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Preface



ADDRESSING CHALLENGES IN CARDIOVASCULAR 
SCIENCES: THE NEED FOR THIS WORK

Investigationintothemechanismsofcardiovasculardiseasesandthedevelopmentofnoveltranslational
andalternativemethodsfortheirtreatmenthascometoaheadrecentlywith399,899articlespublished
inthefield,with221,494orapproximately55%justinthepreviousdecade.Theseadvancementsare
notlimitedtobeingfocusedonenhancingcomprehensionofmolecularandgeneticmechanismsun-
derlyingcardiovascularpathology,butalsoincluderapidadvancementsinthemanufactureandprocess
technologyfordiagnosisandtreatmentofcardiovasculardisease.Theemphasisonmanufactureand
processtechnologyimprovementsincludesclassictopicssuchas1)advancesinmaterialsciences,2)
applicationofnanotechnology,3)novelpharmaceuticaldrugformulationstrategies,4)noveldrugde-
liveryprocessesincludingtargeteddrugdelivery,and5)integrationoftissueengineeringandartificial
reconstructionintotherapy.Interestingly,fromanacademicpoint-of-view,thesetopicshaveremained
isolatedindiscreteresearchareas,preventingmuch-neededcollaborationwhichwouldenablefurther-
anceoftheentirefieldofthecardiovascularsciences.

Moreover,inrecentyears,researchintonaturalproductsandalternativemedicaltherapiesforthe
treatmentofcardiovasculardiseasehavegainedpopularityandscientific support. Instances include
publicsupportespeciallyforsystemsofthemedicineinspiredbytheancientEasternpractitioners,such
asthoseofChineseherbalmedicineandacupuncture,ortheIndianAyurveda.However,thereisaneed
foradoptinganintegrative,synthesis-basedandcomprehensiveapproachthatmergesfieldsasdisparate
asengineeringandtechnologyontheonehand,andalternativemedicineontheother,toenablethe
emergenceofnewideasforthedevelopmentoftherapeuticstrategiestoaddressthisprominentkiller
groupofdiseases.However,thebroadscopeofsuchanendeavorhaslargelyresultedinchallengingthe
developmentofsuchaneffort.

Thecurrentworkhasemergedfromtheoverwhelmingneedtosurveyandcontextualizetherapidand
discipline-specificadvancementsinbasic,clinical,applied,andtechnologicalsciencesthatarecollec-
tivelychangingourunderstandingof,andtherapeuticapproachto,cardiovasculardisease.Titled“Recent
AdvancementsinCardiovascularDiseases”,ourcurrenteffortpurportstoencompassalltheseareas
byexpertsinthefield,witheachbooksectiondedicatedtoexploringtheseideasasaseparatechapter.

xvi
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Preface

THE INTENDED IMPACT OF THIS BOOK

Webelieve thatourcomprehensiveapproachandgeneral treatmentof thesubjectofcardiovascular
diseaseswillbeofbenefittoabroadreadership,includingprofessionalspracticinginthefield,postdoc-
toralfellows,graduatestudents,medicalschoolandpharmacyschoolstudents,andresearchers.Itisour
contentionandearnestdesirethattheexplorationandpresentationofthevariousaspectsofcardiovascu-
lardiseasesinthisworkwillhavetheimpactofpresentingtheseadvancementsinlightofmulti-party,
diversified,anddisparateperspectives.Weareconfidentthatthiswillensureacomprehensivesurvey
andsynthesisofinformationinthefieldofcardiovascularscience.

OBJECTIVES OF THE CURRENT WORK

Recentfindingsinthefieldofcardiovascularsciencesanddiseasesincludethoseinthefieldsofcar-
diomyopathy,myocardialinfarction,ischemia-reperfusioninjury,arrhythmias,hypertensionandrelated
disorderstonamejustafew.Coupledwithemergingtechnologiesinresearch,transplantmedicine,and
organsystembiology,theseadvancementshavecreatedanurgentneedforaneditedcollectionofmanu-
scriptsfromscientificdisciplinesasdiverseaspharmaceutics,pharmaceuticalformulation,organicand
medicinalchemistry,microfabrication,molecularbiology,pharmacology,pharmacokineticsandtransplant
medicineinonepublication.Theoverarchinggoalofthisbookistohighlightthestrengthsandfuture
potentialofthisnewinterdisciplinaryapproachtocardiovascularsciencebybringingacomprehensive
andthoroughreviewofthisnewandfast-evolvingfield;itsadvantagesanddisadvantages,andfuture
perspectives.Ourmaingoalthoughthispublicationistomakethefoundationalcardiovascularsciences,
therapy,alternativeandcomplimentarytherapy,andthesocialandadministrativesciencesastheypertain
tocardiovasculardiseases,agroupofinter-relateddisciplineswithdynamiccross-talk.Ourobjective
istoimpartknowledgetoadiverseaudiencesothatexpertsinonefieldcaneasilyexploredisparate
topics,includingthoseoutsidetheconfinesoftheirexpertise.

WHO SHOULD USE THIS BOOK?

Thisbookofferstobeaneasy-to-comprehendinterfacebetweendifferentdisciplinesofscience,asap-
plicabletocardiovascularmaterials,thusbenefitingthesyntheticchemistsandengineerstostudythe
biologicalcontextandviceversa.Itwillalsobeadvantageoustograduatestudentstoplantheirresearch
proposalsinthefieldofnanotechnologyasitwillbeaconciseoverviewofpast,presentandongoing
researchinthefield.Itcanalsotargetresearcherswhocangetacomprehensivereviewofalltopicsof
interest(e.g.,howresearchonaparticularnanoparticlestarted,prosandconsandongoingmodifications
whichcansubstantiallyhelpinshapingtheirresearch).
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TOPICAL COVERAGE AND CONTENT EMPHASIS

Thecurrentworkisbroadlydividedintofivesections,arrangedinalogicalprogressionfromthefoun-
dationalscienceswhichunderliethemolecularmechanismsthatmodulatephysiologyandetiologyof
diseasetoclinical,diagnostic,andlater,thesocialperspectivesofcardiovasculardisease.Also,included
isadiscussionofalternativeandcomplementarymedicalapproachestothetreatmentofcardiovascular
disorders.

Thefirstsectionintroducesthelatestadvancementsinourunderstandingofthecardiovasculardiseases
withanemphasisonbasicfoundationalsciences.Accordingly,chaptersinthissectionarefocusedon
recentdiscoveriesinmolecularphysiology,etiology,andpathologyinthefieldofcardiovascularsciences.

Section 1:Sixchaptersareincludedinthissection,beginningwithMatthewsandSchweighardt’schapter
onexploringtheroleofnatriureticpeptidesinthedevelopmentofheartdiseaseandstrategiesbased
onemployingthisknowledgetoinformtherapy.Thenexttwochaptersexploretheimpactofsignal-
ingtransductiononcardiovascularfunction,suchasepithelialpermeability(chapterbyTauseef,
Aquil,andMehta)andthemultiplecellularandphysiologicalprocessesregulatedbythegeneral
andubiquitoustranscriptionalfactorNuclearFactor-κB(chapterbyMishra).Chapter4discusses
theroleofthecardinalionthatmodulatestheelectrophysiologyoftheheart:theall-important
calciumanditsstorageandtraffickinginthecellsofthecardiovascularsystem(chapterbyBose).
Following,anexplorationofsignaltransductionpathwaysandtheireffectonionicmovement,the
focusshiftstoananalysisoforganellecontribution,specificallytheregulationofthebiogenesis
ofthemitochondriaanditsimpactonthephysiologyandpathophysiologyoftheheart(chapterby
MalhotraandSoni).Thelastchapterinthissection,Chapter6,examinesdisordersofplateletsby
identifyingnewdiscoveriesintheetiologyandpathophysiologicalmechanismsofplateletdiseases
(chapterbyKarimandKhasawneh).

Section 2:TherearefivechaptersinSection2.Ingeneral,thesechaptersexaminethelatestdiscoveries
inthefieldofcardiovascularsciencesfromaclinicalperspective.ThesectionopenswithChapter
7,whichintroducesthepathophysiologyandetiologyofmyocardialinfarctionandexploresthe
recentinnovationsinthisfield(chapterbyChapalamadugu,Gudla,andTipparaju).Toaccountfor
theeffectofthepossibledifferencesinthegeneticmake-upofindividualsonthedevelopmentof
heartdisease,Dornblaser,WorbyandBrazeauoutlinetheunderlyingpharmacogenomicsofcar-
diovasculardiseasesandtherapyinChapter8.TurnerandSchwartzexpandtheclinicalfocusby
elaboratingonrelativelyrareinfectiousdiseases,inparticular,infectiousendocarditisinChapter
9.Thefollowingchaptertakesasweepinglookatsomeofthemainadvancementsinrecenttimes
inthediagnosis,includingnewertechnologiesandstrategiesfordiagnostictechniquesincardio-
vasculardiseases(chapterbyLi,Fang,Huang,Lu,Zhang,andYao).Finally,thelastchapterinthis
sectionpresentsanexaminationoftheadvancementsindrugs,therapeuticstrategies,andtreatment
ofhearttransplantation,withanemphasisontheroleofimmunosuppressioninsuccessfulheart
transplants(chapterbyLi,Li,Nwankwo,Huang,Zhang,Lanzhou,andLanzhou).

Section 3:Titled“RecentTechnologicalAdvancementsinCardiovascularSciences”,Section3presents
thelatestinformationregardingimprovementsinprocesstechnologyasitappliestodevicesand
drugdelivery,includingtargeteddeliverysystems.Chapter12outlinesadvancementsincoronary
stentstechnology(chapterbySengupta),whileChapter13explorestheuseofnanotechnologyfor
thecreationoftargeteddrugdeliverysystems(chapterbyPatelandPathak).
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Section 4:Followinganexaminationoftherecentdiscoveriesincardiovascularscience,clinicalper-
spectives,andtechnologicaladvancements,wewishedtoexaminelesser-knowncomplementary,
alternativeandnaturaltherapiesforcardiovasculardisordersthatarebothpopularinthepublic
eyeandscientificallypromising.Chapter14focusesontheuseofalternativeandcomplementary
therapiesforthetreatmentofhypertension(chapterbyShatnawi,Shafer,Ahmed,andElbarbry),
whileChapter15discussesthepotentialusesforthepolyphenolicphytochemicalsresveratrolwhich
ispresentinredwineandhasbeenshowntobeeffectiveinovercomingsomeofthedeleterious
changesthatoccuratthemolecularandphysiologicallevelincardiovasculardisease(chapterby
Powell,Zhang,Bowman,andChoudhury).

Section 5:Thelastsection,Section5,istitled“RecentIdeasinSocialandAppliedCardiovascularSci-
ences”andcoversabroadareaofinnovationandrecentchangesinaspectsrelatedtothesocial
causalityofcardiovasculardisease(chapterbyMin)andtheforensicassessmentofdeathdueto
cardiovasculardisease.Wefelttheneedtoaddthissectionbasedontheobservationthattreatment
ofcardiovasculardiseasesdoesnotoccurinavacuum.Infact,bothpatientcareandtheassess-
mentoftherapeuticoutcomeinpatientsdependsonuponamultitudeoffactorsincludingsocial
derivatives,whichmustbekeptinmind,tothebestpossibleextentwhileeitherdesigningtherapy
orassessingoverallimpact.

Weareconfidentandhopefulthatreaderswillfindourapproachinterestingandwillgainfromthe
multiplicityofperspectivespresentedinthisbook.Ifthisbookfacilitatesandencouragestheseeking
ofadditionalreadingfromfieldsdifferentfromoriginal,thebookwouldhaveattaineditsprimaryob-
jective-thatofpromotingtheintegrationofknowledgeacrossthevariousdisciplinesthatfeedintothe
generalumbrellaofthecardiovascularsciences.

Ashim Malhotra

Portland, Oregon 
September 26, 2016
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ABSTRACT

The pathophysiology of heart failure is due in part to compensatory mechanisms utilized to maintain 
cardiac output. Neurohormonal responses include activation of the renin-angiotensin-aldosterone and 
sympathetic nervous systems leading to vasoconstriction, increased blood volume through reabsorption 
of sodium and water, and increased myocardial contractility and heart rate. Prolonged activation of 
these systems often results in a maladaptive response and a further reduction in cardiac output (Colucci, 
2015). Natriuretic peptides counterbalance the neurohormonal systems by antagonizing the actions of 
renin-angiotensin-aldosterone, promoting vasodilation and natriuresis. In hypervolemic states atrial 
myocytes are stretched resulting in the release of atrial natriuretic peptide (ANP). Ventricular cells secrete 
brain-type natriuretic peptide (BNP) in response to the high ventricular filling pressures (de Sa, 2008). 
The natriuretic peptides are degraded enzymatically by neprilysin. Plasma concentrations of ANP and 
BNP can be used as markers for the diagnosis of heart failure (Grewal, 2004). The kidneys also produce 
a natriuretic peptide, urodilatin, and new studies suggest a role for this peptide in the pathophysiology 
and treatment of heart failure (Anker, 2015). The natriuretic peptides can be targeted therapeutically for 
the treatment of heart failure. Nesiritide, a recombinant preparation of human B-type natriuretic peptide 
(BNP), is FDA approved and has been available for several years for treatment of acute decompensations 
of heart failure, but has received limited use due to cost and adverse effect profile. Ularatide, a synthetic 
analog of urodilatin, is currently in phase three clinical trials. In addition, the FDA has recently approved 
an angiotensin receptor blocker-neprilysin inhibitor that has shown mortality benefit.

The Role of Natriuretic Peptides 
in the Pathophysiology and 
Treatment of Heart Failure

Jennifer L. Mathews
St. John Fisher College, USA

Anne Schweighardt
St. John Fisher College, USA
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INTRODUCTION

The pathophysiology of heart failure is due in part to compensatory mechanisms aimed at maintaining 
cardiac output (Colucci, 2015). Prolonged activation of these systems often results in a maladaptive 
response and a further reduction in cardiac output (Colucci, 2015). Natriuretic peptides counterbalance 
the neurohormonal systems by antagonizing the actions of renin-angiotensin-aldosterone and promoting 
vasodilation and natriuresis (de Sa, 2008). The natriuretic peptides can be targeted for the treatment of 
heart failure and current clinical trials aim to introduce novel compounds with therapeutic benefits over 
medications currently on the market.

BACKGROUND

Heart failure (HF) is a complex condition which effects 5.7 million people in the United States, or ap-
proximately 10 out of every 1,000 individuals over the age of 65 (Lloyd-Jones, 2002). Newly diagnosed 
cases of HF are expected to increase 46% by 2030 (Heidenreich, 2013). Heart failure occurs equally in 
men and women and is more prevalent in African Americans and Hispanics followed by Caucasians and 
Asian Americans (Lloyd-Jones, 2002; Bahrami, 2008).

Risk factors for HF include: cigarette smoking, hypertension, obesity, diabetes and dietary sodium 
intake (He 2001; 2002). Seventy-five percent of patients with HF have pre-existing hypertension and 
the lifetime risk for people with blood pressure (BP) >160/90 mmHg is double that of those with BP 
<140/90 mmHg (Lloyd-Jones, 2002).

Significant healthcare dollars are spent on the diagnosis and treatment of HF. Total cost for HF has 
been estimated to be over $30 billion and projections show that by 2030 the total cost of HF will increase 
to $69.7 billion or $244 for every US adult (Heidenreich, 2013). On average, patients with HF take 6 
medications and 78% have at least two hospital admissions per year (English, 1995). Heart failure is the 
most common hospital discharge diagnosis among individuals served by Medicare and more Medicare 
dollars are spent for the diagnosis and treatment of heart failure than for any other diagnosis (Massie, 
1997).

The cardiac dysfunction that underlies HF is often chronic and irreversible, interspersed with episodes 
of acute decompensation. Current drug therapies aim to manage symptoms associated with the syndrome. 
Despite advances in treatment the 5-year mortality rate for HF has remained high at 50% (Roger, 2004).

PATHOPHYSIOLOGY OF HEART FAILURE

Heart failure begins with myocardial damage which can often be attributed to ischemic heart disease, 
hypertension or diabetes (Mozaffarian, 2016). The impaired myocardial fibers may be unable to contract 
(systolic HF) or relax (diastolic HF).

Cardiovascular Parameters

With each heartbeat, a volume of blood from the left ventricle is ejected into the aorta and the same 
happens from the right ventricle into the pulmonary artery. The amount of blood pumped out of the 
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ventricles in 1 minute is cardiac output (CO) and is the product of heart rate (HR) and stroke volume 
(SV) (Marieb, 2013). CO is normally 4-8 L/min (Carlsson, 2012).

Stroke volume is the amount of blood pumped from each ventricle with 1 heartbeat and is typically 
between 60-100 ml/beat. In clinical practice CO is frequently indexed to body surface area and termed 
cardiac index, expressed as (L/min) per body surface area (m2) and normally ranges from 2.6 to 4.2 L/
min/m2 (Carlsson, 2012).

Changes to CO can be directly affected by both SV and HR. There are three factors which impact 
stroke volume: preload, afterload and contractility (Figure 1). Preload is the degree of myocardial stretch 
at the end of diastole (Marieb, 2013). The higher the preload the higher the SV as determined by the 
Frank-Starling law of the heart. The length-tension relationship is directly impacted by the amount of 
venous return and the subsequent stretching of the cardiac muscle (Marieb, 2013). Afterload is the pres-
sure that needs to be overcome for the heart to eject the blood. There is an inverse relationship between 
afterload and ventricular function (Kemp, 2013). As pressure increases the force of contraction decreases 
which results in a decreased stroke volume (Kemp, 2013; Marieb, 2013). Afterload is typically con-
stant, but can be impacted in people with hypertension as this increases the back pressure of the arterial 
blood (Marieb, 2013). Contractility is the inotropic state of the heart independent of the preload and the 
afterload. Contractility is directly related to the amount of available calcium required for the actin and 
myosin interaction (Marieb, 2013). Sympathetic nervous stimulation increases contractility of the heart 
by increasing calcium.

Increasing heart rate is also a mechanism to increase cardiac output. Activation of the sympathetic 
nervous system causes the release of norepinephrine. Norepinephrine binds to β1-adrenergic receptors in 
the heart impacting the conduction system, resulting in the SA node firing more rapidly (Marieb, 2013).

It is also important to note the importance of mean arterial pressure (MAP), the product of CO and 
total peripheral resistance (TPR). As described, HF results in a decrease in CO which in turn leads to 
a decrease in MAP and tissue perfusion (Kemp, 2012). Several mechanisms are used physiologically 
to return MAP to normal including the neurohormonal activation and ventricular remodeling (Kemp, 
2012). While initially these mechanisms provide support to the physiological functions of the heart, the 
long-term consequences are maladaptive and worsen HF. 

Figure 1. The factors affecting cardiac output (CO)
Adapted from Kemp (2012)
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Compensatory Mechanisms

Sympathetic Nervous System

Sympathetic nervous system (SNS) and subsequent neurohormonal activation play important roles in the 
early compensatory mechanisms aimed at maintaining MAP (Marieb, 2013). A decrease in MAP activates 
the baroreceptor reflex and increased release of catecholamines (norepinephrine and epinephrine). This 
results in increased heart rate and contractility (β1 receptors), vasoconstriction (α1), and activation of the 
RAAS pathway (β1) (Chaggar, 2009). These mechanisms increase SV and TPR and ultimately, MAP. 
Long-term sympathetic stimulation results in arrhythmias, and tachycardia (Chaggar, 2009).

Excessive sympathetic activity is also associated with cardiac myocyte apoptosis, hypertrophy, and 
focal myocardial necrosis (Golan, 2012). With prolonged SNS activation alterations in the size, shape, 
structure, and function of the ventricle occurs (Curry, 2000). As remodeling occurs, there are changes in 
ventricular mass, composition, volume and geometry (Curry, 2000). Chronic pressure overload causes 
concentric hypertrophy, increasing wall thickness and decreasing cavity size (Golan, 2012). This pattern 
of remodeling also decreases left ventricular compliance increasing diastolic pressure (Golan, 2012). 
Chronic volume overload results in eccentric hypertrophy, resulting in chamber enlargement (Golan, 
2012). This remodeling accommodates increased volumes without subsequent increases in atrial or 
ventricular diastolic pressures (Golan, 2012). The remodeling process in HF is progressive and even-
tually becomes detrimental not only to the ability of the heart to pump effectively, but also results in 
myocardial apoptosis (Kemp, 2012).

Renin-Angiotensin-Aldosterone System

In response to sympathetic activation and reduced renal blood flow, from a decreased MAP, the juxtaglo-
merular cells of the kidneys secrete renin (Rea, 2008). Renin hydrolyzes angiotensinogen in the liver to 
make angiotensin I. In the lungs, circulating angiotensin I is converted to angiotensin II by angiotensin-
converting enzyme (ACE). Angiotensin II then promotes the release of aldosterone. The end results are 
sodium reabsorption, vasoconstriction of renal efferent arterioles, and secretion of vasopressin.

Vasopressin (ADH)

Vasopressin is synthesized in the hypothalamus and secreted by the posterior pituitary gland (Golan, 
2012). When MAP decreases there is a corresponding increase in vasopressin release (Rea, 2008). Water 
permeability in the collecting duct of the kidney is regulated by vasopressin resulting in insertion of 
aquaporins into the apical membrane and subsequent reabsorption of water, increasing blood volume 
and MAP (Rea, 2008).

Sympathetic nervous system activation results in increased heart rate, contractility, and increased 
intravascular volume all aimed at maintaining CO (Golan, 2012). Systemic vasoconstriction overrides 
local vascular control to ensure adequate tissue perfusion of vital tissues (Golan, 2012). Consequently, 
this results in increased preload and afterload resulting in increased myocardial oxygen demand (Golan, 
2012).
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Natriuretic Peptides

There are other neurohormonal mechanisms at work in HF, including the natriuretic peptides. Natri-
uretic peptides antagonize the actions of renin-angiotensin-aldosterone, promote vasodilation, increase 
natriuresis, and inhibit ventricular remodeling (de Sa, 2008). In hypervolemic states atrial myocytes 
are stretched resulting in the release of atrial natriuretic peptide (ANP) (de Sa, 2008). Ventricular cells 
secrete brain-type natriuretic peptide (BNP) in response to the high ventricular filling pressures (de 
Sa, 2008). The kidneys also produce a natriuretic peptide, urodilatin (Anker, 2015). All are degraded 
enzymatically by neprilysin. Elevated BNP, in particular, is thought to be one of the first signs of HF 
and is used to follow the progression of disease (Grewal, 2004). Elevated N-terminal pro-BNP levels 
are associated with a high risk of all-cause mortality in people with HF (van den Broek, 2011). These 
hormones play a significant role in regulating the pathophysiology of HF and represent novel therapeutic 
targets for treatment.

CLINICAL PARAMETERS

Left Ventricular Dysfunction

Left ventricular (LV) dysfunction can be divided into two categories: systolic and diastolic dysfunction. 
Most people with HF (70%) have systolic dysfunction (Kemp, 2012). This is a result of impaired con-
tractility and the quality of heart as a pump is compromised. Diastolic dysfunction results from impaired 
filling while contractility is often normal. Whether or not a patient with HF has systolic or diastolic 
dysfunction is often determined based on the ejection fraction (EF). Ejection fraction is the fraction of 
blood ejected by the ventricle relative to its end diastolic volume. In most cases, the term EF refers to 
left ventricular ejection fraction (LVEF). Normal EF is between 50% and 70%. If the EF is ≤40%, it is 
systolic dysfunction and if it is ≥40%, it is diastolic dysfunction (Kemp, 2012).

The leading cause of LV systolic dysfunction is loss of functional myocardium due to myocardial 
infarction (MI) which impairs the contractile machinery required for the heart to pump effectively (Cop-
stead, 2010). Both systolic and diastolic dysfunction can also be the result of uncontrolled hypertension 
or ischemic heart disease.

Left ventricular dysfunction causes an increase in the amount of blood in the ventricle and a subse-
quent increase in both end systolic (ESV) and end diastolic volumes (EDV), resulting in an increase in 
LV end diastolic pressure (LVEDP) (Kemp, 2012). This increased pressure in the LV results in eleva-
tions in left atrial pressures as well as increased pressure in the capillaries of the lungs (Kemp, 2012). 
The clinical signs and symptoms associated with left ventricular dysfunction can be attributed to these 
elevated pressures (Figure 2).

Right Ventricular Dysfunction

Right ventricular dysfunction is usually a result of LV dysfunction. As the RV fails there is an increase in 
the amount of blood within the ventricle, which in turn leads to elevated pressures in the right atria and 
vena cava (Kemp, 2012) (Figure 3). The clinical signs and symptoms associated with right ventricular 
dysfunction can be seen in the liver, the gastrointestinal tract, and the lower extremities (Kemp, 2012).
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Figure 2. Left-sided heart failure
Adapted from Copstead (2010)

Figure 3. Right-sided heart failure
Adapted from Copstead (2010)
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Signs and Symptoms

Left-Sided HF

The signs and symptoms of LV dysfunction are all the result of increased left atrial and pulmonary cap-
illary pressures (Table 1). Dyspnea, cough, and wheezing result from increased hydrostatic pressure in 
the pulmonary capillary bed forcing fluid out into the interstitial and alveolar spaces (Copstead, 2010, 
Kemp 2012). Additional pulmonary dysfunction will be produced as the LV fails.

Right-Sided HF

The RV and LV function in series, as the left ventricle fails this will eventually increase the stress on 
the RV (Copstead, 2010) and signs and symptoms will begin to occur (Table 1). Elevated right atrial 
pressure results in lower extremity edema, as well as ascites (Kemp, 2012). As CO continues to decrease 
metabolic demands are not being met. Blood flow will be conserved for vital organs such as the brain 
and heart. As blood flow is diverted nausea and lack of appetite may occur as blood is shifted from the 
gastrointestinal tract to the more vital organs (Kemp, 2012).

Classification and Disease Progression

Heart failure classification is commonly based on two different systems (Table 2). The New York Heart 
Association (NYHA) classification system places people in one of four classes based upon the physical 
disability caused by their HF. The American College of Cardiology (ACC) and the American Heart As-
sociation (AHA) system emphasizes the progression of HF including risk factors and structural changes. 
There are some overlaps between the ACC/AHA system and the NYHA system.

Treatment Standards

The goals of therapy are to improve symptoms, maintain myocardial function, and reduce mortality. 
Many treatment options currently available target the SNS and neurohormonal responses described above 
(Table 3). Importantly, new investigational therapies must also be considered.

Table 1. Right- and left-sided HF signs and symptoms and signs

Clinical Symptoms Clinical Signs

Right-sided HF abdominal pain, anorexia, fatigue, nausea, bloating, 
swelling

peripheral edema, jugular venous distention, abdominal-
jugular reflux, hepatomegaly, splenomegaly, ascites

Left-sided HF dyspnea on exertion, orthopnea, cough, fatigue, 
restlessness, confusion, hemoptysis

basilar rales, pulmonary edema, S3 gallop, pleural 
effusion, Cheyne-Stokes respiration

Adapted from (Copstead, 2010; Kemp, 2012)
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NEW HORIZONS: NATRIURETIC PEPTIDES IN THE TREATMENT OF HF

Management of heart failure using current modalities of ACE inhibitors, ARBs, β-blockers, and aldo-
sterone antagonists is well established (Hunt 2009). Current research focused on the development of 
therapeutic natiuretic peptides is most advanced on ularitide, carperitide, nesiritide, and via neprilysin 
inhibition. The natriuretic peptides counterbalance many of the neurohormonal mechanisms related to 

Table 3. Therapeutics by class

Drug Class Mechanism of Action Hemodynamic Effect Examples

Drugs with Proven Mortality Reduction

β-blockers1 competitive antagonists at 
β-adrenergic receptors

decreased afterload 
decreased preload

carvedilol 
bisoprolol 
metoprolol

ARBs2 competitive antagonists at 
angiotensin I receptors

decreased preload 
decreased afterload

valsartan 
candesartan

ACE inhibitors3 inhibit angiotensin II 
generation

decreased preload 
decreased afterload

enalapril 
captopril

Aldosterone antagonist competitive antagonist at 
aldosterone receptor

decreased preload spironolactone 
eplerenone

Drugs Used for Symptom Management 

Diuretics inhibit renal sodium absorption preload furosemide 
hydrochlorothiazide

Organic nitrates venous smooth muscle 
relaxation

decreased preload nitroglycerin 
isosorbide dinitrate

PDE3 inhibitors4 Inhibit PDE, increase 
β-adrenergic effects

increased contractility decreased 
preload 
decreased afterload

inamrinone 
milrinone

Inotropes Inhibit Na+/K+ ATPase; 
increase intracellular Ca2+,

increased contractility digoxin

1beta-adrenergic receptor blockers,2angiotensin II receptor blockers, 3angiotensin converting enzyme inhibitors, 4phosphodiesterase class 
3 inhibitors

Table 2. Heart failure stage and class

ACC/AHA Stage Description NYHA 
Class

Description Clinical Clues

A At high risk for HF but without 
structural heart disease or 

symptoms of HF

None Coronary artery disease, 
hypertension, diabetes, dyslipidemia, 

family history of cardiomyopathy

B Structural heart disease but 
without signs or symptoms of HF

I Asymptomatic Left ventricular hypertrophy (ECG or 
echo), valvular disease, past MI

C Structural heart disease with prior 
or current symptoms of HF

II-III Symptomatic with 
minimal or moderate 

exertion

Dyspnea, fatigue, exercise 
intolerance, prior HF hospitalization

D Refractory HF requiring 
specialized interventions

IV Symptomatic at rest End-stage, awaiting transplant, 
receiving palliative care

Adapted from (Hunt, 2009; Farrell, 2002)
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the pathology of heart failure. Multiple agents are currently available for modulation of endogenous 
natriuretic peptides either through administration of synthetic analogs or by inhibition of enzymes that 
responsible for the breakdown of natriuretic peptides.

Ularitide

Ularitide is a synthetic form of the natiuretic peptide urodilantin (Mitrovic, 2005; Mitrovic, 2006). To 
date, two phase II studies have been completed and published, a phase III study has completed enroll-
ment of participants and is awaiting publication.

The SIRIUS I trial randomized 24 NYHA class III-IV HF patients to receive placebo or 24 hour 
continuous infusion of ularitide 7.5, 15, or 30 ng/kg/min (Mitrovic, 2005). Patients had a mean age of 
66 (+ 12 years) and were primarily male (n=18). At time of admission to the study, patients had dys-
pnea at rest or with minimal physical activity and a mean cardiac index (CI) of 1.91 +0.34, pulmonary 
capillary wedge pressure (PCWP) elevated to 26 +6 mmHg, and right atrial pressure (RAP) of 11 +4 
mmHg. Hemodynamic parameters were measured prior to study drug initiation and at 6, 24, and 30 
hours. Additionally, NT-proBNP and cGMP were measured at identical time points and at 6 hours pa-
tients were asked to self-assess dyspnea. Patients were allowed to continue taking baseline cardiovascular 
medications as well as loop diuretics and inotropic infusions at the discretion of the study investigators. 
Eleven of 12 patients in the placebo and 7.5 ng/kg/min group required loop diuretics, while only three 
of 12 patients in the combined 15 and 30 ng/kg/min group required loop diuretics. PCWP was decreased 
relative to placebo in the 30 ng/kg/min group at 6 and 24 hours, and returned to baseline at 30 hours 
without showing evidence of rebound. All patients including placebo reported either no change or mild 
to marked improvement in their self-reported dyspnea scales. Urine output was similar among groups, 
with the placebo and 7.5 ng/kg/min group received more loop diuretic. Serum creatinine was increased 
in the 7.5 ng/kg/min group while other groups showed a decrease in serum creatinine. NT-proBNP levels 
were decreased at 24 and 30 hours in both the 15 and 30 ng/kg/min group. All patients completed the 
study, two patients died 8 and 20 days after completion of the study. Adverse effects were limited to 
hypotension observed in three patients, two required interruption of infusion for one hour. No significant 
changes were noted in EKGs or relevant lab values.

A second phase two study, the SIRIUS II trial randomized 221 HF patients to receive identical 
dosing regimens as the SIRIUS I trial with similar primary endpoints (Mitrovic, 2006). Patients were 
predominantly male (78.3%) and were all white. At time of enrollment, more than 90% of patients had 
an ejection fraction of less than 40%. During the study drug infusion, PCWP was statistically decreased 
in the 15 ng/kg/min and the 30 ng/kg/min group compared to both placebo and the 7.5 ng/kg/min group. 
This was difference was significant among all groups at the 6 hour mark and persisted through the 24 
hour mark. Patient self-assessment of dyspnea was statistically significantly improved in all groups at 
both the 6 and 24 hour marks. Only one patient in the placebo arm reported worsening of dyspnea. Both 
CI and systemic vascular resistance (SVR) were improved in the 15 and 30 ng/kg/min groups starting 
at the one hour mark and persisting through the 24 hour mark. Loop diuretics were given at investigator 
discretion and were given less frequently in the 15 ng/kg/min arm. Mean urine output was consistent 
between treatment groups and at the end of the infusion serum creatinine (SCr) was unchanged in all 
groups with the exception of the 15 ng/ml/min group which had a decreased SCr. Creatinine clearance 
decreased at 48 and 72 hours except in the 15 ng/kg/min group. A small number of patients in all of the 
ularitide arms required a temporary interruption of the ularitide infusion due to hypotension, similarly 
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one patient in each of the active treatment arms discontinued study drug due to hypotension. A numeri-
cally lower number of patients died in the ularitide treated groups through day 30. Additionally, median 
hospital length of stay was numerically but not statistically shorter in the 15 and 30 ng/kg/min groups 
compared to placebo and 7.5 ng/kg/min.

Currently, ularitide is being tested in a multicenter, multinational, double blind, placebo controlled 
trial (O’Connor, 2016; Thomas, 2015). This study will enrolled 2157 patients of both genders, aged 18-
85 years old, presenting with acutely decompensated heart failure with elevated levels of NT-proBNP 
and worsening symptoms of dyspnea at rest. Patients must have a systolic blood pressure of 116 to 180 
mmHg and estimated glomerular filtration rate (eGFR) measured by modification of diet in renal dis-
ease (MDRD) of greater than 25 ml/min/1.73m2 (O’Connor, 2016). Patients were randomized to receive 
ularitide 15 ng/kg/min or placebo in the setting of standard background pharmacotherapy. The study 
has two co-primary outcomes; cardiovascular mortality for duration of trial and a composite outcome 
consisting of a global assessment of the patient, need for additional interventions, and all-cause mortal-
ity. As of this writing, results of this study have not been released, however, the FDA has granted fast 
track approval status for this drug (Thomas, 2016).

Clinical studies of ularitide are currently limited to the acutely decompensated patients with signs 
and symptoms of volume overload. Data suggests that ularitide may have a diuretic sparing effect in this 
setting, and may have a role in preserving tenuous renal function (Mitrovic, 2006).

Carperitide

Carperitide, a synthetic analog of ANP is currently only available in Japan. There have been few trials 
in heart failure patients, two of which are only available in Japanese. Two large trials released after ap-
proval of the drug in Japan are both prospective, open label studies.

Suwa et. al. enrolled 3852 patients with a mean EF of 46.9% and PCWP of 15.6 mmHg in an open 
label prospective trial of carperitide dose adjusted at investigators discretion to a maximum approved 
dosage of 0.2 mcg/kg/min (Suwa, 2005). Efficacy was defined as percentage of patients assessed by the 
attending physician on a subjective scale as either improved or markedly improved. The primary safety 
outcome was defined as BP lowering to less than 90 mmHg or a decrease of 20 mmHg from baseline. 
Approximately 55% of patients were rated as improved or markedly improved. Hypotension was the most 
commonly reported adverse effect however, the study population reported fluctuation in renal function 
and electrolyte abnormalities. Limited data were available regarding concomitant drug therapy.

Nomura et al, enrolled 1932 patients with a mean LVEF of 45.5% to receive either carperitide mono-
therapy or carperitide in combination with medications including diuretics, nitrates, calcium channel 
blockers, vasopressors, PDE III inhibitors (Nomura, 2008). Patients that were considered to have received 
carperitide monotherapy were allowed to receive a bolus dose of diuretics, nitrates, calcium channel 
blockers, morphine, or digoxin. 83.2% of patients responded to carperitide monotherapy, 16.8% required 
either additional agents or discontinuation of carperitide due to adverse effects. Hypotension was the 
most commonly occurring adverse effect (3 patients), followed by AMI, HF, ventricular tachycardia, 
renal failure, cerebral infarction, shock, and acute renal failure.

Significant limitations of both studies include the non-randomized design, observational nature, 
use of subjective surrogate endpoints, and lack of control group. Further, both studies were performed 
exclusively in Japanese medical centers, severely limiting the generalizability of the results.
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Nesiritide

Nesiritide was FDA approved in 2001 (FDA 2016). The VMAC trial, one of the original trials used for 
FDA approval, reflected improvement in patient reported dyspnea scales and decreases in PCWP (Young 
2002). Subsequent to these trials, pooled data reflect increased rates of worsening renal function and early 
death (Sackner-Berstein, Kowalski, Fox, & Aaronson, 2005; Sackner-Bernstein, Skopicki, & Aaronson, 
2005). Due to this data, the ASCEND–HF study, a large, double-blind, placebo controlled trial was 
designed to compare nesiritide plus standard of care to standard of care alone.(O’Connor et al., 2011) 
This multinational study enrolled 7141 patients, 7007 received either study drug or placebo. Median 
duration of nesiritide or placebo infusion was 41 hours and approximately 90% of patients in both arms 
received a loop diuretic, 6% received an inotropic agent, and 15% received a vasodilator. This study had 
co-primary endpoints, change in dyspnea at 6 and 24 hours and a composite end point of heart failure 
rehospitalization and all-cause mortality for 30 days. Due to conflicting views between United States and 
European regulators, there were two predefined strategies for reaching statistical significance for dyspnea 
scores. For the United States regulators, both the 6 and 24 hour dyspnea scores had have a p value of 
<0.005 or either the 6 or 24 hour dyspnea score had to have a p value of <0.0025. While there was a 
small numerical difference in the number of patients reporting markedly or moderately better dyspnea 
scores (42.1% in the placebo group versus 44.5% in the nesiritide group) the p value at 6 and 24 hours 
was 0.03 and 0.007, this did not achieve the predefined statistical significance. The composite endpoint 
of death or rehospitalization for heart failure did not achieve statistical significance (p = 0.31). Multiple 
subgroup analyses were predefined, the results consistently did not achieve statistical significance. Con-
sistent with previous studies, patients receiving nesiritide experienced hypotension (28.6% vs 16.4%).

The initial publication ASCEND-HF study did not directly address the concerns with renal function 
associated with the use of nesiritide (O’Connor, 2011). An additional analysis of the ASCEND-HF 
data was completed comparing urine output and loop diuretic dose (Gottlieb, 2013). Complete data was 
available for 4881 patients. No significant difference was noted for either parameter, even with analysis 
of multiple subgroups.

These two studies taken together suggest a limited role for nesiritide for the management of patients 
with acute decompensated heart failure (Gottlieb, 2013; O’Connor, 2011).

Angiotensin Receptor Neprilysin Inhibitor

The newest medication targeting natriuretic peptides is sacubitril which is combined with valsartan. 
Although not a natriuretic peptide, sacubitril inhibits neprilysin allowing for increased exposure to 
endogenous natriuretic peptides. The PARADIGM-HF study randomized 8,399 patients with HFrEF to 
receive sacubitril in combination with valsartan or enalapril after consecutive run-in phases with enalapril 
and sacubitril/valsartan (McMurray, 2014). The majority of patients enrolled in this study were receiv-
ing appropriate standard of care. The primary endpoint was a composite of death from a cardiovascular 
cause or a first hospitalization for heart failure. The primary endpoint occurred in 21.8% of the patients 
in the treatment group compared to 26.5% of patient in the placebo group (p<0.001). This change was 
seen at each interim analysis, after the third interim analysis it was recommended to stop the trial as 
prespecified criteria for benefit had been met. Analysis of mortality was also statistically significant, with 
13.3% of patients dying in the sacubitril/valsartan group versus 16.5% in the placebo group (p<0.001) 
Fewer patients in the sacubitril/valsartan group had elevated serum creatinine or elevated potassium 
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and more patients in the enalapril group stopped medication due to adverse effects. This study led to 
rapid approval of the combination of sacubitril/valsartan by the FDA. While the PARADIGM-HF study 
does reflect both clinical and statistical significance, some of the methodology has been criticized. The 
most significant criticism arises from the dose of enalapril used in the placebo arm. The maximum 
recommended dose of enalapril is 20 mg twice daily (Yancy 2013). PARADIGM-HF patients achieved 
a mean goal of 18.9 mg of enalapril daily (McMurray, 2014). While the maximum recommended dose 
of enalapril is significantly higher, the mean dose of enalapril achieved in previous heart failure clinical 
trials is 16.6 mg (Yancy, 2013).

Current heart failure guidelines have not been updated to reflect the approval of sacubitril/valsartan 
combination (Yancy, 2013). The Institute for Clinical and Economic Review has evaluated the combi-
nation of sacubitril and valsartan and determined there was a moderate degree of certainty that there is 
incremental to substantial benefit and that on an individual basis, the cost/QALY gained were below 
generally accepted thresholds (Ollendorf, 2015). The concern arises when analyzed from a population 
basis, the cost of the combination drug therapy would need to be discounted by approximately 20% to 
avoid exceeding existing thresholds.

CONCLUSION

HF remains a complex syndrome which is difficult to manage. A significant number of people in the 
United States have been diagnosed with HF which brings with it a heavy financial burden on the medical 
system as well as high rates of morbidity and mortality. Much of the pathophysiology associated with 
HF is related to compensatory mechanisms aimed at maintaining CO to meet the metabolic demands of 
the body. Many of the current medications used for the treatment of HF target these mechanisms, and 
are primarily managing symptoms. New research has suggested a key role for the natriuretic peptides 
in counterbalancing the compensatory mechanisms of HF and represent novel therapeutic targets for 
treatment which would ideally improve survival rates among patients with HF.
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ABSTRACT

During inflammatory conditions, such as sepsis, myocardial infarction and acute respiratory distress 
syndrome, endothelial cell-cell junctions start to disrupt because of the internalization of the junctional 
proteins such as vascular endothelial (VE) cadherin. This leads to the formation of minute inter-endo-
thelial gaps, and the infiltration of protein-rich fluid and immune cells in the interstitial space. If remains 
unchecked, the persistent buildup of edema underlying the endothelial lining sets the stage for the seri-
ous life-threatening complications and ultimately leads to the multi-organ failure and death. Thus, to 
determine the molecular mechanisms underlying the opening and resolution phase of the gap formation, 
will provide an insight to better understand the pathology of the cardiovascular and pulmonary inflam-
matory disorders. In this chapter, we will discuss about how the signaling mechanisms activated by the 
known inflammatory molecules increase endothelial permeability.

Acronyms:

ALI: Acute Lung Injury
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LPS: Endotoxin Lipopolysaccharide
TEER: Tansendothelial Electrical Resistance
PAR1: Protease Activated Receptor 1
MYLK: Myosin Light Chain Kinase
FAK: Focal Adhesion Kinase
RACK1: Receptor for Activated C Kinase 1
ROCK: Rho kinase
PIP2: Phosphoinositol 4, 5-bisbiphosphate
IP3: Inositol 1, 4, 5 triphosphate
DAG: Diacylglycerol
STIM1: Stromal Interaction Molecule 1
SOC: Store Operated Ca2+

SOCE: Store Operated Ca2+ Entry ROCE: Receptor Operated Ca2+ Entry TRPC Channel: Transient 
Receptor Potential Canonical Channel

SPHK1: Sphingosine Kinase 1
S1P: Sphingosine 1 Phosphate
CRAC Channel: Ca2+ Release Activated Ca2+ Channel
OAG: 1-Oleoyl-2-Acetyl-sn-Glycerol
PECAM1: Platelet Endothelial Cell Adhesion Molecule-1

INTRODUCTION

Vascular endothelium forms the inner most lining of the blood vessels, regulates variety of biological 
processes such as angiogenesis, wound healing, cell growth and host defense mechanisms (Chavez, Smith, 
& Mehta, 2011; Gong et al., 2015; Komarova, Mehta, & Malik, 2007; Mehta, 2012; Mehta & Malik, 
2006; Rajput et al., 2016; Sukriti, Tauseef, Yazbeck, & Mehta, 2014; Tauseef et al., 2016; Tauseef et 
al., 2012). Maintenance of uninterrupted endothelial barrier function is pre-requisite for the tissue fluid 
homeostasis, vessel tone and prevention of the activation of pathological coagulation cascade (Chavez 
et al., 2011; Komarova et al., 2007; Mehta, 2012; Mehta & Malik, 2006; Sukriti et al., 2014; Tauseef et 
al., 2016; Tauseef et al., 2012). However, endothelium is permeable to certain molecules ranging from 
the sizes 0.1 nm to 11.5 nm in diameters (Chavez et al., 2011; Komarova et al., 2007; Mehta & Malik, 
2006; Sukriti et al., 2014). During physiological conditions, endothelium transport molecules such 
as ions and water molecules, using two different mechanisms (Chavez et al., 2011; Komarova et al., 
2007; Mehta & Malik, 2006; Sukriti et al., 2014; Vandenbroucke, Mehta, Minshall, & Malik, 2008): i) 
Transcellular pathway (Chavez et al., 2011; Mehta & Malik, 2006; Sukriti et al., 2014) ii) Paracellular 
pathway (Chavez et al., 2011; Mehta & Malik, 2006; Sukriti et al., 2014). Molecules, which are greater 
than 3 mm radii, such as albumin, IgG, etc., are transported across the endothelium via transcellular 
transport mechanism (Komarova et al., 2007; Mehta & Malik, 2006; Sukriti et al., 2014; Vandenbroucke 
et al., 2008). This transport mechanism is also called vesicular transport or transcytosis (Mehta & Malik, 
2006; Predescu, Predescu, & Malik, 2007). However, molecules , which are smaller than 3mm in sizes, 
for example, glucose molecules, water molecules and ions; transportation is mediated via paracellular 
mechanism through the inter endothelial junctions (IEJs) (Chavez et al., 2011; Komarova et al., 2007; 
Mehta & Malik, 2006; Sukriti et al., 2014; Vandenbroucke et al., 2008).
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A Transcellular pathway is regulated by a tight coordination between proteins such as caveolae, dy-
namin and intersectin (Chavez et al., 2011; Komarova et al., 2007; Mehta & Malik, 2006; Predescu et 
al., 2007; Predescu, Predescu, Timblin, Stan, & Malik, 2003; Sukriti et al., 2014). Caveolae are flasked 
shaped vesicles, which are composed of proteins called caveolin 1 (Chavez et al., 2011; Mehta & Ma-
lik, 2006; Predescu et al., 2007; Zhao et al., 2009). Caveolin 1 forms the key structural and signaling 
molecule of caveolae (Chavez et al., 2011; Predescu et al., 2007; Sukriti et al., 2014). Dysfunctioning of 
caveolin 1 in the endothelial cells has been linked to some of the serious cardiovascular and pulmonary 
disorders, such as pulmonary hypertension (Maniatis et al., 2008; Zhao & Malik, 2009; Zhao et al., 
2009). Caveolin 1 also negatively regulates endothelial nitric oxide synthase (eNOS) (Mehta & Malik, 
2006; Zhao & Malik, 2009; Zhao et al., 2009). Caveolin1 knockout mice displayed increase endothelial 
barrier permeability because of the dismantling of IEJs in capillaries and venules (Chavez et al., 2011; 
Mehta & Malik, 2006; Sukriti et al., 2014; Zhao & Malik, 2009; Zhao et al., 2009).

Paracellular pathway is tightly regulated complex interplay between various junctional proteins, such 
vascular endothelial cadherins (VE cadherins) (Chavez et al., 2011; Dejana, Orsenigo, Molendini, Baluk, 
& McDonald, 2009; Giannotta, Trani, & Dejana, 2013; Komarova et al., 2007; Mehta & Malik, 2006) 
and catenins (β-catenin, p120 catenin) in the endothelial cells. These junctional proteins bind endothe-
lial cells together and form adherens junctions (AJs). In healthy endothelium, VE-cadherin is linked 
through its cytoplasmic domain to p120-catenin and β-catenin or plakoglobin (γ-catenin), to provide a 
basic organization of AJs. (Chavez et al., 2011; Dejana, Orsenigo, et al., 2009; Giannotta et al., 2013; 
Komarova et al., 2012; Komarova et al., 2007; Mehta & Malik, 2006; Rajput et al., 2013; Sukriti et al., 
2014; Thennes & Mehta, 2012; Vandenbroucke St Amant et al., 2012) (Figure 1). Besides catenins and 
cadherins, molecular motors such as actin and myosin machinery play an integral role in the functioning 
of paracellular transport mechanism in the endothelial cells (Figure 1). Endothelial cell-to-cell junctions 
are not only maintain integrity of AJs, but they are also required to initiating intracellular signaling 
processes to prevent an uncontrolled cell growth, lumen formation, cell polarity and interactions with 
pericytes and smooth muscle cells (Chavez et al., 2011; Dejana, Orsenigo, et al., 2009; Giannotta et al., 
2013; Gong et al., 2015; Komarova et al., 2007; Mehta & Malik, 2006; Sukriti et al., 2014; Thennes & 
Mehta, 2012). Therefore, conditions that disrupt endothelial junctions might not only increase vascular 
permeability by opening intercellular gaps but also change the endothelial cell responses to their environ-
ment and to the surrounding cells (Chavez et al., 2011; Daneshjou et al., 2015; Dejana, Orsenigo, et al., 
2009; Giannotta et al., 2013; Gong et al., 2015; Komarova et al., 2007; Mehta & Malik, 2006; Sukriti 
et al., 2014; Thennes & Mehta, 2012).

During physiological conditions both transcellular and paracellular pathways work with each other to 
maintain endothelial barrier homeostasis, immune regulation and to preserve the normal tissue-oncotic 
pressure (Chavez et al., 2011; Mehta & Malik, 2006; Sukriti et al., 2014; Tauseef et al., 2008; Thennes 
& Mehta, 2012; Vandenbroucke et al., 2008). However, during inflammatory conditions, for example, 
during septicemia, activation of proinflammatory signaling cascades leads to the generation of potent 
inflammatory mediators such as thrombin, endotoxin Lipopolysaccharide (LPS), tumor necrosis factor α 
(TNF α) and vascular endothelial growth factor (VEGF), which through activation of their corresponding 
receptors, initiate endothelial barrier dysfunction (Bates & Harper, 2002; Daneshjou et al., 2015; Gong 
et al., 2015; Liu, Yu, Yu, & Kou, 2015; Mehta & Malik, 2006; Paria et al., 2004; Sukriti et al., 2014; 
Tauseef et al., 2008; Tauseef et al., 2012; Uhlig et al., 2014; Vandenbroucke et al., 2008). Endothelial 
dysfunction is the earliest step in the disorganization of IEJs. This disorganization ultimately leads to 
increase in endothelial permeability and accumulation of tissue edema (Daneshjou et al., 2015; Gong 
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et al., 2014; Gong et al., 2015; Knezevic, Tauseef, Thennes, & Mehta, 2009; Tauseef et al., 2008; Tir-
uppathi et al., 2014; Vandenbroucke et al., 2008).Excessive accumulation of fluid along with albumin 
and inflammatory cells underneath the breached endothelium, sets the stage of inflammatory disorders 
such acute lung injury and acute respiratory distress syndrome, which has no treatment so far (Gong et 
al., 2014; Gong et al., 2015; Knezevic et al., 2009; Tauseef et al., 2008; Tauseef et al., 2012; Tiruppathi 
et al., 2014).

Pulmonary Endothelial Barrier Permeability

Studies suggest that proinflammatory mediators such as thrombin, histamine and endotoxin LPS increase 
pulmonary endothelial permeability by opening of the IEJs (Ashina et al., 2015; Gong et al., 2015; Ra-
jput et al., 2016; Schmidt et al., 2013; Tauseef et al., 2008; Tauseef et al., 2012; Tiruppathi, Ahmmed, 
Vogel, & Malik, 2006). IEJs are composed of adheres junctions (AJs), tight junctions (TJs) and junctional 
adhesion molecules (JAMs) (Chavez et al., 2011; Dejana, Orsenigo, et al., 2009; Giannotta et al., 2013; 
Knezevic et al., 2009; Mehta & Malik, 2006; Tiruppathi et al., 2014; Tran et al., 2015; Wang, Li, Cho, 
& Malik, 2014). These junctional proteins along with cell contractile cytoskeleton machinery, initiate 
a complex signaling mechanisms to regulate paracellular permeability pathways (Chavez et al., 2011; 
Komarova et al., 2007; Mehta & Malik, 2006; Tiruppathi et al., 2014; Tran et al., 2015; Vandenbroucke 
et al., 2008). In the endothelium, AJs play a prominent role in the formation and regulation of barrier 
function (Komarova et al., 2007; Sukriti et al., 2014; Thennes & Mehta, 2012). Also, vascular-endothelium 
(VE) cadherin constitute a major cadherin in the assembly of endothelial barrier and regulate paracellular 
permeability pathway (Dejana, Orsenigo, et al., 2009; Giannotta et al., 2013; Gong et al., 2014; Gong et 
al., 2015) (Figure 1). Endothelial cells are linked to each other through these cadherin molecules. Hence, 
if any signaling pathway affects the VE-cadherin molecules, will disturb the endothelial barrier integrity, 
and may lead to increase in endothelial permeability (Daneshjou et al., 2015; Dejana, Orsenigo, et al., 
2009; Giannotta et al., 2013; Gong et al., 2014; Mehta & Malik, 2006) (Figure 1).

Permeability increasing factors or inflammatory agonists induce minute gaps between endothelial 
cells and thus allow cells and protein rich fluid to pass across the endothelial monolayer (Chava, Tauseef, 
Sharma, & Mehta, 2012; Kini, Chavez, & Mehta, 2010; Knezevic et al., 2009; Komarova et al., 2012; 
Minshall et al., 2010; Singh et al., 2007; Tauseef et al., 2008). In acute inflammatory insults, increasing 
in endothelial permeability is reversible; however, in chronic inflammation, as happens during sepsis, the 
persistent increase in permeability leads to perturbation of gas exchange process and multi organ failure 
(Mehta & Malik, 2006; Pierrakos, Karanikolas, Scolletta, Karamouzos, & Velissaris, 2012; Rajput et al., 
2016; Sukriti et al., 2014; Tauseef et al., 2012). The molecular mechanisms that initiate disturbances in 
the endothelial monolayer, and produce minute gap in between the endothelial cells, are still not clearly 
defined. However, recent studies from our laboratory as well as from other laboratories suggest the role 
excessive cytosolic calcium (Ca2+) entry induced by inflammatory mediator in the endothelial cells, is 
the initial trigger in the induction of endothelial permeability (Ahmmed et al., 2004; Cioffi, Barry, & 
Stevens, 2010; Mehta et al., 2003; Samapati et al., 2012; Singh et al., 2007; Sundivakkam et al., 2012; 
Sundivakkam, Natarajan, Malik, & Tiruppathi, 2013; Tauseef et al., 2016; Tauseef et al., 2012; Tiruppathi 
et al., 2002) (Figure 2). Small GTPases, phosphatases and kinases, by regulating the phosphorylation 
and internalization of VE-cadherin, controls the junctional stability and vascular permeability (Chavez 
et al., 2011; Dejana, Tournier-Lasserve, & Weinstein, 2009; Giannotta et al., 2013; Mehta et al., 2003; 
Mehta & Malik, 2006; Schmidt et al., 2013; Thennes & Mehta, 2012). Besides, different types of vessel 
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beds for example, veins, arteries, capillaries and lymphatics, display heterogeneity and therefore differ 
in terms of vascular permeability at the basal level and in response to edemagenic agents (Aird, 2012; 
Ofori-Acquah, King, Voelkel, Schaphorst, & Stevens, 2008; Regan & Aird, 2012; Stevens, 2011; Sukriti 
et al., 2014). Vascular endothelial cells of coronary, pulmonary and skeletal muscle form more restrictive 
barrier. However, vascular beds of kidney, liver and lymphatics formed discontinuous and permeable 
endothelial barrier (Mehta & Malik, 2006; Ofori-Acquah et al., 2008; Stevens, 2011). Measurement of 
coefficient of vascular endothelial permeability (Kfc), a sensitive marker of endothelial permeability, using 
isolated perfused lung preparations under basal conditions in experimental animals, demonstrated huge 
permeability variabilities across the arterial versus venous sites (Chavez et al., 2011; Mehta & Malik, 
2006; Stevens, 2011). For example, permeability observed at the microvascular site was 42%, while at 
arterial bed approximately 19% and venous site approximately 37% (Mehta & Malik, 2006; Ofori-Acquah 
et al., 2008; Stevens, 2011; Sukriti et al., 2014). These studies suggest that arterial vascular bed constitute 
more restrictive barrier than venous area. More interestingly, the pulmonary micro vascular endothelial 
barrier is about four times tighter than the barrier formed by arterial or venous endothelial cells (Mehta 
& Malik, 2006; Ofori-Acquah et al., 2008; Stevens, 2011). Finally, measurement of endothelial barrier 
function in vitro using tansendothelial electrical resistance (TEER) technique showed that microvascu-
lar endothelial cells display tighter barrier as compare to large artery’s endothelial cells (Chavez et al., 
2011; Mehta & Malik, 2006; Sukriti et al., 2014). These observations suggest that there are many more 
regulators that dictate endothelial permeability and will ultimately behave accordingly in response to 
inflammatory mediators. To understand the molecular signaling pathways regulating endothelial bar-
rier function at basal level as well as during inflammatory conditions are primers in the development of 
rationale therapeutic to treat vascular inflammatory conditions.

Signaling Mechanisms Regulating Endothelial Barrier Disruption

AJs have a central role in the regulation of endothelial barrier function (Komarova et al., 2007; Mehta, 
2012). Multiple signaling pathways are involved in the induction of endothelial permeability (Beckers 
et al., 2015; Daneshjou et al., 2015; Dejana, Orsenigo, et al., 2009; Kini et al., 2010; Tauseef et al., 
2012; Tiruppathi et al., 2006). However, increase in endothelial cells cytoskeleton contraction followed 
by disassembly of AJs are the main events taken place after challenging the cells with inflammatory 
agonists and cytokines (Beckers et al., 2015; DebRoy et al., 2014; Tauseef et al., 2012). In the following 
section we describe in detail how the activated inflammatory signaling pathways modulate the plasticity 
of AJs, leading to the mounting of endothelial permeability.

PAR-1 Activation Increases Endothelial Barrier Permeability

Thrombin, a procoagulant serine protease, increases endothelial permeability by activating predominantly 
its receptor, protease activated receptor (PAR)-1 on the endothelial cell surface (Tauseef et al., 2008; 
Vogel et al., 2000; Vogel & Malik, 2012). PAR-1 is activated by its ligation, which thrombin-dependent 
proteolytic cleavage of the PAR-1 extracellular extension (between Arg-41 and ser-42) (Knezevic et al., 
2009; Tauseef et al., 2008; Vogel et al., 2000). Thus, resulting tethered ligand bind and activate PAR-1 
receptor to initiate downstream signaling leads to increase in endothelial permeability (Knezevic et al., 
2009; Tauseef et al., 2008). Studies show that thrombin increased endothelia permeability within few 
minutes and reversal of response occurred within two hours after removal of the agonist (Knezevic et 
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al., 2007; Mehta & Malik, 2006; Mehta, Ravindran, & Kuebler, 2014; Uhlig et al., 2014; van Nieuw 
Amerongen, Draijer, Vermeer, & van Hinsbergh, 1998). However, in the continuous presence of agonist, 
recovery still occurs within two hours (Chava et al., 2012; Knezevic et al., 2007; Tauseef et al., 2008). 
This suggests that either desensitization of PAR-1 or activation of endogenous signaling pathways leads 
to the restoration disrupted endothelial barrier function. In vivo studies show that PAR-1 deleted mice 
are protected from thrombin induced increase in pulmonary vascular permeability, which further sug-
gest a role of PAR-1 signaling in the increase in endothelial permeability (Mehta & Malik, 2006; Vogel 
et al., 2000).

PAR-1 is a seven-transmembrane heterotrimeric G protein coupled receptor (Mehta & Malik, 2006; 
Vogel et al., 2000; Vogel & Malik, 2012). Upon activation by thrombin, PAR-1 induces the breakdown 
of α- subunits of Gq and G12/13 from the Gβγ dimer. Gq and G12/13 induce endothelial permeability via 
activating myosin light chain kinase (MYLK) and RhoA pathways (discussed below) by inducing en-
dothelial contraction (Birukova et al., 2004; Mehta et al., 2003) (Knezevic et al., 2009; Mehta & Malik, 
2006; Singh et al., 2007; Vogel et al., 2000; Vogel & Malik, 2012). However, the downstream signaling 
consequences following the Gβγ subunit activation, are not well studied, and are one of the active areas 
of research in our laboratory. Knezevic et al. using in vitro cell culture and in vivo genetic knockout 
mouse models showed that Gβγ subunit restores endothelial barrier function following the activation of 
barrier disruptive PAR-1 receptor activation (Knezevic et al., 2009). Using siRNA approach, Knezevic 
et al. (2009) found that knocking down of Gβγ subunit in the endothelial cells prevented the reannealing 
of endothelial barrier function (Knezevic et al., 2009). This study discovered that during unperturbed 
endothelial barrier function, Gβγ subunit remained associated with receptor for activated C kinase 1 
(RACK1). However, upon stimulation of PAR-1 receptor with thrombin, Gβγ subunit dissociated from 
RACK1, and interacted with tyrosine kinases, Fyn and focal adhesion kinase (FAK), a required step to 
activate of FAK in order to reseal disrupted endothelial monolayer (Knezevic et al., 2009). Upon deple-
tion of RACK1, they found that Gβγ subunit was able to activate FAK and endothelial barrier resolution, 
suggest RACK1 is upstream of Gβγ. Moreover, Fyn knockdown halted the Gβγ subunit mediated recovery 
of endothelia monolayer, emphasizes that Fyn is required to activate FAK in the endothelial cells (Kne-
zevic et al., 2009). Lastly, upon interaction with AJs, FAK stabilizes AJ assembly and thus, tightens the 
endothelial barrier. Thus, Knezevic et al. identified hitherto unknown novel signaling pathway to recover 
endothelial barrier function during the face of inflammatory milieu (Knezevic et al., 2009).

MYLK Activation and Role of Actin-Myosin Machinery in the Dismantling of AJs

The first and foremost event during the initiation of endothelial permeability is rounding of endothelial 
cells due to the activation of contractile machinery (Holinstat et al., 2006; Komarova et al., 2007; Shi et 
al., 1998; Singh et al., 2007; Sukriti et al., 2014; Tiruppathi et al., 2006). It happens through the formation 
of the stress fibers (Beckers et al., 2015; Chava et al., 2012; Mehta & Malik, 2006; Rajput et al., 2013). 
Stress fibers are composed of bundles of polymerized actin and myosin filaments (Beckers et al., 2015; 
Komarova et al., 2007; Mehta & Malik, 2006; Rajput et al., 2013). These fibers attain characteristic shape 
following the stimulation of endothelial cells with inflammatory mediators (Beckers et al., 2015; Rajput 
et al., 2013). This actin-myosin mediated endothelial contraction is initiated by myosin light chain kinase 
(MYLK). MYLK is a Ca2+-calmodulin dependent enzyme (Beckers et al., 2015; Mirzapoiazova et al., 
2011; Tauseef et al., 2012; Usatyuk et al., 2012; Wainwright et al., 2003). It exists in two isoforms- the 
muscle type, which presents in smooth muscle cells; and a non-muscle type, expressed in non-muscle 
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cells including endothelial cells (Mehta & Malik, 2006; Tauseef et al., 2012; Usatyuk et al., 2012). Upon 
activation, following the cytosolic Ca2+ entry induced by inflammatory agonist such as thrombin, MYLK 
phosphorylates regulatory myosin light chain (MLC) on ser-19 (monophosphorylation) or ser-19/thr-18 
(diphosphorylation) (Mirzapoiazova et al., 2011; Schmidt et al., 2013; Sukriti et al., 2014; Tauseef et 
al., 2012; Wainwright et al., 2003). These events take place with few seconds to minutes. Therefore, 
phosphorylation of MLC, especially, diphosphorylation of MLC, is a pre-requisite event in the initiation 
of endothelial contraction (Mehta & Malik, 2006; Mehta et al., 2014; Mirzapoiazova et al., 2011; Sukriti 
et al., 2014; Vogel & Malik, 2012). Interestingly, mice only lacking non-muscle isoform of MYLK, 
found protected from LPS induced pulmonary vascular permeability and inflammation (Rossi, Velentza, 
Steinhorn, Watterson, & Wainwright, 2007; Wainwright et al., 2003). Furthermore, pharmacological 
inhibition of MYLK using ML-7 prevented increase in endothelial permeability (Chavez et al., 2011; 
Garcia, Davis, & Patterson, 1995; Mehta & Malik, 2006). Mice injected with ML-7 or cultured human 
endothelial cells pretreated with ML-7 were found protected against LPS induced endothelial perme-
ability (Chavez et al., 2011; Garcia et al., 1995). Besides, MYLK inhibition also prevented LPS induced 
renal endothelial cell dysfunction in in vivo mouse model (Chavez et al., 2011; Wu, Guo, Chen, Wang, 
& Cunningham, 2009). These findings demonstrating the potential role of MYLK in the disassembly of 
AJs by mediating endothelial cell rounding, and thus reveal a tempting target to develop a drug against 
inflammatory induced increased in endothelial permeability.

Role of Rho Family of GTPases in the Regulation of Endothelial Permeability

Similarly to MYLK, RhoA GTPase also demonstrated regulation of vascular permeability in response 
to variety of inflammatory stimuli in endothelial cells (Beckers et al., 2015; Mehta et al., 2003; Schmidt 
et al., 2013). RhoA GTPase induces vascular permeability by activating its downstream effector Rho 
kinase (ROCK) (Beckers et al., 2015). Upon activation, ROCK phosphorylates myosin light chain 
phosphatase (MYLP or PP1) regulatory subunit, and suppresses its activity. Inhibition of MYLP activ-
ity downstream of the activation of ROCK, leads to the prolongation of the activity of MYLK, which 
basically maintained endothelial cells in their contractile state (Beckers et al., 2015; Mehta & Malik, 
2006). And this eventually leads to the long lived endothelial permeability and setting up the stage for 
inflammation (Mehta & Malik, 2006). In contrast to RhoA activation, another GTPase, Rac1, when 
activated tightens the endothelial barrier function by stabilizing AJs (Chavez et al., 2011; Tauseef et 
al., 2008; Vandenbroucke et al., 2008). For example, inhibiting the Rac1 function using specific Rac1 
inhibitor, clostridium sordelli toxin, induced AJs destabilizing and promotion of endothelial barrier 
leakiness (Schlegel et al., 2008). Using in vivo mouse model, research findings demonstrated that a very 
fine balance between RhoA and Rac1 activity is required to maintain AJs stability (Schmidt et al., 2013; 
Tauseef et al., 2008). It was further demonstrated that endothelial focal adhesion kinase (FAK) maintains 
vascular endothelial barrier function by suppressing the RhoA signaling (Mehta, 2012; Schmidt et al., 
2013; Thennes & Mehta, 2012). However, upon deletion of FAK in the mouse lung endothelial cells, 
switch the GTPase dynamics, and RhoA up regulated, while suppression in the activity of Rac1 (Schmidt 
et al., 2013). This led to the increase in endothelial permeability and lung edema formation (Schmidt 
et al., 2013). It has been observed that under the setting of increased in endothelial permeability, RhoA 
and Rac1 are basically opposed each other’s activation (Schmidt et al., 2013). For example, during the 
disruption of endothelial permeability in response to myriad of inflammatory agonist, RhoA activity 
is increased while Rac1 decreased (Schmidt et al., 2013). However, during the recovery phase, reverse 
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phenomena have taken place (Schmidt et al., 2013; Tauseef et al., 2008). It is not very well understood 
how RhoA suppresses Rac1 activity, and thus induced vascular permeability. It has been demonstrated 
that activation of FilGAP, a recently discovered filamin A (FLNa)-binding Rho GTPase-activating pro-
tein, also targets Rac1, and suppresses its activation. Ohta et al. 2006, demonstrated in a very elegant 
manner that activation of RhoA associated protein kinase kinase (ROCK) phosphorylated FilGAP and 
thus induced its GTPase activity (Ohta, Hartwig, & Stossel, 2006). Upon activation, FilGAP inhibited 
Rac1 and, thus prevented Rac1 induced lemilopodia formation (Ohta et al., 2006). Moreover, overexpres-
sion of dominant-negative FilGAP constructs, which lacks GAP activity or knockdown of endogenous 
FilGAP using small interference RNA (siRNA) leads to the lamellopdia formation and enhanced cell 
spreading. Furthermore, knockdown of endogenous FilGAP abrogated ROCK-dependent suppression of 
lamellae. On the other hand, forced expression of FilGAP induces cell contractility and bleb formation; 
and a ROCK-specific inhibitor suppresses bleb formation (Ohta et al., 2006). This study showed that 
how RhoA via activation of FilGAP switched off Rac activity and thus induced endothelial permeability 
(Ohta et al., 2006). Besides established role of Rac1 in the prevention of endothelial barrier function via 
inducing cells spreading, Kouklis et al., demonstrated that Cdc42, another Rho family GTPase prevented 
endothelial permeability (Kouklis, Konstantoulaki, Vogel, Broman, & Malik, 2004). They found that 
induction of endothelial permeability following the stimulation of thrombin, leads to the activation of 
Cdc42 (Kouklis et al., 2004). Interestingly, they observed that mice and endothelial cells over-expressing 
Cdc42, displayed resistance towards increasing in endothelial permeability (Kouklis et al., 2004). To fur-
ther explore the role of activated Cdc42 in the reannealing of AJs, Kouklis et.al. overexpressed dominant 
negative Cdc42 mutant (N17Cdc42) in the endothelial cells (Kouklis et al., 2004). They found that over 
expression of N17Cdc42, delayed formation of VE cadherin and thus prevented restoration of vascular 
endothelial permeability (Kouklis et al., 2004). These findings identify the critical role of Cdc42 in 
restoring AJs assembly and endothelial permeability (Kouklis et al., 2004).

Excessive Intracellular Calcium (Ca2+) and Endothelial Permeability

Ca2+ is an ubiquitous second messenger in almost all cell types including endothelial cells (Ahmmed et al., 
2004; Di, Mehta, & Malik, 2016; Mehta et al., 2003; Singh et al., 2007; Tauseef et al., 2016; Tiruppathi 
et al., 2006). It regulates number of physiological and pathological cell processes such as cell division, 
blood vessel formation and maintenance of AJs (Bates & Harper, 2002; Li et al., 2011; Mehta & Malik, 
2006; Tauseef et al., 2016). However, it is the excessive uncontrolled cytosolic Ca2+ entry following the 
activation of inflammatory signaling pathways leads to the deleterious disruption of endothelial bar-
rier function and tissue edema (Singh et al., 2007; Tauseef et al., 2016; Tauseef et al., 2012). Resting 
levels of intracellular Ca2+ in endothelial cells varies between 40 to 100 nM. However, stimulation of 
endothelial cells with inflammatory mediators such as thrombin, oxidants, growth factors and histamine 
increase Ca2+ levels to 1 to 2 μM within few seconds (Singh et al., 2007; Tauseef et al., 2012; Tiruppathi 
et al., 2006; Tiruppathi et al., 2002). Extracellular Ca2+ is required in the maintenance of AJs. Increase 
in free intracellular Ca2+ activates downstream contractile cell machinery leads to the cell rounding and 
opening of AJs (Singh et al., 2007; Tauseef et al., 2016; Tiruppathi et al., 2002). Thus, Ca2+ acts as a 
switch, as its concentration in the cytosol regulate endothelial cell activity (Singh et al., 2007). Affords 
are going on in our laboratory as well as in other laboratories to better understand the tight regulation 
of Ca2+ signaling in endothelial cells (Tauseef et al., 2016; Tauseef et al., 2012).
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Ca2+ entry activating pro-inflammatory stimuli upon stimulating their receptors on the endothelial 
cell surface leads to the phospholipase (PLC)β or PLCγ mediated hydrolysis of phosphoinositol 4, 5-bis-
biphosphate (PIP2) into inositol 1, 4, 5 triphosphate (IP3) and diacylglycerol (DAG) (Figure 2) (Mehta 
& Malik, 2006; Sukriti et al., 2014; Tauseef et al., 2012; Tiruppathi et al., 2006). IP3, via activating its 
receptor, inositol triphosphate receptor (IP3R) at the surface of endoplasmic rectum (ER), induces ER 
Ca2+store depletion (Mehta & Malik, 2006; Sukriti et al., 2014). The ER store depletion is sensed by 
another ER resident monomeric protein, stromal interaction molecule 1 (STIM1) (DebRoy et al., 2014; 
Gudermann & Steinritz, 2013; Lee et al., 2010; Shinde et al., 2013; Zeng et al., 2008). Once activated by 
the ER Ca2+ release, STIM1 protein, which presents as a monomeric unit, immediately polymerizes to 
form a STIM1 cluster, called puncta formation (Gandhirajan et al., 2013; Gudermann & Steinritz, 2013; 
Lee et al., 2010). The whole STIM1 cluster moves near to the plasma membrane to interact with plasma-
lemma Ca2+ channels, called store operated Ca2+ (SOC) channels (Gudermann & Steinritz, 2013; Lee et 
al., 2010; Zeng et al., 2008) (Figure 2). This leads to the activation of store operated Ca2+entry (SOCE) 
(Gudermann & Steinritz, 2013; Lee et al., 2010; Zeng et al., 2008). On the other side, DAG activates 
another type of Ca2+ entry pathway called receptor operated Ca2+entry (ROCE), which is independent 
of the ER Ca2+store depletion (Pocock, Foster, & Bates, 2004; Singh et al., 2007; Tauseef et al., 2012). 
The transient receptor potential canonical (TRPC) channels are involved in the regulation of SOCE and 
ROCE in endothelial cells (Birnbaumer, 2009; Dietrich & Gudermann, 2011; Earley & Brayden, 2015; 
Tauseef et al., 2012). The endothelial cells express TRPC1, TRPC4, TRPC6 and TRPC7. TRPC1 and 
TRPC4 constitute the components of SOC channels, while TRPC6 and TRPC7 composed ROC channels 
(Birnbaumer, 2009; Sukriti et al., 2014) (Figure 2). Furthermore, TRPC1, TRPC4 and TRPC6 have been 
shown to be important mediators of increasing in endothelial permeability and inflammation in response 
to inflammatory agonists (DebRoy et al., 2014; Tauseef et al., 2016; Tauseef et al., 2012; Tiruppathi 
et al., 2002). Initial studies suggest that the blocking the TRPC1 channel using anti-TRPC1 antibody 
reduced Ca2+ entry and prevented increase in endothelial permeability in response to thrombin (Jho et 
al., 2005). Overexpression of TRPC1 channel enhanced cytosolic Ca2+entry, stress fiber formation and 
thereby increased in endothelial permeability (Jho et al., 2005; Sukriti et al., 2014). To understand the 
relevance of TRPC channel mediated Ca2+entry in the regulation of vascular permeability during in vivo 
setting, it was observed that deletion of TRPC4 channel in mice reduced pulmonary vascular permeability 
to about 50% following the injection of protease activation receptor (PAR1) agonist peptide (Tiruppathi 
et al., 2002). Mehta et al. demonstrated the role of RhoA mediated actin fibers re-organization in the 
activation of TRPC1 channel mediated Ca2+ entry in the endothelial cells (Mehta et al., 2003). Fur-
thermore, Ahmmed et al. showed that PKCα phosphorylates at serine/threonine residues on the TRPC1 
protein to induce Ca2+entry (Ahmmed et al., 2004). Inhibition of PKCα using siRNA prevented Ca2+entry 
and endothelial permeability (Ahmmed et al., 2004). MYLK has also been shown to regulate SOCE in 
endothelial cells (Garcia et al., 1995). Inhibition of MYLK using ML-7 suppressed SOCE in endothelial 
cells (Garcia et al., 1995; Mehta & Malik, 2006). Tauseef et al. demonstrated that TRPC1-mediated 
cytosolic Ca2+ entry induces lung vascular permeability by altering VE-cadherin cell-surface expression, 
and thus, disrupting AJs stability (Tauseef et al., 2016) (Figure 3). Sphingosine-1-phosphate (S1P), is a 
phospholipid, is generated in endothelial cells via phosphorylation of sphingosine by sphingosine kinase 
1 (SPHK1) enzyme (Sammani et al., 2010; Tauseef et al., 2016; Tauseef et al., 2008). Upon genera-
tion, S1P tightens the endothelial barrier, and prevents increase in endothelial permeability via Rac1 
activation signaling pathway (Proia & Hla, 2015; Sammani et al., 2010; Tauseef et al., 2008). Tauseef 
et al. showed that TRPC1 deleted mouse lung endothelial cells were protected from thrombin induced 
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barrier disruption (Tauseef et al., 2016) (Figure 3). Moreover, TRPC1 deleted cells displayed increased 
activity of SPHK1 and increased generation of S1P (Tauseef et al., 2016). They also observed increased 
accumulation of VE-cadherin at the inter-endothelial cell junctions, under basal conditions (Tauseef et 
al., 2016) (Figure 3). TRPC1 deleted mice displayed increased survival in response to lethal dose of 
endotoxin LPS. Altogether, present study suggests that TRPC1 channel modulate VE-cadherin expres-
sion in the endothelial cells through regulation of sphingosine kinase (SPHK1)-induced sphingosine 1 
phosphate (S1P) generation (Tauseef et al., 2016). Thus, the study identified TRPC1 channel as a novel 
drug target for up-regulating S1P levels particularly in the setting of increase in vascular permeability 
as observed during sepsis and in diabetes induced vasculopathies (Tauseef et al., 2016).

STIM1 protein, originally was discovered as a tumor suppressor protein, has been identified and char-
acterized as an important regulator of SOCE in endothelial cells (DebRoy et al., 2014; Gandhirajan et al., 
2013; Lee et al., 2010; Sukriti et al., 2014). STIM1 senses ER Ca2+ stores, and upon ER Ca2+depletion, 
it activates SOCE via interaction with SOC channels (Bird et al., 2009; DebRoy et al., 2014; Lee et al., 
2010) (Figure 2). STIM1 contains several motifs or domains that are important in the activation of SOCE 
(Bird et al., 2009; Cahalan, 2009; Lee et al., 2010; Yuan et al., 2009). The STIM1 N-terminal EF hand 
domain has Ca2+ binding site, sterile α motif or SAM domain, a single transmembrane domain (TM), 
an Ezrin-radixin-moesin (ERM) domain, a serine-proline-rich domain (S/P-region) and a lysine rich 
domain (Bird et al., 2009; Cahalan, 2009; Cao et al., 2015; Cioffi et al., 2010; Gudermann & Steinritz, 
2013; Sukriti et al., 2014; Yuan et al., 2009). When the ER store is filled Ca2+, EF hand remains bind 
with Ca2+ions, and STIM1 exists as monomer (Cao et al., 2015; Cioffi et al., 2010; Lee et al., 2010; 
Yuan et al., 2009). Upon store deletion, the EF hand and SAM domain from different STIM1 proteins 
come near with each other and form aggregates, called puncta (Bird et al., 2009; Cahalan, 2009; Cao et 
al., 2015; Cioffi et al., 2010; Gudermann & Steinritz, 2013; Lee et al., 2010; Yuan et al., 2009). These 
puncta ultimately moves near the plamsmamembrane to interact with SOC channels to induce SOCE 
(Bird et al., 2009; Cao et al., 2015; Lee et al., 2010; Yuan et al., 2009). STIM1 protein induces SOCE 
via interacting with TRPC1, TRPC4, TRPC5 and ORAI channels. These channels are important con-
stitutes of SOC as well as Ca2+release activated Ca2+ (CRAC) channels (Cao et al., 2015; Cioffi et al., 
2010; Gudermann & Steinritz, 2013; Lee et al., 2010). In the recent published study, Sundivakkam et 
al. showed that SOCE activated p38 MAP kinase, which phosphorylated STIM1 and suppressed SOCE 
in endothelial cells (Sundivakkam et al., 2013). On the other hand, Vasauskas et al. demonstrated in hu-
man endothelial cells that calcinuerin, a phosphatase, by dephosphorylating the STIM1 activates SOCE 
(Vasauskas, Chen, Wu, & Cioffi, 2014). These studies identified an auto regulatory pathway of control-
ling SOCE, and thus provide us a better understanding how to regulate uncontrolled Ca2+ signaling in 
endothelial cells during inflammatory conditions.

STIM2, an isoform of STIM1, also expresses in endothelial cells (Cahalan, 2009; Sukriti et al., 
2014). Unlike STIM1, STIM2 doses not regulate SOCE, but it has a role in the regulation of cytosolic 
Ca2+in the basal conditions (Brandman, Liou, Park, & Meyer, 2007; Cahalan, 2009; Hogan, Lewis, & 
Rao, 2010). Overexpression of STIM2 in non-endothelial cell such as in HEK cells and jurkat cells 
prevented SOCE and CRAC activity, respectively (Brandman et al., 2007; Cahalan, 2009; Hogan et al., 
2010; Sukriti et al., 2014). The role of STIM2 in the prevention of STIM1 induced SOCE needs to be 
evaluated in endothelial cells. Thus, in future STIM2 may emerge as potential drug target to regulate 
SOCE during inflammatory conditions (Cahalan, 2009; Hogan et al., 2010).

Besides SOC channels, ROC channel such as TRPC6 has emerged as an important regulator of vas-
cular endothelial permeability under the condition of septicemia and reactive oxygen production during 
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pulmonary inflammation (Tauseef et al., 2012; Weissmann et al., 2012). TRPC6 channel is highly ex-
pressed in mammalian lung and lung endothelial cells. Singh et al. using 1-Oleoyl-2-acetyl-sn-glycerol 
(OAG), a cell membrane permeable analog of DAG and an specific activator of TRPC6 channel, showed 
that TRPC6 increased permeability in human pulmonary artery endothelial cells through increasing 
cytosolic Ca2+ entry (Singh et al., 2007). Tauseef et. al. 2012, showed that TRPC6 plays a central role 
in signaling both LPS-induced lung vascular permeability and inflammation (Tauseef et al., 2012). The 
study found that LPS induced DAG production in endothelial cells to activate TRPC6 channel (Tauseef 
et al., 2012). Activated TRPC6 induced MYLK activity that by stimulating actomyosin cross-bridging 
mediates endothelial cell contraction leading to increased lung vascular permeability (Tauseef et al., 
2012). Additionally, activated MLCK promoted the interaction of myeloid differentiation primary re-
sponse gene (MyD88) with interleukin receptor-1 associated kinase 4 (IRAK-4), is involved in triggering 
NF-kB signaling and pulmonary inflammation downstream of TLR4 activation (Tauseef et al., 2012). 
Thus, TRPC6 channel acted as a central molecule, relying dual signaling pathways in regulating MYLK 
mediated lung vascular permeability and TLR4 signaling in endothelial cells (Tauseef et al., 2012).

In another recent study published by Weber et al., demonstrated that TRPC6 mediated Ca2+ entry 
was required to induce transendothelial migration (TEM) of neutrophils (Weber et al., 2015). They 
showed that increased in free cytosolic Ca2+ concentration mediated my TRPC6 channel, induced TEM 
of neutrophils (diapedesis) down-stream of Platelet endothelial cell adhesion molecule-1 (PECAM1) 
homophilic interactions (Weber et al., 2015). They further discovered that TRPC6 interacted with PECAM 
and thus, facilitated polymorphonuclear leukocytes (PMN) TEM (Weber et al., 2015). Overexpression 
of dominant-negative TRPC6 or knockdown of TRPC6 in endothelial cells prevented PMN apically 
over the junction, while selective activation of endothelial TRPC6 with hyperforin 9 induced TEM 
even in the absence of PECAM. Mice lacking TRPC6 channel exhibited a profound defect in neutrophil 
TEM with no effect on leukocyte trafficking in a croton oil-mediated acute ear inflammation (Weber et 
al., 2015). Thus, they identified endothelial TRPC6 channel as a regulator of PECAM mediated TEM 
of neutrophils, suggests a potential therapeutic implication in the treatment of vascular inflammation 
(Weber et al., 2015).

Role of SPHK1-SP1 Signaling Pathway in the 
Regulation of Endothelial Barrier Function

Sphingosine kinase (SPHK) presents in the endothelial cells in two isoforms-SPHK1 and SPHK2 
(Chavez et al., 2011; Christensen et al., 2016; Huang et al., 2013; Tauseef et al., 2016; Tauseef et al., 
2008; Wadgaonkar et al., 2009). Both SPHK1 and SPHK2 are bioactive enzymes, and catalyze conver-
sion of membrane phospholipid, sphingosine into sphingosine 1 phosphate (S1P) (Christensen et al., 
2016; Huang et al., 2013). S1P has been identified as one of the most potent endothelial protective agent 
against variety of inflammatory insults (Blaho et al., 2015; Christensen et al., 2016; Huang et al., 2013; 
Proia & Hla, 2015; Singleton, Dudek, Chiang, & Garcia, 2005; Tauseef et al., 2016). Besides tighten-
ing the endothelial barrier function, S1P is also involved in cell survival, vascular tone regulation; cell 
proliferation and migration pathways (Chavez et al., 2011; Mehta & Malik, 2006; Proia & Hla, 2015). 
Deletion of individual SPHK isoforms (SPHK1 and SPHK2) did not show any marked phenotypic 
changes in the mice models (Tauseef et al., 2008). However, deletion of both genes leads to the mouse 
embryonic lethality within E13.3 due vascular defects and hemorrhage, particularly in the region brain 
(Mizugishi et al., 2005). SPHK1 isoform is involved in the regulation of cell proliferation, migration 

 EBSCOhost - printed on 2/10/2023 5:39 PM via . All use subject to https://www.ebsco.com/terms-of-use



28

Signaling Mechanisms Regulating Vascular Endothelial Barrier Function
 

and pro-survival signals, while SPHK2 has been shown to inhibit DNA synthesis and induce apoptosis 
(Chavez et al., 2011; Mizugishi et al., 2005; Tauseef et al., 2016).

SPHK1 maintains endothelial barrier function by generating an anti-inflammatory phospholipid, 
S1P.(Blaho et al., 2015; Huang et al., 2013; Proia & Hla, 2015; Sammani et al., 2010; Singleton et al., 
2005; Tauseef et al., 2016; Tauseef et al., 2008). SPHK1 deleted mice failed to resolve lung vascular 
permeability following the exposure to nebulized LPS (Tauseef et al., 2008). Prakash et al. demonstrated 
that inhibition of SPHK1 in macrophages increased their sensitivity toward Mycobacterium smegmatis 
infection (Prakash et al., 2010). Di et al. showed that SPHK1-deleted neutrophils produced high amount 
of oxidants upon exposing them to LPS, that leads to sever pulmonary inflammation and increased mor-
tality in SPHK1 deleted mice (Di et al., 2010); however, as SPHK2 was expressed in SPHK1 deleted 
mice, neither it did compensate nor it provided any kind of protection in above mentioned vascular 
defects observed in SPHK1 null mice (Di et al., 2010; Tauseef et al., 2008). This reveals the specificity 
of SPHK1 in the regulation of endothelial barrier function (Tauseef et al., 2008).

S1P signals its effects via activating its receptors, sphingosine 1 phosphate receptors (S1PR1-5), 
formerly known as endothelial differentiation gene or Edg receptors (Chavez et al., 2015; Tauseef et 
al., 2016; Tauseef et al., 2008). Among the 5 S1PR, S1P1R1 is a high affinity S1P receptor (Chavez et 
al., 2015; Mehta, Konstantoulaki, Ahmmed, & Malik, 2005). S1P induces endothelial barrier tighten-
ing signaling via binding to S1PR1 on endothelial cells (Chavez et al., 2015; Mehta, Konstantoulaki, 
Ahmmed, & Malik, 2005). Effect of S1P on the endothelial barrier function is very rapid, as observed 
during the increase in transendothelial electrical resistance (TEER) (Chavez et al., 2015; Tauseef et al., 
2008). Upon knocking down of S1PR1 in endothelial cells using siRNA approach, S1P failed to enhance 
endothelial barrier, indicates role of S1PR1 in the maintenance of AJs in endothelial cell (Chavez et al., 
2015; Chavez et al., 2011; Tauseef et al., 2008). Using in vivo mouse models, studies showed that infu-
sion of S1P prevented LPS- or PAR1-receptor activation induced pulmonary edema formation (Chavez 
et al., 2011; Natarajan et al., 2013; Tauseef et al., 2008). S1P analog, FTY720, suppressed LPS mediated 
microvascular permeability (Natarajan et al., 2013; Peng et al., 2004; Xiong & Hla, 2014). Altogether, 
research findings strongly suggest the potent vascular protective mechanisms offered by S1P during 
increased in endothelial permeability conditions (Chavez et al., 2011; Natarajan et al., 2013; Peng et 
al., 2004; Xiong & Hla, 2014).

In order to establish signaling activated downstream of activation of S1PR1 by S1P, studies have 
identified the role of Rac1 in tightening the endothelial barrier (Abbasi & Garcia, 2013; Mehta et al., 
2005; Tauseef et al., 2008; Xiong & Hla, 2014). S1P1 failed to enhance endothelial barrier following 
the transduction of dominant negative Rac1 mutant in the cells (Mehta et al., 2005). On the similar lines, 
Tauseef et al. showed that knocking down of SPHK1 using siRNA inhibited the basal Rac1 activity, 
leading to lower down than normal TEER resistances (Tauseef et al., 2008).

S1P enhanced endothelial barrier function by the formation of cortical actin rings as well increase 
recruitment of VE-cadherin at inter-endothelial junctions (Abbasi & Garcia, 2013). Moreover, S1P in-
crease FAK activity and thus leads to the tightening of endothelial barrier (Chavez et al., 2011; Sun et 
al., 2009). Recent studies also suggest induction of nitric oxide production in the vascular endothelium 
following the S1P challenge. Activation of S1PR1 by S1P activated phosphatidylinositol 3-kinase, which 
phosphorylates nitric oxide synthase (NOS) in a protein kinase B/Akt- dependent manner, induces NO 
generation in the endothelium (Igarashi, Bernier, & Michel, 2001). S1P mediated NO production tightens 
the endothelial cell-cell connections leads to enhance barrier function (Chavez et al., 2011; Igarashi et 
al., 2001).
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SUMMARY

This review discussed the role of signaling mechanisms, involved in the disruption of endothelial barrier 
via affecting the integrity of AJs. It particularly focused on how excessive cytosolic Ca2+ entry leads 
to the activation of RhoA and MYLK signaling pathways and disassembles AJs, and thereby induc-
ing endothelial permeability during inflammatory conditions. It also described important endogenous 
signaling pathways such as SPHK1-S1P signaling cascade, activated during the increase in endothelial 
permeability, such as during the activation of PAR-1 receptor signaling, in order to restore endothelial 
barrier function. Finally, it discussed in endothelial cell context the roles of Rac1, Cdc42 and FAK that 
how they regulate endothelial barrier function and activated their signaling in order to reanneal disrupted 
endothelial barrier. These signaling molecules are potential drug targets, and if we develop therapeutics 
against these molecules, especially TRPC channels, we hope to bring rationale treatment of inflammatory 
vascular diseases. Endothelial dysfunction is the earliest step in almost every vascular disorder initiated 
by myriad of diseases such as diabetes mellitus, myocardial ischemia and infraction, acute lung injury, 
acute respiratory distress syndrome, cancer and sepsis. If endothelial permeability persists, it may lead 
to the development of life threatening edema, as in the case of acute respiratory distress syndrome. So, 
if endothelial dysfunction is treated at an early stage of cardiovascular disease by preventing or restoring 
endothelial barrier dysfunction, we strongly believe that the high rate of morbidity and mortality can 
significantly be lowered down.
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APPENDIX

Figure 1. Signaling mechanisms regulating endothelial barrier function and integrity. Activation of PAR-
1 receptor using thrombin increases intracellular Ca2+ entry. Ca2+ upon interaction with calmodulin 
(CaM) activates non muscle-myosin light chain kinase (MLCK) in endothelial cells. MYLK upon activa-
tion, phosphorylates (P) myosin light chains (MLCs). This leads to increase in actin-myosin interaction, 
endothelia cell contraction, and disruption of endothelial barrier integrity (left). During the recovery 
phase, sphingosine 1-phosphate (S1P) binds with, and activate its receptor, sphingosine 1 phosphate 
receptor 1 (S1PR1). This initiates formation of cortical actin and tightening of endothelial cell-cell junc-
tions (right). Vascular endothelial cadherin (VE-cadherin) is the integral component in the formation 
of adherens junction (AJs) in endothelial cells. Other junctional proteins such as catenins (α, β, γ, and 
p120) provide junctional stability through their linkages with the actin cytoskeleton in the cytosol. The 
stability of junctional proteins is required in the maintenance of uninterrupted barrier function.
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Figure 2. Signaling mechanisms activating transient receptor potential canonical channel mediated 
calcium entry in the endothelial cells. Agonists such as thrombin or vascular endothelial growth factor 
(VEGF) activate their corresponding receptors, G-protein coupled receptor (PAR-1) or receptor tyrosine 
kinase (RTK), generate inositol triphosphate (IP3) and diacylglycerol (DAG). IP3 binding to its receptor, 
IP3R induces endoplasmic reticulum (ER) Ca2+ store release into the cytoplasm of the cell. This ER store 
depletion activates ER Ca2+ sensor, STIM1 and aggregation of STIM1, called punctae. Puntae move near 
to the plasma membrane and induces store operated Ca2+ entry (SOCE) via activation of TRPC1 and 
TRPC4 channels in the endothelial cells. DAG directly activates the receptor-operated channel (TRPC6) 
independent of ER store depletion.
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Figure 3. Deletion of TRPC1 channel prevents thrombin induced increased in endothelial permeability 
by enhancing cell-surface VE-cadherin expression. (A) Lung endothelial cells were isolated from WT or 
TRPC1 deleted mice, grown to confluence in gold plated electrodes. Changes in transendothelial electri-
cal resistance (TEER) in a real time were recorded following the stimulation of cells with thrombin. * 
TEER normalized values lower than TRPC1 deleted endothelial cells compared to wild type (WT) cells; 
P < 0.05. (B) Mouse lung endothelial cells were stained with anti–VE-cadherin antibody to evaluate 
VE-cadherin cell-surface intensity and interendothelial gap formation after 5 min thrombin challenge of 
WT or TRPC1-deleted endothelial cells. (C-D). Means ± SD of VE-cadherin pixel intensity and interen-
dothelial gap formation from at least 10 individual cells per experiment. Each experiment was repeated 
at least 3 to 4 times. *Values different than WT endothelial cells without thrombin or TRPC1 deleted 
endothelial cells; **values different than WT endothelial cells after thrombin stimulation or no thrombin 
stimulation; P < 0.05. Arrows indicate gap formation in WT endothelial cells after thrombin stimulation.
Adapted from Tauseef et al. FASEB J, 30(1), 102-110. doi: 10.1096/fj.15-275891; with permission
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ABSTRACT

Lung and Cardiovascular disease creating a major health burden in developed countries and primary 
cause of deaths. Although treatments have progressed, the development of novel treatments for patients 
with cardiovascular diseases remains a major research goal. Despite modern advances in pharmaco-
logical and interventional cardiology, cardiovascular disease still remains a leading cause of morbidity 
and mortality in all over the world. The nuclear factor (NF)-κB super family of transcription factors has 
been implicated in the regulation of immune cell maturation, cell survival, and inflammation in many 
cell types, including cardiac myocytes. Recent studies have shown that NF-κB is cardioprotective during 
acute hypoxia and reperfusion injury. NF-kB regulates the gene expression of major pro-inflammatory 
cytokines (TNF-a, IL-b), chemokines [macrophage inflammatory protein (MIP-2), cytokine-induced 
neutrophil chemoattractant (CINC)], and adhesion molecules (ICAM-1, E selectin) (2), all of which 
play a major role in lung injury. However, prolonged activation of NF-κB appears to be detrimental and 
promotes heart failure by eliciting signals that trigger chronic inflammation through enhanced elabora-
tion of cytokines. In this review, we summarize progresses in understanding the NF-kB pathway in lung 
and cardio-vascular disease development as well as in modulating NF-kB for prevention and therapy.

INTRODUCTION

Over the past few years, the transcription factor nuclear factor (NF)-kB and the proteins that regulate 
it have emerged as an importance signaling system in human physiology and in an increasing number 
of disease pathogenesis. Ranjan Sen and David Baltimore (Sen & Baltimore, 1986) identified a DNA-
binding factor that has since been found to be ancient and evolutionarily conserved and to be linked to 
many biological pathways. It influences cellular development, innate and adaptive immune responses, 
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the induction of inflammatory mediators and wound repair, and, when dysregulated, can lead to various 
forms of cancer, autoimmunity and chronic inflammatory syndromes this factor is NF-κB (Baltomore, 
1986, Pages 705-716).The NF-κB family controls multiple processes, including immunity, inflamma-
tion, cell survival, differentiation and proliferation, and regulates cellular responses to stress, hypoxia, 
stretch and ischemia (Evans etal, 2010). It is therefore not surprising that NF-κB has been shown to 
influence numerous cardiovascular diseases including atherosclerosis, myocardial ischaemia/reperfusion 
injury, ischaemic preconditioning, vein graft disease, cardiac hypertrophy and heart failure (Hopkins, 
Ouchi, Shibata & Walsh, 2007). The function of NF-κB is largely dictated by the genes that it targets 
for transcription and varies according to stimulus and cell type (Morgan & Liu, 2011,page 103–115). 
Thus NF-κB has divergent functions and can protect cardiovascular tissues from injury or contribute to 
pathogenesis depending on the cellular and physiological context. The present book chapter will focus 
on recent studies on the function of NF-κB in the lung and cardiovascular system.

Nuclear Factor-κB Signaling

NFκB comprises a family of transcription factors first described as B-lymphocyte-specific nuclear pro-
teins, essential for transcription of immunoglobulin kappa (κ) light chains. Mammalian cells contain 
five NFκB subunits—relA (p65), relB, c-rel, p50 and p52, that exist in an inactive form in the cytoplasm 
bound to three inhibitory proteins (IκBα, IκBβ and IκBε) (Evans etal, 2010). In most cell types, NF-kB 
proteins are sequestered in the cytoplasmic compartment, associated with members of the inhibitor of 
kB (IkB) family (IkBa, IkBb and IkBe). In response to multiple stimuli such as inflammatory cytokines, 
bacterial lipopolysaccharide (LPS), viral infection or stress, IkBs are phosphorylated on two critical serine 
residues. This modification triggers their ubiquitination and destruction via the proteasome degradation 
machinery. As a consequence, free NF-kB enters the nucleus and activates transcription of a variety of 
genes participating in immune and inflammatory responses, cell adhesion, growth control and regulation 
of apoptosis (Ghosh et al, 2009, Jones et al, 2003, Tiruppathi et al, 2014).

Pro-inflammatory cytokines produced by macrophages, T cells and other immunologic cells exert 
their actions on target cells by transactivating NF-kB (Karin & Ben, 2000, page 621–663). These cells 
express receptors for the pro-inflammatory cytokines, IL-1b and TNF-a, and they also contain the IKK 
complex that is crucial for signal transduction. Cells such as leukocytes, vascular endothelial and smooth 
muscle cells, cardiomyocytes and fibroblasts therefore respond to pro-inflammatory cytokines by NF-
kB activation (Ghosh et al 2004; Baeuerle et al, 1998; Baldwin et al, 1996; Maniatis et al, 1995). Also, 
NF-kB activation induces the expression of pro-inflammatory cytokines in a positive feedback loop.

The NF-kB pathway is used not only by pro-inflammatory cytokines but also by microbial products. 
In particular, endotoxins of gram-negative bacteria signal through NF-kB after ligation of their LPS 
moieties to receptors of the Toll-like receptor (TLR) family. TLR/NFkB– mediated response to bacte-
ria has been a key mechanism through evolution for the protection of multicellular organisms against 
pathogenic invaders (Maniatis et al, 1995; Janeway et al, 1997)

NF-kB in Acute Lung Injury (ALI)

Acute lung injury (ALI) and its more severe manifestation, acute respiratory distress syndrome (ARDS), 
are characterized by acute inflammation that affects the function of the gas exchange surface of the lung. 
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The disorder affects all age groups, and has an incidence of approximately 200,000 cases per year in the 
United States and a mortality of around 35% (Hudson et al, 2005).

NF-κB activation has been implicated as an important factor in humans with acute respiratory dis-
tress syndrome (ARDS), which is characterized by neutrophilic lung inflammation and diffuse alveolar 
damage, and can result from systemic inflammation. Schwartz et al (Janeway et al, 1997; Hudson et al, 
2005; Abraham et al, 2013), reported that NF-κB is activated in alveolar macrophages from patients 
with ARDS to a significantly higher degree than in alveolar macrophages from critically ill patients with 
other diseases. In addition, NF-κB activation may be important in the pathogenesis of sepsis (Figure 1).

In other study by Bohrer et al (Nawroth et al, 2007) showed that in peripheral blood monocytes of 
patients with sepsis, NF-κB activation correlates with mortality. Specifically, all patients in that study 
who died with sepsis had increased NF-κB activation (greater than twice baseline) in the first 6 d, whereas 
all patients who survived had NF-κB activation that remained less than twice the baseline value at each 
time point during the 14-d study period.

Figure 1. NF-kB signaling and lung injury
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Using a transgenic mice model in which the lueciferase promoter gene was placed under the control 
of NF-kB dependent promoter. In 2002 Blackwell et al (Blackwell et al, 2000, page 1095-1101), dem-
onstrated increase NF-kB activity in the lung of the mice injected with LPS.

In many mice models, inhibitions of NF-kB activations by varieties of pharmacological inhibitors 
confirmed the protection against LPS induced ALI. In 2000, Ross SD et al (Ross & Kron et al, 2000) 
demonstrated that NF-kB is rapidly activated and is associated with poor pulmonary graft function in 
transplant reperfusion injury, and targeting of NF-kB may be a promising therapy to reduce this injury 
and improve lung function.

The expression of pro-inflammatory cytokines is rapidly increased in experimental models of the 
acute respiratory distress syndrome (ARDS), in patients at risk for ARDS, and in patients with established 
ARDS. Because multiple cytokines are present in bronchoalveolar lavage fluid, a common, proximal 
activation mechanism may operate in these setting. Clinical studies also suggest a role of NF-kB in path 
physiology of ALI.

To test the hypothesis that activation of one or more of these nuclear transcriptional regulatory fac-
tors might provide a common mechanism for the simultaneous expression of multiple cytokine genes 
in the setting of ARDS. Schwartz et al (Schwartz et al, 1996, page1285-1292), measured activation of 
these factors in alveolar macrophages from patients with ARDS and from controls. These experiments 
demonstrated increased in vivo activation of the nuclear transcriptional regulatory factor NF-kB (but 
not NF-IL6, cyclic adenosine monophosphate responsive element binding protein, activating protein-1, 
or serum protein-1) in alveolar macrophages from patients with ARDS. Because binding sequences for 
NF-kB are present in the enhancer/promoter sequences of multiple proinflammatory cytokines, activa-
tion of NF-kB may contribute to the increased expression of multiple cytokines in the lung in the setting 
of establishedARDS.

In 2000 Moin p et al (Moine et al, 2000, page 85-91), demonstrated the increased NF-kB activation in 
alveolar macrophages of patients with ALI compared with control. In this study they examined cytoplas-
mic and nuclear NF-kB counter regulatory mechanisms, involving IkB proteins, in alveolar macrophages 
obtained from 7 control patients without lung injury and 11 patients with established ARDS. Cytoplasmic 
levels of the NF-kB subunits p50, p65, and c-Rel were significantly decreased in alveolar macrophages 
from patients with ARDS, consistent with enhanced migration of liberated NF-kB dimers from the 
cytoplasm to the nucleus. Cytoplasmic and nuclear levels of IkB-alpha were not significantly altered in 
alveolar macrophages from patients with established ARDS, compared with controls. In contrast, nuclear 
levels of Bcl-3 were significantly decreased in patients with ARDS compared with controls (P = 0.02). 
No IkB-gamma, IkB-beta, or p105 proteins were detected in the cytoplasm of alveolar macrophages 
from control patients or patients with ARDS. The presence of activated NF-kB in alveolar macrophages 
from patients with established ARDS implies the presence of an ongoing stimulus for NF-kB activation.

In (2005), Matsuda et al (Matsuda, Hattori &Gando et al, 2005) evaluate the effects of “decoy” ̀ cis’-
acting oligonucleotides (ODN) directed against NF-κB on inflammatory gene expression and pulmonary 
function in a cecal-ligation puncture model of sepsis. To test whether functional inactivation of NF-κB 
could suppress endotoxin-induced lung injury. The authors found that intravenous injection of ODN 
significantly reduced the increase of NF-κB activity during sepsis, as indicated by electromobility shift 
analysis. Moreover, NF-κB decoy markedly reduced the expression levels of iNOS, COX-2, histamine 
H1-receptor, platelet-activating factor receptor, and bradykinin B1 and B2 receptors in the septic lung 
tissue. It is noteworthy that animals treated with NF-κB ODN displayed an improved outcome with a 
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significant reduction in sepsis-induced lung injury compared with control animals or animals treated 
with scrambled ODN.

In 2012, study by Xiaojun et al (Xiaojun et al,2012, Pages 209–216) Investigate the protective effect 
of kaempferol (Kae), a naturally occurring flavonoid compound, on ALI and explore its possible mecha-
nisms and results suggest that Kae exhibits a protective effect on LPS-induced ALI via suppression of 
MAPKs and NF-κB signaling pathways, which may involve the inhibition of tissue oxidative injury and 
pulmonary inflammatory process. Kae treatment attenuated pulmonary edema of mice with ALI after 
LPS challenge, as it markedly decreased the lung W/D ratio of lung samples, protein concentration and 
the amounts of inflammatory cells in BALF. Similarly, LPS mediated overproduction of proinflamma-
tory cytokines in BALF, including TNF-α, IL-1β and IL-6, was strongly reduced by Kae. In addition, 
Western blot analysis indicated that the activation of MAPKs and NF-κB signaling pathways stimulated 
by LPS was significantly blocked by Kae.

In 2014 another important observation by Tirupatthi e al (Tiruppathi et al, 2014, page 239–247) de-
scribed the potential role of A20 protein (well know NF-Kb inhibitor) to protection against LPS induced 
ALI by suppressing the NF-kB activation. In these studies, they found that the transcription repressor 
DREAM (downstream regulatory element antagonist modulator) bound to the promoter of the gene en-
coding A20 to repress expression of this deubiquitinase that suppresses inflammatory NF-κB signaling. 
DREAM-deficient mice displayed persistent and unchecked A20 expression in response to endotoxin. 
DREAM functioned by transcriptionally repressing A20 through binding to downstream regulatory ele-
ments (DREs). In contrast, binding of the transcription factor USF1 to the DRE-associated E-box domain 
in the gene encoding A20 activated its expression in response to inflammatory stimuli. Targeting of 
DREAM to induce USF1-mediated A20 expression is therefore a potential anti-inflammatory strategy 
for the treatment of diseases associated with unconstrained NF-κB activity, such as acute lung injury.

The basis of the above findings, it is concluded that NF-κB is playing the crucial role in lung disease 
as elevated NF-Kb activity is present in the lungs of patients with acute respiratory distress syndrome 
(ARDS) and experimental models of acute lung injury. Activation of NF-κB contributes to the increased 
expression of immunoregulatory cytokines and other pro-inflammatory mediators in the lungs.

NF-kB in Cardiovascular Disease

Nuclear factor-kappaB (NF-kappaB) regulates many genes involved in vascular physiopathology through 
the regulation of several genes, including cytokines, adhesion proteins, NO synthase, and angiotensinogen, 
as well as other products involved in atherosclerosis, inflammation, proliferation, and immune response 
(Barnes et al, 1997, page 1066-1071).NFκB primarily resides inactive in the cytoplasm by association 
with IκB. Its activation can be triggered by a variety of stimuli that ultimately lead to phosphorylation, 
ubiquitination and degradation of IκB, releasing NFκB dimers to nuclear translocation, where NFκB 
dependent transcription of a large and diverse array of target genes can be initiated and various physi-
ological and pathological processes modulated (Figure 2).

In 1997, Study by Egido et al (Egido et al,1997, page 1532-1541) has described the elevated tissue 
specific NF-κB activity in an experimental model of atherosclerosis, correlated with increased macro-
phage infiltration and monocyte chemoattractant protein-1 (MCP-1) expression, which is diminished 
by angiotensin-converting enzyme (ACE) inhibition. Atherosclerotic vessels exhibited an increase in 
NF-κB–like activity, and p50 and p65 NF-κB subunits were identified as components of this activity.
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Several years ago, activated NF-κB was demonstrated in human atherosclerotic lesions by Brand 
et al (Brand et al, 1996, page 715-22) This study demonstrates the presence of activated NF-kappa B 
in human atherosclerotic tissue for the first time. Atherosclerosis, characterized by features of chronic 
inflammation and proliferative processes, may be a paradigm for the involvement of NF-kappaB/Rel in 
chronic inflammatory disease.

Endothelial dysfunction is a well established response to cardiovascular risk factors and develop-
ment of atherosclerosis.(Deanfield et al, 2007, page 1285-1295) Endothelial dysfunction is involved in 
lesion formation by the promotion of both the early and late mechanisms of atherosclerosis including 
up-regulation of adhesion molecules, increased chemokine secretion and leukocyte adherence, increased 
cell permeability, enhanced low-density lipoprotein oxidation, platelet activation, cytokine elaboration, 
and vascular smooth muscle cell proliferation and migration(Fei Fang et al, 2013). Endothelial cells at 
sites of inflammatory responses express a variety of genes that are under the control of nuclear factor 
NF-kappa B (Deanfield et al, 1994).

In 2008, Gareus, et al (Gareus, 2008, page 372-83) addressed the function of NF-kappa B signaling 
in vascular endothelial cells in the pathogenesis of atherosclerosis in vivo. Endothelium-restricted inhibi-
tion of NF-kappa B activation, achieved by ablation of NEMO/IKK gamma or expression of dominant-
negative I kappa B alpha specifically in endothelial cells, resulted in strongly reduced atherosclerotic 
plaque formation in ApoE(-/-) mice fed with a cholesterol-rich diet. Inhibition of NF-kappaB abrogated 
adhesion molecule induction in endothelial cells, impaired macrophage recruitment to atherosclerotic 
plaques, and reduced expression of cytokines and chemokines in the aorta. Thus, endothelial NF-kappaB 
signaling orchestrates proinflammatory gene expression at the arterial wall and promotes the pathogenesis 
of several cardiovascular diseases, such as atherosclerosis and hypertension (Gareus, 2008, page 372-83).

Using an antibody specifically recognizing activated phosphorylated p65, NF-κB activation was 
shown in smooth muscle cells, macrophages, and endothelial cells. Moreover, hypercholesterolemia 
was shown to induce activated NF-κB in the vessel wall in a pig model for atherosclerosis (Lerman et 
al, 2000). Using mice, Hajra et al showed that there was a colocalization of regions prone to develop 
atherosclerosis and increased levels of components of the NF-κB system, also indicative for a role of 
NF-κB in atherosclerosis (Cybulsky et al, 2000).

Innate immunity is the first line of defense against invading pathogens. A family of Toll-like receptors 
(TLRs) acts as primary sensors that detect a wide variety of microbial components and elicit innate im-

Figure 2. TLR4 mediated NF-kB signaling in cardiac and immune cells
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mune responses. All TLR signaling pathways culminate in activation of the transcription factor nuclear 
factor-kappaB (NF-kappaB), which controls the expression of an array of inflammatory cytokine genes. 
TLRs, however, are not only expressed on macrophages but also on the other cells commonly found in 
the arterial wall (Seneviratne, Sivagurunathan & Monaco, 2007)

There is increasing evidence to support the involvement of TLRs, mainly TLR2 and TLR4, in the 
initiation, progression, and instability of atherosclerotic lesions, leading to plaque rupture (Kristina 
et al, 2002; Tobias et al, 2009; Bijani et al 2012), as well as their involvement in other cardiovascular 
diseases (Arditi et al, 2001).

TLR4 over expression has been reported in human and mouse atherosclerotic lesions, mainly in mac-
rophages and endothelial cells (ECs) within the lesion, at different stages of atherogenesis (Pasterkamp 
et al 2004; Kleijn et al 2004). TLR4 has been shown to be important in the process of expansive arterial 
remodeling and in matrix breakdown; the latter process involves cell migration and leads to higher ex-
pression levels of matrix metalloproteinases (MMPs), mainly MMP-2 and MMP-9, which are involved 
in extracellular matrix (ECM) degradation (Kleijn et al 2004).

Up-regulation of inflammatory responses is considered a driving force of atherosclerotic lesion 
development. One key regulator of inflammation is the A20 (also called TNF-α-induced protein 3 or 
Tnfaip3) gene, which is responsible for NF-κB termination and maps to an atherosclerosis susceptibility 
locus revealed by quantitative trait locus-mapping studies at mouse proximal chromosome 10.

In 2007 study by Wolfrum et al (Wolfrum 2007, page 18601-18606), examined the role of A20 in ath-
erosclerotic lesion development. At the aortic root lesion size was found to be increased in C57BL/6 (BG) 
apolipoprotein E-deficient (ApoE−/−) mice haploinsufficient for A20, compared with B6 ApoE−/− controls 
that expressed A20 normally (60% in males and 23% in females; P < 0.001 and P < 0.05, respectively). 
The increase in lesions in the A20 haplo insufficient mice correlated with increased expression of pro-
atherosclerotic NF-κB target genes, such as vascular cell adhesion molecule 1, intercellular adhesion 
molecule 1, and macrophage-colony-stimulating factor, and elevated plasma levels of NF-κB-driven 
cytokines by the basis of above finding it suggest that A20 diminishes atherosclerosis by decreasing 
NF-κB activity, thereby modulating the pro-inflammatory state associated with lesion development.

The better understanding of the role of NF-kB signaling will lead to the identification of therapeutic 
targets that down regulate pro-inflammatory and pro-thrombotic responses in atherosclerotic. While 
blockade of NF-kB could be beneficial in atherosclerosis and other cardio-vascular disease, there are 
obvious questions regarding the appropriate balance between efficacy and safety levels of NF-kB activity 
is critical for immune and inflammatory responses and maintenance of homeostasis.

FUTURE PROSPECTS

Despite the reduction in the mortality rate caused by ALI and Cardio-vascular diseases still remains an 
important serious problem all over the world. Investigational and collaborative efforts directed toward 
understanding how the overall cellular signaling network translates NF-B activation into the regulation 
of specific subsets of NF-kB -dependent genes will lead to a mechanistic understanding of how NF-kB 
mediates diverse and paradoxical biological effects and both animal and clinical studies will provide the 
necessary insight for improving the detection and treatment of ALI and cardiovascular diseases.
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ABSTRACT

Store-operated Ca2+ entry (SOCE) channels mediate Ca2+ influx from the extracellular milieu into the 
cytosol to regulate a myriad of cellular functions. The Ca2+-release activated Ca2+ current has been 
well characterized in non-excitable cells such as immune cells. However, the role of SOCE proteins in 
cardiomyocytes and cardiac function has only been recently investigated. The localized endoplasmic 
reticulum protein, stromal interaction molecule (STIM) and plasma membrane Ca2+ channels, ORAI 
form the minimal functional unit of SOCE. The documentation of STIM and Orai expression in cardio-
myocytes has raised questions regarding their role in cardiac function. Recent evidence supports the 
central role of STIM and Orai in gene transcription and, subsequent phenotypic changes associated 
with cardiac remodeling and hypertrophy. The purpose of this chapter is to provide an overview of our 
current understanding of SOCE proteins and, to explore their contributions to cardiovascular function 
and role in cardiac disorders.

INTRODUCTION

Calcium’s role as a ubiquitous intracellular messenger is demonstrated by its central role in a wide range 
of cellular functions from cell growth, proliferation, function and even cell death. In order to elicit to 
cellular response, a cell recruits various pumps, exchangers and channels to regulate the concentration 
of Ca2+ (Berridge, Bootman, & Roderick, 2003; Prakriya & Lewis, 2015; J. W. Putney, 2011). The endo-
plasmic reticulum/sarcoplasmic reticulum (ER/SR) act as an intracellular storage of Ca2+, while plasma 
membrane (PM) channels regulate gating of Ca2+ from the extracellular space. Store operated Ca2+ entry 
(SOCE), is a major mechanism representing Ca2+ entry in many excitable and non-excitable cells. Since 
the first characterization of SOCE through electrophysiology, the two major components of the SOCE 
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process were identified; the ER/SR Ca2+ sensor, stromal interaction molecule (STIM) and, the plasma 
membrane (PM) localized Orai protein as the store-operated channels (Fahrner, Derler, Jardin, & Ro-
manin, 2013; J. W. Putney, 2011; Shaw & Feske, 2012). Upon depletion of inositol-1, 4, 5-trisphosphate 
(IP3) or Ryanodine (RyR)-sensitive ER/SR stores, localized ER sensor STIM directly couples with PM 
Orai channels mediating Ca2+ influx. Since the depletion of ER/SR Ca2+ is the trigger for PM Ca2+ entry, 
this pathway was appropriately named “store operated Ca2+ entry”. SOCE-mediated Ca2+ entry not only 
allows for refilling of the ER/SR stores but also helps maintain Ca2+ homeostasis. The sustained entry 
of Ca2+ also serves other purposes such as activation of secretion, modulation of enzyme activation, and 
initiation of transcriptional signaling (J. W. Putney, 2011). Since SOCE-mediated Ca2+ influx is involved 
in vital cellular processes, it is not surprising that aberrant SOCE function has been implicated in many 
disease states including immunodeficiency, acute pancreatitis, Alzheimer’s disease, Duchenne muscular 
dystrophy and cardiac hypertrophy (Karlstad, Sun, & Singh, 2012; J. W. Putney, 2011)

Since its discovery, the SOCE phenomenon has been well characterized in non-excitable immune cells 
(Prakriya & Lewis, 2015; Shaw & Feske, 2012). Soon after, SOCE-induced Ca2+ influx was shown to play 
a critical role in excitable cell such as neurons, skeletal muscle cells, and cardiomyocytes (Hartmann et 
al., 2014; Liu, Xin, Benson, Allen, & Ju, 2015; Majewski & Kuznicki, 2015; Stiber et al., 2008; Tojyo, 
Morita, Nezu, & Tanimura, 2014). Several studies have demonstrated the expression of STIM and Orai 
in adult cardiomyoctes, ventricular myocardium, and the sinoatrial node (Wolkowicz et al., 2011; Zhu-
Mauldin, Marsh, Zou, Marchase, & Chatham, 2012). In fact, strong evidence suggests that the STIM1 
and Orai play a key role in the progression of cardiac hypertrophy. Recent investigations have shown 
the increased expression of STIM1 in a hypertrophic response (Collins, Zhu-Mauldin, Marchase, & 
Chatham, 2013). With advances in molecular techniques and transgenic models, studies have provided 
insight into the role of Orai and transient receptor potential (TRP) channels in the etiology of several 
cardiovascular diseases (Yue et al., 2015). The goal of this chapter is to provide an overview of our cur-
rent understanding of molecular regulation of SOCE and highlight the role of STIM1/Orai-1-mediated 
SOCE in cardiomyocyte function and pathology.

STORE OPERATED CALCIUM ENTRY

The ligation of agonists such as growth factors, neurohormonal stimuli, and inflammatory mediators to 
G-protein coupled receptors or receptor tyrosine kinases initiates the activation of phospholipase (PLC) 
enzymes. PLC hydrolyzes phosphatidylinositol 4, 5 bisphosphate into diacylglycerol and inositol 1, 4, 
5-trisphosphate (IP3). IP3 binds to the IP3 receptor (IP3R) on the ER/SR, triggering Ca2+ release into the 
cytosol and mobilizing an increase in cytosolic Ca2+ ([Ca2+]i) (Berridge et al., 2003; Oh-hora & Rao, 
2008). The increase in [Ca2+]i can fuel activation of localized events such as calcium-induced Ca2+ release 
via the Ryanodine receptors (RyRs) or even induce downstream transcriptional events (Bers, 2008; J. 
W. Putney, 2011). The discovery of IP3 led to our understanding that the consequence of IP3 production 
was a transient increase in [Ca2+]i, followed by a sustained influx of Ca2+ from the extracellular space. 
While the increase in [Ca2+]i was identified as a product of IP3 activating the IP3R in the ER/SR, the 
mechanism underlying Ca2+ influx remained unclear (Berridge, 1993). Several studies suggested that a 
PM-Ca2+ pathway was responsible for directly reloading the ER/SR stores. The idea of SOCE, initially 
described as “capacitative Ca2+ entry (CCE)”, first described by Putney, reflected these conclusions. 
This model suggested that Ca2+ from extracellular space directly loaded the ER (the “capacitor”) (J. 
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W. Putney, Jr., 1986). This hypothesis was later revised as studies indicated that Ca2+ first entered the 
cytoplasm rather the ER/SR stores and the ER/SR Ca2+ release was sufficient signal to induce Ca2+ in-
flux. Thus, the CCE model was renamed SOCE to show that Ca2+ store depletion activated Ca2+ entry 
into the cytosol mediated by PM Ca2+ channels (J. W. Putney, 2011; J. W. Putney, Jr., 1990). In order 
to regulate cellular processes, it is essential for a cell to maintain steady level of Ca2+ in the ER and the 
cytosol. SOCE functions to help replenish the ER/SR Ca2+ stores, while the sustained Ca2+ entry allows 
for downstream activation of various cellular processes. This process allows SOCE to play a pivotal role 
in a wide range of physiological functions such as cell proliferation, cell motility, exocytosis, inflamma-
tion, exocytosis, gene transcription and apoptosis (Berridge et al., 2003; Majewski & Kuznicki, 2015; J. 
W. Putney, 2011). The identification of SOCE machinery, which included STIM as the ER Ca2+ sensor 
and Orai as the SOC subunit, represent major advances in our understanding of molecular mechanisms 
regulating SOCE.

Stromal Interaction Molecule (STIM)

The mammalian STIM (stromal interaction molecule) family comprises of two proteins: STIM1 and 
STIM2. STIM proteins were first discovered while screening for stromal cell transmembrane and se-
creted proteins that promote cell survival and/or proliferation of pre-B lymphocytes (Oritani & Kincade, 
1996). Screening of Drosophila S2 cells identified STIM dsRNA as a potent inhibitor of SOCE-mediated 
Ca2+ influx (Roos et al., 2005). This study also showed that knockdown of STIM1 in Jurkat T-cells and 
HEK293 cells suppressed Ca2+ influx. Independent investigation on siRNA screen for SOCE inhibition 
by Meyer and colleagues, also identified STIM1 and STIM2 as potential targets for SOCE inhibition 
(Liou et al., 2005).

Subsequent studies have shown that STIM protein function as the Ca2+ sensor from localized areas 
in the ER in resting state (Shen, Frieden, & Demaurex, 2011; Shim, Tirado-Lee, & Prakriya, 2015). 
However, fluorescently labeled STIM1 redistributed into puncta near the PM upon ER-mediated Ca2+ 
release (Liou et al., 2005). Studies on structural organization of STIM1 showed a transmembrane protein 
with an NH2 terminal comprising of an EF-hand domain (cEF), a non-Ca2+ binding hidden EF-hand 
domain (hEF), and a sterile alpha motif domain (SAM) (Stathopulos, Li, Plevin, Ames, & Ikura, 2006) 
(Figure 1). Overexpression of STIM1 proteins with cEF mutations showed increased formation of puncta 
and SOCE-mediated Ca2+ influx (Liou et al., 2005; Spassova et al., 2006). These studies confirmed that 
Ca2+ only binds to the STIM1 cEF domain. The cytoplasmic side of STIM proteins comprises of the 
STIM1-Orai activating region (SOAR) (Yuan et al., 2009). Depletion of ER/SR Ca2+, results in release 
of Ca2+ from the cEF domain, exposing the SOAR domains. This enhances STIM1 oligomerization into 
multivalent interactions, which localizes STIM1 to the ER/SR-PM junction. The juxtaposition allows 
for tight interaction with Orai channels leading to further Ca2+ influx (Figure 2) (Covington, Wu, & 
Lewis, 2010; Park et al., 2009).

Many factors have been shown to regulate STIM function. STIM1 phosphorylation has been known to 
decrease SOCE-mediated Ca2+ influx. Phosphorylation of S486 and S668 in particular, has been shown 
to inhibit the translocation of STIM1 to the ER-PM junctions (Smyth et al., 2009). Phosphorylation of 
S575, 608, and 621 by ERK1/2 was found to be necessary for STIM-Orai1 coupling leading to SOCE-
mediated Ca2+ influx induced by thapsigargin (Pozo-Guisado et al., 2010). Additionally, STIM1 is also 
thought to be sensitive to various modes of redox modulation. The S-glutathionylation of STIM1 Cys-56 
caused a decrease in ER-Ca2+ sensitivity of the EF-hand. Interestingly, oxidation of STIM1 mediated Ca2+ 
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influx in the presence of replete stores, leading to mitochondrial dysfunction and cell death (Hawkins 
et al., 2010). The mechanisms underlying the dissociation of STIM1/Orai interaction is not completely 
understood. An ER localized protein, SOCE-associated regulatory factor, SARAF, binds to both STIM1 
and STIM2, and translocates to the ER-PM junction following ER store depletion. It has been postulated 
that SARAF may facilitate STIM1 dissociation from the PM, thus negatively regulating SOCE function 
(Palty, Raveh, Kaminsky, Meller, & Reuveny, 2012).

Although much is known about the role of STIM1, the function of STIM2 in regulating Ca2+ influx 
remains unclear. The Ca2+ dissociation constant (Kd) is about 2-fold higher than that of STIM1. STIM2 
was shown to be a more sensitive senor for detecting ER Ca2+ levels, since small change in ER luminal 
Ca2+ levels resulted in STIM2 activation (Shim et al., 2015). In fact, STIM2 has been suggested as a 
feedback tool to maintain a tight control on basal cytosolic and ER Ca2+ levels (Brandman, Liou, Park, 
& Meyer, 2007). Studies have also shown that STIM2 activation yields slower activation of the CRAC 
current (Stathopulos, Zheng, & Ikura, 2009). Upregulation of STIM2 protein has been shown to occur in 
patients with idiopathic pulmonary arterial hypertension (IPAH). Additionally, siRNA mediated knock-
down of STIM2 decreased Ca2+ influx and proliferation in the IPAH affected cells, whereas the STIM2 
knockout had no effect on control pulmonary arterial smooth muscle cells (PASMC) (Song, Makino, & 
Yuan, 2011). More recent evidence has pointed to the involvement of STIM2 and Orai1 in the pheno-
typic transition of pulmonary smooth muscle cells from a contractile state to the more proliferative state. 
The enhancement of Ca2+ influx resulting from STIM2/Orai1 upregulation is thought to contribute to 
PASMC proliferation (Fernandez et al., 2015). Since the discovery of STIM, we have gained significant 
insights into the function and regulation of STIM in non-excitable cells. However, additional studies 
investigating whether similar or different mechanisms govern STIM regulation in excitable cells such 
as cardiomyocytes are lacking, and are needed to fill to the knowledge gaps.

ORAI

Electrophysiological recordings conducted in mast cells identified a Ca2+ selective current activated in 
whole cell recordings by agents such as ionomycin, IP3 and EGTA. This was named the Ca2+-release-
activated Ca2+ (CRAC) channel (Hoth & Penner, 1992). CRAC channels were activated by pharmaco-
logical agents that deplete the free ER/SR Ca2+ rather than changes in [Ca2+]i. The CRAC channel is 
extremely Ca2+ selective with a Ca2+:Na+ permeability ratio of >1000 (Hoth, 1995). The unitary Ca2+ 
conductance is between 10-35fS and, they have a strong inward-rectifying current voltage (I-V) relation-
ship (Prakriya & Lewis, 2006). Additionally, the CRAC channels lacked voltage dependent activation 
and were insensitive to common voltage-dependent Ca2+ channel inhibitors. However, these channels 
were sensitive to inhibition by lanthanides, 2-aminoethoxydiphenyl borate (2-APB) and SKF96365 (Aus-
sel, Marhaba, Pelassy, & Breittmayer, 1996; Goto et al., 2010; Kozak, Kerschbaum, & Cahalan, 2002). 
These properties taken together made CRAC channels the prototypical SOC and the primary target to 
decipher the molecular identity of SOCE channels.

The discovery of STIM1 protein led to the hunt for the CRAC channel gene using various screening 
techniques. The investigations originated from the understanding that defective CRAC channel function 
was the underlying cause of severe combined immunodeficiency (SCID)(Feske, Giltnane, Dolmetsch, 
Staudt, & Rao, 2001; Partiseti et al., 1994). The mutation was localized to a region of chromosome 12 
covering ~74 genes. Genome-wide RNAi screen in S2 cells led to the identification of the homolog in 
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the region of human chromosome 2. This region expressed a surface protein with four transmembrane 
domains; the protein was named Orai1 (Feske et al., 2006). These investigations along with independent 
siRNA screen led to the identification of three Orai homologs in the human genome named Orai1, 2 and 
3 (Zhang et al., 2006). Ectopically expressed wild-type Orai1 was able to restore SOCE in T-cells isolated 
from SCID patients. SCID patients were also found to be homozygous for a single missense mutation in 
Orai1 that led to dysfunctional SOCE-mediated Ca2+ influx in these patients (Feske et al., 2006). While 
STIM1 was established as the Ca2+ sensor for SOCE, functional links with endogenous CRAC chan-
nels led to the acceptance of Orai1 as the component of CRAC channel pore (Prakriya & Lewis, 2015).

The Orai family of protein is made up of three isoforms; the founding member Orai1, and two highly 
conserved homologs Orai2 and Orai3. The molecular mechanism regulating Orai1 activity and its func-
tional role has been studied and characterized in great detail. The physiological role of Orai2 and Orai3 
are less defined in comparison to Orai1. Orai1 channels are made up of four transmembrane domains 
and conduct Ca2+ ions with selectivity 1000 times more than that of Na+ (Fahrner et al., 2013; Hoth 
& Penner, 1992). The permeability of monovalent cations are inhibited in the presence of Ca2+. Under 
resting conditions, Orai channels can exist as homodimer or homotetramer, while during activation of 
SOCE they form hexamers (Hou, Pedi, Diver, & Long, 2012). The activation of Orai is dependent on 
rate of Ca2+ depletion and translocation of STIM and Orai to the ER/SR junctions (Figure 3). Orai1 
channels displayed both fast and slow Ca2+-dependent inactivation (Lis et al., 2007). As observed with 
STIM regulation, phosphorylation is also thought to regulate Orai activity. PKC-mediated phosphoryla-
tion of Orai1 inhibits SOCE mediated Ca2+ influx. The inhibition is thought to occur in a Ca2+-dependent 
manner (Kawasaki, Ueyama, Lange, Feske, & Saito, 2010). PKC phosphorylation was also found to 
regulate SOCE-mediated Ca2+ influx in primary human myotubes suffering from Duchenne muscular 
dystrophy (Harisseh, Chatelier, Magaud, Deliot, & Constantin, 2013). Studies have shown that both Orai2 
and Orai3 are activated by store depletion and that these channels are more selective for Ca2+ over Na+. 
As observed with endogenous CRAC channel current, both Orai 2 and 3 displayed inwardly rectifying 
current-voltage relationship (DeHaven, Smyth, Boyles, & Putney, 2007; Potier & Trebak, 2008). Orai 
2 and Orai 3 show fast inactivation; Orai 3 displayed much faster inactivation in comparison to Orai2 
(Lis et al., 2007). Pharmacological inhibitor of 2-APB was shown to inhibit Orai2, but was insensitive 
to Orai3 mediated Ca2+ entry. This suggests that in the presence of STIM1, Orai3 may function in a 
store-depletion-independent manner (Zhang et al., 2008).

Transient Receptor Potential (TRP) Channels

Before the identification of Orai as SOC channels, transient receptor potential channels (TRP) were 
considered as a potential SOC candidate. The trp gene family is divided into six subfamilies consisting 
of canonical TRP (TRPC), vanilloid TRP (TRPV), melastatin TRP (TRPM), ankyrin TRP (TRPA), 
polycystic TRP (TRPP) and mucolipin TRP (TRPML) groups. Most TRP channels are Ca2+ permeable 
nonselective cation channels that are activated by various non-voltage-dependent stimuli. TRP channels 
can sense thermal, mechanical, chemical and intracellular stimuli. Among the TRP family, the TRPCs 
were thought to be the putative SOCE channels. One of the earliest studies on TRPC1 showed that the 
channel exhibits store-dependent activation and, hence was identified as the putative SOC channel (Zitt 
et al., 1996). Subsequently other TRPCs, such as TRPC3, TRPC4 and TRPC7 were also identified as 
possible candidates for SOC channels (Cheng, Ong, Liu, & Ambudkar, 2013; Zagranichnaya, Wu, & 
Villereal, 2005). Soon, TRPC expression was also documented in the cardiovascular system. For instance, 
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the presence of TRPC isoforms, TRPC1 and TRPC3-7, was shown in the whole heart (Watanabe, Mu-
rakami, Ohba, Takahashi, & Ito, 2008). Although, TRPC5 was not expressed in the SA nodal cells, all 
other members of the TRPC family were detected (Ju et al., 2007). However, TRPC5 has been shown to 
have an increased expression levels in heart failure patients (Bush et al., 2006). TRPC6 mediated Ca2+ 
entry has been recorded in cardiomyocytes and, the vascular system such as rodent aorta (Watanabe et 
al., 2008). A complex picture of TRPC channel characteristics as SOC is emerging and whether TRPCs 
are potential SOC channels is debatable. A complete discussion on TRP channels and their biophysical 
characteristics is beyond the scope of this chapter. However, this chapter will focus the discussion on 
expression patterns of TRPCs in the cardiovascular system and, their role in the development of cardiac 
hypertrophy (discussed in the next section).

ROLE OF SOCE IN THE HEART

Regulation of cardiac function is dependent on carefully orchestrated spatio-temporal modulation of 
cytosolic Ca2+. In cardiomyocytes, membrane depolarization mediates opening of voltage-gated Ca2+ 
channels, leading to excitation-contraction coupling (EC) coupling. The voltage-gated Ca2+ channels 
engage with the SR localized RyR2 receptors to induce Ca2+ induced Ca2+-release. The product of this 
interaction mobilizes Ca2+ from the SR into the cytosol, leading to activation of actin-myosin cross-bridge 
cycling (Bers, 2002). Given that the voltage-gated Ca2+ entry is the predominant Ca2+ influx pathway 
in cardiomyocytes, one might question what functional role the SOCE-mediated Ca2+ influx can play 
in cardiac function.

Recent studies however, have demonstrated the presence of the SOCE machinery in cardiomyo-
cytes, and highlighted their contribution in maintaining normal cardiac function. Studies conducted in 
neonatal and embryonic cardiomyocytes, have shown that ER/SR Ca2+ store-depletion yielded a sus-
tained Ca2+ influx that was sensitive to inhibition by SOCE inhibitors, such as Lanthanium (La3+) and 
Zinc, but not by the voltage-gated channel inhibitors, Nifedipine and Verapamil (Hunton, Zou, Pang, 
& Marchase, 2004; Uehara, Yasukochi, Imanaga, Nishi, & Takeshima, 2002). Interestingly, SOCE 
activity in the embryonic and neonatal cardiomyocytes was more prominent than in comparison to the 
adult cardiomyocytes. This indicated that SOCE activity was developmentally regulated in the heart 
(Pan, Brotto, & Ma, 2014). The presence of Orai and STIM1 has been demonstrated in immortalized 
mouse atrial cardiomyocyte cell line, HL-1. Additionally, Orai1 knockdown in HL-1 cells attenuated 
SOCE-mediated Ca2+ entry, and lowered baseline Ca2+ levels (Touchberry et al., 2011). Voelkers et al. 
showed that neonatal rat ventricular cardiomyocytes not only express STIM1 and Orai1, but that these 
proteins play an important role in regulating store Ca2+ levels and cardiomyocyte growth (Voelkers et 
al., 2010). Cardiac contractions are initiated by spontaneous firing of pacemaker cells in the sinoatrial 
node (SAN) of the heart. Cardiac pacemaker tissue has also been shown to express Orai1, STIM1 and 
STIM2. In isolated single mouse sinoatrial node cells, Orai1 was predominantly shown to be distributed 
in the sarcolemma, whereas STIM1 had a more diffused expression (Liu et al., 2015). In addition to SAN 
and neonatal cardiomyocytes, the presence of Orai and STIM expression was also demonstrated in rat 
ventricular myocardium. In the same study, Orai1 and Orai3 were shown to initiate of arrhythmias in 
atrial and ventricular myocytes, linking SOCE proteins to aberrant electrophysiological activity leading 
to arrhythmias. (Wolkowicz et al., 2011). The Cardiac c-kit+ progenitor cells also express STIM1, Orai 
and TRPC1 proteins. Downregulation of TRPC1, STIM1 and Orai1 were shown to decrease prolifera-
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tion and migration of human cardiac c-kit+ cells. A knockdown of SOCE proteins resulted in decreased 
expression of factors regulating cell cycle and migration such as cyclin D1, cyclin E and p-Akt, thus 
demonstrating the role of SOCE in myocardial repair and regeneration (Che et al., 2015). These studies 
provide strong evidence that STIM, Orai and TRPCs contribute in regulating Ca2+ homeostasis in the 
heart in normal physiology and in the setting of several cardiovascular diseases.

SOCE and Cardiac Hypertrophy

Congestive heart failure is a condition characterized by the heart’s inability to maintain sufficient blood 
supply to the body’s tissue. This decrease in perfusion results in an increase in ventricular wall thick-
ness. Cardiac hypertrophy is characterized by cardiomyocyte enlargement, reorganization of sarcomere 
assembly and, activation of hypertrophic genes. Hypertrophic growth occurs as an adaptive growth 
response to various triggers such as hypertension, myocardial infarction, and valvular defects (Ruhle & 
Trebak, 2013). Dysfunctional Ca2+ homeostasis has been known to be one of the major factors contribut-
ing to the development of cardiac hypertrophy. A sustained increase in [Ca2+]i causes activation of the 
calcineurin/Nuclear factor of activated T cells (NFAT) pathway; one of signaling pathways implicated 
in the progression of hypertrophy. Ca2+calmodulin-activated serine/threonine phosphatase, calcineurin 
dephosphorylates the NFAT; resulting in nuclear translocation of NFAT. The interaction of NFAT with 
other transcription promoters such as, GATA and AP-1 results in the activation of prohypertrophic gene 
expression (Figure 4) (Zarain-Herzberg, Fragoso-Medina, & Estrada-Aviles, 2011).

TRPC channels, long thought to be the SOCE channel, have been shown to play an essential role 
in the development of cardiac hypertrophy. When activated by Gq-linked receptors (such as AngII or 
endothelin-1 receptors) or catacholaminergic receptors, TRPC mediated Ca2+ entry activates calci-
neurin, resulting in the activation and nuclear translocation of NFAT; thus inducing hypertropic gene 
expression. Using mouse or rat-based pressure-overload models and molecular techniques, several labs 
have demonstrated the role of TRP in cardiac hypertrophy. For instance, activation by agonists such as 
angiotensin II (AngII), phenylephrine, and endothelin-1 led to the upregulation of TRPC1, TRPC3, and 
TRPC7 expression (Brenner & Dolmetsch, 2007; Ohba et al., 2007). TRP3 and TRP6 were shown to 
be essential for the development of AngII-induced hypertrophy (Onohara et al., 2006). TRPC3-overex-
pressing mice models showed increased calcineurin/NFAT activation and AngII-induced hypertrophy 
(Nakayama, Wilkin, Bodi, & Molkentin, 2006). In addition, phosphorylation of TRPC3 and TRPC6 by 
protein kinase G (PKG) resulted in inhibition of channel activity, negatively regulated calcineurin/NFAT 
activation and, led to antihypertrophic effects of natriuretic peptides-Guanylyl Cyclase-A (GC-A). The 
overexpression of TRPC6 in GC-A knockdown mice increases cardiac hypertrophy, while the inhibition 
of TRPC6 activity by PKG phosphorylation was also shown to contribute towards the antihypertrophic 
effects of natriuretic peptide GC-A signaling pathway (Kinoshita et al., 2010; Yue, Zhang, Xie, Jiang, 
& Yue, 2013). Interestingly, the calcineurin/NFAT pathway causes upregulation of TRPC1, TRPC3 and 
TRPC6; thus this positive feedback mechanism contributes to the development of long-term hypertrophy 
and cardiac remodeling (Kuwahara et al., 2006; Ohba et al., 2007).

The discovery of STIM and Orai as mediators of SOCE prompted investigations into their role in 
SOCE-induced cardiac hypertrophy. In neonatal rat cardiomyocytes, activation of SOCE by agonist such 
as AngII and endothelin-1 enhanced SOCE, NFAT nuclear translocation and the development of hyper-
trophy (Hunton et al., 2002; Ohba et al., 2009). The SOCE mediated Ca2+ entry and NFAT translocation 
were inhibited by non-selective inhibitor of SOCE, SKF96365. However, MEK1-induced hypertrophy 
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was demonstrated to be independent of NFAT localization and, was unaffected by SKF96365 (Hunton 
et al., 2002). The knockdown of STIM1 inhibited the upregulation of TRPC1 and the development of 
hypertrophic response induced by AngII, phenylephrine and endothelin-1(Ohba et al., 2009). STIM1 
knockdown was shown to decrease diastolic Ca2+ levels and caffeine-induced Ca2+ release from the SR 
in rat neonatal cardiomyocytes. Interestingly, Orai1 knockdown not only attenuated SOCE mediated Ca2+ 
entry, but also decreased the cardiomyocyte cell size, atrial natriuretic peptide (ANP) and brain-type 
natriuretic peptide (BNP) anp and bnp levels and significantly decreased calcineurin-NFAT signaling 
activity Phenylephrine mediated hypertrophic growth was inhibited by STIM1 and Orai1 knockdown. 
While expression of Orai2 and STIM2 was not detectable in rat neonatal cardiomyocytes, knock down of 
Orai1 and STIM1 resulted in an increase in Orai2 and STIM2 expression (Volkers et al., 2012). STIM1-
dependent Ca2+ entry was nominal in adult cardiomyocyte, but it significantly increases in adults animals 
with cardiac hypertrophy. Additionally, STIM1 knockdown diminished hypertrophic growth in elevated 
in pressure-overload hearts, thus protecting the heart from compensated cardiac hypertrophy (Hulot et al., 
2011). Recent evidence has demonstrated that an Orai3-dependent increase in Ca2+ influx may also play 
a role in the development of hypertrophied cardiomyocytes. Expression of Orai1 and Orai3 were detected 
in normal and hypertrophied cardiomyocytes, however Orai2 was not detectable. More importantly, 
the knockdown of Orai3 inhibited Ca2+ entry and prevented development of abdominal aortic banding 
induced cardiomyocyte hypertrophy. The increase in Orai3-mediated Ca2+ influx was attributed to the 
interaction between Orai3/Orai1 and STIM1 in the hypertrophied cardiomyocytes (Saliba et al., 2015).

These studies provide strong evidence that the players involved in SOCE-mediated Ca2+ influx play 
a key role in the development of cardiac hypertrophy. Although these studies have highlighted the role 
of STIM, Orai and TRPC in cardiac hypertrophy, there are gaps are in our current understanding of the 
mechanisms underlying the development of hypertrophy. Therefore, additional studies are clearly neces-
sary to decipher the role of these proteins in a hypertrophic response.

Cardiac Reperfusion Injury

The characteristic features of myocardial ischemic/reperfusion (I-R) injury include oxidative stress and 
an increase in [Ca2+]i leading to lethal Ca2+ overload. A decrease in mitochondrial ATP production ac-
companied by decrease in pH causes activation of Na+/H+ exchanger and reversal of Na+-Ca2+ exchanger 
(NCX) function, subsequently leading to increase in Ca2+ overload. The rise in [Ca2+]i is attributed to 
NCX reversal, but L-type Ca2+ channels and T-type Ca2+ channels are also thought to contribute to Ca2+ 
overload associated by IR (Mozaffari, Liu, Abebe, & Baban, 2013). Recently, evidence has beginning 
to emerge hinting at the possible role of SOCE in IR-associated Ca2+ overload. The Orai-STIM complex 
was shown to operate by a pH-dependent mechanism, wherein hypoxia resulted in STIM1 junctional 
accumulation. This suggested that hypoxia, in disease states like IR, could trigger activation of SOCE-
mediated Ca2+ influx. The study also revealed that acidification led to uncoupling of the Orai-STIM1 
complex, thereby providing a mechanism to protect the cells from a Ca2+ overload under hypoxic con-
ditions (Mancarella et al., 2011). Several studies have shown that pharmacological inhibitors of SOCE 
protect the heart against I/R Ca2+ overload, indicating a potential role of SOCE. Ca2+ overload induced 
in cardiac microvascular endothelial cells was attenuated by pharmacological inhibitors of SOCE such 
as 2-APB and gadolinium (Gd3+) (Peters & Piper, 2007). The volatile anesthetic sevoflurane, shown 
to protect the heart from myocardial injury, inhibited SOCE-mediated Ca2+ influx and Ca2+ overload 
in mouse ventricular myocytes (Kojima, Kitagawa, Omatsu-Kanbe, Matsuura, & Nosaka, 2012). Glu-
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cosamine has been known to protect the heart against Ca2+ overload and I-R injury. The application of 
glucosamine resulted in inhibiting the SOCE response in neonatal cardiomyocytes (Nagy, Champattana-
chai, Marchase, & Chatham, 2006; Zhu-Mauldin et al., 2012). Overexpression of TRPC3 in transgenic 
mouse model increased calpain activation and apoptosis; both of which were attenuated by treatment 
with SOCE inhibitor, SKF96363 (Shan, Marchase, & Chatham, 2008). These studies have suggested 
the possible involvement of SOCE-mediated Ca2+ influx in I-R injury, however direct evidence linking 
the two processes is missing.

CONCLUSION

In recent years, research aimed at deciphering the molecular mechanisms governing SOCE-mediated 
Ca2+ influx has helped us understand the physiological functions of SOCE. Communication between 
depleted ER stores and PM channels is necessary for proper Ca2+ influx and further intracellular Ca2+ 
homeostasis. Studies have shown that direct coupling between ER sensor STIM and, SOC channel Orai 
is necessary for such communication. Although the SOCE pathway was thought to exist in non-excitable 
cells, recent evidence has demonstrated the presence of various STIM/Orai in cardiomyocytes. More 
importantly these studies have revealed that STIM1 plays a prominent role in regulating SOCE. Indeed 
modulation of STIM1 and STIM2 function consequently lead to the development of pathological con-
ditions effecting cardiovascular function. This is especially true in the context of cardiac hypertrophy. 
STIM1 function in particular, has been linked to the activation of downstream calcineurin-NFAT pathway, 
driving transcriptional factors that consequently induce hypertrophic signaling (Figure 4). The presence 
of SOC channels Orai and TRPCs has also been demonstrated in cardiomyocytes however, their role 
in pathogenesis of diseases is not fully understood. Given the diversity of TRPC channel genes, more 
cell-specific or tissue-specific information is required to elucidate their role in disease progression. 
While deficit in Orai function does not result in cardiac phenotype, patients with mutations in Orai 
develop myopathies such as Duchenne disease, which can later cause cardiomyopathy. Several studies 
have concluded that Orai channels play a role in the development of cardiac hypertrophy. Additionally, 
use of SOCE channel inhibitors have been shown to ameliorate I-R injury. Although there is an inter-
est in exploring Orai channels as therapeutic targets to treat diseases such as cardiac hypertrophy and 
ischemia, the lack of specific channel blockers has been an impediment. The ubiquitous expression and 
prominent role of SOCE proteins in the immune function necessitates the development of cell-specific 
delivery systems for the treatment of cardiovascular diseases. Understanding the STIM/Orai structural 
organization as well as factors regulating SOC function will hopefully aid in the development of novel 
therapeutic strategies for the treatment of cardiovascular diseases.
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KEY TERMS AND DEFINITIONS

Cardiac Hypertrophy: Cardiac hypertrophy is the thickening of the myocardium in response to vari-
ous stimuli such as hypertension, myocardial injury and valvular defects. The disease is characterized by 
cardiomyocyte enlargement, reorganization of sarcomere assembly and activation of hypertrophic genes.

Orai Channels: Orai are calcium selective plasma membrane ion channels activated in response to 
intracellular store depletion. Depletion of Ca2+ stores, triggers colocalization of Orai and ER sensors 
STIM; leading to STIM-Orai coupling, which mediates Ca2+ entry.

Store Operated Calcium Entry: Store operated calcium entry is the process by which Ca2+ influx 
across the plasma membrane occurs in response to intracellular store depletion in the endoplasmic re-
ticulum/sarcoplasmic reticulum.

Stromal Interaction Molecule (STIM): STIM is an ER-localized single transmembrane protein, 
which acts a sensor for depleted Ca2+ stores. Store depletion causes oligomerization and translocation 
of STIM to colocalize with plasma membrane store operated channels mediating Ca2+ influx.
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APPENDIX

Figure 1. Comparison of STIM domain structures: STIM1 and 2 include an N-terminus EF-hand, a 
sterile a motif (SAM), followed by a transmembrane (TM) domain. The C-terminus comprises of a three 
coiled-coil domains, a STIM-Orai activating region (SOAR) and a lysine-rich domain (K). STIM1 and 
STIM2 are identical except that the STIM2 has a longer tail consisting of proline/histidine-rich (PM) 
domain. STIM1 contains a proline/serine rich domain (PS).

Figure 2. Mechanism of Ca2+ influx: Depletion of Endoplasmic reticulum/sarcoplasmic reticulum (ER/
SR) Ca2+ stores results in dissociation of Ca2+ from the EF terminal of STIM, causing the STIM oligo-
merization, and translocation of STIM to the ER-PM junction. Store depletion also results in the co-
localization of Orai at the ER-PM junction. The coupling of STIM to Orai leads to the opening of Orai 
channels, and elicits localized Ca2+ entry.
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Figure 3. Structural topology of Orai1: Orai channels contain 4 transmembrane domains. The black 
lines depict the mutations effecting ion selectivity. The dashed black line shows the region of gain of 
function mutation. The gray region region marked CC depicts the region of STIM binding to the Orai-
COOH termini.
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Figure 4. SOCE-dependent activation of cardiac gene expression. Machinery required for SOCE in 
cardiomyocytes, STIM, Orai and TRPC co-exist in cardiomyocytes. Activation of Gq-coupled recep-
tors by agonists such as angiotensin II, endothelin-1 and phenylephrine activates membrane bound 
phospholipase C (PLC). PLC hydrolysis phophatidylinositol to inositol 1,4,5-trisphosphate (IP3). IP3 
diffuses across the cytosol to bind to IP3 receptors (IP3R) mobilizing the release of Ca2+ into the cytosol. 
Ca2+ subsequently causes more Ca2+ release via the Ryanodine receptor (RyR), resulting in ER/SR Ca2+ 
depletion. The depletion of ER/SR stores is sensed by STIM. STIM proteins oligomerizes, and couples to 
plasma membrane Orai, resulting in pore opening and Ca2+ entry. The sustained entry of Ca2+ induces 
downstream pathways such as calcineurin/Nuclear factor of activated T cells (NFAT), triggering the 
transcriptional pathways resulting in cardiac hypertrophy. The Ca2+ increase could cause disruption of 
mitochondrial membrane potential or activate calpain, culminating in activation of apoptotic pathways 
leading to myofilament disintegration and contractile dysfunctions.
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ABSTRACT

Mitochondria constitute an integral structural and functional part of the cardiac muscle. The heart 
muscle relies on the mitochondrial production of fatty acids and ATP as sources of energy during dif-
ferent stages of human growth and development. New mitochondria are created from existing ones by 
a process called mitochondrial biogenesis which involves both fusion and fission events controlled by 
a bevy of proteins such as Drp1, OPA1, Mfn1, and Mfn2. In this chapter, we examine the role of these 
mitochondrial fission and fusion proteins in regulating various heart diseases, particularly, reperfu-
sion injury, dilated cardiomyopathy, and heart failure. It is our intent to examine whether any of these 
proteins may serve as future candidates for cardiovascular therapy.

INTRODUCTION

Introduction to Heart Disease

Heart disease is a major contributor to morbidity and mortality in the developed world, and particularly 
in the United States. According to the Centers for Disease Control, 1 in 4 people, about 610,000 indi-
viduals, die annually due to heart disease. This loss of life is accompanied by a huge economic burden, 
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especially due to hospitalization and loss of productivity for the even greater numbers of surviving 
individuals who live with heart disease and require lifelong care and services. Thus, understanding the 
molecular mechanisms of the normal physiology and pathology of the heart will foster the development 
of newer pharmacological interventions by identifying novel therapeutic targets for this devastating 
disease. Thus, exploring new ideas and therapeutic approaches to dealing with cardiovascular diseases 
constitute an urgent need.

Cardiovascular diseases may manifest in a variety of forms. The most common cardiovascular dis-
ease is Ischemic Heart Disease (IHD) that is also known by a variety of other names such as Coronary 
Artery Disease (CAD) or Acute Coronary Syndrome (ACS). This disease develops due to hypoxia of 
cardiac muscle when the blood flow to the heart is interrupted, most commonly due to atherosclerosis of 
the coronary blood vessels. IHD leads to the death of the myocardium and may lead to Sudden Cardiac 
Death of individuals. However, IHD may also induce arrhythmias. Contradictorily, surgical intervention 
such as angioplasty to remove the blood vessel clot has been shown to suddenly restore the myocardial 
oxygen supply and may lead to reperfusion injury.

Other examples of heart disease include those that develop as a consequence of structural damage 
to the heart or as a result of the compensatory adjustments that the heart undergoes to overcome heart 
failure. Heart failure is the inability of the heart to meet the oxygen demands of the body. To compen-
sate for this deficiency, the heart undergoes structural modification over time such as the dilation of the 
ventricles, or an increase in the cell size or cell cumber of cardiomyocytes. These structural changes 
result in cardiomyopathy, which may be due to different causes ranging from alcohol abuse to genetic 
causes. These are only some examples of heart disease discussed in this chapter.

Need for Mitochondrial Research in Heart Disease

Mitochondria are essential for cell function as they serve as sources of energy by allowing the produc-
tion of ATP in the Electron Transport Chain; they are important for the production of fatty acids in the 
β oxidation process; regulate apoptosis; orchestrate phospholipid production, and modulate a variety of 
biochemical and cellular processes. In fact in the mammalian heart muscle, even the spatial arrangement 
of mitochondria is integral to the architecture of the muscle, since they are arranged in a “crystal-like” 
pattern, intertwined with myofilaments. These observations emphasize the central role played by the 
mitochondria in the development and function of the heart muscle.

Interestingly, mitochondria are not static organelles. In fact, they undergo cytoplasmic streaming in 
most cells, except cardiomyocytes, and also undergo fusion and fission. The latter two processes account 
for the creation of new mitochondria in cells. Thus, it is reasonable to assume that changes in mitochon-
drial ultrastructure or function or changes in mitochondrial number, or in the regulation of fission or 
fusion events may lead to overall changes in the heart muscle.

Thus, it is essential to explore the role of mitochondrial defects, deficiencies, and mutations in mi-
tochondrial proteins in the development and exacerbation of heart disease. Not only will this provide a 
deeper understanding of the molecular processes involved in etiology and pathological progression of 
heart disease, this strategy may also identify novel therapeutic targets for heart disease.
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MITOCHONDRIAL BIOGENESIS

Interestingly, most of the mitochondria at birth are derived from the female oocyte, since the human 
sperm cell has very little cytoplasm and minimal if any, mitochondrial contribution to the zygote – a 
phenomenon commonly known as cytoplasmic inheritance. Thus, if there are abnormalities in maternal 
mitochondrial structure or function, these may be inherited by the offspring. To understand this better, 
it is important to consider the role that both nuclear and mitochondrial genes play in the biogenesis of 
new mitochondria.

Mitochondrial biogenesis is a complex process involving high-fidelity generation of 1) membrane 
components such as phospholipids, lipids, cholesterol, and lipid-rafts required for the generation of the 
mitochondrial outer and inner membranes; 2) mitochondrial proteins, such as the respiratory complex 
constituents, or other proteins involved in phospholipid synthesis or in heme synthesis, or the urea cycle 
or multiple other biochemical processes regulated by the mitochondria; and, 3) the adequate and timely 
generation of the protein machinery responsible for trafficking, transporting, and integrating mitochon-
drial proteins into the mitochondrial membranes or inner mitochondrial space or the mitoplast following 
their translation in the cytoplasm. In other words, for the daughter mitochondria to have proper structure 
and viability, multiple complex biochemical processes must occur in a synchronized or step-wise, but 
orchestrated fashion. Failure at any one step in this process may result in mitochondrial abnormalities. 
In fact, it is possible to classify mitochondrial aberrations by the specific process which is altered or af-
fected during mitochondrial biogenesis. Next, we will discuss mitochondrial biogenesis in the context of 
mitochondrial fission and fusion. Following that we will examine the relevance of mitochondrial fission 
and fusion to the normal heart and in heart disease.

THE ROLE OF MITOCHONDRIAL FISSION PROTEINS 
IN MITOCHONDRIAL BIOGENESIS

Research to understand the molecular regulation of mitochondrial dynamics got a tremendous boost two 
decades ago with the discovery of the first protein that was shown to regulate the process of mitochondrial 
fusion in budding yeast (Hales and Fuller, 1997). It was a year later that the first mammalian protein 
required for mitochondrial fission was identified as the Dynamin related protein (Drp1) (Smirinova, 
2001; Yoon, 1998). Since those early years, although a lot has been gleaned about the steps in the process 
for mitochondrial fusion and fission, only a few more molecular players, at least in human tissues, have 
been identified. This leaves a lot unknown about the actual process of mitochondrial fusion and fission 
in human organs. Not only will this knowledge serve to improve our understanding of the regulation of 
mitochondrial biogenesis in health and illness, but it may also help in identifying therapeutic targets that 
reside within the mitochondria which can be pharmacologically manipulated to overcome the structural 
or functional aberration due to deficient mitochondria.

The first possibility of developing mitochondrial disease occurs due to abnormalities during the 
formation of mitochondrial membranes, or more precisely during the fission or fusion of mitochondria. 
Importantly, at the cellular level, mitochondria are not static organelles. Instead, they undergo dynamic 
changes in number, morphology, size, and turnover in every tissue. Most cells retain the ability to up-
regulate mitochondrial biogenesis in response to physiological stress. This is important due to the central 
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role that mitochondria play in energetics. Mitochondria are involved in the production of ATP through 
substrate phosphorylation and as such house the mitochondrial respiratory complex proteins which are 
required for electron transport and the production of ATP. Thus, mitochondria are of prime functional 
importance in organs with a strong oxygen demand such as the brain, heart, and the liver. Physiological 
stressors increase oxygen demand and induce mitochondrial biogenesis. This may be evidenced by an 
increase in mitochondrial fission and an upregulation of proteins that regulate it.

The process of mitochondrial fission has been hypothesized to occur in steps requiring multiple 
protein factors. It has been suggested that an initial step is a constriction of the mitochondria at specific 
sites, followed by the recruitment of the fission-regulating Drp1 protein to the mitochondrial outer 
membrane. Following this event, there appears to be a recruitment and assembly of a protein complex 
that will allow fission to occur, the fission event itself, and the eventual disassembly of the scission 
complex (Liesa, 2009).

MITOCHONDRIAL FISSION PROTEINS IN HUMANS

Over the past decade, a few proteins have been discovered that are thought to be involved in mitochon-
drial fission in human tissues. In addition to the Drp-1 protein, other examples include the human mi-
tochondrial fission protein 1 (hFis1), mitochondrial fission factor, mitochondrial dynamics proteins of 
two different molecular weights (MiD49 and MiD51).

The Drp-1 Fission Protein

The helical protein Drp1 was discovered in 1998, and shown to be a GTPase which integrates into the 
mitochondrial outer membrane and causes the scission process to be completed, resulting in mitochon-
drial fission. Interestingly, Drp1 is usually located in the cytoplasm of the cell, from where it translocates 
to the mitochondria, binding to many protein receptors. In fact, Fis1, MiD49, and MiD51 may act as 
receptors for Drp1 and have been shown to mediate mitochondrial fission downstream of Drp1 trans-
location to the mitochondria. Smirnova et al. (Smirnova, 2001) showed that in mammalian cells, Drp1 
was arranged in a spiral formation and was recruited to and aggregated at mitochondrial sites where the 
scission event would occur, suggesting its direct relevance for mitochondrial fission. Importantly, using 
an expression system to overexpress a mutant and non-functional dominant negative form of Drp1, the 
authors also presented strong evidence that the Drp1 protein was only involved in regulating dynamics 
of the mitochondria, but not that of any other organelle in the COS-7 cells they employed in their study.

Smirnova’s seminal work on the function of one of the fission proteins was subsequently enriched 
in later years by the work of a number of investigators who expanded this research by investigated the 
effect of non-functional Drp1 on a number of mitochondrial functional parameters. At the present time, 
not is the Drp1 protein known to be recruited to the mitochondria to regulate mitochondrial fission and 
overall mitochondrial number and morphology, it is also implicated in the control of Reactive Oxidative 
Species (ROS) production, oxygen consumption, reduced coupled respiration, and regulating the rate 
of ATP synthesis in the mitochondria (Benard, 2007). In particular, Benard et al. demonstrated that the 
expression of a non-functional, dominant negative form of Drp1in HeLa cells resulted in a number of 
changes to mitochondrial morphology, network, and function. Dominant negative Drp1 was shown to 
cause 1) a shift from the reticular and highly interconnected mitochondrial network arrangement within 
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the cells, 2) enhanced mitochondrial membrane fluidity, and, 3) significantly diminished potential for 
ATP production through the OXPHOS pathway.

Using the endocrine, insulin-producing pancreatic β cells, Twig et al. (Twig, 2008) demonstrated that 
the inhibition of mitochondrial fission by the expression of a dominant negative form of Drp1 resulted 
in an inhibition of mitochondrial autophagy. Further, their work showed that these mitochondria were 
impaired in respiratory capability, while also accumulating carbonylated-amino acid containing oxidized 
proteins that suggested an overall decrease in mitochondrial oxygen consumption and function. Thus, 
Drp1 was shown to be important not only for mitochondrial morphology by controlling mitochondrial 
fission, but also for regulating mitochondrial function in β cells. The authors also provided evidence to 
link autophagy-based removal of damaged mitochondria following defective fission events in these cells.

However, the effects of interrupting mitochondrial fission may be different in different tissues. Al-
though mitochondrial fission has largely been studied in non-cardiac systems, some researchers have 
recently investigated its role in the maintenance of healthy heart cells. Thus, to understand the physi-
ological relevance of mitochondrial fission and the regulation of mitochondrial dynamics, particularly 
in the context of the heart, multiple investigators have used an approach similar to the one described 
above, namely of expressing the non-functional, dominant negative form of the Drp1 protein.

An important example of this approach comes from the work of Ong et al. who studied the effect 
of mutation of the mitochondrial fission protein Drp1 in the context of ischemia-reperfusion injury 
to the heart (Ong, 2010). Ischemia-reperfusion injury to the myocardium most commonly occurs as a 
consequence of acute coronary syndrome (ACS). In ACS, there is a progressive and chronic decrease 
in the supply of oxygen to the heart tissue, due to complications such as atherosclerosis or atheroma of 
the blood vessels supplying blood to the heart. Surgical manipulation to restore blood supply results in 
a sudden upsurge of oxygen-rich blood, and counter-intuitively leads to myocardial damage. This is the 
most common cause of ischemia-reperfusion injury and eventually for the development of heart failure.

Drp1 and Heart Disease: Ischemia Reperfusion Injury

To investigate the role of mitochondrial fission in heart disease, particularly in the context of ischemia-
reperfusion injury and heart failure, Ong et al. expressed the dominant negative form of the Drp1 protein 
in the cardiac-derived HL cell line. Subsequently, they induced ischemia in these cells and measured 
various mitochondrial parameters. The expression of dominant negative Drp1 in HL cells, increased the 
percentage of cells containing elongated mitochondria (63±6%, versus 46±6% in control: n=80 cells per 
group; P<0.05), decreased mitochondrial permeability transition pore sensitivity (by 2.4±0.3-fold; n=80 
cells per group; P<0.05), and reduced cell death after simulated ischemia/reperfusion injury (12.1±2.9% 
versus 41.8±4.1% in control: n=320 cells per group; P<0.05). These findings led the authors to conclude 
that inhibiting mitochondrial fission resulted in cardioprotection following ischemia-reperfusion injury 
(Ong, 2010).

Interestingly, Ong’s work was followed by the publication of three independent papers in 2013, all 
of which emphasize the potential of targeting the Drp1 protein to achieve cardioprotection in various 
models of heart disease.

In an alternative approach to only expressing the dominant negative form of Drp1 as attempted by 
Ong et al., the authors Din et al. (Din, 2013) investigated the effect of phosphorylation of Drp1 on the 
regulation of mitochondrial fission in the context of ischemia-reperfusion injury. Their work provided 
important insight into the use of some pharmacological agents that can inhibit the phosphorylation of 
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Drp1 as potential future drugs that can protect the heart from the biochemical effects if ischemic dam-
age. Their work was based on the observation that phosphorylation of Drp1 at serine 637 prevents the 
translocation of Drp1 from the cytosol to the mitochondria, in a manner similar to the inhibition of 
translocation of the dominant negative mutant form of the protein. This suggested that post-translational 
protein modification mechanisms like phosphorylation events may also play a central role in regulating 
mitochondrial fission events. Based on this, Din et al. studied the effect of phosphorylation of Drp1 on 
mitochondrial integrity, reticular mitochondrial morphology, mitochondrial fission, and cell viability 
using both transgenic hearts and neonatal rat cardiomyocytes. Specifically, the authors demonstrated 
that a serine-threonine protein kinase called Pim-1 was responsible for the phosphorylation of Drp1 at 
serine 637. They accomplished this by isolating the hearts from transgenic mice that overexpressed the 
Pim-1 protein, followed by measuring the phosphorylated Pim-1 protein by Western blot of the whole 
heart homogenates and comparing its expression between normal and Pim-1 overexpressing transgenic 
hearts. The reported that Pim-1 overexpression resulted in a 2.7 fold increase in the phosphorylation 
of Drp1 compared to control hearts. Interestingly, the increase in phosphorylation was matched by a 
reciprocal decrease in the translocation of Drp1 to the mitochondria. The authors also mentioned that 
“consistent with these findings, adenoviral-induced Pim-1 neonatal rat cardiomyocytes retained a reticular 
mitochondrial phenotype after simulated ischemia and decreased Drp1 mitochondrial sequestration”. 
The authors concluded that Pim-1 activity resulted in phosphorylation and inhibition of translocation 
of Drp1 to the mitochondria in response to ischemia-reperfusion injury and prevented mitochondrial 
fission and fragmentation while allowing the mitochondria to maintain a reticular arrangement in these 
cells. Thus this work identified Pim-1 as a potential therapeutic target to achieve cardioprotection by 
inhibiting mitochondrial fission.

Another line of evidence of the direct involvement and central importance of Drp1 in mediating 
cardiac-specific effects at the physiological level also came in the same year as the work by Din et al. cited 
above. Gao et al. employed a pharmacological strategy to inhibit Drp1, by utilizing the non-competitive 
dynamin protein GTPase inhibitor drug called dynasore. Similar to the models cited thus far, these au-
thors studied the effect of inhibition of Drp1 in the context of a reperfusion ischemia injury model as an 
etiological mechanism in the development of heart failure. Briefly, Gao et al. induced global ischemia 
for 3o minutes, followed by 1 hour of reperfusion and utilized Langendorff perfused mouse hearts. They 
pre-treated a group of mice with 1 μM dynasore and measured Left Ventricular End Diastolic Pressure 
(LVEDP). The authors reported that dynasore pre-treatment before the induction of ischemia-reperfusion 
prevented the ischemia-reperfusion-mediated elevation in LVEDP. They also observed that dynasore 
prevented mitochondrial fragmentation and increased the survival and viability of the heart cells, and 
correlated their findings to the preservation of ATP levels and of mitochondrial morphology in these 
heart cells. Importantly, this work provided evidence that pharmacological inhibition of Drp1 was a vi-
able strategy for achieving cardioprotection and needs further exploration (Gao, 2013).

Finally, also in the year 2013, Disatnik et al. synthesized a novel Drp1 inhibitor. Specifically, this 
molecule inhibited the protein interaction of Drp1 with another mitochondrial fission protein called 
Fis-1. Employing the strategy of rational drug design, Disatnik et al. synthesized a molecule which they 
named P110. This molecule was designed to disrupt the protein interaction of Drp1 and Fis-1, which 
was achieved by first identifying the homologous sequence between Drp1 and Fis-1 which would be 
the most likely site of protein interaction, and then synthesizing a compound that would specifically 
bind this amino acid sequence. It was the particular intent of the authors to achieve a high degree of 
specificity of inhibition, such that only Drp1 and Fis-1 interaction would be disrupted by P110, while 
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the drug was designed to spare Drp1’s interaction with other proteins regulating mitochondrial dynam-
ics such as mitofusin 1 and mitofusin 2. To investigate the whether P110 would prevent mitochondrial 
fission and elicit cardioprotection, the authors employed three separate model systems of ischemia-
reperfusion injury, namely 1) primary rat cultured cardiac myocytes, 2) an ex vivo rat heart model, and, 
3) an in vivo rat model of myocardial infarction. The authors demonstrated that Drp1 translocated to 
the mitochondria following the induction of reperfusion ischemic injury, but that this was prevented 
by the drug P110. Further, “compared with control treatment, P110 (1 μmol/L) decreased infarct size 
by 28±2% and increased ATP levels by 70+1% after injury relative to control in the ex vivo model. 
Intraperitoneal injection of P110 (0.5 mg/Kg) at the onset of reperfusion in an in vivo model resulted 
in improved mitochondrial oxygen consumption by 68% when measured 3 weeks after ischemic injury, 
improved cardiac fractional shortening by 35%, reduced mitochondrial H2O2 uncoupling state by 70%, 
and improved overall mitochondrial functions” (Disatnik, 2013). Taken together, the authors were able to 
demonstrate the successful creation of a specific Drp1 inhibitor that has the potential of pharmacological 
use in the prevention of mitochondrial fission and fragmentation following ischemia-reperfusion injury.

Conclusion: Mitochondrial Fission Proteins in Ischemic Heart Disease

In summary, the work of Simirnova et al., Din et al., Gao et al., and Disatnik et al. emphasize the central 
role of mitochondrial dynamics, specifically mitochondrial fission events in regulating the etiology and 
progression of ischemia-reperfusion injury in the larger context of Acute Coronary Syndrome and heart 
failure. Further, the field seems to be moving in the direction of creating pharmacological inhibitors 
that can interfere with the specific function of mitochondrial fission proteins such as Drp1 to effectuate 
cardioprotection and longer survival of patients suffering from ACS and heart failure, making these 
novel inhibitors potential cardiac drugs of the future.

Mitochondrial Fission Proteins and Dilated Cardiomyopathy

Further direct evidence for the critical role of Drp1 in regulating mitochondrial and cellular energetics 
comes from a study conducted by Ashrafian et al. In an attempt to characterize and study a large-scale 
mutation screen obtained through mutagenesis by treating with N-ethyl-N-nitrosourea, the authors iden-
tified a mouse phenotype known as “Python” which resulted in an inherited dilated cardiomyopathy. 
Upon analysis, it was found that this particular phenotype was the result of a mutation in the Drp1 gene, 
which resulted in the C452F mutation which was shown to result in protein modification of Drp1 such 
that it altered this protein’s ability to interact with other proteins in the mitochondria. The eventual bio-
chemical outcome of this was a significant decrease in the levels of ATP, a reduction in the expression 
of important mitochondrial enzymes such as complex IV and succinate dehydrogenase, and structural 
aberrations of the mitochondria leading to the development of “abnormal” mitochondria. These observa-
tions led the authors to speculate that the reduction in mitochondrial ATP production and the changes 
in mitochondrial structure and appearance resulted in the dilated cardiomyopathy. Interestingly, homo-
zygosity for this mutation resulted in lethality, suggesting the critical role of Drp1 in the regulation of 
mitochondrial energetics, morphology, function and by extension the normal physiology of the murine 
heart. This work provided an important link connecting mitochondrial dynamics to the molecular basis 
of heart disease (Ashrafian, 2010).
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Following this initial report, Cahill et al. (Cahill, 2014) conducted a detailed biochemical analysis 
of the effect of the C452F Drp1 mutation on mitochondrial dynamics which was published in 2015. 
In this follow-up study, the authors closely examined the consequence of this mutation on the function 
and assembly of Drp1 in murine cardiac mitochondria. Importantly, they discovered that this mutation 
caused an increase in the GTPase activity of Drp1. Further, the C452F mutant Drp1 protein also ex-
hibited abnormalities of assembly and oligomerization in the mitochondrial membrane. The latter was 
concluded from the observation that compared to their effect on the control non-mutant form of Drp1, 
even high concentration salt or nucleotide solutions were unable to induce disassembly of the mutant 
oligomerized protein, suggesting a mutation-induced defect in protein interaction resulting in abnormal-
ity in self-aggregation and oligomerization in the mitochondrial membrane. This, in turn, suggested the 
inability of the C452F Drp1 mutant to integrate into the mitochondrial membranes properly, leading to 
deficiencies in mitochondrial fission. To test this hypothesis, the authors induced the same mutation in 
mouse embryonic fibroblasts and analyzed the effect of the mutant Drp1 on mitochondrial morphology, 
and specifically on mitochondrial fission. They found defects in mitochondrial morphology in the mutant 
Drp1 mouse embryonic fibroblasts and were further able to demonstrate that in the mutant cells, the 
removal of damaged and abnormal mitochondria by the process of autophagy (or more appropriately, 
mitophagy) was impaired. The authors also demonstrated that Drp1 mutation not only caused a defect 
in mitochondrial morphology in the mouse embryonic fibroblast model system but also caused mito-
chondrial functional defects related to energy production. This was similar to their study conducted in 
2010 and further confirmed that expression of mutant Drp1 was sufficient to produce energy deficiency, 
changes in mitochondrial morphology, and inhibition of mitophagy in the context of heart cells. Lastly, 
the authors showed that a partial rescue in terms of restoration of mitochondrial tissue health could be 
obtained by a long-term feeding of the Drp1 mutant mouse on a low protein diet, which enhanced the 
autophagy-related removal of damaged mitochondria. The eventual pathological development of dilated 
cardiomyopathy included a generalized sterile inflammation of the heart.

Conclusion: Mitochondrial Fission Proteins and Dilated Cardiomyopathy

In summary, these two instances of work provided evidence that the C452F mutation of Drp1 results 
in a monogenic dilated cardiomyopathy due to defects of protein oligomerization and integration in the 
mitochondrial membranes, resulting in ATP deficit, and accumulation of faulty mitochondria. The overall 
impact of these studies is to highlight the possibility of exploring Drp1 as a novel therapeutic target in 
the treatment of heart disease, including heart failure and cardiomyopathy.

MITOCHONDRIAL FUSION PROTEINS AND MITOCHONDRIAL BIOGENESIS

Mitochondrial biogenesis and regeneration require the coordinated and timely initiation of a number of 
cellular processes. It is important to realize that following mitosis, mitochondria in the new daughter 
cells do not originate by de novo synthesis, but are derived from previously existing mitochondria in 
the parent cells. This is relevant because, given the fact of generation from pre-existing mitochondria, 
new mitochondria can only be created by two processes: division of older mitochondria to produce 
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smaller and fragmented mitochondria or the fusion of existing mitochondria to create newer and larger 
mitochondria. The molecular aspects of mitochondrial fission events, including the prominent proteins 
required for this process and their impact on cardiac physiology and pathology, have been discussed in 
detail above. We will now focus on the regulation of mitochondrial dynamics by mitochondrial fusion 
events and the role of mitochondrial fusion in the physiology and pathology of cardiovascular disease. 
We will conclude this section by exploring potential therapeutic strategies based on mitochondrial fusion 
proteins that may be employed to treat cardiovascular disease in the future.

In addition to contributing to the birthing process for creating new mitochondria, mitochondrial fu-
sion is an important event that may occur in different tissues at different time points depending on the 
microenvironment. Thus, it is feasible to expect mitochondrial fusion in the absence of mitosis and in 
response to specific stimuli or drugs. In general, mitochondrial fusion in the human system usually results 
in the creation of longer mitochondria. This is considered a break from the other possible mitochondrial 
morphologies generally found in cells, namely 1) the existence of mitochondria as a network, closely 
linked to the endoplasmic reticulum; 2) the presence of numerous smaller condensed mitochondria; and, 
3) the presence of elongated mitochondria. Of course, special mitochondrial arrangements are found in 
specialized tissue and cells within humans, and are also found in other species, most notably the giant 
fused Nebenkern mitochondria found in the fruit fly Drosophila sperm cells. In fact, we have learned a 
lot about the molecular process of mitochondrial fusion from studying the molecular events that gener-
ate the specialized mitochondria in species such Drosophila. In human cells, multiple investigators have 
reported the apparent flexibility of mitochondrial arrangement which can morph and transiently shift 
from the reticular form to the more commonly known condensed variant. In fact, in some cells, mito-
chondrial morphology and fission and fusion events are considered to also contribute to the cytoplasmic 
circulation of the mitochondria. It is, however, important to emphasize that mitochondrial arrangement 
and morphology in cardiac tissue is dramatically different from that in other tissues.

Mitochondrial Fusion in the Context of Cardiac Muscle Architecture

In the heart, as indeed in skeletal muscle, mitochondria have a very well defined spatial and topographi-
cal orientation. In these muscles, mitochondria are distributed in between the myofibrils of actin and 
myosin within each myofiber (or muscle cell). In fact, investigators have reported that in the rat skeletal 
muscle, the mitochondrial arrangement is so precise and periodic that it appears “crystal-like” or like 
beads on a necklace, especially upon analyzing live myofibers obtained from the muscle (Vendelin, 
2005). It has been speculated that this may be particularly relevant in enabling the molecular cross-talk 
between these mitochondria and in maintaining regular muscle physiology. In fact, it was demonstrated 
that such a special spatial arrangement made it possible for all adjoining mitochondria in cardiac cells 
to depolarize by controlling the production of ROS, where ROS produced by the initiating mitochondria 
may drive ROS changes in the adjacent mitochondria (Zorov, 2000; Brady, 2004). Given such a special 
arrangement of mitochondria within the skeletal and cardiac muscle, it is reasonable to assume that both 
mitochondrial fusion and fission events will appear different and may work differently in muscle cells 
as compared to cells of other tissues. Thus, one must reference mitochondrial fission and fusion in the 
cardiac tissue as a specialized case of these events elsewhere.
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MITOCHONDRIAL FUSION PROTEINS

Researchers have identified three main proteins thus far that participate in initiating and contribute to 
mitochondrial fusion events. These are the two mitochondrial fusion proteins named mitofusin 1 and 
2 (Mfn1 and 2), and the optic atrophy factor 1 (OPA1) proteins. Just as there is a complex multi-step 
process for mitochondrial fission, mitochondrial fusion, though somewhat simpler, also involves site-
specific reactions proceeding in a sequential manner. As is well documented, mitochondria have distinct 
suborganellar compartments that vary greatly in the content and distribution of enzymes and carry out 
distinct metabolic process. Essentially, mitochondria have a Mitochondrial Outer Membrane (MOM) 
and a mitochondrial inner membrane (MIM). The MIM is thrown into folds known as cristae but comes 
in contact with the MOM at specialized contact sites. Such an architecture creates two distinct func-
tional compartments in the mitochondria, namely, 1) an inner membrane space which exists between 
the MOM and the outer surface of the MIM, and, 2) a mitoplast compartment which is entirely enclosed 
by the MIM. Thus, when considering events such as mitochondrial fusion, it is important to recognize 
the inherent complexity of such a process. For mitochondrial fusion to be effective, it is essential that 
contents of the newly created mitochondria following the fusion event must be equally distributed within 
the new mitochondria and so should be “well mixed”.

It is, therefore, interesting to note that each protein listed above plays very specific roles in the fusion 
of the mitochondria. Mfn 1 and 2 are associated with fusion of the MOM, while OPA1 has been shown 
to mediate the MIM.

The story of the discovery of the mitofusin proteins begins in 1997, strangely enough, with the fruit 
fly testes. In the fruit fly, sperm cell production occurs in stages. In the early stages, within the devel-
oping sperm cells, Electron Microscopy shows the presence of a nucleus, accompanied by one giant, 
fused mitochondrion. Upon closer examination, the mitochondrion has the appearance of multiple lay-
ers, like the skin of an onion. In their seminal work, Hales and Fuller noted that mutations in the gene 
responsible for coding for the protein that results in this special mitochondrial arrangement resulted in 
fusion defects and fragmented mitochondria. Since the protein coded for the mitochondria to take on 
the appearance of layers of onion skin, the protein, and the gene, were named fuzzy onions (fzo). The 
authors demonstrated that in the absence of this gene, the mitochondrial fusion defects that occurred 
ultimately led to a failure of spermatogenesis in the fruit fly, and the production of sterile flies. Using 
sequence analysis and prediction software available at that time, the authors also speculated that the Fzo 
gene encoded a membrane bound GTPase. They were additionally able to demonstrate that mutation 
in the Fzo gene, while allowing proper translocation of the fzo protein to the mitochondria, resulted in 
fragmented mitochondria (Hales and Fuller, 1997)

Santel and Fuller identified the first mammalian homologs of the Drosophila Fzo gene and called them 
mitofusins, Mfn1 and Mfn2. They demonstrated that expressing these proteins using transient transfec-
tions in human fibroblast cell lines caused the mitochondria to fuse together in these cells. Further, the 
authors also identified a transmembrane domain within the sequence of the Mfn2 protein and showed 
that upon interaction with hydrophobic regions of the mitochondrial membrane, it was able to integrate 
the protein, suggesting the mitochondrial translocation and integration of Mfn2 (Santel & Fuller, 2001).

The importance of mitofusins was realized when it was discovered that mitochondrial fusion is a 
tightly regulated process and all the required steps must be completed for the proper generation of fused 
mitochondria. For instance, to ensure cell and mitochondrial viability, it is not enough for the just the 
MOM of the interacting mitochondria to fuse as a consequence of mitofusin activity. The MIM and the 
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matrix must also fuse and result in the homogenous distribution of mitochondrial content, including of 
mitochondrial DNA. Thus, when the MIM was prevented from fusing, the resultant mitochondria did 
not mix their contents well, leading to dysfunction.

MITOFUSINS AND HEART DISEASE

Mitofusin proteins are essential in regulating mitochondrial morphology and dynamics. Interestingly, 
the role of mitofusins is not restricted to the time of embryonic development of the heart but continues 
into the adult organism. This is interesting because it provides evidence that heart cell mitochondria are 
not “static” as once thought, but undergo dynamic changes, alternating between reticular and condensed 
morphologies throughout life. In fact, although heart cells have restricted cytoplasmic streaming or lo-
cal movement of mitochondria when compared to isotropic cells from other tissues, these proteins still 
play an important role in allowing tubular formation and regulating other morphological changes to the 
mitochondria, some of which may be important for exchanging mitochondrial content.

In addition, upon birth, there are other notable changes that occur in heart cells, perhaps the most 
relevant of which is the shift in cellular metabolism and energetics. Prior to birth, in the prenatal heart, 
the primary source of energy is glucose and anaerobic respiration; however, in the first few days of the 
postnatal period, this shifts substantially to the utilization of fatty acids as the source of energy. This 
shift in the source of fuel is also accompanied by changes in the mitochondrial morphology.

We will separately examine the role of mitofusins in the developing and adult heart.

Mitofusins and Embryonic Development

To examine the role of Mfn1 and Mfn2 during embryonic development, Chen et al. (Chen, 2003) generated 
knock-out mice where either Mfn1 or Mfn2 was genetically ablated. Mice heterozygous for either Mfn1 
or Mfn2 were able to survive, while homozygous deletion of either gene resulted in lethality. Further, the 
authors reported that while ablation of either isoform was lethal to the mice, there were differences in 
the time point and the type of cells where these deletions showed maximum effect. For example, while 
depleting the Mfn2 gene resulted in abnormalities of the placental trophoblast “giant cells”, deleting 
Mfn1 did not have any apparent effects on these cells. In terms of time, they reported that homozygous 
mutant embryos died earlier than their heterozygous counterparts, and displayed greater developmental 
delay. Depleting Mfn1 produced normal frequencies of live mutant embryos till embryonic day 10.5, 
while ablation of Mfn2 generated normal frequencies of live mutant embryos till embryonic day 9.5. 
Using the 10.5-day embryos, the authors derived and established an embryonic fibroblast cell line from 
normal and Mfn1 and Mfn2 knockout mice to examine the specific effects of Mfn1 or Mfn1 depletion 
on mitochondrial morphology compared to control. They showed a dramatic shift in mitochondrial 
morphology from the more than 90% tubular arrangement of mitochondria in normal mouse embryonic 
fibroblasts to the presence of fragmented mitochondria in Mfn1 and Mfn2 knock-outs. Further, the 
majority of the mitochondria in the knockouts appeared to be spherical. These observations record a 
major change in mitochondrial morphology and arrangement from a more “tubular” to a more spheri-
cal appearance. The authors used time-lapse microscopy to illustrate that fusion events were affected 
by the loss of either Mfn1 or Mfn2, while mitochondrial DNA content was not much affected, though 
mitochondrial mobility was altered. To demonstrate that all these changes occurred due to the deple-
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tion of the mitofusins, the authors performed a rescue experiment, where restoring mitofusin function 
also restored mitochondrial morphology to the reticular formation. Chen and colleagues concluded that 
“mitochondrial fusion is essential for embryonic development, and by enabling cooperation between 
mitochondria, has protective effects on the mitochondrial population”.

Papanicolaou et al. (Papanicolaou, 2011) ablated the Mfn2 gene in mice and studied the effect on the 
heart and on mitochondrial dynamics in isolated heart cells from these mice. They reported that similar 
to the finding by Chen et al. (Chen, 2003), mitochondria in the Mfn2 ablated mice heart cells appeared 
fragmented. Further, an examination of the hearts from these mice indicated a cardiac enlargement, 
but not ventricular dilatation, while there was an increase in the left ventricular mass in Mfn2 deleted 
mice. In general, the authors noted that depletion of Mfn2 resulted in “modest myocyte hypertrophy 
accompanied by mild deterioration of left ventricular function”. The modest increase in hypertrophy 
caused an increase in the “heart weight/body weight” ratio. Moreover, Mfn2 depletion did not change 
the activities of various mitochondrial enzymes such as citrate synthase, isocitrate dehydrogenase, or 
medium-chain acyl-CoA dehydrogenase (MCAD).

But perhaps their most significant finding was the difference in the function of Mfn2 discovered by 
analyzing and comparing mitochondrial permeability transition in neonatal and adult heart cardiomyocyte 
lacking this gene. In the adult heart cardiomyocyte, Mfn2 depletion protected against the formation of the 
mitochondrial permeability transition pore and thus prevented the consequent mitochondrial compromise. 
Thus, it seemed that when Mfn2 protein was present in adult heart cardiomyocyte, it mediated mitochon-
drial permeability in response to calcium-induced stress. This conclusion was based on the observation 
that in Mfn2 depleted heart cells, twice the amount of Ca2+ was required to induce mitochondrial perme-
ability transition when compared to the Mfn2 wild-type cells. However, Mfn2 ablation resulted in the 
opposite effect of destabilizing the mitochondria in neonatal cardiomyocytes. The authors interpreted 
this apparent contradiction in mitochondrial response to Mfn2 deletion by suggesting that mitochondrial 
dynamics, morphology, and structure and its regulation were substantially different between the adult 
and the neonatal heart. The authors summarized their findings by reporting that Mfn2 was required to 
suppress mitochondria from undergoing excessive growth in cardiomyocytes.

I feel that the fact that Mfn2 has distinct and diametrically opposite roles in regulating mitochondrial 
permeability transition pore in response to Ca2+-induced stress is a significant finding that may have 
far-reaching consequences when considering drug treatment. This is because it explains the molecular 
differences between the adult and the neonatal heart. Further, since mitochondria are important sources 
of ATP and regulators of apoptosis, among other very important biochemical functions, subtle molecular 
differences like these can affect the cardiotoxicity of drugs, especially in the neonate.

Mitofusins and the Adult Heart

In a subsequent study, Papanicolaou et al. examined the role of the Mfn1 protein in regulating mitochon-
drial dynamics in the heart. Their results for the role of Mfn1 were diametrically opposite to those for 
Mfn2. Using cardiocyte-restricted Mfn1 knock-outs, the authors reported that Mfn1 protected against 
“shrinkage/fragmentation” of the mitochondria. This work began by deleting Mfn1 specifically in cardiac 
myocytes in mice and examining the effect of this ablation on mice hearts. Interestingly, the authors 
reported that Mfn1 lacking mice hearts appeared to be smaller than normal hearts, but were structur-
ally and functionally sound. This was determined by the use of noninvasive echocardiography. The 
parameters measured included heart rate, cardiac mass, diastolic and systolic left ventricular volumes, 
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ejection fractions, cardiac output, fractional shortening of the sarcomere, and peak aortic outflow and 
none showed any significant differences between the Mfn1 knockout mice when compared to the Mfn 
wild-type. These data led the authors to conclude that ablation of Mfn1 did not directly affect the systolic 
and diastolic or pump function of the heart.

However, upon analysis of the adult cardiac myocytes isolated from Mfn1 ablated mice for mito-
chondrial assessment, the cells showed smaller and spherical mitochondria when compared to cardiac 
myocytes isolated from Mfn1 wild-type cells. Although the authors noted a lack of overall change in 
mitochondrial mass, they did observe that Mfn1 ablation seemed to alter the overall morphology of the 
adult cardiac myocyte mitochondria from a reticular formation to the spherical form. Interestingly, this 
was accompanied by specific changes in the expression of Electron Transport Chain proteins involved 
in ATP generation.

However, the most significant effect of the deletion of the Mfn1 gene was reported to be protection 
from ROS damage. This manifested as a delayed depolarization of the mitochondrial membrane potential 
in Mfn1 lacking isolated adult cardiac myocytes when compared to the Mfn1 containing control cells. 
The authors reasoned that since the loss of the mitochondrial membrane potential or “depolarization” 
of the mitochondria leads to the development of the mitochondrial permeability transition pore, it was 
plausible to expect that delayed depolarization would have a pro-survival effect. They tested this idea by 
comparing ROS induction initiated by exposure to hydrogen peroxide in isolated Mfn1-lacking or wild-
type murine cardiac myocytes, followed by an assessment of cell viability by the trypan-blue staining 
method. They reported a significant decrease in cell viability in Mfn1 wild-type cells, while the Mfn1 
ablated cells seemed to tolerate ROS better and resisted cell death (Papanicolaou, 2012).

Thus far, it seemed that knocking out either Mfn1 or Mfn2 affected mitochondrial biogenesis, devel-
opment, and morphology in mice hearts or mice heart cells. However, it was not clear whether Mfn1 and 
Mfn2 shared some functions in common between them. Papanicolaou et al. designed a system to study the 
effect of depleting both Mfn1 and Mfn2 simultaneously and specifically only in heart cells. They used an 
inducible Cre-based animal model approach where administration of raloxifene could induce ablation of 
both genes. Using this model, the authors reported that there appeared to be some redundancy between 
Mfn1 and Mfn2, and especially the pathways they affected. This was true because although during the 
pre-natal period mice seemed to normal mitochondria, following birth, and with increasing number of 
post-natal days, mitochondria progressively became fragmented in response to Mfn1 and Mfn2 depletion. 
The authors speculated that mitochondrial fragmentation was a physiological compensatory response 
that resulted in an increase in mitochondrial number, perhaps as a means of cardiac muscle adaptation 
to the lack of the mitofusin proteins. However, as this state of mitochondrial fragmentation persisted, 
especially past post-natal day 7, and the numbers of mitochondria remained persistently expanded, all 
Mfn1 and Mfn2 lacking mice developed cardiomyopathy and died by postnatal day 16.

With particular reference to the structure and function of the heart, the authors observed that in normal, 
Mfn1 and Mfn2 wild-type hearts, there was an increase in the mRNA levels of Mfn1 and Mfn2 following 
birth, up to post-natal day 7. This increase in Mfn1 and Mfn2 seemed to be necessary for the regulation 
of the morphological and functional viability of heart cells as they transition from a “pre-birth” to an 
after-birth stage. Other authors had previously speculated on the need for such a change, based on the 
difference in cellular metabolism and energetics between adult and embryonic cardiac cells, as mentioned 
above. However, in the current animal model, since both Mfn1 and Mfn2 were ablated, the authors used 
this system to investigate the effect of this molecular change on the structure and development of the 
heart. They reported the development of a severe dilated cardiomyopathy in the knock-out mice compared 
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to controls by post-natal day 7. Further, heart function was assessed by measuring heart rate, fractional 
sarcomere shortening, left ventricular volume, and ventricular wall thickness. All parameters showed 
significant changes between the mitofusin knockout animals compared to wild-type controls. Thus, for 
instance, there was a significant reduction in the fractional shortening of the sarcomere, and in the heart 
rate, followed by an increase in the left ventricular volume and in left ventricular wall thickness in the 
mitofusin knockout animals by post-natal day 7.

The authors further investigated the structural basis for the observed physiological defects and de-
velopment of severe dilated cardiomyopathy. Using electron microscopy to analyze the arrangement 
and ultrastructural appearance of cardiac muscle cells, the authors found significant changes in both 
the number and shape of the mitochondria, as well as their packing and arrangement when comparing 
the mitofusin knock-outs to the wild-type cells. In particular, heart cells lacking mitofusins developed 
spherical mitochondria as mentioned above. But additionally, instead of being arranged in parallel with 
the actin and myosin filaments as they would under the wild-type conditions, in the mitofusin knock-out 
cells, the mitochondria were packed in between the myofilaments, resulting in a slight increase in the 
volume of the muscle cell. Not only was the internal arrangement of the mitochondria different, these 
mitochondria also appeared to have multiple structural deformations such as the presence of “finger-like” 
protrusions that were absent from the mitofusin wild-type samples.

Finally, the authors also compared the expression pattern of mitofusins in cardiac myocytes in peri-
natal mice to that of the protein Peroxisome proliferator-activated receptor gamma coactivator (PGC-
1α). They reasoned that this was due to the fact that PGC-1α was known to participate in mitochondrial 
biogenesis, especially in the context of a reduction in cellular ATP levels. Since there was a decrease in 
ATP in mitofusin knock-out cardiac myocytes, and also a similarity in the expression pattern of PGC-1α 
and Mfn1 and Mfn2 in perinatal cardiac myocytes, the authors speculated that PGC-1α and mitofusins 
could be temporally regulated. To support this claim, they measured changes in mRNA by quantitative 
RT-PCR, in cardiac cells from post-natal day 0, 3, and 7. The authors reported that no significant changes 
were found on postnatal days 0 and 3 between mitofusin knock-out and wild-type cardiac myocytes in 
PGC-1α, Tfam, and Nrf-1, the latter two being transcriptional factors regulating mitochondrial biogenesis. 
However, interestingly, all three were suppressed on pot-natal day 7. This suggested that mitofusins also 
regulate mitochondrial biogenesis in the perinatal period in cardiac myocytes.

The Mitochondrial Fusion Protein: OPA1

The optic atrophy 1 protein (OPA1) is essential for the fusion of mitochondria. Just as the mitofusins 
promote the fusion of the mitochondrial outer membranes, OPA1 promotes the fusion of the inner 
membranes of the mitochondria. Fusion of the inner membranes is an important event that allows proper 
mixing of mitochondrial contents, including mitochondrial DNA (mtDNA). The absence of OPA1 
prevents mtDNA and mitochondrial content mixing. In fact, it has been reported that in addition to 
facilitating mixing of mtDNA, OPA1 is actually also required for mtDNA replication. siRNA directed 
against alternative splice variants of OPA1, and specifically at the exon 4, and demonstrated a decrease 
in a hydrophobic, 10 kDa peptide generated from this sequence. The absence of this peptide coincided 
with faulty replication of mtDNA. This led the authors to conclude that OPA1 was directly involved in 
regulating the replication of mtDNA.

OPA1 is a member of the dynamin-related protein family. The dynamin-related protein family differs 
from dynamin-related proteins in lacking a proline-rich and a pleckstrin domain. However, both protein 
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families retain the GTPase, a central coiled-coil region, and GTPase effector domains, a dynamin central 
region, and a C-terminal coiled-coil region. These proteins also contain a highly alkaline domain towards 
the N-terminal region which is required for mitochondrial targeting. OPA1 was first identified by Nagase 
et al. in 1998 (Nagase, 1998), but was identified as a regulator of mitochondrial DNA in yeast. Further, 
significant characterization of this protein as a mitochondrial protein came from the work of Delettre et 
al. and Olichon et al (Delettre, 2001; Olichon, 2003). Both groups identified the specific exons within 
the coding region of human OPA1. Collectively, they found that OPA had 8 alternative splice variants 
in humans and that all the splice variants shared a basic N-terminal domain that targeted the proteins to 
the mitochondria. Their work also suggested that these alternative splice variants differed in the absence 
or the presence of the domains encoded by exons 4, 4b and 5b. In summary, their work suggested that 
there were important domains within the protein structure that regulated its function.

To further explore the role of the domains in the OPA1 protein, various workers introduced mutations 
in these domains and investigated the effect of these mutations on mitochondrial function and energetics. 
Interestingly, none of the mutations reported thus far have resulted in a negation of mitochondrial func-
tion. The only time an effect was observed in mitochondrial function was when OPA1 was depleted using 
siRNA technology in mouse embryonic fibroblast cells by Chen et al. These authors demonstrated that 
ablating the OPA1 resulted in growth and mitochondrial defects. In particular, in the absence of OPA1 
mitochondrial respiration was considerably suppressed. Restoration of OPA1 also restored mitochondrial 
respiration. This experiment suggested that OPA1 was required not only for mitochondrial fusion, and 
replication of mtDNA but also for the healthy biochemical functioning of the mitochondria (Chen, 2005).

Kasahara et al. (Kasahara, 2013) reported that along with other fusion proteins such as the mitofusins, 
OPA1 was essential for cardiocyte development during the process of embryogenesis and organogenesis. 
These authors demonstrated that OPA1 mediated mitochondrial fusion was required for the regulation of 
a complex molecular pathway which ultimately controlled the signal transduction protein called Notch-1. 
They reached this conclusion by gene-trapping OPA1 in mouse embryonic stem cells and observing 
the effects of this on cardiocyte development. They noticed that restricting the function of OPA1 also 
resulted in impaired cardiocyte development, and damaged signaling involving calcium-calcineurin 
and the transcription factors tumor growth factor beta (Tgf-β) and serum response factor (SRF), among 
others. Thus, OPA1 was required for the adequate functioning of a complex and interconnected signal 
transduction pathway required for cardiocyte development and growth.

OPA1 is reduced in heart failure and in cardiomyopathy. Chen et al. employed two models of heart 
failure to investigate the effect of OPA1 on mitochondrial fusion and on heart health and function. The 
authors use an explanted failing human heart which was removed during surgical transplantation. They 
also employed a high coronary ligation rat model of heart failure. In the latter model, heart failure resulted 
in the suppression of the OPA1 protein. In rats, OPA1 is known to have 5 alternative splice variants, and 
reductions in protein expression were noted across all 5 variants. Curiously, this model did not show 
a decrease in Mfn1 or Mfn2. This decrease in OPA1 in this rat model was mimicked by its decrease 
in the failing human hearts, which was found to be statistically significant. However, measurement of 
mRNA levels by RT-PCR showed no difference in OPA1 mRNA between normal and failing hearts, 
either in the rat model or in failing human hearts. The authors interpreted this to suggest that OPA1 
was post-transcriptionally regulated. Further, reduction in OPA1 protein levels was accompanied by 
changes in mitochondrial morphology. In particular, upon examination by electron microscopy, failing 
hearts, whether in the rat model or human, showed an increase in fragmented mitochondria and cristae 
defects. Further analysis by immunogold labeling demonstrated a reduction in OPA1 localization to the 
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mitochondria in the heart failure models. The decrease in OPA1 was also accompanied by an increase 
in apoptosis, especially in the externalization of cytochrome c from the mitochondria to the cytoplasm, 
which is recognized as the hallmark and irreversible signal for apoptosis. In fact, the apoptotic effects of 
the absence of OPA1 could be exaggerated by the application of ischemia to these cells. This confirmed 
that OPA1 was important for protection against apoptosis (Chen, 2009).

Piquereau et al. (Piquereau, 2012) used a heterogeneous mouse model and reduced the function of OPA1 
to 50% in these mice. They investigated the effect of reduced OPA1 on a number of cardiac parameters 
but found that not only did the mice survive, but most of the cardiac functions were not significantly 
different from controls. But they reported three important changes. First, they found that even with a 
50% reduction in OPA1, there was a disruption of mitochondrial morphology from a reticular to a more 
spherical, condensed, and fragmented formation. They also found that accompanying this morphologi-
cal change, was the altered levels of adenosine dinucleotide phosphate (ADP), which they interpreted to 
be the first evidence for a link between mitochondrial morphology and cellular energetics. Finally, they 
also measured the formation of the mitochondrial permeability transition pore in response to calcium 
uptake by the mitochondria in cells lacking OPA1 and compared these to the wild-type control cells. 
They reported that “the mitochondrial permeability transition pore opening in isolated permeabilized 
cardiomyocytes and in isolated mitochondria was significantly less sensitive to mitochondrial calcium 
accumulation”. Additionally, they discovered that six weeks following transversal aortic constriction, 
hearts that were heterogeneous for OPA1, demonstrated hypertrophy “almost two-fold higher (P< 0.01) 
than in wild-type mice with altered ejection fraction (decrease in 43 vs. 22% in Opa1+/+ mice, P< 0.05)”. 
The authors concluded that decreased expression of OPA1 was of consequence in maintaining mito-
chondrial morphology and energy transfer between organelles. They further concluded that OPA1 may 
play a vital role in the response of the heart to hemodynamic changes and may be a significant player 
in the regulation of cardiac physiology by controlling the response of cardiac mitochondria to calcium.

FUTURE RESEARCH DIRECTIONS AND CONCLUSION

Understanding the role of mitochondrial fission and fusion proteins in different heart diseases, using 
both cellular and animal models, will provide insight into the molecular mechanisms responsible for its 
development and progression. We have primarily discussed the role of Mfn1, Mfn2, OPA1, and Drp1 in 
selected heart disease such as ischemia reperfusion, dilated cardiomyopathy, and heart failure. For future 
studies, the role of these proteins in other heart diseases must also be explored. It is also important to 
identify existing drugs that can modulate the expression of these proteins, and hence, indirectly affect 
the health outcomes in patients. Development of gene therapy, gene editing and their combination with 
nanotechnology will provide the tools for timely pharmacological intervention if heart disease is identi-
fied, allowing the potential delivery of personalized medicine to the patient.
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KEY TERMS AND DEFINITIONS

Dilated Cardiomyopathy: Expansion of the ventricles of the heart to compensate for the inability 
of the heart muscle to meet the oxygen demands of the body during heart failure.

Ischemia-Reperfusion Injury: The surgical or pharmacological restoration of oxygen supply to the 
myocardium by removing the clot in the coronary vessels results in damage to the heart muscle.

Mitochondrial Biogenesis: The process by which new mitochondria are created.
Mitochondrial Fission Proteins: Proteins that control the division of the mitochondria. The more 

common mitochondrial fission protein that has been identified in humans is the dynamin-related protein, 
Drp1. Fission proceeds in steps which start with a constriction at the “scission” site at the mitochondrial 
membranes.

Mitochondrial Fission: The act of division or splitting of a mitochondrion to form smaller, frag-
mented mitochondria. This allows for changes in mitochondrial morphology from the reticular to the 
spherical and condensed form.

Mitochondrial Fusion Proteins: Proteins that regulate the merger of two or more mitochondria. 
These proteins mediate the fusion of both the outer and inner mitochondrial membrane and allow the 
mixing of mitochondrial content, including mitochondrial DNA. In humans, the most common mito-
chondrial fusion proteins are the mitofusins, Mfn1 and Mfn2, which regulate the fusion of the outer 
mitochondrial membranes, and the optic atrophy protein, OPA1, which mediates the fusion of the inner 
mitochondrial membranes.

Mitochondrial Fusion: The act of merger of two or more mitochondria. This allows for the forma-
tion of “longer”, tube-like mitochondria and allows proper mixing of mitochondrial content, including 
that of mitochondrial DNA.
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ABSTRACT

Cardiovascular complications and arrhythmias account for high mortality in cardiopulmonary patients 
in intensive care unites (ICU) and critical care unites. Patients in ICU are often administered with 100% 
oxygen for treatment with many diseases. According to American Heart Association (AHA), more than 
2200 deaths related to cardiac failure are reported every day with an average of 1 in every 39 seconds. 
Cardiomyopathy is also reported in many diseased conditions including acute lung injury, diabetes, 
obesity, hypertension, and cancer. Recent studies indicate that hyperoxia induces cardiac injury due to 
dysfunctional lung and compromised pulmonary functioning. The exact mechanism of cardiovascular 
complications in ICU/ critical care remains unknown. This review will discuss the effect of hyeproxia 
on cardiac remodeling with more emphasis on ventricular and electrical remodeling. Understanding the 
exact mechanism of hyperoxia induced cardiomyopathy is not only important to understand the disease 
development and progression but also open new avenues for targeted therapy.

INTRODUCTION

Administration of 100% oxygen (O2) is widely used intervention in critically ill patients at Critical care 
or Intensive Care Units (ICU). Although O2 administration is supported by many guidelines for the 
patients with various medical emergencies (Anderson et al., 2007; Dickstein et al., 2008; O’Driscoll 
et al., 2008), the clinical implication of hyperoxia remain an important subject of debate (Altemeier & 
Sinclair, 2007). Recent studies indicate that hyperoxia induces cardiac injury due to dysfunctional lung 
and compromised pulmonary functioning (Visser, Walther, Laghmani el, Laarse, & Wagenaar, 2010). 
As pulmonary and cardiovascular systems are known to be in cooperative regulation, changes in car-
diovascular systems may influence pulmonary function and vice versa (Howden et al., 2012b). Further-
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more, smoke inhalation induced lung injury has been shown to have cardiovascular changes in previous 
study (Demling, Lalonde, Youn, & Picard, 1995) and continuous exposure of rabbits to hyperoxia for 
72h caused elevated heart rate and low blood pressure (Sventek & Zambraski, 1988) indicating a close 
regulation between cardiovascular and pulmonary systems. More recent studies exploring the functional 
implications of hyperoxia from a cardiovascular stand point identify functional changes in heart rate and 
heart rate variability and linked it to polymorphisms and candidate gene loci (Howden et al., 2012b). 
Although the damage caused by delivering 100% oxygen treatment is to the lung and pulmonary system, 
patients supplemented with 96% of oxygen (hyperoxic), causes accumulation of lung fluid leading to 
pulmonary dysfunction causing oxidative stress in the heart. Additionally, many clinical reports indicat-
ing that hyperoxia was independently associated with increased in-hospital mortality in ICU following 
resuscitation from cardiac arrest, stroke, and traumatic brain injury (Damiani et al., 2014; Helmerhorst 
et al., 2014; Kilgannon et al., 2010; Nelskyla, Parr, & Skrifvars, 2013; Rincon, Kang, Maltenfort, et al., 
2014; Rincon, Kang, Vibbert, et al., 2014).

Hyperoxia and Lung Injury

Administration of supraphysiological concentrations of oxygen as a mechanical ventilation is often a 
standard practice to treat newborns, older children, and adults with various diseases and surgeries (An-
drea Porzionato et al., 2015). Nevertheless, there were also concerns that breathing pure O2 might cause 
irreparable harm and death, which became a prominent clinical concern with the emergence of ICU in 
1960s (Kallet & Matthay, 2013). Hyperoxia can cause lung cell injury and death due to accumulation of 
extremely toxic reactive oxygen species (ROS) (Xu, Guthrie, Mabry, Sack, & Truog, 2006). Induction 
of extensive inflammatory response and damage to the alveolar-capillarity barrier, which can lead to 
impaired gas exchange and pulmonary edema are the characteristics of hyperoxia induced lung injury. 
These characteristics are known to be accompanied by injury and apoptotic or necrotic death of pulmo-
nary cells (Mantell & Lee, 2000; Petrache et al., 1999). Hyperoxia can also induce acute and chronic 
lung diseases such as acute inflammatory lung injury and bronchopulmonary dysplasia (BPD) under 
prolonged exposure (Andrea Porzionato et al., 2015).

Generation of ROS including superoxide anions, hydrogen peroxide, hydroxyl radicals, and hypo-
chlorous acid by activated NADPH oxidase, which in turn injure pulmonary cells via lipid peroxidation, 
protein sulfhydryl oxidation, enzyme inactivation, DNA damage, and depletion of cellular reducing 
agents (Figure 1) are some of the events that occur in acute inflammatory lung injury (Cacciuttolo, 
Trinh, Lumpkin, & Rao, 1993; X. Zhang et al., 2003). This can also induce endothelial and epithelial 
cells to stress responses, and modulation of cell growth, inflammation, and/or death (Lee & Choi, 2003).

The most common chronic lung disease of prematurity is BPD, which results in impaired alveolar 
growth and a dysmorphic vascular architecture (Thébaud & Abman, 2007). Hyperoxia or high oxygen 
concentrations are directly correlated to BPD and most of the animal models of BPD involve hyperoxic 
exposure. Disruption of postnatal alveolar development leading to smaller numbers of enlarged and 
simplified alveoli, thick septa, and an increase in alveolar macrophages are some of the pathophysi-
ological effects for BPD (Balasubramaniam, Mervis, Maxey, Markham, & Abman, 2007; Dauger et al., 
2003; Grisafi et al., 2013; Grisafi et al., 2012; A. Porzionato et al., 2012; A. Porzionato et al., 2013). 
Changes in microvascular development and thickening of the medial muscle layer of arteries, pulmonary 
hypertension, increase in number of lung mast cells, which eventually accumulate around the vessels 
are also reported in experimental models of BPD (Brock & Giulio, 2006; Grisafi et al., 2013; Grisafi et 
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al., 2012; Jones, 1984; Koppel, Han, Cox, Tanswell, & Rabinovitch, 1994; A. Porzionato et al., 2012; 
A. Porzionato et al., 2013).

Hyperoxia induced lung damage is known to activate many different cascades of intracellular signaling 
pathways, in particular, protein kinases such as mitogen-activated protein kinases (MAPKs). Extracel-
lular signal-regulated kinase 1 and 2 (ERK 1/2), c-jun N-terminal kinase (JNK family), p38 kinase, and 
ERK5 are the four well known mammalian MAPK cascades (Plotnikov, Zehorai, Procaccia, & Seger, 
2011) and these cascades can be activated by various extracellular stimuli, such as hyperoxia (Figure 2), 
which in turn control a wide range of cellular processes including cell growth, proliferation, differentia-
tion, motility, stress responses, survival, and apoptosis (Lee & Choi, 2003; Plotnikov et al., 2011; Son 
et al., 2011; Zaher, Miller, Morrow, Javdan, & Mantell, 2007).

Hyperoxia and Cardiovascular Complications in Neonates

Although the effect of hyperoxia inducing pulmonary diseases is well known, its effects on other organs 
in both neonates and adults have only been under investigation more recently. Children born at prema-
ture condition or undergoing cardiopulmonary bypass (CPB) or extracorporeal membrane oxygenation 
(ECMO) require to be admitted to critical care units and are often exposed to high oxygen levels (Hyper-
oxia) during their stay (Allen, Barth, & Ilbawi, 2001; Aoshima et al., 1988; Rosenberg & Cook, 1991; 

Figure 1. Schematic diagram showing the events of hyperoxia induced acute inflammatory lung injury
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Wittnich, Torrance, & Carlyle, 2000). In order to identify whether the hyperoxia alone can compromise 
myocardial function and hemodynamic changes in newborn, Bandali et al. (2004) subjected Yorkshire 
piglets to either 5h of normoxia or hyperoxia, and myocardial function and hemodynamic assessments 
were recorded hourly (Bandali, Belanger, & Wittnich, 2004). Left ventricular (LV) biopsies were taken 
to measure the activity of antioxidant enzymes such as superoxide dismutase (SOD), glutathione per-
oxidase (GPx), and catalase (CAT) in this study. They also measured malondialdehyde (MDA) and 
4-hydroxynonenal (4-HNE) as an indicators of oxygen free radical-mediated membrane injury. In this 
study they found that hyperoxia significantly reduced cardiac contractile function along with reduction 
of systolic blood pressure and mean atrial blood pressure. Significant reduction of SOD and GPx enzyme 
activities were observed in LV of these hyperoxia treated piglets, whereas significant elevation of MDA 
and 4-HNE, indicating the possibility of hyperoxia triggering oxygen free radical-mediated membrane 
injury in these newborn hearts together with an inability to upregulate its antioxidant enzyme defenses 
while impairing myocardial function and hemodynamics.

In a separate study to investigate whether the vascular function and blood pressure are altered in 
adult rats exposed to hyperoxic conditions as neonates also reported similar observation (Yzydorczyk 
et al., 2008). In this study the both male and female newborn rat pups were kept with their mother in 
hyperoxia (80% O2) or room air from days 3 to 10 postnatal. Blood pressure was measured from weeks 
7 to 15 and rats were euthanized to measure vascular reactivity, oxidative stress, microvascular density, 

Figure 2. Hyperoxia induced lung damage via activation of MAPK cascade
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and nephron counts. This study showed that neonatal hyperoxia leads in the adult rat to elevated blood 
pressure. Vascular dysfunction, microvascular rarefactions, and reduced nephron counts in both genders.

Hyperoxia and Cardiovascular Complications in Adults

Administration of 100% oxygen in patients treated with acute cardiac dysfunction is a common practice. 
Although this is done to enhance oxygenation to the tissue, supplementation of oxygen at 15 L/min through 
a nonrebreather mask for 1h has been shown to not only reduce heart rate and cardiac index (CI) but also 
increase systemic vascular resistance (SVR) and mean arterial pressure in healthy volunteers (Waring 
et al., 2003). Also hyperoxia treatment has been shown to reduce stroke volume in healthy volunteers 
(Thomson, Drummond, Waring, Webb, & Maxwell, 2006). Similarly other studies also confirmed the 
effect of hyperoxia on hemodynamic changes along with other cardiac functions including cardiac out-
put, stroke volume, and left ventricular end diastolic pressure in both healthy subjects and patients with 
congestive cardiac failure (Haque et al., 1996; Mak, Azevedo, Liu, & Newton, 2001). Many other studies 
also reported that hyperoxia treatment affect coronary vascular blood flow (Farquhar et al., 2009; Ganz, 
Donoso, Marcus, & Swan, 1972; McNulty et al., 2005; McNulty et al., 2007).

Inflammation and oxidative stress are two well studies mechanisms taking a crucial role in the ef-
fects of hyperoxia. Cardiopulmonary bypass induces biomaterial-dependent and independent systemic 
inflammation (Spoelstra-de Man, Smit, Oudemans-van Straaten, & Smulders, 2015). The first one 
happens when blood touches artificial surfaces and changes the hemodynamic state like a continuous 
blood flow pattern during bypass (Elahi, Yii, & Matata, 2008); the second one appears during anesthe-
sia; surgical trauma; cardioplegia; ischemia-reperfusion; release of endotoxin; transfusion; and changes 
in body temperature (Oudemans-van Straaten et al., 1996; Spoelstra-de Man et al., 2015). Altogether 
these influence a series of humoral and cell-mediated inflammatory responses including the activation 
of cytokines, adhesion molecules, arachidonic acid metabolites, endothelins, platelet-activating factors 
(Elahi et al., 2008), the complement system (Spoelstra-de Man et al., 2015), increase of total white blood 
cell count and number of circulating neutrophils.

In vivo studies with healthy rodents also reported an increase in oxidative stress and inflammation. For 
example a study on healthy mice exposed to 100% oxygen showed increased cellular infiltration of the 
lungs, secretion of the pro-inflammatory cytokines like tumor necrosis factor-α (TNF-a) and interleukin 
(IL-6) (Nagato et al., 2012). Likewise studies involving different septic models (lipopolysaccharide-
induced lung inflammation or a caecal ligation and puncture sepsis model) where hyperoxia was induced 
elevated inflammatory and oxidative stress response (Rodriguez-Gonzalez et al., 2014; Waisman et al., 
2012), organ inflammation and mortality (Thiel et al., 2005). There are also studies showing treatment 
100% oxygen along with pretreatment of a ROS scavenger (e.g. Vitamin C or N-acetylcysteine) reduces 
serum levels of pro-inflammatory cytokines. This is the case on a zymosan-stimulated mice model in 
which serum levels of TNF-alpha, IL-6, and high-mobility group box 1 decreased, it also increased se-
rum anti-inflammatory cytokine (IL-10), and upregulated tissue antioxidant enzymes such as superoxide 
dismutase, catalase, and glutathione peroxidase (Hou et al., 2010; Waisman et al., 2003; Young, 2012).

Ventricular Remodeling in Hyperoxia Induced Hearts

Hyperoxia or high oxygen concentrations are directly correlated to bronchopulmonary dysplasia (BPD), 
a common complication of prematurity, affecting approximately one-third of extremely low birth weight 
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infants (Fanaroff et al., 1995; Walsh et al., 2006). Also many studies have reported that approximately 25-
35% of infants with moderate to severe BPD develop other complications such as pulmonary hypertension, 
right ventricular hypertrophy (RVH), and right ventricle (RV) failure (An et al., 2010; Baker, Abman, 
& Mourani, 2014; Check et al., 2013; Khemani et al., 2007). The pathophysiological consequences of 
BPD are increase in pulmonary vascular resistance (PVR), which in turn increase afterload and strain on 
right ventricle. This increasing pressure load on right ventricle will further increase ventricular thickness, 
initially as a compensatory mechanism, but eventually can lead to RV dilation and failure (Bogaard, Abe, 
Vonk Noordegraaf, & Voelkel, 2009; Gien, Seedorf, Balasubramaniam, Markham, & Abman, 2007; 
Stenmark & Abman, 2005; Tsai & Kass, 2009).

Previous studies on mice exposed to neonatal hyperoxia induces alterations in cardiac structure and 
function leading to cardiac failure in adulthood (Velten et al., 2011). In this study the mice exposed to 
neonatal hyperoxia showed significantly lower LV wet weights and LV to body weight ratio compared to 
normoxia controls. Myosin filaments in the heart are composed of α and β subunits. In rodent hearts the 
myosin heavy chain-α (MHCα) levels predominates the expression of MHCβ levels in healthy cardiac 
tissue. MHCα has the highest ATPase activity and contractile velocity, whereas MHCβ has lowest con-
tractile capability (Gustafson, Bahl, Markham, Roeske, & Morkin, 1987). Under pathological condition 
of cardiac remodeling and experimental heart failure, MHCβ levels predominates MHCα (Dillmann, 
2010). Therefore, a decrease in MHCα/MHCβ ratio is used as a marker of cardiac hypertrophy (Hui et 
al., 2006). But in this study, where mice were exposed to neonatal hyperoxia showed increased MHCα 
expressions compared to MHCβ. Nevertheless, there are no reports on effect of hyperoxia in adult mice 
hearts until 2013, where we have shown for the first time that adult mice when exposed to hyperoxia 
conditions for 3 days significantly increase heart wet weight as well as heart weight to tibia length ra-
tio when compared to its normoxia controls (Panguluri, Tur, Fukumoto, et al., 2013). In this study we 
also showed that both MHCα and MHCβ mRNA as well as protein levels were significantly elevated 
in hyperoxia treated mice hearts compared to its normoxia controls, suggesting that adult mice respond 
differently to hyperoxia conditions than the neonates. These findings are further evident by the increased 
LV wall thickness and overall cross sectional area in hyperoxia treated mice heart (cryostat sections 
treated with H&E staining) in our study compared with the normoxia controls.

As we know that structural remodeling will obviously influence the cardiac output and other he-
modynamic changes, similar to other studies, hyperoxia exposed adult hearts in our study also showed 
significant reduction of heart rate, cardiac output (Bak, Sjoberg, Rousseau, Steinvall, & Janerot-Sjoberg, 
2007; Gole et al., 2011; Howden et al., 2012a; Lund et al., 1999; Panguluri, Tur, Fukumoto, et al., 2013; 
Rousseau, Bak, Janerot-Sjoberg, & Sjoberg, 2005). The hyperoxia exposed neonates also showed cardiac 
dysfunction with significant increase in LV end systolic diameter and decreased fractional shortening 
(FS) (Velten et al., 2011). Taken together, all these studies clearly reported that hyperoxia can induce 
cardiac structural remodeling, which in turn cause cardiac dysfunction and heart failure via hemodynamic 
changes and cardiac output.

Electrical Remodeling in Hyperoxia Induced Hearts

Electric remodeling is one of the major characteristic of many cardiomyopathies (Costantini et al., 2005b; 
Nishiyama et al., 2001; Petkova-Kirova et al., 2006), which in turn leading to left ventricular hypertrophy 
and heart failure. Potassium channels and its auxiliary subunits such as potassium channel interacting 
protein-2 (KChIP2) are abundantly expressed in the heart (Brunet et al., 2004; Costantini et al., 2005b; 
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Teutsch et al., 2007). Of all the potassium channels Kv4.2 and Kv1.5 are responsive to oxygen changes 
(Perez-Garcia, Lopez-Lopez, & Gonzalez, 1999; Weir, Lopez-Barneo, Buckler, & Archer, 2005). Po-
tassium channels are known to regulate the shape and duration of the action potential, which in turn 
governs the function of the heart. The outward potassium currents regulate the membrane potential and 
the action potential duration. Among the various members of potassium channel family (Kv1-12), the 
Kv4.2 (Voltage gate potassium channel: Kv4.2) is the major ion channel that helps the heart maintain 
the repolarization reserve.

Mechanical and electrophysiological dysfunctions in heart failure are often observed with reduction 
of Kv4.2 expressions and increased Kv1.4 expressions (Nishiyama et al., 2001; Qin et al., 2001). Qin 
et al. (Qin et al., 2001) in their study with streptozotocin (STZ) injected type I diabetic rats showed a 
significant reduction of Kv4.2, 4.3 and 2.1 transcript as well as protein levels in left ventricle. In another 
study, the STZ-induced diabetic rats showed a significant reduction of both Kv4.2 mRNA and protein 
levels and increased Kv1.4 transcripts and protein levels, but no significant change in Kv4.3 expression 
in ventricle (Nishiyama et al., 2001). They also showed an increase in MHC7 and reduced levels of 
MHC6 in diabetic rats. Similarly, our laboratory also showed that Kv4.2 and Kv1.5 expressions levels 
are significantly reduced in diabetic mice (db/db) hearts compared to their wild type controls (Panguluri, 
Tur, Chapalamadugu, et al., 2013). Although there are no reports on effect of hyperoxia on Kv channel 
expressions in adult hearts, for the first time our laboratory showed that Kv4.2 and Kv1.5 transcripts 
as well as protein expression are significantly reduced in hyperoxia treated mice hearts compared to 
normoxia controls, but no significant change in Kv1.4 at both transcriptional as well as translational 
levels (Chapalamadugu, Panguluri, Bennett, Kolliputi, & Tipparaju, 2015; Panguluri, Tur, Fukumoto, 
et al., 2013). In contrast to previous studies, we found a significant increase in transcripts of Kv2.1 and 
4.3, which may be a compensatory mechanism for the loss of Kv4.2 expression in these hearts as both 
Kv4.2 and 4.3 are the molecular co-relates regulating transient outward currents (Itofast).

In addition to Kv4.2, the slowly inactivating potassium channel, Kv1.5 is also an important deter-
minant of action potential duration in the ventricular myocytes (Fiset, Clark, Larsen, & Giles, 1997; 
Scheuermann-Freestone et al., 2003), the decreased expression of which is expected to reduce the cardiac 
repolarization reserve. Previous studies demonstrate that both Kv4.2 and Kv1.5 are sensitive to oxygen 
levels (Perez-Garcia et al., 1999; Pozeg, 2003), and altered expression and/or activity of these channels 
and Kvβ subunits (Fiset, Clark, Larsen, et al., 1997; Scheuermann-Freestone et al., 2003; Tipparaju et al., 
2012a) modulate repolarization reserves. Due to down-regulation of Kv4.2 in hyperoxia treated hearts, 
our laboratory also investigated the expression of Kv1.5 gene in both hyperoxia treated as well as dia-
betic (db/db) mice hearts and showed that Kv1.5 is significantly down-regulated in these two conditions 
(Chapalamadugu et al., 2015; Panguluri, Tur, Chapalamadugu, et al., 2013).

Transcriptional factors plays a major role in regulating gene expressions in many cellular pathways, 
especially during pathological conditions. As we know that Kv channel regulation occur in many car-
diomyopathies including hyperoxic conditions, our laboratory investigated the expression and activity 
of transcriptional factors that can regulate oxygen sensitive Kv4.2 and Kv1.5 including homeobox tran-
scriptional factor Iroquois protein 5 (Irx5), nuclear factor kappa B (NFκB), GATA, Myocyte enhancer 
factor-2 (Mef2), C-terminal binding protein (CtBP), and SiRT1. Additionally Kv channel-interacting 
proteins (KChIP), which is a chaperon that binds to Kv4.2 and 4.3 was also investigated. Among all 
the isoforms, KChIP2 is most abundant and highly express in heart tissue and decreased levels of this 
chaperon has been previously reported in hypertrophy and heart failure (Kuo et al., 2001; Radicke et 
al., 2006). Recent studies by Jin et al. (Jin et al., 2010), showed that gene transfer of KChIP2 in neonatal 
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cardiomyocytes increased Kv4.2 and 4.3 protein expressions and in vivo transfer of this gene in adult rats 
significantly reduced the left ventricular hypertrophy. As expected, down-regulation of Kv4.2 expres-
sion was also in line with the down-regulation of its interacting protein KChIP2 in diabetic mice (db/
db) hearts compared to their wild type controls (Panguluri, Tur, Chapalamadugu, et al., 2013). Similarly, 
our laboratory also reported a significant down-regulation of KChIP2 mRNA as well as protein levels 
in hyperoxia treated hearts (Panguluri, Tur, Fukumoto, et al., 2013).

Homeobox transcriptional factor Iroquois protein 5 (Irx5), which is known to regulate Kv4.2 is 
reported to be differentially expressed in a gradient across the left ventricle of heart (Costantini et al., 
2005a; Rosati, Grau, & McKinnon, 2006). Costantini et al. (Costantini et al., 2005a) also showed that 
Irx5 inhibit the activity of Kv4.2 promoter in dose-dependent manner with the association of a cardiac-
specific corepressor, mBop. Our laboratory also investigated the expression of Kv4.2 repressor, Irx5 in 
both diabetic (db/db) and hyperoxia treated mice hearts and showed a significant increase in expression of 
irx5 in these hearts (Panguluri, Tur, Chapalamadugu, et al., 2013; Panguluri, Tur, Fukumoto, et al., 2013).

GATA4 and GATA6 are other important transcriptional factors, expression of which resembles Kv4.2 
expression in heart and is known to be important in cardiac development and function (Laverriere et 
al., 1994). Recent investigation by Jia et al. (Jia & Takimoto, 2003) showed that GATA4 produce larger 
increase in Kv4.2 expression via its promoter than GATA6. Earlier reports also suggest that activation 
of GATA4 is associated with cardiac hypertrophy (Liang et al., 2001), and GATA4 also activate MHC-α 
promoter (Lu et al., 1999). These findings were further confirmed by investigations in our laboratory, 
which showed a significantly down-regulation of GATA4 and GATA6 in diabetic (db/db) hearts, but 
only GATA4 in hyperoxia treated hearts compared to their controls (Panguluri, Tur, Chapalamadugu, et 
al., 2013; Panguluri, Tur, Fukumoto, et al., 2013). This suggests a difference in molecular mechanism(s) 
of Kv channel regulation in hyperoxia treated hearts compared to diabetic hearts, although both these 
conditions share some similarity in pathophysiology.

Myocyte enhancer factor-2 (Mef2) is a transcriptional factor that regulate majority of muscle-specific 
genes (Amat et al., 2009; Black & Olson, 1998; Wei et al., 2008). This gene was also reported to have 
an important role in regulation of cardiac hypertrophy (Q. Lin, Schwarz, Bucana, & N. Olson, 1997; 
Streicher, Ren, Herschman, & Wang, 2010; Tessier & Storey, 2012). Due to its important role in cardiac 
hypertrophy and muscle cell differentiation, our laboratory examine the expression levels of this tran-
scriptional factor and found that it is significant down-regulated in both hyperoxia treated mice hearts 
as well as diabetic (db/db) mice hearts (Panguluri, Tur, Chapalamadugu, et al., 2013; Panguluri, Tur, 
Fukumoto, et al., 2013).

Increasing expressions of nuclear factor kappa B (NFκB) is reported in cardiac hypertrophy and heart 
diseases (Gupta et al., 2008; Gupta, Young, & Sen, 2005; Higuchi et al., 2002; Purcell et al., 2001; Wong, 
Fukuchi, Melnyk, Rodger, & Giaid, 1998). In one study, activation of NFκB decreasing KChIP2 expres-
sions and thereby Ito,f and inhibition of its activity increased both (Panama et al., 2011). This was further 
supported by reports from our laboratory in which both diabetic (db/db) as well as hyperoxia treated 
mice hearts showed a significant increased expression and/or activity of NFκB. The down-regulation of 
Mef2c in these studies also correlate with the increasing expression and activity of NFκB, which inhibits 
the function of Mef2c (Kumar, Lin, SenBanerjee, & Jain, 2005). As the existing reports suggests that 
TNF-α induction in myocytes, increased both expression and activity of NFκB (Bhatnagar et al., 2010) 
and possibility of TNF-α in regulating Kv4.2 and KChIP2 gene expression levels (Kawada et al., 2006), 
our laboratory examined the intracellular concentrations of TNF-α in both hyperoxia treated and diabetic 
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(db/db) micea hearts and found that the Kv4.2 and KChIP regulation in both cases are independent of 
TNF-α (Panguluri, Tur, Chapalamadugu, et al., 2013; Panguluri, Tur, Fukumoto, et al., 2013).

Alteration of various cellular signaling mechanisms such as oxidative stress is known to be associated 
with cardiac hypertrophy (Sawyer et al., 2002). Existing literature reported the disruption of Hif signal-
ing (Heather & Clarke, 2011), and change in redox status of pyridine nucleotides in various diseased 
conditions (Ceconi et al., 2000; Ido, 2007). The C-terminal binding protein (CtBP) and SiRT1 are two 
such important regulators initiated during redox imbalance. The C-terminal binding protein (CtBP) is a 
transcriptional repressor that requires NAD+ or NADH for its activity (Chinnadurai, 2003). Studies showed 
that hypoxic conditions increase NADH levels and activation of CtBP, which in turn interact with other 
transcriptional factor and thereby enhancing transcriptional repression (Chinnadurai, 2003). Another study 
showed that CtBP interacts with Mef2-interacting transcription repressor (MITR) and class II histone 
deacetylase (HDAC) and suppress the Mef2c transcriptional activity (C. L. Zhang, McKinsey, Lu, & 
Olson, 2001). Similarly, SiRT1 is known to be an important transcriptional repressor in cardiovascular 
and metabolic diseases, which has histone deacetylase activity (Pillarisetti, 2008). In contrast to CtBP, 
SiRT1 requires NAD+ for its deacetylation reaction and increase in NADH levels reduces its activity 
(S. J. Lin, Ford, Haigis, Liszt, & Guarente, 2004). A wide range of cellular processes are regulated by 
SiRT1 which includes cell survival, apoptosis, cell growth and metabolism, and deacetylation of histones 
and non-histone proteins(Finkel, Deng, & Mostoslavsky, 2009). Increase in levels of SiRT1 is found in 
hypertrophied and failing hearts (Li et al., 2009; Vahtola et al., 2008). Studies also showed that the mice 
defective of SiRT1 exhibit severe developmental defects in the heart and most of them died after birth 
(Cheng et al., 2003; McBurney et al., 2003). Explorations in our laboratory on hyperoxia mice showed 
a significant increase in CtBP transcripts (unpublished data), whereas observed a significant reduction 
in its protein levels of SiRT1in left ventricle of hyperoxia treated mice (Chapalamadugu et al., 2015). In 
this study we also showed that reduced expression of SiRT1 is correlated with the down-regulation of 
Kv1.5, where inhibition of SiRT1 expression with Splitomicin (100 μM) significantly reduced Kv1.5 
mRNA levels in cardiomyocytes.

Pulmonary and cardiovascular systems are known to be in cooperative regulation, therefore changes 
in cardiovascular systems influence pulmonary function and vice versa (Howden et al., 2012b). In a 
previous study continuous exposure of rabbits to hyperoxia for 72h caused changes in heart rate and low 
blood pressure (Sventek & Zambraski, 1988) indicating a close regulation between cardiovascular and 
pulmonary systems. We also know that under normal physiology the LV free wall depicts transmural 
heterogeneity of ionic currents and is important for physiological activity in the heart. Higher density 
of potassium outward current (Ito) is reported on epicardial region of the left ventricular free wall than 
that in the inside (Antzelevitch et al., 1991; Furukawa, Myerburg, Furukawa, Bassett, & Kimura, 1990; 
Liu, Gintant, & Antzelevitch, 1993). The ventricular repolarization occurs through this transmural gra-
dient of Ito and travel from epicardium to endocardial portion. A large portion of this current is carried 
by family of Kv4 channels (Fiset, Clark, Shimoni, & Giles, 1997; Johns, Nuss, & Marban, 1997). As 
discussed above, suppression of Kv4.2 and its auxiliary protein KChIP2 affects Ito currents (Kuo et al., 
2001; Panama et al., 2011) and transcriptional factors such as Irx5 and NFĸB regulated Kv4.2 expres-
sions (Costantini et al., 2005b; He, Jia, & Takimoto, 2009; Panguluri, Tur, Chapalamadugu, et al., 2013; 
Panguluri, Tur, Fukumoto, et al., 2013). Additionally hyperoxia exposure can cause hemodynamic changes 
that include bradycardia, decreased stroke volume and cardiac output (How et al., 2006; Panguluri, Tur, 
Fukumoto, et al., 2013; Seals, Johnson, & Fregosi, 1991). Therefore, our laboratory for the first time 
investigated if hyperoxia treatment affects electrical activity, repolarization reserve and susceptibility 
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to ischemia reperfusion injury in the mouse heart. For this surface electrocardiogram (ECG) and ven-
tricular monophasic action potentials (MAPs) recordings were utilized. From this study we reported 
that hyperoxia treatment causes bradyarrhythmia, with a significant bradycardia and multiple episodes 
of sinus pause (Chapalamadugu et al., 2015). Most importantly, hyperoxia exposure in this study altered 
QTc and JT interval significantly, which are key components of ECG measurement of repolarization 
reserve, which further suggests defects in cardiac repolarization reserve in the hyperoxia treated mice 
hearts (Crow, Hannan, & Folsom, 2003; Yan & Antzelevitch, 1998). At the tissue level, ventricular 
monophasic action potentials (MAPs) using ex vivo perfused hearts showed significant prolongation of 
action potential duration (APD) measured at different levels of repolarization, confirming repolarization 
defects in hyperoxia exposed hearts, which is in correlation with ECG data. Existing literature also sug-
gested that the rapid repolarization accomplished by Ito,f currents in ventricles supports the high resting 
heart rate in mice (Nerbonne & Kass, 2005). The slowly inactivating potassium channel, Kv1.5 is also 
an important determinant of action potential duration in the ventricular myocytes (Fiset, Clark, Larsen, 
et al., 1997; Scheuermann-Freestone et al., 2003), and decreased expression of Kv1.5 is expected to 
reduce the cardiac repolarization reserve. Previous studies demonstrate that both Kv4.2 and Kv1.5 are 
sensitive to oxygen levels (Perez-Garcia et al., 1999; Pozeg, 2003), and altered expression and/or activ-
ity of these channels and auxiliary subunits (Fiset, Clark, Larsen, et al., 1997; Scheuermann-Freestone 
et al., 2003; Tipparaju et al., 2012b) modulate repolarization reserves. Therefore, decreased expression 
of Kv1.5 (a molecular correlate of Ik,slow1 currents) in the mouse heart upon hyperoxia exposure further 
confirms that the repolarization deficits in hyperoxia treated mice hearts may at least in part regulated 
by these potassium channels (Chapalamadugu et al., 2015).

Kir2.1 is the major potassium channel responsible for maintaining cardiac resting membrane potential. 
Recent studies showed that miR-1 injected healthy hearts showed arrhythmic response and impaired 
inward rectifier K+ current (IK1) (Yang et al., 2007). In this study, the authors also showed that miR-1 
targets Kir2.1 and cause arrhythmia. Studies from our laboratory showed that the transcript levels of 
kcnj2 (Kir2.1) was significantly elevated in hyperoxia treated hearts (Panguluri, Tur, Fukumoto, et al., 
2013), which further confirms the possible role of Kir2.1 in arrhythmic response in hyperoxia treated 
mice hearts (Chapalamadugu et al., 2015). Elevation of Kir2.1 in this study may be playing an impor-
tant role by hyperpolarizing the resting membrane potential (RMP), which shortens the action potential 
duration (APD), and increase the CV. Recent studies by Milstein et al. (Milstein et al., 2012) showed 
that changes in functional expression of Kir2.1 modulates expression of Scn5a (NaV1.5) and vice versa 
to alter cardiac excitability. Interestingly, data from our laboratory also showed a significant increase 
in transcript levels of Scn5a in hyperoxia treated mice hearts, which further confirms their findings 
(Panguluri, Tur, Fukumoto, et al., 2013).

CONCLUSION

Supplementing O2 for enhancement of O2 delivery is an essential process in cardiopulmonary disease 
management and end stage failure mainly occurring in lung fibrosis and heart failure patients. Pulmonary 
and cardiovascular systems are known to be in cooperative regulation, therefore changes in cardiovas-
cular systems influence pulmonary function and vice versa. Although many studies have been reported 
on the effect of hyperoxia treatment in neonates, our laboratory for the first time reported the effect of 
hyperoxia on ventricular and electrical remodeling in adult mice hearts (Chapalamadugu et al., 2015; 
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Panguluri, Tur, Fukumoto, et al., 2013). Based on the results obtained from our laboratory, it was evident 
that hyperoxia exposure for more than 3 days can significantly increase the expression and/or activity of 
key transcriptional factors such as NFĸB and IRx5, which further down-regulates Kv4.2 and its chaperon 
KChIP2 in ventricles. Additionally, other transcriptional repressors SiRT1 inhibit the expressions of 
Kv1.5, which is also an important determinant of action potential duration in the ventricular myocytes. 
Together, the down-regulation of these two important oxygen sensitive Kv channels, further effects the 
electrical activity and repolarization reserves by prolonged QTc and JT intervals, as well as prolonged 
action potential durations (APDs). Bradycardia along with the multiple episodes of sinus pause further 
complicates the hyperoxia induced cardiomyopathy. Cardiac hypertrophy and altered hemodynamics 
are also added effects of hyperoxia treatment in adult mice hearts. Precisely, exposure of adult mice to 
hyperoxia for 3 days induces cardiac hypertrophy, ventricular and electrical remodeling by regulation 
of many key ion channel genes and transcriptional factors (Figure 3).
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ABSTRACT

Platelets play an important role in thrombosis and hemostasis. Moreover, platelet dysfunction due to 
congenital and acquired etiologies is also one of the most common causes of bleeding encountered in 
clinical practice. Mostly, platelet function disorders are deficiencies of glycoprotein mediators of adhe-
sion and aggregation, whereas defects of primary receptors for stimuli include those of the P2Y12 ADP 
receptor. Studies on inherited defects of (1) secretion for storage organelles (dense and alpha-granules), 
(2) the platelet cytoskeleton, and (3) the generation of pro-coagulant activity have allowed for the iden-
tification of genes directly and/or indirectly controlling specific functional responses. This chapter will 
review recent advances in the molecular characterization of platelet function defects, the spectrum of 
clinical manifestations of these disorders and their management.

INTRODUCTION

Abnormality in platelet function causes bleeding in patient which is disturbance in hemostasis. The 
term hemostasis applies to a myriad of physiological processes that are involved in maintaining vascular 
integrity and keeping the blood in fluid form. Human platelets are multifunctional anucleated cells that 
play an important role in hemostasis. Here we will discuss the physiology of platelets in hemostasis and 
defects in platelet function.

Platelet Structure and Function

Platelets originate from the cytoplasm of bone marrow megakaryocyte (Figure 1).
It lack genomic DNA but contain megakaryocyte-derived mRNA and the translational machinery 

needed for protein synthesis. Circulating platelets are discoid in shape, which dimensions of approximately 
2-4 μm. Their shape and small size enables the platelets to be pushed to the edge of vessels, placing 
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them in the optimum location to constantly survey the integrity of the vasculature. Platelets circulate in 
a concentration of 150,000-450,000 cells/mL. Of the total body platelets, about 70% stay in the circula-
tion while the remaining 30% are continually but transiently sequestered in the spleen. Platelets remain 
in circulation for an average of 10 days (Kile, 2014). Most platelets are removed from the circulation 
by the spleen and liver after senescence, but a constant small fraction is continually removed through 
involvement in maintenance of vascular integrity (Kile, 2014).

On peripheral blood smears stained with Wright-Giemsa stain, platelets appear as small, granular 
staining cells with a rough membrane, and are normally present as 3-10 platelets per high-power oil-
immersion field (Dunning, 2011). Despite their simple appearance on the peripheral blood smear, plate-
lets have a complex structure (Figure 2). Platelets internal structure has been divided into four zones:

• Peripheral zone,
• Sol-gel zone,
• Organelle zone, and
• Membrane zone.

The peripheral zone includes the outer membranes and closely associated structures. The platelet has 
a surface-connected system of channels called the open canalicular system (OCS). The walls of the OCS 
are included in this zone. The OCS provides access to the interior of the platelet to plasma membranes, 
and an outlet channel for platelet products. The release of platelet products through the OCS after platelet 
activation is called “the release reaction”.

The membranes of the platelet are rich in platelet receptors, which determine its specific cellular 
identity. These receptors are constitutively expressed on the platelets and require conformational change 
during platelet activation to express receptor function. The major classes of receptors and their ligands 
are shown in Table 1.

The peripheral zone also includes membrane phospholipids (Kowata, 2014). Phospholipids are an 
important component of coagulation as they provide the surface upon which coagulation protein react. 

Figure 1. The diagram summarizes the production of platelets from the defragmentation of megakaryocyte
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Phospholipids also serve as the initial substrate for platelet enzymatic reactions to produce thromboxane 
A2 (TXA2), an important product of platelet activation and a powerful platelet agonist (substance that 
causes platelet aggregation). The platelet membrane also has the ability to translate signals from the 
surface into the internal chemical signals (Pothapragada, 2015).

The sol-gel zone is beneath the peripheral zone and consists of the framework of the platelets, the 
cytoskeleton (Loftus, 1984). The cytoskeleton forms the support for the maintenance of the platelet’s 

Figure 2. The diagram summarizes ultrastructural features observed in thin sections of discoid platelets 
cut in cross-section. Components of the peripheral zone include the exterior coat, and submembrane 
area containing specialized filaments (SMF) that form the wall of the platelet and line channels of the 
surface-connected open calnalicular system (OCS). The matrix of the platelet interior is the sol-gel zone 
containing actin microfilaments, structural filaments, the circumferential band of microtubules, and gly-
cogen. Formed elements embedded in the sol-gel zone include mitochondria, alpha, and dense granules. 
Collectively they constitute the organelle zone. The membrane systems include the surface-connected 
open canalicular system and the dense tubular system, which serve as the platelet sarcoplasmic reticulum.

Table 1. Structure and function of glycoprotein receptor

Glycoprotein (GP) Receptor Structure Function/Ligand

GPIIb/IIIa Integrin αIIbβ3 Receptor for fibrinogen, VWF, fibronectin, 
vitronectin and thrombospondin

GPIa/IIa Integrin α2β1 Receptor for collagen

GPIb/IX/V Leucine-rich repeats receptor Receptor for insoluble VWF

GPVI Non-integrin receptor, immunoglobulin 
superfamily receptor

Receptor for collagen
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discoid shape as well as the contractile system that allows, upon activation, shape change, pseudopod 
extension, internal contraction, and release of granule constituents. The cytoskeleton comprises some-
where between 30-50% of the total protein.

The organelle zone consists of the granules and cellular components such as alpha granule, dense 
granule, lysosomes, mitochondria etc. these organelle serve in the metabolic processes of the platelet 
and store enzymes and a large variety of other substances critical to platelet function (van Nispen tot 
Pannerden, 2010). There are two compartments of adenine nucleotides: the storage or secretable pool 
in dense and alpha granules and the metabolic or cytoplasmic pool.

The dense granules contain non-metabolic adenosine triphosphate (ATP) and adenosine diphosphate 
(ADP), serotonin, and calcium (Jonnalagadda, 2012). The alpha granules contain adhesive proteins such 
as fibrinogen, fibronectin, von Willebrand factor V, high molecular weight kininogen, factor XI, and 
plasminogen activator inhibitor-I are also present in the alpha granule (Jonnalagadda, 2012).

The fourth zone is the membrane zone, which includes the dese tubular system. It is here that calcium, 
important for triggering contractile events, is concerned. This zone also contains the enzymatic systems 
are prostaglandins synthesis (Choi, 2010).

ROLE OF PLATELETS IN HEMOSTASIS

In a normal physiological state, platelets circulate without adhering to undisturbed vascular endothelium. 
Upon disruption of the integrity of the vascular endothelium or alteration in the shear stress of the blood 
flow, platelets are “activated”. Platelet activation plays a central role in both benign and pathological 
responses to vascular injury and thrombus formation. The process of transformation of inactivated 
platelets into a well-formed platelet plug occurs along a continuum, but may be divided into three steps: 
(1) adhesion; (2) aggregation; and (3) secretion.

Platelet Adhesion

Subendothelial components (e.g. collagen, VWF, fibronectin, and laminin) are exposed upon vessel 
damage (Ed Rainger, 2015). VWF facilitates the initial adhesion via binding to the glycoprotein (GP)Ib/
IX/V complex, especially under high shear conditions. These interactions enable platelets to slow down 
sufficiently so that further binding interactions take place with other receptor-ligand pairs, resulting in 
static adhesion. In particular, the initial interaction between collagen and GPVI induces a conformational 
change (activation) in the platelet integrins GPIIb/IIIa and GPIa/IIa. VWF and collagen from strong 
bonds with GPIIb/IIIa and GPIa/IIa, resepectively, anchoring the platelets in place (Ed Rainger, 2015).

Patients with Bernard-Soulier syndrome and Glanzmann’s thrombasthenia have defective platelet 
adhesion due to decrease or absent expression of the glycoprotein receptors that are involved in platelet 
adhesion: the GPIb/IX/V and GPIIb/IIIa receptors respectively (Li, 2015; Nurden, 2015).

Platelet Aggregation and Secretion

Platelets undergo morphological changes upon activation. Platelet shape changes from a disc to a spiny 
sphere with multiple pseudopodial extensions. The platelet membrane becomes rearranged, with exposure 
of negatively charged phospholipids that facilitate the interaction with coagulation proteins to form the 
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tenase and prothrombin complexes. The content of platelet granules are secreted through the surface-
connected canalicular system, ADP, fibrinogen, and factor V appearing on the platelet surface and in the 
milieu immediately surrounding the platelet (Ren, 2008). PDGF is secreted and leads to smooth muscle 
proliferation and may initiate atherosclerosis. Platelet factor 3 or tissue factor is also expressed after 
platelet activation. Small pieces of the platelet are able to bud off to form circulating microparticles. 
Platelet-agonist interactions result in the production or release of a variety of intracellular messenger 
molecules that facilitate these reactions.

Biochemical Processes Involved in Platelet Aggregation and Secretion

As platelets are recruited to the area of blood vessel damage, they become activated by a range of 
agonists including ADP, thrombin, and thromboxanes, which interact with transmembrane receptors. 
Receptor stimulation results in G protein interactions, which enable activation of enzymes involved in 
cellular metabolic pathways, in particular, phosphatidylinositol 3-kinase and phospholipase C. Metabolic 
pathway activation results in the elevation of cytoplasmic calcium and phosphorylation of substrate 
proteins, which bring about changes in the cytoskeleton, enabling platelet shape change and spreading, 
release of alpha- and dense-granular contents, stimulation of phospholipase A2 and liberation of TXA2, 
induction of a procoagulant surface, and activation of GPIIb/IIIa receptors. The biochemical details of 
these reactions are illustrated in Figure 3.

Figure 3. Agonists, receptors and effector systems in platelet activation. The diagram summarizes the 
molecular and biochemical mechanisms involved in platelet activation.
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A rare diverse group of disorders of platelet signal transduction have been described, including defects 
in the agonist receptors for TXA2, ADP and collagen; the membrane G proteins’ and the prostaglandin 
pathway enzymes cyclooxygenase and TXA2 synthetase (Figure 4). Disorders of the platelet storage 
granules are also well described and include dense granule deficiency, alpha granule deficiency, and 
combined dense and alpha granule deficiency (Figure 5).

Figure 4. Schematic representation of normal platelet response

Figure 5. Schematic representation of congenital disorders of platelet function
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SUMMARY

The contribution of platelets to hemostasis lies in the formation of the primary hemostatic plug, the 
secretion of important substances for further recruitment of platelets, the provision of a surface for co-
agulation to proceed, the release of promoters of endothelial repair, and the restoration of normal vessel 
architecture. Disruption in any of the above described events and biochemical processes may lead to 
platelet dysfunction, which may be either inherited or acquired.

Specific Disorders of Platelet Function

The following section briefly describes the inherited platelet disorder (Tables 2 and 3).

Table 2. Disorders of adhesion and aggregation due to defects in receptors and defects in signal trans-
duction

Disorder Inheritance Structural 
Defect

Platelet 
Characteristics

Defect in Platelet 
Function

Associations Treatment Options

Platelet 
Transfusion

DDAVP rFVIIa

Bernard- Soülier 
Syndrome

AR GPIb/IX, GPIbα, 
GPIbβ, GPIX

Giant Platelets Abnormal adhesion DiGeorge 
Velocardio facial 
Syndrome

Y Y ?

Glanzmann’s 
Thrombasthenia

AR GPIIb/IIIa None Absent aggregation 
with physiological 
agonists, defective 
clot retraction

↑ bone thickening 
and ↓ fertility

Y N Y

Platelet type 
VWD

AD GPIbα Platelet 
heterogeneity

Abnormal adhesion: 
↓ sensitive to 
ristocetin

Absence of 
HMWM

Y N ?

Α2β1 Collagen 
receptor

? α2 Normal Abnormal adhesion: 
↓ response to 
collagen

Modifications in 
receptor density 
according to 
haplotype

Y Y ?

P2Y12 ADP 
receptor

AR P2Y12 ADP 
receptor

Normal Abnormal 
aggregation to ADP

Not known Y Y ?

TPα/
Thromboxane 
A2 receptor

TPα Normal Absence of response 
to TXA2 analogues

Not known Y Y ?

Intracellular 
signaling

? Phospholipase Cβ Normal Variable aggregation 
and secretion defects 
on multiple agonists

Not known Y Y ?

Cyclooxygenase 
deficiency

AR Cyclooxygenase 
enzyme

Not known No aggregation with 
arachidonic acid, ↓ 
response to collagen 
and ADP

Not known Y Y ?

Scott Syndrome AR ATP-binding 
cassette 
transporter A1

Normal ↓ procoagulant 
activity and 
microparticle release

Defects extend to 
other cell lines

Y ? ?

Wiskott-Aldrich 
Syndrome

X-linked WAS protein 
mutation

Small size, fewer 
granules

↓ aggregation and 
secretion

Eczema, 
immunodeficiency

Y ? ?
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Table 3. Disorders of secretion due to abnormalities of storage granules

Disorder Inheritance Structural 
Defect

Platelet 
Characteristics

Defect in Platelet 
Function

Associations Treatment Options

Platelet 
Transfusion

DDAVP rFVIIa

Hermansky-Pudlak 
syndrome

AR Lysosomal 
secretion defects

Platelet storage pool 
defect

↓ aggregation and 
secretion with 
collagen

Oculocutaneous 
albinism, decreased 
pigmentation

Y Y Y

Chediak Higashi 
syndrome

AR Mutation of 
a lysosomal 
trafficking 
regulator protein

Decrease in 
phagocytosis

↓ aggregation and 
secretion with 
collagen

Recurrent pyogenic 
infections, 
partial albinism 
and peripheral 
neuropathy

Y Y Y

Gray platelet 
syndrome

AR or AD Platelet alpha 
granule 
deficiency

Reduction or 
absence of alpha 
granules

Abnormal but 
variable, can 
be decreased 
with thrombin, 
epinephrine and/
or collagen

Thrombocytopenia, 
and abnormally 
large agranular 
platelets in 
peripheral blood 
smears

Y ? ?

Quebec syndrome AD Large amounts of 
the fibrinolytic 
enzyme 
urokinase-type 
plasminogen 
activator (u-PA) 
in platelets

Reduction or 
absence of alpha 
granules

Absent 
aggregation with 
epinephrine

Unknown Y ? ?

Paris-Trousseau 
syndrome

AD Defective 
megakaryopoiesis

Giant 
megakaryocyte 
granules

Abnormal 
aggregation 
and secretion 
with thrombin, 
epinephrine, ADP 
and collagen

Psycomotor 
retardation, 
facial and cardiac 
abnormalities

Y Y ?

Jacobsen syndrome AD Defective 
megakaryopoiesis

Giant 
megakaryocyte 
granules

Abnormal 
aggregation 
and secretion 
with thrombin, 
epinephrine, ADP 
and collagen

Psycomotor 
retardation, 
facial and cardiac 
abnormalities

Y Y ?

Griscelli synderome AR Mutations 
in the genes 
encoding myosin 
Va (MYOSA), 
Rab27a (Rab27a; 
a small GTPase),

Rarely bleeding 
while platelet 
secretory defects

No secretion 
with thrombin, 
collagen and 
ADP

Myosin Va, 
Rab27a

Y ? ?

δ storage pool 
deficiency

AR Platelet dense 
granule 
deficiency

Reduction or 
absence of dense 
granules

Absent second 
wave of 
aggregation 
with ADP, 
epinephrine, 
ATP:ADP ratio 
>3

Wiskott-Aldrich 
syndrome, 
Thrombocytopenia-
absent radius 
(TAR) syndrome, 
Ehler-Danlos 
syndrome

Y Y Y

Vacuolar protein 
sorting-associated 
protein 33B disorder

AD Mutations of 
VPS33B

platelet dysfunction 
and low granule 
content with 
a multisystem 
disorder featuring 
renal tubular and 
other dysfunction

No aggregation 
with thrombin, 
collagen and 
ADP

VPS33B Y ? ?

Familial 
haemophagocytic 
lymphohistiocytosis 
(FHL)-3

AR Munc 13-4 
mutation

Defects in granule 
release

No aggregation 
with thrombin, 
collagen and 
ADP

Munc 13-4 Y ? ?

Familial 
haemophagocytic 
lymphohistiocytosis 
(FHL)-4

AR Syntaxin-11 Defects in granule 
release

No aggregation 
with thrombin, 
collagen and 
ADP

Syntaxin-11 Y ? ?

continued on following page
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Defects in Platelet Receptors

Glanzmann’s Thrombasthenia

Glanzmann’s thrombasthenia is a classic inherited platelet disorder; platelets fail to aggregate to all 
physiological agonists due to absence or decrease of the integrin αIIbβ3 (Binder, 2015). The platelet 
count, size, shape and life span are normal in this disorder. It is inherited as an autosomal recessive trait: 
therefore parental history of bleeding is negative. Males and females are equally affected. The bleeding 
time is invariably prolonged. Clot retraction is poor to absent. Platelet function studies reveal aggregation 
defects in presence of thrombin (Buitrago, 2015). Adhesion to areas of damaged endothelium is normal 
but recruitment of further platelets into the primary hemostatic plug is defective. Assessment of integrin 
αIIbβ3 receptors on the platelet membrane using flow cytometry is possible in reference laboratories 
(Rubak, 2015). In normal hemostasis, αIIbβ3 on activated platelets binds fibrinogen and other adhesive 
proteins that link platelets together during aggregation. Other manifestation of Glanzmann’s thrombas-
thenia includes a defective platelet spreading on the nature of the mutation. These manifestations give 
rise to a variable but sometimes severe bleeding disorder whose treatments with platelet transfusions 
can be compromised by alloantibody formation (Seligsohn, 2012). Glanzmann’s thrombasthenia has 
been comprehensively dealt with in a series of recent reviews and only essential details will be repeated 
here (Binder, 2015; Nurden, 2011; Nurden, 2012; Nurden, 2013; Sandrock-Lang, 2015; Sandrock-Lang, 
2015; Seligsohn, 2012).

Bernard-Soulier Syndrome

Bernard-Soulier syndrome is a rare syndrome characterized by abnormally large platelets that may also be 
mildly decreased in number (Savoia, 2014). The bleeding time is markedly prolonged. Platelet aggrega-

Disorder Inheritance Structural 
Defect

Platelet 
Characteristics

Defect in Platelet 
Function

Associations Treatment Options

Platelet 
Transfusion

DDAVP rFVIIa

Familial 
haemophagocytic 
lymphohistiocytosis 
(FHL)-5

AR Unc 18-b Defects in granule 
release

No aggregation 
with thrombin, 
collagen and 
ADP

Unc 18-b Y ? ?

MYH9 Disorders 

May-Hegglin 
syndrome

AD MYH9, non-
muscle myosin 
heavy chain IIA

Large size No consistent 
defect

Neutrophil 
inclusions

Y ? ?

Fechtner syndrome AD MYH9 Large size No consistent 
defect

Hereditary 
nephritis, hearing 
loss

Y ? ?

Epstein syndrome AD MYH9 Large size Impaired 
response to 
collagen

Hereditary 
nephritis, hearing 
loss

Y ? ?

Montreal platelet 
syndrome

AD Unknown Large size Spontaneous 
agglutination, 
↓ response to 
thrombin

Unknown Y ? ?

Table 3. Continued
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tion studies reveal that aggregation is defective against thrombin (Andrews, 2013). This abnormality is 
due to a decrease or absence of GPIb/IX, the VWF receptor. This disorder should be differentiated from 
VWF, which is due to a defect in the VWF rather than the platelet receptor. Bernard-Soulier syndrome 
is inherited as an autosomal recessive trait with males and females equally affected (Bragadottir, 2015). 
Parental history of similar bleeding problems is absent. In contrast, VWF is inherited as an autosomal 
dominant trait; however, symptoms are variable and therefore parental history is an inadequate guide to 
excluding this diagnosis. In Bernard-Soulier syndrome, platelet transfusions are used therapeutically; how-
ever, as with Glanzmann’s thrombasthenia, alloimmunization may occur. There are reports of successful 
control of bleeding with rFVIIa in patients with Bernard-Soulier syndrome (Ozelo, 2005; Tefre, 2009).

Defects in Granule Content/Storage Pool Deficiencies

Dense granules are storage sites for serotonin, ADP, ATP, and polyphosphate (Jonnalagadda, 2012; Smith, 
2014; Smith, 2015). Storage pool disorders are a heterogeneous group of diseases in which there is an 
abnormality in the ability to store appropriate products within the platelet granules (Masliah-Planchon, 
2013). The following represent a few of the recognized storage pool disorders not associated with a 
systemic disorder.

Grey Platelet Syndrome

Grey platelet syndrome is a disorder characterized by a protein deficiency (e.g. platelet factor 4, 
β-thromboglobulin, fibrinogen and PDGF) in the alpha granules, both in platelet and megakaryocyte 
(Gunay-Aygun, 2010). This disorder is a mild to moderate bleeding disorder that can, on occasion, be 
life-threatening and is characterized by a severe and specific deficiency of α-granules and their contents 
(Gunay-Aygun, 2010). On the peripheral smear the platelets are grey in color and large. There is con-
sistently impaired aggregation to thrombin in platelet function. Unlike for HPS, platelets from a GPS 
patient failed to spread when plated on polylysine, collage or fibronectin showing that dense granule and 
α-granule deficiencies have different effects (Peters, 2012). Electron micrographs shows only vestigial 
α-granules in platelets. In 2011, it has been shown that mutations in NBEAL2 (neurobeachin-like 2) in 
GPS (Albers, 2011; Gunay-Aygun, 2011; Kahr, 2011). GPS is a hetergenous trait whose severity depends 
on the extent of the α-granule deficiency (Bottega, 2013).

Vacuolar Protein Sorting-Associated Protein 33B Disorder

Mutations of VPS33B, which encodes a regulator of soluble N-ethylmaleimide-sensitive factor activating 
receptor (SNARE)-dependent membrane fusion and of VIPAS39, encoding VPS33B-interacting protein, 
cause the arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome (Smith, 2012). Mostly lethal 
for young children, ARC associates platelet dysfunction and low granule content with a multisystem 
disorder featuring renal tubular and other dysfunction. The platelet defect extends to stored and mem-
brane components of α-granules (Urban, 2012).
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Quebec Platelet Disorder

Quebec platelet disorder is inherited as an autosomal dominant disorder that is associated with very 
abnormal aggregation with epinephrine and is unique to French-Canadian families (Blavignac, 2011). 
There is a defect in alpha granule proteolysis and a deficiency of alpha granule multimerin, a multimeric 
protein that binds factor V within the granule, thereby leading to a decreased content of platelet factor V 
and several other proteins (fibrinogen, VWF etc). Thrombocytopenia is sometimes observed and there is 
a characteristic lack of platelet aggregation response with epinephrine. The genetic basis of this disorder 
is a tandem duplication of the u-PA gene, PLAU (urokinase-type plasminogen activator) (Paterson, 2010).

Hermansky-Pudlak Syndrome

Hermansky-Pudlak syndrome is inherited as an autosomal recessive disorder with associated occulo-
cutaneous albinism. Oculocutaneous albinism is characteristic of HPS as is ceroid-lipofuscin storage 
in the reticulo-endothelial system while granulomatous colitis, interstitial lung disease and fatal pul-
monary fibrosis feature in some subtypes. Defects in nine genes (HPS1, HPS3-6, DTNBP1, BLOC1S3, 
BLOC1S6) cause distinct HPS subtypes in human (Huizing, 2008; Masliah-Planchon, 2013). Interest-
ingly, polyphosphates released from dense granules activate plasma FXII, addition of polyphosphates 
restored defective clotting in HPS implying that their deficit contributes to the bleeding syndrome (Muller, 
2009). Platelet function studies showed an absent secondary wave to ADP, epinephrine, restocetin and 
abnormal aggregation with collagen.

Chediak-Higashi Syndrome

Chediak-Higashi syndrome is a rare autosomal recessive disorder with large abnormal granules that are 
apparent in melanocytes, leukocytes, and fibroblasts, but not in platelets. There is a partial occulocuta-
neous albinism and often recurrent pyogenic infections. The platelet count is normal, with a prolonged 
bleeding time, decrease dense granule and abnormal platelet aggregation associated with a bleeding 
tendency, severe immunological defects with life threatening infections and progressive neurological 
dysfunction (Huizing, 2008). The immunodeficiency leads to the development of a lymphoproliferative 
syndrome and an accelerated phase in ~85% of patients.

Griscelli Synderome

Patients with Griscelli syndrome have partial albinism and silver hair; different subtypes combine neu-
rological defects and/or severe immunodeficiency with a defective cytotoxic lymphocyte activity. Muta-
tions in the genes encoding myosin Va (MYOSA), Rab27a (Rab27a; a small GTPase), or melanophilin 
(MLPH) cause 3 subtypes of Griscelli syndrome but rarely bleeding while platelet secretory defects have 
yet to be described (Masliah-Planchon, 2013).

Familial Haemophagocytic Lymphohistiocytosis

In a new development, defective platelet secretion (dense granule, α-granule and lysosome) in spite of 
normal granule cargo has been shown in familial haemophagocytic lymphohistiocytosis types 3, 4 and 
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5, potentially lethal disorders of immune dysregulation caused respectively by defects in Munc 13-4 
(UNC13D) {Sandrock, 2010 #9}, snytaxin-11 (STX11) (Ye, 2012) and Munc18b (STXBP2) (Al Hawas, 
2012) coding genes. Munc18b appears to be a partner of syntaxin-11 in platelet exocytosis (Al Hawas, 
2012; Ye, 2012). This work highlights how platelets may use similar secretory machinery as ctyotoxic 
T lymphocytes and NK (natural killer) cells.

Wiskott-Aldrich Syndrome

Wiskott-Aldrich syndrome is a rare X-linked recessive disorder caused by a defect in a protein named 
termed as Wiskott-Aldrich syndrome protein (WASP) (Baldini, 1969). The gene resides on Xp11.12-
23, and its expression is limited to cells of hematopoietic lineage. This disease is characterized by 
thrombocytopenia, with small platelets and immunodeficiency (Grottum, 1969). WAS protein is a key 
regulator of actin polymerization in hemoatopoietic cells; it is involved in signal transduction with ty-
rosine phosphorylation sites and adapter protein functins. Patients with this disorder may have bleeding 
in association with the decreased number as well as abnormal function of the platelets. In some patients 
a storage pool deficiency has been described (Gunay-Aygun, 2004; Nurden, 2008; White, 1987). Af-
fected patients have a history of recurrent infections and eczema on physical examination. Laboratory 
abnormalities reveal absent isohemaglutinins. There are associated immunologic defects. Genetic testing 
has revealed abnormalities in many of these patients. Treatment of acute bleeding is through platelet 
transfusions. Splenectomy has shown to improve the thrombocytopenia. Bone marrow transplantation 
should be considered the definitive treatment for these patients (Hongeng, 2001).

Release Defects

This group of patients most likely represent the largest group of platelet function disorders. Release 
defects may occur due to abnormalities in signal transduction from the membrane, abnormal internal 
metabolic pathways and abnormal release mechanisms or structures involved in the release reaction 
(Rendu, 2001; Shapiro, 2000; Huang, 2015). It is clear therefore that release defects are a heterogeneous 
group of disorders with a wide variety of underlying defects whose mechanisms are not fully elucidated. 
The final common abnormality within this group of defects is the failure to successfully release granule 
contents upon platelet activation.

Release defects are associated with a prolonged bleeding time and an abnormal in vitro platelet ag-
gregation profile characterized by abnormalities of aggregation in association with ADP, including an 
absent secondary wave, epinephrine and collagen, which a blunted or absent secondary wave. In more 
sophisticated studies, there is a measurable defect in ADP release (Rendu, 2001; Shapiro, 2000). There 
are normal metabolic stores of ADP (those not associated with granule contents). The contents of granules 
are normal. Many patients with release Defects may be treated with DDAVP (Ghosh, 1993).

Coagulation Factor Defects Affecting Platelet Function

Abnormalities of plasma coagulation factors may lead to defects in platelet function, despite the presence 
of normal numbers of properly functioning platelets. The most common abnormality in this category is 
VWD. Absence of plasma and platelet fibrinogen leads to a defect in platelet function, as fibrinogen is 
important in the platelet-platelet interaction within the primary hemostatic plug. Afibrinogenemia is a 
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rare autosomal recessive defect (de Moerloose, 2013). Both VWD and afibrinogenemia lead to adhesive 
defects in platelet function: VWD in the platelet vessel interaction, and afibrinogenemia in the platelet-
platelet interaction (Azzam, 2012; Eid, 2008; Matsui, 2002).

Von Willebrand Disease

Platelet-type von Willebrand disease (VWD) is an autosomal dominant disease with mild to moderate 
bleeding and thrombocytopenia with enlarged platelets characterized by spontaneous VWF-binding to 
GPIbα (Othman, 2011). The defect in VWD resides with the VWF, which plays an important part in 
platelet function and whose platelet receptor is GPIb/IX. Abnormalities in VWF may lead to mucocutane-
ous bleeding similar to that seen in platelet function defects. VWD is inherited as an autosomal dominant 
trait with males and females equally affected (Mitrovic, 2014). The bleeding time may be prolonged. 
Coagulation factor studies may reveal abnormalities in factor VIII activity, quantitative VWF antigen, 
VWF activity (commonly measured in the ristocetin cofactor assay), and the structure of the protein 
itself (usually assessed through multimeric analysis by gel electrophoresis).

Afibrinogenemia

This is a rare autosomal recessive disorder in which there are extremely low or absent levels of fibrinogen. 
The bleeding time may be prolonged. In some patients there may be an associated decrease in platelet 
counts as well as an abnormal platelet aggregation profile. The absence or severe deficiency of plasma 
fibrinogen leads to impaired platelet-platelet interaction (de Moerloose, 2013).

Defects in Platelet Pro-Coagulant Activity

Scott Syndrome

Scott syndrome is a rare inherited disorder caused by defective scrambling of phospholipids on blood 
cells (Lhermusier, 2011). It manifests by a decreased fibrin formation during shear-dependent adhesion 
of platelets to subendothelium. When activated Scott platelets are unable to translocate PS to the outer 
leaflet of the membrane bilayer; factors Va and Xa fail to bind leading to a decreased capacity of platelets 
to convert prothrombin in thrombin. This lack of thrombin generation is sufficient to induce a bleeding 
syndrome. The disease is caused by mutations in ANO6 (anoctamin 6, also known as TMEM16F) that 
encodes transmembrane protein 16F, a Ca2+-activated channel essential for Ca2+-dependent PS exposure 
(Suzuki, 2010; Yang, 2012).

Miscellaneous Congenital Disorders

There are disorders of platelet function that have been reported to occur in association with connective 
tissue disorders. These include but are not limited to such disorders as Ehlers-Danlos syndrome, Marfan’s 
syndrome, osteogenesis imperfect, and fragile X syndrome (Brusin, 2008; Cheng, 2015; Gross, 2015; 
Malfait, 2014). May-Hegglin anomaly is an autosomal dominant disorder characterized by ineffective 
thrombopoiesis with normal platelet function studies, and abnormal inclusion granules in leukocytes 
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(Althaus, 2011). Platelet function defects have also been reported to occur in association with Down’s 
syndrome (Boleracki, 2015).

Thrombocytopenia and absent radii syndrome (TAR) is characterized by thrombocytopenia and de-
fects of the radial bone (Idahosa, 2014). Platelet function defects have been reported in TAR syndrome 
(Bottillo, 2013; Wilson, 2014). Infants with this syndrome may suffer severe and even fatal bleeding 
in the first year of life, after which the thrombocytopenia gradually improves (Bottillo, 2013; Wilson, 
2014). Prophylactic platelet transfusions are recommended in this population of patients. Hereditary 
autosomal dominant thrombocytopenia resembling idiopathic thrombocytopenic purpura (ITP) has 
been reported and may be associated with a platelet function defect (Mihalov, 2014). Platelet function 
defects have also been reported to occur in association with increased serum IgA, nephritis, deafness, 
and giant platelets (Mihalov, 2014).

Defects in Intracellular Signaling Pathways

Pathologies of signal transduction pathways concern patients with defects of platelet aggregation that 
affect some stimuli more than others; such disorders may be quite common (Dawood, 2012; Nurden, 
2011). Early studies highlighted patients with abnormalities of receptor-linked G-protein signaling, 
phospholipase C pathways, protein kinase C phosphorylation and Ca2+ mobilization; however, as gene 
sequencing was not available at the time, the genetic defects remains unknown (Rao, 2013). Likewise, 
patients with purported congenital deficiencies of cyclooxygenase-I, prostagnalding H synthase-I, 
thromboxane synthase, phospholipase A2, lipoxygenase, glycogen synthase and ATP metabolism, gp91 
phox deficiency associated with impaired isoprostane formation were all the object of initial reports 
largely based on platelet function testing (Pignatelli, 2011; Rao, 2013). Two examples where specific 
gene mutations have now been described are (i) thromboxane synthase in Ghosal syndrome (linking 
defective arachidonic acid-induced platelet aggregation with an increased bone density) (Genevieve, 
2008) and (ii) inherited cytosolic phospholipase A2α deficiency associated with impaired eicosanoid 
biosynthesis, small intestinal ulceration, and platelet dysfunction (Adler, 2008). Signaling defects may 
directly interfere with platelet activation pathways including αIIbβ3 activation and fibrinogen binding 
or intervene secondarily by preventing secretion of ADP or formation and release of TXA2.

A special category of patient with defects in the G-protein cascade involves second messengers or 
RGS (regulator of G protein signaling) proteins that affect cAMP levels (Alshbool, 2015; Louwette, 
2012). RGS are multi-functional GTPase accelerating proteins that enhance GTP hydrolysis by G pro-
tein α-subunits and so intervene early in signaling cascades (Alshbool, 2015). The complex-imprinted 
gene cluster, GNAS, regulates Gsα. Direct genetic and epigenetic defects of GNAS include both Gsα 
hypofunction and thrombotic phenotype associated with more generalized hormonal, skeletal defects and 
sometimes mental retardation (Louwette, 2012; Van Geet, 2009). A paternally inherited 36 bp insertion 
in the extra-large stimulatory Gsα and stimulates adenylate cyclase and is associated with Gs hyper-
function in platelets, leading to an increased trauma-related bleeding tendency by is also accompanied 
by neurological problems, growth deficiency and brachydactyly (Van Geet, 2009). Whether Gs defects 
occur in patients with platelet-specific bleeding disorders is yet unknown.
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CONCLUSION

Platelets are essential for primary hemostasis. Platelet function defects comprise a large and heterogeneous 
group of bleeding disorders that range in severity from mild to severe. Patients may be asymptomatic; 
however, the majority who are diagnosed present with easy bruising and mucocutaneous bleeding or exces-
sive hemorrhage following injury or surgery. As the complex internal biochemical and signal transduction 
pathways are further elucidated, and as structural analysis of platelet advances, more of the mechanisms 
leading to platelet function defects will be understood. Despite our advances in the understanding of the 
etiology of these defects in function, treatment remains fairly rudimentary. Adjunctive therapies (such 
as antifibrinolytics, microfibular collagen, fibrin glue, etc.), rFVIIa and platelet transfusions remain the 
mainstay of therapy available at this time. For platelet function disorders associated with a defect in a 
plasma coagulation factor such as von Willebrand disease and afibrinogenemia, treatment consists of 
replacement of the deficient coagulation factor.
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ABSTRACT

Myocardial infarction (MI) is a major cardiovascular disease (CVD) and ranks among the leading causes 
of morbidity and mortality in humans, worldwide. Despite advances in disease prevention and treatment 
strategies, majority of the developed and developing world’s suffer higher disease burden from MI, and 
incur billions of dollars in healthcare costs (Murray et al., 2015). Global estimates from 2013 show 
that MI is the major cardiovascular disease (CVD), and that deaths due to MI accounted for nearly half 
of the 17 million CVD mortalities (GBD, 2013; Mortality and Causes of Death Collaborators, 2015). 
Within the United States, MI top’s the chart of both communicable and non-communicable diseases in 
terms of health loss that it is estimated to have inflicted in the population (Murray, et al., 2015). It has 
been estimated that every 2 minutes, three Americans suffer from myocardial infarction (MI), primary 
cause of MI being coronary blood flow obstruction and myocardial damage. The annual estimates of 
MI incidence in USA are approximately three quarter million a year while almost two-thirds of these 
cases represent new attacks (Mozaffarian, et al., 2015). Collectively, MI continues to lead the charts 
for CVD incidence rates, health loss, mortalities thereby putting enormous strain on healthcare system.

MULTI-ETIOLOGICAL DISORDER

MI primarily arise due to obstruction in the coronary blood flow to one or multiple regions of heart 
causing subsequent tissue hypoxegenation, metabolic modifications in the myocardium, cell death and 
decreased contractility. A major condition that leads to this obstruction is coronary artery diseases such 
as atherosclerosis, which involves plaque build-up (an intimal and/or sub-intimal deposition of lipids, 

Myocardial Infarction:
Disease Mechanisms and 
Therapeutic Perspectives

Kalyan C. Chapalamadugu
University of South Florida, USA

Samhitha Gudla
University of South Florida, USA

Rakesh Kukreja
Virginia Commonwealth University, USA

Srinivas M. Tipparaju
University of South Florida, USA

 EBSCOhost - printed on 2/10/2023 5:39 PM via . All use subject to https://www.ebsco.com/terms-of-use



140

Myocardial Infarction
 

inflammatory cells and fibrous tissue) at the branching portions or in the narrow regions of the larger 
arteries. While a potential of the plaque to directly block the arterial lumen causing reduced blood flow 
always exists, atherosclerotic complications primarily arise due to the plaque rupture providing a foci 
for platelet aggregation and eventual thrombosis in the blood vessels, thereby effectively decreasing or 
altogether blocking the blood and oxygen supply to the dependent portions of the myocardium (Libby 
& Theroux, 2005; Naghavi et al., 2003). Plaque rupture leading to MI contributes to almost 70% of the 
total acute myocardial fatalities (Naghavi, et al., 2003). However, coronary artery diseases and therefore 
MI is always considered a multi-etiological disease as several factors contribute to atherosclerosis. One 
retrospective study in a select white male population revealed positive correlations between plaque lesions 
in aorta or coronary arteries and serum low-density lipoprotein (LDL), total cholesterol, triglycerides, 
systolic and diastolic blood pressure, and ponderal index (Berenson, Wattigney, Bao, Srinivasan, & 
Radhakrishnamurthy, 1995). Similar studies in the United Kingdom (Turner et al., 1998) revealed that 
type-2 diabetes is also a major risk factor for atherosclerosis as not only that hemoglobinA1c and fast-
ing blood glucose levels positively correlate with higher incidence of coronary disease and myocardial 
infarction, but diabetes can enhance the risk of MI through increasing the predisposition for atheroscle-
rosis to perturbed serum lipid profile (Turner, et al., 1998). Further, life style factors, which include diet, 
physical activity, smoking, can significantly influence MI incidence (Ambrose & Barua, 2004; Oliveira, 
Barros, & Lopes, 2009). Epidemiological studies indicate that hypertension is perhaps, one single most 
risk factor for MI incidence, and estimates suggest that mortality due to coronary heart diseases doubles 
with every increment of a 20 mm Hg systolic or 10 mm Hg diastolic blood pressure (Cífková, 2008; 
McAreavey et al., 2016). Hence, conditions that can significantly contribute to hyperlipidemia, inflam-
mation, aberrant vascular tone and hyperglycemia can all contribute to pathogenesis of plaque buildup 
in the arteries leading to atherosclerosis and associated cardiac complications such as MI.

Pathogenesis of Myocardial Infarction

Heart is one of the high energy demanding contractile tissue, and primarily relies on aerobic metabolism 
for unabated supply of high energy Adenosine triphosphate (ATP) to meet its energy requirements. Ap-
proximately two-third of ATP supply in normal healthy hearts comes through β-oxidation of long chain 
fatty acids in the mitochondria, while the rest summoned through catabolism of other substrates such as 
glucose, lactate, ketones and amino acids (Lopaschuk, Ussher, Folmes, Jaswal, & Stanley, 2010). Given 
that oxygen supply is essential to oxidative metabolism in all cells; it is inevitable that conditions that 
limit oxygen supply to the tissue would adversely affect the metabolism and energy supply compromis-
ing the structural and functional integrity of the heart. Immediate to the onset of ischemia, myocardium 
switches its reliance on fatty acids for ATP to anaerobic glycolysis, and depending on the severity of 
ischemia, this shift in metabolism leads to a moderate to severe fall in myocardial ATP and phosphocre-
atine concentrations and increases in net lactate, NADH, cellular acidosis, which can disrupt the ionic 
homeostasis in the cell resulting in Ca2+ overload. Simultaneously, inhibition of oxidative phosphoryla-
tion (OXPHOS) and accumulation of NADH in the mitochondria enhances ROS production. Further 
deprivation of oxygen and low energy state also affects endoplasmic reticulum leading to UPR and ER 
stress. These endogenous stress responses combined with energy shortage eventually leads to cell death 
and infarct formation (Kajstura et al., 1996; Yu et al., 2014). Accumulation of dead cells combined with 
modified extracellular milieu can signal inflammatory response, which attracts leukocytes to the infarct 
zone (Frangogiannis, 2008). Establishing blood flow and thereby renewing oxygen and nutrient supply 
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can significantly alleviate infarct size and declined contractile function, however dependent on the timely 
reperfusion of the affected portions of the heart. Reperfusion rapidly activates OXPHOS and restores 
intracellular ATP, PH and normalizes lactate levels. Although high oxygen consumption also increases 
ROS production with potential to damage cell membranes, high Ca2+ accumulation in mitochondria 
leads to opening of mitochondrial permeability transition pore leading to apoptosis (Frohlich, Meier, 
White, Yellon, & Hausenloy, 2013; Griffiths & Halestrap, 1995). Further, resumption of blood flow also 
brings in neutrophils, monocytes and macrophages which release more ROS into the infarct zone can 
contribute to cell death, ECM remodeling, debris removal and scar formation (Frangogiannis, 2008). 
Timely reperfusion is recognized as the single most important intervention necessary after an MI event 
to minimize infarct size, improve cardiac contractility and reduce mortality (Zeymer et al., 2011). Col-
lectively, oxidative stress, reductive stress, ER stress and inflammation represent the major pathological 
processes that underlie MI (Figure 1).

Oxidative Stress

Reactive oxygen species (ROS) such as superoxide anion (O2−), hydroxyl radical (·OH) and hydrogen 
peroxide (H2O2) are routinely produced in eukaryotic cells with reported beneficial effects on cell cycle, 
survival and differentiation. While mitochondrial oxidative phosphorylation (Sena & Chandel, 2012) 
and NADPH oxidases (NOX) (Lassègue, San Martín, & Griendling, 2012) contribute significantly to 
intracellular ROS generation, involvement of other systems including xanthine oxidase (Battelli, Polito, 
Bortolotti, & Bolognesi, 2016), nitric oxide synthase (K. Zhao, Huang, Lu, Zhou, & Wei, 2010) and 

Figure 1. Major pathophysiological mechanisms that form the basis for MI and myocardial remodeling
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cytochrome P450 (Dostalek et al., 2008) is also well recognized. Extrinsic or intrinsic stressors can 
significantly enhance ROS production, and the net oxidative state of a cell at any point is determined 
by the residual ROS in the cell that overcame anti-oxidant defenses driven by enzymatic (superoxide 
dismutase, catalase, glutathione peroxidase) and non-enzymatic (Vitamin C, β-carotene, Vitamin E, 
glutaredoxin, thioredoxin, glutathione and peroxiredoxins), scavengers (Birben, Sahiner, Sackesen, 
Erzurum, & Kalayci, 2012). Because of their ability to readily donate an electron, excessive ROS can 
oxidize cellular molecules including lipids, proteins and DNA with deleterious consequences on cell 
growth, survival and function (Birben, et al., 2012).

Oxidative stress has been considered as one of a major pathophysiological basis of MI. Although eleva-
tion of ROS production in cardiac cells during hypoxic or anoxic conditions of ischemia are cardiotoxic, 
damage of ischemic myocardium due to ROS generated during reperfusion appear to be the major cause 
of adverse post-ischemic remodeling of the heart (Q. Chen, Moghaddas, Hoppel, & Lesnefsky, 2008; 
H.-L. Lee, Chen, Yeh, Zweier, & Chen, 2012; Zweier, Flaherty, & Weisfeldt, 1987). Studies conducted 
in dogs showed that reperfusion after a moderate ischemia leads to robust ROS generation that lasts even 
after 3 hours into reperfusion, with significant effect on the myocardial contractile function (Bolli et al., 
1989a, 1989b). Mitochondria is a major source of oxidative stress as elemental oxygen is consumed in 
electron transfer chain of OXPHOS pathway, and enhanced electron leak due to I/R injury would elevate 
ROS production. Myocardial I/R injury leads to significant inhibition of complexes I and III, which are 
mediators of electron transfer chain of the mitochondrial OPXPHOS pathway, thus increasing electron 
leak and enhanced ROS production (Q. Chen, et al., 2008; H.-L. Lee, et al., 2012; Zhu et al., 2007). 
Another major source of ROS in cardiac myocytes comes from NADPH oxidase (Nox) (Hoffmeyer et al., 
2000; Kuroda et al., 2010), with potential to affect cardiac remodeling and disease pathogenesis in heart. 
Deletion of Nox1, Nox2 or both has been shown to alleviate myocardial I/R injury in mice, suggesting 
that mitigating ROS excess through Nox inhibition is cardioprotective (Braunersreuther et al., 2013).

Xanthine oxidase has been extensively studied as a source of ROS in myocardial I/R injury as it also 
uses oxygen as an end electron acceptor with potential to contribute to cardiac myocyte ROS produc-
tion during I/R injury. Animal studies have shown that the ischemic cardiac tissue have higher xanthine 
oxidase activity than its counterpart, Xanthine dehydrogenase that uses NAD+ as end electron acceptor, 
suggesting that enhanced Xanthine oxidase levels leads to ROS excess and I/R injury (Chambers et al., 
1985; Kang et al., 2006). Similarly, dysregulation of β-adrenergic signaling, protein kinase A (Spear et 
al., 2007) and Cytochrome c Oxidase (Prabu et al., 2006) can each contribute to enhanced mitochondrial 
ROS excess during ischemia and reperfusion leading to myocardial injury.

Correlative studies have shown that decreased serum concentration of antioxidants such as Vitamin C 
associate to higher incidence of MI (Gey, Stahelin, & Eichholzer, 1993; Nyyssönen, Parviainen, Salonen, 
Tuomilehto, & Salonen, 1997). Prospective studies in humans have also shown that myocardial infarc-
tion associate to elevated oxidant levels (malondialdehyde) in blood, concurrent to diminished levels of 
antioxidant defenses measured as decreased superoxide dismutase, glutathione peroxidase and catalase 
activities as well as lower levels of non-enzymatic antioxidants such as β-carotene ascorbic acid, retinol 
and α-tocopherol (Hazini et al., 2015). Animal studies further showed that augmentation of antioxidant 
system through exogenous perfusion can alleviate myocardial I/R injury. Perfusion of ischemic hearts 
with Vitamin E (Haramaki, Assadnazari, Zimmer, Schepkin, & Packer, 1995), dihydrolipoic acid (Hara-
maki, et al., 1995), glutathione (Seiler & Starnes, 2000) and ascorbic acid (Tsai et al., 2011) were shown 
to mitigate myocardial I/R injury.
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Reductive Stress

The counterpart of oxidative stress in cells, defined as reductive stress, is primarily determined by the 
proportion of reducing equivalents of pyridine nucleotides; NADH/NAD, NADPH/NADPH in the 
intracellular milieu. NAD/NADH partner in OXPHOS and ATP synthesis in the cells, while NADP/
NADPH regulates oxidative stress (Circu, Maloney, & Aw, 2011). Both glycolysis and Kreb’s cycle 
generates NADH, which in the mitochondria serves as an electron donor for electron transport chain of 
OXPHOS system to support ATP synthesis. Additionally, glucose can also enter into polyol pathway 
when excess or during glycolysis inhibition, which eventually leads to glucose reduction into sorbitol by 
aldose reductase (AR) and subsequent oxidation by sorbitol dehydrogenase to fructose, and reduction 
of NAD to NADH (Williamson et al., 1993). On the other hand, NADPH is generated during the first 
two enzymatic reactions of pentose phosphate pathway; glucose 6-phosphate dehydrogenase (G6-PDH) 
and 6-phosphogluconate dehydrogenase (6-PGDH), as well as during the substrate catalysis of malic 
enzyme and isocitrate dehydrogenase (Andrés, Satrústegui, & Machado, 1980). While NADH primarily 
contributes to OXPHOS, NADPH is used to regenerate the reduced glutathione (GSH) from glutathione 
disulfide (GSSG) by glutathione reductase, as well as reduce thioredoxin (Trx) by thioredoxin reductase 
(TrxR) (Birben, et al., 2012). Further, NADPH can also activate Nox leading to elevated ROS produc-
tion (Circu, et al., 2011; Han et al., 2012). Because the generation of each of these pyridine nucleotide 
redox pairs is tightly coupled with substrate flux and usage, disruption of metabolic pathways that lead 
to increased levels of reduced equivalents of nicotinamide nucleotides can induce the reductive stress, 
and affect the overall redox potential of the cell with profound implications to cell survival and function.

Ischemic myocardium undergoes sever shift in energy substrate utilization as lack of blood flow 
limits both oxygen as well nutrients. Immediately after the onset of ischemia, glycolytic pathways are 
upregulated to sustain ATP necessary for cellular function. However, to sustain glycolysis, both NAD 
and NADH are required, but because of the inhibition of OXPHOS which supplies NAD for the glycoly-
sis to continue, pyruvate which is the end product of glycolysis will instead be converted to lactate by 
lactate dehydrogenase in the cytoplasm. However, this leads to lactate accumulation, increased PH and 
accumulation of NADH in the cytosol, increases NADH/NAD ratio and inhibit glycolysis (Solaini & 
Harris, 2005). It was estimated that NADH/NAD ratio can increase more than 10 fold during ischemia, 
with potential to inhibit pyruvate oxidation (Salem, Saidel, Stanley, & Cabrera, 2002). As such, several 
studies have shown that decreasing the reductive stress through decreasing cytosolic NADH/NAD ratio 
in ischemic myocardium can limit I/R injury. Supplementation of Niacin in perfusion buffer has been 
shown to significantly decrease lactate/pyruvate ratio, attenuate ATP decline, creatine kinase release 
and improve lactate efflux in hearts subjected to low-flow ischemia (Trueblood, Ramasamy, Wang, & 
Schaefer, 2000). Similarly, pharmacological inhibition of aldose-reductase (AR) in the polyol pathway 
by Zopolrestat was shown to reduce cytosolic reductive stress measured as decreased lactate/pyruvate 
ratio in the heart subjected to low-flow ischemia and significantly improved high energy phosphate 
content (Ramasamy, Trueblood, & Schaefer, 1998). Studies have also shown that myocardial I/R injury 
is associated with decreased NAD levels, leading to elevated NADH/NAD levels, cytosolic reductive 
stress, and rescuing NAD by genetic or pharmacological means is cardioprotective against I/R injury 
(Hsu, Oka, Shao, Hariharan, & Sadoshima, 2009; Yamamoto et al., 2014). Further, increased NAD(P)
H/NAD(P) has been shown in mouse hearts with Nox suppression, while decreased ratios of the these 
pairs were observed in Nox4 overexpressing hearts (Yu, et al., 2014), suggesting the redox ratios of 
these nucleotides is also influenced by Nox enzyme availability and/or activity. Similarly, elevation of 
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mitochondrial NADH/NAD redox stress during ischemia may significantly overwhelm electron trans-
port chain, resulting in excess ROS production (Yu, et al., 2014). Earlier studies have shown that excess 
NADPH, although a major factor in regenerating anti-oxidant glutathione and thioredoxin levels, can also 
lead to excess superoxide production in failing myocardium (Gupte et al., 2006). Studies conducted in 
isolated mitochondria and whole cardiac myocytes showed that reductive stress beyond a certain optimal 
level is indeed pro-oxidative leading to ROS excess in the cells (Aon, Cortassa, & O’Rourke, 2010).

Endoplasmic Reticulum (ER) Stress

ER is central to synthesis, folding and maturation of proteins in eukaryotic cells. As an intracellular store 
of ca2+ molecules, ER also plays a major role in various cellular processes including, but not limited 
to; cell cycle, survival, signaling, mobility and contractility. The ability of ER to process proteins is 
heavily oxygen and glucose dependent, and conditions that limit the supply can lead to accumulation of 
misfolded or unfolded proteins in the ER lumen, a condition summarized as ER stress (Kaufman, 2002; 
A. S. Lee, 1992). Cells however, try to correct these perturbations by inhibiting protein synthesis, but 
increasing the transcription and translation of heat shock proteins (HSPs) and supporting machinery 
for protein folding and degradation of misfolded proteins. This mechanism also termed as ‘unfolded 
protein response (UPR), involves four major proteins that were identified and extensively characterized 
as primary mediators of UPR. Localized to the ER membrane, protein kinase-like ER kinase (PERK), 
inositol-requiring ER-to-nucleus signal kinase 1 (IRE1) and activating transcription factor 6α (ATF6α), 
stay normally latent due to their binding to glucose regulated protein-78 (Bip/Grp78) on the luminal 
side (Kaufman, 2002). However, accumulation of unfolded proteins in ER can pull away GPR-78 from 
these binding partners in the ER membrane relieving the inhibition resulting in UPR activation. Once 
activated, these proteins can induce transcriptional and posttranslational modulation of specific genes, 
which leads to inhibition of new protein synthesis, upregulating expression of ER chaperones and proteins 
involved in ER stress associated degradation (ERAD) (Kaufman, 2002).

Several studies using in vitro and in vivo models have shown UPR is activated in heart during I/R injury. 
Earlier studies in mice have shown UPR through increased XBP1 and GRP78 expression is upregulated 
in neonatal ventricular myocytes. Further, the same study showed that ischemia also enhances GRP78 
specifically in infarcted myocardial tissue, suggesting that activated transcription factor 6 (ATF6) branch 
of UPR is elevated in injured myocardium (Thuerauf et al., 2006). Consistently, I/R increases GRP78 and 
GRP94 expression in heart, and overexpression of ATF6 in the heart, which is upstream of both GRP 
members, reduced infarct size and cardiomyocyte apoptosis, suggesting that UPR upregulation can be 
cardioprotective in I/R injury (Martindale et al., 2006). In vitro studies further showed that ischemia but 
not reoxygenation can increase nuclear translocation of ATF6 promoting GRP78 transcription and UPR 
upregulation (Doroudgar, Thuerauf, Marcinko, Belmont, & Glembotski, 2009). Studies in cardiac myocytes 
have also shown that UPR upregulation in I/R injury involves ATF6 dependent upregulation of protein 
disulfide isomerase associated 6 (PDIA6) gene, which is key to ER protein folding and cytoprotection 
(Vekich, Belmont, Thuerauf, & Glembotski, 2012). Further the same group have shown that ischemia 
can upregulate ATF6 and Derlin3, which is an important ERAD protein, both in cardiomyocytes and 
mouse heart (Belmont et al., 2010). Studies have shown that prolonged injury can increase the severity 
of ER stress and activate proapoptotic gene networks. Another ER protein involved in UPR is PERK, and 
activated PERK phosphorylates eukaryotic initiation factor 2-α (eIF2α), but promotes ATF4 expression, 
which then induces proapoptotic C/EBP homologous protein (CHOP) encoding gene expression (Ma, 
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Brewer, Alan Diehl, & Hendershot, 2002). Studies in neonatal rat cardiomyocytes showed that while 
early stages of ischemia upregulates the expression of GRP78, XBP1 and eIF2α phosphorylation inhibit-
ing protein translation, severe ischemia can evoke maladaptive ER stress activating C/EBP homologous 
protein (CHOP) and caspase -12 activation resulting in cellular apoptosis (Szegezdi et al., 2006). Studies 
using knockout mice showed that CHOP deletion confers significant protection against myocardial I/R 
injury as both the extent of infarction and cardiomyocyte apoptosis are attenuated, and the exuberance 
of ROS that occurs during early reperfusion has been implicated in CHOP upregulation and apoptosis 
(Miyazaki et al., 2011). ER stress in cardiac myocytes also upregulates a proapoptotic p53-upregulated 
modulator of apoptosis (PUMA) gene (Nickson, Toth, & Erhardt, 2007), a BCL-2 family member that 
is a transcriptional target of ATF4/CHOP pair (Galehdar et al., 2010). In vivo studies revealed that I/R 
injury upregulates PUMA in infarct zone, and deletion of PUMA in cardiomyocytes or in mice rescues 
myocyte death and preserve contractile function during I/R injury (Toth et al., 2006). Further, low levels 
of oxidative stress can also elicit ER stress during reperfusion and contribute to myocardial damage (Z. 
H. Wang, Liu, Wu, Yu, & Yang, 2014). Because of the diverse and critical roles of ER in cell survival 
and function, ER stress is now recognized as a major pathophysiological regulator in various CVDs 
including MI.

Inflammation

Inflammation constitutes one of the major pathogenic basis of myocardial remodeling in infarcted 
heart. Inflammatory responses although are initiated in myocardium during ischemia, changes during 
reperfusion are profound, and the severity of inflammation appear to be one of major determinants of 
post MI recovery. Inflammatory responses during I/R injury includes aberrant changes in both vascular 
endothelium (VE) as well as myocardial cells, and reperfusion phase appear to be a major contributor 
of VE dysfunction. In cats, VE dependent relaxation of vasculature was significantly decreased to va-
soactivator compounds such as acetyl choline (ACh) even with 2.5 minutes of reperfusion, as opposed 
to 4.5 of ischemia alone (Tsao, Aoki, Lefer, Johnson, & Lefer, 1990; Viehman, Ma, Lefer, & Lefer, 
1991), suggesting reperfusion augments VE dysfunction in I/R injury. Although the time of induction 
depends on the species and duration of reperfusion, within 3 hours into reperfusion, mouse myocardium 
expresses various chemokines; MIP-1α, MIP-1β, MIP-2, MCP-1, IP-10, CXCR3, cytokines; IL-1β, IL-6, 
IL-10, TNF-α, LIF, TGFβ1, TGFβ2 and TGFβ3, and adhesion molecules; ICAM-1, selectins and growth 
factors; M-CSF and SCF (Dewald et al., 2004; Kukielka et al., 1993; Kumar et al., 1997). Further I/R 
injury also leads to endothelial dysfunction involving decline in vasodilatory ability of vasculature and 
expression of cytokines, adhesion molecules and chemokines and complement proteins (Singhal, Symons, 
Boudina, Jaishy, & Shiu, 2010). Neutrophils, which are innate killer cells, reach to the vasculature of the 
infarct zone, and bind to endothelial cell surfaces, and through interactions between selectins, integrins, 
cytokines and adhesion molecules, tether to endothelial surface and transmigrate into the perivascular 
space into the infarcted tissue (Vinten-Johansen, 2004). Upregulated cytokines in the infarct zone can 
also activate neutrophils, and further enhance the expression of adhesion molecules such as ICAM-1 on 
cardiac myocytes (Vinten-Johansen, 2004). Neutrophils are rich source of ROS and proteases, which 
clears the necrotic cell debris and release proinflammatory mediators in the infarcted and surrounding 
non-infarcted tissue. Further, MI also results in macrophage infiltration into the infarct tissue. While 
neutrophil infiltration is highest in the first 24 hours of ischemia, monocytes and their successor mac-
rophages descend later into infarcted heart. In murine MI model (Nahrendorf et al., 2007), at least two 
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waves of monocyte infiltration was reported, which include a first wave of Ly-6Chigh cell population 
between day 1 to 4 of ischemia, and a second wave of Ly-6Clo population thereafter, and this biphasic 
recruitment of monocytes into the infarct tissue supports a temporally distinct function of monocytes 
where Ly-6Chigh are proinflammatory and scavenge necrotic tissue whereas Ly-6Clo promotes angiogen-
esis and scar formation.

The fact that inflammation is a necessary process to clear the dead cells and form granulation tissue 
and heal the injured myocardium, interventions to modulate inflammatory response may minimize tis-
sue injury. Cytokines have attracted the attention in this case as they play a key role in the expression of 
chemokines, cell adhesion molecules and inflammatory cell recruitment. Tumor necrosis factor alpha 
(TNFα) is a major cytokine induced in infarcted but not in normal myocardium (Dorge et al., 2002). 
Genetic ablation studies in mice have shown that TNF receptor type 1 and type 2 double, but not single, 
deletion, increased apoptotic myocyte cell death and infarct size, suggesting that at least one type of 
the receptor promotes anti-inflammatory cascade (Kurrelmeyer et al., 2000). Supporting this, inhibi-
tion of nuclear translocation of downstream target of TNF, the nuclear factor κB (NFκB) transcription 
factor, accentuates ischemic injury and infarct size (Misra et al., 2003). Similarly murine studies also 
have shown that p50 deletion, which is one of the five NFκB subunits, adversely affects post-ischemic 
left ventricular remodeling and systolic function (Timmers et al., 2009). Contrarily, beneficial effect of 
TNFα in infarcted hearts was also reported. TNFα deletion in mice reportedly protects against myocardial 
injury and contractile dysfunction in reperfused ischemic hearts, which was attributed to a potential over 
expression of this cytokine during reperfusion than ischemia alone (Maekawa et al., 2002). Genetic stud-
ies indicate that TNF receptors may be involved as TNF receptor type 1 but not TNF type 2, deletion in 
mice confers protection against I/R injury (Flaherty et al., 2008). Therefore, inflammation in the setting 
of MI represents complex pathogenic processes, where same factors such, for example TNFα, can have 
opposing actions, depending on the phase of injury (ischemia vs. reperfusion).

Interventions to Minimize Post-MI Cardiac Remodeling

Cardiac remodeling and recovery post MI episode depends on various factors, and major ones being the 
duration of ischemia before restoring perfusion and extent of myocardial tissue that suffered ischemia. 
Intriguingly, and perhaps justifiably, the major pathological basis of MI: oxidative stress, energy metabo-
lism, reductive stress, ER stress and inflammation, can all adapt and protect or mal-adapt and worsen, 
with potential to alter the outcome of MI (Blasig, Ebert, Hennig, Pali, & Tosaki, 1990), suggesting that 
these same mechanisms can be manipulated to minimize the damage and improve the prognosis in MI 
patients (Figure 2).

In the last 30 years, the concept termed “ischemic conditioning” has received greater attention, and 
has been advanced as a promising intervention strategy to minimize MI induced damage. Several forms 
of conditioning strategies have been described in the literature depending on when the conditioning 
stimulus is applied in relation to timing of a major ischemic event; before vs. after (Ischemic precondi-
tioning; IPC vs. ischemic postconditioning; IPoC) or where the stimulus was applied during ischemia; 
albeit at a remote site, (remote ischemic pre-conditioning, RIPC).

Earlier studies in animals have shown that preconditioning confers significant cardioprotection against 
MI. Past studies (Murry, Richard, Reimer, & Jennings, 1990) showed that multiple intermittent ischemia 
of 5 min durations in coronary circulation in dogs prior to a single continuous 40 minute ischemia can 
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significantly reduce the infarct size, decelerate the fall in ATP levels and alleviate reductive stress associ-
ated with catabolites such as lactate. Myocardial damage during I/R is associated with significant increase 
in ROS and reactive nitrogen species (RNS) levels and decreased mitochondrial oxygen consumption; 
and preconditioning in mice through applying intermittent ischemic episodes were shown to attenuate 
ROS and RNS excess levels and promote oxygen consumption, clearly suggesting cardioprotection (Li 
et al., 2014; X. Zhao et al., 2005; Zhu, et al., 2007). Similarly, pathways involving UPR and ER stress 
were also investigated as potential mediators of ischemic conditioning, and studies in transgenic mice 
showed that IPC activates adaptive UPR by ER involving PERK/ATF3/ATF6 signaling pathway, with 
potential protective effects during early and late stages of I/R remodeling in myocardium (Brooks et al., 
2014). Further, several studies have shown that pretreatment with various inflammatory cytokines such 
as TNF-α, IL-1, IL-1β, LIF at suboptimal doses confer protection of myocardium against I/R injury 
(Brown et al., 1990; Nelson, Wong, & McCord, 1995; Yamashita et al., 2000).

Both patient data and animal studies indicate that IPoC can also minimize I/R injury. Studies that 
investigated the effect of IPoC in patients having ST-elevation myocardial infarction (STEMI), and 
underwent primary percutaneous cutaneous intervention indicate that IPoC can minimize myocardial 
damage as indicated by reduction in serum markers of cardiac cell death; creatine kinase (CK, CK-MB), 

Figure 2. Changes in metabolic and signaling events in myocardial infarction (MI): NADH-Nicotinamide 
adenine dinucleotide (oxidized), NADH-Nicotinamide adenine dinucleotide (reduced), ATP-Adenosine 
triphosphate, AKT/Protein Kinase B, PKC-Protein Kinase C, ERK1/2-Extracellular signal regulated 
Kinase 1/2, ROS-reactive oxygen Species, EF% ejection fraction and FS% Fractional shortening
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cardiac troponin I (cTnI) and improved contractile function, however the infarct sizes are not significantly 
different (Gao et al., 2015; Khan et al., 2014; L. Wang, Wang, Xu, & Li, 2013). Animal studies also 
support that IPoC can alleviate I/R injury. IPoC in ex vivo perfused 3 month old mice hearts showed that 
inducing shorter duration intermittent cycles of ischemia during reperfusion after a major index isch-
emia can reduce the infarct size, oxidative stress and improve cytoprotective protein expression in heart 
(Perez et al., 2016). In vivo studies in rats suggest that IPoc induced infarct size reduction also involves 
decreased superoxide anion production, lipid peroxidation, reduced neutrophil infiltration and cell death 
(Kin et al., 2004). Further, studies in isolated mitochondria show that IPoC improves the expression of 
mitochondrial electron transfer chain proteins concomitant to infarct size reduction, however conditional 
to open mitochondrial KATP channels, suggesting that IPoC may also improve energy metabolism (Cao 
et al., 2016). Further, IPoC mediated cardioprotection against I/R injury also involves ER stress attenu-
ation, and studies in rats and rat cardiomyocytes indicate that protection is conferred by inhibiting the 
proapoptotic gene pathways including downregulation of CHOP, calreticulin, calcineurin, Caspase-12, 
JNK phosphorylation and increasing p38 MAPK phosphorylation (Y. H. Chen, Wu, Yao, Sun, & Liu, 
2011; Liu, Zhang, Sun, & Wu, 2008).

Another mode of myocardial conditioning termed ‘remote ischemic preconditioning (RIPC)’ was 
initially reported by Przyklenk et al (1993), where multiple shorter episodes of I/R applied to circum-
flex coronary artery branches of dog prior to LAD ligation and/or reperfusion resulted in a significant 
reduction in infarct size, suggesting that the beneficial effects extended beyond the preconditioned vas-
cular bed (Przyklenk, Bauer, Ovize, Kloner, & Whittaker, 1993). Subsequent studies in various animal 
models have demonstrated that RIPC, even when the preconditioning stimulus was applied to a major 
vasculature of distant organs; hind limb, intestine, kidney, can also limit the infarct size and confer 
protection against subsequent myocardial I/R injury (Aon, et al., 2010; Belmont, et al., 2010; Birben, 
et al., 2012; Braunersreuther, et al., 2013). Several studies investigated the mechanistic basis of RIPC, 
and concluded that humoral, neural as well as systemic factors may all contribute to myocardial protec-
tion (Birben, et al., 2012; Cai, Parajuli, Zheng, & Becker, 2012; Konstantinov et al., 2004; Shimizu et 
al., 2010). At the signaling level, cardioprotection through RIPC appears to activate prosurvival genetic 
pathways involving PKC, AKT, ERK1/2 and JNK1, which can converge to suppress proaptotic gene 
programs resulting in reduction of infarct size (Aon, et al., 2010; Belmont, et al., 2010; Chambers, et 
al., 1985; Q. Chen, et al., 2008; Cífková, 2008). Additionally, diffusible molecules such as Nitric oxide 
may be involved in RIPC through alleviating oxidative stress. A recent work (Rassaf et al., 2014) showed 
that stimulating nitric oxide release by applying shorter cycles of transient ischemia in femoral vascular 
bed with subsequent reactive hyperemia in mice enhanced plasma and cardiac nitrite levels resulting in 
elevated NO levels in the heart leading to S-nitrosation of mitochondrial membrane proteins, decreased 
mitochondrial respiration and reactive oxygen species generation, effectively reducing the infarct size 
(Rassaf, et al., 2014). Studies conducted in coronary artery bypass grafting patients also indicate that 
RIPC may activate myocardial antioxidant defenses such as superoxide dismutase, cytochrome C and 
thioredoxin-1, potentially reducing ischemic injury (Cai, et al., 2012; Yildirim et al., 2016). Further, 
the beneficial effects of RIPC I/R injury may also involve inflammatory mediators. Microarray studies 
conducted in circulating leukocytes and neutrophils of humans subjected to non-invasive shorter episodes 
of I/R revealed decreased proinflammatory gene expression, which suggested that the beneficial effects 
of RIPC may involve modulation of innate immune system that involves decreased potential of leukocyte 
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and neutrophil adhesion for phagocytosis and exocytosis and production of inflammatory mediators 
such as cytokine, and chemokines (Konstantinov, et al., 2004; Shimizu, et al., 2010). Studies in mice 
have further shown that the beneficial effects RIPC may also involve upregulation of both systemic and 
cardiac anti-inflammatory pathways, as RIPC applied through serial hind limb I/R episodes increased 
plasma and cardiac IL-10 protein levels, upregulated PI3K/AKT pathway and attenuated I/R injury in 
a IL-10 dependent manner (Cai, et al., 2012). Given the significance of immune system in myocardial 
I/R injury, modulation of the inflammatory mediators by RIPC may be cardioprotective. Furthermore, 
exosomes and microvesicles may also play a role in remote signal transduction in RIPC. Ex vivo studies 
showed that when these protein, DNA, miRNA rich vesicles that are secreted into cardiac effluents col-
lected from rat hearts subjected to three 5/5min episodes of I/R, when perfused into non-preconditioned 
recipient hearts that underwent subsequent longer I/R insult, resulted in reducing the infarct size (Giricz 
et al., 2014).

RIPC is considered one of the most practical to confer cardioprotection through preconditioning in 
the case of MI, because it can be applied, non-invasively, while patients are in transport or before arrival 
or in advance of the major procedures such as percutaneous interventions or bypass graft. RIPC is still 
an active area of research, and although contradictory evidence exists, clinical trials provide some strong 
evidence of the beneficial effects of RIPC (Table 1).

Table 1. Remote Ischemic Preconditioning (RIPC), clinical trials and outcomes

RIPC Site/Stimulus Major Intervention Outcome

Upper arm, three cycles of I/R 
(5/5 min)

Primary percutaneous intervention surgery 
in ACS patients

Decreased serum cTnI and decreased ST-segment 
deviations (Hoole et al., 2009)

Upper arm, four cycles of I/R 
(5/5 min)

Primary percutaneous intervention surgery 
in ACS patients

Increased myocardial salvage index (Bøtker et al., 
2010)

Upper arm, three cycles of I/R 
(5/5 min)

Primary percutaneous intervention surgery 
in ACS patients Decreased serum cTnT levels (Ahmed et al., 2013)

Upper arm, three cycles of I/R 
(5/5 min)

Primary percutaneous intervention surgery 
in ACS patients

No difference in plasma high-sensitivity C-reactive 
protein, endothelial progenitor cells cell count or 

serum cTnT (Prasad et al., 2013)

Upper arm, three cycles of I/R 
(5/5 min) Coronary artery bypass graft Decreased perioperative myocardial injury index and 

serum total troponin levels (Hausenloy et al., 2007)

Common iliac artery, one cycle of 
I/R (10/10 min) Abdominal aortic aneurysm repair Reduced myocardial infarction (Ali et al., 2007)

Upper arm, three cycles of I/R 
(5/5 min)

Primary percutaneous intervention surgery 
in ACS patients

Decreased cardiac troponin I, decreased incidence of 
MI 4a (Luo et al., 2013)

Upper arm, one cycle of I/R (5/5 
min)

Primary percutaneous intervention surgery 
in ACS patients

Decreased cardiac troponin I, decreased incidence of 
MI 4a (Zografos et al., 2014)

Upper arm, three cycles of I/R 
(5/5 min) Coronary artery bypass graft

Short term increase in cardiac contractility, decreased 
vascular resistance, no change in serum levels of 
troponin I and creatine kinase-MB. No long term 
changes detected (24 hours) (Lomivorotov et al., 

2012)

Upper arm, four cycles of I/R 
(5/5 min) Elective coronary artery bypass graft No significant change in troponin levels and primary 

outcomes (Meybohm et al., 2015)
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CONCLUSION

MI still represents the major CVD, worldwide. Given that MI is a form of metabolic disease, and com-
plicated by life style factors and other highly prevalent co-morbidities such as diabetes and hypertension, 
both, the development of new, and improvement of the existing, approaches has to be carried out in order 
to more effectively decrease the morbidity, mortality and associated health costs of MI.
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ABSTRACT

Cardiovascular disease is one of the most prevalent disease states in the U.S. and contributes substantially 
to overall morbidity and mortality. The ability to effectively optimize the treatment of cardiovascular 
disease has a significant impact on overall disease prevention and treatment. This chapter discusses 
the relationship between genetic variations and their impact on medications used for the treatment of 
cardiovascular disorders. Key medications that are susceptible to genetic variation have been identified. 
The chapter describes the mechanisms by which genetic variation may contribute to altered medication 
concentrations or effects and briefly reviews the place in therapy for the cardiovascular medications. In 
addition, this chapter reviews current clinical literature to determine the overall impact these variations 
may have on clinical outcomes.

INTRODUCTION

The prevalence of cardiovascular disease in the United States is extensive. The American Heart Asso-
ciation estimates that approximately 1 in 3 American adults have at least one cardiovascular condition. 
Many have multiple conditions. Eighty million Americans are estimated to have hypertension, while 
15 million have some form of coronary heart disease. Cardiovascular disease (CVD) encompasses a 
wide-variety of conditions including hypertension, hyperlipidemia, coronary heart disease, atrial fibril-
lation and other arrhythmias, and congestive heart failure. CVD accounts for about 30% of all deaths in 
the United States and is the leading cause of death for both men and women (Mozafarian et al., 2016). 
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Evidence-based therapies of various pharmacologic agents have been shown to reduce morbidity and 
mortality. Commonly used agents may include beta-blockers, statins, anti-platelets, and anti-coagulants 
(January et al., 2014; O’Gara et al., 2013; Yancy et al., 2013). The effects of these medications may be 
profoundly altered by genetic variation among patients in genes responsible for drug metabolism, drug 
transport or the targets of the drugs themselves. The clinical implications of these genetic variations 
will be discussed in this chapter.

BACKGROUND

It has been a little over a 15 years since the publication of the initial draft of the human genome (Venter 
et al. 2001; Lander et al. 2001). Estimates for the final cost to sequence the “first” human genome range 
from $500 million to $1 billion. Since the completion of this first genome sequencing, technologies 
have undergone two revolutions first with massively parallel sequencing in the 2005 and recently with 
nanopore sensing technologies that hold out the hope of single molecule sequencing. As these next gen-
eration sequencing technologies become readily available, genome sequencing costs has decreased and 
sequence yields increased exponentially. In large part due to availability of high-throughput sequencing 
technologies it has become possible to begin to assess and catalogue human genetic variation. In an 
analysis of sequence data from protein coding regions (exomes) of 60,706 individuals Lek, et al. (2016) 
have identified over 3,000 genes which are likely loss of function variants; importantly 72% of these 
identified genes have no established disease phenotype at this time. The ultimate identification and 
delineating of these variants in human populations are critical to understanding the underlying genetic 
causes of human disease and drug response.

This revolution in genomic technologies as well as the attendant advances in bioinformatics has led 
to the appeal for prevention and treatment strategies based upon the individual characteristics of the 
patient, now referred to as “Precision Medicine”.

The recognition that much of the variability among patients in disease severity and treatment response 
may soon be anticipated (and prevented) with knowledge being acquired in the new fields of genomics, 
metagenomics (assessment of the patient’s microbial community), metabolomics (assessment of the small 
molecule metabolites in biological systems) and proteomics (assessment of the patient’s proteins including 
enzymes, transporters, receptors) drives the development of precision medicine. Importantly, one of the 
more successful areas in precision medicine is in pharmacogenetics or pharmacogenomics. The two terms 
have been used interchangeably and have the ultimate goal of identifying the many underlying genetic 
factors playing a role in the efficacy or toxicity of all drugs. Pharmacogenetics traditionally considers the 
action of a single gene in drug response. Pharmacogenomics is the broader term and includes any and 
all genes and their interactions that may play a role in drug response. Pharmacogenetics/genomics has 
experienced more success in terms of clinical relevance as compared to success of genomics to predict 
disease risk because often a single gene will play a large role in drug response and is thus a much more 
tractable problem (Altman 2011).

For virtually all medications the role of patient variability in drug response either in efficacy, toxic-
ity or adverse reactions is well known. One aspect of patient variability is the incidence of adverse drug 
reactions (ADR). For example, the Institute of Medicine has estimated that there are ~1.5 million pre-
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ventable adverse drug reactions in the US each year costing over 3 billion dollars (Aspden et al 2007). 
This represents a considerable and potentially avoidable burden on the healthcare system. Cardiovascular 
medications are an all too common cause of ADRs, largely due to warfarin and oral anti-platelets (Budnitz 
et al 2011). Additionally studies have shown that only 50-75% patients respond beneficially to the first 
drug administered and this rate is even lower (4%-25%) for the top ten highest-grossing drugs in the US 
(Schork 2015). For medications to treat cardiac arrhythmias nearly 60% of the drugs first administered 
provide little or no benefit (Spear et al. 2001). While it is known that much of this variation in patient 
response is due to factors including age, diet, drug interactions, or non-compliance the concern here is 
the role of genetic variation in drug response.

In the cardiovascular literature there has been much interest in the role of human genetic variation in 
drug metabolizing enzymes, drug transporters and drug targets (Myburgh etal 2012; Weeke and Roden 
2013; Johnson and Cavallari 2013). Much of what is known in the pharmacogenetics of all drugs, in-
cluding cardiovascular drugs is compiled, annotated and updated daily in the Pharmacogenomics and 
Pharmacogenetics Knowledge Base (PharmGKB, http://www.pharmgkb.org/). PharmGKB is an integrated 
database providing clinical, pharmacokinetic, pharmacodynamic, genotypic, and molecular function data 
for human genetic polymorphisms and drugs (Klein et al. 2001; Altman et al. 2003). The stated objective 
PharmGKB is to “aid researchers in understanding how genetic variation among individuals contributes 
to differences in reactions to drugs”. The data within PharmGKB includes:

1.  Annotation of genetic variants that play a role in gene-drug-disease relationships.
2.  Excellent summaries of important “pharmacogenes” – genes involved in drug response.
3.  FDA drug labels that include pharmacogenomic information.
4.  Drug metabolism and transport pathways with links to relevant genes.
5.  Clinical annotations summarizing the role of human genetic variation in altering clinical endpoints 

that aid in determining medical practice or policy.
6.  Publish pharmacogenomic drug dosing guidelines through the Clinical Pharmacogenetics 

Implementation Consortium (CPIC).

Most importantly for practitioners the Clinical Pharmacogenetics Implementation Consortium (CPIC) 
has developed guidelines to assist health care providers with available genetic test results as they apply 
to the prescribing of medication (Relling and Klein, 2011). The guidelines have been organized around 
either genes or medications and assigned a CPIC level (A-D) based on whether there are prescribing 
recommendations based on the evidence (Consortium). The PharmGKB level of evidence scale provides 
a graded approach to currently published literature with the highest level (1A) reflecting a medical 
society endorsed guideline (“Clinical Annotation Levels of Evidence”). Importantly, these guidelines 
are intended to help clinicians understand how to use test results rather than whether the tests should be 
conducted or not. Table 1 details all cardiovascular medications that have CPIC guidelines as well as 
the level of evidence associated with each and whether there are actionable dosing recommendations. 
Medications that are routinely used for cardiovascular disease that have significant levels of evidence 
or actionable dosing recommendations are reviewed in this chapter including antiplatelet medications, 
lipid lowering agents, anticoagulants and beta-blockers.
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PHARMACOGENETICS OF CARDIOVASCULAR DRUGS

The impact of pharmacogenetic variation typically manifests in either a change in the pharmacokinetic 
profile of a medication or the pharmacodynamic effect of a medication. Pharmacokinetics refers to the 
process by which a drug moves through the body, often described by absorption, distribution, metabo-
lism, and elimination (ADME). A pharmacogenomic alteration to liver enzyme systems (ex. CYP) may 
result in an increase or a decrease in the metabolism of a medication thus causing the drug to be either 
cleared faster or slower by the body respectively. Pharmacodynamics refers to the effect a medication 
has on the body. Genetic variations in target receptor complexes or intracellular signaling pathways may 
increase or decrease the effect of the medication.

Table 1. Cardiovascular medications with annotated pharmacogenetic indications based upon the Clini-
cal Pharmacogenetics Implementation Consortium (CPIC) and the Pharmcogenomics Knowledgebase 
(PharmGKB)

Drugs Indication Genes CPIC 
Level

PharmGKB 
Level of 

Evidence
PGx on FDA Label

1 Acenocoumarol Anticoagulant CYP4F2 B 2B

2 Aspirin Antiplatelet LTC4S D 2B

3 Atorvastatin Statin COQ2 D 2B

4 Carvedilol Beta Blocker CYP2D6 C 3 Actionable PGx

5 Clopidogrel Antiplatelet CYP2C19 A 1A
Genetic testing 
recommended

CES1 C/D 2B

6 Digoxin Anti-arrythmic ABCB1 C/D 2A

7 Flecainide Anti-arrythmic CYP2D6 C 2A

8 HMG COA Reductase 
Inhibitors Statin HMGCR D 2A

9 Isosorbide Dinitrate Vasodilator
NAT1 D

NAT2 D Informative PGx

10 Metoprolol Beta Blocker CYP2D6 C 3 Informative PGx

11 Phenprocoumon Anticoagulant CYP4F2 B 2A

12 Propafenone Anti-arrythmic CYP2D6 C 2A Actionable PGx

13 Propranolol Beta Blocker CYP2D6 C 4 Informative PGx

14 Rosuvastatin Statin
ABCG2 D 2B

COQ2 D 2B

15 Simvastatin Statin SLCO1B1 A 1A

16 Warfarin Anticoagulant

CYP2C9 A 1A Actionable PGx

VKORC1 A 1A Actionable PGx

CYP4F2 B 1B

CALU D 2B

GGCX D 3

 EBSCOhost - printed on 2/10/2023 5:39 PM via . All use subject to https://www.ebsco.com/terms-of-use



165

Pharmacogenomics and Cardiovascular Disease
 

Antiplatelet Medications (Clopidogrel, Prasugrel, Ticagrelor, Asprin)

• Mechanism of Action: Clopidogrel, prasugrel, and ticagrelor are all inhibitors of platelet P2Y12 
receptors. Clopidogrel and prasugrel inhibit irreversibly while ticagrelor inhibiton is reversible. In 
normal functioning platelets, ADP binds to P2Y12 receptors to reduce cyclic AMP. Cyclic AMP 
itself inhibits platelet activation; therefore, decreasing cAMP through the P2Y12 receptor promotes 
activation. Clopidogrel blocks the P2Y12 receptor, increasing cAMP, and ultimately inhibiting 
platelet activation. Only clopidogrel has been seen to be profoundly effected by genomic varia-
tions (Weitz, 2011).

• Place in Therapy: Clopidogrel is frequently used for secondary prevention of stroke, acute cor-
onary syndrome, and prevention of stent thrombosis after percutaneous coronary intervention. 
Clopidogrel has demonstrated efficacy in reducing rates of stroke, myocardial infarction, and 
death (Weitz, 2011).

• Genetic Variations Present: Clopidogrel is a prodrug that requires transformation in the liver 
via CYP2C19 to its active form. Variants in the genes encoding CYP2C19 can affect metabo-
lism. The presence of the CYP2C19*2 loss of function variant can cause marked reductions in 
platelet aggregation (Hulot et al., 2006). In addition to CYP2C19*2 there are other alleles (*2-*8) 
segregating in patient populations that also result in reduced function. There is even one allele 
CYP2C19*17 that results in increased enzyme activity and potentially increased platelet inhibi-
tion (Scott, et al 2013).

• Implications: In January 2009, in response to reports that clopidogrel effectiveness may be re-
duced in some patients, the FDA initiated an investigation into the genetic factors and other drugs 
that may influence its effectiveness (“Early Communication about an Ongoing Safety Review of 
clopidogrel bisulfate (marketed as Plavix)” January 26, 2009).(“Early Communication about an 
Ongoing Safety Review of clopidogrel bisulfate (marketed as Plavix)” January 26, 2009). In a 
follow-up communication that November, the FDA recommended against the co-administration 
of clopidogrel with omeprazole, a CYP2C19 inhibitor. In March 2010, the FDA issued a safety 
warning that poor metabolizers of clopidogrel may not receive the full benefit of the medication 
(“FDA Drug Safety Communication: Reduced effectiveness of Plavix (clopidogrel) in patients 
who are poor metabolizers of the drug” March 12, 2010). This recommendation was based on 
a pharmacokinetic study of 40 healthy subjects that demonstrated higher doses of clopidogrel 
in PMs would achieve greater anti-platelet response. However, the study was not intended to as-
sess clinical outcomes; therefore definitive recommendations could not be made (“FDA Drug 
Safety Communication: Reduced effectiveness of Plavix (clopidogrel) in patients who are poor 
metabolizers of the drug., ” March 12, 2010). Since the FDA warning, extensive research has been 
conducted on the implications of CYP2C19 polymorphisms on clinical outcomes and the need 
for genetic testing. Genotype testing prior to initiation of clopidogrel has proven to be controver-
sial. Clinical Pharmacogenetics Implementation Consortium (CPIC) recommended in its 2013 
guidelines that consideration be given to genetic testing if the results may alter treatment (Scott et 
al., 2013). The American Heart Association (AHA) recommends against routine genetic testing 
as no RCT to date has demonstrated improved outcomes (Levine et al., 2016).. A meta-analysis 
of 32 studies dating from 2008-2011 published in 2011 found no difference in clinical outcomes 
with clopidogrel use between CYP2C19 genotypes. The increase in cardiovascular events effects 
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seen in individual studies was attributed to significant small study bias in that larger studies trend-
ed toward no difference in clinical outcomes (Holmes, Perel, Shah, Hingorani, & Casas, 2011). 
Recently, Doll et al. published a genetic sub-study of the TRILOGY ACS trial evaluating the ef-
fects of CYP2C19 of clopidogrel or prasugrel in medically managed patients with acute coronary 
syndrome on a composite primary endpoint of cardiovascular death, myocardial infarction, or 
stroke. Patients were classified as either extensive metabolizers (EM) or reduced metabolizers 
(RM). While there was a trend to toward decreased events in EMs, no statistically significant 
difference was found between EMs and RMs for either medication. The authors concluded that 
genotype testing was not supported by their findings; however, the sub-study included very few 
patients with 2 non-functioning alleles (Doll et al., 2016). CYP2C19 may be more important in 
patients undergoing PCI (Wallentin et al., 2010; Mega et al., 2010). As a result of this, the AHA 
suggests use of prasugrel or ticagrelor over clopidogrel in patients indicated for dual-antiplatelet 
therapy who have undergone coronary stenting (Levine et al., 2016).

Lipid-Lowering Drugs (Atorvastatin, Rosuvastatin, 
Simvastatin, HGM Co-A Reductase Inhibitors)

• Mechanism of Action: The drug class commonly referred to as ‘statins’ are classified as HMG-
CoA Reductase inhibitors. These medications inhibit the formation of mevalonate, a precursor to 
LDL cholesterol, and result in lower in vivo synthesis of LDL. The body responds with an up-
regulation of LDL receptors increasing catabolism of circulating LDL and increasing the liver’s 
extraction of circulating LDL precursors. The net result is a lowering of circulating LDL choles-
terol levels and is one of the primary reasons these medications are utilized for many primary and 
secondary disease prevention strategies (Malloy & Kane, 2015).

• Place in Therapy: The statin medications are primarily used for the treatment and prevention of 
atherosclerotic cardiovascular disease (acute coronary syndromes, history of myocardial infarc-
tion, stable or unstable angina, stroke, transient ischemic attack or peripheral artery disease) and 
the intensity of therapy should be determined based on the 10-year ASCVD risk score of the pa-
tient and their baseline LDL-C levels (Stone et al., 2014).

• Genetic Variations Present: In 2008, the SEARCH collaborative group published the results of 
a genome wide association study to identify any major single-nucleotide polymorphism (SNP) 
that may be associated with the common statin side effect of myopathy. The study revealed a non-
synonymous rs4149056 SNP on the SLC01B1 gene that was associated with statin metabolism 
(r2=0.97). It is postulated that alterations in this gene result in a lower uptake of the statin media-
tion into hepatocytes resulting in higher circulating blood concentrations of the medication. Each 
copy of the C allele present represented an odds ratio for myopathy of 4.5 (95% CI: 2.6-7.7) and of 
16.9 (95% CI: 4.7-61.1) for CC alleles compared to TT homozygotes (Link et al., 2008). Similar 
results were found with a gene-dose effect in an additional genome wide study published within a 
year of the SEARCH trial (Voora et al., 2009).

• Implications: In response to the SEARCH trial results, the FDA updated the prescribing guide-
lines for simvastatin and no longer recommend initiating therapy at doses of 80 mg of simvastatin 
a day (“FDA Drug Safety Communication: New restrictions, contraindications, and dose limita-
tions for Zocor (simvastatin) to reduce risk of muscle injury,” 2011). The recently published ACC/
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AHA guidelines on the treatment of cholesterol identify the impact of pharmacogenetic testing as 
an area of future clinical consideration (Stone et al., 2014). In 2014, the Clinical Pharmacogenetics 
Implementation Consortium published an update to their 2012 guideline on simvastatin-induced 
myopathy. The consortium strongly recommends prescribing a lower dose of simvastatin or an 
alternative statin in patients with intermediate or low function phenotypes (Ramsey et al., 2014). 
The translation of genetic testing to clinical prescribing patterns has been minimal, in part because 
the intensity of statin dosing is the focus of clinical prescribing guidelines and has been associated 
with better patient outcomes. Although empiric reductions in dosing due to genetic profiling may 
prevent adverse events patients may not realize the clinical benefits from a lower dose of the medi-
cation. Genetic testing may have a role in guiding the selection of the initial medication rather than 
the initial dose as a means of reducing harm yet ensuring the benefit of the medication is realized.

Anti-Coagulants (Warfarin)

• Warfarin Mechanism of Action: Warfarin is an anticoagulant medication that elicits response 
through inhibition of the vitamin K reduction pathway. The reduced form of vitamin K is respon-
sible for carboxylation and activation of clotting factors. Thus the enzyme vitamin K epoxide 
reductase (VKOR) is responsible for the reduction of vitamin K; it’s inhibition by warfarin results 
in a depletion of active clotting factors resulting in systemic anticoagulation (Weitz, 2011).

• Place in Therapy: Warfarin therapy has traditionally been the basis for nearly all anticoagulation 
indications including treatment of venous thromboembolism and pulmonary embolism (VTE/
PE), stroke prevention in patients with Atrial Fibrillation (AFib), secondary stroke prevention and 
anticoagulation for valvular disease. However, novel oral anticoagulants (NOACs)- medications 
that do not require routine monitoring and have fewer drug interactions- are beginning to show 
superiority over warfarin therapy (Guyatt, Akl, Crowther, Gutterman, & Schuünemann, 2012). In 
2012, the CHEST Anticoagulation guidelines recommended dabigatran over warfarin therapy for 
the secondary prevention of stroke in patients with AFib (You et al., 2012). In 2016, the CHEST 
guidelines for VTE/PE treatment were updated and now recommend any of the NOAC medications 
over warfarin therapy (Kearon et al., 2016). Genetic Variations Present: The CYP 2C9 enzyme is 
primarily responsible for the metabolism of warfarin in the liver. Two major CYP2C9 variants *2 
and *3 have been identified as having a significant impact on the overall dosing requirements for 
warfarin therapy due to their impact on its metabolism. The CYP enzyme variability is respon-
sible for a pharmacokinetic effect on drug levels and patients with either variant have been found 
to require larger doses of warfarin (Whirl-Carrillo et al., 2012).A genetic variation in the gene 
responsible for VKOR enzyme activity, the VKORC1 gene, results in a pharmacodynamic effect 
on the medication’s activity. (Thorn) The c.-1639G>A or c.1173C>T SNP’s present in the regula-
tory regions of VKORC1 contribute to the variability in warfarin dosing for patient populations. 
Presence of the c.1639A allele results in an increased sensitivity to the effects of warfarin and 
therefore requires lower doses of the medications. The genotypes c.1639AA, AG, GG (or 1173TT, 
CT, CC) correlate to high, medium and low sensitivity to the medication (Johnson & Callavari).

• Implications: As the evidence for better outcomes with novel oral anticoagulants builds, the use 
of warfarin therapy will likely to decrease over time. In the 2012 CHEST guidelines, the routine 
use of pharmacogenetic testing for guiding the initiation of warfarin dosing was not recommended 
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with a strong level of evidence, that is Grade 1B (Guyatt et al., 2012). Although there is potential 
benefit for using genomic testing to determine warfarin dosing, the movement away from clinical 
use of the medication is likely to limit further studies on dosing based on genomics. It would be 
likely that without further studies clinical guidelines such as CHEST will not reverse their position 
on its utility for routine use.

β-blockers (Carvedilol, Metoprolol, Propanolol)

• Mechanism of Action: Beta-blockers function by binding to beta-adrenergic receptors to compet-
itively reduce binding of catecholamines and beta-agonists (Robertson & Biaggioni, 2015). Most 
agents in the class such as metoprolol and carvedilol are pure antagonists; however, some like 
pindolol and acebutalol act as partial agonists (Robertson & Biaggioni, 2015; Westfall & Westfall, 
2011). Beta-blockers decrease heart rate, blood pressure, and myocardial oxygen consumption.

• Place in Therapy: Beta-blockers are used to treat a variety of diseases such as hypertension, 
ischemic heart disease, and atrial fibrillation. Beta-blockers are also guideline-directed therapy to 
reduce morbidity and mortality from myocardial infarctions and heart failure (O’Gara et al., 2013; 
Yancy et al., 2013).

• Genetic Variations: Metoprolol is extensively metabolized hepatically through CYP2D6, thus 
variability in the CYP2D6 genotype can lead to dramatic differences in serum concentrations 
between patients. Poor metabolizers can exhibit serum concentrations three to ten times extensive 
metabolizers (Robertson & Biaggioni, 2015). CYP2D6 is responsible for up to 60% of the me-
tabolism of oral metoprolol (Lennard et al., 1982).

• Implications: CYP2D6 polymorphisms have demonstrated increased concentrations of metopro-
lol in poor metabolizers (Ismail & Teh, 2006; Sharp et al., 2009). A study of 52 patients dem-
onstrated that patients with 0 to 1 functional alleles had higher serum concentrations, 6.3 times 
(p = 0.016) and 3.2 times (p = 0.006) respectively, than patients with 2 fully functional alleles. 
The study did not find a difference in HR, SBP, or DBP between any group; however, too few pa-
tients were enrolled in the 0 functional allele group to draw conclusions (Sharp et al., 2009). The 
clinical implications of CYP2D6 variations on the effects of metoprolol may exist over a range 
of outcomes. One recent trial (2014), prospectively evaluated the effects of CYP2D6 polymor-
phisms in patients receiving oral metoprolol at doses titrated to 100 mg twice daily. 218 patients 
were classified as poor metabolizers (PM), intermediate metabolizers (IM), extensive metaboliz-
ers (EM), and ultra-rapid metabolizers (UM). There was no statistically significant difference 
seen in the mean daily dose of metoprolol, change in systolic and diastolic blood pressure in each 
group, or side effects. However, the investigators did find a greater reduction in heart rate in PMs 
and IMs (-16.6±6.9 and -18.6±5.1) compared to EMs and UMs (-11.4±6.6 and -11.2±8.2, p = 
0.0001; Hamadeh et al., 2014). As metoprolol dose is titrated to clinical effect, there is no role 
for pharmacogenomics in determining the dose at this time. While carvedilol is also metabolized 
through CYP2D6, no pharmacodynamics differences on HR, BP, or adverse effects have been 
noted (Baudhuin et al., 2010; Sehrt, Meineke, Tzvetkov, Gultepe, & Brockmoller, 2011).
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FUTURE RESEARCH DIRECTIONS AND CONCLUSION

There is now substantial pharmacogenetic evidence that could be applied to help guide patient therapy. 
In one recent review of cardiovascular drugs and pharmacogenomics the authors looked at 289 studies 
involving cardiovascular drugs and genetics (Kitsios and Kent 2012). The authors identified 289 cardio-
vascular studies assessing the role of pharmacogenetics in patient response. These studies identified 220 
unique genetic polymorphisms in genes involved in drug metabolism, transport and drug action. Of these 
9% (19) were confirmed by the authors stringent criteria to have significant associations. However, none 
of the 19 gene/drug associations have yet to be recommended for use in clinical practice. The authors 
note that this lack of clinical impact is often due to the fact that genetic testing is never likely to be more 
accurate in predicting patient response that direct phenotypic measures (INR for examples in warfarin 
dosing). In a similar study Kaufman et al. reviewed 884 drug/genetic studies involving 51 cardiovascular 
medications and found evidence of associations strong enough to support clinical alerts for 92 polymor-
phisms affecting 23 medications (Kaufman et al. 2015). They note that the lack of randomized clinical 
trials (RCT) has hampered the incorporation of guidelines based upon genetic tests. Such RCTs while 
foundational to evidence-based medicine are difficult in pharmacogenetic assessments given the cost, 
time and limited scope of any one allele in patient populations. Lesko et al. suggests that requirement of 
RCTs to demonstrate clinical utility “represents an unrealistically high evidentiary standard” (Lesko, et 
al. 2010). Rather RCTs along with a combination of prospective clinical trials and observational studies 
are needed to hasten the translation of pharmacogenetic research to medical practice (Lesko, et al. 2010). 
It has been argued that the standard to employ pharmacogenetic information in making clinical decisions 
should not be superiority to current practice. Given the ever decreasing cost of genotyping and the gener-
ally low risk of modifying therapy based upon pharmacogenetics the use of this information should be 
an important component of any multi-faceted decision making process guiding therapy (Altman 2011).
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KEY TERMS AND DEFINITIONS

CPIC Levels: A or B Prescribing action recommended, alternative therapies or dosing are highly 
likely to be effective and safe. C: No prescribing action recommended, alternatives are unclear, but test-
ing is common. D: No prescribing action recommended, alternatives are unclear or evidence is weak; 
testing is rare or nonexistent.

Genome: The genome of an organism encompasses all the genetic material in the cell. In humans 
this would include the 3 billion bases pairs contained in the chromosomes in the nucleus and the ap-
proximately 16,000 base pairs of the mitochondria.

Genotype: The underlying genetic constitution of an individual usually in relation to a specific trait.
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Mechanism of Action: The mechanism by which a medication alters physiology to elicit a response. 
Mechanisms of action are often described by the manner in which a drug binds to a target receptor (ago-
nist/antagonist). It may be described by enzymatic activity or intracellular action.

Pharmacodynamics: The effect of a drug on a body. The pharmacodynamics of a medication is 
dependent on the mechanism of action of the medication.

Pharmacogenetics: The study of the role of genetic variation in determining individual drug response. 
Generally, pharmacogenetics has been limited to the effects of one or a few genes.

Pharmacogenomics: The study of the genome-wide role of human variation in drug response. Phar-
macogenomics is a broader term and includes pharmacogenetic effects. Pharmacogenomics also includes 
the application of genomic technologies in drug discovery, disposition and function.

Pharmacokinetics: The process by which a drug is absorbed, distributed, metabolized and elimi-
nated after it enters the body. Pharmacokinetics describes how a medication moves through the body 
and therefore impacts the overall concentration, location, and duration of a medication and its effects.

PharmaGKB Level of Evidence: 1A/1B: High, CPIC guideline or known clinical implementation. 
2A/2B: Moderate, variant-drug combination with moderate evidence of an association. 3: Low, Annota-
tion for a variant-drug combination based on a single significant (not yet replicated) or annotation for 
a variant-drug combination evaluated in multiple studies but lacking clear evidence of an association. 
4: Annotation based on a case report, non-significant study or in vitro, molecular or functional assay 
evidence only.

Phenotype: The observable outcome of the interaction of an individual’s genes and environmental 
factors.

Polymorphic: A gene or locus is polymorphic if there are differences among individuals in its DNA 
sequence or length. Generally, the specific difference must have a frequency of 5% in the population to 
be considered polymorphic.
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ABSTRACT

Infective endocarditis is a relatively uncommon infectious disease that leads to substantial mortality and 
morbidity. This disease primarily involves bacterial infection of the heart valves. Diagnosis is contingent 
upon excellent physical examination and radiological and microbiological evidence. While failure to 
identify the causative microorganism does not preclude the diagnosis of infective endocarditis, man-
agement is more difficult. Recent advances have improved the etiological identification and allowed for 
shorter time to optimal antibiotic therapy. Advances in treatment have focused on therapies to combat 
drug-resistant microorganisms as well as mitigate adverse events. While new therapies are available, 
there exists a paucity of clinical evidence and further studies are required.

INTRODUCTION

While cardiovascular infections are relatively uncommon, they carry substantial morbidity and mortality 
and consume substantial healthcare resources. Three distinct clinical syndromes have been previously 
described and account for the vast majority of serious infections of the heart: endocarditis, myocarditis, 
and pericarditis. A variety of infectious pathogens including viruses, bacteria, and fungi are responsible 
for these syndromes. Rapid diagnosis, identification of etiologic pathogen, and receipt of optimal therapy 
are necessary to reduce mortality and prevent substantial morbidity.

Infective endocarditis refers to infection of the inner lining of the heart, specifically the valves of the 
heart. Now considered the fourth most common serious infection leading to mortality, infective endo-
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carditis has an incidence of only 3-7 cases per 100,000 person-years (Baddour, 2015; Mylonakis, 2001). 
However, it has been estimated to be responsible for a loss of 1.6 million healthy years globally (Murray, 
2012). In this chapter, we explore the epidemiology, pathophysiology, etiology, and diagnosis, with a 
particular emphasis on treatment advances for the most common infectious pathogens. The objectives of 
this chapter are to give the reader a comprehensive overview of this disease and an in depth discussion 
on treatment by discussing evidence-based recommendations and controversies.

EPIDEMIOLOGY AND PATHOPHYSIOLOGY

Two major guidelines have been published regarding the diagnosis and treatment of infective endocarditis; 
the United States (US) guideline was recently updated in 2015 (Baddour, 2015) as was the European 
Society of Cardiology guidelines (Habib, 2015). While infection of any part of the inner lining heart 
would be included in this syndrome, the heart valves have a higher probability of becoming infected 
(Fowler, 2015).

During the 20th century, the median age of patients with infective endocarditis has gradually increased 
from less than 30 years to the current estimated median of 50 years of age (Fowler, 2015; Murdoch, 
2009). Of note, males more commonly become infected, particularly later in life. This has not always 
been the case but may be due to a number of factors including the decline in rheumatic fever, the aging 
population, and immunosenescence (Fowler, 2015).

Of alarming concern is the advent of healthcare-associated infective endocarditis. This new clas-
sification is likely due to increased incidence of surgical interventions, insertion of prosthetic material, 
and duration of indwelling catheters. This increase easily prompts anxiety in light of the rise of wide-
spread antibiotic resistance and the proliferation of pandrug-resistant microorganisms (Spellberg, 2008; 
Spellberg 2013).

A vast majority of infective endocarditis is localized to either the aortic or mitral valve (left-sided 
endocarditis). Infection on the tricuspid and pulmonary valves (right-sided endocarditis) occurs infre-
quently. Of interest, the incidence of aortic valve endocarditis with involvement of other valves has 
increased substantially from 5% of cases in 1938 to 38% in the year 2000 (Murdoch, 2009). Right sided 
endocarditis is estimated to account for only 10% of all cases (Moss, 2003). The hypotheses for this dif-
ference in location of infection are three-fold: 1). blood on the left-side of the heart has a higher oxygen 
content which is more conducive to bacterial growth; 2). higher pressures on the left side of the heart 
may create higher turbulence which leads to higher probability of endothelial damage; 3). congenital and 
acquired abnormalities of heart structures are more common on the left side (Frontera, 2000). Rheumatic 
heart disease, once the most common cause of defect leading to infective endocarditis, has reduced in 
incidence in developed countries to less than 5% of infective endocarditis cases (Murdoch, 2009). Major 
congenital heart defects are known to predispose to infective endocarditis; however, minor defects are 
also major risk factors. One of the most common of these defects is a bicuspid aortic valve which was 
shown in one study to be a contributing factor in 16% of native valve endocarditis cases (Tribouilloy, 
2010). This defect is particularly prevalent in elderly males with most patients unaware of the defect until 
the time of infective endocarditis diagnosis (Lamas, 2000). Other defects include degenerative lesions 
present in the elderly (Fowler, 2015).
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Other factors associated with infection include mechanical heart valves, healthcare contact as men-
tioned previously, and injection drug use. While the majority of patients have left-sided endocarditis 
because of the aforementioned reasons, it is estimated that 75% of injection drug users with endocarditis 
have right-sided endocarditis (Frontera, 2000). Injection drug users often reconstitute illicit drugs for 
injection with nonsterile fluid, including tap water and saliva, which have high numbers of bacterial 
organisms. In addition, injection drug users do not routinely perform aseptic technique when injecting, 
thereby increasing the chance of inoculating the bloodstream with skin flora. If the bloodstream is in-
oculated during this process, a substantial bacterial load will be introduced to the right-side of the heart.

A distinction is made between infection occurring on native valves and those on prosthetic valves 
(mechanical or bioprosthetic) valves. The presence of a prosthetic valve is a risk factor for the development 
of infective endocarditis and the incidence has been increasing. In a study published in 2009, prosthetic 
valve endocarditis accounted for approximately 20% of cases (Murdoch, 2009). Approximately 90,000 
prosthetic valves are implanted in the United States and the incidence of prosthetic valve endocarditis 
is approximately 0.5% per patient-year. This infection carries an extremely high mortality of 30-50% 
(Pibarot, 2009).

Multiple factors must be chronologically present for the development of infective endocarditis. First, 
alteration and subsequent damage of the valve endothelium must be present. In patients with native 
valves, this is typically caused by high blood turbulence and alterations in blood flow that can be caused 
by congenital defects, regurgitation, valvular stenosis, and multiple other conditions. The presence of 
a prosthetic valve qualifies as an alteration of the valve endothelium. Endothelial damage leads to re-
cruitment and attachment of fibrin, platelets, fibronectin, and other factors developing into nonbacterial 
thrombotic endocarditis (e.g. a blood clot on the valve that is sterile). Second, bacteria must be present 
in the bloodstream, adhere to the thrombotic lesion, and invade this thrombosis leading to infection. 
Certain bacteria appear to have a predisposition for adhering and infecting these sterile thrombotic le-
sions. Once infected, these thrombotic lesions are colloquially referred to as vegetations. While most 
bacteremias are transient and cleared readily by the intact immune system, microorganisms within a 
vegetation are, to some degree, protected from the immune system. The vegetation provides an excel-
lent location for bacterial growth, expansion, and subsequent invasion of the surrounding tissue, which 
finally leads to infective endocarditis. The presence of a large vegetation (> 10 mm in diameter) can, in 
turn, result in hemodynamic instability, further disturbances in blood flow, and embolic phenomenon 
(Baddour, 2015). Fortunately, the incidence of embolic events has decreased from an estimated 70 to 
95% in the pre-antibiotic era to 15-35% currently (Fowler, 2015). Further damage to the valve and sur-
rounding tissue can occur, particularly with infection caused by Staphylococcus aureus. In addition, over 
activation of the immune system can often result in immune complex deposition which is responsible 
for Roth spots and Osler’s nodes.

The necessity of predisposing endothelial damage was illustrated in animal models. In animals with 
undamaged heart valves, injection of high inoculums of bacteria did not result in infective endocarditis. 
In contrast, damage to the valve lining followed by injection of bacteria resulted in rapid development 
of infective endocarditis (Durack, 1972; Durack, 1972). Transient bacteremia is caused when a mucosal 
surface colonized with bacteria is traumatized leading to the potential for bacterial entry into the blood-
stream. Most bacteremias of this origin are present for only 15 to 30 minutes prior to being eradicated 
by the intact immune system. Transient bacteremias are most closely related to dental, upper airway, 
gastrointestinal, urologic, and obstetric/gynecologic procedures (Fowler, 2015).
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SIGNS, SYMPTOMS, AND DIAGNOSIS

In a large cohort study, the most common signs and symptoms of infective endocarditis were fever (96%), 
heart murmur (85%), hematuria (26%), embolic phenomenon (17%), splenomegaly (11%), splinter hem-
orrhages (8%), Janeway lesions (5%), conjunctival hemorrhage (5%), Osler’s nodes (3%), and Roth’s 
spots (2%) (Murdoch, 2009). Symptomatology of infective endocarditis is differentiated into acute cases, 
presenting within days, and subacute cases, presenting within weeks to months. Particularly in subacute 
cases, generalized signs of chronic illness are often present and include anorexia, night sweats, low-
grade fevers, weight loss, chronic fatigue, and diffuse weakness. Pulmonary compromise can be seen in 
those with right-sided endocarditis due to embolic events. In those with left-sided endocarditis, embolic 
events can occur in any organ system leading to some difficulty in diagnosis and often misdiagnosis.

Anemia is very common in patients with subacute infective endocarditis but is uncommon in those 
with acute presentations; the opposite is true for leukocytosis, as those with subacute infection often have 
normal leukocyte counts. Non-specific signs of infection also include elevated erythrocyte sedimenta-
tion rate and C-reactive protein. Patients will often present with abnormal urinalysis with proteinuria, 
hematuria, and renal casts present. Despite the potential usefulness of these laboratory values, blood 
cultures and echocardiography are the most useful diagnostic tools available.

In a prospective study of infective endocarditis, 89% of patients had positive blood cultures (Murdoch, 
2009). The most common reasons for culture-negative infective endocarditis include inadequate blood 
culture volume collected, prior antibiotic administration, and fastidious microorganisms, including cell 
wall deficient bacteria, Brucella species, Legionella species, Bartonella species, Tropheryma whip-
plei, fungi, mycobacteria, and nutritionally variant streptococci (Baron, 2005). The HACEK organisms 
(Haemophilus species, Aggregatibacter actinomycetemcomitans, Cardiobacterium hominis, Eikenella 
corrodens, and Kingella kingae) were historically thought to be the most common cause of culture nega-
tive endocarditis. Currently, HACEK organisms are easily isolated due to improvements in blood culture 
media and automated blood culture systems (Petti, 2006). Cases of culture-negative infective endocarditis 
can be difficult to manage as tailoring and optimizing antibiotic regimens is extremely difficult without 
knowledge of the offending pathogen. Since the source of infection is the vegetation, bacteremia is con-
stant but colony counts are typically low. Collection of appropriate cultures may limit culture-negative 
endocarditis to approximately 5% of cases (Von Reyn, 1981). In these few cases, additional diagnostic 
laboratories may be useful (Fowler, 2015). These include serological tests, histopathology and direct 
immunofluorescence of resected vegetations, and polymerase-chain reaction.

Recent advances in microbiological techniques may decrease the time to identification of the caus-
ative pathogen. Two of these techniques are matrix-assisted laser desorption/ionization time of flight 
(MALDI-TOF) mass spectroscopy and whole genome sequencing. MALDI-TOF is a technique that ionizes 
bacteria and analyzes the resultant protein composition via mass spectroscopy. It has recently received 
wide acceptance into clinical laboratories and has been useful in decreasing time to identification of 
bacteria from clinical cultures; in addition, it has the ability to differentiate bacterial species that were 
previously difficult to differentiate using traditional techniques commonly employed in clinical labora-
tories (Huang, 2013; Perez, 2014). While it may aid in precision of organism identification, it is unlikely 
to decrease the incidence of culture-negative endocarditis as it currently must be performed on bacterial 
colonies that have grown on culture media. Instead of the proteomics utilized in MALDI-TOF, whole 
genome sequencing is a technique that rapidly sequences bacterial DNA. It has also been proposed as a 
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method to decrease time to bacterial identification and enhance the precision of identification; however, 
similar to MALDI-TOF, it is unlikely to decrease the incidence of culture-negative endocarditis. Whole 
genome sequencing is currently in the experimental phase and has not yet been widely introduced into 
clinical laboratories (Kwong, 2015). Both of these techniques will enhance bacterial species identifica-
tion which will further inform clinical practice by allowing for delineation of specific risk factors and 
advanced treatment options for specific organisms.

Echocardiography is performed in two ways: transthoracic (TTE) and transesophageal (TEE). While 
TEEs are more invasive requiring the ultrasound transducer to be introduced into the esophagus for 
visualization, it results in much higher sensitivity at detecting vegetations (Erbel, 1988). As TTE is 
noninvasive, the recent updates to the guidelines recommend this test in all patients suspected of infec-
tive endocarditis. If TTE is negative, then a TEE is recommended. The benefit of TEE appears to be in 
detection of small vegetations (Erbel, 1988).

Suspicion of endocarditis is reliant upon the clinician’s recognition of signs and symptoms consist 
with this disease. Criteria for diagnosis (first introduced in 1982) were updated in 2000 and are called the 
modified Duke’s criteria (Baddour, 2015). While these criteria can be a useful aid, clinical identification 
and judgment is the keystone of diagnosis.

ETIOLOGY

The most common bacterial etiologies are described in Table 1 (see Appendix). In intravenous drug 
users, etiological distribution is altered and is listed in Table 2 (see Appendix). Empiric antimicrobial 
therapy should be tailored to the most likely pathogens causing infections based upon the clinical pre-
sentation, patient specific risk factors, and any clinical laboratory results. Consultation with infectious 
disease specialists is recommended and is likely to improve appropriate empiric therapy (Baddour, 2015).

Of growing concern is the rise in incidence of multidrug-resistant organisms (Peterson, 2009). Of 
most concern are the “ESCAPE” pathogens: Enterococcus faecium, Staphylococcus aureus, Clostridium 
difficile, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae. Staphylococcus 
aureus and enterococci comprise a significant portion of infective endocarditis cases (see Table 1). In 
addition, Staphylococcus aureus and Pseudomonas aeruginosa are common pathogens in injection drug 
users with infective endocarditis (see Table 2). Many organizations have identified multidrug-resistant 
pathogens to be a global health concern including the Infectious Diseases Society of America, Centers 
for Disease Control, the Whole Health Organization, and the United States White House. Methods pro-
posed to attenuate the rise in resistance include limiting antibiotic consumption to only those needing 
therapy (e.g. antimicrobial stewardship), developing new drugs, and limiting antibiotic use in livestock 
(United States, 2015). Unfortunately, few new antibiotics are being developed in order to combat this rise 
in resistance. Attempts to increase antimicrobial stewardship are ongoing but have been mainly focused 
in the hospital setting and efforts to curtail antibiotic consumption in livestock are only slowly being 
adopted. Patients with infective endocarditis infected with multidrug-resistant pathogens have limited 
treatment options and are at a higher risk of mortality and morbidity.
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TREATMENT

General Principles

This section will focus on advances that have occurred in recent years for treatment of two of the most 
common bacteria responsible for infective endocarditis: Staphylococcus aureus and enterococci. The 
goal of treatment is sterilization of the infected heart tissue, particularly the infected vegetation. Drug 
penetration into the vegetation can be limited and therapeutic activity may be altered as some microor-
ganis are metabolically inactive. Altered antimicrobial activity in this instance is called the inoculum 
effect; in particular, drugs that act on the cell wall (i.e. beta-lactams) may have reduced activity in large 
inoculums when bacteria near the center of the vegetation are metabolically inactive. Cell wall agents 
have activity on growing and rapidly dividing cells; however, in this instance, some cell wall agents 
may have reduced activity. In addition, host immune defenses may be altered due to constant activation 
and the inability to penetration into the vegetation. Due to some of these concerns, long durations of 
intravenous (iv) antimicrobial therapy is preferred. In addition, bactericidal antibiotics are recommended 
(Baddour, 2015). In order to achieve bactericidal activity, combination therapy is required or helpful in 
certain situations.

Optimizing Pharmacodynamic Parameters

When designing antimicrobial therapy, special attention should be given to optimizing the pharmacody-
namic parameters of certain antimicrobials. For example, prolonged or continuous infusion of beta-lactam 
antibiotics has been shown to decrease mortality in certain populations (Lodise, 2007), although this has 
not been evaluated in infective endocarditis. Other antibiotics of interest include vancomycin with efficacy 
maximized when the 24-hour area under the curve to minimum inhibitory concentration (AUC24:MIC) 
ratio exceeds 400. Several retrospective reports have identified this target to result in improved mortality 
and greater clinical success in Staphylococcus aureus bacteremia (Kullar, 2011; Holmes, 2013). These 
results have yet to be confirmed in infective endocarditis or by prospective trials. The current standard 
for vancomycin dosing is to target a serum trough level of 15-20 mg/L in serious infections (Rybak, 
2009). Unfortunately, AUC and trough are poorly correlated with trough not being recommended as a 
reliable surrogate by some groups (Patel, 2011; Neely, 2014). Several different methods are available 
to determine optimal vancomycin dose to target a specific AUC; unfortunately, none of these methods 
have been robustly tested in prospective trials (Pai, 2014; Fuchs, 2013). Further research is desperately 
needed in this field; currently, it appears prudent to attempt to calculate the AUC for a vancomycin dos-
age regimen instead of relying on the vancomycin target trough concentration. This holds true in cases 
where vancomycin is needed for treatment of infective endocarditis.

Daptomycin is frequently used in infective endocarditis caused by certain bacteria. While the Food 
and Drug Administration (FDA) approved dosing is 6 mg/kg for serious infections including right-sided 
infective endocarditis, higher doses are increasingly being used across the United States. Daptomycin 
is a lipopeptide with concentration dependent activity (optimizing the maximum concentration to mini-
mum inhibitory concentration [MIC] ratio improves microbiological efficacy). As such, higher doses 
may result in better clinical efficacy. Daptomycin is often used in cases where vancomycin and other 
agents cannot and is considered one of the last feasible options for some microorganisms. Confirming 
daptomycin susceptibility prior to treatment is important due to a correlation between reduced dapto-
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mycin susceptibility and vancomycin-intermediate Staphylococcus aureus (Cui, 2006). As such, treat-
ment failure with daptomycin may have serious consequences. Efforts to improve daptomycin efficacy 
have focused on utilizing higher than FDA approved doses to limit treatment failure and to limit the 
development of resistance. Several analyses have concluded that doses up to 12 mg/kg of daptomycin 
are safe with limited adverse reactions (Lai, 2013; Benvenuto, 2006). While some data suggest high-
dose daptomycin to be safe, data are not available suggesting enhanced efficacy. While daptomycin has 
been studied in infective endocarditis, large prospective trials evaluating its safety and efficacy are not 
available. Unfortunately, in many instances, daptomycin is one of the only remaining options for some 
patients and must be used despite the paucity of data.

Treatment of Staphylococcal Infective Endocarditis

As mentioned in previous sections, Staphylococcus aureus is the microorganism responsible for the 
largest percentage of cases of infective endocarditis. It is common in all subtypes of infective endocar-
ditis, including injection drug users. During its widespread introduction in World War II, penicillin had 
high activity against Staphylococcus aureus. Unfortunately, in 1942, penicillin-resistant Staphylococ-
cus aureus (with resistance mediated by production of a penicillinase) was identified in hospitals and, 
later, in the general community (Rammelkamp, 1942). By the 1960s, over 80% of all clinically isolated 
Staphylococcus aureus was resistant to penicillin (Chambers, 2001). In 1961, a new class of antibiot-
ics was introduced with the approval of methicillin. This class of antibiotics resists hydrolysis by the 
penicillinase produced by Staphylococcus aureus; unfortunately, resistance to methicillin was rapidly 
identified and was later called methicillin-resistant Staphylococcus aureus (MRSA). Once uncommon in 
the 1960s, some geographical areas report methicillin-resistance in excess of 50% of all Staphylococcus 
aureus isolates currently. New therapeutic options have been developed over the last several decades.

Therapeutic options for treatment of infective endocarditis caused by Staphylococcus aureus are listed 
in Table 3 (see Appendix). For methicillin-susceptible Staphylococcus aureus (MSSA), nafcillin or oxa-
cillin are the preferred options with cefazolin being recommended for those patients unable to tolerate 
primary therapy (Baddour, 2015). In other infections caused by MSSA, cefazolin is a primary therapy as 
well as nafcillin and oxacillin. While susceptible in in vitro testing, the presence of a large inoculum of 
MSSA, may lead to higher rates of cefazolin failure as compared to that of nafcillin or oxacillin. In an in 
vitro study in 2009, it was shown that high production of a penicillinase (type A beta-lactamase) could be 
responsible for cefazolin failure (Nannini, 2009). This report suggested that 19% of MSSA displayed this 
inoculum effect and potential for inducing cefazolin failure. As a high number of organisms are present 
in vegetations, the chance of cefazolin failure because of the inoculum effect could be substantial. For 
this reason, cefazolin should be used only as an alternative to nafcillin or oxacillin. The increased rate 
of potential cefazolin failure, in comparison to that of nafcillin or oxacillin, has not been readily shown 
in other severe diseases such as in MSSA bacteremia. In a retrospective cohort study, treatment with 
cefazolin was not associated with higher rates of treatment failure in comparison to nafcillin; however, 
cefazolin was much better tolerated with nafcillin discontinuation rates of almost 20% (Lee, 2011). In a 
separate study, 34% of patients requiring long-term therapy discontinued nafcillin as compared to only 
7% of patients treated with cefazolin (Youngster, 2014). Common adverse effects for nafcillin included 
rash, renal dysfunction, and liver abnormalities. All patients experiencing an adverse reaction with naf-
cillin that were switched to cefazolin completed their treatment (Youngster, 2014). In summary, while 
there may be a higher potential failure in patients treated with cefazolin due to the inoculum effect, it is 
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much more likely that patients will tolerate and be able to finish therapy when treated with cefazolin as 
compared to nafcillin or oxacillin.

The US guidelines recommend vancomycin to be used for MSSA only when a patient is unable to 
receive nafcillin, oxacillin, or cefazolin. Multiple retrospective studies have examined the efficacy of 
vancomycin versus nafcillin, oxacillin, or cefazolin, and these data are generally considered to be overall 
poor in quality (Holland, 2014). In general, studies have found that treatment of MSSA bacteremia with 
nafcillin, oxacillin, or cefazolin results in better overall clinical efficacy as compared to treatment with 
vancomycin. One study of patients with MSSA bacteremia found 79% lower mortality in those treated 
with cefazolin or nafcillin; in patients treated initially with vancomycin and then switched to cefazolin 
or nafcillin, they identified a 69% lower mortality in comparison to those receiving therapy with van-
comycin alone (Schweizer, 2011).

For patients with MRSA infective endocarditis, the US guideline recommends vancomycin or dap-
tomycin. For those patients infected with vancomycin intermediate Staphylococcus aureus (VISA), 
daptomycin or ceftaroline may be options. While vancomycin has been the standard therapy for MRSA 
for over 5 decades, daptomycin has only recently been approved in 2003. The FDA approved indications 
include treatment of Staphylococcus aureus bacteremia and also right-sided infective endocarditis. While 
the study that led to his FDA approval was small, the results suggested that daptomycin had similar ef-
ficacy to comparative drugs (vancomycin for MRSA and nafcillin, oxacillin, cloxacillin, or flucloxacillin 
for MSSA) including those with right-sided infective endocarditis (Cubicin, 2006). Not enough patients 
with left-sided infective endocarditis were enrolled in the study in order to perform a formal analysis. 
In a separate analysis published in 2013, patients treated with daptomycin with either left or right-sided 
endocarditis had good clinical outcomes with success of 89% (Kullar, 2013). Patients generally received 
high doses of daptomycin in this study with a median dose of 9.8 mg/kg/day (in comparison to the FDA 
approved dosage of 6 mg/kg/day). No patients required discontinuation of daptomycin therapy because 
of adverse events. In 2013, a retrospective analysis (n=170) evaluated the difference in clinical outcomes 
between patients treated with vancomycin or daptomycin for MRSA bacteremia with a vancomycin MIC 
> 1 mg/L. They identified a higher mortality and also a longer time to bacteremia clearance in those 
treated with vancomycin. The authors suggest that in scenarios when the vancomycin MIC is > 1 mg/L, 
daptomycin may be preferred (Murray, 2013). In contrast to this report, a multicenter study found a 
similar composite failure rate between vancomycin and daptomycin of 39% and 31% (P = 0.259). While 
they did note a few outcomes that favored daptomycin, overall, no difference was found (Moise, 2016). 
A meta-analysis that included a total of 38 studies of Staphylococcus aureus bacteremia found that 
mortality did not differ between patients with high vancomycin MICs (≥ 1.5 mg/L) and those with low 
vancomycin MICs (< 1.5 mg/L) (Kalil, 2014). In addition, some have suggested that regardless of the 
vancomycin MIC, switching therapy should be considered in those patients that fail to have an adequate 
response with vancomycin after 3-4 days (Kullar, 2014).

Currently, there is still debate on which therapy is the treatment of choice in MRSA infective en-
docarditis, particularly in those with vancomycin MICs > 1.0 mg/L. In cases of VISA or failure of 
vancomycin or daptomycin therapy, a paucity of evidence exists. However, anecdotal evidence suggests 
that combination therapy, often involving the newly approved ceftaroline, should be considered (Kullar, 
2016; Sakoulas & Moise, 2014). Ceftaroline is a fifth generation cephalosporin with activity similar to 
ceftriaxone with one major difference; ceftaroline is the only beta-lactam with activity against MRSA. 
It is currently only approved for treatment of MRSA in the setting of skin and soft tissue infections; 
however, it has been used off-label in a number of cases with good success (Ho, 2012). Despite lack of 
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high quality clinical evidence, its use continues to grow in refractory cases and could be considered as 
a viable alternative.

Treatment of Enterococcal Infective Endocarditis

Enterococci are the third most common pathogens in patients with infective endocarditis (see Table 1) 
with Enterococcus faecalis as the most frequently isolated. These organisms have low virulence in com-
parison to Staphylococcus aureus but can carry significant resistance genes making successful treatment 
of invasive disease, such as infective endocarditis, difficult (Mundy, 2000). Enterococci have reduced 
susceptibility to penicillins relative to streptococci but are still considered to have intrinsic susceptibil-
ity to penicillin, ampicillin, and piperacillin. Resistant to the penicillins is mediated by alteration of the 
penicillin binding protein (PBP) or production of a penicillinase. They express low levels of PBP4 and 
PBP5 to which cephalosporins bind, rendering this class ineffective when used as monotherapy. Addi-
tionally, some enterococci produce an aminoglycoside modifying enzyme causing these microorganisms 
to be highly resistant to this class.

Historically, a vast majority of treatment failures with enterococcal endocarditis occurred with pa-
tients receiving penicillin monotherapy. In order to achieve bactericidal activity and decrease treatment 
failure, the US guidelines recommend combination therapy for penicillin-susceptible enterococci (see 
Table 3). In the past few years, several major studies have been published which have led to treatment 
advances. In 1999 and 2001, studies demonstrated the efficacy of ampicillin plus ceftriaxone in in vitro 
and animal models with Enterococcus faecalis that expressed high-level gentamicin resistance (Gavalda, 
1999; Desbiolles, 2001). The rationale for using ceftriaxone for synergy stems from data suggesting that 
enterococci upregulate PBP2 and PBP3, to which ceftriaxone binds, in the presence of ampicillin; the 
combination of agents provides enhanced saturation of PBP leading to bactericidal activity (Gavalda, 
1999). In 2003, a study suggested that ampicillin plus ceftriaxone led to similar efficacy when compared 
to ampicillin plus gentamicin in enterococci that were susceptible to gentamicin (Gavalda, 2003). Finally, 
in 2007 and 2013, clinical studies confirmed that ampicillin plus ceftriaxone was just as effective, but 
with less renal toxicity, as ampicillin plus gentamicin in enterococcal endocarditis caused by gentamicin 
susceptible and resistant strains (Gavalda, 2007; Fernandez-Hidalgo, 2013). The US guidelines currently 
recommend ampicillin plus ceftriaxone to be used in those with impaired renal function or in cases of 
high-level gentamicin resistance (Baddour, 2015). While some experts recommend this combination 
in all scenarios of enterococcal infective endocarditis (Fernandez-Hidalgo, 2013), data are lacking to 
substantiate this recommendation.

As gentamicin can cause up to 25% of patients to discontinue therapy due to new renal failure when 
treating enterococcal endocarditis, there has been interest in limiting the duration of gentamicin com-
bination therapy. In 2002, a retrospective report of 93 cases of enterococcal endocarditis from Sweden 
concluded that utilizing ampicillin plus gentamicin for 2 weeks followed by ampicillin alone for 2-4 
weeks led to excellent treatment success (Olaison, 2002). Based partly on this study, Sweden changed 
their national guidelines to recommend only 2 weeks of gentamicin therapy. In 2013, a quasi-experimental 
report from Sweden described the treatment outcomes of 84 patients with enterococcal endocarditis with 
approximately half being treated with longer duration and half being treated with only 2 weeks of gen-
tamicin therapy (Dahl, 2013). They identified no difference in clinical outcomes with the exception that 
those receiving longer duration of gentamicin therapy had more significant decreases in renal function. 
While this option was not recommended in the US guidelines, it appears to be an acceptable alternative.
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For vancomycin-resistant enterococci (VRE), daptomycin and linezolid are viable treatment options. 
Linezolid is an oxazolidinone that binds to the bacterial ribosome leading to bacteriostatic activity. 
While susceptibility to linezolid remains high (>97%), resistance has been detected, particularly during 
treatment (Baddour, 2015). Linezolid has been used in multiple cases of infective endocarditis including 
treatment of VRE. In a review of case reports including 6 cases of VRE endocarditis, treatment with 
linezolid led to clinical cure in 5 patients but only improvement, and eventual death, in the 6th (Falagas, 
2006). Several other cases have reported the outcomes of linezolid with one reporting treatment failure 
(Tsigrelis, 2007).

Daptomycin is a cyclic lipopeptide that has bactericidal activity against enterococci via bacterial 
membrane disruption. It is FDA approved for treatment of right-sided infective endocarditis caused by 
Staphylococcus aureus, but not enterococci. Despite this lack of indication, daptomycin has been used 
for treatment of VRE infective endocarditis. In a case series of 49 patients with infective endocarditis 
treated with daptomycin, 9 were infected with VRE with 6 achieving clinical success (Levine, 2007). 
One analysis of high-dose daptomycin (median 8.2 mg/kg) for treatment of enterococcal infections 
found clinical success of 89% and limited adverse events suggesting this dosage to be safe (Casapao, 
2013). In the largest study to date, investigators retrospectively compared treatment with linezolid to 
that of daptomycin for VRE bacteremia (n=644) (Britt, 2015). Included in the study were 39 cases of 
endocarditis, although a formal analysis was not conducted on this subgroup. The study concluded that 
daptomycin resulted in superior clinical outcomes including treatment success and mortality, but not 
recurrence of bacteremia. As substantial differences existed in the baseline characteristics of the study 
groups, the investigators performed a propensity score-matched analysis. The results of this analysis 
were similar to the other analyses showing daptomycin to be superior.

While clinical efficacy has been shown for VRE infections, development of daptomycin resistance 
has been documented, particularly during treatment (Kanafani, 2007). Due to the isolation of VRE with 
high daptomycin MICs, several have suggested combination therapy to be preferred in this scenario. 
The use of non-susceptible antibiotics in combination with daptomycin has been shown to be syner-
gistic and enhance daptomycin binding and activity. This phenomenon, known as the seesaw effect, is 
also described for treatment of daptomycin non-susceptible Staphylococcus aureus (Dhand, 2011). In 
the case of enterococci, the development of daptomycin non-susceptibility has been accompanied by 
a paradoxical enhanced susceptibility to typically resistant ampicillin or ceftaroline (hence “seesaw”) 
(Sakoulas, 2012; Sakoulas, 2013; Sakoulas & Rose, 2014). Use of combination therapy with daptomycin 
plus ampicillin or ceftaroline leads to bactericidal activity. While shown in vitro, limited cases have been 
published to demonstrate the clinical utility of these combinations. While there is a substantial lack of 
clinical data, US guidelines suggest that prescribers consider use of combination therapy in cases with 
high daptomycin MICs in which no reliable agents exist (Baddour, 2015). Based on these data, dapto-
mycin has become the preferred agent for treatment of VRE infections, including infective endocarditis. 
While not well established, high-dose daptomycin (>6 mg/kg) is recommended (Baddour, 2015) and is 
generally considered safe.

FUTURE RESEARCH

While advances have been made in recent years, emerging technology to identify microorganisms di-
rectly from blood samples will greatly enhance pathogen identification. Some of these tools have yet 
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to be developed but will likely be built on platforms of genomic, proteomic, or antigen based systems. 
The ability to detect a pathogen immediately upon drawing a blood sample would reduce unnecessary 
antibiotic use, improve time to optimal therapy, and further aid in definitive diagnosis of infective endo-
carditis. New treatments have been recently explored for infective endocarditis caused by Staphylococ-
cus aureus and enterococci. Despite this, there is a paucity of national or international trials evaluating 
different treatment options. While certain medical fields, such as oncology, enroll patients into national 
studies funded by either governmental or organizational grants, research on infectious diseases, includ-
ing infective endocarditis, are often performed by single centers or geographically limited multicenter 
studies. Future work needs to be done, particularly in diseases with relatively low incidence such as 
VRE infective endocarditis.

CONCLUSION

Infective endocarditis continues to carry substantial risk of mortality and morbidity despite recent ad-
vances in pathogen identification and treatment. While some investigational advances have been made, 
these have to be confirmed by well-designed clinical trials. Due to this, clinicians are often left with the 
necessity of following recommendations based on overall poor quality evidence.
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APPENDIX

Table 1. Etiology of infective endocarditis

Microorganism Percent Isolated

Staphylococci 
Staphylococcus aureus
Coagulase-negative staphylococci

41.3% 
30.5% 
10.7%

Streptococci 30.4%

Enterococci 10.2%

Culture-negative 9.2%

Fungi 1.6%

HACEK 1.5%

Polymicrobial 1.1%

Other pathogens 4.6%

HACEK = Haemophilus sp, Actinobacillus actinomycetemcomitans, Cardiobacterium hominis, Eikenella corrodens, Kingella kingae
Data adapted from 2 previous studies (Selton-Suty, 2012; Murdoch, 2009)

Table 2. Etiology of infective endocarditis in intravenous drug users

Microorganism Percent Isolated

Staphylococcus aureus 38-60%

Pseudomonas aeruginosa 14%

Fungi (Candida spp.) 14%

Streptococci 6-16%

Other aerobic Gram-negative bacilli 2-15%

Culture-negative 12.9%

Enterococci 8%

Polymicrobial 1-8%

Coagulase-negative staphylococci 2%

Data adapted from 2 sources (Fowler, 2015; Szabo, 1990)

Table 3. Treatment for common causes of native infective endocarditis

Microorganism Antimicrobial Options Duration of Therapy

Staphylococcus aureus 
MSSA 
MRSA 
hVISA or VISA

nafcillin, oxacillin, or cefazolin 
vancomycin or daptomycin 
daptomycin or ceftaroline

≥ 6 weeks

Enterococcus 
Susceptible to penicillin 
Resistant to penicillin/ampicillin and 
susceptible to vancomycin 
Resistant to vancomycin

Ampicillin plus gentamicin OR 
Penicillin plus gentamicin OR 
Ampicillin plus ceftriaxone 
Vancomycin plus gentamicin 
Linezolid or daptomycin

4-6 weeks 
4-6 weeks 
6 weeks 
6 weeks 
> 6 weeks

Adapted from Baddour, 2015
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ABSTRACT

The cardiology diagnostic are the methods of identifying current or past heart conditions, which can 
advise caregivers on patient diagnosis and provide a proper therapy plan, nowadays couple new diag-
nostic methods have been developed and some of them like radionuclide myocardial perfusion imaging, 
coronary computed tomography angiogram, cardiac magnetic resonance imaging, intravascular ultra-
sonography, optical coherence tomography, intravascular thermography, intravascular elastography, 
and near-infrared spectroscopy have been approved for clinical use. Not only the advanced technologies, 
the new biomarkers, and genetic markers may provide new potential targets for the diagnosis, therapy, 
and prevention of heart diseases.

INTRODUCTION

Since the x-ray was first applied to the chest in 1895 and the original galvanometer electrocardiogram 
was created by Dr. Willem Einthoven in 1902, cardiologists have been working to augment their history 
and physical exam with new objective information gleaned by the various technological advancements 
of each historical era. The first three-lead electrocardiographic machine was bought for everyday clini-
cal use in 1908 by Sir Edward Schafer of the University of Edinburgh, and was used primarily to study 
arrhythmias. The idea of the myocardial infarction developed in 1910, and it was found by 1930 that the 
readout from an electrocardiogram could often produce patterns pathognomonic enough to diagnose 
cardiac-related chest pain. By 1954, the electrocardiogram had gradually developed into the 12-lead 
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system used ubiquitously today by family practitioners and cardiologists alike (AlGhatrif & Lindsay, 
2012). From these beginnings, the field of cardiovascular diagnosis has burst forth in leaps and bounds: 
within the last 25 years, ever-improving imaging techniques and laboratory assays for increasingly sensi-
tive and specific biomarkers for cardiac muscle disruption have taken their places next to the electrocar-
diogram as pillars of cardiovascular diagnosis and care (Dolci & Panteghini, 2006). This chapter works 
to provide an updated snapshot of the current field, with a focus on areas in which great improvements 
have been made in the last few decades and a nod to the great discoveries now visible just beyond the 
next bend in the road.

Advancements in Disease Diagnosis

Real-Time Cardiac Monitors

The electrocardiogram (EKG) excels as a first-line diagnostic tool in cardiology because it is a nonin-
vasive, inexpensive, and well-established test capable of providing a wealth of diagnostic information. 
The 12-lead system may not have changed in the last 60 years, but improvements and new applications 
are always of interest. One new direction in which the use of EKGs has been rapidly expanding is in 
monitoring at-risk patients in the community as they go about their daily lives. There is only so much 
any stress test in the hospital can show – many arrhythmias have previously gone undetected until they 
cause severe cardiac events, because it has been impossible to analyze a patient’s intermittent arrhythmia 
unless the EKG is performed while the pathologic heart rhythm is actively happening.

The Holter monitor, a small battery-operated recorder that is capable of recording 2 or 3 channels of 
the standard 12-lead EKG, has been the mainstay of ambulatory monitoring since its inception in the 
1980’s(Barry, Campbell, Nabel, Mead, & Selwyn, 1987). The Holter can record patient-activated event 
markers, and it is cheap and records continuously, thereby allowing for the detection of asymptomatic 
arrhythmias. Unfortunately, monitoring in this way is limited, usually to 24-48 hours at a time. Wearing 
the device, with its external electrodes, may do more than inconvenience the patients for a day or two; it 
may also deter patients from going about all of their normal daily activities, thus causing the Holter to 
miss any arrhythmias generated by motions or situations which the patient avoids out of discomfort(Giada, 
Bertaglia, Reimers, Noventa, & Raviele, 2012).

Since then, new devices have been developed which are capable of transmitting information via tele-
phone lines to the hospital, of storing and sending information recorded in the minutes before activation 
(loop recording), and of recognizing when an arrhythmia is occurring and activating automatically, then 
sending the information to a real-time station monitored by medical personnel.

Most recently developed and approved by the Food and Drug Administration of the United States 
(FDA) is the implantable cardiac monitor (ICM) (Rome, Kramer, & Kesselheim, 2014). These moni-
tors combine the loop recording abilities of previous monitors with automatic detection of arrhythmias 
and wireless transmission of data. They are no different from their un-implantable cousins in storing a 
one-lead ECG tracing but have the added capability for long-term monitoring up to 36 months (Giada 
& Bartoletti, 2015; Giada et al., 2012). The other monitors mentioned above have had a maximum of 
3-4 weeks’ monitoring life, so this is a more than 36-fold improvement.

The ICM implantation procedure is minimally invasive and simple enough to be done in the outpatient 
setting. A subcutaneous pocket is created by a small skin incision, the monitor is inserted and anchored 
to the muscular plane, and then the pocket is closed and an external programmer used to make sure the 
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ECG trace is satisfactory. Implantation is usually in the left parasternal area of the chest, but can also be 
done at the fourth intercostal space along the left anterior axillary line, and in young girls can be done 
at the inferior and medial border of either breast. External ECG mapping done before the implantation 
will determine the optimal area and alignment for the device to rest on each individual patient.

The ICM is not without limitations: it is more invasive than external monitoring and does present a 
risk of insertion-site complications such as infection and bleeding. The research thus far suggests that, 
rather than being wholly better than other monitor types, it adds to the field by broadening the diagnos-
tic toolbox. It provides an option for patients with symptoms of possible arrhythmic origin that are so 
infrequent or transient that other monitoring methods have failed. Like external loop recording monitors, 
its automatic activation allows for its use with possibly debilitating symptoms, but the ICM is unique in 
that it can be used even in situations of poor patient compliance (Giada et al., 2012).

Currently, the implantable cardiac monitor is indicated for patients with syncope or palpitations whose 
symptoms have failed to be elucidated with a standard history, physical, and EKG (Giada et al., 2012). 
There is also beginning to be a consideration for its use in difficult epilepsy cases and unexplained falls, 
as it may well be an excellent tool for distinguishing between true epilepsy and syncope occurring with 
myoclonic movements.

There are now two major ICM models on the market: the Reveal XT, made by Medtronic, and the 
Confirm, made by St. Jude Medical (“St. Jude’s Confirm Implantable Cardiac Monitor Wins FDA Ap-
proval.,”). The Reveal has a validated algorithm to both detect atrial fibrillation (AF) and monitor the 
amount of time spent in AF (Hindricks et al., 2010). Follow-up with patients implanted with the Reveal 
can be done remotely by an automatic transmitter with Web-based software. The Confirm also has an 
algorithm for the detection of AF, but this algorithm has yet to be validated, and follow-up can be done 
remotely through a telephone line (Giada et al., 2012).

Advancements of Cardiovascular Diagnostic Imaging

In severe cases, the EKG is often not conclusive enough to effectively guide physicians through the 
entire diagnostic decision tree. Fortunately, like the musculoskeletal system, the cardiovascular system 
performs its function on a scale visible to the human eye. Thus, it has been possible to develop imaging 
techniques which improve diagnostic accuracy to an ever-increasing degree.

Today, well-studied, ubiquitous methods for cardiac imaging and diagnosis include the echocardio-
gram, radionuclide myocardial perfusion imaging (rMPI), and coronary angiography. The echocardiogram 
uses ultrasound waves to image the heart, and Doppler technology now allows for the careful inspection 
of blood flow. Furthermore, 3-D echocardiography has been steadily advancing since the development 
of the first matrix array transducer in 2003, and it is now used in clinics to assess the dimensions and 
volumes of cardiac chambers with a considerable improvement in accuracy over its 2-D counterpart 
(Aggeli et al., 2015). The rMPI involves injecting a radioactive tracer into the bloodstream, then record-
ing the signal via SPECT or PET imaging and mapping out perfusion deficits within the heart. The 
echocardiogram and rMPI can both be done at rest or with stress testing, and if they fail to safely rule 
out significant cardiovascular disease, the next step is to visualize the coronary artery lumen via angio-
gram. Angiography in the traditional sense involves catheterizing the coronary arteries, usually via the 
femoral vein, and injecting a radioopaque dye to visualize the patency of the lumen along each vessel. 
The percentage of luminal stenosis seen on angiography has been a longstanding essential determining 
factor in the decision to proceed with further intervention, and should intervention be needed, its suc-
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cess can be immediately measured without removing the catheter. The use of nanotechnology to create 
new contrast dyes is where today’s angiography improves on tradition. Gadofosvaset trisodium, the first 
blood-pool agent, binds to albumin and stays in the circulation with a half-life of 16 hours, long enough 
to reach steady-state. It and other blood-pool agents such as gold nanoparticles and gold nanoshells are 
capable of improving angiogram image quality significantly, and are particularly useful in patients with 
anomalous or post-surgical cardiovascular anatomy. Most exciting of all, these nanoparticles may just 
be the contrast agent that is finally capable of visualizing plaques. Because nanoparticle movement is 
determined mostly by convective forces rather than being patterned after simple diffusion, and because 
these particles’ half-lives are so long, these particles tend to 1) extravasate at areas of inflammation or 
leakage, and to 2) stay there until taken up by macrophages (Annapragada, 2015).

Unfortunately, until the full potential of these particles is realized and FDA-approved, invasive coro-
nary angiography still reveals insufficient information about the presence and composition of plaques 
for which vessels can compensate via dilation. Physicians are left with very little information about the 
condition of the artery walls themselves, a thing of crucial interest in assessing patients for coronary 
artery dissection. One early study of 23 patients who developed a second infarction after a previous car-
diac catheterization showed a median percent stenosis of only 48%(Fenning & Wilensky, 2014) – 70% 
of acute coronary occlusions happen in areas that were previously angiographically insignificant (Schaar 
et al., 2007). A myriad of studies since have come together to reveal several criteria which appear to 
characterize these “vulnerable plaques,” called such because they are at high risk for rupture whether or 
not they cause significant artery stenosis. In tandem, a myriad of diagnostic measures have appeared as 
well to gauge levels of these new characteristics in vivo.

Among these recently developed diagnostic procedures are several new tools of the “uninvasive” 
category. The coronary computed tomography angiogram (CTA) and vascular MRI aim to perform the 
function of the invasive angiogram without the associated fuss and risk, and ultrasound has been repur-
posed for gauging patient status as a point-of-care transthoracic procedure in the emergency department as 
well as for the measurement of the carotid intima-media thickness (Andrew Taylor et al., 2012; O’Leary 
et al., 1999). Advancements in the signal analysis have picked up on ways to record backscattering of 
the US signal to later differentiate offline between the various components of plaques. Compared to 
histology, integrated backscatter ultrasound has a sensitivity of 80-85% and a specificity of 78-91% for 
detecting thrombi, lipid pools, and fibrous tissue (Soloperto, 2012).

Computed tomography based angiography has been extensively compared to invasive angiography in 
the literature and is now beginning to see clinical use. Although it does not possess the ability of invasive 
angiography to immediately visualize the effects of revascularization efforts, studies have shown that 
only 40% of such procedures actually proceed to intervention (Gorenoi, Schonermark, & Hagen, 2012). 
It has been proposed, therefore, to make CTA a “gatekeeper” for catheterization in future; this would 
protect the remaining 60% of patients from unnecessary invasive therapy (Marwick, Cho, ó Hartaigh, & 
Min, 2015). The spatial resolution of CTA is about 400 um, and with the standard 64-slice multidetec-
tor scanner and iodinated contrast, CTA can distinguish plaques as calcified, non-calcified, or partially 
calcified, thereby directing treatment considerably more appropriately than its invasive cousin (Fenning 
& Wilensky, 2014). Its greatest strength, however, is its 97-99% negative predictive value (Marwick et 
al., 2015). Overall, CTA has shown a 94-99% sensitivity and 64-83% specificity for coronary stenoses, 
and meta-analysis has recommended pretest probability of disease as the most important determining 
factor in its use over invasive angiography (Gorenoi et al., 2012; Marwick et al., 2015). At a pretest 
probability of coronary heart disease of 50% or below, CTA came out on top with a lower cost per true 
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positive patient, likely due to its impressive negative predictive power. Above a pretest probability of 
70%, invasive coronary angiography is the test of choice (Gorenoi et al., 2012).

Cardiac magnetic resonance imaging (CMR) is becoming solidly established in the field of cardio-
vascular diagnostics for the identification of structural abnormalities and the assessment of ventricular 
function, myocardial perfusion, and myocardial viability (Dastidar, Rodrigues, Ahmed, Baritussio, & 
Bucciarelli-Ducci, 2015; Pilz et al., 2009). MRI’s high reproducibility and precision, excellent image 
quality, lack of radiation risk, and high native contrast between myocardium and blood are often enough 
to justify its relatively high cost, especially in difficult and previously inconclusive cases. MR coronary 
angiography, however, is still a work in progress. It is markedly inferior to CTA and not yet available 
for clinical use(Pilz et al., 2009).

As mentioned above, the vulnerability of a plaque has been correlated to a multitude of variables. These 
include the thickness of its fibrous cap, the size of its lipid core, the presence of inflammatory cells, the 
extent of vessel wall remodeling involved, the amount of plaque-free vessel wall, and its 3D morphol-
ogy (Fenning & Wilensky, 2014; O’Leary et al., 1999; Schaar et al., 2007; Suh et al., 2011; Soloperto 
2012). The remainder of new developments in cardiovascular diagnostics involve improvements on the 
quality of information about these variables acquired during coronary catheterization. These include 
angioscopy, intravascular ultrasonography (IVUS), optical coherence tomography (OCT), intravascular 
thermography, intravascular elastography, and near-infrared spectroscopy.

Angioscopy has a spatial resolution of 50-200 μm and involves using a fiber-optic bundle attached 
to a guidewire to directly visualize the vessel luminal surface (Fenning & Wilensky, 2014). This shows 
atherosclerotic plaques as white, yellow, or orange protrusions, with a higher intensity of yellow as-
sociated with thinner fibrous caps. Deep yellow most commonly signifies a lipid-rich atheroma with 
a necrotic core, yellow-red coloring denotes a plaque with a vulnerable, thin fibrous cap, and white or 
gray colored lesions represent fibrous plaques (Fenning & Wilensky, 2014).

IVUS and OCT use ultrasound and visible light, respectively, to analyze vessel wall and plaque 
composition from within the artery. Intravascular ultrasonography is done by inserting a catheter with 
a miniature ultrasound transducer into the vessel in question and capturing an image as the catheter is 
pulled backward at a steady pace along the luminal wall. IVUS uses ultrasound frequencies between 30 
and 50MHz and is capable of an axial resolution of about 150-250 um and a lateral resolution of 250 um 
(Fenning & Wilensky, 2014). Because the media is sonolucent and the delineation between the media 
and intima difficult to distinguish, the “plaque burden” as seen on IVUS consists of the thickness of 
the intima and the media combined. Unsatisfied with just this “gray-scale” image, the field has since 
come up with various techniques for further sorting and analyzing IVUS data in order to differentiate 
between the various components of plaques. For example, radiofrequency tissue characterization uses 
the detection of radiofrequency waves with an autoregression model to sort the signal and characterize 
tissue as fibrous, fibrofatty, part of the necrotic core, or calcified (Iwamoto; Suh, Seto, Margey, Cruz-
Gonzalez, & Jang, 2011). Virtual Histology IVUS (VH-IVUS) uses backscatter detection and analysis 
as mentioned above with the transthoracic ultrasound, but with the added benefit of being able to ac-
complish its analysis in real-time rather than offline (Soloperto, 2012). Clinically, VH-IVUS has the 
potential to improve patient outcomes by inspecting and measuring vessel size, evaluating side-branch 
anatomy, and assessing plaque length and calcification before percutaneous intervention is attempted. 
Recent studies of retrospective data have reported that IVUS done in conjunction with carotid artery 
stenting resulted in precise disease assessment and efficient surgery planning, with no adverse events 

 EBSCOhost - printed on 2/10/2023 5:39 PM via . All use subject to https://www.ebsco.com/terms-of-use



199

Advancements in Cardiovascular Diagnostics
 

(n=110) and higher accuracy in confirming adequate stent expansion than offered by angiography 
(Bandyk & Armstrong, 2009).

Optical coherence tomography was first developed by Huang et al. at the Massachusetts Institute of 
Technology in 1991(Huang et al., 1991), and Tearney, Brezinski et al. first suggested its use as a meth-
odology for intravascular imaging in 1997(Tearney, 1997). The fundamental principle of OCT is very 
similar to that of IVUS, the difference being that OCT uses near-infrared light in the wavelength range 
of 1250-1350 nm. As a result, OCT provides a roughly tenfold improvement over IVUS in resolution, 
with images resolved to 10-20 μm, but the light it utilizes can penetrate only 1-3 mm into the vessel 
wall, versus an 8 mm penetration by the sound waves of IVUS. In addition, the light used by OCT is 
subject to scattering and attenuation by blood cells, thus requiring a balloon catheter and saline flush to 
operate at peak performance and subjecting the patient to an increased risk of further ischemic damage 
(Roleder et al., 2015). OCT has, thus far, been most successful in the assessment of coronary stents, as 
its high resolution allows for careful study of stent expansion, peri-procedural vessel trauma, and stent-
vessel interaction down to the level of minor amounts of tissue coverage of individual stent struts (Regar, 
Ligthart, Bruining, & van Soest, 2011).

Further techniques include intravascular thermography and intravascular ultrasound elastography/
palpography, which use changes in temperature and wall strain, respectively, to infer the presence of 
inflammation and plaque formation along the artery walls (C. L. de Korte, Pasterkamp, van der Steen, 
Woutman, & Bom, 2000; Chris L. De Korte, Schaar, Mastik, Serruys, & Van Der Der Steen, 2003; 
Chris L. de Korte & van der Steen, 2002; Schaar et al., 2007). Intravascular MRI (IVMRI) is currently 
still in the preliminary stages of development, but has shown a spatial resolution as low as 100 um and 
may someday be superior to IVUS in the identification of lipid, fibrous, and calcified areas of plaque 
(Soloperto, 2012).

Finally, near-infrared spectroscopy measures molecular vibrational transitions in response to emitted 
infrared light in the 750-2500 nm region. It has been used, for the most part, to quantify the amount of 
lipid in plaques: it has shown a sensitivity of 90% and specificity of 93% for lipid pools (Schaar et al., 
2007). It has also demonstrated a sensitivity of 77% and specificity of 93% for thin fibrous caps and a 
sensitivity of 84% and specificity of 89% for inflammatory cells, but it still has room to grow in terms 
of acquisition time, resisting the influence of changes in pH and temperature, and handling the same 
scattering experienced by OCT by blood cells (Schaar et al., 2007).

Cholesterol, Cardiac Biomarkers, and Genetic Biomarkers

Cholesterol

Cholesterol is a steroltype substance that is found in animal cells and circulatory system. It plays a 
significant role in many functions, including supporting cell membranes, as substance in vitamin D 
synthesis, and playing critical role in the biogenesis of steroid hormones. The homeostasis of cholesterol 
is an indicator to evaluate the subsequent consequences of its aleration, such as in disease like diabetes, 
obesity, and heart disease. If the level of cholesterol increases, the risk of dangerous consequences such 
as atherosclerosis also rises. Blood cholesterol level is also important to heart health. High-level cho-
lesterol in the blood also increases the risk of heart disease. When cholesterol level increases too high 
in blood, the walls of the arteries in the heart become thicker. In the same time, it causes narrow of the 
arteries and slows down even blocks the blood flow in the heart. Once blockage of heart blood supply 
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appears, subsequent heart attack followed. So the cholesterol level in the blood is a critical indicator of 
heart health. Keeping lower cholesterol level can reduce the risk of heart disease for everyone.

During the cholesterol transportation to the whole body, cholesterol must bind to lipoproteins be-
cause most cholesterol could not be transported directly in blood. There are two types of lipoproteins 
in the circulatory system, including low-density lipoprotein (LDL) and high-density lipoprotein (HDL) 
(Nicholls, 2009). The roughly total cholesterol amount is composed of LDL cholesterol (LDL-C), HDL-
cholesterol (HDL-C) and triglyceride (TG). LDL-C is easier to form a thick, hard deposit to narrow the 
arteries. So LDL-C is assigned to “bad” cholesterol. In contrast, HDL-C belongs to “good” cholesterol 
due to its function as a scavenger to clean LDL-C back to the liver. Besides these two kinds of cholesterol, 
one other class of lipids found in blood is triglycerides. High levels of TG may be related to complex 
diseases, such as atherosclerosis and obesity.

LDL-C, HDL-C, TG, and their relative ratios can be used as predictors of cardiovascular disease. The 
ratio of plasma TG/HDL-C can be used to evaluate the risk of cardiovascular disease in the hypertensive 
patients. Analysis of data from a study in a community between 2003 and 2012 shows that the people 
with the small ratio of TG/HDL-C have the low risk of cardiovascular disease (Salazar et al., 2013). 
The health cut-point of the ratio of TG/HDL-C is 2.5 in women or 3.5 in men. However, hypertensive 
people have the high risk of cardiovascular disease. They need to keep the ratio of TG/HDL-C in the 
lower level than that in normotensive people. The recent study also evaluates the relation between TG/
HDL-C ratio and cardiovascular disease risk in obese patients with type 2 diabetes. In most normal weight 
population, the ratio of TG/HDL-C keeps in the lower level (<1.9). However, in people with obese this 
ratio increases, subsequently increasing the risk of coronary heart disease and cardiovascular disease. 
Other studies show that HDL-C itself also can be an independent predictor for evaluation of the risk of 
cardiovascular disease. The risk of cardiovascular disease will reduce 2-3 percent if the level of HDL-C 
in the blood increases 10 mg/L.

People with the mutation in HDL-C regulating gene have a low level of HDL-C, resulting in early 
atherosclerosis and increasing the risk of cardiovascular disease. Development of therapy that directly 
targets and increases the HDL-C level may be a new strategy to reduce the risk of cardiovascular dis-
ease. However, recent studies show that increase of HDL-C only in blood causes side effects related to 
inflammation, hemostasis and cell apoptosis. The LDL-C/HDL-C ratio is another reliable indicator for 
predicting the risk of cardiovascular disease since LDL-C and HDL-C play the opposite role functions 
in cardiovascular disease. In the patients with hypertriglyceridemia, high LDL-C/HDL-C ratio leads to 
higher risk of coronary heart disease. Beside LDL-C, some cholesterol exists in the blood of people like 
a very LDL-C fraction. Both of them are “bad” cholesterol. Thus, only calculating LDL-C/HDL-C ratio 
does not offer an accurate evaluation of the risk of cardiovascular disease. New algorithms have been 
created to elevate the total cholesterol (TC), and the new TC/HDL-C ratio can be used to estimate the 
risk of cardiovascular disease. In a similar way, the total non-HDL-C level has been used as a predictor 
to estimate the risk of cardiovascular disease (Zuo et al., 2015). A recent study shows that non-HDL-C 
is a better predictor than LDL-C in evaluating the cardiovascular disease mortality.

Cardiac Biomarkers

Cardiac biomarkers are measurable and quantifiable biological parameters that can evaluate heart dam-
age and heart function with a degree of specificity. Over half a century ago, biomarkers for ischemic 
cardiac damage had been applied to diagnose acute myocardial infarction (AMI). After that, more and 
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more cardiac biomarkers of necrosis, inflammation, hemodynamics stress and platelet function are found 
to estimate heart damage and function. Understanding the biological mechanism, measuring technology 
and clinical evidence of those biomarkers are important to apply those biomarkers into clinical care.

Traditional Cardiac Biomarkers

Creatinine is one kind of non-protein nitrogenous waste product, which comes from the breakdown of 
creatine and phosphocreatine. The muscle cells produce the majority of the creatinine. The serum cre-
atinine level is relative to cardiovascular disease mortality. Elevated serum creatinine level in the elderly 
or hypertensive persons increases the risk of mortality. The serum enzymes creatine kinase (CK), and 
the myocardial specific isoform (CK-MB) have been used to be indicators for the clinical decision over 
several decades (Masugata et al., 2011). However, these enzymes also exist in other tissues, such as 
skeletal muscle, smooth muscle, and brain. Thus, increased serum level of these enzymes could arguably 
be caused by a non-heart condition.

Troponin is a protein complex, consisting of troponin I, troponin T, and troponin C, which regulates 
contraction in cardiac muscle cells. Once muscle cell damage occurs, for instance, due to myocardial 
infarction, the subunit of troponin will be released into circulation. Early detectable Troponin could lead 
to a more accurate earlier diagnosis. The early recognition that a cardiac arrest has occurred is key to 
survival, for every minute a patient stays in cardiac arrest, their chances of survival drop by roughly 10% 
(Mellor & Woollard, 2010). If the myocardium is damaged, only certain subunits of troponin (troponin I 
and troponin T) will be released. These two troponin subunits in circulation can serve as biomarkers for 
myocardial infarction diagnosis. Recent studies demonstrate that the level of cardiac troponin in blood 
is indeed strongly associated with cardiovascular mortality (Pohlhammer et al., 2014). Improving the 
sensitivity of troponin assays is important for early diagnosis of AMI. High sensitive troponin test has 
been developed to measure the extremely low level of troponin. However, more accurate parameters 
should be established based on new high-sensitivity troponin assay.

Myoglobin is another biomarker for myocardial infarction. It is a red protein in muscle cells which can 
bind to specific iron and oxygen. Once muscle cells are damaged, myoglobin will release into the blood 
from damaged cells (Sun et al., 2014). However, myoglobin is not a specific indicator for myocardial 
damage; it is also found in acute renal failure. So myoglobin is used to combine with other indicators 
troponin or CK and CK-MB for diagnosis of AMI.

Lipoprotein A, an oxidation-specific biomarker, is a subunit resembling the LDL complex. High 
concentration of lipoprotein A in blood can leads to the increased thickness of the arterial wall. So 
lipoprotein A can be used as an independent indicator of a risk of atherosclerotic diseases (Schmitz & 
Orso, 2015), including coronary heart disease and stroke. As a biomarker, lipoprotein A is more sensi-
tive in the cardiovascular disease than that in stroke. Recent studies focus on the potential therapeutic 
target of lipoprotein A in the treatment of cardiovascular disease and illustrate the benefit of lowering 
lipoprotein A to cardiovascular disease.

Myocardiocytes secrete brain natriuretic peptide and N-Terminal Brain Natriuretic peptide (BNP/NT-
proBNP) from heart ventricles, triggered by excessive stretching of myocardiocytes. They are another 
important prognostic predictor for all stages of heart failure, including postoperative recovery (Kara et 
al., 2015). Because elevated BNP/NT-proBNP level has remained for more than three months in the 
acute catecholamine-induced myocardial inflammatory condition of Tako-Tsubo cardiomyopathy (TTC).
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Osteopontin, as known as bone sialoprotein I, is highly expressed in myocardiocytes in patients with 
hypertensive heart disease or heart failure comparing to that in normal people (Lopez et al., 2013). Os-
teopontin expression increases under a variety of conditions of the heart, and is close associated with 
increased myocyte apoptosis and myocardial dysfunction (Singh, Dalal, & Singh, 2014). Patients in 
NYHA class above than II revealed a significant induction, which suggests that osteopontin is a marker 
for advanced heart failure. Moreover, osteopontin emerged as an independent predictor of 4-year death 
and added significant information for the risk assessment of patients with heart failure. The risk of 
death within 48 months was almost 6-fold greater in patients assigned to a low-risk group according to 
whose osteopontin levels were above the average (Rosenberg et al., 2008). Which make osteopontin as 
a potential biomarker for heart failure and predicts death in patients with heart failure (Rosenberg et al., 
2008; Singh, Foster, Dalal, & Singh, 2010).

Inflammation plays central roles in cardiovascular disease. The pathogenesis of atherosclerosis is ac-
companied by vascular inflammation in all stages. Since inflammatory markers can reflect the changing 
of inflammatory process of atherosclerosis, specific inflammatory biomarkers may be useful predictors 
for evaluating the risk of atherosclerosis. Examples of sthese imprtant biomarkers include Tumor necrosis 
factors-α (TNF-α), IL-6, Intercellular Adhesion Molecule 1 (ICAM-1, also known as CD54), vascular 
cell adhesion molecule 1 (VCAM-1, also known as CD106), C-reactive protein (CRP) and Fibrinogen. 
Among those inflammatory biomarkers, CRP is a most important one to estimate the risk of coronary 
artery disease (Ogita et al., 2015). Overpass several decades, many studies have demonstrated that CRP 
is an efficient indicator of the risk of cardiovascular disease. Unstable angina often accompanies the 
patients with increasing plasma level of CRP (≥3 mg/L). For the patients with acute coronary syndromes, 
high-sensitivity CRP is an efficient indicator to evaluate the damage of myocardiocytes. We can more 
accurately evaluate myocardial infarction with combining the use of two high sensitivity markers CRP 
and troponin T biomarkers.

New Cardiac Biomarkers

Asymmetric dimethylarginine (ADMA) is an endogenous small molecular found in circulation. Since 
its molecular structure is similar to L-arginine, ADMA is a natural inhibitor of nitric oxide synthesis 
by competitive substitution with L-arginine in the context of the production of nitric oxide. ADMA has 
been reported to be a predictor of atherosclerosis risk [6]. Recent studies also demonstrate that ADMA 
increases in the patients with ischemic chronic heart failure. ADMA also can be used as an excellent 
indicator of short-term or long-term mortality in patients with chronic heart failure. Beside ADMA in 
blood, the urinary ADMA level can also be used as a potential predictor for diagnosis of cardiac dysfunc-
tion. F2-isoprostanes (prostaglandin F2-like compounds) is another oxidative stress maker which also 
associated with cardiovascular disease. However, the detailed mechanism will need to be demonstrated.

Another novel cardiac biomarker is myeloperoxidase (MPO) which has been found to be associ-
ated with heart failure (Andreou et al., 2010). MPO produces hypochlorous acid which is used by the 
neutrophil to kill bacteria and other pathogens. As a peroxidase enzyme, MPO oxidizes the lipoprotein, 
including LDL and HDL. HDL may be converted into a dysfunctional form by oxidation modification. 
Recently studies also verify the relationship between MPO activity and cardiovascular disorder. MPO 
and CRP measurement provided more accuracy for the risk prediction than CRP itself (Heslop, Frohlich, 
& Hill, 2010).
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Matrix metalloproteinases (MMPs) are zinc-dependent proteases that regulate digestion of collagen 
and extracellular matrix (ECM) homeostasis. The MMPS play different roles in various physiological 
and pathological processes such as tissue repair, metastasis, morphogenesis and arthritis. Different 
members of MMPs are diverse biomarkers in heart damage. For example, compared to BNP, MMP-2 
is a better predictor for identification of Heart Failure with a preserved Ejection Fraction (HFpEF). 
MMP-1, as known as interstitial collagenase, is another useful biomarker to evaluate the mortality risk 
of chronic HF. However, the lack of significant clinical studies limit the clinical application of MMPs 
as biomarkers, because of the slow elevation of MMP levels after ACS. (Soejima et al., 2003; Zaky-
nthinos & Pappa, 2009). Although, MMPs family are non-cardiac specific biomarkers by using them 
individually, but combining different MMPs family members with other biomarkers, as tissue inhibitors 
of metalloproteinases (TIMP-1 or TIMP-4), placental growth factor (PlGF) (Autiero, Luttun, Tjwa, & 
Carmeliet, 2003; Heeschen et al., 2004) or A2 phospholipases(Caslake et al., 2000), can increase the 
accurate of evaluation or identification of cardiac disease (Zakynthinos & Pappa, 2009).

So far, there are so many biomarkers have been identified as predict risk factor of heart disease. 
However, none of them can accurately predict the condition of heart health. There are two strategies to 
develop a new accurate prediction of heart disease, including screening new, efficient cardiac biomarkers 
and analysis of the efficiency of the combination of two or three exit cardiac biomarkers.

Genetic Biomarkers

CVD has the higher rate of mortality than cancer in the world. Some environmental factors can cause 
CVD, including smoking, lack of exercise, and obesity. It is well known that genetic mutations play 
a central role in the development of CVD (Anthony, George, & Eaton, 2014). A genome-wide screen 
for the mutations of cardiovascular disease associated genes has found many important gene mutations 
in CVD (Ito et al., 2014; Kathiresan & Srivastava, 2012; Newton-Cheh & Smith, 2010), for example, 
parental cardiovascular disease independently predicted future offspring events, CVD risk have 2-3 fold 
increase to offspring (Lloyd-Jones et al., 2004). New therapeutic or prevention strategies will probably 
be developed in accordance with these CVD associated genes.

Cardiomyopathy, a commonly inherited disorder affecting myocardiocytes, may cause some serious 
consequences such as sudden cardiac death, arrhythmias, and heart failure. Recent studies demonstrate 
that more than 50% patients with cardiomyopathy have multiple genetic mutations. Genetic cardiomy-
opathies lead to high pediatric mortality if the CVD affects younger individuals. Thus, investigating 
the genetic background of the patient’s family and identification of genetic mutations relative to cardio-
myopathies can promote prevention and therapy of cardiovascular disease. Over several decades, some 
genetic mutations have been identified in common in cardiomyopathies. Mutation of the heart muscle 
relative protein troponin I (TNNI3) has been found and causes the occurrence of cardiomyopathies. Up 
to now, over 50 gene mutations have been reported to be relative to cardiomyopathies, including titin 
(TNN), lamin A/C (LMNA), β-myosin heavy chain (MYH7) and troponin t (TNNT2).

Coronary heart disease (CHD) is a cardiovascular disease with high mortality rate. Studies show 
the association between CHD and specific genetic mutations. For example, a mutation in ALOX5AP 
(This gene encodes a protein, 5-lipoxygenase, is required for leukotriene synthesis) has been reported 
contributes to CHD in patients with familial hypercholesterolemia (van der Net et al., 2009). Mutation 
of ALOX5AP gene was reported contributes to CHD risk in patients with familial hypercholesterolemia 
(van der Net et al., 2009; Zhang et al., 2012). Mutations in some hypercholesterolemia related genes, 
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such as the LDL receptor gene (LDLR), proprotein convertase subtilisin/Kexin type 9 gene (PCSK9), 
and the ligand-binding domain of apolipoprotein B100 (APOB) genes have also been reported to be 
associated with CHD. Another study demonstrates that HDL-C metabolism associated genes, including 
ATP-binding cassette A1 (ABCA1), apolipoprotein A1 (APOA1), and lecithin-cholesterol acyltrans-
ferase (LCAT) are potential biomarker candidates of CHD. Lipid related genetic mutations are one of 
the most important predictors for coronary heart disease (Global Lipids Genetics et al., 2013; Isaacs et 
al., 2013). In the past 5 years, several research confirmed that 9p21 is a common risk factor for CHD 
in different races, which include Asian, Caucasian, and African (Assimes et al., 2008; Broadbent et 
al., 2008; Helgadottir et al., 2008; Helgadottir et al., 2007; Hinohara et al., 2008; Kotani et al., 2009; 
McPherson et al., 2007; Roberts & Stewart, 2012; Samani et al., 2007; Wellcome Trust Case Control, 
2007). Those abnormal result even can be caught at birth. Nowadays, the inherited disease center had 
been set in some hospitals, genetic screening and counseling service are provided. Although the earlier 
clinic treatment program can be made earlier and more individually, identify the familial diseases and 
slow their progression through preventative care.

MicroRNAs are small, noncoding RNA sequences in cells that can regulate the expression of target 
genes, and play diverse roles in development and disease (Chang & Mendell, 2007; Mendell & Olson, 
2012; Obad et al., 2011; Small & Olson, 2011). It is well known that specific classes of microRNAs play 
a critical role in angiogenesis, cholesterol metabolism, and myocardiocytes biogenesis, which could be 
the novel potential genetic biomarker for diagnosis of CVD(Kingwell, 2011). miRNA has been shown its 
expression is necessary for the development and maintenance of vascular smooth muscle cells (VSMC), 
miR-143 and miR-145 promote a contractile VSMC phenotype and are required for maintenance of 
normal vascular function. Human genome-wide association studies have identified single nucleotide 
polymorphisms in the miRNA binding sites of several renin angiotensin aldosterone system (RAAS) 
-associated genes that correlate with a dysregulation of blood pressure (Albinsson et al., 2011; Albinsson 
et al., 2010; Quiat & Olson, 2013). A recent study shows that the level of some microRNAs in serum/
plasma, such as miR-122 and 126 decreases after the patients suffer the heart attack, suggesting that 
these microRNAs can be the novel potential biomarkers for the diagnosis, therapy and prevention of 
CVD (Quiat & Olson, 2013). miR-21, miR-130a, miR-27b, and miR-210, whereas miR-221 and miR-
222 have been published that close associated with peripheral arterial disease (Bronze-da-Rocha, 2014; 
Bronze-da-Rocha et al., 2012). And Li C et al. reported that serum microRNAs might be a good target 
biomarker for diagnosis of acute myocardial infarction and angina pectoris (Li et al., 2013).

Altogether, recent studies have identified many genetic mutations that are significantly associated 
with the changing of biomarkers in CVD, and further studies need to focus on figuring out the function 
and mechanism of these genetic mutations and the risk of CVD. These studies may provide new potential 
targets for the diagnosis, therapy, and prevention of CVD.

Recently research results show more and more critical risk factors for cardiac-related disease. Hyper-
cholesterolemia, as one of the independent risk factor, has been demonstrated accelerate cardiovascular 
diseases, and widely used in current clinical diagnosis and therapies selection. So very well-controlled 
cholesterol level bring significant benefit, such as satins family compounds been used. However, some 
diseases are non-cholesterol related, such as aging-related aortic valve stenosis. For those diseases, cardiac 
risk biomarkers and genetic cardiac biomarkers may become alternative options. Unfortunately, many 
of those biomarkers wildly exist in whole circulation system and tightly related to multiple organs and 
tissue. Those will limited transfer laboratory research achievements to clinic use. Since cross-talking 
between different pathways are very common, biomarker targeting treatment still needs more and more 
evidence supporting in the future.
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ABSTRACT

Heart transplantation is a surgical procedure performed on patients with end-stage heart failure or other 
irreversible heart disease, Heart transplant prolongs the life of severe heart disease patients. Most of 
the receipts could survive more than 2-3 years, five-year survival rate could reach 70-80% with immu-
nosuppressive therapy, rejection still an important problem after transplantation. Currently, traditional 
calcineurin inhibitors, antimetabolite agents, and steroids, wildly used after transplantation, the new 
generation of immunosuppressive medicines have been developed, and cell-based immunotherapy, as 
mesenchymal stem cell, myeloid-derived suppressor cells, dendritic cells, pluripotent cells and Treg cells 
are promising to be used in cellular immunotherapy in organ transplantation.

INTRODUCTION

The chapter focused on heart transplantation indication, prognosis, traditional and new generation im-
munosuppressive medicine, cell immunotherapy in adult and pediatric heart transplantation.
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Transplantation Opportunity and Clinical Prognosis

Indications

Congestive heart failure (CHF) affects 7.5 million people in North America and 23 million people 
worldwide(Alraies & Eckman, 2014). 550,000 patients develop heart failure (HF) each year, and the 
incidence is increasing, doubling with each decade after 45 years of age (Mozaffarian et al., 2015).

It has been reported that about 20% lifetime risk after midage for heart failure and while more pa-
tients are surviving the early stages of cardiac disease 10% of patients with HF are in the advanced stage 
(Deng, 2002). Based on 2011 mortality data from the American Heart Association, CHF contributes 
more than 30% of any-mention deaths attributable to cardiovascular disease(Mozaffarian et al., 2015). 
Cardiac transplantation has become the primary course of treatment for those in the last phases of this 
disease (Jung et al., 2011).

Heart failure is a complex syndrome defined by elevated cardiac filling pressure at rest or when under 
stress, also characterized by inadequate peripheral oxygen delivery, caused by cardiac dysfunction (Tse, 
2011). HF is normally characterized by cardiac muscle dilation (dilated cardiomyopathy) or hypertrophy 
(Leclercq, 2007). There are two types of heart failure, reduced ejection fraction (systolic dysfunction), 
and preserved ejection fraction (diastolic dysfunction) (Lilly, 2012). Ejection fraction (EF) is a measure-
ment of how well the heart is pumping each time it contracts. If this is low, it is an indication that the 
heart is not contracting during systole as well as it should be and, therefore, cannot pump blood to the 
periphery effectively. When EF is “preserved”, it means that while the fraction of blood being pumped is 
the same, there is an overall decrease in the amount of blood being pumped, even though the percentage 
of blood being ejected from the ventricles is the same(Lilly, 2012).

Some conditions that can lead to a reduced EF include coronary artery disease, chronic volume 
overload as is seen in aortic or mitral valve regurgitation, dilated cardiomyopathies, advanced aortic 
stenosis, and uncontrolled severe hypertension. Conditions that can lead to preserved EF are all as a 
result of impaired filling of the ventricles during diastole. These can include left ventricular hypertrophy, 
restrictive cardiomyopathy, myocardial fibrosis, transient myocardial ischemia, and pericardial constric-
tion or tamponade(Lilly, 2012). According to research studies, the most common diagnoses associated 
with heart transplantation were dilated cardiomyopathy, ischemic cardiomyopathy, and hypertrophic 
cardiomyopathy (Jung et al., 2011).

Systolic dysfunction heart failure comprises 50% of all heart failure patients (Alraies & Eckman, 
2014). Congestive heart failure (CHF) is a form of systolic dysfunction, and its prevalence has increased 
over the years as a result of improved longevity of the population and better-quality management of acute 
coronary syndromes (Deng, 2002).

The first heart transplant was successfully done in 1967 in Groote-Schuur-Hospital, Kapstadt, South 
Africa. The U.S. accomplished its first successful heart transplant at Stanford University in 1968 (Deng, 
2002). Currently, tens of thousands of heart transplants are being performed worldwide and due to 
major advancements in immunosuppression, rejection control, and infection control, the results of the 
procedures have improved dramatically since its inception (Deng, 2002; Jung et al., 2011) (Table 1).

The indications for heart transplantation are many and varied. Common indications such as having 
advanced heart disease unaltered by optimal medical therapy or failure of cardiac resynchronization 
therapy to improve symptoms of the underlying pathology are often considered in the stratification of 
patients on extensive waiting lists. There are criteria, however, in the determination of eligible patients 
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based on the classifications of severity of HF by the New York Association Class (NYHA) and another 
system generated by the American College of Cardiology and American Heart Association (ACC/AHA). 
The NYHA has classes I-IV, each based on the functional capabilities of the patients. Class I indicates 
there is no limitation to activities, class II is regular activity limited due to mild shortness of breath, 
class III specifies those with symptoms under minimal exertion, and class IV patients have symptoms 
at rest (Alraies & Eckman, 2014).

The ACC/AHA has four stages of classification as well, A-D. Stage A includes patients with a high of 
developing the cardiac disease based on significant family history but without structural heart disease or 
symptoms of heart failure and stage D includes those in advanced stages of heart failure optimal therapy 
notwithstanding. The refractory patients in need of specialized interventions, stage D patients, have the 
options of end-of-life-care or extraordinary measures like heart transplantation, mechanical circulatory 
machinery, or pharmaceutical therapy (Alraies & Eckman, 2014; Jessup et al., 2009).

There are several indications for heart transplantation dictated by the ACC/AHA guidelines including:

1.  In refractory cases of cardiogenic shock that require left ventricular assist device (LVAD) or intra-
aortic balloon pump counterpulsation cardiac transplantation can be indicated (Alraies & Eckman, 
2014). Refractory Cardiogenic shock is when the heart fails to pump enough blood to the organs to 
function, leading to multiorgan system failure if not remedied immediately. The LVAD is a device 
that uses electromagnetic energy to pump oxygenated blood to the body in patients with advanced 
heart failure(Milla, Pinney, & Anyanwu, 2012). While it is not a replacement for the heart, its as-
sistance can be critical for those waiting for a heart transplant.

2.  Instances of cardiogenic shock that necessitate continuous intravenous inotropic therapy such as 
digoxin, dobutamine, or milrinone (Alraies & Eckman, 2014). Inotropic drugs act to increase the 
contractility of the heart through stimulation of the sympathetic and adrenergic receptors on the 
heart, leading to an increase in the amount of blood that can be pumped out. Prolonged use of this 
is dangerous, however, and indicative of heart transplant necessity.

3.  When a patient has a peak VO2 less than ten mL/kg per min after reaching the anaerobic thresh-
old, they are highly indicated for the procedure. This is the gold standard of cardiac transplant 
indications. Peak VO2 is defined as the maximum rate of oxygen consumption measured during a 
monitored exercise activity (typically on a treadmill). When below a certain level, this means the 

Table 1. Advancement in heart transplants

Year Advancement in Heart Transplants

1966 Temporary Assist Device, the booster pump was successfully implanted by Dr. DeBakey (April 21st, 1966).

1967 First successful heart transplant completed by Dr. Christian Banard in Cape Town, South Africa (Dec 3rd, 
1967).

1969 First successful temporary artificial heart transplant in a human by Dr. Denton Cooley, the patient lived for 65 
hours.

1970s Discovery of cyclosporine, an immunosuppressant drug derived from soil fungus by Jean Borel.

1982 First successful permanent artificial heart: “Jarvik-7”, designed by Dr. Robert Jarvik.

1984 First successful pediatric heart transplant.

1994 Discovery of tacrolimus, another instrumental immunosuppressant drug derived from a fungus.
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cardiac reserve and adaptation of peripheral tissues are inadequate; this serves as one of the best 
predictors of when an individual can become a candidate for cardiac transplantation (Jessup et 
al., 2009; Milla et al., 2012). Compensated CHF patients with a peak oxygen consumption of less 
than 14 mL/kg/min or <50% predicted, in particular, are considered sick enough for transplanta-
tion (Alraies & Eckman, 2014). Research studies show that the cut-off point of <10 mL/kg/min is 
a more accurate threshold when identifying most eligible candidates for heart transplantation. In 
one study including 715 patients referred for cardiac transplantation due to advanced HF, one year 
event-free survival was 87% in patients with Vo2 >14 mL/kg/min, 77% in those with Vo2 between 
10.1 and 14 mL/kg/min, and 65% of patients with less than 10 mL/kg/min (Milla et al., 2012).

4.  Those patients with an NYHA class III or IV in spite of maximized resynchronization treatment 
or other medical therapies are considered sick enough for cardiac transplants (Alraies & Eckman, 
2014). Arrhythmias, or irregular heart rhythms, can be found in patients with severe heart fail-
ure. Resynchronization therapy is when this rhythm is “reset” by a pacemaker, a small machine 
implanted in the heart. According to the AHA, cardiac resynchronization therapy such as the 
Implantable Cardioverter Defibrillator (ICD), can improve the blood flow in the heart, as well as 
its efficiency(”Cardiac Resynchronization Therapy (CRT)., ” 2015; Lund et al., 2014). This can 
reduce the symptoms in such patients, for example, shortness of breath, as well as decrease mor-
bidity. However, recent studies have shown that Cardiac Resynchronization Therapy (CRT) does 
not decrease the rate of mortality or hospitalization, and actually possibly increases mortality in 
individuals with systolic heart failure and a narrow QRS duration.

5.  Those experiencing recurrent life-threatening left ventricular arrhythmias despite an implantable 
cardiac defibrillator, antiarrhythmic therapy, or catheter-based ablation are also indicated for cardiac 
transplantation(Alraies & Eckman, 2014). As stated above, implantable cardiac defibrillators or 
other methods of cardiac resynchronization therapy has been proven to reduce total mortality by a 
reduction in sudden cardiac death in patients with NHA functional class III or IV despite optimal 
medical treatment(”Cardiac Resynchronization Therapy (CRT)., ” 2015). However, should these 
methods fail to suppress life-threatening left ventricular arrhythmias, these patients should be 
referred for cardiac transplantation.

6.  Patients with end-stage congenital HF and no evidence of pulmonary hypertension can be indi-
cated for transplantation(Alraies & Eckman, 2014). Certain congenital anomalies can predispose 
an individual to heart failure if not remedied. An example would be a congenital bicuspid aortic 
valve, where the aortic valve is comprised of only two leaflets, instead of the normal three. In its 
advanced stages, it can lead to chronic pressure overload on the heart, disabling its ability to pump 
effectively during systole(Lilly, 2012). Valve replacement is the only treatment for this condition.

7.  Patients with refractory angina lacking effective medical or surgical therapeutic options can be 
indicated for surgery(Alraies & Eckman, 2014; Deng, 2002). Angina pectoris is a very common 
manifestation of ischemic heart disease, presenting with symptoms of chest discomfort and pres-
sure. Stable angina is this feeling of discomfort during physical exertion. It is considered unstable 
angina if the symptoms present at rest and last for a longer amount of time. If unstable angina 
persists, risks of myocardial infarction, heart attack, increases substantially after 15-20 seconds 
(Lilly, 2012). When ischemic heart disease is not controlled, and there is neither potential medical 
or surgical options a patient can go into refractory angina and be a likely candidate for cardiac 
transplantation.
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8.  Another important factor is the hemodynamic management of pulmonary vascular resistance (PVR), 
which when below 4 Wood units (320 dynes-sec/cm5) (normal is ≤ 1.5 Wood units) are considered 
for transplantation (Gallino, Eugster, Schneider, Furrer, & Turina, 1988). During the postoperative 
period, the healthy donor right ventricle is acutely subjected to substantially increased workload; 
thusly, it is critical to be pharmacologically able to reduce the PVR acutely. A non-reversible PVR 
greater than 6 Wood units is a major excluding factor. One report has shown that mortality rate 
over three months was higher in patients with PVR greater than 2.5 Wood units compared to those 
with lower values, but if the initially high PVR could be reduced pharmacologically, the mortality 
rate decreased dramatically (Gallino et al., 1988).

Due to the very complex nature of heart failure, including its varying neurohormonal, hemodynamic, 
and electrophysiologic properties that contribute to the morbidity and mortality of the disease, it is 
critical to recognize that basing of the selection process on one sole indication can be highly erroneous.

There are probable cardiac transplantation criteria as well as inadequate indication criteria, and it is 
important that this risk stratification be in place so that these transplants are going to the most appropri-
ate candidate (Alraies & Eckman, 2014; Deng, 2002). The United Network of Organ Sharing (UNOS) 
is the organization that assigns transplant candidates a status according to their medical conditions. IA 
is the highest status, assigned to the sickest, longest waiting patients. With respect to UNOS status, the 
national median waiting time for status 1A is 49 days (Alraies & Eckman, 2014).

Donor criteria have changed significantly in recent decades, expanding from a very narrow, specific 
criteria to a very broad, inclusive one. This has occurred because of the increasing demand and stagnant 
availability of donor’s hearts (Gallino et al., 1988). The extended criteria include advanced donor heart 
dysfunction, donor heart structural changes, donor malignancies, donor-recipient size match, donor age, 
and donor infection. In spite of the size of the donor recipient, a normal sized adult male has become 
suitable for most candidates (Alraies & Eckman, 2014).

Prognosis

According to the International Society for Heart and Lung Transplantation (ISHLT) registry, the 1-year 
survival rate post cardiac transplantation is approximately 90%, with those in a favorable functional 
status within 1-3 years also approaching 90% (Alraies & Eckman, 2014; Lund et al., 2014). These pa-
tients generally can do normal activities and can return to work during that 1-3 year period (Lund et al., 
2014). It has even been reported that despite cardiac denervation, many of these patients can perform 
very well athletically (Kemp W.L., 2008). Survival has improved for the first year after cardiac trans-
plantation compared to the 1980s and 1990s, due to vast improvements in immunosuppression, relaxed 
donor requirements and the stringent, risk-based stratification of recipients (Hillebrands et al., 2001; 
MX). Even still, this improvement is mostly applicable to the initial 6-12 months post-transplant, after 
which mortality rate remains equal to that prior to these advancements in healthcare (Hillebrands et al., 
2001). The 5-year survival rate is 69%, and the median survival of all cardiac transplantation patients is 
11 years. Median survival increases to 14 years if the patient survives the first year post-transplant (MX).

There are many causes of morbidity in post heart transplant recipients. Some leading causes for all 
transplant recipients and retransplant beneficiaries who occur particularly during the early period after 
transplantation include graft failure, infection, and multiple organ failures (Alraies & Eckman, 2014; 
MX). During the following 3-5 years, some common post-transplant morbidities include coronary ar-
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tery vasculopathy (CAV), malignancy, renal dysfunction, hypertension, hyperlipidemia, and diabetes. 
Malignancy is the most common cause of death in post-transplant recipients.

Coronary artery vasculopathy is a panarterial disease that is of both immunologic and nonimmunologic 
origin (Hillebrands et al., 2001; MX). This multifactorial disease occurred in the epicardial coronary 
arteries and characterized by diffuse intimal hyperplasia. The nature of the hyperplasia is concentric and 
longitudinal and confined to the areas of the allograft (Grauhan et al., 1998; Montgomery, Cozzi, West, 
& Warren, 2011; MX). The immunologic factors play a major role in this disease, especially consider-
ing that the antibody-mediated rejection takes place solely in the donor’s arteries and not the recipients. 
After these initial years, the incidence of death related to this decreases. Recent studies indicate that 
the greater the HLA mismatch between donors and recipients, the greater incidence there is of CAV in 
patients (Eisen Howard J; Grauhan et al., 1998; Hillebrands et al., 2001; MX). Approximately 30-40% 
of patients will develop this disease within five years post-transplantation(Alraies & Eckman, 2014). 
Although only 11% of deaths post-transplantation are as a result of acute rejection within the initial three 
years, ISHLT recognizes that both acute and chronic immune reactions are important factors involved 
in allograft rejection and a leading cause of death for retransplant patients.

Rejection of allograft transplantation is considered an adaptive immunologic reaction to a foreign 
tissue, or the donor tissue. It is necessary to understand the different classifications of rejection of 
cardiac allograft transplants that can occur post transplantation. Rejection can be either a cellular or 
humoral immune response as a result of the alloantigen, with cellular rejection being facilitated by T 
cells and humoral via antibodies (Kemp W.L., 2008; Montgomery et al., 2011). The other classifica-
tion for rejection is based on timing after the transplantation procedure is completed: hyperacute, acute, 
and chronic(Kemp W.L., 2008). Cellular rejection can be a result of the recipient’s CD4+ T cells being 
hypersensitive, leading to graft tissue damage via the release perforin by cytotoxic T cells. These T cells 
have matured from CD8 T cells and can be stimulated through a direct or indirect pathway. The direct 
pathway involves major histocompatibility complex (MHC) molecules, which play the primary role in 
rapid rejection reactions (Kemp W.L., 2008; Lilly, 2012; Montgomery et al., 2011). Every person has 
polymorphic genes encoding for histocompatibility proteins like MHC molecules that are responsible 
for the immunologic response to the allografts (Montgomery et al., 2011). In this direct pathway, the 
molecules are on the surface of the alloantigen cells and are recognized by the body. Indirectly, the recipi-
ent’s antigen presenting cells presents these antigens, leading to the activation of the adaptive immune 
system and subsequent attack on the graft tissue, resulting in rejection.

The humoral, or vascular rejection is due to preformed antibodies against the vasculature of the 
graft. Specifically, human leukocyte antigens (HLA) are the human form of histocompatibility complex 
(MHC) molecules involved in these rapid, potent reactions (Montgomery et al., 2011). It is only when 
these HLA antigens between the donor and recipient are mismatched on all cells of the graft that this 
rejection occurs. Associated with the worst prognosis, this form of rejection can increase the risk of 
CAV almost tenfold.

Acute allograft rejection can be cellularly or humoral mediated. Experiments have demonstrated 
changes in specificity and memory as mediated by lymphocytes, occurring approximately ten days 
after transplantation in an acute allograft rejection (Jung et al., 2011; Kemp W.L., 2008; Lilly, 2012; 
Montgomery et al., 2011). Clinically, there are typically lesions found, infiltrated with large numbers of 
lymphocytes and macrophages, which cause damage to the tissue. The microscopic morphology varies 
between the cellular and the humoral graft rejection. The acute, cellularly mediated rejection morphology 
presents with interstitial mononuclear infiltrate, hemorrhaging, edema, and swollen endothelial cells, 
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or endothelialitis. The acute humoral morphology includes parenchymal infarcts, necrotizing vasculitis, 
and neutrophilic infiltrate. This humoral rejection can happen more rapidly if there is a second transplant 
with the same organ, and the recipient has developed a memory of the grafted tissue (Lilly, 2012; Mont-
gomery et al., 2011). The diagnosis of acute cellular rejection can be made by endomyocardial biopsy, 
which can be accomplished via routine inspection or if suggestive symptoms are present (Abbas, 2003). 
An acute allograft rejection does respond excellently to cyclosporine, an immunosuppressant, however.

If this pathology presents during the first 24 hours after transplantation, it is considered hyperacute 
rejection (HAR). Induced in most cases by preformed donor-specific HLA antibodies (DSA), this humoral 
mediated immunologic response occurs so rapidly that vascularization of the tissue cannot occur. Some 
sources of these preformed DSA include the stimulation via allo-presensitization during pregnancy, 
transfusions, and previous transplants (20). These antibodies bind to the antigens present in the allograft 
tissue, leading to characteristic thrombotic occlusion and interstitial hemorrhage. Histologically, HAR 
is also defined by edema and intermittent loss of vascular integrity(Deng, 2002). There can also be 
neutrophils found within the arterioles and infarcts of parenchyma. Irreparable damage and cessation of 
function secondary to ischemia can occur within minutes to hours of the transplantation. Grossly, this 
can manifest as cyanosis of the organ with discolored parenchyma.

Chronic rejection is the last type of chronologically classified allograft rejection and can occur be-
tween 4-6 months and initial years post-transplantation. The exact mechanism for this form of rejection 
is unclear, however, indirect, cellularly-mediated reactions are implicated in the process. Changes in 
microscopic morphology include changes in the vasculature, interstitial mononuclear infiltrate, inter-
stitial fibrosis, and eventual loss of tissue (Abbas, 2003; Deng, 2002; Kemp W.L., 2008; Montgomery 
et al., 2011; MX).

Immunosuppressive Medicines

Immunosuppressant drugs are essential in the prevention of allograft rejection and ensuring long-term 
success postoperatively (Table 2). This can be achieved through a variety of mechanisms of action, and 
often several are implemented per patient.(Darst JR, 2012; Lindenfeld et al., 2004) Each category of drug 
offers fundamentally unique benefits, though complications, such as medication-specific adverse effects 
or therapy failure in the form of rejection, are possible even in combination. However, several novel 
therapies are in development or clinical trial phases and may provide new avenues for post-transplantation 
care and continued success. Such options will be addressed toward the end of this section.

Most Widely Used Immunosuppressant

The primary goal of immunosuppressive therapy is to prevent rejection of a cardiac allograft. In addi-
tion, an ideal regimen will not hinder the ability of the immune system to respond to infectious agents. 
Thus, most immunosuppressants are aimed at T-cell-mediated mechanisms rather than those of B-cells. 
Drugs to reduce B-cell function via the lowering of antibody load are available, but only feasible in 
individuals whose existing antibody levels are high or who have developed antibodies to donor tissue. 
(Gruessner A.C., 2014). Currently, the most commonly used immunosuppressants can be divided into 
three categories: calcineurin inhibitors, antimetabolite/antiproliferative agents, and steroids. Drugs from 
each class are commonly used in combination though the exact regimen varies depending on preferences 
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of the operative location and needs of the patient. The objective of this chapter is the focus on which 
therapies are most commonly utilized in current practice.

Calcineurin Inhibitors

The gold standard for primary immunosuppression in cardiac transplant recipients has long been calcineu-
rin inhibitors (CNIs), namely cyclosporine and tacrolimus. Both inhibit interleukin-2 (IL-2) production 
in T cells by forming complexes with endogenous proteins and binding calcineurin, which prevents its 
phosphatase activity.(Schonder K.S., 2014) Since the development of cyclosporine in the 1980s, post-
transplantation outcomes significantly improved. Most notably, three-year survival rates increased to 
70%, which is an impressive 30% increase prior to the use of cyclosporine.(Lindenfeld J, 2004)

Despite the undeniable benefits, long-term use of CNIs contributes to several comorbidities, which 
may ultimately lead to mortality or irreversible harms. The effects of CNIs on the renal system have been 
well studied. Nephrotoxicity caused by these medications is usually permanent, even after a decrease in 
therapy or complete withdrawal.(Mudge, 2007) These damages are not only associated with the impaired 
renal function but also with the development of diabetes and hypertension. Tacrolimus is associated with 
lower risk of renal toxicity compared to cyclosporine, but also with a higher risk for neural symptoms 
and hyperglycemia. CNIs may also promote tumor formation by enhancing production of growth factors 
that cause tumor growth and angiogenesis. However, this is currently only a postulation and has not yet 
been established.(Lindenfeld J, 2004)

Antimetabolite and Antiproliferative Agents

The two most commonly used drugs in this category, azathioprine (AZA) and mycophenolate mofetil 
(MMF), work by inhibiting DNA synthesis in T- and B-cells. AZA is first converted to its active meta-

Table 2. Immunosuppressive agents used in heart transplant recipients

Commonly used Immunosuppressive Agents in Heart Transplant Recipients

Class Common Side Effects

Prednisone corticosteroid Aggression, agitation, Anxiety, blurred vision, dizziness, irregular, etc.

Methylprednisolone corticosteroid Aggression, agitation, Anxiety, blurred vision, dizziness, irregular, etc.

Azathioprine immunosuppressant Black, tarry stools, bleeding gums, blood in the urine or stools, chest 
pain, cough or hoarseness, etc.

Mycophenolate Mofetil immunosuppressant respiratory tract infection, urinary tract infection, herpes simplex 
infection, viremia, etc.

Cyclosporine immunosuppressant hypertension, hirsutism, tremor, nephrotoxicity, increased blood urea 
nitrogen, etc.

Tacrolimus immunosuppressant Infection, diabetes mellitus, headache, tremor, hyperglycemia, etc.

Sirolimus immunosuppressant urinary tract infection and upper respiratory tract infection, etc.

Everolimus immunosuppressant Stomatitis, increased serum glucose, decreased hemoglobin, and 
lymphocytopenia, etc.

Basiliximab chimeric (murine/human) 
monoclonal antibody

Abdominal pain, coughing, dizziness, fever or chills, weakness, painful 
urination, etc.
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bolic form, thio-inosine-monophosphate, which acts as a purine analog in DNA. MMF inhibits de novo 
purine synthesis, which is an essential process in lymphocytes specifically. While AZA is typically 
used post-operatively for maintenance therapy in combination with a CNI and steroid, MMF is mainly 
given as rejection prophylaxis. Both have similar efficacies though MMF shows slightly better one-
year and three-year survival rates. Since the action of AZA is less specific to lymphocytes than MMF, 
it is associated with a broad range of myelosuppressive effects, such as thrombocytopenia and anemia.
(Lindenfeld J, 2004)

Steroids

Some of the earliest immunosuppressants used for transplantation are steroids, such as prednisone, and 
methylprednisolone. These drugs have a wide-spread effect, suppressing not only lymphocytes, but also 
granulocytes, monocytes, and macrophages.(Lindenfeld J, 2004; Schonder K.S., 2014). This is achieved 
through their ability to regulate the transcription of genes responsible for immune responses. They first 
diffuse freely into the cell and bind to intracellular glucocorticoid receptors. These complexes translocate 
to the nucleus and bind to regulatory sequences of DNA. In lymphocytes, the genes affected are those 
for growth factors, cytokines, CD40 ligand, and adhesion molecules, among others. In non-lymphocytes, 
genes for adhesion to endothelial cells and differentiation are down-regulated. Because of these potent 
generalized effects, steroids are often used in induction and maintenance therapy, or to combat moderate 
rejection. (Lindenfeld et al., 2004) However, continued use of steroids is associated with “Cushingoid” 
symptoms, such as weight gain, hirsutism, and accumulation of fat in the face and posterior neck (which 
are known as moon face and buffalo hump, respectively). Thus, there is an attempt to limit the duration 
of steroid therapies and dosages are carefully tapered off.(Gruessner A.C., 2014)

Advancement of Drugs in Allograft Rejection

Therapies to enhance immunosuppression, limit adverse effects and improve overall outcomes are con-
stantly being developed and tested. Among the forefront are sirolimus and its derivative everolimus, 
the former receiving FDA approval in 1999 and the latter awaiting approval after showing success in 
clinical trials. Sirolimus is a macrolide antibiotic with a structure similar to that of tacrolimus. How-
ever, rather than targeting calcineurin, sirolimus inhibits the activation of TOR. This not only prevents 
the proliferation of T- and B-cells, but also that of arterial smooth muscle cells and endothelial cells.5 
The significance of this mechanism is that allograft atherosclerosis and tumor growth become negated, 
giving sirolimus an advantage over CNIs in this instance.(Mudge, 2007) Noted adverse effects include 
hypercholesterolemia, hyperlipidemia, and hypertriglyceridemia. Moderate thrombocytopenia is also 
possible though all of these effects are reversible. In trials, the same anti-proliferative effects of siroli-
mus have been demonstrated with everolimus, though the occurrence of bacterial infections is higher in 
comparison to AZA.(Lindenfeld J, 2004)

Monoclonal antibodies are being thoroughly investigated due to their potential to be safer and more 
efficient than other options, especially CNIs Alefacept, in particular, may improve long-term resistance 
to rejection by decreasing numbers of T-memory cells. Both are indicated for the treatment of psoriasis, 
and trials for transplant cases have thus far been limited to kidney allografts.4 Anti-CD25 antibodies, 
such as daclizumab and basiliximab, lower T-cell production of IL-2 and are approved by the FDA for 
immunosuppression in renal transplantations when combined with cyclosporine and steroids. Trials with 
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cardiac allograft recipients have shown a promising reduction in the number of acute rejection episodes 
in comparison to traditional therapies through studies with basiliximab have been more ambiguous. An-
tibodies to target CD28, which is involved in T-cell activation, are also being developed. The chimeric 
molecule CTLA4Ig seems promising, as it has a greater affinity for CD28 than its endogenous ligands, 
B7-1 and -2.1 another antibody therapy, Campath-1H, is awaiting approval by the FDA for transplant 
immunosuppression. It targets CD25, which has an unknown function but is found in high concentra-
tions in lymphocytes, suggesting it has a pivotal role in immune response. Trials have shown that when 
paired with sirolimus, Campath-1H produces nearly 100% three-year survival rates, despite having a 
relatively high early rejection rate (28%) (Mehra, Uber, & Kaplan, 2006).

Another immunosuppressive agent used in the prevention of rejection episodes is anti-thymocyte 
globulin (ATG). Its various mechanisms include inhibiting the process of leukocyte adhesion to micro-
vascular endothelium and subsequent extravasation of effector cells, as well as induction of apoptosis 
of leukocytes infiltrating grafts. Additionally, ATG works to modulate the activity of dendritic cells in 
vivo. A prospective randomized study was done by Faggian et. al in 2010 determined that high-dose 
ATG lead to a lower rate of early and late complications, specifically with graft vasculopathy (Faggian 
et al., 2010). Muromonab-CD3 (OKT3) is a murine antibody that recognizes the epsilon chain of CD3 
molecule on T cells and was used primarily in the treatment of refractory acute allograft rejection (Cir-
culation, 2004). However, due to serious side effects, this drug was removed from the market in 2009. 
Some of the side effects included but are not limited to hemodynamic compromise, cytokine releasing 
syndrome, aseptic meningitis, and encephalopathy.

Cell Therapy

During the solid organ transplantation, short-term and long-term acceptance of allografts can be achieved 
by inducing recipients’ immunosuppression via continuous treatment with traditional immunosuppres-
sive drugs. However, long-term treatment with traditional drugs not only causes the heavy economic 
burden to patients but also lead to serious side effects on patient’s metabolism, resulting in diabetes 
and hyperlipidemia. So it is urgent to develop the novel immunosuppressive therapy for solid organ 
transplantation. Cellular immunotherapy base on all kinds of cells with immunosuppressive function 
is a potential one (Fandrich, 2010). More and more studies have demonstrated that mesenchymal stem 
cell (MSCs), myeloid-derived suppressor cells (MDSC), dendritic cells, pluripotent cells and Treg cells 
have an immunosuppressive function, and they are promising to be used in cellular immunotherapy in 
organ transplantation.

Mesenchymal Stem Cells (MSCs)

More than 40 years ago, MSCs were first identified and isolated from bone marrow. After that, more and 
more studies show that MSCs have emerged as one of the most promising candidates for cell therapy in 
tissue injury because of their self-renewal ability and potential differentiation into three principal lineages, 
such as osteoblastic, adipocytic and chondrocyte lineages. For their property of treating cardiac repair, 
numerous studies demonstrate that human MSCs transdifferentiate into cardiomyocytes by coculturing 
of ventricular myocytes in vitro or being injected into mouse heart in vivo.
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In addition to their treatment in tissue injury, MSCs can be applied to treat some immune disorders 
because MSCs also play a critical role in regulating the immune response (Aggarwal & Pittenger, 2005). 
MSCs themselves can escape host immune response after being infused into an allogeneic host because 
they do not express some molecules human leukocyte antigen (HLA) major histocompatibility complex 
(MHC) class I, B7-1, B7-2, CD40 and CD40 ligand in the cell surface. Now more and more studies 
show that MSCs have a powerful immunomodulatory in vivo. For examples, the infusion of BM-derived 
MSCs can alleviate graft-versus-host disease (GVHD) both in mice and in humans. In systemic lupus 
erythematosus (SLE) patients, umbilical cord (UC)-derived MSCs were able to inhibit inflammation 
and reduce damage to the bowel. Similarly in Crohn’s disease patient, autologous BM-derived MSCs 
could reduce inflammation and protect the kidneys. For skin allograft, infusion of allogeneic MSCs 
could extend the survival of skin allograft in immunocompetent baboons. In the allogeneic small bowel 
transplantation, treatment of bone marrow mesenchymal stem cells (BMMSCs) treatment can prolong 
the survival of allograft by reducing acute cellular rejection and apoptosis.

Heart transplantation, one kind of solid organ transplantation has more severe immunologic rejec-
tion. MSCs have been used as an immunosuppressive therapy in animal models and clinical trials of 
some organ transplantation, including heart transplantation models (Wu et al., 2013). The evidence for 
recent studies demonstrated that transfusion of MSCs into recipients could be a new immunosuppressive 
therapy in heart transplantation since they can reduce immunologic rejection and prolong the survival 
of allografts. The scientists demonstrate that transfusion of donor-derived MSCs into recipients indeed 
can prolong the survival of cardiac allografts by promoting the expansion of Treg cells and reducing the 
production of pro-inflammatory cytokines. In control group without transfusion of donor MSCs, all the 
cardiac allografts are rejected within 13 days. However, in the treatment group, transfusion of donor MSCs 
dramatically prolong the survival time of cardiac allografts. Another study confirms this result. Transfu-
sion of MSCs before heart transplantation or one day after transplantation can promote an accumulation 
of CD4+ CD25+ Foxp3+ Treg cells which induce immune tolerance. However, coinjection donor MSCs 
and hematopoietic stem cells (HSCs) can block the MSCs-induced immune tolerance, indicating HSCs 
can block the immune tolerance induced by MSCs. So researchers may further investigate how HSCs 
negative regulate MSCs-induced immunosuppression in heart transplantation. In the chronic rejection of 
heart transplantation, alloreactive CD4+ T cells cause the vascular stenosis in the cardiac graft, finally 
resulting in cardiac allograft rejection. After cardiac transplantation, transfusion of MSCs can promote 
the T cell population change from Th1/Th2 to anti-inflammatory Th2, resulting in the inhibition of 
chronic rejection. Recent studies focus on the conjoint effect of combining MSCs with traditional anti-
immune drugs in heart transplantation. MSCs transfusion combined with low-dose rapamycin treatment 
significantly induce immunosuppression and prolong the long-term survival of cardiac allografts (H. 
Wang et al., 2014). This function relies on the expression of B7-H1 on the surface of MSCs. The effect 
of MSC treatment combining with other clinical immunosuppressive drugs, including sirolimus (Srl), 
ciclosporin A (CiA) and mycophenolate mofetil (MMF) have been investigated.

Although MSCs treatment in heart transplantation has a promising therapeutic effect, the extend-
ing survival time still is too short. We know that MSCs can escape the immune response. Once MSCs 
differentiated in vivo, the immune attack will come back. So cellular immunotherapy based on MSCs 
should be developed. Combination MSCs immunotherapy with traditional immunosuppressive drugs is 
a feasible way to improve the therapeutic efficiency. A Recent study demonstrates the conjoint effect on 
combination MSCs with MMF or rapamycin in immune tolerance during heart transplantation. Combined 
treatment with MSCs and other type immunosuppressive cells may be another potential therapy in future.
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Myeloid-Derived Suppressor Cells (MDSC)

More than 20 years ago MDSC were first described in tumor-bearing mice or cancer patients. The 
increasing MDSC population was detected in the peripheral blood of patients with different types of 
cancer, promoting tumor escape from host immune response. In addition to cancers, MDSC accumulation 
also found in some inflammation relative diseases, including various acute and chronic inflammation, 
bacterial infection, sepsis, traumatic stress and autoimmunity. Collectively, all above evidence suggests 
that MDSC accumulation is a common phenotype in all kinds of inflammation.

MDSC are a heterogeneous cell population which including progenitor cells of macrophages, granu-
locytes, dendritic cells and immature myeloid cells, defined by a function of immune suppressive activity 
and phenotype with expression of characteristics relate to hematopoietic cell precursors. MDSC can be 
identified by the high level of myeloid cell surface marker CD11b and the low level of MHC class II 
molecules. Phenotypically, MDSCs include two different subsets monocytic and granulocytic.

The primary function of MDSC is to mediate immune suppression via suppressing proliferation and 
cytokine production in both T and NK cells. MDSC also can induce the apoptosis of some subpopula-
tion of T cells. Further studies show that multiple signal pathways were involved in MDSC mediated 
immune suppression(Nagaraj, Schrum, Cho, Celis, & Gabrilovich, 2010), such as inducible nitric oxide 
synthetase (iNOS), hemeoxygenase 1 (HO-1), Arginase-1 (Arg-1), NADPH oxidase (NOX2) and TGFβ. 
Because of the negative regulation of immune response, MDSC may be a useful resource to regulate 
transplantation tolerance in organ transplantation.

The relation between MDSC and transplantation tolerance was first described in kidney allograft-
ing model in rat(Boros, Ochando, Chen, & Bromberg, 2010). In this model, treatment with anti-CD28 
antibodies can induce the immune tolerance to rat kidney allograft. In the same time, an accumulation 
of CD3- class II- CD11b+ CD80/86+ cells were found in the blood of tolerant recipients. Further studies 
identified those cells as MDSC by function to inhibit the proliferation of effector T cells and to induce 
apoptosis in effector T cells. Inhibition of the activity of iNOS by iNOS inhibitor amino guanidine pro-
moted the allografts rejection. Another study shows the similar result, both granulocytic and monocytic 
MDSC suddenly increase in recipients after renal transplantation. These observations demonstrate that 
the expansion of MDSC during kidney transplantation indeed participate in the induction of transplan-
tation tolerance. However, an only adoptive transfer of MDSC to transplanted recipients cannot induce 
kidney allograft tolerance in the rat model, suggesting MDSC themselves are not enough to induce this 
allograft tolerance. The similar results were reported in renal transplant patients. After transplantation 
CD11b+ CD33+ and HLA-DR- MDSC population increased in patients and suppressed the proliferation 
of CD4+ T cells. In graft-versus-host disease (GVHD), expansion of donor-derived T cells can induce 
anti-recipient immune attack and lead to the death of the recipient. Pre-injection of MDSC can reduce 
the lethality of GVHD by inducing the differentiation of donor-derived T cells into Th2 T cells in the 
mouse model.

In heart transplantation mouse model, mammalian target of rapamycin (mTOR) inhibitors can be 
used to induce immunosuppression, contributing to the survival of cardiac allograft. The results show 
that the number of MDSC in recipients with rapamycin treatment rapidly increases compared to that 
in control mice (Zhang et al., 2014). At the same time, the iNOS level also increases in those MDSC. 
Further study reveals that mTOR and its downstream Raf/MEK/ERK signal pathway play a critical role 
in the recruitment and expansion of MDSC. In another study, use of anti-CD200 antibody also can pro-
mote the survival of cardiac allograft. In this cardiac transplantation model, treatment with anti-CD200 
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antibody also can promote the production of Treg cells and MDSC. In another chronic cardiac rejec-
tion mouse model, donor hearts from B6.C-H2bm12/KhEg mice are transplanted into recipients, MHC 
class II-mismatched C57BI/6J mice. Treatment with interleukin-33 (IL-33) can inhibit chronic cardiac 
rejection and significantly prolong the survival of cardiac allografts(Gajardo, Morales, Campos-Mora, 
Campos-Acuna, & Pino-Lagos, 2015). Results show that pretreatment with IL-33 decreases the level 
of IL-17A but increases the production of IL5, IL-10, and IL-13. At the same time, evidence from flow 
cytometry assay shows that IL-33 treatment induces the CD4+ Foxp3+ Treg cells and CD11b (high) 
Gr1 (intermediate) MDSC. Collectively, the expansion of MDSC plays a central role in extending the 
long-term survival of cardiac allografts by treatment with some drugs or other factors. That means MDSC 
could also play a significant role in cardiac transplantation. Investigation of the detailed mechanism 
of the expansion of MDSC in cardiac transplantation can better understand the function of MDSC in 
cardiac transplantation and finally promote the application of MDSC in human cardiac transplantation.

Other Immunosuppressive Cells

Beside MSC and MDSC, there are other types of cells involved in immunosuppression, including Den-
dritic cells (DCs)(van Kooten et al., 2011), Treg cells(Chai et al., 2015) and pluripotent cells(Imberti, 
Monti, & Casiraghi, 2015). In the mammalian immune system, DCs are one kind of antigen-presenting 
cells which process antigens and present them to T cells or B cells. In the beginning, it is well-known 
that DCs can promote the immune response. Activation of DCs enhances anti-tumor immune response. 
DCs can be activated by Toll-like receptor (TLR) and then inhibit Treg cells function, finally resulting 
in activation of the immune response. However, among the DCs, some subpopulation of regulatory 
DCs play a priority role in the control of autoimmune disease by suppressing the immune response. 
A recent study shows that the subpopulation of CD11b(high) la(low) regulatory DCs that come from 
hematopoietic stem cells or mature DCs can inhibit the immune response in a feedback way. Activated 
Fas signal in the regulatory DCs promotes them to secrete IL-10 and IP-10, and then significantly in-
hibits the proliferation of CD4+ T cells (Y. Wang, Bi, Wu, & Wang, 2011). At the same time, CD4+ 
T cells themselves can Secret Fas ligand to promote regulatory DCs-induced inhibition of CD4+ T 
cells in a negative feedback mechanism. Immunological rejection is one of the significant problems 
in Allogeneic tooth transplantation. One recent study focuses on the application of immature DCs in 
immune tolerance of mice allogenic tooth transplantation. Donor bone marrow-derived immature DCs 
are injected into recipients with allogenic or autogenic tooth transplantation. No blatant rejection is 
found in both autogenic transplantation groups without or with the treatment of immature DCs. How-
ever, in allogeneic transplantation groups, treatment with immature DCs significantly reduces rejection 
compared to control treatment. Indoleamine 2, 3-dioxygenase (IDO) can inhibit allograft rejection by 
suppressing T cell response (Yu et al., 2008). The subpopulation of IDO+ DCs has been confirmed to 
inhibit the expansion of CD4+ CD25- T cells in vitro. Treatment with 3-HAA can enhance this inhibi-
tion induced by IDO+ DCs. Further study in mouse small bowel transplantation model confirms this 
fact that treatment with IDO+ DCs and 3-HAA dramatically prolong the survival time of allograft. 
A recent survey shows the migration of host-derived and donor-derived DCs in heart transplantation 
model. The results demonstrate that host-derived DCs are induced to migrate into the cardiac allograft 
quickly after transplantation. However, later both host-derived and donor-derived DCs can be found in 
host spleen and hepatic lymph nodes. This evidence indicates that DCs could be associated with the 
survival of cardiac allografts. Different subpopulations of DCs present the opposite functions in heart 
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transplantation. In heart transplantation, the organs from older donor have shorter survival time than the 
one from the young donor because there are CD11c+ DCs in the older heart can trigger the production 
of IL-17A in recipients which induce expansion of CD4+ CD8+ T cells and alloimmune response. The 
survival time of older allografts will be extended by depletion of CD11c+ DCs before transplantation 
or blockade of IL-17A. Another study demonstrates that mir-155 can accelerate cardiac allograft rejec-
tion by induced differentiation of DCs. This evidence verifies the existence of the anti-transplantation 
DCs. In contrast, some subsets of DCs that inhibit immune response during heart transplantation have 
also been found. One subpopulation of DCs, named Tolerogenic DCs (Tol-DCs) is a group of immature 
DCs. Transfusion of Tol-DCs into recipients can induce immune tolerance and prolong the survival of 
cardiac allografts in heart transplantation model. Tol-DCs can induce the proliferation of Treg cells, 
inhibit the effect of cytotoxic lymphocytes and promote Th2 cells differentiation. Combined treatment 
fms-like tyrosine kinase three ligands (Flt3L) with low-dose rapamycin can dramatically prolong the 
survival of cardiac allografts compared to untreated group. The mechanism is that this combined treat-
ment can induce the expansion of Tol-DCs and Treg cells. Now we know that Tol-DCs can be obtained 
from four methods, such as gene modification, drug induction, cytokine induction and isolation of liver 
or spleen. Treatment with drug NK026680, a novel triazolopyridine derivative, induces the production 
of Tol-DCs that prolong the survival of cardiac allografts by inhibiting the immune response. Soluble 
CD83 also can induce the production of Tol-DCs, resulting in heart transplant tolerance and longtime 
survival of heart allografts. Other studies show that Tol-DCs also can be induced by the blockade of 
CD40-CD40L costimulation, NBD-peptide and LF15-0195. Altogether, Tol-DCs play the key roles in 
transplantation immune tolerance. Further studies of the mechanism of Tol-DCs can contribute to the 
survival of cardiac transplantation.

The functions of Treg cells in immune tolerance have been well-described. Numerous studies based 
on animal transplantation model demonstrate that Treg cells play an effective role in transplantation 
immune tolerance and promote the survival of allograft. Adoptive transfusion of TCRαβ (+) CD3 (+) 
CD4−CD8−NK1.1− (double negative, DN) T cells can induce expansion of CD4+ Foxp3+ Treg cells that 
contribute to long-term cardiac allograft survival. Combined treatment simvastatin with aspirin dramati-
cally promotes the survival time of cardiac allograft by the accumulation of CD4+ CD25+ Treg cells in 
recipients. Depletion of CD4+ CD25+ Treg cells in recipients promotes the cardiac allograft rejection. 
Another study shows that IL10 inhibit allograft rejection and prolong the long-term survival of allograft 
by regulation of CD4+ CD25+ Treg cells (Lu et al., 2014). ECP (extracorporeal photopheresis) has been 
applied for the treatment of cardiac allograft rejection for several decades. Now scientists demonstrate 
that ECP-induced immunosuppression depends on promoting the accumulation of Treg cells and the 
lymphocyte apoptosis. Since the promising function of Treg cells in immunosuppression, the mecha-
nisms of immunosuppression by Treg cells have been verified. Treg cells constitutive express cytotoxic 
T-lymphocyte antigen-4 (CTLA-4) which inhibits the interaction between CD28 and B7 ligands and 
block the activation of APC. High-affinity IL-2 receptor CD25 on the surface of Treg cells can consume 
IL-2 and promote IL-2 depletion-induced the apoptosis of effector T cell. Treg cells also directly secret 
some immunosuppressive cytokines, such as IL-10, IL-35 and transforming growth factor β (TGF β) 
to induce immune tolerance. So the transfusion of Treg cells into recipients or induced expansion of 
Treg cells in recipients by drugs or cytokines may be a potential immunosuppressive therapy in heart 
transplantation. However, the application of Treg cells in transplantation tolerance is a double-edged 
sword. They also increase the incidence rate of cancer in recipients.
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Although all above kinds of immunosuppressive cells have been verified to play promising func-
tions in solid organ transplantation, the big problem with them is how to obtain enough amount cells for 
therapy or further studies. The induced pluripotent stem (iPS) cells that are created from patient’s somatic 
cells will be a useful resource for cell therapy. iPS cells can be used for some tissue damage repair like 
myocardial repair. It is possible to induce directly iPS cells to differentiate into those kinds of immu-
nosuppressive cells. It will overcome the problem of the limitation of those immunosuppressive cells.

Future Role of Nanotechnology in Cardiomyopathies and Transplants

Nanotechnology is defined by the National Nanotechnology Initiative as the understanding and control 
of matter at dimensions between approximately 1 and 100 nm, where unique phenomena enable novel 
applications (Buxton, 2011). There have been many recent advances in this field with respect to drug 
delivery, molecular imaging, and cell labeling (Kim, Ahn, Dvir, & Kim, 2014). For example, it has been 
discovered that small molecule drugs can be loaded or encapsulated into nanoparticles, and when target 
ligands are conjugated to the surface of these nanoparticles, they are taken up by target cells, inside 
which the nanoparticles unload their drug cargo. (Kim et al., 2014) Another study investigated engraft-
ment of a nanoridged polyethylene glycol-based hydrogel scaffold in a myocardial infarction model. In 
the rat model employed, this scaffold was found to promote retention and growth of transplanted heart 
cells and their integration into host tissue (Kim, E. 2014). The future of nanotechnology is expanding 
rapidly, with high hopes of broader amplification in its application to assess valvular disease, predict the 
expansion of aortic aneurysm, and to assess transplant rejection (Buxton, 2011).

Immunosuppressive Therapy and Immune Globin in Pediatric Heart Transplant

Heart transplantation is a potentially life-saving procedure for children with end-stage heart disease 
and no other options for survival. Though transplant is not a guaranteed cure and may be followed by 
multiple complications, expected a lifespan of the patient can be drastically prolonged. This is in part 
due to immunosuppressive regimens specifically tailored to pediatric needs, which improves patient and 
allograft survival and overall outcomes. More recently, an increasing number of therapies have been 
developed to minimize toxicity while boosting efficacy. Such improvements combat the inherent limita-
tions of immunosuppressants, such as susceptibility to infection and failure to prevent allograft rejection.

Indications, Prognosis, and Complications

Due to the number of risks associated with cardiac transplantation in children, this option is only con-
sidered when all other forms of treatment have been exhausted. Indications include progressive heart 
failure that remains unresponsive to medical treatment, congenital heart disease that cannot be feasibly 
repaired with surgery, and unresponsive malignant arrhythmias. (Darst JR, 2012) All conditions result 
in end-stage heart disease and lower the life expectancy of the patient to less than two years.(Fish R.M., 
2011) The current estimated life expectancy for all pediatric patients following a cardiac transplant is 
over fourteen years though exact numbers cannot be determined since the procedure was only recently 
introduced in the mid-1980s.(Benden et al., 2012)

Immediately following surgery, the quality of life and prognosis are typically good. Immunosuppres-
sive therapies do leave the recipient susceptible to infections, most commonly with cytomegalovirus or 
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reactivation of latent viruses. Such infections are life threatening and are the second leading cause of 
death within the first year following a pediatric heart transplant. Live and attenuated vaccinations are 
thus avoided immediately following surgery. (Fish R.M., 2011)

Cardiac allograft vasculopathy, also called graft coronary artery disease, is one of the most concern-
ing long-term complications following pediatric heart transplantation. The proliferation of the intima in 
coronary arteries causes narrowing or complete occlusion of the lumen and can diffuse to distal vessels, 
making treatments such as stents, bypass grafting, or angioplasty obsolete. The direct relationship to 
immunosuppressive therapy remains unknown. Thus, adjustments to avoid the development of cardiac 
allograft vasculopathy are difficult to make. (Darst JR, 2012)

Chronic immunosuppressive therapy with CNIs such as cyclosporine and tacrolimus may also cause 
renal impairment. Treatment with alternatives, namely sirolimus and everolimus, may lessen nephrotoxic 
effects and the development of long-term complications. (Fish R.M., 2011)

In adolescent patients, non-compliance with immunosuppressant regimens may be the leading cause 
of cause of death post-operatively. New medications and administration strategies are being implemented 
to raise adherence in these individuals. (Darst JR, 2012)

Current Immunosuppressive Therapy Protocol

Various combinations of immunosuppressants exist as possible therapy options in pediatric recipients. 
Regimens include monotherapies, dual therapies, and triple therapies, and a CNI (cyclosporine or ta-
crolimus) is always included. (Khimji, Kazmerski, & Webber, 2008) Avoidance of steroids, especially 
in cardiac transplants, is becoming increasingly common due to side effects such as growth retardation, 
impaired wound healing, and Cushingoid symptoms.(Darst JR, 2012) Therefore, dual therapies may 
instead contain AZA, MMF, or sirolimus/everolimus in accompaniment to a CNI. Triple therapies 
typically consist of a CNI, steroid, and either AZA/MMF or sirolimus/everolimus.(Khimji et al., 2008)

New Immunosuppressive Therapies in Pediatric Heart Transplantation

While several new medications are in development, most have not been extensively tested in pediatric 
patients. Promising data has been gathered in adult trials that can be extrapolated to pediatric situations, 
and hopefully, will lead to successful applications in the near future.

Alemtuzumab, a monoclonal antibody targeting CD52 found on T- and B-cells, natural killer cells, 
and monocytes, is becoming a preferred induction agent in transplantation surgeries though it has not 
yet been FDA approved for this purpose. Studies in children are few in number, but existing evidence in 
kidney transplants shows alemtuzumab is equally as effective as other inducing agents, based on one-
year survival rates and kidney function. (Nguyen & Shapiro, 2014)

A fusion protein of CTLA4 and IgG1, belatacept acts as an inhibitor of T-cell activation and may be 
an option for pediatric heart transplant recipients. Currently, use has been limited to adult patients, and 
data has shown that while acute graft rejection rates were higher in comparison to cyclosporine, patient 
and allograft survival rates were comparable while renal function was significantly better. Furthermore, 
intravenously administered drugs such as belatacept may remedy non-compliance issues with adolescent 
patients. (Nguyen & Shapiro, 2014)

Though most immunosuppressants used currently attempt to target T-cell mechanisms, an increasing 
number of therapies aimed at B-cell alloantibody production has appeared. In particular, bortezomib, 
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which is approved by the FDA for the treatment of multiple myelomas, seems promising. It functions as 
a proteasome inhibitor and ultimately lowers the number of plasma cells, preventing the production of 
alloantibodies. (Nguyen & Shapiro, 2014) A study conducted in 2011 by the University of Cincinnati 
analyzed allograft survival with the use of bortezomib in both adults and pediatric heart transplant recipi-
ents. Results showed a substantial decrease in humoral activity, solidifying the potential of bortezomib 
in immunosuppressive therapies. (Woodle, Walsh, Alloway, Girnita, & Brailey, 2011)
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ABSTRACT

In heart diseases, there are frequent incidents of narrowing or blocking coronary arteries by fatty plaque 
deposition. As a result, blood pressure rises and the arteries weaken. This can lead to rapid rupture of 
the blood vessels, also known as heart attack or brain stroke. In some cases the arteries lose elasticity 
over old age. Heart stent or coronary stent inserts in the blocked/fragile region of coronary artery. It 
helps to expand the artery to allow free flow of blood and consequently, reduces blood pressure. Over 
past 20 years there are many modifications and innovations in the field of cardiac stents, in this chapter 
we will discuss few of those.

INTRODUCTION

Heart: the most important organ for mammals and birds. Heart muscles pump oxygenated blood from its 
left cavities (Figure 1) to different vital organs (like brain, liver, kidney) and tissues to support various 
cellular activities. After regional utilities, when the carbondioxide-rich blood reaches the heart (right 
side), it is transported to lungs to get re-oxygenated. Blood enters left ventricles of heart on its way back 
and again delivers oxygen to remote tissues.

In this way heart constantly works as a pumping machine that is responsible for our healthy life. 
With the advancement of technology, less exercise, consumption of ready-to-eat fatty food, smoking, 
alcoholism and stress, blood gradually develops lower ability to carry oxygen. Or, due to elevated body 
weight and less physical movements, oxygen carried by the blood is not sufficient to meet the cumulative 
demand. To combat this, heart tries to pump more blood which creates a lateral pressure on the arteries. 
Years after year’s relatively high pressure pushes the artery walls towards sacrificing its elasticity, they 
become more rigid progressively. In certain cases, there is plaque like growth (mostly from fatty food) 
along the inner wall of the arteries. These plaques contain varying amounts of cholesterol, calcium, 
muscle cells, and connective tissues, a process called ‘arteriosclerosis’ (also atherosclerosis). Due to this 
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unwanted deposition when coronary arteries narrow more than 50% to 70%, the blood supply beyond 
the plaque becomes inadequate to meet the increased oxygen demand of the heart muscle during heavy 
work. Constant flow-in and flow-out push the arteries and veins towards huge pressure on the inner wall. 
This results in chest pain in 75% cases including shortness of breath (which comes from half functional 
lungs). These patients are said to have silent angina and are equally prone to a heart attack.

This even results in high-pressure build-up, which can lead to i) rupture of the arteries ii) deoxygen-
ated heart and remote organs/tissues. Either of which, in absence of proper on-time medical intervention 
can bring up death in few hours. There could also be blood clot in the vessels, which can move around 
and while in brain can cause partial or total blockage in the arteries leading to a ‘brain stroke’ (also 
knows as, ischemic stroke). A brain stroke can be as simple as a mere dementia (partial shut off of few 
functions as the brain cells are dead due to lack of oxygen). In some cases a hemorrhagic stroke can also 
take place when a blood vessel within the brain bursts. The reason is mostly uncontrolled hypertension. 
This can lead up to a whole body paralysis or brain death. In addition to these major problems there are 
equally life-threatening complications in heart disease like arrhythmia, dysfunctional heart valve etc.

These unfortunate prognoses of cardiovascular diseases are very prevalent in any region, gender mak-
ing it the most common reason for death in the world. In United States alone almost 610,000 people die 
from heart disease every year (Xu et al., 2016), that is almost 1 in 4 deaths. Every year at least 735, 000 
Americans have a heart attack, of these 525,000 is a first attack. Consequently, cardiovascular procedures 
performed in the United States have increased to more than three times in last decade. This increased 

Figure 1. Circulation of blood through heart
Image adapted from http://www.bodylanguageholistic.com/
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trend is expected to continue with the aging of the population, coupled with epidemics of obesity and 
diabetes mellitus (Rao et al., 2008). Luckily, with on time proper medical intervention many unfortunate 
incidents can be avoided. With the tremendous advancement of medical science in past few decades, 
especially in tackling cardiovascular diseases there are both invasive and non-invasive procedures. In-
terventions to restore blood flow include: (a) atherectomy (catheter based device to remove the plaque), 
(b) angiogenesis (use of laser catheter or through gene therapy), (c) brachytherapy (optimum delivery 
system of gamma or beta radiations), (d) angioplasty (removal or compression of the plaque by use of 
catheter, balloon or stent) and (e) bypass grafting (detouring around the blockage). In this chapter, we 
plan to focus on procedure mentioned in (d).

Percutaneous Coronary Intervention (PCI), also recognized as ‘angioplasty’ is a non-surgical proce-
dure that opens blocked or narrowed coronary arteries. Looking at the severity of a blockage cardiolo-
gists take the right decision for a proper intervention. In this method a partial or full body anesthesia 
is required but dehospitalization is a fast procedure. After the intervention the patient can have a low 
risk better quality of life through long years. So it is necessary to have an in-depth knowledge about the 
types of stents, their merits and demerits. We plan to discuss the progress of stent designs, materials 
and properties. Still, PCI is a recent technique; physicians are challenging cardiovascular disease since 
long by the following ways.

HISTORY OF CARDIOVASCULAR DISEASES

How was the Treatment Earlier

For long time (first successful open heart surgery being performed in 1953) open heart bypass surgery 
(coronary artery bypass grafting or CABG) was the only solution for a blocked artery. In this method 
an active vein from leg or hand is surgically removed and replaced the blocked artery. One of the major 
interventions performed today is called PCI or percutaneous coronary intervention. It reduced the preva-
lence of bypass surgery in 90-95% cases. The oldest form of PCI is balloon angioplasty.

Balloon Angioplasty

Balloon angioplasty was first tried in 1977. In this method a long catheter is inserted into the artery 
through groin or wrist. The tip of the catheter has a balloon, which is inflated as soon as it reaches the 
area of blocked artery. The inflated balloon can compress the plaque and restore the necessary blood 
flow with the result of more oxygen delivery to the heart muscles. This was good up until few years 

Figure 2. Timeline of cardiovascular disease treatments
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when the physicians realized that as soon as the catheter was removed the artery came back to its origi-
nal shape – also known as elastic recoil. This may lead to the need of emergency bypass graft surgery 
(CABG). Most importantly, around 30% to 40% cases the plaque also came back with time (or it is called 
restenosis). A major breakthrough came with the advancement of stents. However, before going to stent 
like permanent fixture let us browse through some plaque removal techniques.

Plaque Removal Techniques

Various plaque removal devices were devolved in order to remove plaques from the arteries. These are 
performed using PCI. These include the use of excimer laser for photoablation of plaque, rotational ath-
eroctomy (use of high speed diamond-encrusted drill) for mechanical ablation of plaque, and directional 
atherectomy for cutting and removal of plaques. These methods were thought to be very effective initially 
but now a days only used in selective cases as an adjunct to standard percutaneous coronary intervention.

Balloon angioplasty as well as plaque removal techniques are temporary solutions. For a longer relief 
cardiologists recommend employment of stents.

WHAT ARE ‘STENTS’

Stents are thin mesh like tubular metallic structures (Figure 3) which can be inserted in place of a ruptured 
artery. Coronary stenting is a more permanent form of PCI. With the intercoronary stents, atherectomy, 
as well as newer pharmacologic agents it reduced complications related to atherosclerosis and reduced 
recurrence after percutaneous coronary interventions. Currently the recurrence after stenting is lower 
than 10%.

Figure 3. How coronary stents expand in artery
Image adapted from http://www.telegraph.co.uk/news/uknews/theroyalfamily/8977422/Coronary-stenting-how-does-it-work.html
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During 1980s it was around 30 years that research on stent was going on. Scientists and cardiolo-
gists were waiting for the clinical trial results on the very first stents. In 1986 a French cardiologist first 
installed a stent. But in the decade of eighties, stents were installed only in the case of abrupt vessel 
closure and dissections. It could also be employed following angioplasty to avoid restenosis. Now-a-days 
coronary stents have nearly eliminated the problem of abrupt occlusion, which occurs in 5% of patients 
where balloon angioplasty is employed. Coronary stenting has reduced the chance of restenosis by more 
than 50% (Kulick et al., 2010). Most satisfactory from a patient’s point of view, no open-heart surgery 
is at all required during PCI. When successful, it can relieve severe chest pain or angina, improve the 
prognosis of individuals with unstable angina, and minimize or stop a heart attack without having the 
patient undergo a open heart coronary artery bypass graft surgery.

In 1994 FDA accepted stents and subsequently more and more patients were treated with stents that are 
employed by PCI balloon but remain in the artery as ‘scaffolds’. This has markedly reduced the chances 
of emergency CABG to below 1%. At present, the only patients that require just balloon angioplasty are 
the ones with vessel size lower than 2 mm (minimum diameter stents available). In some cases balloon 

Figure 4. REBEL: Platinum-chromium coronary stent system from Boston Scientific 
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mediated interventions are still necessary. For example, in narrower branches of coronary artery, having 
scar tissue in already employed stents, for cases where patients are unable to take blood thinners.

Generally after stent employment, patients are prescribed oral blood thinners (like clopidogrel, as-
pirin) for around a year. To overcome the cumbersome process of pills taking and for better delivery of 
medications, researchers have come up with drug eluting stents where drug is automatically eluted with 
time for a long time period. Based on this, stents can be classified in two categories.

Bare Metal Stents (BMS)

Bare metal stents are usually stainless steel stents and have no special coating. They are preloaded in a 
collapsed form onto a catheter balloon. They act as scaffolding to prop open blood vessels after they are 
widened with angioplasty. As the artery heals, tissue grows around the stent, holding it in place (Dangas 
et al., 2002). BMS generally results extremely favourable during the initial clinical results. However,long-
term results have been shattered by the dual problems of in-stent restenosis (ISR) or scar tissue formation 
and stent thrombosis (along with excessive neointimal proliferation) in the arterial lining increasing the 
risk of re-blockage. Grossly 20-30% patients show eventual re-narrowing of the artery while using BMS.

Drug Eluting Stent (DES)

As discussed in the previous paragraph, incidents of restenosis can take place even after performing a 
stent. Although patients are prescribed to take anticoagulants, with a considerable time period there is 
accumulation of plaque or scar tissue inside the employed stent. In some cases the fibrosis or ingression 
of scar tissue is up to such an extent the tissue slowly covers that metallic mesh of the stent. In these 
cases deployment of a stent also becomes a challenge. To combat this, the upgraded version of stents 
has come up with many modifications. The modern stent is a combination of metallic structure along 

Figure 5. Classification of stents
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with a thin polymer film. The polymeric film may contain embedded blood thinning drugs, which on 
slow sustained release removes the clots from arteries. The polymeric film is designed to disappear by 
slow degradation leaving metallic stent structure alive. With drug eluting stent, the chances of restenosis 
have been brought under 10%.

Drug Eluting Stents (DES) are coated with medication that is released to help prevent the growth of 
scar tissue in the artery lining. This helps the artery remain smooth and open, ensuring good blood flow 
and reduces the chances of the artery re-narrowing or restenosis. The commonly used drugs must be 
anti-inflammatory, antithrombogenic, antiproliferative and immunosuppressive. However, it also leads 
to a higher chance of blood clots (stent thrombosis). Commonly used drugs are everolimus, paclitaxel, 
sirolimus/rapamycin, zotarolimus, biolimus, actinomycin etc (Luscher et al., 2007). Their release profile 
has been widely investigated in order to establish a slow and sustained release mechanism in presence 
of proper chemical triggers. Release kinetics and applied dose plays a major role in the duration and 
magnitude of arterial drug uptake, equally important is the mechanism by which the drug is released.

There have been modifications and up gradation of drug eluting stents. Grossly they are of 3 types:

Dual Therapy Stent (DTS)

Dual Therapy Stent (DTS) is the latest type of coronary stent. The inner wall and outer wall of the stent 
are differently treated. It is the first stent designed to (i) reduce the likelihood of the re-narrowing of the 
artery, (ii) help the healing process of the artery by endothelial coverage. It combines the benefit of DES 
and bio-engineered stents and is the only stent to contain a drug with active healing technology. The stent 
surface facing the artery wall contains endothelial progenitor cells (EPCs). This plays a pivotal role in 
stent endothelialization of the artery. EPCs are unique in their ability to promote endothelial regenera-
tion and proper healing of vascular lesions by migrating to lesion sites and differentiating into mature 
endothelial cells. EPCs are captured by probing with anti-CD34 antibodies. This ultimately promotes 
natural healing and helps the healthy artery function properly. Simultaneously, it also releases drug that 
stops the artery blockage without any worry of swelling or an inflammatory response. The drug (generally 
sirolimus) is delivered from a bioresorbable polymer that will degrade over time. Genous Bio-engineered 
stent, OrbusNeich Medical Technologies are the pioneers in this technology (Baber et al., 2012).

Bioresorbable Vascular Scaffold (BVS)

The Bio-Vascular Scaffold (BVS) is a drug eluting stent on a dissolvable type of scaffold platform that 
can be absorbed by the body over time. Before the emergence of drug eluting stents, patients after PCI 
were subjected to dual antiplatelet therapy (coumadin, clopidogrel). Staying under timely medication is 
cumbersome. In addition to that, a ‘traceless stent’ gives some psychological benefits. Like some of the 
currently available Drug Eluting Stents (DES), BVS is coated with a drug released from a polymer that 
disappears over time to reduce the likelihood of the artery re-narrowing (restenosis). The scaffold itself 
is absorbed overtime. Unlike DTS, there is no active element to promote artery healing.

Abbott’s bioresorbable stent AbsorbTM is made of poly-L-lactide and coated with everolimus. It shows 
slow degradation over 6 months to 2 years. It has shown very good results in clinical trial as well. Table 
1 shows the comparison of different absorbable stents.
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Bio-Engineered Stent

Bio-engineered Stent is also known as antibody-coated stent. This type of stent differs from DES because 
it does not contain a polymer and does not use a drug. As a result, it helps to speed up the cell lining of 
the artery (endothelialization), promoting natural healing. The antibody on the stent’s surface attracts 
circulating Endothelial Progenitor Cells (EPCs) which come from human bone marrow and help speed 
up the formation of healthy endothelium. This provides rapid coverage over the stent’s surface helping 
to reduce the risk of early and late thrombosis (blood clots). GenousCoCr from OrbusNeich is marketed 
using this technology (Lim et al., 2011).

The drug eluting stents again can also be classified into three broad categories (Figure 5). 1. 1st genera-
tion stents 2. 2nd generation stents and 3. Newer stents. All DES currently approved in the United States 
have the same general components, although they differ with respect to the stent platform, polymer, and 
antirestenotic drug type. Differences may be observed with respect to deliverability (ease of placement), 
efficacy (prevention of restenosis), and safety (rates of stent thrombosis and myocardial infarction).

The first two DES to be approved in the United States were the sirolimus-eluting stent (SES) in 
2003 and paclitaxel-eluting stent (PES) in 2004. They are now often referred to as “first generation” 
DES. SES are no longer available in the United States and Europe and PES are infrequently used due 
to superiority of second generation stents (Cutlip et al.). In 2008, the zotarolimus-eluting stent (ZES) 

Table 1. Comparison of different commercial stents

Absorption 
Time

2 Years <4 Months <4 Months 2 Years 6 Months

Strut Thickness 
μm

170 165 156 200 200

Deployment Self expanding and heated 
balloon

Balloon Balloon Balloon Balloon

Radio opacity Gold markers Nil Pt markers Iodine impregnated Nil

Drug elution Nil Nil Everolimus Nil Sirolimus 
salicylate

Absorption 
products

Lactic acid, CO2, and H2O NA Lactic acid, CO2, 
and H2O

Amino acids, 
ethanol,CO2

Salicylate, CO2, 
and H2O

Design Zig-zag helical coils with 
straight bridges

Sinusoidal in phase 
hoops linked by 
straight bridges

Cohort A: out-of-
phase sinusoidal 
hoops, straight 
and direct links; 
Cohort 
B: in-phase hoops 
with straight links

Side and lock Tube with 
lasercut voids

Coating 
material

Nil Nil Poly-D,L-lactide Nil Salicylate_
different linker

Strut material Polymer-poly-l-lactic acid Metal magnesium 
alloy

Polymer-poly-l-
lactide

Polymer 
tyrosine-Derived 
Polycarbonate 
polymer

Polymer 
salicylate_linker

Stent Igaki-Tamai Bioabsorbable Mg 
alloy

BVS 
Bioabsorbable 
vascular solutions

REVA BTI 
bioabsorbable 
Therapeutics inc
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and the everolimus-eluting stent (EES) were approved for use and now they are referred to as “second 
generation” DES. The ZES has undergone further modification with a change in polymer to achieve 
improved pharmacokinetics and has largely replaced the earlier version of ZES. The newer DES has a 
stent platform of a cobalt-chromium or platinum-chromium alloy, thinner and more deliverable than the 
first generation DES. In addition, second generation DES are more biocompatible than the first generation 
DES: They may generate less inflammatory response and have more rapid vessel endothelialization. This 
biocompatibility and associated reduced inflammatory response is likely due to improvements in polymer 
technology and may translate into lower rates of myocardial infarction and stent thrombosis. However, 
despite this potential improvement in biocompatibility, the recommended duration of dual antiplatelet 
therapy with aspirin and a P2Y12 receptor blocker is 12 months, similar to the first generation DES.

PROBLEMS AND RISKS WITH STENTS

Installation of a stent comes with few ‘professional hazards’. There are cases of bleeding, fracture of 
stents, dislodgement, hypersensitivity, stent thrombosis, infection etc. But their occurrence in most cases 
is lower than 2%. In case of DES implanted patients, due to a relatively slower healing process, they 
must strictly follow their doctor’s recommendation on drug therapy (DAPT) to help reduce risk of stent 
thrombosis. Current American Heart Association recommendations are for a minimum DAPT therapy 
of at least 12 months after DES implantation (Levine et al., 2011).

Table 2. Comparison of different drug eluting stents

Special 
features

Superior to BMS in reducing the 
magnitude of neointimal proliferation and 
clinical restenosis 
• Late stent thrombosis is more likely to 
occur with these stents

Stent exhibiting clearly lower thrombosis rates as compared to first 
generation DES 

Polymer free DES 
and biodegradable 
stents

Polymers Nonerodable 
polymer-
polyethylene-
co-vinyl acetate 
and poly-n-butyl 
methacrylate

Soft elastomeric 
polymer- 
poly(styrene-
bisobutylene-b-
styrene)

Persistent, nonerodible, 
two polymers (a) 
Polyvinylidene fluoride 
cohexafluoropropylene 
and (b) poly-n-butyl 
methacrylate

Persistent, Biolinx 
polymer, blend of 3 
polymers: hydrophobic 
C10, hydrophilic 
C19 and polyvinyl 
pyrrolidone

Persistent- 
phosphorylcholine

Biodegradable/
polymer free 
Poly(styrene-b-
isobutylene-b-
styrene)

Platform Stainless steel Stainless steel Platinum chromium Cobalt–chromium Cobalt–chromium Cobalt chromium, 
nickel-titanium, 
Platinum 
chromium etc.

Drugs Sirolimus, Paclitaxel Everolimus Zotarolimus Zotarolimus Biolimus, 
Sirolimus, 
Everolimus

Examples Cypher (Cordis 
Corporation)

Taxus (Boston 
Scientific)

Xience/Promus (Boston 
Scientific)

Endeavor Resolute 
(Medtronic)

Endevour ZES 
(Medtronic)

Axxess stent 
NEVO stent 
TransluteTM

Types of 
stents

First generation DES Seconds generation DES Other stents
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CONCLUSION AND FUTURE DIRECTION

The use of stents has definitely lowered down the occurrence of MACE (major cardiac adverse events). 
Especially upon the usage of DES there has been a significant reduction in MACE. Although there are 
huge amount of controversy regarding the efficacy of drug eluting stents, a clinical trial conducted in 2010 
indicates reduction in (i) probability of death or myocardial infarction, (ii) probability of stent thrombosis, 
and also (iii) probability of target vessel revascularization (Kaiser et al. 2010). Gershlick et al. (2007) 
pooled outcomes from the first several ZES clinical studies including 1,317 patients and reported that, 
despite varied baseline clinical and angiographic characteristics, treatment with the ZES was associated 
with consistently low rates of TVR, stent thrombosis, and overall MACE at 2-year follow-up. In past few 
years several clinical trials have been conducted worldwide (like SPIRIT and ENDEAVOR trial series) 
which compare the efficacy of EES over ZES or PES. Still, cardiac disease is not fully manageable. The 
new age clinicians and scientists should work together and focus on the following points: (i) assessment 
whether stent thrombosis rates plateau or continue to increase over time; (ii) assessment of the incidence 
rate of cardiac death and myocardial infarction (MI); (iii) gather information on antiplatelet therapy use; 
and (iv) study routine clinical use of DES. The extent of thrombosis should also be uniformly measured. 
Given the huge diversity of patients and clinicians, it is hard to maintain uniformity. The focus of next 
generation stents should be on further development towards long-term safety and efficacy along with 
excellent extent of endothelialization and rapid arterial healing.

Stents in past few years have rapidly changed the picture of cardiovascular patients. They are more 
tension free and can lead a normal lifestyle. Morbidity, mortality due to cardiac arrest has also gone 
down too. Patients no longer have to come back for cardiac catheterizations due to ISR. We hope for an 
even better future with the advancement of cardiac stents.

ABBREVIATIONS

DES: Drug eluting stent.
MI: Myocardial infarctions.
BMS: Bare metallic stent.
DTS: Dual therapy stent.
BVS: Bioresorbable vascular scaffold.
EES: Everolimus eluting stent.
ZES: Zotarolimus eluting stent.
PES: Paclitaxel eluting stent.
PTCA: Percutaneous transluminal coronary angioplasty.
PCI: Percutaneous coronary intervention.
CABG: coronary artery bypass grafting.
TVR: Target vessel revascularization.
TLR: Target lesion revascularization.
MACE: Major adverse cardiac events.
ISR: In-stent restenosis.
DAPT: Dual antiplatelet therapy.
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KEY TERMS AND DEFINITIONS

Angioplasty: A non-invasive procedure to widen the narrowed or blocked artery.
Arrhythmia: Irregular heartbeat, either too fast or too slow.
Atherosclerosis: Closing of vessels by plaque formation.
Infarctions: Tissue death caused by local lack of oxygen.
Ischemic Stroke: Stroke arising of blood vessel blockage.
Plaque: Insoluble solid deposits.
Restenosis: (Inside stent) blocking because of solid deposits.
Scar Tissue: An area with new tissue after a wound. In context of heart stent, it is newly formed 

tissue inside stent.
Stent: Metallic cage like object, which goes inside a blood vessel to aid in improved blood flow.
Thrombosis: Generation of a blood clot inside blood vessel.
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ABSTRACT

Nanomedicine has vastly improved the treatment and diagnosis of many cardiovascular conditions 
such as atherosclerosis, myocardial ischemia, myocardial infarction, restenosis, and thrombosis. A few 
nanoparticle drug delivery systems that are currently being tested and used in clinical trials include 
lipid-based drug delivery, controlled drug release, and specific targeting. The chapter describes the vari-
ous drug delivery methods, the various nanoparticles, and their application on specific cardiovascular 
conditions. This chapter compiles examples of specific clinical trials that are being conducted, using 
nanoparticles for therapy of cardiovascular conditions.

INTRODUCTION

The application of nanotechnology in medicine has greatly increased over the past couple decades. 
Nanotechnology uses and manipulates materials of nano-scale to assist with drug delivery in the body, as 
well as detecting and diagnosing diseases. Nanoparticles possess unique physical properties such as large 
surface area to mass ratio, high reactivity, and nano-size, which allow them to overcome many limitations 
presented by traditional drug delivery methods (Zhang et al., n.d.). Nanoparticles are a practical method 
of drug delivery because they can be modified to target specific areas, therefore increasing affectivity.

Current drug delivery methods that are used for cardiovascular applications include lipid-based oral 
delivery, drug delivery via the coronary venous system, microbubbles, and nanoparticles for controlled-
release delivery. Nanoparticles are currently being used for diagnosis and therapy of various cardiovas-
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cular conditions such as atherosclerosis, thrombosis, myocardial infarction, myocardial ischemia, and 
restenosis. Clinical studies show that polyglycolic acid-polymer (PLGA) and liposome nanoparticles are 
an effective drug delivery system to help treat these cardiovascular conditions. Surface-level modifica-
tion of nanoparticles is being tested to help with drug targeting to specific regions of inflammation and 
injury. These advancements with nanotechnology allow for more specific and controlled drug treatment 
options, therefore improving therapeutics in cardiovascular applications.

TYPES OF CARDIOVASCULAR DRUG DELIVERY SYSTEMS

Cardiovascular drug delivery is unique because the vascular system provides drugs for systemic effects, 
as well as to specific organs. Local administration of drugs include methods such as drug delivery into 
the myocardium, drug delivery via the coronary venous system, injection into coronary arteries using a 
cardiac catheter, intrapericardial drug delivery, and the release of drugs into arterial lumen using stents 
(Jain, 2008). Drug delivery to the cardiovascular system is administered and mediated through various 
means. The main types of cardiovascular drug delivery include the use of microbubbles, ultrasound, 
lipid-based oral delivery, controlled-release drug delivery, and nanoparticle delivery.

Microbubble Drug Delivery Systems

Microbubbles are 1µm-1mm in size and are used as contrast agents for ultrasound imaging and tar-
geted drug delivery. An example of a therapeutic application of microbubbles includes microbubble-
enhanced sonothrombolysis. Clinical trials of microbubble-enhanced sonothrombolysis treatment are 
being conducted in acute ischemic stroke and acute myocardial infarction. Microbubbles can be used to 
target antigenic determinants expressed on endothelial cells by incorporating targeting ligands onto the 
surface of the microbubbles (Unger, Porter, Lindner, & Grayburn, 2014). Microbubbles can be loaded 
with therapeutic agents and can be delivered to specific areas of the cardiovascular system. Delivery of 
therapeutics can be achieved by; microbubbles being manufactured to incorporate bioactive substances 
in the microbubble shell, microbubbles being incubated with bioactive substances so the substance 
attaches to the microbubble shell, and microbubbles and bioactive substances being co-administered 
(Mayer & Bekeredjian, 2008).

Lipid-Based Drug Delivery Systems

Lipid-based drug delivery systems are used for improving oral bioavailability, sustaining and controlling 
drug release, improving drug stability, reducing food intake effect, targeting injured sites, and for combi-
nation therapy. Lipid based drug delivery systems optimize oral delivery of cardiovascular drugs (Rao, 
Tan, Thomas, & Prestidge, 2014). A specific type of lipid-based drug delivery system is self-emulsifying 
drug delivery systems (SEDDS), which are commonly used for cardiovascular drugs. Self-emulsifying 
drug delivery systems incorporate more hydrophilic surfactants and co-solvents in order to reduce oil 
and water tension of emulsion droplets. SEDDSs can reduce the re-dispersed emulsion droplet size and 
therefore create a small, localized, dispersion (Rao, Tan, Thomas, & Prestidge, 2014).
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Controlled Drug Delivery

Controlled drug release provides a means for reducing the risk of cardiovascular disease at certain 
specific times. The continuous and controlled drug release is accomplished through the incorporation 
of cellulose-based substances (Rao, Tan, Thomas, & Prestidge, 2014). Controlled drug release can 
be accomplished through physical mechanisms such as diffusion of drugs through a polymer layer, 
deterioration of the polymer that is controlling drug release, regulation of osmotic pressure for drug 
release, and the use of ion exchange. Chemical mechanisms that break bonds between drug molecules 
and their delivery mechanism include polymer chains that undergo chemical degradation (Acharya & 
Park, 2006). The two types of controlled-release drug delivery systems include orally active and trans-
cutaneous, which are regulated by diffusion, bioerosion, and generation of osmotic pressure. These 
allow for short-acting therapeutic drugs to be administered daily with greater efficiency and fewer side 
effects (Katz, Rosenberg, & Frishman, 1995). Studies are being conducted using hollow microspheres 
for controlled release of cardiovascular drugs. The drug-loaded microspheres have low densities and 
allow for buoyancy, which helps them sustain continuous drug release for over 12 hours (Soppimath, 
Kulkarni, & Aminabhavi, 2001).

Nanoparticle Drug Delivery

A more recent cardiovascular drug delivery system that is being researched and clinically applied is 
the nanoparticle drug delivery. Nanoparticle drug delivery uses materials that are 1-100nm in diameter. 
Some of the various types of nanoparticles that are being used are micelles, liposomes, and nanocrystals. 
These nanoparticles adjust drug kinetics of vascular permeability (Matoba & Egashira, 2014).

TYPES OF NANOPARTICLE DRUG DELIVERY SYSTEMS

As previously discussed, nanoparticles are used as a drug delivery system for drugs that have poor solu-
bility in water (Zhang et al., n.d.). Specific types of nanoparticles include micelles, liposomes, and nano-
crystals that are 1-100nm in size. These nanoparticles can be used as a drug delivery system to increase 
bioavailability. The large surface area to mass ratio of nanoparticles improves drug dissolution, which 
increases absorption because a high drug concentration gradient is created (Lee, Yun, & Park, 2015).

Micelles

Various nanoparticles can be used for drug delivery systems, such as micelles, which assemble in aque-
ous solutions because of their hydrophilic heads and hydrophobic tails. Micelles are used to overcome 
solubility issues because they incorporate hydrophobic drugs in their centers. Liposomes are composed 
of a lipid bilayer that encapsulate hydrophilic drugs inside. Similarly, Macromolecule polymers can create 
polymeric nanospheres and dendrimers that encapsulate drugs. Silk Fibroin is an example of a naturally 
occurring protein polymer that is used for the delivery of drugs and small biomolecules (Mottaghitalab, 
Farokhi, Shokrgozar, Atyabi, & Hosseinkhani, 2015). Carbon nanotubes are cylindrical shaped and hold 
therapeutic drugs inside them. Nano-sized crystalline structures can be used for drug delivery as well as 
for imaging purposes (Matoba & Egashira, 2014).
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Nanoparticle Specialized Targeting

Nanoparticles are created to assist with specialized targeting, using ligands and antibodies on the surface 
of the nanoparticle. Modifications on the lipid head of polymer nanoparticles can create “stealth” nanopar-
ticles. These nanoparticles, such as polyethylene glycol can circumvent mononuclear phagocyte systems, 
and inhibit blood proteins from binding to the lipid head surface (Schiener et al., 2014). Nanoparticles 
can circulate for different time periods depending on size, length, surface density, and surface charge. 
Nanoparticles that have modifications made to help increase circulation time increases the ability of the 
nanoparticle to reach its target (Schiener et al., 2014). The two types of targeting include passive and 
active. Passive targeting does not allow for the nanoparticle removal through body mechanisms such 
as metabolism and excretion. This allows for the drug to stay in circulation in the blood stream, and 
find its targets through properties such as pH, temperature, molecular size and shape (Khanna, 2012). 
Passive targeting is when the drug-enclosed nanoparticle is passively contained in an area of increased 
microvascular permeability. Active targeting is when the surface of the nanoparticle is modified with a 
ligand to help target specific cells. The active targeting method is usually used when there is a greater 
gradient of drug concentration between the damaged area and the unharmed area (Galagudza et al., 2012).

Nanofluids

A nanoparticle suspension in a fluid such as water creates nanofluids that can be used for various ap-
plications. The advantages of using nanofluid include an minimal clogging, microchannel cooling, a 
decrease in the system size, while still increasing the heat transfer of the system (Tripathi, & Bég, 2014). 
Biomedical engineering has facilitated the use of magnetic nanoparticles to assist in drug delivery to 
specific region of the body. Magnetic nanoparticles that make up a nanofluid can assist drugs to be guided 
through the bloodstream with the use of an external magnet (Abbasi, Hayat, & Alsaedi, 2015). Copper-
water nanofluid that has a magnetic force applied to it is an example of a peristaltic transport method.

APPLICATION OF NANOTECHNOLOGY IN 
CARDIOVASCULAR DRUG DELIVERY SYSTEMS

Nanotechnology allows for earlier detection and improved therapeutic drug delivery systems for car-
diovascular conditions. Current research is focusing on using nanoparticle drug delivery systems for 
the diagnosis and treatment of atherosclerosis, thrombosis, myocardial infarction, myocardial ischemia, 
and restenosis.

Atherosclerosis

Arteriosclerosis is a cardiovascular condition where the blood vessels inside the body become thick 
and stiff leading to atherosclerosis, myocardial infarction, and stroke. The inflammation of the vascular 
lumen in atherosclerosis can lead to the formation of atheromatous plaque (Psarros, Lee, Margaritis, 
& Antoniades, 2012). Atherosclerosis is the thickening of the vascular lumen and the accumulation of 
white blood cells. This narrowing of the blood vessel leads to a decrease in blood flow, which can cause 
a myocardial infarction and thrombosis. The plaque deposit in the blood vessel can dislodge and move 
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through the blood stream, leading to a stroke. Computed tomography (CT) is currently being used to 
image coronary arteries to detect the narrowing of vascular lumen. One study being conducted uses a 
nanoparticle drug delivery system to deliver polyglycolic acid (PLGA) polymer, and crystalline metal 
nanoparticles to atherosclerotic plaques. These nanoparticle drug delivery systems have been found to suc-
cessfully aid with CT detection as well as plaque destabilization (Matoba & Egashira, 2014). Nanoparticles 
that are being used for atherosclerosis therapy include, liposomes, peroflourocarbons, anionic micelles, 
nanoparticle–protein conjugates, RNA delivery, fullerenes, and theranostic. Liposome nanoparticles 
target macrophages and help reduce inflammation and suppress neointimal growth. Perflourocarbons 
are used with imaging of plaques with MRI. Anionic micelles, nanoparticle–protein conjugates, and 
specific fullerenes, target low-density lipoproteins which play a major role in atherogenesis when they 
are oxidized. Preclinical research conducted using a rat model, showed that RNA-delivery nanoparticles 
reduced neointimal formation after a balloon angioplasty. Theranostic nanoparticles composed of dextran 
and iron target macrophages, furthermore aiding with MRI imaging, as well as elimination of macro-
phages that construct plaque (Psarros, Lee, Margaritis, & Antoniades, 2012). Specific glucocorticoids can 
help decrease inflammation and prevent atheroprogression. In a study using a mouse model, liposome-
encapsulated dexamethasone was able to deliver the drug to an atherosclerotic plaque by reducing the 
side effects and increasing the drug affectivity (Sureddi, & Mehta, 2011).

As mentioned previously, nanoparticles that have surface modifications made to them can be di-
rected towards their target cells. To aid with nanoparticle targeting in the treatment of atherosclerosis, 
nanoparticles have surface modifications made by adding antibodies, peptides, or aptamers. Specialized 
nanoparticles can target the extracellular matrix and clotted plasmid proteins on plaques. Other specific 
target sites that have been identified for nanoparticle delivery include the junction adhesion molecule-A, 
monocytes, and neutrophils (Schiener et al., 2014). Magnetoflourescent nanoparticles are also currently 
being studied for their diagnostic and therapeutic characteristics. Magnetoflourescent properties harness 
properties that eradicate macrophage atheroma’s and further stabilize lesions. Through intravenous ad-
ministration, the nanoparticles can target macrophage rich areas (Sureddi, & Mehta, 2011). These various 
nanoparticles and targeting techniques will be able to aid in the decrease of atherosclerosis progression.

Thrombosis

Thrombosis is the formation of blood clots that form in blood vessels, eventually leading to the obstruction 
of blood flow. Blood clots can form under specific conditions or if the blood vessel is injured. Throm-
bosis is a serious cardiovascular condition that can lead to anoxia, hypoxia, and infarction. Currently, 
nanoparticle drug delivery systems are being studied to effectively reduce to the effect of thrombosis.

Antithrombotic agents have many clinical uses but they have disadvantages such as low targeting 
ability and short life-span in plasma. In vitro and in vivo studies are being conducted to show how drug 
encapsulated nanoparticles create a good affinity to thrombi and have strong thrombolytic enhancing 
effects (Zapotoczny, Szczubiałka, & Nowakowska, 2015). These nanoparticles are can detect changes and 
inflammation in the endothelium, as well as target drugs to lesions furthermore reducing atherosclerotic 
plaque or thrombosis formation. In vitro studies show that chitosan coated liposome nanoparticles that 
encapsulate tissue plasminogen activators (tPA) dissolve clots more efficiently than tPA in solution. 
Modifying the surface of the liposome nanoparticles with RGD increases thrombolysis (Zapotoczny, 
Szczubiałka, & Nowakowska, 2015). Fibrin is a non-globular protein found in blood clotting. Nanopar-
ticles that target fibrin can help increase the efficiency of drugs compared to free drug administered for 
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clot lysis. Thrombolytic agents such as tissue plasminogen activator have been found to more effectively 
destroy clots using fibrin-targeted, streptokinase-loaded nanoparticles (Fibrin-targeted perfluorocarbon 
nanoparticles for targeted thrombolysis, n.d.). Specific nanoparticle targeting of tissue shows promise 
in treating thrombosis.

Myocardial Infarction and Myocardial Ischemia-Reperfusion Injury

With acute myocardial infarctions, a percutaneous coronary intervention is the leading preventative 
method, which is done by placing multiple stents in a stenotic coronary artery. In an in vivo study, Chan 
et al. (2011) developed a paclitaxel-encapsulated nanoparticle to target damaged vasculature that had 
formed from smooth muscle proliferation and intravascular thrombosis, following a Percutaneous Coro-
nary Intervention (PCI). These nanoparticles are specialized with collagen-IV targeting peptides in an 
effect to suppress stenosis. The study was conducted using a rat model and showed a 50% reduction of 
arterial stenosis using the nanoparticle drug treatment (Rakesh & Soonjo, 2007).

Nanoparticle drug delivery systems are also being used for acute myocardial infarction and myocardial 
ischemia-reperfusion injury. Myocardial ischemia can cause inflammation, tissue damage, and decay. 
Myocardial ischemia-reperfusion produces reactive oxygen species, calcium abundance, and changes 
in pH, which lead to mitochondrial injury and eventually necrosis (Matoba & Egashira, 2014). Clinical 
studies show that nanoparticle drug delivery systems can aid with myocardial ischemia by administering 
a drug during reperfusion. This nanoparticle drug delivery system can target inflammatory monocytes 
and ischemic myocardium.

In a study being conducted by Takahama et al. (2009), liposome nanoparticle delivery of adenosine 
during myocardial reperfusion has increased the concentration of adenosine in the myocardium com-
pared to free adenosine. PLGA nanoparticles are being tested as a drug delivery system for myocardial 
ischemia-reperfusion injury with mice models to see if they enhance therapeutic performance (Matoba 
& Egashira, 2014). A study by Galagudza et al.(2014), investigated silica nanoparticles as drug delivery 
system to carry adenosine to ischemic-reperfused heart. As mentioned previously, nanoparticles can be 
used to target specific areas passively or actively. A passive targeting approach with adenosine on the 
surface of the silica nanoparticle was found to be more effective compared to free adenosine.

In myocardial ischemia, a portion of the heart is deprived of oxygen and the ATP level decreases. 
One study done in isolated ischemic rat hearts as well as in-vivo rabbits showed that ATP-loaded lipo-
somes and immunoliposomes protected the myocardium from ischemic-reperfusion damage. Targeting 
exogenous ATP to damaged myocytes using nanoparticle liposomes that have antimyosin antibodies 
on the surface of liposomes, is an effective passive drug delivery system (Hartner, Verma, Levchenko, 
Bernstein, & Torchilin, n.d.).

Restenosis

Restenosis is the reoccurrence of stenoses that occur from procedures that are done to treat damaged 
arteries and blood vessels. The reobstruction of a blood vessel follows procedures that are done to remove 
original blockages and narrowing. Some strategies that are being used for decreasing the manifestation 
of restenosis include, local drug delivery, adventitial drug implants, stents, and catheter based drug de-
livery. There are various types of nanoparticle drug delivery systems that could be used for restonisis, 
such as biopolymers and synthetic polymers. These nanoparticles can be created to be diffusion based, 
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biodegradable, as well as set to release the drug at specific time incraments or continuously. Biodegrad-
able polymer nanoparticles that contain theraputic drugs are being used for intra-arterial localization. 
These specific nanoparticles are a co-polymer named polylactic polyglycolic acid(PLGA). PLGA 
biodegrades through the hydrolysis of the ester linkage, producing lactic acid and glycolic acid. In this 
process, the nanoparticles will undergo hydrolysis in the arterial wall and continuously release the drug. 
This will repair the arterial wall and reduce the occurance of restenosis. Nanoparticle in vivo studies 
have been conducted using rat, dog, and pig models along with ex vivo studies being conducted with a 
dog carotid artery (Labhasetwar, Song, & Levy, 1997). A specific drug that is being tested and studied 
by Westedt et al. (2007) is Paclitaxel. The drug concentrations delievered to prevent restenosis must be 
very high,localized, and have a long duration. The nanoparticle encapsulated Paclitaxel was tested on 
white rabits that had balloon cathetar mechanical induced damage to the illiac artery. The higher con-
centration of Paclitaxel-loaded nanoparticle in this study showed a decrease in neointimal formation, 
therefore decreasing the chances of restenosis (Westedt et al., 2007).

FUTURE PERSPECTIVES

Nanoparticles have helped overcome many limitations and have increased bioavailability of therapeutic 
drugs, however there are disadvantages of using nanomedicine. Some of these disadvantages include, 
limited infusibility, increased toxicity, and immunosuppression (Schiener et al., 2014). Specifically with 
nanoparticle treatment of atherosclerosis, there have been studies showing an increase of immunoge-
nicity with PEG polymer nanoparticles after repetitive treatment (Schiener et al., 2014). Nanoparticle 
use in atherosclerosis shows potential for personalized medicine, but improvements must be made with 
tissue-specific targeting to help decrease toxicity for individual patients (Schiener et al., 2014). Clinical 
trials would like to conduct further experimentation in order to enhance dosage and physiochemical 
characteristics to create better infusibility (Galagudza et al., 2012).

Early diagnosis with nanoparticles drug delivery systems is key to improving treatment of thrombosis 
and atherosclerosis, therefore enhancing clinical outcomes (Zapotoczny, Szczubiałka, & Nowakowska, 
2015). Nanoparticle drug delivery methods that are used for cardiovascular conditions also show prom-
ise for inflammatory diseases such as obstructive pulmonary disease and asthma (Buxton, 2009). Even 
though there are disadvantages to nanoparticle based drug delivery systems, most are advantages that 
improve bioavailability, and specifically target drugs to the effected area.

CONCLUSION

Current applications of nanoparticle drug delivery systems successfully allow for the detection, diagno-
sis, and treatment of many cardiovascular conditions. Treatment of conditions such as atherosclerosis, 
restenosis, thrombosis, myocardial infarction, and myocardial ischemia have largely benefitted through 
the use of nanoparticle drug delivery systems. The various different types of nanoparticles such as mi-
celles, nanofluids, and liposomes have helped target and increase bioavailability of therapeutic drugs. 
Nanoparticles help with the diagnosis of cardiovascular conditions, as well as help us better understand 
drug delivery pathways. This allows researchers to create new advancements with nanoparticle structure 
and targeting capabilities.
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ABSTRACT

Thirty six percent of people in USA and Canada regularly use complementary and alternative medicine 
(CAM) for the prevention and treatment of different diseases, including hypertension. Generally, major-
ity of the hypertensive patients do not disclose the use of such remedies, and also health care providers 
do not usually ask their hypertensive patients if they use CAM. The widespread consumption of CAM in 
hypertension requires clear understanding of their underlying mechanism of action, efficacy and safety. 
This chapter will provide a comprehensive list of CAM commonly used by Americans for the prevention 
and treatment of hypertension as well as their postulated mechanism of action. Modulation of drug 
metabolizing enzymes and their safety will also be covered along with the clinical consequences, i.e. 
drug-herb or herb-disease interactions. patients and healthcare providers should also be careful with 
using CAM therapies, because not only is there minimal evidence that several CAM products work to 
treat hypertension, but their safety hasn’t been well-established.
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INTRODUCTION

Definition

Blood pressure (BP) is a measurement of the pressure in the blood vessels, both when the heart contracts 
(systolic blood pressure, SBP) and when it is filling with blood between beats (diastolic blood pressure, 
DBP). Hypertension (HTN), or high blood pressure, is defined as SBP of 140 mmHg or above and/or 
DBP of 90 mmHg or above, or currently taking medication to lower blood pressure (NHLBI, 2015).HTN 
is a major predictor for coronary heart disease, stroke, and renal failure. Starting at an ideal BP of 115/75, 
every 20/10 mmHg (systolic/diastolic) increase in BP doubles the risk of cardiovascular diseases. As 
HTN can be directly linked with more than 360,000 American deaths annually and 17.3 million annual 
deaths globally, the disease and its associated complications are the most common cause of death in the 
world (Mozaffarian et al., 2015).

Elevated BP can be classified into three different categories, with ever increasing risks of complica-
tions: pre-HTN is systolic blood pressure from 120-139 mmHg or diastolic blood pressure from 80-89 
mmHg, Stage I HTN is SBP from 140-159 mmHg or DBP from 90-99 mmHg, and Stage II HTN is SBP 
≥ 160 mmHg or DBP ≥ 100 mmHg (NHLBI, 2015). High BP is the most common reason for American 
adults to both visit their healthcare providers and to take medications, but only 51.4% of Americans 
who are being treated for HTN are considered to be controlled, usually to a goal BP of <140/90 mmHg 
for most patients, including those with diabetes and chronic kidney disease. Current recommended goal 
BP for patients older than 60 years is <150/90 mmHg, though this is a matter of some debate. Blood 
pressure goals for the general public and those with comorbid conditions may be revised with future 
updates to HTN guidelines, as recent evidence has shown that tighter control of BP leads to lower rates 
of MI, heart failure, stroke, and death. Resistant HTN can be diagnosed when a patient is on optimal 
doses of 3 classes of anti-HTN medications but their BP remains ≥140/90, or if they are using medica-
tions from ≥4 classes of anti-HTN medications regardless of resulting BP (Group, 2015; James et al., 
2014; Mozaffarian et al., 2015).

Uncontrolled BP can lead to various complications that usually include end-organ damage, like left-
ventricular hypertrophy (LVH), heart failure, stroke (ischemic and/or hemorrhagic), chronic kidney disease 
(CKD), and end-stage renal disease (ESRD). When DBP is greater than 120 mmHg, it can lead to many 
complications, including hypertensive urgency (DBP > 120 with no end-organ damage) or hypertensive 
emergency (DBP > 120 with acute, ongoing organ damage, usually to the brain, eyes, kidneys, or heart). 
At the opposite end of the spectrum, when treatment is too effective and brings BP too low (DBP < 
55-60 mmHg), a patient may be at increased risk of myocardial infarction or stroke. Therefore, when a 
patient is being treated for HTN, it is important to monitor their BP closely while initiating treatment, 
changing doses of medications, or changing treatments (Jan Basile & Michael J Bloch, 2015).

When a patient is diagnosed with pre-HTN or greater, it is usually recommended that lifestyle modi-
fications are either started before or in concert with any pharmacological therapy, as these can have a 
marked impact on lowering BP. These lifestyle changes include sodium restriction, weight loss, a diet 
similar to that outlined by DASH (Dietary Approaches to Stop HTN), 30 minutes of exercise most days, 
moderate alcohol intake, and patient education (Jan Basile & Michael J Bloch, 2015).
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Pathophysiology and Causes

HTN is usually classified as essential (primary), or secondary. More than 90% of people with HTN fall 
into the first category, where the exact underlying pathological cause of the elevated BP is not known. 
However, genetic factors are thought to play an important role in the development of primary HTN. For 
example, the risk of becoming hypertensive when a person has a family history of one or two hypertensive 
parents is twice as high as the general population. Additional risk factors for primary HTN include age, 
obesity, race, excessive dietary salt intake, excess alcohol consumption, physical inactivity, diabetes, 
dyslipidemia, and low Vitamin D levels (Tabassum & Ahmad, 2011).

Less than 10% of hypertensive patients are diagnosed with secondary HTN, where the underlying cause 
of elevated BP is identifiable. Secondary HTN is usually drug-induced, disease-related (e.g., diabetes), 
or physiologically induced (e.g., reduced number of nephrons due to fetal malformation, kidney damage, 
or other causes). Normally the first step in treating this type of HTN is to remove the offending agent(s) 
or treat the underlying disease(s) or physiological condition(s). Chronic kidney disease (CKD), Cushing 
syndrome, hyper- or hypo-thyroid, hyperparathyroidism, obstructive sleep apnea, pheochromocytoma, 
and primary hyper-aldosteronism are the most common and well-recognized comorbid diseases related 
to secondary HTN. Several agents have been also correlated with elevated BP, including prescription 
drugs (e.g., amphetamines, corticosteroids, oral contraceptives, anti-depressant medications, calcineu-
rin inhibitors, decongestants, and non-steroidal anti-inflammatory drugs), street drugs (e.g., cocaine, 
methamphetamine, and ephedra alkaloids), and food substances (e.g., sodium, ethanol, and licorice) (Jan 
Basile & Michael J Bloch, 2015; Tabassum & Ahmad, 2011).

Although there is still uncertainty about the pathophysiology of primary HTN, many interrelated fac-
tors have been found to contribute to persistent blood pressure elevation. Among the proposed factors are 
vascular resistance, oxidative stress, endothelial dysfunction, and salt sensitivity. Abnormalities in any 
of the homeostatic neuro-hormonal mechanisms such as the sympathetic nervous system (SNS), renin-
angiotensin-aldosterone system (RAAS), peripheral autoregulation, electrolyte balance, and natriuretic 
hormones have also been associated with HTN pathophysiology.

Nitric oxide (NO), endothelium-derived relaxing factor, is a paracrine vasodilator that has been im-
plicated in vascular tone regulation. Many in vitro and in vivo studies suggest that chronic HTN reduces 
endothelium dependent responses of peripheral vasculature, probably due to decreased availability of NO 
(Doggrell & Brown, 1998). On the other hand, NO derived from inducible isoform of the enzyme nitric 
oxide synthase (iNOS) has been considered to enhance the tissue damage, due to accelerated reactive 
nitrogen species formation (Tsai, Tsai, Yu, & Ho, 2007).

Mathematically, blood pressure is the product of systemic vascular resistance (SVR) and cardiac output 
(CO). Therefore, increased SVR and/or CO will likely result in HTN. For example, a rise in intracellular 
calcium concentration is believed to cause contraction of the smooth muscle cells and increase SVR, 
which may explain the vasodilatory effect of calcium channel blockers. On the other hand, CO rises 
in response to factors such as increased sympathetic nervous system activity, stimulation of the renin-
angiotensin-aldosterone system (RAAS), and elevated intravascular volume resulting from excessive 
sodium intake and/or renal sodium retention. Therefore, these systems are the targets of most current 
conventional pharmacological therapies. (Ernst, 2012)
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Prevalence and Epidemiology

Hypertension affects about one billion people globally, with approximately 80 million people in the United 
States alone. Blood pressure has been shown to increase in a linear fashion with age. While only 7.3% 
of US adults ages 18-39 are hypertensive, approximately 65% of adults over age 60 are hypertensive. 
This large number is expected to grow as more of the US population begins to live more than 60 years, 
due to improvements in treatment of chronic disease and diseases of the elderly. Additionally, as obesity 
rates both in the US and globally continue to rise, HTN rates are expected to rise, as well (Jan Basile 
& Michael J Bloch, 2015). In 2008, 17.3 million deaths were attributed to HTN and its complications, 
and it is anticipated that this number will increase to greater than 23.6 million by 2030 (Tabassum & 
Ahmad, 2011).

Strong evidence from several studies indicates that African Americans, who develop HTN earlier 
in life and have a higher average BP than white Americans, are also more susceptible to salt-sensitive 
HTN. Thus, HTN in African Americans is more responsive to dietary salt restriction. Conversely, African 
Americans tend to have a less successful response to the recommended first-line pharmacotherapy of 
angiotensin-converting enzyme inhibitors (ACE-I) and angiotensin receptor blockers (ARB), indicating 
differences in the (RAAS) signaling cascade which seem to be correlated with higher numbers of Afri-
can Americans with HTN than white Americans (43% & 45.7% African American men and women vs. 
33.9% & 32.7% white American men and women). It is interesting to note that there is a greater propor-
tion of African American women than men with HTN, while the opposite is true in white Americans 
(Papademetriou, Narayan, & Kokkinos, 2004; Tabassum & Ahmad, 2011).

Cost to the Healthcare System

According to data from the National Center for Health Statistics (NCHS) in 2011-2012, 82.7% of adults 
with HTN were aware of their condition and 75.6% reported taking prescribed medication(s) to lower their 
blood pressure. The total cost of treatment and medical services for American adults with HTN exceeded 
$42.9 billion, with an expected increase to $274 billion by 2030 when it has been estimated that 41.4% 
of Americans will have HTN. Almost half of the money paid for HTN treatment and complications is 
spent on prescription medications, but the cost of cardiovascular disease (CVD) and stroke far exceeds 
this cost, at greater than $320 billion annually. Globally, the cost of HTN, both controlled and uncon-
trolled, exceeded $863 billion in 2011, but by 2030 is expected to rise to over a trillion dollars annually, 
while the cost of CVD and stroke will be an additional estimated $980 billion (Mozaffarian et al., 2015).
HTN has become both a health crisis and an economic strain, not just in the US, but all over the world.

TREATMENT

Conventional Therapy

There are many classes of conventional medications that can be used to treat HTN, including angiotensin-
converting enzyme inhibitors (ACE-I), angiotensin receptor blockers (ARBs), calcium channel blockers 
(CCBs), and diuretics which reduce total blood volume by increasing urinary water and sodium excre-
tion. These medications are commonly used in varying combinations to achieve optimal dosing and BP 

 EBSCOhost - printed on 2/10/2023 5:39 PM via . All use subject to https://www.ebsco.com/terms-of-use



259

Complementary and Alternative Medicine Use in Hypertension
 

control. Additionally, beta blockers, which are usually used in heart conditions, can be used as add-on 
therapy in resistant HTN, as well as several other classes of medications (James et al., 2014).

The benefits of using these medications are well-studied, so their effects and possible drug-drug or 
drug-food interactions are well-described. There have been many large randomized, controlled trials 
to investigate their effectiveness in lowering BP, and in preventing HTN complications such as heart 
failure, myocardial infarction, stroke, and death.

However, many people in both developing and developed countries do not have easy access to these 
medications. They may also prefer to use natural medicines or traditional therapies, and this choice may 
be attributed to the high cost of conventional medicines, lack of prescription drug insurance, fear of side 
effects of the medicines, cultural beliefs, or a belief that herbal remedies are “safer”.

Complementary and Alternative Medicine (CAM)

According to the World Health Organization (WHO), traditional herbal medicines are getting significant 
attention in global health discussions, and it can be safely presumed that traditional herbal medicines and 
other alternative therapies will play a significant role in future strategies to alleviate and treat chronic 
illnesses, such as HTN. The WHO is working to ensure that these treatments are affordable, accessible, 
trustworthy, and culturally accepted. In 1999, for example, only 19 countries had research institutes for 
the study of CAM treatments, but by 2012, there were 73 countries having such research organizations. 
There are several risks associated with the use of CAM treatments, including adulterated/poor-quality/
counterfeit products, misleading or unreliable information about the effects, delaying conventional treat-
ment and risking a worsening of the condition, and possible adverse effects of the treatments. The WHO 
is committed to reduce these risks by improving the global knowledge base about CAM therapy. This 
may also have a large economic impact because the worldwide annual market for these products and 
services approaches $ 60 billion, as 75-80% of the world population uses them, primarily in developing 
countries, and with improved information the market will only be increasing in coming years (Tabassum 
& Ahmad, 2011; WHO, 2013).

In 2007, in the United States, a survey by the NCCAM (National Center for Complementary and 
Alternative Medicines) estimated that approximately 83 million people (approximately 34% of the US 
population) used CAM therapies, which included herbal medications and oral supplements, with spend-
ing exceeding $33.9 billion in out-of-pocket costs (not reimbursed by health insurance) (Nahan, Barnes, 
Stussman, & Bloom, 2011). This amount reflects visits to practitioners ($11.9 billion), non-vitamin/non-
mineral supplements and treatments ($14.8 billion), and other CAM therapies ($7.2 billion on practices 
such as yoga and acupuncture), Figure 1. It is worth noting that most Americans use CAM therapies as a 
complementary to their conventional care, but only 5% of people using CAM treatments, alone (Clarke, 
Black, Stussman, Barnes, & Nahin, 2015).

Also noteworthy is that CAM usage in the U.S. is most prevalent among college-educated people. 
Almost 43% of respondents to a survey in 2012 who reported having a college education were purchas-
ing these treatments, while only 15.6% of people with a high school education or lower were using 
them. More of the college educated users of CAM are women than men, and more have private insur-
ance (38%) than public insurance (24.8%) or a lack of insurance (22.9%) (Clarke et al., 2015). In the 
US, the use of CAM varies by region, as seen in Figure 2. In developing countries, CAM therapies are 
a much more common form of treatment, such as in China where 90% of hospitals have a Traditional 
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and Complimentary Medicine (T&CM) department. In fact, HTN was the 5th most common reason for 
admission to T&CM hospitals in 2008 (WHO, 2013).

The American Heart Association (AHA) performed a literature review in 2013 of several studies 
involving alternative modalities of HTN treatment, and concluded that “it is reasonable for all individu-
als with blood pressure levels >120/80 to consider trials of alternative approaches as adjunct methods 
to help lower BP when clinically appropriate.” Additionally, they developed a treatment algorithm for 
when or if it may be appropriate to add these CAM options. These recommendations can be found in 
the American Heart Association June 2013 report (Brook et al., 2013).

This chapter will present the evidence for or precautions against the use of several dietary supple-
ments and herbal options for treating HTN, but it is worth noting that there are additional, non-dietary 
therapies being used and tested for effectiveness against HTN, as well, such as acupuncture, meditation, 
regulated breathing practices, and others. Currently, the best evidence for these non-supplement thera-
pies is in support of breathing and meditation, but research is ongoing. The AHA recently concluded 
that transcendental meditation and biofeedback techniques “may be considered” as adjunct therapy to 
conventional HTN treatment because of some supporting evidence and a lack of health risks (Brook et 
al., 2013).

Figure 1. Out-of-pocket spending on conventional and alternative (CAM) therapies as a portion of total 
healthcare spending, 2007
(Ernst, 2012)
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Garlic

Garlic, Allium sativum L. (Liliaceae), is a member of the family Alliaceae. Several human and animal 
studies have shown favorable cardiovascular effects after using garlic in its raw or processed forms. These 
effects include antihypertensive, anti-atherosclerotic, lipid-lowering and antioxidant properties (Dhawan 
& Jain, 2005; Durak et al., 2004). Garlic has been used as a safe and alternative antihypertensive remedy 
for many years by almost 50% of the hypertensive patients (Kwak et al., 2014; Stabler, Tejani, Huynh, & 
Fowkes, 2012a; Xiong et al., 2015). Several mechanisms have been postulated to explain the antihyper-
tensive activity of garlic including angiotensin-converting enzyme inhibition (Asdaq & Inamdar, 2010), 
reduction of vasoconstrictor prostanoids compounds synthesis (Al-Qattan, Khan, Alnaqeeb, & Ali, 2001), 
increasing nitric oxide activity and concentration, enhancing hydrogen sulfide generation (Al-Qattan et 
al., 2006), and upregulation of the growth suppressor p27 and the reduction of ERK 1/2 phosphorylation 
that leads to reverse arterial remodeling (Castro, Gil Lorenzo, Gonzalez, & Cruzado, 2010).

Allicin, which gives garlic its unique odor, is the most active component of garlic and responsible for 
several garlic medicinal properties. Meta-analysis of several clinical trials have shown that garlic indeed 
has antihypertensive effect, but, with varied biological response (Duda, Suliburska, & Pupek-Musialik, 

Figure 2. Regional use of CAM therapy, 2012
(Ernst, 2012)

 EBSCOhost - printed on 2/10/2023 5:39 PM via . All use subject to https://www.ebsco.com/terms-of-use



262

Complementary and Alternative Medicine Use in Hypertension
 

2008; L. A. Simons et al., 1995). The suggested reasons behind this variability are preparation methods, 
deficiencies in methodology, dosage variations of garlic and differences in treatment durations (S. Simons, 
Wollersheim, & Thien, 2009; Stabler, Tejani, Huynh, & Fowkes, 2012b). Furthermore, it was shown 
that the initial BP level is an important factor influencing the garlic’s antihypertensive effect (Qidwai & 
Ashfaq, 2013). Therefore, patients with a baseline SBP ≥ 140 mmHg usually displayed positive results 
(Holzgartner, Schmidt, & Kuhn, 1992), while others with SBP < 140 mmHg didn’t (Macan et al., 2006; 
Williams, Sutherland, McCormick, Yeoman, & de Jong, 2005). This may indicate that garlic is more 
effective in patients with high systolic blood pressure than other types of HTN.

Several animal studies have investigated the potential effect of garlic on drug metabolizing enzymes. 
In rats it has been shown that the expression level of CYP2E1, an isoform with a procarcinogen activ-
ity, was significantly reduced and several phase 2 proteins, especially glutathione S-transferase were 
upregulated. Such data may indicate a chemo-preventive potential of garlic (Le Bon et al., 2003).

Omega-3 Fatty Acids

Omega-3 fatty acids (ω-3 FAs) are essential fatty acids (EFAs) with wide variety of pharmacologi-
cal behaviors in human health and disease. Their intake exerts a clear improvement in cardiovascular 
morbidity and mortality (Yashodhara et al., 2009). Therefore, they are widely used as food and dietary 
supplements for patients with wide variety of disease conditions such as cardiovascular, endocrine, and 
neurological. ω-3 FAs can be found in high content in seafood, fish particularly fatty fish (albacore tuna, 
mackerel, salmon, sardines), fish oils and in many vegetable oils such as canola, flaxseed and wheat germ 
oils. Interestingly, people in Greenland and Japan, where fish is an essential part in their diet, showed 
low rates of coronary heart disease (CHD). Other dietary sources of ω-3 FAs include walnuts, human 
milk and organ meats.

The antihypertensive effect of ω-3 FAs is showed in both hypertensive (Geleijnse, Giltay, Grobbee, 
Donders, & Kok, 2002; Ueshima et al., 2007) and normotensive (Ueshima et al., 2007) subjects. In 
contrast to garlic, it was proven that ω-3 FAs normalizes blood pressure in both systolic and diastolic 
HTN (Geleijnse et al., 2002). Furthermore, it has been shown that regular intake of ω-3 FAs prevent the 
development of HTN (Dallongeville et al., 2003).

The mechanism of action of ω-3 FAs in HTN is not fully understood. However, oxidative stress and 
inflammation have been shown as contributing factor in HTN development. Recent studies showed that 
ω-3 FAs have antioxidative activity and improved cardiac function. In addition ω-3 FAs also control the 
synthesis of immune modulators such as prostaglandins and leukotrienes, which ultimately regulate the 
arachidonic acid pathway and other pro-inflammatory molecules (Yueqin Liu et al., 2014).

ω-3 FAs when used appropriately are considered safe. However, it is also reported that ω-3 FAs have 
anticoagulant activity and excessive intake might increase the risk of bleeding. Therefore, extra caution 
should be taken during concomitant administration with anticoagulant drugs such as warfarin(Sanders, 
Vickers, & Haines, 1981).

Green Tea (GT)

Green tea extract or its purified flavonoids and polyphenols have shown evidence of protection against 
HTN and reduce the risk for stroke and inflammation (Nantz, Rowe, Bukowski, & Percival, 2009; 
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Dirk Taubert, Roesen, & Schoemig, 2007). Several animal studies and experimental interventions in 
humans have indicated a favorable effect of GT consumption on reducing the risk of development of 
atherosclerosis and reducing the incidence of cardiovascular events such as ischemic heart disease 
and stroke (Clement, 2009; Kuriyama, 2008). A longitudinal study utilizing data from 1109 Chinese 
reported an inverse association between GT consumption and 5-year BP change among Chinese adults 
(Tong, Taylor, Giles, Wittert, & Shi, 2014; C. S. Yang & Pan, 2012). The data also revealed that the 
effect of GT was nullified by smoking and obesity. GT mechanism of action is believed to be through 
improvement of endothelial function and blood flow enhancement (Nagaya et al., 2004). Furthermore, 
GT enhances metabolism and energy expenditure and reduces weight in obese patients. Moreover, GT 
lowers LDL cholesterol and total cholesterol, and reduces LDL oxidation. It should be also noted that GT 
polyphenols, especially catechins, may significantly impact the activity of important drug metabolizing 
enzymes, and hence, influence pharmacokinetics of a wide array of drugs used by patients with HTN 
(C. S. Yang & Pan, 2012).

Ginger

Ginger (GR) or rhizome of the perennial herb Zingiber officinale Roscoe is a famous spice plant, commonly 
used as a food additive to enhance its taste and smell. Indo-Pak subcontinent is the biggest exporter of 
ginger in the world (Shoji, Iwasa, Takemoto, Ishida, & Ohizumi, 1982). Ginger contains gingerol, shogaol, 
zingerone, zingiberol and paradol which exert its sharply strong taste or smell (Connell & McLachlan, 
1972; Varma, Jain, & Bhattacharyya, 1962). Ginger has been used historically in the treatment of many 
diseases including gastrointestinal disorders (such as diarrhea, constipation, colic, anorexia, dyspepsia, 
nausea, vomiting, motion sickness) and HTN (Ghayur & Gilani, 2005). For example, in the traditional 
medicine practice of Pakistan, herbalists prescribe ginger to hypertensive patients to be taken after din-
ner, mostly because of its diuretic effect.

Rat studies with crude extract of ginger have indicated dose-dependent reduction in blood pressure 
(Fugh‐Berman, 2000). The exact mechanism by which ginger reduces BP is not clear yet. One proposed 
mechanisms is blockade of voltage-dependent Ca2+ channels. Because of the anti-thrombotic potential of 
ginger, it may interact with blood-thinning drugs such as warfarin and must be used carefully in patients 
with blood clotting disorders.

Quercetin

Quercetin is a polyphenolic flavonoid that can be found in many plant-based foods, such as berries, apples, 
onions and red wine. Similar to other polyphenolic compounds, an inverse association was reported be-
tween Quercetin consumption and the risk of cardiovascular diseases. Recently, it was demonstrated that 
quercetin intake by hypertensive patients (>140 mmHg systolic and >90 mmHg diastolic) led to a decrease 
in blood pressure (Larson, Symons, & Jalili, 2012). The blood pressure lowering effect of quercetin was 
also evident in spontaneously hypertensive and Dahl salt-sensitive rats(Mackraj, Govender, & Ramesar, 
2008) as well as rats that consume a high-fat, high-sucrose diet (Yamamoto & Oue, 2006), rats deficient 
in NO (Duarte et al., 2002), rats infused with angiotensin I (Häckl, Cuttle, Dovichi, Lima-Landman, & 
Nicolau, 2002), or have experimentally induced pressure overload using aortic constriction (Jalili et al., 
2006). Many mechanisms have been proposed to explain the observed blood pressure lowering effect 
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of quercetin including antioxidant effects, angiotensin-converting enzyme inhibition, and endothelium-
dependent and -independent function improvement. Due to its vasorelaxant effect, co-administration 
of quercetin with other vasodilating agents may precipitate significant pharmacodynamics interactions 
(Vrolijk et al., 2015)

Wilde Thyme

Thymus serpyllum L. (wild thyme, TE) is an aromatic herb from the Lamiaceae family (genus Thymus) 
traditionally used as a culinary herb. Certain species of this genus are used in traditional medicine for the 
prevention or treatment of some diseases (Herba thymi. In: Zhang X (ed) WHO monographs on selected 
medicinal plants, 1999a; Mihailovic-Stanojevic et al., 2013). The family Lamiaceae exhibits significant 
polymorphism in morphological characteristics and composition of ethereal oils. Phenolic monoterpenes, 
thymol and carvacrol are the main constituents of essential oil of thyme (Cosentino et al., 1999; Herba 
thymi. In: Zhang X (ed) WHO monographs on selected medicinal plants, 1999b), while phenolic acid 
(rosmarinic acid) and flavonoids (quercetin, eriocitrin, luteolin, and apigenin) are proposed to be the 
polyphenolic compounds responsible for the antioxidant effects of aqueous tea infusions (Kulisic, Krisko, 
Dragovic-Uzelac, Milos, & Pifat, 2007; Yao et al., 2004). Rosmarinic and caffeic acids as predominant 
phenols presented in the TE.

In animal study, it was shown that the intake of TE significantly elevated the plasma NO as well as 
the total plasma nitrate/nitrite concentrations in spontaneously hypertensive rats (SHR) compared to 
normotensive control (WKY) (AlaghbandZadeh et al., 1996). In addition, in vitro studies have also shown 
that TE has antioxidant property and free radical scavenging activity, which might contribute to TE anti-
hypertensive effect (Doggrell & Brown, 1998). Although in vitro and in vivo animal studies may indicate 
a promising use of TE as a dietary supplement to reduce BP in human, further investigation needed to 
elucidate the effectiveness of each TE components in HTN as well as their exact mechanisms of action.

TE is considered one of the safest CAM products and has Generally Recognized as Safe (GRAS) 
status in US if taken as recommended. So far no significant risks have been reported due to its regular 
consumption (Regulations, 2015).

Cinnamon

Cinnamon is a spice with pleasant aromatic flavor obtained from the peeled, dried, and brown bark of 
a southeast Asian tree genus Cinnamomum. Available clinical studies, although limited, have shown a 
blood pressure lowering effect of cinnamon in diabetic patients (Preuss, Echard, Polansky, & Anderson, 
2006). Consumption of 2g of cinnamon for 12 weeks significantly reduces both systolic and diastolic 
blood pressures in Type 2 diabetic patients compared to control groups (Akilen, Tsiami, Devendra, & 
Robinson, 2010). Despite the fact that the underlying mechanism behind this effect is not fully elucidated, 
it seems that cinnamon lessens the levels of circulating insulin, which may clarify why it’s compelling 
for those with diabetes (Akilen et al., 2010). As the tested dose was safe and well tolerated over the 12 
weeks of treatment, cinnamon intake could be considered as an additional dietary supplement option for 
regulation of blood pressure, especially when no evidence in the literature indicates a potential effect of 
cinnamon on drug metabolizing enzymes (Akilen et al., 2010).
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Persimmon

Persimmon (Diospyros kaki L) is a plant native to China and generally distributed in tropics and subtropics 
of East Asia, such as, Japan and Korea (Xie, Xie, Xu, & Yang, 2015) that is famous for its sweet fruits. 
“Shiye” is the fresh or dry leaves of persimmon. The leaves of the persimmon have been traditionally 
used to treat HTN in Japan. Many flavonoids, such as astragallin, which are isolated from persimmon 
Leaves have shown moderate inhibition of angiotensin-converting enzyme activity. For example, 300 
μg/mL of astragalin showed an enzyme inhibition by 67%. Furthermore The IC50 of astragalin is 180 
μg/mL (Kenji Kameda et al., 1987).

Origanum Majorana (OM) Leaves

Origanum majorana Linn (sweet marjoram), Family-Lamiaceae, is an essential aromatic plant native to 
the Mediterranean and southern Europe (Novak et al., 2000). OM is usually utilized as a part of cookery 
as condiment and a spice which is used to flavor meats, sausages, soups and salads. OM is also used in 
cosmetics and in the creation of vermouths and sharp flavoring. As a restorative plant, sweet marjoram 
has generally been utilized as stimulant and tonic. Marjoram volatile oil has already appeared to show 
antifungal activity (Pimple, Kadam, & Patil, 2012).

Traditionally, OM is used for the treatment of diabetes, catarrh, asthma, insomnia and anxiety. Ex-
ploratory examination has demonstrated many useful effects of leaves such as, antioxidant (Jun et al., 
2001; Suhaj, 2006), hepatoprotecitve (El-Ashmawy, El-Nahas, & Salama, 2005), antibacterial (Darwish 
& Aburjai, 2010), antifungal (Manohar et al., 2001), antihypertensive (Tahraoui, El-Hilaly, Israili, & 
Lyoussi, 2007) and antiplatelet aggregation properties (Yazdanparast & Shahriyary, 2008). Moreover, 
other species of the same genus Origanum, i.e. Origanum vulgare has antihyperglycemic effect (Lem-
hadri, Zeggwagh, Maghrani, Jouad, & Eddouks, 2004) and antioxidant activities (Chun, Vattem, Lin, 
& Shetty, 2005).

OM is available in different extract forms such as hydrodistilled volatile oil extract (OMO), methanolic 
extract (OMM), petroleum ether extract (OMPE) and aqueous extract (OMW) and each of them has dif-
ferent biological effect. For example, the volatile oil (OMO, 100 mg/kg p.o.) is less significant (p<0.05) 
in bringing down the raised triglyceride and cholesterol levels. On the other hand, methanolic (OMM, 200 
and 400 mg/kg p.o.) and aqueous (OMW, 200 and 400 mg/kg p.o.) extracts considerably demonstrated 
antihyperlipidemic effect, which may have indirectly contributed to its use as antihypertensive plant.

OM has Generally Recognized as Safe (GRAS) status in US if used in amount commonly found in 
foods.

Therefore, its consumption as recommended is free of side effects (Regulations, 2015).

Coenzyme Q10

Coenzyme Q10 or CoQ10 (2,3 dimethoxy-5 meth-6-decaprenyl benzoquinone) is a fat-soluble vitamin-
like compound that is mainly derived from mevalonic acid and phenylalanine and almost found in every 
single human cells. The compound was first isolated in 1957 from beef mitochondria. Compared to the 
rest of human body, organs with high-energy turnover such as kidney, heart, liver and pancreas contain 
the highest amount. Normally, the human body produces sufficient amounts of CoQ10 that is needed 
for many physiological processes. However, CoQ10 can also be supplemented by oral intake or by the 
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consumption of animal derived foods such as beef, poultry and seafood. It has been shown that regular 
daily intake of such foods provides approximately 3-5 mg. Following oral ingestion, CoQ10 is mainly 
absorbed in the small intestine and its bioavailability enhanced by the presence of oily rich meal. Follow-
ing absorption, CoQ10 molecule forms a complex with low-density lipoprotein (LDL) in the liver and 
then transported and stored in various tissues. Interestingly, It has been shown that CoQ10 reaches its 
highest level during childhood, and it continues to decline with age progression, reaching its lowest level 
at age 80 and older. Although it has been shown that CoQ10 could prolong the lifespan of Caenorhabditis 
elegans soil worm, yet, there is no clear evidence to support this effect in humans (Ishii et al., 2004).

CoQ10 gains its powerful antioxidant activity due to presence of benzooquinone group within its 
chemical structure. The compound is capable of quenching free radicals generated from various biologi-
cal pathways, works as a membrane stabilizer and a cofactor in several vital metabolic pathways such as 
ATP production in oxidative respiration.

The advantage of oral intake of CoQ10 supplements has been well studied in various diseases such 
as angina, congestive heart failure, aged macular degeneration and Parkinson’s disease. Importantly, 
The effect of CoQ10 on blood pressure in hypertensive patients has been also demonstrated by several 
preliminary clinical studies. Indeed, patients who received either CoQ10 alone or along with their con-
ventional antihypertensive agents have shown a statistically significant reduction in their overall blood 
pressure compared to control groups. In a 12-week, double blind, placebo controlled clinical study done 
by Burke and associates on patient with isolated systolic HTN, they have demonstrated that daily intake 
of 120 mg of CoQ10 significantly reduced the systolic blood pressure (SBP) by 17.8 mmHg compare 
to 1.7 mmHg reduction in the placebo group (Burke, Neuenschwander, & Olson, 2001). Singh and his 
team have also conducted an 8-week randomized, double blind clinical trial on hypertensive patients 
with coronary artery disease and who were taking their conventional antihypertensive agents for at 
least one year. The participants were given either 120 mg per day of CoQ10 or a placebo. In fact, oral 
supplementation of CoQ10 showed a reduction in SBP by 16 mmHg and diastolic blood pressure (DBP) 
by 9 mmHg compared to placebo group (Singh, Niaz, Rastogi, Shukla, & Thakur, 1999). In addition, 
they have reported that insulin resistance, serum glucose levels, triglycerides, lipid peroxides were also 
reduced in CoQ10 treated patients. Digiesi and associates conducted a 10-week crossover study on 
patient with essential HTN. In his study, patients were given 100 mg per day of CoQ10 with 2-week 
washout period prior to CoQ10 initiation. Both, SBP and DBP significantly reduced by 17 and 12 mmHg 
respectively (Digiesi et al., 1994). Finally, Langsjoen and colleagues conducted a study on individuals 
with established essential HTN. Instead of giving patients a fixed dose of CoQ10, each individual re-
ceived an adjusted dose of CoQ10 that is required to maintain CoQ10 serum concentration of ≥ 2.0 μg / 
ml. Consistent with previous studies, they have found that CoQ10 reduced the SBP by 11.4 mmHg and 
DBP by 9 mmHg (Langsjoen, Langsjoen, Willis, & Folkers, 1994). Interestingly, they also have found 
that in some patient’s, oral supplementation of CoQ10 led to either dose reduction or discontinuation 
of their conventional antihypertensive therapy. Conversely, in a small, double blind, placebo controlled 
clinical trial; the lowering blood pressure effect of 100 mg CoQ10 daily intake in patients with HTN 
and metabolic syndrome was not significant suggesting that the complexity level of the disease in those 
patients overrides the CoQ10 benefits (Young et al., 2012).

As mentioned earlier, the increase in the oxidative stress is well documented as a key factor in the 
development of HTN. Those changes cause significant alterations in the endothelium contraction and 
vascular resistance. The imbalance between reactive oxygen species (ROS) production and nitric oxide 
(NO) bioavailability both contribute to HTN development (Y. K. Yang et al., 2015). Notably, CoQ10 
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levels have been shown to be low in patients who are identified to have a greater prevalence of HTN. 
However, the exact mechanism of CoQ10 action in HTN is not fully understood. Yet, its powerful anti-
oxidant activity has been attributed as a key factor in reducing the peripheral resistance and improving 
the endothelial-independent arterial relaxation by decreasing the levels of peroxidation, attenuation of 
endothelial nitric oxide synthase down-regulation and eventually maintaining nitric oxide bioavailability 
(Folkers et al., 1981; Pepe et al., 2007). In addition, it has been suggested that CoQ10 might also boost 
the synthesis of prostacyclin PGI2, a potent vasodilator, or increase the arterial smooth muscle sensitivity 
to PGI2 leading to peripheral vascular resistance reduction and ultimately to blood pressure (BP) reduc-
tion (Lonnrot et al., 1998). It is also though that CoQ10 might interfere with aldosterone-angiotensin 
pathway by decreasing the secretion of aldosterone and compromises the effect of angiotensin in sodium 
and water retention(Fabre, Banks, McIsaac, & Farrell, 1965).

CoQ10 is generally well tolerated and has no significant adverse effects if taken as recommended. 
However, administration of statins have been shown to reduce CoQ10 levels in dose dependent manner 
(Rundek, Naini, Sacco, Coates, & DiMauro, 2004). The mechanism of CoQ10 levels reduction is partially 
understood and could be due to the cholesterol lowering effect by statins; yet, the clinical significance 
of such reduction is not fully understood. Some researchers believe that CoQ10 reduction might have a 
role in the development of statin related myopathy. Despite CoQ10 has a similar chemical structure as 
vitamin K derivative menaquinon, the effect of CoQ10 and warfarin co-administration on blood clotting 
is still controversial. However, close monitoring of INR is highly recommended.

Vitamin C

Vitamin C or Ascorbic acid is a water-soluble antioxidant found in high concentration in citrus fruits and 
rosehip. Although it can be produced by many mammals, human must obtain vitamin C by other sources 
like food or as an oral supplement. The vitamin is labile and decomposed upon air or heat exposure or 
cooking, and food storage causes a significant vitamin amount reduction. Vitamin C has a key role in 
many biological pathways such as cellular respiration, carbohydrate metabolism and lipid and protein 
synthesis. It is also involved in the synthesis of various endogenous factors like dopamine, norepinephrine 
and thyroxin. Following oral intake, vitamin C is readily absorbed from the intestine by an active process. 
The percentage of absorbed amount is dose dependent, for example, approximately 50% of a 1250 mg 
dose is absorbed, compare to 87% of a 30 mg oral dose. Vitamin C is distributed very well in human 
body including the central nervous system and metabolized to an active compound dehydroascorbic acid. 
Both vitamin C and its active metabolite are eliminated by renal excretion. Daily intake of 400 mg of 
vitamin C or higher attain a steady state of 80 μmol/L serum concentration, However, doses higher than 
2g/day may increase the risk of developing renal oxalate calculi(Urivetzky, Kessaris, & Smith, 1992).

Vitamin C is traditionally used to boost the immune system against viral infection such as flue. 
However, the role of vitamin C in HTN management has been studied by several small and short-term 
clinical studies. Interestingly, it has been shown that vitamin C deficiency is associated with increases 
of both SBP and DBP(Block et al., 2001; Kim et al., 2002). Yet, daily oral intake of 500 mg of vitamin 
C alone has no significant effect on both SBP and DBP in hypertensive patients(Block et al., 2001; Kim 
et al., 2002). Instead, It appears that vitamin C has a beneficial effect only in patients, who take vitamin 
C along with their conventional antihypertensive medications. In those patients, vitamin C appears to 
reduce their SBP modestly, while the effects on DBP have been inconsistent. In randomized, one-month 
double blind clinical trial conducted by Duffy and associates, hypertensive patients were given either 
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500 mg of vitamin C daily or placebo along with their antihypertensive medications. Interestingly, SBP 
was significantly reduced by 13 mmHg in treated groups compared to placebo, but no significant effect 
on DBP(Duffy et al., 1999). Sato and colleagues also conducted another randomized clinical study in 
elderly patients. They have noticed that patients who received 600 mg /daily of vitamin C for six months 
showed a significant reduction in their SBP by 20 mmHg compared to placebo, however, they also did 
not observe any significant effect on DBP(Sato et al., 2006). Fotherby and his team also conducted a 
6-month double blind crossover study in which elderly patients were given either 500 mg of vitamin 
C or placebo with a one-week washout period, and reported that daily intake of vitamin C has modest 
lowering effects on high SBP(Fotherby, Williams, Forster, Craner, & Ferns, 2000).

The exact mechanism of vitamin C in HTN is not fully understood. However, It has been suggested 
that, the inhibition of endothelium-derived nitric oxide (NO), a potent vasodilator, by superoxide an-
ions is a major contributing cause of HTN development. Possibly, the antioxidant activity of vitamin 
C and its free radical scavenging roles, reverse the superoxide inhibition activity; allow vasodilatation 
and eventually leading to BP reduction. Furthermore, it has been shown that vitamin C works also as 
an enzyme modulator on the vascular wall by increasing the bioavailability of endothelial nitric oxide 
synthase (eNOS) and decreasing NADPH oxidase (Ulker, McKeown, & Bayraktutan, 2003).

Vitamin C appears to be safe and its effect is dose related. Generally, It has been found that oral 
intake of more than 2 g per day might be associated with several adverse effects such as osmotic diar-
rhea and gastrointestinal upset. In addition, vitamin C may also enhance the precipitation of oxalate and 
urate in urine and increases the possibility of forming kidney stones. The incidence of hyperoxaluria 
risk is significantly higher in people with oxalate kidney stones history and who tend to take 1 g and 
more of vitamin C per day. Other reports have shown that vitamin C might also increase the risk of 
cardiovascular mortality in postmenopausal diabetic women, carotid inner wall thickening in men, and 
DNA damage by increasing the production of reactive oxygen molecules and hemolysis in people with 
glucose-6-phosphate dehydrogenase deficiency.

Dark Chocolate and Cocoa Products

Traditionally, cocoa products are widely used in food industry and in manufacturing of various cosmetic 
and pharmaceutical preparations. The plant extract is highly enriched with flavonoids such as epicatechin 
and catechin, which have shown various benefits in reducing cardiovascular diseases incidences and 
in the managements of hypercholesterolemia. The Cocoa also contains many other ingredients such as 
caffeine, theobromine, tyramine, fat and carbohydrates. Interestingly, the benefits of cocoa consumption 
in HTN got greater attention following the observational studies conducted on Kuna Indians people who 
live in San Blas Island of Panama, a place that is traditionally well known for cocoa trees and unpro-
cessed cocoa drinks. Researcher have noticed that Kuna Indians people who drank at least three cups 
daily of cocoa drinks have lower blood pressure compared to the ones who migrated to the mainland and 
stopped consuming cocoa drinks. These observations encouraged scientist to conduct various clinical 
trials to identify the possible roles of cocoa in HTN management. However, the Cocoa effect appears to 
be significant in both pre-hypertensive and hypertensive patients rather than normotensive individuals. 
Indeed, the BP reduction with dark chocolate, a product which is highly rich in polyphenols, is not as 
robust as other supplementary products such CoQ10 or DASH diets.

The effect of Cocoa on blood pressure reduction was conducted by various clinical trials. Taubert and 
his associate conducted an 18-week, randomized single blind, parallel study on a small group of patients 
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whom their ages ranging from 56 through 73 years and with either untreated pre-hypertensive state or 
stage 1 HTN and had no other concomitant risk factors (D. Taubert, Roesen, Lehmann, Jung, & Scho-
mig, 2007). Patients were randomly assigned to get either 6.3 g daily of rich polyphenol containing dark 
chocolate or polyphenol-free white chocolate. Indeed, the patients who were given dark chocolate showed 
a significant reduction in their both SBP and DBP by 2.9 and 1.9 mmHg respectively. The investigators 
related the reduction in the BP to the activation of endothelial nitric oxide synthesis. In addition, and to 
support his findings, Taubert also conducted another study on small group of elderly patients with mild 
untreated stage 1 isolated systolic HTN (D. Taubert, Berkels, Roesen, & Klaus, 2003). Patients were 
randomly assigned to get 100 g of dark chocolate that contain at least 500 mg of polyphenols and 90 g 
of polyphenol free white chocolate for 14 days. SBP was significantly declined by 5.1 mmHg and DBP 
by 1.8 mmHg in patients given dark chocolate compared to white chocolate group. Furthermore, Grassi 
and his colleagues, conducted a 15-day randomized single blind, crossover study in patients with es-
sential HTN. The patients were given either a 100 g of dark chocolate and 90 g of polyphenol free white 
chocolate. Ambulatory 24 hours BP decreased by 11.9 mmHg and DBP by 8.5 mmHg respectively in 
patient who received dark chocolate, while no effect on BP was noticed in patients who received white 
chocolate (Grassi et al., 2005). Grasssi has also showed that dark chocolate polyphenols decrease insulin 
resistance, LDL and cholesterol levels in hypertensive patients. Interestingly, the effect of dark chocolate 
on BP in healthy subjects seems to be not significant. In this context, Engler conducted a 2-week study 
on healthy volunteers to evaluate the effect of daily intake of high flavonoid rich dark chocolate on the 
endothelial function and its effect on blood pressure reduction (Engler et al., 2004). Although there was 
an improvement in individual’s endothelial function; their BP was not significantly affected. Rostami and 
his associate conducted an 8-week, randomized, placebo-controlled double blind study on individuals 
with type 2 diabetes and HTN. Patients were given either 25 g of dark chocolate or equivalent amount 
of white chocolate. Dark chocolate induced significant reduction in both SBP and DBP by 5.93 and 
6.4 mmHg respectively compared to the white chocolate group. Interestingly, the triglycerides levels in 
patients who received dark chocolate were also effectively reduced. Yet, no effect on insulin resistance 
or glycemic control was observed in both groups(Rostami et al., 2015).

Conversely, Muniyappa and his team conducted a 2-week randomized, double blind, placebo controlled, 
crossover study in individuals with essential HTN and who were taking their conventional antihyperten-
sive drugs (Muniyappa et al., 2008). Patients were asked to stop their conventional medications prior to 
the study initiation. Then, the patients were given flavanol-rich cocoa drink (900 mg of flavonols per 
day) for 2 weeks followed by 7 days washout period prior placebo treatment initiation. In fact, the result 
generated from study was conflicting and despite the fact that consumption of falvonol-rich cocoa en-
hanced insulin mediated vasodilation yet it has no significant effect on BP reduction or insulin resistance.

Many studies suggested that Cocoa improve the endothelial function and increase production of nitric 
oxide, a potent vasodilator, possibly through up-regulation of endothelial nitric oxide synthase (eNOS), an 
effect which was reversed by a competitive inhibitor of eNOS such as L-G monomethyl arginine(Heiss et 
al., 2005; D. Taubert et al., 2003; D. Taubert et al., 2007). The role of oxidative stress in HTN is also well 
documented as mentioned before. It has been also suggested that flavonols can work as an antioxidant 
during the oxidative stress through reducing the nitric oxide (NO) breakdown by reactive oxygen spe-
cies. Furthermore, the ability of chocolate- flavanols to inhibit angiotensin-converting enzymes (ACE) 
was also supported by several in vivo and in vitro studies (Persson, Persson, Hagg, & Andersson, 2011).

Modest consumption of cocoa is considered safe. However, cocoa also contain other ingredient such 
caffeine, theobromine and calories and excessive consumption might cause undesirable side effects such as 
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increase in heart rate, GI upset and weight gain. Cocoa might also inhibit platelets aggregation and adhe-
sion and decreases iron absorption. In addition, caffeine has been found to inhibit CYP450 1A2 enzyme, 
and such effect might decrease the metabolism of many drugs such as clozapine and might increase their 
possible side effects. Caffeine might affect the serum lithium levels and abrupt consumption of cocoa 
might lead to increase serum levels and thereby potentiate lithium side effects such as tremors(Mester 
et al., 1995). However, the clinical significance of cocoa on lithium needs further investigation.

L-Arginine

L-arginine (2-amino-5-guanidinopentanoic acid) is a non-essential amino acid that is required for protein 
synthesis. The amino acid is naturally found in high amount in many foods such as fish, beef, eggs and 
dairy products. Following oral intake, the arginine is well absorbed in the jejunum by special carries, 
then subjected to extensive metabolism by enterocytes. Arginine homeostasis is mainly regulated by 
hepatic metabolism and urinary excretion. Human pharmacokinetic studies showed that excessive intake 
activate both hepatic arginase and renal clearance. L- arginine is able to stimulate the release of growth 
hormone (GH), prolactin, glucagon, insulin, and gastrin in stomach and inhibit the tubular reabsorption 
of protein. Arginine is also a natural substrate for nitric oxide synthase that converts the amino acid 
into a potent vasodilator nitric oxide, which involved in many regularity function of the cardiovascular 
system. Also it has been shown that arginine conversion to nitric oxide improves endothelial function, 
reduces monocyte endothelial adhesion and increases coronary blood flow in patient with coronary 
artery diseases (Lerman, Burnett, Higano, McKinley, & Holmes, 1998). L-arginine may also act as an 
antioxidant by decreasing the production of vascular super-oxidase, improving nitric acid availability 
and decreases the incidence of nitrate tolerance (Parker, Parker, Caldwell, Farrell, & Kaesemeyer, 2002). 
The roles of arginine in several cardiovascular diseases, erectile dysfunction and many others were 
investigated. However, The benefits of oral intake of arginine on blood pressure reductions were also 
conducted in both healthy individuals and diseased patients. Interestingly, it has been shown that people 
with normal diet who have adequate concentration of L-arginine that ensures optimum NO production 
by NOS enzyme do not respond to supplementation compared to people with L-arginine deficient diet. 
Therefore, L-arginine supplementation appears to be more effective in patients who do not consume 
enough L-arginine in their diet (Wu & Meininger, 2000).

To investigate the role of L-arginine in HTN, Ast and his team, conducted a 4-week, randomized, 
parallel, double blind, clinical trial to study the effect of arginine consumption on BP in healthy volunteers 
and in patients with mild HTN (Ast et al., 2010). Individuals in each group were randomized to receive 
either 6 or 12 g daily of arginine or placebo. The result showed a significant reduction in both SBP and 
DBP in patients with mild HTN and who received 12 g of arginine daily compared to placebo control. 
Neri and his colleagues also conducted another 12-week, randomized double blind study in female with 
gestational HTN (Neri et al., 2010). In his study, women were randomized to receive 4 g daily of oral 
arginine versus placebo and then submitted to 24 h ambulatory BP monitoring. Although supplementa-
tion with L-arginine does not significantly affect the overall blood pressure; it has been shown that L-
arginine daily consumption is associated with improved health outcomes, less need for antihypertensive 
medications and fewer neonatal and maternal complications. Martina and associate conducted a 6-month 
clinical trial to study the effect of oral intake of L-arginine along with N-acetyl cysteine, a precursor of 
glutathione, in type two diabetic patients with HTN (Martina et al., 2008). The combination treatment 
caused statistically significant reduction in both SBP and DBP mean arterial pressure by improving the 
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endothelial function, reducing the oxidative stress and increasing NO availability. Morris and his team 
also studied the role of arginine in pulmonary HTN secondary to sickle cell anemia (Morris et al., 2003). 
It has been shown that NO, a potent vasodilator is deficient during the sickle cell crises. Oral intake of 
L-arginine produced 15.2% mean reduction in pulmonary artery systolic pressureby donating nitrogen 
for NO synthesis and decreeing the serum levels of the potent vasoconstrictor endotheilin-1. Palloshi 
and his team conducted a 4-week clinical trial in hypertensive patients with angina. Patients were given 
6 g of L-arginine along with their conventional antihypertensive and anti-angina drugs. L-arginine sig-
nificantly reduced SBP by 20 mmHg(Palloshi et al., 2004).

Appropriate L-arginine consumption appears to be safe, however side effects such as bloating, diar-
rhea and abdominal pain have been reported. Importantly, in patients with renal insufficiency or failure, 
arginine causes hyperkalemia, which might lead to cardiac arrhythmia, and possibly death. As a result, 
L-arginine Supplementation in those patients is not recommended.

Ginkgo Biloba

Ginkgo biloba, commonly known as ginkgo, has been widely used in Asia for more than 2000 years in 
traditional medicine. In addition, its seeds served as an important food source during the 1930-1960 food 
shortage in Japan. Both, gingko seeds and leaf extracts are of the top selling medicinal plant products 
worldwide. Gingko biloba leaf extract (GBE) contain many compounds such as flavonoids, terpenoids, 
organic acids, carbohydrate, lipid and many others. Also, both seeds and leaf extracts contain ginkotoxin, 
a toxic product that might cause seizures if ingested in excessive amount. Interestingly, The plant extracts 
has been shown to improve brain energy supply, enhance nerve growth and communication function that 
have beneficial effects in several medical conditions like dementia, sexual dysfunction, depression and 
attention deficit hyperactivity disorder.

The role of GBE in HTN was also investigated in vitro and in vivo. However, the results in human 
were conflicting. In one large-scale and long-term clinical trial, Brinkley and his team found that the 
ingestion of 240 mg of GBE in elderly patients with either HTN or pre-HTN stage has no significant 
effect on BP compared to the ones who received placebo(Brinkley et al., 2010). Kudolo conducted a 
small clinical trial to study the effect of GBE on pancreatic beta cell function. In addition to GBE abil-
ity to increase the rate of insulin clearance, it has been shown that GBE also significantly decrease both 
SBP and DPB by 9 and 18 mmHg respectively (Kudolo, 2000).Furthermore, Wang et al, published a 
systematic review on Chinese clinical trials and the benefits of Chinese herbal products including GBE 
in HTN management(Wang et al., 2013). Wang concluded that many Chinese clinical trials have shown 
that flavonol glycosides of GBE significantly lower blood pressure and improve the quality of life in 
hypertensive patient.

The mechanism by which GBE reduces BP in hypertensive patients is not fully understood. How-
ever, it was proposed that GBE has a vasodilation activity that inhibits the rise in BP by its ability to 
counteract the endothelium dysfunction and restore the vascular sensitivity to endothelium-dependent 
relaxants. In addition, GBE is highly rich with flavonoids the most available active ingredients, which 
have been reported to modulate ACE system (Actis-Goretta, Ottaviani, & Fraga, 2006; K. Kameda et 
al., 1987). Furthermore, experiments in hypertensive rat models supported those finding and showed 
that GBE inhibits the angiotensin-converting enzyme and preserve vascular reactivity, which attenu-
ates the increase in BP (Mansour, Bahgat, El-Khatib, & Khayyal, 2011). The anti-oxidant activity of 
GBE in oxidative stress is another possible mechanism by which GBE exert its antihypertensive effect. 
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In tissue culture experiment, flavonoids were found to decreases the intracellular production of ROS 
while increasing the levels of ROS in the culture media, a phenomena that might explain the increase of 
Malondialdehyde (MDA), a marker for oxidative stress, in rats treated with GBE extract (Choi, Chee, 
& Lee, 2003; Robaszkiewicz, Balcerczyk, & Bartosz, 2007). It is also worth noting that the differences 
in quality and composition of the GBE may also affect the bioavailability of the active ingredients and 
therefore affect the GBE biological effects (Kressmann, Muller, & Blume, 2002).

GBE if used appropriately and as recommended is considered safe and well tolerated. However, it 
can cause mild gastrointestinal upset, headache, dizziness, constipation, and sometimes-allergic skin 
reactions. Moreover, excessive consumption of leaf extract or seeds can be life threatening. Although 
the number of roasted seeds that can be eaten safely is not defined, yet it has been suggested that ingest-
ing more than ten to fifteen roasted seeds per day can cause several side effects including difficulty of 
breathing, seizures, loss of consciousness, and even shock. In addition, fresh ginkgo seed is highly toxic 
and oral consumption should be avoided since it might cause serious side effects including death. Fur-
thermore, numerous analytical and phytochemical studies in vitro and in vivo using animal models were 
performed on gingko leaf extract and have shown that CYP 1A2, 2C9, 2C19, 2D6, 2E1 and 3A4 are all 
inhibited by GBE to variable degrees. However, the clinical significant effect of GBE on most human 
CYP enzymes appears to be minimal. GBE also seems to inhibit p-glycoprotein in vivo and organic 
anion transporting polypeptide (OATP) in vitro (Naccarato, Yoong, & Gough, 2012). Yet, it has been 
shown that in healthy volunteers, ginkgo does not appear to significantly alter the pharmacokinetics of 
the OATP substrates such as ticlopidine.

Psyllium

Psyllium is a dietary fiber supplement that is commonly used as stool softener, treatment for diarrhea, 
blood cholesterol lowering agent and in many other clinical conditions. The product is also used in food 
industry as food thickener and stabilizer. The seeds and the seed husk are the most applicable part of 
psyllium and both are rich in water-soluble fibers that form a viscous gel when mixed with water. Despite 
the fact that soluble fibers might undergo partial fermentation by intestinal bacteria in the colon, yet the 
bulking effect of psyllium is mainly due to the intact material.

The role of dietary fiber consumption in HTN has been studied in both animal and human. In fact, It 
has been shown that daily intake of fibers in a form of food or as an oral supplements may decrease the 
risk of HTN development. In addition, it has been reported that with the risk of higher blood pressure may 
be related to low dietary fiber intake (Stamler, Caggiula, & Grandits, 1997). As a result, the world health 
organization (WHO) recommend an increase in dietary fiber intake as a safe and effective approach to 
reduce CVD in hypertensive population (“Diet, nutrition and the prevention of chronic diseases,” 2003).

In many clinical trials psyllium appears to reduce blood pressure significantly. Burke and his associ-
ates conducted an 8-week, parallel randomized, controlled clinical study on hypertensive patients and 
who were taking their conventional antihypertensive medication for at least six months. Patients were 
given either low fiber diet or asked to consume an additional 15 g of psyllium, fiber rich diet, per day 
along with soy protein diet (V. Burke et al., 2001). Interestingly, systolic blood pressure was significantly 
reduced by 5.9 mmHg in patients treated with fiber and protein diet compared to control diet subjects. 
Cicero and his team conducted a 6-month randomized clinical trial in overweight patients with HTN. 
Daily intake of 3.5 g three times a day was associated with a significant decrease in both SBP and DBP 
by 5.2 and 2.2 mmHg respectively (Cicero et al., 2007). Pal and associates conducted another 12-week, 
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randomized, single blind, parallel clinical study in overweight and obese individuals (Pal, Khossousi, 
Binns, Dhaliwal, & Radavelli-Bagatini, 2012). Subjects were randomized into three groups, a) the con-
trol group who were supplemented with placebo in addition to their regular diet; b) fiber supplemented 
group; and c) the healthy eating and placebo supplemented group. Fiber supplement group were given 
12 gm of Metamucil® containing 7 g of psyllium three times a day. Both SBP and DBP were lower in 
fiber diet group by approximately 7% compared to control group at week six. Yet, there was no signifi-
cant difference in either SBP or DBP between the groups at 12 week. The lack of differences at the end 
of the experiment was attributed to psychological stress or day-to-day variability in BP.

The mechanism by which psyllium is reducing the BP is not fully understood. It has been shown 
that hypercholesterolemia impairs the endothelial dependent dilatation and associated with NO-induced 
vasodilation loss, which ultimately leads to an increase in BP and HTN. Therefore, it was proposed that 
the indirect effect of psyllium on BP could be due to its ability to improve the patient lipid profile through 
increasing intestinal viscosity and decreasing lipid absorption (Jenkins, Kendall, Axelsen, Augustin, 
& Vuksan, 2000). Furthermore, it has been shown that the increase in insulin resistance might be also 
involved in the development of HTN (Ferrannini et al., 1987). Interestingly, the ability of water-soluble 
fiber has been shown to decrease insulin resistance in both healthy and diabetic patient and might be a 
contributing factor in psyllium BP reduction (Anderson et al., 1991; Fukagawa, Anderson, Hageman, 
Young, & Minaker, 1990)

Appropriate use of psyllium is considered safe. However transient flatulence, constipation and GI 
upset have been reported. In addition some patients are allergic to psyllium, a reaction that might be sever 
and could lead to anaphylactic shock. In addition, psyllium can reduce the digestion of fat, decrease its 
absorption and increase fat fecal content (Ganji & Kies, 1994).

CONCLUSION

It is very clear that CAM therapies are used by a lot of people worldwide including Americans with large 
out-of pocket expenses for prevention or treatment of various health conditions. While, most Americans 
use CAM as a complementary to their conventional therapy, a small percentage of people are also using 
CAM treatments, alone. However, despite their clinical effectiveness and lower cost, the lack of scientific 
information regarding the safety for some, and the false impression by the general public that “natural” 
products are generally safe, yet many of them required further investigation. Importantly, CAM products 
can be easily introduced to the US market and sold without FDA restriction or any safety testing require-
ments. Indeed, the widespread consumption, the lack of quality control, adulterated/counterfeit products 
and unethical marketing could add further risks to CAM users. Consequently, it is crucial that the health 
care providers should familiarize themselves with CAM and CAM products efficacy and safety, question 
their patients if they are using these remedies and evaluate the current clinical studies so they can deliver 
evidence-based advice to their patients accordingly. Generally, the use of CAM products in this chapter 
can be considered for all hypertensive patients and for many their use is supported by clinical studies 
but not as robust as that for conventional pharmacotherapy. CAM products such as CoQ10, psyllium, 
dark chocolate, cinnamon, garlic and thyme are considered safe and can be taken alone or together with 
conventional therapies. However, Ginkgo biloba, can cause serious adverse effects through drug-herb 
interaction or by itself. As a result, both patients and health care providers should be aware of recom-
mended doses, treatment duration, CAM possible side effects and if any drug-herbal or herbal-disease 
interactions exist. A summary of our findings is presented in Table 2.
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Table 1. List of abbreviations

Abbreviation Term

ACEi angiotensin-converting enzyme inhibitors

ARBs angiotensin receptor blockers

BP Blood pressure

CAM Complementary & Alternative Medicine

CCBs calcium channel blockers

CKD Chronic kidney disease

CO cardiac output

CoQ10 Coenzyme Q10

CVD cardiovascular disease

DBP Diastolic blood pressure

ESRD end-stage renal disease

GBE Gingko biloba leaf extract

GRAS Generally Recognized as Safe

HTN Hypertension

NO nitric oxide

RAAS renin-angiotensin-aldosterone system

SBP Systolic blood pressure

SNS sympathetic nervous system

SVR systemic vascular resistance

TE wild thyme

Table 2. Summary of findings

Product Clinical Effect 
on BP

Common Adverse Effects Comments Reference

Cinnamon ↓ SBP and 
DBP

No significant adverse effects 
reported, well tolerated

Significant BP reduction effect mainly in HT 
patients with Type 2 diabetes.

Akilen and 
Robinson, 
2010

Coenzyme 
Q10

↓ SBP and 
DBP

Possible GI upset • Statin reduce CoQ10 levels (possible 
mechanism of statin myopathy adverse 
effect). 
• Interfere with warfarin (monitor INR)

Singh 1999 
Burke 2001 
Degesie 1994 
Langsjoen 
1994 
Rundek 2004

Dark 
Chocolate

↓ SBP and 
DBP

• Excessive ingestion: 
 o GI upset. 
 o Weight gain. 
 o Caffeine cause CNS stimulation 
and increase heart rate.

• Decrease iron absorption. 
• Inhibit platelet aggregation. 
• Inhibits CYP450 1A2 enzyme and increase 
many drugs adverse effects (e.g clozapine). 
• Abrupt consumption might increase serum 
level of lithium in patients taking the drug.

D.taubert, 
berkels 2003 
Grassi 2005 
Person, 2011 
Mester 1995

Garlic Effective in 
SBP ≥ 140 
mmHg

• Breath and body odor. 
• GI irritation and heart burn.

• Interfere with anticoagulant function 
• Inhibit CYP2E1 and increase levels of 
its substrates (e.g acetaminophen, ethanol, 
theophylline).

Holzgartner, 
1992 
Macan 2006 
Williams,2005
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Table 2. Continued

Product Clinical Effect 
on BP

Common Adverse Effects Comments Reference

Ginger Dose 
dependent in 
BP reduction

     Abdominal discomfort May interact with anticoagulant/antiplatelet 
(e.g warfarin) and increase the risk of 
bleeding.

Fugh-berman 
2000

Ginko 
Biloba

↓ SBP and 
DBP

• Excessive ingestion: 
 o GI upset. 
 o Headache. 
 o Seizures. 
 o Shock.

• Inhibit and induce many CYP 450 enzymes 
(1A2, 2C9, 2C19, 2D6, 2E1, 3A4) and 
interact with many drug metabolism (e.g. 
TCA, Bupropion, statins) 
• Inhibit drug transporters P-glycproteins and 
OATP, lead to multiple drug interactions (e.g. 
ticlopidine)

Wang, 2013 
Actis, 2006 
Kameda 1987 
Naccarato, 
2012 
Choi, Chee 
(2003)

Green Tea Consumption 
has inverse 
association 
with HT risk

• High dosses: 
 o GI upset 
 o CNS stimulation, sleep 
disturbance due to caffeine.

• Benefit in HT is nullified by smoking and 
obesity. 
• Affect many CYP enzymes (1A2, 3A4) and 
influence the clearance of wide array of drugs 
(e.g Clozapine, warfarin)

Tong, tyalor 
2014 
Yan and pan 
2012

L-arginine ↓SBP and DBP, 
↓Pulmonary 
HT

• Bloating 
• Diarrhea 
• Abdominal pain

• If used in gestational HT: Fewer neonatal 
and maternal complications. 
• C/I: renal insufficiency (leads to 
hyperkalemia)

Ast 2010 
Neri, 2010 
Morris 2003 
Martina, 2008 
Palloshi, 2004

Omega 
3-fatty acids

↓ SBP and 
DBP

• Very well tolerated. 
• Increase risk of bleeding 
• Might increase triglycerides

• Interfere with anticoagulant agents and 
increase risk of bleeding (e.g. warfarin)

Geleijnse, 
2002 
Ueshima 2007 
Sanders and 
Vickers 1981

Origanum 
Majorana

↓ SBP and 
DBP

• GRAS • Different extract forms available with 
different pharmacodynamic properties

Tahraoui, 
2007 
Regulation, 
2015

Persimmon ↓ SBP and 
DBP

• N/A • N/A Kenji kameda 
1987

Psyllium ↓ SBP and 
DBP

• GI upset 
• Constipation 
• Reduce fat digestion and 
absorption

• Might delay or decrease the absorption of 
several drugs (lithium).

Burke 2001 
Cicero 2007 
Ganji 1994

Quercetin ↓SBP and DBP • Headache 
• Possible tingling

• Interact with vasodilators and enhance their 
effects

Larson, 
Symons 2012 
Mackraj, 2008 
Vrolijk 2015

Vitamin C ↓ SBP • High doses: 
 o GI upset 
 o Osmotic diarrhea. 
 o Hyperoxaluria. 
 o Kidney stones.

• Decompose upon heat or air exposure. 
• GI absorption is dose dependent. 
• Avoid in G6PD deficiency.

Urivetzky, 
1992 
Duffy 1999 
Sato 2006 
Fotherby 2000
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ABSTRACT

Cardiovascular disease (CVD) is the leading cause of death in both men and women and has largely been 
attributed to genetic makeup and lifestyle factors. However, genetic regulation does not fully explain the 
pathophysiology. Recently, epigenetic regulation, the regulation of the genetic code by modifications that 
affect the transcription and translation of target genes, has been shown to be important. Silent informa-
tion regulator-2 proteins or sirtuins are an epigenetic regulator family of class III histone deacetylases 
(HDACs), unique in their dependency on coenzyme NAD+, that are postulated to mediate the beneficial 
effects of calorie restriction, thus promoting longevity by reducing the incidence of chronic diseases 
such as cancer, diabetes, and CVD. Emerging evidence shows that SIRT1 is ubiquitously expressed 
throughout the body. Resveratrol, a plant polyphenol, has cardioprotective effects and its mechanism of 
action is attributed to regulation of SIRT1. Incoproation of resveratrol into the diet may be a powerful 
therapeutic option for the prevention and treatment of CVD.

INTRODUCTION

Cardiovascular Disease

Cardiovascular diseases (CVDs) are a group of disorders of the heart and blood vessels, including 
coronary heart disease, cerebrovascular disease, peripheral arterial disease, rheumatic heart disease, 
congenital heart disease, deep vein thrombosis and pulmonary embolism (WHO, 2015). CVD is the 
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leading cause of death in most developed countries including the United States (Naghavi et al., 2015). 
As the leading cause of worldwide death, CVD represents nearly 30% of all deaths, and in 2008 caused 
17 million deaths and led to 151 million disability-adjusted life years (Bloom, 2011). Behavioral risk 
factors such as physical inactivity, tobacco use, and unhealthy diet explain nearly 80% of the CVD bur-
den. The greatest contributors to CVD mortality and morbidity are chronic heart failure, coronary heart 
disease, and stroke. The global cost in 2010 has been estimated at US$ 863 billion (Bloom, 2011). Even 
though multiple risk factors have been identified, the current approach to treatment is only to decrease 
modifiable risk factors through healthy lifestyle changes and the use of medications, such as statins to 
lower cholesterol. Despite extensive study and efforts over many years, CVD remains the leading cause 
of death. This is due in part to the difficulty in adhering to lifestyle changes such as weight loss, regular 
exercise, and dietary modification, and in part to non-modifiable risk factors such as a family history of 
CVD. Since modifying behavioral risk factors involves individual choices, approaches such as govern-
ment regulation, advertising, and public policy statements have had limited impact on CVD incidence. 
Innovative approaches are needed to reduce further the negative impact of CVD.

Current treatment of cardiovascular diseases requires lifestyle changes with or without medications. 
Evidence-based recommendations were provided in 2013 by the American College of Cardiology and 
the American Heart Association (Jensen et al., 2014; Stone et al., 2014). The new guidelines refined 
the original Framingham risk assessments with new knowledge and involve matching individuals’ CVD 
risk with the intensity of prevention steps (Wenger, 2014).

Two decades ago, following the discovery of the double helical structure of DNA and subsequent 
automation of DNA sequencing, scientists held high hopes that unraveling the human genome would 
uncover the genetic basis of many human diseases such as cancer, and that would lead to new and effective 
treatments. However, early gene linkage studies revealed only rare cases of single-gene disorders. Also, 
analysis of many genome-wide association studies has found little contribution to disease variation to 
date (Bjorkegren, Kovacic, Dudley, & Schadt, 2015). Accordingly, other explanations for disease devel-
opment and expression have been sought. Recently, the interaction between genes and the environment 
has emerged as a new frontier for studying how networks of developmentally programmed genes may 
lead to several major pathologies. Epigenetic studies may identify pathologic mechanisms early enough 
in human development to suggest ways to alter adverse gene expression in chronic disease. Humans are 
particularly susceptible to epigenetic influences during fertilization, gametogenesis, and early embryo 
development (Martinez, Gay, & Zhang, 2015). In addition, these epigenetic marks can also accumulate 
during adult life to increase disease susceptibility.

Sirtuins

Histone deacetylases (HDACs) are enzymes that remove acetyl groups from histone and non-histone 
proteins to counterbalance the activity of histone acetyltransferases (HATs). These activities control the 
epigenetic regulation of gene expression through post-transcriptional modifications to proteins (Z. Y. 
Wang, Qin, & Yi, 2015). Four classes of HDACs have been characterized according to their homology 
to yeast HDACs, and a total of 18 mammalian HDACs have been identified. HDACs are divided into 
four classes, class I (HDAC1, 2, 3, and 8), class II (HDAC4, 5, 6, 9, and 10), and class IV comprising 
only HDAC11 (Z. Y. Wang et al., 2015). A unique class, class III, is made up of the sirtuin family of 
enzymes that are not susceptible to inhibition by classical HDAC inhibitors such as vorinostat (Chavan 
& Somani, 2010).
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Sirtuins (silent information regulator-2 proteins) are class III histone deacetylases that can deacetylate 
lysine residues on histone and non-histone proteins alike. Sirtuins are unique among all HDACs due to 
their dependency on the coenzyme nicotinamide adenine dinucleotide (NAD+) (Winnik, Auwerx, Sin-
clair, & Matter, 2015). Dependency on NAD+ for deacetylase activity suggests that sirtuins are closely 
involved in energy metabolism (Z. Y. Wang et al., 2015). Members of the sirtuin family also possess 
ADP-ribosyltransferase activity (Luo et al., 2014). Sirtuins were first identified in yeast, the founding 
member being Sir2, which deacetylates histones and, therefore, condenses chromatin and represses 
transcription. Following the discovery of yeast Sir2, seven mammalian sirtuins (SIRT1-7) have been 
identified. Sirtuins exhibit a wide functional behavior due to their tissue- and cell-specific localization. 
Sirtuins are further classified into subclasses based on the homology of a 250 amino acid core domain. 
SIRT1 is a member of class I, along with SIRT2 and SIRT3, and is the most similar to yeast Sir2 in evo-
lution and function. Class I possesses the strongest lysine deacetylase activity of all the SIRTs. Class II 
contains SIRT4, which has ADP-ribosyltransferase activity. SIRT5 is in class III with unclear enzymatic 
activity (Lu, Scott, Webster, & Sack, 2009). SIRT 6 and SIRT7 make up class IV (Luo et al., 2014).

SIRT1 is primarily expressed in the brain, skeletal muscle, heart, kidney, and uterus (Villalba & 
Alcain, 2012). It is involved in aging and lifespan regulation, age-related diseases, cell survival, metabo-
lism, oxidative stress, and inflammation (Cencioni et al., 2015; Villalba & Alcain, 2012; Z. Y. Wang et 
al., 2015). SIRT1 is primarily localized in the nucleus in most cells, however along with its two nuclear 
localization signals, SIRT1 also possesses two nuclear exportation signals; studies have demonstrated 
that SIRT1 can be localized in the cytoplasm to interact with targets, and in some cell types it is primar-
ily localized in the cytoplasm (Tanno, Sakamoto, Miura, Shimamoto, & Horio, 2007). Localization of 
SIRT1 can also change, for example, in fetal mouse hearts where it is nuclear, compared to adult mouse 
hearts where it is cytoplasmic (Tanno et al., 2007).

Mechanistically, SIRT1 deacetylates both histone proteins (H1, H3, and H4) and non-histone protein 
targets (Balcerczyk & Pirola, 2010; Luo et al., 2014). Non-histone targets for SIRT1 deacetylase are p53, 
NF-κB subunit p65, forkhead box O (FOXO) transcription factors, peroxisome proliferator-activated 
receptors (PPARs), peroxisome proliferator-activated receptor γ coactivator 1 alpha (PGC-1α), and p300 
(Balcerczyk & Pirola, 2010; Luo et al., 2014).

SIRT1 has been shown to have both positive and negative effects on cardiovascular health (Cencioni 
et al., 2015; Z. Z. Chong, Wang, Shang, & Maiese, 2012; Hsu, Odewale, Alcendor, & Sadoshima, 2008; 
Ma & Li, 2015; Matsushima & Sadoshima, 2015; Sebastian, Satterstrom, Haigis, & Mostoslavsky, 2012; 
Webster, 2012). SIRT1 has also been associated with improving endothelial dysfunction and providing 
cellular antioxidant effects (Winnik et al., 2015). In addition, SIRT1 lowers plasma low-density lipopro-
tein levels and inhibits tissue factor activity which may diminish the development of arterial thrombotic 
events. The plant based antioxidant resveratrol has been shown to induce SIRT1 in several organs, which 
may lead to a potential cardioprotective effect (Figure 1).

Resveratrol

The enormous burden of cardiovascular disease (CVD) on the quality and length of life requires novel 
approaches in prevention and treatment. Many natural components from food or plants, such as resve-
ratrol, piceatannol, quercetin, pyrroloindoline quinone (PQQ) (Bauerly et al., 2011), epigallocatechin 
gallate (EGCG), and lycopene have shown preventive and therapeutic benefits in different forms of CVD. 
Preclinical studies have shown that natural components, such as resveratrol, have beneficial effects in 
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animal models of ischemic heart disease, cardiac hypertrophy, heart failure, hypertension, atheroscle-
rosis, stroke, arrhythmia, chemotherapy-induced cardiotoxicity, and diabetic cardiomyopathy (Zordoky, 
Robertson, & Dyck, 2015). Resveratrol mediates some of its beneficial cardiovascular effects through 
regulation of SIRT, AMPK, Akt or FOXO.

Resveratrol (3,5,4′-trihydroxy-trans-stilbene), a phytoalexin, is produced by plants as a reaction to 
stresses such as infection or injury (Quarles et al., 2015). It has been shown to have cardioprotective 
(Hung, Su, & Chen, 2004; Lekakis et al., 2005; Z. Wang et al., 2005; Zern, West, & Fernandez, 2003), 

Figure 1. SIRT1 signaling pathways in cardiovascular disease. Alteration or deregulation of SIRT1 
results in a wide variety of cellular dysfunction or downstream pathways which ultimately leads to 
cardiovascular disease. Upregulation of SIRT1 may lead to cardioprotection. Straight (_____) and dash 
(-----) lines indicate the factors that are found upregulated or downregulated, respectively, in specific 
cellular functions. In the figure, specific key events regulated by SIRT are represented
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cancer chemopreventive (Kraft, Parisotto, Schempp, & Efferth, 2009; Patel, Misra, Patel, & Majumdar, 
2010), anti-inflammatory (Bishayee, Barnes, Bhatia, Darvesh, & Carroll, 2010; Kang et al., 2009), anti-
oxidant (Rizvi & Pandey, 2010), anti-amyloidogenic (Riviere et al., 2007) and neuroprotective (Albani, 
Polito, Signorini, & Forloni, 2010) effects (Figure 2).

SIRTUINS AND RESVERATROL IN CARDIOVASCULAR DISEASE

Endothelial Cell Damage

Endothelial cells form the inner lining of blood vessels and highly express SIRT1 (Ota et al., 2007). 
Endothelial cells undergo reactive oxygen species (ROS) damage, apoptosis, and senescence as a part 
of aging and disease (Alcendor et al., 2007; Cencioni et al., 2015; Chiao & Rabinovitch, 2015). SIRT1 
protects the endothelial cells from ROS damage by upregulating endothelial nitric oxide synthase (eNOS) 
(Ota et al., 2010); this protects the angiogenic potential of endothelial cells (Winnik et al., 2015). SIRT1 
also deacetylates p53 leading to decreased senescence and apoptosis (Poulose & Raju, 2015). For SIRT1 
to mediate these effects, nuclear localization of SIRT1 is required. Translocation of SIRT1 from the 
cytoplasm of endothelial cells undergoing apoptosis to the nucleus can ameliorate the apoptotic stress 
(Hou, Chong, Shang, & Maiese, 2010; Hou, Wang, Shang, Chong, & Maiese, 2011).

Figure 2. Resveratrol-mediated protective effects in cardiovascular disease. Alteration or deregulation 
of several molecules including SIRT1 affect a wide variety of cellular functions or downstream pathways 
which can ultimately lead to cardioprotection. Straight (_____) and dash (-----) lines indicate the factors 
that are upregulated or downregulated, respectively, in specific cellular functions. In the figure, specific 
key events regulated by resveratrol are represented
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Resveratrol promotes differentiation of endothelial cells from mesenchymal stem cell (MSC) precursors, 
promotes endothelial cell sprouting, and neovascularization of MSCs (Chen et al., 2015). Cis-resveratrol, 
induced MSC tube formation in vitro (Chen et al., 2015). Resveratrol mediates its effects, in part, through 
enhanced vascular endothelial growth factor A (VEGFA) expression by heat shock protein 70 (HSP70) 
promoter recruitment (Chen et al., 2015). Using resveratrol to enhance tube formation in MSCs though 
VEGFA have implications for stem cell-based gene therapies in ischemic reperfusion (IR) injury and 
regeneration of damaged tissues in heart disease and beyond (Chen et al., 2015).

Resveratrol’s cardiovascular benefits emulate an exercise regimen of a healthy person (Handschin, 
2016). Exercise-associated vascular laminar shear stress may protect the endothelial cell by affect-
ing the mitochondria, thereby exerting atheroprotective effects in the vasculature (Kim et al., 2015a). 
Circulating endothelial microparticles are observed in hypertension and other cardiovascular disorders 
and represent endothelial dysfunction (Kim et al., 2015a). Resveratrol elicited an effect in endothelial 
cells similar to laminar shear stress by reducing endothelial microparticles released from the cell and 
activated mitochondrial biogenesis through a SIRT1-dependent mechanism (Kim et al., 2015b). Loss 
of SIRT1 completely abolished the protective effects of shear stress, but disruption of mitochondrial 
integrity significantly increased the number of total and activated endothelial microparticles back to 
basal levels even during shear stress (Kim et al., 2015b). These findings show that resveratrol has a po-
tential mitochondrial structural integrity-enhancing effect which may provide a novel therapeutic option 
for cardiovascular disease. Moreover, aerobic exercise mitigates endothelial dysfunction by promoting 
mitochondrial biogenesis through systemically prolonged laminar shear stress in the vessel wall (Kim 
et al., 2015b).

Resveratrol protects the endothelial cell from disturbed flow–induced senescence (Warboys et al., 
2014). Disrupting the flow by using either an orbital shaker or a syringe pump flow bioreactor promoted 
endothelial cell senescence via a p53-p21 signaling pathway compared with static conditions, whereas 
uninterrupted flow reduced senescence. SIRT1 activation by resveratrol treatment suppressed EC se-
nescence that contributes to the development of atherosclerosis and promotes overall cardiovascular 
health (Warboys et al., 2014).

The Ageing Heart

An aging heart is characterized by cardiac hypertrophy (thickening of the heart) which decreases its 
function (Chiao & Rabinovitch, 2015). Even in the abscence of factors such as hypertension, or other 
cardiovascular diseases, the heart will age, and its function will decline. SIRT1 activity shows an age-
dependent decline, so, as the heart ages, the protective function of SIRT1 decreases leaving the heart 
more susceptible to injury and disease (Braidy et al., 2011). Heart-specific overexpression of SIRT1 is 
beneficial and protective against cardiac dysfunction if expressed moderately (2.5- 2.7-fold). However, 
this protective effect is lost when SIRT1 overexpression was highly upregulated (12.5-fold) and induced 
cardiac failure in mice (Alcendor et al., 2007). This suggests that SIRT1 is acting in a protective manner in 
cardiac health; however, tight control of SIRT1 is necessary to achieve cardioprotection. Downregulation 
of SIRT1 increases damaging cardiac inflammation due to increased acetylation of NF-κB and subse-
quent nuclear translocation and transcriptional regulation of inflammatory genes (Costantino, Paneni, 
& Cosentino, 2015). SIRT1 also activates AMPK, which leads to improved glucose homeostasis and 
increased endothelial integrity, which aging disrupts leading to cardiac hypertrophy (Costantino et al., 
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2015). Hwang et al showed that SIRT1 deacetylates p53 during oxidative stress and reduced apoptosis 
in the ageing heart (Hwang, Yao, Caito, Sundar, & Rahman, 2013).

SIRT1 is involved in protecting the myoblasts from ROS damage, which can contribute, to cardiac 
dysfunction and aging (Z. Z. Chong et al., 2012; Tanno et al., 2010). Myoblasts experience increased 
oxidative stress during differentiation into myocytes, which SIRT1 protect against by enhancing man-
ganese superoxide dismutase (MnSOD, SOD2), a downstream target of FOXO, to provide resistance to 
oxidative stress (Z. Z. Chong et al., 2012; Tanno et al., 2010). PGC-1α, a major mitochondrial biogenesis 
molecule, is downregulated in ageing hearts which can lead to increased gluconeogenesis and fatty acid 
oxidation. SIRT1 may possess anti-ageing properties in the heart, in part, through PGC-1α and its energy 
metabolism properties (Matsushima & Sadoshima, 2015; Rowe & Arany, 2014).

Interestingly, resveratrol has been shown to protect the heart from functional decline due to aging, and 
mediates its effects largely through SIRT1 (Chung, Manganiello, & Dyck, 2012; Y. Zhang et al., 2014). 
Specifically, it can reverse age-induced cardiomyocyte dysfunction by regulating AMPK phosphory-
lation, and increase the expression of SIRT1, PGC-1α, and UCP-2 (Y. Zhang et al., 2014). Aldehyde 
dehydrogenase 2 (ALDH2) expression increases in aging cardiomyocytes and contributes to the func-
tional decline of the heart as it ages (Y. Zhang et al., 2014). Resveratrol regulates the damaging effects 
of ALDH2 overexpression in mice (Y. Zhang et al., 2014). Additionally, resveratrol plays an essential 
role in regulating AMPK-SIRT1 signaling to attenuate ALDH2-enhanced cardiomyocyte dysfunction 
and mitochondrial injury due to cardiac aging (Y. Zhang et al., 2014).

Supplementation of resveratrol may delay or decrease the effects of ageing and functional decline 
of the heart. Resveratrol has been shown to decrease fibrotic collagen deposition, a common accumula-
tion found in aging hearts and decrease oxidative damage (Sin et al., 2014). Resveratrol also dampened 
pro-apoptotic signaling in aging hearts via deacetylation mechanism of SIRT1 (Sin et al., 2014). Long-
term supplementation of resveratrol elevated SIRT1 expression and activity in aging hearts leading to 
decreased FOXO1 acetylation and decreased pro-apoptotic FOXO-Bim signaling (Sin et al., 2014). Lin 
et al showed that resveratrol also regulates the effects of aging in the heart by SIRT1 and the PI3K-Akt 
signaling axis (Lin et al., 2014). While analyzing the effect of exercise or exercise and resveratrol supple-
mentation, exercise with resveratrol supplementation enhanced SIRT1 and the PI3K-Akt pathways and 
prevented FOXO3 accumulation in the aging hearts of rats (Lin et al., 2014).

Resveratrol has been shown to mediate its anti-aging effects through various signaling pathways, 
not just SIRT1, in a number of diseases (Harikumar & Aggarwal, 2008). In the aging heart, resveratrol 
enhances the NAMPT-SIRT4-hTERT signaling axis which leads to stabilization of telomere length in 
cardiomyocites, preventing telomere shortening, a contributing factor in ageing, both in vitro and in vivo 
(Huang et al., 2015).

In conclusion, resveratrol protects the heart from an aging-induced decline in function by regulating 
a network of pathways to dampen apoptosis, oxidative damage, and accumulation of harmful proteins 
in the heart. With its antiaging properties, resveratrol supplementation has the potential to decrease age-
induced decline in the heart leading to a longer life with fewer cardiovascular complications.

Autophagy and Cardioprotection

Autophagy is an essential process in post-mitotic cells leading to balanced energy and cell survival 
because loss of these cells would be detrimental (Schiattarella & Hill, 2015; Tong & Sadoshima, 2016). 
Cardiomyocytes utilize autophagy in times of stress, such as nutrient deprivation or ischemia in order 
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to break down cell components and recycle them into the major building blocks (amino acids, lipids, 
carbohydrates) for the cell’s use (Schiattarella & Hill, 2015). During fasting, SIRT1 was found to deacety-
late a downstream target, FOXO, which led to autophagosome-lysosome fusion and energy homeostasis 
(Ng & Tang, 2013). Alterations in this pathway, such as inhibiting deacetylation of FOXO1, prevented 
autophagy and increased cardiac dysfunction (Ng & Tang, 2013).

Resveratrol modulates autophagic signaling in hearts during heart failure and chronic ischemia 
(Kanamori et al., 2013; Sabe, Elmadhun, Dalal, Robich, & Sellke, 2014). Resverartrol upregulates 
autophagy in heart failure by decreasing damaging post-ischemic remodeling in enlarged, aged hearts 
and thus providing cardioprotective benefits (Kanamori et al., 2013). In chronically ischemic hearts, 
supplementation of resveratrol in combination with a high cholesterol diet led to increased autophagy 
and decreased heart remodeling suggesting a therapeutic role for resveratrol in improving outcome post 
ischemia (Sabe et al., 2014). SIRT1 and resveratrol regulate autophagy and improve energy balance in 
the heart during heart failure.

Heart Failure

In healthy hearts, free fatty acids are the predominant molecules used to generate ATP. However, as 
hearts age or are subjected to stress, the source of ATP shifts from free fatty acids to glucose (An & 
Rodrigues, 2006; Witteles & Fowler, 2008). As heart failure (HF) progresses, insulin resistance in the 
heart muscle increases and leads to decreased glucose usage and an overall drop in ATP production 
(An & Rodrigues, 2006). In HF the shift in energy balance suggests mitochondrial dysfunction and as 
SIRT1 is a major mitochondrial protein deacetylase involved in energy production and oxidative stress, 
it is implicated in HF (Tanno, Kuno, Horio, & Miura, 2012). SIRT1 alters fatty acid uptake and usage 
by binding to PPARα displacing its binding partner, RXRα, and preventing fatty acid uptake that further 
disturbs the energy balance in failing hearts (Oka et al., 2015).

ROS production in the heart is normally high. High ROS levels can irreversibly damage the heart 
by cellular and mitochondrial damage that can lead to heart failure over time. SIRT1, as a cardiopro-
tective molecule, is known to upregulate MnSOD, which functions as a detoxification molecule in the 
mitochondria to clear the ROS. This may prevent ROS damage to the heart which contributes to heart 
failure (Tanno et al., 2012). SIRT1-mediated activation of FOXO also increases antioxidants such as 
MnSOD and catalase increasing resistance to oxidative stress (Luo et al., 2014). SIRT1 can also regulate 
cardiomyocyte cell death or survival. Cardiomyocyte cell death occurs by apoptosis, necrosis, and au-
tophagy and SIRT1 has been shown to regulate each of these processes (Tanno et al., 2012). An increase 
in SIRT1 has been shown to regulate cardiomyocyte apoptosis by deacetylating apoptotic proteins p53, 
and Ku70, and thereby preventing Bax interaction leading to apoptosis (Tanno et al., 2012). Resveratrol 
shows beneficial properties in cases of heart failure through direct or indirect effects in animal stuides 
(Tome-Carneiro et al., 2013; Zordoky et al., 2015). Resveratrol restored the levels of mitochondrial 
oxidative phosphorylation complexes and cardiac AMP-activated protein kinase activation leading to 
improved energetic myocardial status in a mouse model of heart failure (Sung et al., 2015). Also, non-
cardiac symptoms of HF, such as peripheral insulin sensitivity, glucose metabolism, vascular function, 
and physical activity, were also improved by resveratrol treatment. As a result, resveratrol treatment 
significantly increased median survival of mice with HF, reduced cardiac fibrosis, decreased markers 
of hypertrophy and HF-related extracellular remodeling, and improved diastolic function and energy 
metabolism (Sung et al., 2015).
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In streptozotocin (STZ) induced diabetic cardiomyopathy mice, long-term resveratrol treatment 
improved cardiac function, ameliorated oxidative injury and reduced apoptosis in the heart (B. Wang 
et al., 2014). Resveratrol reduced apoptosis by regulating dysfunctional autophagic flux through the 
SIRT1/FOXO1/Rab7 axis (B. Wang et al., 2014). In coronary ligation-induced HF in rabbits, resveratrol 
decreased left atrial fibrosis and reduced atrial fibrillation by regulating the PI3K/AKT/eNOS signaling 
pathway (E. Chong et al., 2015). Polydatin (PD), a resveratrol glucoside, also showed beneficial actions 
on cardiac hypertrophy by inhibiting ROS-dependent Rho kinase activation (Dong et al., 2015). PD 
attenuated phenylephrine-induced increased cell surface area and atrial natriuretic protein expression 
in cultured neonatal rat ventricular myocytes. PD treatment in transverse aortic constriction inhibited 
phenylephrine-induced oxidative stress and consequently suppressed ROCK activation in cardiomyocytes. 
Decreased oxidative stress and ROCK activation leads to reduced hypertrophy and improved cardiac 
function (Dong et al., 2015).

Ischemic-Reperfusion Injury

Ischemia-reperfusion (IR) injury occurs when cardiomyocytes experience a lack of oxygen due to angina 
or myocardial infarction, and once reperfusion of blood flow is established, an IR injury occurs. As the 
heart ages, it becomes more susceptible to IR injury and subsequent myocardial infarction leading to 
increased incidence of death. Ischemic preconditioning by starving the heart of oxygen for short periods 
of time has a protective role against IR injury (Poulose & Raju, 2015). Ischemic preconditioning, protects 
the heart, in part, through SIRT1 activity (Wojtovich, Nadtochiy, Brookes, & Nehrke, 2012). Moreover, 
inhibition of SIRT1 prevented the protective effect of ischemic preconditioning in mouse hearts. The 
decline of SIRT1 in aging hearts may contribute to the inability of the heart to protect against IR injury. 
Though the underlying mechanism by which SIRT1 mediates its effects is not yet known, mTOR and 
AMPK signaling have been suggested from from studies into the benefitial role of SIRT1 and calorie 
restriction (Ghosh, McBurney, & Robbins, 2010; Shinmura et al., 2007).

Resveratrol-supplemented high cholesterol fed Yorkshire swine that were subjected to IR injury 
showed 76 differentially regulated proteins (out of 669) compared to high cholesterol fed swine with-
out resveratrol supplementation. Proteomic and pathway analyzes identified proteins downregulated 
in resveratrol supplemented ischemic myocardium in a number of pathways including mitochondrial 
dysfunction, cell death, and detrimental cardiac remodeling (Sabe et al., 2015). Resveratrol protects the 
cardiomyocytes and myocardium from detrimental consequences of IR injury through regulation of not 
only SIRT1 but inflammatory and cell death pathways.

In IR injury, resveratrol improves the outcome of cardiomyocytes through regulation of SIRT1. Res-
veratrol improved cardiomyocyte outcome in I/R-treated Wistar-Kyoto rats by reducing apoptosis and 
restoring SIRT1 activity and NAD+ levels (Cattelan et al., 2015). In another study using mice undergoing 
IR injury, resveratrol treatment increased SIRT1 activity and reduced infarct size (Shalwala et al., 2014).

Resveratrol decreases inflammation associated with I/R injury through a number of mechanisms. 
In rats subjected to I/R injury, resveratrol inhibited Toll-like receptor 4 (TLR4)/NF-κB signaling and 
therefore, dampening early inflammation in heart (J. Li et al., 2015). Resveratrol also reduced apoptosis, 
decreased the amount of lactate dehydrogenase release (a marker for necrosis), reduced inflammatory 
cytokine levels in cardiomyocytes of rats subjected to IR injury (C. Zhang et al., 2012).
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Atherosclerosis

Atherosclerosis is a chronic inflammatory disease where immune cell infiltration and endothelial pro-
liferation lead to the thickening of the artery wall and formation of plaques. Atherosclerosis can go 
undetected and asymptomatic for years before being diagnosed because of a secondary condition such 
as a heart attack (Lusis, 2000). SIRT1 has the potential to prevent the development of atherosclerosis 
in a number of ways. SIRT1 in the endothelium can decrease apoptosis by blocking oxidative stress-
induced apoptosis, thereby protecting the endothelium (Z. Z. Chong et al., 2012). Also, SIRT1 improved 
endothelium function such as relaxation by regulating endothelial nitric oxide synthase (eNOS) and nitric 
oxide concentration in the cells (Mattagajasingh et al., 2007). Patients with coronary heart disease have 
decreased SIRT1 expression and in atherosclerosis, SIRT1 expression modulates multiple pathways 
including LXR, CXCR7, and NF-κB to protect against atherosclerosis (Stein & Matter, 2011).

The cellular localization of SIRT1 also plays a role in disease. In healthy human hearts, SIRT1 is 
expressed predominantly in the cytoplasm. However, in diseased human hearts, such as chronic heart 
failure, SIRT1 is localized to the nucleus in cardiomyocytes (Tanno et al., 2007). Subcellular localization 
of SIRT1 impacts its function in disease states as well as the targets available for deacetylation.

SIRT1 also regulates vascular smooth muscle cell hypertrophy which contributes to atherosclerosis. 
Angiotensin II induces vascular smooth muscle cell hypertrophy, a process that overexpression of SIRT1 
inhibits (L. Li et al., 2011). SIRT1 regulates tissue inhibitor of matrix metalloproteinase 3 (TIMP3), 
which inhibits matrix metalloproteinase 3, an important mediator of plaque formation, and thereby reduce 
plaque formation leading to atherosclerosis (Cardellini et al., 2009; Stein & Matter, 2011). Through its 
mediation of oxidative stress and catalase through FOXO signaling, SIRT1 signaling prevents or improves 
atherosclerosis development (Alcendor et al., 2007; Cervelli, Borghini, Galli, & Andreassi, 2012; Q. J. 
Zhang et al., 2008). Furthermore, it is suggested SIRT1 is involved in DNA damage sensing and repair 
that may play a role in preventing atherosclerosis by targeting DNA damage repair signaling molecule 
Nibrin (NBS1) (Cervelli et al., 2012; Yuan & Seto, 2007).

Blood Pressure and Hypertension

Hypertension (or high blood pressure), leads to heart failure if uncontrolled. High blood pressure affects 
most people at some point in their life and is often the result of increased peripheral vascular resistance. 
The underlying cause of hypertension is not well understood and therefore, treatments target the symptoms 
but not the cause (Hamza & Dyck, 2014). Resveratrol has been shown to exhibit antihypertensive prop-
erties, and it is being evaluated for the treatment of hypertension. Resveratrol restored the transcription 
factor nuclear factor-E2-related factor-2 (Nrf2, a master regulator of numerous genes encoding antioxidant 
and phase II-detoxifying enzymes and molecules) function, reduced renal inflammation, and mitigated 
hypertension in spontaneously hypertensive rats (Javkhedkar et al., 2015). In one recent meta-analysis in 
humans, resveratrol consumption significantly decreased the systolic blood pressure level at the higher 
dose, but had no significant effects on diastolic blood pressure levels (Liu, Ma, Zhang, He, & Huang, 
2015). Resveratrol works not only on the heart, but the central nervous system, the renal system, and 
peripheral vasculature to control ROS and directly affect the vasculature to maintain a healthy blood 
pressure level (Hamza & Dyck, 2014).
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Calorie Restriction

Decreased caloric intake without malnutrition can increase lifespan and reduce the effects of aging. Calorie 
restriction has been shown to prevent cardiovascular disease by maintaining healthy metabolic parameters 
including decreased body weight and increased insulin sensitivity (Testa, Biasi, Poli, & Chiarpotto, 2014; 
Wei, 2014). Calorie restriction has also been shown to decrease ROS damage to cardiomyocytes, staving 
off atherosclerosis (Wei, 2014). While the full underlying mechanism of calorie restriction is unclear, it 
helps prevent cardiovascular diseases associated with poor metabolic health and aging (Y. Wang, 2014). 
SIRT1 has been long studied as a nutrient sensor related to longevity. Calorie restriction increases SIRT1 
expression, along with SIRT2-4 and -7, in the heart (Wei, 2014). The Mediterranean diet is low calorie 
and dense in polyphenols, including resveratrol, antioxidants, and omega-3-fatty acids that come from 
red wine, fruits and vegetables, and fish, respectively. Those that adhere to a Mediterranean diet benefit 
from reduced risks for cardiovascular disease (Pallauf, Giller, Huebbe, & Rimbach, 2013).

Resveratrol has been shown to act as a calorie restriction (CR) mimetic with potential anti-aging 
properties (Testa et al., 2014). Resveratrol mimics CR through endothelial nitric oxide synthase (eNOS). 
Interestingly, without eNOS, resveratrol fails to provide cardioprotective benefits, even with the resve-
ratrol-induced increase in SIRT1 activity (Shinmura et al., 2015). This shows that resveratrol may work 
independent of SIRT1 pathway.

CONCLUSION

In conclusion, resveratrol, has been lauded for its protective effects against cardiovascular disease. Res-
veratrol treatment in mice decreases age-related cardiac dysfunction. Resveratrol mediates its effects of 
cardioprotection, in part, through activation of an epigenetic regulator SIRT1. Resveratrol is available as 
a supplement over the counter and has been shown to be well tolerated in patients and has been used in 
humans for its cardioprotective effects (Raj, Zieroth, & Netticadan, 2015). Patients with cardiovascular 
disease are encouraged to lead a healthier, more active lifestyle. Supplementation of resveratrol into the 
diet through plants containing high polyphenol content such as grapes may aid in a heart healthy lifestyle 
and reduce the need for pharmaceutical intervention. Furthermore, after a patient suffers a heart attack, 
incorporating resveratrol into the treatment plan may decrease damaging remodeling and protect the 
heart as it heals. Targeting SIRT1 directly would be an alternative or combination strategy in the pre-
vention and treatment of cardiovascular disease. Its cardioprotective properties can become a powerful 
pharmaceutical target for development in cardiovascular disease in the near future.
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KEY TERMS AND DEFINITIONS

Cardiovascular Disease: A group of disorders affecting the heart and vasculature.
Epigenetics: The study of heritable changes to the gene expression without a change to the DNA 

sequence.
Histone Deacetylase (HDAC): Class of epigenetic modifiers that deacetylate histone and non-histone 

proteins.
Polyphenol: Metabolite of naturally occurring compounds found in the diet containing multiple 

phenol groups.
Sirtuin: Family of NAD+ dependent HDAC.
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Abbreviations

Akt Protein kinase B
ALDH2 aldehyde dehydrogenase 2
AMPK AMP-activated protein kinase α
CR calorie restriction
CVD cardiovascular disease
CXCR7 C-X-C Chemokine Receptor Type 7
EC endothelial cell
eNOS endothelial nitric oxide synthase
FOXO forkhead box O
HATs histone acetyltransferases
HDACs histone deacetylases
HF heart failure
HSP70 heat shock protein 70
hTERT telomerase reverse transcriptase
IR Ischemia-reperfusion
LXR liver X receptor
MD muscular dystrophy
MnSOD manganese superoxide dismutase
MSC mesenchymal stem cell
NAD+ nicotinamide adenine dinucleotide
NAMPT nicotinamide phosphoribosyltransferase
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells
Nrf2 nuclear factor-E2-related factor-2
NBS1 nibrin
PGC-1α Peroxisome proliferator-activated receptor gamma coactivator 1-alpha
PI3K Phosphoinositide 3-kinase
PPARs peroxisome proliferator-activated receptors
PVAT perivascular adipose tissue
ROCK Rho kinase
ROS reactive oxygen species
RXRα Retinoid X receptor alpha
TIMP3 matrix metalloproteinase 3
TLR4 Toll-like receptor 4
UCP-2 uncoupling protein 2
VEGFA vascular endothelial growth factor A
VSMCs vascular smooth muscle
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ABSTRACT

The chapter investigates the effects of social and demographic factors on cardiovascular disease (CVD) 
controlling health related factors. The data used in this study is the National Health and Nutrition 
Examination Survey data, and are merged the three waves, 2009-2010, 2011-2012, and 2013-2014. 
The logit regression analysis is used as a statistical model, and the results of this study confirm the 
significant associations with CVD in age, race/ethnicity, marital status, and educational attainment as 
expected ways. Health behaviors also show significant and strong relationships with CVD, which sup-
port the current prevention and intervention programs’ strategy that focuses on changing lifestyles on 
an individual and a community level. The results of the social and demographic factors on CVD confirm 
that having CVD is not only a medical or biological process but also a social outcome. Thus, a better 
understanding of the social and demographic factors on CVD helps us to not only reduce the mortality 
rate, but also develop more effective policies and programs.

INTRODUCTION

This chapter is to examine the impact of social and demographic factors on CVD. The CVD is the 
leading cause of death in the U.S. for both men and women (Go et al., 2014; Mensah & Brown, 2007; 
Mozaffarian et al., 2015). It has been ranked the number one cause of death over the last several years 
as in Table 1 (Center Disease Control, 2016a, 2016b; Hoyert, 2012; Xu, Murphy, Kochanek, & Bastian, 
2016), although the morality rates for CVD and other leading causes of death have been declined (see 
Figure 1) (Center Disease Control, 2016a, 2016b; Ma, Ward, Siegel, & Jemal, 2015). In 2010, one out 
of every three deaths is caused by CVD, which adds up to about 610,000 people. The direct and indirect 
cost of CVD totaled about $320.1 billion as of 2008, and is expected to triple by 2030 (Go et al., 2014; 
Mozaffarian et al., 2015), making CVD an extremely important public health issue (Mensah, 2005).
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Factors Associated with CVD

Prior studies have identified health-related risk factors that make a person more likely to have CVD, 
including high blood pressure, high Low-density lipoprotein (LDL) cholesterol, diabetes, smoking, 
low physical activity, and obesity (Corella & Ordov’as, 2014; Dankel, Loenneke, & Loprinzi, 2015; 
Garcia-Fontana et al., 2016; Go et al., 2014; Li & Siegrist, 2012; Mozaffarian et al., 2015; Naimi et 
al., 2005; Ski, King-Shier, & Thompson, 2014). When someone has one or more of these conditions 

Table 1. The top 5 leading causes of deaths: 1980-2013

Figure 1. Mortality rates of the top 3 leading causes of death: 1980-2013
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except physical activity, he/she is more likely to have CVD. When a person doing the physical activity 
regularly, the chance of having CVD is substantially low (Li & Siegrist, 2012; Stampfer, Hu, Manson, 
Rimm, & Willett, 2000).

The prevalence and the mortality rate of CVD, however, vary by social and demographic variables 
such as age, gender, race/ethnicity, and socioeconomic status (SES), which are called health disparities in 
CVD (Haynes, Feinleib, Levine, Scotch, & Kennel, 1980; Marshall et al., 2015; Mensah, 2005; Mensah 
& Brown, 2007; Mosca, Barrett-Connor, & Wenger, 2011; Rutledge et al., 2003; Ski et al., 2014). These 
social structures influence the health of individuals and can contribute to the identified risk factors and 
therefore their chance of having CVD (House, 2002; Lang, Lepage, Schieber, Lamy, & Kelley-Irving, 
2012; Link, 2008; Link & Phelan, 1995; McKinlay, 1996; Phelan, Link, & Tehranifar, 2010; Williams 
& Jackson, 2005; Yang et al., 2015).

Many studies have found significant relationships between social and demographic factors and CVD 
(Cooper et al., 2000; Kanjilal et al., 2006; Mensah, 2005; Mozaffarian et al., 2015; Naimi et al., 2005; 
Winkleby, Jatulis, Frank, & Fortmann, 1992). Common variables for social and demographic factors are 
age, gender, marital status, educational attainment, and household income. The chance of having CVD 
increases with age (Diaz-Toro, Verdejo, & Castro, 2015). Women show a lower CVD prevalence rate 
than men because they tend to engage in healthier behaviors. As Mozaffarian and his colleagues (2015) 
reported, however, women aged 85 and over compared to men aged 85 and over had higher numbers 
of diagnosed as heart attacks and coronary heart disease. African Americans tend to show a higher 
incidence of CVD than white, while Asians and Hispanics have shown a lower prevalence of CVD. Na-
tive Americans and Native Hawaiians, meanwhile, showed the highest prevalence of all heart disease 
measurements with the exception of coronary heart disease (Mensah & Brown, 2007). Married couples 
are the most advantaged as they tend to have a higher level of social integration and a greater reinforce-
ment of healthy behaviors and economic resources (Trovato & Lauri, 1989). Changes in marital status 
often lead to increased stress and depression and unhealthy outcomes (Zick & Smith, 1991). Education 
and income have been reported to be the important and consistent factors with a positive influence on a 
person’s health: the higher the educational attainment and the higher the income, the lower the chance 
of CVD (Rutledge et al., 2003; Williams & Jackson, 2005).

Research Objective

An understanding of these social determinants of CVD is crucial in developing health policies and programs 
to reduce CVD. Thus, the goal of chapter is to make people more aware of the social and demographic 
factors. To do so, this chapter will use the National Health and Nutrition Examination Survey (NHANES) 
data, which collects information on CVD, the major risk factors, and social and demographic variables.

Methods

Data

The NHANES is a survey to assess the health and nutritional status of adults and children in the U. S. 
and examines a nationally representative sample of about 5,000 people each year. The NHANES in-
cludes demographic, socioeconomic, dietary, and health-related questions. The examination component 
consists of medical, dental, and physiological measurements, as well as laboratory tests administered by 
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highly trained medical personnel. Findings from this survey will be used to determine the prevalence of 
major diseases and risk factors their diseases. The results will be used to assess nutritional status and its 
association with health promotion and disease prevention. Data from this survey will be used in epide-
miological studies and health sciences research, which help develop sound public health policy, direct 
and design health programs and services, and expand the health knowledge across the nation (Center 
for Disease Control, 2015a).

Methods

This study hypothesizes that whether the social and demographic factors along with other health-related 
risk factors have significant associations with CVD. As the dependent variable, CVD, has a binary out-
come (yes/no), this study employs a logistic regression model (Hamilton, 2013; Long & Freeze, 2005) 
and uses the STATA 14.1 version as statistical software. Initially two variables are considered to use 
CVD for the analysis. One is if a person has ever had a severe chest pain for more than half an hour, and 
the other is that if a person has ever had shortness of breath either when hurrying on the level ground or 
walking up a slight hill (Center Disease Control, 2015b). Only the latter is used for this analysis because 
there are not enough samples of the former to run an analysis. As these CVD variables are collected 
for adults aged 40 years old and over (Center Disease Control, 2015b), the sample size is significantly 
decreased. To obtain a high enough sample size to run the analysis, this chapter merges three NHANES 
datasets together: 2007-2008, 2009-2010, and 2011-2012.

The independent variables used to predict CVD as follows: Age is measured in years from ages 40 to 
80. Gender is measured by whether the respondent is female (yes=1, no=0). Race is measured with four 
dummy variables, with white used as a reference group (yes=1, no=0), African American, Hispanics, and 
other. Asians and other categories are not large enough to have consistent race and ethnicity measure-
ments in all datasets. Marital status is as follows: Married including unmarried partners (yes=1, no=0), 
never married, and non-married. Educational attainment is measured in four categories: less than high 
school, high school, some college, and college and beyond. The following health-related conditions are 
measured as dummy variables (yes=1, no=0): hypertension, high cholesterol, and diabetes are defined 
by whether a respondent has the condition or not. Physical activity is defined whether a respondent 
have done any kind of vigorous or moderate physical activity at work or for recreation for at least 10 
minutes per day. Although this is not an ideal definition and the CDC recommends at least 60 minutes 
per day (U.S. Department of Health and Human Services, 2008), the definition here is used in order to 
have enough sample to run the analysis. Obesity is defined by whether a respondent has a BMI of 30 
or greater (Center Disease Control, 2015c). Smoking is defined by whether the respondent is a current 
smoker. Drinking is measured by the average number of drinks per day in the past 12 months.

Results

Figure 2 demonstrates the percentage of the outcome, about one thirds of respondents who are 40 years 
old and older report that they have had shortness of breath either when they are hurrying on the level 
ground or walking up a slight hill.

Table 2 presents the descriptive statistics of CVD. The average age is 57 years old, but the average 
years of age in fact would be higher than this, because all adults aged 80 and over are coded as 80 years 
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old. Forty-four percent of the respondents are female, and 81% of adults are white, 9% are black, 7% 
Hispanic, 4% Asian, and 6% Other. More than two third of the respondents are married including unmar-
ried couples, 7% have never been married, and 26% have a different marital status including divorced, 
widowed, and separated. Educational attainment in Table 2 presents the percentages of each category 
for easier understanding, although this variable is used as a continuous variable in the analysis. A total 
of 17% of the respondents have less than high school level of education; 23% have a high school level 
of education; one third have some college level of education; and one fourth have been to college and 
beyond. About 70% of the respondents do vigorous or moderate activities at work or for recreation. 
More than one third of the respondents are obese, 46% of them have hypertension, and almost half of 
them have high cholesterol. Respondents drink 2.6 alcoholic beverages per day on average in the past 
12 months, and 35% of them are current smokers.

Table 3 presents the results of the logistic regression models for CVD. The most coefficients show 
the expected relationships with the dependent variable. For easier understanding of logit coefficients, 
this paper converted the coefficients to the odds ratios (Long & Freeze, 2005; Poston & Min, 2008). 
Additional age increased the risk of CVD by 1% among the adults aged 40 and over in the first column 
in Table 3. Hispanics compared to whites are 35% less likely to have CVD. Those who were never mar-
ried compared to those who are married are 53% more likely to have CVD, and those in the “other” 
category are 64% more likely to have CVD. Additional education decreases the likelihood of having 
CVD by 11%. A person who is doing any kind of vigorous or moderate physical activities at work and 
for recreation is 25% less likely to have CVD. Other health conditions show positive associations with 
CVD: those with obesity are 79% more likely to have CVD, those with hypertension are 69% more likely, 
those with high cholesterol are 23% more likely, those with diabetes are 71% more likely, and smokers 
are 81% more likely. Drinking is not significant.

Figure 2. The percentage of CVD: Shortness of breath
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CONCLUSION AND DISCUSSION

This chapter aims to shed light on the effect of social and demographic factors on CVD. The results 
support the hypotheses. The overall model is significant and social and demographic factors indeed have 
substantial influences on CVD. There are several implications from this research. First, it is worthwhile 
to study CVD with social and demographic factors. This is justified not only because CVD is an impor-
tant public health issue, but also because a majority of adults with CVD worsen their health conditions, 
and can even be fatal (Center Disease Control, 2015d). Second, since having a disease or illness is not 
only a medical or biological process but also a social outcome, a better understanding of the social and 
demographic factors on CVD helps us to reduce the mortality rate and develop more effective policies 

Table 2. Descriptive statistics (Weighted = 110,033,053)
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and programs (Cooper et al., 2000; Diez Roux, Link, & Northridge, 2000; Marshall et al., 2015; Pearcy 
& Keppel, 2002). This will contribute to achieve the one of the Healthy 2020 goals, eliminating the health 
disparities (Office of Disease Prevention and Health Promotion, 2015). Third, related to the second, 
the results have found the substantial benefits of being married; married people live healthier lives than 
non-married ones and have a reduced likelihood of having other major risk factors as well as CVD. In 
other words, policies and programs need to pay closer attention to unmarried people. Educational at-
tainment also reduces the chance to have CVD significantly as expected. Fourth, the results present the 
significant relationships between CVD and the health-related risk factors such as obesity, hypertension, 
high cholesterol, diabetes, smoking, and physical activity. This supports the current prevention and 
intervention programs’ strategy that focuses on changing lifestyles on an individual and a community 
level (Cooper et al., 2000; Diaz-Toro et al., 2015; Mensah, 2005; Stampfer et al., 2000).

Table 3. The results of the logit model (Weighted = 110,033,053)
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Limitations

This study, however, has limitations. First of all, the results of race/ethnicity are somewhat unexpected; 
the African American and Other variables are not significant at all, while the Hispanic variable was 
significant. Two things can be discussed as plausible explanations. The African American mortality 
rate of CVD is higher than that of whites, but the prevalence rates for African Americans for stroke 
and other heart diseases are lower than those of whites (Mensah & Brown, 2007). African Americans, 
however, have higher prevalence rates for hypertension, obesity, and other health conditions (Mensah, 
2005). In addition, minority groups including African Americans have reported that they tend to have 
a lower diagnosis rate of CVD than that of whites due to the barriers to diagnose (McKinlay, 1996). 
Further analysis on this is needed to understand why the African American variable was insignificant. 
Second, more detailed categories of the race/ethnicity to obtain more precise results are also necessary. 
This chapter does not have detailed categories such as Asian, Native American, and Native Hawaiian, 
because those categories are not available on all three datasets. It would be worth running the analysis with 
detailed racial and ethnic groups when that information is obtainable. Third, gender was not significant, 
because women also may tend to be under-diagnosed as described above (McKinlay, 1996). Women 
have a lower prevalence rate of CVD than their male counterparts, but the have a higher mortality rate 
due to delayed or late detection (Cooper et al., 2000; Fang, Perraillon, Ghosh, Cutler, & Rosen, 2014). 
Women aged 70 and over show higher prevalence rate of stroke than male counterparts (He, Campbell, 
& McGregor, 2012). African American women in particular have higher prevalence rate than their male 
counterparts. Fourth, the measurements of physical activity and drinking need to be changed in future 
studies. Physical activity in this survey includes vigorous or moderate physical activities for at least 10 
minutes to obtain enough samples to analyze. The Center Disease Control recommends testing for posi-
tive effect at least 60 minutes of exercise per day. When that variable is available for several datasets, it 
would be appropriate to run that analysis.
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KEY TERMS AND DEFINITIONS

Cardiovascular Disease (CVD): The term “heart disease” is often used interchangeably with the 
term “cardiovascular disease.” Cardiovascular disease generally refers to conditions that involve nar-
rowed or blocked blood vessels that can lead to a heart attack, chest pain (angina) or stroke. Other heart 
conditions, such as those that affect your heart’s muscle, valves or rhythm, also are considered forms 
of heart disease.

Leading Causes of Death: Lading causes of death are defined as underlying cause of death catego-
ries or major ICD (International Cause of Death) groupings (such as Diseases of the Heart, Malignant 
Neoplasms, Accidents, etc.) that usually account for large numbers of deaths within a specified popula-
tion group and time period.

Logistic Model: The logistic model is a regression model where the dependent variable is binary or 
dichotomous, i.e. it only contains data coded as 1 (TRUE, success, pregnant, etc.) or 0 (FALSE, failure, 
non-pregnant, etc.).

Odds Ratio: An odds ratio (OR) is a measure of association between an exposure and an outcome. 
The OR represents the odds that an outcome will occur given a particular exposure, compared to the 
odds of the outcome occurring in the absence of that exposure. If OR is 1, it means that the exposure 
does not affect odds of outcome; if OR is greater than 1, it means the exposure associated with higher 
odds of outcome; and if OR is lesser than 1, the exposure associated with lower odds of outcome.

Sociodemographic Factors: Sociodemographic factors are characterized by a combination of so-
ciological (= related to sociology) and demographic (= relating to populations) characteristics such as 
age, sex, education level, income level, marital status, occupation, religion, birth rate, death rate, average 
size of a family, and average age at marriage.
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ABSTRACT

In the United States, sudden unexpected deaths attributable to diseases of the cardiovascular system 
account for almost 50% of all natural deaths with up to 600,000 deaths per year. Over the past decade, 
substantial developments have been made to provide definitive determinations in the diagnosis of cardiac 
death for adjudication in the criminal justice system and closure for decedent’s families. In order to 
make postmortem diagnostic determinations, coordinated multidisciplinary efforts include collabora-
tion between clinical and forensic pathologists. Forensic protocols include examination of the heart, 
histological sampling, toxicology testing, and molecular analyses. Lack of alternative diagnoses gen-
erally prompts pathologists to report sudden cardiac arrest as the main cause of death in many cases 
even though the accuracy of this finding might be in question; therefore, a forensic pathologist should 
examine unexplained cases of death in more depth to avoid this possible misdiagnosis.

INTRODUCTION

Sudden cardiac death (SCD) is unexpected natural death that results within one hour of onset of known or 
unknown heart pathologies with or without prior complaints. According to data published by the Centers 
for Disease Control and Prevention (CDC), sudden cardiac death is a major health concern, constituting 
approximately 20% of total mortality in the United States, and affecting over 600,000 patients annually. 
Each year the incidence of SCD in the United States is approximately 250 to 400 thousand cases, a rate 
associated with advanced age and male gender (Lee et al., 2008).
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Most studies show that there is an inverse relationship between an increase in regular physical activ-
ity and sudden cardiac death. However, recent studies point to a moderate level of exercise as beneficial 
activity. Despite a conclusion by most studies that prove the beneficial effects of exercise on general 
health, there are evidences that show a direct relationship between sudden cardiac deaths and higher 
than normal frequency of vigorous exercise (Deo et al., 2012). Figure 1 depicts the relationship between 
various sports and the number of deaths associated with each one.

Pathologists are responsible for determining the cause of death in cases of sudden unexpected death. 
Autopsy is essential to reveal the cause of death in sudden death cases. Despite macroscopic, histological 
and toxicological examinations of sudden death cases, in 1-5% of these cases the cause of death cannot 
be explained. This phenomenon is referred to as “negative autopsy” (Koponen et al., 2003; Di Maio et 
al., 2001; Dowling et al., 2005).

It is important to obtain information related to the case before an autopsy in sudden death cases. This 
information includes some or all of the following: person’s age, sex, profession, lifestyle (e.g., smoking, 
alcohol consumption), physical activity status, whether there was an eyewitness or not, time of death if 
known, place of death, medical history, and medications (Basso et al., 2008).

FORENSIC PATHOLOGY

Forensic pathology plays a crucial role in diagnosing natural cardiovascular death as the cause of death 
in forensic investigations. There are five terms used to clinically describe the cause of death: natural (as 
in sudden, unexpected cardiac deaths), accident, suicide, homicide, or undetermined (Yu et al., 2014). In 
the United States, postmortem examinations are performed according to practical guidelines established 
by the College of American Pathologists (Hutchins et al., 1999). Coroners, forensic pathologists, and 
criminal investigators synergistically process all available ante-, peri-, and postmortem evidence pertain-
ing to the corpse and the death scene. The goal is to determine the precise organ system(s) involved and 

Figure 1. Number of death SCD per sport participation of 820 students
Adopted from American Heart Association Inc, 2011 data
For a more accurate representation of this figure, please see the electronic version.
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the manner of death, in order to derive an official diagnosis of the factors contributing to the fatality. A 
forensic investigation is often needed to determine if violence is the cause of death, if medical malpractice 
has occurred during surgery or hospital stay, and to determine if cardiac dysfunction was the cause of 
a traffic accident or fatality (Suarez-Mier and Aguilera, 2015). Frequently their official diagnoses are 
required as evidence in the adjudication of criminal and civil legal cases.

Sudden cardiac deaths constitute a substantial percentage of the casework for medico-legal profes-
sionals. A very high percentage (between 70- 90%) of all sudden unexpected deaths that require forensic 
autopsy are caused by fatal dysfunctions of the heart (Roberts et al., 2011; Suarez-Mier and Aguilera, 
2015). In approximately 30% of sudden cardiac death cases, death occurs in structurally normal hearts, and 
death is the first manifestation of the disorder (Semsarian et al., 2015); therefore, an autopsy is necessary.

Sudden cardiac death is caused by unexpected cessation of cardiac activity with hemodynamic col-
lapse, usually caused by persistent ventricular tachycardia (pulse rate greater than 100 beats per min-
ute) or ventricular fibrillation (rapid, uncoordinated heartbeats) (John et al., 2012). Medical examiners 
make observations based on standard gross inspection of the pericardial cavity followed by a detailed 
examination of other anatomy of the heart (Basso et al., 2008). Specifically, the tests include histologi-
cal sampling, toxicology testing, and molecular analyses and are performed at the request and consent 
of the next of kin (Molina et al., 2007) or to provide evidence to the appropriate legal authorities to be 
presented in a court of law (Fronczek et al., 2014). The performance of one test may actuate the need 
for one or more other ancillary examinations. For example, histological analysis of the heart may lead 
to toxicology investigations if the tissues display evidence of the presence of exogenous toxins during 
histological examinations (Dettmeyer, 2014).

Histological Sampling

Forensic histopathology is usually performed after an initial gross autopsy examination. Histological 
samples provide visual evidence that can be cross-compared with other autopsy data to confirm, clarify, 
or repudiate initial findings (Maeda et al., 2011). In the case of unexpected cardiac death, in which no 
obvious lesions are detected, histology sampling is highly recommended to substantiate the phenotype of 
natural cardiac death (Bailey, 2015). The postmortem investigation of the heart begins with the removal 
of the sternum in a cut that extends along the midline in the anterior thorax of the chest (Suarez-Mier 
and Aguilera, 2015). Subsequently, there is abstraction of representative cadaveric specimens from major 
internal organs for histopathological sampling (Dettmeyer, 2014).

Several very specific steps are performed during a standard pathological examination involving 
deaths relating to the cardiovascular system (Figure 2). Cardiac autopsy starts with the opening of the 
sternum to examine the postmortem anatomy of the heart. The heart is examined to rule out potential 
intrapericardial effusion of cardiac fluid and mediastinal hemorrhage caused by extrapericardial rupture 
(Suarez-Mier and Aguilera, 2015). The pericardial sac is then inspected to determine if gas embolism 
has occurred. The aorta is dissected to observe potential tears in the intima and to rule out cardiac tam-
ponade (i.e., effusion of fluid or gas into the pericardial space) and aortic hemorrhage in the mediastina 
or retroperitoneum. For further inspection of the entire heart, it is completely removed by in incision 
that severs the inferior vena cava above the diaphragm. The heart is then washed and weighed, and a 
gross examination of the external anatomy (pericardium and epicardium), ventricles, valves, coronary 
arteries, atria, and aorta is performed (Suarez-Mier and Aguilera, 2015). Representative pieces of the 
anterior, lateral, and posterior right and left ventricles and the septum are also sampled (Bailey, 2015). 
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Furthermore, it is also suggested that these samples are obtained from both of the atria, the mid-ventricular 
transverse, and the right ventricular outflow tract. Additionally, any other areas of the heart that show 
substantial observable abnormalities are sampled (Basso et al., 2008).

Figure 2. Steps for the standard pathological examination in sudden cardiac death cases
Adapted from Basso et al., 2008
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The cause of death is established by histology in only 8% of cases (De La Grandmaison et al., 2010; 
Fronczek et al., 2014). Therefore, there is a contingency among pathology professionals that challenges 
the notion that histological organ and tissue sampling is necessary as a routine practice in forensic 
investigations. The question was asked by Molina et al. (2007) whether or not routine histopathologi-
cal examination was necessary in cases in which the cause of death is readily demonstrated during the 
gross autopsy. In a retrospective study of 500 cases of British adults with discrepancies in the cause and 
manner of death, histological examinations were performed in 287 of the cases (Fronczek et al., 2014). 
Of the 287 cases, only a small percentage (8%) was confirmed as the cause of death. Conversely, in 
support of histological sampling to determine the manner of death, a prospective study on 428 autopsy 
cases demonstrated that the manner of death that was not originally shown by gross anatomic findings 
was discovered in about 40% of the cases (De La Grandmaison et al., 2010). De-Giorgio and Vertrugno 
(2014) would disagree with the use of routine postmortem histology, and they suggest that permitting a 
forensic pathologist the discretion to determine the need for histological examination would introduce 
degrees of subjectivity and uncertainty that would be difficult for the courts of law to rely on the evidence.

Toxicology Testing

Exogenous, toxic substances have an effect on the cardiovascular system by damaging the integrity 
of blood capillaries and constricting and/or relaxing blood vessels. Sudden unexpected cardiac deaths 
while under the direct care of a healthcare provider (e.g., the hospital) usually do not require toxicology 
testing. However, in sudden cardiac deaths that do not occur in a medical facility (e.g., in the home or 
during a violent crime) generally require postmortem toxicology testing to answer questions whether 
or not toxic substances were involved. For example, if a medico-legal investigation determines that a 
decedent’s demise occurred in an car accident due to the deceased driver’s apparent heart attack, in-
terested parties (i.e., the decedent’s life insurance company or any injured party who seeks to collect 
damages) may require toxicology testing (Hearn and Walls, 2007). The findings can determine if the 
deceased driver was incapacitated by the heart attack, or if intoxicants could be considered the cause of 
the accident prior to the heart attack.

It is compulsory that postmortem toxicology tests are universal, comprehensive and unbiased. Further, 
a strong emphasis is placed on specificity and accuracy in the identification of all possible toxicants in 
specimens. This requirement is due to the mandate that toxicology results are reliable and accurate as 
unequivocal evidence for expert testimony in a court of law in criminal and civil cases (Wyman, 2012). 
Thus, in the United States, the Toxicology Section of the American Academy of Forensic Sciences 
(AAFS) and the Society of Forensic Toxicology (SOFT) provide guidelines for forensic toxicology labo-
ratory protocols (http://www.soft-tox.org/files/Guidelines_2006_Final.pdf). The guidelines dictate that 
50 g of brain, liver, and kidney tissue, 25 ml of heart blood, 15 ml of peripheral blood, and all available 
volumes of vitreous humor, bile, urine, and gastric contents are collected for toxicological examination.

The diagnostics used to perform postmortem toxicology analyses are generally the same methods 
used to test substances in ante-mortem toxicology tests (Linnet, 2013). For the detection of substances 
in cadaveric specimens, instrumental methods such as gas (for volatile substances) and liquid chro-
matography (GC and LC, respectively) (Maurer, 2013), and chromatography coupled with mass spec-
trometry (GC-MS and LC-MS) have been used for decades. These instruments detect the presence of 
common recreational drugs that cannot be detected by immunoassay techniques (Wu and French, 2013). 
Chromatography is a separation technique in which organic and inorganic compounds form complex, 
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time-specific patterns of peaks and bands representing the assorted components in a mixture (e.g., ca-
daveric fluids and tissues). The patterns serve as chemical-specific, spectroscopic fingerprints for each 
compound (Bell, 2009). Forensic experts compare the patterns to calibrated standards to identify the 
presence of the substance (Smith et al., 2007). Modern chromatography instruments are often coupled 
with MS (Peters and Remane, 2012) and liquid chromatography-tandem mass spectrometry (LC–MS/
MS) (Peters, 2011). As with chromatography, MS is a separation technique in which compounds are 
ionized and fragmented, and the charged fragments are separated into patterns that are characteristic to 
the specific substances. A recent study using ultra high pressure LC–MS/MS to detect and quantify 15 
basic pharmaceuticals in postmortem whole blood samples demonstrated that the method was rapid, 
selective, and applicable for use in forensic toxicology cases (Amundsen et al., 2013).

Following death, blood ceases to circulate which allows it to settle in certain regions of the body. 
Therefore, certain drugs have a high propensity to be artificially increased in blood samples obtained from 
the heart due to a well-known phenomenon called postmortem redistribution (PMR) of toxins (Gunn, 
2011). As a result, postmortem concentrations of drugs do not accurately represent the concentrations 
prior to and present at the time of death (Pounder and Jones, 1990; Pelissier-Alicot et al., 2003). To 
overcome the effects of PMR, the optimum site for sampling blood is a ligated or clamped femoral vein 
(Pounder and Jones, 1990). The redistribution generally involves drugs such as tricyclic antidepressants, 
digoxin, and amphetamines that move from solid organs (e.g., the lungs, liver, and myocardium) to the 
blood (Yarema et al., 2004). Digoxin is of particular interest in the diagnosis of unexpected cardiac death 
because it is routinely used to treat arrhythmias and heart failure (Trial et al., 1997).

Some of the drugs commonly screened in unexpected cardiac deaths are cocaine, which blocks the 
reuptake of norepinephrine causing intense vasoconstriction (Jorge et al. 2012) and right ventricular 
dysfunction which can lead to a myocardial infarction (Zhan et al., 2015). Dietary nitrates that induce 
the ventricular relaxation of smooth muscle (Bailey et al., 2014) are also screened. Although they rep-
resent only a small minority, several pharmaceuticals are documented as stimulators of drug-induced 
heart failure. Such drugs include cytostatics, immunomodulating drugs, anti-depressant drugs, calcium 
channel blocking agents, non-steroidal anti-inflammatory drugs, anti-arrhythmic drugs, β-adrenergic 
receptor blocking agents, and anesthetics (Feenstra, 1999).

Molecular Analyses

Ackerman et al. (2001) coined the term “molecular autopsy” to describe genetic studies of DNA extracted 
from cadaveric blood and tissue samples to establish the cause of death in autopsy-negative cases. Mo-
lecular autopsies allow the continued examination via cardiologic and/or genetic screening of relatives 
and postmortem genetic analysis of the deceased to elucidate the underlying causative mechanism(s) of 
the sudden cardiac death (Boczek et al., 2012). These studies are particularly useful in sudden cardiac 
deaths resulting from heart channelopathies of hearts that failed to demonstrate any structural abnor-
malities upon gross examination (Tester and Ackerman, 2012). The prevalence of structurally normal 
hearts in unexplained cardiac deaths that revealed autopsy-negative results is approximately 3% (Boczek 
et al., 2012). Deaths caused by long QT syndrome (LQTS), catecholaminergic polymorphic ventricular 
tachycardia (CPVT), and Brugada syndrome (BrS) produce no indication of heart channelopathies dur-
ing autopsy.

During molecular autopsies, a blood sample is taken from the cadaver and DNA is extracted using 
commercially available DNA extraction kits. Sequencing of the extracted DNA is analyzed via tradi-
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tional Sanger sequencing and high-throughput next-generation platforms to detect the disease-causing 
mutations (Boczek et al., 2012). The protein coding exons of the three major genes that cause LQTS, IKs 
K+ channel α-subunit, IKr K

+ channel α-subunit, INa Na+ channel α-subunit (KCNQ1, KCNH2, SCN5A, 
respectively), and the gene that causes CPVT, Ryanodine receptor gene (RYR2) are probed. The SCN5A 
gene is also probed to detect BrS. The detection rate for the aforementioned probes ranges from less 
than 1% to 15% (Boczek et al., 2012). Recent advances have emerged to expand the science beyond 
the four genes to include whole exomes and genomes that are also screened for pathogenic mutations. 
Cardiac gene panels containing 200 genes, along with the exomes, or all of the protein coding exons 
of approximately 22,000-30,000 human genes have been performed in molecular autopsies (Bagnall et 
al., 2014). A Loporcaro et al., (2014) whole exome next-generation sequencing study revealed a muta-
tion R249Q-MYH7 that caused sudden death by hypertrophic cardiomyopathy for a previously healthy 
adolescent female.

CAUSES OF SUDDEN CARDIOVASCULAR DEATH

Sudden cardiovascular death occurs within an hour of the onset of symptoms and results in the loss of 
heart function without any apparent clinical heart condition (Zipes and Wellens, 1998). Clinical condi-
tions that commonly cause unexpected cardiac death are inflammation of the membrane sac that surround 
the heart (pericarditis), the heart muscle (myocarditis), and the inner lining of the heart (endocarditis), 
or dysfunction in the myocardium (heart muscle). In the past decade, postmortem imaging has been 
increasingly utilized in forensic autopsy in the determination of the cause of natural deaths associated 
with cardiovascular illnesses.

Pericardial Disease

Pericarditis results from inflammation of the sac that surrounds the heart and the great vessels origins. The 
disease is a consequence of the accumulation of fluid in the pericardium, the flask- or pyramidal-shaped 
space surrounding the heart. The etiologic causes of pericarditis are most frequently due to nonspecific 
idiopathic origins or viral infection (Lange and Hillis, 2004). There are several pathological steps of 
pericarditis that lead to sudden cardiac death (Khandaker et al., 2010). The pericardial sac usually holds 
20-50 ml of lubricating, serous fluid, pus, and fibrin; however, rapid accumulation of approximately 120 
ml of extra fluid in the pericardium presses against the heart tissue and can cause dysfunction (Goyle 
and Walling, 2002). The added pressure prevents the heart from fully expanding also preventing blood 
from filling or leaving the heart leading to a decrease in blood oxygen saturation. The amount of oxygen 
that reaches the organs is greatly diminished. The clinical results that ensue include tachycardia, tachy-
pnea, and decreased blood pressure. All of these steps lead to loss of consciousness, ultimately causing 
sudden cardiac death. A gross examination of the pericardium that reveals whitish patches, also known 
as Soldier’s patches, is indicative of mechanical trauma to the heart (Suarez-Mier and Aguilera, 2015).

The incidence of postmortem diagnosis, or confirmation of the diagnosis, ranges from 1-6% of 
patients using conventional histological and autopsy methods (Lange and Hillis, 2004). Modern diag-
nostic imagining techniques are gaining popularity in forensic medicine particularly for the diagnostic 
determination of traumatic cardiac ruptures (Leth, 2015). Because of their minimally invasive nature, 
postmortem coronary computed tomography (PMCT) angiography combined with image-guided biopsy, 
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has demonstrated the potential use in the diagnosis of the cause of death after acute chest pain (Ross et 
al., 2012; Roberts et al, 2011). This technique was able to reveal the complete opacification of the lumens 
of the major coronary along with the side branches into their distal parts in all cases (Ross et al., 2012). 
The best way to access the vascular system by postmortem CT is via unilateral intravenous cannulation 
of the femoral vessels. These vessels are selected due to their large diameters and quick access (ap-
proximately 10 minutes) (Ross et al, 2014). Other possible vessels are located in the neck (jugular vein, 
carotid artery) and the upper extremities (brachial vein and artery); however, the leg is preferred because 
it is less invasive and in an area not normally visualized at a funeral. Further, postmortem multislice 
computed tomography (MSCT) scanners have also been employed to confirm the cause of death in a 
traumatic cardiac rupture (Zhou et al., 2015). In the Zhou et al. (2015) study, a biopsy needle was used 
as guided by the MSCT scanner. Another forensic study established that MSCT scanners can be used 
in the postmortem diagnosis of an acute pericardial tamponade (most commonly as result of traumatic 
cardiac ruptures caused by falls, automobile collisions, sporting activities, and rare complication from 
cardiopulmonary resuscitation (CPR) (Huang et al., 2012). In the absence of an autopsy, Huang et al. 
(2012), using whole-body MSCT and complete health records, determined the cause of death as acute 
pericardial tamponade as a result of blunt trauma to the chest.

Myocardial Diseases

Myocardial diseases are dysfunctions of the heart caused by inflammation of the myocardium, the middle 
layer of muscle in heart wall (Thygesen et al., 2012). The myocardium is responsible for constricting and 
enlarging the heart muscles to pump blood to the rest of the body. Three of the major types of myocardial 
diseases that lead to natural cardiac deaths are coronary artery disease, myocarditis, and heart hypertrophy.

Coronary Artery Disease

As the leading cause of death in America, coronary artery (or heart) disease affects more than 13 
million Americans (Thom et al., 2006). The long-standing description of the disease (also known as 
atherosclerosis) by the World Health Organization (WHO) is the variations in the intima of arteries en-
tailing the accumulation of lipids, carbohydrates, blood products, fibrous tissue, and calcium deposits 
forming artery-narrowing plaque (WHO, 1958). The formation of plaque consists of the induction of 
inflammatory cells and is mediated by cellular adhesion molecules that are expressed in response to 
inflammatory activation (Blankenberg et al., 2003). The disease primarily damages the aorta and its 
main branches as well as the coronaries, cerebral arteries, and renal arteries. There has been a steady 
decrease in cardiovascular deaths during the late 20th and early 21st centuries that correlate with major 
advances in cardiovascular medicine (Nabel & Braunwald, 2012).

Kumar et al. (2012) provides a histopathothological study on how to determine the degree of ath-
erosclerosis in cadavers. To start, the postmortem heart is fixed in 10% formalin solution for 2–5 days. 
Specific segments of the coronary arteries (e.g. left anterior descending coronary artery, left circumflex 
artery, and right coronary artery) are commonly sectioned into 3-mm samples. The specimens are stained 
with hematoxylin and eosin (H&E) and examined microscopically at 40x magnification. The percentage 
of luminal narrowing is determined (Kumar et al., 2012). At the conclusion of the autopsy, if there is an 
incidence of greater than 90% occlusion in one or more of the blood vessels, the finding is adequate to 
determine constriction or obstruction in the cardiovascular system as the cause of death (Bailey, 2015).
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In recent years, postmortem computer topography and magnetic imaging have been used to detect 
coronary heart disease, and the applicability of radiology for diagnosis and/or confirmation of atheroscle-
rosis-related deaths (Michaud et al., 2014). A recent study investigating postmortem use of multi-detector 
computed tomography (MDCT) and MDCT-angiography for unexpected cardiac deaths pertaining to 
atherosclerosis that caused ischemic heart disease was evaluated. The findings of the conventional au-
topsy of 23 cadavers were compared to the results of MDCT-angiography (Michaud et al., 2012). These 
radiological techniques visualized the calcification of the coronary arteries in approximately 80% of 
the cases, which were not reported in the initial autopsies. Thus, visualization of the coronary arteries 
via MDCT coupled with angiography was more enhanced than with MDCT alone and permitted the 
assessment of narrowing and occlusions of the arteries.

Myocarditis

Myocarditis is a rare, but life-threatening inflammatory dysfunction of the heart that is not subsequent to 
ischemia involving the myocardium, the middle muscular layer of the heart. The prevalence of myocarditis 
leading to sudden cardiac death among certain populations has been shown to be difficult to ascertain by 
postmortem investigations with reports of variability in diagnosis ranging from 2-42% (Caforio et al., 2013). 
It is most commonly caused by viral infection, but other heterogeneous etiologies exist. Some etiologies 
include microbial (bacterial and protozoal) infections, endogenous toxins, drug (prescription and illicit) 
reactions, post-viral immune responses, giant cell myocarditis, and cardiac sarcoidosis (Morentin et al., 
2015; Blauwet and Cooper, 2010). While viral infection is the major cause of myocarditis in advanced 
countries, in developing countries, rheumatic carditis, and infections caused by the parasite Trypanosoma 
cruzi, and Corynebacterium diphtheriae are significant contributors to the disease (Sagar et al., 2012). 
Microbial and non-infectious (e.g. drugs, toxins, sarcoidosis, et al.) pathogens cause direct damage to 
myocytes (Caforio et al., 2013). Viral infections induce several effects that can cause significant damage 
to the heart. After viral invasion through specific receptors on the surface of myocytes, acute damage 
to the cells is caused by viral replication which induces myocyte necrosis, exposure of cardiac-specific 
antigens, and host autoimmune responses. The immune responses are primarily constituted by the initial 
invasion of natural killer cells and macrophages then T lymphocytes (Kindermann et al., 2012). The acute 
phase of myocarditis takes only a few days. The subacute and chronic phases cover a few weeks to several 
months. Upon the death of myocytes, chemokines and cytokines are released that subsequently activate 
the immune system, leading to inflammation. Contractile dysfunction is due to prolonged activation of 
tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1 and -6, and antibodies that not only target viral 
but also cardiac proteins that lead to cardiac damage (Kindermann et al., 2012).

Myocardial infarction is defined as myocardial cell death due to prolonged ischemia. Histological 
examination is used to assess damage to the myocardial tissue using H&E staining (Figure 3 and 4). This 
assay is only feasible if the patient’s demise had occurred within six hours after the start of the ischemic 
injury (Campobasso et al., 2008). H&E staining is necessary because in some cases a minimum of six 
hours must transpire antemortem before myocardial necrosis can be determined by the usual postmortem 
macroscopic or microscopic examinations and is contingent upon the reactivity of the sampled myocytes.

To identify location of myocardial infarction, determining the location of the coronary artery block-
age, and its circulation anatomy are important. The most common place for blockage is the first 2-cm 
region of the descending front branch of the left coronary artery followed by the middle region of the 
right coronary artery.
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Figure 3. Chronic myocardial infarction findings show hypertrophic fibers (arrowhead), multi foci 
fibrosis areas (star) and mononuclear inflammation cell (arrow)
With permission from Dr. Teke, H.Y.)

Figure 4. Rupture of the back wall of the left ventricular of neighboring area to myocardial infarction 
findings (arrow)
With permission from Dr. Teke H.Y.)
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Coronary artery abnormalities can result in sudden death when their anatomical placement is not 
normal. For instance, in patients where the left main coronary artery is on the right or in the non-coronary 
Valsalva sinus, the risk of sudden death is higher.

Heart rupture is the major complication of acute myocardial infarction (6%) (Benton et al., 2007).

Heart Hypertrophy

Cardiac hypertrophy is an adaptive, morphologic increase in cardiac mass resulting from enlargement of 
the heart muscle. The increase due to pressure or volume stress on the heart (Frey et al., 2004). The heart 
compensates with a corresponding increase in the capacity of the heart chambers (Dorn et al., 2003). 
Pathological cardiac hypertrophy causes interstitial fibrosis and myocyte death that leads to cardiac 
dysfunction. Physiological cardiac hypertrophy, also known as athlete’s heart, is heart growth caused 
by chronic physical exercise with no congenital or valvular defects (Bernardo et al., 2010). In response 
to the chronic increase in cardiac load, an initial growth occurs in cardiac muscle to stabilize the added 
wall stress and to allow normal cardiovascular function. Unfortunately, if the increase in wall stress is 
not abated, the hypertrophic expansion of cardiac tissue can eventually lead to heart failure.

Postmortem diagnosis of heart hypertrophy is determined by direct measurements of gravimetric 
weight of the heart (Diwan and Dorn, 2007). A recent study using the heart weight of 27,645 autopsy 
cases were used to determine equations to calculate the predicted heart weight in relations to age, sex, 
body weight and height (Wingren and Ottosson, 2015). The piecewise linear regression model produced 
an online heart weight calculator. During the gross examination of the cadaver heart during autopsy, the 
observation of valves larger that 10-15 mm in thickness of the septum and LV, and 3-4 mm for the RV, 
is indicative of cardiac hypertrophy (Suarez-Mier and Aguilera, 2015)

Endocarditis

Endocarditis is defined as inflammation of the inner layer of the heart (endocardium), especially the 
valvular endothelium, chordae tendinae and mural endocardium (Geller, 2013). The disease is better 
described by the terms infective or infectious endocarditis (IE). It occurs as a result of a microbial infec-
tion that enters the bloodstream, travels to the heart, and lodges on abnormal heart valves or damaged 
heart tissues. The disease is characterized by abnormal lesions, or vegetations, which form in the heart 
at the site of the infection (Mylonakis and Calderwood, 2001). The lesions contain platelets, fibrin, 
inflammatory cells, and microorganisms; however, due to the wide use of antibiotics, the presence of 
microorganisms on Gram stain of vegetations is often undetected (Fernandez et al., 2012). Staphylococci 
and streptococci, respectively, are the etiological pathogens that are responsible for approximately 80% 
of the cases of infective endocarditis (Hoen and Duval, 2013). Individuals most predisposed to endo-
carditis are patients with prosthetic cardiac valves, patients with previous infective endocarditis, cardiac 
transplant patients who have structurally abnormal valves that cause valve regurgitation, congenital heart 
disease (Nishimura et al., 2014).

Two-dimensional echocardiograms, particularly transesophageal echocardiogram (TEE), are often 
used to visualize morphological changes caused by valve vegetations to determine antemortem cardio-
vascular infection (Ker et al., 2010; Fernandez et al., 2012). During autopsy, the occurrence of vegeta-
tions in cardiac valves or mural endocardium composed of fibrin, platelets, leukocytes, or histiocytes 
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are determined (Fernandez et al., 2012). Isolated and/or combined mitral or aortic valves are the most 
common sites of infective endocarditis discovered during autopsy.

Cardiac Tumors

Any abnormal growth of cells is called a “tumor.” The heart is not any different from other organs in the 
body. Primary tumors, originating in the heart, are less common by 30-40 fold than secondary tumors, 
which originate in other tissues such as lungs, skin, breast etc. They are difficult to diagnose and are 
most often found incidentally during an examination and imaging of the heart for an unrelated indica-
tion. Symptoms are very similar to many other heart conditions. More than half of all cardiac tumors 
are myxomas, which are gelatinous, irregular, and non-cancerous tumors, and often require emergency 
surgery. Myxomas are predominantly located in the left atrium and the heart chamber where oxygenated 
blood from the lungs enters the heart (Roever et al., 2014).

Cardiac Conduction Disorders

A significant portion of unexplained sudden cardiac deaths is attributable to defects in the cardiac 
conduction system. Cardiac conduction system disorders related to sudden cardiac deaths are less com-
mon in the elderly. The most common heart related death in this group is from atherosclerotic coronary 
artery disease.

Sudden cardiac cases, where ventricular hypertrophy with coronary artery lesion is detected, are 
primarily reported as hypertrophic cardiomyopathies and/or atherosclerotic diseases. When there are not 
enough findings to explain the death, the lack of examination of cardiac conduction system is detected. 
The unexplained sudden deaths after exercise may accompany the existing pathological changes in heart 
conduction system disorders (Song et al., 2001; Lie et al., 1975).

CONCLUSION

Forensic pathologists are not only concerned with trauma induced deaths. Traumatic deaths compared 
to non-traumatic death offer more information to a forensic pathologist. Sudden and unexpected deaths 
have a special importance in forensic medicine because of their suspicious nature. Despite cardiovascular 
diseases being the number one cause of death in the world, sudden unexpected deaths have an important 
place in science because of the amount of the information they provide and immense expertise that is 
required in determining the cause of death in some of the cases.
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