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Preface
This book is about computational methods to simulate the interaction of strong laser
fields with matter. By definition, “strong” in this context means that the electric field
of the laser brings the state of the target system far away from the initial, typically the
ground-state, configuration. As a result, “standard” textbook quantum mechanical
perturbation theory is not applicable, and interesting nonperturbative phenomena
such as high-order above-threshold ionization or high-harmonic generation are
observed. The shortness of the laser pulses allows to study ultrafast atomic and
molecular processes directly in the time domain.

Experimentally, strong-field laser physics started booming in the late 1980s, after
the invention of the chirped-pulse amplification of laser pulses. On the theoretical
side, strong-field laser physics was founded soon after the invention of the laser in the
1960s by Reiss, Keldysh, Popov, and others, introducing and developing variants of
what nowadays is subsumedunder “strong-field approximation.” The laser intensities
anticipated in theseworksmust have appeared as science fiction at the time. However,
those were the times when theory was ahead of experiment. Nowadays, theory is
almost always laggingbehind: there are several exampleswhere experiments revealed
“surprising” features, not expected from the strong-field approximation or tunneling
theories. Moreover, at the latest with the development of short-wavelength sources
like free-electron lasers or high harmonics, the scope of strong-field physics widens
beyond the single-active valence electron. In fact, laser-generated or laser-driven,
correlated many-body physics comprises a multitude of research areas, ranging from
core-hole motion in atoms, giant resonances, imaging of strongly correlated plasma,
warm dense matter, and matter under extreme conditions.

The targeted readership comprises graduate students commencing a Master or a
PhD project in the field of computational laser-matter interaction. The book provides
an overview of common methods to numerically propagate single-particle wavefunc-
tions according to the time-dependent Schrödinger (Chapter I) or relativistic (Chapter
III) wave equations and to calculate the typical observables of interest (Chapter II).
Further, three time-dependent quantummany-body approaches are discussed, which
all have their pros and cons with regard to certain aspects of intense laser-matter
interaction: time-dependent density functional theory (Chapter IV), multiconfigura-
tional time-dependent Hartree–Fock (Chapter V), and time-dependent configuration
interaction singles (Chapter VI). The semianalytical strong-field approximation is the
workhorse of strong-field laser physics and introduced in Chapter VII, including the
saddle-point method and the resulting intuitive interpretation in terms of interfering
quantum orbits. Intense lasers turn mesoscopic or macroscopic targets into plasmas
that influence the further laser pulse propagation. Simulations on a quantum level
with a reasonable incorporation of correlation are not feasible for such target sizes.
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Hence, a microscopic particle-in-cell approach that allows to treat nonideal plasmas
and solves Maxwell’s equations self-consistently is covered in Chapter VIII.

Portions of Chapters I, II, and IV originate from lecture notes for a course on
Computational Physics Thomas Fennel and myself teach at Rostock University since
2011. Part of the final examination is a programming project. The book may thus also
serve as a source for lecturers giving similar courses, even if they do not primarily
focus on strong-field laser topics.

I would like to thank all contributing authors; they are the real experts in the topic
of their chapter, and it has been a pleasure to collaborate so smoothly. I am grateful
to Martins Brics and Yaroslav Lutsyshyn for proofreading.

Rostock, October 2016 Dieter Bauer
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Dieter Bauer and Thomas Fennel
I How to propagate a wavefunction?

The correct answer to the question in the title of this chapter is clearly “it depends.”
There are many algorithms for solving the time-dependent Schrödinger equation
(TDSE) or equations that can be converted to TDSE-like form (diffusion, fluid, or
Maxwell). We do not aim at presenting an exhaustive overview of wavefunction
propagation, which would fill >103 pages and be extremely dull to read (and to
write). Instead, we focus on approaches that are adequate for strong-field problems
where electrons “explore” the continuum while undergoing large excursions due to
the oscillatory nature of the strong laser field. We therefore do not discuss methods
that rely on expansions in unperturbed eigenstates of the target system under study.
Moreover, we are interested in methods that allow for (almost) arbitrary vector
potentials, in particular ultrashort pulses. For that reason, the Floquet approach [13]
is not covered. We also restrict ourselves to nonrelativistic problems although the
methods can be applied to relativistic wave equations as well, as the reader will
recognize in Chapter III. From a conceptual viewpoint, the extension to more degrees
of freedom or particles is simple once one knows how to propagate a wavefunction
for a few degrees of freedom—as outlined in this chapter. However, the exponential
scaling of the numerical effort with the number of particles is the buzzkiller here.
How to solve the many-electron TDSE approximately is the topic of Chapters V and
VI. The residual selectivity applied in this chapter is based on a mixture of experience
and ignorance. We therefore apologize in advance if we forgot to mention your
favorite TDSE propagation method. We will be grateful if you notify us about it, in
particular if you are sure that your method outperforms everything we present in this
chapter.

Authors writing on computational aspects have the choice of presenting pedagog-
ical toy examples the reader can readily implement within one afternoon, or the “real
stuff”—highly optimized, with all the technical details. We believe that the details
should not be swept under the rug. For instance, the algorithms described in Section
1.5 are rather involved and cumbersome to implement but extremely efficient and, in
fact, frequently used in the strong-field community. Hence, we give all the details but
provide the code, as we cannot expect that themajority of readers has the time, desire,
or energy to implement them.

Dieter Bauer: Institute of Physics, University of Rostock, 18051 Rostock, Germany; email:
dieter.bauer@uni-rostock.de
Thomas Fennel: Institute of Physics, University of Rostock, 18051 Rostock, Germany; email:
thomas.fennel@uni-rostock.de

De Gruyter Graduate – Computational Strong-Field Quantum Dynamics, Volume 5, 2017, pp. 1–44.
DOI 10.1515/9783110417265-001
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2 | Dieter Bauer and Thomas Fennel

Finally, we want to stress that this chapter is about the propagation of wavefunc-
tions only. Typically, the propagation is from time t = 0, at which the system is in an
unperturbed eigenstate (which needs to be calculated in the first place), up to time
t = Tfinal after the laser pulse, when the wavefunction might be spread over hundreds
or thousands of Bohr radii due to ionization and laser-assisted scattering. In principle,
the full (quantummechanically allowed) knowledge about the system is contained in
thiswavefunction. Numerically, some of the information is necessarily sacrificed. How
to calculate observables (ornot-so-observable entities that arenevertheless of interest)
from the numerically represented wavefunction during or after the laser pulse is the
topic of chapter II.

1 Time-dependent Schrödinger equation
The TDSE in position-space representation reads as

i� ∂
∂t Ψ(x, t) = Ĥ(t)Ψ(x, t) =

[
− �

2

2m
∂2
∂x2 + V̂(x, t)

]
Ψ(x, t). (1)

Here, we allow for an explicitly time-dependent Hamiltonian, and we restrict our-
selves to one spatial dimension (1D) for the moment. In general, the potential
operator V̂(x, t) may contain spatial derivatives¹ and thus is not necessarily diagonal
in position-space representation. Given Ψ(x, t), the formal solution is

Ψ(x, t′) = Û(t′, t)Ψ(x, t), (2)

where Û(t′, t) is the time-evolution operator from time t to time t′. For small time steps
∆t, we can assume that the Hamiltonian is piecewise constant so that

Ψ(x, t + ∆t) = Û(t + ∆t, t)Ψ(x, t), Û(t + ∆t, t) = exp
[
− i
�
Ĥ(t + ∆t/2)∆t

]
. (3)

Let the integer upper index n denotes the time step such that t = n∆t, and

Ψn+1 = Û(∆t)Ψn , Û(∆t) = exp
(
−iĤ ∆t

)
(4)

with all spatial arguments suppressed. Moreover, it is understood that always the
current Hamiltonian Ĥ = Ĥ[(n +1/2)∆t] is employed in Û(∆t), and units in which
� =m = 1 are used.

1 For instance, in velocity-gauge coupling to an external field, see Section 1.5.2 below.
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I How to propagate a wavefunction? | 3

1.1 Time propagation and stability

A straightforward discretization of the TDSE in time is

i Ψ
n+1 −Ψn

∆t = ĤΨn (5)

and thus

Ψn+1 = (1− i∆tĤ)Ψn , (6)

which is equivalent to expanding Û(∆t) up to first order in ∆t. It is easily seen that this
so-called explicit Euler forward scheme is nonunitary and unconditionally unstable.

Nonunitary propagation affects the norm, i.e., if 〈Ψn|Ψn〉 = 1, in general
〈Ψn+1|Ψn+1〉 �=1. It is very desirable to have an unconditionally stable propagation
algorithm that avoids explosions of the norm, independent of how physically insane
time step or spatial grid spacing might be chosen. Moreover, numerical tricks to
reduce the spatial grid size (e.g., by introducing absorbing boundaries [17], see also
Section 3.6 in Chapter VI) affect the norm on purpose and even employ the reduction
in norm to “measure” the ionization degree. Hence, one should ensure that the
norm does only change because of the boundary conditions but not because of the
propagation algorithm itself.

We will now introduce the so-called Crank–Nicolson propagation algorithm [2,
14], which is unconditionally stable. It is easily derived from the identities

Ψn+1/2 = Û(−∆t/2)Ψn+1 = Û†(∆t/2)Ψn+1 = Û(∆t/2)Ψn = Ψn+1/2. (7)

Expanding Û(±∆t/2) = (1∓ iĤ ∆t/2) +O(∆t2), one obtains(
1+ i∆t

2 Ĥ
)
Ψn+1 =

(
1− i∆t

2 Ĥ
)
Ψn (8)

and formally

Ψn+1 = ÛCN(∆t)Ψn , ÛCN(∆t) =
1− i∆t

2 Ĥ

1+ i∆t
2 Ĥ

, (9)

which is unitary. The reader may check that Û(∆t) = UCN(∆t) +O(∆t3).

1.2 Spatial discretization

There are various ways to discretize the space onwhich thewavefunctionΨ is defined.
The perhapsmost straightforwardmethod is to directly discretize position space. This
leads to the so-called finite difference (FD) approach, which we will follow in this
section. But before we do so, we note that one could also expand Ψ(x, t) in some
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4 | Dieter Bauer and Thomas Fennel

complete² basis {φm(x)},
Ψ(x, t) =

∑
m

cm(t)φm(x). (10)

The problem of propagating Ψ according to the TDSE (1) then translates to the
propagation of the set of coefficients {cm(t)} according to a set of first-order ordinary
differential equations. In practice, the basis functions φm(x) should be chosen such
that scalar products, the relevantmatrix elements of the operators in the Hamiltonian,
and the observables of interest can be calculated accurately and efficiently as
quadratures. Examples for {φm(x)} used in such discrete variable representations
(DVRs), also known as pseudo-spectral methods, are polynomials [20], splines [9], or,
in spectralmethods, planewaves (see Section 1.4.3 and Section 3.2 of Chapter III). DVR
maybe combinedwith finite elementmethods (FEMs) so thatΨ is expandedpiecewise
on spatial intervals (see [22] for a discussion of FEM, FEM-DVR, and FD).

In either of these approaches, one ends up with some kind of discrete numerical
grid. The simplest FD scheme in 1D employs a discretized spatial grid with Nx grid
points and uniform spacing ∆x,

xs = x0 + s∆x, s = 0,1,2, . . . Nx −1, (11)

where x0 is an offset. The wavefunction at a given time step n can be organized in a
vector

Ψn = (Ψn
0 ,Ψn

1 ,Ψn
2 , . . . ,Ψn

Nx−1)
�, Ψn

s = Ψn(xs). (12)

Hence, the grid index s directly labels the spatial grid point xs. In DVR, the gridmay be
more abstract, as the index m labels, e.g., the polynomial or the spline. In FEM-DVR,
there might be more indices, labeling the domains. However, mathematically, there
are no fundamental differences between all these approaches although theymaydiffer
substantially in computational efficiency.

Continuing the FD way, the 3-pt stencil for the second derivative reads as

∂2
∂x2Ψ

n(x)
∣∣∣∣
xs
+O(∆x2) = Ψn

s+1 −2Ψn
s +Ψn

s−1
∆x2 , (13)

leading to the discretized Hamiltonian

H = − 1
2∆x2

⎛
⎜⎜⎜⎜⎜⎜⎝

−2 1 0
1 −2 1

. . . . . . . . .
1 −2 1

0 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎝

V0
V1

. . .
VNx−2

VNx−1

⎞
⎟⎟⎟⎟⎟⎟⎠
. (14)

2 The basis does not need to be orthonormal but may be chosen so for convenience.
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I How to propagate a wavefunction? | 5

Here, we tentatively assume that V̂(x, t) is diagonal in position space. The upper-right
and lower-left corner elements in the kinetic-energymatrix are set to zero, correspond-
ing to reflecting boundary conditions (i.e., as if the potential jumps from V0 at x0 to∞
at x0 −∆x and analogously at x0 +Nx∆x from VNx−1 to∞). For reflecting boundary con-
ditions, the discretized Hamiltonian is tridiagonal. For periodic boundary conditions,
the upper-right and lower-left corner elements are both 1, and the tridiagonality of H
is broken.

Defining

A± = 1∓ i∆t
2 H, (15)

the discretized version of (8) becomes

A−Ψn+1 =A+Ψn = Ψn+1/2. (16)

The right-hand side can be evaluated numerically by simple matrix-vector multiplica-
tion. Assuming reflecting boundary conditions, also the matrices A± are tridiagonal.
Hence,

A−Ψn+1 = Ψn+1/2 (17)

can be solved for Ψn+1 by forward-backward substitution.

1.2.1 Forward-backward substitution

The problem of solving (17) for Ψn+1 is of a kind that is ubiquitous in computational
physics: a known matrix times an unknown vector f is a known right-hand side d:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0 c0
a1 b1 c1

a2 b2 c2
. . . . . . . . .

. . . . . . cN−2
aN−1 bN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f0
f1
...
...
...

fN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d0
d1
...
...
...

dN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (18)

The fact that thematrix is not denselypopulatedbut tridiagonal simplifies theproblem
significantly. To solve the equation for f = (f0, f1, . . . , fN−1)�, we begin with a forward
sweep to eliminate the subdiagonal. This leads to a modified diagonal and right-hand
side via

b′0 = b0, b′n = bn −
an
b′n−1

cn−1, d′0 = d0, d′n = dn −
an
b′n−1

d′n−1. (19)
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The remaining problem now has the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b′0 c0
b′1 c1

b′2 c2
. . . . . .

. . . cN−2
b′N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f0
f1
...
...
...

fN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d′0
d′1
...
...
...

d′N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (20)

which can be solved by backward substitution,

fN−1 =
d′N−1
b′N−1

, fn =
d′n − cnfn+1

b′n
. (21)

For periodic boundary conditions, thematrix in (18) hasnonvanishingupper-right
and lower-left elements, rendering direct forward-backward substitution inapplicable.
However, using the Sherman–Morrison formula [14, 18], the problem can be reduced
to applying forward-backward substitution to two auxiliary equations involving
tridiagonal matrices only.

1.2.2 Numerical dispersion analysis of the Crank–Nicolson approximant

To estimate the accuracy of the Crank–Nicolson approach, we inspect its numerical
dispersion. To that end, we consider the free TDSE (i.e., just with the kinetic energy T̂
but without potential in the Hamiltonian) in 1D

i∂tΨ(x, t) = T̂Ψ(x, t) = −
1
2
∂2
∂x2Ψ(x, t). (22)

The analytical solution, dispersion relation, and group velocity read as

Ψ(x, t) = ei(kx−ωt), ω(k) = k2
2 , vg =

∂ω
∂k = k, (23)

respectively. Hence, analytically, Ψ(x, 0) = Ψ0(x) = eikx, and

Ψ(x,∆t) = ei(kx−ω∆t) = e−iω∆tΨ0(x), (24)

and with Crank–Nicolson,

Ψ(x,∆t) =
1− i∆t

2 T̂(k)

1+ i∆t
2 T̂(k)

Ψ0(x) =: e−iωCN∆tΨ0(x). (25)

 EBSCOhost - printed on 2/13/2023 7:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



I How to propagate a wavefunction? | 7

The next step is to solve this equation for the angular velocity ωCN. Expanding the
exponential function and

ωCN(∆t) = ω(0)
CN +ω

(1)
CN∆t +ω

(2)
CN

∆t2
2 + · · · , (26)

1
1+ x = 1− x + x

2 − x3 + · · · , (27)

one obtains up to orders of ∆t3

1− i
(
ω(0)
CN +ω

(1)
CN∆t +ω

(2)
CN

∆t2
2

)
∆t

− 1
2

(
ω(0)
CN

2
+2ω(0)

CNω
(1)
CN∆t
)
∆t2 + i

6ω
(0)
CN

3
∆t3

=
(
1− i∆t

2 T(k)
)(

1− i∆t
2 T(k) − ∆t2

4 T2(k) + i∆t3
8 T3(k)

)
.

Sorting in powers of ∆t yields 1 = 1, ω(0)
CN = T(k), ω

(1)
CN = 0, and ω

(2)
CN = −

1
6T

3, so that

ωCN(k,∆t) = T(k)
(
1− 1

12T
2(k)∆t2 + · · ·

)
. (28)

What is still missing is the spatial discretization of the kinetic-energy operator T̂ =
−1
2

∂2
∂x2 . Considering the 3-pt stencil and a plane wave, we have

T̂eikx = −12 e
ikx [e−ik∆x −2+ eik∆x]

∆x2 =: T(k,∆x)eikx (29)

and thus
T(k,∆x) = 1− cos(k∆x)

∆x2 = k2
2

(
1− 1

12 k
2∆x2 + · · ·

)
. (30)

From (28), then follows the numerical dispersion relation for discretized time and
space

ωCN(k,∆t,∆x) =
k2
2 − k4

24∆x
2 − k6

96∆t
2 + · · · (31)

and hence the numerical group velocity

vg,CN(k,∆t,∆x) = k −
k3
6 ∆x2 − k5

16∆t
2 + · · · . (32)

These results show that both temporal and spatial steps have to be chosen properly
to ensure an accurate³ propagation and spreading of the wavefunction. Numerical

3 Mind the difference between stability and accuracy! Crank–Nicolson is unconditionally stable also
for choices ∆x and ∆t for which the error terms in (31) are not small. Convergence checks with respect
to ∆x and ∆t are indispensable.
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Fig. 1. Comparison of numerically and analytically obtained Crank–Nicolson group velocity for k =
k0 = 4. Deviation from vg = k is due to the numerical dispersion relation different from ω(k) = k2/2
and depending on both ∆x and ∆t, see (31).

dispersion relation (31) reminds of those found for theband structure of crystal lattices.
Real physical effects there, such as Bloch oscillations, have their artificial, numerical
counterparts on computational grids. A comparison of analytical Crank–Nicolson
group velocity (32) with the numerically determined is shown in Figure 1, proving
excellent agreement. Spectral analysis for a variety of FD schemes can be found in [8].

1.2.3 Numerov boost in accuracy

It turns out that one can boost the accuracy with respect to the spatial discretization
without decreasing ∆x and with almost no additional computational overhead. This
is one of the very rare “free lunches” in (computational) physics that one should
gratefully exploit.

Let us first write (13) more specifically as

∂2
∂x2 +

∆x2
12

∂4
∂x4 +

∆x4
360

∂6
∂x6 + · · · =D, (33)
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where the matrix

D = 1
∆x2

⎛
⎜⎜⎜⎜⎜⎜⎝

−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2

⎞
⎟⎟⎟⎟⎟⎟⎠

(34)

acts on a discretized wavefunction as in the right-hand side of (13). Rewriting (33) as

D =
(
1+ ∆x2

12
∂2
∂x2 +

∆x4
360

∂4
∂x4 + ...

)
∂2
∂x2 , (35)

we find

D =
(
1+ ∆x2

12 D+O(∆x4)
)

∂2
∂x2

so that
∂2
∂x2 =M

−1D+O(∆x4) (36)

with

M = 1+ ∆x2
12 D. (37)

We have found a more accurate expression for the second spatial derivative than
the usual 3-pt stencil. However, although M is tridiagonal, its inverse will be dense.
Therefore, the scheme would not be very useful if M−1 appears too often in the
Crank–Nicolson scheme, making intermediate forward-backward sweeps necessary.
Fortunately,M−1 cancels completely. With

H = −12M
−1D+V, (38)

we have (
1+ i∆t

2

[
−12M

−1D+V
])

Ψn+1 =
(
1− i∆t

2

[
−12M

−1D+V
])

Ψn

and thus (
M+ i∆t

2

[
−12D+MV

])
Ψn+1 =

(
M− i∆t

2

[
−12D+MV

])
Ψn . (39)

The new propagation matrices

A± →A′
± =M∓ i∆t

2

(
−12D+MV

)
(40)

for (16) are still tridiagonal (if V is diagonal), forward-backward substitution can be
applied, andwe get the higher accuracy practically “for free”. The improved, spatially

 EBSCOhost - printed on 2/13/2023 7:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



10 | Dieter Bauer and Thomas Fennel

discretized Crank–Nicolson propagator reads as

UCN(∆t) =
M− i∆t

2

[
−12D+MV

]

M+ i∆t
2

[
−12D+MV

] . (41)

1.3 Imaginary-time propagation

The propagation of a wavefunction according to the TDSE is an initial-value problem.
Often, the ground state of the unperturbed system (described by Ĥ0, which is time
independent) serves as the initial state at t = 0, and the driving field acts only during
times t > 0. Once a code for propagating awavefunction is implemented, it can be used
to find the ground state of the unperturbed system as well. By switching to imaginary
time,

t→−it, t ∈ R+, (42)

the free, real-time evolution of a superposition of eigenstates |Ψk〉 of Ĥ0 with
eigenenergies ϵk, k = 0,1,2, . . .,

|Ψ(t)〉 = e−iϵ0 t|Ψ0〉+ e−iϵ1 t|Ψ1〉+ ·· · , (43)

becomes

|Ψ(t)〉 = e−ϵ0 t|Ψ0〉+ e−ϵ1 t|Ψ1〉+ ·· · , (44)

i.e., the excited states will be damped stronger than the ground state by a factor
e−t(ϵk−ϵ0). Another way to interpret imaginary time in this context is by analogy with
statistical physics: imaginary time corresponds to an inverse temperature β = 1/kBT,
and the enhancement factor e−βϵ is the statistical weight. Thus, imaginary time β→∞
corresponds to zero temperature, at which the system is in the ground state.

In terms of a time step-based evolution with ∆t, we have to make the replace-
ment ∆t → −i∆t in the numerical propagator. In particular, the imaginary-time
Crank–Nicolson propagator for the unperturbed system described by Ĥ0 reads as

ÛitCN(∆t) =
1− ∆t

2 Ĥ0

1+ ∆t
2 Ĥ0

. (45)

As imaginary-time evolution is not unitary but we want a ground state that is
normalized to unity, we renormalize,

∣∣∣Ψn+1
〉
→

∣∣Ψn+1〉√
〈Ψn+1|Ψn+1〉

, (46)
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after each time step ∣∣∣Ψn+1
〉
= UitCN(∆t)

∣∣Ψn〉 . (47)

After a sufficient number of iterations, only the ground state will “survive.” Of course,
in the interest of fast convergence, one should avoid that the initial guess Ψ(x, t = 0)
is far away from or, in the worst case, orthogonal to the ground state.⁴

The only parameter that determines convergence for a given discretized Ĥ0 is
the imaginary time step ∆t. The enhancement factor of eigenstate k for a single
Crank–Nicolson step in imaginary time is

αk =
1− ∆t

2 ϵk

1+ ∆t
2 ϵk

= 1− δ
1+ δ = α(δ), δ = ∆t

2 ϵk . (48)

The absolute value of the enhancement factor should decrease with increasing δ (i.e.,
energy). However, this is ensured only in the range −1 < δ < 1, see Figure 2. Optimally
fast convergence occurs for ∆t and ϵk such that δ = −1+ ε because the enhancement is
maximal (a small ε avoids the singularity of α(δ)). Note that for δ > 1, the enhancement

−2 −1 0 1 2
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100
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state energy δ=εkΔ t/2
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pl

itu
de

 e
nh
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m
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p 
|α

(δ
)|

CN imaginary time propagation

Fig. 2. Enhancement factor for the imaginary-time propagation using the Crank–Nicolson
propagator. Only for states with eigenenergies within the interval −1 < δ < 1, the imaginary-time
propagation will converge to the lowest energy. Hamiltonian and time step must be chosen such
that no states with δ < 0 exist. States with δ > 1 can be accepted, if the interested state lies within
−1 < δ < 0.

4 Interestingly, even for an orthogonal guess (e.g., an odd function for an even binding potential),
often the numerical errors ultimately cause convergence toward the ground state.
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increases again. In any case, good convergence can be realized by shifting (i.e., adding
a constant to Ĥ0) and scaling (via ∆t) such that −1 < δ < 0 for the state of interest.

1.3.1 Convergence check

Wewould like to terminate the imaginary-time propagation once the error drops below
a desired value. To that end, we introduce as a measure for the error the residual

R = 〈Ψn
res|Ψn

res〉 , (49)

where

|Ψn
res〉 = (Ĥ0 − En)|Ψn〉, En = 〈Ψn|Ĥ0|Ψn〉 (50)

with |Ψn〉 normalized. Clearly R = 0 if Ĥ0|Ψn〉 = En|Ψn〉, i.e., an exact eigenstate was
found.

Let us consider a |Ψn〉 that still contains two eigenstates, |Ψn〉 = c0|Ψ0〉+ c1|Ψ1〉,
so that En = |c0|2ϵ0 + |c1|2ϵ1 and R =

[
ϵ0 − En

]2 |c0|2 + [ϵ1 − En]2 |c1|2. The residual
can only vanish if the square-bracket terms for all populated states vanish. For
nondegenerate states, this can only be true for one term in the sum, which therefore
must be fully occupied (|c| = 1). In this case, the energy expectation value En is
automatically equal to the eigenenergy, and the variance vanishes.

1.3.2 Excited states

Without additional constraint, imaginary-time propagation yields the ground state.
Themth excited state can be obtained by projecting out allm−1 previously calculated
eigenstates after each imaginary-time propagation step,

|Ψn+1
m 〉−

m−1∑
k=0

〈Ψk|Ψn+1
m 〉|Ψk〉→ |Ψn+1

m 〉. (51)

Here, the |Ψk〉, k = 0,1, . . . ,m−1 are the previously found states, and we assume that
all states have been normalized before (51) is performed. Degeneracy does not pose
a problem here, as a complete basis of the respective degenerate subspace is found
before the next higher eigenenergy is addressed.

Although not strictly guaranteed, in practice, it usually works to determine
the lowest m eigenstates Ψ0

k , k = 0,1, . . . ,m − 1, by initializing them differently
(possibly with the correct parity and other known features) and propagating them
in parallel in imaginary time, performing each imaginary-time step a Gram-Schmidt
orthogonalization (51). All states involved should be immediately (re-) normalized
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to unity according to (46) after any operation that changes their norm (i.e., an
imaginary-time propagation step or outprojection of other states).

Although imaginary-time propagation in combination with Gram-Schmidt or-
thonormalization is a very efficient method to determine eigenstates without the need
to diagonalize hugematrices, it is very cumbersome if the eigenenergies lie closer and
closer with increasing m, as, for instance, in the case of high Rydberg states or in a
continuum. In Section 2.2.5 of Chapter II, we will introduce a complementary method
that is better suited for such cases.

1.4 More dimensions: Operator splitting

So far, we restricted ourselves to 1D. In two dimensions (2D), the TDSE (again in units
where � =m = 1) reads as

i ∂∂t Ψ(x, y, t) = Ĥ(t)Ψ(x, y, t) =
[
−12

(
∂2
∂x2 +

∂2
∂y2

)
+ V̂(x, y, t)

]
Ψ(x, y, t). (52)

Here x, y could be the coordinates of one 2D-particle or the two positions for two
particles, each in 1D. In general, V̂(x, y, t) can be written neither as a sum nor as a
product of potentials depending only on x or y. Nevertheless, one may split

Ĥ(t) = Ĥx(t) + Ĥy(t) (53)

with

Ĥx(t) = −
1
2

(
∂2
∂x2 − V̂(x, y, t)

)
, Hy(t) = −

1
2

(
∂2
∂y2 − V̂(x, y, t)

)
, (54)

keeping in mind that Ĥx depends also on y, and Ĥy depends also on x.
The extension of discretization (12) to 2D is obvious, leading to a discretized

wavefunction with elements Ψn
sq = Ψn(xs , yq) with s = 0,1, . . . ,Nx − 1 as before in

1D and an additional index q = 0,1, . . . ,Ny − 1. Organizing the spatially discretized
Ψ(x, y, t) in the form (fast-running x-index s)

Ψn = (Ψn
0,0,Ψn

1,0, . . . ,Ψn
Nx−1,0;Ψ

n
0,1, . . . ,Ψn

Nx−1,1; . . . ;Ψ
n
0,Ny−1, . . . Ψ

n
Nx−1,Ny−1)

� (55)

or (fast-running y-index q)

Ψn = (Ψn
0,0,Ψn

0,1, . . . ,Ψn
0,Ny−1;Ψ

n
1,0, . . . ,Ψn

1,Ny−1; . . . ;Ψ
n
Nx−1,0, . . . ,Ψ

n
Nx−1,Ny−1)

�,

Ĥx or Ĥy alone are tridiagonal matrices, respectively. The sum of both, however, gives
a band matrix that has elements far off the diagonal. If we apply the usual real-time
Crank–Nicolson scheme(

1+ i∆t
2 Ĥ
)
Ψn+1 =

(
1− i∆t

2 Ĥ
)
Ψn = Ψn+ 1

2 , (56)
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the evaluation of the explicit part on the right-hand side is unproblematic in the
sense that the numerical effort is of the smallest expected order O(NxNy). However,
the matrix Â− = 1 + i∆t

2 Ĥ is not tridiagonal.⁵ As a consequence, the implicit step
in the Crank–Nicolson scheme can no longer be accomplished in terms of efficient
forward-backward substitution. Subsections 1.4.1–1.4.3 aim at “factorizing” this
problem of propagation in higher dimensions into consecutive propagation steps
in 1D each.

1.4.1 Peaceman–Rachford alternating direction implicit method

A scheme that still allows to benefit from tridiagonal matrices is the alternating
direction implicit (ADI) method proposed by Peaceman and Rachford [12]. The idea
is to interleave propagation in x and y directions in the Crank–Nicolson style:(

1+ i∆t
2 Ĥy

)
Ψn+ 1

2 =
(
1− i∆t

2 Ĥx

)
Ψn , (57)(

1+ i∆t
2 Ĥx

)
Ψn+1 =

(
1− i∆t

2 Ĥy

)
Ψn+ 1

2 . (58)

In order to determine how accurate this scheme is, we multiply the last equation by
(1+ i∆t

2 Ĥy) and combine both to(
1+ i∆t

2 Ĥy

)(
1+ i∆t

2 Ĥx

)
Ψn+1 =

(
1− i∆t

2 Ĥy

)(
1− i∆t

2 Ĥx

)
Ψn . (59)

Factoring out gives(
1+ i∆t

2 Ĥ
)
Ψn+1 =

(
1− i∆t

2 Ĥ
)
Ψn + ∆t2

4 ĤyĤx
(
Ψn+1 −Ψn

)
.

With Ψn+1 −Ψn = ∆t ∂∂t Ψ
n+ 1

2 , we find
(
1+ i∆t

2 Ĥ
)
Ψn+1 =

(
1− i∆t

2 Ĥ
)
Ψn +O(∆t3). (60)

Hence, the ADI scheme has a single step error of the same order O(∆t3) as a
Crank–Nicolson step with the full (i.e., unsplit) Hamiltonian would have anyway.
Unfortunately, the ADI scheme spoils unitarity (unless Ĥx and Ĥy commute).

5 At least if a straightforward grid representation of the wavefunction such as (55) is used.
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1.4.2 Operator splitting

We can preserve unitary time propagation using “operator splitting.” Let us consider
the operator

Û(α) = eα(Â+B̂), (61)

where Â and B̂ do not commute. In cases of interest to us, α = −i∆t and Ĥ = T̂ + V̂ or
Ĥ = Ĥx + Ĥy. Using adequate discretization, the operators Â and B̂ becomematrices A
and B (say, diagonal or tridiagonal). We are able to efficiently solve Ax = b and By = c
for x and y, respectively. Therefore, we like to split the time evolution in products of
exponentials containing only one of the operators in the exponent. Let us inspect the
expansion of the full operator

Û(α) = eα(Â+B̂) = 1+ α(Â + B̂) + α2
2 (Â2 + B̂2 + ÂB̂ + B̂Â) +O(α3). (62)

The most simple approximation is

eαÂeαB̂ =
(
1+ αÂ + α2

2 Â2 + ...
)(

1+ αB̂ + α2
2 B̂2 + ...

)

= 1+ α(Â + B̂) + α2
2 (Â2 + B̂2 +2ÂB̂) +O(α3),

which deviates already in order O(α2) from (62) since ÂB̂ + B̂Â �=2ÂB̂ unless Â and B̂
commute. A better approximation is

e
α
2 ÂeαB̂e

α
2 Â = 1+ α(Â + B̂) + α2

2 (Â2 + B̂2 + ÂB̂ + B̂Â) +O(α3),

which also covers the α2 terms correctly and deviates (not shown) from order
O(α3) on from (62). Higher-order expressions can be derived using Suzuki–Trotter
decomposition [19, 21]. Here, we are content with

Û(α) = eα(Â+B̂) = e
α
2 ÂeαB̂e

α
2 Â +O(α3), (63)

which, for our problem at hand, turns into

Û(∆t) = e−i
∆t
2 Ĥx e−i∆tĤy e−i

∆t
2 Ĥx +O(∆t3). (64)

Such a factorization in exponentials yields a unitary time propagation if Ĥx and
Ĥy are Hermitian and if each exponential is approximated by the corresponding
Crank–Nicolson propagator (or some other exactly unitary approximant).
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1.4.3 Avoiding discretization of derivatives: The Feit–Fleck–Steiger approach

Applying the splitting (63) directly to the TDSE (52), we can write, for instance,

Ψ(t + ∆t) = e−i
∆t
2 [−(∂

2
xx+∂

2
yy)/2] e−i∆t V(t+∆t/2) e−i

∆t
2 [−(∂

2
xx+∂

2
yy)/2]Ψ(t) +O(∆t3)

= e−i
∆t
4 [p̂

2
x+p̂

2
y ] e−i∆t V(t+∆t/2) e−i

∆t
4 [p̂

2
x+p̂

2
y ]Ψ(t) +O(∆t3), (65)

where themomentum operators p̂x = −i∂x and p̂y = −i∂y have been used in the second
line. We can split further the kinetic-energy parts without introducing additional
errors because p̂x and p̂y commute, i.e.,

Ψ(t + ∆t) = ei
∆t
4 ∂

2
xx ei

∆t
4 ∂

2
yy e−i∆t V(t+∆t/2) ei

∆t
4 ∂

2
xx ei

∆t
4 ∂

2
yy Ψ(t) +O(∆t3). (66)

Discretization of the spatial derivatives in combination with Crank–Nicolson approx-
imants for the exponentials can be avoided by representing the wavefunction in a
band-limited, discrete Fourier series,

Ψ(x, y, t) =
Nx/2∑

m=−Nx/2+1

Ny/2∑
n=−Ny/2+1

Ψ̄mn(t)e2πi(mx/Lx+ny/Ly), (67)

where the even integers Nx,y are the number of grid points in x and y directions,
respectively, and Lx,y are the corresponding spatial grid sizes. Note that this is an
expansion of the wavefunction in form (10). The two first exponentials applied to
Ψ(x, y, t) in (66) act

ei
∆t
4 ∂

2
xx ei

∆t
4 ∂

2
yy Ψ(x, y, t) =

Nx/2∑
m=−Nx/2+1

Ny/2∑
n=−Ny/2+1

Ψ̄mn(t + ∆t/2) e2πi(mx/Lx+ny/Ly), (68)

with

Ψ̄mn(t + ∆t/2) = e−i
∆t
4 (

2π
Lx )

2m2
e−i

∆t
4 (

2π
Ly )

2n2 Ψ̄mn(t). (69)

Equation (67) reads with x and y discretized on a spatial grid

xs = s∆x, s = −Nx
2 +1,−Nx

2 +2, . . . , Nx
2 , ∆x = Lx

Nx
, (70)

yl = l∆y, l = −Ny
2 +1,−Ny

2 +2, . . . , Ny
2 , ∆y = Ly

Ny
, (71)

Ψsl(t) =
∑
m

∑
n
Ψ̄mn(t)e2πi(ms/Nx+nl/Ny) . (72)
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This is the discretized version of 〈xy|Ψ(t)〉 = ∫∫ dpx dpy 〈xy|pxpy〉〈pxpy|Ψ(t)〉. The
inverse of (72) is

Ψ̄mn(t) =
1

NxNy

∑
s

∑
l
Ψsl(t)e−2πi(ms/Nx+nl/Ny), (73)

corresponding to 〈pxpy|Ψ(t)〉 =
∫∫

dxdy 〈pxpy|xy〉〈xy|Ψ(t)〉.
The propagation of thewavefunction proceeds via application of the exponentials

in (66) in the space in which they are diagonal [5]:
1. Transform Ψsl(t) according (73) to momentum space Ψ̄mn(t).
2. Apply e−i ∆t2 p̂

2
x e−i

∆t
2 p̂

2
y , i.e., multiply with appropriate phase factors according (69)

to obtain Ψ̄mn(t + ∆t/2).
3. Transform Ψ̄mn(t + ∆t/2) according (72) to position space Ψsl(t + ∆t/2).
4. Apply e−i∆t V(xs ,yl ,t+∆t/2), which is multiplicative in position space, giving Ψ ′

sl(t +
∆t).

5. Transform Ψ ′
sl(t + ∆t) according (73) to momentum space Ψ̄ ′

mn(t + ∆t).
6. Apply e−i ∆t2 p̂

2
x e−i

∆t
2 p̂

2
y once more to obtain Ψ̄mn(t + ∆t).

7. Transforming Ψ̄mn(t + ∆t) →Ψsl(t + ∆t) according (72) gives the desired propa-
gated wavefunction Ψsl(t + ∆t) in position space.

If a subsequent propagation step is to follow, one does not need to do the last step but
can directly continue with step 2.

The discrete Fourier transforms (73), (72) can be performed using the “Fast Fourier
Transform” (FFT) [6, 14], which is of orderO(N logN) with N being the total number of
grid points, i.e., in the 2D case considered here N = NxNy. The FFT-based propagation
algorithm is slower than Crank–Nicolson⁶ but the error in the approximation of the
kinetic-energy operator p̂2x /2 is with FFT of order O[(∆x)Nx ], i.e., extremely small.
A minus on the FFT side may be the implicit assumption of periodic boundary
conditions that, for some applications, is not adequate as it leads to “aliasing” [14].
The maximum momentum (or wavevector) that can be represented on a discretized
spatial grid is kmax = π/∆x. If wavevectors k > kmax are important, for instance, because
the kinetic energy in a very deep (or even singular) potential V < 0 is (in atomic
units) T = k2/2 = E − V such that k =

√
2(E −V) > kmax, then the band-limited FFT

will mirror these high wavevectors beyond kmax back into the interval [−kmax, kmax],
leading to artificial, unphysical dynamics of the wavefunction. Hence, in practice,
one has to ensure that all relevant wavevectors k obey |k| � π/∆x by choosing ∆x
sufficiently small. The same condition should be fulfilled in a Crank–Nicolson (or
any other grid-based) scheme in order to propagate these high-k components of the
wavefunction correctly. The advantage of Crank–Nicolson (besides beingO(N)) is the
absence of aliasing.

6 O(N logN) for FFT vsO(N) for Crank–Nicolson.
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1.5 Expansion in spherical harmonics

The operator splitting outlined above for two Cartesian dimensions x and y is easily
extended to three dimensions (3D) or more. For instance, a code for Cartesian
coordinates x, y, and z could be used to study one 3D particle driven by an external
field or, e.g., three 1D particles [15, 16]. However, a direct discretization in Cartesian
position space is often not the most economic way to solve the TDSE. Whenever the
problem at hand displays certain symmetries, one should exploit them. Consider the
TDSE with a spherically symmetric potential V(r, t) = V(r, t) in atomic units

i ∂∂t Ψ(r, t) =
(
−12∇

2 +V(r, t)
)
Ψ(r, t). (74)

Spherically symmetric time-dependent potentials V(r, t) are usually not of interest,
as they do not describe properly the coupling to an external electromagnetic field.
However, it is advisable to introduce complications one after the other. Hence, for the
moment let us stick with V(r, t). Below, in Section 1.5.2, we will introduce external,
time-dependent drivers that break the spherical symmetry.

Inserting the expansion in spherical harmonics Ylm(Ω)

Ψ(r, t) = 1
r

∞∑
l=0

l∑
m=−l

ϕlm(r, t)Ylm(Ω), Ω = θ,φ (75)

yields a set of uncoupled 1D TDSEs

i ∂∂t ϕlm(r, t) =
(
−12

∂2
∂r2 +V(r, t) +

l(l +1)
2r2

)
ϕlm(r, t) (76)

in which the repulsive centrifugal potential l(l +1)/2r2 appears. Instead of an x, y, z
grid, we are now working on an r, l,m grid, on which the problem separates. In
practice, the grid has to be finite, so we actually have

Ψ(r, t) = 1
r

Nl−1∑
l=0

l∑
m=−l

ϕlm(r, t)Ylm(Ω) (77)

with Nl the number of grid points for the relevant angular momentum quantum
numbers l that occur in the problem. The number of grid points for the magnetic
quantum numbers m is then at most 2(Nl − 1) + 1. The numerical grid for l and m
is sketched in Figure 3.

The total size of the numerical grid is thus of order O(NrN2
l ) with Nr the number

of radial grid points. If the initial state is restricted to a few l and m values, the
time-dependent state will be as well because the different components ϕlm remain
uncoupled as long as the spherical symmetry is unbroken by the external driver.
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Fig. 3. Sketch of the l,m part of the numerical r, l,m grid.

We assume that the radial coordinate r is directly discretized in position space,

r = s∆r, s = 1,2,3, . . . ,Nr . (78)

Note that r = 0 is not part of the numerical grid so that we do not need to worry about
how to represent, e.g., the singular Coulomb potential of hydrogen-like ions V(r) =
−Z/r. The boundary condition of the radial wavefunction at r = 0 for potentials not
more singular than the Coulomb potential reads as

∀l,m ϕlm(0, t) = 0 (79)

at all times t. The expansion in spherical harmonics dictates the l,m grid,

l = 0,1,2, . . . ,Nl −1, m = −(Nl −1),−(Nl −1)+1, . . . ,Nl −1. (80)

In examples in Chapter II, we discuss how to estimate a big enough Nl in typical
strong-field problems.

1.5.1 Propagation by the Muller method

We propagate the wavefunction using the Crank–Nicolson scheme introduced pre-
viously. We also make use of the Numerov “boost” in accuracy, as explained in
Section 1.2.3.We absorb the −1/2 in front of the second derivative in the kinetic energy,
defining

M−1
2 = −12M

−1, (81)
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withM given in (37), i.e.,

M2 = −
1
6

⎛
⎜⎜⎜⎜⎝
10 1
1 10 1

1 10 1
. . .

⎞
⎟⎟⎟⎟⎠ . (82)

Then, with h = ∆r (indices l,m and arguments r, t suppressed),

∂2
∂r2ϕ = ϕ′′ = −2M−1

2 Dϕ +O(h4) =
(
1+ h2

12D
)−1

Dϕ +O(h4). (83)

The Hamiltonian in (76) in position-space matrix representation becomes

Ĥl =M−1
2 D+Vl , Vl(r, t) = V(r, t) +

l(l +1)
2r2 . (84)

The effective potential Vl depends on the angular momentum quantum number l but
is diagonal in it. The Numerov-improved Crank–Nicolson approximant (41) is

UCN(∆t) =
(
M2 + i

∆t
2 [D+M2Vl]

)−1(
M2 − i

∆t
2 [D+M2Vl]

)
, (85)

with M2, D, and M2Vl tridiagonal so that the efficient forward-backward substitu-
tion introduced in Section 1.2.1 can be employed for the implicit Crank–Nicolson
step.

Boosting further the accuracy for Coulomb-like potentials

Consider the time-independent case V(r, t) = V(r) with

V(r) = −Zr . (86)

For l =m = 0, the radial wavefunction ϕ00(r, t) fulfills for r→0 according (76)

i∂tϕ00(0) = −
1
2ϕ

′′
00(0) −

Z
r [ϕ00(0) + rϕ′

00(0) + · · · ], (87)

and thus, with (79),
ϕ′′
00(0) = −2Zϕ′

00(0) �=0. (88)

Our discretized representation of second derivative (83) does not implement this
particular boundary condition properly. However, we can incorporate it with little
effort, as proposed by Muller [11], boosting further the numerical accuracy. Bringing
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(
1+ h2

12D
)
in (83) to the left-hand side, we obtain

(
1+ h2

12D
)
ϕ′′ =Dϕ, (89)

where we introduce D → D to be constructed in such a way that (88) is fulfilled. The
idea is to modify the upper-left corner matrix element δ ofD,

D = 1
h2

⎛
⎜⎜⎜⎜⎝
h2δ 1
1 −2 1

1 −2 1
. . .

⎞
⎟⎟⎟⎟⎠ . (90)

We try to get alongwithmodifying the corner element only, because this is the simplest
way without spoiling the Hermiticity of the Hamiltonian.

At r = h, we obtain from (89) and (90) for ϕ = ϕ00

1
12ϕ

′′(2h) +
(
1+ h2δ

12

)
ϕ′′(h) = 1

h2ϕ(2h) + δϕ(h).

Taylor expansion yields

1
12
[
ϕ′′(0) +2hϕ′′′(0) +O(h2)

]
+
(
1+ h2δ

12

)[
ϕ′′(0) + hϕ′′′(0) +O(h2)

]
= 1
h2
[
2hϕ′(0) +2h2ϕ′′(0) +O(h3)]+ δ[hϕ′(0) + 1

2h
2ϕ′′(0) +O(h3)],

where ϕ(0) = 0 was used. Keeping all terms up to (excluding) O(h) and taking into
account that δh2 is expected to beO(1) because the uncorrected (−2/h2)h2 isO(1) as
well, we have

1
12ϕ

′′(0) +
(
1+ h2δ

12
)
ϕ′′(0) +O(h) = ϕ′(0)

(2
h + δh

)
+ϕ′′(0)

(
2+ δh2

2
)
+O(h).

Making use of the boundary condition (88), i.e., replacing ϕ′(0) by −ϕ′′(0)/2Z, we
obtain

0 = ϕ′′(0)
[
−1112 −

5
12 δh

2 + 1
Zh +

δh
2Z

]
.

The square bracket must vanish. Solving it for δ gives the desired modified matrix
corner element

δ = − 2
h2

(
1− Zh

12−10Zh

)
for l =m = 0 (91)
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and δ = −2/h2 otherwise. With modifiedD→D, alsoM2 →M2 changes. The modified
upper-left matrix element reads as

(M2)11 = −2
(
1+ h2

12 δ
)

for l =m = 0 (92)

and (M2)11 = (M2)11 = −10/6 otherwise.
Let us consider as an example the ground state of atomic hydrogen where l =

m = 0, V(r) = −r−1, and analytically ϕ00(r) = 2r e−r and E0 = −1/2. Without the
modification of the matrix corner element, we obtain with converged imaginary time
propagation using the Crank–Nicolson time-evolution operator (85) on a (sufficiently
big) numerical gridwith a resolution ∆r = h =0.2 the energy E(without)0 =−0.489388404.
With modification, we obtain E(with)0 = −0.500151077. The relative errors are

|E(without)0 − E0|
|E0| = 2 · 10−2,

|E(with)0 − E0|
|E0| = 3 · 10−4.

Hence, with very little effort, we gain an improvement over two orders of magnitude.
If a certain accuracy is prescribed, the corner-element correction allows us to work
with a coarser grid. This is very valuable if grids with large spatial extension are
needed to describe, e.g., the interaction with external drivers such as lasers. Figure 4
shows the two wavefunctions obtained with and without modified upper-left corner
element, leading to the ground state energy values just given. While in the linear plot
in (a) the two wavefunctions look innocently similar, the logarithmic plot of ψ0(r) =
ϕ0(r)/r in (b) clearly shows the wrong slope without modified corner matrix element
as r→0.

(a)
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Fig. 4. (a) Radial wavefunctions ϕ0(r) with (*) and without (+) corrected upper-left matrix element.
(b) Logarithmic plot of the wavefunction ψ0(r) = ϕ0(r)/r with and without modified upper-left matrix
element. The exact, analytical result ψ0(r) = 2e−r is included (dashed).
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Consistency

Note that if the Numerov boost in accuracy is employed, it is important to calculate
the energy expectation value in a consistent way, i.e.,

E =
∑
lm

〈ϕlm| Ĥ0 |ϕlm〉 = 〈ϕlm|M̂−1
2 (D̂ +M̂2V̂l) |ϕlm〉 . (93)

Unlike in theCrank–Nicolsonpropagation,M̂−1
2 doesnot cancel. Hence, an additional

forward-backward substitution is required because

〈ϕ′
lm|M̂2 = 〈ϕlm|

has to be solved first for 〈ϕ′
lm|, and then

E =
∑
lm

〈ϕ′
lm| (D̂ +M̂2V̂l) |ϕlm〉 (94)

can be evaluated. If we propagated with the Numerov-improved scheme but still
calculated the energy expectation value with the “old” 〈ϕlm| (−1

2 D̂ + V̂l) |ϕlm〉, we
would not get necessarily an improved energy value. In fact, it might be even worse.

1.5.2 Coupling to a classical external field

Electromagnetic fields can be described by a vector potential A(r, t) and a scalar
potential Φ(r, t). Electric and magnetic field are given by

E(r, t) = −∇Φ(r, t) − ∂tA(r, t), B(r, t) =∇ ×A(r, t). (95)

The coupling to a free particle of charge q and mass m, governed by the free TDSE
[i�∂t − p̂2/2m]Ψ(r, t) = 0, amounts to the “minimal coupling” replacement

i�∂t → i�∂t − qΦ(r, t), p̂ → p̂− qA(r, t) (96)

(in SI units). In the following, we specialize on an electron and use atomic units again,
i.e., q = −e = −1, so that the TDSE reads as

i∂tΨ(r, t) =
{
[p̂+A(r, t)]2

2 −Φ(r, t)
}
Ψ(r, t). (97)

We choose a gauge where the vector potential alone governs the electromagnetic
radiation and the scalar potential qΦ = V the static potential (e.g., −Z/r). The
Hamiltonian then is (arguments r, t suppressed)

Ĥ = 1
2[p̂+A]

2 +V = 1
2[p̂

2 + p̂ ·A+A · p̂+A2] +V . (98)

 EBSCOhost - printed on 2/13/2023 7:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



24 | Dieter Bauer and Thomas Fennel

In most of the chapters in this book (an exception is Chapter III), we make
the dipole approximation where A(r, t) 
 A(t) and thus B ≡ 0. In order to render
the nonrelativistic TDSE applicable, we further require |A| � 137. Otherwise (the
amplitude of) the (oscillatory) electron velocity becomes comparable to the speed of
light in vacuum c. In dipole approximation, the Hamiltonian (98) simplifies to

Ĥ = 1
2 p̂

2 +A · p̂+ 12A
2 +V , (99)

with a purely time-dependent term A2/2. Now, consider a general TDSE i∂tφ(t) =
[Ĥ + f (t)]φ(t). The transformation

φ(t) = φ′(t)e−i
∫ t f (t′)dt′ (100)

yields the transformed TDSE i∂tφ′(t) = Ĥφ′(t), i.e., with the f (t) absent. The purely
time-dependent term A2/2 can thus be transformed away in this manner,⁷ leading to
the Hamiltonian

Ĥ = 1
2 p̂

2 +A(t) · p̂+V(r). (101)

All observables will be unaffected by the purely time-dependent phase trans-
formation (100), which is an especially simple, global gauge transformation.
Gauge-noninvariant quantities like “the energy while the laser is on” 〈φ(t)| [Ĥ(t) +
f (t)] |φ(t)〉 �= 〈φ′(t)| Ĥ |φ′(t)〉, on the other hand, are not invariant under this
transformation. Hence, when it comes to the interpretation of simulation results, one
should not overinterpret gauge-noninvariant quantities. However, from the numerical
point of view, a transformation may greatly reduce the numerical effort, as discussed
in Section 1.5.5.

1.5.3 Linear polarization

Let us consider an external driver in dipole approximation that is polarized in
z-direction,

A(t) = A(t)ez , (102)

and a spherically symmetric (binding) potential,

V(r) = V(r). (103)

With Hamiltonian (101), the TDSE

i∂tΨ(r, t) =
(
−12∇

2 − iA(t)∂z +V(r)
)
Ψ(r, t) (104)

7 Emphasizing once more: this only works in dipole approximation!
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results. Insertion of expansion (75) yields a set of equations for the radial wavefunc-
tions ϕlm(r, t),

i∂tϕlm(r, t) =
(
−12

∂2
∂r2 +Veff l(r)

)
ϕlm(r, t) (105)

− iA(t)
∑
l′

〈lm|cosθ |l′m〉 ∂
∂r ϕl′m(r, t)

+ i A(t)r
∑
l′

(
〈lm|cosθ |l′m〉+ 〈lm|sinθ ∂

∂θ |l′m〉
)
ϕl′m(r, t),

where

Veff l(r) = V(r) +
l(l +1)
2r2 , (106)

and 〈lm| · · · |l′m〉 is short-hand notation for
∫
dΩY*

lm(Ω) · · ·Yl′m(Ω). All the matrix
elements in (105) can be evaluated analytically using the properties of spherical
harmonics. The Hamiltonian has the form [1, 11]

Ĥ(t) = Ĥat + Ĥmix(t) + Ĥang(t), (107)

where Ĥat corresponds to the first line in (105), Ĥmix(t) to the second, and Ĥang(t)
to the third. As expected for linear polarization, there is no coupling of different m
components, i.e., the Hamiltonian is diagonal in m, and m is fixed by the initial state.
Hence, it is sufficient to discretize in r, l space, and the problem of an electron in a
potentialV(r) plus a linearly polarized laser field in dipole approximation is effectively
2D. A clever grid representation should make use of that reduced dimensionality;
cylindrical coordinates do (see Section 2), Cartesian do not.

The part Ĥat is diagonal in l. With the Numerov boost in accuracy and the
upper-left corner correction for Coulomb-like potentials, it becomes, discretized in r, l
space,

Hat = 1l ⊗ (M−1
2 D2 +Vl), (108)

where 1l indicates explicitly the diagonality in l space. We write here D2 instead of D
because we will introduce aD1 for the first derivative soon.

Ĥmix(t) is diagonal neither in r space nor in l space. How neighboring ls are
coupled can be seen inmatrix representationwith respect to l space, acting on vectors
(ϕ0m(r),ϕ1m(r),ϕ2m(r), . . .)�,

Hmix(t) = −iA(t)

⎛
⎜⎜⎜⎜⎝

0 c0m 0 0
c0m 0 c1m 0
0 c1m 0 c2m

0 0 c2m
. . .

⎞
⎟⎟⎟⎟⎠

∂
∂r , (109)
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with

clm =

√
(l +1)2 −m2

(2l +1)(2l +3) . (110)

After discretization in r, the first derivative will couple different r components as well,
as will be discussed below.

The part Ĥang(t) is diagonal in r space but also couples neighboring ls:

Hang(t) = −i
A(t)
r

⎛
⎜⎜⎜⎜⎝

0 c0m 0 0
−c0m 0 2c1m 0
0 −2c1m 0 3c2m

0 0 −3c2m
. . .

⎞
⎟⎟⎟⎟⎠ . (111)

We further notice thatHmix andHang can be written as sums over 2×2matrices acting
in neighboring, overlapping l subspaces,

Hmix,ang =
∑
l
Hlm
mix,ang, (112)

Hlm
mix = −iA(t)Llm

∂
∂r , Hlm

ang = −i
A(t)
r Tlm , (113)

where

Llm =
(

0 clm
clm 0

)
, Tlm = (l +1)

(
0 clm

−clm 0

)
. (114)

Discretizing ∂r without spoiling Hermiticity

Considering also the discretization in r, we write instead of (113)

Hlm
mix = −iA(t)Llm ⊗M−1

1 D1, Hlm
ang = −iA(t)Tlm ⊗ 1

rs
1r , (115)

where 1r is unity in r space, and ∂r =M−1
1 D1 +O(∆r4) is the Numerov analogue of (36)

for the first derivative with

M1 =
1
6

⎛
⎜⎜⎜⎜⎝
4 1
1 4 1

. . .
1 4

⎞
⎟⎟⎟⎟⎠ , D1 =

1
2h

⎛
⎜⎜⎜⎜⎝

0 1
−1 0 1

. . .
−1 0

⎞
⎟⎟⎟⎟⎠ . (116)

However, in order for Hlm
mix to be Hermitian, M−1

1 D1 needs to be anti-Hermitian. We
should take all measures to keep the total Hamiltonian Hermitian. Otherwise the
time propagation is not unitary, and the norm of the wavefunction is not conserved.
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The problem can again be solved by modifying corner matrix elements [11]. It is
straightforward (though a little cumbersome) to show that by replacing

D1 →D1 =
1
2h

⎛
⎜⎜⎜⎜⎝

y 1
−1 0 1

. . .
−1 −y

⎞
⎟⎟⎟⎟⎠ , h = ∆r, y =

√
3−2, (117)

M1 →M1 =
1
6

⎛
⎜⎜⎜⎜⎝
4+ y 1
1 4 1

. . .
1 4+ y

⎞
⎟⎟⎟⎟⎠ . (118)

Hermiticity is restored.

1.5.4 Propagator for linear polarization

For propagating the radial wavefunctions ϕlm by one time step ∆t, we use the split
operator

U(∆t) =

⎧⎨
⎩

0∏
l=Nl−2

exp
(
−i ∆t2 Hlm

ang

)
exp
(
−i ∆t2 Hlm

mix

)⎫⎬
⎭exp(−i∆tHat)

×
{Nl−2∏

l=0
exp
(
−i ∆t2 Hlm

mix

)
exp
(
−i ∆t2 Hlm

ang

)}
+O(∆t3). (119)

The exponentials exp
(
−i ∆t2 H

lm
ang
)
, being 2 × 2 matrices in l subspaces and diagonal

in r, could be diagonalized exactly. Here, we treat them like all other exponentials in
Crank–Nicolson style,

Rlm =
(
1̂ + i ∆t4 Hlm

ang

)−1(
1̂ − i ∆t4 Hlm

ang

)
, (120)

Xlm
± = 1̂ ± i ∆t4 Hlm

mix, Q± = 1̂ ± i
∆t
2 Hat, (121)

so that

U(∆t) =

⎧⎨
⎩

0∏
l=Nl−2

Rlm(Xlm
+ )−1Xlm

−

⎫⎬
⎭Q−1

+ Q−

{Nl−2∏
l=0

(Xlm
+ )−1Xlm

− Rlm
}
. (122)
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The purely angular 2 × 2 parts Rlm can be applied easily to the wavefunction.⁸ The
purely radial Crank–Nicolson part

Q−1
+ Q− =W−1

+ W−, W± =M2 ± i
∆t
2 (D2 +M2Vl) (123)

is known already. It just needs to be applied to each l component ϕlm separately. The
mixing part can be simplified further. Factoring outM−1

1 gives

(Xlm
+ )−1Xlm

− = (Ylm
+ )−1Ylm

− , Ylm
± = 1l ⊗M1 ±

∆t
4 A(t)Llm ⊗D1. (124)

Ylm
± are only block tridiagonal,

Ylm
± =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4+y
6 ±yglm 1

6 ±glm
±yglm 4+y

6 ±glm 1
6

1
6 ∓glm 2

3
1
6 ±glm

∓glm 1
6

2
3 ±glm 1

6
1
6 ∓glm 2

3
1
6 ±glm

∓glm 1
6

2
3 ±glm 1

6
· · ·

· · ·
1
6 ∓glm 4+y

6 ∓yglm
∓glm 1

6 ∓yglm 4+y
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with glm = ∆tA(t)clm/8h. It operates on vectors of the form

ϕlm =
(
ϕlm(r1, t),ϕl+1,m(r1, t) , ϕlm(r2, t),ϕl+1,m(r2, t) , . . .

)�
.

However, with the help of the transform

BLlmB� =
(
clm 0
0 −clm

)
= Clm , B = 1√

2

(
1 1
−1 1

)
, B−1 = B�,

we can write for (Ylm
+ )−1Ylm

− , applied to the part of the discretized wavefunction
ϕlm(rs) = (ϕlm(rs),ϕl+1,m(rs))�,

(Ylm
+ )−1Ylm

− ϕlm(rs) = B̂� (Y lm
+ )−1Y lm

− ϕ̃lm(rs)

with
Y lm
± = BYlm

± B�, ϕ̃lm(rs) = Bϕlm(rs).

8 The trivial inverse of a 2×2matrix in (120) can be calculated for each r analytically (as is done below
in Section 1.5.6) or numerically.
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We find that Y lm
± are diagonal in the l subspaces:

Y lm
± = 1l ⊗M1 ±

∆t
4 A(t)

(
clm 0
0 −clm

)
⊗D1.

Hence, applying it to ϕ̃lm(rs) =
(
ϕ̃lm(rs), ϕ̃l+1,m(rs)

)�
, we obtain for each l block

Y lm
− ϕ̃lm(rs) =

(
−G lm(t) 0

0 G lm(t)

)(
ϕ̃lm(rs)
ϕ̃l+1,m(rs)

)

with

G lm(t) =M1 +
∆t
4 A(t)clmD1.

Hence, the Crank–Nicolson step (Y lm
+ )−1Y lm

− involves tridiagonal matrices (in r space)
only and can be efficiently implemented using forward-backward substitution as well.

To summarize, the time-evolution operator reads as

U(∆t) =

⎧⎨
⎩

0∏
l=Nl−2

RlmB�(Y lm
+ )−1Y lm

− B

⎫⎬
⎭W−1

+ W−

×
{Nl−2∏

l=0
B�(Y lm

+ )−1Y lm
− BRlm

}
. (125)

Thewhole problemhas been reduced to the application of 2×2matrices in l space and
tridiagonal matrices in r space, with an intermediate transformation for the rl-mixed
part.

The strong-field TDSE solver Qprop [1] is based on the propagator (125) and is
available for download at www.qprop.de.

1.5.5 Choice of gauge within dipole approximation

Instead of the so-called velocity gaugeA · p̂ coupling, wemaywork in so-called length
gauge, where the coupling of electron and external field is governed by

E(t) · r = E(t) z = E(t) rcosθ, (126)

and E(t) = −∂tA(t) is the electric field corresponding to the vector potential. At first
sight, that seems much more attractive than the velocity gauge because E(t) rcosθ
is already diagonal in r space. Hence, Hmix, which required considerable extra effort
above, is absent in length gauge. In fact, instead of Hmix(t) +Hang(t) (see (109) and
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(111), respectively), we just have

Hang,length(t) = rE(t)

⎛
⎜⎜⎜⎜⎝

0 c0m 0 0
c0m 0 c1m 0
0 c1m 0 c2m

0 0 c2m
. . .

⎞
⎟⎟⎟⎟⎠ , (127)

and instead of (115),

Hlm
ang,length = rsE(t)Llm ⊗1r . (128)

The Crank–Nicolson propagator then simplifies to

U(∆t) =

⎧⎨
⎩

0∏
l=Nl−2

Rlm
length

⎫⎬
⎭W−1

+ W−

{Nl−2∏
l=0

Rlm
length

}
(129)

with

Rlm
length =

(
1̂ + i ∆t4 Hlm

ang,length

)−1(
1̂ − i ∆t4 Hlm

ang,length

)
, (130)

Hlm
ang,length as defined in (128) andW± in (123).
So why did we consider the significantlymore complicated-to-implement velocity

gauge in the first place? The disadvantage of the length gauge is that the energy E(t)r
becomes large for strong fields and large distances r and thus requires smaller ∆t (and
smaller ∆r to resolve the corresponding momenta). Note that in velocity gauge, p̂ is
the canonical momentum and does not equal the kinetic momentum p̂+A(t). In fact,
considering the Hamiltonian of a free electron in a purely time-dependent external
field

H = 1
2[p̂+A(t)]

2,

we have the Heisenberg equations of motion

˙̂r = p̂+A(t), ˙̂p = 0̂,

i.e., the canonical momentum is a constant of themotion. It represents just a constant
drift momentum since the large oscillatory part ∼ A(t) is subtracted. Of course, in
situations of interest, a binding potential is present as well, which may lead through
laser-driven scattering to higher momenta. However, that happens too in length
gauge. Hence, the take-home message is: use velocity gauge in numerical solutions
of the TDSE for strong (laser) fields. The extra effort to handle the Hmix part in the
propagator pays off very well. There are, however, situations where length gauge is
more appropriate. Imagine the simulation of ionization of highly charged ions, i.e.,
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V(r) ∼ −Z/r with high Z. In this case,⁹ we have to reduce also our ∆r ∼ Z−1, and it
is beneficial that E(t) r → 0 where V(r) → −∞ in order to keep the maximum absolute
energy value in the problem Z/∆r instead of making it even greater by A(t)p̂z, which
does not vanish in the origin. In Section 1 of Chapter II, we indeed use length gauge to
test Landau’s ionization rate.

To summarize this little interlude, one should not only exploit the freedom
to use the most efficient grid representation of the wavefunctions but also the
“gauge-freedom” to choose the most efficient Hamiltonian, i.e., the one which allows
for the coarsest grid spacings (and thus the smallest number of grid points) and the
smallest basis sets.

1.5.6 Propagator for elliptical polarization in the xy plane

We now consider a vector potential of the form

A(t) = Ax(t)ex +Ay(t)ey (131)

so that the TDSE reads as

i∂tΨ(r, t) =
(
−12∇

2 +V(r) − iAx(t)∂x − iAy(t)∂y
)
Ψ(r, t), (132)

which, after inserting expansion (75), yields

i∂tϕlm =
(
−12

∂2
∂r2 +Veff l

)
ϕlm (133)

− ir
2
∑
l′m′

〈lm|[exp(iφ)Ã* + exp(−iφ)Ã]sinϑ|l′m′〉∂r 1r ϕl′m′

− i
2r
∑
l′m′

〈lm|Ã* exp(iφ)
(
cosϑ∂ϑ +

i
sinϑ ∂φ

)
|l′m′〉ϕl′m′

− i
2r
∑
l′m′

〈lm|Ãexp(−iφ)
(
cosϑ∂ϑ −

i
sinϑ ∂φ

)
|l′m′〉ϕl′m′

with Ã = Ax + iAy. With the help of the ladder operators

L̂± = −
1√
2
exp(±iφ) (∂ϑ ± icotϑ∂φ) (134)

that act on a spherical harmonic according

L̂±|lm〉 =∓N±
lm|lm ±1〉, (135)

9 In such cases, it makes sense to switch to nonuniform radial grids, which have a finer resolution as
one approaches the origin (e.g., a “logarithmic grid”).
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where

N±
lm =
√

l(l +1)−m(m ±1)
2 =

√
(l∓m)(l ±m +1)

2 ,

we obtain

i∂tϕlm =
(
−12

∂2
∂r2 +Veff l

)
ϕlm

+ i
√
2π
3
∑
l′m′

{
Ã*〈lm|11|l′m′〉∂r − Ã〈lm|1−1|l′m′〉∂r (136)

− Ã*

r 〈lm|11|l′m′〉(1+m′) + Ã
r 〈lm|1−1|l′m′〉(1−m′)

− Ã*

r 〈lm|10|l′m′ +1〉N+
l′m′ + Ã

r 〈lm|10|l′m′ −1〉N−
l′m′

}
ϕl′m′

with 〈lm|LM|l′m′〉 =
∫
dΩ Ylm*YLMYl′m′ . Three spherical harmonics integrated over

the solid angle Ω may be expressed in terms of Clebsch–Gordan coefficients Ccγaαbβ,

〈lm|LM|l′m′〉 =
∫
dΩ Ylm*YLMYl′m′ =

√
(2L +1)(2l′ +1)

4π(2l +1) Cl0l′0L0C
lm
l′m′LM .

One finds

i∂tϕlm =
(
−12

∂2
∂r2 +Veff l

)
ϕlm +

i
2
∑
l′m′

{
Ã*δm,m′+1δl,l′+1

√
l +m

(2l +1)(2l −1) (137)

×
[(

∂r −
m
r
)√

l +m −1− 1r
√
(l −m)(l(l −1)−m(m −1))

]

+ Ã*δm,m′+1δl,l′−1
√

l −m +1
(2l +1)(2l +3)

×
[
−
(
∂r −

m
r
)√

l −m +2− 1r
√
(l +m +1)((l +1)(l +2)−m(m −1))

]

+ Ãδm,m′−1δl,l′+1
√

l −m
(2l +1)(2l −1)

×
[
−
(
∂r +

m
r
)√

l −m −1+ 1r
√
(l +m)(l(l −1)−m(m +1))

]

+ Ãδm,m′−1δl,l′−1
√

l +m +1
(2l +1)(2l +3)

×
[(

∂r +
m
r
)√

l +m +2+ 1r
√
(l −m +1)((l +1)(l +2)−m(m +1))

]}
ϕl′m′ .
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The Hamiltonian has again the structure

Ĥ = Ĥat + Ĥmix + Ĥang, (138)

with Ĥat being diagonal in lm space, Ĥang diagonal in r, and themixing part Ĥmix. The
matrix components in lm space¹⁰ read as

[
Ĥat
]l′m′

lm
= δl,l′δm,m′

(
−12

∂2
∂r2 +Veff l

)
, (139)

[
Ĥang
]l′m′

lm
=
(
Almδm,m′+1δl,l′+1 +Blmδm,m′+1δl,l′−1 (140)

+ Ãlmδm,m′−1δl,l′+1 + B̃lmδm,m′−1δl,l′−1
)
,[

Ĥmix
]l′m′

lm
=
(
Clmδm,m′+1δl,l′+1 +Dlmδm,m′+1δl,l′−1 (141)

+ C̃lmδm,m′−1δl,l′+1 + D̃lmδm,m′−1δl,l′−1
)
∂r

with
Alm = Ã*

l−m = iÃ*

2r alm , Ãlm =A*
l−m = iÃ

2r ãlm ,

Blm = B̃*
l−m = iÃ*

2r blm , B̃lm = B*
l−m = iÃ

2r b̃lm ,

Clm = C̃*l−m = iÃ*

2 clm , C̃lm = C*l−m = − iÃ2 c̃lm ,

Dlm = D̃*
l−m = − iÃ

*

2 dlm , D̃lm =D*
l−m = iÃ

2 d̃lm ,

and

alm =
√

l +m
(2l +1)(2l −1)

[
−m

√
l +m −1−

√
(l −m)(l(l −1)−m(m −1))

]
,

ãlm =
√

l −m
(2l +1)(2l −1)

[
−m

√
l −m −1+

√
(l +m)(l(l −1)−m(m +1))

]
,

blm =
√

l −m +1
(2l +1)(2l +3)

[
m
√
l −m +2−

√
(l +m +1)((l +1)(l +2)−m(m −1))

]
= − ãl+1,m−1,

b̃lm =
√

l +m +1
(2l +1)(2l +3)

[
m
√
l +m +2+

√
(l −m +1)((l +1)(l +2)−m(m +1))

]
= − al+1,m+1,

clm =

√
(l +m)(l +m −1)
(2l +1)(2l −1) = c̃l,−m = d̃l−1,m−1,

10 Let us keep r nondiscretized for the moment.
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c̃lm =

√
(l −m)(l −m −1)
(2l +1)(2l −1) = cl,−m = dl−1,m+1,

dlm =

√
(l −m +1)(l −m +2)

(2l +1)(2l +3) = d̃l,−m ,

d̃lm =

√
(l +m +1)(l +m +2)

(2l +1)(2l +3) = dl,−m .

The wavefunction (for one particular, fixed r) may be represented as a vector

ϕ =
(

ϕ00 , ϕ1−1,ϕ10,ϕ11 , ϕ2−2, . . . ,ϕ21,ϕ22 , . . . , . . . ,ϕNlNl−1,ϕNlNl

)�
,

where the l subblocks are indicated with boxes.¹¹ Both Ĥang and Ĥmix may be written
as a sum over 2 ×2 matrices acting in lm subspace,

Ĥang =
Nl−2∑
l=0

l∑
m=−l

(
Hlm
ang + H̃lm

ang
)
, Ĥmix =

Nl−2∑
l=0

l∑
m=−l

(
Hlm
mix + H̃lm

mix

)
, (142)

with¹²

Hlm
ang =

i|Ã|
2r P

lm , Plm = blm

⎛
⎜⎝ lm l +1,m −1

lm 0 exp(−iη)
l +1,m −1 −exp(iη) 0

⎞
⎟⎠ ,

H̃lm
ang =

i|Ã|
2r P̃

lm , P̃lm = b̃lm

⎛
⎜⎝ lm l +1,m +1

lm 0 exp(iη)
l +1,m +1 −exp(−iη) 0

⎞
⎟⎠ ,

Hlm
mix = −

i|Ã|
2 Llm∂r , Llm = dlm

⎛
⎜⎝ lm l +1,m −1

lm 0 exp(−iη)
l +1,m −1 exp(iη) 0

⎞
⎟⎠ ,

H̃lm
mix =

i|Ã|
2 L̃lm∂r , L̃lm = d̃lm

⎛
⎜⎝ lm l +1,m +1

lm 0 exp(iη)
l +1,m +1 exp(−iη) 0

⎞
⎟⎠ .

The phase η is defined through

Ã = |Ã|exp(iη).

11 Since Ĥang is diagonal in r space, there is no need to indicate the value of r. Ĥang simply must be
applied to each r subblock.
12 The first column and row in the matrices indicate the l andm indices of the ϕlm components acted
on.
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A Crank–Nicolson propagator that advances the wavefunction over ∆t is chosen as

U(∆t) =
{Nl−2∏

l=0

l∏
m=−l

Rlm
(
Xlm
+
)−1

Xlm
− R̃lm

(
X̃lm
+
)−1

X̃lm
−

}

×Q−1
+ Q−

{Nl−2∏
l=0

l∏
m=−l

(
X̃lm
+
)−1

X̃lm
− R̃lm

[
Xlm
+
]−1

Xlm
− Rlm
}
.

Similar to the simpler case of linear polarization, we rewrite the mixing part
(
Xlm
+
)−1

Xlm
− =
(
Ylm
+
)−1

Ylm
− , Ylm

± =M1 ±
∆t|Ã|
8 Llm ⊗D1,(

X̃lm
+
)−1

X̃lm
− =
(
Ỹlm
+
)−1

Ỹlm
− , Ỹlm

± =M1∓ ∆t|Ã|
8 L̃lm ⊗D1,

the atomic part,¹³

Q−1
+ Q− =W−1

+ W−, W± =M2 ± i
∆t
2 (D2 +M2Vl),

and the purely angular part

Rlm = (1− ξPlm)−1(1+ ξPlm), ξ = ∆t|Ã|
8r

= 1
1+ ξ2b2lm

(
1− ξ2b2lm 2ξ exp(−iη)blm

−2ξ exp(iη)blm 1− ξ2b2lm

)
,

R̃lm = 1
1+ ξ2b̃2lm

(
1− ξ2b̃2lm 2ξ exp(iη)b̃lm

−2ξ exp(−iη)b̃lm 1− ξ2b̃2lm

)
.

Next is the transformation of the mixing part,

Ylm
± =
(
M1 ± ζLlmD1

)
, Ỹlm

± =
(
M1∓ ζ L̃lmD1

)
,

where ζ = ∆t|Ã|/8. We note that with the unitary matrices

B = 1√
2

(
−exp(iη) 1
exp(iη) 1

)
, B̃ = 1√

2

(
−exp(−iη) 1
exp(−iη) 1

)
,

one has

BLlmB† = B̃L̃lmB̃† =
(

−1 0
0 1

)

13 We suppress the explicit indication of unities in subspaces here, such as 1lm or 1r .
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and thus (
Ylm
+
)−1

Ylm
− = B†B

(
Ylm
+
)−1

B†BYlm
− B†B = B†

(
Y lm
+
)−1

Y lm
− B

with

Y lm
± = BYlm

± B† =M1 ± ζdlm

(
−1 0
0 1

)
D1, (143)

and, analogously,
(
Ỹlm
+
)−1

Ỹlm
− = B̃†

(
Ỹ lm
+
)−1

Ỹ lm
− B̃

with

Ỹ lm
± = B̃Ỹlm

± B̃† =M1∓ ζ d̃lm

(
−1 0
0 1

)
D1. (144)

As for linear polarization, we successfully diagonalized the mixing part in
angular-momentum space so that simple forward-backward substitution is applicable
with respect to r, asM1 and D1 are tridiagonal.

The propagator finally reads as

U(∆t) =
{Nl−2∏

l=0

l∏
m=−l

RlmB†
(
Y lm
+
)−1

Y lm
− BR̃lmB̃†

(
Ỹ lm
+
)−1

Ỹ lm
− B̃
}

(145)

×W−1
+ W−

{Nl−2∏
l=0

l∏
m=−l

B̃†
(
Ỹ lm
+
)−1

Ỹ lm
− B̃R̃lmB†

(
Y lm
+
)−1

Y lm
− BRlm

}
,

having the same structure as (125) but additional factors (those with tilde), modified
2 × 2 matrices B, R, B̃, R̃, and the products run also over the magnetic quantum
number m now. As a consequence, the advancement of the wavefunction by ∆t using
propagator (145) scales ∼ N2

l for elliptical polarization instead of ∼ Nl in the case of
linear polarization using (125).

In the strong-field TDSE solver Qprop [1], propagator (145) is implemented as well.

2 Scaled cylindrical coordinates
Among the infinitely many coordinate choices that might be appropriate for the
infinitelymany single-active-electron TDSEproblems one can think of, we present one
more as an example. Consider the case of an azimuthally symmetric system such as
H+
2 with fixed nuclei. The binding potential for the electron does not depend on the
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azimuthal angle φ and reads as

V(ρ, z) = − 1√
ρ2 + (z −R/2)2

− 1√
ρ2 + (z +R/2)2

, ρ =
√
x2 + y2. (146)

Here, R is the internuclear distance, and ρ is the radial coordinate of the cylindrical
coordinates ρ, φ, z. Assuming that the molecular ion is aligned to the linearly
polarized laser field, we have in velocity gauge and dipole approximation the TDSE

i ∂∂t Ψ(ρ, z,φ, t) = Ĥρzφ(t)Ψ(ρ, z,φ, t) (147)

with

Ĥρzφ(t) = −
1
2

(
1
ρ
∂
∂ρ ρ

∂
∂ρ +

∂2
∂z2 +

1
ρ2

∂2
∂φ2

)
− iA(t) ∂∂z +V(ρ, z). (148)

The wavefunction is normalized such that∫∫∫
dzdφdρ ρ|Ψ(ρ, z,φ, t)|2 = 1. (149)

The azimuthal angle φ is a cyclic variable, and Ψ(ρ, z,φ, t) may be factorized as

Ψ(ρ, z,φ, t) = 1√
2π

ψ(ρ, z, t)exp(imφ) (150)

with constant azimuthal quantum number m. The TDSE for ψ(ρ, z, t) reads as

i ∂∂t ψ(ρ, z, t) = Ĥρzm(t)ψ(ρ, z, t) (151)

with

Ĥρzm(t) = −
1
2
∂2
∂z2 − iA(t)

∂
∂z −

1
2ρ

∂
∂ρ ρ

∂
∂ρ +Vm(ρ, z), (152)

where

Vm(ρ, z) = V(ρ, z) +
m2

2ρ2 , (153)

and ∫∫
dzdρ ρ|ψ(ρ, z, t)|2 = 1. (154)

We observe that Ĥρzm(t) has the structure Ĥρzm(t) = K̂z(t) + K̂ρ +Vm(ρ, z) so that, e.g.,
the Peaceman–Rachford scheme in Section 1.4.1 could be directly applied to Ĥx =
K̂z +Vm/2 and Ĥy = K̂ρ +Vm/2 discretized on a numerical grid ρj = j∆ρ, j = 1,2, . . . Nρ,
zi = [i − (Nz − 1)/2]∆z, i = 0,1, . . . Nz − 1. However, because of the behavior of the
wavefunction for ρ→0, this is not the smartest coordinate choice.

Following Kono [7], we allow for a more general radial coordinate ξ ,

ρ = ξ λ , λ > 12 . (155)
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With the substitution
Φ(ξ , z, t) =

√
λ ξ λ−1/2ψ(ξ , z, t), (156)

we obtain the TDSE
i ∂∂t Φ(ξ , z, t) = Ĥ

(λ)
ξzm(t)Φ(ξ , z, t), (157)

where
Ĥ(λ)
ξzm(t) = K̂z(t) + K̂(λ)

ξ +V (λ)
m (ξ , z) (158)

with

K̂z(t) = −
1
2
∂2
∂z2 − iA(t)

∂
∂z , (159)

K̂(λ)
ξ = − 1

2λ2ξ2λ

[
ξ2 ∂2

∂ξ2 −2(λ −1)ξ
∂
∂ξ

]
, (160)

V (λ)
m (ξ , z) = V(ξ , z) + m2

2ξ2λ
− 1
2λ2ξ2λ

(
λ − 12

)2
, (161)

and ∫∫
dξ dz |Φ(ξ , z, t)|2 = 1. (162)

Because λ > 1/2, substitution (156) ensures that Φ(ξ → 0) = 0 so that ξ = 0 does not
need to be part of the numerical grid ξj = j∆ξ , j = 1,2, . . . Nξ , zi = [i − (Nz − 1)/2]∆z,
i = 0,1, . . . Nz − 1, and V (λ)

m (ξ , z) stays nonsingular. The Peaceman–Rachford scheme
in Section 1.4.1 can be applied with Ĥx = K̂z +V (λ)

m /2 and Ĥy = K̂(λ)
ξ +V (λ)

m /2.
Depending on the discretization of the derivatives and the external potential

V(ξ , z), there is an optimal choice of λ in the sense that, e.g., the most accurate
ground-state energy is obtained for given ∆ξ , ∆z and number of grid points Nξ , Nz.
For Coulomb potentials like in the H+

2 case (146) and standard 3-pt approximations for
the derivatives,¹⁴ λ =3/2 turns out to be optimal [7, 10]. From (155) follows that uniform
gridspacing ∆ξ in ξ corresponds to a nonuniform spacing in ρ, with increasing ∆ρ as
ρ increases. This is a positive side effect as long as π/∆ρ is large enough to allow the
wavefunction to spread properly. In practice, the wavefunction is usually absorbed
anyway at small enough distances so that the coarseness of the radial grid is not an
issue. The large excursions occur in (equidistantly discretized) z direction.

3 Employing second-quantization notion
There should be a connection between the lattice models extensively used in con-
densedmatter theory (Ising, Heisenberg, Hubbard, etc.) and the computational lattice

14 Note, however, that a straight-forwardly discretized K̂(λ)
ξ will, in general, not be exactly Hermitian.
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introduced just for discretization, i.e., born out of necessity. A beautiful method for
solving theTDSE that highlights this analogy andemploys a second-quantization–like
terminology is based on the operator splitting introduced in Section 1.4.2 and “grid
hopping” [3, 4].¹⁵ Onemay object that as long as we solve problems with fixed particle
numbers, second quantization is unnecessary. This is true. Yet, technically, creation
and annihilation operators can be used instead of the matrices that arise from the
spatial discretization of derivatives. Thismay help devise clever splitting schemes and
algorithms, as we will see in the following.

Before we discuss the actual grid hopping algorithm, a brief reminder about
second-quantization is indicated. Consider the general, second-quantized Hamilto-
nian for arbitrary many particles in an external potential V, interacting pairwise via
the potentialW,

Ĥ =
∫
dx Ψ̂†(x)

(
−12

∂2
∂x2 +V(x)

)
Ψ̂(x) (163)

+ 1
2

∫
dx
∫
dx′ Ψ̂†(x)Ψ̂†(x′)W(|x − x′|)Ψ̂(x′)Ψ̂(x).

The field operators Ψ̂ , Ψ̂† annihilate and create particles at x and fulfill

[Ψ̂(x), Ψ̂†(x′)]∓ = δ(x − x′), (164)

where theupper sign (commutator) applies forBosons and the lower (anticommutator)
for Fermions.¹⁶

In the Heisenberg picture, the Heisenberg equation of motion for, e.g., the
annihilation field operator Ψ̂(x) reads as (for both Bosons and Fermions) ˙̂Ψ = i[Ĥ, Ψ̂ ]−,
from which follows

i ∂Ψ̂(x, t)∂t =
(
−12

∂2
∂x2 +V(x) +

∫
dx′ Ψ̂†(x′, t)W(|x − x′|)Ψ̂(x′, t)

)
Ψ̂(x, t) (165)

(also for both Bosons and Fermions).
The advantage of second quantization is that the number of particles in the

system is open. However, it is instructive to formally recover the single-particle
(first-quantized) TDSE by applying equation (165) to a state |Φ〉 (that is constant in
the Heisenberg picture) and multiplying from the left by the vacuum 〈0|. Because

〈0| Ψ̂(x, t) |Φ〉 = 〈Ψ̂†(x, t)0|Φ〉 = 〈x(t)|Φ〉 =Φ(x, t) (166)

(note that, in theHeisenberg picture, the eigenstates |x(t)〉= Ψ̂†(x, t) |0〉 of the operator
x̂(t) are time dependent) and 〈0| Ψ̂†(x′, t) |Φ〉 = 〈Ψ̂(x′, t)0|Φ〉 = 0, we indeed obtain the

15 The authors of [3, 4] do not call it “grid hopping” though.
16 xmaycomprise spatial coordinates and spin, e.g., x = (r,ms). In that case, δ(x−x′) = δ3(r−r′)δmsm′

s
.
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TDSE

i ∂Φ(x, t)∂t =
(
−12

∂2
∂x2 +V(x)

)
Φ(x, t). (167)

In passing, we note that in the Schrödinger picture, where |Φ(t)〉 is time depen-
dent and the operators are stationary, equation (166) reads as 〈0| Ψ̂(x) |Φ(t)〉 =
〈x|Φ(t)〉 = Φ(x, t), giving the same time-dependent wavefunction. Using this, one
can alternatively derive the one-body TDSE (167) from i |Φ̇(t)〉 = Ĥ |Φ(t)〉 with the
second-quantized Hamiltonian (163), multiplying from the left by 〈x′| = 〈0| Ψ̂(x′).

Continuing in the Heisenberg picture, from (165) also follows

i
∂
(
Ψ̂(y, t)Ψ̂(x, t)

)
∂t

= Ψ̂(y, t)
(
−12

∂2
∂x2 +V(x) +

∫
dx′ Ψ̂†(x′, t)W(|x − x′|)Ψ̂(x′, t)

)
Ψ̂(x, t)

+
(
−12

∂2
∂y2 +V(y) +

∫
dx′ Ψ̂†(x′, t)W(|y − x′|)Ψ̂(x′, t)

)
Ψ̂(y, t)Ψ̂(x, t).

Applying again |Φ〉 from the right and 〈0| from the left, the two-body TDSE

i ∂Φ
±(x, y, t)
∂t =

[
−12

(
∂2
∂x2 +

∂2
∂y2

)
+V(x) +V(y) +W(|x − y|)

]
Φ±(x, y, t) (168)

is derived, where 〈0| Ψ̂(y, t)Ψ̂(x, t) |Φ〉= ±〈x(t)y(t)|Φ〉=Φ±(x, y, t) is a symmetric (+) or
antisymmetric (−) two-body wavefunction. The same two-body TDSE can be derived
using a different Hamiltonian,

Ĥ′ =
∫
dx
∫
dy Ψ̂†(x, y)

(
−12

∂2
∂x2 −

1
2
∂2
∂y2 +V(x, y)

)
Ψ̂(x, y) (169)

with the one-body potential

V(x, y) = V(x) +V(y) +W(|x − y|),

where we hazard the consequences of twice as many degrees of freedom for getting
rid of the interaction. With that Hamiltonian, TDSE (168) is derived as a one-body
TDSE, i.e., analogously to the derivation of (167). However, since the particle statistics
is irrelevant for a one-body TDSE, the (anti-) symmetry of the wavefunction has to be
enforced “manually” if, e.g., a 2D TDSE is used to simulate two 1D identical particles.

3.1 Grid hopping

To grasp the idea behind the grid-hopping method, it is sufficient to outline it for
just one spatial dimension without interaction. The extension to more dimensions
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(or interaction), spin, etc. is straightforward after the preliminary notes. Hence, let
us consider a second-quantized Hamiltonian

Ĥ =
∫
dx Ψ̂†(x)

(
−12

∂2
∂x2 +V(x, t) − iA(t)

∂
∂x

)
Ψ̂(x).

In order to compete with the accuracy of our Numerov-improved Crank–Nicolson
approach in Section 1.2.3, we boldly discretize up to order ∆x4 (time arguments
suppressed again),

Ĥ =
Nx−1∑
s=0

ĉ†s
(
−12

−ĉs+2 +16ĉs+1 −30ĉs +16ĉs−1 − ĉs−2
12∆x2 +Vsĉs

−iA−ĉs+2 +8ĉs+1 −8ĉs−1 + ĉs−212∆x

)
.

The operators ĉs, ĉ†s are the discretized versions of Ψ̂(x) and Ψ̂†(x); they annihilate
and create a particle at lattice site s. Collecting terms and shifting indices, we can
write Ĥ as

Ĥ = Ĥ0 + Ĥ1 + Ĥ2 (170)

with

Ĥ0 =
1
∆x2

Nx−1∑
s=0

(
5
4 +Vs∆x2

)
ĉ†s ĉs , (171)

Ĥ1 = −
2

3∆x2
Nx−1∑
s=0

{
[1 + iA∆x] ĉ†s ĉs+1 + [1− iA∆x] ĉ†s+1 ĉs

}
, (172)

Ĥ2 =
1

12∆x2
Nx−1∑
s=0

{[
1
2 + iA∆x

]
ĉ†s ĉs+2 +

[
1
2 − iA∆x

]
ĉ†s+2 ĉs

}
. (173)

This looks like a Hamiltonian for a lattice system with an on-site energy ∼ ĉ†s ĉs in Ĥ0
and hopping terms between next-neighbor (Ĥ1) and second–next-neighbor (Ĥ2) sites
due to the kinetic energy and, in our case, the coupling to an external field A(t).¹⁷

For a fixed s, hopping terms annihilate at site s and create at site s + 1 (or s + 2),
and vice versa. In other words, such a hopping term acts like a 2×2 matrix. Note that

17 If we quantized the electromagnetic field as well, we would have another type of (Bosonic)
operators b̂k, b̂†k that annihilate and create photons in mode k. However, quantization of the
electromagnetic field is usually not necessary in strong-field physics as long as the electromagnetic
field is well described by a coherent state with large photon expectation number, and spontaneous
emission is not important for the process under consideration.
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we can write

Ĥ1(t) = Ĥ11(t) + Ĥ12(t), Ĥ1i(t) =
∑
s∈S1i

{
· · ·
}
, (174)

where i =1,2, the two termswithin the curly bracket are the same as in (172), and, e.g.,

S11 = {0,2,4, . . .}, S12 = {1,3,5, . . .}.

Analogously,

Ĥ2(t) = Ĥ21(t) + Ĥ22(t), Ĥ2i(t) =
∑
s∈S2i

{
· · ·
}

(175)

with, e.g.,

S21 = {0,1,4,5,8,9, . . .}, S22 = {2,3,6,7,10,11, . . .}.

Approximating the propagator with the help of some splitting scheme, e.g.,

Û(∆t) = e−i∆t/2Ĥ22e−i∆t/2Ĥ21e−i∆t/2Ĥ12e−i∆t/2Ĥ11e−i∆tĤ0

× e−i∆t/2Ĥ11e−i∆t/2Ĥ12e−i∆t/2Ĥ21e−i∆t/2Ĥ22 , (176)

we notice that, e.g., all the summands in Ĥ11(t) commute with each other. The same
applies to the summands in Ĥ12(t), Ĥ21(t), and Ĥ22(t). Hence, splitting further, e.g.,

exp
(
−iτĤ11

)
=
∏
s∈S11

exp
{
−iτ
[
α(t)ĉ†s ĉs+1 + α*(t)ĉ†s+1 ĉs

]}
, (177)

with

α(t) = − 2
3∆x2
[
1+ iA(t)∆x

]
(178)

and τ = ∆t/2 does not introduce additional errors. Moreover, all the exponentials
in (177) can be applied in parallel since they affect distinct lattice sites only. If the
numerical representation of the state is of the form

Φ = (. . . ,Φs ,Φs+1, . . .)�,

then α(t)ĉ†s ĉs+1 + α*(t)ĉ†s+1 ĉs acts like a 2×2 matrix,(
0 α
α* 0

)(
Φs
Φs+1

)
=
(
αΦs+1
α*Φs

)
.

Applying the factorizedpropagator in (177) thus amounts tomultiplications of the state
components at the respective two lattice sites by unitary 2×2 matrices

exp
[
−iτ
(

0 α
α* 0

)]
=
(

cosτ|α| −i |α|α* sinτ|α|
−i |α|α sinτ|α| cosτ|α|

)
, (179)
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and similarly for Ĥ2. The Hamiltonian Ĥ0 is diagonal, i.e., the wavefunction compo-
nent at lattice site s is simply multiplied by exp(−i∆t[5/(4∆x2) +Vs]).

4 Summary
As already emphasized in the introduction, this chapter on the propagation of
wavefunctions according to the TDSE was very selective. However, the methods
outlined may equip the reader to develop a powerful toolbox of self-made codes to
tackle strong-field physics or TDSE problems in general. Alternatively, the chapter
may help better understand how publicly available codes like Qpropwork.We covered
imaginary-time propagation, which is themethod for finding low-lying eigenstates of
the target system that are typically used as initial states for the real-time propagation
with a TDSE solver.With regard to the propagationmethods, the (Numerov-enhanced)
Crank–Nicolson, the Feit–Fleck–Steiger, the Muller, and the grid-hopping approach
were discussed. All approaches have in common that in more than 1D, Suzuki–Trotter
or Peaceman–Rachford-like operator splitting is required to render the propagation
efficient. While propagating wavefunctions is ethereal, artistic craftwork, the cal-
culation of observables is earthly duty when it comes to the understanding¹⁸ of
experimental facts. This is the topic of the subsequent chapter.
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Dieter Bauer
II Calculation of typical strong-field

observables

With the propagation methods introduced in Chapter I, we are able to prepare the
target system in an initial state (often the ground state) and advance thewavefunction
in timeup to the endof the laser pulse. Thefinalwavefunction contains all thepossible
knowledge about the system that one can measure in principle. Typical strong-field
observables are ion yields, photoelectron spectra, or the emitted radiation. However,
computationally, it is sometimes not feasible to keep the entire wavefunction on the
numerical grid because of the rapid spreading in position space. One may switch to
momentum space representation, in which the wavefunction spreads less. However,
in momentum representation, the binding potential becomes nonlocal, which also
poses a numerical challenge. Another option is to monitor the wavefunction during
the pulse. In thisway, one can compensate for the loss of information due to absorbing
boundary conditions.

The strength of numerical simulations is actually the access to “nonobservables”
an experimentalist cannot measure (may it be for practical or for fundamental
reasons). Examples are the time-dependent probability density in position space (or
any other space that might be helpful) and gauge-dependent entities such as energies
and projections onto unperturbed or dressed states during the laser pulse. Although
such nonobservables are not an end in itself, they often help understand why, e.g.,
certain spectral features occur.

1 Ionization rates
Let us beginwith the single-ionizationprobability (or rate), a simple observablewhose
calculation does not require huge numerical grids.

The ionization rate of atomic hydrogen, initially in the ground state and subject
to a static, homogeneous electric field, say, E = Eez is (in atomic units) [11]

Γ = 4
E e−2/3E . (1)

The exponential factor ∼ e−2/3E appears already in the problem of one-dimensional
(1D) tunneling through a triangular barrier. The tricky part in the derivation of
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strong-field tunneling rates is to get the potential-specific preexponential factor right.¹
The derivation of (1) involves the separation of the time-independent Schrödinger
equation in parabolic coordinates, theWentzel–Kramers–Brillouin (WKB) approxima-
tion of the wavefunction with respect to tunneling through the “downhill potential”
in these coordinates, and the estimation of the inneratomic electron velocity to obtain
a rate. It is not expected that (1) is valid for arbitrary high-field strengths E. This is
because the WKB treatment involves a matching in the “under-barrier” (i.e., in the
classically forbidden) region. Hence, at the latest, when E approaches the overbarrier
ionization regime, the analytical rate is expected to become inaccurate.

Let us apply the Crank–Nicolson propagator for linear polarization in Section 1.5
of Chapter I to determine accurate ionization rates for atomic hydrogen, starting from
the 1s ground state. In Section 1.5.5 of Chapter I, we discussed the role of the gauge in
strong field problems. In the case of a constant electric field Eez, the vector potential is
time dependent, A(t) = −E t, and of ever-increasing absolute value. Hence, we expect
for long run-times large expectation values for the velocity gauge coupling term A(t) ·
p̂ in the Hamiltonian. Instead, the length gauge coupling r · E remains small if the
numerical grid can be kept of reasonable size. We thus choose length-gauge and the
Crank–Nicolson propagator (129) of Chapter I.

In order to determine the ionization rate from a real-time time-dependent
Schrödinger equation (TDSE) simulation, we calculate the ground-state population
| 〈Ψ(0)|Ψ(t)〉 |2, i.e., discretized

P1s(t) =
∣∣∣∣∣
Nr∑
s=1

ϕ*
00(rs , 0)ϕ00(rs , t)∆r

∣∣∣∣∣
2

, rs = s∆s (2)

and the norm
∫ Rmax
0 dr r2

∫
dΩ |Ψ(r, t)|2 on the grid of radius Rmax and with absorbing

boundaries

Pgrid(t) =
Nl−1∑
l=0

Nr∑
s=1

|ϕl0(rs , t)|2∆r. (3)

The following results are obtained with the publicly availabe code Qprop [2] in which
propagators (125), (129), and (145) of Chapter I are implemented. The grid parameters
were ∆r = 0.1, Nr = 1000, Nl = 20 with an imaginary, absorbing potential −100i[(s +
1/2)/Nr]8. The time step for real-time propagation was ∆t = 0.025. The field was
switched-on instantaneously at time t = 0, which leads to transient dynamics before a
steadydecay of the ground-state population, and thenormon the grid canbeobserved
and fitted by a function

Pfit(t) = Cfit e−Γfit t (4)

1 Powerful analytical approaches have been developed, see, e.g., the review [17] on Keldysh theory.
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Fig. 1. Population (2) and norm on the grid (3) vs time as obtained from the numerical solution of
the TDSE for an instantaneously switched-on electric field E = 0.08. The fits (thin black lines on top
of population and norm) are 0.9exp(−4.54 × 10−3t) and 1.15exp(−4.54 × 10−3t), respectively. The
analytical rate (labeled “Landau”) is too high, i.e., it predicts a too rapid decay.

to determine thenumerical rate Γfit. Figure 1 illustrates this for the runwith E =0.08. In
the logarithmic plot, the decay curves appear linear. The longer the run time the more
precisely can Γfit be determined (Cfit is used to shift the fit curves vertically). We see
that the ground-state population and the norm on the grid have the same slope and
are just shifted in time with respect to one another because the probability density
takes some time to arrive at the absorbing grid boundary.

Table 1 gives numerical values for the ionization rate for electric field strengths
between E = 0.02 and 1.0. Besides the analytical rate, we give highly accurate
reference values from [27], obtainedwith thehelp of complex scaling. Our calculations
reproduce these results. We are content here with two decimal places. More are
possible but require longer run times so that the fitting can be done more precisely.
The analytical rate increasingly overestimates the true ionization rate with increasing
E. One would naively expect the geometrical overbarrier regime (i.e., where the initial
energy level touches the tunneling barrier maximum) to start at Eob = 0.0625. Amore
detailed investigation that takes the exceptional symmetry in parabolic coordinates
and Stark shift into account predicts rather Eob = 0.147 [1]. The analytical rate has
a maximum at E = 2/3 after which it slowly decreases again, whereas the true rate
continues to increase. However, the rate is then already of order unity in atomic units,
which means that the initial state will be depleted within a few atomic time units.
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Tab. 1. Ionization rates of atomic hydrogen H(1s) in a static, homogeneous electric field of strength
E (first column). The columns contain our numerical results Γfit obtained with Qprop, the analytical
“Landau rate” (1), and the results from [27], respectively. “-” indicate values not given or calculated.

E Numerical Γfit Landau Scrinzi [27]

0.03 2.24 × 10−8 2.98× 10−8 −
0.04 3.89× 10−6 5.78 × 10−6 3.8927000× 10−6
0.06 5.15 × 10−4 9.96× 10−4 5.15077494× 10−4
0.08 4.54 × 10−3 1.20 × 10−2 4.53965755 × 10−3
0.1 1.45 × 10−2 5.09 × 10−2 1.453811353 × 10−2
0.5 0.56 2.11 0.5594896
1.0 1.3 2.05 1.2936418

Hence, the concept of a rate does not make sense anymore because the details matter
of how such strong fields are switched on (or how the atoms enter regions in which
such strong fields exists).

In the same way we have checked here the ionization rate for a static electric
field, ionization rate formulas developed for oscillatory fields [17] can be tested.
The numerical grid in position space should have at least the size of the excursion
amplitude Ê/ω2. Several benchmarking publications exist [18, 19], which might be
used to test a TDSE solver. However, the situation is more involved in the case of laser
pulses because of the frequency and electric field amplitude-dependent population of
excited states, leading to sharp changes in the ionization rate [19].

2 Photoelectron spectra
Let the state of the system after the laser pulse be expanded in the discrete (|Em〉) and
continuum (|E〉) energy eigenstates of Ĥ0,

|Ψ〉 =
∑
m

cm |Em〉+
∫
dE c(E) |E〉 , (5)

where, as usual, normalization is such that

〈Em|El〉 = δml , 〈E|E′〉 = δ(E − E′), 〈Em|E〉 = 0. (6)

We have in mind the typical single-active electron atomic case where the discrete part
of the spectrum is restricted to energies Em < 0, and the continuum starts at E = 0.
Normalization 〈Ψ |Ψ〉 = 1 requires

∑
m

|cm|2 +
∫
dE |c(E)|2 = 1. (7)
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Plotting all the |cm|2 and |c(E)|2 vs energy yields a “stick spectrum” for
the discrete-state part and a continuous part, respectively. However, |cm|2 is
dimensionlesswhile |c(E)|2 has the dimension of an inverse energy (i.e., “per energy”).
The continuous part may be “binned” according to a certain resolution γ to obtain the
(dimensionless) probability to measure the electron with an energy ∈ [Eν − γ,Eν + γ]

Pγ(Eν ) =
Eν+γ∫

Eν−γ

dE |c(E)|2 (8)

and then plotted in a histogram-like fashion. If |c(E)|2 does not vary much over the
bin-width 2γ, we have that Pγ(Eν )/(2γ)
 |c(Eν )|2.

Alternatively, we may define the spectrum as

Pγ(Eα) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Tr(|Eα〉〈Eα| ρ̂) if Eα in discrete part of spectrum,

Tr

⎛
⎜⎝

Eα+γ∫
Eα−γ

dE |E〉〈E| ρ̂

⎞
⎟⎠ if Eα in continuum,

(9)

where ρ̂ is the density operator, and “Tr” indicates the trace. For a pure state (5) and
ρ̂ = |Ψ〉〈Ψ |, we obtain, using (6),

P(Eα) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
|cα|2 if Eα in discrete part of spectrum,
Eα+γ∫

Eα−γ

dE |c(E)|2 
 2γ|c(Eα)|2 if Eα in continuum.

If we separate the Eα in the continuum by 2γ, the normalization (7) translates to∑
α
P(Eα) = 1. (10)

So far, we considered only total-energy-differential spectra. In strong-field laser
experiments, often more differential spectra are measured, for instance,

P(p,∆p) = Tr
[
P̂(p,∆p)ρ̂

]
, (11)

where p is the photoelectron momentum at a detector of resolution ∆p. The projector
in this case is

P̂(p,∆p) =
∫

p±∆p

d3k |k〉〈k| , (12)

where the integration is over the momentum bin according to the resolution ∆p. The
discrete states |Em〉 will not overlap with the detector states |k〉, as electrons in such
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states will never reach the detector.² We thus obtain

P(p,∆p) = Tr

⎡
⎢⎣ ∫
p±∆p

d3k |k〉〈k|
∫
dE c(E) |E〉

∫
dE′ c*(E′)〈E′|

⎤
⎥⎦

=
∫

p±∆p

d3k
∫
dE c(E)〈k|E〉

∫
dE′ c*(E′)〈E′|k〉

=
∫

p±∆p

d3k
∣∣∣∣
∫
dE c(E)ΨE(k)

∣∣∣∣
2
,

which is the continuum part of the probability density in momentum-space represen-
tation, integrated over the momentum bin of interest.

2.1 Energy window operator method

An elegant way to calculate the total energy-differential spectrum without the need
to determine energy eigenstates on the grid is the “window operator” or resolvent
approach [4, 21, 22]. Consider the operator

P̂γn(Eν ) =
γ2

n

(Ĥ0 − Eν )2n + γ2n
. (13)

Here, Eν = Emin + 2νγ, ν = 0,1,2, . . . are the energy values for which the spectrum is
calculated with resolution γ. We assume that Emin is chosen below the ground-state
energy so that the entire energy spectrum is covered by ν ∈ [0,∞). The positive integer
n is the “order” of thewindow: the higher n themore rectangular is the energywindow
(for n = 1, the window is Lorentzian shaped). If this operator acts on a state (5), we
obtain the projection

P̂γn(Eν ) |Ψ〉 = |Ψγn(Eν )〉 = γ2
n

⎧⎪⎪⎨
⎪⎪⎩

∑
m

cm
(Em − Eν )2n + γ2n

|Em〉 discrete,
∫
dE c(E)

(E − Eν )2n + γ2n
|E〉 continuum.

(14)

The corresponding expectation value is

Pγn(Eν ) = 〈Ψ | P̂γn(Eν ) |Ψ〉 = γ2
n

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
m

|cm|2
(Em − Eν )2n + γ2n

discrete,
∫
dE |c(E)|2

(E − Eν )2n + γ2n
continuum.

(15)

2 We neglect here effects such as Rydberg electrons liberated by electric detector extraction fields.
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We see that when Eν hits exactly a discrete eigenenergy Em, a value |cm|2 is obtained,
which is the correct weight. However, Eν slightly off by ∆E will still give a weight
|cm|2γ2

n
/(∆E2

n
+ γ2

n
) instead of 0 in the analytically ideal stick spectrum. The sticks

turn into lineshapes, determined by the window parameters γ and n.
Consider the normalization condition (10). With the window operator and with

discretized, equidistant Eν , i.e., |Eν±1 − Eν | = 2γ, we have

lim
γ→0

∑
ν

Pγn(Eν ) = lim
γ→0

∫
dEν
2γ Pγn(Eν ).

Since
∞∫

−∞

dEν
γ2

n

(E − Eν )2n + γ2n
= γ

∞∫
−∞

du 1
u2n +1 = 2γ π/2n

sin(π/2n) , (16)

we find

lim
γ→0

∑
ν

Pγn(Eν ) =
π/2n

sin(π/2n)

(∑
m

|cm|2 +
∫
dE |c(E)|2

)
= π/2n
sin(π/2n) . (17)

The right-hand side rapidly converges to 1 for increasing n so that we refrain from
renormalizing

P̂γn(Eν ) → P̂γn(Eν ) =
sin(π/2n)
π/2n

γ2
n

(Ĥ0 − Eν )2n + γ2n
(18)

in the following.
After these window-operator preliminaries, we now come to the actual numerical

calculation of the spectrum. First, we notice that the window operator can be
factorized,

Pγn(Eν ) = 〈Ψ | γ2
n−1

[(Ĥ0 − Eν )2n−1 + iγ2n−1 ]
γ2

n−1

[(Ĥ0 − Eν )2n−1 − iγ2n−1 ]
|Ψ〉 . (19)

We can thus calculate Pγn(Eν ) from

|Ψ̃n−1
Eν ,γ〉 =

γ2
n−1

[(Ĥ0 − Eν )2n−1 − iγ2n−1 ]
|Ψ〉 (20)

as
Pγn(Eν ) = 〈Ψ̃n−1

Eν ,γ |Ψ̃n−1
Eν ,γ〉 . (21)

This means for n = 1, we have to solve

[(Ĥ0 − Eν ) − iγ] |Ψ̃0
Eν ,γ〉 = γ |Ψ〉 (22)

for |Ψ̃0
Eν ,γ〉 and are done. Equation (22) translates—with |Ψ〉 discretized—to the

standard problem “matrix times unknown equals known right-hand-side.” The
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discretized Ĥ0 is, e.g., tridiagonal with the usual 3-pt stencil in position space so
that forward-backward substitution from Section 1.2.1 of Chapter I can be applied.

For higher window orders n, intermediate steps can be easily added. For n = 2, we
have Pγ2(Eν ) = 〈Ψ̃1

Eν ,γ |Ψ̃1
Eν ,γ〉 and

[(Ĥ0 − Eν )2 − iγ2] |Ψ̃1
Eν ,γ〉 = γ2 |Ψ〉 . (23)

Factorizing once more,

[(Ĥ0 − Eν ) +
√
iγ][(Ĥ0 − Eν ) −

√
iγ] |Ψ̃1

Eν ,γ〉 = γ2 |Ψ〉 , (24)

we find |Ψ̃1
Eν ,γ〉 by first solving

[(Ĥ0 − Eν ) +
√
iγ] |Ψ̃1′

Eν ,γ〉 = γ2 |Ψ〉 (25)

for |Ψ̃1′
Eν ,γ〉 and then

[(Ĥ0 − Eν ) −
√
iγ] |Ψ̃1

Eν ,γ〉 = |Ψ̃1′
Eν ,γ〉 (26)

for |Ψ̃1
Eν ,γ〉. Similarly, higher orders n can be implemented. The general factorization

formula reads as

(Ĥ0 − Eν )2
n
+ γ2

n
=
2n−1∏
k=1

[(Ĥ0 − Eν ) + eiqnkγ][(Ĥ0 − Eν ) − eiqnkγ], (27)

where qnk = (2k −1)π/2n.
In three dimensions (3D), with an expansion of the wavefunction in spherical

harmonics as in Section 1.5 of Chapter I, we have

Pγn(E) =
∫
dΩ
∫
dr
∣∣∣∣∣
∑
lm

ϕγn,lm(E, r)Ylm(Ω)
∣∣∣∣∣
2

=
∑
lm

∫
dr |ϕγn,lm(E, r)|2, (28)

where ϕγn,lm(E, r) are the radial wavefunctions in the projection

〈r|Ψγn(E)〉 = 1
r

∞∑
l=0

l∑
m=−l

ϕγn,lm(E, r)Ylm(Ω), (29)

and
∫
dΩY*

lm(Ω)Yl′m′ (Ω) = δll′δmm′ has been used. We see that the total spectrum
Pγn(E) is simply the sum of the partial spectra P(lm)γn (E),

Pγn(E) =
∑
lm

P(lm)γn (E) (30)

with

P(lm)γn (E) =
∫
dr |ϕγn,lm(E, r)|2. (31)
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Aslightlymodifiedwindowoperator is used in the Qprop code [2]where the energy
spectrum is calculated as

PQγn(Eν ) = 〈Ψγn(Eν )|Ψγn(Eν )〉 (32)

with |Ψγn(Eν )〉 defined in (14). This is equivalent to workingwith thewindow operator
P̂2γn(Eν ) instead of P̂γn(Eν ).

Example for a total photoelectron spectrum

Figure 2 shows total photoelectron spectrum (32) for the case of atomic hydrogen,
starting from the 1s ground state, after the interaction with an nc = 20-cycle, linearly
polarized laser pulse, described by the vector potential

A(t) = ezAz(t), Az(t) = Â sin2
(
ωt
2nc

)
sinωt (33)

with ω = 0.085 (wavelength λ = 535nm) and an electric field amplitude Ê = Âω =
0.02387 (i.e., a peak intensity I = 2×1013 W/cm2). The wavefunction was propagated
according (125) of Chapter I using Qprop [2]. The grid parameters were Nr = 20000,
Nl = 15, ∆r = 0.2, and the time step ∆t = 0.05. The window operator parameters were
n = 3 and γ = 0.001.

A typical above-threshold ionization (ATI) spectrum [15] is observed, i.e.,
photoelectron peaks at

Ek = E0 −Up + kω, (34)

100 100

10–5
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Fig. 2. ATI spectrum for H(1s) in a linearly polarized, nc = 20-cycle, sin2-shaped, λ = 535-nm laser
pulse of peak intensity I = 2 × 1013 W/cm2. Left: total spectrum. Right: total spectrum (solid) and
partial spectra for l = 0 (dotted), for l = 1 (dashed), and for l = 14 (dashed-dotted).
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where E0 = −Ip < 0 is the electron binding energy, Up = I/4ω2 is the ponderomotive
energy, and k = nmin, nmin +1, nmin +2, . . . is the number of photons absorbed, which
must be at least nmin to overcome the net ionization potential Ip+Up. In this particular
example,wearewithin the realmof perturbation theorybecauseUp is small compared
with both ω and Ip = 0.5. However, already nmin = 7 photons are required for
ionization, and peaks up to k = 17 are visible, although dropping exponentially in
probability.

The window-operator method provides the bound, “stick-like” part of the spec-
trum as well. We observe that the ground state is still populated with high probability
(| 〈1s|Ψ〉 |2 = 0.999882) after the pulse. Excited states up to the continuum threshold
are populated as well.

The availability of partial spectra (31) for the different orbital angular momentum
quantum numbers l helps analyze the numerical results further and check conver-
gence with respect to Nl. From the right panel in Figure 2, we infer that both the 2s
and the 2p states are populated after the pulse and that l = 0 and l = 1 dominate the
ATI peaks in an alternating fashion. This is expected because each additional photon
absorption changes l by ±1. Convergence with respect to Nl can be ensured by proving
that the partial spectrum for themaximum l =Nl−1 contributes negligibly in the entire
energy interval of interest. As seen in the right panel of Figure 2, this is the case: the
partial spectrum P(14,0)γn is at least five orders of magnitude below the total spectrum.
With increasing laser intensity or decreasing laser frequency, Nl has to be increased,
making the numerical simulation more demanding.

2.1.1 More differential spectra with the window-operator method

Imaginewe solved the 1D TDSE in position space. In that case, (21) or (32) is of the form
(suppressing indices ν, γ, n)

P(E) =
∞∫

−∞

dx |Ψ(E, x)|2 = Pleft(E) + Pright(E) (35)

with

Pleft(E) =
0∫

−∞

dx |Ψ(E, x)|2, Pright(E) =
∞∫
0

dx |Ψ(E, x)|2. (36)

One may argue that the relation between momentum and energy is p = −
√
2E with re-

spect to Pleft and p =+
√
2E for Pright. One can then construct amomentum-differential

spectrum as

P(p) = |p|
{
Pright(E = p2/2) p ≥ 0
Pleft(E = p2/2) p < 0

, (37)
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in that way separating left- and right-going electrons.³ However, this procedure is not
rigorous, as is easily illustrated by the extreme case of a wave packet located in the
left spatial region x < 0 but moving with positive momentum to the right. Clearly, (37)
maps to the wrong momentum sign in this case. On the other hand, if one propagates
long enough so that whatever travels to the right actually arrives in the region x > 0
(37) works. The smaller |p| the longer one needs to postpropagate the wavefunction in
order to ensure that P(p) is converged and independent of time (after the laser pulse).

Similar to the 1D case above, we may employ position space information by not
performing the angle integration in (28),

P(E,Ω) =
∫
dr
∣∣∣∣∣
∑
lm

ϕlm(E, r)Ylm(Ω)
∣∣∣∣∣
2

. (38)

Again, this is not a rigorous energy-angle–resolved spectrum because the solid-angle
element dΩ in position space is not equivalent to the solid-angle element dΩp in
momentum space. Imagine a free electron that is still close to the nucleus at the
end of the pulse so that is deflected by the Coulomb potential. Its momentum vector
then is not yet equal to the asymptotic momentum at the detector. Hence, one should
postpropagate until the angle-resolved energy spectrum is converged down to the
smallest energy E > 0 of interest.

The conversion to a momentum spectrum may be performed noticing that, with
the assumption Ω 
 Ωp, P(E,Ω)dEdΩ must equal P(p)d3p = P(p)p2dpdΩp. Hence,
with dE = pdp,

P(p) = P(E,Ω) dE
p2dp = 1

p P(p
2/2,Ω). (39)

Modern graphics and visualization tools (e.g., gnuplot) are capable of plotting
a function f (p,Ω) that is sampled over spherical coordinates (such as f (p,Ω) =
P(p2/2,Ω)/p) vs Cartesian coordinates px ,py ,pz.

Figure 3 shows such a photoelectron momentum spectrum logP(p) in the pxpz
plane. In dipole approximation, there is azimuthal symmetry about the laser polar-
ization axis ez so that the spectrum looks the same in, e.g., the pxpz plane and the
pypz plane. Because p =

√
2E, themomentumdifference betweenATI peaks decreases

with increasing momentum p = |p|. The lowest-order ATI peak is a ring of radius√
2[−(Ip +Up) +7ω] = 0.39 in the momentum plane. Each ATI ring is modulated, i.e.,

θ dependent. In perpendicular direction θ = π/2 (pz = 0), every other ATI ring has a
node.

3 The factor |p| comes from the transformation of variables and P(p)dp = P(E)dE, see also the 3D
version below, equation (39).
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Fig. 3. Photoelectron momentum spectrum logP(p) in the pxpz plane according (38) and (39) for the
laser and target parameters of Figure 2.

2.2 Spectral method

Let

|Ψ(0)〉 =
∑
m

cm |Em〉+
∫
dE c(E) |E〉 (40)

be the state of the system after the interaction (say, at time t = 0, without loss of
generality) expanded in energy eigenstates of Ĥ0, as above in (5). The overlap of this
state with the field-free propagated state at a later time t > 0,

|Ψ(t)〉 =
∑
m

cme−iEmt |Em〉+
∫
dE c(E)e−iEt |E〉 , (41)

is called autocorrelation function,

A(t) = 〈Ψ(0)|Ψ(t)〉 =
∑
m

|cm|2e−iEmt +
∫
dE |c(E)|2e−iEt . (42)

The Fourier-transformed autocorrelation function with the initial time pushed to −∞
and field-free postpropagation until ∞ would be

A(E) := 1
2π

∞∫
−∞

A(t)eiEt dt =
∑
m

|cm|2 δ(E − Em) +
∫
dE′ |c(E′)|2 δ(E − E′). (43)

If E hits one of the discrete eigenenergies, A(E) gives a δ peak (weighted by |cm|2). In
the continuum, it gives |c(E)|2. In practice, we postpropagate only from t = 0 to a finite
time τ. Let us calculate how the finiteness in time affects the line shape of the peaks
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in the spectrum [6]. Instead of (43), we have

A(0)(E) = 1
τ

τ∫
0

∑
m

|cm|2 ei(E−Em)t dt + 1
τ

τ∫
0

dt
∫
dE′ |c(E′)|2 ei(E−E′)t

=
∑
m

|cm|2
∞∫

−∞

w(0)
τ (t)ei(E−Em)t dt +

∫
dE′ |c(E′)|2

∞∫
−∞

dt w(0)
τ (t)ei(E−E

′)t

=
∑
m

|cm|2L(0)(E − Em) +
∫
dE′ |c(E′)|2L(0)(E − E′),

where

w(0)
τ (t) = 1

τ Θ(t)Θ(τ − t) (44)

is a square-shaped time window whose Fourier transform gives the line-shape
function

L(0)(E − E′) =
∞∫

−∞

ei(E−E
′)tw(0)

τ (t)dt = eiz sin zz , z = (E − E′)τ
2 , (45)

which replaces the δ-like lines that occured above in the case of an infinite-time
Fourier transform in the discrete part of the spectrum. The line shape is such that
there is a central peak of height L(0)(0) = 1 at the position E = E′ but also wings with
higher-order maxima (like in single-slit diffraction). For E in the discrete part of the
spectrum, A(0)(E = Em) = |cm|2, as it should. In the continuum, we obtain |c(E′)|2,
integrated over the line shape centered at E.

Clearly, an energy spectrum is an observable and should be real. However, we see
from (45) that the finite integral limits introduce a τ-dependent complex phase factor.
In order to eliminate that unphysical dependence on the finite upper integration limit,
we consider |A(0)(E)| as the total energy–differential spectrum.

2.2.1 Increasing the dynamic range with the Hanning window

The slowly off-rolling “sinc-wings” in (45) may mask other peaks corresponding to
less-populated states nearby. Hence, in order to increase the dynamic range over
which peaks can be identified (say, from populations close to one down to 10−20), a
window function with faster decreasing wings than those for the square window is
desirable. One option is the so-called Hanning window

w(H)
τ (t) = 1

2τ

(
1−cos 2πtτ

)
, (46)
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Fig. 4. |L(0)| for the square window and |L(H)| for the Hanning window vs z. The Hanning window
leads to a broader central peak but a faster drop of the wings thus allowing for a higher dynamic
range.

which leads to the line shape

L(H)(E − E′) = eiz sin z
(
1
z −

z
z2 − π2

)
(47)

with z as in (45). The line shapes obtained with the square and the Hanning window
are compared in Figure 4.

2.2.2 Actual numerical treatment

During the field-free postpropagation for even Nt time steps, the vector

Aw = 〈Ψ(0)|
(
|Ψ(0)〉w(0), |Ψ(∆t)〉w(∆t), . . . , |Ψ(Nt∆t)〉w(Nt∆t)

)�
(48)

is stored. Here, w(t) is the window of choice, for instance, the Hanning window (46)
(with τ = Nt∆t). The fast Fourier transform (FFT) FFT(Aw) = Ãw gives back a vector of
the same size,

Ã =
(
Ã0, . . . , ÃNt

)�, (49)
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typically ordered such that the corresponding frequencies are

ω = ∆ω
(
0,1, . . . ,Nt/2−1,−Nt/2,−Nt/2+1, . . . , −1

)�
, (50)

where
∆ω = 2π

Nt∆t
. (51)

In atomic units, ω = E. Hence we can assemble and plot the spectrum |Ã(E)|.

2.2.3 Resolution and bandwidth

By fitting the peaks in the numerically obtained spectrum to the analytical line shape,
the discrete eigenenergies Em can be determined to high accuracy. The accuracy is the
higher the higher is the energy resolution

∆E = 2π
τ . (52)

The latter is determined by the total postpropagation time τ. Moreover, the energies
of interest must fall into the energy range covered,

max |E| = π
∆t , (53)

which is determined by the temporal resolution ∆t used to generate the time series
on which the FFT is performed. Equations (52) and (53) reflect the usual energy-time
uncertainty.

2.2.4 Local analysis

Equation (41) reads in position-space representation

Ψ(r, t) =
∑
m

cme−iEmtΨEm (r) +
∫
dE′ c(E′)e−iE

′ tΨE′ (r). (54)

Performing the finite-time Fourier transform as above for a time interval [0, τ] after the
interaction with the laser pulse, we obtain

Ψ(E, r) =
∑
m

cmΨEm (r)L(E − Em) +
∫
dE′ c(E′)ΨE′ (r)L(E − E′). (55)

If we pick a particular point rd (“d” for “detector”), |Ψ(E, rd)|2 plotted vs E will show
peaks of shape L for all energies whose eigenstates (i) contribute at r and (ii) were
populated during the interaction. Close to the origin (where the binding potential is
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centered), only the bound, discrete states will contribute. Far away (e.g., close to the
grid boundary but before the absorbing potential), only the continuum contributes.
This “virtual-detector” method of obtaining spatially resolved spectra is very instruc-
tive but far from rigorous. It has been improved andmade quantitatively correct in the
semiclassical regime by considering the local current density (instead of directly the
wavefunction), “collecting” the flux, and binning according momentum [7].

2.2.5 Determination of eigenstates

Although this section is about the calculation of photoelectron spectra, we note in
passing how to extract eigenstates in a similar way. Given a “target energy” E, we can
distill during field-free propagation a state

|ΨE(τ)〉 =
τ∫

0

|Ψ(t)〉 wτ(t)eiEt dt. (56)

Here, wτ(t) is one of the above window functions. With the corresponding line shape
function L(E) = ∫ dt eiEtwτ(t) and after insertion of the expansion (41), we obtain

|ΨE(τ)〉 =
∑
m

cm |Em〉L(E − Em) +
∫
dE′ c(E′) |E′〉L(E − E′). (57)

In the limit τ→∞, the line shape becomes δ-like, and a state |Em〉with an eigenenergy
Em closest to the targeted energy E will be singled out (if E falls into the discrete part
of the spectrum, otherwise |E〉).

In an actual field-free TDSE run, the distilled wavefunction ΨE(r, τ) is calculated
via numerical integration ΨE(r, τ) → ΨE(r, τ) + Ψ(r, t)wτ(t)eiEt∆t during the propa-
gation of an, e.g., randomly initialized wavefunction Ψ(r, t = 0). Because of rapidly
rotating phases ei(E−Em)t (or ei(E−E

′)t), all components inΨ(r, t) will be integrated away
apart from the components for which the phase vanishes, i.e., E = Em or E = E′. As
a consequence, ΨE(r, τ) will be more and more “purified” toward an eigenfunction
ΨE(r), Ĥ0ΨE(r) = EΨE(r) the longer the integration time is. ΨE(r, τ) should be
normalized to unity if normalized eigenstates are sought. In case of degeneracy, one
finds in this way one state in the degenerate subspace, which one depends on the
initial Ψ(r, 0). Another one of the degenerate states can be found by projecting out
the previously found state in each numerical integration step. What happens if the
initial wavefunction does not contain the component one is looking for? This may
happen if Ψ(r, 0) has the parity opposite to the desired ΨE(r), for instance. In this
case, the procedure should converge to a state closest in energy to E and incorporated
in the guess Ψ(r, 0). However, because of the limited machine precision states may
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Fig. 5. Probability densities for two noninteracting 1D particles in a 1D square well of width L = 20
(or one 2D particle in a 20 × 20 2D box). Two initial guess wavefunctions Ψ(x, y, 0) (left) and
the obtained eigenstates that emerge after τ = 495 for the targeted (first excited state) energy
E = 0.0605 (right). In (a), Ψ(x, y, 0) was initialized randomly; in (b), Ψ(x, y, 0) ∼ e−x2 sin y. Different
states in the two-fold degenerate subspace for E are found. Numerical parameters are as follows:
Nx = Ny = 100, ∆x = ∆y = 0.2, ∆t = 0.05, propagation with split time-evolution operator, and
Crank–Nicolson.

be distilled that are actually not (supposed to be) present in Ψ(r, 0). To test this, the
reader may initialize with the ground state and try to find an excited state.

Figure 5 shows an example where for two noninteracting 1D particles in a 1D box
(or one 2D particle in a 2D box), one of two linearly independent degenerate states
belonging to the second lowest eigenenergy emerges out of two different guesses for
the initial wavefunction.

In Section 1.3.2 of Chapter I, we learned how excited states can be determined
by imaginary propagation in combination with outprojection of the lower-lying
states. In the case of first excited states as in Figure 5, that would be much more
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efficient because the convergence of procedure (56) with τ is slow compared to
imaginary-time propagation. However, for high-lying states, the spectral method is
superior to imaginary-time propagation because the knowledge of all lower-lying
states is not required. Especiallywhenquasi-boundor continuumstates are of interest,
imaginary-time propagation in combination with outprojection is not really an option
on large grids.

2.2.6 Band structure via propagation

Strong-field physics in solids is of increasing interest, not only because of the fasci-
nating phenomena that arise from the band structure, the topology, and many-body
effects but also in view of technological applications such as ultrafast electronics
[8, 12, 14, 23–26, 32]. Of course, in this context, the laser field should not exceed
the damage threshold of the solid, i.e., the target should not be transformed into a
plasma. However, because of the possibly lower effective mass of the charge carriers
(electrons and holes), the laser-driven dynamics in solids can be strong-field-like at
laser intensities well below the damage threshold.

Consider a 1D periodic potential⁴

V(x) = −V0[1+ cos(2πx/a)], V(x + a) = V(x). (58)

The time-independent Schrödinger equation for a single electron in that potential

E |ψ〉 =
[
p̂2
2 +V(x̂)

]
|ψ〉 (59)

has solutions of the form

ψnk(x) = 〈x|ψnk〉 = eikxunk(x), unk(x + a) = unk(x) (60)

(Bloch theorem) with n as the band index. As a consequence,

Enkunk(x) =
[
(p̂ + k)2

2 +V(x)
]
unk(x) (61)

or (
Enk −

k2
2

)
unk(x) =

[
−12

∂2
∂x2 − ik

∂
∂x +V(x)

]
unk(x). (62)

4 This potential was used in [34] to simulate high-harmonic generation in solids.
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Fig. 6. Five lowest bands in the first Brillouin zone of potential (58) with V0 = 0.37 and a = 8,
calculated by solving (62) through imaginary-time propagation of (63) for A(t) = k. Energy Enk in
atomic units.

As we know from Chapter I how to solve a TDSE of the form

i ∂∂t Ψ(x, t) =
[
−12

∂2
∂x2 − iA(t)

∂
∂x +V(x)

]
Ψ(x, t), (63)

we can find with A(t) = k the eigenenergies ϵnk = Enk − k2/2 through imaginary-time
propagation. With periodic boundary conditions, it is enough to solve (62)
for each Bloch wavenumber k of interest on a spatial grid that covers [0,a).
The implementation of periodic boundary conditions can be achieved by
amending the forward-backward substitution for tridiagonal matrices applying the
Sherman–Morrison formula [20, 29] to the additional upper-right and lower-left corner
matrix elements. The result of such a calculation for V0 = 0.37, a = 8 (as in [34]),
Nx = 100, ∆x = a/Nx for the first five bands is shown in Figure 6.

If one is anyway interested in solids in laser fields, one may follow an alternative
approach to obtain the band structure. We assume the same periodic potential (58)
with V0 = 0.37 and a = 8 and periodic boundary conditions but this time include
Npc primitive cells, i.e., the spatial grid covers [0,Npca). The smallest represented
momentum thus is 2π/Npca. We initialize Ψ(x, t = 0) randomly and propagate (63)
in real time for vanishing external driver A(t) ≡ 0. By Fourier-transforming in space
and time Ψ(x, t) and plotting |Ψ(k,ω)|2 logarithmically over five orders of magnitude,
we obtain the band structure shown in Figure 7(a). The momentum range covered
is determined by |kmax| = π/∆x (we used ∆x = 0.2) and the momentum resolution
by Nx∆x = Npca (we used Npc = 80 so that ∆k = 2π/(Npca) 
 0.01). The frequency
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Fig. 7. Logarithm of |Ψ(k,ω)|2, obtained by an FFT of Ψ(x, t), initialized randomly, and propagated
in real time according (63) (with A(t) ≡ 0). Panel (a) shows log

(|Ψ(k,ω)|2) in the entire frequency
(energy) and momentum range; panel (b) is a zoom into the first Brillouin zone, to be compared with
Figure 6.

(i.e., energy) range is determined by the |ωmax| = π/∆toutput where ∆toutput is the
time step used for storing the wavefunction Ψ(x, t) on which the Fourier transform
is subsequently performed (usually larger than the time step for the Crank–Nicolson
propagation). The energy resolution is determined by the total propagation time (see
Section 2.2.3). A Hanning window was applied with respect to time prior to the FFT.
It is important to choose momentum and energy range large enough so that aliasing
does not contaminate the first Brillouin zone shown in Figure 7(b), where we observe
the same band structure as in Figure 6 but obtained by completely different means.
Because of the initialization with a randomwavefunction, we see all bands, although
a bit noisy. Themethod based on equation (62), leading to Figure 6, provides “cleaner”
results. In particular, it provides with little effort accurate numerical values for the
band energy, given a certain k. The strength of the latter, spectral method based on
real-time propagation lies in the very simple determination of the actual population
of the bands after the interaction with an external driver. To that end, one would
propagate further the wavefunction after the interaction (instead of the randomly
initialized one).

2.3 Time-dependent surface flux method

The window-operator method for calculating photoelectron spectra outlined in Sec-
tion 2.1 requires as input the wavefunction at the end of the pulse. Because the
wavefunction rapidly spreads, the necessary grid size might be huge. If the fastest
spreading parts of the wavefunction have been in contact with the absorbing bound-
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ary, the corresponding high-energy wing of the spectrum will be missing or spoiled.
Using the autocorrelation method in Section 2.2, the energy spectrum is extracted
from a time series 〈Ψ(0)|Ψ(t)〉. But still, absorbed parts of the wavefunction will spoil
the spectrum. Andworse, because of the field-free postpropagation, thewavefunction
spreads further, and an even larger grid is required.

The time-dependent surface flux method (t-SURFF) [31] trades the large grids for
temporal information on a surface enclosing a much smaller spatial region where the
interesting interaction physics takes place. Let this region, in the 1D case, be

−X < x < X, X > 0. (64)

Narrow grid regions beyond ±X can be used to absorb outgoing flux via an imaginary
potential or a mask function acting there, or something fancier like exterior complex
scaling [28, 33] or perfectly transparent boundary conditions [3]. After a while, the
bound and the free part of the system’s state,

|Ψ(t)〉 = |Ψbound(t)〉+ |Ψfree(t)〉 , (65)

will separate spatially, i.e.,

〈x|Ψbound(t)〉 
 0 for |x| > X, 〈x|Ψfree(t)〉 
 0 for |x| < X. (66)

The free part

|Ψfree(t)〉 =
∫
dk b(k) |χk(t)〉 (67)

is expanded in Volkov states |χk(T)〉 fulfilling the TDSE for a free electron in a field of
vector potential A(t),

i∂t |χk(t)〉 = ĤV(t) |χk(t)〉 . (68)

We use velocity gauge with the A2 term transformed away so that

ĤV(t) =
1
2 k̂

2 +A(t)k̂ = −12
∂2
∂x2 − iA(t)

∂
∂x (69)

and

|χk(t)〉 = e−iSk(t) |k〉 , Sk(t) =
t∫
dt′
(
k2
2 +A(t′)k

)
. (70)

We can write this in position space as

χk(x, t) =
1√
2π

e−itk
2/2 eik[x−α(t)] , (71)

where

α(t) =
t∫
dt′A(t′) (72)
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is the excursion. In the following, we assume that A(t) vanishes for times t < 0.
We wish to calculate the momentum spectrum P(k) = |b(k)|2. The Volkov expan-

sion coefficients b(k) can be approximately obtained from

b(k)
 〈χk(τ)|{Θ(x −X) +Θ(−x −X)}|Ψ(τ)〉

=
τ∫

0

dt ddt 〈χk(t)|{Θ(x −X) +Θ(−x −X)}|Ψ(t)〉 . (73)

We consider the first term and rewrite with the help of the TDSEs (68) and i∂t |Ψ(t)〉 =
Ĥ(t) |Ψ(t)〉

b1(k) =
τ∫

0

dt ddt 〈χk(t)|Θ(x −X) |Ψ(t)〉

=
τ∫

0

dt
(
d
dt 〈χk(t)|

)
Θ(x −X) |Ψ(t)〉+

τ∫
0

dt 〈χk(t)|Θ(x −X)
d
dt |Ψ(t)〉

= i
τ∫

0

dt 〈χk(t)|{ĤV(t)Θ(x −X) −Θ(x −X)Ĥ(t)}|Ψ(t)〉 .

The full Hamiltonian is

Ĥ(t) = ĤV(t) + V̂ , (74)

but in the region x > X,we assume thepotential V̂ to vanish so thatΘ(x−X)Ĥ(t)
 ĤV(t)
and thus

b1(k) = i
τ∫

0

dt 〈χk(t)| [ĤV(t),Θ(x −X)] |Ψ(t)〉 , (75)

and in position space

b1(k) = i
τ∫

0

dt
∫
dx χ*k(x, t)

[
−12

∂2
∂x2 − iA(t)

∂
∂x ,Θ(x −X)

]
Ψ(x, t). (76)

The commutator is[
−12

∂2
∂x2 − iA(t)

∂
∂x ,Θ(x −X)

]
Ψ(x, t)

= −
{
1
2 δ

′(x −X) + iA(t)δ(x −X) + δ(x −X) ∂∂x

}
Ψ(x, t)
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so that

b1(k) =
τ∫

0

dt χ*k(x, t)
{
1
2 k +A(t) −

i
2
∂
∂x

}
Ψ(x, t)

∣∣∣∣∣∣
X

= 1√
2π

τ∫
0

dt eitk
2/2 e−ik[x−α(t)]

{
1
2 k +A(t) −

i
2
∂
∂x

}
Ψ(x, t)

∣∣∣∣∣∣
X

. (77)

For b2(k), one finds analogously

b2(k) = −
1√
2π

τ∫
0

dt eitk
2/2 e−ik[x−α(t)]

{
1
2 k +A(t) −

i
2
∂
∂x

}
Ψ(x, t)

∣∣∣∣∣∣
−X

. (78)

The momentum-differential spectrum is then calculated as

P(k)
 |b1(k) + b2(k)|2. (79)

In order to calculate b1(k), b2(k), the wavefunction at the t-SURFF boundaries ±X
and its derivative need to be stored with a sufficient time resolution such that the
time integrations in (77) and (78) for each momentum k of interest can be performed
numerically. One could also perform these integrations during the actual propagation
of the wavefunction. However, this is less flexible than a postprocessing because the
k-range of interest and the resolution ∆k might not be clear beforehand.

In the case of a laser pulse of vector potential amplitude Â and frequency ω, the
boundary distance X should be larger than the excursion amplitude α̂ = Â/ω.⁵ The
potential V(x) should really vanish at |x| = X. If it is asymptotically Coulombic, it is a
good idea to “manually” bring it smoothly down to zero. Further, multiplication of a
Hanning window

h(t) = 1
2

[
1−cos

(
2πt
τ

)]
(80)

to the time integrands in (77) and (78) removes unphysical dependencies on the choice
of τ and increases the dynamic range. Note that in practicable TDSE simulations, one
cannot choose τ so large that the flux through the boundary ceases completely.

Figure 8 shows photoelectron spectra for the widely used 1D “fruit-fly” model
atom (electron in soft-core potential V(x) = (x2 + 1)−1/2 [9]) in an Nc = 6-cycle
sin2-envelope laser pulse of vector potential A(t) = A0 sin2

[
ωt/(2Nc)

]
sinωt for 0 <

t < Tp = 2Ncπ/ω (and zero otherwise), with ω = 0.057 (800nm) and A0 = 1 (1.14 ×

5 In principle, the t-SURFF method allows for flux back into the interior region, in practice dis-
cretization errors and absorption of the wavefunction beyond the t-SURFF boundary spoil the spectra
though.
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Fig. 8. Ionization probability vs kinetic energy k2
2

k
k as obtained by the t-SURFF (gray) and the

window-operator (black) method. Laser parameters are given in the text. Numerical parameters:
∆x = 0.2, ∆t = 0.05; Nx = 3600 (including absorbing boundary), X = 200 for t-SURFF, Nx = 32000 for
window operator. Panel (a) shows the t-SURFF spectrum at time Tc = 661 (with Hanning window (80)
applied for τ = Tc) and panel (b) at 2Tc = τ. The window-operator spectrum was calculated at time Tc
on the bigger grid.

1014Wcm−2). The spectra are plotted vs “directional” kinetic energy k2
2 k/k. In the

t-SURFF calculation, right- and left-going electrons were distinguished according
(77) and (78), respectively. For comparison, the window-operator results, calculated
according (37) on a ten times bigger grid, are included (numerical parameters are
specified in the figure caption). In panel (a), the t-SURFF spectrum was calculated
up to the end of the laser pulse at Tp = 661. A substantial fraction of the low-energy
part had not yet arrived at the t-SURFF boundaries ±X by that time. Twice the time
later, in panel (b), the t-SURFF spectrum is already converged down to very low kinetic
energies, as can be inferred from the excellent agreement with the window-operator
spectrum.

In [16] (Qprop 2.0), t-SURFF has been implemented for the three-dimensional
case with the wavefunction expanded in spherical harmonics (cf. Section 1.5 of
Chapter I). The strong-field, low-frequency photoelectron spectrum on the book cover
was calculated this way.

2.4 Pros and cons of the various methods for photoelectron
spectra

The window-operator method has the advantage that, at least for total energy-
differential spectra, no postpropagation is required. The wavefunction immediately
after the interactionwith the laser pulse is sufficient to determine the energy spectrum.
Instead, with the spectral method based on the autocorrelation function and with
t-SURFF, one needs to propagate further for a time τ according to the field-free
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time-evolutionoperator exp(−iĤ0τ). The time τ canbe large if a high energy resolution
is required (autocorrelation method) or very slow electrons are of interest (t-SURFF).
In fact, with increasing τ, the t-SURFF spectrum builds up from high to low |k|
because low-|k| electrons take longer to arrive at the t-SURFF boundary, as illustrated
in Figure 8. The t-SURFF method is, in this respect, complementary to the window
operator where the fast electrons disappear first upon absorption at the grid boundary
but the slow electrons do not have to arrive at a boundary to be captured. Hence, a
combination of t-SURFF (for the fast) and window operator (for the slow electrons) is
optimal.

There are circumstances where the autocorrelation method or variations of it
are useful, in particular for total-energy spectra for systems where Ĥ0 has not much
symmetry. Note that the window operator is inefficient if the discretized Ĥ0 cannot
be made tridiagonal in a cleverly chosen basis. t-SURFF becomes inefficient in high
dimensions because of the necessity to sample and store the wavefunction (and its
gradient in normal direction) at the surface. Lacking symmetry, the surface may
become difficult to chose.

Another useful application of the autocorrelation method is the calculation of
dressed states. Imagine we perform the autocorrelation analysis while the external
driver of frequency ω (e.g., a laser) is on. The spectrum calculated in this way
yields directly so-called dressed states, also known as Floquet states or light-induced
states [10].

3 Emitted radiation and high-harmonics spectra
A fundamental description of the radiation that is generated during the interaction
of intense laser light with matter and actually measured at a detector is intricate and
falls under the cognizance of Quantum Optics. Feeding the current density, evaluated
from the quantum mechanical dipole or acceleration expectation value of a single
atom intoMaxwell’s equations is a bold approximation,which, however, seems to give
reasonable results under many circumstances. The following brief arguments may at
least help understand why such a bold approach works for rarefied gas targets and
strong laser fields [30].

Consider the single-active-electron Hamiltonian with quantized electromagnetic
field in dipole approximation and length gauge,

Ĥ = ĤA + ĤF + r̂ · Ê (81)

with ĤA = p̂2/2+V(r̂) the atomic Hamiltonian,

ĤF =
∑
k,λ

ωkâ†k,λ âk,λ (82)
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the field Hamiltonian composed of modes (k, λ) with λ = 1,2 indicating the pos-
sible polarizations, â(†)k,λ annihilation (creation) operators fulfilling [âk,λ , â†k′ ,λ′ ] =
δk,k′δλ,λ′ 1̂, and

Ê = i
∑
k,λ

ξk(âk,λ − â†k,λ)ek,λ , ξk =
(
2πωk
V

)1/2
(83)

with polarization vector ek,λ and quantization volume V. In the Heisenberg picture,

˙̂ak,λ(t) = i[Ĥ, âk,λ(t)] = i[ĤF + r̂ · Ê, âk,λ(t)] = −iωkâk,λ(t) − ξk r̂(t) ·ek,λ (84)

and thus

âk,λ(t) = âk,λ(0)e−iωk t − ξkek,λ ·
t∫
dt′ r̂(t′)eiωk(t′−t) . (85)

We are interested in the expectation value for the number of photons in mode (k, λ),
which is given by〈

â†k,λ(t)âk,λ(t)
〉
=
〈
â†k,λ(0)âk,λ(0)

〉
(86)

−2ξkRee*k,λ ·
t∫
dt′
〈
r̂(t′)âk,λ(0)

〉
e−iωk t′ (87)

+ ξ2k

t∫
dt′

t∫
dt′′
〈
ek,λ · r̂(t′)e*k,λ · r̂(t′′)

〉
eiωk(t′−t′′) . (88)

The three terms can be easily interpreted. The first term (86) is simply the expectation
value for the initial number of photons in the mode of interest. The second term de-
scribes stimulated absorption and emission. In fact, assuming the closest-to-classical
situation where the electromagnetic field is in a coherent state |αk,λ〉 for which
âk,λ |αk,λ〉 = αk,λ |αk,λ〉, the second term becomes [30]

(87) → −2ξkReαk,λe*k,λ ·
t∫
dt′
〈
r̂(t′)
〉
e−iωk t′ , (89)

i.e., the stimulated absorption or emission spectrum is proportional to the real part of
the (finite-time) Fourier-transformed dipole expectation value −

〈
r̂(t)
〉
in polarization

direction.
The third term is the only one that contributes to the population of modes

that were initially not populated, i.e., to scattering and spontaneous emission. In
particular, this termmust be responsible for high-harmonic generation (HHG) because
the nth-harmonic mode where k = 2π/ωk = 2π/(nω), with ω the fundamental
frequency (of the incoming laser), is initially unpopulated. Abbreviating x̂k,λ(t) =
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ek,λ · r̂(t) and assuming real polarization vectors, we see from

(88) →
〈
nk,λ(t)

〉
HHG = ξ

2
k

t∫
dt′

t∫
dt′′
〈
x̂k,λ(t′)x̂k,λ(t′′)

〉
eiωk(t′−t′′) (90)

that the single-atom source for HHG is actually to be calculated from the two-time
dipole-dipole correlation function

〈
x̂k,λ(t′)x̂k,λ(t′′)

〉
. Only if we assume an uncorre-

lated sample of NA equal single-active-electron atoms (and thus the interaction term
in theHamiltonian (81) replaced by

∑NA
j=1 r̂j · Ê) distributedwithin a volume over which

the dipole approximation is still valid, i.e., all atoms “see” the samefield,wemaywrite

〈
nk,λ(t)

〉
HHG = ξ

2
k

NA∑
j=1

NA∑
k=1

t∫
dt′

t∫
dt′′
〈
x̂(j)k,λ(t

′)x̂(k)k,λ(t
′′)
〉
eiωk(t′−t′′)


 ξ2k
NA∑
j=1

NA∑
k=1

t∫
dt′

t∫
dt′′
〈
x̂(j)k,λ(t

′)
〉〈

x̂(k)k,λ(t
′′)
〉
eiωk(t′−t′′)

= ξ2k

∣∣∣∣∣∣
t∫
dt′

NA∑
j=1

〈
x̂(j)k,λ(t

′)
〉
eiωk t′
∣∣∣∣∣∣
2

(91)

with x̂(j)k,λ(t) = ek,λ · r̂j(t), justifying that HHG spectra from rarefied gas targets are
commonly calculated from the modulus square of the respective Fourier-transformed
(projected) dipole expectation value μk,λ(t) = −

∑NA
j=1

〈
x̂(j)k,λ(t)

〉
. The sameholds true for

a single Ne-electron atom where μk,λ(t) = −
∑Ne

j=1

〈
x̂(j)k,λ(t

′)
〉
. However, the assumption

of uncorrelated electrons within the same atom might be hard to justify.
Let us simplify (91) a bit by assuming a single electron and a certain polarization,

say, λ = 1. Further, we adopt the continuum limit
∑
k

→ V
(2π)3

∫
d3k = V

(2π)3

∫
dk k2
∫
dΩk̂ (92)

so that, with ωk = kc, t→∞, and the initial time −∞,

∑
k

〈
nk,λ
〉
HHG → 1

(2π)2

∫
dωk

∫
dΩk̂

ω3
k

c3

∣∣∣∣∣∣
∞∫

−∞

dt′
〈
x̂k(t′)
〉
eiωk t′
∣∣∣∣∣∣
2

. (93)

We identify the spectral distribution

dN (ωk ,Ωk̂)
dωk dΩk̂

= ω3
k

(2π)2c3
∣∣〈x̂k〉 (ωk)

∣∣2 , (94)
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where

〈x̂k〉 (ωk) =
∞∫

−∞

dt′
〈
x̂k(t′)
〉
eiωk t′ (95)

is the Fourier transform. As
〈
x̂k(t)
〉
vanishes for t→ ±∞, we can, upon integration by

parts of the right hand side of (93), write as well

dN (ωk ,Ωk̂)
dωk dΩk̂

= ωk
(2π)2c3

∣∣∣〈 ˙̂xk〉 (ωk)
∣∣∣2 (96)

or

dN (ωk ,Ωk̂)
dωk dΩk̂

= 1
(2π)2ωkc3

∣∣∣〈 ¨̂xk〉 (ωk)
∣∣∣2 , (97)

with
〈
˙̂xk
〉
(ωk) and

〈
¨̂xk
〉
(ωk) defined analogously to (95).

The last expression is particularly suited for numerical purposes. Let us assume
that the polarization vector is ek = ez and that we are interested in photons emitted
inside a narrow cone in forward direction, say, k = kex,

dNx(ωk)
dωk

= 1
(2π)2ωkc3

∣∣∣〈 ¨̂z〉 (ωk)
∣∣∣2 . (98)

In order to obtain 〈 ¨̂z〉(ωk) via Fourier transformation, we need 〈 ¨̂z〉(t) as input.With the
Heisenberg equations of motion for the electron

˙̂z = i[Ĥ, ẑ] = v̂z , ˙̂pz = i[Ĥ, p̂z] (99)

and the Hamiltonian (81), we obtain, using [ẑ, p̂z] = i1̂ and [f (ẑ), p̂z] = i∂f /∂ẑ,

〈 ¨̂z〉 = −
〈
∂V
∂ẑ

〉
− 〈Êz〉. (100)

If we use the velocity-gauge Hamiltonian for a single active electron

Ĥvg =
1
2(p̂+ Â)

2 +V(r̂) (101)

with the quantized vector potential Â, we have

˙̂z = i[Ĥvg, ẑ] = v̂z = p̂z + Âz , ˙̂pz = i[Ĥvg, p̂z] = −
∂V
∂ẑ (102)

and thus, with Ê = − ˙̂A, the same as (100) because

〈 ¨̂z〉 = 〈 ˙̂pz + ˙̂Az〉 = −
〈
∂V
∂ẑ

〉
− 〈Êz〉. (103)
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This just illustrates that 〈 ¨̂z〉, from which we calculate the observable dNx(ωk)/dωk, is
gauge invariant.

As all the numerical approaches introduced in Chapter I are based on the
Schrödinger picture, but the calculations in this section are, for convenience,
in the Heisenberg picture, we briefly remind the reader that any observable’s
(time-dependent) expectation value 〈Ô〉(t) is independent of the picture because

〈Ô〉(t) = 〈ΨH| ÔH(t) |ΨH〉 = 〈ΨS(t)| ÔS |ΨS(t)〉 , (104)

where the subscript “H” (“S”) refers to theHeisenberg (Schrödinger) picture.Moreover,
we usually treat the electromagnetic field classically in strong-field TDSE simulations
so that (100) becomes

〈 ¨̂z〉(t) = −
〈
Ψ(t)
∣∣∣∣∂V∂ẑ
∣∣∣∣Ψ(t)
〉
− Ez(t). (105)

In order to calculate 〈ẑ〉(t) or 〈 ¨̂z〉(t) with Ψ(t) expanded in spherical harmonics,
one has to evaluate integrals of the form

I(t) =
∫

dr r2
∫

dΩ f (r)cosθ |Ψ(r, t)|2. (106)

With the clm defined in (110) of Chapter I, clm =
√
[(l +1)2 −m2]/[(2l +1)(2l +3)], we

obtain

I(t) =
∑
lm

∑
l′m′

∫
dr f (r)ϕ*

lm(r, t)ϕl′m′ (r, t)〈Ylm|cosθ|Yl′m′〉

=
∑
lm

∫
dr f (r)ϕ*

lm(r, t)
(
cl−1,mϕl−1,m(r, t) + clmϕl+1,m(r, t)

)
. (107)

In the case I(t) = −[〈 ¨̂z〉(t) + Ez(t)], we have f (r) = ∂V
∂r and for I(t) = 〈ẑ〉(t) simply f (r) = r.

Figure 9 shows an example for a high-harmonic spectrum. With the TDSE solver
Qprop outlined in Section 1.5 of Chapter I, H(1s) in a linearly polarized, 800nm, 6-cycle
sin2-envelope laser pulse of intensity 3.51 × 1014Wcm−2 was propagated. During
the propagation, the acceleration (105) was calculated and stored. An FFT of the
acceleration yields a complex 〈 ¨̂z〉(ω). Figure 9(a) shows |〈 ¨̂z〉(ω)|2. As expected [13],
the cutoff is at harmonic order

ncut−off 
 1
ω (Ip +3.17Up) ,

which is at ncut−off 
 52 is this case. By taking windowed Fourier transforms (or
a wavelet transform), a time-frequency analysis can be performed, i.e., one may
investigate at which time which harmonic is predominantly emitted. Because of
the time-frequency uncertainty, a narrower window in time will lead to a broader
distribution in frequency and vice versa. Time-frequency analysis is a very powerful

 EBSCOhost - printed on 2/13/2023 7:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



74 | Dieter Bauer

0(a) (b) 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Harmonic order

Ha
rm

on
ic

 o
rd

er

Time in cycles

10–4

10–2

10–0

Yi
el

d 
(a

rb
.u

.)
10–2

10–4

60
0.00

–0.67

–1.33

–2.00

–2.67

–3.33

–4.00

50

40

30

20

10
10 20 30 40 50 60

Fig. 9. High-harmonic spectrum (a) and time-frequency analysis (b) for a 6-cycle sin2-envelope laser
pulse of frequency ω = 0.057 (800nm) and field amplitude E0 = 0.1 (3.51 × 1014Wcm−2).

tool for identifying the physicalmechanismbehind harmonic emission. In Figure 9(b),
the logarithm of the modulus square of the windowed Fourier transform of 〈 ¨̂z〉(t) is
plotted over four orders of magnitude. The frequency-resolved emission times are in
good agreement with “simple man’s theory” (see, e.g., [5, 35]).
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Heiko Bauke
III Time-dependent relativistic wave

equations: Numerics of the Dirac and the
Klein–Gordon equation

Computational methods are indispensable to study quantum dynamics in the realm
of relativistic light-matter interactions. This chapter provides a short introduction
to relativistic quantum mechanics and the Dirac and the Klein–Gordon equations.
Numerical methods for solving the time-dependent Dirac equation are presented
together with some exemplary implementations. These methods allow us to study
Klein tunneling, the interaction of electrons with strong short laser pulses, and
ionization from hydrogen-like highly charged ions in strong laser fields.

1 From nonrelativistic to relativistic quantum
mechanics

In the previous chapters, we have considered strong-field quantum dynamics in
the nonrelativistic regime, which is governed by the time-dependent Schrödinger
equation. For sufficiently strong fields, however, charged particles can be accelerated
to velocities on the order of the speed of light within a single laser half-cycle, which
demands a relativistic quantum theory.

1.1 Relativistic quantum mechanical equations of motion –
a naive attempt

In order to derive a relativistic quantum mechanical equation of motion, one may
apply a correspondence principle. This approach is motivated by the fact that the
nonrelativistic time-dependent Schrödinger equation

i�∂Ψ(r, t)∂t = ĤΨ(r, t) =
{

1
2m0

[
−i�∇− qA(r, t)

]2 + qϕ(r, t)}Ψ(r, t) (1)
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for a charged particle of charge q and mass m0 and electromagnetic potentials A(r, t)
and ϕ(r, t) can be “derived” from the classical Hamilton function

H(r,p, t) = 1
2m0

[
p− qA(r, t)

]2 + qϕ(r, t) (2)

by replacing the canonical momentum p by the canonical momentum operator p̂ =
−i�∇.

The classical, relativistic Hamilton function for a charged particle is

H(r,p, t) =
√
c2
[
p− qA(r, t)

]2 +m2
0c4 + qϕ(r, t) . (3)

Thus, one might propose the Hamiltonian

Ĥ =
√
c2
[
p̂− qA(r, t)

]2 +m2
0c4 + qϕ(r, t) (4)

as the quantum mechanical version of (3), which yields the equation of motion

i�∂Ψ(r, t)∂t =
{√

c2
[
−i�∇− qA(r, t)

]2 +m2
0c4 + qϕ(r, t)

}
Ψ(r, t) (5)

for the wavefunction Ψ(r, t). The operator (4), however, suffers from the defect that
it is very problematic to give the square-root operator, which appears in (4), a
well-defined meaning. The operator

√[
p̂− qA(r, t)

]2 +m2
0c2 is a nonlinear function

of three operators, the three components of p̂− qA(r, t).
If two linear operators Ô1 and Ô2 commute, we can define the action of some

operator function f (Ô1, Ô2) in terms of its action on the common eigenfunctions of Ô1
and Ô2. Let uo1,o2 denote a common eigenfunction of Ô1 and Ô2 with

Ô1uo1,o2 = o1uo1,o2 , Ô2uo1,o2 = o2uo1,o2 ; (6)

then, one can show via a formal Taylor expansion of f (Ô1, Ô2) that

f (Ô1, Ô2)uo1,o2 = f (o1, o2)uo1,o2 . (7)

Thus, the operator function f (Ô1, Ô2) reduces to a function of real-valued arguments
in the space of common eigenfunctions of Ô1 and Ô2. If both Ô1 and Ô2 are Hermitian,
then the set of their common eigenfunctions forms a basis. Hence, the action of
f (Ô1, Ô2) on some arbitrary function can be calculated by expanding it into this basis
and employing (7). This result can be generalized to operator functions of more than
two commuting operators.

However, in general, the components of p̂ − qA(r, t) do not commute pairwise
(unless the vector potential A(r, t) is homogeneous), and a set of common eigen-
functions does not exist. Consequently, the given recipe to apply operator functions
cannot be employed to render equation (5) well defined, and the square-root equation
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(5) is usually employed in contexts without a magnetic vector potential [19, 29]. In
the following, we will see that there are two possible approaches that successfully
avoid the square root in relativistic quantum equations of motion, which lead to the
Klein–Gordon equation and the Dirac equation.

1.2 The Klein–Gordon equation

In order to remove the square root in (5), one may rearrange and square (4), which
yields

[
i� ∂
∂t − qϕ(r, t)

]2
φ(r, t) =

{
c2
[
−i�∇− qA(r, t)

]2 +m2
0c4
}
φ(r, t) , (8)

where we have used φ(r, t) to denote the wavefunction. Equation (8) is often
called Klein–Gordon equation. The discovery of the Klein–Gordon equation can be
attributed to various physicists. Depending on who is credited, the equation is called
Klein–Gordonequation,Klein–Fock–Gordonequation,orKlein–Gordon–Schrödinger
equation; see [20] for the history of the Klein–Gordon equation. Solutions φ(r, t) of
equation (8) satisfy the continuity equation

∂ρ(r, t)
∂t +∇ · j(r, t) = 0 (9)

with the density

ρ(r, t) = i�
2mc2

[
φ(r, t)* ∂φ(r, t)∂t − ∂φ(r, t)*

∂t φ(r, t)
]
− qϕ(r, t)

mc2 φ(r, t)*φ(r, t) (10)

and the current

j(r, t) = − i�
2m
[
φ(r, t)*∇φ(r, t) −∇φ(r, t)*φ(r, t)

]
− qA(r, t)

m φ(r, t)*φ(r, t) , (11)

where φ(r, t)* denotes the complex conjugate of φ(r, t).
Klein–Gordon equation (8) differs from the Schrödinger-type Hamiltonian form

i� ∂
∂t Ψ(r, t) = Ĥ(t)Ψ(r, t) (12)

of quantum mechanical equations of motion, as the Klein–Gordon equation is of
second order in time. Consequently, unique initial conditions require the specification
of both thewavefunction and its time derivative. Furthermore, the density ρ(r, t) is not
positive definite. Therefore, ρ(r, t) cannot be interpreted as a probability density, and
j(r, t) is not a probability density current.
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However, these difficulties can be circumvented if one interprets the presence of
a second-order time derivative in the Klein–Gordon equation as a second degree of
freedom of the wavefunction. The wavefunction’s two degrees of freedom correspond
to two different charge states, and qρ(r, t) may be interpreted as a charge density and
q j(r, t) as a charge current, see [8, 13, 36, 39, 41] for details. In the following, we will
show how to transform Klein–Gordon equation (8) into the Hamiltonian form (12).

It is possible to transform (8) into a Hamiltonian form (12) [8] by introducing a
two-component wavefunction Ψ(r, t) with

Ψ(r, t) =
(
Ψ1(r, t)
Ψ2(r, t)

)
=

⎛
⎜⎜⎝
1
2

{
φ(r, t) + 1

m0c2

[
i� ∂
∂t − qϕ(r, t)

]
φ(r, t)

}
1
2

{
φ(r, t) − 1

m0c2

[
i� ∂
∂t − qϕ(r, t)

]
φ(r, t)

}
⎞
⎟⎟⎠ . (13)

With the ansatz (13), it follows

φ(r, t) = Ψ1(r, t) +Ψ2(r, t) , (14)
1

m0c2

[
i� ∂
∂t − qϕ(r, t)

]
φ(r, t) = Ψ1(r, t) −Ψ2(r, t) , (15)

and with (8) the equation of motion for the new two-component wavefunction

i�∂Ψ(r, t)∂t = Ĥ(t)Ψ(r, t)

=
{
σ3 + iσ2
2m0

[
−i�∇− qA(r, t)

]2 + qϕ(r, t) + σ3m0c2
}
Ψ(r, t) , (16)

which has the desired Hamiltonian form (12). The wavefunction’s components are
coupled by the Pauli matrices σ2 and σ3 of the set

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (17)

The Pauli matrices are complex-valued Hermitian unitarymatrices that obey the Pauli
algebra

σiσj = iϵi,j,kσk + δi,j , (18a)[
σi ,σj
]
= 2iϵi,j,kσk , (18b){

σi ,σj
}
= 2δi,j , (18c)

with i, j, k ∈ {1,2,3}, and where ϵi,j,k denotes the permutation symbol (also known
as the Levi–Civita symbol), and δi,j is the Kronecker delta. The density (10) in terms
of the two-component wavefunction Ψ(r, t) is given by

ρ(r, t) = Ψ*(r, t)σ3Ψ(r, t). (19)
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The operator

K̂ = σ3 + iσ2
2m0

[
−i�∇− qA(r, t)

]2 + σ3m0c2 (20)

that appears in (16) is the kinetic-energy operator of the Klein–Gordon equation.
Note that the Klein–Gordon Hamiltonian (16) is not Hermitian (Ĥ(t) �= Ĥ(t)†)

because σ3+iσ2 is not aHermitianmatrix. As a consequence, theKlein–GordonHamil-
tonian can have complex eigenvalues if the external fields become sufficiently strong
[34]. Furthermore, the time-evolutionoperator of theKlein–GordonHamiltonian is not
unitary (Û−1 �= Û†). However, theKlein–GordonHamiltonian is a σ3-pseudo-Hermitian
operator and its time-evolution operator is σ3-pseudo-unitary [26, 27]. A linear
operator Ĥ acting in a Hilbert space H is called η̂-pseudo-Hermitian if there is a
Hermitian operator η̂ such that

η̂−1Ĥ†η̂ = Ĥ . (21)

The operator Ĥ# = η̂−1Ĥ†η̂ is named the η̂-pseudo-adjoint of Ĥ. Let the wavefunctions
Ψ1 and Ψ2 be two elements of the Hilbert space H, and let 〈Ψ1|Ψ2〉 denote the inner
product inH. The operator η̂ defines the pseudo–inner product

〈Ψ1|Ψ2〉η̂ = 〈Ψ1|η̂Ψ2〉 . (22)

The pseudo–inner product (22) is conjugate symmetric, linear in its second argument,
but in contrast to usual inner products, it is not necessarily positive definite. The
operator Ĥ is Hermitian with respect to the pseudo-inner-product (22)

〈ĤΨ1|Ψ2〉η̂ = 〈Ψ1|ĤΨ2〉η̂ . (23)

A linear invertible operator Û acting onH is called η̂-pseudo-unitary if

η̂−1Û†η̂ = Û−1 . (24)

The inner product (22) is invariant under η̂-pseudo-unitary transforms

〈Ψ1|Ψ2〉η̂ = 〈ÛΨ1|ÛΨ2〉η̂ . (25)

Expectation values 〈O〉 of observables represented by the operator Ô are given by the
pseudo-inner product (22), that is,

〈O〉 = 〈Ψ1|ÔΨ1〉η̂ . (26)

The Klein–Gordon equation is gauge invariant. Gauge invariance means that if we
introduce via the gauge function g(r, t), the new potentials

A′(r, t) =A(r, t) + 1
q
∂g(r, t)
∂r , (27a)
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ϕ′(r, t) = ϕ(r, t) − 1
q
∂g(r, t)
∂t , (27b)

which leave the electromagnetic fields E(r, t) andB(r, t) invariant; then, the wavefunc-
tion

Ψ ′(r, t) = exp
[
ig(r, t)/�

]
Ψ(r, t) (28)

fulfills the Klein–Gordon equation with new potentials (27), that is,

i�∂Ψ
′(r, t)
∂t = Ĥ

(
A′(r, t),ϕ′(r, t)

)
Ψ ′(r, t). (29)

This can be proven by showing that

Ĥ
(
A′(r, t),ϕ′(r, t)

)
Ψ ′(r, t) − i�∂Ψ

′(r, t)
∂t =[

Ĥ
(
A(r, t),ϕ(r, t)

)
Ψ(r, t) − i�∂Ψ(r, t)∂t

]
exp
[
ig(r, t)/�

]
. (30)

The right-hand side is zero because Ψ(r, t) fulfills the Klein–Gordon equation.

1.3 The Dirac equation

Another possible approach to avoid the square root in (5) is to assume that the rela-
tivistic wave equation has form (12) and make a particular ansatz for the Hamiltonian.
As (5) contains first-order time derivatives and special relativity puts time and space
on an equal footing, it appears natural to make for free particles the linear ansatz

Ĥ0 = cα · (−i�∇) + βm0c2 (31)

with the coefficients α = (α1, α2, α3)T and β to be determined. In order to conformwith
the classical energy-momentum relation

E(p) =
√
c2p2 +m2

0c4 , (32)

we require that the square of the Hamiltonian is

Ĥ2
0 = c2(−i�∇)2 +m2

0c4 (33)

or more explicitly

− c2�2
∑
i

∑
j

αiαj + αjαi
2 ∂ri ∂rj − i�m0c2

∑
i
(αiβ + βαi)∂ri + β2m2

0c4

= −c2�2
∑
i
∂2ri +m

2
0c4 . (34)
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Comparing the left-hand side and the right-hand side of this equation yields that the
coefficients α1, α2, α3, and β must obey the so-called Dirac algebra

α2i = β2 = 1, αiαk + αkαi = 2δi,k , αiβ + βαi = 0 . (35)

This algebra cannot be fulfilled by ordinary numbers but by noncommutingHermitian
matrices. Hermiticity of these matrices ensures that the Hamiltonian is Hermitian,
too. From α2i = β2 = 1, it follows that the matrices αi and β have eigenvalues ±1.
Furthermore, the traces vanish, because

Tr(αi) = Tr(β2αi) = Tr(βαiβ) = Tr(β(−βαi)) = −Tr(αi) , (36)
Tr(β) = Tr(α2i β) = Tr(αiβαi) = Tr(αi(−αiβ)) = −Tr(βi) (37)

and therefore Tr(αi) = Tr(β) = 0. As the trace equals the sum of all eigenvalues, each
matrix must have the same number of positive and negative eigenvalues ±1 and thus
must have an even dimension. The lowest matrix dimension that allows to fulfill (35)
in three space dimensions is four. The algebra (35) determines the matrices αi and
β only up to unitary transforms. Whenever a concrete representation is required, we
adopt the so-called Dirac representation with

α1 =

⎛
⎜⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟⎠ , α2 =

⎛
⎜⎜⎜⎝
0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

⎞
⎟⎟⎟⎠ ,

α3 =

⎛
⎜⎜⎜⎝
0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎟⎠ , β =

⎛
⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎠ .

(38)

Note that in this representation, the matrices αi may also be written as

αi =
(
0 σi
σi 0

)
. (39)

Furthermore, only one or two αi matrices are required in one-dimensional or
two-dimensional systems, which reduces the number of constraints as given by the
Dirac algebra (35). Therefore, the two-dimensional Pauli matrices (17) are sufficient
to fulfill the Dirac algebra (35) in one or two dimensions, where the standard
representation of Dirac matrices is given by

α1 = σ1, β = σ3, (40)
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and

α1 = σ1, α2 = σ2, β = σ3, (41)

respectively.
The equation

i�∂Ψ(r, t)∂t = Ĥ0Ψ(r, t) =
(
cα · (−i�∇) + βm0c2

)
Ψ(r, t) (42)

with the matrices α1, α2, α3, and β is a quantum mechanical equation of motion
for free particles that obey the relativistic energy-momentum relation. Because the
matrices αi and β are four-dimensional, thewavefunctionΨ(r, t) has four components
in case of the Dirac equation. The interaction with electromagnetic potentials may be
introduced in analogy to the Schrödinger equation or the Klein–Gordon equation via
the minimal-coupling principle, which yields

i�∂Ψ(r, t)∂t = ĤΨ(r, t) =
{
cα ·
[
−i�∇− qA(r, t)

]
+ qϕ(r, t) + βm0c2

}
Ψ(r, t). (43)

Like the Schrödinger and the Klein–Gordon equation, also the Dirac equation (43) is
gauge invariant, i.e., the wavefunction

Ψ ′(r, t) = exp
[
ig(r, t)/�

]
Ψ(r, t) (44)

fulfills the Dirac equation with the new potentials (27),

i�∂Ψ
′(r, t)
∂t = Ĥ

(
A′(r, t),ϕ′(r, t)

)
Ψ ′(r, t) (45)

with Ĥ being the Dirac-Hamiltonian defined in (43). As for the Klein–Gordon equation,
this can be proven by showing that

Ĥ
(
A′(r, t),ϕ′(r, t)

)
Ψ ′(r, t) − i�∂Ψ

′(r, t)
∂t

=
{
Ĥ
(
A(r, t),ϕ(r, t)

)
Ψ(r, t) − i�∂Ψ(r, t)∂t

}
exp
[
ig(r, t)/�

]
. (46)

The right-hand side of the last equation is zero because Ψ(r, t) fulfills the Dirac
equation.

Solutions Ψ(r, t) of equation (43) satisfy the continuity equation

∂ρ(r, t)
∂t +∇ · j(r, t) = 0 (47)

with the density

ρ(r, t) = Ψ(r, t)†Ψ(r, t) (48)
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and the current

j(r, t) = Ψ(r, t)†cαΨ(r, t), (49)

where Ψ(r, t)† denotes the complex conjugate transpose of Ψ(r, t).

2 Free particles and wave packets
Systems with vanishing electromagnetic potentials belong to the rare cases where the
Klein–Gordon and the Dirac equations can be solved analytically [1]. These solutions
can be employed to construct wave packets for initialization of the wavefunction
in numerical solutions. Furthermore, analytic solutions give us insight into general
properties of the Klein–Gordon and the Dirac equations.

2.1 Free-particle solution of the Klein–Gordon equation

The Klein–Gordon equation for a free particle reduces to

i�∂Ψ(r, t)∂t =
[
σ3 + iσ2
2m0

(−i�∇)2 + σ3m0c2
]
Ψ(r, t) . (50)

Making the ansatz

Ψ(r, t) = Ψ(r)e−iEt/� (51)

yields the eigenvalue equation

EΨ(r) =
[
σ3 + iσ2
2m0

(−i�∇)2 + σ3m0c2
]
Ψ(r) . (52)

In Fourier space, where the differential operator −i�∇ becomes a real vector p, the
eigenvalue equation reads as

0 =
[
σ3 + iσ2
2m0

p2 + σ3m0c2 − E
]
Ψ̃(p) , (53)

where Ψ̃(p) denotes the Fourier transform ofΨ(r). For a nontrivial solution of (53), the
condition

0 = det
(
σ3 + iσ2
2m0

p2 + σ3m0c2 − E
)
= E2 −p2c2 −m2

0c4 (54)

has to be fulfilled. This yields the two energy eigenvalues

E = ±
√
p2c2 +m2

0c4 = ±E(p). (55)
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m0c2

–m0c2

0 –

Fig. 1. The energy spectrum of the free-particle Klein–Gordon and Dirac Hamiltonians splits into two
continua with positive and negative energy values.

This means that a free Klein–Gordon particle may have positive or negative kinetic en-
ergy, unlike in classical relativistic mechanics or nonrelativistic quantum mechanics
where the kinetic energy is always positive, see Figure 1. Inserting the two eigenvalues
(55) into (53) gives the two orthogonal eigenvectors

Ψ̃+(p) = 1
2
√
p0(p)/(m0c)

(
1+ p0(p)/(m0c)
1− p0(p)/(m0c)

)
, (56a)

Ψ̃−(p) = 1
2
√
p0(p)/(m0c)

(
1− p0(p)/(m0c)
1+ p0(p)/(m0c)

)
, (56b)

where

p0(p) =
E(p)
c =
√
m2
0c2 +p2. (57)

Both vectors have been normalized such that

Ψ̃+(p)†σ3Ψ̃+(p) = 1, (58a)

Ψ̃−(p)†σ3Ψ̃−(p) = −1, (58b)

Ψ̃+(p)†σ3Ψ̃−(p) = 0. (58c)

Going back to position space, the full solutions of the free Klein–Gordon equation
read as

Ψ+
p(r, t) =

1
(2π�)3/2

1
2
√
p0(p)/(m0c)

(
1+ p0(p)/(m0c)
1− p0(p)/(m0c)

)
ei(p·r−E(p)t)/�, (59a)

Ψ−
p(r, t) =

1
(2π�)3/2

1
2
√
p0(p)/(m0c)

(
1− p0(p)/(m0c)
1+ p0(p)/(m0c)

)
ei(p·r+E(p)t)/�. (59b)
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These functions are orthonormalized, i.e.,

〈Ψ+
p1 |Ψ+

p2〉σ3 = δ(p1 −p2), (60a)

〈Ψ−
p1 |Ψ−

p2〉σ3 = −δ(p1 −p2), (60b)

〈Ψ+
p1 |Ψ−

p2〉σ3 = 0, (60c)

where δ(x) denotes the Dirac δ distribution. The two functions (59) are also eigenfunc-
tions of the momentum operator −i�∇ with the same eigenvalue p. Because of the
nondefinite scalar product and (58), the relations

Ψ+
p(r, t)

†σ3(−i�∇)Ψ+
p(r, t) = p, (61a)

Ψ−
p(r, t)†σ3(−i�∇)Ψ−

p(r, t) = −p (61b)

follow. An arbitrary solution of the free Klein–Gordon equation may be built by
superimposing plane waves of different momenta, viz,

Ψ(r, t) =
∫ [

g+(p)Ψ+
p(r, t) + g−(p)Ψ−

p(r, t)
]
d3p (62)

with weight functions g+(p) and g−(p). For a proper normalization,∫ [
|g+(p)|2 + |g−(p)|2

]
d3p = 1 (63)

is required. Figure 2 shows two one-dimensional wave packets that are superpositions
of only positive-energy states and only negative-energy states, respectively, at two
different times. The functions g±(p) are Gaussians with both having the mean

Ψ
(x

)+ σ
Ψ

(x
)

Ψ+( x ,0)
Ψ+( x ,1)

0.8

0.6

0.4

0.2

3 0.0

–0.2

–0.4

–0.6

–0.8
–8 –6 –4 –2 0 2 4 6 8

x

Ψ−( x ,0)
Ψ−( x ,1)

Fig. 2. The densities of free Klein–Gordon wave packets composed of plane waves having positive
(Ψ+(x, t)) or negative (Ψ−(x, t)) energy only at two different times. Although the weight function has
its maximum at a positive momentum in both cases, the negative-energy wave packet moves into
the negative direction.
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momentum at p = 4 a.u. Note that because of normalization (58), the wave packet
that is a superposition of negative-energy states has a negative density. Furthermore,
it features anegativemeanmomentum 〈Ψ−|− i�∇|Ψ−〉σ3 =−4a.u. as a consequenceof
(61b),while 〈Ψ+|− i�∇|Ψ+〉σ3 = 4 a.u. Note that thewavepacket that is a superposition
of negative-energy states moves to the left. This is a direct consequence of the energy
being negative, as it can be seen by considering a wave packet

Ψ(r, t)∼
∫

g(p)ei(p·r∓E(p)t)/� . (64)

Let us assume that g(p) is peaked around p*. We can then linearize

E(p)∼ E(p*) +∇E(p)|p=p* · (p−p*) (65)

so that

Ψ(r, t)∼ e±i(E(p
*)+∇E(p)|p=p* ·p*)t/�

∫
g(p)eip·(r∓∇E(p)|p=p* t)/�, (66)

and the group velocity equals

v = ±∇E(p)|p=p* = ±
p*
m0

1√
1+p*2/(m0c)2

. (67)

Note that this is, up to the sign, exactly the velocity of a classical, relativistic point-like
particle with momentum p*.

2.2 Free-particle solution of the Dirac equation

Let us solve the free-particle Dirac equation (42) before we consider more complicated
setups later on. In analogy to the Schrödinger and the Klein–Gordon equation, we
utilize the ansatz

Ψ(r, t) = Ψ(r)e−iEt/� (68)

with the four-component functionΨ(r) and the energy E to be determined. The ansatz
(68) leads to the eigenvalue equation

EΨ(r) =
[
cα · (−i�∇) + βm0c2

]
Ψ(r), (69)

and in Fourier space

0 =
(
cα ·p+ βm0c2 − E

)
Ψ̃(p) . (70)

For a nontrivial solution of (70), the condition

0 = det
(
cα ·p+ βm0c2 − E

)
= (E2 −p2c2 −m2

0c4)2 (71)
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has to be fulfilled, where we utilized the Dirac algebra (35). This yields the two doubly
degenerate energy eigenvalues

E = ±
√
p2c2 +m2

0c4 = ±E(p) . (72)

A free Dirac particle may thus have positive or negative kinetic energy, which agrees
with the energy spectrum of the Klein–Gordon equation. Furthermore, the doubly
degenerate energy eigenvalues indicate that momentum and energy are not sufficient
to characterize an eigenstate of the free Dirac equation. Dirac particles carry some
additional internal degree of freedom that is required to characterize the particle
completely. The eigenfunctions of the free Dirac equation (42) can be chosen as
simultaneous eigenfunctions of the free Dirac Hamiltonian, the momentum operator
−i�∇, and some further operator that characterizes this internal degree of freedom,
which can be related to the spin of the electron [3]. One can show that a possible set
of orthonormal eigenfunctions is given by

Ψ̃+
1,2(p) =

√
m0c + p0(p)
2p0(p)

⎛
⎝ χ1,2

σ ·p
m0c + p0(p)

χ1,2

⎞
⎠ , (73a)

Ψ̃−
1,2(p) =

√
m0c + p0(p)
2p0(p)

⎛
⎝− σ ·p

m0c + p0(p)
χ1,2

χ1,2

⎞
⎠ , (73b)

where χ1 and χ2 denote two arbitrary orthogonal two-component unit-vectors.Wewill
choose

χ1 =
(
1
0

)
, χ2 =

(
0
1

)
. (74)

Another common choice for χ1,2 is such that both are eigenvectors of the operator
σ ·p. In this case, χ1 and χ2 are momentum dependent, and the vectors (73) are also
eigenstates of the so-called helicity operator Σ ·p/|p| with Σ = (Σ1,Σ2,Σ3)T and

Σi =
(
σi 0
0 σi

)
. (75)

Both vectors (73) have been normalized such that

Ψ̃+
i (p)

†Ψ̃+
j (p) = δi,j , (76a)

Ψ̃−
i (p)

†Ψ̃−
j (p) = δi,j , (76b)

Ψ̃+
i (p)

†Ψ̃−
j (p) = 0. (76c)
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In position space, the full solutions of the free Dirac equation are given by

Ψ+
p,i(r, t) =

1
(2π�)3/2

√
m0c + p0(p)
2p0(p)

⎛
⎝ χi

σ ·p
m0c + p0(p)

χi

⎞
⎠ei(p·r−E(p)t)/�, (77a)

Ψ−
p,i(r, t) =

1
(2π�)3/2

√
m0c + p0(p)
2p0(p)

⎛
⎝− σ ·p

m0c + p0(p)
χi

χi

⎞
⎠ei(p·r+E(p)t)/�. (77b)

The upper index indicates the sign of the energy eigenvalue of these solutions and the
lower index p themomentum eigenvalue. The two-fold degeneracy is indicated by the
index i ∈ {1,2}. The functions in (77) are orthonormalized, i.e.,

〈Ψ+
p1,i|Ψ+

p2,j〉 = δi,jδ(p1 −p2), (78a)
〈Ψ−

p1,i|Ψ−
p2,j〉 = δi,jδ(p1 −p2), (78b)

〈Ψ+
p1,i|Ψ−

p2,j〉 = 0. (78c)

The four functions (77) are also eigenfunctions of the momentum operator −i�∇with
the eigenvaluep. Furthermore, they forma complete basis. Thus, an arbitrary solution
of the free Dirac equation may be built by superimposing plane waves of different
momenta, viz,

Ψ(r, t) =
∫ [

g+1(p)Ψ+
p,1(r, t) + g+2(p)Ψ+

p,2(r, t)

+g−1(p)Ψ−
p,1(r, t) + g−2(p)Ψ−

p,2(r, t)
]
d3p (79)

with the weight functions g+1(p), g+1(p), g−1(p), and g−2(p). The quantity |g+1(p)|2 +
|g+2(p)|2 + |g−1(p)|2 + |g−2(p)|2 is the wave packet’s density in momentum space. Hence,∫

|g+1(p)|2 + |g+2(p)|2 + |g−1(p)|2 + |g−2(p)|2 d3p = 1 (80)

is required for a proper normalization.
Equation (77) presents the solution of the free Dirac equation in three dimensions.

As mentioned before, in one and two dimensions, the Dirac matrices can be repre-
sented by 2 × 2 matrices, and the wavefunctions then have only two components. By
a similar calculation as for the three-dimensional case, the solutions

Ψ+
p (x, t) =

1
(2π�)1/2

√
m0c + p0(p)
2p0(p)

⎛
⎝ 1

p
m0c + p0(p)

⎞
⎠ei(px−E(p)t)/�, (81a)

Ψ−
p (x, t) =

1
(2π�)1/2

√
m0c + p0(p)
2p0(p)

⎛
⎝− p

m0c + p0(p)
1

⎞
⎠ei(px+E(p)t)/� (81b)
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for the one-dimensional free Dirac equation follow. Here, p denotes the momentum
eigenvalue of these functions. Analogously, the solutions of the two-dimensional free
Dirac equation are

Ψ+
p(r, t) =

1
2π�

√
m0c + p0(p)
2p0(p)

⎛
⎜⎝ 1

px + ipy
m0c + p0(p)

⎞
⎟⎠ei(p·r−E(p)t)/�, (82a)

Ψ−
p(r, t) =

1
2π�

√
m0c + p0(p)
2p0(p)

⎛
⎝ −px + ipy
m0c + p0(p)

1

⎞
⎠ei(p·r+E(p)t)/�, (82b)

with the two-dimensional position vector r = (x, y) and the two-dimensional momen-
tum eigenvalue p = (px ,py).

The wavefunctions in (77) are four-fold degenerate for a fixed momentum. The
sign of the energy and the spin are needed as further quantum numbers to specify
an eigenstate completely. The four-fold degeneracy is also reflected in the need to
employ four-component wavefunctions. The physical reason why the Dirac equation
wavefunction in one-dimensional systems has only two components and not four
as in three dimensions is that a one-dimensional vector potential cannot describe
a magnetic field to which a spin could couple. Consequently, the solutions of the
one-dimensional free Dirac equation do not feature the two-fold degeneracy due to
the electron spin and can be expressed as two-component wavefunctions. As the
functions (82) have only two components, they feature no spin too, although vector
potentials can lead to a nonvanishingmagnetic field in this case. However, this field is
embedded into a three-dimensional space. Therefore, to describe electrons including
their spin in two-dimensional systems, one has to employ a four-component Dirac
equation, which can be obtained by ignoring any dependency on the third dimension
in the three-dimensional Dirac equation.

Figure 3 shows two one-dimensional wave packets that are superpositions of only
positive-energy states and only negative-energy states, respectively,

Ψ+(x, t) =
∫

g(p)Ψ+
p (x, t)dp , (83)

Ψ−(x, t) =
∫

g(p)Ψ−
p (x, t)dp , (84)

with

g(p) = 1
(2π∆p2)1/4

exp
(
−(p − p

*)2
4∆p2

)
(85)

at two different times. For Figure 3, the function g(p) is a Gaussian with mean at
p* = 4 a.u. Note that the wave packet Ψ−(x, t) moves to the left, analogously to the
Klein–Gordon case above.
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Fig. 3. The densities of free one-dimensional Dirac wave packets at two times. The wave packets are
composed of plane waves having positive (Ψ+(x, t)) or negative (Ψ−(x, t)) energy only. Although the
weight function has its maximum at a positive momentum in both cases, the negative-energy wave
packet moves into the negative direction.

In Figure 3, we also observe wave packet spreading. Because at low momenta
(|p*| � m0c), the relation between momentum and velocity is linear, the free
Gaussian wave packets spread symmetrically as in the nonrelativistic Schrödinger
theory. However, if a wave packet has mean momentum larger than m0c and a broad
momentum distribution, the relativistic nonlinear relation between momentum and
velocity causes an asymmetric velocity distribution, resulting in an asymmetrical
spreading. Thewave packet forms a shock front thatmoveswith velocity close to c, see

x
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)+
Ψ
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)

Ψ+(x, 0)
Ψ+(x, 0.0015)

250
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0
–0.05 0.00 0.05 0.10 0.15 0.20 0.25

Fig. 4. A free Dirac wave packet composed of plane waves having positive energy only with mean
momentum p* = 4m0c and a broad momentum width ∆p = 2.5m0c. As a consequence of the
nonlinear relation between momentum and velocity, the wave packet forms a shock front that moves
with velocity close to c.
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Fig. 5. Same as Figure 4 but for ∆p = 0.25m0c. The whole wave packet moves with velocity close to c
without changing its form significantly.

Figure 4. If the momentum distribution is narrow, however, the velocity distribution
gets concentrated close to c, and the whole wave packet moves with a velocity close
to c without changing its form significantly, see Figure 5.

3 Numerical solution of the Dirac equation
The Dirac equation and the Klein–Gordon equation can be solved exactly only in very
few cases. Analytical methods for determining solutions of these equations usually
require physical setups with a high degree of symmetry [1, 6, 13, 36, 39, 41]. Also,
approximations reach their limits in describing the interaction with high-frequency,
few-cycle laser pulses of high intensity and for other relativistic high-energy processes.
Thus, numerical approaches via computer simulations are indicated [2, 4, 5, 9, 10, 25,
32].

3.1 General methods for time-dependent quantum mechanics

The basic numerical methods that are used to solve the Dirac equation and the
Klein–Gordon equation are often not specific to these equations. In fact, they are
based on the (pseudo) Hermitian structure of the time-evolution equation

i� ∂
∂t Ψ(r, t) = Ĥ(t)Ψ(r, t). (86)
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UsingDyson’s time-orderingoperator T̂, the formal solution [31] to the time-dependent
equation (86) can be expressed as

Ψ(r, t + ∆t) = T̂ exp

⎛
⎝− i

�

t+∆t∫
t

Ĥ(t′)dt′
⎞
⎠Ψ(r, t), (87)

which reads more explicitly

Ψ(r, t + ∆t) =

⎛
⎝1− i

�

∆t∫
t0

dt1Ĥ(t1) +
i2
�2

∆t∫
t0

dt1
t1∫

t0

dt2Ĥ(t1)Ĥ(t2) + . . .

⎞
⎠Ψ(r, t) . (88)

Usually, it is not possible to cast (87) directly into a numerical scheme. Some
approximations have to be introduced. First, we neglect the time-ordering operator,
introducing an error on the order ofO(∆t3),

Ψ(r, t + ∆t) = exp

⎛
⎝− i

�

t+∆t∫
t

Ĥ(t′)dt′
⎞
⎠Ψ(r, t) +O(∆t3) . (89)

Second, the operator

Ĥ(t,∆t) = 1
�

t+∆t∫
t

Ĥ(t′)dt′ (90)

has to be discretized and becomes a matrixH(t,∆t). Thus, time propagation reduces
to the calculation of matrix exponentials. In the following, we assume that the
discretization preserves the (pseudo) Hermiticity ofH(t,∆t).

A standard procedure to compute the exponential of some matrix is to calculate
its eigendecomposition. Let Q be a square matrix whose columns are the normalized
eigenvectors of H(t,∆t) in any order. The existence of such a matrix is ensured by
H(t,∆t) being (pseudo) Hermitian. Thus,

H(t,∆t)Q =QΛ , (91)

where Λ denotes the diagonal matrix of the real eigenvalues Ei = Λi,i ofH(t,∆t) such
that Λi,i is the eigenvalue associated to the ith column of Q. Thanks to the (pseudo)
Hermiticity of H(t,∆t), the inverse of Q does exist. Consequently, Q makes H(t,∆t)
diagonal

Λ =Q−1H(t,∆t)Q . (92)

Knowing the diagonalization ofH(t,∆t), the matrix exponential becomes

exp
(
−iH(t,∆t)

)
=
∑
j

(−i)j
j! H(t,∆t)j =

∑
j

(−i)j
j! Q
(
Q−1H(t,∆t)Q

)j
Q−1
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=
∑
j

(−i)j
j! QΛjQ−1 =Q

⎛
⎝∑

j

(−i)j
j! Λj

⎞
⎠Q−1 =Qexp(−iΛ)Q−1. (93)

The matrix exponential exp(−iΛ) is easy to compute. As Λ is diagonal, exp(−iΛ) is
a diagonal matrix with exp

(
−iEj
)
on the diagonal. Also, the inverse of Q is easy to

compute. IfH(t,∆t) is Hermitian, then

Q−1 =Q†. (94)

IfH(t,∆t) is η-pseudo Hermitian and all its eigenvalues are real [24], then

Q−1 =Q†η . (95)

For the discretization of the Hamiltonian and thus H(t,∆t), many different methods
can be applied. Particularly simple schemes are based on finite differences, where
the wavefunction is evaluated on a regular rectangular grid of grid spacing ∆x. Then,
the first- and second-order differential operators can be approximated in second and
fourth order as

df (x)
dx = − f (x − ∆x)2∆x + f (x + ∆x)

2∆x +O
(
∆x3
)
,

df (x)
dx = f (x −2∆x)

12∆x − 3f (x − ∆x)
2∆x + 3f (x + ∆x)

2∆x − f (x +2∆x)
12∆x +O

(
∆x5
)
,

d2f (x)
dx2 = f (x − ∆x)

∆x2 −2 f (x)∆x2 +
f (x + ∆x)
∆x2 +O

(
∆x3
)
,

d2f (x)
dx2 = − f (x −2∆x)12∆x2 + 4f (x − ∆x)

3∆x2 − 5f (x)
2∆x2

+ 4f (x + ∆x)
3∆x2 − f (x +2∆x)

12∆x2 +O
(
∆x5
)
.

Listing 1 shows a Python [37] implementation of the numerical solution of the
time-dependent Schrödinger equation for the harmonic oscillator with qϕ(x, t) =
1
2m0ω2x2 and vanishing vector potential via an exact diagonalization of the
Hamiltonian as outlined above. The second-order derivatives are approximated via
second-order finite differences.

The diagonalization approach is very general and can be applied to the
Schrödinger equation, the Klein–Gordon equation, or the Dirac equation, as well as
any other equation with a similar Hamiltonian structure. Employing some standard
mathematical software, it can be implemented in just a few lines of code. However,
approaches that are based on exact diagonalization suffer from several problems:
– The explicit matrix representation of the Hamiltonian has to be stored.
– The method requires to store all eigenvectors; thus, the required storage scales

likeO(N2), where N is the total number of grid points.
– Practical matrix diagonalization algorithms scale withO(N3).

 EBSCOhost - printed on 2/13/2023 7:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



96 | Heiko Bauke

Listing 1. Numerical solution of the time-dependent one-dimensional Schrödinger equation for
the harmonic oscillator via exact diagonalization of the Hamiltonian.

#!/usr/bin/env python

# -*- coding: utf-8 -*-

from pylab import *

# the harmonic oscillator potential with hbar=m0=omega=1

def V(x):

return 0.5*x**2

# define computational grid running from -5 to 5 with 512 grid points

N=512

x0, x1=-5., 5.

x=linspace(x0, x1, N)

dx=(x1-x0)/(N-1) # size of spartial grid spacing

dt=1./64 # temporal step size

# create Hamiltonian matrix and calculate its eigenvectors and eigenvalues

# use finite differences to approximate derivatives to 2nd order

H=( -0.5*(diag(ones(N-1), -1)-diag(2*ones(N))+diag(ones(N-1), +1) )/(dx**2) +

diag(V(x)) )*dt

Lambda, Q=eigh(H)

Q_inv=Q.conj().transpose() # inverse of Q

# Gaussian wave packet with mean momentum one as initial condition

Psi=1./(2*pi)**(0.25)*exp(-x**2/4 + 1j*x)

# propagate 512 time steps

for k in range(0, 512):

clf()

plot(x, Psi.real, ’--’, color=’r’, label=r’$\mathrm{Re}\,\Psi(x)$’)

plot(x, Psi.imag, ’:’, color=’r’, label=r’$\mathrm{Im}\,\Psi(x)$’)

plot(x, Psi.real**2+Psi.imag**2, color=’#266bbd’, label=r’$|\Psi(x)|^2$’)

gca().set_xlim(x0, x1)

gca().set_ylim(-0.6, 1)

xlabel(r’$x$’)

legend(loc=’upper left’)

draw()

show()

pause(0.01)

Psi=dot(Q_inv, Psi) # expand into eigen-functions

Psi*=exp(-1j*Lambda) # propagate eigen-functions

Psi=dot(Q, Psi) # superpose eigen-functions

– If the Hamiltonian is time dependent, diagonalization is required at each time
step.

– Because of the band gap of 
 2m0c2 of relativistic Hamiltonians, it is difficult to
compute all the eigenvalues and eigenvectors of the corresponding Hamiltonian
with high accuracy.

Fortunately, there are methods to circumvent these issues. One possible way is to find
a representation of thematrixH(t,∆t) in a smaller subspace via the Lanczos algorithm
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and to perform the diagonalization in this subspace [4, 12, 14, 22, 23, 30, 33, 35]. Other
methods are, for example, based on operator splitting, as discussed in Chapter I,
which will be adapted for relativistic wave equations in Section 3.4.

3.2 The split operator method

The central idea of the split operator method [2, 5, 7, 25, 32] is to approximate the
time-evolution operator

Û (t + ∆t, t) = exp

⎛
⎝− i

�

t+∆t∫
t

Ĥ(t′)dt′
⎞
⎠ (96)

by a product of operators that are diagonal in an appropriate space. Let Ô(t) denote
some possibly time-dependent operator and define the operator

ÛÔ(t2, t1, δ) = exp

⎛
⎝−δ i

�

t2∫
t1

Ô(t′)dt′
⎞
⎠ , (97)

which depends on the times t1 and t2 and the auxiliary parameter δ. Expanding
Û (t + ∆t, t) to the third order in ∆t and assuming that the Hamiltonian Ĥ(t) has the
form

Ĥ(t) = Ĥ1(t) + Ĥ2(t) , (98)

the time-evolution operator (96) can be factorized [31] into

Û (t + ∆t, t) = ÛĤ1

(
t + ∆t, t, 12

)
ÛĤ2

(t + ∆t, t, 1) ÛĤ1

(
t + ∆t, t, 12

)
+O
(
∆t3
)
. (99)

Neglecting terms of order O(∆t3), (99) gives an explicit second-order accurate
time-stepping scheme for the propagation of the function Ψ(r, t)

Ψ(r, t + ∆t) =

ÛĤ1

(
t + ∆t, t, 12

)
ÛĤ2

(t + ∆t, t, 1) ÛĤ1

(
t + ∆t, t, 12

)
Ψ(r, t) +O

(
∆t3
)
. (100)

This scheme translates the difficulty of calculating the action of operator (96) to the
calculation of the action of (97) for Ô ≡ Ĥ1 and Ô ≡ Ĥ2, respectively. Strang [38] and
Galbraith et al. [11] utilized the splitting (100) to calculate the action of (97) in position
space by a finite differences scheme. For many Cauchy problems, however, one can
find a splitting such that the operator ÛĤ1

(t + ∆t, t, δ) is diagonal in real space, and
ÛĤ2

(t + ∆t, t, δ) is diagonal in Fourier space. Thus, the calculation of these operators
becomes feasible in the appropriate space and (100) is then calculated via
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Ψ(r, t + ∆t) = ÛĤ1

(
t + ∆t, t, 12

)F−1
{
ˆ̃UĤ2

(t + ∆t, t, 1)

×F
{
ÛĤ1

(
t + ∆t, t, 12

)
Ψ(r, t)

}}
+O
(
∆t3
)

(101)

(cf. Section 1.4.3 of Chapter I). The expression F {·} in (101) denotes the Fourier
transform of the argument, F−1 {·} the inverse.

In an actual implementation of the Fourier split operator method, the function
Ψ(r, t) is discretized on a rectangular, regular lattice of N points, and the continuous
Fourier transform is approximated by a discrete Fourier transform. The computational
complexity of propagating the wavefunction Ψ(r, t) from time t to time t + ∆t is
dominated by the transformation to Fourier space and back. If these transforms are
accomplished by the fast (discrete) Fourier transform (FFT), the computation of a
single time step of the Fourier split operator method takesO(N logN) operations.

In order to understand and implement the Fourier split operator method, it
is crucial to establish a correspondence between the “usual” continuous and the
computational, discrete Fourier transforms. The continuous Fourier transform h̃(ω)
of some function h(t) is defined as

h̃(ω) = 1√
2π

∞∫
−∞

h(t)e−iωt dt . (102)

Let us assume that h(t) differs nonnegligibly from zero only in the interval [t0, t0+N∆t]
so that

h̃(ω) = 1√
2π

t0+N∆t∫
t0

h(t)e−iωt dt . (103)

This integral may be approximated by the Riemann sum

h̃(ω) = ∆t√
2π

e−iωt0
N−1∑
n=0

h(t0 + n∆t)e−iωn∆t . (104)

The sum (104) is defined for arbitrary arguments ω, but we will evaluate it for discrete
arguments ω0, ω0 +∆ω, . . . , ω0 + (N −1)∆ω, where the spacing ∆ω is related to ∆t via

∆ω = 2π
N∆t . (105)

Introducing hn = h(t0 + n∆t) and h̃m = h̃(ω0 +m∆ω) with n = 0,1, . . . ,N − 1 and m =
0,1, . . . ,N −1, we get

h̃m = ∆t√
2π

e−i(ω0+m∆ω)t0
N−1∑
n=0

hn e−iω0n∆t e−2πimn/N . (106)
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Thus, the continuous Fourier transform of h(t) can be approximated by the discrete
Fourier transform of hn e−iω0n∆t plus some phase factor ∆te−i(ω0+m∆ω)t0 /

√
2π. For the

inverse Fourier transform, one can find the similar relation

hn =
∆ω√
2π

ei(t0+n∆t)ω0
N−1∑
m=0

h̃m eit0m∆ω e2πimn/N . (107)

3.3 The Fourier split operator method for the Schrödinger
equation

To exemplify the Fourier split operator method, let us consider the time-dependent
Schrödinger equation first. Splitting the Hamiltonian of the Schrödinger equation in
dipole approximation

i�∂Ψ(r, t)∂t =
(

1
2m
[
−i�∇− qA(t)

]2 + qϕ(r, t))Ψ(r, t) (108)

into a potential energy term Ĥ1 and a kinetic energy term Ĥ2

Ĥ1 = qϕ(r, t), (109a)

Ĥ2 =
1

2m0

[
−i�∇− qA(t)

]2 (109b)

separates the spatial-dependent parts from spatial derivatives, which makes the
operator ÛĤ1

(t + ∆t, t, δ) diagonal in position space and ÛĤ2
(t + ∆t, t, δ) diagonal in

momentum space, respectively. The action of ÛĤ1
(t + ∆t, t, δ) on a position-space

wavefunction is given by

ÛĤ1
(t + ∆t, t, δ)Ψ(r, t) = exp

⎛
⎝−δ i

�

t+∆t∫
t

qϕ(r, t′)dt′
⎞
⎠Ψ(r, t), (110)

the action of the Fourier space operator ˆ̃UĤ2
(t + ∆t, t, δ) on a d-dimensional wave

function in Fourier space

Ψ̃(p, t) =F {Ψ(r, t)} = 1
(2π�2)d/2

∫
Ψ(r, t)exp

(
−ip · r/�

)
ddr (111)

reads as

ˆ̃UĤ2
(t + ∆t, t, δ) Ψ̃(p, t) = exp

⎛
⎝−δ i

�

t+∆t∫
t

1
2m0

[
p− qA(t′)

]2 dt′
⎞
⎠ Ψ̃(p, t). (112)
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Listing 2. Numerical solution of the time-dependent Schrödinger equation for the harmonic
oscillator via the Fourier split operator method.

#!/usr/bin/env python

# -*- coding: utf-8 -*-

from pylab import *

# the harmonic oscillator potential with hbar=m0=omega=1

def V(x):

return 0.5*x**2

# define computational grid running from -5 to 5 with 256 grid points

N=256

x0, x1=-5., 5.

x=linspace(x0, x1, N)

dx=(x1-x0)/(N-1) # size of spatial grid spacing

dt=1./64 # temporal step size

# Gaussian wave packet with mean momentum one as initial condition

Psi=1./(2*pi)**(0.25)*exp(-x**2/4 + 1j*x)

# constuct momentum grid

dp=2*pi/(N*dx)

p=linspace(0, (N-1)*dp, N)

p[p>0.5*N*dp]-=N*dp

# construct the two propagators

U_1=exp(-0.5*1j*V(x)*dt)

U_2=exp(-1j*0.5*p**2*dt)

# propagate 512 time steps

for k in range(0, 512):

clf()

plot(x, Psi.real, ’--’, color=’r’, label=r’$\mathrm{Re}\,\Psi(x)$’)

plot(x, Psi.imag, ’:’, color=’r’, label=r’$\mathrm{Im}\,\Psi(x)$’)

plot(x, Psi.real**2+Psi.imag**2, color=’#266bbd’, label=r’$|\Psi(x)|^2$’)

gca().set_xlim(x0, x1)

gca().set_ylim(-0.6, 1)

xlabel(r’$x$’)

legend(loc=’upper left’)

draw()

show()

pause(0.01)

Psi*=U_1 # apply U_1 in real space

Psi=fft(Psi) # go to Fourier space

Psi*=U_2 # apply U_2 in Fourier space

Psi=ifft(Psi) # go to real space

Psi*=U_1 # apply U_1 in real space

Listing 2 shows a short Python program, which solves the time-dependent
one-dimensional Schrödinger equation for a harmonic oscillator via the Fourier split
operator method. The wavefunction is represented on a regular grid from x0 to x1
with N grid points and spacing ∆x = (x1 − x0)/(N − 1). In Fourier (momentum) space,
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the grid ranges from −(N/2 − 1)∆p to N/2∆p (for even N) or from −(N − 1)/2∆p to
(N −1)/2∆p (for odd N), respectively, with ∆p = 2π�/(N ∆x).

Note that it is crucial for the application of the Fourier split operator method that
the vector potential A(t) does not depend on the spatial coordinate r. The expansion
of the term [−i�∇−qA(r, t)]2 in the Hamiltonian of the Schrödinger equation (108) for
a particle in an arbitrary vector potential A(r, t) contains the term (iq�/m0)A(r, t) ·∇,
which is spatially dependent and contains spatial derivatives too. Consequently, it is
diagonal neither in position space nor in Fourier space,which renders the Fourier split
operator method inadequate. This hampering term also appears in the Klein–Gordon
equation. In this case, however, the split operator method can be realized entirely in
position space because of some specificmathematical properties of the Klein–Gordon
Hamiltonian, as explained in detail in [32]. Mixing of momentum and position space
is absent for vector potentials in dipole approximation but also for the important case
of a vector potential of a linearly polarized plane wave, where the vector potential can
be brought, e.g., into the form A(r, t) = (Ax(y, t), 0,0) [16] by choosing the coordinate
system appropriately.

3.4 The Fourier split operator method for the Dirac equation

In order to apply the Fourier split operator method to the Dirac equation (43) in
d = 1,2,3 dimensions, the Hamiltonian is split into an interaction part Ĥ1 and a
free-particle part Ĥ2,

Ĥ1 = c
d∑
i=1

αi
[
−qAi(r, t)

]
+ qϕ(r, t) , (113a)

Ĥ2 = c
d∑
i=1

αi
(
−i� ∂

∂ri

)
+m0c2β. (113b)

The operator ÛĤ1
(t + ∆t, t, δ) may be constructed by splitting Ĥ1 further into

Ĥ1 = Ĥ1,1 + Ĥ1,2 (114)

with

Ĥ1,1 = qϕ(r, t) , (115a)

Ĥ1,2 = c
d∑
i=1

αi
[
−qAi(r, t)

]
. (115b)
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Because Ĥ1,1 and Ĥ1,2 commute, we can factorize the operator ÛĤ1
(t + ∆t, t, δ) into

ÛĤ1
(t + ∆t, t, δ) = ÛĤ1,1

(t + ∆t, t, δ) ÛĤ1,2
(t + ∆t, t, δ) (116)

with the diagonal operator ÛĤ1,1
(t + ∆t, t, δ) acting in position space,

ÛĤ1,1
(t + ∆t, t, δ)Ψ(r, t) = exp

⎛
⎝−δ i

�

t+∆t∫
t

qϕ(r, t′)dt′
⎞
⎠Ψ(r, t) . (117)

The operator ÛĤ1,2
(t + ∆t, t, δ) involves matrix exponentials, which may be calculated

by taking into account the Dirac algebra (35). Exponentials of αi are obtained
by summing the Taylor expansion of the exponential explicitly. Introducing some
auxiliary complex numbers ai, we find

exp
(
i

d∑
i=1

aiαi

)
=

∞∑
k=0

1
k!

(
i

d∑
i=1

aiαi

)k

=
∞∑
k=0

(−1)k
(2k)!

( d∑
i=1

aiαi

)2k
+ i

d∑
i=1

aiαi
∞∑
k=0

(−1)k
(2k +1)!

( d∑
i=1

aiαi

)2k

=
∞∑
k=0

(−1)k
(2k)!

⎛
⎝
√√√√ d∑

i=1
a2i

⎞
⎠

2k

+ i
d∑
i=1

aiαi
∞∑
k=0

(−1)k
(2k +1)!

⎛
⎝
√√√√ d∑

i=1
a2i

⎞
⎠

2k

= cos(|a|) + i
d∑
i=1

ai
|a|αi sin(|a|) , (118)

where we have defined |a| =
√∑d

i=1 a2i and employed the Dirac algebra (35), which
yields the relation

( d∑
i=1

aiαi

)2k
=

⎛
⎝ d∑

i=1
a2i α2i +

d∑
i=1

i−1∑
j=1

aiaj(αiαj + αjαi)

⎞
⎠

k

=

⎛
⎝
√√√√ d∑

i=1
a2i

⎞
⎠

2k

.

For convenience, let us define

Āi(r, t) =
t+∆t∫
t

Ai(r, t′)dt′, Ā(r, t) =

√√√√ d∑
i=1

Āi(r, t)2 , (119)

with which we obtain (118)
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ÛĤ1,2
(t + ∆t, t, δ)Ψ(r, t)

=
[
cos
(
− δcq

�
Ā(r, t)

)
+ i

d∑
i=1

Āi(r, t)
Ā(r, t)

αi sin
(
− δcq

�
Ā(r, t)

)]
Ψ(r, t) . (120)

The operator ÛĤ2
(t2, t1, δ) equals the time-evolution operator of the free-particle

Dirac Hamiltonian. In Fourier space, it has the form

ˆ̃UĤ2
(t + ∆t, t, δ) = exp

[
−δ∆t i

�

(
c

d∑
i=1

αipi +m0c2β
)]

, (121)

where pi denotes the ith component of the momentum vector p. In order to calculate
the operator exponential in (121), we have to diagonalize the matrix

ˆ̃H2 = c
d∑
i=1

αipi +m0c2β, (122)

which represents the Hamiltonian of the free-particle Dirac equation in momentum
space. As shown in Section 3.1, a Hermitian matrix is diagonalized by the matrix of
its eigenvectors. The eigenvectors of (122) have been derived earlier, and the matrix of
eigenvectors is given in the three-dimensional case with (73) by

Q(p) =
(
Ψ̃+
1 (p) Ψ̃+

2 (p) Ψ̃−
1 (p) Ψ̃−

2 (p)
)
, (123)

which can also be written as [40]

Q(p) = d+(p) + d−(p)
d∑
i=1

pi
|p|β · αi (124)

by introducing the scalars

d±(p) =
√
1
2 ±

m0c
2p0(p)

. (125)

The matrix Q†(p) ˆ̃H2Q(p) is diagonal,

Q†(p) ˆ̃H2Q(p) = E(p)β. (126)

The Fourier space operator (121) simplifies to

ˆ̃UĤ2
(t + ∆t, t, δ) Ψ̃(p, t) =Q(p)exp

(
−iδ∆t E(p)β/�

)
Q†(p)Ψ̃(p, t), (127)
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where

exp
(
−iδ∆t E(p)β/�

)
=

⎛
⎜⎜⎜⎝
e−iδ∆t E(p)/� 0 0 0

0 e−iδ∆t E(p)/� 0 0
0 0 eiδ∆t E(p)/� 0
0 0 0 eiδ∆t E(p)/�

⎞
⎟⎟⎟⎠ (128)

in the case of four-component wavefunctions and

exp
(
−iδ∆t E(p)β/�

)
=
(
e−iδ∆t E(p)/� 0

0 eiδ∆t E(p)/�

)
(129)

in the case of two-component wavefunctions.

4 Numerical examples
The numerical methods enable us to study various relativistic quantum systems
in electromagnetic fields. Let us start with a one-dimensional system, which is
technically quite simple but features very interesting physics, e.g., the so-called Klein
tunneling [15, 18, 28]. Klein tunneling is the phenomenon that in relativistic quantum
mechanics, a steep potential barrier may become transparent if it exceeds a critical
height of about 2m0c2, as depicted in Figure 6. The figure shows the initial density of
a wave packet (solid line), which approaches from the left the step-potential barrier of
the form

qφ(x) = V0
2
(
tanh x

w +1
)

(130)

that has the characteristic width w and vanishes for x→−∞and equals V0 for x→+∞.
After the interaction with the potential, the wave packet has split into a transmitted
part and a reflected part (dashed line).
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(x
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8
6
4
2
0

–0.6 –0.4 –0.2 0.0 0.2 0.4 0.6

Fig. 6. Klein tunneling of a Dirac wave packet at the step potential (130) with V0 = 2m0c2 + 104 and
w = 0.3/c (all parameters adopted from [21] and given in atomic units).
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Listing 3 shows a short Python program, which produces an animation of the
scattering dynamics, whose initial and final states are shown in Figure 6. The
program utilizes the Fourier split operator method to solve the time-dependent
one-dimensional Dirac equation and is very similar to the program in Listing 2 for the
Schrödinger equation. However, there are a few noteworthy differences. Because the
Dirac wavefunction has two components, it is represented by a 2 × N matrix, where
N denotes the number of grid points. The initial wave packet is first constructed in
momentum space as a superposition of free-particle solutions with positive energy,
as given in (81a). The position-space representation of the initial wave packet is
obtained by an inverse Fourier transform, which is implemented via a discrete Fourier
transform, taking into account the required phase factors as outlined at the end of
Section 3.2. The matrix representation of the interaction propagator ÛĤ1

is diagonal
so that it can be implemented via an element-wise multiplication of the wavefunction.
The matrix representation of the free propagator in Fourier space ˆ̃UĤ2

, however,
is block diagonal, see (127). For the Python implementation, which represents the
wavefunction as a 2×Nmatrix, it is convenient to represent this block-diagonalmatrix
as an array of size 2×2×N. Then, the application of ˆ̃UĤ2

to thewavefunction in Fourier
space representation can be carried out via the Python function einsum, see [37] for
details. Note that the time step for the simulation of Klein tunneling is much smaller
than for the harmonic oscillator problem in Section 3.3 because ∆t ≤ �/(m0c2) must
hold in the simulation of relativistic systems.

Figure 7 shows an application of the Fourier split operator method to the
time-dependent Dirac equation in two dimensions. The solid line represents the
center-of-mass trajectory of an electron moving in a strong, linearly polarized elec-
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Ψ
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Ψ
(x
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Fig. 7. An electron in a strong electromagnetic pulse with linear polarization and a sin2 envelope
with six cycles. The pulse travels from the left to the right and has a peak electric field strength of
4000 a.u. and a wave length of 20 a.u.
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Listing 3. Numerical solution of the time-dependent one-dimensional Dirac equation for a particle
scattering at a potential via the Fourier split operator method. Atomic units are employed in the
program.

#!/usr/bin/env python

# -*- coding: utf-8 -*-

from pylab import *

# smooth step potential

def V(x, V0, w):

return V0*0.5*(tanh(x/w)+1)

# define computational grid running from -0.7 to 0.7 with 1024 grid points

N=1024

x0, x1=-0.7, 0.7

x=linspace(x0, x1, N)

dx=(x1-x0)/(N-1) # size of spatial grid spacing

c=137. # speed of light

dt=1./4/c**2 # temporal step size

# constuct momentum grid

dp=2*pi/(N*dx)

p=linspace(0, (N-1)*dp, N)

p[p>0.5*N*dp]-=N*dp

p=sort(p)

# Gaussian wave packet with mean momentum p_mean composed of

# positive-energy states only as initial condition

x_init=-0.2 # initial position of the wave packet

p_mean=106.4 # mean momentum

Delta_p=0.125*c # momentum width

p_0=sqrt(p**2 + c**2) # reduced energy

Psi=zeros((2, N), dtype=’complex’)

Psi[0, :]=1

Psi[1, :]=p/(c+p_0)

Psi*=sqrt(0.5*(c+p_0)/p_0) # normalize

g=1/(2*pi*Delta_p**2)**0.25 * exp(-(p-p_mean)**2/4/Delta_p**2) * exp(-1j*p*x_init)

Psi*=g # multiply with weight function

# go to real space

Psi=dp/sqrt(2*pi)*exp(1j*x*p[0])*ifft(exp(1j*x[0]*arange(0, N)*dp)*Psi, axis=1)*N

# real space propagator

U_1=exp(-0.5*1j*V(x, 2*c**2+1e4, 0.3/c)*dt)

# construct the free propagator and propagate 512 time steps

p=linspace(0, (N-1)*dp, N)

p[p>0.5*N*dp]-=N*dp

p_0=sqrt(p**2 + c**2)

U_2=zeros((2, 2, N), dtype=’complex’)

for i in range(0, N):

Q=array([ [ 1, -p[i]/(c+p_0[i])], [p[i]/(c+p_0[i]), 1] ])

Q*=sqrt(0.5*(c+p_0[i])/p_0[i])

U_2[:, :, i]=dot(Q, dot(diag([exp(-1j*dt*c*p_0[i]), exp(+1j*dt*c*p_0[i]) ]), Q.T))

# propagate 512 time steps

for k in range(0, 512):
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clf()

plot(x, Psi[0, :].real**2+Psi[0, :].imag**2+Psi[1, :].real**2+Psi[1, :].imag**2,

color=’#266bbd’, label=r’$|\Psi(x)|^2$’)

xlim(x0, x1)

ylim(0, 15)

xlabel(r’$x$’)

ylabel(r’$\Psi(x)^\dagger\Psi(x)$’)

draw()

show()

pause(0.01)

Psi*=U_1 # apply U_1 in real space

Psi=fft(Psi, axis=1) # go to Fourier space

Psi=einsum(’ij...,j...->i...’, U_2, Psi) # apply U_2 in Fourier space

Psi=ifft(Psi, axis=1) # go to real space

Psi*=U_1 # apply U_1 in real space

tromagnetic pulse. The figure also depicts three snapshots of the electron density.
The pulse travels from the left to the right. Its electric field component accelerates
the electron along the y axis, and the Lorentz force, which results from the electron’s
fast motion and the strong magnetic field component, accelerates the electron along
the propagation direction x. Compared to the one-dimensional simulation of Klein
tunneling, the numerical propagation of the two-dimensional Dirac wave packet
is much more demanding. Therefore, the simulation program was written in C++
and utilizes graphics cards as accelerators [2]. Furthermore, the computational grid
follows the motion of the wave packet to reduce the computational costs.

Figure 8 demonstrates a further application of a numerical solution of the Dirac
equation: ionization of hydrogen-like, highly charged ions in strong laser fields. Here,
an electron that is initially bound to a soft-core potential is emitted because of a
strong electromagnetic wave with wavevector k, traveling in y-direction. The electric
field component in x-direction tilts the atomic binding potential such that a barrier
is formed through which the electron may tunnel. The emitted part of the electron
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Fig. 8. Numerical simulation of ionization from a soft-core potential via the solution of the Dirac
equation. The density plot and the contour lines show the electron density at the moment of
maximal laser field strength at the atomic core, see [17] for details.
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density is also accelerated into the propagation direction of the electromagnetic field
because of the Lorentz force involving the magnetic field component B.
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Dieter Bauer
IV Time-dependent density functional theory

Time-dependent density functional theory (TDDFT) is the extension of Nobel-prize
winning ground-state density functional theory (DFT) [19] toward time-dependent
densities n(r, t). Most of the literature employing TDDFT remains within the linear
response regime where a time-dependent density arises because of a small pertur-
bation of the ground state, e.g., through a gentle “kick” by an external electric
field. By Fourier-transforming the dipole response, the elementary excitations of the
system can be inferred and compared with experimental absorption or emission
spectra. Linear response is not enough for tackling strong-field physics problems
though. Fortunately, the generalization of the Hohenberg–Kohn theorem [17] to
time-dependent densities – the Runge–Gross theorem [40] – is formally not restricted
to small perturbations. It states very generally that different time-dependent external
potentials will lead to different time-dependent densities (when starting from the
same initial state). Analogously to the time-independent case thus follows that all ob-
servables are functionals of the single-particle density n(r, t), and awavefunction-free
formulation of quantum mechanics should be possible, in principle. Unlike with the
many-bodywavefunction, the numerical effort to store and propagate a single-particle
density may, perhaps, not scale exponentially with the particle number, whichmakes
TDDFT a candidate for overcoming the exponential wall of computational many-body
quantum mechanics [19]. The no-free-lunch theorem, on the other hand, tells us that
there must be a price to pay for such simplicity. And in fact, there is.

There are excellent reviews of TDDFT, e.g., [43, 44]. The aim of this contribution
rather is to illustrate how some of the single-electron TDSE propagation methods
introduced in the previous chapters can be augmented for strong-field TDDFT studies
employing the time-dependent version of the Kohn–Sham (KS) scheme [20]. We
restrict ourselves to a three-dimensional (3D) time-dependent KS (TDKS) solver
where the KS orbitals are expanded in spherical harmonics and the KS potential
in multipoles. This is the “natural” extension of the TDSE solver in Section 1.5 of
Chapter I toward TDDFT,which is also published [5] as a part of the Qprop code. Amore
versatile real-space and real-time TDDFT solver is the publicly available and widely
used octopus code [1]. Thefinal part of this chapter is devoted to extremely challenging
applications for TDDFT where known and practicable exchange-correlation (xc)
functionals or the density functionals for the observables of interest do not work.

Dieter Bauer: Institute of Physics, University of Rostock, 18051 Rostock, Germany; email:
dieter.bauer@uni-rostock.de

De Gruyter Graduate – Computational Strong-Field Quantum Dynamics, Volume 5, 2017, pp. 111–144.
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1 A few general remarks on time-dependent
many-particle methods

Since this is the first chapter on a time-dependentmany-body approach in this book, a
few general considerations might be in order. While electronic structure calculations
are hard enough, time-dependent problems with strong, external drivers are orders
of magnitude harder. In fact, on a TDSE level, only N = 2 electrons can be treated
in full dimensionality to date. And even if computers will be faster, solving the full
N-body TDSE seems the wrong way to go, as it will be increasingly cumbersome to
store and analyze the highly dimensional wavefunction. Observables of interest can
be obtained from reduced quantities such as reduced density matrices. In that sense,
many-body wavefunctions contain too much, redundant information. Unfortunately,
the conceptually simple, linear, local, and memory-free N-body TDSE acting on
a brobdingnagian wavefunction can only be traded for much more complicated,
nonlinear, and possibly nonlocal (in space and time) equations of motion for reduced
quantities. The hope then is to find reasonable approximations such that the system
of equations of motion remains tractable.

Strategies to tackle the time-dependent N-body problemmay be classified accord-
ing to the “level of quantumness” incorporated:
1. Full quantum field theoretical (including antiparticles, pair production, quan-

tized electromagnetic field, N not fixed – hopeless without severe approxima-
tions).

2. Full relativistic quantum treatment (small time and length scales, still unfeasible
in full dimensionality for more than one particle, see Chapter III).

3. Full nonrelativistic quantum treatment (only possible for a few particles; scales
O(GN) with G being a typical number of grid points required to represent the
corresponding one-body problem, see Chapter I).

4. In principle exact but in practice approximate time-dependent methods (e.g.,
multiconfigurational Hartree–Fock (HF), see Chapter V, configuration interaction,
see Chapter VI, density matrix–based methods [2, 9, 12, 33], DFT (this chapter),
etc., work well or not so well, depending on the problem – tough but doable; need
to scale better thanO(GN); the more mean field–like, i.e., the less correlation, the
more particles can be treated).

5. Semiclassical methods such as time-dependent Thomas-Fermi—scaling largely
independent of N (only through spatial extension).

6. Classical methods such as molecular dynamics where particle-particle
interaction is fully accounted for on a classical level – scales O(N2), see
Chapter VIII.
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7. Classical methods with further simplifying assumptions (particle-in-cell (PIC),
see Chapter VIII, tree codes,magnetohydrodynamics, fluidmethods – scale better
thanO(N2), e.g.,O(N) (PIC) or with the spatial extension only).

Sometimes it is more important to have correlation properly incorporated rather
than quantumness. In such cases, it may be better to choose a classical method
with particle-particle interactions taken fully into account rather than a mean-field
quantum method.

The word “correlation” is a fancy fuzzy buzz word often used without knowing
what it means. In fact, it means different things in different fields and theories.
One definition (for Fermions) reads Correlation is whatever is not included in a HF
treatment. Here, a HF treatment with just a single Slater determinant is meant, not
the in-principle-exact multiconfigurational HF. A spin-singlet state can be written
as a single Slater determinant and is thus not correlated in that sense although it
cannot bewritten as aproduct of single-particlewavefunctions and is aprime example
for an entangled state. Because a single Slater determinant is sufficient to describe
noninteracting Fermions, we expect that an interaction potential in the Schrödinger
equation in general gives rise to correlation effects. Working out how strong they
are and how they manifest themselves is what makes many-body theory interesting.
Correlation effects are at the basis of magnetism, superconductivity, chemical bonds,
structure formation, life, everything [4].

One should distinguish collective effects from correlation. Collective oscillations
or density waves are already included in simple time-dependent HF, Thomas-Fermi,
PIC, and fluid treatments, while correlation is not.

Ground-state DFT is a widely applied, extremely successful, and relatively cheap
computational method. DFT is based on the Hohenberg–Kohn theorem [17], stating
that the single-particle ground-state density n(r) (defined below) determines uniquely
whatever one may know about a many-body Fermionic system in a given scalar
external potential v(r) and for a given two-body interaction. This is because both the
mapping v(r) → |Ψ〉 and |Ψ〉 → n(r) are invertible, v(r)↔ |Ψ〉↔ n(r), so that

v(r)↔ n(r). (1)

Here, |Ψ〉 is the exact many-body ground state, i.e., the solution of the corresponding
Schrödinger equation for the ground state whose calculation one wants to avoid.
Thanks to the mapping (1) and the fact that the external potential v(r) determines¹
whatever one may know about the system; knowledge of the single-particle density
n(r) is in principle enough to calculate any observable.

1 Through the Hamiltonian in the Schrödinger equation, for a given particle-particle interaction.
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2 DFT for effective single-electron potentials
The simplest, not yet time-dependent but important application of DFT is the calcula-
tion of effective potentials that can be used in single-active-electron TDSE simulations
of strong-field phenomena. Any of thewell-established electronic structure DFT codes
can be used for that purpose. However, it is particularly elegant and numerically
self-consistent to use the same code for both the DFT ground-state calculation and
the subsequent real-time propagation. We saw in Chapter I how ground states can be
obtained with a TDSE solver by switching from real time to imaginary time. We apply
the same methodology in this section.

2.1 KS spin-DFT

While the Hohenberg–Kohn theorem – as a kind of existence theorem – is the basis
of ground-state DFT, the KS scheme [20] allows to perform actual calculations in an
efficient way. The key idea of KS theory is to apply the Hohenberg–Kohn theorem
simultaneously to the original interacting system and to an auxiliary noninteracting
system, called the KS system. If the interacting system with its external potential v(r)
leads to a unique ground-state density n(r), one may search for a potential vKS(r) that
leads to the same density,

nKS(r)
!= n(r). (2)

We assume that this is possible, ignoring pathological cases where there exists
no potential v(r) that generates a given density as its ground-state density
(“v-representability problem”) or where an “interacting ground-state density” cannot
be a ground-state density of the auxiliary noninteracting KS system (“noninteracting
v-representability problem”).

We consider an application of the KS scheme in atomic physics, i.e., N electrons
that interact via

vee(|ri − rj|) = 1
|ri − rj|

, i, j = 1,2, . . . ,N, i �=j. (3)

In atomic physics, the external potential is that of an ion of charge state Z, i.e.,
spherically symmetric,

v(r) = v(r) = −Zr . (4)

What about spin? In DFT and KS theory, one distinguishes between spin-neutral and
spin-polarized situations, depending on whether one assumes that there are as much
N↑ spin-up as N↓ spin-down electrons or not, respectively.
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We define the spin density as

nσ(r) = N
∑

σ2,...,σN

∫
d3r2 · · ·d3rN |Ψ(rσ, r2σ2, . . . , rNσN)|2. (5)

Here,Ψ is the antisymmetricmany-bodywavefunction (normalized to unity) fulfilling
the “interacting Schrödinger equation.” The spin-variable σ =↑,↓ corresponds to
magnetic spin quantum number ms = ±1/2. The total single-particle density is

n(r) =
∑
σ
nσ(r),

∫
d3r n(r) = N . (6)

Example: N = 2 spin-singlet ground state in atomic helium or helium-like ions. Here,
the Schrödinger wavefunction has the form

Ψ(r1σ1, r2σ2) = φ(r1, r2)
1√
2
(δσ1↑δσ2↓ − δσ2↑δσ1↓), φ(r1, r2) = φ(r2, r1).

Hence,

|Ψ(r1σ1, r2σ2)|2 = |φ(r1, r2)|2 12(δσ1↑δσ2↓ + δσ2↑δσ1↓)

and

nσ(r) = 2
∑
σ2

∫
d3r2 |φ(r, r2)|2 12(δσ↑δσ2↓ + δσ2↑δσ↓) = (δσ↑ + δσ↓)

∫
d3r2 |φ(r, r2)|2.

For symmetry reasons, n↑(r) = n↓(r) so that n(r) = 2nσ(r). If φ(r1, r2) = φ(r1)φ(r2), as
in the case of noninteracting systems (such as the KS auxiliary one), we have

nσ(r) = (δσ↑ + δσ↓) |φ(r)|2

and

n(r) = 2|φ(r)|2.

KS equation

The exact Fermionic many-body wavefunction for the auxiliary, noninteracting KS
system is a single Slater determinant made of single-particle wavefunctions, known
as “KS orbitals”

ψασ , α = 1,2, . . . Nσ , σ =↑,↓, N↑ +N↓ = N . (7)
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Hence, the corresponding time-independent Schrödinger equation separates into the
set of KS equations for the KS orbitals ψασ(r),[

−12∇
2 + vσKS[{nσ}](r)

]
ψασ(r) = ϵασψασ(r). (8)

The spin densities for such a noninteracting system simply are

nσ(r) =
Nσ∑
α=1

|ψασ(r)|2. (9)

The KS potential vσKS will, in general, be different for KS particles of opposite spin.
However, all KS particles of like spin “see” the same KS Hamiltonian

Hσ
KS[{nσ}] = −

1
2∇

2 + vσKS[{nσ}]. (10)

The orbitals of different like-spin KS particles are thus orthogonal, and we can
populate them according to the Pauli exclusion principle. The orbitals of KS particles
with opposite spin are orthogonal anyway.

The sole purpose of the KS potential vσKS[{nσ}](r) is to reproduce the density of
the original, interacting system via the auxiliary KS orbital densities. Hence, one
should be careful when interpreting the KS orbitals as if they were single-particle
wavefunctions describing physically relevant pseudoparticles. They certainly do not
describe the (interacting) electrons in the sense that a Slater determinant built
from the KS orbitals is a good approximation of the exact many-body wavefunction.
Nevertheless, the KS orbitals and corresponding “KS electrons” are often interpreted
in a way as if the “real electrons” behaved similar. We also do this occasionally in
the following because otherwise the wording becomes cumbersome. But one should
always keep in mind that the KS system is a theoretical construct. The only thing
for sure is that the KS single-particle density equals the interacting single-particle
density – if vKS was known exactly.

Let us decompose the KS potential into a part that is also present in the original,
interacting Schrödinger equation and the rest,

vσKS[{nσ}](r) = v(r) + vσHxc[{nσ}](r). (11)

The Hartree-xc potential vσHxc[{nσ}](r) is further decomposed,

vσHxc[{nσ}](r) = u[n](r) + vσxc[{nσ}](r) (12)

with the Hartree potential

u[n](r) =
∫

d3r′ n(r′)
|r− r′| , (13)
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being a functional of the total density n(r) only and the xc-potential functional
vσxc[{nσ}](r), which depends on both spin-densities nσ(r) andmay be different for σ =↑
and ↓. As theHartree potential describes the potential due to a charge distribution n(r),
it is expected to capture the main part of the mean field-like electron-electron inter-
action. However, we know that because of the required antisymmetry of Fermionic
wavefunctions, exchange effects come into play. A part of the exchange potential
vσx [{nσ}](r) in

vσxc[{nσ}](r) = vσx [{nσ}](r) + vσc [{nσ}](r) (14)

is responsible for canceling the self-interaction in u[n](r) (see subsection 2.2.2). What-
ever else besides v(r), Hartree and exchange is required to reproduce the interacting
density via the KS potential is called “correlation” in the DFT framework.

Contrary to even simplest HF (i.e., with a single Slater determinant), the KS
Hamiltonian ĤKS only contains multiplicative terms, which are easier to handle
numerically than the nonlocal Fock integral term in the HF equations. Moreover, even
correlation can be included in DFT. So why does anybody bother about HF, which
seems to be both harder and worse than DFT? As usual, the devil is in the details and,
unfortunately, the no-free-lunch-theorem still holds, as will become clear toward the
end of this chapter.

Energy and potential functionals

Consider the total energy functional

E = Ts[{nσ}] +
∫

d3r n(r)v(r) +U[n] + Exc[{nσ}]. (15)

The “noninteracting kinetic energy” Ts[{nσ}] is evaluated with the KS orbitals,

Ts[{nσ}] = −12
∑
σ

Nσ∑
α=1

∫
d3r ψ*

ασ(r)∇2ψασ(r). (16)

Note that this differs from the exact kinetic T[Ψ] energy evaluated with the exact
many-electron wavefunction Ψ . Hence, a part of the correlation originates from the
difference between Ts and T. The Hartree energy in (15) reads as

U[n] = 1
2

∫
d3r u[n](r)n(r) = 1

2

∫
d3r
∫

d3r′ n(r
′)n(r)

|r− r′| . (17)

The variational derivative of the Hartree-energy functional gives the Hartree potential,

u[n](r) = δU[n(r)]
δn(r) (18)
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with the variational derivative δF[n(r)]
δn(r) of a functional F[n(r)] defined via

δF[n(r)] =
∫

d3r δF[n(r)]δn(r) δn(r), δF[n(r)] = F[n(r) + δn(r)] − F[n(r)], (19)

understood in the limit δn(r) → 0.
Example: We have for the Hartree part

δU[n] = 1
2

∫
d3r
∫

d3r′ [n(r
′) + δn(r′)][n(r) + δn(r)] − n(r′)n(r)

|r− r′|

=
∫

d3r
{∫

d3r′ n(r′)
|r− r′|

}
δn(r),

where we neglected all terms O[(δn)2] and renamed integration variables, obtaining
two times the same term, thus canceling the 1/2. If the 1/2 was not there, we would
double-count the Hartree interaction.We identify with (19) the expression in the curly
brackets as the Hartree potential (13),

u[n](r) = δU[n(r)]
δn(r) =

∫
d3r′ n(r′)

|r− r′| .

Local density approximation

There exists a hierarchy of approximations for Exc[{nσ}]. At the top end reside
“optimized effective potential (OEP) methods” that take exchange and self-interaction
correction (SIC)well into account [22]. At the lower end is thewidely used local density
approximation (LDA) or the local spin density (LSD) approximation. In between LDA
and OEP is a zoo of, partially empirically fitted, functionals that take density gradient
corrections into account.

The exchange energy functional in LDA reads as

ELDAx [n] = Ax

∫
d3r n4/3(r), Ax = −

3
4

(
3
π

)1/3
, (20)

which can be written as

ELDAx [n] =
∫

d3r n(r)εLDAx [n(r)], εLDAx [n(r)] = Axn1/3(r) (21)

with εLDAx the exchange energy density, i.e., the exchange energy per electron. This
exchange energy density of the homogeneous electron gas can be derived by a
HF treatment of electrons in a box, charge-neutralized by a smeared-out, so-called
jellium background of ions. The correlation energy density εLDAc of the homogeneous
electron gas is not known analytically, only the low- and high-density limits. However,
parameterizations exist in the literature (e.g., [14]).
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x-only LSD approximation

It is analytically known how the exchange energy of the homogeneous electron gas
scales with the spin polarization. Assuming the same for LSD,

ELSDx [{nσ}] = 1
2
(
ELDAx [2n↑] + ELDAx [2n↓]

)
, (22)

leads with (20) to

ELSDx [{nσ}] = 21/3Ax

∫
d3r
(
n4/3↑ + n4/3↓

)
. (23)

For the LSD exchange potential, we thus obtain via

vLSDx,σ [{nσ}](r) = δELSDx [{nσ(r)}]
δnσ(r)

= 21/3Ax
4
3n

1/3
σ (r) = −

(
6
π

)1/3
n1/3σ (r). (24)

In the spin-neutral case, nσ = n/2, and vLDAx [n](r) = −
( 3
π
)1/3 n1/3(r) is obtained. We

see that the exchange energy and the exchange potential are negative, thus increasing
the binding energy. This is partially because the self-energy contained in the Hartree
potential needs to be removed. The LDA and LSD exchange potential depend just
locally on the density at the position r in vx(r), which is nice and simple from the
computational point of view. More advanced OEP potentials involve integrations of
combinations of KS orbitals over space.

Central-field approximation

We adopt the so-called “central-field approximation” so that the KS potential is
spherically symmetric,

vσKS,l(r) = vl(r) + u(r) + v
σ
xc(r), vl(r) = v(r) +

l(l +1)
2r2 . (25)

For brevity, we drop all functional dependencies [n] and the like. Note that in the
atomic case with v(r) = −Z/r, the vl(r) part is spherically symmetric anyway. However,
in general, u and vxc are not (see below).

In central-field approximation, we can work with radial spin KS orbitals ϕασlm(r)
(cf. section 1.5 of Chapter I),

ψασ(r) =
1
r
∑
lm

ϕασlm(r)Ylm(Ω), (26)

and we obtain the set of spherical KS equations[
−12

∂2
∂r2 + v

σ
KS,l(r)
]
ϕασlm(r) = ϵασlϕασlm(r). (27)

 EBSCOhost - printed on 2/13/2023 7:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



120 | Dieter Bauer

The total density reads as

n(r) =
∑
σ

Nσ∑
α=1

∣∣∣∣∣1r
∑
lm

ϕασlm(r)Ylm(Ω)
∣∣∣∣∣
2

. (28)

In general, this density is not spherically symmetric unless all l-subshells are closed
(i.e., all states with different ms but otherwise the same indices are populated). This
nonsphericality translates to both vKS and u[n], which contradicts our assumption
that vσKS,l is spherically symmetric. In order to enforce that n(r) is spherical, we take
the average, leading to

n(r) = 1
4π

∫
dΩn(r) = n↑(r) + n↓(r) (29)

with

nσ(r) =
1

4πr2
Nσ∑
α=1

∑
lm

|ϕασlm(r)|2. (30)

The spherically averaged densities n↑(r), n↓(r) will be used to evaluate the exchange
potential.

The multipole expansion of the Hartree potential reads as, using

1
|r− r′| =

∞∑
l=0

l∑
m=−l

4π
2l +1

rl<
rl+1>

Y*
lm(Ω′)Ylm(Ω), (31)

u(r) =
∑
lm

4πYlm(Ω)
2l +1

∑
σαl′m′ l′′m′′

∫
dr′ rl<

rl+1>
ϕ*
ασl′m′ (r′)ϕασl′′m′′ (r′)

×
∫

dΩ′ Y*
l′m′ (Ω′)Yl′′m′′ (Ω′)Y*

lm(Ω′).

Because of angularmomentumcoupling,wehave a
∫
dΩ′ integral over three spherical

harmonics,which canbe expressed in terms of Clebsch–Gordan coefficients. However,
for the calculation of effective potentials, we are only interested in the monopole term
∼ Y00(Ω). With the spherical average written as

u(r) = 1
4π

∫
dΩu(r) = 1√

4π

∫
dΩu(r)Y*

00(Ω) (32)

and Y*
00(Ω) = 1/

√
4π, we obtain

u(r) =
∑
σαl′m′

⎧⎨
⎩1r

r∫
0

dr′ |ϕασl′m′ (r′)|2 +
∞∫
r

dr′ |ϕασl′m′ (r′)|2
r′

⎫⎬
⎭ . (33)
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We need an efficient way to calculate the radial Hartree potential u(r) for all r on the
numerical grid. A straightforward would be to perform the integrals in (33) for each of
the discretized rn values, rn = n∆r from scratch. However, that would require a double
loop and thus scale O(N2

r ), which is not acceptable. In fact, it can be done in O(Nr).
Let

g(r) =
∫

dr′ 1r>
f (r′), (34)

and the value for rn be (with, e.g., trapezoidal integration) discretized on a radial grid

g(rn) = gn = gn + gn (35)

with

gn =
1
rn

n∑
k=1

∆rfk , gn =
Nr∑

k=n+1
∆r fkrk

. (36)

Then, we can write for the next grid point

gn+1 =
rn
rn+1

gn +
1
rn+1

∆rfn+1 + gn − ∆r
fn+1
rn+1

. (37)

Hence, it is enough to calculate, e.g., g1, which isO(Nr), and all other gn follow, also
inO(Nr).

2.2 Actual implementation

We want to amend our TDSE solver from Section 1.5 of Chapter I by the extra terms
in the potential, i.e., the Hartree potential u[n] and the exchange potential vLSDx,σ [{nσ}].
Moreover, we are interested in the total energy E[{nσ}] (15) and the orbital energies
ϵασl (27).² The spherical DFT KS solver then works as follows:
1. Set up the configuration. As a first example, we consider a spin-neutral system,

namely, the neon atom for which Z = 10. We expect a configuration 1s2 2s2 2p6,
N = 10 = N↑ +N↓, N↑ = N↓ = 5 so that we could initialize as shown in Table 1. That
would require five spin-up radial KS orbitals and five spin-down. If wemake use of
the fact that the radial KS orbitals with differentms but otherwise same quantum
numbers and indices will be identical, we could get along with three KS orbitals
per spin. Moreover, in the case of Ne, we know that the spin-up radial orbitals are
the same as the spin-down ones because the KS-Hamiltonian is the same for σ =↑
and σ =↓. Hence, we could even get along with three radial KS orbitals in total.
In the calculation of the density, one then has to work with degeneracy factors di

2 Note that, as usual in theories with nonlinear Hamiltonians, the sum of the orbital energies does
not equal the total energy.
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Tab. 1. Possible initialization of the KS solver for imaginary-time propagation in the case of Ne. In
the very right column, we use the usual spectroscopic notation nlm with s, p, d, f, ... corresponding
to l = 0, 1, 2, 3, . . ..

Ne α Spin up Spin down

1 l = 0, m = 0 l = 0, m = 0 1s
2 l = 0, m = 0 l = 0, m = 0 2s
3 l = 1, m = 1 l = 1, m = 1 2p1
4 l = 1, m = −1 l = 1, m = −1 2p−1
5 l = 1, m = 0 l = 1, m = 0 2p0

Tab. 2. Possible initialization for Ne+ (or F). Same as in Table 1 but with one electron less.

Ne+ or F α Spin up Spin down

1 l = 0, m = 0 l = 0, m = 0 1s
2 l = 0, m = 0 l = 0, m = 0 2s
3 l = 1, m = 1 l = 1, m = 1 2p1
4 l = 1, m = −1 l = 1, m = −1 2p−1
5 l = 1, m = 0 Unoccupied 2p0

that take the degeneracy properly into account, e.g.,

n(r) = 1
4πr2

3∑
i=1

di|ϕi(r)|2, d1 = 2, d2 = 2, d3 = 6,

where i = 1 corresponds to the 1s states (α = 1, any spin), i = 2 to the 2s (α = 2, any
spin), and i = 3 to the 2p states (α = 3,4,5, any spin).
Now consider a nine-electron system, e.g., Ne+ with still v(r) = −10/r or F where
v(r) = −9/r. Which KS electron should be removed? Because of spin neutrality, it
should not matter whether we remove the “outermost” spin-up or spin-down KS
particle.³ One option is shown in Table 2. The radial spin-up KS orbitals α = 3,4,5
will still be the same. However, because Ĥ↑

KS �=Ĥ↓
KS, they will be different now from

the spin-down orbitals with α = 3,4 (themselves identical).
In removing further electrons (creating Ne2+ or O, Ne3+ or N, etc.), there are more
possibilities, e.g., one may remove alike spins or opposite ones. By trying all
possibilities and comparing the total energy, one should find out the energetically
favorable configuration. In fact, LSD is sufficient to “confirm” Hund’s rules. One

3 But what about removing “half a KS electron” from both spin types? This can be investigated by
introducing occupation numbers fi ∈ [0, 1].
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could even create holes, removing an s-electron before the p-electrons. Although
this formally is outside the realm of ground-state DFT, it works remarkably well
in practice as far as energy differences between different configurations are
concerned (so-called ∆SCF methods, SCF for “self-consistent field”).

2. Initialize the radial KS orbitals. Orthonormalize those radial KS orbitals that
have same σ, l, and m.

3. Imaginary-time propagation (until total energy E and orbital energies ϵασl
converged):
(a) calculate the spin densities nσ according (30),
(b) calculate the exchange potential vx (24),
(c) calculate the Hartree potential u (33),
(d) propagate radial KS orbitals in imaginary time with respective Ĥσ

KS (10),
(e) orthonormalize.

How the orthonormalization is achieved has been addressed already in
Section 1.3 of Chapter I. KS orbitals that are different either in σ, l, or m
are already orthogonal. They only need to be normalized after the imaginary
propagation step. Then consider the first KS orbital ϕ̃α′σlm that has σ, l, and
m in common with a previous (already normalized) KS orbital ϕασlm, α′ > α
(it is always possible to order the KS orbitals in that way). Then, project out,

ϕ̃′
α′σlm(r) = ϕ̃α′σlm(r) −ϕασlm(r)

∫
drϕ*

ασlm(r)ϕ̃α′σlm(r),

and normalize the result,

ϕα′σlm(r) = ϕ̃′
α′σlm(r)

/√∫
dr
∣∣∣ϕ̃′

α′σlm(r)
∣∣∣2.

If there is a third KS orbital ϕ̃α′′σlm also with the same σ, l, and m, one
has to project out of it both ϕασlm and ϕα′σlm, and so on. It is easy to write
a routine that does the complete orthonormalization automatically for an
arbitrary number of KS orbitals ϕασlm(r).

(f) calculate entities of interest (total energy E, orbital energies, ϵασ etc.)
4. Output. Dump KS orbitals, spin densities, potentials, etc. to files.

2.2.1 Some results from this implementation

For the Ne atom, we obtain the orbital energies (in atomic units) given in Table 3. For
the total energy, we obtain

ENe = −127.48. (38)

 EBSCOhost - printed on 2/13/2023 7:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



124 | Dieter Bauer

Tab. 3. KS orbital energies ϵασl in x-only LSD.

Ne α Spin up Spin down ϵασl
1 l = 0, m = 0 l = 0, m = 0 1s −30.23
2 l = 0, m = 0 l = 0, m = 0 2s −1.27
3,4,5 l = 1, m = −1,0, 1 l = 1, m = −1,0, 1 2p −0.44

The experimental ionization potential for Ne (i.e., the energy required to remove the
“outermost” electron) is

Ip = 0.793. (39)

We see that
ϵ3σ1m = ϵ2p = −0.44 �=− Ip .

In the HF and DFT jargon, one says that the so-called Koopmans’ and Janak’s
“theorem,” respectively,⁴ are violated. However, there is a more rigorous way to
calculate the ionization energy in ground-state DFT:

IDFTp = ENe+ − ENe = 0.77, (40)

where ENe+ is the ground-state energy obtained from a x-only LSD-KS calculation for
Ne+. This value is quite close to the experimental value (39), with a relative error of
only 3%. The take-home message here is: be careful with overinterpreting KS level
energies for fictitious KS particles; sticking to rigorously meaningful quantities like
total ground-state energies is safer.

As an example for a spin-polarized system, let us consider the potassium atom.
We expect a configuration (1s)2(2s)2(2p)6(3s)2(3p)6(4s)1, and if we did not know that
we would be able to figure it out with our DFT code by trying other configurations.
Potassium, with its 19 electrons, is the first atom where an – at first sight – strange
anomaly occurs: the 4s shell is filled before the 3d. This is because the 4s electron has
a higher probability close to the core and thus “sees” a less-screened potential than
the 3d. Although that is age-old textbook knowledge, it is interesting to checkwhether
x-only LSD-KS-DFT is able to capture this effect.

Exploiting degeneracy, we still need eleven orbitals to accommodate all KS
electrons. The configuration and the orbital energies are given in Table 4. Note that
despite the spin polarization, the orbital energies are almost equal because the extra

4 According to the Koopmans theorem, the (absolute value of the) outermostHF orbital energy should
equal the ionization energy. This is only true if one “freezes” the “other” electrons. If they are allowed
to “relax,” there is no reason to expect that ϵvalence = −Ip is exactly fulfilled. In DFT, Janak’s theorem
states that the outermost KS orbital energy should equal −Ip because relaxation is already taken into
account [27].
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Tab. 4. KS configuration and orbital energies for the K atom (x-only LSD calculation on a radial grid
with ∆r = 0.01, Nr = 5000).

K α ϵα↑l ϵα↓l
1 l = 0, m = 0 1s −128.30 −128.31
2 l = 0, m = 0 2s −12.77 −12.77
3 l = 1, m = −1,0, 1 2p −10.21 −10.21
4 l = 0, m = 0 3s −1.23 −1.23
5 l = 1, m = −1,0, 1 3p −0.642 −0.640
6 l = 0, m = 0 4s −0.0797 Unoccupied
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Fig. 1. The radial KS orbitals for K in x-only LSD. It is left as an exercise to identify which is which
(count nodes and look at the slope as r → 0). The inset shows the radial spin densities (spin-up
drawn solid, spin-down broken).

outermost KS electron does not have a strong effect on the more tightly bound inner
ones. The spin-up orbitals are shown in Figure 1. The total energy we obtain is

EK = −596.75. (41)

If we populate the 3d orbital instead of the 4s, we obtain a higher value for the total
energy EK. In principle, one should try all configurations possible for N = 19 and
then conclude that the one with the lowest total energy is the one realized in nature.
But once again, the KS orbitals are just constructs that lead to the same electron
density as the real system. They are not single-electron states. Nevertheless, we have
an aufbau principle based on their population according to Pauli’s exclusion principle
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that explains the periodic table of elements (and many more things). Janak’s theorem
is violated again for K treated in x-only LSD approximation, as ϵ4s �=Ip = 0.160, while
the removal energy calculatedvia EK+ −EK =−596.60−(−596.75)=0.15 is only0.27 eV
away from the exact, experimental value.

2.2.2 Perdew–Zunger SIC

We observe in the Ne and K examples above that the ionization energy in x-only LSD is
underestimated. One reason for that is the self-energy error of LDA and LSD andmany
other xc-potentials from the lower end of the Exc[{nσ}] hierarchy mentioned above.

Consider the limit of a single electron, i.e., the hydrogen atom. In this limit, the
KS equation should reduce to the Schrödinger equation

ϵ1sϕ1s(r) =
(
−12

∂2
∂r2 −

1
r

)
ϕ1s(r) (42)

so that

vKS(r) = −
1
r + u + vxc

!= −1r (43)

and thus u + vxc = 0, that is, the xc-potential has to cancel the Hartree potential for
N = 1. Unfortunately, the LDA does not do this. The lack of “SIC” in LDA gives rise to a
too low ionization potential.

An obvious idea to remove self-interaction is to subtract u and vxc evaluated with
the respective orbital’s density from the KS potential,[

HKS
σ +HPZ

ασ
]
ψασ(r) = ϵασψασ(r) (44)

with the usual

HKS
σ = −12∇

2 + v(r) + vσHxc[{nσ}](r) (45)

and the Perdew–Zunger (PZ) SIC [27]

HPZ
ασ = − vσHxc

[
|ψασ|2

]
(r). (46)

This approach yields the correct Schrödinger equation in the limit of one particle. In
the two-electron spin-singlet case, it reduces to HF because there is effectively only
one spatial KS orbital,

ψ1s↑(r) = ψ1s↓(r) =: ψ1s(r), nσ(r) = |ψ1s(r)|2, n(r) = 2|ψ1s(r)|2,
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and the PZ SIC KS equation becomes

ϵ1sψ1s(r) =
[
−12∇

2 − 2
r +
∫

d3r′ n(r
′) − |ψ1s(r′)|2
|r− r′|

−
(
6
π

)1/3 [
n1/3σ (r) − |ψ1s(r)|2/3

]]
ψ1s(r)

=
[
−12∇

2 − 2
r +
∫

d3r′ |ψ1s(r′)|2
|r− r′|

]
ψ1s(r).

In this case, the PZ-LSD-KS Hamiltonian HKS
σ + HPZ

ασ yields the so-called exact x-only
Hamiltonian, which is equivalent to HF. Its interpretation is intuitive: one of the
electrons only sees “the other” electron (which sits in the same orbital). Hence, only
half the Hartree interaction should appear in the Hamiltonian.

For more than one electron per spin orientation, the PZ-SIC applied to LSD is not
exact anymore. While it always works to subtract the orbital density in the Hartree
part, the functional form of the x-potential prevents this, simply because (a + b)1/3 −
b1/3 �=a1/3.

One formal issue with PZ-SIC is that it is an ad hoc procedure that lacks a
formal foundation. In fact, it is not KS-DFT anymore. The idea of the KS scheme
was to introduce an auxiliary system of noninteracting particles. Such noninteracting,
indistinguishable particles should be all governed by the sameHamiltonian. However,
the Hamiltonian HKS

σ + HPZ
ασ is orbital-index dependent, meaning that different KS

particles see different KS potentials (even if their spin-projections σ are the same). As a
result, the KS orbitals are not orthogonal anymore. Assuming a pragmatic view point,
that does not sound too disturbing as long as the method works, i.e., the energies
improve compared to the non-SIC results, and the numerical extra cost (calculating
N different HPZ

ασ instead of just two different HKS
σ ) is worth the effort. One may either

orthogonalize theKSorbitals or simply accept a small nonorthogonality. PZ-SIC results
for the KS orbital energies for the K atom are presented in Table 5. The ionization
potential Ip = 0.160 is now closer to |ϵ4s| = 0.154, i.e., Janak’s theorem is better

Tab. 5. As Table 4 but with PZ SIC.

K α ϵα↑l ϵα↓l
1 l = 0, m = 0 1s −133.19 −133.19
2 l = 0, m = 0 2s −13.67 −13.67
3 l = 1, m = −1,0, 1 2p −11.31 −11.31
4 l = 0, m = 0 3s −1.50 −1.50
5 l = 1, m = −1,0, 1 3p −0.893 −0.891
6 l = 0, m = 0 4s −0.154 Unoccupied
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Fig. 2. Double-logarithmic plots of the absolute value of the total KS potentials (spin-up drawn bold
solid, spin-down bold broken) in x-only LSD (left) and with PZ-SIC (right, for α = 1) for the K atom. The
r → 0-limit Z/r is drawn dashed, the r →∞-limit 1/r dotted.

fulfilled. From the energy difference, we obtain for the ionization energy

EK,PZ+ − EK,PZ = −599.92− (−600.08) = 0.16, (47)

which is in excellent agreement with the experimental value. Another great improve-
ment with PZ-SIC when applied to LSD is that the correct asymptotic behavior of the
KS potential is ensured. Any KS potential for neutral atoms should roll-off ∼ −1/r as
r→∞.Plain LSDKSpotentials donotmeet this requirementwhile the PZ-SIC corrected
ones do, as shown in Figure 2.

3 Time-dependent calculations
So far in this chapter, we used a TDKS solver in imaginary-time mode to solve the set
of time-independent KS equations (8). In adiabatic approximation, (8) becomes [43]

i ∂∂t ψασ(r, t) =
[
−12∇

2 + v(r, t) + u[n(t)](r) + vσxc[{nσ(t)}](r)
]
ψασ(r, t). (48)

The external potential v(r, t) now may include, besides a binding potential, a driver
such as r · E(t) or p ·A(t). How to implement such drivers in a single-active-electron
TDSE solver has been extensively discussed in Chapter I, and we can apply the same
strategies for a TDKS solver. TheHartree and xc-potentials become time dependent via
the time-dependent densities

nσ(r, t) =
Nσ∑
α=1

|ψασ(r, t)|2, n(r, t) =
∑
σ
nσ(r, t). (49)
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The approximate effective, time-dependent potential u[n(t)](r) + vσxc[{nσ(t)}](r) is
called “adiabatic” because it consists of density functionals evaluated with the
time-dependent density. In particular, the potential is assumed to be local in time,
i.e., without memory effects.

3.1 Time-dependent KS solver with spherical harmonics and
multipole expansion

For the imaginary-time propagation according to the algorithm outlined in Section 2.2,
we adopted the central-field approximation so that the monopole terms in the
expansions of n(r) and u(r) suffice. A linearly polarized laser field leads to a dipole
coupling (see Section 1.5.2 of Chapter I) and thus breaks the spherical symmetry. We
therefore need to take higher terms in the multipole expansions of vσKS[{nσ}] into
account.

Instead of the TDSE (105) in Chapter I, we now have the TDKS equation

i ∂∂t ϕασlm =
(
−12

∂2
∂r2 + veff l(r) + v

σ0
Hxc(r, t) + plmvσ2Hxc(r, t)

)
ϕασlm

− iA(t)
(
cl−1,m

∂
∂r ϕασ,l−1,m + clm

∂
∂r ϕασ,l+1,m

− 1
r lcl−1,mϕασ,l−1,m +

1
r (l +1)clmϕασ,l+1,m

)
+
(
rE(t) + vσ1Hxc(r, t)

)(
cl−1,mϕασ,l−1,m + clmϕασ,l+1,m

)
+ vσ2Hxc(r, t)

(
ql−2,mϕασ,l−2,m + qlmϕασ,l+2,m

)
, (50)

where

veff l(r) = v(r) +
l(l +1)
2r2 , (51)

vσHxc(r, t) = vσ0Hxc(r, t) + vσ1Hxc(r, t)cosθ + vσ2Hxc(r, t)
1
2 (3cos

2 θ −1)+ · · · , (52)

clm =

√
(l +1)2 −m2

(2l +1)(2l +3) , (53)

plm = l(l +1)−3m2

(2l −1)(2l +3) , (54)

qlm = 3
2(2l +3)

√
[(l +1)2 −m2][(l +2)2 −m2]

(2l +1)(2l +5) . (55)

Here, we allowed for both a vector potential A(t) = A(t)ez and an electric field
E(t) = E(t)ez. In pure velocity or length gauge, only one of the two is present (see
discussion in Section 1.5.5 of Chapter I). We terminated the multipole expansion of
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vσHxc(r, t) in (52) after the quadrupole. More termsmay be taken into account. However,
they lead to more and more couplings between KS orbital components of different
l. The quadrupole term, for instance, leads to the term ∼ plm diagonal in l and to
couplings of l with l ± 2. As a consequence, the time-evolution operator requires
additional splittings, as discussed below. Note that while σ and m remain good
quantum numbers during real-time propagation also for linearly polarized drivers,
many l components of the KS orbitals α will in general be populated during the
interaction with the external field.

The expansion (52) contains the spin-independent Hartree part

u(r, t) = u0(r, t) + u1(r, t)cosθ + u2(r, t)
1
2(3cos

2 θ −1)+ · · · . (56)

With the auxiliary quantities

Λσ(r, t) =
Nσ∑
α=1

∑
l
|ϕασlm|2, (57)

Θσ(r, t) =
Nσ∑
α=1

∑
l

(
cl−1,mϕ*

ασ,l−1,m + clmϕ*
ασ,l+1,m

)
ϕασlm , (58)

Ξσ(r, t) =
Nσ∑
α=1

∑
l

(
plmϕ*

ασlm + qlmϕ*
ασ,l+2,m + ql−2,mϕ*

ασ,l−2,m

)
ϕασlm , (59)

the monopole, dipole, and quadrupole can be written as

u0(r, t) =
∫
dr′ 1r>

∑
σ
Λσ(r′, t), (60)

u1(r, t) =
∫
dr′ r<

r2>

∑
σ
Θσ(r′, t), (61)

u2(r, t) =
∫
dr′ r

2
<
r3>

∑
σ
Ξσ(r′, t), (62)

respectively. In a similar manner, the xc-potential vσxc can be expanded. In the x-only
LSD case, for instance, one needs amultipole expansion of n1/3σ . This can be achieved
by first expanding the spin densities

nσ(r, t) =
1
r2

(
nσ0(r, t) + nσ1(r, t)cosθ + nσ2(r, t)

1
2 (3cos

2 θ −1)+ · · ·
)
, (63)

where one finds that the nσi(r, t), i = 0,1,2 can be expressed in terms of Λσ(r, t),
Θσ(r, t), and Ξσ(r, t). Then, by making an analogous ansatz for n1/3σ (r, t),

n1/3σ (r, t) = 1
r2/3

(
ησ0(r, t) + ησ1(r, t)cosθ + ησ2(r, t)

1
2 (3cos

2 θ −1)+ · · ·
)
, (64)
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one can work out the ησi(r, t) in terms of the nσi(r, t) by taking the cube of n1/3σ (r, t)
from (64) and setting it equal to the expansion of nσ(r, t) in (63).

3.1.1 Propagation

The TDSE propagator (119) in Chapter I needs to be adapted for propagating the TDKS
equation (50):

U(∆t) =
0∏

l=Nl−3
exp
(
−i ∆t2 Hlm(3)

ang

)

×

⎧⎨
⎩

0∏
l=Nl−2

exp
(
−i ∆t2 Hlm(1,2)

ang

)
exp
(
−i ∆t2 Hlm

mix

)⎫⎬
⎭exp(−i∆tHat)

×
{Nl−2∏

l=0
exp
(
−i ∆t2 Hlm

mix

)
exp
(
−i ∆t2 Hlm(1,2)

ang

)}

×
l=Nl−3∏

0
exp
(
−i ∆t2 Hlm(3)

ang

)
+O(∆t3) (65)

with
Hlm(1,2)
ang = −i A(t)r Tlm +

(
rE(t) + vσ1Hxc(r, t)

)
Llm , (66)

where the 2 × 2 matrices Llm and Tlm are given in (114) of Chapter I and act in l, l +
1-subspace, and

Hlm(3)
ang = vσ2Hxc(r, t)Plm (67)

with another 2 ×2 matrix

Plm =
(

0 qlm
qlm 0

)
(68)

acting in l, l+2-subspace. The new exponential factors withHlm(1,2)
ang andHlm(3)

ang can be
further treated like the Hlm

ang in Chapter I. The propagation of N KS orbitals according
(65) is thus essentially like propagating N wavefunctions with the TDSE solver in
Section 1.5.3 of Chapter I. Themaindifference is that the vσiHxc(r, t) need to be calculated
each time step.

Further, it is advisable to introduce a predictor-corrector step. Because of the
nonlinear Hamiltonian depending on the KS orbitals, observables tend to drift away
in a free, real-time propagation. A predictor-corrector step prevents this:⁵
1. Perform for all KS orbitals a propagation step, Φ(∆t) =U(∆t)Φ(0) using vσHxc(0).

5 Observables may still oscillate around a mean value, but these oscillations can be made very small
by a well-converged ground state to start with and a sufficiently small time step.
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2. Use Φ(∆t) to calculate vσHxc(∆t).
3. Perform again for all KS orbitals a propagation step Φ(∆t) = U(∆t)Φ(0) but now

using the averaged potential
(
vσHxc(0) + vσHxc(∆t)

)
/2.

3.1.2 Example: C60 jellium model

TDDFT is particularly well suited for systems with delocalized electrons like metal
clusters or fullerenes. Prominent features in such systems are collective modes (Mie
plasmons) that also govern their optical properties. Moreover, in so-called jellium
models, the treatment of systems with delocalized electronsmay be further simplified
by smearing out the ionic background. The binding potentials of metal clusters and
C60 then are smooth and spherically symmetric so that a TDKS solver employing a
spherical-harmonics expansion of the KS orbitals is particularly efficient.

Consider the following jellium potential for C60 [3, 30, 31, 37]:

v(r) =

⎧⎪⎪⎨
⎪⎪⎩

−r−3s 3(R2o −R2i )/2 for r ≤ Ri
−r−3s (3R2o/2− [r2/2+R3i /r]) − v0 for Ri < r < Ro

−r−3s (R3o −R3i )/r for r ≥ Ro

, (69)

where Ri = 5.3, Ro = 8.1, r−3s = N/(R3o − R3i ), N = 250, and v0 = 0.68. We seek a
spin-neutral configuration, which is only achieved with 250 electrons instead of the
240 “real” valence electrons in C60. As N↑ = N↓ = 125, we need to solve the TDKS
equation only for, say, σ =↑, knowing that n = 2n↑. The x-only LDA potential in terms
of the total density is vx(r) = −[3n(r)/π]1/3. One obtains 200 so-called σ and 50 π
electrons without node and with one node in the radial wavefunction, respectively.
The node for the π-electrons is located close to the C60 radius R = (Ri + Ro)/2. The
free parameter v0 = 0.68 is used to adjust the KS energy of the highest occupied
molecular orbital (HOMO) to the ionization potential of “real” C60, −ϵHOMO = Ip 

0.28. The ground-state configuration, obtained via imaginary-time propagation and
in central-field approximation, is illustrated in Figure 3(a). It was obtained by building
up the C60 shell-wise. Keeping in mind that we will switch-on a linearly polarized
laser soon, we need to treat KS orbitals with (initial) quantum number l but different
|m| differently.⁶ So, how many KS orbitals are required to accommodate the N = 250
electronswith laser on? It turns out that with the above external binding potential (69)
and x-LDA, the energetically favorable configuration is as listed in Table 6, i.e., 70 KS
orbitals need to be propagated in time.

Typically, a linear-response calculation follows the ground-state determination
in order to see whether the excitations of the implemented system are in reasonable

6 Orbitals starting with the same initial l but m = ±|m| behave the same in a linearly polarized laser
field. This degeneracy should be exploited.
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Fig. 3. Panel (a) shows the net KS potential (black, squares), total density (gray, diamonds),
wavefunctions of the lowest KS orbital, and the highest occupied orbital (light-gray crosses and
triangles, respectively). The σ- and π-levels are indicated. Density and wavefunctions are scaled
to fit into the plot (from [37]). Panel (b), right, shows the dipole response of the C60 model system.
One observes narrow lines (single-particle transitions) on top of two broad structures, the surface
or Mie plasmon around ωMie � 0.7 and the “volume plasmon” around ωp � 1.4. The left panel in (b)
shows the individual, logarithmically scaled KS orbital dipole strengths, enumerated as in Table 6.
Branch A consists of transitions of the type σl → π(l − 1) and πl → σ(l + 1), branch B vice versa, i.e.,
σl → π(l + 1) and πl → σ(l − 1). The “volume plasmon” corresponds to transitions between σ and
(initially unpopulated) δ states.

Tab. 6. The 70 KS orbitals required to cover the 250-electron C60 jellium model.

l |m| σ orbital # π orbital #

0 0 0 55
1 0,1 1,2 56,57
2 0,1,2 3,4,5 58–60
3 0–3 6–9 61–64
4 0–4 10–14 65–69
5 0–5 15–20
... (l + 1 orbitals)

...
9 0–9 45–54

agreement with the real, physical system. The result of such a calculation is shown
in Figure 3(b). The system was perturbed by a small, step-like vector potential A(t) =
A0Θ(t), corresponding to a δ-kick in the electric field.⁷ After recording the total
and the individual KS orbital dipoles⁸ for a sufficiently long time (depending on

7 As long as it is small enough, the actual value of A0 only affects the strength of the response but not
the shape of the spectrum, as it should be in the linear response regime.
8 Evaluated according (107) of Chapter II.
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the desired frequency resolution) in sufficiently small time steps (determining the
frequency range covered), Fourier transforms of them were performed. The modulus
squares of these Fourier transforms are shown in Figure 3(b). The total spectrum
shows broad structures attributed to the surface (Mie) plasmon and the bulk plasmon.
The location of the Mie plasmon is in good agreement with experiment [16]. However,
the pronounced single-particle transitions are not observed experimentally. This is
probably due to the too high symmetry of our jellium system. Removal of degeneracies
would fragment further and thus wash out these lines stemming from single-particle
transitions. The left part of panel (b) shows the individual dipole response of each
KS orbital. Clearly, this is not an observable not only because it cannot be measured
but also because the KS system is fictitious and just designed to reproduce the total
density. However, out of curiosity, we may nevertheless analyze which KS transitions
make up the total dipole response. The Mie surface plasmon is commonly understood
as a dipole oscillation of the electrons against the ionic background. It is thus not
surprising that in terms of KS levels, it consists of transitions between σ and π states
with l changing by one. The appearance of a bulk plasmon at ωp is a bit surprising
because a breathingmode should not be excited by a δ kick in z direction forwhich the
electric dipole selection rule l→ l±1 holds. In fact, in terms of KS states, this transition
originates from dipole-allowed transitions between σ and (initially unpopulated) δ
states (i.e., with two nodes in the radial KS orbital).

As an example for a strong-field TDDFT calculation beyond linear response, we
consider harmonic generation in C60 in an eight-cycle trapezoidal laser pulse with up
and down ramping over two cycles. The wavelength is 2280 nm (ω = 0.02); the peak
electric field strength Ê =0.03 (3.2×1013Wcm−2).We apply a time-frequency analysis
as outlined in Section 3 of Chapter II. The result is shown in Figure 4. The emission
times of certain harmonics match the return times of electrons of corresponding
energy (white lines). An enhanced emission around the Mie plasmon frequency is
observed. The time-frequency analysis reveals that this emission is clearly linked
to the electron return times. It may therefore be interpreted as recollision-induced
plasmon excitation [37].

3.2 Low-dimensional benchmark studies

Approximate N-particle methods should be benchmarked by as much exact results
as available. In the few-body limit, N = 1 does not pose a problem for most modern
quantum many-particle techniques.⁹ However, already N = 2 is not as simple as it
seems. Helium-like ions, for instance, exhibit phenomena that rely on strong electron
correlation, examples being single-photon double ionization, autoionization, and

9 Although we saw in Section 2.2.2 that self-interaction is an issue here for DFT.
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Fig. 4. Time-frequency analysis of harmonic generation in a C60 jellium model. The dipole strength
is logarithmically scaled and color-coded over 14 orders of magnitude. The laser parameters were
λ = 2280nm, Ê = 0.03, (2,4,2)-trapezoidal pulse. The white lines are expected electron return
energies [37]. Copyright © 2008 American Physical Society (APS).

nonsequential double ionization. Helium in a strong laser field in full dimension-
ality is computationally very expensive [41, 48]. For benchmarking TDDFT or other
time-dependent many-electron methods, one may consider a low-dimensional model
helium atom whose TDSE can be solved exactly without too much effort. Such a test
is at least useful for falsification: if an approximate approach does not work in one
dimension (1D), there is no reason to believe that it works in 3D. The converse is also
true but involves optimism: if an approximate approach works in 1D, there is reason
to believe that it may work in 3D as well.¹⁰

In computational strong-field physics, low-dimensional models of He [29] (or H−

[13]) in a laser field are extensively used, as all interesting correlation effects can be
studied with them on a qualitative level. Consider the TDSE

i ∂∂t ψ(x1, x2, t) =
( 2∑

i=1
ĥi(xi , t) + vee(|x1 − x2|, t)

)
ψ(x1, x2, t) (70)

with the one-body part

ĥi(xi , t) = −
1
2
∂2
∂x2i

− Z√
x2i + a2

+ v̂(i)laser(t), (71)

10 Provided the numerical demand does not grow too rapidly with dimension.
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including the laser in v̂(i)laser(t), and the electron-electron interaction

vee(|x1 − x2|, t) = 1√
(x1 − x2)2 + b2

. (72)

The length parameters a and b smooth the Coulomb interactions. One may think
of them as mimicking finite impact parameters in 3D. Note that the model was not
designed to describe two electrons of a physical 1D electronic system but to emulate
3D strong-field electron dynamics along the polarization direction.

The interaction with the laser may be taken as v(i)laser(t) = xiE(t) in length gauge or
v̂(i)laser(t) = −iA(t)∂xi in velocity gauge. A snapshot of the effective potential

veff(x1, x2, t) = −
Z√

x2i + a2
− Z√

x2i + a2
+ 1√

(x1 − x2)2 + b2
+ (x1 + x2)E(t)

for a = b = 1, Z = 2, and a positive E(t) is shown in Figure 5(a). The channels along
the axes correspond to single ionization if |x1| is small and |x2| is large or vice versa.
Probability density in the region close to the origin where both |x1| and |x2| are
small represents neutral He. The four quadrants where both |x1| and |x2| are � 1
correspond to He2+. The flow of probability density in the tilted potential of Figure 5(a)
will mainly follow the He+ channels along the axes. However, for sufficiently high
electric field amplitude, the slope can be strong enough such that probability density
enters the double-ionization He2+ regions. The potential hill along x1 = x2 is due to
electron-electron repulsion. Figure 5(b) shows the ground-state probability density
in veff(x1, x2) without electric field. The Hamiltonian in the TDSE (70) does not affect
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Fig. 5. (a) Effective model He potential, tilted by an electric field. (b) Logarithmically scaled contour
plot of the ground-state probability density in veff(x1 , x2) for E(t)≡ 0, a = b = 1, and Z = 2 over eight
orders of magnitude. The ground state was obtained through imaginary-time propagation using
operator splitting and the Crank–Nicolson propagator (see Chapter I). The ground-state energy is
E0 = −2.238.
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spin degrees of freedom so that we consider only the spatial part of the wavefunction
ψ(x1, x2, t). Nonetheless, spin dictates the symmetry of the spatial wavefunction.
Assuming a spin-singlet configuration,¹¹ i.e.,

Ψ(x1σ1, x2σ2, t) = ψ(x1, x2, t)
1√
2
(δσ1↑δσ2↓ − δσ2↑δσ1↓), (73)

antisymmetry under particle exchange of Ψ(x1σ1, x2σ2, t) implies symmetry of the
spatial wavefunction,

ψ(x1, x2, t) = ψ(x2, x1, t). (74)

Note that only for two electrons, such a simple separation in spin and spatial degrees
of freedom is possible. An analogous model for three electrons (Li) has been studied
in [32, 39].

The TDSE (70) can be solved using themethods discussed in detail in Chapter I. In
that way, the exact benchmark results for a correlated model system are obtained and
can be compared to the corresponding results from the TDKS equation. In so-called
exact x-only TDDFT for the spin-singlet configuration, the TDKS equation is equivalent
to time-dependent HF. There is only one spatial KS orbital that fulfills

i ∂∂t ϕ(x, t) =
(
ĥ(t) + 1

2u[n(x, t)]
)
ϕ(x, t), (75)

where single-particle Hamiltonian and Hartree potential are

ĥ(t) = −12
∂2
∂x2 −

Z√
x2 + a2

+ v̂laser(t), (76)

u[n(x, t)] =
∫

dx′ n(x′, t)√
(x − x′)2 + b2

, n(x, t) = 2|ϕ(x, t)|2, (77)

respectively. The 1D nonlinear TDKS equation (75) can be solved by the same method
as the (effectively two dimensions) TDSE (70). The exact exchange cancels half of the
Hartree potential, taking self-interaction correctly into account.¹² In the spherical 3D
case of Section 3.1, the Hartree potential was expanded in multipoles. Here, in 1D, the
Hartree potential may be calculated brute force, i.e., performing the integral for all
fixed x over x′. With Nx grid points, this is an O(N2

x ) operation, which is bearable.
A smarter way makes use of the fast Fourier transform (FFT). As u has the form of a
convolution, u[n(x, t)] =

∫
dx′ n(x′, t)vee(x−x′), onemay calculate it as the back-FFTed

product of FFTed n and vee. This scales only O(Nx logNx). The other option often
employed in 3D Cartesian DFT solvers, namely, calculating the Hartree potential as

11 See also the example in Section 2.1.
12 EachKSparticle sees “the other”KSparticle of opposite spin, sitting spatially in the sameKSorbital
though.
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the solution of the Poisson equation by some relaxation method, would be applicable
here if we knew the analogue of a Poisson equation, which u[n(x, t)] obeys.

The KS ground-state energy

EKS0 [n0] = 2〈ϕ|ĥ0|ϕ〉+
∫

dx |ϕ(x)|2
∫

dx′ |ϕ(x′)|2√
(x − x′)2 + b2

(78)

of the system with a = b = 1 and Z = 2 is EKS0 = −2.224. Here, ĥ0 is ĥ(t = 0), i.e., with
the laser off. Compared to the exact value E0 = −2.238 from the TDSE, EKS0 is only
0.6% off. The KS or HF spin-singlet ground-state wavefunction is given by the Slater
determinant

ΨHF
0 (x1σ1, x2σ2) = ϕ(x1)ϕ(x2)

1√
2
(δσ1↑δσ2↓ − δσ2↑δσ1↓)

and does not show the indentation feature along the diagonal x1 = x2 caused by the
electron-electron repulsion in Figure 5(b).

3.2.1 Exact xc-potential

Constructing the exact xc-potential from the exact TDSE wavefunction is not feasible
in practical applications of TDDFT where the TDSE solution is not available. After all,
the whole idea of TDDFT is to avoid a TDSE solution. In benchmark calculations of
the kind discussed here, the situation is different: the TDSE result is available, and
investigating the exact xc-potential is not only satisfying one’s curiosity¹³ but may
also help construct better approximative xc-potentials. However, it may well be that,
while watching the exact xc-potential at work, one comes to the conclusion that a
useful analytical expression for an xc-functional capturing a certain phenomenon of
interest will most likely never be found. It might then be better to switch to another
many-body method where correlation can be added in a more systematic manner
than in TDDFT, e.g., multiconfigurational time-dependent Hartree–Fock (MCTDHF)
(Chapter V) or time-dependent configuration interaction singles (Chapter VI).

In general, constructing the exact xc-potential, given the exact density from the
reference TDSE solution, is possible but nontrivial, and computationally cumber-
some [26, 36, 38]. It is straightforward only in the case of a single spatial KS orbital,
as in the TDKS equation (75) for the He spin-singlet configuration [10, 23]. Writing (75)
as

i ∂∂t ϕ(x, t) =
(
−12

∂2
∂x2 + vKS(x, t)

)
ϕ(x, t), (79)

13 “How does the exact xc-potential miraculously do that?”
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we can solve for the total effective potential

vKS(x, t) =
i∂tϕ(x, t) + 1

2∂
2
xϕ(x, t)

ϕ(x, t) . (80)

Writing

ϕ(x, t) =
√

n(x, t)
2 exp[iS(x, t)] (81)

and employing continuity

∂
∂t n(x, t) +

∂
∂x j(x, t) = 0 (82)

with

j(x, t) = −i[ϕ*(x, t)∂xϕ(x, t) −ϕ(x, t)∂xϕ*(x, t)] = n(x, t)∂xS(x, t), (83)

we obtain

vKS(x, t) =
1
2
∂2x
√
n(x, t)√
n(x, t)

− ∂tS(x, t) −
1
2[∂xS(x, t)]

2. (84)

With the TDSE solution ψ(x1, x2, t) at hand, we can calculate the exact density and
current density,

n(x, t) = 2
∫

dx′ |ψ(x, x′)|2, (85)

j(x, t) = −i
∫

dx′ [ψ*(x, x′, t)∂xψ(x, x′, t) −ψ(x, x′, t)∂xψ*(x, x′, t)], (86)

and the phase, up to a time-dependent constant, by integration of

∂xS(x, t) =
j(x, t)
n(x, t) . (87)

Equation (84) is one option to calculate the exact vKS(x, t). After subtracting the
external potential and the Hartree potential, the exact vxc(x, t) is obtained. Another
option [23] works via the inversion of the split-operator time evolution operator.
Let us suppose we have determined ϕ(x, t) and ϕ(x, t + ∆t) according (81) with the
corresponding n and S from the TDSE using (85), (86), and (87). Then, since

ϕ(x, t + ∆t)
 exp(−iT̂∆t/2)exp[−ivKS(x, t + ∆t/2)∆t]exp(−iT̂∆t/2)ϕ(x, t),

where T̂ = −1
2∂

2
x , we find

exp[−ivKS(x, t + ∆t/2)∆t]
 exp(iT̂∆t/2)ϕ(x, t + ∆t)
exp(−iT̂∆t/2)ϕ(x, t)

,
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i.e., the KS potential for each x can be extracted from the corresponding complex
phase of the right-hand side,

vKS(x, t + ∆t/2)
 i
∆t arg

[
exp(iT̂∆t/2)ϕ(x, t + ∆t)
exp(−iT̂∆t/2)ϕ(x, t)

]
. (88)

Care has to be taken to keep the numerically extracted phase continuous.
Exact KS potentials have been analyzed in, e.g., [11, 18, 23, 24]. An interesting

aspect, for instance, is to quantify the nonadiabaticity of the exact xc-potential, i.e.,
whether memory effects are important or not [42]. Note that (84) or (88) does not tell
directly whether vxc(x, t) = vKS(x, t) − v(x, t) − u[n(x, t)] can be well approximated in a
time-local, adiabatic manner vxc[n(x, t)].

A typical feature of the exact KS potential in the nonlinear regime relevant to
strong-field applications is the development of dynamical steps. These steps are
related to the derivative discontinuity in static DFT [28]. If the first electron has
left during an ionization process, the second gets a higher ionization potential.
However, this shift should not be a smooth function of the fractional occupation
number.

3.3 Where TDDFT fails in practice

Low-dimensional benchmark studies helped reveal numerous deficiencies of TDDFT
in practice [25]. Although slightly depressing, such studies yield valuable insight and
give directions toward potential improvements. The following list of failures is from a
strong-field person’s perspective and, unfortunately, not exhaustive.
– Resonant transitions: As the KS potential depends on the time-dependent

density, its levels will depend on the density as well. Consider a resonant laser,
driving Rabi oscillations. Although the energy gap to the lowest unpopulated
state in the ground-state KS potential is energetically close to the corresponding
transition in the interacting, exact system, there is no population inversion in the
KS system. In fact, the exact xc-potential generates the true population-inverted
density as a ground-state density in another KS potential. Known and practicable
approximate xc-potentials do not do that. Funnily enough, the KS exact x-only
dipole expectation value nevertheless shows Rabi-like beating, but for a different
reason, and the density after half a Rabi cycle is not the correct excited-state
density but close to the ground-state density [35].

– Autoionization: The linear response spectra of both real 3D helium and the
model system (70) show peaks due to doubly excited states while the corre-
sponding KS system in exact x-only approximation (or with other time-local
xc-potentials) does not [35]. As a consequence, no Fano profiles in the photoab-
sorption or emission spectra are reproduced [6, 8]. It is interesting to calculate
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the exact xc-potential from the TDSE solution to figure out how it virtuosically
manages autoionization [18]: it does so by developing a step-like potential barrier
through which the KS orbital tunnels out. Outside this barrier, the KS orbital
represents the escaping electron, inside the “other” electron that remains bound.

– Nonsequential double ionization: It is probably the largest dynamical corre-
lation effect in laser-atom interaction: an electron is emitted, oscillates back to
the parent ion due to the laser field, and kicks out another electron (see, e.g.,
[34]). How is this to be described by just one KS orbital? In fact, TDDFT fails not
only because the xc-potential is not good enough [23]. Even if the exact density
was generated by a TDKS equation using the exact xc-potential, the density
functionals to calculate the ionization probabilities for, e.g., He+ and He2+, are
unknown [46], let alone a functional to calculate correlated photoelectron spectra
[7, 47].

– Harmonic generation: It is seemingly harmless for TDDFT because the essential
ingredient to calculate the spectrum is just the dipole expectation value, which
is an explicit functional of the density. However, exact high-harmonic generation
spectra for He show features that are not well covered by TDDFT with standard
xc-potentials, such as resonant enhancements, two plateauswith cutoffs¹⁴ accord-
ing to neutral He and He+ [8], or additional plateaus due to nonsequential double
recombination [21].

– Photoelectron spectra: In the absence of a better alternative, KS orbitals may
be interpreted as single-particle wavefunctions and used in that way to calculate
photoelectron spectra employing the methods for TDSEs outlined in Chapter II.
Correlated photoelectron momentum spectra cannot be reproduced in that way
[7, 47]. But even total spectra might be wrong. Imagine a high-frequency laser
pulse that significantly depletes the ground state. As the population of the KS
ground-state level diminishes in time, the photoelectron peak moves in energy
from the initial position EHe = −IHep + ω down to EHe

+
= −IHe

+
p + ω, which is

unphysical. The exact xc-potential’s job is rather demanding: it has to generate
peaks at EHe

+
and at EHe but also in between because of single-photon double

ionization, where the electrons share the photon energy. Moreover, one outgoing
electron can give energy to the other, leaving an excited He+ ion behind. The
corresponding photoelectron peak is then at an energy < EHe. Although it is fun to
investigate how the exact xc-potential constructed from the TDSE does the job, it
is doubtful that one can write down a general-enough xc-potential that is useful
in practice, i.e., without having the information from the TDSE solution.
Resorting just to the single-particle density, one may try to extract total photo-
electron spectra by field-free postpropagation of the density after the laser pulse,
measuring the speed of density wave packets [45]. This somewhat cumbersome

14 See Section 3 of Chapter II.
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procedure may overcome the problem of the density functional for the total
photoelectron spectrum. Yet, the problem of a sufficiently accurate xc-potential
remains.

Methods capable of overcoming the failures of TDDFT in the above list are available.
MCTDHF with a sufficient number of Slater determinants works (see Chapter V).
One may also use the stationary or TDKS orbitals in configuration interaction–like
approaches (cf. Chapter VI). For two electrons, recently developed time-dependent
renormalized natural orbital theory has been successfully tested against all the issues
in the above list [6–8, 15, 33]. However, complying with the no-free-lunch theorem,
all these methods are much more demanding than TDDFT. There is urgent need for
more efficient time-dependent many-body methods beyond linear response and with
predictive power,which capture satisfactorily all the interestingdynamical correlation
effects in strong-field laser-matter interaction.
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V The multiconfiguration time-dependent

Hartree–Fock method

Computing the time-dependent wavefunction for a multielectron system subject to
a nonperturbative field is a formidable task that can require significant amounts
of computational effort and resources. The time-dependent Hartree–Fock (TDHF)
method provides an efficientway to calculate thewavefunction. However, thismethod
represents the f -electron wavefunction as a single Slater determinant constructed
from f time-dependent, single-particle spin-orbitals. These spin-orbitalsmove in time
and at each timeprovide the best representation of the f -electronwavefunctionwithin
the space of single Slater determinants. As such, the interaction of the electrons is
only treated in an average way and provides a poor representation of the correlated
wavefunction. At the other extreme lies the time-dependent configuration interaction
(TDCI) method (see, e.g., [1, 8, 11, 12] and Chapter VI). Here, the wavefunction is
expanded over many Slater determinants using fixed spin-orbitals; the time depen-
dence is carried in the expansion coefficients. In TDCI, electron correlation can be
accounted for in a systematic way by increasing the number of Slater determinants
used to represent the electronic wavefunction. In the limit of a complete set, the
TDCI wavefunction will converge to the true wavefunction. However, as the number
of configuration needed grows exponentially, for systems beyond two electrons,
computational capacities can be quickly overwhelmed.

Themulticonfiguration time-dependentHartree–Fock (MCTDHF)method seeks to
balance the speed of TDHFand the accuracy of TDCI by representing thewavefunction
using time-dependent Slater determinants (similar to TDHF) and time-dependent
expansion coefficients (similar to TDCI). The Slater determinants and the expansion
coefficients are optimized by a variational principle. As with TDCI, MCTDHF provides
a way for systematically accounting for two-body interactions. Since the spin-orbitals
are optimized at each time, theMCTDHFapproachhas the advantage in that it requires
much fewer Slater determinants to represent the electronic wavefunction than TDCI.

In this chapter, we will introduce the MCTDHF method and discuss how this
method can be implemented.
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1 Multiconfiguration time-dependent Hartree–Fock
Here, wewill give an overview of theMCTDHFmethod; suggestions for further reading
are given at the end of this chapter. The MCTDHF method provides an approximate
solution to the time-dependent Schrödinger equation for f interacting electrons in the
presence of a strong perturbation, such as a laser electric field. The Hamiltonian for
such a system, in dipole approximation, is given by

H =
f∑
i=1

{
1
2

[
1
i ∇+A(t)

]2
+U(ri)

}
+

n∑
i<j

V(ri − rj), (1)

where A(t) is the time-dependent vector potential, U(r) is the binding potential, and
V(r− r′) is the interaction between the particles. Typically, V is the standard Coulomb
interaction in atoms and molecules; however, for quantum gases, it can also take the
form of a Dirac δ function or some other short-range potential. TheHamiltonian above
is presented in atomic units; unless otherwise indicated, this is the systemof units that
will be used throughout this chapter.

MCTDHF represents the f -electron wavefunction Ψ(q1, . . . ,qf ; t) using a set of n
time-dependent spin-orbitals φi(q; t) and a set of time-dependent linear expansion
coefficients Aj1 ...jf (t) as

Ψ(q1, . . . ,qf ; t) =
n∑

j1=1
· · ·

n∑
jf=1

Aj1 ...jf (t)φj1 (q1; t) · · ·φjf (qf ; t), (2)

where qi represents both the spatial and spin coordinates of the ith electron. The
antisymmetry of thewavefunction is preservedby requiring the expansion coefficients
to be antisymmetric under exchange of any two indices; that is,

Aj1 ...jk ...jl ...jf = −Aj1 ...jl ...jk ...jf . (3)

This antisymmetry requirement reduces the number of independent expansion coeffi-
cients to

(n
f
)
. The ansatz in (2) is invariant under transformations of the form

Aj1 ...jf → Ãj1 ...jf =
n∑

k1=1
· · ·

n∑
kf=1

B−1j1k1 · · ·B
−1
j1kf Ak1 ...kf , (4)

φj → φ̃j =
n∑
k=1

Bjkφk, (5)

where B is any invertible n × n matrix [4]. In order to restrict B and ensure orthornor-
mality of the spin-orbital functions, the following constraints are used:

〈φj|φk〉 = δjk , (6)
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i〈φj|φ̇k〉 = gjk , (7)

where g is an arbitrary (possibly time dependent), single-particle, Hermitian operator
with matrix elements gij = 〈φi|g(t) |φj〉.

Equations of motion for the As and φs are determined from the Dirac–Frenkel
variational principle [9]

〈δΨ | i ∂∂t −H |Ψ〉 = 0. (8)

For Ψ in the approximation manifoldM—the set of all wavefunctions constructed as
in (2)—the tangent space of Ψ , denoted by TΨM, is the set of all allowed variations.
The variational principle states that, at each time, the residual (i∂t − H) |Ψ〉 is
orthogonal to TΨM. This ensures that, within the ansatz, iΨ̇ is closest to its true value.
The variational principle also ensures that the norm and energy are conserved when
H is explicitly time independent and Ψ ∈ TΨM [3]. Performing the variation leads to

iȦJ =
∑
L
HJLAL −

f∑
i=1

n∑
k=1

gjikAj1 ...ji−1kji+1 ...jf , (9)

iφ̇ = (1− P)ρ−1〈H〉φ + Pgφ, (10)

where J stands for the set of jis and similarly for L, HJL = 〈ΦJ |H |ΦL〉 with |ΦJ〉 =
|φj1 · · ·φjf 〉, and φ is the column vector containing the spin-orbital functions. The
density matrix ρ is given by

ρkl =
∑
j2 ...jf

A*
kj2 ...jf Alj2 ...jf , (11)

and the mean-field operator 〈H〉 is given by

〈H〉kl =
〈
Ψ (k)
∣∣∣H ∣∣∣Ψ (l)

〉
, (12)

with

Ψ (l) = δΨ
δφl

(13)

the single-particle-hole function. In terms of spin-orbitals and expansion coefficients,
the single-particle-hole function can be written as

|Ψ (l)〉 =
∑
j2 ...jf

Alj2 ...jf |φj2 · · ·φjf 〉 . (14)

The projector P onto the space of spin-orbitals is given by

P =
∑
k

|φk〉〈φk| . (15)
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Before moving forward, it is interesting to note the effect that the choice of the
constraint operator g will have on (9) and (10). Here, we will discuss two possible
choices. For the sake of this discussion, we write the Hamiltonian as H = H(1) + H(2)

where H(1) and H(2) represent the one-body and two-body terms, respectively. The
simplest choice for g is g = 0, which gives the equations of motion

iȦJ =
∑
L
HJLAL , (16)

iφ̇ = (1− P)ρ−1〈H〉φ. (17)

This constraint is used in most of our applications of MCTDHF. However, another
possibility is g = H(1). In this case, the equations of motion become

iȦJ =
∑
L
H(2)
JL AL , (18)

iφ̇ = (1− P)ρ−1〈H〉(2)φ +H(1)1φ. (19)

Comparing (16) and (18), it can be seen that in (16), the time evolution of the AJs
depends on the full Hamiltonian, whereas in (18), it depends solely on the interaction
terms. The motion of the AJs that is lost in (18) is transferred to the spin-orbitals in
(19). Here, the motion of the spin-orbitals is less restricted than it is in (17) because
the projector only acts on the interaction part of the equation. Even in the case of
a complete basis set, where the 1 − P term vanishes, the spin-orbitals in (19) will
continue to evolve in time.

To illustrate how MCTDHF accounts for electron correlation, consider the case
with f = 2 and n = 3. The MCTDHF wavefunction can be written as

Ψ(t) = A12Det[φ1(t)φ2(t)] +A13Det[φ1(t)φ3(t)] +A23Det[φ2(t)φ3(t)], (20)

where Det[φi(t)φj(t)] = φi(t)φj(t) − φj(t)φi(t) and the coordinates qi have been
dropped for simplicity. The first term on the right-hand side in (20) is theHartree–Fock
part of the wavefunction; the second and third add correlation. For the n = f case,
MCTDHF reduces to the TDHF method. For n > f , MCTDHF is better able to treat
the electron-electron interaction because, as with TDCI, it uses a larger number of
configurations. However, MCTDHF uses a spin-orbital basis set that is optimized at
each time. This allows MCTDHF to be better able to represent the wavefunction using
amuch smaller basis set than is required by TDCI. The outcome of this is thatMCTDHF
is able to handle time-dependent problems for larger numbers of electrons than can
be treated by TDCI.
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2 Implementing the MCTDHF method
In our implementation of MCTDHF, we represent the spin-orbitals on a tensor product
grid. We will first demonstrate the use of MCTDHF on a uniform grid and will then
generalize it to a nonuniform grid at the end of this chapter. Other schemes exist for
representing the spin-orbitals, each having their ownmerits, but these are beyond the
scope of this chapter. For more information on different implementation of MCTDHF,
see the suggested readings at the end of the chapter.

2.1 Uniform grids

A general way to implement MCTDHF is to represent the spin-orbitals on a uniform
Cartesian tensor product grid. While it is possible to compute derivatives f (n)(r) on
such a grid using finite difference formulas or other methods, it is beneficial to use a
fast Fourier transform (FFT) algorithm [6] and the property of Fourier transforms,

f (n)(r) =F−1{(ik)nF [f (r)]} , (21)

whereF denotes theFourier operator andk themomentumcoordinates. Theworkload
to compute the derivatives using the FFT method requires more computational effort
than thefinite differences.However, the improvedaccuracyusing theFFTmethodover
finite differences iswell worth the effort since this part of the computation is negligible
compared to the computational workload for the two-body terms.

Integrals to be evaluated numerically come in two forms: (i) one-body and (ii)
two-body integrals. For one-body integrals of the form

Oij =
∫

φ*
i (r)O(r)φj(r)dr, (22)

whereO is a one-body operator, the trapezoidal method [7] is sufficient providing that
the grid spacing is not chosen too large. The two-body integrals take the form

Vijkl =
∫

φ*
i (r)
(∫

φ*
j (r′)V(r− r′)φl(r′)dr′

)
φk(r)dr, (23)

where V(r − r′) is a two-body operator depending on difference coordinates. The
integrals can be evaluated efficiently by first, performing integration over r′ using the
convolution theorem and the FFT algorithm.What remains is a one-body integral that
can be calculated using the trapezoidal rule or a higher-order numerical integration
scheme.
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2.2 Computation of the mean-field operator

In MCTDHF, much of the computational time is required to calculate the mean-field
operator 〈H〉. The elements 〈H〉kl can be written as

〈H〉kl =
f∑
i=1

〈Ψ (k)|H1(qi; t) |Ψ (l)〉+
f∑
j>i

〈Ψ (k)|H2(qi , qj) |Ψ (l)〉 , (24)

where we have broken the Hamiltonian H up into one-body and two-body parts.
Inserting the definition of the single-particle-hole function gives

〈H〉kl =
f∑
i=1

∑
j2 ...jf

∑
l2 ...lf

A*
kj2 ...jf All2 ...lf 〈φj2 . . . φjf |H1(qi; t)|φl2 . . . φlf 〉 (25)

+
f∑
j>i

∑
j2 ...jf

∑
l2 ...lf

A*
kj2 ...jf All2 ...lf 〈φj2 . . . φjf |H2(qi ,qj)|φl2 . . . φlf 〉 .

We first examine the one-body part of (25), which we label 〈H〉(1)kl . For i = 1, we have

〈H〉(1)kl (q1; t) =
∑
j2 ...jf

∑
l2 ...lf

A*
kj2 ...jf All2 ...lf 〈φj2 . . . φjf |H1(q1; t)|φl2 . . . φlf 〉

=
∑
j2 ...jf

A*
kj2 ...jf Alj2 ...jf H1(q1; t)

= ρklH1(q1; t). (26)

When i ≥ 2, we can rearrange the multi-indices to get (f −1) equal terms giving

f∑
i=2

∑
j2 ...jf

∑
l2 ...lf

A*
kj2 ...jf All2 ...lf 〈φj2 . . . φjf |H1(qi; t)|φl2 . . . φlf 〉

= (f −1)
∑
j2,l2

∑
j3 ...jf

A*
kj2 j3 ...jf All2 j3 ...jf 〈φj2 |H1(q2; t)|φl2〉 . (27)

Similarly for the two-body parts, which we label 〈H〉(2)kl , we separate for i = 1, j = 2 to
get

〈H〉(1)kl (q1; t) =
∑
j2 ...jf

∑
l2 ...lf

A*
kj2 ...jf All2 ...lf 〈φj2 . . . φjf |H2(q1,q2)|φl2 . . . φlf 〉

= (f −1)
∑
j2,l2

∑
j3 ...jf

A*
kj2 j3 ...jf All2 j3 ...jf 〈φj2 |H2(q1,q2)|φl2〉 , (28)
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and for i ≥ 2, j > i,

f∑
i=2

f∑
j=i+1

∑
j2 ...jf

∑
l2 ...lf

A*
kj2 ...jf All2 ...lf 〈φj2 . . . φjf |H2(qi ,qj)|φl2 . . . φlf 〉

= (f −1)(f −2)
2

∑
j2,l2

∑
j3,l3

∑
j4 ...jf

A*
kj2 j3 j4 ...jf All2 l3 j4 ...jf

× 〈φj2φj3 |H2(q1,q2)|φl2φl3〉 . (29)

The terms in (27) and (29) are not complex functions but merely complex numbers.
When the operator 1 − P, which projects onto the space orthogonal to the φis, is
applied, these terms will disappear. The components of the mean-field operator can
now be written as

〈H〉kl = ρklH1(q1; t) (30)

+ (f −1)
∑
j2,l2

∑
j3 ...jf

A*
kj2 j3 ...jf All2 j3 ...jf 〈φj2 |H2(q1,q2)|φl2〉 .

Finally, the second term in (30) has many summations that, for more than two
electrons, can require significant computing time. The amount of these summations
can be greatly reduced by rearranging the indices j3, . . . , jf to yield (f − 2)! identical
terms. The mean-field elements can then be computed as

〈H〉kl = ρklH1(q1; t) (31)

+ (f −1)!
∑
j2,l2

∑
j3<...<jf

A*
kj2 j3 ...jf All2 j3 ...jf 〈φj2 |H2(q1,q2)|φl2〉 .

2.3 Restricted vs unrestricted

The TDHF wavefunction can be represented in a restricted form or an unrestricted
form. In the unrestricted form, the spin-orbital with spin state |s1〉will have a different
spatial function than the spin-orbital with spin state |s2〉. In this sense, each spin
state has its own subspace of spatial functions. For unrestricted TDHF, each of these
subspaces contains a single function. In this case, the wavefunction is

Ψu(q1,q2) = φ1(r1)φ2(r2) |s1s2〉−φ2(r1)φ1(r2) |s2s1〉 . (32)

When s1 = s2, this form is appropriate because φ1 cannot be equal to φ2 or the Pauli’s
exclusion principle will be violated. When solving the TDHF equations, two spatial
functions must be propagated in time. When H is spin-independent and s1 �=s2—as in
a singlet state—there is no differentiating between the two spatial functions; this leads
to restricted TDHF. In the restricted case, the spatial parts of the spin-orbitals are the
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same,

Ψr(q1,q2) = φ1(r1)φ1(r2) (|s1s2〉− |s2s1〉) . (33)

Now only a single one-body spatial function needs to be propagated to advance the
wavefunction in time.

This idea can be extended to MCTDHF. For a system with spin S = 0, as is
common in atomic and molecular systems, the subspace of spatial functions for
electrons with spin |↑〉 will be equal to the subspace of spatial functions with spin
|↓〉. If n spin-orbitals are used to represent the MCTDHF wavefunction, then only
n/2 spatial functions will need to be propagated in time. Furthermore, the work
to compute all one- and two-body operators will be reduced because the matrix
representation of these operators becomes block diagonal because of the orthogonal-
ity of the two subspaces. For our calculations, we will use this restricted MCTDHF
scheme.

2.4 Time integration

The most straightforward way to solve (16) and (17) [or (18) and (19)] is the variable
mean-field (VMF) approach where the mean-field operator 〈H〉, the density matrix
ρ, and the matrix elements HJL are calculated at each step. For systems in a strong
laser field, high-frequency oscillations can develop, imposing a small time step on
our integrator. The result of this is that 〈H〉, ρ, and the HJLs must be calculated many
times. These quantities are computationally work intensive and thus make the VMF
scheme not ideal.

A much more efficient integration scheme—known as the constant mean-field
(CMF) approach—was presented in reference [2]. A brief sketch of the second-order
CMF scheme is given here; for full details, we refer the reader to [2]. The CMF scheme
is based on the notion that the matrix elements HJL and the product of the inverse
density with the mean field matrix ρ−1〈H〉 evolve much slower than the MCTDHF
coefficients and the spin-orbital functions. This allows for HJL, ρ−1, and 〈H〉 to be
calculated on a coarser time mesh.

To advance thewavefunction from time t =0 to time t = τ, the coefficients A(0) and
spin-orbitalsφ(0) are used to calculate 〈H〉(0), ρ−1(0), andH(0) whereH denotes the
matrix elements HJL. These quantities are then used to propagate A and φ from t = 0
to t = τ/2. While many smaller time steps may be taken between t = 0 and t = τ/2, the
quantities 〈H〉(0), ρ−1(0), andH(0) remain constant until t = τ/2 where the quantities
A(τ/2) and φ̃(τ/2) are obtained. FromA(τ/2) and φ̃(τ/2), the quantities 〈H〉(τ/2) and
ρ−1(τ/2) are obtained and used to propagate the spin-orbitals from t = 0 to t = τ/2
yielding φ(τ/2). If the difference between φ(τ/2) and φ̃(τ/2) is above the set error
threshold, the step is rejected andpropagationbegins again at t =0with a smaller time
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step. If the difference is below the error threshold, φ(τ) is calculated by propagating
φ(τ/2) to t = τ using 〈H〉(τ/2) and ρ−1(τ/2). Thenext step is to obtain an error estimate
for the A coefficients. To achieve this,H(τ) is calculated fromφ(τ) and then A(τ/2) is
propagated back to t = 0, yielding Ã(0). Similarly to φ, if the difference between A(0)
and Ã(0) is above the set error threshold, the step is rejected and propagation begins
at t = 0with a smaller time step. Otherwise,H(τ) is used to calculate A(τ), completing
one full CMF step.

We have found the CMF scheme presented above to be a reliable and efficient
method to solve the MCTDHF equations of motion. For intermediate steps between
t = 0 and t = τ/2, and t = τ/2 and t = τ, we use a high-order embedded Runge-Kutta
method [7] to advance the wavefunction in time.

2.5 Computing the ground state

Before we investigate systems subjected to nonperturbative fields, we need to find the
MCTDHF ground state of the system; this is accomplished by using imaginary time
propagation, as introduced in Section 1.3 of Chapter I. Here, t is set to t = −iτ making
the propagator e−Hτ. Applied to a wavefunction, this operator yields

|Ψ(τ)〉 = α0e−E0τ |Ψ0〉+ α1e−E1τ |Ψ1〉+ α2e−E2τ |Ψ2〉+ . . . , (34)

where Ei and Ψi are the eigenvalues and eigenfunctions of the full Hamiltonian H,
and the αis are the probability amplitudes. Since E0 is the lowest eigenvalue, as
τ → ∞, we have Ψ → Ψ0. The wavefunction will lose norm during imaginary-time
propagation so that it is necessary to renormalize after each step; this can be achieved
during the Gram-Schmidt orthonormalization procedure (see, e.g., [7] or Section 1.3.2
of Chapter I).

3 Applications of MCTDHF
In this section, we will apply MCTDHF to problems involving correlated electrons,
using spin-orbitals represented on a uniform grid.

3.1 Calculation of highly correlated ground states

Because MCTDHF uses an optimized set of spin-orbitals and expansion coefficients,
it can be used to compute the ground states of systems with a high degree of corre-
lation where the (TD)HF method would not give an accurate result. To demonstrate
convergence of the ground state, we consider four electrons confined to a harmonic
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oscillator potential in one dimension (1D). The Hamiltonian in atomic units for this
system is given by

H =
4∑
i=1

(
−12∇

2
xi +

Ω2

2 x2i
)
+

4∑
i<j

1√
(xi − xj)2 + a2

, (35)

where Ω is the harmonic oscillator frequency Ω and a is the shielding parameter. We
calculate the ground state with Ω = 0.25 and a = 0.25—a system for which there is
a high degree of correlation—for n = 4, 8, 12, 16, 24, and 32 spin-orbitals. We use a
lattice range of ±25 with 512 grid points.

Table 1 shows the ground-state energies as a function of the number of
spin-orbitals used; the ground-state energies are given up to six decimal places. It

Tab. 1. Calculated ground-state energies for four electrons in a 1D harmonic oscillator potential with
Ω = 0.25 and electron-electron shielding of a = 0.25.

n Number of configurations E0 (a.u.)

4 1 4.4661
8 70 3.8915
12 495 3.8127
16 1820 3.7878
24 10626 3.7835
32 35960 3.7826
48 194580 3.7823
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Fig. 1. Single-particle density for n = 8 (blue line), n = 12 (green line), n = 24 (red line), and n = 32
(circles) spin-orbitals. The TDHF result is also plotted for comparison (black dashed line).
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is clear from Table 1 that for highly correlated systems, many configurations will be
needed to reach convergence. Figure 1 shows the single-particle density of the ground
state for n = 4,8, 12, 24, and 32 spin-orbitals. When n = 4, we get the TDHF result.
It can be seen that the TDHF result (black dashed line) does not even produce the
correct characteristics of the single-particle density. For the TDHF result, there are
only two peaks present, whereas the result with n = 8 (blue line) already shows the
proper characteristics. The single-particle density between n =24 (red line) and n =32
(circles) is almost indistinguishable.

3.2 Nonsequential double ionization

When atoms and molecules interact with a strong laser field, two electrons can be
emitted by a the process of nonsequential double ionization (NSDI) [17]. NSDI is a
correlated process by which the first electron is liberated by the laser field through
tunnel ionization. This electron is then accelerated by the field and can return and
collidewith parent ion. Through energy exchangewith the remaining bound electrons
and assistance from the laser field, one ormore of the bound electrons can be released.

The wavefunction for NSDI presents an extreme computational challenge. Unlike
a process such as HHGwhere there is only a single continuum electron, NSDI requires
an accurate calculation of the two-body continuum portion of the wavefunction. The
use of TDHF for such a problem is out of the question since it does not even properly
represent the ground state. In addition, while TDCI can in principle treat NSDI, due to
the fixed basis, the number of configurations required would be extremely prohibitive
for such a calculation. Because of its optimized spin-orbital basis, MCTDHF allows
for the basis size to remain manageable while still adequately representing the
two-electron part of the wavefunction.

To demonstrate MCTDHF’s ability to address NSDI, we consider a 2 × 1D model
diatomic molecule with nuclei positioned at x = ±R/2.¹ The binding potential for such
a system is given by

U(x) = − 1√
(x −R/2)2 + a2

− 1√
(x +R/2)2 + a2

, (36)

where a is the Coulomb softening parameter. The Hamiltonian for this system
subjected to a strong laser field in dipole approximations is

H =
2∑
i=1

[
Ti +U(xi) + xiF(t)

]
+V(x1, x2). (37)

1 This low-dimensional model is analogous to the one used for He in Section 3.2 of Chapter IV.
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T is the kinetic energy operator, xF represents the laser electron dipole interaction,
and V is the electron-electron interaction

V(x1, x2) = 1/
√
(x2 − x1)2 + a2. (38)

The softening parameter is chosen tomake the one- and two-electron binding energies
of the model systemmatch the binding energies typical for diatomic molecules with a
σ2 configuration, such as N2 and H2. For our calculations, we choose a = 1.12, which
reproduces the N2 ionization potential of 15.8 eV and the two-electron binding energy
of 47.1 eV at the N2 equilibrium internuclear distance of R = 2.08.

The total simulation interval is ±xb , ±yb with xb = yb = 400 and 1024 grid points.
This grid spacing is sufficient to converge the simulation; this has been verified by a
comparison to calculationswith a smaller grid spacing. The use of fairly coarse grids is
possible because the Coulomb potentials are softened and because a high numerical
accuracy is achieved by the FFT-based calculation of the kinetic energy operator and
of the electron-electron interaction.

The laser electric field is F(t) = −Ȧ(t) with the vector potential A(t) =
F0/ωcos2(πt/T)sin(ωt) for −T/2 ≤ t ≤ T/2 and A(t) = 0 otherwise. The pulse duration

(a) n = 20 (b) n = 30

(c) n = 50 (d) Exact
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Fig. 2. Probability density of a two-electron model molecule in an intense laser field with 1D per
electron (2 × 1D). Panels (a–d) show |Ψ|2 after the laser pulse at t = 220; (a–c) MCTDH results
with n = 20,30, 50 spin-orbitals, respectively; (d) exact numerical integration of the Schrödinger
equation.
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is T = 2T0, where T0 = 2π/ω = 110.23 (T0 = 2.6 fs, λ = 0.8μm) is the optical cycle. The
simulation interval extends from−T0 ≤ t ≤ tf =140, and F0 =0.075 (I =2×1014W/cm2).

The two-dimensional (2D) Schrödinger equation for this system can be integrated
exactly using a split operator method (see Chapter I). Figure 2 shows a comparison of
MCTDHF solution for n = 20,30, and 50 spin-orbitals with the wavefunction obtained
from a split-step integration of the 2D Schrödinger equation. For n = 50, the exact
result is well reproduced.

3.3 High-harmonic generation

MCTDHF can also be used to treat problems involving the process of HHG [5].
HHG takes place when a gas of atoms or molecules is exposed to an intense laser
field, yielding harmonics of the field’s fundamental frequency. This process can be
described by the three-step model where (i) an electron is emitted from the highest
occupied orbital, (ii) the electron is accelerated in the field, and (iii) the electron
recombines with the parent ion and emits a harmonic photon in the process.

To demonstrate the convergence of MCTDHF for HHG, we consider a diatomic
molecule similar to Section 3.2. However, here, we use a 2 × 3D system with nuclei
positioned at (±R/2,0,0) and shielding parameter a = 0.1. A simulation interval of
±30 is used along each coordinate direction. A complex absorbing potential of the
formW(x) = −η|x− xc|3 is used for |x| ≥ xc with xc = 16 and η = 0.0005. This potential
suppresses the co-called long trajectories while keeping the short ones, which tend
to dominate experimental spectra. A six-cycle pulse of intensity I = 1014W/cm2 and
a fundamental frequency of ω = 0.057 (800nm) was applied. The vector potential
had the form A(t) = F0/ω sin2(ωt/12)sin(ωt). The harmonic spectrumwas calculated
by taking the Fourier transform of the time-dependent dipole x(t) = 〈Ψ(t)|x |Ψ(t)〉 (cf.
Section 3 of Chapter II).

Figure 3 shows the calculated harmonic spectrum for 4, 8, and 10 spin-orbitals.
The spectrum is well converged for 10 spin-orbitals. At first, this may seem surprising,
given the number of spin-orbitals required for convergence in the NSDI calculations
in Section 3.2. However, HHG is predominantly due to a single continuum electron,
whereas for NSDI, we had two correlated continuum electrons. Furthermore, the
HHG spectrum relies on the calculation of an expectation value of a one-body
operator; these tend to converge with much fewer orbitals than their two-body
counterparts.

High-harmonic spectra for multielectron systems often resemble spectra for
single-electron systems. In order to investigate multielectron effects, special diagnos-
tic tools such as ionic eigenstate-resolved wavefunctions [14] are required but this is
beyond the scope of this chapter. It should be noted that multielectron effects often
appear as a dip or irregularity in the harmonic spectra. In Figure 3, the 15th harmonic
is a possible candidate for displaying multielectron effects.
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Fig. 3. High-harmonics spectra for a 2 × 3D diatomic molecule calculated using MCTDHF with n = 4
(dashed-dotted), n = 8 (solid), and n = 10 (dashed) spin-orbitals.

4 Extending MCTDHF to nonuniform grids
The ultimate goal of MCTDHF is to perform calculations on atoms and molecules
with up to 10 electrons moving in three dimensions (3D) in the presence of a strong
laser field. On a uniform grid, this may require solving
 107–108 coupled, nonlinear,
ordinary differential equations for the spin-orbital part of thewavefunction. Reducing
this number will allow the calculations to proceed much faster.

On a uniform grid, the smallest grid spacing ∆x required by the system is used
on every region of the grid. This forces each part of the spin-orbital to be resolved
equally well over the whole grid, even if this resolution is not required in certain
regions (near the edges, for example). As such, more grid points will be used than are
required. One possible way to overcome this challenge is to use a nonuniform tensor
product grid. This will allow for the grid to be tailored to have a fine resolution in
regions where such resolution is required and to have a coarse resolution where a fine
resolution is not required. Other coordinate choices—spherical, cylindrical, or prolate
spheroidal—may be more beneficial to problems with specific geometries. Here, we
will focus our discussion on Cartesian tensor product grids as these are a general way
to treat most problems. In order to perform MCTDHF calculations on a nonuniform
grid, accuratemethods for differentiation and integrationwill be required. In addition,
since the FFT algorithm is not applicable to nonuniform grids, a new method of
calculating the two-body terms is needed.
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4.1 Differentiation on a nonuniform grid

In Section 2.1, differentiation in MCTDHF could be achieved through the use of an FFT.
When using a nonuniform grid, the FFT is no longer ideal for obtaining an accurate
derivative. An FFT method for nonuniform grids does exist. However, we have found
its numerical accuracy insufficient to maintain the stability of our calculations when
repeatedly performing pairs of forward and inverse Fourier transforms. In order to
treat derivatives on the nonuniform grid, we look to finite difference methods. While
there are well-known formulas for the first and second derivatives on uniform grids,
there is a paucity of options for nonuniform grids. Here, a method is presented for
computing formulas for the first and second derivatives based on the given grid. The
points at the boundary of the grid will need to be handled by setting appropriate
boundary conditions.

Let xj be the points along a single grid line and fj = f (xj) where j = 1, . . . ,N. In
what follows,we takeNd, i.e., the number of points used to approximate the derivative
at xj, to be an odd integer and approximate f (n)(xj) using M points on either side
of xj; see Figure 4. We are searching for a formula for the nth derivative at xj of
the form

f (n)(xj)

Nd∑
k=1

a(n)jk f (xj+k−M−1), (39)

whereM = (Nd −1)/2 and the a(n)jk are the coefficients for the nth derivative formula at
xj. Introducing the notation hj+k = xj+k − xj and fj+k = f (xj+k), it is possible to write the

xj xj + 1 xj + 2xj − 1xj − 2

f(x)

x

fj − 2

fj − 1

fj
fj + 1 fj + 2

Fig. 4. Schematic of differentiation on a nonuniform grid.
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system of equations

f (xj+k)
 f (xj) + hj+k f ′(xj) +
h2j+k
2! f ′′(xj) + . . . +

hNd−1
j+k

(Nd −1)!
f (Nd−1)(xj). (40)

Thus, the set of equations centered at xj is of the form fj =AjFj where

fj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f (xj−M)
...

f (xj)
...

f (xj+M)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, Fj =

⎛
⎜⎜⎜⎜⎝

f (xj)
f ′(xj)
...

f (Nd−1)(xj),

⎞
⎟⎟⎟⎟⎠ (41)

and the nonsingular matrix Aj is given by

Aj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 hj−M
h2j−M
2! · · ·

hNd−1
j−M

(Nd −1)!

1 hj−M+1
h2j−M+1
2! · · ·

hNd−1
j−M+1

(Nd −1)!
...

...
...

. . .
...

1 hj+M
h2j+M
2! · · ·

hNd−1
j+M

(Nd −1)!

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (42)

Inverting Aj then gives the solution Fj = A−1
j fj. From this, it is clear that the ith row

of A−1
j gives the coefficients a(i−1)jk . That is, the dot product of the first row with fj just

reproduces f (xj), the dot product of the second rowwith fj gives f ′(xj), the dot product
of the third rowwith fj gives f ′′(xj), and so on. In fact, for Nd points, this method gives
an approximate expression for the first Nd −1 derivatives. However, the quality of the
approximation decreases with increasing order of the derivative.

4.2 Integration on nonuniform grids

On a uniform grid, integrationmay be handled using the well-known trapezoidal rule.
For a grid spacing h, the error then isO(h3). However, on a nonuniform grid, the error
is increased to O(h2) and thus is not sufficient for accurate computation. As with the
case of differentiation, consider the N grid points xj, where j = 1, . . . ,N, along a single
(1D) grid line and the values of a function f (xj) at these points. Let Np be the even
number of points used to calculate the integral for the interval [xj , xj+1]. We wish to
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find an expression for the integral of the form

xj+1∫
xj

f (x)dx 

Np∑
k=1

bjkf (xj+k−M), (43)

where M = Np/2. Since Np is even, there are M − 1 points on each side of the
interval [xj , xj+1], see Figure 5. To determine the bjks, we will apply the method of
undetermined coefficients using a polynomial basis. Thus, it is important that the
integration interval be [xj , xj+1] and not [xj−M+1, xj+M] for the following reason. The
method of undetermined coefficients will yield a polynomial interpolation over the
interval [xj−M+1, xj+M]; however, the interpolating polynomial will not be accurate
near the boundaries of the interval. For larger N, the interpolation in this range will
get worse—known as the Runge effect. However, the polynomial will be accurate at
the center of the interval [xj−M+1, xj+M] and will allow for an accurate approximation
of the integral over the range [xj , xj+1].

Webeginbydefining hj+k = xj+k−xj andnote that (43)will be exact for polynomials
up to order N −1, that is,

xj+1∫
xj

(x − xj)ndx =
1

n +1(xj+1 − xj) =
1

n +1h
n+1
j+1 , (44)

xj xj + 1 xj + 2 xj + 3xj − 1xj − 2

f(x)

x

fj − 2

fj − 1

fj
fj + 1 fj + 2

fj + 3

Fig. 5. Schematic for integration on a nonuniform grid.
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for n = 0, . . . ,N −1. Using (43) allows us to write the set of equations as

bj(−M+1)h
n
j−M+1 + bj(−M+2)h

n
j−M+2 + . . . + bj(M−1)h

n
j+M−1 + bjMhnj+M = 1

n +1h
n+1
j+1 , (45)

where the polynomial basis is centered about xj for numerical considerations. This
system is in the form Ajbj = hj where

bj =

⎛
⎜⎜⎜⎜⎝
bj(−M+1)
bj(−M+2)

...
bjM

⎞
⎟⎟⎟⎟⎠ , hj =

⎛
⎜⎜⎜⎜⎝

hj+1
1
2h

2
j+1
...

1
N h

N
j+1

⎞
⎟⎟⎟⎟⎠ , (46)

and Aj is the nonsingular matrix given by

Aj =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 ·· · 1
hj−M+1 hj−M+2 · · · hj+M
h2j−M+1 h2j−M+2 · · · h2j+M

...
...

. . .
...

hN−1j−M+1 hN−1j−M+2 · · · hN−1j+M

⎞
⎟⎟⎟⎟⎟⎟⎠
. (47)

The coefficients required in (43) can then be determined by bj = A−1
j hj. When

all grid points are uniformly spaced, the above method will yield the well-known
Newton–Coates formulas for integration [7].

4.3 Treatment of the two-body terms

The FFT is not suitable for nonuniform grids. Hence the convolution theorem cannot
be applied when solving two-body integrals. It is not feasible to directly integrate
(48) because, for N grid points, N one-body integrations would need to be performed.
Fortunately, for Coulomb interaction, the integrals have the form

ϕ(r) =
∫

ρ(r′)
|r− r′|dr

′. (48)

These integrals can still be evaluated in an efficient manner without the need to
directly perform the integration. The Poisson equation

∇2Φ(r) = −ρ(r) (49)

has the solution

Φ(r) = 1
4π

∫
ρ(r′)
|r− r′|dr

′, (50)
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which, apart from a constant prefactor, is of the form (48). To solve Poisson’s
equation, we use the MOEVE package [10]. MOEVE is a multigrid algorithm adapted
for nonuniform tensor product grids. The speed of MOEVE is comparable to that of
FFTW [6].

4.4 Ground state of small sodium clusters

As a test of MCTDHF using nonuniform grids, we will calculate the ground states
of two small sodium clusters in 3D by performing imaginary-time propagation. A
single sodium atom has 11 electrons, which already pushes the limits of MCTDHF.
When the system contains more than a single Na atom, it is not feasible to model
every electron. In order to overcome this hurdle, we use a pseudopotential to account
for the core electrons and only model those in the valence shell. Sodium has the
electron configuration 1s22s22p63s1, or [Ne]3s1, and thus only the single electron
in the 3s shell will be active. The remaining ten electrons will be accounted for
by the pseudopotential. The pseudopotential used for these calculations is the
Topp–Hopfield potential [16] given by

U(r) =
{
0.1790cos(1.224r) −0.179 for r ≤ 3
−1/r for r > 3

, (51)

where r =
√
x2 + y2 + z2 is the radial coordinate.

We will calculate the ground state of the sodium clusters Na4-D4h and Na6-C5v
using the structures given in [13]. The geometry ofNa4-D4h is planar; the sodiumatoms
form the corners of square with sides of length 3.355Å. The geometry of the Na6-C5v
cluster is a pentagonal pyramid. The sides of the pentagon are of length 3.610Å, and
the height of the pyramid is 2.913Å. For our calculations, the Na4-D4h cluster lies in
the x-y plane with the center of the square at the origin. For the Na6-C5v cluster, the
pentagonal base of the pyramid lies in the x-y plane, and the peak of the pyramid is
centered at the origin and extends up into the z-axis. In our calculations, the Na4-D4h
and Na6-C5v clusters contain four and six active electrons, respectively.

For our calculations, we use a nonuniform grid with Nx = Ny = Nz = 120 with a
minimum grid spacing of ∆xmin = 0.38 around the origin. The x-axis is grown at a rate
of 2% for |x| ≤ 10 ; for |x| > 10, the grid is grown at a rate of 5% to amaximum step size
∆xmax = 2. The total range on the x-axis is then ±106. The y and z axes are chosen in
the same manner. In order to achieve that same range Nx = Ny = Nz = 557, grid points
would be needed on a uniform grid with a spacing equal to the minimum spacing of
the nonuniform grid. This makes the number of points on the uniform grid Nu = 5573,
as opposed to Nnu = 1203 for the nonuniform grid, i.e., Nu 
 100Nnu. For testing and
comparison, we also performed our calculations on a uniform grid.
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Fig. 6. Ground-state density of the Na4-D4h cluster. The dots show the position of the Na atoms.
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Fig. 7. Ground-state density of the Na6-C5v cluster. The dots show a birds eye view of the position of
the Na atoms.

For the Na4-D4h cluster, we performed the MCTDHF imaginary-time calculation of the
ground state using 12 spin-orbitals. The calculated ground-state energy for this system
is found to be E0(Na4) = −1.692.
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For the Na6-C5v cluster, the MCTDHF calculation is performed using 16
spin-orbitals, and a ground-state energy of E0(Na6) = −3.316 is calculated. The
calculations on the uniform grid are performedwith the same number of spin-orbitals
as their nonuniform grid counterparts. The ground-state energies found by these
calculations are in agreement.

Figure 6 shows the ground-state density

ρ(x, y) =
∫ ∣∣Ψ0(x, y, z)

∣∣2 dz (52)

for the Na4-D4h cluster where Ψ0 is the ground-state wavefunction, and integration is
performed over the z-coordinate. The cluster configuration is superposed in the plot.
Figure 7 shows the same for the Na6-C5v cluster. A bird’s eye view of the pentagonal
pyramid structure is superposed.

5 Conclusion
Even with the computing power available today, the solution of the time-dependent
Schrödinger equation for correlated few-electron systems exposed to a strong pertur-
bation remains a formidable task. The MCTDHF method provides a viable approach
for making progress toward the simulation of few-electron dynamics in atoms and
molecules exposed to strong laser fields. In particular, it performs well for systems
where only a single electron is promoted to the continuum, and the motion of the
remaining electrons consists of bound state dynamics. The real challenge lies in
solving problems with two or more continuum electrons, such as NSDI in 3D. These
problems require many configurations to converge the two-body continuum portion
of the wavefunction and are unlikely to be solved by MCTDHF alone. That being said,
MCTDHF still provides a promising way to investigate phenomena such as the orbital
rearrangement of molecules after ionization, the complex ionization processes that
occur in noble gas atoms, and the nonlinear effects observed in XFEL experiments on
neon atoms [15], to name a few.
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VI Time-dependent configuration interaction

singles

Many-body effects are becomingmore prominent and omnipresent as strong-field phe-
nomena are studied in larger and more complex multielectron systems. Many-body
effects such as multiorbital ionization or collective excitations can dramatically
change the system response requiring a theoretical description that goes beyond the
single-particle picture. In this chapter, we discuss a practically useful many-body
method, time-dependent configuration interaction singles (TDCIS), and its specific
implementation (grid representation, etc.) to describe strong-field processes. TDCIS
captures a variety of many-body effects and at the same time keeps much of the
single-particle picture making TDCIS a computationally very attractive approach.

1 Introduction
The absorption and emission of electromagnetic radiation have been the method of
choice for over a century to access the quantumworld of atoms,molecules, and solids.
Since the invention of the laser in the 1960s and thepossibility to producewell-defined
pulses of radiation (laser pulses), the underlying structure and mechanisms in these
microscopic systems can be studied in unprecedented detail. By knowing exactly the
spectrum of the radiation pulse hitting the system, a direct connection between the
final pulse spectrum (after passing through the system) and the internal structure of
the system can be established. The kinetic energy distribution of electrons expelled
from the system (the photoelectron spectrum) can be measured and contains quite
complementary information on the system.

Atoms, molecules, and solids are all multielectron systems. The Coulomb inter-
action among the electrons causes them to become correlated, i.e., the behavior of
any given electron can generally not be specified without specifying the behavior of
all other electrons in the system. Even though the importance of electron correlations
for physical or chemical properties has been realized in the early years of quantum
mechanics, it remains a challenge to rigorously describe them. For any realistic
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system, the exact N-electron wavefunction needs to be approximated to make it
computationally tractable. Even for a helium atom, the simplest multielectron system
with two electrons, the exact wavefunction is analytically not known.

Many theories have been developed over the last 80 years to cope with this
problem. The most popular theories are mean-field theories, where the N electrons
are approximated as being independent but experiencing each other via a common
mean-field potential. The most common mean-field theory is Hartree–Fock (HF),
where the N-electron wavefunction is approximated as a single Slater determinant.
Mean-field theories, by definition, do not include electron correlations as they treat
each electron as if it were an independent particle.

In many systems (e.g., open-shell atoms), already the ground state can contain
a significant amount of correlation. Additionally, electronic correlations can quite
dramatically change the character of excited states. One example is autoionizing
states,whichbecomeunstable anddecay only because of electronic correlations.Most
(wavefunction-based)many-body theories [1] that include electron correlation use the
HF ground state as a reference state to build up a multiconfiguration wavefunction
consisting of many Slater determinants. These theories are, therefore, also called
post-HF methods. Correlation effects beyond the independent particle (mean-field)
picture are included through themulticonfigurational nature of the post-HFwavefunc-
tion.¹ However, quantummany-body theories have the disadvantage that they quickly
become too hard to be solvable on a computer, and the amount of correlation that can
be described has to be restricted. Hence, most many-body theories are used for static
problems such as calculating the ground state and its properties.

A dynamical or time-dependent description is generally needed to describe
nonstationary situations, particularly when the perturbation causing the dynamics
of the system is so strong that perturbation theory breaks down. This is the case
for strong-field processes: The large intensities of strong-field pulses generate elec-
tromagnetic forces that are comparable with the Coulomb forces within the system.
Consequently, the light-matter interaction does not just perturb but significantly alters
the electronic structure of the system. Perturbation theory cannot be applied as the
assumption that the light-matter interaction is weak is not fulfilled anymore. In this
situation, the electric field of the pulse² is typically so strong that an electron can be
pulled out of the system, leading to strong-field or tunnel ionization.

Because of its strength, a strong-field pulse can affect more than just a single
electron. Electronic correlations that may have been negligible in the initial ground
state can now become quite important as the system is strongly driven by the laser
pulse. The presence of a strong-field pulse can significantly alter the properties and

1 See Chapter V on multiconfigurational time-dependent HF.
2 The magnetic component can normally be ignored in the nonrelativistic regime; see Chapter III for
the relativistic regime.
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the appearance of many-body effects. In the field-free scenario, many-body effects are
well studied, but in the strong-field regime, they are basically unexplored.

A natural way to build strong-field many-body theories is by using well-known
many-body theories from the quantum chemistry community [1] and adopting them
for the strong-field regime. In strong-field calculations, it is necessary to describe
a wide range of continuum states, since an electron can be freed from the system
and may even return to the system at a later time. Highly delocalized continuum
states do not favor an orbital description based on Gaussian-type functions, which are
employed inmost quantum chemistry approaches. A nonuniform grid representation,
which accounts for localized bound orbitals and highly delocalized excited and
continuum orbitals, is better suited for strong-field problems.

In the following, we explain why TDCIS is an ideal candidate for describing
many-body effects in the strong-field regime and how it can be used to identify
many-body processes. In Section 2, we derive the basic equations and properties of
TDCIS. The specific implementation of TDCIS for closed-shell atoms is presented in
Section 3. It includes discussions about the orbital andgrid representations, spin-orbit
interaction, the calculation of expectation values and the ion density matrix (IDM),
the HF procedure, and the use of complex absorbing potentials (CAPs). Finally,
in Section 4, we show examples of how TDCIS allows one to explain multiorbital
effects and collectivemany-body excitations in the strong-field regime.We specifically
discuss in Section 4.1 the creation of spin-orbit hole motion via strong-field ionization
and how to measure it with attosecond transient absorption spectroscopy (ATAS).
Another example, in Section 4.2, will focus on the appearance of collective excitations
in high-harmonic generation (HHG) and the dramatic consequences for the HHG
spectrum.

Throughout this chapter, we use atomic units (� = |qe| = 1/(4πϵ0) = a0 = 1), which
are natural units when dealing with the electronic structure of atoms, molecules, and
solids.

2 Basics of TDCIS

2.1 TDCIS wavefunction

Let us start at the very beginning, i.e., with the main concept behind configuration-
interaction (CI). CI is based on the idea that an N-electron state that can be easily
determined is used as a reference to describe the full N-electron state Ψ . When this
reference state is a good approximation of Ψ , then only very few additional terms are
needed to describe the full stateΨ . The reference state in CI is normally the HF ground
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state,
|Φ0〉 =

∏
i
ĉ†i |0〉 , (1)

where the index i runs overN one-particle orbitals (including electron spin),which are
the orbitals occupied by the N electrons, and |0〉 is the vacuum state with no electrons
present. CI is one of the post-HFmethods.³ After we have found the reference stateΦ0,
we can build Ψ in terms of Φ0:

|Ψ〉 =
(
α0 +

N∑
n=1

∑
a1<...<an
i1<...<in

αa1 ...ani1 ...in ĉ†a1 ĉi1 . . . ĉ
†
an ĉin
)
|Φ0〉

= α0 |Φ0〉+
∑
a1,i1

αa1i1 |Φa1
i1 〉+
∑
a1<a2
i1<i2

αa1a2i1 i2 |Φa1a2
i1 i2 〉+ . . . , (2)

where ĉ†a and ĉi are the creation and annihilation operators of an electron in
orbitals a and i, respectively. The n-particle-n-hole (np–nh) configurations, |Φa1 ...an

i1 ...in 〉=
ĉ†a1 ĉi1 . . . ĉ

†
an ĉin |Φ0〉, representN-electron configurationswhere n electrons aremoved

from their initially occupied orbitals ik (leaving holes behind) to initially unoccupied
(virtual) orbitals ak with k = 1, . . . , n. Note that the indices i, j refer always to occupied
orbitals, and a,b refer to virtual (unoccupied) orbitals. The indices p, q, r, s are used
when referring to any (occupied or virtual) orbitals.

If all possible np–nh configurations are included, Ψ is the exact N-electron
wavefunction including all electronic correlations. In this case, the method is called
full CI. Including only singly excited configurations is called CI-singles (CIS). Similarly,
including only doubly excited configurations is called CI-doubles, and including
singly and doubly excited configurations is called CI-singles-doubles.

The size of the np-nh-configuration space scales as (NaNi)n, where Na and Ni
are the numbers of unoccupied and occupied orbitals, respectively. Since Na is quite
large (in principle infinitely large), it is computationally not feasible to go to very high
excitation classes. To calculate exact ground-state properties (e.g., expectation values
of suitable observables), it is not necessary to include states that are very delocalized
and extend far from the atom/molecule. Hence, Namay be relatively small, and higher
np-nh-excitations classes and, therefore, higher-order correlations can be included in
the calculations. In strong-field physics, where it is important to describe awide range
of the continuum states, Na can easily be a 5-digit number. Including doubly or triply
excited configurations quickly becomes infeasible. Consequently, we limit ourselves
to CIS and focus on many-body and correlation effects within the CIS configuration
space. As we will see in Section 4, already with CIS, a variety of new effects can be
included that are not possible to describe with a single-particle picture.

3 HF is explained in Section 3.5.
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By turning the CIS coefficients α0 and αai into time-dependent coefficients, α0(t)
and αai (t), we obtain the TDCIS wavefunction:

|Ψ(t)〉 = α0(t) |Φ0〉+
∑
a,i

αai (t) |Φa
i 〉 . (3)

This wavefunction ansatz still makes use of the fact that most strong-field processes
in atoms are one-electron–dominated processes, but it also acknowledges (via the
sum over i) that the active electron may not just come from the least weakly bound
(outermost) occupied orbital as it is usually assumed in single-active electron (SAE)
calculations. TDCIS also takes into account that the active electron can influence the
state of the parent ion (the state of the hole) leading to correlations between the
excited electron and the hole. In comparison with single-particle approaches, TDCIS
does not use model potentials to mimic the interaction of the active electron with
the other electrons. It describes the exact electron-electron interaction within the CIS
configuration space. For these reasons, CIS is a good candidate for amany-body theory
in the strong-field regime.

2.2 The N-body Hamiltonian

The exact nonrelativistic N-electron Hamiltonian in an external electric field reads as

Ĥ(t) =
N∑
n=1

p̂2n
2 −

N∑
n=1

Z
|r̂n| +

1
2

N∑
n,m=1
n �=m

1
|r̂n − r̂m| +

N∑
n=1

E(t) · r̂n , (4)

with the kinetic energy p̂2n
2 , the attractive nuclear potential − Z

|r̂n| , the repulsive
electron-electron interaction |r̂n − r̂m|−1, and the light-matter interaction E(t) · r̂n. The
bold symbols represent vectors, and · is the scalar product. For TDCIS, it is convenient
to partition the Hamiltonian into three parts,

Ĥ(t) = Ĥ0 + Ĥ1 + ĤLM(t) − EHF, (5)

which have an intuitive physical meaning:
Ĥ0 is the Fock operator containing the kinetic term, the nuclear potential, and the

effective one-particle mean-field potential V̂HF.
Ĥ1 is the residual electron-electron interaction including everything that goes be-

yond the mean-field potential V̂HF included in Ĥ0.
ĤLM(t) =

∑N
n=1E(t) · r̂n is the light-matter interaction in the electric-dipole approxima-

tion using the length form.
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EHF = 〈Φ0| Ĥ0 + Ĥ1 |Φ0〉 is the HF ground-state energy. This energy shift is only done
out of convenience to shift all energies such that the HF ground state Φ0 has zero
energy.

The Fock operator Ĥ0 includes all one-particle potentials and defines the one-particle
orbitals φp, which are the eigenstates of Ĥ0 with the eigenvalues εp. Consequently, we
can write

Ĥ0 =
∑
p
εp ĉ†p ĉp . (6)

The residual Coulomb interaction Ĥ1 is the only two-body operator in (5) and captures
all effects beyond an independent-particle picture. The detailed expression for Ĥ1
reads as

Ĥ1 = V̂c − V̂HF, (7a)

V̂c =
1
2
∑
i �=j

1
|r̂i − r̂j|

= 1
2
∑
pqrs

vpqrs ĉ†p ĉ†q ĉs ĉr , (7b)

V̂HF =
∑
pq

(∑
i
vpiqi − vpiiq

)
ĉ†p ĉq , (7c)

where V̂c is the exact electron-electron interaction and V̂HF is the HF mean-field
potential. In these equations, we changed from a general representation to an orbital
representation (defined by Ĥ0). In the orbital representation, the matrix elements of
the electron-electron interaction read as

vpqrs =
∫∫

d3r1 d3r2
φ*
p(r1)φr(r1)φ*

q(r2)φs(r2)
|r1 − r2| δσp ,σr δσq ,σs , (8)

where σp is the spin of the electron in orbital p.
The light-matter interaction ĤLM(t) is expressed in the length form

∑
n E(t) · r̂n.

An equivalent and also important way to express the light-matter interaction in the
electric-dipole approximation is the velocity form

∑
nA(t) · p̂n, where A(t) is the

vector potential and p̂n is the canonicalmomentumoperator.⁴ The spatial dependence
of the electric field, E(t), is neglected (this is the essence of the electric-dipole
approximation) because strong-field pulses normally have wavelengths around 1 μm,
i.e., orders of magnitude larger than the size of atoms, which is a few Bohr radii
(a0 = 0.529 ). Spatial variations of the electric field across the atom are negligibly
small. In the following, we restrict ourselves to linearly polarized pulses where we
can exploit azimuthal symmetry, greatly reducing the computational effort. The laser

4 See also Section 1.5.5 in Chapter I.
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polarization axis is chosen to be the z-axis, E(t) = E(t)ez. The light-matter interaction
in the orbital representation reads as

ĤLM(t) = E(t)
∑
pq

zpq ĉ†p ĉq , (9)

where zpq =
∫
d3r φ*

p(r) zφq(r) δσp ,σq is the dipole transition matrix element between
orbitals p and q. Note that ĤLM(t) does not change the spin of the electron.

2.3 Equations of motion

In Sections 2.1 and 2.2, we discussed the N-body wavefunction and the N-body
Hamiltonian. After inserting (3) and (5) into the time-dependent Schrödinger equation
(TDSE)

Ĥ(t) |Ψ(t)〉 = i ∂∂t |Ψ(t)〉 , (10)

we need to project the TDSE on each configuration in Ψ , i.e.,Φ0 and the Φa
i , to obtain

the equation of motion for each corresponding time-dependent coefficient:

iα̇0(t) = E(t)
∑
a,i

〈Φ0| ẑ |Φa
i 〉αai (t), (11a)

iα̇ai (t) =
(
〈Φa

i | Ĥ0 |Φa
i 〉− EHF

)
αai (t) (11b)

+E(t)
[
〈Φa

i | ẑ |Φ0〉 α0(t) +
∑
b,j

〈Φa
i | ẑ |Φb

j 〉 αbj (t)
]

+
∑
b,j

〈Φa
i | Ĥ1 |Φb

j 〉 αbj (t).

Note that the configurationsΦ0 andΦa
i form an orthonormal set in the N-bodyHilbert

space, and Ĥ0 is diagonal in this set: 〈Φ0| Ĥ0 |Φa
i 〉 = 0 and 〈Φa

i | Ĥ0 |Φb
j 〉 =
(
εa − εi +

〈Φ0| Ĥ0 |Φ0〉
)
δa,bδi,j. Furthermore, we use the fact that Ĥ1 does not lead to couplings

between the ground state and the singly excited states, i.e., 〈Φ0| Ĥ1 |Φa
i 〉 = 0. This

nontrivial statement is known as Brillouin’s theorem and can be shown by using (1)
and (7). Consequently, the HF ground state is an eigenstate – in fact, the ground
state – within the CIS configuration space. Only when including double excitations,
the ground state will differ from the HF ground state.

The light-matter interaction can couple via the terms 〈Φ0| ẑ |Φa
i 〉 and 〈Φa

i | ẑ |Φ0〉
the ground state with the singly excited states. Without any external field, the atom
remains in the ground state. Singly excited states Φa

i are coupled with each other
via the residual Coulomb interaction Ĥ1 and via the light-matter interaction E(t)ẑ.
The light-matter transitionmatrix elements 〈Φa

i | ẑ |Φb
j 〉 separate into two independent
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single-particle transitionmatrix elements: one between occupied orbitals, zji, and one
between virtual orbitals, zab, see (17).

The residual Coulomb interaction Ĥ1 can change particle and hole states at the
same time. The matrix elements where the hole state is changed, 〈Φa

i | Ĥ1 |Φb
j 〉 with

i �=j, are known as interchannel coupling matrix elements. A channel is characterized
by the ionic state that is left behind after photoelectron emission, which in the case of
CIS is simply given by the hole index i. Note that for CIS, the ionic states |Φi〉 = ĉi |Φ0〉,
which are (N −1)-electron states, do not couple with each other—〈Φi| Ĥ0 + Ĥ1 |Φj〉 = 0
for i �= j, making them ionic eigenstates within the CIS configuration space. This is
another nontrivial statement and is the essence of Koopmans’ theorem. Therefore, the
hole index i is at the same time the channel index.

By setting the matrix elements 〈Φa
i | Ĥ1 |Φb

j 〉 with i �=j to zero, the interchannel
interactions are switched off. In this case, only intrachannel interactions, 〈Φa

i | Ĥ1 |Φb
i 〉,

are considered. Switching on and off specific interactionmakes it possible to systemat-
ically identify and study mechanisms that may cause a given physical phenomenon.

The intrachannel interactions have mainly the effect to correct the charge of the
ionized parent ion, as seen by the excited electron. The virtual HF orbitals φa are
scattering states for an electron added to the N-electron system in its HF ground state.
To describe excited N-electron states, the virtual HF orbitals are not optimal because
the excited electron would not experience the Coulomb potential of the hole that is
left behind. This is corrected with intrachannel interactions. If the excited electron
is far away from the parent ion, the intrachannel potential 〈Φa

i | Ĥ1 |Φb
i 〉 turns for all

hole states i into a simple Coulomb potential, i.e., −〈a|1/r |b〉, as the shape of the hole
becomes more and more irrelevant.

To mimic SAE calculations with TDCIS, we can restrict ourselves to intrachannel
interactions and allow the electron to originate only from one specific orbital. Nev-
ertheless, there are differences to common SAE approaches. Most notably, the model
potentials in SAE are for atoms spherically symmetric and local, i.e., of the form V(r).⁵
The intrachannel potential is neither. If the electron is close to the ion, it experiences
the spatial shape of the hole, thus rendering the potential nonspherical (unless the
hole has angular momentum l = 0). Because of the antisymmetrization of the full
N-electron wavefunction, the intrachannel potential is also nonlocal.

2.4 Limitations

TDCIS is a multichannel theory where only one electron can be emitted. Hence,
multiple ionization processes cannot be described by TDCIS. Because of the residual
Coulomb interaction, the outgoing electron can alter the ionic state. The degree of

5 See also Section 2.1 in Chapter IV.
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freedom of the ionic state is, however, quite limited. The only allowed ionic states
are one-hole configurations |Φi〉 = ĉi |Φ0〉, where an electron is removed from the
HF ground state. In these configurations, all other electrons are frozen. The only
ionic motion allowed is the hopping of the hole between occupied orbitals. More
complicated dynamics require at least one more electron to be active leading to 2p-2h
configurations |Φa1,a2

i1,i2 〉 and beyond. The comparison with higher-order approaches
like the complete active space self-consistent field (CASSCF) method has shown
that polarizability is underestimated by CIS [21], indicating that the response of the
remaining electrons may be important to obtain a more accurate picture of the ionic
system.

3 Implementation of TDCIS
TDCIS can be applied to a wide variety of systems, ranging from atoms to molecules
and to solids. Our focus is on noble gas atoms, which are themost experimentally and
theoretically studied systems in the strong-field and attosecond regimes.

The TDCIS method presented here has first been presented by Rohringer, Gordon,
and Santra [24] and has later been extended to include spin-orbit splitting for the
occupied orbitals [21, 23] and the exact residual Coulomb interaction Ĥ1 [9].

In Section 2, the orbital index, p, refers to the spin and to the spatial degrees of
freedom of the electron. This will change in the following because the spin is treated
differently than the spatial components. Therefore, the spin degree of freedom σ will
be stated separately, i.e.,

φp(r,σ) → φp,σ(r) := φp(r)χσ , (12)

where χσ is the spinor corresponding to the spin σ. The total spin of the electron is
always 1/2 and need not be explicitly mentioned. From now on, when we refer to the
orbital p, we mean only the spatial component φp(r).

3.1 Symmetries and orbital representations

Closed-shell atomic systems are spherically symmetric. It is therefore advantageous
to use spherical coordinates (r, θ,ϕ). Furthermore, for spherically symmetric systems,
the one-particle orbitals φp have a well-defined angular momentum l and can be
written in termsof spherical harmonics [33] Yl,m(θ,ϕ). Themagnetic quantumnumber
m indicates in which direction the angular momentum is pointing. Hence, the
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one-particle basis φp can be factorized into a radial and an angular part,

φp(r) =
〈
r
∣∣φp
〉
=
unp ,lp (r)

r Ylp ,mp (θ,ϕ), (13)

where np is the radial quantum number of the orbital p. Often, the principal quantum
number nP = n + l + 1 instead of n is used to characterize atomic orbitals. This
factorization has several advantages. It separates the radial degree of freedom from
the angular degrees of freedom. The angular part is not just analytically known,
also all integrals and derivatives involving angles can be analytically calculated
(see Section 3.2). From an implementation point of view, this is important because
the dimensionality of the problem that has to be solved just dropped from 3D to
coupled 1D (radial) problems—each electronwith adifferent angularmomentum (l,m)
experiences a different radial potential.

All N-electron eigenstates have well-defined angular momenta as well. For noble
gas atoms, the neutral ground state is a singlet state with no overall spin, S = 0, and
no overall angular momentum, L =M = 0. Only by absorbing or emitting a photon, the
N-electron state can change its angular momentum by ±1. Linearly polarized pulses
canonly change the total angularmomentum L butnot themagnetic quantumnumber
M, which is conserved throughout the light-matter interaction. This has beneficial
consequences for computation as the configuration space that needs to be captured
is greatly reduced, and all configurations with M �=0 can be ignored. In CIS, only
one electron can be excited, and the restriction to M = 0 means that for each Φa

i
configuration, the magnetic quantum number ma of the excited particle has to be the
same as for the hole, mi =ma.

The overall spin state aswell as the spin of each electron cannot be changedby the
light-matter interaction, as it is not spin sensitive. Since the ground state is a singlet
state S =0, all excited states are singlet states too. It is therefore desirable towrite each
CIS configuration as a singlet state [24],

|Φa
i 〉S =

1√
2

(
|Φa,↑

i,↑ 〉+ |Φa,↓
i,↓ 〉
)
, (14)

where |Φa,σ
i,σ 〉 describes an excitation of an electron with spin σ.

A similar transformation can be made for the m state of the excited electron [20]
because linearly polarized light is used, and an electron with magnetic number ma
behaves exactly the sameway as an electronwith −ma. This reduces the configuration
space by almost a factor 2 (similar to the spin consideration). The implementation
can be found in [20] and looks very similar to the spin symmetrization done in (14).
However, we will not perform and use this transformation in our discussion here to
keep equations more compact.
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3.2 Evaluating matrix elements

It is time to evaluate the matrix elements for ẑ and for Ĥ1 in (11) explicitly. The
dipole operator ẑ is a one-particle operator, whereas Ĥ1 is a two-particle operator.
A one-particle operator changes the state of only one particle in an N-particle
wavefunction, whereas a two-particle operator can change two particles at the same
time. The goal is to turn the general expressions in (11), e.g., 〈Φ0| ẑ |Φa

i 〉S, into
expressions that depend only on the one-particle orbitals φp. For the light-matter
interaction that couples the ground state to the singly excited states, we find

〈Φ0| ẑ |Φa
i 〉S =

1√
2
∑
σ

〈
Φ0
∣∣ẑ∣∣Φa,σ

i,σ
〉
=
√
2 zia , (15a)

〈
Φ0
∣∣ẑ∣∣Φa,σ

i,σ
〉
=
∑
pq,σ′

zpq
〈
Φ0
∣∣ĉ†p,σ′ ĉq,σ′ ĉ†a,σ ĉi,σ∣∣Φ0

〉
= zia , (15b)

where the expression for the dipole operator is taken from (9), and the anticommutator
relations,

{ĉp,σ , ĉ†q,σ′} = δpq δσ,σ′ , (16a)

{ĉp,σ , ĉq,σ′} = {ĉ†p,σ , ĉ†q,σ′} = 0, (16b)

are used in addition to ĉ†i,σ |Φ0〉 = ĉa,σ |Φ0〉 = 0. One interesting consequence of (16a)
is that {ĉi,σ , ĉ†a,σ′} = {ĉa,σ , ĉ†i,σ′} = 0 because the virtual orbital space is orthogonal
to the occupied orbital space. Note that in (15a), a factor

√
2 appears because we are

using CIS configurations with spin singlet character. For the dipole matrix elements
between distinct singly excited states, we get

S 〈Φ
a
i | ẑ |Φb

j 〉S =
1
2
∑
σ,σ′

〈
Φa,σ
i,σ
∣∣ẑ∣∣Φb,σ′

j,σ′
〉
= zab δij − zji δab , (17a)

〈
Φa,σ
i,σ
∣∣ẑ∣∣Φb,σ′

j,σ′
〉
=
∑
pq,σ̃

zpq
〈
Φ0
∣∣ĉ†i,σ ĉa,σ ĉ†p,σ̃ ĉq,σ̃ ĉ†b,σ′ ĉj,σ′ ∣∣Φ0

〉
(17b)

=
∑
q

〈
Φ0
∣∣zaq ĉ†i,σ ĉj,σ′ ĉq,σ ĉ†b,σ′ − zjq ĉ†i,σ ĉq,σ′ ĉa,σ ĉ†b,σ′ ∣∣Φ0

〉
= zab δij δσ,σ′ − zji δab δσ,σ′ .

Because the dipole operator is a one-particle operator, it can only change the state of
the hole or the state of the excited electron but not both at the same time. Furthermore,
the dipole operator changes the angularmomentumof the orbital by ±1, aswewill see
when evaluating zpq in (19). Consequently, we find zpp = 0 and

〈
Φa,σ
i,σ
∣∣ẑ∣∣Φa,σ′

i,σ′
〉
= 0.

In a similar way, the matrix elements of Ĥ1 can be determined by using (7), which
read as

S
〈
Φa
i
∣∣Ĥ1
∣∣Φb

j
〉
S = 2vajib − vajbi +

〈
Φ0
∣∣Ĥ1
∣∣Φ0
〉
δab δij . (18)
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With the orbital ansatz from (13), we can evaluate zpq and vpqrs and separate
the radial integrals from the angular integrals. For the one-particle operator ẑ, the
calculation of the matrix elements zpq involves a 3D integral,

zpq =
∫
d3r φ*

p(r) z φq(r) (19)

=
∞∫
0

dr u*np ,lp (r) r unq ,lq (r)
π∫

0

dθ sinθ
2π∫
0

dϕ Y*
lp ,mp (θ,ϕ) cos(θ)Ylq ,mq (θ,ϕ)

= Rnp ,lpnq ,lq

√
2lq +1
2lp +1

Clp ,mp
lq ,mq;1,0 C

lp ,0
lq ,0;1,0,

where Rnp ,lpnq ,lq stands for the radial integral, which is made more explicit in Sec-
tion 3.4 when the radial grid is introduced. The angular integral can be analytically
evaluated⁶ by expressing it in terms of Clebsch–Gordan coefficients, Cl3,m3

l1,m1;l2,m2
=

〈l1,m1; l2,m2|l3,m3〉 [33]. We also used z = r cosθ and Y1,0(θ,ϕ) =
√

3
4π cosθ. From

the property Cl3,−m3
l1,−m1;l2,−m2

= (−1)l1+l2−l3Cl3,m3
l1,m1;l2,m2

, we find that an electron with
quantumnumberm behaves the sameway as an electronwith −m because the second
Clebsch–Gordan coefficient in (19), i.e., Cl3,0l1,0;l2,0, enforces (−1)

l1+l2−l3 = 1. For the
dipole operator (l2 = 1), this relation means the angular momentum of the orbital has
to change by ±1. Keep in mind that |l1 − l3| ≤ l2 has to be fulfilled.

Before we can write down an explicit expression for vpqrs, we need to perform a
multipole expansion of the electron-electron interaction,

1
|r1 − r2| =

∑
L

rL<
rL+1>

4π
2L +1

L∑
M=−L

(−1)MYLM(Ω1)YL−M(Ω2), (20)

where Ω = (θ,ϕ) combines both angular coordinates, and r> = max(r1, r2) and r< =
min(r1, r2). Inserting (20) and (13) in (8) yields

vpqrs =
∑
L,M

4π
2L +1(−1)

M
∫∫

dr1 dr2
rL<
rL+1>

u*np ,lp (r1)unr ,lr (r1) u
*
nq ,lq (r2)uns ,ls (r2)

×
∫
dΩ1 Y*

lpmp (Ω1)YLM(Ω1)Ylrmr (Ω1)
∫
dΩ2 Y*

lqmq (Ω2)YL−M(Ω2)Ylsms (Ω2)

=

√
(2lr +1)(2ls +1)
(2lp +1)(2lq +1)

(−1)mp−mr δmp+mq ,mr+ms

×
∑
L
R[L]pqrs C

lpmp
lrmr;LM Clp0lr0;L0 C

lqmq
lsms;L−M Clq0ls0;L0, (21)

6 See also Section 1.5.6 in Chapter I.
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where R[L]pqrs stands for the 2D radial integral. Electrons with large angular momenta
la � 1 are normally located far away from the atom because of the centrifugal barrier
la(la+1)
2r2 , and bound electrons are located very near the atom. By using this information,

we can simplify the terms vajib and vajbi in (18) for excited electrons with la � 1. The
exchange term vajib disappears as the overlap between electron φa and the hole φi
vanishes. For the direct term vajbi, the monopole term L = 0 becomes dominant as it
decreases most slowly with r>. At the same time, the integral over the bound orbitals
can be performed, which is then nothing else than the overlap between the two bound
orbitals φi and φj. Since all orbitals are orthogonal to each other, we get δij, and the
Coulomb term simplifies to a long-range Coulomb potential, vajbi → δij 〈φa|1/ r̂ |φb〉.

3.3 Spin-orbit interaction

Spin-orbit interaction is usually a small effect in the nonrelativistic regime. In the
outermost p-shell of noble gas atoms,which is the shell that is predominantly affected
by a strong-field pulse, spin-orbit coupling leads to energy splittings of up to ∼ 1 eV.
To have a more accurate description of strong-field processes, one should include
spin-orbit effects, particularly since spin-orbit effects lead to multiorbital tunnel
ionization in noble gas atoms, see Section 4.1. Spin-orbit interactions couple the
spatial degrees of freedom to the spin degree of freedom, which means a simple
product between the two degrees of freedom as in (13) is not sufficient anymore. In
the nonrelativistic limit, the spin-orbit interaction reads as [5]

Ĥso =
α2
2

1
r
dV(r)
dr
∑
n
l̂n · ŝn , (22)

where l̂n and ŝn are the orbital angular momentum operator and the spin operator of
the nth electron. The potential V(r) denotes the mean-field potential plus the nuclear
Coulomb potential. For hydrogen, V(r) includes only the nuclear Coulomb potential
and one finds Ĥso ∝ r−3. Spin-orbit interaction does not change the magnitude of the
orbital angular momentum l and of the spin si = 1

2 of the electron. Only the spin and
orbital momentum projections σ and ml get mixed with each other. Note that (22)
is an approximative extension (from a one-electron atom) to a many-electron atom
neglecting explicit two-body spin-orbit terms.

For many-electron systems, the mean-field potential (including intrachannel
corrections) scales as −Z/r for small radii and as −1/r for large radii. In both cases, the
radial dependence of the spin-orbit interaction goes as r−1 ∂rV(r)∝ r−3. Applying this
result to Rydberg and continuum states, which are quite delocalized and on average
far away from the nucleus, we find that the strength of the spin-orbit interaction is
strongly reduced in comparison to occupied orbitals and, therefore, can be neglected.
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As a result, the virtual orbitals φa can be directly taken from the nonrelativistic HF
calculations.

After rewriting the spin-orbit operator, 2 l̂ · ŝ = ĵ2 − l̂2 − ŝ2, in terms of the
total angular momentum ĵ, it becomes clear that the new one-particle orbitals
are eigenstates of the operators ĵ2, l̂2, ŝ2, and ĵz, which constitute the LS-coupled
basis. The new spin-orbit–coupled occupied orbitals φSO

i , expressed in terms of the
uncoupled orbital basis, read [18, 23]

|φSO
i 〉 :=

∣∣φni ,li ,ji ,mJ
i

〉
=

⎛
⎜⎝C

ji ,mJ
i

li ,mJ
i−

1
2 ;si ,+

1
2

∣∣φni ,li ,mJ
i−

1
2

〉
Cji ,m

J
i

li ,mJ
i+

1
2 ;si ,−

1
2

∣∣φni ,li ,mJ
i+

1
2

〉
,

⎞
⎟⎠ (23)

where the upper entry is the spin-up component, and the lower entry is the spin-down
component. To arrive at this results, we made a few assumptions. We ignored
spin-orbit interactions in the Hamiltonian when performing the HF procedure to
find the uncoupled orbitals φi, which are degenerate in σi and mL

i . Only after
we have determined φi, we apply the spin-orbit interaction using degenerate-state
perturbation theory to capture the spin-orbit coupling. As a consequence, we ignore
the influence on the radial part of the orbital wavefunction, which generally depends
also on ji on top of ni and li. As long as the spin-orbit effect is small, the radial
components for the two possible ji momenta are similar.

Finally, we only need to find the orbital energies of the new spin-orbit–coupled
orbitals. Instead of determining them with perturbation theory, it is convenient to
set the orbital energies to the experimental values. This has the advantage that we
have the exact ionization potential, which is important for accurate tunnel ionization
dynamics.

The spin symmetry that has been used for deriving the spin-singlet CIS configura-
tions (14) cannot be used anymore, since the spin is coupled to the orbital angular
momentum. But this does not mean that there is no symmetry left. The symmetry
exists now between the mJ and −mJ orbitals and reads as

|Φa
i 〉g/u =

1√
2

(
|Φ+a

+i 〉 ± (−1)li+si−ji |Φ−a
−i 〉
)
, (24)

where ±i refers to the orbital with mJ
i ≷ 0, and ±a refers to the corresponding virtual

orbital fulfilling mL
a = mJ

i − σa. For linearly polarized light, only the gerade (g) CIS
configuration gets populated. Depending on whether the total angular momentum,
ji, is larger or smaller than li, a sign jump occurs between the two equivalent
configurations |Φ+a

+i 〉 and |Φ−a
−i 〉.
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3.4 Grid representation

The specific representation of the radial degree of freedom has not been chosen so far.
In the strong-field regime, the electron can travel far away from the atomandmay even
return. At the same time,we have very localized bound electrons. A nonuniform radial
grid is, therefore, desirable with many grid points around the nucleus and fewer grid
points far away from it⁷. By introducing the mapping,

x �−→ r(x) = Rmaxζ
2

1+ x
1− x + ζ , with ζ �=0, (25)

we map the original grid, r ∈ [0,Rmax], onto x ∈ [−1,1]. We can now choose a uniform
grid in x and obtain a nonuniform grid in r. The mapping parameter ζ controls the
grid-point density near the origin as compared to further outside.

The question which basis or representation we choose for the radial degree of
freedom is not answered with this mapping. We only transferred the question from
r to x. So let us do that now. We use a pseudospectral grid representation based on
Gauss–Lobatto quadrature [3, 9]. For Gauss–Lobatto, the interval is x ∈ [−1,1]. The
grid points are given by the two end points x0 = −1, xNg = 1 and the roots of the first
derivative of the Ng-th–order Legendre polynomial obeying P′Ng

(xk) = 0. The number
of grid points isNg+1. Now,we approximate any function f (x) on this interval in terms
of Legendre polynomials Pk(x),

f (x) ≈ fNg (x) =
Ng∑
k=0

akPk(x), (26)

which may also be written in terms of cardinal functions, gk(x),

fNg (x) =
Ng∑
k=0

f (xk)gk(x), (27)

where we require that the approximation yields the exact value of the function f (xk)
at the grid points xk. The cardinal functions have the form [31],

gk(x) = −
1

Ng(Ng +1)PNg (xk)
(1− x2)P′Ng

(x)
x − xk

, (28)

and satisfy the unique property gk(xl) = δkl.

7 TDCIS implementations based on Gaussian basis sets have been used as well for strong-field
processes [12, 27].
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The second derivative of gk(x) at x = xl, which is needed to calculate the radial
kinetic energy, can be written as g′′k (xl) = d

(2)
lk

PNg (xl)
PNg (xk)

with

d(2)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ng(Ng +1)(Ng(Ng +1)−2)
24 for i = j and i, j ∈ {0,Ng},

Ng(Ng +1)−2
4 for i �=j and i, j ∈ {0,Ng},

−Ng(Ng +1)
3(1− x2i )

for i = j and i, j /∈ {0,Ng},

− 2
(xi − xj)2

for i �=j and i, j /∈ {0,Ng}.

(29a)

With the spherical orbital ansatz in (13), we know that un,l(r = 0) = 0 for all n
and l. That means we can ignore the grid point x0 = −1. Also the last point, xNg =
+1, is ignored because we enforce that the wavefunction has to vanish at this point,
un,l(Rmax) = 0. In other words, the electron is bound between r = 0 and r = Rmax. When
the electron reaches r = Rmax, it will be reflected. This reflection is of course artificial,
and in Section 3.6, we describe how we treat this problem.

Now, we can give an explicit expression for the radial integrals in Section 3.2,
which turns into a sum over the grid points xk:

Rmax∫
0

dr f (r) =
1∫

−1

dx r′(x)f [r(x)] ≈
Ng∑
k=0

2 r′(xk)
Ng(Ng +1)P2Ng

(xk)
f [r(xk)]. (30)

It is convenient to absorb the factor r′(xk)
P2Ng (xk)

in the orbitals by introducing

Ak
n,l =
√
r′(xk)

PNg (xk)
un,l(xk), (31)

where the derivative r′(x) stays always positive so that the square root is always well
defined. Thus, the radial integral involving un,l(r) becomes

Rmax∫
0

dr u*np ,lp (r) f (r)unq ,lq (r) ≈
2

Ng(Ng +1)
∑
k
[Ak

np ,lp ]
* f [r(xk)]Ak

nq ,lq . (32)

3.5 Hartree–Fock

HF is the very first step in most many-body theories [1, 30]. HF defines not just the
reference state for CIS but also the (uncoupled) orbitals φp in which each electron is
represented.
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HF is based on finding an N-electron wavefunction Φ0, which can be written
in terms of a single Slater determinant and has an energy closest to the exact
ground-state energy E. To find this HF ground-state Φ0, we use the Ritz variational
principle,

δ 〈Φ0| Ĥ − λ1 |Φ0〉 = 0, (33)

where Ĥ is the exact field-free many-body Hamiltonian. We impose that the norm of
Φ0 is constant by using a Lagrange multiplier λ. The variational principle leads to N
independent equations

εiφi,σi (r) =

⎛
⎝ p̂2

2 − Z
r +
∫
d3r′
∑
j,σj

|φj,σj (r
′)|2

|r− r′|

⎞
⎠φi,σi (r) (34)

−
∫
d3r′
∑
j

φ*
j,σi (r

′)φj,σi (r)
|r− r′| φi,σi (r

′).

These equations have to be solved self-consistently because the last two terms, which
involve electron-electron interactions, depend on the orbital solutions themselves.
The exchange term, i.e., the last term in (34), acts as a nonlocal potential because
the influence of the exchange potential on φi,σi (r) depends on φi,σi (r

′). The exchange
term, however, is important because it ensures that the electron does not see its own
Coulomb potential because the Coulomb term (third term on the right-hand side of
(34)) sums over all N electrons.⁸

For closed-shell HF, (34) reduces to a set of equations involving only the spatial
orbitals φi, as we can exploit that each spatial orbital is doubly occupied. Further-
more, we use the spherical orbital representation (13) to reduce (34) to an equation
depending only on the radial components un,l(r). After expressing un,l(r) in the
pseudospectral-grid representation (31), we obtain the final HF questions aswewould
solve them on a computer [9],

εi Ak
ni ,li =−

1
2
∑
k′

1
r′(xk)

d(2)k,k′
1

r′(xk′ )
Ak′
ni ,li +
(
li(li +1)
2r2(xk)

− Z
r(xk)

)
Ak
ni ,li (35)

+ 2
Ng(Ng +1)

∑
j
(4lj +2)

∑
k′

|Ak′
nj ,lj |2

r>(k, k′)
Ak
ni ,li

− 2
Ng(Ng +1)

∑
j,L

[
Clj0li0,L0

]2∑
k′

rL< (k, k′)
rL+1> (k, k′)

[Ak′
nj ,lj ]

*Ak
nj ,lj A

k′
ni ,li ,

8 Compare to Section 2.2.2 in Chapter IV.
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where rL< (k, k′) = min[r(xk), r(xk′ )] and rL> (k, k′) = max[r(xk), r(xk′ )]. The HF equa-
tion (35) can be written as a matrix eigenvalue problem, εiAni ,li = H0Ani ,li , where
Ani ,li = (A

0
ni ,li , · · · ,A

Ng
ni ,li )

T is the eigenvector and H0 is the Fock operator expressed in
the grid representation as a matrix.

Once all occupied orbitals φi are determined, Ĥ0 can be fully diagonalized. The
N/2 orbitals with the lowest orbital energies are the occupied orbitals, φi. The rest
are the virtual orbitals. Note that (35) does not depend on m. As a result, all 2li + 1
orbitals with quantum number ni and li are energetically degenerate. After fully
diagonalizing Ĥ0, also the virtual orbitals φa are found, and Ĥ0 can be rewritten
in terms of the eigenstates, which reads, using creation and annihilation operators,
Ĥ0 =
∑

p,σp εp ĉ
†
p,σp ĉp,σp .

3.6 Complex absorbing potential

For ionization scenarios, the emitted electron separates from the ion often with great
speed. Before the pulse is over, the electron may have traveled several hundreds
or thousands of Bohr radii. Such large grids are computationally not feasible, and
smaller grids are chosen. However, in order to avoid artificial reflections from the grid
boundary, a CAP is introduced [22], which absorbs the outgoing electron just before
the grid ends.⁹ By putting the absorbing potential at the end of the grid, the absorbed
electron is far away from the atom such that bound and low excited states are not
influenced by the CAP. Hence, the absorbing potential does not influence the physics
near the atom/ion.

Unfortunately, introducing a CAP results in a non-Hermitian Hamiltonian, Ĥ0 →
Ĥ0 − iηŴ, where η is the CAP strength and Ŵ is the CAP operator. One example of a
CAP realization is [9]

W(r) = (r − rc)2Θ(r − rc), (36)

whereΘ(x) is theHeaviside function. It absorbs the electrononly after it has reached rc.
Having a non-Hermitian Ĥ0 also means that the orbital energies εp become complex.
For a non-Hermitian Hamiltonian, the norm of thewavefunction is not conserved. The
norm loss has also a physical meaning. The electrons that are absorbed would be
normally outside of the box. The loss in norm is, therefore, a direct measure of the
amount of ionization.

Another, more technical consequence of the non-hermiticity of Ĥ0 is that the
left eigenstates in (φp| Ĥ0 = (φp| εp are not anymore the Hermitian conjugate of the
right eigenstates in Ĥ0 |φp) = εp |φp). Since 〈φp| refers to the Hermitian conjugate of

9 Such potentials were also used in Chapters II and V.
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|φp〉, the left eigenstates of Ĥ0 are written as (φp|. For consistency, we write the right
eigenstates |φp) = |φp〉. In fact, Ĥ0 is complex symmetric and the left eigenstate (φp|
in position space reads as

(φp|r) =
unp ,lp (r)

r Y*
lp ,mp (θ,ϕ), (37)

where the radial part is the same as for the right eigenstate and only the angular part is
complex conjugated. The reason for this mix is that the CAP only influences the radial
coordinate but not the angular ones. The inner (or scalar) product for the orbitals and
the CIS configurations read now

(φp|φq) = δpq , (38a)

S

(
Φa
i |Φb

j

)
S
= δab δij , (38b)

which we refer to as the complex inner product opposed to the Hermitian inner
product. Since the CAP does not affect the occupied orbitals φi, the orthogonality
relation between different φi survives in the Hermitian inner product, which for these
orbitals coincides with the complex symmetric inner product, because the radial
part of φi is a purely real function. The HF procedure for the occupied orbitals
according (35) is not affected by the CAP, because the CAP is placed far away from
the nucleus. Only when the virtual orbitals are calculated, the CAP has to be included
in the Fock operator, Ĥ0 → Ĥ0 − iηŴ.

To arrive at the equations of motion (11), the TDSE has to be projected on the
left eigenstates using the complex symmetric inner product. Therefore, the matrix
elements in (11) have to be slightly modified. For example, the new dipole matrix
elements are

z(pq) = (φp| ẑ |φq) =
∫
dr unp ,lp (r) r unq ,lq (r)

∫
dΩ Y*

lp ,mp (Ω)cosθ Ylq ,mq (Ω). (39)

Note thatwehaveusedparentheses in the subscript to indicate the complex symmetric
inner product. The new Coulombmatrix elements v(pqrs) can be expressed in a similar
fashion.

3.7 Expectation values

All physical andmeasurable quantities can be expressed throughHermitian operators
Â. Hermitian operators have real eigenvalues, and, as a result, all expectation values〈
Â
〉
are real as well. The calculation of an expectation value for an N-body wave-

function is a bit more involved than for a one-electron wavefunction. By expressing
the wavefunction with creation and annihilation operators as in (3) and using the
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anticommutator relations in (16), we get the expression〈
Â
〉
(t) =〈Ψ(t)| Â |Ψ(t)〉 = |α0(t)|2 〈Φ0| Â |Φ0〉 (40)

+
∑
ai

[
α*0(t)αai (t)〈Φ0| Â |Φa

i 〉S + c.c.
]
+
∑
ai,bj

[αai (t)]*αbj (t) S〈Φ
a
i | Â |Φb

j 〉S

= 2|α0(t)|2
∑
i
Aii +2

√
2
∑
ai

Re
[
α*0(t)αai (t)Aia

]
+
∑
ai,bj

[αai (t)]*αbj (t) (Aabδij −Ajiδab +2δabδij
∑
i′
Ai′ i′ )

for the expectation value of a one-particle operator (c.c. stands for the complex
conjugate). In the case of no CAP, the norm of Ψ(t) is conserved, i.e., |α0(t)|2 +∑

ai |αai (t)|2 = 1, and (40) can be further simplified.
One very important expectation value in strong-fieldphysics is thedipolemoment,

Â = d̂ = qe r̂, where qe = −1 is the charge of the electron. From electrodynamics [10],
we know that the dipole acceleration d2

dt2
〈
d
〉
(t) is directly related to the radiation

spectrum [20]

S(ω) = 1
20

1
3πc3

∣∣∣∣∣∣
∞∫

−∞

dt
[
d2
dt2 〈z〉 (t)

]
e−iωt
∣∣∣∣∣∣
2

, (41)

which the atoms emits when driven by a strong-field pulse polarized along the z-axis.
As we will see in Section 4.2, the radiation spectrum can contain frequencies that are
hundred timeshigher than thedriving frequency of the strong-field pulse. This process
is known as HHG and addressed in several chapters of this book.

3.8 Ion density matrix

In strong-field and attosecond physics, the ionization dynamics and particularly its
subcycle dynamics are of high interest, as it contains information on how electrons
movewithin a laser pulse on femtosecond or even attosecond time scales. Particularly
interesting is the question how the ion or the hole is formed during ionization.

To gain access to this quantity, it is desirable to partition the fullN-electron system
into two subsystems: the excited electron and the parent ion containing the remaining
N − 1 electrons. To calculate the reduced density matrix of a subsystem, the trace
of the full N-electron density matrix ρ̂(t) = |Ψ(t)〉〈Ψ(t)| has to be performed over all
unobserved degrees of freedom [2]. In our case, the unobserved degrees of freedom
are those of the excited electron. The reduced density matrix of the ionic subsystem
reads as

ρ̂IDM(t) = Tra
[
ρ̂(t)
]
, (42a)
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ρIDMi,j (t) =
∑
a
(Φa

i |Ψ(t)〉〈Ψ(t)|Φa
j ), (42b)

which is also called the IDM. The IDMuniquely characterizes the state of the ion. Since
more than one occupied orbital (channel) can contribute to ionization, it is possible
to create a superposition of ionic eigenstates. This results in nonzero off-diagonal
elements in the IDM. Therefore, the IDM is an ideal quantity to study coherences in
the ionic subsystem. After the atom has been ionized, the parent ion is normally not
in a fully coherent state [19]. As we will show in Section 4.1, transient absorption
spectroscopy can probe the IDM including its off-diagonal elements, making them
experimentally accessible.

The introduction of a CAP as explained in Section 3.6 results in a loss of norm
for the N-electron wavefunction and also for the IDM. The probability of emitting an
electron from orbital i, which is equivalent to the hole population ρIDMii (t), should not
be affected by the absorption of the photoelectron by the CAP. Therefore, we need to
introduce an IDM correction [9],

ρIDMi,j (t) → ρIDMi,j (t) +2η ei(εi−εj)t
t∫

−∞

dt′
∑
a
(Φa

i |ρ̂(t′)Ŵ|Φa
j )e−i(εi−εj)t

′
, (43)

which ensures that all IDM entries—also the off-diagonal ones—are not affected by
the CAP.

4 Strong-field applications of TDCIS
After discussing the basics of TDCIS and its specific implementation for closed-shell
atoms, it is time to discuss applications of TDCIS in the strong-field regime. The
subcycle dynamics of the multiorbital ionization in krypton and its characterization
via transient absorption spectroscopy is presented in Section 4.1. In Section 4.2, we
investigate the influence of multiorbital and collective-excitation effects in xenon as it
is driven by a strong-field pulse to generate high-harmonics with photon energies up
to 170 eV.

4.1 Subcycle ionization dynamics and coherent hole motion

Pulses in the nonrelativistic strong-field regime have intensities in the range
1013–1015 W/cm2, wavelengths in the near-infrared (NIR) (λ 
 1 μm, i.e., ω 
 1 eV),
and pulse durations of a few to tens of femtosecond [4]. Themainmechanism through
which strong-field pulses ionize the system is tunnel ionization (also known as
strong-field ionization). The light-matter interaction is pictured, using the dipole
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Fig. 1. The perturbative (a) and the nonperturbative (b) multiphoton regimes are illustrated. This
figure is taken from http://www.desy.de. Copyright © 2007 DESY.

length form, as a local potential that strongly distorts the Coulomb potential, and
already after a few Bohr radii, the field-induced potential starts to dominate the
motion of the electron. This distortion creates a potential barrier, which can be
overcome by the electron by tunneling through this barrier and, consequently, out
of the system, see Figure 1(b). Once the electron has tunneled to the outer side of the
barrier, the Coulomb potential becomes negligible and the dynamics are governed by
the laser pulse. This picture is, normally, applicable when the light-matter interaction
creates a potential that is comparable with the atomic Coulomb potential, and the
ionization potential, Ip, of the system is much larger than the laser frequency ω.

If only one or a few photons are needed to ionize the system, the ionization can be
described with perturbation theory. Based on the kinetic energy of the photoelectron,
one can determine how many photons have been absorbed by the photoelectron, see
Figure 1(a). This is the perturbative multiphoton regime. Tunnel ionization, on the
other hand, is a nonperturbative multiphoton process where the number of photons
absorbed is ill-defined.

Tunnel ionization is oneof themost fundamental processes in strong-fieldphysics.
Even though it has been intensively studied in the last 50 years [7], the dynamics and
especially the subcycle behavior of ionizationhave only recently been studiedwith the
emergence of attosecond physics [13]. Before attosecond physics, only the final state
of the system after the pulse could be studied. Attosecond pulses and the controlled
delay of two pulses relative to each other, with an accuracy of a few attoseconds, have
made it possible to resolve the electronic dynamics during a strong-field pulse. Using a
second pulse to probe the dynamics triggered by a first pulse is known as pump-probe
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spectroscopy and is the method of choice in attosecond physics to probe dynamics.
There are many variants of pump-probe studies [13, 16] but the basic idea is always
the same.

By applying a strong-field pump pulse to tunnel ionized atomic krypton, it has
been theoretically predicted [23] and experimentally shown [8] that within the 4p
shell, a (partially) coherent hole wave packet can be launched, which is driven by
spin-orbit interaction. For xenon, however, theory predicted that the coherencewithin
the ion is very low even though the hole populations are quite similar to krypton. This
shows that the degree of coherence cannot be determined from the hole populations
and must be calculated or measured separately. Theoretically, the full IDM, including
the off-diagonal elements, is needed to exactly know the ionic state after ionization.

With an attosecond probe pulse in the extreme-ultraviolet (XUV) regime, the 4pj
hole in krypton canbeprobedbypromoting anelectron from the3dj shells into the4pj
shells. Promoting an electron from 3d into 4p requires the absorption of one photon.
Measuring the spectrumof the transmitted probe pulse and comparing it to its original
spectrum tells us how probable it was to excite a 3dj electron into the 4pj shell. For
a one-photon dipole transition, there are three possibilities how a 3dj electron can
be excited into the 4p shell: 3d5/2 → 4p3/2,3d3/2 → 4p3/2, and 3d3/2 → 4p1/2. Each
of them requires a slightly different energy, which makes them distinguishable in the
absorption spectrum, see Figure 2.

The transition probability of each transition is directly proportional to the hole
population in the 4pj orbitals because, due to Pauli blocking, a transition can only
occur when an electron has been removed from 4pj. The strength of the absorption
signal is, therefore, a direct measure of the hole population. The coherence between
[4p1/23/2]

−1 and [4p1/21/2]
−1 can be measured because both ionic states can be excited by
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Fig. 2. An attosecond transient absorption spectrum of krypton during tunnel ionization, calculated
using TDCIS, is shown as a function of the probe photon energy ω and the pump-probe delay τ. The
figure is taken from [21]. Copyright © 2012 American Physical Society (APS).
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the XUV probe pulse to [3d1/23/2]
−1. This creates interferences that lead to oscillations

in the transient absorption spectrum as a function of the pump-probe delay [25]. The
term [4pmj ]−1 refers to the ionic state that has a hole (with respect to the neutral ground
state) in the 4pj orbital with mJ =m.

This type of probing the system by measuring the transient absorption signal is
known as ATAS. The attosecond character comes in because the probe pulse is an
attosecond pulse providing a broad bandwidth. The delay between the pump and
probe pulses can be controlled within a few attoseconds allowing one to resolve
subcycle dynamics. Note that an optical (λ 
 1 μm) cycle has a period of around 3 fs.

Using this probing scheme during the strong-field ionization, we can obtain
information about the subcycle ionization dynamics [32]. The described method,
where a direct connection between the transition strength and the population is
established, is only valid as long as pump and probe pulses do not temporally overlap.
For overlapping pulses, as it is the case when we want to probe strong-field ionization
dynamics taking place during the pump pulse, this direct connection is not true
anymore because the emitted electron and the strong-field pulse influence the ion
state during the probe step. Therefore, it is not clear towhich extent the instantaneous
IDM can be probed during the ionization process [14].

With TDCIS, we can study the subcycle dynamics of these multiorbital ionization
processes including the probe step, which involves the deeply bound 3d shell.
Before we start discussing the transient absorption spectrum and what information
it contains, we need to understand the basic mechanism behind transient absorption
spectroscopy and why only for nonoverlapping pulses, the exact IDM can be probed.

The modification of the number of transmitted photons can be described in a
semiclassical picture,where the electric field is not quantized but treated as a classical
field. In classical electrodynamics, the Larmor formula describes the generation of
radiation due to the acceleration of charged particles [10]. Quantummechanically, the
electron motion is captured in the dipole moment

〈
d̂
〉
(t) with d̂ = −ẑ, see Section 3.7.

The generated and the absorbed radiation of an ion is, therefore, determined by
the dynamics of the ionic dipole moment

〈
d̂
〉
ion(t). The probe field-independent

photoabsorption cross section σ(ω) reads in terms of the ionic dipole moment

σ(ω) = 4παω Im
[〈

d̂
〉
ion(ω)
E(ω)

]
, (44)

where ω is the photon energy and E(ω) is the spectrum of the incident probe electric
field. The ionic dipole is only sensitive to the off-diagonal elements of ρIDM(t),

〈
d̂
〉
ion(t) = Tr[d̂ ρ̂

IDM(t)] =
∑
ij
zij ρIDMij (t). (45)
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By focusing on the three 3d−1 →4p−1 transitions, only thematrix elements ρIDM4pmj ,3d
m
j′
(t)

with m = mJ = 1/2 are probed¹⁰. Knowing that only the XUV probe pulse E(t) =
E0δ(t − τ) at a pump-probe delay τ is able to access the 3d shell via resonant
photoexcitation, which can be treated perturbatively, the off-diagonal elements
ρIDM4pmj ,3d

m
j′
(t) can be expressed in terms of the ionic state at time τ, ρ̂IDM(t > τ) ∝

−iE0e−iĤ(t−τ)[ẑ, ρ̂IDM(τ)]eiĤ(t−τ) where ρIDM4pmj ,3d
m
j′
(τ) = ρIDM3dmj ,3d

m
j′
(τ) = 0. Using this infor-

mation, ignoring the counter-rotating terms, and assuming the ion evolves field-free
after the probe step, the ionic dipole moment reads as [25]
〈
d̂
〉
ion(t) =−2ε0

∑
j,j′ ,m

z23dmj ,4pmj′ ρ
IDM
4pmj′ ,4p

m
j′
(τ) sin[(ε4pj′ − ε3dj )(t − τ)] (46)

−2ε0
∑
j,j′ ,m

∑
j′′ �=j′

z3dmj ,4pmj′ z3dmj ,4pmj′′ Im
[
ρIDM4pmj′ ,4p

m
j′′
(τ)ei(ε4pj′ −ε3dj )(t−τ)

]
,

where j, j′, j′′ stand for the total angularmomenta. Thedipole transitions introduce the
restrictions |j− j′|, |j′′− j| ≤1.We see now that each transition [3dmj ]−1 → [4pmj′ ]−1 probes
different entries of ρ̂IDM(τ). Particularly interesting are the two possible transitions
to [3d1/23/2]

−1, which are sensitive to the off-diagonal element ρIDM4pm1/2,4p
m
3/2
(τ) with m =

1/2. This is exactly what we need to probe the hole coherence within the 4p shell.
Equation (46) assumes field-free propagation of the ion after the probe pulse. This
makes the equation only exact for nonoverlapping pump-probe pulses.

In the case of absorption, the ionic dipole
〈
d̂
〉
ion(t)∝ cos(ω0 t + π/2) = −sin(ω0 t)

oscillates π/2 out of phase with respect to E(t) ∝ cos(ω0 t), and the cross section is
positive. If the dipole oscillates with a phase shift of −π/2, the probe electric field gets
enhanced, leading to an emitting behavior, and the cross section becomes negative.
The energetically lowest absorption line [4pm3/2]

−1 → [3dm5/2]
−1 in Figure 2 shows a

purely absorbing (Lorentzian) behaviorwhen pumpand probe pulses do not overlap¹¹.
Thewidths of the transition lines are determinedby the lifetimeof the3d−1 ionic states
and by the energy resolution of the XUV detector.

When the phase shift ϕ in the oscillating ionic dipole [
〈
d̂
〉
(t) ∝ cos(ω0 t + ϕ)] is

not ±π/2, the transition line shapes are not Lorentzian anymore, see Figure 3(a) for
τ = 0. Figure 3(a) shows cuts of the transient absorption spectrum of Figure 2 for the
pump-probe delays τ = 0,2.4 fs. At τ = 0 fs, the magnitude of the NIR field has a
maximum, and all three transition lines are strongly deformed.

From the calculated ATAS spectrum in Figure 2, the dipole strength and the
dipole phase for each pump-probe delay can be extracted. The strength of the

10 The mJ = −1/2 component behaves identically as the mJ = 1/2 component, see Section 3.3.
11 The other two absorption lines do not show purely absorbing behavior due to coherences between
the ionic states [4p±1/21/2 ]−1 and [4p±1/23/2 ]−1.
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Fig. 3. (a) The calculated atomic cross sections (red solid line), the measured cross sections (green
dashed line), and the fit obtained from a simplified oscillating dipole model (yellow dotted line)
are shown for the pump-probe delays τ = 0 fs and τ = 2.4 fs, respectively. The measured cross
section is taken from [32]. (b) Ionic dipole phase ϕ(τ) obtained from the fits for the transition lines
4p−13/2 → 3d−15/2 (red solid line) and 4p

−1
3/2 → 3d−13/2 (green dashed line) is shown. The figures are taken

from [21]. Copyright © 2012 American Physical Society (APS).

dipole oscillations is a direct measure of the ionic hole populations in the case
of nonoverlapping pulses, see (46). The comparison between the hole populations
extracted from the calculated transient absorption spectrum and the corresponding
instantaneous hole populations revealed that in the case of overlapping pulses, the
obtainedhole populationsmatchquitewell the instantaneous ones but are not exactly
the same. A delay in the extracted hole motion of up to 200 as was found [21].

Besides the question of population dynamics, a new phenomenon has been
identified during the ionization process, which we want to focus on here. The
transition lines do not just rise in strength as the hole populations do. They also show
strong deformations in their shape, see Figure 2, signaling a rapid change in the ionic
dipole phase ϕ(τ).

The ionic phase shifts are shown in Figure 3(b) for the energetically lowest and
highest transition lines. They are obtained from the TDCIS results by fitting (44) with〈
d̂
〉
ion(t) = z0 sin(ω t +ϕ′) for each pump-probe delay.¹² The increasing phase shift in

the 4p−13/2 →3d−13/2 transition for large τ is due to the coherent superposition of the ionic
states 4p−13/2 and 4p

−1
1/2. When pump and probe pulses overlap, the phase changes for

all transitions quite dramatically. There are three mechanisms that could explain this
rapid change in ϕ:
– the quadratic Stark shift of the ionic energy levels due to the high electric field

strength of the ionizing pulse,
– the residual Coulomb interaction between the ion and the electron,

12 Please note that the ionic dipole phase ϕ′ is here redefined such that an absorbing behavior
corresponds to ϕ′ = ϕ − π/2 = 0.
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– field-driven coupling between the freed electron and the parent ion via the neutral
ground state Φ0.

The polarizability for all ionic states with a 3d or 4p hole has values around 10 atomic
units.¹³ The peak field intensity in these studies was 4.8 ·1014 W/cm2, corresponding
to an electric field of 0.08 atomic units. Even though the resulting ionic Stark shifts can
be as large as 1 eV, the relative energy differences do not change bymore than 100meV.
The maximum phase shift that can be expected is 
 π

10 . The phase shift shown in
Figure 3(b) is, however, much larger.

Since TDCIS allows us to turn on and off specific effects, we can test to which
extent the residual Coulomb interaction is responsible for the phase shift. Ignoring
residual Coulomb interaction leads to basically unchanged line deformations, see
Figure 9 in [21], indicating that electron-electron interactions are unimportant for this
effect even though the emitted electron is still quite close to the ion during the probe
step.

The large phase shifts disappear when the field-driven coupling to the neutral
ground state is immediately switched off after the ion has been probed, see Figure 10
in [21]. Interestingly, the electric field cannot directly couple the ion with the emitted
electron. Only via the neutral ground state (i.e., 〈Φ0| ẑ |Φa

i 〉), it is possible to create a
field-driven interaction between the ion and the photoelectron.

4.2 Multiorbital and collective excitations in HHG

Multiorbital and interchannel-coupling effects are well known in one-photon pho-
toionization [29]. They lead to strong modifications in the partial cross sections of
valence and inner-shell orbitals. In the strong-field regime and specifically for tunnel
ionization, the electron is normally ejected from the outermost orbital because the
tunneling rate decreases exponentiallywith the ionization potential. This is especially
true for atoms where the next occupied orbitals are more strongly bound by tens
of electronvolts. One would, therefore, expect that multiorbital effects do not exist
in the strong-field regime, except in the case of spin-orbit effects, see Section 4.1.
Many strong-field theories make use of this fact [7]. With TDCIS, we can test this
approximation as we can freeze and unfreeze occupied orbitals.

Another fundamental process in strong-field physics is HHG [11]. HHG is used
to generate isolated attosecond pulses (or trains of attosecond pulses) with photon
energies in the XUV range. The mechanism behind HHG is well explained by a semi-
classical model called the three-step model [6, 26]. It factorizes the HHG mechanism
into three separate steps, see Figure 4. In the first step, the outermost electron tunnels

13 These values are based on CASSCF calculations.
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out. In step two, the electron moves in the presence of the electric field and, within
an optical cycle, the electric field changes sign and drives the electron back toward
the ion. In the third step, the electron can recombine with the ion, thereby emitting
a high-energy photon. The photon energy is given by the ionization potential Ip
plus the amount of energy that the electron gained in the NIR field. The maximum
emitted photon energy is Ecutoff = Ip +3.17 Up, where Up = E2

4ω2 is the ponderomotive
potential, i.e., the cycle-averaged quiver energy of a free electron in an electric field
with amplitude E and frequencyω. Characteristic forHHG is the plateau region,where
the harmonics extend up to the cut-off energy without decreasing in strength.

The first step in HHG is tunnel ionization, so the usual picture in HHG for noble
gas atoms is that only the electron in the pz orbital is active and all other electrons
are unaffected. In argon, we tested this statement for a multielectron system [20].
By activating all 3p orbitals or only the 3pz orbital within TDCIS, we found that
indeed only the 3pz orbital gets effectively ionized, but including the other orbitals
leads to small changes because the N-electron state is allowed to move in a larger
configuration space. This affects the short-range part of the potential the emitted
electron experiences.

Tunnel ionization is, however, only the first step of HHG. Multiorbital and
many-body effects can also occur when the electron is driven back to the atom. A very
prominent example is the giant dipole resonance in xenon. The giant dipole resonance
originates from the 4d shell, which is bound by 68 eV. In no way would one intuitively
expect that such a deeply bound orbital affects a strong-field-driven process. The
electron that is driven back to the atom can have hundreds of electronvolt of energy
and, hence, can trigger complex many-body excitations.¹⁴ This is exactly the case in
xenon, where the electron triggers collective excitations that are mainly located in the
4d shell but through interchannel interaction influence also the 5s and 5p shells. As a
result, the signatures of the giant dipole resonance appear in the recombination step
and, therefore, also in the HHG spectrum. A schematic of the underlying processes is
shown in Figure 4.

Within the TDCIS theory, interchannel interactions, which are responsible for the
collective excitation effect, see step 3.2 in Figure 4, can be turned off or on. In this way,
the electron is allowed to recombine either only via step 3.1 or via both steps 3.1 and
3.2, respectively. Besides the physical mechanisms, the active orbitals participating in
the HHG process can also be controlled. Let us consider in particular three different
scenarios:
– all orbitals in the 4d, 5s, and 5p shells are active, and all interchannel and

intrachannel interactions (included in TDCIS) are allowed,
– only the orbitals aligned with the laser polarization (4d0,5s, 5p0) are active, and

all interchannel and intrachannel interactions are allowed,

14 Compare to the case of HHG in C60 in Section 3.1.2 of Chapter IV.
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Fig. 4. Schematic illustration of the HHG process in xenon (spin states are excluded). (1) The electron
tunnels mainly from the 5p0 orbital because of the strong-field driving pulse. (2) The electron is
driven back to the ion by the oscillating electric field. In the third step, the electron recombines
with the ion in two different ways: (3.1) the electron recombines with the very same hole that was
generated in step 1, or (3.2) the electron exchanges energy with the ion by promoting an inner-shell
electron from the 4d shell into the 5p0 hole via Coulomb interaction before recombining in a more
tightly bound 4d orbital. All five 4dm orbitals (m = −2, . . . , 2) contribute to the Coulomb interaction.
The figure is taken from [17]. Copyright © 2013 American Physical Society (APS).

– all orbitals in the 4d, 5s, and 5p shells are active, and only intrachannel
interactions are allowed.

Even though the last two scenarios are artificially simplified by ignoring certain
interactions or orbitals, they are of high educational utility since thedirect comparison
enables us to identify the underlying mechanisms and orbitals involved.

Figure 5 shows the HHG spectra for these three cases. When all orbitals are active
and only intrachannel interactions are included (dotted red line), the HHG yield has
the typical form of an atomic HHG spectrumwith a flat plateau region up to the cut-off
energy—no enhancement can be seen. This result does not change when only the 5p
shell is considered (not shown) indicating that the direct contributions from 4d and
5s are negligible.

By including the many-body interchannel interactions in the calculations, a
strong enhancement of up to one order of magnitude in the HHG yield appears.
Depending on which orbitals are active, the width and center of the enhancement
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Fig. 5. The HHG spectrum of xenon for different theoretical models: (solid) the full TDCIS model
(intrachannel + interchannel interactions) with all orbitals in the 4d, 5s, and 5p shells active,
(dashed) the full TDCIS model with only m = 0 electrons in the 4d, 5s, and 5p shells active, and
(dotted) the TDCIS model, excluding interchannel coupling, with all orbitals in the 4d, 5s, and 5p
shells active. The difference between the two models including interchannel-coupling effects and
the model including only intrachannel coupling is highlighted by the corresponding shaded areas.
The figure is taken from [17]. Copyright © 2013 American Physical Society (APS).

region are quite different.When only laser-aligned 4d0,5s, and 5p0 orbitals are active,
the enhancement is located in the energy region of 60–90 eV compared with an
enhancement ranging from 60 to 125 eVwhen all electrons in the 4d, 5s, and 5p shells
are active. This has been confirmedexperimentallywhere a strong enhancement in the
HHG yield was also seen around 100 eV [28].

The giant dipole resonance in the 4d shell couples via interchannel coupling
to other shells and also to the 5p0 orbital, which got ionized in step 1. Unlike the
interaction with the light field, where the magnetic quantum number m of each
electron cannot change, the electron-electron interaction can change them state. Only
the overall quantum number, M = ma − mi, is conserved. We see this consequence
already in the HHG spectrum because when only the 4d0 orbital is considered, the
HHG enhancement is too narrow and too low in energy, see Figure 5.

Using TDCIS, we can also test the quantitative rescattering theory (QRS) [15]
in the presence of this collective many-body effect. QRS assumes that the spec-
trum of the returning electron is universal and not system dependent, and all the
system-dependence is included in the recombination cross section. This sounds
reasonable because the electron, when moving in the field, is far away from the atom
and “feels” only the charge of the ion. However, recombination happens very close to
the atom, where many-body effects like interchannel interactions may be important.
This short-range potential is highly system and state dependent and may affect the
spectrum of the returning electron.

With TDCIS, we can calculate within the same theory the HHG spectrum and
the recombination cross section, and we can test to which extent the returning
photoelectron spectrum is really system independent. To this end, we can compare
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Fig. 6. The returning-electron spectrum W(ω), calculated by using the factorization W(ω) =
S(ω)/σ(ω), where S(ω) is the HHG spectrum and σ(ω) is the photoionization cross section. The
electron spectra shown for the three different theoretical models, see Figure 5, illustrate the system
dependence of the returning electron wave packet, especially when interchannel interactions are
not negligible. The figure is taken from [17]. Copyright © 2013 American Physical Society (APS).

the spectrum of the returning electron for the three different CIS models. Each CIS
model describes different electron-electron interactions and, consequently, different
short-range potentials. For large distances, all three models turn into a long-range
Coulomb potential −1/r.

The three returning-electron spectra W(ω) = S(ω)/σ(ω) shown in Figure 6 agree
well with each other above and below the giant resonance. In the region of the giant
enhancement (60–140 eV), the spectra start to differ from each other and reach a
maximum around 120 eV. The enhancement seen in the HHG spectra and in the
cross sections persists also in the returning-photoelectron spectrum indicating that
the enhancement in the HHG yield cannot be solely explained by the modified cross
sections. It demonstrates that the modified electron-electron interaction influences
not just the recombination matrix elements but also the electron spectrum.

Bibliography
[1] R. J. Bartlett and J. F. Stanton. Applications of post-Hartree–Fock methods: A tutorial. In

Reviews in Computational Chemistry, vol. 5 (pp. 65–169). John Wiley & Sons, Inc., Hoboken,
NJ, USA, 2007.

[2] K. Blum. Density Matrix Theory and Applications, 3rd edn. Springer, Berlin, 2012.
[3] J. P. Boyd. Chebyshev and Fourier Spectral Methods. Dover, New York, 2001.
[4] T. Brabec and F. Krausz. Intense few-cycle laser fields: Frontiers of nonlinear optics. Reviews of

Modern Physics, 72(2):545, 2000.
[5] C. Cohen-Tannoudji, B. Diu, and F. Laloe. Quantum Mechanics, vol. 2, 1st edn. Wiley, New York,

1991.
[6] P. B. Corkum. Plasma perspective on strong field multiphoton ionization. Physical Review

Letters, 71(13):1994–1997, 1993.

 EBSCOhost - printed on 2/13/2023 7:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



200 | Stefan Pabst and Robin Santra

[7] F. H. M. Faisal. Theory of Multiphoton Processes. Springer Science+ Business Media, New York,
1987.

[8] E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T.
Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz. Real-time observation of valence
electron motion. Nature, 466(7307):739–743, 2010.

[9] L. Greenman, P. J. Ho, S. Pabst, E. Kamarchik, D. A. Mazziotti, and R. Santra. Implementation
of the time-dependent configuration-interaction singles method for atomic strong-field
processes. Physical Review A, 82(2):023406, 2010.

[10] J. D. Jackson. Classical Electrodynamics, 3rd edn. Wiley, New York, 1998.
[11] M. C. Kohler, T. Pfeifer, K. Z. Hatsagortsyan, and C. H. Keitel. Frontiers of atomic high-harmonic

generation. Advances in Atomic, Molecular, and Optical Physics, 61:159–208, 2012.
[12] P. Krause, T. Klamroth, and P. Saalfrank. Time-dependent configuration-interaction calculations

of laser-pulse-driven many-electron dynamics: Controlled dipole switching in lithium cyanide.
Journal of Chemical Physics, 123(7):074105, 2005.

[13] F. Krausz and M. Ivanov. Attosecond physics. Reviews of Modern Physics, 81:163–234, 2009.
[14] S. R. Leone, C. W. McCurdy, J. Burgdorfer, L. S. Cederbaum, Z. Chang, N. Dudovich, J. Feist,

C. H. Greene, M. Ivanov, R. Kienberger, U. Keller, M. F. Kling, Z.-H. Loh, T. Pfeifer, A. N. Pfeiffer,
R. Santra, K. Schafer, A. Stolow, U. Thumm, and M. J. J. Vrakking. What will it take to observe
processes in ’real time’? Nature Photonics, 8(3):162–166, 2014.

[15] T. Morishita, A.-T. Le, Z. Chen, and C. D. Lin. Accurate retrieval of structural information from
laser-induced photoelectron and high-order harmonic spectra by few-cycle laser pulses.
Physical Review Letters, 100:013903, 2008.

[16] S. Pabst. New theoretical approaches to atomic and molecular dynamics triggered by
ultrashort light pulses on the atto- to picosecond time scale. European Physical Journal:
Special Topics, 221:1–72, 2013.

[17] S. Pabst and R. Santra. Strong-field many-body physics and the giant enhancement in the
high-harmonic spectrum of xenon. Physical Review Letters, 111:233005, 2013.

[18] S. Pabst and R. Santra. Spin–orbit effects in atomic high-harmonic generation.
Journal of Physics B: Atomic Molecular and Optical Physics, 47(12):124026, 2014.
10.1088/0953-4075/47/12/124026.

[19] S. Pabst, L. Greenman, P. J. Ho, D. A. Mazziotti, and R. Santra. Decoherence in attosecond
photoionization. Physical Review Letters, 106(5):053003, 2011.

[20] S. Pabst, L. Greenman, D. A. Mazziotti, and R. Santra. Impact of multichannel and multipole
effects on the cooper minimum in the high-order-harmonic spectrum of argon. Physical Review
A, 85:023411, 2012.

[21] S. Pabst, A. Sytcheva, A. Moulet, A. Wirth, E. Goulielmakis, and R. Santra. Theory of attosecond
transient-absorption spectroscopy of krypton for overlapping pump and probe pulses. Physical
Review A, 86:063411, 2012.

[22] U. V. Riss and H.-D. Meyer. Calculation of resonance energies and widths using the complex
absorbing potential method. Journal of Physics B: Atomic Molecular and Optical Physics, 26
(23):4503, 1993. 10.1088/0953-4075/26/23/021.

[23] N. Rohringer and R. Santra. Multichannel coherence in strong-field ionization. Physical Review
A, 79(5):053402, 2009.

[24] N. Rohringer, A. Gordon, and R. Santra. Configuration-interaction-based time-dependent
orbital approach for ab initio treatment of electronic dynamics in a strong optical laser field.
Physical Review A, 74(4):043420, 2006.

[25] R. Santra, V. S. Yakovlev, T. Pfeifer, and Z.-H. Loh. Theory of attosecond transient absorption
spectroscopy of strong-field-generated ions. Physical Review A, 83:033405, 2011.

 EBSCOhost - printed on 2/13/2023 7:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



VI Time-dependent configuration interaction singles | 201

[26] K. J. Schafer, B. Yang, L. F. DiMauro, and K. C. Kulander. Above threshold ionization beyond the
high harmonic cutoff. Physical Review Letters, 70(11):1599–1602, 1993.

[27] H. B. Schlegel, S. M. Smith, and X. Li. Electronic optical response of molecules in intense
fields: Comparison of TD-HF, TD-CIS, and TD-CIS(D) approaches. Journal of Chemical Physics,
126(24):244110, 2007.

[28] A. D. Shiner, B. E. Schmidt, C. Trallero-Herrero, H. J. Wörner, S. Patchkovskii, P. B. Corkum, J-C.
Kieffer, F. Legare, and D. M. Villeneuve. Probing collective multi-electron dynamics in xenon
with high-harmonic spectroscopy. Nature Physics, 7(6):464–467, 2011.

[29] A. F. Starace. Theory of atomic photoionization. In Encyclopedia of Physics, vol. 31: Corpuscles
and Radiation in Matter I (pp. 1–121). Springer, Berlin, 1982.

[30] A. Szabo and N. S. Ostlund.Modern Quantum Chemistry. Dover Publication Inc., Mineola, NY,
1996.

[31] D. A. Telnov and S.-I Chu. Multiphoton detachment of H− near the one-photon threshold:
Exterior complex-scaling–generalized pseudospectral method for complex quasienergy
resonances. Physical Review A, 59:2864–2874, 1999.

[32] A. Wirth, M. Th. Hassan, I. Grguras, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A.
Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis. Synthesized
light transients. Science, 334(6053):195–200, 2011.

[33] R. N. Zare. Angular Momentum. Wiley, New York, 1988.

 EBSCOhost - printed on 2/13/2023 7:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/13/2023 7:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



Dejan B. Milošević
VII Strong-field approximation and

quantum orbits

Strong-field physics is the area of science that explores the interaction of intense
electromagnetic fields with matter. The advancements of ultrafast laser science and
strong-field physics have led to the possibility of tracking electronic and structural
dynamics on the subfemtosecond time scale, which has enabled the development of
a new area of research: attoscience (see, for example, the review articles [1, 2, 4, 5, 19,
22, 24, 36, 39, 41, 44, 49, 50, 52, 54] and references therein). In this context, particularly
important are two laser-induced processes: high-order harmonic generation (HHG)
and above-threshold ionization (ATI). In the ATI process, the atom or molecule is
ionized by a strong laser field. During the ATI, more photons are absorbed from
the laser field than are necessary for ionization, and the emitted electron spectrum
consists of peaks separated by the photon energy �ω. If the oscillating laser field is
linearly polarized, then the emitted electron can be driven back by the laser field to
the parent ion. If this electron recombines with the ion, one high-energy photon can
be emitted in the HHG process. The returned electron can also elastically rescatter
off the parent ion, move away from it, and reach the detector with a higher energy,
which is the high-order ATI (HATI) process. The so-called three-stepmodel (ionization,
propagation, and rescattering or recombinationwith high-harmonic emission) [8]was
crucial for the development of strong-field physics and attoscience.

Atomic and molecular processes in a strong field are quantum mechanical
in nature. For a complete description of these processes, one has to solve the
time-dependent Schrödinger equation (TDSE), which is a difficult task to which most
chapters of this book are devoted. Fortunately, the fact that the laser field is strong
may be used to simplify the theory. As early as in 1964, Keldysh [16] has introduced an
approximation in which he neglected the influence of the atomic ion on the emitted
electron and has supposed that, since the field is strong, the electron moves only
in this field on its way to the detector. In this approximation, it was crucial that
the solution of the TDSE for the electron under the influence of the laser field only
was known in analytical form as the so-called Gordon–Volkov solution [12, 53]. This
theory was further developed in [9, 45, 47] and now is known as direct strong-field
approximation (SFA) or Keldysh–Faisal–Reiss theory. The SFA is applied also to other
strong-field processes, and it usually consists in neglecting the influence of the atomic
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or ionic potential on the electron in the final state or intermediate states. For example,
for HHG, the SFA is introduced by the so-called Lewensteinmodel [25]. In this chapter,
we will deal with various versions of the SFA.

Having in mind the wave-particle duality of electrons and photons, the
above-described classical electron trajectories in reality should be replaced by
electron wave packets. In fact, Feynman’s path integral approach is more suitable for
the description of HHG and HATI processes [33–35, 48]. A realization of this approach
is the so-called quantum-orbit theory [4, 20, 21, 31]. In this formalism, the electron
does not have to start with zero velocity and follow only one classical trajectory and
return to the parent ion. In Feynman’s path integral approach and quantum-orbit
theory, the transition amplitude is a coherent sum of many different paths, expressed
as
∑

s As exp(iSs), with Ss the action along the sth path. In laser-induced processes,
the ionization time and the recombination (forHHG) or rescattering (forHATI) time are
complex and so are the corresponding trajectories. A visualization of such processes
will be the second main theme in this chapter.

In this chapter, we first formulate the S-matrix theory in Section 1, with particular
emphasis onHHGandATIprocesses. In Section 2, the S-matrix elements are simplified
using the SFA. For a periodic laser field, the observable quantities are expressed via
the emission rate. In Section 3, we present explicit expressions for the harmonic
generation rate and the ionization rate. For numerical calculations, it is necessary to
define precisely the atomic ground state wave function and the rescattering potential.
This problem is considered in Section 4. In addition, in this section, we explain how
multielectron effects are taken into account in our approach. Numerical results for
harmonic photon and electron energy spectra, obtained by numerical integration of
the SFAmatrix element, are presented in Section 5. The application of the saddle-point
method (SPM) to strong-field processes is examined in Section 6. Explicit expressions
for the emission rates are givenwith particular emphasis on themodified SPM and the
uniform approximation. An example of the classification of the saddle-point solutions
is presented in Section 7. In Section 8, we show numerical results for the HATI spectra
obtained using the SPM and the uniform approximation. Section 9 is devoted to the
quantum-orbit solutions and to the visualization of electron trajectories. Finally, a
summary is given in Section 10. Atomic units (� = e = m = 4πε0 = 1) are used unless
indicated otherwise.

1 S-matrix elements
In this section, wewill derive expressions for the S-matrix element of the HHG andATI
processes. Our starting point is a general form of the S-matrix (see [39])

Sfi = i limt′→∞
lim
t→−∞

〈Φout(t′)|G(+)
tot (t

′, t)|Φin(t)〉, (1)
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where the total Green’s operator G(+)
tot corresponds to the Hamiltonian

Htot(t) = H(t) + r ·Ehar(t), H(t) = H0 +Vle(t) +V(r). (2)

Here, r ·Ehar(t) is the interaction of the atom with the quantized high-harmonic field

Ehar(t) =
∑
K
cK
(
a†KeiωK tê*K − aKe−iωK têK

)
(3)

(in length gauge and dipole approximation), where aK and a†K are the annihilation
and creation operators of the high-harmonic field photons corresponding to the
wavevectors K, frequencies ωK, and complex unit polarization vectors êK. The
interaction r · Ehar(t) is absent for the ATI process. The parts of the Hamiltonian
H(t) in (2) are H0 = −∇2/2, with ∇ ≡ ∂/∂r, Vle(t) = r · E(t) the laser-field electron
interaction, with E(t) = −dA(t)/dt the electric field vector, and V(r) = VC(r) + Vsh(r),
with VC(r) = −Z/r the Coulomb interaction (Z = 1 for atoms and Z = 0 for negative
ions) and Vsh(r) a short-range interaction. The interaction with the laser field is off
for the in and out states. The number of harmonic photons is zero for the in state, so
that |Φin(t)〉 = |ψi(t)〉|0K〉. For the out state, we have one high-harmonic photon for
HHG so that |Φout(t)〉 = |ψf (t)〉|1K〉, while for the ATI process, we have one electron
with the asymptotic momentum p in the final state and zero harmonic photons, i.e.,
|Φout(t)〉 = |ψp(t)〉|0K〉. Here, |ψi(t)〉 = |ψi〉e−iEi t and |ψf (t)〉 = |ψf 〉e−iEf t (for HHG)
or |ψf (t)〉 = |ψp〉e−iEp t (for ATI) are the solutions of the laser-free TDSE with the
HamiltonianHV =H0+V(r). Atomic ornegative ionbinding energy is Ei,while thefinal
electron kinetic energy is Ep = p2/2. The states |ψi〉 and |ψp〉 are mutually orthogonal
eigenstates of the Hamiltonian HV . Using the Lippmann–Schwinger equation

G(+)
tot (t, t

′) = G(+)(t, t′) +
∫

dt′′G(+)
tot (t, t

′′)r ·Ehar(t′′)G(+)(t′′, t′), (4)

as well as the relation 〈1K|G(+)
tot |1K〉 = G(+), the S-matrix for the HHG process can be

further simplified [39]. The field-free boundary conditions have the form

i lim
t′→∞

〈ψf (t′)|G(+)(t′, t′′) = 〈Φ(−)
f (t′′)|, (5)

i lim
t→−∞

G(+)(t′′, t)|ψi(t)〉 = |Φ(+)
i (t′′)〉, (6)

where the states |Φ(±)
j (t)〉, j = i, f , satisfy the TDSE with the Hamiltonian H(t). In this

case, the S-matrix element for the emission of one high-harmonic photon, having
the wavevector K, frequency ωK, and complex unit polarization vector êK, can be
written as

SHHGfi = −icK
∞∫

−∞

dt eiωK tê*K ·dfi(t), (7)
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where dfi(t) is the time-dependent dipole matrix element between the initial and final
laser-dressed states,

dfi(t) = 〈Φ(−)
f (t)|r|Φ(+)

i (t)〉. (8)

Taking into account the Lippmann–Schwinger equation

G(+)(t, t′) = G(+)
V (t, t′) +

∫
dt′′G(+)(t, t′′)Vle(t′′)G(+)

V (t′′, t′) (9)

and the orthogonality of the in and out states, we obtain from (1) the S-matrix element
for the ATI process

SATIfi = −i
∞∫

−∞

dt 〈Φ(−)
f (t)|Vle(t)|ψi(t)〉. (10)

2 Strong-field approximation
The states |Φ(±)

j (t)〉, j = i, f , satisfy the Lippmann–Schwinger equation

|Φ(±)
j (t)〉 = |ψj(t)〉+

∫
dt′G(±)(t, t′)Vle(t′)|ψj(t′)〉. (11)

Inserting this into (8), we obtain four terms. Each of these terms has a clear physical
meaning. The dominant one is the term for which, after the laser field-electron
interaction at time t′ when photons are absorbed from the laser field, the system
propagates until time t, when a harmonic photon is emitted during the transition to
the final state |ψf (t)〉. This term is consistent with the three-step model in which the
photons are first absorbed from the laser field. Denoting this termwith the superscript
“a,” we have

dfi(t)
 dafi(t) = 〈ψf (t)|
∫

dt′G(+)(t, t′)Vle(t′)|ψi(t′)〉. (12)

Furthermore, it can be shown [39] that in the Fourier transform (7), instead of dafi(t),
one can take 2Redafi(t), which simplifies the calculations.

Wewill nowapply the SFAand suppose that, in the intermediate states, the atomic
interactionV(r) canbeneglected in comparisonwith the laser field, so that theGreen’s
operator G(+) can be approximated by the Volkov–Green’s operator (in length gauge)

Gle(t, t′) = −i
∫

dq |q+A(t)〉〈q+A(t′)|exp[−iSq(t) + iSq(t′)], (13)
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where dSq(t)/dt =
[
q+A(t)

]2 /2, and |q〉 is a plane-wave ket vector such that 〈r|q〉 =
(2π)−3/2 exp(iq · r). Substituting (13) into (12) and solving the three-dimensional
integral over the intermediate electron momenta using the SPM, we obtain [39]

dafi(t)
 −i
∞∫
0

dτ
(
2π
iτ

)3/2
〈ψf (t)|r|qst +A(t)〉〈qst +A(t0)|Vle(t0)|ψi〉eiSqst i(t,t0), (14)

where t0 = t − τ and

qst ≡ −1τ

t∫
t0

dt′A(t′), Sqi(t, t0)≡ −Sq(t) + Sq(t0) − Eit0. (15)

The stationarymomentum qst is obtained as the solution of the saddle-point equation
∇qSqi(t, t0) = 0, where Sqi(t, t0) is the relevant part of the action. According to the
three-step model, the physical meaning of (14) is the following: the electron appears
in the continuumat the ionization time t0 andpropagates in the field, during the travel
time τ, up to the time t, when a high-harmonic photon is emitted in the transition to
the final state |ψf (t)〉 at time t.

The Green’s operator G(+) satisfies also the Lippmann–Schwinger equation

G(+)(t, t′) = Gle(t, t′) +
∫

dt′′G(+)(t, t′′)V(r)Gle(t′′, t′). (16)

Inserting (5) and (16) into (10), we obtain

SATIfi = − i lim
t′→∞

lim
t→−∞

〈ψp(t′)|
∞∫

−∞

dt
[
Gle(t′, t)

+
∫

dt′′G(+)(t′, t′′)V(r)Gle(t′′, t)
]
Vle(t)|ψi(t)〉. (17)

The usual procedure in the SFA for ATI is to approximate G(+) with Gle and to replace
〈ψp(t′)|Gle(t′, t) with the Volkov state 〈χp(t)| = 〈p + A(t)|exp[iSp(t)]. In this way, we
obtain

SATIfi 
 Sdirfi + Sresfi , (18)

where the so-called direct and rescattering S-matrix elements are

Sdirfi = −i
∞∫

−∞

dt0 〈χp(t0)|Vle(t0)|ψi(t0)〉, (19)

Sresfi = −i
∞∫

−∞

dt
∞∫
t

dt′′ 〈χp(t′′)|V(r)Gle(t′′, t)Vle(t)|ψi(t)〉. (20)
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For the rescatteringmatrix element, we obtain, using (13) and solving the integral over
dqwith the SPM, similarly as for (14),

Sresfi = (−i)2
∞∫

−∞

dt
∞∫
0

dτ
(
2π
iτ

)3/2
eiSp(t)〈p|V(r)|qst〉

× 〈qst +A(t0)|Vle(t0)|ψi〉eiSqst i(t,t0). (21)

The physical meaning of the direct S-matrix element is that, after the ionization at
the time t0 via the interaction Vle(t0), the electron directly goes to the continuum and
reaches the detector with the asymptotic momentum p. Instead, for the rescattering
S-matrix element, the electron, after the ionization at the time t0, propagates in the
laser field up to the time t, when it returns to the nucleus and elastically rescatters
off the potential V(r) and then goes to the detector. This is in accordance with the
three-step model in which the third step (recombination with the harmonic emission)
is replaced by the rescattering event.

3 Harmonic generation rate and ionization rate
For a periodic laser field with the period T = 2π/ω and the fundamental frequency ω,
it is possible to introduce the T-matrix determined by

SHHGfi = −2πi
∑
n
δ(ωK + Ef − Ei − nω)THHGfi (n), (22)

SATIfi = −2πi
∑
n
δ(Ep − Ei +Up − nω)TATIfi (n). (23)

Here, n is the number of photons absorbed from the laser field, the δ function
expresses the energy conservation, and Up =

∫ T
0 A2(t)dt/(2T) is the ponderomotive

energy. The T-matrix element for the HHG process is

THHGfi (n) =
T∫

0

dt
T eiωK tê*K ·dfi(t). (24)

Knowing the T-matrix element, we define the rate (probability per unit time) of
emission of a harmonic photon (having the frequency ωK and polarization êK) into
a solid angle dΩK̂ by

wfi(ωK, êK) =
ω3
K

2πc3
∣∣∣THHGfi (n)

∣∣∣2 , ωK + Ef = nω + Ei . (25)

The corresponding harmonic intensity (power) is In = ωKwfi(ωK, êK).
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The T-matrix element for the direct ATI is given by

Tdirfi (n) =
T∫

0

dt0
T 〈p+A(t0)|Vle(t0)|ψi〉ei[Sp(t0)−Ei t0]. (26)

Using the energy-conserving condition nω = Ep−Ei +Up, we can rewrite the exponent
in (26) as Sp(t0) − Eit0 = p · α(t0) + U1(t0) + nωt0, where A(t) = dα(t)/dt and U1(t) =∫ t dt′A(t′)2/2−Upt. For the rescattering T-matrix element, we obtain

Trespi (n) = − i
T∫

0

dt
T

∞∫
0

dτ
(
2π
iτ

)3/2
eiSp(t)〈p|V(r)|qst〉

× 〈qst +A(t0)|Vle(t0)|ψi〉eiSqst i(t,t0). (27)

The term Sp(t) − Eit0 can be replaced by p · α(t) + U1(t) + nωt + Eiτ. The differential
ionization rate for ATI with absorption of n photons from the laser field is

wfi(n) = 2πp
∣∣∣Tdirfi (n) + Tresfi (n)

∣∣∣2 . (28)

4 Ground-state wavefunctions, rescattering
potential, and multielectron effects

Our ground-state wavefunctions ψi are given in the form of an ith atomic orbital,
obtained by solving the Roothaan–Hartree–Fock equations [6, 7, 27]. In spherical
coordinates, with the z-axis as axis of quantization, the orbitals are given by

ψilm(r) = 〈rθϕ|ψilm〉 = Ril(r)Ylm(θ,ϕ), (29)

whereYlm(θ,ϕ) = 〈θϕ|lm〉arenormalized spherical harmonics in complex form,while
the radial wavefunctions Ril(r) are expanded in terms of basis functions (for example,
Slater-typeorbitals [6,7,27,46])orrepresentedbyasymptoticwavefunctions[11,13,46].
In the case of the expansion in Slater-type orbitals, the radial wavefunction is

Ril(r) =
∑
a
Ca

(2ζa)na+1/2√
(2na)!

rna−1e−ζa r , (30)

where na and l are the quantum numbers of the electron and the parameters Ca
and ζa characterize the radial distribution of the electron density and can be found
tabulated in [6, 7, 27, 46]. For the inert gases considered here, we will use the orbitals
given in Table 1. Since we are using length gauge, the interaction r ·E(t) emphasizes
large distances where the bound-state wavefunctions have well-defined asymptotic
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Tab. 1. Ground-state configurations of valence electrons (the number of Slater-type orbitals used is
given in parenthesis), ionization potentials, and the asymptotic expansion coefficients A for inert
atomic gases [17, 46, 51].

Atom Configuration Ip (eV) A (a.u.)

He 1s(5) 24.59 2.87
Ne 2p(4) 21.56 2.1
Ar 2p(2) + 3p(2) 15.76 2.51
Kr 3p(2) + 4p(2) 14.00 2.59
Xe 3p(1) + 4p(2) + 5p(2) 12.13 2.72

behavior. Hence, the approximation

Ril(r)
 Arν−1 exp(−κr), r� 1, (31)

is well justified [13]. Here, the constant A is tabulated in [17, 46, 51], ν = Z/κ, and κ =√
2Ip, with Ip the ionization potential. For inert gases, the corresponding values of Ip

and A are given in Table 1.
For the rescattering potential, we use two approaches. The first is based

on the independent-particle model potential represented by the short-range
double Yukawa potential, see (21) and Table 1 in [14]: V(r) = −Ze−r/D[1 + (H −
1)e−Hr/D]/(Hr), with H = DZ0.4. The second enables calculation of the electron-ion
rescattering, see the Appendix B in [15] and (21) and Table 2 in [37]: V(r) =
−
(
1+ a1e−a2r + a3re−a4r + a5e−a6r

)
/r (for the Kr atom there was a misprint:

parameters a3 and a4 should be interchanged with the parameters a5 and a6).
We are using the single-active-electron approximation. However, different elec-

trons from the ground-state configuration of an atom (or negative ion) may play the
role of this active electron. Denoting by Ne the number of equivalent electrons in the
ionizing shell of the target and averaging over the possible values ofm, we obtain that
(28) should be replaced by

w̄pi(n) =
Ne

2l +1

l∑
m=−l

wpilm(n). (32)

We usually consider the case of closed subshells specified by the orbital quantum
number l. This subshell has 2l+1orbitals specified bym. Each orbital can be occupied
by two electrons having different values of the spin projection. Therefore, in this case,
we have Ne = 2(2l+1) in (32). For the He atom, we have l =m = 0, while for other inert
gases,wehave l = 1, so that three terms (m = 0,±1) have to be taken into account in (32).

Let us now consider multielectron effects for HHG. For the p ground state, the
magnetic quantum number is m = 0,±1. The initial (final) state is characterized only
by the quantumnumbermi (mf ). For atomswith closed electron shells (Ne, Ar, Kr, Xe),
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the m-changing transitions are forbidden by the Pauli exclusion principle. Namely,
for an outer electron configuration np6, the electron emitted initially from anmi state
cannot endup in anmf �= mi state since these states are occupiedbyother np-electrons.
If we neglect the influence of the spin (i.e., we consider that the pairs of electrons with
the spinms = ±1/2 from the np6 configuration interact with the laser field in the same
way), only three electrons are active and we have

dafi(t) =
∑

m=0,±1
dm(t). (33)

According to (29), we have ψj(r) ∝ Ylmj (r̂), j = i, f , and Ef = Ei = −Ip. The matrix
elements in (14) can be calculated analytically, taking into account that 〈q|r|ψnalm〉 =
i∂ψ̃na lm(q)/∂q, where ψ̃na lm(q) are the Slater-type orbitals in momentum space.
It is important that in the multielectron theory, we have a coherent sum of the
time-dependent dipoles dm(t). However, in the one-electron theory, the nth harmonic
power, summed over all final states and averaged over all initial states, is given by

I(1e)n = (nω)4
2πc3

1
2l +1

∑
mi ,mf

∣∣∣∣∣∣
T∫

0

dt
T d(1e)fi (t)einωt

∣∣∣∣∣∣
2

, (34)

where d(1e)fi (t) is the (one-term) time-dependent dipole matrix element for the transi-
tion from the initial state mi to the final state mf . In the case of the s ground state, we
have mi =mf = 0, and the multi- and one-electron theories give the same result.

5 Numerical examples for harmonic and
electron spectra

In this section, we present two examples of photon and electron spectra obtained
using the SFA. The corresponding T-matrix elements are calculated numerically. The
integral over the travel time τ, (14) and (27), goes from zero to infinity. However, it
is enough to take the upper limit to be five optical cycles (5T), since the probability
of the process is low for long travel times. An exception is the case of resonant-like
enhancements inHHGandHATI (see [31, 32])where the long travel times are important
and one has to take a larger upper limit, say 10T. A standard Gauss–Legendre
quadrature can be used for the calculation of this integral. Depending on the laser
parameters, a few hundreds points can be enough. Various numerical tricks can
be used. For example, one can divide the integration interval into many small
subintervals and use Gauss–Legendre quadrature with a smaller number of points
(say six) on each of these subintervals. Also, one can calculate the integral up to
5T and up to 6T and use one half of the sum of these integrals as the final result.
The lower limit of the integral over τ can be problematic in some cases where the
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subintegral matrix element remains finite for τ→0. In this case, one can set the lower
limit to be, say, 0.05T. This procedure does not affect the plateau of the spectra. For
the low-energy electrons, the contribution of the direct SFA is dominant. Exceptions
are the so-called low-energy structures [28]. The integral over the time t0 in (26) and
the integral over the time t in (24) and (27) can also be solved using appropriate
Gauss–Legendre quadrature with a few hundreds points. In the case of HHG, it is
convenient to use the FFT to calculate the integral over t. Also, Filon’s method for
highly oscillatory integrals can be used.
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Fig. 1. Harmonic intensity as a function of the harmonic order for HHG by He atoms exposed to an
elliptically polarized laser field of intensity 1015 W/cm2, wavelength 800 nm, and ellipticity ε = 0.0,
0.2, 0.3, or 0.4, as denoted in the legend.

In Figure 1, we show the harmonic intensity as a function of the harmonic order for
HHG by He atoms and an elliptically polarized laser field given by E(t) = E0(êx sinωt−
εêy cosωt)/

√
1+ ε2, where ε is the ellipticity. The laser intensity and the wavelength

are 1015 W/cm2 and 800 nm, respectively. We see that for the linearly polarized field
case (ε = 0), the plateau extends up to 3Up (a more precise semiclassical cutoff law is
nmaxω =3.173Up+1.325Ip [25]).With the increase of the ellipticity, the plateauheight
decreases and a multiplateau structure starts to appear. In fact, the plateau becomes
a staircase having three steps, and each of these steps has its own cutoff, which can
be determined semiclassically using the quantum-orbit theory [38]. This behavior of
the HHG process for elliptical polarization is in accordance with the three-step model:
the probability of the electron return decreases with the increase of ε, and for circular
polarization, the atomic HHG is completely suppressed. In general, the field of the
emitted high harmonics is elliptically polarized, and furthermore, the corresponding
polarization ellipse is rotated vs the laser-field polarization ellipse by an offset angle.
A method of calculating the harmonic ellipticity and the offset angle can be found in
[43] and references therein.
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For the ATI process, besides the emitted electron energy, we have the electron
emission angle θwith respect to the laser polarization axis as an additional parameter.
In this case, it is convenient to present the electron spectra in the momentum plane
as a false-color plot in which the color bar denotes the differential ionization rate
on a logarithmic scale. Such an example is shown in Figure 2 where the spectrum
for Xe atoms ionized by a linearly polarized laser field E(t) = E0êx sinωt of intensity
4.5 × 1013 W/cm2 and wavelength 1800 nm is presented. The results are obtained
using (26) and (27) with a modification of the rescattering matrix element, which
is called the low-frequency approximation in [15]. Namely, in (27), the rescattering
amplitude 〈p|V|qst〉 is taken into account in first Born approximation, which cannot
properly describe the exact rescattering amplitude for all angles. This is clearly visible
in Figure 2, where characteristic minima for particular values of the angle θ appear.
These minima are atom specific, and similar results have already been presented for
short-wavelength lasers in [15] (see also [30] for a more rigorous treatment of the
low-frequency approximation; the method of calculation of the electron-atom (ion)
scattering amplitude can be found in [3]). The spectrum obtained using (26) and (27)
without the mentioned modification is very similar to that shown in Figure 2 (except
the discussed minima). The direct amplitude (26) dominates the low-energy part of
the spectrum and is visible in the form of the most intense ellipsoid-shaped central
region, which is elongated in the px direction. The high-energy part of the spectrum
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Fig. 2. The logarithm of the differential ionization rate of Xe atoms, presented in false colors
in the electron momentum plane, for ionization by a linearly polarized laser field of intensity
4.5 × 1013 W/cm2 and wavelength 1800 nm. The results are obtained using the SFA for the direct
process and the low-frequency approximation for rescattering.
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is determined by the rescattering amplitude. The spectrum obeys the symmetry θ↔
180◦ − θ. The characteristic cutoff at Ep 
 10Up for θ = 0◦ [4], as well as the fork-like
structures perpendicular to the polarization axis (the so-called off-axis low-energy
structures, [40]), is noticeable.

6 Saddle-point method
We first consider the direct part of the ATI T-matrix element (26). The integral over the
direct ionization time t0 can be approximately solved using the SPM. The application
of the SPM is justified by the high laser intensity for which the phase of the integrand
is large. This is also in accordance with the SFA, which assumes high intensities. The
saddle-point equation d[Sp(t0) − Eit0]/dt0 = 0 is equivalent to the energy-conserving
condition at the ionization time t0

1
2
[
p+A(t0)

]2 = Ei . (35)

Since Ei < 0, the solutions t0s of (35), whichwe distinguish by the index s, are complex.
In saddle-point approximation, the T-matrix element for direct ATI assumes the form

Tdir,SPfi (n) = 1
T
∑
s

∣∣∣∣ 2π
S′′p(t0s)

∣∣∣∣
1/2

〈p+A(t0s)|Vle(t0s)|ψi〉ei(Ss+δπ/4), (36)

where S′′p(t) = −E(t) · [p+A(t)], Ss ≡ Sp(t0s) − Eit0s, and δ ≡ sgn
[
ImS′′p(t0s)

]
. Only the

solutions with 0 ≤ Re t0s ≤ T and Im t0s > 0 are taken into account.
Application of the SPM in the case of the asymptotic functions (31) with ν =

Z/κ = 1/κ �= 0 is more complicated [13, 18]. In short, after a partial integration over
the time t0, the matrix element 〈k|Vle(t0)|ψi〉, with k = p + A(t0), is replaced by
the function −(Ip + k2/2)ψ̃i(k), where ψ̃i(k) = (2π)−3/2

∫
drψi(r)exp(−ik · r) is the

momentum-space asymptotic wavefunction, which can be expressed as a product
of the Gauss hypergeometric series 2F1(a,b;c;−k2/κ2) and the solid harmonics
Ylm(k̂)(k/κ)l. The saddle-point equation implies that k2 = −κ2, so that, with a proper
choice of the integration contour in the complex plain, one obtains [13, 18, 26, 36]

Tdir,MSPfi (n) = i2−3/2T−1AκννΓ(ν/2)

×
∑
s

(
ks
iκ

)l
Ylm(k̂s)

[
2i

S′′p(t0s)

](ν+1)/2
eiSs , (37)

where ks ≡ p +A(t0s), and the superscript “MSP” stands for the modified SPM. The
summation in (37) is over the complex saddle-point solutions of (35) for the ionization
time t0, which are in the upper half of the complex t0 plane.

The HHG S-matrix element (7), with (12) and (13), as well as the ATI rescattering
matrix element (20), is expressed as five-dimensional integrals. The integration is over
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the three-dimensional intermediate electron momentum q and over the ionization
and rescattering times t0 and t. These integrals can be solved by expanding the phase
about the stationary points. The stationary points are determined with respect to the
variables q, t0, and t. The first stationarity condition∇qSqi(t, t0) = 0 leads to qst given
by (15). Physically, this condition ensures that the electron returns to its parent ion.
The second condition ∂Sqi(t, t0)/∂t0 = 0 leads to

1
2
[
qst +A(t0)

]2 = Ei . (38)

This condition represents the energy conservation at the electron tunneling time t0.
The third condition is ∂[Sqi(t, t0) + Ef t]/∂tt = 0 for HHG and ∂[Sqi(t, t0) + Sp(t)]/∂t = 0
for HATI, which gives

1
2
[
qst +A(t)

]2 =
{

Ef for HHG
1
2
[
p+A(t)

]2 for HATI
. (39)

Since the third step of the three-step model is different for HHG and HATI, it is logical
that condition (39), which expresses energy conservation for this third step, is also
different.

Mathematically, the SPM for the five-dimensional integral leads to a
five-dimensional determinant [4]. However, it is easier first to solve the three-
dimensional integral over dq using the SPM, as we have done in (14) and (21). Then,
it remains to solve the two-dimensional integral over the times t0 and t. In this case,
the following determinant appears:

∆qfi =
(
∂2Sqfi
∂t0∂t

)2
−
∂2Sqfi
∂t20

∂2Sqfi
∂t2 , Sqfi ≡ Sqi +

{
Ef t for HHG
Sp(t) for HATI

. (40)

The final result for HHG has the form

THHG,SPfi (n) = ω
∑

{t0s ,ts}

(
2π
iτs

)3/2
〈ψf |ê*K · r|qst +A(ts)〉∆−1/2qfi (ts , t0s)

× 〈qst +A(t0s)|Vle(t0s)|ψi〉ei[ωK ts+Sqstfi(ts ,t0s)], (41)

where τs ≡ ts − t0s, while for HATI, we obtain

Tres,SPfi (n) = ω
∑

{t0s ,ts}

(
2π
iτs

)3/2
〈p|V(r)|qst〉∆−1/2qfi (ts , t0s)

× 〈qst +A(t0s)|Vle(t0s)|ψi〉eiSqstfi(ts ,t0s) . (42)
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Instead of the above-described two-dimensional SPM, sometimes a MSP is used. This
method was introduced in [42] (for HHG) and in [36] (for HATI by a few-cycle laser
pulse).

Finally, it should be mentioned that the SPM fails for the electron energies near
and beyond the cutoff. In this case, it is better to use a uniform approximation for
the case of coalescing saddle points [10, 31]. The HATI T-matrix element (42) in the
uniform approximation takes the form

Tres,UAfi (n) =
∑
αβm

Aαβm exp(iSαβm)

=
∑
βm

(6πS−)1/2eiS++iπ/4
[
A−√
z
Ai(−z) + iA+

z Ai′(−z)
]
, (43)

where Ai and Ai′ are the Airy function and its first derivative, respectively (for complex
arguments, they can be calculated using the subroutine ZAIRY from theNetlib library).
The quantities A± and S± are related to theweights and the actions of the saddle points
in (41): A± = (A1βm ± iA−1βm)/2, S± = (S1βm ± S−1βm)/2. In (43), beyond the cutoff, the
argument z = (3S−/2)2/3 must be replaced by zexp(i2βπ/3), in order to select the
proper branch of the Airy functions, and Aαβm should change its sign. The cutoff is
determined by the critical value n = nc for which ImS+1βm = ImS−1βm (the condition
for the so-called anti-Stokes transition [31, 42]). The classification of the saddle-point
solutions by the multi-index s ≡ {α, β,m} will be explained in Section 7.

7 Classification of the saddle-point solutions
We are looking for the solutions of the system of two saddle-point equations (38)
and (39) for the complex times t0 and t. This is a system of four real equations over
four real variables Re t0, Im t0, Re t, and Im t. It can be solved using the subroutine
ZSPOW from the InternationalMathematics and Statistics Library (IMSL). In principle,
one can scan the whole complex planes t0 and t looking for these solutions. The
problem can be simplified selecting appropriate physical solutions. In searching for
the solutions {t0, t}, we fix the real part of the rescattering time t within one cycle of
the field so that 0 ≤ Re t < T [see (24) and (27)] and look for the solutions {t0, t} such
thatRe t0 < Re t (ionizationhappensbefore the rescatteringor recombination).We start
with a lowvalue of theharmonic photon (forHHG) or electron energy (forHATI) energy.
Each solution has its own cutoff energy and we “catch” more solutions choosing a
low initial energy. For this energy, we look for such solutions for which |Im t| is not
too large (for example, we neglect all solutions for which Im t > 0.1T). The reason is
that large |Im t| is related to low probability of the process. Then, we sort all solutions
according to the values of the travel time Re(t− t0), starting from the shortest one. The
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solutions having large Re(t − t0) can be neglected, say Re(t − t0) > 5T; exceptions are
resonant-like enhancements of HHG and HATI, which are related to the constructive
interference of contributions of many solutions including those having long travel
time, see [31, 32]. Having found a set of solutions for a fixed low energy, we can
continuously increase the energy using the previously found solutions as the initial
condition for the subroutine ZSPOW. Then, we can present the energy as a function
of Re t0/T and Re t/T and classify solutions as it is done in Figure 3. For the linearly
polarized field case, the problem can be simplified starting from the approximate
analytical solutions. This procedure is described in detail in [31] for HHG and in [32]
for HATI. Having found solutions for a certain parameter, we can use them as initial
condition to find solutions for a slightly different value of this parameter and then
iteratively find solutions for the chosen interval of interest. The parameter can be the
laser field ellipticity, frequency or intensity, or the electron emission angle θ, etc.
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E p
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U p
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α=–1α=+1

α=–1 α=+1

α=-1α=+1

β=–1

β=1
β=1

α=+1 α=–1

θ=50o

Fig. 3. The notation (α,β,m) is used to label the solutions of the system of saddle-point equations
(38) and (39) for a linearly polarized laser field. The solid, dotted, long-dashed, and dotted-dashed
curves in the right-hand part (0 ≤ Re t ≤ T ) specify the real part of the rescattering times for the four
pairs of orbits with the shortest travel times. In the left-hand part of the figure, the counterpart of
each curve identifies the corresponding real part of the ionization times t0. The emitted electron
energy in multiples of Up is plotted on the ordinate, and horizontal lines (at constant energy) relate
the real parts of the ionization and rescattering times for the respective orbits. There are infinitely
many further solutions that have the real part of the ionization time beyond the left-hand margin of
the figure. The curves have been calculated for Ne, for emission in the direction θ = 50◦, and for a
linearly polarized laser field of intensity 2 × 1014 W/cm2 and wavelength 800 nm.

The most detailed classification of the saddle-point solutions for HATI by a linearly
polarized field is given in [29]. The backward-scattering solutions were classified by
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the multi-index (α, β,m), while for the forward-scattering solutions, the double index
(ν,μ) was used. The name backward (forward) is related to the angle θs =180◦ (0◦), by
which the recolliding electron scatters with respect to its incoming direction. We will
not consider the solutions (ν,μ) since these forward-scattering solutions are related to
low energies, which are not of our interest here. In order to simplify the presentation,
we also do not consider the solutions (α, β,m) = (±1,1,0), which were introduced in
[29] and which correspond to short travel time and low energies.

In Figure 3, we present the saddle-point solutions {t0, t}, obtained solving the
system of (38) and (39), classified in accordance with the notation (α, β,m), α = ±1,
β = ±1, m = 0,1,2, . . .. The physical meaning of the index m is that it gives the
approximate length of the travel time in multiples of the laser period. The index β
denotes the solutions within one optical cycle characterized by the index m. For each
m = 0,1, . . ., there are two pairs of solutions having the real part of the ionization
time t0 between −(m +1)T and mT. The travel time is longer for the pair of solutions
characterized by the index β = 1.

Let us explain why we have two solutions β = ±1. The ionization is more probable
when the absolute value of the field is close to the maximum. For a field linearly
polarized along the x-axis, Ex(t0) = E0 sinωt0, if β = 1 the emitted electron is driven by
the field, which decreases from a close-to-maximum positive value (ωRe t0 = −3π/2,
i.e., Re t0/T = −3/4 in Figure 3), while for β = −1, the situation is the opposite, i.e.,
the field increases from a minimum negative value, such that Re t0/T = −1/4. In one
optical cycle T, the field changes along two segments of the x-axis in the opposite
directions (0◦ and 180◦). In general, we have β = sgn(Ex(Re t0)). In addition to this,
each pair of solutions having fixed β andm consists of two orbitswith slightly different
travel times, and we discriminate the longer (α = −1) from the shorter orbit (α = +1) by
the index α. The terminology “short” and “long” orbits is usually used in the literature
in connection with the Lewenstein model [25] of HHG where only the shortest pair of
solutions is considered.

8 Numerical results for HATI spectra obtained using
the SPM and uniform approximation

Let us first present numerical results for the (H)ATI differential ionization rate for Ne
atoms ionized by a linearly polarized laser field of intensity 8×1014 W/cm2 and wave-
length 800 nm. Saddle-point solutions for this case are obtained and classified using
the method described in Section 7. We see that the rates obtained using particular
solutions are presented by smooth curves,which finish by abrupt cutoffs for particular
values of the energy [(Ep/Up)c = {5.6057,2.2096,4.1576,2.6930,3.8344} for βm =
{−10,10,−11,11,−12}]. The solutions having α = −β are unphysical (divergent) after
the corresponding cutoffand shouldbeneglected.Near the cutoff, theSPM fails so that

 EBSCOhost - printed on 2/13/2023 7:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



VII Strong-field approximation and quantum orbits | 219

0 3 6
Ep/Up

–12

–10

–8

–6

lo
g 10

 [D
iff

er
en

tia
l i

on
iz

at
io

n 
ra

te
 (a

.u
.)]

 1–10
–1–10
 1 10

–1 10
 1–11

–1–11
 1 11

–1 11
 1–12

–1–12
 ISFA
SFA
UA

q=50o

αβm

Fig. 4. The logarithm of the differential ionization rate of Ne as a function of the electron energy
Ep in units of the ponderomotive energy Up for ionization by a linearly polarized laser field of
intensity 8 × 1014 W/cm2 and wavelength 800 nm. The results are obtained using the uniform
approximation with ten saddle-point solutions βm (UA cyan bold solid curve), the SFA method
with one-dimensional integral over the ionization time (SFA violet line with squares), and the ISFA
method with the SPM for the integral over dk and numerical integration over the ionization and
travel times (ISFA maroon line with filled circles). The contributions of particular quantum orbits
(α,β,m) are also presented, as denoted in the legend. The contributions that should be neglected
after the cutoff are denoted by the dashed lines.

the procedure in which the rate is calculated as
∑

αβm Aαβm exp(iSαβm) in which the
contributions of the solutions having α =−β are neglected after Epc gives the spectrum
with characteristic spikes at the energies Epc. As it is explained in Section 6, in this
case, it is more appropriate to use the uniform approximation (UA), which produces
a continuous (and oscillatory) spectrum. An example is shown in Figure 4: the bold
cyan solid line represents the spectrum obtained using ten solutions βm (β = ±1, m =
0,1,2,3,4) and the uniform approximation. In Figure 4, the spectrum obtained using
the improved-SFA (ISFA) method (i.e., the SPM for the integral over dk and numerical
integrationover the ionizationand travel times, as it is described inSection 2) is shown
by maroon line with filled circles. The agreement with the uniform approximation
is excellent for energies above 1.5Up (for lower energies, the contribution of the
low-energy forward-scattering solutions (ν,μ), not considered here, should be taken
into account). The result obtained using the direct SFAmethod with one-dimensional
integral over the ionization time is also presented in Figure 4 (SFA violet line with
squares). This direct SFA result is dominant for energies lower than 0.6Up. The partial
ionization rates for ten particular values of αβm are also shown in Figure 4. The partial
rates, which are divergent after the cutoff, are presented by dashed lines. It is clearly
visible that the high-energy part of the spectrum is determined by the coherent sum
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of only two contributions of the solutions (α, β,m) = (1,−1,0) and (−1,−1,0). This
implies that for the energies larger than 4.2Up, the spectrum has a simple oscillatory
structure. For lower energies, more and more solutions contribute to the spectrum,
and we have a more complicated oscillatory structure.

9 Quantum orbits
In order to better understand the laser field-induced ATI process with rescattering, we
use the concept of quantum orbits [4, 20, 21, 29, 31, 35, 36, 38, 48], which are defined
as solutions of the classical Newton’s equation for the electron in the presence of the
laser field, r̈(t) = −E(t), but for complex time. For the direct SFA, we have the complex
ionization time t0, and the electron trajectories are defined as real part of r(t) for t >
Re t0: r(t) = (t− t0)p+α(t)−α(t0). For the rescattering ISFA,wehave complex ionization
time t0 and rescattering time tr for which r(t0) = r(tr) = 0. We will present the electron
trajectories defined as real part of r(t) for t real, with

r(t) =
{

(t − t0)qst + α(t) − α(t0), if Re t0 ≤ t ≤ Re tr,
(t − tr)p + α(t) − α(tr), if t > Re tr .

(44)

Since Rer(Re t0) �= 0, the emitted electron appears in the continuum at the “exit of
the tunnel,” few atomic units away from the origin. After that, for the direct SFA, the
electron is driven by the laser field to the detector, while for the rescattering ISFA, the
electron behaves in accordance with the three-step model as described before. For
HHG, the electron recombines at time tr so that the electron trajectory is determined
by (44) for Re t0 ≤ t ≤ Re tr.

We illustrate the quantum orbits and the corresponding real electron trajectories
using the example of HATI of Ne atoms by linearly polarized laser field for the
same laser parameters as in Figure 4. In the left panels of Figure 5, we present the
saddle-point solutions for the ionization time t0 (maroon curves) and the rescattering
time tr (red curves) in the complex time plane for four solutions (α, β,m) havingm =0,
which are characterized by the short travel times. The solutions having β = −1 (β = 1)
are presented in the upper (lower) panels. In each panel, the two solutions having
α = ±1 are presented. The solutions for which α �= β should be neglected after the cutoff
are presented by the dotted-dashed lines. The imaginary part of the recombination
time Im tr is small for energies lower than the cutoff value for all solutions. For fixed
β and m, two solutions α = ±1 approach each other with the increase of the electron
energy, having an avoided crossing for the energy near the cutoff value. The imaginary
part of the solutions tr for α �= β takes large negative values with the increase of the
energy beyond the cutoff, which is the cause of the divergence of the corresponding
rates (see the dashed lines in Figure 4).

In the right-hand panel of Figure 5, we have presented the electron trajectories
(44) for fixed electron energies, which are slightly lower than the corresponding cutoff
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Fig. 5. The shortest rescattered quantum-orbit solutions and trajectories characterized by the
multi-index (α,β,m) with m = 0 and β = −1 (β = 1) for upper (lower) panels. The results are for HATI
of Ne atoms by a linearly polarized laser field of intensity 8 × 1014 W/cm2 and wavelength 800 nm
and for the electron emission angle θ = 50◦. Left-hand panels: Solutions for the complex ionization
time t0 (maroon lines) and rescattering time tr (red lines) presented in the complex (Re t, Im t)
plane, expressed in units of the optical period T . The electron energy changes as a continuous
parameter along each curve from a minimum to a maximum value. The solutions α = −β whose
contribution should be neglected after the cutoff are presented by dotted-dashed lines. Right-hand
panels: Electron trajectories [real part of the quantum orbits x(Re t)] obtained using the saddle-point
solutions of the corresponding left panel, for the energies slightly below the corresponding cutoff
[Ep = 5Up (2Up) for the upper (lower) panel]. The positions where the electron exits from the tunnel
and where it rescatters off the core are denoted by the corresponding symbols (open symbol and
dotted-dashed lines for the α = −β solutions).

values (Ep =5Up for β =−1 and Ep =2Up for β =1). For complex time,we have x(t0) = 0.
However, from the left panels, we see that Im t0 is large so that Rex(Re t0) �= 0, i.e.,
the electron appears at the “tunnel exit.” The position of the “tunnel exit” can be
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determined solving approximately the stationary Schrödinger equation for the energy
−Ip and for an electron bound by the Coulomb potential and the potential Esx, with
Es = Ex(Re t0) the instantaneous value of the electric field. The approximate result,
obtainedusing parabolic coordinates [23], is xe =−Ip(1+

√
1−2Es/I2p)/(2Es)
−Ip/Es.

In our case, we obtain xe 
 −sgn(Es)5 a.u.. This is clearly visible in the right-hand
panels of Figure 5 where the electron “starts” approximately 5 (−5) a.u. away from the
origin for the upper (lower) panel. For the upper panel, the field at the ionization time
is negative so that the corresponding force Fx(Re t0) = −Ex(Re t0) is positive, and the
electron moves away from the origin in the direction of the positive x-axis following
the trajectory shown in the upper-right panel of Figure 5. When the field (and the
corresponding force) changes the sign, the electron turns around and moves back
to the parent ion and rescatters off it at the rescattering time tr. Since Im tr is small
(negligible),wehaveRex(Re tr)
0, i.e., the electron rescatters at the origin and leaves
in the direction of the detector. Similar explanations can be given for the trajectory
presented in the lower-right panel. In this case, the trajectory is longer and the electron
revisits the origin once before it rescatters off the parent ion when it returns to this ion
for the second time.

10 Summary
We considered the SFA, an approximate quantum-mechanical theory of atomic
processes in a strong laser field, which constitutes the backbone of the theory of
intense laser-atom interaction. The emphasis was on the so-called ISFA, which takes
into account corrections to the standard SFA, namely, an additional interaction of
the emitted electron with the parent ion. In comparison with the standard SFA for
which the transition matrix element can be calculated as a one-dimensional integral,
in the ISFA, a five-dimensional integral appears. In accordance with the three-step
model, in addition to the integral over the ionization time (first step), we have
a three-dimensional integration over the intermediate electron momenta (second
step) and over the electron rescattering (or recombination) time (third step). For
practical purposes, it is toodemanding to calculate numerically suchfive-dimensional
integrals, and one usually solves the three-dimensional integral over the electron
momenta using the SPM. The SPM can also be applied to the remaining time integrals.
This approach is not only important for practical calculations. Its strength lies in
the related formalism, which is called quantum-orbit theory and closely connected
to Feynman’s path integral approach. The quantum-orbit formalism is particularly
useful for the fast calculation and the intuitive interpretation of high-order atomic
processes in strong laser fields.
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VIII Microscopic particle-in-cell approach

A broad spectrum of scenarios resulting from the exposure of dense material to
strong laser fields takes place in the realm of intense but nonrelativistic light-matter
interactions. The quest for a microscopic understanding of the underlying processes
is driven by both fundamental interest and various striking applications, ranging from
industry-driven technologies like laser micromachining [13] and laser modification
of metals and dielectric materials [48, 52] over the development of devices based
on ultrafast strong-field nanoplasmonics [25, 35, 44, 54] to attosecond dynamics in
solids [30, 49]. For intensities close to the ionization threshold where material is
transformed from a solid into a plasma, the dynamics is particularly complicated as
it is dominated by transient effects, proceeds far from equilibrium, and is strongly
coupled [33, 42]. The latter aspect makes a physical understanding challenging, as
the description of strong coupling is intimately connected to a correlated description
of the physical many-body processes.

Modeling the interaction of laser light with strongly coupled plasmas is a
challenging task even in the nondegenerate regime,¹ as the classical trajectories of all
electrons and ionshave to bepropagated explicitly, andmicroscopic processes such as
collisions have to be fully resolved. For small systems,where the dipole approximation
is justified and field propagation effects can be neglected, this can be done efficiently
with electrostaticmolecular dynamics (MD) calculations [16, 43]. However, to describe
macroscopic plasma volumes, an electromagnetic treatment is required that fully
accounts for field propagation effects like field attenuation.

A widely used numerical method to study the interaction of light with macro-
scopic plasma volumes including field propagation effects is the electromagnetic
particle-in-cell (PIC) approach [7, 11, 51]. In PIC, Maxwell’s equations are solved on
a grid along with the relativistic equations of motion for all PIC particles. Typically,
these PIC particles represent an average overmany physical particles and are sampled

1 For thermal energies, kBT, smaller or equal to the Fermi energy, EF , quantum effects (e.g.,
Pauli-blocking) become important, i.e., the plasma is degenerate, and a classical description is in
general not longer justified. In terms of the degeneracy parameter, Θ = kBT/EF � 1, the classical
approximation is valid for Θ > 1.
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on a coarse grid. As a result of this averaging, all microscopic processes are lost and
only the collective response is explicitly described, which precludes a meaningful
description of strongly coupled plasmas.

In this chapter, we present one possible route to overcome the above limitations.
The so-called microscopic particle-in-cell (MicPIC) method connects MD and PIC
in a two-level approach. In MicPIC, long-range electromagnetic interactions are
treated on a coarse numerical grid (PIC level). To also fully resolve microscopic
processes, the short-range interactions missing in the PIC part are reintroduced via
local electrostatic MD.

In the following, we begin with the description of the basic concept of the MicPIC
method from a physical point of view before we examine the most important details
of its numerical implementation. Subsequently, we discuss two application scenarios.
First, we present a relatively simple calculation, where a solid-density foil is excited
with intense laser light under normal incidence. These results might serve as a
reference for your own implementation of MicPIC and can be performed easily on a
desktop computer. The second scenario discusses a more sophisticated application
that became numerically accessible only with the advent of MicPIC, i.e., the complete
simulation of a time-resolved coherent diffractive imaging experiment.

It should be noted that the following discussion has the form of a tutorial and is in
substantial parts based on previously published work. Major parts have been adapted
from the PhD thesis of Christian Peltz [36].

1 Basic concept
We start with a discussion of the key idea of MicPIC from a physical point of view.

1.1 Physical problem

In a classical picture, the exact nonrelativistic dynamics of a plasma particle in the
presence of electromagnetic fields is determined by the Lorentz force

fi =
∫

ρi(r) (E+ ṙi ×B)d3r, (1)

where ρi(r) and ṙi are the charge density distribution and velocity of the ith particle,
and E and B are the microscopic electric and magnetic fields. Once these fields are
known, the force on each particle can be calculated, and the dynamics of the system
follows from the self-consistent integration of the classical equations of motion.
The self-consistent evolution of the corresponding classical electromagnetic fields is
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determined by Maxwell’s curl equations according to

∇ ×E = −Ḃ, (2)
∇ ×B = μ0j+ μ0ε0Ė. (3)

Here, the charged particles couple to the electromagnetic fields via the current density
j =
∑

i ṙiρi. From a physical point of view, the classical plasma dynamics is completely
specified by (1)–(3). However, the full numerical solution of this set of equations
becomes very demanding for many-particle systems. The reason is that the numerical
effort for solving the field equations on a grid scales with 1/∆x4 (as will be shown in
Section 2.6),where ∆x is themesh size (grid resolution). In order to resolvemicroscopic
processes properly, the mesh has to be of the order of one atomic unit or even less,
where the direct numerical solution becomes prohibitive in practice. The MicPIC
approach offers a route to overcome this problem and is developed step by step below.

1.2 Particle representation

In MicPIC, each plasma particle (electron or ion) is represented by a charge density
distribution

ρi(r) = qi g(|r− ri|,w0), (4)

where qi and ri are the charge and position of the ith particle, and the shape
function g(r,w) = exp(−r2/w2)/π3/2w3 describes a normalized Gaussian distribution
of width w.

The long-range interactionbetween twoof suchparticles is essentially determined
by the particle charges and effectively independent of the particle shape. However,
their short-range interaction is strongly dependent on their exact shape and size. In
general, larger particle widths yield smoother fields in their vicinity and therefore
result in a softened short-range interaction. These short-range interactions primarily
determine the collision dynamics of plasma particles. Therefore, the width w0 is a
key parameter that should, within technical and physical limits (see Section 2.6), be
chosen as small as possible.² On the other hand, the particle width also determines
the spatial resolution that is necessary to resolve the particle shape on a grid. In turn,
a large particle width is key to an efficient solution ofMaxwell’s equations, as it allows
the use of a coarse numerical grid and large time steps.

So far, there have been two major approaches to deal with these conflicting
needs: (i) The regular PIC approach uses superparticles. A superparticle represents
multiple physical particles, e.g., up to millions of electrons or ions, with large particle

2 The Coulomb singularity at zero particle distance can only be observed in the limit of vanishing
width, corresponding to point like particles.
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widths to describe the collective plasma dynamics but neglects particle collisions.
The latter assumption is justified only in the relativistic regime or at low density [27,
40, 41]. And (ii) the collisional PIC approach, which uses the same superparticles
but reintroduces the underestimated collisions via Monte-Carlo methods using ap-
proximate binary collision rates [32, 47]. Both approaches have their merits and have
revolutionized our understanding of strong-field plasma physics. However, even the
collisional PICmethod is restricted to the regime ofweak coupling, wheremicroscopic
fluctuations are negligible and microscopic interactions are limited to small-angle
binary collisions. MicPIC is intended to describe the nonrelativistic dynamics of
laser-driven clusters and bulk materials, which proceeds far from equilibrium and
is strongly coupled. Therefore, the short-range interactions have to be taken into
account explicitly. Within MicPIC, this is done in a consistent two-level approach that
combines the electromagnetic treatment of the collective plasma dynamics on a PIC
level with a local electrostatic MD to describe microscopic correlations (Mic).

1.3 PIC approximation

On the PIC level, particles are represented by a particle width larger than the actual
particle width (wpic � w0) via the corresponding smoothed particle charge density

ρpici (r) = qi g(|r− ri|,wpic). (5)

The super/subscripts “pic” indicate that the respective quantities belong to the PIC
level. The corresponding PIC electric and magnetic field evolution is then given by

∇ ×Epic = −Ḃpic (6)

∇ ×Bpic = μ0jpic + μ0ε0Ėpic (7)

with the smoothed current density jpic =
∑

i ṙiρ
pic
i . Note that in this description,

radiation fields are fully accounted for if wpic is smaller than all relevant scales
(wavelength, skin depth, etc.). However, the microscopic nature of the particles and
therefore also all resulting correlation effects are lost because of the large PIC particle
size. The PIC force on the ith plasma particle is given by

fpici =
∫

ρpici (Epic + ṙi ×Bpic)d3r. (8)

1.4 MicPIC force decomposition

To identify themissing short-range forces in the PIC approximation, the actual force (1)
on plasma particle i can be formally split into amicroscopic part fmici and a long-range
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PIC part fpici ,

fi = fmici + fpici , (9)

with

fmici =
∫ [

ρi(E+ ṙi ×B) − ρpici (Epic + ṙi ×Bpic)
]
d3r, (10)

fpici =
∫

ρpici (Epic + ṙi ×Bpic)d3r. (11)

Besides rearrangement of the terms, (9) is still identical to the force in (1). To show the
short-range character of themicroscopic contribution fmici , PIC and actual electric and
magnetic fields have to be decomposed into their individual particle contributions.
The respective total fields are then given by the sum over the field contributions
created by all particles. This decomposition is justified because of the linearity of
Maxwell’s equations and leads to

fmici =
∑
j

∫
[ρi(Ej + ṙi ×Bj) − ρpici (Epicj + ṙi ×Bpicj )]d3r. (12)

The above sum describes the force on the ith particle, created by the fields of all
other particles j. Self-force contributions cancel out automatically. For large distances
between particles j and i (rij = |rj − ri| � wpic), the actual and PIC fields produced in
the region r 
 ri are identical.³ Therefore, remaining contributions to fmici in the far
field could only stem from the different actual and PIC particle densities.

The variation of the (actual and PIC) fields over the PIC particle extent can be
approximated by a linear Taylor expansion around ri. The corresponding expansion
for the actual electric field reads as

Ej(r) = Ej(ri) + (r− ri)∇Ej(ri) + · · · . (13)

Carrying out the corresponding integration∫
ρi(r)Ej(r)d3r =

∫
ρi(r)Ej(ri)d3r +

∫
ρi(r)∇Ej(ri)(r− ri)d3r + ·· ·


 Ej(ri)
∫

ρi(r)d3r (14)

gives zero for the linear field terms due to the even symmetry of the charge density.
If higher-order terms are negligible, only the constant field terms remain and can be

3 Here, it is assumed that wpic is much smaller than all scales of the radiated fields.
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pulled out of the integral∫
ρi(r)Ej(r)d3r = Ej(ri)

∫
ρi(r)d3r (15)

= qiEj(ri). (16)

The remaining integral over the particle density yields the particle charge. As the total
charges of actual and PIC particles are equal, their contributions cancel each other for
each index j in (12), proving the short-range nature of the microscopic correction for
the electric field. Analogous steps show the short-range nature of the magnetic field
term. Note that the interaction of the plasma particles is described exactly with the
force from (9), independent of the width of the particles on the PIC level. The value of
the PIC particle width only determines the softness of the force on the PIC level and,
in turn, the radius within which the Mic forces contribute.

1.5 The MicPIC approximation

So far, the above force decomposition has only formal character as everything has
been derived in full generality. However, in order to facilitate the numerical evaluation
of the short-range interaction, field retardation is neglected locally, i.e., within the
microscopic correction. This is the only formal approximation in MicPIC. Taking the
nonrelativistic, electrostatic limit of (12) by dropping magnetic fields and expressing
electric fields by the respective Coulomb interaction yields

fmici = −∇ri
∑
j

∫ ∫ [ ρi(r)ρj(r′)
4πε0|r− r′| −

ρpici (r)ρpicj (r′)
4πε0|r− r′|

]
d3r′d3r. (17)

For Gaussian shape functions, the above double integral can be evaluated analytically
and yields the difference of the particle interaction energies for actual and PIC
particles. The interaction energy of two Gaussian particles with width parameter w
is given by

Vij(rij ,w) =
qiqj

4πε0rij
erf
( rij√

2w

)
. (18)

Inserting this expression into (17) yields

fmici = −
∑
j
∇ri Vmic

ij (19)

with

Vmic
ij = Vij(rij ,w0) −Vij(rij ,wpic).
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Combining the electrostatically approximated microscopic correction in (19) and the
PIC force in (8) yields the total MicPIC force

fi = −
∑
j
∇ri Vmic

ij +
∫

ρpici (Epic + ṙi ×Bpic)d3r. (20)

The complete MicPIC dynamics is now determined by the self-consistent integration
of Newton’s equations of motion with the force specified in (20), together with the
propagation of the electromagnetic fields according to (6) and (7).

2 Numerical aspects of MicPIC
This section discusses the most important numerical aspects of the implementation
of the MicPIC concept. In the first part, Section 2.1, the numerical propagation of the
electromagnetic fields via the finite-difference time-domain (FDTD) algorithm is de-
scribed. Special emphasis is put on the description of the field propagation algorithm
on a discretized staggered spatial grid as well as the implementation of appropriate
absorbing boundary conditions to emulate an infinite simulation volume. In the
second part, Section 2.2, the representation of the Gaussian particles on the numerical
grid is discussed in more detail. This is of particular importance, as the particle shape
and its representation on the grid determine major properties of the code, like charge
conservation, force anisotropy, and numerical effort. After that, the implementation
and efficient evaluation of the short-range forces are discussed in Section 2.3. Subse-
quently, the Boris scheme for particle propagation in the presence of electromagnetic
fields is described (Section 2.4), completing the basic part of the code. Finally, the
implementation of atomic ionization processes into MicPIC is described in Section 2.5.

2.1 Electromagnetic field propagation with the FDTD method

The foundation of the MicPIC approach is the numerical description of the time
evolution of the electric and magnetic fields on the PIC level according to (6) and
(7). In this work, the FDTD method has been used for that purpose, as it solves
Maxwell’s equations in the time domain and is relatively simple to implement. The
following discussion of the FDTD idea and its implementation follows the book
of Taflove [45], which is an excellent compendium of most relevant FDTD-related
information. As a starting point for our discussion, the basic equations are repeated
here for convenience,

∇ ×E = −Ḃ, (21a)

∇ ×B = μ0
(
j+ ε0Ė

)
, (21b)
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with the electric field E, the magnetic field B, the vacuum permittivity ε0 and
permeability μ0, as well as the electric current density j. As fields and currents are
exclusively discussed for the PIC level in this section, the superscript “pic” has been
dropped. Writing out the vector components of (21a) and (21b) yields the following
system of six coupled first-order differential equations:

∂Ex
∂t = 1

ε0μ0

[
∂Bz
∂y − ∂By

∂z

]
− 1
ε0
jx , (22a)

∂Ey
∂t = 1

ε0μ0

[
∂Bx
∂z − ∂Bz

∂x

]
− 1
ε0
jy , (22b)

∂Ez
∂t = 1

ε0μ0

[
∂By
∂x − ∂Bx

∂y

]
− 1
ε0
jz , (22c)

∂Bx
∂t =
[
∂Ey
∂z − ∂Ez

∂y

]
, (22d)

∂By
∂t =
[
∂Ez
∂x − ∂Ex

∂z

]
, (22e)

∂Bz
∂t =
[
∂Ex
∂y − ∂Ey

∂x

]
. (22f)

The basic idea for the solution of this problem in the framework of the FDTD algorithm
has been proposed by Kane Yee already in 1966 [53]. It is based on a specific space
and time staggering of the field components in conjunction with the centered finite
difference scheme to discretize the space and time derivatives.

2.1.1 Centered finite difference

To derive a finite difference expression for the spatial derivative of a scalar function
u(x, tn), it is convenient to consider its Taylor series expansion around space point xi
at a fixed time tn. For positive displacements in space, the expansion is given by

u(xi + ∆x) |tn= u |xi ,tn +∆x
∂u
∂x |xi ,tn +

(∆x)2
2

∂2u
∂x2 |xi ,tn +

(∆x)3
6

∂3u
∂x3 |xi ,tn +·· ·

and for negative displacements by

u(xi − ∆x) |tn= u |xi ,tn −∆x
∂u
∂x |xi ,tn +

(∆x)2
2

∂2u
∂x2 |xi ,tn −

(∆x)3
6

∂3u
∂x3 |xi ,tn +·· · .

Subtracting the second from the first equation leads to

u(xi + ∆x) |tn −u(xi − ∆x) |tn= 2∆x
∂u
∂x |xi ,tn +

(∆x)3
3

∂3u
∂x3 |xi ,tn +·· · . (23)

 EBSCOhost - printed on 2/13/2023 7:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



VIII Microscopic particle-in-cell approach | 235

Rearranging the terms results in the well-known centered finite difference expression
for the derivative

∂u
∂x

∣∣∣
xi ,tn

= u(xi + ∆x) |tn −u(xi − ∆x) |tn
2∆x +O[(∆x)2] (24)

with second-order accuracy. The actual field and current components are functions of
three space and one time coordinate. For convenience, the shorter notation

u(i∆x, j∆y, k∆z, n∆t) = uni,j,k (25)

is used fromhere on. Evaluating the Taylor expansionswith half displacements xi ± ∆x
2

leads to the final expressions for the space and time derivatives

∂u
∂x (i∆x, j∆y, k∆z, n∆t) =

uni+ 1
2 ,j,k

− uni− 1
2 ,j,k

∆x +O[(∆x)2], (26a)

∂u
∂y (i∆x, j∆y, k∆z, n∆t) =

uni,j+ 1
2 ,k

− uni,j− 1
2 ,k

∆y +O[(∆y)2], (26b)

∂u
∂z (i∆x, j∆y, k∆z, n∆t) =

uni,j,k+ 1
2
− uni,j,k− 1

2

∆z +O[(∆z)2], (26c)

∂u
∂t (i∆x, j∆y, k∆z, n∆t) =

un+
1
2

i,j,k − u
n− 1

2
i,j,k

∆t +O[(∆t)2], (26d)

which will be used in the following.

2.1.2 The Yee staggering

The positioning of the electric- and magnetic-field components on the numerical grid
according to Yee [53] is shown in Figure 1. The reason for this specific staggering
becomes evident when the above finite difference expressions are applied to the field
equations. Doing this exemplarily for (22a) yields

Ex |n+
1
2

i+ 1
2 ,j,k

−Ex |n−
1
2

i+ 1
2 ,j,k

∆t

= 1
ε0

[Bz |ni+ 1
2 ,j+

1
2 ,k

−Bz |ni+ 1
2 ,j−

1
2 ,k

∆y −
By |ni+ 1

2 ,j,k+
1
2
−By |ni+ 1

2 ,j,k−
1
2

∆z

]

− 1
ε0
jx |ni+ 1

2 ,j,k
. (27)
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Fig. 1. Schematic illustration of the Yee field staggering [53]. Electric and magnetic field components
are chosen such that the positions fit automatically to a centered finite differences solution to the
curl equations.

Rearranging the terms leads to an explicit expression for the propagation of Ex

Ex |n+
1
2

i+ 1
2 ,j,k

= Ex |n−
1
2

i+ 1
2 ,j,k

+ ∆t
ε0

[Bz |ni+ 1
2 ,j+

1
2 ,k

−Bz |ni+ 1
2 ,j−

1
2 ,k

∆y −
By |ni+ 1

2 ,j,k+
1
2
−By |ni+ 1

2 ,j,k−
1
2

∆z

]

− ∆t
ε0
jx |ni+ 1

2 ,j,k
(28)

that only relies on the knowledge of all field components in the past. Comparing
the positions of the required field components in (28) with the positions in Figure
1 shows that the Yee staggering is perfectly matched to this propagation scheme.
Similar expressions can be derived for the other field components, completing the
basic numerical recipe for the numerical solution to Maxwell’s equations. Note that
the electric- and magnetic-field components are also staggered in time, which results
in alternating field updates for electric and magnetic fields.

2.1.3 Absorbing boundary conditions

The FDTD scheme introduced above represents a very efficient way to solve the
microscopicMaxwell equations on anumerical grid. As such a grid consumesmemory,
it will always be limited in size so that some sort of boundary conditions have to be
applied. In principle, there are three main types of boundary conditions, suitable
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for different physical problems. The perfect electric conductor boundary condition
mimics a perfect metal surface to truncate the computational grid, reflecting all
impinging electromagnetic waves. Periodic boundary conditions (PBC) emulate a
periodic continuation of the computational domain. This can be very useful for
the simulation of targets that are effectively homogeneous in at least one direction,
e.g., bulk targets or planar surfaces. The third and for this work most important
type of boundary condition is the absorbing boundary condition (ABC). It simulates
the extension of the lattice to infinity and thus allows the description of open
systems.

The basic idea

An obvious approach to achieve ABC’s is to enclose the computational box with a
highly absorbingmedium layer. Themain goal of such an electromagnetic absorption
layer is to obtain dissipation within the layer without reflection from the interface
back into the main simulation volume. From a numerical point of view, this can be
achieved by using Maxwell’s curl equations for a dissipative medium [24, 45]. The
corresponding equations read as

∇ ×H = ∂D
∂t + σE, (29a)

∇ ×E = −∂B∂t − σ
*H, (29b)

where D and H are the displacement field and magnetizing field, respectively. The
electric conductivity σ and the equivalent magnetic loss σ* determine the dissipative
properties of the medium. For linear, isotropic, and nondispersive materials,⁴ D and
E as well as B and H can be related by

D = ε0εrE = εE, (30a)
B = μ0μrH = μH. (30b)

Inserting these expressions into (29) eliminates D and B and leads to

∇ ×H = ε ∂E∂t + σE, (31a)

∇ ×E = −μ ∂H∂t − σ
*H. (31b)

4 The medium is assumed to have frequency independent values εr(ω) = εr and μr(ω) = μr.
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For the following derivation, it is convenient to translate these equations into the
frequency domain (∂t →−iω),⁵ which yields a very compact notation

∇ × H̆ = −iωεĔ+ σĔ = −iωε
(
1− σ

iωε
)
Ĕ = −iωελεĔ, (32a)

∇ × Ĕ = iωμH̆− σ*H̆ = iωμ
(
1− σ*

iωμ

)
H̆ = iωμλμH̆, (32b)

with the new material parameters λε and λμ. Note that quantities in the frequency
domain are flagged with a breve from here on.

Plane wave incident on a lossy half-space

Eventually, the main simulation volume should be completely surrounded by an
absorbing medium layer. However, as a first step, the reflection properties of the
interface between absorbing and nonabsorbing regions have to be evaluated. To this
end, the incidence of a plane wave upon such an interface between a lossless (region
1, x < 0) and a lossy half-space (region 2, x > 0) is studied in more detail. Consider an
incident wave defined by

H̆inc = ezH0 eiβ1xx+iβ1yy , (33a)

Ĕinc =
[
ex
β1y
ωε −ey

β1x
ωε

]
H0eiβ1xx+iβ1yy , (33b)

with the wave vector

β1 = β1xex + β1yey; β1x = k1 cosΘ; β1y = k1 sinΘ, (34)

and the angle of incidence Θ. Then, according to (32), the total fields in region 1 (σ =
σ* = 0) are given by

H̆1 = ezH0
(
1+ Γe−2iβ1xx

)
eiβ1xx+iβ1yy , (35a)

Ĕ1 =
[
ex
β1y
ωε
(
1+ Γe−2iβ1xx

)
−ey

β1x
ωε
(
1− Γe−2iβ1xx

)]
H0eiβ1xx+iβ1yy , (35b)

where Γ is the reflection coefficient. The total fields in region 2 are given by

H̆2 = ezH0τ eiβ2xx+iβ2yy , (36a)

Ĕ2 =
[
ex

β2y
ωελε

−ey
β2x
ωελε

]
H0τeiβ2xx+iβ2yy , (36b)

5 The corresponding Fourier transforms are defined as F(t) = 1√
2π

∫
F̆(ω)e−iωtdω and F̆(ω) =

1√
2π

∫
F(t)eiωtdt.
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with the transmission coefficient τ. Enforcing continuity of the tangential fields across
the interface at x =0 yields expressions for the reflection and transmission coefficients

Γ =
β1x
ωε −

β2x
ωελε

β1x
ωε +

β2x
ωελε

; τ = 1+ Γ . (37)

For arbitrary angles of incidence Θ, the reflection coefficient is in general nonzero.
However, it can be shown that for normal incidence (Θ = 0) and an appropriate
choice of the parameters, i.e., λε = λμ ⇒ σ* = σμ/ε, plane electromagnetic waves can
enter the lossy half-space without reflection, irrespective of their frequency. Then, the
transmitted fields given by

H̆2 = H̆ince−σ
√
μ/ε x , (38a)

Ĕ2 = Ĕince−σ
√
μ/ε x (38b)

resemble the incident fields but exhibit additional exponential damping in region 2. In
this case, region 2 is calledperfectlymatched to region 1 for normal incidentwaves [23].
However, to be of practical use, the observed behavior is needed for arbitrary angles
of incidence.

The uniaxial perfectly matched layer

A first solution to this problem has been presented by Berenger in 1994 in terms
of the so-called perfectly matched layer (PML) [6]. Berenger used a split-field for-
mulation of Maxwell’s equations, which leads to a set of 12 coupled first-order
differential equations. With an appropriate choice of the loss parameters, a perfectly
matched interface for arbitrary wave incidence, polarization, and frequency can be
derived.

In MicPIC, an alternative but equivalent formulation is utilized, the so-called
uniaxial perfectly matched layer (UPML) introduced by Stephen Gedney in 1996
[18]. The main idea behind the UPML concept is to achieve perfect matching at the
interface via anuniaxial anisotropic absorption layer. Therefore, the isotropicmaterial
parameters λε and λμ in (32) are replaced by uniaxial tensors. Considering an interface
perpendicular to the x-axis, similar to the isotropic case discussed above, the tensor
parameters exhibit a form that is rotationally symmetric about the x-axis

¯̄λε =

⎛
⎜⎝a 0 0
0 b 0
0 0 b

⎞
⎟⎠ , ¯̄λμ =

⎛
⎜⎝c 0 0
0 d 0
0 0 d

⎞
⎟⎠ . (39)
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Maxwell’s curl equations in the frequency domain then read as

∇ × H̆ = −iωε ¯̄λεĔ, (40a)

∇ × Ĕ = iωμ ¯̄λμH̆. (40b)

The examination of an incident planewave onto the region interface (analogous to the
case discussed above) shows that reflectionless transmission of plane waves from the
main simulation volume into the UPML region can be achieved for

¯̄λε = ¯̄λμ = ¯̄s =

⎛
⎜⎝s

−1
x 0 0
0 sx 0
0 0 sx

⎞
⎟⎠ , (41)

irrespective of the angle of incidence, polarization, and frequency of the incidentwave
(for more details, see [17, 18, 45]). The reflectionless property of the interface holds for
any sx. Defining it similar to the isotropic absorbing layer case discussed above

sx =
(
1− σx

iωε
)

(42)

creates a reflectionless absorbing layer as intended. Considering aplanewave incident
on an interface at x = 0 analogous to the isotropic case from (33) leads to the
transmitted fields

H̆UPML = ezH0 eiβ1xx+iβ1yye−σx
√
μ/ε cosΘ x , (43a)

ĔUPML =
[
exsx

β1y
ωε −ey

β1x
ωε

]
H0eiβ1xx+iβ1yye−σx

√
μ/ε cosΘ x . (43b)

The transmitted waves propagate with the same phase velocity as the incident wave
but undergo exponential decay along the axis normal to the region interface. The
magnitude of the decay depends on the angle of incidence Θ and can be additionally
adjusted by an appropriate choice of the UPML parameter σx.

So far, only the construction of a reflectionless planar interface between two
half-spaces has been discussed. To truncate a finite three-dimensional simulation
volume, absorption layers adjacent to all outer lattice boundaries are needed. To this
end, a general material tensor can be defined

¯̄s =

⎛
⎜⎝s

−1
x 0 0
0 sx 0
0 0 sx

⎞
⎟⎠
⎛
⎜⎝sy 0 0
0 s−1y 0
0 0 sy

⎞
⎟⎠
⎛
⎜⎝sz 0 0
0 sz 0
0 0 s−1z

⎞
⎟⎠

=

⎛
⎜⎝s

−1
x sysz 0 0
0 sxs−1y sz 0
0 0 sxsys−1z

⎞
⎟⎠ , (44)
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where

sx = 1−
σx
iωε ; sy = 1−

σy
iωε ; sz = 1−

σz
iωε . (45)

This tensor is sufficient to describe the anisotropic PML medium in the entire FDTD
simulation volume. By properly choosing the spatial dependence of σx, σy, and σz,

σx(x) =
{
σ′x(x) x ≤ xmin, ≥ xmax
0 xmin < x < xmax

, (46a)

σy(y) =
{
σ′y(y) y ≤ ymin, ≥ ymax
0 ymin < y < ymax

, (46b)

σz(z) =
{
σ′z(z) z ≤ zmin, ≥ zmax
0 zmin < z < zmax

, (46c)

the tensor becomes the unit dyad in the main simulation volume, while it is still
properly expressed in the PML regions. The final equations to solve read as⎡

⎢⎢⎣
∂H̆z
∂y − ∂H̆y

∂z
∂H̆x
∂z − ∂H̆z

∂x
∂H̆y
∂x − ∂H̆x

∂y

⎤
⎥⎥⎦ = −iωε

⎡
⎢⎣
sysz
sx 0 0
0 sxsz

sy 0
0 0 sxsy

sz

⎤
⎥⎦
⎡
⎢⎣ĔxĔy
Ĕz

⎤
⎥⎦ , (47)

and ⎡
⎢⎢⎣
∂Ĕz
∂y − ∂Ĕy

∂z
∂Ĕx
∂z − ∂Ĕz

∂x
∂Ĕy
∂x − ∂Ĕx

∂y

⎤
⎥⎥⎦ = iωμ

⎡
⎢⎣
sysz
sx 0 0
0 sxsz

sy 0
0 0 sxsy

sz

⎤
⎥⎦
⎡
⎢⎣H̆x
H̆y
H̆z

⎤
⎥⎦ . (48)

However, the direct transformation of these equations back into the time domain
would lead to a convolution of the tensor coefficients and the magnetic and electric
fields,⁶ respectively. This would be computationally very expensive but can be
circumvented by the definition of the relationships [18]

D̆x = ε
sz
sx
Ĕx , D̆y = ε

sx
sy
Ĕy , D̆z = ε

sy
sz
Ĕz . (49)

Inserting (49) into (47) leads to a decoupling of the frequency-dependent terms [17, 18].
Subsequent backtransformation into the time domain yields⎡

⎢⎣
∂Hz
∂y − ∂Hy

∂z
∂Hx
∂z − ∂Hz

∂x
∂Hy
∂x − ∂Hx

∂y

⎤
⎥⎦ = ∂

∂t

⎡
⎢⎣Dx
Dy
Dz

⎤
⎥⎦+ 1

ε

⎡
⎢⎣σy 0 0
0 σz 0
0 0 σx

⎤
⎥⎦
⎡
⎢⎣Dx
Dy
Dz

⎤
⎥⎦ . (50)

6 The Fourier transform of a product of functions h̆(ω) = f̆ (ω)ğ(ω) is given by the convolution of its
constituents h(t) =

∫ ∞
−∞ f (t′)g(t − t′)dt′.
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Analogous definitions for the magnetic fields

B̆x = μ
sz
sx
H̆x , B̆y = μ

sx
sy
H̆y , B̆z = μ

sy
sz
H̆z (51)

yield ⎡
⎢⎣
∂Ez
∂y − ∂Ey

∂z
∂Ex
∂z − ∂Ez

∂x
∂Ey
∂x − ∂Ex

∂y

⎤
⎥⎦ = − ∂

∂t

⎡
⎢⎣BxBy
Bz

⎤
⎥⎦− 1

ε

⎡
⎢⎣σy 0 0
0 σz 0
0 0 σx

⎤
⎥⎦
⎡
⎢⎣BxBy
Bz

⎤
⎥⎦ . (52)

As a last step, definitions (49) and (51) need to be transformed to the time domain as
well. In the following, the equation for D̆x is considered exemplarily. Multiplying both
sides with sx and transforming them back leads to

sxD̆x = εsz Ĕx , (53a)(
1− σx

iωε
)
D̆x = ε

(
1− σz

iωε
)
Ĕx , (53b)(

−iω + σx
ε
)
D̆x = ε

(
−iω + σz

ε
)
Ĕx , (53c)

∂
∂t (Dx) +

σx
ε Dx = ε

[
∂
∂t (Ex) +

σz
ε Ex
]
. (53d)

Repeating this procedure for the other five relations finally yields the 12 equations that
need to be discretized and solved on a numerical grid:

∂Dx
∂t =
[
∂Hz
∂y − ∂Hy

∂z − σy
ε Dx

]
, ∂

∂t Dx +
σx
ε Dx = ε

[
∂
∂t Ex +

σz
ε Ex
]
, (54a)

∂Dy
∂t =
[
∂Hx
∂z − ∂Hz

∂x − σz
ε Dy

]
, ∂

∂t Dy +
σy
ε Dy = ε

[
∂
∂t Ey +

σx
ε Ey
]
, (54b)

∂Dz
∂t =
[
∂Hy
∂x − ∂Hx

∂y − σx
ε Dz

]
, ∂

∂t Dz +
σz
ε Dz = ε

[
∂
∂t Ez +

σy
ε Ez
]
, (54c)

∂Bx
∂t =
[
∂Ey
∂z − ∂Ez

∂y − σy
ε Bx
]
, ∂

∂t Bx +
σx
ε Bx = μ

[
∂
∂t Hx +

σz
ε Hx

]
, (54d)

∂By
∂t =
[
∂Ez
∂x − ∂Ex

∂z − σz
ε By
]
, ∂

∂t By +
σy
ε By = μ

[
∂
∂t Hy +

σx
ε Hy

]
, (54e)

∂Bz
∂t =
[
∂Ex
∂y − ∂Ey

∂x − σx
ε Bz
]
, ∂

∂t Bz +
σz
ε Bz = μ

[
∂
∂t Hz +

σy
ε Hz

]
. (54f)

Note that in regions with σx = σy = σx = 0, equations (54) reduce to the equations for
the main simulation volume (22) without currents. Therefore, the scheme (54) is used
throughout the whole simulation volume, while currents are only assigned within the
main region.

 EBSCOhost - printed on 2/13/2023 7:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



VIII Microscopic particle-in-cell approach | 243

The final discretized expressions

Utilizing the finite difference expressions, the set of final equations (54) can be
discretized on the computational grid. For brevity, the resulting expressions are given
here only for the propagation of Ex; they read as

Dx |n+
1
2

i+ 1
2 ,j,k

= C1,Exi+ 1
2 ,j,k

Dx |n−
1
2

i+ 1
2 ,j,k

+ C2,Exi+ 1
2 ,j,k

[Hz |ni+ 1
2 ,j+

1
2 ,k

−Hz |ni+ 1
2 ,j−

1
2 ,k

∆y

−
Hy |ni+ 1

2 ,j,k+
1
2
−Hy |ni+ 1

2 ,j,k−
1
2

∆z

]

and

Ex |n+
1
2

i+ 1
2 ,j,k

= C3,Exi+ 1
2 ,j,k

Ex |n−
1
2

i+ 1
2 ,j,k

+C4,Exi+ 1
2 ,j,k

C5,Exi+ 1
2 ,j,k

Dx |n+
1
2

i+ 1
2 ,j,k

− C4,Exi+ 1
2 ,j,k

C6,Exi+ 1
2 ,j,k

Dx |n−
1
2

i+ 1
2 ,j,k

with the position-dependent coefficients defined by

C1,Exi+ 1
2 ,j,k

=
2ε0 − ∆tσy,i+ 1

2 ,j,k
2ε0 + ∆tσy,i+ 1

2 ,j,k
, (55a)

C2,Exi+ 1
2 ,j,k

= 2ε0∆t
2ε0 + ∆tσy,i+ 1

2 ,j,k
, (55b)

C3,Exi+ 1
2 ,j,k

=
2ε0 − ∆tσz,i+ 1

2 ,j,k
2ε0 + ∆tσz,i+ 1

2 ,j,k
, (55c)

C4,Exi+ 1
2 ,j,k

= 1
2ε0ε + ∆tεσz,i+ 1

2 ,j,k
, (55d)

C5,Exi+ 1
2 ,j,k

= 2ε0 + ∆tσx,i+ 1
2 ,j,k

, (55e)

C6,Exi+ 1
2 ,j,k

= 2ε0 − ∆tσx,i+ 1
2 ,j,k

. (55f)

Note that the material parameters σx, σy, and σz have a spatial dependence. The
perfectly reflectionless character of the interface between themain simulation volume
and the UPML layer only applies to the analytic description. When the discretized
expressions are evaluated, every discontinuity in the material parameters causes
some reflection. In order to reduce these reflections to a minimum, these parameters
are gradually increased toward the outer boundary of the UPML layer starting with
a value of zero directly at the interface. In MicPIC, a polynomial ramping according
[6, 45] is used. The UPML layer itself is terminated with PBCs. The fields that reach
this outer boundary are already strongly damped, are then mapped onto the opposite

 EBSCOhost - printed on 2/13/2023 7:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



244 | Christian Peltz et al.

side of the numerical grid, and further damped on their way through the secondUPML
layer.

2.1.4 Treatment of external fields: The total-field–scattered-field scheme

In MicPIC, the external laser field is not explicitly propagated on the main grid.
Instead, the total-field–scattered-field scheme is utilized. Because of the linearity of
Maxwell’s equations, the total electric and magnetic fields can be decomposed into

Etotal = Einc +Escatt, (56a)
Btotal = Binc +Bscatt, (56b)

where Einc and Binc are the incident electric and magnetic wave fields. These are the
fields that would exist in vacuum and are therefore assumed to be known at all lattice
points and all time steps. They satisfy

∇ ×Einc = −Ḃinc, (57a)
∇ ×Binc = μ0ε0Ėinc. (57b)

From (56) and (22) follow directly that the scattered fields Escatt and Bscatt have to
satisfy

∇ ×Escatt = −Ḃscatt, (58a)

∇ ×Bscatt = μ0
(
j+ ε0Ėscatt

)
. (58b)

These are the microscopic Maxwell equations with scattered instead of total fields.
The incident waves do not have to be explicitly propagated on the numerical grid as
long as they satisfy Maxwell’s equations in vacuum. Instead, they can be calculated
analytically or numerically on lower-dimensional auxiliary grids. Note that for the
particle propagation, the total fields at the respective particle position have to be used.

2.2 Particle representation on the PIC level

Within the MicPIC framework, the field equations discussed above are coupled to
the dynamics of the charged plasma particles via the electric current density j.
The currents are determined by the plasma particle velocities, which are in turn
driven by the electromagnetic fields, closing the self-consistent description. In order
to establish this connection numerically, the particle shape needs to be linked
to the discrete FDTD mesh. Typically, this is done via relatively simple weighting
schemes, like the cloud-in-cell (CIC) scheme where particles are represented by a
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top-hat charge distribution [7]. This allows their mapping to the grid with relatively
small numerical effort. However, these low-order schemes suffer from strong force
anisotropies, which precludes their use in MicPIC. The application of a gridless
correction of the short-range forces (the “Mic” force) requires awell-defined, isotropic,
and low-noise interparticle force on the PIC level.

In MicPIC, this is achieved by utilizing a Gaussian shape function, as originally
proposed by Eastwood and Hockney [12] for an electrostatic description,

S(x) = 1
wpic

√
π
exp
(
− x2
w2
pic

)
, (59)

satisfying the normalization
∞∫

−∞

S(x)dx = 1. (60)

The corresponding three-dimensional representation then reads as

S(x, y, z) = S(x)S(y)S(z). (61)

Usually, the shape function is sampled onto the discrete numerical grid by calculating
the amount of charge within or the amount of charge that travels into/out of the cells
touched by the particle, respectively. For the low-order weighting schemesmentioned
above, the number of cells that are touched by the particle is well defined by the finite
size of the particle distribution. However, the Gaussian shape function in principle
extends to infinity, which means that a crucial property of the model, the charge
conservation, strongly depends on the number of sampling points aswell as thewidth
of the Gaussian distribution. The charge conservation properties for Gaussian shape
functions are shown in Figure 2 in terms of the relative charge error as a function of
the particle width with respect to the grid spacing ∆x. The curves shown in the figure
have been obtained for seven sampling points per space dimension,⁷ as this turned
out to be sufficient for our calculations.

The different colors correspond to two different ways of sampling the Gaussians:
(i) Theblue curves show resultswhere the charge in every cell is calculated analytically
and then summed up over all touched cells. Here, a decreasing particle size results
in better charge conservation. Asymptotically, for infinitely small particle width, all
charge is contained in the center cell and the error vanishes. (ii) The red curves
correspond to a much simpler method, where the charge density is sampled locally at
each cell center and summed up afterward. Surprisingly, this method results in even

7 Starting from the nearest cell center, the shape is sampled onto all grid points within ±3 cells in each
direction, resulting in a total number 73 = 343 involved cells.
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Fig. 2. Relative charge error for integral (blue) and local (red) sampling of the charge density onto
the grid as a function of the relative Gaussian width wrel

pic = wpic/∆x. The maximal and average charge
errors have been determined by evaluating a statistical ensemble of 10,000 random positions of the
particle center within a grid cell. Using seven grid points per dimension for the local sampling yields
an optimal Gauss width of wrel

pic = 1.12 that on average conserves 99.9999% of the particle charge.

better charge conservation for particle sizes larger than roughly one cell and shows
an optimal particle size of about 1.1 grid cells. For smaller particle sizes, the charge
error increases again as most of the charge is confined to one cell, such that the local
sampling is no longer describing a Gaussian shape.

Following this scheme, the charge and current density contributions fromparticle
i at grid point rg can be obtained from

ρi(rg) = qiS(ri − rg) (62)

and

ji(rg) = qiviS(ri − rg). (63)

To ensure a self-consistent description of the particle dynamics on the PIC level, the
electromagnetic PIC fields acting on particle i have to be obtained in the same way as
the current densities. The resulting effective electric and magnetic PIC fields are then
given by the weighted average over all touched grid points g, using the same shape
function and the same sampling method,

Ei =
∑
g
E(rg)S(ri − rg) (64)
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Fig. 3. Interparticle forces on the PIC level, produced by Gaussian (black) and top-hat (gray)
distribution functions in the electrostatic limit (for particles at rest). The dotted lines correspond
to particle trajectories along a natural grid axis and the solid lines to trajectories along the
three-dimensional grid diagonal. While the top-hat shape function results in strongly anisotropic
forces, the Gaussian profiles show only negligible anisotropy.

and

Bi =
∑
g
B(rg)S(ri − rg). (65)

Together with the field propagation algorithm described in Section 2.1, these expres-
sions allow the calculation of the particle-particle forces on the PIC level. Figure 3
shows the resulting forces in the electrostatic limit, i.e., for particles at rest, as
a function of the particle separation. The black dotted and solid lines show the
interaction forces for particle trajectories along a natural grid axis and along the
three-dimensional grid diagonal, respectively. For comparison, also the correspond-
ing forces for top-hat distributions are shown in gray. The Gaussian shape functions
result in negligible force anisotropy, which is essential for the application of the force
decomposition scheme. In contrast to that, the top-hat distributions exhibit strongly
anisotropic forces, which shows that they are not suited for the MicPIC scheme.

2.3 Local correction

Because of the short-range nature of the microscopic correction fmici , the correspond-
ing binary forces need to be evaluated only for a small subset of particle pairs. In
MicPIC, this local correction is done in a similar way as in MD codes with short-range
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binary interactions. The binary correction forces given by (19) are evaluated for each
plasma particle within a sphere with finite cutoff radius rcut around its particle
center ri.

2.3.1 Local correction and cutoff radius

The cutoff radius rcut is one of the key parameters in MicPIC as it determines both
the accuracy and the numerical workload of the microscopic correction. In order to
pick a reasonable value for rcut, the corresponding force error introduced by the finite
cutoff radius has to be estimated. Figure 4 shows the force composition (total, PIC, and
microscopic) for the idealized example of two-point-like plasma particles (w0 → 0) at
rest as a function of their separation in units of the PIC-particle size wpic.

The black and red curves in Figure 4(a) correspond to the total and microscopic
forces according to (20), normalized to the force at f (r = wpic). The gray area denotes
the contribution from the PIC term, which has only an electrostatic component, as
the particles are at rest. The red and blue areas show the contributions from the
microscopic force for distances below and above rcut = 3wpic. The fact thatMic and PIC

0.1
r/wpic r/wpic

1.0 10 0.1 1.0 10
10–6

10–4

10–2

100

fo
rc

e 
ra

tio

10–2

10–4

100

102

fo
rc

e 
no

rm
al

iz
ed

 to
 f(

w
pi

c)

rcut = 3wpic

fmic(r)

fpic(r)

ferr(r)

f (r)

(a) (b)

Fig. 4.MicPIC force decomposition for two interacting point charges vs interparticle distance. (a)
Black curve: total force f (r) normalized to the force at f (r = wpic); red line: Mic force fmic; gray area:
PIC force contribution fPIC; red and blue shaded areas: microscopic force contribution for radii below
and above a cutoff radius rcut = 3wpic, respectively. (b) Forces in (a) are normalized to f (r); hence, the
total force becomes f (r)/f (r) = 1 (black curve); red curve: fmic(r)/f (r). As fmic is neglected for r > rcut,
the red- and blue-shaded areas denote the parts of the relative microscopic force correction that are
included and neglected, respectively. The gray area gives the relative PIC contribution. Reproduced
from [50]. Copyright © 2012 American Physical Society (APS).
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forces dominate for either r < wpic or r > wpic nicely illustrates the main idea behind
the MicPIC force decomposition.

For easier evaluation of the respective contributions of Mic and PIC forces, they
are normalized to the total force f (r) in the right panel of Figure 4. Considering a
cutoff radius of rcut = 3wpic, the red and blue areas show the part of the microscopic
correction that is taken into account or neglected. The relative error drops rapidly
with increasing rcut, e.g., more than one order of magnitude when increasing it
from 3wpic to 4wpic. However, this would also lead to approximately twice the
numerical workload due to the higher number of particles in the correction sphere.
The experience of operating MicPIC for the last years has shown that a cutoff radius
of rcut = 3wpic is sufficient for most calculations.

2.3.2 Cell indexing

Theoretically, the numerical workload connected with the local correction scales
linearly with the total number of plasma particles N, as the binary forces for every
particle i have to be evaluated only for a small number of pairs, namely, with respect
to particles within the correction sphere around particle i (on average M particles).
However, to identify these pairs, the corresponding particle-particle distances have to
be determined, which would, if directly evaluated for all N particles, result in an N2

operation. To sustain the linear scaling, MicPICmakes use of the cell indexing scheme
introduced by Allen et al. [2] in 1989. The key idea behind this scheme is to assign all
particles to cells of an auxiliary grid that allows to backtrack the number and indices
of all particles in a specific cell. This way, only particles in the neighboring cells have
to be touched. A sketch of the cell indexing procedure is given in Figure 5.

In a first step, an auxiliary grid PC (particle count) is created, where the total
number of particles in each cell is stored. This action requires a single loop through
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Fig. 5. Sketch of the cell-indexing procedure. All particles are assigned to cells in the main
computational grid with the help of auxiliary grids. A detailed description of the complete procedure
can be found in the text. The right part shows how the indices of particles located in a specific cell
can be retrieved with this method.

 EBSCOhost - printed on 2/13/2023 7:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



250 | Christian Peltz et al.

all particle positions. Next, a second auxiliary grid CA (cell address) is created, where
each cell contains the number of particles in all previous cells.⁸ Finally, a particle
index list (PIL) is created, where every particle index is stored in the order of their
position in the main grid. This requires a second loop through the particle list.

How the indices of all particles contained in a specific cell can be retrieved from
these auxiliary grids is shown for an example in the right part of Figure 5. First, one
has to find the corresponding cell address in the PIL from the cell address grid CA.
Next, the number of particles contained in this cell Nc is given by the corresponding
entry in the particle count grid (PC). Thewanted Nc particle indices can then be found
in the particle index list PIL, starting with the position given by CA.

2.4 Particle propagation

In the final step of the MicPIC propagation scheme, the particle positions and
velocities need to be advanced in time according to the electromagnetic fields acting
on them. To propagate the particle positions, a simple finite difference expression
according to

rn = rn−1 + ṙn−
1
2 ∆t (66)

can be applied. Advancing the particle velocities on the basis of the Lorentz force is
more complicated as it involves a rotation. A very efficient and accurate method to
achieve this has been introduced by J. P. Boris in 1970 [8] and is now briefly discussed.

2.4.1 Boris scheme

The basis of the Boris scheme is a centered finite difference expression of the Lorentz
force, which is given by

ṙn+ 1
2 − ṙn− 1

2

∆t = q
m (En + ṙn+ 1

2 + ṙn− 1
2

2 ×Bn). (67)

From this expression, the main challenge in the particle propagation with electric
and magnetic fields becomes already evident. Equation (67) only gives an implicit
expression for the new particle velocity ṙn+ 1

2 . Solving these implicit equations is
not impossible but involves a significant amount of calculation [46], which is not
convenient if millions of particles have to be propagated in each time step. However,
J. P. Boris found an elegant way to derive explicit expressions for the velocities by

8 This corresponds to the accumulative sum of PC.
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separating the electric and magnetic forces. Substituting

ṙn−
1
2 = v− − αEn , (68)

ṙn+
1
2 = v+ + αEn (69)

with α = q
m

∆t
2 into (67) yields an expression where En cancels out,

v+ −v− = α (v+ +v−) ×Bn . (70)

Further, substituting tn = αBn leaves a compact expression that describes a rotation

v+ = v− + (v+ +v−) × tn . (71)

Together, equations (68), (69), and (71) describe a three-step process: First, half of the
electric impulse is added to the old velocity, then the intermediate velocity is rotated,
and finally, the second half of the electric impulse is added.

The expression for the rotation is still implicit. To retrieve an explicit expression,
an additional vector v′ is introduced that corresponds to only a partial rotation from
that given in (71)

v′ = v− +v− × tn . (72)

Using (71), one can also express this vector by

v′ = v+ −v+ × tn . (73)

Evaluation of the cross product with t yields
(
v′ × t
)
=
(
v− × tn

)
−
∣∣tn∣∣2v− + (v− · tn) tn (74)

=
(
v+ × tn

)
+
∣∣tn∣∣2v+ − (v+ · tn) tn . (75)

Finally, subtraction yields the desired explicit expression for the full rotation,

v+ = v− +
(
v′ × sn

)
(76)

with

sn = 2tn
1+ (tn)2 . (77)

The complete explicit propagation scheme for the particle velocities is now given by
the set of equations

v− = ṙn−
1
2 + αEn , (78)

v+ = v− +
[(
v− +
(
v− × tn

))
× sn
]
, (79)

ṙn+
1
2 = v+ + αEn . (80)
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2.5 Implementation of ionization

The numerical details discussed so far complete the main part of MicPIC that is
necessary tomodel the classical laser-driven dynamics of a plasma. In order to enable
MicPIC to also describe the plasma formation process, atomic ionization mechanisms
have to be implemented. This section briefly reviews the corresponding atomicmodels
and shows how they can be modified to be applicable to many-particle systems.

2.5.1 Tunnel ionization

When exposed to strong electric fields, bound electrons have a probability to tunnel
through the generated potential barrier. The corresponding tunnel rate for an atom
in electromagnetic fields can be calculated quantum mechanically (see [38, 39] for
reviews). In atomic units, the rates read as [3]

Wau
tunnel = I

au
p C2n* l*Alm

(
2κ3
Eau
)2n*−|m|−1

exp
(
− 2κ3
3Eau
)

(81)

with

Alm = (2l +1)(l + |m|)!
2|m|(|m|)!(l − |m|)! , κ =

√
2Iaup (82)

and

C2n* l* =
22n*

n*Γ(n* + l* +1)Γ(n* − l*) , n* = Z/κ , l* = n* −1 , (83)

where Iaup is the ionization potential⁹ and Eau is the electric field strength, Z the
resulting charge state of the ion, and m and l the magnetic and angular momentum
quantum number, respectively. The auxiliary parameters l* and m* are referred to
as effective quantum numbers. The resulting tunneling rates exhibit an extremely
nonlinear intensity dependence, e.g., rising by almost ten orders of magnitude when
increasing the laser intensity from I = 1 × 1013 W/cm2 to I = 1 × 1014 W/cm2 for the
ionization of neutral xenon atoms.

To take many-particle effects into account, these rates are evaluated for the total
electric fields on the PIC level, i.e., the sum of the laser field and the fields created by
all other charged particles. Themicroscopic fields associated with the local correction
are neglected to avoid double counting of electrons with trajectories close to atoms or
ions, which will be accounted for in the routine for electron impact ionization.

9 Values for Iaup used in MicPIC have been calculated with the relativistic Dirac-LDA code from [4].
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2.5.2 Electron impact ionization

The treatment of electron impact ionization, i.e., the liberation of secondary electrons
as a result of inelastic electron-atom/ion collisions, is restricted to sequential ioniza-
tion

Xj+ + e→X(j+1)+ +2e, (84)

while nonsequential ionization or ionization via excited intermediate states is so far
neglected. In contrast to the typical treatment of impact ionization in PIC codes, these
inelastic collisions are not evaluated via rates and Monte Carlo schemes. In MicPIC,
the microscopic character of this ionization mechanism is effectively preserved, i.e.,
every electron-ion collision is tested for ionization using impact ionization cross
sections. To that end, the well-known parameterized empiric formula introduced by
W. Lotz [28] is utilized,

σj(E) =
∑
i
aiqi

ln(E/Pi)
EPi

{
1− bi exp

[
−ci(E/Pi −1)

]}
, E ≥ Pi . (85)

Here, E is the kinetic energy of the impinging electron, Pi the ionization potential of
the ith electronic shell, qi the number of electrons in the ith shell, and ai, bi, and ci
are empirical parameters. With these parameters, the calculated cross sections can be
fitted to experimental data over awide range of elements, charge states, and projectile
energies [1, 5, 19, 20, 22].

Many-particle effects can be accounted for by employing effective ionization
potentials. For an atomic ion within a plasma environment, neighboring ions and
electronic screening by quasi-free plasma electrons lead to an effective ionization
threshold E*nl = Enl − ∆env. The pure atomic value Enl is lowered by an environmental
shift ∆env. While Enl corresponds to the energy that is needed to completely remove
an electron with principal and angular quantum numbers n and l from the atom or
ion, E*nl specifies the correspondingminimal energy that is required to lift the electron
into the quasi-continuum within the plasma environment. The shift ∆env is evaluated
directly from the plasma fields in the simulation, following the scheme in [14].

However, using effective ionization potentials P*i = Pi −∆env leads to a continuous
spectrum of ionization potentials, whichmakes it impractical to adopt the parameters
ai, bi, and ci to specific charge states. Therefore, a simplified version of (85) is used in
the current implementation

σj(E) =
∑
i
aqi

ln(E/P*i )
EP*i

, E ≥ P*i , (86)

with the fixed parameter a = 450 × 10−16 cm2(eV)2, which satisfactorily reproduces
experimental data [29].
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2.6 MicPIC parameters and scaling

A number of simulation parameters have been introduced in the discussion of the
numerical implementation of the MicPIC approach. A list of the main simulation
parameters and their meaning is given in Table 1 as a reminder. This section
discusses how to choose the values of these parameters in an optimal way under
existing physical and technical constraints. Additionally, also their influence on the
performance of the code is discussed in terms of a general scaling analysis.

Tab. 1. List of the main simulation parameters.

Parameter Description

∆x Cell width on FDTD grid
∆t Time step
wpic Particle width on PIC-level
rcut Cutoff radius for local correction
w0 Actual particle width

First, the cell width on the PIC level ∆x determines the resolution of wave propagation
phenomena on the numerical grid. It has to be chosen small enough to resolve all
relevant scales of the radiated fields, i.e., the skin depth and the wavelength of the
laser and also possibly generated higher harmonics. Typically, a grid spacing of ∆x ≤
λ/20 is sufficient for that task, which leads to values of a few to a few tens nanometers
in the optical excitation regime. To ensure convergence of the corresponding FDTD
solution, the time step has to fulfill the Courant stability criterion, which imposes an
upper limit for the time step according to ∆t ≤ ∆x/(

√
3c) [45], with c being the vacuum

speed of light.
Further, the particle width on the PIC level has to fulfill wpic 
 1.1∆x for

optimal charge conservation properties (see Section 2.2). Next, to ensure an accurate
evaluation of the microscopic correction (Section 2.3), the cutoff radius rcut has to
be in the range of rcut 
 3wpic. Finally, the actual particle width has to be chosen
such that classical electron recombination below quantum-mechanical energy levels
is precluded, i.e., the classical binding energy resulting from (18) has to be smaller or
equal to the quantum mechanical energy levels used for ionization.

In summary, choosing a grid resolution compatible with the upper limit given
by the relevant scales of the radiated fields determines every other major parameter,
except for the actual particle width. As smaller values of ∆x leave the physics
unchanged, this freedom can be utilized to balance the numerical work load between
the microscopic and PIC parts of the code.

To evaluate how this influences the performance of the code, a scaling analysis
is performed under the assumption that the excitation of a system with the total
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(cutoff radius rcut)

UPML - uniaxial perfectly
matched layer

Fig. 6. Illustration of the local correction scheme. Only interactions for particles within a finite cutoff
radius have to be corrected.

particle number N by an external laser of wavelength λ has to be modeled in a
simulation volumeV. Theworkload associatedwith themicroscopic correction is then
determined by the total number of particles N times the number of particles within
the correction sphere M = (4π/3) r3cutN/V (see Figure 6). As a result, advancing the
microscopic part one time step scales as Omic

step = αN(N/V)r3cut. Advancing the PIC part
one time step requires the calculation of the currents and forces for all particles,which
scaleswith the particle numberN, and the update of the electromagnetic fields, which
scaleswith the number of grid points, V/(∆x)3. Together, this results in a scaling of the
PICpart givenbyOpic

step = βN+γV/(∆x)
3. Puttingboth together yields the totalworkload

scaling for one time step

OMicPIC
step = αN(N/V)r3cut + βN + γV/(∆x)3, (87)

where the parameters α, β, and γ are prefactors corresponding to the microscopic
correction, current/force calculation, and the field update, respectively. Exploiting
the fact that ∆x 
 wpic ∝ rcut and assuming a constant particle density (N/V =const.)
allows to rewrite expression (87) in terms of the cutoff radius

OMicPIC
step = α′Nr3cut + β′N + γ′N/r3cut, (88)

where the parameters α′, β′, and γ′ are modified prefactors. Eventually, MicPIC will
be used to model the plasma dynamics for certain time intervals, i.e., the quantity
of interest is the workload per unit time. The corresponding translation of the above
result can be done by dividing it by ∆t ∝ rcut and yields

OMicPIC(N, rcut)∝ N(α′r2cut + β′/rcut + γ′/r4cut), (89)

where the first term comes from the Mic part and the second and third from PIC. This
shows that MicPIC scales linearly with the total particle number N, as desired. The
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workload distribution between Mic and PIC part can be balanced by choosing the
cutoff radius (or equivalently the grid spacing ∆x) within its physical constraints. For
very small/large values of rcut, the dominant load is produced on the PIC or Mic parts.
In the limiting case where rcut approaches the box length V1/3, all particles need to
be corrected, the time step is no longer bound to the grid spacing, and (89) yields the
well-known O(N) = N2 scaling associated with MD codes.

2.7 MicPIC system energy calculation

An important observable for the evaluation of MicPIC calculations is the energy
absorption by the system contained in the numerical box. It is given by the total energy
difference before and after laser excitation. The total box energy reads as

Etot =
∑
i

mi
2 ṙ2i +

1
2

∫ [
ε0(Epic)2 +

1
μ0

(Bpic)2
]
d3r

+
∑
i<j

Vmic
ij (rij) −

1
2
∑
i
Vii(0,wpic), (90)

where the individual terms describe the kinetic energy, the electromagnetic energy on
the PIC level, the energy resulting from the microscopic correction, and the energy
renormalization to remove the spurious self-energy of the particles on the PIC grid,
respectively.

3 Applications
After introducing MicPIC’s basic concepts and the most important numerical aspects,
we are now ready to apply MicPIC to real physical problems. The main goals of this
section are (i) to provide a simple example that can be calculatedwith regular desktop
hardware to enable the interested reader with some reference data for comparison
and (ii) to present a study that demonstrates the unique capabilities of MicPIC for the
description of strong-field physics.

3.1 Laser excitation of a solid-density foil: A simple MicPIC
example

First, we consider the irradiation of a thin foil (d = 400nm) at solid density with a
short (τ = 16fs) and moderately intense infrared laser pulse (I0 = 1 × 1014W/cm2,
λ =800nm)with flat beamprofile (no focusing) and propagation along the z-axis. The
basic simulation setup is schematically drawn in Figure 7. The foil extends to infinity in
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d = 400nm

z
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x

vacuum

bulk

Fig. 7. Schematics of the simulation setup for the laser excitation of a foil at normal incidence.
We emulate an infinitely wide foil by terminating the numerical box with ABCs along the laser
propagation direction (z-direction) and with PBCs perpendicular to it.

the other two directions, which results in an effectively one-dimensional problem. To
represent this geometry properly in the numerical simulation, ABCs are only applied
along the laser propagation direction (z-direction), while in x and y direction, the
numerical box is terminatedwith PBCs. The numerical grid has a size of 15×15×2999
grid points with a grid spacing of ∆x = 3. The foil itself is modeled with atoms of
atomic mass ma = 60amu distributed in fcc crystal structure with an average number
density of na = 0.022−3. Every model atom holds one (initially bound) electron with
an ionization potential of Ip = 9eV, which results in a corresponding actual particle
width of w0 = 1.8. The above parameters describe a medium similar to SiO2 at solid
density.

The corresponding simulation results are shown in Figure 8 in terms of the space-
and time-resolved evolution of (a) the total electric field in polarization direction, (b)
the density of liberated electrons, and (c) and (d) the ionization rates for tunneling and
electron impact, respectively. The time evolution of the interaction can be divided into
three major stages.

In the early stage of the interaction (up to t = −10fs), the laser electric field is not
strong enough to drive significant tunnel ionization (see Figure 8(c)). Therefore, the
foil stays neutral and transparent such that the laser field can propagate through it
without attenuation or reflection, as can be seen from Figure 8(a). The fact that the
lines of maximum field strength are tilted with respect to the horizontal axis indicates
the finite propagation velocity of the light.

 EBSCOhost - printed on 2/13/2023 7:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



258 | Christian Peltz et al.

z [nm]

–400 –200 0 200

tim
e 

[fs
]

–30

–20

–10

0

10

20

30

z [nm]

–400 –200 0 200

Ex,tot/E0 nel/nion

t3

t2
t1

0

0.5

1.0

z [nm]

–400 –200 0 200

z [nm]

–400 –200 0 200 400

–1 0 1 0.2 0.4 0.6 0.8 1.00 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
tunnel rate [1/fs per ion] impact rate [1/fs per ion]

(a) (d)(c)(b)

Fig. 8. Interaction dynamics of a 400-nm thick foil with a 16-fs infrared (λ = 800nm) laser pulse
at I0 = 1 × 1014W/cm2. The corresponding panels show the time- and space-resolved (a) total
electric field in polarization direction normalized to the peak laser electric field, (b) electron
density normalized to the ion background density, (c) tunnel ionization rate, and (d) electron
impact ionization rate. Note that all space dependencies are averaged along the x and y direction
(perpendicular to the laser propagation direction).

In the second stage, starting at around t = −10fs, this behavior changes dramatically.
The highly nonlinear dependence of the tunneling probability on the actual field
strength leads to an abrupt onset of tunnel ionization once the field strength of a laser
subcycle is sufficiently strong (see Figure 8(c)). The resulting first plasma electrons
are then accelerated by the laser electric field and reach kinetic energies that are
sufficient to drive additional electron impact ionization (see Figure 8(d)). Together,
tunnel and impact ionization rapidly generate a fully inner ionized¹⁰ surface layer. The
line profiles of the electron density plotted at the bottom of Figure 8(b) for different
time steps facilitate this observation and show that this process takes only a few laser
cycles.

For the considered scenario, full inner ionization corresponds to aplasmaelectron
density, that is more than 10 times overcritical, where the critical density is given by

nc =
ε0me
e2 ω2. (91)

As electromagnetic waves cannot propagate in overdense plasmas, this layer acts as
a plasma mirror, preventing further tunnel ionization deeper in the medium. A direct
signature of this laser-induced reflectivity is the observation of standingwaves in front

10 “Inner ionization”means the electrons are liberated from their parent atom but not from the target
as a whole.
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of the surface layer. After plasma generation (see t > −5fs in Figure 8(a)), the lines of
maximum field strength are perfectly horizontal. Standing waves do not propagate in
space, instead we only observe an oscillation in time.

After the second stage where the surface plasma layer has been generated, tunnel
ionization essentially stops (cf. Figure 8(c)). However, Figure 8(b) clearly shows that
this does not immediately stop the spreading of the plasma layer. Instead, the plasma
generation continues in the vicinity of the already existent plasma because of electron
impact ionization (see Figure 8(d)). Close to the surface, electrons are still subject to
the incident laser field. Though the resulting acceleration is perpendicular to the foil
plane,momentumredistributiondue to electron-electron collisions allows sufficiently
energetic electrons to enter deeper parts of the foil and drive further electron impact
ionization. As a result, the thickness of the plasma layer slowly increases till the end
of the pulse.

3.2 Time-resolved x-ray imaging

The scenario discussed above already indicated MicPIC’s potential to describe
many-particle strong-field physics. However, for a numerical description of this
particular scenario, other methods may be applicable as well. In this section, we
want to discuss a setting where the unique capabilities of MicPIC are essential to
appropriately describe the underlying physics. The problem we want to discuss
here is closely related to the rapid advances in laser technology, namely, x-ray free
electron lasers (XFELs). During the past decade, a number of such facilities started
operation, others are currently under construction. The available pulses of coherent
x-ray radiationwith extremely high peak powers openedupnewpossibilities in awide
range of research areas [9]. One particularly interesting and promising application is
single-shot diffractive imaging. In principle, it allows the determination of the shape
and structure of finite-size systems with atomic resolution without immobilization,
which, for example, is of great interest for studies of biologically relevant systems that
are difficult to crystallize, such as large biomolecules or viruses. The interpretation
of the recorded scattering images, however, remains a challenging task for various
reasons. First, in the experiment, only the intensities of the scattered fields can be
recorded while the phase information is lost. Here, theory plays an important role as
it allows to establish a connection between signatures in the scattering image and the
corresponding particle properties, e.g., its shape, composition, or electronic structure,
which are generally unknown in the experiment. Second, because of the extremely
high intensities, the target is subject to structural changes that occur on the time scale
of the imaging pulse length. This problem has been identified and studied with the
help of particle-based numerical simulations long before the first x-ray FEL started
operation [34].
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While these laser-induced structural changes are problematic for identifying
ground-state structures, they also define a new interesting research field.
Time-resolved experiments, where structural changes are induced by a pump pulse
and imaged by a time delayed probe pulse, offer a route to making molecular movies
of the femtosecond dynamics. MicPIC is perfectly suited for corresponding theoretical
studies as it allows simultaneous access to the particle dynamics and the resulting
scattering image. In the following, wewill discuss a full numerical time-resolved x-ray
imaging experiment, where a solid-density cluster is first turned into a plasma via an
intense near-infrared (NIR) laser pulse, and its time evolution is subsequently imaged
with a second x-ray pulse.

The basic numerical setup for this scenario is depicted in Figure 9. As a model
system, we consider a R = 25nm hydrogen cluster at solid density with atoms/ions
initialized in fcc structurewithWigner-Seitz radius of rs = 1.79. The fact that hydrogen
has only one electron contributing to the x-ray scattering significantly simplifies the
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Reproduced from [37]. Copyright © 2014 American Physical Society (APS).
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analysis,making it the idealmodel system. For laser excitation,we consider an intense
10 − fs NIR pump pulse (λ = 800nm) and a soft x-ray (λ = 10nm) probe pulse. The
corresponding time-dependent scattered fields are then recorded on a virtual detector
located on a virtual sphere within the simulation box.

Ideally, the radius of the detection sphere is large enough to enter the far
field region, where the fields include only propagating radiation, and nonradiating
near-field contributions have already died out. The corresponding required detector
distance is not exactly defined, but as a rule of thumb, the far-field region for
an antenna with a dimension of the order of the emitted wavelength starts at the
Fraunhofer distance df = 2D2

λ where D is the spatial dimension of the emitter. For
the scenario discussed here, this would result in a detector distance of about Rd 

500nm. A corresponding MicPIC simulation run, however, would require a very large
computational box, which is inconvenient from a technical point of view. Instead,
a slightly smaller value of Rd = 290nm is utilized that allows the use of a smaller
numerical box. It can be shown that the finite detector distance has onlyminor impact
on the shape of the scattering signal, essentially only affecting the sharpness of the
features in the scattering pattern.

The scattering signal is evaluated here in terms of the scattered fraction

S(Θ) = ε0cR2d
πR2F0

∫ [
E⊥(Θ, t)

]2 dt, (92)

with ε0 the vacuum permittivity, c the vacuum speed of light, F0 
 I0τ the fluence
of the incident x-ray field, and E⊥ the transverse electric field.¹¹ In the limit Rd → ∞,
S(Θ) specifies the number of x-ray photons scattered into an element of solid angle per
incident photon impinging on the initial geometric cluster cross section.

First, we want to concentrate on the dynamics induced by the NIR pump pulse.
The time evolution of selected observables during and after this initial excitation is
shown in the left part of Figure 10. It reveals the following picture: Plasma formation
is triggered by tunnel ionization in the rising edge of the pulse. Subsequently, laser
heating of the first liberated electrons drives additional electron impact ionization.
The combined action of both contributions creates a fully inner-ionized cluster
near the pulse peak, see Figure 10(c). Because of the low proton mass, the cluster
starts to expand almost immediately (cf. Figure 10(c)). The expansion is driven by
a mixture of hydrodynamic expansion and Coulomb explosion. Signatures of both
can be found in the time evolution of the energy contributions in Figure 10(a). The
observed conversion of electron kinetic energy into ion kinetic energy clearly indicates
hydrodynamic expansion, while the fact that the ion kinetic energy gain is stronger
than the electron energy loss shows that Coulomb explosion is also contributing.

11 Only transverse electric fields, i.e., with electric field vector perpendicular to the propagation
direction, can contribute to the final scattering pattern.
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Fig. 10. (a)–(c) Time evolution of selected observables during and after the NIR pump excitation. (d)
Resulting elastic scattered fraction (detected in the yz-plane) for different x-ray probe delays and
the Mie-theory result for an unexpanded cluster for comparison. Adapted from [37].

In the next step, the NIR-driven cluster dynamics is imaged by a soft x-ray probe pulse
for various pulse delays. Note that the NIR-induced dynamics shown in Figure 10(a–c)
is not affected by the x-ray pulse because of the negligible inverse bremsstrahlung
in the x-ray regime. The resulting delay-dependent elastic scattering signals shown
in Figure 10(d) exhibit twomajor pump-probe effects. First, the slope of the scattering
signal increaseswith pulse delay, such that the signal drops bymore than one order of
magnitude for the largest scattering angles. And second, the separation of the fringes
increases continuously with the pulse delay.

For a first interpretation of these observations, it is helpful to recall some basic
scattering relations. The far-field scattering intensity is essentially given by the Fourier
transform of the projected density of the scatterer. In this picture, the separation of
the typically found Mie rings is a measure of the objects size, where smaller ring
separations in k-space correspond to larger scales in real space. If we now assume
that the cluster keeps the shape of a homogeneous sphere during expansion, the
trend observed in Figure 10(d) would correspond to a reduction of cluster size. This
behavior, however, seems to be in stark contradiction with the observed increasing
cluster radius shown in Figure 10(b). To shed light on this apparent contradiction, a
more detailed analysis of the expansion dynamics itself is needed.
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Figure 11 shows direction-resolved radial density profiles¹² of electrons and ions
for directions parallel (green) and perpendicular (blue) to the laser polarization for
different times. In early stages, surface ions are unscreened because of partial outer
ionization and consequently undergo rapid Coulomb explosion (lines and colored
areas in 11(a)). The fact that the ion spectra are anisotropic can be attributed to
the collective electron motion during the NIR excitation. During the oscillation of

12 The density profiles have been averaged over cones with π/4 full opening angle and cone apex at
the cluster center.
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the electron cloud, ions at the cluster poles are periodically exposed, which results
in an effectively reduced charge screening and stronger ion acceleration along the
polarization axis [10, 15, 26]. Once the surface ions have been ejected, the remaining
ion and electron densities overlap and screen each other. The cluster continues to
expand hydrodynamically.

During the hydrodynamic expansion phase, the density profiles exhibit a
self-similar shape with a core region of constant density and an exponential decay
of the surface layer. A similar behavior has been predicted for the expansion of
semi-infinite plasmas [21, 31]. The radial density profiles observed here can be
accurately described in all expansion stages by a sharpened Fermi distribution

ne(r) =
nc

[exp( r−rcds ) +1]s
, (93)

where nc is the core density, rc the core radius, and d the decay length as a
measure of the surface width. The sharpness factor s ensures the correct transition
behavior between the two asymptotic limits. Examples of corresponding fits of the
electron density perpendicular to the polarization direction are depicted as squares
in Figure 11.

Application of the fit procedure to all available density snapshots yields the time
evolution of the density profile parameters shown in Figure 13(a–b) as solid lines. The
blue andgreen curves correspond todirectionsperpendicular andparallel to thepolar-
ization direction, respectively. Though the actual values for both directions differ due
to the anisotropic expansion, they show the same general behavior. The core radius
rc is linearly decreasing with time while the surface width d is linearly increasing.
The sharpness factor s (not shown here) is converging rapidly and is therefore only
of minor importance for the expansion dynamics. To substantiate this statement, fits
for s→0have been performed (dashed lines in Figure 13(a and b)), which corresponds
to the limit of a sharp edge between core and surface region. The fact that only minor
changes in core radius and surfacewidth are observed shows that the complex plasma
expansion dynamics can be sufficiently described by these two parameters.

To connect the evolution of the density profile parameters with the features
observed in the delay-dependent scattering images shown in Figure 10, it is helpful
to study the effect of the profile parameters on the scattering pattern separately.
Unfortunately, Mie theory is no longer applicable because of the anisotropic and
inhomogeneous density profile. An alternative is to calculate the scattered fields
in first-order Born approximation, where higher-order scattering by neighboring
scatterers is not taken into account. This is justified in the considered scenario as light
absorption can be neglected at the given wavelength for hydrogen. The scattered field
in first-order Born approximation including polarization effects is determined by

E(rd) =
∫
V

r̃ × (E0 × r̃) reei(kr+kr̃)
r̃3 ne(r) d3r, (94)
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with k the incident wavevector, re the classical electron radius, ne(r) an arbitrarily
shaped electron density, and E0 and E the complex field amplitudes of the incident
field and the scattered field at detector position rd. The detector position in the frame
of each scattering subvolume is denoted by r̃ = rd − r. The corresponding scattered
fraction in Born approximation is then given by

SB(Θ) =
R2dE2

πR2E20
. (95)

Inserting the parametric density profile from (93) into the Born expression above
allows a selective analysis of the influence of the core radius and surface width on
the scattering pattern by fixing the respective other parameter. The results shown in
Figure 12 reveal that the core radius rc affects only the fringe spacingwithout changing
the envelope of the scattering signal. The decay length d on the other hand mainly
modifies the slope of the envelope and hardly changes the fringe positions. As a
result, the growing fringe separation and increasing envelope slope observed in the
delay-dependent scattering pattern in Figure 10 can be attributed to the shrinking core
radius and the cluster surface expansion.

The above parameter analysis already allows one to qualitatively explain the
observed scattering features. However, the ultimate goal is to quantitatively recon-
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struct the anisotropic plasma expansion dynamics from experimentally measured
angular-resolved scattering images. In the following, it will be discussed how this
can be achieved with the above-introduced tools. First, the anisotropic character of
the expansion needs to be taken into account. This can be done by using anisotropic
values for the density profile parameters rc(θ) and d(θ) in (93). The sharpness factor
can be neglected, as it is irrelevant for the dynamics. To model an ellipsoidal density,
an angular dependence according to

α(θ) = αperp + (αpar − αperp)cos2 θ (96)

has been chosen for both parameters, where θ is the angle with respect to the
polarization axis. Using this parametric form yields an angle-dependent density
profile n(r, θ) with a total of four free parameters. To mimic the full two-dimensional
scattering images available in typical x-ray scattering experiments, additional MicPIC
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runs have been performed with a rotated virtual detector (perpendicular to the
polarization direction y = 0).

The corresponding Born scattering patterns calculated from the angular depen-
dent density profile n(r, θ) can now be compared to the actual MicPIC scattering
pattern. Optimal values of the four free parameters are then determined by simultane-
ouslyfitting theBorn images in the x =0 (S⊥) and y =0 (S||) planes to the corresponding
MicPIC results via simplex optimization. Figure 13(c) shows that the resulting Born fits
accurately describe the actual direction–resolved MicPIC scattering data.

The resulting optimal parameter values retrieved from the delay-dependent
MicPIC scattering images are compared to the parameters directly extracted from
the MicPIC electron density profiles in Figure 13(a and b) as squares and solid lines,
respectively. The evolution of both anisotropic core radius and surface width can
be reconstructed quantitatively with only small deviations that are attributed to
the simplified four-parameter geometry model. During the hydrodynamic expansion,
electron and ion density profiles evolve together so that the reconstructed profiles also
describe the evolution of the ion density.

4 Summary
In this chapter, we reviewed the MicPIC method, a model that connects electrostatic
MD and PIC in a two-level approach. It allows a self-consistent classical description
of laser-matter interaction in the regime of strong coupling with full account of field
propagation effects like field attenuation, reflection, etc. After a brief discussion of
the basic physical concept behindMicPIC, we examined themost important technical
aspects of its implementation. We first presented a relatively simple application
example, i.e., the laser excitation of a solid density foil, which indicates the capability
of this method and might serve as a reference scenario for self-employed implemen-
tations. To demonstrate the full potential of MicPIC, we further discussed a scenario
where MicPIC’s unique capabilities are essential to describe the underlying physics,
namely, time-resolved single-shot coherent diffractive imaging. This research field is
still in its infancy, and theoretical modeling is highly desired for the interpretation of
experiments. The results presented here clearly demonstrate thatMicPIC is a powerful
tool to drive substantial advances in this field.

The methodical details described in this chapter represent the backbone imple-
mentation of the method, which means that there is plenty of room for improvement.
One particularly interesting direction for future development is the effective treatment
of quantum effects, which are so far only accounted for in terms of incoherent effective
ionization rates. For example, a proper description of the effective band structure in
dielectrics would enable MicPIC to directly model the generation of high harmonic
radiation in solids, which is of great interest for future applications like lightwave
electronics [30, 49].
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cross section
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– for Dirac equation 85
– for Klein–Gordon equation 79
current density 139, 229
– smoothed for PI 230
cutoff radius 248

degeneracy 121
density 115, 120, 139
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– for Klein–Gordon equation 79
–profile
–during expansion 264
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density functional theory 111
– time-dependent 111
density matrix 147
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–of radiation 69
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harmonic generation, see harmonics and high

harmonics
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–post-methods 170
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inner product
– complex 187
–Hermitian 187
integrals
– on nonuniform grids 160
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line shape 56, 58
line shape function 57
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Lippmann–Schwinger equation 205
local correction
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local density approximation 118
local spin density approximation 119
long orbit 218
Lorentz force 108, 228, 250
Lotz formula 253
low-dimensional
–benchmark studies 134
–model helium 135
–model molecule 155
low-energy structure 214
low-frequency approximation 213
LS coupling 182

many-particle methods 112
material tensor 240
matrix
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–eigendecomposition 94
matrix elements
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– interchannel coupling 176
– intrachannel coupling 176
Maxwell’s equations 227, 229, 233
mean-field
– constant 152
– variable 152
memory effects 129, 140
MicPIC examples 256
MicPIC scaling 254
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minimal coupling 23, 84
MOEVE package 163
molecular dynamics 112, 227
momentum
–canonical 30, 78
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Hartree–Fock 145
multipole expansion 129, 180

N-body Hamiltonian 173
n-particle-n-hole configuration 172
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neon atom 121, 123
Newton’s equation of motion 220
Newton–Coates formulas 162
no free lunch theorem 111, 117, 142
non-Hermitian
–Hamiltonian
–of the Klein–Gordon equation 81
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norm
–on grid 46, 186
numerical dispersion 6
Numerov boost in accuracy
– for 1st derivative 26
– for 2nd derivative 8, 19, 25
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– in strong-field physics 45
occupation number 122
octopus code 111
one-body
– integrals 149
–operators 149
operator
– annihilation 39, 70, 172, 186, 187, 205
– creation 39, 70, 172, 186, 187, 205
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–Dyson time-ordering 94
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–field 39
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–Green’s 205
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– splitting 13, 15, 16, 42, 97
– Fourier 99, 101
–Suzuki–Trotter 15
– time-evolution 2, 97
– for free Dirac eq., 103
– inversion 139
– two-particle 179
–Volkov–Green’s 206
orbits
– short and long 218

partial energy spectrum 52, 54
particle-in-cell method (PIC), 227, 230
– collisional 230
–microscopic (MicPIC), 228
Pauli
– algebra 80
–exclusion principle 116, 151
–matrices 80
Peaceman–Rachford
–alternating direction implicit method 14
perfectly matched layer 239
–uniaxial 239
photoabsorption
– cross section 192
photoelectron
–peaks 53
– spectrum 48, 68, 141, 211, 218
–above-threshold ionization 53
–differential 49, 54, 67
–momentum 55, 67
–partial 52, 54
–pros and cons of methods 68
– total-energy 49, 50
–with surface flux method 64
–with window operator 50

picture, see also Heisenberg or Schrödinger
picture

plasma mirror 258
plasmon
– recollision-induced excitation 134
polarizability 195
–underestimation in CI 177
polarization
–elliptical 31
– linear 24
ponderomotive energy 54
post-Hartree–Fock methods 170

potassium atom 124
potential
– absorbing 46, 157, 186
– centrifugal 18
–Coulomb
– improving accuracy 20
–effective 20
–effective single-particle 114
–exchange-correlation 117
– exact 138
–Hartree 116–118, 120
– imaginary 46
– in momentum space 45
–Kohn–Sham
–asymptotic behavior 128
–exact 138
–nonlocal 185
–periodic 62
–pseudo 163
– scalar 23
– single active electron 176
– spherically symmetric 18
– Topp–Hopfield 163
– vector 23
predictor-corrector step 131
propagation
–Crank–Nicolson 3, 19, 27, 30
– Feit–Fleck–Steiger 16
– for elliptical laser polarization 31, 36
– for linear laser polarization 27, 29
–grid hopping 40
– in imaginary time 10
–Muller 19
–of field 227
–post-, 55, 56, 59, 68
pseudo-adjoint 81
pseudo-Hermitian 81, 95
pseudo-inner-product 81
pseudo-spectral method 4
pseudo-unitary 81
pseudopotential 163
Python 95, 100

Qprop code 29, 36, 46, 53, 73, 111
– version 2.0, 68
quadrupole 130
quantitative rescattering theory 198
quantization
–electromagnetic field 41, 69
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–high-harmonic 205
quantum orbit theory 204
quantum orbits 220

Rabi oscillations 140
radiation
–emitted 69
rate
– ionization 45
relativistic quantum mechanics 77
relativistic quantum systems
– in electromagnetic fields 77
–numerical examples 104

renormalization of wavefunction 10
representability problem
– v, 114
–noninteracting v, 114
rescattering
–matrix element 207, 209
–potential 209
rescattering matrix element 213
resolution
–energy 59
resonant transitions
– in time-dependent density functional theory,

140
retardation 232
Ritz variational principle 185
Roothaan–Hartree–Fock equations 209
Runge effect 161
Runge–Gross theorem 111

S-matrix 204
S-matrix element
– for above-threshold ionization 206
– for harmonic generation 205
saddle-point
– equation 214
–method 214, 218
–modified 214
– solutions
– classification 216

Schrödinger equation
– time-dependent 2, 13, 18, 23, 24, 31, 37, 40,

99, 112, 135, 175
–nonrelativistic 77

Schrödinger picture 73

second quantization 38
self-interaction 185
self-interaction correction 118
–Perdew–Zunger 126
shape function 229, 245
–Gaussian 232
Sherman–Morrison formula 63
short orbit 218
short-range double Yukawa potential 210
single active electron
–approximation 210
–model potential 176
single-particle-hole function 147
single-shot diffractive imaging 259
Slater determinant 113, 115, 116, 138, 145
solid density foil
–MicPIC simulation 256
spectroscopy
–pump-probe 191
– transient absorption 192
spectrum, see also photoelectron spectrum
–above-threshold ionization 53, 55
– energy
–partial 52, 54
–harmonics 69, 134, 157, 188, 211
– transient absorption 192
spherical harmonics
– expansion 18, 52, 119, 129
–expectation values 73
spin 39, 91
–density 115, 116
–of electron 89
–orbitals
– in MCTDH 146
– singlet state 113, 115, 126, 137, 138, 151, 178
spin-orbit interaction 181
splines 4
split-operator method, see operator splitting
spontaneous emission 70
states
– in and out 205
stick spectrum 49, 51, 54

 EBSCOhost - printed on 2/13/2023 7:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



278 | Index

stimulated
–absorption 70
–emission 70
strong coupling 227
strong-field approximation 203, 206
subshell 120
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surface flux method
– time-dependent 64
Suzuki–Trotter
– decomposition 15
– splitting 15
symmetry
–of N-electron eigenstates 177
– spherical 18
–with spin-orbit coupling 182

T-matrix 208
T-matrix element
– for above-threshold ionization 209
– for harmonic generation 208
tensor product grid 149
three-step model 157, 195, 203, 208
time step
– relativistic 105
time window 57
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singles, 169
time-dependent density functional theory 111
– failures 140
time-frequency analysis 73, 134
time-resolved x-ray imaging 259

Topp–Hopfield potential 163
total-field-scattered-field scheme 244
transient absorption spectroscopy 192
tunnel exit 220
two-body
– continuum 155
– integrals 149, 162
–operators 149, 174

undetermined coefficients
–method of 161
uniform approximation 216, 218
unitary 81
– time evolution 3, 10, 15, 26, 42

variable mean-field 152
variational derivative 118
variational principle
–Dirac–Frenkel 147
–Ritz 185
virtual detector 60
Volkov state 65, 203, 207
Volkov–Green’s operator 206

wavefunction
– four-component 88, 104
– TDCIS 173
– two-component 104
– for Klein–Gordon equation 80

window operator method 50

Yee staggering 235

 EBSCOhost - printed on 2/13/2023 7:43 PM via . All use subject to https://www.ebsco.com/terms-of-use


	Contents���������������
	Preface��������������
	List of abbreviations����������������������������
	I How to propagate a wavefunction?�����������������������������������������
	1 Time-dependent Schrödinger equation��������������������������������������������
	1.1 Time propagation and stability�����������������������������������������
	1.2 Spatial discretization���������������������������������
	1.3 Imaginary-time propagation�������������������������������������
	1.4 More dimensions: Operator splitting����������������������������������������������
	1.5 Expansion in spherical harmonics�������������������������������������������

	2 Scaled cylindrical coordinates���������������������������������������
	3 Employing second-quantization notion���������������������������������������������
	3.1 Grid hopping�����������������������

	4 Summary����������������

	II Calculation of typical strong-field observables���������������������������������������������������������
	1 Ionization rates�������������������������
	2 Photoelectron spectra������������������������������
	2.1 Energy window operator method����������������������������������������
	2.2 Spectral method��������������������������
	2.3 Time-dependent surface flux method���������������������������������������������
	2.4 Pros and cons of the various methods for photoelectron spectra�������������������������������������������������������������������������

	3 Emitted radiation and high-harmonics spectra�����������������������������������������������������

	III Time-dependent relativistic wave equations: Numerics of the Dirac and the Klein–Gordon equation����������������������������������������������������������������������������������������������������������
	1 From nonrelativistic to relativistic quantum mechanics���������������������������������������������������������������
	1.1 Relativistic quantum mechanical equations of motion—a naive attempt������������������������������������������������������������������������������
	1.2 The Klein–Gordon equation������������������������������������
	1.3 The Dirac equation�����������������������������

	2 Free particles and wave packets����������������������������������������
	2.1 Free-particle solution of the Klein–Gordon equation��������������������������������������������������������������
	2.2 Free-particle solution of the Dirac equation�������������������������������������������������������

	3 Numerical solution of the Dirac equation�������������������������������������������������
	3.1 General methods for time-dependent quantum mechanics���������������������������������������������������������������
	3.2 The split operator method������������������������������������
	3.3 The Fourier split operator method for the Schrödinger equation�������������������������������������������������������������������������
	3.4 The Fourier split operator method for the Dirac equation�������������������������������������������������������������������

	4 Numerical examples���������������������������

	IV Time-dependent density functional theory��������������������������������������������������
	1 A few general remarks on time-dependent many-particle methods����������������������������������������������������������������������
	2 DFT for effective single-electron potentials�����������������������������������������������������
	2.1 KS spin-DFT����������������������
	2.2 Actual implementation��������������������������������

	3 Time-dependent calculations������������������������������������
	3.1 Time-dependent KS solver with spherical harmonics and multipole expansion������������������������������������������������������������������������������������
	3.2 Low-dimensional benchmark studies��������������������������������������������
	3.3 Where TDDFT fails in practice����������������������������������������


	V The multiconfiguration time-dependent Hartree–Fock method������������������������������������������������������������������
	1 Multiconfiguration time-dependent Hartree–Fock�������������������������������������������������������
	2 Implementing the MCTDHF method���������������������������������������
	2.1 Uniform grids������������������������
	2.2 Computation of the mean-field operator�������������������������������������������������
	2.3 Restricted vs unrestricted�������������������������������������
	2.4 Time integration���������������������������
	2.5 Computing the ground state�������������������������������������

	3 Applications of MCTDHF�������������������������������
	3.1 Calculation of highly correlated ground states���������������������������������������������������������
	3.2 Nonsequential double ionization������������������������������������������
	3.3 High-harmonic generation�����������������������������������

	4 Extending MCTDHF to nonuniform grids���������������������������������������������
	4.1 Differentiation on a nonuniform grid�����������������������������������������������
	4.2 Integration on nonuniform grids������������������������������������������
	4.3 Treatment of the two-body terms������������������������������������������
	4.4 Ground state of small sodium clusters������������������������������������������������

	5 Conclusion�������������������

	VI Time–dependent configuration interaction singles����������������������������������������������������������
	1 Introduction���������������������
	2 Basics of TDCIS������������������������
	2.1 TDCIS wavefunction�����������������������������
	2.2 The N-body Hamiltonian���������������������������������
	2.3 Equations of motion������������������������������
	2.4 Limitations����������������������

	3 Implementation of TDCIS��������������������������������
	3.1 Symmetries and orbital representations�������������������������������������������������
	3.2 Evaluating matrix elements�������������������������������������
	3.3 Spin-orbit interaction���������������������������������
	3.4 Grid representation������������������������������
	3.5 Hartree–Fock�����������������������
	3.6 Complex absorbing potential��������������������������������������
	3.7 Expectation values�����������������������������
	3.8 Ion density matrix�����������������������������

	4 Strong-field applications of TDCIS�������������������������������������������
	4.1 Subcycle ionization dynamics and coherent hole motion����������������������������������������������������������������
	4.2 Multiorbital and collective excitations in HHG���������������������������������������������������������


	VII Strong-field approximation and quantum orbits��������������������������������������������������������
	1 S-matrix elements��������������������������
	2 Strong-field approximation�����������������������������������
	3 Harmonic generation rate and ionization rate�����������������������������������������������������
	4 Ground-state wavefunctions, rescattering potential, and multielectron effects��������������������������������������������������������������������������������������
	5 Numerical examples for harmonic and electron spectra�������������������������������������������������������������
	6 Saddle-point method����������������������������
	7 Classification of the saddle-point solutions�����������������������������������������������������
	8 Numerical results for HATI spectra obtained using the SPM and uniform approximation��������������������������������������������������������������������������������������������
	9 Quantum orbits�����������������������
	10 Summary�����������������

	VIII Microscopic particle-in-cell approach�������������������������������������������������
	1 Basic concept����������������������
	1.1 Physical problem���������������������������
	1.2 Particle representation����������������������������������
	1.3 PIC approximation����������������������������
	1.4 MicPIC force decomposition�������������������������������������
	1.5 The MicPIC approximation�����������������������������������

	2 Numerical aspects of MicPIC������������������������������������
	2.1 Electromagnetic field propagation with the FDTD method�����������������������������������������������������������������
	2.2 Particle representation on the PIC level���������������������������������������������������
	2.3 Local correction���������������������������
	2.4 Particle propagation�������������������������������
	2.5 Implementation of ionization���������������������������������������
	2.6 MicPIC parameters and scaling����������������������������������������
	2.7 MicPIC system energy calculation�������������������������������������������

	3 Applications���������������������
	3.1 Laser excitation of a solid-density foil: A simple MicPIC example����������������������������������������������������������������������������
	3.2 Time-resolved x-ray imaging��������������������������������������

	4 Summary����������������

	Index������������

