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John von Neumann talking shop with visiting scholars during afternoon tea at  
the Institute for Advanced Study. (Photo by Alfred Eisenstaedt / The LIFE Picture 
Collection / Getty Images.)

 EBSCOhost - printed on 2/13/2023 10:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



MATHEMATICAL FOUNDATIONS
OF

QUANTUM MECHANICS

by

John von Neumann

NEW EDITION

translated from the German by

ROBERT T. BEYER

edited by

Nicholas A. Wheeler

PRINCETON UNIVERSITY PRESS

PRINCETON & OXFORD

 EBSCOhost - printed on 2/13/2023 10:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



Copyright c© 1955, 1983, 2018 by Princeton University Press

Published by Princeton University Press
41 William Street, Princeton, New Jersey 08540

All Rights Reserved

ISBN: 978-0-691-17856-1
ISBN (pbk.) 978-0-691-17857-8

Library of Congress Control Number: 2017949631
British Library Cataloging-in-Publication Data is available

This book has been composed in plain TEX

The publisher would like to acknowledge the editor
of this volume for providing print-ready files from

which this volume was printed

Printed on acid-free paper ∞

press.princeton.edu

Printed in the United States of America

1 3 5 7 9 10 8 6 4 2

 EBSCOhost - printed on 2/13/2023 10:14 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.press.princeton.edu


CONTENTS
Translator’s Preface vii
Preface to This New Edition ix
Foreword xi

Introduction 1

CHAPTER I
Introductory Considerations

1. The Origin of the Transformation Theory 5
2. The Original Formulations of Quantum Mechanics 7
3. The Equivalence of the Two Theories:

The Transformation Theory 13
4. The Equivalence of the Two Theories:

Hilbert Space 21

CHAPTER II
Abstract Hilbert Space

1. The Definition of Hilbert Space 25
2. The Geometry of Hilbert Space 32
3. Digression on the Conditions A-E 40
4. Closed Linear Manifolds 48
5. Operators in Hilbert Space 57
6. The Eigenvalue Problem 66
7. Continuation 69
8. Initial Considerations Concerning the Eigenvalue Problem 77
9. Digression on the Existence and Uniqueness of the

Solutions of the Eigenvalue Problem 93
10. Commutative Operators 109
11. The Trace 114

CHAPTER III
The Quantum Statistics

1. The Statistical Assertions of Quantum Mechanics 127
2. The Statistical Interpretation 134
3. Simultaneous Measurability and Measurability in General 136
4. Uncertainty Relations 148
5. Projections as Propositions 159
6. Radiation Theory 164

 EBSCOhost - printed on 2/13/2023 10:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



vi

CHAPTER IV
Deductive Development of the Theory

1. The Fundamental Basis of the Statistical Theory 193
2. Proof of the Statistical Formulas 205
3. Conclusions from Experiments 214

CHAPTER V
General Considerations

1. Measurement and Reversibility 227
2. Thermodynamic Considerations 234
3. Reversibility and Equilibrium Problems 247
4. The Macroscopic Measurement 259

CHAPTER VI
The Measuring Process

1. Formulation of the Problem 271
2. Composite Systems 274
3. Discussion of the Measuring Process 283

Name Index 289
Subject Index 291
Locations of Flagged Propositions 297
Articles Cited: Details 299
Locations of the Footnotes 303

 EBSCOhost - printed on 2/13/2023 10:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



TRANSLATOR’S PREFACE

This translation follows closely the text of the original German edition.
The translated manuscript has been carefully revised by the author so that the
ideas expressed in this volume are his rather than those of the translator, and
any deviations from the original text are also due to the author.

The translator wishes to express his deep gratitude to Professor
von Neumann for his very considerable efforts in the rendering of the ideas of
the original volume into a translation which would convey the same meanings.

Robert T. Beyer

Providence, R. I.
December, 1949
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PREFACE TO THIS NEW EDITION

This book is the realization of my long-held intention to someday use the
resources of TEX to produce a more easily read version of Robert T. Beyer’s
authorized English translation (Princeton University Press, 1955) of John von
Neumann’s classic Mathematische Grundlagen der Quantenmechanik (Springer,
1932).

I have endeavored to correct typographic errors that crept into the text
and equations in the Beyer translation (a few of which were copied from the
German original) and to adjust some of the transliterated sentences so that
they read more easily and their meaning is easier to comprehend. But in all
other respects I have adhered as closely as possible to the Beyer translation,
which von Neumann reviewed and endorsed. Von Neumann wrote about his
own extensive contributions to the Beyer translation in a letter (3 October 1949)
addressed to Hayward Cirker, founding president of Dover Publications; that
letter is reproduced on pages 91–92 of Miklós Rédei’s John von Neumann:
Selected Letters (2005).

The glorified typewriter (VariTyper, circa 1945) that was used to prepare
the Beyer translation provided relatively few typographic resources, with the
consequences that some of the equations are very awkwardly displayed and it
is often not possible to know—except from context—the mathematical nature
of the object to which a given symbol refers. Additionally, some of the symbols
employed (for example, the German Gothic R,N and certain Roman fonts) are
difficult to distinguish in small type sizes. To avoid such difficulties, I have
adopted the following invariable conventions:

• functions are denoted f, g, h, . . .
• linear manifolds are denoted A, B, C, . . . , R, S, . . . , M, N, . . .
• elements of linear manifolds are denoted φ, ψ, . . .
• physical quantities are denoted A, B, C, . . .
• operators are denoted A, B, C, . . . , E, . . . , P, Q, . . . , U, V
• matrices are denoted A, B, C, . . . , P, Q, . . .
• 3-vectors are denoted AAA,xxx, yyy, . . .

Where von Neumann invariably writes h/2π I employ Dirac’s (now universal)
symbol !.

It is my impression that von Neumann’s monograph—which is today, after
more than eighty years, more frequently cited than ever before—is perhaps more
frequently cited than actually read, and is my certain knowledge that it contains
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x Preface to ThisNewEdition

treasures and provides valuable insights that are too seldom appreciated. It is
my hope that this edition (to which I have attached a subject index, absent
from previous editions) will facilitate—and perhaps inspire—the work of a new
generation of physicists.

I thank especially Marina von Neumann Whitman, Freeman Dyson and
Peter Renz, and also Jeffrey Bub, Auletta Gennaro, David Griffiths, David
Mermin, Miklós Rédei, Robert Rohmer, Maximilian Schlosshauer, Silvan
Schweber, Veeravalli Varadarajan, Thomas Wieting and Wojciech Zurek for
encouragement in this undertaking. I am greatly indebted to William Bialek
of the Princeton physics faculty for his initiative, and to Vickie Kearn for her
expert editorial supervision. It is with special pleasure that I thank Linda
Maddux, Reed College science librarian, for assistance in preparation of the list
of works cited, Paul Forman and (especially) Harvey Leff for editorial advice
and assistance. The project would never have come to completion but for the
wise counsel and ever-tactful patience of my attorney, William Drew, of Elliott,
Ostrander & Preston, P.C. And I am—as are we all—deeply indebted to Donald
Knuth for his invention of TEX.

This volume was written in Plain TEX, as implemented by Textures, an
application developed here in Portland by Blue Sky Research. Textures runs,
however, only on OSX systems old enough to provide Classic Mode, so the work
was done on a treasured antique of an iMac.

Nicholas Wheeler

Reed College
June, 2014
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By way of a

FOREWORD

In 1933, John von Neumann [28 December 1903–8 February 1957 ]
became (together with Albert Einstein and Oswald Veblin) a member
of the founding faculty (and Kurt Gödel a visiting member) of the
Institute for Advanced Study, where he remained for the remainder
of his life. The distinguished author of the following commemorative
essay was a member in 1949 and 1952–1954, and had then an
opportunity to become personally acquainted with von Neumann.
The essay was taken (with permission) from volume 64, number 3,
part 2 (May 1958) pages 95–99 of the Bulletin of the American
Mathematical Society, the 129-page entirety of which is given over
to expert surveys of von Neumann’s contributions to eight different
subject areas.

VON NEUMANN’S CONTRIBUTIONS TO
QUANTUM THEORY

léon van hove

That von Neumann has been “par excellence” the mathematician of quantum
mechanics is as obvious to every physicist now as it was a quarter of a century
ago. Quantum mechanics was very fortunate indeed to attract, in the very
first years after its discovery in 1925, the interest of a mathematical genius of
von Neumann’s stature. As a result, the mathematical framework of the theory
was developed and the formal aspects of its entirely novel rules of interpretation
were analyzed by one single man in two years time (1927–1929). Conversely, one
could almost say in reciprocity, quantum mechanics introduced von Neumann
into a field of mathematical investigation, operator theory, in which he achieved
some of his most prominent successes.

Von Neumann’s major contributions to quantum mechanics are his
development of the mathematical framework of the theory and his formal study
of quantum statistics, quantum measuring processes and their interrelations.
Whereas the latter study was essentially complete in 1927 (except for the
quantum ergodic theorem of 1929) the work on the mathematical foundations
of quantum mechanics came to its culmination in 1929 with the spectral theorem
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for hypermaximal symmetric operators in Hilbert space. In the next two
paragraphs we shall discuss these major contributions.

The mathematical framework of quantum theory. By the time von Neumann
started his investigations on the formal framework of quantum mechanics this
theory was known in two different mathematical formulations: the “matrix
mechanics” of Heisenberg, Born and Jordan, and the “wave mechanics” of
Schrödinger. The mathematical equivalence of these formulations had been
established by Schrödinger, and they had both been embedded as special cases
in a general formalism, often called the “transformation theory,” developed by
Dirac and Jordan. This formalism, however, was rather clumsy and it was
hampered by its reliance upon ill-defined mathematical objects, the famous
delta-functions of Dirac and their derivatives. Although von Neumann himself
attempted at first, in collaboration with Hilbert and Nordheim [1], to edify
the formalism along similar lines, he soon realized that a much more natural
framework was provided by the abstract, axiomatic theory of Hilbert spaces
and their linear operators [2]. This mathematical formulation of quantum
mechanics, whereby states of the physical system are described by Hilbert space
vectors and measurable quantities by Hermitian operators acting upon them,
has been very successful indeed. Unchanged in its essentials it has survived the
two great extensions which quantum theory was to undergo soon: the relativistic
quantum mechanics of particles (Dirac equation) and the quantum theory of
fields.

One might of course remark that Dirac’s delta functions and their
derivatives, although poorly defined at the time of their introduction, have
been recognized since as bona fide mathematical entities in L. Schwartz’ theory
of distributions. This is quite true and moreover these functions have been
used continually by physicists throughout the development of quantum theory,
in particular in the last two decades for the study of scattering processes and
of quantized fields. Delta functions have established themselves as the natural
tool whenever operators with continuous spectra are to be considered. This
does not affect in any way, however, the fact that the axiomatically defined
separable Hilbert space is the suitable framework for the quantum-mechanical
formalism as we know it today, and the recognition of this fact we owe to
von Neumann.

An essential feature of the Hilbert space formulation of quantum theory is
that the most important physical quantities (such as position, momentum or
energy)are represented by unboundedHermitian operators. Since the theoretical
prediction of measurements makes essential use of the spectral resolution of the
operators representing the physical quantities, von Neumann was, in his very
first invetigation [2], faced with the problem of extending to the unbounded
case the known spectral theory of bounded Hermitian operators. By 1929
he had brought this problem to a complete solution [3]. He introduced the
all -important concept of hypermaximal symmetric operator, being the most
general Hermitian operator with a spectral resolution. This work, the results of
which were reached independently by M. H. Stone [4], was for von Neumann
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the start of a long series of investigations on linear operators in Hilbert space.

Still another contribution of von Neumann to the mathematical foundation
of quantum theory is worth mentioning here. He established the important
theorem that (in the irreducible case and after a suitable reformulation) the
canonical commutation rules QjP! − P!Qj = !iδj! determine the operators
Q1, . . . , Qn, P1, . . . , Pn uniquely except for an arbitrary transformation [5].
Although rarely quoted as such, this theorem, which was already known to Dirac
and Stone [6], is really fundamental for the understanding of many quantum-
mechanical investigations where the theoretical analysis is exclusively based on
the canonical commutation rules or in the equivalent field-theoretical form

AjA
∗
! − A∗

!Aj = !δj!, 2
1
2 Aj = Pj − iQj

Statistical aspects of quantum theory. In the course of his formulation ofquantum
mechanics in terms of vectors and operators of Hilbert space von Neumann also
gave in complete generality the basic statistical rule of interpretation of the
theory. This rule concerns the result of the measurement of a given physical
quantity on a system in a given quantum state and expresses its probability
distribution by means of a simple and now completely familiar formula involving
the vector representing the state and the spectral resolution of the operator
which represents the physical quantity [2]. This rule, originally proposed by
Born in 1926, was for von Neumann the starting point of a mathematical
analysis of quantum mechanics in entirely probabilistic terms. The analysis,
carried out in a paper of 1927 [7], introduced the concept of statistical matrix
for the description of an ensemble of systems which are not necessarily all in
the same quantum state. The statistical matrix (now often called ρ -matrix
although von Neumann’s notation was U) has become one of the major tools
of quantum statistics and it is through this contribution that von Neumann’s
name became familiar to even the least mathematically minded physicists.

In the same paper von Neumann also investigates a problem which is still
now the subject of much discussion; viz., the theoretical description of the
quantum-mechanical measuring process and of the non-causal elements which
it involves. Mathematically speaking von Neumann’s study of this delicate
question is quite elegant. It provides a clear-cut formal framework for the
numerous investigations which were needed to clarify physically the
all-important implications of quantum phenomena for the nature of physical
measurements, the most important of which is Neils Bohr’s concept of
complementarity.

The results of the paper just discussed were immediately used by the author
to lay the foundation for quantum thermodynamics [8]. He gave the quantum
analogue

S = −k tr(ρ ln ρ), ρ denotes a statistical matrix

of the well known classical formula for the entropy

S = −k

∫
f ln fdω, f denotes a distribution function in phase space.
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He further wrote down the density matrix for a canonical ensemble at
temperature T :

ρ = Z –1 exp(−H/kT ), Z = tr
[
exp(−H/kT )

]
,

H being the Hamiltonian operator. Two years later von Neumann came back to
quantum thermodynamics with a contribution to a much more difficult problem:
the formulation and proof of an ergodic theorem for quantum systems [9]. The
basic principle of this work is to define quantum analogues of cells in phase
space by considering sets of quantum states for which all macroscopic quantities
have given values with a certain inaccuracy. One further considers the unitary
transformation u relating these quantum states to the eigenstates of the
Hamiltonian. The ergodicity is then established for “almost every” value of the
transformation u. Although the latter restriction is a rather unsatisfactory one
from a physical standpont, one must consider von Neumann’s ergodic theorem
as one of the very few important contributions to a most difficult subject which
even now is far from complete clarification.

Most of the work we have briefly reviewed has been republished by the
author, in greatly expanded form, as a book which rapidly became and still is
the standard work on the mathematical foundations of quantum mechanics [10],
[and of which the present volume is an English translation]. Von Neumann
devoted in his book considerable attention to a point which had not been
discussed in the 1927 papers and which was later the subject of much
controversy. It is the question of the possible existence of “hidden variables,”
the consideration of which would eliminate the non-causal element involved in
the measurement process. Von Neumann could show that hidden parameters
with this property cannot exist if the basic structure of quantum theory is
retained. Although he mentioned the latter restriction explicitly,† his result is
often quoted without due reference to it, a fact which sometimes gave rise to
unjustified criticism in the many discussions devoted through the years to the
possibility of an entirely deterministic reformulation of quantum theory.

Other contributions. As von Neumann’s complete bibilography will reveal, he
wrote quite a few other papers on quantum mechanics, often in collaboration
with physicists, especially with Wigner. Most of these papers deal with technical
matters and the importance of the major contributions discussed above is so
eminent that, in comparison, the other papers’ scope is modest. There is only
one broad subject which we would like to mention here, because von Neumann,
obviously giving it considerable thought, returned to it several times in 1934
and 1936 (in collaboration with Jordan, Wigner and Garrett Birkhoff). It is
the question of the algebraic and logical structure of quantum mechanics, where
the hope has existed to reach through abstract analysis possible generalizations
of the accepted theory. Nobody knows whether such a hope is justified, but it
is undoubtedly a natural one and it has appealed to many other people, giving
one more example of the power and originality of von Neumann’s thinking.

† See, e.g., [10], p. 109, line 17 et seq [or below: p. 132, paragraph 3].
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INSTITUTE FOR THEORETICAL PHYSICS OF THE UNIVERSITY,
UTRECHT, NETHERLANDS

A “von Neumann Days” Symposium took place on 3–7 May 2010
at Brown University’s Center for Computational Molcular Biology.
Remarks prepared for presentation on that occasion by Freeman
Dyson—who was a member of the Institute for Advanced Study
in 1948–1949 and became there a tenured faculty colleague of von
Neumann in 1953—were subsequently published as “A walk through
Johnny von Neumann’s garden” (Notices of the AMS 60, 155–161
(2013)), from which the following excerpt has (with permission)
been taken.

VON NEUMANN WORK RELATED TO
QUANTUM THEORY

freeman dyson

During his Berlin years, Johnny made frequent visits to Göttingen, where
Heisenberg had recently invented quantum mechanics and Hilbert was the
presiding mathematician. Hilbert was intensely interested in quantum mechanics
and encouraged collaboration between mathematicians and physicists. From
the point of view of Hilbert, quantum mechanics was a mess. Heisenberg had no
use for rigorous mathematics and no wish to learn it. Dirac made free use of his

 EBSCOhost - printed on 2/13/2023 10:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



Forewordxvi

famous delta-function, which was defined by a mathematical absurdity, being
infinite at a single point and zero everywhere else. When Hilbert remarked to
Dirac that the delta-function could lead to mathematical contradictions, Dirac
replied, “Did I get into mathematical contradictions?” Dirac knew that his
delta-function was a good tool for calculating quantum processes, and that was
all that he needed. Twenty years later, Laurent Schwartz provided a rigorous
basis for the delta-function and proved that Dirac was right. Meanwhile, Johnny
worked with Hilbert and published a series of papers cleaning up the mess. In
1932 he published the book Mathematical Foundations of Quantum Mechanics
[9], which occupies a substantial piece of his garden.

Johnny’s book was the first exposition of quantum mechanics that made the
theory mathematically respectable. The concepts were rigorously defined and
the consequences rigorously deduced. Much of the work was original, especially
the chapters on quantum statistics and the theory of measurement. I read the
book in 1946 when I was still a pure mathematician but already intending to
switch my attention to physics. I found it enormously helpful. It gave me what
I needed, a mathematically precise statement of the theory, explaining the fine
points that the physicists had been too sloppy to mention. From that book
I learned most of what I know about quantum mechanics. But then, after I
had made the transition to physics and had begun to read the current physics
journals, I was surprised to discover that nobody in the physics journals ever
referred to Johnny’s book. So far as the physicists were concerned, Johnny
did not exist. Of course, their ignorance of Johnny’s work was partly a problem
of language. The book was in German, and the first English translation was
only published in 1955. But I think even if the book had been available in
English, the physicists of the 1940s would not have found it interesting. That
was a time when the culture of physics and the culture of mathematics were
most widely separated. The culture of physics was dominated by people like
Oppenheimer who made friends with poets and art historians but not with pure
mathematicians. The culture of mathematics was dominated by the Borbaki
cabal, which tried to expunge from mathematics everything that was not purely
abstract. The gap between physics and mathematics was as wide as the gap
between science and the humanities described by C. P. Snow in his famous
lecture on the two cultures. Johnny was one of the very few people who were
at home in all four cultures: in physics and mathematics, but also in science
and the humanities.

The central concept in Johnny’s version of quantum mechanics is the
abstract Hilbert space. Hilbert space is the infinite-dimensional space in which
quantum states are vectors and observable quantities are linear operators.
Hilbert had defined and explored Hilbert space long before quantum mechanics
made it useful. The unexpected usefulness of Hilbert space arises from the fact
that the equations of quantum mechanics are exactly linear. The operators form
a linear algebra, and the states can be arranged in multiplets defined by linear
representations of the algebra. Johnny liked to formulate physical problems in
abstract and general language, so he formulated quantum mechanics as a theory
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of rings of linear operators in Hilbert space. A ring means a set of operators
that can be added or subtracted or multiplied together but not divided. Any
physical system obeying the rules of quantum mechanics can be described by
a ring of operators. Johnny began studying rings of operators to find out how
many different types of quantum systems could exist.

After Johnny published his quantum mechanics book, he continued for
several years to develop the theory of rings of operators. The third volume
of his collected works consists entirely of papers on rings of operators. He
published seven long papers with a total of more than five hundred pages. I will
not discuss these monumental papers this morning. They contain Johnny’s
deepest work as a pure mathematician. He proved that every ring of operators
is a direct product of irreducible rings that he called factors. He discovered that
there are five types of factor, of which only two were previously known. Each of
the types has unique and unexpected properties. Exploring the ocean of rings
of operators, he found new continents that he had no time to survey in detail.
He left the study of the three new types of factor unfinished. He intended
one day to publish a grand synthesis of his work on rings of operators. The
grand synthesis remains an unwritten masterpiece, like the eighth symphony of
Sibelius.

The quantum mechanics book is the last item on my list of flowers that
Johnny published in German. It was published in 1932 when he was dividing his
time equally between Berlin and Princeton. In the same year he began writing
papers in English. One of his first papers to appear in English was “Proof of
the quasi-ergodic hypothesis” [10], which he published in the Proceedings of
the National Academy of Sciences to make sure that American mathematicians
would read it. This paper solved an important problem in classical mechanics
using the same concept of Hilbert space that he had used to solve problems in
quantum mechanics. A classical dynamical system is said to be ergodic if after
we put it into an initial state and then leave it alone for an infinite time, it
comes arbitrarily close to any final state with probability independent of the
initial state. Johnny proved that under certain clearly specified conditions,
a system is ergodic if and only if there exist no constants of the motion. A
constant of the motion means a quantity depending on the state of the system
which does not change as the system moves forward in time. Johnny’s theorem
provides a firm mathematical basis for the assumptions that are customarily
made by physicists using classical statistical mechanics. Translated into the
sloppy language used by physicists, the theorem says that the time-average of
any single trajectory of the system over a long time is equal to the statistical
average of all trajectories. Even more sloppily, physicists say that time-averages
are equal to ensemble averages, and we use the word ensemble to mean the set
of all states of the system.

One of the American mathematicians who read Johnny’s paper in the
Proceedings of the National Academy of Sciences was Garrett Birkhoff. Garrett
was the son of George Birkhoff, and both father and son were famous
mathematicians. Garrett and Johnny became close friends, and Garrett came
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to Princeton for frequent visits. After Johnny died, Garrett wrote a memoir
about the work that Johnny did in the 1930s. Here is a sentence from Garrett’s
memoir: “Anyone wishing to get an unforgettable impression of the razor
edge of von Neumann’s mind need merely try to pursue this chain of exact
reasoning for himself, realizing that often five pages of it were written down
before breakfast, seated at a living room writing-table in a bathrobe.”
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INTRODUCTION

The object of this book is to present the new quantum mechanics in a unified
representation which, so far as it is possible and useful, is mathematically
rigorous. This new quantum mechanics has in recent years achieved in
its essential parts what is presumably a definitive form: the so-called
“transformation theory.” Therefore the principal emphasis shall be placed on
the general and fundamental questions which have arisen in connection with
this theory. In particular, the difficult problems of interpretation, many of
which are even now not fully resolved, will be investigated in detail. In this
connection, the relation of quantum mechanics to statistics and to the classical
statistical mechanics is of special importance. However, we shall as a rule omit
any discussion of the application of quantum mechanical methods to particular
problems, as well as any discussion of special theories derived from the general
theory—at least so far as this is possible without endangering the understanding
of general relationships. This seems the more advisable since several excellent
treatments of these problems are either in print or in process of publication.1

On the other hand, a presentation of the mathematical tools necessary
for the purposes of this theory will be given, i.e., a theory of Hilbert space
and the so-called Hermitian operators. For this end, an accurate introduction
to unbounded operators is also necessary, i.e., an extension of the theory
beyond its classical limits (developed by D. Hilbert and E. Hellinger, F. Riesz,
E. Schmidt, O. Toeplitz). The following may be said regarding the method
employed in this mode of treatment: as a rule, calculations should be performed
with the operators themselves (which represent physical quantities) and not
with the matrices, which, after the introduction of a (special and arbitrary)
coordinate system in Hilbert space, result from them. This “coordinate free,”
i.e., invariant, method, with its strongly geometrical language, possesses
noticeable formal advantages.

1 There are, among others, the following comprehensive treatments:
Sommerfeld, Supplement to the 4th edition of Atombau und Spectrallinien,
Braunschweig, 1928; Weyl, The Theory of Groups and Quantum Mechanics
(translated by H. P. Robertson), London, 1931; Frenkel, Wave Mechanics,
Oxford, 1932; Born and Jordan, Elementare Quantenmechanik , Berlin, 1930;
Dirac, The Principles of Quantum Mechanics, 2nd edition, Oxford, 1936.
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2 Introduction

Dirac, in several papers, as well as in his recently published book,2 has
given a representation of quantum mechanics which is scarcely to be surpassed
in brevity and elegance, and which is at the same time of invariant character. It
is therefore perhaps fitting to advance a few arguments on behalf of our method,
which deviates considerably from that of Dirac.

The method of Dirac, mentioned above (and this is overlooked today in
a great part of the quantum mechanical literature, because of the clarity and
elegance of the theory) in no way satisfies the requirements of mathematical
rigor—not even if these are reduced in a natural and proper fashion to the extent
common elsewhere in theoretical physics. For example, the method adheres to
the fiction that every self-adjoint operator can be put in diagonal form. In the
case of those operators for which this is not actually the case, this requires the
introduction of “improper” functions with self-contradictory properties. The
insertion of such a mathematical “fiction” is frequently necessary in Dirac’s
approach, even though the problem at hand is merely one of calculating
numerically the result of a clearly defined experiment. There would be no
objection here if these concepts, which cannot be incorporated into the present-
day framework of analysis, were intrinsically necessary for the physical theory.
Thus, as Newtonian mechanics first brought about the development of the
infinitesimal calculus, which, in its original form, was undoubtedly not self-
consistent, so quantum mechanics might suggest a new structure for our
“analysis of infinitely many variables”—i.e., the mathematical technique would
have to be changed, and not the physical theory. But this is by no means the
case. It should rather be pointed out that the quantum mechanical
“Transformation theory” can be established in a manner which is just as clear
and unified, but which is also without mathematical objections. It should
be emphasized that the correct structure need not consist in a mathematical
refinement and explanation of the Dirac method, but rather that it requires a
procedure differing from the very beginning, namely, the reliance on the Hilbert
theory of operators.

In the analysis of fundamental questions, it will be shown how the statistical
formulas of quantum mechanics can be derived from a few qualitative, basic
assumptions. Furthermore, there will be a detailed discussion of the problem as
to whether it is possible to trace the statistical character of quantum mechanics
to an ambiguity (i.e., incompleteness) in our description of nature. Indeed, such
an interpretation would be a natural concomitant of the general principle that
every probability statement arises from the incompleteness of our knowledge.
This explanation “by hidden parameters,” as well as another, related to it,
which ascribes the “hidden parameter” to the observer and not to the observed
system, has been proposed more than once. However, it will appear that this
can scarcely succeed in a satisfactory way, or more precisely, such an explanation

2 See Proc. Roy. Soc. London, 109 (1925) and subsequent issues, especially
113 (1926). Independently of Dirac, P. Jordan, (Z. Physik 40 (1926)) and
F. London (Z. Physik 40 (1926)) gave similar foundations for the theory.
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Introduction 3

is incompatible with certain qualitative fundamental postulates of quantum
mechanics.3

The relation of quantum statistics to thermodynamics is also considered. A
closer investigation shows that the well-known difficulties of classical mechanics,
which are related to the “disorder” assumptions necessary for the foundations
of thermodynamics, can be eliminated here.4

3 See IV and VI.3
4 See V.
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CHAPTER I

INTRODUCTORY CONSIDERATIONS

1. THE ORIGIN OF THE TRANSFORMATION THEORY

This is not the place to point out the great success which the quantum theory
attained in the period from 1900 to 1925, a development which was dominated
by the names of Planck, Einstein and Bohr.5 At the end of this period of
development, it was clear beyond doubt that all elementary processes, i.e., all
occurrences of an atomic or molecular order of magnitude, obey the
“discontinuous” laws of quanta. There were also available quantitative, quantum
theoretical methods in almost all directions, which for the most part yielded
results in good or at least fair agreement with experiment. And, what was
fundamentally of greater significance, was that the general opinion in theoretical
physics had accepted the idea that the principle of continuity (“natura non
facit saltus”), prevailing in the macroscopic world, is merely simulated by an
averaging process in a world which in truth is discontinuous by its very nature.
This simulation is such that a man generally perceives the sum of many billions
of elementary processes simultaneously, so that the leveling law of large numbers
completely obscures the real nature of the individual processes.

Nevertheless, up to the time mentioned there existed no mathematical-
physical system of quantum theory which would have embodied everything
known up to that time in a unified structure, let alone one which could have

5 Its chief stages were: The discovery of the quantum laws by Planck for the
case of black body radiation (see Planck’s presentation in his book, Theory of
Heat Radiation (translated by M. Masius), Philadelphia, 1914); the hypothesis
of the corpuscular nature of light (theory of light quanta) by Einstein (Ann.
Phys. 17 (1905)), wherein the first example was given of the dual form: wave-
corpuscle, which, we know today, dominates all of microscopic physics; the
application of these two sets of rules to the atomic model by Bohr (Phil. Mag.
26 (1913); Z. Physik 6 (1920)).
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6 Chapter I: Introductory Considerations

exhibited the monumental solidity of the system of mechanics, electrodynamics
and relativity theory (which system was disrupted by the quantum phenomena).
In spite of the claim of quantum theory to universality, which had evidently been
vindicated, there was lacking the necessary formal and conceptual instrument;
there was a conglomeration of essentially different, independent, heterogeneous
and partially contradictory fragments. The most striking points in this respect
were: the correspondence principle, belonging half to classical mechanics and
electrodynamics (but which played a decisive role in the final clarification of
the problem); the self-contradictory dual nature of light (wave and corpuscular,
cf. Note 5 and Note 148); and finally, the existence of unquantized (aperiodic)
and quantized (periodic or multiply periodic) motions.6

The year 1925 brought the resolution. A procedure initiated by Heisenberg
was developed by Born, Heisenberg, Jordan, and a little later by Dirac, into a
new system of quantum theory, the first complete system of quantum theory
which physics has possessed. A little later Schrödinger developed the “wave
mechanics” from an entirely different starting point. This accomplished the
same ends, and soon proved to be equivalent to the Heisenberg, Born, Jordan
and Dirac system (at least in a mathematical sense, cf. 3 & 4 below).7 On the
basis of the Born statistical interpretation of the quantum theoretical
description8 of nature, it was possible for Dirac and Jordan9 to join the two
theories into one, the “transformation theory,” in which they make possible a
grasp of physical problems which is especially simple mathematically.

It should be mentioned (although it does not belong to our particular
subject) that after Goudsmit and Uhlenbeck had discovered the magnetic
moment and the spin of the electron, almost all the difficulties of the earlier
quantum theory disappeared, so that today we are in possession of a mechanical
system which is almost entirely satisfactory. To be sure, the great unity with
electrodynamics and relativity theory mentioned earlier has not yet been
recovered, but at least there is a mechanics which is universally valid, where
the quantum laws fit in a natural and necessary manner, and which explains

6 The quantum laws (added to the laws of mechanics) for multiply periodic
motions were first developed by Epstein-Sommerfeld [see, for example,
Sommerfeld, Atombau und Spectrallinien, Braunscheig (1924)]. On the other
hand, it was ascertained that a freely moving mass point of a planet on an
hyperbolic orbit (in contrast to those on elliptical orbits) is “unquantized.”
The reader will find a complete treatment of this phase of quantum theory in
the books by Reiche, The Quantum Theory (translated by H. S. Hatfield &
H. L. Brose), New York, 1922; and Landé, Fortschritte der Quantentheorie,
Dresden, 1922.

7 This was proved by Schrödinger, Ann Physik 79 (1926).
8 Z. Physik 37 (1926).
9 See the articles mentioned in Note 2. Schrödinger’s papers have been

published in book form, Collected Papers on Wave Mechanics (translated by
J. F. Shearer & W. M. Deans), London, 1928.
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1. Origin of the Transformation Theory 7

satisfactorily the majority of our experiments.10

2. THE ORIGINAL FORMULATIONS OF QUANTUM MECHANICS

In order to obtain a preliminary view of the problem, let us set forth briefly
the basic structure of the Heisenberg-Born-Jordan “matrix mechanics” and the
Schrödinger “wave mechanics.”

In both theories, a classical mechanical problem is initially proposed, which
is characterized by a Hamiltonian function H(q1, . . . , qk, p1, . . . , pk). (This
means the following, as may be found in greater detail in textbooks of mechanics:
Let the system have k degrees of freedom, i.e., let its existing state be
determined by giving that numerical values of k coordinates q1, . . . , qk. The
energy is a given function of the coordinates and their time derivatives:

E = L(q1, . . . , qk, q̇1, . . . , q̇k)

and, as a rule, is a quadratic function of the derivatives q̇1, . . . , q̇k. The
“conjugate momenta” p1, . . . , pk of the coordinates q1, . . . , qk are introduced
by the relations

p1 = ∂L
∂q̇1

, . . . , pk = ∂L
∂q̇k

In the case of the above assumption on L, these depend linearly on the q1, . . . , qk.
If need be, we can eliminate the q̇1, . . . , q̇k from L by use of the p1, . . . , pk, so
that

E = L(q1, . . . , qk, q̇1, . . . , q̇k) = H(q1, . . . , qk, p1, . . . , pk)

(This H is the Hamiltonian function.) In both theories, we must now learn as
much as possible from this Hamiltonian function about the true, i.e., quantum
mechanical, behavior of the system. Primarily, therefore, we must determine11

10 The present state of affairs may be described this way, that the theory,
so far as it deals with individual electrons or with electronic shells of atoms or
molecules, is entirely successful, as it is also whenever it deals with electrostatic
forces and with electromagnetic processes connected with the production,
transmission and transformation of light. On the other hand, in problems of the
atomic nucleus, and in all attempts to develop a general and relativistic theory
of electromagnetism, in spite of noteworthy partial successes, the theory seems
to lead to great difficulties, which apparently cannot be overcome without the
introduction of wholly new ideas.

11 Motion, according to classical mechanics, is determined (as is well known)
by the Hamiltonian function, since it gives rise to the equations of motion

q̇i = ∂H
∂pi

, ṗi = −∂H
∂qi

: i = 1, 2, . . . , k

Before the discovery of quantum mechanics, the attempt was made to explain
the quantum phenomena, while retaining these equations of motion, by the

 EBSCOhost - printed on 2/13/2023 10:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



8 Chapter I: Introductory Considerations

the possible energy levels, then find out the corresponding “stationary states,”
and calculate the “transition probabilities,” etc.12

The directions which the matrix theory gives for the solution of this
problem run as follows:We seek a system of 2k matrices Q1, . . . , Qk, P1, . . . , Pk,13

which in the first place satisfy the relations

QmQn − QnQm = O
Pm Pn − Pn Pm = O
Pm Qn− Qn Pm = δmn

h
2πi I





(m, n = 1, 2, . . . , k)

and for which, in the second place, the matrix

W = H(Q1, . . . , Qk, P1, . . . , Pk)

becomes a diagonal matrix. (We shall not go into the details here of the origin
of these equations, especially the first group, the so-called “commutation rules”
which govern the whole non-commutative matrix calculus of this theory. The
reader will find exhaustive treatments of this subject in the works cited inNote 1.
The quantity h [= 2π! ] is Planck’s constant. The diagonal elements of W, say

formulation of supplementary quantum conditions (see Note 6). For each
set of values of q1, . . . , qk, p1, . . . , pk, given at time t = 0, the equations of
motion determined the further time variation, or “orbit,” of the system in the
2k dimensional “phase space” q1, . . . , qk, p1, . . . , pk. Any additional condition,
therefore, results in a limitation of all possible initial values or orbits to a
certain discrete set. (Then, corresponding to the few admissible orbits, there
is only a smaller number of possible energy levels.) Even though quantum
mechanics has broken completely with this method, it is nevertheless clear
from the outset that the Hamiltonian function must still play a great role in
it. Indeed, common experience proves the validity of the Bohr correspondence
principle, which asserts that the quantum theory must give results in agreement
with those of classical mechanics in the so-called limiting case of large quantum
numbers.

12 The three latter concepts are taken from the old quantum theory developed
principally by N. Bohr. Later we shall analyze these ideas in detail from the
point of view of quantum mechanics. See the Dirac theory of radiation given
in III.6. Their historical development can be followed in Bohr’s papers on the
structure of the atom, published from 1913 to 1916.

13 As a more detailed analysis would show, this is a problem of infinite
matrices. We shall not go farther here into the properties of such matrices,
since we shall consider them thoroughly later on. For the moment it suffices
that the formal algebraic calculation with these matrices is to be understood in
the sense of the known rules of matrix addition and multiplication. By O and
I we mean the null matrix and the unit matrix respectively (with all elements
identically zero, and with elements equal to 1 on the main diagonal and zero
everywhere else, respectively).
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2. The Original Formulations of Quantum Mechanics 9

w1, w2, . . . are then the different allowed energy levels of the system. The
elements of the matrices Q1, . . . , Qk—q(1)

mn, . . . , q(k)
mn—determine in a certain way

the transition probabilities of the system (from the mth state with energy wm

to the nth state with energy wn, wm > wn) and the radiation thereby emitted.

In addition, it should be noted that the matrix

W = H(Q1, . . . , Qk, P1, . . . , Pk)

is not completely determined by the Q1, . . . , Qk, P1, . . . , Pk and the classical
Hamiltonian function

H(q1, . . . , qk, p1, . . . , pk)

inasmuch as the Qi and Pi do not all commute with one another (in
multiplication), while it would be meaningless to distinguish between say p1q1

and q1p1 for H(q1, . . . , qk, p1, . . . , pk) in the classical mechanical sense. We
must therefore determine the order of the variables qi and pi in the terms of
H, beyond the classical meaning of this expression. This process has not been
carried out with complete generality, but the appropriate arrangements are
known for the most important special cases. (In the simplest case, whenever
the system under investigation consists of particles, and therefore has k = 3ν
coordinates q1, . . . , q3ν—such that, e.g., q3µ−2, q3µ−1, q3µ are the three cartesian
coordinates of the µth particle, µ = 1, . . . , ν—in which the interaction of these
particles is given by a potential energy V (q1, . . . , q3ν), there is no such doubt.
The classical Hamiltonian is then

H(q1, . . . , q3ν , p1, . . . , p3ν) =
ν∑

µ=1

1
2mµ

(p2
3µ−2 + p2

3µ−1 + p2
3µ)

+ V (q1, . . . , q3ν)

where mµ is the mass of the µth particle, and p3µ−2, p3µ−1, p3µ are the
components of its momentum. What this means after the substitution of the
matrices

Q1, . . . , Q3ν , P1, . . . , P3ν

is perfectly clear; in particular, the potential energy introduces no difficulties,
since all the Q1, . . . , Q3ν commute with each other.) It is important that only
Hermitian matrices be permitted, i.e., such matrices A = {amn}, for which
amn = anm holds identically (the elements amn may be complex!). Therefore

H(Q1, . . . , Qk, P1, . . . , Pk)

must be Hermitian, whenever all the Q1, . . . , Qk, P1, . . . , Pk are such. This
involves a certain restriction in the problem of the order of the factors which
was mentioned above. However, the restriction is not sufficient to determine the
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10 Chapter I: Introductory Considerations

H(Q1, . . . , Qk, P1, . . . , Pk) uniquely from the classical H(q1, . . . , qk, p1, . . . , pk).14

On the other hand, the directions of wave mechanics are the following:
First we form the Hamiltonian H(q1, . . . , qk, p1, . . . , pk) and then the differential
equation

H(q1, . . . , qk, !
i

∂
∂q1

, . . . , !
i

∂
∂qk

)ψ(q1, . . . , qk) = λψ(q1, . . . , qk)

for an arbitrary function ψ(q1, . . . , qk) in the configuration space of the system
(and not the phase space, i.e., the p1, . . . , pk do not enter into ψ). In this way,

H(q1, . . . , qk, !
i

∂
∂q1

, . . . , !
i

∂
∂qk

)

is interpreted simply as a functional operator. For example, this operator in
the case mentioned above,

H(q1, . . . , q3ν , p1, . . . , p3ν) =
ν∑

µ=1

1
2mµ

(p2
3µ−2 + p2

3µ−1 + p2
3µ)

+ V (q1, . . . , q3ν)

transforms the function ψ(q1, . . . , qk) into
ν∑

µ=1

1
2mµ

(!
i

)2( ∂2

∂q2
3µ−2

ψ + ∂2

∂q2
3µ−1

ψ + ∂2

∂q2
3µ

ψ
)

+ V ψ

(we have omitted the variables q1, . . . , q3ν). Since the operation

q1
!
i

∂
∂q1

is different from the operation15

!
i

∂
∂q1

q1

14 If Q1, P1 are Hermitian, neither Q1P1 nor P1Q1 is necessarily Hermitian,
but it is true that 1

2 (Q1P1 + P1Q1) is always Hermitian. In the case of Q2
1 P1,

we should also consider 1
2 (Q2

1 P1 + P1Q2
1) as well as Q1P1Q1 (however, these

two expressions happen to be equal for P1Q1 − Q1P1 = (!/i)I). In the case
Q2

1 P2
1, we should also consider 1

2 (Q2
1 P2

1 + P2
1 Q2

1), Q1P2
1 Q1, P1Q2

1 P1, etc. (these
expressions do not all coincide in the special case mentioned above). We shall
not discuss this further at present, since the operator calculus developed later
will permit these relations to be seen much more clearly.

15 We have
!
i

∂
∂q1

(q1ψ) = q1
!
i

∂
∂q1

ψ + !
i ψ

Consequently
!
i

∂
∂q1

· q1 − q1 · !
i

∂
∂q1

= !
i I

where I is the identity operator (transforming ψ into itself), i.e., !
i

∂
∂q1

and q1

satisfy the same commutation rules as the matrices P1 and Q1.
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2. The Original Formulations of Quantum Mechanics 11

there is here, too, an uncertainty because of the ambiguity of the order of the
terms qi and pi in

H(q1, . . . , qk, p1, . . . , pk)

However, Schrödinger has pointed out how this uncertainty can be eliminated,
by reduction to a definite variational principle, in such a way that the resulting
differential equation becomes self-adjoint.16

Now this differential equation (the “wave equation”) has the character of an
eigenvalue problem in which λ is to be interpreted as an eigenvalue parameter,
and in which the vanishing of the eigenfunction ψ = ψ(q1, . . . , qk) at the
boundaries of the configuration space (the space of the q1, . . . , qk)—together
with the conditions of regularity and single-valuedness—is required. In the
sense of the wave theory, the eigenvalues of λ (both discrete and continuous
spectra)17 are the allowed energy levels. And even the corresponding (complex)
eigenfunctions are related to the corresponding (stationary, in the Bohr sense)
states of the system. For a ν-electron system (k = 3ν, see above; e is the charge
of the electron) the charge density of the µth electron, measured at the point
x, y, x, is given by the expression

e

∫
· · ·

∫

︸ ︷︷ ︸
(3ν−3)fold

|ψ(q1 . . . q3µ−3xyzq3µ+1 . . . q3ν)|2dq1 · · · dq3µ−3dq3µ+1 · · · dq3ν

i.e., according to Schrödinger, this electron is to be thought of as “smeared”
over the entire x, y, z (= q3µ−2, q3µ−1, q3µ) space. (In order that the total charge
be e, ψ must be normalized by the condition

∫
· · ·

∫

︸ ︷︷ ︸
(3ν)fold

|ψ(q1, . . . , q3ν)|2dq1 · · · dq3ν = 1

The integration is over all 3ν variables. The same equation obtains for each
µ = 1, . . . , ν.)

In addition, the wave mechanics can also make observations on systems
which are not in Bohr stationary states,18 in the following way: If the state is
not stationary, i.e., if it changes with time, then the wave function

ψ(q1, . . . , qk; t)

16 See his first two articles, in the book mentioned in Note 9 (also Ann. Phys.
79 (1926)).

17 See the first of the works of Schrödinger mentioned in Note 16. A precise
definition of the spectrum and its parts will be given later, in II.6 to II.9.

18 In the original framework of matrix mechanics (see our presentation above),
such a general state concept, of which the stationary states are special cases,
was not given. Only the stationary states, arranged according to the values of
the energy, were the object of that theory.
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12 Chapter I: Introductory Considerations

contains time t, and it varies according to the differential equation19

−H(q1, . . . , qk, !
i

∂
∂q1

, . . . , !
i

∂
∂qk

)ψ(q1, . . . , qk; t) = !
i

∂
∂tψ(q1, . . . , qk; t)

That is, ψ can be given arbitrarily for t = t0, and it is then determined uniquely
for all t. Even the stationary ψ are really time-dependent, as a comparison of
the two Schrödinger differential equations will show, but the dependence on t
is given by

ψ(q1, . . . , qk; t) = e−iλt/! · ψ(q1, . . . , qk)

That is, t appears only in a factor of absolute value independent of q1, . . . , qk

(i.e., constant in configuration space), so that, for example, the charge density
distribution defined above does not change. (We shall suppose generally—and
we shall find this confirmed later by more detailed considerations—that a factor
of absolute value 1 and constant in configuration space is, in the case of ψ,
essentially unobservable.)

Since the eigenfunctions of the first differential equation form a complete
orthogonal set,20 we can develop each ψ(q1, . . . , qk) in terms of this set of
functions. If ψ1, ψ2, . . . are the eigenfunctions (all independent of time), and
λ1, λ2, . . . are their respective eigenvalues, the development becomes21

ψ(q1, . . . , qk) =
∞∑

n=1

anψn(q1, . . . , qk)

If ψ is still time-dependent, then t is introduced in the coefficients an (the
eigenfunctions ψ1, ψ2, . . . on the other hand are to be understood both here and
in everything which follows as independent of time). Therefore, if the

ψ = ψ(q1, . . . , qk)

at hand is actually ψ = ψ(q1, . . . , qk; t0), then it follows with regard to

ψ = ψ(q1, . . . , qk; t) =
∞∑

n=1

an(t)ψn

that

Hψ =
∞∑

n=1

an(t)Hψn =
∞∑

n=1

λnan(t)ψn

!
i

∂
∂tψ =

∞∑

n=1

!
i ȧn(t)ψn

19 H = H(q1, . . . , qk, p1, . . . , pk) may also contain the time t explicitly.
Naturally, there will then be in general no stationary states at all.

20 Provided that only a discrete spectrum exists. See II.6.
21 These, as also all the following series expansions, converge “in the mean.”

We shall consider this again in II.2.
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3. The Transformation Theory 13

and by equating the coefficients of the second differential equation:

!
i ȧn(t) = −λnan(t) =⇒ an(t) = cne−iλnt/!

i.e.,
an(t) = e−iλn(t−t0)/!an

ψ = ψ(q1, . . . , qk; t) =
∞∑

n=1

e−iλn(t−t0)/!anψn(q1, . . . , qk)

Therefore, if ψ is not stationary, i.e., if all an except one do not vanish, then
ψ (for variable t) no longer changes only by a space constant factor of absolute
value unity. Therefore, in general, the charge densities also change, i.e., real
electrical oscillations occur in space.22

We see that the initial concepts and the practical methods of the two
theories differ considerably. Nevertheless, from the beginning they have always
yielded the same results, even where both gave details differing from the older
concept of quantum theory.23 This extraordinary situation was soon clarified,24
as mentioned in I.1, with the proof by Schrödinger of their mathematical
equivalence. We shall turn our attention to this equivalence proof, and at
the same time explain the Dirac-Jordan general transformation theory (which
combines the two theories).

3. THE EQUIVALENCE OF THE TWO THEORIES:

The Transformation Theory

The fundamental problem of the matrix theory was to find the matrices
Q1, . . . , Qk, P1, . . . , Pk such that first, the commutation rules of I.2 (page 4) are
satisfied, and second, that a certain function of these matrices,

H(Q1, . . . , Qk, P1, . . . , Pk)

becomes a diagonal matrix. This problem had already been been divided into
two parts by Born and Jordan in their first publication:

First, matrices Q̄1, . . . , Q̄k, P̄1, . . . , P̄k were sought which have only to
satisfy the commutation rules. This could easily be accomplished;25 then, in
general

H̄ = H(Q̄1, . . . , Q̄k, P̄1, . . . , P̄k)

22 That such oscillations fail to occur for the stationary states, and only for
those, was one of the most important postulates of Bohr in 1913. Classical
electrodynamics is in direct contradiction to this.

23 See the second work of Schrödinger mentioned in Note 16.
24 See Note 7.
25 See, for example, §§20 & 23 of the book of Born and Jordan mentioned in

Note 1.
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14 Chapter I: Introductory Considerations

would not be a diagonal matrix. Then the correct solutions were expressed in
the form

Q1 = S –1Q̄1S
...

Qk = S –1Q̄kS

P1 = S –1 P̄1 S
...

Pk = S –1 P̄k S

where S could be an arbitrary matrix (except that it must be one which possesses
an inverse S –1 with the properties S –1S = SS –1 = I). Since the validity of the
commutation rules for Q1, . . . , Qk, P1, . . . , Pk follows (identically in S!) from
the validity of the rules for Q̄1, . . . , Q̄k, P̄1, . . . , P̄k and since

H̄ = H(Q̄1, . . . , Q̄k, P̄1, . . . , P̄k)

goes over into26

H = H(Q1, . . . , Qk, P1, . . . , Pk) with S –1 H̄ S = H

the only requirement put on S is that S –1 H̄ S be a diagonal matrix where H̄
is given. (Of course, one would also have to see to it that S –1 Q̄1 S, etc. be
Hermitian, just as the Q̄1, etc. were. However, it can be shown upon closer
examination that this additional condition on S can always be satisfied later,
and it shall therefore not be considered in these initial observations.)

Consequently there is need of transforming a given H̄ to the diagonal form
by means of the scheme S –1 H̄ S. Let us formulate therefore precisely what this
means.

Let the matrix H have the elements hµν , the desired matrix S the elements
sµν , and the (also unknown) diagonal matrix H the diagonal elements wµ, i.e.,
the general element wµδµν .27 Now H = S –1 H̄ S is the same as SH = H̄S, and
this means (if we equate the corresponding elements to one another on both

26 Because

S –1 · I · S = I
S –1 · (A + B) · S = S –1AS + S –1BS

S –1 · aA · S = a · S –1AS
S –1 · AB · S = S –1AS · S –1BS

therefore, for each matrix polynomial P (A, B, . . .),

S –1P (A, B, . . .)S = P (S –1AS, S –1BS, . . .)

If we choose for P the left sides of the commutation relations, their invariance
follows from this; if we choose H for P , then we get S –1 H̄ S = H.

27 δµν = 1 for µ = ν and = 0 for µ #= ν is the well-known Kronecker delta.

 EBSCOhost - printed on 2/13/2023 10:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



3. The Transformation Theory 15

sides of the equation, according to the wellknown rules of matrix multiplication):
∑

ν

sµν · wνδνρ =
∑

ν

hµν · sνρ

i.e., ∑

ν

hµν · sνρ = wρ · sµρ

The individual columns s1ρ, s2ρ, . . . (ρ = 1, 2, . . .) of the matrix S and the
corresponding diagonal elements wρ of the matrix H are therefore solutions
of the so-called eigenvalue problem, which runs as follows:

∑

ν

hµνxν = λ · xµ (µ = 1, 2, . . .)

(The trivial solution x1 = x2 = · · · = 0 is naturally excluded.) In fact, xν = sνρ,
λ = wρ is a solution. (xν ≡ 0 i.e., sνρ ≡ 0 [for all ν] is inadmissible, because
then the ρth column of S would vanish identically, although S possesses an
inverse S –1!) It is worth mentioning that these are essentially the only solutions.

Indeed, the above equation means the following: the transform of the vector
x = (x1, x2, . . .) by the matrix H̄ is equal to its multiple by the number λ. We
transform x = (x1, x2, . . .) by S –1, and there results a vector y = (y1, y2, . . .). If
we transform y by H, then this is the same as the transform of x by

HS –1 = S –1H̄SS –1 = S –1H̄

Hence it is a transform of λx by S –1, and therefore the result is λy. Now Hy
has the components ∑

ν

wµδµνyν = wµyµ

and λy the components λyµ. Therefore it is required that wµyµ = λyµ for all
µ = 1, 2, . . . ; i.e., yµ = 0 whenever wµ #= λ. If we call ηρ that vector whose
ρth component is 1, but all others of which are 0, then this means: y is a linear
combination of those ηρ for which wρ = λ—in particular it is zero if there are
none such. The value of x results from the application of S to y, therefore it
is a linear combination of the ηρ from before, transformed with S. The µth

component of Sηρ is (since the νth component of ηρ was δνρ)

∑

ν

sµνδνρ = sµρ

If we then interpret the ρth column (s1ρ, s2ρ, . . .) of S as a vector, then x is a
linear combination of all columns for which wρ = λ—and in particular is zero
if this does not occur. Consequentially, our original assertion has been proved:
the w1, w2, . . . are the only eigenvalues and the xν = sνρ, λ = wρ are essentially
the only solutions.
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16 Chapter I: Introductory Considerations

This is very important, because not only does the knowledge of S, H
determine all the solutions of the eigenvalue problem, but conversely, we can also
determine S, H as soon as we have solved the eigenvalue problem completely. For
example, for H : The wµ are plainly all solutions λ, and each such λ appears
in the series w1, w2, . . . as often as there are linearly independent solutions
x1, x2, . . .28—hence the w1, w2, . . . are already determined except for their
order.29

The fundamental problem of the matrix theory is then the solution of the
eigenvalue equation

E1

∑

ν

hµνxν = λ · xµ (µ = 1, 2, . . .)

Let us now go on to the wave theory. The fundamental equation of this
theory is the “wave equation”

E2 Hφ(q1, . . . , qk) = λφ(q1, . . . , qk)

in which H is the differential operator already discussed—we seek all solutions
φ(q1, . . . , qk) and λ, with the exclusion of the trivial φ(q1, . . . , qk) ≡ 0,
λ arbitrary.This is analogous to what was required of E1: the sequence x1, x2, . . .,
which we can also regard as a function xν of the “discontinuous” variable ν (with
the variable values 1, 2, . . .) corresponds to the function φ(q1, . . . , qk) with the
“continuous” variables q1, . . . , qk; λ has the same role each time. However, the
linear transformation

xµ −→
∑

ν

hµνxν

shows little similarity to the other

φ(q1, . . . , qk) −→ Hφ(q1, . . . , qk)

How should such an analogy be obtained here?

We have regarded the index ν as a variable, and placed it in correspondence
with the k variables q1, . . . , qk ; i.e., a positive integer with the general point of
the k-dimensional configuration space (which may be called Ω from now on).
Therefore we should not expect that

∑
ν can be carried over as a sum into Ω.

We should rather expect the integral
∫
Ω · · ·

∫
Ω · · · dq1 · · · dqk (or more briefly,∫

Ω · · · dv, where dv is the volume element dq1 · · · dqk in Ω) to be the correct
analog. To the matrix element hµν which depends upon two variables of the

28 The S columns s1ρ, s2ρ, . . . of the ρ with wρ = λ form a complete set of
solutions, and as columns of a matrix which possesses an inverse, they must be
linearly independent.

29 Since an arbitrary permutation of the columns of S, together with the
corresponding permutation of the rows of S –1, permutes the diagonal elements
of H in the same way, the order of the w1, w2, . . . is in fact indeterminate.
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3. The Transformation Theory 17

type of the index ν there corresponds a function

h(q1, . . . , qk; q1
′, . . . , qk

′)

in which the q1, . . . , qk and the q1
′, . . . , qk

′ run through the whole Ω domain
independently. The transformation

xµ −→
∑

ν

hµνxν or xν −→
∑

ν′

hνν′xν′

then becomes

φ(q1, . . . , qk) −→
∫

· · ·
∫

︸ ︷︷ ︸
Ω

h(q1, . . . , qk; q1
′, . . . , qk

′)
φ(q1

′, . . . , qk
′)dq1

′ · · · dqk
′

and the eigenvalue problem E1, which we can also write as

E1

∑

ν′

hνν′xν′ = λ · xν

becomes

E3

∫
· · ·

∫

︸ ︷︷ ︸
Ω

h(q1, . . . , qk; q1
′, . . . , qk

′)
φ(q1

′, . . . , qk
′)dq1

′ · · · dqk
′ = λ · φ(q1, . . . , qk)

Eigenvalue problems of the type E3 have been investigated extensively in
mathematics, and can in fact be handled in far reaching analogy to the problem
E1. They are known as “integral equations.”30

But, unfortunately, E2 does not have this form, or, rather, it can only be
brought to this form if a function h(q1, . . . , qk; q1

′, . . . , qk
′) can be found for the

differential operator

H = H(q1, . . . , qk, !
i

∂
∂q1

, . . . , !
i

∂
∂qk

)

such that

I Hφ(q1, . . . , qk) =
∫

· · ·
∫

︸ ︷︷ ︸
Ω

h(q1, . . . , qk; q1
′, . . . , qk

′)

φ(q1
′, . . . , qk

′)dq1
′ · · · dqk

′

identically, i.e., for all φ(q1, . . . , qk). This h(q1, . . . , qk; q1
′, . . . , qk

′), if it exists,
is called the “kernel” of the functional operator H, and H itself is then called
an “integral operator.”

30 The theory of integral equations has received its definitive form through
the work of Fredholm and Hilbert. An exhaustive treatment, complete with
references, is found in the book by Courant and Hilbert, Methoden der
Mathematischen Physik , Berlin, 1931.

 EBSCOhost - printed on 2/13/2023 10:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



18 Chapter I: Introductory Considerations

Nowsucha transformation is generally impossible, i.e.,differential operators
H are never integral operators. Even the simplest functional operator, which
transforms each φ into itself—this operator is called I—is not one. Let us
convince ourselves of this, and for simplicity, take k = 1. Then let it be required
that

∆∆∆1 φ(q) =
∫ ∞

−∞
h(q, q ′)φ(q ′)dq ′

We replace φ(q) by φ(q + q0), set q = 0 and introduce the integration variable
q′′ = q′ + q0. Then

φ(q0) =
∫ ∞

−∞
h(0, q′′ − q0)φ(q′′)dq′′

If we replace q0, q′′ by q, q′ then we see that h(0, q′−q) along with h(q, q′) solves
our problem, hence we may assume that h(q, q′) is only dependent upon q′ − q.
Then the requirement becomes

∆∆∆2 φ(q) =
∫ ∞

−∞
h(q′ − q)dq′ : h(q, q′) = h(q′ − q)

Replacing again φ(q + q0) for φ(q), it suffices to consider q = 0, i.e.,

∆∆∆3 φ(0) =
∫ ∞

−∞
h(q)φ(q)dq

Replacing φ(q) by φ(−q) shows that h(−q) is also a solution along with h(q),
therefore

h1(q) = 1
2

[
h(q) + h(−q)

]

is also, so that h(q) may be considered to be an even function of q.

It is clear that these conditions are impossible of fulfillment: If we choose
φ(q) = h(q) for q ≷ 0, φ(0) = 0, then it follows from ∆∆∆3 that h(q) = 0 for
q ≷ 0.31 But if we choose φ(q) = 1, then we obtain

∫ ∞

−∞
h(q)dq = 1

while ∫ ∞

−∞
h(q)dq = 0

follows directly from the above.

31 More precisely, if we take as a basis the Lebesgue concept of integral, then
for q ≷ 0, h(q) = 0 except for a set of measure 0—i.e., except for such a set
h(q) = 0 identically.
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3. The Transformation Theory 19

Dirac nevertheless assumes the existence of such a function

∆∆∆4 δ(q) = 0 for q ≷ 0, δ(q) = δ(−q),
∫ ∞

−∞
δ(q)dq = 1

This would imply ∆∆∆3:
∫ ∞

−∞
δ(q)φ(q)dq = φ(0)

∫ ∞

−∞
δ(q)dq +

∫ ∞

−∞
δ(q)[φ(q) − φ(0)]dq

= φ(0) · 1 +
∫ ∞

−∞
0 · dq

= φ(0)

therefore also ∆∆∆1 and ∆∆∆2. We should thus think of this function as vanishing
everywhere except at the origin, and of its being so strongly infinite there that
the integral still comes out to be 1 for δ(q).32

If we have once accepted this fiction, it is possible to represent the most
varied differential operators as integral operators—provided that, in addition
to δ(q), we also introduce its derivatives. Then we have

dn

dqn
φ(q) = dn

dqn

∫ ∞

−∞
δ(q − q′)φ(q′)dq′ =

∫ ∞

−∞

∂n

∂qn
δ(q − q′)φ(q′)dq′

=
∫ ∞

−∞
δ(n)(q − q′) · φ(q′)dq′

qnφ(q) =
∫ ∞

−∞
δ(q − q′)qn · φ(q′)dq′

i.e., dn

dqn and qn have the kernels δ(n)(q − q′) and δ(n)(q − q′)qn, respectively.
According to this scheme, we can investigate the kernels of rather complicated
differential operators. For several variables q1, . . . , qk the delta functions lead
to the result

∫
· · ·

∫

︸ ︷︷ ︸
Ω

δ(q1 − q1
′)δ(q2 − q2

′) · · · δ(qk − qk
′)φ(q1

′, q2
′ . . . , qk

′)dq1
′ · · · dqk

′

=
∫ ∞

−∞

[
· · ·

[ ∫ ∞

−∞

[ ∫ ∞

−∞
φ(q1

′, q2
′ . . . , qk

′)δ(q1 − q1
′)dq1

′

]

δ(q2 − q2
′)dq2

′

]
· · ·

]
δ(qk − qk

′)dqk
′

32 The area under the curve of δ(q) is then to be thought of as infinitely thin
and infinitely high, for the point situated at q = 0, and of area unity. This may
be viewed as the limiting behavior for the function

√
a/πe−aq2

as a → ∞ but
it is nevertheless impossible.
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20 Chapter I: Introductory Considerations

=
∫ ∞

−∞

[
· · ·

[ ∫ ∞

−∞

[ ∫ ∞

−∞
φ(q1, q2

′ . . . , qk
′)δ(q2 − q2

′)dq2
′

]
· · ·

]
δ(qk − qk

′)dqk
′

...
= φ(q1, q2, . . . , qk)

∫
· · ·

∫

︸ ︷︷ ︸
Ω

δ ′(q1 − q1
′)δ(q2 − q2

′) · · · δ(qk − qk
′)φ(q1

′, q2
′ . . . , qk

′)dq1
′ · · · dqk

′

= ∂
∂q1

∫
· · ·

∫

︸ ︷︷ ︸
Ω

δ(q1 − q1
′)δ(q2 − q2

′) · · · δ(qk − qk
′)φ(q1

′, q2
′ . . . , qk

′)dq1
′ · · · dqk

′

= ∂
∂q1

φ(q1, . . . , qk), etc.

Hence the integral representation I can be in practice achieved for all
operators.

As soon as we have achieved this representation, the analogy of problems
E1 and E2 is complete. We have only to replace ν, ν ′,

∑
ν and x by

q1, . . . , qk; q1
′, . . . , qk

′;
∫

· · ·
∫

︸ ︷︷ ︸
Ω

· · · dq1
′ · · · dqk

′ and φ

As the vectors xν correspond to the functions φ(q1, . . . , qk), the kernels
h(q1, . . . , qk; q1

′, . . . , qk
′) must correspond to the matrices hνν′ ; however, it

is useful to regard the kernels themselves as matrices, and consequently to
interpret the q1, . . . , qk as row- and the q1

′, . . . , qk
′ as column-indices,

corresponding to ν and ν′ respectively. We then have, in addition to the
ordinary matrices {hνν′} with discrete row-column domains enumerated by the
numbers 1, 2, . . ., others,

{h(q1, . . . , qk; q1
′, . . . , qk

′)}

(the kernels), for which each domain is characterized by k variables, varying
continuously throughout the entire Ω.

This analogy may seem entirely formal, but in reality it is not so. The
indices ν and ν ′ can also be regarded as coordinates in a state space, that is,
if we interpret them as quantum numbers (in the sense of the Bohr theory: as
numbers of the possible orbits in phase space which are then discrete because
of the restrictions of the quantum conditions).

We do not desire to follow any further here this train of thought which was
shaped by Dirac and Jordan into a unified theory of the quantum processes.
The “improper” functions (such as δ(x), δ ′(x)) play a decisive role in this
development—they lie beyond the scope of mathematical methods generally
used, and we desire to describe quantum mechanics with the help of these
latter methods. We therefore pass over to the other (Schrödinger) method of
unification of the two theories.
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4. Hilbert Space 21

4. THE EQUIVALENCE OF THE TWO THEORIES:

Hilbert Space

The method sketched in 1.3 resulted in an analogy between the “discrete”
space of index values Z = (1, 2, . . .) and the continuous state space Ω of the
mechanical system (Ω is k-dimensional, where k is the number of classical
mechanical degrees of freedom). That this cannot be achieved without some
violence to the formalism and to mathematics is not surprising. The spaces Z
and Ω are very different, and every attempt to relate the two must run into
great difficulties.33

What we do have, however, is not a relation of Z to Ω, but only a relation
between the functions in these two spaces, i.e., between the sequences x1, x2, . . .
which are the functions in Z, and the wave functions φ(q1, . . . , qk) which are
the functions in Ω. These functions, furthermore, are the entities which enter
most essentially into the problems of quantum mechanics.

In the Schrödinger theory, the integral

∫
· · ·

∫

︸ ︷︷ ︸
Ω

|φ(q1, . . . , qk)|2dq1 . . . dqk

plays an important role—it must equal 1 in order that φ can be given a
physical interpretation (see 1.2). In matrix theory, on the other hand (see
problem E1 in 1.3), the vector x1, x2, . . . plays the decisive role. The condition
of finiteness

∑
ν |xν |2 in the sense of the Hilbert theory of such eigenvalue

problems (see reference in Note 30) is always imposed on this vector. It is also
customary, having excluded the trivial solution xν ≡ 0, to set up the normal-
ization condition

∑
ν |xν |2 = 1. It is plain in Z or Ω that this limits the field

of admissible functions to those with finite

∑

ν

|xν |2 or
∫

· · ·
∫

︸ ︷︷ ︸
Ω

|φ(q1, . . . , qk)|2dq1 . . . dqk

because only with such functions can the above
∑

ν or
∫
· · ·

∫
Ω be made equal

to 1 by multiplication with a constant factor—i.e., can be normalized in the

33 Such a unification was undertaken, long before quantum mechanics, by
E. H. Moore, the originator of the so-called “general analysis.” See the article
on this subject by Hellinger & Toeplitz in Math. Enzyklopädie, vol II, C, 13,
Leipzig, 1927.
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22 Chapter I: Introductory Considerations

usual sense.34 We call the totality of such functions FZ and FΩ, respectively.

Now the following theorem holds: FZ and FΩ are isomorphic (Fischer
and F. Riesz35). To be precise, this means the following: It is possible to set
up a one-to-one correspondence between FZ and FΩ; i.e., to each sequence
x1, x2, . . . with finite

∑
ν |xν |2 a function φ(q1, . . . , qk) with finite

∫
· · ·

∫

︸ ︷︷ ︸
Ω

|φ(q1, . . . , qk)|2dq1 . . . dqk

can be assigned, and conversely in such a manner that this correspondence is
linear and isometric. By “linearity” this is meant: if x1, x2, . . . corresponds to
φ(q1, . . . , qk) and y1, y2, . . . to ψ(q1, . . . , qk), then ax1, ax2, . . . and
x1 + y1, x2 + y2, . . . correspond respectively aφ(q1, . . . , qk) and

φ(q1, . . . , qk) + ψ(q1, . . . , qk)

By “isometry” this is meant: if x1, x2, . . . and φ(q1, . . . , qk) correspond to one
another then

∑

ν

|xν |2 =
∫

· · ·
∫

︸ ︷︷ ︸
Ω

|φ(q1, . . . , qk)|2dq1 . . . dqk

(The word isometric has the connotation that it is customaryto regard x1, x2, . . .
and φ(q1, . . . , qk) as vectors, and to consider

( ∑

ν

|xν |2
) 1

2

and ( ∫
· · ·

∫

︸ ︷︷ ︸
Ω

|φ(q1, . . . , qk)|2dq1 . . . dqk

) 1
2

34 It is a repeatedly observed fact in the Schrödinger theory that only the
finiteness of ∫

· · ·
∫

︸ ︷︷ ︸
Ω

|φ(q1, . . . , qk)|2dq1 . . . dqk

is required in the case of the wave functions φ. So, for example, φ may be
singular, or perhaps become infinite, if only the above integral remains finite.
An instructive example for this is the hydrogen atom in the relativistic theory
of Dirac; see Proc. Roy. Soc. 117 (1928); also W. Gordon, Z. Physik 48, (1928).

35 In the course of our discussion of Hilbert space, a proof of this theorem will
be given (see II.2 & II.3, especially theorem 5 in II.2). It is worth mentioning
that the part of this theorem sufficient for many purposes, and easier to prove,
is the isomorphism between FΩ and an appropriate part of FZ ; this is due to
Hilbert (Gött. Nachr. 1906). Thus Schrödinger’s original equivalence proof
(see Note 7) corresponds to just this part of the theorem.
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as their “lengths.”) In addition, if x1, x2, . . . and y1, y2, . . . correspond
respectively to φ(q1, . . . , qk) and ψ(q1, . . . , qk), then

∑

ν

xν ȳν =
∫

· · ·
∫

︸ ︷︷ ︸
Ω

φ(q1, . . . , qk)ψ(q1, . . . , qk)dq1 . . . dqk

(and both sides are absolutely convergent). On this latter point, it should be
observed that one might have preferred to have quite generally

∑

ν

xν =
∫

· · ·
∫

︸ ︷︷ ︸
Ω

φ(q1, . . . , qk)dq1 . . . dqk

or something similar; i.e., a complete analogy between addition on the one hand
and integration on the other—but a closer examination shows that addition

∑
ν

and integration
∑

ν

xν =
∫

· · ·
∫

︸ ︷︷ ︸
Ω

· · · dq1 . . . dqk

are employed in quantum mechanics only in such expressions as xν ȳν or
φ(q1, . . . , qk)ψ(q1, . . . , qk), respectively.

We do not intend to pursue any investigation at this point as to how this
correspondence is to be established, since this will be of great concern to us
in the next chapter. But we should emphasize what its existence means: Z
and Ω are very different, and to set up a direct relation between them must
lead to great mathematical difficulties. On the other hand, FZ and FΩ are
isomorphic, i.e., identical in their intrinsic structure (they realize the same
abstract structure in different forms)—and since they (and not Z and Ω!) are
the real analytical substrata of the matrix and wave theories, this isomorphism
means that the two theories must always yield the same numerical results. That
is, this is the case whenever the isomorphism lets the matrix

H̄ = H(Q̄1, . . . , Q̄k; P̄1, . . . , P̄k)

and the operator
H = H(q1, . . . , qk, !

i
∂
∂q1

, . . . , !
i

∂
∂qk

)

correspond to one another. Since both are obtained by the same algebraic
operations from the matrices Q̄#, P̄# (# = 1, . . . , k) and the functional operators
q#, (!/i) ∂

∂q!
respectively, it suffices to show that q# corresponds to the matrix

Q̄# and (!/i) ∂
∂q!

to the matrix P̄#. Now nothing further is required of the Q̄#, P̄#

(# = 1, . . . , k) than that they satisfy the commutation rules mentioned in 1.2:

QmQn − QnQm = O
Pm Pn − Pn Pm = O
Pm Qn− Qn Pm = δmn

h
2πi I





(m, n = 1, 2, . . . , k)

But the matrices corresponding to the q#, (!/i) ∂
∂q!

will certainly do this, because
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24 Chapter I: Introductory Considerations

the functional operators q#, (!/i) ∂
∂q!

possess the properties mentioned,36 and
these are not lost in the isomorphic transformation to FZ .

Since the systems FZ and FΩ are isomorphic, and since the theories of
quantum mechanics constructed on them are mathematically equivalent, it is
to be expected that a unified theory, independent of the accidents of the formal
framework selected at the time, and exhibiting only the really essential elements
of quantum mechanics, will then be achieved if we do this: Investigate the
intrinsic properties (common to FZ and FΩ) of these systems of functions, and
choose these properties as a starting point.

The system FZ is generally known as “Hilbert space.” Therefore, our
first problem is to investigate the fundamental properties of Hilbert space,
independent of the special form of FZ or FΩ. The mathematical structure
which is described by these properties (which in any specific special case are
equivalently represented by calculations within FZ or FΩ, but for general
purposes are easier to handle directly than by such calculations) is called
“abstract Hilbert space.”

We wish then to describe the abstract Hilbert space, and then to prove
rigorously the following points:

1. That the abstract Hilbert space is characterized uniquely by the
properties specified, i.e., that it admits of no essentially different realizations.

2. That its properties belong to FZ as well as FΩ. (In this respect the
properties discussed only qualitatively in 1.4 will be analyzed rigorously.) When
this has been accomplished, we will employ the mathematical equipment thus
obtained to shape the structure of quantum mechanics.

36 We have

qm · qn · φ(q1, . . . , qk) = qn · qm · φ(q1, . . . , qk)
∂
∂qm

∂
∂qn

φ(q1, . . . , qk) = ∂
∂qn

∂
∂qm

φ(q1, . . . , qk)

∂
∂qm

qn · φ(q1, . . . , qk) − qn
∂
∂qm

· φ(q1, . . . , qk) = δmnφ(q1, . . . , qk)
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CHAPTER II

ABSTRACT HILBERT SPACE

1. THE DEFINITION OF HILBERT SPACE

We must now carry out the program outlined at the end of I.4: to define
Hilbert space, which furnishes the mathematical basis for the treatment of
quantum mechanics in terms of those concepts which are subsequently needed
in quantum mechanics, and which have accordingly the same meaning in the
“discrete” function space FZ of the sequences xν (ν = 1, 2, . . .) and in the
“continuous” FΩ of the wave functions φ(q1, . . . , qk) (q1, . . . , qk run through the
entire state space Ω). These concepts are the following ones, as we have already
indicated:

ααα) The “scalar product,” i.e., the product of a (complex) number a with
an element f of Hilbert space: af . In FZ , axν is obtained from xν , while in
FΩ, aφ(q1, . . . , qk) is obtained from φ(q1, . . . , qk).

βββ ) The addition and subtraction of two elements f, g of Hilbert space: f±g.
In FZ , xν±yν results from xν and yν ; in FΩ, φ(q1, . . . , qk)±ψ(q1, . . . , qk) results
from φ(q1, . . . , qk) and ψ(q1, . . . , qk).

γγγ) The “inner product” of two elements f, g in Hilbert space. Unlike ααα and
βββ, this operation produces a complex number, and not an element of Hilbert
space: (f, g). In FX ,

∑
ν xν ȳν is obtained from xν and yν , while in FΩ,

∫
· · ·

∫

︸ ︷︷ ︸
Ω

φ(q1, . . . , qk)ψ(q1, . . . , qk) dq1 . . . dqk

is obtained from φ(q1, . . . , qk) and ψ(q1, . . . , qk). (The definitions of FZ and FΩ

are still to be completed by the appropriate convergence proofs. We shall give
these proofs in II.3.)

In the following we shall denote the points of Hilbert space by
f, g, . . . , φ, ψ, . . .; complex numbers by a, b, . . . , x, y, . . .; and positive integers by
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26 Chapter II: Abstract Hilbert Space

k, l, m, . . . , µ, ν. We shall also refer to Hilbert space as R∞ whenever necessary
(as an abbreviation for “∞-dimensional Euclidean space,” analogous to the
customary designation Rn for “n-dimensional Euclidean space” (n = 1, 2, . . .)).

The noteworthy feature of the operations af , f ± g, (f, g) is that they are
exactly the basic operations of the vector calculus: those which make possible
the establishment of length and angle calculations in Euclidean geometry or
the calculations with force and work in the mechanics of particles. The analogy
becomes very clear in the case of FZ if, in place of the x1, x2, . . . in R∞, we
consider the ordinary points x1, . . . , xn of an Rn (for which the operations
ααα, βββ and γγγ can be defined in the same way). In particular, for n = 3 we
have the conditions of ordinary space. Under certain circumstances, it is more
appropriate to regard the complexes x1, . . . , xn not as points but as vectors,
directed from the point 0, . . . , 0 to the points x1, . . . , xn.

In order to define abstract Hilbert space, we then take as a basis the
fundamental vector operations af , f ± g, (f, g). We shall consider all Rn

simultaneously with R∞, as will appear in the discussion to which we now
proceed. Therefore, where we do not wish to distinguish between R∞ and the
Rn, we shall use R as the common term for the space.

First of all we postulate for R the typical vector properties:37

A. R is a linear space.

That is: an addition f +g and a “scalar” multiplication af are defined in R
(for f, g elements of R, a a complex number: f + g and af belong to R), and
R has a null element.38 The well-known rules of calculation for vector algebra
then hold for this space:

f + g = g + f

(f + g) + h = f + (g + h)
(commutative law of addition)
(associative law of addition)

(a + b)f = af + bf

a(f + g) = af + ag

}
(distributive law of multiplication)

0f = 0
1f = f

}
(role of 0 and 1)

The rules of calculation notmentioned here follow directly from these postulates.

37 The characterization of Rn by A, B, C(n) originated with Weyl (see Raum,
Zeit, Materie, Berlin (1921)). If we desire to obtain R∞ instead of Rn, then
C(n) must naturally be replaced by C(∞). It is in this case only that D and E

become necessary; see the discussion later in the text.
38 Besides the origin, or the null vector of R, there is also the number 0, so

that the same symbol is used for two things. The relations are such, however,
that no confusion should arise.
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1. Definition of Hilbert Space 27

For example: the role of the null vector in addition:

f + 0 = 1 · f + 0 · f = (1 + 0) · f = 1 · f = f

Or the uniqueness of subtraction: we define −f = (−1) · f , f − g = f + (−g);
then

(f − g) + g = (f + (−g)) + g

= f + ((−g) + g)
(f + g) − g = (f + g) + (−g)

= (f + (g + (−g)))






= f + ((−1) · g + 1 · g)
= f + ((−1) + 1) · g
= f + 0 · g = f + 0 = f

Or the distributive laws of multiplication with subtraction:

a · (f − g) = a · f + a · (−g) = af + a(−(1) · g) = af + (a · (−1)) · g
= af + ((−1) · a) · g = af + (−1) · (ag) = af + (−ag)
= af − ag

(a − b)f = a · f + (−b) · f = af + ((−b)) · f = af + (−1) · (bf)
= af + (−bf) = af − bf

It is not worthwhile to pursue these matters any further; it ought to be clear
that all the rules of the linear vector calculus are valid here.

We can therefore introduce the concept of linear independence for elements
f1, . . . , fk of R in the same way as this is done for vectors:

definition 1. The elements f1, . . . , fk are linearly independent if
it follows from a1f1 + · · ·+ akfk = 0 (a1, . . . , ak complex numbers)
that a1 = · · · = ak = 0.

We further define the analog of the linear entities occurring in the vector
calculus (the line, plane, etc., passing through the origin), the linear manifold.

definition 2. The subset M of R is called a linear manifold if
it contains all the linear combinations a1f1 + · · · + akfk of any k
(= 1, 2, . . .) of its elements f1, . . . , fk.39 If A is an arbitrary subset
of R, then the set of all a1f1 + · · · + akfk (k = 1, 2, . . .; a1, . . . , ak

arbitrary complex numbers; f1, . . . , fk arbitrary elements of A) is a
linear manifold, which evidently contains A. It is called “the linear
manifold spanned by A,” and is symbolized by {A}.

Before we develop this concept any further, let us formulate the next basic
principle of the vector calculus, the existence of the inner product.

39 It would be sufficient to require: if f belongs to M then af also; if f, g
then f + g also. Then if the f1, . . . , fk belong to M, the a1f1, . . . , akfk do also,
and hence successively the a1f1 +a2f2, a1f1 +a2f2 +a3f3, . . ., a1f1 + · · ·+akfk

do too.
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28 Chapter II: Abstract Hilbert Space

B. An Hermitian inner product is defined in R.

That is: (f, g) is defined (f, g in R; (f, g) is a complex number), and it has
the following properties:40

(f ′ + f ′′, g) = (f ′, g) + (f ′′, g)
(a · f, g) = a · (f, g)

(f, g) = (g, f)
(f, f) ! 0

= 0 only if f = 0

(distributive law for the first factor)
(associative law for the first factor)
(Hermitian symmetry)
(definite form)

In addition, the corresponding relations for the second factor follow from
the two properties of the first factor, because of the Hermitian symmetry (we
exchange f and g, and take the complex conjugate of both sides):

(f, g′ + g′′) = (f, g′) + (f, g′′)
(f, a · g) = a · (f, g)

This inner product is of great importance, because it makes possible the
definition of length. In Euclidean space, the magnitude of a vector is defined
by ‖f‖ =

√
(f, f),41 and the distance between two points f, g is defined by

‖f − g‖. We shall start from this point.

definition 3. The “magnitude” of an element f of R is
‖f‖ =

√
(f, f), the distance between f, g is ‖f − g‖.42

We shall see that this concept possesses all the properties of distance. For
this purpose, we prove the following:

theorem 1. |(f, g)| " ‖f‖ · ‖g‖

proof: First we write

‖f‖2 + ‖g‖2 − 2Re(f, g) = (f, f) + (g, g) − (f, g) − (g, f)
= (f − g, f − g) ! 0

40 (f, f) is a real number because of the Hermitian symmetry; indeed, for
f = g this gives (f, f) = (f, f).

41 If f has the components x1, . . . , xn, then by the observations made in γγγ,
II.1 (if we restrict ourselves to a finite number of components),

√
(f, f) =

( n∑

ν=1

|xν |2
) 1

2

i.e., the ordinary Euclidean length.
42 Since (f, f) is real and ! 0, ‖f‖ real, and the square root is chosen ! 0.

The same holds for ‖f − g‖.
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1. Definition of Hilbert Space 29

Re(f, g) " 1
2

(
‖f‖2 + ‖g‖2

)

(If z = u + iv is a complex number—u, v real—then Re z, Im z represent
respectively the real and imaginary parts of z, i.e., Re z = u, Im z = v.) If we
replace f, g by af, (1/a)g (a real, > 0) then the left side is not changed, as can
easily be seen. But on the right we obtain

1
2

(
a2‖f‖2 + a−2‖g‖2

)

Since this expression is ! Re(f, g), the inequality holds in particular for its
minimum, which amounts to ‖f‖ · ‖g‖. (This value is taken on for f, g $= 0 at

a =
(
‖g‖
‖f‖

) 1
2

and for f = 0 or g = 0 as a → +∞ or a → +0, respectively.) Therefore

Re(f, g) " ‖f‖ · ‖g‖

If we replace f, g in this by eiαf, g (α real), then the right side of the equation
does not change (because of

(af, ag) = aa(f, f) = |a|2(f, f)

we have
‖af‖ = |a| · ‖f‖

therefore, for |a| = 1, ‖af‖ = ‖f‖), while the left side goes over into

Re
(
eiα(f, g)

)
= cos α Re(f, g) − sin α Im(f, g)

This clearly has a maximum
√(

Re(f, g)
)2 +

(
Im(f, g)

)2 = |(f, g)|

from which the proposition follows:

|(f, g)| " ‖f‖ · ‖g‖

corollary: For the equality to hold, f, g must be identical except
for a constant (complex) factor.

proof: For the equality to hold in the relation

Re(f, g) " 1
2

(
‖f‖2 + ‖g‖2

)

(f − g, f − g) must be zero; i.e., f = g. In the transition from this expression
to |(f, g)| " ‖f‖ · ‖g‖, f, g are replaced by eiαaf, (1/a)g (a, α real, a > 0)
whenever neither f nor g = 0. In order for the equality to hold in this case we
must therefore have

eiαaf = (1/a)g, i.e. g = a2eiαf = cf (c $= 0)

Conversely, for f or g = 0, or g = cf (c $= 0), the equality clearly holds.
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30 Chapter II: Abstract Hilbert Space

theorem 2. ‖f‖ ! 0 and = 0 only if f = 0. Also,

‖a · f‖ = |a| · ‖f‖
‖f + g‖ " ‖f‖ + ‖g‖

always, the equality holding only if f, g are identical except for a
constant, real factor ! 0.

proof: We have already seen above that the first two propositions are correct.
We prove the inequality of the third in the following manner:

(f + g, f + g) = (f, f) + (g, g) + (f, g) + (g, f)

= ‖f‖2 + ‖g‖2 + 2Re(f, g)

" ‖f‖2 + ‖g‖2 + 2‖f‖ · ‖g‖

=
(
‖f‖ + ‖g‖

)2

‖f + g‖ " ‖f‖ + ‖g‖

In order that the equality hold, Re(f, g) must be equal to ‖f‖ · ‖g‖, which
requires f or g = 0, or g = a2f = cf (c real, > 0), by reason of the observations
made in the proof of the above corollary. Conversely, it is clear in this case that
the equality holds.

From theorem 2 it follows immediately that the distance ‖f − g‖ has the
following properties: f, g have the distance 0 for f = g, and never otherwise.
The distance between g, f is the same as between f, g. The distance of f, h is
less than or equal to the sum of the distances f, g and g, h. The equality exists
only if g = af + (1 − a)h (a real, 0 " a " 1).43 The distance of af, ag is |a|
times the distance of f, g.

Now these are the very same properties of the concept of length which
make it possible in geometry (and topology) to base the concepts of continuity,
limit, limit point, etc. on the concept of length. We wish to make use of this,
and define:

A function F (f) in R (i.e., for which f is defined in R, and which has for
values either always points in R or always complex numbers) is continuous at
the point f0 (in R) if for each ε > 0 there exists a δ > 0 such that ‖f − f0‖ < δ
implies ‖F (f) − F (f0)‖ < ε or |F (f) − F (f0)| < ε (according to whether the
F values are points in R or complex numbers). This function is said to be
bounded in R or in a given subset of R if always ‖F (f)‖ " C or |F (f)| " C
(C a constant, suitably chosen, but fixed). Analogous definitions hold for several
variables. A sequence f1, f2, . . . converges to f , or has the limit f , if the numbers

43 By theorem 2 (which is applied here to f −g, g−h), f −g = 0; i.e., g = f
or g−h = 0; i.e., g = h or g−h = c (f −g) (c real, > 0); i.e., g = c

c+1f + 1
c+1h;

i.e., g = af + (1 − a)h with a respectively equal to 1, 0, c
c+1 . Geometrically,

this means that the point g is collinear with f, h.
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‖f1 − f‖, ‖f2 − f‖, . . . converge to zero. A point is a limit point of a set A
(subset of R!) if it is a limit of a sequence from A.44 In particular, A is said to
be closed if it contains all its limit points, and it is said to be everywhere dense
if its limit points encompass all of A.

We have yet to prove that af , f + g, (f, g) are continuous in all their
variables. Since

‖af − af ′‖ = |a| · ‖f − f ′‖

‖(f + g) − (f ′ + g′)‖ = ‖(f − f ′) + (g + g′)‖ " ‖f − f ′‖ + ‖g − g′‖

the first two propositions are clearly true. Furthermore, from

‖f − f ′‖ < ε, ‖g − g′‖ < ε

if we substitute f ′ − f = φ, g′ − g = ψ, it follows that

|(f, g) − (f ′, g′)| = |(f, g) − (f + φ, g + ψ)|
= |(φ, g) + (f, ψ) + (φ, ψ)|
" |(φ, g)| + |(f, ψ)| + |(φ, ψ)|
" ‖φ‖ · ‖g‖ + ‖f‖ · ‖ψ‖ + ‖φ‖ · ‖ψ‖
" ε

(
‖f‖ + ‖g‖ + ε

)

As ε → 0 this expression approaches zero, and can be made smaller than any
δ > 0.

The properties A, B permit us, as we see, to state a great deal about R, yet
they are not sufficient to enable us to distinguish the Rn from each other and
from R∞. No mention has been made so far of the number of dimensions. This
concept is clearly associated with the maximum number of linearly independent
vectors. If n = 0, 1, 2, . . . then we state for this n:

C(n). There are exactly n linearly independent vectors. That
is, it is possible to specify n such vectors, but not n + 1.

If there exists no maximum number, then we have:

C(∞). There are arbitrarily many linearly independent vectors.

That is, for each k = 1, 2, . . . we can specify k such vectors.

C is then not an essentially new postulate. If A, B hold, then either C(n)

or C(∞) must hold. We obtain a different space R depending upon which we
decide upon. We shall see that if follows from C(n) that R has all the properties
of the n-dimensional (complex) Euclidean space. C(∞), on the other hand, is

44 The following definition of the limit point is also useful: for each ε > 0 let
there be an f ′ of A with ‖f − f ′‖ < ε. The equivalence of the two definitions
can be shown exactly as in ordinary analysis.
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not sufficient to guarantee the essential identity of R with the Hilbert space R∞.
Rather, we need two additional postulates D, E. More precisely, the situation is
the following: We shall show that an R with A, B, C has all the properties of
Rn, in particular the D, E, which will be formulated (and which therefore follow
from A, B, C(∞)). Furthermore, we shall show that an R with A, B, C, D, E
has all the properties of R∞, but that in this case D, E are essential (i.e., they
do not follow from A, B, C(∞)). We therefore proceed to the formulation of
D, E, but the proof that all Rn, R∞ possess these properties will only be given
later (see II.3).

D. R is complete.45

That is, if a sequence f1, f2, . . . in R satisfies the Cauchy convergence criterion
(for each ε > 0 there exists an N = N(ε) such that ‖fm − fn‖ < ε for all
m, n > N), then it is convergent; i.e., it possesses a limit f (see the definition
of this concept given above).

E. R is separable.45

That is, there is a sequence f1, f2, . . . in R that is everywhere dense in R.

In II.2 we shall, as we have said, develop the “geometry” of R from these
basic assumptions, and will be led to distinguish two cases: Rn and R∞.

2. THE GEOMETRY OF HILBERT SPACE

We begin with two definitions: The first contains as much of trigonometry
as is necessary for our purposes: the concept of right angle—orthogonality.

definition 4. Two f, g of R are orthogonal if (f, g) = 0. Two
linear manifolds M and N are orthogonal if each element of M is
orthogonal to each element of N. A set O is called an orthonormal
set if for all f, g of O

(f, g) =
{

1 for f = g
0 for f $= g

(i.e., each pair of elements are orthogonal and each element has the
magnitude 1).46 Furthermore, O is complete if it is not a subset of
any other normal set that contains additional elements.47

45 We use the topological term for brevity (see Hausdorff, Mengenlehre,
Berlin, 1927); it is explained further below in the text.

46 Indeed, ‖f‖ =
√

(f, f) = 1.
47 As we see, complete orthonormal sets correspond to the cartesian

coordinate systems (i.e., the unit vectors pointing in the directions of the axes)
in Rn.
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We observe further: That the orthonormal set is complete means obviously
that no f exists, with ‖f‖ = 1, which is orthogonal to the whole O (see Note
46). But if f were merely different from zero, and orthogonal to the whole set
O, then all of the above would be satisfied for

f ′ = 1
‖f‖ · f

(of course, ‖f‖ > 0):

‖f ′‖ = 1
‖f‖‖f‖ = 1 : f ′ orthogonal to O

Therefore, the completeness of O means that each f orthogonal to the entire
set must vanish.

The second definition is such that it is important only in R∞, since in
Rn every linear manifold is of the type described by it (see the end of II.3).
Therefore we cannot give an intuitive-geometrical picture of its meaning.

definition 5. A linear manifold which is also closed is called a
closed linear manifold . If A is any set in R, and we add to {A} (the
linear manifold spanned by A) all its limit points, we obtain a closed
linear manifold that contains A. It is also a subset of every other
closed linear manifold which contains A.48 We call it the closed
linear manifold spanned by A, and symbolize it by [A ].

We now go on to the more detailed analysis of R, in particular of complete
orthogonal sets. For theorems which require C(n) or C(∞), D, E in addition to
A, B we add the index (n) or (∞) respectively. Such indices are omitted for those
theorems which are common to both cases.

theorem 3(n). Every orthonormal set has " n elements, and is
complete if and only if it has n elements.

note. It follows from the first proposition that there exists a
maximal value for the numbers of elements of orthonormal sets;
those orthonormal sets for which this maximal value is reached
are by definition complete. By virtue of this theorem, complete
orthonormal sets exist in the case C(n) and every such set has n
elements.

proof: Each orthonormal set is (if it is finite) linearly independent. If the
elements are φ1, φ2, . . . , φm if follows from

a1φ1 + · · · + amφm = 0

48 As a linear manifold, this must contain {A}, and since it is closed, also
the limit points of {A}.
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by forming the inner product with φµ (µ = 1, 2, . . . , m) that aµ = 0. So, by
C(n), the set cannot have n+1 elements. An arbitrary orthonormal set therefore
can have no subsets with n + 1 elements. Therefore it is finite and has " n
elements.

A set with n elements permits no extension, and is therefore complete. But
with m < n elements, φ1, φ2, . . . , φm is not complete. Indeed, among the linear
combinations a1φ1 + · · · + amφm there cannot be n > m linearly independent
ones. Hence there must exist, by C(n), an element f which differs from all
a1φ1 + · · · + amφm, i.e., for which

ψ = f − a1φ1 − · · ·− amφm

is always different from zero. Now (ψ, φµ) = 0 means that aµ = (f, φµ)
(µ = 1, 2, . . . , m). Therefore this condition can be satisfied for all µ = 1, 2, . . . , m
simultaneously, thus furnishing a ψ which shows that the set φ1, φ2, . . . , φm is
incomplete.

theorem 3(∞). Every orthonormal set is a finite or a countably
infinite set; if it is complete then it is certainly infinite.

note. We can therefore write all orthonormal sets as sequences:
φ1, φ2, . . . (perhaps being terminated; i.e., finite), which we shall
actually do. It should be observed that the infinite number of
elements of the set is necessary for its completeness, but, unlike
the case C(n), it is not sufficient.49

proof: Let O be an orthonormal set, f, g two different elements belonging to
it. Then

(f − g, f − g) = (f, f) + (g, g) − (f, g) − (g, f) = 2

‖f − g‖ =
√

2

Now let f1, f2, . . . be the sequence which is everywhere dense in R. This sequence
exists by postulate E. For each f of O there exists an fm of the sequence for
which ‖f − fm‖ < 1

2

√
2. The corresponding fm, fn for f, g must be different,

because it would follow from fm = fn that

‖f − g‖ = ‖(f − fm) − (g − fm)
" ‖f − fm‖ + ‖g − fm‖
< 1

2

√
2 + 1

2

√
2 =

√
2

Therefore, to each f of O there corresponds an fm of the sequence f1, f2, . . .
with different fm for different f . Therefore O is finite or is a sequence.

49 Let φ1, φ2, φ3, . . . be complete. Then φ2, φ3, . . . is not complete, but it is
still infinite!
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As in the proof of theorem 3(∞) we show the following: if there are > m
linearly independent elements in R, a set φ1, φ2, . . . , φm cannot be complete.
But since by C(∞) this holds for all m, a complete set must be infinite.

The theorems which now follow, insofar as they are concerned with
convergence, apply only to C(∞), but it is more desirable to formulate them
generally, because of their other implications.

theorem 4. Let φ1, φ2, . . . be an orthonormal set. Then all series∑
ν(f, φν)(g, φν), insofar as they have infinitely many terms, are

absolutely convergent. In particular, for f = g,
∑

ν |(f, φν)|2 " |f |2.

proof: Let aν = (f, φν), ν = 1, 2, . . . , N . Then f −
∑N

ν−1 aνφν = ψ is
orthogonal to all φν , ν = 1, 2, . . . , N (see the proof of theorem 3(n)). Since
f =

∑N
ν=1 aνφν + ψ then

(f, f) =
N∑

µ,ν=1

aµaν(φµ, φν) +
N∑

ν=1

aν(φν , ψ) +
N∑

ν=1

aν(ψ, φν) + (ψ, ψ)

=
N∑

ν=1

|aν |2 + (ψ, ψ)

!
N∑

ν=1

|aν |2

i.e.,
∑N

ν=1 |aν |2 " ‖f‖2. If the set φ1, φ2, . . . is finite, then it follows directly
that

∑N
ν=1 |aν |2 = ‖f‖2; if it is infinite, then N → ∞ results in the absolute

convergence of
∑

ν |aν |2, as well as in the fact that it is " ‖f‖2. This establishes
the second proposition. Because of

|(f, φν)(g, φν)| " 1
2

{
|(f, φν)|2 + |(g, φν)|2

}

the more general convergence statement of the first proposition follows from
the fact of convergence just stated.

theorem 5. Let φ1, φ2, . . . be an infinite orthonormal set. Then
the series

∑∞
ν=1 xνφν converges if and only if

∑∞
ν=1 |xν |2 does (the

latter series has as its terms real, non-negative numbers, and is
therefore convergent or else diverges to +∞).

proof: Since this proposition has significance only for C(∞), we may then use D,
the Cauchy criterion for convergence. The sum

∑∞
ν=1 xνφν then converges;

i.e., the sequence of partial sums
∑N

ν=1 xνφν converges as N → ∞, if for each
ε > 0 such that for L, M > N , ‖

∑L
ν=1 xνφν −

∑M
ν=1 xνφν‖ < ε. We assume

L > M ! N , then

‖
L∑

ν=1

xνφν −
M∑

ν=1

xνφν‖ = ‖
L∑

ν=M+1

xνφν‖ < ε
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‖
L∑

ν=M+1

xνφν‖2 =
( L∑

ν=M+1

xνφν ,
L∑

ν=M+1

xνφν

)

=
L∑

µ,ν=M+1

xµxν(φµ, φν)

=
L∑

ν=M+1

|xν |2

=
L∑

ν=1

|xν |2 −
M∑

ν=1

|xν |2

therefore

0 "
L∑

ν=1

|xν |2 −
M∑

ν=1

|xν |2 < ε2

But this is exactly the Cauchy convergence criterion for the sequence

N∑

ν=1

|xν |2 : N → ∞

i.e., for the series
∑∞

ν=1 |xν |2.

corollary. For f =
∑

ν xνφν , (f, φν) = xν (regardless of whether
the orthogonal set is finite or infinite—in the latter case, of course,
convergence is assumed).

proof: For N ! ν we have

( N∑

µ=1

xµφµ, φν

)
=

N∑

µ=1

xµ(φµ, φν) = xν

For a finite set φ1, φ2, . . . we can set N equal to the highest index; for infinite
sets φ1, φ2, . . . we can let N → ∞ because of the continuity of the inner product.
In either case, (f, φν) = xν results.

theorem 6 . Let φ1, φ2, . . . be an orthonormal set, f arbitrary.
Then f ′ =

∑
ν xνφν , xν = (f, φν) (ν = 1, 2, . . .) is always convergent

if the series is infinite. The expression f − f ′ is orthogonal to
φ1, φ2, . . .

proof: The convergence follows from theorems 4 & 5, and according to the
corollary of theorem 5

(f ′, φν) = xν = (f, φν), (f − f ′, φν) = 0

After these preparations, we can give the general criteria; i.e., even for
C(∞), for the completeness of an orthonormal set.
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theorem7. Let φ1, φ2, . . . be an orthonormal set. For completeness,
each one of the following conditions is necessary and sufficient:
ααα) The closed linear manifold [φ1, φ2, . . .] spanned by φ1, φ2, . . . is
equal to R.
βββ) It is always true that f =

∑
ν xνφν , xν = (f, φν) (ν = 1, 2, . . . ,

convergence by theorem 6).
γγγ ) It is always true that

(f, g) =
∑

ν

(f, φν)(g, φν)

(absolute convergence by theorem 4).

proof: If φ1, φ2, . . . is complete, then f =
∑

ν xνφν is equal to zero (xν = (f, φν),
ν = 1, 2, . . .), since it is orthogonal to φ1, φ2, . . . by theorem 6. Then βββ is
satisfied. If βββ holds, then each f is the limit of its partial sums

∑N
ν=1 xνφν

N → ∞ (if N is infinite) and therefore belongs to [φ1, φ2, . . .]. Therefore
[φ1, φ2, . . .] = R; i.e., ααα is satisfied. If ααα holds, then we may argue as follows:
If f is orthogonal to all φ1, φ2, . . . then it is also orthogonal to their linear
combinations, and by reason of continuity also to their limit points; i.e., to all
[φ1, φ2, . . .]. Therefore it is orthogonal to all R, and hence to itself, (f, f) = 0,
f = 0. Consequently, φ1, φ2, . . . is complete.

We have then the logical scheme:

completeness → βββ → ααα → completeness

i.e., ααα, βββ have been shown to be necessary and sufficient.

From γγγ it follows that if f is orthogonal to φ1, φ2, . . ., and if we set f = g,
then we obtain (f, f) =

∑
ν 0 · 0 = 0, f = 0; i.e., φ1, φ2, . . . is complete. On the

other hand, from βββ (which is now equivalent to completeness),

(f, g) = lim
N→∞

( N∑

µ=1

(f, φµ) · φµ ,
N∑

ν=1

(g, φν) · φν

)

= lim
N→∞

N∑

µ,ν=1

(f, φµ)(g, φν) · (φµ, φν)

= lim
N→∞

N∑

ν=1

(f, φν)(g, φν) =
∞∑

ν=1

(f, φν)(g, φν)

(if the set is finite, then the limitprocess is unnecessary); i.e.,γγγ is also a necessary
and sufficient condition.

theorem 8.To each setf1, f2, . . . there corresponds an orthonormal
set φ1, φ2, . . . which spans the same linear manifold as the former
set (both sets can be finite).
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38 Chapter II: Abstract Hilbert Space

proof: First we replace f1, f2, . . . by a subset g1, g2, . . . which spans the same
linear manifold and which consists of linearly independent elements. This may
be done as follows. Let g1 be the first fn which is different from zero; g2 be the
first fn which is different from a1g1; g3 be the first fn which is different from
all a1g1 + a2g2; . . . (if for any p there exists no fn which is different from all
a1f1+a2f2+· · ·+apfp we terminate the set with gp). These g1, g2, . . . obviously
furnish the desired result.

We now form

γ1 = g1 , φ1 = 1
‖γ1‖

· γ1

γ2 = g2 − (g2, φ1) · φ1 , φ2 = 1
‖γ2‖

· γ2

γ3 = g3 − (g3, φ1) · φ1 − (g3, φ2) · φ2 , φ3 = 1
‖γ3‖

· γ3

(this is the well-known Schmidt orthogonalization process).Each φp construction
is actually possible; i.e., the denominators ‖γp‖ are all different from zero. For
otherwise, if γp = 0, then gp would be a linear combination of the φ1, . . . , φp−1;
i.e., of the g1, . . . , gp−1, which is contrary to the hypothesis. Furthermore, it is
clear that gp is a linear combination of the φ1, . . . , φp and φp is a linear combi-
nation of the g1, . . . , gp. Therefore g1, . . . , gp and φ1, . . . , φp determine the same
linear manifold.

Finally, by construction ‖φp‖ = 1, and for q < p, (γp, φq) = 0, therefore
(γp, γq) = 0. Since we can interchange p, q, the latter statement holds for p $= q.
Therefore φ1, φ2, . . . is an orthonormal set.

theorem 9. Corresponding to each closed linear manifold M there
is an orthonormal set which spans the same M as a closed linear
manifold.

proof: In the case C(n) this theorem is immediate: Because M satisfies A, B,
C(n), each linear manifold M in R satisfies A, B, C(m) with m " n, so that
the note on theorem 3(n) is applicable to M: There is an orthonormal set
φ1, . . . , φm which is complete in M. Because of theorem 7ααα, this is exactly
the proposition to be proved. (As can be seen, the premise of the closed nature
of M is itself unnecessary, since it is actually proved. In this case, compare the
statements concerning definition 5.)

In the case C(∞), we recall that R is separable according to E. We want to
show that M is also separable—in general, that each subset of R is separable.
For this purpose, we form a sequence f1, f2, . . . everywhere dense in R (see E
in II.1), and for each fn and m = 1, 2, . . . we form the sphere Sn,m consisting of
all f with ‖f − fm‖ < 1

m . For each Sn,m which contains points of M, we select
one such point: gn,m. For some n, m this gn,m may be undefined, but the defined
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2. The Geometry of Hilbert Space 39

points form a sequence in M.50 Now let f be any point in M and ε > 0. Then
there exists an m with 1

m < 1
2 ε, and an fn with ‖fn − f‖ < 1

m . Since Sn,m

then contains a point of M (namely f), gnm is defined, and ‖fn − gnm‖ < 1
m ,

therefore ‖f − gnm‖ < 2
m < ε. Consequently, f is the limit point of the gnm

thus defined; hence this sequence yields the desired result.

We shall denote by f1, f2, . . . the sequence from M, everywhere dense in M.
The closed linear manifold determined by it, [f1, f2, . . .], contains all its limit
points, and hence all M; but, since M is a closed linear manifold, and f1, f2, . . .
belong to it, therefore [f1, f2, . . .] is a part of M—therefore it is equal to M. We
now choose the orthonormal set φ1, φ2, . . . by theorem 8. Then

{φ1, φ2, . . .} = {f1, f2, . . .}

and if we add the limit points to both sides we obtain

[φ1, φ2, . . . ] = [ f1, f2, . . . ] = M

But this was our proposition.

We now need only put M = R in theorem 9 and we have by theorem 7ααα
a complete orthonormal setφ1, φ2, . . .So we see: There are complete orthonormal
sets. On the basis of this we can now show that R is an Rn or an R∞ (according
to whether C(n) or C(∞) holds); i.e., all its properties are completely determined.

It is only necessary to show that R allows a one-to-one mapping on the
set of all {x1, . . . , xn} or of all {x1, x2, . . .} (

∑∞
ν=1 |xν |2 finite) respectively, in

such a way that

1◦ af ←→ {ax1, ax2, . . .} follows from f ←→ {x1, x2, . . .}

2◦ f + g ←→ {x1 + y1, x2 + y2, . . .} follows from
{

f ←→ {x1, x2, . . .}
g ←→ {y1, y2, . . .}

3◦ (f, g) =
n or ∞∑

ν=1

xνyν follows from
{

f ←→ {x1, x2, . . .}
g ←→ {y1, y2, . . .}

(In the infinite case in 3◦ the absolute convergence must be shown.) We now
specify the mapping f ←→ {x1, x2, . . .}.

Let φ1, φ2, . . . be a complete orthonormal set; in case C(n) it terminates
with φn, in case C(∞) is infinite (theorems 3(n) & 3(∞)). We set

f =
n or ∞∑

ν=1

xνφν

By theorem 5 this series converges even in the infinite case (since
∑∞

ν=1 |xν |2
is finite); i.e., the elements of either Rn or R∞ are exhausted. By theorem 7βββ

50 It should be recalled that a double sequence gnm (n, m = 1, 2, . . .) can also
be written as a simple sequence: g11, g12, g21, g13, g22, g31, . . .

 EBSCOhost - printed on 2/13/2023 10:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



40 Chapter II: Abstract Hilbert Space

and because
n or ∞∑

ν=1

|(f, φν)|2

is finite (theorem 4) the elements of R are also exhausted (xν = (f, φν) is to
be substituted). It is clear that only one f corresponds to each {x1, x2, . . .},
while the converse follows from the corollary to theorem 5.

Statements 1◦, 2◦ are obviously satisfied, while 3◦ follows from theorem 7γγγ.

3. DIGRESSION ON THE CONDITIONS A–E 51

We must still verify the proposition 2 at the end of 1.4: That FZ , FΩ

actually satisfy the conditions A–E. For this purpose, it is sufficient to consider
FΩ, because we have already shown in II.2 that an R with A–E must be identical
in all properties with R∞; i.e., with FΩ, so that A–E must be valid for FZ also.
Moreover, we shall show the independence of the conditions D, E from A–C(n),
mentioned in II.2, as well as the fact that they follow from A–C(n); i.e., that
they hold in Rn. These three purely mathematical questions form the subject
matter of this section.

We begin with the verification of A–E in FΩ. For this we must rely upon
the Lebesgue concept of the integral, for whose foundations reference should be
made to special works on the subject.52 (The Lebesgue integral is of importance
to us only upon this occasion, and a knowledge of it is not necessary for the
later chapters).

In I.4 we had introduced Ω as the k-dimensional space of the q1, . . . , qk and
FΩ as the totality of all functions f(q1, . . . , qk) with finite

∫
· · ·

∫

︸ ︷︷ ︸
Ω

|f(q1, . . . , qk)|2 dq1 . . . dqk

We now allow all the q1, . . . , qk to vary from −∞ to +∞. All our deductions
would of course remain valid, and even the proofs would be carried over for the
most part verbatim, if we were to limit the range of the q1, . . . , qk (so that Ω
would be, for example, a half space, or the inside of a cube, or the inside of a
sphere, or the outside of these figures, etc.)—indeed even if we were to choose
Ω as a curved surface (e.g., as the surface of a sphere, etc.). But in order not
to become lost in unnecessary complications (whose discussion can be carried
out without difficulty by the reader himself, with the aid of our typical proof)

51 This section is not necessary for the understanding of the later portions of
the text.

52 For example, Carathéodory, Vorlesungen über reelle Functionen, Leipzig,
1927, in particular pp. 237-274; Kamke, Das Lebesguesche Integral , Leipzig,
1925.
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we limit ourselves to the simplest case just mentioned. We shall now go through
A–E consecutively.

For A: We must show: If f, g belong to FΩ then af , f +g belong to it; i.e., if
∫

Ω
|f |2 ,

∫

Ω
|g|2

(we abbreviate
∫

· · ·
∫

︸ ︷︷ ︸
Ω

|f(q1, . . . , qk)|2 dq1 . . . , dqk ,

∫
· · ·

∫

︸ ︷︷ ︸
Ω

|g(q1, . . . , qk)|2 dq1 . . . , dqk

since no confusion can result) are finite, then
∫

Ω
|af |2 = |a|2

∫

Ω
|f |2 and

∫

Ω
|f ± g|2

are also finite. The first case is trivial, while the second is established, because
of |f + g|2 = |f |2 + |g|2 ± 2Re (f ḡ),53 as soon as the finite nature of

∫

Ω
|f · ḡ| =

∫

Ω
|f ||g |

is ascertained. But since |f ||g | ! 1
2

(
|f |2 + |g |2

)
, this follows directly from the

hypothesis.

For B: We define (f, g) as
∫
Ω fḡ. This integral is, as we have already seen,

absolutely convergent. All properties postulated in B are apparent except the
last: That (f, f) = 0 implies f ≡ 0. Now (f, f) = 0 means that

∫
Ω |f |2 = 0,

so the set of points for which |f |2 > 0, i.e., f(q1, . . . , qk) "= 0, must have
Lebesgue measure 0. If we now consider two functions f, g for which f "= g (i.e.,
f(q1, . . . , qk) "= g(q1, . . . , qk)) holds only on a q1, . . . , qk set of Lebesgue measure
0 as not being essentially different,54 then we can assert that f ≡ 0.

For C: Let O1, . . . , On be n domains in Ω, no two of which have a point in
common, and let the Lebesgue measure of all be greater than zero, but finite.
Let f!(q1, . . . , qk) be 1 in O! and zero elsewhere. Since

∫
Ω |f!|2 is equal to the

measure of O! it belongs to FΩ (! = 1, . . . , n). These f1, . . . , fn are linearly
independent. For a1f1 + · · ·+anfn ≡ 0 means that the function on the left fails
to vanish only in a set of measure 0. It therefore has roots in each O!, but since
it is a constant a! in O!, then a! = 0; ! = 1, . . . , n. This construction holds for
all n, so that C(∞) holds.

53 In general

|x + y|2 = (x + y)(x̄ + ȳ) = xx̄ + yȳ + (xȳ + x̄y)

= |x|2 + |y|2 + 2Re (xȳ)
54 This is customary in the theory of the Lebesgue integral.
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For D: Let the sequence f1, f2, . . . satisfy the Cauchy criterion; i.e., for each
ε > 0 there exists an N = N(ε) such that

∫
Ω |fm−fn|2 < ε whenever m, n " N .

We chose n1 = N( 1
8 ); n2 = N( 1

82 ) " n1; n3 = N( 1
83 ) " n1, n2; . . . . Then

n1 ! n2 ! · · · ! nν = N( 1
8ν ) ! nν+1, hence

∫

Ω
|fnν+1

− fnν
|2 < 1

8ν

Let us now consider the set P (ν) of all points for which

|fnν+1
− fnν

| > 1
2ν

If its Lesbegue measure is µ(ν) then
∫

Ω
|fnν+1

− fnν
|2 " µ(ν)

( 1
2ν

)2
= µ(ν)

4ν
< 1

8ν
=⇒ µ(ν) < 1

2ν

Let us also consider the set Q(ν) which consists of the union of
P (ν), P (ν+1), P (ν+2), . . . . Its Lesbegue measure is

! µ(ν) + µ(ν+1) + µ(ν+2) + · · · < 1
2ν

+ 1
2ν+1

+ 1
2ν+2

+ · · · = 1
2ν−1

Outside of Q(ν) it is true that

|fnν+1
− fnν

| < 1
2ν

|fnν+2
− fnν+1

| < 1
2ν+1

|fnν+3
− fnν+2

| < 1
2ν+2

...

Therefore, in general, for ν ! ν ′ ! ν ′′

|fn
ν ′′ − fn

ν ′ | ! |fn
ν ′+1

− fn
ν ′ |

+ |fn
ν ′+2

− fn
ν ′+1

| + · · · + |fn
ν ′′ − fn

ν ′′−1
|

< 1
2ν ′ + 1

2ν ′+1
+ · · · + 1

2ν ′′−1

< 1
2ν ′−1

As ν ′ −→ ∞ this approaches zero independently of ν ′′; i.e., the sequence
fn1

, fn2
, . . . fulfills the Cauchy criterion in the case that the q1, . . . , qk do not lie

in Q(ν). Since we are dealing with numbers (for fixed q1, . . . , qk), this sequence
also converges. Therefore we can say conversely: If the fn1

, fn2
, . . . sequence

does not converge for a certain q1, . . . , qk then this lies in Q(ν). Let the set of
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all q1, . . . , qk for which convergence does not occur be Q. Then Q is a subset
of Q(ν), its measure is therefore not larger than that of Q(ν); i.e., < 1

2ν−1 . This
must be true for all ν, although Q is defined independently of ν. Therefore
Q has the Lebesgue measure 0. Consequently, nothing is changed if we, for
example, set all fn in Q equal to zero (see Note 54). But then fn1

, fn2
, . . .

converges also in Q, and hence everywhere.

We have thus specified a subsequence fn1
, fn2

, . . . of f1, f2, . . . which
converges at all points q1, . . . , qk (this need not be the case for f1, f2, . . .). Let
the limit of fn1

, fn2
, . . . be f(q1, . . . , qk). We must then prove: 1. f belongs to

FΩ; i.e.,
∫
Ω |f |2 is finite; 2. f is the limit of fn1

, fn2
, . . . not only in the sense of

convergence for each q1, . . . , qk but also in the sense of “length convergence” of
Hilbert space; i.e., ‖f −fn2

‖ → 0 or
∫
Ω |f −fn2

|2 → 0; 3. In this sense it is also
the limit of the entire sequence f1, f2, . . . ; i.e., ‖f−fn‖ → 0 or

∫
Ω |f−fn|2 → 0.

Let ε > 0, and let ν0 be chosen with nν0
" N(ε) (for example, 1

8ν0 ! ε),
and ν " ν0, n " N(ε). Then

∫
Ω |fnν

− fn|2 < ε. If we set ν → ∞ then the
integrand approaches |f − fn|2, therefore

∫
Ω |f − fn|2 ! ε (according to the

convergence theorem of Lebesgue integrals: see Note 52). Consequently, first,∫
Ω |f − fn|2 is finite; i.e., f − fn in FΩ; also, since fn belongs to FΩ, f does

likewise: 1. is then proved. Second, it follows from the above inequality that∫
Ω |f − fn|2 → 0 as n → ∞; i.e., 2. and 3. are proved.

For E: We must specify a function sequence f1, f2, . . . everywhere dense
in FΩ.

Let Ω1, Ω2, . . . be a sequence of regions in Ω, each of which has a finite
measure, and which cover the entire Ω. (For example, let ΩN be a sphere of
radius N about the origin. Let f = f(q1, . . . , qk) be any element of FΩ. We
define an fN = fN (q1, . . . , qk) for each N = 1, 2, . . . :

fN (q1, . . . , qk) =





f(q1, . . . , qk)

{
if q1, . . . , qk are in ΩN

and |f(q1, . . . .qk)| ! N

0 otherwise

As N → ∞, fN (q1, . . . , qk) → f(q1, . . . , qk) (from a certain N on, equality is
obtained), therefore |f − fN |2 ! f2. The integrals

∫

Ω
|f − fN |2

are therefore dominated by
∫
Ω |f |2 (finite). Since the integrands approach zero,

the integrals do likewise (see the convergence theorem cited above).

Let the class of all functions g = g(q1, . . . , qk) for which the set of all
points with g "= 0 has finite measure, and which satisfies an inequality |g| ! C
throughout all space, with arbitrary but fixed C, be called G. The above fN

all belong to G. Therefore C is everywhere dense (in FΩ).
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Let g belong to G, ε > 0. Let the measure of the g "= 0 set be M , and the
upper bound for |g| be C. We chose a series of rational numbers

−C < ρ1 < ρ2 < · · · < ρt < C

such that

ρ1 < −C + ε, ρ2 < ρ1 + ε, . . . , ρt < ρt−1 + ε, C < ρt + ε

which can easily be done. We now change each Re g(q1, . . . , qk) value into the
nearest ρs (s = 1, 2, . . . , t), only we let zero remain zero. Then a new function
h1(q1, . . . , qk) is obtained which differs from Re g everywhere by less than ε. In
the same way, we construct an h2(q1, . . . , qk) for Im g. Then for h = h1 + ih2

∫

Ω
|g − h|2 =

∫

Ω
|Re g − h1|2 +

∫

Ω
|Im g − h2|2

! Mε2 + Mε2 = 2Mε2

‖g − h‖ !
√

2M ε

If δ >0 is given, then we set ε < δ/
√

2M and then ‖g − h‖ < δ.

Let the class of all functions h = h(q1, . . . , qk) which take on only a finite
number of different values, actually only those of the form ρ + iσ, ρ, σ rational,
and each such value, except zero, only on sets of measure 0, be called H. The
above h belong to H, therefore H is everywhere dense in G, and therefore in
FΩ also.

Let Π be a set of finite Lebesgue measure. We define a function
fΠ = fΠ(q1, . . . , qk):

fΠ(q1, . . . , qk) =
{ 1 in Π

0 elsewhere

The class H obviously consists of all

t∑

s=1

(ρs + iσs)fΠs (t = 1, 2, . . . ; ρs, σs rational)

We now seek a Π-set sequence Π(1), Π(2), . . . with the following property:
for each ε > 0 there exists a Π(n) such that the measure of all points which
belong to Π but not to Π(n), or to Π(n) but not to Π, is < ε (this set is known
as the difference set Π(n) of Π). If we have such a sequence, then the

t∑

s=1

(ρs + iσs)f
Π(ns)

(t = 1, 2, . . . ; ρs, σs rational; ns = 1, 2, . . .) are everywhere dense inH, because
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if we choose for each Πs the Π(ns) according to the above discussion, then
√√√√

∫

Ω

∣∣∣
t∑

s=1

(ρs + iσs)fΠs
−

t∑

s=1

(ρs + iσs)f
Π(ns)

∣∣∣
2

!
t∑

s=1

√∫

Ω

∣∣(ρs + iσs)fΠs
− (ρs + iσs)f

Π(ns)

∣∣2

=
t∑

s=1

√

(ρ2
s + σ2

s)
∫

Ω

∣∣fΠs
− f

Π(ns)

∣∣2

=
t∑

s=1

√
(ρ2

s + σ2
s) · measure of the difference set

(
Πs, Π(ns)

)

<
t∑

s=1

√
(ρ2

s + σ2
s) · ε =

( t∑

s=1

√
ρ2

s + σ2
s

)√
ε

If a δ > 0 is given, then

ε = δ2
/( t∑

s=1

√
ρ2

s + σ2
s

)2

supplies the result

∥∥∥
t∑

s=1

(ρs + iσs)fΠs −
t∑

s=1

(ρs + iσs)f
Π(ns)

∥∥∥ < δ

But the
t∑

s=1

(ρs + iσs)f
Π(ns)

form a sequence, if we order them appropriately. This can be done in the
following way: Let the common denominator of all ρ1, σ1, . . . , ρt, σt be τ , and
the new numerators be ρ ′

1, σ
′
1, . . . , ρ

′
t, σ

′
t, then the relation becomes

1
τ

t∑

s=1

(ρ ′
s + iσ ′

s)fΠ(ns)

in which we have t, τ = 1, 2, . . . ; ρ ′
s, σ

′
s = 0,±1,±2, . . . ; ns = 1, 2, . . . for

s = 1, . . . , t. To order these functions as a sequence is the identical problem as
doing the same thing for the integers t, τ, ρ ′

1, σ
′
1, . . . , ρ

′
t, σ

′
t, n1, . . . , nt. Among

these complexes of numbers group together those for which the positive integer

I = t + τ + |ρ ′
1| + |σ ′

1| + · · · + |ρ ′
t| + |σ ′

t| + n1 + · · ·nt

has the same value. Then arrange these groups in the order of increase of their
indices I. Each one of these groups (with fixed I) consists obviously of a finite
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number of the complexes in question. If we now arrange each one of these finite
sets in any order, we have in fact obtained a simple sequence containing all the
complexes.

In order to be able to specify the set sequence Π(1), Π(2), . . . mentioned, we
make use of the fact that for each set Π with finite Lebesgue measure M , and
for each δ > 0, there exists an open point set Π′ which covers Π, but whose
measure exceeds it by < δ (see the references of Note 52 and Note 45, where
the concept “open point set” has been defined). For each open Π′ and a δ > 0,
there obviously exists a set Π′′ consisting of a finite number of cubes, which
is contained in Π′, and whose measure is less than that of Π′ by < δ. Clearly
the lengths of the edges of these cubes and their center coordinates can all be
chosen rational. We now easily recognize that the “difference set” of Π, Π′′, as
defined above, has measure < δ+δ = 2δ and therefore for δ = 1

2ε a measure < ε.
We have then accomplished our purpose, if we can order a sequence of sets of
cubes of the type just described.

These sets of cubes are now characterized by the number of their cubes
n = 1, 2, . . . , together with the lengths of their edges κ(ν) and the coordinates
of their center points ξ(ν)

1 , . . . , ξ(ν)
k (ν = 1, . . . , n). The κ(ν), ξ(ν)

1 , . . . , ξ(ν)
k are

rational. Let their common denominator (for all ν = 1, . . . , n) be η = 1, 2, . . . ,
their numerators

κ′(ν) = 1, 2, . . . ; ξ ′(ν)
1 , . . . , ξ ′(ν)

k = 0,±1,±2, . . .

Then our sets of cubes are characterized by the complexes of numbers

n, η, κ′(1), ξ ′(1)
1 , . . . , ξ ′(1)

k , . . . , κ′(n), ξ ′(n)
1 , . . . , ξ ′(n)

k

If we arrange these in the order of increase of the positive integers

n + η + κ′(1) + |ξ ′(1)
1 | + · · · + |ξ ′(n)

k | + · · · + κ′(n) + |ξ ′(n)
1 | + · · · + |ξ ′(n)

k |

then we obtain a simple sequence, exactly as in the earlier analogous case of
the linear combinations of functions.

Before we continue, let us answer the following question: Given an R
satisfying A–E (with C(∞)), in which subsets M of R are A–E again satisfied
(with unchanged definitions of af , f ± g as well as (f, g))?

In order that A hold, M must be a linear manifold. B is valid of itself. We
postpone C momentarily; in any case a C(n) or a C(∞) holds. D means: if a
sequence in M satisfies the Cauchy convergence criterion, then it has a limit in
M. Since such a sequence will certainly possess a limit in R, Dmeans simply that
this limit also belongs to M. That is, M must be closed. The condition E always
holds, as we saw in thee proof of theorem 9. Therefore, we may summarize
thus: M must be a closed linear manifold. We call the orthonormal linear set
which spans M (theorem 9) φ1, φ2, . . . . If it is infinite, then C(∞) obviously
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holds, and M is isomorphic to R∞, therefore to R itself; if it terminates at φn

then C(n) holds (e.g., because of theorem 3(n)); i.e., M is isomorphic to Rn.

But since D, E are valid in M in any case, they are valid in each Rn.
Therefore they also follow from A–C(n).

As we see, we have avoided the direct verification of A–E (with C(n) or
C(∞)) in Rn or R∞. This was achieved by indirect, logical devices. However,
a direct, analytical demonstration causes no essential difficulties either. It may
be left to the reader for proof.

It still remains to show that D and E are independent of A–C(∞). As we
have seen previously, every linear manifold in R∞ satisfies A,B,E as well as C(n)

or C(∞), but if it is not closed then D is not fulfilled. In this case C(∞) must
hold in it, because D follows from C(n). Now it is not difficult to exhibit such a
non-closed linear manifold. Let φ1, φ2, . . . be an orthonormal set. Then the

N∑

ν=1

xνφν : N = 1, 2, . . . ; x1, . . . , xN arbitrary

form a linear manifold, but one which is not closed, because

∞∑

ν=1

1
ν φν

(
∑∞

ν=1(
1
ν )2 is infinite!) is a limiting point, but not an element of the manifold.

( N∑

ν=1

1
ν φν −→

∞∑

ν=1

1
ν φν as N −→ ∞

)

Consequently, D is independent of A–C(∞), E.

Let us consider next all complex functions x(α) whose parameter α is
continuous: −∞ < α < +∞. Moreover, suppose that it is possible to write
x(α) "= 0 in a series, such that the sum

∑
α |x(α)|2 extended over these terms is

finite.55 All these functions x(α) form a space Rcont. Since for any two points
x(α), y(α) of the latter space, x(α) or y(α) "= 0 only for two α -sequences, and
since we can join these two sequences into a single one, x(α) = y(α) = 0 except
for a certain α -sequence α1, α2, . . . . Therefore we need discuss only the values
xn = x(αn), yn = y(αn) for all n = 1, 2, . . . . These all behave the same as in
R∞, as long as only two Rcont points appear. Hence A, B hold in Rcont exactly
as in R∞.56 The same follows for k (= 1, 2, . . .) Rcont points, therefore C(∞)

holds also. Moreover, this is even true for a sequence of Rcont points. Consider

55 Although α varies continuously, this is a sum and not an integral, since
only a sequence of the α appears in the sum!

56 We naturally define
(
x(α), y(α)

)
as

∑
α x(α)y(α).
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x1(α), x2(α), . . . ; the α with xn(α) "= 0 for a sequence for each n = 1, 2, . . . :
α(1)

1 , α(1)
2 , α(2)

1 , α(2)
2 , α(3)

1 , . . . . Consequently, D holds in Rcont as well as in R∞.
It is otherwise with E. In that case, all points of R play a role (all must be limit
points of an appropriate sequence), therefore we must reason from R∞ to Rcont.
Also, the condition is actually not satisfied, because one deduction from it is
invalid: there exists an orthonormal set which cannot be written as a sequence
(contrary to theorem 3(∞)).

Let
xβ(α) =

{
1 for α = β
0 for α "= β

for each β; xβ(α) is an element of Rcont, and the xβ(α) form an orthonormal
set. But they could be written as a sequence only if it were possible for all β:
−∞ < β < +∞, which is well known not to be the case.57 Therefore, E is also
independent of A–C(∞), D.

(In addition, the fundamental difference between the function space of the
f(x) with finite ∫ +∞

−∞
|f(x)|2dx

and that of the x(α) with finite
∑

α |x(α)|2 should be noted. We could just as
well characterize the former as the space of all x(α) with finite

∫ +∞

−∞
|x(α)|2dα !

The entire difference is the replacing of
∫ +∞
−∞ . . . dα by

∑
α . . . , and yet the first

named space is FΩ, therefore satisfies A–E and is isomorphic to R∞, while the
latter, Rcont, violates E and is essentially different from R∞. Nevertheless the
two spaces are identical except for their differing definitions of magnitude!)

4. CLOSED LINEAR MANIFOLDS

The § II.2 is of importance for us not only because of the proof of
isomorphism, butalso because several theorems on orthonormal sets were proved
therein. We now desire to go further into the geometric analysis of Hilbert
space, and to investigate in detail the closed linear manifolds which play in R∞
a role analogous to that played by straight lines, planes, etc. in Rn (i.e., the
Rm, m ! n).

We first recall the definitions 2 & 5: if A is any set in R, then {A} or [A ]
is the linear manifold spanned by A or the closed linear manifold respectively;
i.e., smallest representant of either type which contains A.

57 This is the set theoretical theorem on the “Non-denumerability of the
Continuum.” See, for example, the book of Hausdorff mentioned in Note 45.
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Now we extend this notation so that by

{A,B, . . . , f, g, . . .} or [A,B, . . . , f, g, . . .]

(if A, B, . . . are any subsets and f, g, . . . any elements of R) we understand
respectively the linear manifold or the closed linear manifold spanned by that
set which results from the combination of the A, B, . . . and the f, g, . . . .

If, in particular, M, N, . . . (finite or infinite in number) are closed linear
manifolds, then we designate the closed linear manifold [M, N, . . .] by
M+N+· · · . The linear manifold {M,N, . . .} clearly consists of all sums f+g+· · ·
(f running through M, g running through N, . . . ), while [M,N, . . .] = M+N+· · ·
is obtained from this by the addition of the limit points. If only a finite number
of sets M, N are present, and each element of one is orthogonal to all elements
of the others, then, as we shall soon see, these two representations are equal to
each other, which is not necessarily the case in general.

If M is a subset of N, then we consider the totality of elements of N which
are orthogonal to all elements of M. This also is obviously a closed linear
manifold, which may be called N − M. theorem 14 will clarify the reason
for denoting this as subtraction. The set N − M of all f orthogonal to the
entire M is of special importance. This is called the closed linear manifold
complementary to M.

Finally, we select three particularly simple closed linear manifolds: first,
R itself; second, the set {0} = [0] consisting of zero alone; and third, the set
of all af (f a given element of R, a variable), which is clearly a closed linear
manifold, and therefore simultaneously = {f} = [f ].

We now introduce the concept of “projection,” one which is completely
analogous to that term in Euclidean geometry:

theorem 10. Let M be a closed linear manifold. Then each f can
be resolved in one and only one way into two components, f = g+h,
g from M, h from R − M.

note. We call g the projection of f in M, h (which is orthogonal
to all M) the normal from f onto M. We introduce the notation
PMf for g.

proof: Let φ1, φ2, . . . be the orthonormal set, existing by reason of theorem 9,
spanning the closed manifold M. We write g =

∑
n(f, φn) ·φn. By theorem 6,

this series converges (even when infinite), its sum g obviously belonging to M.
Furthermore, by theorem 6, h = f − g is orthogonal to all φ1, φ2, . . . . But
since the vectors orthogonal to h form a closed linear manifold, along with
φ1, φ2, . . . all M is also orthogonal to h; i.e., h belongs to R − M.

If there were still another resolution f = g ′ + h′, g ′ from M, h′ from
R−M, then g + h = g ′ + h′, g − g ′ = h− h′ = j. The j would have to belong
simultaneously to M and R − M, and would therefore be orthogonal to itself.
Therefore (j, j) = 0, j = 0 and consequently g = g ′, h = h′.
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The operation PMf is therefore one which assigns to each f of R its
projection in M, PMf . In the next section we shall define: an operator R is
a function defined in a subset of R with values from R; i.e., a correspondence
which assigns to certain f of R certain Rf of R. (Not necessarily for all f . For
other f of R the operation may be undefined; i.e., “meaningless.”) PM is then
an operator defined everywhere in R and is known as the projection operator of
M, or merely the projection of M.

theorem 11. The operator PM has the following properties:

PM(a1f1 + · · · + anfn) = a1PMf1 + · · · + anPMfn

(PMf, g) = (f,PMg)
PM(PMf) = PMf

M is the set of all values of PM; i.e., the set of all PMf . But it can
also be characterized as the set of all solutions of PMf = f , while
R − M is the set of all solutions of PMf = 0.

note. In the succeeding sections we shall see that the first property
determines the so-called linear operators, and the second the
so-called Hermitian operators. The third expresses the following:
double application of PM has the same effect as single application.
The customary symbolic representation of this is

PMPM = PM or P2
M = PM

proof: From f1 = g1 + h1, . . . , fn = gn + hn

(
g1, . . . , gn from M

h1, . . . , hn from R − M

)

it follows that

a1f1 + . . . + anfn = (a1g1 + . . . + angn) + (a1h1 + . . . + anhn)

(
a1g1 + . . . + angn from M

a1h1 + . . . + anhn from R − M

)

Therefore
PM(a1f1 + . . . + anfn) = a1g1 + . . . + angn

= a1PMf1 + · · · + anPMfn

This is the first assertion.
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In the second case, let

f = g ′ + h′, g = g ′′ + h′′ :
{

g ′, g ′′ from R
h ′, h ′′ from R − M

Then g ′, g ′′ are orthogonal to h′, h′′. Therefore

(g ′, g) = (g ′, g ′′ + h′′) = (g ′, g ′′) = (g ′ + h′, g ′′) = (f, g ′′)

i.e., (PMf, g) = (f,PMg). This is the second assertion.

Finally, PMf belongs to M, therefore PMf = PMf +0 is the resolution into
components guaranteed by theorem 10 for PMf ; i.e., PM(PMf) = PMf . This
is the third assertion.

The relations PMf = f or 0 signify that in the resolution f = g +h (g from
M, h from R−M: theorem 10) either f −g, h = 0 or g = 0, f = h; i.e., that f
belongs either to M or to R − M. These are the fifth and sixth assertions.
All PMf belong to M by definition, and each f ′ of M is equal to a PMf :
e.g., according to the statements just made, to PMf . This is the fourth assertion.

We observe next that the second and third assertions imply this:

(PMf,PMg) = (f,PMPMg) = (f,PMg) = (PMf, g)

We now want to characterize the projection operators independently of
the M.

theorem 12. An operator E, defined everywhere (see the discussion
preceding theorem 11) is a projection; i.e., E = PM for a closed
linear manifold M, if and only if it has the following properties:

(Ef, g) = (f,Eg), E2 = E

(see the note on theorem 11). In this case, M is uniquely
determined by E (according to theorem 11).

proof: The necessity of this condition as well as the determination of M by E
is obvious from theorem 11. We then have only to show that if E possesses
the above properties, then there is a closed linear manifold M with E = PM.

Let M be the closed manifold spanned by all Ef . Then g−Eg is orthogonal
to all Ef :

(Ef, g − Eg) = (Ef, g) − (Ef,Eg) = (Ef, g) − (E2f, g) = 0

The elements orthogonal to g−Eg of R form a closed linear manifold; therefore
they include M along with Ef , so g−Eg belongs to R−M. The resolution of g
for M, in the sense of theorem 10, is then g = Eg+(g−Eg), hence PMg = Eg,
where g is arbitrary. Therefore the entire theorem is proved.
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If M = R or [0] then R − M = [0] or R respectively, therefore f = f + 0
or 0 + f is the resolution, by theorem 11; hence PMf = f or 0 respectively.
We call I the operator defined (everywhere!) by Rf = f , and O the operator
defined by Rf = 0. Hence PR = I , P[0] = O. Furthermore, it is clear that
the resolution f = g + h (g from M, h from R − M) belonging to M is also
useful for R−M in the form f = h+ g (h from R−M, g from M). (For, since g
belongs to M, it is orthogonal to each element of R−M and therefore belongs to
R−(R−M)). Therefore PMf = g, PR−Mf = h = f−g; i.e., PR−Mf = f−PMf .
This fact, PR−Mf = If − PMf , we express symbolically as PR−M = I − PM (for
the addition, subtraction and multiplication of operators, see the discussion in
theorem 14).

The following should be noted: A short time ago we easily recognized that
M is a subset of R− (R−M). It is difficult to prove directly that both sets are
equal. But this equality follows immediately from

PR−(R−M) = I − PR−M = I − (I − PM) = PM

Moreover, it follows from the above that if E is a projection, I− E is also a
projection, and because I − ( I − E) = E the converse is also true.

theorem 13. It is always true that

‖Ef‖2 = (Ef, f), ‖Ef‖ ! ‖f‖

‖Ef‖ = 0 or = ‖f‖ is characteristic for the f of R − M and M
respectively.

note. In particular, therefore,

‖Ef − Eg‖ = ‖E(f − g)‖ ! ‖f − g‖

i.e., the operator E is continuous(see the discussion after theorem2
in II.1).

proof: We have (see the discussion after theorem 11)

‖Ef‖2 = (Ef,Ef) = (Ef, f)

Since I − E is also a projection,

‖Ef‖2 + ‖f − Ef‖2 = ‖Ef‖2 + ‖(I − E)f‖2

= (Ef, f) + ((I − E)f, f)

= (f, f) = ‖f‖2

Since both components are " 0, they are also ! ‖f‖2; in particular
‖Ef‖2 ! ‖f‖2, ‖Ef‖ ! ‖f‖. That ‖Ef‖ = 0, Ef = 0 expresses the fact that f
belongs to R − M we know from theorem 11. Because of the above relation,
‖Ef‖ = ‖f‖ means that ‖f − Ef‖ = 0, Ef = f and therefore, by theorem 11,
that f belongs to M.
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If R and S are two operators, then we understand by R±S, aR (a a complex
number) and RS the operators defined by

(R ± S)f = Rf ± Sf, (aR)f = a(Rf), (RS)f = R(Sf)

and we use the then natural notation

R0 = I, R1 = R, R2 = RR, R3 = RRR, . . .

The rules of calculation which are valid here can be discussed rather easily. For
R ± S, aR we can verify without difficulty all elementary laws of calculation
valid for numbers, but such is not the case for RS. The distributive law holds,
as can easily be verified: (R ± S)T = RT ± ST and R(S ± T) = RS ± RT (for
the latter the linearity of R is of course necessary; see the note on theorem 11
and the discussion in the following paragraph). The associative law also holds:
(RS)T = R(ST) = RST, but the commutative law RS = SR is not generally
valid. [(RS)f = R(Sf) and (SR)f = S(Rf) need not equal each other! ] If this
law does hold for two particular R, S they are said to commute. Hence, for
example, O and I commute with all R which are defined everywhere:

RO = OR = O, RI = IR = R

Also, Rm and Rn commute, since RmRn = Rm+n, and therefore does not depend
upon the order of m, n.

theorem 14. Let E, F project onto closed linear manifolds M and
N. Then EF is also a projection if and only if E, F commute; i.e., if
and only if EF = FE. Also, EF belongs to the closed linear manifold
P which consists of the elements common to M and N. The operator
E + F is a projection if and only if EF = O (or equally: FE = O).
This means that all M is orthogonal to all N; E+F then belongs to
M+N = [M, N ], which in this case = {M, N}. The operator E−F
is a projection if and only if EF = F (or equally: if FE = F). This
means that N is a subset of M, and E − F belongs to M − N.

proof: For EF we must re-examine the two conditions of theorem 12:

(EFf, g) = (f,EFg), (EF)2 = EF

Because (EFf, g) = (Ff,Eg) = (f,FEg), the first signifies that

(f,EFg) = (f,FEg), (f, (EF − FE)g) = 0

Since this holds for all f , (EF − FE)g = 0, and since this holds for all g,
EF−FE = O, EF = FE. Commutativity is therefore necessary and sufficient for
the first condition, but it also has the second one as a consequence:

(EF)2 = EFEF = EEFF = E2F2 = EF
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Since E + F always satisfies the first condition ((E + F)f, g) = (f, (E + F)g)
(because E, F do so) only the second condition (E + F)2 = E + F remains to be
proved. Since

(E + F)2 = E2 + F2 + EF + FE = (E + F) + (EF + FE)

this means simply that EF + FE = O. Now for EF = O, EF is a projection.
Therefore, by the above proof, EF = FE, therefore EF + FE = O. Conversely,
from EF + FE = O it follows that

E(EF + FE) = E2F + EFE = EF + EFE = O

therefore EFE = O, and therefore EF = O. Consequently, EF = O is necessary
and sufficient, and, since E and F play identical roles, FE = O too is necessary
and sufficient.

E−F is a projection if and only if I− (E−F) = (I−E)+F is one, and since
I−E, F are projections, by the same argument, (I−E)F = O, F−EF = O, EF = F
are characteristic of this, or equally, F(I − E) = O, F − FE = O, FE = F.

We have yet to prove the propositions on M, N (E = PM, F = PN). First,
let EF = FE. Then each EFf = FEf belongs to both M and N, and therefore
to P. And, for each g of P, Eg = Fg = g, therefore EFg = Fg = g; i.e., it has
the form EFf . Consequently, P is the totality of the values of EF, hence, by
theorem 11, EF = PP. Second, let EF = O (therefore also FE = O). Each
(E + F)f = Ef + Ff belongs to {M,N}, and each g of {M, N} is equal to h + j
(h from M, j from N). Therefore Eh = h, Fh = FEf = 0, Fj = j,Ej = EFj = 0.
Therefore

(E + F)(h + j) = Eh + Fh + Ej + Fj = h + j, (E + F)g = g

Then g has the form (E+F)f . Consequently {M,N} is the totality of values of
E+F, but since E+F is a projection, {M,N} is the corresponding closed linear
manifold (theorem 11). Since {M,N} is closed, it = [M, N ] = M + N. Third,
let EF = F (therefore FE = F also). Then E = PM, I − F = PR−N, therefore
E − F = E − EF = E(I − F), equaling PP, where P is the intersection of M and
R − N; i.e., M − N.

Finally, EF = O means that (EFf, g) = 0 always; i.e., (Ff,Eg) = 0; i.e.,
that the entire M is orthogonal to the entire N. And EF = F means F(I−E) = O;
i.e., all N is orthogonal to R−M, or equally: N is a subset of R−(R−M) = M.

If N is a subset of M, then we want also to say for F = PN, E = PM that
F is a part of E : symbolically, E " F or F ! E. (This then means that EF = F
or also FE = F, and has commutativity as a consequence. This can be seen by
observation of M, N or by direct calculation. It is always true that O ! E ! I.
From E ! F, F ! E it follows that E = F. From E ! F, F ! G it follows that
E ! G. This possesses the characteristics of an ordering according to magnitude.
It should further be observed that E ! F, I−E " I−F and E orthogonal to I−F
are all equivalent. Furthermore, the orthogonality of E ′, F ′ follows from that
of E, F if E ′ ! E, F ′ ! F.) If M, N are orthogonal we say that E, F are also
orthogonal. (Hence this means that EF = O or FE = O.) Conversely, if E, F
commute we say that M,N also commute.
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theorem 15. The statement E ! F is equivalent to the general
validity of ‖Ef‖ ! ‖Ff‖.

proof: From E ! F it follows that E = EF, therefore ‖Ef‖ = ‖EFf‖ ! ‖Ff‖
(see theorem 13). Conversely, this theorem has the following consequence:
If Ff = 0 then ‖Ef‖! ‖Ff‖= 0, Ef = 0. Now,because of F(I−F)f = (F−F2)f = 0
we have E(I−F)f = 0 identically; i.e., E(I−F) = E−EF = O, E = EF, therefore
E ! F.

theorem 16. Let E1, . . . ,Ek be projections. Then E1 + · · ·+ Ek is
a projection if and only if all Em, E! (m, ! = 1, . . . , k; m "= !) are
mutually orthogonal. Another necessary and sufficient condition is

‖E1f‖2 + · · · + ‖Ekf‖2 ! ‖f‖2 for all f

Moreover, E1 + · · · + Ek, (E1 = PM1 , . . . ,Ek = PMk
) is then the

projection of M1 + · · · + Mk = [M1, . . . ,Mk], which in this case
= {M1, . . . ,Mk}.

proof: The last proposition obtains by repeated application of theorem 14.
And so does the sufficiency of the first criterion. If the second criterion is
satisfied, then the first one is too. For m "= !, Emf = f

‖E1f‖2 + · · · + ‖Ekf‖2 = ‖f‖2 +
∑

! $=m

‖E!f‖2 ! ‖f‖2

‖E!f‖2 = 0, E!f = 0 : ! "= m

But since Em(Emf) = Emf holds identically, E!(Emf) = 0; i.e., E! Em = O.
Finally, the second condition is necessary: If E1 + · · ·+ Ek is a projection, then
(theorem 13)

‖E1f‖2 + · · · + ‖Ekf‖2 = (E1f, f) + · · · + (Ekf, f)
= ((E1 + · · · + Ek)f, f)

= ‖(E1 + · · · + Ek)f‖2 ! ‖f‖2

We have therefore the following logical scheme: E1 + · · · + Ek is a projection
⇒ second criterion ⇒ first criterion ⇒ E1 + · · ·+ Ek is a projection. Therefore
all three are equivalent.

In conclusion, we prove a theorem on the convergence of the projections:

theorem 17. Let E1, E2, . . . be an increasing or decreasing sequence
of projections: E1 ! E2 ! · · · or E1 " E2 " · · · . These converge
to a projection E in the sense that for all f , Enf −→ Ef ; also, all
En ! E or En " E, respectively.

proof: It suffices to investigate the second case, since the first can be reduced
to it by the substitutions I−E1, I−E2, . . . , I−E for E1, E2, . . . ,E . Let therefore
E1 " E2 " · · · . By theorem 13, ‖E1f‖2 " ‖E2f‖2 " · · · " 0 therefore
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limm→∞ ‖Emf‖2 exists. Then for each ε > 0 there exists an N = N(ε) such
that for m, ! " N

‖Emf‖2 − ‖E!f‖2 < ε

Now for m ! !, Em " E! the operator Em − E! is a projection, therefore

‖Emf‖2 − ‖E!f‖2 = (Emf, f) − (E!f, f)

= ((Em − E!)f, f) = ‖(Em − E!)f‖2

= ‖Emf − E! f‖2

from which it follows that ‖Emf − E!f‖ <
√

ε. The sequence E1f,E2f, . . .
therefore satisfies the Cauchy convergence criterion and has a limit f∗ (see D
from II.2 !). Ef = f∗ therefore defines an operation which has meaning
everywhere.

From (Enf, g) = (f,En g) it follows by transition to the limit that

(Ef, g) = (f,Eg)

and from (Enf,Eng) = (Enf, g) that (Ef,Eg) = (Ef, g). Therefore

(E2f, g) = (Ef, g) : E2 = E

Consequently E is a projection. For ! " m, ‖Emf‖ " ‖E!f‖ and as ! → ∞ we
obtain ‖Emf‖ " ‖Ef‖. Therefore Em " E (theorem 15).

If E1, E2, . . . are projections, each pair of which are mutually orthogonal,
then

E1, E1 + E2, E1 + E2 + E3, . . .

are also projections, and form an increasing sequence. By theorem 17 they
converge to a projection which is " all of them, and which we can denote by
E = E1 + E2 + · · · . Let E1 = PM1 , E2 = PM2 , . . . , E = PM. Since all Em ! E,
Mm is a subset of M, therefore M also includes

[M1,M2, . . .] = M1 + M2 + · · · = M ′

Conversely, all Mm are subsets of M ′; therefore Em ! PM′ = E ′.
Consequently, by reasons of continuity (see the treatment in the proof above),
E ! E ′. Therefore M is a subset of M ′, and hence M = M ′, E = E ′; i.e.,
M = M1 + M2 + · · · or, written another way,

PM1+M2+ ··· = PM1 + PM2 + · · ·

With this we conclude our study of projection operators.
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5. OPERATORS IN HILBERT SPACE

We have now given sufficient consideration to the geometric relations of
the (Hilbert) space R∞ of infinitely many dimensions that we may turn our
attention to its linear operators; i.e., to the linear mappings of R∞ on itself.
For this purpose, we must introduce several concepts which were actually
anticipated, to a certain extent, in the last few sections.

In these sections, we concerned ourselves with operators, which we define
as follows (in accord with the statements made preceding theorem 11):

definition 6. An operator R is a function defined in a subset
of R with values from R; that is, a relation which establishes a
correspondence between certain elements f of R and elements Rf
of R.

(We have admitted the Rn here in addition to R∞. It should be observed
that if R∞ is an FΩ then the operator R is defined for the elements of FΩ;
i.e., ordinary configuration space functions, and its values are defined likewise.
The operators are then so-called “function-functions” or “functionals.” See the
examples of I.2&4.) The class of the f for which Rf is defined—the domain of R
—need not encompass the entire R, but if it does so, R is said to be defined
everywhere. In addition, it is not necessary that the set of all the Rf—the range
of R (the mapping of its domain mediated by R)—be contained in the domain
of R; i.e., if Rf has meaning, it does not necessarily follow that R(Rf) = R2f
is defined.58

We have already given the meaning of R± S, aR, RS, Rm (R, S operators,
a a complex number, m = 0, 1, 2, . . .) in the preceding section:

(R ± S)f = Rf ± Sf, (aR)f = a · Rf, (RS)f = R(Sf)
R0 = I, R1 = R, R2 = RR, R3 = RRR, . . .

In determining the domains of these operators, it should be observed that

58 For example, let R∞ be an FΩ, where Ω is the space of all real x,
−∞ < x < +∞. d

dx is a functional; i.e., an operator, but defined in our
sense only for such f(x) as, in the first place, are differentiable and which, in
the second place, have finite

∫ +∞

−∞
| d
dxf(x)|2 dx

(see II.8 where this is discussed in more detail). Naturally, in general, d2

dx2 f(x)
will not exist, and ∫ +∞

−∞
| d2

dx2 f(x)|2 dx

is not necessarily finite. For example, f(x) = |x| 32 e−x2
behaves in this manner.
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the left sides (i.e., the operators R ± S, aR, RS) are defined only if the right
sides are also defined. Therefore, for example, R ± S is defined only in the
common parts of the domains of R and S, etc. If Rf takes on each of its values
only once, then it has an inverse R –1: R –1 is defined if Rf = g has a solution g,
and its value is then this g. The discussion in the preceding sections was on the
laws of calculation valid for R± S, aR, RS; here we will only add the following
with regard to their domains. The operators there designated as equal also have
identical domains, while operator equations such as O · R = O do not hold for
the domains. Of always has meaning, while (O · R)f , by definition, only has
meaning if Rf is defined (but if both are defined, then both = 0). On the other
hand, I · R = R · I = R hold, and also Rm · R! = Rm+!, and the same is true for
their domains.

If R, S have inverses, then RS also possesses an inverse, which is, as can
easily be seen, (RS) –1 = S –1R –1. Furthermore, for a #= 0, (aR) –1 = 1

aR –1. If R –1

exists we can also form the other negative powers of R:

R−2 = R –1R –1, R−3 = R –1R –1R –1, . . .

After this general development, we proceed to the investigation in more
detail of those special classes of operators which will be of particular importance
to us.

definition 7. An operator A is said to be linear if its domain is
a linear manifold; i.e., if it contains a1f1 + · · · + akfk along with
f1, . . . , fk, and if

A(a1f1 + · · · + akfk) = a1Af1 + · · · + akAfk

In the following we shall consider only linear operators, and indeed,
only those whose domains are everywhere dense.

The latter remark provides a sufficient substitute, for many purposes, for
the requirement that operators be defined everywhere, which we must abandon
in quantum mechanics. This circumstance is sufficiently important for us to
consider it in more detail. For example, let us consider the configuration space
in Schrödinger’s wave mechanics which, for simplicity, we shall take as one
dimensional: −∞ < q < +∞. The wave functions are φ(x) with finite

∫ +∞

−∞
|φ(q)|2dq

These form a Hilbert space (see II.3). We also consider the operators q· and
!
i

d
dq · . They are evidently linear operators, but their domain is not the entire

Hilbert space. This is not so for q· because
∫ +∞

−∞
|q · φ(q)|2dq =

∫ +∞

−∞
q2|φ(q)|2dq
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can very well become infinite, even if
∫ +∞
−∞ |φ(q)|2dq is finite, so that q · φ(q)

no longer lies in the Hilbert space. And it is not so for !
i

d
dq · because there are

non-differentiable functions for which, even though
∫ +∞
−∞ |φ(q)|2dq is finite,

∫ +∞

−∞
|!

i
d
dq · φ(q)|2dq = !2

∫ +∞

−∞
| d
dq φ(q)|2dq

is not finite (for example: |q | 12 e−q2
or e−q2

sin(aq2
)). But the domains are

everywhere dense. Both operators are certainly applicable to functions φ(q)
which vanish except on a finite interval −c < q < +c and which are everywhere
continuously differentiable; this set of functions is everywhere dense.59

We further define

definition 8. Two operators A and A∗ are said to be adjoint if
they have the same domain, and in this domain

(Af, g) = (f,A∗g), (A∗f, g) = (f,Ag)

By exchanging f, g and taking the complex conjugate of both sides, each of
these relations follows from the other. Furthermore, it is clear that the relation
A, A∗ is symmetric; i.e., that A∗, A are also adjoint, so that A∗∗= A.

We note further that for A only one adjoint A∗ can be given; i.e., if A is
adjoint to A∗

1 and to A∗
2, then A∗

1 = A∗
2. In fact, for all g with Ag defined,

(A∗
1f, g) = (f,Ag) = (A∗

2f, g)

and since there g are everywhere dense, A∗
1f = A∗

2f . Since this holds in general,
A∗

1 = A∗
2. Consequently, A determines A∗ uniquely, just as A∗ does A.

59 According to the development of II.3 (in the discussion of the condition E),
it is sufficient if we can approximate all linear combinations of the following
function arbitrarily well: f(x) = 1 in a set consisting of a finite number of
intervals, and = 0 elsewhere. This is possible if we can approximate each one of
these functions separately, and this in turn is possible if the same can be done
for functions with a single unit-interval (the other functions are sums of such).
For example, let the interval be a < x < b. The function

f(x) =






0 for x < a − ε or x > b + ε
cos2

(
π
2

a−x
ε

)
for a − ε ! x ! a

cos2
(

π
2

x−b
ε

)
for b ! x ! b + ε

1 for a < x < b

actually satisfies our requirements of regularity and approximates the given
function arbitrarily well for sufficiently small ε.
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The following can be seen immediately: O, I and, in general, all projections
E are self-adjoint (see theorem 12); i.e., O∗, I∗ and E∗ are respectively equal
to O, I and E. Furthermore, (aA)∗ = aA∗ and, so far as A + B can be
formed in general (i.e., their domain is everywhere dense), (A ± B)∗ = A∗ ±B∗.
Finally, with limitations on the domain which can easily be ascertained,
(AB)∗ = B∗A∗ (because (ABf, g) = (Bf,A∗g) = (f,A∗B∗g)) and (A–1)∗ = (A∗)–1
by (A–1f, g) = (A–1f,A∗A∗–1g) = (AA–1f,A∗–1g) = (f,A∗–1g).

In particular, for the case of the Schrödinger wave mechanics (which we
considered previously, but here a k -dimensional configuration space will be
assumed), where the Hilbert space consists of the φ(q1, . . . , qk) with finite

∫
· · ·

∫ +∞

−∞
|φ(q1, . . . , qk)|2dq1 . . . dqk

we have for the operators q!· and !
i

∂
∂q

!
·

(q!·)∗ = q!·,
(!

i
∂
∂q!

·
)∗

= !
i

∂
∂q!

·

The former is clear since
∫
· · ·

∫ +∞

−∞
q! · φ(q1, . . . , qk) · ψ(q1, . . . , qk)dq1 . . . dqk

=
∫
· · ·

∫ +∞

−∞
φ(q1, . . . , qk) · q! · ψ(q1, . . . , qk)dq1 . . . dqk

The latter implies that
∫
· · ·

∫ +∞

−∞

!
i

∂
∂q

!
φ(q1, . . . , qk) · ψ(q1, . . . , qk)dq1 . . . dqk

=
∫
· · ·

∫ +∞

−∞
φ(q1, . . . , qk) · !

i
∂
∂q

!
ψ(q1, . . . , qk)dq1 . . . dqk

i.e., ∫
· · ·

∫ +∞

−∞

{
∂
∂q!

φ(q1, . . . , qk) · ψ(q1, . . . , qk)

+ φ(q1, . . . , qk) · ∂
∂qk

ψ(q1, . . . , qk)
}

dq1 . . . dqk = 0

lim
A,B→+∞

∫
· · ·

∫ +∞

−∞

[
φ(q1, . . . , qk)ψ(q1, . . . , qk)

]q!=+A

q
!
=−B

dq1 . . . dq!−1dq!+1 . . . dqk = 0

The limit must exist because the convergence of all integrals
∫
· · ·

∫ +∞

−∞
· · · dq1 . . . dqk

is certain (since φ, ψ, ∂φ/∂q!, ∂ψ/∂q! belong to the Hilbert space), so that it
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is only its vanishing which is of importance. If it were #= 0 then the limit (which
certainly exists) would be #= 0 for q! → +∞ or for q! → −∞ :

∫
· · ·

∫ +∞

−∞
φ(q1, . . . , qk)ψ(q1, . . . , qk)dq1 . . . dq!−1dq!+1 . . . dqk

which is incompatible with the absolute convergence of the integral
∫
· · ·

∫ +∞

−∞
φ(q1, . . . , qk)ψ(q1, . . . , qk)dq1 . . . dq!−1dq!dq!+1 . . . dqk

(φ, ψ belong to the Hilbert space!).

If A is the integral operator

Aφ(qq, . . . , qk) =
∫
· · ·

∫ +∞

−∞
K(q1, . . . , qk; q ′

1, . . . , q
′
k)dq ′

1 . . . , dq ′
k

then the following is obtained directly: A∗ is also an integral operator, only its
kernel is not

K(q1, . . . , qk; q ′
1, . . . , q

′
k)

but
K(q ′

1, . . . , q
′
k; q1, . . . , qk)

Let us now consider the situation in matrix theory, where the Hilbert space
consists of all sequences x1, x2, . . . with finite

∑∞
µ=1 |xµ|2. A linear operator A

transforms {x1, x2, . . .} into {y1, y2, . . .}

A{x1, x2, . . .} = {y1, y2, . . .}

where, because of the linearity of A, the y1, y2, . . . must depend linearly on the
x1, x2, . . . : 60

yµ =
∞∑

ν=1

aµνxν

Therefore A is characterized by the matrix {aµν}. We see immediately that the

60 The following consideration is not rigorous, since it uses linearity in the
case of infinite sums, etc. But it can be perfected as follows: Let φ1, φ2, . . . be
a complete orthonormal set, and let A , A∗ be adjoint operators. Let

f =
∞∑

ν=1

xνφν , Af =
∞∑

ν=1

yνφν

Then

yµ = (Af, φµ) = (f,A∗φµ) =
∞∑

ν=1

(f, φν)(A∗φµ, φν) by theorem 7γγγ

=
∞∑

ν=1

xν(φµ, Aφν) =
∞∑

ν=1

(Aφν , φµ)xν
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62 Chapter II: Abstract Hilbert Space

matrix {aνµ} belongs to A∗.60

The analogy with the situation in matrix theory which has just been
developed suggests introducing the concept of Hermitian operator, in a manner
which we shall not expound. Simultaneously we shall introduce also two other
concepts which will be important for our later purposes.

definition 9. The operator A is said to be Hermitian if A∗ = A .
It is also said to be definite if it is always true that (Af, f) " 0.61
The operator U is said to be unitary if UU∗ = U∗U = I.62

For unitary operators we thus have U∗ = U –1. By definition,

(Uf,Ug) = (U∗Uf, g) = (f, g)

so, in particular (for f = g), ‖Uf‖ = ‖f‖. Conversely, unitarity follows from
the latter properties if U is defined everywhere and takes on every value (see
Note 62). We prove this as follows: Assume it to be true that ‖Uf‖ = ‖f‖;

If we set aµν = (Aφν , φµ) we have the formula

yµ =
∞∑

ν=1

aµνxν

of the text, and absolute convergence is assured. In the Hilbert space of the
sequences x1, x2, . . . the sequences

φ1 = 1, 0, 0, . . .

φ2 = 0, 1, 0, . . . etc.

form a complete orthonormal set (as can easily be seen). For

f = {x1, x2, . . .}, f =
∞∑

ν=1

xνφν

Af = {y1, y2, . . .}, Af =
∞∑

ν=1

yνφν

In this way complete concordance with the text is reached. If we form a∗
µν for

A∗ then we see that

a∗
µν = (A∗φν , φµ) = (φν , Aφµ) = aνµ

61 (Af, f) is real in any case, since it equals

(A∗f, f) = (f,Af) = (Af, f)

62 Consequently, U, U∗ must be defined everywhere. Furthermore, they are
inverse to each other. Therefore they each take on every value once and only
once.
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5. Operators in Hilbert Space 63

i.e., that (Uf,Uf) = (f, f), (U∗Uf, f) = (f, f). If we replace f by 1
2 (f + g) and

again by 1
2 (f − g) and subtract, then we obtain, as may easily be calculated,

Re(Uf,Ug) = Re(f, g). If we substitute i ·f here for f then we get Im in place
of Re. Consequently it is true in general that

(Uf,Ug) = (f, g), (U∗Uf, g) = (f, g)

For fixed f this holds for all g. Therefore U∗Uf = f . Since this holds for all
f , we have U∗U = I. We still must show that UU∗ = I. For each f there is a g
with Ug = f , so UU∗f = UU∗· Ug = U · U∗Ug = Ug = f . Therefore UU∗ = I .

Since, because of linearity,

‖Uf − Ug‖ = ‖U(f − g)‖ = ‖f − g‖

each unitary operator is continuous, which is not at all necessary for Hermitian
operators. For example, the operators q · and !

i
∂
∂q · so important for quantum

mechanics are discontinuous.63

From our formal rules of calculation for A∗ it follows immediately that
if U, V are unitary, U –1 and UV are also. Therefore, all powers of U are also
unitary. If A, B are Hermitian then A ± B are also Hermitian. On the other
hand, aA is Hermitian only for real a (if A #= O), while AB is Hermitian only
if A, B commute; i.e., AB = BA. Furthermore, we know that all projectors (in
particular O, I) are Hermitian, as also are the operators q!· and !

i
∂
∂q

!
· of the

Schrödinger theory. All powers of A are Hermitian (also A–1 if it exists), and all
polynomials with real coefficients. It is noteworthy that for Hermitian A and
arbitrary X, XAX∗ is also Hermitian:

(XAX∗)∗ = X∗∗A∗X∗ = XAX∗

Therefore, for example, all XX∗ (A = I) and all X∗X (X∗ in place of X) are

63 For given ∫ +∞

−∞
|φ(q)|2 dq

both ∫ +∞

−∞
q2|φ(q)|2 dq and

∫ +∞

−∞
| d
dq φ(q)|2 dq

can be made arbitrarily large. Take, for example,

φ(q) = ae−bq2

The three integrals are all finite (b > 0!), but are proportional respectively to

a2b−
1
2 , a2b−

3
2 , a2b

1
2

so that the value of any two of them can be prescribed at will.
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64 Chapter II: Abstract Hilbert Space

Hermitian. For unitary U, UAU–1 is Hermitian because U–1 = U∗.

The continuity of operators, just as in the case of the numerical functions
treated in analysis, is a property of basic importance. We therefore want to state
several characteristic conditions for its existence in the case of linear operators.

theorem 18. A linear operator R is continuous if it is continuous
at the point f = 0. A necessary and sufficient condition is the
existence of a constant C for which, in general, ‖Rf‖ ! C · ‖f‖. In
turn, this condition is equivalent to the general validity of

|(Rf, g)| ! C · ‖f‖ · ‖g‖

For Hermitian R this need be required only for f = g:

|(Rf, f)| ! C · ‖f‖2

or, since (Rf, f) is real (Note 61):

−C · ‖f‖2 ! (Rf, f) ! +C · ‖f‖2

note. The concept of continuity for operators originated with
Hilbert.64 He characterized it as “boundedness,” and defined it
by the next to the last of the criteria given above. If only one
of the ! in the last criterion is generally valid, then R is said to
be half-bounded, above or below. For example, each definite R is
half-bounded below (with C = 0).

proof: Continuity for f = 0 implies that for each ε > 0 there exists a δ > 0
such that ‖Rf‖ < ε follows from ‖f‖ < δ. Then it follows from ‖f − f0‖ < δ
that

‖R(f − f0)‖ = ‖Rf − Rf0‖ < ε

i.e., that R is also continuous for f0, and therefore everywhere.

If ‖Rf‖ ! C · ‖f‖ (of course, C > 0), then we have continuity: we can set
δ = ε/C. Conversely, if continuity exists we can determine the δ for ε = 1 and
set C = 2/δ. Then

‖Rf‖ ! C · ‖f‖

holds for f #= 0. For f #= 0 we have ‖f‖ > 0 so can introduce

g =
1
2 δ

‖f‖ · f

We then have ‖g‖ = 1
2 δ and therefore

64 Gött. Nachr. 1906.
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5. Operators in Hilbert Space 65

‖Rg‖ =
1
2 δ

‖f‖ · ‖Rf‖ < 1, ‖Rf‖ <
‖f‖
1
2δ

= C · ‖f‖

From ‖Rf‖ ! C · ‖f‖ it follows that

|(Rf, g)| ! ‖Rf‖ · ‖g‖ ! C · ‖f‖ · ‖g‖

Conversely, from |(Rf, g)| ! C ·‖f‖ ·‖g‖ we obtain ‖Rf‖2 ! C ·‖f‖ ·‖Rf‖ if we
set g = Rf , and therefore ‖Rf‖ ! C ·‖f‖. It still remains to show for Hermitian
R that |(Rf, f)| ! C · ‖f‖2 leads to |(Rf, g)| ! C · ‖f‖ · ‖g‖. Substitution of
1
2 (f + g) and 1

2 (f − g) for f gives65

|Re (Rf, g)| = |(R f+g
2 , f+g

2 ) − (R f−g
2 , f−g

2 )|

! C ·
(
‖ f+g

2 ‖2 + ‖ f−g
2 ‖2

)

= C · ‖f‖
2 + ‖g‖2

2

We now substitute af, 1
a g for f, g, as in the proof of theorem 1. Minimizing

the right side gives |Re (Rf, g)| ! C · ‖f‖ · ‖g‖. Then replacing f by eiαf
(α real) gives for the maximum value of the left side

|(Rf, g)| ! C · ‖f‖ · ‖g‖

Of course, this is valid only if Rg is defined, but since these g are everywhere
dense and Rg no longer enters into the final result, it holds generally by reason
of continuity.

theorem 19. If R is Hermitian and definite, then

|(Rf, g)| !
√

(Rf, f) · (Rg, g)

From (Rf, f) = 0 it then follows that Rf = 0

proof: The above inequality follows from the general validity of (Rf, f) " 0
(definiteness!), just as the Schwarz inequality

|(f, g)| !
√

(f, f) · (g, g) = ‖f‖ · ‖g‖

was derived in theorem 1 from (f, f) " 0. If now (Rf, f) = 0 then it follows
from this inequality that also (Rf, g) = 0, if Rg is defined. Consequently, it
holds for a g-set which is everywhere dense, therefore, by reason of continuity,
for all g, giving Rf = 0.

65 The Hermitian character of R is important in the reduction

(R f+g
2 , f+g

2 ) − (R f−g
2 , f−g

2 ) = (Rf, g) + (Rg, f)
2

= (Rf, g) + (f,Rg)
2

(in the third step).

 EBSCOhost - printed on 2/13/2023 10:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



66 Chapter II: Abstract Hilbert Space

Finally we shall make reference to the important concept of the
commutativity of two operators R, S; i.e., to the relation RS = SR. From
RS = SR it follows that

S . . . SSR = S . . . SRS = S . . .RSS = . . . = RS . . . SS

i.e., R, Sn commute (n = 1, 2, . . .). Since RI = IR = R and S0 = I, this holds
also for n = 0. If S–1 exists then S–1 · SR · S–1 = S–1 · RS · S–1, therefore

S–1 · SR · S–1 = S–1S · RS–1 = RS–1

S–1 · RS · S–1 = S–1R · SS–1 = S–1R

and hence RS–1 = S–1R. Consequently, n = −1 and therefore n = −2,−3, . . .
are also admissible. That is, R commutes with all powers of S. Repeated
application shows that each power of R commutes with each power of S. If
R commutes with S, T then it obviously commutes with all aS and also with
S + T, ST. Together with the above results, it follows from this that if R, S
commute then all polynomials of R commute with all polynomials of S. In
particular, for R = S, all polynomials of R commute with each other.

6. THE EIGENVALUE PROBLEM

We have come now far enough that we can consider in abstract Hilbert
space a problem which is of central importance in quantum mechanics, in its
relationship to the special cases FZ and FΩ: the solution of (respectively) the
equations E1 and E2 in section I.3. We call this the eigenvalue problem, and we
must formulate it anew in a unified fashion.

In I.3, E1 and E2 both required the finding of all solutions φ #= 0 of
E Hφ = λφ

where H is the Hermitian operator corresponding to the Hamiltonian function
(see the discussion in I.3), φ an element of the Hilbert space, and λ a real
number (H given, φ, λ to be determined). In connection with this, however,
certain requirements were made regarding the number of solutions to be found.
It was required to find such a number that
1◦. in matrix theory, a matrix S = {sµν} could be formed from these solutions

φ1 = {s11, s21, . . .}
φ2 = {s12, s22, . . .}, etc.

(we are in FZ !) which possesses an inverse S –1 (see I.3);
2◦. in the wave theory, each wave function (which need not be a solution) can
be developed in a series of the solutions

φ1 = φ1(q1, . . . , qk)
φ2 = φ2(q1, . . . , qk), etc.

(φ1, φ2, . . . may belong to different λ):

φ(q1, . . . , qk) =
∞∑

n=1

Cnφn(q1, . . . , qk)
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6. The Eigenvalue Problem 67

(There was no mention of this latter circumstance in I.3, but this requirement
is indispensable for the further development of the wave theory, in particular
for the Schrödinger “perturbation theory.”66)

Now 1◦ amounts to the same thing as 2◦ because the matrix S transforms
{1, 0, 0, . . .}, {0, 1, 0, . . .}, . . . respectively into

{s11, s21, s31, . . .}, {s12, s22, s32, . . .}, . . .

and therefore the entire Hilbert space R∞ into the closed linear manifold
spanned by φ1, φ2, . . . . In order that S –1 exist therefore, the latter must also be
equal to R∞. But 2◦ states the same thing directly: it also requires that each φ
can be approximated to an arbitrary degree of accuracy by a linear combination
of the φ1, φ2, . . . .67 Let us make the significance of this condition clear, and also
prove once again the properties of the equation E with the formal apparatus
now at our command.

First, since φ #= 0 is required, and since aφ is a solution if φ is, it is sufficient
to consider solutions with ‖φ‖ = 1. Second, we do not need to require that λ
be real, since this follows from Hφ = λφ:

(Hφ, φ) = (λφ, φ) = λ(φ, φ) = λ

(see II.5, Note 61). Third, the solutions φ1, φ2 which belong to different λ1, λ2

are mutually orthogonal:

(Hφ1, φ2) = λ1(φ1, φ2)
(Hφ1, φ2) = (φ1, Hφ2) = λ2(φ1, φ2)

Therefore, (φ1, φ2) = 0 because λ1(φ1, φ2) = λ2(φ1, φ2) and λ1 #= λ2.

Now let λ1, λ2, . . . be the λ, all different from one another, for which E is
solvable. (If we choose a solution φλ of absolute value 1 for each λ with solvable
Hφ = λφ, then the φλ form an orthonormal set, by reason of previous comments.
By II.2, theorem 3(∞) this set is then a finite or infinite sequence. Therefore
we can also write the λ as a sequence, which may or may not terminate.) For
each λ = λρ all solutions of Hφ = λφ form a linear manifold, and indeed: a
closed linear manifold.68 According to theorem 9, therefore, there exists an

66 See the fifth paper in the book mentioned in Note 9 (Ann. Phys. 80 (1926)).
67 We purposely do not go into the finer questions of convergence; these

questions were not treated with exactness in the original forms of the matrix
and wave theories; also, we shall settle them later (see, e.g. II.9).

68 The latter is evident without further discussion only for continuous H
everywhere defined; i.e., for which Hfn → f follows from fn → f . Moreover,
the following more limited property is also a consequence, as may easily be seen:
from fn → f, Hfn → f∗ it follows that Hf = f∗ (this is the so-called closure
of H; see the work of the author in Math. Ann. 102 (1929)). This is always
satisfied with the operators of quantum mechanics, even the discontinuous ones;
a Hermitian operator which is not closed can be made (Hermitian and) closed
by a unique extension of its domain (which is not the case for the property of
continuity, for example); see II.9, page 92, Note 96.
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68 Chapter II: Abstract Hilbert Space

orthonormal set φρ,1, . . . , φρ,νρ of such solutions which spans this closed linear
manifold. The number νρ is clearly the maximum number of linearly
independent solutions for λ = λρ. This is known as the multiplicity of the
eigenvalue λρ. (ν = 1, 2, . . . ,∞; ν = ∞ can occur: look, for example, to the
case H = I, λ = 1.) According to the preceding discussion, the φρ,1, . . . , φρ,νρ

of two different ρ are also mutually orthogonal. Therefore, the totality

φρ,ν : ρ = 1, 2, . . . ; ν = 1, . . . , νρ

also forms an orthonormal set. By reason of its origin, we recognize that it
spans the same closed linear manifold as all solutions φ of E.

We number the φρ,ν in any order by ψ1, ψ2, . . . and the corresponding
λρ by λ(1), λ(2), . . . . The condition previously formulated that all solutions
of E should span R∞ as a closed linear manifold then implies that ψ1, ψ2, . . .
(a subset of solutions!) must do this by itself—therefore, by theorem 7, that
this orthonormal set is complete.

The solution of the eigenvalue problem in the sense of quantum mechanics
would therefore require the finding of a sufficient number of solutions

ψ = ψ1, ψ2, . . . and λ = λ1, λ2, . . .

of E so that a complete orthonormal set can be formed from them. But this
is not possible in general. For example, in wave theory we will see that for
a certain subset of solutions of E (i.e., of E2 in I.3)—all of which are needed
to develop each wave function by solutions (see above)—there exists no finite
value for the integral of the square of the absolute value.69 Therefore it does
not belong to Hilbert space. Hence there is no complete orthonormal set of
solutions in Hilbert space (and we consider Hilbert spaces only in E!).

On the other hand, the Hilbert theory of the eigenvalue problem shows
that this phenomenon does not at all represent an exception to the behavior of
operators (not even of the continuous ones).70 We must therefore analyze the
situations which result when it does occur. (We will soon see what this means
physically. See III.3.) If it occurs; i.e., if the orthonormal set selected from the
solutions of E is not complete, then we may say that a “continuous spectrum
of H” exists. (λ1, λ2, . . . form the “point” or “discrete” spectrum of H.)

Our next problem, since E has failed, is then to find an improved
formulation of the eigenvalue problem for Hermitian operators and to apply
this to quantum mechanics. We follow a pattern set by Hilbert (see above,
Note 70), which must now be explained.

69 See, for example, Schrödinger’s treatment of the hydrogen atom, in the
reference cited in Note 16.

70 See the reference cited in Note 64.
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7. Continuation 69

7. CONTINUATION

The equation
Hφ = λφ

—as well as the requirement that a complete orthonormal set can be formed
from its solutions—originates in an analogy with the case of finite dimensions,
the Rn.

In Rn, H is a matrix

H = {hµν} : µν = 1, 2, . . . , n ; hµν = hνµ

and it is a well-known algebraic fact that the solutions of

Hx = λx : x = {x1, x2, . . . , xn}

i.e., form a complete orthonormal set.71

This property of the Rn cannot, as we have seen, carry over by n → ∞ to
the R∞. So the eigenvalue problem in R∞ must be formulated differently. We
shall now see that the eigenvalue problem in Rn can be transformed in such
a way that for this new formulation (which in Rn is equivalent to the old) a
transition to R∞ does become possible. That is, both express the same thing in
Rn (n = 1, 2, . . .)—namely, the possibility of the diagonalization of Hermitian
matrices—but the one can be carried over into R∞ while the other cannot.

Let {x11, . . . , x1n}, . . . , {xn1, . . . , xnn} be the complete orthonormal set of
solutions of the eigenvalue equation, and let λ1, . . . , λn be the corresponding λ.
The vectors {x11, . . . , x1n}, . . . , {xn1, . . . , xnn} then form a cartesian coordinate
system in Rn. The transformation formulas of the coordinates x1, . . . , xn in this
coordinate system to coordinates ξ1, . . . , ξn that refer to the basis

{1, 0, 0, . . . , 0}, {0, 1, 0, . . . , 0}, . . . , {0, 0, 0, . . . , 1}

then run as follows:

{ξ1, . . . , ξn} = x1{x11, . . . , x1n} + · · · + xn{xn1, . . . , xnn}

i.e.,

ξ1 =
n∑

µ=1

xµ1xµ , . . . , ξn =
n∑

µ=1

xµnxµ

and conversely,

x1 =
n∑

µ=1

x1µξµ , . . . , xn =
n∑

µ=1

xnµξµ

We can write the conditions
n∑

ν=1

hµνxρν = λρxρµ : ρ = 1, . . . , n

71 See Courant-Hilbert: the reference cited in Note 30.
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70 Chapter II: Abstract Hilbert Space

as follows, with the help of the variables x1, . . . , xn and a new set of variables
η1, . . . , ηn (in addition to corresponding variables y1, . . . , yn) by reason of the
above formula:

n∑

ρ,µ=1

( n∑

ν=1

hµνxρν

)
xρη̄µ =

n∑

ρ,µ=1

λρxρµxρη̄µ

i.e.,

D

n∑

µ,ν=1

hµνξν η̄µ =
n∑

ρ=1

λρ

( n∑

µ=1

x̄ρµξµ

)( n∑

µ=1

x̄ρµηµ

)

The cartesian character of our coordinate system may then be expressed as

O

n∑

µ=1

ξµη̄µ =
n∑

ρ=1

( n∑

µ=1

x̄ρµξµ

)( n∑

µ=1

x̄ρµηµ

)

The discovery of a matrix {xρµ} with the properties D, O is then equivalent
in Rn to solution of the eigenvalue problem. And in this form the transition to
R∞ again fails. But this failure is not surprising, for the following reason: The
conditions D, O do not determine the unknowns λρ, xρµ completely. Indeed, as
the theory of this diagonal transformation shows (see the reference in Note 71),
the λρ are determined uniquely except for order, but the situation is much worse
in the case of the xρµ. Each row {xρ,1, . . . , xρn} can evidently be multiplied by a
complex factor θρ of absolute value 1. And if several of the λρ coincide, even an
arbitrary unitary transformation of the corresponding columns {xρ,1, . . . , xρn}
is possible! To attempt the difficult transition to the limit n → ∞ with such
quantities, which are not uniquely determined, is hopeless: for how can the
process converge if the λρ, xρµ can undergo the arbitrarily large fluctuations
which become possible because of the incompleteness of their determination?

But this points out the way in which the problem can be handled correctly:
we must first seek to replace the conditions D, O and the unknowns λρ, xρµ by
conditions and unknowns which possess the desired uniqueness property. It will
be shown that the limiting process then causes less difficulty.

If . is any value which one or more of the λρ assume, then

∑

λρ=!

( n∑

µ=1

x̄ρµξµ

)( n∑

µ=1

x̄ρµηµ

)

is invariant under the variations (compatible with D, O) of λρ, xρµ mentioned
above. If . is different from all the λρ then the sum vanishes, and is therefore
certainly invariant. Consequently the Hermitian form (here ξ and η signify
ξ1, . . . , ξn and η1, . . . , ηn respectively)

E(.; ξ, η) =
∑

λρ!!

( n∑

µ=1

x̄ρµξµ

)( n∑

µ=1

x̄ρµηµ

)
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is also invariant (. arbitrary!). If we know the E(.; ξ, η) (i.e., their coefficients),
then it is easy to reason back from this point to the λρ, xµν . Then, if we so
formulate the eigenvalue problem (i.e., D, O) that only the E(.; ξ, η) appear
(instead of the λρ, xµν), we will have achieved the desired unique formulation.

Therefore, let E(.) be the matrix of the Hermitian form E(.; ξ, η).72 What
do D, O now mean for the family of matrices E(.)?

O means: if . is sufficiently large (namely, larger than all λρ) then E(.) = I
(the unit matrix). From the nature of E(.) it follows that if . is sufficiently
small (that is, smaller than all λρ) then E(.) = O and, as . increases from
−∞ to +∞, E(.) remains constant except at a finite number of points (the
different values among the λ1, . . . , λn which we call .1 < .2 < . . . < .m; m ! n),
at which it changes discontinuously. Furthermore, the discontinuity lies to the
left of the point in question (because the

∑

λρ!!

is continuous to the right as a function of ., while for the case

∑

λρ<!

it would be just the opposite). Finally, as we shall show, for . ′ ! . ′′

E(. ′)E(. ′′) = E(. ′′)E(. ′) = E(. ′)

(matrix product!).

It is more convenient to prove this for E(. ′; ξ, η), E(. ′′; ξ, η) in the
coordinate system to which the x1, . . . , xn and y1, . . . , yn refer. After the
introduction of these variables we obtain from E(. ′; ξ, η) and E(. ′′; ξ, η)

∑

λρ! !′

xρȳρ and
∑

λρ! !′′

xρȳρ

The matrices are therefore as follows: 0 except on the diagonal; 1 on the
diagonal in the ρth field if λρ ! . ′ or ! . ′′ but otherwise also 0. For such
matrices the above proposition is evident.

72 That is,

E(.) = {eµν(.)}, E(.; ξ, η) =
n∑

µ,ν=1

eµν(.)ξµη̄ν

Consequently,
eµν(.) =

∑

λρ!!

xρµx̄ρν
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Now let us reformulate D. It clearly means
n∑

µ,ν=1

hµν ξν η̄µ =
m∑

τ=1

.τ

{
E(.τ ; ξ, η) − E(.τ−1; ξ, η)

}

where .0 is any number < .1. But since E(.; ξ, η) is constant in each of the
intervals

−∞ < . < .1

.1 ! . < .2
...

.m−1 ! . < .m

.m ! . < +∞

then for each set of numbers Λ0 < Λ1 < Λ2 < · · · < Λk, if .1, . . . , .m appear
among them,

n∑

µ,ν=1

hµν ξν η̄µ =
k∑

τ=1

Λτ

{
E(Λτ ; ξ, η) − E(Λτ−1; ξ, η)

}

By application of the Stieltjes concept of integral,73 this can also be written as

73 For the concept of the Stieltjes integral, see Perron, Die Lehre von den
Kettenbrüchen, Leipzig, 1913 and also, for particular consideration of the
requirements of operator theory, Carleman, Équations intégrales singuli ères,
Upsala, 1923. For the reader who is less interested in such things, the following
definition will suffice: for a subdivision Λ0, Λ1, . . . ,Λk of the interval a, b

a ! Λ0 < Λ1 < · · · < Λk ! b

we form the sum
k∑

τ=1

f(Λτ )
{
g(Λτ ) − g(Λτ−1)

}

If this always converges as the subdivisions Λ0, Λ1, Λ2, . . . ,Λk are made smaller
and smaller, then the integral ∫ b

a
f(x) dg(x)

exists and is defined to be equal to this limit. (For g(x) = x this goes over into
the well-known Riemann integral.) In our case, therefore, the equation which
has been derived means that ∫ +∞

−∞
x dE(x; ξ, η)

exists (we have denoted the variable by λ instead of x) and is equal to
n∑

µ,ν−=1

hµν ξν η̄µ
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n∑

µ,ν =1

hµν ξν η̄µ =
∫ +∞

−∞
λ dE(λ; ξ, η)

(
∫ +∞
−∞ can obviously be replaced by

∫ b
a if a < $1, b > $m.) Or, if we consider

the coefficients, and write down instead of the matrices themselves the equation
which is valid for all coefficients,

H =
∫ +∞

−∞
λ dE(λ)

where H = {hµν}.

Thus far, then, the problem is the following: For a given Hermitian matrix
H a family of Hermitian matrices E(λ) (−∞ < λ < +∞) with the following
properties is sought:

S1. For sufficiently
(

small
large

)
λ, E(λ) =

(
O
I

)
.

E(λ) is (considered as a function of λ) everywhere constant, with the exception
of a finite number of points at which it changes discontinuously. Also, the
discontinuity always occurs to the left of the given point.

S2. It is always true that E(λ ′)E(λ ′′) = E(Min(λ ′, λ ′′)).74

S3. We have (using the Stieltjes integral)

H =
∫ +∞

−∞
λ dE(λ)

At present we shall not stop to carry out the converse process; i.e., going from
S1, S2 and S3 back to D, O (although this would be simple) because only the
present form of the eigenvalue problem will be needed in quantum mechanics.
Instead, we shall proceed at once to generalize S1–S3 from a finite number to
an infinite number of variables; i.e., from Rn to R∞.

In R∞ the roles of H and E(λ) will be taken over by Hermitian operators
H and E(λ); we shall seek to determine, for a given H, a family E(λ) that is
related to it in a certain fashion, modeled on S1–S3. Therefore, it suffices to
find the R∞ analog of S1–S3.

The property S2 remains unchanged in the transition, since the number of
dimensions of Rn plays no role in it. But we want to transform it in a way that
makes use of our results on projections (II.4). First, the property in question
implies in the case λ ′ = λ ′′ = λ that E(λ)2 = E(λ); i.e., that the E(λ) must be
projections. But then (we can limit ourselves to λ ′ ! λ ′′ since corresponding
results are obtained for λ ′ " λ ′′) S2 means this:

74 Min(a, b, . . . , e) is the smallest, Max(a, b, . . . , e) is the largest of the
finite set of real numbers a, b, . . . , e.
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λ ′ ! λ ′′ implies E(λ ′) ! E(λ ′′)

(see theorem 14 and subsequent text in II.4). Some caution is required,
however, in the case S3: the expression

H =
∫ +∞

−∞
λ dE(λ)

is meaningless, since the Stieltjes integral is defined for numbers and not for
operators. But it is easy to replace H, E(λ) by numbers; i.e., to present that
equation as a relationship among numbers. We require

(Hf, g) =
∫ +∞

−∞
λ (dE(λ)f, g)

for all f, g of R∞, so far as Hf is defined. It is in that sense—as a formal
abbreviation—that S3 is henceforth to be understood.

Lastly, the property S1 is essentially affected by the transition to an infinite
number of dimensions. The points beyond which E(λ) assumes its terminal
values 0 or 1, or where E(λ) executes its terminal jumps, are (in Rn) the
eigenvalues of H and intervals of constancy are those free from eigenvalues. But
if now n → ∞, many things can happen. The smallest or largest eigenvalue can
approach −∞ or +∞ respectively, while the others may cluster increasingly
densely, since their number can increase arbitrarily, and thus the intervals of
constancy may gradually contract to points. (This last circumstance is the
symptom which, in the Hilbert theory, under certain circumstances indicates
the appearance of a continuous spectrum.75) We must therefore change S1

considerably in the transition from Rn to R∞. Allowance must be made
for the possibility that the variation of E(λ) may no longer show a discrete,
discontinuous character.

With this point in view, it becomes natural to abandon the assumption that
E(λ) assumes terminal values 0 or 1, and to require only convergence to 0 or 1
(as λ → −∞ or λ → +∞, respectively). Then, in place of intervals of constancy
and points of discontinuity, there emerges the possibility of continuous increase.
On the other hand, we may try to maintain the less stringent requirement that
at the possible points of discontinuity the discontinuity should appear only from
the left. Consequently, we formulate S1 as follows: for λ → −∞, E(λ) → O ;
for λ → +∞, E(λ) → I ; for λ → λ0, λ " λ0, E(λ) → E(λ0).76

75 See the reference of Note 64, as well as the book of Carleman mentioned
in Note 73. We shall have a great deal to do with this “continuous spectrum;”
see II.8.

76 By A(λ) → B (where A(λ), B are operators in R∞ and λ a real parameter)
we mean that for all f of R∞, A(λ)f → B. It is in this sense that operator
convergence statements should be understood in Hilbert space.

 EBSCOhost - printed on 2/13/2023 10:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



7. Continuation 75

Something must still be said regarding S3. In a space with a finite number
of dimensions

H =
m∑

τ=1

$τFτ where Fτ = E($τ ) − E($τ−1)

Because of S1 we have for σ " τ

FτE($σ) = E($τ )E($σ) − E($τ−1)E($σ)
= E($τ ) − E($τ−1)
= Fτ

while for σ ! τ − 1

FτE($σ) = E($τ )E($σ) − E($τ−1)E($σ)
= E($σ) − E($σ)
= O

Therefore, because Fσ = E($σ) − E($σ−1),

Fτ · Fσ =
{

Fτ for τ = σ
O for τ $= σ

From this

H2 =
( m∑

τ=1

$τFτ

)2
=

m∑

τ,σ=1

$τ $σFτFσ =
m∑

τ=1

$2τ Fτ

and in the same way, Hp =
∑m

τ=1 $p
τ Fτ . Consequently

H2 =
∫ +∞

−∞
λ2 dE(λ)

which is analogous to the equation that holds for H itself. In R∞ we assume
the analogous symbolic relation

H2 =
∫ +∞

−∞
λ2 dE(λ)

which acquires specific meaning from

(H2f, g) =
∫ +∞

−∞
λ2 d(E(λ)f, g)

(This will actually be confirmed in our subsequent considerations.) For f = g
we have

(H2f, f) = (Hf,Hf) = ‖Hf‖2, (E(λ)f, f) = ‖E(λ)f‖2

hence

‖Hf‖2 =
∫ +∞

−∞
λ2 d(‖E(λ)f‖2)

 EBSCOhost - printed on 2/13/2023 10:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



76 Chapter II: Abstract Hilbert Space

This formula, however, causes us to expect that E(λ) not only determines
the value of Hf , whenever it is defined, but also whether it is defined for a
particular f . For the integral

∫ +∞

−∞
λ2 d(‖E(λ)f‖2)

has a non-negative integrand (λ2 " 0) and a monotonically increasing expression
under the differential sign (E(‖λ)f‖2; see S2 and theorem 15 in II.4). Therefore
it is by its nature convergent, i.e., zero or positive and finite, or else is properly
divergent (= +∞).77 This is true independently of the relation to H, i.e.,
without consideration as to whether Hf is defined or not. It is then to be
expected that Hf is defined (i.e., exists in R∞) if and only if the presumed
value of ‖Hf‖2 is finite; that is, the above expression is defined for all f .

Therefore our new formulation of S1–S3 runs as follows: For the given
Hermitian operator H we seek a family of projections E(λ) (−∞ < λ < +∞)
with the following properties:

S1. For λ −→
(
−∞
+∞

)
we have E(λ) −→

(
0
f

)
respectively.

For λ → λ0, λ " λ0 we have E(λ)f → E(λ0)f (for each f !).

S2. From λ′ ! λ′′ it follows that E(λ′) ! E(λ′′).

S3. The integral
∫ +∞
−∞ λ2 d(‖E(λ)f‖2), which by its nature is

convergent (zero or positive and finite) or properly divergent
(+∞), determines the domain of H: Hf is defined in and only
in the non-divergent case, in which case

(Hf, g) =
∫ +∞

−∞
λ d(E(λ)f, g)

(The latter integral is absolutely convergent whenever the
expression on the left is finite.78)

The operator H does not enter into the description of the properties S1

and S2. A family of projections E(λ) with these two properties is known as a
“resolution of the identity.” A resolution of the identity which stands in the
relation S3 to H is said to belong to H.

The eigenvalue problem in R∞ then runs as follows: Do there exist, for
a given Hermitian operator H, resolutions of the identity belonging to H, and
if so: how many? (The desired answer would be: there always exists exactly
one.) Furthermore, we must establish how definition of the eigenvalue problem

77 This follows from the definition of the Stieltjes integral given in Note 73.
For proof, see the reference given there.

78 See Math. Ann 102 (1929).
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is related to the general methods used in quantum mechanics (especially in the
wave theory) for the determination of the eigenvalues of Hermitian operators.

8. INITIAL CONSIDERATIONS

CONCERNING THE EIGENVALUE PROBLEM

The first question which arises from our definition of the eigenvalue problem
is this: S1– S3 sound entirely different from the problem with which we started
at the beginning of the last section, and their relevance to that problem is
no longer recognizable. It is true that we were led in Rn from that problem
to formulation of the conditions S1– S3, but in R∞ the conditions—though
they remain equivalent in Rn, as was previously noted—have been essentially
modified. Therefore, the entire question is reopened, and we must ascertain
how far the new formulation coincides with the old; i.e., when and how our
E(λ) determined the λ1, λ2, . . . and the φ1, φ2, . . . .

If the resolution of the identity E(λ) belongs to the Hermitian operator A,
when is the equation

Aφ = λ0φ

solvable? Aφ = λ0φ means (Aφ, g) − λ0(φ, g) = 0 for all g; i.e.,

0 =
∫ +∞

−∞
λd(E(λ)f, g) − λ0(f, g)

=
∫ +∞

−∞
λd(E(λ)f, g) − λ0

∫ +∞

−∞
d(E(λ)f, g)

=
∫ +∞

−∞
(λ − λ0)d(E(λ)f, g)

We first set g = E(λ0)f ; then

0 =
∫ +∞

−∞
(λ − λ0)d(E(λ)f,E(λ0)f)

=
∫ +∞

−∞
(λ − λ0)d(E(λ0)E(λ)f, f)

=
∫ +∞

−∞
(λ − λ0)d(E(Min(λ, λ0))f, f)

=
∫ +∞

−∞
(λ − λ0)d(‖E(Min(λ, λ0))f‖2)

We now write
∫ +∞
−∞ =

∫ λ0

−∞ +
∫ +∞

λ0
. We can replace Min(λ, λ0) by λ in

∫ λ0

−∞ and
by λ0 in

∫ +∞
λ0

. In the latter integral a constant appears behind the differential
sign, so that integral vanishes. But the first integral remains, and can be written

∫ λ0

−∞
(λ − λ0)d(‖E(λ)f‖2) = 0
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Return now to the beginning of the preceding argument and set g = f ; then

0 =
∫ +∞

−∞
(λ − λ0)d(E(λ)f, f) =

∫ +∞

−∞
(λ − λ0)d(‖E(λ)f‖2)

Subtracting the preceding result from this, we get (after reversing the sign of
the integrand) ∫ +∞

λ0

(λ0 − λ)d(‖E(λ)f‖2) = 0

Let us now examine
∫ λ0

−∞
(λ0 − λ)d(‖E(λ)f‖2) and

∫ +∞

λ0

(λ − λ0)d(‖E(λ)f‖2)

somewhat more closely. The integrand in each case is " 0, and behind the
differential sign there is a monotonically increasing function of λ. Therefore we
have, for each ε > 0,

0 =
∫ λ0

−∞
(λ0 − λ)d(‖E(λ)f‖2) "

∫ λ0−ε

−∞
(λ0 − λ)d(‖E(λ)f‖2)

"
∫ λ0−ε

−∞
ε · d(‖E(λ)f‖2)

= ε‖E(λ0 − ε)f‖2

0 =
∫ +∞

λ0

(λ − λ0)d(‖E(λ)f‖2) "
∫ +∞

λ0+ε
(λ − λ0)d(‖E(λ)f‖2)

"
∫ +∞

λ0+ε
ε · d(‖E(λ)f‖2)

= ε
(
‖f‖2 − ‖E(λ0 + ε)f‖2

)

= ε‖f − E(λ0 + ε)f‖2

The right sides are ! 0, but since they are also " 0 they must vanish. Therefore

E(λ0 − ε)f = 0
E(λ0 + ε)f = f

Because of the right hand continuity of E(λ) we may carry out ε → 0 in the
second equation: E(λ0)f = f . For λ " λ0 then, because of the second equation
(ε = λ − λ0 " 0), E(λ)f = f , while for λ < λ0, because of the first equation
(ε = λ0 − λ > 0), E(λ)f = 0. Therefore

E(λ)f =
{

f for λ " λ0

0 for λ < λ0

But this necessary condition is also sufficient, because from it it follows that

(Af, g) =
∫ +∞

−∞
λ d(E(λ)f, g) = λ0(f, g)

(the definition of the Stieltjes integral given in Note 73 should be recalled),
therefore (Af − λ0f, g) = 0 for all g; i.e., Af = λ0f .
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8. Initial Considerations 79

What does this mean? First, it involves a discontinuity of E(λ) at the point
λ = λ0. By theorem 17 in II.4, E(λ) converges to a projection: call it E(1)(λ)
for λ → λ0, λ < λ0 or E(2)(λ) for λ → λ0, λ > λ0.79 By S1, E(2)(λ0) = E(λ0),
but because of the discontinuityE(1)(λ0) $= E(λ0). Further, because E(λ) ! E(λ0)
for λ < λ0, we by S2 have E(1)(λ0) ! E(λ0). Therefore E(λ0) − E(1)(λ0) is a
projection, and it is characteristic for the discontinuity that it $= O.

E(λ)f = 0 for all λ < λ0 has E(1)(λ)f = 0 as a consequence, from which
(by E(λ) ! E(1)(λ)) it also follows. E(λ)f = f for all λ " λ0 follows from
E(λ0)f = f by the following argument: E(λ0) ! E(λ), E(λ)E(λ0) = E(λ0),
therefore E(λ)f = E(λ)E(λ0)f = E(λ0)f = f . Hence E(1)(λ0)f = 0, E(λ0)f = f
is characteristic for Af = λ0f , or (theorem 14, II.4) [E(λ0) − E(1)(λ0)]f = f .
That is, if we write

E(λ0) − E(1)(λ0) = PMλ0

then the above implies that f belongs to Mλ0 .

Consequently, it has been shown that Af = λf is solvable by an f $= 0
only at the discontinuities of E(λ), and the solutions f form the closed linear
manifold Mλ0 defined above.

The complete orthonormal set sought in II.6, to be selected from these
solutions (combining any λ), then exists if and only if the Mλ0 (−∞ < λ0 < +∞)
together span the closed linear manifold R∞. We have discussed in II.6 how the
construction of this set would then be accomplished. The mutual orthogonality
of the Mλ0 can be seen in another way: from λ0 < µ0 it follows that

PMλ0
PMµ0

= [E(λ0) − E(1)(λ0)][E(µ0) − E(1)(µ0)] = O

because
E(λ0) = E(1)(λ0) ! E(µ0) ! E(1)(µ0)

E(µ0) − E(1)(µ0) ! I − E(1)(µ0)

Without ascertaining the precise conditions under which this is true, we note
the following: if an interval µ1, µ2 exists in which E(λ) increases monotonically
(i.e., µ1 < µ2, E(λ) is continuous in µ1 ! λ ! µ2, E(µ1) ! E(µ2)) then it is
certainly not the case. Because for λ ! µ1, E(λ) − E(1)(λ) ! E(λ) ! E(µ1)
while for µ1 ! λ ! µ2, E(λ) − E(1)(λ) = 0 because of continuity, and for
µ2 < λ, E(λ) − E(1)(λ) ! I − E(1)(λ) ! I − E(µ2). Therefore E(λ) − E(1)(λ) is
always orthogonal to E(µ2) − E(µ1). Let E(µ2) − E(µ1) = PN. Then all Mλ

are orthogonal to N. If a complete orthonormal set were to be chosen from

79 This was shown only for λ sequences. However, the limit for all such λ
sequences (λ → λ0 and λ < λ0 or λ > λ0) must be the same because two
such sequences can be combined to form one, and since this has a limit, both
constituents must have the same limit. From this it follows that the convergence
(to the common limit of all sequences) also occurs in the case of continuous
variation of λ.
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this, then N would contain only the zero; i.e., E(µ2) − E(µ1) = O, contrary to
assumption.

The discontinuities of E(λ) are known as the discrete spectrum of A. They
are the same λ for which Af = λf, f $= 0 is solvable. If we choose from each
Mλ $= 0 an f with ‖f‖ = 1 then, because of the orthogonality of the Mλ,
an orthonormal set is obtained. By theorem 3 in II.3 this is finite, or is a
sequence. Therefore the λ of the discrete spectrum form at most a sequence.

All points in whose neighborhood E(λ) is not constant form the spectrum
of A. We have seen that if there are intervals into which the spectrum—but
not the point spectrum—of A penetrates (i.e., intervals of continuity of E(λ) in
which it is not constant), then the eigenvalue problem is certainly not solvable
in the same sense as that in which it was formulated at the beginning of II.6. The
precise conditions for this insolvability we do not investigate further, because
insolvability may also arise under certain other circumstances, when the discrete
spectrum does penetrate into all intervals in which points of the spectrum lie.
The separation of the discrete spectrum from the rest of the spectrum is then
considerably more laborious, and is beyond the scope of this work. (The reader
will find these investigations in Hilbert’s papers, which have been referred to
previously).

On the other hand, we do want to show how in cases where there does
exist a complete orthonormal set φ1, φ2, . . . of solutions of Aφ = λφ (with
λ = λ1, λ2, . . . corresponding to φ = φ1, φ2, . . .)—cases with a pure discrete
spectrum, as we shall say—the E(λ) are to be constructed. We have80

E(λ) =
∑

λρ!λ

P[φρ]

(The sum
∑

can have 0 summands, giving E(λ) = O. Or a finite positive
number, when its meaning is clear. Or indefinitely many, in which case it
converges according to the final considerations of II.4.)

S2 is evident, because for λ′ ! λ′′

E(λ′′) − E(λ′) =
∑

λ′<λρ !λ′′

P[φρ]

is a projection, therefore E(λ′) ! E(λ′′) (theorem 14 ).

We prove S1 as follows: For each f we by theorem 7 have81

∑

ρ

‖P[φρ]f‖
2 =

∑

ρ

|(f, φρ)|2 = ‖f‖2

i.e.,
∑

ρ ‖P[φρ]f‖
2 is convergent. Therefore for each ε > 0 we can give a finite

80 This is the precise restatement of the definition of E(λ; ξ, η) given in II.7.
81 Recall in this connection that, as the construction carried out in the proof

of theorem 10 shows, if ‖φ‖ = 1 then P[φ]f = (f, φ) · φ gives

‖P[φ]f‖ = |(f, φ)| = |(φ, f)|
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number of ρ so that the sum
∑

ρ taken over these alone is > ‖f‖2 − ε, and
therefore each

∑′
ρ from which they are missing is < ε. Then also

‖
∑

ρ

′
P[φρ]f‖

2 =
∑

ρ

′‖P[φρ]f‖
2 < ε

From this it follows in particular that

‖
∑

λρ !λ

P[φρ]f‖
2 < ε : λ sufficiently small

‖
∑

λρ >λ

P[φρ]f‖
2 < ε : λ sufficiently large

‖
∑

λ0 <λρ !λ

P[φρ]f‖
2 < ε : λ " λ0 near enough to λ0

Then82

E(λ)f =
∑

λρ !λ

P[φρ]f −→ 0 for λ → −∞

f − E(λ)f =
∑

λρ >λ

P[φρ]f −→ 0 for λ → +∞

E(λ)f − E(λ0)f =
∑

λ0 <λρ !λ

P[φρ]f −→ 0 for λ(" λ0) → λ0

i.e., S1 is satisfied.

In order to convince ourselves of the validity of S3, we set

f = x1φ1 + x2φ2 + · · · : then A = λ1x1φ1 + λ2x2φ2 + · · ·
In order that Af be defined,

∑∞
ρ=1 λ2

ρ |xρ|2 must be finite. But83

∫ +∞

∞
λ2d‖E(λ)f‖2 =

∫ +∞

∞
λ2d

( ∑

λρ !λ

|xρ|2
)

=
∞∑

ρ=1

λ2
ρ|xρ|2

∫ +∞

∞
λ d(E(λ)f, g) =

∫ +∞

∞
λ d

( ∑

λρ !λ

xρyρ

)
=

∞∑

ρ=1

λρxρyρ = (Af, g)

82 We have (by theorem 7)

f =
∑

ρ

(f, φρ) · φρ =
∑

ρ

P[φρ]f

This also follows from the final considerations of II.4, and pertains to the second
of the following equations.

83 By Note 73,
∫ +∞

∞
λ2d

( ∑

λρ !λ

|xρ|2
)

= lim
k∑

τ=1

Λ2
τ ·

∑

Λτ−1<λρ !Λτ

|xρ|2

If, throughout, Λ2
τ − Λ2

τ−1 < ε (i.e., if the Λ0, Λ1, . . . ,Λk mesh is sufficiently
fine) the expression on the right changes by less than ε

∑∞
ρ=1 |xρ|2 = ε‖f‖2 if
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Consequently, S3 is satisfied.

Let us consider two cases of a pure continuous spectrum; i.e., two cases in
which there exists no discrete spectrum. We take as our first example the case
in which R∞ is the space of all functions f(q1, . . . , q') with finite

∫
· · ·

∫ +∞

−∞
|f(q1, . . . , q')|2dq1 · · · dq'

and A is the operator qj · , the Hermitian character of which is evident.

Evidently Af = λf implies that

(qj − λ)f(q1, . . . , q') = 0

i.e., f(q1, . . . , q') = 0 everywhere, with the possible exception of the $ − 1
dimensional plane qj = λ. However, this plane is (according to the discussion
in II.3 relative to condition B) unimportant, because its Lebesgue measure
(i.e., volume) is zero. Then f ≡ 0.84 Consequently there exists no non-zero
solution of Af = λf . But we also see (inexactly) where the solution is to be

we replace it by
k∑

τ=1

∑

Λτ−1<λρ !Λτ

λ2
ρ|xρ|2 =

∑

Λ0<λρ !Λk

λ2
ρ|xρ|2

and if Λ0 is small enough, and Λk large enough, this is arbitrarily close to
∞∑

τ=1

λ2
ρ|xρ|2

This sum is then the desired limit; i.e., the value of the integral. The next
integral formula is proved in exactly the same way.

84 At this point the correct mathematical method followed by us deviates
from the symbolic method of Dirac (see, e.g., his book mentioned in Note 1).
The latter method in essence is to consider the f with (q − λ)f(q) ≡ 0 as
solutions (for simplicity we set $ = j = 1, qj = q). But since each (f, g) =∫

f(q)g(q)dq = 0 and f(q) $= 0, f(q) is infinite at the point q = λ (the only
point where it differs from zero!), and indeed, so strongly infinite that (f, g) $= 0.
Since for q $= λ, f(q) = 0 the integral

∫
f(q)g(q)dq can depend only on g(λ),

and indeed it is clear that the integral, because of its additive property, must
be proportional to g(λ). It suffices, of course, to consider the case λ = 0. We
write f(q) = δ(q), which is defined by

∆∆∆ q δ(q) = 0 and
∫

δ(q)f(q) = f(0)

For arbitrary λ, δ(q − λ) is a solution; although a function δ with the property
∆∆∆ does not exist, there are function sequences which converge toward such
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expected. (qj − λ)f(q1, . . . , q') = 0 implies that only for qj = λ may f $= 0.
A linear combination of the solutions for several λ, say λ = λ′, λ′′, . . . , λ(s),
would then be non-zero for

qj = λ′, λ′′, . . . , λ(s)

We can then consider an f as a linear combination of all solutions with λ ! λ0

if it is non-zero only for λ ! λ0. But in the case of the pure discrete spectrum
we had

E(λ0) =
∑

λρ !λ0

P[φρ] = PNλ0
, Nλ0 = [φρ :λρ!λ0 ]

i.e., Nλ consisted of the linear combinations of all φρ with λρ ! λ0; i.e., of all
solutions of Af = λf with λ ! λ0. Consequently—to be sure, inexactly and
heuristically—it is to be expected that

E(λ0) = PNλ0

where Nλ0 consists of those f which $= 0 only for qj ! λ0. R∞−N∞ then clearly
consists of those f which always vanish for qj > 0; consequently

E(λ0)f(q1, . . . , q') =
{

f(q1, . . . , q') for qj ! λ0

0 for qj > λ0

In a rather inexact way, then, we have found a family of projections E(λ)
of which it is to be supposed that they satisfy S1– S3 for our A. In fact, S1 and
S2 are satisfied in a trivial fashion; indeed, for S1 the λ → λ0 case holds even
without the condition λ " λ0; i.e., E(λ) is continuous everywhere. In order
to see that S3 also is satisfied, it suffices to prove the validity of the following
equations (in which all unstated upper/lower limits are ±∞):

∫ +∞

−∞
λ2d‖E(λ)f‖2 =

∫
λ2d

(∫
···
∫ λ

−∞
···
∫

|f(q1,...,qj ,...,q$)|2dq1...dqj ...dq$

)

=
∫

λ2
(∫

···
∫

|f(q1,...,qj−1,λ,qj+1,...,q$)|2dq1...dqj−1dqj+1...dq$

)
dλ

=
∫
···
∫

q2
j |f(q1,...,qj−1,qj ,qj+1,...,q$)|2dq1...dqj−1dqjdqj+1...dq$

= ‖Af‖2

behavior (even though the limiting function does not exist). For example,

fε(q) =
{

1
2ε for |x| < ε
0 for |x| " ε

as ε → +0

and
fa(q) =

√
a
π e−ax2

as a → +∞

provide instances of such sequences (see also I.3, particularly Note 32).
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∫ +∞

−∞
λ d(E(λ)f, g) =

∫
λd

(∫
···
∫ λ

−∞
···
∫

f(q1,...,qj ,...,q$)g(q1,...,qj ,...,q$)dq1...dqj ...dq$

=
∫

λ
(∫

···
∫

f(q1,...,qj−1,λ,qj+1,...,q$)g(q1,...,qj−1,λ,qj+1,...,q$)dq1...dqj−1dqj+1...dq$

)
dλ

=
∫
···
∫

qjf(q1,...,qj−1,qj ,qj+1,...,q$)g(q1,...,qj−1,qj ,qj+1,...,q$)dq1...dqj−1dqjdqj+1...dq$

= (Af, g)

We again recognize that the discrete spectrum and the old formulation of the
eigenvalue problem both must fail, since E(λ) increases continuously everywhere.

This example also indicates, more generally, a possible way to find E(λ)
when the spectrum is continuous: one may determine (incorrectly!) the solutions
of Af = λf (since λ lies in the continuous spectrum, these f do not belong
to R∞ !), and form their linear combinations for all λ ! λ0. These belong in
part to R∞ again, and perhaps form a closed linear manifold Nλ0 . Then we set

E(λ0) = PNλ0

If we have handled everything properly, it becomes possible on this basis to
verify S1– S3 (for A and these E(λ)), and so to transform the heuristic argument
into an exact one.85

The second example which we wish to consider is the other important
operator of wave mechanics, !

i
∂
∂qj

. In order to avoid unnecessary complications,
let $ = j = 1 (the treatment is the same for other values). We must then
investigate the operator

A′f(q) = !
i

∂
∂q f(q)

If the domain of q is −∞ < q < +∞ then this is a Hermitian operator, as we
saw in II.5. On the other hand, for a finite domain a ! q ! b this is not the
case:

(A′f, g) − (f,A′g) =
∫ b

a

!
i f ′(q)g(q)dq −

∫ b

a
f(q)!

i g ′(q)dq

= !
i

∫ b

a

{
f ′(q)g(q) + f(q)g ′(q)

}
dq

= !
i

[
f(q)g(q)

]b

a

= !
i

[
f(b)g(b) − f(a)g(a)

]

In order for this to vanish the domain of !
i

∂
∂q must be limited in such a way

that for two f, g picked arbitrarily from it, f(a)g(a) = f(b)g(b). That is,

f(a) : f(b) = g(b) : g(a)

If we vary f for fixed g then we see that f(a) : f(b) must be the same number

85 The exact formulation of this idea (to be considered here only as an
heuristic statement) is found in papers of Hellinger (J. f. Math. 136 (1909))
and Weyl (Math. Ann. 68 (1910)).
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θ throughout the entire domain (θ may even be 0 or ∞). Substitutions f ↔ g
give θ = 1/θ̄; i.e., |θ| = 1. So in order for !

i
∂
∂q to be Hermitian we must

postulate a “boundary condition” of the form

f(a) : f(b) = θ : θ a fixed number of unit absolute value

First we take the interval −∞ < q < +∞. The solutions of Af = λf ;
i.e., of !

i φ′(q) = λφ(q), are the functions

φ(q) = ce(i/!)λq

But these cannot be used for our purposes without further discussion, since
∫ +∞

−∞
|φ(q)|2dq =

∫ +∞

−∞
|c|2dq = ∞

(unless c = 0, φ ≡ 0). We observe that in the first example we found the
solution δ(q−λ); i.e., a fictitious, non-existent function (see Note 84). Now we
find

e(i/!)λq

which is an entirely well-behaved function, but which does not belong to R∞
because of the unboundedness of the integral of the square of its absolute value.
For our point of view, these two facts have the same meaning, because for us
what does not belong to R∞ does not exist.86

As in the first case, we now form the linear combinations of the solutions
with λ ! λ0; i.e., the functions

f(q) =
∫ λ0

−∞
c(λ)e(i/!)λqdq

It is to be hoped that among these, functions in R∞ will be present, and
furthermore that these will form a closed linear manifold N ′

λ0
, and finally that

the projections
E(λ0) = P

N ′
λ0

will form the resolution of the identity belonging to A′.

We obtain an example confirming the first surmise if we set

f(q) =
∫ λ0

λ1

e(i/!)λqdq = e(i/!)λ0q − e(i/!)λ1q

(i/!)q

c(λ) =
{

1 for λ " λ1

0 for λ < λ1
: λ1 < λ0

86 Of course, only success in the physical application can justify this point of
view or its use in quantum mechanics.
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because this f(q) is everywhere regular for finite values, while for q → ±∞ it
behaves like 1/q, so that

∫ +∞
−∞ |f(q)|2dq is finite. But the other surmises also

prove to be correct, and actually follow from the theory of the Fourier integral.
Indeed, this theory asserts the following:87

Let f(x) be any function with finite
∫ +∞

−∞
|f(x)|2dx

Then the function

Lf(x) = F (y) = 1√
2π

∫ +∞

−∞
eixyf(x)dx

can be formed, and for this
∫ +∞

−∞
|F (y)|2dy

is also finite, and is actually equal to
∫ +∞
−∞ |f(x)|2dx. Moreover, LLf(x) = f(−x).

(This is the so -called Fourier transform which plays an important role elsewhere
in the theory of differential equations.)

If we replace x, y by 1√
!q, 1√

!p then we obtain the transform

Mf(q) = F (p) = 1√
h

∫ +∞

−∞
e

i
! pqf(q)dq

which has the same properties. Consequently, it maps R∞ on itself [Mf(q) = g(p)
is solvable for each g(p) of R∞: f(q) = Mg(−p)], leaves ‖f‖ invariant, and is
linear. By II.5 this M is unitary. Therefore M2f(q) = f(−q): M –1f(q) = M∗f(q) =
Mf(−q) so M commutes with M2; i.e., with the operation f(q) → f(−q).

What we then had in mind for N ′
λ0

was the following: f(q) belongs to N ′
λ0

if F (p) = M –1f(p) is equal to zero for all p < λ0. (Here

F (p) =
√

hc(p)

where c(λ) was defined above.) But these F (p), as we know, form a closed
linear manifold Nλ0 . Therefore the image N ′

λ0
of this Nλ0 obtained by M is

also a closed linear manifold. E′(λ0) is formed from E(λ0) just as was N ′
λ0

from
Nλ0 , by transformation of the entire R∞ with M. Therefore E ′(λ0) = ME(λ0)M –1.
Then E ′(λ), as well as E(λ), has the properties S1 and S2. It still remains to
prove S3; i.e., that the resolution of the identity E(λ) belongs to A′.

In this, we limit ourselves to the demonstration of the following: If f(q) is
differentiable without special convergence difficulties, and if

∫ +∞

−∞
|!

i f ′(q)|2dq

87 Plancherel, Circ. Math. di. Pal. 30 (1910); Titchmarsh, Lond. Math. Soc.
Proc. 22 (1924).
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is finite, then ∫ +∞

−∞
λ2d‖E′(λ)f‖2

is finite, and88

(A′f, g) =
∫ +∞

−∞
λ d(E′(λ)f, g)

Indeed (recall that M –1f(p) = F (p))

A′f(q) = !
i f ′(q)

= !
i

∂
∂q (MF (p))

= !
i

∂
∂q

(
1√
h

∫
F (p)e

i
! pqdp

)

= 1√
h

∫
F (p) · p · e i

! pqdp

= M(pF (p))

Therefore, for the f mentioned, A′ = MAM –1 (here A is the operator q ·, or—since
we use the variable p here—p ·). Since the above propositions hold for A, E(λ)
they also are valid after the transformation of R∞ with M. Therefore they also
hold for A = MAM –1 and E′(λ) = ME(λ)M –1.

The situation for !
i

∂
∂q in the interval a ! q ! b (a < b; a, b finite) is

essentially different. In this case, as we know, a boundary condition

f(a) : f(b) = θ : |θ| = 1

is forced by the Hermiticity requirement. Again, !
i

∂
∂q f(q) = λf(q) is solved by

f(q) = ce(i/!)λq

but now ∫ b

a
|f(q)|2dq =

∫ b

a
|c|2dq = (b − a)|c|2

is finite, so that f(q) always belongs to R∞. On the other hand, there is the
boundary condition

f(a) : f(b) = e(i/!)λ(b−a) = θ

to be satisfied, which, if we set θ = e−iα (0 ! α < 2π), becomes

2πi
h λ(a − b) = −i(α + 2πk) : k = 0,±1,±2, . . .

λ = h
b − a

(
α
2π

+ k
)

88 Regarding the following equation: E′(λ) does not belong to A′ = !
i

∂
∂q itself,

but to an operator whose domain includes that of A′ and which coincides in
this domain with A′. See the developments regarding this in II.9.
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Therefore we have a discrete spectrum, and the normalized solutions are then
determined by (b − a)|c|2 = 1 whence c = 1/

√
b − a:

φk(q) = 1√
b − a

e(i/!)λq

= 1√
b − a

e
i

2π
a−b

(
α
2π +k

)
q : k = 0,±1,±2, . . .

This is then an orthonormal set, but it is also complete. For if f(q) is orthogonal
to φk(q) then

e
i

α
b−aq

f(q)

is orthogonal to all

e
i

2π
b−akq

and therefore
e i

α
2π xf

(
b−a
2π x

)

is orthogonal to all eikx; i.e., to 1, cos x, sin x, cos 2x, sin 2x, . . . . Moreover, it is
defined in the interval

a ! b − a
2π

x ! b

whose length is 2π, so it must vanish according to well-known theorems.89
Therefore f(q) ≡ 0.

Consequently, we have a pure discrete spectrum, a case which we treated in
general at the beginning of this section. One should observe how the “boundary
condition”—i.e., θ or α—affects the eigenvalues and eigenfunctions.

In conclusion, we can also consider the case of a one-way infinite interval
(domain); say 0 ! q < +∞. First of all, we must again prove the Hermitian
nature of the operator. We have

(A′f, g) − (f,A′g) = !
i

∫ b

a

{
f ′(q)g(q) + f(q)g ′(q)

}
dq

= !
i

[
f(q)g(q)

]∞
0

We argue that f(q)g(q) approaches zero as q → ∞ just as we did in II.5 in the
case of the (both ways) infinite interval (domain). Therefore the requirement
has to be f(0)g(0) = 0. If we set f = g it can be seen that the “boundary
condition” is f(0) = 0.

In this case, serious difficulties present themselves. The solutions of
A′φ = λφ are the same as in the interval −∞ < q < +∞, namely the functions

φ(q) = ce(i/!)λq

89 All Fourier coefficients disappear, therefore the function itself vanishes
(see, for example, Courant-Hilbert in the reference given in Note 30).
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but they do not belong to R∞ and they do not satisfy the boundary condition.
The latter is suspicious. Nevertheless, it is rather surprising that we must by
the method sketched earlier necessarily obtain the same E(λ) as in the interval
−∞ < q < +∞ since the (improper; i.e., not belonging to R∞) solutions are
the same. How is this to be reconciled with the fact that the operator is a
different one? Also, they are not what we need. For if we again define M, M –1 in
the Hilbert space FΩ functions f(q) (0 ! q < +∞,

∫ ∞
0 |f(q)|2dq finite):

Mf(q) = F (p) = 1√
h

∫ +∞

0
e

i
! pqf(q)dq

M –1F (p) = f(q) = 1√
h

∫ +∞

−∞
e−

i
! pqF (p)dp = MF (−p)

then M maps the Hilbert space FΩ′ of all f(q) with

0 ! q < +∞,

∫ +∞

0
|f(q)|2dq finite

onto another Hilbert space FΩ′′ of all F (p) with

−∞ ! q < +∞,

∫ +∞

0
|F (p)|2dp finite

While ‖Mf(q)‖ = ‖f(q)‖ always holds (this follows from the theorems previously
mentioned if we set f(q) = 0 for −∞ < q < 0), ‖M –1F (p)‖ = ‖F (p)‖ is not the
case in general because, by reason of the theorems previously discussed, if we
define f(q) for q < 0 by

f(q) = 1√
h

∫ +∞

−∞
e−

i
! pqF (p)dp

then

‖F‖2 =
∫ +∞

−∞
|F (p)|2dp =

∫ +∞

−∞
|f(q)|2dq

‖M –1F‖2 = ‖f‖2 =
∫ +∞

0
|f(q)|2dq

So ‖M –1F‖ < ‖F‖ unless, by chance, f(q)—defined as above—vanishes for all
q < 0. Therefore E′(λ) = ME(λ)M –1 is not a resolution of the identity:90 the
method has failed.

90 It is indeed true that M –1Mf(q) = f(q) (it suffices to define f(q) = 0 for
q < 0 and to make use of earlier theorems) but it is not always true that
M –1MF (p) = F (p) because in general ‖M –1F‖ < ‖F‖, therefore ‖M –1MF‖ < ‖F‖.
Consequently M –1M = I, MM –1 $= I; i.e., M –1 is not a true reciprocal of M. (Also,
no other can exist because if there were one, then, since M –1M = I, it would have
to be still equal to our M –1.) As a consequence of this, from E′(λ) = ME(λ)M –1

for example the conclusion E′2(λ) = E′(λ) can still be made (since only M –1M is
involved), but E′(λ → +∞) −→ MM –1 $= I.
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We shall soon see (in Note 105) that this lies in the nature of the case,
because no resolution of the identity belongs to this operator.

Before we conclude these introductory discussions we shall give a few formal
rules of calculation for operators, which are put in the symbolic form

A =
∫ +∞

−∞
λdE(λ)

by use of the resolution of the identity.

First, let F be a projection that commutes with E(λ). Then for all λ′ < λ′′

‖E(λ′′)Ff − E(λ′)Ff‖2 = ‖{E(λ′′) − E(λ′)}Ff‖2

= ‖F{E(λ′′) − E(λ′)}f‖2

! ‖{E(λ′′) − E(λ′)}f‖2

Since
E(λ′′) , E(λ′) and E(λ′′) − E(λ′)

as well as
E(λ′′)F, E(λ′)F and {E(λ′′) − E(λ′)}F

are projections, we have

‖E(λ′′)Ff‖2 − ‖E(λ′)Ff‖2 ! ‖E(λ′′)f‖2 − ‖E(λ′)f‖2

Therefore ∫ +∞

−∞
λ2d‖E(λ)f‖2 "

∫ +∞

−∞
λ2d‖E(λ)Ff‖2

Then, by S3, AFf is defined if Af is. Furthermore,91

AF =
∫ +∞

−∞
λd(E(λ)F) =

∫ +∞

−∞
λd(FE(λ)) = FA

i.e., A and F also commute. In particular, we can take any of the projectors

91 Actually, this must be proved non-symbolically with the help of the rigorous
equation

(Af, g) =
∫

λd(E(λ)f, g)

The calculation runs as follows:

(AFf, g) =
∫

λd(E(λ)Ff, g) =
∫

λd(FE(λ)f, g) =
∫

λd(E(λ)f,Fg)

= (Af,Fg)
= (FAf, g)

From this it follows that AF ≡ FA.
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E(λ) for F (because of S3). Then

AE(λ) =
∫ +∞

−∞
λ′d(E(λ′)E(λ)) =

∫ +∞

−∞
λ′dE(Min(λ, λ′))

Splitting the integral (
∫ +∞
−∞ =

∫ λ
−∞ +

∫ +∞
λ ), we have

AE(λ) =
∫ λ

−∞
λ′dE(λ′) +

∫ +∞

λ
λ′dE(λ)

=
∫ λ

−∞
λ′dE(λ′) + 0

= E(λ)A

because the function following the second differential is constant. In addition,
it follows from this that92

A2 =
∫ +∞

−∞
λd(E(λ)A) =

∫ +∞

−∞
λd

( ∫ λ

−∞
λ′dE(λ′)

)
=

∫ +∞

−∞
λ2dE(λ)

In general we have

An =
∫ +∞

−∞
λndE(λ)

because we can reason inductively from n − 1 to n:92

An = An−1A =
∫ +∞

−∞
λn−1d(E(λ)A) =

∫ +∞

−∞
λn−1d

( ∫ λ

−∞
λ′dE(λ′)

)

=
∫ +∞

−∞
λn−1 · λdE(λ)

=
∫ +∞

−∞
λn dE(λ)

It now follows that if p(x) = a0 + a1x + · · · + anxn is any polynomial, then

p(A) =
∫ +∞

−∞
p(λ)dE(λ)

(By p(A) we mean, of course, p(x) = a0I + a1A + · · · + anAn.
∫ +∞
−∞ dE(λ) = I

follows from S1.)

92 The third equality follows from the equation
∫

f(λ)d
( ∫ λ

g(λ′)dh(λ′)
)

=
∫

f(λ)g(λ)dh(λ)

which is generally valid for the Stieltjes integral. This equation is clear without
further discussion, by reason of the reciprocal relation between d and

∫ λ. A
rigorous proof has been given by the author: Annals of Mathematics 32 (1931).
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Furthermore, we have the following: If r(λ) and s(λ) are any two functions,
and if we define two operators B, C (symbolically) by93

B =
∫ +∞

−∞
r(λ) dE(λ), C =

∫ +∞

−∞
s(λ) dE(λ)

then it follows that

BC =
∫ +∞

−∞
r(λ)s(λ) dE(λ)

For proof we proceed exactly as in the special case B = C = A:

BE(λ) =
∫ +∞

−∞
r(λ′)d(E(λ′)E(λ)) =

∫ +∞

−∞
r(λ′)d(E(Min(λ, λ′)))

=
∫ λ

−∞
r(λ′)dE(λ′) +

∫ +∞

λ
r(λ′)dE(λ)

=
∫ λ

−∞
r(λ′)dE(λ′)

CB =
∫ +∞

−∞
s(λ)d(BE(λ)) =

∫ +∞

−∞
s(λ)d

( ∫ λ

−∞
r(λ′)dE(λ′)

)

=
∫ +∞

−∞
s(λ) · r(λ)dE(λ)

=
∫ +∞

−∞
s(λ)r(λ)dE(λ)

The following relations may easily be verified:

B∗ =
∫ +∞

−∞
r(λ)dE(λ)

aB =
∫ +∞

−∞
ar(λ)dE(λ)

B ± C =
∫ +∞

−∞
{r(λ) ± s(λ)}dE(λ)

There then exists no formal obstacle to writing B = r(A) for such functions
r(λ).94 Particularly noteworthy are the (discontinuous!) functions

93 That is,

(Bf, g) =
∫ +∞

−∞
r(λ)d(E(λ), g), (Cf, g) =

∫ +∞

−∞
s(λ)d(E(λ), g)

94 The precise foundation of this function concept was given by the author
in Annals of Math. 32 (1931). F. Riesz was the first one to define general
operator functions by limiting processes applied to polynomials.
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eλ(λ′) =
{ 1 for λ′ ! λ

0 for λ′ > λ

For these we have (by S1)

eλ(A) =
∫ +∞

−∞
eλ(λ′)dE(λ) =

∫ λ

−∞
dE(λ′) = E(λ)

(At the beginning of this section we discussed the operator A = qj · . Its E(λ)
was multiplication by 1 or 0 according as qj ! λ or qj > λ; i.e., multiplication
by eλ(qj). This example is well suited to furnish an intuitive picture of the
above concepts.)

9. DIGRESSION ON THE EXISTENCE AND UNIQUENESS

OF THE SOLUTIONS OF THE EIGENVALUE PROBLEM

The last section gave only a qualitative survey, emphasizing special cases,
of the problem as to which resolutions of the identity E(λ) correspond to a given
Hermitian operator A. A systematic investigation of the question still remains
to be effected. To do this in mathematical completeness goes beyond the scope
of this book. We limit ourselves to the proof of a few points, and the statement
of the rest—particularly since precise knowledge of these circumstances is not
absolutely necessary for understanding of quantum mechanics.95

In theorem 18 it was shown that the continuity of linear operators is
expressed by

Co ‖Af‖ ! C · ‖f‖ : C arbitrary, but fixed

but by theorem 18 there are several equivalent forms of the condition Co:

Co1 |(Af, g)| ! C · ‖f‖‖g‖

Co2 |(Af, f)| ! C · ‖f‖2 but only if A is Hermitian

The condition Co1, equivalent to continuity, is the Hilbert concept of
boundedness. Hilbert has formulated and solved the eigenvalue problem for
bounded (i.e., continuous) Hermitian operators (see Note 70). But before we
discuss this case we must introduce an additional concept.

A Hermitian operator A is said to be closed if it has the following property:
Given a point sequence f1, f2, . . ., assume that all Afn are defined, and that
fn → f , Afn → f∗. Then A is closed if and only if Af is also defined, and is

95 The theory of unbounded Hermitian operators, to which reference will be
made in the following (in addition to the Hilbert theory of bounded operators),
was developed by the author (see reference in Note 78). M. Stone (PNAS 1929
and 1930) arrived at similar results independently.
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equal to f∗. It should be observed that continuity could be defined in a way
which is closely related to the above definition, namely the following: If all
Afn, Af are defined and if fm → f , then Afn → Af . The difference between
the two definitions is that for closure one is required to have Afn → f∗ = Af ,
while for continuity it is required only that Afn → f∗ (i.e., that f∗ exists).

A few examples: Let R∞ again be the space of all f(q) with finite
∫ +∞

−∞
|f(q)|2dq : −∞ < q < +∞

Let A be the operator q·, defined for all f(q) with finite
∫ +∞

−∞
|f(q)|2dq and

∫ +∞

−∞
q2|f(q)|2dq

And let A′ be the operator !
i

∂
∂q defined for all everywhere-differentiable functions

f(q) with finite
∫ +∞

−∞
|f(q)|2dq and

∫ +∞

−∞
|!

i f ′(q)|2dq

As we know, both of these operators are Hermitian.

A is shown to be closed by the following argument: Let fn → f , Afn → f∗;
i.e., ∫ +∞

−∞
|fn(q) − f(q)|2dq → 0,

∫ +∞

−∞
|qfn(q) − f∗(q)|2dq → 0

By reason of the discussion in II.3 of the proof of D, there exists a subsequence
fn1 , fn2 , . . . of the f1, f2, . . . which converges to a limit everywhere with the
exception of a q -set of measure 0: fnν (q) → g(q). Therefore

∫ +∞

−∞
|g(q) − f(q)|2dq → 0,

∫ +∞

−∞
|qg(q) − f∗(q)|2dq → 0

i.e., except for a set of measure 0, g(q) = f(q) and also qg(q) = f∗(q); i.e.,
f∗(q) and qf(q) are not essentially different. But, since f∗(q) belongs to R∞
by assumption, qg(q) does also. Consequently Af(q) is defined and is equal to
qf(q) = f∗(q).

On the other hand, A′ is not closed: Set

fn(q) = e−
√

q2+ 1
n , f(q) = e−|q|

Clearly, all A′fn are defined, but not A′f (f has no derivative at q = 0).
Nevertheless, fn → f , A′fn → f∗, as can easily be calculated if we set

f∗(q) = −sgn(q)e−|q| where sgn(q) =

{−1 for q < 0
0 for q = 0

+1 for q > 0
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9. Digression 95

We now show that—in contrast to continuity—closure is a property which
can always be achieved with little difficulty for Hermitian operators. This is
done by the process of extension; i.e., we leave the operator unchanged at all
points of R∞ where it is defined, but in addition define it for some of those
points where it was not previously defined.

Indeed, let A be an arbitrary Hermitian operator. We define an operator
A
∼ as follows: A

∼
f is defined if a sequence f1, f2, . . . with defined Afn exists in

such a way that f is the limit of the fn and the Afn also possess a limit f∗.
Then A

∼
f = f∗. This definition is admissible only if it is unique; i.e., it follows

from fn → f , gn → f , Afn → f∗, Agn → g∗ that f∗ = g∗. But if Ag is defined

(f∗, g) = lim(Afn, g) = lim(fn, Ag) = (f,Ag)
(g∗ , g) = lim(Agn, g) = lim(gn, Ag) = (f,Ag)

therefore (f∗, g)=(g∗, g). Butthese g are everywhere dense, so f∗=g∗. Therefore
we have defined A

∼ correctly. This A
∼ is an extension of A; i.e., whenever A is

defined then A
∼ is also defined, and A

∼ = A. From the fact that A is linear and
Hermitian the same follows for A

∼ (by continuity). Finally, A
∼ is closed, by the

following argument: Let all A
∼

f be defined; fn → f , A
∼

fn → f∗. Then there are
sequences fn,1, fn,2, . . . with defined Afn,m such that fn,m → fn, Afn,m → f∗

n

and A
∼

fn = f∗
n. For each such n there is an Nn such that for m " Nn

‖fn,m − fn‖ ! 1
n, ‖Afn,m − f∗

n‖ ! 1
n

Thereforefn,Nn−fn → 0, Afn,Nn−A
∼

f → 0 whence fn,Nn−f → 0, Afn,Nn−f∗ → 0.
From this it follows by definition that A

∼
f = f∗.

(It should be noted that a discontinuous operator can never be made
continuous by extension.)

If an operator B extends an operator A —i.e., if, whenever Af is defined,
Bf is also defined and Bf = Af—we write B ) A or A ≺ B. We have just
proved that A ≺ A

∼, and that A
∼ is Hermitian and closed. It is evident without

further discussion that for each closed B with A ≺ B, A
∼ ≺ B must also hold.

Consequently, A
∼ is the smallest closed extension of A. (Therefore A

∼∼ = A
∼.)

The close relation between A and A
∼ makes it plain that A may be replaced

by A
∼ in all considerations, since A

∼ extends the domain of A in a natural way
or, looking at it from the opposite point of view, A restricts the domain of A

∼

in an unnecessary manner. Let this replacement of A by A
∼ take place. Then,

as a consequence, we may assume that all Hermitian operators with which we
have to deal are closed.

Let us again consider a continuous Hermitian operator A. In this case,
closure is equivalent to closure of the domain. Now the condition ‖Af‖ ! C·‖f‖,
characteristic for continuity, clearly holds for A

∼ also. Therefore A
∼ is also

continuous. Since the domain of A
∼ is then closed, but is on the other hand
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everywhere dense, it is equal to R∞. That is: A
∼ is defined everywhere, and

consequently each closed and continuous operator is also. The converse holds
too: if a closed operator is defined everywhere, then it is continuous (this is the
theorem of Toeplitz,96 into the proof of which we do not enter here.)

Hilbert’s result runs as follows: To each continuous operator there
corresponds one and only one resolution of the identity (see the reference in
Note 70). Since a continuous operator is always defined, and

∫
λ2d‖E(λ)f‖2

and must always be finite; since, in addition, this equals‖Af‖2 and consequently,
by Co, is ! C2‖f‖2, we have

0 " ‖Af‖2 − C2‖f‖2 =
∫ +∞

−∞
λ2d‖E(λ)f‖2 − C2

∫ +∞

−∞
d‖E(λ)f‖2

=
∫ +∞

−∞
(λ2 − C2)d‖E(λ)f‖2

Now let f = E(−C − ε)g. Then E(λ)f = E(Min(λ,−C − ε))g, and therefore for
λ " −C − ε it is constant, so that we need only consider

∫ −C−ε
−∞ . In this case,

E(λ)f = E(λ)g and

λ2 − C2 " (C + ε)2 − C2 > 2Cε

so that

0 " 2Cε

∫ −C−ε

−∞
d‖E(λ)g‖2 = 2Cε‖E(−C − ε)g‖2

‖E(−C − ε)g‖2 ! 0, E(−C − ε)g = 0

In the same way, it may be shown for f = g − E(C + ε)g that

g − E(C + ε)g = 0

Consequently, for all ε > 0, E(−C − ε) = O, E(C + ε) = I ; i.e.,

E(λ) =
{

O for λ < −C
I for λ < +C

(Because of S2 the latter holds also for λ = 0.) That is, E(λ) is variable only
on the range −C ! λ ! +C.

Conversely, this has the continuity of A as a consequence: we have

‖Af‖2 =
∫ +∞

−∞
λ2d‖E(λ)f‖2 =

∫ +C

−C
λ2d‖E(λ)f‖2

! C2

∫ +C

−C
d‖E(λ)f‖2 = C2

∫ +∞

−∞
d‖E(λ)f‖2 = C2‖f‖2

which gives ‖Af‖ ! C‖f‖. We see therefore that the continuous A are entirely

96 Math. Ann. 69 (1911).

 EBSCOhost - printed on 2/13/2023 10:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



9. Digression 97

exhausted by resolutions of the identity variable only in a finite λ-interval. But
what is the situation with the other, discontinuous Hermitian operators? There
are still available all resolutions of the identity for which the λ-interval is not
finite. Do these exhaust the Hermitian operators just mentioned?

The circumstances under which these operators cannot be defined
everywhere must first be assessed correctly.

It is perfectly possible that a Hermitian operator may not be defined at
points in Hilbert space at which definition might actually be feasible. For
example, our operator A′ = !

i
∂
∂q was undefined for f(q) = e−|q | but could have

been limited to analytic functions (in −∞ < q < +∞, q real),97 etc. The
domain was protected from entirely arbitrary contractions by the fact that we
required it to be everywhere dense. Furthermore, we can restrict ourselves to
closed operators. Still, even this is not sufficiently effective. Indeed, let us
take, for example, the operator A′ = !

i
∂
∂q in the interval 0 ! q ! 1. Then let

f(q) be assumed differentiable everywhere, with
∫ +∞
−∞ |f(q)|2dq,

∫ +∞
−∞ |f ′(q)|2dq

finite. In order that A′ be Hermitian a boundary condition f(0) : f(1) = e−iα

(0 ! α < 2π) must be imposed; let the set of these f(q) be Aα, with A′ itself
—thus restricted—becoming A′

α. Furthermore, let us consider the boundary
condition f(0) = f(1) = 0. We call this f(q)-set A0 and the A′, restricted
accordingly, A′0. All A

∼
α
′ are extensions of A

∼′0, which is then Hermitian, and its
domain is everywhere dense,98 and therefore the closed A

∼
α
′ are also extensions

of A
∼′0. All are different from one another, and from A

∼′0. Indeed, the clearly

97 Even the functions f(q) which are analytic in −∞ < q < +∞ (with finite∫ +∞
−∞ |f(q)|2dq,

∫ +∞
−∞ |f ′(q)|2dq, . . .) are everywhere dense in R∞. Indeed, by II.3

D, the linear combinations of

fa,b(q) =
{ 1 for a < q < b

0 elsewhere

are everywhere dense. Therefore it suffices to approximate these arbitrarily well
by analytic functions f(q). Such, for example, as

f (ε)
a,b(q) = 1

2 − 1
2 tanh

[ (q − a)(q − b)
ε

]
=

(
1 + exp

[
2(q − a)(q − b)

ε

])−1

which is of the desired type, and converges to fa,b(q) as ε → 0.
98 It is again sufficient to approximate the fa,b(q), 0 ! a < b ! 1 with

functions from A0. For example, the functions

f (ε)
a,b(q) = 1

2 − 1
2 tanh

[
ε–1

(q − a − ε)(q − b + ε)
q(1 − q)

]

with ε → 0 can be used for this purpose.
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98 Chapter II: Abstract Hilbert Space

unitary operation f(q) → eiβqf(q) transforms A′ into A′ + !β I and

Aα into Aα+β

A0 into A0

∴ A′
α into A′

α−β + !β I

A′0 into A′0 + !β I

∴ A
∼

α
′ into A

∼
α+β
′ + !β I

A
∼′0 into A

∼′0 + !β I

Hence it would follow from A
∼

α
′ = A

∼′0 that A
∼

α−β
′ = A

∼′0; i.e., all A
∼

γ
′ would be

equal to one another. Consequently it suffices to show that A
∼

α
′ $= A

∼
γ
′ if α $= γ,

and this is certainly the case if A
∼

α
′
, A
∼

γ
′ possess no common Hermitian extension;

i.e., if A′ is not Hermitian in the union of Aα, Aγ . Since eiαq belongs to Aα,
eiγ q to Aγ , and

(A′eiαq, eiγq) − (eiαq, A′eiγq) = iα

∫ 1

0
ei(α−γ)q dq − iγ

∫ 1

0
ei(α−γ)q dq

= i(α − γ)
∫ 1

0
ei(α−γ)q dq

= ei(α−γ) − 1
$= 0

this is indeed the case. Consequently the closed Hermitian operator A
∼′0 is

defined in too restricted a region, because there exist proper (i.e., different
from A

∼′0 ) closed Hermitian extensions of it: A
∼

α
′ —and therefore the extension

process—is infinitely many valued, since each A
∼

α
′ can be used and each produces

another solution of the eigenvalue problem. (It is always a pure discrete
spectrum, but depends upon α : λk = h

(
α
2π + k

)
, k = 0,±1,±2, . . .) On the

other hand, with the operator A
∼′0 itself we in general expect no reasonable

solutions of the eigenvalue problem. In fact we shall show in the course of this
section that a Hermitian operator which belongs to a resolution of the identity
(i.e., has a solvable eigenvalue problem) possesses no proper extensions. An
operator which possesses no proper extensions—which is already defined at all
points where it could be defined in a reasonable fashion (i.e., without violation
of its Hermitian nature)—we call a maximal operator. Then, by the above,
resolutions of the identity can belong only to maximal operators.

On the other hand, the following theorem holds: Each Hermitian operator
can be extended to a maximal Hermitian operator. (In fact, a non-maximal
but closed operator may always be extended in an infinite number of different
ways. The only unique step of the extension process is the closure A → A

∼.
See Note 95.) Therefore the most generally valid solution of the problem which
we can expect is this: to each maximal Hermitian operator belongs one and
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9. Digression 99

only one resolution of the identity (each closed continuous operator is defined
everywhere in R∞ and is therefore maximal).

Therefore it is necessary to answer these questions: Does a resolution of
the identity belong to a maximal Hermitian operator? Can it ever happen that
several belong to the same operator?

We begin by stating the answers: to a given maximal Hermitian operator
there belongs none or exactly one resolution of the identity, and the former
situation does sometimes occur; i.e., the eigenvalue problem is certainly unique,
but under certain conditions it is insolvable. Nevertheless, the latter case is to
be regarded in a certain sense as an exception. The argument which leads to
this conclusion will now be sketched in broad outline.

If we consider a rational function f(λ) of a matrix A (of finite dimensions,
and capable of transformation to diagonal form by a unitary transformation),
then the eigenvectors are preserved, and the eigenvalues λ1, . . . , λn go over into
f(λ1), . . . , f(λn).99 If now the f(λ) maps the real axis (in the complex plane)
onto the circumference of the unit circle, then the matrices with exclusively
real eigenvalues go over into those with eigenvalues of absolute value 1; i.e.,
the Hermitian go over into the unitary.100 For example, f(λ) = λ−1

λ+1 has this
property. The corresponding transformation

U = A − i I
A + i I , A = −i U + I

U − I
is known as the Cayley transformation. We shall now look to the effect of this
transformation for the Hermitian operators of R∞; i.e., we define an operator
U as follows: Uf is defined if and only if f = (A + i I)φ = Aφ + iφ, and
then Uf = (A − i I)φ = Aφ − iφ. We hope that this definition will yield a
single-valued Uf for all f , and that U will be unitary. The proof in Rn is not
relevant now, since it presumes the transformability to diagonal form; i.e., the
solvability of the eigenvalue problem, in fact with a pure discrete spectrum. But
if the statements about U prove to be correct, then we can solve the eigenvalue
problem in the following way:

99 Since the function f(λ) can be approximated by polynomials, it suffices to
consider polynomials, and therefore their components, simple powers: f(λ) = λs

(s = 0, 1, 2, . . .). Since a unitary transformation does not matter here, we
may assume A to be a diagonal matrix. Since the diagonal elements are the
eigenvalues, they are λ1, λ2, . . . , λn. We must then show only that As is also
diagonal, and that it has the diagonal elements λs

1, λ
s
2, . . . , λ

s
n. But this is

obvious.
100 To demonstrate that these properties are characteristic of Hermitian and
unitary matrices respectively, we again need only to verify them for diagonal
matrices. For the diagonal matrix A with elements λ1, . . . , λn, the diagonal
matrix A∗ with elements λ̄1, . . . , λ̄n is the transposed conjugate; therefore
A = A∗ implies that λ1 = λ̄1, . . . , λn = λ̄1; i.e., that λ1, . . . , λn are real.
Moreover, A A∗ = A∗A = I implies that λ1λ̄1 = 1, . . . , λnλ̄n = 1; that is, that
|λ1| = |λ2| = · · · = |λn| = 1.

 EBSCOhost - printed on 2/13/2023 10:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



100 Chapter II: Abstract Hilbert Space

For U, the eigenvalue problem is solvable in the following form: There is
a unique family of projectors E(σ) (0 ! σ ! 1) which satisfies the following
conditions:

S1: E(0) = O, E(1) = I and for σ → σ0, σ " σ0, E(σ)f → E(σ0)f .

S2: From σ ′ ! σ ′′ it follows that E(σ ′) ! E(σ ′′).

S3: It is always true that

(Uf, g) =
∫ 1

0
e2πiσd(E(σ)f, g)

(U is defined everywhere, and the integral on the right is always
absolutely convergent.101)

This is proved in the framework and with the methods of the Hilbert
theory. This is made possible by the fact that the unitary operator U is always
continuous (see references in Notes 70, 101). The analogy to the conditions
S1– S3 for Hermitian operators comes to mind. The only differences are:
instead of the real integrands λ (−∞ < λ < +∞) the complex integrand
e2πiσ here is taken around the circumference of the unit circle (even in Rn the
Hermitian-unitary relation possesses a far-reaching analogy to the real axis-unit
circle relation: see Note 100), and the description of the operator domain in S3

is superfluous because unitary operators are defined everywhere.

Because of S1, E(σ)f → E(0)f = 0 for σ → 0 (since σ " 0 by its nature),
while for σ → 1 (since σ ! 1) there need not be E(σ)f → E(1)f = f . If this is
actually not the case, then E(σ) is discontinuous at σ = 1. But since a projection
E ′ exists, such that for σ → 1, σ < 1, E(σ)f → E ′f (see theorem 17
in II.4, as well as Note 79), this means that E ′ $= E(1) = I; i.e., that E ′f = 0
also possesses solutions f $= 0. Because of E(σ) ! E′ it follows from E ′f = 0

101 For the proof of this fact, see the work of the author cited in Note 78;
also A. Wintner: Math. Z. 30 (1929). The absolute convergence of all integrals

∫ 1

0
f(σ) d(E(σ)f, g)

with bounded f(σ) is shown as follows. It is sufficient to consider Re(E(σ)f, g)
since substitution of if, g for f, g changes this into Im(E(σ)f, g). Because

Re(E(σ)f, g) =
(
E(σ) f+g

2 , f+g
2

)
−

(
E(σ) f−g

2 , f−g
2

)

only the (E(σ)f, g) need be investigated. In
∫ 1
0 f(σ) d(E(σ)f, g) the integrand is

bounded and the σ-function behind the differential sign is monotonic; therefore
the proposition is demonstrated.
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9. Digression 101

that E(σ)f = 0 for all σ < 1. Conversely, by the definition of E ′, the former is
also a consequence of the latter. If all E(σ)f = 0 (σ < 1), then we see—just
as at the beginning of II.8—that (Uf, g) = (f, g) for all g, therefore Uf = f .
Conversely, if Uf = f then

∫ 1

0
e2πiσd(E(σ)f, f) = (Uf, f) = (f, f)

Re
∫ 1

0
e2πiσd(E(σ)f, f) = (f, f)

∫ 1

0
(1 − cos 2πσ)d(E(σ)f, f) = 0

∫ 1

0
(1 − cos 2πσ)d(‖E(σ)f‖2) = 0

From this we get—exactly as at the beginning of II.8—E(σ)f = 0 for all σ < 1
(and σ " 0). Consequently, the discontinuity of E(σ) at σ = 1 means that
Uf = f is solvable with f $= 0.

With our Cayley transforms U we now have φ = Af + if , Uφ = Af − if
and from Uφ = 0 it then follows that f = 0, φ = 0. Here E(σ) → f must also
hold for σ → 1. Consequently, by the mapping

λ = −i e2πiσ + 1
e2πiσ − 1

= − cot πσ, σ = − 1
π cot–1 λ

(which maps the intervals 0 < σ < 1 and −∞ < λ < +∞ one-to-one and
monotonically onto each other) we can produce a resolution of the identity
F(λ) from E(σ) in the sense of S1– S2:

C F(λ) = E(− 1
π cot–1 λ), E(σ) = F(− cot πσ)

We now want to show that F(λ) satisfies S3 for A if and only if E(σ) satisfies
S3 for U. In this way, the questions of the existence and uniqueness for the
solutions of the eigenvalue problem for the (possibly discontinuous) Hermitian
operator A are reduced to the corresponding questions for the unitary operator
U. These, however, as has been described, are answered in the most favorable
way.

Therefore, let A be Hermitian and U be its Cayley transform. We look first
to the case in which U is unitary. Its E(σ) must then conform to S1, S2 as well
as to S3. We form the F(λ) according to C, and then S1, S2 are fulfilled. If Af
is defined, then

Af + if = φ, Af − if = Uφ

and therefore
f = φ − Uφ

2i
, Af = φ + Uφ

2
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We calculate, in part symbolically:102

f = φ − Uφ
2i

= 1
2i

(
φ −

∫ 1

0
e2πiσdE(σ) φ

)
=

∫ 1

0

1 − e2πiσ

2i
dE(σ) φ

E(σ)f =
∫ 1

0

1 − e2πiσ ′

2i
d(E(σ)E(σ ′) φ)

=
∫ 1

0

1 − e2πiσ ′

2i
d(E(Min(σ, σ ′)) φ) =

∫ σ

0

1 − e2πiσ ′

2i
dE(σ ′) φ

‖E(σ)f‖2 = (E(σ)f, f) =
∫ σ

0

1 − e2πiσ ′

2i
d(E(σ ′) φ, f)

=
∫ σ

0

1 − e2πiσ ′

2i
d(E(σ ′) f, φ)

=
∫ σ

0

1 − e2πiσ ′

2i
d
( ∫ σ ′

0

1 − e−2πiσ ′′

−2i
d(E(σ ′′) φ, φ)

)

=
∫ σ

0

1 − e2πiσ ′

2i
1 − e−2πiσ ′

−2i
d(E(σ ′) φ, φ)

=
∫ σ

0

(1 − e2πiσ ′
)(1 − e−2πiσ ′

)
4

d‖E(σ ′)φ‖2

=
∫ σ

0
sin2(πσ ′) d‖E(σ ′)φ‖2

Therefore the integral given in S3 is
∫ +∞

−∞
λ2d‖F(λ)f‖2 =

∫ 1

0
cot2(πσ) d‖E(σ)f‖2

=
∫ 1

0
cot2(πσ) d

( ∫ σ

0
sin2(πσ ′) d‖E(σ ′)φ‖2

)

=
∫ 1

0
cot2(πσ) sin2(πσ ′) d‖E(σ ′)φ‖2

=
∫ 1

0
cos2(πσ) d‖E(σ)φ‖2

But since this is dominated absolutely by
∫ 1

0
d‖E(σ)φ‖2 = ‖φ‖2

102 We apply the Stieltjes integral to the elements of R∞ instead of to numbers.
All our relations are to be understood to hold if we choose any fixed g from
R∞ and form (•f, g), where f can be any element of R∞ and • represents
an operator. In contrast to the operator-Stieltjes integrals in II.7, this is a
half-symbolic process; instead of one g from R∞, there two elements f, g were
to be chosen arbitrarily from R∞, and instead of (•, g), there (•f, g) was to be
formed.
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the result is finite. Furthermore,

Af = φ + Uφ
2

= 1
2

(
φ +

∫ 1

0
e2πiσdE(σ) φ

)
=

∫ 1

0

1 + e2πiσ

2
dE(σ) φ

=
∫ 1

0
i 1 + e2πiσ

1 − e2πiσ
· 1 − e2πiσ

2i
dE(σ) φ

= −
∫ 1

0
cot(πσ) d

( ∫ 1

0

1 − e2πiσ′

2i
dE(σ ′) φ

)

= −
∫ 1

0
cot(πσ) d(E(σ)f)

=
∫ +∞

−∞
λ d(E(σ)f)

i.e., the final relation S3 also holds. Consequently, A is in any case an extension
of that operator which, by S3, belongs to F(λ). But since this is maximal (as
we shall show), A must be equal to it.103

We now discuss the converse. Let F(λ) belong to A by S1– S3. What
about U? We first define E(σ) by C. It therefore satisfies S1, S2. Let φ be
arbitrary. We write (again symbolically)

f =
∫ +∞

−∞

1
λ + i

dF(λ)φ =
∫ 1

0

1
− cot(πσ) + i

dE(σ)φ

=
∫ 1

0

1 − e2πiσ

2i
dE(σ)φ

where, since 1
λ+i or 1−e2πiσ

2i is bounded, all integrals converge. Then

103 There is an implied assumption here that there actually exists such an
operator for each given resolution of the identity F(λ). That is, for finite

∫ +∞

−∞
λ2d‖F(λ)f‖2

it is assumed than an f∗ can be found such that for all g

(f∗, g) =
∫ +∞

−∞
λ d(F(λ)f, g)

and also that the f∗ with this property is everywhere dense. (The Hermitian
character of the operator thus defined follows from S3: We exchange f, g in the
final equation and take the complex conjugate.) Both of these propositions are
proved in the reference given in Note 78.

 EBSCOhost - printed on 2/13/2023 10:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



104 Chapter II: Abstract Hilbert Space

F(λ)f = E(σ)f =
∫ 1

0

1 − e2πiσ′

2i
d(E(σ)E(σ ′)φ)

=
∫ 1

0

1 − e2πiσ′

2i
d(E(Min(σ, σ ′))φ)

=
∫ σ

0

1 − e2πiσ′

2i
dE(σ ′)φ

Af =
∫ +∞

−∞
λ dF(λ)f

= −
∫ 1

0
cot(πσ) dE(σ)f

=
∫ 1

0
i 1 + e2πiσ

1 − e2πiσ
d
( ∫ σ

0

1 − e2πiσ′

2i
dE(σ ′)φ

)

=
∫ 1

0
i 1 + e2πiσ

1 − e2πiσ
1 − e2πiσ

2i
dE(σ)φ

=
∫ 1

0

1 + e2πiσ

2
dE(σ)φ

Therefore

Af + if =
∫ 1

0
dE(σ)φ = φ

Af − if =
∫ 1

0
e2πiσdE(σ)φ

So Uφ is defined and is equal to
∫ 1
0 e2πiσdE(σ)φ. Since φ was arbitrary, U is

defined everywhere. When we form the inner product with any ψ and take the
complex conjugate, we see that U∗ψ =

∫ 1
0 e−2πiσdE(σ)ψ. The final calculation

of II.8 then shows that UU∗ = U∗U = I; i.e., U is unitary and belongs to E(σ).

The solvability of the eigenvalue problem of A is then equivalent to the
unitary nature of its Cayley transform U, and its uniqueness is established. The
only questions remaining are: Can we always form U, and if so, is it unitary?
To decide these questions, we begin again with a closed Hermitian operator A.

U was defined as follows: If φ = Af + if , and only then, Uφ is defined and
is equal to Af − if . But first it must be shown that this definition is admissible
in general; i.e., that several f cannot exist for one φ. That is, that it follows
from Af + if = Ag + ig that f = g or—because of the linearity of A—that
f = 0 follows from Af + if = 0.

We have

‖Af ± if‖2 = (Af ± if,Af ± if)
= (Af,Af) ± (if,Af) ± (Af, if) + (if, if)

= ‖Af‖2 ± i(Af, f) ∓ i(Af, f) + ‖f‖2

= ‖Af‖2 + ‖f‖2
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Hence Af + if = 0 has ‖f‖2 ! ‖Af + if‖2 = 0, f = 0 as a consequence, and
therefore our mode of definition is justified. Second, ‖Af−if‖ = ‖Af +if‖; i.e.,
‖Uf‖ = ‖φ‖. Therefore U is continuous insofar as it is defined. Furthermore,
let E be the domain of U (the set of all Af + if) and F the range of U (the set of
all Uφ, therefore the set of all Af − if). Since A and U are linear, E and F are
linear manifolds, but they are also closed. Indeed, let φ be a limit point of E
or F respectively. Then there is a sequence φ1, φ2, . . . from E or F respectively,
with φn → φ. Hence φn = Afn ± ifn. Since the φn converge they satisfy the
Cauchy convergence criterion (see D in II.1), and because

‖fm − fn‖2 ! ‖A(fm − fn) ± i(fm − fn)‖2 = ‖φm − φn‖2

the fn certainly satisfy this condition, and since

‖Afm − Afn‖2 = ‖A(fm − fn)‖2

! ‖A(fm − fn) ± i(fm − fn)‖2 = ‖φm − φn‖2

the Afn do also. Therefore the f1, f2, . . . and the Af1, Af2, . . . (by D in II.1)
converge: fn → f , Afn → f∗. Since A is closed, Af is defined and is equal to f∗.
Consequently we have

φn = Afn ± ifn → f∗ ± if = Af ± if, φn → φ

Therefore φ = Af ± if ; i.e., φ also belongs to E or F, respectively.

Therefore U is defined in the closed linear manifold E, and maps this onto
the closed linear manifold F. U is linear, and because

‖Uf − Ug‖ = ‖U(f − g)‖ = ‖f − g‖

it leaves all distances invariant. We then say that it is isometric. Consequently
Uf $= Ug follows from f $= g; i.e., the mapping is one-to -one. It is also true
that (f, g) = (Uf,Ug), which we prove just as the analogous relation was proved
in II.5. Therefore U leaves all inner products invariant. But U is clearly unitary
if and only if E = F = R∞.

If A, B are two closed Hermitian operators; U, V their Cayley transforms;
and E, F and G, H their respective domains and ranges, then we see
immediately that if B is a proper extension of A then V is also a proper
extension of U. Therefore E is a proper subset of G and F a proper subset of H.
Consequently, E $= R∞ and F $= R∞. Then U is not unitary, and the eigenvalue
problem of A is unsolvable. Thus have we proved the theorem repeatedly cited
before: If the eigenvalue problem of A is solvable, then there are no proper
extensions of A; i.e., A is maximal.

Let us now look again to the closed Hermitian operator A and its E, F, U.
If Af is defined then, for Af +if = φ, Uf is defined and Af−if = Uφ; therefore
f = 1

2i (φ − Uφ), Af = 1
2 (φ + Uφ) and if we set ψ = 1

2iφ we have f = ψ − Uψ,
Af = i(ψ + Uψ). Conversely, for f = ψ −Uψ, Af is certainly defined; because,
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since Uψ is defined, ψ = Af ′ + if ′ (Af ′ defined!) and Uψ = Af ′ − if ′ give
f = ψ − Uψ = 2if ′. The domain of A is then the set of all ψ − Uψ, and
for f = ψ − Uψ we have Af = i(ψ + Uψ). Consequently, A is also uniquely
determined by U (as also are E, F). Simultaneously we see that the ψ − Uψ
must be everywhere dense (as the domain of A).

Conversely, we start out now from two closed linear manifolds E, F and
a linear isometric mapping U of E onto F. Is there a Hermitian operator A
whose Cayley transform is this U? Since it is necessary that the ψ − Uψ be
everywhere dense, this also will be assumed. The A in question is then uniquely
determined by the foregoing, except that the question again presents itself as
to whether this definition is possible; whether this A is really Hermitian, and
whether U actually is its Cayley transform. The first is quite certainly correct
if f determines the φ (whenever this in general exists) in f = φ−Uφ uniquely;
i.e., if φ = ψ follows from φ − Uφ = ψ − Uψ, or φ = 0 from φ − Uφ = 0. But
let us suppose that φ − Uφ = 0. Then it follows from g = ψ − Uψ that

(φ, g) = (φ, ψ) − (φ,Uψ)
= (Uφ, Uψ) − (φ,Uψ) = (Uφ − φ, Uψ) = 0

and since these g are everywhere dense, φ = 0.

Second, we must prove (Af, g) = (f,Ag); i.e., that (Af, g) goes over into its
complex conjugate upon the exchange of f and g. Let f = φ−Uφ, g = ψ−Uψ.
Then Af = i(φ + Uφ) and

(Af, g) = (i(φ + Uφ), ψ − Uψ)
= i(φ, ψ) + i(Uφ, ψ) − i(φ, Uψ) − i(Uφ.Uψ)

= i
[
(Uφ, ψ) − (Uφ, ψ)

]

= i(Uφ, ψ) + i(Uφ, ψ)

which accomplishes what is desired of the exchange f ↔ g (i.e., of φ ↔ ψ).
The answer to the third question is seen in the following way: Let the Cayley
transform of A be called V. Its domain is the set of all

Af + if = i(φ + Uφ) + i(φ − Uφ) = 2iφ

i.e., the domain of U, and in this domain

V(2iφ) = V(Af + if) = Af − if = i(φ + Uφ) − i(φ − Uφ) = 2iUφ

i.e., Vφ = Uφ. Therefore V = U.

The (closed) Hermitian operators therefore correspond to our linear
isometric U, with everywhere dense φ−Uφ, in a one-to -one correspondence, if
we associate with each A its Cayley transform U.104 We can now characterize

104 In order that the eigenvalue problem of A always be solvable, the unitary
character of U (i.e., E = F = Rn or R∞) must follow from this. This is not
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all Hermitian extensions B of A, since all isometric extensions V of U can be
found without difficulty (the φ − Vφ are automatically everywhere dense since
the φ − Uφ, which are a subset of the former, are everywhere dense). In order
that A be maximal, U must be also, and conversely. If U is not maximal. then
E $= R∞, F $= R∞. These inequalities in turn imply that U is not maximal;
indeed, then R∞ − E $= 0, R∞ − F $= 0. We can therefore select a φ0 from
R∞ − E and a ψ0 from R∞ − F with φ0 $= 0, ψ0 $= 0, and if we replace these
with

φ0

‖φ0‖
,

ψ0

‖ψ0‖
we even have ‖φ0‖ = ‖ψ0‖ = 1. We now define an operator V in [E, φ0] such
that for f = φ + aφ0 (φ from E, a a complex number) Vf = Uφ + aψ0. V is
clearly linear. And since φ is orthogonal to φ0 and Uφ to ψ0 we have

‖f‖2 = ‖φ‖2 + |a|2, ‖Vf‖2 = ‖Uφ‖2 + |a|2

Therefore ‖Vf‖ = ‖f‖ and V is isometric. Finally, V is a proper extension of
U. Consequently it is characteristic for the maximal nature of A that E = R∞
or F = R∞.

If, on the other hand, A is not maximal, then the closed linear manifolds
R∞ − E and R∞ − F are both non-empty. Let the orthonormal sets spanning
them be φ1, φ2, . . . , φp and ψ1, ψ2 . . . , ψq respectively (see theorem 9, II.2; here
p = 1, 2, . . . ,∞; q = 1, 2, . . . ,∞; the φ series does not terminate if p = ∞;
similarly for the ψ series). Letting r = Min(p, q), we use the first of the following
equations to construct f and the second to define a V in [E, φ1, . . . , φr]:

f = φ +
r∑

ν=1

aνφν : φ from E; a1, . . . , ar numbers

Vf = Uφ +
r∑

ν=1

aνψν

It can easily be seen that V is linear and isometric, and is moreover a proper
extension of U. Its domain is [E, φ1, . . . , φr], therefore for r = p it is equal to
[E, R∞ − E] = R∞; its range is [F, ψ1, . . . , ψr], therefore for r = q it is equal
to [F, R∞ − F] = R∞. One of the two is certainly equal to R∞. Let V be the
Cayley transform of the Hermitian operator B. According to the discussion,
B is the maximal extension of A. We may observe that the φ and ψ can be
chosen in an infinite number of ways (for example, we can replace ψ1 by any
θψ1, |θ| = 1), and so also, therefore, can V and B be.

the case in R∞ as we deduced from the existence of non-maximal A. In Rn,
on the other hand, this must be the case. This can also be seen directly: since
each linear manifold of Rn is closed, that of the φ − Uφ is also, and since it is
everywhere dense, it is just Rn itself. F, the set of the φ, has no fewer dimensions
than its linear image, the set of the φ−Uφ; i.e., the maximal dimension number
n. This latter must hold also for F as a linear one-to -one image of E. But for
finite n it follows from this that E = F = Rn.
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Thus has our examination been brought to its conclusion, with the following
result: If it is solvable, then it has only one solution, but for non-maximal
operators it is certainly not solvable. Non-maximal operators can always be
extended in an infinite number of ways to maximal ones (we are discussing
Hermitian operators throughout). But the maximality condition is not exactly
the same as the solvability condition for the eigenvalue problem. The former is
equivalent to E = R∞ or F = R∞, the latter to E = R∞ and F = R∞.

We do not wish to investigate in any greater detail those operators for
which the former but not the latter is the case. These are the operators for
which the eigenvalue problem is unsolvable, and since no proper extensions exist
(because of maximality) this state of affairs is the final one. These operators are
characterized by E = R∞, F $= R∞ or E $= R∞, F = R∞. Such operators
in fact exist, and they can all be generated from two simple normal forms, so
they can be regarded as exceptional cases when compared with the maximal
operators with a solvable eigenvalue problem. The reader will find more on
this subject in the paper of the author mentioned in Note 95. In any case,
such operators must be eliminated for the present from quantum mechanical
considerations. The reason for this is that the resolution of the identity
belonging to a Hermitian operator enters (as we shall see later) so
essentially into all quantum mechanical concepts that we cannot dispense with
its existence; i.e., with the solvability of the eigenvalue problem.105 We shall
accordingly admit only such Hermitian operators in general whose eigenvalue
problem is solvable. Since this requires a sharpening of maximality, these will
be called hypermaximal operators.106

In conclusion, mention should be made of two classes of (closed) Hermitian
operators which are certainly hypermaximal too. First the continuous operators:
these are defined everywhere, and are therefore maximal, and since their

105 Nevertheless, as the author has pointed out (see the reference in Note 78),
the following operator is maximal, but not hypermaximal: let R∞ be the closed
space of all f(q) defined on 0 ! q < +∞ with f(0) = 0 and finite

∫ ∞

0
|f(q)|2dq

and let R be the operator i d
dq which is defined for all continuously differentiable

f(q) with finite ∫ +∞

−∞
|f ′(q)|2dq

and f(0) = 0, and which is closed. It is then equal to − 1
!A′ if we take the

A′ in II.8 for the interval 0,∞. This R is now maximal but not hypermaximal.
This can be verified by effective calculation of E, F. This is noteworthy because
A′ = !R can be interpreted physically as the momentum operator in the half
space bounded on one side by the plane q = 0.
106 This concept originated with Erhard Schmidt. See the reference in Note 78.
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eigenvalue problem is solvable according to Hilbert (see the reference in Note 70)
they are even hypermaximal. Second, the real operators in any realization
of R∞, if they are maximal. The only difference between E and F in their
definitions was the sign of i which—if everything else is real—can make no
difference. Therefore F = R∞ follows from E = R∞, and conversely; i.e., the
hypermaximality from the maximality. Without assumption of the maximal
property, we can in any event say that R∞−E and R∞−F have equally many
dimensions. Therefore (in the terminology employed above in the
investigation of the extension relations) p = q, therefore r = p = q and

[E, φ1, . . . , φr] = [E,R∞ − E ] = R∞

[F, φ1, . . . , φr] = [F,R∞ − F ] = R∞

i.e., the extensions obtained at that time were hypermaximal. In any case, real
operators possess hypermaximal extensions. In the reference given in Note 95
it is shown that the same holds true for all definite operators.

10. COMMUTATIVE OPERATORS

Two operators R, S commute, by reason of the definition given in II.4, if
RS = SR; if the two are not defined everywhere, the domains on either side
must coincide. To begin, we restrict ourselves to Hermitian operators, and in
order to avoid difficulties with regard to the domains we limit ourselves to those
operators which are defined everywhere, hence to continuous operators. Along
with R, S we also consider the resolutions of the identity belonging to them:
E(λ), F(λ).

The commutativity of R, S means that (RSf, g) = (SRf, g) for all f, g; i.e.,
(Sf,Rg) = (Rf, Sg). Furthermore, the commutativity of Rn, S (n = 0, 1, 2, . . .)
follows from that of R, S, from which the commutativity of p(R), S also follows,
where p(x) = a0 + a1x + · · · + anxn.

Now symbolically,

R =
∫ +C

−C

λdE(λ), s(R) =
∫ +C

−C

s(λ)dE(λ)

(C is the constant introduced in II.9 for the continuous operator R, which was
called A at that time; s(x) is any function, see Note 94 in II.8). For polynomials
s(x) we have (s(R)f, Sg) = (Sf, s(R)g), therefore

*
∫ +C

−C

s(λ)d(E(λ)f, Sg) =
∫ +C

−C

s(λ)d(Sf,E(λ)g)

Since we can approximate every continuous function s(x) arbitrarily well by
polynomials (uniformly in −C ! x ! +C), * also holds for continuous s(λ).
Now let

s(x) =
{

λ0 − x for x ! λ0

0 for x " λ0
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Then * gives
∫ λ0

−C

(λ0 − λ)d(E(λ)f, Sg) =
∫ λ0

−C

(λ0 − λ)d(Sf,E(λ)g)

If we replace λ0 by λ0 + ε (ε > 0), then subtraction and division by ε gives
∫ λ0

−C

d(E(λ)f, Sg) +
∫ λ0+ε

λ0

λ − λ0

ε
d(E(λ)f, Sg)

=
∫ λ0

−C

d(Sf,E(λ)g) +
∫ λ0+ε

λ0

λ − λ0

ε
d(Sf,E(λ)g)

and as ε → 0 (recall S1!):
∫ λ0

−C

d(E(λ)f, Sg) =
∫ λ0

−C

d(Sf,E(λ)g)

(E(λ0)f, Sg) = (Sf,E(λ0)g)

Consequently, all E(λ0) , −C ! λ0 ! +C commute with S. But this is all the
more true for the remaining E(λ0), since for λ0 < −C and λ0 > +C we have,
respectively, E(λ0) = O and E(λ0) = I.

Therefore, if R commutes with S then all E(λ0) do likewise. Conversely,
if all E(λ0) commute with S then * holds for each s(x). Consequently all s(R)
commute with S. From this we may conclude: first, that R commutes with
S if and only if all E(λ) do; and second, that in this case all functions of R
[the s(R)] also commute with S.

But an E(λ) commutes with S if and only if this holds for E(λ) and all
F(µ) (we apply our theorem to S, E(λ) instead of R, S). Therefore this is also
characteristic for the commutativity of R, S: all E(λ) commute with all F(µ).
Furthermore, the commutativity of R, S has, from the above, the commutativity
of r(R), S as a consequence. If we replace R, S by S, r(R) we then obtain the
commutativity of r(R), s(S).

If the Hermitian operators R, S are not subject to a continuity requirement
then the situation is more complicated, for the relationship between the domains
of RS and SR may then become quite involved. For example, R ·O is always
defined (Of = 0, R ·Of = R(Of) = R(0) = 0) while, on the other hand, O · R
is defined only if R is defined (see the comments on this in II.5). Therefore
for R not defined everywhere, R · O $= O · R because of the difference in the
domains. That is—taking it literally— R, O do not commute. Such a state
of affairs is unsatisfactory for our later purposes: O should commute not only
with all continuous Hermitian operators but also even with Hermitian operators
that are not continuous.107 We therefore want to define commutativity for
107 Since (see II.5) R · I, I ·R are defined if and only if R is defined, the same
holds for R · aI, aI · R (a $= 0). Then these two products are equal; i.e., R
and aI commute. Consequently, the commutativity of R and aI holds with a
single exception: a = 0, R not defined everywhere. This is unfortunate, and
strengthens our motivation to adjust the definition of continuity.
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discontinuous R, S in a different way. We limit ourselves to hypermaximal R, S
which, by II.9, are the only operators of interest to us. Operators R, S will be
called commutative in the new sense if all E(λ) commute with all F(µ) (where
these are again the respective resolutions of the identity) in the old sense. For
continuous R and S the new definition is identical to the old, while if either (or
both) of R and S is discontinuous it differs. An example of the latter case is
provided by R and O: in the old sense they did not commute, but in the new
sense they do, since for O each F(µ) is either O or I ;108 therefore each F(µ)
commutes with each of the E(λ).

We have proved above that if R, S are two commutative (continuous)
Hermitian operators then each function r(R) of R commutes with each function
s(S) of S. Since the hypothesis is always satisfied for R = S, two functions
r(R), s(R) of the same operator always commute (this also follows from the
multiplication formula at the end of II.8: r(R)s(R) = t(R) with r(x)s(x) = t(x)).
If r(x), s(x) are real, by the way, then r(R), s(R) are Hermitian (by II.8: if r(x)
is real then (r(R))∗ = r̄(R) = r(R)).

The converse is also valid. If A, B are two commuting Hermitian operators,
then there exists a Hermitian operator R of which both are functions; i.e.,
A = r(R), B = s(R). Indeed, even more is true: if an arbitrary (finite or infinite)
set A, B, C, . . . of commuting Hermitian operators is given, then there exists a
Hermitian operator R of which all A, B, C, . . . are functions. We give no proof
of this theorem here, and can only refer to the literature on the subject.109 For
our purposes this theorem is of importance only for a finite number of operators
A, B, C, . . . with pure discrete spectra. It will be proved for this case in following
paragraphs; regarding the general case we can give only a few orienting remarks.

Therefore, let A, B, C, . . . be a finite number of Hermitian operators with
pure discrete spectra. If λ is any number, let the closed linear manifold spanned
by all the solutions of Af = λf be called Lλ, and its projection Eλ. Then λ is
a discrete eigenvalue of A if and only if solutions f $= 0 exist, hence Lλ $= O;
i.e., Eλ $= O. Correspondingly, we have Mλ, Fλ for B; Nλ, Gλ for C; etc. From
Af = λf is follows that ABf = BAf = B(λf) = λ(Bf); i.e., along with f , Bf
also belongs to Lλ. Since Eλ always belongs to Lλ, BEλf does also, therefore

108 This resolution of the identity belongs to a · I:

F(µ) =
{

I for µ " a
O for µ < a

This can easily be verified.
109 For two Hermitian operators A, B which belong to a special class (the
so-called totally continuous class; see the reference in Note 70) Toeplitz proved
(see the reference in Note 33) a theorem from which the above follows; namely,
the existence of a complete orthonormal set from the common eigenfunctions
of A, B. The general theorem for arbitrary A, B or A, B, C, . . . has been proved
by the author (see Note 94).
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EλBEλf = BEλf . This holds identically: EλBEλ = BEλ. Application of *
results in EλBEλ = EλB, therefore EλB = BEλ. In the same way that we
just now deduced the commutativity of B, Eλ from that of A, B, that of Eλ, Fµ

follows from that of B, Eλ. Since A, B are in no way distinguished from the
other A, B, C, . . . we can say that all Eλ, Fµ, Gν , . . . commute with each other.
Consequently K(λµν . . .) = EλFµGν · · · is a projection. Let its closed linear
manifold be called K(λµν · · ·). By theorem 14 (II.4), K(λµν · · ·) is the
intersection of Lλ, Mµ, Nν , . . . ; i.e., the totality of common solutions of

Af = λf, Bf = µf, Cf = νf, . . .

Let λ, µ, ν, . . . and λ′, µ ′, ν ′, . . . be two different sets of numbers; i.e., λ $= λ′

or µ $= µ ′ or ν $= ν ′ or. . . . If f belongs to K(λµν . . .) and f ′ to K(λ′µ ′ν ′ . . .)
then f, f ′ are orthogonal. For λ $= λ′ this is so because Af = λf, Af ′ = λ′f ′; for
µ $= µ ′ because Bf = µf,Bf ′ = µ ′f ′; . . . . Consequently the entire K(λµν . . .)
is orthogonal to the entire K(λ′µ ′ν ′ . . .).

Since A has a pure discrete spectrum, Lλ spans the entire R∞ (as a closed
linear manifold). An f $= 0 therefore cannot be orthogonal to all Lλ; i.e., for at
least one Lλ the projection of f in Lλ must be non-zero; i.e., Eλf $= 0. In the
same way, a µ must exist with Fµf $= 0, and moreover a ν with Gνf $= 0, etc.
Consequently, for each f $= 0 we can find a λ with Eλf $= 0, hence a µ with
Fµ(Eλf) $= 0, then a ν with Gν(Fµ(Eλf))) $= 0, etc. Thus are we led finally to
· · ·GνFµEλf $= 0, EλFµGν · · · f $= 0, K(λµν . . .)f $= 0; i.e., f is not orthogonal
to K(λµν . . .). Therefore an f orthogonal to all K(λµν . . .) is = 0. Consequently,
the K(λµν . . .) together span all R∞ as a closed linear manifold.

Now let φ(1)
λµν..., φ

(2)
λµν..., . . . be an orthonormal set which spans the linear

manifold K(λµν . . .). (This sequence may or may not terminate, depending on
whether K(λµν . . .) has a finite or infinite number of dimensions. On the other
hand, if K(λµν . . .) = 0 then it consists of 0 terms.) Each φ(n)

λµν... belongs to a
K(λµν . . .) and is therefore an eigenfunction of all A, B, C, . . . . Two different
such functions are always mutually orthogonal: if they have the same λµν...

indices they are so by reason of their definition, while if they have different
λµν... indices they are so because they belong to different K(λµν . . .). The set of
all φ(n)

λµν... span the same linear manifold as the set of all K(λµν . . .), namely R∞.
Consequently the φ(n)

λµν... form a complete orthonormal set.

We have now produced a complete orthonormal set from the common
eigenfunctions of A, B, C, . . . . We now call these ψ1, ψ2, . . . and we write the
corresponding eigenvalue equations

Aψm = λmψm, Bψm = µmψm, Cψm = νmψm, . . .

We now take any set of pairwise different numbers κ1, κ2, κ3, . . . and form
a Hermitian operator R with the pure discrete spectrum κ1, κ2, κ3, . . . and with
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the corresponding eigenfunctions ψ1, ψ2, ψ3, . . . :110

R
( ∞∑

m=1

xmψm

)
=

∞∑

m=1

xmκmψm

Now let F (κ) be a function defined in −∞ < κ < +∞ for which F (κm) = λm

(m = 1, 2, 3, . . .) (at all other points κ the value of F (κ) may be arbitrary).
Similarly, let G(κ) have the property G(κm) = µm, H(κ) have the property
H(κm) = νm, etc. We wish to show that

A = F (R), B = G(R), C = H(R), . . .

To that end, we must show that if R has a pure discrete spectrum κ1, κ2, . . .
with eigenfunctions ψ1, ψ2, . . . then F (R) has the pure discrete spectrum
F (κ1), F (κ2), . . . with the same eigenfunctions ψ1, ψ2, . . . . But since these also
form a complete orthonormal set, it suffices to show that F (R)ψm = F (κm)·ψm.

Let (by II.8)
E(λ) =

∑

κm !λ

P[ψm]

be the resolution of the identity belonging to R. Then symbolically

R =
∫

λ dE(λ)

and by definition

F (R) =
∫

F (λ)dE(λ)

Furthermore,

E(λ)ψm =
{

ψm for κm ! λ
0 for κm > λ

110 The chosen κ1, κ2, κ3, . . . are to be bounded (for example, κm = 1
m ) in

order that R be continuous. In fact,

‖Rψm‖ = ‖κmψm‖ = |κm| ! C · ‖ψm‖, |κm| < C

follows immediately from the continuity of R ; i.e., from ‖Rf‖ ! C · ‖f‖.
Conversely, from |κm| ! C (m = 1, 2, . . .) it follows that

‖Rf‖2 = ‖R
( ∞∑

m=1

xmψm

)
‖2 = ‖

∞∑

m=1

xmκmψm‖2 =
∞∑

m=1

|xm|2|κm|2

‖f‖2 = ‖
∞∑

m=1

xmψm‖2 =
∞∑

m=1

|xm|2

Therefore ‖Rf‖2 ! C2· ‖f‖2, ‖Rf‖ ! C · ‖f‖ ; i.e., R is continuous.
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From this it follows that

(F (R)ψm, g) =
∫

F (λ)d(E(λ)ψm, g) = F (κm) · (ψm, g)

for all g. Therefore it is actually true that F (R)ψm = F (κm) · ψm.

With this, the problem is settled for the case of pure discrete spectra, as we
asserted previously. In the case of continuous spectra we must be content with
the reference of Note 109, and shall discuss here only an especially characteristic
case.

Let R∞ be the space of all f(q1, q2) with finite
∫∫

|f(q1, q2)|2dq1dq2, and
let the unit square 0 ! q1, q2 ! 1 be their domain of variation. We form the
operators A = q1· and B = q2· . They are Hermitian for this {q1, q2}-region
(but not for −∞ ! q1, q2 ! +∞!) and they commute. Therefore both must
be functions of an R. Consequently, this R commutes with A, B, from which
it follows (although we will not prove this here) that R has the form s(q1, q2)·
(s(q1, q2) a bounded function). Consequently Rn is equal to s(q1, q2)n·, and
F (R) is equal to F (s(q1, q2))· if F (κ) is a polynomial. But this formula can be
extended to all F (κ), which we will again not discuss in detail. It also follows
from F (R) = A, G(R) = B that111

F (s(q1, q2)) = q1, G(s(q1, q2)) = q2

That is, the mappings s(q1, q2) = κ and F (κ) = q1, G(κ) = q2 (which are
reciprocal to each other) must map the square surface 0 ! q1, q2 ! 1 to the
linear number set of the κ uniquely—something which conflicts with ordinary
geometric intuition.

But on the basis or our previously discussed proof we know that this
must nevertheless be possible—and indeed: a mapping of the desired type is
accomplished by means of the so -called Peano curve.112 The more rigorous
treatment of the proof given in Note 109 actually shows that this leads in the
present case to the Peano curve or to constructs that are closely related to it.

11. THE TRACE

Several important invariants of operators shall be defined here.

For a matrix {aµν} that acts on Rn, the trace
∑n

µ=1 aµµ is one such
invariant. It is unitary-invariant; that is, it does not change if we transform the
{aµν} to another (cartesian) coordinate system.113 But if we replace {aµν} by
the corresponding operator

A{x1, . . . , xn} = {y1, . . . , yn} : yµ =
n∑

ν=1

aµνxν

111 Exceptions may occur in a {q1, q2}-set of Lebesgue measure 0.
112 See, for example, the reference in Note 45.
113 {aµν} refers to the transformation (i.e., to the operator that accomplishes
the transformation) continued on the next page
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then the aµν are expressed as follows, with the help of A :

φ1 = {1, 0, . . . , 0}
φ2 = {0, 1, . . . , 0}...
φn = {0, 0, . . . , 1}

form a complete orthonormal set, and obviously aµν = (Aφν , φµ) (see II.5, in
particular Note 60). The trace is therefore

∑n
µ=1(Aφµ, φµ) and its unitary

invariance means that its value is the same for each complete orthonormal set.

We can immediately consider the analogy of this concept in R∞. Let A be
a linear operator. We take a complete orthonormal set φ1, φ2, . . . for which all
Aφn are defined (this is certainly possible if the domain of A is everywhere dense;
it suffices to orthogonalize a dense sequence f1, f2, . . . in it, by II.2, theorem
8), and set

Tr A =
∞∑

µ=1

(Aφµ, φµ)

where Tr A signifies the trace of A. We must now show that this actually
depends on A (and not on the φµ!).

For this purpose we introduce two complete orthonormal sets, φ1, φ2, . . .
and ψ1, ψ2, . . ., and set

Tr(A ; φ, ψ) =
∞∑

µ,ν=1

(Aφµ, ψν)(ψν , φµ)

ηµ =
n∑

ν=1

aµνξν : µ = 1, . . . , n

(see the developments in II.7). If we transform by

ξµ =
n∑

ν=1

xνµxν , ηµ =
n∑

ν=1

xνµyν : µ = 1, . . . , n

then we obtain

yν =
n∑

ν=1

aµνxν : µ = 1, . . . , n

with

aµν =
n∑

ρ,σ=1

aρσx̄µρxνσ : µ, ν = 1, . . . , n

{aµν} is the transformed matrix. Clearly
n∑

µ=1

aµµ =
n∑

µ,ρ,σ=1

aρσx̄µρxµσ =
n∑

ρ,σ=1

aρσ

( n∑

µ=1

x̄µρxµσ

)
=

n∑

ρ=1

aρρ

i.e., the trace is invariant.
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From II.2, theorem 7γγγ it follows that this is equal to
∑∞

µ=1(Aφµ, φµ), and so
depends only apparently on the ψν . Furthermore,

∞∑

µ,ν=1

(Aφµ, ψν)(ψν , φµ) =
∞∑

µ,ν=1

(φµ, A∗ψν)(ψν , φµ)

=
∞∑

µ,ν=1

(A∗ψν , φµ)(φµ, ψν)

i.e., Tr(A ; φ, ψ) = Tr(A∗; ψ, φ). Since the right side, according to the above,
depends only apparently on the φµ, the same holds on the left; the dependence of
these expressions on φµ and ψν is therefore only apparent. In reality, therefore,
the trace depends only on A. Consequently, we may designate Tr(A ; φ, ψ) with
TrA. Since this is equal to

∑∞
µ=1(Aφµ, φµ), the desired invariance proof has

been achieved. But from the last equation it also follows that

TrA = TrA∗

The relations

Tr(aA) = a TrA, Tr(A ± B) = TrA ± TrB

are obvious. Furthermore
Tr(AB) = Tr(BA)

holds, even for non-commuting A, B. This may be shown as follows:

Tr(AB) =
∞∑

µ−1

(ABφµ, φµ) =
∞∑

µ−1

(Bφµ, A∗φµ)

=
∞∑

µ,ν=1

(Bφµ, ψν)(ψν , A∗φµ) =
∞∑

µ,ν=1

(Bφµ, ψν)(Aψν , φµ)

in which φ1, φ2, . . . and ψ1, ψ2, . . . can be two arbitrary complete orthonormal
sets. The symmetry of this expression under simultaneous interchange of A, B
and φ, ψ is evident. It follows, moreover, that for Hermitian operators A, B

Tr(AB) = Tr[(AB)∗] = Tr(B∗A∗)

= Tr(B A ) = Tr(AB)

Therefore Tr(AB) is real (and TrA, TrB are, of course, real too).

If M is a closed linear manifold, andE its projection, thenTrE is determined
as follows: Let ψ1, . . . , ψk be an orthonormal set which spans the closed linear
manifold M and χ1, . . . , χ& one which spans R∞ − M (of course, one of k or ,
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—or both—must be infinite). Then ψ1, . . . , ψk, χ1, . . . , χ& together span R∞;
i.e., they form a complete orthonormal set (theorem 7ααα in II.2). Therefore

TrE =
k∑

µ=1

(Eψµ, ψµ) +
&∑

µ=1

(Eχµ, χµ)

=
k∑

µ=1

(ψµ, ψµ) +
&∑

µ=1

(0, χµ) =
k∑

µ=1

1 = k

i.e., TrE is the dimension of M.

If A is definite then all (Aφµ, φµ) " 0, therefore TrA " 0. If in this case
TrA = 0 then all the (Aφµ, φµ) must vanish, therefore Aφµ = 0 (theorem 19
in II.5). If ‖φ‖ = 1 then we can find a complete orthonormal set φ1, φ2, . . . with
φ1 = φ. (Indeed, let f1, f2, . . . be everywhere dense. We can then orthogonalize
φ, f1, f2, . . .—see the proof of theorem 7 in II.2—by which means we obtain a
complete orthonormal set beginning with φ.) Therefore Aφ = 0. If now f is
arbitrary, then Af = 0 holds for f = 0, while for f $= 0 we recover Af = 0 from
the above by writing

φ = 1
‖f‖ f

So TrA = 0 would entail A = O. We conclude that if A is definite, then TrA > 0.

In the brevity and simplicity of our observations concerning the trace
our treatment has not been mathematically rigorous. For example, we have
considered the series

∞∑

µ,ν=1

(Aφµ, φν)(ψν , φµ) and
∞∑

µ=1

(Aφµ, φµ)

without examining their convergence, and we have transformed one into the
other. In short, everything has been done which one should not do when working
in correct mathematical fashion. As a matter of fact, this kind of negligence is
present elsewhere in theoretical physics, and the present treatment actually will
produce no disastrous consequences in our quantum mechanical applications.
Nevertheless it must be understood that we have been careless.

It is therefore the more important to point out that in the fundamental
statistical assertions of quantum mechanics the trace is employed only for
operators of the form AB, where A, B are both definite—and that this concept
can be established with complete rigor. In the remainder of this section we
shall therefore assemble those facts concerning the trace which are capable of
proof with absolute mathematical rigor.

We first consider the trace of A∗A (A arbitrary: A∗A is Hermitian by II.4

and, since (A∗Af, f) = (Af,Af) " 0, it is definite). Then

Tr(A∗A) =
∞∑

µ=1

(A∗Aφµ, φµ) =
∞∑

µ=1

(Aφµ, Aφµ) =
∞∑

µ=1

‖Aφµ‖2
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Since all terms in this series are " 0 it is either convergent or diverges to +∞,
and therefore it is in any case defined. We now want to show—independently
of the previous discussion—that its sum is independent of the choice of the
φ1, φ2, . . . . In this case, only series with terms " 0 will appear, therefore all
will be defined, and all re-summations are permissible.

Let φ1, φ2, . . . and ψ1, ψ2, . . . be two complete orthonormal sets. We define

Σ(A ; φµ, ψν) =
∞∑

µ,ν=1

|(Aφµ, ψν)|2

By theorem 7γγγ in II.2, this is equal to

∞∑

µ=1

‖Aφµ‖2

i.e., Σ(A ; φµ, ψν) depends only apparently on the ψν . Furthermore (assuming
Aφµ and A∗ψν to be defined)

Σ(A ; φµ, ψν) =
∞∑

µ,ν=1

|(Aφµ, ψν)|2 =
∞∑

µ,ν=1

|(φµ, A∗ψν)|2 =
∞∑

µ,ν=1

|(A∗ψν , φµ, )|2

= Σ(A∗; ψν , φµ)

Therefore the dependence on the φµ is also only apparent, because this is the
case on the right side of the formula. Consequently, Σ(A ; φµ, ψν) depends in
general only on A. We then call it simply Σ(A). By the above proofs

Σ(A) =
∞∑

µ=1

‖Aφµ‖2 =
∞∑

µ,ν=1

|(Aφµ, ψν)|2

and Σ(A) = Σ(A∗). Therefore Tr(A∗A) is correctly re-defined as Σ(A).

We now prove independently several properties of Σ(A) which also follow
from general properties of TrA as previously defined.

From the definition it follows in general that Σ(A) " 0 and that for
Σ(A) = 0 all Aφµ must vanish, from which it follows as before that A = O.
That is, if A $= O then Σ(A) > 0.

Obviously Σ(aA) = |a|2Σ(A). If A∗B = O then

‖(A + B)φµ‖2 − ‖Aφµ‖2 − ‖Bφµ‖2 = (Aφµ, Bφµ) + (Bφµ, Aφµ)
= 2Re(Aφµ, Bφµ)
= 2Re(φµ, A∗Bφµ) = 0

so, after summation
∑∞

µ=1,

Σ(A + B) = Σ(A) + Σ(B)
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This relation does not change if we interchange A, B. Therefore it is also valid
for B∗A = O. Furthermore, we can replace A, B in it by A∗, B∗. Then BA∗ = O
or AB∗ = O are likewise sufficient. For Hermitian A (or B) we can therefore
write BA = O (or AB = O).

If E projects onto the closed linear manifold M then, for the ψ1, . . . , ψk,
χ1, . . . , χ& considered in the determination of TrE, we have

Σ(E) =
k∑

µ=1

‖Eψµ‖2 +
&∑

µ=1

‖Eχµ‖2 =
k∑

µ=1

‖ψµ‖2 +
&∑

µ=1

‖0‖2

=
k∑

µ=1

1 + 0 = k

So Σ(E) also is the dimension of M (which, because E∗E = EE∗ = E, is just
what one would expect).

For two definite (Hermitian) operators A, B our TrAB is now reducible to Σ.
That is, there are two operators A′, B ′ of the same category with A′2 = A,
B ′2 = B114—we call them

√
A,

√
B. We have the formal relations

114 The precise proposition runs as follows: If A is hypermaximal and definite,
then there exists one and only one operator A′ of the same category with A′2 = A.
We prove the existence. Let A =

∫ +∞
−∞ λdE(λ) be the eigenvalue representation

of A. Since A is definite, then E(λ) is constant for λ < 0 (and therefore equals
0 by S1). For otherwise, E(λ2)−E(λ1) $= O for suitable λ1 < λ2 < 0. Therefore
an f can be chosen with [E(λ2) − E(λ1)]f = f . But it follows from this, as we
have deduced several times previously, that

E(λ) =
{

f for λ " λ2

0 for λ ! λ1

Therefore

(Af, f) =
∫ +∞

−∞
λd(E(λ)f, f) =

∫ λ2

λ1

λd(E(λ)f, f)

!
∫ λ2

λ1

λ2 d(E(λ)f, f)

= λ2([E(λ2) − E(λ1)]f, f) = λ2(f, f) < 0

Consequently

A =
∫ +∞

−∞
λdE(λ) =

∫ +∞

0
λdE(λ) =

∫ +∞

0
µ2 dE(µ2)

and A′ =
∫ +∞
0 µdE(µ2) yields the desired result. We may observe that we have

deduced from the property of definiteness that E(λ) = O for λ < 0, and since
definiteness clearly follows from this, the fact that the entire spectrum is " 0 is
characteristic for definiteness.
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Tr(AB) = Tr(
√

A
√

A
√

B ·
√

B) = Tr(
√

B ·
√

A
√

A
√

B)

= Tr((
√

A
√

B)∗(
√

A
√

B))

= Σ(
√

A
√

B)

This Σ(
√

A
√

B), by reason of its own definition and without consideration of
its relation to the trace, has all the properties one expects of TrAB, namely:

Σ(
√

A
√

B) = Σ(
√

B
√

A)

Σ(
√

A
√

B + C) = Σ(
√

A
√

B) + Σ(
√

A
√

C)

Σ(
√

A + B
√

C) = Σ(
√

A
√

C) + Σ(
√

B
√

C)

The first follows from the fact that Σ(XY) is symmetric in X, Y:

Σ(XY) =
∞∑

µ,ν=1

|(XYφµ, ψν)|2 =
∞∑

µ,ν=1

|(Yφµ, Xψν)|2

The second follows from the third by reason of the first property. Therefore
this third property is the only one which need be proved; i.e., that Σ(

√
A
√

B)
is additive in A. But this can be seen if we write Σ(

√
A
√

B) as

Σ(
√

A
√

B) =
∞∑

µ=1

‖
√

A
√

Bφµ‖2 =
∞∑

µ=1

(
√

A
√

Bφµ,
√

A
√

Bφµ)

=
∞∑

µ=1

(
√

A ·
√

A
√

Bφµ,
√

Bφµ) =
∞∑

µ=1

(A
√

Bφµ,
√

Bφµ)

In this way, we have established a rigorous foundation for the concept of trace
to the extent which was desired.

In addition, the last formula permits the following conclusion: it A, B are
definite then AB = O is a consequence of TrAB = 0. For the latter implies that
Σ(

√
A
√

B) = 0 and therefore that
√

A
√

B = O (see the discussion on page 114
and also the considerations given above with regard to Σ). Therefore

AB =
√

A ·
√

A
√

B ·
√

B = O

For a definite Hermitian operator A the calculation with the trace is correct
even in its original form. Indeed, let φ1, φ2, . . . be a complete orthonormal set.
Then

∞∑

µ=1

(Aφµ, φµ)

(the sum which should define the trace) is a sum with all terms non-negative,
and is therefore either convergent or divergent to +∞. Two cases are then
possible: either the sum is infinite for each choice of φ1, φ2, . . ., and therefore
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the trace is actually defined independently of φ1, φ2, . . . and equals +∞, or the
sum is finite for at least one choice of φ1, φ2, . . .; say φ1, φ2, . . . . Then—since

( ∞∑

µ=1

(Aφµ,φµ)
)2

=
∞∑

µ,ν=1

(Aφµ,φµ)(Aφν , φν) !
∞∑

µ,ν=1

|(Aφµ,φν)|2 = Σ(A)

—Σ(A) is also finite, and is equal to some C2. If ψ1, ψ2, . . . is any complete
orthonormal set, then

Σ(A) =
∞∑

µ=1

‖Aψµ‖2 = C2, ‖Aψ1‖2 " C2, ‖Aψ1‖ " C

Since each ψ with ‖ψ‖ = 1 can be chosen as the ψ1 of such a system, it follows
from ‖ψ‖ = 1 that ‖Aψ‖ " C. In general then, ‖Af‖ " C · ‖f‖: for f = 0 this
is obvious, while for f #= 0 it suffices to set ψ = 1

‖f‖·f . Consequently A satisfies
the condition Co from II.9. It is therefore a continuous operator. But actually
even more is true.

Because of the finite nature of Σ(A), A belongs to the class of so-called
totally continuous operators. Hilbert showed that the eigenvalue problem for
such an operator is solvable in the original form; i.e., that a complete orthogonal
set ψ1, ψ2, . . . with Aψµ = λµψµ exists (and for µ → ∞, λµ → 0).115 Because

115 See the reference in Note 64. A direct proof runs as follows: Let

λ0 < λ1 < · · · < λn :
{

all " −ε or ! +ε
E(λ0) #= E(λ1) #= · · · #= E(λn)

Then E(λν) − E(λν−1) #= 0, therefore φν #= 0 can be chosen with

[E(λν) − E(λν−1)]φν = φν

It follows from this that

E(λ)φ =
{

φν for λ ! λν

0 for λ " λν−1

and we can even make ‖φν‖ = 1. It follows from the above that (φµ, φν) = 0 for
µ #= ν. The φ1, . . . φn consequently form an orthogonal set, and we can extend
it to a complete one: φ1, . . . φn, φn+1, . . . . We have (ν = 1, . . . , n)

‖Aφν‖2 =
∫ +∞

−∞
λ2d‖E(λ)φν‖2 =

∫ λν

λν−1

λ2d‖E(λ)φν‖2

!
∫ λν

λν−1

ε2d‖E(λ)φν‖2

= ε2
(
‖E(λν)φν‖2 − ‖E(λν)φν−1‖2

)

= ε2‖φν‖2 = ε2
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the operator is definite, λµ = (Aψµ, ψµ) ! 0, and furthermore

∞∑

µ=1

λ2
µ =

∞∑

µ=1

‖Aψµ‖2 = Σ(A) = C2

If φ1, φ2, . . . is any complete orthonormal set then

∞∑

µ=1

(Aφµ, φµ) =
∞∑

µ=1

( ∞∑

ν=1

(Aφµ, ψν)(ψν , φµ)
)

=
∞∑

µ=1

( ∞∑

ν=1

(φµ,Aψν)(ψν , φµ)
)

=
∞∑

µ=1

( ∞∑

ν=1

λν(φµ, ψν)(ψν , φµ)
)

=
∞∑

µ=1

( ∞∑

ν=1

λν |(φµ, ψν)|2
)

Since all terms are ! 0 we may rearrange the summations:

∞∑

µ=1

(Aφµ, φµ) =
∞∑

µ,ν=1

λν |(φµ, ψν)|2 =
∞∑

ν=1

λν

( ∞∑

µ=1

|(φµ, ψν)|2
)

=
∞∑

ν=1

λν‖φν‖2 =
∞∑

ν=1

λν

In this case, therefore,
∑∞

µ=1(Aφµ, φµ) is again independent of φ1, φ2, . . . , and
is actually equal to the sum of the eigenvalues. Since the sum is finite for
φ1, φ2, . . . it is therefore always finite. That is, TrA is again unique, but this
time it is finite. Calculation with the trace is therefore justified in both cases.

We now give several estimates relative to TrA and Σ(A). For all A with
finite Σ(A), ‖Af‖ "

√
Σ(A)‖f‖; for all definite (Hermitian) A with finite TrA,

‖Af‖ " TrA · ‖f‖. Now let A again be definite, with TrA = 1. For an
appropriate φ with ‖φ‖ = 1, ‖Aφ‖ ! 1 − ε or (Aφ, φ) ! 1 − ε. It suffices
to consider the second case, since the first follows from the second because
(Aφ, φ) " ‖Aφ‖ · ‖φ‖ = ‖Aφ‖ (put (1− ε)2 ! 1− 2ε in place of 1− ε, therefore
2ε in place of ε).

and therefore
∞∑

µ=1

‖Aφµ‖2






! ∑n
µ=1 ‖Aφµ‖2 ! nε2

= Σ(A) = C2

i.e., n " C2/ε2. Then, for |λ| ! ε, E(λ) can in general assume only " 2 ·C2/ε2

many different values. It can therefore change only in a finite number of places,
the remainder being made up of constancy intervals. That is, for |λ| ! ε only
a discrete spectrum exists. Since this holds for all ε > 0, only a pure discrete
spectrum is present in general.
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Let ψ be orthogonal to φ,‖ψ‖= 1.Then we can find a complete orthonormal
set χ1, χ2, χ3 . . . with χ1 = φ, χ2 = ψ. Therefore

∞∑

µ=1

‖Aχµ‖2






= Σ(A) " [TrA ]2 = 1

! ‖Aφ‖2 + ‖Aψ‖2 ! 1 − 2ε + ‖Aψ‖2

‖Aψ‖2 " 2ε, |Aψ‖ "
√

2ε

For an arbitrary f orthogonal to φ it follows that ‖Af‖ "
√

2ε ‖f‖. (For
f = 0 this is obvious. Otherwise, ψ = 1

‖f‖ · f .) If we now remember that
(Af, g) = (f,Ag) then we obtain |(Af, g)| "

√
2ε‖f‖ · ‖g‖ if either f or g is

orthogonal to φ.

Now let f, g be arbitrary, and write

f = αφ + f ′, g = βφ + g ′

where f ′, g ′ are orthogonal to φ and α = (f, φ), β = (g, φ). Then

(Af, g) = αβ̄(Aφ, φ) + α(Aφ, g ′) + β̄(Af ′, φ) + (Af ′, g ′)

Therefore, if we set (Aφ, φ) = c,

|(Af, g) − cαβ̄ | " |α| · |(Aφ, g ′)| + |β| · |(Af ′, φ)| + |(Af ′, g ′)|

and according to the above estimates

|(Af, g) − cαβ̄ | "
√

2ε ·
{
|α| · ‖g ′‖ + |β| · ‖f ′‖ + ‖f ′‖ · ‖g ′‖

}

"
√

2ε ·
(
|α| + ‖f ′‖

)(
|β| + ‖g ′‖

)

" 2
√

2ε ·
√
|α|2 + ‖f ′‖2

√
|β|2 + ‖g ′‖2

= 2
√

2ε ·‖f‖·‖g‖

On the other hand,

(Af, g) − cαβ̄ = (Af, g) − c(f, φ)(φ, g) = ((A − cP[φ])f, g)

In general, then, |((A − cP[φ])f, g)| " 2
√

2ε ·‖f‖·‖g‖. Therefore, as we know
from II.9,

‖((A − cP[φ])f‖ " 2
√

2ε ·‖f‖

For f = φ this implies that

‖Aφ − cφ‖ "
√

2ε

c = ‖cφ‖






" ‖Aφ − cφ‖ + ‖Aφ‖ " 2
√

2ε + 1

! −‖Aφ − cφ‖ + ‖Aφ‖ ! −2
√

2ε + (1 − ε)

1 − (ε + 2
√

2ε) " c " 1 + 2
√

2ε : (c is real and ! 0)
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Consequently

‖((A − P[φ])f‖ " ‖((A − cP[φ])f‖ + ‖(c − 1)P[φ]f‖
" 2

√
2ε ·‖f‖ +

(
ε + 2

√
2ε

)
‖P[φ]f‖

"
(
ε + 4

√
2ε

)
·‖f‖

For ε → 0 therefore A converges uniformly to P[φ].

In conclusion, let us consider TrA and TrB in the realizations FZ and FΩ

of R∞ (see I.4 and II.3), since physical applications occur in these cases.

In FZ (set of all x1, x2, . . . with finite
∑∞

ν=1 |xν |2) A may be described by
a matrix{aµν}:

A{x1, . . . , xn} = {y1, . . . , yn} : yµ =
∞∑

ν=1

aµνxν

In terms of the complete orthonormal set

φ1 = {1, 0, 0, . . .}, φ2 = {0, 1, 0, . . .}, . . .

we have Aφµ = {a1µ, a2µ, . . .} =
∑∞

ρ=1 aρµφρ. Therefore (Aφµ, φµ) = aµµ and
‖Aφµ‖2 =

∑∞
ρ=1 |aρµ|2. From this it follows immediately that

TrA =
∞∑

µ=1

aµµ, Σ(A) =
∞∑

µ,ν=1

|aµν |2

In FΩ (set of all f(P) defined in Ω with finite
∫
Ω |f(P)|2dv) let us consider

only the integral operators

Af(P) =
∫

Ω
a(P, P ′)f(P ′)dv′

where a(P,P ′) is a two-variable function defined in Ω, the “kernel” of A (see
I.4). Let φ1(P), φ2(P, . . . be any complete orthonormal set; then

TrA =
∞∑

µ=1

(Aφµ(P), φµ(P)) =
∞∑

µ=1

∫

Ω

[ ∫

Ω
a(P,P ′)f(P ′)dv′

]
φµ(P)dv

and because in general (theorem 7βββ in II.2, applied to g(P) )

∞∑

µ=1

( ∫

Ω
g(P ′) φµ(P ′) dv′

)
φµ(P) = g(P)

∞∑

µ=1

( ∫

Ω
g(P ′) φµ(P ′) dv′

)
φµ(P) = g(P)
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hold, we have

TrA =
∫

Ω
a(P,P)dv

Furthermore

Σ(A) =
∞∑

µ=1

∫

Ω

∣∣∣
∫

Ω
a(P, P ′)φµ(P ′)dv′

∣∣∣
2
dv

and therefore—because [theorem 7γγγ in II.2 ]

∞∑

µ=1

∣∣∣
∫

Ω
g(P ′)φµ(P ′)dv′

∣∣∣
2

=
∞∑

µ=1

∣∣∣
∫

Ω
g(P ′) φµ(P ′)dv′

∣∣∣
2

=
∫

Ω
|g(P ′)|2dv′

=
∫

Ω
|g(P ′)|2dv′

—it is also true that

Σ(A) =
∫

Ω

∫

Ω
|a(P,P ′)|2dvdv′

We see that TrA, Σ(A) accomplish what was sought before by the use of
mathematically doubtful artifices: in the transition from FZ to FΩ,

∑∞
µ=1 · · · is

replaced by
∫
Ω · · · dv.

With this we have concluded our mathematical treatment of Hermitian
operators. The reader who is interested in the mathematics will find more on
this subject in the literature relating to these topics.116

116 In addition to the original papers mentioned in the course of the preceding
discussion, the foremost reference is the encyclopedia article of Hellinger and
Toeplitz referred to in Note 33.
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CHAPTER III

THE QUANTUM STATISTICS

1. THE STATISTICAL ASSERTIONS OF QUANTUM MECHANICS

Let us now return to the analysis of the quantum mechanical theories, which
was interrupted by the mathematical considerations of Chapter II. At that time
we discussed only how quantum mechanics makes possible the determination of
all possible values of one particular physical quantity—energy. These values are
the eigenvalues of the energy operator (i.e., the numbers of its spectrum). On
the other hand, no mention was made about the values of other quantities, as
well as regarding the causal or statistical relations among the values of several
quantities. The statements of the theory relative to this problem should now be
considered. We shall take as a basis the wave mechanical method of description
since the equivalence of the two theories has already been established.

In the Schrödinger formalism, it is evident that everything which can
be said about the state of a system must be derived from its wave function
φ(q1, . . . , qk). (We suppose that the system has k degrees of freedom and employs
q1, . . . , qk as the coordinates of its configuration.) Actually, this does not restrict
us to the stationary states of the system (quantum orbits in which φ is an
eigenfunction of H : Hφ = λφ, see I.3), but also admits all other states of the
system; i.e., wave functions which vary according to the Schrödinger time-
dependent differential equation Hφ = i! ∂

∂tφ (see I.2). What pronouncements
can now be made regarding a system which is in the state φ?

First of all, we observe that φ was normalized (I.3) by

∫ +∞

−∞
· · ·

∫ +∞

−∞
|φ(q1, . . . , qk)|2dq1 . . . dqk = 1

i.e., (in our present terminology) as a point of the Hilbert space R∞ of all
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f(q1, . . . , qk) with finite

∫ +∞

−∞
· · ·

∫ +∞

−∞
|f(q1, . . . , qk)|2dq1 . . . dqk

(in an FΩ!) it is normalized by ‖φ‖ = 1. In other words, it must lie on the
surface of the unit sphere in Hilbert space.117 We already know that a constant
(meaning independent of q1, . . . , qk) factor in φ is physically meaningless. (This
means that the substitution of aφ for φ—a a complex number—is of no physical
consequence. To preserve normalization it must be the case that |a| = 1.)
Furthermore, it should in this regard be pointed out that while φ is dependent
on time t as well as the coordinates q1, . . . , qk of the configuration space of our
system, nevertheless the Hilbert space involves only the q1, . . . , qk (because the
normalization is related to these alone). Hence the dependence on t is not to
be considered in forming the Hilbert space. Instead of this, it is rather to be
regarded as a parameter. Consequently, φ—as a point in R∞—depends on t
but is, on the other hand, independent of the q1, . . . , qk. Indeed, as a point in
R∞, it represents the entire functional dependence. Because of this, we shall
occasionally indicate the parameter t in φ (when φ is viewed as a point in R∞)
by writing φt.

Let us now consider the state φ = φ(q1, . . . , qk). The statistical assertions
which can be made are as follows: The system is at the point q1, . . . , qk of
the configuration space with the probability density |φ(q1, . . . , qk)|2; i.e., the
probability that it is in the volume V of the configuration space is

∫
· · ·

∫

V
|φ(q1, . . . , qk)|2dv

(This is one of the first and simplest examples by means of which the statistical
character of quantum mechanics was recognized.118 In addition, the relationship
between this statement and Schrödinger’s charge distribution assumption
(see I.2) is manifest.) Furthermore, if the energy of the system has the operator
H, and if this operator has eigenvalues λ1, λ2, . . . and eigenfunctions φ1, φ2, . . . ,
then the probability of the energy eigenvalue λn in the state φ is equal to

∣∣∣
∫
· · ·

∫
φ(q1, . . . , qk)φn(q1, . . . , qk) dq1 . . . dqk

∣∣∣
2

(see the papers mentioned in Note 118). We now want to join these two
statements, and put them in a unified form.

117 By geometric analogy, the sphere with center φ0 and radius r is (in R∞)
the set of points f with ‖f −φ0‖ ! r, its interior the set with ‖f −φ0‖ < r and
its outer surface the set with ‖f − φ0‖ = r. For the unit sphere, φ0 = 0, r = 1.
118 The first statistical statements of the behavior of a system in the state
φ originated with M. Born, and were treated in more detail by Dirac and by
Jordan. See the references in Note 8 and Note 2.
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Let V be a the k-dimensional cube

q1
′ < q1 ! q1

′′

q2
′ < q2 ! q2

′′

...

qk
′ < qk ! qk

′′

We denote the intervals {q1
′, q1

′′}, {q2
′, q2

′′}, . . . , {qk
′, qk

′′} by I1, I2, . . . , Ik

respectively. The q1, q2, . . . , qk have the operators q1·, q2·, . . . , qk· respectively.
The resolutions of the identity belonging to these operators are defined as
follows (see II.8): we call the resolution belonging to qj · (j = 1, . . . , k) Ej(λ)
and stipulate that

Ej(λ)f(q1, q2, . . . , qk) =






f(q1, q2, . . . , qk) for qj ! λ

0 for qj > λ

We introduce the following general notation: If F(λ) is a resolution of the
identity and I is the interval {λ′, λ′′} then F(I) = F(λ′′) − F(λ′) (which for
λ′ ! λ′′, F(λ′) ! F(λ′′) is a projection operator). The probability therefore
that the system lies in the above V —i.e., that q1 lies in I1, . . . , qk lies in Ik—is
given by

∫

I1

. . .

∫

Ik

|φ(q1, . . . , qk)|2dq1 . . . dqk

=
∫
· · ·

∫ ∣∣E1(I1) · · ·Ek(Ik)φ(q1, . . . , qk)
∣∣2dq1 . . . dqk

(because E1(I1) · · ·Ek(Ik)φ(q1, . . . , qk) = φ(q1, . . . , qk) for q1 in I1, . . . , qk in Ik,
and is otherwise 0); i.e.,

= ‖E1(I1) · · ·Ek(Ik)‖2

In the second case, let us consider the probability that the energy lies
in the interval I = {λ′, λ′′}. The resolution of the identity, E(λ), is defined
(see II.8) by

E(λ) =
∑

λn !λ

P[φn]

Therefore
E(I) = E(λ′′) − E(λ′) =

∑

λ′ <λn !λ′′

P[φn]

But since only theλ1, λ2, . . .appear as values of the energy, this latter probability
is the sum of the probabilities of all λn with λ′ < λn ! λ′′. Therefore
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∑

λ′ <λn !λ′′

∣∣∣
∫
· · ·

∫
φ(q1, . . . , qk)φn(q1, . . . , qk) dq1 . . . dqk

∣∣∣
2

=
∑

λ′ <λn !λ′′

|(φ, φn)|2

=
∑

λ′ <λn !λ′′

(P[φn]φ, φ)

=
({ ∑

λ′ <λn !λ′′

P[φn]

}
φ, φ

)
= (E(I)φ, φ) = ‖E(I)φ‖2

In both cases we have then obtained a result which can be formulated as
follows:

P. The probability that in the state φ the operators R1, . . . ,R#
119

take on values from the respective intervals I1, . . . , I# is

‖E1(I1) · · ·E#(I#)φ‖2

where E1(λ), . . . ,E#(λ) are the resolutions of the identity belonging
to R1, . . . ,R# respectively.

The first case corresponds to # = k, R1 = q1·, . . . ,Rk = qk·, the second to
# = 1, R1 = H. We shall now assume this statement P to be generally valid.
It actually contains all the statistical assertions of quantum mechanics which
have been made thus far.

However, a limitation of its validity is necessary. Since the order of the
R1, . . . ,R# is entirely arbitrary in the problem, it must be arbitrary in the result.
That is, all the E1(I1), . . . ,E#(I#) or equivalently all the E1(λ1), . . . ,E#(λ#) must
commute. By II.10 this means that the R1, . . . ,R# commute with each other.
This condition is satisfied for q1·, . . . , qk·, while for # = 1, R1 = H it is vacuously
satisfied.

Consequently, we postulate P for all commuting R1, . . . ,R#. Then
E1(I1), . . . ,E#(I#) commute, so E1(I1) · · ·E#(I#) is a projection (theorem 14
in II.4) and the probability in question becomes

P = ‖E1(I1) · · ·E#(I#)φ‖2 =
(
E1(I1) · · ·E#(I#)φ, φ

)

(theorem 12 in II.4).

119 We shall speak more expressly in IV.1 about this correspondence, which
allows each physical quantity to correspond to a Hermitian operator. For
the present, we know only (by reason of I.2) that the operators q1·, . . . , qk·
correspond to the coordinates, the operators !

i
∂
∂q1

, . . . , !
i

∂
∂qk

to the momenta,
and the “energy operator” H to the energy.
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Before we go any further we must verify a few properties of P which must
hold in any reasonable statistical theory.

1◦. The order of the propositions is irrelevant.

2◦. Vacuous propositions can be inserted at will.

These are propositions where the interval Ij = {∞, +∞}, and they give rise
only to a factor Ej(Ij) = Ej(+∞) − Ej(−∞) = I − O = I.

3◦. The addition theorem of probability holds.

That is, if we resolve an interval Ij into two intervals Ij
′, Ij

′′ then the old
probability is the sum of the two new probabilities. For let Ij , Ij

′, Ij
′′ be {λ′, λ′′},

{λ′, λ}, {λ, λ′′} respectively. Then

E(λ′′) − E(λ′) =
(
E(λ) − E(λ′)

)
+

(
E(λ′′ − E(λ)

)

i.e., E(Ij) = E(Ij
′) + E(Ij

′′) which, by reason of the second of the preceding
formulations of P (which is linear in E1(I1) · · ·Ej(Ij) · · ·E#(I#)) gives the
additivity of the probabilities.

4◦. For absurd propositions (one Ij empty), P = 0 because then the
corresponding Ej(Ij) = O. For truly trivial propositions (all Ij = {−∞, +∞}),
P = 1 because then all Ej(Ij) = I, P = ‖φ‖2 = 1. We always have 0 ! P ! 1
because of theorem 13 in II.4.

Finally, we observe that P contains the assertion that a quantity Rj can
take on as values only its eigenvalues; i.e., the numbers of its spectrum. For if
the interval Ij = {λ′, λ′′} lies outside of the spectrum then Ej(λ) is constant in
it, and therefore

Ej(Ij) = Ej(λ′′) − E(λ′) = O

from which it follows that P = 0.

We shall now set # = 1 and denote R1 by R. Let R be the physical
quantity to which R corresponds (see Note 119). Let F (λ) be any function.
The expectation value of F (R) is then to be calculated.

For this purpose, we divide the interval {−∞, +∞} into a sequence of
subintervals {λn, λn+1}, n = 0,±1,±2, . . . . The probability that R lies in
{λn, λn+1} is

({E(λn+1) − E(λn)}φ, φ) = (E(λn+1)φ, φ) − (E(λn)φ, φ)

and the expectation value of F (R) is consequently

+∞∑

−∞
F (λ′

n)
{
(E(λn+1)φ, φ) − (E(λn)φ, φ)

}

if λ′
n is an appropriate intermediate value from {λn, λn+1}. But if we choose
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the subdivisions . . . , λ−2, λ−1, λ0, λ1, λ2, . . . closer and closer together this sum
converges to the Stieltjes integral

∫ +∞

−∞
F (λ) d(E(λ)φ, φ)

which therefore provides a description of the expectation value in question. But
by reason of the general definition of operator functions in II.8 this integral is
equal to (F (R)φ, φ). Consequently, we have

E1. Let R be any physical quantity, R its operator (see Note 119),
and F (λ) an arbitrary function. Then, for the expectation value of
F (R) in the state φ, we have

Exp(F (R); φ) = (F (R)φ, φ)

In particular, if we set F (λ) = λ, then:

E2. Let R, R be as above. Then for the expectation value of R in
the state φ, we have

Exp(R ; φ) = (Rφ, φ)

We look now to the relations among P, E1 and E2. We shall deduce E1

from P and E2 from E1.

Let the operator that corresponds to the physical quantity F (R) be
denoted S. Then a comparison of E1, E2 gives

(Sφ, φ) = (F (R)φ, φ)

for all states φ; i.e., for all φ with ‖φ‖ = 1. Consequently, in general,

(Sf, f) = (F (R)f, f)

(obvious for f = 0, while otherwise φ = 1
‖f‖ ·f) and therefore

(Sf, g) = (F (R)f, g)

(replace f by f+g
2 else by f−g

2 and subtract; this gives equality of the real parts;
if, g instead of f, g gives equality of the imaginary parts). Therefore S = F (R).
We formulate this important result as follows:

F. If the quantity R has the operator R, then the quantity F (R)
must have the operator F (R).
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1. The Statistical Assertions of Quantum Mechanics 133

Because of F, now E1 clearly follows from E2. Consequently (under the
assumption of F), E1 and E2 are equivalent assertions, and we shall now show
that they are also equivalent to P. Since they follow from P we need only show
that P follows from E1 or E2.

Let R1, . . . ,R# be commuting operators belonging to the respective
quantities R1, . . . ,R#. By II.10 they are functions of a Hermitian operator
R:

R1 = F1(R), . . . ,R# = F#(R)

We may assume that R also belongs to a quantity R. (We therefore make the
assumption that a (hypermaximal) operator R belongs to each R and conversely.
See Note 119 and IV.2.) Then, by F,

R1 = F1(R), . . . ,R# = F#(R)

Now let I1, . . . , I# be the intervals involved in P, and let Gj(λ) be defined

Gj(λ) =
{ 1 for λ in Ij : j = 1, . . . , #

0 otherwise
We set

H(λ) = G1(F1(λ)) · · ·G#(F#(λ))

and form the quantity
S = H(R)

If Rj lies in Ij —i.e., if Fj(R) lies in Ij —then Gj(Fj(R)) equals 1,
otherwise it equals 0. S = H(R) is therefore equal to 1 if each Rj lies in
its Ij (j = 1, . . . , #), and is otherwise equal to 0. The expectation value of S
is therefore equal to the probability P that R1 lies in I1, . . . , R# lies in I#.,
Hence

P = Exp(S, φ) = (H(R)φ, φ)
= (G1(F1(R)) · · ·G#(F#(R))φ, φ)
= (G1(R1) · · ·G#(R#)φ, φ)

Let the resolution of the identity belonging to Rj again be called Ej(λ), and let
Ij be the interval {λ′

j , λ
′′
j }. Then, by reason of the discussion at the end of II.8,

and with the notation used there,

Gj(λ) = eλ′′
j
(λ) − eλ′

j
(λ)

Gj(Rj) = eλ′′
j
(Rj) − eλ′

j
(Rj)

= Ej(λ
′′
j ) − Ej(λ

′
j) = Ej(Ij)

we have
P = (E1(I1) · · ·E#(I#)φ, φ)

But this is precisely P.

Because of the simplicity of their form, E2, F are especially suited to be
considered as the foundations upon which the entire theory is built. We saw
that P—the most general probability assertion possible—follows from these.
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134 Chapter III: The Quantum Statistics

But the statement P has two striking features:

1. P is statistical, and not causal; i.e., it does not tell us what values R1, . . . ,R#

have in the states φ, but only with what probabilities they take on all possible
values.

2. The problem of P cannot be answered for arbitrary quantities R1, . . . ,R#,
but only for those whose operators R1, . . . ,R# commute with one another.

Our next problem is to discuss the significance of these two facts.

2. THE STATISTICAL INTERPRETATION

Classical mechanics is a causal discipline; i.e., if we know exactly the
state of a classical system—for which, with k degrees of freedom, 2k numbers
are necessary: the k space coordinates q1, . . . , qk and their k time derivatives
∂q1/∂t, . . . . , ∂qk/∂t or, in place of these, the k momenta p1, . . . , pk—then we can
give the value of each physical quantity (energy, torque, etc.) uniquely and with
numerical exactness. Nevertheless, there also exists a statistical method
for approaching classical mechanical problems, but this is, as it were, a luxury or
extra addition. That is, if we do not know all 2k variables q1, . . . , qk, p1, . . . , pk

but only several of them (and some of those perhaps only approximately), we—
by averaging over the unknown variables—may at least be able to formulate
statistical assertions about the physical quantities of interest. The same holds
for the preceding or subsequent states of the system: if we know q1, . . . , qk,
p1, . . . , pk at time t = t0 then, by means of the classical equations of motion,
we can calculate (causally) the state for every other time; but if we know only
some of the variables we must average over the rest, and we can then make only
statistical statements about the state at other times.120

The statistical statements which we found in quantum mechanics have a
different character. Here, for k degrees of freedom, the state is described by the
wave function φ(q1, . . . , qk); i.e., by a point φ in R∞, suitably realized (‖φ‖ = 1,
and a numerical factor of absolute value 1 is unimportant). Although we
believe that after having specified φ we know the state of the system completely,
nevertheless only statistical statements can be made concerning the values of
the physical quantities involved.
120 The kinetic theory of gases furnishes a good illustration of the points at
issue. A mole (32 g) of oxygen contains 6 · 1023 oxygen molecules, and, if we
observe that each oxygen molecule is composed of two oxygen atoms (whose
inner structure we shall neglect, so that they can be treated as mass points with
three degrees of freedom), one such mole is a system with 2·3·6·1023 = 36·1023 = k
degrees of freedom. Its behavior can therefore be described causally by 2k
variables, but gas theory uses only two: pressure and temperature, which are
certain complicated functions of these 2k independent variables. Consequently,
only statistical (probability) observations can be made. That these are in many
cases nearly causal (i.e., the probabilities are near 0 or 1) does not alter the
fundamental nature of the situation.
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2. The Statistical Interpretation 135

On the other hand, this statistical character is limited to statements about
the values of physical quantities, while the preceding and subsequent states
φt can be calculated causally from φt0 = φ. The time-dependent Schrödinger
equation (see I.2) makes this possible:

φt0 = φ : !
i

∂
∂tφt = −Hφt

determine the entire path of φt. The solution of this differential equation can
be explicitly rendered

φt = e−
i
! (t−t0)H φ

where the operator e−
i
! (t−t0)H is unitary.121 (In this formula H was assumed

to be independent of time, but even with a time-dependent H the evolved state
φt is uniquely determined, since the differential equation is of first degree. In
this case, however, there are no simple solution formulas.)

If we want to explain the non-causal character of the connection between φ
and the values of physical quantities following the pattern of classical
mechanics, then this interpretation is clearly the proper one: In reality, φ
does not determine the state exactly. In order to know this state absolutely,
additional numerical data are necessary. That is, the system has other
characteristics or coordinates in addition to φ. If we were to know all of these we
could then give the values of all physical quantities exactly and with certainty.
On the other hand, with the use of φ alone, just as in classical mechanics when
only some of the q1, . . . , qk, p1, . . . , pk are known, only statistical statements are
possible. Of course, this concept is only hypothetical. It is an attempt whose
utility depends upon whether or not it actually succeeds in finding the additional
coordinates contributing to φ, and in building, with their help, a causal theory
which is in agreement with experiment, and which gives the statistical assertions
of quantum mechanics when only φ is given (and an averaging is performed over
the other coordinates).

121 If Ft(λ) is a time-dependent function, ∂
∂tFt(λ) = Gt(λ) and H is a Hermitian

operator, then ∂
∂tFt(H) = Gt(H) because ∂

∂t is obtained by subtraction, division
and passage to the limit. For

Ft(λ) = e−
i
! (t−t0)λ

this gives
∂
∂te

− i
! (t−t0)H = − i

!H · e− i
! (t−t0)H

which yields the desired differential equation when applied to φ.

Because |Ft(λ)| = 1, Ft(λ) · Ft(λ) = 1 we have Ft(H) · [Ft(H)]∗ = 1; i.e.,
our

Ft(H) = e−
i
! (t−t0)H

is unitary. Since it is obviously I at t = t0, φt0 = φ is also satisfied.
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136 Chapter III: The Quantum Statistics

It is customary to call these hypothetical additional coordinates “hidden
parameters” or “hidden coordinates,” since they must play a hidden role, in
addition to the φ which alone have been uncovered by investigation thus far.
Explanations by means of hidden parameters have (in classical mechanics)
reduced many apparently statistical relations to the causal foundations of
mechanics. An example of this is the kinetic theory of gases (see Note 120).

Whether or not an explanation of this type, by means of hidden parameters,
is possible for quantum mechanics is a much discussed question. The view that
it will sometime be answered in the affirmative has at present some prominent
representatives. If it were correct, it would brand the present form of the theory
provisional, since then the description of states would be essentially incomplete.

We shall show later ( IV.2) that an introduction of hidden parameters is
certainly not possible without a basic change in the present theory. For the
present, let us emphasize only these two things: (1) φ has an entirely different
appearance and role from the q1, . . . , qk, p1, . . . , pk complex in classical
mechanics, and (2) the time dependence of φ is causal and not statistical: φt0

determines all φt uniquely, as we saw above.

Until a more precise analysis of the statements of quantum mechanics
enables us to prove objectively the possibility of introducing hidden parameters
(a problem discussed in the place quoted above), we shall abandon this possible
explanation. We therefore adopt the opposite point of view. That is, we admit
as a fact that the natural laws which govern elementary processes (i.e., the
laws of quantum mechanics) are of a statistical nature. (The causality of
the macroscopic world can in any event be simulated by the leveling action
which is manifest whenever many elementary processes operate simultaneously;
i.e., by the “law of large numbers.” See the remarks at the end of Note 120
and Note 175.) Accordingly, we recognize P (or E2) as the most far reaching
pronouncement on elementary processes.

This concept of quantum mechanics, which accepts its statistical expression
as the actual form of the laws of nature, and which abandons the principle of
causality, is the so-called “statistical interpretation.” It is due to M. Born,122
and is the only consistently enforceable interpretation of quantum mechanics
today—i.e., of the sum of our experience relative to elementary processes. It
is this interpretation to which we shall conform in the following (until we can
proceed to a detailed and fundamental discussion of the situation).

3. SIMULTANEOUS MEASURABILITY

AND MEASURABILITY IN GENERAL

The second of the “striking” circumstances to which we drew attention
at the end of III.1 was connected with the fact that P provided information not

122 Z. Physik 37 (1926). The entire subsequent development (see Note 2) rests
on this concept.
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3. Simultaneous Measurability 137

only about the probabilities with which a quantity R took on given numerical
values, but also about the probability interrelations of several quantities
R1, . . . ,R#. P specified the probability that these quantities took on certain
given values simultaneously (more precisely: that these quantities lay in certain
intervals I1, . . . , I#, the presumption being that all refer to the same state φ).
But these quantities R1, . . . ,R# were subject to a characteristic limitation: their
operators R1, . . . ,R# had to commute pairwise. In the case of non-commuting
R1, . . . ,R# on the other hand, P gave no information regarding the probability
interrelations of the R1, . . . ,R#. In this case, P could be used only to determine
the probability distribution of each of these quantities by itself, without
consideration of the others.

The most obvious remedy would be to assume that this reflects an
incompleteness in P, and that there must exist a more general formula which
gives back P as a special case. Because even if quantum mechanics furnishes
only statistical information regarding nature, the least we can expect of it is
that it describes not only the statistics of individual quantities, but also the
relations among several such quantities.

But—contrary to this concept, which appears reasonable at first glance—
we shall soon see that such a generalization of P is not possible, and that, in
addition to the formal reasons (intrinsic to the structure of the mathematical
tools of thetheory),weighty physical grounds also suggest this type of limitation.
The necessity of this limitation and its physical meaning will give us an
important insight into the nature of elementary processes.

In order to be clear on this point we must investigate more precisely
what the process of measurement of a quantity R—about which P makes a
(probability) statement—means quantum mechanically.

First, let us refer to an important experiment which Compton and Simon
carried out prior to the formulation of quantum mechanics.123 In this
experiment, light was scattered by electrons, and the scattering process was
controlled in such a way that the scattered light and scattered electrons were
subsequently intercepted, and their energy and momenta measured. That is,
there ensued collisions between light quanta and electrons, and the observer,
since he measured the paths after collision, could determine whether or not
the laws of elastic collision were satisfied. (We need consider only elastic
collisions, since we do not believe that energy can be absorbed by electrons
and light quanta in any form other than as kinetic energy. According to all
experiments, both appear to have uniquely constituted structures. The collision
calculation must naturally be carried out relativistically.123) Such a
mathematical calculation was in fact possible because the paths before collision
were known, and those after the collision were observed. Therefore the collision
problem was entirely determined. In order to determine the process

123 Phys. Rev. 26 (1925). See also the comprehensive treatment of Bothe in
Handbuch der Physik , Vol. 23 (“Quanta”), Berlin, 1926, Chapter 3, particularly
§73.
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138 Chapter III: The Quantum Statistics

mechanically, two of these four paths, and the “central line” of the collision (the
direction of momentum transfer) suffices. In any case, therefore, knowledge of
three paths is sufficient, and the fourth acts as a check. The experiment gave
complete confirmation of the mechanical laws of collision.

This result can also be formulated as follows, provided we admit the validity
of the laws of collision, and regard the paths before collision as known. The
measurement of either the light quantum or the electron after collision suffices
to determine the position and the central line of the collision. The Compton-
Simon experiment now shows that these two observations give the same result.

More generally, the experiment shows that the same physical quantity
(namely, any coordinate of the place of collision or of the central line) is
measured in two different ways (by capture of the light quantum and of the
electron), and the result is always the same.

These two measurements do not occur entirely simultaneously. The light
quantum and the electron do not arrive at once, and by suitable arrangement
of the measurement apparatus either process may be observed first. The time
difference is usually about 10−9 to 10−10 seconds. We call the first measurement
M1 and the second M2. R is the quantity measured. We then have the following
situation: Although the entire arrangement is of such a type that, prior to
the measurement, we can make only statistical statements regarding R, i.e.,
regarding M1, M2 (see the reference in Note 123), the statistical correlation
between M1 and M2 is perfectly sharp (causal): the R value of M1 is certainly
equal to that of M2. Before the measurements of M1, M2, therefore, both results
were completely undetermined; after M1 has been performed (but not M2) the
result of M2 is already determined, causally and uniquely.

We can formulate the principle that is involved as follows: by nature,
three degrees of causality or non-causality may be distinguished. First, the R
value could be entirely statistical; i.e., the result of a measurement could be
predicted only statistically, and if a second measurement were made immediately
after the first one this would also have a dispersion, without regard to the value
found initially; for example, its dispersion might be equal to the original one.124
Second, it is conceivable that the value of R may have a dispersion in the first
measurement, but that immediately subsequent measurement is constrained to
give a result which agrees with that of the first. Third, R could be determined
causally at the outset.

The Compton-Simon experiment shows that only the second case is
possible in a statistical theory. Therefore, if the system is initially found in a
state in which the values of R cannot be predicted with certainty, then this state
is transformed by the measurement M of R (in the example above, M1) into

124 A statistical theory of elementary processes was erected by Bohr, Kramers
and Slater on these basic concepts. See Z. Physik 24 (1924), as well as the
references cited in Note 123. The Compton-Simon experiment serves to refute
this view.
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another state: namely, into one in which the value of R is uniquely determined.
Moreover, the new state, into which M places the system, depends not only
upon the arrangement of M but also upon the result of the measurement M
(which could not be predicted causally in the original state), because the value
of R in this new state must actually be equal to this M -result.

Now let R be a quantity whose operator R has a pure discrete spectrum
λ1, λ2, . . . with the respective eigenfunctions φ1, φ2, . . . which then form a
complete orthonormal set. In addition, let each eigenvalue be simple (i.e.,
of multiplicity 1: see II.6); i.e., λµ %= λν for µ %= ν. Let us assume that we have
measured R and found the value λ∗. What is the state of the system after the
measurement?

By virtue of the foregoing discussion, this state must be such that a
new measurement of R gives the result λ∗ with certainty. (Of course, this
measurement must be made immediately because after τ seconds φ has changed
to

e−
i
! τ H φ

See III.2; H is the energy operator.)

This question, as to when the measurement of R in the state φ gives
the value λ∗ with certainty, we shall now answer in general, without limiting
assumptions on the operator R.

Let E(λ) be the resolution of the identity corresponding to R, and I an
interval {λ′, λ′′}. Our assumption can also be formulated this way: that R lies
in I with probability 0 if this does not contain λ∗, and with probability 1 if
I does contain λ∗; i.e., if λ′ < λ∗ ! λ′′.

By P this means that ‖E(I)φ‖2 = 1 or (since ‖φ‖ = 1) ‖E(I)φ‖ = ‖φ‖.
Since E(I) is a projection, and I − E(I) is also (theorem 13, II.4), we have

‖φ − E(I)φ‖ = ‖φ‖2 − ‖E(I)φ‖2 = 0
φ − E(I)φ = 0

E(λ′′)φ − E(λ′)φ = E(I)φ = φ

λ′ → −∞ gives E(λ′′)φ = φ while λ′′ → +∞ gives E(λ′)φ = 0 (see S1, II.7).
Therefore

E(λ)φ =
{

φ for λ " λ∗

0 for λ < λ∗

But by II.8 this is characteristic for Rφ = λ∗φ.

Another way of proving Rφ = λ∗φ rests on E1 (i.e., E2). That R has the
value λ∗ with certainty means that (R−λ∗)2 has the expectation value 0. That
is, the operator F (R) = (R − λ∗I)2 obtained from F (λ) = (λ − λ∗)2 has that
expectation value. We must then have

((R − λ∗I)2φ, φ) = ((R − λ∗I)φ, (R − λ∗I)φ) = ‖(R − λ∗I)φ‖2

= ‖R φ − λ∗φ‖2 = 0

i.e., Rφ = λ∗φ.
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For the special case that we considered originally we thus have Rφ = λ∗φ.
As discussed in II.6, this has the consequence that λ∗ must be equal to λµ

(because ‖φ‖ = 1, φ %= 0) and φ = aφµ. Since ‖φ‖ = ‖φµ‖ = 1, |a| must
equal 1, and therefore a can be neglected without altering the state. Therefore:
λ∗ = λµ, φ = φµ for some µ = 1, 2, . . . . (The λ∗-assertion could have been
obtained directly from P, but not the assertion regarding φ!)

Under the above assumptions on R, a measurement of R then has the
consequence of changing the state ψ into one of the states φ1, φ2, . . . which
are connected with the respective results of measurement λ1, λ2, . . . . The
probabilities of these changes are therefore equal to the measurement
probabilities for λ1, λ2, . . . , and can therefore be calculated from P.

The probability that the value of R lies in I is then ‖E(I)ψ‖2 by P. Hence,
if we observe that by II.8 E(I) =

∑
λnin I P[φn], we have

P = ‖E(I)ψ‖2 = (E(I)ψ, ψ) =
∑

λn inI

(P[ψn]ψ, ψ) =
∑

λn inI

|(ψ, φn)|2

One should therefore suspect that the probability for λn equals |(ψ, φn)|2. If
we can so choose I that it contains a unique λm which is just λn, then this
follows directly from the above formula. Otherwise (i.e., if the other λm are
dense near λn) we can, for example, argue as follows: let F (λ) = 1 for λ = λn

and be otherwise 0. Then the desired probability Pn is the expectation value
of F (R), and hence by E2 (or E1) is (F (R)ψ, ψ). Now by definition

(F (R)ψ, ψ) =
∫ +∞

−∞
F (λ) d(‖E(λ)ψ‖2)

and if we recall the definition of the Stieltjes integral we can easily see that this
equals 0 if E(λ) is continuous (in λ) for λ = λn, and in general the discontinuity
for the (monotonic increasing) λ-function ‖E(λ)ψ‖2 is at the point λ = λn. But
this is equal to ‖PM ψ‖2, where M is the closed linear manifold spanned by all
solutions of Rψ = λnψ (see II.8). In the present case, M = [φn] and therefore

Pn = ‖P[φn]ψ‖
2 = |(ψ, φn)|2

We have then answered the question as to what happens in the measurement
of a quantity R under the above assumptions for its operator R. To be sure, the
“how” remains unexplained for the present. This discontinuous transition from
ψ to one of the states φ1, φ2, . . . (which are independent of ψ because ψ enters
only into the respective probabilities Pn = |(ψ, φn)|2, n = 1, 2, . . .) is certainly
not of the type described by the time-dependent Schrödinger equation. This
latter always results in a continuous change of ψ, in which the final result is
uniquely determined and is dependent on ψ (see the discussion in III.2). We
shall attempt to bridge this chasm later (see VI).125

125 That these jumps are related to the “quantum jumps” concept of the older
Bohr theory was recognized by Jordan; Z. Physik 40 (1924).
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Let us retain the assumption that R has a pure discrete spectrum but
abandon the requirement that the eigenvalues are simple. Then we can again
form the φ1, φ2, . . . and λ1, λ2, . . . , but duplications may now occur among
the λn. After a measurement of R a state φ with Rφ = λ∗φ is certainly present
(λ∗ is the result of the measurement). As a consequence, λ∗ is equal to one of
the λn, but we can say only the following of φ: let those λn that equal λ∗ be
λn1 , λn2 , . . . (their number may be either finite or infinite). Then

φ =
∑

ν

aνφν

(If there are infinitely many nν then
∑

ν |aν |2 must be finite.) Two such φ
represent the same state if they differ by no more than a numerical factor; i.e., if
the ratio a1 : a2 : · · · is the same. Therefore, as soon as more than one nν exists;
i.e., if the eigenvalue λ∗ is multiple, then the state φ after the measurement is
not uniquely determined by knowledge of the result of the measurement.

We calculate the probability of λ∗ (by P or E1 or E2) exactly as before. It
is

P (λ∗) =
∑

λn=λ∗

|(ψ, φn)|2 =
∑

ν

|(ψ, φnν
)|2

If R has no pure discrete spectrum the situation is this: All solutions f of
Rf = λf span a closed linear manifold Mλ; all Mλ together form an additional
M, and it is characteristic for the non-existence of a pure discrete spectrum
that M %= R∞; i.e., that R = R∞ − M %= O. (See II.8 for this, as well as for
what follows.) Mλ is at best %= O for a sequence of λ. These form the discrete
spectrum of R. If we measure R in the state ψ then the probability that the
result of the measurement will be λ∗ is

P (λ∗) = ‖PMλ∗ ψ‖2 = (PMλ∗ ψ, ψ)

This is best proved by the line of argument used above, which is based on E2

(or E1) and on the function

F (λ) =
{

1 for λ = λ∗

0 for λ %= λ∗

The probability that the value of R will be some λ∗ of the discrete spectrum Λ
of R is then

P =
∑

λ∗ inΛ

(PMλ∗ ψ, ψ) = (P
M

ψ, ψ) = ‖P
M

ψ‖2

which we can also see directly with the aid of the function

F (λ) =
{ 1 for λ∗ from Λ

0 otherwise
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However, if we measure R exactly, then afterwards a state φ with Rφ = λ∗φ
must be present, and therefore the result of measurement must belong to Λ; the
probability of obtaining an exact measurement is therefore (at most) ‖P

M
ψ‖2.

But this number is not always 1, and for ψ of R it is in fact 0; therefore an
exact measurement is not always possible.

We have seen that a quantity R can always (i.e., for each state ψ) be
measured exactly if and only if it possesses a pure discrete spectrum. If it
possesses none, then it can be measured with only limited accuracy; i.e., the
number continuum can be divided into intervals

. . . , I(−2), I(−1), I(0), I(+1), I(+2), . . .

(Let the division points be

. . . , λ(−2), λ(−1), λ(0), λ(+1), λ(+2), . . . : I(n) = {λ(n), λ(n+1)}

The maximum interval-length ε = Max(λ(n+1) − λ(n))—the maximal spacing
of the division points—is then the measure of accuracy.) The interval in which
R lies can be determined by a process which we pursue mathematically: Let
F (λ) be the following function (λ′

n is some intermediate value from I(n), which
is arbitrary for each n = 0,±1,±2, . . . but will be considered to be fixed):

F (λ) = λ′
n if λ lies in I(n)

Then the approximate measurement of R is equivalent to the exact
measurement of F (R). Now

F (R) =
∫ +∞

−∞
F (λ)dE(λ) =

+∞∑

n=−∞

∫ λ(n+1)

λ(n)
F (λ)dE(λ)

=
+∞∑

n=−∞
λ′

n

∫ λ(n+1)

λ(n)
dE(λ) =

+∞∑

n=−∞
λ′

nE(I(n))

The equation F (R)f = λ′
nf clearly holds for all f of the closed linear manifold

belonging to E(I(n)); i.e., to F (R)Mλ′
n
, which contains that closed manifold.

Consequently
PMλ′

n

" E(I(n))

and therefore

P
M

"
∞∑

n=−∞
PMλ′

n

"
∞∑

n=−∞
E(I(n))

=
∞∑

n=−∞

(
E(λ(n+1)) − E(λ(n))

)
= I − O = I

From this it follows that
∞∑

n=−∞
PMλ′

n

= P
M

= I, PMλ′
n

= E(I(n))

i.e., that F (R) has a pure discrete spectrum, and that this consists of λ′
n.
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Therefore F (R) is exactly measurable, and the probability that its value
is λ′

n—i.e., that the value of R lies in I(n)—is

‖PMλ′
n

ψ‖2 = ‖E(I(n))ψ‖2

in agreement with the statement P for R.

This result can also be interpreted physically, and it demonstrates that the
theory is in good agreement with the ordinary intuitive physical point of view.

In the method of observation of classical mechanics (without any quantum
conditions) we assign to each quantity R in each state a completely
determined value. At the same time, however, we recognize that every
conceivable measuring apparatus, as a consequence of the imperfections of
human means of observation (which result in the reading of the position of a
pointer, or of locating the blackening of a photographic plate, with only limited
accuracy), can furnish this value only with a certain (never vanishing) margin
of error. This margin of error can, by sufficient refinement of the method of
measurement, be made arbitrarily close to zero—but it is never exactly zero.
One expects that this will also be true in quantum theory for those quantities
R which, according to the pictures that were customarily made of such things
(especially before the discovery of quantum mechanics), are not quantized; this
expectation pertains, for example, to the cartesian coordinates of an electron
(which can take on every value between −∞ and +∞, and whose operators have
continuous spectra). On the other hand, for those quantities which (according
to our intuitive picture of them) are “quantized” the reverse is true: since these
are capable of assuming only discrete values it suffices to observe them with just
sufficient precision that no doubt can exist as to which of these “quantized”
values is occurring. That value is then as good as “observed” with absolute
precision. For example, if we know of a hydrogen atom that it contains less
energy than is necessary for the second-lowest energy level, then we know its
energy content with absolute precision: it is in the lowest energy state.

This division into quantized and unquantized quantities corresponds, as the
analysis of the matrix theory has already shown (see I.2 and II.6), to the division
of quantities R with operators R which do/don’t have pure discrete spectra.
It was for the former—and only for those—that we found measurements of
absolute precision to be possible; the latter, we found, can be observed only
with arbitrarily good (but never absolute) precision.126

In addition, it should be observed that the introduction of an eigenfunction
which is “improper”—i.e., which does not belong to Hilbert space (mentioned
in the preface as well as in I.3; see also II.8, especially the Notes 84, 86)—gives

126 In all such cases we make the supposition that the structure of the observed
system—and of the measuring apparatus (i.e., all the ambient force fields,
etc.)—is known exactly, and that only the state (i.e., the values of the
coordinates) is sought. If these (idealized) assumptions do not prove to be
correct then additional sources of indeterminacy are of course present.
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a less good approach to reality than our treatment here. For such a method
assumes the existence of states in which quantities with continuous spectra
take on certain values exactly, although this never occurs. Although such
idealizations have often been advanced, we believe that it is necessary to discard
them on these grounds, additional to the grounds provided by the fact of their
mathematical untenability.

With this we have brought to a tentative conclusion our discussion of the
processes which occur in the measurement of a single quantity, and can apply
ourselves to the problems posed by the simultaneous measurement of several
quantities.

First, let R, S be two quantities with the respective operators R, S. We
shall assume that they are simultaneously measurable. What follows from this?

We begin by assuming exact measurability so that R, S must have pure
discrete spectra: λ1, λ2, . . . and µ1, µ2, . . . respectively. Let the corresponding
complete orthonormal sets of eigenfunctions be φ1, φ2, . . . and ψ1, ψ2, . . . .

In order to discuss the simplest case first, we shall assume that one of the
operators—say R —has simple eigenvalues; i.e., λm $= λn for m $= n.

If we measure R, S simultaneously then a state is subsequently present
in which R as well as S has the previously measured values with certainty.
These values are (say) λm̄, λn̄. The state which then exists must satisfy the
relations Rψ = λm̄ψ, Sψ = λn̄ψ. From the first of these if follows that ψ = φm̄

(except for a numerical factor which we can neglect), while from the second
ψ =

∑
ν aνψnν if µn1

, µn2
, . . . are all µn equal to µn̄. If the initial state was

φ then λm̄, φm̄ has the probability |(φ, φm̄)|2. For φ = φm therefore m̄ = m
is certain, so that we can say for each m that φm can be developed

∑
ν aνψnν

with equal µnν ; i.e., Sφm = µ̄φm with µ̄ = µn1
= µn2

= · · · . For f = φm

consequently RSf = SRf (both are equal to λmµ̄ · φm). Therefore this also
holds for these; i.e., for all f . Therefore R, S commute.

If R, S are not continuous then we argue as follows: The resolutions of the
identity E(λ), F(µ) belonging to R, S are defined by

E(λ) =
∑

λm !λ

P[φm], F(µ) =
∑

µn !µ

P[ψn]

Consequently

E(λ)φm =
{

φm for λ ! λm

0 for λ < λm

F(µ)φm =
{

φm for µ ! µ̄
0 for µ < µ̄

Therefore in any case E(λ)F(µ)φm= F(µ)E(λ)φm for all φm. The commutativity
of E(λ), F(µ) follows from this, just as above, and therefore (by II.10) also the
commutativity of R, S.
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But according to II.10 there exists a complete orthonormal set of
eigenfunctions common to R, S; i.e., we may assume φm = ψm. Since λm $= λn

for m $= n, we can set up a function F (λ) with

F (λ) =
{

µn for λ = λn : n = 1, 2, . . .
arbitrary elsewhere

Then S = F (R); i.e., S = F (R). That is: R, S are not only measurable
simultaneously but each measurement of R is also one of S, since S is a function
of R; i.e., is determined causally by R.127

We now proceed to the more general case where nothing is assumed
concerning the multiplicity of the eigenvalues of R, S. In this case we use an
essentially different method.

First let us consider the quantity R + S. A simultaneous measurement
of R, S is also a measurement of R + S because addition of the results of the
measurements gives the value of R+S. Consequently, the expectation value of
R + S in each state ψ is the sum of the expectation values of R and of S. It
should be noted that this holds independently of whether R, S are statistically
independent, or whether (and which) correlations exist between them, because
the law

Expectation value of the sum = Sum of the expectation values

holds in general, as is well known. Therefore, if T is the operator of R+S then
this expectation value is on the one hand (Tψ, ψ) and on the other

(Rψ, ψ) + (Sψ, ψ) = ((R + S)ψ, ψ)

i.e., for all ψ
(Tψ, ψ) = ((R + S)ψ, ψ)

Therefore T = R + S. Consequently R + S has the operator R + S.128 In
the same way we can show that aR + bS (a, b real numbers) has the operator
aR+bS. (This also follows from the first formula if we substitute R, S and R, S
in the functions F (λ) = aλ, G(µ) = bµ.)

A simultaneous measurement of R, S is also a measurement of

R + S
2

,
(R + S

2

)2
, R− S

2
,

(R− S
2

)2

(R + S
2

)2
−

(R− S
2

)2
= R · S

127 The latter proposition can be verified with the aid of P. The resolutions of
the identity which belong to R and S may be formed by II.8.
128 We have proved this law, according to which the operator of R + S is the
sum of the operators of R and S, for simultaneously measurable R, S. See what
is said at the end of IV.1 and IV.2.
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Operators of these quantities (if we also make use of the fact that if T is the
operator of T then F (T) is the operator of F (T ) and hence T 2 has the operator
T2 ) are therefore

R + S
2

,
(

R + S
2

)2
= R2 + S2 + RS + SR

4
R − S

2
,

(
R − S

2

)2
= R2 + S2 − RS − SR

4(
R + S

2

)2
−

(
R − S

2

)2
= RS + SR

2

That is, R· S has the operator 1
2 (RS + SR). This also holds for all F (R), F (S)

(which are also measured), and therefore F (R) · G(S) has the operator

F (R) G(S) + G(S) F (R)
2

Now let E(λ), F(µ) be the resolutions of the identity corresponding to R, S.
Furthermore, let

F (λ) =
{

1 for λ " λ̄
0 for λ > λ̄

: G(µ) =
{

1 for µ " µ̄
0 for µ > µ̄

As we know, F (R) = E(λ̄), G(S) = F(µ̄) so F (R) · G(S) has the operator
1
2 (EF + FE) (for brevity we replace E(λ̄), F(µ̄) by E, F). Since F (R) is always
either 0 or 1 we have F (R)2 = F (R) and therefore

F (R) ·
(
F (R) · G(S)

)
= F (R) · G(S)

Let us now apply our multiplication formula to F (R) and F (R) · G(S) (both
of which are simultaneously measurable). We then obtain the operator

E EF + FE
2 + EF + FE

2 E

2
= E2F + 2EFE + FE2

4
= EF + FE + 2EFE

4

for this product. This must equal 1
2 (EF + FE), from which it follows that

EF + FE = 2 · EFE

Multiplication on the left by E gives

E2F + EFE = 2 · E2FE, EF + EFE = 2 · EFE, EF = EFE

while multiplication on the right by E gives

EFE + FE2 = 2 · EFE2, EFE + FE = 2 · EFE, FE = EFE

Therefore EF = FE. That is, all E(λ̄), F(µ̄) commute. Consequently R, S again
commute.
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It was established in II.10 that the requirement that R, S be commutative
is the same as the requirement that there exists a Hermitian operator T of
which R and S are functions: R = F (T), S = G(T). If this operator belongs
to the quantity T then R = F (T ), S = G(T ). However, this condition is
also sufficient for simultaneous measurability, because a measurement of T (an
absolutely exact one because T has a pure discrete spectrum: see II.10) measures
simultaneously the functions R, S. The commutativity of R, S is therefore a
necessary and sufficient condition.

If several variables R,S, . . . (but a finite number)are given, if their operators
are R, S, . . . and if absolutely exact measurement is again required, then the
situation with regard to simultaneous measurability is as follows. If all quantities
R,S, . . . are simultaneously measurable then all pairs formed from them must
also be simultaneously measurable. That is, all operators R, S, . . . must commute
pairwise. Conversely, if all R, S, . . . commute with each other then by II.10 there
exists an operator T of which all are functions: R = F (T), S = G(T), . . . .
And therefore the corresponding T : R = F (T ), S = G(T ), . . . . An exact
measurement of T (T has again a pure discrete spectrum: see again II.10) is
consequently a simultaneous measurement ofR,S, . . . That is, the commutativity
of R, S, . . . is necessary and sufficient for the simultaneous measurability of
R,S, . . . .

Now let us consider such measurements which are not absolutely exact,
but only of some (arbitrarily great) previously given accuracy. Then R, S, . . .
no longer need have discrete spectra.

Since the limited accuracy measurements of R,S, . . . are in effect the same
as absolutely exact measurements of F (R), G(S), . . . , where F (λ), G(λ), . . . are
certain functions the manner of whose formation was described at the beginning
of this section (in the discussion of a single measurement, of course, only F (λ)
was given), we can infer that R,S, . . . are certainly measurable simultaneously if
all the F (R), G(S), . . . are measurable simultaneously (with, of course, absolute
accuracy). But the latter is equivalent to the commutativity of F (R), G(S), . . . ,
and this follows from that of R, S, . . . . Therefore the commutativity of R, S, . . .
is in any case sufficient.

Conversely, if R,S, . . . are taken to be simultaneously measurable, then we
proceed as follows. A sufficiently exact measurement of R permits us to
determine whether its value is > λ̄ or " λ̄ (see our definition of “limited
accuracy,” discussed in Note 126). So if F (λ) is defined

F (λ) =
{

1 for λ " λ̄
0 for λ > λ̄

then F (R) is measurable with absolute accuracy. Correspondingly, if

G(µ) =
{

1 for µ " µ̄
0 for µ > µ̄
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then G(S) is measurable with absolute accuracy, and moreover: both quantities
are measurable simultaneously. Therefore R(R), G(S) commute. Now let E(λ)
and F(µ) be the resolutions of the identity belonging to R, S. Then F (R) = E(λ̄),
G(S) = F(µ̄) and therefore E(λ̄), F(µ̄) commute (for all λ̄, µ̄). Consequently,
R, S commute. And, since this must hold for each pair of operators R, S, all
R, S must commute pairwise. Therefore this condition is also necessary.

We therefore see that the characteristic conditions for the simultaneous
measurability of a (finite) number of quantities R,S, . . . is the commutativity
of their operators R, S, . . . . In fact, this holds for absolutely exact as well as for
arbitrarily exact measurements. In the first case, however, it is also required
that the operators possess pure discrete spectra, as is characteristic of absolutely
exact measurements.

We have now produced the mathematical proof that P makes the most
extensive statement that is in general possible in this theory (i.e., in any
theory that includes P). This is due to the fact that it presumes only the
commutativity of the operators R1, . . . ,R#. Without this condition, nothing
can be said concerning the results of simultaneous measurements of R1, . . . ,R#

since simultaneous measurements of these quantities are then in general not
possible.

4. UNCERTAINTY RELATIONS

In the foregoing sections we have obtained important information about
the measuring process involving a single quantity, or several simultaneously
measurable ones. We must now develop the procedure for quantities which are
not simultaneously measurable if we are interested in their statistics in the same
system (in the same state φ).

Therefore, let two such quantities R, S as well as their (non-commuting)
operators R, S be given. In spite of this assumption, states φ may exist in
which both quantities have sharply defined (i.e., dispersionless ) values—i.e.,
eigenfunctions common to both—but no complete orthonormal set can be
formed from these, since then R, S would commute. (See the construction given
in II.8 for the corresponding resolutions of the identity E(λ), F(λ). If φ1, φ2, . . .
is the complete orthonormal set mentioned then both E(λ) and F(λ) are P[φρ]

sums, and therefore commute since the P[φρ] do.) What this means can easily
be seen: the closed linear manifold M spanned by these φ must be smaller than
R∞ because were this equal to R∞ then the desired complete orthonormal set
could be built up exactly as was done in the beginning of II.6 for the case of a
single operator.

For the states of M our R, S are simultaneously measurable. This can be
shown most readily by indicating a model for this simultaneous measurement.
Since the common eigenfunctions of R, S span M there is also an orthonormal set
of such φ: φ1, φ2, . . . spanning M (i.e., complete in M). (This is also obtained by
the method of construction described previously in II.6.) We extend φ1, φ2, . . .
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to a complete set φ1, φ2, . . . , ψ1, ψ2, . . . by the addition of an orthonormal set
ψ1, ψ2, . . . which spans R∞ − M. Now let λ1, λ2, . . . , µ1, µ2, . . . be distinct
numbers and let T be defined by

T
( ∑

m

xmφm +
∑

n

ynψn

)
=

∑

m

λmxmφm +
∑

n

µnynψn

where T is the corresponding quantity.

A measurement of T produces (as we know from III.3) one of the states
φ1, φ2, . . . , ψ1, ψ2, . . . . If a ψm results (which can sensed by observing that the
result of the measurement is a λm) then we also know the values of R and S
because R, S have sharply defined values in φm by our assumptions, and we
can predict with certainty that in an immediate measurement of R or S these
respective values will be found. On the other hand, if ψn is the result then we
know nothing of the sort (ψn does not lie in M; therefore R, S are not sharply
defined in ψn). The probability of finding ψn is, as we know, (P[ψn]φ, φ), and
the probability of finding some ψn (n = 1, 2, . . .) is

∑

n

(P[ψn]φ, φ) = (PR∞−Mφ, φ) = ‖PR∞−Mφ‖2 = ‖φ − PMφ‖2

If φ belongs to M—i.e., if φ = PMφ—then this probability is 0; i.e., R, S are
measured simultaneously with certainty.129

Since we are now interested in non-simultaneously measurable quantities
we shall now assume the existence of the extreme case M = O; i.e., we shall
assume that R, S are not simultaneously measurable in any state because no
eigenstates common to R, S exist.

If R, S have resolutions of the identity E(λ), F(λ) and the system is in state
φ then, as we know from III.1, the expectation values of R, S are

ρ = (Rφ, φ), σ = (Sφ, φ)

and their dispersions—i.e., the expectation values of (R − ρ)2, (S − σ)2 (see
the discussion of absolutely precise measurements in III.3)—are

ε2 = ((R − ρ · I)φ, φ) = ‖(R − ρ · I)φ‖2 = ‖Rφ − ρφ‖2

η2 = ((S − σ · I)φ, φ) = ‖(S − σ · I)φ‖2 = ‖Sφ − σφ‖2

129 The further detailed discussion of the “simultaneous measurability for φ
of M” for R, S which are not measurable with absolute precision (continuous
spectra) is left to the reader. This can be carried out in the same way as in the
treatment of III.3.

 EBSCOhost - printed on 2/13/2023 10:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



150 Chapter III: The Quantum Statistics

After a familiar transformation130 this becomes

ε2 = ‖Rφ‖2 − (Rφ, φ)2, η2 = ‖Sφ‖2 − (Sφ, φ)2

From ‖φ‖ = 1 and the Schwarz inequality (theorem 1, II.1) it follows that
both of these expressions are ! 0. There now arises the question: Since ε
and η cannot both be zero, but ε alone can be made arbitrarily small, and η
likewise (R, S are measurable separately with arbitrary exactness, and perhaps
even with absolute exactness), must there be relations between ε and η which
prevent their becoming arbitrarily small simultaneously, and what would be the
form of such relations?

The existence of such relations was discovered by Heisenberg.131 They are
of great importance for the knowledge of the uncertainties in the description
of nature produced by quantum mechanics. They are consequently known as
the uncertainty relations. We shall first derive the most important relation of
this type mathematically, and then return to its fundamental meaning, and its
connection with experiment.

In matrix theory, operators P, Q with the commutation property

PQ − QP = !
i I

play an important role: they were, for example, assigned to the coordinate
and its conjugate momentum (see I.2) or, more generally, to any two quantities
which were canonically conjugate in classical mechanics (see, for example, the
papers mentioned in Note 2). Let us examine any two such Hermitian operators
P, Q with

PQ − QP = a · I

(From (PQ − QP)∗ = QP − PQ we have (a · I)∗ = ā · I = −a · I giving ā = −a:
a is pure imaginary. This operator equation is not necessarily understood to
entail equality of the domains of definition of the two sides: PQ−QP need not

130 The operator calculation is the following:

ε2 = ((R − ρ · I)2φ, φ)

= (R2φ, φ) − 2ρ · (Rφ, φ) + ρ2

= ‖Rφ‖2 − 2 · (Rφ, φ)2 + (Rφ, φ)2

= ‖Rφ‖2 − (Rφ, φ)2

and similarly for η2.
131 Z. Physik 43 (1927). These considerations were extended by Bohr,
Naturwiss. 16 (1928). The mathematical discussion that follows was first
undertaken by Kennard, Z. Physik 44 (1927), and was given by Robertson in
its present form.
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make sense everywhere.) For each φ then

2Im(Pφ, Qφ) = −i[(Pφ, Qφ) − (Qφ,Pφ)]
= −i[(QPφ, φ) − (PQφ, φ)]
= (i[PQ − QP]φ, φ)

= ia ·‖φ‖2

Let a $= 0; then we have (by theorem 1, II.1)

‖φ‖2 = − 2i
a Im(Pφ, Qφ) " 2

|a| |(Pφ, Qφ)| " 2
|a|‖Pφ‖ ·‖Qφ‖

and therefore, for ‖φ‖ = 1,

‖Pφ‖ ·‖Qφ‖ ! 1
2 |a|

Since P− ρ·I, Q− σ ·I satisfy that same commutation relation, we have by that
same argument

‖Pφ − ρ ·φ‖ ·‖Qφ − σ ·φ‖ ! 1
2 |a|

and if we introduce the mean values and dispersions

ρ = (Pφ, φ), ε2 = ‖Pφ − ρ ·φ‖2

σ = (Qφ, φ), η2 = ‖Qφ − ρ ·φ‖2

then this becomes

U εη ! 1
2 |a|

In order for the equality sign to hold it is necessary and sufficient that the "
inequalities encountered in the derivation all be equalities. With P ′ = P − ρ · I,
Q ′ = Q − σ · I we then have

−i |a|
a Im(P ′φ,Q ′φ) = |(P ′φ, Q ′φ)| = ‖P ′φ‖ ·‖Q ′φ‖

By theorem 1, II.1, the second equation means that P ′φ and Q ′φ differ by
only a constant factor, and since ‖P ′φ‖ · ‖Q ′φ‖ ! 1

2 |a| > 0 implies P ′φ $= 0,
Q ′φ $= 0 it must be the case that P ′φ = c · Q ′φ, c $= 0. But the first
equation means that (P ′φ, Q ′φ) = c‖Q ′φ‖2 is pure imaginary, and in fact that its
i-coefficient has the same sign as −i|a|/a (a real!); i.e., opposite to that of a.
Therefore c = iγ, γ real and <> 0 for ia <> 0, respectively. Consequently

Eq P ′φ = iγ · Q ′φ : γ real, and <> 0 for ia <> 0

The definitions ofρ, σ entail (P ′φ, φ) = 0, (Q ′φ, φ) = 0. Since (P ′φ, φ) = iγ(Q ′φ, φ)
follows from Eq and is real on the left but imaginary on the right, the expressions
on both left and right must vanish, so the desired equations actually hold
automatically. We have yet to determine ε, η. We have the relations

ε : η = ‖P ′φ‖ : ‖Q ′φ‖ = |c| = |γ|, εη = 1
2 |a|

 EBSCOhost - printed on 2/13/2023 10:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



152 Chapter III: The Quantum Statistics

Therefore, since ε, η are both positive,

ε =

√
|a||γ|

2
, η =

√
|a|
2|γ|

For the quantum mechanical case a = !/i we get from U

U′ εη ! 1
2!

We discuss Eq in the case where P, Q are the operators of the Schrödinger
theory: P = !

i
∂
∂q , Q = q · . (See I.2. We assume that a mechanical system with one

degree of freedom is under consideration, and that the single coordinate is q.)
Then Eq becomes (!

i
∂
∂q

− ρ
)
φ = iγ(q − σ)φ

where because ia = ! > 0 we have γ > o. Therefore

∂
∂q

φ = 1
!
{
− γ q + γσ + iρ

}
φ

which gives

φ = exp
[

1
!

∫ q

{−γq + γσ + iρ}dq
]

= C · exp
[

1
!
{
− 1

2γq2 + γσq + iρq
}]

= C ′ · exp
[
− 1

2 (γ/!)(q − σ)2
]
· exp

[
i(ρ/!)q

]

Since γ > 0, ‖φ‖2 =
∫ +∞
−∞ |φ(q)|2dq is indeed finite, and C ′ is obtained from

‖φ‖ = 1:

‖φ‖2 =
∫ +∞

−∞
|φ(q)|2dq = |C ′|2

∫ +∞

−∞
exp

[
− (γ/!)(q − σ)2

]
dq

= |C ′|2
√

!/γ ·
∫ +∞

−∞
e−x2

dx

= |C ′|2
√

!/γ ·
√

π

= |C ′|2
√

h/2γ = 1 where h = 2π!

∴ |C ′| =
(2γ

h

) 1
4

Therefore, by neglect of a physically unimportant factor of absolute value 1,

C ′ =
(2γ

h

) 1
4

and we have

φ = φ(q) =
(2γ

h

) 1
4

exp
[
− 1

2 (γ/!)(q − σ)2 + i(ρ/!)q
]
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Then ε, η are given by

ε =
√

1
2!γ, η =

√
1
2!/γ

Aside from the condition εη = 1
2! they are therefore arbitrary, since γ varies

from 0 to +∞. That is, each set of four quantities ρ, σ, ε, η satisfying εη = 1
2!

is exactly realized by a φ. These φ were first investigated by Heisenberg,
and applied to the interpretation of quantum mechanical situations. They are
especially suitable for this because they represent the highest possible degree of
approximation (in quantum mechanics) to classical mechanical relations (where
p, q are both without dispersion!), where ε and η can be prescribed without
restrictions. (See the reference in Note 131.)

With the foregoing considerations we have addressed only one aspect of the
uncertainty relations; namely, the formal one. For a complete understanding
of these relations it is still necessary to consider them from another point of
view: from that of direct physical experience. For the uncertainty relations
bear a more easily understandable and simpler relation to direct experience
than many of the facts on which quantum mechanics was originally based, and
therefore the above—entirely formal—derivation does not do them full justice.
An intuitive discussion is all the more necessary since one could obtain, at
first glance, an impression that a contradiction exists here with the ordinary,
intuitive point of view: it will not be clear to common sense without further
discussion why the position and velocity (i.e., coordinate and momentum) of
a material body cannot both be measured simultaneously and with arbitrarily
high accuracy, provided that sufficiently refined measurement instruments were
available. Therefore it is necessary to elucidate by an exact analysis of the
finest measurement processes (capable of execution perhaps only in the sense of
ideal measurements) that this is not the case. Actually, the well-known laws of
wave optics, electrodynamics and elementary atomic processes place very great
difficulties in the way of accurate measurement precisely where this is required
by the uncertainty relations. And in fact, this can already be recognized
if the processes in question are investigated purely classically (not quantum
theoretically). This is an important point of principle. It shows that the
uncertainty relations, although apparently paradoxical, do not conflict with
classical experience (i.e., with the area in which quantum phenomena do not
call for a correction of the earlier ways of thinking)—and classical experience
is the only kind which is valid independently of the correctness of quantum
mechanics; indeed, the only kind directly accessible to our ordinary, intuitive
way of thinking.132

132 The fundamental meaning of this circumstance was emphasized by Bohr.
See the reference in Note 131. Actually, the argument developed below is not
entirely classical at one point: the existence of light quanta will be assumed;
i.e., the fact that light of frequency ν never appears in quantities of energy
smaller than hν.
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We are then to show that if p, q are two canonically conjugate quantities,
and a system is in a state in which the value of p can be giving with accuracy ε
(i.e., by a p -measurement with an error range ε), then q can be known with no
greater accuracy than η = 1

2! : ε. Which is to say: a measurement of p with
accuracy ε must bring about an indeterminacy η = 1

2! : ε in the value of q.

Naturally, in these qualitative considerations we cannot expect to recover
each detail with perfect exactness. Thus, instead of showing that εη = 1

2!
we will be able to show only that εη ∼ h for the most precise measurement
possible (i.e., that it is of the same order of magnitude as h). As a typical
example, we will consider the conjugate pair position (coordinate)-momentum
of a particle T.133

S

ss

L

β

T
s ′s ′

β2 β1

DETECTION SCREEN

2 1

Figure 1: Schematic arrangement for using columnated light L to
measure the position of a particle (Teilchens) T.

First let us investigate the determination of position. This results when one
looks at T ; i.e., when T is illuminated and the scattered light is absorbed in
the eye. Therefore, a light quantum L is emitted from a light source S in
the direction of T, and is deflected from its straight line path ββ1 into ββ2

by collision with T, and at the end of its path is annihilated by absorption at
the screen (which represents the eye or a photographic plate: figure 1). The
measurement takes place by the determination that L hits the screen not at 1
(the end of its undeflected path ββ1) but at 2 (the end of ββ2). But in order to
be able to furnish the position of the collision (i.e., of T) from this the directions
of β and β2 must also be known (i.e., L’s direction before and after the collision):
we achieve this by the interposition of slit systems ss and s ′s ′. (In this way
we are actually not performing a measurement of the coordinate of T but obtain

133 The following discussion is due to Heisenberg and Born. See references in
Note 131.
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only an answer to the question of whether or not this coordinate has a certain
value, corresponding to the intersections of the directions β and β2. This value,
however, can be selected at will by appropriate arrangement of the slits. The
superposition of several such determinations—i.e., the use of additional slits s ′s ′

—is equivalent to the complete coordinate measurement.) Now what is the
accuracy of this measurement of position?

This measurement has a fundamental limitation in the laws of optical image
formation. Indeed, it is impossible, with light of wavelength λ, to picture
sharply objects which are smaller than λ, or even to reduce the scattering
to such an extent that one can speak of a (distorted) image. To be sure, we
did not require a faithful optical image, since the mere fact of the deviation
of L suffices to determine the position of T. Nevertheless, the slits ss and s ′s ′

cannot be narrower than λ, since otherwise L cannot pass through without
appreciable diffraction. Rather, a bundle of interference lines will then occur, so
that from knowledge of the slit locations nothing can be deduced concerning the
directions β and β2 of the light ray. As a consequence, it is never possible with
this projectile L to aim and hit with an accuracy greater than λ.

The wavelength λ is then a measure of the error in measuring the
coordinate: λ ∼ ε. Further characteristics of L are: its frequency ν, its energy
E, its momentum p, and there exist the well-known relations

ν = c
λ

, E = hν = hc
λ

, p = E
c

= hc
c

= h
λ

where c is the velocity of light.134 Consequently, p ∼ h/ε. Now there is a
momentum change in the (not exactly known) collision process between L and
T, which is clearly of the order of magnitude of p ; i.e., of the same order as h/ε.
Hence there results an uncertainty η ∼ h/ε in the momentum.

This would show that εη ∼ h if one detail had not been overlooked. The
collision process is not really so unknown. We actually know the directions of
the motion of L before and after (β and β2), and therefore also its momentum,
and the momentum transferred to T can be obtained from this. Consequently,
p is not a measure of η; it is rather the directional uncertainty of the rays β
and β2 that will supply such a measure. Now in order to be able to establish
more precisely the relations between the “aiming” at the small object T and
the uncertainty of direction which is associated with it, it is appropriate to use
a better focusing device than the slit ss—namely, a lens. Consequently, the
well-known theory of the microscope must be considered. This asserts the
following: in order to illuminate an element of surface with the linear extension
ε (i.e., to hit T with L with a precision ε), a wavelength λ and a lens aperture
ϕ are necessary, between which the relation

λ
2 sin 1

2ϕ
∼ ε

134 See, for example, Einstein’s original paper (Ann. Physik 14 (1905)) or any
modern text.
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exists (figure 2).135 The uncertainty of the t t -component of the momentum
of L therefore rests upon the fact that its direction lies between − 1

2ϕ and +1
2ϕ,

but is otherwise unknown. Consequently, the error amounts to

2 sin 1
2ϕ · p = λ

ε
· h
λ

= h
ε

But this is the correct measure for η. Therefore we again have η ∼ h/ε; i.e.,
εη ∼ h.

S

t t

L

ϕ

T

Figure 2: Refinement of the coordinate-measurement set-up shown
in the preceding figure.

This example shows the mechanism of the uncertainty principle very
clearly: in order to aim more accurately, we need a large eye (large aperture ϕ)
and very short wavelength radiation; i.e., very uncertain (and large) momentum
for the light quantum, which produces collisions (Compton effect) with the
observed object T that are out of control by a wide margin. In this way they
cause the dispersion in T’s momentum.

Let us also consider the complementary measurement process: the
measurement of the velocity (momentum). It should first be noted that the

135 For the theory of the microscope, see for example Handbuch der Physik ,
Berlin, 1927, Volume 18, Chapter 2·G. In very precise measurements, ε—and
therefore λ—is very small; i.e., γ-rays or light of still shorter wavelength are to
be used. A normal lens fails under such circumstances. The only type which
could be used would be one whose molecules are neither shattered by these
γ-rays nor knocked out of position by them. Since the existence of such
molecules, or particles, encroaches on no known natural law, their use is possible
for the purposes of an idealized experiment.
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natural procedure for the measurement of the velocity of T is to measure its
position at two times, say 0 and t, and divide the change in coordinates by t.
In this case, however, the velocity in the time interval [0, t ] must be constant;
if it changes, then this change is a measure of the deviation between the mean
velocity (thus calculated) and the actual velocity (say instantaneously at t);
i.e., a measure of the uncertainty in the measurement. The same holds for
the measurement of the momentum. Now if the coordinate measurements
are obtained with precision ε this does not actually affect the precision of
the measurement of the mean momentum, since t can be chosen arbitrarily
large. Nevertheless, it does produce momentum changes of the order of h/ε, and
therefore an uncertainty relative to the final momentum (in its relationship to
the mean momentum mentioned above) of η ∼ h/ε. A different (more favorable)
result can therefore only obtain—if at all—from momentum
measurements which are not connected with position measurement. Such
measurements are entirely possible, and are frequently used in astronomy. They
rely on the Doppler effect, and we shall now consider this effect.

The Doppler effect is the following, as is well known. Light which is emitted
from a body T moving with velocity v, and which is emitted with frequency ν0

(measured on the moving body), is actually measured by the observer at rest
as having a different frequency ν, which can be calculated from the relation
(ν − ν0)/ν0 = (v/c) cos ϕ. (ϕ is the angle between the direction of motion and
the direction of emission. This formula is non-relativistic; i.e., it is valid only for
small values of v/c, but this limitation could easily be corrected.) Determination
of the velocity is therefore possible if ν is observed and ν0 is known—perhaps
because it refers to a particular spectral line of a known element. More exactly,
the component of velocity in the direction of the observation (light emission
direction)

v cos ϕ = c(ν − ν0)
ν

is measured, or equivalently: the corresponding component of momentum

p ′ = p cos ϕ = mc(ν − ν0)
ν0

where m is the mass of the body T. The dispersion of p ′ evidently depends on
the dispersion ∆ν of ν. Therefore

η ∼ mc ∆ν
ν0

∼ mc ∆ν
ν

The momentum of T is of course changed when T emits a light quantum of
frequency ν (and therefore of momentum p = hν/c), but the uncertainty h∆ν/c
of this quantity can ordinarily be neglected in comparison with mc ∆ν

ν .136

136 mc ∆ν
ν large in comparison to h∆ν

c means that ν is small in comparison
to mc2/h; i.e., E = hν is small compared to mc2. That is, the energy of the
light quantum L is small in comparison to the relativistic rest energy of T—an
assumption which is unavoidable for non-relativistic calculation.
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Frequency ν is measured by any interference method, but this type of
measurement will give an absolutely sharp ν-value only with a purely
monochromatic wave train. Such a wave train has the form

a sin[2π(λ–1q − ν t) + α]

(here q is the coordinate, t the time, a the amplitude, α the phase: this
expression may refer to any component of the electric or magnetic field strength)
which extends infinitely in both space and time. To avoid this we must replace
the preceding expression—which can also be written

a sin[2πν(q/c − t) + α]

since λ = c/ν—by another, F (q/c − t), which is non-zero only in a finite
argument interval. If the light field has this form, then Fourier analysis supplies

F (x) =
∫ +∞

0
aν sin(2πνx + αν)dν

and the interference picture shows all frequencies ν for which aν $= 0. In fact,
the frequency interval [ν, ν+dν ] has the relative intensity a 2

ν dν. The dispersion
of ν—i.e., ∆ν—is to be calculated from this distribution.

If our wave train has the length τ in x, i.e., in t and q the respective
lengths are τ and cτ , then it can be seen that the ν-dispersion is ∼ τ –1.137 An
indeterminacy of the position now results from this method of measurement
because T undergoes recoil hν/c (in the direction of observation) from individual
light emission; i.e., a velocity change hν/mc results. Since the emission process
takes time τ , we cannot localize the time of this change in velocity more
accurately than τ . Hence an indeterminacy of position ε ∼ (hν/mc)τ results.
Therefore

ε ∼ hν
mc τ, η ∼ mc ∆ν

ν = mc
ν

1
τ , εη ∼ h

So we again have εη ∼ h.

If T is not self-luminous, as we assumed here, but scatters other light (i.e.,
if it is illuminated) the calculation proceeds in a similar fashion.

137 Let, for example, F (x) be a finite monochromatic wave train of frequency
ν0 extending from 0 to τ :

F (x) =
{

α sin 2πν0x for 0 " x " τ
0 otherwise

(To achieve continuity at the junction, sin 2πν0τ must vanish there; i.e.,
ν0 = n

2τ : n = 1, 2, 3, . . .) Then, on the basis of the known inversion formulae of
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5. PROJECTIONS AS PROPOSITIONS

As in III.1, let us consider a physical system S with k degrees of freedom,
the configuration space of which is described by k coordinates q1, . . . , qk (see
also I.2). All physical quantities R which can be formed in the system S are,
in the manner of classical mechanics, functions of q1, . . . , qk and the conjugate
momenta p1, . . . , pk: R = R(q1, . . . , qk, p1, . . . , pk) (for example, the energy is
the Hamiltonian function H(q1, . . . , qk, p1, . . . , pk)). In quantum mechanics on
the other hand, as we already pointed out in III.1, the quantities R correspond
one-to-one to hypermaximal Hermitian operators R. In particular, q1, . . . , qk

the Fourier integral (see the reference in Note 87), a 2
ν = b 2

ν + c 2
ν with

bν
cν

}
= 2

∫ +∞

−∞
F (x)cos

sin 2πνx dx = 2a

∫ τ

0
sin 2πν0x · cos

sin 2πνx dx

= ±a

∫ τ

0

(sin
cos π(ν + ν0)x − sin

cos π(ν − ν0)x
)
dx

= −a

[cos
sin π(ν + ν0)x

π(ν + ν0)
−

cos
sin π(ν − ν0)x

π(ν − ν0)

]τ

0

=






− a
[ (−1)n cos πντ − 1

π(ν + ν0)
− (−1)n cos πντ − 1

π(ν − ν0)

]

− a
[ (−1)n sin πντ

π(ν + ν0)
− (−)n sin πντ

π(ν − ν0)

]

=






−2aν0[1 − (−1)n cos πντ ]
π(ν2 − ν2

0)

2aν0(−1)n sin πντ
π(ν2 − ν2

0)

Therefore

aν =
2aν0

√
2 − 2(−1)n cos πντ

π(ν2 − ν2
0)

=
4aν0

∣∣sincos
1
2πντ

∣∣
π(ν2 − ν2

0)
= 4aν0| sin(ν − ν0)τ |

π(ν2 − ν2
0)

As we see, the frequencies in the neighborhood of ν = ν0 are most strongly
represented, and the greatest part of the energy in the wave train falls in that
frequency interval in which π(ν − ν0)τ has moderate values. Therefore the
dispersion of ν − ν0 (or, which is the same thing, that of ν) has the order of
magnitude τ –1. Exact calculation of the expression

∫ ∞
0 a 2

ν (ν − ν0)2dν
∫ ∞
0 a 2

ν dν

gives the same result.

 EBSCOhost - printed on 2/13/2023 10:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



160 Chapter III: The Quantum Statistics

correspond to the operators Q1 = q1·, . . . ,Qk = qk· and p1, . . . , pk to the
operators P1 = (!/i) ∂

∂q1
, . . . ,Pk = (!/i) ∂

∂qk
. It has already been noted in the

case of the Hamiltonian function (I.2) that is not possible in general to define

R = R(Q1, . . . ,Qk, P1, . . . ,Pk)

because of the non-commutativity of the Q#, P#. Nevertheless, without being
able to give any final and complete rules regarding the relationship between the
functions R(q1, . . . , qk, p1, . . . , pk) and the operators R, we stated the following
special rules in III.1 and III.2:

L. If the operators R, S correspond to the simultaneously observable
quantities R, S then the operator aR + bS (a and b real numbers)
corresponds to the quantity aR + bS.

F. If the operator R corresponds to the quantity R then the operator
F (R) corresponds to the quantity F (R), where F (λ) is an arbitrary
real function.

L, F permit a certain generalization, which runs as follows:

F∗. If the operators R, S, . . . correspond to the simultaneously
observable quantities R,S, . . . (which are consequently commutative;
we assume that their number is finite) then the operator F (R, S, . . .)
corresponds to the quantity F (R,S, . . .).

By way of proof, we shall assume that F (λ, µ, . . .) is a real polynomial in
λ, µ, . . . so that the meaning of F (R, S, . . .) may be clear (R, S, . . . commutative),
although F∗ could be established for arbitrary F (λ, µ, . . .) (for the definition
of the general F (R, S, . . .) see the reference in Note 94). Now since every
polynomial is obtained by repetition of the three operations aλ, λ + µ, λµ it
suffices to consider these, and since λµ = 1

4 [(λ + µ)2 − (λ − µ)2]—i.e., is equal
to

1
4 · (λ + µ)2 + (− 1

4 ) · (λ + (−1) · µ)2

—we can replace these three operations by aλ, (λ+µ), λ2. But the first two fall
under L and the latter under F. So F∗ is proved.

On the other hand, L is extended in quantum mechanics even to the case
where R, S are not simultaneously measurable. We shall discuss this issue later
(in IV.1), but at present limit ourselves to the observation that even the meaning
of aR + bS for R, S not simultaneously measurable is not yet clear.

Apart from the physical quantities R there exists another category of
concepts that are important objects of physics—namely, the properties of the
states of the system S. Some such properties are: that a certain quantity R
takes a value λ. Or that the value of R is positive. Or that the values of two
simultaneously observable quantities R, S are λ and µ respectively. Or that
the sum of the squares of these values is > 1, etc. We have denoted quantities
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by R, S, . . . and will denote their properties by E, F, . . . . The hypermaximal
operators R, S, . . . correspond to the quantities. What now corresponds to the
properties?

To each property E we can assign a quantity which we define as follows:
each measurement which distinguishes between the presence or absence of E is
considered to comprise a measurement of this property, such that its value is 1
if E is verified, and 0 in the opposite case. This quantity which corresponds to
E will also be denoted E.

Such quantities take on only the values 0 and 1, and conversely: each
quantityR which is capable of only these two values corresponds to a property E,
which is evidently this: “the value of R is != 0.” The quantities E that
correspond to properties are therefore characterized by this behavior.

That E takes on only the values 0 and 1 can also be formulated as follows:
Substituting E into the polynomial F (λ) = λ − λ2 makes it vanish identically.
If E has the operator E then F (E) has the operator F (E) = E − E2; i.e., the
condition is that E − E2 = O or E2 = E. In other words: the operator E of E is
a projection.

The projections E therefore correspond to the properties E (through the
agency of the corresponding quantities E which we just defined). If we introduce,
along with the projections E, the closed linear manifolds M belonging to them
(E = PM) then the closed linear manifolds M correspond equally to the
properties E.

Relations among corresponding E, E and M will be examined now in detail.

If, in a state φ, we want to determine whether or not a property E is
verified, then we must measure the quantity E and ascertain whether its value
is 1 or 0 (these processes are identical by definition). The probability of the
former, i.e., that E is verified, is consequently equal to the expectation value
of E

(Eφ, φ) = ‖Eφ‖2 = ‖PMφ‖2

and that of the latter; i.e., that E is not verified, is equal to the expectation
value of 1 − E

((I − E)φ, φ) = ‖(I − E)φ‖2 = ‖φ − PMφ‖2

(The sum, of course, is equal to (φ, φ); i.e., to 1.) Consequently, E is certainly
present or certainly absent according as the second or first probability is equal
to zero; i.e., according as PMφ = φ or PMφ = 0. That is, according as φ belongs
to M or is orthogonal to M; i.e., according as φ belongs to M or to R∞ − M.

M can therefore be defined as the set of all φ which possess the property E
with certainty. (Such φ are found actually only in the subset of M that lies on
the surface ‖φ‖ = 1. M itself is obtained by multiplying these φ with positive
constants and the adjunction of 0.)
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If we call the property opposite that of E (the denial of E) “not E,” then
it follows immediately from the above that if E, M belong to E, then I− E and
R∞ − M belong to “not E.”

As with quantities, there arises here also the question of the
simultaneous measurability (or rather, the simultaneous decidability) of
properties. It is clear that properties E, F are simultaneously decidable if
and only if the corresponding quantities E, F are simultaneously measurable
(whether with arbitrarily great or with absolute accuracy is unimportant, since
they admit only of the values 0, 1); i.e., if E, F commute. The same holds for
several properties E, F, G, . . . .

From properties E, F which are simultaneously decidable we can form the
additional properties “E and F” and “E or F .” The quantity corresponding
to “E and F” is 1 if those corresponding to E and to F are both 1, and it is
0 if one (or both) of these is 0. Hence, it is the product of these quantities.
By F∗ its operator is the product of the operators of E and F; i.e., EF. By
theorem 14, II.4 the corresponding closed linear manifold P is the set common
to M, N.

On the other hand,“E or F” can be written

“not [(not E) and (not F)]”

and therefore its operator is

I − (I − E)(I − F) = E + F − EF

(which, because of its origin, is also a projection). Since F−EF is a projection,
the linear manifold belonging to E+F−EF is M+(N−P) (theorem 14, II.4).
It is a subset of {M, N} and evidently embraces M, whence (by symmetry) also
N, and therefore all of {M, N}. Consequently, it is equal to {M, N} and this,
since it is closed, is equal to [M, N ].

If E is a property which is always present (i.e., empty) then the
corresponding quantity is identically 1; i.e., E = I, M = R∞. If, on the other
hand, E is never present (i.e., impossible) then the corresponding quantity is
identically 0; i.e., E = O, M = O. If two properties E, F are incompatible
then they must at any rate be simultaneously decidable, and “E in addition
to F” must be impossible; i.e., E, F commute: EF = O. But since EF = O
implies commutativity (theorem 14, II.4), this by itself is characteristic. If
E, F are presumed to be commutative then EF = O means merely that the
subset common to M and N consists only of O. However, the commutativity
of E,F does not follow from this alone. Indeed, EF = O is equivalent to all M
being orthogonal to all N.

If R is a quantity with operator R to which belongs the resolution of the
identityE(λ), then the operator of the property“R lies in the intervalI = {λ′, µ′}”
(λ′ ! µ ′) is E(µ ′)−E(λ′). To say this it suffices to observe that the probability
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of the above proposition is
(
(E(µ ′)−E(λ′))φ, φ

)
(see P in II.1). Phrased another

way: the quantity belonging to the property in question is E = F (R), where

F (λ) =
{ 1 for λ′ < λ ! µ ′

0 otherwise

and F (R) = E(µ ′)−E(λ′) (see II.8 or III.1). We called this operator E(I) in III.1.

Summarizing, we have thus obtained the following information about the
relations among properties E, their projections E and the closed linear
manifolds of these projections:

ααα) In the state φ the property E is or is not present with the
probabilities

(Eφ, φ) = ‖Eφ‖2 = ‖PMφ‖2

and
((I − E)φ, φ) = ‖(I − E)φ‖2 = ‖φ − PMφ‖2

respectively.

βββ) E is certainly present or certainly absent for the φ of M and
R∞− M respectively, and only for these.

γγγ) For the simultaneous decidability of several properties E, F, . . .
the commutativity of their operators E, F, . . . is characteristic.

δδδ) If E, M belong to E then I − E, R∞− M belong to “not E.”

εεε) If E, M belong to E and F, N belong to F and if E, F can be decided
simultaneously, then EF and the common part of M, N belong to
“E and F,” while E+F−EF, {M,N} (this is equal to [M, N ]) belong
to “E or F.”

ηηη) E always holds if E = I (which is to say: if M = R∞); it never
holds if E = O (which is to say: if M = O).

θθθ) E, F are incompatible if EF = O (which is to say: if all M is
orthogonal to all N).

ζζζ) Let R be a quantity, R is operator, and I an interval. Let E(λ) be
the resolution of the identity belonging to R, I = {λ′, µ ′}, (λ′ ! µ ′),
E(I) = E(µ ′) − E(λ′) (see III.1). Then the operator E(I) belongs to
the property “R lies in I.”

From ααα – ζζζ we can derive the earlier probability statements P,E1,E2, as
well as the statements of III.3 on simultaneous measurability. It is clear that the
latter are equivalent to γγγ ; P follows from ααα, εεε, ζζζ and has E1,E1 as consequences.

As can be seen, the relation between the properties of a physical system
on the one hand, and the projections on the other, makes possible a sort of
logical calculus involving those concepts. However, in contrast to the concepts
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of ordinary logic, this system is extended by the concept of “simultaneous
decidability” which is characteristic for quantum mechanics.

Moreover, the calculus of these propositions, based on projections, has
the advantage over the calculus of quantities, which is based on the totality
of (hypermaximal) Hermitian operators, in that the concept of “simultaneous
decidability” represents a refinement of the concept of “simultaneous
measurability.” For example: In order for the questions “does R lie in I?”
and “does S lie in J?” (here R, S have operators R, S of which the respective
resolutions of the identity are E(λ), F(µ) and I = {λ′, λ′′}, J = {µ ′, µ ′′}) to be
simultaneously decidable we require (by γγγ, ζζζ) only that the operators

E(I) = E(λ′′) − E(λ′) and F(J) = F(µ ′′) − F(µ ′)

commute. For simultaneous measurability of R, S, however, the commutativity
of all E(λ) with all F(µ) is necessary.

6. RADIATION THEORY

We have obtained once again the statistical statements of quantum
mechanics developed in I.2, substantially generalized and systematically
arranged—with one exception. We are lacking the Heisenberg expression for
the transition probability from one stationary state of a quantized system to
another—although this played an important role in the development of quantum
mechanics (see the comments in I.2). Following the method of Dirac,138 we shall
now show how these transition probabilities can be derived from the ordinary
statistical statements of quantum mechanics; i.e., from the theory just now
developed. This is all the more important since such a derivation will give
us deeper insight into the mechanism of transitions of the stationary states,
and into the Einstein-Bohr energy-frequency conditions. The radiation theory
advanced by Dirac is one of the most beautiful achievements in the quantum
mechanical field.

Let S be a system (say, a quantized atom) with an energy which
corresponds to the Hermitian operator H0. We represent the coordinates which
describe the configuration space of S by a single symbol ξ (if, for example, S
consists of , particles then there are 3, cartesian coordinates:

x1 = q1, y1 = q2, z1 = q3, . . . , x! = q3!−2, y! = q3!−1, z! = q3!

—ξ stands for all of these together). Furthermore, we assume for simplicity that
H0 has a pure discrete spectrum: eigenvalues w1, w2, . . . and eigenfunctions
φ1(ξ), φ2(ξ), . . . (several wm may coincide). An arbitrary state of S—i.e., a
wave function φ(ξ)—is developed according to the time-dependent Schrödinger

138 Proc.Roy.Soc.114(1927). See also the presentation in Weyl,Gruppentheorie
und Quantenmechanik , 2nd edition, p. 91 ff. Leipzig (1931).
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equation (see III.2):
!
i

∂
∂tφt(ξ) = −H0 φt(ξ)

So if at t = t0

φt(ξ) = φ(ξ) =
∞∑

k=1

akφk(ξ)

then at general times

φt(ξ) =
∞∑

k=1

ake−
i
! wk(t−t0)φk(ξ)

The eigenstate φk(ξ) therefore evolves into e−
i
! wk(t−t0)φk(ξ); i.e., into itself

(since the factor e−
i
! wk(t−t0) is irrelevant). Hence the φk(ξ) are stationary.

Thus we find in general no transitions from one into another. How is it that
we do nevertheless speak of such transitions? The answer is simple. We have
disregarded the agent that causes these transitions—radiation. The stationary
quantum orbits break down, on the basis of the original Bohr theory, only
under the emission of radiation (see the reference in Note 5), but if this is
neglected (as in the set-up just given) then it is quite possible that absolute
and permanent stability results. We must therefore extend the system to be
investigated, so that we include the radiation which may be emitted by S ;
i.e., we must include, in general, all the radiation which can interact with S

under any circumstances. If we denote by L the system which is formed by the
radiation (i.e., the electromagnetic field of classical theory, less the stationary
field resulting from the electronic and nuclear charges), then it is S+ L that we
must investigate.

To that end, we must first accomplish the following:

1. Construct a quantum mechanical description of L; to accomplish
that we must possess a description of the configuration space of L.

2. Construct the energy operator of S + L. This problem resolves
into three parts:

ααα) Look to the energy of S, which is present independently
of L; i.e., to the unperturbed energy of S. This is described
by the operator H0

βββ) Look to the energy of L, which is present independently
of S; i.e., to the unperturbed energy of L. This is described
by an operator that we will call H1

γγγ) Look to the energy associated with the interaction of S
and L. This is described by an operator that we will call Hi

Clearly we have questions here which, in accord with the fundamental principles
of quantum mechanics, must first be answered classically. The results so obtained
can then be translated into operator form (see I.2). We therefore adopt (at
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first) a purely classical point of view relative to the nature of the radiation:
we consider it (in the sense of the electromagnetic theory of radiation) as an
oscillatory state of the electromagnetic field.139

In order to avoid unnecessary complications (the loss of radiation in infinite
space, etc.) we consider S and L to be enclosed within a very large cavity H
of volume V which shall have perfectly reflecting walls. As is well known, the
state of the electromagnetic field in H is described by electric and magnetic field
strengths EEE = {Ex, Ey, Ez} and HHH = {Hx, Hy, Hz}. All quantities {Ex, . . . , Hz}
are functions of the cartesian coordinates x, y, z in H and of the time t. It
should also be pointed out that we shall now frequently consider real space
vectors aaa = {ax, ay, az}, bbb = {bx, by, bz}, etc. (for example EEE, HHH ). And for
these, concepts such as the inner or scalar product

[aaa, bbb ] = axbx + ayby + azbz

which will not be confused with the inner product (φ, ψ) in R∞. We denote the
differential operator

∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

by $, and will denote some well-known vector operations by div, curl, grad.
The vectors EEE,HHH satisfy the Maxwell equations in the empty space H:

divHHH = 0, curlEEE + 1
c

∂
∂tHHH = 000

divEEE = 0, curlHHH − 1
c

∂
∂tEEE = 000

The first equation of the first row is satisfied by HHH = curlAAA, where
AAA ={Ax, Ay, Az} is the so-called vector potential; its components also depend
on x, y, z, t. The second equation in that row then follows from EEE = − 1

c
∂
∂tAAA

and the equations of the second row become

A divAAA = 0, $AAA − 1
c2

∂2

∂t2 AAA = 000

(The vector potential is usually introduced in a somewhat different way in
order to improve the symmetry in space and time. That the present set-up
for AAA furnishes a general solution for Maxwell’s equations—where it is to be
noted that the first equation in the second row actually gives only ∂

∂tdivAAA = 0;
i.e., divAAA = f(x, y, z)—is shown in most treatments of the Maxwell theory,
so will not be developed to any extent here: see the reference in Note 139.)
A provides our starting point for the following discussion. The fact that (by
assumption) the walls of H are reflecting is expressed by the condition that AAA
must be perpendicular to the walls at the boundaries of H. The well-known

139 The interested reader will find treatments of the electromagnetic theory
of radiation in any electromagnetic textbook; see, for example, Abraham and
Becker, Theorie der Electrizität , Berlin, 1930. See these also for the following
developments, which belong to the framework of the Maxwell theory.
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method for finding all such AAA’s is this: Since t nowhere enters explicitly into
the problem, the most general AAA is a linear combination of all those solutions
which are products of an {x, y, z}-dependent vector with a t-dependent scalar:

AAA = AAA(x, t, z, t) = AAA(x, y, z) · q̃(t)

Therefore A gives

A1 divAAA = 0, $AAA = ηAAA, AAA ⊥ boundary at boundary of H

A2
∂2

∂t2
q̃(t) = c2η · q̃(t)

Because of A1, η is t-independent. But because of A2 it is {x, y, z}-independent.
Therefore η is constant.

A1 therefore poses an eigenvalue problem, in which η is the eigenvalue
parameter and AAA the general eigenfunction. The theory of this problem is
fully known and we shall give only the results here:140 A1 has a pure discrete
spectrum, and all eigenvalues η1, η2, . . . (let the corresponding AAA be AAA1,AAA2, . . .)
are negative, and ηn → −∞ as n → ∞. We can normalize the complete set
AAA1,AAA2, . . . by

∫∫∫

H
[AAAm,AAAn]dxdydz =

{
4πc2 for m = n
0 for m != n

(We choose 4πc2 instead of the customary 1 because it will prove to be somewhat
more practical later.) If we adopt the notation

ηn = −4π2ρ2
n

c2
< 0

then A2 gives

q̃n(t) = γ cos 2πρn(t − τ) : (γ, τ arbitrary)

Therefore the general solution AAA can be developed

AAA = AAA(x, y, z, t) =
∞∑

n=1

AAAn(x, y, z) · q̃n(t)

=
∞∑

n=1

AAAn(x, y, z) · γn cos 2πρn(t − τn)

where γ1, γ2, . . . , τ1, τ2, . . . are arbitrary constants. The energy of the arbitrary
field

AAA =
∞∑

n=1

AAAn(x, y, z) · q̃n(t)

140 See R. Courant and D. Hilbert, Methoden der mathematischen Physik I,
pages 358–362, Berlin 1924.
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(AAA is now not assumed to be a solution of A; i.e., the q̃n(t) are arbitrary) can
be written

E = 1
8π

∫∫∫

H

(
[EEE,EEE ] + [HHH,HHH ]

)
dxdydz

= 1
8π

∫∫∫

H

(
1
c2 [ ∂

∂tAAA, ∂
∂tAAA] + [curlAAA, curlAAA ]

)
dxdydz

= 1
8π

∞∑

m,n=1

∫∫∫

H

(
1
c2

∂
∂t q̃m(t) ∂

∂t q̃n(t)[AAAm,AAAn]

+ q̃m(t)q̃n(t)[curlAAAm, curlAAAn]
)
dxdydz

Upon integrating by parts,141 we find
∫∫∫

H
[curlAAAm, curlAAAn]dxdydz =

∫∫∫

H
[curl curlAAAm,AAAn]dxdydz

=
∫∫∫

H
[−$AAAm + grad divAAAm,AAAn]dxdydz

= 4π2ρ2
m

c2

∫∫∫

H
[AAAm,AAAn]dxdydz

Therefore

E = 1
8π

∞∑

m,n=1

(
1
c2

∂
∂t q̃m(t) ∂

∂t q̃n(t) + 4π2ρ2
m

c2
q̃m(t)q̃n(t)

)
···
∫∫∫

H
[AAAm,AAAn]dxdydz

= 1
2

∞∑

m=1

[(
∂
∂t q̃m(t)

)2
+ 4π2ρ2

m

(
q̃m(t)

)2]

But we can regard the q̃1, q̃2 . . . as coordinates describing the instantaneous
state of the field; i.e., as the coordinates of the configuration space of L. The
conjugate momenta p̃m (in the sense of classical mechanics!) are obtained from

141 We have
∫∫∫

H
[aaa, curl bbb ]dxdydz =

∫∫∫

H
[curl aaa, bbb ]dxdydz

because of
[aaa, curl bbb ] − [curl aaa, bbb ] = grad(aaa × bbb)

(here aaa × bbb is the so-called outer or vector product of aaa, bbb) if the normal
components of aaa × bbb vanish on the boundary of H. Since aaa × bbb is
perpendicular to aaa and to bbb, this is certainly the case if aaa or bbb is perpendicular
to the boundary of H. We have aaa = curlAAAm, bbb = AAAn so that the former indeed
occurs.
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the formula

E = 1
2

∞∑

m=1

[(
∂
∂t q̃m

)2 + 4π2ρ2
mq̃ 2

m

]

This gives (see I.2)

p̃n = ∂E
∂( ∂

∂t q̃n)
= ∂

∂t q̃n whence E = 1
2

∞∑

n=1

[
p̃ 2

n + 4π2ρ2
mq̃ 2

n

]

and supplies classical mechanical equations of motion

∂
∂t q̃n = + ∂E

∂p̃n
= p̃n

∂
∂t p̃n = − ∂E

∂q̃n
= −4π2ρ2

nq̃n

which conjointly give back precisely the equations A2 that follow from Maxwell’s
equations. Consequently Jeans’ theorem holds:

The radiation field L can be described classically by coordinates
q̃1, q̃2, . . . —which are connected through

AAA = AAA(x, y, z) =
∞∑

n=1

q̃nAAA(x, y, z)

with the instantaneous vector potential AAA describing the field—with
the aid of energy (Hamiltonian function)

E = 1
2

∞∑

n=1

[
p̃ 2

n + 4π2ρ2
mq̃ 2

n

]

A point particle of unit mass constrained to move on a straight line
(coordinate q̃) in the presence of the potential field C q̃ 2, C = 2π2ρ2 has energy
1
2 [(∂q̃/∂t)2 + 4π2ρ2q̃ 2] which, since again p̃ = ∂q̃/∂t, can also be written
1
2 [p̃2 + 4π2ρ2q̃ 2]. The equation of motion of such a particle therefore reads

∂2

∂t2 q̃ + 4π2ρ2q̃ = 0

of which the solution is q̃(t) = γ cos 2πρ(t− τ), (γ, τ arbitrary). Because of the
form of its motion, such a mechanical system is called “a linear oscillator of
frequency ρ.” L may therefore be regarded as a set of linear oscillators whose
frequencies are the eigenfrequencies dictated by the geometry of H: ρ1, ρ2, . . . .

This “mechanical” description of the electromagnetic field is important
because it can immediately be reinterpreted in the sense standard to the methods
of quantum mechanics. The configuration space of L is described by q̃1, q̃2, . . .
and in the expression for E the p̃n, q̃n will be replaced by !

i
∂
∂q̃n

and q̃n·
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respectively. We will call these operators P̃n and Q̃n. Then the questions 1
and 2βββ (see again page 161) are answered, and in particular

H1 = 1
2

∞∑

n−1

(
P̃n

2 + 4π2ρ2
nQ̃n

2
)

is the operator sought in response to 2βββ. 2ααα was solved previously, since we
assumed H0 to be known. There remains only 2γγγ, but this will be found now
to cause no additional difficulties.

By classical electrodynamics, the interaction of S with L is to be calculated
in the following way: Let S consist of , particles (perhaps protons or electrons)
with respective charges and masses e1, M1, . . . , e!, M! and cartesian coordinates
x1 = q1, y1 = q2, z1 = q3, . . . , x! = q3!−2, y! = q3!−1, z! = q3! (these were
previously denoted ξ) and let px

1 , p1
y, pz

1, . . . , p
x
! , p!

y, pz
! denote the corresponding

momenta. The interaction energy is then (in sufficient approximation)142

!∑

ν=1

eν

cMν

[
px

νAx(xν , yν , zν) + py
νAy(xν , yν , zν) + pz

νAz(xν , yν , zν)
]

The corresponding quantum operator is obtained when px
ν , py

ν , pz
ν , xν , yν , zν are

replaced by operators

!
i

∂
∂xν

, !
i

∂
∂yν

, !
i

∂
∂zν

, xν , yν , zν : ν = 1, 2, . . . , ,

which we will denote Px
ν , Py

ν , Pz
ν , Qx

ν , Qy
ν , Qz

ν . We have now only to draw upon

AAA(x, y, z) =
∞∑

n=1

q̃nAAAn(x, y, z)

to obtain the desired Hi:

Hi =
∞∑

n=1

!∑

ν=1

eν

cMν
Q̃n

[
Px

ν An,x(Qx
ν , Qy

ν , Qz
ν)

+ Py
ν An,y(Qx

ν , Qy
ν , Qz

ν) + Px
ν An,z(Qz

ν , Qy
ν , Qz

ν)
]

It should be observed that when we proceeded from (say) px
νAn,x(x, y, z) to

Px
ν An,x(Qx

ν , Qy
ν , Qz

ν) we arbitrarily placed the operators in a certain order but
might just as well have placed them in reversed order, or perhaps (to achieve
Hermiticity) in symmetrized combination:

1
2 [Px

ν An,x(Qx
ν , Qy

ν , Qz
ν) + An,x(Qx

ν , Qy
ν , Qz

ν)Px
ν ]

142 See, for example, the reference in Note 138.
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Fortunately, such distinctions make no difference in the present context
because143

[
Px

ν An,x(Qx
ν , Qy

ν , Qz
ν) + · · ·

]
−

[
An,x(Qx

ν , Qy
ν , Qz

ν)Px
ν + · · ·

]

=
[
Px

ν An,x(Qx
ν , Qy

ν , Qz
ν) − An,x(Qx

ν , Qy
ν , Qz

ν)Px
ν

]
+ · · ·

= !
i

∂
∂xAn,x(Qx

ν , Qy
ν , Qz

ν) + · · ·
= !

i divAAAn(Qx
ν , Qy

ν , Qz
ν) = 0

Thus the total energy of our system S+ L—i.e., its operator

H = H0 + H1 + Hi

—is now completely specified. But before we proceed further, let us note the
following: S + L’s configuration space is described by the coordinates ξ (i.e.,
q1, . . . , q3! which are just other names for x1, y1, z1, . . . , x!, y!, z!) and q̃1, q̃2, . . . .
Therefore the wave function depends on these. But it is inconvenient formally
and of doubtful validity to admit systems with infinitely many degrees of
freedom, or wave functions with infinitely many arguments. Our work heretofore
always assumed the number of coordinates to be finite. We shall therefore begin
by considering only the first N of the q̃1, q̃2, . . . (namely q̃1, . . . , q̃N , and shall
limit AAA to linear combinations of AAA1, . . . ,AAAN ), and only after we have obtained
a final result based on these will we carry out the necessary transition to
the limit N → ∞.

So we have

H = H0 + 1
2

N∑

n=1

(
P̃n

2 + 4π2ρ2
nQ̃n

2
)

+
N∑

n=1

!∑

ν=1

eν

cMν
Q̃n

[
Px

ν An,x(Qx
ν , Qy

ν , Qz
ν)

+ Py
ν An,y(Qx

ν , Qy
ν , Qz

ν) + Px
ν An,z(Qz

ν , Qy
ν , Qz

ν)
]

It is convenient to introduce the (non-Hermitian) operators

R̃n = 1√
2hρn

(2πρnQ̃n + iP̃n)

R̃
∗
n = 1√

2hρn
(2πρnQ̃n − iP̃n)

143 Since Px
ν commutes with Qy

ν , Qz
ν—though not with Qx

ν—we have to establish
the following relation in order to carry out the following manipulations (we
neglect superfluous indices, and replace A by F ):

PF (Q) − F (Q)P = !
i F ′(Q) if P = !

i
∂
∂q , Q = q·

This relation, which is of especial importance in matrix theory, can be verified
most easily by direct calculation.
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in place of Q̃n and P̃n. Then

Q̃n = 1
2π

√
h/2ρn

(
R̃n + R̃

∗
n

)

and because P̃nQ̃n − Q̃nP̃n = !
i I

R̃nR̃
∗
n = 1

2hρn

(
P̃n

2 + 4π2ρ2
nQ̃n

2
)

+ 1
2 · I

R̃
∗
nR̃n = 1

2hρn

(
P̃n

2 + 4π2ρ2
nQ̃n

2
)
− 1

2 · I

Therefore, in particular, R̃nR̃
∗
n − R̃

∗
nR̃n = I and the energy operator becomes

H = H0+
N∑

n=1

hρn · R̃∗
nR̃n + C

+
N∑

n=1

!∑

ν=1

eν

2πcMν

√
h/2ρν

(
R̃n + R̃

∗
n

)[
Px

ν An,x(Qx
ν , Qy

ν , Qz
ν)

+ Py
ν An,y(Qx

ν , Qy
ν , Qz

ν) + Px
ν An,z(Qz

ν , Qy
ν , Qz

ν)
]

in which C = 1
2

∑N
n=1 hρn · I (constant). Since an additive constant is

meaningless in the expression for the energy, we can neglect C. This is all
the more desirable since C becomes infinite for N → ∞, and would therefore
upset the proper completion of the theory.

The Hermitian operator R̃
∗
nR̃n is hypermaximal, and in fact it has a pure

discrete spectrum consisting of the numbers 0, 1, 2, . . . . The corresponding
eigenfunctions are denoted ψn

0 (q̃n), ψn
1 (q̃n), ψn

2 (q̃n) . . . .

(If we write 1
2π

√
h/ρnq in place of q̃n then

1√
2hρn

2πρnq̃n = 2π
√

ρn/2h q̃n and 1√
2hρn

!
i

∂
∂q̃n

= 1
2π

√
h/2ρn

1
i

∂
∂q̃n

go over into 1√
2
q and 1√

2
1
i

∂
∂q respectively, so that

R̃n = 1√
2

(
q + ∂

∂q

)
, R̃

∗
n = 1√

2

(
q + ∂

∂q

)

R̃nR̃
∗
n = − 1

2
∂2

∂q2 + 1
2q2 + 1

2

R̃
∗
nR̃n = − 1

2
∂2

∂q2 + 1
2q2 − 1

2

The eigenvalue theory of these operators can be found in many treatises, for
example, Courant-Hilbert, page 261, formulas (42), (43) and related subject
matter, as well as page 76, formulas (60), (61); or Weyl, Gruppentheorie und
Quantenmechanik , page 74 and thereafter.)
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Since the ψ1(ξ), ψ2(ξ), . . . form a complete orthogonal set in ξ-space, and
the ψn

0 (q̃n), ψn
1 (q̃n), . . . form one in q̃-space, the functions

Φkm1...mN (ξ, q̃1, . . . , q̃N ) = ψk(ξ) · ψ1
m1

(q̃1) · · ·ψN
mN

(q̃N )

(k = 1, 2, . . .; m1, . . . , mM = 0, 1, 2, . . .) form a complete orthogonal set in
{ξ, q̃1, . . . , q̃N}-space; i.e., in the configuration space. We can then expand
φ = φ(ξ, q̃1, . . . , q̃N ) as follows:

φ(ξ, q̃1, . . . , q̃N ) =
∞∑

k=1

∞∑

m1=0

· · ·
∞∑

mN=0

akm1...mN
Φkm1...mN

(ξ, q̃1, . . . , q̃N )

=
∞∑

k=1

∞∑

m1=0

· · ·
∞∑

mN=0

akm1...mN
ψk(ξ) · ψ1

m1
(q̃1) · · ·ψN

mN
(q̃N )

It is of no significance that we enumerate the complete orthogonal set and
the expansion coefficients with N + 1 indices k, m1, . . . , mN instead of one.
Indeed, the considerations of II.2 justify this conclusion. The Hilbert space of
wave functions φ can also be interpreted as the space of (N + 1)-fold sequences
akm1...mN

(with finite
∑∞

k=1

∑∞
m1=0 · · ·

∑∞
mN=0 |akm1...mN

|2).

How in this latter context are we to describe the action of the operator
H? In order to answer this question let us first evaluate HΦkm1...mN

. Since H0

operates on ξ alone, and ψk(ξ) is an eigenfunction of H0 with eigenvalue wk, and
since moreover R̃

∗
nR̃n operates on q̃n alone, and ψmn

(q̃n) is the eigenfunction of
R̃
∗
nR̃n with eigenvalue mn, we have

HΦkm1...mN
=

(
wk+

N∑

n=1

hρnmn

)
Φkm1...mN

+
N∑

n=1

!∑

ν=1

eν

2πcMν

√
h

2ρn

[
Px

ν An,x(Qx
ν , Qy

ν , Qz
ν)

+ Py
ν An,y(Qx

ν , Qy
ν , Qz

ν) + Pz
ν An,z(Qz

ν , Qy
ν , Qz

ν)
]

× ψk(ξ) · ψ1
m1

(q̃1) · · ·
(
R̃n + R̃

∗
n

)
ψn

mn
(q̃n) · · ·ψN

mN
(q̃N )

For all operators A which (like those in the [· · ·] expression) affect only the
variable ξ we can employ the expansion

Aψk(ξ) =
∞∑

j=1

(Aψk, ψj) · ψj(ξ) =
∞∑

j=1

Akj · ψj(ξ)

in which Akj = (Aψk, ψj). Furthermore, it is shown in the treatises cited above
that

R̃nψn
m(q̃n) =

{ √
m ψn

m−1(q̃n) : m = 1, 2, . . .
0 : m = 0

R̃
∗
nψn

m(q̃n) =
√

m + 1 ψn
m+1(q̃n) : m = 0, 1, 2, . . .
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Consequently

HΦkm1...mN
=

(
wk+

N∑

n=1

hρnmn

)
Φkm1...mN

+
∞∑

j=1

N∑

n=1

√
h

2ρn

{ !∑

ν=1

eν

2πcMν

(
Px

ν An,ν(Qx
ν , Qx

ν , Qx
ν) + · · ·

)

kj

}

×
(√

mn + 1 Φkm1...mn+1...mN
+
√

mn Φkm1...mn−1...mN

)

We can now portray H as an akm1...mN
operator: writing

H
∑

km1...mN

akm1...mN
Φakm1...m

N
=

∑

km1...mN

a′
km1...mN

Φakm1...m
N

we have
H akm1...mN

= a′
km1...mN

with

a′
km1...mN

=
(
wk+

N∑

n=1

hρnmn

)
akm1...mN

+
∞∑

j=1

N∑

n=1

√
h

2ρn

{ !∑

ν=1

eν

2πcMν

(
Px

ν An,x(Qx
ν , Qx

ν , Qx
ν) + · · ·

)

kj

}

×
(√

mn + 1 akm1...mn+1...mN
+
√

mn akm1...mn−1...mN

)

The discussion of H has now been carried far enough for us to undertake
the transition to the limit N → ∞. Since the system of indexing the akm1...mN

changes in the process, there arises an entirely new H operator. We must
introduce components akm1m2 ... with infinitely many indices m1, m2, . . . .
However, we must limit ourselves to sequences m1, m2, . . . in which only a finite
number of elements are different from zero, if for no other reason than to ensure
the finiteness of the sum

∞∑

n=1

hρnmn

appearing in H. From now on, therefore, the Hilbert space of all sequences

akm1m2 ... with finite
∞∑

k=1

∞∑

m1=0

∞∑

m2=0

· · · |akm1m2 ...|2

will be used in which the indices k, m1, m2, . . . range on

k = 1, 2, . . . ; m1, m2, . . . = 0, 1, 2, . . .
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with only a finite (but arbitrary) number of mn != 0.144 The final form of H is
then

Hakm1m2 ... = a′
km1m2 ...

=
(
wk +

∞∑

n=1

hρnmn

)
· akm1m2 ...

+
∞∑

j,n=1

Wn
kj

(√
mn + 1 akm1m2 ...mn+1...

+
√

mn akm1m2 ...mn−1...

)

in which Wn
kj is defined

Wn
kj =

√
h

2ρn

!∑

ν=1

eν

2πcMν

(
Px

ν An,ν(Qx
ν , Qx

ν , Qx
ν) + · · ·

)

kj

Before we draw from this result the physical conclusions that interest
us, we should recall that it was obtained on the basis of the electrodynamic
theory of radiation. We now want to determine whether or not the standard
quantum mechanical transformation which we performed suffices to account for
the deviations of radiation from the wave model—for its discrete-corpuscular
nature. (Note that it would be quite reasonable to expect that in order to
achieve this one would have to start directly from a corpuscular model for light,
instead of quantizing the electromagnetic field, as we did here.)

It can immediately be seen in our expression for H that something like
the corpuscular light quantum is included in it. Suppose that we neglect the
second term, which produces a sort of perturbation, and which—as we shall see
later—gives rise to the quantum jumps of the system S from one “stationary
state” to another. (This latter is the phenomenon which is actually of interest
to us, but is nevertheless less striking than attributes of the material system
S itself, which are already in evidence. As we shall see, those attributes arise
from the leading term in H.) After deletion of the second term, we have

Hakm1m2 ... =
(
wk +

∞∑

n=1

hρnmn

)
· akm1m2 ...

But this expression for the energy can be interpreted as follows: It is the energy

144 That the totality of these index systems k, m1, m2, . . . actually forms a
sequence can be shown most simply as follows: Let π1, π2, π3, . . . be the series
of prime numbers 2, 3, 5, . . . . The products πk−1

1 πm1
2 πm2

3 · · · are in reality finite,
because all mn = 0 with only a finite number of exceptions, and (except in those
exceptional cases) πmn

n+1 = 1. Then if k, m1, m2, . . . run through our entire set of
allowed possibilities the πk−1

1 πm1
2 πm2

3 · · · run through all numbers 1, 2, 3, . . . and
assume each value once. We can therefore use the πk−1

1 πm1
2 πm2

3 · · · to obtain a
simple running index for the akm1m2 ....
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wk of the system S, increased by the amounts hρnmn (n = 1, 2, . . .). Hence it is
plausible to interpret the numbers mn = 0, 1, 2, . . . as the numbers of particles
with respective energies hρn. But hρn is precisely the energy which, according
to Einstein, has to be assigned to a light quantum of frequency ρn (see Note 134).
Consequently the structure of H1 justifies the view that the electromagnetic
field existing in H (less its electrostatic part)—i.e., L—actually consists of light
quanta with frequencies ρ1, ρ2, . . . and energies hρ1, hρ2, . . . . Furthermore, the
numbers of such particles are given by the indices m1, m2, . . . (= 0, 1, 2, . . .).
The fact that no other frequencies than ρ1, ρ2, . . . occur is made plausible by
the observation that these are the eigenfrequencies of the cavity H. Indeed the
vector potentials

AAAn(x, y, z) · γ cos 2πρn(t − τ)

represent the only stationary electromagnetic oscillations possible in H.

While these speculations and interpretations are of only heuristic value,
a fully satisfactory and final answer to our question can be obtained only if
it proves possible for us to arrive at the energy expression H by an argument
that proceeds from the light quantum model for the radiation L. That we first
proceeded from the classical theory of radiation is due to the fact that the
pre-quantum mechanical light quantum hypothesis supplied no expression for
the interaction energy of a light quantum with matter (the reinterpretation of
classical electrodynamics never succeeded in this respect). Now, however, we
will be able to determine this interaction term by comparison of coefficients if our
result (to be derived by use of a non-specialized expression for the interaction
energy) coincides in form with H.

What is the state space of L (Question 1, page 161) on the basis of the
light quantum hypothesis? A single light quantum (in the space H) may be
characterized by certain coordinates whose totality we shall represent by the
symbol u.145 Its stationary states may have the wave functions ψ1(u), ψ2(u), . . .

145 As coordinates of the light quantum we may want to use, for example, its
momenta px, py, pz as well as a coordinate π describing its state of
polarization. The momenta determine the direction of the light quantum
—i.e., its direction cosines αx, αy, αz (α2

x+α2
y+α2

z = 1)—as well as its frequency
ν, its wavelength λ and its energy, because according to Einstein the momentum
vector has magnitude hν/c (see Note 134). Therefore

px = hν
c αx, py = hν

c αy, pz = hν
c αz

i.e.,
ν = c

h

√
p2

x + p2
y + p2

z, λ = c
ν , Energy = hν

αx = c
hν px, αy = c

hν py, αz = c
hν pz

It is disturbing to observe that our eigen-oscillations AAAn(x, y, z)·γ cos 2πρn(t−τ)
here are standing waves, as could not otherwise be possible in the cavity H
because of its reflecting walls, so that AAAn can be related to no unique “ray
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(which form an orthonormal set) and the energies E1, E2, . . . . These correspond
to the electromagnetic eigen-oscillations AAA1,AAA2, . . . with frequencies ρ1, ρ2, . . .
(in the sense of the Einstein concept En = hρn, which we shall also prove). In
this regard, the following point must be noted: In the electromagnetic discussion
we so normalized the energy of the light that its minimum value was 0, which
corresponded to the indices m1 = m2 = · · · = 0. In effect, we have recognized
non-existence as a possible state of the light, which is in fact justified. Yet to
quantum mechanics in general such a concept is entirely foreign: each particle
contributes coordinates to the state space of the system, and therefore enters
so intimately into the formal description of the total system that it appears
to be effectively indestructible. After its annihilation, then, we must ascribe
to the particle a sort of latent existence, in which its coordinates are still part
of the description of the configuration space. Consequently, one of the states

direction” αx, αy, αz. We can see immediately that, along with αx, αy, αz, at
least the opposite direction −αx,−αy,−αz is also present, and the same holds
for the momentum. As a consequence, we must use other coordinates in H
than pz, py, pz, π. In some recent expositions of this subject this inconvenience
has been overcome by the following artifice: Let H be a parallelepiped

−A < x < A, −B < y < B, −C < z < C

whose boundary surfaces x = ±A, y = ±B, z = ±C are not treated as
reflecting walls. Rather x = +A is identified with x =−A; y = +B with y =−B;
z = +C with z = −C. That is, radiation that impinges at A, y, z resumes at
−A, y, z its progress in the same direction (back again into H) as if nothing had
happened, etc. (see, for example, the treatment of L. Landau and R. Peierls, Z.
Physik 62 (1930)). We can also say that the space is taken to be periodic in the
x, y, z directions with respective periods 2A, 2B, 2C. The analytical treatment
remains the same, but the boundary condition is now

AAA(A, y, z) = AAA(−A, y, z)
AAA(x, B, z) = AAA(x,−B, z)
AAA(x, y, C) = AAA(x, y,−C)

(instead of ∂
∂nAAA = 000 at the boundary) and the “elementary solutions” with

which we perform the expansions are the functions

cos
sin

[
2πν

(
t − c(αxx + αyy + αzz)

)]

(instead of AAA(x, y, z) · q̃(t)). We can easily determine the

ν = ρn, αx = αn,x, αy = αn,y, αz = αn,z

belonging to the eigen-solutions, and the further development of the theory
coincides with that of the text.
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ψn(u), with energy En = 0, must correspond to the non-existence of the light
quantum. We will write ψ0(u) to denote that state, so that ψ1(u), ψ2(u), . . .
refer to the state of a light quantum that actually exists. But we must include
the former to form the complete orthogonal set ψ0(u), ψ1(u), ψ2(u), . . . .

We proceed now to the consideration of L; i.e., the system of all light
quanta. We include all the light quanta that can ever be represented in L

—including non-existent light quanta—which are infinite in number. But since
it is inconvenient to operate with infinitely many constituents in L, we first
contemplate the existence of only S light quanta, and at the end pass to the
limit S → ∞.146 We designate these light quanta by the numbers 1, 2, . . . , S
and call their coordinates u1, . . . , uS. The configuration space of L is therefore
described by u1, . . . , uS, and that of S+L by ξ, u1, . . . , uS. The most general
wave function for S+L is then f(ξ, u1, . . . , uS) and the φk(ξ)·ψn1

(u1) · · ·ψnS
(uS)

form (as k ranges on 1, 2, . . . and the n1, . . . , nS range on 0, 1, 2, . . .) a complete
orthonormal set.

Light quanta have now the fundamental property of being exactly identical;
i.e., there is no conceivable way to distinguish between two light quanta that
have the same coordinate u. Put another way: a state in which the light quanta
m and n have the corresponding u -values u′ and u′′ is not distinguishable from
the state in which um = u′′ and un = u′. But this is a classical—not a quantum
mechanical—description of the point at issue, since we speak of the value of u,
not of the wave function φ(u): quantum mechanically, this means that the
states belonging to the wave functions

f(ξ, u1, . . . , um, . . . , un, . . . uS) and f(ξ, u1, . . . , un, . . . , um, . . . uS)

are indistinguishable. That is, each physical quantity R has the same
expectation value in both (therefore, since this also holds for F (R), each
physical quantity has also the same statistics; see the discussion of E1 and E2

in III.3). If we denote the functional operation which permutes um, un by Omn

(Omn is simultaneously Hermitian and unitary, O2
mn = I, as is immediately

evident), then this means that R has the same value for f as for Omnf ; i.e.,

(Rf, f) = (ROmnf,Omnf) = (OmnROmnf, f)

Therefore
R = OmnR Omn equivalently OmnR = R Omn

This means that in the present context only such operators R are
admissible which commute with all Omn (m, n = 1, 2, . . . , S); i.e., (with
reference to the definition of the Omn) into which all the coordinates u1, . . . , uS

enter symmetrically.

146 This transition to the limit S → ∞ is different from the limit transition
N → ∞ taken in the electromagnetic theory. For if we interpret the m1, m2, . . .
there as numbers of light quanta then N is a limit for the number of incoherent
light quanta (i.e., of light quanta not of the same frequency and direction
—these together make up its momentum—and polarization; see Note 143),
while S is a limit for the total number of light quanta.
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A wave function f which is symmetrical in all variables u1, . . . , uS, i.e.,
for which Omnf = f holds (m, n = 1, . . . , S; m != n), is transformed by such
an operator R into one of the same kind: OmnRf = R Omnf = Rf . These
f form a closed manifold, a Hilbert subspace R

(S)
∞ in the Hilbert space R(S)

∞

of all f , and the R map elements of R
(S)
∞ onto that same space; i.e., they can

be regarded as operators in the Hilbert space R
(S)
∞ . Consequently R

(S)
∞ is just

as useful for the purposes of quantum mechanics as the space R(S)
∞ originally

considered, and in view of the symmetry of L with respect to exchanges of light
quanta the question arises as to whether one cannot limit oneself to symmetric
wave functions; i.e., whether R(S)

∞ should be replaced by R
(S)
∞ . We shall do

this, and the end result—i.e., the complete agreement which will be achieved
with the H-expression derived electromagnetically—will ultimately justify our
decision to do so.147

The φk(ξ)·ψn1(u1) · · ·ψnS
(uS) formed a complete orthonormal set in R(S)

∞ .
Making use of this fact, we shall now form one in R

(S)
∞ . Let m0, m1, . . .

be any numbers (drawn from {0, 1, 2, . . .}) with m0 + m1 + · · · = S (therefore
only a finite number of them differ from zero). We denote by [m1, m2, . . .] the
totality of all index systems n1, n2, . . . in which

0 appears m0 times
1 appears m1 times

...
k appears mk times

...

There are exactly m0! · m1! · m2! · · · such systems. We set

Φm0m1...(u1, . . . , uS) =
∑

n1...nS in [m0,m1,...]

ψn1
(u1) · · ·ψnS

(uS)

Since Φm0m1... is the sum of m0!·m1!·m2! · · · pairwise orthogonal summands
of magnitude 1, its square is the sum of m0! · m1! · · ·m2! · · · terms of unit
magnitude, and the magnitude of Φm0m1... is therefore

√
m0! · m1! · · ·m2! · · ·.

Two different Φm0m1... have pairwise orthogonal summands, and are therefore
orthogonal. The functions

ψm0m1...(u1, . . . , uS) = 1√
m0! · m1! · · ·m2! · · ·

Φm0m1...(u1, . . . , uS)

therefore form an orthonormal set. An f(ξ, u1, . . . uS) symmetric in u1, . . . uS

147 This introduction of R
(S)
∞ in place of R(S)

∞ is equivalent to replacing ordinary
statistics by so-called Bose-Einstein statistics, if we consider its consequences
without reference to quantum mechanics. See Dirac in the reference cited in
Note 138.
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has the same inner product with all sums of φk(ξ)Φm0m1...(u1, . . . uS) functions,
hence it is orthogonal to every such sum if it is orthogonal to those functions
individually; i.e., to φk(ξ)ψm0m1...(u1, . . . uS). And if it is orthogonal to each of
the latter it is orthogonal also to all φk(ξ) · ψn1

(u1) · · ·ψnS
(uS), and therefore

it is 0. Consequently the φk(ξ)ψm0m1...(u1, . . . uS) (which themselves belong to
R

(S)
∞ ) form a complete orthonormal set in R

(S)
∞ .

Let us now consider the three components of the energy of S + L. First,
there is the energy of S [2ααα, page 165], whose operator for S is defined by
H0φk(ξ) = wkφk(ξ), and therefore for S+ L by

H0 φk(ξ)ψm0m1...(u1, . . . uS) = wk φk(ξ)ψm0m1...(u1, . . . uS)

Second [2βββ ], each light quantum ' ′ has energy H!′ψn(u) = Enψn(u). Therefore
the mth quantum in S+ L has energy

H!mφk(ξ) · ψn1
(u1) · · ·ψnm(um) · · ·ψnS

(uS)

= Enmφk(ξ) · ψn1
(u1) · · ·ψnm(um) · · ·ψnS

(uS)

from which we form
H! = H!1 + · · · + H!S

Finally [2γγγ ], let the interaction energy of a light quantum ' ′ with S be described
by an operator V—at present not known exactly—which we identify by its
matrix elements

V!′ φk(ξ)ψn(u) =
∞∑

j=1

∞∑

p=0

Vkn|jp φj(ξ)ψp(u)

In S+ L, for the mth light quantum, we then have

V!mφk(ξ) · ψn1
(u1) · · ·ψnm(um) · · ·ψnS

(uS)

=
∞∑

j=1

∞∑

p=0

Vknm|jp φj(ξ) · ψn1
(u1) · · ·ψp(um) · · ·ψnS

(uS)

=
∞∑

j=1

∞∑

p1...pm...pS=0

δ(n1 − p1) · · ·Vknm|jpm
· · · δ(nS − pS)

× φj(ξ) · ψp1
(u1) · · ·ψpm(um) · · ·ψpS

(uS)

—here δ(n) =
{

1 for n = 0
0 for n != 0

}
—and must form

Hi = V!1 + · · · + V!S
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Altogether, we now have

H φk(ξ) · ψn1
(u1) · · ·ψnS

(uS)

= (wk + En1
+ · · · + EnS

) φk(ξ) · ψn1
(u1) · · ·ψnS

(uS)

+
∞∑

j=1

∞∑

p1...pm...pS=0

S∑

m=1

δ(n1 − p1) · · ·Vknm|jpm
· · · δ(nS − pS)

× φj(ξ) · ψp1
(u1) · · ·ψpS

(uS)

By a simple transformation this becomes

H φk(ξ)Φm0m1...(u1, . . . , uS)

=
(
wk +

∞∑

n=0

mnEn

)
φk(ξ)Φm0m1...(u1, . . . , uS)

+
∞∑

j=1

∞∑

n,p=0

mnVkn|jp φj(ξ)Φm0m1...mn−1...mp+1...(u1, . . . , uS)

where in the case n = p the subscript m0m1...mn−1...mp+1... is to be replaced by
m0m1... ...mn... .... When expressed in terms of the orthonormal functions this
result becomes

H φk(ξ)ψm0m1...(u1, . . . , uS)

=
(
wk +

∞∑

n=0

mnEn

)
φk(ξ)ψm0m1...(u1, . . . , uS)

+
∞∑

j=1

∞∑

n,p=0

√
mn(mp + 1 − δ(n − p)) Vkn|jp

× φj(ξ)ψm0m1...mn−1...mp+1...(u1, . . . , uS)

We can expand the general f(ξ, u1, . . . , uS) of R
(S)
∞ in terms of these

orthonormal functions:

f(ξ, u1, . . . , uS) =
∞∑

k=1

∞∑

m0m1...=0

ak m0m1...φk(ξ)ψm0m1...(u1, . . . , uS)

m1+m2+ ··· = S

Therefore R
(S)
∞ can be conceived as the Hilbert space of sequences ak m0m1...

with k = 1, 2, . . . ; m0, m1, . . . = 0, 1, 2, . . . ; m1 + m2 + . . . = S and with finite
∑

k m0m1...

|ak m0m1...|2

In that language, the defining action of H reads Hak m0m1... = a′
k m0m1... which
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when spelled out in detail means

H
∞∑

k=1

∞∑

m0m1...=0

ak m0m1...φk(ξ)ψm0m1...(u1, . . . , uS)

m1+m2+ ··· = S

=
∞∑

k=1

∞∑

m0m1...=0

a′
k m0m1...φk(ξ)ψm0m1...(u1, . . . , uS)

m1+m2+ ··· = S

where results now in hand supply

a′
k m0m1... =

(
wk +

∞∑

n=0

mnEn

)
ak m0m1...

+
∞∑

j=1

∞∑

n,p=0

√
mn(mp + 1 − δ(n − p)) Vkn|jp

× aj m0m1...mn−1...mp+1...

(Here the subscripts k, j and n, p have exchanged roles relative to those in the
φk(ξ)ψm0m1...(u1, . . . , uS) formula; in place of Vjp|kn we have written Vkn|jp ,
keeping in mind the Hermitian nature of V.)

We proceed now to prepare for the transition to the limit S → ∞. Since
m0 is determined by m1, m2, . . . (use m0 = S − m1 − m2 − · · ·) we can write
ak m1m2... in place of ak m0m1m2.... In this way the ranges of the indices become

k = 1, 2, . . . ; m1, m2, . . . = 0, 1, 2, . . . ; m1 + m2 + · · · ! S

If we consider E0 = 0 and introduce the notation
SVk0|j0 = Vk|j√
SVk0|jn = Vk|jn√
SVkn|j0 = V j|kn : Vkn|jp is Hermitian!

then Hak m1m2... = a′
k m1m2... with

a′
k m1m2... =

(
wk +

∞∑

n=1

mnEn

)
ak m1m2...

+
∞∑

j=1

Vk|j aj m1m2...

+
∞∑

j=1

∞∑

n=1

√
mn

√
1 + S − m1 − m2 − · · ·√

S
Vj|kn aj m1m2...mn−1...

+
∞∑

j=1

∞∑

n=1

√
mn + 1

√
S − m1 − m2 − · · ·√

S
Vk|jn aj m1m2...mn+1...

+
∞∑

j=1

∞∑

n,p=1

√
mn(mp + 1) Vkn|jp aj m1m2...mn−1...mp+1...
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Now let S → ∞. The ak m1m2... are again defined over all sequences k m1m2 . . .
with k = 1, 2, . . . ; m1, m2, . . . = 0, 1, 2, . . . with only a finite (but arbitrary)
number of mn != 0 (see Note 144). For H we obtain in the limit

Hak m1m2... = a′
k m1m2...

with

a′
k m1m2... =

(
wk +

∞∑

n=1

mnEn

)
ak m1m2...

+
∞∑

j=1

Vk|j aj m1m2...

+
∞∑

j=1

∞∑

n=1

√
mn + 1 Vj|kn aj m1m2...mn+1...

+
∞∑

j=1

∞∑

n=1

√
mn Vk|jn aj m1m2...mn−1...

+
∞∑

j=1

∞∑

n,p=1

√
mn(mp + 1) Vkn|jp aj m1m2...mn−1...mp+1...

The similarity with the equation derived from the electromagnetic theory of
radiation is now apparent. To make the two identical (compare page 171) we
need only set

En = hρn, Vk|j = 0, Vk|jn = Wn
jk = Wn

kj , Vkn|jp = 0

We then see that the light quanta concept proves to be identical to the classical
electromagnetic concept if we observe these rules:

1. The latter is rewritten according to the general quantum
mechanical scheme.
2. The energy of each light quantum is given by the Einstein
rule: En = hρn

3. The interaction energy of light quanta with matter is
appropriately defined (see the above expressions for V).

In this way one of the most difficult paradoxes of the earlier form of the
quantum theory—dual nature of light (electromagnetic waves on the one hand,
discrete corpuscules or light quanta on the other)—is brilliantly resolved.148 To
be sure, it is difficult to find a direct, clear-cut interpretation of the interaction
energy V which has just been calculated. This is made even more difficult by the

148 The reader will find further discussion of how this “dual nature” was
conceived, and how paradoxical it was considered to be, in the contemporary
literature. See, for example, the works listed in Note 6.

It has often been said that quantum mechanics involves the same dual
nature, since discrete particles (electrons, protons) are also described by wave
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circumstance that those individual matrix elements Vkn|jp which differ from
zero (those with n != 0, p = 0 or n = 0, p != 0) depend upon the number S of all
possible light quanta (they are proportional to 1/

√
S), yet in the end one has

to effect S → +∞. Nevertheless , we can accept this on the ground that each
model-dependent description is only an approximation, while the exact content
of the theory is furnished solely by the expression for the H operator.

We now return to our actual task: the determination of the transition
probabilities. In the sense of the time-dependent Schrödinger theory, the changes
in the ak m1m2... = ak m1m2...(t) are determined by

!
i

∂
∂tak m1m2... = −Hak m1m2...

= −
(
wk +

∞∑

n=1

hρnmn

)
ak m1m2...

−
∞∑

j=1

∞∑

n=1

Wn
kj ·

(√
mn + 1aj m1m2...mn+1...

+
√

mnaj m1m2...mn−1...

)

Since the chief change of the ak m1m2... is caused by the first term in this
expression, it is appropriate to separate this out by the substitution

ak m1m2...(t) = exp
{
− i

!

(
wk +

∞∑

n=1

hρnmn

)
t
}
· bk m1m2...(t)

Then

∂
∂tbk m1m2... = i

!

∞∑

j=1

∞∑

n=1

Wn
kj ·

(
e−

i
! (wj−wk+hρn)t

√
mn + 1 bj m1m2...mn+1...

− e−
i
! (wj−wk−hρn)t

√
mnbj m1m2...mn−1...

)

The physical meaning of the ak m1m2... and bk m1m2... may be seen from
their origin: for finite m̄0 + m̄1 + m̄2 + · · · = S, φk̄(ξ)ψm̄0m̄1...(u1, . . . , uS)
was the state in which S is in the k̄th quantum orbit and m̄0, m̄1, m̄2, . . . light
quanta in the respective states ψ0, ψ1, ψ2, . . . are present; i.e., m̄0 in the state of
“non-existence” and m̄1, m̄2, . . . in the states belonging to the corresponding
characteristic oscillations AAA1,AAA2, . . . . The ak m1m2... belonging to this wave

functions, and exhibit typical wave properties. (See the experiments of Davison-
Germer, Phys. Rev. 50 (1927), PNAS 15, (1928); also C. F. Thomson, Proc.
Roy. Soc. 117 (1928) and Rupp, Ann.Physik 85 (1928).) In contrast with
this, however, it is to be noted that quantum mechanics derives both “natures”
from a single unified theory of elementary phenomena. The paradox of the
earlier theory lay in the circumstance that one had to draw alternately on two
contradictory theories (the electromagnetic radiation theory of Maxwell-Hertz,
the light quantum theory of Einstein) for the explanation of experience.
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function are then

ak m1m2... = δ(k − k̄) · δ(m1 − m̄1) · δ(m2 − m̄2) · · ·

(Only a finite number of those numbers differ from 1 since mn = m̄n = 0 with
only a finite number of exceptions.) This, of course, remains valid also as
S → +∞. For an arbitrary state ak m1m2... of S + L, therefore, the
configuration mentioned above (if it is measured: see the comments in III.3

on the non-degenerate pure discrete spectrum) has the probability
∣∣∣

∑

k m1m2...

ak m1m2...δ(k − k̄) · δ(m1 − m̄1) · δ(m2 − m̄2) · · ·
∣∣∣
2

= |ak̄ m̄1m̄2...|2

= |bk̄ m̄1m̄2...|2

In particular, the total probability that S will be found in the k̄th quantum
orbit is

θk̄ =
∑

m̄1m̄2...

|bk̄ m̄1m̄2...|2

Let an atom be initially (t = 0) in the k̄th state, and let m̄1, m̄2, . . . identify
the light quanta in the respective states AAA1,AAA2, . . . that are assumed to be
initially present; i.e.,

bk m1m2...(0) = ak m1m2...(0) = δ(k − k̄) · δ(m1 − m̄1) · δ(m2 − m̄2) · · ·

In the sense of the above differential equation, and as a first approximation
(i.e., for such short times that the right sides can still be considered constant),
only those ∂

∂tbk m1m2... will differ from zero for which an m1, m2, . . . , mn +1, . . .
or an m1, m2, . . . , mn − 1, . . . coincides with m̄1, m̄2, . . . ; i.e., with all
k, m̄1, m̄2, . . . , m̄n ± 1, . . . . If we integrate in this case, we find

bkm̄1m̄2...m̄n+1...(t) = Wn
kk̄

1 − e−
i
! (wk̄ − wk − hρn)t

wk̄ − wk − hρn

√
m̄n + 1

bkm̄1m̄2...m̄n−1...(t) = Wn
kk̄

1 − e−
i
! (wk̄ − wk + hρn)t

wk̄ − wk − hρn

√
m̄n

All other bk m1m2... vanish in this approximation. (Except for bk̄ m̄1m̄2..., which
would equal 1 in this approximation; i.e., except for terms of order t2. Yet
the conclusion ∂

∂tbk m̄1m̄2... = 0 is made doubtful in this case by the fact that
the right side of our differential equation contains an infinite number of terms
bkm̄1m̄2...m̄n±1... which do not vanish in our approximation. Hence we cannot
argue from the smallness (for small t) of each of these terms to the smallness of
their sum. Actually, the calculation in the next order of approximation would
show that the deviation of bk̄m̄1m̄2... from 1 is proportional not to t2 but to t.149

149 The exact solution of this differential equation was given by Weisskopf and
Wigner (Z. Physik 63 (1930)), and establishes the validity of these statements.

 EBSCOhost - printed on 2/13/2023 10:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



186 Chapter III: The Quantum Statistics

However, since

∑

k m1m2...

|bk m1m2...|2 =
∑

k m1m2...

|ak m1m2...|2 = 1

∑

k m1m2...

|bk̄ m̄1m̄2...|2 = 1 −
∑

k m1m2... $= k̄ m̄1m̄2...

|bk m1m2...|2

the direct determination of this bk m1m2... is not actually necessary.)

The qualitative significance of the preceding results is clearly evident:
bkm̄1m̄2...m̄n+1...—which refers to the emission of an AAAn light quantum (of
frequency ρn)—becomes larger as the denominator wk̄ − wk − hρn becomes
smaller; i.e., the closer the light frequency ρn lies to the “Bohr frequency”
(wk̄−wk)/h.150 In the same way, bkm̄1m̄2...m̄n−1...—which refers to absorption—
increases as ρn becomes closer to (wk −wk̄)/h. We see that the Bohr frequency
relation does not hold exactly (of course, not all frequencies are placed at one’s
disposal by the ρn) but only with high probability if the time t is short and the
ρn are very dense (which will be the case if the cavity H is large). In addition,
the Wn

kk̄
affect the frequency of occurence of such processes. We shall soon

identify them with the transition probabilities.

From our bkm̄1m̄2...m̄n±1...-formulae it follows151 that (for sufficiently small
values of t)

|bk m̄1m̄2...m̄n+1...(t)|2 = 2
h2

(m̄n + 1) |Wn
kk̄|

2
1 − cos 2π

(
ρn − wk̄ − wk

h

)
t

(
ρn − wk̄ − wk

h

)2

|bk m̄1m̄2...m̄n−1...(t)|2 = 2
h2

m̄n |Wn
kk̄|

2
1 − cos 2π

(
ρn − wk − wk̄

h

)
t

(
ρn − wk − wk̄

h

)2

|bk m1m2...(t)|2 = 0 for km1m2 . . . !=
{

k̄m̄1m̄2 . . . or
km̄1m̄2 . . . m̄n ± 1 . . .

From this we get for θk(t) (k != k̄)

150 N. Bohr, as is well known, stated the fundamental principle in 1913 (see the
reference cited in Note 5) that in transitions from a stationary state of energy
W (1) to a stationary state of energy W (2) < W (1) an atom emits radiation of
frequency (W (1) − W (2))/h. In our case, this corresponds to (wk̄ − wk)/h.
151 We have

|eix − 1|2 = (eix − 1)(e−ix − 1) = 2 − (eix + e−ix) = 2(1 − cos x)
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θk(t) =
∞∑

n=1

2
h2

(m̄n + 1) |Wn
kk̄|

2
1 − cos 2π

(
ρn − wk̄ − wk

h

)
t

(
ρn − wk̄ − wk

h

)2

+
∞∑

n=1

2
h2

m̄n |Wn
kk̄|

2
1 − cos 2π

(
ρn − wk − wk̄

h

)
t

(
ρn − wk − wk̄

h

)2

where the first
∑∞

n=1 refers to emission, the second
∑∞

n=1 to absorption. In
order to be able to give these θk in closed form we must make simplifying
assumptions: we will, on the one hand, assume the volume of the enclosure H to
be very large (V → ∞) and will, on the other hand, consider the characteristic
oscillations AAAn in H statistically. For this purpose, we combine all terms in
the above summations which belong to ρn between ρ and ρ + dρ (for Wn

kk̄
we

introduce its value and assume dρ ' ρ):

1
4π2c2hρ

[
∑

n

∣∣∣
!∑

ν=1

eν
Mν

(
Px

ν AAAn,x(Qx
ν , Qy

ν , Qz
ν) + · · ·

)
kk̄

∣∣∣
2
(m̄n + 1)

]

ρ !ρn<ρ+dρ

×
1 − cos 2π

(
ρ − wk̄ − wk

h

)
t

(
ρ − wk̄ − wk

h

)2

We then repeat this procedure, but with m̄n in place of m̄n +1 and (wk−wk̄)/h
in place of (wk̄ − wk)/h. The expressions in brackets [· · ·] are now to be
evaluated.

The customary method of describing the m1, m2, . . . is not by enumeration
of their values but much less—namely, the listing of their intensities; i.e., the
radiation energy I(ρ)dρ that lies in the spectral interval from ρ to ρ + dρ and
in unit volume. This means that

∑

n

hρn · m̄n ≈ hρ
∑

n

m̄n = V · I(ρ)dρ

ρ !ρn<ρ+dρ ρ !ρn<ρ+dρ

i.e., ∑

n

m̄n = V · I(ρ)dρ
hρ

ρ !ρn<ρ+dρ

The number of ρn in the interval ρ ! ρn < ρ + dρ is

8πVρ2

c2
dρ

according to an asymptotic formula of Weyl (see the reference in Note 140)
which is valid generally, and therefore

∑

n

(m̄ + 1) ≈
V
(
I(ρ) + 8πhρ3

c3

)

hρ
dρ

ρ !ρn<ρ+dρ
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If
∣∣∣

!∑

ν=1

eν
Mν

(
Px

ν AAAn,x(Qx
ν , Qy

ν , Qz
ν) + · · ·

)
kk̄

∣∣∣
2

executes (sufficiently rapid) fluctuations in the interval ρ ! ρn < ρ + dρ (about
a mean value which we will call Wkk̄(ρ)) then the expressions [. . .] in question
become

Wkk̄(ρ)
V
(
I(ρ) + 8πhρ3

c3

)

hρ
dρ and Wkk̄(ρ)VI(ρ)

hρ
dρ

If in addition we write νk̄k for (wk̄ −wk)/h, and νkk̄ for (wk −wk̄)/h, then our
sums become

θk(t) = V
4π2c2h2

∫ ∞

0

{(
I(ρ) + 8πhρ3

c3

)
·
1 − cos 2π(ρ − ν

k̄k
) t

(ρ − ν
k̄k

)2

+I(ρ) ·
1 − cos 2π(ρ − ν

kk̄
) t

(ρ − ν
kk̄

)2

}
Wkk̄(ρ)

ρ2
dρ

For small t this integral is evidently of order t2 (because 1− cos 2πct is) except
in that part of the integration region in which the denominators (ρ − νk̄k),
(ρ− νkk̄) are small. Here contributions can arise which are large in comparison
with t2, and when this is the case the contributions in question supply
asymptotic evaluations for θk(t). It will be shown that this is actually the
case, because we shall obtain contributions of order t.

Since ν
k̄k

= −ν
kk̄

= (w
k̄
− wk)/h, for w

k̄
> wk only the denominator of

the first term can become small, while for w
k̄

< wk only the denominator of
the second term, so according as w

k̄
is > or < wk it is the first or second term

which predominates; the other term will be abandoned. Moreover, since the ρ
that lie remote from ν

k̄k
and ν

kk̄
contribute only in order t2 to the integral, we

can replace some of the factors in the surviving integrand by the values which
they assume at the dominant value of ρ. Thus do we obtain

θk(t) = VIWkk̄(ν̄kk̄)
4π2c2h2ν̄2

kk̄

∫ ∞

0

1 − cos 2π(ρ − ν̄kk̄)t
(ρ − ν̄kk̄)2

dρ

where we have adopted the abbreviation ν̄kk̄ = |w
k̄
− wk|/h and where

I =





I(ν̄kk̄) + 8πh

c3
ν̄3

kk̄
for wk̄k > wkk̄ : radiative case

I(ν̄kk̄) for wk̄k < wkk̄ : absorptive case

Since this again leads only to a t2 contribution, we can replace
∫ ∞
0 by

∫ +∞
−∞ and
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introduce the new variable x = 2π(ρ − ν̄kk̄)t. Then152

∫ +∞

−∞

1 − cos 2π(ρ − ν̄kk̄)t
(ρ − ν̄kk̄)2

dρ = 2π t

∫ +∞

−∞

1 − cos x
x2

dx = 2π2t

so finally

θk(t) = VIWkk̄(ν̄kk̄)
2h2ν̄2

kk̄

t

with which it is also established that θk(t) is of order t.

In order to evaluate Wkk̄(ν̄kk̄) we must find an expression for

∣∣∣
!∑

ν=1

eν
Mν

(
Px

ν AAAn,x(Qx
ν , Qy

ν , Qz
ν) + · · ·

)
kk̄

∣∣∣
2

which is free of AAAn. This can be obtained if we replace AAAn (considering its rapid
fluctuations) by an irregularly oriented vector of constant length. Because of its
spatial constancy (i.e., its {Qx

ν , Qy
ν , Qz

ν}-independence) such a vector is a number
vector times the unit matrix I, and its constant length γn can be obtained from
the normalization condition

∫∫∫

H
[AAAn,AAAn]dxdydz = 4πc2

Therefore
Vγ2

n = 4πc2 i.e., γ2
n = 4πc2

V

On average, 1
3 of [AAAn,AAAn] = AAAn,x

2 + AAAn,y
2 + AAAn,z

2 = γ2
n contributes to the

x-component AAAn,x
2 . Hence 1

3γ2
n = 4

3πc2/V and similarly for AAAn,y
2 and AAAn,z

2 .
Consequently, we have

Wkk̄(ρ) = mean
∣∣∣

!∑

ν=1

eν
Mν

(
Px

ν AAAn,x(Qx
ν , Qy

ν , Qz
ν) + · · ·

)
kk̄

∣∣∣
2

ρ !ρn<ρ+dρ

≈ 4πc2

3V

(∣∣∣
( !∑

ν=1

eν
Mν

Px
ν

)

kk̄

∣∣∣
2

+ · · ·
)

152 Here we use (see Courant-Hilbert, page 49)

∫ +∞

−∞

1 − cos x
x2

dx = 2
∫ ∞

0

1 − cos x
x2

dx

=
∫ ∞

0

1 − cos 2y
y

dy = 2
∫ ∞

0

sin2 y
y2

dy = π
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Since H0, the energy of the system S alone, is equal to the kinetic energy
plus the potential energy it has therefore the form

H0 =
!∑

ν=1

1
2Mν

[(
Px

ν

)
2 +

(
Py

ν

)
2 +

(
Pz

ν

)
2
]
+ V

(
Qx

1 , Qy
1, Q

z
1, . . . ,Q

x
! , Qy

! , Qz
!

)

in view of which one has153

H0Q
x
ν − Qx

νH0 = !
i

1
Mν

Px
ν

Since H0 is a diagonal matrix with diagonal matrix elements w1, w2, . . .
(which is to say: (H0)kj = wkδkj) it follows from this that

(Px
ν)kk̄ = i

! Mν(H0Q
x
ν − Qx

νH0)kk̄

= i
! Mν(wk − wk̄)(Qx

ν)kk̄

= ±i · 2πMν ν̄kk̄(Qx
ν)kk̄

Therefore

Wkk̄(ρ) = 16π3c2

3Vh2
ν̄2

kk̄

(∣∣∣
( !∑

ν=1

eνQx
ν

)

kk̄

∣∣∣
2

+ · · ·
)

Substitution into the previously-obtained expression for θk(t) results in

θk(t) = I 8π3

3h2

(∣∣∣
( !∑

ν=1

eνQx
ν

)

kk̄

∣∣∣
2

+ · · ·
)

t

If we set

Wkk̄ =
∣∣∣
( !∑

ν=1

eνQx
ν

)

kk̄

∣∣∣
2

+ · · ·

this result is evidently to be interpreted as follows: The atom S in the kth state
executes the following transitions (quantum jumps):

1. A transition k → k̄ into a higher state (wk̄ > wk) occurs

I 8π3

3h2
Wkk̄ · wk̄ − wk

h

times per second; i.e., at a rate proportional to the intensity of the
radiation field at the corresponding Bohr frequency (wk̄ − wk)/h.

153 Px
ν commutes with all Qx

µ, Qy
µ, Qz

µ, Px
µ, Py

µ, Pz
µ except Qx

ν . In fact

Px
νQx

ν − Qx
νPx

ν = !
i I

Therefore

H0Q
x
ν − Qx

νH0 = 1
2Mν

(Px
ν)2Qx

ν − Qx
ν

1
2Mν

(Px
ν)2 = !

i
1

Mν
Px

ν

See Note 143.
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2. A transition k̄ ← k into a lower state (wk̄ < wk) occurs

I 8π3

3h2
Wkk̄ · wk − wk̄

h

times per second; i.e., at a rate proportional to the intensity of the
radiation field at the corresponding Bohr frequency (wk − wk̄)/h.

3. A transition k̄ ← k into a lower state (wk̄ < wk) also occurs

64π4

3hc3
Wkk̄ ·

(wk − wk̄

h

)3

times per second; i.e., in complete independence of the ambient
radiation field.

Process 1 refers to absorption from the radiation field; 2 to emission which
is induced by the radiation field. Process 3 refers, however, to spontaneous
emission which the atom will always undergo, so long as it has not attained
complete stability in its lowest stationary state (minimum wk).

The three transition mechanisms1–3were alreadyfoundthermodynamically
by Einstein before the discovery of quantum mechanics;154 only the value of the
“transition probability” was lacking. The above value

Wkk̄ =
∣∣∣
( !∑

ν=1

eνQx
ν

)

kk̄

∣∣∣
2

+
∣∣∣
( !∑

ν=1

eνQy
ν

)

kk̄

∣∣∣
2

+
∣∣∣
( !∑

ν=1

eνQz
ν

)

kk̄

∣∣∣
2

is, as we have already mentioned, contained in the first interpretation
contributed by Heisenberg. We have now obtained it again (by Dirac’s method)
from the general theory.

154 Physik Z. 18 (1917).
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CHAPTER IV

DEDUCTIVE DEVELOPMENT

OF THE THEORY

1. THE FUNDAMENTAL BASIS OF THE STATISTICAL THEORY

In Chapter III we succeeded in reducing all assertions of quantum mechanics
to the statistical formula (called there E2)

E Exp(R, φ) = (Rφ, φ)

(Here Exp(R, φ) is the expectation value of the quantity R in the state φ, and R
is the operator belonging to R.) In the course of the following discussion we will
see how this formula itself can be derived from a few qualitative assumptions,
and simultaneously we will check the entire structure of quantum mechanics as
it was developed in Chapter III. Before we do this, however, a further remark
is necessary.

In the state φ the quantity R has the expectation value ρ = (Rφ, φ) and
has as its dispersion ε2 the expectation value of the quantity (R − ρ)2; i.e.,
ε2 = ((R− ρ · I)2φ, φ) = ‖Rφ‖2 − (Rφ, φ)2 (see Note 130; all these are calculated
with the aid of E !), which is in general > 0 (and = 0 only for Rφ = ρφ;
see III.3). Therefore there exists a statistical distribution of R even though
φ is one individual state, as we have repeatedly noted. But such statistical
considerations acquire a new aspect when we do not even know what state is
actually present—for example, when states φ1, φ2, . . . might be present with
respective probabilities w1, w2, . . . (all non-negative, and sum to unity). Then
the expectation value of the quantity R, in the sense of the generally valid rules
of the calculus of probabilities, is ρ ′ =

∑
n wn · (Rφn, φn).

Now in general (Rφ, φ) = Tr(P[φ] · R). Indeed, if we select a complete
orthonormal set ψ1, ψ2, . . . with ψ1 = φ (therefore ψ2, ψ3, . . . are orthogonal
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194 Chapter IV: Deductive Development of the Theory

to φ), then

P[φ]ψn =
{

φ for n = 1
0 for n #= 1

and therefore

Tr(P[φ] · R) =
∑

m,n

(P[φ]ψn, ψm)(Rψm, ψn)

=
∑

m

(φ, ψm)(Rψm, φ) = (Rφ, φ)

whence our ρ ′ = Tr
({ ∑

n wmP[φn]

}
· R

)
. The operator

U =
∑

n

wnP[φn]

is definite because of the definiteness of all P[φn] and wn ! 0, and its trace is
equal to

∑
n wn = 1 since TrP[φn] = 1. It provides a complete characterization

of the mixture just described, so far as concerns its statistical properties:

ρ ′ = Tr(UR)

We shall have to pay attention to such mixtures of states, in addition
to the individual states themselves. We turn first, however, to more general
investigations.

Let us forget the whole of quantum mechanics but retain the following:
Suppose that a system S155 is given, which is characterized for experimenters

155 It is important to emphasize the conceptual difference between a system
as such and a system in a certain state. This is an example of a system:
a hydrogen atom; i.e., an electron and proton with the known forces acting
between them. It is described formally by these data: the configuration space
has six dimensions; the coordinates are q1, . . . , q6; the momenta are p1, . . . , p6;
the Hamiltonian function is

H(q1, . . . , q6, p1, . . . , p6) = p2
1 + p2

2 + p2
3

2me
+ p2

4 + p2
5 + p2

6

2mp

+ e2
√

(q1 − q4)2 + (q2 − q5)2 + (q3 − q6)2

A state is then determined by additional data. In classical mechanics this is done
by assigning numerical initial values q0

1 , . . . , q0
6 , p0

1, . . . , p
0
6 to the coordinates

and momenta; in quantum mechanics by specifying the initial wave function
φ0(q1. . . . , q6). One never needs more information than this: if both system and
state are known, then the theory gives unambiguous directions for answering
all questions by calculation.
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1. Fundamental Basis of the Statistical Theory 195

by the enumeration of all the effectively measurable quantities in it and their
functional relations with one another. With each quantity we include directions
as to how it is to be measured, and how its value is to be read or calculated from
the indicator positions on the measuring instruments. If R is a quantity and
f(x) any function, then the quantity f(R) is defined as follows: To measure
f(R) we measure R and find the value a (for R). Then f(R) has the value
f(a). As we see, all quantities f(R) (R fixed, f(x) arbitrary) are measured
simultaneously with R. This is a first example of simultaneously
measurable quantities. In general, we call two (or more) quantities R, S
simultaneously measurable in the same system if there is an arrangement that
measures both simultaneously in the same system—except that their respective
values are to be calculated in different ways from the instrument readings.
(In classical mechanics, as is well known, all quantities are simultaneously
measurable, but this is not the case in quantum mechanics, as we have seen
in III.3.) Given such quantities and a function f(x, y) of two variables, we
can also define the quantity f(R,S). This is measured if we measure R, S
simultaneously. If the values a, b are found for these, then the value of f(R,S)
is f(a, b). But it should be realized that it is completely meaningless to try
to form f(R,S) if R, S are not simultaneously measurable: there is no way to
construct the corresponding experimental arrangement.

However, investigation of the physical quantities related to a single object
S is not the only thing which can be done—especially if doubts exist concerning
the simultaneous measurability of several quantities. In such cases it is possible
to construct statistical ensembles which consist of many systems S1, . . . ,SN

(i.e., N copies of S, N large).156 In such an ensemble [S1, . . . ,SN ] we do not
measure the “value” of a quantity R but its distribution of values; i.e., for
each interval a′ < a " a′′ (a′, a′′ given, a′ " a′′) we look to the number of
systems among the S1, . . . ,SN for which the value of R lies in the interval and—
dividing by N—obtain the probability function w(a′, a′′) = w(a′′) − w(a′).157

156 Such ensembles—sometimes called collectives—are in general necessary for
establishing probability theory as a theory of frequencies. They were
introduced by R. von Mises, who discovered their meaning for probability theory
and who built a complete theory on this foundation (see, for example, his book
Wahrscheinlichkeit, Statistik und ihre Wahreheit , Berlin, 1928).
157 w(a′) is the probability of a " a′; i.e., that a falls within the interval
{−∞, a′ ]. This w(a)—or, as we shall call it, wR(a) in order to emphasize its
dependence on R—is easily seen to have the following properties:

0 ← wR(a) as −∞ ← a

wR(a) → 1 as a → +∞

for a ! a0 : a0 ← a =⇒ wR(a0) ← wR(a)

a′ " a′′ =⇒ wR(a′) " wR(a′′)

(In quantum mechanics, if E(λ) is the resolution of the identity belonging to
R then wR(a) = ‖E(a)φ‖2 = (E(a)φ, φ).) If wR(a) is differentiable then the
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196 Chapter IV: Deductive Development of the Theory

The essential advantages of the observation of such ensembles are these:

1. Even if the measurement of a quantity R should alter the
measured system S to an important degree (in quantum mechanics
this may be actually the case, and in III.4 we saw that this is
necessarily so in the physics of elementary processes, since the
measurement’s interference with the observed system is of the same
order of magnitude as the system or its observed parts), the
statistical determination of the probability distribution of R in the
ensemble [S1, . . . ,SN ] will alter this ensemble arbitrarily little if N
is sufficiently large.

2. Even if two (or more) quantities R, S in a single system S are
not simultaneously measurable, their probability distributions in a
given ensemble [S1, . . . ,SN ] can be obtained with arbitrary accuracy
if N is sufficiently large.

Indeed, with an ensemble of N elements it suffices to carry out the
statistical inspections not on all N elements of S1, . . . ,SN but on any subset of
M " N elements—say, [S1, . . . ,SM ]—provided that M, N are both large and
that M is very small compared to N .158 Then only the M/N th part of the
ensemble is affected by the changes which result from the measurement. The
effect is an arbitrarily small one if M/N is chosen to be small enough, which is
possible for sufficiently large N , even in the case of large M , as was stated in 1.
In order to measure two (or several) quantities R, S simultaneously we need
two ensembles—say [S1, . . . ,SM ] and [SM+1, . . . ,S2M ] (2M " N)—of such a
type that the first is employed in obtaining the statistics of R, and the second
in obtaining those of S. The two measurements therefore do not disturb each
other, although they are performed in the same ensemble [S1, . . . ,SN ], and they
change this ensemble only by an arbitrarily small amount if 2M/N is sufficiently
small, which is possible for sufficiently large N even in the case of large M , as
was stated in 2.

We see that the introduction of statistical ensembles—i.e., of probability
methods—is undertaken because of the possibility of affecting a single system by
measurement, and the possibility that several quantities may not be
measurable simultaneously. Ageneral theory must consider these circumstances,
since their appearance in elementary processes had always been suspected,159

ordinary “probability density” d
dawR(a) can be introduced in its place; if it is

not continuous (from the left) at a = a0 then the single point a = a0 has the
“discrete probability” wR(a0) − wR(a0 − 0). But the general concept which is
meaningful under all conditions is wR(a): see the reference in Note 156.
158 This follows from the so-called Law of Large Numbers, the theorem of
Bernoulli.
159 So, for example, it was considered to constitute a basic difficulty in defining
the electric field that the electrical test charge to be used cannot be smaller than
the charge of an electron.
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1. Fundamental Basis of the Statistical Theory 197

and their reality is now an established certainty, as the detailed discussion of
the situation makes clear (see III.4). The use of statistical ensembles eliminates
these difficulties, and again makes possible an objective description (which is
independent of chance, as well as of whether one measures—in a given state—
the one or the other of two not simultaneously measurable quantities).

For such ensembles it is not surprising that a physical quantity R does not
have a sharp value; i.e., that its distribution function does not consist of a single
value a0,160 but that several values or intervals are possible, and that a positive
dispersion exists.160 Two different reasons for this are a priori conceivable:

I. The individual systems S1, . . . ,SN of our ensemble can be in
different states, so that the ensemble [S1, . . . ,SN ] is shaped by the
relative frequencies of those states. The fact that we do not obtain
sharp values for the physical quantities in this case is caused by
our lack of information: we do not know in which state we are
measuring, and therefore cannot predict the results.

II. The individual systems S1, . . . ,SN are in the same state, but the
laws of nature are not causal. Then the cause of the dispersion is
not our lack of information, but nature itself, which has disregarded
the “principle of sufficient cause.”

Case I is generally well known, while Case II is important and new. To be
sure, we will be skeptical at first of such a possibility, but we find an objective
criterion that will enable us to decide whether it is or is not possible to entertain
such an idea. It appears at first that serious objections can be raised about the
conceivability and meaningfulness of such a notion, but we believe that these
objections are not valid, and that certain difficulties (for example, in quantum
mechanics) permit no other way out but II. We therefore apply ourselves to
discussion of the conceptual difficulties posed by II.

160 The sharp value a0 corresponds to the probability function

wR(a) =
{

1 for a ! a0

0 for a < a0

In this case—and only in this—the dispersion ε2 is zero. The mean value and
the dispersion are in general calculated as follows (these are Stieltjes integrals!):

ρ =
∫ +∞

−∞
adwR(a)

ε2 =
∫ +∞

−∞
(a − ρ)2 dwR(a)

=
∫ +∞

−∞
a2 dwR(a) − 2ρ

∫ +∞

−∞
adwR(a) + ρ2

=
∫ +∞

−∞
a2 dwR(a) − ρ2

=
∫ +∞

−∞
a2 dwR(a) −

(∫ +∞

−∞
adwR(a)

)2

(See III.4, Note 130.)
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One might raise against II the objection that nature cannot possibly violate
the “principle of sufficient cause”—i.e., causality—because this is merely a
definition of identity. That is, the proposition that two identical objects S1,S2—
i.e., two replicas of the system S which are in the same state—will remain
identical in all conceivable identical circumstances is true because it is
tautological. For if S1,S2 could react differently to identical interactions (for
example: if they responded with different values to measurement of the same
quantity R) then we would not have called them identical. Therefore, in
an ensemble [S1, . . . ,SN ] which as dispersion relative to a quantity R, the
individual systems S1, . . . ,SN cannot (by definition) all be in the same state.
(The application to quantum mechanics would be: Since one can obtain different
values in the measurement of the same quantity R in several systems all of
which are in the same state φ—not an eigenstate of the operator R associated
with R161—these systems cannot be equal to one another; i.e., the description
of state provided by the wave function cannot be complete. Therefore other
variables must exist, the “hidden parameters” mentioned in III.2. We will soon
see what difficulties this presents.) In a large statistical ensemble, therefore, as
long as any physical quantity R is found to exhibit dispersion the possibility
must exist of resolving the ensemble into several differently constituted parts
(according to the various states of their respective elements). This procedure
is made all the more plausible by the observation that a simple method for
achieving such a resolution seems to exist: namely, we can look to the various
values which R has in the ensemble. After a subdivision or resolution relative
to all possible quantities R, S, T, . . . has been carried out a truly homogeneous
ensemble would then be obtained. At the end of the process these quantities
would have no further dispersion in any of the sub-ensembles.

But, first of all, the statements contained in the last sentence are incorrect
because we did not consider the fact that the act of measurement changes the
measured system. If we measure R (which we will assume for simplicity can have
only two values: a1, a2) for all objects and get perhaps a1 on S1

′, . . . ,SN1
′ and a2

on S1
′′, . . . ,SN2

′′ (N1 + N2 = N), then there is no dispersion in [S1
′, . . . ,SN1

′ ] and
none in [S1

′′, . . . ,SN2
′′ ] (R has always the value a1 or a2 respectively). Still, this

is not merely a resolution of [S1, . . . ,SN ] into the two sets mentioned, because
the individual systems would be changed by the R measurement. It is true that
by I we have a method to determine the distribution R-values in such a way
that [S1, . . . ,SN ] is changed only slightly (we measure only in [S1, . . . ,SM ] with
M large, M/N small). This procedure, however, does not lead to the desired
resolution since for most of the S1, . . . ,SN (namely SM+1, . . . ,SN ) it does not
make certain what value R has in each one of them.

We show now that the method given above fails to produce completely
homogeneous ensembles. Use a second physical quantity S (assumed again to
have only two values: b1, b2) to resolve [S1

′, . . . ,SN1
′ ] into sub-ensembles

161 We contemplate independent measurements on several systems: successive
measurements on the same system would always give the same result (see III.3).
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[S1
′, . . . ,SN1

′ ] = [S1
′◦, . . . ,SN1,1

′◦ ] + [S1
′◦◦, . . . ,SN1,2

′◦◦ ] : N1,1 + N1,2 = N1

and similarly resolve [S1
′′, . . . ,SN2

′′ ]:

[S1
′′, . . . ,SN2

′′ ] = [S1
′′◦, . . . ,SN2,1

′′◦ ] + [S1
′′◦◦, . . . ,SN2,2

′′◦◦ ] : N2,1 + N2,2 = N2

(Here ◦ indicates that S -measurements always yield b1, ◦◦ that they always
yield b2.) The quantity S is dispersionless in each of the four sub-ensembles

[S1
′◦, . . . ,SN1,1

′◦ ], [S1
′◦◦, . . . ,SN1,2

′◦◦ ], [S1
′′◦, . . . ,SN2,1

′′◦ ], [S1
′′◦◦, . . . ,SN2,2

′′◦◦ ]

(the measured values are invariably b1, b2, b1, b2 respectively). But although
the first two ensembles are parts of [S1

′, . . . ,SN1
′ ], and the latter two parts of

[S1
′′, . . . ,SN2

′′ ] in which R did not have dispersion, R can now have dispersion
in each one of them, because the S measurements have changed the individual
systems of which they are comprised. In short, we do not get ahead: each
step destroys the results of the preceding one,162 and no further repetition of
successive measurements can bring order to this confusion. In an atom we are at
the boundary of the physical world, where each measurement is an interference
of the same order of magnitude as the quantity being measured, and therefore
affects it profoundly. It is evident that the uncertainty relations are at the root
of these difficulties.

Therefore we have no method which would make it always possible to
resolve further the dispersing ensembles (without a change of their elements) or
to penetrate to those imagined homogeneous ensembles which no longer have
dispersion—the ensembles we are accustomed to supposing are composed of
individual particles, all identical, and all determined causally. Nevertheless, we
might attempt to maintain the fiction that every dispersing ensemble can be
divided into two (or more) parts, different from each other and from it, without a
change of its elements. The imagined division would be such that superposition
of the resolved ensembles would again produce the original ensemble. As we see,
the attempt to interpret causality as an equality definition led to a question of
fact which can and must be answered, and which might conceivably be answered
negatively. This is the question: Is it really possible to represent each ensemble
[S1, . . . ,SN ], in which there is a quantity R with dispersion, as a superposition
of two (or more) ensembles different from one another and from it? (More than
two—say, n = 3, 4, . . .—can be reduced to two if we consider the first and the
superposition of the n − 1 others.)

If [S1, . . . ,SN ] were the mixture (sum) of [S1
′, . . . ,SP

′ ] and [S1
′′, . . . ,SQ

′′ ]
the probability function wR(a) (see Note 157) for each quantity R could be

162 One should consider, for example, what happens if we substitute q and p
(cartesian coordinate and momentum, which are not simultaneously measurable
because of the uncertainty relations) for R and S. If q has very small dispersion
in an ensemble, then the p -measurement with accuracy (i.e., dispersion) ε sets
up a q dispersion of at least 1

2!/ε (see III.4): everything is ruined.
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expressed with the aid of the probability functions wR
′ (a) and wR

′′ (a) of the two
sub-ensembles:

M1 wR(a) = αwR
′ (a) + βwR

′′ (a) : α > 0, β > 0, α + β = 1

Here α = P/N, β = Q/N (N = P + Q) are independent of R. Fundamentally,
this is a purely mathematical problem: If in an ensemble with probability
functions wR(a) there exist quantities R with dispersion (which is a property
of wR(a), as indicated in Note 160), are there two other ensembles, with
respective probability functions wR

′ (a) and wR
′′ (a), such that—for all R—M1

holds? The question can also be formulated in a somewhat different way if we
characterize an ensemble not by the probability functions wR(a) of quantities
R but by their expectation values

Exp(R) =
∫ +∞

−∞
adwR(a)

Then our question is the following: An ensemble is dispersion-free if in it, for
each R,

Exp
(
[R− Exp(R)]2

)
= Exp(R2) − [Exp(R)]2

is equal to zero (see again Note 160); i.e.,

Dis1 Exp(R2) = [Exp(R)]2

If this is not the case, is it always possible to find two sub-ensembles (with
expectation values denoted Exp ′(R), Exp ′′(R):Exp(R) #≡Exp ′(R) #≡Exp ′′(R))
such that

M2 Exp(R) = αExp ′(R) + βExp ′′(R) : α > 0, β > 0, α + β = 1

always holds (α, β independent of R)? (It should be noted that for a single
quantity R the number Exp(R) is not a substitute for the function wR(a), but
on the other hand: knowledge of all Exp(R) is equivalent to knowledge of all
wR(a). Indeed, if fa(x) is defined

fa(x) =
{ 1 for x " a

0 for x > a

then wR(a) = Exp
(
fa(R)

)
.)

To handle this question mathematically it is preferable not to consider
the [S1, . . . ,SN ] themselves, but rather the corresponding Exp(R). To each
such ensemble there belongs one such function which is defined for all physical
quantities R in S, which takes on real numbers as values and which, conversely,
completely characterizes the ensemble in all its statistical properties (see the
discussion above on the relation between Exp(R) and wR(a)). Of course, it
remains to discover what properties an R-function must possess if it is to be
the Exp(R) of a suitable ensemble. But as soon as we have done this we will
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be in position to make these definitions:

ααα. An R-function, if it is an Exp(R), is said to be dispersion-free
if it satisfies the condition Dis1.

βββ. An R-function, if it is an Exp(R), is said to be homogeneous or
pure if, for it, M2 implies

Exp(R) ≡Exp ′(R)≡Exp ′′(R)

It is conceptually plausible that each dispersion-freeExp(R)-function should
be pure, and we shall soon prove it. But we are interested at the moment in
the converse question: Is each pure Exp(R)-function dispersion-free?

It is evident that each Exp(R)-function must possess the following
properties:

A. If the quantity R is identically 1 (i.e., if the “directions for
measurement” are: no measurement is necessary, because R always
has the value 1), then Exp(R) = 1.

B. For each R and each real number a, Exp(aR) = aExp(R).163

C. If the quantity R is by nature non-negative (if, for example, it
is the square of another quantity S163) then also Exp(R) ! 0.

D. If the quantities R, S, . . . are simultaneously measurable then

Exp(R + S + · · ·) = Exp(R) + Exp(S) + · · ·

(If R, S, . . . are not simultaneously measurable then their sum is
undefined: see above.)

All this follows immediately from the definitions of the quantities under
consideration (i.e., from the directions for their measurement) and from the
definition of expectation value as the arithmetic mean of all the results of
measurement in a sufficiently large statistical ensemble. Regarding D, it should
be noted that its correctness depends upon this theorem on probability: The
expectation value of a sum is always the sum of the expectation values,
independently of whether or not dependencies exist between these (in contrast,
for example, to the probability of the product). That D embodies this basic
fact only as it pertains to simultaneously measurable R, S, . . . is natural, since
otherwise R + S + · · · is meaningless.

But quantum mechanics exploits still another operation, which goes beyond
the one just discussed: namely, the addition of two arbitrary quantities which
are not necessarily simultaneously observable. This operation depends upon the

163 aR,S2,R+S+ · · · mean that we may substitute R, S, . . . in the functions
f(x) = ax, f(x) = x2, f(x, y, . . .) = x + y + · · · respectively, in the sense of the
definitions given above.
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fact that for two Hermitian operators R, S the sum R+ S is also Hermitian, even
if R and S do not commute (while, for example, the product RS is Hermitian
only if the two operators commute: see II.5). In each state φ the expectation
values behave additively: (Rφ, φ)+(Sφ, φ) = ((R+ S)φ, φ) (see III.1). The same
holds for several summands. We now incorporate this fact into our general
set-up (which at this point is not yet specialized to quantum mechanics):

E. If R, S, . . . are arbitrary quantities then there is an additional
quantity R+S+ · · · (which does not depend upon the choice of the
Exp(R)-function) such that

Exp(R + S + · · ·) = Exp(R) + Exp(S) + · · ·

If R, S, . . . are simultaneously measurable then R + S + · · · must be
the ordinary sum (by D). But in general the sum is characterized only in
an implicit way by E, which provides no indication of how one is to proceed
from the measurement instructions for the quantities R, S, . . . to measurement
instructions for the quantity called R + S + · · ·.164

In addition, it must be remarked that we shall admit not only
Exp(R)-functions representing expectation values, but also functions which
correspond to relative values; i.e., , we allow the normalization condition A to
be dropped. If Exp(1) (which is ! 0 by C) is finite and #= 0 this is unimportant,
since for Exp(R)/Exp(1) everything is as before. But Exp(1) = ∞ is an entirely
different matter, and it is to address this issue that we undertake the following
extension of the material developed above. The point at issue is best illustrated
by a simple example. The fact is that there are cases in which it is better
to operate with relative probabilities than with true probabilities—specifically

164 For example, the energy operator

H0 = (Px)2 + (Py)2 + (Pz)2

2m
+ V (Qx, Qy, Qz)

of a (charged) particle moving in a potential field V (x, y, z) (see, for example,
III.6) is a sum of two non-commuting operators

R = (Px)2 + (Py)2 + (Pz)2

2m
, S = V (Qx, Qy, Qz)

While the measurement of the quantity R belonging to R is a momentum
measurement, and that of the S belonging to S is a coordinate measurement,
we measure the R+S belonging to H0 = R+ S in an entirely different way: for
example, by measurement of the frequencies of the spectral lines, since these
lines determine (by reason of the Bohr frequency relation) the energy levels;
i.e., the R + S values. Nevertheless, under all circumstances,

Exp(R + S) = Exp(R) + Exp(S)
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the cases with an infinite total relative probability (Exp(1) is the total
probability). The following is such an example: Let the observed system be
a particle in one dimension, and let its statistical distribution be of such a kind
that it lies with equal probability everywhere in the infinite interval. Then each
finite interval has probability zero, but the equal probability of all places is not
expressed in this way, but rather by the fact that two finite intervals have as their
probability ratio the quotient of their lengths. Since 0/0 has no meaning, this
can be expressed only if we introduce their lengths as relative probabilities. The
total relative probability will then of course be ∞.

Upon consideration of the foregoing, we arrive at the following adjusted
form of our conditions (A′ corresponds to C, B ′ corresponds to B, D, E):

A′. If the quantity R is by nature non-negative (if, for example, it
is the square of another quantity S ) then also Exp(R) ! 0.

B ′. If R, S, . . . are arbitrary quantities and a, b, . . . real numbers,
then

Exp(aR + bS + · · ·) = aExp(R) + bExp(S) + · · ·

We emphasize:

1. So far as concerns the construction of relative probabilities,
Exp(R) and c Exp(R) (here c is any non-negative constant) are
not essentially different from each other.

2. Exp(R) ≡ 0 (for all R) supplies no information, and therefore
this function is excluded.

3. Absolute—i.e., correctly normalized expectation values—exist if
Exp(1) = 1. Exp(1) is in any case non-negative (by A′), and if it is
finite then 1 (with c = 1/Exp(1)) leads to the correct normalization.
The case Exp(R) = 0, as we will show, leads back again to 2, and is
therefore eliminated. For Exp(R) = ∞, however, an essentially
non-normalized (i.e., relative) statistic exists.

We must still return to our definitions ααα, βββ. By 1, M2 can be replaced by
the following simpler condition

M3 Exp(R) = Exp ′(R) + Exp ′′(R)

And in the case of Dis1 it is to be observed that the calculation there presupposes
Exp(R) = 1. For Exp(R) = ∞ the dispersion-free condition cannot be defined,
since it means Exp((R − ρ)2) = 0, where ρ is the absolute expectation value
of R; i.e., Exp(R)/Exp(1), which in this case becomes ∞/∞ and is therefore
meaningless.165 Therefore ααα, βββ are rephrased as follows:

165 For dispersion-free ensembles there is, however, no reason for not
introducing the correct expectation values.
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ααα′. An R-function which is an Exp(R) is said to be dispersion-free
if Exp(R) #= 0 and is finite, so that we can assume Exp(R) = 1 by 1.
Then Dis1 is characteristic.

βββ ′. An R-function which is an Exp(R) is said to be homogeneous
or pure if for it M3 has

Exp′(R) = c ′ Exp(R), Exp′′(R) = c ′′ Exp(R)

as a consequence (here c ′, c ′′ are constants with c ′ + c ′′ = 1 and—
because of A′ and 1, 2—also c ′ > 0, c ′′ > 0).

By reason of A′, B ′ and ααα ′, βββ ′ we are now in position to make a decision
on the question of causality, as soon as we know the physical quantities in S as
well as the functional relationships between them. In the following section this
will be carried out for the relations of quantum mechanics.

As a conclusion to this section, two remarks should be added.

First: one which concerns the case Exp(1) = 0. It follows from B ′ that
Exp(c) = 0. Therefore if a quantity R is always ! c ′ but " c ′′ then (by A′)
Exp(c ′′ −R) ! 0, Exp(R− c ′ ) ! 0 and hence (by B ′)

Exp(c ′) " Exp(R) " Exp(c ′′)

i.e., Exp(R) = 0. Now let R be arbitrary and f1(x), f2(x), . . . a sequence of
bounded functions with

f1(x) + f2(x) + · · · = 1

(An example:

f1(x) = sin x
x

, fn(x) = sin nx
nx

− sin(n − 1)x
(n − 1)x

with n = 2, 3, . . . .) Then Exp(fn(R)) = 0 for n = 1, 2, . . . , and therefore (by B ′)
we also have Exp(R) = 0. Consequently, Exp(1) = 0 is excluded by 2, according
to the proposition stated previously.

Second: it is remarkable that, by Dis1,

Exp(R2) = [Exp(R)]2

is characteristic for the dispersion-free case, although in this case

Dis2 Exp(f(R)) = f(Exp(R))

must hold for each function f(x), since Exp(R) is simply the value of R, and
Exp(f(R)) the value of f(R). Dis1 is a special case of Dis 2: f(x) = x2, but how
is it that this suffices? The answer is the following: If Dis 2 holds for f(x) = x2

it holds of itself for all f(x). One would even be able to replace x2 by any other
continuous and convex function of x (i.e., one for which f(x+y

2 ) < 1
2 [f(x)+f(y)]

for all x #= y). We do not enter into the proof.
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2. PROOF OF THE STATISTICAL FORMULAS

There corresponds to every physical quantity of a quantum mechanical
system a unique hypermaximal Hermitian operator, as we know (see, for
example, the discussion in III.5), and it is convenient to assume that this
correspondence is one-to-one; i.e., that actually every hypermaximal operator
corresponds to a physical quantity. (We made occasional use of this presumption
in III.3). Granted the validity of that assumption, the following rules are valid
(see F, L in III.5, as well as the discussion at the end of IV.1):

I. If the quantity R has the operator R then the quantity f(R) has
the operator f(R).

II. If the quantities R, S, . . . have the operators R, S, . . . then the
quantity R+S+· · · has the operator R+ S+· · · . (The simultaneous
measurability of R, S, . . . is not assumed: see previous discussion
of this point.)

A′, B ′, ααα ′, βββ ′, I and II provide the mathematical basis of our analysis.

Let φ1, φ2, . . . be a complete orthonormal basis. We look—instead of to
operators R themselves—to their matrix elements aµν = (Rφµ, φν) with respect
to that basis. We define Hermitian operators U(n), V(mn), W(mn) in terms of
their matrix elements:

e(n)
µν =

{ 1 for µ = ν = n
0 otherwise

f (mn)
µν =

{ 1 for µ = m, ν = n
1 for µ = n , ν = m
0 otherwise

g(mn)
µν =

{+i for µ = m, ν = n
−i for µ = n , ν = m
0 otherwise

which entail
U(n) = P[φn]

V(mn) = P[φm+φn√
2

] − P[φm−φn√
2

]

W(mn) = P[φm+ iφn√
2

] − P[φm− iφn√
2

]

The corresponding quantities will be denoted U (n), W (mn), U (mn). Evidently
(because anm = āmn)

aµν =
∑

n

anne(n)
µν +

∑
Re(amn)f (mn)

µν +
∑

Im(amn)g(mn)
µν

m,n
m<n

m,n
m<n

Therefore

R =
∑

n

annU (n) +
∑

Re(amn)V (mn) +
∑

Im(amn)W (mn)

m,n
m<n

m,n
m<n
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and because of II, B ′

Exp(R) =
∑

n

ann Exp(U (n)) +
∑

Re(amn)Exp(V (mn))

m,n
m<n

+
∑

Im(amn)Exp(W (mn))
m,n
m<n

Therefore if we set

µnn = Exp(U (n))

µmn = 1
2Exp(V (mn)) + i 1

2Exp(W (mn))

µnm = 1
2Exp(V (mn)) − i 1

2Exp(W (mn))

}
: m < n

we obtain
Exp(R) =

∑

m,n

µnmamn

Since µmn = µ̄nm we can define a Hermitian operator U by (Uφm, φn) = µmn,166
and the right side of the preceding equation becomes Tr(UR) (see II.11). We are

166 That is,
Uφm =

∑

n

µmnφn

where the finiteness of
∑

n |µmn|2 is of course necessary. This can be established
in the following way: If

∑
n |xn|2 = 1 then R = P[φ] has the matrix x̄µxν for

φ =
∑

n xnφ, and its R has the expectation value
∑

m,n µnmx̄mxn. Because of

P[φ] = P2
[φ], I − P[φ] = (I − P[φ])

2

this is ! 0 and " Exp(1), therefore ! 0 and " 1 at least for normalized Exp(R).
If xN+1 = xN+2 = · · · = 0, this means that the N -dimensional Hermitian form

N∑

m,n=1

µnmx̄mxn

has values ! 0 but " 1 for
∑N

n=1 |xn|2 = 1; i.e., that the eigenvalues of the
matrix µρσ (ρ, σ = 1, 2, . . . , N) are ! 0 but " 1. Therefore the length of the
vector

ym =
N∑

n=1

µmnxn

is always " that of the vector xm. For

xm =
{ 1 for m = m̄

0 otherwise
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led thus to the formula

Tr Exp(R) = Tr(UR)

U is a Hermitian operator167 independent of R, and is therefore determined by
the ensemble itself.

With regard to II, Tr satisfies B ′ for every choice of U: therefore we have
only to determine what limitation A′ imposes upon U.

If ‖φ‖ = 1 but is otherwise arbitrary, then R2 = R for the quantity R
belonging to P[φ] because of P2

[φ] = P[φ] and I. Therefore, by A′, Exp(R) ! 0.
Consequently Tr(UP[φ]) = (Uφ, φ) ! 0. If f is arbitrary then, for f #= 0, φ can
be written f/‖f‖, giving (Uφ, φ) = (Uf, f)/‖f‖2. Hence (Uf, f) ! 0; for f = 0
this holds automatically. Consequently U is definite. But the definiteness of U,
which thus follows from A′, is also sufficient for the validity of A′.

Indeed, A′ asserts that each Exp(S 2) ! 0 and no more. Because if R
admits only of non-negative values then for f(x) = |x| one has f(R) = R.
And since (g(x))2 = f(x) identically for g(x) =

√
|x| one has (g(R))2 = f(R),

R = S2, S = g(R).168 Hence we must prove only this: If S is the operator
belonging to S then Tr(US2) ! 0. Now S2 is definite ((S2f, f) = (Sf, Sf) ! 0).
Therefore if we write A, B in place of U, S2 the problem reduces to proof of the
following theorem: If A, B are Hermitian and definite then Tr(AB) ! 0. But we

we have ym = µmm̄ and therefore

N∑

m=1

|xm|2 !
N∑

m=1

|ym|2, 1 !
N∑

m=1

|µmm̄|2

Since this holds for each N ,
∑

n |µm̄n|2 " 1.
167 The whole argument is rigorous only if all φ1, φ2, . . . belong to the domain
of R. Now for each R one can find such a complete orthonormal set φ1, φ2, . . .
(see II.11), but if R does not have meaning everywhere then this set depends
upon R. Actually, therefore, for each complete orthonormal set φ1, φ2, . . . we
have a U dependent upon this set, such that Exp(R) = Tr(UR) need be valid
only for those R to whose domain the φ1, φ2, . . . belong.

However, all these U are equal to one another. Because if U′ and U ′′ are
two such then the above formula holds for both, provided that R has meaning
everywhere, for in that case Tr(U′R) = Tr(U′′R). For R = P[φ] therefore
(U′φ, φ) = (U′′φ, φ), ((U′−U′′)φ, φ) = 0. Since this holds for all φ with ‖φ‖ = 1,
and therefore for all elements of the Hilbert space, U′ − U′′ = O, and therefore
U′ = U′′.
168 We cannot substitute S =

√
R directly (i.e., S = h(R), h(x) =

√
x )

because we only consider real-valued functions defined for all real x, and
√

x is
not such a thing, since it is imaginary for negative x.
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have proved this in II.11 by use of a general theorem on definite operators (see
Note 114).169

Thus have we determined the functions Exp(R) completely; they
correspond to the definite Hermitian operator U, and the connection is given by
Tr. We shall call U the statistical operator of the ensemble under consideration.

The points 1, 2, 3 in IV.1 are now easy to discuss. These are the results:

1. From the standpoint of relative probabilities and expectation
values, U and cU (c any positive constant) are not essentially
different from each other.

2. U = O supplies no information, and is therefore to be excluded.

3. Absolute (which is to say: correctly normalized) probabilities
and expectation values are obtained if TrU = 1. So long as TrU is
finite we can normalize by multiplication with c = 1/TrU, according
to 1. (Because of the definiteness of U, TrU ! 0. But actually
TrU > 0, since it follows from TrU = 0 that U = O, as was shown
at the end of IV.1 in the general case; in our case this also follows
from II.11; this is the case excluded by 2 .) It is only when TrU is
infinite that relative probabilities and expectation values become
essential.

Finally we must investigate ααα,βββ from IV.1; i.e., we must identify the
dispersion-free and homogeneous ensembles among the U.

First we consider the dispersion-free ensembles. For them we are obliged
to assume that U is correctly normalized (see IV.1) and that it is invariably true
that Exp(R2) = [Exp(R)]2; i.e., Tr(UR2) = [Tr(UR)]2. For R = P[φ] one has

169 It is also possible to give a simple direct proof. Let φ1, φ2, . . . be a complete
orthonormal set, aµν = (Aφµ, φν), bµν = (Bφµ, φν), Tr(AB) =

∑
µ,ν aµνbνµ.

The trace Tr(AB) is ! 0 if
∑N

µ,ν=1 aµνbνµ ! 0. If f =
∑N

µ=1 xµφµ then

(Af, f) =
∑N

µ,ν=1 aµνxµx̄ν ! 0, (Bf, f) =
∑N

µ,ν=1 bµνxµx̄ν ! 0

and therefore the finite matrices aµν , bµν (µ, ν = 1, 2, . . . , N) are also definite.
Now both the definiteness and the value of

∑N

µ,ν=1 aµνbνµ are orthogonally
invariant in N -dimensional space; since bµν is Hermitian it can (in N-space) be
brought to diagonal form by an orthogonal transformation. We may therefore
assume it to be diagonal in the first place; i.e., bµν = 0 for µ #= ν. Then

∑N

µ,ν=1 aµνbνµ =
∑N

µ=1 aµµbµµ

Because of the definiteness of both matrices aµµ ! 0 and bµµ ! 0 (we set

xν =
{

1 for ν = µ
0 for ν #= µ

) and this implies that the above sum is ! 0.

 EBSCOhost - printed on 2/13/2023 10:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



2. Proof of the Statistical Formulas 209

R2 = R = P[φ], Tr(UP[φ]) = (Uφ, φ) and therefore (Uφ, φ) = (Uφ, φ)2, so
(Uφ, φ) = 0 or (Uφ, φ) = 1. If ‖φ′‖ = ‖φ′′‖ = 1 then we can vary φ continuously
so that it begins at φ ′, ends at φ ′′, and at all intermediate points satisfies
‖φ‖ = 1.170 Clearly, (Uφ, φ) also varies continuously, and—since it can be
only 0 or 1—it is constant. Therefore (Uφ ′, φ ′) = (Uφ ′′, φ ′′). Consequently,
(Uφ, φ) is either always 0 or always 1, from which we obtain U = O or U = I,
respectively. U = O is excluded by 2, while U = I cannot be normalized:

Tr(I) = dimension of the space = ∞

So (as we can also see directly) U = I is not dispersion-free. Consequently there
can exist no dispersion-free ensembles.

Let us now look to the homogeneous (or pure) case. By βββ and Tr, U is
homogeneous if from

U = V + W

(here V and W are, like U, Hermitian and definite) it follows that V = c ′U and
W = c ′′U.171 We assert that this property holds for U = P[φ] (‖φ‖ = 1) and
only for these.

First, let U have the property mentioned. Because U #= O there is an
f0 with Uf0 #= 0; therefore f0 #= 0 and consequently (Uf0, f0) > 0 (see II.5,
theorem 19). We introduce Hermitian operators V, W by describing their
defining action:

Vf = (f,Uf0)
(Uf0, f0)

· Uf0, Wf = Uf − Vf

Then
(Vf, f) = |(f,Uf0)|2

(Uf0, f0)
! 0

(Wf, f) = (Uf, f)(Uf0, f0) − |(f, Uf0)|2
(Uf0, f0)

! 0

170 This is clear for φ′ = φ′′ so let us suppose that φ′ #= φ′′. “Orthogonalization”
of φ′, φ′′ leads to a φ⊥ which is orthogonal to φ′ and such that φ′′ can be
developed as a linear combination of φ′, φ⊥:

φ′′ = aφ′ + bφ⊥, ‖φ′′‖2 = |a|2 + |b|2 = 1

Let |a| = cos θ, |b| = sin θ. Then a = eiα cos θ, b = eiβ sin θ and if we now
define

a(x) = eixα cos(xθ), b(x) = eixβ sin(xθ), φ(x) = a(x)φ′ + b(x)φ⊥

we have |a(x)|2 + |b(x)|2 = 1, ‖φ(x)‖ = 1 and observe that φ(x) varies
continuously from φ′ (at x = 0) to φ′′ (at x = 1).
171 Actually, because of 2, we should require that V #= O, W #= O. The cases
V = O or W = O are, however, included with c ′ = 0, c ′′ = 1 or c ′ = 1, c ′′ = 0
respectively.
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(see again II.5, theorem 19); i.e., V, W are definite, and furthermore U = V+W.
Therefore V = c ′U and, because Vf0 = Uf0 #= 0, c ′ = 1; i.e., U = V. If we now
set

φ = 1
‖Uf0‖

· Uf0

(which entails ‖φ‖ = 1) and

c = ‖Uf0‖2

(Uf0, f0)

(which entails c > 0) we obtain Uf = Vf = c(f, φ)φ = cP[φ]f , which (by 1)
gives U = cP[φ] : U is essentially P[φ].

Conversely, let it be assumed that U = cP[φ] with ‖φ‖ = 1. If U = V + W
and V, W are definite then it follows from Uf = 0 that

0 " (Vf, f) " (Vf, f) + (Wf, f) = (Uf, f) = 0

whence (Vf, f) = 0 and therefore that Vf = 0 (see above). But Uf = cP[φ]f = 0
follows from and implies (f, φ) = 0 which—as we have just seen—implies also
Vf = 0. Therefore for each g, (f,Vg) = (Vf, g) = 0. That is: everything which
is orthogonal to φ is orthogonal also to Vg, and consequently Vg = cg ·φ (where
cg is a number dependent upon g). But of this general fact we will use only the
case g = φ; i.e., Vφ = c ′φ. Each f has the form (f, φ) · φ + f⊥, where f⊥ is
orthogonal to φ. Therefore

Vf = (f, φ) · Vφ + Vf⊥ = (f, φ) · c ′φ = c ′P[φ]f = c ′Uf

Consequently V = c ′U, W = U − V = (1 − c ′)U, and the proof is complete.

So homogeneous ensembles correspond to cases of the type U = P[φ] with
‖φ‖ = 1, and for such ensembles Tr gives back the formula E2 of III.1:

E2 Exp(R) = Tr(P[φ]R) = (Rφ, φ)

It should be observed that Exp(1) = Tr(P[φ]) = 1 (because P[φ] belongs to
the one-dimensional space [φ], or by E2); i.e., the present form of U is correctly
normalized. Finally, we inquire into when P[φ] and P[ψ] have the same statistics;
i.e., when P[φ] = cP[ψ] (c a positive constant: see 1). From Tr(P[φ]) = Tr(P[ψ]) = 1
we have c = 1 whence P[φ] = P[ψ]. So the spaces [φ ] and [ψ ] are identical, and
therefore φ = aψ. It follows from ‖φ‖ = ‖ψ‖ = 1 that the constant a has
|a| = 1. This is also clearly sufficient.

Assembling these results, we can say: There are no ensembles which are
free from dispersion. There are homogeneous ensembles, and these correspond
to U = P[φ], ‖φ‖ = 1 and only to these. For these U, Tr goes over into E2,
the normalization is correct and U does not change if φ is replaced by aφ
(a constant with |a| = 1), but every other change of φ changes U in an essential
way (see 1). The homogeneous ensembles therefore correspond to the states of
quantum mechanics as these were characterized earlier: the φ of Hilbert space,

 EBSCOhost - printed on 2/13/2023 10:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



2. Proof of the Statistical Formulas 211

with ‖φ‖ = 1, in which a constant factor of absolute value 1 is unimportant
(see, for example, II.2), and the statistical assertions are made by E2.172

We have arrived at all these results from the purely qualitative conditions
A′, B ′, ααα ′, βββ ′, I and II.

Hence, within the limits defined by our conditions, the decision is made,
and it is against causality, because all ensembles—even homogeneous ensembles
—have dispersion.

Still be discussed is the question of “hidden parameters,” brought up
in III.2; i.e., the question as to whether the dispersions of the homogeneous
ensembles characterized by the wave functions φ (i.e., by E2) may be due to the
circumstance that these are not the real states, but only mixtures of several
states, and that to describe the actual state additional data—besides the data
supplied by the wave function φ—is necessary (these would be the “hidden
parameters”), and that all that data together would determine everything
causally; i.e., would lead to dispersion-free ensembles. The statistics of the
homogeneous ensemble (U = P[φ], ‖φ‖ = 1) would then have resulted from
averaging over all the actual states of which it is composed; i.e., by averaging
over the values of the “hidden parameters” which are involved in those states.
But this is impossible for two reasons: First, because then the homogeneous
ensemble in question could be represented as a mixture of two different
ensembles,173 contrary to its definition. Second, because the dispersion-free
ensembles, which would have to correspond to the “actual” states (i.e., which
consist only of systems in their own “actual” states) do not exist. It should
be noted that we need not go any further into the mechanism of the “hidden
parameters,” since we now know that the established results of quantum
mechanics can never be re-derived with their help. In fact, we have even
established that it is impossible for the same physical quantities to exist with
the same functional connections (i.e., for I and II to hold) if other variables
(i.e., “hidden parameters”) exist in addition to the wave functions.

Nor would it help if there existed other, as yet undiscovered, physical

172 The deductions given in the last two sections, which lead to the concept of
the homogeneous ensemble, were given by the author, Gött. Nachr. 1927. The
existence of homogeneous ensembles and their relation to general ensembles
was discovered independently by H. Weyl, Z. Phys. 47 (1927) and the author
(reference cited above). A special case of the more general ensembles (namely,
for two coupled systems: see the discussion in VI.2) was produced by L. Landau,
Z. Physik 45, (1927).
173 If the “hidden parameters”—the totality of which we shall denote by π
—take on only discrete values π1, π2, . . . , πn (n > 1) we obtain two ensembles,
whose superposition is the original one, by assuming the systems with π = π1

are in one, and the systems with π #= π1 in the other. If π varies continuously
over a region Π, then let Π′ be a sub-region of Π; the first sub-ensemble would
then contain systems with π from Π′, and the other those systems whose π does
not belong to Π′.
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quantities in addition to those represented by the operators in quantum
mechanics because the relations assumed by quantum mechanics (i.e., I and
II) would have to fail already for the by-now-known quantities—those that
we discussed above. It is therefore not, as is often assumed, a question of
the reinterpretation of quantum mechanics—the present system of quantum
mechanics would have to be objectively false for a description other than the
statistical description of elementary processes to be possible.

The following circumstance is also worthy of mention. The indeterminacy
relations have at first glance a certain similarity to the basic postulate of
relativity theory. There it is maintained that it is impossible in principle to
determine the simultaneity of two events occurring at points a distance r apart
more precisely than within a time interval of magnitude r/c (c is the velocity of
light), while the indeterminacy relations assert that it is impossible in principle
to give the position of a material point in phase space more precisely than with a
region of volume (1

2!)3.174 Nevertheless there exists a fundamental difference.
Relativity theory denies the possibility of an objective, precise measurement
of distant simultaneity. But in spite of this, with the introduction into the
world of a Galilean reference frame it does become possible to construct a
simultaneity definition that is in reasonable accord with our normal concepts
on this subject. An objective meaning will not be attributed to such a definition
of distant simultaneity only because such coordinate systems can be chosen in
an infinite number of different ways, so that infinitely many distant simultaneity
definitions can be obtained, all of which are equally good. So the impossibility of
measurement hinges in this instance on the existence of an infinite multiplicity
of possible theoretical definitions. It is otherwise in quantum mechanics, where
it is in general not possible to describe the wave function φ by points in phase
space, not even if we introduce new (hypothetical, unobserved) coordinates—
the “hidden parameters”—since this would lead to dispersion-free ensembles.
That is: not only is the measurement impossible, so also is any reasonable
theoretical definition; i.e., any definition which, although not susceptible to
experimental proof, lies beyond the reach also of experimental refutation. The
principle of impossibility of measurement thus arises in one case from the fact
that there are an infinite number of ways in which the relevant concepts can
be defined without conflicting with experience (or with the general, basic
assumptions of the theory)—while in the other case no way exists at all.

To summarize, the position of causality in modern physics can therefore
be characterized as follows: In the macroscopic case there is no experimental

174 The phase space is 6-dimensional: its six coordinates are the three cartesian
coordinates q1, q2, q3 of the mass particle and the three corresponding momenta
p1, p2, p3. By III.4 we have for the relative dispersions ε1, ε2, ε3, η1, η2, η3

ε1η1 ! 1
2!, ε2η2 ! 1

2!, ε3η3 ! 1
2!

i.e., ε1ε2ε3η1η2η3 ! ( 1
2!)3, which sets a universal limit on the precision with

which position in the phase space of classical mechanics can be known.
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evidence which supports it, and none can be devised because the apparent causal
order of the world at large (i.e., for objects visible to the naked eye) has certainly
no other cause than the “law of large numbers” and is completely independent
of whether the natural laws governing elementary processes are causal or not.175
That macroscopically identical objects exhibit identical behavior has little to
do with causality: they are in fact not equal at all, since the coordinates that
determine the states of their atoms almost never coincide exactly, and the
macroscopic method of observation averages over these coordinates (here they
are the “hidden parameters”). The number of these coordinates is, however,
very large (for one gram of matter, about 1025), and therefore the above-
mentioned averaging process entails an extensive diminution of all dispersions,
according to the well-known laws of the calculus of probability. (Naturally, this
is true only in typical cases; in suitable special cases—such as Brownian motion,
systems in unstable states, among others—this apparent macroscopic causality
fails.) The question of causality could be put to a true test only in the atom,
in the elementary processes themselves, and here everything in the present
state of our knowledge militates against it. The only formal theory existing
at the present time which orders and summarizes our experiences in this area
in a half-way satisfactory manner—i.e., quantum mechanics—is in compelling
logical contradiction with causality. Of course, it would be an exaggeration to
maintain that causality has thereby been done away with: quantum mechanics
has, in its present form, several serious lacunae, and it may even be that
it is false, although this latter possibility is highly unlikely in view of the
theory’s startling capacity in the qualitative explanation of general problems,
and the quantitative success of calculations relating to special problems. In
spite of the fact that quantum mechanics agrees well with experiment, and
that it has opened up for us a qualitatively new side of the world, one can
never say of the theory that it has been proved by experience, but only that
it the best known summarization of experience. However, mindful of such
precautions, we may still say that there is at present no occasion and no reason
to speak of causality in nature. Because no experiment indicates its presence:
the macroscopic are unsuitable in principle, while the only known theory which
is compatible with our experiences relative to elementary processes—quantum
mechanics—contradicts it.

To be sure, we are dealing with an age-old way of thinking that has been
embraced by all mankind. But that way of thinking does not arise from logical
necessity (else it would not have been possible to build a statistical theory),
and anyone who enters the subject without preconceived notions has no reason
to adhere to that way of thinking. Under such circumstances, is it reasonable
to sacrifice a reasonable physical theory for the sake of an unsupported idea?

175 See the extremely lucid discussions of Schrödinger on this subject:
Naturwiss. 17 (1929), page 37.
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3. CONCLUSIONS FROM EXPERIMENTS

The last section taught us that the most general statistical ensemble which
is compatible with our qualitative basic assumptions is characterized, according
to Tr, by a definite operator U. Those particular ensembles which we have called
“homogeneous” were characterized by U = P[φ] (‖φ‖ = 1), and since these are
the actual states of the systems S (i.e., not capable of further resolution) we
also call them states (specifically, U = P[φ] is the state φ).

If U has a pure discrete spectrum, perhaps with eigenvalues w1, w2, . . .
and eigenfunctions φ1, φ2, . . . (which form a complete orthonormal set) then
(see II.8)

U =
∑

n

wnP[φn]

Because of the definiteness of U, all wn ! 0 (indeed Uφn = wφn, therefore
(Uφn, φn) = wn and therefore (Uφn, φn) ! 0) and

∑
n wn =

∑
n(Uφn, φn) = TrU

(see also the beginning of IV.1); that is,
∑

n wn = 1 if U is correctly normalized.
By the remarks at the beginning of IV.1, U can be interpreted as a superposition
of the states φ1, φ2, . . . with the respective relative weights w1, w2, . . . and if U
is correctly normalized then these are also the absolute weights.

But a correctly normalized U (i.e., one with TrU = 1) is totally continuous
(by II.11; see in particular Note 115), and therefore has a pure discrete spectrum.
The same is true if TrU is finite. (An infinite TrU can be regarded as a limiting
case which we shall not go into here.) In the really interesting case, therefore,
the observed ensemble can be represented as a superposition of states, which
we have actually chosen to be pair-wise orthogonal. We are led thus to call
general ensembles mixtures (in contrast to the homogeneous ensembles, which
are states).

If all the eigenvalues of U are simple (i.e., if all the w1, w2, . . . are different
from each other) then, as we know, the φ1, φ2, . . . are uniquely determined
except for constant factors of absolute value 1. The corresponding states
(and the P[φ1], P[φ2], . . .) are then uniquely determined. Likewise, the weights
w1, w2, . . . are uniquely determined, except for a permutation of the sequence.
In this case, therefore, we can state uniquely from which (pair-wise orthogonal)
states the mixture U is formed. If U has multiple eigenvalues (“degeneracies”),
however, the situation is quite different. Exactly how the φ1, φ2, . . . can be
chosen was discussed in II.8. This can be done in infinitely many ways, all
essentially different (while the w1, w2, . . . are still uniquely determined). We
must write down those among the w1, w2, . . . which are different from one
another and then form the closed linear manifolds Mw′ ,Mw′′ , . . . associated
with each of the distinct weights w ′, w ′′, . . . (thus Mw′ contains all solutions
of Uf = w ′f). After this we proceed in the following manner: From each
Mw′ , Mw′′ , . . . choose an arbitrary orthonormal set spanning that manifold:
χ1

′, χ2
′, . . . ; χ1

′′, χ2
′′, . . . ; . . . respectively. The χ1

′, χ2
′, . . . ; χ1

′′, χ2
′′, . . . ; . . . are
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the φ1, φ2, . . . and the corresponding eigenvalues w ′, w ′, . . . ; w ′′, w ′′, . . . ; . . .
are the w1, w2, . . . . When Mw has more than one dimension (i.e., when w is
degenerate) the corresponding χ1, χ2, . . . are no longer determined to within a
constant factor of unit absolute value (χ1, for example, can be any normalized
element of Mw); i.e., the states themselves are also multivalued.

This phenomenon can also be formulated as follows: If the states χ1, χ2, . . .
are pair-wise orthogonal (i.e., the χ1, χ2, . . . form an orthogonal set, which may
be finite or infinite), and if we mix them in such a way that all get the same
weight (i.e., the relative weights are 1 : 1 : · · ·), then the resulting mixture
depends only upon the closed manifold M which is spanned by the χ1, χ2, . . . .
In fact,

U = P[χ1]
+ P[χ2]

+ · · · = PM

If the number of the χ1, χ2, . . . is finite (say s : χ1, . . . , χs) then this U can be
considered to be a mixture of all the normalized elements of M; i.e., of all the
states in M. These are the states

χ = x1χ1 + x2χ2 + · · · + xsχs : |x1|2 + |x2|2 + · · · + |xs|2 = 1

Actually, if we write x1 = u1 + iv1, . . . , xs = us + ivs then

|x1|2 + · · · + |xs|2 = u2
1 + v2

1 + · · · + u2
s + v2

s = 1

describes the (2s−1)-dimensional surface K of a unit sphere in 2s-space, and
for

U ′ =
∫∫

· · ·
∫∫

K
P[χ]dΩ : dΩ denotes the differential surface element

we have

(U ′f, g) =
∫∫

· · ·
∫∫

K
(P[χ]f, g)dΩ

=
∫∫

· · ·
∫∫

K
(f, χ)(g, χ)dΩ

=
∫∫

· · ·
∫∫

K

(
f,

∑s
µ=1(uµ + ivµ)χµ

)(
g,

∑s
ν=1(uν + ivν)χν

)
dΩ

=
∫∫

· · ·
∫∫

K

s∑

µ,ν=1

(f, χµ)(g, χν)(uµ − ivµ)(uν + ivν)dΩ

=
s∑

µ,ν=1

(f, χµ)(g, χν) ·
∫∫

· · ·
∫∫

K

[
(uµuν + vµvν) + i(uµvν − uνvµ)

]
dΩ

All the uµvν and uνvµ-integrals, as well as all uµuν and vµvν-integrals with
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µ #= ν, vanish by symmetry,176 while in the cases µ = ν all of the latter integrals
have value C/2s (C > 0).176 Therefore

(U ′f, g) = C
s

s∑

µ=1

(f, χµ)(g, χµ)

= C
s

s∑

µ=1

(P[χµ]f, g) =
({

C
s

s∑

µ=1

P[χµ]

}
f, g

)

Consequently

U ′ = C
s

s∑

µ=1

P[χµ] = C
s · U

i.e., U ′ and U are not essentially different.

These results are of such great significance to the nature of quantum
statistics that we shall repeat them:

1. If a mixture is made up of mutually orthogonal states with
exactly equal weights, then it can no longer be determined what
these states were. Or—equivalently—we can produce the same
mixture from different (mutually orthogonal) components by again
mixing in exactly equal proportions.

2. The mixture so obtained is—if the number of states is finite—
identical to the mixture of all states which are linear combinations
of these components.

The simplest example of this type is the following: If we mix φ, ψ (orthogonal)
in the proportion 1 : 1 then we obtain the same result as if we were to mix (for
example)

φ + ψ√
2

,
φ − ψ√

2

in the proportion 1 : 1 or even all xφ + yψ (|x|2 + |y|2 = 1). If we mix two
non-orthogonal φ, ψ (in a proportion possibly different from 1 : 1) then we
are still less able to determine the composition of the final mixture, since this

176 uµ → −uµ (similarly uν → −uν and vµ → −vµ) is a symmetry operation
of K in which the former integrands change their signs, and their integrals
are therefore equal to zero. On the other hand, uµ ↔ vµ and uµ ↔ uν are
symmetry operations of K in which the latter integrals are interchanged; their
integrals are therefore equal and hence equal to 1

2s times their sum:
∫∫

· · ·
∫∫

K

(
u2

1 + v2
1 + · · · + u2

s + v2
s

)
dΩ =

∫∫
· · ·

∫∫

K
dΩ

= surface area of K

which we will agree to call C.
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mixture certainly could have been obtained also by mixing orthogonal states.

We postpone further investigation into the nature of mixtures until the
thermodynamic discussions in V.2 and thereafter.

The formula Tr in IV.2 states how the expectation value of the quantity
R with the operator R is to be calculated in a mixture with the statistical
operator U: it is Tr(UR). The probability therefore that the value a of R lies in
the interval a ′< a " a ′′ (a ′, a ′′ given, a ′< a ′′) is to be found as in III.1 or III.5 :
If the quantity F (R) is formed with the function

F (x) =
{ 1 for a ′< x " a ′′

0 otherwise

then its expectation value is the probability mentioned. Now F (R) has (by I in
IV.2) the operator F (R), and if E(λ) is the resolution of the identity belonging
to R, then—as we have calculated more than once—F (R) = E(a ′′)− E(a ′) and
the desired probability is w(a ′, a ′′) = TrU[E(a ′′) − E(a ′)]. Consequently the
probability function which describes the statistics of R is w(a) = TrUE(a) (see
IV.1, Note 175; for states, i.e., for U = P[φ], we again have w(a) = TrP[φ]E(a) =
(E(a)φ, φ)). Naturally these probabilities are only relative if U is not correctly
normalized.

The question as to when the quantity R with operator R, in a mixture
with the statistical operator U, takes on the value λ∗ with certainty can be
answered directly with the aid of w(a): for a < λ∗ we must require w(a) = 0,
and for a ! λ∗ we must require w(a) = 1 or—if U is not correctly normalized—
w(a) = Exp(1) = TrU. That is, TrUE(a) = 0 for a < λ∗, TrU[I − E(a)] = 0 for
a ! λ∗.177 Now for definite operators A, B the equation TrAB = 0 has AB = O
as a consequence (see II.11), and therefore

UE(a) =
{

O for a < λ∗

U for a ! λ∗

or, what is equivalent, E(a)U = O or U respectively, since the factors must
commute because of the Hermitian nature of the product. That is, for f = Ug

E(a)f =
{

0 for a < λ∗

f for a ! λ∗

and by the discussion presented in II.8 this means that Rf =λ∗f ; i.e., RUg =λ∗U
identically in g. Consequently, the ultimate condition is RU = λ∗U. Or, if we

177 If TrU is infinite the latter formulas, obtained by subtractions, may appear
doubtful. They can, however, be established as follows: That R has the value λ∗

means that w(a ′, a ′′) = 0; i.e., TrU[E(a ′′) − E(a ′)] = 0 for a ′′< λ∗ or a ′ ! λ∗.
Since this trace is always ! 0, and since it is monotone increasing with a ′′

as well as monotone decreasing with a ′ it suffices to consider the lim
−∞←a′′

for

a ′′< λ∗ and the lim
a′→+∞

for a ′ ! λ∗. That is, TrU[I− E(a ′)] = 0 for a ′ ! λ∗ and

TrUE(a ′′) = 0 for a ′′< λ∗.
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denote by M the closed linear manifold formed by all solutions h of Rh = λ∗h :
Uf always lies in M.

This same result could also have been obtained from the vanishing of the
dispersion; i.e., the (possibly relative) expectation value of (R− λ∗)2.

In III.3 we answered the following questions (let R, S, . . . be physical
quantities, R, S, . . . their respective operators):

1. When is R measurable with absolute precision? answer:
Whenever R has only a discrete spectrum.

2. When are R, S measurable simultaneously with absolute
precision? answer: Whenever R, S have only a discrete spectra
and commute.

3. When are several quantities R, S, . . . measurable simultaneously
with absolute precision? answer: Whenever R, S, . . . have only a
discrete spectra and all commute.

4. When are several quantities R, S, . . . measurable simultaneously
with arbitrary precision? answer: Whenever R, S, . . . all commute.

In the latter case we used the following principle, abstracted from the result
of the Compton-Simons experiment:

M. If the physical quantity R is measured twice in prompt succession
in a system S then we get the same value each time. This is the case
even though R may have non-zero dispersion in the original state of
S, and even though the R-measurement can change the state of S.

We have discussed the physical meaning of M in detail in III.3. Further
assumptions drawn upon in constructing answers to 1–4 were: the statistical
formula E2 of III.3 for states; the assumption F of III.3, according to which F (R)
has the operator F (R) if R has the operator R; the assumption according to
which R+S has the operator R+S if the (simultaneously measurable) quantities
R, S have the respective operators R, S.

Since these three assumptions are again at our disposal (the first follows
from the formula Tr in IV.2, the other two correspond to I, II in IV.2) and M must
also be assumed to correct—because we have perceived that it is indispensable
to the conceptual structure of quantum mechanics—the proofs given in III.3 for
1–4 also hold here. The answers given are therefore again correct.

In III.5 we investigated physical quantities which take only two values:
0, 1. Those quantities stood in unique correspondence with the “properties” E.
Indeed, if E is given then the quantity could be defined like this: it is measured
by distinguishing whether the property E is present or not, and its value is 1 or
0 respectively. Conversely, if the quantity was given, then E was this property:
the quantity in question has the value 1 (i.e., not 0). From F in III.5 (i.e., from
I in IV.2) it followed that the corresponding operators E are actually and
invariably projections. The probability therefore that E be present was equal to
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the expectation value of the quantity defined above. In III.5 it was
calculated only for states (i.e., for cases of the type U = P[φ], ‖φ‖ = 1), but we
can determine it in general from Tr: it is Tr UE. (Relative! The absolute value
is obtained only if U is correctly normalized; i.e., if Tr U = 1.)

Since we have made certain of 1–4, the statements derived from them—
namely ααα– ζζζ in III.5—are likewise valid. Of course, it should be observed that
in the former case ααα gave information only for states, but here we state the
extension that pertains to all mixtures:

ααα ′) The property E is present or not present in the mixture with
the statistical operator U with the respective probabilities

Tr(UE) and Tr(U(I − E]))

(Relative probabilities! These are absolute only if U is correctly
normalized: Tr U = 1.)

If several quantities R1, . . . ,R' are investigated, and if they correspond
respectively to operators R1, . . . ,R' that have the respective resolutions of the
identity E1(λ), . . . ,E'(λ); if, moreover, - intervals

I1 : λ′
1 < λ " λ′′

1...
I' : λ′

' < λ " λ′′
'

are given and if
E1(I1) = E1(λ

′′
1) − E1(λ

′
1)

...
E'(I') = E'(λ

′′
' ) − E'(λ

′
')

then the projections E1(I1), E2(I2), . . . ,E'(I') belong (see ζζζ) to the respective
properties

“R1 lies in I1”
“R2 lies in I2”...
“R' lies in I'”

The commutativity of the E1(I1), E2(I2), . . . ,E'(I') is then characteristic
(see γγγ) for these to be simultaneously decidable, and (see εεε) the projection
for their simultaneous validity is E = E1(I1)E2(I2) · · ·E'(I'). The probability of
that composite event is given therefore by Tr(UE) (see ααα ′).

Let us now follow the converse path: Let us assume that we do not know
the state of the system S, but that we have made certain measurements on S

and know the results. In reality, it always happens this way, because we can
learn something about the state of S only from the results of measurements.
The states are only a theoretical construction: only the results of measurements
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are actually available, and the problem of physics is to discover relations
between the results of past and future measurements. To be sure, this is always
accomplished through the introduction of the auxiliary concept of “state,” but
the physical theory must tell us on the one hand how from past measurements
to make inferences about the present state and, on the other hand, how to go
from the present state to the predicted results of future measurements. Up
to now, we have dealt only with the latter question, and we must now apply
ourselves to the former.

If anterior measurements do not suffice to determine the present state
uniquely we may still be able to infer from those measurements—under certain
circumstances—with what probabilities particular states are present. (This
holds in causal theories—for example, in classical mechanics—as well as in
quantum mechanics.) The proper problem is then this: Given certain results of
measurements, find a mixture whose statistics are the same as those which we
would expect for a system S of which we know only that these measurements
were carried out on it and that they had the results mentioned. Of course, we
must actually be more precise: we must indicate what it means to say that
“we know only this, and no more” about S, and how this can lead to a set of
statistics.

In any case, the connection with statistics must be the following: If for
many systems S1

′, . . . ,SM
′ (replicas of S) these measurements give the results

mentioned, then this ensemble [S1
′, . . . ,SM

′ ] coincides in all its statistical
properties with the results of the measurements. That the results of the
measurements are the same for all S1

′, . . . ,SM
′ can be attributed—by M—to

the circumstance that originally a large ensemble [S1, . . . ,SN ] was given in
which the measurements were carried out, and then those elements for which
the desired results occurred were collected into a new ensemble: this is then
[S1

′, . . . ,SM
′ ]. Of course, everything depends upon how [S1, . . . ,SN ] was chosen.

This initial ensemble gives, so to speak, the a priori probabilities of the
individual states of the system S. The whole state of affairs is well known
from general probability theory: to be able to proceed from the results of
measurements to the states; i.e., from effect to cause—i.e., to be able to
calculate a posteriori probabilities—we must know the a priori probabilities.
In general these can be chosen in many different ways, and accordingly our
problem cannot be solved uniquely. However, we shall see that under the special
conditions presented by quantum mechanics, a certain determination of the
initial ensemble [S1, . . . ,SN ] (i.e., of the a priori probabilities) is particularly
satisfactory.

The results are quite different if the results of measurements at our disposal
suffice for us to determine the state of S completely. Then the answer to every
question must be unique. We will soon see how this circumstance makes itself
felt.

Finally, let us mention the following: Instead of saying that several results
of measurements (on S) are known we can say that S was examined in relation
to a certain property E and its presence was ascertained. From ααα– ζζζ we know
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how these things are related: if, for example, the results of (simultaneous)
measurements are available, according to which the values of the quantities
R1, . . . ,R' lie in the respective intervals I1, . . . , I', then (with the symbols used
earlier) the projection operator belonging to the proposition (or property) E is
E = E1(I1)E2(I2) · · ·E'(I').

The information about S always amounts, therefore, to the presence of
a certain property E which is formally characterized by presentation of the
associated projection operator E. Let us investigate the statistical operator U
of the equivalent ensemble [S1

′, . . . ,SM
′ ], as well as the statistical operator U0 of

the general initial ensemble [S1, . . . ,SN ]. What are the mathematical relations
among E, U and U0?

Because of M, E is certainly present in [S1
′, . . . ,SM

′ ]; i.e., the quantity
corresponding to E has the value 1. This means that EU = U, as we saw
at the beginning of this section; i.e., Uf always lies in M, where M is the set
of all f with Ef = f ; i.e., the closed linear manifold belonging to E.

Instead of EU = U we can also write UE = U or U(I − E) = O ; i.e., Ug = 0
for all g = (I−E)f ; i.e., for all g of the closed linear manifold belonging to I−E;
i.e., for all g of R − M. Therefore Uf is equal to 0 for all f of R − M. And for
the f of M, Uf also lies in M. Nothing further can be said about U in this way.

This (essentially, i.e., except for a constant factor) determines U if and
only if M is 0- or 1-dimensional. In fact, for M = [0] we have U = O, which
is impossible (by IV.2, Remark 1). For M = [φ] (φ #= 0, so we may assume
‖φ‖ = 1) we have Uφ = cφ, and therefore for all f of M (since these are
all equal to aφ) Uf = cf . Hence, in general, Uf = UEf = cEf which give
U = cE = cP[φ]. Since c > 0 (because U is definite and #= O) we have essentially
U = E = P[φ]. For dim(M) ! 2 we can choose two orthonormal φ, ψ from
M. Then P[φ], P[ψ] are two essentially different U which satisfy our condition.
Therefore E = O is impossible; for E = P[φ] (‖φ‖ = 1) we have U = E = P[φ];
otherwise U is many-valued.

The fact that E = O is incompatible with finding any U at all would
be disastrous if it were possible for an S to possess such a property E. This,
however, is excluded by ηηη : such an E can never exist; its probability is always 0.
A one-dimensional M—i.e., an E = P[φ] (‖φ‖ = 1)—determines U uniquely
and fixes the state φ. Therefore this is the kind of measurement which—if it
turns out in the affirmative—determines the state of S completely, and in fact
determines it to be φ.178 All other measurements are incomplete, and do not
determine a unique state.
178 That is, if E is present, the state is φ. If it is not present, then “not E”
is present: I − E = I − P[φ] and R − M = R − [φ] appear in place of E = P[φ],
M = [φ]. This does not determine U uniquely. (E corresponds to the question
“Is the state φ?”) A measurement for which each process determines the state
uniquely is a measurement of a quantity R whose operator R has a discrete
spectrum with simple eigenvalues (III.3). After the measurement, one of the
states φ1, φ2, . . . (the eigenfunctions of R) is present; i.e., the state of S is in
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In the general case we proceed as follows: Let the quantity corresponding
to the proposition E also be called E. Then U obtains like this: E is measured
on the whole ensemble ([S1, . . . ,SN ]) of U0, and all the elements for which the
measurement gave 1 are collected, forming the ensemble ([S1

′, . . . ,SM
′ ]) of U.

The measurement of E might be effected in many different ways: for example,
another quantity R, of which E is a known function, E = f(R), could be
measured. To be more specific, let φ1, φ2, . . . be an orthonormal set which
spans M, and let ψ1, ψ2, . . . be a corresponding set for R − M. Then

φ1, φ2, . . . , ψ1, ψ2, . . . spans M + (R − M) = R

i.e., it is complete. Let λ1, λ2, . . . , µ1, µ2, . . . be distinct real numbers, and
define the operator R by

R
(∑

n xnφn +
∑

m ymφm

)
=

∑

n

λnxnφn +
∑

m

µmymψm

R clearly has the pure discrete spectrum λ1, λ2, . . . , µ1, µ2, . . . with respective
eigenfunctions φ1, φ2, . . . , ψ1, ψ2, . . ., and all the eigenvalues are simple. Let
F (x) be any function with

F (λn) = 1 (all λn) : F (µm) = 0 (all µm)

Then F (R) has eigenvalue 1 for φ1, φ2, . . . and therefore for each f of M,
while F (R) has eigenvalue 0 for ψ1, ψ2, . . . and therefore for each f of R − M.
Consequently E = F (R). If R belongs to R then E = F (R). The E-measurement
can therefore be interpreted as an R-measurement.

In this case we can calculate how U0, U are related. According to the
R-measurement each system is in one of the states φ1, φ2, . . . , ψ1, ψ2, . . ., the
particular one depending on which of the values λ1, λ2, . . . , µ1, µ2, . . . was found.
The respective probabilities are

Tr(U0P [φ1]) = (U0φ1, φ1), Tr(U0P[φ2]) = (U0φ2, φ2), . . .

Tr(U0P[ψ1]) = (U0ψ1, ψ1), Tr(U0P[ψ2]) = (U0ψ2, ψ2), . . .

(see the observations of III.3, the validity of which we have established). That
is, these fractions of the U0-ensemble go over into the ensembles

P[φ1], P[φ2], . . . ,P[ψ1], P[ψ2] . . .

Since E = I corresponds to R = λ1, λ2, . . . the U ensemble arises by inclusion of
that first group. Consequently

U =
∑

n

(U0φn, φn)P[φn]

general changed by the measurement. By analogy, the E-measurement also
changes the state, since afterwards, for a positive result, U = P[φ], while for
a negative result U(I − P[φ]) = U, UP[φ] = O (i.e., Uφ = 0), while previously
neither was necessarily the case. This quantum mechanical “determination” of
the state thus alters it, as was to be expected.
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Now each P[φn] commutes with R,179 and therefore it must also commute
with U. That is, if U does not commute with each R arising in the manner
described above then certain measurement processes (namely, those depending
on the corresponding R) are eliminated from U0 in the production of U. Then
we know more about U than that it was created by an E-measurement. But
since U should represent just this state of our knowledge, we try to adhere to
the following condition: If there exists a U for which no measurement process
of E need be excluded, then we shall make use of such a U. Therefore, let us
investigate whether there are such U, and what they are!

As we saw, U must commute with all R produced in the manner described.
From this it follows that RUφn = URφ = U(λnφn) = λnUφn; i.e., Uφn is an
eigenfunction of R with eigenvalue λn: therefore Uφn = anφn. In particular,
Uφ1 = a1φ1. If any φ of M is given, then we can so choose φ1, φ2, . . . , ψ1, ψ2, . . .
that φ1 = φ, and therefore each such φ is an eigenfunction of U. All these φ must
belong to the same eigenvalue; indeed, if φ, ψ belong to different eigenvalues
then they must be orthogonal. Observe next that 1√

2
(φ + ψ) is also an

eigenfunction, and since

(φ + ψ√
2

, φ
)

= (φ, φ)√
2

= 1√
2

(φ + ψ√
2

, ψ
)

= (ψ, ψ)√
2

= 1√
2

it is orthogonal to neither φ nor ψ, and hence belongs to the same eigenvalue as
both φ and ψ, which is impossible since these belong to different eigenvalues.
Consequently, Uφ = aφ with constant a. The restriction ‖φ‖ = 1, to which this
result is subject, can clearly be omitted. So for all f of M, Uf = af. Therefore
UEg = aEg for all g, by which we have UE = aE. But U = UE so U = aE.
U, E are both definite and #= O. Therefore a > 0, and so we can set U = E
without changing it essentially.

Conversely, this U fulfills the requirement for each R; i.e., for each set
φ1, φ2, . . . , ψ1, ψ2, . . . if U0 is appropriately chosen. For U0 = I

∑

n

(U0φn, φn)P[φn] =
∑

n

(φn, φn)P[φn]

=
∑

n

P[φn] = PM = E = U

Hence E = U is established in the sense of the outline sketched above. Also, U0

can be determined if we assume it to be universal; i.e., independent of E and R.

179 Because, for example,

RP[φn]f = R
(
(f, φn) · φn

)
= (f, φn) · Rφn = λn(f, φn) · φn

P[φn]Rf = (Rf, φn) · φn = (f,Rφn) · φn = λn(f, φn) · φn
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U0 = I then yields the desired result, and only this. Indeed

(Uφm, φm) = (Eφm, φm) = (φm, φm) = 1

(Uφm, φm) =
∑

n

(U0φn, φn)(P[φn]φm, φm)

=
∑

n

(U0φn, φn)|(φn, φm)|2 = (U0φm, φm)

Therefore (U0φm, φm) = 1. Since each φ of M with ‖φ‖ = 1 can be made a φ1 we
have (U0φ, φ) = 1, and from this it follows for all f of M that (U0f, f) = (f, f).
Since M is arbitrary, this holds for all f in general, and consequently U0 = I.

Consider two properties E and F, not necessarily simultaneously decidable.
What is the probability that a system S in which the property E has just been
found to hold will, in an immediately following observation, also be found to
possess the property F ? By the above, this probability is Tr(EF) =

∑
(EF).

(E, F are the operators of E, F; the expression on the left arises from U = E,
that on the right from E2 = E, F2 = F, by II.11). Moreover, these probabilities
are relative, so that E should be considered fixed and F variable; if

Tr(E) =
∑

(E) = dim M

is finite we can normalize by dividing by dim M.

In place of the properties E, F we can consider physical quantities: Let
R1, . . . ,Rj and S1, . . . ,Sk be two separate sets of simultaneously measurable
quantities (they need not, however, form such a set when taken conjointly); let
their respective operators be R1, . . . ,Rj , S1, . . . , Sk and their resolutions of the
identity be E1(λ), . . . ,Ej(λ), F1(λ), . . . ,Fk(λ). Let intervals

I1 : λ′
1 < λ " λ′′

1...
I j : λ′

j < λ " λ′′
j

J1 : µ′
1 < λ " µ′′

1...
Jk : µ′

k < λ " µ′′
k

and let
E1(I1) = E1(λ

′′
1) − E1(λ

′
1)

...
E j(Ij) = Ej(λ

′′
j ) − Ej(λ

′
j)

F1(J1) = F1(µ
′′
1) − F1(µ

′
1)

...
Fk(Jk) = Fk(µ′′

k) − Fk(µ′
k)
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Suppose now that R1, . . . ,Rj were measured on S and their values found to lie
in I1, . . . , Ij , respectively. The question is: What is the probability that prompt
measurement will show the values of S1, . . . ,Sk to lie in J1, . . . , Jk, respectively?
Clearly, we must set E = E1(I1) · · ·Ej(Ij) and F = F1(J1) · · ·Fk(Jk). Then the
desired probability is (see εεε, ζζζ)

Tr
(
E1(I1) · · ·Ej(Ij) · F1(J1) · · ·Fk(Jk)

)

=
∑ (

E1(I1) · · ·Ej(Ij) · F1(J1) · · ·Fk(Jk)
)

In conclusion, let us refer once again to the meaning of the general initial
ensemble U0 = I. We obtained U from it by resolving it, in the case of the
R measurement, into two parts. If we had not so resolved it, i.e., had we
measured R on all its elements and joined all these together again to form
an ensemble, then we would again have obtained U0 = I. This can easily be
calculated directly, or can be proved by choosing E = I. Then the µ1, µ2, . . .
and the ψ1, ψ2, . . . are absent, and the λ1, λ2, . . . and φ1, φ2, . . . for a complete
set. Therefore, although the measurement of R changes the individual elements
under certain circumstances, all these changes must exactly compensate each
other, because the entire ensemble does not change. Furthermore, this property
is characteristic for U0 = I. Because if for all complete orthonormal sets
φ1, φ2, . . .

U0 =
∞∑

n=1

(U0φn, φn)P[φn]

then U0 commutes with P[φ1] since it does with each P[φn]. That is, U0

commutes with each P[φ], ‖φ‖ = 1. Therefore

U0φ = U0P[φ]φ = P[φ]U0φ = (U0φ, φ) · φ

i.e., φ is an eigenfunction of U0. From this it follows that U0 = I, exactly as
U = E was obtained earlier from the corresponding relation (with M, E in place
of R, I).

In U0 = I, therefore, all possible states are in the highest possible degree of
equilibrium, which no measuring process can alter. For each complete
orthonormal set φ1, φ2, . . .

U0 = I =
∞∑

n=1

P[φn]

From this we learn that U0 = I corresponds in the older quantum theory to
the ordinary thermodynamic assumption of the “a priori equal probability
of all simple quantum orbits.” It will also play an important role in our
thermodynamic considerations, to which the next sections are devoted.
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CHAPTER V

GENERAL CONSIDERATIONS

1. MEASUREMENT AND REVERSIBILITY

What happens to a mixture with the statistical operator U if a quantity R with
operator R is measured in it? This operator must be thought of as measuring
R in each element of the ensemble and collecting the thus-processed elements
together into a new ensemble. We will answer the question—to the extent that
it admits of an unambiguous answer.

First, let R have a pure discrete simple spectrum, let φ1, φ2, . . . be the
complete orthonormal set of eigenfunctions and λ1, λ2, . . . the corresponding
eigenvalues (by assumption all different from each other). After the
measurement, the state of affairs is the following: In a fraction (Uφn, φn) of
their original ensemble, R has the value λn (n = 1, 2, . . .). This fraction then
forms an ensemble (sub-ensemble) in which R has the value λn with certainty
(by M in IV.3); it is therefore in the state φn with the (correctly normalized)
statistical operator P[φn]. Upon collecting these sub-ensembles, therefore, we
obtain a mixture with the statistical operator

U ′ =
∞∑

n=1

(Uφn, φn)P[φn]

Second, let us abandon the assumption that the pure discrete spectrum
of R is simple; i.e., let us admit the possibility that among the λn there are
coincidences. Then the R-measurement process is not uniquely defined (the
same was the case, for example, with E in IV.3). Indeed, let µ1, µ2, . . . be
distinct real numbers, and S the operator corresponding to the φ1, φ2, . . . and
µ1, µ2, . . . Let S be the corresponding quantity. If F (x) is a function with

F (µn) = λn : n = 1, 2, . . .

then F (S) = R and therefore F (S) = R. Hence the S -measurement can also
be regarded as an R-measurement. This now changes U into the U ′ given
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above, and U ′ is independent of the (entirely arbitrary) µ1, µ2, . . . but not of
the φ1, φ2, . . . . But the φ1, φ2, . . . are not uniquely determined, because of
the multiplicities of the eigenvalues of R. In IV.2—following II.8—we indicated
what can be said regarding the φ1, φ2, . . . : Let λ′, λ′′, . . . be the different values
assumed by the eigenvalues λ1, λ2, . . . and let Mλ′ , Mλ′′ , . . . be the sets of the
f which satisfy Rf = λ′f, Rf = λ′′f, . . . respectively. Finally, let

χ1
′, χ2

′, . . . ; χ1
′′, χ2

′′, . . . ; . . .

respectively be arbitrary orthonormal sets that span Mλ′ , Mλ′′ , . . . . Then
χ1

′, χ2
′, . . . , χ1

′′, χ2
′′, . . . , . . . is the most general φ1, φ2, . . . set. Hence U ′

—depending upon the choice of S; depending, that is, upon the actual measuring
arrangement—may be any expression of the form

U ′ =
∑

n

(Uχn
′ , χn

′ )P[χn
′ ] +

∑

n

(Uχn
′′ , χn

′′ )P[χn
′′ ] + · · ·

This construction is, however, unambiguous only in special cases.

We determine this special case. Each individual term must be unambiguous.
That is, for each eigenvalue λ, if Mλ is the set of f with Rf = λf , the sum

∑

n

(Uχn, χn)P[χn]

must have the same value for every choice of the orthogonal set χ1, χ2, . . .
spanning the manifold Mλ. If we call this sum V then verbatim repetition of
the observations in IV.3 (in which U0, U, M are to be replaced now by U, V, Mλ)
shows that we must have V = cλPM (cλ a positive constant), and that this is
equivalent to the validity of (Uf, f) = cλ(f, f) for all f of Mλ. Since these f
are the same as PMλ

g for all g, we require

(UPMλ
g, PMλ

g) = cλ(PMλ
g, PMλ

g) : all g

i.e., (PMλ
UPMλ

g, g) = cλ(PMλ
g, g) : all g

i.e., PMλ
UPMλ

= cλPMλ

for all the eigenvalues λ of R. But if this condition—which clearly imposes
a sharp restriction upon U—is not satisfied then different arrangements for
measuring R can actually transform U into different statistical operators U ′.
(Nevertheless, we will succeed in V.4 in making some statements about the result
of a general R-measurement, on a thermodynamic basis.)

Third, let R have no pure discrete spectrum. Then by III.3 (or by IV.3,
criterion I) it is not measurable with absolute precision, and R-measurements
of limited precision (as we discussed in the case referred to) are equivalent to
measurements of quantities with pure discrete spectra.
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Another type of intervention in material systems—in contrast to
discontinuous, non-causal and instantaneously acting experiments or
measurements—is given by the time-dependent Schrödinger differential
equation. This describes how the system changes continuously and causally
in the course of time, if its total energy is known. For states φ these equations
are

T1
∂
∂tφt = − i

!Hφt

where H is the energy operator.

For Ut = P[φt]
, the statistical operator of the state φt, this means
(

∂
∂tUt

)
f = ∂

∂t

(
Utf

)

= ∂
∂t

(
(f, φt) · φt

)

= (f, ∂
∂tφt) · φt + (f, φt) · ∂

∂tφt

= −(f, i
!Hφt) · φt − (f, φt) · i

!Hφt

= i
!

(
(Hf, φt) · φt − (f, φt) · Hφt

)

= i
!
(
UtH − HUt

)
f

which is to say:

T2
∂
∂tUt = i

!
(
UtH − HUt

)

But if Ut refers not to a state but to a mixture of several states—say

P
[φ(1)

t ]
, P

[φ(2)
t ]

, . . . with respective weights w1, w2, . . .

—the motion of Ut must reflect the motion of the individual terms

P
[φ(1)

t ]
, P

[φ(2)
t ]

, . . .

By weighted addition of the corresponding instances of T2 we find that T2

pertains also to such mixtures. Since all U refer to such mixtures, or limiting
cases of them (for example, each U with finite TrU refers to such a mixture),
we can claim the general validity of T2.

It is, moreover, the case that in T2 the operator H may depend on t, just
as it may in the Schrödinger differential equation. If H is not t-dependent we
can even give explicit solutions: For T1, as we already know,

T1
′ φt = e−

i
! tH φ0

and for T2

T2
′ Ut = e−

i
! tH U0 e+ i

! tH

(It is easily verified that these are solutions, and also that they follow from each
other. It is clear also that there is only one solution for each given value of φ0

or U0: the differential equations T1 and T2 are of first order in t.)
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We therefore have two fundamentally different types of interventions which
can occur in a system S or in an ensemble [S1, . . . ,SN ]. We allude here first to
the abrupt changes

1 U −→ U ′ =
∞∑

n=1

(Uφn, φn)P[φn]

that are brought about by measurement (φ1, φ2, . . . is a complete orthonormal
set), and second to the temporally graded dynamical transformations

2 U −→ Ut = e−
i
! tH U0 e+ i

! tH

that are generated by the energy operator (Hamiltonian) H, here assumed to
be time-independent. If H does depend upon time, we may divide the time
interval under consideration into brief sub-intervals during each of which H is,
in sufficient approximation, constant; we apply 2 to these individual intervals,
and construct the final result by iteration.

We must now analyze in greater detail these two types of intervention—
their nature, and their relation to one another.

First of all, it is noteworthy that 2 admits (in the manner described above)
of the possibility that H is time-dependent, so that one might expect that
2 would suffice to describe interventions caused by measurement: indeed, a
physical intervention can be nothing other than the temporary insertion of a
certain energy coupling into the observed system; i.e., the introduction into
H of a certain time dependency (prescribed by the observer). Why then have
we need—for measurements—of the special process 1? The reason is this: In
a measurement we cannot observe the system S by itself, but must rather
investigate the system S + M in order to obtain (numerically) its interaction
with the measuring apparatus M. The theory of measurement is a statement
concerning S + M, and should describe how the state of S is related to certain
properties of the state of M (namely, the positions of a certain pointer, since
the observer reads these). Moreover, it is rather arbitrary whether one includes
the observer in M, and replaces the relation between the S state and the pointer
positions in M by relations between this state and chemical changes in his eye
or even in his brain (i.e., to that which he has “seen” or “perceived”). We shall
investigate this more precisely in VI.1. In any case, the application of 2 is of
importance only for S + M. Of course, we must show that this gives the same
result for S as does the direct application of 1 to S. If this is proves successful,
then we will have achieved a unified way of looking at the physical world on a
quantum mechanical basis. We postpone discussion of this question until VI.3.

Second, it has to be noted with regard to 1 that we have repeatedly shown
that a measurement in the sense of 1 must be instantaneous; i.e., must be
carried out in so brief a time that the change of U given by 2 is not noticeable.
(If we wanted to correct this by calculating the changed Ut by 2 we would still
gain nothing because to apply any Ut we must first know t—the moment of
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measurement—exactly; i.e., the duration of the measurement must be short.)
But this now is questionable in principle, because it is well known that there
is a quantity which, in classical mechanics, is conjugate to time: the energy.180
Therefore it is to be expected that for the canonically conjugate pair time-energy
there must exist indeterminacy relations similar to those of the conjugate pair
cartesian coordinate-momentum.181 Note that the theory of special relativity
shows that a far-reaching analogy must exist: the three space coordinates and
time form a “four vector” as do the momentum coordinates and energy. Such
an indeterminacy relation would mean that it is not possible to carry out a very
precise measurement of energy in a very short time. In fact, one would expect
the error ε of the energy measurement and the duration τ of the measurement
to stand in the relation

ετ ∼ h

A physical discussion, similar to that carried out in III.4 for p, q, actually leads
to this result.181 Without going into details, we can consider the case of a light
quantum. Its energy uncertainty is, because of the Bohr frequency condition, h
times the frequency uncertainty ∆ν: h∆ν. But, as was discussed in Note 137,
∆ν is at best the reciprocal 1/τ of the time duration; i.e., ε >∼ h/τ . And in
order that the monochromatic nature of the light quantum be established in the
time interval τ the measurement must extend over the entire duration of the
interval. The case of the light quantum is characteristic, since the atomic energy
levels are, as a rule, determined from the frequency of the corresponding spectral
lines. Since energy behaves in such fashion, a relation between the measurement
precision of other quantities R and the duration of the measurement might also
be anticipated. But how, then, can our assumption that measurements are
instantaneous be justified?

First of all, we must admit that this objection points to an essential
weakness which is, in fact, the chief weakness of quantum mechanics: the theory
is non-relativistic; it distinguishes time t from the three space coordinates x, y, z
and presupposes an objective simultaneity concept. In fact, while all
other quantities (especially those x, y, z—so closely related to t by Lorentz
transformations) are represented by operators, there corresponds to time not an
operator T but an ordinary number-parameter t, just as in classical
mechanics. Or again: a system consisting of two particles has a wave function
which depends on 2 × 3 = 6 space coordinates but only one time coordinate
t, although from a relativistic standpoint two times would be desirable (more
natural). That measurements cannot in fact be instantaneous but must be of
non-vanishing finite duration has the status of natural law. That we can ignore
that law may possibly have to do with the non-relativistic character of quantum
mechanics. But if that provides a degree of clarification, it is not a happy one!

180 Any textbook of classical (Hamiltonian) mechanics gives an account of this
connection.
181 The uncertainty relations for the pair time-energy have been discussed
frequently. See the comprehensive treatment of Heisenberg, Die Physikalischen
Prinzipien der Quantentheorie, II.2.d, Leipzig, 1930.
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A more detailed investigation of the problem shows, however, that the
situation is really not so bad as it may at first appear. For what we really need
is not that the duration t of the measurement be small, but only that it have
little effect in the calculation of the probabilities (Uφn, φn)—and therefore in
the formation of

U ′ =
∞∑

n=1

(Uφn, φn)P[φn]

—whether we proceed from U itself or from

Ut = e−
i
! tH Ue+ i

! tH

Because of
(Utφn, φn) =

(
e−

i
! tH Ue+ i

! tH φn, φn

)

=
(
Ue

i
! tH φn, e

i
! tH φn

)

this can be accomplished by so adjusting H (by introduction of an appropriate
perturbation term) that

e
i
! tH φn = φn to within a constant factor of absolute value 1

That is, the state φn should be essentially constant with respect to 2; i.e., a
stationary state. Or equivalently, Hφn must be equal to a real constant times
φn; i.e., φn must be an eigenfunction of H. At first glance, the possibility of such
an adjustment of H—one which renders the eigenfunctions of R stationary, and
therefore eigenfunctions also of H (which is to bring about the commutativity
of R and H)—may seem implausible. But this is not really the case, and it will
emerge that typical experimental arrangements aim to have exactly this sort of
effect on H.

In point of fact, every experiment culminates in the emission of a light
quantum or of a particle, with a certain energy in a certain direction.
Characteristics of the emitted quantum/particle—its momentum, or the
coordinates of the point where it (the “pointer”) comes to rest—comprise the
result of the measurement. In the case of light quanta, using the terminology
of III.6, the desired measurement is thus equivalent to a statement as to which
mn = 1 (the rest being 0), i.e., to an enumeration of all m1, m2, . . . values.
For a moving (departing) mass point the corresponding statement refers to the
values of the momentum components Px, Py, Pz, while for a mass point at rest
it refers its (the pointer’s) cartesian coordinates x, y, z; i.e., to the values of
Qx, Qy, Qz. But the measurement is completed only if the light quantum is
“borne away;” i.e., when the light quantum is not in danger of absorption, or
when the mass point can no longer be deflected by ambient forces, or caused
to drift away from the point at which it has come to rest, in which case a large
mass is necessary.182 (This latter requirement is made necessary because of the

182 All other details of the measuring arrangement address only the connection
between the quantity of interest R (or of its operator R) and the mn or the
Px, Py, Pz (else Qx, Qy, Qz) mentioned above. This, of course, is the most
important practical aspect of the measurement techniques.
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uncertainty relations; we want the velocity and its dispersion to be small, but for
the dispersion in position also to be small the dispersion in momentum—mass
times velocity—must be large. Ordinarily, pointers are macroscopic objects;
i.e., enormous.) Now the energy operator H, so far as concerns the light
quantum, is (see III.6, page 171)

∞∑

n=1

hρn· mn +
∞∑

j,n=1

wn
kj

{√
mn + 1

(
k → j

mn → mn + 1

)

+
√

mn

(
k → j

mn → mn − 1

)}

while for both mass point models H is given by

(Px)2 + (Py)2 + (Px)2

2m
+ V (Qx, Qy, Qz)

Our criteria say: the wn
kj should vanish, or the potential energy V should be

constant, or the mass m should be very large. But this actually produces the
effect that the Px, Py, Pz and the Qx, Qy, Qz (respectively) commute with the
H given above.

In conclusion, it should be mentioned that the making stationary of the
really interesting states (here the φ1, φ2, . . .) plays a role elsewhere too in
theoretical physics. Assumptions concerning the possibility of the interruption
of chemical reactions (i.e., their “poisoning”), which are often unavoidable in
physical-chemical “ideal experiments,” are of this nature.183

The two interventions 1 and 2 are fundamentally different from one another.
That both are formally unique—i.e., causal—is unimportant; indeed, since
we are working in terms of the statistical properties of mixtures it is not
surprising that each change, even if it is statistical, effects a causal change of the
probabilities and expectation values. Indeed, it is for precisely this reason that
one introduces statistical ensembles and probabilities! On the other hand, it is
important that 2 does not increase the statistical uncertainty present in U, but
that 1 does. 2 transforms states into states

P[φ] −→ P[φt]
with φt = e−

i
! tH φ

while 1 can transform states into mixtures. In this sense, therefore, the
development of a state according to 1 is statistical, while according to 2 it
is causal.

Furthermore, for fixed H and t, 2 is simply a unitary transformation of all U:
Ut = AUA–1, A = exp{− i

! tH} unitary. That is, Uf = g implies Ut(Af) = (Ag),

183 See, for example, Nernst, Theoretische Chemie, Stuttgart (numerous
editions since 1893), Book IV: Discussion of the thermodynamic proof of the
“law of mass action.”
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so that Ut results from U by the unitary transformation A of Hilbert space; i.e.,
by an isomorphism that leaves all of our basic geometric concepts invariant (see
the principles set down in I.4). Therefore U → Ut is reversible: it suffices to
replace A by A–1, and this is possible since A, A–1 can be regarded as entirely
arbitrary unitary operators—this because of the far-reaching freedom one has in
the selection of H, t. Therefore 2—like classical mechanics—fails to reproduce
one of the most important and striking properties of the real world; namely,
its irreversibility, the fundamental difference between “future” and “past,” the
directions of time.

On the other hand, 1 is of a fundamentally different character: the
transition

U −→ U ′ =
∞∑

n=1

(Uφn, φn)P[φn]

is certainly not prima facie reversible. We will soon see that it is in general
irreversible in the sense that it is in general not possible to proceed U ←− U ′

by repeated application of the processes 1, 2 !

We have reached a point at which it becomes necessary to resort to the
thermodynamic method of analysis, because it alone makes it possible for us to
come to a correct understanding of the difference between 1 and 2, a distinction
into which reversibility questions obviously enter.

2. THERMODYNAMIC CONSIDERATIONS

We shall investigate the thermodynamics of quantum mechanical ensembles
from two different points of view. First, let us assume the validity of both of
the fundamental laws of thermodynamics, i.e., the impossibility of perpetual
motion of the first and second kinds (energy law and entropy law),184 and
proceed on this basis to calculation of the entropy of ensembles. In this effort
the normal methods of phenomenological thermodynamics are applied, and
quantum mechanics plays a role only insofar as our thermodynamic observations
relate to objects whose behavior is regulated by the laws of quantum mechanics
(our ensembles, as well as their statistical operators U). But the correctness
of both laws will here be assumed, and not proved. Afterwards we will prove
the validity of these fundamental laws in quantum mechanics. Since the energy
law holds in any case, only the entropy law need be considered. Specifically, we
will show that the interventions 1, 2 never decrease the entropy, as calculated
by the first method. Our decision to proceed in this order may seem somewhat

184 The phenomenological system of thermodynamics built upon this
foundation can be found in numerous texts; see, for example, Planck Treatise
on Thermodynamics London, 1927. For the following, the statistical aspect of
these laws is of chief importance. This is developed in the following treatises:
Einstein, Verh. d. dtsch. physik Ges. 12, (1914); Szilard, Z. Physik 32 (1925).
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unnatural, but is based on the fact that it is from phenomenological discussion
that we obtain the overall view of the problem that is required for considerations
of the second kind.

We therefore begin with phenomenological considerations which will permit
us to solve a well-known paradox of classical thermodynamics. First we must
emphasize that the unusual character of our “ideal experiments”—i.e., their
practical infeasibility—does not impair their demonstrative power: in the sense
of phenomenological thermodynamics, every conceivable process constitutes
valid evidence, provided only that it does not conflict with the two fundamental
laws of thermodynamics.

Our objective is to determine the entropy of an ensemble [S1, . . . ,SN ] with
the statistical operator U, where U is assumed to be correctly normalized; i.e.,
TrU = 1. In the terminology of classical statistic mechanics we are dealing
with a Gibbs ensemble: i.e., the application of statistics and thermodynamics
will be made not on the (interacting) components of a single, very complicated
mechanical system with many (only imperfectly known) degrees of freedom,185
but on the ensemble of very many (identical) mechanical systems, each of which
may have an arbitrarily large number of degrees of freedom, and each of which is
entirely separated from the others, and does not interact with any of them.186
As a consequence of the complete separation of the systems S1, . . . ,SN , and
of the fact that we will apply to them the ordinary enumerative methods of
the calculus of probability, it is evident that the Bose-Einstein and Fermi-Dirac
statistics—which differ from those, and which are applicable to certain
ensembles of indistinguishable particles (namely: those comprised of light
quanta or of electrons/protons: see III.6, particularly Note 147)—do not enter
into the problem.

The method introduced by Einstein for the thermodynamic treatment
of such ensembles [S1, . . . ,SN ] is the following:187 Each system S1, . . . ,SN is
confined in a box K1, . . . ,KN whose walls are impenetrable to all transmission
effects, which is possible for this system because of the lack of interaction.
Furthermore, each box must have a very large mass, so that the possible state
(hence energy and mass) changes of the S1, . . . ,SN affect their masses only
slightly. Also, their velocities in the ideal experiments which are to be carried
out are to be kept so small that calculations may be performed

185 This is the Maxwell-Boltzmann method of statistical mechanics (see the
review in the article by P. and T. Ehrenfest in Enzykl.d.Math.Wiss., Vol II.4.D,
Leipzig, 1907). In gas theory, for example, the “very complicated system” is
the gas which consists of many (interacting) molecules, and the molecules are
investigated statistically.
186 This is the Gibbs method (see the reference in Note 185). Here the
individual system is the entire gas, and many replicas of the same system (i.e., of
the same gas) are considered simultaneously, and their properties are described
statistically.
187 See the reference in Note 184. This was further developed by L. Szilard.
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non-relativistically. We imagine these boxes to be enclosed in a very large
box K (the volume V of K is much larger than the sum of the volumes of
the boxes K1, . . . ,KN). For simplicity, no force field will be present in K (in
particular, it should be free from all gravitational fields, so that the large
masses of the K1, . . . ,KN have no relevant effects either). We can therefore
regard the K1, . . . ,KN (which contain S1, . . . ,SN respectively) as the molecules
of a gas which is enclosed in the large container K. We now bring K into
contact with a very large heat reservoir at temperature T . The walls of K
then take on this temperature, and its (literal) molecules then assume the
corresponding Brownian motion. Therefore they contribute momentum to the
adjacent K1, . . . ,KN , so that these engage in motion and transfer momentum
to the other K1, . . . ,KN . Soon all K1, . . . ,KN will be in motion and will be
exchanging momentum. . . at the wall of K with the literal molecules of the wall,
and with each other in the interior of K. The stationary state is ultimately
attained in which the K1, . . . ,KN have taken on the velocity distribution which is
in equilibrium with the Brownian motion of the wall molecules (temperature T ),
that distribution being the Maxwellian velocity distribution of a gas of
temperature T , the “molecules” of which are the K1, . . . ,KN .188 We can now
say:

The [S1, . . . ,SN ]-gas has taken on the temperature T .

For brevity, we shall call the ensemble [S1, . . . ,SN ] with statistical operator U
the “U-ensemble,” and the [S1, . . . ,SN ]-gas the “U-gas.”

The reason that we concern ourselves with such a gas is that we want to
be in position to determine the entropy difference between a U-ensemble and
a V-ensemble (here U, V are definite operators with TrU = TrV = 1 and the
corresponding ensembles are denoted [S1, . . . ,SN ] and [S1

′, . . . ,SN
′ ]). That

determination requires by definition a reversible transformation of the former
ensemble into the latter,189 and this is best accomplished with the aid of the
U- and V-gases. That is, we maintain that the entropy difference between the
U- and V-ensembles is exactly the same as that between the U- and V-gases if
both are observed at the same temperature T but are otherwise arbitrary. If T
is very near 0 then this is obviously the case with arbitrary precision because
the difference between the U-gas and the V-gas vanishes as T → 0 since the
K1, . . . ,KN of the former then have no motion of their own, and the presence of
the K1, . . . ,KN in K, when they are at rest, is thermodynamically unimportant

188 The kinetic theory of gases, as is well known, describes in this way the
process in which the walls communicate their temperature to the gas enclosed
by them. See the references in Notes 184 and 185.
189 In this transformation, if the heat quantities Q1, . . . , QN are required at
temperatures T1, . . . , TN then the entropy difference is equal to

Q1

T1
+ Q2

T2
+ · · · + QN

TN

See the reference in Note 184.
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(likewise for V). Therefore we shall have accomplished our objective if we can
show for a given change of T that the entropy of the U-gas changes just as
much as the entropy of the V-gas. The entropy change of a gas which is heated
from T1 to T2 depends only upon its caloric equation of state, or more precisely:
upon its specific heat.190 Naturally, the gas must not be assumed to be an ideal
gas if—as in our case—T1 must be chosen near 0.191 On the other hand, it is
certain that both gases (U and V) have the same equation of state and the same
specific heats because, by kinetic theory, the boxes K1, . . . ,KN dominate and
cover completely the systems [S1, . . . ,SN ] and [S1

′, . . . ,SN
′ ] which are enclosed

within them. In this heating process, therefore, the difference between U and
V is not noticeable, and the two entropy differences coincide, as was asserted.
In the following, therefore, we shall compare only the U- and V-gases with each
other, and shall take the temperature T to be so high that these can be regarded
as ideal gases.192 In this way we control its kinetic behavior completely and can
apply ourselves to the real problem: to transform U-gas reversibly into V-gas.
Now, in contrast to the processes contemplated so far, we shall have also to
consider the S1, . . . ,SN found in the interiors of the K1, . . . ,KN ; i.e., we shall
have to “open” the boxes K1, . . . ,KN .

Next, we will show that all states U = P[φ] have the same entropy; i.e.,
that the reversible transformation of the U = P[φ] ensemble into the U = P[ψ]

ensemble is accomplished without the absorption or release of heat energy
(mechanical energy must naturally be consumed or produced if the expectation
value of the energy in P[φ] is different from that in P[ψ]); see Note 185. In fact,
we will not even have to refer to the gases just considered. This transformation
succeeds even at the zero -temperature; i.e., with the ensembles themselves.
It should be mentioned, furthermore, that as soon as this is proved we will
be able to—and shall—so normalize the entropies of the U-ensembles that all
states have entropy 0.

Moreover, the transformation P[φ] → P[ψ] does not need to be reversible.
Because if it is not so then the entropy difference must be ! the expression given
in Note 189 (see the reference in Note 185), and therefore ! 0. Permutation of

190 If c(T ) is the specific heat of the gas quantum under discussion, then when
heated from T to T +dT it takes on the quantity of heat c(T )dT . By Note 185,
the entropy difference is then ∫ T2

T1

c(T )dT
T

191 For an ideal gas, c(T ) is constant, but for very small T this certainly fails.
See, for example, the reference in Note 6.
192 In addition to this, it is required that the volume V of K be large in
comparison with the total volume of the K1, . . . ,KN , and furthermore that the
“energy per degree of freedom” κT (κ is Boltzmann’s constant) be large in
comparison with h2/µV

2
3 (h is Planck’s constant, µ is the mass of the individual

molecule; this quantity has the dimensions of energy). See, for example, Fermi,
Z. Physik 36 (1926).
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P[φ], P[ψ] shows that this value must also be " 0. Therefore the value = 0.

The simplest way to proceed would be to refer to the time-dependent
Schrödinger equation; i.e., to our process 2, in which an energy operator H
and a numerical value of t must be found such that the unitary operator e−

i
! tH

transforms φ into ψ. Then, in t seconds, P[φ] would change spontaneously
into P[ψ]. That process is reversible, and entails no mention of heat (see V.1).
We prefer, however, to avoid assumptions concerning the construction of
suitable energy operators H, and instead to exploit only processes of type 1;
i.e., measuring interventions. The simplest such measurement would be to
measure, in the ensemble P[φ], a quantity R whose operator R has a pure discrete
spectrum with simple eigenvalues λ1, λ2, . . . and in which ψ occurs among the
eigenfunctions ψ1, ψ2, . . . (say ψ1 = ψ). This measurement transforms φ into a
mixture of the states ψ1, ψ2, . . . and therefore ψ1 = ψ will be present along
with the other states ψn. This procedure is unsuitable, however, because
ψ1 = ψ occurs only with probability |(φ, ψ)|2, while the portion 1 − |(φ, ψ)|2
goes over into other states. In fact, the latter portion becomes the entire result
when φ and ψ are orthogonal. A different experiment, however, will achieve
our objective. By repetition of a great number of different measurements we
will change P[φ] into an ensemble which differs from P[ψ] by an arbitrarily
small amount. That all these processes are (or at least can be) irreversible
is unimportant, as discussed above.

We may assume φ and ψ to be orthogonal, since if they were not we could
choose a χ (‖χ‖ = 1) orthogonal to both, and proceed first φ → χ, then χ → ψ.
Now assign a value to k = 1, 2, . . . and define

ψ(ν) = cos πν
2k · φ + sin πν

2k · ψ : ν = 0, 1, . . . , k

Clearly, ψ(0) = φ, ψ(k) = ψ and ‖ψ(ν)‖ = 1. We extend each ψ(ν) to a complete
orthonormal set ψ(ν)

1 , ψ(ν)
2 , . . . with ψ(ν)

1 = ψ(ν). Let R(ν) be an operator
with a pure discrete spectrum and distinct eigenvalues—say λ(ν)

1 , λ(ν)
2 , . . . whose

eigenfunctions are the ψ(ν)
1 , ψ(ν)

2 , . . .—and letR(ν)be the corresponding quantity.
Observe finally that

(
ψ(ν−1), ψ(ν)

)
= cos π(ν−1)

2k cos πν
2k + sin π(ν−1)

2k sin πν
2k

= cos
(

πν
2k − π(ν−1)

2k

)

= cos π
2k

In the ensemble with U(0) = P[ψ(0)] = P[φ] = U, we now

measure R(1) in U(0), producing U(1), then

measure R(2) in U(1), producing U(2), then
...

and finally measure R(k) in U(k−1), producing U(k)
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That U(k), for sufficiently large k, lies arbitrarily close to P[ψ(k)] = P[ψ] can

easily be established: If we measure R(ν) on ψ(ν−1) then the fraction

|(ψ(ν−1), ψ(ν))|2 = (cos π
2k )2

goes over into ψ(ν), and in the successive measurements R(1),R(2), . . . ,R(k)

therefore at least a fraction (cos π
2k )2k will go from ψ(0) = φ over ψ(1), . . . , ψ(k−1)

into ψ(k) = ψ. And since (cos π
2k )2k → 1 as k → ∞, the final result is as

nearly ψ as one may wish, if k is sufficiently large. The exact proof runs as
follows: Since the process 1 does not change the trace, and since
TrU(0) = TrP[φ] = 1, we have TrU(1) = TrU(2) = · · · = TrU(k) = 1. On the other
hand,

(U(ν)f, f) =
∑

n

(
U(ν−1)ψ(ν)

n , ψ(ν)
n

)(
P[ψ(ν)

n ]f, f
)

=
∑

n

(
U(ν−1)ψ(ν)

n , ψ(ν)
n

)
|(ψ(ν)

n , f)|2

so for ν = 1, . . . , k − 1 in the case f = ψ(ν+1)
1 = ψ(ν+1) we have

(U(ν)ψ(ν+1), ψ(ν+1)) =
(
U(ν−1)ψ(ν), ψ(ν)

)
|(ψ(ν), ψ(ν+1))|2

+
∑

n !2

(
U(ν−1)ψ(ν)

n , ψ(ν)
n

)
|(ψ(ν)

n , ψ(ν+1))|2

!
(
U(ν−1)ψ(ν), ψ(ν)

)
|(ψ(ν), ψ(ν+1))|2

=
(
cos π

2k

)2 ·
(
U(ν−1)ψ(ν), ψ(ν)

)

while in the case ν = k we set f = ψ(k)
1 = ψ and obtain

(U(k)ψ(k), ψ(k)) =
∑

n

(
U(k−1)ψ(k)

n , ψ(k)
n

)
|(ψ(k)

n , ψ(k)
1 )|2

=
(
U(k−1)ψ(k)

1 , ψ(k)
1

)

= (U(k−1)ψ(k), ψ(k))

When taken together with

(U(0)ψ(1), ψ(1)) =
(
P[ψ(0)]ψ

(1), ψ(1)
)

= |(ψ(0), ψ(1))| =
(
cos π

2k

)2

these results give
(U(k)ψ, ψ) !

(
cos π

2k

)2k

Since TrU(k) = 1 and
(
cos π

2k

)2k → 1 as k → ∞, we can apply a result obtained
in II.11 to conclude that U(k) converges to P[ψ]. This completes the argument
and achieves our objective.
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The “ideal experiments” of phenomenological thermodynamics frequently
make use of structures called “semi-permeable walls” (or membranes). To what
extent can one make use of those idealized elements when dealing with quantum
mechanical systems?

In phenomenological thermodynamics this theorem holds: If I and II are
two different states of the same system S then it is permissible to assume the
existence of a wall which is completely permeable for I but not permeable for
II:193 this is, so to speak, the thermodynamic definition of “difference,” and
therefore also of “sameness” (equality) for two systems. How far is such an
assumption permissible in quantum mechanics?

We first show that if φ1, φ2, . . . , ψ1, ψ2, . . . is an orthonormal set then there
is a semi-permeable wall which lets the system S in any of the states φ1, φ2, . . .
pass through unhindered, and which reflects unchanged systems in any of the
states ψ1, ψ2, . . . . Systems which are on other states may, on the other hand,
be changed by collision with the wall.

The system φ1, φ2, . . . , ψ1, ψ2, . . . can be assumed to be complete, since
otherwise it could be made so by additional χ1, χ2, . . . which one could then
add to the φ1, φ2, . . . . We now choose an operator R with a pure discrete
spectrum and simple eigenvalues λ1, λ2, . . . , µ1, µ2, . . . whose eigenfunctions are
φ1, φ2, . . . , ψ1, ψ2, . . . respectively. Let us suppose that in fact (for all n) λn < 0
and µn > 0. Let R be the quantity belonging to R. We construct many
“windows” in the wall, each of which is defined as follows: each “molecule”
K1, . . . ,KN of our gas (we are again considering U-gases at temperature T > 0)
is detained there, opened, and the quantity R measured on the system S1 or S2

or . . . or SN contained within it. Then the box is closed again, and according
to whether the measured value of R is > 0 or < 0, the box, together with
its contents penetrates the window or is reflected, with unchanged momentum.
That this contrivance achieves the desired end is clear: it remains only to
discuss what changes it brings about, and how closely it is related to the
so-called “Maxwell demon” of thermodynamics.194

In the first place, it must be said that since the measurement (under certain
circumstances)changes the energystate of S, andperhaps the energy expectation
value also, this difference in mechanical energy must be added or absorbed
by the measurement device (for example, by installing a spring which can be
stretched or compressed, or something similar). Since the measurement device
functions quite automatically, and since only mechanical (not heat!) energies
are transformed, certainly no entropy changes occur—and it is at present only
this which is of interest to us. (If S is in one of the states φ1, φ2, . . . , ψ1, ψ2, . . .
then the R-measurement does not, in general, change S, and no compensating
changes remain in the measurement apparatus.)

193 See, for example, the reference in Note 184.
194 See the reference in Note 185. The reader will find a detailed discussion of
the difficulties connected with “Maxwell’s demon” in L. Szilard, Z. Physik 53
(1929).
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The second point is more doubtful. Our arrangement is rather similar to
“Maxwell’s demon”; i.e., to a semi-permeable wall which transmits molecules
coming from the right but reflects those coming from the left. If we use such a
wall to bisect a container filled with a gas, then all the gas is soon on the left
hand side of the wall; i.e., the volume is halved without entropy consumption.
This means an uncompensated entropy increase of the gas, and therefore, by the
second law of thermodynamics, such a wall cannot exist. Our semi-permeable
wall is, however, essentially different from this thermodynamically unacceptable
one, because reference is made with it only to the internal properties of the
“molecules” K1, . . . ,KN (i.e., the state of the S1 or S2 or . . . or SN enclosed
therein) and not to the exterior (i.e., whether the molecule comes from right or
left, or something similar). And this is a decisive circumstance. A thorough-
going analysis of this question was made possible by the researches of L. Szilard,
which clarified the nature of the semi-permeable wall, “Maxwell’s demon,” and
the general role of the “intervention of an intelligent being in thermodynamical
systems.” We cannot go further into these things here. And need not, since the
reader can find a treatment of these topics in the reference cited in Note 194.

The preceding discussion shows, in particular, that two states φ, ψ can
certainly be separated by a semi-permeable wall if they are orthogonal. We now
want to prove the converse: If φ, ψ are not orthogonal then the assumed existence
of such a wall would contradict the second law of thermodynamics. That is,
the necessary and sufficient condition for separability by semi-permeable walls
is (φ, ψ) = 0 and not, as in classical theory, φ )= ψ (here we write φ, ψ instead of
the I, II used above). This clarifies an old paradox of classical thermodynamics,
which has to do with a perplexing discontinuity in the operation of semi-
permeable walls: states that differ however slightly are always 100% separable,
but absolutely identical states are not separable! We now have a continuous
transition: It will be seen that 100% separability is possible only if (φ, ψ) = 0
and that as |(φ, ψ)| increases the situation with regard to separability becomes
progressively worse, until at |(φ, ψ)| = 1 (here ‖φ‖ = ‖ψ‖ = 1, so |(φ, ψ)| = 1
entails φ = cψ with |c| = 1) the states φ, ψ are identical and separation becomes
impossible.

In order to conduct these considerations we must anticipate the final result
of this section: the value of the entropy of the U-ensemble. We will, of course,
not use this result in its derivation.

Let us assume there is a semi-permeable wall separating φ from ψ. We shall
then prove (φ, ψ) = 0. We consider a 1

2 (P[φ]+P[ψ])-gas (i.e., a gas containing 1
2N

systems in state φ and 1
2N systems in state ψ; note that Tr1

2 (P[φ] + P[ψ]) = 1)
and choose V (i.e., K) and T so that the gas is ideal. Let K have the cross
section 1 2 3 4 1 shown in figure 3. We insert a semi-permeable wall at one
end aa, and then move it halfway, up to the center bb. The temperature of the
gas is kept constant by contact with a large heat reservoir W of temperature
T at the other end 2 3. In this process, nothing happens to the φ-molecules,
but the ψ -molecules are pushed to the right half of K (between bb and 2 3).
That is, the 1

2 (P[φ] +P[ψ])-gas is a 1:1 mixture of P[φ]-gas and P[ψ]-gas. Nothing
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1 2
a b

W

a b
4 3

Figure 3: Equal numbers of φ-molecules and ψ-molecules fill the
cavity K, shown 1 2 3 4 in cross section. A semi-permeable wall—
transparent to φ-molecules but opaque to ψ-molecules—is moved
from position aa to position bb, with consequences developed in
the text. W is a heat reservoir at temperature T . The process is
isothermal.

happens to the former, but the latter is isothermally compressed to one half
of its original volume. From the equation of state of an ideal gas it follows
that in this process an amount 1

2NκT ln 2 of mechanical work is performed
( 1
2N is the number of molecules of P[ψ]-gas, κ is Boltzmann’s constant),195 and

since the energy of the gas is not changed (because the process is isothermal)196
this energy is injected as heat into the reservoir W. The entropy change of the
reservoir is then Q/T = 1

2Nκ ln 2 (see Note 186).

After this process has been completed, half of the original P[φ]-gas
( 1
4N molecules) occupies the space to the left of the bb partition. The space to

the right of the partition is, on the other hand, occupied by the other half of the
P[φ]-gas ( 1

4N molecules) and the entire P[ψ]-gas ( 1
2N molecules); i.e., by 3

4N
molecules of a 1

3P[φ]+ 2
3P[ψ]-gas. Now—by effectively turning off its permeability

and isothermally repositioning the partition—we compress the gas on the left
to volume 1

4V and expand the gas on the right to volume 3
4V . The work done is

195 If an ideal gas consists of n molecules, then its pressure is p = nκT/V . In
compression from volume V1 to V2 therefore mechanical work

Work on gas = −
∫ V2

V1

p dV = −nκT

∫ V2

V1

dV
V

= −nκT ln V2

V1

is done on the gas. In the present instance n = 1
2N , V1 = 1

2V , V2 = V .
196 The energy of an ideal gas, as is well known, depends only on its
temperature.
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again taken from or given to the reservoir W: this amounts to 1
4NκT ln 2

and − 3
4NκT ln 3

2 , respectively (see Note 195), so the entropy increase of the
reservoir is (respectively) 1

4Nκ ln 2 and − 3
4Nκ ln 3

2 . Altogether:
1
2Nκ ln 2 +

(
1
4Nκ ln 2 − 3

4Nκ ln 3
2

)
= Nκ 3

4 ln 4
3

We have at this point a P[φ]-gas and a ( 1
3P[φ] + 2

3P[ψ])-gas of 1
4N and 3

4N
molecules respectively, occupying respective volumes 1

4V and 3
4V . Originally

we had a ( 1
2P[φ] + 1

2P[ψ])-gas of N molecules in volume V . Or, if we choose
to think of it that way, two (1

2P[φ] + 1
2P[ψ])-gases of 1

4N and 3
4N molecules

respectively, occupying respective volumes 1
4V and 3

4V . The change effected
by the entire process is then this: 1

4N molecules in volume 1
4V changed from a

( 1
2P[φ] + 1

2P[ψ])-gas into a P[φ]-gas, 3
4N molecules in volume 3

4V changed from a
( 1
2P[φ]+ 1

2P[ψ])-gas into a ( 1
3P[φ]+ 2

3P[ψ])-gas, and the entropy of W increased by
Nκ · 3

4 ln 4
3 . Since the process was reversible, the total entropy increase must be

zero; i.e., the two gas-entropy changes must exactly compensate for the changed
entropy of W. We must now find the entropy changes of the respective gases.

As we shall see, a U-gas of N molecules has entropy −Nκ·Tr(U lnU) if that
of a P[χ]-gas of equal volume and temperature is taken to be zero (see above).
Therefore, if U has a pure discrete spectrum with eigenvalues w1, w2, . . ., we
have

entropy = −Nκ
∞∑

n=1

wn lnwn

(where it is understood that x lnx is to be set equal to 0 at x = 0). As can
easily be calculated, P[φ], ( 1

2P[φ] + 1
2P[ψ]) and (1

3P[φ] + 2
3P[ψ]) have respectively

the eigenvalues
{1, 0}

{1 + α
2

, 1 − α
2

, 0
}

{3 +
√

1 + 8α2

6
, 3 −

√
1 + 8α2

6
, 0

}

where α = |(φ, ψ)| (therefore 0 ! α ! 1) and the multiplicity of 0 is always
infinite but the non-zero eigenvalues are always simple.197 Therefore the entropy

197 We compute the eigenvalues of aP[φ] + bP[ψ]. The requirement is

(aP[φ] + bP[ψ])f = λf

Since the left side is a linear combination of φ, ψ the right side is also, and
therefore f is too if λ #= 0. λ = 0 is certainly an infinitely multiple eigenvalue,
since every f orthogonal to φ, ψ belongs to it. It therefore suffices to assume
λ #= 0 and f = xφ + yψ (we assume φ, ψ to be linearly independent; otherwise
φ = cψ with |c| = 1 and the two states are identical). The above equation
becomes

a(x + y(ψ, φ)) · φ + b(x(φ, ψ) + y) · ψ = λx · φ + λy · ψ
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of the gas has increased by

− 1
4Nκ{1 ln 1 + 0 ln 0}

− 3
4Nκ

{3 +
√

1 + 8α2

6
ln 3 +

√
1 + 8α2

6
+ 3 −

√
1 + 8α2

6
ln 3 −

√
1 + 8α2

6

}

+ Nκ
{1 + α

2
ln 1 + α

2
+ 1 − α

2
ln 1 − α

2

}

(where the leading term vanishes). This should equal 0 when the entropy
increase Nκ 3

4 ln 4
3 of W is added to it. If we divide by 1

4Nκ then we have

− 3 +
√

1 + 8α2

2
ln 3 +

√
1 + 8α2

6
− 3 −

√
1 + 8α2

2
ln 3 −

√
1 + 8α2

6
+ 2(1 + α) ln 1 + α

2
+ 2(1 − α) ln 1 − α

2
+ 3 ln 4

3 = 0

where again: 0 ! α ! 1.

Now it is easily seen that the expression on the left increases monotonically
as α ranges from 0 to 1;198 in fact the expression grows from 0 to 3 ln 4

3 . We
conclude that necessarily α = 0, for if it were otherwise then the process inverse

whence
(a − λ)x + a(φ, ψ)y = 0
b(φ, ψ)x + (b − λ)y = 0

The determinant of these equations must vanish:
∣∣∣∣

a − λ a(φ, ψ)
b(φ, ψ) b − λ

∣∣∣∣ = (a − λ)(b − λ) − ab|(φ, ψ)|2 = 0

i.e.,
λ2 − (a + b)λ + ab(1 − α2) = 0

λ =
a + b ±

√
(a + b)2 − 4ab(1 − α2)

2
=

a + b ±
√

(a − b)2 + 4abα2

2
Setting {a, b} = {1, 0} or { 1

2 , 1
2} or { 1

3 , 2
3} we obtain the respective formulae

given in the text.
198 [By computer-assisted graphic display, or by the following argument:] From
(x lnx) ′ = lnx + 1 we have

( 1+y
2 ln 1+y

2 + 1−y
2 ln 1−y

2

)′ = 1
2

(
ln 1+y

2 + 1
)
− 1

2

(
ln 1−y

2 + 1
)

= 1
2 ln 1+y

1−y

so the α-derivative of our expression is

− 3 · 1
2 ln 3 +

√
1 + 8α2

3 −
√

1 + 8α2
· 1

3
8α√

1 + 8α2
+ 4 · 1

2 ln 1 + α
1 − α

= 2
(

ln 1 + α
1 − α

− 2α√
1 + 8α2

ln 3 +
√

1 + 8α2

3 −
√

1 + 8α2

)
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to that described would be entropy-decreasing, contrary to the second law.
Thus have we proved that it is impossible for a semi-permeable wall to function
in the manner contemplated above except in the case (φ, ψ) = 0.

After these preparations we can proceed to the determination of the entropy
of a U-gas of N molecules at temperature T ; i.e., more precisely, the entropy
excess of such a gas with respect to the entropy of a P[φ]-gas under similar
conditions. By our earlier remarks, this is the entropy of a U-ensemble of N
individual systems. Let TrU = 1, as was done above.

The operator U, as we know, has a pure discrete spectrum w1, w2, . . . with
w1 " 0, w2 " 0, . . . and w1 +w2 + · · · = 1. Let the corresponding eigenfunctions
be φ1, φ2, . . . . Then (see IV.3)

U =
∞∑

n=1

wnP[φn]

Consequently, our gas is composed of a mixture of P[φ1], P[φ2], . . . gases of
w1N, w2N, . . . molecules respectively, all in the volume V . Let T, V be such
that all these gases are ideal, and let K be of rectangular cross section. Now we
will apply reversible interventions (described below: see Figure 4) to separate
the φ1, φ2, . . . molecules from each other. We adjoin to K (2 3 4 5 2) an equally
large box K′ (1 2 5 6 1), and replace the common wall 2 5 by two contiguous
walls. Let one (2 5) of those be fixed and semi-permeable—transparent for φ1

That this is > 0 means that

ln 1 + α
1 − α

> 2α√
1 + 8α2

ln 3 +
√

1 + 8α2

3 −
√

1 + 8α2

i.e.,
1

2α
ln 1 + α

1 − α
> 2

3 · 1
2β

ln 1 + β
1 − β

where β =
√

1 + 8α2

3

We shall prove the stronger inequality that results from replacing 2
3 with 8

9 .
Since 1−β2 = 8

9 (1−α2) and α < β (which follows from the former since α < 1)
this means that

1 − α2

2α
ln 1 + α

1 − α
>

1 − β2

2β
ln 1 + β

1 − β

and this is proved if 1−x2

2x ln 1+x
1−x is shown to be monotonically decreasing on the

interval 0 < x < 1. This last [graphically evident] property follows, however,
from the power series expansion :

1−x2

2x ln 1+x
1−x = (1 − x2)(1 + 1

3x2 + 1
5x4 + · · ·)

= 1 − (1 − 1
3 )x2 − ( 1

3 − 1
5 )x4 − · · ·
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1 2 3

a b c d

a b c d

6 5 4

Figure 4: A (w1, w2, . . .)-weighted mixture of (φ1, φ2, . . .)-gases
is confined initially within box K (2 3 4 5 2). Box K′ (1 2 5 6
1) has the same shape and volume as K, but is initially empty.
Wall 2 5 is fixed, transparent to φ1, opaque to all else. Wall bb
is movable, but opaque to everything; it moves in synchrony with
wall dd, which is opaque to φ1, transparent to all else. Moving
bb:dd to aa:cc has the effect of transporting all φ1 molecules from K

to K′ without expenditure of either work or heat, while leaving the
φ1, φ2, . . . molecules as undisturbed residents of K.

but opaque for φ2, φ3, . . . ; let the other (bb) be movable, but ordinary in the
sense that it is absolutely opaque to everything. In addition, we insert another
semi-permeable wall dd—close to 3 4—which is transparent for φ2, φ3, . . . but
opaque for φ1. We now push bb and dd—keeping the distance between them
constant—to aa and cc respectively (i.e., close to 1 6 and 2 5 respectively).
The φ2, φ3, . . . are not affected by this process, but the φ1 are forced to remain
between the moving walls bb and dd. Since the distance between these walls is
kept constant, no work is done (against gas pressure), and no heat is developed.
Finally, we replace the walls 2 5 and cc by a fixed impenetrable (i.e., universally
opaque) wall, and remove aa; in this way the boxes K, K′ are restored to their
initial condition. There is, however, this change: all the φ1 molecules reside
now in K′. We have transferred all these from K to K′ (a box of the same size),
reversibly and without any work being done, without any evolution of heat or
any temperature change.199

Similarly, we “tap off” the φ2, φ3, . . . molecules into boxes K′′, K′′′, . . . (all of
the same volume) and have finally w1N molecules of P[φ1]-gas, w2N molecules
of P[φ2]-gas, . . . , all at temperature T. Now we compress these isothermally to
volumes w1V, w2V, . . . respectively, which requires investments of mechanical
work w1NκT lnw1, w2NκT lnw2, . . . and the transfer of those amounts of

199 See, for example, the reference in Note 184 for an instance of this artifice,
which is characteristic of the methods of phenomenological thermodynamics.
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energy (as heat) to a reservoir (of temperature T, so that the process is reversible;
the quantities of heat are all less than zero, since the amounts of work done
in compressing the individual gases are the negatives of these values: see Note
191). The entropy increase for this process amounts to

∞∑

n=1

wnNκ lnwn

Finally, we transform each of the P[φ1], P[φ2], . . . gases into a P[φ]-gas
(reversibly, with φ is some arbitrarily chosen state: see again the discussion
on pages 234–5). We have then only P[φ]-gases of w1N, w2N, . . . molecules in
the respective volumes w1V, w2V, . . . . Since all of these are identical, and of
the same density N/V , we can mix them, and this also is reversible. We have
then (since

∑∞
n=1 wn = 1) a P[φ]-gas of N molecules in volume V .

We have at this point completed the desired reversible process. The entropy
has increased by Nκ

∑
n wn lnwn and since it must be zero in the final state it

was
−Nκ

∞∑

n=1

wn lnwn

in the initial state.

Since U has the eigenfunctions φ1, φ2, . . . with eigenvalues w1, w2, . . . the
operator U lnU has the same eigenfunctions but eigenvalues w1 lnw1, w2 lnw2, . . .
Consequently

Tr(U ln U) =
∞∑

n=1

wn lnwn

We observe that from 0 ! wn ! 1 it follows that wn lnwn ! 0, with equality
only for wn = 0 or 1; note also that for wn = 0 we take wn lnwn to be zero, as
follows from the fact that in the preceding discussion the vanishing wn were
not considered at all. One is led to those same conclusions by continuity
considerations.

So we have determined that the entropy of a U-ensemble, consisting of
N individual systems, is −NκTr(U lnU). The preceding remarks concerning
wn lnwn establish that this is always " 0, and = 0 only if all wn are either 0 or 1.
From TrU =

∑
n wn = 1 it follows that in such cases only one wn = 1 and all

the others are 0, therefore U = P[φ]. That is, the states have entropy = 0, while
mixtures have entropies > 0.

3. REVERSIBILITY AND EQUILIBRIUM PROBLEMS

We can now prove the irreversibility of the measurement process, as asserted
in V.1. For example, if U is a state then U = P[φ] and in the measurement of a
quantity R whose operator R has the eigenfunctions φ1, φ2, . . . it goes over into
the ensemble

U ′ =
∞∑

n=1

(P[φ ]φn, φn) · P[φn] =
∞∑

n=1

|(φ, φn)|2 · P[φn]
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and if U ′ is not a state then an entropy increase has occurred (the entropy of
U was 0, that of U ′ is > 0), so that the process is irreversible. If U ′ too is to
be a state it must be a P[φ], and since the φ1, φ2, . . . are its eigenfunctions this
means that all |(φ, φn)|2 = 0 except one (that one being 1); i.e., φ is orthogonal
to all φn, n #= n̄. But then φ = cφn̄ (|c| = 1), so P[φ] = P[φn̄], U = U ′.
Therefore every measurement on a state is irreversible unless the eigenvalue of
the measured quantity (i.e., the value of this quantity in the given state) has
a sharp value, in which case the measurement does not change the state at all.
As we see, the non-causal behavior here is unambiguously related to a certain
concomitant thermodynamic phenomenon.

We shall now discuss in complete generality when the process 1

U −→ U ′ =
∞∑

n=1

(Uφn, φn) · P[φn]

increases the entropy.

U has entropy −NκTr(U lnU). If w1, w2, . . . are its eigenvalues and
ψ1, ψ2, . . . its eigenfunctions then this can be written

−Nκ
∞∑

n=1

wn lnwn = −Nκ
∞∑

n=1

(Uψn, ψn) ln(Uψn, ψn)

U ′ has eigenvalues (Uφ1, φ1), (Uφ2, φ2), . . . and therefore its entropy is

−Nκ
∞∑

n=1

(Uφn, φn) ln(Uφn, φn)

Consequently, the entropy of U is "
< that of U ′ according as

'''
∞∑

n=1

(Uψn, ψn) ln(Uψn, ψn) !
>

∞∑

n=1

(Uφn, φn) ln(Uφn, φn)

We next show that in ''' " holds in any case; i.e., that the process U → U ′

is not entropy-diminishing; this is indeed clear thermodynamically, but it is
important for our subsequent purposes to possess a purely mathematical proof
of this fact. We proceed in such a way that U—and with it the ψ1, ψ2, . . .—are
fixed, while the φ1, φ2, . . . run through all complete orthonormal sets.

On continuity grounds we may limit ourselves to sets φ1, φ2, . . . in which
only a finite number of φn are different from the corresponding ψn. Then, for
example, φn = ψn for n > M . Then the φn, n ! M are linear combinations of
the ψn, n ! M , and conversely:

φm =
M∑

n=1

xmnψn : m = 1, 2, . . . , M
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where the M -dimensional matrix {xmn} is obviously unitary. We have

(Uψm, ψm) = wm

and, as can easily be calculated,

(Uφm, φm) =
M∑

n=1

wn|xmn|2 : m = 1, 2, . . . M

so that it is
M∑

m=1

wm lnwn "
M∑

m=1

( M∑

n=1

wn|xmn|2
)

ln
( M∑

n=1

wn|xmn|2
)

that is to be proved. Since the expression on the right is a continuous function of
the M2 bounded variables xmn it has a maximum, and also it actually assumes
its maximum value ({xmn} is unitary!). It assumes the value of the expression
on the left when

xmn =
{

1 for m = n
0 for m #= n

We show that matrix X = {xmn} = I is in fact the maximizer of the
expression on the right.

To that end, let X0 = {x0
mn} where x0

mn (m, n = 1, 2, . . . , M) is a set of
values for which the maximum occurs. If we multiply X0 by the unitary matrix

A =





α β 0 . . . 0
−β̄ ᾱ 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1




: |α|2 + |β|2 = 1

we obtain a {xmn
′ } which is unitary, therefore an acceptable xmn-complex. Now

let α =
√

1 − ε2, β = θε (ε real and |θ| = 1). We assume ε to be so small that
we need only look to the 1, ε, ε2 terms and can neglect the ε3, ε4, . . . terms. Then
α = 1 − 1

2ε2 and the elements xmn
′ of the new matrix X′ = AX become

x1n
′ ≈ (1 − 1

2ε2)x0
1n + θεx0

2n

x2n
′ ≈ −θ̄εx0

1n + (1 − 1
2ε2)x0

2n

xmn
′ = x0

mn : m " 3

Therefore
∑M

n=1wn|x1n
′ |2 ≈

∑M

n=1wn|x0
1n|2 +

∑M

n=12wnR(θ̄x0
1nx̄0

2n) · ε
+

∑M

n=1wn(−|x0
1n|2 + |x0

2n|2) · ε2∑M

n=1wn|x2n
′ |2 ≈

∑M

n=1wn|x0
2n|2 −

∑M

n=12wnR(θ̄x0
1nx̄0

2n) · ε
−

∑M

n=1wn(−|x0
1n|2 + |x0

2n|2) · ε2∑M

n=1wn|xmn
′ |2 =

∑M

n=1wn|x0
mn|2 : m " 3
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If we substitute these expressions into f(x) = x lnx—which entails

f ′(x) = lnx + 1, f ′′(x) = 1
x

—and add the results together, we obtain

M∑

m=1

( M∑

n=1

wn|xmn
′ |2

)
ln

( M∑

n=1

wn|xmn
′ |2

)

≈
∑M

n=1

(∑M

n=1wn|x0
mn|2

)
ln

(∑M

n=1wn|x0
mn|2

)
· ε0

+
{

ln
(∑M

n=1wn|x0
1n|2

)
− ln

(∑M

n=1wn|x0
2n|2

)}
·
∑M

n=12wnR(θ̄x0
1nx̄0

2n) · ε1

+
[
−

{
ln

(∑M

n=1wn|x0
1n|2

)
− ln

(∑M

n=1wn|x0
2n|2

)}

·
{(∑M

n=1wn|x0
1n|2

)
−

(∑M

n=1wn|x0
2n|2

)}

+ 1
2

(
1∑M

n=1wn|x0
1n|2

+ 1∑M

n=1wn|x0
2n|2

)(∑M

n=12wnR(θ̄x0
1nx̄0

2n)
)]

· ε2

For the expression on the right to be maximal the term of order ε1 must vanish
and the term of order ε2 must be ! 0. The first of those is the product of two
factors,

ln
(∑M

n=1wn|x0
1n|2

)
− ln

(∑M

n=1wn|x0
2n|2

)

and
∑M

n=12wnR(θ̄x0
1nx̄0

2n)

If the first of those is zero then the leading term in the ε2-coefficient (which is
always ! 0) is also zero, so that the second term (which clearly is always " 0)
must vanish in order that the entire coefficient be ! 0. This means that

∑M

n=12wnR(θ̄x0
1nx̄0

2n) = 0

Therefore the second factor in the ε1-coefficient must vanish in any event, which
we may also express by writing

2R
(
θ̄ ·

∑M

n=1wnx0
1nx̄0

2n

)
= 0

Since this goes over into absolute value of the
∑M

n=1 for appropriate θ, we must
have

∑M

n=1wnx0
1nx̄0

2n = 0. And since we can replace the subscripts 1, 2 by any
two different k, j = 1, 2, . . . , M we have

M∑

n=1

wnx0
knx̄0

jn = 0 : k #= j

That is, the unitary coordinate transformation with the matrix {x0
mn} brings

the diagonal matrix with elements w1, w2, . . . again into diagonal form. Since
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the diagonal elements are the multipliers (or eigenvalues) of the matrix, they
are not changed by the coordinate transformation, but are at most permuted.
Before the transformation they were the wm (m = 1, . . . M); afterwards they
are the

∑M

n=1wn|x0
mn|2 (m = 1, . . . M). The sums

M∑

m=1

wm lnwm and
M∑

m=1

(∑M

n=1wn|x0
mn|2

)
ln

(∑M

n=1wn|x0
mn|2

)

then have the same values. Hence there is at any rate a maximum at

xmn =
{

1 for m = n
0 for m #= n

as was asserted.

Let us determine when the equality holds in '''. If it does hold, then
∞∑

n=1

(Uχn, χn) ln(Uχn, χn)

assumes its maximum value not only for χn = ψn (n = 1, 2, . . .)—these are
the eigenfunctions of U (see above)—but also for χn = φn (n = 1, 2, . . .)
with χ1, χ2, . . . running through all complete orthonormal sets. This holds
in particular if only the first M among the φn are transformed (i.e., χn = φn

for n > M) and hence, of course, transformed unitarily among each other.
Let µmn = (Uφm, φn) (m, n = 1, . . . , M) and let v1, . . . , vM be the eigenvalues
of a finite-dimensional (Hermitian and definite) matrix {µmn}, and let {αmn}
(m, n = 1, . . . , M) be the matrix that transforms {µmn} to diagonal form. This
transforms the φ1, . . . , φM into ω1, . . . , ωM :

φm =
M∑

n=1

αmnωn : m = 1, . . . , M

Then

Uωn = vn ωn and therefore (Uωm, ωn) =
{

vn for m = n
0 for m #= n

For

ξm =
M∑

n=1

xmn ωn : m = 1, . . . , M and {xmn} unitary

we have

(Uξk, ξj) =
M∑

n=1

vnxknx̄jn

Because of the assumption regarding the φ1, . . . , φM the expression
M∑

m=1

(∑M

n=1vn|xmn|2
)

ln
(∑M

n=1vn|xmn|2
)

takes on its maximum when xmn = αmn. According to our previous proof, it
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follows from this that
M∑

n=1

vnαknᾱjn = 0 : k #= j

i.e., (Uφk, φj) = 0 for k #= j (k, j = 1, . . . M).

This must hold for all M , therefore Uφk is orthogonal to all φj , k #= j,
and hence it is equal to wk

′ φk (wk
′ a constant). Consequently, the φ1, φ2, . . .

are eigenfunctions of U. The corresponding eigenvalues are w1
′ , w2

′ , . . . (and
therefore a permutation of w1, w2, . . .). Under these circumstances

U ′ =
∞∑

n=1

(Uφn, φn) · P[φn] =
∞∑

n=1

wn
′ · P[φn] = U

We have therefore found:

The process 1

U −→ U ′ =
∞∑

n=1

(Uφn, φn) · P[φn]

(φ1, φ2, . . . are the eigenfunctions of the operator R belonging to
the measured quantity R) never diminishes the entropy. Actually,
it increases the entropy unless all φ1, φ2, . . . are eigenfunctions of
U, in which case U = U ′. Moreover, in the case just mentioned U
commutes with R, and this is characteristic of that case (because it
is equivalent to the existence of common eigenfunctions: see II.10).
Hence the process 1 is irreversible in all cases in which it effects any
change at all.

The reversibilityquestion will nowbe treated forprocesses 1, 2 byarguments
that proceed independently of phenomenological thermodynamics, pursuant
to the second point of the two-point program that was put forward at the
beginning of section V.2. The mathematical method by which this can be
accomplished we already know: if the second law of thermodynamics holds,
the entropy must be equal to −NκTr(U lnU), and this does not decrease in any
process 1, 2. We now treat −NκTr(U lnU) merely as a calculated quantity—
independently of its entropic meaning—and investigate how it responds to
processes 1, 2.200

In 2 we have

U −→ Ut = e−
i
! tH Ue

i
! tH

= AUA–1 with A = e−
i
! tH

Since f → Af , because of the unitary nature of A, is an isomorphic mapping
of the Hilbert space on itself which transforms each operator P into APA–1, it

200 Naturally, we could neglect the factor Nκ and look only to −Tr(U lnU).
Or to −NTr(U lnU) if we wish to preserve proportionality to the number N of
elements.
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is always the case that F (APA–1) = AF (P)A–1. Consequently,

Ut ln Ut = A · U ln U · A–1

Hence
Tr(Ut ln Ut) = Tr(U ln U)

i.e., our quantity −NκTr(U lnU) is constant under 2. We have already
established what happens under 1, and have in fact done so without reference to
the second law of thermodynamics: if U changes (i.e., U #= U ′) then
−NκTr(U lnU) increases, while for unchanged U (i.e., U = U ′, or ψ1, ψ2, . . .
eigenfunctions of R, or U, R commutative) it naturally remains unchanged. In
an intervention composed of several 1 and 2 (in arbitrary number and order)
−NκTr(U lnU) remains unchanged if each process 1 is ineffective (i.e., causes
no change), but in all other cases it increases.

Therefore, if only interventions 1, 2 are taken into consideration, then each
process 1 which effects any change at all is irreversible.

It is worth noting that there are other expressions—simpler than Tr(U lnU)
—which do not decrease under 1 and are constant under 2. The largest
eigenvalue of U provides an example. For 2 it is invariant, as are all the
eigenvalues of U, while under 1 the eigenvalues w1, w2, . . . of U go over into
the eigenvalues of U′:

∑∞
n=1wn|x1n|2,

∑∞
n=1wn|x2n|2, . . .

(see again the considerations earlier in this section). By the unitary nature of
the matrix {xmn}

∑∞
n=1|x1n|2 = 1,

∑∞
n=1|x2n|2 = 1, . . .

so all these numbers are ! the largest wn. (A maximal wn exists since all
wn " 0 and

∑M

n=1wn = 1 entails wn → 0.) Now since it is possible so to change
U that

−Tr(U lnU) = −
∑∞

n=1wn lnwn

remains invariant but that the largest wm decreases, we see that these are
changes which are possible according to phenomenological thermodynamics—
therefore they can actually be executed by our gas processes—but which can
never be brought about by successive applications of 1, 2 alone. This proves
that our introduction of gas processes was indeed necessary.

Instead of −Tr(U lnU) we could also consider Tr(F (U)) for appropriate
functions F (x). That this increases under 1 when U #= U ′ (for U = U ′, as
well as under 2, it is of course invariant) can be proved, as was done for
F (x) = −x lnx, if the special properties of this function of which we made
use also pertain to F (x). These are: F ′′(x) < 0 and the monotonic decrease
of F ′(x), but the latter follows from the former. Therefore, for our non-
thermodynamic irreversibility considerations we could use any Tr(F (U)) in
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which F (x) is convex from above (meaning F ′′(x) < 0) on the interval 0 ! x ! 1
which contains all the eigenvalues of U.

Finally, it should be shown that the mixing of two ensembles U, V (say in
the ratio α : β, α > 0, β > 0, α + β = 1) is also not entropy-diminishing

−Tr
(
(αU + βV) ln(αU + βV)

)
" −αTr(U lnU) − βTr(V ln V)

and that this also holds when −x lnx is replaced by any convex F (x). The
proof is left to the reader.

We turn now to an investigation of the stationary equilibrium distribution;
i.e., the mixture of maximum entropy, when the energy is given. The latter
is, of course, to be understood to mean that the expectation value of the
energy is prescribed: only this interpretation is admissible in view of the method
indicated in Note 184 for the thermodynamical investigation of statistical
ensembles. Consequently, only such mixtures will be allowed for the U of which
TrU = 1 and TrUH = E, where H is the energy operator and E is the prescribed
energy expectation value. Under these auxiliary conditions, −NκTr(U lnU) is
to be made a maximum. We also make the simplifying assumption that H has
a pure discrete spectrum, with eigenvalues W1, W2, . . . (some of which may be
multiple) and eigenfunctions φ1, φ2, . . . .

Let R be a quantity whose operator R has the same eigenfunctions
φ1, φ2, . . . as H but only distinct (or simple) eigenvalues. Measurement of R
transforms U (by 2) into

U ′ =
∞∑

n=1

(Uφn, φn)P[φn]

and therefore −NκTr(U lnU) increases unless U = U ′. Also, TrU and TrUH do
not change—the latter because the φn are eigenfunctions of H, and therefore
(Hφm, φn) vanishes for m #= n:

Tr(U ′H) =
∞∑

n=1

(Uφn, φn)Tr(P[φn]H)

=
∞∑

n=1

(Uφn, φn)(Hφn, φn)

=
∞∑

m,n=1

(Uφm, φn)(Hφn, φm) = Tr(UH)

as follows also from the commutativity of R and H (i.e., from the simultaneous
measurability of R and energy). Consequently, the desired maximum is the
same if we limit ourselves to such U ′; i.e., to statistical operators with
eigenfunctions φ1, φ2, . . . . And furthermore, it is assumed only among these.
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Therefore

U =
∞∑

n=1

wnP[φn]

and—since U, UH and U lnU all have the same eigenfunctions φn but the
respective eigenvalues wn, wnWn and wn lnwn—it suffices to make

−Nκ
∞∑

n=1

wn lnwn

a maximum, subject to the auxiliary conditions
∞∑

n=1

wn = 1 and
∞∑

n=1

wnWn = E

This is exactly the same problem as that which is encountered in connection
with the corresponding equilibrium problem in ordinary gas theory,201 and is
solved in the same way. According to the well-known procedure for extremum
calculations, we must solve

∂
∂wn

( ∞∑

m=1

wm lnwm

)
+ α ∂

∂wn

( ∞∑

m=1

wm

)
+ β ∂

∂wn

( ∞∑

m=1

wmWm

)
= 0

in which α, β are suitable constants (Lagrange multipliers) and n = 1, 2, . . . .
That is,

(lnwn + 1) + α + βWn = 0

whence
wn = e−1−α−βWn = ae−βWn where a = e−1−α

From
∑∞

n=1wn = 1 it follows that

a = 1∑∞
n=1e

−βWn

and therefore
wn = e−βWn∑∞

m=1e
−βWm

And because of
∑∞

n=1wnWn = E we have
∑∞

n=1Wne−βWn

∑∞
m=1e

−βWm
= E

which determines β. If, as is customary, we introduce the “partition function”

Z(β) =
∞∑

n=1

e−βWn = Tr(e−β H )

201 See, for example, Planck, Theorie der Wärmstrahlung , Leipzig, 1913.
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(see Notes 183, 184 for this and the following) then

Z ′(β) = −
∞∑

n=1

Wne−βWn = −Tr(He−β H )

and the condition that determines β becomes

−Z ′(β)
Z(β)

= E

(We are making the assumption here that
∑∞

n=1e
−βWn and

∑∞
n=1Wme−βWn

converge for all β > 0; i.e., that Wn → ∞ for n → ∞, and that in fact they
do so with sufficient rapidity: for example, Wn/ lnn → ∞ suffices.) We then
obtain the following expressions for U itself:

U =
∞∑

n=1

ae−βWnP[φn] = ae−β H = e−β H

Tr(e−β H )
= e−β H

Z(β)

The properties of the equilibrium ensemble U (which is determined by the
values of E or of β, and which therefore depends on a parameter, as it must)
can now be determined by methods customary in gas theory.

The entropy of our equilibrium ensemble is

S = −NκTr(U lnU) = −NκTr
(

e−β H

Z(β)
ln e−β H

Z(β)

)

= − Nκ
Z(β)

Tr
[
e−β H

(
− βH − lnZ(β)

)]

= βNκ
Z(β)

Tr(He−β H ) + Nκ lnZ(β)
Z(β)

Tr(e−β H )

= Nκ
[
− β

Z ′(β)
Z(β)

+ lnZ(β)
]

and the total energy is

NE = −N
Z ′(β)
Z(β)

(This—not E itself—is to be considered in conjunction with S.) Thus U, S
and NE are expressed as functions of β. Instead of inverting the last equation
(i.e., expressing β as a function of E) it is more practical to determine the
temperature T of the equilibrium mixture, and to reduce everything to this.
This is done as follows:

Our equilibrium mixture is brought into contact with a heat reservoir of
temperature T ′ and energy NdE is transferred to it from that reservoir. The
two laws of thermodynamics require, then, that the total energy must remain
unchanged, and that the entropy must not decrease. Consequently, the heat
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reservoir loses the energy NdE and therefore its entropy increase is −NdE/T ′,
and we must now have

dS − NdE
T ′ =

( 1
N

dS
dE

− 1
T ′

)
NdE " 0

On the other hand, NdE "
< 0 must hold according to whether T ′ "

< T because
the colder body absorbs energy from the warmer. Consequently T ′ "

< T implies

1
N

dS
dE

− 1
T ′

"
< 0

i.e.,

T ′ "
< N dE

dS
=

N dE
dβ

dS
dβ

Hence

T =
N dE

dβ
dS
dβ

= − 1
κ

(Z′(β)
Z(β)

)′
(
lnZ(β) − β Z′(β)

Z(β)

)′

= − 1
κ

(Z′(β)
Z(β)

)′

−β
(Z′(β)

Z(β)

)′ = 1
κβ

i.e.,
β = 1

κT

which we can use to express U, S and NE as functions of temperature.

The similarity of the expressions obtained above for the entropy, equilibrium
ensemble, etc. to the corresponding results of classical thermodynamical theory
is striking. Look first to the entropy −NκTr(U lnU):

U =
∞∑

n=1

wnP[φn]

refers to a mixture of ensembles P[φ1], P[φ2], . . . with relative weights w1, w2, . . .;
i.e., Nw1 φ1 -systems, Nw2 φ2 -systems, . . . . The Boltzmann entropy of this
ensemble is obtained with the aid of the “thermodynamic probability”

N !
(Nw1)!(Nw2)! · · ·

It is the “κ-fold logarithm.”201 Since N is large, we may approximate the
factorials by the Stirling formula x! ≈

√
2πxe−xxx and then N !

(Nw1)!(Nw2)!···
becomes essentially

−Nκ
∞∑

n=1

wn lnwn

—and this is exactly −NκTr(U lnU).
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Consider now the equilibrium ensemble

U = e−H/κT

(we neglect the normalization factor 1/Z(β)), which can be written

∞∑

n=1

e−Wn/κT P[φn]

and refers therefore to a mixture of states P[φ1], P[φ2], . . .; i.e., of stationary
states with energies W1, W2, . . . with the respective (relative) weights

e−W1/κT , e−W2/κT , . . .

If an energy value is multiple, say Wn1
= Wn2

= · · · = Wnν
= W , then

P[φn1 ] + P[φn2 ] + · · · + qP[φnν ]

appears in the equilibrium ensemble with weight e−W/κT , which is to say: in
the correctly normalized mixture

1
ν

(
P[φn1 ] + P[φn2 ] + · · · + qP[φnν ]

)

appears (see the beginning of IV.3) with weight νe−W/κT . But the classical
“canonical ensemble” is—apart from the appearance of the specifically quantum
mechanical construct 1

ν

(
P[φn1 ] +P[φn2 ] + · · ·+ qP[φnν ]

)
—defined in exactly the

same way: this is known as Boltzmann’s Theorem.201

For T → 0 the weights e−Wn/κT approach 1, and therefore our U tends to

∞∑

n=1

P[φn] = I

Consequently, U ≈ I is the absolute equilibrium state if no energy restrictions
apply—a result we had obtained already in IV.3. We see that the “a priori equal
probability of the quantum orbits” (i.e., of the simple non-degenerate ones—in
general the multiplicity of the eigenvalues is the a priori weight: see discussion
above) follows automatically from this theory.

It remains to ascertain how much can be said non-thermodynamically
about the equilibrium ensemble U of a given energy; i.e., what can be deduced
only from the fact that U is stationary (does not change in the course of time,
under process 2), and that it remains unchanged in all measurements which do
not affect the energy (i.e., measurements of quantities R that are, under process
1, measurable simultaneously with energy, and that correspond therefore to
operators R that commute with H and have the same eigenfunctions φ1, φ2, . . .
as H).
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Because of the differential equation ∂
∂tU = i

! (UH−HU) the former condition
requires only that H, U commute. The latter condition means that if φ1, φ2, . . .
comprise a complete eigenfunction set of H then U = U ′. Let the corresponding
eigenvalues of H be W1, W2, . . . and those of U be w1, w2, . . . . If Wj = Wk we
can replace φj , φk by

φj + φk√
2

,
φj − φk√

2
for H. These, therefore, are also eigenfunctions of U, from which it follows that
wj = wk. Therefore, a function F (x) with F (Wn) = wn (n = 1, 2, . . .) can be
constructed, and F (H) = U. It is clear that this is sufficient, and that it implies
the commutativity of H and U.

So we have U = F (H), but no specific form is assigned to F (x). In
particular, the result

F (x) = 1
Z(β)

e−βx : β = 1
κT

we achieved by other means is not enforced. From TrU = 1 and Tr(UH) = 1 it
follows that

∞∑

n=1

F (Wn) = 1 and
∞∑

n=1

WnF (Wn) = E

but with this, all that this method can supply is exhausted.

4. THE MACROSCOPIC MEASUREMENT

Although our entropy expression is, as we saw, completely analogous to
classical entropy, it is still surprising that it is invariant under normal temporal
evolution of the system (process 2), and increases only in consequence of
measurements (process 1). In classical theory—where measurements in general
played no role—its increase, as a rule, resulted from the ordinary mechanical
evolution of the system. It is incumbent upon us to clear up this apparently
paradoxical situation.

A familiar classical thermodynamic argument runs as follows: Imagine a
container of volume V which is bisected by a partition. On one side of the
partition are M molecules of gas (assumed, for simplicity, to be an ideal gas) at
temperature T. We allow the gas to expand isothermally and reversibly 1

2V → V
by pushing against the partition, doing work which we utilize, and remaining
isothermal by drawing heat from a large heat reservoir at temperature T . The
entropy of the reservoir decreases by Mκ ln 2 (see Note 195), and therefore the
entropy of the gas increases by that same amount. If, on the other hand, we
had simply removed (or punctured) the partition the gas would have diffused
into the (previously empty) other half of the enclosure; the gas entropy would
again have increased by Mκ ln 2, but now without any corresponding entropy
compensation taking place. The process is consequently irreversible, for the
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entropy has increased in the course of the simple temporal evolution of the
system (diffusion). Why does our theory give nothing similar?

The situation is best clarified if we set M = 1. Thermodynamics is still
valid for such a one-molecule gas, and it is true that its entropy increases by
κ ln 2 if its volume is doubled. Nevertheless, this difference is actually κ ln 2
only if one knows no more about the molecule than that it was found initially
in volume 1

2V and later in volume V . For example, if the molecule is in the
volume V but it is known whether it is on the right or left side of the middle of
the enclosure, then we could insert a partition in the middle and allow this to be
pushed by the molecule (isothermally and reversibly) to (respectively) the left
or right end of the cylindrical enclosure. During this process, mechanical work
κT ln 2 is performed; i.e., this amount of energy is drawn from the reservoir.
Consequently, at the end of the process the molecule is again in volume V , but
we no longer know whether it is left or right of the middle and there has been
a compensating entropy decrease of κ ln 2 (in the reservoir). That is, we have
exchanged our knowledge for the entropy decrease κ ln 2.202 Or: the entropy is
the same in volume V as in volume 1

2V , provided we know, in the first-mentioned
case, in which half of the enclosure the molecule is to be found. Therefore, if
we knew all the properties (position and momentum) of the molecule before the
diffusion process was initiated we could calculate at each subsequent moment
whether it is on left or right, and entropy would not have changed. If, however,
the only information at our disposal were the macroscopic information that the
molecule was initially in the right (or left) half of the enclosure, then entropy
would increase upon diffusion.

For a classical observer, who knows all coordinates and momenta, the
entropy is therefore constant, and is in fact 0, since the Boltzmann
“thermodynamic probability” is 1 (see the reference in Note 201)—just as in our
theory for states U = P[φ], since these again correspond to the highest possible
state of knowledge of the observer, relative to the system.

The time-variations of entropy are based then on the fact that the observer
does not know everything—that he cannot find out (measure) everything that
is measurable in principle. His senses allow him to perceive only the so-called
macroscopic quantities. But this clarification of the apparent contradiction
mentioned at the outset imposes upon us an obligation to investigate the precise
analog of classical macroscopic entropy for quantum mechanical ensembles;
i.e., the entropy as seen by an observer who cannot measure all quantities,
but only a few special quantities, namely, the macroscopic ones. And even

202 L. Szilard (see the reference in Note 194) has shown that one cannot get
this “knowledge” without a compensating entropy increase κ ln 2. In general,
κ ln 2 is the “thermodynamic value” of knowledge which takes the form of
distinguishing between two alternative cases. All attempts to carry out the
process described above without knowledge of in which half of the enclosure
the molecule is initially located can be shown to be invalid, though they may
occasionally lead to very complicated automatic mechanisms.
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these, under certain circumstances, with only limited accuracy.

In III.3 we learned that all measurements of limited accuracy can be replaced
by absolutely accurate measurement of other quantities which are functions of
them, and which have discrete spectra. Now if R is such a quantity, and R its
operator, and if λ(1), λ(2), . . . are the distinct eigenvalues, then the measurement
of R is equivalent to answering the following questions:

“Is R = λ(1)?”, “Is R = λ(2)?”, . . .

In fact, we can also say directly: Assume that S, with operator S, is to be
measured with limited accuracy—say that one wishes to determine within which
of the intervals cn−1 < λ ! cn (· · · c−2 < c−1 < c0 < c1 < c2 < · · ·) it lies. This
becomes a case of answering these questions:

“Does S lie in cn−1 < λ ! cn?” : n = 0,±1,±2, . . .

Now, such questions correspond, by III.5, to projections E whose quantities
E (which have only two values: 0 or 1) are actually to be measured. In our
examples, the E are the functions Fn(R), n = 1, 2, . . . in which

Fn(λ) =
{

1 for λ = λ(n)

0 otherwise

or the functions Gn(S), n = 0,±1,±2, . . . in which

Gn(λ) =
{ 1 for cn−1 < λ ! cn

0 otherwise

and the corresponding E are Fn(R) or G(S), respectively. Therefore, instead of
giving the macroscopically measurable quantities S (together with statements
of the macroscopically attainable measurement precision), we may equivalently
give the questions E that are answered by the macroscopic measurements, or
their projections E (see III.5). Characterization of the macroscopic observer
comes therefore to this: specification of his E. (Thus, classically, one might
characterize him by stating that he can measure temperature and pressure in
each cm3 of the gas volume—perhaps with certain precision limitations—but
nothing else.203)

Let us consider the method by which two non-simultaneously measurable
quantities (for example: the coordinate q and the momentum p ; see III.4) can
be measured simultaneously with limited precision. Let the mean errors be ε, η
respectively (according to the uncertainty principle εη ∼ h). The discussion in
III.4 showed that with such limited precision requirements such measurements
are indeed possible: the q (position) measurement is performed with light
wave lengths that are not too short, and the p (momentum) measurement
is performed with light wave trains that are not too long. If everything is

203 This characterization of the macroscopic observer is due to E. Wigner.
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properly arranged, then the actual measurements consist in detecting two light
quanta in some way (perhaps by means of photographic plates): one (in the
q measurement) is the light quantum scattered by the Compton effect; the
other (in the p measurement) is reflected, changed in frequency (by the Doppler
effect) and then (to measure that changed frequency) deflected by an optical
device (prism, diffraction grating). By the end of the experiment, two light
quanta have produced two black spots on two photographic plates, and from the
locations of the spots (directions of the light quanta) we can calculate q and p.
We must emphasize here that nothing prevents us from determining (with
arbitrary precision) the locations of the spots (directions of the light quanta),
because these are obviously simultaneously measurable (they are coordinates
of two different objects). However, excessive precision at this point is not of
much help for the measurement of q and p. As was shown in III.4, the relation of
the spot-coordinates to q and p is such that the uncertainties ε, η persist, even
if the spot-coordinates are measured with arbitrarily great precision, and the
apparatus cannot be arranged so that εη % h.

Therefore, if we introduce the spot-coordinates themselves (or directions
of the light quanta) as physical quantities (with operators Q ′, P ′) then we see
that Q ′, P ′ are commutative, but the operators Q, P belonging to q, p can be
described in terms of them with no higher precision than ε, η respectively.
Let the quantities belonging to Q ′, P ′ be q ′, p ′. The interpretation that the
actual macroscopically measurable quantities are not the q, p themselves but
are in fact q ′, p ′ is a very plausible one (it is, indeed, the q ′, p ′ that are in fact
measured), and it is in accord with our postulated simultaneous measurability of
all macroscopic quantities.

It is reasonable to attribute to this result a general significance, and to
view it as disclosing a characteristic of the macroscopic method of observation.
According to this, the macroscopic procedure consists of replacing all possible
operators A, B, C, . . ., which as a rule do not commute with each other, by
other operators A′, B ′, C ′, . . . (of which these are functions to within a certain
approximation) which do commute with each other. Since we can just as well
denote these functions of A′, B ′, C ′, . . . themselves by A′, B ′, C ′, . . ., we may say
this: the A′, B ′, C ′, . . . are approximations to the A, B, C, . . ., but commute exactly
with each other. If the respective numbers εA, εB, εC, . . . give measure to the
magnitudes of A′− A, B ′− B, C ′− C, . . . then we see that εAεB will give order
of magnitude measure to AB − BA (generally &= 0), etc. This sets the limit
on the approximations that can be achieved. It is, of course, advisable when
enumerating the A, B, C, . . . to restrict oneself to those operators whose physical
quantities are accessible to macroscopic observation, at least to within a
reasonable approximation.

These wholly qualitative observations remain an empty program so long
as we cannot show that they require only things that are mathematically
practicable. Therefore, for the characteristic case Q, P, we shall discuss further
the question of the existence of the above Q ′, P ′ on a mathematical basis. For
this purpose, let ε, η be two positive numbers with εη = 1

2!. We seek two
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commuting Q ′, P ′ such that Q ′− Q, P ′ − P have (in a sense still to be defined
more precisely) the respective orders of magnitude ε, η.

We do this with quantities q ′, p ′which are measurable with perfect precision;
i.e., Q ′, P ′ have pure discrete spectra. Since they commute there is a complete
orthonormal set φ1, φ2, . . . of eigenfunctions common to both (see II.10). Let
the corresponding eigenvalues of Q ′, P ′ be a1, a2, . . . and b1, b2, . . . , respectively.
Then

Q ′=
∞∑

n=1

anP[φn] P ′=
∞∑

n=1

bnP[φn]

Arrange their measurement in such a manner that it creates one of the states
φ1, φ2, . . . . To that end: measure a quantity R whose operator R has
eigenfunctions φ1, φ2, . . . and distinct eigenvalues c1, c2, . . . . Then Q ′, P ′ are
functions of R. That this measurement implies measurement of Q and P in
approximate fashion is clearly implied by this: In the state φn the values of
Q, P are expressed approximately by the values of Q ′, P ′; i.e., by an, bn. That
is, their dispersions about these values are small. These dispersions are the
expectation values of the quantities (q − an)2, (p − bn)2; i.e.,

(
(Q − anI)2φn, φn

)
= ‖(Q − anI)φn‖2 = ‖Qφn − anφn‖2

(
(P − bn I)2φn, φn

)
= ‖(P − bn I)φn‖2 = ‖Pφn − bn φn‖2

They are measures of the squares of the differences of (respectively) Q ′and Q, P ′

and P, so must be approximately ε2 and η2, respectively. We therefore require

‖Qφn − anφn‖<∼ ε ‖Pφn − bn φn‖<∼ η

Instead of speaking of Q ′, P ′ it becomes then more appropriate only to seek a
complete orthonormal set φ1, φ2, . . . for which, for a suitable choice of a1, a2, . . .
and b1, b2, . . . , the above estimates hold.

Individual φ (with ‖φ‖ = 1) for which (for suitable a, b)

‖Qφ − aφ‖ = ε ‖Pφ − bφ‖ = η

are known from III.4:

φσ,ρ,γ = φσ,ρ,γ(q) =
( 2γ

h

) 1
4 exp

{
− πγ

h (q − σ)2 + i 2πρ
h q

}

Because of εη = 1
2! = h

4π we have again

ε =
√

hγ
4π η =

√
h

4πγ

(i.e., γ = ε/η) and we now choose a = σ, b = ρ.

We now must construct a complete orthonormal set with the help of these
φρ,σ,γ . Since σ is the Q expectation value, and ρ is the P expectation value, it
is plausible that σ, ρ should each run through a set of numbers independently
of each other. And, in fact, that they should do so in such a way that the σ-set
has approximately the density ε and the ρ -set approximately the density η. It
proves practical in view of 2

√
π · ε =

√
hγ and 2

√
π · η =

√
h/γ to choose units

so that

σ =
√

hγ · µ and ρ =
√

h/γ · ν : µ, ν = 0,±1,±2, . . .
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The functions
ψµ,ν(q) = φ

µ
√

hγ,ν
√

h/γ,γ
(q)

ought then to correspond to the φn (n = 1, 2, . . .). It is obviously irrelevant
that we have two indices µ, ν in place of the one n.

These functions are normalized, and satisfy

‖Qψµ,ν − µ
√

hγ · ψµ,ν‖ = ε ‖Pψµ,ν − ν
√

h/γ · ψµ,ν‖ = η

but are not orthogonal. If we now orthogonalize them (in sequence) by the
Schmidt process (see II.2, proof of theorem 8) then we can prove completeness
of the resulting orthonormal set ψµ,ν

′ without any particular difficulties, and can
also establish the estimates

‖Qψµ,ν
′ − µ

√
hγ · ψµ,ν

′ ‖ = Cε ‖Pψµ,ν
′ − ν

√
h/γ · ψµ,ν

′ ‖ = C η

The value C ≈ 60 has been obtained in this way, and could probably be
reduced. The proof of this fact leads to rather tedious calculations which,
however, require no new concepts, so we will omit them. The factors C ≈ 60
are not important since εη = 1

2!, measured in macroscopic (CGS) units, is
exceedingly small (of the order 10−28).

Summing up, we can say that it is justified to assume the commutativity
of all macroscopic operators, and in particular of the macroscopic projections
E introduced above.

The E correspond to all macroscopically answerable questions E; i.e., to
all discriminations between alternatives in the system under investigation that
can be carried out macroscopically. They are all commutative. We can conclude
from II.5 that I − E belongs along with E to the set of all projectors
associated with macroscopically answerable questions (propositions), and that
EF, E + F − EF, E − EF belong along with E, F. It is reasonable to assume that
every system S admits of only a finite number of such questions; i.e., only a
finite number of such operators: E1, E2, . . . ,En. We introduce the notation

E(+) = E, E(−) = I − E

and consider all 2n products

E(s1)
1 E(s2)

2 · · ·E(sn)
n : (s1, s2, . . . , sn = ±)

Any two different ones among these have the product O, for if E(s1)
1 · · ·E(sn)

n

and E(t1)
1 · · ·E(tn)

n are two such which differ in (say) the νth place, then their
product presents the factor E(+)

ν E(−)
ν , which is O. Each Eν is the sum of several

such products: indeed

Eν =
∑

s1 . . . sν/ . . . sn = ±
E(s1)

1 · · ·E(sν−1)
ν−1 E(+)

ν E
(sν+1)
ν+1 · · ·E(sn)

n
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Among these products, consider the ones which are different from O. Call them
E1

′, E2
′, . . . ,Em

′ . (Evidently m ! 2n, but actually m ! n − 1 since these must
occur among the E1, E2, . . . ,En and be &= O.) Now clearly: Eµ

′ &= O ; Eµ
′Eν

′ = O
for µ &= ν; each Eµ is the sum of several Eµ

′. (From the latter it follows that
n = 2m.) It should be noted that Eµ + Eν = Eρ

′ can never occur unless Eµ = O
and Eν = Eρ

′ or Eµ = Eρ
′ and Eν = O; otherwise Eµ, Eν would be sums of several

Eπ
′ = O and therefore Eρ

′ the sum of " 2 terms Eπ
′ (possibly with repetitions).

By II.4, theorems 15,16 these would all differ from one another; since their
number is " 2 and all are &= O they also differ from Eρ

′. Therefore their product
with Eρ

′ would be O. Hence the product of their sum with Eρ
′ would also be O,

but this contradicts the assertion that their sum is equal to Eρ
′.

The properties E1
′, E2

′, . . . ,Em
′ corresponding to the E1

′, E2
′, . . . ,Em

′ are then
macroscopic properties of the following type: None is absurd. Every two are
mutually exclusive. Each macroscopic property obtains by disjunction of several
of them. None can be resolved by disjunction into two sharper macroscopic
properties. E1

′, E2
′, . . . ,Em

′ therefore represent the farthest that one can go in
macroscopic discrimination, for they are macroscopically indecomposable.

In the following we shall not require that their number be finite, but only
that there exist macroscopically indecomposable properties E1

′, E2
′, . . . . Let

their projections be E1
′, E2

′, . . ., all again different from O, mutually orthogonal,
and each macroscopic E the sum of several of them.

Therefore I is also a sum of several of them. If Eν
′ did not occur in this

sum it would be orthogonal to each term and hence to the sum—that is, to I:
Eν

′ = Eν
′ · I = O, which is impossible. Therefore E1

′ + E2
′ + · · · = I. We now drop

the prime notation, writing simply E1, E2, . . . and E1, E2 . . . . The closed linear
manifolds belonging to these will be called M1, M2, . . . and their dimension
numbers s1, s2, . . .

If all the sn = 1 (i.e., all the Mn are one-dimensional) then Mn = [φn]
and En = P[φn], and because E1 + E2 + · · · = I the φ1, φ2, . . . would form a
complete orthonormal set. This would mean that macroscopic measurements
would themselves make possible a complete determination of the state of the
observed system. Since this is ordinarily not the case, we have in general sn > 1,
and in fact sn ) 1.

It should be observed, additionally, that the En—which are the elementary
building blocks of the macroscopic description of the world—correspond in
a certain sense to the cell division of phase space in classical theory. We
have already seen that they can reproduce the behavior of non-commutative
operators in an approximate fashion—in particular, that of Q and P, which are
so important for phase space.

Now. . .what entropy does the mixture U have for an observer whose
indecomposable projections are E1, E2 . . . ? Or, more precisely: How much
entropy can such an observer maximally obtain by transforming U into V
—i.e., what entropy increase (or decrease) can he (under suitable conditions
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and the most favorable circumstances) produce in external objects as compen-
sation for the transition U → V?

First, it must be emphasized that he cannot distinguish between two
ensembles U, U ′ if both give the same expectation value to En for each n ;
i.e., if Tr(UEn) = Tr(U ′En) : n = 1, 2, . . . . After some time, of course, such
discrimination may become possible, since U, U ′ change according to 2, and

Tr(AUA–1En) = Tr(AU ′A–1En) : A = e−
i
! tH

must no longer hold.204 But we consider only measurements which are carried
out immediately. Under the above conditions we may therefore regard U, U ′ as
indistinguishable. The observer—making use only of such semi-permeable walls
as transmit the φ of some En and reflect the remainder unchanged—can use
the method of V.2 to transform a U ′ =

∑∞
n=1 xnEn into a V ′ =

∑∞
n=1 ynEn

reversibly, and the entropy difference, since the entropy of U ′ is −κTr(U ′ lnU ′),
will be given by

−κTr(V ′ lnV ′) + κTr(U ′ lnU ′)
To be sure, in order that such U ′ with Tr(U ′) = 1 exist in general, the TrEn

—i.e., the numbers sn—must be finite: we therefore assume that to be the
case. U ′ has the s1-fold eigenvalue x1, the s2-fold eigenvalue x2 . . . . Therefore
−U ′ lnU ′ has the s1-fold eigenvalue −x1 lnx1, the s2-fold eigenvalue −x2 lnx2,
etc. Consequently Tr(U ′) = 1 implies

∞∑

n=1

snxn = 1

and the entropy of U ′ is given by

−κ
∞∑

n=1

snxn ln xn

Because of U ′Em =
∑

n xnEnEm =xmEm we have Tr(U ′Em)=xmTrEm=smxm

whence
xm = Tr(U ′Em)

sm

and the entropy of U ′ becomes

−κ
∞∑

n=1

Tr(U ′En) ln Tr(U ′En)
sn

204 If En commutes with H, and therefore with A, the equality still holds,
because

Tr(A·UA–1En) = Tr(UA–1En·A) = Tr(UA–1AEn) = Tr(UEn)
But all En—i.e., all macroscopically observable quantities—are in no way all
commutative with H. Indeed, many such quantities—for example, the center of
gravity of a gas in diffusion—change appreciably with t; i.e., Tr(UEn) is not
constant. Since all macroscopic quantities do commute,H is never a macroscopic
quantity; i.e., the energy cannot be measured macroscopically with complete
precision. This is plausible without additional comment.
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For arbitrary U (TrU = 1) the entropy must given similarly by

−κ
∞∑

n=1

Tr(UEn) ln Tr(UEn)
sn

because if we set

xn = Tr(UEn)
sn

, U ′ =
∞∑

n=1

xnEn

then Tr(UEn) = Tr(U ′En), and since U, U ′ are indistinguishable they must have
the same entropy.

We must also mention the fact that this entropy is never less than the
customary entropy:

−κ
∞∑

n=1

Tr(UEn) ln Tr(UEn)
sn

" −κTr(U lnU)

with equality only in the case U =
∑∞

n=1 xnEn. By the results of V.3 this is
certainly the case if

U ′ =
∞∑

n=1

Tr(UEn)
sn

En

can be obtained from U by several (not necessarily macroscopic) applications of
process 1 because on the left we then have −κTr(U ′ ln U ′), and U =

∑∞
n=1 xnEn

means U = U ′. Now consider an orthonormal set φ(n)
1 , . . . , φ(n)

sn
which spans the

closed linear manifold Mn belonging to En. Because of
∞∑

n=1

En = I

all φ(n)
ν (n = 1, 2, . . . ; ν = 1, 2, . . . , sn) form a complete orthonormal set. Let R

be an operator with these eigenfunctions (and only distinct eigenvalues), and
R the physical quantity to which R corresponds. In the measurement of R we
get from U (by 1)

U ′′ =
∞∑

n=1

sn∑

ν=1

(Uφ(n)
ν , φ(n)

ν ) · P[φ(n)
ν ]

Then, if we set

ψ(n)
µ = 1√

sn

sn∑

ν=1

ei2π µν
sn φ(n)

ν : µ = 1, . . . , sn

the ψ(n)
1 , . . . , ψ(n)

sn
form an orthogonal set which spans the same closed linear

manifold Mn as the φ(n)
1 , . . . , φ(n)

sn
. Therefore the

ψ(n)
ν : n = 1, 2, . . . ; ν = 1, 2, . . . , sn

also form a complete orthonormal set, and we form an operator S with these
eigenfunctions, distinct eigenvalues and corresponding physical quantity S. We
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note the validity of the following formulas:

(
P[φ(n)

ν ]ψ
(m)
µ , ψ(m)

µ

)
=






0 for m &= n

1
sn

for m = n

sn∑

ν=1

P[φ(n)
ν ] =

sn∑

ν=1

P[ψ(n)
ν ] = En

In the measurement of S, therefore, U ′′ becomes (by 1)

∞∑

m=1

sm∑

µ=1

(U ′′ψ(m)
µ , ψ(m)

µ )P[ψ(m)
µ ]

=
∞∑

m=1

sm∑

µ=1

[ ∞∑

n=1

sn∑

ν=1

(Uφ(n)
ν , φ(n)

ν )
(
P[φ(n)

ν ]ψ
(m)
µ , ψ(m)

µ

)]
P[ψ(m)

µ ]

=
∞∑

m=1

sm∑

µ=1

[ sm∑

ν=1

(Uφ(m)
ν , φ(m)

ν )
sm

]
P[ψ(m)

µ ]

=
∞∑

m=1

sm∑

µ=1

Tr(UEm)
sm

· P[ψ(m)
µ ]

=
∞∑

m=1

Tr(UEm)
sm

Em = U ′

Consequently, two processes 1 suffice to transform U into U ′, and this is all we
need for the proof.

For states (U = P[φ], Tr(UEn) = (Enφ, φ) = ‖Enφ‖2) this entropy

−κ
∞∑

n=1

‖Enφ‖2 ln ‖Enφ‖2

sn

is no longer subject to the inconveniences of the “macroscopic” entropy. In
general, it is not constant in time (i.e., under process 2), and does not vanish
for all states U = P[φ]. That the Tr(UEn), from which our entropy was formed,
are not generally constant in time was discussed already in Note 204. It is easy
to determine when the state U = P[φ] has entropy 0: since

0 ! ‖Enφ‖2

sn
! 1

all summands
‖Enφ‖2 ln ‖Enφ‖2

sn
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in the entropy expression are ! 0. All these must therefore vanish, which
requires

‖Enφ‖2

sn
= 0 else 1

The former means Enφ = 0, and the latter that ‖Enφ‖ =
√

sn, but since

‖Enφ‖ ! 1 and sn " 1

this implies sn = 1 and ‖Enφ‖ = ‖φ‖; i.e., Enφ = φn. That is: sn = 1, φ in Mn.
The latter certainly cannot hold for two different n, but also it cannot hold at
all because then Enφ = 0 would always be true, and therefore φ = 0 since∑∞

n=1 En = I. Hence for exactly one n is it the case that φ is in Mn, and then
sn=1. But, since we determined that in general all sn ) 1, this is impossible.
So our entropy is always > 0.

Since the macroscopic entropy is always time variable, the next question to
be answered is this: Does it behave like the phenomenological thermodynamics
of the real world; i.e., does it predominantly increase? This question is answered
affirmatively in classical mechanical theory by the so-called Boltzmann
H-theorem. In that, however, certain statistical assumptions—namely, the
so-called “disorder assumptions”—must be made.205 In quantum mechanics
it was possible for the author to prove the corresponding theorem without such
assumptions.206 Since the detailed discussion of this subject, as well of the
ergodic theorem closely connected with it (see the reference cited in Note 206,
where this theorem is also proved) would go beyond the scope of this volume,
we cannot report on these investigations. The reader who is interested in this
problem can refer to the treatments in the references.

205 For the classical H-theorem, see Boltzmann, Vorlesungen über Gastheorie,
Leipzig, 1896, as well as the extremely instructive discussion by P. and T.
Ehrenfest in the article cited in Note 185. The “disorder assumptions” which
can take the place (in quantum mechanics) of those of Boltzmann have been
formulated by W. Pauli (Sommerfeld-Festschrift , 1928), and the H-theorem is
proved there with their help. More recently, the author has also succeeded in
proving the classical-mechanical ergodic theorem, see PNAS, January & March,
1932 as well as the improved treatment of G. D. Birkhoff, PNAS December, 1931
& March, 1932.
206 Z. Physik 57 (1929).
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CHAPTER VI

THE MEASURING PROCESS

1. FORMULATION OF THE PROBLEM

In the discussion so far we have treated the relation of quantum mechanics to
the various causal and statistical methods of describing nature. In the course of
this we have found a peculiar dual nature of the quantum mechanical procedure
which could not be satisfactorily explained. Namely, we found that on the one
hand a state φ is transformed into the state φ ′ under the action of an energy
operator H in the time interval 0 ! τ ! t:

∂
∂tφτ = − i

!Hφτ : 0 ! τ ! t

so if we write φ0 = φ, φt = φ ′ then

φ ′ = e−
i
! tH φ

which is purely causal. A mixture U is correspondingly transformed into

U ′ = e−
i
! tH Ue+ i

! tH

Therefore, as a consequence of the causal change of φ into φ ′ the states U = P[φ]

go over into the states U ′ = P
[φ ′

]
(process 2 in V.1). On the other hand,

the state φ—which may refer to a quantity with a pure discrete spectrum,
distinct eigenvalues and eigenfunctions φ1, φ2, . . .—undergoes in a measurement
a change in which any of the states φ1, φ2, . . . may result, and in fact do result
with the respective probabilities |(φ, φ1)|2, |(φ, φ2)|2, . . . . That is, the mixture

U ′ =
∞∑

n=1

|(φ, φn)|2P[φn]

obtains. More generally, the mixture U goes over into

U ′ =
∞∑

n=1

|(Uφn, φn)|2P[φn]

(process 1 in V.1). Since the states go over into mixtures, the process is not
causal.
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The difference between these two processes U → U ′ is a very fundamental
one: aside from their different statuses with regard to the principle of causality,
they also differ in that the former is (thermodynamically) reversible, while the
latter is not (see V.3).

Let us now compare these circumstances with those which actually exist
in nature, or in its observation. First, it is inherently correct that measurement
or the related process of subjective perception is a new entity relative to the
physical environment, and is not reducible to the latter. Indeed, subjective
perception leads us into the intellectual inner life of the individual, which is
extra-observational by its very nature, since it must be taken for granted by any
conceivable observation or experiment. (See the discussion above.) Nevertheless,
it is a fundamental requirement of the scientific viewpoint—the so-called
principle of psycho-physical parallelism—that it must be possible so to describe
the extra-physical process of subjective perception as if it were in the reality
of the physical world; i.e., to assign to its parts equivalent physical processes
in the objective environment, in ordinary space. (Of course, in this correlating
procedure there arises the frequent necessity of localizing some of these processes
at points which lie within the portion of space occupied by our own bodies.
But this does not alter the fact of their belonging to “the world about us,” the
objective environment referred to above.) In a simple example, these concepts
might be applied as follows: We wish to measure the temperature. If we want,
we can proceed numerically by looking to the mercury column in a thermometer,
and then say: “This is the temperature as measured by the thermometer.” But
we can carry the process further, and from the properties of mercury (which
can be explained in kinetic and molecular terms) we can calculate its heating,
expansion, and the resultant length of the mercury column, and then say: “This
length is seen by the observer.” Going still further, and taking the light source
into consideration, we could find out the reflection of the light quanta on the
opaque mercury column, and the path taken by the reflected light quanta into
the eye of the observer, their refraction in the eye lens, and the formation of
an image on the retina, and then we would say: “This image is registered
by the retina of the observer.” And were our physiological knowledge greater
than it is today, we could go still further, tracing the chemical reactions which
produce the impression of this image on the retina, and in the optic nerve and
in the brain, and then in the end say: “These chemical changes of his brain
cells are perceived by the observer.” But in any case, no matter how far we
proceed—from the thermometer scale, to the mercury, to the retina, or into the
brain—at some point we must say: “And this is perceived by the observer.”
That is, we are obliged always to divide the world into two parts, the one being
the observed system, the other the observer. In the former we can follow all
physical processes (in principle at least) arbitrarily precisely. In the latter, this
is meaningless. The boundary between the two is arbitrary to a very large
extent. In particular, we saw in the four different possibilities considered in the
preceding example that the “observer”—in this sense—need not be identified
with the body of the actual observer: in one instance we included even the
thermometer in it, while in another instance even the eyes and optic nerve
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were not included. That this boundary can be pushed arbitrarily far into the
interior of the body of the actual observer is the content of the principle of
psycho-physical parallelism. But this does not change the fact that in every
account the boundary must be put somewhere if the principle is not to be
rendered vacuous; i.e., if a comparison with experience is to be possible. Indeed,
experience only makes statements of this type: “An observer has made a certain
(subjective) observation,” and never any like this: “A physical quantity has a
certain value.”

Now quantum mechanics describes events which occur in observed portions
of the world, so long as they do not interact with the observing portion, and does
so by means of process 2 (V.1). But as soon such an interaction does occur—
i.e., a measurement is made—the theory requires application of process 1.
This duality is therefore fundamental to the theory.207 Danger, however, lies in
the fact that the principle of psycho-physical parallelism is violated so long as it
is not shown that the boundary between the observed system and the observer
can be displaced arbitrarily, in the sense given above.

In order to discuss this, let us divide the world into three parts: I, II, III.
Let I be the system actually observed, II the measuring instrument, and III
the actual observer.208 It is to be shown that the boundary can just as well be
drawn between I and II+III as between I+II and III. In comparison of the first
and second cases of our introductory example, viewed in this light: I was the
system to be observed, II the thermometer, and III the light plus the observer.
In comparison of the second and third cases, I was the system to be observed
plus the thermometer, II was the light plus the eye of the observer, III was the
observer, from the retina on. In comparison of the third and fourth cases, I was
everything up to the retina of the observer, II was his retina, optic nerve and
brain, III was his abstract “ego.” That is, in one case 2 is to be applied to I and
1 to the interaction between I and II+III; in the other case 2 is to be applied
to I+II and 1 to the interaction between I+II and III. In both cases, III itself
remains outside of the calculation. Proof of the following assertion—that both
procedures give the same results regarding I (in both cases, this and only this
belongs to the observed part of the world)—is then our problem.

But in order to be able to accomplish this we must first investigate more
closely the process of forming the union of two physical systems (such as leads
from I and II to I+II).

207 N. Bohr, Naturwiss. 17 (1929) was the first to point out that the duality
which is necessitated by quantum formalism, by the quantum mechanical
description of nature, is fully justified by the physical nature of things, and
that it may be connected with the principle of psycho-physical parallelism.
208 The discussion which is carried out below, as well as in VI.3, contains
essential elements which the author owes to conversations with L. Szilard. See
also the similar considerations of Heisenberg in the reference cited in Note 181.
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2. COMPOSITE SYSTEMS

As was stated at the end of the preceding section, we consider two physical
systems I, II (which do not necessarily have the meaning of I, II above) and their
combination I+II. In classical mechanics, I would have k degrees of freedom,
and therefore coordinates q1, . . . , qk, which we will abbreviate with the single
symbol q. Correspondingly, let II have # degrees of freedom, and coordinates
r1, . . . , r# which will be denoted r. Therefore, I+II has k+ # degrees of freedom
and coordinates q1, . . . , qk, r1, . . . , r# or, more briefly, q, r. In quantum mechanics
then the wave functions of I have the form φ(q), those of II the form ξ(r) and
those of I+II the form Φ(q, r). In the corresponding Hilbert spaces RI, RII and
RI+ II the inner product is defined

∫
φ(q)ψ(q)dq,

∫
ξ(r)η(r)dr and

∫∫
Φ(q, r)Ψ(q, r)dqdr

respectively. Corresponding to physical quantities in I, II and I+II are the
(hypermaximal) Hermitian operators Ȧ, Ä, A in RI, RII, RI+ II respectively.

Each physical quantity in I is naturally also one in I+II, and its A is to be
obtained from its Ȧ in this way: to obtain AΦ(q, r) consider r as a constant and
apply Ȧ to the q -function Φ(q, r).209 This transformation rule is correct in any
case for the coordinate and momentum operators Q1, . . . ,Qk and P1, . . . ,Pk;
i.e.,

q1, . . . , qk, !
i

∂
∂q1

, . . . , !
i

∂
∂q

k

(see I.2), and it conforms with the principles I, II in IV.2.210 We therefore adopt
the rule as a general postulate. (This is the customary procedure in quantum
mechanics.)

In the same way, each physical quantity in II is one also in I+II, and its Ä
gives its A by the same rule: AΦ(q, r) equals ÄΦ(q, r) if in the latter expression
q is taken as a constant, and Φ(q, r) is considered to be a function of r.

If φm(q) (m = 1, 2, . . .) is a complete orthonormal set in RI, and ξn(r)
(n = 1, 2, . . .) one in RII, then Φm|n(q, r) = φm(q)ξn(r) (m, n = 1, 2, . . .) is
clearly one in RI+ II. The operators Ȧ, Ä and A can therefore be represented by
matrices{ȧm|m′}, {än|n′}and{amn|m′n′} respectively (m, m′, n, n′ = 1, 2, . . .).211

209 It can easily be shown that if Ȧ is Hermitian or hypermaximal, then so is A .
210 For I this is clear, and for II also so long as only polynomials are concerned.
For general functions it can be inferred from the fact that the correspondence
between a resolution of the identity and a Hermitian operator is not disturbed
in our transition Ȧ → A.
211 Because of the large number and variety of indices, we here denote matrices
in a way which differs from the notation used thus far.
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We shall make frequent use of this. The matrix representation means that

Ȧφm(q) =
∞∑

m′=1

ȧm|m′φm′(q), Äξn(r) =
∞∑

n′=1

än|n′ξn′(r)

and

AΦmn(q, r) =
∞∑

m′,n′=1

amn|m′n′Φm′n′(q, r)

i.e.,

Aφm(q)ξn(r) =
∞∑

m′,n′=1

amn|m′n′φm′(q)ξn′(r)

In particular, the correspondence Ȧ → A means that

Aφm(q)ξn(r) = [Ȧφm(q)]ξn(r) =
∞∑

m′=1

ȧm|m′φm′(q)ξn(r)

i.e.,

amn|m′n′ = ȧm|m′ · δn|n′ where δn|n′ =
{

1 for n = n′

0 for n #= n′

Similarly, the correspondence Ä → A implies amn|m′n′ = δm|m′ · än|n′ .

A statistical ensemble in I+II is characterized by its statistical operator
U or (equivalently) by its matrix {umn|m′n′}. This determines the statistical
properties of all quantities in I+II, and therefore also in I (and II). Consequently
there corresponds to it a statistical ensemble in I (or II) alone. In fact, an
observer who could perceive only I, and not II, would view the ensemble of
systems I+II as an instance of a system I. What, now, is the operator U̇ or
matrix {u̇m|m′} that belongs to this I ensemble? We determine it as follows:
The I quantity with matrix {ȧm|m′} has the matrix {ȧm|m′δn|n′} as an I+II
quantity, and therefore, by reason of a calculation in I, has the expectation
value

∞∑

m,m′=1

u̇m|m′ ȧm′|m

while calculation in I+II gives
∞∑

m,n,m′,n′=1

umn|m′n′ ȧm′|mδn′|n =
∞∑

m,m′,n=1

umn|m′nȧm′|m

=
∞∑

m,m′=1

( ∞∑

n=1

umn|m′n

)
ȧm′|m

For those expressions to be equal, we must have

u̇m|m′ =
∞∑

n=1

umn|m′n
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In the same way, our I+II ensemble, if only II is considered and I is ignored,
determines a statistical operator Ü and matrix {ün|n′}. By analogy, we obtain

ün|n′ =
∞∑

m=1

umn|mn′

We have thus established the rules of correspondence for the statistical
operators of I, II and I+II, i.e., for U̇, Ü and U. They proved to be essentially
different from the rules or correspondence among the operators Ȧ, Ä and A of
physical quantities.

It should be mentioned that our U̇, Ü, U correspondence depends only
apparently on the choice of the φm(q) and ξn(r). Indeed, it was derived from
an invariant condition (the implications of which are unique): namely, that
expectation values in I—whether obtained from U̇ or from U—are identical
(and similarly, for expectation values in II, whether obtained from Ü or U).

U expresses the statistics in I+II, U̇ and Ü those statistics restricted to
I and II. The question now arises: Do U̇, Ü determine U uniquely or not? In
general, one expects a negative answer because all “probability dependencies”
which may exist between between the two systems disappear as information
is reduced to that conveyed solely by U̇ and Ü; i.e., to that concerning the
separated systems I and II. But if one knows the state of I precisely, and also
that of II, then “probability questions” do not arise: the state of I+II too is
then precisely known. An exact mathematical discussion is, however, preferable
to these qualitative considerations, and that we proceed now to provide.

The problem is, then: For two definite matrices {u̇m|m′} and {ün|n′}, find
a third definite matrix {umn|m′n′} such that

∞∑

n=1

umn|m′n = u̇m|m′ and
∞∑

m=1

umn|mn′ = ün|n′

(We note in passing that from

∞∑

m=1

u̇m|m = 1 and
∞∑

n=1

ün|n = 1

it follows directly that
∞∑

m,n=1

umn|mn = 1

i.e., that correct normalization is preserved.) This problem is always solvable:
for example, umn|m′n′ = u̇m|m′ · ün|n′ is always a solution (it is easily seen that
this matrix is definite). But the question arises as to whether this is the only
solution.
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We will show that this is the case if and only if at least one of the two
matrices {u̇m|m′} and {ün|n′} refers to a pure state. First we prove the necessity
of this condition; i.e., the existence of multiple solutions if both matrices
correspond to mixtures. In such a case (see IV.2)

u̇m|m′ = α v̇m|m′ + β ẇm|m′

ün|n′ = γ v̈n|n′ + δ ẅn|n′

where v̇m|m′ , ẇm|m′ ,v̈n|n′ , ẅn|n′ (all definite) differ by more than a constant
factor, and where also

∞∑

m=1

v̇m|m =
∞∑

m=1

ẇm|m =
∞∑

n=1

v̈n|n =
∞∑

n=1

ẅn|n = 1

α, β, γ, δ > 0, α + β = 1 and γ + δ = 1. We easily verify that every matrix of
the form

umn|m′n′ = π v̇m|m′ v̈n|n′ + ρẇm|m′ v̈n|n′ + σ v̇m|m′ẅn|n′ + τ ẇm|m′ẅn|n′

with
π + σ = α

ρ + τ = β

π + ρ = γ

σ + τ = δ

and π, ρ, σ, τ > 0

is a solution. Then π, ρ, σ, τ can be chosen in an infinite number of ways.
Because of α + β = γ + δ (= π + ρ + σ + τ) only three of the four equations are
independent. We can therefore write

σ = α − π

ρ = γ − π

τ = (δ − α) + π

and in order that all be > 0 we must require α− δ = γ−β < π < α, γ, which is
the case for infinitely many π. Now different π, ρ, σ, τ lead to different umn|m′n′

because the v̇m|m′ v̈n|n′ , ẇm|m′ v̈n|n′ , v̇m|m′ẅn|n′ , ẇm|m′ẅn|n′ are linearly
independent, since the v̇m|m′ , ẇm|m′ are, and so are the v̈n|n′ , ẅn|n′ .

Next we prove sufficiency, and here we may assume that u̇m|m′ corresponds
to a state (the other case is dealt with in the same way). Then U̇ = P[φ] and
since the complete orthonormal set φ1, φ2, . . . was arbitrary, we can assume
φ = φ1. U̇ = P[φ1] has the matrix

u̇m|m′ =
{ 1 for m = m′ = 1

0 otherwise
Therefore

∞∑

n=1

umn|m′n =
{ 1 for m = m′ = 1

0 otherwise
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In particular,
∞∑

n=1

umn|mn = 0 for m #= 1

But because of the definiteness of umn|m′n′ all umn|mn = (UΦmn, Φmn) " 0,
therefore in this case umn|mn = 0. That is, (UΦmn, Φmn) = 0 and hence,
because of the definiteness of U, also (UΦmn, Φm′n′) = 0 (see II.5, theorem 19)
where m′, n′ are arbitrary. That is, it follows from m #= 1 that umn|m′n′ = 0,
and by Hermiticity this follows also from m′ #= 1. For m = m′ = 1, however,
we have

u1n|1n′ =
∞∑

m=1

umn|mn′ = ün|n′

Consequently, as was asserted, the solution umn|m′n is determined uniquely.

We can thus summarize our result as follows: A statistical ensemble in
I+II with operator U = {umn|m′n′} is determined uniquely by the statistical
ensembles in I and II individually, with respective operators U̇ = {u̇m|m′} and
Ü = {ün|n′}, if and only if the following two conditions are satisfied:

1.

umn|m′n′ = v̇m|m′ · v̈n|n′

From TrU =
∑

m,n umn|mn =
∑

m v̇m|m ·
∑

n v̈n|n = 1 it follows that
if we multiply v̇m|m and v̈n|n by appropriate reciprocal factors we
can obtain

∞∑

m=1

v̇m|m = 1,
∞∑

n=1

v̈n|n = 1

But then we see that u̇m|m′ = v̇m|m′ , ün|n′ = v̈n|n′ .

2. Either
v̇m|m′ = xmxm′ or v̈n|n′ = xnxn′

Indeed, U̇ = P[φ] means that φ =
∑

m ymφm and therefore

u̇m|m′ = ymym′

Correspondingly for v̇m|m′ . Byanalogy, the sameis truewith Ü=P[ξ ].

We shall call U̇ and Ü the projections of U in I and II respectively.212

We now apply ourselves to the states of I+II: U = P[Φ ]. The corresponding
wave functions Φ(q, r) can be expanded in the complete orthonormal set
Φmn(q, r) = φm(q)ξn(r):

Φ(q, r) =
∞∑

m,n=1

fmnφm(q)ξn(r)

212 As will emerge, the projections of a state in I+II are in general mixtures
in I or II. This circumstance was discovered by Landau, Z. Physik 45 (1927).
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We can therefore replace them by the coefficients fmn (m, n = 1, 2, . . .) which
are subject only to the condition that

∑
m,n |fmn|2 = ‖Φ‖2 be finite.

We now define two operators F, F∗ by

F

F φ(q) =
∫

Φ(q, r) φ(q)dq

F∗ξ(r) =
∫

Φ(q, r) ξ(r)dr

These are linear, but have the peculiarity of being defined in RI and RII

respectively while taking on values from RII and RI respectively. Their relation
is that of adjoints, since obviously (Fφ, ξ) = (φ,F∗ξ) (the inner product on the
left is to be formed in RII, while that on the right is to be formed in RI ). Since
the difference between RI and RII is mathematically unimportant, we can apply
the results of II.11: then, since we are dealing with integral operators, Σ(F) and
Σ(F∗) are both equal to

∫∫
|Φ(q, r)|2dqdr = ‖Φ‖2 = 1

(‖Φ‖ in RI+ II!), and are therefore finite. Consequently F, F∗ are continuous—in
fact, are completely continuous—operators, and F∗F as well as FF∗ are definite
operators: Tr(F∗F) = Σ(F) = 1, Tr(FF∗) = Σ(F∗) = 1.

If we again consider the difference between RI and RII we see that F∗F is
defined and assumes values in RI, FF∗ is defined and assumes values in RII.

Since

Fφm(q) =
∞∑

n=1

fmnξn(r)

F has the matrix {fmn}, as is discovered by use of the complete orthonormal sets
φm(q) and ξn(r) (note that the latter is a complete orthonormal set along with
ξn(r)). Likewise, F∗ has the matrix {fmn} (obtained with the aid of the same
complete orthonormal systems). Therefore (using the complete orthonormal set
φm(q) in RI )

F∗F has the matrix
{ ∞∑

n=1

fmnfm′n

}

and (using the complete orthonormal set ξn(r) in RII )

FF∗ has the matrix
{ ∞∑

m=1

fmnfmn′

}

On the other hand (using the complete orthonormal set Φmn(q, r) = φm(q)ξn(r)
in RI+ II ), U = P[Φ] has the matrix {fmnfm′n′}, so that U̇ and Ü—its projections
in RI and RII—have the matrices

{ ∞∑

n=1

fmnfm′n

}
and

{ ∞∑

m=1

fmnfmn′

}
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respectively (with the complete orthonormal sets given above).213 Consequently

U U̇ = F∗F, Ü = FF∗

Note that the definitions F and the equations U make no use of φm, ξn, so
hold independently of any particular basis selections.

The operators U̇ and Ü are completely continuous, and by II.11 and IV.3

they can be written in the form

U̇ =
∞∑

k=1

wk
′P[ψk], Ü =

∞∑

k=1

wk
′′P[ηk]

in which the ψk comprise a complete orthonormal set in RI, the ηk one in
RII, and all wk

′, wk
′′ " 0. We now neglect the terms in the preceding formulas

with wk
′ = 0 or wk

′′ = 0 respectively, and re-number the remaining terms with
k = 1, 2, . . . . Then the ψk and ηk again form orthonormal—but now not
necessarily complete—sets; the sums

M′∑

k=1

and
M′′∑

k=1

appear now in place of
∞∑

k=1

where M ′, M ′′ can be either ∞ of finite. Also, all wk
′, wk

′′ are now > 0.

Let us now consider a ψk. U̇ψk = wk
′ψk and therefore F∗Fψk = wk

′ψk which
gives FF∗Fψk = wk

′Fψk whence ÜFψk = wk
′Fψk, Furthermore

(Fψk, Fψ#) = (F∗Fψk, ψ#) = (U̇ψk, ψ#)
= wk

′(ψk, ψ#)

=
{

wk
′ for k = #

0 for k #= #

Therefore, in particular, ‖Fψk‖ = wk
′. The 1√

w
k
′ Fψk then form an orthonormal

set in RII and they are eigenfunctions of Ü, with the same eigenvalues as the
ψk have for U̇ (i.e., wk

′ ). That is, each eigenvalue of U̇ is an eigenvalue also
of Ü, with at least the same multiplicity. Interchanging U̇ and Ü shows that
same eigenvalues have in fact the same multiplicities. The wk

′ and wk
′′ therefore

coincide except for their order. Hence M ′ = M ′′ = M , and by re-enumeration
of the wk

′′ we obtain wk
′ = wk

′′ = wk. This done, we can then clearly choose

ηk = 1√
wk

Fψk

in general. Then
1√
wk

F∗ηk = 1
wk

F∗Fψk = 1
wk

U̇ψk = ψk

213 The preceding mathematical discussion is based on a paper by E. Schmidt,
Math. Ann. 83 (1907).
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Therefore212

V ηk = 1√
wk

Fψk ψk = 1√
wk

F∗ ηk

Let us now extend the orthonormal set ψ1, ψ2, . . . to a complete orthonormal
set ψ1, ψ2, . . . , ψ1

′, ψ2
′, . . . and likewise the η1, η2, . . . to a complete orthonormal

set η1, η2, . . . , η1
′, η2

′, . . . where each of the two sets ψ1
′, ψ2

′, . . . and η1
′, η2

′, . . .
can be empty, finite or infinite, and each can be selected independently of
the other. As previously remarked, F and U make no reference to any specific
orthonormal bases. We are free therefore to use V, as well as the above
constructions, to determine the selection of the complete orthonormal sets
φ1, φ2, . . . and ξ1, ξ2, . . . . Specifically, we let these coincide with the

ψ1, ψ2, . . . , ψ1
′, ψ2

′, . . . and η1, η2, . . . η1
′, η2

′, . . .

respectively: let ψk correspond to φµk and ηk to ξνk (k = 1, 2, . . . : µ1, µ2, . . .
different from one another, and ν1, ν2, . . . likewise). Then

Fφµk =
√

wk ξνk

Fφm = 0 for m #= µ1, µ2, . . .

Therefore

fmn =
{√

wk for m = µk, n = νk, k = 1, 2, . . .
0 otherwise

or equivalently

Φ(q, r) =
M∑

k=1

√
wk φµ

k
(q) ξν

k
(r)

By suitable choice of the complete orthonormal sets φm(q) and ξn(r) we
have thus established that each column of the matrix {fmn} contains at most
one non-zero element (that this is real and > 0, namely

√
wk , is unimportant for

what follows). What is the physical meaning of this mathematical statement?

Let A be an operator with eigenfunctions φ1, φ2, . . . and with only distinct
eigenvalues (say a1, a2, . . .), and likewise, let B have eigenfunctions ξ1, ξ2, . . . and
distinct eigenvalues b1, b2, . . . . A corresponds to a physical quantity in I, B
to one in II. They are therefore simultaneously measurable. It is easily seen
that the statement “A has the value am and B has the value bn” determines
the state Φmn(q, r) = φm(q) ξn(r), and that if the composite system I+II is
in state Φ this occurs with probability (P[Φmn]Φ, Φ) = |(Φ, Φmn)|2 = |fmn|2.
Consequently, our statement means that A, B are simultaneously measurable,
and that if one of them is measured in Φ then the other is uniquely determined
by it. (An am with all fmn = 0 cannot result, because its total probability∑∞

n=1 |fmn|2 cannot be 0; if am is ever observed then for exactly one n is
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fmn #= 0; likewise for bn.) There may be several possible A-values in the state Φ
(namely, those am for which

∞∑

n−1

|fmn|2 > 0

i.e., for which there exists an n with fmn #= 0—usually all am are such), and an
equal number of possible B-values (those bn for which there exists an m with
fmn #= 0), but Φ establishes a one-to-one correspondence between the possible
A-values and the possible B-values.

If we call the possible m values µ1, µ2, . . . and the corresponding possible
n values ν1, ν2, . . . then

fmn =
{

ck #= 0 for m = µk, n = νk, k = 1, 2, . . .
0 otherwise

and therefore (whether M be finite or ∞)

Φ(q, r) =
M∑

k=1

ckφµ
k
(q) ξν

k
(r)

hence

u̇mm′ =
∞∑

n=1

fmnfm′n =
{
|ck|2 for m=m′ =µk, k = 1, 2, . . .
0 otherwise

ünn′ =
∞∑

m=1

fmnfmn′ =
{
|ck|2 for n = n′ = νk, k = 1, 2, . . .
0 otherwise

from which we obtain finally

U̇ =
M∑

k=1

|ck|2P[φµ
k
]

Ü =
M∑

k=1

|ck|2P[ξν
k
]

Hence, when Φ is projected in I or II it in general becomes a mixture, though it
is a pure state in I+II. Indeed, it provides certain information regarding I+II
which cannot be made use of in I alone or in II alone; namely, the one-to-one
correspondence between A-values and B-values.

For each Φ we can therefore choose A,B—i.e., the φm and the ξn—such
that our condition is satisfied; for arbitrary A,B it may, of course, be violated.
Each state Φ then establishes a particular relation between I and II, while the
related quantities A, B depend upon Φ. How far Φ determines them—i.e., the
φm and the ξn—is not difficult to answer. If all |ck| are different and non-zero,
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then U̇, Ü (which are determined by Φ) determine the respective φm, ξn uniquely
(see IV.3). The general discussion is left to the reader.

Finally, let us mention the fact that for M #= 1 neither U̇ nor Ü is a state
(because several |ck|2 > 0), while for M = 1 both are: U̇ = P[φµ1 ]

, Ü = P[ξν1 ]
.

Then Φ(q, r) = c1φµ1(q) ξν1(r). We can absorb the c1 into φµ
k
. In short: U̇, Ü

are states if and only if Φ(q, r) has the form φ(q)ξ(r), in which case U̇ = P[φ]

and Ü = P[ξ] respectively.

On the basis of the above results, we in summary note: If I is in the state
φ(q) and II in the state ξ(r), then I+II is in the state Φ(q, r) = φ(q) · ξ(r). If,
on the other hand, I+II is in a state Φ(q, r) which is not a product φ(q) · ξ(r)
then I and II are mixtures and not states, but Φ establishes a one-to-one
correspondence between the possible values of certain quantities in I and II.

3. DISCUSSION OF THE MEASURING PROCESS

Before we complete the discussion of the measuring process in the sense of
the ideas developed in VI.1 (with the aid of the formal tools developed in VI.2) we
shall make use of the results of VI.2 to exclude an explanation often proposed to
account for the statistical character of the process 1 (see again V.1). This rests
on the following idea: Let I be the observed system, and II the observer. If I is
in the state U̇ = P[φ] before the measurement, while II on the other hand is in
a mixture

Ü =
∞∑

n−1

wnP
[ξn]

then I+II is a uniquely determined mixture U which we can easily calculate
from VI.2:

U =
∞∑

n−1

wnP
[Φn] where Φn(q, r) = φ(q)ξn(r)

If now a measurement takes place in I, then this is to be regarded as a dynamical
interaction of I and II; i.e., as a process 2 (see V.1) with an energy operator H.
If the process has a time duration t then

U → U ′ = e−
i
! tH Ue

i
! tH

where in fact =
∞∑

n=1

wkP[Φ(t)
n ] where Φ(t)

n = e−
i
! tH Φn

Now if each Φ(t)
n (q, r) were of the form ψn(q)ηn(r), where the ψn are the

eigenfunctions of A and the ηn any complete orthonormal set, then this
intervention would have the character of a measurement. For it transforms
each state φ of I into a mixture of the eigenfunctions of A. The statistical
character of the result would then arise in this way: Before the measurement,
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I was in a (unique) state, but II was a mixture, and that mixture has, in the
course of the interaction, associated itself with I+II. And, in particular, it has
made a mixture of their projection in I. But the result of such a measurement is
indeterminate because the initial state of the observer (before the measurement)
is not known exactly. It is conceivable that such a mechanism might function,
because the information available to the observer regarding his own state could
have absolute limitations, by the laws of nature. These limitations would be
expressed in the values of the wn, which are characteristic of the observer alone
(and therefore independent of φ).

It is at this point that the attempted explanation breaks down. For
quantum mechanics requires that wn = (P[ψn]φ, φ) = |(φ, ψn)|2; i.e., wn is
dependent on φ! There might exist another decomposition

U ′ =
∞∑

n=1

wn
′P[Φn

′ ]

(the Φn
′ = ψn(q)ηn(r) are orthonormal) but this is of no use either, because the

wn
′ are (except for order), determined uniquely by U ′ (IV.3), and are therefore

equal to the wn.214

Therefore, the non-causal nature of the process 1 cannot be attributed to
incomplete knowledge of the state of the observer, and we will therefore assume
in all that follows that the state of the observer is completely known.

Let us now apply ourselves again to the problem formulated at the end of
VI.1. I, II and III shall have the meanings given there, and for the quantum
mechanical investigation of I, II we shall use the notation of VI.2, while III
remains outside of the calculations (see the discussion of this in VI.1). Let A
be the quantity (in I) actually to be measured, represented by the operator A
with eigenfunctions φ1(q), φ2(q), . . . . Let I be in the state φ(q).

If I is the observed system, and II+III the observer, then we must apply
process I and expect to find that the measurement transforms I from the state
φ to one of the states φn (n = 1, 2, . . .). Now, what mode of description must
we adopt if I+II is taken to be the observed system, and only III the observer?

In this case we must say that II is a measuring instrument which shows on
a scale the value of A (in I): the position of the pointer on this scale is a physical
quantity B (in II), which is actually observed by III. (If II is already within the
body of the observer we have the corresponding physiological concepts in place
of the scale and pointer; e.g., retina and image on the retina, etc.) Let A have
the values a1, a2, . . . , B have the values b1, b2, . . . , and let the numbering be
such that an is associated with bn.

214 This approach admits of still more variants, all of which must be rejected
for similar reasons.
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Initially, I is in the (unknown) state φ(q) and II in the (known) state ξ(r),
so I+II is in the state Φ(q, r) = φ(q) · ξ(r). The measurement (so far as it is
performed by II on I) is, as in the earlier example, carried out by an energy
operator H (in I+II) in time t: this is the process 2 which transforms

Φ −→ Φ ′ = e−
i
! tH Φ

Viewed by the observer III, one has a measurement only if the following is
the case: If III were to measure (by process 1) the simultaneously measurable
quantities A, B (in I or II respectively, or both in I+II) then the pair of values
am, bn would have probability 0 for m #= n and probability wn for m = n.
That is, it suffices “to look at” II, whereupon A will have been measured in I.
Quantum mechanics imposes the requirement that wn = |(φ, φn)|2.

If this is established then the measuring process, so far as it occurs in II, is
“explained” theoretically; i.e., the division I | II+III discussed in VI.1 has been
shifted to I+II | III.

The mathematical problem is then the following: A complete orthonormal
set φ1, φ2, . . . is given in I. We seek such a set ξ1, ξ2, . . . in RII, and a state ξ in
RII, and an energy operator H in RI+ II, and a time t such that the following
holds: If φ is an arbitrary state in RI and

Φ ′(q, r) = e−
i
! tH Φ(q, r) with Φ(q, r) = φ(q)ξ(r)

then Φ ′ has necessarily the form

Φ ′(q, r) =
∞∑

n=1

cnφn(q)ξn(r)

(where the ck are naturally dependent upon φ). Therefore |cm|2 = |(φ, φm)|2.
That the latter is equivalent to the physical requirement formulated above was
discussed in VI.2.

In the following we shall use a fixed set ξ1, ξ2, . . . and a fixed ξ along with
the fixed φ1, φ2, . . . and shall investigate the unitary operator

∆ = e−
i
! tH

instead of H.

This mathematical problem leads us back to a problem solved in VI.2. There
a quantity corresponding to our present Φ ′ was given, and we established the
existence of cn, φn, ξn. Now φn, ξn are fixed, Φ and cn dependent upon φ are
given, and we seek to establish the existence of a ∆ such that Φ ′ = ∆Φ gives
back these cn, φn, ξn.

We shall show that such a determination of ∆ is indeed possible. In this
case, only the principle is of importance to us; i.e., the existence of such a
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∆. The further question—whether the unitary operators ∆ corresponding to
simple and plausible measuring arrangements also have this property—will not
concern us. We have, as it happens, already seen that our requirements coincide
with those enlisted in a plausible iterative approach to the measurement process.
The arrangements in question are to possess the characteristics of measurement;
quantum mechanics would be in blatant contradiction with experience if these
∆ did not satisfy our requirements (at least approximately).215 In the following
we will be content to exhibit an abstract ∆—one which in fact satisfies our
requirements exactly.

Let the φm (m = 0,±1,±2, . . .) and the ξn (n = 0,±1,±2, . . .) be two
given complete orthonormal sets in RI and RII respectively. (It is simply as
a fundamentally irrelevant technical convenience that our indices run now on
0,±1,±2, . . . , rather than on 1, 2, . . . .) Let the state ξ be, for simplicity, ξ0.
We define the operator ∆ by its action:

∆ ·
∞∑

m,n=−∞
xmnφm(q)ξn(r) =

∞∑

m,n=−∞
xmnφm(q)ξm+n(r)

Since the φm(q)ξn(r) and the φm(q)ξm+n(r) are both complete orthonormal
sets in RI+ II, this ∆ is unitary. Now

φ(q) =
∞∑

m=−∞
(φ, φm) · φm(q), ξ(r) = ξ0(r)

so

Φ(q, r) = φ(q)ξ(r) =
∞∑

m=−∞
(φ, φm) · φm(q)ξ0(r)

and therefore

Φ ′(q, r) = ∆Φ(q, r) =
∞∑

m=−∞
(φ, φm) · φm(q)ξm(r)

Our purpose is thus accomplished [though in this abstract discussion the
structure of tH=i! ln ∆ remainsunaddressed]. We have in addition cm=(φ, φm).

A better overall view of the mechanism of this process can be obtained if
we exemplify it by concrete Schrödinger wave functions, and give H in place of ∆.

The observed object, as well as the observer (i.e., I and II respectively)
will be characterized by single variables q and r respectively, both running
continuously from −∞ to +∞. That is, let both be thought of as points that
can move along the line. Their wave functions have then the form ψ(q) and
η(r) respectively. We will assume that their masses m1 and m2 are so large

215 The corresponding calculation for the case of the position measurement
discussed in III.4 is contained in a paper by Weizsäcker, Z. Physik 70 (1931).
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that the kinetic term

T = 1
m1

Ṗ
2

+ 1
m2

P̈
2

= 1
m1

(!
i

∂
∂q )2 + 1

m2
(!

i
∂
∂r )2

in the composite energy operator H = T + Vinteraction can be neglected, and
to the interaction term—which is decisive for the measurement—assign the
particular form

Vinteraction = 1
τ Q̇P̈ = 1

τ q (!
i

∂
∂r )

where τ is a constant with the dimensions of time. Schrödinger’s time-dependent
differential equation (for the I+II wave functions ψt = ψt(q, r)) then reads

1
τ q (!

i
∂
∂r )ψt(q, r) = i! ∂

∂tψt(q, r)

or (
τ ∂

∂t + q ∂
∂r

)
ψt(q, r) = 0

of which the general [unnormalized] solution has the form

ψt(q, r) = f(q, r − 1
τ q t)

If, at t = 0, we have ψ0(q, r) = Φ(q, r) then we have f(q, r) = Φ(q, r) and
therefore

ψt(q, r) = Φ(q, r − 1
τ q t)

In particular, if the initial states of I and II are represented by φ(q) and
ξ(r) respectively, then in the sense of our calculational scheme (if the time
t appearing therein is chosen to be τ)

Φ(q, r) = φ(q)ξ(r)
Φ ′(q, r) = ψτ (q, r) = φ(q)ξ(r − q)

We wish now to show that this can be used by II for a position measurement
of I; i.e., that the coordinates are tied to each other. (Since q, r have continuous
spectra they are measurable with only arbitrary precision, so this can be
accomplished only approximately.)

For this purpose we will assume that ξ(r) differs from 0 only in a very
small interval −ε < r < +ε (i.e., that the coordinate of the observer before the
measurement is very accurately known); additionally, ξ(r) should, of course, be
normalized:

‖ξ‖ = 1; i.e.,
∫

|ξ(r)|2dr = 1

The probability that [at time τ ] q lies in the interval [q0 ± δ ] and r in the
interval [r0 ± δ ′ ] is

∫ q0+δ

q0−δ

∫ r0+δ′

r0−δ′
|Φ ′(q, r)|2dqdr =

∫ q0+δ

q0−δ

∫ r0+δ′

r0−δ′
|φ(q)|2|ξ(r − q)|2dqdr
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Because of the assumption imposed upon ξ(r), this vanishes if q0 and r0 differ
by more than δ + δ ′ + ε, which is to say: q, r are so closely tied to each other
that their difference can never be greater than δ + δ ′ + ε. And for r0 = q0 this
becomes ∫ q0+δ

q0−δ
|φ(q)|2dq

if we choose δ ′ ! δ + ε. Since we can choose δ, δ ′, ε to be arbitrarily small (they
must, however, be greater than zero) this means that q, r are tied together
with arbitrary closeness, and the probability density has the value stipulated
by quantum mechanics: |φ(q)|2.

That is, the properties of measurements, as we have discussed them in VI.1
and in this section, are realized.

The discussion of more complicated examples—of (say) an analog of the
four-term example discussed in VI.1, or of the control that a second observer III
might effect upon the measurement of I by II—can also be carried out in this
fashion. But that will be left to the reader.
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atomic nucleus: quantum theory requires new ideas 7
blackbody radiation (Planck) 5
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Boltzmann entropy 257
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Boltzmann’s theorem 258
Bose-Einstein statistics 179, 235
boundary conditions, periodic 177
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Brownian motion 236
canonical ensemble 258
Cauchy criterion for convergence 35
causal vs statistical 135, 211, 271
causality in modern physics 212
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commutative projection operators 53, 54
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interaction picture 184
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reversible vs irreversible 234
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projection hypothesis 140
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quantum states 214
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quantum statistics III
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statistical interpretation (Born) 136
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passage to interaction picture (effectively) 184
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relative probabilities 202, 208
resolution of the identity 76, 90
Riesz-Fischer theorem 22
rules for constructing physical operators 160
Schmidt orthogonalization 38, 264
Schrödinger formalism 127
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separable linear manifold, defined 32
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simultaneous decidability of propositions 162
simultaneous measurability III.3, 144
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spectrum, continuous vs discrete 68, 74, 80, 114, 143
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Stieltjes integral 72, 91, 102, 132
states, stationary 8, 11
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Stirling formula 257
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theory of measurement, objective of 230
thermodynamics: foundations clarified 3
thermodynamic probability 257, 260
time a parameter—not an operator—in quantum theory 231
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basic properties 116, 120
careless mathematics/doubtful artifices 117, 125
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transformation theory (Dirac-Jordan) 1, 6
transition probabilities 8, 164

absorption, emission, spontaneous emission 191
uncertainty relations III.4, 199

and classical experience 153
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Heisenberg’s discovery 150

vacuum state 177
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wave equation 11
wave mechanics (Schrödinger) 6, 10–13
wave-particle duality 5, 183
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Although von Neumann did not number his equations, he did attach identifying
flags—sometimes arbitrarily, sometimes with mnemonic intent—to principles,
defining properties, conditions, rules and equations of special significance. Flags
which pertained only to immediate arguments were sometimes used again to
identify different propositions in subsequent portions of the text. Those with
mnemonic intent were adjusted by Beyer to onform to the translated mnemonic.
Here follows a sequential list of the pages on which those flags appear:

E1 16
E2 16
E3 17
I 17
∆∆∆1,∆∆∆2,∆∆∆3 18
∆∆∆4 19
ααα,βββ,γγγ 25
A 26
B 28
C(n),C(∞) 31
D 26
E 28
E 66
D 70
O 70
S1,S2,S3 73
S1,S2,S3 73
∆∆∆ 82
Co,Co1,Co2 93
S1,S2,S3 100
C 101
∗∗∗ 109
P 130
E1,E2 132
F 132
U 151
Eq 151
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L 160
F 160
ααα,βββ,γγγ, δδδ, εεε,ηηη, θθθ, ζζζ 163
A 166
A1,A2 167
E 193
M1 200
Dis1 200
M2 200
ααα,βββ 201
A, B, C, D 201
E 202
A′,B′ 203
M3 203
ααα′,βββ ′ 204
Dis2 204
I, II 205
Tr 207
E2 210
M 218
ααα′ 219
T1, T2, T1

′, T2
′ 229

1, 2 230
F 279
U 280
V 281
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To cite sources in the periodical literature, von Neumann employed a convention
rendered so terse by the systematic omission of page numbers and article titles
as to become ambiguous when several articles by the same author appear in the
same volume. Those citations are spelled out here in searchable detail. Article
titles (when not originally in English) are presented here in English translation.
The following abbreviations (which occasionally depart from those adopted in
the text) are employed in the following list:

Ann. Phys. = Annalen der Physik
Ann. Math. = Annals of Mathematics

Circ. Math. di Pal. = Rendiconti del Circolo di Mathematico di Palermo
Gött. Nachr. = Nachrichten von der Gesellschaft der

Wissenschaften zu Göttingen
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Verh. d. Physik. Ges. = Verhandlungen der Deutschen Physikalische

Gesellschaft
Z. Phys. = Zeitschrift für Physik

birkhoff (1931): “Proof of the ergodic theorem,” PNAS 17, 656–660
birkoff & koopman (1932): “Recent contributions to ergodic theory,”

PNAS 18, 279–282
bohr (1913): “On the constitution of atoms and molecules,”

Phil. Mag. 26, 1–25
bohr (1920): “On the question of the polarization of radiation in the quantum

theory,” Z. Phys. 6, 1–9
bohr, kramers & slater (1924): “The quantum theory of radiation,”

Z. Phys. 24, 69–87

 EBSCOhost - printed on 2/13/2023 10:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



300 Articles Cited: Details

bohr (1928): “The quantum postulate and recent developments in atomism,”
Naturwiss. 16, 245–257

bohr (1929): “The quantum of action and the description of nature,”
Naturwiss. 17, 483–486

born (1926): “Quantum mechanics of collision processes,”
Z. Phys. 37, 863–867

compton & simon (1925): “Directed quanta of scattered X-rays”
Phys. Rev. 26, 289–299

davison & Germer (1928): “Diffraction of electrons by a crystal of nickel,”
Phys. Rev. 30, 705–740

dirac (1925): “The fundamental equations of quantum mechanics,”
Proc. Roy. Soc. London 109, 642–653

dirac (1927): “The physical interpretation of quantum mechanics,”
Proc. Roy. Soc. London 113, 621–641

dirac (1927): “The quantum theory of the electron,”
Proc. Roy. Soc. London 117, 610–624

einstein (1905): “On the motion of particles suspended in stationary liquids
required by the molecular theory of heat,” Ann. Phys. 14, 549–560

einstein (1905): “On a heuristic viewpoint concerning the production and
transformation of light,” Ann. Phys. 17, 132–148

einstein (1914): “Contributions to quantum theory,” Verh. d. Physik. Ges.
16, 820–828

einstein (1917): “On the quantum theory of radiation,”
Phys. Z. 18, 121–128

fermi (1926): “The quantization of ideal single atom gases,”
Z. Phys. 36, 902-912

gordon (1928): “The energy levels of the hydrogen atom according to Dirac’s
quantum theory of the electron,” Z. Phys. 48, 11–14

heisenberg (1927): “The actual content of quantum theoretical kinematics
and mechanics,” Z. Phys. 43, 172–198

heilliger (1909): “Contributions to the theory of quadratic forms in infinitely
many variables,” J. für Reine Math. 136, 210–271

hilbert(1906): “Guidelines for a general theory of linear integral equations.
Part four,” Gött. Nachr., 157–227

kennard (1927): “The quantum mechanics of simple types of motion,”
Z. Phys. 443, 326–352

jordan (1927): “A new foundation for quantum mechanics,”
Z. Phys. 40, 809–838

landau (1927): “The damping problem in wave mechanics,”
Z. Phys. 45, 430

 EBSCOhost - printed on 2/13/2023 10:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



Articles Cited: Details 301

landau& peierls (1930): “Quantum electrodynamics in configuration space,”
Z. Phys. 62, 188–200

london (1926): “Angle variables and canonical variables in wave mechanics,”
Z. Phys. 40, 193–210

plancherel & mittag-leffler (1910): “Contribution to the study of the
representation of an arbitrary function by definite integrals,”
Circ. Math. di Pal. 30, 289–335

rupp (1928): “On the angular distribution of slow electrons in passage through
metallic layers,” Ann. Phys. 85, 981–1012

schmidt (1907): “On the theory of linear and nonlinear integral equations,”
Math. Ann. 63, 433–476

schrödinger (1926a): “Quantization as an eigenvalue problem. I,”
Ann. Phys. 79, 361–376

schrödinger (1926b): “Quantization as an eigenvalue problem. II,”
Ann. Phys. 79, 489–527

schrödinger (1926c): “Quantization as an eigenvalue problem. III,”
Ann. Phys. 80, 437–490

schrödinger (1926d): “Quantization as an eigenvalue problem. IV,”
Ann. Phys. 81, 109–139

schrödinger (1929): “What is a law of nature?” Naturwiss. 17, 9–11

stone (1929a): “Linear transformations in Hilbert space. I.
Geometrical aspects,” PNAS 15, 198–200

stone (1929b): “Linear transformations in Hilbert space. II.
Analytical aspects,” PNAS 15, 423–425

stone (1930): “Linear transformations in Hilbert space. III.
Operational methods and group theory,” PNAS 16, 172–175

szilard (1925): “On the extension of phenomenological thermodynamics to
fluctuation phenomena,” Z. Phys. 32, 753–788

szilard (1929): “On the decrease of entropy in a thermodynamic system by
the intervention of intelligent beings,” Z. Phys. 53, 840–856

titchmarsh (1924): “Weber’s integral theorem,”
Lond. Math. Soc. Proc. 24, 15–28

thomson (1928): “Experiments on the diffraction of cathode rays,”
Proc. Roy. Soc. London 117, 600–609

toeplitz (1911): “On the theory of quadratic and bilinear forms in infinitely
many variables,” Math. Ann. 69, 351–376

von neumann (1927): “Mathematical basis of quantum mechanics,”
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At several points, von Neumann cites specific passages in Courant & Hilbert’s
Methoden der Mathematischen Physik (1931). Readers will be familiar with
the substantially revised English translation of that classic work, which was
published as Methods of Mathematical Physics (MMP) in 1953. Here follows
indication of where (if at all) the passages cited by von Neumann are to be
found in MMP:

Note 30, page 17
Note 71, page 69
Note 89, page 88





: MMP Chapter II, “Linear Integral Equations”

Note 140, page 167 :






MMP ChapterVI, “Application of the Calculus
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Page 172 :

{
MMP page 328, equations (48) & (49)
MMP page 92, equations (31) & (32)

}
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Note 152, page 189 : Omitted in MMP from discussion of Fourier series
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Von Neumann’s notes (displayed originally as endnotes, but here as footnotes)
refer fairly frequently to previous notes, which themselves refer occasionally to
still earlier notes. It is to reduce the tedium of tracing such references to their
root that the following index has been constructed.

note page note page note page
1 1 31 18 61 62
2 2 32 19 62 62
3 3 33 21 63 63
4 3 34 22 64 64
5 5 35 22 65 65
6 6 36 24 66 67
7 6 37 26 67 67
8 6 38 26 68 67
9 6 39 27 69 68

10 7 40 28 70 68
11 7 41 28 71 69
12 8 42 28 72 71
13 8 43 30 73 72
14 10 44 31 74 73
15 10 45 32 75 74
16 11 46 32 76 74
17 11 47 32 77 76
18 11 48 33 78 76
19 12 49 34 79 79
20 12 50 39 80 80
21 12 51 40 81 80
22 13 52 40 82 81
23 13 53 41 83 81
24 13 54 41 84 82
25 13 55 47 85 84
26 14 56 47 86 85
27 14 57 48 87 86
28 16 58 57 88 87
29 16 59 59 89 88
30 17 60 61 90 89
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note page note page note page
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93 92 135 156 177 217
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95 93 137 158 179 223
96 96 138 164 180 231
97 97 139 166 181 231
98 97 140 167 182 232
99 99 141 168 183 233

100 99 142 170 184 234
101 100 143 171 185 235
102 102 144 175 186 235
103 103 145 176 187 235
104 106 146 178 188 236
105 108 147 179 189 236
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128 145 170 209 212 278
129 149 171 209 213 280
130 150 172 211 214 284
131 150 173 211 215 286
132 153 174 212
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