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Preface

We used to think that the dimension of the molecules is not more than three. 
However, an analysis of the geometry of molecules using the Euler-Poincaré 
relation for polytopes of dimensionality n shows that the dimension of many 
molecules is greater three. Different (often opposite) points of view on 
space exist long ago. Still Plato, who attached great importance to geometry, 
suggested that objects of nature, their quality and types of interaction with 
the environment can be the result of a geometrical structure hidden from us 
(Yau & Nadis, 2010). A striking example of the influence of hidden geometric 
structures is string theory, in which, based on the solutions of Einstein’s 
equations, it is postulated that at each point of space a manifold of higher 
dimension (the Сolabi-Yau manifold) is hidden. However, Aristotle considered 
the space surrounding us to be three-dimensional (Jammer, 1960). With the 
names of Aristotle and Leibniz, the notion that the real space is inseparably 
connected with matter is connected. There is no space without matter, just as 
there is no matter without space: space is the form of the existence of matter 
(Einstein, 1966). Unfortunately, for many years the opinion, connected with 
the names of Democritus and Newton, was predominant, that space is the 
receptacle of all material objects that do not exert any influence on space. 
This representation has become the basis of Euclidean geometry. According 
to this representation, the geometric space is continuous, infinite, three-
dimensional, homogeneous and isotropic. Opening of Lobachevsky (1945) 
and Bolyai (1950) non-Euclidean non-contradictory geometry marked the 
beginning of the rapid development of geometry. Riemann actively continued 
work on non-Euclidean geometry. In his famous lecture “On the hypotheses 
underlying the geometry” (Riemann, 1854) he introduces the notion of 
about n-extended manifold. It is essential that the n-dimensional drawling is 
determined by Riemann without introducing the infinity of space. Moreover, 
the infinity of space clearly contradicts Riemann’s notion of n-dimensional 
extension. When it is defined, Riemann initially considers a certain finite 
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domain and, as a sign of the n-dimensionality of the manifold, the position 
on this manifold is characterized by a change of n one-dimensional extended 
quantities. Poincare allowed the possibility of the existence of a space with 
dimension above three. He extended the relations between the numbers of 
elements of different dimensions in a three-dimensional convex polyhedron 
into polyhedron of any dimension (polytopes) (Poincare, 1895). Ehrenfest 
meanwhile, based on the analysis of the stability of the orbits of electrons in 
an atom, believed that the space was three-dimensional, i.e. there is no atomic 
structure of matter in a space with a dimension greater three (Ehrenfest, 
1920). Later this was confirmed by calculations (Büchel, 1963), as well as 
by attempts to solve the Schrödinger equation in a space of higher dimension 
(Gurevich & Mostepanenko, 1971).

In this paper, the molecule is regarded as a convex body. Determining the 
number of elements of different dimensions entering this body, its dimension is 
determined by the Euler - Poincaré equation. The existence of a molecule in the 
form of a convex body of dimension n agrees with Riemann’s representations 
on a finite n-dimensional manifold. In this case, the dimension of the polytope 
may turn out to be higher than the dimension of the surrounding space, which 
has the dimensionality 3 under the assumption. Each polytope of dimension 
n has a boundary complex consisting of elements of smaller dimension. 
In particular, if the surrounding space has dimension 3, then the boundary 
elements between the boundary complex and the surrounding space have 
dimensions 0, 1, 2.

The definition of the dimension of molecules is of great importance in 
the study of the possibility at their interaction with other molecules. This 
particular important for living organisms to determine the analysis of disease 
and treatment, as the geometric condition of complementarity is a key 
molecule in the interaction. In this study we conducted a systematic analysis 
of the dimensions of the molecules with the participation of elements of the 
periodic system (Chapters 1, 2), and we investigate the regularities of filling 
space with n – dimensional polytopes corresponding to molecules of higher 
dimension also.

The aim of this study is to prove that virtually very much chemical 
compounds have the structure of a higher dimension. The results of that 
research should be published to draw attention to this fact all researches 
structures of substances. This in turn will give an impulse for the analysis of 
the interaction of molecules specific substances as objects of higher dimension. 
This is especially important, for example, in nanomedicine, nanotoxicology 
and quantum biology.

vii
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When constructing a convex polytope corresponding to a molecule, it is 
first of all necessary to connect the atoms (or functional groups) connected 
by a covalent bond by the edges. These atoms are identified with the 
vertices of the polytope. In complex molecules, for example, molecules of 
supramolecular chemistry or biomolecules, weak (hydrogen) bonds participate 
in the compounds. Since such bonds can propagate very long distances and 
are not stable, weak bonds there are not marked by the edges. The edges 
corresponding to covalent bonds can not form a convex body, as a rule. In 
order to create a convex polytope it is not necessary to connect vertices by 
an edge if there is no covalent bond between them. If we connect each vertex 
from the set of vertices with all the other vertices of this set, then we obtain 
a polytope, called a simplex. The dimension of the simplex is one less than 
the number of vertices. However, often, as shown in Chapters 1, 2 of this 
paper, to form a convex polytope on a set of vertices, it is not necessary to 
connect each vertex with edges with all other vertices. By observing the 
homogeneity of the vertices (that is, by an equal number of edges issuing 
from each vertex), one can reduce the number of edges in comparison with 
the simplex and obtain a convex polytope of lower dimension on a given set 
of vertices. Such polytopes can be n-cross - polytope, n - cube, or polytopes 
without special names.

The fact that these figures are polytopes is proved using the Euler-Poincaré 
formula, the dimension of the polytope is determined by the same formula. 
Thus, polytopes of different dimensions can correspond to one the same set 
of vertices. Physically, the difference in the dimensions of molecules at the 
same set of vertices (atoms) can be tried to explain, assuming the existence 
of different energy states of the molecule while maintaining the number of 
valence bonds of each atom. It should be noted that the space between atoms 
is not empty. It is characterized by the presence of electrons into it, i.e. of 
the distribution of electron density (Gillespie & Hargittai, 1991; Sinanoglu, 
1965), which is inhomogeneous and has a certain structure. It is obvious that 
this structure corresponds to the energy state of the molecule and, due to the 
quantum nature, these states change in a discrete manner. When modeling a 
molecule by a polytope, the structure of the space inside the molecule can be 
modeled by the number of edges emanating from each vertex. It is possible 
to indicate only a finite number of variants of the distribution of edges in a 
polytope for each given number for condition their homogeneous. It follows 
from this that the number of possible values of the dimension of a molecule 
for a given number of vertices is finite and varies discretely.

viii
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The structures of biomolecules undoubtedly have the greatest complexity. 
Conditional images of biomolecules in the form of Fisher and Haworth formulas 
are distributed, for example, in the form of an “armchair” (Metzler, 1980; 
Lehninger, 1982). In Chapter 3 new images of molecules of carbohydrates, 
proteins, nucleic acids in the form of polytopes of higher dimension are 
presented. This allowed to explain a number of properties of biomolecules, 
for example, the formation of a chain of carbohydrates in the case of α - D 
glycosidic bond and the absence of a chain of carbohydrates in the case of 
β - D glycosidic bond (Zhizhin, 2016).

A number of serious works on the use of space of higher dimension for 
the analysis of structure of viruses belong to the Jenner (2006, 2008, 2011, 
2016), Indelicato et al. (2012), Twarock, Valiunas, and Zappa (2015).

The form of polytopes corresponding to the structure of molecules of 
many chemical compounds, as a rule, differs from the form of regular 
polytopes. Therefore, it is necessary to pay attention to polytopes, in which 
the conditions for the correctness of the geometric figure are violated. They 
can have flat faces that are different in form from regular polygons, or the flat 
faces of a polytope are regular polygons with different number of sides, and 
so on. Polytopes with such violations of the conditions of correctness can be 
considered semi-regular if other conditions of correctness are observed. One 
of the basic conditions for the correctness of a geometric figure is the equality 
of the vertices of the figure, i.e. compatibility of vertices by movement. In 
a more general case, we will consider a geometric figure to be semi-regular 
if its vertices are topologically equivalent, i.e. from each vertex comes an 
identical number of edges. In Chapter 4, polytopes are studied topologically 
semi-regular in the above sense.

For the first time, there was announced the existence of convex semi-regular 
polytopes in four-dimensional space in Gosset’s (1900) work. It was a short 
note, containing only a statement about the existence of three four-dimensional 
semi-regular finite polytopes with an indication of their composition. Elte 
(1912) came to the same results. In all the works mentioned, polytopes were 
considered in which all two-dimensional faces are the same – regular triangles, 
but the three-dimensional faces in the same polytope can be different. In 1900 
and 1910 Stott’s work (Stott, 1900, 1910) was published, in which, regardless 
of Gosset’s work, semi-regular polytopes were considered, and the presence 
of a set of two-dimensional faces in the same polytope of different regular 
polygons was allowed. It is significant that in all these works no images of 
some semi-regular polytopes were shown. Images of semi-regular polytopes 
appeared in print only after 2013 in the works of Zhizhin (2013, 2014, Zhizhin 

ix
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& Dudea, 2016). Chapter 4 presents the results of these studies, as well as 
studies related to the expansion of the notion of semi-regular of a polytope 
in a topological sense. We also consider the hierarchical filling of spaces of 
higher dimension by regular and semi-regular polytopes. An important example 
of a semi-regular polytope is the golden hyper-rhombohedron, which, as 
shown by Zhizhin (2014; see also Zhizhin & Diudea, 2016), is a fundamental 
region of quasicrystals, i.e., molecules of intermetallics filling the space of 
the nanoworld. We emphasize that a golden hyper-rhombohedron, having a 
dimension of 4, fills this space by translation in four directions. The golden 
hyper-rhombohedron consists from 8 rhombohedrons with dimensional 3 
whose faces are rhombus.

As was shown (Zhizhin, 2014), from the lattice of vertices of the golden 
hyper -rhombohedron in the space 4D, one can single out the projections of 
the golden hyper-rhombohedron from a space of even larger dimension, for 
example, the space 5D. The fundamental domain of this subspace is the product 
of the gold hyper-rhombohedron 4D on the edge, and so on. Pontryagin called 
structures that are a product of a polyhedron on a one-dimensional segment 
cylindrical (Pontryagin, 1976). We can say that the product of a polytope on 
a segment is a prism (Ziegler, 1995) with a base in the form of a polytope. 
To distinguish it from an ordinary three-dimensional prism, we will call it 
a polytopic prism. Then the product of one polytope to another polytope is 
the set of products of one polytope to the set of edges of another polytope.

As noted Ziegler (1995) the products of polytopes are not simplexes, 
even if the factors are simplexes. In this connection, the developed theory 
of simplicial polytopes (Pontryagin, 1976; Aleksandrov, 1979) for analysis 
of the product of polytopes is inapplicable. Therefore, studies of polytope 
products are of considerable interest. The Chapter 5 and Chapter 7 of the 
book are devoted to the study of the product of polytopes, which can be called 
polytopic prismahedrons. It is shown that it is the polytopic prismahedrons 
that are analogues of the stereohedrons introduced by Delone (Delone, 
1961; Delone & Sandakova, 1961), as elements filling without gaps of 
n-dimensional space. It should be noted, however, that principles discrete 
systems entered by Delone (1937) require consideration. The concept of the 
discrete points of the system does not require the introduction of a sphere of 
radius r described about anywhere point in the system, within which there 
are no points (empty balloon introduced into the systems Delone (1937)). 
The concept of asymptotic decrease in the distance between the points system 
describes the distribution of points in the diffraction patterns of quasicrystals 
and corresponds to the scaling process, i.e. continuous change in system scale, 
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open in recent years. Proof of Delone that polytopes in the n - dimensional 
space, or do not belong to each other, or on the adjacent faces of dimension 
n - 1 (facets) is not correct, because it uses the concept of three-dimensional 
space when considering the n-dimensional space. In Chapter 7 there shown 
that polytopes in the n-dimension space can have common vertices, edges, 
and common elements of any dimension from 0 to n – 1. The Chapter 6 is 
devoted to study the polytopes dual to polytopic prismahedrons. It is shown 
that the duality to polytopic prismahedrons leads to a new type of polytopes, 
a poly-incident polytopes that is not previously known. Polytopes in which 
edges are used simultaneously, incident to different number of elements of 
greater dimension.

In the Appendix, solutions of the Schrödinger equation in n-dimensional 
space are investigated. It is shown that the strange statement about the 
impossibility of the existence of the atomic structure of matter in a space 
with a dimension above three expressed by Ehrenfest (1920) and confirmed 
by Büchel (1963) and Gurevich and Mostepanenko (1971) is a consequence 
of a misunderstanding. Büchel (1963) and Gurevich and Mostepanenko 
(1971) when analyzing the Schrödinger equation, a potential is introduced in 
the form of a power function of the radius, and the negative power depends 
linearly on the dimensionality of the space. Such a representation of the 
potential function is not supported by any physical considerations, let alone 
the experimental confirmation of such a function. Such a kind of potential 
function that leads to the impossibility of quantizing the energy of an atom in 
a space with a dimension above three. However, if we use an experimentally 
tested law of the dependence of the potential on the radius (that is, inversely 
proportional to the radius), then the Schrödinger equation and the higher-
dimensional space have a solution with discrete values of quantum numbers.

In the application for the case of the dimensionality of the space equal to 
4, an exact solution of the Schrödinger equation is obtained and the quantum 
numbers corresponding to the space of this dimension are determined.
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ABSTRACT

The chapter deals with the chemical compounds formed by the transition 
elements of the periodic system elements, i.e. d- and f-elements. All these 
elements are metals and many of them have valuable physical and chemical 
properties. In the transition elements, the electrons are filled the d- and 
f-orbital atoms. The filling of the energy levels of the orbitals should occur as 
the electron energy increases in accordance with the rules of Pauli and Hund. 
However, many of the transient elements fill electronic orbitals in violation 
of these rules. This chapter shows that these anomalies can be described by 
analytic relationships and they lead to an increase in the chemical and physical 
activity of the elements. It is shown that the molecules of most compounds 
with the participation of transition elements are of higher dimensionality, 
which must be taken into account when analyzing their properties.

TRANSITIONAL ELEMENTS IN THE BIOSPHERE

The transitional elements are d- and f-elements located in the table of 
Mendeleev between s - and p-elements (in s-elements are completed by 
electrons s-orbitals of the outer level, in p-elements are completed p-orbitals 
of the outer level). In the d-elements are completed d-orbitals of the pre-outer 

The Structure and Higher 
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level, in the f-elements are completed f-orbitals of the pre-outer levels. All 
these elements form metals. They play a big role in the biosphere - the shell 
of the Earth, in which there are living organisms (Vernadsky, 2012). They 
are in the lithosphere, making up the bulk of minerals (Fersman, 1937). In 
living organisms, due to the biogenic migration of atoms, almost all elements 
that exist in the crust and water can be detected, including the transitional 
elements. Transitional elements are centers of biologically active enzymes 
and hormones, i.e. a small amount in the body, as trace elements, is extremely 
important for the activity of organisms. However, in the case of excess of the 
norm (biotic concentration), the transitional elements exhibit toxic properties. 
The most common transitional element in nature is iron 4.65%, the second 
element in prevalence is titanium 0, 61%. All the transition elements in order 
of decreasing their distribution in nature can be represented in the form of 
a series

Fe (4,65%), Ti (0,62), Mn (0,09%), Zr (0,017%), V (0,015%), Gr (8,3 10-3%), 
Zn (8 10-3%), Cu (4,7 10-3%), Ce (4,5 10-3%), Co (4 10-3%), Nd (3,7 10-3%), 
La (1,8 10-3%), Ni (8 10-4%), Th(8 10-4%), Cd (8 10-4%), Sc (6 10-4%), Hf (3,2 
10-4%), 

U(2,5 10-4%), Ta (2 10-4%), Mo (10-4%), Wo (10-4%), Ag (7 10-6%), Au (5 
10-6%), 

Hg (5 10-6%), Pt (5 10-7), Y (2,8 10-7%), Rh (10-7%), Re (7 10-8%). 

Iron and titanium are constantly in the human body. There are a lot of 
iron-containing enzymes that catalyze the processes of electron transfer in 
mitochondria. They are called cytochromes (Metzler, 1980). Cytochromes 
are ironporphyrins in which all orbitals of the iron ion are occupied by donor 
atoms of bioligands.

Titanium performs vital functions: catalyzes the synthesis of hemoglobin, 
increases erythropoiesis and immunogenesis. Titanium compounds accelerate 
the biosynthesis of amino acids, activate lipoxygenase activity, it increases 
resistance to various diseases. Titanium compounds are active regulators of 
free-radical processes and systems for utilization of active forms of oxygen. 
Other transitional elements also perform important functions in living 
organisms. For protein, fat and carbohydrate metabolism are necessary Fe, 
Co, Mn, Zn, Mo, V, B, W. In the synthesis of proteins involved Mg, Mn, Fe, 
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Co, Cu, Ni, Gr; in hematopoiesis – Co, Ti, Cu, Mn, Ni, Zn; in the breath – 
Mg, Fe, Cu, Zn, Mn, Co.

All these important functions in living organisms are due to the electronic 
structure of the outer and pre-outer levels of atoms. This is due to the large 
number of electrons in the d- and f-orbitals and, as a consequence, greater 
possibilities for variations in their number. In addition, there are a large number 
of free quantum cells on these orbitals that allow the donor-acceptor chemical 
bond to be realized. All this makes it possible for these atoms to have many 
valence electrons and to provide a considerable number of coordination bonds 
in complex compounds.

Energy Levels of Electronic Orbitals 
of Transitional Elements

It is known that the sequence of filling the electron energy levels and sublevels 
in many-electron atoms is determined by increasing their energy sequence. 
The energy of an electron in a many-electron atoms, depending on the 
principal quantum number n, which characterizes the energy level (shell), 
and orbital quantum number l, characterizing the shape of the electron cloud 
(orbital or sublevel). There are four kinds of forms orbitals s, p, d, f. Orbital 
orientation in space is characterized by the value of the magnetic quantum 
number ml. Pointing to the value of the principal quantum number 1, 2, ..., 
7, and type of forms of electronic orbitals, it is possible to record the serial 
number of the experimental increase in energy orbitals located at different 
energy levels (Gray, 1965)

1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 6f, 7d. (1)

If to look at the number (1) it can be seen, that the energy of the d- orbital 
of the previous energy level is more energy of the s - orbital subsequent 
energy level nd n s> +( )1  (for example, 4 5d s> ). Besides the energy of the 
f - orbitals of the certain energy level is less energy of the d- orbital by 
increasing the number of the energy level on 2 (for example, 4 6f d< ). 
Consistently filling orbitals at different energy levels, taking into account the 
capacity of the orbitals (i.e. the (1) presence of each orbital is a certain amount 
of quantum cells), it is possible in principle to obtain periods, groups and 
subgroups of the table of chemical elements of Mendeleev (1934). When 
filling out the orbital electrons it is recommended to use a number (1), as 
well as the Pauli’s principle (Pauli, 1925) and Hund’s rule (Hund, 1927).
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According to the Pauli’s principle in quantum cell cannot be more than 
two electrons with opposite spins (spin quantum number m

s
 equal to ± 1/2 

respectively). The atom cannot has two electrons with the same values of the 
four quantum numbers. The number of possible quantum cells at this sublayer 
(orbital) ism l

l
= +2 1 . The maximum number of electrons in that sublevel 

equal to2m
l
. The number of possible quantum cells at any level is equal to

n2 , and the maximum number of electrons at this level is 2n2 .
According with Hund’s rule the filling of the orbitals it is at first by one 

electron in each quantum cell with the same orientation of the spins, and only 
after this the quantum cells it are filled with second electrons with opposite 
spins. Thus, the total spin orbitals must be maximized.

Filling the orbitals on the Pauli principle and Hund’s rule corresponds to 
the ground state of the atom with the lowest energy. When atom reporting 
additional energy than one or more electrons in the atom move to a higher 
energy level. In this case, the atom to become excited.

However, for increasing the number of electrons in the atom among of 
the chemical elements appearing elements in order to fill electron orbitals 
are the deviations at a number (1.1) and Hund’s rule. It is assumed that these 
anomalous cases are not significant as a whole for the entire table of chemical 
elements (Arkel, 1931; Karapet`yants & Drakin, 1994). However, a detailed 
analysis of the electronic formulas of chemical elements table of Mendeleev 
shows that these anomalous elements are many and it is important that in 
their number reach elements with exceptional properties such as chromium, 
platinum, gold, silver, uranium, and others. In the light of the opening of 
all the new elements with many electrons is of interest to 1) organize the 
anomalies in the filling of the atomic electron orbitals, 2) try to find patterns 
in these anomaly filled electron orbitals, and 3) determine the characteristics 
of the compounds of anomalous elements.

Anomalies in Filling the Electronic 
Orbitals and Their Analysis

For clarity, the series (1) can represented graphically depending on the 
principal quantum number n (Figure 1).

However, taking into account that the electron energy E depends on two 
quantum numbers it is useful to the further analyze to present this dependence 
on two coordinates:the principal quantum number n and orbital quantum 
number l. So the orbitals s, p, d, f correspond to the values of the orbital 
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quantum number l = 0, 1, 2, 3, reconstruct Figure 1 as a function E (n, l) 
(Figure 2).

Figure 2 shows that the energy of the electron E increases with increasing 
n as well as l, but do the nature of these relationships is different from linear. 
Comparing the current data on the electronic formulas of chemical elements 
(Gray, 1965) with a number (1), you can make sure that all cases elements 
with anomalous filling of the atomic electron orbitals are d- and f-elements. 
Moreover, from the total number of elements (68) near their third (21) are 
anomalous elements. In Table 1 and Table 2 shows the structure of the outer 
shell, built on a number of energy (1), and the actual structure of the outer 
electron shells, respectively, d- and f-elements that have anomalies in the 
order of filling of electron orbitals. We consider first an anomalous element 
in the table 1, i.e. chromium element. Situated in the table of the elements 
after vanadium, having in the outer shell electrons 3 43 2d s , chrome atom differs 
from vanadium atom the one additional electron. This electron, according to 

Figure 1. Distribution of energy E orbitals s, p, d, f of the atoms, depending on the 
principal quantum number n
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the number of the energy (1) and Hund’s rule must be to act on d- orbital of 
the third energy level. He there and goes, but one electron with s-orbital on 
the fourth energy level goes on d- orbital of the third energy level despite the 
Hund’s rule governing the sequential filling of quantum cells at this energy 
level. While at the same time in line with other approved of rules Hund atom 
acquires the maximum value of the total spin of the shell. This is points to 
the inconsistency Hund’s rule. As a result, the electronic formula of chromium 
atom is 3 45 1d s  instead 3 44 2d s , calculated on a number (1). Due to the transition 
of an electron from 4s-orbital in the 3d-orbital energy of the atom to become 
higher than the lowest possible value of the energy. We can assume that the 
chromium atom in its initial position without outside influence is already 
excited. Figure 2 shows the transition of an electron in the atom of chromium 
from the 4s-orbital on 3d-orbitals can be represented by a dotted line with 
an arrow pointing from point a to point b.

Figure 2. Distribution of energy E orbitals s, p, d, f of the atoms, depending on the 
principal quantum number n and orbital quantum number l
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On the flat (n, l) projection of this line is straight connection point (n = 
4, l = 0) with point (n = 3, l = 2).

The same line (a, b) and its projection meets the chemical element Cu. 
Here also contrary to a number of energy (1) and Hund’s rule a one electron 
goes from the 4s - orbital in the 3d- orbital filling it completely. In so doing 
the value of the total spin in comparison with the formula for a number of 
energy 3 49 2d s  is not changed. Diu to of transition electron with 4s-orbital 
on 3d-orbital having more energy copper atom in its initial state is already 
excited.

In the atoms of elements Nb, Mo, Ru, Rh, Pd, Ag contrary to a number of 
energy (1) and Hund’s rule electrons go with 5s-orbitals on 4d-orbital with 
higher energy. In Figure 2 this chemical elements corresponds to the dotted 
line with an arrow from point c to point e. Its projection on the plane (n, l) 
of the connecting points (n = 5, l = 0) and (n = 4, l = 2). These atoms as 
compared with a number of energy (1) are an excited, in the atom of palladium 
from the 5s - orbital going to 4d – orbital all at once two electrons. Platinum 
and gold in Figure 2 corresponds to the dotted line with an arrow connecting 
points (n = 6, l = 0) and (n = 5, l = 2).

The latter anomalous s - element in Table 1, i.e., element Rg corresponds 
to Figure 2 the dotted line with an arrow connecting points m and t, and its 
projection onto the plane (n, l) joining the points (n = 7, l = 0), (n = 6, l = 
2). They describe the transition of an electron from 7s-orbital to 6d- orbital.

From Figure 2, it follows that the electron transitions in anomalous d- 
elements describes the straight line in the plane (n, l) through two points 
(n0, l0) and (n0 -1, l0 + 2), where n0, l0 are coordinates at the beginning of the 
transition point.

Considering that l0 = 0, the equation of this line is given by l = 2 (n0 - n), n0 
= 4 ÷ 7. In the final state n = n0 -1, l = 2. Therefore, the sum of the principal 
quantum number and the orbital quantum number at the end of the transition 
is equal to n0 + l0 + 1, i.e. on one greater than the sum of those numbers at 
the beginning of the transition.

Thus, it is possible to formulate a general rule for the electron transitions 
in anomalous d-elements: in anomalous d-elements is the transition of one 
or two electrons from the ns-orbital on the (n - 2) d-orbital, (n = 4 ÷ 7) with 
higher energy. The sum of the principal quantum number and the orbital 
quantum number after the transition is increased by 1.

Let us now consider anomalous f-elements. The first anomalous f-element 
in Table 2 is lanthanum. He is in the table of the chemical elements is preceded 
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by barium, which has on the outer shell electrons6 2s . Lanthanum atom differs 
from barium atoms with one extra electron. In accordance with a number of 
energy (1) the electron must go on 4f-orbital, but it actually enters the free 
orbital to a higher energy 5 1d . Figure 2 it is represented by the dashed line 
with an arrow connecting the points w and g. There is the total spin is not 
changed and remains minimal. The projection of this line onto a plane (n, l) 
connecting a point (n = 4, l = 3), (n = 5, l = 2). This same line and its 

Table 1. Anomalous d- elements

Number 
of Element

Symbol 
of Element

The Structure of the Outer Shell 
on a Number of Energy

The Actual Structure of the 
Outer Shells

24 Cr 3d44s2 3d54s1

29 Cu 3d94s2 3d104s1

41 Nb 4d35s2 4d45s1

42 Mo 4d45s2 4d55s1

44 Ru 4d65s2 4d75s1

45 Rh 4d75s2 4d85s1

46 Pd 4d85s2 4d105s0

47 Ag 4d95s2 4d105s1

78 Pt 5d86s2 5d96s1

79 Au 5d96s2 5d106s1

111 Rg 6d97s2 6d107s1

Table 2. Anomalous f-elements

Number 
of Element

Symbol 
of Element

The Structure of the Outer Shell 
on a Number of Energy

The Actual Structure of the 
Outer Shells

57 La 4f1 6s2 5d16s2

58 Ce 4f26s2 4f15d16s2

64 Gd 4f8 6s2 4f75d16s2

89 Ac 5f17s2 6d17s2

90 Th 5f27s2 6d27s2

91 Pa 5f37s2 5f26d17s2

92 U 5f47s2 5f36d17s2

93 Np 5f57s2 5f46d17s2

96 Cm 5f87s2 5f76d17s2

97 Bk 5f97s2 5f86d17s2
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projection corresponds transition of an electrons in the elements cerium and 
gadolinium. In elements Ac, Th, Pa, U, Np, Cm, Bk electrons proceeds with 
5f-orbitals to 6d -orbital at a higher energy. These transitions in Figure 2 
corresponds to the dotted line with an arrow connecting a point u and point 
t. The projection of this line onto a plane (n, l) unchanged. Thus, it is possible 
to formulate a general rule of transitions electrons in anomalous f-elements. 
In the anomalous f-elements is the transition of one electron with n f-orbital 
to the (n + 1) d-orbital (n = 4; 5) with higher energy. The sum of the principal 
quantum number and the orbital quantum number remains in the transition 
unchanged.

A common characteristic of anomalous elements is that in its electrons with 
s- and f-orbitals over-tighten on the d-orbitals with increasing energy of the 
atoms (i.e., we can assume that they are in an excited state). In number of work 
trying to explain the existence of anomalous elements (with reference to the 
Hund’s rule) resistance d-orbitals in half or completely filled with electrons 
(Arkel, 1931; Karapet`yants & Drakin, 1994). However, there are the many 
of anomalous elements in which the d-orbitals of the outer shells not filled 
halfway or completely by electrons. Such anomalous elements are Nb, Ru, 
Rh, Pt, La, Ce, Gd, Ac, Th, Pa, U, Np, Cm, Bk. In addition, a statement about 
the stability of half or fully filled orbitals is not confirmed. To all appearance 
there are other principles expressed in this paper of empirical rules of thumb 
transition of electrons in anomalous elements.

If the periods of the table of chemical elements arranged in a line, as it 
was at Mendeleev (1934), we find an interesting pattern (Zhizhin, 1998) - 
anomalous elements form three groups of elements sharing the rest of the 
set of elements into four parts. The first group comprises 10 elements Cr, 
Nb, Mo, La, Ce, Ac, Th, Pa, U, Np. This group can conditionally called a 
chromium group. Almost all the elements of this group are durable metals. 
They actively manifest themselves as catalysts. Moreover, d- the elements 
of the group (Cr, Nb, Mo) are characterized by a half or nearly half-filled 
d-orbitals on atoms subshell and f-elements from the group (La, Ce, Ac, Th, 
Pa, U, Np) characterized by the presence of one electron (maximum of two) to 
d-orbital subshell. The second group includes eight elements Cu, Ru, Pd, Ag, 
Rh, Gd, Cm, Bk. It also metals, but they are mostly mild. You can call them 
a group of copper. They are also active as catalysts. Moreover, d-elements 
of the group (Cu, Ru, Pd, Ag, Rh) are characterized by full (or nearly full) 
filling d- orbital subshell, and f-elements from this group (Gd, Cm, Bk) are 
characterized by the presence of a single electron in the d-orbital subshell. 
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The third group includes 3 d-element Pt, Au, Rg. Mention may be made of 
platinum group or a group of noble metals.

The elements characterized by full (or nearly full) filling d-orbitals of 
the subshell.

In connection with the discovery of new elements and the completion 
of the seventh periodic table of Mendeleev and the possible opening in the 
future of new elements it is possible to predict the existence of new anomalous 
elements of the eighth period with the new unusual properties.

CHEMICAL COMPOUNDS OF ANOMALOUS ELEMENTS

The desire of valence electrons to increase the number of d-electrons should 
lead to some features of the compounds of anomalous elements. We consider 
which the features. We choose to consider the one s-element of the three 
mentioned groups of anomalous elements. The first anomalous element in the 
chromium group is Cr. It in consequence of the anomalies have one valence 
electron on the 4 s-orbital and five of the electrons on 3d-orbital. This allows 
have of chromium a valence equal 6 in many compounds. Since crystalline 
chromium oxide CrO3 consists of chains of tetrahedrons CrO4, united in two 
vertices. Each tetrahedron has located in the center of an atom of chromium 
associated by double bond with each of the four oxygen atoms at the vertices 
of a tetrahedron. All molecules have the form of a tetrahedron with the center, 
as shown in (Zhizhin & Diudea, 2016; Zhizhin, Khalaj & Diudea, 2016), have 
a dimension of 4, i.e., crystalline chromium oxide is a chain of polytopes of 
dimension 4, united in two vertices (Figure 3). If instead of double bonds are 
one-time connection with the chromium atom monovalent groups (such as 
hydroxyl groups), the molecule will be the center of the octahedron, which 
also would have dimension 4.

Figure 3. The chain of molecules CrO3
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There are even more complex chromium compounds (see Gillespie, 1972; 
Gillespie & Hargittai, 1991), the dimension of molecules, which is more than 
four. It is clear that all the other anomalous elements with half (or nearly 
half) filled d-orbitals of the subshell will have similar compounds having a 
molecular of higher dimensions.

If the anomalous elements have one electron in the outer orbital s and 
subshell d completely (or almost completely) filled, then the element at the 
expense of s electron forms a linear molecule, such as a linear molecule oxide 
X2 O, where X is the anomalous element (Cu, Pd, Ag, Pt, Au, Rg). However, 
due to the donor-acceptor bond linear molecule can form complex structures in 
the space. We choose element Cu from second group of anomalous elements. 
Figure 4 shows an exemplary structure formed by linear molecules Cu2 O

Each oxygen atom in the structure of Figure 4 bonded to four metal atoms 
(Cu). Two covalent bonds due to the formation of electron pairs divided: 
one s - electron metal atom and a p - electron atom of oxygen. In addition, 
there are two more donor-acceptor chemical bond due to the transfer of two 
electrons from the s - orbital and two electrons from the p - orbitals of the 

Figure 4. The structure of the compound Cu2O
A black small circle is oxygen atom. A brown circle is copper atom.
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oxygen atom to vacant quantum cell of orbital metal. Thus, oxygen atom 
acquires valence equal four. In addition, each metal atom is linearly between 
two oxygen atoms.

In this structure, oxygen atoms (except oxygen atoms located at the vertices 
of a cube) form structure is topologically equivalent to the structure of carbon 
atoms in the molecule of adamantane. As shown in the article of Zhizhin 
(2014a) on the basis the monograph Zhizhin (2014b), the dimension of this 
molecule is 4. However, the two molecules comprising 10 oxygen atoms have 
free unallocated space. Therefore, if we set the task of finding the unit cell 
structure of copper oxide without filling cracks and gaps to help translation 
the entire space, we need to build politopic prismahedron Zhizhin (2015), with 
bases in the form polytopes corresponding to these molecules. Taking a line 
segment equal to the length of the edge of the cube, in which is inscribed the 
structure including 10 oxygen atoms, multiply the polytope corresponding to 
this structure for this segment. We obtain politopic prismahedron of dimension 
5. With this politopic prismaehdron can fill space without gaps and clearances.

From the third group of anomalous elements we choose gold (Au). The 
outer shell of gold atom has one 6s - electron and a completely filled 5d- 
orbital. In the compound chlorine triphenylphosphine of gold (Ph3P)AuCl 
gold atom, giving one s - electron to chlorine atom, forms ion Au(Ph3P)3

+ with 
trigonal coordination (Gillespie, 1972; Perrin, Armarego & Perrin, 1980). 
Following Zhizhin (2016) we denoted phosphine molecule as a functional 
group of the compound.

Then ion Au(Ph3P)3
+ represented in the form of three tetrahedrons with 

the center, having one common vertex - a gold atom. In the center of each 
tetrahedron is located phosphorus atom and the remaining vertices of the 
tetrahedrons are occupied introduced functional groups Ph3 (Figure 5).

The functional dimension of each tetrahedron with center is still equal to 
4. Thus, the ion Au(Ph3P)3

+ is a collection of three polytopes of dimension 
4, having a common vertex. The assertion is proven

Theorem 1

The ion Au (Ph3P)3
+ has dimension 5.
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Proof

To prove the necessity of the three tetrahedrons with a common vertex to form 
a convex shape. Connect the vertices of a3, a4, a7 by line segments, forming 
a triangle a3 a4 a7. Connect also the three centers of the tetrahedrons with 
each other, forming a triangle a7 a11a13. Connect the center of the tetrahedrons 
with vertices corresponding of the tetrahedrons and vertices in the grounds 
of the tetrahedrons, forming a hexagon a1 a2 a9 a10 a5 a6 (thin lines on Figure 
5). Define dimension polytope in Figure 5 on the Euler- Poincare equation 
(Poincare, 1895)

( ) ( ) ( ) ,− = − −
=

−

∑ 1 1 1
0

1
i
i

i

i

n

f P  (2)

f
i
 is the number of the elements with the dimension i at polytope P; n is 

dimension of the polytope P.
To calculate the number of elements of large dimensions we turn first to 

a simple polytope, a part of a polytope in Figure 5. Temporarily excluded 
from Figure 5 the centers of the tetrahedrons – a11, a12, a13, and all edges 
emanating from these vertices. Then, the polytope has 13 vertices, i. e. f

0
10= . 

Figure 5. Ion Au(Ph3P)3
+ 

A white circle is gold atom. A black small circle is phosphorus atom. A black big circle is functional 
groups Ph3
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The number of edges of the polytope is sum the number edges of three 
tetrahedrons (6 3 18i = ), the number of edges connecting tetrahedrons at the 
base figure (3), the number of the edges connecting vertices of the tetrahedrons 
at top of Figures 5. Thus, the number of edges polytope without centers of 
the tetrahedrons equal 24, i.e. f

1
24= . .  The number of flat elements is sum 

of the flat faces of tetrahedrons (4 3 12i = ), 1 hexagon, 3 triangles between 
tetrahedrons at base of figure, 3 lateral tetragons, 4 triangles of tetrahedron 
at top of figure. Thus, the number of flat elements is 23, i.e., f

2
23= . .  The 

number of three-dimension elements is sum of 4 tetrahedrons, 3 figure between 
tetrahedrons, 1 hexagon at base and figure composed from boundary flat 
faces. Thus, the number of three-dimension elements is 9, i.e. f

3
9= . 

Substituting the values f
i
 in equation (2), we see that it holds for n = 4.

10 – 24 + 23 – 9 = 0. 

Therefore, three tetrahedrons with common vertices is polytope with 
dimension 4.

For add centers in tetrahedrons the number of the vertices becomes equal 
13, i.e.( )f

c0
13= . For this there add the number of the edges: 4 3 12i =  edges 

in tetrahedrons with centers, and 3 edges connecting centers. Thus, common 
number of edges on Figure 5 equal 39, i.e.( )f

c1
39= . The number flat faces 

there increases on 18 triangles in the tetrahedrons, 4 triangles in tetrahedron 
a11a12a13a8, 6 tetragons with vertices part which are centers of the tetrahedrons. 
Thus, common number of flat faces on Figure 5 equal 51, i.e. ( )f

c2
51= . For 

add centers the number of three-dimensions faces increases on 4 3 12i =
tetrahedrons into tetrahedrons with centers, tetrahedron a11a12a13a8, figure a1 
a2 a9 a10 a5 a6 a11a12a13a8, prism a11a12a13a3a4a7, 3 pyramids with vertex a8 
(a8a1a2a12a11, a8a5a6a11a13, a8a9a10a12a13), 3 prism (a1a2a3a7a11a12, a5a6a4a7a11a13, 
a9a10a3a4a12a13). Thus, common number of three-dimension faces on Figure 
5 equal 30, i.e. ( )f

c3
30= .

It is known from the preceding that the Figure 5 has polytopes of dimension 
4. Each tetrahedron with center there is polytope of dimension 4 and 3 
tetrahedrons without center, but with a common vertex, there is a polytope 
of dimension 4. In addition, in Figure 5 between any two tetrahedrons with 
the center is polytope dimension 4. Obviously, such polytopes are 3. That to 
proof this statement we consider any polytope from them. For example, the 
polytope a4a5a6a7a11a13 (Figure 6).
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Figure 6 has 7 vertices( )f
0
7= ;  15 edges a11a7, a11a8, a11a6, a11a13, a7a6, 

a7a8, a7a4, a8a4, a8a13, a8a5, a6a5, a13a5, a4a13, a4a5, a8a6 ; 14 flat faces a11a8a6, 
a11a7a8, a6a7a8, a11a7a6, a8a5a13, a8a13a4, a5a13a4, a8a5a4, a6a8a5, a11a8a13, a7a8a4, 
a6a11a13a5, a6a5a7a4, a11a7a13a4; 6 three-dimension faces a6a11a8a7, a8a5a13a4, 
a7a8a11a13a4, a6a11a8a13a5, a11a6a7a13a5a4, a6a7a8a4a5. Therefore, for Figure 6 
are f f f f

0 1 2 3
7 15 14 6= = = =, , ,  . Substituting the values f

i
 in equation (2), 

we see that it holds for n = 4

7 – 15 + 14 – 6 = 0. 

This proof that Figure 6 has dimension 4.
As each figures in polytope on Figure 5 is 3, so common number polytopes 

with dimension 4 in Figure 5 equal 7, i.e. ( )f
c4
7= . Substituting the values

( )f
i c

 in equation (2), we see that it holds for n = 5

13 – 39 + 51 – 30 + 7 = 2. 

Theorem is proved.

Figure 6. The polytope a4a5a6a7a11a13
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A BINARY CHEMICAL COMPOUNDS WITH 
TRANSITION ELEMENTS AND THEIR STRUCTURE

The various binary chemical compounds have a limited number of typical 
structures (Fersman, 1937). In this section, the structures of binary compounds 
involving transition elements is considered. The simplest compound of 
transition elements with three-dimensional structure has a cubic unit cell, for 
example, oxides of transition elements. Since such structures form chlorides, 
bromides and iodides of alkali metals, we will refer to these structures rock 
salt structures (Table 3). Many binary chemical compounds have the structure 
as adamantane molecule. In work of Zhizhin (2014a) it was proved that the 
adamantane molecule consisting of 10 carbon atoms that make up the bulk 
of the unit cell of the diamond has of dimension 4. In compounds Ag2O, 
Cu2O at locations 10 of the carbon atoms are oxygen atoms, and atoms of 
copper and silver are arranged linearly between oxygen atoms. Many drugs 
are also a group of 10 carbon atoms as in the adamantane molecule. Among 
the inorganic and organometallic compounds have a number of structural 
analogues of adamantine (Table 3). All of these compounds have dimension 
4 or even higher.

A series of binary compounds have a structure in the form of cube with 
centrum as in titanium chloride at which titanium ions are arranged in the 
centrum of the cube bat chlorine ions are arranged in vertices of the cube. 
We will call these structures titanium chloride structure. Haw it is shown in 
work of Zhizhin and Diudea (2016) this structure has dimension 4.

A series of binary compound have a structure of the mineral rutile TiO2. 
In this compound each titanium atom is surrounded by six the oxygen atoms 
in the octahedral coordination. To compounds with such structure to concern 
for example fluorides of copper, zinc, magnesium, manganese, cobalt, nickel. 
We will call these structures rutile structure. In work of Zhizhin and Diudea 
(2016) it is shown that octahedron with centrum have dimension 4. Therefore, 
all these structures have dimension 4. A series of binary compounds have 
structure of wurtzite - mineral ZnS, in which from compound ZnS with the 
structure of the adamantane zinc atom and sulfur atom have the tetrahedron 
coordination. The centrum each tetrahedron is vertex of another tetrahedron. 
The wurtzite structure have compounds ZnO, CdS, ZnS. The dimension of 
this structure remains unknown. It will be defined in the next section. A series 
of binary compounds have a fluorite structure – mineral CaF2 (fluorspar). 
Each calcium ion in this structure is in cube surrounded by fluorine ions, and 
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each fluorine ion is in tetrahedron surrounded by calcium ions. The fluorite 
structure have for example chlorides of transition metals (Table 3). The 
dimension of this compounds it will be defined also in the one next sections.

The Dimension of the Wurtzite

In the structure of wurtzite every atom of one component has a tetrahedral 
environment of the atoms of the other component. This results to arrangement 
of tetrahedrons with center so that vertex one tetrahedron is the center of 
another tetrahedron (Figure 7).

If to carry construction of atoms in Figure 7 on this principle, we obtain a 
spatial lattice, the unit cell the lattice is a convex shape it is shown in Figure 8.

This figure is the unit cell structure of the wurtzite. In Figure 8, solid lines 
represent chemical bonds of the atoms, and the dotted lines are only geometric 
sense outlining contours of the figure. We define the dimension of this figure 
by the Euler-Poincare equation (2). The number of vertices of this figure is 
equal to 14, i.e., f

0
14= . The number of edges is equal to 29, i.e., f

1
29= . 

The number of two-dimensional faces is the sum of the number of triangles 
(8) and number of quadrangles (13), i.e., f

2
21= . The number of three-

dimensional faces is equal to 6. This figures are abcghkon, gceruo, cefump, 
cdfulm, bcdklu, and all shape on Figure 8 without inner partitions, i.e., f

3
6= . 

Substituting these values f
i
,(i , , , )= 0 1 2 3  in the Euler-Poincare equation (2), 

we find that it is satisfied for n = 4.

Table 3. Binary compounds of the transition elements

N Type of the 
Structure

The Compounds Transition Elements With This Type 
of the Structure

1 rock salt MnO, FeO, CoO, NiO, CdO

2 Adamantane Ag2O, Cu2O, ZnS, CuCl

3 titanium chloride TiCl

4 Rutile MnF2, CoF2, NiF2, CuF2, ZnF2, MnO2, MoO2

5 Wurtzite ZnO, CdO, ZnS

6 Fluorite CdF2, MnCl2, FeCl2, CoCl2, NiCl2, ZnCl2, CdCl2, Cu2S
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Figure 7. The tetrahedral coordination atoms in wurtzite
A white circle is atom of one component. A black circle is atom of other component

Figure 8. The unit cell of the wurtzite
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14 – 29 + 21 – 6 = 0. 

Thus, the dimension of polytope on Figure 8 is equal to 4, i.e., the unit 
cell structure of the wurtzite has dimension 4.

The Dimension of the Fluorite

On example of compound MnCl2 we look at the structure of fluorite. Isolate 
magnesium atoms lying at the centers of the cube faces ( ), and chlorine atoms 
(▲), forming a smaller cube inside the bigger cube, which are located at the 
vertices of magnesium atoms (Figure 9).

From Figure 9 it follows that the number of vertices is 14, i.e. f
0
14= , the 

number of edges is 36, i.e. f
1
36= , the number of flat faces is sum from 

number of triangles (24) and number of rectangles (6) (smaller cube faces), 
i.e. f

2
30= . The number three dimension shape to sum up from smaller cube 

(1), pyramids on its faces (6) and figure (22) without inner parts (1), i.e. f
3
8=  

Figure 9. The unit cell of the fluorite
- magnesium atom, ▲ - chlorine atom
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8. Substituting these values f
i
,(i , , , )= 0 1 2 3  in the equation (2), we find that 

it is satisfied for n = 4

14 – 36 + 30 – 8 = 0. 

Thus, the dimension of polytope on Figure 9 is equal to 4, i.e. the unit cell 
structure of the fluorite has dimension 4. 
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KEY TERMS AND DEFINITIONS

Anomalous Elements: Transitional chemical elements in which the filling 
of the orbitals by electrons occurs with a violation of the experimental series 
of an increase in the energy of orbitals.

Established Rule Is the Filling by Electrons of the Orbitals of Anomalous 
d-Elements: in an anomalous d-elements is transition of one or two electrons 
from the ns-orbital on the (n – 2) d-orbital with higher energy.

Established Rule Is the Filling by Electrons of the Orbitals of Anomalous 
f-Elements: In an anomalous f-elements is transition of one electron with 
the nf-orbital on the (n + 1) d-orbital with higher energy.
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Geometrical Image of a Chemical Compound: The geometrical image 
of a chemical compound (molecule) is a convex polytope, at the vertices of 
which atoms (or functional groups) are located. The edges of the polytope 
connecting the vertices correspond to the chemical bonds of the compound. 
The part of edges only carry a geometric function. They are necessary to give 
the molecule the image of a convex geometric figure. The dimension of the 
polytope is determined by the Euler-Poincare equation.

Magnetic Quantum Number m
l
: Characterizes of the orbital orientation 

in space.
Orbital Quantum Number l: Characterizes of the form of the electron 

cloud (orbital or subshell).
Principal Quantum Number n: Characterizes of the energy level (shell) 

of electrons in atom.
Spin Quantum Number m

s
: Characterizes of the spin orientation.

Transitional Elements: Chemical elements in which electrons fill d- and 
f-orbitals of an atom (d- and f-elements).
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ABSTRACT

There are considered chemical compounds in which s- and p-elements 
participate, i.e., elements in which electrons fill with the s- and p-orbitals of 
atoms. Many of these elements, showing increased chemical activity, play 
an important role in the vital activity of living organisms and are included in 
drugs for the treatment of living organisms. The structures of these compounds 
have been determined and classified, and the molecules of these compounds 
have been shown to have both rule of higher dimensionality (4, 5, 6, and 
more). This can be of significant importance for nanomedicine.

THE STRUCTURE AND HIGHER 
DIMENSION OF ALKALINE METALS

In the vast majority of compounds involving alkali metals (elements of first 
group of the Mendeleev table) the chemical bond is preferably ionic. Alkali 
metals have an external electron shellns1 . They easily give bake one electron 
exhibiting a degree of oxidation +1. Salts of alkali metals in the condensed 
state usually have a cubic lattice, forming a structure of type rock salt structure 
(Chapter 1, Table 3).

The Structure and Higher 
Dimension of Molecules 

s- and p-Elements
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However, Oganov and his co-workers have found that under high pressure 
the structure of many compounds, including alkali metal compounds, acquires 
new unexpected properties (Zhung et al., 2013; Zhou et al., 2012; Zhu, 
Oganov & Lyakhov, 2013). In particular, it is shown that the structure of the 
sodium-chlorine compounds varies significantly (Zhung at all, 2013). The 
elementary cell of this structure is a cube with sodium atoms at its vertices, 
and an icosahedron with a center with chlorine atoms at its vertices is located 
inside the cube. This compound is denoted Pm3 – NaClx.

Theorem 1 (Zhizhin, 2016a)

The dimension of the unit cell Pm3 – NaClx is 5.

Proof

In the proof of Theorem 1 we shell use equation Euler- Poincare (2) in 
Chapter 1.

Figure 1 shows the structure of this compound, where sodium atoms are 
located at the vertices of the cube 13 -19, and chlorine atoms are located at 
the vertices 1 - 12, 21.

Note that the icosahedron with the center already has dimension 4. Indeed, 
the icosahedron has 12 vertices, 30 edges, 20 flat faces. If you enter a center 
in the icosahedron (point 21), then f f

0 1
13 42= =, , f

2
 = 50 for it. In addition, 

20 tetrahedrons are added, taking into account that they are located in the 
icosahedron, we obtain f

3
21= . Substituting the obtained values of f

i
 into 

equation (2) of Chapter 1, we find that it is satisfied for n = 4

13 - 42 + 50 - 21 = 0. 

This proves that the icosahedron with the center has dimension 4.
From it follows that the dimension of the polytope with 21 vertex in Figure 

1 is greater than 4. To determine this dimension, let us calculate the number 
of elements of different dimension entering into this polytope. Thus, for this 
polytope f

0
21= . The number of edges is the sum of the number of edges of 

the icosahedron (30), the number of edges issuing from the center to the 
vertices of the icosahedron (12), the number of edges of a cube (12), the 
number of edges issuing from the vertices of the cube to the vertices of the 
icosahedron (24). Hence, f

1
78= .

 EBSCOhost - printed on 2/14/2023 7:14 AM via . All use subject to https://www.ebsco.com/terms-of-use



25

The Structure and Higher Dimension of Molecules s- and p-Elements

Two-dimensional elements include trapezoids: 13-8-7-14, 1-3-17-16, 1-3-
18-20, 19-8-7-15, 11-12-18-17, 11-12- 19-13, 6-5-20-16, 5-6-14-15, 18-10-
9-13, 9-10-20-14, 17-2-4-19, 2-4-15- 16. Total number of trapezoids is 12.

In the number of two-dimensional elements includes also triangles:

1.  The triangles of the outer surface of the icosahedron (20);
2.  The triangles inside the icosahedron ((20 ∙ 3) / 2 = 30);
3.  Triangles of tetrahedrons resting on the faces of icosahedrons (with the 

exception of the icosahedron faces themselves) having common vertices 
with a cube: 13-8-9, 13-11-9, 13-8-11, 14-7-9, 14-7 -6, 14-9-6, 15-4-5, 
15-4-7, 15-5-7, 19-4-8, 19-12-8, 19-12-4, 17-1-12, 17-1-2, 17-12-2, 
16-3-2, 16-2-5, 16-3-5, 18-1-11, 18-1-10, 18-10-11, 20 -3-10, 20-3-6, 
20-6-10; all these triangles is 24;

4.  Triangles of pyramids resting on the cube’s faces 13-1-18, 17-12-19, 
18-17-1, 20-3-16, 16-5-15, 20-6-14, 19-8 -13, 14-7-15, 18-10-20, 14-
7-15, 17-2-16, 19-4-1; all of these triangles is 12.

Figure 1. The structure of compound sodium and chlorine at high pressure
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5.  The total number of triangles is 20 + 30 + 24 + 12 = 86.

Also in the number of two-dimensional elements includes 6 squares of 
cube faces. The total number of two-dimensional elements is f

2
 = 12 + 86 

+ 6 = 104.
In the number of the three-dimensional elements includes:

• 1 cube,
• 1 icosahedron,
• 20 tetrahedrons in the icosahedron,
• 8 tetrahedrons at the tops of the cube 17-1-2-12, 16-2-3-5, 15-4-5-7, 

14-6-7- 9, 13-11-8-9, 18-1-12-11, 19-12-4-8, 20-3-6-10;
• 6 pyramids with a base face of the cube 13-11-18-19-12-17, 19-17-

4-2-15-16, 16-15-5-6-14-20,13-18-10-9- 20-14, 18-17-1-3-20-16, 
13-19-8-7-14-15;

• 12 pyramids on the trapezes of these pyramids 18-17-11-12-1, 13-18-
11-10-9, 11-12-13-19-8, 20-14-10-9-6, 17-16- 1-3-2, 18-20-1-3-10, 
13-14-9-8-7, 19-15-8-7-4, 14-15-7-6-5, 20-16- 6-5-3, 16-15-5-2-4, 
19-17-12-2-4.

The total number of three-dimensional elements is f
3
 = 2 + 20 + 8 + 6 

+ 12 = 48.
The four-dimensional element, as already proved, is an icosahedron with 

a center. There are other four-dimensional elements. The second such element 
is the polytope in Figure 1 after removing the center. Indeed, in this case f

0
 

= 21-1 = 20, f
1
 = 78-12 = 66, f

2
 = 104-30 = 74, f

3
= 48-20 = 28. Substituting 

these values of f
i
 into equation (2) of Chapter 1, we find that it is satisfied 

for n = 4

20 - 66 + 74 - 28 = 0. 

This proves that the figure in Figure 1 after removing the center is a 
polytope of dimension 4. We can find three more elements of dimension 4 
in Figure 1 if we separate the prism connections on the parallel faces of the 
cube: upper and lower, right and left, front and back. Since these constructions 
are compatible with a rotation by 900, we prove the desired equality for only 
one of these constructions, for example, for the upper and lower faces of the 
cube. This construction is shown in Figure 2.
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In it the number of vertices is 16, i. е. f
0
 = 16. The number of edges consists 

of the number of edges of the cube (12); the number of edges of the cube in 
the upper part (without the edges of the cube) is 17-2, 2-16, 17-1, 1-2, 2-3, 
1-3, 3-20, 3-10. 1-10, 1-18, 18-10, 10-20, 3-16, i.e. 13 edges; the same number 
of edges (13) in the lower part; 2 connecting (vertical) edges 2-4, 10-9. Thus, 
the total number of edges is f

1
 = 40.

In the number of two-dimensional elements includes:

• 6 faces of the cube;
• 10 facets of the pyramids in the upper part of the structure and 2 

triangles from the pyramid with a crouching upper bound of the cube, 
i.e. 12 two-dimensional elements;

• 12 two-dimensional elements in the lower part of the structure;
• 2 vertical trapezes at the back wall of the cube and 2 vertical trapezes 

near the front wall of the cube.

Figure 2. Four-dimensional part of the unit cell of the compound sodium and 
chlorine at high pressure
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Thus, the total number of two-dimensional elements is f2 = 34.
In the number of the three-dimensional elements in Figure 2 includes:

• 2 pyramids with a trapezoidal base and one pyramid with a cube face 
at the top of the structure;

• 3 the same pyramids in the lower part of the structure;
• 2 pyramids with the bases of the back and front walls of the cube;
• 1 cube;
• the figure left from the cube after deducting all the pyramids from it.

Thus, the total number of three-dimensional elements f3 = 10. Substituting 
the values   of fi, determined for the polytope in Figure 2, into equation (2) of 
Chapter 1, we find that it is satisfied for n = 4

16 - 40 + 34 - 10 = 0. 

This proves that the construction in Figure 2 has dimension 4. Taking into 
account the existence of two more similar constructions and the impossibility of 
the existence of other similar constructions, we conclude that for the polytope 
in Figure 1 f4 = 5. Substituting the values   of fi, determined for the polytope in 
Figure 1, into equation (2) of Chapter 1, we find that it is satisfied for n = 5

21 - 78 + 104 - 48 + 5 = 2. 

This proves that the polytope in Figure 1 has dimension 5 and it proves 
the theorem 1.

It should be expected that other alkali metal salts at high pressure have 
structures with elementary cells of higher dimension. Besides atoms of alkali 
metals enters into complex compounds with many of different elements. 
We shall see later that these compounds also have higher dimensionality at 
normal pressures.

THE STRUCTURE AND HIGHER DIMENSION 
OF COMPOUNDS ELEMENTS OF SECOND 
GROUP OF THE MENDELEEV TABLE

The elements of the second group of the periodic table have on the outer shell 
two of the valence electrons and can form linear molecules. For example, 
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beryllium forms linear molecules with halogens BeF2, BeCl2, BeBr2, BeI2. 
However, in the vast majority of its compounds, beryllium manifests around 
itself tetrahedral coordination. An important example of such a compound 
is beryllium oxide. This compound is a valuable optical material. It is used 
in nuclear power engineering, microelectronics, and laser technology. The 
structure of this compound is a wurtzite structure. It shows tetrahedral 
coordination both around the beryllium atom and around the oxygen atom. 
The dimension of the wurtzite molecule was determined in Chapter 1, Figure 
8. It turned out to be equal to 4. Thus, the dimension of the beryllium oxide 
molecule is 4. For beryllium oxide, atoms of beryllium are located at the 
vertices b, c, e, h, l, m, o of the polytope in Chapter 1, Figure 8, and oxygen 
atoms are located at the vertices a, d, g, k, p, f. The nature of the chemical 
bond in beryllium oxide is still open. Estimates of the relative contribution 
of the ionic and covalent bonds are contradictory (Sholl & Walter, 1969; 
Hidaka, 1976). In any case, it is impossible to explain the observed structure 
of beryllium oxide by any distribution of electrons, divided or unshared 
electron pairs over elementary quantum cells of the adopted system of 
electronic orbitals. However, this also applies to compounds of the wurtzite 
type, discussed in Chapter 1.

When the beryllium oxide is an extended crystalline body, then in order 
to build a model of such a body, the polytope in Chapter 1, Figure 8 need 
to multiply by an edge and to obtain a polytopic prismedron of dimension 
5. This prismahedron is a stereohedron and it translation it is possible to fill 
the space without gaps (see Chapter 7).

In crystalline beryllium fluoride, the linearity of the combination of 
beryllium atoms with fluorine atoms and the tetrahedral coordination of 
beryllium atoms with one another surprisingly are combined. In this case, 
a structure is formed topologically equivalent to the adamantane molecule, 
which includes 10 carbon atoms (see Figure 15). The difference from the 
adamantane molecule is the linear arrangement between the beryllium 
atoms of the fluorine atoms (Figure 3). Since the adamantane molecule has 
a dimensionality of 4 (Zhizhin, 2014a), the unit cell dimension in crystalline 
beryllium fluoride is also 4.

The second element in the second group of the periodic table after 
beryllium is the element of magnesium. Like beryllium, in accordance with 
the arrangement in the second group, it has two valence s - electrons on 
the outer layer. However, in contrast to beryllium, it has a completely filled 
pre-extrinsic layer of electrons. This layer includes two s - electrons and 
six p -electrons. These four electron pairs, starting from each other, create 
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tetrahedral coordination around the magnesium atom. Taking vacant quantum 
cells of ligands, they increase the possible value of valence of magnesium 
to six. This gives magnesium more chemical activity especially important 
for living organisms. It participates in all metabolic processes in living 
organisms. Magnesium is one of the basic elements of the cell. It stimulates 
the work of enzymes that break down proteins and other nutrients. Magnesium 
participates in the harmonious work of all body systems, especially the central 
and peripheral nervous system, affects the growth of estrogen hormones and 
blood coagulability.

Even for the chemical bonds of magnesium with valence 2, compounds 
of higher dimension are formed. Consider a molecule of bis (neopentyl) 
magnesium Mg(C5H11)2 (Gillespie & Hargittai,, 1991). Magnesium in this 
molecule exhibits a valence of 2. In each group С5H11, the carbon atoms form 
the geometric form of a tetrahedron centered. This already gives the dimension 
of this form equal to 4. In addition, around each carbon atom there is also a 
tetrahedral coordination of other atoms (hydrogen and carbon). Each group 
C5H11 can be represented in the form of a tetrahedron with a center in which 
its vertices contain functional groups CH3, and in the fourth (attached to the 
magnesium atom) is a functional group CH2. At the center of the tetrahedron 
is a carbon atom. Then the bis (neopentyl) magnesium molecule has the form 

Figure 3. The structure of crystalline beryllium fluoride
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of two tetrahedrons with a center connected to each other by a magnesium 
atom (Figure 4). Functional groups CH3 are located in the vertices 
a c d a c d
1 1 1 2 2 2
, , , , , ; functional groups CH2 are located in the vertices b b

1 2
, ; at 

the points o o
1 2
,  are carbon atoms; at the point o there is a magnesium atom.

Valentine bonds are indicated in Figure 4 with a brown color. The remaining 
edges (black) serve to form a convex figure (polytope), the dimension of 
which must be established.

Theorem 2

The dimension of bis(neopentyl) magnesium molecule equal to 6.

Proof

For proof of theorem 2 we noted that polytope on Figure 4 is 5-cross-polytope 
with centrum (Figure 5).

Comparing Figures 4 and 5, we see that these figures are topologically 
equivalent, that is, in Figure 5, the same vertices are shown as in Figure 4. 
Moreover, each of the corresponding vertices in Figure 5 is incidental to the 
number of edges as in Figure 4 and the connection of vertices by edges in 

Figure 4. The structure of bis(neopentyl) magnesium molecule
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Figure 5 is topologically the same as in Figure 4. If we denote in Figure 5 
the edges issuing from vertex O to other vertices in green, the remaining 
figure, as can be seen, is the 5-cross - polytope, given in the monograph by 
Zhizhin, (2014b). In addition, the vertex O is the center of 5 - cross-polytope. 
As follows from Zhizhin (2014b) 5 cross-polytope has 10 vertices( )f

0
10= , 

40 edges ( f
1
= 40), 80 triangular faces ( f

2
= 80), 80 tetrahedrons ( f

3
= 80), 

32 4-cross-politopes ( f
4
= 32). The introduction of the center into the 5-cross-

polytop adds, according to Figure 5, 10 edges 

(oa ob oc od oo ob oa oc od oo
1 1 1 1 1 2 2 2 2 2
, , , , , , , , , ),  

24 triangular faces 

{
o b o b a o b oa b od b oc b oc c d o c od c oa c oo
1 1 1 1 1 2 1 2 1 2 1 1 2 2 2 1 2 2 2
, , , , , , , , ,

22 2 2 2 2 2 2 2 2 2 2

2 2 2 1 2 1 1 1

, , , , , ,

, , , ,

o d o o oa o ob b a o b od

b oc b oc b d o c od c
11 2 1 2 1 1 1 1 1 1
od c oa c oo a o o o d o, , , ,

}, 

28 tetrahedrons

(b od a b c oo
1 2 2 1 1 1

, , b d oa b a d o b od a b oa c b od c c oa d
1 1 1 1 1 2 1 1 2 1 2 2 1 1 1 2 1 1

, , , , , , c b oo
2 2 2

,  

Figure 5. The 5 –cross-polytope with centrum
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c a od c a d o c oa d c od b c oa b c oa d c a od c
2 2 2 2 1 2 2 2 1 2 1 1 2 2 2 1 2 2 1 1 1 1

, , , , , , , dd a o c oa d c od b c od b
1 2 1 1 2 1 2 2 1 1 1
, , , ,  

o a d o b od a b d oa b a d o b od a b oa c b od c o
1 1 1 2 1 1 2 2 2 2 2 1 2 2 1 2 1 1 2 2 2 2

, , , , , , , dd a o
2 2

), 

18 4-siplexes

(b a od c b c d a o b o a oc b od o c b od a o c d oa b
1 1 2 2 1 1 1 1 1 1 1 2 1 2 2 2 1 2 2 2 1 1 2

, , , , ,
22 1 1 1 2
, ,c o d b o  

c oa o b c oo d o c b a d o c o d ob c oa o b c oa d o
1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 1 2 1 1 1 2 1 1

, , , , ,
11 2 2 1 1 2 1 1 1
, , ,b a od c b od o c  

b od a o o c od a b
2 1 1 1 2 2 2 2 2

, ), 

6 5-siplexes

(o b a od c c od a o b c od a o b b oa o d c c od a o b
1 1 1 1 1 2 2 2 2 2 1 2 2 2 2 2 1 1 1 1 2 1 1 1

, , , ,
11 1 2 2 2 2
,b oa o d c ). 

Adding the obtained quantities of geometric figures of different dimensions 
connected with the center of the 5-cross polytope to the corresponding 
numbers of figures not connected with the center of the 5-cross polytope, we 
obtain the total number of geometric figures of different dimensions in the 
5-cross polytope with center: f f f f

0 1 2 3
11 50 104 108= = = =, , , ,  f f

4 5
50 7= =, .  

Substituting these values into equation (2) of Chapter 1, we find that the 
Euler-Poincare equation is satisfied for n = 6

11 – 50 + 104 – 108 + 50 -7 =0. 

This proves that a 5-cross-polytope with center has dimension 6. Theorem 
2 is proved.

It should be noted that the above evidence accurately lists (in view of the 
work Zhizhin, 2014b) all the 108 three-dimensional figures included in the 
6-dimensional 5-cross polytope with the center. This is significantly different 
from the proof of the existence of 4-dimensional 100-cell and 600-cell cells 
in Coxeter’s work (Coxeter, 1963), for which the direct enumeration of three-
dimensional figures included in these polytopes has not yet been received. 
Therefore, the question of proving the existence of these 4-dimensional 
polytopes remains open.
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If the electron pairs of magnesium at the second energy level enter into a 
chemical bond, then its valence is more than two. For example, in Grignard 
reagent the magnesium valence is 4 and in the vicinity of magnesium atom 
there is tetrahedral coordination. While the nearest neighborhood of the 
magnesium atom has a dimension of 4, and with the account of the attached 
groups of atoms this dimension is even higher. An interesting example is 
the complex magnesium ion Mg(OAsMe3)5

2+, Me = CH3. In this compound, 
magnesium exhibits a valence of 5. In this case, the nearest environment of 
magnesium is of dimension 5. Indeed, the nearest environment of magnesium 
by oxygen atoms has the form of a 4-simplex with a center in the magnesium 
atom (Figure 6). At the vertices a, b, c, d, e of the polytope, in Figure 6, there 
are oxygen atoms, in the vertex o there is a magnesium atom. The valence 
bonds are indicated in Figure 6 with a brown color, the other edges (black) 
are needed to create a convex figure in space. The vertices together with the 
connecting ribs form a 4-simplex. The addition of a magnesium atom and 
valence bonds converts this polytope into a 4-simplex with a center.

In Figure 6 can to indicate 6 vertices ( f
0
 = 6); 15 edges ( f

1
 = 15);

20 trigonal faces (abc, aeb, abo, abd, bcd, bco, bce, aeo, aed, aec, edo, edc, 
edb, dco, dca), f

2
= 20; 

15 tetrahedrons (abed, abec, abcd, dbce, aecd, obcd, oecd, aoed, aoeb, aobc, 
boed, coae, doeb, eobc, aocd), f

3
 = 15; 

Figure 6. The 4 –simplex with centrum
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6 4-simplexes (abcde, abedo, abeco, abcdo,dbceo, aecdo), f
4
 = 6. 

Substituting values f
i
 into equation (2) of Chapter 1, we find that the 

Euler-Poincare equation is satisfied for n = 5

6 – 15 + 20 – 15 + 6 = 2.  

This proves that a 4-simplex with center has dimension 5. If we take into 
account the presence of other atoms in the ion Mg(OAsMe3)5

2+, then its 
dimension will be even higher.

Such compounds can form other alkaline-earth elements, i. e. calcium 
and barium.

THE STRUCTURE AND HIGHER DIMENSION 
OF COMPOUND ELEMENTS OF THE GROUP 
THREE (a) OF THE MENDELEEV TABLE

The first element of group 3a of the element table is boron. Like all elements 
of this group, it has two s-electrons and one p-electron on the outer layer. 
Boron does not have vacant d-and f-orbitals, and there are not several electron 
pairs on the pre-existing layer, as, for example, for the atoms of alkaline-earth 
elements. However, the property of the collective interaction of electron 
pairs is also manifested here, but in a slightly different way compared to 
magnesium. Here pairs of electrons of the second energy level of several boron 
atoms interact, creating (repelling from each other) tetrahedral coordination 
of boron atoms. Therefore, in the compound B4Cl4, the boron atom has an 
effective valence of 4, and not three, which would correspond to the group 
number (Figure 7).

At the vertices g, h, f, e in Figure 7 boron atoms are located, and at the 
vertices a, b, c, d chlorine atoms arranged.

Theorem 3

The B4Cl4 molecule has dimension 4.
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Proof

In Figure 7 there is eight vertices, f
0
 = 8. The number of edges is 16 (ab, bc, 

cd, ad, bd, ac, gh, hf,ef, he, gf, eg, bh, fc, ed, ag), f
1
 = 16. The number of 

elements of dimension 2 is 14 (triangles abd, bcd, abc, acd, ghe, hef, ghf, 
gfe and quadrangles aghb,aged, hbed, hbfc, efcd, hfbc), f

2
 = 14. The number 

of elements of dimension 3 is 6 (tetrahedrons abcd, ghef and prismatoides 
abhged, hbedbfc, aghbfc, gefadc), f

3
 = 6. On Figure 7 the edges correspondent 

of chemical bounds is indicated brown, remain edges (black) it is need for 
creating convex body. Substituting the values of the number of elements of 
different dimension in the equation Euler –Poincare (2) of Chapter 1, we 
obtain

8 – 16 + 14 - 6 = 0. 

We find that it holds for n = 4. This proves that the figure who projection 
is shown in Figure 7 there is polytope of dimension 4. This proves theorem 3.

Due to the interaction of electron pairs of several atoms, formation of 
other compounds is also possible. For example, in Figure 8. The image of 

Figure 7. The structure of the B4Cl4 molecule
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the B6Сl6 molecule is shown. Here, also, the edges corresponding to the 
chemical bonds is indicated in brown, the remaining edges are necessary for 
obtaining a convex figure.

In the compound, both the boron atoms and the chlorine atoms have 
octahedral coordination. The effective valence of boron in this compound is 
5. In the polytope in Figure 8, boron atoms are located at the vertices 
a b c d e f
1 1 1 1 1 1
, , , , ,  and hydrogen atoms are located at the verticesa b c d e f

2 2 2 2 2 2
, , , , , .

Theorem 4

The B6Cl6 molecule has dimension 4.

Proof

In this case the number of elements of zero dimension is f
0
 = 12. The number 

of elements of dimension one is f
1
 = 12+ 12+ 6 = 30. The number of elements 

of dimension 2 is sum of the number small triangles 8 and big triangles 8, 

Figure 8. The structure of the B6Cl6 molecule
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add 12 quadrangles, i. e. f
2
 = 28. The number of elements of dimension 3 is 

sum two octahedrons and 8 prism, i.e. f
3
 = 10. Substituting the values of 

numbers of elements of different dimensions in the equation (2) of Chapter 
1, we obtain

12 – 30 + 28 – 10 = 0. 

We find that it holds for n = 4. This proves that the figure 8 is polytope 
of dimension 4. This proves theorem 4.

Elements Al, Ga, In and Tl have vacant d - and f - orbitals and tend to 
supplement their valence shell to 6 electron pairs, and in several compounds 
In and Tl have more than 6 electron pairs. These elements in many compounds 
exhibit tetrahedral coordination in the vicinity of the atom. Taking into account 
the possible addition of other elements to tetrahedral coordination, complex 
compounds with high dimensionality can arise. For example, aluminum (a 
biogenic element) forms a cyclic compound [(CH3)2AlF]4 (Figure 9).

If we form a convex figure from Figure 9, we get the polytope shown in 
Figure 10. At the vertices of a a a a

1 4 7 10
, , ,  fluorine atoms are located. A ⋅ t the 

verticesa a a a
13 14 15 16
, , ,  aluminum atoms are located. Functional groups CH3 

are located in thea a a a a a a a
2 3 5 6 8 9 11 12
, , , , , , ,  vertices.

Theorem 5

The polytope of cyclic compound [(CH3)2AlF]4 has dimension 5.

Figure 9. A cyclic compound [(CH3)2AlF]4.
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Proof

The polytope in Figure 10 has 16 vertices, f
0
 = 16; 52 edges, f

1
 = 52. In 

addition, it has 4 polytopes of dimension 4 each (tetrahedrons with a center) 
a a a a a a a a a a
1 2 3 4 14 4 5 6 7 15

, ,  a a a a a a a a a
7 8 9 10 16 10 11 12 13

, . Each tetrahedron with a center 
has 10 triangular faces. This gives 40 triangular faces in the polytope 10. In 
addition, three triangular faces are formed at the vertices a a a a

1 4 7 10
, , ,  with 

horizontal and vertical sides. This gives another 4 3 = 12 triangles. There 
are 4 more rectangular faces 

(a a a a a a a a a a a a a a a a
13 14 15 16 6 2 8 12 11 5 3 9 1 7 10 4

, , , )  

and 12 trapezoids 

(a a a a a a a a a a a a a a a a a a a a a a a
3 5 15 14 3 2 5 6 15 2 6 14 6 8 15 16 6 8 5 9 15 5 9

, , , , , aa
16

).  

Figure 10. The convex polytope of cyclic compound [(CH3)2AlF]4.
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Thus, the total number of two-dimensional faces 68, f
2
 = 68. Each tetrahedron 

with a center has 5 tetrahedrons. Therefore, the total number of tetrahedrons 
in Figure 10 is 5 ∙ 4 = 20. Each of the vertices a a a a

3 7 4 10
, , ,  is the vertex of 

the three pyramids. The total number of these pyramids is 12: 

a a a a a a a a a a a a a a a a a a a a
5 15 3 4 14 6 2 3 4 5 4 2 6 15 14 1 2 3 12 11

, , , , a a a a a
1 14 3 11 13

,  

a a a a a a a a a a a a a a a a a a a a a a
10 12 11 8 9 10 12 13 8 16 10 11 13 16 9 7 8 9 5 6 7

, , , ,
99 16 5 15
a a a , a a a a a

7 8 16 6 15
.  

There are four triangular prisms: 

a a a a a a a a a a a a a a a a a a a a a a a
2 3 14 5 6 15 15 5 6 8 9 16 11 12 13 8 9 16 2 3 14 11

, , ,
112 13
a ,  

and six quadrangular prisms: 

a a a a a a a a a a a a a a a a a a a a a
13 14 15 16 3 5 9 11 13 14 15 16 2 6 8 12 13 14 15 16 1

, , aa a a
4 7 10

,  

a a a a a a a a a a a a a a a a a a a a a a a a
2 6 8 12 3 5 9 11 1 2 4 6 7 8 10 12 1 3 4 5 7 9 10 11

, , .  

Than the total number of three-dimensional figures is 42, f
3
 = 42.

In addition to the 4 tetrahedrons mentioned with the center, as four-
dimensional figures, there are another four-dimensional figures. In particular, 
this is a figure (F), shown in Figure 11. Indeed, this figure has 12 vertices, 
(F) = 12; 24 edges,(F) = 24; 19 two-dimensional faces,(F) = 19; and 7 
three-dimensional figures, (F) = 7. Substituting these values into the Euler 
- Poincaré equation (2) of Chapter 1, we obtain that it is satisfied for n = 4

12 – 24 + 19 – 7 = 0. 

This proofs that polytope F has dimension 4.
Four identical polytopes of dimension 4 exist in a neighborhood of each 

of the verticesa a a a
1 4 7 10
, , , .  One of these polytopes (L) is depicted in Figure 

12. It has 12 vertices, f
0
 (F) = 12; 24 edges, f

1
(F) = 24; 19 two-dimensional 

faces, f
2
(F) = 19; and 7 three-dimensional figures, f

3
 (F) = 7. Substituting 

these values into the Euler-Poincare equation (2) of Chapter 1, we obtain
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7 – 15 + 4 – 6 = 0, 

i.e. the equation (2) hold for n = 4 and all the polytopes L has dimension 4.
Three more topologically equivalent polytopes of dimension 4 can be 

distinguished from Figure 10. Each of these polytopes consists of a rectangular 
prism and four tetrahedrons connected to each other in a cycle along the 
vertices of . These are polytopes

. One of them (polytope K) is shown in Figure 13.
The K polytope has 12 vertices, f

0
(K) = 12; 32 edges, f

1
(K) = 32; 31 

two-dimensional faces, f
2
 (K) = 31; and 11 3D facets, f

3
(K) = 11.Substituting 

these values into the Euler-Poincare equation (2) of Chapter 1, we obtain

12 – 32 + 31 – 11 = 0, 

i. e. the equation (2) of Chapter 1 hold for n = 4 and all the polytopes K 
has dimension 4.

Thus, the polytope on Figure 10 has 11 polytopes of dimension 4. Therefore, 
for polytope on Figure 10 the Euler-Poincare equation (2) has face

16 – 52 + 68 – 42 + 11 = 2, 

Figure 11. The 4 – dimension polytope F included in Figure 10
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i.e. it hold for n = 5. This proofs theorem 5.

THE STRUCTURE AND HIGHER DIMENSION 
OF COMPOUNDS ELEMENTS OF THE GROUPS 
4(a) – 7(a) OF THE MENDELEEV TABLE

The first element of group 4a of the Mendeleev table is carbon. This is the 
most important element on Earth. Any living organism consists largely of 
carbon. Carbon is the basis of all organic substances. In nature, carbon is found 
in the form of various minerals, the most important of which is diamond and 
graphite. Carbon is actively involved in chemical reactions, forming various 
compounds. There are many different allotropic forms of carbon. Recently, 
carbon is of considerable interest as the basis of nanomaterials (Zhizhin & 
Diudea, 2016b; Zhizhin, Khalaj & Diudea, 2016c). One of the molecular forms 
of carbon forming nanomaterials is the adamantane molecule. As a chemical 
compound, adamantine was discovered in 1933 (Landa & Machacek, 1933). 

Figure 12. The 4 – dimension polytope L included in Figure 10
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Adamantane molecule consists of 10 carbon atoms, repeating disposition 
of carbon atoms in the diamond crystal lattice, and 16 hydrogen atoms 
connected to carbon atoms by their valence links unsaturated with carbon 
atoms. Adamantane discovery served as an impulse for the development of 
organic polyhedranes chemistry. Derivatives of adamantane (e.g. amantadine, 
memantine, rimantadine, tromantadine) have found practical application in 
medicine as pharmaceuticals of different biological activity and purpose (as 
antiviral, antispasmodic, anti-Parkinson drugs, etc.). All these drugs have 
the same structural group of carbon atoms, which is peculiar to adamantane, 
only structural groups connected to carbon atoms change. Among inorganic 
and organoelemental compounds, there are many structural analogs of 
adamantane molecule, such as phosphorus oxide, urotropine and others. In 
2005, a silicon analogue of adamantane has been synthesized (Fischer et al. 
2005). In scientific literature (see Bauschlicher et al. 2007; Dahl et al. 2003) 
adamantane is usually depicted as it is shown in Figure 14.

Figure 13. The 4 – dimension polytope K included in Figure 10
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The adamantane structure is a common one. As a rule, hydrogen atoms are 
not depicted. Speaking hereinafter about adamantane molecule, we’ll often 
keep in mind exactly 10 carbon atoms of adamantane molecule, although, 
strictly speaking, it is only a part of it. However, Figure 14 gives us little 
information and does not reflect the main features of spatial arrangement of 
atoms.

Theorem 6 (Zhizhin, 2014a)

The adamantane molecule is a convex polytope in the 4D space.

Proof

Let’s construct an adamantane cell taking into consideration that 6 from 10 
carbon atoms of adamantane are located in the centers of flat faces of the 
cube α α α α α α

2 6 3 4 8 9
, , , , , .  Each of the remaining four carbon atoms inside the 

cubeα α α α
1 5 7 10
, , , is equidistant from the three nearest centers of the cube flat 

faces and relevant to the cubeβ β
1 8
, ...,  vertices common to these faces (Figure 

15).
On Figure 15 except for the edges of the cube (thin dashed line) are 

emerging in the construction of cell molecules lines of different kinds. Solid 

Figure 14. Schema of the adamantane molecule
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thick lines represent valence bonds between the carbon atoms; at three such 
links from each α α α α

1 5 7 10
, , ,  located inside β β

1 8
, ..., cube. The fourth 

connection from each of these carbon atoms is directed toward the vertices 
of the cube in which in the case of diamond carbon atoms are also located. 
These links are indicated in Figure 15 by thick dotted lines to mark the location 
of these connections is adamantine molecule. Solid thin lines delineate the 
regular tetrahedron inscribed in a cube. Its edges are the diagonals of the 
faces of the cube. Thick bar dotted lines delineate the regular octahedron, 
passing through the atoms located in the pointsα α α α α α

2 6 3 4 8 9
, , , , , .The thin 

dash-dotted lines delineate the regular tetrahedron whose vertices coincide 
with the carbon atoms in a cubeα α α α

1 5 7 10
, , , .

By construction, the formed segments connecting the vertices of adamantane 
split into 10 families of parallel segments, each family including three parallel 
segments: (1) α α α α α α

1 2 7 6 9 10
, , ;  (2)α α α α α α

1 3 8 10 5 6
, , ;  (3) α α α α α α

3 2 5 7 8 9
, , ;  (4) 

α α α α α α
1 4 7 8 5 9
, , ;  (5) α α α α α α

4 2 6 8 5 10
, , ;  (6) α α α α α α

9 2 3 8 1 10
, , ;  (7) α α α α α α

3 4 7 10 6 9
, , ;  

Figure 15. The structure of molecule adamantane

 EBSCOhost - printed on 2/14/2023 7:14 AM via . All use subject to https://www.ebsco.com/terms-of-use



46

The Structure and Higher Dimension of Molecules s- and p-Elements

(8) α α α α α α
2 5 3 7 4 10
, , ;  (9) α α α α α α

1 5 3 6 4 9
, , ;  (10) α α α α α α

2 6 1 7 4 8
, , .  Consequently, 

the total number of segments (each of them is an edge of a polyhedron) is 
equal to 30. The length of segments is determined from the length of cube 
edges. Let’s assume that the length of cube edge is equal to 1 (one should 
enter a scale factor to receive the specific dimension of a bond length). Then 
regular tetrahedrons with the bases on the faces of octahedron and the vertices 
coinciding with cube vertices (for example tetrahedronβ α α α

1 2 3 4
) have the 

length a = 1
2

 and the radius of circles described around the tetrahedrons 

is b = 3
4

 (the points α α α α α α
2 3 4 6 8 9
, , , , ,  are in the centers of cube faces). 

Therefore, segments 2, 5, 6, 7, 9, 10 have the length a, while the segments 
1, 3, 4, 8 have the length b. Thus, the two-dimensional geometric elements 
involved in adamantane have as sides the segments with lengths a and b. One 
can define (Figure 15) that a set of two-dimensional faces belonging to 
adamantane form regular triangles with sides a, an isosceles triangle with 
the base a and two sides b, squares with sides a and rectangles with sides a 
and b. Among the regular triangles, there are 4 triangles located at the outer 
edge of adamantane (α α α α α α α α α α α α

2 3 6 2 4 9 3 4 8 6 8 9
, , , ) and 8 triangles located 

in the inner part of adamantane 

(α α α α α α α α α α α α α α α α α α α α α α α α
1 5 10 1 7 10 1 7 5 2 6 9 2 3 4 3 6 8 4 8 9 5 7 10

, , , , , , , ).  

Among the irregular triangles, there are 12 triangles located at the outer 
edge of adamantane

( ,α α α
2 1 3

α α α α α α α α α α α α α α α α α α α α α α α α
1 2 4 1 3 4 2 5 6 3 7 8 3 6 7 4 9 10 4 8 10 5 6 9

, , , , , , , ,αα α α α α α
6 7 8 8 9 10

, )  

and 6 triangles located in the inner part of adamantane 

(α α α α α α α α α α α α α α α α α α
1 4 10 2 1 5 5 6 7 1 3 7 5 9 10 7 8 10

, , , , , ). 

Thus, there are in total 30 triangles in adamantane. In the inner part of 
adamantane there are three squares with side a as three sections of the 
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octahedron (α α α α α α α α α α α α
2 4 6 8 2 3 8 9 3 4 6 9

, , ) and 12 parallelograms (Figure 15) 
with sides a and b

(α α α α α α α α α α α α α α α α α α α α α α α α α
1 3 8 10 1 2 9 10 1 4 5 9 1 4 7 8 1 3 5 6 1 2 6 7 2

, , , , , , αα α α
4 5 10

,  

α α α α α α α α α α α α α α α α α α α α
2 3 5 7 3 4 7 10 5 6 8 10 5 7 8 9 6 7 9 10

, , , , ,  

α α α α α α α α α α α α α α α α α α
7 3 2 5 7 3 4 10 5 7 8 9 6 7 9 10 9 10

, , ,  

α α α α α α α α α α α α α α α α α α
7 3 2 5 7 3 4 10 5 7 8 9 6 7 9 10 9 10

, , , ). 

These parallelograms are rectangles, as one can prove that the planes of 
irregular triangles, resting upon the sides of specified squares, are perpendicular 
to the planes of these squares. Indeed, let’s cut up the adamantane by a plane 
passing, for example (see Figure 15), through the top α

2
 and the edges

α α α α
1 2 2 5
,  (due to the symmetry of the octahedron and tetrahedron built on 

its edges, these edges lie in the same plane). This plane cuts up irregular 
triangles α α α α α α

1 3 4 5 6 9
,  and regular trianglesα α α α α α

2 3 4 6 8 9
,  at their heights, 

passing through the middle of the edgesα α α α
3 4 6 9
,  (respectively the points

A A
1 2
, in Figure 15) and vertexα

8
. Intersection plane is presented in Figure 

16.
Let’s prove that the segments α

1 1
A  ,α

3 2
A   are perpendicular to the line

AA
1 2

. This will prove that the planes of irregular triangles are perpendicular 
to the plane of the squareα α α α

6 3 9 4
. Let us consider the triangle α α

2 3 2
A ; in it 

AA a A b a A
a

1 2 2 2 2 3

6
4 2 2

= = = =, , .α α  

Therefore

cos , sin .∠ = ∠ =α α α α
2 2 3 2 2 3

2
3

1

3
A A   

From the triangle AA
1 2 2
α , one can see that
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cos , sin .∠ = ∠ =α α
2 2 1 2 2 1

1

3

2
3

AA AA  

Consequently:

cos( ) .∠ +∠ =α α α
2 2 3 2 2 1

0A AA   

Then,α
3 2 1 2
A AA⊥ , QED. 

This also implies thatα α α α
1 3 3 6
⊥ andα α α α

5 6 3 6
⊥ , in other words the 

parallelogramα α α α
3 6 1 5

 is a rectangle. One can also prove that the remaining 
parallelograms are also rectangles. Thus, the number of squares and rectangles 
is 15 and the total number of geometric elements of dimension 2 consisting 
of adamantane is 45.

These 2D geometric elements form in adamantane 25 of 3D polyhedron 
(Figure 15): 

Figure 16. Section of adamantane
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• 5 tetrahedrons 

(α α α α α α α α α α α α α α α α α α α α
4 3 1 2 10 7 1 5 4 10 9 8 3 6 7 8 2 6 9 5

, , , , ), 

• 6 prisms 

(α α α α α α α α α α α α α α α α α α α α α α α α
3 2 1 8 9 10 6 2 1 7 9 10 3 2 5 8 9 7 3 5 1 8 9 10

, , , ,   
α α α α α α α α α α α α
5 2 6 8 4 10 5 4 1 8 9 7

, ),  

• 14 pyramids

 ( , , , ,α α α α α α α α α α α α α α α α α α α α α α α α α
4 2 1 9 11 5 2 1 9 10 4 3 1 8 10 7 3 1 8 10 4 2 3 9 88

,  
α α α α α α α α α α α α α α α α α α α α α α α α α
3 2 6 9 8 3 2 1 5 6 5 3 1 6 7 4 3 6 9 8 4 2 3 9 6

, , , , ,    
α α α α α α α α α α α α α α α α α α α α
4 3 1 7 10 4 3 7 8 10 4 5 1 9 10 4 2 1 9 5

, , ,  . 

When calculating 3D figures octahedrons as the figures consisting from 
two pyramids were not considered, because square sections of octahedron 
are involved in the formation of other 3D figures. Let’s now calculate Euler 
- Poincare’s formula (2) in Chapter 1 for the polytope P of dimension n.

As previously was defined in this case we have

f P f P f P f P
0 1 2 3

10 30 45 25( ) , ( ) , ( ) , ( ) .= = = =  

There are no elements of dimension greater than 3 inside adamantane. 
Substituting the values obtained for the number of faces of different dimension 
in Euler - Poincare’s formula, for n = 4, we obtain 10 – 30 + 45 - 25 = 0, 
i. e. Euler-Poincare’s formula for adamantane is true at n = 4. This proves 
statement of theorem 6. 

Adamantane is irregular convex polytope of dimension 4. From each 
vertex of this polytope outgoing 6 edges as in the 16-cell convex regular 
4D-polytope (Grunbaum, 1967; Zhizhin, 2014a). All two-dimensional faces 
of adamantane are simultaneously the faces of two or more three-dimensional 
figures, which indicates the closeness of adamantane as a polytope. The 
existence of the outer three-dimensional adamantane boundary consisting of 
two-dimensional faces doesn’t contradict to adamantane four-dimensionality 
if we take into account the inner structure. Just as the above-mentioned four-
dimensional 4-crosspolytope can be considered as a figure consisting of two 
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three-dimensional hexagonal pyramids applied to each other by their bases 
(Zhizhin, 2014a). Only drawing inside this figure six edges which form two 
regular triangles makes this figure a four-dimensional polytope consisting 
of 16 tetrahedrons. The outer boundary of adamantane consisting of two-
dimensional faces of the polytope is the projection of the polytope on the 
three-dimensional space, just as the outer boundary of any closed polytope 
on a two-dimensional plane is a closed circuit composed of one-dimensional 
segments.

Silicon, germanium, tin and lead also form a molecule of adamantane or 
a molecule that is topologically close to the adamantane molecule (Gillespie, 
1972). The dimension of these molecules is 4 or more than four. Phosphorus, 
antimony, arsenic and bismuth form already considered polytopes for other 
elements: a tetrahedron with a center, an octahedron with a center, an 
adamantane molecule. All these molecules have a dimensionality of 4 or higher. 
Chlorine, bromine and iodine show the greatest possible numbers of oxidation 
states, interacting with previously considered elements. The dimensions of 
these compounds are often higher than three. Halogen compounds lead to 
molecules of higher dimensionality. For example, the iodine heptafluoride 
molecule IF7 has the form of a 6-simplex with a center whose dimension 
is 7. Noble gases in conjunction with other elements form molecules with 
tetrahedral coordination of higher dimension.

In the conclusion of the chapter, we give the table of the most common of 
binary compounds with s - and p- elements, indicating the type of structures 
of the molecules they form. The dimension of these molecules was determined 
earlier in the text of the Chapter 1 and Chapter 2.

Table 1. Binary compounds of the s- and p-elements

N Type of the 
Structure

The Compounds Transition Elements With This 
Type of the Structure

1 rock salt
LiF, NaF, KF, LiCl, NaCl, KCl, RbCl, LiBr, NaBr, 
KBr, RbBr, LiI, NaI, KI, MgO, CaO, SrO, BaO, MgS, 
CaS, SrS, BaS, PbS

2 Adamantane Pb4O6, As4O6, Sb4O6, P4O10, P4O4, SiCl4, BeF2, HgS

3 titanium chloride RbF, CsF, CsCl, CsBr, CsI

4 Rutile MgF2, SnO2, PbO2

5 Wurtzite BeO, AlN

6 Fluorite
CaF2, SrF2, BaF2, RbF2, AlF8, MgCl2, CaCl2, SrCl2, 
BaCl2, PbCl2, AlCl3, SiCl4, Li2O, Na2O, K2O, Rb2O, 
Cs2O, Li2S, Na2S, K2S, Rb2S
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KEY TERMS AND DEFINITIONS

N-Cross-Polytope: The convex polytope of dimension n in which opposite 
related of centrum edges not have connection of edge.

N–Simplex: The convex polytope of dimension n in which each vertex is 
joined by edges with all remain vertices of polytope.

s- and p-Elements: The chemical elements in which is filling with electrons 
s- and p-orbitals of atoms.

Tetrahedral Coordination of Electron Pairs: The location of the 
electronic pairs of the outer and the pre-outer electron layer at the vertices 
of the tetrahedron.

The Divided Electron Pair: The binding electron pair, which 
simultaneously belongs to two atoms in the molecule.

Undivided Electron Pair: A non-bonding electron pair belonging to one 
atom in a molecule.
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ABSTRACT

New structures of biomolecules have been constructed: carbohydrates, 
proteins, nucleic acids. It is shown that glucose molecules and ribose molecules 
have dimensions of 15 and 12, respectively. The enantiomorphic forms of 
biomolecules in space of higher dimension make it possible to explain the 
experimentally observed facts of branching of chains of biomolecules in one 
of the enantiomorphic forms and the absence of chain branching in another 
enantiomorphic form. The enantiomorphic forms of the tartaric acid molecule 
in a space of higher dimension reveal the cause of the reversal in different 
directions of the polarization plane of light in two opposite forms.

FROM MULTIDIMENSIONAL PHASE 
SPACES OF DYNAMICAL SYSTEM TO 
MULTIDIMENSIONALITY OF BIOMOLECULES

The author has for many years studied the phase spaces of various dynamical 
systems: stationary flows of compressible media (Vooleys, Gusika & Zhizhin, 
1971, 1972; Vooleys, Harachka & Zhizhin, 1977; Zhizhin, 1972, 1977, 2004a), 

The Structure, Topological, 
and Functional Dimension 
of Carbohydrates, Proteins, 

Nucleic Acids, ATP
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flow of incompressible media (Zhizhin & Ufimtsev, 1977, 1978; Zhizhin, 
1980, 1987; Zhizhin & Onattsky, 1981), flow in reactors with chemical 
reactions (Gusika & Zhizhin, 1980; Zhizhin, 1980, 1984, 1988; Zhizhin & 
Segal, 1985, 1986). In these studies, as a rule, it was necessary to consider 
the multidimensional phase space of systems of differential equations, to 
investigate their special and singular points and the structure of the phase 
space as a whole. This led to an analysis of the spatial inhomogeneity that 
arise when the components of the medium interact under the influence of 
external influences. In particular this led to the formation of standing and 
traveling waves of chemical reactions: polymerization reactions (Zhizhin, 
1982, 1984, 1985, 1992, 1997 a, b, c, 2000; Zhizhin et al., 1986 a, b; Zhizhin 
& Segal, 1986, 1988 a, b; Zhizhin & Obukhova, 1997), gas chemical reactions 
and detonation waves (Zhizhin & Larina, 1994; Zhizhin, 2005, 2008, 2009), 
waves of chemical reactions in condensed media (Zhizhin & Poritskaya, 1994; 
Zhizhin & Obukhova, 1995; Zhizhin, 2004 b). The interest in the formation 
of structures leads to the study of systems of differential equations and their 
phase spaces describing various processes in nature: the formation of “veins” 
of minerals (Zhizhin, 2004 c, d), waves of biological populations (Zhizhin 
& Bolshakova, 2000; Zhizhin, 2004 e, 2005 a, b, c), harvest programming 
(Zhizhin, 2011), formation of a large-scale structure of the Universe (Zhizhin, 
2008), motion of prominences on the Sun (Zhizhin, 2010).

The study of the inhomogeneity in space naturally leads to an analysis of 
this inhomogeneity themselves and the determination of their structure. So 
there was accomplished a transition to the study of molecular structures. It was 
found that molecules can have a dimension greater than three (Zhizhin, 2014 a, 
b; Zhizhin, 2015, 2016a; Zhizhin & Diudea, 2016; Zhizhin, Khalaj & Diudea, 
2016). In Chapters 1 and Chapter 2 it is clearly shown that the dimension of 
many molecules with the participation of elements of the periodic system of 
Mendeleev is higher than three. It is necessary to proceed to the study of the 
structure of biomolecules with the definition of their dimensionality, since 
their significance for life can not be overestimated.

Investigation of the structure of biomolecules is subject of many studies 
(bibliography on this subject can be found, for example, Metzler, 1980; 
Lehninger, 1982). These studies as a rule are based on the concept of the 
dimension of the objects considered no more than 3. In this context, and given 
the increased interest in the problems of nanomedicine, in this paper it is 
investigated the question of the dimension of biomolecules. For biomolecules 
are as small molecules called monomers (monosaccharides, amino acids, 
nucleotides) and biopolymers (proteins, polysaccharides, polynucleotides), 
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consisting of a large (and often very high) of the corresponding monomers. 
Biomolecules are composed of carbon, nitrogen, oxygen, phosphorus, 
sulfur and small amounts of metal ions. The presence of these elements in 
biomolecules (as will be seen below) is essential to the determination of their 
dimension. The structure biopolymer quite difficult. In addition to the formation 
of the polymer chain, which is regarded as the primary structure, there are 
another three-level structure. The secondary structure describes a method for 
laying a polymer chain. The tertiary structure takes into account the interaction 
between circuit elements distant from each other. The quaternary structure 
describes the packaging of macromolecules in macroscopic formations. In 
this paper it is examine of the dimension of monomer units of polypeptide 
chains with regard to their atomic structure and functional groups within 
the monomers. Thus, attention is drawn primarily to the primary structure 
of its molecules, given the considerable importance of this structure when 
considering molecular structure of the following levels.

HIGHER DIMENSION OF POLYATOMIC MOLECULES 
AS A RESULT OF THE INTERACTION OF THE 
ELECTRON ORBITALS OF ATOMS IN A MOLECULE

The most common in biomolecules is a carbon atom, the main role of which 
to be binding in the center of biomolecules. Consider, for example, methane 
molecule CH4. The carbon atom in this molecule binds around four hydrogen 
atoms. Geometrically, this molecule is a tetrahedron, whose vertices are located 
of the hydrogen atoms, and in the center is carbon atom. In Chapter 1 it is 
shown that the dimension of the molecules having the form of a tetrahedron 
with the center equals 4. 

The carbon atom in the center of the methane molecule has the valence 
electrons2 2 3s p . Valence electron orbitals of carbon atoms and hydrogen 
atoms 1s overlap and form four hybrid orbitalssp3 , directed from the carbon 
atom to the hydrogen atoms (Gray, 1965). If the distance from hydrogen 
atoms to carbon atoms is taken as unity, for the origin of coordinates to take 
the carbon atom, the directions hybrid orbitals send on four coordinates x, y, 
z, t, then the coordinates of the hydrogen atoms equal to (0, 0, 0, 1), (0, 0, 1, 
0), (1, 0, 0, 0), (0, 1, 0, 0), and the carbon atom coordinates equal to (0, 0, 0, 
0). So we have the integer coordinates of vertex in the four-dimensional space 
(Figure 1).
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This is consistent with the evidence of four-dimension convex hull of the 
methane molecule on the Euler – Poincare equation (2) in Chapter 1. It is easy 
to see that the body in Figure 1, seen in the four-dimensional space, convex, 
because its edges belong to the body and enter into his boundary complex 
(Grunboum, 1967). Polytope in Figure 1 is a 4 - simplex, since each vertex 
of the polytope associated edges with all the other vertices of this polytope 
(Zhizhin, 2014 b).

If in the methane molecule a hydrogen atom replaced by a hydroxyl group 
- OH, then we get the simplest alcohol - methanol. If the hydroxyl group 
considered as the vertex of the polytope, then the dimension of this molecule 
will also be equal to 4. If each atom of the molecule of methanol is considered 
the vertex of the polytope, then connecting each vertex to all other vertices 
edges, it turns out that it is equal to the dimension of the polytope to 5 and 
we have 5 - simplex. However, here we must remember that the accession 
of the hydroxyl group does not change the hybridization of the carbon atom, 
as the binding site as the place of one hydrogen atom took one oxygen atom 
of the hydroxyl group. Therefore, as a separate vertex in methanol molecule 
should take hydroxyl group entirely. Then the dimension of the methanol 
molecules is equal to 4 (Zhizhin, 2017). 

In the biomolecules can find a lot of examples of molecules or ions in the 
form of a tetrahedron with the center (NH

4
NH

4
, PO

4
PO

4
, etc.). All of 

them have dimension 4. If the binding site appears d- element it is formed 
around the coordination sphere ligands with more than 4 of the amount due 
to of d-orbitals of the element. One can show that in this case the dimension 

Figure 1. The methane molecule (CH4)
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of the molecule is equal to the number of hybrid electron orbitals directed 
from the center to the ligands. The ligand may act as no individual atoms or 
ions, and some functional groups, which may be regarded as corresponding 
vertices of the polytope. This is consistent with the need to describe more 
convenient biomolecules, molecular structures consisting of different 
complexity. Therefore, the dimension of the group of atoms in biomolecules, 
we call a functional dimension. In addition, when such descriptions of specific 
dimensions we will not be considered distances between atoms in molecules. 
Therefore, a certain dimension of the molecules so called topological 
dimension.

In addition, of the tetrahedron with the center in biomolecules there are 
complex structures of higher dimension. 

CARBOHYDRATE (“CARBON COMPOUND WITH WATER”)

Carbohydrates are the main source of energy for the body. All carbohydrates 
are made up of units that are saccharides. The simplest saccharide is an aldose 
monosaccharide, which contains three carbon atoms (Figure 2).

The more complex monosaccharides include 4, 5, 6 and 7 carbon atoms. 
Polysaccharides consist of several monosaccharides. Saccharides are part 
of the nucleic acids that are carried out in the cells of protein synthesis and 
the transfer of hereditary traits. We will try to calculate the dimension of 
the simplest aldose monosaccharide saccharide, since the main elements of 

Figure 2. Shema of the molecule aldose monosaccharide
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the aldose monosaccharide construction are repeated in the more complex 
saccharides. From 

Figure 3. it follows that two carbon atoms, connected by bonds to each 
other, hydrogen atoms projection onto the plane, this construction is shown 
in Figure 3.

In this figure there is a tetrahedron bcdf with center a and a tetrahedron oahg 
with center f. Each a tetrahedron with a center is a polytope of dimension 4.

The vertex f of the first tetrahedron is the center of the second tetrahedron, 
and the vertex o of the second tetrahedron is the center of the first tetrahedron. 
Hydrogen (H) atoms are located at the vertices a, b, c, hydroxyl groups (OH) 
are located at the vertices g, d, carbon atoms (C) are located at the vertices 
o, f, h. The oxygen and hydrogen atoms following the carbon atom at the 
vertex h are not shown in Figure 3 for simplification. It is necessary to 
determine the dimension of the polytope bcdfahgo. The polytope in Figure 
3 has 8 vertices ( f

0
 = 8), 22 edges (ab, ag, af, ao, ah, gh, gf, go, gd, bf, bo, 

bd, bc, df, do, dc, hc, hf, ho, cf, co, fo). Therefore, f
1
 = 22. The polytope in 

Figure 3 has 29 planar faces, of which 26 are the triangles (aho, afo, ahf, afg, 
ahg, aog, aob, afb, bfo, bco, bod, bfd, bfc, bcd, ghf, gho, gfo, god, gfd, dfo, 
dco, dfc, cof, chf, cho, hfo) and 3 quadrangles (abdg, hcgd, abhc). Therefore, 
f
2
 = 29. The polytope in Figure 3 has 20 three-dimensional figures, of which 

13 are tetrahedrons (bcfd, ahog, dcfo, bcdo, bfdo, cfdo, ahof, ahgf, hogf, aogf, 

Figure 3. Spatial structure of the molecule aldose monosaccharide
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fgod, fohc, foab), 6 pyramids (agbdo, ahbcf, ahbco, agbdf, Chgdf, chgdo) 
and one (ahgbcd) prism. Therefore, f

3
 = 20. It follows from the construction 

of the polytope in Figure 3 that it includes two tetrahedrons with the center 
bcdfo and oahgf. In addition to these two polytopes with dimension 4, five 
4 - polytopes also appear in the polytope in Figure 3. Three of these polytopes 
have as their base three rectangular faces of the prism ahgbcd, whose vertices 
are connected with the vertices f, o located inside the prism. To prove their 
4-dimensionality, consider one of these polytopes abhcfo, since the proofs 
for the other two polytopes are similar. This polytope has 6 vertices ( f

0
 = 

6); 13 edges (ab, ah, hc, bc, af, hf, bf, cf, ho, ao, bo, co, fo), f
1
  = 13; 13 

two-dimensional faces (ahf, aho, abo, abf, afo, bfo, boc, ahbc), f
2
 = 13; 6 

three-dimensional faces (hfoc, abof, bfoc, afho, ahcbf, ahcbo), f
3
 = 13. 

Substituting the obtained values of the numbers of faces of different dimensions 
into equation (2) in Chapter 1, we find that equation (2) is satisfied for n = 
4

6 - 13 + 13 - 6 = 0, 

Which is proved by the 4-dimensionality of the polytope abhcfo.
The two polytopes of dimension 4 there are formed by the ahgbcd prism 

with the vertex f or o inside its. Consider the prism ahgbcd with the vertex 
f (the proof for the prism with vertex o is similar). The polytope ahgbcdf  has 
7 vertices, f

0
 = 7; 15 edges (ah, hg, ag, bd, bc, cd, ab, hc, gd, af, fh, fg, bf, 

fc, fd), f
1
  = 15; 14 two-dimensional faces (ahg, bdc, ahf, hfg, afg, bfc, fcd, 

bfd, fhc, afb, fgd, ahbc, hcgd, agbd), f
2
 = 14; 6 three-dimensional faces 

(ahgbcd, ahgf, bcdf, abdgf, hgcdf, ahbcf), f
3
 = 6. Substituting the values   of 

the numbers of faces of various dimensions obtained for the polytope ahgbcdf 
into equation (2) in Chapter 1, we find that it is satisfied for n = 4

7 - 15 + 14 - 6 = 0. 

This proves that the polytope ahgbcdf has a dimension of 4.
Thus, for the polytope in Figure 3 are f

0
 = 8, f

1
 = 22, f

2
 = 29, f

3
 = 20,  

f
4
 = 7. Substituting these values into equation (2) in Chapter 1, we find that 

it is satisfied for n = 5

8 - 22 + 29 - 20 + 7 = 2. 
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This proves that the polytope in Figure 3 has dimension 5. Consequently, 
the main part of the molecule of the aldose monosaccharide also has dimension 
5. Since this basic part enters into all other saccharides in the plural, their 
dimension is more than 5. This gives higher dimension to the molecules 
DNA and all carbohydrates.

There are three main classes of carbohydrates: monosaccharides, 
oligosaccharides, polysaccharides. The basis of the monosaccharide is an 
unbranched chain of the carbon atoms, connected to each other by single 
bonds. One of the carbon atoms has double bond to an oxygen atom to 
form a carbonyl group. All other carbon atoms bonded hydroxyl groups and 
hydrogen ions. The carbonyl group may be at the end of the carbon chain 
(aldose) or elsewhere (ketoses). Monosaccharides depict a Fischer projection 
formula (Metzler, 1980; Lehninger, 1982). For example, the most common 
monosaccharides with five (pentose) and six (hexoses) carbon atoms in the 
form of these formulas are presented in Figure 4 and Figure 5 accordingly. 

However, neither the Fischer formula or formula Haworth and their 
modifications (e.g., conformation as a “chair”) may not reflect the spatial 
structure of the monosaccharides. For this target the constructs described in 
the form of convex polytopes with boundary elements which form boundary 
complex (Grunbaum, 1967). Only when such a representation will be to 
determine the dimension of these molecules. Consider a molecule of α - D 
- glucose. Сlosing unbranched chain of carbon atoms of monosaccharides 
through an oxygen atom, considering functional groups vertices, connect 
the each vertex by edges with each other vertices, get polytope, depicted in 
Figure 6. 

Figure 4. The molecule of D – ribose
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Figure 5. The molecule of D - glucose

Figure 6. The molecule of α - D – glucose
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Edges marked in red in Figure 6 correspond to the chemical bonds in the 
molecule. The rest of the edges are only geometric sense, as the edges of 
the polytope.

Theorem 1 

A molecule of α - D - glucose is a polytope type simplex with dimension 15 
(Zhizhin, 2016 b).

Proof

The polytope in Figure 6 contains 16 vertices, i.e. f n
0
16 1= = + ;  120 edges 

( f C
n1 1
2 120= =+ );   560 triangles( );f C

n2 1
3 560= =+   1820 tetrahedrons

( );f C
n3 1
4 1820= =+  4368 4D – simplexes  ( );f C

n4 1
5 4368= =+  8008 5D – 

simplexes ( );f C
n5 1
6 8008= =+ 11440 6D – simplexes ( );f C

n6 1
7 11440= =+

12870 7D – simplexes ( );f C
n7 1
8 12870= =+  11440 8D – simplexes 

( );f C
n8 1
9 11440= =+  8008 9D – simplexes ( );f C

n9 1
10 8008= =+   4368 10D 

– simplexes  ( );f C
n10 1
11 4368= =+  1820 11D – simplexes ( );f C

n11 1
12 1820= =+   

560 12D – simplexes ( );f C
n12 1
13 560= =+  120 13D – simplexes 

( );f C
n13 1
14 120= =+   16 14D – simplexes ( ).f C

n14 1
15 16= =+  

Substituting the values f i
i
,( )0 15≤ ≤ in Euler’s – Poincare equation (2) in 

Chapter 1, we see that it holds for n = 15

f
i

i

i

n

( ) .− =
=

= −

∑ 1 2
0

14 1

 

This confirms that the polytope in Figure 6 has the dimension n = 15.
Theorem 1 it is proved.
High dimension of the molecule α - D – glucose is due to the fact that it 

contains a large number of differently oriented electronic atomic orbitals and, 
consequently, a large amount of energy. This is consistent with the established 
notions of large energy reserves in glucose, necessary for living organisms. 
Such an increase in energy and dimension occurs and other saccharides in 
the formation of closed loops.
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In particular, the conformation of the β - D - glucose are interchanged only 
a hydroxyl group and a hydrogen atom bound to a carbon atom of the C (1) 
in Figure 6. Changes in the number of carbon atoms does not fundamentally 
change the picture of the molecule. The dimension of the polytope corresponds 
to the number of vertices of the polytope (not one less than the number of 
vertices).

Representations of the saccharide molecules in the form of polytope 
simplifies the understanding of the formation of polysaccharides. For example, 
if the molecule α - D - glucose, two molecules in accordance with Figure 6, 
are joined by the hydroxyl groups to form a water molecule and an oxygen 
atom, two molecules common α - D - glucose via α - glycoside linkages, as 
in simplified form shown in Figure 7.

Thus, the linear polymer of α - D - glucose has a one-dimensional 
translational symmetry with the translation element of higher dimension, 
just as quasicrystals (Shevchenko, Zhizhin & Mackay, 2013) have a multi-
dimensional translational symmetry with the translation element of higher 
dimension. Chains with α - glycoside bond have the opportunity to branch. This 
is evident from Figure 5, as the functional group -CH2OH in each molecule 
can be a chain branch point, to which is attached via an oxygen atom molecule 
of α - D - glucose. In the case of β - glycoside bond molecules β - D - glucose 
(Figure 8) such a possibility is difficult due to a denser arrangement of glucose 
molecules, and proximity to a functional group – CH2OH of oxygen atom. 

It seems can serve as an explanation of a chain with β - glycoside linkage 
chain branching is not observed.

Figure 7. The α - glycoside linkage of the molecules α – D – glucose
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PROTEINS

Monomer units which are built of proteins are the 20 standard amino acids. 
These small molecules containing two different chemical functional groups 
capable of reacting with each other to form a covalent bond. This are amino 
group (-NH2) and a carboxyl group (- COOH). Connection which determines 
the formation of protein polymer is called a peptide bond. In the formation 
of such a connection by joining together - COOH and -NH2 with secretion 
a molecule of water. Amino acids forming two families of D and L, each of 
which can be represented in the form of a tetrahedron with the center in the 
carbon atom (Figure 9, Figure 10)

According to the ideas of this work, the amino acid is a molecular formation 
with topological and functional dimension of 4, regardless of the structure 
of the side of the functional groups represented by R.

Communication amino acids can be represented as a tetrahedron with the 
center of a peptide bond. Figure 8 shows the peptide bond the D - amino acids.

From geometric images of associated polytopes of dimension 4 in Figure 
11 immediately implies that the peptide chain has the form of a spiral, swirling 
clockwise. Side functional groups R have different chemical nature. Sequence 
arrangement of functional groups and, hence, the sequence of amino acids 
in the chains always accurately defined genetically.

The peptide chain may form both parallel and antiparallel structure 
associated hydrogen bond. In addition, the peptide chain may form a compact 
protein globule. This class of proteins known as globular proteins that perform 
complex biological functions. For example, the protein is a globular myoglobin 

Figure 8. The β - glycoside linkage of molecules β - D - glucose
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Figure 9. The molecule of D - amino acid

Figure 10. The molecule of L - amino acid
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- oxygen-binding protein present in the muscles. In the center of myoglobin 
globule is hemo-group containing Fe - porphyrin (iron atom surrounded by 
five nitrogen atoms).

Theorem 2

The dimension of the Fe - porphyrin before joining the oxygen atom is equal 
to 5.

Proof.

Consider the first coordination sphere of the iron atom in the center of the 
porphyrin (Zhizhin, 2015), since only in the first coordination sphere of 
atoms are linked by a covalent bond, and in the following focal areas of 
intermolecular bonds between atoms. Before joining of the oxygen atom the 
first coordination sphere of Fe - porphyrin may be represented as a plane 
projection (Figure 12), at the vertices a, c, d, f of which the nitrogen atoms 
of the porphyrin are located, an iron atom is located at the vertex g, and the 
nitrogen atom of the nearest histidine residue is located at the vertex b. The 

Figure 11. The peptide chain of amino acids
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deflection of vertex g from the center of the rectangle acdf corresponds to 
a certain “dome” character of porphyrin (Steed & Atwwod, 2007 ; Lehn, 
1998). The projection in Figure 12 represents some polytope (let`s denote 
A - polytope). 

The A – polytope has six elements with dimension 0, f A
0

6( )= . There are 
vertices a, c, d, f, g, b. The number of elements with dimension 1 is
f A C
1 6

2 15( ) .= =  It are edges ab, bc, bd, bf, bg, ac, cd, fd, af, fc, ad, ag, gc, 
fg. The number of elements with dimension 2 is f A C

2 6
3 20( ) .= =  It are 

triangles abf, bfg, bgd, dbc, bga, bgc, agc, dfg, adc, acf, fcd, bgd, fbg, agd, 
fgc, fbc, abd, afg, gcd, afd). The number of elements with dimension 3 is
f A C
3 6

4 15( ) .= =  It are tetrahedons abgf, bsgd, abfc, abcd, bfcg, abdg, acfg, 
abdf, acdg, bfdg, abgc, fbcd, fgcd, afgd, afcd). The number of elements with 
dimension 4 is f A C

4 6
4 6( ) .= =  It are simplexes abcdf, adcdg, abdfg, abcfg, 

bcdfg, acdfg. Substituting the received numbers of elements of different 
dimensions in the equation (2) in Chapter 1 at a value of n = 5, we obtain

6 - 15 + 20 - 15 + 2 = 2, 

i.e. the Euler- Poincare equation is satisfied for A - polytope with n = 5. This 
is a simplex of dimension 5. This proves theorem 2.

Figure 12. The first coordination sphere of Fe - porphyrin before binding oxygen
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Theorem 3

The dimension of Fe - porphyrin after joining of oxygen atom is 6.

Proof 

The first coordination sphere after joining oxygen atoms is complemented 
by one vertex e (Figure 13).

“Dome” character of Fe - porphyrin after joining of oxygen atom decreases, 
but it is not possible to affirm that it disappears completely (Steed & Atwood, 
2007). Therefore, the deflection of vertex g from the center of rectangle in 
Figure 13 quality is maintained qualitatively. Taking into account the significant 
difference between the geometry and mass of the groups attached to the iron 
atom at the top and bottom, it is shown in Figure 13 that the vertices e and 
b do not lie on the same line. In the polytope in Figure 13 (B - polytope) the 
number of elements of zero dimension is increased compared with to the 
A-polytope by one vertex e, f B

0
7( ) .=  This leads to the increase in the 

dimension of the polytope by 1, as the number of edges issuing from each 

Figure 13. The first coordination sphere of Fe - porphyrin after joining of oxygen atom
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top also increases by 1. In the polytope B the number of elements of dimension 
1 is f B C

1 7
2 21( )= =  (edges). The number of elements with dimension 2 is 

f B C
2 7

3 35( )= =  (triangles). The number of three-dimensional figures is
f B C
3 7

4 35( )= =  (tetrahedrons). The number of elements with dimension 4 
is f B C

4 7
5 21( )= = , (simplexes of dimension 4). The number of elements 

with dimension 5 is f B C
5 7

6 7( )= = , (simplexes of dimension 5). Substituting 
the numbers   of the elements of different dimensions in equation (2) in Chapter 
1 with n = 6, we get

7 - 21 + 35 - 35 + 21 - 7 = 0, 

i.e. the Euler - Poincare equation for B - polytope is satisfied when n = 6. 
Therefore, B- polytope is a simplex of dimension 6. This proves theorem 3.

The dimensions of molecules increase with an increase of its energy 
again. It is shown that myoglobin is associated coil circuit elements of higher 
dimension (4) and, moreover, in the center of the coil is a group of atoms 
even greater dimension.

NUCLEIC ACIDS, ATP

Nucleic acids (DNA and RNA) are polynucleotide. These monomer units 
(nucleotides) consists of pyrimidine and purine bases, D-ribose (or D-2-
deoxyribose) and phosphoric acid. The bases are virtually flat molecules 
(Metzler, 1980; Lehninger, 1982), we will be denoted R f . As follows from 
the analysis conducted in carbohydrates D - ribose molecule has a higher 
dimension. Phosphoric acid has the structure (Figure 14)

It follows from claim 1, which, apart from a double bond between phosphorus 
and oxygen atoms is edge polytope, phosphoric acid molecule a geometrically 
is tetrahedron with the center, thus it has dimension 4.

Let is present a molecule D-ribose as a polytope (Figure 15).

Theorem 4

The molecule of D-ribose is a convex polytope type simplex of dimension 12.
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Proof

Polytope in Figure 15 has vertices 13, f n
0
13 1= − + ;  78 edges (

f C
n1 1
2 78= =+ ); f C

n1 1
2 78= =+ ); 5 6 0  t r i a n g l e s  ( f C

n2 1
3 286 7= =+� );�

f C
n2 1
3 286 7= =+� );� 15 tetrahedrons( );f C

n3 1
4 715= =+ 1287 4D-simplexes 

( );f C
n4 1
5 1287= =+ 1716 5D-simplexes ( );f C

n5 1
6 1716= =+ 1716 6D – 

simplexes ( );f C
n6 1
7 1716= =+  1287 7D-simplexes ( );f C

n7 1
8 1287= == 715 

Figure 15. The molecule D-ribose

Figure 14. The structure of phosphoric acid
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8D-simplexes ( );f C
n8 1
9 715= =+ 286 9D-simplexes ( );f C

n9 1
10 286= =+ 78 

10D-simplexes ( );f C
n10 1
11 78= =+   13 11D-simplexes ( ).f C

n11 1
12 13= =+  

Substituting the values f i
i
,( )0 11≤ ≤   in Euler’s - Poincare equation (2) 

in Chapter 1, we see that it holds for n = 12

f
i

i

i

n

( ) .− =
=

= −

∑ 1 0
0

11 1

 

Theorem 4 is proved.
The polynucleotides molecules D - ribose combined with phosphoric acid 

residues and basesR
f
  development of two water molecules (R

f
 have six 

kinds of alternate bases - pyrimidine, uracil, adenine, cytosine, guanine, 
purine). Thus, the polynucleotide chain is a sequence related to each other 
through oxygen atoms higher dimensional objects (simplexes)

4D - O - 12D - O - 4D - O - 12D - O - ....... 

Nucleotides (12D - simplex) act in some cases as a coenzyme of biochemical 
reactions. For example, nucleotides associated with two extra residues in the 
form of phosphoric acid of polyphosphoric acid to form (Figure 16) adenosine 
triphosphate (ATP)

Compounds of this type are readily cleaved, one or two phosphoric 
acid residue, which is transferred to any other radicals, - the process of so-
called phosphorylation. Bond in the chain polyphosphoric rich in energy, 
so simultaneously with the transfer of phosphorus is carried energy transfer 
from one connection to another. Thus, ATP is also a chain of elements of 
higher dimension (simplexes)

Figure 16. The scheme of the ATP
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R
f
- 12D - 4D - 4D - 4D. 

In biomolecules are essential sense transition metals. They, being in the 
center of the coordination spheres, provide management role in the living 
organisms. This is achieved due to the presence of these metals in a large 
number of electrons and the quantum of vacant cells in the outer shell of atoms. 
Due to the transition metals carried covalent and donor-acceptor chemical 
bonds with atoms other elements in the living organisms. A significant part 
of the transition metals have a deviation from the rules of filling of electron 
orbitals in order of increasing energy falling on the orbitals of higher energy. 
Currently there is no classification and analysis of the anomalous transition 
metals having such deviations. Considering the importance of these metals 
to the functioning of living organisms, it is of interest for further work to 
examine these anomalies in order to establish operating in these patterns and 
identify opportunities for their practical use.

WINE ACID

Earlier in Chapter 3, structures of two enantiomorphism forms of glucose 
were considered. The construction of images of their molecules in a space 
of dimensionality 15 made it possible to explain why the chain of molecules 
of α-D glucose has branches from the chain, and the chain of molecules of 
the β-D glucose molecule does not have a branch from the chain. Earlier in 
Chapter 3, the structure of the aldose monosaccharide in the configuration 
of D is considered (Metzler, 1980). The aldose monosaccharide also has 
an enantiomorphism configuration of L. We will consider the difference in 
these configurations by the example of a closely related tartaric acid, which 
played a major role in the development of biology, starting with Pasteur’s 
well-known works (Pasteur, 1960). However, instead of the known images 
of these molecules in the form of Fisher’s projections (Figure 17, Figure 18), 
we will use images of space of higher dimension for their images.

Comparing Fisher images of aldose monosaccharide (Figure 2) and tartaric 
acid (Figure 17, Figure 18), we see that these compounds have the same main 
part of the design. It has the form of two tetrahedrons with a center, and the 
center of each of them is simultaneously the vertex of another tetrahedron. 
There is some difference in functional groups of compounds. Enantiomorphism 
forms of tartaric acid differ in the mirror image of hydrogen ions and hydroxyl 
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groups in the main part of the molecule’s structure. The dimension of this 
construction how it is shown earlier equal 5. Thus, the dimension of the 
molecules tartaric acid in both forms is 5. Images of polytopes corresponding 
to a molecule of tartaric acid in the form D and form L are presented in 
Figures 19 and Figure 20. 

The brown color in Figures 19, 20 denotes the edges corresponding to the 
chemical bonds between the atoms. The black color in these figures denotes the 
edges that have values only as the edges of the convex body. The outer contour 

Figure 17. Shema of the molecules D-wine acid

Figure 18. Shema of the molecules L-wine acid
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Figure 19. Spatial structure of the D-wine acid

Figure 20. Spatial structure of the L-wine acid
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of both molecules in three-dimensional space is a triangular prism. There are 
two carbon atoms within these prisms. These two carbon atoms and lead to 
an increase in the dimension of the molecule to five. On the outer contour, 
two enantiomorphism forms have the opposite arrangement of hydrogen ions 
and a hydroxyl group. The images obtained make it possible to explain the 
main property of tartaric acid - rotation of the plane of polarization of the 
incident light in different directions: in the case of the D form to the right, in 
the case of the L form to the left. It are known devices for rotating the plane of 
polarization of light, having the appearance of two folded triangular prisms, 
the boundary between which serves to reflect light (Вуд, 1936). We can say 
that the molecule of tartaric acid is a natural device for rotating the plane of 
light polarization. Two carbon atoms play the role of the reflecting partition in 
the molecule. The rotation occurs in the forms D and L in different directions 
because of the opposite arrangement of the charges of the hydrogen ions (+) 
and the hydroxyl group (-) in these forms. Thus, the reason for the different 
rotation of the plane of polarization of light lies not in the different forms of 
the crystals of D-tartaric acid and L-tartaric acid, as Pasteur suggested, but 
in different forms of molecules, clearly visible in the image in the space 5D.

A number of serious works on the use of spaces of higher dimension in 
the analysis of the structure of viruses belongs to the authors Janner and 
Twarock (Janner, 2006, 2008, 2011, 2016; Keef & Twarock, 2009; Twarock & 
Dykeman, 2010). However, it should be noted, that in these works, especially 
in the works of Janner, the notion of polytopes of higher dimension is often 
used incorrectly. The quantities of elements of different dimensions are not 
determined and the feasibility of the Euler - Poincare equation is not checked. 
Therefore, the results of these studies require verification.
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KEY TERMS AND DEFINITIONS 

Branching of the Chain of the D-Glucose Molecule: The formation of 
branches in a chain of carbon atoms in the molecule of α-D-glucose. Such 
branches in a chain of the carbon atoms of the molecule β-D-glucose are 
impossible. This follows from the representation of glucose molecules in the 
form of a polytope of higher dimension.

Enantiomorphism (Chirality) of Biomolecules: The possibility of 
changing the mutual arrangement of hydrogen atoms and hydroxyl groups in 
biomolecules (polytopes of higher dimension), leading to a change in their 
properties.

Hybridization of Electronic Orbitals: This is the interaction of the 
electronic orbitals of atoms entering the molecule, leading under certain 
conditions to the formation of higher dimensionality of molecules.

Spiral Peptide Chain: The formation of a spiral chain of protein molecules, 
as a consequence of the higher dimension of protein molecules.

The First Coordination Sphere of Fe-Porphyrin: A set of nitrogen atoms 
bound by a covalent bond to an iron atom. The dimension of the coordination 
sphere upon addition of the oxygen atom increases from 5 to 6.

The Functional (Topological) Dimension of a Molecule: The dimension of 
a convex polytope, as a model of a molecule, at the vertices of which not only 
individual atoms but also functional groups of the molecule can be located.
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Chapter  4

DOI: 10.4018/978-1-5225-4108-0.ch004

ABSTRACT

The geometry of polytopes of higher dimension having deviations from the 
conditions for the correctness of the geometric figure is considered. These 
deviations reflect the shapes of the molecules of the chemical compounds 
studied in Chapters 1-3. From the validity conditions in all cases the condition 
of topological equivalence of the vertices of the polytope is preserved. All 
these polytopes are called semi-regular. We study the hierarchical filling of 
spaces with polytopes of higher dimension, different from the well-known 
filling of spaces with spheres of constant diameter. The considered fillings 
characterize the distribution of atoms in nanostructures, in which the growth 
centers are distributed throughout the volume of the structure.

GOLDEN HYPER-RHOMBOHEDRON: 
TRANSLATIONAL BASIS OF QUASI-CRYSTALS

Finding in 1982 of ordered structures deprived (as it seemed) of translational 
symmetry (Shechtman et al., 1984), next called “quasicrystals”, had marked the 
beginning of numerous cycles of papers and books devoted to the experimental 
and theoretical study of these unusual materials. But later it was found that 
the diffraction patterns of quasicrystals have a latent periodicity (Zhizhin, 
2014), if we consider the diffraction pattern as a projection of a structure from 
a space of higher dimension. Figure 1 shows a typical diffraction pattern of 
intermetallic compounds.

Convex Semi-
Regular Polytopes 
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Similar structures have other intermetallic compounds involving 
transition metals, for example: Al6Mn (Shechtman et al., 1984), Al70Fe20W10 
(Mukhopadhyay et al., 1993), Ti54Zr26Ni20 (Zhang & Kelton, 1993).

Figure 1 shows that the luminous points, which are a reflection of light 
from the impact of the electron beam, form five families of parallel lines 
oriented with respect to each other at angles of a multiple of 72 degrees. The 
distances between the parallel lines and the angles are determined by the 
golden section. A geometrical model of the structure of the diffraction patterns 
of quasicrystals was constructed (Shevchenko, Zhizhin & Mackey, 2013a; 
Shevchenko, Zhizhin & Mackey, 2013b; Zhizhin, 2014; Zhizhin & Diudea, 
2016). It was shown that the elementary cell of this geometric structure is 
a polytope of dimension 4, which was called a gold hyper-rhombohedron. 
This cell is plotted on the diffraction pattern in Figure 1 with solid segments 
of light lines. I can see that it passes through the luminous points of the 
diffraction pattern observing its geometry. This cell fills the entire space 
with the translation reflected by the diffraction pattern. To determine the 
regularities of this cell, it is depicted in Figure 2 on an enlarged scale.

Figure 1. Electron diffraction pattern of compound Al72Ni20Co8 (Eiji Abe et al., 2004)
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The polytope in Figure 2 consists of 8 three-dimensional polyhedrons 
whose faces are determined by construction with a golden section. Namely, 
all two-dimensional faces represent the same diamonds with angles 

ϕ
τ
γ π ϕ= = −arccos , ,

1
2

where τ is golden section. The three-dimensional 

faces (rhombohedra) are adjacent to each other along the flat faces, so that 
all planar faces are common to some two rhombohedrons, which is necessary 
for the polytope to exist. The polytope in Figure 2 has the same number of 
vertices (16), edges (32), planar (24) and three-dimensional (8) faces as 4 - 
cub. Therefore, substituting these quantities of elements of different dimensions 
into the Euler-Poincaré equation (2) in Chapter 1, we get that this equation 
is satisfied for a value of dimension equal to 4. The difference from the 4-cube 
is that its flat faces are rhombs, and not squares. Therefore, the golden hyper-
rhombohedron is a semi-regular polytope, since its two-dimensional faces 
are not regular polygons, although all vertices are compatible with motion. 
The periodic part of the structure of quasi-crystals is the translational filling 
of a four-dimensional space by a golden hyper-rhombohedron. The edges 
emanating from its vertices carry out the product of the rhombohedron into 
a segment. Just like a 4-cube is obtained by multiplying the cube by an edge. 
As a result, the number of elements of different dimensions in the gold hyper-
rhombohedron is the same as in the 4-cube. The difference from the 4-cube 
lies in the fact that all its metric relationships are based on the golden section. 

Figure 2. Golden hyper-rhombohedron
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It was shown (Zhizhin, 2014, Zhizhin& Diudea, 2016) that the lattice of the 
vertices of the golden hyper-rhombohedron during its translation highlights 
the latent periodicity of the diffraction patterns. On this lattice can be built 
all the Platonic bodies, the Bravais (Bravais, 1848) and Delone (Delone, 
Padurov& Alecsandrov, 1934; Delone, 1937) cells, Voronoi (Voronoi, 1908) 
cells. Figure 3 representing the lattice of golden hyper - rhombohedron 
vertices, as an example, shows how from the vertices of the golden hyper-
rhombohedron one can obtain projections of Plato’s bodies: tetrahedron, 
cube, octahedron, icosahedron, dodecahedron.

Moreover, these figures can vary in size. It is essential that in addition to 
the already built golden hyper-rhombohedron of certain size, these polytopes 
of other dimensions can be built on vertices lattice (see Figure 4).

On the Figure 3 and Figure 4 the vertices of golden hyper-rhombohedron 
big size is indicated of a white circles. On Figure 4 besides golden hyper 
-rhombohedron little size is indicated of a black segments.

The physical nature of the process of scaling in phase transitions of the 
second kind and in quasicrystals is a change in the structure during the phase 
transition of the second kind (Kadanoff, 1966), and in the processes of formation 
of quasi-crystals during annealing. However, if Kadanoff assumed for phase 
transitions the merging of smaller cells to larger ones, here the analysis of 
golden hyper-rhombohedron vertices lattice shows that the process of scale 

Figure 3. Plato`s bodies on the lattice of golden hyper-rhombohedron
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changing occurs hierarchically, i.e. a smaller hyper-rhombohedron cell is 
not combined with similar ones but simply increases in hierarchical mode, 
absorbing more and more of lattice sites. On the diffraction pattern (Figure 4), 
as an example, the projection of golden hyper-rhombohedron with the edge 
of a certain size is applied. It’s clear that hyper-rhombohedrons of other sizes 
can be distinguished on the diffraction pattern. The analysis of diffraction 
pattern geometry shows that the similarity coefficient of hyper-rhombohedrons 
is the golden section τ. Raising τ in positive and negative integer powers 
one can receive hyper-rhombohedrons of appropriate sizes, which can be 
identified on the diffraction pattern in the range of its solvability. It is essential 
that the coordinates of the vertices of the golden hyper-rhombohedron are 
expressed in forth-dimensional space in whole numbers. Let’s choose the 
top a in Figure 2 as the beginning of coordinates system (x, y, z, h). Let’s 
direct the axis x along the edge ar, the axis y along the edge aπ, the axis z 
along the edge ad, the axis t along the edge ab. Let’s assume that the length 
of hyper-rhombedron edge is a unit. Then the coordinates of the vertices of 
the hyper-rhombohedron aπebdkfc are expressed in whole numbers a(0, 0, 0, 
0), 𝜋(0, 1, 0, 0), e(0, 1, 0, 1), b(0, 0, 0, 1), k(0, 1, 1, 0), f(0, 1, 1, 1), c(0, 0, 1,
1), d(0, 0, 1, 0). Now let’s to change the coordinate x from 0 to 1. Then the 
coordinates of aπebdkfc hyper-rhombohedron vertices also to change v(1, 1, 
0, 1), t(0, 0, 0, 1),w(1, 1, 1, 1), u(1, 0, 1, 1), s(1, 1, 0, 0), r(1, 0, 0, 0), o(1, 1, 

Figure 4. Golden hyper-rhombohedrons of different scale on the lattice of golden 
hyper-rhombohedron vertices
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1, 0), m(1, 0, 1, 0). It’s obvious that at hyper-rhombohedron translation the 
coordinates of all lattice vertices formed by hyper-rhombohedron vertices 
are integers. Filling the space of hyper-rhombohedrons of other sizes also 
forms integral lattice, if the size of hyper-rhombohedron edges is mistaken 
for one. It’s interesting that on the lattice of golden hyper-rhombohedron 
vertices in the space 4D it is possible to construct the projections of the 
golden rhombohedron from a space of even more dimension. Figure 5 shows 
a projection of golden rhombohedron from the space 5D on the plane 2D. 

It is clear that this projection can be laid on the lattice of golden hyper-
rhombohedron vertices in the space 4D in Figure 3. The 5 – rhombohedron 
is the product of hyper-rhombohedron by one-dimension segment. If length 
of the segment equal of length edges of the hyper-rhombohedron, so the 
5-rhombohedron is semi-regular polytope too. The 5 - rhombohedron can 
also fill the space of quasi-crystal displayed by the diffraction pattern in 
Figure 1, i. e. one can say that the quasi-crystal has a subspace of dimension 
5. Similarly, a rhombohedron of even more dimension can be built on the 
diffraction pattern. This leads to the conclusion that quasi-crystals have 
subspaces of any integer dimension.

From the said above it follows that the lattice of the vertices of golden 
hyper-rhombohedrons have the universal nature.

Figure 5. The golden rhombohedron in space 5D
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It is also important to note that on the diffraction patterns of intermetallides 
(Figure 1) one can see not only the latent periodicity of the structure in spaces 
of higher dimension, but also the hierarchical filling of spaces in the vicinity 
of almost any point of the structure. It is expressed in an increase in the size 
of the figures around an arbitrary point of the structure while maintaining 
the shape of the figure.

GEOMETRICAL CHARACTERISTICS OF THE 
CONVEX SEMI-REGULAR POLYTOPES

Investigations of the structures of molecules of chemical compounds of 
elements of the periodic system in Chapters 1-3 showed that in rare cases 
the molecules have the appearance of a regular convex polytope. Usually 
different deviations from the condition for the regularity of the polytope are 
encountered. These deviations arise either in metric or topological terms. 
Therefore, to continue the study of the structure of molecules of chemical 
compounds in a space of higher dimensions it is necessary to consider 
convex polytopes with deviations from the condition of their regularity: 
the compatibility of all vertices of a polytope with motion and regularity, 
as well as the equality of all faces of a polytope of a certain dimension. We 
shall call a convex polytope semi-regular if all its vertices are compatible 
with the motion, but the remaining validity conditions are violated in one 
way or another. At present, semi-regular polytopes have been studied very 
little. For the first time, there was announced the existence of convex semi-
regular polytopes in four-dimensional space in Gosset’s work (Gosset, 
1900). It was a short note, containing only a statement about the existence 
of three four-dimensional semi-regular finite polytopes with an indication of 
their composition. Elte (Elte, 1912) came to the same results. Only in 1988 
the validity of Gosset’s statements was publicly mathematically confirmed 
(Makarov, 1988). In all the works mentioned, polytopes were considered in 
which all two-dimensional faces are the same - regular triangles, but the three-
dimensional faces in the same polytope can be different. In 1900 and 1910 
Stott’s work (Stott, 1900; Stott, 1910) was published, in which, regardless 
of Gosset’s work, semi-regular polytopes were considered, and the presence 
of a set of two-dimensional faces in the same polytope of different regular 
polygons was allowed. It is significant that in all these works no images of 
some semi-regular polytopes were shown. Images of semi-regular polytopes 
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appeared in print only after 2013 in the works of Zhizhin (Zhizhin, 2013, 
Zhizhin, 2014, Zhizhin & Dudea, 2016). 

The golden hyper-rhombohedron considered in the previous section 
represents an example of a semi-regular convex polytope in which plane faces 
are not regular polygons, but all vertices of the polytope are indent. In Zhizhin’s 
paper (Zhizhin, 2014), another type of convex polytopes was discovered, in 
which edges with different incidence values for three-dimensional facets can 
be simultaneously present. Moreover, all the vertices of such polytopes are 
indent, so such polytopes can also be called semi-regular. Topologically, the 
compatibility condition for vertices in motion can be weakened, considering 
the vertices of polytopes to be indent, from which the same number of edges 
emanate. Such polytopes can also be considered semi-regular if some other 
validity conditions are violated.

CONVEX SEMI-REGULAR POLYTOPES 
WITH UNIFORM EDGES

In the book “World 4D” (Zhizhin, 2014) was proofed the theorem: From 
each convex three-dimensional polyhedron in the set of regular and semi-
regular polyhedrons, one can go by means of a finite number of geometric 
transformations to any other polyhedron from this set of polyhedrons. Two 
geometric operations are used in the proof of the theorem. The operation t, 
consisting in cutting off the polyhedral angles of a regular polyhedron with 
their replacement by regular polygons with the same lengths of the sides as 
the edges of the remaining parts of the polyhedron. The operation t 2  consisting 
in repeating the operation t of cutting out the polyhedral angles of the obtained 
semi-regular polyhedron after performing the operation t. In this case, the 
necessary deformation of the dihedral angles and the lengths of the sides of 
the polygons is used in order to obtain closed bodies with the same lengths 
of sides in the whole body.

The operations t and t 2  can to use for obtaining the semi-regular polytopes 
of higher dimension. The semi-regular polytopes in this case will be have 
hyper-faces of the regular and semi-regular polytopes of the different form. 
The edges of the semi-regular polytopes will be uniform, i.e. it have equal 
meaning incidence of the tree-dimension polytopes throughout polytope of 
the higher dimension.
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For notation of the semi-regular polytopes will be used the products of 
notation operation by notation of the regular polytopes of the symbol Schläfli 
(Schläfli, 1855). For the four-dimension polytopes the symbol Schläfli has 
look i i i

1 2 3
, ,{ } , where i

1
  is the number of vertices incident one flat face of 

the polytope, i
2
 is the number of the flat faces of the polytope incident one 

vertex of the polytope, i
3
is the number tree-dimension faces of the polytope 

incident one the edge.
Obtaining semi-regular polytopes is reasonable to begin with the analysis 

of the simplest regular polytope of a four-dimensional regular simplex{ , , }3 3 3 . 
Applying the clipping operation t, i.e. replacing the edges by one third of the 
edge in its middle, we obtain a semi-regular polytope t 3 3 3, ,{ }  whose set of 
hyper-faces consists of 5 tetrahedrons and 5 truncated tetrahedrons (Figure 
6.)

Applying the clipping operation t to hyper-cube 4 3 3, ,{ } , we obtain a semi-
regular polytope t 4 3 3, ,{ }whose set of hyper-faces consists of 16 tetrahedrons 
and 8 truncated cube (Figure 7).

Applying the clipping operation t to 4-cross-polytope 3 3 4, ,{ } , we obtain 
a semi-regular polytope t 3 3 4, ,{ }whose set of hyper-faces consists of 8 
octahedrons and 16 truncated tetrahedrons (Figure 8).

Applying the clipping operation t 2 to regular simplex { , , }3 3 3 , we obtain 
a semi-regular polytope t 2 3 3 3, ,{ }whose set of hyper-faces consists of 5 
octahedrons and 5 tetrahedrons (Figure 9).

In view of the fact that in the projection in Figure 9 a part of the edges 
overlap, it is difficult to trace the existence of 5 octahedrons and 5 tetrahedrons 
in the figure. In order to see them enough to slightly to dismiss the coincidence 
vertices. This is done in Figure 10.

Then the octahedrons are figures 4, 6, 1, 10, 5, 8; 4, 10, 7, 9, 5, 3;10, 7, 
2, 8, 1, 3; 4, 9, 2, 8, 3, 6; 5, 6, 2, 7, 1, 9. There are tetrahedrons 1, 5, 7, 10; 
1, 6, 2, 8; 9, 2, 7, 3; 10, 8, 3, 4; 5, 4, 9, 6.

Applying the clipping operation t 2  to hyper-cube 4 3 3, ,{ } , we obtain a 
semi-regular polytope t 2 4 3 3, ,{ }whose set of hyper-faces consists of 16 
tetrahedrons and 8 cube-octahedrons (Figure 11).

If we denote O - octahedron, T - tetrahedron, I - icosahedron, D - 
dodecahedron, C - cube, ID – icosadodecahedron, CO - cuboctahedron, tT 
– truncated tetrahedron, tC – truncated cube, tO – truncated octahedron, tD 
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– truncated dodecahedron, tI – truncated icosahedron, then it is possible to 
enumerate all the obtained convex semi - regular four-dimensional polytopes. 
Some of these polytopes are not represented in the drawings because of their 
cumbersomeness. A list of all semi-regular polytopes obtained is given in 
Table 1, indicating the composition of the set of hyper-faces (the number of 
definite types of the hyper - faces is indicated in parentheses). 

Figure 6. The four-dimensional semi-regular polytope t 3 3 3, ,{ }

Figure 7. The four-dimensional semi-regular polytope t 4 3 3, ,{ }
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In Table 1 the first three semi-regular polytopes were established by Gosset 
(Gosset,1900). In addition to the operations t and t 2  for obtaining semi-regular 
polytopes, the known (Coxeter, 1963) transformation of an octahedron into 
an icosahedron was used. Obviously, by known projections on a two-
dimensional plane of regular polytopes of dimension greater than four, 
applying the introduced operations one can obtain semi-regular polytopes of 
dimension greater than four.

Figure 8. The four-dimensional semi-regular polytope t 3 3 4, ,{ }

Figure 9. The four-dimensional semi-regular polytope t 2 3 3 3, ,{ }
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Table 1. The convex semi-regular four-dimension polytopes

N Types and Number of the Hyper-Faces Semi-Regular Polytopes

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14

O(5), T(5)
I(24), T(120)
I(120), O(600)
tT(5), T(5)
tC(8), T(16)
tT(16), O(8)
tO(24), C(24)
tD(120), T(600)
tT(600), I(120)
CO(8), T(16)
tI(120), tT(600)
CO(24), C(24)
ID(120), T(600)
I(10), T(85)

Figure 10. The four-dimensional semi-regular polytope t 2 3 3 3, ,{ }  with dismissal 
vertices

Figure 11. The four-dimensional semi-regular polytope t 2 4 3 3, ,{ }
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CONVEX SEMI-REGULAR POLYTOPES WITH 
DIFFERENT INCIDENCE VALUES OF EDGES 
TO THREE-DIMENSIONAL FACES

Structural chemistry is of interest for polytopes of higher dimension, the faces 
of which are regular figures, but there are deviations from homogeneity in the 
properties of polytope elements of different dimensions. In the general case, 
such higher-dimensional polytopes can be called regular-faceted polytopes 
of higher dimension. Three-dimensional regular-faceted polyhedrons were 
investigated in the works of Zalgaller (Zalgaller, 1967) and Zhizhin (Zhizhin, 
2009).

As a proof of the existence of regular-faceted convex polytopes of higher 
dimension, we consider, for example, the following 9 metrically equal regular 
tetrahedrons with the vertices indicated in brackets: 1(1, 2, 3, 4), 2(1, 2, 3, 
5), 3(1, 2, 5, 6), 4(1, 2, 4, 6), 5(2, 3, 4, 6), 6(2, 3, 4, 5), 7(1, 4, 5, 6), 8(1, 3, 
4, 5), 9(3, 4, 5, 6). 

It is easy to verify that every triangular face of any of the nine tetrahedrons 
is common to two tetrahedrons from the list. There is sufficient to construct 
a graph in which the vertices are the tetrahedrons from the indicated list, 
and each edge of the graph will correspond to the common triangular face 
between two tetrahedrons corresponding to the vertices of the edge of the 
graph (Figure 12). 

Figure 12. The graph of set nine listed tetrahedrons
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Table 2 lists the edges of the graph and the corresponding triangular faces 
of the nine tetrahedrons along which these tetrahedrons contact each other.

Since each face of nine tetrahedrons is closed by the face of some other 
tetrahedron of the indicated set of tetrahedrons, the figure made up of these 
tetrahedrons is closed and represents a certain polytope. Constructing the 
projection of this polytope onto a two-dimensional plane leads to the proof 
that each of the six vertices of nine tetrahedrons is connected by edges with 
the all other vertices. Therefore, the projection onto the two-dimensional 
plane of this polytope coincides with the projection of the five-dimensional 
regular simplex (Zhizhin, 2014) onto the two-dimensional plane (Figure 13).

It follows from Figure 13 and Table 2 that the constructed polytope has 
6 vertices ( f

0
6= ), 15 edges ( f

1
15= ), 18 flat faces ( f

2
18= ), 9 three-

dimensional faces ( f
3
9= ). Substituting these values f i

i
, , , ,= 1 2 3 into the 

Euler-Poincaré equation (2) of the first chapter, we find that the Euler-Poincaré 
equation holds for dimension n = 4

6 – 15 + 18 – 9 = 0. 

This proves that the polytope constructed has dimension 4. Thus, removing 
from a 5-dimensional regular simplex of six tetrahedrons is not changed its 
projection onto a two-dimensional plane, but led to a decrease in the dimension 
of the polytope, while preserving its closure and convexity.

It follows from Figure 13 and Table 2 that each of the six edges of the 
polytope (out of 15) is incidentally to the three tetrahedrons of the polytope, 
and 9 edges of the polytope are incidentally to the four tetrahedrons of the 

Table 2. Correspondence of the edges of the graph in Figure 12 to triangular faces 
of tetrahedrons

Edge of Graph Face of 
Tetrahedron

Edge 
of Graph

Face of 
Tetrahedron

Edge 
of 

Graph

Face of 
Tetrahedron

1-2 123 
 1-5 243 1-4 124

1-8 143 2-8 135 2-3 125

2-6 235 3-6 625 3-4 126

3-7 156 4-5 246 4-7 146

6-9 356 6-5 263 5-9 364

7-8 154 7-9 564 8-9 345
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polytope (Table 3). Thus, the constructed convex polytope can be called 
polyincident.

We introduce 25 tetrahedrons with corresponding vertices: 1(1, 2, 3, 4), 
2(1, 2, 3, 5), 3(1, 2, 5, 6), 4(1, 2, 6, 7), 5(1, 2, 4, 7), 6(2, 4, 7, 8), 7(4, 7, 8, 9), 
8(4, 7, 9, 10), 9(4, 7, 1, 9), 10(2, 3, 4, 8), 11(3, 4, 8, 10), 12(3, 4, 9, 10), 13(3, 
4, 1, 9), 14(2, 3, 5, 8), 15(3, 5, 8, 10), 16(3, 5, 9, 10), 17(3, 5, 1, 9), 18(2, 5, 
6, 8), 19(5, 6, 8, 10), 20(5, 6, 9, 10), 21(1, 5, 6, 9), 22(2, 6, 7, 8), 23(6, 7, 8, 
10), 24(6, 7, 9, 10), 25(1, 6, 7, 9). 

It is easy to verify that every triangular face of any from the twenty-five 
tetrahedrons is common to two tetrahedrons from the list. There is sufficient to 
construct a graph in which the vertices are the tetrahedrons from the indicated 
list, and each edge of the graph will correspond to the common triangular 

Figure 13. Polytope with hyper- faces of tetrahedrons 1, 2, 3, 4, 5, 6, 7, 8, 9

Table 3. Incidence of the edges polytopes on Figure 13 to tetrahedrons this polytopes

Edge of 
Polytope

Incident 
Tetrahedrons Edge of Polytope Incident 

Tetrahedrons
Edge of 
Polytope

Incident 
Tetrahedrons

25 2, 3, 6 16 3, 4, 7 24 1, 4, 5

13 1, 2, 8 45 7, 8, 9 36 5, 6, 9

12 1, 2, 3, 4 46 4, 5, 7, 9 35 2, 6, 8, 9

23 1, 2, 5, 6 14 1, 4, 7, 8 15 2, 3, 7, 8

56 3, 6, 7, 9 26 3, 4, 5, 6 34 1, 5, 8, 9
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face between two tetrahedrons corresponding to the vertices of the edge of 
the graph (Figure 14). 

Table 4 lists the edges of the graph and the corresponding triangular faces 
of the twenty-five tetrahedrons along which these tetrahedrons contact each 
other.

Since each face of twenty-five tetrahedrons is closed by the face of some 
other tetrahedron of the indicated set of tetrahedrons, the figure made up of 
these tetrahedrons is closed and represents a certain polytope. 

It follows from Figure 14 and Table 4 that the constructed polytope has 
10 vertices ( f

0
10= ), 35 edges ( f

1
35= ), 50 flat faces ( f

2
50= ), 25 three-

dimensional faces ( f
3
25= ). Substituting these values f i

1
1 2 3, , , ,=  into the 

Euler-Poincaré equation (2) of the first chapter, we find that the Euler-Poincaré 
equation holds for dimension n = 4

10 – 35 + 50 – 25 = 0. 

This proves that the polytope constructed has dimension 4. 
It follows from Figure 14 and Table 4 that each of the ten edges of the 

polytope (out of 35) is incidentally to the five tetrahedrons of the polytope, 
and 25 edges of the polytope are incidentally to the four tetrahedrons of the 
polytope (Table 5). Thus, the constructed convex polytope can be called 
polyincident too.

Figure 14. The graph of set twenty-five listed tetrahedrons
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HIERARCHICAL FILLING OF SPACES WITH 
REGULAR AND SEMI-REGULAR POLYTOPES 

The emergence of different levels of organization, i.e. the formation of a 
hierarchy of organization, is characteristic of both living and nonliving nature. 
The problem of hierarchical filling of spaces goes back to Kepler’s work on 
hexagonal snowflakes (Kepleris, 1611). He considered the arrangement of 
balls of equal diameter in layers. In modern generalized crystallography, 

Table 4. Correspondence of the edges of the graph in Figure 14 to triangular faces 
of tetrahedrons

Edge of Graph Face of 
Tetrahedron

Edge of 
Graph

Face of 
Tetrahedron

Edge of 
Graph

Face of 
Tetrahedron

1-2 
1-13 
2-17 
3-18 
4-25 
6-7 
7-8 
8-9 
9-13 
10-11 
12-13 
14-15 
15-19 
17-21 
19-20 
20-24 
23-24

1, 2, 3 
1, 4, 3 
1, 3, 5 
2, 5, 6 
1, 7, 6 
7, 8, 4 
4, 7, 10 
4, 9, 7 
1, 4, 9 
3, 4, 8 
3, 4, 9 
3, 5, 8 
5, 8, 10 
1, 5, 9 
5, 6, 10  
6, 9, 10 
6, 7, 10

1-5 
2-3 
3-21 
4-5 
6-5 
6-10 
7-11 
8-12 
9-25 
11-12 
12-16 
14-18 
16-17 
18-19 
19-23 
21-25 
24-25

1, 2, 4 
1, 2, 5 
6, 1, 5 
2, 1, 7 
2, 4, 7 
2, 8, 4 
4, 8, 10 
4, 9, 10 
1, 7, 9 
3, 4, 10 
3, 9, 10 
2, 5, 8 
3, 5, 9 
5, 6, 8 
6, 8, 10 
1, 6, 9 
6, 7, 9

1-10 
2-14 
3-4 
4-22 
5-9 
6-22 
7-23 
8-24 
10-14 
11-15 
13-17 
15-16 
16-20 
18-22 
20-21 
22-23

3, 2, 4 
3, 2, 5 
1, 2, 6 
2, 7, 6 
1, 7, 4 
2, 7, 8 
7, 8, 10 
7, 9, 10 
2, 3, 8 
3, 8, 10 
1, 3, 9 
3, 5, 10 
5, 9, 10 
2, 6, 8 
5, 6, 9 
6, 7, 8

Table 5. Incidence of the edges polytopes with the graph on Figure 14 to tetrahedrons 
this polytopes

Edge of Polytope Incident 
Tetrahedrons

Edge of 
Polytope

Incident 
Tetrahedrons

Edge of 
Polytope

Incident 
Tetrahedrons

2-3 
2-6 
4-8 
10-3 
4-2 
3-5 
4-6 
2-8 
6-8 
5-9 
1-10 
7-10

1, 2, 6, 5, 7 
3, 4, 8, 9, 10 
7, 10, 15,20, 25  
21, 22, 23, 24,25 
1, 7, 4, 10 
2, 5, 22, 23 
4, 10, 11, 15 
6, 7, 9, 10 
9, 10, 14, 15 
12, 13, 17, 18 
16, 17, 21, 22 
18, 19, 23, 24

1-4 
5-7 
6-9 
1-2 
4-3 
1-6 
2-7 
3-8 
1-9 
7-9 
4-10 
8-10

1, 11, 16, 4, 21 
5, 8, 13, 18, 22 
11, 12, 13, 14,1 5 
2, 3, 4, 1 
1, 7, 21, 25 
3, 4, 11, 12 
5, 6, 8, 9 
6, 7, 24, 25 
11, 12, 16, 17 
13, 14, 18, 19 
16, 20, 21, 25 
19, 20, 24, 25

1-5 
7-8 
9-10 
1-3 
2-5 
5-6 
3-7 
6-7 
4-9 
8-9 
5-10

2, 3, 12, 17, 22 
14, 6,19, 9, 24 
16, 17, 18, 19,20 
1, 2, 21, 22 
5, 2, 8, 3 
3, 8, 12, 13 
5, 6, 23, 24 
8, 9, 13, 14 
11, 15, 16, 20 
14, 15, 19, 20 
17, 18, 22, 23
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Kepler’s ideas develop in the works of Mackey (Mackey, 1981) and Kuo (Kuo, 
2000). They consider layered filling of three-dimensional space with balls 
of equal diameter around some initial configuration. They assume that the 
centers of balls of equal diameter are located at the vertices of a polyhedron. 
Then the step of layer wise filling of the space around this polyhedron will be 
determined by the diameter of the ball, and not by the geometric properties of 
the polyhedron. We are also interested in the issue of transferring information 
about the source object only based on the characteristics of the object itself. 
From the electronic diffraction patterns of intermetallic compounds (Figure 
1), it is seen that the bright points corresponding to the nodes of the structure 
diverge from the center with a consecutive increase in pitch. Such structures 
can not be answered by structures with layered filling of space with balls of 
equal diameter.

From each regular convex polygon in the plane, one can obtain a polygon 
of the same shape of a larger peak if through each vertex it draws lines 
perpendicular to the segments connecting the vertices with the center of the 
polygon. The intersection of these lines perpendicular to the segments forms 
a polygon similar to the original one. Moreover, the similarity coefficient is 
determined only by the geometric parameters of the initial polygon (Zhizhin, 
2010).

From each regular convex polygon on the plane can obtain a larger polygon, 
similar to the original, in a different way. To do this, it is sufficient to continue 
to the intersection of the side of the polygon adjacent to both sides of each 
of the vertices of the polygon. By joining the intersection points, we obtain a 
new polygon similar to the original, with a similarity coefficient that depends 
only on the geometric parameters of the original polygon. Continuing the 
construction process, you can hierarchically fill the plane with regular polygons 
in both cases for any number of sides of the original polygon.

It is important that for such fillings of the plane the distances between the 
vertices increase in a geometric progression, as well as the distances between 
the nodes of the quasicrystal structure (see Figure 1). These two methods of 
hierarchical filling of the plane are transferred to a three-dimensional space 
(Zhizhin, 2012). It is shown that for the hierarchical filling of a three-
dimensional space only the first method is applicable by regular polyhedron. 
In the case of a hierarchical filling of space by semi-regular polyhedron, only 
the second way of completing is applicable. Polytopes, the process of filling 
the space is accompanied by an alternation of polyhedron from a pair of dual. 
It is found that each polyhedron of a pair of duals forms a geometric progression 
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with the same coefficient. The hierarchical filling of n-dimensional spaces 
by polytopes (Zhizhin, 2014) is considered. It is shown that when a 
n-dimensional space is filled with the regular simplex, it turns into itself and 
their sequence forms a geometric progression with coefficient 6  (the distance 
between the centers of two tetrahedrons adjacent to each other along an entire 

planar face is equal to a
6

, where a is the length of the edge of the tetrahedron). 

In the process of hierarchical filling of n-dimensional space an n-cube 
becomes an n-cross-polytope, and the n-cross- polytope is transformed into 
an n-cube, as dual polytopes each other. Each polytope (n- cube and n –cross-
polytope) formed its geometric progression with own coefficient (Zhizhin, 
2014). 

If the semi-regular polytope have regular hyper-faces, the process of 
hierarchical filling of space will be subject to the regularities of hierarchical 
filling of space with regular hyper-faces. If the hyper-faces of a semi-regular 
polytope are different from regular polyhedrons, the regularities of filling 
it with space will be based on the regularities of the hierarchical filling of 
space by semi-regular forms of smaller dimension. 

Figure 15. The hierarchical filling of space with polytopes t 3 3 3, ,{ }and { , , }3 3 3
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In view of the dramatic increase in the distance between the vertices of 
polytopes in the hierarchical filling of spaces and the sacking in nature to 
fill the voids, it is necessary to provide for the possibility of such filling in 
models of hierarchical filling of spaces by polytopes. This can be realized 
if the hierarchical filling of space does not take place from a single point 
in space, in principle, from any point in space. This is what we see in the 
diffraction patterns of intermetallides (Figure 1). It is also possible to combine 
in one structure the hierarchical filling of space with regular and semi-regular 
bodies simultaneously from different points in space.

Suppose that as the initial figure we have a semi-regular polytopet 3 3 3, ,{ }  
consisting of 5 truncated tetrahedrons and 5 tetrahedrons (Figure 6). The 
image on the plane of this polytope allows us to consider the process of 
attaching the regular simplex { , , }3 3 3  to it, including one tetrahedron of the 
polytope t 3 3 3, ,{ }  in the composition of the regular simplex. Such a process 
can be continued and filled the entire space with a sufficiently dense distribution 
of vertices in it (Figure 15).
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KEY TERMS AND DEFINITIONS

Golden Hyper-Rhombohedron: Semi-regular polytope of dimension 
n, which is an elementary cell of quasicrystals in n-dimensional space. In 
the four-dimensional space, it includes 8 three-dimensional rhombohedrons 
whose faces are determined by the golden section.

Latent Periodicity of Quasicrystals: The periodicity of quasicrystals in 
a space of higher dimension.

Scaling on the Lattice of the Vertices of the Golden Hyper-
Rhombohedron: The lattice of the vertices of the golden hyper-rhombohedron 
allows a discrete scale change (asymptotic expansion from each lattice point).
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Semi-Regular Convex Polytopes: Convex polytopes, in which some 
of the conditions for the correctness of polytopes are violated while other 
correctness conditions are preserved. Four-dimensional semi-regular convex 
polytopes include polytopes obtained by truncating regular convex polytopes. 
They have a lot of homogeneous edges, but facets are simultaneously 
different three-dimensional figures. Another example of semi-regular convex 
polytopes are polytopes, in each of it there are edges with different incidence 
of polyhedron facets.

 EBSCOhost - printed on 2/14/2023 7:14 AM via . All use subject to https://www.ebsco.com/terms-of-use



Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  5

105

DOI: 10.4018/978-1-5225-4108-0.ch005

ABSTRACT

The structure of polytopes—polytopic prismahedrons, which are products of 
polytopes of lower dimensionality—is investigated. The products of polytopes 
do not belong to the well-studied class of simplicial polytopes, and therefore 
their investigations are of independent interest. Analytical dependencies 
characterizing the structure of the product of polytopes are obtained as a 
function of the structures of polytope factors. Images of a number of specific 
polytopic prismahedrons are obtained, tables of structures of polytopic 
prismahedrons are compiled, depending on the types of polytopes of the 
factors. Polytopic prismahedrons can be considered as a result of the chemical 
interaction of molecules, which, from among which there is a polytope of a 
certain dimension.

THE STRUCTURE OF POLYTOPES AS A 
FUNCTION OF FACTORS STRUCTURE

While investigating diffraction patterns of quasi-crystals the golden hyper-
rhombohedron with dimension 4 was built (Chapter 4). As it was noted, it may 
be isolated in the quasi-crystals diffraction patterns as a fundamental domain. 
It is formed as a product of the golden rhombohedron by a one-dimensional 

Polytopic Prismahedrons:
Fundamental Regions of the 
n-Dimension Nanostructures
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segment. Pontryagin mentioned the structures resulting from the product of 
a polyhedron by a one-dimensional segment the cylinder ones (Pontryagin, 
1976). In Chapter 4 it was noted that polytopes of dimension greater than 4 
can be distinguished on the grid of vertices of a hyper-rhombohedron. We 
can say that the product of a polytope by a segment is a prism (Robertson, 
1984) with a base in the form of a polytope. To distinguish it from a usual 
three-dimensional prism, we call it polytopic prism. Ziegler noted that the 
product of polytopes is not a simplex even if the factors are simplexes, so the 
polytopes are of considerable interest (Ziegler, 1995). Especially taking into 
account that a multi-dimensional world has its own peculiarities having no 
analogues in the three-dimensional world (Ziegler, 1995), contrary to some 
opposite statements (Panina, 2006). In this regard, the developed theory of 
simplicial polytopes (Fomenko, 1992; Pontryagin, 1976; Alexandrov, 1975) 
for the analysis of polytopes product becomes inapplicable, especially in the 
case of high-dimensional factors.

The product of two polytopes is the result of the product of one of them by 
one-dimensional edges of another polytope. Thus, the product of polytopes is a 
complex of polytopic prisms. Let’s call this complex a polytopic prismahedron. 
The interest to the study of polytopic prismahedrons is connected, in the first 
place, with the novelty of this field and, secondly, with the fact that polytopic 
prismahedrons, due to their construction, can be, as we’ll see later, “bricks” 
to fill the spaces of higher dimension face in face. The definition of polytopes 
product (Ziegler, 1995) does not give the possibility to specify the structure 
of the product as a function of the factors structures. There is the structure of 
product of polytopes having different structures of their factors is determined.

Theorem 1 (Zhizhin, 2015)

If we have convex polytopes of dimensions n and m, respectively denoted 
Pn  and Qm  (or simply P and Q), then their productP Qn m× , (or simply ×, 
when it is clear what polytopes are multiplied) has a faceFk×  with numbers

f f fk
P
k i

Q
i

i

j

×
−

=

= ∑
0

, (1)

j k= , , if 0 ≤ < =k m j m; , if m k n m n m≤ ≤ + ≥; . 
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Here the symbol f indicates the number of faces, the superscript of f and 
F indicates the dimension of faces, the lower index indicates belonging of a 
face to the respective polytope.

Proof

To find the product of polytopes P and Q one has to find the product of 
geometric elements of different dimensions of one of the polytopes by 
geometric elements of different dimensions of another polytope. According 
to the definition of polytopes product (Ziegler, 1995), the product of vertices 
(elements of zero-dimension) of one of the polytopes by the vertices of another 
polytope is a set of vertices, the number of which is equal to the product of 
the number of vertices of one of the polytopes by the number of vertices of 
another polytope, i.e.

f f f
P Q× =

0 0 0 . 

The number of elements of dimension 1 of polytopes product consists of 
the product of number of elements of dimension 1 of one of polytopes by the 
number of elements of zero-dimension of another polytope and the product of 
the number of elements of zero-dimension of one of polytopes by the number 
of elements of the dimension 1 of another polytope, i.e.

f f f
P Q× = +1 1 0 f f

P Q
0 1 . 

The number of elements of dimension 2 of polytopes product consists 
of the product of the number of elements of dimension 2 of one of the 
polytopes by the number of elements of zero dimension of another polytope, 
the product of the number of elements of dimension 1 of one of polytopes by 
the number of elements of dimension 1 of another polytope and the product 
of the number of elements of zero dimension of one of the polytopes by the 
number of elements of dimension 2 of another polytope, i.e.

f f f f f f f
P Q P Q P Q× = + +2 2 0 1 1 0 2 . 

Continuing this process, we’ll obtain the expression for the number of 
elements of dimension k in the product of polytopes P and Q
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f f f f f f fk
P
k
Q P

k
Q P Q

k
×

−= + + +0 1 1 0... . (2)

The specific form of equation (2) depends on the ratio of k with the 
dimensions of polytopes P and Q. If k is greater than m, i.e. the dimension 
of the polytope Q, then in the series (2) several last items are lost because of 
the absence of faces of the polytope Q with dimension greater than m. If k is 
greater than n, i.e. the dimension of the polytope P, in the series (2) several 
first items are lost because of the absence of faces of the polytope P with the 
dimension greater than n.

If k <m the series (2) can be written in the form

f f fk
P
k i

Q
i

i

k

×
−

=

= ∑
0

. (3)

When k m≥  summation by i in the series (3) is carried out only up to 
the value i = m

f f fk
P
k i

Q
i

i

m

×
−

=

= ∑
0

. (4)

At that, in the row (4) the items corresponding to the values of k – i > n 
are equal to zero. Equations (3) and (4) can be written as a single equation

f f fk
P
k i

Q
i

i

j

×
−

=

= ∑
0

, (5)

where j k= ,  if 0 ≤ < =k m j m; ,  if m k n m n m≤ ≤ + ≥; .
Theorem 1 is proved.
Theorem 1 determines the number of figures of different dimensions in 

the polytopes product, but it cannot identify in general terms what is the 
form of these figures. It follows from theorem 1 that the form of the figures 
of polytopes product depends on the form of the polytopes which are the 
factors of this product.
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THE PRODUCTS OF POLYTOPES BY 
ONE–DIMENSIONAL SEGMENT

It is obvious that the product of a point a by a one-dimensional segment is 
the same segment with point on end coinciding with point a. The product of 
segment by segment is a quadrangle. The product triangle on the segment 
is a triangular prism with the bases equal to the triangle, and generatrices 
equal to the segment.

The Product of a Tetrahedron by a Segment

For the designation of a polytope let’s agree to indicate not only its dimension 
but the number of its vertices by lower index of polytope symbol. Besides, 
we’ll also indicate the number of its faces in brackets after the polytope sign, 
face dimension and the number of its vertices (for the faces with dimension 
greater or equal to 2). For example, a tetrahedron in this record has the form
P F
4
3

3
24( ) . If a polytope is considered in this case as a face we’ll denote it by 

the letter F. Let’s call such a record a structural polytope formula. We need 
to get from structural formulas of polytopes as factors the structural formula 
of the polytopes product. Thus, in this case, we consider the product
P F Q
4
3

3
2

2
14( )× . According to theorem 1 and the ratios (5) we have

f f f
P Q× =

0 0 0 = 4 ˑ 2 = 8, 

f f f
P Q× = +1 1 0 f f

P Q
0 1 6 2 4 1 16= ⋅ + ⋅ = . . 

When calculating the number of faces of dimension greater than 1 we’ll 
indicate in brackets after the sign of the faces number the designation of the 
corresponding face. This will give us an opportunity to get the composition 
of faces in the polytopes product. Thus,

f f F f F f F f F
P P Q Q P P Q Q× = + = ⋅ + ⋅ =2 2

3
2 0

1
0 1

2
1 1

2
1 4 2 6 1 14( ) ( ) ( ) ( ) .  (6)

For receiving of the composition of the faces in the dimension 2 polytopes 
product we multiply the faces in brackets in the product of the numbers of 
faces, observing the same rules as at the definition of the polytopes product, 
i.e. dimensions are added and the numbers of vertices are multiplied. At that, 
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indexes P and Q are replaced by index ×. Then 14 faces obtained in (6), are 
deciphered so

14 8 6
3
2

4
2= +× ×F F .  (7)

This means that 14 faces of dimension 2 include eight faces F×3
2  (i.e., 

triangles) and six facesF×4
 (i.e., quadrangles). In future, equations similar to 

(6), (7) will be recorded in a single line.
For the faces of dimension 3, we have

f f F f F f F f F F
P P Q Q P P Q Q× ×= + = ⋅ + ⋅ = = +3 3

4
3 0

1
0 2

3
2 1

2
1

4
31 2 4 1 6 2( ) ( ) ( ) ( ) 44

6
3F× . 

Thus, 6 faces of dimension 3 consist of two tetrahedrons P F
4
3

3
24( )  and 

four triangular prismsP F F
6
3

4
2

3
23 2( , ).

For the faces of dimension 4, we have

f f F f F P
P P Q Q× = = ⋅ = =4 3

4
3 1

2
1

8
41 1 1( ) ( ) .  

According to the preceding equation we obtain the structural formula of 
the product

P F Q P P F F F F
4
3

3
2

2
1

8
4

6
3

4
2

3
2

4
3

3
24 4 3 2 2 4( ) [ ( , ), ( )].× =  (8)

Therefore, the product of the tetrahedron by the segment is polytope 4D, 
which includes four triangular prisms and 2 tetrahedrons. You can call a 
polytope (8) tetrahedral prism. The picture of the polytope (8) is shown in 
Figure 1.

Figure 1. Tetrahedral prism
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It is easy to verify that the Euler-Pioncare equation (2) in Chapter 1 for 
the polytope (8) is satisfied

8 – 16 + 14 – 6 = 0. 

In future the verification of the Euler – Pioncare (Pioncare, 1895) equation 
satisfaction is omitted, as a reader can easily do it on his own.

The Product of a Cube by a Segment

The structural formula of a cube is P F
8
3

4
26( ) . It is necessary to find a structural 

formula of the productP F Q
8
3

4
2

2
16( )× . According to theorem 1 and formulas 

(5), we find

f f f
P Q× =

0 0 0 = 8 ˑ 2 = 16, 

f f f
P Q× = +1 1 0 f f

P Q
0 1 12 2 8 1 32= ⋅ + ⋅ = , . 

f f F f F f F f F F
P Q Q P P Q Q× ×= + = ⋅ + ⋅ = =2 2

4
2 0

1
0 1

2
1 1

2
1

4
6 2 12 1 24 24( ) ( ) ( ) ( ) 22 ,  

f f F f F f F f F F
P P Q Q P P Q Q× ×= + = ⋅ + ⋅ = =3 3

8
2 0

1
0 2

4
2 1

2
1

8
31 2 6 1 8 8( ) ( ) ( ) ( ) ,  

f f F f F P F
P P Q Q× = = ⋅ = =4 3

8
3 1

2
1

16
4

8
31 1 1 8( ) ( ) ( ).  (9)

Thus, we see that the product of a cube by a segment is 4D – cube 
(hypercube) containing 8 cubes.

The Product of an Octahedron by a Segment

The structural formula of an octahedron isP F
6
3

4
28( ) . It is necessary to find a 

structural formula of the productP F Q
6
3

3
2

2
18( )× . According to theorem 1 and 

formulas (5), we find

f f f
P Q× =

0 0 0 = 6 ˑ 2 = 12, 
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f f f
P Q× = +1 1 0 f f

P Q
0 1 6 1 12 2 30= ⋅ + ⋅ = , . 

f f F f F f F f F F
P P Q Q P P Q Q× ×= + = ⋅ + ⋅ = =2 2

3
2 0

1
0 1

2
1 1

2
1 8 2 12 1 28 16( ) ( ) ( ) ( )

33
2

4
212+ ×F ,  

f f F f F f F f F F F F
P P Q Q P P Q Q× ×= + =3 3

6
2 0

1
0 2

3
2 1

2
1

6
3

4
2

3
28 3 2( ) ( ) ( ) ( ) ( , )++ ×2 8

6
3

3
2F F( ),  

f f F f F P
P P Q Q× = = ⋅ = =4 3

6
3 1

2
1

12
41 1 1( ) ( ) .  

According to the last equality we obtain the structural formula of the product

P F Q P F F F F F
6
3

3
2

2
1

12
4

6
3

4
2

3
2

6
3

3
28 8 3 2 2 8( ) [ ( , ), ( )].× =  (10)

Thus, the product of an octahedron by a segment is a polytope 4D, which 
includes 8 triangular prisms and two octahedrons. You can call the polytope 
(10) an octahedral prism.

The Product of an Icosahedron by a Segment

The structural formula of an icosahedron isP F
12
3

3
220( ) . It is necessary to find 

the structural formula of the product P F Q
12
3

3
2

2
120( )× . According to theorem 

1 and formulas (5), we find f f f
P Q× =

0 0 0  = 12 ˑ 2 = 24,

f f f
P Q× = +1 1 0 f f

P Q
0 1 30 2 12 1 72= ⋅ + ⋅ = ,  

f f F f F f F f F F
P P Q Q P P Q Q× = + = ⋅ + ⋅ = =2 2

3
2 0

1
0 1

2
1 1

2
1 20 2 30 1 70 40( ) ( ) ( ) ( ) ×× ×+

3
2

4
230F ,  

f f F f F f F f F

F
P P Q Q P P Q Q× = + =

⋅ + ⋅ = =

3 3
12
2 0

1
0 2

3
2 1

2
1

1 2 20 1 22 20

( ) ( ) ( ) ( )

×× ×+
6
3

4
2

3
2

12
33 2 2( , ) ,F F F

 

f f F f F P
P P Q Q× = = ⋅ = =4 3

12
3 1

2
1

24
41 1 1( ) ( ) .  

According to the last equality, we obtain the structural formula of the 
product
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P F Q P F F F F F
12
3

3
2

2
1

24
4

6
3

4
2

3
2

12
3

3
220 20 3 2 2 20( ) [ ( , ), ( )].× =  (11)

Thus, the product of an icosahedron by a segment is a polytope 4D, which 
includes 20 triangular prisms and 2 icosahedrons. You can call a polytope 
(11) icosahedral prism.

The Product of a Dodecahedron on a Segment

The structural formula of a dodecahedron isP F
20
3

5
212( ) . It is necessary to find 

the structural formula of productP F Q
20
3

5
2

2
112( )× . According to theorem 1 and 

formulas (5), we find

f f f
P Q× =

0 0 0 = 20 ˑ 2 = 40, 

f f f
P Q× = +1 1 0 f f

P Q
0 1 30 2 20 1 80= ⋅ + ⋅ = ,  

f f F f F f F f F F
P P Q Q P P Q Q× = + = ⋅ + ⋅ = =2 2

5
2 0

1
0 1

2
1 1

2
1 12 2 30 1 54 24( ) ( ) ( ) ( ) ×× ×+

5
2

4
230F ,  

f f F f F f F f F

F
P P Q Q P P Q Q× = + =

⋅ + ⋅ = =

3 3
20
2 0

1
0 2

5
2 1

2
1

1 2 12 1 14 12

( ) ( ) ( ) ( )

×× ×+
10
3

4
2

5
2

20
3

5
25 2 2 12( , ) ( ),F F F F

 

f f F f F P
P P Q Q× = = ⋅ = =4 3

20
3 1

2
1

40
41 1 1( ) ( ) .  

According to the last equality, we obtain the structural formula of the 
product

P F Q P F F F F F
20
3

5
2

2
1

40
4

10
3

4
2

5
2

20
3

5
212 12 5 2 2 12( ) [ ( , ), ( )].× =  (12)

Thus, the product of a dodecahedron by a segment is a polytope 4D including 
12 pentagonal prisms and 2 dodecahedrons. You can call the polytope (12) 
a dodecahedral prism.
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The Product of an Egyptian Pyramid by a Segment

The structural formula of an Egyptian pyramid isP F
5
3

3
2

4
24( , F ) . It is necessary 

to find the structural formula of productP F Q
5
3

3
2

4
2

2
14( , F )× . According to 

theorem 1 and formulas (5), we find

f f f
P Q× =

0 0 0 = 5 ˑ 2 = 10, 

f f f
P Q× = +1 1 0 f f

P Q
0 1 5 1 8 2 21= ⋅ + ⋅ = ,  

f f F f F f F f F
P P P Q Q P P Q Q× = + =

⋅ + ⋅ =

2 2
3
2

4
2 0

1
0 1

2
1 1

2
14

5 2 8 1 18

( ,F ) ( ) ( ) ( )

== +× ×8 10
3
2

4
2F F ,

 

f f F f F f F f F
P P Q Q P P P Q Q× = +

= ⋅ + ⋅ = =

3 3
5
2 0

1
0 2

3
2

4
2 1

2
1

1 2 5 1 7 2

( ) ( ) ( ,F ) ( )

FF F F× × ×+ +
5
3

6
2

8
34 ,

 

f f F f F P
P P Q Q× = = ⋅ = =4 3

5
3 1

2
1

10
41 1 1( ) ( ) .  

According to the last equality, we obtain the structural formula of the 
product

P F Q P F F F F F
5
3

3
2

4
2

2
1

10
4

6
3

4
2

3
2

8
3

4
2

5
3

3
24 4 3 2 6 2 4( ,F ) [ ( , ), ( ), F ( F× = ,, F )].

4
2  

Thus, the product of an Egyptian pyramid by segment is a polytope 4D 
including four triangular prisms, 1 quadrangular prism and 2 Egyptian 
pyramids. You can call the polytope a pyramidal prism.

The Product of a 4D - Simplex by a Segment

The structural formula of a 4D-simplex isP F F
5
3

4
3

3
25 4[ ( )]. It is necessary to 

find the structural formula of the productP F F Q
5
3

4
2

3
2

2
15 4[ ( )]× . According to 

theorem 1 and formulas (5), we find f f f
P Q× =

0 0 0  = 5 ˑ 2 = 10,

f f f
P Q× = +1 1 0 f f

P Q
0 1 10 2 5 1 25= ⋅ + ⋅ = ,  
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f f F f F f F f F F
P P Q Q P P Q Q× = + = ⋅ + ⋅ = =2 2

3
2 0

1
0 1

2
1 1

2
1 10 2 10 1 30 20( ) ( ) ( ) ( ) ×× ×+

3
2

4
210F ,  

f f F f F f F f F

F
P P Q Q P P Q Q×

×

= + =

⋅ + ⋅ = =

3 3
4
2 0

1
0 2

3
2 1

2
1

5 2 10 1 20 10

( ) ( ) ( ) ( )

44
3

3
2

6
2

4
2

3
24 10 3 2( ) ( , ),F F F F+ ×

 

f f F F f F f F f F
P P Q Q P P Q Q× = + = ⋅ + ⋅ =4 4

4
3

3
3 0

1
0 2

4
2 1

2
15 4 1 2 5 1 7[ ( )] ( ) ( ) ( ) ==

+× ×5 4 3 2 2 4 2 5 4
8
4

6
3

4
2

3
2

4
3

3
2

5
2

4
3

3
2F F F F F F F F F[ ( , ), ( )] [ ( )],

 

f f F f F P
P P Q Q× = = ⋅ = =5 4

5
3 1

2
1

10
51 1 1( ) ( ) .  

According to the last equality, we obtain the structural formula of the 
product

P F F Q P F F F F F F
5
3

4
3

3
2

2
1

10
4

8
4

6
3

4
2

3
2

4
3

3
25 4 5 4 3 2 2 4[ ( )] { [ ( , ), ( )],× = 22 5 4

5
4

4
3

3
2F F F[ ( )]}.  

(13)

Thus, the product of a 4D-simplex by a segment is a polytope 5D including 
5 tetrahedral prisms (8) and 2 4-simplexes. We can call the polytope (13) a 
5-simplex-prism. The image of 5 -simplex-prism is shown in Figure 2.

The Product of a 4D-Cross-Polytope by a Segment

The structural formula of a 4D-cross-polytope isP F F
8
3

4
3

3
216 4[ ( )]. It is necessary 

to find the structural formula of the productP F F Q
8
3

4
2

3
2

2
116 4[ ( )]× . According 

to theorem 1 and formulas (5), we find

Figure 2. 5-simplex-prism
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f f f
P Q× =

0 0 0 = 8 ˑ 2 = 16, 

f f f
P Q× = +1 1 0 f f

P Q
0 1 24 2 8 1 56= ⋅ + ⋅ = , . 

f f F f F f F f F F
P P Q Q P P Q Q× = + = ⋅ + ⋅ = =2 2

3
2 0

1
0 1

2
1 1

2
1 32 2 24 1 88 64( ) ( ) ( ) ( ) ×× ×+

6
2

4
224F ,  

f f F f F f F f F

F
P P Q Q P P Q Q× = + = ⋅ + ⋅ =

=

3 3
4
2 0

1
0 2

3
2 1

2
1 16 2 32 1

64 32

( ) ( ) ( ) ( )

×× ×+
4
3

3
2

6
2

4
2

3
24 32 3 2( ) ( , ),F F F F

 

f f F F f F f F f F
P P Q Q P P Q Q× = + = ⋅4 4

8
4

4
3

3
3 0

1
0 2

4
2 1

2
116 4 1 2{F [ ( )]} ( ) ( ) ( ) ++ ⋅ = =

+× ×

16 1 18

16 4 3 2 2 4 2 16 4
8
4

6
3

4
2

3
2

4
3

3
2

8
2

4
3F F F F F F F F[ ( , ), ( )] [ ( FF

3
2)],

 

f f F F f F P
P Q Q× = = ⋅ = =5 4

4
3

4
3

3
3 1

2
1

16
516 4 1 1 1{F [ ( ) ( ) .  

According to the last equality, we obtain the structural formula of the 
product

P F F F Q

P F F F F F
5
3

8
3

4
3

3
2

2
1

16
4

8
4

6
3

4
2

3
2

4
3

5 16 4

16 4 3 2 2

[ [ ( )]

{ [ ( , ), (

× =

44 2 16 4
3
2

8
4

4
3

3
2F F F F)], [ ( )]}.

 (14)

Thus, the product of a 4D-cross-polytope by a segment is a polytope 5D 
including 16 tetrahedral prisms (8) and 2 4-cross-polytopes. We can call the 
polytope (14) a 5-cross-prism.

The General Structural Formula of 
Polytopes Product by a Segment

We’ll call prisms with bases in the form of polytopes the polytopic prisms.

Theorem 2

The product of a polytope by a segment, if all its faces of dimension 2 are 
equal, is a polytopic prism with the structure defined by equation
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P f F F f F Q

P f F
K
n

n K
n

K K

K
n

n

n n

n

{ ...[f ( )]...}

{

−
−

+
−

−
× =1

1

3

3

2

2

2

1

2

1

1

1 3 2

22 3 2

4

2 2

3 2 3

1 3 2 2 3
2 2 2K

n
K K K K K

n
n n

f F f F F F F
−
...[ ( , ) ]... }.

 (15)

TherePK
n
n
is the polytope of dimension n with the number of vertices 

Kn ;FK
n
n−

−
1

1  are hyper-faces with the number fn−1 , each having Kn−1  vertices; 
accordingly FK2

2 are hyper-faces of dimension 2 at facesF fK3
3

2;  is the number 
of faces FK2

2  with the number of vertices K2  and so on; P K
n
n2

1+ is a polytopic 
prism of dimension n+1 with the number of vertices 2Kn , the bases of which 
are the polytopes PK

n
n
. The polytopic prism P K

n
n2

1+  includes fn−1  polytopic 
prisms of dimension n and the number of the vertices 2Kn−1 , and also two 
polytopesPK

n
n
 which are the bases of polytopic prisms and so on, up to prisms 

F K2
3

2
 with a number f2  and with bases FK2

2 .

Proof

Theorem 1 follows from the carried out examinations of the product of 
polytopes of different dimensions by a segment. General laws which allowed 
us to formulate the theorem can be traced in all these products. Whatever the 
dimension n of the polytope was, at multiplying it by a segment of each vertex 
of the polytope, the segment which is multiplied by a polytope as if grows. 
This forms polytopic prism, the bases of which are two copies of the initial 
polytope. The dimension of this polytopic prism is by 1 more than the 
dimension of the initial polytope, i.e. n + 1. This polytopic prism includes 
polytopic prisms built on the hyper-faces of the initial polytope and their 
number is equal to the number of hyper-faces of the initial polytope f

n−1
. The 

dimension of these politopic prisms is n, since the dimension of the initial 
polytope hyper-faces is equal to n - 1, but when multiplied by a segment the 
dimension is increased by 1. In addition, a polytopic prism of dimension n 
+ 1 consists of two copies of the initial polytope of dimension n, as the bases 
of the prism. In its turn, the polytopic prisms of dimension n include the 
polytopic prisms of dimension n -1, built on the hyper-faces of the polytope 
of dimension n - 1, and two copies of the polytope of dimension n - 1. This 
process of the polytopic prisms inclusion in each other happens until the 
formation of three-dimensional prisms built on two-dimensional facets of 
the initial polytope.
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The equality (15) is an analytical expression of these constructions. This 
process of formation occurs when all two-dimensional faces of the initial 
polytope are the same, i.e. they are equal polygons. If the initial polytope has 
two-dimensional faces with different numbers of vertices so the analytical 
record of these polytopes product by a segment will be added by prisms built 
on different bases. The ratios (15) don’t include such options of polytopic 
prisms.

Theorem 2 it is proved.
Supplement. Values of f

i
 in (15) depend on the form and dimension of 

the polytope. According to Zhizhin (2014) the formulas for their calculation 
in the case of a simplex, cube and cross-polytope will be the following: for 
simplex f C i

i i
i= = ++1 1;  for cube f C i

i i
i= =−2 21 ;  for cross-polytope

f i f
i

i= > =2 3 4
3

, , .

Naturally, the results of research about products of polytopes by a segment 
are to be taken into account when analyzing the products of polytopes by 
more complex figures, since they all have edges are factors in these products.

THE PRODUCTS OF POLYTOPES BY A TRIANGLE

The Product of a Triangle by a Triangle

There we consider the product P Q
3
2

3
2× . According to theorem 1 and ratios 

(5) we have

f f f
P Q× =

0 0 0 = 3 ˑ 3 = 9, 

f f f
P Q× = +1 1 0 f f

P Q
0 1 3 3 3 3 18= ⋅ + ⋅ = , . 

f f F f F f F f F f F f F
P P Q Q P P Q Q P P Q Q× = + +2 2

3
2 0

1
0 1

2
1 1

2
1 0

1
0 24( ) ( ) ( ) ( ) ( ) (

33
2

3
2

4
21 3 3 3 3 1 15 6 9

)

,

=

⋅ + ⋅ + ⋅ = = +× ×F F
 

f f F f F f F f F F
P P Q Q P P Q Q× ×= + = ⋅ + ⋅ = =3 3

3
2 1

2
1 1

2
1 2

3
2

6
31 3 3 1 6 6( ) ( ) ( ) ( ) ,  

f f F f F P
P P Q Q× ×= = ⋅ = =4 2

3
2 2

3
2

9
41 1 1( ) ( ) .  
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Thus, the product of a triangle by a triangle is 4D-polytope having 9 
vertices and 6 triangle prisms. The existence of such polytope was proved 
of Ziegler (1995) independently.

In particular, the fundamental difference between this polytope and 
simplicial polytopes and between this polytope and three-dimensional 
polyhedrons because of its multidimensionality is indicated of Ziegler (1995). 
The structural formula of this polytope (the triangular prismahedron) has 
the form

P F Q F P P F F
P Q3

2
3
2

3
2

3
2

9
4

6
3

4
2

3
26 3( ) ( ) [ ( , )].× =  (16)

The image of a triangular prismahedron (Zhizhin, 2017) is shown in 
Figure 3.

The Product of a Polygon by a Triangle

According to theorem 1 and ratios (5) for the product P F Q F
i Pi Q
2 2

3
2

3
2( ) ( )×  (i is 

the number of the polygon sides) we have

f f f
P Q× =

0 0 0 = i ˑ 3 = 3i, 

f f f
P Q× = +1 1 0 f f i i i

P Q
0 1 3 3 6= ⋅ + ⋅ = , . 

Figure 3. The triangular prismahedron
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f f F f F f F f F f F f F
P Pi Q Q P P Q Q P P Q Q× = + +2 2 2 0

1
0 1

2
1 1

2
1 0

1
0 2

3
( ) ( ) ( ) ( ) ( ) ( 22

2
4
2

3
21 3 3 1 3 4 3 3

)

,

=

⋅ + ⋅ + ⋅ = + = + +× × ×i i i F iF iF
i

 

f f F f F f F f F i i iF
P Pi Q Q P P Q Q× ×= + = ⋅ + ⋅ = + =3 3 2 1

2
1 1

2
1 2

3
2

6
1 3 1 3( ) ( ) ( ) ( ) 33

2
33+ ×F i
,  

f f F f F P
P Pi Q Q i× ×= = ⋅ = =4 2 2 2

3
2

3
41 1 1( ) ( ) .  

Thus, the product of the polygon F
i
2     by the triangle F

3
2  is a 4-polytope 

having 3i vertices, 3 prisms with bases F
i
2  and i prisms with triangle bases. 

The structural formula of this product has the form

P F Q F P F F F F F F
i Pi Q i i
3 2

3
2

3
2

3
4

2
3

4
2

3
2

6
3

4
2

3
23 2 3 2( ) ( ) [ (i , ), i ( , )]× = ..  (17)

Examples of products of a square, a pentagon and a hexagon by a triangle 
are shown in Figures 4 – 6.

Figure 4. The 4*3 – angular prismahedron
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Figure 5. The 5*3 – angular prismahedron

Figure 6. The 6*3 – angular prismahedron
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The polytope (17) is a generalization of the polytope (16) in the case 
when one of the multiplied polygons has the number of sides greater than 3. 
This polytope in the general case can be called 3 *i - angular prismahedron. 
Therefore, the polytope (16) can be more accurately described as 3*3 - angular 
prismahedron.

The Product of a Tetrahedron by a Triangle

According to theorem 1 and ratios (5) for the numbers of elements of different 
dimension in the product P F Q

4
2

3
2

3
24( )×  we have

f f f
P Q× =

0 0 0 = 4 ˑ 3 = 12, 

f f f
P Q× = +1 1 0 f f

P Q
0 1 6 3 3 4 30= ⋅ + ⋅ = , . 

f f F f F f F f F f F f F
P P Q Q P P Q Q P P Q Q× = + +2 2

3
2 0

1
0 1

2
1 1

2
1 0

1
0 2

3
( ) ( ) ( ) ( ) ( ) ( 22

3
2

4
24 1 6 3 4 1 26 8 18

)

,

=

⋅ + ⋅ + ⋅ = = +× ×F F
 

f f F f F f F f F f F f F
P P Q Q P P Q Q P P Q Q× = + +3 3

4
2 0

1
0 2

3
2 1

2
1 1

2
1 2

3
( ) ( ) ( ) ( ) ( ) ( 22

6
3

4
31 3 4 1 6 1 21 18 3

)

,

=

⋅ + ⋅ + ⋅ = = +× ×F F
 

f f F f F f F f F F
P P Q Q P P Q Q× ×= + = ⋅ + ⋅ = = +4 3

4
3 1

2
1 2

3
2 2

3
2

8
41 3 4 1 7 3( ) ( ) ( ) ( ) 44

9
4F× ,

f f F f F P
P P Q Q× ×= = ⋅ = =5 3

4
3 2

3
2

12
51 1 1( ) ( ) .  

Thus, the product of a tetrahedron by a triangle is a 5-polytope consisting 
from 3 tetrahedron prisms (8) and 4 triangular prismahedrons (16). The 
structural formula of this polytope has the form

P F Q P F F F F F F F F
4
3

3
2

3
2

12
5

9
4

6
3

4
2

3
2

8
4

6
3

4
24 4 6 3 2 2 4 3 2( )] { [ ( , ), [ ( ,× =

33
2

4
3

3
22 4), ( )]}.F F  (18)

We can call the polytope (18) a tetrahedral prismahedron. The image of 
this polytope on a two-dimension plane is shown in Figure 7.
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The Product of an Octahedron by a Triangle

According to theorem 1 and ratios (5) for the numbers of elements of different 
dimension in the product P F Q

6
2

3
2

3
28( )×  we have

f f f
P Q× =

0 0 0 = 6 ˑ 3 = 18, 

f f f
P Q× = +1 1 0 f f

P Q
0 1 12 3 6 3 54= ⋅ + ⋅ = , . 

f f F f F f F f F f F f F
P P Q Q P P Q Q P P Q Q× = + +2 2

3
2 0

1
0 1

2
1 1

2
1 0

1
0 2

3
( ) ( ) ( ) ( ) ( ) ( 22

3
2

4
28 1 12 3 6 1 66 30 36

)

,

=

⋅ + ⋅ + ⋅ = = +× ×F F
 

f f F f F f F f F f F f F
P P Q Q P P Q Q P P Q Q× = + +3 3

6
2 0

1
0 2

3
2 1

2
1 1

2
1 2

3
( ) ( ) ( ) ( ) ( ) ( 22

6
3

4
2

3
2

6
3

3
21 3 8 3 12 1 39 36 3 2 3 8

)

( , ) ( ),

=

⋅ + ⋅ + ⋅ = = +× ×F F F F F
 

Figure 7. The tetrahedral prismahedron
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f f F F f F f F f F
P P Q Q P P Q Q× = + = ⋅ + ⋅ =4 3

6
3

3
2 1

2
1 2

3
2 2

3
28 1 3 8 1 11[ ( )] ( ) ( ) ( )

== +× ×3 8 3 2 2 8 8 6 3 2
12
4

6
3

4
2

3
2

6
3

3
2

9
4

6
3

4
2

3
2F F F F F F F F F F[ ( , ), ( )] [ ( , )]],

f f F F f F P
P P Q Q× ×= = ⋅ = =5 3

6
3

3
2 2

3
2

18
58 1 1 1[ ( )] ( ) .  

Thus, the product of an octahedron by a triangle is a 5-polytope including 
8 3*3-angular prismahedrons (16) and 3 octahedral prisms (10).

The structural formula of the polytope P
18
5  has the form

P F Q P F F F F F F F
6
3

3
2

3
2

18
5

9
4

6
3

4
2

3
2

12
3

6
3

4
28 8 6 3 2 3 8 3 2( )] { [ ( , ), [ ( ,× = FF F F

3
2

6
3

3
22 8), ( )]}.  (19)

We can call the polytope (19) an octahedral prismahedron. The image of 
the polytope P18

5  is shown in Figure 8.

The Product of a Cube by a Triangle

According to theorem 1 and ratios (5) for the numbers of elements of different 
dimension in the product P F Q

8
2

4
2

3
26( )×  we have

f f f
P Q× =

0 0 0 = 8 ˑ 3 = 24, 

f f f
P Q× = +1 1 0 f f

P Q
0 1 12 3 8 3 60= ⋅ + ⋅ = , . 

Figure 8. The octahedral prismahedron
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f f F f F f F f F f F f F
P P Q Q P P Q Q P P Q Q× = + +2 2

4
2 0

1
0 1

2
1 1

2
1 0

1
0 2

3
( ) ( ) ( ) ( ) ( ) ( 22

3
2

4
26 3 12 3 8 1 62 8 54

)

,

=

⋅ + ⋅ + ⋅ = = +× ×F F
 

f f F f F f F f F f F f F
P P Q Q P P Q Q P P Q Q× = + +3 3

8
2 0

1
0 2

4
2 1

2
1 1

2
1 2

3
( ) ( ) ( ) ( ) ( ) ( 22

8
3

6
31 3 6 3 12 1 33 21 12

)

,

=

⋅ + ⋅ + ⋅ = = +× ×F F
 

f f F f F f F f F

F
P P Q Q P P Q Q× = + = ⋅ + ⋅ =

= +

4 3
8
3 1

2
1 2

3
2 2

3
2

16
4

1 3 6 1 9

3

( ) ( ) ( ) ( )

66
12
4F ,

 

f f F f F P
P P Q Q× ×= = ⋅ = =5 3

8
3 2

3
2

24
51 1 1( ) ( ) .  

Thus, the product of a cube by a triangle is a 5 - polytope including 3 
hyper-cubes (9) and 6 3*4-angular prismahedrons (17).

The structural formula of the polytope P
24
5  has the form

P F F F F F F F F F
24
5

16
4

4
2

12
4

8
3

4
2

3
2

6
3

4
2

3
23 80 6 3 4 2 4 3 2{ ( ), [ ( , ), ( , )]}.  (20)

We can call the polytope (20) a cube-polytopic prismahedron. The image 
of the polytopeP

24
5  is shown in Figure 9.

The Product of a Dodecahedral by a Triangle

According to theorem 1 and ratios (5) for the numbers of elements of different 
dimension in the productP F Q

20
3

5
2

3
212( )×  we have

Figure 9. The cube-polytopic prismahedron
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f f f
P Q× =

0 0 0 = 20 ˑ 3 = 60, 

f f f
P Q× = +1 1 0 f f

P Q
0 1 30 3 20 3 150= ⋅ + ⋅ = , . 

f f F f F f F f F f F f F
P P Q Q P P Q Q P P Q Q× = + +2 2

5
2 0

1
0 1

2
1 1

2
1 0

1
0 2

3
( ) ( ) ( ) ( ) ( ) ( 22

5
2

4
2

3
212 3 30 3 20 1 146 36 90 20

)

,= ⋅ + ⋅ + ⋅ = = + +× × ×F F F
 

f f F f F f F f F f F f F
P P Q Q P P Q Q P P Q Q× = + +3 3

20
3 0

1
0 2

5
2 1

2
1 1

2
1 2( ) ( ) ( ) ( ) ( ) (

33
2

20
3

10
3

6
31 3 12 3 30 1 69 3 36 30

)

,= ⋅ + ⋅ + ⋅ = = + +× × ×F F F
 

f f F f F f F f F

F
P P Q Q P P Q Q×

×

= + = ⋅ + ⋅ =

=

4 3
20
3 1

2
1 2

5
2 2

3
2 1 3 12 1 15

3

( ) ( ) ( ) ( )

440
4

15
412+ ×F ,

 

f f F f F P
P P Q Q× ×= = ⋅ = =5 3

20
3 2

3
2

60
51 1 1( ) ( ) .  

Thus, the product of a dodecahedron by a triangle is a 5-polytope including 
3 dodecahedral prisms (12) and 12 3*5-angular prismahedrons (17).

The structural formula of the polytope P
60
5  has the form

P F F F F F F F F F
60
5

40
4

10
3

4
2

3
2

20
3

5
2

15
4

10
33 12 5 2 2 12 12 3 5{ [ ( , ), ( )], [ (

44
2

5
2

6
3

4
2

3
22 5 3 2, ), ( , )]}.F F F F  (21)

We can call the polytope (21) a dodeca - polytopic prismahedron.

The Product of an Icosahedron by a Triangle

According to theorem 1 and ratios (5) for the numbers of elements of different 
dimension in the productP F Q

12
3

5
2

3
220( )×  we have

f f f
P Q× =

0 0 0 = 12 ˑ 3 =36, 

f f f
P Q× = +1 1 0 f f

P Q
0 1 30 3 12 3 126= ⋅ + ⋅ = , . 
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f f F f F f F f F f F f F
P P Q Q P P Q Q P P Q Q× = + +2 2

3
2 0

1
0 1

2
1 1

2
1 0

1
0 2

3
( ) ( ) ( ) ( ) ( ) ( 22

4
2

3
220 3 30 3 12 1 162 90 72

)

,= ⋅ + ⋅ + ⋅ = = +× ×F F
 

f f F f F f F f F f F f F
P P Q Q P P Q Q P P Q Q× = + +3 3

12
3 0

1
0 2

3
2 1

2
1 1

2
1 2( ) ( ) ( ) ( ) ( ) (

33
2

12
3

6
31 3 20 3 30 1 93 3 90

)

,= ⋅ + ⋅ + ⋅ = = +× ×F F
 

f f F f F f F f F

F
P P Q Q P P Q Q×

×

= + = ⋅ + ⋅ =

=

4 3
12
3 1

2
1 2

3
2 2

3
2 1 3 20 1 23

3

( ) ( ) ( ) ( )

224
4

9
420+ ×F ,

 

f f F f F P
P P Q Q× ×= = ⋅ = =5 3

12
3 2

3
2

36
51 1 1( ) ( ) .  

Thus, the product of an icosahedron by a triangle is a 5-polytope including 
3 icosahedral prisms (11) and 20 3*3-angular prismahedrons (17).

The structural formula of the polytopeP
36
5  has the form

P F F F F F F F F F
36
5

9
4

6
3

4
2

3
2

24
4

6
3

4
2

3
2

12
320 6 3 2 3 20 3 2 2 2{ [ ( , )], [ ( , ), ( 00

3
2F )]}.  (22)

We can call the polytope (22) an icosa - polytopic prismahedron.

The Product of a 4-Simplex by a Triangle

According to theorem 1 and ratios (5) for the numbers of elements of different 
dimension in the productP F F Q

5
3

4
3

3
2

3
25 4[ ( )]×  we have

f f f
P Q× =

0 0 0 = 5 ˑ 3 = 15, 

f f f
P Q× = +1 1 0 f f

P Q
0 1 10 3 5 3 45= ⋅ + ⋅ = ,  

f f F f F f F f F f F f F
P P Q Q P P Q Q P P Q Q× = + +2 2

3
2 0

1
0 1

2
1 1

2
1 0

1
0 2

3
( ) ( ) ( ) ( ) ( ) ( 22

4
2

3
210 3 10 3 5 1 65 30 35

)

,= ⋅ + ⋅ + ⋅ = = +× ×F F
 

f f F f F f F f F f F f F
P P Q Q P P Q Q P P Q Q× = + +3 3

4
3 0

1
0 2

3
2 1

2
1 1

2
1 2

3
( ) ( ) ( ) ( ) ( ) ( 22

4
3

6
35 3 10 3 10 1 55 15 40

)

,= ⋅ + ⋅ + ⋅ = = +× ×F F
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f f F f F f F f F f F f F
P P Q Q P P Q Q P P Q Q× = + +4 4

5
4 0

1
0 3

4
3 1

2
1

3
2 2 2

3
( ) ( ) ( ) ( ) ( ) ( 22

5
4

8
4

9
41 3 5 3 10 1 28 3 15 10

)

,= ⋅ + ⋅ + ⋅ = = + +× × ×F F F
 

f f F f F f F f F

F
P P Q Q P P Q Q×

×

= + = ⋅ + ⋅ =

=

5 4
5
4 1

2
1 3

4
3 2

3
2

10
5

1 3 5 1 8

3

( ) ( ) ( ) ( )

++ ×5 12
5F ,

 

f f F f F P
P P Q Q× ×= = ⋅ = =6 4

5
4 2

3
2

15
61 1 1( ) ( ) .  

Thus, the product of a 4-simplex by a triangle is a 6-polytope including 
3 5-simplex-polytopic prisms (13) and 5 tetrahedral prismahedrons (18).

The structural formula of the polytope P
15
6  has the form

P F F F F F F F F F F
15
6

10
5

8
4

4
3

4
2

3
2

4
3

3
2

5
4

4
3

3
23 5 4 3 2 2 4 2 5 4{ [ [ ( , ), ( )], [ ( ))]],

[ [ ( , ), [ ( , ), (5 4 6 3 2 3 4 3 2 2
12
5

9
4

6
3

4
2

3
2

8
4

6
3

4
2

3
2

4
3F F F F F F F F F F 44

3
2F )]]}.

 (23)

We can call the polytope (23) a 6-simplex-polytopic prismahedron. The 
image of this polytope is shown in Figure 10.

The Product of a 4-Cross-Polytope by a Triangle

According to theorem 1 and ratios (5) for the numbers of elements of different 
dimension in the productP F F Q

8
3

4
3

3
2

3
216 4[ ( )]×  we have

Figure 10. The 6-sinplex-polytopic prismahedron
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f f f
P Q× =

0 0 0 = 8 ˑ 3 = 24, 

f f f
P Q× = +1 1 0 f f

P Q
0 1 24 3 8 3 96= ⋅ + ⋅ = ,  

f f F f F f F f F f F f F
P P Q Q P P Q Q P P Q Q× = + +2 2

3
2 0

1
0 1

2
1 1

2
1 0

1
0 2

3
( ) ( ) ( ) ( ) ( ) ( 22

4
2

3
232 3 24 3 8 1 176 72 104

)

,= ⋅ + ⋅ + ⋅ = = +× ×F F
 

f f F f F f F f F f F f F
P P Q Q P P Q Q P P Q Q× = + +3 3

4
3 0

1
0 2

3
2 1

2
1 1

2
1 2

3
( ) ( ) ( ) ( ) ( ) ( 22

4
3

6
316 3 32 3 24 1 168 48 120

)

,= ⋅ + ⋅ + ⋅ = = +× ×F F
 

f f F f F f F f F f F f F
P P Q Q P P Q Q P P Q Q× = + +4 4

8
4 0

1
0 3

4
3 1

2
1

3
2 2 2

3
( ) ( ) ( ) ( ) ( ) ( 22

8
4

9
41 3 16 3 32 1 83 51 32

)

,= ⋅ + ⋅ + ⋅ = = +× ×F F
 

f f F f F f F f F

F
P P Q Q P P Q Q×

×

= + = ⋅ + ⋅ =

=

5 4
8
4 1

2
1 3

4
3 2

3
2

1

1 3 16 1 19

3

( ) ( ) ( ) ( )

66
5

12
516+ ×F ,

 

f f F f F P
P P Q Q× ×= = ⋅ = =6 4

8
4 2

3
2

24
61 1 1( ) ( ) .  

Thus, the product of a 4-cross-polytope by a triangle is a 6-polytope 
including 3 5-crosspolytopic prisms (10) and 16 tetrahedral prismahedrons (3).

The structural formula of the polytope P
24
6  has the form

P F F F F F F F F F F
24
6

16
5

8
4

6
3

4
2

3
2

4
3

3
2

8
4

4
33 16 4 3 2 2 4 2 16 4{ [ [ ( , ), ( )], [ (

33
2

12
5

9
4

6
3

4
2

3
2

8
4

6
3

4
2

3
216 4 6 3 2 3 4 3 2 2

)]],

[ [ ( , ), [ ( , ),F F F F F F F F F F
44
3

3
24( )]]}.F

 

We can call the polytope a 6-cross - polytopic prismahedron.

The General Structural Formula for the 
Product of Polytopes by a Triangle

If we pay attention to a polytope taking into account its dimensions and the 
number of vertices and the number of its facets and the number of vertices 
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of every facet, we can prove the general rule of changing these parameters 
of a polytope for its multiplication by a triangle.

Theorem 3

Let’s assume that a convex polytope of dimension n, with the number of 
vertices m, has a number of facets ν with vertex number k for every facet. 
Then its product by a triangle is defined by the equation

P F Q P F F
m
n

k
n

m
n

k
n

m
n( ) ( , ).ν ν− + + +× =1

3
2

3
2

3
1

2
13  (24)

Proof

When multiplying the polytope P
m
n  by the triangle Q

3
2  the number of vertices 

of the polytope is multiplied by 3, since the triangle has 3 edges and each 
edge at this multiplication translates polytope vertices in its direction. At that 
the dimension of the polytope naturally, according to the definition (Ziegler, 
1995), is increased by two. Thus, we’ll get a polytopeP

m
n
3
2+ . If we multiply 

the polytope by the triangle, its facets F
k
n−1 are multiplied by the triangle also. 

The number of these facets of the product is equal to the number of facets of 
the polytopeP

m
n , i.e. it is equal to ν. In addition, at the multiplication by the 

triangle the polytope P
m
n  is multiplied by each edge (i.e. multiplication by 

Q
2
1  3 times). Therefore, 3 facets F

m
n
2
1+  more appear as facets of the polytope 

P
m
n
3
2+ . It is easy to make sure that all the considered above products of the 

polytopes by the triangle satisfy the equality (24).
Theorem 3 is proved.

Corollary

If the polygon Q
t
2  with the number of vertices t is the polytope factor in (24), 

the equation (24) can be rewritten as

P F Q P F F
m
n

k
n

t tm
n

tk
n

m
n( ) ( , t ).ν ν− + + +× =1 2 2 1
2
1  (25)
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As an example, the result of the product of a tetrahedron by a square is 
given in Figure 11.

THE PRODUCTS OF POLYTOPES BY A TETRAHEDRON

The Product of a Tetrahedron by a Tetrahedron

According to theorem 1 and ratios (5) for the numbers of elements of different 
dimension in the productP F Q F

4
3

3
2

3
2

3
24 4( ) ( )×  we have

f f f
P Q× =

0 0 0 = 4 ˑ 4 = 16, 

f f f
P Q× = +1 1 0 f f

P Q
0 1 6 4 4 6 48= ⋅ + ⋅ = ,  

f f F f F f F f F f F f F
P P Q Q P P Q Q P P Q Q× = + +2 2

3
2 0

1
0 1

2
1 1

2
1 0

1
0 2

3
( ) ( ) ( ) ( ) ( ) ( 22

4
2

3
24 4 6 4 4 4 68 36 32

)

,= ⋅ + ⋅ + ⋅ = = +× ×F F
 

Figure 11. The product of a tetrahedron by a square
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f f F f F f F f F f F f F
P P Q Q P P Q Q P P Q Q× = + +3 3

4
3 0

1
0 2

3
2 1

2
1 1

2
1 2

3
( ) ( ) ( ) ( ) ( ) ( 22 0

1
0 3

4
3

4
3

6
31 4 4 6 6 4 4 1 56 8 48

) ( ) ( )

,

+

= ⋅ + ⋅ + ⋅ + ⋅ = = +× ×

f F f F

F F
P P Q Q  

f f F f F f F f F f F f F
P P Q Q P P Q Q P P Q Q× = + +4 3

4
3 1

1
1 2

3
2 2

3
2 1

2
1 3

4
( ) ( ) ( ) ( ) ( ) ( 33

8
4

9
41 6 4 4 6 1 28 12 16

)

,= ⋅ + ⋅ + ⋅ = = +× ×F F
 

f f F f F f F f F F
P P Q Q P P Q Q× ×= + = ⋅ + ⋅ = =5 3

4
3 2

3
2 2

3
2 3

4
3

12
51 4 4 1 8 8( ) ( ) ( ) ( ) ,,  

f f F f F P
P P Q Q× ×= = ⋅ = =6 3

4
3 2

4
3

16
61 1 1( ) ( ) .  

Thus, the product of a tetrahedron by a tetrahedron is a 6-polytope including 
8 tetrahedral prismahedrons (18).

The short structural formula of the polytope P
16
6  has the form

P F
16
6

12
58( ) . (26)

The image of this polytope is shown in Figure 12.

Figure 12. The product of a tetrahedron by a tetrahedron
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We can call the polytope (26) a 6-complex of tetrahedral prismahedrons.

The Product of an Octahedron by a Tetrahedron

According to theorem 1 and ratio (5) for the numbers of elements of different 
dimension in the product P F Q F

P Q6
3

3
2

4
3

3
28 4( ) ( )×  we have

f f f
P Q× =

0 0 0 = 6 ˑ 4 = 24, 

f f f
P Q× = +1 1 0 f f

P Q
0 1 12 4 6 6 84= ⋅ + ⋅ = ,  

f f F f F f F f F f F f F
P P Q Q P P Q Q P P Q Q× = + +2 2

3
2 0

1
0 1

2
1 1

2
1 0

1
0 2

3
( ) ( ) ( ) ( ) ( ) ( 22

4
2

3
28 4 12 6 6 4 128 72 56

)

,= ⋅ + ⋅ + ⋅ = = +× ×F F
 

f f F f F f F f F f F f F
P P Q Q P P Q Q P P Q Q× = + +3 3

6
3 0

1
0 2

3
2 1

2
1 1

2
1 2

3
( ) ( ) ( ) ( ) ( ) ( 22 0

1
0 3

4
3

4
3

6
31 4 8 6 12 4 6 1 106 6 100

) ( ) ( )

,

+

= ⋅ + ⋅ + ⋅ + ⋅ = = +× ×

f F f F

F F
P P Q Q  

f f F f F f F f F f F f F
P P Q Q P P Q Q P P Q Q× = + +4 3

6
3 1

1
1 2

3
2 2

3
2 1

2
1 3

4
( ) ( ) ( ) ( ) ( ) ( 33

8
4

9
4

12
41 6 8 4 12 1 50 12 32 6

)

,= ⋅ + ⋅ + ⋅ = = + +× × ×F F F
 

f f F f F f F f F F
P P Q Q P P Q Q× ×= + = ⋅ + ⋅ = =5 3

6
3 2

3
2 2

3
2 3

4
3

12
1 4 8 1 12 8( ) ( ) ( ) ( ) 55

18
54+ ×F ,  

f f F f F P
P P Q Q× ×= = ⋅ = =6 3

6
3 2

4
3

24
61 1 1( ) ( ) .  

Thus, the product of an octahedron by a tetrahedron is a 6-polytope including 
8 tetrahedral prismahedrons (18) and 4 octahedral polytopic prisms (19).

The short structural formula of the polytope P
24
6  has the form

P F F
24
6

18
5

12
54 8( , ).  (27)

The image of this polytope is shown in Figure 13.
We can call the polytopeP24

6  a 6-complex of tetrahedral prismahedrons 
and octahedral polytopic prisms.
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THE PRODUCT OF POLYTOPES WITH UNIFORM FACETS

Comparing (26) and (27) with equalities defined by theorems 1, 2 we note 
their general structure. This allows us to formulate and prove a general theorem 
on the product of polytopes with uniform facets.

Theorem 4

Let’s assume that we have a convex polytope P of dimension n, with the 
number of vertices m, which has ν facets with the number of vertices k for 
each facet. Let’s also set a convex polytope Q of dimension π, with the number 
of vertices l, having μ facets with the number of vertices λ for every facet. 
Then the product of these polytopes is defined by equation

P F Q F P F F
m
n

k
n

l lm
n

lk
n

m
n( ) ( ) ( , ).ν µ ν µπ

λ
π π π

λ
π− − + + − + −× =1 1 1 1  (28)

Figure 13. The product of an octahedron by a tetrahedron
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Proof

For multiplication of the polytope P
m
n  by the polytope Q

l
π  the number of the 

vertices of polytope P is multiplied by the number of the vertices of polytope 
Q since each vertex of the polytope P at multiplication will correspond to all 
vertices of the polytope Q. The dimension of the product polytope according 
to the definition (Ziegler, 1995) is the sum of the dimensions of polytopes-
factors, i.e. we receive the polytope P

lm
n+π  as the result of the product. 

Multiplication of the polytope P by the polytope Q is accompanied also by 
multiplication of the polytope P facets by the polytope Q. That is why the 
result of this multiplication will be the facets of the polytopes product defined 
according to the same rules, i.e. F

lk
n+ −π 1 . The number of these facets is equal 

to the number of facets of the polytope P, i.e. ν. Besides, in the product of 
the polytopes P and Q there are facets formed by the product of the facets of 
polytope Q by polytope P. These are facets F

lk
n+ −π 1 , their number is equal to 

the number of facets of the polytope Q, i.e. μ. The theorem 4 is proved.
Let’s use theorem 4 for the product of an octahedron by a tetrahedron

P F Q F
P Q6

3
3
2

4
3

3
28 4( ) ( )× =P F F

24
6

18
5

12
54 8( , ).  

The received formula coincides with (27) got after detailed derivation.
It’s easy to verify that all the previous formulas about polytopes product 

are particular cases of the formula (28). Theorem 4 allows to write down at 
once the result of the product of any convex polytopes with uniform faces 
without detailed derivation of this result. Let’s build the multiplication table 
of existing polytopes of dimensions 3 and 4. For comfort of presentation 
the table is divided into a few tables (tables 1 – 4) to cover the products of 
all above-mentioned polytopes. The structure of new formed facets can be 
defined according to already mentioned formulas. The structural formulas 
in the table are given in a short form.

HIERARCHICAL AND TRANSLATIONAL FILLING SPACES

In Chapters 1 and 2 it showed that many molecules have a dimension greater 
than three if they are described in the form of geometric convex figures. Many 
of them have tetrahedral and octahedral coordination. But any substance is not 
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Table 1. Multiplication table of polytopes

Polytopes Tetrahedron Octahedron

Tetrahedron P F
16
6

12
58( )

Octahedron P F F
24
6

18
5

12
54 8( , ) P F

36
6

18
516( )

Cube P F F
32
6

16
5

12
56 4( , ) P F F

48
6

24
5

24
56 8

0 00

( , )

Dodecahedron P F F
80
6

20
5

60
512 8( , ) P F F

120
6

130
5

60
512 8( , )

Icosahedron P F F
48
6

12
5

36
520 4( , ) P F F

72
6

18
5

36
520 8( , )

4-simplex P F F
20
7

16
5

15
55 4( , ) P F F

30
7

24
6

15
65 8

0

( , )

4-cube P F F
64
7

32
6

48
68 4( , ) P F F

96
7

48
6

48
68 8

0 00

( , )

4-cross-polytope P F F
32
7

16
6

24
616 4( , ) P F F

48
7

24
6

24
616 8

0 00

( , )

F F F
24
5

4
2

6
30

= × , F F F
24
5

8
3

3
200

= × , F F F
24
6

4
3

6
30

= × , F F F
24
6

8
4

3
200

= × , 

F F F
48
6

8
3

6
30

= × ,F F F
48
6

16
4

3
200

= × .

Table 2. Multiplication table of polytopes

Polytopes Cube Dodecahedron

Cube P F
64
6

32
512( )

Dodecahedron P F F
160
6

40
5

80
512 6( , ) P F

400
6

100
524( )

Icosahedron P F F
96
6

24
5

48
520 6( , ) P F F

240
6

60
5

60
520 12

0 00

( , )

4-simplex P F F
40
7

32
6

20
65 6

0

( , ) P F F
160
7

80
6

40
616 12( , )

4-cube P F F
128
7

32
6

64
66 8

0

( , ) P F F
320
7

160
6

80
68 12( , )

F F F
32
6

4
3

8
30

= × , F F F
32
6

8
4

4
200

= × , F F F
60
5

3
2

20
30

= × ,  F F F
60
5

12
3

5
200

= × .
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a separate molecule, but a collection of molecules. This raises the problem 
of filling spaces with molecules, i.e. convex geometric figures of different 
dimensions. The addition of other molecules (indifferent or not) leads to the 
formation of a cluster. There are various patterns in the formation of clusters 
(Lord, Mackay & Ranganathan, 2006; Ilyushin, 2003). You can distinguish 
different levels of organization in clusters. From a geometric point of view, 
this amounts to a hierarchical filling of the space (Zhizhin, 2012). However, 
the hierarchical filling of space is always limited by the size of some area 
of space, primarily because when distance from the original molecule the 
distance between the particles (or points) increases significantly (Zhizhin, 
2014). This inevitably leads to a weakening of the bonds between molecules 
and, as a consequence, to the detachment of molecules. Therefore, in order 
to further fill of the space, it is necessary to proceed to space translation a 
certain set of atoms or molecules (cluster). If a molecule in geometric relation 
is a multidimensional formation, then the problem arises of filling the space 
by means of translation by a multidimensional convex body. If a molecule 
or molecular formation is a multidimensional body, then this body must be 

Table 3. Multiplication table of polytopes

Polytopes Icosahedron 4-Simplex

Icosahedron P F
144
6

36
540( )

4-simplex P F F
60
7

48
6

15
65 20( , ) P F

25
8

20
710( )

4-cube P F F
192
7

96
6

48
68 20( , ) P F F

80
8

64
7

40
75 8( , )

4-cross-polytope P F F
96
7

48
6

24
616 20( , ) P F F

40
8

32
7

20
75 16( , )

Table 4. Multiplication table of polytopes

Polytopes 4 –Cube 4 –Cross-Polytope

4 –cube P F
256
8

128
716( )

4 – cross-polytope P F F
128
8

64
7

64
716 8

0 00

( , ) P F
64
8

32
732( )

F F F64

7

4

3

16

40

= × , F F F64

7

8

4

8

300

= × .
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translated from the coordinates of a multidimensional space. Moreover, in 
order for such a translation to be possible, the body itself must have a certain 
structure, i.e. to have selected directions along the coordinates in itself. Then 
translation of this body in the selected directions will not cause a violation 
of the body shape. The products of polytopes considered in this chapter just 
create forms in which there are selected directions along the coordinates of 
a multidimensional space. They are created by the very mechanism of the 
product polytopes. The mathematical apparatus developed in the chapter for 
determining the shape of a body that is a product of polytopes can be applied 
to determining the shape of bodies not listed in Tables 1 - 4. The diffraction 
pattern of the quasicrystal, shown in the Figure 1 in Chapter 4, reveals the 
nanostructure of the intermetallic compound Al72Ni20Co8. You can see similar 
structures on other substances (Shechtman et al., 1984; Mukhopadhyay et 
al., 1993; Zhang & Kelton, 1993). The diffraction pattern clearly shows the 
system of parallel lines formed as result of the translation of molecules along 
different directions of coordinates (Shevchenko, Zhizhin & Mackay, 2013). 
At the same time, the lines formed as result of the hierarchical filling of space 
are visible. In fact, from each point one can see the formation of lines as a 
result of the hierarchical filling of space (if we neglect the influence of the 
experimental features on the diffraction pattern - the axial symmetry caused 
by the axial symmetry of the electron beam directed to the sample of matter). 
Just as there is an expansion of space at each point of space in the model of 
the expansion of the Universe (Silk, 1980).

The Chapter 7 will show how the existence of a system of parallel lines 
in a separate multidimensional molecular complex leads to the filling of a 
multidimensional space. It should be noted that the bases of all bodies of 
higher dimension that fill multidimensional spaces are the bodies of Plato.
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KEY TERMS AND DEFINITIONS

5-Cross-Prism: The product of 4-cross-polytope by one dimension 
segment.

5-Simplex-Prism: The product of 4-simplex by one dimension segment.
6-Complex-Polytopic Prismahedrons: The product of tetrahedron by 

the tetrahedron.
6-Complex-Tetrahedral Prismahedrons and Octahedral 

Prismahedrons: The product octahedral by the tetrahedral.
6-Simplex-Polytopic Prismahedron: The product of 4-simplex by the 

triangle.
Cube-Polytopic Prismahedron: The product of cube by the triangle.
Dodeca-Polytopic Prismahedron: The product of dodecahedron by the 

triangle.
Dodecahedral Prism: The product of dodecahedral by one dimension 

segment.
Hierarchical and Translation Filling Spaces: At the same time 

hierarchical and translation filling of a multidimensional spaces.
Icosa-Polytopic Prismahedron: The product of icosahedron by the 

triangle.
Icosahedral Prism: The product of icosahedral by one dimension segment.
N*3-Angular Prismahedron: The product of n-angle by the triangle.
Octahedral Prism: The product of octahedral by one dimension segment.
Octahedral Prismahedron: The product of octahedral by the triangle.
Polytopic Prismahedron: The product of polytope by one dimension 

segment.
Tetrahedral Prism: The product of tetrahedral by one dimension segment.
Tetrahedral Prismahedron: The product of tetrahedral by the triangle.
Triangular Prismahedron: The product of triangle by the triangle.
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ABSTRACT

The polytopes are dual to polytypic prismahedrons. In particular, polytopes 
dual to the product of two canons. It is shown that these polytopes form a 
new class of polytopes with different values of the incidence of elements of 
low-dimensional polytopes to polytopes of higher dimension entering the 
polytope. If the polygons in their product have equal sides, then the dual 
polytope to the product consists of tetrahedrons, and the degree of incidence 
of the edge of the dual polytope is determined by the number of sides of 
the polygon. The existence of a previously unknown polytope consisting of 
one hundred tetrahedrons is established. Its election is constructed, all its 
constituent tetrahedrons are listed.

THE INCIDENCE IN POLYTOPE

In Chapter 4 it was established that one of the types of semi-regular polytopes, 
as deviations from the conditions for the correctness of polytopes that occur 
in the structures of chemical compounds, are poly-incident polytopes. In each 
of these polytopes there are simultaneously edges with different incidence 
values of elements of higher-dimensional polytopes. We consider the question 
of the incidence of elements of polytopes in a more general form, i.e. let us 
consider the incidence of elements of polytopes of different dimensions to 
each other.

Polytopes Dual to Polytopic 
Prismahedrons
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The incidence in polytopes indicates to what number of elements of higher 
dimension the given element of lower dimension belongs. Let’s denote e(d) 
- an element of dimension d; k

d di j,
 - the value of the incidence of the element 

with dimension d
i
 in relation to the elements of dimensiond d d

j j i
( ).>  For 

regular polytopes because of their uniform values of the incidence k
d di j,

 are 
constant for the whole polytope in all dimension range from 0 to n (n-dimension 
of the polytope). Obviously, that k

d di n,
 = 1 for any d d

i n
< .

In a polygon we have e e e e( ) ( ); ( ) ( ).0 2 1 1 2∈ ∈
In a polyhedron we have 

e e k e k e e e e
d d d d

( ) : ( ) ( ); , , ; ( ) ( ); ( ) ( ).
, ,

3 0 1 3 4 5 1 2 2 2 3
0 1 0 1

∈ = ∈ ∈  

In four-dimensional polytopes relations of the incidence have the following 
values.

In a simplex:

e e e e e e e e e e( ) ( ); ( ) ( ); ( ) ( ); ( ) ( ); ( ) ( ); e( )0 4 1 1 3 2 2 2 3 3 4 0 4 3 0∈ ∈ ∈ ∈ ∈ ∈∈ 4 2e( ).  

In a hypercube:

e e e e e e

e e e e e

( ) ( ); ( ) ( ); ( ) ( );

( ) ( ); ( ) ( ); ( )

0 4 1 1 3 2 2 2 3

3 4 0 3 3 0

∈ ∈ ∈
∈ ∈ ∈∈ ∈6 2 1 3 3e( ); e( ) e( ).

 

In a 4-cross-polytope:

e e e e e e e e

e e e

( ) ( ); ( ) ( ); ( ) ( ); ( ) ( );

( ) ( ); ( )

0 6 1 1 4 2 2 2 3 3 4

0 8 3 0

∈ ∈ ∈ ∈
∈ ∈∈ ∈10 2 1 4 3e e e( ); ( ) ( ).

 

In semi-regular polytopes relations of incidence keep their form the same 
as in regular polytopes (Zhizhin, 2014). But there different figures in one 
polytope may serve as elements e(2), though all vertices of these semi-regular 
polytopes are superposed by motion. If in a polytope there are vertices which 
are not superposed by motion, then relations of incidence are variable in 
a polytope, for example, in a triangle prism. A prism can be considered a 
semi-regular polytope because it has two triangle faces and three of square 
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faces. If we build a polyhedron dual to this prism, we’ll receive an irregular 
polyhedron. Let’s connect in a prism the centers of flat faces incident to one 
edge. We’ll get a double pyramid (Figure 1).

In a double pyramid a two vertices are incident to three edges, and another 
two vertices are incident to four edges. The same picture will be if we take 
a pentagonal prism.

Two vertices of double pentagonal pyramid are incident to 5 edges, and 
5 of the remaining vertices are incident to 4 edges (Figure 2).

Further it will be shown that the polytopes dual to polytopes products 
have not only vertices with different values of incidence to the edges, but the 
edges with different values of incidence to three-dimensional figures. This 
new type of polytopes will be called poly-incident polytopes (see Chapter 4).

POLYTOPE DUAL TO THE PRODUCT OF TWO TRIANGLES

In Chapter 5 the structural formula of the product of two triangles (1) was 
obtained, according to which this 4-polytope has 9 vertices and 6 triangular 
prisms act as facets. This polytope has 18 edges, 9 squares and 6 triangles 
as two-dimensional elements. In a dual polytope owing to inverse of inclusion 
relation (Grunbaum, 1969) 6 vertices, 15 edges, 18 two-dimensional elements, 
9 three-dimensional facets shall be. Each three-dimensional face has the 
number of two-dimensional faces equal to double ratio of the number of 

Figure 1. Triangle prism and double pyramid dual to it
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two-dimensional faces to the number of three-dimensional faces. Doubling 
happens due to the fact that each flat face in a 4-polytope simultaneously 
belongs to two three-dimensional faces, i.e. the number of flat faces belonging 
to three-dimensional faces of a dual polytope is 2 ⋅18/9 = 4. Therefore, the 
three-dimensional faces in a dual polytope are tetrahedrons, since only a 
tetrahedron has four flat faces. For the construction of a dual polytope let’s 
use a sequence of actions that will be used further for construction of more 
complex polytopes. Let’s denote vertices of the polytope in Chapter 5 by 
symbols a a

1 9
,...,  (Figure 3).

Figure 2. Pentagonal prism and a double pyramid dual to it

Figure 3. Triangular prismahedron
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Let’s enumerate triangular prismahedrons (facets) forming this polytope: 

1 2 3

4

1 2 3 7 8 9 2 3 4 5 8 9 1 2 5 6 7 8

1 2 3 5 6

) ; ) ; ) ;

)

a a a a a a a a a a a a a a a a a a
a a a a a a

44 1 6 3 4 7 9 4 6 5 7 8 9
5 6; ) ; ) .a a a a a a a a a a a a

 

Since the edges of a dual polytope shall connect the centers of polytope 
facets adjoining each other, so, by introduced designations of facets, we define 
neighboring facets having common flat faces by introduced designations 
of facets. Therefore, just these facets shall be connected by edge in a dual 
polytope (Zhizhin, 2017). Executing this analysis, we’ll come to the projection 
of a dual polytope on a two-dimensional plane (Figure 4).

In Figure 4 using the condition that each triangle shall be overlapped 
twice, we really find 9 tetrahedrons:

T T T T T
T T T
1 2 3 4 5

6 7 8

1246 2345 1245 6435 1635

1362 1253

= = = = =
= =

, , , , ,

, , == =1645 6243
9

, .T
 

Let’s enumerate the edges and define their belonging to the listed 
tetrahedrons.

The edges: 61, 12, 24, 45, 35, 63, 13, 14, 34, 62, 25, 65, 15, 32, 64; 

Figure 4. Polytope dual to triangular prismahedron
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61 12 24

45

1 6 5 8 1 3 6 7 1 2 3 9

2 4 8

∈ ∈ ∈
∈
T T T T T T T T T T T T
T T T T
, , , ; , , , ; , , , ;

, , ,
33 2 4 5 7

6 4 5 9 7 5 6 1 3 8

35

63 13 14

3

; , , , ;

, , , ; , , ; , , ;

∈
∈ ∈ ∈

T T T T
T T T T T T T T T T

44 62 25

65 15

2 4 9 1 6 9 2 3 7

4 5 8 3 5

∈ ∈ ∈
∈ ∈
T T T T T T T T T
T T T T T T
, , ; , , ; , , ;

, , ; , ,
77 9 2 6 7 9 1 4 8 9

32 64, ; , , , ; , , , .T T T T T T T T T∈ ∈

 

Thus, there is a wonderful fact: the edges have different values of incidence 
to edges. The edges 13, 34, 14, 62, 25, 65 have value of incidence 3; the edges 
61, 12, 24, 45, 35, 63, 15, 64, 32 have value of incidence 4. It occurs when 
the triangular prismahedron has all edges with equal values of incidence.

GENERAL ANALYSIS OF THE PRODUCT 
OF ANY TWO CONVEX POLYGONS

As a consequence of theorem 3 of Chapter 5 was received the structural 
formula (25) of the product of polytope Pn  by by  a polygon. If both factors 
in (25) of Chapter 5 are polygons, the formula (25) take the form of

P Q P mF tFm t tm t m
2 2 4

2

3

2

3× = ( , ).  (1)

According to Chapter 5, we’ll call polytopes (1) mt-angular prismahedrons.

Theorem 1

Mt-angular prismahedron is a 4-polytope consisting of m t-angular prisms 
and t m-angular prisms.

Proof

As a result of the product of m-angular polygon by t-angular polygon, according 
to the definition of polytopes product (Ziegler, 1995), is a polytope with 
facets forms. These facets are the products of each side of m-angular polygon 
by t-angular polygon and, accordingly, the products of each sides of t-angular 
polygon by m-angular polygon. The first from the products give m t- angular 
prisms, the second ones – give t m-angular prisms. Let’s check by Euler-
Pioncare’s equation (2) in Chapter 1 (Pioncare, 1880) that the polytopes 
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formed as a result of the product of polygons satisfy this equation for polytope 
dimension n = 4. In this case the number of elements of dimension 0 (vertices) 
owing to constructing polytopes is equal to mt. The number of one-dimension 
elements (edges) is composed of the number of edges issuing from all vertices 
with account of each edge passing through two vertices. Since 4 edges issue 
from each vertex owing to polygons product, the total number of edges is 
mt mt4

2
2= .  The number of two-dimensional faces is composed of numbers 

m and t, correspondingly t-angular and m-angular bases of prisms and 4- 
angular faces of prisms mt.

Substituting the received values of numbers of elements of different 
dimension in Euler-Pioncare’s equation

mt – 2mt +(m+t+mt) – (m +t)=0. 

Thus, Euler-Pioncare`s equation is satisfied, which proves theorem 1.

Consequence

Owing to duality in a polytope dual to mt-angular prismahedron, the number of 
vertices is equal to m+t, the number of edges is equal to m+t+mt, the number 
of two-dimensional faces is equal to 2mt, the number of three-dimensional 
faces is equal to mt.

Each three-dimensional face has the number of two-dimensional faces 

equal to double ratio 2mt
mt

, i.e. 4. Thus, in the general case of the product of 

any two convex polytopes the tree-dimensional figure is a tetrahedron, since 
only a tetrahedron, as a three-dimensional figure, has 4 two-dimensional 
faces.

4*3-ANGULAR PRISMAHEDRON 
AND ITS DUAL POLYTOPE

In Chapter 5 the image of 4*3-angular prismahedron (Figure 4) was received. 
Let’s denote vertices of this polytope a a

1 12
,...,  (Figure 5).

4*3-angular prismahedron includes three-dimensional figures: triangular 
prisms 
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1 2 3 4
1 2 6 7 8 10 3 4 5 9 11 12 1 2 6 3 4 5 7 8 10
) , ) , ) , )a a a a a a a a a a a a a a a a a a a a a a

111 12
a ;  

tetragonal prisms 

5 6 7
2 6 3 4 8 10 9 11 1 6 4 5 7 10 11 12 1 2 3 5 7 8
) , ) , )a a a a a a a a a a a a a a a a a a a a a a a

99 12
a .  

For constructing dual polytope we define contacts of the prisms by equal sets 
of symbols a

i
. In the result we receive a projection of dual polytope (Figure 

6).
In polytope in Figure 6 one can single out 12 tetrahedrons with flat faces 

overlapped two times: 2564, 4527, 2537, 2563, 4561, 4571, 5731, 2746, 1536, 
3627, 6714, 7136. This polytope have 19 edges: 17, 16, 15, 14, 13, 37, 36, 
35, 32, 27, 26, 24, 25, 57, 56, 54, 47, 46, 67. From them edges 17, 14, 32, 
24 have incidence value 3 with respect to tetrahedrons and the remaining 
15 edges have incidence value 4. The vertices of dual polytope 3, 2, 1, 4 are 
incident to 5 edges аnd vertices 5, 6, 7 are incident to 6 edges.

Figure 5. 4*3-angular prismahedron
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3*6-ANGULAR PRISMSHEDRON AND 
A POLYTOPE DUAL TO IT

In Figure 7 a projection of 3*6-angular prismahedron with marked 18 vertices 
is shown.

It has three 6-angular prisms 

1 2
1 2 3 4 5 6 7 8 9 10 11 12 7 8 9 10 11 12 13 14 15 1
) , )c c c c c c c c c c c c c c c c c c c c c c

66 17 18
c c ,  

1
1 2 3 4 5 6 13 14 15 16 17 18
) ,c c c c c c c c c c c c  

and six 3-angular prisms 

4
1 7 6 13 12 18
) ,c c c c c c 5

1 2 7 13 14 8
) , , , , , ,c c c c c c  

6 7 8 9
2 3 8 9 14 15 3 4 9 10 15 16 4 5 16 10 11 17 5
) , ) , ) , )c c c c c c c c c c c c c c c c c c c cc c c c c

6 11 12 17 18
.  

Analyzing contacts of the prisms on coinciding sets of symbols, we construct 
a projection of the polytope dual to 6 * 3-angular prismahedron (Figure 8).

In polytope in Figure 8 we can single out 18 tetrahedrons:

T T T
1 2 3
1234 1235 1236= = =, , ,  

Figure 6. Polytope dual to 4*3-angular prismahedron
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T T T T T T
4 5 6 10 11 12
1237 1238 1239 3289 1394 1398= = = = = =, , , , , ,  

T T T
7 8 9
1265 1267 2378= = =, , ,  

Figure 7. 3*6-angular prismahedron

Figure 8. Polytope dual to 3*6-angular prismahedron
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T T T T T T
13 14 15 16 17 18

4325 4315 4215 3267 1378 1278= = = = = =, , , , , .  

The polytope has 27 edges with different values of incidence to tetrahedrons: 
edge

45 12 15

14
13 14 15 1 8 15 18 2 7 14 15

1 11

∈ ∈ ∈
∈
T T T T T T T T T T T

T T

, , ; , , , ; , , , ;

, ,, , ; , , ;T T T T T
14 15 3 7 8

16 ∈
 

56 19 94 13

42
7 6 11 12 11 1 6 11 12 14 17

1

∈ ∈ ∈ ∈
∈
T T T T T T T T T T T

T

; , , ; ; , , , , , ;

,TT T T T T
13 15 2 13 14

35, ; , , ;∈
 

43 32

93 26
1 11 13 14 1 6 9 10 13 16

6 10 12

∈ ∈
∈
T T T T T T T T T T

T T T

, , , ; , , , , , ;

, , ; ∈∈ ∈T T T T T T
3 7 8 16 6 10

92, , , ; , ;
 

36 17

52 87
3 16 4 8 17 18

2 7 13 14 9 17 18

∈ ∈
∈ ∈
T T T T T T

T T T T T T T

, ; , , , ;

, , , ; , , ;118
5 12 17

∈T T T, , ;
 

37 82

27 83
4 9 16 17 5 9 10 18

4 8 9 16 18

∈ ∈
∈ ∈
T T T T T T T T

T T T T T T

, , , ; , , , ;

, , , , ;
55 9 10 12 17
, , , , ;T T T T

 

76 98
8 16 10 12

∈ ∈T T T T, ; , .  

Thus, edges 56, 94 have incidence value equal to 1; edges 92, 36, 76 have 
incidence value equal to 2; edges 45, 16, 19, 42, 35, 87 have incidence value 
equal to 3; edges 15, 14, 43, 93, 26, 17, 52, 82 have incidence value equal 
to 4; edges 27, 83 have incidence value equal to 5; edges 12, 13, 32 have 
incidence value equal to 10.

In addition, we note that vertices 1, 2, 3 are incident to 14 tetrahedrons; 
vertices 4, 5 are incident to 5 tetrahedrons; vertices 6, 9 are incident to 4 
tetrahedrons; vertices 7, 8 are incident to 6 tetrahedrons.

This method can be used for construction of dual polytopes to many 
discussed in this paper, the polytopes with simultaneous use of two-dimensional 
faces of different shapes. All these polytopes are poly-incident, i.e. they have 
edges (and vertices) with different values of incidence.
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N-PRISMAHEDRONS AND POLYTOPES DUAL TO THEM

Let’s call n-prismahedron a polytope of dimension 4, with facets in the form 
of prisms with n - angular bases. In item 4*3-ANGULAR PRISMAHEDRON 
AND ITS DUAL POLYTOPE a 3-prismahedron was considered. Now let’us 
turn to the study of n - prismahedrons for any n.

Theorem 2

The product of two n-angular polygons is an n-prismahedron with the number 
of facets 2n.

Theorem 2 follows immediately from theorem 1 when m = t = n.

Corollary

In a polytope dual to n-prismahedron the number of vertices is equal to 2n, 
the number of edges is equal to 2n + n2, the number of two-dimensional faces 
is equal to 2 n2, the number of three-dimensional faces is equal to n2. This 
follows directly from the corollary to theorem 1.

Theorem 3

Polytopes dual to n-prismahedrons are those composed of tetrahedrons. For 
n = 4 the dual polytope is a 4-cross-polytope, for n = 10 the dual polytope is 
a previously unknown polytope consisting of 100 tetrahedrons (100-cell one) 
with a degree of incidence equal to 5, for other values of n ≥ 3 the dual are 
the poly-incident polytopes with a medium degree of edge incidence tending 
to 6 with an infinite increase of n.

Proof

As polytopes dual to n-prismhedrons have the number of vertices equal to 
2n, owing to the inverse of inclusion relation, the number of edges is equal 
to 2n + n2, the number of 2-faces is equal to 2n2, the number of 3-faces is 

equal to n2 Then each 3-figure has the number of 2-faces 2 2 4
2

2

n

n
= 2

2
4

2

2

n

n
=  

(multiplication by 2 is due to the fact that each 2-face belongs at once to two 
3-shapes). Thus, a 3-figure is a tetrahedron, since only tetrahedron, as a 
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3-figure, has 4 2-faces. As everybody knows, the number of edges in a 
tetrahedron is 6. We can write this number on the basis of set numbers of 

different dimension in a dual polytope: 6 2 2

2
=

+
k
n n

n
, k is the degree of edge 

incidence (the edge belongs to k-tetrahedrons) under the assumption that all 
the edges have this degree of incidence, the same for all. Hence, we find the 
degree of incidence

k
n

n
n=

+
≥

6
2

3, .  (2)

Equation (2) in integers has two solutions: k = 4 when n = 4 and k = 5 
when n = 10. For the other possible values of n, according to (2) the degree 
of incidence of edges is a fractional value. This means that in these cases in a 
dual polytope edges with varying degrees of incidence present simultaneously, 
i.e. it is a poly-incident polytope.

Figure 3, Figure 9, Figure 10 give examples of 3-prismahedron, 
5-prismahedron, 6-prismahedron respectively.

The known hypercube is 4-prismahedron.
For n = 4 in a dual polytope the number of vertices is 2n = 8, the number 

of edges is2 242n n+ = ,  the number of 2D-faces is2 322n = ,  the number of 
3D-faces isn2 16= .  This is a 4-cross-polytope dual to a hypercube. Each 
edge of this polytope has a degree of incidence 4.

For n = 5 in a dual polytope the number of vertices is 2n = 10, the number 
of edges is2 352n n+ = ,  the number of 2D-faces is 2 502n = ,  the number of 
3D-faces is n2 25= .  In the projection on the plane this polytope is presented 
in Figure 11.

In Figure 11, tetrahedrons are: 1)abgh, 2)dckh, 3)kcnd, 4)efnd, 5)agfe, 6)
hkgn, 7)knfh, 8)fngk, 9)gfhn, 10)ghfk, 11)ahfg, 12)gbkh, 13)hcnk, 14)fkdn, 
15)egnf, 16)abec, 17)bcad, 18)cdeb, 19)edac, 20)aebd, 21)agbe, 22)bhac, 
23)kcbd, 24)ndec, 25)efad. Every vertice of the polytope belongs to 10 
tetrahedrons. Every 2D-face belongs to two tetrahedrons (also as for n = 3; 
4). From 35 edges 10 edges are incident to 3 tetrahedrons gb ∈ 1), 12), 21); 
bk ∈ 2), 12), 23);hc ∈ 2), 13), 22); nc ∈ 3), 13), 24); kd ∈ 3), 14), 23); fd 
∈ 4), 14), 25);en ∈ 4), 15), 24); eg ∈ 5), 15), 21);af ∈ 5), 11), 25); ah ∈ 1), 
11), 22). From 35 edges 15 edges are incident to 4 tetrahedrons ag ∈ 1), 5), 
11), 21); bh ∈ 1), 2), 12), 22); kc ∈ 2), 3), 13), 23); nd ∈ 3), 4), 14), 24); ef 
∈ 4), 5), 15), 25); eb ∈ 16), 18), 20), 21); bd ∈ 17), 18), 20), 23); ac ∈ 16), 
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17), 19), 22); ec ∈ 16), 18), 19), 24); ad ∈ 17), 19), 20), 25); hf ∈ 7), 9), 10), 
11); hn ∈ 6), 7), 9), 13); kg ∈ 6), 8), 10), 12); kf ∈ 7), 8), 10), 14); gn ∈ 6), 
8), 9), 15). From 35 edges 10 edges are incident to 6 tetrahedrons: ab ∈ 1), 
16), 17), 20), 21), 22); bc ∈ 2), 16), 17), 18), 22),23); cd ∈ 3), 17), 18), 19), 
23), 24); ed ∈ 4), 8), 19), 20), 24), 25); ae ∈ 5), 16), 19), 20), 21), 25); gh ∈ 
1), 6), 9), 10), 11), 12); hk ∈ 2), 6), 7), 10), 12), 13); kn ∈ 3), 6), 7), 8), 13), 
14); fn ∈ 4), 7), 8), 13), 14); gf ∈ 5), 8), 9), 10), 11), 15). Thus, the average 

Figure 9. 5-prismahedron

Figure 10. 6-prismahedron
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value of incidence degree is equal to:k = ⋅ + ⋅ + ⋅
=

10 6 15 4 10 3
35

30
7

 and 

coincides exactly with the degree of incidence according to equation (2).
By increasing n, the structure of a dual polytope gets greatly more 

complicated and there are difficulties in its constructing. For n = 6 in a dual 
polytope the number of vertices is 2n = 12, the number of edges is 2 482n n+ = ,  
the number of 2D-faces is2 722n = ,  the number of 3D-faces isn2 36= .  This 
polytope is presented in Figure 12 in the projection on the plane.

In Figure 12 tetrahedrons are: 1) hmng, 2) acdf, 3) hkmg, 4) abcf, 5) hkmn, 
6) abcd, 7) hkno, 8) abde, 9) gmno, 10) fcde, 11) kmno, 12) bcde, 13) gkmo, 
14) fbce, 15) ghko, 16) fabe, 17) ghno, 18) fade, 19) hkmb, 20) abck, 21) 
kmnc, 22) bdcm, 23) mnod, 24) cden, 25) gone, 26) fedo, 27) hgof, 28) afeg, 
29) ghka, 30) fabh, 31) kmbc, 32) mncd, 33) oned, 34) gofe, 35) hgaf, 36) 
hkab. From 48 edges each of 12 edges is incident to 7 tetrahedrons from the 
following list: ab, bc, cd, de, fe, af, hk, km, mn, no, og, hg; each of 24 edges 
is incident to 4 tetrahedrons: ko, gm,hn, ho, kg, mo, kb, oe, fc, be, ad, ac, fd, 
bd, mc, gf, hm, gn, kn, ae, bf, ce, nd, ha; each of 12 edges is incident to 3 
tetrahedrons: bm, kc, ge, fo, md, cn, ga, hf, ne,od, hb, ak. Thus, the average 

Figure 11. Polytope dual to 5-prismahedron
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value of edges incidence degree is equal to k = ⋅ + ⋅ + ⋅
=

12 7 24 4 3 12
48

4 5, , 

which fits exactly with the degree of incidence k according to equation (2).
Every vertex of this polytope is incident to 12 tetrahedrons. From 72 

triangles, which are faces of tetrahedrons, some have degree of incidence 3 
and the rest have degree of incidence 2.

The construction of a dual polytope with n = 10 is particularly interesting, 
since according to equation (2) in this case the degree of incidence of edges 
is the same for the whole polytope and equals to 5. For n = 10 in a dual 
polytope, the number of vertices is 2n = 20, the number of edges is 
2 1202n n+ = ,  the number of 2D-faces is 2 2002n = ,  the number of 3D-faces 
is n2 100= .  This polytope is presented in Figure 13 in the projection on the 
plane.

Tetrahedrons in Figure 13 are:

Figure 12. Polytope dual to 6-prismahedron
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1) dkhc, 2) cgbh, 3) fagb, 4) aefm, 5) demk, 

6) kth𝛼, 7) thsg, 8) nfsg, 9) mfn𝛽, 10) 𝛽mk𝛼,

11) 𝛼t𝜓𝜈, 12) 𝜑𝜓st, 13) 𝛾𝜑ns, 14) 𝜇𝛾n𝛽, 15) 𝛽𝜇𝛼𝜈,

16) 𝜑𝜓𝛾𝜇, 17) 𝜑𝜓𝜇𝛾, 18) 𝜑𝜓𝛾𝜈, 19) 𝛾𝜓𝜈𝜑, 20) 𝜑𝛾𝜈𝜇, 

21) dhbc, 22) cgab, 23) bfae, 24) daem, 25) ekcd, 

26) ktgh, 27) hsfg, 28) mgnf, 29) fkm𝛽, 30) mhk𝛼, 

31) dc𝜈𝜓, 32) 𝜑cb𝜓, 33) a𝛾b𝜑, 34) 𝜇ae𝛾, 35) 𝜈de𝜇,

36) 𝜈d𝜓𝜇, 37) c𝜈𝜑𝜓, 38) 𝜈𝜑𝜓b, 39) a𝜑𝛾𝜇, 40) e𝛾𝜈𝜇, 

Figure 13. Polytope dual to 10-prismahedron
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41) 𝜑𝛾𝜈𝜇, 42) 𝜑𝜈t𝜓, 43) 𝜑𝛾𝜓s, 44) 𝜇n𝜑𝛾, 45) 𝛽𝛾𝜈𝜇,

46) kdth, 47) hcsg, 48) gbnf, 49) afm𝛽, 50) 𝛼emk, 

51) 𝛼khc, 52) thgb, 53) asgf, 54) fnem, 55) mdk𝛽,

56) k𝛼t𝜓, 57) th𝜑s, 58) sg𝛾n, 59) nf𝜇 𝛽, 60) 𝛼𝜈m𝛽,

61) th𝛼𝜈, 62) 𝜓sgt, 63) snf𝜑, 64) n𝛽𝛾𝜇, 65) k𝛽𝜇𝛼,

66) kt𝛼𝛽, 67) ths𝛼, 68) sgnt, 69) fnmg, 70) mn𝛽𝛼, 

71) t𝛼𝜈𝛽, 72) ts𝛼𝜓, 73) snt𝜑, 74) ns𝛽𝛾, 75) 𝛽𝛼𝜇n,

76) mh𝛼𝜈, 77) tkg𝜓, 78) sfh𝜑, 79) 𝛾nmg, 80) kf 𝛽𝜇, 

81) dec𝜈, 82) cdb𝜓, 83) tac𝜑, 84) eb𝛾a, 85) da𝜇e,

86) dmh𝜈, 87) ckg𝜓, 88) bfh𝜑, 89) amg𝛾, 90) efk𝜇,

91) kc𝛼𝜓, 92) thb𝜑, 93) sg𝛾a, 94) enf𝜇, 95) m𝜈𝛽d,

96) k𝜇e𝛼, 97) ma𝛽𝛾, 98) fnb𝜑, 99) fg𝜓c, 100) thd𝜈. 

In the given above list of tetrahedrons each line corresponds to a specific 
type of tetrahedron projection, which differ only by angle of rotation relative 
to the polytope projection center divisible by 72 degrees. The structure of 
a 100-cell polytope is quite complicated, but it is defined by enumerating 
all the tetrahedrons. If all the edges of a polytope have the same degree of 
incidence, the degree of incidence of vertices and triangles, which are faces 
of tetrahedrons, is variable.

By increasing the value of n in equation (2), the average degree of edges 
incidence tends to its maximum value of 6.

Theorem 3 is proved.
Note. It should be noted that the number of elements of different dimension 

of the polytope in Figure 7 is 6 times smaller than the corresponding values 
of a regular polytope consisting of 600 tetrahedrons (600-cell polytope, 
Coxeter, 1963) with the same degree of edges incidence. Since the proofs 
for the existence of 600-cell polytope in the works of Stringham (Stringham, 
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1880) and Coxeter (Coxeter, 1963) contain incorrectness (Zhizhin, 2014), 
there is no specific enumeration of tetrahedrons and their images do not 
carry specific information, the structure of the proposed 600-cell polytope 
remains unknown.

In Chapter 4 polytopes with different incidence values of edges to three-
dimensional figures included in the polytope were considered. Graphs of 
these polytopes were constructed, with each three-dimensional body being 
taken for the top of the graph. By construction, these graphs are topologically 
equivalent to polytopes, dual to poly-incident polytopes. It is now clear that 
polytopic prizmahedrons, which play an important role in filling the space of 
higher dimension (Chapter 7), are polytopes dual to poly-incident polytopes. 
In Chapter 4, a poly-incident polytope with incidence values of edges 4 and 5 
was not constructed. Only the graph of this polytope was constructed (Figure 
14, Chapter 4). In this chapter, along with other prismahedrons of higher 
dimension, this polytope is constructed (Figure 11).
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KEY TERMS AND DEFINITIONS

Duality in Polytopes: If the facets of one polytope correspond to the vertices 
of another polytope, and the edges of one polytope correspond to common 
elements of the facets of another polytope, then these polytopes are dual.

Incidence in Polytopes: Incidence in polytopes define the number of 
elements of higher dimension the given element of lower dimension belongs.

Polyincident Polytopes: Polytopes in which elements of lower dimension 
have different incidence values for elements of higher dimension. Polytopes 
that are dual to polytopes products are polyincident polytopes.
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ABSTRACT

The process of hierarchical filling of space by p-dimensional regular polytopes 
is considered under the condition of large-scale discrete increase in the size of 
polytopes and preservation of their shape (scaling process). It is shown that 
the polytopic prismahedrons are a concrete realization of the stereohedrons. 
The polytopic prismahedrons have the necessary properties for translational 
filling of spaces of higher dimension without slits face to face. Moreover, it 
is proved that the polytopic prismahedrons forming such fillings can have 
common elements of any dimension included in the polytope. On the basis 
of the research carried out in spaces of higher dimension, a new paradigm 
for describing a discrete world has been put forward.

THE SCALING PROCESS AND HIERARCHICAL 
FILLING OF THE N-DIMENSIONAL SPACE

The problem of completing space by polyhedrons is one of the fundamental 
problems of mathematics, which has long attracted the attention of scientists. 
In 1900, D. Gilbert formulated 23 mathematical problems that require 
solution (Gilbert, 1901). One of these problems (eighteenth) was devoted 
to this question. It was formulated as follows: “Construction of space from 
congruent polyhedrons”. This problem is especially complicated in the case of 
n-dimensional spaces (Delone, 1969), and up to the end it has not been solved 

Stereohedrons and Partition 
of n-Dimensional Space
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to this day under these conditions. The discovery of the processes of scaling 
occurring in natural media substantially enriches the problem of filling spaces 
with polyhedrons. The idea of scaling was advanced by Kadanov in 1966 
when analyzing the processes of a second-order phase transition (Kadanov, 
1966). According to this idea, the elementary cells of the high-symmetry 
phase before the phase transition in the process combine with the formation 
of enlarged elementary cells of the low-symmetry phase. The existence of this 
process it was confirmed experimentally. The idea of scaling allowed Wilson 
(Wilson, 1971) and Fisher (Fisher, 1972) to describe the second-order phase 
transition by the system of Ginzburg-Landau differential equations and to 
investigate it (Zhizhin, 2014a, 2014b, 2014c). The idea of scaling was used in 
analyzing processes in other fields of physics, for example, in analyzing the 
growth (enlargement) of clusters (Krapivsky, Redner & Ben-Naim, 2010). In 
the diffraction patterns of quasi-crystals of various intermetallic compounds 
(Abe, Yan & Pennycook, 2004; Munkhopadhyay at el., 1993; Zhang & Kelton, 
1993), one can also see the enlargement of the shape of the figures that unite 
the group of glowing points of the diffraction patterns (see Chapter 4, Figure 
1). This enlargement includes an increasing number of these points. Moreover, 
this process has no limit both in the large and in the smaller side. A certain 
model of the process of enlargement of objects can be a similar increase in 
the object’s odds. This leads to representations about the hierarchical filling of 
space with some initial figure. The process of increasing the size of a figure 
is discrete and it is determined by the coefficient of geometric progression, 
the value of which depends on the shape of the figure. The concept of a 
growing geometric manifold was introduced and the hierarchical filling of 
the plane by various regular polygons (Zhizhin, 2010) was investigated, as 
well as the hierarchical filling of three-dimensional spaces by regular convex 
polyhedrons (Zhizhin, 2012; Zhizhin, 2014c).

Now, applying the methods developed in previous studies (Zhizhin, 2010, 
2014c), we consider the hierarchical filling of a multidimensional space 
in the process of enlargement of multidimensional convex bodies. As was 
shown earlier when studying the hierarchical filling of a plane with polygons 
(Zhizhin, 2010), there can be various ways of filling it. In a multidimensional 
space are different ways of hierarchical filling with polytopes also. In Chapter 
4, the method of hierarchical filling of space by polytopes was considered, 
based on the transition of a polytope to a dual polytope at each step of filling 
the space. In this case, investigating scaling processes, we need to consider 
a method for filling a space of higher dimension with polytopes, at which 
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only the scale of the figure would change at each step, and the polytope’s 
background would be preserved.

On Figure 1 presented projection of 4-simplex (Stringham, 1880). 
Continuing the outer edges of the projection to the intersection with each 

other, connecting the resulting vertices with edges, we obtain an enlarged 
projection of the 4-simplex (Figure 2). 

Obviously, the process of extending the 4-simplex can be continued further. 
Each time the size (length) of the edges of the next 4-simplex from the size of 
the edges of the previous 4-simplex is increased by 1 + τ times. Where τ is 
the golden section. Since the coefficient of the geometric progression of the 
discrete increase of each side of the regular pentagon in the hierarchical filling 
of the pentagon plane is 1 + τ (Zhizhin, 2010), then each segment joining the 
vertices of the pentagon increases in the same progression. The difference 
in the lengths of the segments of the projection of a regular 4-simplex into 
a two-dimensional plane is related to the design process, but their images in 
four-dimensional space have the same length. Thus, the geometric progression 
coefficient of the hierarchical filling of the space by a 4-simplex is 1 + τ.

On Figure 3 presented known projection of 4-cube (Stringham, 1880).
We represent the projection of the polytope 4-cube in a more symmetrical 

form (Figure 4).
Continuing the outer edges of the projection to the intersection with each 

other, connecting the resulting vertices with edges, we obtain an enlarged 
projection of the 4-cube (Figure 5). 

Figure 1. The regular 4-simplex
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Obviously, the process of extending the 4-cube can be continued further. 
Easy to see that each time the size (length) of the edges of the next 4-cube 
from the size of the edges of the previous 4-cube is increased by 1 2+  
times. Thus, the geometric progression coefficient of the hierarchical filling 
of the space by a 4-cube is 1 2+ .

On Figure 6 presented known projection of 4-cross-polytope (Stringham, 
1880).

Figure 2. The hierarchical filling of the space by a 4-simplex

Figure 3. The regular 4-cube
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We represent the projection of the 4-cross-polytope in a more symmetrical 
form (Figure 7).

In this case, the continuation of the exterior edges of the projection gives 
an opportunity to obtain new vertices (there is no intersection of the edges). 
So we apply the second method of hierarchical filling, which was used to 
study the hierarchical filling of the plane (Zhizhin, 2010). We draw through 

Figure 4. The symmetrical form of polytope 4-cube

Figure 5. The hierarchical filling of the space by a 4-cube
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the vertices of the outer contour of the projection of the 4-cross- polytope of 
the projection of the edges perpendicular to the middle lines of projections. 
The points of their intersection give new vertices. Through these vertices, 
we draw straight lines parallel to the corresponding edges of the original 
projection. The intersection points of these lines give four more recent vertices 
of the enlarged projection of the 4-cross-polytope (Figure 8).

Obviously, the process of extending the 4-cross-polytope can be continued 
further. Easy to see that each time the size (length) of the edges of the next 
4-cross-popytope from the size of the edges of the previous 4-cross-polytope 

Figure 6. The regular 4-cross-polytope

Figure 7. The symmetrical form of the 4-cross-polytope
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is increased by 3 times. Thus, the geometric progression coefficient of the 
hierarchical filling of the space by a 4-cross-polytope is 3.

In the same way, it is possible to construct a hierarchical filling of a 
space of dimension greater than four starting from some initial figure of this 
dimension. For example, let this figure be a 5-simplex. Its image on the plane 
is shown in Figure 9 (Zhizhin, 2014c).

This polytope has 6 of the vertices, 16 of the edges, 20 of the two-dimensional 
faces, 15 of the three-dimensional faces, 6 of the four-dimensional faces. 
Continuing the outer edges of the projection to the intersection with each 

Figure 8. The hierarchical filling of the space by a 4-cross-polytope

Figure 9. The polytope 5-simplex
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other, connecting the resulting vertices with edges, we obtain an enlarged 
projection of the 5-simplex (Figure 10).

Obviously, the process of extending the 5-simplex can be continued further. 
Easy to see that each time the size (length) of the edges of the next 5-simplex 
from the size of the edges of the previous 5-simplex is increased by 3  times. 
Thus, the geometric progression coefficient of the hierarchical filling of the 
space by a 4-simplex is 3 .

In the second chapter, the adamantane molecule, which is the main 
part of the unit cell of the diamond, was considered. It was proved that the 
adamantane molecule has a dimensionality of 4 (Zhizhin, 2014d; Zhizhin, 
Khalaj & Diudea, 2016). The octahedron enters the adamantane molecule as 
a three-dimensional face. We can assume that the octahedron is the skeleton 
of the adamantane molecule (see Figure 15 in Chapter 2). Studying a set of 
cubic cells including adamantane molecules, one can establish the existence 
of scaling process in the diamond, i.e. formation of large-scale geometric 
configurations from the same figures of a smaller scale. Figure 11 shows the 
result of octahedron receiving on the basis of 8 cubes, each of them containing 
an octahedron 8 times smaller. It explains the existence of diamond crystals 
of macroscopic dimensions with the same form as a microscopic unit cell 
of the diamond. 

Figure 10. The hierarchical filling of the space by a 5-simplex
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The increase of scale at that occurs in a discrete manner. The scale of 
diamond crystal increases  n n3 1 2( , ,...)=  times. The enlarged diamond crystal 
contains many carbon atoms, preserving the continuity of the medium and 
the shape of its microcrystalline sample.

POLYTOPIC PRISMAHEDRONS: STEREOHEDRONS 
OF THE N-DIMENSION SPACES

A characteristic feature of hierarchical filling of spaces is the removal of the 
vertices of a figure from each other during its expansion. Naturally, if the 
vertices of the figure are images of the atoms of the molecule, the removal 
of the atoms from each other should lead to their separation from each other. 
This will not happen if the expansion of the figures does not come from a 
single exceptional point, but in principle, from each point of space. Like 
the expansion of the Universe, each point of which is equal. Then next to 
any vertex are other vertices (atoms) and the destruction of matter does not 
occur. We see such a picture in the diffraction patterns of nanostructures 
(Shevchenko, Zhizhin & Mackay, 2013; Zhizhin & Diudea, 2016b). Since 

Figure 11. Scaling in a diamond

 EBSCOhost - printed on 2/14/2023 7:14 AM via . All use subject to https://www.ebsco.com/terms-of-use



170

Stereohedrons and Partition of n-Dimensional Space

we can isolate points located at certain distances from each other, then at 
expansions of these points in space, periodic sets of vertices arise, as a 
consequence of the hierarchical filling of space from these points. This we 
also see in the diffraction patterns of nanostructures. The sets of vertices, 
as a result of a certain shift in any direction, as shown in Chapter 5, form a 
polytopic prismahedron. We show that the polytopic prismahedrons are the 
stereohedrons introduced by Delone to describe the partitions of n-dimensional 
spaces; polytopic prismahedrons allow filling the n-dimensional space without 
a gap between the prismahedrons (Zhizhin, 2015). 

Theorem 1

Polytopic prizmahedrons dimension n perform the correct partition ℑ 
congruent space of dimension n, moreover, polytopic prizmahedrons 
included in the partition ℑ or have no common elements, or their common 
elements have the dimension m (0 ≤ m ≤ n -1), but each of these polytopic 
prizmaedrons have elements of dimension n - 1, which do not belong to any 
of the neighboring politopic prizmahedrons.

Proof

Consider tetrahedral prism, i.e. a product tetrahedron by the segment (Chapter 5)

P F P P P F F F F
4
3

3
2

2
1

8
4

6
3

4
2

3
2

4
3

3
24 4 3 2 2 4( ) [ ( , ), ( )].× =  (1)

Here, the subscript in the polytope P and his face F indicates the number 
of vertices, and the superscript indicates the dimension of the corresponding 
polytope or faces. The right side of (1) describing the structural formula of 
the product, the facet indicated by the symbol of the polytope to specify 
which polytopes of dimension n - 1 is composed work polytopes. Thus, P

4
3  

- the tetrahedron, P
2
1  - segment, P

6
3 - triangular prism, P

3
2 - triangle, P

4
2 - 

quadrilateral, P
8
4 - tetrahedral prism. The dimension of the tetrahedral prism 

is equal to 4, it has 8 vertices, 16 edges, 14 faces two-dimensional, 6 three-
dimensional faces (2 tetrahedrons, 4 triangular prisms). Image tetrahedral 
prism is shown in Figure 12.

We introduce one of the vertices of the tetrahedral prism origin of the 
four-dimensional space (x, y, z, t). Orient the coordinates, such as indicated 
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in Figure 12. Assume that the length of each edge is equal to 1. Then, each 
node tetrahedral prism can be associated with a set of integers (Figure 12). 
Translating tetrahedral prism along the coordinates x, y, z, t, we obtain the 
lattice vertices. Let A0 tetrahedral prism with the values of vertex coordinates 
in Figure 12. Then

A
0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1

=
[( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , )],0 0 0 1 1 0 0 1 0 1

 (2)

A A x
1 0

1

1 0 0 0 2 0 0 0 1 1 0 0 1 0 1 0 1 0 0

= + =( )

[( , , , ),( , , , ),( , , , ),( , , , ),( , , ,, ),( , , , ),( , , , ),( , , , )],1 2 1 0 0 1 1 1 0 1 1 0 1
 

A A z
2 0

1

0 0 1 0 1 0 1 0 0 1 1 0 0 0 2 0 0 0 1

= + =( )

[( , , , ),( , , , ),( , , , ),( , , , ),( , , ,, ),( , , , ),( , , , ),( , , , )],1 1 1 1 0 0 1 2 0 0 1 1 1
 

A A x z A z
3 0 1

1 1 1

1 0 1 0 2 0 1 0 1 1 1 0 1 0

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , , ),( , , , ),( , , , ),( , , , )],2 0 1 0 1 1 2 1 1 0 1 1 2 0 1 1 1 1
 

A A y z A y
4 0 2

1 1 1

0 1 1 0 1 1 1 0 0 2 1 0 0 1

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , ),( , , , )],2 0 0 1 1 1 1 2 1 0 0 2 2 0 0 2 1 1
 

A A x y z A y
5 0 3

1 1 1 1

1 1 1 0 2 1 1 0 1 2 1 0

= + + + = + =( , , ) ( )

[( , , , ),( , , , ),( , . . ),(( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],1 1 2 0 1 1 1 1 2 2 1 0 1 2 2 0 1 2 1 1
 

A A y
6 0

1

0 1 0 0 1 1 0 0 0 2 0 0 0 1 1 0 0 1 0

= + =( )

[( , , , ),( , , , ),( , , , ),( , , , ),( , , ,, ),( , , , ),( , , , ),( , , , )],1 1 2 0 0 0 2 1 0 0 2 0 1
 

Figure 12. The tetrahedral prism
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A A y A y
7 0 1

1 1 1

1 1 0 0 2 1 0 0 1 2 0 0 1 1

= + + = + =( , x ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , ),( , , , )],1 0 1 1 0 1 2 2 0 0 1 2 1 0 1 2 0 1
 

A A
8 0

1

0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0

= + =(t )

[( , , , ),( , , , ),( , , , ),( , , , ),( , , ,, ),( , , , ),( , , , ),( , , , )],2 1 1 0 1 0 1 1 1 0 1 0 2
 

A A y A
9 0 6

1 1 1

0 1 0 1 1 1 0 1 0 2 0 1 0 1

= + + = + =( , t ) (t )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , ),( , , , )],1 1 0 1 0 2 1 2 0 1 0 2 1 1 0 2 0 2
 

A A y A
10 0 7

1 1 1 1

1 1 0 1 2 1 0 1 1 2 0 1

= + + + = + =(x , , t ) (t )

[( , , , ),( , , , ),( , , , ),,( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],1 1 1 1 1 1 0 2 2 2 0 1 1 2 1 1 1 2 0 2
 

A A A
11 0 1

1 1 1

1 0 0 1 2 0 0 1 1 1 0 1 1

= + + = + =(x , t ) (t )

[( , , , ),( , , , ),( , , , ),( , 00 1 1 1 0 0 2 2 1 0 1 1 1 1 1 1 1 0 2, , ),( , , , ),( , , , ),( , , , ),( , , , )],
 

A A A
12 0 2

1 1 1

0 0 1 1 1 0 1 1 0 1 1 1 0

= + + = + =(y , z ) (t )

[( , , , ),( , , , ),( , , , ),( , 00 2 1 0 0 1 2 1 1 1 1 0 1 2 1 0 1 1 2, , ),( , , , ),( , , , ),( , , , ),( , , , )],
   

A A t A
13 0 4

1 1 1 1

0 1 1 1 1 1 1 1 0 2 1 1

= + + + = + =(z , y , ) (t )

[( , , , ),( , , , ),( , , , ),,( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],0 1 2 1 0 2 2 1 0 1 1 2 1 2 1 1 0 2 1 2
 

A A z t A
14 0 5

1 1 1 1 1

1 1 1 1 2 1 1 1 1 2

= + + + + = + =(x , y , , ) (t )

[( , , , ),( , , , ),( , ,11 1 1 1 2 1 1 1 1 2 2 2 1 1 1 2 2 1 1 2 1 2, ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],
 

A A z A
15 0 3

1 1 1 1

1 0 1 1 2 0 1 1 1 1 1 1

= + + + = + =(x , t , ) (t )

[( , , , ),( , , , ),( , , , ),,( , , , ),( , , , ),( , , , ),( , , , ),( , , , )].1 0 2 1 1 0 1 2 2 1 1 1 1 1 2 1 1 1 1 2
 

Representing a tetrahedral prisms A A
0 15
÷ dots in three-dimensional space, 

we get the hypercube. Moreover, the edges of the hypercube correspond to 
possible changes in the values of one of the coordinates of the vertices of the 
tetrahedral prism unit (Figure 13). 

In addition, each edge of the hypercube in Figure 13 can be considered 
as an element of the overall two tetrahedral prisms, connected by an edge. 
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Using the coordinate expression tetrahedral prisms (2) can be analytically 
determined. In Table 1 geometry elements are common to each pair of 
tetrahedral prisms connected by an edge in Figure 13 are listed.

Diagonals flat faces in the hypercube correspond to a simultaneous change 
in the unit values of the two coordinates of the vertices of tetrahedral prisms 
(Table 2). Diagonals 8 cubes in the hypercube in Figure 13 correspond to a 
simultaneous change in the unit of some three coordinates. Common elements 
of tetrahedral prisms with such changes vertex coordinates is either a vertex or 
the empty set. When you change the same unit coordinates all four common 
elements in tetrahedral prisms not.

Between Ai type tetrahedral prisms arranged tetrahedral prism type Bi (see 
Figure 14) having a closest to them tetrahedral prisms Ai general quadrangular 
two-dimensional face. 

Tetrahedrons prisms Ai and Bi have common edges, which are parties to the 
general quadrilateral faces. Tetrahedral prism Ai and Bi are connected symmetry 
transformation - turning the 1800 around a common edge of the tetrahedron. 
Let B0 tetrahedral prism type Bi, adjacent tetrahedral prism A0, contains the 
x-axis, will translate the prism B0 on edge length for all the coordinates x, y, 
z, t four-dimensional space. Then we obtain a lattice of tetrahedral prisms Bi.

B
0

0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 1 0

1

= −[( , , , ),( , , , ),( , , , ),( , , , ),( , , , ),

( , 00 0 1 1 1 0 1 1 1 1 0, , ),( , , , ),( , , , )],− − −
 (3)

Figure 13. The hypercube from 16 tetrahedral prisms
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B B x
1 0

1 1 0 0 0 1 1 0 0 2 1 0 0 2 0 0 0

2 0

= + =
−
( ) [( , , , ),( , , , ),( , , , ),( , , , ),

( , , 11 0 2 0 0 1 2 1 0 1 2 1 1 0, ),( , , , ),( , , , ),( , , , )],− − −
 

B B z
2 0

1 0 0 1 0 0 1 1 0 1 1 1 0

1 0 1 0 1 0 0

= + =( ) [( , , , ),( , , , ),( , , , ),

( , , , ),( , , ,, ),( , , , ),( , , , ),( , , , )],0 1 0 1 1 1 1 1 1 1 1 0 0− −
 

B B x z B z
3 0 1

1 1 1

1 0 1 0 1 1 1 0 2 1 1 0 2 0

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , , ),( , , , ),( , , , ),( , , , )],1 0 2 0 0 0 2 0 1 1 2 1 1 1 2 1 0 0− −
 

B B y z B y
4 0 2

1 1 1

0 1 1 0 0 2 1 0 1 2 1 0 1 1

= + + = + =( , ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , ),( , , , )],1 0 1 1 0 0 1 1 1 1 1 2 1 1 1 2 0 0− −
 

B B y z B y
5 0 3

1 1 1 1

1 1 1 0 1 2 1 0 2 2 1 0

= + + + = + =(x , , ) ( )

[( , , , ),( , , , ),( , . . ),(( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],2 1 1 0 2 1 0 0 2 1 1 1 2 2 1 1 2 2 0 0− −
 

B B y
6 0

1 0 1 0 0 0 2 0 0 1 2 0 0 1 1 0 0

1 1

= + =
−
( ) [( , , , ),( , , , ),( , , , ),( , , , ),

( , , 11 0 1 1 0 1 1 2 0 1 1 2 1 0, ),( , , , ),( , , , ),( , , , )],− − −
 

B B y B y
7 0 1

1 1 1

1 1 0 0 1 2 0 0 2 2 0 0 2 1

= + + = + =( , x ) ( )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , ),( , , , )],0 0 2 1 1 0 2 1 0 1 2 2 0 1 2 2 1 0− − − −
 

Figure 14. The partition space by tetrahedral prisms
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B B
8 0

1

0 0 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 0

= + =
−

(t )

[( , , , ),( , , , ),( , , , ),( , , , ),( , , 11 1 1 0 0 1 1 1 0 0 1 1 1 1, ),( , , , ),( , , , ),( , , , )],−
 

B B y B
9 0 6

1 1 1

0 1 0 1 0 2 0 1 1 2 0 1 1 1

= + + = + =( , t ) (t )

[( , , , ),( , , , ),( , , , ),( , ,, , ),( , , , ),( , , , ),( , , , ),( , , , )],0 1 1 1 1 1 1 1 0 0 1 2 0 0 1 2 1 1− −
 

B B y B
10 0 7

1 1 1 1

1 1 0 1 1 2 0 1 2 2 0 1

= + + + = + =(x , , t ) (t )

[( , , , ),( , , , ),( , , , ),,( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],2 1 0 1 2 1 1 1 2 1 0 0 2 2 0 0 2 2 1 1− −
 

B B B
11 0 1

1 1 1

1 0 0 1 1 1 0 1 2 1 0 1 2

= + + = + =(x , t ) (t )

[( , , , ),( , , , ),( , , , ),( , 00 0 1 2 0 1 1 2 0 0 0 2 1 0 0 2 1 1 1, , ),( , , , ),( , , , ),( , , , ),( , , , )],− −
 

B B B
12 0 2

1 1 1

0 0 1 1 0 1 1 1 1 1 1 1 1

= + + = + =(y , z ) (t )

[( , , , ),( , , , ),( , , , ),( , 00 1 1 1 0 0 1 1 0 1 0 1 1 1 0 1 1 0 1, , ),( , , , ),( , , , ),( , , , ),( , , , )],
   

B B t B
13 0 4

1 1 1 1

0 1 1 1 0 2 1 1 1 2 1 1

= + + + = + =(z , y , ) (t )

[( , , , ),( , , , ),( , , , ),,( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],1 1 1 1 1 1 0 1 1 1 1 0 1 2 1 0 1 2 0 1
 

B B z t B
14 0 5

1 1 1 1 1

1 1 1 1 1 2 1 1 2 2

= + + + + = + =(x , y , , ) (t )

[( , , , ),( , , , ),( , ,11 1 2 1 1 1 2 1 0 1 2 1 1 0 2 2 1 0 2 2 0 1, ),( , , , ),( , , , ),( , , , ),( , , , ),( , , , )],
 

B B z B
15 0 3

1 1 1 1

1 0 1 1 1 1 1 1 2 1 1 1

= + + + = + =(x , t , ) (t )

[( , , , ),( , , , ),( , , , ),,( , , , ),( , , , ),( , , , ),( , , , ),( , , , )].2 0 1 1 2 0 0 1 2 0 1 0 2 1 1 0 2 1 0 1
 

It is presented tetrahedral prisms B B
0 15
÷  points in 4-dimensional space 

we get up hypercube in Figure 8 with change notation Ai on Bi. From the 
construction it is follows that tetrahedral prism Bi can have common elements 
such as tetrahedrons, edges and vertices. This is easily seen by analytical 
expressions (3). In addition, it follows from the construction (Figure 9) that 
the tetrahedral prism Ai and Bi can have common elements only tetrahedrons, 
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edges and vertices. Triangular prisms which are present in tetrahedral prisms 
of both types cannot be common for these tetrahedral prisms. 

They only deal with each other on a flat quadrilateral. This also easily seen 
from the formulas (2) and (3). This situation is significantly different from 
the conditions of normality, to accept in general theory stereohedrons. The 
provided construction proves that the tetrahedral prism is a fundamental area 
in the 4-dimensional space, as it completely fills the space in the translation 
of the prism in all the coordinates of space and turning it into 1800. Since 
all the vertices of the tetrahedral prisms are equal and filling the space with 
their translation is uniform, then the partition created by them is the right one 
space. It is obvious that the nature of the mutual arrangement of polytopes 
will not change, if the three-dimensional polyhedron in a polytopic prism will 
attend any other convex polyhedron. Common elements polytopic prisms are 
themselves three-dimensional polyhedrons and elements of lower dimension. 
Three-dimensional prism here also are not common elements of polytopic 
prisms. Consider a complex polytopic prism, i.e., polytopic prismahedron 
resulting from the product of two polytopes. For example, let polytopic 
prismahedron is the product of a tetrahedron by a triangle. The result of 
this produсt is a polytope of dimension 5, which can be called tetrahedral 
prismahedron (Chapter 5).

Table 1. Common elements of tetrahedral prisms 

Edge of  
Hypercube

Common Element of Tetrahedral 
Prisms

Edge of 
Hypercube

Common Element of Tetrahedral 
Prisms

A0 A1
A0 A2
А0 А6
A0 A8
A1A3
A7A1
A1A11
A2A3
A2A4
A2A12
A3A5
A3A15
A4A5
A4A6
A4A13
A7A5

edge (1,0,0,0)(1,1,0,0) 
edge (0,1,1,0)(0,0,1,0) 
tetrahedron 
 (0,1,0,0)(1,1,0,0)(0,1,0,1)(0,1,0,1) 
edge (0,1,0,1)(0,0,0.1) 
edge (1,0,1,0)(1,1,1,0) 
tetrahedron 
(1,1,0,0,)(2,1,0,0)(1,1,1,0)(1,1,0,1) 
edge (1,0,0,1)(1,1,0,1) 
edge (1,0,1,0)(1,1,0,0) 
tetrahedron 
(0,1,1,0)(1,1,1,0)(0,1,1,1)(0,1,2,0) 
edge (0,1,1,0)(0,0,1,1) 
tetrahedron  
(1,1,1,0)(2,1,1,0)(1,1,2,0)(0,1,1,1) 
edge (1,0,1,1)(1,1,1,1) 
edge (1,1,1,0)(1,2,1,0) 
edge (0,1,1,0)(0,2,1,0) 
 vertex (0,1,1,1) 
edge (1,1,1,0)(1,2,1,0)

A5 A14
A6 A7
А6 А9
A7A10
A8 A11
A8A9
A8A12
A9A10
A9A13
A11A10
A14A10
A11A15
A13A12
A12A15
A13A14
A14A15

edge (1,1,1,1)(1,2,1,1) 
vertex (1,1,1,0) 
edge (0,1,0,1)(0,2,0,1) 
vertex (1,1,0,1) 
edge (1,0,0,1)(1,1,0,1) 
tetrahedron 
(0,1,0,1)(1,1,0,1)(0,1,1,1)(0,1,0,2) 
edge (0,0,1,1)(0,1,1,1) 
edge (1,1,0,1)(1,2,0,1) 
edge (1,2,1,1)(0,1,1,1) 
edge (1,2,0,1)(1,1,0,1) 
edge (1,1,1,1)(1,2,1,1) 
edge (1,0,1,1)(1,1,1,1) 
edge (0,1,1,1)(1,1,1,1) 
edge (1,0,1,1)(1,1,1,1) 
tetrahedron 
(1,1,1,1)(1,1,2,1)(1,2,1,1)(1,2,2,1) 
tetrahedron 
(1,1,1,1)(2,1,1,1)(1,1,2,1)(1,1,1,1)
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P F P P P F F F P F F F
4
3

3
2

3
2

12
5

9
4

6
3

4
2

3
2

8
4

6
3

4
24 4 6 3 2 2 4 3 2( )] { [ ( , ), [ ( ,× =

33
2

4
3

3
22 4), ( )]}.F F  

(4)

Polytopes (4) to be composed from 3 tetrahedral prisms P
8
4  and 4 triangular 

prismahedrons P
9
4 . Its image it is shown in Figure 15.

This figure shows that the translation of the tetrahedral prismahedron on 
edge length in the coordinates 5-dimensional space to carry out to form between 
them of tetrahedral prismahedrons, rotated relative to the first in 1800. In 
addition, each 4-dimensional tetrahedral prism belongs to only one tetrahedral 
prismahedron, i.e., in this case, four-dimensional tetrahedral prisms do not 
belong simultaneously two adjacent 5-dimensional tetrahedral prismahedrons. 
Obviously, the above regularities are performed when constructing spaces 
with the help of more complicated politopic prismahedrons.

This proves the theorem 1.

A NEW PARADIGM OF DISCRETE SYSTEMS

We recall briefly the main concepts and results of the classical theory of 
discrete systems. An example of the realization of constructing a space from 
congruent polytopes (18 Hilbert’s problem) to be the crystalline structures 

Table 2. Common elements of tetrahedral prisms

Diagonal Flat Face of Hypercube Common Element of 
Tetrahedral Prisms

Diagonal 
Flat Face of 
Hypercube

Common Element of 
Tetrahedral Prism

A8 A13, A8 A13
A6 A2, A0 A4
А8 А2
A0 A12
A4 A9
A6A13
A5A13
A4 A14
A5A10
A7A14
A7A9
A6 A10
A9A14
A13A10
A5A6
A4A7
A11A12
A14A12

vertex (0,1,1,1) 
vertex (0,1,1,0) 
edge (0,1,1,1)(0,0,1,1) 
∅ 
vertex (0,1,1,1)(0,0,1,1) 
∅ 
edge (1,1,1,1)(1,2,1,1) 
∅ 
edge (1,2,1,1)(1,1,1,1) 
∅ 
edge (1,1,0,1)(1,2,0,1) 
∅ 
∅  
edge (1,2,1,1)(1,1,1,1) 
∅ 
edge (1,1,1,0)(1,2,1,0) 
edge (1,1,1,1)(1,0,1,1) 
vertex (1,1,1,1)

A8 A10, A9 A11
A14 A7
 A5 A10
А13А14, A5 A15
A3A11
A1 A15
A7A11, A1 A10
A5 A1, A7 A3
A3A12
A2A15
A11A0
A1A8
A4A3, A5 A2
A1 A6, A0 A7
A6 A8, A0 A9
A11A14,A10 A15
A8A15
A13A15

vertex (1,1,1,1) 
∅ 
edge (1,1,1,1)(1,2,1,1) 
vertex (1,1,1,1) 
vertex (1,0,1,1)(1,1,1,1) 
∅ 
vertex (1,1,0,1) 
vertex (1,1,1,0) 
edge (1,0,1,1)(1,1,1,1) 
∅ 
∅ 
edge (1,0,0,1)(1,1,0,1) 
edge (1,1,1,0) 
vertex (1,1,0,0) 
vertex (0,1,0,1) 
vertex (1,1,1,1) 
∅ 
edge (1,1,2,1)(1,1,1,1)
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that are widespread in nature. A crystalline structure is called correct if the 
groups in all those space motions, like a rigid whole that combine this structure 
with itself, is discrete and has a fundamental domain. A group G of motions 
is said to be discrete, if there exists a point A and a positive number r such, 
that every point different from A and equivalent to A is relative to G (that is, 
the one into which the point A passes by the motion from G) lies no closer 
to A then on distance r. The fundamental domain of the group G is a set of 
points of space such that 1) all its points are not equivalent to each other with 
respect G, and 2) any point of the space is equivalent to an equivalent point 
of this domain with respect G.

Such groups G are called crystallographic. These classical definitions 
(Delone, Padurov & Alexandrov, 1934) implicitly assume that the considered 
spaces are infinite, although all crystal structures in nature have a boundary 
and a finite volume. It was first established by Fedorov (Fedorov, 1890) 
and somewhat later by Schönfles (Schönfles, 1891) that there are 17 on 
the two-dimensional plane, and 230 crystallographic groups in the three-
dimensional space. If we add to the conditions of discreteness and finiteness 
of the fundamental domain the requirement that in the group G there exist 
an n-dimensional subgroup T of parallel transfers(if G is n-dimensional), 
then the proof of the finiteness of the number of such groups follows directly 
from the Frobenius argument (Frobenius, 1911). Evidence for the existence 
of such n-dimensional subgroups T was obtained in a number of papers 

Figure 15. The tetrahedral prismahedron
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(Schönfles, 1891, Zasenkaus, 1948, Bieberbach, 1910, 1911, 1912). Delone 
(Delone,1937) introduced the concept about system of the distribution of 
discrete matter, based on two conditions: the existence of a finite smallest 
radius of the ball inside which there are no points of the system (the concept 
of an empty ball), and the existence of a radius of the ball inside which 
there is necessarily at least one point of the system. The question arises as to 
what are the convex polytopes that play the role of fundamental domains in 
n-dimensional Euclidean space. Based on the introduced notion of a discrete 
system Delone proved (Delone, 1961) that a normal partition of a space 
(polytopes are adjacent to each other along entire (n-1) -dimensional faces) 
for any n there are only a finite number of topologically different types of 
partition. In the definition of normal partitions is assumed that for every (n-
1) face of polytope P in the normal decomposition there is one and only one 
other polytope S having this same face. If we take the group G and repeat a 
point A, then we obtain a regular system of points. The Dirichlet domains of 
its points form some regular Dirichlet decomposition connected with the group 
G. It is normal. Delone and Sandakova proved (Delone, Sandakova, 1961) 
that the stereohedrons of these partitions for a fixed n can only be of a finite 
number of topologically different types. The edge grids of the stereohedrons 
do not stretch to each other. If we do not require the normality of partitions 
into convex fundamental domains, then there can be infinitely many such 
topologically distinct partitions (Zamorzayev, 1965). 

It is absolutely clear that the concept of discrete systems introduced by 
Delone clearly contradicts the existence of a scaling process, which has 
been proved experimentally. The concept of an empty ball does not allow 
a continuous reduction in scale. In this paper, we introduce an idea of a 
discrete system that agrees with scaling processes. We consider an arbitrary 
n-dimensional system of points in n-dimensional space. The system is 
discrete, i.e., between points there is always some distance, which can only 
tend asymptotically to zero, not reaching an exact equality to zero. The system 
has in the neighborhood of each point the hierarchical distribution of points 
(Mackay, 2001). The latter leads to the existence of a periodic distribution 
of points in space.

The introduction of the discrete system so introduced corresponds to the 
diffraction patterns of the nanostructures and to the scaling process discovered 
in recent years. It is essential that the lattice of points of this system allows 
for the separation in it, as shown in Chapter 4, of all Platonic solids, Bravais 
and Delone cells. Thus, this discrete system is universal. Based on this new 
conception of a discrete system, it was possible to obtain and systematize 
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(Chapter 5) polytopic prismahedrons of the higher dimension, which, as 
shown in this chapter, allow filling an n-dimensional space without gaps. The 
direct construction of polytopic prismahedrons showed that the obligatory 
condition accepted in the theory of the Delone stereohedrons (Tarasov, 1997), 
does not hold, the separation of vertices of neighboring stereohedrons along 
the n -1 plane (Theorem 1 of Chapter 7).

The discrete Delone system has so far not been able to obtain a single 
example of a stereohedron higher dimensional (Galiulin, 2003). Until no 
enumeration of the stereohedrons of Delone with dimension 3 of normal 
partitions has been obtained. There are only isolated examples of these 
stereohedrons (Shtogrin, 1973; Peter, 1981). Moreover, the use of discrete 
Delane systems can lead to incorrect results. For example, in the work of 
Ryzhkov, Shushbaev (Ryzhkov & Shushbaev, 1981) is asserted on the basis 
of ideas about these systems, that with the help of a 4-cross-polytope one can 
obtain the correct partition of the space 4D. However, a direct construction 
by the methods developed in this paper can show that this is not so.

The most complete variants of normal mono-, di-, and polyhedral partitions 
of the two-dimensional Euclidean plane are considered by Zhizhin (1993). 
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KEY TERMS AND DEFINITIONS

New Paradigm of Discrete n-Dimension World: The elementary cells 
of the translational filling of the n-dimensional space are the polytopic 
prismahedrons, the stereohedrons of which Delone spoke, but he did not give 
a single concrete example of stereohedron. Polytopic prismahedrons, filling 
the n-dimensional space, as shown by direct construction, can have common 
elements in the entire range of dimensions up to the dimension of the facets, 
or do not have any common elements. In addition to the translational filling 
of the n-dimensional space, there is a hierarchical filling of the space, which 
is inextricably linked with the scaling process, i.e. discrete scale change of 
the figure. Translational filling of space can be combined with hierarchical 
filling of space. In this case, in principle, in each point of space there is an 
asymptotic decrease or increase in the scale of the figure (as an expansion 
of the Universe from each of its points). Delone’s provisions on an “empty” 
ball, the finite minimum and maximum distances between the points of a 
discrete system, are not used. Thus, Hilbert’s problem acquires a completely 
new content.
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Conclusion

The study showed that almost all elements of the periodic system of Mendeleev 
to announce in the chemical compounds the valence is higher than the 
valence determined by the number of the group in the periodic system. To 
explain this in the scientific literature resorts to assumptions about various 
mechanisms of electron interaction. Practical all these compounds form 
molecules of higher dimension, determined by the Euler-Poincaré equation. 
The existence of closed objects (molecules) of higher dimension in a space of 
lower dimension does not contradict Riemann’s geometry, which assumes the 
boundedness of a space with a given dimension. Images of many molecules 
of higher dimension are given. In particular, new images of biomolecules 
having high dimensional values were obtained.

Conformations of chiral molecules of higher dimension (glucose, tartaric 
acid) are considered. The constructed images of higher dimension made it 
possible to explain the experimentally observed differences in the properties 
of these conformations.

To obtain materials with new properties, the question of filling the 
space with polytopes that are images of complex molecules is important. If 
polytopes are congruent, we arrive at the well-known 18th Hilbert problem. 
In the case of a multidimensional space, Delone introduced representations 
of stereohedron that could fill a multidimensional space without gaps as a 
result of the translation of the stereohedron along the directions of the space 
coordinates. However, until now no stereohedron has been introduced that 
could solve this problem even for a four-dimensional space. In this paper, 
the question of the filling of a multidimensional space by the translation 
of polytopes of higher dimension was solved by obtaining a product of 
polytopes. It is the products of polytopes have the properties necessary for 
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filling multidimensional space with translation, i.e. they are stereohedrons. 
The products of polytopes are not well-studied simplicial polytopes. Therefore, 
their study is of independent interest. In the work various products of polytopes, 
called polytopic prismahedrons, are systematized, their analytical expressions 
are obtained, and their specific images are given. The direct construction of 
space by means of translation of polytopic prismahedrons, found that the 
condition accepted in the theory of the Delone stereohedrons for the contact of 
stereohedrons only over facets is not satisfied. The polytopic prismahedrons, 
when they fill the space, can contact each other with respect to elements of 
various dimensions from 0 to the dimension of the facets.

In the description of discrete systems, there is no need to introduce the 
concept of an empty ball, which is necessary in the Delone theory. The 
concept of an empty sphere of finite diameter, in which there are no vertices 
(atoms) of polytopes, contradicts, for example, the process of scaling, i.e., 
continuous change of scale in condensed systems, discovered in recent 
decades. This contradiction is clearly seen when observing diffraction patterns 
of nanostructures. In these diffraction patterns you can find out how filling 
the space with polytopes of higher dimension during their translation, and 
hierarchical filling of space, accompanied by a change in the scale of the 
figures, i.e. scaling of figures. In this connection, the paper has studied the 
different way of the hierarchical filling of spaces with regular and semi - 
regular polytopes of higher dimension.

One of the important characteristics of polytopes is the construction of 
dual polytopes. Therefore, continuing the study of polytopic prismahedrons, 
the paper analyzes the polytopes dual to polytopic prismahedrons. An 
absolutely new class of polytopes – poly-incidence polytopes is found in 
which simultaneously there are edges with different degrees of incidence to 
the three-dimensional faces of polytopes.

Proving the higher dimensionality of many molecules, the question naturally 
arose of the possibility of solving the Schrödinger equation in a space of 
higher dimension, since known electron orbitals of atoms were obtained as 
a result of solving the Schrödinger equation in a three-dimensional metric 
space. It is found that the Schrodinger equation has a solution in a space 
of higher dimension. The mistake of the previous researchers is that they 
unreasonably complicated the law of the Coulomb interaction of electric 
charges. This led them to a paradoxical conclusion about the impossibility 
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of the atomic structure of matter in spaces of higher dimension, because 
there was no solution to the Schrödinger equation under these conditions. 
A solution of the Schrödinger equation in a four-dimensional metric space 
was obtained. From this solution, in particular, follows the possibility of the 
existence of more quantum cells in different orbitals of the atoms. The latter 
can explain the greater chemical activity of atoms than the Mendeleyev table.

In general, we can say that this work creates the basis for a new 
stereochemistry - stereochemistry in spaces of higher dimension.
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SOLUTION OF THE SCHRÖDINGER EQUATION 
IN A P-DIMENSIONAL METRIC SPACE

The Stationary Schrödinger Equation in 
a p-Dimensional Metric Space

The stationary Schrödinger equation in a p-dimensional metric space has view

− ∇ + =
�
2

2

m
U E

p
Ψ Ψ Ψ.  (1)

where Ψ . - the wave function, U - the potential energy of an electron (the 
function of radius r), E – the kinetic energy of electron, ∇

p
2 - Laplacian in 

p-dimensional metric space, m – the mass of electron, � .- Planck constant.
The potential energy U(r) – this potential energy of the Coulomb attraction 

of an electron to the nucleus and can be written in explicit form

U r
Ze
r

( ) .= −
2

 (2)

where eZ  - ion`s charge, e – electron`s charge.
It is essential that the form of the potential energy (2) does not depend 

on the dimensionality of space and it is defined as a function inversely 
proportional to the radius in the first degree. Since in a space of any dimension, 
the potential energy is a function of the distance between the charges (of the 
electron and the nucleus). The incorrectness in previous studies of the solution 
of the Schrödinger equation in spaces of higher dimension is that the authors 
of these works (Büchel, 1963; Freeman, 1969; Gurevich & Mostepanenko, 
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1971) recorded potential energy without a physical basis as a function of the 
radius to the power of p -2. Such an entry goes to formula (2) only in three-
dimensional space, but in a space of the higher dimension this record is not 
true and leads to an absurd conclusion about the impossibility of the existence 
of a discrete atomic structure in a space of higher dimension.

Equation (1), having transferred to the atomic system of units, taking into 
account (2), in the Cartesian coordinate system has the form

∂
∂
+
∂
∂
+ +

∂
∂
+ +









=

2

1
2

2

2
2

2

2
2 0

Ψ Ψ Ψ
Ψ

x x x

c
r

E
p

... .  (3)

where c – constant, r x x
p

= + +
1
2 2... .

For further analysis, it is convenient to go over into a spherical coordinate 
system, where the radius of one of the p variables. The remaining p - 1 
variables are the angles between the vector of length r to the point of location 
of the particle and the unit vectors of the Cartesian system of coordinates.

It can be noted that Gurevich & Mostepanenko (1971) were confused with 
coordinate systems. For example, the velocity vector in the n-dimensional 
space has n + 1 components in their work. Babenko (2015), considering 
n-dimensional space, describes the one-dimensional Schrödinger equation, 
forgetting the remaining variables.

In an n - dimensional space, the analytic connection between the coordinates 
is expressed by equalities (Hobson, 1931)

x r
p1 1 2 1

= −sin sin ... sin ,α α α  

x r
p2 1 2 1

= −cos sin ... sin ,α α α  

x r
p3 2 3 1

= −cos sin ... sin ,α α α  (4)

x r
p p p− − −=
1 2 2

cos sin ,α α  

x r
p p
= −cos .α

1
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The Laplacian in the Schrodinger equation in a spherical coordinate system 
in p-dimensional space can be written in the form

∇ =
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∂
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where L
i
 - the Lame coefficients, i = 1, 2,…, p,
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Differentiating the equality (4) with respect to the independent variables, 
substituting the derivatives in the Lame coefficients (6), we obtain after the 
transformations

L L r L r

L r
p p1 2 2 1 3 3 1

4 4

1= = =
=

− −, sin ... sin , sin ... sin ,

sin ... s

α α α α
α iin ,..., .α

p p
L− =

1
1

 (7)

The Schrödinger equation in a spherical coordinate system in p-dimensional 
space has view
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∇ + +









=

p r
E2 2
2 0Ψ Ψ .  (8)

Where ∇
p
2Ψ  is expressed using equations (5) – (7).

A solution of equation (8) can be obtained by separating the variables 
assuming that

Ψ Φ Φ Φr R r
p p p

, , ..., ... .α α α α α
1 1 1 1 2 2 1 1− − −( ) = ( ) ( ) ( ) ( )  (9)

We confine ourselves to the case of four-dimensional space, p = 4. Than 
Schrödinger equation (8) has view
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The Decision of the Stationary Schrödinger 
Equation in a p-Dimension Metric Space

We seek the wave function in the form

Ψ Φ Φ Φr R r, , , .α α α α α α
1 2 3 1 1 2 2 3 3( ) = ( ) ( ) ( ) ( )  (11)

We substitute (11) into (10)
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 (12)

The left part of (12) is depended at radius r, and right part is dependent 
only at angles.
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Therefore, both parts equality (12) equal to same constant C1. From left 
part of (12) we have

1
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13 2
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From right part of (12) we have
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The equation (14) we rewrite as follows
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The left part of (15) is depended at angles only, and the right part of (15) is 
depended at angles only. Therefore, both parts of (15) equal to same constant 
C2. From the left part (15) we have
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From the right part of (15) we have
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The left part of (17) is depended only at α
1
, and right part of (17) is 

depended only at α
2
.Therefore, both parts equal to same constant C3. From 

the left part of (17) we have
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− =
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1 1
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From the right part of (17) we have
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The equation (18) have decision

Φ
1 1

3 1( ) .α α= ±Ae i C  (20)

Since Φ Φ
1 1
0 2( ) ( )= π , then A Ae i C= ± 3 2π,  i.e.

e i C± =3 2 1π .   (21)

Consequently, cos( ) sin( ) .2 2 1
3 3

π πC i C± =

It may be only if C
3
0 1 2= ± ±, , , ....

So we got the first quantum number

m C
1 3

0 1 2= = ± ±, , , ....   (22)

The constant A is defined from condition of normalization

Φ Φ
1 1 1 1 1

2
1

2

0

2

0

2

1 23 1 3 1*( ) ( ) .α α α α πα α
ππ

d A e e d Ai C i C= = =−

∫∫  

Consequently, A = 1

2π
.Thus, the function it is known

Φ
1 1 1 3

1

2
1 1( ) , .α

π

α= =−e m Cim  (23)

We write the equation (19) in the form
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= 0.  (24)

Equation (24) is the adjoined Legendre equation. In the case C l l l
2

1= +( ),  
are integers, its solutions are the adjoined Legendre polynomials (Landau & 
Lifshitz, 1963)
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So we got second quantum number l. Equation (16) can be rewritten in 
the form
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Since sinα
3
2  is a positive function varying from 0 to 1, then we introduce 

the average value of this function τ in the range α
3
from 0 to 2π

τ
π

α α
π

= =∫
1
2

1
23

2
3

0

2

sin .d  

Then the equation (26) have the form

C l l
d

d1
3 3

2
3 3

3
2

2 1
1

− + = −( )
( )

( )
.

Φ

Φ

α
α

α
 (27)

The decision of this equation is

Φ
3 3

2 1 23 1( ) .( )α α π= ± − +Be i C l l  (28)

Since Φ Φ
3 3
0 2( ) ( ),= π so from (28) we have
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B Be i C l l= ± − +1 2 1 2( ) ,π i.e. e i C l l± − + =1 2 1 2 1( ) .π  

Consequently, cos( ( )) sin( ( )) .2 2 1 2 2 1 1
1 1

π πC l l i C l l− + ± − + =

It may be only if C l l
1
2 1 0 1 2− + = ± ±( ) , , , ....

So we got the second quantum number

m C l l
2 1

2 1 0 1 2= − + = ± ±( ) , , , ....   (29)

The constant B is defined from condition of normalization (see equation 
(20))

Φ
3 3

1

2
2 3( ) .α

π

α= −e im  (30)

Now consider the equation for the radius (13). We perform differentiation 
in it

r
d R

dr
r
dR
dr

R r r E l l m2
2

2

2
2
23 2 2 2 1 0+ + + − + − =( ( ) ) .  (31)

We seek the solution of the equation (31) in the form of a series in powers 
of r

µ = − <( ) , ,/E E b
j

1 2 0 are numerical coefficients. (32)

Substituting (32) into (31), performing differentiation and combining 
summands with the same powers r, we obtain

b r l j l j l l m

b r l j

j
l j

j

j
l j

+

+ +

+ + + − + −( )
= + + −( )
∑ ( ) ( ) ( )

( )

2
2
2

1

2 2 1

2 2 3 2µ ..
j
∑

 (33)

From equation (33) follows the recurrence formula for the coefficients
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( ) ( ) ( )
.  (34)

In view of the need to obtain a limited physical meaningful solution, the 
values of the coefficients, starting from a certain value of j must vanish. This 
is possible if the numerator on the right-hand side of (34) is zero

µ( ) .2 2 3 2 0l j+ + − =  (35)

From equation (35) follows that

µ = − =
+ +

E
l j
2

2 2 3
.  (36)

We introduce the notation n = l + j +1. From (36) equation we have

E
n

= −
+
2

2 1 2( )
.  (37)

For big n formula (37) go to the formula of Bore at energy of electron.
The radial function is determined by the equality (32) of setting different 

values j. For example, with j = 0
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Thus, one can obtain various approximations for the function R r( ). .

Consideration of Decision of the Stationary Schrödinger 
Equation in a p-Dimensional Metric Space

Thus, it is proved that the Schrodinger equation has a solution in a space of 
higher dimension. Consequently, the discrete nature of matter exists in a space 
of higher dimension. For example, in four-dimensional space the atom has 
besides a spin quantum number yet of four more quantum numbers. The main 
quantum number n, which determines the average distance of the electron 
from the nucleus. Orbital quantum number l, characterizing the momentum 
of an electron. The first magnetic quantum number m1, characterizing the 
possible value of the projection of the angular momentum of the electron 
on the axis z in a magnetic field. The second magnetic quantum number 
m2 characterizing the possible value of the projection of the momentum of 
the electron on the fourth axis (t) in a magnetic field. The main quantum 
number can take the values 1, 2, 3, .... The orbital quantum number can take 
the values 0, 1, 2, .....

Magnetic quantum numbers can take the values 0, ±1, ±2, ±3,...
The values of the orbital quantum number l correspond to form of electron 

orbital. Taking into account the large dimensionality of the neighborhood 
of the nucleus in the atom, we should expect an increase in the number of 
quantum cells in orbitals p, d, f while maintaining their shape. For example, 
not 6 but 8 electrons (for each quantum cell with a corresponding pair of 
electrons per axis) can be on the orbital p. In Chapters 1 and 2, when analyzing 
chemical elements and molecules formed by them, it was shown that many 
elements exhibit a valence in chemical reactions much higher than the valence 
determined by their place in the periodic table (group number). To explain 
this, we resort to assumptions about various possible mechanisms of electron 
interaction: atomic and molecular hybridization, repulsion of divided and 
unpaired electron pairs, and the involvement of electrons inside the electron 
shells in the chemical interactions. In addition, physical experiments at high 
pressures reveal a sharp change in the structure of compounds that are also 
not explainable from the point of view of standard valence.

On the other hand, the analysis of real forms of molecules shows that their 
dimensionality, determined by the shape of the corresponding convex body, 
whose vertices are atoms, is often higher than three.
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Undoubtedly, the possible loss of the number of quantum cells in orbitals 
p, d, f should not lead to a change in the number of electrons in the atomic 
structure in neutral atoms. The number of electrons under these conditions is 
of course equal to the charge of the nucleus. But the possible increase in the 
number of vacant quantum cells contributes to an increase in the chemical 
activity of atoms, allows the creation of complex chemical compounds. 
This we see, for example, in biology. A detailed analysis of the molecules 
of complex compounds from the point of view of solutions of Schrödinger 
equations in a space of higher dimension still awaits its researchers.
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