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Preface
The past two decades has witnessed the emergence of stochastic nonlinear partial
differential equations (SPDEs) and their dynamics in different fields such as physics,
mechanics, finance and biology etc. For example, there are corresponding SPDEs de-
scriptions for the atmosphere-oceanic circulation, for the nonlinear wave propagation
in random media, for the pricing of risky assets, and the law of fluctuation of stock
market prices. In early 1970s, mathematicians such as Bensoussan, Temam, Pardoux,
just to name only a few, initiated the mathematical studies of SPDEs and the stud-
ies of corresponding random dynamical systems began slightly later afterwards. In
the middle 90’s, Crauel, Da Prato, Debussche, Flandoli, Schmalfuss, Zabczyk et al es-
tablished the framework of random attractors, Hausdorff dimension estimates and
Invariant measure theory of random dynamic systems with applications to stochastic
nonlinear evolutionary equations. Recently, there are theoretical and numerical as-
pects of nonlinear SPDEs has been developed, resulting in many fruitful achievement
and subsequently, many monographs were published.

The authors of this book had been working in the fields of nonlinear SPDEs and
random dynamics as well as stochastic processes such as Lévy process and fractional
Wiener process for more than a decade. Seminars were held and discussions had been
going with scholars all over the world since then. Interesting and preliminary res-
ults were made on some mathematical problems in climate, ocean circulation and
propagation of nonlinear waves in randommedia.

The aim of book is twofold. First, to give some preliminaries that are of importance
to SPDEs. Second, to introduce latest recent results concerning several important SP-
DEs such as Ginzburg-Landau equation, Ostrovsky equation, geostrophic equations
and primitive equations in climate. Materials are presented in a concise way, hoping
to bring readers into such an interesting field of modern applied mathematics.

Chapter one introduces preliminaries in probability and stochastic processes, and
Chapter 2 briefly presents the stochastic integral and Ito formula, which plays a vital
role in stochastic partial differential equations. Chapter 3 discusses the Ornstein-
Ulenbeck process and some linear SDEs. Chapter 4 establishes the basic framework
of stochastic dynamic systems. In Chapter 5, latest results on several SPDEs emerging
from various physics backgrounds are given.

Last but not the least, I would like to take the opportunity to express sincere grat-
itudes to Dr. Mufa Chen, Member of Chinese Academy of Sciences, and Dr. Jian Wang
at Fuzhou University, from whom we benefited constantly in preparing this book.

Boling Guo
August 20, 2016
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1 Preliminaries

This chapter contains some preliminaries in probability and stochastic processes,
especially some basic properties of the Wiener process, Poisson process and Lévy pro-
cess. Because many contents in this chapter can be found in the other literature, we
here only give the conclusions and omit the proofs.

1.1 Preliminaries in probability

1.1.1 Probability space

There are many uncertainties and randomness in our natural world and social en-
vironments. A lot of observations and tests are asking for the research in random
phenomena. A random experiment must contain certain properties, usually requir-
ing that (i) the experiment can be repeated arbitrarily many times under the same
conditions and (ii) the outcome for the experiment may be more than one and all the
possible outcomes are known, but one can’t accurately predict which outcome would
appear in one trial.

The random experiment is usually called test for short and is expressed as E. Each
possible result in E is called a basic event or a sample point, expressed as9. The set of
all sample points in E, denoted by K, is called the space for basic event, and the set of
sample points is called event and is expressed in capital letters A,B,C, ⋯ . The event
A occurs if and only if one of the sample points in A occurs.

Take the “roll the dice” game as a simple example. The outcome can’t be predicted
in the experimentwhen the dicewas rolled once, but certainly it is one of the outcomes
“point one,”⋯ , “point six.” Hence,K = {1, 2, 3, 4, 5, 6} consists of six elements, repres-
enting the six possible outcomes in the “roll the dice” experiment. In this experiment,
“roll prime number point” is an event and consists of three basic events 2, 3, 5, which
we denote as A = {2, 3, 5}.

In practice, various manipulations such as intersection, union or complement to
subsets are needed. It is nature to ask that whether the result is still an event after such
manipulations. This leads to the concept of 3-algebra.

Definition 1.1.1. Let K be a sample space, then the set F = {A : A⊂K} is called a
3-algebra if it satisfies
(1) K ∈ F ;
(2) if A ∈ F , then Ac := K\A ∈ F ;
(3) if Ai ∈ F , then ∪∞i=1Ai ∈ F .

Then (K,F ) is called a measurable space and each element in F is measurable.
Two trivial examples are F = {Ø,K} and F contains all the subsets of K. These two
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2 1 Preliminaries

examples are too special to be studied inmathematics. The first one is so small that we
cannot get enough information that we are interested in, while the latter one is so big
that it is difficult to define a probability measure on it. Therefore, we need to consider
other intermediate 3-algebra we are interested in. For a collection C of subsets ofK, we
denote 3(C) the 3-algebra generated by C, that is the smallest 3-algebra containing C.

Definition 1.1.2. Let (K,F ) be a measurable space and P be a real valued function
defined on the event field F . If P satisfies
(1) for each Ai ∈ F , it has P(Ai) ≥ 0;
(2) P(K) = 1;
(3) for Ai ∈ F (i = 1, 2, ⋯ ,∞) with i ≠ j, AiAj ≐ Ai ∩ Aj = ∅, it has

P(∪∞i=1Ai) =
∞∑
i=1

P(Ai),

then P is called probability measure, and probability for short.

The above three properties are called Kolmogorov’s axioms, named after Andrey
Kolmogorov, one of the greatest Russian mathematicians. Such triple (K,F ,P) is
called a measure space or a probability space in probability theory. In Kolmogrov’s
probability theory, F doesn’t have to include all the possible subsets of K, but only
includes the subsets we are interested in. In such ameasure space,F is usually called
an event field and the element in F is called an event or a measurable set. The event
A = K is called certain event since the possibility for A to occur is P(K) = 1 and the
event A = Ø is called impossible event accordingly since P(Ø) = 0 thanks to properties
(2) and (3).

In the following, we regard K in (K,F ,P) as sample space, F as event field
in K, and P as a determinate probability corresponding to (K,F ). The properties in
the definition are called non negativity, normalization, and complete additivity of
probability, respectively.

We also note that for a fixed sample space K, many 3-algebra can be construc-
ted (hence not unique), but not every 3-algebra is an event field. For example, let
F1 = {Ø,K} and F2 = {Ø,A,Ac,K}, where A ⊂ K. By definition, F1 is certainly an
event field, but F2 is not necessarily an event field since A is possibly not measurable
under P.

After introducing the probability space, the relations and operations among
events and the conditional probability can be considered. Two events A and B are
calledmutually exclusive, if bothA,B can’t occur in the same experiment (but it is pos-
sible that neither of them occurs). If any two events are exclusive, then these events
are called mutually exclusive pairwise.

Theorem 1.1.1. The probability for the sum of some of mutual exclusion events is equal
to the sum of every event, i.e.,
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1.1 Preliminaries in probability 3

P(A1 + A2 + ⋅ ⋅ ⋅) = P(A1) + P(A2) + ⋅ ⋅ ⋅,

if Ai ∩ Aj = Ø whenever i ≠ j.

The conditional probability measures the probability of an event under the assump-
tion that another event has occurred. For example, we are interested in the probability
of “prime number occurs” in the “roll the dice” game, under the assumption that we
have known that the outcome in one trial is an odd number. We give the definition
below.

Definition 1.1.3. Let (K,F ,P) be a probability space, A,B ∈ F and P(B) ≠ 0. Then
the conditional probability of A given B or the probability of A under the condition B is
defined by

P(A|B) = P(AB)/P(B), (1.1.1)

where P(AB) = P(A ∩ B) = P(A and B both occur).

We also take the “roll the dice” as an example. Consider the event A=“prime point
occurs,” B=“odd point occurs,” and C=“even point occurs,” that is

A = {2, 3, 5}, B = {1, 3, 5}, C = {2, 4, 6}.

It can be calculated that the (unconditional) probability of A is 1/2. Now, if the event
B is assumed to have occurred, then we ask for the probability of A. By the definition,
the conditional probability of A under B is P(A|B) = P(AB)/P(B) = P({3, 5})/P(B) = 2/3.
Similarly, if the event C is assumed to have occurred, or we know that C has occurred,
then the conditional probability of A is P(A|C) = 1/3.

Another important concept in probability is independence. Consider two events A
and B. Generally speaking, the conditional probability P(A) of A is different from
P(A|B). If P(A|B) > P(A), then the occurrence of B enlarges than the probability of
A. Otherwise, if P(A) = P(A|B), then the occurrence of B has no influence on A. In the
latter case, the events A,B are said to be independent and

P(AB) = P(A)P(B). (1.1.2)

Definition 1.1.4. If A,B satisfy eq. (1.1.2), then A,B are said to be independent.

Definition 1.1.5. Let A1,A2, ⋯be at most countably many events. If for any finite events
Ai1 , Ai2 , ⋯ ,Aim, there holds

P(Ai1Ai2 ⋯Aim ) = P(Ai1 )P(Ai2 )⋯P(Aim ), (1.1.3)

then the events A1,A2, ⋯ , are said to be independent.

It is noted that the events in a subset of independent events are also independent.
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4 1 Preliminaries

Theorem 1.1.2. Let A1,A2, ⋯ ,An be independent, then

P(A1A2⋯An) = P(A1)P(A2)⋯P(An).

Next, we introduce the law of total probability and Bayes formula. Let B1,B2, ⋯be at
most countably many events, mutually exclusive, and at least one of them happens in
an experiment. That is, BiBj = Ø (impossible event), when i ≠ j and B1 + B2 + ⋅ ⋅ ⋅ = K
(certain event). Given any event A, noting K is a certain event, one gets A = AK =
AB1 + AB2 + ⋯ , where AB1,AB2, ⋯ are mutually exclusive as B1,B2, ⋯ are mutually
exclusive. Hence, by Theorem 1.1.1

P(A) = P(AB1) + P(AB2) + ⋅ ⋅ ⋅, (1.1.4)

and by the definition of conditional probability, we have P(ABi) = P(Bi)P(A|Bi), which
follows that

P(A) = P(B1)P(A|B1) + P(B2)P(A|B2) + ⋅ ⋅ ⋅. (1.1.5)

This formula is called the law of total probability. By eqs (1.1.4) and (1.1.5), the
probability of P(A) is decomposed into the sum of many parts. It can be under-
stood that the events Bi is a possible cause leading to A. The probability of A,
under the possible cause Bi, is the conditional probability P(A|Bi). Intuitively, the
probability of A, P(A), must be between the smallest and largest P(A|Bi) under this
mechanism, and also because the probabilities of P(Bi) are different in all kinds of
causes, the probability P(A) should be a weighted average of P(A|Bi), with the weight
being P(Bi).

Under the assumption of the law of total probability, one has

P(B|A) =P(ABi)/P(A)
=P(Bi)P(A|Bi)/

∑
j
P(Bj)P(A|Bj). (1.1.6)

This formula is called Bayes formula. Formally, it is just a simple deduction of the
conditional probability and the law of total probability. It is famous for its explan-
ation in reality and philosophical significance. For P(Bi), it is the probability of Bi
under no further information. Now, if it has new information (we know that A has
occurred), then the probability of Bi has a new estimate. If the event of A is viewed
as a result, and B1,B2, ⋯ are the possible causes of A, then we can formally view
the law of total probability as “from the reason to result,” while Bayes formula
can be viewed as “from the result to reasons.” In fact, a comprehensive set of stat-
istical inference methods has been developed by the idea, which is called “Bayes
statistics.”
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1.1 Preliminaries in probability 5

1.1.2 Random variable and probability distribution

Random variable, as the name indicates, is a variable whose value is determined
randomly. Strictly speaking, given a probability space (K,F ,P), random variable X is
defined as a measurable mapping from K to Rd. When d ≥ 2, X is usually called a ran-
dom vector, and d is the dimension. Random vectors can be divided into discrete and
continuous types according to the value of random variables. The research of random
variable is the content in probability, because in a random experiment, what is con-
cerned are variables, which are usually random and are often associated with certain
problems of interests.

Next, we consider the distribution of random variable.

Definition 1.1.6. Let X be a random variable. Then the function

F(x) = P(X ≤ x), –∞ < x < ∞, (1.1.7)

is called the probability distribution function of X, where P(X ≤ x) denotes the
probability of the event {9 : X(9) ≤ x}.

Here, it doesn’t request the random variable to be discrete or continuous. It’s obvious
that the distribution function has the following properties: (1) F(x) is a monotonically
nondecreasing function, (2) F(x) → 0 as x → –∞, and (3) F(x) → 1 as x →∞.

First, let us consider a discrete randomvariableX taking possible values a1, a2, ⋯ .
Then pi =P(X = ai), i= 1, 2, ⋯ is called the probability function of X. An important ex-
ample of the discrete distribution is the Poisson distribution. If X is a non-negative
integer-valued random variable with its probability function pi =P(X = i) = e–++i/i!,
then X is said to subject to Poisson distribution, denoted by X ∼ P(+), where + > 0
is a constant.

For the distribution of continuous random variable, it can’t be described as
the discrete ones. One method to describe continuous random variable is to use
distribution function and probability density function.

Definition 1.1.7. Let F(x) be the distribution function of a continuous random variable X,
then the derivative f (x) = F′(x) of F(x), if exists, is called the probability density function
of X.

The density function f (x) has the following properties:
(1) f (x) ≥ 0.
(2)

∫∞
–∞ f (x)dx = 1.

(3) For any a < b, there holds
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6 1 Preliminaries

P(a ≤ X ≤ b) = F(b) – F(a) =
∫ b

a
f (x)dx.

An important example of continuous distribution is the normal distribution, whose
probability density function is

f (x) =
1√
203

e–(x–,)2/232 , –∞ < x < ∞.

The associated random variable is usually denoted by X ∼ N(,, 32).
The above conclusions can be generalized to random vectors. Consider a

d-dimensional random vector X = (X1, ⋯ ,Xn), whose components X1, ⋯ ,Xn are
one-dimensional random variable. For A ⊂ Rn, X ∈ A denotes {9 : X(9) ∈ A}.

Definition 1.1.8. A nonnegative function f (x1, ⋯ , xn) on Rn is said to be the probability
density function of X if

P(X ∈ A) =
∫
A
f (x1, ⋯ , xn)dx1 ⋅ ⋅ ⋅ dxn, (1.1.8)

for any A ⊂ Rn.

We remark that similar to the one-dimensional case, we can introduce the probability
distribution function

F(x1, x2, ⋯ , xn) = P(X1 ≤ x1,X2 ≤ x2, ⋯ ,Xn ≤ xn),

for any random vector X = (X1, ⋯ ,Xn). For the random vector X, each competent Xi is
one-dimensional random variable and has its own one-dimensional distribution func-
tion Fi, for i = 1, ⋯ , n, which are called the “marginal distribution” of distribution F
or of random vector X. It is easy to see that the marginal distribution is completely de-
termined by the distribution F. For example, let X = (X1,X2) with probability density
function f (x1, x2). Since (X1 ≤ x1) = (X1 ≤ x1,X2 < ∞), we have

F1(x1) = P(X1 ≤ x1) =
∫ x1

–∞
dt1

∫ ∞
–∞

f (t1, t2)dt2,

and the probability density function of X1 is given by

f1(x1) :=
dF1(x1)
dx1

=
∫ ∞
–∞

f (x1, x2)dx2.

Similarly, in the multi dimensional case, we have for X = (X1, ⋯ ,Xn) that

f (x1) :=
dF1(x1)
dx1

=
∫ ∞
–∞

⋯

∫ ∞
–∞

f (x1, x2, ⋯ , xn)dx2 ⋅ ⋅ ⋅ dxn.
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1.1 Preliminaries in probability 7

We recall the conditional probability, based on which independence is introduced.
Now, we discuss the conditional probability distribution and the independence of ran-
dom variables. We also take the continuous random variables for example. Given two
random variables X1 and X2, we let f (x1, x2) be the probability density function of the
two-dimensional random vector X = (X1,X2). Consider the conditional distribution of
X1 under the condition a ≤ X2 ≤ b. Since

P(X1 ≤ x1|a ≤ X2 ≤ b) = P(X1 ≤ x1, a ≤ X2 ≤ b)/P(a ≤ X2 ≤ b),

by the marginal distribution function f2 of X2, it follows

P(X1 ≤ x1|a ≤ X2 ≤ b) =
∫ x1

–∞
dt1

∫ b

a
f (t1, t2)dt2/

∫ b

a
f2(t2)dt2,

which is the conditional distribution function of X1. The conditional density function
can be obtained by derivative on x1, i.e.,

f1(X1|a ≤ X2 ≤ b) =
∫ b

a
f (x1, t2)dt2/

∫ b

a
f2(t2)dt2.

It is interesting to consider the limited case a = b. In this limit, we obtain

f1(x1|x2) =f1(x1|X2 = x2)
= lim
h→0

f1(x1|x2 ≤ X2 ≤ x2 + h)

= lim
h→0

∫ x2+h

x1
f (x1, t2)dt2/ lim

h→0

∫ x2+h

x1
f2(t2)dt2

=f (x1, x2)/f2(x2).

This is the conditional density function of X1 under the condition X2 = x2, and we need
f2(x2) > 0 such that the above equality makes sense. It can be rewritten as

f (x1, x2) = f2(x2)f1(x1|x2), (1.1.9)

corresponding to the conditional probability formula P(AB) = P(A)P(B). In higher
dimensional case, X = (X1, ⋯ ,Xn) with probability density function f (x1, ⋯ , xn),
one has

f (x1, ⋯ , xn) = g(x1, ⋯ , xk)h(xk+1, ⋯ , xn|x1, ⋯ , xk),

where g is the probability density of (X1, ⋯ ,Xk), and h is the conditional probability
density of (Xk+1, ⋯ ,Xn) with the condition X1 = x1, ⋯ ,Xk = xk. The formula can also
be regarded as definition of the conditional probability density h. Integrating eq. (1.1.9)
w.r.t. x2, we have
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8 1 Preliminaries

f1(x1) =
∫ ∞
–∞

f (x1, x2)dx2 =
∫ ∞
–∞

f1(x1|x2)f2(x2)dx2. (1.1.10)

Next, we discuss the independence of random variables. By the above notations, if
f1(x1|x2) depends only on x1 and is independent of x2, then the distribution of X1 is
completely unrelated with the value of X2. That is the stochastic variables X1 and X2
are independent in probability.

Definition 1.1.9. Let f (x1, ⋯ , xn) be the joint probability density function of the
n-dimensional random variable X = (X1, ⋯ ,Xn), and the marginal density functions
of Xi are fi(xi), i = 1, ⋯ , n. If

f (x1, ⋯ , xn) = f1(x1) ⋅ ⋅ ⋅ fn(xn),

then the stochastic variables X1, ⋯ ,Xn are mutually independent or independent for
short.

The concept of independence of variables can also be considered in the following
view. If X1, ⋯ ,Xn are independent, then the probabilities of the variables are not
affected by other variables, hence the events

A1 = (a1 ≤ X1 ≤ b1), ⋯ ,An = (an ≤ Xn ≤ bn)

are independent.

1.1.3 Mathematical expectation and momentum

The probability distribution of random variable we introduced above is the most com-
plete characterization of the probability properties of random variables. Next, we
consider the mathematical expectation, momentum, and related topics. Let us first
consider the mathematical expectation.

Definition 1.1.10. If X is a discrete random variable, taking countable values a1, a2, ⋯
with probability distribution P(X = ai) = pi, i = 1, 2, ⋯ , and

∑∞
i=1 |ai|pi < ∞, then

EX =
∑∞

i=1 aipi is called the mathematical expectation of X.
If X is a continuous random variable with probability density function f (x) and∫∞

–∞ |x|f (x)dx < ∞, then E(X) =
∫∞
–∞ xf (x)dx is defined as the mathematical expectation

of X.

Next, we consider the conditional mathematical expectation of random variables. Let
X,Y be two random variables, we need to compute the expectation E(Y|X = x) or
simply E(Y|x) of Y under the given condition X = x. Suppose that the joint density of

 EBSCOhost - printed on 2/10/2023 4:53 PM via . All use subject to https://www.ebsco.com/terms-of-use



1.1 Preliminaries in probability 9

(X,Y) is given, then the conditional probability density function of Y is f (y|x) under
the given condition X = x. We then have by definition that

E(Y|x) =
∫ ∞
–∞

yf (y|x)dy.

The conditional mathematical expectation reflects the mean change of Y with respect
to x. Hence, E(Y|X) is a random variable and changes with X. In statistics, the condi-
tional expectation E(Y|x) is regarded as a function of x and is usually termed as the
“regression function” of Y to X.

From conditional mathematical expectation, we can get an important formula to
the unconditional mathematical expectation. Recall the law of total probability P(A) =∑

i P(Bi)P(A|Bi). This can be understood as to find the unconditional conditional prob-
ability P(A) from the conditional probability P(A|Bi) of A. In this regard, P(A) is the
weighted average of conditional probability P(A|Bi) with weight being the probability
P(Bi). By analogy, the unconditional expectation of Y should be equal to the weighted
average of the conditional expectation E(Y|x) of x with weight proportional to the
probability density f1(x) of X, i.e.,

E(Y) =
∫ ∞
–∞

E(Y|x)f1(x)dx.

The proof is not difficult and omitted here. Recalling that right-hand side (RHS) mem-
ber of this formula is just the mathematical expectation of the random variable E(Y|X)
with respect to X, hence we have

E(Y) = E(E(Y|X)).

Next, we consider the conditional expectation under 3-subalgebra of F .

Definition 1.1.11. Let (K,F ,P) be a probability space and G ⊂ F . If X : K → Rn is an
integrable random variable, then E(X|G ) is defined as a random variable satisfying
(i) E(X|G ) is G measurable;
(ii)

∫
A XdP =

∫
A E(X|G )dP ∀A ∈ G .

The conditional mathematical expectation has the following properties:

Proposition 1.1.1.
(i) Let X be G measurable, then E(X|G ) = X almost surely (a.s.)
(ii) Let a, b be constants, then E(aX + bY|G ) = aE(X|G ) + bE(Y|G ) a.s.
(iii) Let X is G measurable and XY be integrable, then E(XY|G ) = XE(Y|G ) a.s.
(iv) Let X be independent of G , then E(X|G ) = E(X) a.s.
(v) Let E ⊂ G , then
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10 1 Preliminaries

E(X|E ) = E(E(X|G )|E ) = E(E(X|E )|G ) a.s.

(vi) Let X ≤ Y a.s., then E(X|G ) ≤ E(Y|G ) a.s.

The proof can be found, for example, in Ref. [89]. Also, the following Jensen’s in-
equality is cited without proof. The more general Jensen’s inequality can be found
in standard real analysis textbooks.

Lemma 1.1.1. LetI : R → R be convex and E(|I(X)|) < ∞, then

I(E(X|G )) ≤ E(I(X)|G ).

In order to depict the dispersion of random variables, the concept of variance is
introduced.

Definition 1.1.12. Let X be a random variable with distribution F, then

32X = Var(X) = E(X – EX)2

is called the variance of X or F, and 3X the standard deviation of X or F.

It is easy to show Var(X) = E(X2) – (EX)2. As a generalization, one can consider the kth
moment of X around c, defined as E[(X – c)k], where c is a constant and k is a positive
integer. In particular, it is called the origin moment when c = 0, and central moment
when c = EX.

Now, let us introduce the concepts of covariance and correlation. Still take two-
dimensional random vector (X,Y) for example. Set

EX = m1,EY = m2; Var(X) = 321 , Var(Y) = 322.

Definition 1.1.13. E[(X – m1)(Y – m2)] is called the covariance of X,Y, denoted by
Cov(X,Y). Cov(X,Y)/(3132) is the correlation of X,Y, denoted by 1(X,Y).

From Schwarz inequality, it leads to Cov(X,Y) ≤ 3132 and hence –1 ≤ 1(X,Y) ≤ 1. If
X,Y are independent, then Cov(X,Y) = 0, and hence 1(X,Y) = 0. But the zero correl-
ation 1(X,Y) = 0 does not necessarily imply the independence of X,Y. The reason is
that the correlation is just the “linearly dependent coefficient,” which does not char-
acterize the general (nonlinear) relationship between X and Y. But it is true when
(X,Y) obeys the two-dimensional normal distribution. That is to say, when X,Y are
two-dimensional normal random variables, 1(X,Y) = 0 implies the independence of
X and Y.

Finally, let us simply introduce the law of large numbers and central limit the-
orem. In probability, if X1,X2, ⋯ ,Xn are some random variables, it is usually very
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1.1 Preliminaries in probability 11

difficult to compute the distribution of X1 + ⋅ ⋅ ⋅ + Xn. Then one asks naturally whether
we can find some approximate computations. In fact, this idea is not only possible
but also very convenient, since in many cases the limit distribution of the sum is just
the normal distribution. For this reason, the normal distribution plays an important
and a special role in probability. We usually call such a result “central limit theorem,”
which roughly states that the distribution of the sum converges to normal distribu-
tion. There is another limit theorem, “the law of large numbers,” which roughly states
that “frequency converges to probability” in statistics. Let us consider the n times in-
dependent and repeated experiments and observe whether the event A occurs in each
experiment. Set

Xi =
{
1, A happens in the ith experiment,
0, A does not happen in the ith experiment,

i = 1, 2, ⋯ , n. (1.1.11)

Then A occurred
∑

i Xi times in all the n times experiments, i.e., the frequency is pn =∑n
i Xi/nX̄(n). If P(A) = p, then “frequency converges to probability” is to say, in some

sense, pn is close to p when n is large enough. This is the law of large numbers in
general case, which happens when the experiments are observed for a large number
of times.

Theorem 1.1.3. Let X1,X2, ⋯ ,Xn, ⋯ be independent and identically distributed (iid)
random variables. Suppose that they have the same mean value , and variance 32, then
for any % > 0,

lim
n→∞

P(|X̄(n) – ,| ≥ %) = 0. (1.1.12)

In probability, this convergence is called “X̄(n) converges to , in probability,” which
is different from that in calculus. Here we also omit the proof, which can be found
in a general probability textbook. It is proper here to introduce the useful Chebyshev
inequality.

Chebyshev inequality: If Var(Y) exists, then

P(|Y – EY| ≥ %) ≤ Var(Y)/%2.

This is one of the pioneer law of large numbers proved by Bernoulli in 1713, which
is usually called the Bernoulli law of large numbers. The above theorem requires
the existence of variances of X1,X2, ⋯ , but when these random variables obey the
same distribution, such requirement is not necessary. This is the following Khintchine
theorem, which takes the Bernoulli law of large numbers as a special example.

Theorem 1.1.4. Let random variable X1,X2, ⋯ are mutually independent, obey the same
distribution, and have mathematical expectation EXk = , for k = 1, 2, ⋯ , then for any
% > 0, one has
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12 1 Preliminaries

lim
n→∞

P(|X̄(n) – ,| < %) = 1.

Now we make the central limit theorem mentioned earlier more precise. Let I(x) =
1√
20
∫ x
–∞ e–t2/2dt be the distribution function of the standard normal random variable

X ∼ N(0, 1).

Theorem 1.1.5. Let X1,X2, ⋯ ,Xn, ⋯ be iid random variables, EXi = ,, Var(Xi) = 32 with
0 < 32 < ∞. Then for any real number x, one has

lim
n→∞

P
(

1√
n3

(X1 + ⋅ ⋅ ⋅ + Xn – n,) ≤ x
)
= I(x). (1.1.13)

This theorem is usually called the Lindbergh-Lévy theorem, which states that when n
is sufficiently large, the standardized variable of the sum

∑n
k=1 Xk of iid random vari-

ables X1,X2, ⋯ ,Xn with mean , and variance 32 approximately obeys the standard
normal distribution, i.e., approximately,∑n

k=1 Xk – n,√
n3

∼ N(0, 1).

Theorem 1.1.6. Let X1,X2, ⋯ ,Xn, ⋯ be iid random variables, and Xi satisfies the distri-
bution

P(Xi = 1) = p, P(Xi = 0) = 1 – p, 0 < p < 1.

Then for any real number x, one has

lim
n→∞

P
(

1√
np(1 – p)

(X1 + ⋅ ⋅ ⋅ + Xn – np) ≤ x
)
= I(x).

It is called the DeMoivre–Laplace theorem, which is the pioneer central limit theorem.
At the end of this section, we collect some useful convergence concepts. They are

often encountered in probability and stochastic analysis.

Definition 1.1.14. Let {Xn; n ≥ 1} be a random variable sequence, if there is random vari-
able X such that for any % > 0, limn→∞ P(|Xn – X| ≥ %) = 0, then the random variable
sequence {Xn; n ≥ 1} is said to converge to X in probability, denoted as Xn →P X.

If P(9 : limn→∞(Xn(9) – X(9)) = 0) = 1, then {Xn; n ≥ 1} is said to converge to X a.s.
or with probability 1, denoted as Xn → X a.s.

Let X,Xn(n ≥ 1) have finite pth moment for some p ≥ 1. If limn→∞ E(|Xn – X|p) = 0,
then {Xn; n ≥ 1} is said to converge to X in Lp norm, denoted as Xn →Lp X. In particular,
when p = 2, {Xn; n ≥ 1} is said to converge to X in mean square.
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1.2 Some preliminaries of stochastic process 13

One can show that both convergence in mean square and convergence a.s. imply
convergence in probability, but the inverse is not true. Convergence in mean square
and convergence a.s. cannot imply each other. But convergence in probability implies
convergence a.s. up to a subsequence by Riesz theorem.

1.2 Some preliminaries of stochastic process

In this section, we will simply introduce some basic concepts of stochastic pro-
cess. The stochastic process, roughly speaking, is a class of random variables X =
{X(t,9)}t≥0 which is defined on the same probability space (K,F ,P) and depended on
a parameter t. Throughout X(t,9) is usually simplified as Xt(9) or Xt.

Definition 1.2.1. Let (K,F ,P) be a probability space and T be a given parameter set. If
for any t ∈ T, there is a random variable X(t,9), then {X(t,9)}t∈T is a stochastic process
on (K,F ,P), denoted by {X(t)}t∈T. The set of all possible states of X(t) is called the state
space or phase space, denoted asS . T is called the parameter set, usually representing
time.

From another view, the stochastic process {X(t,9)}t∈T can be regarded as a function
of two variables T and K. For fixed t ∈ T, X(t,9) is a random variable on (K,F ,P),
while for fixed9 ∈ K, X(t,9) is a usual function defined on T, which is called a sample
function or a sample path of {X(t,9)}t∈T .

Here, we have to mention the Kolmogorov theorem, whose starting point and con-
clusion are as follows. To translate a real problem to a stochastic process model, first
one has to establish a probability space (K,F ,P) and on which a group of random
variables, such that any finite-dimensional joint distribution of these random vari-
ables has the same distribution to the real problem we observed. Generally speaking,
it is not difficult to construct (K,F ). For example, one can let K = S T , and F = GT ,
where G is the minimal 3-algebra generated by the open subset of S . But it is usu-
ally difficult to construct the probability measure P. Furthermore, we only know some
finite-dimensional distribution in real problems, andwe need some compatible condi-
tions in order to guarantee that P is uniquely determined by these finite-dimensional
distributions.

Assume there is a stochastic process X = {Xt}t∈T on (K,F ,P), taking values in
the state space (S , G). For any integer n and t1, t2, ⋯ , tn ∈ T, the joint distribution of
random variables (Xt1 (⋅), ⋯ ,Xtn (⋅)) is a probability measure pt1,⋯ ,tn (⋅) on (S n, Gn) and

pt1,⋯ ,tn (⋅) := P(9 : (Xt1 (⋅), ⋯ ,Xtn (⋅)) ∈ B), B ∈ Gn,

where Gn is the 3-algebra generated by the open subset of S n. Here pt1,⋯ ,tn (⋅) is
called the marginal measure of X at times t1, t2, ⋯ , tn. It is obvious that for n ≥ 1 and
t1, t2, ⋯ , tn ∈ T, ti ≠ tj, i ≠ j, pt1,⋯ ,tn (⋅) has the following properties:
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14 1 Preliminaries

(K.1) pt1,⋯ ,tn,⋯ ,tn+m (B ×S m) = pt1,⋯ ,tn (B) for B ∈ Gn;
(K.2) Let 4 : 4{1, 2, ⋯ , n} = {i1, i2, ⋯ , in} be a permutation on {1, 2, ⋯ , n}, and set

4B = {(xi1 , xi2 , ⋯ , xin ); (x1, x2, , ⋯ , xn) ∈ B}, then

pt1,⋯ ,tn (B) = pti1 ,⋯ ,tin (4B).

Conditions (K.1) and (K.2) are the Kolmogorov compatible conditions. Here the prob-
lem is that given a class of distributions satisfying the compatible conditions, can we
find a probability measure P such that (K.1) and (K.2) hold. Kolmogorov theorem gives
an affirmative answer.

Consider a complete separable metric space S and the 3-algebra G generated by
its open subset. Such a space (S , G) is called a Polish space. The following set is called
cylindrical set:

At1,⋯ ,tn = {9 = (9t, t ∈ T) ∈ S T ; (9t1 , ⋯ ,9tn ) ∈ B}, B ∈ Gn,

where t1, ⋯ , tn ∈ T are mutually different. Set

C = {At1,⋯ ,tn ;B ∈ Gn,∀t1, ⋯ , tn ∈ T mutually different, n ≥ 1},

K = S T and F = 3(C ).

Theorem 1.2.1 (Kolmogorov). Let (S , G) be a Polish space and probability distributions

{pt1,⋯ ,tn (⋅); n ≥ 1,∀t1, ⋯ , tn ∈ T mutually different}

satisfy compatible conditions, then there is a unique probability measure P in (K,F ),
such that for all n ≥ 1, t1, ⋯ , tn ∈ T with ti ≠ tj, i ≠ j and B ∈ Gn, there holds

P{9 = (9t); ((9t1 , ⋯ ,9tn ) ∈ B)} = pt1,⋯ ,tn (B).

Next, we introduce four special types of stochastic processes.
1. Process with independent increments: Let t1 < t2 < ⋅ ⋅ ⋅ < tn, ti ∈T, 1≤ i≤ n.

If the increments Xt1 ,Xt2 –Xt1 , ⋯ ,Xtn –Xtn–1 are mutually independent, then X is
called a process with independent increments. If for any 0≤ s< t, the distribution of
increment Xt – Xs depends only on t – s, then X is said to have stationary increment.

2. Markov process: If for any t1 < t2 < ⋅ ⋅ ⋅ < tn < t and xi, 1≤ i≤ n, one has

P(Xt ∈ A|Xt1 = x1,Xt2 = x2, ⋯ ,Xtn = xn) = P(Xt ∈ A|Xtn = xn),

then X = {Xt}t∈T is called a Markov process. The formula implies that the cur-
rent state doesn’t depend on the past states. In other words, the Markov process is
memoryless.
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3. Gauss process: If for any positive integer n and t1, t2, ⋯ , tn ∈T,
(Xt1 ,Xt2 , ⋯ ,Xtn ) is an n-dimensional normal variable, then the stochastic pro-
cess {Xt}t∈T is called a normal process or a Gauss process. The Wiener process (c.f.
Definition 1.4.1) {Wt}t∈T is a special case of normal process.

4. Stationary process: If for any constant 4 and positive integer n,
t1, t2, ⋯ , tn ∈T, t1 + 4, t2 + 4, ⋯ , tn + 4 ∈ T, (Xt1 ,Xt2 , ⋯ ,Xtn ) and (Xt1+4,Xt2+4, ⋯ ,Xtn+4)
have the same joint distribution, then stochastic process {Xt}t∈T is called a (strict)
stationary process.

If, furthermore, EXt = constant and for any t, t + h ∈ T, the covariance E(Xt –
EXt)(Xt+h – EXt+h) exists and is independent of t, then the process {Xt}t∈T is called a
stationary process.

Example 1.2.1 (white noise). Let X = {Xn}n∈Z be a real- or complex-valued random vari-
able sequence, EXn = 0 E{|Xn|2} = 32 < ∞ and EXnXm = $nm32, where $nm = 1 if n = m
and 0 otherwise. Then it is easy to see that X is a stationary process. In this example,
X = {Xn}n∈Z is usually called white noise.

1.2.1 Markov process

For our applications in partial differential equations, we mainly consider the Markov
process with continuous time, while sometimes we also use discrete time Markov pro-
cess as simple examples. First, we consider the case of discrete state space S . Such a
Markov process with continuous time and discrete state space is also called a Markov
chain.

Since theMarkov process ismemoryless, asmentioned earlier, the state at a future
time t depends only on the present known state at time s (s ≤ t), but not the past
state. The transition probability p(s, t, i, j) = P(Xt = j|Xs = i) denotes the probability
of the process lying in j at time t ≥ s, given the process lying in state i at time s. If
the transition probability depends only on t – s, then the continuous-time Markov
chain is called homogeneous and denoted by pij(t – s) = p(s, t, i, j) for simplicity and
P(t – s) = (pij(t – s)) for i, j ∈ S and t ≥ s is called the transition probability matrix. It is
obvious that ∀s ≤ 4 ≤ t,

p(s, t; i, j) =
∑
k∈I

p(s, 4; i, k)p(4, t; k, j). (1.2.1)

This equality is the Chapman–Kolmogorov (C-K) equation of continuous-time Markov
chain. We have already known that when the process starts from i at time s, the prob-
ability of the process to lie in k ∈ S at time s ≤ 4 ≤ t is p(s, 4; i, k). The left-hand side of
eq. (1.2.1) represents the probability of the process that lies in j at time t starting from i
at time s. While the RHS of (1.2.1) is the summation of the probabilities of the process
that lies in j at time t starting from i at time s with the probability of the process that
lies in k at time 4 (s ≤ 4 ≤ t) starting from i at time s being p(s, 4; i, j), which is already
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16 1 Preliminaries

known. This equality is valid due to the law of total probability. The C-K equation also
reflects the memoryless property of the Markov process.

The transition probability matrix P(s, t) has the following two important
properties:
(1) P(s, t) is a nonnegative matrix, and

P(s, t)1 = 1 (1 = (1, 1, ⋯ , 1, ⋯ , )T).

(2) P(s, 4)P(4, t) = P(s, t) ∀s < 4 < t.

Thus, the time-homogeneousMarkov chain corresponds to P(s, t+s) = P(0, t)∀s, t ∈ T,
abbreviated as P(t), and the C-K equation becomes

P(s)P(t) = P(s + t) ∀s, t ∈ T.

Therefore, {P(s)}s∈T is a continuous-time semigroup.
In what follows, we always suppose the Markov process is time homogeneous, if

not specified. In the discrete-time case, we set T = Z
+ and we have P(n) = (P(1))n for

any n ∈ Z
+, i.e., P(n) = en lnP, where P is the one-step transition probability matrix.

Then a natural question is whether a similar formula holds in the continuous-time
case t ∈ R? That is, is there a matrix Q, independent of time t, such that P(t) = etQ. If
such a matrix Q exists, then it satisfies

P′(0) = lim
t→0

P(t) – P(0)
t

= lim
t→0

etQ – I
t

= Q,

where we set limt↓0 P(t) = I, the identity matrix. Such amatrix P is said to be canonical
and suggests us to study the derivatives of P(t) at t = 0.

Theorem 1.2.2. Let transition matrix be canonical, then

lim
t↓0

pii(t) – 1
t

= –qi(=: qii) (1.2.2)

exists (possibly being∞), and

lim
t↓0

pij(t)
t

= qij(i ≠ j) (1.2.3)

exists and is finite.

The proof can be found in Ref. [214]. From Fatou lemma, we have

0 ≤ qij ≤ qi ≤ +∞
∑
j≠i

qij ≤ qi.
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1.2 Some preliminaries of stochastic process 17

Generally, if a matrix Q = (qij) satisfies
(Q.1) qii = –qi ≤ 0 (possibly being –∞),
(Q.2) 0 ≤ qij < +∞ (i ≠ j),
(Q.3)

∑
j≠i qij ≤ qi.

then the matrix Q is a called a Q-matrix .
By the theorem, for the canonical Markov process, matrix Q = (qij) is a Q-matrix.

If furthermore
∑

j≠i qij = qi < +∞, Q is conservative.

Definition 1.2.2. For some Q-matrix Q, if there is a Markov chain such that eqs (1.2.2)
and (1.2.3) hold, then the Markov chain is a Q-process with matrix Q.

Using theQmatrix, we can deduce the differential equation satisfied by the transition
probability of any time interval t, which can be used to solve the probability matrix.
From C-K equation

pij(t + h) =
∑
k∈S

pik(h)pkj(t), (1.2.4)

we have

pij(t + h) – pij(t) =
∑
k≠i

pik(h)pkj(t) – (1 – pii(h))pij(t).

Dividing h on both sides and then taking limit h → 0, we get

lim
h→0

pij(t + h) – pij(t)
h

= lim
h→0

∑
k≠i

pik(h)
h

pkj(t) + qiipij(t).

If we can change the order of the limit and the summation, then we obtain the
Kolmogorov backward equation

p′ij(t) =
∑
k≠i

qikpkj(t) + qiipij(t). (1.2.5)

Theorem 1.2.3. Suppose
∑

k∈S qik = 0, then the Kolmogorov backward equation (1.2.5)
holds for all i, j and t ≥ 0.

The reason why it is called the backward equation is that in the C-K equation (1.2.4)

pij(t + h) =
∑
k∈S

P{Xt+h = j|X0 = i,Xh = k}

× P{Xh = k|X0 = i} =
∑
k∈S

pik(h)pkj(t),
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when we compute probability distribution at time t + h, we take condition back to
time h. If we take condition probability only back to time t, we have

pij(t + h) =
∑
k∈S

pkj(h)pik(t), (1.2.6)

which results to the Kolmogorov forward equation

p′ij(t) =
∑
k≠i

pik(t)qkj + pij(t)qjj. (1.2.7)

Since limit and summation are not interchangeable in general, eq. (1.2.7) only holds
in the case of finite state space.

Theorem 1.2.4. Suppose the state space of Markov chain with canonical transition
matrix P is finite, then the Kolmogorov forward equation (1.2.7) holds.

Assume the state space of the Markov chain is countable and the transfer matrix P is
canonical, then Q-matrix must be conservative and hence both the Kolmogorov for-
ward and backward equations hold. They can be rewritten in the following simple
form:

P′(t) = P(t)Q, P′(t) = QP(t).

Given initial condition P(0) = I, there exists a unique solution P(t) = etQ. This indic-
ates that for any finite-dimensional conservative Q-matrix Q = (qij), there must be a
unique transition matrix {P(t)}t∈R+ such that P′(0+) := (p′ij(0+)) = Q. It can be proved
that the solutions obtained from the forward equation and the backward equation are
identical.

In applications, we need also to consider the probability distribution
pj(t) =P(Xt = j) of a process X at t. From

pj(t + 4) =
∑
i∈S

pi(4)pij(t), (1.2.8)

we have by taking 4 = 0

pj(t) =
∑
i∈S

pipij(t).

Multiplying both sides of Kolmogorov forward equation (1.2.7) by pi and taking
summation with i yield∑

i∈S
pip′ij(t) =

∑
i,k∈S

pipikqkj =
∑
k∈S

pk(t)qkj.
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1.2 Some preliminaries of stochastic process 19

The equation is usually called the Fokker–Planck equation, which holds in finite state
space for the above reason. Hence, we have

Theorem 1.2.5. Let S be a finite state space. The probability distribution pj(t) for
j ∈ S of a homogeneous Markov process at t satisfies the following Fokker–Planck
equation:

p′j (t) = –pj(t)qj +
∑
k≠j

pk(t)qkj. (1.2.9)

For the probability distribution of a process, there is a special but important case, i.e.,
the invariant probability measure.

Definition 1.2.3. Suppose 0 = (01, ⋯ ,0k) with 0i ≥ 0 for all i ∈ {1, ⋯ , k} and 0 ≠ 0. If∑
i 0ipij = 0j for all j, then 0 is an invariant measure of P. If furthermore,

∑
j 0j = 1, then

it is an invariant probability measure.

Example 1.2.2. Birth and death process.

Let {Xt}t≥0 be a Markov chain with state space S = {0, 1, 2, ⋯ }. If P(t) = pij(t) satisfies,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
pi,i+1(h) = +ih + o(h), +i ≥ 0, i ≥ 0,
pi,i–1(h) = ,ih + o(h), ,i ≥ 0, i ≥ 1,
pii(h) = 1 – (+i + ,i)h + o(h), ,0 = 0, i ≥ 0,
pij(h) = o(h), |i – j| ≥ 2,

(1.2.10)

where h is small enough, then X is called a birth and death process. Here, +i is the
birth rate and ,i is the death rate. If ,i ≡ 0, X is a pure birth process and X is a pure
death process for +i ≡ 0. The Q matrix is easy to be written out (leave to the reader)
and is obvious a conservative Q-matrix. The transition matrices P(t) and Q satisfy the
forward and backward equations

p′ij(t) = –pij(t)(+i + ,i) + pi,j–1(t)+j–1 + pi,j+1(t),j+1, (1.2.11)

p′ij(t) = –(+i + ,i)pij(t) + +ipi+1,j(t) + ,ipi–1,j(t). (1.2.12)

The probability distribution satisfies the Fokker–Planck equation{
p′0(t) = –p0(t)+0 + p1(t),1,
p′j (t) = –pj(t)(+j + ,i) + pj–1(t)+j–1 + pj+1(t),j+1.

(1.2.13)
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Example 1.2.3. A special example.

Take S = {0, 1} in the above birth and death process, then we get

Q =
(
–+ +
, –,

)
.

By Kolmogorov forward equation

p′00(t) = ,p01(t) – +p00(t) = (–+ + ,)p00(t) + ,.

Since the initial value is p00(0) = 1, we have by solving this equation that

p00(t) = ,0 + +0e–(++,)t,

where +0 = +
++, and ,0 =

,
++, . Similarly, we obtain

p00(t) =,0 + +0e–(++,)t, p01(t) = +0(1 – e–(++,)t),
p11(t) =+0 + ,0e–(++,)t, p10(t) = ,0(1 – e–(++,)t).

If the process has initial distribution

00 = p0 = P(X0 = 0) = ,0, 01 = p1 = P(X0 = 1) = +0,

then the distribution at time t is

p0(t) = p0p00(t) + p1p10(t) = ,0, p1(t) = p0p01(t) + p1p11(t) = +0.

Hence, 0 = (,0, +0) is an invariant measure of the system. Since 00 + 01 = 1, 0 is also
an invariant probability measure.

Finally, let us consider the general Markov process and give some basic concepts.
The space (S , G) is called a Polish space, if S is a complete separable metric space
with distance d(x, y) for any x, y ∈ S , and G is the 3-algebra generated by all the open
subsets of S . Let B(x, $) denote the open ball in S centered at x with radius $. Con-
sider a Markov process X = {Xt}t∈R+ on a probability space (K,F ,P) : (K,F ,P) →
(S , G). Under suitable regularity conditions, the transition probability is given by

p(s, t; x,A) = P(Xt ∈ A|Xs = x) ∀s ≤ t, x ∈ S ,A ∈ G. (1.2.14)

It is called a time-homogeneous Markov process, if p(s, t; x,A) depends only on t – s. If
there holds p(s, t; x,A) =

∫
A 1(s, t; x, y)dy for some 1, then 1(s, t; x, y) is called a trans-

ition probability density function. In particular, if the process is time homogeneous,
then 1(s, t; x, y) is simplified to 1(t, x, y). The corresponding C-K equation is given by
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p(s, t; x,A) =
∫

S
p(4, t; y,A)p(s, 4; x, dy) ∀x ∈ S , 0 ≤ s ≤ 4 ≤ t < ∞,A ∈ G.

The similar expressions can be found for the density function.
Notice that eq. (1.2.14) can be rewritten as

p(s, t; x,A) = E(1A(Xt)|Xs = x) ∀s ≤ t, x ∈ S ,A ∈ G. (1.2.15)

If we extend the index function to a general bounded measurable function, we obtain

(Ps,tf )(x) = E(f (Xt)|Xs = x) ∀s ≤ t, x ∈ S , (1.2.16)

where f ∈ Bb(S ) is a bounded measurable function from (S , G) to (R1,B1) with norm
‖f‖ := supx∈S |f (x)|. Under such a norm, Bb(S ) is a Banach space. Then, it is easy to
show from conditional expectation that

(Ps,tf )(x) =
∫

S
f (y)p(s, t; x, dy) ∀s ≤ t, x ∈ S . (1.2.17)

If the Markov process is time homogeneous, then Ps,t = P0,t–s =: Pt–s. Denote

B0(S ) = {f ∈ Bb(S ) : ‖Ptf – f‖ → 0, as t → 0}.

Then it is not difficult to obtain that {Pt}t≥0 is a strong continuous contract positive
operator semigroup from B0(S ) to itself. Such a semigroup is called a Markov trans-
ition semigroup and B0(S ) is the strong continuous center. If limt↓0(Ptf – f )/t = A f
exists in norm, then A is called the infinitesimal generator or generator for short. In
such a way, Pt defines a (possibly unbounded) operator A with domain D(A ) := {f :
limt↓0(Ptf – f )/t exists}. Obviously, D(A ) ⊂ B0(S ).

Suppose {Ft}t≥0 is a nondecreasing 3-algebra flow on the probability space
(K,F ,P). Consider random variable 4 : K → [0,∞]. If for any t ∈ [0,∞], the event
{4 ≤ t} is Ft measurable, then 4 is called a stopping time. If

E(1A(Xt+4)|F4) = p(t,X4,A) for a.e. 9 ∈ {9 : 4(9) < +∞},

for all t > 0 and A ∈ G, then the time-homogeneous Markov process X = {Xt}t≥0 is said
to be a strong Markov process. Intuitively speaking, in a Markov process, the current
time t is a number of the parameter set T = R+, while in a strong Markov process, the
current time 4 could be any stopping time. The strong Markov property is important in
stochastic process. One may wonder under what conditions can a Markov process be
a strong Markov one. This is true for a Markov process with discrete-time parameters,
but for a strongMarkov process, it fails. However, for aMarkov processwith the sample
path being right continuous and its transition function satisfying the Feller property,
it is transfered to a strong Markov process [214].
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Definition 1.2.4. The transition function {p(t; x,A)} or the corresponding transition
semigroup Pt is said to satisfy the Feller (resp. strong Feller) property if Ptf is a bounded
continuous function for all t > 0 and bounded continuous (resp. bounded measurable)
function f . If the semigroup of a Markov process is a Feller semigroup (resp. strong Feller
semigroup), then it is a Feller process (resp. strong Feller process).

LetM1(E) denote the sets of probability measures on (S , G). For t ≥ 0, , ∈ M1(S ), we
define

P∗
t ,(A) =

∫
S
P(t; x,A),(dx), t ≥ 0,A ∈ G. (1.2.18)

Definition 1.2.5. A probability measure , ∈ M1(S ) is invariant with respect to {Pt}, if

P∗
t , = , ∀t ≥ 0.

1.2.2 Preliminaries on ergodic theory

In thermodynamics, the limit limT→
1
T
∫ T
0 f ((t9), if exists, is usually taken to be the

value of the physical quantity of a system. Then in what sense does this limit exist.
It is a basic mathematical problem in statistic mechanics. Another especially inter-
esting problem is whether such time average tends to the space average Ef (9) :=∫
f (9)dP(9).
For {f ((k9); k = 0, 1, 2, ⋯ } being iid, this problem was solved by employing the

strong law of large numbers. For general cases, Von Neumann and Birkhoff estab-
lished the existence of the limit in the sense of mean square convergence and almost
everywhere convergence.

Consider the invertible measurable transformation group (t : K → K, t ∈ R, on a
probability space (K,F ,P). It is called measurable if (–1t A := {9 : (t9 ∈ A} ∈ F for
all A ∈ F . If, furthermore, P((tA) = P(A) for all A ∈ F and t ∈ R, then it is called a
measure-preserving transformation and S = (K,F ,P, (t) is called a dynamical system.
The group {(t}t∈R induces a linear transformation in spaceH = L2(K,F ,P):

Ut. (9) = . ((t9), . ∈ H,9 ∈ K, t ∈ R.

Since (t is measure preserving, Ut is unitary, from which ‖Ut‖ = 1 and hence
equicontinuity condition is satisfied. By taking advantage of the sequentially weak
compactness ofH, one obtains the mean ergodic theorem of J. Von Neumann:

s – lim
T→∞

1
T

∫ T

0
Utx = x0 ∈ H (1.2.19)

holds for any . ∈ H. The proof can be found, for example, in Ref. [260].
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Next, we consider the Birkhoff’s ergodic theorem. A ∈ F is called an invariant set
of (t or the dynamical system S, if

P((tA ∩ A) = P(A) = P((tA) ∀t ∈ R,

or equivalently Ut7A = 7A, P-a.s.

Definition 1.2.6. If P(A) = 0 or P(A) = 1 for any invariant set, then the measure-
preserving transformation (t or the dynamical system S = (K,F ,P, (t) is called
ergodic.

Theorem 1.2.6. Let (K,F ,P) be a probability space, on which there is a measure-
preserving transformation C : K→K. Then for any . ∈H, there is .∗ ∈H such that

lim
n→∞

1
n

n–1∑
k=0

. (Ck(9)) = .∗(9), .∗(9) = .∗(C(9)), P-a.s.

and E. = E.∗, where E. is the expectation of . .

This theorem ensures the convergence almost everywhere of time average. One can
also show that S = (K,F ,P, (t) is ergodic if and only if

lim
T→∞

1
T

∫ T

0
P((tA ∩ B)dt = P(A)P(B) ∀A,B ∈ F .

This is also usually used as definition of ergodicity.

Definition 1.2.7. A stochastic process X = {Xt}t∈I is stochastically continuous if

lim
s→t,s∈I

P(|X(t) – X(s)| > %) = 0 ∀% > 0,∀t ∈ I.

A Markov semigroup {Pt}t≥0 is continuous if limt→0 Pt(x,B(x, $)) = 1 for all x ∈ S and
$ > 0.

If Pt is stochastically continuous, then for every x ∈ S and T > 0, RT(x, A) =
1
T
∫ T
0 Pt(x, A)dt defines a probability measure on G. For any - ∈ M1(S ), define R∗

T-(A) =∫
S RT(x, A)-(dx) for any A ∈ G, then it is obvious for any > ∈ Bb(S ),

〈R∗
T-,>〉 = 1

T

∫ T

0
〈P∗

t -,>〉dt.

In this sense, we denote R∗
T- = 1

T
∫ T
0 P∗

t -dt. The following theorem is due to Krylov–
Bogoliubov.
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Theorem 1.2.7. Let {Pt}t≥0 be a Feller semigroup. If for some - ∈ M1(S ) and sequence
Tn ↗∞, R∗

Tn- → , weakly as n → ∞, then , is an invariant measure of {Pt}t≥0.

The proof can be found in Ref. [76].

Corollary 1.2.1. If for some - ∈ M1(S ) and a sequence Tn ↗ ∞, {R∗
Tn-} is tight as

n →∞, then {Pt}t≥0 has an invariant measure.

A class ofmeasures {,t}t∈T is tight, if for all % > 0, there exists a compact subsetK% ∈ S ,
such that ,t(S ∖ K%) < % for all t ∈ T. This corollary can be proved from the following
Tychonoff theorem.

Proposition 1.2.1. Let (S , G) be a separable metric space, on which there is a class
of probability measures {,n}n≥1. If {,n}n≥1 is tight, then ,n has weakly convergent
subsequences.

Now, let us discuss the relation between the invariant measure and ergodic theory. Let
{Pt}t≥0 be aMarkov semigroup and , be one of its invariantmeasures. DenoteF , = GR.
For any finite set I = {t1, ⋯ , tn} ⊂ R, t1 < t2 < ⋅ ⋅ ⋅ < tn, define a probability measure P,
on (S I , GI) by

P,I (A) =
∫

S
Pt1 (x, dx1) ⋅ ⋅ ⋅

∫
S
Ptn–1–tn–2 (xn–2, dxn–1)

×

∫
S
Ptn–tn–1 (xn–1, dxn)7A(x1, ⋯ , xn) ∀A ∈ GI .

For this finite distribution, there is a unique probability measure P, on (K,P,)
such that

P,({9 : (9t1 , ⋯ ,9tn ) ∈ A}) = P,I (A), A ∈ G{t1,⋯ ,tn},

thanks to Kolmogorov theorem. Define process

Xt(9) = 9(t), F
,
t = 3{Xs : s ≤ t}, 9 ∈ K, t ∈ R.

This process is Markovian in that

P,(Xt+h ∈ A|F ,
t ) = P

,(Xt+h ∈ A|3(Xt))
= Ph(Xt, A), P,-a.s., A ∈ GR.

More generally,

P,(Xt+⋅ ∈ A|F ,
t ) = P

,(Xt+⋅ ∈ A|3(Xt))
= PXt (A), P,-a.s., A ∈ GR.
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Introduce the invertible measurable transformation group (t : K → K such that
((t9)(s) = 9(t + s) for all t, s ∈ R. Since , is invariant, the process {Xt}t∈R is station-
ary, i.e., P,(X ∈ (tA) = P,(X ∈ A) for all t ∈ R and A ∈ GR, where (tA = {9 : (–1t 9 ∈ A}
and (t is measure preserving. Hence, S, = (K,F ,P,, (t) defines a dynamical system
on the S -valued function space K = S R, called the canonical dynamical system as-
sociated with Pt and ,. As above, associated with (t a linear transformation Ut on
H, = L2(K,F ,,P,) can be induced by

Ut. (9) = . ((t9), . ∈ H,9 ∈ K, t ∈ R.

It can be shown that if Pt is a stochastically continuous Markov semigroup and , its
invariant measure, then so it is with the process {Xt}t∈R in (K,F ,,P,).

Definition 1.2.8. The invariant measure , ∈ M1(E) of Pt is ergodic, if the corresponding
S, is ergodic.

Theorem 1.2.8. Let {Pt}t≥0 be a stochastically continuous Markovian semigroup and ,
its invariant measure. Then the following conditions are equivalent:
(i) , is ergodic;
(ii) if > ∈ L2

C
(S , ,), or > ∈ L2(S , ,)) and

Pt> = >, ,-a.s. for all t > 0,

then > is constant ,-a.s.;
(iii) if for a set A ∈ F , and any t > 0, Pt7A = 7A, ,-a.s., then either ,(A = 1) or ,(A) = 0;
(iv) for any > ∈ L2

C
(S , ,) (resp. L2(S , ,)),

lim
T→∞

1
T

∫ T

0
Ps>ds = 〈>, 1〉 in L2

C
(S , ,)(resp. L2(S , ,)).

The proof can be found in Ref. [76].

1.3 Martingale

Let (E, E ) be a measurable space and (K,F ,P) be a complete probability space, where
F is the 3-algebra of K. If the class of 3-subalgebra {Ft}t∈I of F satisfy Fs ⊆ Ft when
s ≤ t, then {Ft}t∈I is called a filtration. If, furthermore,

Ft = Ft+ :=
⋂
s>t

Fs, ∀t ∈ I,

then the filtration {Ft}t∈I is called right continuous.
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Definition 1.3.1. If Xt is measurable w.r.t. Ft for all t ∈ I, then the E-valued stochastic
process X = {Xt}t∈I is called adapted, usually denoted as Xt ∈ Ft.

Denote FX
t = 3{X(s) : 0 ≤ s ≤ t} to be the 3-algebra generated by the process, then the

process {Xt}t∈R is obviously adapted under such a filtration and hence FX
t is usually

called the natural filtration. Obviously, if X is {Ft}0≤t≤∞ adapted, then E(X(s)|Fs) =
X(s) (a.s.). Intuitively, process is adapted means that Ft contains all the information
to determine the behavior of X till t. Hence, if X is Ft adapted, then FX

t ⊆ Ft for any
t ≥ 0.

Definition 1.3.2. Let {Xt}t∈I be an E-valued stochastic process defined on a probability
space (K,F ,P). An E-valued stochastic process {Yt}t∈I is called amodification or version
of X if P(Xt = Yt) = 1 for any t ∈ I. If furthermore Y has P-a.s. continuous sample path,
then we say X has a continuous modification.

Obviously, the modification of X and X itself have the same finite-dimensional distri-
butions.

Definition 1.3.3. Let (K,F , {Ft},P) be a filtrated probability space. For a random vari-
able 4 : K → [0, +∞], if {9 : 4 ≤ t} ∈ Ft for any t ∈ I, then we say 4 is a stopping time
(w.r.t. {Ft}).

Let (B, | ⋅ |B) be a Banach space whose norm is usually simplified to be | ⋅ | if no
confusions arise. An E-valued random variable X is said to be p-integrable if

E|X|pB :=
∫
K

|X(9)|pBP(d9) < ∞.

If p = 1, we say it is integrable and when p = 2 we say it is square integrable. The
p-integrability of a stochastic process can be similarly defined.

Definition 1.3.4. A B-valued stochastic process {Xt}t∈I is right continuous, if X(t+) :=
lims↓t,s∈I X(s) = X(t) for all t ∈ I. A B-valued process X is continuous if X(t) =
lims→t,s∈I X(s) for all t ∈ I. A B-valued process X is càdlàg (continue à droite et limites
à gauche, i.e., left limit and right continuous) if X is right continuous and the left limit
exists, i.e., X(t–) := lims↑t,s∈I X(s) exists for any t ∈ I.

Definition 1.3.5. A family of B-valued random variables {Xt}t∈I is called uniformly integ-
rable if

lim
r→∞

sup
t

∫
{|Xt |≥r}

|Xt|BdP = 0.
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Obviously, if I ⊂ R is compact, then the stochastic continuous process X is uniformly
stochastically continuous, i.e., for any % > 0 there exists $ > 0 such that P(|X(t) –
X(s)|B > %) < % for all t, s ∈ I and |t – s| ≤ $.

Let PI be the predictable 3-field, i.e., the minimal 3-algebra generated by all the
subsets of the form ((s, t]∩ I)×A of I ×K, where s, t ∈ I, s < t and A ∈ Fs. In particular,
if I = [0,∞), we denote P[0,∞) by P for brevity.

Definition 1.3.6. An (E, E )-valued stochastic process is called predictable if it is meas-
urable as a map from (I × K,PI) to (E, E ).

The predictable process is obvious adapted, and for a continuous adapted process, we
have the following result (refer to Ref. [202, P.27]).

Proposition 1.3.1. Let X = {Xt}t∈[0,T] be a B-valued stochastically continuous adapted
process on [0,T], then X has a predictable modification on [0,T].

The following regularity result is useful in stochastic differential equations (see Refs
[140, 254]).

Theorem 1.3.1. (Kolmogorov–Loève–Chentsov). Let (E, 1) be a complete metric space
and {Xv}v∈Rd be a family of E-valued random variables. If there are a, b, c > 0 such that
E[(1(Xv,Xu))a] ≤ c|u – v|d+b for all u, v ∈ Rd, then there exists another family of ran-
dom variables Y such that X(u) = Y(u) a.s. for all u. Furthermore, Y is locally Hölder
continuous a.s. with Hölder index ! ∈ (0, b/a).

Definition 1.3.7. A B-valued integrable stochastic process {Xt}t∈I is called a martingale
with respect to Ft, if it’s {Ft}-adapted and E(Xt|Fs) = Xs for all t, s ∈ I, t ≥ s.

Usually a martingale is denoted by M = Mt or M = M(t), t ∈ I. A martingale is called
continuous if it has a continuous modification. Let X be an R

1-valued martingale. It
is called a supermartingale (resp. submartingale) if it is {Ft}-adapted and E(Xt|Fs) ≤
(resp. ≥)Xs for all t, s ∈ I, t ≥ s.

Definition 1.3.8. A B-valued stochastic process {Xt}t≥0 is called a local martingale with
respect to {Ft}, if it is {Ft}-adapted and there exists a sequence of stopping times
4n ↗∞ a.s. such that each of the process {X4n }t≥0 := {X(t ∧ 4n)}t≥0 is a martingale.

Any martingale is clearly a local martingale. But it is not necessarily true for the
reverse.

Definition 1.3.9. An adapted stochastic process {Xt}t≥0 is said to have finite variations,
if {X(t,9)}t≥0 has finite variation for almost all 9 ∈ K. A process {Xt}t≥0 is said to have
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local finite variations, if there is a sequence of {Ft} stopping times 4n ↗ ∞ such that
{X4n }t≥0 := {X(t ∧ 4n)}t≥0 has finite variations.

Definition 1.3.10. A {Ft}-adapted B-valued stochastic process {Xt}t≥0 is a semimartin-
gale with respect to {Ft}, if X(t) has decomposition X(t) = M(t) + V(t) for t ≥ 0, where M
is a local martingale and V is an adapted process with local finite variation.

Proposition 1.3.2. Let X be a B-valued integrable process. If for all t, s ∈ I, t > s, the
random variable Xt – Xs is independent of Fs, then the process Y(t) := Xt – EXt, t ∈ I is
a martingale.

This proposition is a direct consequence of conditional expectation. That is E(X|G ) =
EX, P-a.s., if the random variable X is independent of the 3-subalgebra G of F (see
Proposition 1.1.1).

Theorem 1.3.2. Let X = {Xt}t∈R+ be an adapted càdlàg process. If E(|X4|) < ∞ and
E(X4) = 0 for any stopping time 4, then X is a uniformly integrable martingale.

Proof. Let 0 ≤ s < t < ∞, D ∈ Fs and uD = u for 9 ∈ D and uD = ∞ otherwise. Then for
any u ≥ s, uD is a stopping time. Noting that∫

D
XudP =

∫
XuDdP –

∫
K∖D

X∞dP = –
∫
K∖D

X∞dP,

where E(XuD ) = 0 for u ≥ s, one has for D ∈ Fs(s < t) that

E(Xt1D) = E(Xs1D) = –E(X∞1K∖D).

Hence, E(Xt|Fs) = Xs and X is a martingale for 0 ≤ t ≤ ∞. ∎

Proposition 1.3.3. Let {M(t)}t∈[0,T] be a B-valued martingale and g be a monotonic in-
creasing convex function, which maps [0,∞) to itself. If E(g(|M(t)|B)) < ∞ (∀t ∈ [0,T]),
then {g(|M(t)|B)}t∈[0,T] is a submartingale.

The proof can be found in Ref. [75]. It follows that if E|M(t)|pB < ∞, then |M(t)|pB ≤

E(|M(t)|B|Fs) and hence the process {|M(t)|B}t∈[0,T] is a submartingale. Using this
proposition and the maximal inequality of submartingales (c.f.[190]), one has the
following martingale inequality [75].

Theorem 1.3.3.
(i) Let {Mt}t∈I be a B-valued martingale and I be a countable set, then for any + > 0, it

holds

P
(
sup
t∈I

|Mt|B ≥ +
)
≤ +–p sup

t∈I
E(|Mt|pB), p ≥ 1,
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and

E
(
sup
t∈I

|Mt|pB
)
≤

(
p

p – 1

)p
sup
t∈I

E(|Mt|pB), p > 1.

(ii) If I is not countable, the above estimates still hold when the martingale M(t) is
continuous.

The following optional sampling theorem plays an important role in the theory
of submartingales, which we cited here for reference. The proof can be found in
Kallenberg [140].

Theorem 1.3.4 (Doob’s optional samplin.g).
(i) Let {Xn}n=1,2,⋯ ,k be a submartingale (resp. supermartingale, martingale) with re-

spect to {Fn} and 41, ⋯ , 4m be an increasing sequence of {Fn} stopping times
taking values in the finite set {1, 2, ⋯ , k}, then {X4i }i=1,2,⋯ ,m is a submartingale (resp.
supermartingale, martingale) w.r.t. {F4i }.

(ii) Let {Xt}t∈[0,T] be a right-continuous submartingale (resp. supermartingale, mar-
tingale) w.r.t. {Ft} and 41, ⋯ , 4m be an increasing sequence of stopping times
taking values in [0,T]. Then {X4i }i=1,2,⋯ ,m is a submartingale (resp. supermartingale,
martingale) w.r.t. {F4i }.

Now, we introduce Doob’s submartingale inequality.

Theorem 1.3.5 (Doob’s inequality). Let {Xt}t≥0 be a right-continuous submartingale.
Then

rP( sup
t∈[0,T]

Xt ≥ r) ≤ EX+(T) ∀r > 0,∀T ≥ 0,

where X+(t) := max{X(t), 0} is the positive part of X(t).

Proof. Select an increasing sequence {Qk} of finite subsets of [0,T] containing T such
that Q =

⋃
k Qk is dense in [0,T]. Since for any % ∈ (0, r),{

sup
t∈[0,T]

Xt ≥ r
}
⊂
⋃
k
{max
t∈Qk

Xt ≥ r – %},

it follows that

P
(
sup
t∈[0,T]

Xt ≥ r
)
≤

1
r – %EX

+
T .

The result follows by taking % ↓ 0. ∎
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What follows concerns with regularities of submartingales of Doob. Similar results
hold for supermartingales. The proof can be found in Ref. [219].

Theorem 1.3.6. Any stochastically continuous submartingale {Xt}t∈I has a càdlàg modi-
fication.

By the above two theorems, we can obtain the following conclusion.

Theorem 1.3.7. Let {M(t)}t≥0 be a stochastically continuous, square-integrable martin-
gale, taking values in a Hilbert space (U, 〈⋅, ⋅〉U ). Then M has a càdlàg modification (still
denote by M) such that

P
(
sup
t∈[0,T]

|M(t)|U ≥ r
)
≤
E|M(T)|2U

r2
∀T ≥ 0,∀r > 0, (1.3.1)

and

E sup
t∈[0,T]

|M(t)|!U ≤
2

2 – ! (E|M(T)|2U)!/2 ∀T ≥ 0,∀! ∈ (0, 2). (1.3.2)

The proof can be found in Ref. [204]. Next, we introduce Doob–Meyer theorem. Given
filtration {Ft} and T ∈ [0,∞), we denote G[0,T] to be the family of all stopping times
such that P(4 ≤ T) = 1. Let X = {X(t)}t≥0 be a right-continuous submartingale with
respect to filtration {Ft}. It is said to belong to class (DL) if for any T ∈ [0,∞) the
random variable {X(4)}4∈G[0,T] is uniformly integrable.

Theorem 1.3.8 (Doob–Meyer). For any càdlàg submartingale X in (DL), there is a
unique decomposition X(t) = N(t) + A(t), t ≥ 0, where N is a martingale and A(t) is a
predictable increasing process with A(0) = 0 a.s.

The proof can be found in Kallenberg [140], Rogers and Williams [219] or Jakubowski
[138]. Applying this theorem, it is easy to show that |M|2B = {|M(t)|2B}t≥0 is a submartin-
gale in (DL) when M = {M(t)}t≥0 is a B-valued right-continuous square-integrable
martingale.

DenoteM2(B) to be the space of all B-valued square-integrable martingale pro-
cessesM = {M(t)}t≥0 with respect to {Ft} such that {|M(t)|B}t≥0 is càdlàg. When B = R,
we denote M2(R) = M2. If M is stochastically continuous, then Doob’s regularity
results show that the submartingale |M|2B has a càdlàg modification. If B is a Hilbert
space, Theorem 1.3.7 also implies thatM has a càdlàg modification. In fact, in Hilbert
space, we can always suppose that the elements inM2(B) are càdlàg. By Doob–Meyer
decomposition, if M ∈ M2(B), then there is a unique predictable increasing process
{〈〈M,M〉〉t}t≥0 such that 〈〈M,M〉〉0 = 0 and {|M(t)|2B – 〈〈M,M〉〉t}t≥0 is a martingale.
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The process {〈〈M,M〉〉t}t≥0 is usually called the angle bracket or predictable variation
process ofM. LetM,N ∈ M2(B), then we define

〈〈M,N〉〉 := 1
4
(〈〈M + N,M + N〉〉 – 〈〈M – N,M – N〉〉).

Since forM,N ∈ M2,

M(t)N(t) =
1
4
(|M(t) + N(t)|2 – |M(t) – N(t)|2),

the process {M(t)N(t) – 〈〈M,N〉〉t}t≥0 is a martingale. More generally, if (U, 〈⋅, ⋅〉U) is a
Hilbert space andM,N ∈ M2(U), then {〈M(t),N(t)〉U – 〈〈M,N〉〉t}t≥0 is a martingale.

The more general Doob–Meyer decomposition theorem can be found in Ref. [211].

Theorem 1.3.9. Any submartingale X = {Xt}t∈I has the decomposition
X(t) =X0 +N(t) +A(t), where A= {At}t∈I is an adapted increasing process and N = {Nt}t∈I
is a local martingale.

Given a process X = {Xt}t≥0 and a stopping time 4, we denote X4 to be the process
{Xt∧4}t≥0. For a certain class of processes X (such as martingale, supermartingale and
so on), Xloc denotes the corresponding local class, i.e., there is a stopping time se-
quence 4n ↑ ∞ such that X4n ∈ X for all n ∈ N. We also denoteMloc(B) andM2

loc(B)
to be the classes of local martingales and local square-integrable martingales, re-
spectively. Let BV be the class of all real-valued adapted càdlàg processes, which has
bounded variation in finite time intervals.

Definition 1.3.11. The càdlàg-adapted real-valued process X is called a semimartingale,
if it can be expressed in the form of X = M + A, where M ∈ M2 and A ∈ BV . X is called a
local semimartingale if M ∈ M2

loc and A ∈ BV loc.

Theorem 1.3.10. For any M ∈ M2, there exists an adapted càdlàg increasing process
[M,M] such that
(i)

[M,M]t = lim
n→∞

∑
j
(M(tnj+1 ∧ t) –M(tnj ∧ t))

2

in the sense of L1(K,F ,P), for any partition Fn : 0 < tn0 < tn1 ⋯ of [0,∞) such that
tnk →∞ when k → ∞ and limn→∞ supj(tnj+1 – t

n
j ) = 0.

(ii) M2 – [M,M] is a martingale.
(iii) If M has continuous trajectories, then 〈〈M,M〉〉 = [M,M].
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The process [M,M] here is called the quadratic variation process ofM. For the proof of
this theorem, the readers may refer to Métivier and Peszat and Zabczyk [183, 204].

Similarly, we can also define

[M,N] :=
1
4
([M + N,M + N] – [M – N,M – N])

for M,N ∈ M2. The following Burkholder–Davis–Gundy (BDG) inequality can be
found in Kallenberg and Peszat and Zabczyk [140, 204].

Theorem 1.3.11. For any p > 0, there is a constant Cp ∈ (0,∞) such that for any real-
valued continuous martingale M with M0 = 0 and for every T ≥ 0,

C–1p E〈〈M,M〉〉p/2T ≤ E sup
t∈[0,T]

|Mt|p ≤ CpE〈〈M,M〉〉p/2T .

For discontinuous martingales, one has the similar BDG inequality.

Theorem 1.3.12. For any p ≥ 1, there is a constant Cp ∈ (0,∞) such that for any càdlàg
real-valued square-integrable martingale M with M0 = 0 and T ≥ 0,

C–1p E[M,M]p/2T ≤ E sup
t∈[0,T]

|Mt|p ≤ CpE[M,M]p/2T .

Next, let us discuss the construction ofM2(B). Fix T > 0 and denoteM2
T =M

2
T(B) for

short. The following theorem is given in Ref. [75].

Theorem 1.3.13. The space (M2
T , |M|M2

T
) is a Banach space under norm

|M|M2
T
= (E sup

t∈[0,T]
|M(t)|2B)

1
2 .

Example 1.3.1 (212, p. 33). Let B = {Bt}t≥0 be a Brownian motion in R3 and B0 = x ∈
R3(x ≠ 0). Let u(y) = 1

|y| , y ∈ R3, then u is the superharmonic function in R3. By Itô
formula (Chapter 2), Xt = u(Bt) is a positive supermartingale. On the other hand, let
4n = inf{t > 0 : |Bt| ≤ 1

n }. Since the function u is harmonic outside the sphere B(0,
1
n ),

u(Bt∧4n ) is a martingale by Itô formula. Since u(Bt∧4n ) is bounded by n, it is uniformly
integrable. Furthermore, since B0 = x ≠ 0, we have limt→∞ E(u(Bt)) = 0 by properties of
Brownian motion. But it’s obvious that E(u(B0)) = 1

|x| . So u(Bt) cannot be a martingale.

A nature question is under what conditions can a local martingale be a martingale.
To answer this question, we define the maximal function M∗

t = sups≤t |Ms| and M∗ =
sups |Ms|.
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Theorem 1.3.14. Suppose M = {Mt}t≥0 is a local martingale and E(M∗
t ) < ∞ for any

t ≥ 0, thenM is amartingale. If furthermore E(M∗) < ∞, thenM is a uniformly integrable
martingale.

Proof. Let (4n)n≥1 be a stopping time sequence such that 4n ↑ ∞ as n → ∞. If s ≤ t,
then E(Mt∧4n |Fs) = Ms∧4n , which is followed by E(Mt|Fs) = Ms thanks to dominated
convergence theorem. If furthermore E(M∗) < ∞, then {Mt}t≥0 is uniformly integrable
since |Mt| ≤ M∗. ∎

1.4 Wiener process and Brown motion

In 1828, the Scottish botanist Robert Brown observed that the pollen particles sus-
pended in water make irregular motion, which was later explained as the random
collision of liquid molecules. While mathematicians regard it as a stochastic process
denoted by Bt(9), representing the position of the pollen particle 9 at the time t. A
breakthrough in this direction has been made by Kolmogorov, who gave the precise
mathematical description for the phenomenon in theory in 1918 and some traject-
ory properties of the Brownian motion. These pioneer works made the Brown motion
be broadly and extensively studied during the first half of the 20th century and thus
leads to the rapid development of Brownian motion. Nowadays, the Brownian motion
has become an important branch in probability and it also plays an important role in
applied mathematics and modern analysis.

The existence of Brownian motion was first established by Wiener in 1923, which
was based on Daniell’s method of constructing measures in infinite-dimensional
spaces. Later the Brownian motion was constructed by Fourier series by assum-
ing only the existence of iid Gaussian random variable sequences. See also the
construction by Lévy and Ciesielski [63, 169].

To construct {Bt}t≥0, we note by Kolmogorov theorem that it suffices to find the
probability measures {-t1,⋯ ,ttk }, satisfying the intuitive fact observed. Fix x ∈ R

d and
define

p(t, x, y) = (20t)–n/2 exp
{
–

|x – y|2
2t

}
, y ∈ Rd, t > 0.

For 0 ≤ t1 ≤ t2 ≤ ⋯ ≤ tk, we define the following measure on Rdk,

-t1,⋯ ,tk (F1 × ⋯ × Fk) =
∫
F1×⋯×Fk

p(t1, x, x1)p(t2 – t1, x1, x2)

⋯p(tk – tk–1, xk–1, xk)dx1⋯dxk, (1.4.1)

where dy is the standard Lebesgue measure under the convention p(0, x, y)dy = $x(y).
Using Kolmogorov consistency condition (K.1), we extend the definition to all finite
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sequences ti. Since
∫
Rd p(t, x, y)dy = 1 for all t ≥ 0, Kolmogorov consistency condition

(K.2) holds. By Kolmogorov theorem, there is a probability space (K,F ,Px) and on
which a stochastic process {Bt}t≥0 with finite-dimensional distribution (1.4.1),

Px(Bt1 ∈ Fk, ⋯ ,Btk ∈ Fk) =
∫
F1×⋯×Fk

p(t1, x, x1)

⋯p(tk – tk–1, xk–1, xk)dx1⋯dxk. (1.4.2)

Such process is called the Brown motion starting from x and Px(B0 = x) = 1. It’s
worth noting that such Brown motion is not unique, i.e., there are more than one
(K,F ,Px,Bt) such that eq. (1.4.2) holds. This does not affect our discussion. In fact, we
can select any such Brownmotion for our discussion. Aswewill see, the path of Brown
motion is continuous a.s., hence we can regard almost all 9 ∈ K and the continuous
function t ↦ Bt(9) from [0,∞) to Rd to be the same. In this viewpoint, Brownian
motion is just the space C([0,∞),Rd) with a certain probability measure Px determ-
ined by eqs (1.4.1) and (1.4.2). Such selected Brownian motion is called the “canonical
Brownianmotion.” Besides intuition, such selection facilitates detailed analysis of the
measures on C([0,∞),Rd). More about themeasures in infinite-dimensional space can
be referred to Ref. [260, Chapter 8].

The above defined Brownian motion has the following properties: (1) it is a
Gaussian process, i.e., any finite-dimensional joint distribution is normal, (2) it has
independent increments and (3) the trajectory is continuous (more specifically, there
is a continuous modification). The following gives a more general definition of Wiener
process. We assume we are given a probability space (K,F , {Ft}t≥0,P).

Definition 1.4.1. The Rd-valued stochastic process B = {Bt}t≥0 is called a d-dimensional
Wiener process or Brownian motion, if
(i) for 0 ≤ s < t < ∞, the increment Bt – Bs is independent of Fs,
(ii) for any s, t > 0, Bs+t – Bs ∼ N(0,Ct) is a Gaussian random variable with expectation

0 and variance matrix Ct.

If P(B0 = x) = 1, then B is called a Brownian motion starting from x. In particular, when
d = 1,C = 32 = 1 and x = 0, B is called a canonical Brownian motion and denoted by
Bt ∼ N(0, t).

Let us consider the one-dimensional case. Intuitively, Bt(9) denotes the position of
pollen 9 at t. Suppose the liquid is isotropic, then it is natural to assume that the
displacement Bs+t – Bs from time s to s + t is the sum of many independent small ones

Bs+t – Bs =(Bs+ t
n
– Bs) + ⋅ ⋅ ⋅ + (Bs+ nt

n
– Bs+ (n–1)t

n
).

By central limit theorem, it’s nature to assume that Bs+t – Bs ∼ N(0, 32t), where 3 is
independent of s, t and x.
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There is only one thing not mentioned in the definition, i.e., the continuity of the
trajectories. In fact (i) and (ii) determine the distribution of B, but continuity cannot
be completely determined by the distribution of B. By Kolmogorov–Loève–Chentsov
(KLC) Theorem 1.3.1, we can prove the continuity and even the Hölder continuity of
the trajectories.

Consider the d-dimensional Brownian motion. Let t > s ≥ 0, then for all integers
m = 1, 2, ⋯ ,

E(|Bt – Bs|2m) = 1
(20r)d/2

∫
Rd

|x|2me– |x|2
2r dx (r = t – s > 0)

=
1

(20)d/2
rm

∫
Rd

|y|2me– |y|2
2 dy (y = x/

√
r)

= Crm = C|t – s|m.

Then applying the KLC Theorem (a = 2m, d = 1, b = m–1) shows that the Brownmotion
B is Hölder continuous (a.s.) with the Hölder index 0 < ! < b

a = 1
2 –

1
2m for all m. This

leads to the following result.

Theorem 1.4.1. The sample path t ↦ Bt(9) of Brownian motion is !-Hölder continuous
for all ! ∈ (0, 1/2) in [0,T], for almost all 9 and any T > 0.

This also implies any Wiener process has continuous sample path (a.s.). One may ask
naturally whether the ! here can be taken larger. The answer is disappointing, since
for any ! > 1

2 , the sample path t ↦ Bt(9) is nowhere !-Hölder continuous for a.a. 9.
As a direct corollary in real analysis, Brown motion is of unbounded variation on any
finite interval for a.a. 9.

Even so, it still has the following convergence result in the mean square sense.
Define a partition Fn of the interval [s, t]:

Fn : s = tn0 < tn1 < ⋯ < tnmn–1 < t
n
mn = t,

and let ‖Fn‖ := max1≤k≤m–1 |tnk+1 – tnk |.

Theorem 1.4.2. Let B = {B4}4∈[s,t] be a Brownian motion and Sn :=
∑

k |Btnk+1 (9) –
Btnk (9)|2, then Sn → t – s in the sense of L2(K,F ,P) as ‖Fn‖ → 0 (n →∞).

Proof. Under the above notation,

Sn – (t – s) =
∑
k
(Btnk+1 – Btnk )

2 – (tnk+1 – t
n
k ).
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Since the terms in the summation are mutually independent with mean value 0, we
have

E(Sn – (t – s))2 =
∑
k
E[(Btnk+1 – Btnk )

2 – (tnk+1 – t
n
k )]

2

=
∑
k
E[(Y2 – 1)(tnk+1 – t

n
k )]

2.

Here, Y obeys the standard normal distribution N(0, 1), and hence the above formula
becomes

E[Sn – (t – s)]2 ≤ E(Y2 – 1)2‖Fn‖
∑
k
((tnk+1 – t

n
k ))

= E(Y2 – 1)2(t – s)‖Fn‖ → 0,

completing the proof. ∎

In fact, for the canonical Brownmotion B = {Bt}t∈[s,t], limn→∞ Sn = t–s a.s. (see Protter
[211, p. 18]).

The following proposition can be seen as an equivalent definition of the Brownian
motion. Let us only consider the canonical Brownian motion.

Proposition 1.4.1. Let B0 = 0. B = {Bt}t≥0 is a Brownian motion if and only if it is
Gaussian and satisfies

EBt = 0, E(BtBs) = t ∧ s. (1.4.3)

Proposition 1.4.2. Let {Bt; t ∈ R+} be a Brownianmotion and B0 = 0. Then {Bs+t–Bs}t∈R+ ,
{ 1√

+B+t}t∈R+ , {tB 1
t
}t∈R+ and {BT–s – BT}s∈[0,T] still obey the Brown distribution.

The proof is not difficult. For example

E(tB 1
t
sB 1

s
) = ts

(
1
t
∧
1
s

)
= ts

1
t ∨ s

= t ∧ s.

We can see from Theorem 1.4.2 that when t is very small, Bt+s–Bs is approximately
√|t|.

There are more refined estimates for Bs+t –Bs, among which the following log log-type
estimate should be cited here. The proof can be found in Ref. [214].

Proposition 1.4.3. For Brownian motion {B(t)}t∈R, there holds

limt↓0
B(s + t) – B(s)√
t log log(1/t)

= 1 a.s., (1.4.4)
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limt↑∞
B(s + t) – B(s)√

t log log t
= 1 a.s. (1.4.5)

Corollary 1.4.1. For Brownian motion {B(t)}t≥0, there holds

limt↓0
B(s + t) – B(s)√
t log log(1/t)

= –1 a.s.,

limt↑∞
B(s + t) – B(s)√

t log log t
= –1 a.s.

Theorem 1.4.3 (The martingale of Brownian motion). Let {Bt}t∈R+ be a standard
Ft-Brownian motion, then Bt, B2t – t and exp(3Bt – (32/2)t) are all Ft-martingales.

The proof can be found in Refs [192, 214]. On the other hand, we have the following
martingale characterization of Brownian motion, whose proof will be omitted.

Theorem 1.4.4. Let X = {Xt}t≥0 be an adapted process, with continuous sample path
and mean value 0 and for any 1 ≤ i, j ≤ d, s, t ≥ 0, the covariance matrix is EXi(t)Xj(s) =
aij(s∧ t), where A = (aij) is a d× d positive-definite matrix. Then the following assertions
are equivalent:
(1) X is a Brownian motion with covariance matrix A,
(2) X is a martingale, 〈〈Xi,Xj〉〉(t) = aijt ∀1 ≤ i, j ≤ d, t ≥ 0,

(3) for any u ∈ Rd, the process {ei(u,X(t))+ t
2 (u,au)}t≥0 is a martingale.

Next, we consider theMarkov property, semigroup and generator of Brownianmotion.
Since Brownianmotion is a time-homogeneous process with independent increments,
it’s also time-homogeneous Markov process, whose transition function is denoted by
p(t, x,A). Since

p(t,B0,A) := E(1A(Bt)|F0)
= E(1A(Bt – B0 + x)|F0)|x=B0 (B0 ∈ F0)
= E(1A(Bt – B0 + x))|x=B0

=
∫

1A(z + x)
e– z2

2t√
20t

dz|x=B0

=
∫
A

e–
(y–x)2
2t√
20t

dy|x=B0 ,

then the transition function is

p(t, x, y) =
1√
20t

e–
(y–x)2
2t ,
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and the transition semigroup of Brownian motion is

Ptf (x) = Exf (Bt) =
∫ 1√

20t
e–

(y–x)2
2t f (y)dy.

By a direct calculation, we get

∂p(t, x, y)
∂t

=
1
2

∂2p
∂y2

(1.4.6)

=
1
2

∂2p
∂x2

. (1.4.7)

These two equations correspond to Kolmogorov backward and forward equations
(1.2.5) and (1.2.6).

Next, let us consider the generator of the semigroup. For this purpose, we denote
Cu(R1) := {f : R1 → R1 bounded and uniformly continuous} for convenience. A direct
calculation leads to

Ptf (x) – f (x)
t

=
∫ 1√

20
e–

z2
2
f (x +

√
tz) – f (x)
t

dz. (1.4.8)

If we denote

C2u(R1) := {f ∈ Cu(R1) : f ′′ is uniformly continuous and bounded},

then

A f (x) = lim
t↓0

∫ e– z2
2√
20

{
f ′(x)√

t
z +

f ′′(x + (
√
tz)

2t
tz2

}
dz

= lim
t↓0

∫ e– z2
2√
20

1
2

{
f ′′(x + (

√
tz) – f ′′(x)

}
dz +

1
2
f ′′(x)

=
1
2
f ′′(x).

Hence

‖Ptf – f
t

–
1
2
f ′′‖ → 0, f ∈ D(F ),

and

A f =
1
2
f ′′.

Generally speaking, it is difficult to find out D(F ). But it is usually sufficient to find
out a density subset. There are many conclusions ensuring the Kolmogorov forward
equation to be valid, which are closely related to (parabolic) PDEs. Interested readers
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may refer to monographs of diffusion process and partial differential equation, such
as Ref. [100].

1.5 Poisson process

Poisson process is another important stochastic process with continuous time. It was
first introduced by and named after the French mathematician Poisson. In this sec-
tion, we will give the definition of Poisson process and discuss some of its basic
mathematical properties.

Suppose we are given a probability space (K,F , {Ft}0≤t≤∞,P). Let Tn be a strictly
increasing positive random variable sequence and T0 = 0 a.s.

Definition 1.5.1. Define Nt =
∑

n≥1 1t≥Tn , taking values in N
+ := N ∪ {∞}, and 1t≥Tn = 1

if t ≥ Tn(9) and 0 otherwise. The process N = {Nt : 0 ≤ t ≤ ∞} is called the counting
process associated with {Tn; n ≥ 1}.

Define T = supn Tn, then [Tn,Tn+1) = {N = n} and [T,∞) = {N =∞} and

[Tn,∞) = {N ≥ n} = {(t,9) : Nt(9) > n}.

It is immediate that Nt – Ns :=
∑

n≥1 1s<Tn≤t, representing the number of the event
arriving in (s, t]. Obviously, the counting process has left limit and right continuous
sample path (i.e., cádlág) if T =∞ a.s.

The counting process N is adapted if and only if the corresponding random vari-
able {Tn}n≥1 is a stopping time. Indeed, if {Tn}n≥1 is a stopping time and T0 = 0 a.s.,
then the event {Nt = n} = {9 : Tn(9) ≤ t < Tn+1(9)} ∈ Ft for any n. Hence Nt ∈ Ft and
N is adapted. On the contrary, if N is adapted, then {Tn ≤ t} = {Nt ≥ n} ∈ Ft and hence
{Tn}n≥1 is a stopping time.

Definition 1.5.2. The adapted counting process N is called a Poisson process if T = ∞
a.s., and
(1) Nt – Ns is independent of Fs for any 0 ≤ s < t < ∞,
(2) Nt –Ns and Nv –Nu have identical distributions for any 0 ≤ s < t < ∞, 0 ≤ u< v <∞

satisfying t – s = v – u.

The following characterization is useful in practice.

Theorem 1.5.1. Let N be a Poisson process, then there exists a + > 0 such that

P(Nt = n) =
e–+t(+t)n

n!
(1.5.1)

for any n = 0, 1, 2, ⋯ .
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The parameter + is the arrival rate of event. This theorem implies that Nt has Poisson
distributionwith parameter +t. The proof can be found in Ref. [171] and is omitted here.
As a direct corollary, E(Nt) = +t and Var(Nt) = +t.

What follows is a collection of properties of Poisson process.
(i) The Poisson process is stochastically continuous, i.e., for any real number $ such

that t ≥ 0 and t + $ ≥ 0, there holds

P(Nt+$ ≠ Nt) = 1 – P(Nt+$ = Nt) = 1 – e–+|$| ≤ +|$|.

(ii) The sample path is nondecreasing on R+ in probability 1, i.e., for any 0 ≤ s < t,

P(Nt – Ns ≥ 0) =
∞∑
k=0

P(Nt – Ns = k) = 1. (1.5.2)

(iii) As t → ∞,

P(Nt(9) is continuous on [0, t]) = P(Nt(9) = N0(9)) = e–+t → 0.

Let A∞ = {Nt(9) is continuous in [0,∞)} and At = {Ns(9) is continuous in [0, t]},
then At ⊂ As for t ≥ s and hence

P(A∞) = P
(
∩∞n=1An

)
= lim

n→∞
P(An) = lim

n→∞
e–+n = 0.

(iv) For almost all sample paths,
∣∣limt→t0+,s→t0– Nt – Ns

∣∣ = 1 at every jump point.
(v) For any fixed t0 ≥ 0, almost all sample paths are continuous. Indeed if t0 > 0,

then P(N(t0 + %,9) – N(t0 – %,9) > 0) = 1 – e–2+% → 0 as % → 0. While if t0 = 0, it
is right continuous, i.e., P(N(4,9) – N(0,9) > 0) = 1 – e–+4 → 0 as 4 → 0.

(vi) Define 4n(9) to be the arrival time of the nth event of Poisson process N, 40 = 0
and 4n = inf{t : t > 4n–1,Nt = n} for n ≥ 1. Then Sn(9) = 4n(9) – 4n–1(9) denotes
the waiting time of the nth event. Obviously, {Nt ≥ n} = {4n ≤ t} and {Nt = n} =
{4n ≤ t < 4n+1} = {4n ≤ t} – {4n=1 ≤ t}. Hence the distribution function of 4n is
P(4n ≤ t) = 0 for t < 0 and P(4n ≤ t) = P(Nt ≥ n) = 1 – e–+t

∑n–1
k=0 (+t)k/k! for t ≥ 0

and the probability density function of 4n is f4n (t) = +(+t)n–1e–+t1t≥0/(n – 1)!.
In particular, when n = 1

P(S1 ≤ t) = P(41 ≤ t) = (1 – e–+t)1t≥0,

i.e., S1 ∼ E(+) obeys the exponential distributionwith parameter + > 0. Generally,
{Sn}n≥1 are independent and obey the exponential distribution with parameter +
iff the counting process N = {Nt}t≥0 is a Poisson process (see Ref. [171]).

(vii) LetN = {Nt}t∈R+ be a Poisson process with parameter +, thenNt–+t and (Nt–+t)2–
+t are both martingales. Indeed, it suffices to note that E(Nt – +t – (Ns – +s)|Fs) =
E(Nt –+t–(Ns –+s)) = 0 for 0 ≤ s < t < ∞. The same result holds for (Nt –+t)2 –+t.
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1.6 Lévy process

Lévy process is a large class of stochastic processes including Brownian motion and
Poisson process. In this section, we will give the definition, the Lévy–Itô theorem
and the Lévy–Khintchine formula. Most of these contents and details can be found
in Ref. [7].

1.6.1 Characteristic function and infinite divisibility

Consider the Rd-valued random variable X in a probability space (K,F ,P) with
probability distribution PX. The characteristic function is defined by

6X(. ) = E(ei(. ,X)) =
∫
Rd
ei(. ,y)PX(dy), . ∈ Rd.

Example 1.6.1 (Gauss random variable). Random variance X = (X1, ⋯ ,Xd) is Gaussian
or normal, denoted by X ∼ N(m,A), if it has probability density function

f (x) =
1√

(20)d detA
exp

{
–
1
2
(x –m,A–1(x –m))

}
,

where m ∈ Rd is the mean vector and A is strictly positive definite symmetric d × d
covariance matrix. It is easy to calculate

6X(. ) = exp
{
i(m, . ) – 1

2
(. ,A. )

}
.

Example 1.6.2 (Compound Poisson random variable). Suppose that {Z(n)}n∈N is a se-
quence of Rd-valued iid random variables having common law ,Z and N ∼ 0(+) is a
Poisson random variable independent of all the Z(n). The compound Poisson random
variable is defined as

X = Z(1) + ⋅ ⋅ ⋅ + Z(N).

Then the characteristic function of X is given by

6X(. ) =
∞∑
n=0

E
(
exp [i(. , Z(1) + ⋅ ⋅ ⋅ + z(N))]|N = n

)
P(N = n)

=
∞∑
n=0

E
(
exp [i(. , Z(1) + ⋅ ⋅ ⋅ + Z(n))]

)
e–+

+n
n!

=e–+
∞∑
0

[+6Z(. )]n
n!

= exp [+(6Z(. ) – 1)],

where 6Z(. ) =
∫
Rd e

i(. ,y),Z(dy).
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Definition 1.6.1. Let X be an Rd-valued random variable with distribution law ,X. Then
X is said to be infinitely divisible if for all n ∈ N, there are iid random variables
Y (n)
1 , ⋯ ,Y (n)

n such that X d= Y (n)
1 + ⋅ ⋅ ⋅ + Y (n)

n , where d=means identically distributed.

LetM1 be the set of Borel probability measure in Rd. Define the convolution of two
probability measures ,i ∈ M1 (i = 1, 2) as follows:

,1 ∗ ,2(A) =
∫
Rd
,1(A – x),2(dx) ∀A ∈ B(Rd),

where A – x = {y – x, y ∈ A}. It can be shown that ,1 ∗ ,2 is a probability measure on
Rd. If there is ,1/n ∈ M1 such that , = ,1/n ∗ ⋅ ⋅ ⋅ ∗ ,1/n (n times), then , is said to have
a convolution nth root ,1/n. The measure , ∈ M1(Rd) is infinitely divisible if it has a
convolution nth root inM1 for each n ∈ N. It is not difficult to show that , ∈ M1(Rd)
is infinitely divisible if and only if for each n, there exists ,1/n ∈ M1(Rd) such that
6,(. ) = [6,1/n (. )]n for each . ∈ Rd.

Definition 1.6.2. A Borel measure - on Rd\{0} is called a Lévy measure if∫
Rd\{0}

(|y|2 ∧ 1)-(dy) < ∞.

Theorem 1.6.1 (Lévy–Khintchine formula). If there is a vector b ∈ Rd, a positive-definite
symmetric matrix d×dmatrix A and a Lévymeasure - on Rd\{0} such that for any . ∈ Rd,

6,(. ) = exp
{
i(b, . ) – 1

2
(. ,A. )

+
∫
Rd\{0}

[ei(. ,y) – 1 – i(. , y)7B̂(y)]-(dy)
}
, (1.6.1)

then , ∈ M1 is infinitely divisible, where B̂ = B1(0). Conversely, any mapping of the
form (1.6.1) is the characteristic function of an infinitely divisible probability measurable
on Rd.

The proof can be found in Ref. [7] and is omitted here. There are three important ex-
amples of the Lévy–Khintchine formula, i.e., (1) Gauss random variable: b is the mean
value, A is the covariance matrix and - = 0; (2) Poisson random variable: b = 0,A = 0
and - = +$1; and (3) compound Poisson random variable: b = 0,A = 0 and - = +,,
where c > 0 and , is a probability measure on Rd.

1.6.2 Lévy process

Definition 1.6.3. The stochastic process X = {Xt}t≥0 is a Lévy process if
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(L1) X0 = 0 a.s.,
(L2) X has independent and stationary increments, i.e., for any 0 ≤ t1 < t2 < ⋅ ⋅ ⋅ < tn,

the random variables X(t1) –X(t0),X(t2) –X(t1), ⋅ ⋅ ⋅,X(tn) –X(tn–1) are independent
and the distribution of X(t) – X(s) is independent of t – s,

(L3) X is stochastically continuous, i.e., limt→s P(|Xt – Xs| > a) = 0 for any a > 0 and
s ≥ 0.

One can show that any Lévy process has a càdlàgmodification. By definition, any Lévy
process X is infinitely divisible since for any n ∈ N, Xt = Y (n)

1 (t) + ⋅ ⋅ ⋅ + Y (n)
n (t), where

Y (n)
k (t) = Xkt

n
– X (k–1)t

n
are iid by (L2).

Denote by 6Xt (. ) = e'(t,. ) (∀t ≥ 0, . ∈ Rd) the characteristic function of Xt and call
'(t, ⋅) the Lévy symbol. By definition of the Lévy process and infinite divisibility, it’s
not difficult to show '(t, . ) = t'(1, . ) and '(. ) = log

(
E(ei(. ,X1))

)
, where '(. ) = '(1, . ) is

the Lévy symbol of X1.
Applying the Lévy–Khintchine formula to Lévy process X = {Xt}t≥0, we have for

any t ≥ 0 and u ∈ Rd that

E(ei(. ,Xt)) = exp
(
t
{
i(b, . ) – 1

2
(. ,A. )

+
∫
Rd\{0}

[ei(. ,y) – 1 – i(. , y)7B̂(y)]-(dy)
})
.

Obviously, (b,A, -) are characteristics of X1.
The following are two examples.

Example 1.6.3 (Brownian motion with drift). Let b ∈ Rd, B(t) be an m-dimensional
Brownian motion, A be a d × d-dimensional positive-definite symmetric matrix and 3 be
a d × m matrix such that 33T = A. The process C = {C(t)}t∈R+ with C(t) = bt + 3B(t) is
a Brownian motion in Rd. Then C is a Lévy process with Lévy symbol 'C(. ) = i(b, . ) –
1
2 (. ,A. ).

Example 1.6.4 (Compound Poisson process). Let N = (N(t); t ≥ 0) be a Poisson process
independent of Z(n) with parameter +. Define compound Poisson process Y = {Y(t)}t≥0
with Y(t) = Z(1) + ⋅ ⋅ ⋅ + Z(N(t)) and denote Y(t) ∼ 0(+t, ,Z). It’s easy to show that Y is a
Lévy process with Lévy symbol

'Y (. ) =
∫
Rd
(ei(. ,y) – 1)+,Z(dy).

Now, we have seen that the first two parts in the Lévy–Khintchine formula correspond
to Brownian motion with drift and compound Poisson process. As to the last part, we
leave it to the next section. But we first introduce the compensated Poisson process.
Let N(t) be a Poisson process with parameter + and Ñ(t) = N(t) – +t, then the process
Ñ = {Ñ(t)}t≥0 is called a compensated Poisson process.
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1.6.3 Lévy–Itô decomposition

For a Lévy processX = {X(t)}t≥0, we introduce the jumpprocess BX = {BX(t)}t≥0 defined
by BX(t) = X(t)–X(t–), whereX(t–) = lims↑t X(s). It is easy to show that ifX is increasing
(a.s.) Lévy process and is such that BX(t) takes values in {0, 1}, then X is a Poisson
process. Obviously, the jump process BX is an adapted process, but generally not a
Lévy process. Indeed, consider a Poisson process N = {N(t)}t≥0, it’s easy to verify that

P(BN(t2) – BN(t1) = 0|BN(t1) = 1) ≠ P(BN(t2) – BN(t1) = 0),

for 0 ≤ t1 < t2 < ⋯ < ∞. Hence, BN cannot have independent increments and is not a
Lévy process.

Setting 0 ≤ t < ∞ and A ∈ B(Rd\{0}), we define

N(t,A) = #{0 ≤ s ≤ t : BX(s) ∈ A}.

Obviously, for any 9 ∈ K and t ≥ 0, the function A → N(t,A)(9) is a counting measure
on B(Rd\{0}) and E(N(t,A)) is a Borel measure on B(Rd\{0}). Denote ,(⋅) = E(N(1, ⋅))
and call it the intensity measure associated with X. If A ∈ B(Rd\{0}) is bounded below,
i.e., 0 does not belong to Ā, then for any t ≥ 0, one has N(t,A) < ∞ a.s. (see Ref. [7]).
It’s worth noting that this is not necessarily true when A isn’t bounded below, since it
may have accumulation of infinitely many small jumps.

Let (S,A) be a measurable space and (K,F ,P) be a probability space.

Definition 1.6.4. A random measure M on (S,A) is a collection of random variables
(M(B),B ∈ A) such that:
(1) M(Ø) = 0,
(2) (3-additivity) for any given sequence {An}n∈N of mutually disjoint sets in A, there

holds M(∪n∈N) =
∑

n∈N M(An) a.s.,
(3) for any mutually disjoint family (B1, ⋯ ,Bn) in A, the random variable

M(B1), ⋯ ,M(Bn) are mutually independent.

In particular, we say M is a Poisson random measure if M(B) has a Poisson distribution
whenever M(B) < ∞.

Let U be a measurable space equipped with a 3-algebra U , S = R+ × U and A =
B(R+) ⊗ U . Let p = {p(t)}t≥0 be a U-valued adapted process such that M is a Pois-
son random measure on S, where M([0, t) × A) = #{0 ≤ s < t; p(s) ∈ A} for each t ≥ 0
and A ∈ U . The process p is usually called the Poisson point process and M its as-
sociated Poisson random measure. When U is a topological space and U is its Borel
3-algebra, we define, for any A ∈ U , a processMA = {MA(t)}t≥0 byMA(t) = M([0, t)×A).
If there is V ∈ U such thatMA is a martingale whenever Ā ∩ V = Ø, thenM is called a
martingale-valued measure and V is called the associated forbidden set.
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When U = Rd\{0} and U is its Borel 3-algebra. Then for a Lévy process X =
{X(t)}t≥0, BX is a Poisson point process and N is its Poisson random measure. It is
easy to show that for each t > 0 and 9 ∈ K, N(t, ⋅)(9) is a counting measure on
B(Rd\{0}) and for each A bounded below, {N(t,A)}t≥0 is a Poisson process with in-
tensity ,(A) = E(N(1,A)). For any t ≥ 0 and A bounded below, define the compensated
Poisson randommeasure

Ñ(t,A) = N(t,A) – t,(A).

Then {Ñ(t,A)}t≥0 is a martingale and so Ñ extends to a martingale-valued measure
with forbidden set {0}.

Let f be a Borel measurable function from Rd to Rd and A be bounded below. Then
for any t > 0 and 9 ∈ K, we can define the Poisson integral of f as∫

A
f (x)N(t, dx)(9) =

∑
x∈A

f (x)N(t, {x})(9). (1.6.2)

For t ≥ 0 and . ∈ Rd, the characteristic function is

E
(
exp

{
i
(
. ,
∫
A
f (x)N(t, dx)

)})
= exp

{
t
∫
A
(ei(. ,x) – 1),f (dx)

}
,

where ,f = , ○ f –1. If A1 and A2 are two disjoint sets and bounded below, then
{
∫
A1 f (x)N(t, dx)}t≥0 and {

∫
A1 f (x)N(t, dx)}t≥0 are mutually independent [7, Theorem

2.4.6].
Let f ∈ L1(A, ,A), then we can definite the compensate Poisson integral of f as∫

A
f (x)Ñ(t, dx) =

∫
A
f (x)N(t, dx) – t

∫
A
f (x),(dx),

which is a martingale and whose characteristic function is given by

E exp
{
i
(
. ,
∫
A
f (x)Ñ(t, dx)

)}
= exp

{
t
∫
A

[
ei(. ,y) – 1 – i(. , y),f (dx)

]}
.

Let X = {X(t)}t≥0 be a Lévy process and A = {x : |x| ≥ 1}. Obviously, A is bounded
below. Consider the compound Poisson process {

∫
|x|≥1 xN(t, dx)}t≥0 and define a new

process Y = {Y(t)}t≥0 as

Y(t) = X(t) –
∫

|x|≥1
xN(t, dx).

Then Y is also a Lévy process. We further define a new Lévy process Ŷ as

Ŷ(t) = Y(t) – E(Y(t)).
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It can be verified that Ŷ is a càdlàg square-integrable martingale with zero expectation
and has decomposition

Ŷ(t) = Yc(t) + Yd(t),

where Yc and Yd are independent Lévy processes, Yc has continuous sample path and
there exists a d × d positive-definite matrix A such that

E(ei(. ,Yc(t))) = e–t(. ,A. )/2

and

Yd(t) =
∫

|x|<1
xÑ(t, dx).

The continuous part Yc can be proved to be a Brownian motion and the discontinuous
part Yd is the compensate sum of small jumps and

E(ei(. ,Yd(t))) = exp
{
t
∫

|x|<1
[ei(. ,x) – 1 – i(. , x)],(dx)

}
∀t ≥ 0, . ∈ Rd.

Till now, we should understand the meaning of the last part in the Lévy–Khintchine
formula. This leads to the following Lévy–Itô decomposition [7, 14].

Theorem 1.6.2 (Lévy-Itô decomposition). Let X = {X(t)}t≥0 be a Lévy process, then
there exists b ∈ Rd, a Brownian motion BA with covariance matrix A and an independent
Poisson random measure N on R+ × (Rd\{0}) such that for each t ≥0,

X(t) = bt + BA(t) +
∫

|x|<1
xÑ(t, dx) +

∫
|x|≥1

xN(t, dx), (1.6.3)

where b = E
(
X(1) –

∫
|x|≥1 xN(1,dx)

)
.

By independence,

E(ei(. ,X(t))) = E(ei(u,Yc(t)))E(ei(u,Yd(t)))E(ei(u,
∫
|x|≥1 xN(t,dx))).

Recall that an adapted process X is a semimartingale if it has the decomposition

X(t) = X(0) +M(t) + C(t),

where M = {M(t)}t≥0 is a local martingale and C = {C(t)}t≥0 is an adapted process
with bounded variation. A direct consequence of the Lévy–Itô decomposition is that
any Lévy processes X = {X(t)}t≥0 is a semimartingale. Indeed, for any t ≥ 0, we have
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X(t) = M(t) + C(t) forM(t) = BA(t) +
∫
|x|<1 xÑ(t, dx) and C(t) = bt +

∫
|x|≥1 xN(t, dx). Here

M is a martingale and Y(t) =
∫
|x|≥1 xN(t, dx) is a compound Poisson process and hence

for any partition P of [0, t],

VarP (Y) ≤
∑
0≤s≤t

|BX(s)|7[1,∞)(BX(s)) < ∞ a.s..

1.7 The fractional Brownian motion

Another important class of stochastic processes is the fractional Brownian motion.
A fractional Brownian motion is defined initially by Kolmogorov in Hilbert space
framework [158]. A fractional Brownian motion WH with (Hurst) index H ∈ (0, 1) is
a centered Gaussian process with covariance function

E(WH(t),WH(s)) =
1
2

(
t2H + s2H – |t – s|2H

)
, s, t ≥ 0.

When H = 1
2 , it reduces to the standard Brownian motion. A fractional Brownian

motion has stationary increment

E
(
(WH(t) –WH(s))2

)
= |t – s|2H ,

and is H-self-similarity, i.e., for any c > 0,{
1
CH

WH(ct)
}
t≥0

d= {WH(t)}t≥0,

where d= means identically distributed.
WhenH ≠ 1

2 ,W
H is neither a semimartingale nor a Markov process. Here are some

properties of the fractional Brownian motion.
1. (Time homogeneity): For any s > 0, the process {WH(t+s)–WH(s)}t>0 is a fractional

Brownian motion with Hurst index H.
2. (Symmetry): The process{–WH(t)}t>0 is also a fractional Brownian motion with

Hurst parameter H.
3. (Scaling): For any c > 0, the process {cHWH(t/c)}t≥0 is a fractional Brownianmotion

with Hurst parameter H.
4. (Time reversibility): The process {X(t)}t≥0 defined by X(t) = t2HWH(1/t) with X(0) = 0

is also a fractional Brownian motion with Hurst parameter H.

Proposition 1.7.1. For H ∈ [0, 1], the sample path WH of a fractional Brownian motion is
a.s. !-Hölder continuous with ! < H.

Several expressions of the fractional Brownian motion are listed below.
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(1)Meanmotion expression:

WH(t) =
1

c1(H)

∫ ∞
∞

[
(t – x)H–

1
2

+ – (–x)H–
1
2

+

]
M(dx), t ∈ R,

where c1(H) =
√∫∞

0 [(1 + x)H– 1
2 – xH– 1

2 ]2dx + 1
2H ,M(dx) is a Gaussian random measure

and (a)+ = a7[0,∞)(a).
(2) Harmonic analysis expression:

WH(t) =
1

c2(H)

∫ ∞
–∞

eixt – 1
ix

|x| 12 –HM(dx), t ∈ R, (1.7.1)

where c2(H) =
√

0
HA(2H) sin0H .

(3) Volterra expression:

WH(t) =
∫ t

0
KH(t, s)dB(s), t ≥ 0, (1.7.2)

where KH(t, s) = (t–s)H–
1
2

A(H+ 1
2 )
A(H – 1

2 ,
1
2 –H,H + 1

2 , 1 –
t
s ), s < t, A is a Gauss hypergeometric

function and {B(t)}t≥0 is a Brownian motion. KH(t, s) can also be expressed as

KH(t, s) = cH

[
tH– 1

2

sH– 1
2
(t – s)H–

1
2 –

(
H –

1
2

)∫ t

0

uH– 1
2

sH– 1
2
(u – s)H–

1
2 du

]
,

where cH =
√

0H(2H–1)
A(2–2H)A(H+ 1

2 )2 sin(0(H–
1
2 ))
.
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2 The stochastic integral and Itô formula

This chapter introduces the stochastic integral, the Itô integral and the Itô formula.
Especially, they are discussed in the infinite dimensional case in Section 2.3 for ap-
plication in partial differential equations. Most of these materials in this chapter can
be found in Refs [7, 75, 145, 211].

2.1 Stochastic integral

The stochastic integral
∫
H dXt of H with respect to a stochastic process Xt = X0 +Mt +

At (M0 = A0 = 0) is defined in this section, where Mt is a locally square-integrable
martingale and At is an adaptive càdlàg process with bounded variation on a compact
set. We know that when A is of bounded variation and H is continuous, the integral∫
H dA is well defined.
As an example, consider the integral with compensated Poisson process

Mt =Nt – +t, which is obviously a real-valued martingale with bounded variation. For
simplicity, we take H to be a bounded jointly measurable process. Hence,

It =
∫ t

0
HsdMs =

∫ t

0
Hsd(Ns – +s)

=
∫ t

0
HsdNs – +

∫ t

0
Hsds

=
∞∑
n=1

H4n1t≥4n – +
∫ t

0
Hsds,

where (4n)n≥1 are the arrival times of the Poisson process Nt. If, furthermore, H is a
bounded and adapted process with continuous sample path, then by the dominated
convergence theorem,

E(It – Is|Fs) =E
(∫ t

s
HudMu|Fs

)

=E

⎛⎝ lim
n→∞

∑
tk,tk+1∈0n

Htk (Mtk+1 –Mtk )|Fs

⎞⎠
= lim
n→∞

∑
tk,tk+1∈0n

E(E(Htk (Mtk+1 –Mtk )|Ftk )|Fs) = 0.

This implies that the integral I is a martingale and the stochastic Stieltjes integral of
an adapted and bounded continuous process with respect to a martingale is still a
martingale.

But it is not clear when Mt is a square-integrable martingale, which does not ne-
cessarily has bounded variation on any finite interval. To tackle this problem, the
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following Banach–Steinhaus theorem is necessary, whose proof can be referred to,
for example, Yosida [259].

Theorem 2.1.1. Let X be a Banach space, Y be a normed linear space and {T!}!∈I be a
family of bounded linear operators from X to Y. If {T!x} is bounded for any x ∈ X, then
{T!} is bounded.

Consider a right-continuous function x(t) on [0, 1] and let Fn be a binary rational di-
vision on [0, 1] with limn→∞ mesh (Fn) = 0. It’s nature to ask under what restrictions
should be imposed on x to ensure the following summation:

Sn =
∑

tk,tk+1∈Fn
h(tk)(x(tk+1) – x(tk)) (2.1.1)

converge for any continuous function h as n →∞.
It follows from real analysis theory that when x(t) has finite variation, Sn con-

verges to the integration
∫ 1
0 h(s)dx(s). But the following theorem shows that it is also

necessary for x to be of finite variation.

Theorem 2.1.2. If Sn converges for any continuous function h(s), then x has finite
variation.

Proof. Let X be the Banach space of continuous functions equipped with maximum
norm. For h ∈ X, let Tn(h) =

∑
tk,tk+1∈Fn h(tk)(x(tk+1) – x(tk)). Then for any fixed n, we

construct h ∈ X such that h(tk) = sign(x(tk+1) – x(tk)) and ‖h‖ = 1. For such h, Tn(h) =∑
tk,tk+1∈Fn |x(tk+1)–x(tk)|. Hence, ‖Tn‖ ≥∑tk,tk+1∈Fn |x(tk+1)–x(tk)| for all n and supn Tn

is bigger than the total variation of x. On the other hand, for any h ∈ X, limn→∞ Tn(h)
exists and hence supn ‖Tn(h)‖ < ∞. It follows from Banach–Steinhaus theorem that
supn ‖Tn‖ < ∞ and hence x has finite variation. ∎

2.1.1 Itô integral

Now, we consider the simplest case when Bs(9) is a standard Brown motion. We will
define the corresponding stochastic integral∫ t

0
f (s,9)dBs(9). (2.1.2)

First, we take a partition of the interval [0, t] to be tk = tnk = k ⋅ 2–n with 0 ≤ k ⋅ 2–n ≤ t.
It then seems reasonable to define∫ t

0
f (s,9)dBs(9) =

∑
j≥0

f (t∗j ,9)[Btj+1 – Btj ](9),
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2.1 Stochastic integral 51

where t∗j ∈ [tj, tj+1]. But the following example shows that different values of t∗j lead to
different results unlike the Riemann–Stieltjes integral. Let f (t,9) = Bt(9), then choice
of t∗j = tj leads to I1, while the choice of t∗j = tj+1 leads to I2. Since {Bt} has independent
increments, it then follows that

E[I1] =
∑
j≥0

E[Btj (Btj+1 – Btj )] = 0

and

E[I2] =
∑
j≥0

E[Btj+1 (Btj+1 – Btj )] =
∑
j≥0

E[(Btj+1 – Btj )
2] = t.

The following two choices of t∗j are the most common and useful ones.
Itô integral. Choose t∗j = tj and the corresponding integral is denoted by∫ t

0 f (t,9)dBt(9).
Stratonovitch integral. Choose t∗j = (tj + tj+1)/2 and the corresponding integral is

denoted by
∫ t
0 f (t,9) ○ dBt(9).

In order to make integral (2.1.2) well defined, the integrand f (t,9) must be confined to
certain class of functions. For this, we first define Ft to be the 3-algebra generated by
the random variables {Bs}0≤s≤t where Bs(9) is an n-dimensional Brownian motion.

Definition 2.1.1. Let V = V(S,T) be a class of functions f (t,9) : [0,∞) × K → R such
that the mapping (t,9) → f (t,9) is B ×F measurable, where B is a Borel 3-algebra on
[0,∞), f (t,9) is Ft adapted and E

∫ t
0 f (s,9)2ds < ∞.

Let f ∈ V be a step function

f (t,9) =
∑
j
ej(9)7[tj,tj+1)(t),

then the Itô integral can be defined as∫ t

0
f (s,9)dBs(9) =

∑
j≥0

ej(9)[Btj+1 – Btj ](9). (2.1.3)

Lemma 2.1.1 (Itô isometry). If f (t,9) ∈ V be a step function, then

E
[(∫ t

0
f (s,9)dBs(9)

)2]
= E

[∫ t

0
f (s,9)2ds

]
. (2.1.4)

Proof. Since E[eiejBBiBBj] = E[e2j ] ⋅ (tj+1 – tj) for i = j and 0 for i ≠ j due to the
independence of eiejBBi and BBj, it follows that
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E
[(∫ t

0
fdB

)2]
=
∑
i,j

E[eiejBBiBBj] =
∑
j
E[e2j ] ⋅ (tj+1 – tj) = E

[∫ t

0
f 2ds

]
,

where BBj = Btj+1 – Btj . ∎

For a general f ∈ V, the Itô integral can be defined via approximation.
Step 1. Let g ∈ V be bounded and g(⋅,9) continuous for any 9. Define 6n(t,9) =∑

j g(tj,9) ⋅ 7[tj,tj+1)(t) be a step function, then
∫ t
0(g – 6n)2ds → 0 as n → ∞ for each 9

by the continuity of g(⋅,9). Hence, E[
∫ t
0(g – 6n)2ds] → 0 as n → ∞.

Step 2. If h ∈ V is bounded, then there exists a bounded function sequence gn ∈ V
such that gn(⋅,9) is continuous for all 9 and n, and

E
[∫ t

0
(h – 6n)2ds

]
→ 0.

Indeed, assume |h(t,9)| ≤ M for all (t,9). For any n, define the nonnegative continu-
ous function 8n on R such that 8n(x) = 0 for x ≤ – 1

n and x ≥ 0 and
∫∞
–∞ 8n(x)dx = 1.

Then define gn(t,9) =
∫ t
0 8n(s – t)h(s,9)ds, then gn(⋅,9) is continuous for any 9 and

|gn(t,9)| ≤ M. Since h ∈ V it follows that gn(t, ⋅) is still Ft measurable and moreover,
since {8n} is an approximate identity, it follows that∫ t

0
(gn(s,9) – h(s,9))2ds → 0

as n →∞ for any9. The conclusion then follows from bounded convergence theorem.
Step 3. Finally, let f ∈ V . If we take hn(t,9) = –n for f (t,9) < –n, hn(t,9) = f (t,9)

for –n ≤ f (t,9) ≤ n and hn(t,9) = n if f (t,9) > –n, then hn ∈ V is bounded for each n
and

E
[∫ t

0
(f – hn)2ds

]
→ 0, as n →∞.

Definition 2.1.2 (Itô integral). Let f ∈ V , then Itô integral is defined by∫ t

0
f (s,9)dBs(9) = lim

n→∞

∫ t

0
6n(s,9)dBs(9), (2.1.5)

where the limit is taken in L2(P) and {6n} ⊂ V is a sequence of step functions such that

E
[∫ t

0
(f (s,9) – 6n(s,9))2ds

]
→ 0, as n →∞.

We remark that from the definition, it follows that E[
∫ t
0 fdBs] = 0 when f ∈ V and the

Itô isometry also holds for f ∈ V, i.e.,
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E
[(∫ t

0
f (s,9)dBs

)2]
= E

[∫ t

0
f 2(s,9)ds

]
∀f ∈ V .

Furthermore, there exists a time-continuous version of the Itô integral
∫ 4
0 f (s,9)dBs(9)

for 0 ≤ 4 ≤ t, i.e., there exists a time-continuous stochastic process J4 on (K,F ,P) such
that P(J4 =

∫ 4
0 fdB) = 1 for all 0 ≤ 4 ≤ t. Hence, we always assume that the Itô integral

is time continuous.

Theorem 2.1.3. For any T > 0, let f ∈ V(0,T). Then the integral Mt(9) =
∫ t
0 f (s,9)dBs is

a Ft martingale and the following martingale inequality holds:

P
(
sup
0≤t≤T

|Mt| ≥ +
)
≤

1
+2 E

[∫ T

0
f (s,9)2ds

]
, +,T > 0.

2.1.2 The stochastic integral in general case

In this section, we will consider the stochastic integral with respect to real-valued
martingale measureM on R+ × E. Let

M((s, t],A] = M(t,A] –M(s,A],

where 0 ≤ s < t < ∞ and A ∈ B(E). To define the stochastic integral, some re-
strictions on M are also needed. We assume (M1) M(0,A) = 0 a.s., (M2) M((s, t],A)
is independent of Fs and (M3) there exists a 3-finite measure 1 on R+ × E such that
E[M(t,A)2] = 1(t,A) for all 0 ≤ s < t < ∞ and A ∈ B, where 1(t,A) = 1((0,T],A) for
brevity. The martingale–valued measures satisfying (M1)–(M3) are said to be of type
(2, 1). The martingale–valued measureM is said to be continuous if the sample paths
t ↦ M(t,A)(9) are continuous for a.a. 9 ∈ K and A ∈ B(E). In what follows, we always
assume 1((0, t],A) = t,(A) for some 3-finite measure , on E.

Let F : [0,T] × E × K → R be a mapping such that (x,9) ↦ F(t, x,9) is B(E) ×Ft
measurable for any 0 ≤ t ≤ T and the mapping t ↦ F(t, x,9) is left continuous for any
x ∈ E and 9 ∈ K. Fix E ∈ B(E) and 0 < T < ∞, and let P be the smallest 3-algebra such
that the mapping F : [0,T] × E × K → R is measurable. We call such P the predictable
3-algebra and any P-measurable mapping F is called predictable.

Fix T > 0 and define H2(T,E) to be the linear space of all predictable mapping
F : [0,T] × E × K → R such that

∫ T
0
∫
E E[|F(t, x)|2]1(dt, dx) < ∞. In such a space, we

identify two mappings that coincide a.e. with respect to the measure 1 × P. We define
an inner product 〈⋅, ⋅〉T,1 to be

〈F,G〉T,1 =
∫ T

0

∫
E
E[F(t, x)G(t, x)]1(dt, dx),
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54 2 The stochastic integral and Itô formula

which also introduces a norm in the usual way ‖F‖2T,1 = 〈F, F〉T,1 and makesH2(T,E)
be a Hilbert space.

As before, we first consider stochastic integrals of simple functions. Let S(T,E) be
the linear space of all simple processes inH2(T,E), i.e.,

F =
m∑
j=1

n∑
k=1

ckF(tj)7(tj,tj+1]7Ak

for some 0 ≤ t1 ≤ t2 ≤ ⋯ ≤ tm+1 = T and disjoint Borel subsets A1,A2, ⋯ ,An of E with
,(Ai) < ∞, where ck ∈ R and F(tj) is a boundedFtj -measurable random variable. Since
F is left continuous and B(E) ⊗ Ft measurable, it is predictable. It can be proved that
S(T,E) is dense inH2(T,E). If we set ckF(tj) = Fk(tj), then we can rewrite F as

F =
m,n∑
j,k

Fk(tj)7(tj,tj+1]7Ak . (2.1.6)

Just like the Itô integral, for fixed T > 0 and F ∈ S(T,E) of the form (2.1.6) we define
the stochastic integral with respect to a (2, 1)-type martingale-valued measureM to be

IT(F) =
∫ T

0

∫
E
F(t, x)M(dt, dx) =

m,n∑
j,k=1

Fk(tj)M((tj, tj+1],Ak). (2.1.7)

It can be proved that for any T ≥ 0 and F ∈ S(T,E) there holds

E[IT(F)] = 0, E[IT(F)2] = ‖F‖2T,1. (2.1.8)

Since IT is a linear isometry from S(T,E) to L2(K,F ,P) thanks to eq. (2.1.8), the
stochastic integral IT can be extended to integrand in H2(T,E) and is still called
Itô integral. By this extension, the Itô isometry formula (2.1.8) still holds for F ∈

H2(T,E). One can also show that {It(F); t ≥ 0} is Ft adapted and {It(F); t ≥ 0} is a
square-integrable martingale.

Finally, we extend the stochastic integral to a more general class of stochastic
processes. Let F : [0,T] × E × K be predictable and P(

∫ T
0
∫
E |F(t, x)|21(dt, dx) < ∞) = 1

and define P2(T,E) to be the set of all equivalence classes of mapping F that coincide
a.e. with respect to the measure 1 × P.

It is obvious thatP2(T,E) is a linear space,H2(T,E) ⊆ P2(T,E) andS(T,E) is dense
inP2(T,E) in the sense that for any F ∈ P2(T,E), we can find a sequence {Fn} ⊂ S(T,E)
such that

P
(
lim
n→∞

∫ T

0

∫
E
|Fn(t, x) – F(t, x)|21(dt, dx) = 0

)
= 1.

For these simple functions {Fn} ⊂ S(T,E), one can define
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IT,n =
∫ T

0

∫
E
Fn(t, x)M(dt, dx),

for n ≥ 0 in the usual way. It is not difficult to prove that this sequence is a Cauchy
sequence in probability and has a unique limit in probability. Denote this limit by
ÎT(F) and call it an extended stochastic integral. If

P
(∫ t

0

∫
E
|F(t, x)|21(dt, dx) < +∞

)
= 1,

then {Ît(F)}t≥0 can also be regarded as a stochastic integral.
Generally speaking, the process {Ît(F)}t≥0 is no longer a martingale, but can be

shown to be a local martingale and have a càdlàg correction.

2.1.3 Poisson stochastic integral

In this section, we will use the stochastic integral established to a Poisson random
measure. First of all, let E = B̂\{0}, where B̂ is the unit ball, N be a Poisson random
measure ofR+×(Rd–{0}) with intensity - and Ñ be the associated compensated Poisson
random measure, which is a martingale measure. If H = (H1, ⋯ ,Hd) ∈ P2(T,E), then
define Z(t) = (Z1(t), ⋯ , Zd(t)) by

Zi(T) =
∫ T

0

∫
|x|<1

Hi(t, x)Ñ(dt, dx).

Let A be a Borel set in Rd\{0} that is bounded below, and introduce the composite
Poisson process P = {

∫
A xN(t, dx)}t≥0. Let K be predictable, then the Poisson stochastic

integral can be extended to∫ T

0

∫
A
K(t, x)N(dt, dx) =

∑
0≤u≤T

K(u,BP(u))7A(BP(u)). (2.1.9)

In particular, when H is square integrable, then∫ T

0

∫
A
Hi(t, x)Ñ(dt, dx) =

∫ T

0

∫
A
Hi(t, x)N(dt, dx) –

∫ T

0

∫
A
Hi(t, x)-(dx)dt.

As an example, one can directly show that for each t ≥ 0∫ t

0
N(s)dÑ(s) –

∫ t

0
N(s–)dÑ(s) = N(t). (2.1.10)

Hence, the process {
∫ t
0 N(s)dÑ(s)}t≥0 cannot be a local martingale, since here N(s) is

càglàd, but not predictable.
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Let us still consider E = B̂\{0}. If we put all the stochastic integrals together, then
for all 1 ≤ i ≤ d, 1 ≤ j ≤ m and t ≥ 0,

Yi(t) =Yi(0) +
∫ t

0
Gi(s)ds +

∫ t

0
FijdB

j(s)

+
∫ t

0

∫
|x|<1

Hi(s, x)Ñ(ds,dx) +
∫ t

0

∫
|x|≥1

Ki(s, x)N(ds,dx), (2.1.11)

where |Gi| 12 , Fij ∈ H2(T),Hi ∈ H2(T,E) and Ki is predictable, B is an m-dimensional
standard Brownianmotion andN is an independent Poisson randommeasure on R+×
(Rd\{0}) with compensator Ñ and intensity -, which is assumed to be a Lévy measure.
Thus the above defined Rd-valued stochastic process is called a Lévy-type stochastic
integral. It is not difficult to illustrate that Y has càdlàg modifications and if Y(0) isF0
measurable, then Y is adapted and a semi martingale. It can be rewritten in a more
compact form

dY(t) = G(t)dt + F(t)dB(t) + H(t, x)Ñ(dt, dx) + K(t, x)N(dt, dx).

Let X be a Lévy process with characteristic (b, a, -) and Lévy–Itô decomposition

X(t) = bt + Ba(t) +
∫

|x|<1
xÑ(t, dx) +

∫
|x|≥1

xN(t, dx).

Let L ∈ P2(t) for all t ≥ 0, and choose Fij = 3ijL, Hi = Ki = xiL and 3T3 = a in eq. (2.1.11),
then we can construct processes Y = {Y(t)}t≥0 by

dY(t) = L(t)dX(t),

which is called a Lévy stochastic integral.

2.2 Itô formula

By the definition of Itô integral, one has∫ t

0
BsdBs =

1
2
B2t –

1
2
t,∫ t

0
B2sdBs =

1
3
B3t –

∫ t

0
Bsds,

where B0 = 0. This indicates that the usual chain rule in calculus does not hold for
stochastic integrals. In the following, we will introduce the Itô formula, which plays a
vital role in stochastic integral theory. Let Bt be a one-dimensional Brownian motion
in a given probability space (K,F ,P). A stochastic process Xt is called a Itô process if
it has the form
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Xt = X0 +
∫ t

0
u(s,9)ds +

∫ t

0
v(s,9)dBs, (2.2.1)

where v ∈ V and u is Ft adapted.

Theorem 2.2.1. Let Xt be a Itô process and dXt = udt+vdBt. Suppose g ∈ C2([0,∞)×R),
then Yt = g(t,Xt) is still a Itô process and

dYt =
∂g
∂t
(t,Xt)dt +

∂g
∂x

(t,Xt)dXt +
1
2

∂2g
∂x2

(t,Xt) ⋅ (dXt)2, (2.2.2)

where (dXt)2 = (dXt) ⋅ (dXt) is calculated by the following principles:

dt ⋅ dt = dt ⋅ dBt = dBt ⋅ dt = 0, dBt ⋅ dBt = dt.

Proof. The proof can be found in Ref. [192] and is omitted here. ∎

The Itô formula can be generalized to the n-dimensional case in an obvious way.

Theorem 2.2.2. Let dXt = udt + vdBt be an n-dimensional Itô process, g(t, x) =
(g1(t, x), ⋯ , gp(t, x)) a C2 mapping from [0,∞) × Rn to Rp, then Y(t,9) = g(t,Xt) is also
a Itô process and

dYk =
∂gk
∂t

(t,X)dt +
∑
i

∂gk
∂xi

(t,X)dXi +
1
2

∂2gk
∂xi∂xj

(t,X)dXidXj,

where dBidBj = $ijdt and dBidt = dtdBi = 0.

As an application of the Itô formula, one has the following integration by parts
formula.

Corollary 2.2.1. Let Xt,Yt be two Itô processes,

Xt = X0 +
∫ t

0
Ksds +

∫ t

0
HsdBs, Yt = Y0 +

∫ t

0
K′sds +

∫ t

0
H′sdBs,

then

XtYt = X0Y0 +
∫ t

0
XsdYs +

∫ t

0
YsdXs + 〈X,Y〉t,

where 〈X,Y〉t =
∫ t
0 HsH′sds.
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Proof. By the Itô formula

(Xt + Yt)2 = (X0 + Y0)2 + 2
∫ t

0
(Xs + Ys)d(Xs + Ys) +

∫ t

0
(Hs + H′s)2ds,

X2t =X20 + 2
∫ t

0
XsdXs +

∫ t

0
H2
sds,

Y2
t =Y2

0 + 2
∫ t

0
YsdYs +

∫ t

0
H′2s ds.

The conclusion is obtained by subtracting the last two equations from the first
equation. ∎

Next, letM(t) be the following Poisson stochastic integral:

Mi(t) = Mi(0) +
∫ t

0

∫
A
Ki(t, x)N(dt, dx), (2.2.3)

where 1 ≤ i ≤ d, t ≥ 0, A is bounded below and Ki is predictable.

Theorem 2.2.3. Let M be the Poisson stochastic integral (2.2.3), then for f ∈ C(Rd) and
any t ≥ 0, one has in probability 1 that

f (M(t)) – f (M(0)) =
∫ t

0

∫
A
[f (M(s–) + K(s, x)) – f (M(s–))]N(ds,dx).

Proof. Let Y(t) =
∫
A xN(t, dx) and define the time of jump for Y as TA0 = 0 and TAn =

inf {t > TAn–1 : BY(t) ∈ A} for all n ∈ N. Then by definition of the stochastic integral, we
have

f (M(t)) – f (M(0)) =
∑
0≤s≤t

f (M(s)) – f (M(s–))

=
∞∑
n=1

f (M(t ∧ TAn )) – f (M(t ∧ TAn–1))

=
∞∑
n=1

f
(
M(t ∧ TAn –) + K(t ∧ TAn ,BY(t ∧ TAn ))

)
– f (M(t ∧ TAn–1))

=
∫ t

0

∫
A
[f (M(s–) + K(s, x)) – f (M(s–))]N(ds,dx).

The proof is completed. ∎

Next, consider the Lev́y-type stochastic integral

Yi(t) = Yi(0) + Yi
c(t) +

∫ t

0

∫
A
Ki(s, x)N(ds,dx), (2.2.4)
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where for any 1 ≤ i ≤ d and t ≥ 0,

Yi
c(t) =

∫ t

0
Gi(s)ds +

∫ t

0
Fij(s)dB

j(s).

Denote the quadratic variation process of Yi
c by {[Yi

c,Y
j
c](t)}t≥0, then

[Yi
c,Y

j
c](t) =

m∑
k=1

∫ t

0
Fik(s)F

j
k(s)ds.

Lemma 2.2.1. If Y is a Lévy-type stochastic integral in the form (2.2.4), then for any f ∈
C2(Rd) and t ≥ 0, one has in probability 1 that

f (Y(t)) – f (Y(0)) =
∫ t

0
∂if (Y(s–))dYi

c(s) +
1
2

∫ t

0
∂i∂jf (Y(s–))d[Yi

c,Y
j
c](s)

+
∫ t

0

∫
A
[f (Y(s–) + K(s, x)) – f (Y(s–))]N(ds,dx).

Proof. The proof can be referred to Ref. [7]. ∎

Finally, let us consider the more general form of Lévy stochastic integral. Let Y satisfy

dY(t) = dYc(t) + dYd(t) = G(t)dt + F(t)dB(t)

+
∫

|x|<1
H(t, x)Ñ(dt, dx) +

∫
|x|≥1

K(t, x)N(dt, dx), (2.2.5)

where 1 ≤ i ≤ d, 1 ≤ j ≤ m, t ≥ 0, |Gi| 12 , Fij ∈ P2(T), Hi ∈ P2(T,E), K is predictable and
E = B̂\{0}. Then the following Itô formula holds [7].

Theorem 2.2.4. Let Y be the Lévy-type stochastic integral in the form (2.2.5), then for
any f ∈ C2(Rd) and t ≥ 0, one has in probability 1 that

f (Y(t)) – f (Y(0)) =
∫ t

0
∂if (Y(s–))dYi(s) +

1
2

∫ t

0
∂i∂jf (Y(s–))d[Yi

c,Y
j
c](s)

+
∑
0≤s≤t

[f (Y(s)) – f (Y(s–)) – BYi(s)∂if (Y(s–))].

In the final part, we consider the chain rule of the Stratonovitch integral defined at
the beginning of Section 2.1.1. Let M = {M(t)}t≥0 with Mi(t) =

∫ t
0 F

i
j(s)dB

j(s) and G =
(G1, ⋯ ,Gd) such that GiFij ∈ P2(t) for 1 ≤ j ≤ m, t ≥ 0. Then the Stratonovitch integral∫ t
0 G

i(s) ○ dMi(s) is defined to be the limit in probability of the summation
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m(n)∑
j=0

Gi(t(n)j+1) + Gi(t
(n)
j )

2
[Mi(t(n)j+1) –M

i(t(n)j )],

where (Fn, n ∈ N) is a partition of the interval [0,T]

Fn = {0 = t(n)0 < t(n)1 < ⋯ < t(n)m(n) < t
(n)
m(n) = T},

and limn→∞max0≤j≤m(n) |t(n)j+1 – t(n)j | = 0. Here, ○ denotes that the integral is taken in
the Stratonovitch sense. The Stratonovitch integral is related to the Itô integral via the
formula ∫ t

0
Gi(s) ○ dMi(s) =

∫ t

0
Gi(s)dMi(s) +

1
2
[Gi,Mi](t), (2.2.6)

which in differential form can be written as

Gi(t) ○ dMi(t) = Gi(t)dMi(t) +
1
2
d[Gi,Mi](t). (2.2.7)

The chain rule of Stratonovitch integral is stated in the following [7].

Theorem 2.2.5. Let M be a Brownian integral and f ∈ C3(Rd), then for any t ≥ 0, with
probability 1 we have

f (M(t)) – f (M(0)) =
∫ t

0
∂if (M(s)) ○ dMi(s). (2.2.8)

Proof. By eq. (2.2.7), we have

∂if (M(t)) ○ dMi(t) = ∂if (M(t))dMi(t) +
1
2
d[∂if (M(⋅)),Mi](t)

and by Itô formula, for 1 ≤ i ≤ d,

d{∂if (M(t))} = ∂j∂if (M(t))dMj(t) +
1
2
∂j∂k∂if (M(t))d[Mj,Mk](t),

which gives

d[∂if (M(⋅)),Mi](t) = ∂i∂jf (M(t))d[Mi,Mj](t).

By using Itô formula again, we have∫ t

0
∂if (M(s)) ○ dMi(s) = ∂if (M(s))dMi(s) +

1
2

∫ t

0
∂i∂jf (M(s))d[Mi,Mj](s)

= f (M(t)) – f (M(0)).

The proof is completed. ∎
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2.3 The infinite-dimensional case

2.3.1 Q-Wiener process and the stochastic integral

Let H and U be two Hilbert spaces and Q ∈ L(U) be a symmetric nonnegative oper-
ator. We first consider the case when TrQ < ∞. In this case, there exists a complete
orthonormal system {ek} in U and nonnegative bounded sequence of nonnegative real
numbers +k such that Qek = +kek for all k = 1, 2, . . . .

Definition 2.3.1. The U-valued stochastic process W = {W(t), t ≥ 0} is a Q-Wiener
process if
(1) W(0) = 0,
(2) W(t) has continuous trajectories,
(3) W has independent increments, and
(4) L (W(t) –W(s)) = N (0, (t – s)Q) for all t ≥ s ≥ 0.

If furthermore, for a given 3-algebra flow {Ft}t≥0, W(t) is Ft measurable and W(t + h) –
W(t) is independent of Ft for all h, t ≥ 0, then W is called a Q-Wiener process with
respect to {Ft}t≥0.

SinceW has independent increments, aQ-Wiener processW with TrQ < ∞ is necessar-
ily a Gaussian process with zero mean and Cov[W(t)] = tQ. Furthermore, there exists
a sequence of real-valued, mutually independent standard Brownian motions "j(t),
j = 1, 2, ⋯ , on (K,F ,P) such thatW(t) =

∑∞
j=1

√
+j"j(t)ej, which converges in L2(K,P).

Fix T > 0 and let L = L(U,H) be the space of bounded linear oprators. An L-
valued stochastic process {I(t)}t∈[0,T] is called an elementary process if there exists a
sequence 0 = t0 < t1 < ⋯ < tk = T and a sequence of L-valued random variables
I0,I1, ⋯ ,Ik–1 such that Im are Ftm measurable and I(t) = Im for all t ∈ (tm, tm+1]
and m = 0, 1, ⋯ , k – 1. For such elementary process I, the stochastic integral with
respect toW is defined naturally by

IW (I) :=
∫ t

0
I(s)dW(s) =

k–1∑
m=0

Im(Wtm+1∧t –Wtm∧t). (2.3.1)

Let U0 = Q1/2(U). Then U0 is a Hilbert space with the inner product

〈f , g〉0 =
∞∑
k=1

1
+k

〈f , ek〉〈g, ek〉 = 〈Q–1/2f ,Q–1/2g〉

and {gj =
√
+jej} is an orthonormal basis. Let L02 = L2(U0,H) be the space of Hilbert–

Schmidt (HS) operators from U0 to H with HS norm
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‖J‖2L02 =
∞∑

h,k=1
|〈Jgh, fk〉|2 =

∞∑
h,k=1

+h|〈Jeh, fk〉|2 = ‖JQ1/2‖2 = Tr[JQJ∗],

where {fj} is a standard orthonormal basis of H. Let I = {I(t)}t∈[0,T] be a measurable
L02 -valued process and define

|||I|||t =
{
E
∫ t

0
‖I(s)‖2L02 ds

}1/2
∀t ∈ [0,T]. (2.3.2)

Similar to the proof of Lemma 2.1.1, we can prove

Proposition 2.3.1 (Isometry). Let I be an elementary process and |||I|||T < ∞, then
the integral process IW (I) is a continuous square-integrable H-valued martingale on
[0,T] and

E|
∫ t

0
I(s)dW(s)|2 = |||I|||2t , 0 ≤ t ≤ T. (2.3.3)

This shows that the stochastic integral is an isometry from the space of all elementary
processes equippedwith norm ||| ⋅|||T to the spaceM 2

T (H) ofH-valued square-integrable
martingale. Then our task is to extend the integral into space of general L02 -valued
predictable processI such that |||I|||T < ∞. We have the following result.

Proposition 2.3.2. LetI be an L02 -valued predictable process and |||I|||T < ∞, then there
exists a sequence of elementary processes {In} such that |||I –In|||T → 0 as n →∞.

The proof can be found in Ref. [75]. Note that all the L02 -valued predictable process
with |||I|||T < ∞ form a Hilbert space, denoted by N 2

W (0,T; L
0
2 ) or N 2

W (0,T) or even
N 2

W for short. Since the set of elementary processes is dense in N 2
W , the defini-

tion can be extended to all elements in N 2
W and moreover IW (I) is a continuous

square-integrable martingale.
Similar to the Itô integral in Section 2.1.2, the stochastic integral here defined can

be extended to the L02 -valued predictable processes satisfying more weaker condition

P
{∫ t

0
‖I(s)‖2L02 ds < ∞

}
= 1. (2.3.4)

All such processes form a linear space denoted by NW (0,T; L02 ), or NW (0,T) or NW .
To extend the stochastic integral, we use the stopping time technique. First, we

note that if I ∈ N 2
W (0,T; L

0
2 ) and 4 be an Ft-stopping time such that P(4 ≤ T) = 1,

then P-a.s. ∫ t

0
I[0,4](s)I(s)dW(s) = IW (I)(4 ∧ t) ∀t ∈ [0,T]. (2.3.5)
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Define for NW (0,T; L02 ) the stopping time

4n = inf
{
t ∈ [0,T] :

∫ t

0
‖I(s)‖2L02 ds ≥ n

}
, inf Ø = T.

Then I[0,4n)I ∈ N 2
W (0,T; L

0
2 ) and IW (I[0,4n)I) is well defined. IW (I) is defined as the

limit of this sequence in probability. Moreover,

IW (I)(4n ∧ t) = IW (I[0,4n]I)(4n ∧ t) = Mn(4n ∧ t), t ∈ [0,T], n = 1, 2, ⋯ ,

where Mn is a H-valued continuous square-integrable martingale. This is referred to
the local martingale property of stochastic integral.

Next, consider the cylindrical Wiener process. First of all, we are given a filtered
probability space (K,F , {Ft},P).

Definition 2.3.2. Let W : [0,∞) × U → L2(K,F ,P) be a stochastic process on U such
that (i) E|W(t, x)|2 = t|x|2U for all t ≥ 0 and x ∈ U, and (ii) {W(t, x)}t≥0 is a real-valued
{Ft}-adapted Wiener process for any x ∈ U, then W is called an Ft-adapted cylindrical
Wiener process on U.

As a consequence of this definition, we have for all t, s ≥ 0 and x, y ∈ U, that
E[W(t, x)W(s, y)] = (t∧s)〈x, y〉U . This also implies that E[W(t, en)W(s, en)] = t∧s, where
{en}n≥1 is an orthonormal basis of U. In particular, if we set "n(t) := W(t, en), then "n(⋅)
is a sequence of independent standard real valuedWiener process. Furthermore, letH
be another Hilbert space such that embedding U → H is HS, then W(t) =

∑
n "n(t)en

converges in L2(K,F ,P;H) for t ≥ 0.
We will also call this process W a Q-Wiener process on U. Obviously, Q = I (an

infinite-dimensional identity matrix) and TrQ = ∞. Now, we consider the case of ex-
tended integral to TrQ ≤ ∞. Let WN(t) =

∑N
j=1 "j(t)ej for all t ∈ [0,T], where {ej} is

an orthonormal basis of U. Suppose I is stochastically integrable with respect to the
Q-Wiener process. It is easy to see that IW (I) = IWN (I) + IWN (I) and hence

E‖IW (I)(T) – IWN (I)(T)‖2 = E
∫ T

0
‖I(s)(QN)1/2‖2L02 ds.

If |||I|||T < ∞, then as N →∞, we have

E
∫ T

0
‖I(s)(QN)1/2‖2L02 ds → 0.

By the martingale property of stochastic integral, we have

E sup
0≤t≤T

‖I ⋅W(t) –I ⋅WN(t)‖ → 0, N → ∞,
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from which we can choose a subsequence {IWNk
(I)} converging P-a.s. and uniformly

in [0,T]. Therefore, by taking limit of stochastic integrals w.r.t. a finite-dimensional
Wiener process, one obtains the stochastic integral with respect to an infinite-
dimensional (possible cylindrical)Wiener process, which is independent of the choice
of the subsequence. The definition of the stochastic integral for I ∈ NW (0,T; L02 )
can be obtained similarly by the localization method above. For general cylindrical
Q-Wiener process W, the stochastic integral can also be defined via the limit process
and we omit the details here.

First, we summarize the above discussion in the following theorem.

Theorem 2.3.1. LetI ∈ N 2
W (0,T; L

0
2 ), then the stochastic integral IW (I) is a continuous

square-integrable martingale with quadratic variation

〈〈IW (I)(t)〉〉 =
∫ t

0
(I(s)Q1/2)(I(s)Q1/2)∗ds, s, t ∈ [0,T]. (2.3.6)

IfI ∈ NW (0,T; L02 ), then IW (I) is a local martingale.

The following propositions are given directly herewithout proof. The readersmay refer
to Ref. [75].

Proposition 2.3.3. LetI1,I2 ∈ N 2
W (0,T; L

0
2 ), then

EIW (Ii) = 0, E‖IW (Ii)‖2 < ∞, t ∈ [0,T], i = 1, 2.

The correlation operator V(t, s) = Cor(IW (I1),IW (I2)) for all t, s ∈ [0,T] is given by

V(t, s) = E
∫ t∧s

0
(I2(r)Q1/2)(I1(r)Q1/2)∗dr. (2.3.7)

As a corollary, one has directly that

E〈IW (I1),IW (I2)〉 = E
∫ t∧s

0
Tr[(I2(r)Q1/2)(I1(r)Q1/2)∗]dr. (2.3.8)

Furthermore, ifI1,I2 are L(U,H)-valued processes, this can be simplified as

E〈IW (I1),IW (I2)〉 = E
∫ t∧s

0
Tr[(I2(r)QI1(r)∗]dr.

Proposition 2.3.4. LetI ∈ NW (0,T; L02 ), then for any a, b > 0, there holds

P
(
sup
t∈[0,T]

|IW (I)(t)| > a
)
≤

b
a2

+ P
(∫ T

0
‖I(t)‖2L02 dt > b

)
. (2.3.9)
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2.3.2 Itô formula

Now, let us discuss the Itô formula of stochastic integral. Assume thatW is a U-valued
Q-Wiener process. Let I be an L02 -valued process stochastically integrable in [0,T],
6 an H-valued predictable process Bochner integrable on [0,T], P-a.s., and X(0) an
F0-measurable H-valued random variable. Then the process

X(t) = X(0) +
∫ t

0
6(s)ds +

∫ t

0
I(s)dW(s), t ∈ [0,T]

is well defined.

Theorem 2.3.2. Let F : [0,T] × H → R1 and its partial derivatives Tt, Fx and Fxx be
uniformly continuous on bounded subsets of [0,T] × H, then P-a.s., for any t ∈ [0,T]

dF(t,X(t)) =〈Fx(t,X(t)),I(t)dW(t)〉 + {Ft(t,X(t)) + 〈Fx(t,X(t)),6(t)〉
}
dt

+
1
2
Tr

[
Fxx(t,X(t))(I(t)Q1/2)(I(t)Q1/2)∗

]
dt.

This result can be proved first for elementary processes and then via a limiting pro-
cess it is extended to a general stochastically integral process. For applications, we
will consider the Burkholder-Davis-Gundy-type inequality for the stochastic integrals.
First of all, let’s state the martingale inequality without proof, see Theorem 1.3.3.

Proposition 2.3.5. Let E
∫ T
0 ‖I(s)‖2L02 ds < ∞, then

(1) for any p ≥ 1 and + > 0,

P
(
sup
t≤T

∣∣∣∣∫ t

0
I(s)dW(s)

∣∣∣∣ ≥ +) ≤ 1
+p E|

∫ T

0
I(s)dW(s)|p,

(2) for any p > 1,

E
(
sup
t≤T

∣∣∣∣∫ t

0
I(s)dW(s)

∣∣∣∣p
)
≤

p
p – 1

E|
∫ T

0
I(s)dW(s)|p.

Proposition 2.3.6. For any r ≥ 1 and any L02 -valued predictable process I(t), t ∈ [0,T],
there holds

E
(
sup
s∈[0,t]

∣∣∣∣∫ s

0
I(3)dW(3)

∣∣∣∣2r
)
≤ cr E

(∫ t

0
‖I(3)‖2L02 ds

)r
. (2.3.10)
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Proof. When r = 1, the results follows from Itô’s isometry. Let r > 1 and set Z(t) =∫ t
0 I(3)dW(3), f (x) = |x|2r, then

fxx(x) = 4r(r – 1)|x|2(r–2)x ⊗ x + 2r|x|2(r–1)I,

and

‖fxx(x)‖ ≤ 2r(2r – 1)|x|2(r–1).

This gives that

|TrI∗(t)fxx(Z(t))I(t)Q| ≤ 2r(2r – 1)|Z(t)|2(r–1)‖I(t)‖2L02 .

By Itô formula and the martingale property of the stochastic integral, we obtain

E|Z(t)|2r ≤ r(2r – 1)E(
∫ t

0
|Z(s)|2(r–1)‖I(3)‖2L02 d3)

≤ r(2r – 1)E( sup
s∈[0,t]

|Z(s)|2(r–1)
∫ t

0
‖I(3)‖2L02 d3).

By Hölder inequality (p = r/(r – 1)) and martingale inequality, one has

E|Z(t)|2r ≤r(2r – 1)
[
E
(
sup
s∈[0,t]

|Z(s)|2(r–1)p
)]1/p

⋅

[
E
(∫ t

0
‖I(3)‖2L02 d3

)r]1/r

≤c′r
[
E|Z(t)|2r]1– 1

r ⋅

[
E
(∫ t

0
‖I(3)‖2L02 ds

)r] 1
r

.

One completes the proof by applying once more the martingale inequality. ∎

Proposition 2.3.7. For any r ≥ 1, and any L02 -predictable processI(⋅), it holds

sup
s∈[0,t]

E
∣∣∣∣∫ s

0
I(3)dW(3)

∣∣∣∣2r ≤ (r(2r – 1))r (∫ t

0

(
E‖I(s)‖2rL02

)1/r
ds
)r

.

Proof. The case r = 1 is straightforward. Let r > 1 and Z(t) be as above, then

E|Z(t)|2r ≤ r(2r – 1)E
(∫ t

0
|Z(s)|2(r–1)‖I(s)‖2L02 ds

)
.

Since from Hölder inequality that

E
(
|Z(s)|2(r–1)‖I(s)‖2L02

)
≤
(
E|Z(s)|2r)(r–1)/r (E‖I(s)‖2rL02

)1/r
,

one has
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E|Z(t)|2r ≤r(2r – 1)
∫ t

0

(
E|Z(s)|2r)(r–1)/r (E‖I(s)‖2rL02

)1/r
ds

≤r(2r – 1)
∫ t

0

(
sup
u∈[0,s]

E|Z(u)|2r
)(r–1)/r (

E‖I(s)‖2rL02
)1/r

ds.

The right-hand side is monotonic in t, hence

sup
s∈[0,t]

E|Z(s)|2r ≤ r(2r – 1)
∫ t

0

(
sup
u∈[0,s]

E|Z(u)|2r
)(r–1)/r (

E‖I(s)‖2rL02
)1/r

ds

≤ r(2r – 1)
(
sup
s∈[0,t]

E|Z(s)|2r
)(r–1)/r ∫ t

0

(
E‖I(s)‖2rL02

)1/r
ds.

Hence, the proposition holds. ∎

The following proposition concerns that Fubini theorem in stochastic integrals. Let
(E, E ) be ameasurable space, andI is ameasurablemapping from (KT×E,PT×B(E))
to (L02 ,B(L02 )).

Theorem 2.3.3. Let , be a finite-positive measure on (E, E ) and
∫
E |||I(⋅, ⋅, x)|||T,(dx) <

+∞, then P-a.s.

∫
E

[∫ T

0
I(t, x)dW(t)

]
,(dx) =

∫ T

0

[∫
E
I(t, x),(dx)

]
dW(t).

The proof of the theorem can be referred to literature [75].

2.4 Nuclear operator and HS operator

In this section, we introduce some basic concepts of HS and nuclear operators. Let
E,G be Banach spaces and L(E,G) be the Banach space of all bounded linear operators
from E to G equipped with the operator norm. We denote by E∗ and G∗ the dual spaces
of E and G, respectively. A linear operator T ∈ L(E,G) is called nuclear if it can be
represented in the form

Tx =
∞∑
j=1

aj>j(x) ∀x ∈ E,

where {aj} ⊂ G and {>j} ⊂ E∗ are such that
∑∞

j=1 ‖aj‖ ⋅‖>j‖ < +∞. We denote by L1(E,G)
the space of all nuclear operator from E to G, which is a separable Banach space with
the nuclear norm
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‖T‖1 = inf

⎧⎨⎩
∞∑
j=1

‖aj‖ ⋅ ‖>j‖ : x =
∞∑
j=1

aj>j(x)

⎫⎬⎭ .

When G = E, we write L1(E) instead of L1(E,E) for short. Let K be a Banach space, it’s
obvious that if T ∈ L1(E,G) and S ∈ L(G,K) then ST ∈ L1(E,K) and ‖ST‖1 ≤ ‖S‖‖T‖1. Let
H be a separable Hilbert space and {ej} be an orthonormal basis of H, then the trace of
T ∈ L1(H) can be defined as TrT =

∑∞
j=1〈Tej, ej〉. It can be shown that the trace is well

defined for T ∈ L1(H) and is independent of the choice of the orthonormal basis {ej}.
Furthermore, for T ∈ L1(H), there holds |TrT| ≤ ‖T‖1. Hence, if T ∈ L1(H) and S ∈ L(H),
then TS, ST ∈ L1(H) and TrTS = TrST ≤ ‖T‖1‖S‖.

Let E, F be two separable Hilbert spaces. A linear operator T ∈ L(E, F) is called
a HS operator if

∑∞
k=1 |Tek|2 < ∞. It can be shown that the definition of HS operator

is independent of the choice of basis {ek}. The space of all HS operators L2(E, F) is a
separable Hilbert space with the scalar product

〈S,T〉2 =
∞∑
k=1

〈Sek,Tek〉, S,T ∈ L2(E, F).

Denote by ‖T‖2 = 〈T,T〉1/22 the corresponding HS norm. If E = F, we write L2(E,E) =
L2(E) for short. For any b ∈ E, a, h ∈ F, if we define (b⊗a) ⋅h = b〈a, h〉, then {fj⊗ek}j,k∈N
constructs a set of complete orthonormal basis of L2(E, F).

Proposition 2.4.1. Let E,H be two separable Hilbert spaces and K(E,H) be the space of
all compact operator from E to H, then L1(E,H) ⊂ L2(E,H) ⊂ K(E,H).

Proof. Let T ∈ L1(E,H), then Tx =
∑∞

j=1 aj>j(x) for some {aj} ⊂ H and {>j} ⊂ E∗ such
that

∑
j ‖aj‖H‖>j‖E∗ < ∞. Let {ek} be an orthonormal basis of E, then

∑
k

|Tek|2H =
∑
k

|
∑
n
an>n(ek)|2H ≤

∑
k

∑
n,l

|〈an, al〉H ||>n(ek)||>l(ek)|

≤
∑
n,l

|an||al|
(∑

k
>2
n(ek)

)1/2 (∑
k
>2
l (ek)

)1/2

≤

(∑
n

|an||>n|
)2

,

which implies the first conclusion. To show the second one, we note that the HS norm
is stronger than the operator norm, K(E,H) is a closed set of L(E,H) and each T ∈

L2(E,H) can be approximated in L2(E,H) by the sequence of finite rank operators Tn =∑
k≤n fk ⊗ T∗fk (i.e., Tnx =

∑
k≤n〈Tx, fk〉fk, x ∈ E), where {fk} is an orthonormal basis of

H. Since finite rank operators are compact, the result follows. ∎

Proposition 2.4.2. A nonnegative operator T ∈ L(H) is nuclear if and only if for an
orthonormal basis {ek} on H such that

∑∞
j=1〈Tej, ej〉 < +∞. Moreover, in this case,

TrT = ‖T‖1.
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Proof. We need only to show the sufficiency part, since |TrT| ≤ ‖T‖1. From Propos-
ition 2.4.1, we know that T is compact. Let {+j, fj} be a sequence of eigenvalues and
eigenvectors of T, then Tx =

∑∞
k=1 +k〈x, fk〉fk for all x ∈ H. It follows that

∞∑
j=1

〈Tej, ej〉 =
∞∑
j=1

∞∑
k=1

+k|〈fj, ek〉|2 =
∞∑
k=1

+k < +∞.

Therefore, T is nuclear and TrT =
∑∞

k=1 +k. In this case, TrT = ‖T‖1. ∎

Proposition 2.4.3. Let E, F,G be the separable Hilbert spaces. If T ∈ L2(E, F), S ∈

L2(F,G), then ST ∈ L1(E,G) and ‖ST‖1 ≤ ‖S‖2‖T‖2.

Proof. Let {fk} be an orthonormal basis of F, then

Tx =
∑
k

〈Tx, fk〉fk =
∑
k

〈x,T∗fk〉fk.

Hence, STx =
∑∞

k=1〈x,T∗fk〉Sfk for all x ∈ E and by definition

‖ST‖1 ≤
∞∑
k=1

|T∗fk||Sfk| ≤
(
∞∑
k=1

|T∗fk|2
)1/2 ( ∞∑

k=1
|Sfk|2

)1/2

.

This completes the proof. ∎
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3 OU processes and SDEs

In this chapter, we first introduce the Ornstein–Uhlenbeck (OU) processes and the
stochastic convolution. Then we introduce some basic concepts of solutions to lin-
ear stochastic differential equations (SDE) and their properties. Finally, we consider
the existence of solutions for a general nonlinear SDE based on fixed point theorem.
Most of the materials come from Refs [75, 76].

3.1 Ornstein–Uhlenbeck processes

Consider the following stochastic partial differential equation:

dXt = AXtds + BdWt, X0 = . . (3.1.1)

Suppose U,H are two Hilbert spaces, A is the infinitesimal generator [199] of a C0
semigroup {S(t)}t≥0 in H, B ∈ L(U,H) is a bounded linear operator and . is a F0-
measurable random variable in H. Let {W(t)}t≥0 be a Q-Wiener process in probability
space (K,F ,P) with covariance operatorQ ∈ L(U). If TrQ < +∞,W is called aQ-Wiener
process and when TrQ = ∞, it is called a cylindrical Wiener process. We also suppose
that there is a set of complete orthonormal basis {ek} of U and a bounded nonnegative
real sequence +k such that Qek = +kek for k = 1, 2, ⋯ , and a sequence of real-valued
independent Brownian motions "k such that

〈W(t), u〉 =
∞∑
k=1

√
+k〈ek, u〉"k, u ∈ U, t ≥ 0.

The noise is additive if B does not depend on Xt and multiplicative otherwise. We note
that ifW is a Q-Wiener process in U, thenW1 = BW is a BQB∗-Wiener process in H. So
without loss of generality we assume U = H.

If the H-valued Ft-adapted stochastic process X = {Xt}t≥0 is the solution of the
equation, then the solution can be given by the Duhamel principle

X(t) = S(t). +
∫ t

0
S(t – s)BdW(s), t ≥ 0, (3.1.2)

where S(t) is the solution operator generated by A. The process Xt is called an
Ornstein–Uhlenbeck process and the stochastic integral

WA(t) =
∫ t

0
S(t – s)BdW(s), t ≥ 0, (3.1.3)
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3.1 Ornstein–Uhlenbeck processes 71

is called a stochastic convolution. Generally, if I(t) ∈ L2(U,H), t ∈ [0,T] is a Hilber–
Schmidt operator-valued adapted process such that the stochastic integral

WI
A (t) =

∫ t

0
S(t – s)I(s)dW(s), t ∈ [0,T]

is well defined, thenWI
A is also called the stochastic convolution. In particular, ifI =

B, t ∈ [0,T], thenWI
A = WA.

The following introduces some properties of the stochastic convolution. First of
all, it can be proved that if ‖S(r)B‖L02 ∈ L

2(0,T), then {WA(t)}t≥0 is a Guassian process,
which is continuous in mean square and has a predictable version, and CovWA(t) =∫ t
0 S(r)BQB

∗S∗(r)dr. Indeed, for fixed 0 ≤ s ≤ t ≤ T, then

WA(t) –WA(s) =
∫ t

s
S(t – r)BdW(r) +

∫ s

0
[S(t – r) – S(s – r)]BdW(r).

It then follows from the independence of these two integrals that

E|WA(t) –WA(s)|2 =
∞∑
k=1

+k
∫ t–s

0
|S(r)Bek|2dr

+
∞∑
k=1

+k
∫ s

0
|(S(t – s + r) – S(r))Bek|2dr.

Then the continuity in mean square follows from the dominated convergence the-
orem and the Gaussian property follows from the properties of the stochastic
integral.

Let ! ∈ (0, 1] and

YI
! (t) =

∫ t

0
(t – s)!S(t – s)I(s)dW(s), t ∈ [0,T]. (3.1.4)

Then by stochastic Fubini theorem, it can be shown that if

∫ t

0
(t – s)!–1

[∫ s

0
(s – 3)–2!E(‖S(t – 3)I(3)‖22)d3

]1/2
ds < +∞ (3.1.5)

holds for all t ∈ [0,T], then

∫ t

0
S(t – s)I(s)dW(s) =

sin !0
0

∫ t

0
(t – s)!–1S(t – s)YI

! (s)ds, t ∈ [0,T]. (3.1.6)
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Indeed, the integral on the right-hand side is equal to∫ t

0
(t – s)!–1S(t – s)

∫ s

0
(s – 3)–!S(s – 3)I(3)dW(3)ds

=
∫ t

0

∫ s

0
(t – s)!–1(s – 3)–!S(t – 3)I(3)dW(3)ds

=
∫ t

0

∫ t

3
(t – s)!–1(s – 3)–!dsS(t – 3)I(3)dW(3)

=
0

sin !0

∫ t

0
S(t – 3)I(3)dW(3).

The Hölder continuity of the stochastic convolution can then be proved. Assume
that S(t) be an analytic semigroup on H generated by A such that ‖S(t)‖ ≤ Me–9t
for some positive constants M and 9 and that there exists ! ∈ (0, 1/2) such that∫ T
0 t–2!‖S(t)B‖2HSdt < ∞ for any T > 0, then for any # ∈ [0, !), there is a D((–A)#)-valued
Hölder-continuous modification ofWA(t), with exponent smaller than ! – #.

To show this, we first define for any ! ∈ (0, 1), # ∈ [0, !), p > 1 the integral operator
on the space Lp(0,T;H)

R!,#>(t)
∫ t

0
(t – 3)!–1(–A)#S(t – 3)>(3)d3, t ∈ [0,T].

It can be shown that from Ref. [76, appendix, Prop. A.1.1.] that when # > 0, ! > # + 1
p ,

then R!,# is a bounded operator from Lp(0,T;H) to C!–#–
1
p ([0,T];D((–A)#)) and when

# = 0, ! > 1/p, then for any $ ∈ (0, ! – 1
p ), R!,# is a bounded operator from Lp(0,T;H) to

C$([0,T];H). Thanks to eq. (3.1.6), it then suffices to show that the process

Y!(s) =
∫ s

0
(s – 3)–!S(s – 3)BdW(3), s ∈ [0,T]

has p-integrable trajectories. But this is obvious from the Burkholder–Davis–Gundy
inequality

E
∫ T

0
|Y!(s)|pds ≤ cp

∫ T

0

(∫ s

0
‖(s – 3)–!S(s – 3)B‖22d3

)p/2
ds

≤ cp
∫ T

0

(∫ s

0
3–2!‖S(3)B‖22d3

)p/2
ds < +∞.

Let us remark that similar results hold forWI
A (t). Indeed, let S(t), t ≥ 0 be an analytical

semigroup on H generated by A such that ‖S(t)‖ ≤ Me–9t for all t ≥ 0 and for some
positive constants 9 andM. Assume that there exists some ! ∈ (0, 1/2) and C > 0 such
that

∫ T
0 t–2!‖S(t)‖2HSdt < ∞ for any T > 0 and P-a.s. ‖I(t)‖ ≤ C for all t ≥ 0, then for

any # ∈ [0, !), there is a D((–A)#)-valued Hölder-continuous modification ofWI
A , with

Hölder exponent smaller than ! – #.
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In the analytical case, if furthermore TrQ < +∞, then one can show that for any
! ∈ (0, 1/2), the process WA(⋅) has !-Hölder-continuous trajectories and (–A)!WA(⋅) is
#-Hölder continuous for # ∈ (0, 12 – !) (see Ref. [75] for proof). In the critical case when
! = 1/2, the result does not hold. Indeed, an example given in Ref. [72] shows that ifA is
negative self-adjoint, then (–A)1/2WA(t) may not have a pathwise-continuous version.

Finally, we show that when A generates a contraction semigroup and
I ∈ N 2

W (0,T; L
0
2 ), then WI

A has continuous modifications and there is a constant C
such that

E sup
s∈[0,t]

|WI
A (s)|2 ≤ CE

∫ t

0
‖I(s)‖2L02 ds, t ∈ [0,T]. (3.1.7)

We now sketch the proof of this inequality. Let X = WI
A for short, then X satisfies

dX(t) = AX(t)dt +I(t)dW(t)

on the interval [0,T]. By Itô formula,

|X(t)|2 = 2
∫ t

0
〈X(s),AX(s)〉ds + 2

∫ t

0
〈X(s),I(s)dW(s)〉 +

∫ t

0
‖I(s)‖2L02 dt

≤ 2
∫ t

0
〈X(s),I(s)dW(s)〉 +

∫ t

0
‖I(s)‖2L02 ds,

since A generates a contraction semigroup. By taking supremum and then
expectation, one has

E sup
s∈[0,t]

|X(s)|2 ≤ 2E sup
s∈[0,t]

|
∫ s

0
〈X(3),I(3)dW(3)〉| + E

∫ t

0
‖I(s)‖2L02 ds. (3.1.8)

LetM(t) =
∫ t
0〈X(s),I(s)dW(s)〉. Then from the martingale inequality

E sup
s∈[0,t]

|M(s)| ≤ 3E
[(∫ t

0
|(I(s)Q1/2)∗X(s)|2ds

)1/2]
, (3.1.9)

the first part of eq. (3.1.8) can be bounded by

6E
(∫ t

0
|(I(s)Q1/2)∗X(s)|2ds

)1/2
≤ 6E

(∫ t

0
‖I(s)‖2L02 |X(s)|

2ds
)1/2

≤ 6(E sup
s∈[0,t]

|X(s)|2)1/2
(
E
∫ t

0
‖I(s)‖2L02 ds

)1/2
.

It then follows that for any % > 0,
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E sup
s∈[0,t]

|X(s)|2 ≤ 12
(
%E sup

s∈[0,t]
|X(s)|2 + 1

%E
∫ t

0
‖I(s)‖2L02 ds

)
+ E

∫ t

0
‖I(s)‖2L02 ds.

Taking % = 1/24, we get eq. (3.1.7). The above proof can be made rigorous by standard
approximation arguments.

3.2 Linear SDEs

Consider the following linear stochastic differential equation:

dX(t) = [AX(t) + f (t)]dt + BdW(t), X(0) = . , (3.2.1)

where A : D(A) ⊂ H → H, B : U → H are linear operators and f is an H-valued
stochastic process. We assume A generates a strongly continuous semigroup S(⋅) on
H, B ∈ L(U,H), f is a predictable process which is Bochner integrable on any finite
interval [0,T] and finally the initial data . is F0 measurable.

Definition 3.2.1. Under the above assumptions, we say that an H-valued predictable
process {X(t)}t∈[0,T] is a strong solution of eq. (3.2.1), if X takes values in D(A), PT-a.s.,∫ T
0 |AX(s)|ds < ∞, P-a.s. and for any t ∈ [0,T]

X(t) = . +
∫ t

0
[AX(s) + f (s)]ds +

∫ t

0
BW(s), P-a.s..

We say that an H-valued predictable process {X(t)}t∈[0,T] is a weak solution of eq. (3.2.1),
if the trajectories of X(⋅) are Bochner integrable, P a.s., and

〈X(t), & 〉 =〈x, & 〉 +
∫ t

0
[〈X(s),A∗& 〉 + 〈f (s), & 〉]ds

+
∫ t

0
〈BW(s), & 〉, P-a.s. ∀& ∈ D(A∗),∀t ∈ [0,T].

The definition of strong solution makes sense only if BW is an H-valued process, re-
quiring TrBQB∗ < ∞, while the definition of weak solution makes sense even for
cylindrical Wiener processes, since the scalar process 〈BW(t), & 〉 (t ∈ [0,T]) is well
defined.

Theorem 3.2.1. Under the above assumptions on A,B and f , if ‖S(r)B‖L02 ∈ L
2(0,T), then

there exists a unique weak solution to eq. (3.2.1), given by

X(t) = S(t). +
∫ t

0
S(t – s)f (s)ds +

∫ t

0
S(t – s)BdW(s), t ∈ [0,T]. (3.2.2)
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Proof. By Duhamel principle and the superposition principle, it suffices to show that
WA(t) =

∫ t
0 S(t – s)BdW(s) is a weak solution of equation

dX̃ = AX̃dt + BdW, X̃(0) = 0. (3.2.3)

Fix t ∈ [0,T] and let & ∈ D(A∗). From the stochastic Fubini theorem, we have∫ t

0
〈A∗& ,WA(s)〉ds =

∫ t

0

〈
A∗& ,

∫ t

0
S(s – r)BdW(r)

〉
ds

=
∫ t

0

〈∫ t

r
B∗S∗(s – r)A∗&ds, dW(r)

〉
=
∫ t

0

〈∫ t

r

(
d
ds
B∗S∗(s – r)&

)
ds, dW(r)

〉
=
∫ t

0
〈B∗S∗(t – r)& – B∗& , dW(r)〉

= 〈& ,WA(t)〉 –
∫ t

0
〈& ,BW(s)〉.

Hence,WA(⋅) is a weak solution of eq. (3.2.3), completing the proof of existence.
Next, we prove uniqueness. First, we note that for any t ∈ [0,T] and & (⋅) ∈

C1([0,T];D(A∗)), we have

〈WA(t), & (t)〉 =
∫ t

0
〈WA(s), & ′(s) + A∗& (s)〉ds +

∫ t

0
〈& (s),BdW(s)〉. (3.2.4)

Now, if X is a weak solution to eq. (3.2.1) and &0 ∈ D(A∗), then applying eq. (3.2.4) to
& (s) = S∗(t – s)&0 yields

〈X(t), &0〉 =
〈∫ t

0
S(t – s)BdW(s), &0

〉
,

which implies X = WA since D(A∗) is dense in H. Uniqueness follows.
It remains to show eq. (3.2.4). It suffices to consider a linearly dense subset of

C1([0,T];D(A∗)) of functions of the form & = &0>(s), s ∈ [0,T], where > ∈ C1([0,T]) and
&0 ∈ D(A∗). Let

F&0 (t) =
∫ t

0
〈X(s),A∗&0〉ds +

∫ t

0
〈BdW(t), &0〉.

By Itô formula, one has

F&0 (t)>(t) =
∫ t

0
〈& (s),BdW(s)〉 +

∫ t

0
[>(s)〈X(s),A∗&0〉 + >′(s)〈X(s), &0〉]ds.

Then eq. (3.2.4) follows since F&0 (⋅) = 〈X(⋅), &0〉, P-a.s. ∎
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Then by the regularity of stochastic convolution, the weak solution is a mean
square continuous predictable process. Indeed, more regularity can be obtained.

Theorem 3.2.2. Assume U = H,B = I and for some ! > 0 there holds∫ T

0
t–!‖S(t)‖2L02 dt < +∞. (3.2.5)

Then the weak solution of eq. (3.2.1) has continuous modifications.

Proof. Without loss of generality, suppose . = 0, f ≡ 0. Then X(t) = WA(t). Further-
more, we assume TrQ < ∞. For fixed ! ∈ (0, 1/2) and integer m > 1/(2!), the solution
can be written as

WA(t) =
sin0!
0

∫ t

0
S(t – 3)

∫ t

3
(t – s)!–1(s – 3)–!dsdW(3).

By the stochastic Fubini theorem,

WA(t) =
sin0!
0

∫ t

0
S(t – s)(t – s)!–1Y(s)ds, (3.2.6)

where

Y(s) =
∫ s

0
S(s – 3)(s – 3)–!dW(3).

Define

z(t) =
sin0!
0

∫ t

0
S(t – s)(t – s)!–1y(s)dW(3), t ∈ [0,T].

Then it’s obvious that if y(⋅) is an H-valued continuous function, then z(t) is also con-
tinuous. By Hölder inequality, there is a constant C > 0 depending on m, !,T and
M such that

|z(t)|2m ≤ C
∫ T

0
|y(s)|2mds, t ∈ [0,T].

Hence,

sup
t∈[0,T]

|z(t)|2m ≤ C
∫ T

0
|y(s)|2mds.

Therefore, if y(⋅) ∈ L2m(0,T;H), then z(⋅) is continuous. Since the process Y(⋅) is
Gaussian with covariance operator

Cov(Y(s)). =
∫ s

0
(s – 3)–2!S(s – 3)QS∗(s – 3).ds ∀. ∈ H,
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there exists a constant C1 > 0 such that E|Y(s)|2m ≤ C1 for all s ∈ [0, t]. Hence,

E
∫ T

0
|Y(s)|2mds ≤ C1T,

and eq. (3.2.6) defines a continuous version ofWA(⋅). ∎

Next, let us consider linear SDEs with multiplicative noise

dX(t) =[AX(t) + f (t)]dt + B(X(t))dW(t), t ∈ [0,T], (3.2.7)

with initial data X(0) = . , where A : D(A) ⊂ H → H is the infinitesimal generator
of a strong continuous semigroup S(⋅), B : D(B) ⊂ H → L02 is a linear operator, . is
an H-valued F0-measurable random variable, f is a predictable process with locally
integrable trajectories. Let {gj} be an orthonormal basis of U0 = Q1/2U. Since for any
x ∈ D(B), B(x) is a Hilbert–Schmidt operator from U0 to H, then

∞∑
j=1

|B(x)gj|2 < ∞, x ∈ D(B).

The operator Bjx = B(x)gj is linear and B(x)u =
∑∞

j=1 Bjx〈u, gj〉U0 for any x ∈ D(B), u ∈ U0
and j = 1, 2, ⋯ . Hence, ifW(t) =

∑∞
j=1 "jgj,

Definition 3.2.2. An H-valued predictable process X(t), t ∈ [0,T] is the strong solution
of eq. (3.2.7), if X takes values in D(A) ∩ D(B), PT a.s., such that

P
(∫ T

0
|X(s)| + |AX(s)|ds < ∞

)
= 1, P

(∫ T

0
‖B(X(s))‖2L02 ds < ∞

)
= 1,

and for any t ∈ [0,T] and P-a.s.

X(t) = . +
∫ t

0
[AX(s) + f (s)]ds +

∫ t

0
B(X(s))W(s).

An H-valued predictable process X(t), t ∈ [0,T] is a weak solution of eq. (3.2.7), if X(⋅)
takes values in D(B), PT-a.s.,

P
(∫ T

0
|X(s)|ds < ∞

)
= 1, P

(∫ T

0
‖B(X(s))‖2L02 ds < ∞

)
= 1, (3.2.8)

and for all t ∈ [0,T] and & ∈ D(A∗), there holds

〈X(t), & 〉 = 〈. , & 〉 +
∫ t

0
[〈X(s),A∗& 〉 + 〈f (s), & 〉]ds +

∫ t

0
〈BW(t), & 〉 P-a.s.
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An H-valued predictable process X(t), t ∈ [0,T] is a mild solution of eq. (3.2.7), if X takes
value in D(B), P-a.s., (3.2.8) holds, and for any t ∈ [0,T],

X(t) = S(t). +
∫ t

0
S(t – s)f (s)ds +

∫ t

0
S(t – s)B(X(s))dW(s).

As above, we let A : D(A) ⊂ H → H be the infinitesimal generator of the C0 semigroup
in H and define

WI
A (t) =

∫ t

0
S(t – s)I(s)dW(s), t ∈ [0,T],I ∈ NW . (3.2.9)

Then for anyI ∈ NW , the processWI
A (⋅) has a predictable version.

Obviously, a strong solutionmust be a weak solution and a weak solutionmust be
a mild solution. Indeed, we have the following result.

Theorem 3.2.3. Let A : D(A) ⊂ H → H be the infinitesimal generator of a C0 semig-
roup S(⋅) in H. Then the strong solution of eq. (3.2.7) is also a weak solution, and a weak
solution is also a mild solution. Conversely, if a mild solution X satisfies

E
∫ T

0
‖B(X(s))‖2L02 ds < +∞,

then X is also the weak solution.

Next, let us simply discuss the existence of solutions. Only the casewhen B is bounded
is considered.

Theorem 3.2.4. Let A be the infinitesimal generator of a C0 semigroup S(⋅) in H, E|. |2 <
∞ and B ∈ L(H, L02 ). Then eq. (3.2.7) has a mild solution X ∈ N 2

W (0,T;H).

Proof. Let H be the space of all H-valued predictable processes Y such that |Y|H =
supt∈[0,T](E|Y(t)|2)1/2 < ∞. For any Y, define

K (Y)(t) = S(t). +
∫ t

0
S(t – s)f (s)ds +

∫ t

0
S(t – s)B(Y(s))dW(s)

K1(Y)(t) =
∫ t

0
S(t – s)B(Y(s))dW(s), t ∈ [0,T].

By Hill–Yoside theorem, we can assume that ‖S(t)‖ ≤ M, t ≥ 0, and then

|K1(Y)(t)|H ≤ sup
t∈[0,T]

E
(∫ t

0
‖S(t – s)B(Y(s))‖2L02 ds

)1/2

≤M‖B‖L(H;L02 )
√
T|Y|H .
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Let T be sufficiently small, then K is a contraction mapping and hence there is a
unique fixed point. It is easy to illustrate that the fixed point is a solution of eq. (3.2.7).
By the standard method of continuation, the case of general T can be treated. ∎

By the regularity result in the previous sections, some existence result in the analytical
case can be proved. See Da Prato and Zabczyk [75].

3.3 Nonlinear SDEs

In this section, we consider the more general nonlinear SDE,

dX(t) = (AX + F(X))dt + B(X)dW(t), X(0) =. . (3.3.1)

First, we assume the following Lipshitz conditions.

Assumption 3.3.1.
(i) A is the infinitesimal generator of strongly continuous semigroup S(t), t ≥ 0 in H;
(ii) F : H → H and there is a constant c0 > 0 such that

|F(x)| ≤ c0(1 + |x|) ∀x ∈ H,
|F(x) – F(y)| ≤ c0|x – y| ∀x, y ∈ H;

(iii) B : H → L(U,H) is strongly continuous (i.e., the mapping x ↦ B(x)u is continuous
as a mapping from H to H, for any u ∈ U) such that for any t > 0, x ∈ H, S(t)B(x)
belongs to L2(U,H), and there is a locally square-integrable mapping K : [0,∞) →
[0,∞) such that

‖S(t)B(x)‖HS ≤K(t)(1 + |x|), t > 0, x ∈ H,
‖S(t)B(x) – S(t)B(y)‖HS ≤K(t)|x – y|, t > 0, x, y ∈ H.

Definition 3.3.1. An Ft-adapted process X(t), t ≥ 0 is a mild solution of eq. (3.3.1) if

X(t) = S(t). +
∫ t

0
S(t – s)F(X(s))ds

+
∫ t

0
S(t – s)B(X(s))dW(s), t ∈ [0,T]. (3.3.2)

LetHp,T be the Banach space of all H-valued predictable processes Y(t) such that

‖Y‖p,T = sup
t∈[0,T]

(E|Y(t)|p)1/p < +∞.
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Theorem 3.3.1. Assume Assumption 3.3.1 holds and p ≥ 2. Let the initial data . ∈ F0
and E|. |p < ∞, then there is a unique mild solution X of eq. (3.3.1) inHp,T and there is a
constant CT, independent of . , such that

sup
t∈[0,T]

E|X(t)|p ≤ CT(1 + E|. |p). (3.3.3)

Furthermore, if there is ! ∈ (0, 1/2) such that
∫ 1
0 s

–2!K2(s)ds < +∞, then X(⋅) is P-a.s.
continuous, where K is defined in Assumption 3.3.1(iii).

Proof. For any . ∈ Lp(K;H) and X ∈ Hp,T , define a process Y = K(. ,X) by

Y(t) = S(t). +
∫ t

0
S(t – s)F(X(s))ds

+
∫ t

0
S(t – s)B(X(s))dW(s), t ∈ [0,T]. (3.3.4)

By martingale inequality, K(. ,X) ∈ Hp,T for any X ∈ Hp,T . Let MT = supt∈[0,T] ‖S(t)‖,
then

E|Y(t)|p ≤ 3p–1
{

‖S(t)‖p E|. |p + E
[(∫ t

0
|S(t – s)F(X(s))|ds

)p]

+ E
[∣∣∣∣∫ t

0
S(t – s)B(X(s))dW(s)

∣∣∣∣p
]}

≤ 3p–1
{
Mp

T E|. |p + Tp–1Mp
T

∫ t

0
E|F(X(s))|pds

+ cp
[∫ t

0
( E‖S(t – s)B(X(s))‖pHS)2/pds

]p/2}
.

Moreover, we have ∫ t

0
E|F(X(s))|pds ≤ 2p–1cp0 sup

s∈[0,t]
(1 + E|X(s)|p)t,

and [∫ t

0
( E‖S(t – s)B(X(s))‖pHS)2/pds

]p/2
≤ 2p–1

(∫ t

0
K2(t – s)(1 + E|X(s)|p)2/pds

)p/2

≤ 2p–1
(∫ t

0
K2(t – s)ds

)p/2
sup
s∈[0,t]

(1 + E|X(s)|p).
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Hence, there exist c1, c2, c3 such that

sup
t∈[0,T]

E|X(s)|p ≤ c1 + c2E|. |p + c3 sup
t∈[0,T]

E|X(s)|p. (3.3.5)

Therefore, Y ∈ Hp,T .
By the same method, if X1,X2 ∈ Hp,T ,Y1 = K(. ,X1),Y2 = K(. ,X2), then

sup
t∈[0,T]

E|Y1(t) – Y2(t)|p ≤ c3 sup
t∈[0,T]

E|X1(t) – X2(t)|p.

Hence, we can choice a sufficiently small T, such that c3 < 1. By the contraction
mapping principle, there exists a unique solution of eq. (3.3.1) in Hp,T . By iteration,
it’s not difficult to prove the existence and uniqueness of solution for the general
T > 0. Consider equation in the interval [0, T̃], [T̃, 2T̃],⋯ , where c3(T̃) < 1. For such T̃,
we have

sup
t∈[0,T]

E|X(t)|p ≤ 1
1 – c3(T̃)

[c1 + c2 E|. |p].

Hence eq. (3.3.3) is proved.
The continuity can also be treated, see Da Prato and Zabczyk [75]. ∎
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4 Random attractors

In this chapter, the general determinate nonautonomous dynamical systems and gen-
eral random dynamical systems are introduced. We will introduce the definition of
randomattractors and some existence results. The basic framework of randomdynam-
ical systems was established mainly by Crauel, Debussche and Flandoli [66, 68, 77] in
the 1990s. See also the monograph of Arnold [5]. The materials in this chapter are
mainly from their papers.

4.1 Determinate nonautonomous systems

Let (X, d) be a separable metric space, and S(t, s) : X → X (–∞ < s ≤ t < ∞) be a family
of mappings such that (1) S(t, r)S(r, s)x = S(t, s)x holds for any s ≤ r ≤ t and x ∈ X and
(2) S(t, s) is continuous in X for any s, t. In particular, S(t, s) is closely connected with a
nonautonomous differential equation, where S(t, s)x denotes the state of the system at
time t, started from the state x at time s. But we will not concern concrete differential
equation models since our purpose of this chapter is only to introduce some abstract
concepts.

First of all, we introduce several central concepts in the research of dynamical
systems. Given t ∈ R, if for all bounded set B ⊂ X there holds

d(S(t, s)B,K(t)) → 0, s → –∞, (4.1.1)

then K(t) ⊂ X is called an attracting set at time t, where d(A,B) denotes the
semidistance of subsets A,B in X defined as

d(A,B) = sup
x∈A

inf
y∈B

d(x, y).

The dynamical system {S(t, s)}t≥s is called asymptotically compact, if for any time t
there is a compact attracting set.

The 9-limit of a bounded set B ⊂ X at time t is defined by

A(B, t) =
⋂
T<t

⋃
s<T

S(t, s)B.

If there is a compact attracting set K(t) at time t ∈ R, then A(B, t) is a nonempty subset
contained in K(t) and

A(B, t) = {x ∈ X : there is {xn}n∈N ⊂ B and {sn}n∈N ⊂ R,
such that sn → –∞, and S(t, sn)xn → x}. (4.1.2)
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If there is a compact attracting set K(t) at time t and we take K(4) = S(4, t)K(t), then
K(4) is a compact attracting set for any 4 > t. If for any bounded set B ⊂ X, there is s(B)
such that S(t, s)B ⊂ K(t) for all s ≤ s(B), then K(t) is an absorbing set at the time t. The
following property of 9-limit A(B, t) is useful.

Lemma 4.1.1. Given t ∈ R, if there is a compact attracting set K(t) at the time t, then

lim
s→–∞

d(S(t, s)B,A(B, t)) = 0.

Proof. If not, we suppose there exist % > 0 and sequences sn → –∞ and xn ∈ B such that

d(S(t, sn)xn,A(B, t)) > % ∀n > 0. (4.1.3)

By definition (4.1.1), there is a sequence yn ∈ K(t), such that d(S(t, sn)xn, yn) → 0.
Since K(t) is compact, there is a subsequence nk and y ∈ K(t) such that ynk → y and
S(t, snk )xnk → y. Therefore, y ∈ A(B, t). This contradicts to eq. (4.1.3). ∎

Theorem 4.1.1. Given t ∈ R, suppose there is a compact attracting set K(t). Then A(t)
:=

⋃
B⊂X A(B, t) is a nonempty compact subset of K(t) such that

lim
s→–∞

d(S(t, s)B,A(t)) = 0.

Furthermore, it’s minimal in the sense that if Ã(t) is a close set that attracts all bounded
set from –∞, then A(t) ⊂ Ã(t). Moreover, A(4)(4 > t) is invariant under the mapping
S(t, s), i.e., S(4, r)A(r) = A(4) for all 4 ≥ r ≥ t.

Proof. First, we show minimality. Note that Ã(t) is closed for all bounded set B ⊂ X
and attracts all bounded sets. Also from eq. (4.1.2), it follows that A(B, t) ⊂ Ã(t). Hence
A(t) ⊂ Ã(t).

Next we show invariance. Given x ∈ A(r) and let xn ∈ X and bounded set Bn ⊂ X
be such that xn ∈ A(Bn, r) and xn → x, then S(4, r)xn → S(4, r)x and A(4, r)xn ∈ A(Bn, 4).
Hence, S(4, r)x ∈ A(4) and S(4, r)A(r) ⊂ A(4). On the other hand, let y ∈ A(4), Bn ⊂
X and yn ∈ A(Bn, t). Thanks to eq. (4.1.1), we can select subsequences xkn ∈ Bn and
sk → –∞ such that S(4, sk)xkn → yn for all k →∞. Without loss of generality, we assume
sk ≤ r. Since d(S(r, sk)xkn,K(r)) → 0, we can check that S(r, sk)xkn → xn ∈ K(r) up to a
subsequence thanks to the compactness of K(r). Then xn ∈ A(Bn, r) and S(4, r)xn → yn.
Since A(Bn, r) ⊂ K(r), xn → x ∈ K(r) up to a subsequence. This shows that x ∈ A(r) and
S(4, r)x = y. ∎

This leads to the following definition.

Definition 4.1.1. A(t) is the global attractor of the dynamical system {S(t, s)} at time t.
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The following theorem will be often used.

Theorem 4.1.2. Let {S(t, s)}t≥s be asymptotically compact. Then for all t ∈ R, A(t) ⊂ K(t)
is the minimal closed set that is non-empty, compact and attracts all bounded sets
from –∞. Moreover, it is invariant in the sense that S(t, s)A(s) = A(t) for all t ≥ s.

4.2 Stochastic dynamical systems

Let (X, d) be a complete separable metric space and (K,F ,P) be a probability space.
Suppose that S(t, s;9) : X → X is a family of mappings with parameter 9 for –∞ < s ≤
t < ∞ satisfying
(1) S(t, r;9)S(r, s;9)x = S(t, s;9)x for all s ≤ r ≤ t and for any x ∈ X and
(2) S(t, s;9) is continuous in X for all s ≤ t.

Definition 4.2.1. Given t ∈ R and 9 ∈ K. We say that K(t,9) ⊂ X is an attracting set if
for any bounded set B ⊂ X, there holds d(S(t, s;9)B,K(t,9)) → 0 as s → –∞. We say
that {S(t, s;9)}t≥s;9∈K is asymptotically compact if there is a measurable set K0 ⊂ K
with P(K0) = 1 such that for all t ∈ R and 9 ∈ K0, there is a compact attracting
set K(t,9).

It can be shown that if {S(t, s;9)}t≥s,9∈K is asymptotically compact, then for any t ∈ R,
there is a measurable setKt ⊂ K, P(Kt) = 1, such that for any9 ∈ Kt, there is a compact
attracting set K(t,9) and vice versa. Indeed, let K0 =

⋂
n∈N K–n, then P(K0) = 1. For

any n and 9 ∈ K0, there is a compact attracting set K(–n,9) at time t = –n. Hence,
there is a compact absorbing set at any time.

Similar to the nonautonomous systems, the random 9-limit set can be defined for
bounded set B ⊂ X. For any bounded set B ⊂ X, define random 9-limit set as

A(B, t,9) =
⋂
T<t

⋃
s<T

S(t, s;9)B (4.2.1)

and the set

A(t,9) =
⋃
B⊂X

A(B, t,9) (4.2.2)

is a random attractor.

Theorem 4.2.1. Let {S(t, s,9)}t≥s,9∈K be asymptotically compact, then it holds for
P-a.e. 9 that for any t ∈ R, A(t,9) is the nonempty compact subset of K(t,9)
that attracts all bounded set starting from –∞, and it’s the minimal set with such
properties. Moreover, it is invariant in the sense that S(t, s;9)A(s,9) = A(t,9) for
all s ≤ t.
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Next, we consider the measurability of the attractor. A family of closed subsets A(9) ⊂
X for 9 ∈ K is measurable if the function 9 ↦ d(A(9), x) is measurable for all x ∈ X.

Proposition 4.2.1. Let {S(t, s;9)}t≥s,9∈K be asymptotically compact and satisfy condi-
tions (1), (2) and (3) for any t ∈ R and x ∈ X, the mapping (s,9) ↦ S(t, s;9)x is
measurable.

Then for any t ∈ R and all bounded set B ⊂ X, A(B, t,9) and A(t,9) are measurable
with respect to the P-completion of F .

Proof. It suffices to show the measurability of
⋃

s<T S(t, s;9)B by definition of A(t,9).
Note

d(x,
⋃
s<T

S(t, s;9)B) = inf
s<T

d(x, S(t, s;9)B), x ∈ X. (4.2.3)

It follows from Ref. [51, Theorem 23, p. 75] that the level set of infs<T d(x, S(t, s;9)B) is
measurable w.r.t. the P-completion of F . ∎

Next, let us consider the case with a shift on the probability space (K,F ,P). That is
there is a measure-preserving transformations group (t, t ∈ R on (K,F ,P) such that

S(t, s;9)x = S(t – s, 0; (s9)x, P-a.s., (4.2.4)

for all s < t and x ∈ X. In most of the applications, (t is defined as the shift

((t9)(s) = 9(t + s) – 9(t), s, t ∈ R. (4.2.5)

For such a group (t, we assume
(4) for any s < t and x ∈ X, the mapping 9 ↦ S(t, s;9)x is measurable, and
(5) for any t and x ∈ X and P-a.e.9, the mapping s ↦ S(t, s;9)x is right continuous

at any point.

Proposition 4.2.2. Suppose (1), (2), (4), (5) and eq. (4.2.4) hold, and for P-a.e. 9, there
is a compact attracting set K(9) at the time t = 0, then the stochastic dynamical system
{S(t, s;9)}t≥s,9∈K is asymptotically compact.

Proof. It suffices to prove that there is a compact attracting set K(t,9), P-a.s. for fixed
t ∈ R. Let {xn} ⊂ X be dense and sk be dense in (–∞, t). By assumption (4.2.4), except
for a possible zero measure set K\K0, there holds for all n, k ∈ N that

S(t, sk;9)xn = S(t – sk, 0; (sk9)xn = S(0, –t + sk; (t9)xn.
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LetK1 be a set of full probability such that for any9 ∈ K1, there is a compact attracting
set K(9) at the time t = 0. Let K2 = K0

⋂
(–tK1, then P(K2) = 1 and for all 9 ∈ K2,

(t9 ∈ K1 and hence K((t9) is well defined.
Fix B ⊂ X, bounded and let 9 ∈ K2, then from (2) and (5),

d(S(t, s;9)B,K((t9)) = sup
xn∈B

lim
sk→s

d(S(t, sk;9)xn,K((t9)).

Similarly,

d(S(0, –t + s; (t9)B,K((t9)) = sup
xn∈B

lim
sk→s

d(S(0, –t + sk; (t9)xn,K((t9)),

d(S(t, s, 9)B,K((t9)) = d(S(0, –t + s; (t9)B,K((t9)),

which imply that d(S(t, s;9)B,K((t9)) → 0 as s → –∞. The result follows from the
definition of compact attracting sets. ∎

The following are sufficient conditions to ensure (5) hold. Assume that
(6.a) for all s, x ∈ X and P-a.e. 9, the mapping t ↦ S(t, s;9)x is continuous at

t = s, and
(6.b) for any s < t and P-a.e. 9, the mapping x ↦ S(t, s;9)x is continuous in X,

uniformly in s on bounded sets
hold, then condition (5) holds.

Condition (5) can also be replaced with some more weaker conditions. For
example, it can be replaced with

(7) for any t and x ∈ X, there exists a dense countable set D(t, x) ⊂ (–∞, t) such
that for P-a.e. 9 and s < t, there is a sequence D(t, x) ∋ sn → s such that S(t, sn;9)x →
S(t, s;9)x.

Another condition that implies (7) is
(8) the mapping t ↦ S(t, s;9)x is continuous at t = s, uniformly in s on bounded

intervals.
If the assumptions of Proposition 4.2.2 hold, then for a.a. 9 ∈ K, the random at-

tractor is well defined. It’s a nonempty compact subset of X and is measurable w.r.t.9.
Denote A(9) = A(0,9), then it is invariance in the sense that S(t, s;9)A((s9) = A((t9).

Proposition 4.2.3. Assume that the assumptions of Proposition 4.2.2 hold and (t(t ∈ R)
be ergodic. Then there is a bounded set B ⊂ X independent of 9 such that A(9) is the
9-limit of B at time t = 0. Moreover, A(9) is the largest compact measurable set satisfy-
ing the property that if {Ã(9)}9∈K is a measurable family of measurable compact subset
such that for almost all 9, S(t, s;9)Ã((s9) = Ã((t9), then Ã(9) ⊂ A(9) for almost all 9.

Proof.When A(9) is defined, set

R(9) = inf{r ∈ R : A(9) ⊂ B(O, r)}, (4.2.6)
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where B(O, r) is a ball with radius r centered at O ∈ X. Otherwise, let R(9) = 0. The
function R(9) is obviously measurable, and by ergodicity of (t, for almost all 9, there
exists a sequence tn → ∞ such that R((–tn9) ≤ R0 + 1, where R0 = ess sup9∈K{R(9)}.
Let x ∈ A(9), by invariance we have for any n ∈ N, there is xn ∈ A((–tn9) such that
S(0, –tn;9)xn = x. By A((–tn ) ⊂ B(O,R0 + 1) and eq. (4.1.2), we have x ∈ A(B(O,R0 + 1),
0,9), i.e., A(9) ⊂ A(B(O,R0 + 1), 0,9). The other inclusion is obvious; hence, the first
part of the conclusion holds.

Consider a measurable family of compact sets {Ã(9)}9∈K, satisfying the invari-
ance property. Similar arguments show that there is a bounded set B such that Ã(9) ⊂
A(B, 0,9) holds for almost all 9. Then the result follows since A(B, 0,9) ⊂ A(9). ∎

The above results are summarized in the following theorem:

Theorem 4.2.2. Let the stochastic dynamical system {S(t, s;9)}t≥s,9∈K satisfy conditions
(1), (2), (4) and (5) and assume that there is a measure-preserving transformation group
((t)t∈R satisfying eq. (4.2.4), and for P-a.e. 9, there is a compact attracting set K(9) at
t = 0. For P-a.e., 9 ∈ K, we set A(9) =

⋃
B⊂X A(B,9) and

A(B,9) =
⋂
T<0

⋃
s<T

S(0, s;9)B.

Then, the following conclusions hold for P-a.e. 9 ∈ K:
(1) A(9) is a nonempty compact set of X and if X is connected, it is a connected subset

of K(9),
(2) the family {A(9)}9∈K is measurable,
(3) A(9) is invariant in the sense that S(t, s;9)A((s9) = A((t9) for s ≤ t,
(4) it is the minimal closed set such that

d(S(t, s;9),A((t9)) → 0 for s → –∞

for any t ∈ R and B ⊂ X bounded,
(5) for any bounded set B ⊂ X, d(S(t, s;9),A((t9)) → 0 in probability as s →∞.

Moreover, if (t, t ∈ R is ergodic, then
(6) there is a bounded set B ⊂ X such that A(9) = A(B,9), and
(7) A(9) is the largest compact set that is invariant.

The connectness of A(9) is proved in Ref. [68], and (5) is obvious since (t is measure
preserving.
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In this chapter, we consider several concrete stochastic partial differential equations
(SPDEs) and their dynamics, including Ginzburg–Landau (GL) equation, stochastic
damped forced Ostrovsky equation, some geophysical models and primitive equa-
tions. The interested readers may refer to the literature in the following sections.

5.1 Stochastic GL equation

In this section, the stochastic Ginzburg–Landau (SGL) equation (SGLE) withmultiplic-
ative noise and the associated random dynamical system (RDS) are considered. For
details, the readers may refer to Refs [31, 125, 213, 257]. Precisely, let D ⊂ Rn(n = 1, 2)
be a bounded open set and ∂D be sufficiently smooth. We consider the following SGLE
with multiplicative noise:{

du = (+ + i!)Budt + -udt – (k + i")|u|2udt + 3udW(t), x ∈ D,
u(t) = 0, x ∈ ∂D,

(5.1.1)

with initial data u(0) = u0, where +, !, -, k, ", 3 ∈ R, + > |!|, k > |"|, 3 > 0 are real
parameters. The stochastic termW(t) : K → R is a two-sided standard Wiener process
and the unknown function u is a complex-valued function defined as D × R+.

We will let L2(D) and H1
0(D) denote the usual complex-valued Sobolev space on D,

with L2- and H1
0(D)-inner product and norms being defined as

(u, v) = R

∫
D
u(x)v̄(x)dx, |u| = (u, u)1/2 u, v ∈ L2(D),

((u, v)) = R

n∑
i=1

∫
D
DiuDiv̄dx, ‖u‖ = ((u, u))1/2 u, v ∈ H1

0(D).

The notations L2 and H1
0 used here are to distinguish the usual real-valued spaces L2

and H1
0. Denote H = L2(D),V = H1

0(D),Au = –Bu and f (u) = |u|2u. The operator A is
an isomorphism from D(A) = V ∩H2(D) onto H. Let {en} be the orthonormal basis in H
of the eigenvectors corresponding to eigenvalues +n, +n > 0 and +n → ∞. For the first
eigenvalue +1, we have +1|u|2 ≤ ‖u‖2. With these notations, the SGLE can be rewritten
as the following abstract form:

du + (+ + i!)Audt – -udt + (k + i")f (u)dt = 3udW(t) (5.1.2)

with initial data u(0) = u0. When 3 = 0, it is known [245] there is a unique solution

u ∈ C([0,T];H) ∩ L2(0,T;V) ∀T < ∞, u0 ∈ H
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and

u ∈ C([0,T];V) ∩ L2(0,T;D(A)) ∀T < ∞, u0 ∈ V.

The following energy estimate can be obtained for the equation

1
2
d
dt

|u|2 + +‖u‖2 – -|u|2 + k|u|4L4 = 0. (5.1.3)

If - < ++1, it implies |u(u)| ≤ |u0| exp{(-–++1)t}, following that the steady solution u ≡ 0
is exponentially stable.

If - = ++1, then by eq. (5.1.3), there is a constant C depending on u0, k and the
region D such that |u(t)| ≤ Ct–1/2; hence, u ≡ 0 is also asymptotically stable.

If - > ++1, the dynamical system generated by GL equation has finite-dimensional
global attractors.

From the above analysis, if - ≤ ++1, then all the trajectories converge to 0 as t → ∞.
Hence, the global attractor reduces to the steady solution {0}.

Now, let us consider the stochastic case. Introduce the process z(t) = e–3W(t).
Obviously, it satisfies the stochastic differential equation

dz(t) =
1
2
32zdt – 3zdW(t).

Hence, the process v(t) = z(t)u(t) satisfies

dv(t) + (+ + i!)Avdt – (- – 32
2
)vdt + (k + i")zf (u)dt = 0.

Since z(t) is a real-valued process, the above formula can be written as

dv(t) + (+ + i!)Avdt – (- – 32
2
)vdt + (k + i")z–2f (v)dt = 0. (5.1.4)

By Galerkin method and a priori estimate, it is not difficult to prove that for P-a.e.
9 ∈ K, the equation has a unique strong solution

u ∈ C([s, t];H) ∩ L2(s, t;V) ∀s < t, u(s) ∈ H,

and

u ∈ C([s, t];V) ∩ L2(s, t;D(A)) ∀s < t, v(s) ∈ V.

Then u(t) = v(t)
z(t) = e3W(t)v(t) is the solution of eq. (5.1.2).
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Theorem 5.1.1. Let - < ++1 + 1
232. Then there is a P-full set K1 such that for all 9 ∈ K1,

there exists T(9) > 0, such that for any u0 ∈ H and t ≥ T(9), there holds

|u(t,9, u0)| ≤ |u0|e 1
2 [-–++1–

1
2 32]t. (5.1.5)

Proof. Applying Itô formula to |u(t)|2, we get

|u(t)|2 = |u0|2 + 2
∫ t

0

(
– +‖u(s)‖2 +

(
- + 1

2
32
)

|u(s)|2

– k|u(s)|4L4
)
ds + 2

∫ t

0
3|u(s)|2dW(s).

Applying Itô formula again to log |u(t)|2, we have

log |u(t)|2 = log |u0|2 – 2
∫ t

0

1
|u(s)|2 (+‖u(s)‖

2 + k|u(s)|4L4 )ds
+ (2- – 32)t + 23W(t)

≤ log |u0|2 + (2- – ++2 – 32)t + 23W(t).

Since limt→∞W(t)/t = 0, P-a.s., there is a P-full set K1 such that for 9 ∈ K1, there is a
T(9) > 0 such that

23W(t)
t

≤ (++1 +
32
2
– -), t ≥ T(9).

Hence

log |u(t)|2 ≤ log |u0|2 +
(
- – ++2 –

32
2

)
t. (5.1.6)

The proof of the theorem is completed. ∎

5.1.1 The existence of random attractor

Now, let us consider the random attractor of the GL equation. Let K = {9 ∈ C(R,R) :
9(0) = 0}, F be a Borel 3-algebra in K and P be a Wiener measure on (K,F ). Denote
W(t,9) = 9(t) and define

(t9(s) = 9(t + s) – 9(t). (5.1.7)

Then (t satisfies (t ○ (s = (t+s, and hence (K,P, {(t}t∈R) is an ergodic metric dynamical
system. Denote

u(t,9) = 8(t, s;9)us, v(t,9) = 6(t, s;9)vs,
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where u(t) is a solution of eq. (5.1.2) with initial data u(s) = us, and v(t) is a solution of
eq. (5.1.4) with initial data v(s) = vs. Obviously, for s ≤ r ≤ t, there holds

8(t, s;9) = 8(t, r;9)8(r, s;9).

By eq. (5.1.7), for any s, t ∈ R+, u0 ∈ H, there holds P-a.s.,

8(t + s, 0;9)u0 = 8(t, 0; (s9)8(s, 0;9)u0.

Hence, the process > : R+ × K × H → H defined by

>(t,9)u0 = 8(t, 0;9)u0, (5.1.8)

is an RDS on H over (K,F ,P, {(t}t∈R). In order to prove the existence of a compact
absorbing set, we first show

Lemma 5.1.1. Given any ball B(0, 1) in H with radius 1 centered at 0, there exist random
variables rt(9) and t(9, 1) ≤ –1 such that for any s ≤ t(9, 1), us ∈ B(0, 1), vs = z(s)us and
–1 ≤ t ≤ 0, we have |6(t, s;9)vs| ≤ rt(9), P-a.s. Hence, |8(0, s;9)us| ≤ r0(9).

Proof. Let v(t) = v(t, s, vs;9) be the solution of eq. (5.1.4) with initial value vs, then

d
dt

|v|2 + +‖v‖2 = – +‖v‖2 + (2- – 32)|v|2 – 2kz–2|v|4L4 (5.1.9)

≤ – (++1 + 32)|v|2 + 2-|v|2 – 2kz–2|v|4L4 .

Since |v| ≤ |D|1/4|v|L4 , we obtain

d
dt

|v|2 + +‖v‖2 ≤ – (++1 + 32)|v|2 + 2-|D|1/2|v|2L4 – 2kz–2|v|4L4
≤ – (++1 + 32)|v|2 + -2|D|k–1z2 – kz–2|v|4L4 (5.1.10)

≤ – (++1 + 32)|v|2 + -2|D|k–1z2.

It follows that for t ≥ s, we have

|v(t)|2 ≤ |v(s)|2e–(++1+32)(t–s) + -2|D|k–1
∫ t

s
e–(++1+32)(t–4)z2(4)d4

≤ e(++1+32)(s–t)z2(s)|us|2 + -2|D|k–1
∫ t

s
e(++1+32)(4–t)z2(4)d4. (5.1.11)

Since e(++1+32)sz2(s) = e(++1+32)s–23W(s) → 0,P-a.s. as s → ∞, for us ∈ B(0, 1) ⊂ H, there is
a time t(9, 1) ≤ –1, such that for s ≤ t(9, 1), it holds P-a.s. that e(++1+32)sz2(s)12 ≤ 1. So
we can choose positive variable rt(9),
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r2t (9) = e–(++1+32)t(1 + -2|D|k–1
∫ t

–∞
e(++1+32)4z2(4)d4)

such that |v(t)| ≤ rt(9), P-a.s. ∎

Note that - < ++1 + 32/2, then by eq. (5.1.9), we have

|v(t)| ≤ |v(0)|e(-–++1–32/2)t.

Hence,

|u(t,9)| ≤ |u0|e(-–++1–32/2+3[W(t)/t])t.

Since limt→∞[W(t)/t] = 0, P-a.s., there exists a t(9) such that for all t ≥ t(9),

3W(t)
t

≤
1
2
(++1 + 32/2 – -).

Hence the same result as Theorem 5.1.1 holds. From the viewpoint of attractor, since
for s ≤ 0,

|u(0)| ≤ |us|e–(-–++1–32/2)s–3W(s),

we have |u(0)| → 0 P-a.s. as s → –∞. So the attractor reduces to {0}.
Suppose - ≥ ++1 + 32/2 in the following. Lemma 5.1.1 shows there is an absorbing

set B(0, r0(9)) in H. In order to obtain the absorbing set in V, we assume |"| ≤ k.
First, integrating eq. (5.1.10) over [–1, 0], we obtain∫ 0

–1
‖v(s)‖2ds ≤ 1

+

(
|v(–1)|2 + -2|D|k–1

∫ 0

–1
z2(s)ds

)
.

Multiplying eq. (5.1.4) by –Bv̄, integrating over D, and taking the real part, we have

d
dt

‖v‖2 + +|Bv|2 –
(
- – 32

2

)
‖v‖2 = z–2R(k + i")

∫
f (v)Bv̄dx. (5.1.12)

By |"| ≤ k, the right-hand side (RHS) of eq. (5.1.12) is nonpositive:

R(k + i")
∫

f (v)Bv̄dx = – R(k + i")
∫
(|v|2|∇v|2 + v∇v̄∇|v|2)dx

= – k
∫

|v|2|∇v|2dx – k
2

∫
(∇|v|2)2dx + "I

∫
v2(∇v̄)2dx

≤ (|"| – k)
∫

|v|2|∇v|2dx ≤ 0.
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So eq. (5.1.12) can be rewritten as

d
dt

‖v‖2 ≤ –2+|Bv|2 + 2
(
- – 32

2

)
‖v‖2 ≤ 2

(
- – ++1 –

32
2

)
‖v‖2.

For any s ∈ [–1, 0], it holds

‖v(0)‖2 ≤ ‖v(s)‖2 + 2
(
- – ++1 –

32
2

)∫ 0

s
‖v(4)‖2d4.

Integrating over [–1, 0], we get

‖v(0)‖2 ≤ 2
(
1
2
+ - – ++1 –

32
2

)∫ 0

–1
‖v(s)‖2ds

≤
2
+

(
1
2
+ - – ++1 –

32
2

)(
|v(–1)|2 + -2|D|k–1

∫ 0

–1
z2(s)ds

)
. (5.1.13)

Hence for given 1 > 0, there is a T(9) ≤ –1 such that for s ≤ T(9) and us ∈ B(0, 1) ⊂ H,
one has

‖u(0)‖2 = ‖v(0)‖2 ≤ R20(9), P-a.s., (5.1.14)

where

R20(9) =
2
+

(
1
2
+ - – ++1 –

32
2

)(
e++1+32 + -2|D|k–1

)
×

(
1 +

∫ 0

–∞
e(++1+32)4z2(4)d4 +

∫ 0

–1
z2(s)ds

)
. (5.1.15)

Theorem 5.1.2. Suppose |"| ≤ k. The RDS associated with the SGLE has a global random
attractorA(9). If - < ++1 + 32

2 , the random attractor reduces to {0}.

Although the compact absorbing set obtained here guarantees the existence of a ran-
dom attractor, generally speaking, the union ofA(9) in9 is not compact. However, as
3 → 0, the A(9) may converge to the attractor of the corresponding deterministic
system with probability 1. Since P is invariant under (t, such an asymptotic beha-
vior with attraction property from 0 to ∞ can be obtained in a weaker convergence
in probability. That is for any % > 0 and all deterministic bounded set B ⊂ H, there
holds

lim
t→∞

P(dist(>(t,9)B,A((t9)) < %) = 1.

Especially, if - < ++1 + 32
2 , the attraction as t → ∞ holds not only in probability but

also 9-wise.

 EBSCOhost - printed on 2/10/2023 4:53 PM via . All use subject to https://www.ebsco.com/terms-of-use



94 5 Applications

5.1.2 Hausdorff dimension of random attractor

The theory of the dimension of attractor in the deterministic system can be generated
to the stochastic case under some assumptions. The following result is due to Ref. [77].

Theorem 5.1.3. Let A(9) be a compact measurable set which is invariant under a ran-
dom map S(9), 9 ∈ K, for some ergodic metric dynamical system (K,F ,P, {(t}t∈R).
Assume
i) S(9) is uniform differentiable a.s., onA(9), i.e. for every u, u + h ∈ A(9), there is a

linear operator DS(9, u) ∈ L(H) such that

|S(9)(u + h) – S(9)u – DS(9, u)h| ≤ k̄(9)|h|1+,,

where , > 0, k̄(9) is a random variable satisfying k̄(9) ≥ 1 and E(log k̄) < ∞.
(ii) there is a variable 9̄d(9) satisfying E(log(9̄d)) < 0 such that 9d(DS(9, u)) ≤ 9̄d(9)

for u ∈ A(9), where

9d(L) = !1(L)⋯ !d(L),
!i(L) = sup

F⊂H,dimF≤n–1
inf

>∈F,|>|=1
|L>|, L ∈ L(H)

(iii) for u ∈ A(9) and some random variable !̄1(9) ≥ 1 satisfying E(log !̄1) < ∞, there
holds !1(DS(9, u)) ≤ !̄1(9).

Then the Hausdorff dimension dH(A(9)) ofA(9) is less than d a.s.

By the theorem, the main task in the following is to verify the > defined by eq. (5.1.8)
is uniformly differentiable. Set S(9) = >(1,9), and T(9)v0 = 6(1, 0, v0;9), then the
random attractor A(9) is an invariant compact measurable set under S. Since S(9) =
e3W(1)T(9), it is easy to see that if T(9) is uniformly differentiable a.s., then so it is with
S(9) with the Fréchet derivative DS = e3W(t)DT, where DT is the Fréchet derivative of T.

Lemma 5.1.2. T(9) is uniformly differentiable a.s. onA(9), i.e. for v, v + h ∈ A(9), there
exists DT(9, v) ∈ L(H) such that P-a.s.,

|T(9)(v + h) – T(9)v – DT(9, v)h| ≤ k̄(9)|h|1+,,

where , > 0, k̄(9) ≥ 1,E(log k̄(9)) < ∞ and DT(9, v0)h = V(1), V(t) solves the first
variation equation of eq. (5.1.4)

dV/dt = L(t, v)V, V(0) = h. (5.1.16)

Here, v(t) = 6(t, 0, v0;9), L(t, v) = –(+ + i!)A + (- – 32/2) – (k + i")z–2f ′(v).

The proof of the lemma is given at the end of this section.
By eq. (5.1.16), we have
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1
2
d
dt

|V|2 = – +‖v‖2 + (- – 32
2
)|V|2

– R(k + i")z–2
∫
D
(|v|2|V|2 + 2vV̄R(v̄V))dx.

The last term at the RHS is nonpositive,

–R(k + i")z–2
∫
(|v|2|V|2 + 2vV̄R(v̄V))dx

= – k
∫

|v|2|V|2dx – 2
∫

R(v̄V){kR(vV̄) – "I(vV̄)}dx

≤ – k
∫

|v|2|V|2dx + 2"
∫

I(vV̄)R(vV̄)dx

≤ (|"| – k)
∫

|v|2|V|2dx ≤ 0.

Hence, |V(t)|2 ≤ |V(0)|e(-–++1–32/2)t. Since !1(DT(9, v)) is equal to the operator norm of
DT(9, v) ∈ L(H), by choosing !̄1(9) = max{1, e3W(1)+-–++1–32/2} it is not difficult to get
!1(DS(9, u)) ≤ !̄1(9) and E(log !̄1) < ∞.

Noting

DT(9, v) = exp
{∫ 1

0
L(s, v(s))ds

}
,

and

DS(9, u) = exp
{
3W(1) +

∫ 1

0
L(s, v(s))ds

}
,

one has from Ref. [245]

9d(DS(9, u)) = sup
.i∈H,|.i|≤1,i=1,⋯ ,d

{
exp{3W(1) +

∫ 1

0
Tr(L(s, v(s)) ○ Qd(s))ds

}
,

where Qd(s) is the rectangular projector from H to Span{V1(s), ⋯ ,Vd(s)}, and Vi(s) is
the solution of eq. (5.1.16) with initial value V(0) = .i.

Let >i(s), i ∈ N be an orthonormal basis of H such that Qd(s)H =
Span{>1(s), ⋯ ,>d(s)}, then

Tr(L(s, v(s)) ○ Qd(s)) =
d∑
i=1

(L(s, v(s))>i(s),>i(s))

≤ – +
d∑
i=1

‖>i‖2 +
(
- – 32

2

)
d

≤ – +
d∑
i=1

+2i +
(
- – 32

2

)
d.
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Denoting 9̄d(9) = exp{3W(1) – +
∑d

i=1 +2i + (- – 32
2 )d} and choosing a suitable d such

that - – 32
2 <

+
d
∑d

i=1 +2i , then we have 9d(DS) ≤ 9̄d(9) and E(log(9̄d)) < 0.
Hence, the following theorem holds.

Theorem 5.1.4. If there exists a d such that - ≤ 32
2 +

+
d
∑d

i=1 +2i , then dH(A(9)) < d, P-a.s..

Now, we prove Lemma 5.1.2 by three steps.

Step 1. Boundedness in Lp, p ∈ Z
+, 1 ≤ p ≤ 8.

Lemma 5.1.3. Let + ≥ |!| and v(t) be the solution of eq. (5.1.4), then for p ∈ Z
+, 1 ≤ p ≤ 4,

there is a random variable I2p(9) such that∫ 1

0
|v(s)|2pL2pds ≤ I2p(9), (5.1.17)

and for any m ≥ 0, E(Im2p) < ∞.

Proof. By the invariance of the random attractor A(9), for v0 ∈ A(9), there exists a
solution v(t) of eq. (5.1.4) with v(0) = v0 such that v(t) ∈ A((t9) for any t ∈ R. In order
to obtain eq. (5.1.17), we first show that for p ∈ Z

+, 1 ≤ p ≤ 3 and r > 0,∫ t

t–r
|v(s)|2p+22p+2ds ≤ C sup

t–r≤s≤t
e–23W(s)

∫ t

t–r–1
|v(s)|2p2pds, (5.1.18)

where C is a constant. Hereafter, we use | ⋅ |p = | ⋅ |Lp . Taking inner product of eq. (5.1.4)
with v̄|v|2p–2, and using the estimate

R(+ + i!)
∫
D
Bvv̄|v|2p–2dx

= –+p
∫
D

|∇v|2|v|2p–2dx – (p – 1)R(+ + i!)
∫
D
(v̄∇v)2|v|2p–4dx

≤ –+(p –
√
2p +

√
2)
∫
D

|∇v|2|v|2p–2dx ≤ 0,

we obtain

1
2p

d
dt

|v|2p2p + e23W(t)|v|2p+22p+2 ≤

(
- – 32

2

)
|v|2p2p. (5.1.19)

Integrating this from s to t leads to

1
2p

|v(t)|2p2p ≤
1
2p

|v(s)|2p2p +
(
- – 32

2

)∫ t

s
|v(4)|2p2pd4.
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Then integrating on s from t – 1 to t, we obtain

|v(t)|2p2p ≤
∫ t

t–1
|v(s)|2p2p + 2p

(
- – 32

2

)∫ t

t–1
|v(s)|2p2pds. (5.1.20)

Integrating eq. (5.1.19) from t – r to t, we get∫ t

t–r
e23W(s)|v(s)|2p+22p+2ds

≤
1
2p

|v(t – r)|2p2p +
(
- – 32

2

)∫ t

t–r
|v(s)|2p2pds

≤

(
1
2p

+ - – 32
2

)∫ t–r

t–r–1
|v(s)|2p2pds +

(
- – 32

2

)∫ t

t–r
|v(s)|2p2pds

≤
(
1 + 2- – 32

) ∫ t

t–r–1
|v(s)|2p2pds.

Hence, we have∫ t

t–r
|v(s)|2p+22p+2ds ≤ (1 + 2- – 32) sup

t–r≤s≤t
e–23W(s)

∫ t

t–r–1
|v(s)|2p2pds.

Writing Si = sup1–i≤s≤1 e–23W(s), we obtain∫ 1

0
|v(s)|2p+22p+2ds ≤ (1 + 2- – 32)S1

∫ 1

–1
|v(s)|2p2pds

≤ (1 + 2- – 32)2S1S2
∫ 1

–2
|v(s)|2p–22p–2ds

≤ (1 + 2- – 32)pS1⋯ Sp
∫ 1

–p
|v(s)|22ds.

As v(–3) ∈ A((–39), we get

|v(–3)| ≤ r–3((–39).

Finally, by eq. (5.1.11), the boundedness of v(t) for –3 ≤ t ≤ 1 in H can be obtained. The
proof is completed.

Step 2. Lipshitz property of the solution.

Let vi(t) (i = 1, 2) be two solutions of eq. (5.1.4) with initial data vi(0) = v0i . Setting
g(t) = v1(t) – v2(t), then g(t) satisfies

dg
dt

+ (+ + i!)Ag –
(
- – 32

2

)
g + (k + i")z–2(f (v1) – f (v2)) = 0.
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Taking inner product with g, we have

1
2
d
dt

|g|2 + +‖g‖2 –
(
- – 32

2

)
|g|2 = –R(k + i")z–2

∫
D
(f (v1) – f (v2))(v̄1 – v̄2)dx.

Noting that RHS is bounded by Cz–2(|v1|36 + |v2|36)|g|2, then we get

|g(t)|2 ≤ |g(0)|2 exp
{(

- – ++1 –
32
2

)
t + C

∫ t

0
z–2(s)(|v1(s)|36 + |v2(s)|36)ds

}
.

By eq. (5.1.17), one has

|g(1)|2 ≤ |g(0)|2 exp
{
- – ++1 –

32
2
+ C sup

0≤s≤1
z–2(s)I6(9)

}
.

Finally, we get

|v1(1) – v2(1)| ≤ C(9)|v01 – v02 |,

and E(C(9)) < ∞.

Step 3. Differentiability of T(9).

Let r(t) = v1(t) – v2(t) – V(t), where vi (i = 1, 2) are given as above and V(t) satisfies the
linear equation (5.1.16) with L = L(t, v) and h = v01 – v02 . Then r(t) satisfies

dr
dt

+ (+ + i!)Ar –
(
- – 32

2

)
r

= – (k + i")z–2(f (v1) – f (v2) – f ′(v2)(v1 – v2 – r)).

Taking inner product about the formula with r, we obtain

1
2
d
dt

|r|2 + +‖r‖2 ≤
(
- – 32

2

)
|r|2 – R(k + i")z–2

∫
D
f ′(v2)|r|2dx

– R(k + i")z–2
∫
D
(f (v1) – f (v2) – f ′(v2)(v1 – v2))r̄dx. (5.1.21)

The second term on the RHS is nonpositive:
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– R(k + i")z–2
∫
D
f ′(v2)|r|2dx

= – R(k + i")
∫
D
(|v2|2|r|2 + 2v2r̄R(v2r̄))dx

= – k
∫

|v2|2|r|2dx – 2k
∫
(R(v2r̄))2dx + 2"

∫
R(v2r̄)I(v2r̄)dx

≤(|"| – k)
∫

|v2|2|r|2dx ≤ 0.

Now, we try to estimate the third term on the RHS of eq. (5.1.21). First, we observe

|f (v1) – f (v2) – f ′(v2)(v1 – v2)| ≤ C(|v1|2 + |v2|2)|v1 – v2|,

hence applying the Hölder inequality and the Sobolev embedding theorem leads to

–R(k + i")z–2
∫
D
(f (v1) – f (v2) – f ′(v2)(v1 – v2))r̄dx

≤Cz–2|(v1|2 + |v2|2)(v1 – v2)|s|r|s∗
≤Cz–4|(v1|2 + |v2|2)(v1 – v2)|2s + %‖r‖2, (5.1.22)

where % > 0, s > 1 and s∗ is the conjugate index of s. Let

0 < $ < 2/3, 1 < s < 8/(6 + 3$).

It’s easy to verify

1 < s < 2/(1 + $), s1 := 2s(2 – $)/(2 – s(1 + $)) < 8.

Hence, there holds

|(v1|2 + |v2|2)(v1 – v2)|ss ≤C
∫
D
(|v1| + |v2|)3s–s(1+$)|v1 – v2|s(1+$)dx

≤C(|v1|s(2–$)s1 + |v2|s(2–$)s1 )|v1 – v2|s(1+$).

By eq. (5.1.21), there holds for sufficiently small % that

1
2
d
dt

|r|2 ≤
(
- – 32

2

)
|r|2 + Cz–4(|v1|2(2–$)s1 + |v2|2(2–$)s1 )|v1 – v2|2(1+$).

This yields

|r(1)|2 ≤ C(9)
∫ 1

0
z–4(|v1|2(2–$)s1 + |v2|2(2–$)s1 )dsh2(1+$).
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Denoting

k̄21 (9) = C(9) sup
0≤t≤1

z–4(t)
∫ 1

0
(|v1(s)|2(2–$)s1 + |v2(s)|2(2–$)s1 )ds,

and choosing k̄(9) = max{k1(9), 1} such that E(log k̄(9)) < ∞, we complete the proof
of Lemma 5.1.2. ∎

5.1.3 Generalized SGLE

Moreover, we consider the following stochastic generalized GL equation (see Refs
[31, 125], for example):

du + *uxdt = (7u + (#1 + i#2)uxx – ("1 + i"2)|u|2u – ($1 + i$2)|u|4u
– (-1 + i-2)|u|2ux – (,1 + i,2)u2ūx)dt +IdW, (5.1.23)

with the following initial and boundary conditions:

u(0, t) = u(1, t) = 0, u(x, t0) = u0(x). (5.1.24)

W is a two-sided cylindricity Wiener process about time, which is a function valued in
L2(0, 1), defined on a complete probability space (K,F ,P). Or equivalently, if {"i}i∈Z are
mutually independent Brown motions in (K,F ,P) and {ei}i∈Z is a set of orthonormal
basis in L2(0, 1), then

W(t) =
∑
i
"iei.

I is a Hilbert–Schmidt operator from L2(0, 1) to some Hilbert space U.
Let z be the solution of the following linear equation:

dz = –(#1 – i#2)Azdt +IdW, z(0) = 0. (5.1.25)

Then z ∈ C([0,∞),V) and v = u–z satisfies the following randomdifferential equation:

dv
dt

= – *vx + 7v – (#1 + i#2)Av – ("1 + i"2)|u|2u
– ($1 + i$2)|u|4u – (-1 + i-2)|u|2ux (5.1.26)
– (,1 + i,2)u2ūx – *zx + 7z,

v(t0,9) = v0 = u0 – z(t0,9) =: . .

It is not difficult to prove that, P-a.s.,
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5.2 Ergodicity for SGL with degenerate noise 101

(i) for any t0 ∈ R, . ∈ V and any T < ∞, there exists a unique solution v ∈

C([t0,T);V) ∩ L2(t0,T;V) of eq. (5.1.26),
(ii) if . ∈ D(A), then v ∈ C([t0,T);V) ∩ L2(t0,T;D(A)),
(iii) for any t ≥ t0, the mapping . ↦ v(t) is continuous from V → V.

Let v(t,9; t0, . ) denote the solution of eq. (5.1.26), then

S(t, t0;9)u0 = v(t,9; t0, u0 – z(t0,9)) + z(t,9)

defines an RDS.
In order to obtain the existence of random attractor, some a priori estimates are

needed. It is shown in Ref. [125] that the following theorem holds.

Theorem 5.1.5. Let * > 0, #1 > 0, $1 > 0, I be a Hilbert–Schmidt operator from H →

D(A), by adaptive selected $, the RDS generated by the generalized SGLE in V has a
global random attractorA(9).

5.2 Ergodicity for SGL with degenerate noise

In this section, we consider the ergodicity for the SGLE with cubic nonlinearity

du =
[
(+ + i!)Bu + #u – (* + i")|u|23u] dt + ∞∑

k=1
hk(t, u(t))dWk

t , (5.2.1)

where 3 = 1, subjecting to the initial condition u(0) = u0 ∈ H1 and zero Dirichlet
boundary conditions on a bounded smooth domain D ⊂ R3.

In the following, we use 〈u, v〉 = ∫
D uv̄dx to denote the complex inner product in

L2 = L2(D) and 〈⋅, ⋅〉1 = 〈⋅, ⋅〉+ ∫D∇u∇v̄dx. We use | ⋅ |p to denote the Lp norm and ‖ ⋅ ‖s to
denote the Hs Sobolev norm for s ∈ R. Of course, | ⋅ |2 and ‖ ⋅ ‖0 coincide and is simply
denoted as ‖ ⋅ ‖.M(H) = the probability measure space on H.

Let h = (h1, ⋯ , hk, ⋯ ). We assume that the mapping

R+ × C ∋ (t, u) ↦ h(t, u) ∈ l2C,

where l2
C
denotes the Hilbert space consisting of all sequences of square-summable

complex numbers with standard norm ‖ ⋅ ‖l2 . We now introduce some assumptions on
h and the coefficients.

(H1) For any T > 0, there exists some constant C = CT,h > 0 such that for any
t ∈ [0,T], x ∈ D, u ∈ C, there holds
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‖h(t, u)‖2l2 ≤ C|u|2, ‖∂uh(t, u)‖l2 ≤ Ch.

(H2) Assume # < �1+, where �1 is the first eigenvalue of the Dirichlet problem

–Bu = �u, in D, u = 0 on ∂D.

(H3) "2 ≤ 3*2.

(H4) There exists some constant C = CT,h > 0 such that

‖∂uh(x, u) – ∂vh(x, v)‖l2 ≤ Ch ⋅ |u – v|.

Lemma 5.2.1. For any T > 0 and u ∈ H1, there exists some constant CT such that

‖h(t, u)‖2L2(l2,H1) ≤ C‖u‖2H1 . (5.2.2)

Proof. Noticing that

‖h(t, u)‖2L2(l2,H1) =
∞∑
k=1

∫
|hk(t, u)|2dx +

∞∑
k=1

∫
|∇hk(t, u)|2dx,

and

∇hk(t, u) = ∂uhk(t, u)∇u,

eq. (5.2.2) is an immediate consequence of assumption (H1). ∎

Under assumption (H1), we first show the existence and uniqueness of a strong
solution for the 3D SGLE withH1 initial data, which is stated in the following theorem.

Theorem 5.2.1. Let h satisfy assumption (H1). Then for any u0 ∈ H1, there exists a
unique u(t, x) such that
1. u ∈ L2(K,P;C([0,T];H1)) ∩ L2(K,P; L2(0,T;H2)) for any T > 0 and

E sup
0≤s≤t

‖u(t)‖21 +
∫ t

0
E‖u(s)‖22ds ≤ C(‖u0‖1) ∀t ∈ [0,T] (5.2.3)

2. It satisfies the SGLE in the mild form for all t ≥ 0,

u(t) = u0 +
∫ t

0
[Au(s) + N(u(s))]ds +

∞∑
k=1

∫ t

0
hk(s, u(s))dWk

s , P-a.s., (5.2.4)

where Au = (+ + i!)Bu and N(u(s)) = –(* + i")|u(s)|2u(s) + #u(s).

For fixed initial data u0 ∈ H1, we denote this unique solution by u(t, u0). Then,
{u(t, u0) : t ≥ 0} forms a strong Markov process with state space H1. This leads us
to the following concepts.
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Let Pt be a Markov transition semigroup in the space Cb(H1), associated with the
SGLE

Pt>(u0) = E>(u(t, ⋅; 0, u0)), t ≥ 0, u0 ∈ H1,> ∈ Cb(H1).

Then its dual semigroup P∗
t , defined on the probability measure space M(H1), is

given by ∫
H1
>d(P∗

t ,) =
∫
H1
Pt>d, ∀> ∈ Cb(H1),∀, ∈ M(H1).

A measure , ∈ M(H1) is called invariant provided P∗
t , = , for each t ≥ 0.

We then turn to consider the case when the noise is degenerate, i.e., when only a
few Fourier modes of the noise are nonzero. Precisely, for N ∈ N, let K = C0(R+,RN)
be the space of all continuous functions with initial values 0, P the standard Wiener
measure on F := B(C0(R+,RN)). Then the coordinate process

Wt(9) := 9(t), 9 ∈ K

is a standardWiener process on (K,F ,P). In this case, the SGLEwith degenerate noise
has the form

du(t) = [(+ + i!)Bu – (* + i")|u|23u + #u]dt + dwt, (5.2.5)

wherewt = QWt is the noise, and the linear map Q : RN → H1 is given by

Qei = qiei, qi > 0, i = 1, 2, ⋯ ,N,

where ei is the canonical basis of RN and ei is orthonormal basis of H1:

Bei = –+ei,

with 0 < +1 ≤ +2 ≤ ⋯ ≤ +N → ∞. Let E0 = trQQ∗ =
∑N

i=1 q2i /+i and E1 = trQQ∗ =∑N
i=1 q2i , then the quadratic variation ofwt in H and H1 are given by [w]0(t) = E0t and

[w]1(t) = E1t.
For this equation, we have the following:

Theorem 5.2.2. Assume (H1)–(H4) hold. Let {Pt} be the transition semigroup associ-
ated with eq. (5.2.5), then for any sufficiently large N, there exists a unique invariant
probability measure associated with {Pt}t≥0.

In the proof, we need the following auxiliary proposition [126]. This proposition gives
a sufficient condition for a transition semigroup to be an asymptotically strong Feller
one.

Proposition 5.2.1. Let tn and $n be two positive sequences with tn nondecreasing and $
converging to zero. A semigroup Pt on a Hilbert spaceH is asymptotically strong Feller
if for all > : H → R with ‖>‖∞ and ‖∇>‖∞ finite,
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|∇Ptn>(x)| ≤ C(‖x‖)(‖>‖∞ + $n‖∇>‖∞)

for all n, where C : R
+ → R is a fixed nondecreasing function.

5.2.1 Momentum estimate and pathwise uniqueness

In this section, we prove Theorem 5.2.1. We first show the existence of a martingale
solution, and then pathwise uniqueness. Then by a theorem of Yamada–Watanabe,
we indeed show the existence and uniqueness of a strong solution.

Roughly speaking, a strong solution is one that exists for a given probability space
and given stochastic inputs while existence of a weak solution simply ensures that
a solution exists on some probability space for some stochastic inputs having the
specified distributional properties [145].

5.2.1.1 Higher order momentum estimates
We give some estimates of E‖u(t)‖2p1 in this section. As can be seen later, these are key
estimates when proving the asymptotically strong Feller property of the semigroupPt.

Lemma 5.2.2. For all p = 1, 2, ⋯ , integers, the following estimates hold:

E‖u(t)‖2p ≤ C(1 + ‖u0‖2p)(1 + tp).

Proof. By Itû’s formula and then taking real part, we have

‖u(t)‖2p = ‖u0‖2p +
4∑
i=1

Ii(t), (5.2.6)

where

I1(t) = 2p
∫ t

0
‖u(s)‖2(p–1)〈u(s), (+ + i!)Bu(s)〉ds

+ 2p
∫ t

0
‖u(s)‖2(p–1)〈u(s), #u(s)〉ds

– 2p
∫ t

0
‖u(s)‖2(p–1)〈u(s), (* + i")|u|23u(s)〉ds,

I2(t) = 2p
∞∑
k=1

∫ t

0
‖u(s)‖2(p–1)〈u(s), hk(u(s))〉dWk

s ,

I3(t) = p
∞∑
k=1

∫ t

0
‖u(s)‖2(p–1)‖hk‖2ds,

I4(t) = 2p(p – 1)
∞∑
k=1

∫ t

0
‖u(s)‖2(p–2)|〈u(s), hk(u(s))〉|2ds.
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For I1, it can be estimated that

I1(t) ≤ 2p+
∫ t

0
‖u(s)‖2(p–1)‖u(s)‖21ds

+ 2p#
∫ t

0
‖u(s)‖2pds – 2p*

∫ t

0
‖u(s)‖2(p–1)‖|u|‖23+2L23+2ds.

From assumptions (H1–H2), I3 and I4 can be estimated that

I3(t) + I4(t) ≤Cp
∫ t

0
‖u(s)‖2pds.

Taking expectations of eq. (5.2.6), we then have

E‖u(t)‖2p ≤ ‖u0‖2p – 2p+
∫ t

0
E‖u(s)‖2(p–1)‖u(s)‖21ds

+ Cp
∫ t

0
E‖u(s)‖2pds – 2p*

∫ t

0
E‖u(s)‖2(p–1)‖|u|‖23+2L23+2ds. (5.2.7)

From this inequality, we can easily show the global but exponential growth estimate of
the moment. However “exponential growth" is not enough for later purpose to prove
ergodicity. Therefore, we use the following iterative method.

Note that from Hölder’s inequality, we have

‖u‖2 ≤ C‖u‖2L23+2 ≤ %‖u‖23+2L23+2 + C% ∀% > 0. (5.2.8)

When p = 1, from eqs (5.2.7) and (5.2.8) (choosing % sufficiently small)

E‖u(t)‖2 +
∫ t

0
E‖u(s)‖21ds ≤ ‖u0‖2 + C ⋅ t ≤ C(1 + ‖u0‖2)(1 + t). (5.2.9)

When p = 2, using the result when p = 1, we have similarly

E‖u(t)‖4 ≤ ‖u0‖4 – 2p+
∫ t

0
E‖u(s)‖2‖u(s)‖21ds

– *
∫ t

0
E‖u(s)‖2‖u(s)‖2(3+1)L2(3+1) + C%

∫ t

0
E‖u(s)‖2ds (5.2.10)

≤ ‖u0‖4 + C
∫ t

0
E‖u(s)‖2ds

≤C(1 + ‖u0‖4)(1 + t2).

By induction, we have for general p > 0

E‖u(t)‖2p ≤ C(1 + ‖u0‖2p)(1 + tp), (5.2.11)

which finishes the proof of this lemma. ∎
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We now prove the following momentum estimates for ‖u(t)‖1.

Lemma 5.2.3. Let (H3) hold, we have for all p = 1, 2, ⋯ , integers that

E‖u(t)‖2p1 ≤ C(1 + ‖u0‖2p1 )(1 + tp+1).

Proof. By Itô’s formula, we have

‖u(t)‖2p1 = ‖u0‖2p1 +
4∑
i=1

Re(Ii(t)), (5.2.12)

where

I1(t) = 2p
∫ t

0
‖u(s)‖2(p–1)1 〈u(s), (+ + i!)Bu(s)〉1ds

+ 2p
∫ t

0
‖u(s)‖2(p–1)1 〈u(s), #u(s)〉1ds

– 2p
∫ t

0
‖u(s)‖2(p–1)1 〈u(s), (* + i")|u|23u(s)〉1ds,

= : I(1)1 (t) + I(2)1 (t) + I(3)1 (t),

and

I2(t) = 2p
∞∑
k=1

∫ t

0
‖u(s)‖2(p–1)1 〈u(s), hk(u(s))〉1dWk

s ,

I3(t) = p
∞∑
k=1

∫ t

0
‖u(s)‖2(p–1)1 ‖hk‖21ds,

I4(t) = 2p(p – 1)
∞∑
k=1

∫ t

0
‖u(s)‖2(p–2)1 |〈u(s), hk(u(s))〉1|2ds.

For the term I(1)1 (t) and I(2)1 (t), we have

Re(I(1)1 (t)) = – 2p+
∫ t

0
‖u(s)‖2(p–1)1 ‖∇u(s)‖21ds

Re(I(2)1 (t)) =2p#
∫ t

0
‖u(s)‖2p1 ds. (5.2.13)

Recalling "2 ≤ *2(32 + 23) and noting that

Re〈u, (* + i")|u|23u〉1
=Re〈∇u, (* + i")∇(|u|23u)〉 + Re〈u, (* + i")|u|23u〉
≥ *(3 + 1)‖|u|3|∇u|‖2 – Re(* + i")

∫
O

|u|2(3–1)(u)2(∇u∗)2dx + *‖u‖2(3+1)L2(3+1) ,
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we have

I(3)1 (t) ≤ –*‖u‖2(3+1)L2(3+1) .

For the last two terms, we have

I3(t) + I4(t) ≤ Cp(2p + 1)
∫ t

0
‖u(s)‖2p1 ds. (5.2.14)

Taking expectations of eq. (5.2.12), using interpolation inequality and Young’s in-
equality, we then have

E‖u(t)‖2p1 ≤ ‖u0‖2p1 – 2p+
∫ t

0
E‖u‖2(p–1)1 ‖u‖22ds + Cp

∫ t

0
E‖u‖2p1 ds

≤ ‖u0‖2p1 – p+
∫ t

0
E‖u‖2(p–1)1 ‖u‖22ds + Cp

∫ t

0
E‖u‖2(p–1)1 ‖u‖20ds

≤ ‖u0‖2p1 –
1
2
p+

∫ t

0
E‖u‖2(p–1)1 ‖u‖22ds + Cp

∫ t

0
E‖u‖2p0 ds. (5.2.15)

Using the estimate in Lemma 5.2.2, we have

E‖u(t)‖2p1 ≤ C(1 + ‖u0‖2p1 )(1 + tp+1).

We therefore end the proof. ∎

Corollary 5.2.1. Under the above assumptions, there exists some constant CT, such that

E sup
t∈[0,T]

‖u(t)‖2H1 +
∫ T

0
E‖u(s)‖2H2ds ≤ CT .

Proof. Let

M(t) = 2
∞∑
k=1

∫ t

0
〈u(s), hk(u(s))〉1dWk

s ,

then, similar to the above lemma, we have

‖u(t)‖21 + 2+
∫ t

0
‖u‖22ds ≤ ‖u0‖21 + C

∫ t

0
‖u‖21ds +M(t). (5.2.16)

Taking expectations and using Gronwall’s inequality, we obtain

sup
t∈[0,T]

E‖u(t)‖2H1 +
∫ t

0
E‖u‖2H2ds ≤ C = C(T).

 EBSCOhost - printed on 2/10/2023 4:53 PM via . All use subject to https://www.ebsco.com/terms-of-use



108 5 Applications

From eq. (5.2.16), using Burkholder–Davis–Gundy (BDG)’s inequality, we have from
Lemma 5.2.1 and Young’s inequality

E sup
t∈[0,T]

‖u(t)‖2H1 ≤C(T) + CE
(∫ T

0
‖h(u(s))‖2L2(l2;L0)‖u(s)‖2H2ds

)1/2

≤C(T) + %E sup
t∈[0,T]

‖h(u(s))‖2L2(l2;L0) + C%
∫ T

0
E‖u(s)‖2H2ds

≤C(T, %) + CT%E sup
t∈[0,T]

‖(u(s))‖2L2 .

Choosing % = 1/(2CT), we then obtain

E sup
t∈[0,T]

‖u(s)‖2H1 ≤ C = C(T).

We complete the proof. ∎

5.2.1.2 Existence of martingale solutions

Definition 5.2.1. We say that eq. (5.2.1) has a weak solution with initial law - ∈ M(H1) if
there exists a stochastic basis (K,F ,P; {Ft}t≥0), an H1-valued continuous {Ft}-adapted
stochastic process u and an infinite-dimensional sequence of independent standard {Ft}
Brownian motions {Wk(t) : t ≥ 0, k ∈ N} such that
(i) u(0) has law - in H1,
(ii) for almost all 9 ∈ K and any T > 0, u(⋅,9) ∈ L2([0,T];H2),
(iii) it satisfies the SGLE in the mild form

u(t) = u0 +
∫ t

0
[(+ + i!)Bu(s) + N(u(s))]ds +

∞∑
k=1

∫ t

0
hk(s, u(s))dWk

s , (5.2.17)

where N(u(s)) = –(* + i")|u(s)|23u(s) + #u(s) for all t ≥ 0, P-a.s.
This solution is denoted by (K,F ,P; {Ft}t≥0;W, u).

We first prove the following a priori estimates.

Lemma 5.2.4. For any T > 0, there exists a positive constant C > 0, such that

sup
t∈[0,T]

E‖u(t)‖20 +
∫ T

0
E‖∇u(s)‖20ds ≤ C, (5.2.18)
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and

sup
t∈[0,T]

E‖u(t)‖21 +
∫ T

0
E‖∇u(s)‖22ds ≤ C. (5.2.19)

Proof. This lemma indeed has been proved in the previous section. ∎

With this lemma, by Galerkin’s approximation and then the tightness method in
Ref. [96] and Skorohod theorem in Ref. [140], we can show the existence of a mar-
tingale solution. Since what we care about most is ergodicity of invariant measures,
and the details of existence of martingale solutions are omitted here for simplicity.

Remark 5.2.1. It suffices to obtain the global existence of a martingale solution with the
estimate in Lemma 5.2.4. However, this estimate is too weak to show the ergodicity for
an invariant measure since it admits growing of solutions with time.

5.2.1.3 Pathwise uniqueness
Generally there are two types of uniqueness in stochastic differential equations,
namely strong uniqueness and uniqueness in the sense of probability law [145]. For our
purpose, we only give the definition of pathwise uniqueness here.

Definition 5.2.2. Given two weak solutions of eq. (5.2.1) defined on the same probability
space together with the same Brownian motion

(K,F ,P; {Ft}t≥0;W, u1) (K,F ,P; {Ft}t≥0;W, u2),

if P{u1(0) = u2(0)} = 1, then P{u1(t,9) = u2(t,9),∀t ≥ 0} = 1.

We now prove the following strong uniqueness result. This is achieved by the tech-
nique of stopping times.

Theorem 5.2.3. Let 3 = 1. The strong uniqueness holds for the 3D cubic SGLE (5.2.1)with
H1-initial data.

Proof. Let u1 and u2 be twoweak solutions of eq. (5.2.1) defined on the same probability
space together with the same Brownianmotion and starting from the same initial data
u0. For any T > 0 and R > 0, we define the stopping time

4R := inf{t ≥ 0 : ‖u1(t, u0)‖1 ∨ ‖u2(t, u0)‖1 ≥ R}.

Let u(t) = u1(t) – u2(t), then by Itô’s formula, we have
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‖u(t)‖2 = – 2+
∫ t

0
‖∇u‖2ds + 2R

[∫ t

0
〈N(u1) – N(u2), u〉ds

]
(5.2.20)

+ 2
∞∑
k=1

∫ t

0
〈hk(t, u1) – hk(t, u2), u〉dWk

s

+
∞∑
k=1

∫ t

0
‖hk(s, u1(s)) – hk(s, u2(s))‖2ds

= : I1(t) + I2(t) + I3(t) + I4(t).

For I1, we have

I1(t ∧ 4R) = –2+
∫ t∧4R

0
‖u‖21ds + 2+

∫ t∧4R

0
‖u‖2ds. (5.2.21)

For I2, by direct calculations, it is easy to see that

I2(t) = 2#
∫ t

0
‖u‖2ds – 2R(* + i")

∫ t

0
〈|u1|2u1 – |u2|2u2, u(s)〉ds

≤ 2#
∫ t

0
‖u‖2ds + C*,"

∫ t

0

∥∥|u|(|u1| + |u2|)
∥∥2 ds.

By Hölder’s inequality and Sobolev’s embedding inequality, we have

‖|u|(|u1| + |u2|)‖2 ≤ 2‖u‖2L3 (‖u1‖2L6 + ‖u2‖2L6 )
≤C‖u‖1‖u‖(‖u1‖21 + ‖u2‖21)
≤CR2‖u‖1‖u‖.

Therefore, using Young’s inequality again, we have

I2(t ∧ 4R) ≤ +
∫ t∧4R

0
‖u‖21ds + CR

∫ t∧4R

0
‖u‖2ds. (5.2.22)

Finally, for I4, we have from assumption (H1) that

I4(t ∧ 4R) ≤ C
∫ t∧4R

0
‖u‖2ds. (5.2.23)

Therefore, taking expectations of eq. (5.2.20) and using inequalities (5.2.21), (5.2.22),
and (5.2.23), we have for any t ∈ [0,T]

E‖u(t ∧ 4R)‖2 + +E
∫ t∧4R

0
‖u(s)‖21ds

≤CRE
∫ t∧4R

0
‖u(s)‖2ds ≤ CR

∫ t

0
E‖u(s ∧ 4R)‖2ds. (5.2.24)
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Applying Gronwall’s inequality, we know that for any t ∈ [0,T]

E‖u(t ∧ 4R)‖2 = 0. (5.2.25)

Since 4R → ∞ as R → ∞, uniqueness then follows by letting R → ∞ and dominated
convergence theorem. ∎

A result, named after Yamada and Watanabe, shows that weak existence plus path-
wise uniqueness implies the existence of a unique strong solution, see Ref. [255]. An
introduction of this can be found in Karatzas and Shreve [145]. Extensions are made
by several authors, the interested readers may refer to Refs [91, 162]. Note that both
weak existence of solutions and strong uniqueness have been obtained for the SGLE,
we indeed have proven Theorem 5.2.1.

5.2.2 Invariant measures

In this section, we show the existence of an invariant measure following Krylov–
Bogolyubov theorem [76]. For fixed u0 ∈ H1, we denote the unique solution in Theorem
5.2.1 by u(t; u0). Then {u(t, u0) : t ≥ 0, u0 ∈ H1} forms a strongMarkov processwith state
space H1. For two initial data u01, u02 ∈ H1, we denote ui = u(t, u0i) the solutions start-
ing from u0i, i = 1, 2. In the following, we first show some stability result. Let R > 0, we
define

4R := inf{t ∈ [0,T] : ‖u(t, u01)‖1 ∨ ‖u(t, u02)‖1 ≥ R}.

Lemma 5.2.5. Let assumption (H1) hold, then there exists constant C = Ct,R such that

E‖u(t ∧ 4R; u01) – u(t ∧ 4R; u02)‖21 ≤ Ct,R‖u01 – u02‖21. (5.2.26)

Proof. Let w(t) = u(t, u01) – u(t, u02). Multiplying the equation with (I – B)w, using
integration by parts formula and then taking the real part, we deduce

‖w(t ∧ 4R)‖21 = ‖w(0)‖21 + 2
∫ t∧4R

0
〈Au1(s) – Au2(s),w(s)〉1ds

+ 2
∫ t∧4R

0
〈N(u1(s)) – N(u2(s)),w(s)〉1ds (5.2.27)

+ 2
∞∑
k=1

∫ t∧4R

0
〈hk(u1(s)) – hk(u2(s)),w(s)〉1ds

+
∞∑
k=1

∫ t∧4R

0
‖hk(u1(s)) – hk(u2(s))‖21ds

= : ‖w(0)‖21 + I1(t) + I2(t) + I3(t) + I4(t),

where Au and N(u) are as in Theorem 5.2.1.
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For I1, we have

I1(t ∧ 4R) =2+
∫ t∧4R

0
〈Bw(s),w(s)〉1ds

= – 2+
∫ t∧4R

0
〈(I – B)w(s), (I – B)w(s)〉ds + 2+

∫ t∧4R

0
〈w(s), (I – B)w(s)〉ds

= – 2+
∫ t∧4R

0
‖w(s)‖H2ds + 2+

∫ t∧4R

0
‖w(s)‖H1ds

For I2, we have by mean value theorem

I2(t ∧ 4R) = 2#
∫ t∧4R

0
〈w(s), (I – B)w(s)〉0ds

– 2R(* + i")
∫ t∧4R

0
〈|u1|2u1 – |u2|2u2, (I – B)w(s)〉ds

≤C
∫ t∧4R

0
‖w(s)‖21ds +

+
2

∫ t∧4R

0
‖w(s)‖22ds + C

∫ t∧4R

0
‖|w||U|2‖2ds,

where U = |u1| + |u2|. However, by the Sobolev embedding theorem,

C
∫ t∧4R

0
‖|w||U|2‖2ds ≤C

∫ t∧4R

0
‖w‖2L∞‖U‖4L4ds

≤CR
∫ t∧4R

0
‖w‖2‖w‖0ds

≤
+
2

∫ t∧4R

0
‖w(s)‖22ds + CR

∫ t∧4R

0
‖w‖2ds. (5.2.28)

Finally, for the last term I4, we have

I4(t ∧ 4R) ≤
∫ t∧4R

0
‖∇h(s, u1(s)) –∇h(s, u2(s))‖2ds

+
∫ t∧4R

0
‖h(s, u1(s)) – h(s, u2(s))‖2ds =: J1 + J2.

Recalling assumptions (H1) and (H2), by chain rule, Sobolev’s embedding and inter-
polation inequality, we have

‖∇h(s, u1(s)) –∇h(s, u2(s))‖2

≤

∫
‖∂uh(u1) ⋅ ∇u1 – ∂uh(u1) ⋅ ∇u2 + ∂uh(u1) ⋅ ∇u2 – ∂uh(u2) ⋅ ∇u2‖2l2dx

≤C2h‖∇w‖2 + C2h
∫

|u1 – u2|2|∇u2|2dx
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≤C2h‖∇w‖2 + C2h‖u2‖21|w|2L∞
≤C2h‖w‖21 + Ch,R‖u2‖21‖w‖2‖w‖1
≤
+
2
‖w‖22 + Ch,R‖w‖21.

Therefore,

J1 ≤
∫ t∧4R

0

+
2
‖w‖22 + Ch,R‖w‖21ds.

Note also that from assumption (H1), J2 can be bounded by

J2 ≤ C2h
∫ t∧4R

0
‖w‖2ds. (5.2.29)

Therefore, collecting all the estimates for I1 – I4, and taking expectation of eq. (5.2.27),
we get

E‖w(t ∧ 4R)‖21 ≤ ‖u01 – u02‖21 + Ch,R
∫ t∧4R

0
‖w(s)‖21ds

≤ ‖u01 – u02‖21 + Ch,R
∫ t

0
E‖w(s ∧ 4R)‖21ds. (5.2.30)

By Gronwall’s lemma, the stability estimate (5.2.26) holds. ∎

Now we consider the transition semigroup associated with {u(t, u0)}. Let Cb(H1) de-
note the set of all bounded and locally uniformly continuous functions on H1. Clearly,
under the norm

‖>‖∞ := sup
u∈H1

|>(u)|,

Cb(H1) is a Banach space. For t > 0, the semigroup Pt associated with {u(t, u0) :
t ≥ 0, u0 ∈ H1} is defined by

(Pt>)(u0) = E(>(u(t, u0))), > ∈ Cb(H1).

Theorem 5.2.4. Let 3 ≤ 1 and assumption (H1) holds, for every t > 0, Pt maps Cb(H1)
into itself, i.e., {Pt}t≥0 is a Feller semigroup on Cb(H1).

Proof. Let > ∈ Cb(H1) be given. By definition, Pt> is bounded on H1. To see that it is
also locally uniformly continuous, it suffices to show that for any % > 0, t > 0 and
m ∈ N, there exists $ > 0 such that
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sup
u01,u02∈Bm‖u01–u02‖≤$

|Pt>(u01) – Pt>(u02)| < %, (5.2.31)

where Bm := {u ∈ H1 : ‖u‖1 ≤ m}. As before, we define

4R = inf{t ≥ 0 : ‖u(t; u01)‖1 ∨ ‖u(t; u02)‖1 ≥ R}.

First, for solutions u(t; u0i)(i = 1, 2), we know from eq. (5.2.3) that

E|>(u(t; u0i)) – >(u(t ∧ 4R; u0i))| ≤ 2‖>‖∞P{4R < t}

≤ 2‖>‖∞ sup
u0i∈Bm

E
[
sup
s∈[0,t]

‖u(s; u0i)‖2
]
/R2

≤ 2Ct,m‖>‖∞/R2. (5.2.32)

Therefore, we can choose R > m sufficiently large such that for u01, u02 ∈ Bm

E|>(u(t; u0i)) – >(u(t ∧ 4R; u0i))| ≤ %/4, i = 1, 2. (5.2.33)

Second, since > is locally uniformly continuous, for the above fixed R, there exists
$R > 0 such that for any u1, u2 ∈ Bm with ‖u1 – u2‖H1 ≤ $R,

|>(u1) – >(u2)| ≤ %/4.

Therefore, for u01, u02 ∈ Bm with ‖u01 – u02‖2H1 ≤
%$2R

8Ct,R‖>‖∞ , by the stability result in
Lemma 5.2.5 and Chebyshev inequality, we have

E|>(u(t ∧ 4R; u01)) – >(u(t ∧ 4R; u02))|
=
∫
K+$R

|>(u(t ∧ 4R; u01)) – >(u(t ∧ 4R; u02))|P(d9)

+
∫
K–$R

|>(u(t ∧ 4R; u01)) – >(u(t ∧ 4R; u02))|P(d9) (5.2.34)

≤ %/4 + 2‖>‖∞P{‖u(t ∧ 4R; u01) – u(t ∧ 4R; u01)‖H1 > $R}

≤ %/4 + 2‖>‖∞
E‖u(t ∧ 4R; u01) – u(t ∧ 4R; u01)‖2H1

$2R
≤ %/2,

where K+
$R := {9 : ‖u(t ∧ 4R; u01) – u(t ∧ 4R; u02)‖H1 ≥ $R} and K–

$R := {9 : ‖u(t ∧
4R; u01) – u(t ∧ 4R; u02)‖H1 < $R}. Combining eqs (5.2.33) and (5.2.34), eq. (5.2.31) is
proved by choosing $ =

√
%$R

2
√

2Ct,R‖>‖∞ . ∎
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Theorem 5.2.5. Let assumptions (H1)–(H4) hold, then there exists an invariant measure
,∗ associated with the semigroup Pt such that for any t ≥ 0 and > ∈ Cb(H1)∫

H1
Pt>(u),∗(du) =

∫
H1
>(u),∗(du).

Proof. Since H2 ↪ H1 compactly, by the classical Krylov–Bogolyubov theorem [76], to
show the existence of an invariant measure it is enough to show that:

For any % > 0, there exists M > 0 such that for all T > 1,

1
T

∫ T

0
P(‖u(s)‖2H2 > M)ds < %. (5.2.35)

From eq. (5.2.9) and the first inequality of eq. (5.2.15), we know that

E‖u(t)‖21 ≤ ‖u0‖21 – 2+
∫ t

0
E‖u‖22ds + C

∫ t

0
E‖u‖21ds

≤ ‖u0‖2H1 – 2+
∫ t

0
E‖u‖22ds + C ⋅ t. (5.2.36)

Therefore, there exists some constant C dependent on the parameters and the initial
data u0, but independent of t, such that for any t ≥ 1,

1
t

∫ t

0
E‖u(s)‖22ds ≤ C. (5.2.37)

By a standard argument of contradiction, eq. (5.2.35) is proved, which follows the
existence of an invariant measure. ∎

5.2.3 Ergodicity

In this section, we prove Theorem 5.2.2. The following proposition that was proved in
Hairer and Mattingly [126] will be useful in our analysis.

Proposition 5.2.2. Let Pt be an asymptotically strong Feller Markov semigroup and
there exists a point x such that x ∈ supp, for every invariant probability measure ,
of Pt, then there exists at most one invariant probability measure for Pt.

To apply this proposition to the SGLE, we divide the following proof into two parts.
In the first one, we show that the semigroup Pt associated with the SGLE (5.2.5) with
degenerate noise enjoys the asymptotically strong Feller property. In the second part,
we show that 0 belongs to the support of any invariant measure for Pt.
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5.2.3.1 Asymptotically strong Feller property
To emphasize the dependence of the solutions on the noise realization, we denote
u(t,9; u0) = It(9, u0). In other words,It : C([0, t];RN) × H1 → H1 is the solution map
such thatIt(9, u0) is a solution with initial data u0 and noise realization 9.

Given v ∈ L2loc(R
+,RN), the Malliavin derivative of the H1-valued random variable

It(9, u0) with respect to 9 in the direction v is given by

Dvu(t,9; u0) = lim
%→0

It(9 + %V, u0) –It(9, u0)
% ,

where V(t) =
∫ t
0 v(r)dr and the limit holds almost surely with respect to the Wiener

measure. For 0 ≤ s < t, Js,t. is the solution of the linearized equation

∂tJs,t. = (+ + i!)BJs,t. +N (u(t,9; u0),Js,t. ), Js,s. = . , (5.2.38)

whereN is linear with respect to the second argument and is given by

N (', . ) = #. – (* + i")
[|'|2. + 2R('̄ ⋅ . )'

]
. (5.2.39)

Note also that Js,t enjoys the cocycle property Js,t = Js,rJr,t for r ∈ [s, t].
When s = 0, we simply writeJt. = J0,t. . It is not difficult to show that for every9,

(Jt. )(9) = lim
%↓0

It(9, u0 + %. ) –It(9, u0)
% . (5.2.40)

The proof of this limit is given at the end of this section.
Observe that v can be random and possibly nonadapted to the filtration generated

by the increments ofW. If we setAtv = Dvu(t,9; u0), then

∂tAtv = (+ + i!)BAtv +N (u(t,9; u0),Atv) + Qv(t), A0v = 0. (5.2.41)

SinceN (⋅, ⋅) is linear with respect to the second argument, by the formula of variation,
At : L2([0, t];RN) → H1 is given by

Atv =
∫ t

0
Js,tQv(s)ds.

Roughly speaking,Jt. is the perturbation of u(t,9; u0) caused by initial perturbation .
of u0, whileAtv is the perturbation at time t caused by an infinitesimal variation in the
Wiener space over interval [0, t]. If we can find such a v such that they cause the same
effect, i.e., Jt. = Atv, then it can be shown in the spirit of Hairer and Mattingly [126]
thatPt is strong Feller and ergodicity follows. However, in most cases with degenerate
noise, such property does not hold, mainly due to the noninvertibility of the Malliavin
matrix, see Ref. [76].
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Therefore, we consider the difference 1(t) = Jt. – Atv[0,t] which we wish to drive
to 0. Hereafter, v[0,t] is the restriction of v to the interval [0, t]. This is the idea of
introducing asymptotically strong Feller in the paper [126].

From eqs (5.2.38) and (5.2.41), it is easy to see that 1(t) satisfies the equation

∂t1 = (+ + i!)B1 +N (u(t,9; u0), 1) – Qv(t), 1(0) = . . (5.2.42)

In the following, H
1
� denotes the finite-dimensional “low-frequency" subspace of H1

H1
� = span{e1, ⋯ , eN},

and H1
h denotes the corresponding “high-frequency" subspace of H

1 such that the dir-
ect sum decomposition holds: H1 = H1

� ⊕ H1
h. This decomposition naturally associates

the projecting operator 0� : H1 → H1
� with

.� = 0�. :=
N∑
i=1

〈(–B)ei, .〉ei ∈ H1
� ∀. ∈ H1.

We also use 0h = I – 0� to denote the projection on the codimensional space H1
h.

Before proving the main result, we give some lemmas.

Lemma 5.2.6. For any ', . ∈ H1, we have

〈.h,N (', .l + .h)〉1 ≤ +2‖B.h‖2 + C0
(‖.h‖2H1 + ‖.�‖2H1

)
×
(
1 + ‖'‖2H2 + ‖|'||∇'|‖2L2

)
, (5.2.43)

‖0lN (', . )‖2H1 ≤ CN‖.‖2(1 + ‖'‖4L4 ), (5.2.44)

whereN (⋅, ⋅) is given in eq. (5.2.39). Here, C0 does not depend on N.

Proof. For eq. (5.2.43), we have

〈.h,N (', .l + .h)〉H1 = I1 + I2 + I3,

where

I1 =#〈.h, .l + .h〉1,
I2 = – (* + i")〈.h, |'|2(.l + .h)〉1,
I3 = – (* + i")〈.h,R('̄ ⋅ (.l + .h))'〉1.

For I1, we have

I1 ≤ #‖.h‖2H1 .
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For I2, we have

I2 = – (* + i")〈∇.h, |'|2∇(.� + .h)〉0 – (* + i")〈∇.h, .h∇(|'|2)〉0
≤C‖'‖2L∞‖|∇.h||∇. |‖L1 + C‖∇.h‖L6‖.‖L3‖∇(|'|2)‖L2
≤C‖'‖2H2

(‖.h‖2H1 + ‖.�‖2H1
)
+
+
4

‖.h‖2H2 + C‖.‖2H1‖|'||∇'|‖2L2 .

For I3, it is easy to see that

I3 ≤ I2.

Adding these estimates together, we get eq. (5.2.43).
For eq. (5.2.44), since

〈ei, .〉1 = 〈Bei, .〉0 ≤ Cei‖.‖,
〈ei,0�(|'|2. )〉1 ≤ Cei‖'‖2L4‖.‖L2 ,

〈ei,0�(R('̄ ⋅ . )')〉 ≤ Cei‖'‖2L4‖.‖L2 ,

we have by adding them together

‖0lN (', . )‖2H1 =
N∑
i=1

〈ei,N (', . )〉21 ≤ CN‖.‖2L2 (1 + ‖'‖4L4 ),

where the constant CN depends on N. We complete the proof of eq. (5.2.44). ∎

Lemma 5.2.7. For any � > 0, there exist constants C1,C2 > 0 such that for any t > 0 and
u0 ∈ H1, there holds

E exp
{
�

∫ t

0
‖u(s)‖2H2 + ‖|u||∇u|‖2L2ds

}
≤ exp

{
C1‖u0‖2H1 + C2t

}
.

Proof. Let Ft := C(‖u(t)‖2H2 + ‖|u||∇u|‖2L2 ).
By Itô formula, we have

‖u(t)‖2 =‖u0‖2 – 2+
∫ t

0
‖∇u(s)‖2ds + 2#

∫ t

0
‖u(s)‖2ds

– 2*
∫ t

0
‖u(s)‖4L4ds + 2

∫ t

0
〈u(s), dws〉 + E0 ⋅ t. (5.2.45)

By Hölder’s inequality and Young’s inequality, we have

2#‖u(s)‖2L2 – 2*‖u(s)‖4L4 ≤ C – *‖u(s)‖4L2 .
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Therefore, eq. (5.2.45) implies that

‖u(t)‖2 =‖u0‖2 +
∫ t

0

(
C – 2+‖∇u(s)‖2 – *‖u(s)‖4) ds + 2 ∫ t

0
〈u(s), dws〉.

From Ref. [218, Lemma 6.2], it follows that for any � > 0

E exp
{
�

∫ t

0
‖u(s)‖2H1ds

}
≤ exp

{
�‖u0‖2L2 + C�t

}
. (5.2.46)

Here, the constant C� does not depend on N.
Again, by Itô’s formula, we have (by similar estimates as in Lemma 5.2.3)

d‖u(t)‖2H1 ≤ C(–Ft + ‖u(t)‖2H1 )dt + 2〈u(t), dw〉1 + E1dt.

Integrating this identity, we have

‖u(t)‖2H1 – ‖u0‖2H1 ≤ –
∫ t

0
Fsds + C

∫ t

0
‖u(s)‖2H1ds + 2

∫ t

0
〈u(t), dw〉1 +

∫ t

0
E1ds.

Multiplying this by � and then taking exponential, we get

e�‖u(t)‖2
H1 ⋅ e–�‖u0‖2

H1 ≤e–�
∫ t
0 Fsds ⋅ eC�

∫ t
0 ‖u(s)‖2

H1
ds

⋅ e–�
∫ t
0 ‖u(s)‖2

H1
ds+2�

∫ t
0〈u(t),dw〉1 ⋅ eE1t.

Let Ms := –�
∫ t
0 ‖u(s)‖2H1ds + 2�

∫ t
0〈u(t), dw〉1. Take expectation and rearrange this

inequality to get

Ee�
∫ t
0 Fsds ≤ E

[
e–�‖u(t)‖2

H1 ⋅ e�‖u0‖2
H1 ⋅ eC�

∫ t
0 ‖u(s)‖2

H1
ds
⋅ eMs ⋅ eE1t

]
.

By eq. (5.2.46), eMs is an exponential martingale and therefore

Ee5Ms = Ee5M0 = 1,

and

Ee–5�‖u(t)‖
2
H1 ≤ 1,

we have from Hölder’s inequality that

Ee�
∫ t
0 Fsds ≤ e�‖u0‖2

H1 ⋅ eE1t
(
EeC�

∫ t
0 ‖u(s)‖2

H1
ds
)1/5

.

Recalling the estimate in eq. (5.2.46), we easily get
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Ee�
∫ t
0 Fsds ≤ eC1‖u0‖2

H1 ⋅ eC2t,

where C1 depends on l and C2 depends on E0, E1 and �. ∎

Corollary 5.2.2. For any p ≥ 1 integers, we have

E
[∫ t

0
‖u(s)‖2H2 + ‖|u||∇u|‖2L2ds

]p
≤ p! exp{‖u0‖2 + Ct}.

Proof. The result follows from Lemma 5.2.7 and the fundamental inequality
xp ≤ p!ex. ∎

We are now in a proper position to prove the asymptotically strong Feller property for
the semigroup Pt.

Proposition 5.2.3. Let {Pt}t≥0 be the semigroup associated with the SGLE (5.2.5). There
exist some constant N∗ ∈ N and constants C, $ > 0 such that for any t > 0, u0 ∈ H1, and
any Fréchet differentiable function > on H1 with ‖>‖∞, ‖∇>‖∞ < ∞,

‖∇Pt>(u0)‖ ≤ C0 exp{C1‖u0‖2}(‖>‖∞ + ‖∇>‖∞e–$t). (5.2.47)

Proof. For any . ∈ H1 with ‖.‖H1 = 1. We define

&�(t) =

⎧⎨⎩.� ⋅ (1 –
t

2‖.�‖H1
), t ∈ [0, 2‖.�‖H1 ]

0, (2‖.�‖H1 ,∞).

For the high-frequency part, we let &h(t) satisfy the equation

∂t&h = (+ + i!)B&h + 0hN (u(t), &� + &h), &h(0) = .h. (5.2.48)

Define

v(t) = Q–1Gt, (5.2.49)

where Gt = &�(t)
2‖&�(t)‖H1

+ (+ + i!)B&� + 0�N (u(t), &� + &h). It is immediate that & = &� + &h
satisfy the equation

∂t& (t) = –
1
2

&�(t)
‖&�(t)‖H1

+ (+ + i!)B&h(t) + 0hN (u(t), &�(t) + &h(t)),

with the same initial data & (0) = . . From eq. (5.2.42), it is clear that 1(t) and & (t) satisfy
the same equation, with the same initial data 1(0) = & (0) = . ; therefore, 1 = & .

In the following, we will show that for given . and v(t) defined as in eq. (5.2.49),
1(t) tends to 0 as t → ∞. To get estimate (5.2.47), we give two preliminary estimates in
the following two steps.
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Step 1. Show that there exist constants - > 0 and C > 0 such that

E‖& (t)‖H1 ≤ CeC‖u0‖2
H1

–$t. (5.2.50)

For the “low-frequency” part &l, we have by definition ‖&l(t)‖H1 ≤ 1 for 0 ≤ t ≤ 2 and
‖&l(t)‖H1 = 0 for t ≥ 2. In particular,

E‖&l(t)‖pH1 ≤ C. (5.2.51)

For the “high-frequency” part &h, we use eq. (5.2.48). By Lemma 5.2.6,

d
dt

‖&h(t)‖2H1 = – 2+‖B&h(t)‖2 + 2〈&h(t),0hN (u(t), &l + &h)〉H1

≤ – +‖B&h(t)‖2 + 2C0(1 + Ft)
(‖&h‖2H1 + ‖&�‖2H1

)
≤(–++N + 2C0(1 + Ft))‖&h(t)‖2H1 + 2C0(1 + Ft)‖&�‖2H1 .

Noting that ‖&l(t)‖2 = 0 for all t ≥ 2, we have by Gronwall’s inequality that

‖&h(t)‖2H1 ≤‖&h(0)‖2H1 exp
{
–++Nt + 2C0

∫ t

0
(1 + Fs)ds

}
+ C exp

{
–++N(t – 2) + 2C0

∫ t

0
(1 + Fs)ds

}∫ 2

0
‖&�(s)‖2H1ds. (5.2.52)

Recall that +N → ∞ as N → ∞ and the fact that ‖&l(t)‖H1 ≤ 1 for 0 ≤ t ≤ 2. By
Lemma 5.2.7, and Hölder’s inequality, there exist constant $ > 0 and N∗ such that
when N ≥ N∗,

E‖&h(t)‖2H1 ≤ Ce
C‖u0‖2

H1
–$t.

Indeed, from eq. (5.2.52) and Corollary 5.2.2, we know that for any p ≥ 1, there exist
constants C, $ and N∗ such that for N ≥ N∗,

E‖&h(t)‖pH1 ≤ C(1 + ‖&h(0)‖pH1 )e
C‖u0‖2

H1
–$t.

Combining this and the low-frequency estimate (5.2.51) together, we have the higher
moment estimate

E‖& (t)‖pH1 ≤ CeC‖u0‖2–$t. (5.2.53)

In particular, eq. (5.2.50) holds when p = 1.

Step 2. Show that
∫∞
0 E|v(t)|2dt ≤ CeC‖u0‖2 .
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For v(t) in eq. (5.2.49), since

‖B&�‖2H1 ≤ +2N‖&�‖2L2 ≤ CN‖& (t)‖2L2 ,

we get from Lemma 5.2.6 that

E|v(t)|2 ≤CE‖Gt‖2H1

≤CN
{
1t≤2 + E

[
‖& (t)‖2L2 (1 + ‖u(t)‖4L4 )

]}
≤CN

{
1t≤2 +

(
E‖& (t)‖4)1/2 (1 + E‖u(t)‖8L4

)1/2} .
From Lemma 5.2.3 with p = 4, E‖u(t)‖8L4 grows at most polynomially while from
eq. (5.2.53) we know that E‖& (t)‖4 decays exponentially; therefore,∫ ∞

0
E|v(t)|2dt ≤ CeC‖u0‖2 , (5.2.54)

as is expected. From the proof, it seems necessary to get the higher momentum
estimate of ‖u(t)‖H1 in Lemma 5.2.3.

Finally, we turn to the proof of eq. (5.2.47). LetPt and > be as above. By chain rule
and integration by parts formula, we have

〈∇Pt>(u0), .〉H1 =E〈∇(>(u(t))), .〉H1 = E〈(∇>)(u(t)),Jt.〉H1

=E〈(∇>)(u(t)),Atv[0,t] + 1(t)〉H1

=E
[
Dv(>(u(t; u0)))

]
+ E〈(∇>)(u(t)), 1(t)〉H1

=E
[
>(u(t; u0))

∫ t

0
v(s)dWs

]
+ E〈(∇>)(u(t)), 1(t)〉H1

≤ ‖>‖∞E
∣∣∣∣∫ t

0
v(s)dWs

∣∣∣∣ + ‖∇>‖∞E‖1(t)‖H1 .

Now, since v[0,t] is adapted to the Wiener path, we have by eq. (5.2.54)

E
∣∣∣∣∫ t

0
v(s)dWs

∣∣∣∣ ≤ (∫ t

0
E‖v(s)‖2ds

)1/2
≤ CeC‖u0‖2 .

Then Estimate (5.2.47) then follows from estimate (5.2.50). ∎

5.2.3.2 A support property
We first prove the following lemma. The idea can be found in Refs [76, 218].

Lemma 5.2.8. Assume (H4) holds, then for any r1, r2 > 0, there exists some T > 0
such that

inf‖u0‖H1≤r1
P{9 : ‖u(T,9; u0)‖H1 ≤ r2} > 0.
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Proof. Set v(t) = u(t) –w(t), then

v′(t) = (+ + i!)B(v(t) +w(t)) + #(v +w) – (* + i")|v +w|2(v +w). (5.2.55)

Let T > 0 and % > 0, to be determined later. We assume that

sup
t∈[0,T]

‖w(t,9)‖H6 < %. (5.2.56)

By multiplying the equation with v(t), and integrating by parts, we have

d
dt

‖v(t)‖2 = – 2+‖∇v(t)‖2 + 2R(+ + i!)〈Bw(t), v(t)〉
+ 2#‖v(t)‖2 + 2#R〈w(t), v(t)〉 (5.2.57)
– 2R(* + i")〈|v +w|2(v +w), v(t)〉

= : I1 + I2 + I3.

For I1 and I2, we have

I1 + I2 ≤ –2+‖∇v(t)‖2 + 2#‖v(t)‖2 + C%‖v(t)‖,
≤ –2+‖∇v(t)‖2 + 2#‖v(t)‖2 + C% + C%‖v(t)‖2.

For I3, since

2Re(* + i")〈|v +w|2(v +w),w〉 ≤ 2C‖w‖L∞‖v +w‖3L3
≤C%‖v‖3L3 + C%4
≤C%‖∇v‖L2‖v‖2L2 + C%
≤ $‖∇v‖2L2 + C%$–1‖v‖4L2 + C%$–1,

it is estimated that

I3 ≤ – 2*‖v +w‖4L4 + $‖∇v‖2L2 + C%‖v‖4L2 + C%.

Let +̃ = �1(2+ – $) – 2#, from assumption (H2), we can choose $ sufficiently small (e.g.
$ = + – #�–11 ) such that +̃ > 0. Fix such a $, then from estimates for I1, I2, I3, we obtain

d
dt

‖v(t)‖2 ≤ –+̃‖v(t)‖2 + C%‖v(t)‖4 + C%.

Therefore, from Lemma 6.1 in Ref. [218], we have that for any %′, h > 0, there exist
T′ > 0 and % small enough such that

sup
t∈[0,T′]

‖v(t)‖L2 ≤ 2r1 (5.2.58)
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and

sup
t∈[T′,T′+h]

‖v(t)‖L2 < %′. (5.2.59)

Now we turn to the H1 estimates. Taking inner product of eq. (5.2.55) with –Bv(t) and
using integrating by parts, we have

d
dt

‖v(t)‖H1 = 2Re〈(+ + i!)Bv, v〉H1 + 2Re〈(+ + i!)Bw, v〉H1

+ 2#〈v, v〉H1 + 2#〈w, v〉H1

– 2Re〈(* + i")|v +w|2(v +w), v +w〉H1

+ 2Re〈(* + i")|v +w|2(v +w),w〉H1

= J1 + J2 + J3 + J4.

Similar to the previous estimates, we have

J1 ≤ – 2+‖∇v(t)‖2H1 + C% + C%‖v(t)‖2L2
J2 ≤ 2#‖v(t)‖2H1 + C% + C%‖v(t)‖2L2 .

For J3, we have under assumption " ≤
√
3*,

J3 = – 2*‖v +w‖4L4 – 2R(* + i")〈∇(|v +w|2(v +w)),∇(v +w)〉
≤ – 2*‖v +w‖4L4 – 4*‖|v +w|∇(v +w)‖2L2
+ 2R(* + i")

∫
(v +w)2(∇(v +w))2

≤ – 2*‖v +w‖4L4 .

Finally, for J4, we have by interpolation

J4(t) = 2R〈(* + i")|v +w|2(v +w), (I – B)w〉
≤ $‖∇v‖2L2 + C%‖v‖4L2 + C%.

Combining the above estimates yields that (choosing $ = + – #�–11 )

d
dt

‖v(t)‖2H1 ≤ – 2+‖∇v(t)‖2H1 + 2#‖v(t)‖2H1 + $‖v(t)‖2H1 + C% + C%‖v(t)‖4L2
≤ – +̃‖v‖2H1 + C‖v(t)‖2L2 + C% + C%‖v(t)‖4L2 ,

where +̃ = +�1 – # > 0. By Gronwall’s inequality, we have
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‖v(t)‖2H1 ≤ e–+̃(t–s)‖v(s)‖2H1 +
C
+̃

{
C sup
r∈[s,t]

‖v(r)‖2L2 + C% sup
r∈[s,t]

‖v(r)‖4L2 + C%
}
.

Letting s = 0 and t = T′, we have by eq. (5.2.58) that

‖v(T′)‖2H1 ≤ C(r41 + 1).

Then letting s = T′ and t = T′ + h, we have

‖v(T′ + h)‖2H1 ≤ Ce–+̃h(r41 + 1) + C{ sup
r∈[T′,T′+h]

‖v(r)‖2L2 + C% sup
r∈[T′,T′+h]

‖v(r)‖4L2 + C%},

which together with eq. (5.2.59) yields that there exist a T large enough and % ∈ (0, 1)
small enough such that

‖v(T)‖H1 <
r2
2
. (5.2.60)

Taking eq. (5.2.56) into account, there exist a T large enough and % ∈ (0, 1) small
enough such that

‖u(T,9, u0)‖H1 < r2. (5.2.61)

Let

K% = {9 : sup
t∈[0,T]

‖w(t,9)‖H6 < %},

then

K% ⊂
⋂

‖u0‖H1≤r1
{9 : ‖u(T,9; u0)‖H1 ≤ r2}.

Since K% is an open set and P{K%} > 0, the result follows. ∎

Now we prove the following:

Proposition 5.2.4. 0 belongs to the support of any invariant measure of {Pt}t≥0.

Proof. For every invariant measure ,, we choose some r1 > 0 such that

,(Br1 ) ≥ 1/2.

By the definition of an invariant measure and the above lemma, for any r2 > 0,
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,(Br2 ) =P∗
t ,(Br2 ) =

∫
H1
Pt(x,Br2 ),(dx)

=
∫
H1
Pt1Br2 (x),(dx) ≥

∫
Br1
Pt1Br2 (x),(dx)

≥ inf
x∈Br1

Pt1Br2 (x) ⋅ ,(Br1 ) > 0,

which implies that 0 belongs to the support of ,. ∎

5.2.3.3 Proof of the derivative flow equation (5.2.40)
Lemma 5.2.9. For any T > 0, there exists a constant CT > 0 such that for each 9 and
u0 ∈ H1

sup
t∈[0,T]

‖u(t,9)‖2H1 +
∫ T

0
‖u(t,9)‖2H2dt ≤ CT

(
1 + ‖u0‖2H1 + sup

t∈[0,T]
‖w(t,9)‖4H6

)
.

Proof. Consider estimate (5.2.57) in Lemma 5.2.8. For I1 and I2 we have a new estimate

I1 + I2 ≤ –2+‖∇v(t)‖2L2 + C‖Bw‖L2‖v(t)‖L2 + (2# + 1)‖v(t)‖2L2 + C‖w(t)‖2L2 .

For I3, we have

I3 = – 2R(* + i")〈|v +w|2(v +w), v(t)〉
= – 2R(* + i")〈|v +w|2(v +w), v +w〉
– 2R(* + i")〈|v +w|2(v +w),w〉 =: I31 + I32.

Since

I31 ≤ –2*‖v +w‖4L4 ,

and

I32 ≤ c‖w‖L∞‖v +w‖3L3
≤ c‖w‖L∞‖v +w‖3L4
≤ *‖v +w‖4L4 + c‖w‖4L∞ ,

we have

d
dt

‖v(t)‖2L2 ≤ C‖v(t)‖2L2 + C(‖w‖2H2 +w‖4H2 ).

By Gronwall’s lemma, we have
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sup
t∈[0,T]

‖v(t)‖2L2 ≤ CT
(
1 + sup

t∈[0,T]
(‖w‖2H2 + ‖w‖4H2 )

)
.

The second step is to estimate the H1-norm; however, since this is similar to the proof
of Lemma 5.2.8, we omit the details for simplicity. ∎

For . ∈ H1, let us consider a small perturbation of the initial value given by u%(0) =
u0 + %. . The corresponding solution of eq. (5.2.5) is denoted by u%(t).

Set

.%(t) =
(
u%(t) – u(t)

)
/%.

Then .%(t) satisfies⎧⎪⎪⎨⎪⎪⎩
. ′%(t) = (+ + i!)B.%(t) + #.%(t) – (* + i")|u%(t)|2.%(t)

–(* + i")(|u%|2 – |u(t)|2)u(t)/%,
.%(0) = . .

(5.2.62)

For this equation, we have

Lemma 5.2.10. For any T > 0, there is a CT > 0 such that for any % ∈ (0, 1)

sup
t∈[0,T]

‖.%(t)‖2H1 +
∫ T

0
‖.%(t)‖2H2dt ≤ CT . (5.2.63)

Proof. As in the proof of Lemma 5.2.5, we have

d
dt

‖.%(t)‖2H1 ≤ – +‖.%(t)‖2H2 + C‖.%(t)‖2H1 + C‖.%(t)‖2L6‖u%(t)‖4L6
+ C‖.%(t)‖2L6 (‖u%(t)‖4L6 + ‖u(t)‖4L6 )

≤ – +‖.%(t)‖2H2 + C
(
1 + ‖u%(t)‖4L6 + ‖u(t)‖4L6

)
‖.%(t)‖2H1 ,

which together with Lemma 5.2.9 yields the desired estimate. ∎

Now, consider the difference

D%(t) = .%(t) – Jt. . (5.2.64)

It is not hard to see that D%(t) satisfies

D′%(t) = (+ + i!)BD%(t) + #D%(t) –
5∑
i=1

Fi(t), (5.2.65)
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where

F1(t) =(* + i")
[|u%(t)|2 – |u(t)|2] .%(t),

F2(t) =(* + i")|u|2D%(t),
F3(t) = – %(* + i")|.%(t)|2u(t),
F4(t) = – (* + i")|u|2D%(t),

F5(t) = – (* + i")D%(t)(u(t))2.

From eq. (5.2.65) and Young’s inequality, we have

d
dt

‖D%(t)‖2H1 ≤ –+‖D%(t)‖2H2 + C‖D%(t)‖2L2 + C
5∑
i=1

‖Fi(t)‖2L2 .

Now, we estimate the sum on the RHS.
For Fi, i = 1, ⋯ , 5, by Hölder’s inequality and Sobolev’s embedding, we have

‖F1(t)‖2L2 ≤C%2
∫

|.%(t)|4(|u%(t)|2 + |u(t)|2)

≤C%2‖.%(t)‖4L6
(
‖u%(t)‖2L6 + ‖u(t)‖2L6

)
≤C%2‖.%(t)‖4H1

(‖u%(t)‖2H1 + ‖u(t)‖2H1
)
,

‖F2(t)‖2L2 + ‖F4(t)‖2L2 + ‖F5(t)‖2L2 ≤ C‖D%(t)‖2H1‖u(t)‖4H1 ,

and

‖F3(t)‖2L2 ≤C%2‖.%(t)‖4L6‖u(t)‖2L6
≤C%2‖.%(t)‖4H1‖u(t)‖2H1 .

Combining the above calculations with the estimates in Lemmas 5.2.9 and 5.2.10,
we have

d
dt

‖D%(t)‖2H1 ≤ C1%2 + C2‖D%(t)‖2H1 , (5.2.66)

which yields by Gronwall’s inequality,

‖D%(t)‖2H1 ≤ C1teC2t ⋅ %2.

As % → 0, we have

‖D%(t)‖H1 → 0,

which gives eq. (5.2.40).
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5.2.4 Some remarks

In the final section, we would like to make several comments on the ergodicity for the
SGLE with degenerate additive noise.

We would like to remark that the discussion in this section relies heavily on the
approach proposed by Hairer and Mattingly [126], who proved the ergodicity of the
stochastic Navier–Stokes equation (SNSE) with degenerate noise. In that paper, they
developed two main tools: the asymptotically strong Feller property for the semig-
roup associated with the flow of an SPDE and the approximative integration by parts
formula in the Malliavin calculus. They are rather powerful and indispensable tech-
niques for ergodicity for an SPDE driven by degenerate stochastic forcing. As pointed
out by Hairer and Mattingly [126], the asymptotically strong Feller property is much
weaker than the strong Feller property, and many equations driven by degenerate
noise have only the former one rather than the latter one [218].

But there are several differences between the analysis of the two-dimensional (2D)
SNSE in Ref. [126] and the SGLE. For the 2D Navier–Stokes equation, uniqueness holds
for L2–solutions, and hence the solution for the SNSE generalizes a Markovian semig-
roup of the stochastic flow. However, for the three-dimensional (3D) GL equation, be-
cause of the lack of pathwise uniqueness of L2–solutions, the flow does not generalize
a semigroup and the analysis fails. Therefore, we considerH1 solutions in this section.

Another difference is that although the nonlinear term u ⋅ ∇u in SNSE consists of
one order derivative, it is quadratic algebraically. But in the SGLE, the nonlinear term
is cubic. To handle this nonlinear term when proving the asymptotically strong Feller
property, estimates of higher order momentum seem to be indispensable, even if one
considers the L2 solution.

For ergodicity of SGL, see also Ref. [191] by coupling method.

5.3 Stochastic damped forced Ostrovsky equation

5.3.1 Introduction

This section is concerned with the asymptotic behavior of solutions to the following
damped forced Ostrovsky equation with additive noise defined in the entire space R:

du – ("uxxx + !D–1
x u – (u2)x – +u + f )dt =

m∑
i=1

hidwi, (5.3.1)

u(x, 0) = u0(x), x ∈ R, t > 0, (5.3.2)

where D–1
x = F–1

x
1
i.Fx, !, ", + are real constants with " ≠ 0, ! > 0, + > 0, f is time

independent, hi (i = 1, 2, ⋯ ,m) are given functions defined on R, and {wi(t)}mi=1 are
mutually independent two-sided Wiener processes on a probability space.
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When + = 0, f = 0, hi = 0(1 ≤ i ≤ m), system (5.3.1) becomes the standard Ostrovsky
equation:

ut – "uxxx – !D–1
x u + (u2)x = 0, x ∈ R, t > 0. (5.3.3)

The Ostrovsky equation (5.3.3) was derived by Ostrovsky [193] as a model for the
propagation of weakly nonlinear dispersive long surface and internal waves of small
amplitude in a rotating fluid. Here, free surface u(t, x) has been rendered nondimen-
sional with respect to the constant depth h of liquid and gravitational acceleration
g and the parameter ! = n2/c0 > 0 measures the effect of rotation, where the wave
speed c0 =

√
gh, and n is the local Coriolis parameter. The parameter " determines

the type of dispersion, i.e., " < 0 (negative dispersion) for surface and internal waves
in the ocean and surface waves in a shallow channel with an uneven bottom [10] and
" > 0 (positive dispersion) for capillary waves on the surface of liquid or for oblique
magneto-acoustic waves in plasma [102, 109]. Equation (5.3.1) models the situation
when nonlinearity, dispersion, dissipation rotation and stochastic effects are taken
into account at the same time.

The well-posedness of eqs (5.3.3)–(5.3.2) has been studied in Refs [133, 135, 173,
249] and the references therein. The well-posedness of eqs (5.3.1)–(5.3.2) without noise
was obtained in Ref. [122] in Bourgain function spaces X̃s,b (see below for a precise
definition of X̃s,b) with b > 1/2. The Bourgain function spaces were introduced by
Bourgain [29] for the well-posedness of the Korteweg–de Vries (KdV) equation. This
method was developed by Kenig, Ponce and Vega [152] and Tao [242] to study the
Cauchy problem for nonlinear dispersive wave equations. In this section, the exist-
ence and uniqueness of solutions of the stochastic damped forced Ostrovsky equation
(5.3.1)–(5.3.2) are studied in the above Bourgain spaces X̃s,b. Roughly speaking, the in-
dex b represents the smoothness in time. However, stochastic systems (5.3.1)–(5.3.2)
have the same time regularity as Brownian motion with b < 1/2. Hence, when try-
ing to apply this method, the spaces X̃s,b with b < 1/2 have to be encountered. The
well-posedness for the stochastic KdV equation and the stochastic Camassa–Holm
equation in Bourgain spaces Xs,b with b < 1/2 were studied in Refs [27, 58].

Another interesting thing is the long-term behavior for systems (5.3.1)–(5.3.2). It is
known that the long-term behavior of random systems is captured by a pullback ran-
dom attractor, which was introduced in Refs [68, 98] as an extension of the attractors
theory of deterministic systems in Refs [127, 217, 245]. In the case of bounded domains,
the existence of random attractors for SPDEs has been studied extensively by many
authors (see Refs [5, 57, 66, 98] and the references therein).When the domain is the en-
tire space Rn, the existence of random attractors was established recently in Ref. [36]
and the references therein. The crucial idea for the proof is the asymptotic compact-
ness and existence of bounded absorbing sets for these equations. And the asymptotic
compactness is usually proved by a tail estimate. In this section, the random attractors
for eqs (5.3.1)–(5.3.2) are obtained by the same idea as above. Instead of a tail estimate,
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the asymptotic compactness for eqs (5.3.1)–(5.3.2) is checked by splitting the solutions
into a decaying part plus a regular part as in Refs [122, 245].

Note that the phase function of semigroup of eq. (5.3.1) has nonzero points, which
makes a difference from that of the linear KdV equation and Kadomtsev–Petviashvili
(KP) equation and also makes the problemmuchmore difficult. Therefore, the Fourier
restriction operators

PNh =
1
20

∫
|. |≥N

eix. ĥ(. )d. , PNh =
1
20

∫
%≤|. |≤N

eix. ĥ(. )d. ∀N ≥ % > 0

are used to eliminate the singularity of the phase function and to split the solution in
Section 5.3.3. For simplicity, denote PNh = 1

20
∫
|. |≤N e

ix. ĥ(. )d. .
The section is organized as follows. In Section 5.3.2, the well-posedness of the

stochastic damped forced Ostrovsky equation is proved. In Section 5.3.3, we first prove
that the solutions for the equation are bounded, and then split the solutions into two
parts, one uniformly bounded in H̃3(R) and the other decaying in L̃2(R). These es-
timates are necessary for proving the existence of bounded absorbing sets and the
asymptotic compactness of the equation. In the last section, the asymptotic compact-
ness of the solution operator and then the existence of a pullback random attractor
are proved.

5.3.2 Well-posedness

In this section, the stochastic estimate and the bilinear estimates are proved, then
the local well-posedness of eqs (5.3.1)–(5.3.2) is established by contraction mapping
principle.

First, we give some notations. Set a(x, s) = (u2)x + +u – f , then the mild solution of
eqs (5.3.1)–(5.3.2) is

u(t) = S(t)u0(x) –
∫ t

0
S(t – s)a(x, s)ds +

m∑
i=1

∫ t

0
S(t – s)hidwi(s), (5.3.4)

where S(t) = F–1
x e–itm(. ) withm(. ) = ".3 + !

. .
The space L̃2(R) is defined as follows:

L̃2(R) =
{
h ∈ L2(R) : F–1

x

(
ĥ(. )
.

)
∈ L2(R)

}
,

with the norm

‖h‖L̃2(R) = ‖h‖L2(R) + ‖F–1
x (

ĥ(. )
. )‖L2(R).
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The corresponding Sobolev space H̃s(R) is defined in a similar way

H̃s(R) =
{
h ∈ Hs(R) : F–1

x

(
ĥ(. )
.

)
∈ Hs(R)

}
,

with the norm

‖h‖H̃s(R) = ‖h‖Hs(R) + ‖F–1
x

(
ĥ(. )
.

)
‖Hs(R).

The definition of Bourgain space is given as follows.

Definition 5.3.1. For s, b ∈ R, the space Xs,b is the completion of the Schwartz function
space on R

2 with respect to the norm

‖u‖Xs,b = ‖〈4 +m(. )〉b〈.〉sû(. , 4)‖L2. L24 ,

where 〈⋅〉 = (1+| ⋅|). Similar to H̃s(R), the modified Bourgain function space X̃s,b is defined
as follows:

‖u‖X̃s,b = ‖u(t)‖Xs,b + ‖D–1
x u(t)‖Xs,b .

For T1,T2 > 0, X̃[T1,T2]s,b is defined by the space restricted to [T1,T2] of functions in X̃s,b
with the norm

‖u‖
X̃[T1,T2]s,b

= inf {‖ũ‖X̃s,b , ũ ∈ X̃s,b, u = ũ|[T1,T2]}.

Let X̃Ts,b be defined by the space restricted to [0,T] of functions in X̃s,b.

Let & ∈ C∞c (R) be a decreasing function with & ≡ 1 on [0, 1] and supp& ⊆ [–1, 2], and
&:(t) = & (t/:), : > 0. Denote the hyperplane S = {(. , 4, .1, 41, .2, 42) : . = .1 + .2,
4 = 41 + 42}. Throughout this section, denote the integral

∫
D
h(. , 4, .1, 41, .2, 42)d$ =

∫
D′
h(. , 4, .1, 41, . – .1, 4 – 41)d.d4d.1d41,

where D ⊂ S and D′ = {(. , 4, .1, 41) : (. , 4, .1, 41, .2, 42)} ∈ D.
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Now, we get the stochastic estimate and the bilinear estimates. Hereafter, C
denotes a positive constant, whose value may change from one place to another.

Proposition 5.3.1. Let 0 < b < 1/2, & be defined as above, and hi ∈ L̃2(R) (i = 1, 2, ⋯ ,m).
Then 6 =

∑m
i=1

∫ t
0 S(t – s)hidwi(s) satisfies &6 ∈ L2(K; X̃0,b) and

E(‖&6‖2X̃0,b ) ≤ C
m∑
i=1

‖hi‖2L̃2(R),

where C is a constant depending on b, ‖&‖H̃b(R), ‖|t|1/2&‖L̃2(R), ‖|t|1/2&‖L∞(R).

Proof. The method in Ref. [27] can be applied here with little modification, so we
omit it. ∎

In order to obtain the bilinear estimates, we give some notations and lemmas. Denote

3 = 4 +m(. ), 3j = 4j +m(.j), j = 1, 2, FF*(. , 4) =
h(. , 4)
〈3〉* .

Lemma 5.3.1. ([122]). Let * > 3/8, 1 > 3(q–2)
4q , 2 ≤ q ≤ 6. Then

‖D
1
8
x F*‖L4t L4x ≤ C‖h‖L2. L24 ,

‖F1‖Lqt Lqx ≤ C‖h‖L2. L24 .

Lemma 5.3.2. ([152]). If 1
2 < � < 1, then∫

R

dx
(1 + |x – !|)�(1 + |x – "|)� ≤

C
(1 + |! – "|)2�–1 . (5.3.5)

Proposition 5.3.2. Let 1/2 < b < 5/8 and 3/8 < b′ < 1/2. Assume that the Fourier
transform Fu of u is supported in {(. , 4) : |. | ≥ N},N > 0. Then

‖∂x(u1u2)‖X̃0,b–1 ≤
C
N 1

8
‖u1‖X̃0,b′ ‖u2‖X̃0,b′ . (5.3.6)

Remark 5.3.1. The similar result in Ref. [122] is 1/2 < b < 9/16 and b′ > 1/2, while b′ < 1/2
is needed in our case. Fortunately, we can prove Proposition 3.2 with litter modification
of the method used in Theorem 4.1 in Ref. [122].

Proof.Because the proof of the bilinear estimate for ‖D–1
x ∂x(u1u2)‖X0,b–1 can be obtained

in a similar way, we only prove the bilinear estimate for ‖∂x(u1u2)‖X0,b–1 . By duality, it
suffices to show

 EBSCOhost - printed on 2/10/2023 4:53 PM via . All use subject to https://www.ebsco.com/terms-of-use



134 5 Applications

∫
S

|. |h(. , 4)
〈3〉1–b Fu1Fu2d$ ≤

C
N 1

8
‖h‖L2. L24‖f1‖L2. L24‖f2‖L2. L24 ,

for h ∈ L2(R), h ≥ 0, fj = 〈3j〉b′Fuj, j = 1, 2. Let

FFj*(. , 4) =
fj(. , 4)
〈3j〉* , j = 1, 2.

In order to bound the integral, we split the domain of integration into two pieces.
By symmetry, it suffices to estimate the integral in the domain |.1| ≤ |.2| and so that
|. | ≤ 2|.2|.

Case 1. |. | ≤ 4a. Set D1 = {(. , 4, .1, 41, .2, 42) ∈ S : N ≤ 2a ≤ |.1| ≤ |.2|, |. | ≤ 4a}.
Since b < 5

8 and b
′ > 3

8 , by Lemma 5.3.1, we have

∫
D1

|. |h(. , 4)
〈3〉1–b

f1(.1, 41)
〈31〉b′

f2(.2, 42)
〈32〉b′ d$ ≤ C

N 1
8

∫
D1

h(. , 4)
〈3〉1–b

|.1| 18 f1(.1, 41)
〈31〉b′

f2(.2, 42)
〈32〉b′ d$

≤
C
N 1

8
‖F1–b‖L2xL2t ‖D

1
8
x F1b′‖L4xL4t ‖F

2
b′‖L4xL4t

≤
C
N 1

8
‖h‖L2. L24‖f1‖L2. L24‖f2‖L2. L24 . (5.3.7)

Case 2. |. | > 4a. Set D2 for the corresponding region. Notice that

3 – 31 – 32 = 3"..1.2
(
1 – !.

2
1 + . 2 + .1.2
3"(..1.2)2

)
,

which implies that if |.2| ≥ |.1| ≥ 2a ≥ N, |. | ≥ 4a ≥ 2N, then

max(|3|, |31|, |32|) ≥ C|..1.2|.

Then one of the following cases always occurs:

(a) |3| ≥ |. ||.1||.2|; (b) |31| ≥ |. ||.1||.2|; (c) |32| ≥ |. ||.1||.2|.

If (a) holds, let D21 be the corresponding region. Since b < 5
8 and b′ > 3

8 , by Lemma
5.3.1, we have∫

D21

|. |h(. , 4)
〈3〉1–b

f1(.1, 41)
〈31〉b′

f2(.2, 42)
〈32〉b′ d$ ≤

∫
D21

|. |h(. , 4)
(|. ||.1||.2|)1–b

f1(.1, 41)
〈31〉b′

f2(.2, 42)
〈32〉b′ d$

≤

∫
D21

|. |bh(. , 4) |.1|
1
8 f1(.1, 41)

|.1| 98 –b〈31〉b′
|.2| 18 f2(.2, 42)
|.2| 98 –b〈32〉b′

d$
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≤
C

N
9
4 –3b

∫
D21

h(. , 4) |.1|
1
8 f1(.1, 41)
〈31〉b′

|.2| 18 f2(.2, 42)
〈32〉b′ d$

≤
C

N
9
4 –3b

‖F0‖L2xL2t ‖D
1
8
x F1b′‖L4xL4t ‖D

1
8
x F2b′‖L4xL4t

≤
C

N
9
4 –3b

‖h‖L2. L24‖f1‖L2. L24‖f2‖L2. L24 . (5.3.8)

If (b) holds, set D22 for the corresponding region. Since b < 5
8 and b′ > 3

8 , by Lemma
5.3.1, we have∫

D22

|. |h(. , 4)
〈3〉1–b

f1(.1, 41)
〈31〉b′

f2(.2, 42)
〈32〉b′ d$ ≤

∫
D22

|. |h(. , 4)
〈3〉1–b

f1(.1, 41)
(|. ||.1||.2|)b′

f2(.2, 42)
〈32〉b′ d$

≤ C
∫
D22

|. | 78 –b′ |. |
1
8 h(. , 4)
〈3〉1–b

f1(.1, 41)
|.1|b′

|.2| 18 f2(.2, 42)
|.2| 18 +b′〈32〉b′

d$

≤
C

N3b′– 3
4

∫
D22

|. | 18 h(. , 4)
〈3〉1–b f1(.1, 41)

|.2| 18 f2(.2, 42)
〈32〉b′ d$

≤
C

N3b′– 3
4
‖D

1
8
x F1–b‖L4xL4t ‖F

1
0‖L2xL2t ‖D

1
8
x F2b′‖L4xL4t

≤
C

N3b′– 3
4
‖h‖L2. L24‖f1‖L2. L24‖f2‖L2. L24 . (5.3.9)

The argument for (c) is similar to (b).
By eqs (5.3.7)–(5.3.9), we have

‖∂x(u1u2)‖X̃0,b–1 ≤
C
N= ‖u1‖X̃0,b′ ‖u2‖X̃0,b′ ,

where = = min{ 18 ,
9
4 – 3b, 3b

′ – 3
4 }. Since 1/2 < b < 5/8 and 3/8 < b

′

< 1/2, it follows that
= = 1

8 . So the proof is completed. ∎

Proposition 5.3.3. Let 1
2 < b <

9
16 ,

25
64 < b

′

< 1
2 . Then we have

‖∂x(u1u2)‖X̃0,b–1 ≤ C‖u1‖X̃0,b′ ‖u2‖X̃0,b′ . (5.3.10)

Proof. Similar to Proposition 5.3.2, we only prove the bilinear estimate for
‖∂x(u1u2)‖X0,b–1 . By symmetry, it suffices to estimate the integral in the domain |.1| ≤
|.2|. Denote FFj*, fj, j = 1, 2 as in Proposition 5.3.2. By duality, it suffices to show that

∫
S

|. |h(. , 4)
〈3〉1–b Fu1Fu2d$ ≤ C‖h‖L2. L24‖f1‖L2. L24‖f2‖L2. L24 .
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Case 1. |. | ≤ 16. Set E1 for the corresponding region. For b < 1 and b′ > 1/3, by
Lemma 5.3.1, we have∫

E1

|. |h(. , 4)
〈3〉1–b

f1(.1, 41)
〈31〉b′

f2(.2, 42)
〈32〉b′ d$ ≤C‖F1–b‖L2xL2t ‖F

1
b′‖L4xL4t ‖F

2
b′‖L4xL4t

≤C‖h‖L2. L24‖f1‖L2. L24‖f2‖L2. L24 .

Case 2. |.2| ≥ |.1| ≥ 4, and |. | ≥ 16. Notice that

3 – 31 – 32 = 3"..1.2
(
1 – !.

2
1 + . 2 + .1.2
3"(..1.2)2

)
,

which implies that if |. | ≥ 2, |.1| ≥ 2 and |.2| ≥ 2, then

max(|3|, |31|, |32|) ≥ C|..1.2|.

Then one of the following cases always occurs:

(a) |3| ≥ |. ||.1||.2|; (b) |31| ≥ |. ||.1||.2|; (c) |32| ≥ |. ||.1||.2|.

If (a) holds, set E21 for the corresponding region. Since |. | ≤ 2|.2|, by Lemma 5.3.1, we
have∫

E21

|. |h(. , 4)
〈3〉1–b

f1(.1, 41)
〈31〉b′

f2(.2, 42)
〈32〉b′ d$ ≤

∫
E21

|. |h(. , 4)
(|. ||.1||.2|)1–b

f1(.1, 41)
〈31〉b′

f2(.2, 42)
〈32〉b′ d$

≤C
∫
E21

h(. , 4) |.1|
b–1f1(.1, 41)
〈31〉b′

|.2|2b–1f2(.2, 42)
〈32〉b′ d$

≤C‖F0‖L2xL2t ‖D
1
8
x F1b′‖L4xL4t ‖D

1
8
x F2b′‖L4xL4t

≤C‖h‖L2. L24‖f1‖L2. L24‖f2‖L2. L24 ,

for 2b – 1 < 1
8 , i.e. b <

9
16 and b

′ > 3
8 .

If (b) holds, set E22 for the corresponding region. By Lemma 5.3.1, we have∫
E22

|. |h(. , 4)
〈3〉1–b

f1(.1, 41)
〈31〉b′

f2(.2, 42)
〈32〉b′ d$ ≤

∫
E22

|. |h(. , 4)
〈3〉1–b

f1(.1, 41)
(|. ||.1||.2|)b′

f2(.2, 42)
〈32〉b′ d$

≤C
∫
E22

|. |1–b′h(. , 4)
〈3〉1–b f1(.1, 41)

f2(.2, 42)
〈32〉b′ d$

≤C‖D
1
8
x F1–b‖L4xL4t ‖F

1
0‖L2xL2t ‖F

2
b′‖L4xL4t

≤C‖h‖L2. L24‖f1‖L2. L24‖f2‖L2. L24 ,

for 1
3 < b

′ < 1
2 ,

1
2 < b <

5
8 .
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The argument for (c) is similar to (b).

Case 3. |.1| ≤ 4 or |.2| ≤ 4, and |. | ≥ 16.

Using Cauchy–Schwarz inequality and Fubini’s theorem, it follows that

‖
∫

R

∫
R

〈3〉b–1|. |
〈32〉b′ 〈31〉b′

f1(.1, 41)f2(.2, 42)d.1d41‖L2. L24

≤C‖ |. |
〈3〉1–b

(∫
R

∫
R

1
〈31〉2b′ 〈32〉2b′

d.1d41

)1/2

‖L∞. L∞4 ‖u1‖X0,b′ ‖u2‖X0,b′ . (5.3.11)

Let q := .1
. and

z1 := 3 – 31 – 32 = 3"..1.2 +
!
.

[
1 –

.3
..1.2

]
= 3".3q(1 – q) + !

.

[
1 –

1
q(1 – q)

]
.

Then

dz1
d.1

= 3". 2(1 – 2q)
[
1 +

!
3.4(q – q2)2

]
. (5.3.12)

Noticing that |q| = | .1. | < 1
4 and ! > 0, which implies from eq. (5.3.12) that | dz1d.1 | ≥ C. 2,

we conclude by Lemma 5.3.2 that

C
|. |

〈3〉1–b
(∫

R

∫
R

1
〈32〉2b′ 〈31〉2b′

d.1d41

)1/2

≤ C
|. |

〈3〉1–b
(∫ 4

–4

d.1
(1 + |z1 – 3|)4b′–1

)1/2

≤ C
|. |

〈3〉1–b
1

|. |
(∫

|z1|≤3|3|
dz1

(1 + |z1 – 3|)4b′–1
)1/2

≤
C

〈3〉4b′–b–1 ≤ C. (5.3.13)

Estimates (5.3.11) and (5.3.13) complete the proof. ∎

Based on Propositions 5.3.1 and 5.3.3, the well-posedness of eqs (5.3.1)–(5.3.2) can be
proved by the following lemma and contraction mapping principle.
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Lemma 5.3.3. (see [27, 153]). Let 0 < a, b < 1/2, s ∈ R, u0 ∈ H̃s(R), h ∈ X̃Ts,c. Then we
have

‖S(t)u0‖X̃Ts,b ≤ C‖u0‖H̃s ,

‖
∫ t

0
S(t – s)h(s)ds‖X̃Ts,b ≤ CT

1–a–b‖h‖X̃s,–a .

Theorem 5.3.1. Let + ∈ R, f ∈ L̃2(R), hi ∈ L̃2(R) (i = 1, 2, ⋯ ,m) and u0 ∈ L̃2(R). Then, for
P-a.e. 9 ∈ K, there is a T > 0 and a unique solution u(t) of eqs (5.3.1)–(5.3.2) on [0,T],
which satisfies

u ∈ C([0,T]; L̃2(R)) ∩ X̃T0,b.

Proof. From Proposition 5.3.1, we get

‖6‖X̃T0,b ≤ C‖&6‖X̃0,b , (5.3.14)

where & is given as before and T ∈ [0, 1] for P-a.e. 9 ∈ K. We fix 9 ∈ K such that
eq. (5.3.14) and u0(9, ⋅) ∈ L̃2(R) hold. Set

z(t) = U(t)u0, v(t) = u(t) – 6(t) – z(t).

Then eq. (5.3.4) can be rewritten in terms of

v(t) = –
∫ t

0
S(t – s)[2(v + 6 + z)(v + 6 + z)x

++(v + 6 + z) – f ]ds. (5.3.15)

Let us introduce the complete metric space

BTR = {v ∈ X̃T0,b, ‖v‖X̃T0,b ≤ R},

with R = ‖6‖X̃T0,b + ‖u0‖L̃2(R). We set

Av(t) = –
∫ t

0
S(t – s)[2(v + 6 + z)(v + 6 + z)x + +(v + 6 + z) – f ]ds.

We will show that A is a contraction mapping in BTR, provided that T is chosen suffi-
ciently small. With this aim in view, let v, v1, v2 ∈ BTR be adapted processes. Noticing
Propositions 5.3.1 and 5.3.3 and Lemma 5.3.3, we easily get

‖Av‖X̃T0,b ≤ CT
1–a–b(R2 + ‖6‖2X̃T0,b + ‖u0‖2L̃2(R)),

‖Av1 – Av2‖X̃T0,b ≤ CT
1–a–b(R + ‖6‖X̃T0,b + ‖u0‖L̃2(R))‖v1 – v2‖X̃T0,b .
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Define the stopping time T by

T = inf{t > 0, 2Ct1–a–bR ≤ 1/2}.

Then Amaps BTR in X̃
T
0,b into itself, and

‖Av1 – Av2‖X̃T0,b ≤
1
2
‖v1 – v2‖X̃T0,b .

Thus, the contraction mapping principle implies that there exists a unique solution
u in X̃T0,b on [0,T] to eq. (5.3.15). It remains to show that the solution u = z + v + 6 ∈

X̃T0,c + X̃T0,b in C([0,T], L̃2(R)) (note that here b < 1/2, c > 1/2). Since c > 1/2, we have
z ∈ C([0,T], L̃2(R)) by the Sobolev imbedding theorem in time. Since S(⋅) is a unitary
group in L̃2(R), we have 6 as a continuous modification with values in L̃2(R) similar to
Theorem 6.10 in Ref. [75].

Let ũ be any prolongation of u in X̃0,c + X̃0,b, by Proposition 5.3.3, ∂xũ2 ∈ X̃0,–a with
– 1
2 < a < 0. It follows that (see Ref. [153])

‖>T

∫ t

0
S(t – s)∂xũ2ds‖X̃0,1–a ≤ C‖∂x(ũ2)‖X̃0,–a .

Since 1 – a > 1/2, ũ ∈ X̃0,1–a ⊂ C([0,T], L̃2(R)), where >T is a cutoff function defined by
> ∈ C∞0 (R) with > = 1 on [0, 1], and > = 0 on t ≤ –1, t ≥ 2. Denote >$(⋅) = >($–1(⋅)) for
some $ ∈ R. This ends the proof of Theorem 5.3.1. ∎

Let K = {9 = (91,92, ⋯ ,9m) ∈ C(R;Rm),9(0) = 0}, F be the Borel 3-algebra induced
by the compact open topology of K, and P be the corresponding Wiener measure on
K. In the sequel, we consider the probability space (K,F ,P). Then, we identify 9with

(w1(t),w2(t), ⋯ ,wm(t)) = 9(t), t ∈ R.

Define the time shift by

(t(9s) = 9(s + t) – 9(t), t, s ∈ R.

Then (K,F ,P, ((t)t∈R) is a metric dynamical system.
We now associate a continuous RDS with the stochastic damped forced Ostrovsky

equation over (K,F ,P, ((t)t∈R). To this end, we introduce an auxiliary Ornstein–
Uhlenbeck process, which enables us to change the stochastic equation (5.3.1) to a
deterministic equation depending on a random parameter. Denote

!i = 2‖hi‖
H̃
3
2 (R)

. (5.3.16)
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Then choose a sufficiently large * such that

* > 8(
∑m

i=1 !i)2
+2 . (5.3.17)

For each i = 1, 2, ⋯ ,m, let 1i be the stationary solution of the one-dimensional Itô
equation

d1i + *1idt = dwi, (5.3.18)

the solution of which is called an Ornstein–Uhlenbeck process. We have

1i(t) = 1i((t9i) = –*
∫ 0

–∞
e*s((t9i)(4)d4, t ∈ R.

For this solution, the random variable |1i(9i)| is tempered, and 1i((t9i) is P-a.s.
continuous. Setting 1((t9) = Gmi=1hi1i((t9i), by eq. (5.3.18), we obtain

d1 + *1dt =
m∑
i=1

hidwi.

We now make the change '(t) = u(t) – 1((t9). Then ' satisfies the following equation
which depends on a random parameter:

't + ('2)x – "'xxx – !D–1
x ' + +' = f + g, (5.3.19)

where

g = (* – +)1((t9) + "1xxx((t9) + !D–1
x 1((t9) – (1((t9)2)x – 2(1((t9)')x.

Now, we give the global well-posedness of eq. (5.3.19) as follows.

Theorem 5.3.2. Let '0 ∈ L̃2(R). Then for P-a.e. 9 ∈ K, there exists a unique solution
'(⋅,9, '0) ∈ C([0, +∞); L̃2(R)) of eq. (5.3.19) with initial value '(0,9, '0) = '0.

Proof. The proof proceeds by a priori estimate. By the similar proof as in Ref. [122],
one can see that for P-a.e. 9 ∈ K the above theorem holds. The detailed proof is
omitted here. ∎

By Theorem 5.3.2, we see that there is a continuous mapping from L̃2(R) into itself:
'0 → '(t,9, '0), where '(t,9, '0) is the solution of eq. (5.3.19) with initial value '0. Let
u(t,9, u0) = '(t,9, u0 – 1(9)) + 1((t9). Then the process u is the solution of problems
(5.3.1)–(5.3.2). We can now define an RDS 8(t,9) in L̃2(R) by setting

8(t,9, u0) = u(t,9, u0) = '(t,9; u0 – 1(9)) + 1((t9), t ≥ 0.
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Therefore, 8 is a continuous RDS associated with the stochastic damped forced
Ostrovsky equation.

5.3.3 Uniform estimates of solutions

In this section, we derive uniform estimates on the solutions of eqs (5.3.1)–(5.3.2) when
t → ∞ with the purpose of proving the existence of a bounded random absorbing set
and the asymptotic compactness of the RDS associated with the equation.

From now on, we always assume that D is the collection of all tempered subsets
of L̃2(R) with respect to (K,F ,P, ((t)R).

5.3.3.1 Random absorbing set inD.
We first derive the following uniform estimates on ' in L̃2(R).

Lemma 5.3.4. Assume f ∈ L̃2(R), hi ∈ H̃3(R), h2i ∈ H̃
1(R) (i = 1, 2,⋯,m) and eq. (5.3.17)

holds. Let B = {B(9)}9∈K ∈ D and '0(9) ∈ B(9). Then for P-a.e. 9 ∈ K, there is
T = T(B,9) > 0 such that for all t ≥ T,

‖'(t, (–t9, '0((–t9))‖L̃2(R) ≤ r(9),

where r(9) is a positive random function satisfying

e–
1
2 +tr((–t9) → 0 as t → ∞. (5.3.20)

Proof. Multiplying eq. (5.3.19) by ' and D–2
x ', then integrating it over R, respectively,

we can obtain,

d
dt

‖'‖2L̃2(R) + 2+‖'‖2L̃2(R) = 2(f + g, ')L̃2(R). (5.3.21)

Using integration by parts and Young’s inequality, we have

2(f , ')L̃2(R) ≤
+
5
‖'‖2L̃2(R) +

5
+‖f‖2L̃2(R),

2((* – +)1((t9), ')L̃2(R) ≤
+
5
‖'‖2L̃2(R) +

5(* – +)2
+ ‖1((t9)‖2L̃2(R),

2("1xxx((t9), ')L̃2(R) ≤
+
5
‖'‖2L̃2(R) +

5"2
+ ‖1xxx((t9)‖2L̃2(R),

2(!D–1
x 1((t9), ')L̃2(R) ≤

+
5
‖'‖L̃2(R) +

5!2
+ ‖D–1

x 1((t9)‖2L̃2(R),

2((1((t9)2)x, ')L̃2(R) ≤
+
5
‖'‖2L̃2(R) +

5
+‖1((t9)2‖2H̃1(R). (5.3.22)
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Using integration by parts, it follows that

4((1((t9)')x, ')L̃2(R) = 2(1((t9)x, '
2)L̃2(R) ≤ 2‖1((t9)x‖L∞‖'‖2L̃2(R)

≤ 2
m∑
i=1

‖hi‖H̃3/2(R)|1i((t9)|‖'‖2L̃2(R). (5.3.23)

By eqs (5.3.21)–(5.3.23) and (5.3.16), we obtain

d
dt

‖'‖2L̃2(R) +
(
+ –

m∑
i=1

!i|1i((t9)|
)

‖'‖2L̃2(R) ≤
5
+‖f‖2L̃2(R) + h((t9), (5.3.24)

where

h((t9) =
(* – +)2

+ ‖1((t9)‖2L̃2(R)
+
5
+
(
"2‖1xxx((t9)‖2L̃2(R) + !2‖D–1

x 1((t9)‖2L̃2(R) + ‖1((t9)2‖2H̃1(R)

)
.

Since f ∈ L̃2(R), hi ∈ H̃3(R), h2i ∈ H̃
1(R)(i = 1, 2,⋯,m), we have

5
+‖f‖2L̃2(R) + h((t9) ≤ C

(
1 +

m∑
i=1

(|1i((t9)|2 + |1i((t9)|4)
)
:= r0((t9). (5.3.25)

Applying Gronwall’s lemma to eq. (5.3.24) and by eq. (5.3.25), we find that, for all s ≥ 0,

‖'(s,9, '0(9))‖2L̃2(R) ≤e–+s+
∑m

i=1 !i
∫ s
0 |1i((49)|d4‖'0(9)‖2L̃2(R)

+
∫ s

0
e–+(s–3)+

∑m
i=1 !i

∫ s
3 |1i((49)|d4r0((39)d3. (5.3.26)

Replace 9 by (–t9 with t ≥ 0 in eq. (5.3.26) to get that, for any s ≥ 0 and t ≥ 0,

‖'(s, (–t9, '0((–t9))‖2L̃2(R) ≤ e–+s+
∑m

i=1 !i
∫ s
0 |1i((4–t9)|d4‖'0((–t9)‖2L̃2(R)

+
∫ s

0
e–+(s–3)+

∑m
i=1 !i

∫ s
3 |1i((4–t9)|d4r0((3–t9)d3

= e–+s+
∑m

i=1 !i
∫ s–t
–t |1i((49)|d4‖'0((–t9)‖2L̃2(R)

+
∫ s–t

–t
e–+(s–3–t)+

∑m
i=1 !i

∫ s–t
3 |1i((49)|d4r0((39)d3. (5.3.27)

By eq. (5.3.27), it follows that for all t ≥ 0,
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‖'(t, (–t9, '0((–t9))‖2L̃2(R) ≤ e–+t+
∑m

i=1 !i
∫ 0
–t |1i((49)|d4‖'0((–t9)‖2L̃2(R)

+
∫ 0

–t
e+3+

∑m
i=1 !i

∫ 0
3 |1i((49)|d4r0((39)d3. (5.3.28)

Note that |1i((s9)|(i = 1, 2,⋯,m) is stationary and ergodic [66]. Then it follows from
the ergodic theorem that

lim
t→∞

1
t

∫ 0

–t
|1i((s9)|ds = E(|1i(9)|). (5.3.29)

Combining eq. (5.3.29) with the following inequality:

E(|1i(9)|) ≤ (E(|1i(9)|2))1/2 ≤ 1√
2*
,

we obtain

lim
t→∞

1
t

∫ 0

–t
|1i((s9)|ds < 1√

2*
. (5.3.30)

By eqs (5.3.17) and (5.3.30), there is T0(9) > 0 such that for all t > T0(9),

m∑
i=1

!i
∫ 0

–t
|1i((s9)|ds < 2

∑m
i=1 !it√
2*

<
1
2
+t. (5.3.31)

By eqs (5.3.28) and (5.3.31), we find that, for all t > T0(9),

‖'(t, (–t9, '0((–t9))‖2L̃2(R) ≤ e–
1
2 +t‖'0((–t9)‖2L̃2(R)

+
∫ 0

–t
e+3+

∑m
i=1 !i

∫ 0
3 |1i((49)|d4r0((39)d3. (5.3.32)

Since |1i((39)| is tempered, the following integral is convergent:

r1(9) =
∫ 0

–∞
e+3+

∑m
i=1 !i

∫ 0
3 |1i((49)|d4r0((39)d3. (5.3.33)

Hence,

‖'(t, (–t9, '0((–t9))‖2L̃2(R) ≤ e–
1
2 +t‖'0((–t9)‖2L̃2(R) + r1(9). (5.3.34)

By assumption, {B(9)}9∈K ∈ D is tempered and hence we have

e–
1
4 +t‖'0((–t9)‖2L̃2(R) → 0 as t →∞,
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from which and eq. (5.3.34), it follows that there is T = T(B,9) > 0 such that for all
t ≥ T,

‖'(s, (–t9, '0((–t9))‖L̃2(R) ≤
√
2r1(9) := r(9). (5.3.35)

Next, we prove r(9) satisfies eq. (5.3.20). Replacing 9 by (–t9 in eq. (5.3.33) we obtain
that

r1((–t9) =
∫ 0

–∞
e+3+

∑m
i=1 !i

∫ 0
3 |1i((4–t9)|d4r0((3–t9)d3

=
∫ –t

–∞
e+(3+t)+

∑m
i=1 !i

∫ –t
3 |1i((49)|d4r0((39)d3

≤ e
1
2 +t

∫ –t

–∞
e
1
2 +3+

∑m
i=1 !i

∫ 0
3 |1i((49)|d4r0((39)d3

≤ e
1
2 +t

∫ 0

–∞
e
1
2 +3+

∑m
i=1 !i

∫ 0
3 |1i((49)|d4r0((39)d3. (5.3.36)

By eq. (5.3.31), we have

e–
1
2 +tr((–t9) = e–

1
2 +t
√
2r1((–t9)

≤ e–
1
4 +t(

∫ 0

–∞
e
1
2 +3+

∑m
i=1 !i

∫ 0
3 |1i((49)|d4r0((39)d3)1/2 → 0, as t → ∞,

which along with eq. (5.3.35) completes the proof. ∎

The next lemma shows that 8 has a random absorbing set inD.

Lemma 5.3.5. Assume f ∈ L̃2(R), hi ∈ H̃3(R), h2i ∈ H̃
1(R)(i = 1, 2,⋯,m) and eq. (5.3.17)

holds. Then there exists {K(9)}9∈K ∈ D such that {K(9)}9∈K is a random absorbing set
for 8 inD, that is, for any B = {B(9)}9∈K ∈ D and P-a.e. 9 ∈ K, there is T1 > 0 such that

8(t, (–t9,B((–t9)) ⊂ K(9) ∀t ≥ T1.

Proof. Let B = {B(9)}9∈K ∈ D and define

B̃(9) = {' ∈ L̃2(R) : ‖'‖L̃2(R) ≤ ‖u(9)‖L̃2(R) + ‖1(9)‖L̃2(R),
u(9) ∈ B(9)}. (5.3.37)

We claim that if B = {B(9)}9∈K ∈ D, then B̃ = {B̃(9)}9∈K ∈ D.
Note that B = {B(9)}9∈K ∈ D implies that

lim
t→∞

e–
1
2 +td(B((–t9)) = 0. (5.3.38)
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Since 1(9) is tempered, eqs (5.3.37)–(5.3.38) imply that

lim
t→∞

e–
1
2 +td(B̃((–t9)) ≤ lim

t→∞
e–

1
2 +td(B((–t9)) + lim

t→∞
e–

1
2 +t‖1((–t9)‖L̃2

= 0, (5.3.39)

which shows that B̃ = {B̃(9)}9∈K ∈ D. Then by Lemma 5.3.4, for P-a.e. 9 ∈ K, if
'0(9) ∈ B̃(9), there is T1 = T1(B̃,9) such that for all t ≥ T1,

‖'(t, (–t9, '0((–t9))‖L̃2(R) ≤ r(9), (5.3.40)

where r(9) is a positive random function satisfying

lim
t→∞

e–
1
2 +tr((–t9) = 0. (5.3.41)

Denote

K(9) = {u ∈ L̃2(R) : ‖u‖L̃2(R) ≤ r(9) + ‖1(9)‖L̃2(R)}. (5.3.42)

Then, by eq. (5.3.41), we have

lim
t→∞

e–
1
2 +td(K((–t9)) ≤ lim

t→∞
e–

1
2 +tr((–t9) + lim

t→∞
e–

1
2 +t‖1((–t9)‖L̃2(R)

= 0, (5.3.43)

which implies that K = {K(9)}9∈K ∈ D. We now show that K is also an absorbing set of
8 inD. Given B = {B(9)}9∈K ∈ D and u0(9) ∈ B(9), since8(t,9, u0(9)) = '(t,9, u0(9)–
1(9)) + 1((t9), by eq. (5.3.40), we get that, for all t ≥ T1,

‖8(t, (–t9, '0((–t9))‖L̃2(R) ≤ ‖'(t, (–t9, '0((–t9))‖L̃2(R) + ‖1(9)‖L̃2(R)
≤ r(9) + ‖1(9)‖L̃2(R), (5.3.44)

which implies that

8(t, (–t9, '0((–t9)) ⊂ K(9) ∀t ≥ T1, (5.3.45)

hence K = {K(9)}9∈K ∈ D is a closed absorbing set of 8 in D, which completes the
proof. ∎

To obtain the randomattractor for eqs (5.3.1)–(5.3.2), we need to establish the existence
of a compact random absorbing set in L̃2(R). This will be done as in Ref. [122]. That is,
we split the solution ' in eq. (5.3.19) into a decaying part - and a regular part $, i.e.
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' = - + $. To determine - and $, we need to split eq. (5.3.19):

$t + ($2)x – "$xxx – !D–1
x $ + +$ = f – 2PN(($-)x + - -x) + PNg, (5.3.46)

-t + PN((-2)x) – "-xxx – !D–1
x - + +- = –2PN(($-)x) + PNg, (5.3.47)

with the initial date

$0 = $(t = 0) = PN(u0 + 1(9)), -0 = -(t = 0) = PN(u0 + 1(9)). (5.3.48)

5.3.3.2 Well-posedness and decay of the - part of the solution
Use $ = ' – - to rewrite eq. (5.3.47) as

-t – PN((-2)x) – "-xxx – !D–1
x - + +- = –2PN(('-)x) + PNg. (5.3.49)

The local well-posedness of eqs (5.3.49)–(5.3.48) can be proved in an analogous way to
that for eqs (5.3.1)–(5.3.2). Furthermore, we may consider eq. (5.3.49) starting from any
time t0 ≥ 0, i.e.

-t0 = -(t0,9, -0(9)) ∈ L̃2(R). (5.3.50)

Then, by the fixed argument, we find a solution -̃ of the equation

-̃ = &T(t)S(t)-t0 + &T(t)
∫ t

0
S(t – s){PN(-̃2)x – +-̃ – 2PN∂x('-̃) – PNg}ds.

Applying the estimates from Section 5.3.2, we find that for T sufficiently small,

‖-̃‖X̃0,b′ ≤ C‖-0‖L̃2(R),

for 0 < b′ < 1/2. Since -̃ coincides with the solution - of eqs (5.3.49)–(5.3.48) locally in
time around the origin, we see that

‖-‖X̃[–T,T]0,b′
≤ C‖-t0‖L̃2(R). (5.3.51)

We may repeat the argument above for an interval centered at a different initial time
t0 (in the interval of definition of -) to obtain

‖-‖
X̃[t0–T,t0+T]0,b′

≤ C‖-(t0)‖L̃2(R), (5.3.52)

where T = T(‖-(t0)‖L̃2(R), ‖u(t0)‖L̃2(R), ‖1‖L̃2(R), +) is small.
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The following lemma gives the decay of -, obtained by the bilinear estimate (5.3.6).

Lemma 5.3.6. Assume f ∈ L̃2(R), hi ∈ H̃3(R), h2i ∈ H̃1(R) (i = 1, 2,⋯,m). Let B =
{B(9)}9∈K ∈ D and u0(9) ∈ B(9). Then for every % > 0 and P-a.e. 9 ∈ K, there exist
T1 > 0 and sufficient large N, the solution - of eqs (5.3.49) and (5.3.48) satisfies, for all
t ≥ T1,

‖-(t, (–t9, -0((–t9))‖2L̃2(R) ≤ %.

Proof. Similar to eq. (5.3.21), we have

d
dt

‖-‖2L̃2(R) + 2+‖-‖2L̃2(R) = 2(–PN(('-)x) + PNg, -)L̃2(R). (5.3.53)

By the bilinear estimates (5.3.6), Hölder’s inequality and Young’s inequality, we have

(('-)x), 2-)L̃2(R) = – (', (-
2)x)L̃2(R)

≤ ‖'‖X̃0,1–b‖(-
2)x‖X̃0,b–1

≤
C
N 1

8
‖'‖X̃0,b′ ‖-‖

2
X̃0,b′

, (5.3.54)

(2(1')x, 2-)L̃2(R) ≤C‖-‖X̃0,1–b‖(1')x‖X̃0,b–1
≤

C
N 1

8
‖-‖X̃0,1–b‖1‖X̃0,b′ ‖'‖X̃0,b′

≤
C
N

1
4
‖'‖2X̃0,b′ ‖1‖

2
X̃0,b′

+
+
4

‖-‖2L̃2(R), (5.3.55)

((12)x, -)L̃2(R) ≤
C
N

1
4
‖1‖4

X̃0,b′
+
+
4

‖-‖2L̃2(R), (5.3.56)

(PN [(* – +)1 + "1xxx + !D–1
x 1], 2-)L̃2(R)

≤C‖PN(1 + 1xxx + D–1
x 1)‖2L̃2(R) +

+
2
‖-‖2L̃2(R). (5.3.57)

From eqs (5.3.53) to (5.3.57), we obtain

d
dt

‖-‖2L̃2(R) + 2+‖-‖2L̃2(R) = g1 + C‖PN(1 + 1xxx + PND–1
x 1)‖2L̃2(R), (5.3.58)

where

g1 =
C
N 1

8
‖'‖X̃0,b′ ‖-‖

2
X̃0,b′

+
C
N

1
4
‖'‖2X̃0,b′ ‖1‖

2
X̃0,b′

+
C
N

1
4
‖1‖4

X̃0,b′
.
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Integrating eq. (5.3.58) from t0 to t, we obtain, for all t ≥ t0

‖-(t,9, -0(9)‖2L̃2(R) ≤ ‖-(t0,9, -0(9)‖2L̃2(R)e–2+(t–t0)

+
∫ t

t0
e–2+(t–s)[g1(9) + C‖PN(1 + 1xxx + D–1

x 1)‖2L̃2(R)]ds.

Replacing 9 by (–t9 in the above, we find that, for all t ≥ 0,

‖-(t, (–t9, -0((–t9))‖2L̃2(R)
≤ ‖-(t0, (–t9, -0((–t9)‖2L̃2(R)e2+(t–t0) +

∫ t

t0
e–2+(t–s)[g1((–t9)

+ C‖PN(1((s–t9) + 1xxx((s–t9) + D–1
x 1((s–t9))‖2L̃2(R)]ds. (5.3.59)

Similar to eq. (5.3.35), we have

‖-(t0, (–t9, -0((–t9))‖2L̃2(R) ≤ 2r1(9). (5.3.60)

By eq. (5.3.60), we find that, given % > 0, there is T1 = T1(B,9, %) > 0 such that for all
t ≥ T1,

‖-(t0, (–t9, -0((–t9)‖2L̃2(R)e–2+(t–t0) ≤ %. (5.3.61)

Using eq. (5.3.52) with t0 = s, for t ∈ [t0, t0 + :], we obtain∫ t

t0
e–2+(t–s)g1((–t9)ds ≤

C
N 1

8

∫ t

t0
e–+(t–s)

[‖'‖X̃0,b′ ‖-(s, (–t9, -0((–t9))‖2L̃2(R)
+ ‖1‖2X̃0,b′ (‖'(s, (–t9, -0((–t9))‖

2
L̃2(R) + ‖1‖2X̃0,b′ )

]
ds. (5.3.62)

Similar to Proposition 5.3.1, we have

E‖1‖2X̃0,b′ ≤ C
m∑
i=1

‖hi‖2L̃2(R),

hence, for P-a.e. 9 ∈ K, it follows

‖1‖X̃0,b′ ≤ C
m∑
i=1

‖hi‖L̃2(R). (5.3.63)

Similar to eq. (5.3.52), we have

‖'‖
X̃[t0,t]0,b′

≤ C‖'(t0)‖L̃2(R). (5.3.64)
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By eqs (5.3.62)–(5.3.64), given % > 0, for N large enough, we have

∫ t

t0
e–2+(t–s)g1((–t9)ds < %. (5.3.65)

Since hi ∈ H̃3(R), there is N1 > 0 such that for all N ≥ N1,

m∑
i=1

∫
|x|≥N

g2dx ≤ %, (5.3.66)

where

g2 = 2|hi|2 + 2|F–1
x

(
ĥi(. )
.

)
|2 + |F–1

x (. 2ĥi(. ))|2 + 2|F–1
x

(
ĥi(. 2)
.

)
|2.

By eq. (5.3.66), the last term on the RHS of eq. (5.3.59) satisfies

∫ t

t0
e–2+(t–s)C‖PN(1((s–t9) + 1xxx((s–t9) + D–1

x 1((s–t9))‖2L̃2(R)ds

≤Cm2
∫ t

t0
e–2+(t–s)

m∑
i=1

∫
|x|≥N

g2|1i((s–t9)|dxds

≤ %C
∫ t

t0
e–2+(t–s)|1i((s–t9)|ds = %C

∫ 0

t0–t
e+s|1i((s9)|ds

≤ %C
∫ 0

–∞
e2+s|1i((s9)|ds := %Cr2(9). (5.3.67)

This completes the proof. ∎

Lemma 5.3.6 implies that the solution - is globally defined and decays to zero in L̃2(R).

5.3.3.3 Regularity of the $ part of the solution
Since ' and - are defined globally in time, so is $ = ' – -. Next, we prove an H̃3(R)
bound for $ = PN$ + PN$.

Using eq. (5.3.34), we first observe that

lim sup
t→∞

‖PN$(t, (–t9,PN$0((–t9))‖2H̃3(R)

≤ lim sup
t→∞

N3‖$(t, (–t9,PN$0((–t9))‖2L̃2(R)
≤ lim sup

t→∞
N3‖'(t, (–t9, '0((–t9))‖L̃2(R) ≤ C(1 + r(9))N3. (5.3.68)
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Hence, we focus on an H̃3(R) estimate for PN$ = #. From eqs (5.3.46), (5.3.48) and
PN(PN) = 0, it shows that # is the unique solution to the following equation:

#t + 2PN(PN$ + #)(PN$ + #)x – "#xxx – !D–1
x # + +# = PNf , (5.3.69)

#(0) = 0. (5.3.70)

We can obtain that the H̃3(R) bound for # is equivalent to prove an L̃2(R) estimate on
#′ = #t, which solves

#′t + PN((PN$ + #)#′)x – "#′xxx – !D–1
x #′ + +#′ = –PN((PN$ + #)(PN$)t)x, (5.3.71)

#′(0) = PNf – PN(PN$(0)(PN$(0))x). (5.3.72)

Similar to the arguments in Lemmas 5.3.4 and 5.3.6, we can obtain

‖#′‖2L̃2(R) ≤ C(N,9) ∀t > 0. (5.3.73)

Therefore, there exists C > 0 such that

‖$(t, (–t9, $0((–t9))‖2H̃3(R) ≤ C(N,9) ∀t > 0. (5.3.74)

The following energy equation for $ will be used in the next section:

‖$(t)‖2L̃2(R) =‖$(t0)‖2L̃2(R)e–2+(t–t0) + 2
∫ t

t0
e–2+(t–s)(f , $)L̃2(R)ds

– 4
∫ t

t0
e–2+(t–s)(PN(($-)x + –x), $)L̃2(R)ds

+ 2
∫ t

t0
e–2+(t–s)(g, $)L̃2(R)ds. (5.3.75)

5.3.4 Asymptotic compactness and random attractors

In this section, we prove the existence of a D-random attractor for the RDS 8 asso-
ciated with the stochastic damped forced Ostrovsky eqs (5.3.1)–(5.3.2) on R. It follows
from Lemma 5.3.5 that8 has a closed random absorbing set inD, which alongwith the
D-pullback asymptotic compactness will imply the existence of a unique D-random
attractor. TheD-pullback asymptotic compactness of 8 is given below.

Lemma 5.3.7. Assume that f ∈ L̃2(R). Let B = {B(9)}9∈K ∈ D and u0,n((–tn9) ∈ B((–tn9).
Then the RDS 8 isD-pullback asymptotically compact in L̃2(R), that is, for P-a.e. 9 ∈ K,
the sequence {8(tn, (–tn9, u0,n((–tn9))} has a convergent subsequence in L̃2(R) provided
tn → ∞.
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Proof. Let B = {B(9)}9∈K ∈ D, u0,n((–tn9) ∈ B((–tn9) and tn → ∞. For P-a.e. 9 ∈ K,
we have

{$n(tn + ⋅, (–(tn+⋅)9,$0,n((–(tn+⋅)9))}n
is bounded in C([–T,T]; H̃3(R)), (5.3.76)

and, for the time derivative

{∂t$n(tn + ⋅, (–(tn+⋅)9,$0,n((–(tn+⋅)9))}n
is bounded in C([–T,T]; L̃2(R)), (5.3.77)

for each T > 0 (and startingwith sufficiently large n so that tn–T ≥ 0). ByArzela–Ascoli
theorem, there is a subsequence of {$n(tn + ⋅, (–(tn+⋅)9, $0,n((–(tn+⋅)9))}n such that

$m(tm + ⋅, (–(tm+⋅)9,$0,m((–(tm+⋅)9)) → '̄(⋅) strongly in C([–T,T]; H̃s
loc(R)),

weakly star in L∞([–T,T]; H̃3(R)), (5.3.78)

for all s ∈ [1, 3). From eq. (5.3.74), we find that

$m(tm + t, (–(tm+t)9, $0,m((–(tm+t)9)) → '̄(t),
weakly in H̃3(R) ∀t ∈ R. (5.3.79)

Thus, to prove

$m(tm, (–tm9, $0,m((–tm9)) → '̄(0) in L̃2(R), (5.3.80)

we need only to show that for P-a.e. 9 ∈ K,

lim sup
m→+∞

‖$m(tm, (–tm9, $0,m((–tm9))‖2L̃2(R) ≤ ‖'̄(0)‖2L̃2(R). (5.3.81)

By Lemma 5.3.6, we find that

‖-n(tn + t, (–(tn+t)9, -0,n((–(tn+t)9))‖2L̃2(R) → 0

uniformly for t ≥ –T ∀T > 0. (5.3.82)

By eqs (5.3.78) and (5.3.82), taking the limit in the weak formulation of the equation for
$n, we can prove that '̄ is a solution of eq. (5.3.19) and satisfies the energy eq. (5.3.21).
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Integrating eq. (5.3.21) with ' = '̄ from –T to 0, we obtain

‖'̄(0)‖2L̃2(R) – ‖'̄(–T)‖2L̃2(R)e–2+T

= 2
∫ T

0
e–2+(T–s)(ḡ, '̄(–T + s))L̃2(R), (5.3.83)

where

ḡ = f + (* – +)1 + "1xxx + !D–1
x 1 – (12)x – 2(1'̄(–T + s))x. (5.3.84)

We now rewrite the energy equation (5.3.75) for $n(tn) with t = tn and t0 = tn – T:

‖$n(tn)‖2L̃2(R) = ‖$n(tn – T)‖2L̃2(R)e–2+T + 2
∫ T

0
e–2+(T–s)(f , $n)L̃2(R)ds

– 4
∫ T

0
e–2+(T–s)(PN(($-)x + - -x), $n)L̃2(R)ds

+ 2
∫ T

0
e–2+(T–s)(g, $n)L̃2(R)ds, (5.3.85)

where for notational simplicity, we omitted the argument tn – T + s of the functions
inside the time integrals. By using the uniform boundedness of $n in H̃3(R), decay
estimate of -n in Lemma 5.3.6 and weak star convergence of $, we obtain

lim sup
m→+∞

‖$m(tm)‖2L̃2(R)

≤ Ce–2+T + 2
∫ T

0
e–2+(T–s)(ḡ, '̄(–T + s))L̃2(R). (5.3.86)

By substituting eq. (5.3.83), we obtain

lim sup
m→+∞

‖$m(tm)‖2L̃2(R)
≤ Ce–2+T + ‖'̄(0)‖2L̃2(R) – ‖'̄(–T)‖2L̃2(R)e–2+T , (5.3.87)

for any T > 0. Let T → +∞, we find

lim sup
m→+∞

‖$m(tm, (–tm9, $0,m((–tm9))‖2L̃2(R) ≤ C‖'̄(0)‖2L̃2(R). (5.3.88)

So we conclude that asm → ∞

'm(tm, (–tm9, '0,m('–tm9)) = $m(tm, (–tm9, $0,m((–tm9))
+ -m(tm, (–tm9, -0,m((–tm9))

→'̄(0), strongly in L̃2(R). (5.3.89)
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Since 8(t,9, u0(9)) = '(t,9, u0(9) – 1(9)) + 1((t9), by eq. (5.3.89), it shows that 8 is
D-pullback asymptotically compact in L̃2(R). ∎

We are now in a position to present our main result as follows.

Theorem 5.3.3. Assume that f ∈ L̃2(R). Then the RDS 8 has a unique D-random
attractor in L̃2(R).

Proof. Notice that 8 has a closed random absorbing set {K(9)}9∈K in D by Lemma
5.3.5 and is D-pullback asymptotically compact in L̃2(R) by Lemma 5.3.7. Hence, the
existence of a uniqueD-random attractor for 8 is obtained immediately. ∎

5.4 Simplified quasi-geostrophic model

In order to study the oceanic dynamics and its influence on global climate, we focus
on the dynamic equations that describe the motion of the ocean. One of the pion-
eers of Meteorology is V. Bjerkness who pointed out that the weather forecast can be
viewed as a set of initial boundary value problems on mathematical physics. Taking
the Boussinesq approximation and the hydrostatic balance into account, the primitive
equation of large-scale ocean [216] is derived from the full Boussinesq system.

Due to the complexity of the primitive equations, difficult to study both in theory
and in numerical, Charney and Philips [56] proposed a simplified quasi-geostrophic
model, which is an approximation of rotating shallow-water equations for the small
Rossby number. Hereinafter, we will refer the quasi-geostrophic model as the QG
model. This section will concentrate on the QG equation and the associated dynam-
ical system with stochastic external force and the reader may refer to Refs [32, 83, 120]
for more information. We consider the following 2D stochastic QG on a regular enough
bounded domain D ⊂ R2,(

∂

∂t
+

∂8
∂x

∂

∂y
–

∂8
∂y

∂

∂x

)
(B8 – F8 + "0y) =

1
Re

B28 –
r
2
B8 + f (x, y, t), (5.4.1)

where8 is the stream function, 1
Re B

28 is the viscous term, – r
2B8 is the friction, F is the

Froude number (F ≈ O(1)), Re is the Reynolds number (Re ≥ 102), "0 is a positive con-
stant ("0 ≈ O(10–1)), r is the Ekman dissipation constant (r ≈ O(1)) and f (x, y, t) = – dW

dt
is a Gaussian randomfield, which is white noise in time and subjects to the restrictions
imposed later.

Let A = – 1
Re B, then A : L2(D) → L2(D) is defined in D(A) = H2(D) ∩ H1

0(D). Here
L2(D),H2(D) and H1

0(D) are the usual Sobolev spaces with | ⋅ |p being the norm of Lp(D)
and ‖ ⋅ ‖ being the norm of H1

0(D). Then the operator A is positive, self-adjoint with the
compact operator inverse operator A–1. We denote by 0 < +1 < +2 ≤ ⋯ the eigenvalues
of A and by e1, e2,⋯ the corresponding eigenvectors that form a complete orthogonal
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basis of H1
0(D). Remark that for any u ∈ H1

0(D), we have inequality 1
Re ‖u‖2 ≥ +1|u|22.

Finally, we note {e–tA}t≥0 is semigroup generated by operator –A on L2(D).
Let the stochastic processW be a two-side Wiener process

W(t) =
∞∑
i=1

,i9i(t)ei,

where 91,92,⋯ is a collection of independent standard Brownian motions on a prob-
ability space (K,F ,P), and the coefficients ,i satisfy the condition: there exists "1 > 0,
such that

∞∑
i=1

,2i
+1/2–2"1i

< ∞.

Consider the following boundary conditions:

8(x, y, t) = 0, ∂D,
B8(x, y, t) = 0, ∂D.

(5.4.2)

For any u ∈ L2(D), by solving the elliptic equation with Dirichlet boundary condition

F8 – B8 = u,
8(x, y, t)|∂D = 0,

we get 8 = (FI – B)–1u = B(u). Using the elliptic regularity theory, B : L2(D) → H1
0(D) ∩

H2(D) is established. Therefore, eq. (5.4.1) can be rewritten as

ut + J(8, u) – "08x =
1
Re

Bu +
(
F
Re

–
r
2

)
u – F

(
F
Re

–
r
2

)
8 +

dW
dt

, (5.4.3)

where 8 = B(u), J is the Jacobian operator defined by J(8, u) = ∂8
∂x

∂u
∂y –

∂8
∂y

∂u
∂x . Defining

G(u) = –J(8, u) + "08x +
(

F
Re –

r
2

)
u – F

(
F
Re –

r
2

)
8, the problem is transformed into

ut –
1
Re

Bu = G(u) +
dW
dt

, (5.4.4)

with the boundary condition and initial condition,

u|∂D = 0,
u(x, y, 0) = u0.

(5.4.5)

We note that dynamical systems (5.4.1)–(5.4.2) correspond to the problem of
eqs (5.4.4)–(5.4.5).
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5.4.1 The existence and uniqueness of solution

Equations (5.4.4)–(5.4.5) are rewritten as the following abstract form:{
du = –Audt + G(u)dt + dW,
u(0) = u0.

(5.4.6)

Consider the linear equation {
du = –Audt + dW,
u(0) = u0.

The solution of the above linear equation is unique and can be expressed as

WA(t) =
∫ t

0
e–A(t–s)dW(s).

Here,WA(t) has continuous version that takes value inD(A1/4+"), " < "1 for P-a.e.9 ∈ K.
Particularly, it has a continuous version in

C0(D) := {u : u ∈ C(D), u is compactly supported in D}.

Let

v(t) = u(t) –WA(t), t ≥ 0,

then u satisfies eq. (5.4.6) if and only if v satisfies the equation{
dv
dt + Avdt = G(v(t) +WA(t)),
v(0) = u0.

(5.4.7)

This will be written in the following integral form:

v(t) = e–Atu0 +
∫ t

0
e–A(t–s)G(v +WA)ds, (5.4.8)

and we say the solution v of eq. (5.4.8) is the mild solution of eq. (5.4.7).

5.4.1.1 Local existence
In the following, we will employ the Banach fixed point theorem to prove that there
exists a T > 0 such that eq. (5.4.8) has solutions in C([0,T]; L2(D)), for any m > 0, we
define

G(m,T) = {v ∈ C([0,T]; L2(D)) : |v(t)|2 ≤ m,∀t ∈ [0,T]}.
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Lemma 5.4.1. If for P-a.e. 9 ∈ K, u0 ∈ L2(D) and m > |u0|2, then there exists a T such
that the integral eq. (5.4.8) has a unique solution in G(m,T), and for P-a.e. 9 ∈ K, v ∈
C((0,T];H!(D)) with 0 ≤ ! < 1

2 , here H
!(D) is the usual Sobolev space.

Proof. First, we review some properties of the semigroup e–tA [199]:

e–tAA! = A!e–tA,

|A!e–tAu|2 ≤ c
t!

|u|2,
|e–tAu|2 ≤ c|u|2.

Hereinafter, C represents the positive constant, which may vary from one line to an-
other one. The definition of fractional-order differential operator A! can be found in
Ref. [199]. For fixed 9 ∈ K, define

Mv(t) = e–tAu0 +
∫ t

0
e(t–s)(–A)G(v(s) +WA(s))ds,

then

|Mv(t)|2 = sup
>∈L2(D),|>|2=1

|〈Mv,>〉|,

where 〈⋅, ⋅〉 is the inner product in L2(D) and

〈Mv,>〉 = 〈e–tAu0,>〉 +
∫ t

0
〈e(t–s)(–A)G(v(s) +WA(s)),>〉ds.

Assume that > ∈ C∞0 (D), v +WA ∈ H1
0(D), which can be achieved by the fact that C∞0 is

dense in L2(D), and here C∞0 denotes a collection of infinitely differentiable functions
with compact support in D.

Let 8 = B(v +WA), and

J =〈e(t–s)(–A)G(v(s) +WA(s)),>〉
=
∫
D
e(t–s)(–A)

{
∂8
∂x

∂(v +WA)
∂y

–
∂8
∂y

∂(v +WA)
∂x

+ "0(B(v +WA))x +
(
F
Re

–
r
2

)
(v +WA) – F

(
F
Re

–
r
2

)
8
}
>

=
∫
D
e(t–s)(–A)

∂8
∂x

∂(v +WA)
∂y

> +
∫
D
e(t–s)(–A)

∂8
∂y

∂(v +WA)
∂x

>

+
∫
D
e(t–s)(–A)

(
F
Re

–
r
2

)
(v +WA)> –

∫
D
e(t–s)(–A)F

(
F
Re

–
r
2

)
8>

+ "0
∫
D
e(t–s)(–A)(B(v +WA))x> = J1 + J2 + J3 + J4 + J5. (5.4.9)
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Using integration by parts and Hölder’s inequality, we get

|J1| = |
∫
D
e–(t–s)A

∂8
∂x

∂(v +WA)
∂y

>|

= |
∫
D
(e–(t–s)A

∂8
∂x

>)y(v +WA)|

≤

(∫
D

|(e–(t–s)A ∂8
∂x

>)y|2
)1/2

|v +WA|2

≤

(∫
D

|(e–(t–s)A>)y ∂8
∂x

+ e–(t–s)A> ∂28
∂x∂y

|2
)1/2

|v +WA|2

≤ c
[(∫

D
|(e–(t–s)A>)y ∂8

∂x
|2
)1/2

+ |e–(t–s)A>|∞|v +WA|
]

|v +WA|2, (5.4.10)

where we used ‖8‖H2 ≤ c|v+WA|2 and ‖ ⋅‖Hq denotes the usual Sobolev norm ofHq(D).
By Hölder’s inequality, Sobolev’s embedding theorem, Gagliardo–Nirenberg’s

inequality and Poincaré’s inequality, the first summand on the RHS of inequality
(5.4.10) has

(∫
D

|(e–(t–s)A>)y ∂8
∂x

|2
)1/2

≤

(∫
D

|(e–(t–s)A>)y|4
)1/4 (∫

D
|∂8
∂x

|4
)1/4

≤ c‖(e–(t–s)A>)y‖H1/2‖8x‖H1

≤ c|e–(t–s)A>‖H3/2 |v +WA|2
≤ c|A3/4e–(t–s)A>y‖2|v +WA|2
≤ c(t – s)–3/4|>|2|v +WA|2.

(5.4.11)

Similarly, one can get

|e–(t–s)A>)|∞|v +WA|22 ≤ c|e–(t–s)A>‖H1+%0 |v +WA|22
≤ c|a 1

2 +%0e–(t–s)A>‖2|v +WA|22
≤ c(t – s)–(

1
2 +%0)|>|2|v +WA|22,

(5.4.12)

where %0 is a positive constant. Applying eqs (5.4.10)–(5.4.12), it is not difficult to get

|J1| ≤ c(t – s)–3/4|>|2|v +WA|22 + c(t – s)–(
1
2 +%0)|>|2|v +WA|22. (5.4.13)

Similarly, we obtain

|J2| ≤ c(t – s)–3/4|>|2|v +WA|22 + c(t – s)–
1
2 +%0 |>|2|v +WA|22, (5.4.14)
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|J3| =| F
Re

–
r
2
||
∫
D
e–(t–s)A(v +WA)>| (5.4.15)

≤c|e–(t–s)A(v +WA)|2|>|2 ≤ c|v +WA|2|>|2,

|J4| =|F
(
F
Re

–
r
2

)
||
∫
D
e–(t–s)A8>| (5.4.16)

≤ c|e–(t–s)A8|2|>|2
≤ c|8|2|>|2 ≤ c|v +WA|2|>|2,

|J5| = "0|
∫
D
e–(t–s)A(B(v +WA))x>|

≤ "0|
∫
D
e–(t–s)A(B(v +WA))x|2|>|2 (5.4.17)

≤ c|(B(v +WA))x|2|>|2 ≤ c|v +WA|2|>|2.

Thus, by eq. (5.4.9) and the above estimates of Ji, we obtain

|Mv(t)|2 ≤ |u0|2 + c(t1/4 + t 12 –%0 )|v +WA|22 + ct|v +WA|2. (5.4.18)

Obviously, for anym > |u0|2, there exists a T1 > 0, such thatMv ∈ G(m,T1).
For any v1, v2 ∈ G(m,T1),

Mv1 –Mv2 =
∫ t

0
e–(t–s)A(G(v1 +WA(s)) – G(v2 +WA(s)))ds.

Similar to eq. (5.4.18), one can get

|Mv1 –Mv2|2 ≤ c(t1/4 + t 12 –%0 ) sup
0≤s≤t

(|v1(s) +WA(s)|2 + |v2(s) +WA(s)|2)

× sup
0≤s≤t

|v1(s) – v2(s)|2 + ct sup
0≤s≤t

|v1(s) – v2(s)|2.

Thus, one can choose an appropriate T2 > 0 such thatM is a contraction map.
Let T = min{T1,T2}. By the Banach fixed point theorem, eq. (5.4.8) has a unique

solution in G(m,T). Noting for v, a similar result as eq. (5.4.18) enables us to obtain
v ∈ C((0,T];H!(D)), 0 ≤ ! < 1/2. In fact, we can prove

|A!/2Mv|2 ≤ t !2 |u0|2 + c(t 14 – !
2 + t

1
2 –%0–

!
2 )|v +WA|22 + ct1–

!
2 |v +WA|2.

∎

5.4.1.2 Global existence
In order to establish the existence of global solution, we need to make some prior
estimates.
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Lemma 5.4.2. If for P-a.s. 9 ∈ K, v ∈ C([0,T]; L2(D)) is the solution of eq. (5.4.8), then

|v(t)|22 ≤ (|u0|22 + c-4∞ + c-2∞)ec(-
2
∞
+1)t,

where -∞ = sup0≤t≤T |WA(t)|∞.

Proof. Fix 9 ∈ K. Choose {un0} ⊂ C∞0 (D) such that un0 → u0 in L2(D) and let {Wn
A} be a set

of sufficiently smooth stochastic processes so that

Wn
A(t) =

∫ t

0
e–(t–s)AdWn(s) → WA(t) in C([0,T0] × D) for a.s. 9 ∈ K.

From the proof of Lemma 5.4.1, we see that there exists vn ∈ C([0,Tn]; L2(D)), such that
Tn → T and vn → v is strong convergence in C([0,T]; L2(D)), where v is a weak solution
of eq. (5.4.8). Then we have

∂vn

∂t
+ Avn = G(vn +Wn

A(t)), v
n(0) = un0. (5.4.19)

Doing inner product with vn, we get

1
2
d
dt

|vn|22 +
1
Re

‖vn‖2 =
∫
D
G(vn +Wn

A(d))v
n. (5.4.20)

By ∫
D
J(B(vn), vn)vn = 0,

∫
D
J(B(Wn

A), v
n)vn = 0,

we have

|
∫
D
G(vn +Wn

A(d))v
n|

= |
∫
D

(
–J(B(vn +Wn

A(t)), v
n +Wn

A) + "0(B(vn +Wn
A))x

+
(
F
Re

–
r
2

)
⋅ (vn +Wn

A) – F
(
F
Re

–
r
2

)
B(vn +Wn

A)
)
⋅ vn| (5.4.21)

≤ |
∫
D
J(B(Wn

A),W
n
A)v

n| + |
∫
D
J(B(vn),Wn

A)v
n|

+ |
∫
D

(
F
Re

–
r
2

)
⋅ (vn +Wn

A)v
n| + |

∫
D
F
(
F
Re

–
r
2

)
B(vn +Wn

A)v
n|

+ "0|
∫
D
(B(vn +Wn

A))xv
n| =: I1 + I2 + I3 + I4 + I5.

Now we estimate Ii, 1 ≤ i ≤ 5. Using integration by parts, Hölder’s inequality and
Young’s inequality, we get

 EBSCOhost - printed on 2/10/2023 4:53 PM via . All use subject to https://www.ebsco.com/terms-of-use



160 5 Applications

I1 = |
∫
D

∂B(Wn
A)

∂x
∂Wn

A
∂y

vn –
∂B(Wn

A)
∂y

∂Wn
A

∂x
vn|

= |
∫
D

∂B(Wn
A)

∂x
Wn

A
∂vn

∂y
–

∂B(Wn
A)

∂y
Wn

A
∂vn

∂x
|

≤ |Wn
A|∞|∂B(W

n
A)

∂x
|2|∂v

n

∂y
|2 + |Wn

A|∞|∂B(W
n
A)

∂y
|2|∂v

n

∂x
|2

≤ c|Wn
A|2∞(|

∂B(Wn
A)

∂x
|22 + |∂B(W

n
A)

∂y
|22)| + %‖vn‖2

≤ c|Wn
A|2∞|Wn

A|22 + %‖vn‖2 ≤ c|Wn
A|4∞ + %‖vn‖2,

where % > 0 is a positive constant. Similar to the estimate of I1, we can also obtain

I2 ≤ c|Wn
A|2∞|vn|22 + %‖vn‖2, (5.4.22)

I3 ≤ c|vn +Wn
A|2|vn|2 ≤ c|vn|22 + |Wn

A|2∞, (5.4.23)
I4 ≤ c|B(vn +Wn

A)|2|vn|2
≤ c|vn +Wn

A|2|vn|2 ≤ c|vn|22 + |Wn
A|2∞, (5.4.24)

I5 ≤ c|(B(vn +Wn
A))x|2|vn|2

≤ c|vn +Wn
A|2|vn|2 ≤ c|vn|22 + |Wn

A|2∞. (5.4.25)

Substituting the estimates of Ii, 1 ≤ i ≤ 5 into eq. (5.4.20), we get

1
2
d
dt

|vn|22 +
1
Re

‖vn‖2 ≤ 2%‖vn‖22 + c(1 + |Wn
A|2∞)|vn|22 + c|Wn

A|4∞ + 3|Wn
A|2∞.

Choosing a sufficiently small %, such that

d
dt

|vn|22 +
1
Re

‖vn‖2 ≤ c(1 + |Wn
A|2∞)|vn|22 + c|Wn

A|4∞ + 3|Wn
A|2∞,

and applying the Gronwall inequality, we obatin

|vn|22 ≤ |un0|22e
∫ t
0 c(1+|Wn

A|2
∞
)ds +

∫ t

0
(c|Wn

A|4∞ + 3|Wn
A|2∞)e

∫ t
s c(1+|Wn

A|2
∞
)d4ds. (5.4.26)

Letting n → ∞, we get

|v(t)|22 ≤ |u0|22e
∫ t
0 c(1+|Wn

A|2
∞
)ds +

∫ t

0
(c|Wn

A|4∞ + 3|Wn
A|2∞)e

∫ t
s c(1+|Wn

A|2
∞
)d4ds

≤ |u0|22ec(-
2
∞
+1)t + c(c-4∞ + 3-2∞)ec(-

2
∞
+1)t

≤ (|u0|22 + c-4∞ + c-2∞)ec(-
2
∞
+1)t. (5.4.27)

This completes the proof. ∎
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Theorem 5.4.1. If for P-a.s., 9 ∈ K, u0 ∈ L2(D), then eq. (5.4.7) has a unique global
solution v(x, y, t) and for P-a.s. 9 ∈ K and T > 0, v ∈ C((0,T];H!(D)) with (0 ≤ ! < 1/2).

5.4.2 Existence of random attractors

For any ! > 0, let

z(t) = W!
A(t) =

∫ t

–∞
e–(t–s)(A+!)dW(s),

whereW!
A(t) is the weak solution of the following initial value problem:{

dz = –(A + !)zdt + dW(t),
z(0) =

∫ 0
–∞ es(A+!)dW(s).

Obviously, if u is the weak solution of the following initial boundary value problem,

(P1)

⎧⎪⎪⎨⎪⎪⎩
du – 1

Re Budt = G(u)dt + dW(t),
u(s,9) = us
u|∂D = 0,

then v(t) = u(t) – z(t) is the solution of the following problem:

(P2)

⎧⎪⎪⎨⎪⎪⎩
dv = –Av + G(v + z)dt + !z,
v(s,9) = us – z(s)
v|∂D = 0.

(5.4.28)

5.4.2.1 Well-posedness and regularity of solution with problem (P2)
In order to investigate the asymptotic behavior of solutions for the problem (P1), we
must study higher regularity about v.

Theorem 5.4.2.
(i) For T > s, us ∈ L2(D) for P-a.e. 9 ∈ K, the problem (P2) has a unique solu-

tion v ∈ C(s,T; L2(D)) ∩ L2(s,T;H1
0(D)) in the weak sense for P-a.s. 9 ∈ K.

For any " < "1, the solution u = v + z of the problem (P1) satisfies u ∈ C
(s,T; L2(D)) ∩ L2(s,T;D(Amin{ 14 +".

1
2 })) a.s., here "1 has been given in the definition

of the stochastic process W(t).
(ii) For some ( ∈ (0, 2"1) ∩ (0, 12 ] and us ∈ D(A() for P-a.s. 9 ∈ K, then v ∈

C(s,T;D(A()) ∩ L2(s,T;D(A 1
2 +()), for P-a.s. 9 ∈ K.

Theorem 5.4.2 can be proved using the classic Faedo–Galerkin method (see [174]). As
this method is standard, we only give the key estimates in the following.
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– Energy estimates of v

In the sequel, 9 ∈ K is fixed. By choosing v as a test function in eq. (5.4.28), we get

1
2
d|v|22
dt

+
1
Re

‖v‖2 =
∫
D
G(v + z)v + !

∫
D
zv, (5.4.29)

where ∫
D
G(v + z)v = –

∫
D
[J(B(v + z), v + z)v + "0(B(v + z))xv]

+
∫
D

[(
F
Re

–
r
2

)
(v + z)v – F

(
F
Re

–
r
2

)
B(v + z)v

]
. (5.4.30)

Using integration by parts, Hölder’s inequality and Young’s inequality, we get

–
∫
D
[J(B(v + z), v + z)v

=
∫
D
J(B(v + z), v + z)z

=
∫
D
J(B(v + z), v)z

≤ |(B(v + z))x|4|vy|2|z|4 + |(B(v + z))y|4|vx|2|z|4 (5.4.31)
≤ c|v + z|2||vy|2|z|4 + c|v + z|2|vx|2|z|4
≤ c|v + z|22||z|24 + %‖v‖2
≤ c|v|22|z|24 + |z|22|z|24 + %‖v‖2
≤ c|v|22|z|24 + c|z|44 + 2%‖v‖2

and

|"0
∫
D
(B(z))xv| ≤ c|(B(z))x|2|v|2 ≤ c|z|2|v|2 ≤ c|z|22 + %|v|22. (5.4.32)

Similarly, we also obtain

|
(
F
Re

–
r
2

)∫
D
zv| ≤ c|z|22 + %|v|22, (5.4.33)

| – F
(
F
Re

–
r
2

)∫
D
vB(z)| ≤ c|z|22 + %|v|22. (5.4.34)

By the definition of the operator B and the hypothesis of the parameter "0, F,Re, r,
we get

"0
∫
D
(B(v))xv +

(
F
Re

–
r
2

)∫
D
v2 – F

(
F
Re

–
r
2

)∫
D
vB(v) ≤ 0. (5.4.35)
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Using eqs (5.4.29)–(5.4.35), and choosing a sufficiently small % > 0, we obtain

d|v|22
dt

+
1
Re

‖v‖2 ≤ c|z|44|v|22 + c|z|22 + c|z|44. (5.4.36)

By Poincaré inequality 1
Re ‖v‖2 ≥ +1|v|22,

d|v|22
dt

≤

(
c|z|44 –

+1
Re

)
|v|22 + c|z|22 + c|z|44.

Thus for t ∈ [s,T], an application of Gronwall’s inequality leads to

|v(t)|22 ≤ e
∫ t
s (–+1+c|z(4)|44)d4|v(s)|22

+
∫ t

s
e
∫ t
3(–+1+c|z(4)|44)d4(c|z|22 + c|z|44)d3. (5.4.37)

Finally, we integrate eq. (5.4.36) about t on [t1, t2](⊂ [s,T]) and obtain

1
Re

∫ t2

t1
‖v(4)‖2d4 ≤ |v(t1)|22 +

∫ t2

t1
(c|z|44|v|22 + c|z|22 + c|z|44)d4. (5.4.38)

In order to obtain the energy estimates of A(v, we first give the following lemma (see
Ref. [95]).

Lemma 5.4.3. For any two real-valued functions f , g ∈ H 1
2 +((D), 0 < ( < 1/2,

‖fg‖H2( ≤ ‖f‖
H
1
2 +(

‖g‖
H
1
2 +(

.

– Energy estimates of A(v

Assume v ∈ C(s,T;D(A())∩L2(s,T;D(A 1
2 +()) is a solution of the problem (P2). Since the

proof of the case ( = 1/2 is classic (see [245]), we consider only the case 0 < ( < 1/2.
First of all, we have

1
2
d|A(v|22
dt

+
1
Re

|A 1
2 +(v|2 =

∫
D
A(G(v + z)A(v + !

∫
D
A(zA(v. (5.4.39)

Using the definition of the operator A(, the interpolation inequality and Lemma 5.4.3,
we get
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–
∫
D
[A(J(B(v + z), v + z)A(v

= –
∫
D
J(B(v + z), v + z)A2(z

= –
∫
D

(
∂B(v + z)

∂x
∂(v + z)

∂y
–

∂B(v + z)
∂y

∂(v + z)
∂x

)
A2(z

=
∫
D

(
∂B(v + z)

∂x
∂A2(v

∂y
–

∂B(v + z)
∂y

∂A2(v
∂x

)
(v + z)

≤ c‖∂A2(v
∂y

‖H–2(‖∂B(v + z)
∂x

(v + z)‖H2(

+ c‖∂A2(v
∂x

‖H–2(‖∂B(v + z)
∂y

(v + z)‖H2(

≤ c‖A2(v‖H1–2(

(
‖∂B(v + z)

∂x
(v + z)‖H2( + ‖∂B(v + z)

∂y
(v + z)‖H2(

)
≤ c‖A2(v‖H1–2(

(
‖∂B(v + z)

∂x
‖
H
1
2 +(

+ ‖∂B(v + z)
∂y

‖
H
1
2 +(

)
‖v + z‖

H
1
2 +(

≤ c|A 1
2 +(v|2|A 1

2 ((v + z)|2|A 1
4 +

(
2 (v + z)|2

≤ %|A 1
2 +(v|22 + c|A

1
2 ((v + z)|22|A

1
4 +

(
2 (v + z)|22

≤ %|A 1
2 +(v|22 + c(|A

1
2 (v|22 + |A 1

2 (z|22)(|A
1
4 +

(
2 v|22 + |A 1

4 +
(
2 z|22)

≤ %|A 1
2 +(v|22 + c(|A(v|2|v|2 + |A 1

2 (z|22)(|A
1
4 +

(
2 v|22 + |A 1

4 +
(
2 z|22)

≤ %|A 1
2 +(v|22 + c|A(v|2|v|2|A

1
4 +

(
2 v|22

+ c|A(v|2|v|2|A 1
4 +

(
2 z|22 + |A 1

2 (z|22|A
1
4 +

(
2 v|22 + |A 1

2 (z|22|A
1
4 +

(
2 z|22

≤ %|A 1
2 +(v|22 + c|A(v|22|v|22 + c|A

1
4 +

(
2 v|42 + |A 1

4 +
(
2 z|42 + c|A

(
2 z|42

≤ %|A 1
2 +(v|22 + c|A(v|22|v|22 + c|A

1
4 +

(
2 v|42 + c|A

1
4 +

(
2 z|42 .

By interpolation inequality and Young’s inequality, we have

|A 1
4 +

(
2 v|42 ≤ c|A

1
4 v|22|A

1
4 +(v|22

≤ c|v|2|A 1
2 v|2|A(v|2|A 1

2 +(v|2 (5.4.40)

≤ %|A 1
2 +(v|22 + c|v|22|A

1
2 v|22|A(v|22.

The combination of these two inequalities yields

–
∫
D
A(J(B(v + z), v + z)A(v ≤ 2%|A 1

2 +(v|22 + c|A(v|22|v|22 (5.4.41)

+ c|v|22|A
1
2 v|22|A(v|22 + c|A

1
4 +

(
2 z|42 .
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By Hölder’s inequality and Cauchy–Schwarz’s inequality, we obtain

"0
∫
D
A((B(v + z))xA(v ≤ c|A((B(v + z))x|2|A(v|2

≤ c|A((B(v + z))x|2 + 2 + c|A(v|22 (5.4.42)

≤ c|v + z|22 + c|A(v|22
≤ c|A(v|22 + c|z|22.

Similarly, (
F
Re

–
r
2

)∫
D
A((v + z)A(v–F

(
F
Re

–
r
2

)∫
D
A(B(v + z)A(v (5.4.43)

≤ %|A 1
2 +(v|22 + c|A(v|22 + c|z|22.

By eqs (5.4.39), (5.4.41)–(5.4.43), we get

1
2
d|A(v|22
dt

+
1
Re

|A 1
2 +(v|2 ≤ 3%|A 1

2 +(v|22 + c|v|22|A
1
2 v|22|A(v|22

+ c|A(v|22|v|22 + c|A
1
4 +

(
2 z|42 + c|A(v|22 + c|z|22.

By choosing a sufficiently small % > 0, we obtain

d|A(v|22
dt

+
1
Re

|A 1
2 +(v|2 ≤ c|v|22|A

1
2 v|22|A(v|22 + c|A(v|22|v|22 (5.4.44)

+ c|A 1
4 +

(
2 v|42 + c|A(v|22 + c|z|22.

By Gronwall’s inequality, for any t ∈ [s,T], we have

|A(v(t)|22 ≤ e
∫ t
s (c|v|22|A1/2v|22+c|v|22+c)d4|A(v(s)|22 (5.4.45)

+
∫ t

s
e
∫ t
3(c|v|22|A1/2v|22+c|v|22+c)d4(c|z|22 + c|A

1
4 +

(
2 z|22)d3.

Integrating eq. (5.4.44) about t on [t1, t2] ⊂ [s,T], we have

1
Re

∫ t2

t1
|A 1

2 +(v|2d4 ≤ |A(v(t1)|22 +
∫ t2

t1
c(|v|22|A

1
2 v|22|A(v|22

+ |A(v|22|v|22 + |A 1
4 +

(
2 z|42 + |A(v|22 + |z|22).

5.4.2.2 Dissipative properties in L2(D)
Next, we study the dissipative properties of the dynamical systems associated with
eq. (5.4.1) combining with the boundary conditions (5.4.2) and obtain the existence of
random attractor. The basic knowledge of random attractor can be seen in Chapter 4.
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Theorem 5.4.3. The 2D QG equation with a general white noise

du –
1
Re

Budt = G(u)dt + dW(t), u|∂D = 0,

has a random attractor in L2(D).

Proof. By the ergodicity of the process z and Sobolev’s embedding D(A
1
4 +") ↪ L4 (see

Ref. [76]), we get

lim
s0→–∞

1
–s0

∫ 1

s0
|z(4)|44d4 = E(|z(0)|44).

The results from Ref. [95] show that E(|z(0)|44) is arbitrary small provided ! is suffi-
ciently large. Thus

lim
s→–∞

1
–s

∫ 1

s0
(–+1 + c|z(4)|44d4 = –+1 + cE(|z(0)|44) ≤ –

+1
2
.

This implies the existence of S0(9) such that s < S0(9),∫ 0

s
(–+1 + c|z|44)d4 ≤ –

+1
4
(–s). (5.4.46)

As |z(s)|22 and |z(s)|44 have at most polynomial growth as s → –∞ (see Ref. [95]),
eqs (5.4.37) and (5.4.46) imply that there exists a random variable r1(9), almost surely,
such that

|v(t)|22 ≤ r1(9), for any t ∈ [–1, 0], a.s., (5.4.47)

where us is in a bounded set in L2(D).
Let t1 = –1, t2 = 0. By eqs (5.4.38) and (5.4.47), there exists an almost surely finite

random variable r2(9) such that∫ 0

–1
‖v(4)‖2d4 ≤ r2(9) a.s. (5.4.48)

By eq. (5.4.45), for t = 0, s ∈ [–1, 0], we have

|A(v(0)|22 ≤ e
∫ 0
s (c|v|22|A1/2v|22+c)d4|A(v(s)|22 (5.4.49)

+
∫ 0

s
e
∫ 0
3 (c|v|22|A1/2v|22+c)d4(c|z|22 + c|A

1
4 +

(
2 z|22)d3.
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Integrating eq. (5.4.49) about s on [–1, 0], we get

|A(v(0)|22 ≤ e
∫ 0
–1(c|v|22|A1/2v|22+c)d4

∫ 0

–1
|A(v(s)|22ds (5.4.50)

+
∫ 0

–1
e
∫ 0
3 (c|v|22|A1/2v|22+c)d4(c|z|22 + c|A

1
4 +

(
2 z|22)d3.

Combining eq. (5.4.47) with eq. (5.4.48) and using eq. (5.4.50), we obtain an almost
surely finite random variable r3(9) such that

|A(v(0)|22 ≤ r3(9), a.s.

Set S(t, s,9)us = u(t,9). Without loss of generality, let K = {9 : 9 ∈ C(R,D(A–
1
4 +"1 )),

9(0) = 0}, P be a Wiener measure, W(t,9) = 9(t), t ∈ R,9 ∈ K, then we can define
a measure-preserving transformation {(t}t∈R on K, such that {(s9(t)} = 9(t + s) – 9(s)
for t, s ∈ R and 9 ∈ K. Let K(9) be a ball of radius r3(9) + |A(z(0,9)|22 in D(A(). K(9)
is a compactly attracting set at t = 0 (by compact embedding H2((D) ↪ L2(D)). Thus
by an application of general theorem in Chapter 4, we get the existence of random
attractors. ∎

5.5 Stochastic primitive equations

The mathematical study of the primitive equations originated from a series of articles
by Lions, Temam and Wang in the early 1990s [175–177]. They defined the notions
of weak and strong solutions and also proved the existence of weak solutions. Ex-
istence of strong solutions (local in time) and their uniqueness were obtained in
Refs [115, 246]. Hu et al. [131] studied the local existence of strong solutions to the
primitive equations under the small depth hypothesis. Cao and Titi [44] developed a
delicate approach to prove that the L6-norm of the fluctuation ṽ of horizontal velo-
city is bounded, and obtained the global well-posedness for the 3D viscous primitive
equations. Another different proof of this result was given by Kobelkov [155, 156]. The
existence of the attractorwas obtained in Ref. [139]. In Ref. [161], existence and unique-
ness for different, physically relevant boundary conditions are establishedwith a third
method (different from both [44, 155]), which deals with the pressure terms directly in
the equations. For a general reference on the current research of the (deterministic)
mathematical theory for the primitive equations, we can refer to Ref. [207]. Moreover,
the deterministic 2D primitive equations were studied also in Refs [205, 206].

The addition of white-noise-driven terms to the basic governing equations for a
physical system is natural for both practical and theoretical applications. Stochastic
solutions of the 2D primitive equations of the ocean and atmosphere with an additive
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noise have been studied in Ref. [90]. In Refs [103, 119], weak and strong random at-
tractors have been obtained for 3D stochastic primitive equations with additive noise,
respectively. The existence and uniqueness of solutions for 2D stochastic primitive
equations with multiplicative noise have been discussed in Ref. [113], where they
ignored the coupling with the temperature and salinity equations. There have also
been other recent works on the stochastic 2D and 3D primitive equations [78, 112], in
both works a coupling with temperature and salinity equations as well as physically
relevant boundary conditions are considered.

5.5.1 Stochastic 2D primitive equations with Lévy noise

First, we introduce some definitions and basic properties of Wiener processes and
Lévy processes. For further details, one can see Ref. [75] or [204], for example.

In this section,W(t) are independent Wiener processes defined on a filtered prob-
ability space (K,F ,Ft,P), taking values in Hilbert space H, with linear symmetric
positive covariant operators Q. We assume that Q is trace class (and hence compact
[75]), i.e. tr(Q) < ∞. As in Ref. [84], let H0 = Q 1

2H. Then H0 is a Hilbert space with the
scalar product

(u,8)0 = (Q– 1
2 u,Q– 1

28)∀u,8 ∈ H0

together with the induced norm | ⋅ |0 =
√
(⋅, ⋅)0. Let LQ be the space of linear operators

S such that SQ 1
2 is a Hilbert–Schmidt operator (and thus a compact operator [75]) from

H to H. The norm in the space LQ is defined by |S|2LQ = tr(SQS∗), where S∗ is the adjoint
operator of S.

If X = X(t) is a Lévy process, the jump of X(t) is given by△X(t) = X(t) – X(t–). Let
Z ∈ B(H), we define

N(t, Z) = N(t, Z,w) =
∑
0<s≤t

7Z(△X(s)).

N(t, Z) is called the Poisson randommeasure of X(t). We denote Ñ(dt, dZ) = N(dt, dZ)–
dt+(dz′ ), which is called compensated Poisson random measure, where +(dz′ ) is a
3-finite measure on Z.

Definition 5.5.1. Let I = [a, b] be an interval in R
+. A mapping g : I → R

d is said to
be càdlàg if, for all t ∈ [a, b], g has a left limit at t and g is right continuous at t. Let
D([0,T],H) be the space of all càdlàg paths from [0,T] into H.

Definition 5.5.2. Let E and F be separable Banach spaces, let Ft := B(R+ × E) ⊗ Ft be
the product 3-algebra generated by the semi-ringB(R+×E)×Ft of the product sets Z×F,
Z ∈ B(R+ × E), F ∈ Ft (where Ft is the filtration of the process X(t)). Let T > 0 and
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H(Z) =
{
g : R

+ × Z × K → F, such that g is FT/B(F)

measurable and g(t, z′ ,w) is Ft-adapted ∀z′ ∈ Z, ∀t ∈ (0,T]
}
.

Let p ≥ 1,

H
p
+ ([0,T] × Z; F) =

{
g ∈ H(Z) :

∫ T

0

∫
Z

E‖g(t, z′ ,w)‖pF+(dz
′ )dt < ∞

}
.

Definition 5.5.3. An R
d-valued stochastic process Y(t) is a Lévy-type stochastic integral

if it can be written in the following form, for each 1 ≤ i ≤ d, 1 ≤ j ≤ m, we have |Gi|1/2,
Fij ∈ L

2[0,T], Hi ∈ H
2
+([0,T] × Z;E) and K(t) is predictable:

dYi(t) =Gi(t)dt + Fij(t)dB
j(t) +

∫
|z′ |<1

Hi(t, z′ )Ñ(dt, dz′ )

+
∫

|z′ |≥1
Ki(t, z′ )N(dt, dz′ ). (5.5.1)

Let

dYc(t) = Gi(t)dt + Fij(t)dB
j(t),

and the discontinuous part of Y,

dYd(t) =
∫

|z′ |<1
Hi(t, z′ )Ñ(dt, dz′ ) +

∫
|z′ |≥1

Ki(t, z′ )N(dt, dz′ ).

Then we have Itô’s theorem for Lévy-type stochastic integral of the form (5.5.1).

Lemma 5.5.1 (Itô’s theorem [7]). If Y(t) is a Lévy-type stochastic integral of the form
(5.5.1), then for each f ∈ C2(Rd), we have

f (Y(t))–f (Y(0))

=
∫ t

0
∂if (Y(s–))dYi

c(s) +
1
2

∫ t

0
∂i∂jf (Y(s–))d[Yi

c,Y
j
c](s)

+
∫ t

0

∫
|z′ |≥1

[f (Y(s–) + K(s, z′ )) – f (Y(s–))]N(ds,dz′ )

+
∫ t

0

∫
|z′ |≤1

[f (Y(s–) + H(s, z′ )) – f (Y(s–))]Ñ(ds,dz′ )

+
∫ t

0

∫
|z′ |≤1

[f (Y(s–) + H(s, z′ )) – f (Y(s–))

– Hi(s, z′ )∂if (Y(s–))]+(dz
′ )ds. (5.5.2)
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Lemma 5.5.2 (BDG inequality [204]). For every p ≥ 1, there is constant Cp such that
for any real-valued square-integrable càdlàg martingale M with M(0) = 0, and for any
T > 0,

C–1p E[M,M]p/2T ≤ sup
0≤t≤T

|M(t)|p ≤ CpE[M,M]p/2T . (5.5.3)

The 2D primitive equations can be formally derived from the full 3D system under
the assumption of invariance with respect to the second horizontal variable y as in
Ref. [113], since primitive equations is a large-scale model, one may neglect the ef-
fect of small scale and intermediate scale in its modeling. Such fluctuations can be
caused by internal instability processes, as well as by external forcing. As usual, the
atmospheric forcing field should be regarded as random. As a result, we arrive at the
following stochastic evolution system:

du = [-1Bu – u∂xu – w∂zu – ∂xp + f ]dt

+
√
%3(t, u)dW(t) + %

∫
Z
g(u, z′ )Ñ(dt, dz′ ), (5.5.4)

∂zp = 0, (5.5.5)
∂xu = –∂zw, (5.5.6)

with velocity u = u(t, x, z) ∈ R, pressure p, (x, z) ∈ M = [0, l] × [–h, 0] and t > 0. Here B
is the Laplacian operator, without loss of generality in this section, we take -1 to be 1,
noting eq. (5.5.5), p does not depend on variable z. In the above formulation, we have
ignored the coupling with the temperature and salinity equations in order to focus
main attention on the difficulties from nonlinear terms in eq. (5.5.4) (see Ref. [113]).

We partition the boundary into the top Au = {z = 0}, the bottom Ab = {z = –h} and
the sides As = {x = 0} ∪ {x = l}. In this section, we consider the following boundary
conditions:

on Au : ∂zu = 0, w = 0,
on Ab : ∂zu = 0, w = 0,
on As : u = 0.

Due to eq. (5.5.6), we have that

w(x, z, t) = –
∫ z

–h
∂xu(x, . , t)d. . (5.5.7)

We define the function spaces H and V as follows:

H =
{
v ∈ L2(M) |

∫ 0

–h
vdz = 0

}
, (5.5.8)

V =
{
v ∈ H1(M) |

∫ 0

–h
vdz = 0, v|As = 0

}
. (5.5.9)
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These spaces are endowed with the L2 and H1 norms, which we, respectively, denote
by | ⋅ | and ‖ ⋅ ‖. The inner products and norms on H,V are given by

(v, v1) =
∫
M

vv1dxdz, ((v, v1)) =
∫
M

∇v∇v1dxdz,

and

|v| = (v, v)
1
2 , ‖v‖ = ((v, v))

1
2 ,

where v1, v ∈ V. Let V ′ be the dual space of V. We have the dense and continuous
embedding V ↪ H = H′ ↪ V ′ and denote by 〈u,8〉 the duality between u ∈ V and
u ∈ V ′.

Consider an unbounded linear operator A : D(A) → H with D(A) = V ∩H2(M) and
define

〈Au, v〉 = ((u, v)) ∀u, v ∈ D(A).

The Laplace operator A is self-adjoint, positive, with compact self-adjoint inverses,
whichmapsV toV ′. Next we address the nonlinear term. In accordance with eq. (5.5.7)
we take

W(v) := –
∫ z

–h
∂xv(x, z̃)d̃z (5.5.10)

and let

B(u, v) := u∂xv +W(u)∂zv, (5.5.11)

where u, v ∈ V.
Define the bilinear operator B(u, v) : V × V → V ′ according to

〈B(u, v),w〉 = b(u, v,w),

where

b(u, v,w) =
∫
M

(u∂xvw +W(u)∂zvw)dM.

In the sequel, when no confusion arises, we denote by C a constant that may change
from one line to the next one.

Lemma 5.5.3 (Estimates for b and B (see [104, 113])). The trilinear forms b and B have
the following properties. There exists a constant C > 0 such that
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|b(u, v,w)| ≤ C
(
|u| 12 ‖u‖ 1

2 ‖v‖|w| 12 ‖w‖ 1
2 + |∂xu||∂zv||w| 12 ‖w‖ 1

2
)
,

u, v,w ∈ V, (5.5.12)
b(u, v, v) = 0, u, v,w ∈ V, (5.5.13)

〈B(u, u), ∂zzu〉 = 0, u ∈ V. (5.5.14)

Note that the above formulation is equivalent to projecting eqs (5.5.4)–(5.5.6) from
L2(M) into the space H(M) and thus the pressure term p(x, t) is absent. With these
notations, the above primitive equations can be rewritten as

du + [Au + B(u, u)]dt = fdt +
√
%3(t, u)dW(t)

+ %
∫
Z
g(u, z′ )Ñ(dt, dz′ ). (5.5.15)

In this section, we assume 3 and g satisfy the following hypotheses of joint continuity,
Lipschitz condition and linear growth.

Assumption A. There exist positive constants K and L such that
(A.1) 3 ∈ C

(
[0,T] × V; LQ(H0,H)

)
,

(A.2) |3(t, u)|2LQ +
∫
Z |g(u, z′ )|2H+(dz

′ ) ≤ K(1 + |u|2), g ∈ H
2
+([0,T] × Z;H),

(A.3)
∫
Z |g(u, z′ )|4H+(dz

′ ) ≤ K(1 + |u|4), g ∈ H
4
+ ([0,T] × Z;H),

(A.4) |3(t, u) – 3(t,8)|2LQ +
∫
Z |g(u, z′ ) – g(8, z′ )|2H+(dz

′ ) ≤ L‖u – 8‖2, ∀u,8 ∈ V.

To obtain well-posedness of solution, we have to give the additional assumptions on
the 3, g:

Assumption B. There exists a positive constant K such that
(B.1) |∂z3(t, u)|2LQ +

∫
Z |∂zg(u, z′ )|2H+(dz

′ )
≤ K(1 + |∂zu|2)), ∂zg ∈ H

2
+([0,T] × Z;H),

(B.2)
∫
Z |∂zg(u, z′ )|4H+(dz

′ ) ≤ K(1 + |∂zu|4), ∂zg ∈ H
4
+ ([0,T] × Z;H).

Example 5.5.1. We assume W(t) =
∑∞

k=1 +
1/2
k "k(t)ek ∈ H, where "k(t) is a collection of

independent standard Brownian motions, {ek} is an orthonormal basis in H consisting
of eigen-elements of Q, with Qek = +kek.
– (Additive Noise) As in Ref. [113], we suppose the noise term does not depend on the

solution u and can be written in the expansion:

3(t, u)dW(t) =
∞∑
k=1

〈h(t,9), ek〉+–1/2k +1/2k ekd"k(t)

=
∞∑
k=1

hk(t,9)d"k(t), g(u, z′ ) = g(z′ ),
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where hk(t,9) = 〈h(t,9), ek〉ek. Taking

K = 2max
{
sup
t,9

∞∑
k=1

|hk(t,9)|2H , sup
t,9

∞∑
k=1

|∂zhk(t,9
)
|2H ,

∫
Z
|g(z′ )|2H+(dz

′ ),∫
Z
|∂zg(z′ )|2H+(dz

′ ),
∫
Z
|g(z′ )|4H+(dz

′ ),
∫
Z
|∂zg(z′ )|4H+(dz

′ )
}
,

and L > 0, Assumptions A and B about Lipschitz condition and linear growth are
sastified.
– (Independently forced models) Given a uniformly bounded sequence ak(t,9) ∈

L∞([0,T] × K), we assume that

3(t, u)dW(t) =
∞∑
k=1

ak(t,9)〈u, ek〉+–1/2k +1/2k ekd"k(t) =
∞∑
k=1

ak(t,9)ukd"k(t),

g(u, z′ ) = u.

Taking

K = L = 2max
{
sup
t,9,k

|ak(t,9)|,
∫
Z
+(dz′ ) ≡ D(Z)

}
,

Assumptions A and B about Lipschitz condition and linear growth are satisfied.

5.5.1.1 Well-posedness
Let X := D

(
[0,T];H

)
∩L2

(
(0,T);V

)
denote the Banach space with the norm defined by

‖u‖X =
{
sup
0≤s≤T

|u(s)|2 +
∫ T

0
‖u(s)‖2ds

} 1
2 . (5.5.16)

Recall that an Ft-predictable stochastic process u(t,9) is called the weak solution for
stochastic primitive problem (5.5.15) on [0,T] if u is in

L2(K,D([0,T];H) ∩ L2((0,T);V)),

and satisfies

〈u(t),8〉 – 〈. ,8〉 +
∫ t

0
[〈u(s),A8〉 + 〈B(u(s)),8〉]ds = ∫ t

0
〈f ,8〉ds

+
√
%
∫ t

0

〈
3(u(s))dW(s),8

〉
+ %

∫ t

0

∫
Z
〈g(u, z′ ),8〉Ñ(ds,dz′ ), a.s., (5.5.17)

for all 8 ∈ D(A) and all t ∈ [0,T].
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Remark 5.5.1. We give a variational definition for solutions of the systems (5.5.15) in
PDEs sense, note that weak refers to the spatial–temporal regularity of the solutions,
and this solution is a strong one in the probabilistic meaning because of the stochastic
basis given in advance. This is in contrast to the theory of weak solutions in probability
sense considered for many nonlinear systems where the probability space is constructed
as part of the solution. See Ref. [75].

The main result of this section is the following theorem.

Theorem 5.5.1 (Well-posedness and a priori bounds). There exists %0 := %0
(K, L,T) > 0, such that the following existence and uniqueness are true for 0 ≤ % ≤ %0.
Let the initial datum . satisfy E |. |4 < ∞, E |∂z. |4 < ∞, and f , ∂zf ∈ L4(K; L2(0,T;H)),
then there exists a unique weak solution u of the stochastic primitive problem (5.5.15)
with initial condition u(0) = . . Furthermore, there exists a constant

C := C
(
K, L,T, |f |L4(K;L2(0,T;H)), |∂zf |L4(K;L2(0,T;H))

)
such that for % ∈ [0, %0],

E‖u‖2X ≤ C
(
1 + E|. |2), E( sup

0≤t≤T
|u(t)|4 + ( ∫ T

0
‖u(t)‖2 dt

)2)
≤ C

(
1 + E|. |4), (5.5.18)

and satisfy the additional regularity

∂zu(t) ∈ L4(K, L∞(0,T;H) ∩ L2(0,T;V)). (5.5.19)

Remark 5.5.2. We should point out that we do not study the path regularity of the
solution in this section. We study the adapted process u(t, x,9) with regularity u ∈

L2(K,D([0,T];H) ∩ L2((0,T);V)). The related paper [82] studied the path regularity.

For u ∈ V, define

E(u) = –Au – B(u) + f . (5.5.20)

We first obtain monotonicity property of E.

Lemma 5.5.4. Assume that u,8 ∈ V, we have

〈
E(u) – E(8), u – 8

〉
+
1
2
‖u – 8‖2 ≤ C|u – 8|‖u – 8‖‖8‖ + C(1 + |∂z8|4)|u – 8|2. (5.5.21)

Proof. Set U = u – 8, we deduce〈
E(u) – E(8),U

〉
= –

〈
A(u) – A(8),U

〉
–
〈
B(u) – B(8),U

〉
≡ I1 + I2.
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Integrating by parts, Lemma 5.5.3, Hölder’s inequality, Ladyzhenskaya’s inequality for
2D domain and Young’s inequality imply

I1 = –‖u – 8‖2,
I2 = b(u – 8, u – 8, v)
≤ |u – 8|L4‖8‖|u – 8|L4 + |∂x(u – 8)||∂z8||u – 8| 12 ‖u – 8‖ 1

2

≤ C|u – 8|‖u – 8‖‖8‖ + C‖u – 8‖ 3
2 |u – 8| 12 |∂z8|

≤ C|u – 8|‖u – 8‖‖8‖ + 1
2
‖u – 8‖2 + C|∂z8|4|u – 8|2.

Combining I1, I2, we end the proof. ∎

Remark 5.5.3 (Outline of the proof for Theorem 5.5.1). We first introduce the Galer-
kin systems associated with the original equation and establish some uniform a priori
estimates (Propositions 5.5.1 and 5.5.2). These estimates together with the local mono-
tonicity property (Lemma 5.5.4) and weak convergence methods play a fundamental
role in proving the existence and uniqueness of the weak solution. It has appeared that
the problem of global existence of solutions for the 2D stochastic primitive equations
might be harder than 2D Navier–Stokes equations because the nonlinear term B(u, u)
is more complex. We deduce that the estimate of B(u, u) satisfies eq. (5.5.62). To obtain
eq. (5.5.62), we should establish the uniform bounds for un, ∂zun in Lp(K; L2(0,T;V) ∩
L∞(0,T;H)), p = 2, 4. However, since we concern Lévy noise here, the estimates un, ∂zun
in L4(K; L2(0,T;V) ∩ L∞(0,T;H)) are not immediately obtained by Itô’s formula. Thus,
we first estimate in L2(K; L2(0,T;V) ∩ L∞(0,T;H))(Proposition 5.5.1). Second, by more
hypothesis (A.3), (B.2), after a series of estimates, we finally obtain the estimates
un, ∂zun in

L4(K; L2(0,T;V) ∩ L∞(0,T;H))

(Proposition 5.5.2).

We now introduce the Galerkin systems associated with the original equation and es-
tablish some uniform a priori estimates. For any n ≥ 1, let Hn = span{e1,⋯, en} ⊂
Dom(A) and Pn : H → Hn denote the orthogonal projection onto Hn. Suppose that the
H-valued Wiener processW with covariance operator Q is such that

PnQ
1
2 = Q

1
2 Pn, n ≥ 1,

which is true if Qh =
∑

n≥1 +nen with trace
∑

n≥1 +n < ∞. Then for H0 = Q 1
2H and

(u,8)0 = (Q– 1
2 u,Q– 1

28) with u,8 ∈ H0, we see that Pn : H0 → H0 ∩ Hn is a contraction
in both of the H and H0 norms. LetWn = PnW, 3n = Pn3.
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Consider the following stochastic ordinary differential equation on the n-
dimensional space Hn defined by

d(un,8) =
[〈PnE(un),8〉]dt + √

% 〈3n(un)dWn,8〉
+ %

∫
Z
〈gn(un, z′ ),8〉Ñ(dt, dz′ ), (5.5.22)

for 8 ∈ Hn and un(0) = Pn. .
We note that formulation (5.5.22) allows one to treat un as a process in Rn. Thus

one can apply the finite-dimensional Itô calculus to the Galerkin systems above.
Note that for 8 ∈ V, the map un(t) =

∑n
k=1 dkn(t)ek ∈ Hn

⋂
V ↦ 〈–Aun + f +

∇ps,8〉 is globally Lipschitz, while using Lemma 5.5.3 the map B is locally Lipschitz.
Furthermore, assumptions A and B imply that the map un → 〈3n(un)dWn,8〉 +
%
∫
Z〈gn(un, z

′ ),8〉Ñ(dt, dz′ ) is globally Lipschitz. Hence, according to standard theory
for ordinary differential equations, there exists a maximal càdlàg process un ∈ Hn

⋂
V

to (5.5.22), i.e., a stopping time 4%n ≤ T such that eq. (5.5.22) holds for t < 4%n and as
t ↑ 4%n < T, ‖6%

n(t)‖Hn⋂V → ∞. Thus, the following definition for stopping time 4N is
reasonable.

For every N > 0, set

4N = inf{t : |un(t)| ≥ N} ∧ inf{t : |∂zun(t)| ≥ N} ∧ T. (5.5.23)

The following proposition provides the (global) existence and uniqueness of ap-
proximate solutions and also their uniform (a priori) estimates. This is the main
preliminary step in the proof of Theorem 5.5.1.

Proposition 5.5.1. There exists %1 := %1(K,T) such that for 0 ≤ % ≤ %1, the following result
holds. Let 3, g satisfy (A.1) and (A.2), f ∈ L2(K; L2(0,T;H)) and . ∈ L2(K,H). Then eq.
(5.5.22) has a solution with a modification un ∈ D([0,T],Hn) and satisfies

sup
n

E
(
sup
0≤t≤T

|un(t)|2 +
∫ T

0
‖un(s)‖2ds

)
≤ C(K,T,E|f |2L2(K;L2(0,T;H)))

(
1 + E|. |2). (5.5.24)

Moreover, if 3, g satisfy (A.3), f ∈ L4(K; L2(0,T;H)) and . ∈ L4(K,H), we have

sup
n

E
(
sup
0≤s≤T

|un|4
)
+ sup

n
E
( ∫ T

0
‖un(r)‖2dr

)2
≤ C(K,T,E|f |4L2(K;L2(0,T;H))

)
(1 + E|. |4). (5.5.25)
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Proof. Itô’s formula yields that for t ∈ [0,T] and 4N defined by eq. (5.5.23),

|un(t ∧ 4N)|2 = |Pn. |2 + 2
√
%
∫ t∧4N

0

〈
3n(un(s))dWn(s), un(s)

〉
(5.5.26)

+ 2
∫ t∧4N

0

〈
E(un(s)), un(s)〉ds + %

∫ t∧4N

0

∫
Z
|gn(u(s–), z′ )|2N(ds,dz′ )

+ %
∫ t∧4N

0
|3n(un(s))Pn|2LQ ds

+ 2%
∫ t∧4N

0

∫
Z
〈un(s–), gn(u(s–), z′ )〉Ñ(ds,dz′ ). (5.5.27)

Using Lemma 5.5.3, this yields for t ∈ [0,T],

|un(t ∧ 4N)|2 + 2
∫ t∧4N

0
‖un(r)‖2 dr ≤ |Pn. |2 +

∑
1≤j≤4

Tj(t), (5.5.28)

where

T1(t) = 2
∫ t∧4N

0
|〈un, f 〉|dr,

T2(t) = 2
√
%
∣∣∣ ∫ t∧4N

0

〈
3n(un(r)) dWn(r), un(r)

〉 ∣∣∣,
T3(t) = %

∫ t∧4N

0
|3n(un(r)) Pn|2LQ dr

+ %
∫ t∧4N

0

∫
Z
|gn(u(s–), z′ )|2N(ds,dz′ ),

T4(t) = 2%
∫ t∧4N

0

∫
Z
〈un(s–), gn(u(s–), z′ )〉Ñ(ds,dz′ ).

The Hölder’s inequality and Young’s inequality imply that

T1(t) = 2
∫ t∧4N

0
[〈un(r), f 〉]dr ≤ =

∫ t∧4N

0
‖un(r)‖2dr

+
1
=
(
|f |2L2(0,t∧4N ;H)

)
. (5.5.29)

We deduce that

T3(t) = %
∫ t∧4N

0

∫
Z
|gn(u(s–), z′ )|2+(dz′ )ds

+ %
∫ t∧4N

0

∫
Z
|gn(u(s–), z′ )|2Ñ(ds,dz′ )

+ %
∫ t∧4N

0
|3n(un(r)) Pn|2LQ dr. (5.5.30)
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By Hölder’s inequality, gn is strong 2-integrable w.r.t Ñ(dt, dz), then |gn|2 is strong
1-integrable w.r.t Ñ(dt, dz). Using Theorem 4.12 in Ref. [225] on |gn|2 and the hypothesis
(A.2), we obtain

E
(

sup
0≤s≤t∧4N

|T3(s)|
)
≤ %E

∫ t∧4N

0

∫
Z
|gn(u(s–), z′ )|2+(dz′ )ds

+ %E
∫ t∧4N

0

∫
Z
|gn(u(s–), z′ )|2Ñ(ds,dz′ ) + %E

∫ t∧4N

0
|3n(un(r)) Pn|2LQ dr

≤ 3%E
∫ t∧4N

0

∫
Z
|gn(u(s–), z′ )|2+(dz′ )ds + %E

∫ t∧4N

0
|3n(un(r)) Pn|2LQ dr

≤ %KT + %KE
∫ t∧4N

0
‖un(s)‖2dr. (5.5.31)

By the BDG inequality, (A.2) and Schwarz’s inequality, we get that for t ∈ [0,T],

E
(

sup
0≤s≤t∧4N

|T2(s)|
)
≤ 2

√
2%E

{ ∫ t∧4N

0
|un(r)|2 |3n(un(r)) Pn|2LQ dr

} 1
2

≤ 2
√
2%KE

[
( sup
0≤s≤t∧4N

|un|2)1/2
( ∫ t∧4N

0
(1 + ‖un(s)‖2)ds

)1/2]
≤
1
4
E sup
0≤s≤t∧4N

|un|2 + 8%KE
∫ t∧4N

0
‖un(t)‖2dt + 8%KT. (5.5.32)

Now applying BDG inequality, condition (A.2) and Young’s inequality to the term T4,
we get

E
(

sup
0≤s≤t∧4N

|T4(s)|
)
≤ 2

√
2%E

{ ∫ t∧4N

0

∫
Z
|〈un(s), gn(u(s), z′ )〉|2+(dz′ )ds

} 1
2

≤ 2
√
2%E

{ ∫ t∧4N

0

∫
Z
|un(s)|2|gn(u(s), z′ )|2+(dz′ )ds

} 1
2

≤ 2
√
2K%E

[
( sup
0≤s≤t∧4N

|un|2)1/2
( ∫ t∧4N

0
(1 + ‖un(s)‖2)ds

)1/2]
≤
1
4
E sup
0≤s≤t∧4N

|un|2 + 8%2KE
∫ t∧4N

0
‖un(t)‖2dt + 8%2KT. (5.5.33)

Taking supremum up to time t ∧ 4N before taking the expectation in eq. (5.5.28) and
using eqs (5.5.29)–(5.5.33), we get (without loss of generality, we let % < 1).

E
(

sup
0≤s≤t∧4N

|un|2
)
+ 2(1 – = – 17%K)E

∫ t∧4N

0
‖un(r)‖2dr

≤ 2E|. |2 + 2CE|f |2L2(0,t∧4N ;H) + 34%KT. (5.5.34)

Taking T ∧ 4N → T a.s. as N → ∞, and = = 1/2, we get for 0 < % ≤ 1
34K ,
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E
(
sup
0≤s≤T

|un|2
)
+ E

∫ T

0
‖un(r)‖2dr ≤ C

(
E|. |2,E|f |2L2(0,T;H),K,T

)
. (5.5.35)

Now we estimate eq. (5.5.25). By eq. (5.5.28), we get

|un(t ∧ 4N)|4 + 4
( ∫ t∧4N

0
‖un(r)‖2 dr

)2
≤ 2|Pn. |4 + 8

∑
1≤j≤4

T2j (t). (5.5.36)

By eq. (5.5.29), we deduce that

T21 (t) ≤ 2=2
( ∫ t∧4N

0
‖un(r)‖2dr

)2
+

2
=2
(
|f |2L2(0,t∧4N ;H)

)2
. (5.5.37)

By eq. (5.5.30), we get

E
(

sup
0≤s≤t∧4N

|T23(s)|
)
≤ 3%2E

( ∫ t∧4N

0

∫
Z
|gn(u(s–), z′ )|2+(dz′ )ds

)2
+ 3%2E

( ∫ t∧4N

0

∫
Z
|gn(u(s–), z′ )|2Ñ(ds,dz′ )

)2
+ 3%2 E

( ∫ t∧4N

0
|3n(un(r)) Pn|2LQ dr

)2
≤

3∑
i=1

Ui. (5.5.38)

Applying Hölder’s inequality, we have

U1 ≤ 3%2CT2E
∫ t∧4N

0

∫
Z
|gn(u(s–), z′ )|4+(dz′ )ds, (5.5.39)

U3 ≤ 3%2CTE
∫ t∧4N

0
|3n(un(r)) Pn|4LQ dr. (5.5.40)

By BDG inequality, we obtain

U2 ≤ 3C%2E
∫ t∧4N

0

∫
Z
|gn(u(s–), z′ )|4+(dz′ )ds, (5.5.41)

Recalling the assumption (A.3), we obtain

E
(

sup
0≤s≤t∧4N

|T23(s)|
)
≤ 3C(K)%2E

∫ t∧4N

0
(1 + |un|4)ds

≤ 3C(K,T)%2 + 3C(K)%2E
∫ t∧4N

0
sup
0≤r≤s

|un(s)|4ds. (5.5.42)

By the BDG inequality, (A.2) and Schwarz’s inequality, we obtain
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E
(

sup
0≤s≤t∧4N

|T22 (s)|
)
≤ C

√
%E

{ ∫ t∧4N

0
|un(r)|2 |3n(un(r)) Pn|2LQ dr

}
≤C

√
%E
[
( sup
0≤s≤t∧4N

|un|2)
∫ t∧4N

0
(1 + ‖un(s)‖2)ds

]
≤

1
40

E sup
0≤s≤t∧4N

|un|4

+ C(K)%E
( ∫ t∧4N

0
‖un(t)‖2dt

)2
+ C(K,T)%. (5.5.43)

Now again applying BDG inequality, (A.2) and Young’s inequality, we get

E
(

sup
0≤s≤t∧4N

|T25(s)|
)
≤ C%E

{ ∫ t∧4N

0

∫
Z
|〈un(s), gn(u(s), z′ )〉|2+(dz′ )ds

}
≤C%E

{ ∫ t∧4N

0

∫
Z
|un(s)|2|gn(u(s), z′ )|2+(dz′ )ds

}
≤C(K)%E

[
( sup
0≤s≤t∧4N

|un|2)
∫ t∧4N

0
(1 + ‖un(s)‖2)ds

]
≤

1
40

E sup
0≤s≤t∧4N

|un|4

+ C(K)%E
( ∫ t∧4N

0
‖un(t)‖2dt

)2
+ C(K,T)%. (5.5.44)

As we obtain eq. (5.5.35), let N → ∞, by Gronwall’s inequality and eqs (5.5.37)–(5.5.43)
and (5.5.44), we get

sup
n

E
(
sup
0≤s≤T

|un|4
)
+ sup

n
E
( ∫ T

0
‖un(r)‖2dr

)2
≤ C(K,T,E|f |4L2(K;L2(0,T;H))

)
(1 + E|. |4). (5.5.45)

This completes the proof of Proposition 5.5.1. ∎

Proposition 5.5.2. There exists %2 := %2(K,T) such that for 0 ≤ % ≤ %2 the following result
holds. Let ∂zf ∈ L2(K; L2(0,T;H)) and ∂z. ∈ L2(K,H). Then we have

sup
n

E
(
sup
0≤t≤T

|∂zun(t)|2 +
∫ T

0
‖∂zun(s)‖2ds

)
≤ C(K,T, |∂zf |L2(K;L2(0,T;H)))

(
1 + E|∂z. |2

)
. (5.5.46)

Moreover, if 3, g satisfy (B.2), ∂zf ∈ L4(K; L2(0,T;H)) and ∂z. ∈ L4(K,H), we have
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sup
n

E
(
sup
0≤s≤T

|∂zun|4
)
+ sup

n
E
( ∫ T

0
‖∂zun(r)‖2dr

)2
≤ C

(
E|∂zf |4L2(0,T;H),K,T

)
(1 + E|∂z. |4). (5.5.47)

Proof.We apply Itô formula to |∂zun|2 for t ∈ [0,T] and 4N defined by eq. (5.5.23),

|∂zun(t ∧ 4N)|2 + 2
∫ t∧4N

0

[‖∂zun(r)‖2 + ‖∂z(n(r)‖2
]
dr

≤ |Pn∂z. |2 +
∑
1≤j≤5

Jj(t), (5.5.48)

where

J1(t) = 2
∫ t∧4N

0
|〈∂zzun,B(un)〉|dr,

J2(t) = 2
∫ t∧4N

0
|〈∂zzun, f 〉|dr,

J3(t) = 2
√
%
∣∣∣ ∫ t∧4N

0

〈
3n(un(r)) dWn(r), ∂zzun(r)

〉 ∣∣∣,
J4(t) = %

∫ t∧4N

0
|∂z3n(un(r)) Pn|2LQ dr

+ %
∫ t∧4N

0

∫
Z
|∂zgn(u(s–), z′ )|2N(ds,dz′ ),

J5(t) = 2%
∫ t∧4N

0

∫
Z
〈∂zun(s–), ∂zgn(u(s–), z′ )〉Ñ(ds,dz′ ).

Noting that eq. (5.5.14), we have

J1(t) = 2
∫ t∧4N

0

∣∣∣b(un(r), un(r), ∂zzun(r))∣∣∣dr = 0,

As we obtain estimate (5.5.29), we have

J2 ≤ =
∫ t∧4N

0
‖∂zun(r)‖2dr + 1

=
(
|∂zf |2L2(0,t∧4N ;H)

)
. (5.5.49)

Then we estimate J4, we deduce that

J4(t) = %
∫ t∧4N

0

∫
Z
|∂zgn(u(s–), z′ )|2+(dz′ )ds

+ %
∫ t∧4N

0

∫
Z
|∂zgn(u(s–), z′ )|2Ñ(ds,dz′ )

+ %
∫ t∧4N

0
|∂z3n(un(r)) Pn|2LQ dr. (5.5.50)
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As we obtain eq. (5.5.30), by hypothesis (B.1), we deduce

E
(

sup
0≤s≤t∧4N

|J4(s)|
)
≤ 3%E

∫ t∧4N

0

∫
Z
|∂zgn(u(s–), z′ )|2+(dz′ )ds

+ %E
∫ t∧4N

0
|∂z3n(un(r)) Pn|2LQ dr

≤ %KT + %KE
∫ t∧4N

0
‖∂zun(s)‖2dr. (5.5.51)

Similarly, we have

E
(

sup
0≤s≤t∧4N

|J3(s)|
)
≤ 2

√
2%E

{ ∫ t∧4N

0
|∂zun(r)|2 |∂z3n(un(r)) Pn|2LQ dr

} 1
2

≤
1
4
E sup
0≤s≤t∧4N

|∂zun|2

+ 8%KE
∫ t∧4N

0
‖∂zun(t)‖2dt + 8%KT (5.5.52)

and

E
(

sup
0≤s≤t∧4N

|J5(s)|
)

≤ 2
√
2%E

{ ∫ t∧4N

0

∫
Z
|〈∂zzun(s), gn(u(s), z′ )〉|2+(dz′ )ds

} 1
2

≤ 2
√
2%E

{ ∫ t∧4N

0

∫
Z
|∂zun(s)|2|∂zgn(u(s), z′ )|2+(dz′ )ds

} 1
2

≤
1
4
E sup
0≤s≤t∧4N

|∂zun|2 + 8%2KE
∫ t∧4N

0
‖∂zun(t)‖2dt + 8%2KT. (5.5.53)

Letting N → ∞, by Gronwall’s inequality and eqs (5.5.49)–(5.5.53), we get

sup
n
E
(
sup
0≤s≤T

|∂zun|2
)
+ sup

n
E
∫ T

0
‖∂zun(r)‖2dr

≤ C(K,T, |∂zf |L2(K;L2(0,T;H)))
(
1 + E|∂z. |2

)
. (5.5.54)

Similarly, by eq. (5.5.48), we get

|∂zun(t ∧ 4N)|4 + 4
( ∫ t∧4N

0
‖∂zun(r)‖2 dr

)2
≤ 2|Pn∂z. |4 + 10

∑
1≤i≤5

J2i (t). (5.5.55)

By eq. (5.5.49), we deduce that
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J22(t) ≤ 2=2
( ∫ t∧4N

0
‖∂zun(r)‖2dr

)2
+

2
=2
(
|∂zf |2L2(0,t∧4N ;H)

)2
. (5.5.56)

As we obtain eqs (5.5.42)–(5.5.44), by (B.2), we obtain

E
(

sup
0≤s≤t∧4N

|J24(s)|
)
≤ 3%2E

( ∫ t∧4N

0

∫
Z
|∂zgn(u(s–), z′ )|2+(dz′ )ds

)2
+ 3%2E

( ∫ t∧4N

0

∫
Z
|∂zgn(u(s–), z′ )|2Ñ(ds,dz′ )

)2
+ 3%2 E

( ∫ t∧4N

0
|∂z3n(un(r)) Pn|2LQ dr

)2
≤ 3C(K)%2E

∫ t∧4N

0
(1 + |∂zun|4)ds

≤ 3C(K,T)%2 + 3C(K)%2E
∫ t∧4N

0
sup
0≤r≤s

|∂zun(s)|4ds, (5.5.57)

E
(

sup
0≤s≤t∧4N

|J23(s)|
)
≤ C

√
%E

{ ∫ t∧4N

0
|∂zun(r)|2 |∂z3n(un(r)) Pn|2LQ dr

}
≤
1
40

E sup
0≤s≤t∧4N

|∂zun|4

+ C(K)%E
( ∫ t∧4N

0
‖∂zun(t)‖2dt

)2
+ C(K,T)% (5.5.58)

and

E
(

sup
0≤s≤t∧4N

|J25(s)|
)
≤ C%E

{ ∫ t∧4N

0

∫
Z
|〈∂zun(s), ∂zgn(u(s), z′ )〉|2+(dz′ )ds

}
≤
1
40

E sup
0≤s≤t∧4N

|∂zun|4

+ C(K)%E
( ∫ t∧4N

0
‖∂zun(t)‖2dt

)2
+ C(K,T)%. (5.5.59)

As we obtain eq. (5.5.35), let N → ∞, by Gronwall’s inequality and from eqs (5.5.56) to
(5.5.59), we get

E
(
sup
0≤s≤T

|∂zun|4
)
+ E

( ∫ T

0
‖∂zun(r)‖2dr

)2
≤ C

(
E|∂zf |4L2(0,T;H),K,T

)
(1 + E|∂z. |4). (5.5.60)

∎

Due to Ladyzhenskaya’s inequality for 2D domain, we now have the following bound
in L4(M).
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Proposition 5.5.3. Let . ∈ L4(K,H), then there exists a constant

C2 := C2(K,T,M, |f |L4(K;L2(0,T;H))),

such that

sup
n

E
∫ T

0
|u%n(s)|4L4ds ≤ C2(1 + E|. |4). (5.5.61)

Proof of Theorem 5.5.1. Let KT = [0,T] × K be endowed with the product measure
ds ⊗ dP on B([0,T]) ⊗ F . Using a priori estimates in Propositions 5.5.1 and 5.5.2 and
Banach–Alaoglu theorem, we deduce the existence of a subsequence of Galerkin ele-
ments un and processes u ∈ L2(KT ,V) ∩ L4(KT , L4(M)) ∩ L4(K, L∞([0,T],H)), ∂zu ∈
L2(KT ,V)∩L4(K, L∞([0,T],H)), E ∈ L2(KT ,V ′), S ∈ L2(KT , LQ) and G ∈ H

2
+([0,T]×Z,H),

for which the following limits hold:
(i) un → u weakly in L2(KT ,V), ∂zun → ∂zu weakly in L2(KT ,V),
(ii) un → u weakly in L4(KT , L4(D)),
(iii) un is weak star converging to u in L4(K, L∞([0,T],H)),

∂zun is weak star converging to ∂zu in L4(K, L∞([0,T],H)),
(iv) E(un) → E weakly in L2(KT ,V ′),
(v) 3n(un)Pn → S weakly in L2(KT , LQ),
(vi) gn(un) → G weakly in H

2
+([0,T] × Z,H).

Indeed, (i)–(iii) are straightforward consequences of Propositions 5.5.1–5.5.3. Further-
more, by an application of eq. (5.5.12),

E
∫ T

0
|PnB(un(t))|2V′dt

≤ CE
[
sup
t∈[0,T]

(|un(t)|4 + |∂zun(t)|4) +
( ∫ T

0
‖un(t)‖2dt

)2]
< ∞. (5.5.62)

Hence, E(un(t)) has a subsequence converging weakly in L2(KT ,V
′ ) to E(t).

Since diffusion coefficient has the linear growth property and un is bounded in
L2([0,T],V) uniformly in n, the last two statements hold.

Then u has the Itô differential

du(t) = .dt +
√
%S(t)dW(t) + E(t)dt + %

∫
Z
G(t)Ñ(dt, dz′ ), (5.5.63)

weakly in L2(KT ,V
′ ).

In eq. (5.5.63) we still have to prove that ds ⊗ dP a.s. on KT , one has

S(s) = 3(u(s)), E(s) = E(u(s)) and G(s) = G(u(s)).
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To establish these relations we use the same idea as in Ref. [84]. Let

X := {8 ∈ L4(KT , L4(D)) ∩ L4
(
K, L∞([0,T],H)

)
∩ L2(KT ,V),

∂z8 ∈ L4
(
K, L∞([0,T],H)

)
∩ L2(KT ,V)}.

Then (i)–(iii) yield u ∈ X , let 8 ∈ L∞(KT ,Hm) ⊂ X . For every t ∈ [0,T], set

r(t) =
∫ t

0

[
C1(1 + |∂z8(s)|4) + C2‖8(s)‖2 + %L

]
ds. (5.5.64)

Then r(t) < ∞ for all t ∈ [0,T].
Applying the Itô lemma to the function e–r(t)|un(t)|2 , one obtains

d
[
e–r(t)|un(t)|2

]
= e–r(t)〈2E(un) – ṙ(t)un, un〉dt
+ %e–r(t)|3n(un)|2LQdt + 2

√
%e–r(t)〈3n(un), un〉dW

+ e–r(t)%
∫
Z
|gn(un(t–), z′ )|2N(dt, dz′ )

+ 2e–r(t)%
∫
Z
〈un(t–), gn(un(t–), z′ )〉Ñ(dt, dz′ ).

Integrating and taking expectation, we get

E
[
e–r(T)|un(T)|2 – |un(0)|2

]
= E

[ ∫ T

0
e–r(t)〈2E(un) – ṙ(t)un, un〉dt

]
+ E[

∫ T

0
%e–r(t)|3n(un)|2LQdt]

+ E
∫ T

0
e–r(t)%

∫
Z
|gn(un(t), z′ )|2+(dz′ )dt,

where the term with dW(t) and Ñ(dt, dz) are martingales and having zero average.
By lower semicontinuity property of weak convergence,

lim inf
n

E
[ ∫ T

0
e–r(t)〈2E(un) – ṙ(t)un, un〉dt

+
∫ T

0
%e–r(t)|3n(un)|2LQdt +

∫ T

0
e–r(t)%

∫
Z
|gn(un(t), z′ )|2+(dz′ )dt

]
= lim inf

n
E
[
e–r(T)|un(T)|2 – |un(0)|2

]
≥ E

[
e–r(T)|u(T)|2 – |u(0)|2]

= E
[ ∫ T

0
e–r(t)〈2E – ṙ(t)u, u〉dt +

∫ T

0
%e–r(t)|S|2LQdt

+
∫ T

0
e–r(t)%

∫
Z
|G|2+(dz′ )dt

]
. (5.5.65)

Then by monotonicity property (5.5.21), condition (A.2) and eq. (5.5.64), we obtain
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2E
[ ∫ T

0
e–r(t)〈E(un) – E(8), un – 8(t)〉dt

]
– E

[ ∫ T

0
e–r(t)ṙ(t)|un – 8|2dt

]
+ E

[ ∫ T

0
%e–r(t)|3n(un) – 3n(8)|2LQdt

+
∫ T

0
e–r(t)%

∫
Z
|gn(un(t), z′ ) – gn(8(t), z′ )|2+(dz′ )dt

]
≤ 0. (5.5.66)

Furthermore, we obtain

E
[ ∫ T

0
e–r(t)〈2E(un) – ṙ(t)un, un〉dt

+
∫ T

0
%e–r(t)|3n(un)|2LQdt +

∫ T

0
e–r(t)%

∫
Z
|gn(un(t), z′ )|2+(dz′ )dt

]
≤ E

[ ∫ T

0
e–r(t)〈2E(un) – ṙ(t)(2un – 8),8〉dt

]
+ E

[ ∫ T

0
e–r(t)〈2E(8), un – 8〉dt

]
+ %E

[ ∫ T

0
e–r(t)〈23n(un) – 3n(v), 3n(v)〉LQ

]
+ %E

[ ∫ T

0
e–r(t)

∫
Z
〈2gn(un, z′ ) – gn(v, z′ ), gn(v, z′ )〉+(dz′ )dt

]
.

Letting n → ∞, by eq. (5.5.65), we have

E
[ ∫ T

0
e–r(t)〈2E(t) – ṙ(t)u, u〉dt

+
∫ T

0
%e–r(t)|S|2LQdt +

∫ T

0
e–r(t)%

∫
Z
|G|2+(dz′ )dt

]
≤ E

[ ∫ T

0
e–r(t)〈2E(t) – ṙ(t)(2u – 8),8〉dt

]
+ E

[ ∫ T

0
e–r(t)〈2E(8), u – 8〉dt

]
+ %E

[ ∫ T

0
e–r(t)〈2S – 3(8), 3(8)〉LQdt

]
+ %E

[ ∫ T

0
e–r(t)

∫
Z
〈2G – g(8, z′ ), g(8, z′ )〉+(dz′ )dt

]
.

Rearranging the terms, we obtain

E
[ ∫ T

0
e–r(t)〈2E(t) – 2E(8), u – 8〉dt

]
+ E

[ ∫ T

0
e–r(t)ṙ(t)|u(t) – 8(t)|2dt

]
+ E

[ ∫ T

0
%e–r(t)|S – 3(8)|2LQdt

]
+ E

[ ∫ T

0
e–r(t)%

∫
Z
|G – g(8)|2+(dz′ )dt

]
≤ 0.
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Taking 8(t) = u(t), we obtain S(t) = 3(u(t)) and G(t) = g(u(t)). If we note 8(t) =
u(t) – ,'(t), , > 0, we have

,E
[ ∫ T

0
e–r(t)〈2E(t) – 2E(u – ,'), '〉dt + ,

∫ T

0
e–r(t)ṙ(t)|'(t)|2dt

]
≤ 0.

Dividing by , on both sides of above inequality and letting , → 0, we have

E
[ ∫ T

0
e–r(t)〈2E(t) – 2E(u – ,'), '〉dt

]
≤ 0.

Since '(t) is arbitrary, we obtain E(t) = E(u(t)). Thus the existence has been proved.
To complete the proof of Theorem 5.5.1, we should show that u(t) is unique in

L2(K,D(0,T,H)∩L2(0,T,V)). Suppose v(t) be another solution and let �(t) = u(t)–v(t),
then �(t) satisfies the following equation:

d�(t) = (E(u) – E(v))dt +
√
%(3(u) – 3(v))dW

+
∫
Z
(g(u(t–), z′ ) – g(v(t–), z′ ))Ñ(dt, dz′ ). (5.5.67)

Applying Itô lemma to e–r(t)|�(t)|2, we get

d(e–r(t)|�(t)|2) =
[
– e–r(t)ṙ(t)|�(t)|2 + 2e–r(t)〈E(u) – E(v), �(t)〉

+ %e–r(t)|3(u) – 3(v)|2LQ
]
dt

+ 2
√
%e–r(t)〈3(u) – 3(v), �〉dW(t)

+ e–r(t)%
∫
Z
|g(u(t), z′ ) – g(v(t)|2N(dt, dz′ )

+ 2e–r(t)%
∫
Z
〈g(u(t–), z′ ) – g(v(t–), z′ ), �(t)〉Ñ(dt, dz′ ). (5.5.68)

Taking expectation on both sides and recalling that the martingales have zero aver-
ages and

r(t) =
∫ t

0

[
C1(1 + |∂zv(s)|4) + C2‖v(s)‖2 + %L

]
ds, (5.5.69)

noting eq. (5.5.66), we have

E
[
e–r(t)|�(t)|2 + C

∫ T

0
e–r(t)‖�(t)‖2dt

]
≤ E|�(0)|2 = 0, (5.5.70)

which leads to the uniqueness of the solution. ∎
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5.5.2 Large deviation for stochastic primitive equations

In this section, we first obtain the well-posedness and general a priori estimates for
2D stochastic primitive equations with small and more general multiplicative noise,
which couple the temperature equation by another method which is different from
that in Ref. [113]. Our second result is a Wentzell–Freidlin-type large deviation prin-
ciple (LDP) for 2D stochastic primitive equations. There are already several interesting
and important papers on LDP and its applications [53, 62, 84, 99, 141, 201, 234]. Es-
pecially Ref. [62] dealts with a class of abstract nonlinear stochastic models, which
covers many 2D hydrodynamical models including 2D Navier–Stokes equations, 2D
magnetohydrodynamic models and 2D magnetic Bénard problem and also some shell
models of turbulence, but does not include our problem. It is because of the mapping
B in this section does not satisfy the condition (C1) of Ref. [62]. The idea of our proof
by weak convergence approach [42, 43] is similar to the one in Ref. [84]; therefore, in
this section, we only give the outline of the proof.

5.5.2.1 Mathematical formulation
We study the following stochastic 2D primitive equations:

du%

dt
= -1Bu% – u%∂xu% – w%∂zu% – ∂xp + f +

√
%31(t,6%)Ẇ1, (5.5.71)

∂zp = –(, (5.5.72)
∂xu% = –∂zw%, (5.5.73)
d(%
dt

= -2B(% – u%∂x(% – w%∂z(% + q +
√
%32(t,6%)Ẇ2, (5.5.74)

with velocity u% = u%(t, x, z) ∈ R, temperature (% = (%(t, x, z) ∈ R, 6% = (u%, (%), pressure
p and f is an external forcing term, q is a given heat source, (x, z) ∈ M = [0, l]× [–h, 0],
t > 0 and Ẇ1 and Ẇ2 are the white noise processes. Here B is the Laplacian operator
and without loss of generality in this section, we take -1, -2 to be 1.

We partition the boundary into the top Au = {z = 0}, the bottom Ab = {z = –h} and
the sides As = {x = 0} ∪ {x = l}. In this section, we consider the following boundary
conditions:

on Au : ∂zu% = 0, w% = 0, ∂z(% = 0,
on Ab : ∂zu% = 0, w% = 0, ∂z(% = 0,
on As : u% = 0, ∂x(% = 0.

Due to eqs (5.5.72) and (5.5.73), we have that

w(x, z, t) = –
∫ z

–h
∂xu%(x, . , t)d. , (5.5.75)

p(x, z, t) = ps(x, t) –
∫ z

–h
(%(x, . , t)d. . (5.5.76)
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Note that ps denotes the surface pressure (with only x-dependence). We define the
function spaces H and V as follows:

H = H1 × H2, V = V1 × V2, (5.5.77)

H1 =
{
v ∈ L2(M) |

∫ 0

–h
vdz = 0

}
, (5.5.78)

H2 =
{
( ∈ L2(M)

}
, (5.5.79)

V1 =
{
v ∈ H1(M) |

∫ 0

–h
vdz = 0, v|As = 0

}
, (5.5.80)

V2 =
{
( ∈ H1(M)

}
. (5.5.81)

These spaces are endowed with the L2 and H1 norms, which we, respectively, denote
by | ⋅ | and ‖ ⋅ ‖. The inner products and norms on V,H are given by

(U,U1) = (v, v1) + ((, (1) =
∫
M

(vv1 + ((1)dM,

((U,U1)) = ((v, v1)) + (((, (1)) =
∫
M

(∇v∇v1 +∇(∇(1 + ((1)dM,

|U| = (U,U)
1
2 , ‖U‖ = ((U,U))

1
2 ,

where U = (v, (),U1 = (v1, (1) ∈ V. We shall also need the intermediate space

Y = Y1 × Y2, (5.5.82)
Y1 = {v ∈ H1, ∂zv ∈ H1}, Y2 = {( ∈ H2, ∂z( ∈ H2}, (5.5.83)

Let V ′ be the dual space of V. We have the dense and continuous embeddings V ↪

H = H′ ↪ V ′ and denote by 〈6,8〉 the duality between 6 ∈ V (resp. Vi) and 6 ∈ V ′
(resp. V ′i ).

Consider an unbounded linear operator A = (A1,A2) = (B,B) : D(A) → H with
D(A) = D(A1) × D(A2), where

D(A1) = {u ∈ V1 ∩ H2(M) : ∂zu|Au = ∂zu|Ab = 0} ⊂ V1 ∩ H2(M),
D(A2) = {( ∈ V2 ∩ H2(M) : ∂x(|As = 0, ∂z(|Ab = ∂z(|Au = 0} ⊂ V2 ∩ H2(M),

and define

〈A1u, v〉 = ((u, v)), 〈A2(, '〉 = (((, ')) ∀u, v ∈ D(A1), ∀(, ' ∈ D(A2).

The Laplace operators A1 and A2 are self-adjoint, positive, with compact self-adjoint
inverses. They map Vi to V ′i , i = 1, 2.

In accordance with eq. (5.5.75) we take
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W(v) := –
∫ z

–h
∂xv(x, z̃)d̃z (5.5.84)

and let

B1(u, v) := u∂xv +W(u)∂zv, (5.5.85)

where u ∈ V1, and v ∈ V1 or V2.
Onewould like to establish that B1 is a well-defined and continuousmapping from

V1 × V1 → V ′1 or V1 × V2 → V ′2 according to

〈B1(u, v),w〉 = b1(u, v,w), (5.5.86)

where the associated trilinear form is given by

b1(u, v,w) =
∫
M

(u∂xvw +W(u)∂zvw)dM.

In the sequel, when no confusion arises, we denote by C a constant whichmay change
from one line to the next one.

Lemma 5.5.5 (Estimates for b1 and B1). The trilinear forms b1 and B1 have the following
properties. There exists a constant C > 0 such that

|b1(u, v,w)| ≤ C
(
|u| 12 ‖u‖ 1

2 ‖v‖|w| 12 ‖w‖ 1
2 + |∂xu||∂zv||w| 12 ‖w‖ 1

2
)
,

u ∈ V1, v ∈ V1(or V2),w ∈ V1(or V2), (5.5.87)
b1(u, v, v) = 0, u ∈ V1, v ∈ V1(or V2), (5.5.88)

〈B1(u, u), ∂zzu〉 = 0, u ∈ V1. (5.5.89)

Proof. Following the similar estimates in Ref. [113], we easily obtain these results. In
this section, we only give the proof of eqs (5.5.87) and (5.5.89). By Hölder’s inequality
and Ladyzhenskaya’s inequality, we have

|b1(u, v,w)| ≤
∫
M

(
|u∂xvw| + |W(u)∂zvw|

)
dM

≤ C|u| 12 ‖u‖ 1
2 ‖v‖|w| 12 ‖w‖ 1

2

+
∫ l

0

(
sup

z∈[–h,0]

{ ∫ z

–h
∂xudz

} ∫ l

0
|∂zvw|dz

)
dx

≤ C|u| 12 ‖u‖ 1
2 ‖v‖|w| 12 ‖w‖ 1

2

+ C
∫ l

0

( ∫ 0

–h
|∂xu|2dz ⋅

∫ 0

–h
|∂zv|2dz ⋅

∫ 0

–h
|w|2dz

)1/2
dx

≤ C|u| 12 ‖u‖ 1
2 ‖v‖|w| 12 ‖w‖ 1

2 + C sup
x∈[0,l]

( ∫ 0

–h
|w|2dz

)1/2
×
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∫ l

0

( ∫ 0

–h
|∂xu|2dz ⋅

∫ 0

–h
|∂zv|2dz

)1/2
dx

≤ C|u| 12 ‖u‖ 1
2 ‖v‖|w| 12 ‖w‖ 1

2 + C|∂xu||∂zv||w| 12 ‖w‖ 1
2 .

Noting eqs (5.5.85) and (5.5.86) and considering boundary conditions, we have

〈B1(u, u), ∂zzu〉 =
∫
M

(u∂xu∂zzu +W(u)∂zu∂zzu)dM

= –
∫
M

[∂z(u∂xu)∂zu + ∂z(W(u)∂zu)∂zu]dM

=
∫
M

[–∂xu(∂zu)2 – u∂xzu∂zu +
1
2
∂xu(∂zu)2]dM

= 0.

∎

Remark 5.5.4. Glatt-Holtz and Temam [112] considered ∂zu + !uu = 0, ∂z( + !(( = 0
on the top boundary, and defined different function spaces from this section. Due to the
boundary conditions which they considered on the top boundary, in order to deal with
the pressure term, they introduced a projection operator Q onto H from L2(M)2 such
thatQ∂xps = 0 and 〈B1(u, u), ∂zzu〉 ≠ 0. In this section, since we consider free boundary
condition on top boundary, we do not introduce the projection operator and thus the
pressure term remains in equations. To obtain the estimates for |u|2p and |∂zu|2p, noting
the boundary conditions considered in this section and that ps is only x-dependent, we
have the inner product

〈u, ∂xps〉 =
∫ l

0

∫ 0

–h
u∂xpsdxdz

= –
∫ l

0
ps
(
∂x

∫ 0

–h
udz

)
dx

= 0,

and

〈∂zzu, ∂xps〉 =
∫ l

0

∫ 0

–h
∂zzu∂xpsdxdz

= –
∫ l

0
ps
(
∂x

∫ 0

–h
∂zzudz

)
dx

= –
∫ l

0
ps
(
∂x∂zu|z=0z=–h

)
dx

= 0.

But if we consider the same boundary conditions as in Ref. [112], we should introduce
the projection operator Q and add estimates for 〈B1(u, u), ∂zzu〉 as the author did in
Ref. [112].
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In the present section, we assume that W1(t) ∈ H1(M),W2(t) ∈ H2(M) are inde-
pendent Wiener processes defined on a filtered probability space (K,F ,Ft,P), with
linear symmetric positive covariant operators Q1 and Q2, respectively. We denote
Q = (Q1,Q2). It is a linear symmetric positive covariant operator in the Hilbert space
H. We assume that Q1,Q2 and thus Q are trace class (and hence compact [75]), i.e.,
tr(Q) < ∞.

We still need to introduce some definitions (see [84, 235]) in the following:
– Hilbert space H0 = Q 1

2H with the scalar product

(6,8)0 = (Q– 1
26,Q– 1

28) ∀6,8 ∈ H0,

together with the induced norm | ⋅ |0 =
√
(⋅, ⋅)0.

– LQ is the space of linear operators S such that SQ
1
2 is a Hilbert–Schmidt oper-

ator (and thus a compact operator [75]) from H to H. The norm in the space LQ
is defined by |S|2LQ = tr (SQS∗), where S∗ is the adjoint operator of S.

– A is the set of H0 -valued (Ft)-predictable stochastic processes 6 with the
property

∫ T
0 |6(s)|20ds < ∞, a.s. Define

AM = {6 ∈ A : 6(9) ∈ SM, a.s.}. (5.5.90)

With these notations, the above primitive equations become

du%

dt
= Bu% – u%∂xu% –W(u%)∂zu% – ∂xps

+
∫ z

–h
∂x(% + f +

√
%31(t,6%)Ẇ1, (5.5.91)

d(%
dt

= B(% – u%∂x(% –W(u%)∂z(% + q +
√
%32(t,6%)Ẇ2. (5.5.92)

Thus, we rewrite this system for 6% = (u%, (%) as

d6% + [A6% + B(6%,6%) + F(6%)]dt = Rdt +
√
%3(t,6%)dW(t), (5.5.93)

whereW(t) = (W1(t),W2(t)) and

A6% = (A1u%, A2(%), (5.5.94)
B(6%) = (B1(u%, u%), B1(u%, (%)), (5.5.95)

F6% = (∂xp –
∫ z

–h
∂x(%, 0), (5.5.96)

R = (f , q), (5.5.97)
3(t,6%) = (31(t,6%), 32(t,6%)). (5.5.98)

 EBSCOhost - printed on 2/10/2023 4:53 PM via . All use subject to https://www.ebsco.com/terms-of-use



5.5 Stochastic primitive equations 193

The noise intensity 3 : [0,T] × V → LQ(H0,H) is assumed to satisfy the following
conditions:

Assumption A. There exist positive constants K and L such that
(A.1) 3 ∈ C

(
[0,T] × H; LQ(H0,H)

)
,

(A.2) |3(t,6)|2LQ ≤ K(1 + ‖6‖2) ∀t ∈ [0,T] , ∀6 ∈ V,

(A.3) |3(t,6) – 3(t,8)|2LQ ≤ L‖6 – 8‖2 ∀t ∈ [0,T] ∀6,8 ∈ V.

In order to obtain large deviation, we should introduce the stochastic control equa-
tion, let h ∈ A, % ≥ 0 and consider the following generalized primitive equations with
initial condition 6%

h(0) = . :

d6%
h(t) +

[
A6%

h(t) + B(6%
h(t)) + F(6%

h)
]
dt

= Rdt +
√
%3(6%

h(t))dW(t) + 3̃(6%
h(t))h(t)dt. (5.5.99)

Then, we introduce another intensity coefficient 3̃ ∈ C([0,T] ×V; LQ(H0,H)) such that

Assumption Ã. There exist positive constants K̃ and L̃ such that
(Ã.1) |3̃(t,6)|2LQ ≤ K̃(1 + |6|2L4 ) ∀t ∈ [0,T], ∀6 ∈ L4(D),

(Ã.2) |3̃(t,6) – 3̃(t,8)|2LQ ≤ L̃|6 – 8|2L4 ∀t ∈ [0,T], ∀6,8 ∈ L4(D).

Remark 5.5.5. Continuity condition (A.1) and Lipschitz condition (A.3) imply the
growth condition (A.2). Meanwhile, (Ã.2) together with the assumption 3̃ ∈

C([0,T] × V; LQ(H0,H)) imply (Ã.1). We list (A.2) and (Ã.1) here only for convenience.

To obtain Theorem 5.5.1, we have to give the additional assumptions on 3 and 3̃.

Assumption B. There exist positive constant K such that
(B.1) |∂z3(t,6)|2LQ ≤ K(1 + ‖∂z6‖2) ∀t ∈ [0,T] ∀∂z6 ∈ V,

(B.2) |∂z3̃(t,6)|2LQ ≤ K(1 + ‖∂z6‖2) ∀t ∈ [0,T] ∀∂z6 ∈ V.

5.5.2.2 Well-posedness
Let X := C

(
[0,T];H

)
∩ L2

(
(0,T);V

)
denote the Banach space endowed with the norm

‖6‖X =
{
sup
0≤s≤T

|6(s)|2 +
∫ T

0
‖6(s)‖2ds

} 1
2 . (5.5.100)

Recall that an {Ft}-predictable stochastic process 6%
h(t,9) is called the weak solution

for the generalized stochastic primitive problem (5.5.99) on [0,T] with initial condition
. ∈ X, if 6%

h is in C([0,T];H) ∩ L
2((0,T);V), a.s., and satisfies
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(6%
h(t),8) – (. ,8) +

∫ t

0
[〈6%

h(s),A8〉 + 〈B(6%
h(s)),8

〉
+ (F(6%

h(s)),8)]ds =∫ t

0
(R,8)ds +

√
%
∫ t

0

(
3(6%

h(s))dW(s),8
)
+
∫ t

0

(
3̃(6%

h(s))h(s) , 8
)
ds, a.s., (5.5.101)

for all 8 ∈ D(A) and all t ∈ [0,T]. Note that this solution is a strong one in the probabil-
istic meaning, that is written in terms of stochastic integrals with respect to the given
Brownian motion W. The main result of this section is the following theorem.

Theorem 5.5.1 (Well-posedness and a priori bounds). Fix M > 0, then there exists %0 :=
%0(K,K, L, K̃, L̃,T,M) > 0, such that the following existence and uniqueness result is true
for 0 ≤ % ≤ %0. Let the initial datum . ∈ Y and satisfy E|. |4 < ∞, E|∂z. |4 < ∞, and let
h ∈ AM, f , ∂zf ∈ L4(K; L2(0,T;H)), q, ∂zq ∈ L4(K; L2(0,T;H)) and % ∈ [0, %0], then there
exists a unique weak solution 6%

h of the generalized stochastic primitive problem (5.5.99)
with initial condition 6%

h(0) = . ∈ Y such that 6%
h ∈ X a.s. Furthermore, there exists a

constant

C := C
(
K,K, L, K̃, L̃,T,M, |f |L4(K;L2(0,T;H)), |q|L4(K;L2(0,T;H)),

|∂zf |L4(K;L2(0,T;H)), |∂zq|L4(K;L2(0,T;H))
)
,

such that for % ∈ [0, %0] and h ∈ AM,

E‖6%
h‖2X ≤ 1 + E

(
sup
0≤t≤T

|6%
h(t)|4 +

∫ T

0
‖6%

h(t)‖2 dt
)
≤ C

(
1 + E|. |4), (5.5.102)

and satisfy the additional regularity:

∂z6%
h(t) ∈ L

4(K, L∞(0,T;H) ∩ L2(0,T;V)). (5.5.103)

For 6 = (u, () ∈ V, define

E(6) = –A6 – B(6) – F(6) + R. (5.5.104)

We first obtain monotonicity properties of E.

Lemma 5.5.6. Assume that 6 = (u, () ∈ V and 8 = (v, ') ∈ V, we have

〈
E(6) –E(8),6–8

〉
+
1
2
‖6–8‖2 ≤ C|6–8|‖6–8‖‖8‖+C(1+ |∂z8|4)|6–8|2. (5.5.105)
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Proof. Setting U = u – v, C = ( – ' andI = 6 – 8 := (U,C), we deduce〈
E(6) – E(8),I

〉
= –

〈
A(6) – A(8),I

〉
–
〈
B(6) – B(8),I

〉
–
〈
F(6) – F(8),I

〉
≡ I1 + I2 + I3.

Integrating by parts and using Lemma 5.5.5, Hölder’s inequality, Ladyzhenskaya’s
inequality for 2D domain and Young’s inequality, we get

I1 = –|∇(u – v)|2 – |∇(( – ')|2 = –‖6 – 8‖2,

I2 = b1(u – v, u – v, v) + b1(u – v, ( – ', ')
≤ |u – v|L4‖v‖|u – v|L4 + |u – v|L4‖'‖|( – '|L4
+|∂x(u – v)||∂zv||u – v| 12 ‖u – v‖ 1

2 + |∂x(u – v)||∂z'||( – '| 12 ‖( – '‖ 1
2

≤ C|u – v|‖u – v‖‖v‖ + C|u – v| 12 ‖u – v‖ 1
2 ‖'‖|( – '| 12 ‖( – '‖ 1

2

+‖u – v‖ 3
2 |∂zv||u – v| 12 + ‖u – v‖ 1

2 |‖( – '‖ 1
2 |∂z'||( – '| 12

≤ C|6 – 8|‖6 – 8‖(‖v‖ + ‖'‖) + C‖6 – 8‖ 3
2 |6 – 8| 12 |∂z8|

≤ C|6 – 8|‖6 – 8‖‖8‖ + 1
4
‖6 – 8‖2 + C|∂z8|4|6 – 8|2,

I3 =
∫
M

( ∫ z

–h
∂x(( – ')d̃z ⋅ (u – v)

)
dM ≤

∫
M

( ∫ 0

–h
|∂x(( – ')|d̃z ⋅ |u – v|

)
dM

≤ h|∂x(( – ')||u – v| ≤ 1
4

‖6 – 8‖2 + C|6 – 8|2.

Combining I1, I2 and I3, we end the proof. ∎

We now introduce the Galerkin systems associated with the original equation and es-
tablish some uniform a priori estimates. For any n ≥ 1, let Hn = span(e1,⋯, en) ⊂
Dom(A) and Pn : H → Hn denote the orthogonal projection onto Hn. Note that Pn
contracts the H and V norms. Suppose that the H-valued Wiener process W with
covariance operator Q is such that

PnQ
1
2 = Q

1
2 Pn, n ≥ 1,

which is true if Qh =
∑

n≥1 +nen with trace
∑

n≥1 +n < ∞. Then for H0 = Q 1
2H and

(6,8)0 = (Q– 1
26,Q– 1

28), for 6,8 ∈ H0, we see that Pn : H0 → H0 ∩ Hn is a contraction
in both of the H and H0 norms. LetWn = PnW, 3n = Pn3 and 3̃n = Pn3̃.

 EBSCOhost - printed on 2/10/2023 4:53 PM via . All use subject to https://www.ebsco.com/terms-of-use



196 5 Applications

For h ∈ AM, we consider the following stochastic ordinary differential equation
on the n-dimensional space Hn defined by

d(6%
n,h,8) =

[〈E(6%
n,h),8〉 + (3̃n(6%

n,h)h,8)
]
dt +

√
% (3n(6%

n,h)dWn,8), (5.5.106)

for 8 = (v, ') ∈ Hn and 6%
n,h(0) = Pn. .

We note that formulation (5.5.106) allows one to treat6%
n,h as a process inR

n. Hence
by a well-posedness result for stochastic ordinary differential equations, there exists
a maximal solution to eq. (5.5.106), i.e., a stopping time 4%n,h ≤ T such that eq. (5.5.106)
holds for t < 4%n,h and as t ↑ 4%n,h < T, |6%

n,h(t)| → ∞. As such one can apply the finite-
dimensional Itô’s calculus to the above Galerkin systems. We next establish some
uniform estimates on 6%

n,h (independent of n). For every N > 0, set

4N = inf{t : |6%
n,h(t)| ≥ N} ∧ inf{t : |∂z6%

n,h(t)| ≥ N} ∧ T. (5.5.107)

The following proposition provides the (global) existence and uniqueness of ap-
proximate solutions and also their uniform (a priori) estimates. This is the main
preliminary step in the proof of Theorem 5.5.1.

Proposition 5.5.4. There exists %0,p := %0,p(K, K̃,T,M) such that for 0 ≤ % ≤ %0,p the
following result holds for an integer p ≥ 1 (with the convention x0 = 1). Let h ∈ AM,
f , q ∈ L2p(K; L2(0,T;H)) and . ∈ L2p(K,H). Then eq. (5.5.106) has a unique solution with
a modification 6%

n,h ∈ C([0,T],Hn) satisfying

sup
n

E
(
sup
0≤t≤T

|6%
n,h(t)|2p +

∫ T

0
‖6%

n,h(s)‖2 |6%
n,h(s)|2(p–1)ds

)
≤ C(p,K, K̃,T,M, |f |L2p(K;L2(0,T;H)), |q|L2p(K;L2(0,T;H)))

(
E|. |2p + 1). (5.5.108)

Proof. Itô’s formula yields that for t ∈ [0,T] and 4N defined by eq. (5.5.107),

|6%
n,h(t ∧ 4N)|2 = |Pn. |2 + 2

√
%
∫ t∧4N

0

(
3n(6%

n,h(s))dWn(s),6%
n,h(s)

)
+ 2

∫ t∧4N

0

〈
E(6%

n,h(s)),6%
n,h(s)〉ds

+ 2
∫ t∧4N

0

(
3̃n(6%

n,h(s))h(s),6%
n,h(s)

)
ds

+ %
∫ t∧4N

0
|3n(6%

n,h(s))Pn|2LQ ds. (5.5.109)

Applying again Itô’s formula to xp for p ≥ 2 and using Lemma 5.5.5 and with the
convention p(p – 1)xp–2 = 0 for p = 1 yields for t ∈ [0,T],
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|6%
n,h(t ∧ 4N)|2p + 2p

∫ t∧4N

0
|6%

n,h(r)|2(p–1)
[‖u%n,h(r)‖2 + ‖(%n,h(r)‖2

]
dr

≤ |Pn. |2p +
∑
1≤j≤6

Tj(t), (5.5.110)

where

T1(t) = 2p
∫ t∧4N

0
|〈6%

n,h, F(6%
n,h)

〉||6%
n,h(r)|2(p–1)dr,

T2(t) = 2p
∫ t∧4N

0
|〈6%

n,h,R
〉||6%

n,h(r)|2(p–1)dr,

T3(t) = 2p
√
%
∣∣∣ ∫ t∧4N

0

(
3n(6%

n,h(r)) dWn(r),6%
n,h(r)

) |6%
n,h(r)|2(p–1)

∣∣∣,
T4(t) = 2p

∫ t∧4N

0
|(3̃n(6%

n,h(r)) h(r),6%
n,h(r))| |6%

n,h(r)|2(p–1)dr,

T5(t) = p %
∫ t∧4N

0
|3n(6%

n,h(r)) Pn|2LQ |6%
n,h(r)|2(p–1)dr,

T6(t) = 2p(p – 1)%
∫ t∧4N

0
|Fn 3∗

n(6%
n,h(r)) 6%

n,h(r)|2H0 |6%
n,h(r)|2(p–2)dr.

The Hölder’s inequality and Young’s inequality imply that

T1(t) ≤ 2p
∫ t∧4N

0
|6%

n,h(r)|2(p–1)
∫
M

(
(
∫ 0

–h
|∂x(%n,h(r)|dz) ⋅ |u%n,h(r)|

)
dM dr

≤ 2p
∫ t∧4N

0
|6%

n,h(r)|2(p–1)[h|∂x(%n,h(r)||u%n,h(r)|]dr

≤
1
12

∫ t∧4N

0
|6%

n,h(r)|2(p–1)‖6%
n,h(r)‖2dr

+ C1
∫ t∧4N

0
|6%

n,h(r)|2p (5.5.111)

and

T2(t) = 2p
∫ t∧4N

0
[(u%n,h(r), f ) + ((%n,h(r), q)]|6%

n,h(r)|2(p–1)dr

≤
1
12

∫ t∧4N

0
|6%

n,h(r)|2(p–1)‖6%
n,h(r)‖2dr

+C2 sup
0≤s≤t∧4N

|6%
n,h(r)|2(p–1)

∫ t∧4N

0
(|f (r)|2 + |q(r)|2)dr

≤
1
12

∫ t∧4N

0
|6%

n,h(r)|2(p–1)‖6%
n,h(r)‖2dr +

1
2

sup
0≤s≤t∧4N

|6%
n,h|2p

+C2
(
|f |2pL2(0,t∧4N ;H) + |q|2pL2(0,t∧4N ;H)

)
. (5.5.112)
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Using the Cauchy–Schwarz inequality and (Ã.1), we get

T4(t) ≤ 2p
∫ t∧4N

0

[
K̃(1 + ‖6%

n,h(r)‖2)
] 1
2 |h(r)|0 |6%

n,h(r)|2p–1dr

≤
1
12

∫ t∧4N

0
‖6%

n,h(r)‖2 |6%
n,h(r)|2(p–1) dr

+ C4
∫ t∧4N

0
|h(r)|20 |6%

n,h(r)|2p dr

+
1
12

∫ t∧4N

0
|6%

n,h(r)|2(p–1)dr. (5.5.113)

Using (A.2), we deduce that

T5(t) + T6(t) ≤ 2p2 K %
∫ t∧4N

0
‖6%

n,h(r)‖2 |6%
n,h(r)|2(p–1) dr

+ 2p2 K %
∫ t∧4N

0
|6%

n,h(r)|2(p–1) dr. (5.5.114)

Finally, the BDG inequality (see Ref. [75]), (A.2) and Schwarz’s inequality yield that for
t ∈ [0,T] and $3 > 0,

E
(
sup
0≤s≤t

|T2(s)|
)
≤ 6p

√
%E

{ ∫ t∧4N

0
|6%

n,h(r)|2(2p–1) |3n,h(6%
n,h(r)) Pn|2LQ dr

} 1
2

≤ $3E
(

sup
0≤s≤t∧4N

|6%
n,h(s)|2p

)
+
9p2K%
$3

E
∫ t∧4N

0
|6%

n,h(r)|2(p–1)dr

+
9p2K%
$3

E
∫ t∧4N

0
‖6%

n,h(r)‖2 |6%
n,h(r)|2(p–1)dr. (5.5.115)

Consider the following property I(i) for an integer i ≥ 0:
I(i) There exists %0,i := %0,i(K, K̃,T,M) > 0 such that for 0 ≤ % ≤ %0,i

sup
n

E
∫ t∧4N

0
|6%

n,h(r)|2idr ≤ C(i) := C(i,K, K̃,T,M) < +∞.

The property I(0) obviously holds with %0,0 = 1 and C(0) = T. Assume that for some
integer i with 1 ≤ i ≤ p, the property I(i – 1) holds; we prove that I(i) holds. Here we
mainly use a version of Gronwall’s lemma [62, 84].

By setting

>i(r) = 2(C1 + C4|h(r)|20),
Z = 2(

1
12

+ 2i2K%)
∫ 4N

0
|6%

n,h(r)|2(i–1)dr + 2|. |2i
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+ 2C2(|f |2iL2(0,T;H) + |q|2iL2(0,T;H)),
X(t) = sup

0≤s≤t
|6%

n,h(s ∧ 4N)|2i,

Y(t) =
∫ t∧4N

0
‖6%

n,h(s)‖2 |6%
n,h(s)|2(i–1) ds,

I(t) = sup
0≤s≤t

|2i√%
∣∣∣ ∫ t∧4N

0

(
3n(6%

n,h(r)) dWn(r),6%
n,h(r)

) |6%
n,h(r)|2(i–1)

∣∣∣.
Then

∫ T
0 >i(s)ds ≤ Ci(M) := 2C1T+C4M. Let ! = 2(2p– 1

4 –2p
2K%), " = $3 = 1

2
[
1+Ci(M)eCi(M)

]
and C̃ = 9i2K

$3 E
∫ 4N
0 |6%

n,h(s)|2(i–1)ds. If we choose % small enough and satisfying

% ≤ 2$23(2i–
1
4 )

9i2K+4i2K$23
, then we have # = 9p2K%

$3 ≤ !". Finally, letting %0,i =
2$23(2i–

1
4 )

9i2K+4i2K$23
∧ %0,i–1

and using Gronwall’s lemma [62, 84], we yield I(i) is valid.
An induction argument shows that I(p – 1) holds, and hence the previous compu-

tations with i = p yield that for t = T and 0 ≤ % ≤ %0,p,

sup
n

E
(

sup
0≤s≤4N

|6%
n,h(s)|2p +

∫ 4N

0
‖6%

n,h(s)‖2 6%
n,h(s)|2(p–1) ds

)
≤ C(p,K, K̃,T,M).

By the definition of 4n,h and eq. (5.5.107), we know sup0≤s≤t∧4N |6n,h(s)| → ∞, and
4N ↑ 4n,h on {4n,h < T}, asN →∞. Hence by the above estimate, we haveP(4n,h < T) = 0
for almost all 9, for N(9) large enough and 4N(9)(9) = T. Thus we complete the proof
of the proposition. ∎

Proposition 5.5.5. There exists %0,p := %0,p(K, K̃,K,T,M) such that for 0 ≤ % ≤ %0,p the
following result holds. Let

h ∈ AM, ∂zf , ∂zq ∈ L2p(K; L2(0,T;H))

and ∂z. ∈ L2p(K,H). Then we have

sup
n

E
(
sup
0≤t≤T

|∂z6%
n,h(t)|2p +

∫ T

0
‖∂z6%

n,h(s)‖2 |∂z6%
n,h(s)|2(p–1)ds

)
≤ C(K, K̃,K,T,M, |∂zf |L2p(K;L2(0,T;H)),

|∂zq|L2p(K;L2(0,T;H)))
(
E|∂z. |2p + 1

)
. (5.5.116)

Proof. Applying Itô’s formula to |∂z6%
n,h|2p for t ∈ [0,T] and 4N defined by eq. (5.5.107),

we get

|∂z6%
n,h(t ∧ 4N)|2p + 2p

∫ t∧4N

0
|∂z6%

n,h(r)|2(p–1)
[‖∂zu%n,h(r)‖2 + ‖∂z(%n,h(r)‖2

]
dr

≤ |Pn∂z. |2p +
∑
1≤j≤6

Jj(t), (5.5.117)
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where

J1(t) = 2p
∫ t∧4N

0
|〈∂zz6%

n,h,B(6%
n,h)

〉||∂z6%
n,h(r)|2(p–1)dr,

J2(t) = 2p
∫ t∧4N

0
|〈∂zz6%

n,h, F(6%
n,h)

〉||∂z6%
n,h(r)|2(p–1)dr,

J3(t) = 2p
∫ t∧4N

0
|〈∂zz6%

n,h,R
〉||∂z6%

n,h(r)|2(p–1)dr,

J4(t) = 2p
√
%
∣∣∣ ∫ t∧4N

0

(
3n(6%

n,h(r)) dWn(r), ∂zz6%
n,h(r)

) |∂z6%
n,h(r)|2(p–1)

∣∣∣,
J5(t) = 2p

∫ t∧4N

0
|(3̃n(6%

n,h(r)) h(r), ∂zz6%
n,h(r))| |∂z6%

n,h(r)|2(p–1)dr,

J6(t) = p %
∫ t∧4N

0
|∂z3n(6%

n,h(r)) Pn|2LQ |∂z6%
n,h(r)|2(p–1)dr,

J7(t) = 2p(p – 1)% ×∫ t∧4N

0
|Fn (∂z3n)∗(6%

n,h(r)) ∂z6%
n,h(r)|2H0 |∂z6%

n,h(r)|2(p–2)dr.

Note that by eq. (5.5.89), we have

J1(t) = 2p
∫ t∧4N

0
|∂z6%

n,h(r)|2(p–1)
∣∣∣b1(u%n,h(r), (%n,h(r), ∂zz(%n,h(r))∣∣∣dr.

Integrating by parts and using Hölder’s inequality, Ladyzhenskaya’s inequality and
Young’s inequality, one obtains that

J1(t) ≤ 2p
∫ t∧4N

0
|∂z6%

n,h(r)|2(p–1)
∫
M

|∂z(%n,h(r)||∂zu%n,h(r)||∂x(%n,h(r)|dMdr

+ 2p
∫ t∧4N

0
|∂z6%

n,h(r)|2(p–1)
∫
M

|∂z(%n,h(r)|2|∂xu%n,h(r)|dMdr

≤ 4p
∫ t∧4N

0
|∂z6%

n,h(r)|2(p–1)|∂z6%
n,h(r)|2L4 |∂x6%

n,h(r)|dr

≤
1
12

∫ t∧4N

0
|∂z6%

n,h(r)|2(p–1)‖∂z6%
n,h(r)‖2dr

+C1
∫ t∧4N

0
|∂z6%

n,h(r)|2p‖6%
n,h(r)‖2dr (5.5.118)

and

J2(t) = 2p
∫ t∧4N

0
|〈∂zzu%n,h, ∫ z

–h
∂x(%n,hdz

〉||∂z6%
n,h(r)|2(p–1)dr

= 2p
∫ t∧4N

0
|〈∂zu%n,h, ∂x(%n,h〉||∂z6%

n,h(r)|2(p–1)dr (5.5.119)
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≤ 2p
∫ t∧4N

0
‖(%n,h‖|∂z6%

n,h(r)|2p–1dr

≤
1
4

sup
0≤s≤t∧4N

|∂z6%
n,h(s)|2p + C2

( ∫ t∧4N

0
‖(%n,h(r)‖2dr

)2p
.

As we obtain estimate (5.5.112), we have

J3 ≤
1
12

∫ t∧4N

0
|∂z6%

n,h(r)|2(p–1)‖∂z6%
n,h(r)‖2dr +

1
4

sup
0≤s≤t∧4N

|∂z6%
n,h|2p

+C3
(
|∂zf |2pL2(0,t∧4N ;H) + |∂zq|2pL2(0,t∧4N ;H)

)
. (5.5.120)

As in eq. (5.5.113), using the Cauchy–Schwarz inequality and (B.2), we get

J5 ≤
1
12

∫ t∧4N

0
‖∂z6%

n,h(r)‖2 |∂z6%
n,h(r)|2(p–1) dr

+C5
∫ t∧4N

0
|h(r)|20 |∂z6%

n,h(r)|2p dr

+
1
12

∫ t∧4N

0
|∂z6%

n,h(r)|2(p–1)dr. (5.5.121)

Using again (B.1), we deduce that

J6(t) + J7(t) ≤ 2p2 K %
∫ t∧4N

0
‖∂z6%

n,h(r)‖2 |∂z6%
n,h(r)|2(p–1) dr

+ 2p2 K %
∫ t∧4N

0
|∂z6%

n,h(r)|2(p–1) dr. (5.5.122)

Finally, the BDG inequality, (B.1) and Schwarz’s inequality yield that for t ∈ [0,T] and
$4 > 0,

E
(
sup
0≤s≤t

|J4(s)|
)

≤ 6p
√
%E

{ ∫ t∧4N

0
|∂z6%

n,h(r)|2(2p–1) |∂z3n,h(6%
n,h(r)) Pn|2LQ dr

} 1
2

≤ $4E
(

sup
0≤s≤t∧4N

|∂z6%
n,h(s)|2p

)
+
9p2K%
$4

E
∫ t∧4N

0
|∂z6%

n,h(r)|2(p–1)dr

+
9p2K%
$4

E
∫ t∧4N

0
‖∂z6%

n,h(r)‖2 |∂z6%
n,h(r)|2(p–1)dr. (5.5.123)

Using the similar steps as those in Proposition 5.5.4, due to eqs (5.5.118)–(5.5.123), we
get eq. (5.5.116). ∎
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Due to Ladyzhenskaya’s inequality for 2D domain, we now have the following bound
in L4(M).

Proposition 5.5.6. Let h ∈ AM, . ∈ L4(K,H) and %2,0 be defined as in Proposition 5.5.4
with p = 2. Then there exists a constant

C2 := C2(K, K̃,T,M, |f |L4(K;L2(0,T;H)), |q|L4(K;L2(0,T;H)))

such that

sup
n

E
∫ T

0
|6%

n,h(s)|4L4ds ≤ C2(1 + E|. |4). (5.5.124)

The following result is a consequence of Itô’s formula.

Lemma 5.5.7. Let 1′ : [0,T] × K → [0 +∞) be adapted such that for almost every 9
t → 1′(t,9) ∈ L1([0,T]) and for t ∈ [0,T], set 1(t) =

∫ t
0 1′(s) ds. For i = 1, 2, let 3i satisfy

assumptions (A) and (B), 3̄i ∈ C([0,T] × H, L2Q) and let 3̄ satisfy assumptions Ã and B.
Let E satisfy condition (5.5.105), h% ∈ AM and 6i ∈ L2([0,T],V) ∩ L∞([0,T],H) a.s. with
6i(0) = . ∈ L4(K,H), for . F0 measurable and satisfy the equation

d6i(t) = R(6i(t))dt +
√
%3i(t,6i(t)) dW(t) +

(
3̄(t,6i(t)) + 3̄i(t,6i(t))

)
h%(t) dt. (5.5.125)

LetI = 61 – 62, then for every t ∈ [0,T],

e–1(t) |I(t)|2 ≤
∫ t

0
e–1(s)

{
–
1
2

‖I(s)‖2 + %∣∣31(s,61(s)) – 32(s,62(s))
∣∣2
L2Q

+ |I(s)|2
[
– 1′(s)

+ 2C(1 + |∂z62(s)|4) + C ‖62(s)‖2 + C |h%(s)|20
]}

ds

+ 2
∫ t

0
e–1(s)

(
3̄1(s) – 3̄2(s) , I(s)

)
ds + I(t), (5.5.126)

where I(t) = 2
√
%
∫ t
0 e

–1(s)
([
31(s,61(s)) – 32(s,62(s))

]
dW(s) , I(s)

)
.

Proof. Itô’s formula, eq. (5.5.105) and conditions (Ã.2) imply that for t ∈ [0,T],

e–1(t) |I(t)|2 =
∫ t

0
e–1(s)

{
– 1′(s)|I(s)|2 + %∣∣31(s,61(s)) – 32(s,62(s))

∣∣2
LQ

+ 2
〈
E(61(s)) – E(62(s)) , I(s)

〉
+ 2

(
3̄(s,61(s))h%(s) – 3̄(s,62(s))h%(s) , I(s)

)}
ds
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+
∫ t

0
e–1(s)2

([
3̄1(s) – 3̄2(s)

]
h%(s) , I(s)

)
ds + I(t)

≤

∫ t

0
e–1(s)

{
– 1′(s) |I(s)|2 + %∣∣31(s,61(s)) – 32(s,62(s))

∣∣2
LQ

– ‖I(s)‖2

+ 2C|I(s)| ‖I(s)‖ ‖62(s)‖ + 2C(1 + |∂z62(s)|4)|I(s)|2

+ 2C
√
L̃‖I(s)‖ |h%(s)|0 |I(s)|

}
ds

+
∫ t

0
e–1(s)2

(
3̄1(s) – 3̄2(s) , I(s)

)
ds + I(t).

The inequalities

2C|I(s)| ‖I(s)‖ ‖62(s)‖ ≤ 1
4

‖I(s)‖2 + C‖62(s)‖2|I(s)|2

and

2C
√
L̃‖I(s)‖ |h%(s)|0 |I(s)| ≤ 1

4
‖I(s)‖2 + C|h%(s)|20 |I(s)|2

conclude the proof of eq. (5.5.126).

Proof of Theorem 5.5.2. As in Ref. [84], due to monotonicity property (5.5.105), priori
estimates (5.5.108), (5.5.116) and Lemma 5.5.7, we obtain Theorem 5.5.1. ∎

5.5.2.3 Large deviations for stochastic primitive equation
Since primitive equation is a large-scale model, one may neglect the effect of small
scale and intermediate scale in its modeling. One may consider this effect by adding
small noise in the equations. Large deviations theory concerns with the study of pre-
cise asymptotics governing the decay rate of probabilities of rare events. A classical
area of large deviations is the Wentzell–Freidlin theory that deals with path probabil-
ity asymptotics for small noise stochastic dynamical systems.More exactly, wewill put
a bound on the probability that the random perturbed trajectory goes very far from the
unperturbed trajectory, and see the rate at which this probability goes to zero as the
noise shrinks (% → 0). We consider large deviations via a weak convergence approach
(originated with Budhiraja and Dupuis [42, 43], Sritharan and Sundar [235], Duan and
Millet [84], among others). In this section, the idea of the proof for large deviations
is the same as in Ref. [84], here we only give the outline of the proof. First, we recall
some classical definitions for large deviations.

Definition 5.5.4. The random family {6%} is said to satisfy an LDP on X with the good
rate function I if the following conditions hold:

I is a good rate function. The function I : X → [0,∞] is such that for each
M ∈ [0,∞[ the level set {6 ∈ X : I(6) ≤ M} is a compact subset of X.
For A ∈ B(X), set I(A) = inf6∈A I(6).
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Large deviation upper bound. For each closed subset F of X:

lim sup
%→0

% logP(6% ∈ F) ≤ –I(F).

Large deviation lower bound. For each open subset G of X:

lim inf
%→0

% logP(6% ∈ G) ≥ –I(G).

To establish the LDP, we need to strengthen the hypothesis on the growth condition
and Lipschitz property of 3 (and 3̃) as follows:

Assumption A. There exist positive constants K and L such that
(A.4) |3(t,6)|2LQ ≤ K (1 + |6|2) ∀t ∈ [0,T], ∀6 ∈ V,

(A.5) |3(t,6) – 3(t,8)|2LQ ≤ L |6 – 8|2 ∀t ∈ [0,T], ∀6,8 ∈ V.

The following theorem is the main result of this section.

Theorem 5.5.2. Let 3 do not depend on time and satisfy (A.1), (B), (A.4) and (A.5), 6%

be the solution of the stochastic primitive eq (5.5.93). Then {6%} satisfies the LDP in
C([0,T];H) ∩ L2((0,T);V), with the good rate function

I. (8) = inf
{h∈L2(0,T;H0): 8=G0(

∫ .
0 h(s)ds)}

{ 1
2

∫ T

0
|h(s)|20 ds

}
. (5.5.127)

Here the infimum of an empty set is taken as infinity.

The proof of the LDPwill use the following technical lemma, which studies time incre-
ments of the solution to the stochastic control equation. For any integer k = 0,⋯, 2n–1,
and s ∈ [kT2–n, (k + 1)T2–n[, set sn = kT2–n and s̄n = (k + 1)T2n. Given N > 0, h ∈ AM,
% ≥ 0 small enough, let 6%

h denote the solution to eq. (5.5.99) given by Theorem 5.5.1,
and for t ∈ [0,T], let

GN(t) =
{
9 :

(
sup
0≤s≤t

|6%
h(s)(9)|2

)
∨
( ∫ t

0
‖6%

h(s)(9)‖2ds
)

∨
(
sup
0≤s≤t

|∂z6%
h(s)(9)|2 ≤ N

)}
.

Lemma 5.5.8. Let M,N > 0, 3 and 3̃ satisfy Assumptions (A.1), (B), (A.4) and (A.5),
∂z. , . ∈ L4(H). Then there exists a positive constant

C : = C
(
K, L, |f |L4(K;L2(0,T;H)), |q|L4(K;L2(0,T;H)),

|∂zf |L4(K;L2(0,T;H)), |∂zq|L4(K;L2(0,T;H)),T,M,N, %0
)
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such that for any h ∈ AM, % ∈ [0, %0],

In(h, %) := E
[
1GN (T)

∫ T

0
|6%

h(s) – 6%
h(s̄n)|2 ds

]
≤ C 2–

n
2 . (5.5.128)

Proof. The proof is close to that of Lemma 4.2 in Ref. [84]. ∎

Now we return to the setting of Theorem 5.5.2. Let %0 be defined as in Theorem 5.5.1
and (h%), (0 < % ≤ %0), be a family of random elements taking values in AM. Let 6%

h%
be the solution of the corresponding stochastic control equation with initial condition
6%
h% (0) = . ∈ H:

d6%
h% + [A6

%
h% + B(6

%
h% ) + F(6

%
h% )]dt

= Rdt + 3(6%
h% )h%dt +

√
% 3(6%

h% )dW(t). (5.5.129)

Note that 6%
h% = G

%
(√

%
(
W. + 1√

%
∫ .
0 h%(s)ds

))
due to the uniqueness of the solution.

For all 9 and h ∈ L2([0,T],H0), let 6h be the solution of the corresponding control
equation with initial condition 6h(0) = . (9):

d6h + [A6h + B(6h) + F(6h)]dt = Rdt + 3(6h)hdt. (5.5.130)

Note that here we may assume that h and . are random, but 6h may be defined
pointwise by eq. (5.5.130).

Let C0 = {
∫ .
0 h(s)ds : h ∈ L2([0,T],H0)} ⊂ C([0,T],H0). For every 9 ∈ K, define

G0 : C([0,T],H0) → X by G0(g)(9) = 6h(9) for g =
∫ .
0 h(s)ds ∈ C0 and G0(g) = 0

otherwise.

Proposition 5.5.7 (Weak convergence). Suppose that 3 does not depend on time and
satisfies Assumptions (A.1), (B), (A.4) and (A.5). Let . ∈ Y, be F0 measurable such
that E|. |4H < +∞, E|∂z. |4H < +∞ and let h% converge to h in distribution as random
elements taking values in AM. (Note that here AM is endowed with the weak topo-
logy induced by the norm (5.5.100)). Then as % → 0, 6%

h% converges in distribution
to 6h in X = C([0,T];H) ∩ L2((0,T);V) endowed with the norm (5.5.100). That is,
G%
(√

%
(
W. + 1√

%
∫ .
0 h%(s)ds

))
converges in distribution to G0

( ∫ .
0 h(s)ds

)
in X, as % → 0.

The proof can be obtained by delicate estimates and by the method in Ref. [84].
The following compactness result is the second ingredient that allows us to trans-

fer the LDP from
√
%W to u%. Its proof is similar to that of Proposition 5.5.7 and easier

and hence will be sketched (see also Ref. [84], Proposition 4.4).
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Proposition 5.5.8 (Compactness). Let M be any fixed finite positive number and let . ∈
Y be deterministic. Define

KM = {6h ∈ C([0,T];H) ∩ L2((0,T);V) : h ∈ SM},

where 6h is the unique solution of the deterministic control equation:

d6h(t) +
[
A6h(t) + B(6h(t)) + R6h(t)

]
dt = F6h(t)dt + 3(6h(t))h(t)dt,

6h(0) = . , (5.5.131)

and 3 does not depend on time and satisfies (A.1), (B), (A.4) and (A.5). Then KM is a
compact subset of X.

Proof of Theorem 5.5.3. Propositions 5.5.8 and 5.5.7 imply that {6%} satisfies the
Laplace principle, which is equivalent to the LDP in X = C([0,T],H) ∩ L2((0,T),V)
with the above-mentioned rate function (see Theorem 4.4 in Ref. [42] or Theorem 5
in Ref. [43]). ∎
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