) dA fl d(rA) = 0 .
By taking K in general position, we may further assume that

(2) Fr K and Fr(rK ) intersect transversally .

We now claim that if some component y of (Fr K) H Fr(rK ) bounds 

a disc in Fr K or in Fr (rK), then there is a homotopy 3-cell E C M  

such that (i')  dE is a union of two discs D1 C Fr K and D2 C Fr(rK ), 

(ii') is disjoint from Fr(rK ), and (iiiO (dD^) H r((9D1) = 0.
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To prove this, recall that since the envelope K is normal, Fr K is 

an incompressible 2-manifold. Now if y C Fr K n Fr(rK ) bounds a disc
O

Dx C Fr K, say, we may take Dx to be minimal, so that Dj contains no 

components of Fr K H Fr(rK). By incompressibility, y also bounds a 

disc D2 C Fr(rK); and the minimality of Dj implies that D1 U D2 is a

2-sphere. By Principle 2 of Section 0, Dj U D2 bounds a homotopy

3-cell E C M, which therefore satisfies ( f  )• The minimality of Dj im

plies ( i f ) .

The proof of the claim will be completed by showing that ( i i f )  follows 

from ( f )  and ( i f ) .  Note that and r^D ^) are components of Fr K

H Fr(rK ). Hence if ( i i f )  does not hold, we must have r(<?Di) = Now

D1 is the unique disc contained in Fr K and bounded by dD  ̂; and D2 

is the unique disc contained in Fr rK and bounded by <9D2 = < 90^  r^ D !). 

It follows that rDj = D2 , and hence that D1 UD2 = <9E is invariant 

under r. But E is the only homotopy 3-cell in M bounded by <?E, and 

so rE = E . By a familiar application of the Lefschetz fixed point theorem, 

r must then have a fixed point, which is impossible. Thus ( i i f )  is 

established.

From the last claim we can deduce that if some component of Fr K f l  

Fr rK bounds a disc in Fr K or in Fr rK, then there is an envelope K 

for cr such that K' f l  <9M =  A, but such that Fr K' and F r tK' intersect 

transversally in fewer components than Fr K and Fr rK. In fact, if E 

is the homotopy 3-cell given by the claim, let P be a small regular 

neighborhood of E such that (Fr K) f l  P and Fr(rK ) f l  P are discs  

D * D D 1 and D2 DD2 . Let D *'C dP be a disc which is disjoint from 

D2 and which has the same boundary as Then U bounds a

homotopy 3-cell E * C P. Either E H K = 0  or E CK;  define K to 

be, respectively, K U E *  or K -  E *. Clearly K is a 3-manifold and 

Fr K '= (Fr K - D * )  U D*'. In view of ( i f )  and ( ii f ) ,  this shows that if P 

is a small enough neighborhood of E then Fr K f l  Fr(rK  ) has fewer 

components than F r  K  f l  Fr (rK) -  the components dDx and 3(rDx)
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having been removed. On the other hand it is clear that dK'= (d K -D ? ) U 

D j, so that dK is homeomorphic to dK, and therefore consists of tori. 

To show that K' is an envelope for cr, it remains to show that [o] is 

special with respect to (K' A). This is obvious if K C K'. The other 

possibility is that K = K' fl E * , where K' fl E * = D*'. But then, since  

E * is a homotopy 3-cell, ^ ( K ')  -> ^ (K )  is an isomorphism by van 

Kampen’s theorem, and it follows that o is special in K'.

We may therefore assume that

(3) No component of Fr K fl Fr(rK ) bounds a disc in

Fr K or in Fr rK .

From (1), (2), and (3), it follows that every component of (Fr K) fl 

Fr(rK ) is a simple curve, non-contractible both in Fr K and in Fr(rK ). 

Since each component of Fr K or Fr(rK ) is an annulus or a torus, it 

now follows that the closures of the components of Fr K — Fr(rK ) and 

Fr(rK ) — Fr K are all annuli and tori. But by (2), K U rK is a

3-manifold; and we have shown that its boundary is a union of annuli and 

tori, meeting only pairwise and only in components of their own boundaries. 

Hence each component of d(KUrK) has Euler characteristic zero.

Set K = p(K U rK ). Then K is covered by K U rK; hence it is a

3-manifold whose boundary components all have Euler characteristic zero. 

Since K C M must be orientable, the components of dK must be tori. 

Finally, by hypothesis, a and a have the same divisibility k; and 

since K' is an envelope, [a] C ^ (K )  is divisible by some integer 

I > 2k. Hence [o] C tt1(K) is divisible by I, and is therefore special 

with respect to (K ,A ). It follows that K is an envelope for 0 , and the 

lemma is proved.

In the proof of the next lemma, which is the crucial result of this 

section, we use a space constructed as follows. Let A be an annulus, 

let b and b' be the components of dA, and let S and S' be 1-spheres. 

In the disjoint union S'U A U  S make the identifications x ^  j(x )(xeb ),
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x ~  j (x ) (x 'e  b '), where j : b S and j ': b'-> S' are covering maps of

degrees k and £ respectively. The resulting space, which we will de-
£note by P^, can be identified homeomorphically with a polyhedron in 

such a way that the 1-spheres S and S' are subpolyhedra. Let S and 

S' be identified with the standard S1 via orientations that are compati

ble in the obvious sense. It is then clear that if a and o '  are singular

curves in a polyhedron Q, such that [a]^ = [a ']^  C ^ (Q ), then there is
£a map f : -* Q such that f|S = a, f|S' = o'\ and conversely, that if

such an f exists then [a]^ = [cr']^.

LEMMA 7. Every special conjugacy class in 77j(T) is represented by an

enveloped curve.

Proof. Let c(x) be special in ^ ( T )  and let k denote its divisibility 

in (T). Then c(x) is divisible in ^ (M ) by an integer £ > 2k. Set

c(x) = c ( y ) K  where c(y) is primary in tt^ T ), and c(x) = c(u) , c(u) C
£

77̂ (M). Then by the above discussion there is a P L  map f : P^ -» M

such that f | S represents c(y) in tt̂ T )  and f | S' represents c(u) in

77j(M). We may suppose f to be chosen so that f _ 1 (<9M) = S. We will 

prove by induction on the complexity KO that c(x) is represented by 

an enveloped curve.
£

We can always find a neighborhood N of f(P^) in M, and a neigh

borhood U of f(S) in T, such that U C N, (N ,U) is an acceptable
o

pair, and ^ ( ^ P p )  -> 771(N) is surjective. To see this, let UQ be a 

regular neighborhood of f(S) in T. If tzjCUq) -> t7x(T) is not injective, 

there is a disc DC T such that D H UQ = dD; then UQ U D is a

2-manifold with fewer boundary components than U0 - Hence by repeating 

this process a finite number of times, we obtain a surface U C T such

that U0 C U and n, (U) -> ttjCT) is injective. It follows that 77X(U) ->
£

771(M) is injective. It is clear from the construction that 771(f(P|c)) -» 

771(f(P^)U U ) is surjective. Now if N0 is a regular neighborhood of
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£
£(PlP ^ ^  *n M, the pair (Nq, U) has all the properties required of 

(N, U) except that tt̂ N q) may he non-zero.

But if t7-2 (Nq) ^ then by Principle 2 of Section 0 there is a

2-sphere 2  C N q  which does not bound a homotopy 3-cell in N q .

Since tt2(M) = 0, Principle 2 implies that 2  bounds a simply-connected

3-manifold B C M. Now (NqU B , U )  still has all the properties required 

of (N, U), except that 772 (NqUB )  may still be non-zero; but Nq U B  

has fewer boundary components than N0 , since B must contain a com

ponent of <?Nq. Hence it is again sufficient to repeat the process a 

finite number of times.

Now it is immediate from the definition of (P L ) complexity that f
o

still has complexity v(f) if it is regarded as a map of P^ into N.

Hence in doing the induction step we may replace (M, T) by (N, U); i.e .
£we may assume that ^jCfCP^)) -» 77̂  (M) is surjective.

If Hj(M;Q) has rank < 1, then dM has total genus < 1. If dM 

contains a 2-sphere, it follows from Principle 2 of Section 0 that M is a 

homotopy 3-cell; this is impossible since dM contains the non-contractible 

singular curve f|S. The boundary of M is therefore exactly a torus.

Hence if Hj (M;Q) has rank < 1, M is itself an envelope for cr, and 

the lemma is therefore true in this case.
0

Now suppose that Hj(M;Q) has rank > 1 . Note that H ^ P ĵ Q ) has
£ k 1 £rank 1, since 77̂  (P£) has a presentation < a, b : a =b >. Hence

f^ : HjCP^; Q) HjCM; Q) cannot be surjective; thus H^M; Z y im ^ r H j^ k ; Z)

-> Hj(M; Z)) is infinite, and therefore admits a homomorphism onto a group

of order two. It follows that M; Z) has a subgroup H of index 2

which contains the image of f# : ^ (P fc) ^ (M ) (basepoints being irrele-

vant since H is necessarily normal). This means that f lifts to a map

f : -> M, where M is some 2-sheeted covering of M.

Let T denote the component of the induced covering space of T

which contains f(S). Let c(y) denote the conjugacy class in ^ ( T )

determined by f|S, and c(u) the class in !Tj (M) determined by f|S'. Set
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c(x) = c(y) . Then c(y) is primary, since c(y) is, and c(x) therefore
o

has divisibility k in ^ ( T ) .  But the existence of the map f on 
_ o

shows that c(x) C c(u) . In particular c(x) is special, so that the 

hypotheses of the lemma are satisfied by (M, T) and c(x); in this con

text f obviously has the property required of f above. But since we
o

have assumed that ^ (fC Pk)) ^ (M ) is surjective, Lemma 5 implies that 

KD < v'(f). By the induction hypothesis, therefore, x is represented by 

an enveloped curve a in T. Since c(x) and c(x) both have divisibility 

k, Lemma 6 now shows that the projection of a in T, which represents 

c(x), is homotopic to an enveloped curve. This completes the induction. 

We can at last give the

Proof of Proposition 2. Statement (a) follows from Lemma 7 above and 

Corollary 2 to Lemma 3 of Section 3. Statement (b) follows from Lemma 7 

and the corollary to Lemma 4 of Section 3.

§5. Boundary tori

We must deal separately with acceptable pairs (M, T) for which T 

is a torus;. Proposition 2 gives no useful information in this case .

Note that since a torus T has an abelian fundamental group, it is 

natural to speak of elements of 771 (T) where until now we have spoken 

of conjugacy cla sse s .

D EFIN IT IO N . Let (M,T) be an acceptable pair. Anon-contractible 

singular curve o in T is called distinguished  (relative to (M, T)) if 

there is a singular curve in an incompressible component of <9M which 

is homotopic to o in M, but is neither homotopic nor anti-homotopic 

(Section 0) to o in dM.

D EFIN IT IO N . An oriented 3-manifold M is called exceptional if M is 

compact, and if each component of dM is a torus T such that 

im (tt1(T) -» ^ (M )) has index < 2 in ^ (M ).
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REM ARK. It may be shown, using the Stallings fibration theorem, than 

an exceptional oriented 3-manifold which is irreducible (cf. Section 6) is 

a regular neighborhood of a 1-sided Klein bottle or a 2-sided torus. This 

fact will not be needed.

PROPOSITION 3. L et  (M, T) be an acceptable pair such that T is a 

torus but M is not exceptional. Then any two distinguished singular 

curves in T which have the same divisibility in T are either homotopic 

or anti-homotopic (Section 0) in T.

Proof. Let ox and <r2 be distinguished and let each have divisibility k. 

Let be a singular curve in T (i= 1,2) such that ] e ^ ( T )  is pri

mary and [£|]k = [cr-J; we may assume that is a parametrized simple 

curve, for every primary element of ^ ( S 1 x S 1) is represented by such a 

curve.

It is enough to show that the simple curves ^ ( S 1) and ^ ( S 1) are 

isotopic to disjoint simple curves; for then £ x and f 2 are ^itlier homo

topic or anti-homotopic, and hence so are o1 and <r2 . We suppose 

^ ( S 1) and ^ ( S 1) to intersect each other transversally, and lo have 

been chosen within their isotopy classes so as to minimize the number of 

points in their intersection. Under these conditions we will show that

^ ( s 1 ) n  ^ ( s 1)  = 0 .

Note that

(*) there is no disc A C T  whose boundary has the form

a x U a2 , where C ^ (S 1) is an arc and ax fl a2 = 

dax — da2 .

For if such a A existed we could take it to be minimal with respect 

to inclusion; and ^ ( S 1) would then be isotopic, under an ambient 

isotopy constant outside a small neighborhood of A, to a curve which 

would intersect transversally in a smaller number of points.
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We will study ^  and £2 by lifting them to an appropriate cover

ing space. F ix  a basepoint x e T , and let M be the covering space of 

M determined by the subgroup im ( ^ ( T ,  x) -> rr1(M, x)) of ^ (M , x). Let 

x be the canonical basepoint of M, and let p : M -> M be the projection. 

Then since ^ ( T )  -» n^QA) is injective, ^ ( T )  -> 77̂  (M) is an isomorphism, 

where T is the component of p- 1 (T) containing x. On the other hand, 

772(M) ^  7r2(M) = 0, since (M ,T) is acceptable. Since the 3-manifold M 

with non-empty boundary is necessarily without homology in dimensions 

> 2, the Hurewicz theorem now implies that 7r̂ (M) = 0  for all i > 1. We 

can conclude that T C_> M is a homotopy equivalence; this follows, for 

example, from Whitehead’s theorem ([15], p. 405) that a map between con

nected polyhedra is a homotopy equivalence if it induces isomorphisms of 

homotopy groups in all dimensions.

It is clear from the construction that T is a degree-one covering of T.

We claim that no component B  ̂ T of dM can be a torus. F irst of 

all, since T C_» M is a homotopy equivalence, the generator of H2(T ;Z 2) 

maps onto a generator of H2(M; Z2); hence if B is a torus, a generator 

of H2(B; Z2) must either map to zero in H2(M; Z2), or else have the 

same image as the generator of H2(T; Z2 ). Thus either B or T U B  

bounds a compact 3-manifold, which by connectedness must be all of M. 

But B cannot bound M, since T C dM. Hence M is compact and dM 

= T U  B. It follows that p~1(T) is either T or T U B. On the other 

hand, since T C-» M is a homotopy equivalence, the exact homology 

sequence of (M ,T) shows that H j(M ,T ;Z ) = 0 for all i. Now M is 

orientable, since M is, and Poincare-Lefschetz duality ([15], p. 298) 

shows that H*(M, B; Z) = 0 for all i. By the universal coefficient 

theorem, H^M, B; Z) = 0 for all i. Again by the exact homology 

sequence, HX(B) -» H2(M) is an isomorphism; since ^ ( B )  and ^(M ) 

are abelian, this means that ^ ( B )  ^ ^ (M ) is an isomorphism. In the 

case  that p_ 1 (T) = T U B, it follows that p|B induces an isomorphism 

of ?r1(B) onto 7 t 1 ( T ) ;  thus B , as a covering space of T , has degree
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one. This implies that p *(T) = T U B is a degree-two covering space  

of T. On the other hand, in the case  that p_ 1 (T) = T, p_ 1 (T) is of 

course a degree-one covering of T. Hence the degree of M as a cover

ing space of M, which is equal to the degree of p- 1 (T) as a covering 

space of T, is at most two in any case .

Now let Tj be any component of dM. Then Tj is covered either by 

T or by B (possibly by both), with degree one. In particular T j is a 

torus. Moreover, since ^ ( T )  and 77̂ (B) are mapped isomorphically 

onto 77j(M) via inclusion, the subgroup im (77  ̂(T ^  -»771(M)) of 771(M) 

(defined a priori up to conjugacy) corresponds to the covering space M 

and hence has index at most two. This means that M is exceptional, a 

contradiction to the hypothesis. Thus the claim is proved.

Note, however, that any incompressible component B of dM has 

abelian fundamental group since M does. Since we have shown that B 

is not a torus if B  ̂ T , it must be an open disc or an open annulus.

Now, since the singular curve is distinguished for i = 1 , 2 ,  there 

is a singular curve p • in dM which is homotopic to cr. in M, but not 

in dM. By the covering homotopy property for covering spaces, the unique 

lifting cr- of a  ̂ to T is homotopic to some lifting p • of p j to dM; 

but cr| and p- cannot be homotopic in dM. If px were to lie in T, 

then since T C^ M is a homotopy equivalence, p- would be homotopic 

to a • in T; hence p̂  must lie in a component B ^  T of dM. By the 

above remarks B- is an open annulus or disc; since it contains the non- 

contractible singular curve p^, it is an open annulus.

Since a • is homotopic in T to a k-th power of ^ (S 1), cr- — and 

hence p̂  — are homotopic in M to a k-th power of the unique lifting 

of ^  to T. Thus if N̂  is a regular neighborhood of ^ (S 1) in T,

there are non-contractible singular curves in the disjoint open subsets
0  2
N̂  and Bj of dM which are homotopic in M. The generalized loop 

theorem ([19]) then asserts that there are simple curves x i C N-, rj C Bj, 

which bound an annulus A- C M. Since x̂  is necessarily ambient
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isotopic to ^ ( S 1) in N -, and since ambient-isotopic curves in T are 

ambient-isotopic in M, we may assume that x i = ^ (S 1). Furthermore, 

since Bj and B2 are either disjoint annuli or the same annulus, r̂  and 

r2 are ambient-isotopic to disjoint curves, and may therefore be assumed 

disjoint. Finally, we may assume that A- fl dM = dA^; and since ^ ( S 1) 

and £ 2 (S1) intersect transversally, we may take Ax and A2 to inter

sect each other transversally by putting them in general position.

We are at last ready to prove that ^ ( S 1) fl f 2(SX) = 0 . Since T is 

a degree-one covering of T , it suffices to show that ^ ( S 1) D ^ ( S 1) = 0 .  

Assume to the contrary that ^ ( S 1) H ^2(S1) contains a point y. The 

component of Ax H A2 containing y is an arc c (by transversality, 

since y c dM) and the other endpoint z of c must lie in (dA j) fl (dA2). 

But Z cannot lie in rj or r2 since rj fl r2 = 0  and since B i , B 2 

are disjoint from T. Hence z € ^ ( S 1) H £ 2(S*). In particular, for 

i = 1, 2 ,  c is a 2-sided arc in the annulus A^, and the two points of 

dc = c fl dA  ̂ lie in the same component ^ ( S 1) of dA* ; hence c is 

the frontier of a disc C A^, and (dD^)—c  ̂ is an arc â  C f-CS1).

Each choice of a point y e ^ ( S 1) H ^ ( S 1) determines discs Dx C Alf 

D2 C A2 in this way. Let y be chosen so as to make the disc mini

mal with respect to inclusion. Then a1 contains no point y' e ^ ( S 1) 0  

^ ( S 1), for y' would determine a disc D\ C D j. In particular, aj 0  a2 

= 0 ;  since a1 and a2 have the same endpoints, (1 a2 C T is a 

simple curve. It is contractible in M, for a^ can be (non-ambiently) 

isotoped through Dx to c , and then through D2 to a2 . Since T is 

incompressible, a1 U a2 must actually contract in T, and must there

fore bound a disc A C T. This contradicts the statement (*) proved 

above, and thus completes the proof.

C O R O L L A R Y  1. L et  (M, T) be as in Proposition 3 . Then any two 

singular curves in T which are homotopic in M are either homotopic 

or anti'homotopic in T.
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Proof. If the singular curves o and o '  in T are homotopic in M but 

are not homotopic or anti-homotopic in T, then by definition they are 

both distinguished. On the other hand, it follows from Proposition 1 (Sec

tion 1) that o and o '  have the same divisibility. Then Proposition 3 

asserts that o and o ' are homotopic or anti-homotopic, after all.

C O R O L L A R Y  2. L et (M, T )  be any acceptable pair such that T  is a 

torus. Then any conjugacy class in is represented by at most two

elements of T).

Proof. If M is not exceptional this is contained in Corollary 1. If M is 

exceptional we can identify 771(T) with its image in ^ (M ), which is of 

index < 2. Now for any x € 7r1(T), the number of conjugates of x in 

ttjCM) is equal to the index of the centralizer of x in ^ (M ), which con

tains ttjCT) since the latter is abelian. Thus any conjugacy class which 

intersects ^ ( T )  contains at most two elements.

We will also need

LEMMA 8. If in the acceptable pair (M ,T), M is an exceptional

3-manifold and T is a component of dM, then ^ ( T )  contains no 

special elements (Section 2).

Proof. Identify ^ ( T )  with its image in ^ (M ). Since ^ ( T )  has index 

< 2  in ^ (M ), it is normal; in particular, the square of any element of 

tt1(M) is in tt1(T). Now if x e ^ ( T )  is special and has divisibility k 

in n  ̂(T), it has the form x = y ,̂ where 1  ̂ y t ^ (M ) and £ > 2k. Then 

(y2 /  = x2 has divisibility 2k in 77̂  (T) by Corollary 2 to Lemma 1 of 

Section 1, but is divisible by £ > 2k > 0 in ^ ( T ) ,  since y2 € ^ ( T )  by 

the above. This contradicts Corollary 1 to Lemma 1 of Section 1.

§6. F ree  products with amalgamation

This section contains the only group theory required for the proof of 

the theorem of Section 7.
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Let F , G, and H be groups, and let i : H -> F  and j : H -> G be

monomorphisms, regarded as identifying H with subgroups of F  and G.

Recall that the free product of F  and G with amalgamated subgroup H

is the quotient of the free product F*G  by the relations i(h) = j(h) for

all h e H. Recall the fundamental property of F  *G , as proved for
H

example on pp. 198-199 of [6]: if $> ,r are complete sets of left coset

representatives for F , G,  then every element of F  *G  has a unique ex-
H

pression in the canonical form ha 1 where h(= i(h)= j(h)) e H,

a-x € $  U F  but a- /  H(1 < i < n), and a-+1 e 0  if and only if 

a i € r  (1 < i < n). We will call the integer n > 0 the length of the given 

element. The element will be called a cyclically reduced word if n < 1, 

or if one of the elements a 1 and a n is in $  and the other is in T .

LEMMA 9. In a free product with amalgamation F  * G ,
H

(i) every element is conjugate to a cyclically reduced word;

(ii) two cyclically reduced words which are conjugate in F  *G
H

have the same length, provided that one of them has length > 1;

(iii) if w is a cyclically reduced word of length n > 2, then wm

(m > 0) is a cyclically reduced word of length mn.

Proof. Part (i) is the initial statement of Theorem 4 .6  from p. 212 of [6]. 

Part (ii) follows immediately from Part (iii) of the theorem just quoted.

Part (iii) appears on the bottom of p. 208 and the top of p. 209 of [6].

C O R O L L A R Y .  If w e F * G  is such that wm is infinitely divisible for
H

some m > 0, w is conjugate to an element of F  or G.

Proof. If the conclusion is false, then by part (i) of the lemma, w is 

conjugate to a cyclically  reduced word w/ of length £ > 1. By part (iii) 

of the lemma, w 'm, which is infinitely divisible, is a cyclically  reduced 

word of length m£ > 1.
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For infinitely many integers n > 0 there exist elements xn of F * G
H

such that xn = w' . By part (i) of the lemma, xn is conjugate to a 

cyclically  reduced word x'n of some length \n. If An > 1, then (x'n)n 

is cyclically  reduced of length nAn by part (iii) of the lemma; hence by 

part (ii), nAfl = ml. Since this is possible for only finitely many values 

of n, some xn must be conjugate to an element of F  or G; hence 

w 'm must also be conjugate to an element of F  or G. But since w/m 

is cyclically  reduced of length > 1, this contradicts part (ii) of the lemma.

LEMMA 10. L et  F  and G be subgroups of groups F '  and G'. L et  H

be a group that is identified isomorphically with subgroups of F  and G,

so that F * G  and F '* G ' are defined. Then the natural homomorphism 
H H

/ x : F * G  -> F '*  G' is injective, and for any w e F  * G, has the same
H H H

length as w. Furthermore, if w rs cyclically reduced then so is /x(w).

Proof. Let w be written in the above canonical form as an element of

F  *G . Then using the identifications described in the hypothesis, we can 
H

regard this as the canonical form of pt(w) considered as an element of

F '* G '. The lemma follows, since the length of an element, and the 
H

properties of being cyclically reduced and of being the identity, can be 

read off from the canonical form of the element.

The final result of this section interprets the preceding group theory

in a topological context. Its proof is conveniently worded in terms of a 

construction that will be used in a stronger way in Section 7.

Let 3* be a 2-sided surface in a 3-manifold Then it is easy to 

construct a 3-manifold M, possibly disconnected, and disjoint surfaces 

T, T ' in dM, such that 3H is obtained from M by identifying T with 

T ' via some (P L ) homeomorphism, and such that 3* = T = T '  under the 

identification. Moreover, the pair ( M, TUT' )  is determined up to homeo

morphism by 5K and 3". We will say that M is obtained from 511 by 

splitting along 7 .
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LEMMA 11. L et 7  be an incom pressible 2-sided surface in a 3-manifold 

Ml. Then any conjugacy class  c(x) C 77̂  (Ml), such that x m is infinitely 

divisible for some m > 0, is represented by a curve in Ml — 3\

Proof. If  3* separates Ml, then since J  is incompressible, van Kampen’s

theorem provides an identification of 7 (̂511) with a free product with

amalgamation F  = n. (A) * tt* (B), where A and B are the com-
1 ^ ( 5 )  1

ponents of the manifold obtained by the splitting Ml at 3\ Hence by the 

corollary to Lemma 9, c(x ) is represented by a (singular) curve in A or
o o

B, and hence by one in A or B.

Now suppose that 7  does not separate Ml. Since Ml is orientable

we can define a homomorphism from Hj(Ml; Z) to Z as intersection num

ber with the surface J  (or with its fundamental class in H2(Ml,dMl; Z)).

This induces a homomorphism from 77j(Ml) to Z, whose kernel L deter

mines an infinite cyclic covering space Ml of Ml. Write p :Ml -» Ml for the 

projection, and r : DU -»DU for a generator of the covering group. If M is 

the closure of a component of 3H — p_ 1 (tT), then M is homeomorphic to 

the manifold obtained by splitting Ml at T ; its frontier in Ml consists 

of two surfaces 3" and r3\ each of which is mapped homeomorphically

onto 7  by p. We have DU = U rnM, rn _1M flrnM = rn(J , and rnM flrn M = 0
n<rZ

for |n'—n| > 1. Note also that J  is incompressible in DU, since J  is 

incompressible in Ml.

The image of the conjugacy class  c(x) under the intersection number

homomorphism is an integer v such that mi/ is infinitely divisible in Z;

this implies v -  0, i.e . c(x) C L . Moreover, for any conjugacy class

c(y) C 77 j  (Ml), such that c(y)P = c(x )m, the same argument shows that 

c(y) C L. It follows that c (x )m is actually infinitely divisible in L .

Hence a singular curve o representing c(x) has a lifting o in Ml, and 

the conjugacy class c(x) determined by o in 7TJ(5K) has infinitely 

divisible m-th power.
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By compactness we can find integers n1 < n9 such that oYS1) C 
nl n2r (M) U ••• U r (M). Suppose this to have been done in such a way that 

n2 “  nl -  0 has tlie sm allest possible value. Then we claim that nt = n2 .

Assume, to the contrary, that n1 < n2 . Then since J  is incompres

sible, van Kampen's theorem allows us to identify 77, (r l QA)U---U r 2(M))
, ni n9 - l

with an amalgamated free product F  *G , where F  = 77. (r (M)U---Ur (M)),
H L

n 9 n 9 ~
G = 7̂ 1 (r (M)), and H = tt̂ {t (j  )). Then the conjugacy class determined 

1̂ ^2by o in 771(r (M)U •••Ur (M)) is represented by a cyclically  reduced

word w in F * G ,  by part (i) of Lemma 9. Let £ denote the length of w.
H

Now set F '  = 77, (A), G' = 77,(8), where A and B are the closures of 
~ no at n 2 - l  °  n 9  °

the components of JH — r (j  ) containing r (M) and r (M) respec

tively. We can identify 77, (3H) with F '*G '. Furthermore, the natural map
H

F -> F '  is injective, for F '  can be identified with F  * tt<
ni ~

  TTjC A( 3  »

n, n2 --1
(A — (r (M)U*«*Ur z (M))); similarly the natural map G -> G' is injec

tive. Identifying F  and G with their images under these injections we 

see that F ,  G, F ', G', and H satisfy the hypotheses of Lemma 11. Hence 

c(/z(cl>)), which is the conjugacy class c(x) determined by a in 77̂ (511)

= F '* G ', is a cyclically reduced word of length £ in F '*G '. But we 
H H

observed above that c(x )m is infinitely divisible in 77̂ (511). Thus by the

corollary to Lemma 9, x is conjugate in F r * G' to an element of F
H

or G , i.e . to a cyclically  reduced word of length < 1. Part (ii) of 

Lemma 9 therefore shows that £ < 1.

Recalling that w e n ^ r  1(M)U---Ur 2(M)) = F  *G is a cyclically
H

reduced word of length £, we now know that w, which represents the

conjugacy c lass  in F * G  determined by o, is an element of F  or G;
** n, n9

i.e . o is homoto|)ic in r i (M)U---Ur Z(M) to a (singular) curve in

rn i(M)U***U r**2 (M) or in r 2(M). This contradicts the assumed mini

mality of n2 — n1 > 0; thus we must have nx = n2 .
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In other words, a  lies in a region r0 l (M), and by a homotopy it may 

be assumed to lie in r 1(M) c 3 K - p _ 1 (T).  Then p ° a is a curve in 

3H —T representing <x > .

§7. Hierarchies; the main theorem

D E FIN IT IO N . A 3-manifold M is irreducible if every 2-sphere in M 

bounds a 3-cell.

D EFIN ITIO N  (cf. [18], [20]). A compact, orientable, irreducible 3-manifold 

is sufficiently large if it contains an incompressible 2-sided surface. A 

compact irreducible 3-manifold M is almost sufficiently large if some 

orientable, irreducible finite covering of M is sufficiently large.

In [18], the sufficiently large manifolds are characterized among the 

compact, orientable irreducible 3-manifolds by their fundamental groups.

In particular it is shown that M is sufficiently large if HjCM; Z) is in

finite. This is true for example if M is the complement of an open regu- 

lar neighborhood of a knot in S .

We now state our main result.

T H EO R EM . If the compact, irreducible, orientable 3-manifold M is 

almost sufficiently large then M) has no infinitely divisible elements.

The proof of this theorem occupies the rest of the present section.

The following standard argument shows that for DK almost sufficiently 

large, ^(311) is torsion-free. Since %, is irreducible and orientable, 

Principle 2 of Section 0 implies that 772(Til) = 0. On the other hand, since  

some finite cover 3H of 3H is sufficiently large, ^(311) is either a non

trivial free product with amalgamation or admits a homomorphism onto the 

integers: this is shown in [18]. In either case , ^(JH) is infinite. By 

applying the Hurewicz theorem to the universal covering space of DR, one 

concludes that DU is aspherical (77n(3H)=0 for n >  1). By a theorem of
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P. A. Smith’s (Theorem 16.1 on p. 287 of [4] applied to the universal 

covering of DU), finiteness of dimension then implies that 7 (̂511) is 

torsion-free.

The proof of the above theorem now reduces to the case  where )K is 

orientable and sufficiently large via the following fact:

LEMMA 12. If a torsion-free group G has an infinitely divisible element 

A 1, so does each of its subgroups of finite index.

Proof. If a is infinitely divisible in G, so is a m for any m > 0. If

a /  1, then a m  ̂ 1 since G is torsion-free.

The proof in the case that DU is sufficiently large depends on Haken’s 

theory of hierarchies; we review the relevant results from [20].

D EFIN IT IO N . A hierarchy for a 3-manifold Dll is a sequence of 3-manifolds 

DU = M0 ,-*-,Mn, not necessarily connected, such that

(i) each component of Mn is a 3-cell, and

(ii) for 0 < i < n, M̂ +1 is obtained by splitting Mj along a

2-sided incompressible surface T- (Section 6).

The integer n > 0 is called the length of the hierarchy.

REM ARK. Any component of a manifold obtained by splitting an irreduci

ble manifold 3H at an incompressible surface J  is irreducible.

We extract the following result from [16]. It seems to be essentially  

due to Haken.

LEMMA 13. Every sufficiently large, compact, irreducible, orientable, 

connected 3-manifold 5K has a hierarchy.

Proof. If M   ̂ 0 ,  this is contained in Theorem 1.2,  p. 60 of [20]. If DU 

is closed, it has an incompressible surface we can split DU at 3̂  to 

obtain a 3-manifold M. Each component of M is irreducible, by the
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remark following the definition of a hierarchy, and has non-empty boundary.

duction on the length of a hierarchy of Dll. By definition, if DK has a

LEMMA 14. For i = 0 , 1 ,  (M j,Tj) is an acceptable pair.

Proof. Since J  is incompressible in )K, Tj is clearly incompressible 

in M|. On the other hand, Mj is orientable, and is irreducible by the 

remark following the definition of a hierarchy. Hence by Principle 2 of 

Section 0, 772(Mj) = 0.

Let 0  : )K -> )K denote the identification map.

D EFIN IT IO N . A lifting of a singular curve a  in DK is a singular curve 

a  in DK such that <£ o o = o.

The following elementary fact will be used twice.

Hence each component of M has a hierarchy, and it follows that )K has 

one.

To prove the theorem when DK is sufficiently large, we argue by in

hierarchy of length n, then DK can be split at some incompressible

2-sided surface 3* to produce a manifold DK which has a hierarchy of 

length < n. Arguing inductively, we assume that

(*) for any component M of DK , 7 7 j ( M )  is without

infinitely divisible elements  ̂ 1 .

Assuming in addition that 

( t )  7r1 (?K) has an infinitely divisible element a ,

we will produce a contradiction.

Let T q and denote the surfaces in d5K that are identified to 

produce T ; for i = 0 ,1 ,  let Mj denote the component of 5ll containing 

(so that M0 /  if and only if T separates JR).
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LEMMA 15. If and fi' are non-contractible (singular) curves in 

UR — 7  which are homotopic in UR, then there are singular curves /3 = 

fio* /3S = ft' (s > 1) such that

(i) are in T ,
and

(ii) j8* and )8 j+ 1  admit homotopic liftings in UR for 0 < i <  s .

Proof. L e t f : S 1 xI-»UR be a P L  homotopy between /3 and /3'; thus 

f(x, 0) = /3(x) and f(x, 1) = /3 '(x ), for all x e S 1 . We may take f to be 

transversal to 3\ Suppose that in addition we can  choose f so  that no
_■ 1 gr* i  O

component of f (J  ) bounds a d isc in S x I. Then it will be possible  

to index the components of f_ 1 ( J )  U (Sl x d l)  as S1 x ioi = SQ, Sj, *-- ,  

SS- !^ S s = S1 ~{li, in such  a way that Sj U Si+1 bounds an annulus A j , 

with Aj fl f” 1^ )  = 0 ,  for 0 < i < n. The lemma will then follow, for we 

can  se t /3j = f|Sj, where Sj is identified with S1 via an appropriate 

homeomorphism.

It is therefore enough to show that if some component y of f- 1 ( J )
i O / j

bounds a d isc A C S  x I, then there is a P L  homotopy f : S x l  -> Jll, 

tran sversal to !T and agreeing with f on S1 x dl, but such that f '- 1 ^ )  

has fewer components than f- 1 ^ ) .  To do th is, let A 7 be a regular 

neighborhood of A in S1 x I, such that A ' — A is disjoint from f""1 (3^)
° cr

and such that f(A '—A) is contained in a regular neighborhood N of J .  

Then f|<9A' is homotopic to a constant in UR, and therefore a lso  in 

N — 3* sin ce  J  is 2-sided and incom pressible. Hence we can  extend  

f|((S1 x l ) - A ' )  to a P L  map f/ |S1 xI ^UR such that f '(A ')  C N — 3\ 

Clearly f' has the required properties.

C O R O L L A R Y . The conjugacy cla ss  c ( a )  (s e e  t  above) is represented  

by a singular curve a Q in 3\

Proof. Since a  is infinitely divisible, there e x is ts  an elem ent x n of 

(UR), for each  of infinitely many integers n > 0 , such that x fln = a .
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By Lemma 11 of Section 6, c (a) is represented by a singular curve a in 

5H -  J ,  and each c(xn) is represented by a curve in )R — 3\ Now 

by the above assumption (*) a cannot be homotopic in — 7  to the 

n-th power (Section 0) of £ n for infinitely many n; fix n so that a is 

not homotopic to the n-th power rjn of in — 3\ Since o and rjn 

are homotopic in )H, Lemma 15 applies with /S = a , /3' = rj . The integer 

s appearing in the conclusion of Lemma 15 must be > 1, since otherwise 

a and rjn would be homotopic in — 3*. Hence we can define crQ to 

be the singular curve jSj. Since cr and admit homotopic liftings in 

M, they are certainly homotopic in 3H.

Let k denote the divisibility (Section 1) of [oq] C (3 ).

LEMMA 16. For each of infinitely many integers n > 0, there exists a 

singular curve on in 7  such that

(i) [an]C  77^(3  ̂ has divisibility k;

(ii) for some lifting on of <jn to some Tj (j = 0 or 1), [crn] C

77 j (Tj) is special (Section 2) with respect to the pair (Mj,Tj), 

and is divisible by n in 771(Mj);

(iii) on is either homotopic to oQ in 3", or e ls e  has a lifting

o 'n to some T j '( j '  = 0 or 1) which is distinguished (S ec

tion 5) with respect to the pair (M-', T- 0 ;
and

(iv) if 7  is a torus and separates DU, then crn has a lifting 

which is homotopic in J)T = Mq U Mj [disjoint] to some 

lifting of ctq.

Proof. Since a is infinitely divisible in 771 (?K), there are infinitely 

many integers n > 2k such that a = x nn for some xfl c 77-̂ (511). It follows, 

moreover, from Lemma 11 of Section 6, that each c(xn) is represented 

by a curve £ n C )H — 3\ On the other hand, any lifting of crQ to 5ll

is certainly homotopic to a curve o q in 5K; and if rjn is an n-th power

(Section 0) of in % — 3\ ^ q  = and rjn are homotopic in

So by Lemma 15, there are singular curves (7q = /3q, = rjn,
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such that are in T , and /3j and have homotopic

liftings to 5H for 0 < i < s. If we now define /8 q = cr0 , fi\ = (1 < i < n),

it is still true that /3'j and /3 j+1 have homotopic liftings to Ml ( 0<i <m) ;  

and /3"0, *, /3"s _ 1 are in 3\

We claim that the conclusions of the lemma are true if we set a = 8 'n s — l
First of all, since for 1 < i < s - 1 ,  jSj and j8 j+1 have liftings in

T 0 U Ti C dMl which are homotopic in Ml, Proposition 1 of Section 1

shows that /3 ̂  and fi\+i have the same divisibility in 3"; hence

° n = /3s __i has the same divisibility as /3Q = a 0 , namely k. This is

conclusion (i). On the other hand, since some lifting of a  .& n n r's —l
to T.-, j = 0 or 1, is homotopic in M: to /3_ = rj , which is an n-thJ J s  n

power of £ n in Mj, [<rn] C 77̂  (Mj) is divisible by n. But since, by con

clusion (i), o’n^^i CTj )  has divisibility k, our restriction of n to 

values > 2k guarantees that on is special. Thus (ii) is proved.

We may assume that /3'j and j8 are never homotopic or anti

homotopic (Section 0) in J  for 1 < i < m—1; for if they are we can re

place the sequence /3"s by a sequence with fewer terms but having

the same properties. Now if s > 1, this assumption implies in particular 

that crn = and are not homotopic or anti-homotopic in J ,

although they have homotopic liftings o '  and P's _ 2 to Ml. Thus o 'n

is not homotopic or anti-homotopic to fi's _ 2 in ^ j ' '  w^ere i' is ^e"
fined by j ^ S 1) C T j'. This says that o 'n is distinguished with respect 

to the pair (M j',T j')- 0n the otlier hand, if s = 1, then obviously on = 

j8 q = a 0 . This proves (iii).

Finally, suppose that J  is a torus and separates Ml. Then we can 

identify M0 and Mj with submanifolds of MT, and within each Mi we 

can identify T  ̂ with 3\ Note also that T  ̂ is disjoint from Mq (in 

Ml'), and T 0 from Mj.
By (ii), [crn] is special with respect to some (Mj,Tj)  for j = 0 or 1; 

by symmetry we can take j = 0. Then the manifold Mq is not exceptional, 

according to Lemma 8 of Section 5. (Note that Mj, on the other hand, 

may very well be exceptional.) Our assumption that and are
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never homotopic or anti-homotopic in J  therefore implies, by Corollary 1 

to Proposition 3 of Section 5, that they are never homotopic in Mq. But 

our original condition on the /3i means, in this case , that and /3'i+1 

are homotopic in M0 or in M1 for 1 < i < s —1. Thus = /3'Q and 

°n  ~ P 's-1  are ^omof°pic *n M1 , and conclusion (iv) is proved.

LEMMA 17. The singular curves on given hy Lemma 16 represent only 

finitely many homotopy cla sses  in 3\

Proof. F irst consider the case  where J  is not a torus. By conclusion

(ii) of Lemma 16, each <7n has a lifting in Tj , j = 0 or 1, which repre

sents a special conjugacy class in tt̂ (Tj). But in this case , by the 

corollary to Proposition 2, Section 2, each ^ ( T p  contains only finitely 

many special conjugacy classes  (relative to (M j,Tj)). The lemma follows 

in this case.

Next suppose that J  is a torus but does not separate DR. Then the 

split manifold DR is connected and has T 0 and T 1 among its boundary 

components. By conclusion (ii) of Lemma 16, there are special curves 

on with respect to one of the pairs (DR , Tq) and (DR , T-^). It therefore 

follows from Lemma 8 of Section 5 that DR is not exceptional. Hence by 

Proposition 3 of Section 5, each of T Q and T x contains at most two 

homotopy classes  of distinguished curves of divisibility k. But by con

clusion (iii) of Lemma 16, each on either is homotopic to cTq in 3", or 

else has a lifting cr' to T Q or T 1 which is distinguished, and which, 

by conclusion (i) of the same lemma, has divisibility k. It follows that 

in this case  the <7 n represent at most five different homotopy classes  

in J .

Finally, suppose that 7  is a torus and separates JR. Then we can 

identify MQ and with submanifolds of DR, and T  ̂ with J ,  within 

. By conclusion (iv) of Lemma 16, each on is homotopic to cr0 in 

Mq or in M1. But by Corollary 2 to Proposition 3 of Section 5, there is 

at most one homotopy class  of curves in T 0 which are homotopic to oQ
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in Mq, apart from the class of <t0 itself; and similarly in M1. Hence 

in this case  the a n represent at most three distinct homotopy cla sse s .

Proof of the theorem concluded. Lemma 16 gives singular curves a n in 

7  for an infinity of integers n > 0. By Lemma 17, these represent only 

finitely many homotopy classes in 7 ; thus by restricting n to a smaller 

infinite set of integers we may assume that the on are all homotopic in 

7 .  Furthermore, by (ii) of Lemma 16, each on has a lifting crn to some 

Tj (j = 0 or 1) such that [<7n] is divisible by n in 77̂  (Mj). By restrict

ing n to a still smaller infinite set of integers, and perhaps re-indexing, 

we may assume that these j are all equal to 0. Then the on all repre

sent the same non-trivial conjugacy class in ^(M q), which is divisible 

by each of integers n in our infinite set. This contradicts our induction 

hypothesis (*), and the theorem is thereby proved.
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