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PREFACE

The book presents a traditional subject in biophysics—conformational dy-
namics of biological macromolecules—from a somewhat unorthodox per-
spective. Biology-oriented research in this interdisciplinary area is dominated
by structural analysis and thinking (the “structure–function paradigm”).
Physics-oriented research has focused heavily on the development of tech-
niques (“single molecule biophysics”) and less on concepts. An exception is
the early single molecule work on molecular motors (and supporting theo-
retical developments), which started to address squarely the fundamentals of
dynamics.

Our own angle is a generalization of that approach, where the important
quantities are dynamic: forces and deformations, stress and strain, to a larger
class of enzymes, and indeed othermacromolecules, includingDNA.One can
pose the question of “force–velocity curves” even for enzymes that are not
motors. Similarly, one can pose the question of the deformability of enzymes
beyond the crystallographically documented conformational transitions.

Starting from certain recent experimental developments, we build a way
of thinking about conformational motion (the molecular machine aspect of
living systems) that is materials science oriented (as opposed to structural-
biology oriented). We find this approach conducive to designing innovative
experiments in the field. The book is, therefore, mainly directed to the
experimentalist who wishes to push the boundaries of materials science.
However, it is a book about concepts, not techniques. Always the concept
is illustrated through a relatively simple model, and often the purpose of the
model is not somuch to fit a particular set of data, as it is a vehicle for thinking
about the system and asking questions about the system.

The focus on dynamical quantities—forces, deformations, elastic
energies—allows some fundamental unity of the subject matter to emerge
that is otherwise not apparent. One such “universal” process is softening
transitions. Large conformational motion accesses mechanical regimes
beyond linear elasticity that seem invariably characterized by a local
softening of the folded structure. In the book, such reversible yield
transitions, in their static and dynamic forms, are the guiding thread for
chapter 2 on DNAmechanics and chapter 4 on enzyme mechanics (and, to a
lesser extent, chapter 3).

vii
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viii PREFACE

Some topics in the book (still pertaining to conformational changes) are
treated in a more traditional manner, for instance DNA melting. This is a
subject that has received a lot of attention (perhaps toomuch attention) from
physicists (alas, including the author) in the context of phase transitions and
force-induced unzipping. However, here too our focus is slightly unorthodox
in that it is not on the thermodynamic limit of long molecules, but rather on
short molecules as a clean experimental system and nanoscience tool.

In summary, through certain recent experimental developments, the
subject of conformational transitions (central to the molecular machines
aspect of life) is acquiring a materials science basis that is not yet reflected
in the secondary literature. The physics-oriented presentations of the subject
are mostly informed by concepts of the energy landscape which were really
developed to describe the folding–unfolding transition (another favorite
among physicists) but do not provide an incisive description of the dy-
namics of conformational transitions of the folded state, which is quite a
different, and maybe simpler, problem. This book attempts to formulate the
subject in terms more resonant with materials scientists, with the intent of
opening this area of research to a wider nanoscience community, especially
experimentalists.

A word about the more practical aspects of the format. I thought of
addressing the book to the graduate students first coming to work in my
group. One question is always, “What should I read to get started?”With this
work, I mean to provide part of the answer. I assume a good grounding in
equilibrium statistical mechanics. Building on that understanding, the book
is also to some extent a collection of exercises in statistical physics. One can
practice the transfermatrixmethod on the example of themelting of theDNA
double helix, instead of themore usual ferromagnetic transition. I think of the
subject matter of the book as part of condensedmatter physics, so I sought to
make the material deliverable in lecture form to a class of physics students.
I like my lectures to take place at the blackboard, and I wrote the book with
that inmind; calculations are presented step by step. I opted not to encumber
the text with a reference for each statement; this is normal practice for a
textbook, while the opposite is true for amonograph.My book lies somewhat
in between. There are still many references for each chapter, but most are
not referred to in the text. Exceptions are when figures or whole calculations
are directly taken from one reference, which is then acknowledged explicitly.
Consistent with this approach, scant attention is paid to the history of the
subject and questions of priority. This book is about the science, not the
scientists.

I did not include a chapter on biomolecular structures. To those unfamil-
iar with, say, the structure of DNA, I say first that they should be familiar with
it, and second that they are only one short typeset away from an excellent
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PREFACE ix

Wikipedia article on the topic. The same goes for any biological term in the
book that may be unfamiliar to the physicist. On the other hand, I did include
a chapter (chapter 1) on Brownian motion. There are two reasons: One is
that while it is safe to assume knowledge of equilibrium statistical mechanics
in first- or second-year physics graduate students, the opposite is true when
it comes to Brownian motion. This topic partakes of both equilibrium and
nonequilibrium statistical mechanics; unless it is appreciated, the whole
subject matter of the book has little conceptual underpinning.

Finally, a note on notation. In all the formulas, we use reduced units
where the Boltzmann constant = 1. Therefore the temperature T has dimen-
sions of energy and the entropy S is dimensionless. On the other hand, we use
the notation kBT as an energy unit corresponding to the thermal energy at
room temperature: 1 kBT = 4.2pNnm = 25meV, approximately. While this
usage is nonstandard in a book, it has become the common “spoken” usage in
the field.
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1
Brownian Motion

The phenomenon of Brownian motion connects equilibrium and non-
equilibrium statistical mechanics. It connects diffusion—a nonequilibrium
phenomenon—with thermal fluctuations—an equilibrium concept. More
precisely, diffusion with a net flow of particles, driven by a concentration
gradient, pertains to a nonequilibrium system, since there is a net cur-
rent. Without a concentration gradient, the system is macroscopically in
equilibrium, but each individual particle undergoes self-diffusion just the
same. In this sense, Brownian motion is at the border of equilibrium and
nonequilibrium statistical mechanics. Understanding Brownian motion led
Einstein, in one of his famous 1905 papers, to a form of the fluctuation–
dissipation theorem. Here we give an introduction to the main ideas.

1.1 Random Walk

The simplestmodel of Brownianmotion is a randomwalk on a lattice. It is the
following process: a particle starts at a lattice site, andmakes random steps to
the neighboring sites. For example, we may visualize a square lattice in 2-D
(figure 1.1). With equal probability, the particle steps up, down, right, or left.
After a time interval τ0 the process is repeated. Thus time is connected to the
number of stepsN by

t = Nτ0. (1.1)

The ith step is specified by a vector r⃗i (there are only 4 such vectors for a
square lattice in 2-D); a particular realization of the random walk of N steps
is the set of vectors

random walk: {r⃗i ∶ i = 1, 2,… ,N}, |r⃗i| = 𝓁 ∀ i, (1.2)

1
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ri
→

FIGURE 1.1. Square lattice and
the vector r⃗i representing the
ith step of a random
walk.

where 𝓁 is the step size (the lattice spacing). The
end-to-end distance of the walk (the displace-
ment of the particle afterN steps) is

⃗R =
N∑

i=1
r⃗i. (1.3)

The r⃗i’s are random variables, and so is ⃗R. Now
we ask what the typical displacement of the
particle is, that is, we want ensemble averages.
Because of the symmetry, ⟨r⃗i⟩ = ⃗0 and so

⟨⃗R⟩ =

⟨
∑

i
r⃗i

⟩

=
∑

i
⟨r⃗i⟩ = ⃗0; (1.4)

however, the second moment is not zero:

⟨R2⟩ =

⟨|
|
|
|
|
|

N∑

i=1
r⃗i
|
|
|
|
|
|

2⟩

=
∑

i,j
⟨r⃗i ⋅ r⃗j⟩, (1.5)

where we use the notation R2
≡ |⃗R|2. Since different steps are uncorrelated

(independent), we have

⟨r⃗i ⋅ r⃗j⟩ = 𝓁2δij (1.6)

and therefore

⟨R2⟩ = N𝓁2
. (1.7)

The mean square displacement is ∝N , or the rms displacement is ∝
√
N . For

the Brownian particle, sinceN = t∕τ0, we have

⟨R2⟩ = 𝓁2

τ0
t. (1.8)

The parameter 𝓁2∕τ0 has dimensions of a diffusion constant (length2/time).
Indeed, we recall that for the process of diffusion, described by the diffusion
equation

𝜕c(x⃗, t)
𝜕t

−D∇2c = 0, (1.9)

where c(x⃗, t) is the concentration of particles (number of particles per unit vol-
ume) andD is the diffusion constant, starting with a δ-function concentration
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BROWNIAN MOTION 3

at time 0, the width of the distribution c spreads in time according to

⟨
R2⟩1∕2 ∼

√
Dt, (1.10)

so we identify

D ∼ 𝓁2

τ0
. (1.11)

The process of the random walk is the process of diffusion seen from the
viewpoint of the individual particle.

Besides calculating individual moments, for the simple random walk
problem it is not difficult to calculate the whole probability distribution of
the end-to-end distance. Even off-lattice, we can write down off-hand,

p(⃗R) ∝ exp

(

− 3R2

2
⟨
R2
⟩

)

(1.12)

by applying the central limit theorem. It states that the sumof (a large number
of) independent random variables is distributed as a Gaussian. Then (1.12)
follows from (1.3). Obviously, a precise mathematical formulation needs a
fewmore specifications, but in our case the random variables in question (the
r⃗i’s) are not only independent but also identically distributed; the theorem
applies in a strong form, and we do not worry about details. Instead, we give
below a “proof” of this result in a particular case.

The factor of 3 in the exponent in (1.12) comes from the dimensionality
(3-D): in 1 dimension the probability distribution is

p(x) ∝ exp
(

− x2
2⟨x2⟩

)

, (1.13)

and because the 3 directions are independent,

p(x, y, z) ∝ exp
(

− x2
2⟨x2⟩

)

exp
(

−
y2

2⟨y2⟩

)

exp
(

− z2
2⟨z2⟩

)

. (1.14)

Furthermore, ⟨x2⟩ = ⟨y2⟩ = ⟨z2⟩ = ⟨R2⟩∕3 (since R2 = x2 + y2 + z2); therefore
from (1.14) we obtain (1.12). Using the result (1.7), we can write for the
probability distribution of the end-to-end distance,

p(⃗R) ∝ exp
(

− 3R2

2N𝓁2

)

, (1.15)
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4 CHAPTER 1

which refers to a randomwalk ofN steps in 3-D, withN ≫ 1. The normaliza-
tion constant is given by the requirement

∫

∞

0
dR 4πR2p(⃗R) = 1, (1.16)

leading to

p(⃗R) =
(

3
2πN𝓁2

)3∕2
exp
(

− 3R2

2N𝓁2

)

. (1.17)

Note that this is the probability distribution for the vector ⃗R; it is a Gaussian
centered at ⃗R = ⃗0. This result also says that the most probable endpoint of the
walk is back where it started.

On the other hand, if we ask for the probability that the walk ends up at
some distance R ≡ |⃗R| from where it started, we have

p(R) = 4πR2p(⃗R) ∝ R2 exp
(

− 3R2

2N𝓁2

)

, (1.18)

which is zero for R = 0 and maximum for R =
√
2N∕3𝓁.

In conclusion, the simple random walk can be solved exactly, and the
statistics is Gaussian for large N . The adjective “simple” indicates that there
are more complicated problems, derived from this simple one, which are also
of interest. For instance, we could add boundary conditions to the process,
say a confining wall. We could add a field that biases the probabilities of
the different steps. Most important, we could require the walk to be self-
avoiding, that is, a trajectory is not allowed to cross itself. All these additions
correspond to important physical situations.

1.2 Polymer as a Simple Random Walk

The simplest model for a long, flexible polymer in a good solvent (so that the
polymer is not collapsed) is to visualize the different conformations of the
chain as realizations of a random walk of N steps of size 𝓁K. The parameter
𝓁K represents the length scale over which the polymer chain is substantially
flexible (i.e., at shorter lengths the polymer is rigid). Therefore, due to
thermal fluctuations, the directions of the chain at two points separated by
𝓁K or more are essentially uncorrelated, like successive steps in the random
walk. In polymer physics, 𝓁K is called the Kuhn length (𝓁K = 2𝓁p; 𝓁p is called
the persistence length), and it is a parameter characteristic of the specific
polymer. Here, N is the number of Kuhn lengths in the polymer chain,
that is, N𝓁K is the contour length of the chain. We consider the number
of configurations of the chain, Γ(⃗R), which correspond to an end-to-end
distance ⃗R (figure 1.2); we further assume that all configurations of the chain
have the same energy (which amounts to considering only entropic effects).
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BROWNIAN MOTION 5

R
→

FIGURE 1.2. One configuration of a
flexible polymer chain with
end-to-end distance ⃗R.

Then

Γ(⃗R) ∝ p(⃗R) ∝ exp

(

− 3R2

2N𝓁2
K

)

, (1.19)

using (1.15). Since all states are equiprob-
able in this simplest model, the entropy of
the chain as a function of the end-to-end
distance ⃗R is

S(⃗R) = ln Γ(⃗R) = ln p(⃗R) + const., (1.20)

and from (1.19),

S(⃗R) = − 3R2

2N𝓁2
K
+ const. (1.21)

The free energy as a function of ⃗R is there-
fore, apart from a constant (R-independent) term,

F(⃗R) = E − TS = T 3R2

2N𝓁2
K
, (1.22)

because we suppose E independent of ⃗R.
Since the free energy (1.22) increases with R (the distance between the

endpoints), it requires a force to keep the endpoints of the chain separated by
some distance. That force, which is purely entropic (since there is no energy
change with R) is

force = −𝜕F
𝜕R

= − 3T
N𝓁2

K
R, (1.23)

proportional to the distance between the endpoints. The polymer chain
acts as an entropic spring! The spring constant (3T∕N𝓁2

K) increases with
temperature, signalling that this form of elasticity is physically quite dif-
ferent from the usual elasticity, which originates in energy differences, not
entropy differences. The reason why the entropy of the chain decreases with
increasing end-to-end distance (eq. (1.21)) is depicted in figure 1.3. Formulas
(1.22) and (1.23) are valid for small elongations R ≪ N𝓁K; otherwise, the
statistics of the chain is not Gaussian.

1.3 Direct Calculation of p( ⃗R)

We consider a random walk ofN steps in 1-D, with steps of size 1. Let
{

r = number of steps to the right,
𝓁 = number of steps to the left;

(1.24)
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Nℓ

Nℓ

FIGURE 1.3. A large end-to-end
distance is realized by a small number
of conformations, while a small
end-to-end distance can be realized by
many more conformations of the
chain. The valueN𝓁 is the contour
length of the chain.

then

⎧
⎪
⎨
⎪
⎩

r + 𝓁 = N ,

r − 𝓁 = x
⇒

⎧
⎪
⎨
⎪
⎩

r = N+x
2 ,

𝓁 = N−x
2 ,

(1.25)
whereN is the number of steps, and x is the
end-to-end distance. The number of walks
of sizeN with r steps to the right is, exactly,

N(r) = N!
r!𝓁!

= N!
r!(N − r)!

=

(
N
r

)

.

(1.26)

We can reason as follows. Start with one realization of a walk with r steps
to the right. We can generate all other realizations by permutations of
all the steps, and there are N! such. However, we have overcounted by
the following factors: Permutations among the subset of steps to the right
produce the same walk. There are r! such. Similarly for the steps to the left.
Hence (1.26). Using (1.25) and (1.26), the number of walks with end-to-end
distance x is

N(x) = N!
(
N+x
2

)

!
(
N−x
2

)

!
. (1.27)

In this formula, x is an integer because we consider steps of size 1. By
inspectionwe see thatN(x) is maximum for x = 0: the largest number of walks
occurs for coming back to the same place. We transform (1.27) using the
approximation

lnn! ≈ n lnn − n ⇔ n! ≈
(n
e

)n
(n ≫ 1), (1.28)

valid for large n. We obtain

N(x) ≈
(N∕e)N

(
N+x
2e

)(N+x)∕2 (N−x
2e

)(N−x)∕2

= 2N
(

1 + x
N

)(N+x)∕2 (
1 − x

N

)(N−x)∕2
,

(1.29)
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BROWNIAN MOTION 7

the last step after a little algebra. Note that to write down the approximate
form (1.29) starting from the exact result (1.27), we require x ≪ N (and of
courseN ≫ 1). Taking the log of (1.29),

lnN(x) = N ln 2 − N + x
2

ln
(

1 + x
N

)

− N − x
2

ln
(

1 − x
N

)

. (1.30)

Since x∕N is supposed a small parameter, we use the expansion

ln(1 + ε) ≈ ε − ε2
2

(ε ≪ 1). (1.31)

It is necessary to expand to second order in ε to keep orders consistently, as
we see from the next equation, where we use (1.31) in (1.30):

lnN(x) ≈ N ln 2 − N + x
2

(
x
N

− x2
2N2

)

− N − x
2

(

− x
N

− x2
2N2

)

= N ln 2 − x2
2N

= N
[

ln 2 − x2
2N2

]

, (1.32)

correct to order (x∕N)2. Finally we obtain theGaussian approximation for the
number of walks with end-to-end distance x:

N(x) ≈ 2N exp
(

− x2
2N

)

(x ≪ N). (1.33)

The prefactor in (1.33) is a casualty of approximation (1.28), since 2N is the
total number of walks. We find a better normalization by noting that

∫

+∞

−∞
dx exp

(

− x2
2N

)

=
√
2πN (1.34)

and write

N(x) = 2N

(2πN)1∕2
exp
(

− x2
2N

)

. (1.35)

The probability of the end-to-end distance x is found by dividing the
number of walks (1.35) by the total number of walks (since all walks are
equiprobable):

p(x) = N(x)
2N

= 1
(2πN)1∕2

exp
(

− x2
2N

)

(1-D). (1.36)

The factor 2N in (1.35) comes from the coordination number of the lat-
tice (the number of nearest neighbors), which is 2 in 1-D. However, the
probability distribution (1.36) is independent of the lattice. In 3-D, with a
coordination number C (i.e., the total number of walks is CN), the formulas
above become

N(x⃗) = CN

(2πN)3∕2
exp
(

−3|x⃗|2

2N

)

, (1.37)
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while the probability is independent of the lattice (and therefore all the
moments too):

p(x) = 1
(2πN)3∕2

exp
(

−3|x⃗|2

2N

)

(3-D). (1.38)

We can put back the step size 𝓁 in the formulas above through the substitution
|x⃗| → |x⃗|∕𝓁. Thus we have seen directly that the statistics of the random walk
is Gaussian.

1.4 The Langevin Approach

We consider again a Brownian particle, that is, a free particle of mass m in a
fluid, with no average force acting.Wewrite the following equation ofmotion
for the particle:

mdv⃗
dt

= −γv⃗ + ⃗Γ(t), (1.39)

where v⃗(t) is the velocity of the particle, γ is the viscous damping coefficient,
and ⃗Γ(t) is the random force on the particle originating from molecular
collisions, with

⟨⃗Γ(t)⟩ = ⃗0. (1.40)

Equation (1.39) is a stochastic differential equation, because ⃗Γ(t) is a random
variable. At one level, (1.39) is simply Newton’s second law: the right-hand
side is the force on the particle, consisting of a drag term (−γv⃗) and an
“external” force (⃗Γ) due to molecular collisions. On the other hand, it is not
obvious that one can divide the force acting on the particle in this way. The
drag also comes frommolecular collisions. Equation (1.39) is a statement that
mechanical equilibrium is established instantaneously. The two force terms
on the right-hand side of (1.39) ([γv] = [Γ] = force) operate in general over
very different timescales: ⃗Γ(t) varies over fast timescales of order τ0 (the time
between steps in the random walk problem), while γv⃗ varies over slower
characteristic timescales of order τ, defined below. Formulation (1.39) is
generally useful when τ0 ≪ τ, which holds true, for example, for a micron-
size Brownian particle in water.

The dissipation parameter γ is related to the mobility of the particle in the
fluid: if we apply a constant external force ⃗Fext, the equation of motion (1.39)
becomes

mdv⃗
dt

= −γv⃗ + ⃗Γ(t) + ⃗Fext, (1.41)

and taking ensemble averages (using (1.40)),

m d
dt
⟨v⃗⟩ = −γ⟨v⃗⟩ + ⃗Fext. (1.42)
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We have used ⟨dv⃗∕dt⟩ = (d∕dt)⟨v⃗⟩, which is formally correct if one interprets
⟨ ⟩ strictly as an ensemble average, but is not so obvious if one instead
interprets ⟨ ⟩ as a running time average over the particle’s trajectory.

A particular solution of (1.42) is the steady state solution (d∕dt)⟨v⃗⟩ = ⃗0:

γ⟨v⃗⟩ = ⃗Fext ⇒ ⟨v⃗⟩ = 1
γ
⃗Fext = µ ⃗Fext, (1.43)

where µ = 1∕γ is the mobility of the particle. The solution of the homoge-
neous equation

d
dt
⟨v⃗⟩ +

γ
m
⟨v⃗⟩ = ⃗0 (1.44)

is

⟨v⃗⟩ = ⟨v⃗(0)⟩e−t∕τ , τ = m
γ
, (1.45)

and introduces the relaxation time τ for the “smooth” part of the velocity of
the particle. Thus the general solution of (1.42) is

⟨v⃗(t)⟩ = ⟨v⃗(0)⟩e−t∕τ + µ ⃗Fext, (1.46)

where

µ = 1
γ

(1.47)

is the mobility. The solution (1.46) consists of a transient plus a steady drift.
The particle “forgets” initial conditions after a time of order τ. Let us take the
case of a 1µm sphere in water: for γ we use the hydrodynamic result (Stokes
formula) γ = 6πRη, where R is the radius of the sphere and η is the viscosity of
water; in cgs units, R = 0.5 × 10−4, η ≈ 10−2. Assuming a density ρ = 1 for the
particle, we find from (1.45),

τ = m
γ

=
(4∕3)πR3ρ

6πRη
= 2

9
R2ρ
η

≈ 0.2 × (0.5 × 10−4)2

10−2
s

≈ 4 × 10−8 s = 40ns,
(1.48)

still large compared to the molecular collision time, which is τ0 < 1ps. How-
ever, we see from (1.48) that τ ∝ R2, so for a 1nm sphere these two timescales
would be of the same order.

Now we calculate the mean square displacement of the particle given by
the Langevin equation (1.39), which we rewrite as

dv⃗
dt

= −1
τ
v⃗ + 1

m
⃗Γ(t), (1.49)
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with τ = m∕γ. Take the scalar product of (1.49) with x⃗, ensemble average ⟨ ⟩,
and note that

dv⃗
dt

⋅ x⃗ = 1
2
d2

dt2
x2 − v2, v⃗ ⋅ x⃗ = 1

2
d
dt
x2, (1.50)

and also

⟨⃗Γ(t) ⋅ x⃗(t)⟩ = ⟨⃗Γ(t)⟩ ⋅ ⟨x⃗(t)⟩ = 0 (1.51)

because ⃗Γ(t) and x⃗(t) are uncorrelated. The result is

d2

dt2
⟨x2⟩ + 1

τ
d
dt
⟨x2⟩ = 2⟨v2⟩. (1.52)

By equipartition, we have

1
2
m⟨v2⟩ = 3

2
T (1.53)

at equilibrium, so we write (1.52) as

d2

dt2
⟨x2⟩ + 1

τ
d
dt
⟨x2⟩ = 6T

m
. (1.54)

The two solutions of the corresponding homogeneous equation are of the
form

⟨x2⟩ ∼ eαt , α = 0 or α = −1
τ
. (1.55)

A particular solution of (1.54) is

d
dt
⟨x2⟩ = 6T

m
τ ⇒ ⟨x2⟩ = 6T

m
τt, (1.56)

so the general solution of (1.54) is

⟨x2⟩ = 6T
m

τt + Ae−t∕τ + B, (1.57)

where A, B are arbitrary constants. With the boundary condition ⟨x2⟩ = 0 at
t = 0, we have B = −A and therefore

⟨x2(t)⟩ = 6T
m

τt + A(e−t∕τ − 1). (1.58)

For long times t ≫ τ, we obtain diffusive behavior:

⟨x2(t)⟩ ≈ 6T
m

τt ∝ t. (1.59)

For short times t ≪ τ, we should have ballistic behavior (⟨x2⟩ ∝ t2), and we
can use this fact to find the constant A. From (1.58), for short times,

⟨x2⟩ ≈ 6Tτ
m

t − A t
τ
+ 1

2
A
( t
τ

)2
, (1.60)

and we must have

A = 6Tτ2
m

(1.61)
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FIGURE 1.4. Log-log plot of ⟨x2⟩1∕2 (in units of
√
6Tτ2∕m) vs.

t∕τ according to eq. (1.63).

so that

⟨x2⟩ = 3T
m

t2 = ⟨v2⟩t2, (1.62)

consistent with ballistic motion. Finally,

⟨x2⟩ = 6Tτ2
m

[ t
τ
+ (e−t∕τ − 1)

]

. (1.63)

In figure 1.4 we plot ⟨x2⟩1∕2 vs. t according to (1.63): the graph starts linear,
and goes over to a square root. We now examine the relation to the diffusion
equation in more quantitative detail. The diffusion equation arises from the
conservation law for the number of particles:

𝜕n(x⃗, t)
𝜕t

+ ⃗∇ ⋅ ⃗j = 0, (1.64)

where n is the density of particles (number of particles per unit volume) and
⃗j is the particles’ current. If the current is proportional to the concentration
gradient,

⃗j(x⃗, t) = −D ⃗∇n, (1.65)

we have the diffusion equation

𝜕n
𝜕t

−D∇2n(x⃗, t) = 0, (1.66)

whereD is the diffusion constant, with dimensions [D] = 𝓁2∕t, as we see from
(1.66). With initial condition

n(x⃗, 0) = Nδ(x⃗) (1.67)
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and free boundaries (N is the total number of particles), the solution of
(1.66) is

n(x⃗, t) = N
(4πDt)3∕2

exp
(

− x2
4Dt

)

. (1.68)

The probability of finding a particle at (x⃗, t) is p(x⃗, t) = n(x⃗, t)∕N , so now we
can calculate all the moments. We find

⟨x⃗(t)⟩ = 1
N ∫

d3x n(x⃗, t)x⃗ = ⃗0, (1.69)

whereas

⟨x2(t)⟩ = 1
N ∫

d3x n(x⃗, t)x2 = 1
(4πDt)3∕2 ∫

∞

0
dx 4πx4 exp

(

− x2
4Dt

)

, (1.70)

wherewe have put the integral in spherical coordinates.With the substitution
x∕
√
4Dt = u, the right-hand side of (1.70) becomes

4π
(4πDt)3∕2

(4Dt)5∕2
∫

∞

0
duu4e−u2 . (1.71)

The integral is 3
√
π∕8, so finally,

⟨x2(t)⟩ = 4π
π3∕2 (4Dt)

3
√
π

8
= 6Dt. (1.72)

Comparing with (1.59) we see that 6Tτ∕m = 6D, and since τ = m∕γ,

D = T
γ

= µT. (1.73)

This is the Einstein relation, which is one form of the fluctuation–dissipation
theorem. It is an exceedingly important result, and there is nothing obvious
about it. Equation (1.73) relates the diffusion constant of the particle to the
particle’s mobility. The former originates microscopically from equilibrium
thermal fluctuations, as we have seen. The latter describes hydrodynamic
friction (see eq. (1.46)), originating from a nonequilibrium situation where
we apply an external force to drag the particle through the fluid. Certainly,
some relation should exist between diffusion, which is caused by molecular
collisions, and friction, which is also caused by molecular collisions, but it
is remarkable that this relation can be expressed in the simple, general form
(1.73).

1.5 Correlation Functions

Let us go back to the Langevin equation (1.39); for simplicity we consider it
in 1-D, and use the notation γ∕m = 1∕τ, Γ∕m = Γm; then

dv
dt

= −1
τ
v + Γm(t), (1.74)
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FIGURE 1.5. Graph of the function G(t, t′) in eq. (1.77) for a
fixed value t′ = 1.

where the random function Γm(t) has dimensions of force/mass. Since Γm(t)
is a stochastic term, really wewant to solve (1.74) for any function Γm(t), not a
specific one.We therefore use the method of Green’s functions, and consider
instead the equation

d
dt
G(t − t′) + 1

τ
G = δ(t − t′). (1.75)

Once we have a solution G(t, t′) of (1.75), then

v(t) =
∫

+∞

−∞
dt′G(t, t′)Γm(t′) (1.76)

solves (1.74) for any function Γm, as we can easily verify by direct substitution.
For t ≠ t′, the solution of (1.75) is G ∼ e−(t−t′)∕τ, so the Green’s function that
solves the initial value problem (given v(0), calculate v(t) for t > 0) is

G =
⎧
⎪
⎨
⎪
⎩

e−(t−t′)∕τ for t′ ≤ t,

0 for t′ > t.
(1.77)

This G has a jump of size 1 at t = t′, so its derivative gives the δ-function in
(1.75). Figure 1.5 shows G(t − t′) in the neighborhood of t = t′. We use (1.77)
and (1.76), assume t ≥ 0, and split the integral:

v(t) =
∫

0

−∞
dt′G(t − t′)Γm(t′) +

∫

+∞

0
dt′G(t − t′)Γm(t′). (1.78)

The first integral is

e−t∕τ
∫

0

−∞
dt′ et′∕τΓm(t′) ≡ v(0)e−t∕τ , (1.79)
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where we have called the integral in (1.79), which does not depend on t, v(0).
The reason will be apparent in a moment. The second integral in (1.78) is

∫

t

0
dt′ e−(t−t′)∕τΓm(t′) = e−t∕τ

∫

t

0
dt′ et′∕τΓm(t′), (1.80)

so that

v(t) = v(0)e−t∕τ + e−t∕τ
∫

t

0
dt′ et′∕τΓm(t′) (1.81)

is the required solution of (1.74) for t ≥ 0 and any function Γm(t). From (1.81)
we see immediately that

⟨v(t)⟩ = v(0)e−t∕τ (1.82)

since ⟨Γm(t′)⟩ = 0. This says, once again, that τ is the relaxation time over
which memory of the initial velocity is lost.

Now we use the solution (1.81) to calculate ⟨v2(t)⟩, and require that, for
t → ∞, ⟨v2⟩ → 3T∕m (the equipartition result), independent of initial condi-
tions. The result will be a relation between τ, which describes dissipation,
and the “strength” of Γm, which describes fluctuations: one form of the
fluctuation–dissipation theorem. From (1.81),

⟨v2(t)⟩ = v(0)2e−2t∕τ + 2v(0)e−2t∕τ
∫

t

0
dt′ et′∕τ⟨Γm(t′)⟩

+ e−2t∕τ
∫

t

0
dt′

∫

t

0
dt′′ e(t′+t′′)∕τ⟨Γm(t′)Γm(t′′)⟩. (1.83)

The second term on the right-hand side is zero because ⟨Γ(t)⟩ = 0. The third
term contains the correlation function

Cm(t, t′) ≡ ⟨Γm(t)Γm(t′)⟩. (1.84)

For a stationary process (time-translation invariant), the correlation function
must be a function of the time difference only:

Cm(t, t′) = Cm(t − t′) ≡ Cm(s), (1.85)

and Cm(0) = ⟨Γ2
m⟩ is a constant (independent of t). For the random walk

problem, Cm(s) → 0 for s > τ0; recall that τ0 is the time between steps (see
(1.1)), or in more physical terms, the mean free path over the thermal
velocity. The reason is that Γm(t) and Γm(t + s) are uncorrelated for s > τ0,
so ⟨Γm(t)Γm(t + s)⟩ = ⟨Γm(t)⟩⟨Γm(t + s)⟩ = 0. The integral in (1.83), changing
variables according to t′′ = t′ + u, becomes

∫

t

0
dt′

∫

−t′+t

−t′
du e(2t′+u)∕τ

⟨
Γm(t′)Γm(t′ + u)

⟩

=
∫

t

0
dt′ e(2t′)∕τ

∫

−t′+t

−t′
du eu∕τCm(u) (1.86)
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using (1.84). In the second integral on the right-hand side of (1.86), the
integrand is nonzero only for u ≈ 0 (|u| < τ0), and where the integrand is
nonzero, eu∕τ ≈ 1 (since τ ≫ τ0). So we replace that integral with

∫

+∞

−∞
duCm(u) ≡ Cm (1.87)

and obtain, for the right-hand side of (1.86),

∫

t

0
dt′ e2t′∕τCm = τ

2
(e2t∕τ − 1)Cm. (1.88)

Finally,

⟨v2(t)⟩ = v2(0)e−2t∕τ + τ
2
Cm(1 − e−2t∕τ). (1.89)

We require that for long times (t ≫ τ), ⟨v2(t)⟩ converges to the equipartition
value 3T∕m, and we obtain

τ
2
Cm = 3T

m
⇒ Cm = 6T

mτ
. (1.90)

In terms of the force Γ(t) = mΓm(t) and the corresponding correlation func-
tion C = m2Cm,

C =
∫

+∞

−∞
duC(u) = 6Tm

τ
= 6γτ. (1.91)

The relation (1.91) between the correlation function of the random force
Γ and the dissipation parameter γ (or the viscous timescale τ) is another
form of the fluctuation–dissipation theorem. In this form, the theorem in-
forms the numerical simulation of thermodynamic systems through Langevin
dynamics. To generate trajectories on the computer for the process

dv
dt

= −1
τ
v + Γm(t), (1.92)

where Γm represents thermal noise and τ the corresponding dissipation, one
would use a stochastic, uncorrelated variable

⟨Γm(t)Γm(t′)t⟩ = −6T
τ
δ(t − t′), (1.93)

meaning that the difference equation to be iterated on the computer is

∆v = −v
τ
∆t + Γm∆t, (1.94)

where

Γm =
√

6T
τ

3R (1.95)

and R is a random number uniformly distributed in [−1, 1] (therefore ⟨R2⟩ =
1∕3). The point is that if (1.92) is to represent a thermodynamic system,
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FIGURE 1.6. A linear barrier of width b and slope F (left), and a more generic barrier (right).

meaning that Γm represents equilibrium thermal fluctuations at a given
temperature T, then Γm and τ in (1.94) cannot be assigned independently:
they must be in the relation (1.95). Conversely, the fluctuation–dissipation
theorem (1.91) can be used as a (necessary) test for determining whether
fluctuations in a given thermodynamic system (the shape of a living cell, say)
are thermal in origin or else driven by some other nonequilibrium process.

1.6 Barrier Crossing

One fundamental phenomenon, which appears as a consequence of thermal
fluctuations, is barrier crossing. In classical mechanics (i.e., at zero tempera-
ture), a particle either has enough kinetic energy to climb over a barrier, or
it doesn’t. But at finite temperature, a particle always has a chance to cross a
barrier, being propelled by thermal fluctuations. Under some conditions, one
can obtain general expressions for the current across a barrier which do not
depend on all the details of the barrier’s shape. Therefore, we start with a very
simple barrier in 1-D: a potential energy of the form (figure 1.6)

Ub(x) =
⎧
⎪
⎨
⎪
⎩

Fx for 0 < x < b,

0 otherwise.
(1.96)

We imagine a density of Brownian particles along the line, which is uniform
away from the barrier, and equal to ρ0. Then the net current of particles across
the barrier is of course zero. To obtain a steady current, we may introduce an
external force field acting on the particles, described by the potential energy
Ue = −fx. The potential energy seen by the particles is now

U(x) = Ub +Ue =
⎧
⎪
⎨
⎪
⎩

Fx − fx for 0 < x < b,

−fx otherwise.
(1.97)
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In general, the current has the form

j(x) = −D
𝜕ρ
𝜕x

− µ𝜕U
𝜕x

ρ = −D
(
𝜕ρ
𝜕x

+ 1
T
ρ𝜕U
𝜕x

)

, (1.98)

where ρ is the concentration of particles, D is the diffusion constant, µ is
the mobility, and we have used the Einstein relation D = µT in the second
equality. The first term in (1.98) is the current driven by the concentration
gradients (see (1.65)), and the second is the current driven by the (average)
forces on the particles (see (1.46)). Since

𝜕

𝜕x
(ρeU∕T ) = eU∕T

(
𝜕ρ
𝜕x

+
ρ
T

𝜕U
𝜕x

)

, (1.99)

we may rewrite (1.98) in the form

j(x) = −De−U∕T 𝜕

𝜕x
(ρeU∕T ). (1.100)

In the steady state that results from applying the constant force f (see (1.97)),
j(x) is independent of x (since ⃗∇ ⋅ ⃗j = 0) and ρ(x) is independent of x outside
the interval (0, b): in particular, ρ(0) = ρ(b) = ρ0. Rearranging (1.100) and
integrating from 0 to b gives (j(x) = j being a constant)

j
D ∫

b

0
dx eU(x)∕T = −

[
ρ(x)eU(x)∕T]b

0 = −ρ0(e−fb∕T − 1), (1.101)

the last form using (1.97) and the boundary conditions on the concentration
ρ. Thus, in general, for the current we have

j = −D
[
ρ(x)eU(x)∕T]b

0

∫
b
0 dx eU(x)∕T

. (1.102)

With the potential energy (1.97), the integral in the denominator is

T
F − f

[e(F−f )b∕T − 1], (1.103)

while the expression in the numerator is

ρ0(e−fb∕T − 1), (1.104)

giving, for the current,

j =
Dρ0

T∕(F − f )
1 − e−fb∕T

e(F−f )b∕T − 1
. (1.105)

For the important case of a large barrier (Fb∕T ≫ 1) and a weak external field
(f ≪ F), the fraction in (1.105) simplifies to

e fb∕T − 1
eFb∕T [1 − e (f −F)b∕T ]

≈ e−Fb∕T
(
e fb∕T − 1

)
, (1.106)
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and we obtain the current across the barrier as

j =
Dρ0
T∕F

e−Fb∕T
(
efb∕T − 1

)
. (1.107)

We notice that this (asymmetric) barrier works as a diode: for f large
(|fb∕T| > 1) and positive there is a relatively large current to the right,
whereas for f large and negative there is only a small current to the left. The
other features of (1.107) are general, not specific to this particular barrier
shape. Namely, the current is proportional to the diffusion constant D, to the
Arrhenius factor e−Fb∕T , where Fb ≡ ∆ is the barrier height, while T∕F ≡ λ
is the width of the barrier measured ∼ 1 kT below the maximum. In terms of
these quantities, the current (which is a rate because we are 1-D) is

j =
Dρ0
λ

e−∆∕T
(
e fb∕T − 1

)
. (1.108)

A different way of obtaining a steady state current is to impose a concentra-
tion difference between the two sides of the barrier, instead of imposing an
external field. Suppose we maintain the particle concentration ρ = ρ1 to the
left of the barrier and ρ = ρ2 to the right, while f = 0. The expression (1.102)
still applies, withU(x) given by (1.96) and the new boundary conditions on ρ.
We have
[
ρ(x)eU(x)∕T]b

0 = ρ2 − ρ1,
∫

b

0
dx eU(x)∕T = T

F
(
eFb∕T − 1

)
(1.109)

and therefore

j = D
λ
e−∆∕T (ρ1 − ρ2). (1.110)

If ρ1 > ρ2 we have a current to the right, as expected. Notice that if we drive
the current with a concentration gradient, then the same barrier does not act
as a diode.

If there is both a concentration gradient and an external field, we can
easily find that the current is given by

j = D
λ
e−∆∕T

(
ρ1e fb∕T − ρ2

)
. (1.111)

We can balance a concentration gradient with an external field; the condition
of zero current gives

ρ1
ρ2

= e fb∕T , (1.112)

which is the equilibrium statistical mechanics result, fb being the work done
by the external field on a particle that moves from the left to the right of the
barrier.

Let us now see that these results hold also for amore general barrier shape,
as in figure 1.6 (right). We consider a steady state situation with particle
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concentration ρ = ρ0 to the left of the barrier and ρ = 0 to the right, with
no external field. Starting from the general expression (1.102), we now have
ρ(0) = ρ0, ρ(b) = 0, and the potential energy U reflects only the barrier of
figure 1.6, so U(0) = 0 while U(b) is the barrier height. The numerator of the
fraction in (1.102) is therefore equal to −ρ0. In the case U(b)∕T ≫ 1 that we
are considering, the integral in the denominator of (1.102) is dominated by
values of x close to b; expanding U(x) around x = b,

U(x) = U(b) + 1
2
U ′′(b)(x − b)2 +⋯ , (1.113)

we obtain

∫

b

0
dx eU(x)∕T ≈ eU(b)∕T

∫

b

0
dx exp

(
U ′′(b)
2T (x − b)2

)

. (1.114)

In the integral on the right-hand side of (1.114) the integrand is a Gaussian
centered at x = b (sinceU ′′(b) < 0), and under our assumptions wemay write

∫

b

0
dx exp

(
U ′′(b)
2T

(x − b)2
)

= 1
2 ∫

+b

−b
dx exp

(
U ′′(b)
2T

x2
)

≈ 1
2 ∫

+∞

−∞
dx exp

(
U ′′(b)
2T

x2
)

=

√

2T
−U ′′ (b)

√
π
2

, (1.115)

so that, ignoring numerical factors of order 1, we have for the current,

j = Dρ0

√
−U ′′ (b)

2T
e−U(b)∕T

, (1.116)

where U(b) ≡ ∆ is the barrier height, while
√
2T∕ −U ′′ (b) ≡ λ is the

(half-)width of the barrier at the height U(b) − kT; so again we may write

j =
Dρ0
λ

e−∆∕T , (1.117)

which is the same as (1.110) since we have set ρ1 = ρ0, ρ2 = 0.
If instead of using a concentration gradient, we drive the current with an

external field: we set ρ = ρ0 to the left and right of the barrier, and use the
potential energy

U = Ub +Ue =
⎧
⎪
⎨
⎪
⎩

Ub(x) − fx for 0 < x < c,

−fx otherwise,
(1.118)

whereUb(x) represents a generic barrier as depicted in figure 1.6, withUb(x) =
0 for x ≤ 0 or x ≥ c, x = b being the position of the maximum. In the steady
state, eq. (1.102) holds, but we need to specify ρ(b). We assume a quasi-
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equilibrium situation where

ρ(b) ≈ ρ0e−Ub(b)∕T
, (1.119)

which is justified if fb ≪ U(b) (weak external field). That is, we assume that
applying the external field does not perturb significantly the equilibrium
distribution ρ(x). Then the numerator in (1.102) is

ρ(x)eU(x)∕T ||
|

b

0
= ρ0
(
e−fb∕T − 1

)
, (1.120)

while for the integral in the denominator, using the same quadratic approxi-
mation (1.113) for Ub(x), we have

∫

b

0
dx eU(x)∕T ≈ eUb(b)∕T

∫

b

0
dx e

[
1
2
U ′′

b (b)(x − b)2 − fx
]

∕T
. (1.121)

Consider the exponent in the integrand of (1.121): with the shorthand
U ′′
b (b)∕2 ≡ α and completing the square,

α(x − b)2 − fx = α
[

x −
(

b +
f
2α

)]2
− α

[( f
2α

)2
+
bf
α

]

. (1.122)

Under our conditions (fb ≪ U(b), |α|b2 ∼ U(b)), we have f ∕|α|≪ b,
so neglecting f ∕α compared to b in (1.122) we may write α(x − b)2 − fx ≈
α(x − b)2 − fb in (1.121) and obtain

∫

b

0
dx eU(x)∕T ≈ eUb(b)∕Te−fb∕T

∫

b

0
dx eα(x−b)2∕T . (1.123)

The integral on the right-hand side is given in (1.115); again ignoring numer-
ical factors of order 1 we finally obtain for the current,

j = Dρ0

√

U ′′

b (b)
2T

e−[Ub(b)−fb]∕T
(
1 − e−fb∕T

)
. (1.124)

Written in terms of the barrier height ∆ and width λ (remember, though, that
λ is a temperature-dependent parameter),

j =
Dρ0
λ

e−(∆−fb)∕T (1 − e−fb∕T ). (1.125)

From the way we have set up the problem, this formula is valid for f ≥ 0,
that is, for j ≥ 0. The parameter b describes the ascending part of the barrier;
beyond a barrier width λ from the top, the descending part of the barrier
does not matter because the “extra” particles that enter it (those beyond
the equilibrium distribution for zero current) are swept away by the field.
Equation (1.125) is (for f ≥ 0) the same as (1.108). If we compare (1.125) and
(1.111), we see that, for fb∕T > 1, the effect of the field f is twofold: it lowers
the barrier by an amount fb (this is a geometric effect), and it sweeps away the
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U(x)

b x

FIGURE 1.7. The potential energy for the
problem of escape of a particle from a
potential well.

particles injected from the left into the
right-hand side of the barrier, so that,
effectively, we can set ρ2 = 0 in (1.111),
and ρ1 = ρ0, in order to calculate the
current.

Finally, we consider the problem of
the rate of escape of a particle from a
potential well (figure 1.7).

This situation describes, in a more
or less idealized fashion, many sys-
tems in physics and chemistry. Actually
we have the answer already, namely
(1.116), if for ρ0 we put in a value that
describes the concentration corresponding to one particle in the potential
well: ρ0 → 1∕(size of region explored by particle) ∼ 1∕⟨x2⟩1∕2, with ⟨x2⟩1∕2 be-
ing the rms position fluctuations of the particle in the well. We calculate
⟨x2⟩ from equilibrium statistical mechanics, assuming that the particle is
essentially in equilibrium in the well before it escapes (i.e., the barrier is high
enough that the escape rate is small compared to the viscous relaxation time
τ, and very small compared to the collision time τ0 of the Brownian motion).
The probability that the particle is at position x is

p(x) = 1
Z
e−U(x)∕T

, Z =
∫

+∞

−∞
dx e−U(x)∕T

, (1.126)

while

⟨x2⟩ =
∫

+∞

−∞
dx x2p(x). (1.127)

Using the quadratic approximation around x = 0,

U(x) ≈ 1
2
U ′′(0)x2 +⋯ , (1.128)

and carrying out the elementary integrals (this amounts to calculating the rms
fluctuations of a spring) we find, in accordance with equipartition,

⟨x2⟩ = T
U ′′ (0)

, (1.129)

and therefore we obtain from (1.116), up to numerical factors of order 1,

j = D
√

U ′′ (0)
T

√
−U ′′ (b)

2T
e−U(b)∕T

. (1.130)

This is the Kramers formula for the rate of escape over a potential barrier. If
we define, like before, the (temperature-dependent) half-width of the barrier
at themaximum (λb =

√
2T∕|U ′′ (b)|) and the correspondingwidth of thewell
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at the minimum (λ0 = 2
√
2T∕U ′′ (0)), the barrier height being U(b) ≡ ∆, we

can write (1.130) as

j = 2
√
2 D
λ0λb

e−∆∕T . (1.131)

Alternatively, using the Einstein relation D = µT we can write (1.130) as

j = 1
√
2
µ
√

−U ′′ (0)U ′′ (b) e−U(b)∕T
. (1.132)

Either way, the rate of escape is inversely proportional to the viscosity η in
which the particle moves, since D, µ ∝ 1∕η.

Throughout this section we have considered the problem of a particle
diffusing across a barrier; the mean free path is small compared to the
barrier width. Then the rate of barrier crossing is inversely proportional
to the viscosity η. However, this dependence cannot hold for η → 0. For η
sufficiently small, the rate of barrier crossing is proportional to the viscosity
instead.

1.7 What is Equilibrium?

The concept of equilibrium in statistical mechanics is, to put it mildly, not
straightforward. It is indissolubly tied to the idea of entropy, and the second
law of thermodynamics, so that the three concepts can hardly be clarified
separately. As we know, for a closed system the equilibrium state maximizes
the entropy S. From this principle, the idea of equilibrium, and amicroscopic
definition for the entropy, one can more or less derive the basic results of
statistical mechanics, such as the equilibrium properties of an open system in
contact with a thermostat and so on. The second law says that, for a closed
system,

dS
dt

≥ 0, (1.133)

so if we “start” the closed system out of equilibrium (conceptually, by
removing a constraint), it will typically evolve in away to increase the entropy
(however, (1.133) does not represent a guarantee that equilibrium will be
reached). Now, the important thing is that, as soon as we bring in entropy,
we must bring in time, as we see from (1.133) and from the very words we
use to describe the significance of the entropy: if we “start” the system this
way or that way, meaning that we are now discussing time. The physical
concepts of entropy and equilibrium presume a certain observation time
(the mathematical concepts can be discussed “instantaneously” in terms of
ensembles, the two frameworks being connected by the ergodic hypothesis).
To proceed, we need a microscopic definition of the entropy; take, for
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simplicity, the case of discrete states (e.g., a system of spins)

S = −
∑

i
pi ln pi, (1.134)

where pi is the probability that the system is in state i. Now consider the two-
states system at temperature T. The system is open, as it is in contact with a
thermostat. The two energy levels are 0 and ε > 0, and we call p(0), p(ε) the
probabilities that the system is in the two respective states. We know that the
equilibrium stateminimizes the free energy F:

F = E − TS = εp(ε) − T
[
p(0) ln p(0) + p(ε) ln p(ε)

]
. (1.135)

Minimizing (1.135) with respect to p(0), p(ε) with the constraint p(0) + p(ε) =
1, we find of course the Boltzmann distribution:

p(ε) = e−ε∕T

1 + e−ε∕T
, p(0) = 1

1 + e−ε∕T
. (1.136)

The point is that microscopically, equilibrium means a particular probability
distribution according to which the system visits the different states. For
the system in contact with the thermostat, it is the Boltzmann distribution
(1.136); for the closed system, it is the uniform distribution (all states
equiprobable); etc. We see that we have to observe the system for some
time in order to determine whether it is in equilibrium. Equilibrium is not
a property of the microscopic states of a system, it is a property of the
probability distribution. At the risk of belaboring the point, consider a gas in a
box. The question, “Is the state with all molecules in the left half of the box an
equilibrium state?” is meaningless; the question with respect to equilibrium
is, “How often is this state visited by the system?” For this reason, entropy
must be defined in terms of probabilities if it is to be a measure of how close
or far we are from equilibrium. Therefore entropy, unlike energy, is not an
instantaneous quantity (we are reasoning within classical physics here). And
therefore, now we have the question of the observation time.

Here is what Richard Feynman writes about equilibrium and observation
time, in the introduction to his lectures on statistical mechanics: “If a system
is very weakly coupled to a heat bath at a given ‘temperature,’ if the coupling
is indefinite or not known precisely, if the coupling has been on for a long
time, and if all the ‘fast’ things have happened and all the ‘slow’ things not,
the system is said to be in thermal equilibrium.” Because of this connection
between equilibrium and observation time, the problem of Brownianmotion
stands at the interface between equilibrium and nonequilibrium statistical
mechanics. The trajectory x⃗(t) of the Brownian particle evolves in time; for
example, if we start observing at t = 0, the second moment ⟨|x⃗(t) − x⃗(0)|2⟩
increases with time, and the probability distribution p(x⃗), which is centered
at x⃗(0), keeps evolving, as we saw. If we have the particle in a box, eventually
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the trajectory will fill the box and the probability distribution p(x⃗) becomes
uniform, provided that we observe on these long timescales. On the other
hand, if we look at the momentum of the particle, and start observing at
t = 0, we find that the corresponding probability distribution becomes time
independent over much shorter timescales, of order a fewmolecular collision
times, which are measured in picoseconds. For the problem of Brownian
motion as it is normally posed, observation times are long compared to
molecular collision times, but short compared to the diffusion time of the
particle across the box. Therefore the momentum of the particle is “in
equilibrium”; for example, the second moment has its time-independent
equipartition value ⟨|⃗p|2⟩ = 3T∕m, but the position of the particle undergoes
a nonequilibrium process, for example, the second moment evolves in time
according to ⟨|x⃗(t) − x⃗(0)|2⟩ = 6DT (see (1.72)). In this same sense, wewill see
in chapter 4 that for an enzyme undergoing its catalytic cycle, themomentum
of the atoms comprising the enzyme can be considered “in equilibrium,” but
the relative position of these atoms undergoes a nonequilibrium process, as
the enzyme deforms.
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2
Statics of DNA Deformations

2.1 Introduction

DNA is a deformable molecule. The term “deformable” already implies
phenomena rooted in the collective behavior of many atoms, and a
description based on concepts of continuum and statistical mechanics. Long
DNA molecules (with a contour length of many persistence lengths) are an
excellent experimental system to study the equilibrium conformations and
dynamics of long, flexiblemolecules: the traditional focus of polymer physics.
Among the many reasons is that long DNA is a heteropolymer that can be
made exactly to order, monodispersed, by relatively simple, well-established
molecular biologymethods. Taking advantage of sequence complementarity,
it can be labeled at specific sites. Short DNAmolecules, on the other hand, are
a model experimental system for the study of the molecular deformability we
are concerned with in this book. A 30 base pairs (bp) double-stranded (ds)
DNA molecule is, roughly, a compact cylinder 10nm long and 2nm wide,
consisting of 3 turns of the double helix and about 2 × 103 atoms. It is a “soft”
nanoparticle, in the sense that it can undergo very large but reversible defor-
mations, such as partially melting into two single strands, bending way past
the linear elasticity regime, and twisting. At the same time, the unperturbed,
average structure of this nanoparticle is as well defined as that of a crystal,
each copy of the same particle structurally identical in an ensemble-averaged
sense, as far as we know. We stress ensemble-averaged structure because it
differs from any instantaneous structure owing to generally large thermal
fluctuations. This remarkable deformability of DNA nanorods stems from
the fact that the atoms in this structure are bound together by interactions
on two very different energy scales. The chemical structure of the single
strand is maintained by covalent bonds; with characteristic bond energies

25
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FIGURE 2.1. Structure of a DNA 12mer obtained by X-ray diffraction (PDB: 1BNA). The helix is
slightly bent, owing to packing in the crystal. The phosphate groups forming the
sugar–phosphate backbone of the strands appear relatively darker in this grayscale
representation. The same structure is shown in two different representations (“sticks” and “all
atom”), using the molecular visualization program RasMol.

of several eV (electronvolts), these are fixed and typically immutable with
respect to the deformation processes we consider. In contrast, the structure
of the double helix, that is, the overall structure of the nanorod, is maintained
by a large set of much weaker bonds, orthogonal to the polymer backbone.
These are mainly hydrogen bonds, dipole–dipole interactions (“Van der
Waals forces”), and ionic interactions. For each of these, the characteristic
bond energy is 1 kBT ≈ 25meV (in this book we use the notation kBT as an
energy unit, corresponding to the Boltzmann constant times 300K, i.e., room
temperature). This is true for ionic bonds also, owing to the large dielectric
constant of water (εwater ≈ 80 at low frequency). For the DNA nanorod, the
relevant weak bonds can be classified as follows:

• base-pairing interactions: hydrogen bonds betweenWatson–Crick
base pairs; 2 hydrogen bonds for A–T, 3 for G–C

• base-stacking interactions: induced dipole interactions between
adjacent bases on the same strand, which are stacked like the rungs of
a ladder in the double helix
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FIGURE 2.2. The same DNA structure as figure 2.1,
showing the water molecules (only the oxygen atoms)
“bound” to the structure in the crystal.

• electrostatic repulsion between the negatively charged (ionized)
phosphate groups of the sugar–phosphate backbone (destabilizing)

Both base pairing and base stacking are stabilizing (attractive) interactions
and they are of the same order.

The nanorod is therefore held together by of the order of 100 weak bonds
(30bp × 2.5 hydrogen bonds/bp = 75 hydrogen bonds of base pairing; 29
stacking bonds × 2 strands = 58 base-stacking bonds). It is the many possible
rearrangements of these weak bonds, both in geometry and strength, that
confers a sort of “reversible plasticity” to the nanoparticle. Figure 2.1 shows
the structure of a DNA 12mer obtained by X-ray diffraction (by theDickerson
group, in 1980).

Water has a central role in defining the above intramolecular interactions
(figure 2.2), and indeed the structure, thermodynamic stability, and dynamics
of the nanorod (and other biomolecules). For example, the meaning of
the statement “the strength of the A–T hydrogen bonding (Watson–Crick
base pairing) is 2 kBT” is that the free energy difference between the A–T
hydrogen bonds in the ds structure and the hydrogen bonds that A and T
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FIGURE 2.3. A polymer of 3 links on a
square lattice. Left: the “folded”
conformation (A and B are bound). Right:
one of 4 different “unfolded”
conformations.

would form with water molecules in
the single-stranded (ss) DNA is 2 kBT.
The strength of an internal hydrogen
bond depends on how accessible it is
to water. The free energy difference
between two different structural states
depends on the water accessibility of
various groups for these two states. For
this reason, intramolecular interactions
are effectively temperature dependent,
water accessibility being different at dif-
ferent temperatures. To put it differ-
ently, surface energies are as important

as bulk energies, the “surface” being the water–structure interface. Different
conformations of the molecule have different surfaces.

These are not small effects: for example, a salt (NaCl) crystal in air melts
at approximately 800C, while in water it melts at room temperature. DNA
and proteins do not melt at room temperature because the atoms are bound
together in a covalently linked polymer chain. The basic design is the same
for proteins and DNA: the polymer chain folds on itself (or, in the case of
DNA, twists around another chain) creating an interior volume that excludes
the water. Without the polymer backbone, no such structure can be stable
against a zero concentration of constituents in solution, just like micelles do
not form below a critical bulk concentration of components.

The role of the polymer backbone is easily appreciated through simple
counting. Consider a “polymer” of 3 links (4 “monomers”) on a square lattice
ofN ×N sites (figure 2.3).Monomer B is different from the Amonomers, and
the A–B interaction energy is−ε (ε > 0), when A and B are nearest neighbors.
There are 1 “folded” conformation and 4 different unfolded ones (figure 2.3).
The number of folded states on the N ×N lattice is (disregarding boundary
effects) Γf = 4 ×N2. The factor 4 counts rotations and N2 counts translations
of the molecule.

The number of unfolded states is Γu = 4 × 4 ×N2. Correspondingly, the
free energies are

Ff = −ε − T ln(4N2), Fu = −T ln(4 × 4N2), (2.1)

∆F = Fu − Ff = ε − 2T ln(2). (2.2)

For∆F > 0, the folded conformation is stable, and this needs a binding energy
ε of only a few kBT at room temperature (ε > (2 ln 2) kBT according to (2.2)).

Compare to the case of two unattached particles A and B: the number of
dimer states is ΓD = 4 ×N2, the number of monomer states ΓM = N2(N2 − 4)
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and for the free energies we now have

FD = −ε − T ln(4N2),

FM = −T ln[N2(N2 − 4)] = −T ln(N2) − T ln(N2 − 4),
(2.3)

∆F = FM − FD = ε − 2T lnN + 2T ln 2 ≈ ε − 2T lnN . (2.4)

For the dimer to be stable at room temperature now requires a huge binding
energy ε > (2 lnN) kBT.

In terms of the fraction of folded molecules f ,

f =
Zf

Zf + Zu
= 1

1 + Zu∕Zf
= 1

1 + e−∆F∕T
, (2.5)

where Zf, Zu are the corresponding partition sums. For example, f = 1
2

for ∆F = 0, which means ε = (2 ln 2)T for the polymer but ε = (2 lnN)T
for the independent particles. The lnN term expresses the concentration
dependence (the dilution term) of the chemical potential, and is ultimately
the reason why life is made of polymers!

2.2 DNA Melting

At sufficiently high temperature (perhaps around 70C for a typical DNA
30mer), the double helix dissociates into its two separate strands: the nanorod
“melts.” The melting temperature depends on the base sequence (since
a G–C pairing is about 1.5 times stronger than an A–T pairing), DNA
concentration (since one duplex dissociates into two separate strands), ionic
strength of the solution (since each strand is charged), and pH (which
controls the dissociation state of various groups and thus modulates the
charge). We discuss this transition for DNA oligonucleotides by way of
introducing the internal degrees of freedom relevant for the structure of the
DNA nanorod.

Two-states model: The simplest description for the melting transition is
the dissociation of two particles A and B (the two strands) with no internal
structure:

AB
kd
⇌
ka

A + B. (2.6)

Given dissociation and association rates kd and ka, we write a rate equation:

d
dt

[AB] = −kd[AB] + ka[A][B]. (2.7)

Let us agree that [ ] stands for concentration in molar (moles/liter: 1M =
1mole/L), and note that kd and ka have different dimensions (kd has units
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of s−1, ka of L s−1). At equilibrium, (d∕dt)[AB] = 0, which yields the law of
mass action:

[A]eq[B]eq
[AB]eq

=
kd
ka

= Kd(T). (2.8)

The subscript “eq” means that these are equilibrium concentrations, and Kd
is the dissociation constant, which depends on temperature (and pressure of
course, though we omit it). The fraction of melted (dissociated) nanorods is

p = [A]
[A] + [AB]

= [B]
[AB] + [B]

(2.9)

(the number of A strands in the ss state divided by the total number of
A strands, or similarly for B); we assume stoichiometric amounts of the
two strands, that is, [A] = [B] at all times. From this model we can see
why the melting transition depends on DNA concentration. The total DNA
concentration (as single strands) is

C = [A] + [B] + 2[AB] = const. (2.10)

We write [A]eq in terms of C using (2.10) and (2.8) (and [A] = [B]):

[A]2eq + Kd[A]eq −
Kd
2
C = 0, (2.11)

with solution

[A]eq = [B]eq =
Kd
2

[

−1 +

√

1 + 2C
Kd

]

. (2.12)

At equilibrium, the fraction ofmelted nanorods is therefore (from (2.9), (2.8),
(2.12))

p = 1
1 + [A]eq∕Kd

= 1

1 + 1
2

[

−1 +
√

1 + 2
Kd
C
] , (2.13)

which gives, for a fixed temperature, the concentration dependence p = p(C)
(figure 2.4). The dissociation constantKd(T) of this two-statesmodel can thus
be determined in principle by measuring p for different values of C, and using
(2.13), though in practice it is easier to relax the stoichiometric condition
[A] = [B] and titrate one strand into a solution of the other.

Themelting point is defined as p = 1
2 , and from (2.13) we obtain

Kd(Tm) = C
4
. (2.14)

If we know the temperature dependence of Kd, eq. (2.14) tells us the concen-
tration dependence of the melting temperature Tm. The main temperature
dependence of Kd can be obtained by writing down the chemical potentials
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FIGURE 2.4. Plot of eq. (2.13) for Kd = 0.1M; the concentra-
tion C is in M.

of the various species:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

µA = µ0A + T lnXA,

µB = µ0B + T lnXB,

µAB = µ0AB + T lnXAB,

(2.15)

where XA is the mole fraction of species A, and µ0A is a constant (meaning a
concentration-independent term) which we explain below. Equation (2.15)
exhibits the concentration dependence of the chemical potential, written
for a dilute solution, which is equivalent to the ideal gas expression. Thus
(2.15) is valid only formole fractionsX ≪ 1, and the often repeated statement
that µ0 in (2.15) is the “chemical potential of the pure component” (since
formally µ = µ0 for X = 1) is not to be taken literally, because (2.15) is not
valid anywhere close to X = 1. Since we consider dilute solutions in water,
the relation between mole fraction and concentration is

XA =
NA
Ntot

=
NA

NA +NB +NAB +Nw
≈

NA
Nw

= [A]
[W ]

, (2.16)

that is,

XA = [A]
Cw

, (2.17)

where N is the number of particles (in the given volume) and w stands
for water; NA, NB, NAB ≪ Nw, and the concentration of water in water is
Cw = 55M.

Therefore we can write µA = µ0A + T ln[A] − T lnCw, and evaluating this
relation for [A] = 1M and at room temperature, where T = 25meV, since
ln 55 ≈ 4 we find µA + 100meV = µ0A. So we can say, for example, that µ0A
represents the reference chemical potential of A at a concentration of 1M,
plus 100meV.
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Coming back to (2.15), the equilibrium condition for the “reaction” (2.6)
is

µAB − (µA + µB) = 0, (2.18)

which yields, in equilibrium,

ln
XAXB
XAB

= 1
T
(
µ0AB − µ0A − µ0B

)
, (2.19)

or, using (2.17),

ln
[A]eq[B]eq
[AB]eq

= −
∆µ0

T
+ lnCw, (2.20)

that is, the law of mass action (2.8) once again, where

Kd = Cwe−∆µ
0∕T (2.21)

and ∆µ0 = µ0A + µ0B − µ0AB. To obtain the approximate temperature depen-
dence of Kd, we write the chemical potential ∆µ0 in terms of enthalpy and
entropy,

∆µ0 = ∆H0 − T∆S0 (2.22)

and assume that ∆H0, ∆S0 are roughly temperature independent (this is
generally false for processes in water, and this is the weakest and most
uncontrolled approximation in the whole argument leading to the Van ’tHoff
relation below). Then we have

ln
Kd(T)
Cw

= −∆H0

T
+∆S0. (2.23)

From (2.14) and (2.23) we can now find how the melting temperature Tm
depends on DNA concentration C:

Tm = − ∆H0

∆S0 − ln
(

C
4Cw

) . (2.24)

BymeasuringTm for different concentrationsC, or bymeasuring the temper-
ature dependence of Kd, one can thus determine the enthalpy and entropy
parameters ∆H0 and ∆S0, using (2.24) and (2.23), respectively.

In summary, the concentration dependence of the melting temperature is
given by an additive term to the dissociation entropy ∆S0, an additive term
that is logarithmic in the concentration.

If we are interested in the temperature dependence rather than the
concentration dependence of the transition, we start from a simpler andmore
familiar formulation of the two-states model in statistical mechanics. The
two states in question are associated (AB), to which we assign the reference
energy and entropy εass = 0, sass = 0, and dissociated (A + B), with energy
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FIGURE 2.5. Plot of eq. (2.26) for two cases:
ε0 = s0 = 10 (steeper curve) and ε0 = s0 = 3. In both
cases, Tm = ε0∕s0 = 1.

εdiss = ε0 > 0 and entropy sdiss = s0 > 0. The partition sum is

Z = 1 + es0e−ε0∕T , (2.25)

es0 being the degeneracy of the dissociated state relative to the associated
one. The fraction p of dissociated molecules is equal to the probability of the
dissociated state (since we consider only two states), so

p = 1
Z
es0e−ε0∕T = 1

1 + e(ε0−Ts0)∕T
(2.26)

with the melting temperature given by

Tm =
ε0
s0
. (2.27)

The two-states expression (2.26) is often used to analyze melting curves
of oligonucleotides (assuming ε0 and s0 to be temperature-independent
parameters). Given Tm, the ratio ε0∕s0 is fixed and the steepness of the
melting curve in model (2.26) is determined by the magnitude of ε0 and s0
(figure 2.5). The slope at the midpoint of the transition is

dp
dT
|
|
|
|T=Tm

=
s0

4Tm
, (2.28)

proportional to s0 (and thus ε0) for fixed Tm. In terms of the single base
pairing energy ε and entropy s, the total binding energy ε0 and entropy s0 are
at least approximately additive, that is, for an oligonucleotide ofN base pairs,
ε0 = Nε, s0 = Ns. Therefore the two-states model (2.26) says that the longer
the oligo, the steeper the melting curve. In fact,

p = 1
1 + eN(ε0−Ts0)∕T

(2.29)
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FIGURE 2.6. A partially melted DNA
molecule according to the zipper
model. Five base pairs are closed,
and seven are open. The
single-stranded parts are in a
random coil conformation.

becomes a step function around Tm = ε∕s
for N → ∞. This model exhibits by con-
struction “perfect cooperativity”: the base-
pairing bonds break all together or not at all.

At the other extreme, a totally non-
cooperative melting transition would be one
in which each base-pairing bond is closed or
open independently of all the others, that is,
a situation of N independent bonds. Each
open bond has an energy cost ε and entropy
gain s. This is the same problem as N inde-
pendent spin 1

2 particles in a magnetic field.
The partition sum for the system of sizeN is

ZN = ZN
1 , Z1 = 1 + e(s−ε∕T)

. (2.30)

If n is the number of open bp, the energy is

E = ⟨n⟩ ε = T2 𝜕 lnZN
𝜕T

(2.31)

⇒ ⟨n⟩ = N 1
e(ε∕T−s) + 1

. (2.32)

Comparing ⟨n⟩∕N given by (2.32) with (2.29), we see that the totally co-
operative transition is a factor N steeper than the totally non-cooperative
transition.

Reality is in between. The nanorod does not melt in an “all or none”
fashion: for temperatures near Tm there is, in equilibrium, a finite fraction of
oligomers that are partially melted (i.e., with some broken and some intact
base pairs). On the other hand, the melting curve of the nanorod is way
steeper than (2.32). To do better, wemust give more attention to the internal
degrees of freedom of the nanorod. The steepness of the melting curves of
oligonucleotides signals a degree of “cooperativity” of the transition: the fact
that if one bp is open (base-pairing bond broken), it is energetically easier for
the adjacent bp to open. The simplest model incorporating this effect is the
zipper model.

2.3 Zipper Model

We consider a homogeneous sequence and impose the constraint that base
pairs can open only in a contiguous row starting from one end (like a
zipper: figure 2.6). Therefore we can classify the microscopic states of the
system by the number of open bp, n. Opening each bp has an energy cost
ε and an entropy gain s. The energy ε reflects the base-pairing energy and
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should be of order 2–3 kT. A fixed entropy gain per open bp, s, reflects the
following physics: double-stranded DNA is semirigid on the length scales
of the oligomer, while ss DNA is very flexible. We think of the ds part of a
partially melted molecule as occupying one conformational state, and of
each strand of the melted part as a random coil, occupying a number of
conformational states corresponding to a random walk of n steps. With g
states per step, the number of states for the random walk is gn, that is, an
entropy n ln g or an entropy per step s = ln g.

The partition sum for the zipper model is

Z =
N∑

n=0
gne−nε∕T =

N∑

n=0
en(s−ε∕T) (2.33)

(for simplicity, we are omitting at present an extra entropy contribution
in the n = N term which comes from strand dissociation; that term carries
the concentration dependence of the transition, as we saw before, which
is therefore not present in (2.33)). The geometric series can be summed in
closed form:

Z = 1 − e(N+1)(s−ε∕T)

1 − e(s−ε∕T)
. (2.34)

The probability that n bp are open is

p(n) = 1
Z
en(s−ε∕T) (2.35)

and the average number of open bp is

⟨n⟩ = 1
Z

N∑

n=0
nen(s−ε∕T) = 𝜕

𝜕s
lnZ. (2.36)

The case of an infinitely long molecule is simplest:

for N → ∞, Z →
1

1 − e(s−ε∕T)
. (2.37)

Thus for T ≤ Tc = ε∕s, and taking the derivative according to (2.36), we find

⟨n⟩ = 1
eε∕T−s − 1

(T ≤ Tc), (2.38)

which diverges at Tc (figure 2.7). So in the thermodynamic limit N → ∞, the
zipper model has a phase transition at the critical temperature Tc, signalled
by the divergence of the partition sum (2.37). Note that the Landau argument
for nonexistence of phase transitions in one-dimensional systems with short-
range interactions does not apply here: the zipper model has effectively
infinite-range interactions.
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FIGURE 2.7. Plot of eq. (2.38) for ε = s = 1 (Tc = 1).
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FIGURE 2.8. Plot of eq. (2.39) for ε = s = 1 andN = 10 (Tm = 1).

However, we are interested in the finite system, for which we find, using
(2.34) and (2.36),

⟨n⟩ = N + 1
1 − e−(N+1)(s−ε∕T)

− 1
1 − e−(s−ε∕T)

. (2.39)

This function is plotted in figure 2.8. Now Tm = ε∕s is not a critical point, but
it is the melting temperature in the sense that

⟨n⟩ (T = Tm) = N
2
, (2.40)

which we can verify by taking the limit (s − ε∕T) → 0 in (2.39).

2.4 Experimental Melting Curves

Optical absorption by the bases inDNA around 260 nmprovides a convenient
method to obtain melting profiles. The dipole transition responsible for
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Raise
temp. Quench

FIGURE 2.9. Principle of the quenching method: partially melted
molecules re-form duplexes after the quench, while dissociated
molecules form hairpins. Adapted from Zeng, Montrichok, and
Zocchi (2004).

absorption is somewhat quenched when the bases are stacked; as a result,
base unstacking results in increased UV absorption. Base unpairing also
results in a similar increase in the absorption coefficient. Melting curves
can be easily obtained using µM concentrations of DNA oligomers and a
commercial spectrophotometer. Thus the UV absorption signal reports on
the fraction of bases in the sample that are unstacked and/or unpaired.

With finite-size molecules, unpaired bases in the sample may belong
either to molecules that are completely dissociated into two separate strands,
or to molecules in intermediate, “bubble state” conformations where part of
the molecule is in the ds form and part in the ss form. The presence of such
intermediate states can be quantified by measuring, besides the fraction of
open base pairs f , the fraction of completely dissociatedmolecules, p. The fol-
lowing “quenching method” provides the dissociation curve p(T). Sequences
are chosen to be partially self-complementary, so individual strands can form
hairpins. However, the ground state, accessed by careful annealing, is still the
duplex structure. Starting from the duplex at “low” temperature (well below
the melting transition, say 0C), the sample is brought to an intermediate
temperatureT (within the transition region), equilibrated, then brought back
quickly (“quenched”) to 0C. Molecules that were dissociated at temperature
T form hairpins, while molecules that were in a bubble state form the ground
state duplex after the quench (figure 2.9). The relative amount of hairpins and
duplexes is measured by gel electrophoresis (hairpins are shorter and move
faster through the gel); see figure 2.10. In summary, the quenching method
reports on the fraction of dissociated molecules p(T).

A glance at an experimental melting curve of oligomers obtained by UV
absorption (figure 2.11) shows that the process is more complex than the
simple models we have discussed so far. It is obvious from figure 2.11(A1)
that there are two melting processes, and indeed, there are really two dif-
ferent structures that “melt.” One melting process is unpairing of the base
pairs (breaking of the bonds between complementary bases on opposite
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FIGURE 2.10. Gel electrophoresis after the quench: the hairpin (hp) and duplex (ds) bands are
indicated. The temperature T to which the sample was brought before the quench is indicated
for each lane. As T is increased, the duplex band disappears and the hairpin band appears,
signifying an increase in the dissociated molecules p(T). On the right is a plot of the intensity
profile of the lanes, averaged across the lane. Adapted from Zeng, Montrichok, and Zocchi
(2004).

strands); the other melting process, which happens at somewhat higher but
partially overlapping temperatures, is unstacking of the adjacent bases on
the same strand. The UV absorption curve figure 2.11(A1) reflects both:
the region 45 < T < 55C corresponds to melting of the ds structure, as we
see from the strand dissociation curve figure 2.11(A2), which shows that
strand dissociation is complete (p = 1) at T = Tc ≈ 55C; the region T > 65C
corresponds to unstacking of the bases in the single strands. The midpoint of
this unstacking transition is above 100C. We denote by Tc the temperature
at which there is (essentially) 100% strand dissociation, since for the infinite
molecule (N → ∞) it becomes the critical point.

Themelting curve (A1) is a little extreme in that the unstacking transition
ismore prominent than the unpairing transition; we chose this deliberately to
make the point that stacking degrees of freedom are as important as pairing
degrees of freedom in the structural transitions of DNA. The reason for the
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FIGURE 2.11. Melting curves for two different 13-bp-long DNAmolecules (L13 and L13-2).
Circles represent experimental measurements; lines are fits using the model described in the
next section (for (A1) and (A2), identical parameter values were used in the model). Adapted
from Ivanov, Zeng, and Zocchi (2004).
(A1): The measurements are obtained by UV absorption spectroscopy, which reports on a
combination of base pairing and base stacking. The data are normalized so that the signal is
f = 0well below the melting transition and f = 1 at the strand dissociation point. In the region
0 ≤ f < 1 the normalized spectroscopic measure f represents essentially the fraction of
unpaired bases in the sample. For f > 1, it represents essentially the degree of unstacking in
the sample.
(A2): The same melting transition as in (A1), observed by the quenching method described in
the text. This method measures the fraction, p, of dissociated molecules. The dotted line shows
what happens in the model if the strand dissociation entropy (SD) is set to zero.
(B): UV absorption profile for a different 13mer, L13-2, which, unlike L13, is not partially
self-complementary. The discrepancy between the values of the strand dissociation entropy SD
necessary to obtain good fits for A and B highlights quantitative deficiencies in the model used.

extreme behavior in figure 2.11(A1) is that the oligomer sequence (L13:
length 13bp) is almost completely self-complementary. This has two effects:
it pushes the strand separation transition to lower temperature (through the
existence of cruciform states), and it enhances stacking in the ss through base-
pairing interactions in the single strand.
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A more usual melting profile is the one in figure 2.11(B), obtained for a
sequence of the same length but no self-complementarity. Strand separation
is complete at T ≈ 75C, and there is still a prominent unstacking process for
T > 75C. Clearly, statistical mechanics models should incorporate both pair-
ing and stacking degrees of freedom in order to be useful to experimentalists.

Another obvious conclusion from the experimental melting profiles is
that, for the DNA nanorod, a two-states description of melting is wholly
inadequate. Figure 2.12 shows melting curves of two different oligomers, of
lengths 60 and 42bp. The quantity f (open circles) represents UV absorption
measurements. Normalized to 1 at the strand dissociation point, in the region
f < 1, f reports essentially the fraction of unpaired bases (as the midpoint of
the unstacking transition is at relatively higher temperature, > 100C). The
quantity p (filled circles) is the fraction of dissociated molecules, measured
with the quenching method just described. If the transition was two states
(either the entire molecule is dissociated, or no bases are unpaired), we
would have f = p for the entire range f ≤ 1. The measurements prove that
even for short molecules, for T < Tc a fraction of the molecules populate
“intermediate,” partially melted states. The specific sequences of figure 2.12
were designedwithAT-rich regions in themiddle, of length 36 (L60B36: total
length 60, length of bubble-forming region 36) and 18 (L42B18), respectively.
The ends are “clamped” by GC-rich regions. In this case, the partially melted
part is in the middle of the molecule, contrary to the premise of the zipper
model. From the two melting curves f (T) and p(T) one obtains two further
quantities. The fraction of open bp at temperature T is

f (T) = [1 − p(T)] ⟨𝓁⟩ + p(T), (2.41)

where ⟨𝓁⟩(T) is the average fractional length of the melted region (bubble) in
the partially melted molecules (i.e., averaged over the subset of the partially
open molecules). Thus the fractional bubble length is

⟨𝓁⟩ =
f − p
1 − p

, (2.42)

and this quantity is plotted as squares in figure 2.12. The ⟨𝓁⟩ vs. T curves
for different lengths of the AT-rich region are reminiscent of the isotherms
in the P–V plane for a liquid–gas transition, where plateaus signify phase
coexistence (of bubbles and paired states, in our case).

The second quantity we can calculate from f , p is simply

σ = f − p, (2.43)

which represents the fraction of bases in a bubble state. Figure 2.13 shows this
quantity, plotted vs. T − Tc, for a series of molecules of decreasing lengths,
from 48 to 13bp. The sequences are designed to open fromone end (i.e., there
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FIGURE 2.12. Experimental melting profiles for two different DNA
molecules: L60B36 has total length 60bp and a bubble-forming
region of length 36 in the middle, and correspondingly for
L42B18. Open circles are the normalized UV absorption
measurements f (T); they represent the fraction of open bp. Filled
circles are measurements with the quenching method p(T); they
represent the fraction of dissociated molecules. Squares represent
the relative length of the bubble, ⟨𝓁⟩, and are calculated from
(2.42). Adapted from Zeng, Montrichok, and Zocchi (2003).

is an AT-rich region at one end). The plot shows that even for the 13mer, the
melting transition is not two states. Amore quantitative statement is obtained
by plotting (figure 2.14) σav, which is the area under the σ curve of figure 2.13
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FIGURE 2.13. Experimental measurements of the fraction of bases
in a bubble state, σ, plotted vs. T−Tc, where Tc is the strand
dissociation temperature. The quantity σ is obtained from (2.43)
using the experimental values of f and p. This series of molecules,
of lengths from 48bp down to 13bp, have an AT-rich region at
one end. Adapted from Zeng, Montrichok, and Zocchi (2004).

divided by the width of the peak. The quantity σav measures the frequency
of intermediate (partially melted) states averaged over the transition region.
The plot of σav vs. L (the length of the molecule) extrapolates basically to
the origin. It shows that the melting transition is strictly two states only for
molecules of length L = 1!

In summary, experiments on the melting of oligomers show that

1. a two-states description is inadequate;
2. both pairing and stacking degrees of freedommust be considered;
3. cooperativity in this transition is more subtle than is captured by the

simple zipper model.

2.5 Base Pairing and Base Stacking as Separate
Degrees of Freedom

One can capture the essentials of the melting curve of oligomers in the
whole accessible temperature range (figure 2.11) through simple, analytically
solvable, statistical mechanics models which give insight into the physics of
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FIGURE 2.14. The quantity σav is the area under the peaks of
figure 2.13 divided by the width of the peak, here plotted against
the length of the molecule, L. This quantity is a measure of the
occurrence of intermediate states, averaged over the transition
region. The linear fit (solid line) indicates that the transition is
truly two states only for molecules of length ∼ 1bp! Adapted from
Zeng, Montrichok, and Zocchi (2004).

these molecules. We start again with the zipper model for the base-pairing
degrees of freedom, described by the partition sum

Zpairing =
N−1∑

n=0
(n + 1)en(s−ε∕T) + eN(s−ε∕T)Sd. (2.44)

As in (2.33), this partition sum considers only partially melted states where
the base pairs are open contiguously from the ends. The factor (n + 1) counts
states open from both ends of the molecule. The last (n = N) term includes
the dissociation entropy Sd, which depends on DNA concentration.

The stacking degrees of freedom are very well described by an Ising-type
model of noninteracting dipoles in a magnetic field. With r stacking bonds
that might be broken, the partition sum is

Zstacking = [1 + e(σ−∆∕T)]r . (2.45)

Each unstacking causes an entropy gain σ > 0 and energy loss ∆ > 0, and
(2.45) describes a completely uncooperative process where each stacking
degree of freedom is independent. Physically, it says that bases can flip out
of stack without causing big distortions of the overall structure, which would
couple to the next stack. The broad, uncooperative transition predicted by
(2.45) fits the experimental measurements very well.
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FIGURE 2.15. Unstacking melting curves obtained by UV absorption measurements on
single-stranded molecules, of (left) length 13 and (right) length 21 bases. The broad,
uncooperative transition is well described by an Ising model of noninteracting spins (solid line,
eq. (2.46)). Adapted from Ivanov, Zeng, and Zocchi (2004).

Figure 2.15 shows unstacking profiles obtained from UV absorption of
single strands, of length 13 and 21 bases. Using the stratagem of lowering
the pH (the data were taken at pH = 3.6), the midpoint of the unstacking
transition, which is above 100C at neutral pH, has been brought down to
∼ 50C, making the whole melting profile accessible. The solid lines are fits of
the experimental data using the fraction of unstacked bases fu given by the
model (2.45), that is,

fu = 1
e(∆∕T−σ) + 1

. (2.46)

Now we combine the base-pairing description (2.44) with the base-stacking
description (2.45), enforcing the following crucial constraint: bases can be
unstacked only if they are unpaired. This is a geometric constraint reflecting
the structure of the double helix.

Consider then an oligomer of length N , with a and b open base pairs at
the two ends, a + b = n, n < N; the number of stacking bonds that might be
broken is 2n. Therefore,

Z =
N−1∑

n=0
(n + 1)en(s−ε∕T)[1 + e(σ−∆∕T)]2n + eN(s−ε∕T)[1 + e(σ−∆∕T)]2N−2Sd

= Zb + Zd (2.47)

(bubble states + dissociated state). Since it is essentially a geometric series,
the partition sum (2.47) can be summed in closed form using the formulas

N∑

n=0
xn = 1 − xN+1

1 − x
,

N∑

n=0
nxn = x

(1 − x)2
[1 − (N + 1)xN +NxN+1]. (2.48)
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With the notation

x ∶= es−ε∕T [1 + eσ−∆∕T ]2, (2.49)

the sum in (2.47) adds up to

Zb = 1
(1 − x)2

[1 − (N + 1)xN +NxN+1]. (2.50)

The probability that n base pairs per molecule are open (within the subset of
partially open molecules) is

p(n) = 1
Zb

(n + 1)en(s−ε∕T)[1 + eσ−∆∕T ]2n (2.51)

and the average bubble length is (supposing there is one contiguous bubble)

⟨𝓁⟩ = ⟨n⟩ =
N−1∑

n=0
np(n) = 𝜕

𝜕s
lnZb. (2.52)

To compare with the experimental melting curves, we assume that the UV
absorption signal f (T), normalized (f = 1 at the dissociation temperature
Tc, f = 0 for T → 0), is a linear combination of unpairing and unstacking
contributions:

f = α
⟨n⟩tot
N

+ β
⟨r⟩tot

2(N − 1)
, (2.53)

where n is the fraction of unpaired bases and r the fraction unstacked; α and
β are optical absorption parameters. On the other hand, the fraction p of
dissociated molecules is directly measured by the quenching method, and in
terms of the model we have

p =
Zd
Z

. (2.54)

The total number of unpaired bases and unstacked bases per molecule in the
sample are

⟨n⟩tot = 𝜕 lnZ
𝜕s

, ⟨r⟩tot = 𝜕 lnZ
𝜕σ

. (2.55)

It may be convenient to exhibit the contribution from the dissociated mole-
cules separately, by writing

⟨n⟩tot = ⟨n⟩
Zb
Z

+N
Zd
Z

, (2.56)

with ⟨n⟩ given by (2.52), and similarly,

⟨r⟩tot =
𝜕 lnZb
𝜕σ

Zb
Z

+ 2N − 2
e(∆∕T−σ)

Zd
Z

. (2.57)
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The solid lines in figure 2.11 represent the model {(2.47), (2.53)–(2.55)},
with some technical modifications to deal with the specific sequences. It is
clear that the model satisfactorily captures the distinct contributions of base
pairing and base stacking. On the other hand, the cooperativity enforced by
the zipper model for pairing is too extreme, as indicated in figure 2.11(B).

2.6 Hamiltonian Formulation of the Zipper Model

To understand the extreme cooperativity encoded in the partition func-
tion (2.33), it is useful to formulate the zipper model through the follow-
ing hierarchical Hamiltonian. We consider N binary degrees of freedom
{φ1,φ2,… ,φN} which take the values φi ∈ {0, 1}. A value φi = 1 means the
ith base is paired, whereas φi = 0means it is unpaired. The Hamiltonian is

H = −ε[φ1 +φ1φ2 +φ1φ2φ3 +⋯ +φ1 ⋯φN ]. (2.58)

The ground state is E = −Nε (all bases paired: φi = 1 for all i). If φ1 = 0, then
each term in the sum (2.58) is zero, independent of the values of the other
variables, so E = 0. Similarly, if the first p bases are paired (φ1 = φ2 = ⋯ =
φp = 1) and φp+1 = 0, then E = −pε, independent of the state of the other
variables φi with i > p + 1. There are 2N−p−1 such states. We see that the
Hamiltonian (2.58) represents the zipper model (2.33) with s = ln 2 (g = 2).
The structure of (2.58) is hierarchical: φ1 is the most important variable, φN
the least important. The interaction range is the system size; this is the origin
of the phase transition forN → ∞.With finite-range interactions, for example
the Ising model in zero field,

H = −ε[φ1φ2 +φ2φ3 +⋯ +φN−1φN ], (2.59)

there is no phase transition in the thermodynamic limit.
Coming back to cooperativity, in terms of Ising-like Hamiltonians, the

two extreme cases are the all-or-none transition,

H = −ε[φ1φ2 ⋯φN ], (2.60)

and the independent variables,

H = −ε[φ1 +φ2 +⋯ +φN ]. (2.61)

Obviously one can formulate any degree of cooperativity in between in this
manner.
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2.7 2 × 2 Model: Cooperativity from
Local Rules

Bi Bi+1· · · · · ·

Bi Bi+1· · · · · ·

FIGURE 2.16. Dimer
for the 2 × 2model.
Bases Bi and ̃Bi
represent
complementary bases
on opposite strands;
Bi and Bi+1 are
adjacent bases on the
same strand. Vertical
lines represent
base-pairing bonds,
horizontal lines
base-stacking bonds.
Adapted from Ivanov,
Piontkovski, and
Zocchi (2005).

Now we study a model with separate base-pairing and
base-stacking degrees of freedom, butwhere cooperativ-
ity of base pairing arises from a more physical, local rule
(interactions are not infinitely long range as in (2.58)).
This discussion is also an exercise in the transfer matrix
formalism of statistical mechanics.

We construct the states of the DNAmolecule using a
series of overlapping “dimers” (figure 2.16). We denote
by Bi the ith base on one strand, counted say from the 5′

end; ̃Bi is the complementary base on the other strand,
counted from the 3′ end (the two strands in the double
helix are antiparallel).

The vertical lines in the figure represent base-pairing
bonds, the horizontal lines base-stacking bonds. The ith
dimer contains the i and (i + 1) pairings and stackings as
shown. Breaking these bonds has free energy costs Gp

i ,
Gst
i , and

̃Gst
i for the pairing between Bi & ̃Bi, the stacking between Bi & Bi+1,

and the stacking between ̃Bi & ̃Bi+1, respectively. We also introduce cor-
responding statistical weights Up

i = e−G
p
i ∕T , U st

i = e−G
st
i ∕T , and ̃U st

i = e−̃Gst
i ∕T .

A dimer has 4 bonds (2 pairings, 2 stackings), each of which can be closed
or open (broken), so there are 24 = 16 possible states of the dimer. These
are represented in the diagrams of figure 2.17, where vertical lines represent
pairing bonds, horizontal lines stacking bonds, and crosses signify broken
bonds. The partition function for the model is obtained by summing the
statistical weights for all the diagrams for a series of dimers that represents
the sequence of the DNAmolecule. Nowwe introduce certain local rules that
reflect geometric constraints in the molecular structure and result in cooper-
ative behavior intermediate between independent dipoles in a magnetic field
(no cooperativity) and the zipper model (full cooperativity). The rules are
that, in the dimer, stacking bonds can be broken only if one pairing bond
is broken. Also, if exactly one pairing is broken, then at least one stacking
must be broken. In terms of the diagrams of figure 2.17, the rules mean that
diagrams 12 to 16 are not allowed: these are crossed out in the figure. These
rules implicitly assign a free energy penalty for opening a bubble, because
they require mandatory unstacking at a melting fork. The geometrical origin
of the constraints is that base pairing can prevent unstacking (while the
reverse is not true), while unpairing one bp, but not the next, requires that
the bases in the first pair are spatially separated, while in the second pair they
are not. This is impossible without at least one unstacking.
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FIGURE 2.17. Dimer states for the 2 × 2model. Vertical lines
represent base-pairing bonds, horizontal lines base-stacking
bonds. A cross indicates a broken bond. The 2 × 2model is
obtained by disallowing diagrams 12 to 16, which are crossed
out. Adapted from Ivanov, Piontkovski, and Zocchi (2005).

Now we write the partition function for this model using the transfer
matrix formalism, which is especially convenient for dealing with nonhomo-
geneous sequences. The idea of the transfer matrix is to write the partition
sum for the system of size N + 1 in terms of the partition sum for the system
of size N , basically setting up a recursion relation. In our case, let us call Zc

N
the partition sum for the system (ofN bp)with the last bp closed (i.e., paired),
and use Zo

N for the last bp open. The total partition sum (neglecting, for the
moment, end effects) is

ZN = Zc
N + Zo

N . (2.62)

Then we can write

⎧
⎪
⎨
⎪
⎩

Zc
N+1 = Zc

NU1 + Zo
N [U6 +U7 +U8],

Zo
N+1 = Zc

N [U2 +U3 +U4] + Zo
N [U5 +U9 +U10 +U11],

(2.63)

where U1 is the statistical weight corresponding to diagram 1 in figure 2.17,
etc. For example, diagrams 6, 7, 8 all contribute to the “transition” o → c,
diagrams 2, 3, 4 to the transition c → o, and so on. The statistical weights in
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question are

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

U1 = 1, U6 =
√

Up
i
̃U st
i , U7 =

√

Up
i U

st
i , U8 =

√

Up
i U

st
i
̃U st
i ,

U2 =
√

Up
i+1

̃U st
i , U3 =

√

Up
i+1U

st
i , U4 =

√

Up
i+1U

st
i
̃U st
i ,

U5 =
√

Up
i U

p
i+1, U9 =

√

Up
i U

p
i+1U

st
i , U10 =

√

Up
i U

p
i+1

̃U st
i ,

U11 =
√

Up
i U

p
i+1U

st
i
̃U st
i .

(2.64)

The partition function represented by the recursion relation (2.63) is a sum
over dimers; each pairing interaction is therefore counted twice (except
for the first and last bp): the ith bp occurs in the (i − 1)th and the ith
dimer. Therefore each free energy of pairing Gp

i should be halved, and
correspondingly the statistical weights for pairing Up

i appear under square
root in (2.64). The relation (2.63) can be written

(
Zc
N+1

Zo
N+1

)

= AN

(
Zc
N

Zo
N

)

, (2.65)

where the transfer matrices Ai (i = 1, 2,… ,N−1, for a molecule ofN bp) are

Ai =
⎛
⎜
⎜
⎜
⎝

1
√

Up
i (U st

i + ̃U st
i +U st

i
̃U st
i )

√

Up
i+1

(

U st
i + ̃U st

i +U st
i
̃U st
i

) √

Up
i U

p
i+1

(

1 +U st
i + ̃U st

i +U st
i
̃U st
i

)

⎞
⎟
⎟
⎟
⎠

.

(2.66)
Now (2.65) can be written

(
Zc
N

Zo
N

)

= AN−1AN−2 ⋯A2

(
Zc
2

Zo
2

)

, (2.67)

where Z2 is the partition function for the system consisting of 2bp (1 dimer):
Zc
2 the partition sum for the dimer with the last (second) bp closed, Zo

2 for the
last bp open. We now have to introduce boundary conditions (b.c.), and we
will use free b.c. (the bp’s at the beginning and the end of themolecule can be
either closed or open: they are not clamped either way). The column vector

Y =

(
Y1

Y2

)

≡

(
Zc
1

Zo
1

)

(2.68)

which implements these b.c., that is, such that
(
Zc
2

Zo
2

)

= A1

(
Y1

Y2

)

, (2.69)

is

Y1 = 1, Y2 =
√

Up
1 , (2.70)
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as we can see from (2.68). Indeed, using (2.70) and (2.69) we find

⎧
⎪
⎨
⎪
⎩

Zc
2 = 1 +Up

1

(

U st
1 + ̃U st

1 +U st
1
̃U st
1

)

,

Zo
2 =
√

Up
2

(

U st
1 + ̃U st

1 +U st
1
̃U st
1

)

+Up
1

√

Up
2

(

1 +U st
1 + ̃U st

1 +U st
1
̃U st
1

)

,

(2.71)
whereas calculating Zc

2, Z
o
2 directly from the diagrams of figure 2.17, we find

that with free b.c., the contributing diagrams are

⎧
⎪
⎨
⎪
⎩

Zc
2 (b.c.) = U1 +U6 +U7 +U8,

Zo
2 (b.c.) = U2 +U3 +U4 +U5 +U9 +U10 +U11.

(2.72)

For the statistical weights in (2.72), Up
1 comes without square root because

the first pairing is counted only once in the partition sum. Then (2.72) is the
same as (2.71).

Similarly, the free b.c. at the end of the molecule is implemented by the
row vector

X =
(

X1 X2

)

=
(

1
√

Up
N

)

(2.73)

such that the total partition sum is

ZN =
(

1
√

Up
N

)
(
Zc
N

Zo
N

)

. (2.74)

Finally, the partition sum with free b.c. takes the form

ZN =
(

1
√

Up
N

)

AN−1AN−2 ⋯A1

(
1
√

Up
1

)

, (2.75)

with the transfer matrices Ai given in terms of the unpairing and unstacking
free energies by (2.66). For a homogeneous sequence, all the matrices Ai
are the same, and symmetric. The transfer matrix can be diagonalized, and
the partition sum written in closed form; the thermodynamic limit N → ∞
can also be calculated: this is one way to solve the 1-D Ising model, for
example. But in general, with (2.75) and (2.66) we can describe any finite
sequence. One caution, however, is that the complete set of 16 unstacking
free energies for the 16 possible distinct stacking interactions in theWatson–
Crick paired dimer has not been measured. To see that there are actually, in
principle, 16 different possible stacking interactions between the 4 bases is
not immediately obvious. It is best to write down the 16 different dimers, and
recognize which out of the 32 stacking bonds are equivalent. For example,
3′−T G
5′−A C and 3′−C A

5′−G T are equivalent dimers; in 3′−T A
5′−A T the two stacking bonds

are equivalent, and so on.

 EBSCOhost - printed on 2/13/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use



STATICS OF DNA DEFORMATIONS 51

Coming back to the partition sum, we still have to include a dissociation
entropy Sd with the term corresponding to all bp being open. First we
calculate the statistical weight of the collection of states with all pairings
open: only diagrams 5, 9, 10, 11 contribute, therefore the Amatrices have the
form (see (2.63), (2.64))

Adiss
i =

⎛
⎜
⎜
⎝

0 0

0
√

Up
i U

p
i+1

(

1 +U st
i + ̃U st

i +U st
i
̃U st
i

)
⎞
⎟
⎟
⎠

(2.76)

and the required statistical weight is

D =
(

0
√

Up
N

)

Adiss
N−1 ⋯Adiss

1

(
0
√

Up
1

)

=
√

Up
NU

p
1

N−1∏

i=1

√

Up
i U

p
i+1

(

1 +U st
1 + ̃U st

1 +U st
1
̃U st
1

)

.

(2.77)

This statistical weight is present in ZN given by (2.75), so to isolate the
dissociation term we write the total partition sum thus:

Ztot = (ZN −D) + eSdD. (2.78)

The term in parentheses contains all the partially melted states, and the last
term all the dissociated states.Measurable quantities are calculated as follows.
We refer to the subset of partially melted molecules, and define the column
vectors

Bi = Ai−1Ai−2 ⋯A1

(
1
√

Up
1

)

(2 ≤ i ≤ N); B1 ≡

(
1
√

Up
1

)

(2.79)

and the row vectors

Ci =
(

1
√

Up
N

)

AN−1AN−2 ⋯Ai (1 ≤ i ≤ N − 1); CN ≡

(

1
√

Up
N

)

.

(2.80)
Then the partition sum is

ZN = CiBi = ci1b
i
1 + ci2b

i
2. (2.81)

Equation (2.81) is valid for any i (1 ≤ i ≤ N), there is no summation over i,
and we have introduced the components

Ci =
(

ci1 c
i
2

)

, Bi =

(
bi1
bi2

)

. (2.82)

In (2.81), the first term on the right-hand side is the statistical weight that
the ith base is closed, the second term the statistical weight for the ith base
being open. So the probability that the ith base is open (within the subset of
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non-dissociated molecules) is

Pi(open) = 1
ZN −D

ci2b
i
2 (2.83)

and the fraction of open bp is

f =
N∑

i=1
Pi(open). (2.84)

Similarly, let us find the probability that the ith stacking (on the principal
strand) is broken. We write Ai with contributions from diagrams 3, 4, 7, 8, 9,
11 only:

Ast
i =
⎛
⎜
⎜
⎜
⎝

0
√

Up
i

(

U st
i +U st

i
̃U st
i

)

√

Up
i+1

(

U st
i +U st

i
̃U st
i

) √

Up
i U

p
i+1

(

U st
i +U st

i
̃U st
i

)

⎞
⎟
⎟
⎟
⎠

. (2.85)

The required probability is

Pst
i (open) = 1

ZN −D
Ci+1Ast

i Bi (1 ≤ i ≤ N − 1). (2.86)

Figure 2.18 shows experimental melting profiles and fits using the 2 × 2
model. It is presently not knownwhether one consistent set of parameters for
the 2 × 2model can be found such that the melting profiles for any sequence
are reproduced to the accuracy shown in figure 2.18.

The 2 × 2 model is conceptually appealing because it describes, in a
transparent manner, the interplay of the most relevant degrees of freedom—
pairing and stacking—in shaping the melting curves of DNA oligomers. For
practical applications such as predicting melting temperatures of oligomers,
models with a reduced number of parameters are desirable, since as we
mentioned before, only some of the 16 different stacking interactions have
actually been measured. Commonly used is the nearest neighbor (NN)
model, described now.

2.8 Nearest Neighbor Model

TheNNmodel is obtained from the 2 × 2model by lumping together stacking
and pairing interactions into effective pairing interactions for the different
dimers. That is, we remove the stacking degrees of freedom altogether,
and we correspondingly renormalize the pairing free energies. If GNN

i is the

effective free energy cost of opening the ith bp, and UNN
i = e−G

NN
i ∕T , (2.66)

now takes the form

Ai =
⎛
⎜
⎜
⎝

1
√

UNN
i

√

UNN
i+1

√

UNN
i UNN

i+1

⎞
⎟
⎟
⎠

. (2.87)
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FIGURE 2.18. Melting profiles and the 2 × 2model. Top: measurements of base-pairing and
base-stacking f (T) obtained by UV absorption (A1), and the dissociation curve p(T) obtained
from the quenching method, for a DNAmolecule of length 60bp. The lines are fits with the
2 × 2model (same parameter values for (A1) and (A2)).
Bottom: same for a DNAmolecule of length 13 bp. Adapted from Ivanov, Piontkovski, and
Zocchi (2005).

In terms of the 2 × 2 model parameters, all 16 diagrams in figure 2.17 are
supposed to contribute to the transitions in (2.63), for example, for the o→ c
transition, diagrams 6, 7, 8, 12 contribute, and therefore,

UNN
i = Up

i
(
U st
i + ̃U st

i +U st
i
̃U st
i + 1

)
= Up

i
(
1 +U st

i
)(
1 + ̃U st

i
)
. (2.88)

This is a transparent result:
(
1 +U st

i
)
is the partition sum describing stacking

for the primary strand of the dimer,
(
1 + ̃U st

i
)
for the complementary strand.

In terms of free energies,

GNN
i = Gp

i − T ln(1 + e−G
st
i ∕T ) − T ln(1 + e−̃Gst

i ∕T ) (2.89)

and using G = H − TS, 𝜕G∕𝜕T = −S we can calculate, from (2.89), the tem-
perature dependence of the NN parameters HNN

i , SNNi in terms of the
(temperature-independent) 2 × 2model parametersHi, Si, whereGst

i = Hst
i −

TSsti etc. Now from (2.88) it is easy to see by direct calculation that the
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partition sum for the NNmodel is simply

ZNN =
(

1
√

UNN
N

)

ANN
N−1A

NN
N−2 ⋯ANN

1

(
1

√

UNN
1

)

=
(
1 +UNN

1
)(
1 +UNN

2
)
⋯
(
1 +UNN

N
)
. (2.90)

Unless we add by hand a penalty for opening bubbles, this is again a com-
pletely uncooperative model of independent dipoles in a magnetic field. For
example, the probability that the ith bp is open is

PNN
i (open) =

UNN
i

1 +UNN
i

. (2.91)

So theNNmodel is obtained from the 2 × 2model by relaxing the geometrical
constraints corresponding to the forbidden diagrams in figure 2.17 (and
lumping stacking and pairing degrees of freedom together). On the other
hand, the zipper model is obtained from the 2 × 2 model by adding more
constraints, to ensure that base pairs open only contiguously. The one-sided
zipper model (allowing the molecule only to open contiguously from one
side) with stacking degrees of freedom included, that is, essentially model
(2.47) apart from the multiplicity factor (n + 1), is obtained from the 2 × 2
model by forbidding diagrams 2, 3, 4, in addition to 13, 14, 15, 16; diagram
12, on the other hand, is allowed. (Referring to figure 2.17, we are allowing
the zipper to open “from the left”.) Then the transfer matrix takes the form

Ai =
⎛
⎜
⎜
⎝

1
√

Up
i
(
1 +U st

i
)(
1 + ̃U st

i
)

0
√

Up
i U

p
i+1
(
1 +U st

i
)(
1 + ̃U st

i
)

⎞
⎟
⎟
⎠

. (2.92)

We can see this describes a zipper model in that
( 1
0
)
is an eigenvector of

(2.92), therefore if the ith bp is closed (i.e., openwith statistical weight 0), the
(i + 1)th bp is also closed. If now we remove the stacking degrees of freedom,
as in (2.87), we obtain the simple zipper model

Azip
i =

(
1
√
Ui

0
√
UiUi+1

)

. (2.93)

For a homogeneous sequence (Ui = U for all i) it is easy to see by direct
calculation that the partition sum is

Zzip
N =

(

1
√
U
)

Azip
N−1A

zip
N−2 ⋯Azip

1

(
1
√
U

)

=
N∑

n=0
Un

, (2.94)

which is the same as (2.33).
In summary, the 2 × 2 model addresses the role of the most relevant

degrees of freedom for the DNA nanorod, and represents a conceptual
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framework for a whole class of Ising-type models of DNA melting. Melting
curves in this context play the role of specific heat curves in more general
condensed matter systems, in that they tell us what kind of excitations of the
ground state structure are important. Reduced degrees of freedommodels of
these excitations, such as the Debye model of phonons in solids, are indeed
a traditional means of gaining insight into the physics of condensed matter
systems.

2.9 Connection to Nonlinear Dynamics

DNA conformational transitions also represent an intriguing problem in
nonlinear physics, and this connection is best exemplified by the Peyrard–
Bishop–Dauxois (PBD) model of DNA melting. It is a 1-D model where the
nth base pair is associated with one continuous variable yn(t), representing
the deviation from the equilibrium distance between the two complementary
bases on the opposite strand; pn(t) = mẏn is the associated momentum. The
Hamiltonian of the model is

H =
∑

n

p2n
2m

+D
(
e−αyn − 1

)2 + K
2

[

1 + ρe−β(yn+yn−1)
] (
yn − yn−1

)2
. (2.95)

The first term is the kinetic energy of the bp. The second term describes the
Watson–Crick base-pairing interaction: breaking a base pairing (y ≫ 1∕α)
has an energy cost D. The last term describes base stacking. The sum is over
all base pairs (however, for a molecule of N bp there are only N−1 base-
stacking terms).

The stacking term consists of a harmonic potential ∝ (yn − yn−1)2 multi-
plied by a nonlinear term (the square bracket) which has the following effect.
When the two adjacent base pairs are “closed” (yn = yn−1 = 0), the strength
of the harmonic potential is K[1 + ρ]. When one of the adjacent base pairs,
or both, are significantly displaced (yn > 1∕β or yn−1 > 1∕β), the strength of
the base-stacking interaction is reduced to K. It is this nonlinear term that is
responsible for the remarkable ability of the model to quantitatively describe
DNA melting. Without the term in the square bracket, the Hamiltonian
(2.95) gives rise to a melting transition that is too soft compared to real
DNA; the nonlinear term introduces essentially a change in stiffness between
paired and unpaired tracts of the molecule, which translates into an addi-
tional entropy increase upon melting. Indeed, one interesting feature of the
model is the embedded connection between nonlinearity and entropy gener-
ation. Parameter values for (2.95) that apply to DNA are ρ = 2, 1∕α ≈ 0.2Å,
D ≈ 2 kT, K ≈ 1 kT∕Å2, 1∕β ≈ 3Å.

For a real DNA molecule the sequence would typically be inhomoge-
neous, and that is accommodated in the model by making the parameters D
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and α dependent on the specific bp (AT or GC), that is, D → Dn and α → αn
in (2.95), with two possible values depending on the identity of the bp. The
equilibrium statistical mechanics generated by (2.95) is most easily explored
by Langevin dynamics simulations; the surprise is that this relatively simple
model, with one set of optimized parameters, reproduces the melting curves
of different DNA sequences very well. In contrast, the Ising-type models of
the preceding sections typically require some adjustment to the parameters
when applied to different sequences. On the other hand, the PBDmodel does
not describe the experimental melting curves beyond the strand separation
temperature, because it does not allow for residual stacking in the single
strands.

In summary, oligonucleotide melting is a problem that can also be dis-
cussed in an interesting fashion from the perspective of nonlinear physics.

2.10 Linear and Nonlinear Elasticity of DNA

The next interesting conformational property of the DNA nanorod is its
ability to bend reversibly. One implication is that short DNA molecules can
be used as leaf springs for nanotechnology applications. The fundamental
quantity of interest is the elastic energy of bending. What is measured
in experiments is invariably a free energy of bending, and one interesting
question is whether entropic contributions to this quantity are important.
This question naturally leads to the study of the temperature dependence
of the elastic properties of the molecule. The boldest and, it turns out, most
effective approach to DNA elasticity is to adopt an unashamedly continuum
mechanics viewpoint and describeDNAbending as the bending of a rod. This
viewpoint allows us to explore, quantitatively, bending deformations of DNA
nanorods in the whole energy range from linear to nonlinear response.

2.11 Bending Modulus and Persistence Length

For a uniform thin rod and small bending, the elastic energy of bending is

E =
∫

L

0
ds 1

2
Bκ2(s), (2.96)

where κ(s) is the curvature, s is the arclength (and κ(s) = 1∕R(s), where R
is the radius of curvature), and L is the contour length of the (thin) rod.
The parameter B (dimensions of energy × length = force × length2), which
describes the bending stiffness of the rod, is called the bending modulus. For
a cylindrical rod,

B = Y 1
4
πr4, (2.97)
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n(0)→

n(s)→

FIGURE 2.19. Tangent vectors to a poly-
mer chain.

where Y is Young’s modulus and r is
the radius of the cylinder. On the other
hand, in polymer physics one describes
the stiffness of a long polymer through
its persistence length 𝓁p, which is roughly
speaking the length of polymer over
which thermal fluctuations cause signif-
icant bending. Evidently 𝓁p and B are
related quantities; consider a polymer of
length 𝓁p: we ask that the energy cost of bending it into a half circle be of
order T. The radius of curvature is then R = 𝓁p∕π, that is, κ = π∕𝓁p; using
(2.96) the bending energy isE = 𝓁p(

1
2 )B(π∕𝓁p)

2 and the conditionE ∼ T gives

𝓁p ∼ B
T
, (2.98)

forgetting about the numerical factor in this essentially dimensional argu-
ment.

It is instructive to bemore precise about the relation between the bending
modulus B and the persistence length 𝓁p. First we need a precise definition
of 𝓁p, which is obtained by considering correlation functions. Let n⃗(s) be the
unit tangent vector to the contour of the rod at position s (figure 2.19).

Due to thermal fluctuations, the correlation function ⟨n⃗(0) ⋅ n⃗(s)⟩ decays
exponentially with arclength s:

⟨
n⃗(0) ⋅ n⃗(s)

⟩
= e−s∕𝓁p , (2.99)

where the decay length is the persistence length 𝓁p. The brackets ⟨ ⟩ denote
an ensemble average. Nowwe prove (2.99) and find 𝓁p in terms of B. In terms
of the unit tangent vector n⃗(s), the scalar curvature is

κ(s) =
|
|
|
|

dn⃗
ds
|
|
|
|
. (2.100)

We consider a plane curve for simplicity (then our result for 𝓁p will be valid
in 2-D); representing 2-D vectors as points in the complex plane we can write

n⃗ = eiθ(s), (2.101)

where θ is the angle that the tangent to the rodmakes with the real axis; then,

dn⃗
ds

= i dθ
ds

n⃗ ⇒ κ =
|
|
|
|

dn⃗
ds
|
|
|
|
=
|
|
|
|

dθ
ds
|
|
|
|

(2.102)

or

κ(s) = dθ
ds

(2.103)
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if we keep the sign in the curvature.We choose coordinates such that θ(0) = 0;
then n⃗(0) ⋅ n⃗(s) = cos[θ(s) − θ(0)] = cos[θ(s)], that is,

⟨
n⃗(0) ⋅ n⃗(s)

⟩
=
⟨
cos[θ(s)]

⟩
. (2.104)

To calculate the expectation value in (2.104), we first use an approximate, but
simple, scheme which, however, gives the exact result. Namely, we consider
only bent states that are in the shape of an arc of a circle, that is, shapes for
which the curvature κ is a constant: κ(s) = α = const. For a segment of length
s and curvature α, the energy is E = ( 12 )sBα

2; we write the partition sum as

Z =
∫

∞

0
dα exp

(

− sB
2 α

2∕T
)

. (2.105)

Since from (2.103) and the boundary condition θ(0) = 0we have θ(s) = αs, the
correlation function (2.104) is

⟨
n⃗(0) ⋅ n⃗(s)

⟩
= ⟨cos(αs)⟩ = 1

Z ∫

∞

0
dα cos(αs) exp

(

− sB
2T α

2
)

. (2.106)

The integrals in (2.105), (2.106) are obtained from the formula

∫

∞

0
e−ax2 cos(bx)dx = 1

2

√
π
a
exp
(

− b2
4a

)

(2.107)

and we find
⟨
n⃗(0) ⋅ n⃗(s)

⟩
= exp

(

− T
2B s
)

, (2.108)

showing that the correlation function does indeed decay exponentially, with
a decay length

𝓁p = 2B
T

(2-D), (2.109)

which is the exact result in 2-D. In 3-D, the exact result is different by a
factor 2:

𝓁p = B
T

(3-D). (2.110)

Now, for illustration purposes, we can redo this calculation without restrict-
ing ourselves to shapes of constant curvature. For a given shape θ(s), the
energy is

E = 1
2
B
∫

∆

0
ds
(
dθ
ds

)2
(2.111)

(see (2.103)); ∆ is the contour length of the rod. The physical rod is 0 ≤ s ≤ ∆,
but we can formally extend θ(s) as an odd function in the interval −∆ ≤ s ≤ ∆
and develop θ(s) in a Fourier series using only cosines:

θ(s) =
∞∑

n=0
bn cos

( π
∆
ns
)

. (2.112)

 EBSCOhost - printed on 2/13/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use



STATICS OF DNA DEFORMATIONS 59

The boundary condition θ(0) = 0 gives

b0 +
∞∑

n=1
bn = 0, (2.113)

while

θ(∆) = b0 +
∞∑

n=1
(−1)nbn. (2.114)

Substituting b0 from (2.113) into (2.114) we find

θ(∆) = −2
∞∑

n=0
b2n+1 (2.115)

⇒ θ2(∆) = 4
∞∑

n,m=0
b2n+1b2m+1. (2.116)

We now write the energy in terms of the b degrees of freedom:

dθ
ds

= − π
∆

∞∑

n=1
nbn sin

( π
∆
ns
)

, (2.117)

E = 1
2
B
( π
∆

)2 ∞∑

n,m=1
nmbnbm

∫

∆

0
ds sin

( π
∆
ns
)

sin
( π
∆
ms
)

. (2.118)

The integral is (∆∕2)δnm, and we obtain

E = π2B
4∆

∞∑

n=1
n2b2n, (2.119)

showing that the b’s are independent degrees of freedom, and therefore
⟨bibj⟩ = ⟨b2i ⟩δij so that from (2.116) we find

⟨
θ2(∆)

⟩
= 4

∞∑

n=0

⟨
b22n+1

⟩
. (2.120)

By equipartition we find from (2.119),

π2B
4∆

n2
⟨
b2n
⟩

= 1
2
T ⇒

⟨
b2n
⟩

= 2T∆
π2B

1
n2

, (2.121)

and finally

⟨
θ2(∆)

⟩
= 42T∆

π2B

∞∑

n=0

1
(2n + 1)2

. (2.122)

The sum is π2∕8, so that

⟨
θ2(∆)

⟩
= T

B
∆. (2.123)
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Now we can write
⟨
cos[θ(∆)]

⟩
≈ 1 − 1

2

⟨
θ2(∆)

⟩
≈ exp

[

−1
2

⟨
θ2(∆)

⟩]

(2.124)

for small θ, and therefore we obtain once again
⟨
cos[θ(∆)]

⟩
=
⟨
n⃗(0) ⋅ n⃗(∆)

⟩
= exp

(

− T
2B∆
)

. (2.125)

2.12 Measurements of DNA Elasticity: Long Molecules

The persistence length in polymer physics is traditionally measured from
the size of long polymer coils in dilute solution, determined by neutron,
X-ray, or light scattering. For DNA, mechanical stretching experiments on
singlemolecules introduced by Bustamante and coworkers are now routinely
employed to determine the bending modulus B under various conditions. In
these experiments, one end of a long (∼ 10µm) DNA molecule is attached
to a surface, the other end to a micron-size bead. The bead is manipulated
using either a flexible cantilever or by optical tweezers, or, in the case of a
paramagnetic bead, through a magnetic field gradient. “Manipulated” means
that the external force on the bead and the position of the bead can be
recorded. One obtains force–extension curves for the molecular tether (the
DNA molecule). The worm-like chain (WLC) model, which is based on
the elastic energy (2.96), is then used to extract the value of B from the
experimental measurements.

In more detail, consider a long DNAmolecule, of contour length L ≫ 𝓁p;
one end is attached at the origin, the other end, located by the coordinates
(x, y, z), is pulled by a constant applied force f , which we take to be in the
z-direction. In equilibrium, the molecule attains an end-to-end distance or
extension ⟨z⟩. Call n⃗(s) the unit vector tangent to the contour of the DNA,
where s is the position along the DNA (0 ≤ s ≤ L). In terms of the field n⃗(s),
the potential energy part of theHamiltonian for theworm-like-chainmodel is

H[n⃗(s)] = 1
2
B
∫

L

0
ds
(
𝜕n⃗
𝜕s

)2
− f

∫

L

0
ds n3(s), (2.126)

where n⃗ = (n1,n2,n3) and |𝜕sn⃗| = κ(s) is the curvature (|n⃗| = 1). The negative
sign in the second term favors fluctuations of the extension

z =
∫

L

0
ds n3(s) (2.127)

in the direction of the applied force. The force–extension relation (f vs. ⟨z⟩)
is obtained from

⟨z⟩ = L ⟨n3⟩ , (2.128)

where the ensemble average is calculated using (2.126).
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Calculating the partition sum for the model (2.126) is not simple; the
solution was given in 1995 by Marko and Siggia. However, the two limits
⟨z⟩≪ L and ⟨z⟩ ≈ L are relatively simple. Taking the second first, we assume
n3 ≈ 1, n1, n2 ≪ 1 for all s and divide the unit tangent vector n⃗ into a
component along the applied force and an orthogonal component n⃗o:

n⃗ = n⃗o + n3ẑ. (2.129)

Since |no|≪ 1we have

n3 =
√

1 − |n⃗o|2 ≈ 1 − 1
2 |n⃗o|

2
, (2.130)

and also

|
|
|
|

𝜕n3
𝜕s
|
|
|
|
≪

|
|
|
|

𝜕n1
𝜕s
|
|
|
|
,

|
|
|
|

𝜕n2
𝜕s
|
|
|
|

⇒

(
𝜕n⃗
𝜕s

)2
≈
(
𝜕n⃗o
𝜕s

)2

, (2.131)

so that the Hamiltonian (2.126) may be written in terms of n⃗o(s):

H = 1
2 ∫

L

0
ds

{

B
(
𝜕n⃗o
𝜕s

)2

+ f (n⃗o)2
}

− fL (2.132)

and (2.128) becomes

⟨z⟩ = L
(

1 − 1
2
⟨
|n⃗o|2
⟩)

. (2.133)

The two components of n⃗o = (n1,n2) being independent degrees of freedom
in this approximation, we may consider the scalar version of (2.132), with a
scalar field no(s), and at the end use

⟨
|n⃗o|2
⟩

= 2
⟨
n2o
⟩
. (2.134)

Expanding no(s) in normal modes,

no(s) =
∞∑

n=0
an sin

(nπ
L
s
)

,

𝜕no
𝜕s

=
∞∑

n=0

nπ
L
an cos

(nπ
L
s
)

, (2.135)

and substituting into (2.132) we find

H = 1
2
∑

n,m

nπ
L

mπ
L

anamB
∫

L

0
ds cos

(nπ
L
s
)

cos
(mπ

L
s
)

+1
2
∑

n,m
anamf

∫

L

0
ds sin

(nπ
L
s
)

sin
(mπ

L
s
)

− fL. (2.136)

The integrals are (L∕2)δn,m, so finally,

H = L
4

∞∑

n=0

[(nπ
L

)2
B + f

]

a2n − fL. (2.137)
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The Hamiltonian is quadratic in the amplitudes an and therefore by equipar-
tition we have

L
4

[(
nπ
L

)2
B + f

]
⟨
a2n
⟩

= 1
2T

⇒
⟨
a2n
⟩

= 2T
L

1
( nπL )2B+f

, (2.138)

while

⟨
n2o
⟩

= 1
L ∫

L

0
ds
∑

n,m
⟨anam⟩ sin

(nπ
L
s
)

sin
(mπ

L
s
)

= 1
2

∞∑

n=0

⟨
a2n
⟩
.

(2.139)

Approximating the sum with an integral,

∞∑

n=0

1
( nπL )2B + f

≈
∫

∞

0
du 1

π2B
L2 u2 + f

= L
π
√
fB ∫

∞

0
dv 1

v2 + 1
. (2.140)

The last integral is π∕2, and we obtain

⟨
n2o
⟩

= 1
2
2T
L

L
2

1
√
fB

= 1
2

T
√
fB

, (2.141)

and from (2.133),

⟨z⟩
L

= 1 − 1
2

T
(fB)1∕2

= 1 − 1
(4f 𝓁p∕T)1∕2

, (2.142)

where in the last equality we have used the relation between bending modu-
lus B and persistence length 𝓁p. Inverting (2.142) we find the force–extension
relation for large extension,

f = T
4𝓁p

1
(1 − ⟨z⟩ ∕L)2

. (2.143)

In the opposite limit, of small extension, the applied force is a perturbation
that does not alter the statistics of the chain, which for zero force is Gaussian
(chapter 1). The entropic force of the Gaussian chain at extension z is

f = 3T
⟨
R2
⟩z, (2.144)

where ⟨R2⟩ is the average end-to-end distance squared at zero force. If
correlations along the chain decrease exponentially (true in particular for the
WLC),

⟨
n⃗(s) ⋅ n⃗(s′)

⟩
= e−|s−s

′|∕𝓁p
, (2.145)
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FIGURE 2.20. Plot of eq. (2.149) using 𝓁p = 50nm, i.e.,
T∕𝓁p = (4∕50) pN.

with 𝓁p the persistence length, then the second moment of the end-to-end
distance

⃗R =
∫

L

0
ds n⃗(s) (2.146)

is
⟨

|⃗R|2
⟩

=
∫

L

0
ds

∫

L

0
ds′
⟨
n⃗(s) ⋅ n⃗(s′)

⟩

=
∫

L

0
ds

∫

L

0
ds′ e−|s−s

′|∕𝓁p = 2L𝓁p + 2𝓁2
p(e

−L∕𝓁p − 1),
(2.147)

the last equality after a little algebra. For L ≫ 𝓁p we have therefore ⟨|⃗R|2⟩ =
2L𝓁p and

f = 3T
2L𝓁p

⟨z⟩ (2.148)

for small extension. The Marko–Siggia expression,

f = T
𝓁p

[
1

4(1 − ⟨z⟩ ∕L)2
+
⟨z⟩
L

− 1
4

]

(2.149)

is a useful interpolation formula that is exact for the two limits above (as we
can easily find out), and a very good approximation in between. Figure 2.20
shows the worm-like-chain force–extension curve according to (2.149).

A most interesting phenomenon occurs in the experiments as the stretch-
ing force is further increased in the regime ⟨z⟩ ≈ L. At about f = 70pN the
force–extension curve enters a plateau region, where the DNA molecule can
be “overstretched” from ⟨z⟩ = L to about ⟨z⟩ = 1.7L, at essentially constant
force (figure 2.21). This is the first example we encounter of a reversible
softening or yield transition in the mechanics of hydrogen-bonded molecular
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FIGURE 2.21. Experimental force–extension curves for different DNAmolecules, measured by
different groups with different force transducers. The plateau at ∼ 70pN signals a yield
transition called DNA overstretching. WLC: worm-like chain; FJC: freely jointed chain.
Reproduced from Strick et al. (2000).

structures. Such softening transitions turn out to be fairly ubiquitous in the
mechanics of biomolecules from DNA to enzymes, and indeed represent one
guiding thread for the materials science approach proposed in this book.
Similar to order–disorder transitions in different fields of condensed matter
physics, the microscopic, “structural” basis for these softening transitions
may be quite disparate for different systems, such as kinking of a DNA
nanorod and “induced-fit” conformational motion of an enzyme. There
is, however, a degree of universality in the thermodynamic behavior, for
instance the stress–strain relations, so that it is useful to think about these
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Nick

FIGURE 2.22. D-DNA: this molecule consists of two
linear strands hybridized as shown. These constructs
are used to measure the elastic energy of highly bent
DNA. The figure is a composite cartoon, adapted from
Qu and Zocchi (2011).

systems in terms of simple models that reproduce the measured thermody-
namic behavior. This is the approach we take throughout the book.

The single molecule experiments on DNA are in the tradition of polymer
physics experiments, in that they probe the mechanics of very long, flexible
molecules. Nonetheless, they also led to the discovery of the overstretching
transition, which is within the class of molecular deformation phenomena
that form the subject of this book. We now come back to the nanoscale.

2.13 Measurements of DNA Elasticity: Short Molecules

We consider bending deformations of a DNA nanorod of contour length
L (L ≪ 𝓁p). Ideally, one wants to measure the elastic energy for different
degrees of bending. This is achieved through a surprisingly simple exper-
iment. Consider the DNA molecule (“D-DNA”) shown schematically in
figure 2.22: it is formed by two linear (i.e., not circular) strands of different
lengths, with the region of complementarity arranged as shown (the two
ends of the lighter strand are complementary to the two halves of the darker
strand). Thus there is by construction a nick in the middle of the ds region
of the molecule (the sugar–phosphate backbone of the lighter strand is
interrupted there). This arrangement is essential for the measurement that
follows. Themolecule of figure 2.22 consists of the DNA nanorod (the ds part
of the molecule) and a linear spring (the ss part) resulting from the stretching
elasticity of ss DNA. The nanorod is forced to bend due to the constraint of
the ss part pulling on its ends. The whole molecule is, by construction, under
stress. We will call Nd the number of base pairs in the ds part, and Ns the
number of bases in the ss part. The following observation provides a method
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FIGURE 2.23. Dimerization mechanism for D-DNA with a
nick. Adapted from Sanchez et al. (2013).

to measure the elastic energy of the molecule. Two D-DNA molecules
(“monomers”) can come together to form a dimer (figure 2.23). One dimer
contains exactly the same Watson–Crick base pairing as two monomers.
However, mechanical stress in the dimer is relaxed. Dimer formation is
driven by the release of stress of the monomer. The elastic energy of the
monomer can then be measured from the fraction of monomers (M) and
dimers (D) at equilibrium in the “reaction” 2M ⇌ D. Namely, writing the
chemical potentials for the monomer and dimer as (see (2.15))

⎧
⎪
⎨
⎪
⎩

µM = µ0M + Eel + T lnXM,

µD = µ0D + T lnXD,
(2.150)

where Eel is the elastic energy of the monomer, the equilibrium condition
2µM − µD = 0 gives

Eel =
1
2
ln

XD

X2
M

= 1
2
ln
(

Cw
[D]
[M]2

)

(2.151)

(see (2.17)), since 2µ0M − µ0D ≈ 0; this last condition is due to the fact that
two monomers and one dimer are essentially identical molecules from the
viewpoint of internal bonds, surface exposed to water, etc.

The equilibrium concentrations appearing in (2.151) can bemeasured, for
example, by gel electrophoresis (figure 2.24). Measuring the elastic energy
(2.151) for a series of molecules with varying Ns, fixed Nd, one measures
in effect the bending energy of the nanorod for various degrees of bending.
Figure 2.25 shows such energy curves for two different nanorods, of length
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Trimer

Dimer

Monomer

FIGURE 2.24. Gel electrophoresis of an equilibrated sample
of D-DNA. The overall DNA concentration was chosen such
that both monomers and dimers are clearly visible and can
be quantified from the intensity of the bands. All lanes
contain the same sample, loaded at successive times.
Adapted from Qu et al. (2011).

11

10

9

8

7

6

10 20 30 40
Ns (bases)

E t
ot

 (k
BT

)

Nd = 18 bp

11

10

9

8

7

6

10 20 30 40 50 60
Ns (bases)

E t
ot

 (k
BT

)

Nd = 24 bp

FIGURE 2.25. Measurement of the total elastic energy Etot for a series of D-DNAmolecules with
Nd = 18 (left) andNd = 24 (right), and varyingNs. The lines are calculated using the model
(2.206). The “kink” in these energy profiles signals a softening transition which corresponds to
the appearance of a kink in the DNA nanorod.

Nd = 18 and 24bp (L = 6 and 8nm). Of course, the measurements represent
the total elastic energy Etot of the molecule of figure 2.22, which is the
sum of the bending energy of the nanorod and the stretching energy of
the ss portion. Nonetheless, it is obvious that, as Ns is reduced (i.e., for
increasing bending of the nanorod), there is a softening or yield transition
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FIGURE 2.26. Two different branches of the
energy curve give rise to a bifurcation.

in the mechanical response. For
the shorter nanorod (Nd = 18), the
“yield point” is at Ns = Nc ≈ 25; for
the longer rod, Nc ≈ 40. It turns
out that for Ns > Nc the nanorod is
within the linear elasticity regime
described by the worm-like-chain
elastic energy (2.96), while forNs <

Nc the nanorod has developed a
reversible, constant torque, kink.
We now investigate this interest-
ing nonlinear mechanical response
quantitatively.

2.14 The Euler Instability

The energy curves in figure 2.25 suggest an instability or bifurcation phenom-
enon. In mechanical terms, this is a situation where there are two solutions
for the equilibrium state, one stable and one unstable; as a control parameter
is varied, the stable solution becomes unstable and vice versa.

In terms of energy curves, there are two branches, and they cross at the
critical value of the control parameter (figure 2.26). The stable solution is
the one of lower energy: as λ is increased, the system jumps from solution
1 to solution 2. This is a very important and general scenario in physics,
encompassing phase transitions of matter and bifurcations of dynamical
systems. It is intellectually pleasing to find the same phenomenon in the
mechanics of a molecule, because the scales are so different. This is the
driving concept of this section.

The most famous bifurcation—the first to be analyzed quantitatively, by
Euler around 1750—is the Euler instability. As a warm-up exercise, we first
discuss this classic problem; then we deploy the samemethods to analyze the
yield transition of the DNA nanorod.

As everyone knows, a straight rod under a compressive force F buck-
les “suddenly” at a critical force Fc. This is the Euler instability. Under
a compressive force F, there are two mechanical equilibrium solutions
(figure 2.27): one is the straight rod, the other is the buckled rod. If the rod is
straight, the elastic energy is

Es = 1
2K(x − L)2, (2.152)

where K = Yπr2∕L is the “spring constant” of the straight rod; x is the end-
to-end distance, L is the uncompressed length of the rod (for compressive
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F

F

FIGURE 2.27. The Euler instability:
buckling of a rod under a compressive
force.

L

R

x 2φ

FIGURE 2.28. Geometry for
the rod of length L bent into an
arc of a circle of radius R.

forces, x ≤ L), Y is Young’s modulus, and πr2 is the cross-sectional area of
the rod, supposed circular.

The equilibrium shape of the buckled rod can of course be calculated
exactly, but it is nontrivial. Instead, we use an approximate trial shape and
find the elastic energy for that shape.

As a first approximation, let us take an arc of a circle of contour length L
(figure 2.28). The end-to-end distance (the length of the chord) is x, and the
radius of curvature is R. From the figure,

x
2R

= sinφ, 2φR = L ⇒
x
2R

= sin
(

L
2R

)

. (2.153)

For small bending (L∕2R ≪ 1), using (2.153),

x
2R

≈ L
2R

− 1
6

(
L
2R

)3
⇒

x − L
L

≈ −1
6

(
L
2R

)2
. (2.154)

The elastic energy of the bent rod is therefore

Eb = 1
2
B L
R2 = −12 B

L2 (x − L) (2.155)

in this approximation, using (2.96) and (2.154). As we see, Eb is linear in
(L − x). Thus the two branches of the energy function are

E(x) =
⎧
⎪
⎨
⎪
⎩

1
2Y

πr2
L (L − x)2 (straight),

12 B
L2 (L − x) (bent),

(2.156)

and as we see from figure 2.29, for small compression the stable (lower-
energy) solution is the straight one, up to a critical compression where the
bent solution becomes the stable one.
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FIGURE 2.29. Plot of eq. (2.156) for L = 1, 1
2Yπr

2∕L = 2,
12B∕L2 = 1.

The critical force for buckling is the derivative of the bent solution at the
critical point (this is because normally we choose the applied force F as the
control parameter, rather than the end-to-end distance x):

Fc = −
𝜕Eb
𝜕x
|
|
|
|x=xc

= 12 B
L2 . (2.157)

The critical end-to-end distance xc is found from Es(xc) = Eb(xc):

1
2
Y πr2

L
(L − xc) = 12 B

L2 ⇒ xc = L
(

1 − 6 r
2

L2

)

. (2.158)

The equilibrium energy function is given by (2.156), where one has to choose
the upper expression for xc ≤ x ≤ L and the lower expression for x ≤ xc. The
value of xc is found by equating the two expressions. Notice that the force
F = −𝜕E∕𝜕x is discontinuous at xc: F(x−c ) is given by (2.157), while

F(x+c ) = −
𝜕Es
𝜕x
|
|
|
|x=xc

= Y πr2
L

(L − xc) = 24 B
L2 . (2.159)

Equation (2.157) is correct except for the numerical coefficient; the exact
solution with free boundary conditions (zero torque at the ends of the rod) is

Fc = π2 B
L2 . (2.160)

The reason is of course that the bent shape in reality is not an arc of a
circle. In particular, our trial shape does not satisfy the zero-torque boundary
conditions at the ends (zero torque means zero curvature), and as a result we
considerably overestimate the elastic energy for the bent solution. However,
we can improve the calculation by using a trial function for the shape that
does satisfy the boundary conditions.

We will use polynomials and work in Cartesian coordinates, assum-
ing small bending. Figure 2.30 shows the geometry: y = y(x) is the shape
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xL x

y

FIGURE 2.30. Coordinates for the
polynomial solution to the bent rod
problem.

of the bent rod. The curvature in Cartesian
coordinates is

κ =
d2y∕dx2

[1 + (dy∕dx)2]5∕2
≈

d2y
dx2

. (2.161)

The boundary condition is zero torque at the
ends, which means d2y∕dx2 = 0 for x = ±xL.
The shape is symmetric: y(−x) = y(x). The
lowest-order polynomial expression that can
satisfy the boundary conditions is

y = ax2 − b|x3|, a, b > 0, (2.162)

the boundary condition imposing

2a − 6bxL = 0 ⇒ b = a
3xL

. (2.163)

Our trial shape is therefore parametrized by one constant, a:

y = ax2 − a
3xL
|x3|, (2.164)

and a is related to xL by the constraint

L =
∫

ds =
∫

√

dx2 + dy2 = 2
∫

xL

0
dx

√

1 +
(dy
dx

)2
. (2.165)

Using (2.164) in (2.165),

L = 2
∫

xL

0
dx
[

1 +
(

2ax − a
xL

x2
)2
]1∕2

≈ 2
∫

xL

0
dx
[

1 + 1
2

(

2ax − a
xL

x2
)2
]

= 2xL + 8
15

a2x3L.
(2.166)

The end-to-end distance of the rod is x = 2xL. Note that in the small bend-
ing approximation xL ≈ L∕2 and axL ≪ 1, and we are keeping terms up to
O((axL)2). The elastic energy of the shape (2.164) is, using (2.161),

E = 2 × 1
2
B
∫

xL

0
dx
(d2y
dx2
)2

= B
∫

xL

0
dx
(

2a − 2a
xL

x
)2

= 4
3
Ba2xL, (2.167)

and, using (2.166),

Eb = 5
2
B 1
x2L

(L − x) ≈ 10 B
L2 (L − x). (2.168)
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The condition Eb(xc) = Es(xc) now gives xc = L(1 − 5r2∕L2) (compare with
(2.158)) and the critical force is

Fc = 10 B
L2 . (2.169)

Since π2 ≈ 9.86, the difference between (2.169) and the exact result is less
than 2%.

As an aside, it turns out that the exact shape of the rod, in the small
bending approximation, is a sine function. Using y(x) = A[1 − cos(kx)] as the
trial shape and performing the same calculation one finds

k = π
2xL

, L − 2xL = π2

8
A2

xL
, Eb = π2 B

L2 (L − x),

xc = L
(

1 − π2

2
r2
L2

)

,

(2.170)

and the exact result for Fc.

2.15 The DNA Yield Transition

The elastic energy curves in figure 2.25 are essentially linear to the left of the
transition point (Ns < Nc). This fact suggests that in this regime, the DNA
nanorod behaves like a leaf spring of constant force (independent of end-
to-end distance x). To see this, consider the construct of figure 2.22 as two
coupled springs. The elastic energy is the sum

Etot = Ed(xeq) + Es(xeq), (2.171)

where Ed is the (bending) elastic energy of the ds part of the molecule, Es
is the (stretching) elastic energy of the ss part, and xeq is the end-to-end
distance corresponding to mechanical equilibrium:

𝜕Ed
𝜕x

+
𝜕Es
𝜕x

= 0 for x = xeq. (2.172)

As a first approximation for Es(x) we take the entropic elasticity of the ideal
chain,

Es(x) = 3T
2Nk𝓁

2
k

x2 = 9T
4Ns𝓁2

s
x2, (2.173)

where Nk is the number of Kuhn lengths and 𝓁k = 2𝓁s is the Kuhn length; 𝓁s
is the persistence length. For ss DNA, 𝓁s ≈ 0.8nm so 𝓁k ≈ 1.6nm or ∼ 5 bases;
we assume Nk = Ns∕6, consistent with the Marko–Siggia formula discussed
later. Now suppose a linear dependence for Ed(x):

Ed(x) = E0 − ax, (2.174)
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FIGURE 2.31. Geometry for the kinked rod.

that is, a constant force spring. From
(2.171)–(2.174),

xeq = a
2𝓁2

sNs

9T
and Etot = E0 −

a2𝓁2
s

9T
Ns,

(2.175)
that is, a linear dependence of Etot
onNs. The experimental measurements
of the elastic energy of the molecules
(figure 2.25) thus lead to the following model. As the compressive force on
the nanorod (in the experiments, the pulling of the ss part) is increased (in
the experiments, by reducing Ns) the nanorod bends smoothly according
to linear elasticity up to a critical point where the internal bending torque
reaches a critical value τc. At that point there is a bifurcation to a solution
where the nanorod has a kink. With the boundary conditions of the ex-
periments (force applied at the ends; no bending torque at the ends), the
internal bending torque in the rod is maximum at the center, so the kink
develops at the center. This kink is a constant torque kink (the internal
bending torque at the kink is independent of the kink angle, and equal to
τc). The solid lines in figure 2.25 are calculated with this model, and we can
see that they represent the experimental energy curves to within a fraction of
1 kBT. The value of the critical bending torque for a DNA rod with one nick
at the center is τc ≈ 27pNnm, essentially independent of local sequence and
of temperature (below the melting transition). The critical bending torque τc
and the bending modulus B ≈ 200pNnm2 are sufficient to characterize the
bending energy of the DNA nanorod in the linear and nonlinear regimes.
Considering the complexity of the molecule, this is a remarkable result. The
value of τc for the case without nick has been measured only indirectly;
perhaps the safe statement is that it is ≥ 31pN∕nm.

Now we solve the model. Figure 2.31 shows the geometry in the kinked
state: the internal angle of the kink is (π − 2θ), while θ is the angle that the
tangent to the rod at the kink makes with the “horizontal”; this is different
from the angle that the chord R makes with the horizontal, which is θ +∆,
because the half-rod, of contour length L∕2, is bent.

For θ > 0 (i.e., in the kinked state), ∆ is fixed (independent of θ), and the
shape of the half-rod is also fixed, by the boundary conditions τ = τc at the
kink end, τ = 0 at the free end. The internal torque is

τ = Bdθ(s)
ds

, (2.176)

where θ(s) is the angle of the tangent to the rod as a function of arclength s (to
keep notation simple, we also denote by θ the angle shown in figure 2.31; no
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confusion will ensue). From the geometry,
x
2

= R cos(θ +∆) ⇒ θ = −∆ + arccos
( x
2R

)

, (2.177)

where

∆ = arccos
( xc
2R

)

, (2.178)

xc is the critical value of the end-to-end distance x where the kink appears,
and (2.177) is valid for θ ≥ 0 (i.e., x ≤ xc). The energy in the kinked state is

Ek = E0 − τc∆ + τc arccos
( x
2R

)

, (2.179)

whereE0 is a constant (independent of x); k stands for kinked. The expression
(2.179) gives an energy linear in x for small x, since arccos(x) ≈ π∕2 − x for
x ≪ 1, and thus

Ek = const. −
τc
2R

x for x
2R

≪ 1. (2.180)

To find the constant E0 in (2.179), we have to match the energy (2.179)
with the energy of the smoothly bent solution, at the critical point. We
take coordinates as in figure 2.30, consider only half of the symmetric shape
(x ≥ 0), and allow a cusp at x = 0. The internal bending torque is

τ = Bdθ
ds

≈ B
d2y
dx2

(2.181)

in the approximation of small bending. With our boundary conditions, the
maximal internal bending torque occurs at x = 0,

τ0 = B
d2y
dx2
|
|
|
|x=0

. (2.182)

For the shape of the nanorod, we take a polynomial approximation (see
(2.162))

y = ax2 − a
3xL

x3, (2.183)

where we have already satisfied the boundary condition d2y∕dx2 = 0 at x = xL
(zero bending torque at the ends). The constant a in (2.183) is related to the
bending torque at x = 0: since (d2y∕dx2)x=0 = 2awe have

a =
τ0
2B

, (2.184)

while xL is given by the condition (see (2.165))

L
2

=
∫

xL

0
dx

√

1 +
(dy
dx

)2
≈

∫

xL

0
dx
[

1 + 1
2

(

2ax − a
xL

x2
)2]

(2.185)

⇒ L = 2xL + 8
15

a2x3L, (2.186)
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or also

xL = L
2

(

1 − 1
15

a2L2
)

(2.187)

to order (aL)2. Since aL = Lτ0∕(2B) and τ0 ≤ τc we can see that this calculation
is based on the small parameter

γ =
Lτc
2B

. (2.188)

Given τc ≈ 30pNnm,B ≈ 200pNnm2, the condition γ < 1 is satisfied byDNA
shorter than about 15nm or 45bp.

For the chord Rwe have

R2 = x2L + [y(xL)]2 = x2L
[

1 + 4
9
a2x2L
]

(2.189)

and using (2.187),

R ≈ L
2

(

1 − 1
90

a2L2
)

(2.190)

to order (aL)2. The energy of the bent rod is

Eb ≈ 2
∫

xL

0
dx 1

2
B
(d2y
dx2

)2

= B
∫

xL

0
dx
(

2a − 2a
xL

x
)2

= 4
3
Ba2xL = 2

3
Ba2L

(

1 − 1
15

a2L2
)

,

(2.191)

where we have used (2.187) and b stands for bent. In terms of the bending
torque τ0 (see (2.184)),

Eb = 1
6
L
B
τ20 (2.192)

to lowest order. Matching the two solutions (2.179), (2.192) at the critical
point (τ0 = τc, x = xc), and using (2.178), we have

E0 = 1
6
L
B
τ2c . (2.193)
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FIGURE 2.32. Bent rod of contour
length L under a compressive force
f ; B is the bending modulus.

From figure 2.31, tan(∆) = yc∕(xc∕2),
yc = (2∕3)a(xc∕2)2 = (1∕12)(τc∕B)x2c and so
tan(∆) = (τc∕6B)xc, while from (2.187),
(2.184), and (2.188),

xc = L
(

1 − 1
15

γ2
)

. (2.194)

In our approximation, ∆ is small (of order γ)
and therefore

∆ ≈ 1
6
τc
B
xc = 1

3
γ (2.195)

to order γ2. We see therefore that in expression (2.179), the first two terms
on the right-hand side cancel (to order γ2), and finally, the kinked solution,
properly matched to the bent solution at the critical point, has the form

Ek = τc arccos
( x
2R

)

, (2.196)

where, from (2.190) evaluated at the critical point (i.e., aL = γ),

R = L
2

(

1 − 1
90

γ2
)

,

(

γ =
Lτc
2B

)

. (2.197)

The complete solution for the elastic energy of the nanorod is therefore
(2.192) for x > xc and (2.196) for x < xc. We can write the former in terms
of x, using (2.184) and (2.187):

Eb = 10 B
L2 (L − x) (2.198)

(see (2.168)). Now, (2.198) is not a satisfactory form for the energy down
to x = L (Eb = 0). Even if the system were purely mechanical, we know that
for x → L we would run into the Euler instability. More to the point for
us, if the elastic energy is of order the temperature or smaller (Eb ∼ T), a
purely mechanical calculation is not appropriate. The Euler instability itself
disappears if the critical energy is of order the temperature or smaller. To
correct (2.198) for Eb < T we perform an approximate finite T calculation.
We consider only flexural modes for which the elastic energy is given by
(2.198).

With a compressive force f (see figure 2.32), the total energy vs. end-to-
end distance x is

E(x) = 10 B
L2 (L − x) − f (L − x) =

(

10 B
L2 − f

)

(L − x). (2.199)

The scheme is to calculate the ensemble average ⟨x⟩ vs. f , invert this relation
to find the force f vs. ⟨x⟩, and finally obtain the elastic free energy vs. ⟨x⟩.
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From the partition function

Z = −
∫

0

L
dx exp

[

− 1
T

(

10 B
L2 − f

)

(L − x)
]

= T
10 B

L2 − f

{

1 − exp
[

− L
T

(

10 B
L2 − f

)]}

, (2.200)

we obtain

⟨(L − x)⟩ = T
Z

𝜕Z
𝜕f

= T
10 B

L2 − f
− L

exp
[
L
T

(

10 B
L2 − f

)]

− 1
. (2.201)

If f is not too large, that is, for the case f < 10B∕L2 (e.g., for a DNA 30mer this
means f < 20pN), the exponential in the last expression is large, and we may
keep just the first term,

L − x = T
10 B

L2 − f
, (2.202)

where we denote ⟨x⟩ simply by x. Finally,

f = 10 B
L2 − T

L − x
= 10 B

L2

[

1 − LT
10B

1
1−x∕L

]

, (2.203)

where f is the force; the work done by this force, which is the elastic free
energy, is

E(x) = −
∫

x

x0
f dx = −10 B

L2 (x − x0) − T ln
(
L − x
L − x0

)

, (2.204)

where x0 < L is the (ensemble-averaged) end-to-end distance at zero force,
which is less than L because of thermal fluctuations. From (2.203) we see that

x0 = L
(

1 − LT
10B

)

. (2.205)

The free energy (2.204) has a quadratic minimum at x0, as it should, thus
curing the linear dependence of (2.199) for low energy, which is unphysical.
Finally, the bending elastic energy of the nanorod vs. end-to-end distance x
is, according to this model,

E(x) =
⎧
⎪
⎨
⎪
⎩

−10 B
L2 (x − x0) − T ln

(
L − x
L − x0

)

for x ≥ xc,

τc arccos
( x
2R

)

for x < xc,
(2.206)

where L is the contour length of the DNA, x0 is given by (2.205), R by
(2.197), and xc is obtained by equating the upper and lower expressions
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FIGURE 2.33. Bending energy vs. end-to-end distance x for a
DNA nanorod of length L = 15nm (45bp), according to
eq. (2.206), using the parameters B = 200pNnm2,
τc = 31pNnm. The energy is in units of kT.

in (2.206), or also by (2.194). The energy (2.206) is plotted in figure 2.33
for a DNA 45mer (contour length L = 15nm), using the parameters
B = 200pNnm2, τc = 31pNnm. It represents a bifurcation mathematically
similar to the Euler instability of the previous section: there are two branches
of the energy curve, and they cross, so that as the control parameter (x)
is varied, the stable (lowest-energy) solution switches from one branch to
the other (see figure 2.34, where we plot both branches of the energy
of figure 2.33 past the critical point). However, the “microscopic” physics
underlying the bifurcation is totally different in the two cases. The Euler
instability reflects a geometric nonlinearity: because of the curved geometry,
the bending energy is linear in the end-to-end distance, whereas the energy
of the straight rod is quadratic. In both cases, the material is within the linear
elasticity regime. In contrast, the softening transition of the DNA nanorod
is a materials nonlinearity. Nonetheless, the same mathematics describes the
“thermodynamic” (i.e., whole system) behavior of both.

From the energy (2.206) we can calculate the force f = |𝜕E∕𝜕x| that a
DNA “spring” with the ends held at a distance x < L exerts on the holding
points. As we see from figure 2.35, the softening transition limits this force, in
the kinked regime, to a few pN.

It remains to connect with the experimental measurements of figure 2.25.
We write the total elastic energy of the D-DNAmolecule in the form (2.171),
(2.172), with Ed(x) given by (2.206). The stretching elastic energy of ss
DNA of several persistence lengths is well represented by the Marko–Siggia
expression, which for the stretching force reads

fs(x) = T
𝓁s

[
1

4(1 − x∕Ls)2
+ x
Ls

− 1
4

]

, (2.207)
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FIGURE 2.34. The two branches of the bending energy of
figure 2.33 plotted past the critical point. For each value of x,
the stable solution corresponds to the lower branch.
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FIGURE 2.35. The force corresponding to the bending
energy of figure 2.33.

where 𝓁s ≈ 0.8nm is the persistence length of ss DNA and Ls = Ns𝓁s∕3 the
“contour length.” Integrating (2.207), the corresponding elastic energy is

Es(x) =
∫

x

0
dx′ fs(x′) = T

4𝓁s
Ls

[
1

4(1 − x∕Ls)
+ 2
(

x
Ls

)2
− x
Ls

− 1
]

. (2.208)

Alternatively, one can use a polynomial expansion of (2.208):

Es(x) = 9T
4Ns𝓁2

s

[

x2 + 1
Ns𝓁s

x3 + 3
(Ns𝓁s)2

x4 +⋯
]

. (2.209)

The solid lines in figure 2.25 are calculated by the above procedure. For
both cases shown (Nd = 18bp corresponding to L = 6nm, and Nd = 24bp
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corresponding to L = 8nm), identical values of the parameters were used,
namely, τc = 26.9pNnm, B = 50 kBTnm, 𝓁s = 0.764nm. It is remarkable that
the softening transition of the DNA nanorod, a potentially complicated
nonlinearity of the mechanics of a complex molecule, is well described by
the simple model (2.206).
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3
Kinematics of Enzyme Action

3.1 Introduction

Enzymes are catalysts: they speed up chemical reactions. They are also the
molecular machines that generate and maintain the nonequilibrium state of
the cell that is life. Chapter 4 is devoted to themolecular machine aspect, that
is, the dynamics. Here we address what could be variously called the quasi-
equilibrium aspects, or steady state, or kinematics, of enzyme operation, and
what one learns from time-independent perturbations of this steady state.
The third essential characteristic of enzymes is that they are molecules, and
thus addressable by molecular control. With solid state catalysts, which are
mesoscopic surfaces, the reaction speed can be modulated only by overall
thermodynamic control (temperature, pressure, etc.). In the cell, there are
hundreds of chemical reactions going on at any one time; the thermodynamic
parameters affect the speed of all of them. Imagine we wanted to build some
kind of artificial cell. It would be foolish to base it on a collection of solid state
catalysts and external control of the thermodynamic parameters.

There are, roughly speaking, two main mechanisms by which enzymes
provide the control function for the network of chemical reactions in the cell.
One is simply the presence or absence of the enzyme, controlled by gene
expression. The other is allosteric control: the modulation of the activity
of an individual enzyme caused by binding of a specific ligand, often a
small metabolite, or else caused by so-called post-translational modifications,
of which the most important one is phosphorylation/dephosphorylation.
These seemingly disparate mechanisms of control (ligand binding, which
is non-covalent, and phosphorylation, a covalent (“chemical”) modification
of the enzyme) share a unifying physical basis: namely, both events cause

81
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a deformation of the enzyme molecule which results in inhibition or activa-
tion (“modulation”) of the enzymatic activity.

3.2 Michaelis–Menten Kinetics

One “universal” aspect of enzyme kinetics is the dependence of the reaction
speed on substrate concentration. Note that in enzymology jargon, “sub-
strate”means reactant, andwewill conform to this usage. There is an analogy
here with scattering cross sections in particle physics, which can be written
as the product of an interaction term and the phase space volume of the
final states. The latter is the “universal” part, while the interaction term is
system specific. For enzymes, one can think of certain steps the enzymatic
process must follow. Substrates must bind to the enzyme. The chemical
reactionmust take place. Productsmust unbind from the enzyme. This seems
obvious but in fact this subdivision of the process is somewhat arbitrary, as
we can appreciate by trying to define precisely what is meant by “bind.”
First we give a derivation of Michaelis–Menten kinetics based on quasi-
equilibrium arguments, namely, substrate binding to the enzyme is supposed
in equilibrium while product formation is not. In fact, one can arrive at
Michaelis–Menten kinetics under less restrictive assumptions, so the result is
more general than it appears from this argument. Let us take, for simplicity,
the case of one substrate, and zero concentration of products. Then as far as
describing the concentration dependence of the overall speed of the process,
we can choose to lump the chemical reaction step and the product unbinding
step into one:

E + S
k1
⇌
k−1

ES
kcat⟶ E + P, (3.1)

where E is an enzyme, S and P are substrate and product, respectively,
and ES is the complex of the substrate bound to the enzyme. The k’s are
rates, and there is only one arrow for the second step because the product
concentration [P] = 0 and therefore the rate for E + P → EP is zero. Now we
can write the overall speed of the reaction, measured for example by the rate
of disappearance of the substrate, as

−d[S]
dt

= P(on)[E]totkcat, (3.2)

where P(on) is the probability that the catalytic site on the enzyme is
occupied by a substrate molecule (we assume one catalytic site per enzyme);
[E]tot = [E] + [ES] is the total concentration of enzyme, so P(on)[E]tot = [ES].
If we assume that P(on) represents the equilibrium distribution (i.e., the
process of the substrate binding to the enzyme is in equilibrium), then it is
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a Fermi–Dirac distribution because the catalytic site is either occupied by
one substrate, or none:

P(on) = 1
e(ε0−µ)∕T + 1

, (3.3)

where ε0 < 0 is the binding energy and µ is the chemical potential of the
substrate. The concentration dependence is with µ: the “golden rule” of
physical chemistry is that, in the dilute regime (see eqs. (2.15), (2.17)),

µ = µ0 + T lnXS = µ0 + T ln [S]
Cw

, (3.4)

where XS is the mole fraction of the substrate, and Cw ≈ 55M; we express
concentrations [ ] in M (moles/liter). Equation (3.4) expresses the con-
centration dependence of the chemical potential for a dilute solution of S,
which is always the case for enzymatic reactions where typical substrate
concentrations are in the mM range or below. Using (3.4), (3.3), and (3.2)
we obtain

−d[S]
dt

= d[P]
dt

=
[E]totkcat
KM
[S] + 1

, (3.5)

where
KM = Cwe(ε0−µ0)∕T . (3.6)

Equation (3.5), and its generalizations, represents the (justly) celebrated
Michaelis–Menten (MM) kinetics. The quantity KM as defined by eq. (3.5)
is called the Michaelis–Menten constant. For the case that substrate binding
to the enzyme is in equilibrium, it is given by eq. (3.6), that is, KM = KD, the
dissociation constant of the equilibrium E + S ⇌ ES. Integrating (3.5), [E]tot
being of course a constant, we find the time course of the reaction,

S(t) − S(0) + KM ln S(t)
S(0)

= −[E]totkcatt, (3.7)

where we write S(t) for [S](t) etc. for simplicity; S(0) is the substrate
concentration at time t = 0. We see from (3.7) that one can measure the
parameters KM and kcat (and, in addition, [E]tot) by “titration experiments”
where the course of the reaction S(t) is measured for different initial values
of the substrate concentration, S(0). Dividing eq. (3.7) by kcat we see that, in
fact, from this equation one determines experimentally 1∕kcat, KM∕kcat, and
[E]tot. One might think that the last parameter, [E]tot, should be known by
construction, but in fact that is never the case. One can, of course, measure
protein concentration, but to measure the concentration of active enzyme
(the inactive fraction being misfolded, chemically damaged, etc.) is quite
another matter. For this reason, enzyme preparations are often characterized
by “units of enzymatic activity” rather than so many moles of enzyme.
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In practice, one oftenmeasures kcat andKM by considering simple limiting
cases. For example, at short times S(t) ≈ S(0), and the speed of the reaction
(3.5) becomes

−dS
dt

=
[E]totkcat
KM
S(0) + 1

. (3.8)

Varying the initial concentration of substrate, S(0), one determines KM,
and varying the (nominal) concentration of enzyme one determines kcat.
Integrating (3.8), or else from (3.7) in the approximation S(t) ≈ S(0), we find

S(t) = S(0)
[

1 − t
τ

]

, τ =
KM + S(0)
[E]totkcat

, (3.9)

valid for short times t ≪ τ. Within the short time approximation, if we have
lots of substrate, which means S(0) ≫ KM, we have

τ →
S(0)

[E]totkcat
and S(t) = S(0) − [E]tot kcatt. (3.10)

If we have little substrate (S(0) ≪ KM), we have

τ →
KM

[E]totkcat
and S(t) = S(0)

[

1 − [E]tot
kcat
KM

t
]

. (3.11)

While the reaction speed is always proportional to the total enzyme con-
centration, with lots of substrate the intrinsic enzymatic parameter that
determines the speed is kcat; with little substrate, it is kcat∕KM.

On the other hand, at long times, S(t) ≪ S(0) and (3.7) reduces to

S(t) = S(0)eS(0)∕KMe−t∕τ , t ≫ τ, (3.12)

with τ given by (3.11).
Equation (3.5) is valid for the case of infinite dilution of the products,

for instance, when the products are removed by another enzymatic reaction.
In general, we must consider binding of the products to the enzyme: if a
product is occupying the catalytic site, a new substrate cannot come in.
To take product inhibition into account, we add one step to the reaction
scheme (3.1):

E + S
k1
⇌
k−1

ES
kcat⟶ EP ⇌ E + P. (3.13)

Now, there are three possible “states” of the enzyme: E, ES, and EP, and the
partition sum expressing these different states is

Z = 1 + eµS∕Te−εS∕T + eµP∕Te−εP∕T , (3.14)

written in the grand canonical ensemble, allowing at most one particle of
each species (S or P) to bind to the enzyme. We want the concentration
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dependence so we exhibit the dilution term in the chemical potential
(see (3.4)):

µS = µ0S + T ln [S]
Cw

, µP = µ0P + T ln [P]
Cw

. (3.15)

The probability of the state ES is

P(on) = e(µS−εS)∕T
Z

= 1

1 + KS
[S]

(

1 + [P]
KP

) , (3.16)

where we have used (3.14) and (3.15) and defined

KS = Cwe
(εS−µ0S)∕T

, KP = Cwe
(εP−µ0P)∕T

. (3.17)

From (3.13), the rate at which the substrate is consumed is

−d[S]
dt

= [E]totP(on)kcat =
[E]totkcat

1 + KS
[S]

(

1 + [P]
KP

) . (3.18)

In the steady state of (3.13), by which we mean [EP] = const. over several
enzymatic cycles, this is also the rate at which the product appears, that is,
−d[S]∕dt = d[P]∕dt. There is no difficulty extending this calculation to the
case of two or more products. For example, for the situation

E + S ⇌ ES
kcat⟶ EPQ ⇌ E + P +Q (3.19)

(a substrate molecule S gets chopped up into two pieces P and Q) we find

−d[S]
dt

=
[E]totkcat

1 + KS
[S]

(

1 + [P]
KP

+ [Q]
KQ

+ [P][Q]
KPQ

) , (3.20)

the five terms in the denominator reflecting the terms in the partition sum
corresponding to the states E, ES, EP, EQ, EPQ. Often the product term
[P][Q] can be neglected.

Similarly, let us extend (3.5) to the case of two substrates. The reaction
schematics is

E + A + B ⇌

{
EA + B
EB + A

}

⇌ EAB
kcat⟶ E + P. (3.21)

There are four states: E, EA, EB, EAB; the probability that the enzymatic site
is occupied by A only is P(A) and so on. The grand partition sum is

Z = 1 + e(µA−εA)∕T + e(µB−εB)∕T + eµA∕TeµB∕Te−(εA+εB)∕T , (3.22)

where we have assumed, for simplicity, that the binding energy εAB for both
A and B bound to the enzyme is the sum εAB = εA + εB. This is generally not
the case due to “cooperative effects,” that is, the interaction between the two
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bound substrates, which can be direct (e.g., electrostatic) or mediated by
the enzyme’s strain field. Then there is one more parameter in the model,
namely εAB.

The speed of the process (3.21) is (in the steady state, which means that
the concentrationsEA,EB,EAB do not change over several enzymatic cycles)

d[P]
dt

= P(AB)[E]totkcat. (3.23)

From (3.22),

P(AB) = 1
Z
e(µA +µB − εA − εB)∕T

, (3.24)

and writing the chemical potentials as in (3.15) we find

P(AB) = 1
1 + KA

[A] +
KB
[B] +

KAKB
[A][B]

= 1
(

1 + KA
[A]

)(

1 + KB
[B]

) , (3.25)

whereKA = Cwe
(εA−µ0A)∕T etc. Clearly, with the samemethod that led to (3.20)

and (3.25), we can deal with any number of substrates and products. Perhaps
the most typical situation is two substrates and two products:

E + A + B ⟶ E + C +D (3.26)

with the catalytic step

EAB
kcat⟶ ECD. (3.27)

Then,
d
dt

[C] = d
dt

[D] = P(EAB)[E]totkcat, (3.28)

with

P(EAB) =
{

1 +
KA
[A]

+
KB
[B]

+
KAKB
[A][B]

(
[C]
KC

+ [D]
KD

+ [C][D]
KCKD

)}−1
, (3.29)

where we have assumed that binding energies sum (εAB = εA + εB etc.) and
we have considered the states E, EA, EB, EAB; EC, ED, ECD. There could be
more states, say EAC or EBD; then there are correspondingly more terms in
(3.29).

Two further comments are in order, which we refer to the simplest case
(3.13). In a closed system, [S] + [P] = const. For example, suppose we start at
time zero with S(0) = S0, P(0) = 0 (we drop the square brackets). Then (3.18)
becomes

−dS
dt

=
[E]totkcat

1 + KS
S(t)

(

1 + S0−S(t)
KP

) , (3.30)
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which we can of course integrate to obtain S(t). The other remark is that in
general we also have to consider the reverse reaction, that is,

E + S ⇌ ES
kcat
⇌
̃kcat

EP ⇌ E + P. (3.31)

In this case we write the dynamics as

d[S]
dt

= −P(ES)[E]totkcat + P(EP)[E]tot ̃kcat (3.32)

and

P(ES) =
{

1 +
KS
[S]

(

1 + [P]
KP

)}−1
,

(3.33)

P(EP) =
{

1 +
KP
[P]

(

1 + [S]
KS

)}−1
.

We now come back to the beginning of our discussion, with eqs. (3.1) and
(3.5). A slightly different way to think about the process (3.1) is through the
individual rates k1, k−1, kcat. We write the rate equations:

d[S]
dt

= −k1[E][S] + k−1[ES], (3.34)

d
dt

[ES] = −(k−1 + kcat)[ES] + k1[E][S]. (3.35)

We assume a steady (or quasi-equilibrium) state, meaning

d
dt

[ES] = 0 ⇒ [E][S] =
k−1 + kcat

k1
[ES]. (3.36)

Using (3.36) in (3.34) we find

d[S]
dt

= −kcat[ES], (3.37)

which is the same as (3.2): in quasi-equilibrium as defined above, the reaction
speed is kcat times the concentration of enzyme with a substrate bound. Now
we want to write [ES] in terms of [E]tot and [S]: since

[E] + [ES] = [E]tot (3.38)

we have, using (3.36),

[ES] = [E]tot − [E] = [E]tot −
k−1 + kcat

k1
1
[S]

[ES] ⇒ [ES] =
[E]tot

1 +
k−1 + kcat

k1
1
[S]

,

(3.39)
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and therefore,

−d[S]
dt

=
[E]totkcat

1 +
k−1 + kcat

k1
1
[S]

, (3.40)

which is the same as (3.5), with the Michaelis–Menten constant given by

KM =
k−1 + kcat

k1
. (3.41)

The purpose of this exercise is to see that expression (3.5) is more general
than the interpretation (3.6) for KM. In general, KM is not the same as the
dissociation constant (3.6). If k−1 ≫ kcat then KM ≈ k−1∕k1 = KD, consistent
with (3.6); otherwise KM is given by (3.41), which says that there are two
channels through which ES can disappear: the “dissociation channel” with
rate k−1 and the “chemical reaction channel” with rate kcat.

One interesting consequence of (3.41) is the following: If we measure KM
and kcat, by substrate titration experiments, and KD = k−1∕k1 (the latter is
tricky for a one-substrate enzyme, but not too difficult to measure for a two-
substrate enzyme), we can determine the rates k1 and k−1:

k1 =
kcat

KM − KD
, k−1 =

KD
KM − KD

kcat. (3.42)

Finally, note that the process of product release EP → E + P would seem,
conceptually, an ideal experimental realization of the Kramers problem of
escape over a barrier, which we saw in chapter 1: the product P is created at a
definite time in the potential well which is the enzyme’s active site. However,
what distinguishes enzymes from solid state catalysts is the coupling of the
catalytic process to conformational motion. The enzyme deforms as it binds
the substrates, and deforms again as it releases the products. In general,
the enzyme goes through a chemo-dynamic cycle, which we can imagine
represented in the stress–strain plane (think of the representation of the
Carnot cycle in the P–V plane, though, I hasten to add, enzymes are not
thermodynamic engines: they are chemo-dynamic engines). If the cycle has
nonzero area, it can performwork. This work may increase the free energy of
a different system that the cell cares to keep out of equilibrium. For instance,
ionic pumps (e.g., the sodium–potassium pump) are enzymes that, through
a series of ligand-induced conformational transitions, pump specific ions in
or out of the cell against a concentration gradient. The reaction catalyzed by
the enzyme—ATP hydrolysis—has nothing to do with those ions. Chemo-
mechanical coupling in enzymes is the molecular-scale mechanism that
maintains the nonequilibrium state of the cell; for example, it maintains ionic
gradients across the cell membrane.

 EBSCOhost - printed on 2/13/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use



KINEMATICS OF ENZYME ACTION 89

Г1
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Г2

σ

u

FIGURE 3.1. Representation of a
chemo-dynamic cycle in the stress–strain
plane (σ–u plane).

To be specific, let us think of the
chemo-dynamic cycle in the stress–
strain plane of the enzyme. In the
limiting case that the area of the cycle
is zero, no work is performed. This is
the case if there is no conformational
change: the case of the solid state cata-
lyst. What would happen if all enzymes
in the cell were like solid state catalysts?
All reactions would quickly be driven
to equilibrium and the cell would die.
A cell in equilibrium is a dead cell. We
see that chemo-mechanical coupling in
enzymes is the molecular basis of life. Another way that the area of the cycle
can be zero is that the enzyme moves in the stress–strain plane back and
forth along a line. This means that the forward and backward conformational
motions are the time reverse of each other. Then, also, no work can be
performed. Figure 3.1 shows a hypothetical chemo-dynamic cycle in the
stress–strain (i.e., σ–u) plane.

The process Γ1 corresponds to binding the substrates; Γ2 corresponds to
releasing the products. The chemical reaction happens at B. The area inside
the loop (times the volume of the enzyme) is the work performed.Michaelis–
Menten kinetics makes, of course, no reference to the chemo-dynamic cycle
of the figure; the parameters kcat, KM are not related in any simple way to
the trajectories. Nonetheless, the Michaelis–Menten description provides a
way tomeasure some parameters that are intrinsic to the enzyme. An analogy
is obtaining the scattering matrix from measurements of the scattering cross
section. One reasonable—and, it turns out, feasible—experimental approach
to investigating the chemo-dynamic cycle is to mechanically stress the en-
zyme and observe the effect on the intrinsic enzymatic parameters. This is
very basic. To do an experiment, we need to identify a field that couples to the
process or phenomenon we want to investigate. For example, to investigate
ferromagnetism we need experiments with a controlled magnetic field. Once
we know that the enzyme deforms during the chemo-dynamic cycle, we
want experiments where we apply controlled stresses. Stress is the field that
couples to deformation.

3.3 The Method of the DNA Springs

The DNA nanorod discussed in chapter 2 (a ds DNA molecule of length
somewhere between ∼ 2 and ∼ 6 helix turns) can be used as a leaf spring
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Leaf spring off

Solid surface FF

Spring on

FIGURE 3.2. Sketch of the DNA spring as an addressable leaf spring. In
the ds form, the spring exerts a stress on the solid surface.

to exert controlled mechanical stresses at the molecular scale. From the
discussion in chapter 2, the elastic energies and forces resulting from bending
the DNA nanorod are of order ∼ 10 kT and a few pN, respectively. These are
also the forces and mechanical work that will significantly deform—but not
destroy—the folded state of an enzyme. Of course, this is not coincidental:
ultimately the same forces between groups of atoms hold together the struc-
ture of both the enzyme and the DNA nanorod: hydrogen bonds, hydropho-
bic contacts, etc. As a mechanical device, the DNA nanorod is addressable:
the bending stiffness is zero in the ss form, substantial in the ds form. The
leaf spring can be “turned on” by a chemical signal: the oligonucleotide
with the specific complementary sequence (figure 3.2). It can be turned
off by another chemical signal: a competitor DNA strand, an enzyme that
cuts the DNA, etc. In summary, if one has a way to attach the ends of the
nanorod to two points on a solid surface a few nm apart, then one can exert
a controlled force on these attachment points (tending to separate them) of
a few pN.

It is possible to attach the ends of the nanorod to the surface of an enzyme,
or more generally a protein. One engineers two “chemical handles” on the
surface of the protein, for example by introducing, throughmutagenesis, two
Cys residues. Cystein has a uniquely reactive S–H (thiol) group. It is often
possible to substitute a pair of amino acids at the surface of the molecule
with Cys, without damaging the enzyme, as long as one works away from
the active site. To attach the end of a single DNA strand to the Cys, one starts
with a synthetic oligo end-functionalized with a primary amino group. This
is attached to the Cys through a cross-linker (an organic molecule that reacts
on one side with the S–H group of the Cys, and on the other side with the
NH2 group on the DNA). The reason not to use direct attachment of thiol-
functionalized DNA to the Cys is in order to avoid, during the synthesis,
the competing reactions of disulfide bond formation between two enzyme
molecules or twoDNAmolecules. The enzyme–DNA chimera is constructed
sequentially in multiple steps A → B → C → D (figure 3.3): first one DNA
“arm” is attached, then the other, then the two are ligated. If one, instead,
tries to attach the whole DNA (ab) functionalized at both ends in one step,
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FIGURE 3.3. Scheme of the step-by-step construction of the enzyme–DNA chimeras.

one ends up with a mixture containing a large fraction of the species F, which
is difficult to separate from the correct construct D, since they are chemically
almost identical molecules. In the sequential construction, one also produces
unwanted species, for example the species E along with B in the first step.
However, it is easy to separate E from B, in this case using ion exchange
chromatography, since the two molecules have very different charge. In
the end, one can synthesize enzyme–DNA chimeras such as the example
represented in figure 3.4. When making a mental image of these structures,
one has to abstract from the static cartoon of the figure and remember that
thermal fluctuations allow the structure in equilibrium to explore a range of
quite different conformations. For example, the cross-linkers allow rotational
freedom so that the enzyme is in constant rotational diffusion with respect to
the plane of the DNA spring. On the timescales of enzyme action (ms), the
DNA spring seen by the enzyme is actually a diffuse closed shell, not a ribbon
in any fixed position. To get a sense of the timescales, consider the rotational
diffusion of an object the size of the enzyme. If c(θ, t) is the concentration
of molecules with a particular orientation θ at time t (or, if preferred, the
probability that a molecule has orientation θ at time t), we may write the
diffusion equation

𝜕c(θ, t)
𝜕t

−Drot
𝜕

2c
𝜕θ2

= 0. (3.43)

The rotational diffusion coefficient, as we see from (3.43), has dimensions
[Drot] = 1∕time, and we have written (3.43) in 1-D for simplicity (i.e., it
describes rotational diffusion around a fixed axis). In analogy with trans-
lational diffusion (chapter 1), we may introduce a rotational mobility µrot
through the relation

⟨ ̇θ⟩ = µrotτ, (3.44)
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FIGURE 3.4. Cartoon of the RLuc enzyme–DNA construction.
The renilla luciferase is the PDB structure 2PSJ. The DNA is from
the nucleosome structure PDB 1KX5. Adapted from Tseng and
Zocchi (2013).

where τ is the applied torque and the brackets signify ensemble average. We
get µrot from hydrodynamics: for a sphere of radius R in a fluid of viscosity η
it is

µrot =
1

8πηR3 , (3.45)

while mobility and the diffusion coefficient are connected by the Einstein
relation

Drot = Tµrot, (3.46)

and therefore, numerically,

Drot =
kT

8πηR3 (3.47)

for the sphere. The solutions of (3.43) are such that (see chapter 1)

⟨θ2⟩ = 2Drott, (3.48)

 EBSCOhost - printed on 2/13/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use



KINEMATICS OF ENZYME ACTION 93

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3
100 20 30 40 50 60

L (bp)

En
zy

m
at

ic
 a

ct
iv

it
y

FIGURE 3.5. Measured activity modulation for the
enzyme guanylate kinase under increasing
mechanical stress. The enzyme is coupled to a
60mer DNA spring. With the spring in the ss form
(L = 0 point) there is no stress on the enzyme. For
increasing length L of the complementary strand
hybridized to the DNA spring, the mechanical
stress on the enzyme increases and the speed of the
enzymatic reaction decreases. Adapted from Choi
and Zocchi (2007).

so the diffusion time over, say, 1 radian is

τD = 1
2Drot

=
4πηR3

kT
. (3.49)

For a 4nm-diameter sphere in water we find τD ≈ 20ns. Thus the rotational
diffusion of the enzyme around the axis provided by the DNA spring is very
fast compared to the timescales of the enzymatic cycle. The relative rotational
diffusion of the enzyme and the DNA spring could bemeasured, for example,
by fluorescence correlation spectroscopy.

Mechanically stressing an enzyme is a general way to modulate its enzy-
matic activity. “General” means not enzyme specific. In contrast, inhibitors—
small molecules that bind to, and block, the catalytic site—are of course
enzyme specific: the inhibitor of one enzymewill not inhibit another enzyme.
Figure 3.5 shows the progressive inhibition of the enzyme guanylate kinase
(GK) as the mechanical stress on the enzyme is increased, by means of
an increasingly stiff DNA spring. The DNA strand covalently attached to
the enzyme is 60 bases long, and the stiffness modulation is obtained by
hybridization with complementary strands of different lengths (figure 3.6).
These enzyme–DNA chimeras allow precise measurements of the effect
of mechanical stress on the enzymatic activity because one can compare
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A B C

FIGURE 3.6. The sketch represents a molecular
construction consisting of an enzyme and a 60-bases-long
DNA spring. In species A, the DNA spring is hybridized
with a 20mer complementary. There is no stress on the
enzyme because the ss parts of the DNA (two segments
each 20 bases long) provide enough slack so that the ds
part does not have to bend. In species B, the DNA spring is
hybridized to a 40mer complementary. The ds part of the
DNA has to bend and the two ss segments (each 10 bases
long) have to stretch, so the enzyme is under mechanical
stress. In species C, the DNA spring is fully hybridized (to
the complementary 60mer) and the enzyme is under a
bigger stress than species B. Compare with figure 3.5.

samples where the amount of enzyme is by construction the same, but the
mechanical stress is turned on, or not, depending on the complementary
oligomer added into the different samples. Moreover, one can measure by
standard biochemical methods the intrinsic parameters of the enzyme, such
as Michaelis–Menten constants and kcat, in the presence and absence of
mechanical stress.

The detailed studies performed on the enzyme guanylate kinase form one
basis for the continuummechanics approach to enzyme dynamics adopted in
the next chapter. GK catalyzes the reaction of transferring a phosphate group
from ATP to GMP:

GMP +ATP
GK
⟶ GDP +ADP, (3.50)

that is, the phosphorylation of GMP. It is a monomeric enzyme about 4nm
in size (about 200 amino acids), with a characteristic kidney-bean shape
(see figure 4.7). The binding sites for the substrates lie on the concave surface
in between the two lobes of the structure. Binding of GMP elicits a large
conformational change of the enzyme, the two lobes closing upon each other
(see figure 4.7) through an ∼ 1nm-size motion. This enzyme represents a
classic example of the induced-fit mechanism discovered by Koshland in the
middle of the twentieth century. The catalytic site is active in the “closed”
conformation of the enzyme, that is, only when GMP is bound. The closed
conformation also excludes unstructuredwater from the reaction center, thus
avoiding the competing reaction of ATP hydrolysis. It simply wouldn’t do for
the cell to hydrolyze ATP for no purpose. The precise values of the intrinsic
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FIGURE 3.7. Different application points of the stress
(arrows) for the enzyme guanylate kinase. They are
realized by attaching the DNA spring to the corresponding
locations on the surface of the enzyme.

parameters of GK vary of course, depending on the species, but roughly
speaking the catalytic rate is in the range kcat ∼ 100–400Hz. For GK from
Mycobacterium tuberculosis (the model system for some of the mechanical
experiments described below) the Michaelis–Menten constant for ATP is
KA ∼ 2mM (to be compared with typical ATP concentrations inside the cell
of ∼ 5mM), while the Michaelis–Menten constant for GMP is KG ∼ 200µM.
Let us now examine the effects of mechanical stress on this enzyme. If the
force is applied as shown by the black arrows in figure 3.7 (this is achieved
by attaching the DNA spring to the corresponding locations on the surface
of the enzyme, defined chemically by Cys residues substituted by mutage-
nesis), the reaction slows down, as shown in figure 3.5. More specifically,
GMP binding is impaired while ATP binding and the catalytic rate kcat are
essentially unaffected. For example, under the conditions corresponding to
the titration experiments of figure 3.8 (stress according to the black arrows
in figure 3.7), the Michaelis–Menten constant for GMP, KG, is increased by a
factor 10 under stress (recall that Michaelis–Menten constants are essentially
dissociation constants: a larger value means weaker binding), while KA and
kcat change less than 30%. If it is justified to view the enzyme as a mechanical
system, and the DNA spring as an external force acting on it, then the fact
that the mechanical stress according to the black arrows (figure 3.7) reduces
the binding affinity for GMP follows from general thermodynamic principles.
Recall the Le Chatelier principle:

If the external conditions of a thermodynamic system are altered, the
equilibrium of the system will tend to move in such a direction as to
oppose the change in the external conditions.
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FIGURE 3.8. GMP titration experiments for the enzyme
guanylate kinase under mechanical stress (“ds”: squares) and
without stress (“ss”: circles). Plotted is the ATP concentration
remaining in the reaction mixture after a given time. Since the
reaction consumes ATP, the enzyme under stress is slower.
Adapted from Choi et al. (2005).

In our case, GMP binding drives the open-to-closed conformational
change of the enzyme; thismeans that the free energy of theGMP–GKbound
system is lower in the closed conformation compared to the open conforma-
tion, that is, GMP binds stronger to the closed conformation than the open
one. A force opposed to the open-to-closed conformational change increases
the free energy of the closed conformation, compared to the open one;
according to Le Chatelier, this force must therefore have the effect of shifting
the equilibrium towards the open conformation, that is, it must cause a low-
ering of the binding affinity (increase of the dissociation constant) for GMP.

If the force is applied as shown by the dark gray arrows in figure 3.7,
then also the reaction slows down, but for a different reason. Namely,
the catalytic rate kcat is reduced, whereas KG and KA are essentially unaf-
fected. As an example, under the conditions of the titration experiments of
figure 3.9, kcat is reduced, under stress, by a factor 0.4 while KA and KG are
unaffected. Under these same conditions but with the DNA spring attached
according to the black arrows, KG is increased, under stress, by a factor 2.8
while kcat and KA are unaffected. In summary, forces applied at different
locations on the enzyme elicit different responses, not different magnitudes
of the same response. These experiments show that there are many different
conformational states that the enzyme can adopt, and that these different
states or deformations of the structure are accessible by perturbing the
enzyme mechanically. It would be a mistake to conclude from the X-ray
structures, such as figure 4.7, that the transition from the open to the closed
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FIGURE 3.9. GMP and ATP titration experiments for the enzyme GK under mechanical stress
(circles) and without stress (squares). The stress is exerted according to the dark gray arrows in
figure 3.7. The quantity plotted is the initial speed of the enzymatic reaction. Adapted from
Tseng, Wang, and Zocchi (2010).

conformation is the only deformation possible for the folded structure of
the enzyme. On the contrary, many different deformed states are possible,
accessible by mechanical perturbation. GMP binding elicits the specific
deformation shown in figure 4.7, but a different mechanical perturbation will
elicit a different deformation. We will see in chapter 4 a quite different set of
experiments, based on the peculiar kinetics of ligand binding to myoglobin at
low temperature, which highlight that many different conformational states
(i.e., many different deformed states) are available to the folded structure of
a protein. The method of the DNA springs provides a means of accessing
some of these different conformations within an equilibrium experiment.
We will see in chapter 4 that nano-rheology provides the means of access-
ing different deformed states dynamically, that is, within a nonequilibrium
experiment.

3.4 Force and Elastic Energy in the Enzyme—DNA Chimeras

Now we examine what the forces that elicit a sizeable modulation of en-
zymatic activity are, and what the elastic energy injected into the enzyme
structure by these forces is. If we take the overall speed of the reaction
as a measure of enzymatic activity, then a model experimental system for
quantitative analysis is provided by the RLuc chimeras. These molecular
constructs consist of the enzyme renilla luciferase coupled to a DNA spring
(figure 3.4). The luciferase is from Renilla reniformis, which is a sea colony of
the class Anthozoa, the same class as sea anemones. This enzyme catalyzes a
luminescent reaction, namely the oxidation, by molecular oxygen dissolved
in the water, of its substrate coelenterazine. With a low quantum yield
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FIGURE 3.10. Luminescence intensity (arbitrary units) over the course of time for the RLuc
chimera under different states of mechanical stress. Adapted from Tseng and Zocchi (2013).

of ∼ 5%, the reaction produces a blue photon (λ ≈ 470nm), and for this
reason, precise measurements of the enzymatic activity are relatively easy,
based on the emitted light. Figure 3.10 shows the time course of the reaction’s
luminescence for different states of mechanical stress of the enzyme. The
DNA spring is 60 bases long, and different configurations are used: ss, ds
with a nick, ds without nick. Recall that, for quantitative measurements with
enzymes, one has to compare samples that contain, by construction, the same
amount of enzyme. For this reason, the reaction speed with the DNA spring
in the ds nicked form is compared with the speed for the unligated, unhy-
bridized, “two-arms” chimera. The latter is species C in figure 3.3, and the
former is obtained by hybridization of this species with the complementary
DNA strand. A zero-force control is provided by hybridizing the same species
C with two separate 30mers, one complementary to strand a, the other to
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FIGURE 3.11. Calculated force vs. end-to-end distance x for the
60mer nicked DNA spring. The graph is a plot of eq. (3.52)
using L = 60 × 0.33 = 19.8nm, τc = 27pNnm, B = 200pNnm2.

strand b. This control reassures us that the rather small modulation of activity
observed with the nicked 60mer spring is indeed significant. Similarly, the
speed for the ds non-nicked form is compared to the ds nicked form, both
forms originating from species D in figure 3.3, by hybridization with one
complementary 60mer and two separate 30mers, respectively. For the case
of the nicked spring, we can calculate the force exerted on the enzyme
exactly, using the results of chapter 2. Let us first suppose that the enzyme
is not deformed; then we know the end-to-end distance s of the DNA spring
from the geometry of the molecular construct in figure 3.4:

s = (distance between Cys residues) + 2

× (length of enzyme–DNA cross-linker),

which gives s = (1.9 + 2 × 2.1)nm = 6.1nm.
The force f is obtained from the formula for the elastic energy vs. end-to-

end distance x for the DNA spring (chapter 2):

E(x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

−10 B
L2 (x − x0) − T ln

(
L − x
L − x0

)

for x ≥ xc,

τc arccos
( x
2R

)

for x < xc.
(3.51)

Here,L is the contour length of the DNA, τc the critical bending torque,B the
bending modulus, x0 = L[1 − TL∕(10B)], R = (L∕2)(1 − γ2∕90), γ = Lτc∕(2B),
and xc is obtained by equating the upper and lower expressions in (3.51).
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FIGURE 3.12. Measured modulation of enzymatic activity for
the RLuc chimera with a 40mer DNA spring. Adapted from
Tseng and Zocchi (2014).

The force

f (x) =
|
|
|
|

𝜕E
𝜕x

|
|
|
|
=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

10B
L2 − T

L − x
for x ≥ xc,

τc
2R

1
√
1 − (x∕2R)2

for x < xc,
(3.52)

is plotted in figure 3.11 using the parameter values for the 60mer nicked
spring (L = 19.8nm, τc = 27 pNnm, B = 200pNnm2). We see from the figure
that for x = s = 6.1nm, the DNA spring is in the kinked regime, and that the
force is

f = f (s) = 1.5pN. (3.53)
We also see that we can relax the assumption that the enzyme is not
deformed: unless the enzyme’s deformation is several nm (which is unlikely
without complete loss of activity), the force is still essentially the same. In
conclusion, for this particular case, a force f = 1.5pN slows down the reaction
by a factor 0.8 (figure 3.10).

Figure 3.12 shows another set of measurements for the same system,
except that the DNA spring is 40 bases long. There is a bigger effect on the
enzyme, compared to the 60mer spring (figure 3.13). In fact, the factor of
0.15 for the reduction in activity with the non-nicked spring should be taken
as an upper limit for that situation, as the yield of correctly ligated chimeras
in the samples (i.e., the yield of species D in figure 3.3) must be < 1.

The force f (x), calculated from (3.52) using the parameter val-
ues for the 40mer nicked spring (L = 40 × 0.33 = 13.2nm, τc = 27pNnm,
B = 200pNnm2) is plotted in figure 3.14. For s = 6.1nm, we see that
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FIGURE 3.13. Comparison of the modulation of enzymatic
activity obtained with the 60mer and the 40mer DNA springs.
The areas under the corresponding curves of figures 3.10
and 3.12 are plotted, normalized by the zero-stress case.
Adapted from Tseng and Zocchi (2014).
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FIGURE 3.14. Calculated force vs. end-to-end distance x for
the 40mer nicked DNA spring. The graph is a plot of
eq. (3.52) using L = 13.2nm, τc = 27pNnm, B = 200pNnm2.

f (s) = 2.4pN. Thus a force f = 2.4pN slows down the reaction by a factor
0.7. For the non-nicked case, one cannot at present give a precise value of
the force, for two reasons. First, the critical bending torque τc has not been
measured directly for this situation. Further, fraying of the DNA at the ends
may contribute to limit the force in this case. Nonetheless, the indications are
that the effective value of τc to be used for the purpose of calculating the force
in the non-nicked case is not very different from the nicked case (by which we
mean, less than a factor 2 different). Support for this statement comes from
indirect measurements of the elastic energy in the non-nicked case, based
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on the thermal melting transition of D-shaped DNA molecules. They find
τc ≈ 31pNnm. Further, the value τc = 32pNnmwould be consistent with the
onset of departure from worm-like-chain behavior in the original cyclization
experiments of Cloutier andWidom. Finally, from figure 3.13 we see that the
nicked 40mer spring has almost half the effect on the enzyme of the intact
60mer spring; thus the presence of a nick does not soften the DNA spring
dramatically. Summarizing the various clues, we feel that the value for τc for
non-nicked DNA lies probably somewhere in the range 31–36 pNnm.

There is a specialized class of enzymes—motor proteins—for which
detailed measurements of the modulation of the enzymatic cycle caused by
an external force can be performed. The experiments of Block and coworkers
in the 1990s established force–velocity curves for the motion of the enzyme
kinesin along the microtubule. These are single molecule experiments where
a kinesin molecule “carries” a micron-size bead while walking along the
microtubule. The position of the bead over the course of time is measured
by optical trapping interferometry, while the optical trap also provides a
calibrated load force contrasting the motion. Several variants of this exper-
iment have been performed, notably one version where the optical trap is
moved by a feedback mechanism in order to provide, in effect, a force clamp
(figure 3.15).

Kinesin steps along the microtubule through a cycle of conformational
changes involving two “legs” (actually called “heads”), hydrolyzing one ATP
molecule per step. With the enzyme under mechanical stress, the speed of
the cycle is reduced and indeed vanishes for a “stall force” of about 7pN
(figure 3.16). The force–velocity curve is roughly (but not exactly) linear, a
force of ∼ 4pN reducing the speed by a factor ∼ 0.5. As a function of ATP
concentration, the velocity V of kinesin follows Michaelis–Menten kinetics:

V =
Vmax

1 + KA∕[ATP]
, (3.54)

so in these same experiments one canmeasure an effectiveMichaelis–Menten
constant KA, defined by (3.54). Under mechanical stress, KA increases from
90µMwith a load f = 1pN, to 140µM for f = 3.6pN, to 310µM for f = 5.6pN.
The mechano-chemical cycle of this motor involves, besides ATP hydrolysis
(i.e., binding ATP, hydrolyzing ATP, releasing ADP and phosphate), also
the binding–unbinding of the two heads, alternately, to the microtubule. In
the mechanical experiments, the force is applied between the microtubule
and the body of the motor, so the stress on the enzyme is across the body
and, alternately, one or the other head. Thus the geometry is different
from the enzyme–DNA chimeras, but nonetheless, in all these experiments,
similar forces elicit similar modulations of the speed of the enzymatic
cycle.
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FIGURE 3.15. Schematic of the force clamp used for the single molecule experiments on kinesin.
The body of the motor is attached to a micron-size bead which is held in the optical trap. A
feedback mechanismmoves the trap, maintaining constant force on the bead in the opposite
direction to the motion. The traces show the bead’s movement and the corresponding
displacement of the trap. Adapted from Visscher, Schnitzer, and Block (1999).

The enzyme–DNA chimeras (figure 3.4) aremolecular constructionswith
built-in stress. The corresponding positive elastic energy of these molecules
can bemeasured for the case of the nicked spring, using themethod described
in chapter 2 for D-shaped DNA. Namely, two chimera molecules can form
a dimer (figure 3.17), which releases the stress. The elastic energy of the
monomer ismeasured from the equilibrium concentrations ofmonomers and
dimers:

Eel =
1
2
T ln

(
XD

X2
M

)

, (3.55)

where XD, XM are equilibrium concentrations of dimers and monomers,
respectively. For the enzyme–DNA chimera of figure 3.17, the measured
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FIGURE 3.17. Sketch of the hybridization process that forms a chimera monomer with a nicked
DNA spring. The enzyme depicted is GK. Two such monomers can form a dimer where the
elastic energy is relaxed. Adapted from Zocchi (2009).

elastic energy is

Eel = 9.1 ± 0.1 kBT. (3.56)

This is a large elastic energy, and it is at first surprising that it has so little
effect on the enzymatic cycle (the effect of a 60mer, nicked DNA spring is
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FIGURE 3.18. Calculated elastic energy vs. end-to-end distance
x for a 60mer DNA spring, nicked. The graph is a plot of
eq. (3.51) using the parameter values L = 19.8nm,
τc = 27pNnm, B = 200pNnm2.

not visible for GK and quite small for RLuc; see figure 3.13). The reason is
that, in this case, most of the elastic energy resides in the DNA spring, not in
the enzyme. We can qualitatively see this by comparing the measured elastic
energy of the chimera (3.56) with the elastic energy of the corresponding
DNA spring, plotted in figure 3.18. If the enzyme was not deformed, the end-
to-end distance of the DNA would be, from the geometry of this chimera,
s = 10nm. The elastic energy of just the DNA, for this value of end-to-end
distance, is 6.6 kT. Thus by this estimate the elastic energy in the enzyme is
only 2.5 kT.

We can view the enzyme–DNA chimera as a system of two coupled
springs: a “DNA spring” that is compressed, and an “enzyme spring” that
is elongated, with respect to their respective zero-force equilibria. In such
a system, most of the elastic energy resides in the softer spring. For example,
consider two linear springs (i.e., obeying Hooke’s law) with different relaxed
lengths X1 and X2, and different spring constants K1 and K2. Now couple
the two springs so that they are constrained to have the same length (thus
one spring will be elongated and the other compressed). If x is this common
length, the elastic energy of the system is

E(x) = 1
2
K1(x − X1)2 +

1
2
K2(x − X2)2. (3.57)

In mechanical equilibrium this energy is a minimum, i.e., 𝜕E∕𝜕x = 0, and we
find that the energy of the system is

E = 1
2
(X1 − X2)2

K1K2
K1 + K2

, (3.58)
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while the energies in the individual springs are in the ratio

E1
E2

=
K2
K1

, (3.59)

that is, there is more energy in the softer spring. In the next sections we
examine in more detail the partition of elastic energy between the enzyme
and the DNA spring.

3.5 Injection of Elastic Energy vs. Activity Modulation

Mechanical control of enzymes, and in general allosteric control, is a matter
of putting themolecular structure under stress, that is, injecting elastic energy
into the enzyme. To proceed with the discussion of the enzymatic cycle,
we have to examine the relation of elastic energy injected to modulation of
enzymatic activity. There is no simple answer to this question, but in order
to extract some wisdom from the experimental results, it is useful to examine
simple heuristic models.

Let us assume that different deformed states of the enzyme are associated
with different “enzymatic activity” (we might think, for example, more
specifically of the binding affinity for a substrate, or the catalytic rate kcat).We
examine the simplest, 1-D, continuum mechanical model where the enzyme
has a zero temperature, unperturbed “length” 𝓁, which can be stretched (but
not compressed) at the cost of an elastic energy

E = 1
2
κ(x − 𝓁)2, x ≥ 𝓁, (3.60)

x being the end-to-end distance of this spring and κ the spring constant. For
convenience, there are no states with x < 𝓁. We imagine that the “enzymatic
activity” is maximum (= 1) for x = 𝓁 and decreases monotonically for x > 𝓁;
to be specific, and for ease of computation, we assume that the ratio of the
activity at elongation x to the maximum activity is

R = exp
(

−x − 𝓁
a

)

, x ≥ 𝓁. (3.61)

The parameter a, which is a length, defines the elongation (x = 𝓁 + a) where
the activity drops significantly (here by a factor 1∕e). There is no justification
for the specific form (3.61): we use it as an example, and seek to draw
conclusions which, qualitatively, do not depend (much) on this particular
choice. For notational ease, we introduce the zero-temperature parameters:

E0 ≡

1
2
κa2, Eel ≡

σ2

2κ
. (3.62)

The term E0 is the work done by the external field if the spring is elongated
by a; Eel is the work done by the external mechanical force σ; both are
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FIGURE 3.19. Graph of the complementary error function
erfc defined by (3.67).

purely mechanical quantities. The statistical mechanics of this system is
straightforward but instructive. The zero-force partition sum is

Z =
∫

+∞

𝓁
dx exp

(

−κ(x − 𝓁)2

2T

)

=
√

2T
κ ∫

∞

0
dy exp

(
−y2

)
=
√

πT
2κ

, (3.63)

and the zero-force activity is

A = 1
Z ∫

+∞

𝓁
dx exp

(

−x − 𝓁
a

)

exp
(

− κ
2T

(x − 𝓁)2
)

. (3.64)

With the variable substitution
√
κ∕2T (x − 𝓁) = y, the integral transforms to

√
2T
κ ∫

+∞

0
dy exp

(

−y2 −
√

2T
κa2

y

)

. (3.65)

We use the formula

∫

∞

0
dx exp

(
−x2 − βx

)
=
√

π
4
exp

(
β2∕4

)
erfc

(
β
2

)

, (3.66)

where the complementary error function erfc is defined through the error
function erf:

erf(x) = 2
√
π ∫

x

0
e−u2 du, erfc(x) = 1 − erf(x) = 2

√
π ∫

+∞

x
e−u2 du, (3.67)

and obtain

A = exp
(

T
2κa2

)

erfc
(√

T
2κa2

)

= exp
(

T
4E0

)

erfc
(√

T
4E0

)

, (3.68)

where we have used definition (3.62). The graph of the complementary error
function erfc(x) is plotted in figure 3.19. In the presence of an external force
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σ, the new mechanical equilibrium length of the spring is 𝓁 + σ∕κ, and the
energy is

E = 1
2
κ
(

x − 𝓁 − σ
κ

)2
= 1

2
κ(x − 𝓁)2 − σ(x − 𝓁) + σ2

2κ
, (3.69)

so the partition sum with an external force σ is

Zσ = ∫
+∞
𝓁 dx exp

(

− κ
2T

(x − 𝓁)2 + σ
T
(x − 𝓁)

)

=
√

π
4

√
2T
κ

exp
(

σ2

2κT

)

erfc
(

−
√

σ2
2κT

)

, (3.70)

using the same manipulations as above. We have dropped the constant term
σ2∕2κ from the energy since it makes no difference to the ensemble averages
that follow. However, we have to remember this “field energy” when we
discuss energy or free energy changes under stress, as we will see later. The
activity under stress is then

Aσ = 1
Zσ ∫

+∞

𝓁
dx exp

(

−x − 𝓁
a

)

exp
(

− κ
2T

(x − 𝓁)2
)

exp
( σ
T
(x − 𝓁)

)

.

(3.71)
The integral can be transformed into

√
2T
κ ∫

∞

0
dy exp

(

−y2 +

(√
2σ2

κT
−
√

2T
κa2

)

y

)

, (3.72)

and using (3.66) once again, we obtain

Aσ = 1
Zσ

√
π
4

√
2T
κ

exp
(

σ2

2κT

)

exp
(

T
2κa2

)

exp
(

− σ
κa

)

× erfc

[

−

(√
σ2

2κT
−
√

T
2κa2

)]

, (3.73)

or, using (3.70),

Aσ = exp
(

T
2κa2

− σ
κa

) erfc
[

−
(√

σ2∕2κT −
√
T∕2κa2

)]

erfc
[

−
√
σ2∕2κT

]

= exp

(

−

√
Eel
E0

)

exp
(

T
4E0

) erfc
[

−
(√

Eel∕T −
√
T∕4E0

)]

erfc
[

−
√
Eel∕T

] . (3.74)

The ratio of the activities with and without stress is, using (3.68),

Aσ
A

= exp

(

−

√
Eel
E0

) erfc
[(√

T∕4E0 −
√
Eel∕T

)]

erfc
[

−
√
Eel∕T

]

erfc
[√

T∕4E0

] . (3.75)
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FIGURE 3.20. Plots of eq. (3.75) as a function of y = Eel∕T, for a fixed value of x = E0∕T:
(a) x = 4; (b) x = 1.

We examine (3.75) in the relevant region 0 < E0,Eel < (a few kT). Quali-
tatively we expect the following: even at zero stress, the activity of the
enzyme is reduced compared to the maximum possible value (which here
is 1, corresponding to the spring at its mechanical equilibrium position),
because thermal fluctuations allow the enzyme to explore states of lower
activity. This effect is small if E0 is relatively large, corresponding loosely
speaking to a “stiff” enzyme (more precisely, an enzyme for which there is a
relatively large energy difference between states of low activity and the state
of maximum activity). In this case, it will take a relatively large injection of
elastic energy, Eel ∼ E0, in order to modulate the activity significantly. In any
case, whether E0 is large or small (i.e., whether E0∕T ≫ 1 or E0∕T ≪ 1), a
necessary condition to obtain significant modulation of activity is that we
inject an elastic energy of at least E0, that is, Eel ∼ E0 or larger. Figure 3.20
shows two plots of eq. (3.75) as a function of y = Eel∕T, for two different
fixed values of x = E0∕T. For x = 4 (i.e., E0 = 4 kT), we see that we need y ≈ 4
(Eel ≈ 4 kT) in order to reduce the activity by a factor ∼ 0.5. Figure 3.21(a)
is a plot of (3.75) vs. x = E0∕T, for y = x (Eel = E0), showing that in any case
we need Eel > E0 for significant activity modulation. If we make the enzyme
“soft” (i.e., E0 < T: a small energy difference between states of low activity
and the state of maximum activity), then we can obtain significant activity
modulation while injecting a relatively small elastic energy. Figure 3.21(b)
is a plot of (3.75) as a function of x = E0∕T, for y = 4x (Eel = 4E0). We see
that, for example, if E0 = 0.2 kT, injecting a relatively small elastic energy
Eel = 4E0 = 0.8 kT still causes a decrease of activity by a factor∼ 0.5. However,
there is a price to pay because such a “soft” enzyme is not optimized from the
viewpoint of activity at zero stress. If E0 ≪ T, then even at zero stress the
inactive states are accessed frequently, and the activity is reduced compared
to a “stiff” enzyme. Figure 3.22 shows activity at zero stress, A, vs. x = E0∕T
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FIGURE 3.21. Plots of eq. (3.75) as a function of x = E0∕T: (a) y = x (Eel = E0); (b) y = 4x
(Eel = 4E0).
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FIGURE 3.22. Graph of eq. (3.68) as a function of x = E0∕T.

(eq. (3.68)). We see that for the above example (E0 = 0.2T), the zero-stress
activity is a factor ∼ 0.3 lower than the maximum value A = 1.

Thus from this heuristic model we extract the following ideas that
may have some generality: enzyme mechano-chemical coupling may trade
amplitude of allosteric modulation for overall enzymatic activity, in the sense
that a “softer” enzyme, as defined above, can be modulated by a relatively
small injection of elastic energy; however, this enzyme also has lower overall
activity. Connected to this is the statement that, for a real enzyme, it seems
reasonable that, in order to obtain significant modulation of activity through
mechanical stress, the external force field has to provide an elastic energy
Eel ∼ 1 kT or larger. One might think that this is obvious since different states
are visited with relative probabilities given by Boltzmann factors, but the
preceding discussion shows some subtleties, and in fact the statement must
be qualified, as we saw. To summarize this spring model, figure 3.23 shows
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FIGURE 3.23. Left: graph of (Aσ∕A)(x, y) (eq. (3.75)) where x ≡ E0∕T, y ≡ Eel∕T. Right: the
same graph, cut by the plane Aσ∕A = 0.5 to show the (x, y) region where there is substantial
modulation of activity.

3-D plots of eq. (3.75). It is worth considering also the other thermodynamic
functions of the model, because some features are at first surprising. We
reinstate the constant term σ2∕2κ which was dropped from the energy of the
spring under stress, that is, wemeasure energies from the ground state, which
is the state of mechanical equilibrium. Then the difference in the free energy
of the spring with and without stress is

∆F = Fσ − F = −T ln
Zσ
Z

+ σ2

2κ
, (3.76)

where Zσ , Z are given by (3.70) and (3.63). Thus we obtain

∆F
T

= − ln

[

erfc

(

−
√

Eel
T

)]

, (3.77)

and similarly for the energy difference:

∆E = Eσ − E = T2 𝜕

𝜕T
ln

(Zσ
Z

)

+ σ2

2κ
. (3.78)

From the definition of the complementary error function erfc it is easy to see
that

d
dx

erfc(x) = − 2
√
π
exp

(
−x2

)
, (3.79)

and carrying out the derivative in (3.78) we find

∆E
T

= − 1
√
π

√
Eel
T

exp
(
−Eel∕T

)

erfc(−
√
Eel∕T)

, (3.80)

while the entropy change is found from

∆S = ∆E −∆F
T

. (3.81)
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FIGURE 3.24. The free energy difference with and without stress, ∆F = Fσ − F (eq. (3.77)), the
energy difference ∆E (eq. (3.80)), and the entropy difference ∆S (eq. (3.81)), plotted vs.
y ≡ Eel∕T for the spring model (3.69).

These functions are plotted vs. y ≡ Eel∕T in figure 3.24. It seems counterin-
tuitive that the energy should first decrease and then increase with the stress
Eel, but the reason is that, with the restriction x ≥ 𝓁, we havemade our spring
asymmetric. When a small stress is applied, some low energy “compressed”
(with respect to the ground state) states become available that remove some
probability from the higher energy “elongated” states, so the energy drops. As
we increase the stress, newhigh energy “compressed” states become available
and the energy rises. In contrast, the entropy is monotonically increasing
because the stress always creates new “compressed” states; eventually for
each elongated state there is a corresponding compressed state created, so the
number of states doubles and ∆S → ln 2 for y = Eel → ∞ (figure 3.24). If, on
the other hand, we remove the “field energy” σ2∕2κ from the energy budget,
then the entropy difference ∆S is unaffected because the external field
carries no entropy, while the energy difference ∆E becomes monotonically
decreasing:

∆E
T

= −
Eel
T

− 1
√
π

√
Eel
T

exp
(
−Eel∕T

)

erfc(−
√
Eel∕T)

. (3.82)
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FIGURE 3.25. The energy difference with and without stress,
∆E, plotted vs. y ≡ Eel∕T, not including the “field energy”
(eq. (3.82)).

This choice corresponds to measuring energies always from the same state
x = 𝓁 of the spring. The energy function (3.82) is plotted in figure 3.25.
We used this spring model to introduce some ideas about the relation
of mechanical stress to activity modulation. However, by itself the model
does not describe even qualitatively the temperature dependence of the
activity A. Equation (3.68) predicts a monotonically decreasing activity with
temperature, whereas in reality, enzymatic activity first increases and then
decreases for increasing temperature in the rangewhere the enzyme is folded.
The main contribution to the increase comes from an Arrhenius factor
corresponding to the existence of a transition state for the chemical reaction,
that is, the rate increases with temperature as

r = r0e−∆∕T , (3.83)

where ∆ is the barrier height to the transition state. The subsequent decrease
is due to the proximity of the warm unfolding transition. Using (3.83), the
ratio of activities at temperatures T1 and T2 is

r1
r2

= exp
(

−∆
T2 − T1
T1T2

)

≈ exp
(

− ∆
T0

T2 − T1
T0

)

, (3.84)

where T0 =
√
T1T2. Switching for a moment to temperatures in degrees

Kelvin, T0 ≈ 300K since T1, T2 are close to room temperature. A rate change
by a factor 10 within a temperature range of ∼ 30K (say from T1 = 300K to
T2 = 330K) is typical for enzymes, so we see from (3.84) that barrier heights
∆ are relatively large, ∆ ∼ 10 kBT or more.

While the main temperature dependence of the enzymatic activity comes
from barrier crossing, the (weaker) temperature dependence of the spring
model can be changed with minor modifications. As an exercise, we may
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simply allow some “compressed” states, that is, replace the energy (3.60) with

E = 1
2
κ(x − 𝓁)2, x ≥ 𝓁 − a, (3.85)

extending the same relation (3.61):

R = exp ((x − 𝓁)∕a) , x ≥ 𝓁 − a. (3.86)

We use the same length parameter a in the constraint for x and in the
exponential function for R for simplicity. Now the compressed states 𝓁 − a <

x < 𝓁 have relative activity R > 1, so we expect that, as a function of tempera-
ture, the activity A will first increase (as these states become populated) and
then decrease, that is, non-monotonic behavior. One can redo the statistical
mechanics of the model in the form (3.85), (3.86). For example, the zero-
stress partition sum is

Z =
∫

+∞

𝓁−a
dx exp

(

− κ
2T

(x − 𝓁)2
)

. (3.87)

Using the formula

∫

+∞

0
dx exp

(
−(αx2 + βx)

)
=
√

π
4

1
√
α
exp

(
β2

4α

)

erfc

(
β

2
√
α

)

, (3.88)

we find

Z =
√

π
4

√
2T
κ

erfc

(

−
√

κa2
2T

)

. (3.89)

The result for the zero-stress activity is

A = exp
(

T
4E0

) erfc
[

−
(√

4E0∕T −
√
T∕E0

)]

erfc
(

−
√
E0∕T

) , (3.90)

and it is plotted in figure 3.26 as a function of T.
Instead of reasoning in the continuum mechanics limit, as we did above,

one can also reason with discrete states of the enzyme; then the effect of the
mechanical stress is to shift the energy levels of the system. In general, there
will be many states, and one may work with a density of states, as we will see
in chapter 4 with the kinetic measurements on myoglobin. Here we consider
the opposite limit to a continuum description, which is just two states. This
is unrealistic, but it is simplest and may be augmented later by adding more
states. Consider then two states of the enzyme: we assign enzymatic activity
1 to one state, and 0 to the other. Now we need a prescription for how the
stress shifts the energy levels (this is the “mechanics” of the system). We
suppose that the energy shift is proportional to the stress. This is different
from a spring, where the energy is proportional to the square of the stress.
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FIGURE 3.26. Graph of eq. (3.90), plotted vs. T∕E0.

It corresponds to a system that responds to deformations with a constant
restoring force. This is unphysical for very small deformations but not so
unphysical, for the enzyme, for larger deformations, as we will see later in
this chapter and in chapter 4. With this prescription, we have the familiar
problem of a spin 1

2 system in a magnetic field. We assign activity A = 1 to
the state sz = −1

2 , and activity A = 0 to the state sz = +1
2 ; the magnetic field

(in the z-direction) corresponds to the stress σ, that is, the two energy levels
are E = ±mσ with m a constant; the upper sign is for the state sz = −1

2 . Then
the activity A is related to the “magnetization”M = 2m⟨sz⟩ by

A = 1 −M
2

, (3.91)

since in terms of the probabilities of the two states,

M
m

= p
(1
2

)

− p
(

−1
2

)

= 1 − 2p
(

−1
2

)

while A = p
(

−1
2

)

. (3.92)

The partition sum of the system is

Z = exp
(mσ
T

)

+ exp
(

−mσ
T

)

(3.93)

and the activity under stress is

Aσ =
exp (−mσ∕T)

exp (mσ∕T) + exp (−mσ∕T)
= 1
exp (2mσ∕T) + 1

. (3.94)

Since the activity at zero stress isA = 1
2 , the ratio of activitieswith andwithout

stress is

Aσ
A

= 2
exp (2mσ∕T) + 1

= 2
exp

(
2Eel∕T

)
+ 1

, (3.95)
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FIGURE 3.27. The activity ratio with and without stress, Aσ∕A (eq. (3.95)) and the energy
difference with and without stress, ∆E (eq. (3.96)), plotted vs. y ≡ Eel∕T.

where we have introduced the “elastic energy” Eel = mσ. The other thermo-
dynamic functions are also easily found; for example, the energy difference
with and without stress is

∆E = Eσ − E = −mσ tanh
(mσ
T

)

= −Eel tanh
(Eel

T

)

. (3.96)

The activity ratio (3.95) and the energy difference (3.96) are plotted in
figure 3.27, and can be compared to the corresponding plots for the spring
model (figures 3.20 and 3.25). We see that, qualitatively, these two opposite
limits (continuum limit vs. two states) give the same result for the connection
between elastic energy injected and activity modulation.

3.6 Connection to Nonlinear Dynamics: Two Coupled
Nonlinear Springs

At the simplest level, an ASP-controlled enzyme (ASP = allosteric spring
probe) may be viewed as a system of two coupled springs—at the molecular
scale. We understand the DNA spring in some detail, so from measurements
of the coupled system (figure 3.13) we should be able to say something about
the mechanics of the other spring—the enzyme. The first statement is that
in the enzyme–DNA spring construction (figure 3.4), the enzyme does not
behave like a simple spring. We saw in the previous section that in order to
obtain significant activity modulation mechanically (figures 3.10 and 3.12),
the elastic energy injected into the enzyme must be of order 1 kT or larger.
Figure 3.28 shows calculated curves of the elastic energy in the enzyme, for
the case of the RLuc chimera (figure 3.4) with the 60mer and the 40mer
DNA springs. The model used for the DNA spring is eq. (3.51); the enzyme
is supposed to obey Hooke’s law with spring constant κ. The energy in the
protein is plotted vs. κ, for different values of the critical bending torque
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FIGURE 3.28. For the enzyme–DNA chimeras, calculated elastic energy injected in the enzyme
assuming the latter behaves like a linear spring (i.e., follows Hooke’s law). Adapted from Tseng
and Zocchi (2014).

τc of the DNA spring. For the DNA spring with the nick, τc = 27pNnm is
the measured value; τc = 36pNnm is meant to represent the case without
nick: though this value is not measured directly, indications are that it lies
somewhere in the range 31 < τc < 40pNnm (see chapter 2).

We see the following: For κ → ∞, all curves approach asymptotically the
value Ep = 1

2 kBT (Ep = energy in the protein). This is just the thermal energy
in the one degree of freedom that we are considering, corresponding to zero
injected elastic energy. The reason is that if the enzyme is very stiff, all the
elastic energy is in the DNA (see eq. (3.59)). To have at least ∼ 1 kBT of
injected elastic energy (i.e., Ep > 1.5 kBT in the plots), for the 60mer spring,
we need κ to be smaller than ∼ 0.4 kBT∕nm2 in all cases shown; for the 40mer
spring, we need κ to be smaller than ∼ 0.7 kBT∕nm2 in all cases. For the
nicked 40mer spring (figure 3.28, τc = 27pNnm), which has a substantial
effect on the enzyme’s activity (figure 3.12), Ep > 1.5 kBT corresponds to
κ < 0.4 kBT∕nm2. Next, in order to have a substantial modulation of activity
between the nicked and non-nicked springs (figure 3.13), the injected elastic
energy in the two cases should differ by∼ 1 kBT ormore. Figure 3.28 (60mer)
says that this is possible only if κ < 0.3 kBT∕nm2; figure 3.28 (40mer) sets the
upper limit at κ < 0.6 kBT∕nm2.

Summarizing, if the enzyme obeys Hooke’s law in the regime of forces
applied by the DNA springs, then measurements of the activity under
stress indicate that the enzyme’s spring constant must be smaller than
∼ 0.6 kBT∕nm2 and probably of order κ ∼ 0.4 kBT∕nm2 ≈ 1.6pN∕nm. How-
ever, this is far too soft. For example, the corresponding rms thermal fluc-
tuation in the diameter of the enzyme would be, by equipartition, ⟨x2⟩1∕2 =
√
T∕κ ≈ 1.5nm, whereas in reality these fluctuations are of order 1–2Å.
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Therefore, the spring constant of a hypothetical Hookean enzyme should
be roughly a factor 100 larger: κ ∼ 40 kT∕nm2, totally incompatible with the
plots of figure 3.28.

Before proceeding, let us see how the curves of figure 3.28 are calculated.
The energy function of the DNA spring, EDNA(z), is given as a function of the
end-to-end distance z by (3.51). For the protein, we assume a linear spring
Eprot(x) =

1
2κx

2, where x is the deformation. The elastic energy of the coupled
system is

E(x) = EDNA(h + x) + Eprot(x), (3.97)

where x is the deformation of the enzyme and h + x is the end-to-end distance
of the DNA spring. Here, h is a geometric constant equal to the distance
between the Cys residues where the DNA is attached on the surface of the
enzyme plus the combined effective lengths of the cross-linkers used for the
attachment. For the RLuc chimeras of figure 3.4, h ≈ 6.1nm. One computes
the partition sum

Z =
∫

L−h

0
dx exp

(

−E(x)
T

)

(3.98)

(where L is the contour length of the DNA spring) using (3.97) and obtains
the thermodynamic quantities in the usual way; in particular, the energy in
the protein is

Ep = ⟨Eprot⟩ =
1
Z ∫

L−h

0
dxEprot(x) exp

(

−E(x)
T

)

. (3.99)

This is the quantity plotted in figure 3.28.
Let us now see that, if we assume that the linear elasticity regime of the

enzyme is limited by a softening transition, we can reconcile the mechanics
with the measurements of activity under stress. We assume a nonlinearity in
the enzyme’s mechanics of the following form:

Eprot(x) =
⎧
⎪
⎨
⎪
⎩

1
2
κx2 for 0 < x ≤ xe,

1
2
κx2e + fe(x − xe) for x > xe.

(3.100)

The parameter fe represents a constant (strain-independent) restoring force
in the nonlinear regime. For convenience, we consider only elongation of
the enzyme (i.e., Eprot(x) = +∞ for x < 0). The parameter xe represents the
critical strain where the spring softens (we take κxe > fe). We expect xe
to be of order a few Å, fe to be in the pN range, and the spring constant
κ to be of order 100 kBT∕nm2, as we discussed in the previous section.
The DNA spring is still described by eq. (3.51). Figure 3.29 shows the
energy functions for this model, with the values κ = 100 kBT∕nm2, xe = 3Å.
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FIGURE 3.29. Energy functions for the enzyme and the DNA
spring according to (3.100) and (3.51). The parameter values
used for the enzyme spring are κ = 100 kBT∕nm2, xe = 3Å,
fe = 0.8 kBT∕nm. For the DNA, two different values of the
critical bending torque τc are plotted (27 and 36pNnm).
Adapted from Tseng and Zocchi (2014).

One obtains the thermodynamic functions like before, using (3.100) in the
partition sum (3.98). Figure 3.30 shows plots of the energy injected in the
enzyme, Ep = ⟨Eprot(x)⟩, and the total energy of the enzyme–DNA system,
Etot = ⟨Eprot(x)⟩ + ⟨EDNA(x)⟩, as a function of the enzyme’s restoring force in
the nonlinear regime, fe. The different curves correspond to different values
of the DNA’s critical bending torque τc, with τc = 27pNnm representing
nicked DNA and τc = 36pNnm non-nicked DNA. Following the arguments
of the previous discussion, we see from the plots for the 60mer spring that
the enzyme’s restoring force fe must be in the range 0.8 < fe < 1.2 kBT∕nm,
while the plots for the 40mer spring give the approximate range 0.8 < fe <
1.6 kBT∕nm. In conclusion, introducing a softening transition for the enzyme
makes the mechanics compatible with the measured activity modulation
under stress. The model accommodates a sufficiently large spring constant of
the enzyme in the linear elasticity regime, κ ∼ 100 kBT∕nm2. The enzyme’s
restoring force in the nonlinear regime must be of order fe ∼ 1 kBT∕nm =
4pN, which is of the same order as the forces produced by motor proteins.
We will come back to this fundamental fact in chapter 4. For this value fe =
1 kBT∕nm,we see fromfigure 3.30 that the total elastic energy of the enzyme–
DNA construct, in the case of nicked DNA (τc = 27pNnm), is approximately
Etot = 9 kBT, consistent with the measured values (see (3.56)). We will see
in chapter 4 that this softening transition, here introduced heuristically, is
directly observed dynamically in nano-rheology experiments.
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FIGURE 3.30. For the enzyme–DNA chimeras, calculated elastic energy
injected in the enzyme assuming the softening transition (3.100) for the
mechanics of the enzyme, with the parameter values κ = 100 kT∕nm2,
xe = 3Å. Left: 60mer spring. Right: 40mer spring. Adapted from Tseng
and Zocchi (2014).

From the viewpoint of nonlinear physics, the collective behavior of
coupled nonlinear springs is a fundamental topic. Indeed, the Fermi–Pasta–
Ulam–Tsengou problem stands at the foundation of modern nonlinear
dynamics. They considered different cases of nonlinearity, including a cubic
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FIGURE 3.31. Total elastic energy for the enzyme–DNA
construct according to the model (3.100), as a function of
enzyme deformation. The different curves correspond to
different values of the restoring force in the nonlinear regime,
fe (in steps of 0.1 kBT∕nm starting from the bottom curve
fe = 0.2 kBT∕nm). The DNA energy function used is (3.51),
and refers to a 40mer spring.

term in the energy (quadratic in the force: this nonlinearity corresponds to a
stiffening of the spring under elongation, and a softening under compression)
and also a piecewise linear force, this latter case quite similar to (3.100). In our
case, even the statics of the enzyme–DNA construction is nontrivial, for the
following reason. Figure 3.31 shows the total elastic energy of the enzyme–
DNA construct as a function of the enzyme deformation: this is simply adding
the two energy functions of figure 3.29. The different curves are for different
values of the enzyme’s restoring force in the nonlinear regime, fe. We see that
relatively small changes in this parameter around the value fe ≈ 0.7 kBT∕nm
result in a qualitative change of behavior of the system. For larger values of
fe, the system will spend most of the time near the undeformed state of the
enzyme, and corresponding large deformation of theDNA. For smaller values
of fe, the opposite will occur. It is likely that in the real enzyme–DNA system,
the proximity of a transition of this nature confers a particular sensitivity to
small changes in the stiffness of the DNA spring, a characteristic that could be
exploited for chemical detection purposes.
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4
Dynamics of Enzyme Action

4.1 Introduction

The fundamental property of enzymes that concerns us in this chapter is
their deformability. It allows enzymes to couple a chemical process to a
cycle of deformations of the molecule, which can perform a task in the
cell. This is the celebrated “molecular machine” aspect of enzymes. That
enzymes must be deformable molecules was first understood by Koshland
on purely biochemical grounds. Induced fit, allostery, and the propagation of
mechanical stresses through the molecular structure are separate concepts
only historically speaking. Conceptually, they are all manifestations of the
fundamental property that enzymes are deformable molecules, and more
specifically, that enzymes are generally deformed by binding–unbinding
events.

The dynamics of enzyme deformability presents universal features when
ensemble-averaged trajectories are examined. The mechanical response is
viscoelastic. To explain viscoelasticity we consider a one-dimensional model
which is also relevant to the experimental measurements on enzymes. We
imagine a chunk of material compressed by a moving plate; we apply a force
F (see figure 4.1). An elastic solid will respond with a deformation x ∝ F:

x = F∕κ. (4.1)

A viscous liquid will respond with a deformation speed ẋ ∝ F:

ẋ = F∕γ, (4.2)

where x is the position of the plate, κ is an elasticity parameter, and γ is
a dissipation parameter. We suppose that masses and frequencies are small
enough that inertial terms can be neglected. Then (4.1) and (4.2) are the

122
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FIGURE 4.1. A rheology setup.

equations of motion for the two cases (elas-
tic/viscous). With an applied oscillatory
force F = F0eiωt, the solution for the elastic
case is

x(t) =
F0
κ
eiωt , (4.3)

so the amplitude of the response,

|x| =
F0
κ
, (4.4)

is constant (independent of frequency). This is the response of a spring. For
the viscous case, the solution is

x(t) =
F0
iωγ

eiωt , (4.5)

so the amplitude decreases as 1∕ω:

|x| =
F0
ωγ

∝ 1
ω
. (4.6)

This is the response of a viscous flow. The dynamics (4.3) is non-dissipative:
the work done by the force F over a cycle is

W =
∫

Fdx =
∫

2π∕ω

0
Fẋ dt = 0 (4.7)

(we use the convention that the physical quantity is the real part of the corre-
sponding complex quantity). In contrast, the dynamics (4.5) is dissipative:

W =
∫

2π∕ω

0
Fẋ dt =

∫

2π∕ω

0
F0 cos(ωt)

(F0
γ

)

cos(ωt) =
πF2

0
γω

≠ 0, (4.8)

a consequence of the response (4.5) being π∕2 out of phase with the force
( 1i = e−iπ∕2).

A viscoelastic material responds to an applied force with a combination of
(4.1) and (4.2):

ẋ =
̇F
κ
+ F

γ
. (4.9)

For high frequencies ω ≫ ωc = κ∕γ this equation reduces to (4.1), whereas
for low frequencies ω ≪ ωc it reduces to (4.2). With an oscillatory applied
force F = F0eiωt, the solution of (4.9) is

x(t) =
F0
iωγ

(

1 + i ω
ωc

)

eiωt , (4.10)

 EBSCOhost - printed on 2/13/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use



124 CHAPTER 4

4

3

2

1

0
0.0 0.5 1.0 1.5 2.0

ω/ωc

F0/κ

| x |

FIGURE 4.2. Amplitude of the viscoelastic response
(Maxwell model). The graph is a plot of eq. (4.11).
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FIGURE 4.3. Phase of the viscoelastic response (in radians;
Maxwell model, eq. (4.12)).

that is, an amplitude of deformation

|x| =
F0
γω

√

1 +
( ω
ωc

)2
. (4.11)

The corner frequency ωc = κ∕γ separates the low frequency regime ω ≪ ωc,
where the response (4.11) is that of a viscous flow (|x| ≈ F0∕(γω)), from
the high frequency regime ω ≫ ωc, where the response is that of a spring
(|x| ≈ F0∕κ); see figure 4.2. The phaseφ of the response (4.10) also transitions
aroundωc: from (4.10) one finds

φ = − arctan
(ωc
ω

)

; (4.12)

see figure 4.3. Thus the response is dissipative at low frequency and non-
dissipative at high frequency.

In summary, a viscoelastic material behaves like an elastic solid at high
frequency and like a viscous fluid at low frequency. Equation (4.9) is the
Maxwell model of viscoelasticity.
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FIGURE 4.4. Mechanical response function measured for the
enzyme guanylate kinase. The rms deformation amplitude is
plotted vs. frequency of the applied force. Different data sets
are for different amplitudes of the driving force. The lines are
fits with the Maxwell model (4.11). Adapted from Qu, Landy,
and Zocchi (2012).

4.2 Enzymes are Viscoelastic

The response (4.11) was discovered in the ensemble-averaged deformation
mechanics of the enzyme guanylate kinase in 2011. In these experiments,
the enzyme molecule takes the place of the chunk of material in figure 4.1,
and the measurement is averaged over many replicas of the same system.
An oscillatory force is applied to the plate of figure 4.1, and the amplitude
(and phase) of the corresponding oscillatory deformation of the material
(the enzyme molecule) is measured. The ensemble-averaged deformation of
the enzymes is determined with sub-Å resolution; the response curves look
like the example shown in figure 4.4. There are two important features: the
plateau at “high” frequencies and the 1∕ω “divergence” at low frequencies.
The corner frequency ωc is of order ωc ≈ 2π × 20Hz ≈ 100 rad∕s in the ex-
periments, and the measurements line up with the form (4.11) to within
the experimental resolution of ∼ 0.2Å. In short, for a fixed amplitude of the
external force, the behavior vs. frequency is described by (4.9).

4.3 Nonlinearity of the Enzyme’s Mechanics

The Maxwell model (4.9) represents a linear system, in which the amplitude
of the response is proportional to the amplitude of the applied force, and the
phase of the response is independent of the force. This model describes the
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FIGURE 4.5. Mechanical response function measured for the
enzyme guanylate kinase. Voltage is proportional to the
amplitude of the applied oscillatory force, and is plotted vs.
rms amplitude of the resulting deformation. The two data sets
are for two different frequencies of the driving force (10Hz
and 50Hz). Adapted fromWang and Zocchi (2011).

behavior of the enzyme vs. frequency but not vs. force. Enzyme mechanics
is nonlinear, and displays a dynamic “softening transition” as a function of
force F0. This is seen in experiments where the frequency of the applied
oscillatory force is kept constant while the amplitude of the force is varied;
the response curve has a break at about 1Å rms deformation, as shown in
figure 4.5. The yield point moves with the frequency of the driving force,
as seen in the figure, that is, the linear elasticity regime (where |F| ∝ |x|) is
extended at higher frequencies. In the |x|–ω plane, this nonlinearity appears
as a shift in the corner frequency ωc as F0 is varied (figure 4.4). Namely, ωc
increases as F0 increases.

At present there is no comprehensive model for this viscoelastic transition,
for example in terms of a nonlinear equation that encompasses both the
frequency response of (4.9) and the behavior vs. F shown in figure 4.5.
What we do have is separate heuristic approaches for describing the two
main experimental aspects of the transition. The frequency dependence is
described by the viscoelastic model (4.9). The force dependence, specifically,
the dependence of ωc on the applied force (or, equivalently, the shift in the
yield force with frequency; see figure 4.5) is described by the concept of
barrier crossing in an energy landscape.

The model considers the conformational process in question (here, de-
forming the molecule beyond the yield strain) as similar to the problem of
escape over a barrier for a particle in a thermal bath. The latter problem
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FIGURE 4.6. Energy landscape for the
Kramers problem of escape over a
potential barrier.

was discussed by Kramers in 1940, in
the context of justifying the “transi-
tion state method” of expressing the
rate of a chemical reaction. Specifically,
the phenomena addressed by Kramers’
theory are the dependence of these
rates on temperature and “medium”
viscosity. In our context, the Kramers
model has been extended by Evans
and Ritchie to explain the phenomenon
that bond-rupture forces measured in
AFM pulling experiments depend on
the pulling speed.

For the situation of figure 4.6, the
rate of escape r for a particle initially in the bound state is

r = r0e−∆∕T , (4.13)

where ∆ = U(xt) −U(x0) is the barrier height. At first sight, this seems obvi-
ous: after all, in order to escape, the particle has to go through the position
x = xt (in the context of chemical reactions x = xt is referred to as the
“transition state”), and in a quasi-equilibrium situation, the probability of
the particle finding itself in the neighborhood of the transition state is
proportional to the corresponding Boltzmann factor, as in (4.13). However,
this is not such a simple problem. The several assumptions implicit in the
relation (4.13) restrict its range of validity. The relation (4.13) is meaningful
insofar as it describes the main temperature dependence of r (i.e., with r0
essentially temperature independent). One restriction must then be

∆∕T > 1, (4.14)

for in the opposite case the whole idea of a quasi-equilibrium process breaks
down. The problem must then be stated differently (namely, what is the rate
of escaping over the barrier for a particle initially placed at x0?). This brings
us to the form of r0. According to the Kramers theory, and for the case of large
viscosity (strong coupling to the medium),

r0 = 1
2π

√
−U ′′(x0)U ′′(xt)

m
τ, (4.15)

wherem is the mass of the particle and τ is the collision time representing the
diffusion process for the particle (i.e., τ∕m = µ is the mobility of the particle,
inversely proportional to the viscosity of the medium, µ = 1∕(6πηR) in the
Stokes regime;R is the size of the particle and η is the viscosity).We discussed
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this result in chapter 1. According to (4.15), r0 depends on the shape of the
potential, and r0 ∝ 1∕η (since τ ∝ 1∕η). Coming back to (4.13), we can add
the effect of a force f pulling the particle away from the bound state. The
main effect is to lower the barrier by an amount f δ where δ = xt − x0. So in
the presence of a force field,

rf = r0e−(∆−f δ)∕T = ref δ∕T . (4.16)

The escape rate increases exponentially with the force. Indeed, Evans and
collaborators first pointed out and proved experimentally that because of
(4.16), bond-rupture forces measured in AFM single molecule experiments
depend on the pulling speed. In the context of the viscoelastic transition, we
may consider the corner frequency ωc as the rate of breaking the specific
bond structure of the ground state conformation of the molecule (whereas
small strains within the ground state conformation correspond to the linear
elasticity response observed for ω ≫ ωc). In this case the same model (4.16)
predicts

ωc = ω0ef δ∕T , (4.17)

where f is the amplitude of the applied oscillatory force. Conversely, for the
critical yield force fc vs. frequency (figure 4.5) we expect

ln ω
ω0

=
fcδ
T

⇒ fc = T
δ
ln ω

ω0
. (4.18)

The relations (4.17), (4.18) display the right qualitative trend for the force
dependence of the corner frequency ωc measured in the experiments, or
equivalently, the frequency dependence of the yield force fc. However, the
(few) experimental measurements available indicate a stretched exponential
dependence, that is, ln(ωc∕ω0) increases faster than linearly in f .

4.4 Timescales

The viscoelastic transition is a materials property of enzymes, interesting
because it is, presumably, general. Is viscoelasticity also relevant for the
enzymatic cycle? For enzymes that display large conformational motion as
part of the catalytic cycle, it seems reasonable that viscoelasticity controls
the conformational dynamics. At the other end of the spectrum, enzymes
that display only minimal conformational change during the catalytic cycle
are basically similar to solid state catalysts, and though their rheological
properties may also be viscoelastic, this materials property is likely irrelevant
to their functioning. In the rest of the chapter we address the former group of
enzymes only: let us call them,with Koshland, “induced-fit enzymes.”Within
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this group, one must distinguish between the dynamics of conformational
motion—set by the rheological properties of the molecule—and the overall
rate of the enzymatic process. For some enzymes the chemical reaction
step may be the slowest timescale (the rate limiting step), for others the
conformational motion. Loosely speaking, for an optimized system these
two timescales would be comparable. The viscoelastic transition provides
a characteristic timescale 1∕ωc: conformational dynamics on timescales
τ ≥ 1∕ωc is controlled by the viscoelastic materials properties of the mole-
cule. Taking the example of guanylate kinase (GK), the corner frequency
measured in the nano-rheology experiments is ωc = 2πνc ≃ 120 rad∕s. How-
ever, we saw that this rate depends on the applied force, in this case, the
forces exerted by GMP on the enzyme structure, which drive the open-to-
closed conformational transition of the enzyme. The rate for the chemical
reaction step, kcat, is in the range 100–300Hz. The value of kcat is obtained
by analyzing the dependence of the overall rate of the enzymatic reaction
on substrate concentration (see chapter 3). One assumes Michaelis–Menten
(MM) kinetics, and kcat thus measured should perhaps more properly be
taken as a lower bound for the rate of the chemical reaction step. Similarly,
the measured kcat represents a lower bound for the rate of the open-to-closed
conformational transition. Putting everything together, from these timescales
we evince that it is plausible that, for GK, the open-to-closed conformational
motion during the catalytic cycle happens across the viscoelastic transition
seen in the nano-rheology experiments. Plausible, but not proven beyond
doubt. On the other hand, the yield deformation in the nano-rheology
experiments is 1Å rms amplitude or 2.8Å peak to peak. For this particular
molecule (GK from TB), the corresponding deformation obtained by com-
paring the X-ray structures of the open and closed forms is approximately
5Å (see figure 4.7). So again it appears that the open-to-closed confor-
mational transition during the enzymatic cycle happens in the viscoelastic
regime.

Finally, whether the mechanical steps or the chemical step are rate limit-
ing in the case of GK is not quite clear: the timescales could be comparable,
or the mechanics could be faster.

4.5 Enzymatic Cycle and Viscoelasticity: Motors

We can now give a representation of the enzymatic cycle based on the
viscoelastic transition. Our aim is to give a description that is general enough
and idealized to an extent that it clarifies the important concepts. Real,
individual enzymes will depart from this ideal cycle in various ways. Ideally,
our description would be in relation to real enzymatic cycles, similar to the
relation of the Carnot cycle to real engines.
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GMP

FIGURE 4.7. Two structures of the enzyme guanylate kinase (GK) from yeast.
On the left is the structure in the absence of ligands; on the right, the structure
with GMP bound. The enzyme is about 4nm across. This is an enzyme of the
induced-fit type: GMP binding drives a large conformational change of the
molecule. The structures are PDB codes 1EX6, 1EX7. Adapted from Qu, Landy,
and Zocchi (2012).

To fix ideas, we have in mind the example of GK and we consider only
one substrate for simplicity. The process we consider is then as follows:

1. The substrate “binds” (to the “open” form of the enzyme); this step is
diffusion limited and gives rise to the dependence of the enzymatic
speed on substrate concentration, captured by the Michaelis–Menten
description: speed ∝ 1∕(K∕[S] + 1), where [S] is the substrate
concentration and K is the Michaelis–Menten constant.

2. The forces exerted by the substrate on the different parts of the
enzyme (electrostatic, hydrogen-bonding, entropic forces arising
from a different organization of the hydration layer) drive the
open-to-closed conformational motion.

3. The chemical reaction takes place.
4. The products unbind.
5. The internal restoring force of the structure, in the absence of ligands,

drives the closed-to-open conformational motion; the enzyme comes
back to the initial state (or close to it).

It is good to remember that this chronology of events is, itself, a model. The
real physical systemmoves in a phase space of dimension ∼ 104 (consisting of
the momenta and coordinates of all the atoms of the enzyme and substrate
plus one or two shells of water molecules). The chronology above is a
qualitative representation of how the ensemble-averaged trajectory of the
system might look during the enzymatic cycle, as far as the position of the
atoms is concerned. Other ensemble-averaged quantities of interest during
the cycle are ⟨⃗p 2⟩, ⟨x⃗ 2⟩ for each atom (⃗p is the momentum, x⃗ is the position).
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τ
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FIGURE 4.8. The force eq. (4.21).

The cycle is very slow compared to
all thermalization processes within
the enzyme (the collision time for
atoms is a fraction of a ps; the heat
diffusion time across the enzyme
is τ ∼ δ2

D ≃ (4×10−7 cm)2
10−3 cm2∕s ≃ 10−11 s).

Thus it is reasonable to assume
that ⟨⃗p 2⟩ = 3T∕m for each atom,
that is, the structure is in thermal
equilibrium throughout the cycle.
On the other hand, ⟨x⃗ 2⟩ for each
atom will be varying in general throughout the cycle, reflecting the changing
local interaction strengths (“spring constants”) as the molecule deforms.
We are saying, simply, different parts of the molecule may be more or less
“floppy” at different stages of the enzymatic cycle. Correspondingly, there
are entropy terms in the free energy of the system that vary in the course of
the cycle; these terms are not small (see the argument about the entropy of a
spring, below).

Coming back to the chronology (1)→(5) above, note also that steps (4)
and (5) may actually occur in reverse order, or even “at the same time.”

Now we cast the chronology (1)→(5) in terms of viscoelastic mechanics.
Step (1) defines the initial time (t = 0) for the cycle; x(t) describes the
deformation of the enzyme, and obeys viscoelastic dynamics:

ẋ =
̇f
κ
+
f
γ
, (4.19)

where f is the force,

f = −𝜕F
𝜕x

, (4.20)

and F = F(x) is the free energy of the system. The energy F also depends
(in a stepwise fashion) on the presence or absence of bound substrates and
products. We consider step (2), and take for the force f the simplest form,
namely a step function:

f =
⎧
⎪
⎨
⎪
⎩

f0 for 0 < t < τ,

0 otherwise
(4.21)

(see figure 4.8). Namely, the substrate binds at time t = 0; it “pulls” the
structure towards the closed conformationwith a constant force; at time t = τ
the closed conformation is reached, which is a free energy minimum (zero
force). From (4.21),

̇f = f0[δ(t) − δ(t − τ)], (4.22)
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t

x(t)

FIGURE 4.9. The response eq. (4.26).

and thus,

ẋ =
f0
κ
[δ(t) − δ(t − τ)] +

f0
γ

(0 ≤ t ≤ τ).

(4.23)
Integrating (4.23) from 0 to t, we find,
for 0 < t < τ,

x(t) − x(0) =
f0
κ

+
f0
γ
t, (4.24)

while integrating (4.23) from τ − ε to τ + ε gives

x(τ + ε) − x(τ − ε) = −
f0
κ
. (4.25)

Finally, the trajectory is

x(t) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0 for t < 0,
f0
κ + f0

γ t for 0 < t < τ,

f0
γ τ for t > τ

(4.26)

(see figure 4.9). Thus the viscoelastic response to an impulsive force, such
as we envision the stress on the enzyme structure resulting from substrate
binding to be, is an elastic deformation f0∕κ followed by a “flow” of amplitude
(f0∕γ)τ, which is larger than the elastic deformation if (f0∕γ)τ > f0∕κ ⇒ τ >
γ∕κ, or τ > 1∕ωc in the language of the nano-rheology experiments. Thus
the dynamics of the conformational cycle is dominated by the viscoelastic
transition (as opposed to the linear elasticity regime) if the rate of the
open-to-closed transition is

rate = 1
τ
< ωc. (4.27)

To describe the entire cycle, we introduce a restoring force of the enzyme, g,
which in the absence of substrates or products drives the enzyme towards the
ligand-free (open) conformation. For simplicity, g is also constant:

g =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

−g0 for x > 0,

0 for x = 0,

g0 for x < 0.

(4.28)

 EBSCOhost - printed on 2/13/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use



DYNAMICS OF ENZYME ACTION 133

Now when the substrate binds, the total force is f0 − g0. The complete cycle
is represented as

f (t) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

f0 − g0 for 0 ≤ t < τ1,

−g0 for τ1 ≤ t < τ1 + τ2,

0 otherwise.

(4.29)

Equation (4.29) is the force profile to be used in (4.19); τ1 is the duration
of step (2) (open-to-closed transition), and τ2 is the duration of step (5)
(relaxation of the enzyme structure back to the open conformation, in the
absence of ligands). Integrating (4.19) with the force profile (4.29), noting
that

̇f = (f0 − g0)δ(t) − f0δ(t − τ1) + g0δ(t − τ1 − τ2), (4.30)

one obtains the trajectory

x(t) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

f0−g0
κ + f0−g0

γ t for 0 ≤ t < τ1,

− g0
κ + f0

γ τ1 −
f1
γ t for τ1 ≤ t < τ1 + τ2,

0 otherwise.

(4.31)

We can write the timescales τ1, τ2 in terms of the forces f0, g0. The amplitude
of the conformational motion is

xmax = x(τ−1 ) =
f0 − g0

κ
(1 +ωcτ1) (4.32)

or

τ1 = 1
ωc

( κxmax
f0 − g0

− 1
)

, (4.33)

while in order that the enzyme be back to the original state at the end of the
cycle (i.e., x(t > τ1 + τ2) = 0) we must have

τ2 =
f0 − g0
g0

τ1. (4.34)

In (4.33), κxmax is the elastic force if the conformational motion were all in
the elastic regime, while f0 − g0 is the actual force on the enzyme. Due to the
viscoelastic transition (see figure 4.5), κxmax∕(f0 − g0) ≫ 1. Then from (4.33),
(4.34) we obtain for the rates of the forward and backward conformational
motion,

⎧
⎪
⎨
⎪
⎩

1
τ1

= ωc
f0−g0
κxmax

,

1
τ2

= ωc
g0

κxmax
.

(4.35)
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The rates for the mechanical motion are set by the corner frequency of the
viscoelastic transition.

This mechanical cycle can be seen as an engine. To explore its dynamics
we apply a load fL to the backward (closed-to-open) motion, so the force
(4.29) is now

f (t) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

f0 − g0 for 0 ≤ t < τ1,

−g0 + fL for τ1 ≤ t < τ1 + τ2,

0 for t ≥ τ1 + τ2,

(4.36)

which gives the trajectory

x(t) =
⎧
⎪
⎨
⎪
⎩

f0−g0
κ + f0−g0

γ t for 0 ≤ t < τ1,

− g0
κ + fL

κ + f0−fL
γ τ1 −

g0−fL
γ t for τ1 ≤ t < τ1 + τ2.

(4.37)

Now the condition for τ2 is (usingωcτ1 ≫ 1, as before)

τ2 =
f0 − g0
g0 − fL

τ1, (4.38)

and finally (4.35) is replaced by

⎧
⎪
⎨
⎪
⎩

1
τ1

= ωc
f0−g0
κxmax

,

1
τ2

= ωc
g0−fL
κxmax

.

(4.39)

From (4.39) we identify g0 as the “stall force” of the mechanical cycle (for
fL → g0, 1∕τ2 → 0):

g0 = fstall. (4.40)

This quantity is directly measured in single molecule experiments on proces-
sive enzymes, notably motor proteins, and could in principle be measured
more generally for any enzyme of the “induced-fit” kind.

In the case τ2 ≫ τ1, which may be typical for motors under load, the total
duration of the mechanical cycle is

τ = τ1 + τ2 ≈ τ2 =
f0 − g0
g0 − fL

τ1, (4.41)

or equivalently an overall rate of

R = 1
τ2

= ωc
g0 − fL
κxmax

. (4.42)

Thus in this model the overall rate of the cycle goes to zero linearly with
the load fL. The maximum rate Rmax is obtained for fL = 0, and from (4.42),

 EBSCOhost - printed on 2/13/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use



DYNAMICS OF ENZYME ACTION 135

remembering thatωc = κ∕γ, one finds

Rmax =
fstall
γxmax

, (4.43)

that is, a general relation between the zero load rate of the cycle, the
amplitude of the conformational motion, and the dissipation parameter γ.

The work done on the enzyme by the force arising from the binding of the
substrate isW1 = f0xmax, while the work delivered by the enzyme against the
load isW3 = fLxmax, giving an efficiency

η =
W3
W1

=
fL
f0
. (4.44)

In this scenario fL < g0 < f0, and the efficiency can in principle be up to 1, but
at the price of an infinitely slow cycle (recall that for fL = g0 the backward,
closed-to-open motion stalls, while for g0 = f0 the forward motion stalls).
Also note that there is no “hydrodynamic” dissipation if one moves infinitely
slowly.

Let us come back to the duration of the cycle eq. (4.41) without assump-
tions on the relative magnitudes of τ1 and τ2. Formula (4.41) then reads

τ = τ1 + τ2 = 1
ωc

f0 − fL
g0 − fL

κxmax
f0 − g0

, (4.45)

or, in terms of the efficiency η = fL∕g0,

τωc =
κxmax
f0

1 − η
(1 − g0∕f0)(g0∕f0 − η)

, (4.46)

where

fL < g0 < f0 ⇒ η <

g0
f0

< 1. (4.47)

High efficiency (η ≈ 1) is obtained for fL ≈ g0 ≈ f0, in which case the cycle is
slow. Since g0∕f0 − η < 1 − η in general,

τωc >

κxmax
f0

1
1 − g0∕f0

. (4.48)

This equation shows that the duration of the cycle, in units of 1∕ωc, is set by
κxmax∕f0 ≫ 1 times a factor (1 − fstall∕f0)−1 (recall that g0 = fstall) which is of
order 1 for “small” stall forces but can be large if the stall force is large. Let
us find the condition that maximizes the rate of the cycle (minimizes τ) for a
given load: setting 𝜕τ∕𝜕g0 = 0 in (4.45), considering fL, f0 fixed, we find

g0 =
f0 + fL

2
, (4.49)
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so an enzyme set up for maximum speed under zero load has g0 = f0∕2 and
thus an efficiency

η =
fL
f0

<

g0
f0

= 1
2
, (4.50)

or

ηmax = 1
2
. (4.51)

The zero load rate is then

τωc =
f0
f0∕2

κxmax
f0∕2

= 4
κxmax
f0

, (4.52)

while with a load (using (4.49) in (4.45)),

τωc = 4
κxmax
f0 − fL

= 2
κxmax

fstall − fL
. (4.53)

How do the conclusions from this relaxation model compare to experi-
ments? We take the case of kinesin, a motor protein that “walks” along mi-
crotubules and is able to pull against a load; its mechano-chemical properties
have been studied extensively in beautiful singlemolecule experiments by the
Block group and others. In terms of the simplified process of this section,
step (1) corresponds to ATP binding, step (2) is driven by ATP binding, or
binding to the microtubule, or both, step (3) is ATP hydrolysis, and steps (4)
and (5) correspond to the “power stroke.” The kinesin head detaches from
the microtubule after step (5).

Kinesin is certainly a more complex enzyme compared to, say, guany-
late kinase: it walks on microtubules! However, some of the fundamental
aspects of the dynamics need not be very different. Both bind ATP and a
second ligand—GMP for guanylate kinase, the microtubule for kinesin. The
binding–unbinding of ligands drives a cycle of large conformational changes.
The difference in the chemical potential of substrates and products drives the
cycle in one direction. Obviously, kinesin has some “extra features,” including
“lever arms” that amplify the conformational motion, and two interacting
heads that ensure the molecule as a whole remains bound to the microtubule
while stepping. At our level of description, we regard these complications as
details that may or may not obscure the fundamental dynamics, which rests
on the materials properties of the protein.

In the language of eq. (4.42), the speed of the motor (at saturating ATP
concentrations) is

v = Rxmax = ωc
fstall − fL

κ
= 1

γ
(fstall − fL) (4.54)

(we use (4.42) rather than (4.53) in the belief that, for kinesin, τ2 ≫ τ1, i.e.,
the cycle is fast–slow). The speed goes to zero linearly with the load force fL.
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However, the experimental force–velocity curves for kinesin and other mo-
tors are not quite linear.

From (4.54) we have the relation for the maximum speed of the motor
(fL = 0),

vmax =
fstall
γ

(4.55)

(this result is independent of “lever arm length”). For kinesin, fstall ≈ 10pN
and vmax ≈ 1µm∕s; according to (4.55) this gives γ = 10−2 g∕s.

4.6 Internal Dissipation

The value of the dissipation parameter γ can be extracted—at least as an
order of magnitude—from the mechanical “nano-rheology” measurements
represented in figure 4.4. The parameter measured in the experiments is the
corner frequency ωc ≈ 100 rad∕s; with the interpretation ωc = κ∕γ, this is a
measurement of γ given a value for the elastic parameter κ. A consensus
value for κ is hard to pinpoint from the relatively few experimental measure-
ments, but as an order of magnitude this elastic constant lies in the range
10–103 pN∕nm. Choosing κ = 100pN∕nm one obtains

γ = κ
ωc

= 1 g∕s. (4.56)

There are two further, independentmechanical measurements of the dissipa-
tion parameter γ: the original AFM indentation experiments by the Hansma
group, reporting a value γ ≈ 10−2 g∕s, and an experiment by this author’s
group using a voltage-gated ion channel as both the rheometer and the
material under study; this study reports a value γ ≈ 1 g∕s.

For a macroscopic, isotropic material, one represents elasticity and dissi-
pation by Young’s modulusY and viscosity η. The enzyme is a heterogeneous
nanoparticle and, as a material, it cannot be scaled up; therefore the concepts
of Y and η are not operationally well defined. However, one can still talk of
Y and η as an order of magnitude. To relate κ and γ to Y and η one needs a
length scale. For an order of magnitude calculation, the appropriate length
scale is the square root of the contact area in the mechanical experiment used
to measure κ and η. The keyword here is the Hertz model for the contact
stresses. Using, then, the length scale

a =
√
Rδ, (4.57)

where R is the radius of the enzyme and δ is the indentation in the experi-
ments, we have

Y ∼ κ
a
, η ∼

γ
a

(4.58)
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for Young’s modulus and viscosity, respectively. Since R ≈ 2nm, δ ≈ 1Å, we
find a ≈ 0.5nm; let us take a = 1nm for simplicity in our estimates. Using
κ = 100pN∕nm we find

Y = κ
a

=
100pN∕nm

1nm
= 109

dyn
cm2 = 108 N

m2 . (4.59)

The mks unit of pressure is the Pascal (Pa), so the above estimate is
Y ∼ 100MPa. The range κ ∼ 10–103 pN∕nm thus corresponds to the range
Y ∼ 10MPa–1GPa for Young’s modulus. Similarly, using γ = 0.1 g∕s we find

η =
γ
a

=
0.1 g∕s
10−7 cm

= 106
g

cms
. (4.60)

In cgs units, the viscosity of water is ηw ∼ 10−2 g∕(cms), so as an order of
magnitude, the internal viscosity of the enzyme is

η ∼ 108ηw. (4.61)

The enzyme is, after all, a solid! The range γ ∼ 10−2–1 g∕s thus corresponds
to the range η ∼ 105–107 g∕(cms) = 107–109 × ηw. To summarize, the op-
erationally well-defined dissipation parameter γ, associated with enzyme
deformations, lies in the range

γ ∼ 10−2–1 g∕s. (4.62)

4.7 Origin of the Restoring Force g

The restoring force is g = −𝜕F∕𝜕x, where F(x) is the free energy in the
absence of ligands. The free energy F(x), and therefore g, has an energy and
an entropy component. The energy part comes from rearranging soft bonds
(e.g., hydrogen bonds) as x (the conformation) changes. The entropy part
comes from the following effect.

If the interactions that “hold” an atom or group of atoms (e.g., an amino-
acid side chain) “weaken,” the entropy increases, while if the interactions
“strengthen,” the entropy of that atom or group decreases. To see this, con-
sider the entropy of an atom held in position by a spring, at temperature T.
The Hamiltonian is

H =
p2

2m
+ 1

2
Kx2, (4.63)

wherem is the mass of the atom andK is the spring constant. Using a classical
calculation in the high temperature regime T > ℏω, ω =

√
K∕m (and in 1-D

for simplicity), the partition sum is

Z =
∫

+∞

−∞

dpdx
h

exp
(

−
(

p2

2m + 1
2kx

2
)

∕T
)

, (4.64)
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which is easily calculated to be

Z = T
ℏω

, whereω2 = k
m
. (4.65)

The free energy, energy, and entropy are therefore

F = −T lnZ = −T ln
(

T
ℏω

)

, (4.66)

E = T2 𝜕 lnZ
𝜕T

= T, (4.67)

S = E − F
T

= ln
(

T
ℏω

)

+ 1, (4.68)

or

S = ln
(
T
ℏ

√
m
k

)

+ 1. (4.69)

We see that a stiffer spring (larger k) corresponds to a smaller entropy. This
is not a small effect: the log term in (4.69) is typically larger than 1, as we can
see from the following estimate.

An effective value for k can be found from the thermal equilibrium
condition 1

2k⟨x
2⟩ = 1

2T ⇒ k = T
⟨x2⟩ , knowing (from Debye–Waller factors

for example) that typical fluctuations of atoms or groups of atoms (e.g.,
amino-acid side chains) in the folded structure at room temperature are
⟨x2⟩ ∼ (0.5Å)2. Let us then take, numerically, ⟨x2⟩ = r20 (where r0 = ℏ

2∕(mee2),
the Bohr radius). The argument of the log in (4.69) is then

T
ℏ

√
m
k

≃ T
ℏ

√

mr20
T

=

√

Tm
ℏ

2 r0
ℏ

2

mee2
=

√

T
e2∕r0

m
me

≃ 5. (4.70)

Here, m is the mass of the group of atoms held in position by the spring k,
and we have used T ≃ 25meV, e2∕2r0 ≃ 10 eV, m ≃ 12GeV (for 12C),
me ≃ 0.5MeV. Of course this entropy is even larger for largerm.

4.8 Models Based on Chemical Kinetics
(Fisher and Kolomeisky, 1999)

Another approach used to describe, for example, molecular motors and,
more generally, conformational transitions, is based on rate equations. The
continuum mechanics of the last sections is replaced by transition rates
between discrete states. Following Fisher and Kolomeisky, consider kinesin
walking along the microtubule (the “track”); let E𝓁(s) represent the enzyme
in state s and at the discrete position 𝓁 along the track, with 𝓁 an integer
(the actual position x𝓁 is such that x𝓁+1 − x𝓁 = d, with d the step size of the
motor). For example, if we consider three states, a reasonable assignment for
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s = 0, 1, 2would be E, E ⋅ATP, E ⋅ADP ⋅ Pi, where E is the enzyme. Then the
enzymatic cycle is described by the six transition rates

E𝓁(0)
u1
⇌
w1

E𝓁(1)
u2
⇌
w2

E𝓁(2)
u3
⇌
w3

E𝓁+1(0). (4.71)

The position of the enzyme is x = 𝓁d, but in the course of time, and for the
individualmotor, (4.71) is a stochastic process, sowemust consider ensemble
averages. For example, the average velocity v is given by

⟨x⟩ = vt (4.72)

(the motor starting from x = 0 at t = 0). Similarly, one can define a diffusion
constant D, describing the width of the probability distribution of x around
⟨x⟩, through

⟨
(x − ⟨x⟩)2

⟩
= 2Dt (4.73)

(at long times; the factor 2 is because we are in 1-D) One can derive exact
expressions for v and D in terms of the rates in (4.71), for any number of
states s one may want to consider. With respect to the viscoelastic model
of section 4.5, which deals with ensemble-averaged trajectories, we perceive
that the advantage of the more microscopic formulation (4.71) is that it
leads naturally to consider fluctuations, such as (4.73), that can actually be
measured in experiments. On the other hand, kinetic models of the form
(4.71) are rarely very predictive, especially as they become more elaborate
by adding more states, due to the large number of parameters. One basically
shifts the problem to the question of calculating the rates. Nonetheless, it is
instructive to follow this viewpoint. Let us therefore consider an even simpler
scheme: a two-states motor. Now E𝓁(0) represents the enzyme at site 𝓁, and
E𝓁(1) is the enzyme with ATP bound. The kinetic scheme is

⋯
u2
⇌
w2

E𝓁(0)
u1
⇌
w1

E𝓁(1)
u2
⇌
w2

E𝓁+1(0)
u1
⇌
w1

⋯ . (4.74)

To calculate the speed of the motor, consider a steady state situation where
the motor is in state 1 with probability p and in state 0 with probability q, and
p + q = 1. From (4.74), the “motor current” to the right is

j = u2p −w2q = u1q −w1p, (4.75)

from which we get

p =
u1 +w2

u1 + u2 +w1 +w2
, q =

u2 +w1
u1 + u2 +w1 +w2

, (4.76)

and from (4.75),

j =
u1u2 −w1w2

u1 + u2 +w1 +w2
. (4.77)
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This current is the rate for the process 𝓁 → 𝓁 + 1; the speed of the motor is

v = jd =
u1u2 −w1w2

u1 + u2 +w1 +w2
d. (4.78)

If u, w are the zero-load rates, (4.78) gives the zero-load velocity. More
generally, we can obtain the force–velocity curve from (4.78) by assuming
a dependence of the rates on the force. Since conformational changes are
involved, we may assume, within the barrier-crossing scenario,

⎧
⎪
⎨
⎪
⎩

ui(f ) = ui(0)e
−θ+i fd∕T

,

wi(f ) = wi(0)e
+θ−i fd∕T

,

(4.79)

where f is the load force and the θi’s are factors (|θ±i | ≤ 1) describing, for each
transition, the extent of conformational motion in the direction of the force,
scaled by d. At this level of description there is no a priori requirement on the
values of the θi’s, except for the overall constraint

θ ∶=
∑

i
(θ+i + θ−i ) > 0, (4.80)

because the load force f opposes the motion. Now we can insert (4.79) in
(4.78) and get an expression for the force–velocity curve v = v(f ). Even for a
two-steps motor, it depends on many parameters; depending on the choice
of θ±i ’s, the graph of v vs. f can be approximately linear, concave, convex, or
even non-monotonic! For this reason, the shape of the force–velocity curve
is not very informative with respect to the rate models.

Let us now examine the stall force fstall. It can be obtained with an argu-
ment very similar to Einstein’s original derivation of the Einstein relation.
Namely, we imagine adding an insurmountable barrier on the track. The
motor on average pushes against the barrier with a force fstall. If x is the
position on the track, counted as distance to the barrier, we will see below
that the stationary probability for the motor’s position is exponential:

p(x) ∼ e−κx∕d . (4.81)

With the same legitimacy as Einstein’s argument, we associate this probabil-
ity with a potential energy 𝜙(x):

p(x) ∼ e−𝜙(x)∕T , (4.82)

where

𝜙(x) = fstallx. (4.83)

From (4.81), (4.82), and (4.83) we obtain the stall force:

fstall =
T
d
κ. (4.84)
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To calculate κ in terms of the rates, and to verify the relation (4.81), we
refer to the kinetic scheme (4.74), consider a steady state situation with the
motor pushing against the barrier at 𝓁 = 0, and employ the notation p(𝓁) =
probability of the motor being in state 1 at position 𝓁 and q(𝓁) = probability
of the motor being in state 0 at position 𝓁. The motor occupies the space
𝓁 ≤ 0. We write that the total probability current out of state 1 at 𝓁 (i.e., E𝓁(1)
in (4.74)) is zero, and the same for state 0 (i.e., E𝓁+1(0) in (4.74)):

⎧
⎪
⎨
⎪
⎩

0 = 𝜕

𝜕t p(𝓁) = u1q(𝓁) +w2q(𝓁 + 1) − (u2 +w1)p(𝓁),

0 = 𝜕

𝜕t q(𝓁 + 1) = u2p(𝓁) +w1p(𝓁 + 1) − (u1 +w2)q(𝓁 + 1).
(4.85)

Rearranging and changing the index 𝓁 → 𝓁 + 1,

⎧
⎪
⎨
⎪
⎩

u2p(𝓁 − 1) = (u1 +w2)q(𝓁) −w1p(𝓁),

u1q(𝓁 − 1) = (u2 +w1)p(𝓁 − 1) −w2q(𝓁).
(4.86)

Given p(𝓁), q(𝓁), the finite differences eqs. (4.86) allowus to calculate p(𝓁 − 1),
q(𝓁 − 1) and so solve the problem recursively. Keeping in mind our boundary
conditions (p(𝓁 = 0) = A, q(𝓁 = 0) = B, where A, B are some nonzero values
that we do not need to specify), while p, q → 0 for 𝓁 → −∞, we make the
ansatz

p(𝓁) = Aeκ𝓁 , q(𝓁) = Beκ𝓁 . (4.87)

Substituting into (4.86) we obtain a linear system of equations for A and B,

⎧
⎪
⎨
⎪
⎩

(u2e−κ +w1)A − (u1 +w2)B = 0,

(u2 +w1)e−κA − (u1e−κ +w2)B = 0,
(4.88)

which may have nonzero solutions if

det

(
(u2e−κ +w1) −(u1 +w2)
(u2 +w1)e−κ − (u1e−κ +w2)

)

= 0. (4.89)

Equation (4.89) is a quadratic equation for e−κ with the two solutions
eκ = 1 ⇒ κ = 0, which does not satisfy the boundary conditions, and

eκ =
u1u2
w1w2

⇒ κ = ln
u1u2
w1w2

. (4.90)

In conclusion, the exponential distribution (4.87) solves the stationary prob-
lem with κ given by (4.90). From (4.84), the stall force is

fstall =
T
d
ln

( u1u2
w1w2

)

, (4.91)
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x
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FIGURE 4.10. Potential energy function for
the FRJ dynamical systemmodel.

where u, w are the zero-load rates.
With respect to real motors, this is,
of course, an estimate. If one knew,
within the model (4.74), (4.79), the
values of the many parameters, an-
other estimate for fstall can be de-
rived from the force–velocity curve
obtained from (4.79), (4.78). It is an
interesting question whether a gen-
eral relation can be found between
the stall force and a set of opportune
zero-load parameters of the motor.
This is an open question; neither (4.91) nor (4.55) nor any other present
model has thermodynamic (meaning general) validity.

4.9 Different Levels of Microscopic Description

In the previous sections we took the “thermodynamic” approach of writing
equations for the ensemble-averaged trajectories of the system. The goal
of statistical mechanics is, of course, to start from the particles and their
interactions, which in this case would be the atoms constituting the en-
zyme, and calculate probability distributions and ensemble averages. For
a heterogeneous system with many components, such as the enzyme, this
microscopic description must be approached by MD simulations. However,
other, intermediate levels of description may also be useful. As an example,
we briefly discuss the Fogle–Rudnick–Jasnow (FRJ) heuristic model for
a dynamical viscoelastic transition. It is a very simple “energy landscape”
model. To set the stage, we imagine grabbing the enzyme at two locations
on its surface, of relative position x(t), and exert forces f (t). This situation
corresponds to the nano-rheology experiments and, for the statics, to the
experiments with the DNA spring. The “microscopic model” for the degree
of freedom x(t) consists of a potential energy function U(x) that reflects the
existence of a softening transition in the mechanics beyond linear elasticity
(figure 4.10). We represent the dynamics of the degree of freedom x as a
massless “particle” moving in the potential U , subject to the random force of
thermal fluctuations and a corresponding dissipation. If we include thermal
noise, we must include dissipation also, because the two phenomena have
the same microscopic origin, as expressed in the fluctuation–dissipation
theorem. This is the Langevin dynamics approach. The particle is massless
because we will be exploring only low frequency dynamics, where inertia is
negligible. Also, we may of course add an external force f (t). The potential
energyU(x) is really a free energy and depends on temperature:U = U(x,T).
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FIGURE 4.11. Phase diagram for the FRJ
dynamical system. Adapted from Fogle,
Rudnick, and Jasnow (2015).

Now, the spirit of the FRJ model
is that rather than thinking of U(x)
as an energy landscape that somehow
mirrors the enzyme structure, it seeks
simply to define a minimal dynami-
cal system that exhibits a viscoelas-
tic transition. The focus is then on
the characteristics of this transition.
This reflects the traditional approach
of condensed matter physics, where
phase transitions come in certain uni-
versality classes, which can therefore
be explored through simplified model
systems. Their dynamical system is a
driven, damped, massless, nonlinear

spring. Here, U(x) is the spring’s potential energy, and its nonlinearity
(figure 4.10) reflects a softening of the system beyond the parabolic linear
elasticity regime. Explicitly,

U(x) =
⎧
⎪
⎨
⎪
⎩

1
2κx

2 for |x| ≤ 1,
κ
2 + F0|x| for |x| > 1,

(4.92)

that is, a harmonic spring for small strain and a constant restoring force
F0 beyond a yield point |x| = 1 (the coordinate x is assumed appropriately
rescaled). The FRJ dynamical system is

dx(t)
dt

= 1
γ

{

− 𝜕

𝜕x
U[x(t)] + A sin(ωt)

}

, (4.93)

where A is the amplitude of the external sinusoidal drive. This deterministic
system turns out to be quite interesting in its own right, as it exhibits a
surprising complexity of dynamical phase transitions. Figure 4.11 is a sketch
of the phase diagram in the regime ω < ωc ≡ κ∕γ (κ is the curvature of the
parabolic potential (4.92)). In region I, the steady state, periodic solutions of
(4.93), (4.92) are nearly sinusoidal and nearly in phase with the drive (i.e.,
essentially non-dissipative); in region II, the solutions are distorted (non-
sinusoidal), out of phase with the drive (i.e., dissipative), and much larger in
amplitude. This is shown in the time traces of figure 4.12, where the solid line
corresponds to parameter values just inside region I (namely, 1∕A = 0.53),
while for the dashed line we are just inside region IV (1∕A = 0.51); F0 = 0.6
for both traces.

These solutions are symmetric about x = 0 in the sense that the particle
spends the same amount of time in the half-space x > 0 as in the half-space
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FIGURE 4.12. Steady state solutions for the FRJ
dynamical system (4.92), (4.93): just inside region I of
the phase diagram (1∕A = 0.53, solid line), and just
inside region IV (1∕A = 0.51, dashed line); F0 = 0.6 for
both cases. Adapted from Fogle, Rudnick, and Jasnow
(2015).
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FIGURE 4.13. A pair of steady state, asymmetric
solutions for the FRJ dynamical system in region II of
the phase diagram (1∕A = 0.45, F0 = 0.1). The dashed
line is a dynamically unstable symmetric solution.
Adapted from Fogle, Rudnick, and Jasnow (2015).

x < 0. Specifically, these solutions are symmetric under the transformation
x → −x, t → t + π∕ω, that is, they obey x(t) = −x(t + π∕ω): the same sym-
metry as a sine wave. In regions II and III, in contrast, the stable, steady
state solutions are skewed, with the particle, for example, spending most
of the time in the region x > 0. An example of time traces is given in
figure 4.13, which also shows that these symmetry-breaking solutions come
in pairs. For each solution with x > 0 on average, there is a corresponding
solution with x < 0 on average. The reason is the symmetry of the equation
of motion. Given (4.92), the term −𝜕U∕𝜕x ≡ f (x) in (4.93) has the symmetry
f (−x) = −f (x), while sin(ωt + π) = − sin(ωt). Therefore, the transformation
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t → t + π∕ω in (4.93) leads to

d
dt
x(t + π∕ω) = 1

γ
{
− f [−x(t + π∕ω)] − A sin(ωt)

}
, (4.94)

and writing dx∕dt = −d(−x)∕dt we see that −x(t + π∕ω) satisfies the same
equation as x(t).

Focusing now on the nature of the transitions between the different
regions in the phase diagram, one can define a response amplitude I by

I2 = ω
2π ∫

2π∕ω

0
x2(t)dt, (4.95)

which has the advantage that it can be unambiguously decomposed into a
dissipative part Id and non-dissipative (“elastic”) part Is: I2 = I2d + I2s , with

Id =
√
2 ω
2π ∫

2π∕ω

0
x(t) cos(ωt)dt. (4.96)

The right-hand side of (4.96) projects the solution x(t) onto the out-of-phase
vector cos(ωt); it is referred to the sine wave drive in (4.93). What remains,
which is not equal to

∼
∫

2π∕ω

0
x(t) sin(ωt)dt (4.97)

because this is a nonlinear system, is non-dissipative. Namely, writing

x(t) =
√
2 Id cos(ωt) +

[

x(t) −
√
2 Id cos(ωt)

]

≡ xdiss(t) + xel(t), (4.98)

one has that the dissipation (force times velocity integrated over a cycle) for
the component xel is zero:

∫

2π∕ω

0
ẋel(t) sin(ωt)dt = 0, (4.99)

that is, the dissipation part of the response is entirely contained in xdiss(t)
in (4.98).

The response amplitude I (and its dissipative and non-dissipative compo-
nents) provides an insightful characterization of the transitions. It is found
that these are discontinuous (“first order”) if the softening transition in the
potential is abrupt, as in (4.92). For example, I as a function of the drive
amplitudeA has a discontinuitywhen crossing the phase line between regions
I and II in figure 4.11. On the other hand, if the softening transition in
the potential is smooth, the discontinuity in I disappears and the transition
becomes continuous.

To summarize, a nonlinear spring where the nonlinearity consists of a
softening transition as in (4.92) gives rise to a very interesting dynamical
system exhibiting dynamical phase transitions reminiscent of the sharp vis-
coelastic transition observed in the nano-rheology experiments on enzymes.
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FIGURE 4.14. Mapping from gene to structure in the Tlusty–Libchaber–Eckmann (TLE)
model of information flow for allosteric dynamics in enzymes. Adapted from Tlusty, Libchaber,
and Eckmann (2017).

4.10 Connection to Information Flow

Like all biological structures, enzymes are engineered by evolution. “Under-
standing” enzymes means not only understanding the materials properties
of the molecule and its dynamics, but also understanding the information
flow that created it, and ultimately the true information content of the
structure. For an engineered structure, one cannot divorce the properties
from the design. Large conformational motion in enzymes often corresponds
to a connected region of high strain inside the molecule, such as a shear
plane. Tsvi Tlusty and collaborators address the information content of such
structures through the following model. Visualize the folded polypeptide
chain as a string of beads (amino acids) wrapped in several turns around the
surface of a cylinder (figure 4.14).

The bottom of the cylinder represents a patch of surface of the enzyme
(say the “lower hemisphere”), the top another patch of surface (“upper
hemisphere”); in between is the interior of the enzyme, where each amino
acid interacts with the five nearest neighbors (NNs) immediately below it.
The interaction is either on (connected) or off (disconnected). In sequence
space, the structure is coded for by five-digit binary codons where each “1”
corresponds to a connection to the corresponding NN (and “0” means no
connection). The relation between structure andmechanics is defined by the
following rules. In a given structure, we define two kinds of amino acids with
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respect to mechanics: rigid (light gray) and fluid shearable (dark gray). Rigid
applies to those that connect to at least two rigid neighbors in the row below.
Fluid shearable describes those that are not rigid and for which at least one
of the three NNs below is fluid shearable. One perceives that there is then
also a third mechanical type (intermediate gray): call fluid non-shearable, for
example, a disconnected amino acid (codon 00000) surrounded by rigid ones.
In the model, a connected fluid-shearable region extending from bottom to
top represents a shear plane allowing large conformational motion and, more
specifically, an allosteric connection between the bottom and top surfaces.

In terms of information flow, one starts with a prescribed fluidity pattern
at the bottom surface, and a random gene. Evolutionary pressure is rep-
resented by a target fluidity pattern for the top surface, and the following
evolutionary process: a random one-digit mutation of the gene is kept for the
next generation except if it is deleterious with respect to the target fluidity
pattern of the top. Conceptually, we are asking the system (the protein plus
the evolutionary algorithm) to solve the following problem: given a “soft
binding site” (of the induced-fit type) at the bottom, find a structure that
mechanically connects it to a prescribed soft binding site at the top. For a real
enzyme there are of course additional constraints (e.g., the global stability of
the structure), but the spirit here is to capture the essential information flow
from gene to structure that may give rise to an allosteric enzyme.

Tlusty and collaborators consider a protein of ∼ 500 amino acids, corre-
sponding to a gene length of 5 × 500 = 2500 “bases.” The number 2500 is also
the dimension of gene space (the number of coordinates, which are binary
valued), while the total number of elements of gene space (and also configu-
ration space, since we have a one-to-onemapping) is 22500 ≈ 10753. Such large
numbers show up in the realm of games, for the trivial reason that even a
relatively small number of consecutive decisions live on a tree with many
branches. For chess, an estimate could be∼ 1080 branches (there are 10 × 10 =
102 possibilities for each pair of moves and a typical game of 40 moves gives
a tree with 102×40 branches). However, the TLE protein takes typically ∼ 104

moves to win the game, that is, to find a solution as in figure 4.15.
For a given input–output problem, they explored ∼ 106 random initial

conditions giving rise to a similar number of different solutions. To character-
ize the statistics of these solutions, one can look at the dimension of the space
of solutions. The dimension is estimated by the box counting algorithm:
given an appropriate measure of distance λ between solutions, one counts
the number of pairs of solutions differing by less than λ:N(λ); the slope of the
graph of logN(λ) vs. log λ in the scaling region gives the dimension D. The
result is that, in sequence space, the dimension of the set of solutions is still
large: D ≥ 150. But in configuration space, the dimension is dramatically re-
duced:D ≈ 9. Inwords, the genes appear randomwhile the structures are not.
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FIGURE 4.15. One solution of the TLEmodel that evolved from a random gene.
Adapted from Tlusty, Libchaber, and Eckmann (2017).

The physical meaning of the configurations that solve the input–output
problem is that along the channel of fluid-shearable residues connecting
the bottom and top binding sites, the structure is easily shearable, with the
part on one side of the divide moving essentially like a rigid body with
respect to the other side. This kind of motion, involving strain localized to
a shear plane or a “hinge” region, is indeed observed among induced-fit-
type enzymes, by comparing their X-ray structures with and without ligands.
One may also ask whether the linear elasticity response of the structure
bears some resemblance to these large amplitude nonlinear deformations.
The answer is yes. The situation is somewhat analogous to hydrodynamic in-
stabilities such as viscous fingering, Rayleigh–Bénard convection, and many
other examples where linear instability determines one parameter—the most
unstable wavelength—which is reflected to some extent in the subsequent
nonlinear pattern, even though the dynamics of the large amplitude nonlinear
solutions is very different from the dynamics at onset of the instability. In
the next section we address the linear elasticity analysis of a structure such as
figure 4.15, and, following the TLE model, briefly touch upon the extension
of normal mode analysis used to describe the statistical properties of the
solutions giving rise to allosteric channels as in figure 4.15.

4.11 Normal Mode Analysis

Small elastic deformations of an object with an irregular shape, such as
the enzyme of figure 4.7, could be analyzed by solving the equations of
continuum elasticity numerically, which implies replacing the continuum
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volume of the object with a discretized lattice. A similar but simpler approach
is to replace the enzymewith a network of pointmasses connected by springs.
The masses replace the individual atoms or groups of atoms in the structure;
the springs connect each mass with its nearest neighbors suitably defined.
Evidently, different degrees of coarse graining can be implemented. These
models are referred to as Gaussian network models. We now recall the
notion of normal modes. In general, for a system of masses bound together
in a solid state we have a potential energy U(x1, x2,… , xN ) and a kinetic
energy

∑N
i=1

1
2miẋ2i , and equilibrium positions x⃗0 = (x01, x

0
2,… , x0N ); the xi are

coordinates of the masses. Expanding U around the equilibrium position,
in terms of the deviation from equilibrium qi ≡ xi − x0i (which are small
quantities), we have

U(q1,q2,… ,qN ) = U(⃗0) + 1
2
∑

i,j

𝜕

2U
𝜕qi𝜕qj

|
|
|
|q⃗=⃗0

qiqj +⋯ , (4.100)

and since ẋi = q̇i the Lagrangian of the system to this order is

L(q, q̇) =
∑

i

1
2
miq̇2i −

1
2
∑

i,j
kijqiqj, (4.101)

where

kij =
𝜕

2U
𝜕qi𝜕qj

|
|
|
|q⃗=⃗0

= 𝜕

2U
𝜕xi𝜕xj

|
|
|
|x⃗=x⃗0

. (4.102)

This is the Gaussian or harmonic approximation. The equations of motion
are obtained from

d
dt

𝜕L
𝜕q̇i

− 𝜕L
𝜕qi

= 0 (4.103)

∶ miq̈i +
1
2
∑

j
kijqj = 0. (4.104)

For illustration purposes, we take the simplest situation: two masses in 1-D
connected by a spring. Then

U(x1, x2) = 1
2
k(x2 − x1 − a)2, (4.105)

where x1, x2 are the positions of the masses m1, m2, and a is the equilibrium
distance between them:

0 = 𝜕U
𝜕x1

= 𝜕U
𝜕x2

⇒ x2 − x1 = a. (4.106)

Taking coordinates q1 = x1, q2 = x2 − a the Lagrangian is

L = 1
2 (m1q̇21 +m2q̇22) −

1
2k(q1 − q2)2, (4.107)
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and one obtains the equations of motion

⎧
⎪
⎨
⎪
⎩

m1q̈1 − k(q2 − q1) = 0,

m2q̈2 + k(q2 − q1) = 0,
(4.108)

which we can write in matrix form

d2

dt2
M

(
q1
q2

)

+ K

(
q1
q2

)

= ⃗0 (4.109)

or
d2

dt2
Mikqk + Kikqk = 0, (4.110)

where

M =

(
m1 0
0 m2

)

, K =

(
k −k
−k k

)

. (4.111)

With the ansatz

qk = Akeiωt , (4.112)

eq. (4.109) becomes

̃M

(
A1
A2

)

= ⃗0, (4.113)

where

̃M =

(
−ω2m1 + k −k

−k −ω2m2 + k

)

. (4.114)

From (4.113) we see that the eigenfrequencies of the problem are found from

det ̃M = 0. (4.115)

The corresponding solutions of (4.113), that is, the eigenvectors (A1,A2), are
the normal modes, which perform simple harmonic oscillations according to
(4.112).

For the present case, (4.115) gives

m1m2ω4 − k(m1 +m2)ω2 = 0 (4.116)

⇒ ω = 0 or ω =

√

k
µ
, µ =

m1m2
m1 +m2

. (4.117)

For the zero eigenvalue, from (4.113) we find

A1 = A2, i.e., q1 = q2 ⇒ x2 − x1 = a. (4.118)
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This is a translational mode (uniform translation of the center of mass of the
system, with no oscillation). For the nonzero eigenvalue we find

A2 = −
m1
m2

A1, i.e.,
⎧
⎪
⎨
⎪
⎩

x1(t) = A cos(ωt),

x2(t) = −Am1
m2

cos(ωt).
(4.119)

This is a simple harmonic oscillation of the coordinate ( 12x1 −
1
2
m2
m1

x2), with
the center of mass at rest.

Coming back to the general equation (4.104), for the special case that the
masses are all the same (mi = m for all i), with the same ansatz (4.112) we find

KijAj = mω2Ai (Kij =
1
2kij). (4.120)

The algorithm is then to find the eigenvalues λi of the matrix K: the eigen-
frequencies are given by λi = mωi and the corresponding eigenvectors ⃗Ai
represent the normal modes.

For a spring network representing the structure in figure 4.7, from this
analysis one would find that one of the low frequency normal modes, when
represented with a “large” amplitude (much beyond the physical linear-
elasticity regime of the structure), corresponds to a deformation roughly
similar to the conformational transition shown in the figure. Thus the linear
elasticity analysis gives an indication of the kind of large amplitude defor-
mations of the structure that may occur for the real enzyme. However,
the dynamics of the actual conformational motion is completely different.
The smallest eigenfrequencies one obtains using realistic values for spring
constants and masses are many orders of magnitude larger than the actual
rates of large conformational motion. We can see this by considering a cube
of elastic material of size L ∼ 5nm (the size of the enzyme). Elastic waves in
this object obey the wave equation

𝜕

2u
𝜕x2

− 1
c2

𝜕

2u
𝜕t2

= 0, c ∼

√

Y
ρ
, (4.121)

where u(x, t) is the displacement field, and we do not distinguish longitudinal
and transverse waves for this order of magnitude argument; Y is Young’s
modulus and ρ is the density; c is the speed of sound. Considering a plane
wave solution of (4.121),

u(x, t) = A sin(kx −ωt), ω = ck, (4.122)

the fundamental mode corresponds to the longest wavelength:

λmax = 2L ⇒ ωmin = 2πc
λmax

= π c
L
. (4.123)

Using for Young’s modulus a lower-end value,

Y ∼ 10MPa = 108 dyn∕cm2
, ρ ∼ 1 g∕cm3

, L = 5nm, (4.124)
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we find c ∼ 104 cm∕s and ωmin ∼ 1012Hz. Normal mode frequencies of even
the “soft modes” are in the THz region (corresponding to the far infrared of
the electromagnetic spectrum), while rates for large conformational motion
are of order ∼ 103Hz.

With the structure of figure 4.15, a similar normal mode analysis of any
one specific solution would return soft modes corresponding to shear motion
along the fluid-shearable channel. There are, of course, many such solutions;
Tlusty et al. explore ∼ 106 of them. The question arises of how to characterize
the set of solutions statistically. Beyond the dimension of the set, discussed
before, it is interesting to deploy a generalization of the normal mode analysis
of this section, called singular value decomposition (SVD).Without detailing
the math, the general idea as applied, for example, to the set of solutions in
sequence space is as follows.

A solution is defined by a string of 103 “bases” (we use round numbers
here), a base being either 0 or 1. The set of 106 solutions is thus represented
by 106 binary vectors with 103 components. The 106 × 103 rectangular matrix
formed with the components of these vectors can be “diagonalized,” yielding
eigenvalues and eigenvectors that describe the structure of the correlations
in the set. We leave the reader to play with the basic observation that given
a rectangularm × nmatrix A (m > n), the matrix AtA is a square n × nmatrix.
The result of this analysis for the set of solutions both in sequence space and
configuration space is that there are 8–9 isolated “soft modes” apart from
the near-continuum expressing a near-random distribution. This number
corresponds to the dimension of the space of solutions.

4.12 Many States of the Folded Protein: Spectroscopy

The deformability of enzymes corresponds, in atomic structural terms, to
the availability of many different conformational states for the folded struc-
ture of the protein. We are not talking about elastic modes here: these
are common to all solids, and one does not refer to different conforma-
tional states corresponding to the presence of a sound wave in the solid.
In contrast, the relation between conformational states and deformability
of enzymes is similar to the relation between the presence of defects and
plastic deformations in macroscopic crystalline solids. Different distributions
of defects could be called different “conformations” of the solid, and it is the
motion of these defect lines and walls (i.e., the switching between different
“conformations”) that controls the dynamics of plastic deformations. The
notion that the folded protein can explore many different conformational
states was dramatically demonstrated in the seventies, experimentally by the
group of Frauenfelder, and numerically by theMD simulations of Karplus and
collaborators.
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In the experiments, the time course of rebinding of oxygen (and also
carbon monoxide) to the heme group of myoglobin (Mb) after flash pho-
tolysis is followed spectroscopically (most simply by absorption in the blue
region of the visible spectrum) in a wide temperature range, from 40K to
room temperature. There are several steps in the rebinding process, but in
the temperature region 40–200K one barrier-crossing process dominates.
Here the sample is in a 3:1 glycerol–water mixture, and below the glass
transition temperature of the solvent. The key observation is that the re-
binding kinetics is non-exponential (and rather close to a power law at
any given temperature). At higher temperatures (above 200K), the same
process shows regular exponential kinetics. The non-exponential kinetics of
rebinding is interpreted in terms of a distribution of barrier heights. Different
conformations of the protein give rise to different barrier heights seen by
the ligand in the process of rebinding to the heme. At low temperature,
each protein molecule is frozen in a particular conformation, so the sample
is effectively heterogeneous. For a given barrier height ε, the rate k for the
ligand to move across it is given by the Arrhenius factor

k = k0e−ε∕T . (4.125)

In the course of time, the fraction of Mb molecules that have not rebound to
a ligand (i.e., the probability that anMbmolecule is ligand-free at time t after
flash photolysis at time 0) is

f1(t, k) = e−kt . (4.126)

With a “frozen” distribution of barriers g(ε) (where g(ε)dε is the probability
that the barrier height is between ε and ε + dε), the fraction of ligand-free
molecules becomes

f (t) =
∫

∞

0
dε g(ε)f1(t, k), (4.127)

with f1 given by (4.126) and the relation between k and ε given by (4.125).
Changing variables in the integral from ε to k (with dε = −T dk∕k) one can
write

f (t) = T
∫

k0

0
dk

g[ε(k)]
k

e−kt ≈ T
∫

∞

0
dk

g[ε(k)]
k

e−kt , (4.128)

the last approximate equality holding because k0t ≫ 1 throughout the exper-
imental data. Figure 4.16 shows experimental measurements for CO (upper
half) and O2 (lower half) rebinding to myoglobin (Mb) in the temperature
range 40–160K. The graph is log-log, showing that the dynamics follows
approximately a power law at any given temperature. For comparison, an
exponential function is shown by the dashed line.

One may wonder whether this glassy dynamics is forced by the sol-
vent, which is itself a glass. The understanding is, however, that the glassy
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FIGURE 4.16. Spectroscopic measurements (absorption at 436nm) of the time course of CO and
O2 rebinding to Mb after flash photolysis. The sample is in a glycerol–water mixture which is
solid (below the glass transition temperature) at the temperatures shown. The log-log plot
shows that the rebinding dynamics is non-exponential, and follows approximate power laws
∼ (1 + t∕t0)−n with a temperature-dependent exponent (solid lines). The dashed line shows an
exponential function for comparison. Adapted from Austin et al. (1975).

solvent traps and freezes theMbmolecules into different conformations. The
observed dynamics is the dynamics of ligand rebinding to this heterogeneous
population ofMbmolecules, and not the dynamics of conformational motion
of the proteins or the surrounding solvent, which are frozen.

The different conformations into which the Mb molecules are trapped
are represented by a distribution of barriers for ligand rebinding, g(ε). From
(4.128) we see that the experimentally measured function f (t) is the Laplace
transform of the function Tg[ε(k)]∕k; the distribution g can therefore be
(approximately) obtained from the experimental data at a single temperature
T by finding a function whose Laplace transform approximates f (t). The
g(ε) obtained in this way is shown in figure 4.17 for three different cases.
Figure 4.18 shows again themeasured f (t) for CO rebinding (the same data as
in figure 4.16), but the lines are now calculated from (4.127):

f (t) =
∫

∞

0
dε g(ε)f1(t, k) =

∫

∞

0
dε g(ε)e−k(ε)t , (4.129)

where k = k(ε) is given by (4.125). The result is that a single, temperature-
independent barrier distribution g(ε) accounts for all the different experimen-
tal curves for 40 ≤ T ≤ 160K.
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FIGURE 4.17. The experimentally determined barrier distribution g(ε) for three different cases
as indicated. Adapted from Austin et al. (1975).
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FIGURE 4.18. Rebinding dynamics of CO to Mb. Same data as in figure 4.16, but the lines for the
different temperatures are now calculated according to (4.129), using the same barrier
distribution g(ε), shown in figure 4.17. Adapted from Austin et al. (1975).

In summary, non-exponential ligand rebinding dynamics at low temper-
ature is indicative of a distribution of conformational states for the folded
protein. At room temperature, the same rebinding dynamics is in fact ex-
ponential. The reason is the fast exchange between different conformational
states at room temperature. If the relaxation between different conforma-
tional states is faster than any rebinding rate, then the barrier distribution
g(ε) remains the same at all times during the rebinding experiment. This
scenario is opposite to the case of “frozenmolecules” (no relaxation at all) just
discussed, where the barrier distribution among the ligand-free molecules
is g(ε) at time 0, but it changes with time because the sample gets depleted
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of molecules with low barriers. In the fast relaxation case, the probability of
occurrence of a barrier between ε and ε + dε at time t is

df = f (t)g(ε)dε. (4.130)

These molecules rebind with rate k(ε) = k0e(−ε∕t), thus

d
dt

(df ) = −k(ε)f (t)dε. (4.131)

Integrating over ε,

d
dt
f = −f (t)

∫

∞

0
dε k(ε)g(ε) = − ̄kf (t), (4.132)

so that the dynamics is again exponential,

f (t) = e− ̄kt
, (4.133)

with an effective rate

̄k =
∫

∞

0
dε k(ε)g(ε). (4.134)

In the energy landscape picture, the many different conformational states
produce a “rugged” or “hierarchical” landscape (figure 4.19), which has the
following consequence. The diffusion dynamics of a particle in the potential
of figure 4.19, which stands for the diffusive conformational dynamics of the
protein, consists of confined diffusionwithin region I and occasionally a flight
into region II, and so on. In terms of rates, there are (at least) two very
different ones: a (fast) rate for moving between different states within basin I
(or within basin II), and a (slow) rate for moving between basins I and II.
Herein lies the connection between the spectroscopic experiments, which
underlie the energy landscape picture, and the nano-rheology experiments,
which underlie the continuum mechanics description. Namely, a solid that
can be characterized by an energy landscape similar to figure 4.19 would
in essence be viscoelastic: on short timescales (compared to the Maxwell
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relaxation time 1∕ωc) it deforms elastically within basin I, or basin II, etc.
On long timescales, in the presence of an applied stress, it “flows” be-
tween different basins. In essence, this is the picture proposed in 2007 by
Onuchic and collaborators based on their MD simulations of conformational
motion in adenylate kinase. In their terminology, the viscous flow part is
called “cracking,” and it connects two distant conformations of the enzyme,
specifically the open and closed forms. In fact, the concept that the folded
protein may be regarded, to some extent, as fluid, was introduced very early
on, through the pioneering MD simulations of a whole protein by Karplus
and collaborators. However, the story is not closed yet because we do not
have, at present, a complete quantitative theory relating to all aspects seen
in the experiments and MD simulations. A “standard model” of enzyme
conformational dynamics is yet to come.

4.13 Interesting Topics in Nonequilibrium Thermodynamics
Relating to Enzyme Dynamics

We discuss the Langevin equation with moving parameters (Schmiedl and
Seifert, 2007). The setting is one where a thermodynamic system is taken
from one equilibrium state to another by changing external thermodynamic
parameters (e.g., volume, temperature) according to a specific protocol in
time (i.e., the time course of the external parameters is imposed). One can
ask what the average dissipation associated with a particular protocol is.
“Average” refers to the case of a small system, where fluctuations make the
dissipation into a stochastic quantity.

We consider a Brownian particle in 1-D, trapped by a potential U(x, λ);
x is the coordinate of the particle, λ is a (set of) parameter(s) describing
the potential (e.g., strength and location). Neglecting inertia, the Langevin
equation for the particle is

ẋ = −µ𝜕U
𝜕x

+ Γ(t), (4.135)

where the random forcing Γ describes equilibrium thermal fluctuations (Γ∕µ
has dimensions of force),

⟨Γ(t)⟩ = 0,
⟨
Γ(t)Γ(t′)

⟩
= 2µT δ(t − t′), (4.136)

in that the strength of Γ obeys the fluctuation–dissipation theorem. The
stochastic description (4.135) for the position of the particle can be trans-
formed into a deterministic description for the probability distribution p(x, t)
of finding the particle at position x at time t. There is a conserved quantity,
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namely the total probability of finding the particle anywhere:

∫

+∞

−∞
p(x, t)dx = 1 ∀ t. (4.137)

The conservation law written for the density of this conserved quantity
(i.e., p) then reads

𝜕p
𝜕t

+ ⃗∇ ⋅ ⃗j = 0, (4.138)

where the current ⃗j has an advection and a diffusion part:

⃗j = ⟨ẋ⟩ p(x, t) −D
𝜕p
𝜕x

. (4.139)

The Einstein relation relates the diffusion coefficient to themobility,D = µT,
while averaging (4.135) we see that

⟨ẋ⟩ = −µ𝜕U
𝜕x

. (4.140)

Putting everything together we obtain the Fokker–Planck equation for the
probability distribution p:

𝜕p(x, t)
𝜕t

− µ 𝜕

𝜕x

(
𝜕U
𝜕x

p
)

− µT
𝜕

2p
𝜕x2

= 0. (4.141)

Now consider a nonequilibrium process (one that is not quasi-static) where
the thermodynamic parameter λ, describing the potential, goes from an initial
value λi at t = 0 to a final value λf at t = τ, according to a defined protocol λ(t).
The work done on the system is the integrated power dU∕dt:

W [λ(t)] =
∫

τ

0

⟨
𝜕U
𝜕λ

dλ
dt

⟩

dt =
∫

τ

0
dt dλ

dt

⟨
𝜕U
𝜕λ

⟩

, (4.142)

which therefore is a functional of the protocol λ(t). The meaning of the
ensemble average in (4.142) is provided by the probability distribution de-
scribed by (4.141), for example,

⟨U⟩ (t) =
∫

+∞

−∞
dxU(x)p(x, t)

and
⟨
𝜕U
𝜕λ

⟩

(t) =
∫

+∞

−∞
dx 𝜕U(x, λ)

𝜕λ
p(x, t),

(4.143)

so that, to calculate the integral (4.142) numerically, we would start from the
equilibrium (𝜕p∕𝜕t = 0) distribution solution of (4.141) with U = U(x, λi); at
the next time interval we increment λ according to the protocol λ(t), calculate
the new p(x) using (4.141), and so calculate 𝜕U∕𝜕λ using (4.143), and so on.

To further illustrate this, take the explicit case of a harmonic trap being
displaced according to the protocol λ(t):

U(x, λ) = 1
2
K[x − λ(t)]2, (4.144)
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where λ is the position of the minimum of the potential, and we take λi =
λ(0) = 0, λf = λ(τ). With the notation u ≡ ⟨x⟩, we have from the Langevin
eq. (4.135),

⟨ẋ⟩ = u̇ = −µ
⟨
𝜕U
𝜕x

⟩

= −µK(⟨x⟩ − λ). (4.145)

Since [µ] = velocity
force = time

mass and [K] = force
length , but there is no mass in this prob-

lem, µ and K appear only as the combination µK; here 1∕(µK) is a charac-
teristic relaxation time. From (4.145) we have the equation for the average
position of the particle, u(t):

u̇ = µK(λ − u), (4.146)

which, given λ(t), allows us to calculate u(t). For example, if wemove the trap
at constant speed v,

λ(t) = vt, (4.147)

eq. (4.146) becomes

u̇ + µKu = µKvt. (4.148)

The solution with boundary condition u(0) = 0 is

u(t) = vt + v
µK

(

e−µKt − 1
)

, (4.149)

which shows that for long times (t ≫ 1∕(µK)), the average position of the
particle, u, lags behind the center of the trap by a distance v∕(µK).

For the relatively simple case of the displaced trap (4.144), the work can
be calculated exactly for any given protocol λ(t), by expressing it in terms of
u̇(t), which itself is calculated from (4.146). From the expression (4.142) for
the work, since 𝜕U∕𝜕λ = −K(x − λ) for the process (4.144), we obtain

W =
∫

τ

0
dt ̇λK(λ − ⟨x⟩) =

∫

τ

0
dt 1

µ
̇λu̇. (4.150)

Using (4.146), we express ̇λ as

̇λ = 1
µK

ü + u̇, (4.151)

and thus

W =
∫

τ

0
dt 1

µ
u̇
(

1
µK

ü + u̇
)

. (4.152)

Integrating the first term by parts, we finally obtain

W = 1
µ ∫

τ

0
dt (u̇)2 + 1

µ
1

2µK
u̇2
|
|
|
|

τ

0
, (4.153)
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which is proportional to the inverse mobility. Given a protocol λ(t), we
can now compute the work using (4.153) and (4.146). For example, for the
uniform displacement (4.147), using (4.149) and (4.153) one finds

W = v2
µ

[

τ + 1
µK

(

e−µKτ − 1
)]

, (4.154)

or, in terms of λf = vτ,

W =
λ2f
µτ

[

1 + 1
µKτ

(

e−µKτ − 1
)]

. (4.155)

If the protocol is sufficiently slow compared to the characteristic relaxation
time of the system, that is, in the limit µKτ ≫ 1, this is just the hydrodynamic
dissipationW = v2τ∕µ, where v∕µ is the force applied to the particle, v × v∕µ
is the power, and (v2∕µ) × τ is the work. In the opposite limit of a very fast
process (µKτ ≪ 1), we see from (4.155) that W ≈ 0 for finite λf. No work is
done, for the same reason that no work is done in the free expansion of a gas.

Contrary to what one might think, the work (4.155) is not the minimal
work for processes starting at λi = 0 at t = 0 and ending at λf at t = τ, that
is, the uniform displacement protocol (4.147) does not produce the minimal
work. To find the “best” protocol, we look for u(t) that minimizes the right-
hand side of (4.153); this expression has the form of an “action” with a
“Lagrangian” L(u, u̇) = u̇2. Minimization thus leads to the Euler–Lagrange
equation

d
dt

𝜕L(u, u̇)
𝜕u̇

− 𝜕L
𝜕u

= 0, (4.156)

which in this case gives

ü = 0 ⇒ u = αt, (4.157)

wherewe have used the boundary condition λi = 0 ⇒ u(0) = 0; the constant
α is to be determined. The protocol λ(t) corresponding to u(t) given by (4.157)
is, using (4.146),

λ(t) = 1
µK

u̇ + u = α
µK

+ αt. (4.158)

We see that to satisfy the boundary condition 0 = λi = λ(0), we need a jump
in λ at t = 0, that is, λ(0+) = α∕(µK), while to satisfy the b.c. λ(τ) = λf we may
need another jump in λ at t = τ, since λ(τ−) = α∕(µK) + ατ. Figure 4.20 shows
the minimum work protocol in terms of λ, u, and u̇. To determine α, we
minimize the work (4.153):

W = 1
µ ∫

τ

0
dt α2 + 1

µ
(µK)2

2µK
(λf − ατ)2 = τ

µ
α2 + 1

2
K(λf − ατ)2, (4.159)
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FIGURE 4.20. Minimumwork protocol for displacing a harmonic trap that confines a Brownian
particle, with λ the position of the trap and u the average position of the particle.

and with respect to α,

0 = 𝜕W
𝜕α

= 2 τ
µ
α − Kτ(λf − ατ) ⇒ α =

µK
2 + µKτ

λf. (4.160)

The minimum work protocol is finally

λ(t) =
λf

2 + µKτ
(1 + µKt) for 0 < t < τ, (4.161)

with jumps of size

∆ =
λf

2 + µKτ
(4.162)

at the beginning and end, that is,

λ(0+) − λi = λf − λ(τ−) = ∆. (4.163)

From (4.159) and (4.160), this minimum work is

Wmin = 1
2
K 2
2 + µKτ

λ2f . (4.164)

For the slow process (µKτ ≫ 1),Wmin again reduces to the value given by the
hydrodynamic dissipation:

Wmin →
K
µKτ

λ2f = v2τ
µ

, (4.165)

where v = λf∕τ is the velocity of the trap, since the jumps go to zero in this
limit.

For the fast process (µKτ ≪ 1),Wmin does not go to zero; insteadWmin →
1
2Kλ

2
f . The reason is that, in this limit, theminimumwork protocol consists of

two fast jumps of size λf∕2 separated by a short waiting time; during the sec-
ond jump, the external agent has to work against the pressure of the particle.

One can similarly consider a protocol that consists in changing the
strength of the trap, that is, λ(t) → K(t): the interested reader should
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FIGURE 4.21. (A) and (B): energy landscape representations of the
induced-fit process of ligand binding. In (A) the conformational transition of
the enzyme is represented as a barrier-crossing process for a Brownian
particle. In (B) the conformational transition is represented as a change in the
energy landscape, such that the absolute minimum corresponds to the open
conformation when the ligand is not bound, and to the closed conformation
when the ligand is bound. (C) represents the nonequilibrium process of
moving a trap from the position “o” (open) to the position “c” (closed) while
also changing the strength of the trap. Adapted from Zulkowski et al. (2012).

consult the paper by Schmiedl and Seifert (2007). Furthermore, Zulkowski
et al. (2012) solve the case of a more general protocol, where the position of
the trap, its strength, and the temperature of the bath are varied at the same
time. Remarkably, their solution for the minimum dissipation is based on
differential geometry. They calculate the trajectories of minimum dissipation
for this system as the geodesics of a manifold defined by a metric tensor
constructed with the spring constant K, the dissipation γ, and the inverse
temperature β = 1∕T.

The relation of these nonequilibriumprocesses to enzyme conformational
dynamics is both obvious and vague. Figure 4.21 shows one representation
of the “induced-fit” process of ligand binding, in terms of a free energy
landscape plotted against a conformation coordinate which, in this case,
we can specifically associate with some measure of distance between the
two lobes of the molecule (we refer to a typical structure as in figure 4.7).
The binding event drives the structure from the “open” to the “closed”
conformation. Actually, from the viewpoint of the energy landscape, the
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process might be drawn as in (B): before the binding event, the free energy of
the molecule has an absolute minimum for the open conformation; with the
ligand bound, the minimum shifts to the closed conformation. The process
is then similar to the nonequilibrium process just discussed (C), where the
trap position, and possibly the strength, change in time. However, in the
description (B) there is no Brownian particle in the trap! Actually, in the case
of the enzyme, the “trap” and the “Brownian particle” are the same system,
namely the molecule; this introduces logical difficulties in directly relating
the processes of figure 4.21 to enzyme dynamics.
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model, 54; 2x2 model, 51; Zipper model,
35, 54

PBDmodel, 55
Persistence length, 57; and bending

modulus, 58
Product inhibition, 84

Quenching method, 37

Random walk, 1
Rate: equations, 87, 147; of escape, 22, 127;

of mechanical motion, 133

Softening transition: and D-DNA, 67; and
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