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Preface
The distinction between appearance and reality, introduced by Parmenides and
Heraclitus, is said to be one of the pillars ofWestern thought. And this is precisely
what this volume is, i.e. a real tribute to its addressee, even though it does not
appear as the typical collection of papers in honor of someone. It is indeed
an homage to a professor and to his influence in the research areas which the
collected essays are a representation of.

Sergio Galvan graduated in 1969 under Evandro Agazzi’s tuitionwith a disser-
tation on Alfred Tarski’s semantic conception of truth. At that time Alfred Tarski
was still alive and his well-known essay Truth and Proof appeared on Scientific
American. Galvan spent a period as visiting researcher in Germany; then, he
taught at secondary and high school, bravely explaining to – likely astounded –
students the theory of syllogism. Finally, he worked at the universities in Milan
and Verona, becoming full professor of Logic at Trento University in 1994. Three
years later, he returned to the Catholic University of Milan where he previously
had studied. At Catholic University he was chair of Logic, Philosophy of Science
and Analytic Ontology.

In the Sixties, the Italian philosophical scenario, in which Galvan intellec-
tually grew up, was dominated by discussions concerning political philosophy
(in particular, the debate between Catholics and Communists), philosophy of
existence, aesthetics, andmoral philosophy. Logic and philosophy have been just
introduced, each of them in his own way and peculiar attitude, by such scholars
as Ludovico Geymonat, Ettore Casari, Alberto Pasquinelli, and Galvan’s teacher
Evandro Agazzi,. Metaphysics lied idle, rather forgotten. However, Catholic Uni-
versity still paid great attention to the science of being, thanks to some important
teachers: Amato Masnovo, Gustavo Bontadini and Sofia Vanni Rovighi. Indeed,
Gustavo Bontadini was the former teacher of Evandro Agazzi and Galvan himself
attended his lectures. Throughout the years of study, Sergio nurtured the passion
for the classicmetaphysical themes – from the problemof becoming to the ground
of reality, from the constitution of entities to the problem of universals – and the
interest for them has been a constant in his thought.

Sergio Galvan is a logician and all his scientific work embodies Hilbert’s
motto: clear thought is axiomatic thought. His main areas of research can be
summarized as follows:mathematical logic,modal logic, logic of explanation and
metaphysics. His first field of research concerns the analysis of Tarskian theory of
truth and its connection with the classical correspondentist conception of truth.
The passage from the study of Tarski’s theory of truth to the general limitations of
axiomatic systemswasquick and leadedGalvan to face theproblemof formalizing
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arithmetics. The outcome of these years of work, Formal theory of natural numbers
(in Italian: Teoria formale dei numeri naturali), is a formidable book on first and
second order, and continues to be an unsurpassed landmark for the complete
presentation of proposed results. Introduction to the Incompleteness Theorems (in
Italian: Introduzione ai teoremi di incompletezza; in 2006 the book was translated
in German as: Einführung in die Unvollständigkeitstheoreme) is the synthesis of
many courses onGödel’s theoremandon its philosophicalmeaningwhichGalvan
has been taught for three decades. In the last years Galvan investigated the anal-
ysis of weak systems of arithmetic, from Q to PA, correlating different versions of
induction axioms with their epistemic commitment towards forms of more or less
finitary construction, taking part in the debate on finitism that was raised, among
others, byWilliamTait andCharlesParsons.According toGalvan, the reflectionon
axiomatic theories has both an intrinsic value – related to the dynamic of logical
characterization– and a fundamental philosophical relevance,which is an aspect
he has been always interested in: limitation theorems (Gödel, Tarski, Löwenheim
Skolem, Church) can be widely applied to the human knowledge, the realism, the
nature of eidetic intuition, and even in the conception of the mechanic thought.

Galvan’s second vast area of research is constituted by themodal logic, a sub-
ject he helped to introduce to Italy,with his textbook Intensional Logics. Systems of
modal, denotic, and epistemic propositional logic (in Italian: Logiche intensionali,
Sistemi proposizionali di logica modale, deontica, epistemica). In particular, his
essays on epistemic and deontic laws, with reference to the formalization of
Hume’s lawandKantian deontic principles, areworth of consideration.Moreover,
Galvan has always tightly connected the investigations aboutmodal logicwith the
metaphysical reflection; a specific interpretation of the semantics of modal logic
brought him to a construal of the negation, analyzed in the bookNon contradiction
and ExcludedMiddle (in Italian:Non contraddizione e terzo escluso). Moreover, he
formulated amodal system for the logic of essence, PIES5, that aims to adequately
grasp the classical conception of modalities and the essential constitution of
individuals in order to come up with an original solution to the trans-world
identity and persistence problems.

Galvan’s view of metaphysics, reflects, in a way his classical philosophical
background (in a word, the Aristotelian and Thomistic thinking) but it is enriched
by some fundamental issues of the philosophy of science: metaphysics has,
at the end of the day, the ultimate explanatory function of the experience.
Accordingly, the issue of explanation has been always relevant in Galvan’s
thought, particularly as far as the finalistic explanations occurring in the human
sciences are concerned.

From Arithmetic to Metaphysics is in no way just the starting point or the final
destination of a journey; this collection of essays rather represents the poles of
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philosophical activity that has been lasting for over half a century. And it does
not stop even today. As we speak, Sergio Galvan is writing a co-authored book
(together with Paolo Mancosu and Richard Zach) on an exhaustive analysis of the
cut theorem, the core of proof theory. Meanwhile, Galvan is developing his view
on the metaphysics of possibility, within the system PIES5 inspired to Francisco
Suarez’ work.

Sergio Galvan’s several intellectual virtues can be probably synthetized in a
double definition that could be labeled as ‘internally unstable’: Sergio is gifted
by an insatiable intellectual curiosity bound to a deep systematic nature that
rejects any rash and superficial hypothesis. His idea is that reality is a plural,
multi-faced and irreducibly complex whole. He has always been skeptical about
the rhetorical chitchat of much contemporary philosophy, acting sometimes as a
harsh critic of the exaggerations in analytical philosophy. He does not especially
approve the excessive specialization in philosophical questions, caused by an
ongoing widening and splitting of the research areas, leading to the loss of a
systematic and unitary vision inherited by the classical metaphysics. Therefore,
he is quite skeptical about the possibility of a synthesis coming after any thematic
investigation, and does not believe that philosophical research should boil down
to an activity of «puzzle-solving», no matter how acute and brain-teasing.

On the contrary, he firmly maintains that philosophy pursues a major objec-
tive: to provide a coherent picture of the world and of our place in it. That is the
reason why he has always admired two scholars that, despite their differences,
strove towards a unitary framework of knowledge: Franz von Kutschera, who
honored us with an original contribution to the present volume and Jonathan
Lowe, who prematurely passed away, but would have certainly had something
precious to say in the following pages.

As we said at the beginning, the collected essays are independent and yet go
throughall the topics SergioGalvan cares for: from thePhilosophy ofmathematics
and Logic to the Philosophy of science up to Metaphysics and Philosophy of
religion. The authors are colleagues and friends who has always admired Sergio’s
deepest intellectual honesty and his passion for being a philosopher. However,
Sergio is a mountaineer (he was born in Levico Terme, at the foot of Dolomites)
and therefore not very inclined to overwhelming compliments andpraises. A glass
of wine – a good one, though – hopefully will serve the same.

Ciro De Florio
Alessandro Giordani
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Michele Abrusci
Hilbert’s τ and ϵ in Proof Theory: a
proof-theoretical representation of universal
and existential statements

Abstract: In section 1, I expose in an informal way the rules – and the logical
rules – on the proofs of the universal statements and existential statements, and
the rules – and the logical rules – on the deductions from these statements.
In section 2, I show how Hilbert’s operators τ and ϵ allow a representation of
the universal statements and existential statements which is strictly related to
the logical rules on the proofs of these statements and to the logical rules on
the deductions from these statements, so that we may say that Hilbert in the
introduction of the operators τ and ϵ aimed to propose a kind of proof-theoretical
representation of the universal statements and existential statements. In sec-
tion 3, I show the logical naturalness and the logical depth of this representation
of universal and existential statements, since τ-axiom and ϵ-axiom – which are
the implicit definitions of these operators – arise in a very natural way fromadeep
analysis of what happens whenwe try to prove (in sequent calculus) the sequents∀xA ⊢ ∀xA and ∃xA ⊢ ∃xA from the identity axiom A ⊢ A.

1 Universal and existential statements: rules on
proofs and deductions

In his talks Hilbert (1923) and Hilbert (1926) devoted to the foundations of
mathematics, Hilbert introduced the operators τ and ϵ in order to obtain a
representation of the universal statements and existential statements different
from the Frege’s representation of these statements.

Hilbert aimed to use this new representation firstly for the universal state-
ments and existential statements belonging tomathematical analysis (because in
these lectures he proposed the formalization of mathematical analysis by using
the operators τ and ϵ), but also for the universal statements and existential
statements belonging to the ordinary language (because in these lectures he
proposed examples of universal and existential statements coming from the
ordinary language, and showed how these statementsmay bewell represented by
means of these operators). Therefore, it is not true that Hilbert has been interested

Michele Abrusci: University of Rome 3
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2 | Michele Abrusci

exclusively in mathematical statements (since the examples shown by Hilbert are
also universal and existential statements not belonging to mathematics) and it is
not true that Hilbert was interested primarily in the representation of first-order
arithmetical statements (since mathematical analysis contains statements that
are not first-order statements).

In the section 2 I will show that the representation of the universal statements
and the existential statements proposed by Hilbert by means of the operators
τ and ϵ is very close to the logical rules on proofs of universal and existential
statements and the logical rules on deductions from universal and existential
statements.

In this section 1, I will expose the basic notions used in section 2, and in
particular the logical rules on the proofs of the universal statements and the
existential statements and the logical rules on the deductions from the universal
statements and the existential statements:
– in 1.1 I will fix what are the universal statements and the existential state-

ments, and to specify what are the (universal, existential) mathematical
statements;

– in 1.3 and 1.4 I will expose the rules (and in particular the logical rules) on
the proofs of the universal statements and the existential statements, and the
rules (and in particular the logical rules) on the deductions from the universal
statements and the existential statements (the exposition of these rules is
largely inspired by the investigations done in the proof-theory of last century);

– in 1.2 I will consider the notion of generic objects inside proofs and deductions,
whose role is important in the logical rules on the proofs of the universal
statements and the existential statements and on the deductions from the
universal statements and the existential statements.

In this paper I will deal with the concepts proofs and deductions without the
reference to a particular formalism (and so in a way to be applied to any
formalism), by using the following principles:
– a proof of a statement A, i.e. a proof whose conclusion is A, allows to accept

A i.e. (in classical logic) to discover its truth;
– a deduction from a statement A, i.e. a deduction whose premise is A, allows

to infer something from the statement A i.e. (in classical logic) to discover
something that would be true if A is true;

– proofs and deductions are always concrete and finite objects;
– given a proof π of a statement A, the other conclusions of π and the premisses

of π are the context of the proof π of A; given a deduction π from a statement
A, the other premises of π and the conclusions of π are the context of the
deduction π from A;
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Hilbert’s proof Theory | 3

– a proof of a statement A in a context Γ allows to accept A (i.e. in classical logic
to discover the truth ofA)when the context Γ holds (i.e. in classical logicwhen
the premises are true and the other conclusions are false);

– a deduction from a statement A in a context Γ allows to infer something from
A when the context Γ holds (i.e. to discover the truth of a conclusion when A
and the other premises are true and the other conclusions are false);

– a deduction of a statement B from a statement A (in a context Γ) is a proof of
A → B (in the same context Γ), and a proof of A → B (in the context Γ) is a
deduction of B from A (in the same context Γ).

1.1 Universal statements and existential statements

Each universal or existential statement refers to a type, i.e. to a class or a set:
indeed, any universal statement is an universal statement on some type T, and
any existential statement is an existential statement on some type T. Examples of
types: the type of natural numbers, the type of propositions, the type of functions
on a given type, the type of predicates on a given type, etc.

Let T be an arbitrary type:
– universal statements on the type T are the statements that may be expressed

in the form

A[x] for every x of type T

– existential statements on the type T are the statements that may be expressed
in the form

A[x] for some x of type T.

A mathematical type is a type of mathematical objects (e.g. the type of natural
numbers), or a type of functions on a type of mathematical objects, or a type of
predicates on a type of mathematical objects.

An universal statement ismathematical when it is an universal statement on
amathematical type T, and an existential statement ismathematicalwhen it is an
existential statement on a mathematical type T

A first-order statement is a statement where all the universal and existential
statements concern the same type T of objects; so, a first-order statement does not
contain universal statements or existential statements on a type of propositions
or a on a type of functions or an a type of predicates.
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1.2 Generic objects inside proofs and deductions

Generic objects inside a proof, and generic objects inside a deduction, play an
important role in the logical rules on the proofs of universal statements and
existential statements and in the logical rules on the deductions from universal
statements and existential statements.

Generic objects inside proofs and deductions may be defined as follows, in a
way inspired by the developments of logic in the last century.
– Let π be a proof of a statement A[a] where a is an object of a type T: if in π

on the object a is used only what follows from the fact that a is an object of
type T (i.e. no particular property of a is used in π), we say that a is a generic
object of type T inside the proof π of A[a].

– Let π be a deduction from a statement A[a]where a is an object of a type T: if
in π on the object a is used only what follows from the fact that a is an object
of type T such that A[a] holds (i.e. no particular property of a is used in π),
we say that a is a generic object of type T inside the deduction π from A[a].

In particular,
– if x is a variable of type T and π is a logical proof of A[x] where x does not

occur in the context, then x is a generic object of type T in the logical proof π
of A[x];

– if x is a variable of type T and π is a logical deduction from A[x]where x does
not occur in the context, then x is a generic object of type T in the logical
deduction π.

When anobject a of type T is a generic object of type T inside a proof of a statement
A[a] or inside a deduction from a statement A[a], this does not mean that a is a
generic object at all , i.e. an object that has only the properties common to all the
objects of type T: simply we say that such an object a is considered as a generic
object inside that particular proof of A[a] or inside that particular deduction from
A[a].

When inside a proof (or a deduction) π an object a of type T is a generic object
of type T, π is a schema of a class of proofs (a class of deductions), containing
a proof (a deduction) for each object of T, obtained in an uniform way from π.
Indeed:
– if π is a proof of a statement A[a] where a is a generic object of type T, then

wemay produce a proof of A[t] for each object b of T in an uniform way i.e. in
a way not depending on particular features of b, as follows: simply, replace
b for a everywhere in the proof of A[a], i.e. consider b as a generic object of
type T in π;
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– if π is a deduction from a statement A[a] where a is a generic object of type
T, we may produce a deduction from A[t] for each object b of T in an uniform
way i.e. in away not depending on particular features of b, as follows: simply,
replace b for a everywhere in the deduction from A[a], i.e. consider b as a
generic object of type T in π.

So, when π is a proof (or a deduction) where a is a generic object of type T, πmay
be called a uniform proof (uniform deduction) or a parametric proof (parametric
deduction).

Uniform proofs are very important in mathematical research. An uniform
proof has been the tool used by Girard in Girard (1971) to obtain the strong
normalization theorem for the System F by means of the Reducibility candidates
(a kind of generic object), and so avoiding the impredicativities.

Uniform proofs (parametric proofs) are very important in computer science: to
the uniform proofs (according the Curry-Howard correspondence Howard (1980))
correspond uniform programs, i.e. programs which give in an uniform way the
value for each input (and so independently from the given input).

1.3 Universal and existential statements: logical rules on
proofs and deductions

Away to prove universal or existential statements and to deduce fromuniversal or
existential statementsmay be denominated a logical rulewhen it does not depend
on a given particular type and may be applied to any type.

We may say that – form a logical point of view – the universal statements
and the existential statements are defined by the logical rules on the proofs of
these statements and on the deductions from these statements, andby the general
logical rules concerning the statements. These rules are well formalized in the
sequent calculus introduced by Gentzen in Gentzen (1935).

The following are the logical rules to prove the universal statements and to
deduce from the universal statements, and the logical rules to prove the existential
statements and to deduce from existential statements.
– For every type T,

– a proof of an universal statement “for every x of type T, A[x]” is a proof
π of A[a] where a is a generic object of type T in π, i.e. is an uniform
(parametric) proof of A[t] for each object t of T;

– a deduction from an universal statement “for every x of type T, A[x]”
starts with the application of “for every x of type T, A[x]” to an object
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t of type T and continues with a deduction from the statement A[t]
(in particular, if t is an object of type T, the conclusion A[t] may be
immediately deduced from the universal statement “for every x of type
T, A[x]”).

– For every type T,
– a proof of an existential statement “for some x of type T, A[x]” is a proof

of A[a] where a is an object of type T;
– a deduction from an existential statement “for some x of type T, A[x]” is a

deduction π from A[a]where a is a generic object of type T; in particular,
a deduction π of a proposition C from “for some x of type T, A[x]” is a
deduction of C from A[a] where a is a generic object in the deduction
(and so a does not occur in C), i.e. is a uniform (parametric) deduction
from A[a] in the context C for each object t of type T.

It is immediate that:
– all the above rules on the proofs of the universal statements and the existen-

tial statements, and on the deductions from the universal statements and the
existential statements, are logical rules since they hold for every type, i.e. they
do not depend on a given particular type;

– the logical rule on proofs of the universal statements is linkedwith the notion
of generic object inside a proof ;

– the logical rule on the deductions from the existential statements is linked
with the notion of generic object inside a deduction.

Therefore, the logical rule on the proofs of the universal statements allows to get –
when an universal statement “for every x of type T, A[x]” is proved by means of
this rule – to get in an uniformway, for each given object b of type T, a proof of the
statement A[b]which does not depend on the knowledge of the specific object b;
and the logical rule on the deductions from existential statements allows to get –
when we have a deduction from “for some x of type T, A[x]” obtained by means
of this rule – in an uniform way, for each given object b of type T, a deduction
from the statement A[b]which does not depend on the knowledge of the specific
object b.

1.4 Other rules on the proofs of the universal statements and
on the deductions from existential statements

There are other ways to prove universal statements and to deduce from existential
statements, and theseways are valid only for particular types and are not valid for
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every type, or are depending on the specific objects of the types, so that are not
logical ways, are not logical rules: indeed, a rule on proofs or on deductions may
be considered as a logical rule when it may be applied to any type and it does not
depend on the specific objects of types.

These non-logical rules to prove universal statements are linkedwith another
view of the universal and existential statements, i.e. with the following very
common view of these statements ( a view used in the semantic treatment of the
universal statements and existential statements):
– an universal statement “for every x of type T, A[x]” is considered as the

conjunction of all the instances A[a] where a is an object of type T, and so
the length of this conjunction depends on the type T;

– an existential statement “for some x of type T, A[x]” is considered as a
disjunction of all the instances A[a] where a is an object of type T, and so
the length of this disjunction depends on the type T.

Therefore, according to this viewof theuniversal andexistential statements,when
we know a type T:
– if T is finite, each universal statement “for every x of type T, A[x]” is

considered as a finite conjunction, and each existential statement “for some
x of type T , A[x]” is considered as a finite disjunction; in particular, when the
elements of T are n objects in a given order a1, ..., an
– each universal statement “for every x of type T, A[x]” is considered as the

conjunction A[a1]∧ ... ∧A[an],
– each existential statement “for some x of type T, A[x]” is considered as

the disjunction A[a1]∨ ... ∨A[an];
– if T is infinite, each universal statement “for every x of type T, A[x]” is

considered as an idealized infinite conjunction, and each existential statement
“for some x of type T, A[x]” is considered as an idealized infinite disjunction;
in particular, if T is denumerable and the elements of T are in the order
a1, ..., an , ...,
– each universal statement “for every x of type T, A[x]” is considered as the

idealized infinite conjunction A[a1]∧ ... ∧A[an]∧ ...,
– each existential statement “for some x of type T, A[x]” is considered as

the idealized infinite disjunction A[a1]∨ ... ∨A[an]∨ ....
Remark that infinite conjunctions and infinite disjunctions are idealized objects
and cannot occur inside a proof or inside a deduction (since every proof and every
deduction must be a finite object).

This view of the universal and existential statements is compatible, of
course, with the logical rules concerning the proofs of these statements and
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the deductions from these statements; but this view allows to accept some
other non-logical rules to prove the universal statements and to deduce from the
existential statements.

A first non-logical rule to prove the universal statements, and a first
non-logical rule to deduce from the existential statements, may be applied only
on the universal or the existential statements on finite types. These rules may be
formulated as follows: if T is a finite type with n objects,
– we may prove an universal statement “for every x of type T, A[x]” by proving

A[a] for each object of T, i.e. by getting n proofs, i.e. by a n-ary inference rule;
– we may deduce from an existential statement “for some x of type T, A[x]” by

deducing from A[a] for each object a of T, i.e. by producing n deductions, i.e.
by a n-ary inference rule.

This rule to prove the universal statements, and this rule to deduce from the
existential statements, may be accepted only when these statement are on a finite
type, since otherwise (i.e. in the case of an infinite type T) the proof would contain
infinite proofs, one proof for each object of T: and no proof may be infinite.
Therefore, this way to prove the universal statements and this way to deduce from
existential statements are not logical rules since they are restricted to finite types..

Another non-logical rule to prove the universal statements and another
non-logical rule to deduce from the existential statements are the following rules
which are valid for finite or infinite types (i.e. for every type) but are depending on
the specific objects of the types. These rules may be formulated as follows: given
a type T,
– we may prove an universal statement “for every x of type T, A[x]” in a given

context by showing a procedure which allows, given any particular object a
of T, to obtain a proof πa of A[a] in the same context and each πa depends on
the particular object a;

– we may deduce from an existential statement “for some x of type T, A[x]”
by showing a procedure which allows, given any particular object a of T, to
obtain a deduction πa from A[a] in the same context and each πa depends on
the particular object a.

Remark that these rules to prove the universal statements, and to deduce from
the existential statements, are not logical rules since the procedure which gives a
proof – or a deduction– for each object a of a type Tmaydependon the type T and
on the specific object a:, whereas the logical rule to prove the universal statements
and the logical rule to deduce from the existential statements are exactly the cases
when the procedure does not depend on the type and does not depend on the
specific object, i.e.the cases where the procedure is uniform.
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I show two very interesting examples of these not logical rules to prove
universal statements, when the universal statements are on the type of the natural
number: the first example is the binary rule called induction rule, and the second
example is the rule called constructive ω-rule.
1. The induction rule is the following arithmetical rule to prove universal

statements on natural numbers: a statement “for every natural number a,
A[a]” in a context Γ is proved form the following two premisses
– the first premise is a proof π of A(0) in the context Γ,
– the second premise is a proof ψ of A(a)→ A(a+1) in the context Γ where

a is a generic natural number.
Indeed, the premisses of the induction rule produce a procedure giving a
proof πn of A(n) in the context Γ, for each given natural number n:
– the proof π0 of A[0] in the context Γ is the proof π stated in the first

premise,
– the proof π1 of A(1) in the context Γ is obtained from the proof π0 of A[0]

in the context Γ and the proof ψ of A(0)→ A(1) (i.e. the proof ψ stated
in the second premise, by replacing the generic object a by the natural
number 0),

– ...
– the proof πn+1 of A[n + 1] in the context Γ is obtained from the proof πn

of A[n] in the context Γ and the proof ψ of A(n)→ A(n +1) (i.e. the proof
ψ stated in the second premise, by replacing the generic object a by the
natural number n),

– ...
2. The constructive ω-rule is the following arithmetical rule to prove universal

statements on natural numbers: a statement “for every natural number x,
A[x]” in a context Γ is proved when there is a computable function giving,
for each natural number n, the proof πn of A[n] in the context Γ. Induction
rule is, indeed, a particular case of the constructive ω-rule.

2 The operators τ and ϵ: a proof-theoretical way
to represent universal statements and
existential statements

Hilbert’s operators τ and ϵ allow to represent the universal statements and the
existential statements in a different way w.r. to the more usual representation of
these statements based on quantifiers ∀ and ∃ (i.e. the representation of “for every
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x of type T, A[x]” by ∀xA[x] and the representation of “for some x of type T, A[x]”
by ∃xA[x], when x is a variable of type T).

The operator τ has been introduced by Hilbert – together with Paul
Bernays – before the operator ϵ. Indeed:
– the first public exposition of the operator τ is in the Hilbert’s talk Die logische

Grundlagen der Mathematik (1922, published in 1923),
– the first public exposition of the operator ϵ in used in the Hilbert’s talk Über

das Unendliche (1925, published in 1926) and the operator ϵ in present in the
following Hilbert’s talks devoted to the foundations of mathematics and in
the book Grundlagen der Mathematik 1934 by Hilbert and Bernays.

Hilbert introduced the operator τ in the talk Die logischen Grundlagen der
Mathematik, and the operator ϵ in the following talks, with the aim to express
the universal statements and the existential statements of mathematical analysis
(since these operators are used in the formalization of mathematical analysis as
a first step towards the proof of the consistency of this discipline), but also to
express the universal statements and the existential statements in the ordinary
language (sincehe explains this operator byusing examples of statements coming
from the ordinary language). Thus, we may say that Hilbert aimed to represent,
by τ-operator or by ϵ-operator, the universal statements and the existential
statements on every type T.

I will show (in 2.1 and 2.2) that the new representation of the universal
statements and the existential statements, proposed by Hilbert by means of the
operators τ and ϵ, is very close to the logical rules concerning the proofs of these
statements and the deductions from these statements. Therefore, wemay say that
the representation of the universal statements and the existential statements by
means of Hilbert’s operators τ and ϵ is a proof-theoretical representation of the
universal statements and the existential statements.

Usually, one says that the motivations of David Hilbert for introducing the
operators τ and ϵ are related to the formulation of the principle of choice (indeed,
the operator ϵ is close to a choice operator), to the distinction between real
elements (the propositions not containing the operators ϵ and τ) and ideal
elements (the propositions containing the operators ϵ or τ), or to defend the
impredicative definitions against the criticisms of predicativism and intuitionism.

In 2.3 I will emphasize that all these motivations become very clear, when the
operators τ and ϵ are considered as tools for a proof-theoretical representation of
the universal and the existential statements.
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2.1 Representation of the universal statements and existential
statements by means of the operator τ

Hilbert’s operator τ gives, for every type T and every formula A[x] (where x is a
variable of type T), a τ-term τxA[x].

Hilbert’s operator τ is defined by the τ-axiom

A[τxA[x]]→ A[x]

for every type T and every variable x of type T, together with the substitution rule
which allows to replace in the τ-axiom the free variable x of type T by an arbitrary
object t of the type T, i.e. to obtain for every object t of type T

A[τxA[x]]→ A[t]

Hilbert proposed the following representation of the universal and existential
statements by means of the operator τ:
– to represent each universal statement “for every x of type T, A[x]” by

A[τxA[x]]
– to represent each existential statement “for some x of type T, A[x]” by

A[τx¬A[x]]
Why this representation?

I propose a proof-theoretical answer to this question, i.e. an answer linked to
the logical rules to prove the universal and existential statements and to deduce
fron these statements.

Firstly, I say that by the τ-axiomand the substitution rule,when x is a variable
of type T:
– each τ-term τxA[x] is exactly the generic element a of type T inside some proof

of A[a],
– each τ-term τx¬A[x] is exactly the generic element a of type T inside some

deduction from A[a].

Indeed, let x be a variable of type T:
1. when τxA[x] denotes the generic element a of type T inside some proof π of

A[a], then

A[τxA[x]]→ A[t]

is true for every object t of type T because:
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– firstly, when τxA[x] denotes the generic element a of type T inside
some proof of A[a], if we prove A[τxA[x]] then we prove the universal
statement “for every x of type T, A[x]” (by the logical rule concerning
the proofs of the universal statements) and so for every object t of type
T we may prove the proposition A[t] (by the logical rule concerning the
deductions from the universal statements),

– finally, by replacing in the previous sentence the verb “we prove” by
“holds”, we get: if A[τxA[x]] holds, then the universal statement “for
every x of type T, A[x]” holds and so for every object t of type T the
proposition A[t] holds, i.e. A[τxA[x]]→ A[t] holds;

2. when A[τxA[x]]→ A[x] is true, then τxA[x] is the generic element a of type T
inside someproof π of A[a]: if π is a proof ofA[τxA[x]], sinceby thehypothesis
A[τxA[x]] → A[x] is true, we may replace in π the term τxA[x] by a free
variable of type T not occurring in the context of the proof π, and this means
that τxA[x] is a generic object inside the proof π of A[τxA[x]];

3. when τx¬A[x] denotes the generic element a of type T inside some deduction
π from A[a], then

A[t]→ A[τx¬A[x] i.e. ¬A[τx¬A[x]→¬A[t]
is true for every object t of type T because:
– firstly, when τx¬A[x] denotes the generic element a of type T inside a

deduction from A[a] and t is an object of type T, from a proof ofA[t] we
may prove the existential statement “for some x of type T, A[x]” (by the
logical rule concerning the proofs of the existential statements) and then
we may prove A[τx¬A[x]] (by the logical rule concerning the deductions
from the existential statements),

– finally, by replacing in the previous sentence the verb “we prove” by
“holds”, we get: when t is an object of type T, if A[t] holds then
A[τx¬A[x]] holds, i.e. A[t]→ A[τx¬A[x]] holds;

4. when A[x] → A[τx¬A[x]] is true, then τx¬A[x] is the generic element a of
type T inside a deduction π from A[a]: if π is a deduction from A[τxA[x]],
since by the hypothesis A[x]→ A[τx¬A[x]] is true, we may replace in π the
term τx¬A[x] by a free variable x of type T not occurring in the context of the
deduction π, and this means that that τx¬A[x] is a generic object inside the
deduction π from A[τxA[x]].

For every formula A[x] with x variable of type T , the formula

A[τxA[x]]
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may be considered – as proposed by Hilbert – a representation of the universal
statement “for every x of type T, A[x]” , since the premise of the logical rule to
prove the statement “for every x of type T, A[x]” is a premise to prove A[τxA[x]]
and viceversa, and the premise of the logical rule to deduce from the statement
“for every x of type T, A[x]” is a premise to obtain a deduction from A[τxA[x]]
and viceversa:
– when a is a generic element of type T in a proof π of A[a] (i.e. when we may

prove the statement “for every x of type T, A[x]”), we prove A[τxA[x]] and
viceversa, because τxA[x] is the generic element a of type T in a proof ofA[a];

– when from the statement “for every x of type T, A[x]”we deduce A[t] for some
object t of type T, we may deduce A[t] for some object t of type T also from
A[τxA[x]] by the τ-axiom and substitution rule, and viceversa.

When an universal statement “for every x of type T, A[x]” is expressed as
A[τxA[x]], then each proof of this universal statement is uniform! So, Hilbert’s
τmay be considered the first in the last century to emphasize the importance and
the role of the uniform proofs.

Analogously, for every formula A[x] with x variable of type T , the formula

A[τx¬A[x]]
may be considered – as proposed by Hilbert – a representation of the existential
statement “for some x of type T, A[x]” , since the premise of the logical rule to
prove the statement “for some x of type T, A[x]” is a premise to prove A[τx¬A[x]]
and viceversa, and the premise of the logical rule to deduce from the statement
“for some x of type T,A[x]” is a premise to deduce fromA[τx¬A[x]] andviceversa:
– when t is an object of type T and π in a proof π of A[t] (i.e. when we may

prove the statement “for some x of type T, A[x]”), we prove A[τx¬A[x]] by
the τ-axiom and substitution rule, and viceversa;

– when a is a generic element of type T in a deduction π from A[a] (i.e. when
we have a deduction from the statement “for every x of type T, A[x]”), we
have adeduction fromA[τxA[x]] andviceversa, because τxA[x] is the generic
element a of type T in a deduction of A[a].

2.2 Representation of the universal statements and existential
statements by means of the operator ϵ

Hilbert’s operator ϵ gives, for every type T and every formula A[x] (where x is a
variable of type T), a ϵ-term ϵxA[x].
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Hilbert’s operator ϵ is defined by the ϵ-axiom

A[x]→ A[ϵxA[x]]

for every type T and every variable x of type T, together with the substitution rule
which allows to replace in the ϵ-axiom the free variable x of type T by an arbitrary
object t of the type T, i.e. to obtain for every object t of type T

A[x]→ A[ϵxA[x]]

Hilbert proposed the following representation of the universal and existential
statements by means of the operator ϵ (dual to the one given by means of the
operator τ):
– to represent each universal statement “for every x of type T, A[x]” by

A[ϵ¬A[x]]
– to represent each existential statement “for some x of type T, A[x]” by

A[ϵxA[x]]

Why?
I propose a proof-theoretical answer to this question, which is dual of the

analogous question about the representation by means of τ-operator.
Firstly, I say that by the ϵ-axiomand the substitution rule,when x is a variable

of type T:
– each ϵ-term ϵxA[x] is exactly the generic element a of type T inside some

deduction from A[a],
– each ϵ-term ϵx¬A[x] is exactly the generic element a of type T inside some

proof of A[a].

Indeed, let x be a variable of type T:
1. when ϵxA[x] denotes the generic element a of type T inside some deduction π

from A[a], then

A[t]→ A[ϵxA[x]]

is true for every object t of type T because:
– firstly, when t is an object of type T, if we prove A[t] then we prove

the existential statement “for some x of type T, A[x]” (by the logical
rule concerning the proofs of the existential statements) and we may
prove A[ϵxA[x]] (by the logical rule concerning the deductions from the
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existential statements, because ϵxA[x] denotes the generic element a of
type T inside a deduction from A[a]),

– finally, by replacing in the previous sentence the verb “we prove” by
“holds”, we get: when t is an object of type T, if A[t] holds, then the
existential statement “for some x of type T, A[x]” holds and so A[ϵxA[x]]
holds, i.e. A[t]→ A[ϵxA[x]] holds;

2. when A[x]→ A[ϵxA[x]] is true, then A[ϵxA[x]] is the generic element a of type
T inside some deduction π from A[a]: if π is a deduction from A[ϵxA[x]], since
by the hypothesis A[x] → A[ϵxA[x]] is true, we may replace in π the term
ϵxA[x] by a free variable of type T not occurring in the context of the proof
π, and this means that ϵxA[x] is a generic object inside the deduction π from
A[ϵxA[x]];

3. when ϵx¬A[x] denotes the generic element a of type T inside some proof π of
A[a], then

A[ϵx¬A[x]]→ A[t] i.e. ¬A[t]→¬A[ϵx¬A[x]]
is true, because:
– firstly, when ϵx¬A[x] denotes the generic element a of type T inside a

proof of A[a], from a proof of A[ϵx¬A[x]] we get a proof of the universal
statement “for every x of type T, A[x]” (by the logical rule concerning
the proofs of the universal statements), and so for every object t of type
T we prove A[t] (by the logical rule concerning the deductions from the
universal statements),

– finally, by replacing in the previous sentence the verb “we prove” by
“holds”, we get: if A[ϵx¬A[x]] holds, then A[t] holds (where t is an object
of type T), i.e. A[ϵx¬A[x]]→ A[t] holds;

4. when A[ϵx¬A[x]]→ A[x] is true, then ϵx¬A[x] is the generic element a of type
T inside a proof π of A[a]: if π is a proof of A[ϵx¬A[x]], since by the hypothesis
A[ϵx¬A[x]] → A[x] is true, we may replace in π the term ϵx¬A[x] by a free
variable x of type T not occurring in the context of the proof π, and this means
that ϵx¬A[x] is a generic object inside the proof π of A[ϵxA[x]].

For every formula A[x] with x variable of type T , the formula

A[ϵxA[x]]

may be considered – as proposed by Hilbert – a representation of the existential
statement “for some x of type T, A[x]” , since the premise of the logical rule
to prove the statement “for some x of type T, A[x]” is also a premise to prove
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A[ϵxA[x]] and viceversa, and the premise of the logical rule to obtain a deduction
from the statement “for some x of type T, A[x]” is also a premise to obtain a
deduction from A[ϵxA[x]] and viceversa:
– when t is an object of type T and π is a proof of A[t] (i.e. when we may prove

the statement “for some x of type T, A[x]”), then we prove A[ϵxA[x]] by the
ϵ-axiom and substitution rule, and viceversa;

– when a is a generic element of type T in a deduction π from A[a] (i.e. whenwe
have a deduction from the statement “for some x of type T, A[x]”), we have a
deduction from A[ϵxA[x]] because ϵxA[x] is the generic element a of type T
in a deduction from A[a], and viceversa.

Analogously, for every formula A[x] with x variable of type T, the formula

A[ϵx¬A[x]]
may be considered – as proposed by Hilbert – a representation of the universal
statement “for every x of type T, A[x]” , since the premise of the logical rule
to prove the statement “for every x of type T, A[x]” is also a premise to prove
A[ϵx¬A[x]] and viceversa, and the premise of the logical rule to obtain a
deduction from the statement “for every x of type T, A[x]” is also a premise to
obtain a deduction from A[ϵx¬A[x]] and viceversa:
– when a is a generic object of type T in a proof π of A[a] (i.e. when we may

prove the statement “for every x of type T, A[x]”), we prove A[ϵx¬A[x]]
because ϵx¬A[x] is the generic element a of type T in a proof of A[a], and
viceversa;

– when from the statement “for every x of type T, A[x]”we deduce A[t] for some
object t of type T, we may deduce A[t] also from A[ϵx¬A[x]] by the ϵ-axiom
and substitution rule, and viceversa.

2.3 The operators τ and ϵ: impredicative definitions, choice
principle, ideal elements

2.3.1 Impredicative definitions

An impredicative definition of an object c is a definition of c where there is an
universal statement or an existential statement on a type T and c is an object of
the type T.

In the critics of the impredicative definitions (e.g. in the critics made by
Brouwer, Poincaré, Weyl,...), the usual objection against the use of such a kind
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of definition in mathematics is the fact that in the definiens of c there is already
thedefiniendum c.... but this objectionholdswhen theuniversal statements on the
type T are considered as conjunctions on all the elements of T and the existential
statements as disjunctions on all the elements of T.

Instead, when an universal statement “for every x of type T, A[x]” is
considered asA[τxA[x]], and an existential statement “for some x of type T,A[x]”
is considered as A[ϵxA[x]], there is no ground for the usual criticisms: in this view,
in the universal statements on a type T and in the existential statements of a type
T we do not consider the elements of the type T.

2.3.2 Choice principle

The choice principle – in its general form – says that, given any collection of sets
such that each set contains at least one object, it is possible to make a selection of
exactly one object from each set and the results of this selection are the elements
of a set.

Now, sets may be represented by formulas (for example, a set X may be
represented by a formula A[x] such that A[t] holds if and only if t belongs to the
set X) and a set represented by a formula A[x] is non-empty when the existential
statement “for some x of type T, A[x]” holds, i.e. by ϵ-axiomwhen AϵxA[x] holds
(and by τ-axiom when A[τx¬A[x]] holds): so, if a non-empty set is represented
by a formula A[x], then ϵxA[x] (or A[τx¬A[x]] ) is a selected element of
this set.

So, by accepting ϵ-axiom or τ-axiom (i.e. when an existential statement
“for some x of type T, A[x]” is considered as A[ϵxA[x]] or is considered as
A[τx¬A[x]]), one accepts a general choice principle: the selected element of a
non-empty set represented by the formula A[x] is ϵxA[x] or τx¬A[x].

But we have to remark that the operator ϵ is not exactly a choice function,
since:
– firstly, the operator ϵ refers to formulaswhereas choice function refers to sets,
– moreover, the operator ϵ is defined for each formula, whereas choice function

is defined only for non-empty sets,
– finally, the object selected by the operator ϵ applied to a formula A[x] is

the generic object a inside some deduction from A[a] which does not exists
outside deductions.
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2.3.3 Ideal elements

A term of the form τxA[x] or ϵxA[x] denotes a generic object of a given type inside
some proof or some deduction, and nothing allows us to say that such generic
objects exists outside proofs or outside deductions.

Moreover, these terms belong to the part of logic and mathematics which
is not finitist and is called by Hilbert the ideal part of logic and mathematics:
terms of the form τxA[x] or ϵxA[x] correspond to ideal elements of logic and
mathematics, a topic discussed by Hilbert in Über das Unendliche (1926). A
proof of the consistency of τ-axioms and ϵ-axioms would allow to say that the
hypothesis of the existence of such generic objects is safe.

The semantics of these terms is very hard, and is very distant from Hilbert’s
approach to logic and foundations of mathematics. Indeed, let T be a type and x
a variable of type T: it is difficult to have an idea of what is a denotation of τxA[x]
and ϵxA[x] because of the following remarks:
– thedenotation of τxA[x]must be anobject b such that,whenA[b]holds, then

“for every x of type T, A[x]”. If the type T is finite and “for every x of type T,
A[x]” holds, τxA[x] may be the last element checked in order to verify that
every object of T has the property expressed by A; but what when T is not
finite? and what when “for every x of type T, A[x]” does not hold? Hilbert
proposed an example outside mathematics: if A[x] is “x is a good man”, then
τxA[x] is themanwho is considered theworstman, since if thisman becomes
good then every man is good!

– the denotation of ϵxA[x]must be an object b such that, when “for some x of
type T, A[x]”, then A[b] holds. If the type T is finite and “for some x of type
T, A[x]” holds, ϵxA[x] may be the first element of T checked as an element
enjoying the expressed by A. But what when T is not finite? and what when
“for some x of type T, A[x]” does not hold? When the type T is infinite, a
choice function would be able to give the value of the terms ϵxA[x] such that
“for some x of type T, A[x]” (i.e. when the property expressed by the formula
is not empty), but not for the other ϵ-terms.

Remark that the real interest of Hilbert is to give an interpretation of each τ-term
and each ϵ-term inside a given proof, when this proof ends with a formula which
does not contain τ or ϵ, i.e. a formula without ideal elements.
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3 Logical naturaleness and logical depth of
τ-axiom and ϵ-axiom

In Hilbert’s axiomatic approach, axioms on a concept are the implicit definition
of the concept: so, τ-axiom and ϵ-axiom are implicit definition of the operators τ
and ϵ.

I propose a logical analysis of τ-axiom and ϵ-axiom, i.e. a logical analysis of
the operators τ and ϵ, by investigating what happens when in sequent calculus
we prove the (more complex) identity ∀xA[x] ⊢ ∀xA[x] and ∃xA[x] ⊢ ∃xA[x] from
the (more simple) identity A[a] ⊢ A[a].

The result of this logical analysis is:
– τ-axiom arises, in a very natural way, in some hidden steps of the derivation

of ∀xA[x] ⊢ ∀xA[x] from A[a] ⊢ A[a],
– ϵ-axiom arises, in a very natural way, in some hidden steps of the derivation

of ∃xA[x] ⊢ ∃xA[x] from A[a] ⊢ A[a].
This leads to say that τ-axiom and ϵ-axiom are logically natural and belong to a
refinement of logic.

3.1 τ-axiom

I propose the following analysis of the τ-axiom A[τxA[x]]→A[a], i.e. A[τxA[x]] ⊢
A[a], by investigating what happens whenwe try to prove in sequent calculus the
identity ∀xA[x] ⊢ ∀xA[x] from the identity A[a] ⊢ A[a].

In the proof of ∀xA[x] ⊢ ∀xA[x] from A[a] ⊢ A[a] in sequent calculus, we
distinguish the following steps.
1. First step:we startwithA[a]⊢A[a]where a is a generic object (a free variable)

of a type T, with two occurrences of a (the left occurrence is in the formula in
the left side of the sequent, the right occurrence is in the formula in the right
side of the sequent).

2. Second step. The second step is the transition from A[a] ⊢ A[a] to ∀xA[x] ⊢
A[a] by using the left rule of the universal quantifier ∀. This step is split in
two sub-steps:
(a) firstly, we have to distinguish the left occurrence of a from the right

occurrence of a, because we act on the left occurrence whereas we do
not act on the right occurrence:
– the left occurrence of a is considered as a particular object t of type

T (in order to use the left rule of ∀)
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– but we continue to consider the right occurrence of a as a generic
object,

so that the left occurrence of a is considered as a particular object t of
type T such that A[t] ⊢ A[a];

(b) then, we apply on the left side of the sequent the left rule of ∀ (which
corresponds to the logical rule concerning the deductions from the
universal statement, i.e. the rule of the use of the premise ∀), to conclude∀xA[x] ⊢ A[a].

3. Final step. Since a does not occur free in the left side (and this means that
we have a proof of A[a] from the hypothesis ∀xA[x]) where a is a generic
object of type T), then we use the right-rule of ∀ (the rule of proof of ∀, which
corresponds to the logical rule concerning the proofs of universal statements)
to conclude ∀xA[x] ⊢ ∀A[x].

If we stop at the step 2(a), i.e. if we stop before the introduction of quantifiers, the
object t of type T such that A[t] ⊢ A[a] is just τxA[x] and what we get is a τ-axiom
: there is an object t such that, if A[t] holds, then for every x of type T A[x] holds.

3.2 ϵ-axiom

Now, I propose the following analysis of the ϵ-axiom A[a] → A[ϵxA[x]], i.e.
A[a] ⊢ A[ϵxA[x]], by investigating what happens when we try to prove in sequent
calculus the identity ∀xA[x] ⊢ ∀xA[x] from the identity A[a] ⊢ A[a]

In the proof of ∃xA[x] ⊢ ∃xA[x] from A[a] ⊢ A[a] in sequent calculus, we
distinguish the following steps.
1. First step: we start (as in the previous analysis of τ-axiom) with A[a] ⊢ A[a]

where a is a generic object (a free variable) of a type T, with two occurrences
of a (the left occurrence is in the formula in the left side of the sequent, the
right occurrence is in the formula in the right side of the sequent).

2. Second step. The second step is the transition from A[a] ⊢A[a] to Aa ⊢∃xA[x]
by using the right rule of the existential quantifier ∃. This step is split in two
sub-steps:
(a) firstly, we distinguish left occurrence of a from the right occurrence of

a, because we act on the right occurrence and we do not act on the left
occurrence:
– the right occurrence of a is considered as a particular object t of type

T (in order to use the right rule of ∃),
– whereas we continue to consider the left occurrence of a as a generic

object,
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so that the right occurrence of a is considered as a particular object t of
type T such that A[a] ⊢ A[t];

(b) then, we apply on the right side of the sequent the right rule of ∃ (which
corresponds to the logical rule concerning the proofs of the existential
statements), to conclude A[a] ⊢ ∃xA[x].

3. Final step. Since a does not occur free in the right side (and this means that
we have a proof of ∃xA[x] of A[a]where a is a generic object of type T ), then
by left rule of ∃ (the rule of use of existential statements, which corresponds
to the logical rule concerning the deductions from existential statements) we
conclude ∃xA[x] ⊢ ∃xA[x].

If we stop at the step 2(a), i.e. if we stop before the introduction of quantifiers, the
object t of type T such that A[a] ⊢ A[t] holds is just ϵxA[x] and what we get is an
ϵ-axiom: there is an object t such that if for some x of type T A[x] holds, then A[t]
holds.

Conclusion
I wish tomention other topics which I aim to consider in further papers devoted to
the operators τ and ϵ in proof-theory, on the basis of the fact that these operators
give a proof-theoretical representation of the universal and existential statements:
– Interdefinability of the operators τ and ϵ, and definability of the usual

quantifiers ∀ and ∃ by means of the operators τ and ϵ;
– Quantifiers ∀ and ∃, and operators τ and ϵ, in sequent calculus
– Formalization of Arithmetics and Mathematical Analysis by means of the

operators τ and/or ϵ
– Hilbert’s procedure of elimination of ideal elements (τ-terms , ϵ-terms) in the

proofs of formulas without ideal elements.
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Tatiana Arrigoni
Truths in Contemporary Set Theory

1 Introductory remarks and contents
The aim of this paper is to sketch a brief overview of the contemporary debate
in set theory about mathematical truth, and to give a critical appraisal of it. To
this purpose I’ll start by sketching an overall analysis of what is commonly and,
perhaps, naively, meant by ascribing truth to sentences, focussing on the general
conditions under which true sentences are usually said to be so. I’ll then proceed
by formulating themain thesis of the paper, i.e. the view that in contemporary set
theory a process of “thinning out” truth has taken place in the last decades along
with the mathematical development of the discipline: distinguished sentences
of set theory are/continue to be regarded as true, and others are considered
suitable candidates for new set theoretic truths, but when it comes to do so only
minimal conditions for truth are invoked, with “old” assumptions concerning
truth being bracketed and/or substituted with new, more “economical” ones. Of
course, under these circumstances one may legitimately ask whether the pursuit
of truth still makes sense in set theory today, or should better be dispensed with.
A systematic discussion of this issue goes beyond the scope of this paper. I only
observe that it seems not so easy to dispense with truth in contemporary set
theory. The notion of truth has in fact displayed remarkable resilience in adapting
to new results and unexpected mathematical scenarios, and continues to be a
crucial term of reference for the practitioners. Any detailed analysis of this fact,
however, must be postponed until to another occasion.

2 (Naive) truth inside and outside set theory:
a brief analysis

What dowemean, implicitly and, perhaps naively, by claiming that sentences like
e.g. “sets with the same elements are the same set” or “7+5 = 12”, or, even, “the
snow is white” are true?

As a first tentative answer to the question I suggest considering following
conditions for truth, which for convenience I group under the three categories:
ontological, epistemic and functional. Note the there is a relation of implication
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among these conditions, the ones being mentioned first being sufficient (though
not necessary) for the occurrence of the ones following them.

2.1 Ontological conditions

If we take a true sentence like “the snow is white” and examine why people
are ready to agree that it is true, it seems straightforward to say that this
happens because everybody is ready to acknowledge that the content expressed
by it amounts to a state of affairs that holds objectively. By this I mean that
it holds independently from the individual subject who happens to utter the
sentence, more precisely from special conditions concerning him/her, e.g.
distinguished cognitive features of him/her and/or the particular spatio-temporal
coordinates at which he/she makes the utterance (or both). Below I’ll examine
what justifications for the objectivity of a state of affairs one may give. Here I
just take for granted that, as a matter of fact, many are ready to connect truth
with objectivity (as described above) and give some examples (in the negative) in
support of my claim. If I wore pink glasses and I were on a snowymountain in the
Alps, I would see all white surfaces surrounding me as pink, but nobody (neither
you nor myself) would be ready to regard the sentence “the snow is pink” as true,
its content being clearly dependent upon a cognitive peculiarity of mine (the fact
that I wear pink glasses). Analogously, since it is now January and I find in Italy
I can legitimately say: “winter is a cold season”. However, would you be ready to
regard this sentence, as it stands, as true? I guess not. Were I in Argentina instead
of Italy now, it would still be winter, but probably it would not be very cold. In
fact, we are inclined not to regard the sentence “winter is a cold season” as true
without further specifications. That its content holds, in fact, depends on the
utterer’s location. Moreover, a sentence whose content expresses a state of affairs
that is recognized as holding independently from the subject who utters it, cannot
but be regarded as mutually exclusive with its negation, i.e. the state of affairs
expressed by the latter, even thoughpossible per se, cannot be thought of as being
actually the case, if the original sentence is true. The ontological condition implies
bivalence.

2.2 Epistemic conditions

It seems also easy to agree that a sentence satisfying the conditions I called
ontological, is likely to be endowedwith epistemic features thatmake it especially
compelling. As a result, all sound subjects presented with the sentence are
expected to subscribe to it, i.e. the sentence is to be intersubjectively agreed upon.
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Moreover its truth stands out as a property that admits no degrees and no fluctu-
ations. It is a yes/no feature of the sentence: either it does possess it, or it doesn’t.
And if a sentence possesses it, its negation does not. We can make mistakes, of
course, and regard as objectively holding states of affairs that later turn out not to
be so, i.e., which is equivalent, take as true sentences that are later discovered to
be false.¹ Truth-value revision, though, has no impact on the epistemic features of
truth, it doesn’t turn truth into a property that may change in time. If a sentence
supposed to be true is later found to be false, it is regarded as such that it
was never true after all. To state it again, truth is no property that may be only
temporary there and/or modify in time – although we are ready to say this of our
truth-ascriptions to sentences. Thus, as long as we think of a sentence as true, no
matterwhetherweare right or not,we thinkof it as definitively so, and, at the same
time we rule out that its negation can be true as well. Truth is to some extent “ex-
clusive”: no sentence can share it with its negation or sentences contradicting it.

2.3 Functional conditions

If 2.1 and 2.2 are the main features which are straightforwardly (albeit implicitly)
ascribed to sentences in saying them true, further properties of truth follow. Let
me specifically focus on one, which I call functional because it has to do not with
truth per se but with the role true sentences are expected to playwithin the corpus
of our knowledge concerning a subject. Being supposed to express states of affair
that objectively hold, and being their epistemic status regarded as enduring in
time and “exclusive”, known true sentences are assumed to be inevitable starting
points and constraints when it comes to enlarge our views and get moremore and
more information about a subject which remains partly obscure. One has to start
from known true sentences about the subject, and not to contradict them, if one
wants to know more about it.

3 (Non naive) Truth inside and outside set theory
The reason why I qualified above conditions for truth as possibly naive is because
people may be ready to agree with them without any explicit justification for the
possibility of the existence of true sentences. Are we fully legitimate in assuming
that there are state of affairs that objectively hold (in the sense explained above),

1 Like the axiom of unrestricted comprehension, to make an example taken from the foundation
of mathematics. See Jech (2003)
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and to think that these can be expressed by true sentences? The most traditional
way in which philosophers have given a positive answer to this question has been
to claim the existence of a mind-independent reality, perfectly determined per se,
knowable by the thinking subjects in a way that is faithful to how it is in fact, and
correctly describable in words. Having used numbers from 1 through 3 for listing
the above, possibly naive, features of true sentences, I now use number 0 for this
new condition. Since it appears to be more fundamental than the others (which
in fact can be implied by it), I call it “meta-condition” for truth or, more exactly,
due to its content, realist “meta-condition” for truth.

3.1 The realist meta-condition for truth

State of affairs that objectively hold are realized in a mind-independent reality,
determined per se, faithfully knowable by us, and describable in words via (true)
sentences.

That true sentences possess eatures from 3.0 to 2.3, these being hierarchically
ordered by a relation of implication according to their order (3.0 → 2.1 →
2.2 → 2.3), has been a widespread view in philosophy. It is usually called
“correspondence theory of truth”.

The most classical version of the theory is due to Aristotle.

The fact of the being of a man carries with it the truth of the proposition that he is, and
the implication is reciprocal: for if a man is, the proposition wherein we allege that he is,
is true, and conversely, if the proposition wherein we allege that he is true, then he is. The
true proposition, however, is in no way the cause of the being of the man, but the fact of the
man’s being does seem somehow to be the cause of the truth of the proposition, for the truth
or falsity of the proposition depends on the fact of the man’s being or not being. (Categories
14b14).

The correspondence theory of true, in slightly the same terms as formulated in
the Categories, has been more than once invoked in set theory to account for the
truth value of mathematical sentences. It is central to Platonism, as formulated
by Gödel in the following quotation, where the truth/falsity of the statement
expressing the Continuum Hypothesis is explained as depending on whether it
reflects or not what is the case in the well-determined reality described by the
axioms of set theory.²

2 The Continuum Hypthesis, formulated by Cantor, concerns the size of the set of all real
numbers, i.e. the power set of the infinite set ω having all natural numbers as elements. The
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The set theoretical concept and theorems describe some well-determined reality, in which
Cantor’s conjecture must be either true or false. Hence its undecidability from the axioms
assumed today can only mean that these axioms do not contain a complete description of
that reality. (Gödel 1947/64, 476)

Also in more recent papers Platonism (and the related correspondence theory
of truth) are invoked. In a recent contribution by Shelah, for example, the
author appears reluctant to regard as a proper axiom for set theory any proposal
advanced in the last decades for enlarging the system ZFC.³ While doing so he
repeatedly stresses that ZFC has a privileged status compared to more recent
axiom candidates, and the point is made that proving a theorem in set theory
means ultimately proving it in ZFC. Shelah’s claim comes together with an
endorsement: “I am a card carrying Platonist seeing before my eyes the universe
of set”. (Shelah (1993), p. 6). His “Platonist position” is described by the author
in a later contribution as the view that “there is a unique universe of set about
which we know no more than ZFC” (Shelah (2003), p. 215). It is clear from further
considerations that ZFC is the only axiomatic system for sets that Shelah is ready
to regard as true.⁴ One has thus to conclude that implicit in both papers is the view
according to which the truth of a statement about sets depends on and consists
in reflecting what is the case in a unique, mind independent (“seen before one’s
eyes”) universe of set.

4 The thesis of this paper in nuce
I am now in the position of stating the thesis of this paper more explicitly.
The above quotations witness that there are set theorists according to whom
distinguished set theoretic sentences have to be regarded as true because fulfilling
all the conditions for truth listed above, i.e. the realist meta-condition, hence

conjecture is that the size of the power set of ω represents the smaller size for an infinite set
above the one of ω itself. See Jech (2003) for mathematical details.
3 ZFC is the axiomatic system consisting of the Zermelo-Fraenkel axioms for set theory plus the
Axiom of Choice. See Jech (2003).
4 Consider e.g. the discussion in Shelah (2003) about the axiom of constructibility, V = L,
about which he asks: “Why the hell should it be true?” (p. 210). By this it is not meant that
the axiom should be regarded as false, but only that it leads to one of the many possible set
theories extending ZFC, all on a par as hypothetical scenarios about sets, no one deserving to
be regarded as more faithful to “the unique universe of sets” than any other. About the axiom of
constructibility V = L and its implications, see Jech (2003).
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the ontological, epistemic and functional conditions described in section 2. This
suggests an obvious interpretation ofmy initial claim that truth has been “thinned
out” in contemporary set theory: this has been done through a progressive
disentanglement of truth from Platonism as endorsed by e.g. Gödel and Shelah.
In fact, with very few exceptions⁵, when truth is invoked in set theory today, it
is no longer understood, at least overtly, as consisting in sentences’ faithfully
describing states of affairs holding in amind-independent world of mathematical
objects. How is it meant instead? In what follows I will discuss two possible
alternatives to Platonism about truth in contemporary set theory, which I’ll call
quasi-Platonism and a no-Platonism-at-all.

Although not usually named in this way, quasi-Platonism is the position of
those who literally describe truth in quite the same terms as Platonists but with
one remarkable exception.⁶ Quasi-Platonists take true sentences of set theory
to express states of affairs that apparently hold objectively, are epistemically
compelling and deserve to play the role of axioms. For them, however, sentences
expressing objectively holding states of affairs need not be intended as mirroring
what is the case in a mind-independent mathematical reality. Accounting for
objectivity in a non Platonistic setting is the major philosophical challenge of
quasi Platonism. I will return on it in a moment.

Not differently from quasi-Platonism, the non-Platonist-at-all account of set
theoretic truth is often intertwined with the view that there are sentences of
set theory that, although not yet so, do deserve to be regarded as (new) set
theoretic truths. When it comes to explain what this exactly means, it is said that
they should be intersubjectively agreed upon and regarded as starting points for
enlarging our set theoretic views, exactly as candidates for new axioms of set
theory. That this is so, though, is not explained by saying that these sentences
express states of affairs that we know as holding objectively, i.e. independently
from us. Nor are they said to have, at least prima facie, compelling epistemic
features. Instead it is the mathematical developments in which they are involved
that is supposed to endow them with a special status. This may be called
“honorary truth”, truth as a sign of mathematical merit. Note that honorarily true
statements do clearly fulfil the functional conditions for truth mentioned above.

5 Shelah is one of them, and other set theorists may perhaps be ready to express similar views
in conversation.
6 The expression “objectivity over objects” is also used for the position, which I call
quasi-Platonism. The expression in to be found in Wang, to describe views of Gödel (see Wang
(1996)), and has also been recently used for views about truth in set theory of a quasi-Platonist
flavour in Hauser (2001).
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It is clear, too, that, so described, they do not satisfy the realist meta-condition
for truth. Less clear is whether they may satisfy the ontological and epistemic
conditions.

To conclude this overview, let me add that there also seems to be a nihilist
perspective about truth in contemporary set theory. This is endorsed by those
who either think that no set theoretic sentence deserves to be regarded as true,
hence refuse to ascribe truth to any and claim that any use of the term true in
set theory is deceptive, or are extremely generous in ascribing truth to sentences,
even to contradictory ones. This perspective has been by large affected by the
discovery of sentences independent from the axiomatic system ZFC, and the work
done on different models of it (or suitable extensions of it).⁷ In this connection
truth is taken to mean “true in a distinguished model of ZFC” and either ascribed
to mutually contradictory sentences, each consistent with ZFC, or denied to any
set theoretic formula except for the ZFC axioms and theorems, bivalence being
regarded as an indispensable condition for truth. I won’t focus on the nihilist
perspective in this paper. In fact, on the one hand, this paper subscribes to the
view that truth and bivalence are strictly related (the latter is intertwined with all
the conditions describing truth considered above). Hence the expression “true in
a model” is not taken here to be per se synonymous with “true” in set theory. On
the other hand, my focus is on views according to which not only the axiomatic
system ZFC but also suitable extensions of it may deserve to be regarded as true.

5 Quasi-Platonism
Quasi-platonism, in its most coherent form, is closely intertwined with a distin-
guished line of research in contemporary philosophy of mathematics, applying
the resources of Husserl’s phenomenology to account for objectivity and truth in
set theory. Some of the overall assumptions which quasi-Platonism starts from,
however, may be found in a plenty of contributions devoted to large cardinal
axioms, exactly when it comes to justify the claim that the latter should be
regarded as axioms of set theory as standard as the axioms of the system ZFC.⁸

7 A formula φ of the language of ZFC is said to be independent from ZFC if is both φ and its
negation are consistent with it (i.e. there model of both “ZFC + φ” and “ZFC + ¬φ”). See Kunen
(1980) for an introduction to independency proofs.
8 Large cardinals are cardinals whose existence cannot be proved in ZFC (since they imply the
consistency of the latter). In contemporary set theory a distinction is made between small and
large large cardinals, according to whether they are consistent with the axiom of constructibility
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The first central assumption worth mentioning in this connection is that
we have a clear and persuasive intuitive concept of set, the so called “iterative
concept”, implying a distinguished picture of the universe of all sets. According
to the latter, the universe, called V, looks like a transfinite sequence of stages,
and sentences stating the existence of large cardinals do describe features of V
implicit in the iterative concept. Hence, so the argument, these sentencesmust be
regarded as true for the iterative concept and the view of the universe implied by
it. This is enough formany to say that they are simply true and deserve to be taken
as new axioms for set theory.

This viewwasfirst formulatedbyGödel inhis 1947/64,where thepoint ismade
that the statements that (small) large cardinals exist must be regarded as axioms
since they are suggested by the “iterative concept of set” (for the same reason they
are also said to be intrinsically evident).

[. . . ] the axioms of set theory by no means form a system closed in itself but, quite on the
contrary, the very concept of set on which they are based suggest their extension by new
axioms which assert the existence of still further iteration of the operation “set of” [. . . ]
These axioms show clearly, not only that the axiomatic system of set theory as used today
is incomplete, but also that it can be supplemented without arbitrariness by new axioms
which only unfold the concept of set. (Gödel, 1983, p. 476)

How the existence of large cardinals in V can be viewed as implied by the iterative
concept is briefly illustrated in Martin (1998), as follows:⁹

According to the iterative concept sets are to be regarded as being formed in a transfinite
sequence of stages and that the number of these stages is supposed to be “absolutely
infinite”. From this absolute infinity one derives the related principles of resemblance (there
should be pairs of stages that are alike in any given respect) and reflection (there should be
stages that look like the whole universe of sets in any given respect). From the reflection
principles come precise reflection schemata in the formal language of set theory.(Martin
(1998), p. 229)

To see why a principle like resemblance should lead to large cardinal axioms, just
consider that the axiom stating the existence of an inaccessible cardinal amounts
to the claim that there is a stage of the universe of all sets Vκ that resembles
the relation in which the stage Vω (i.e. the set of all natural numbers) stays to
the stages indexed by finite natural numbers, i.e. it cannot be reached “from

V = L. See Kanamori (1994) and Jech (2003) for mathematical details, and Arrigoni (2007) for a
philosophical analysis of large cardinals and their role in contemporary set theory.
9 I’ve chosen to quote this contribution among many because it is significantly included in a
volume which entitled “Truth in Mathematics”, exactly Martin (1998).
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below” by applying ZFC operations for building new sets (like Union or Power
Set) to stages Vλ for λ < κ. As to reflection, Martin’s argument draws back to the
Reflection Principle of Levy (1960) and Montague (1961), which states that for any
ZFC-formula φ(x1, . . . , xn) and any ordinal β there is a limit α > β so that for
any x1, . . . , xn in Vα, φ(x1, . . . , xn)↔ φVα (x1, . . . , xn).¹⁰ This means that the set
Vα, relative to the ZFC-language, is like the universe, i.e. every formula true in
the universe, with parameters confined to sets in Vα, is already true in Vα. This
seems to be a reasonable assumption. If the number of the stages of V has to be
“absolutely infinite”, i.e. it never ends, theuniverse of all sets cannot be exhausted
by our knowledge.¹¹ Hence, whatever we know about the universe should be
already true at some stage Vα. Indeed, reflecting the Reflection Principle to certain
stages amounts to the postulation of large cardinal hypotheses, which, since
implied by reflection, appear to be directly linked to the picture of the universe
suggested by the iterative concept.¹²

Manyhave also insisted on the especially compelling character of the iterative
concept.¹³

[. . . ] the iterative conception of sets [. . . ] often strikes people as entirely natural, free from ar-
tificiality, not at all ad hoc and one theymight perhaps have formulated themselves.(Boolos
(1971), p. 489)

The same view is also implied by the claim that the iterative concept of set is
intuitive:

[. . . ] people do set theory by extensive appeal to their intuition and there is practically
universal agreement on the correctness or incorrectness of the results thus obtained, as

10 φVα (x1, . . . , xn) is the relativization of φ(x1, . . . , xn) to Vα got by restricting the parameters
of the formula to sets belonging to Vα .
11 The expression “absolutely infinite” was introduced by Cantor himself who distinguished the
Absolute from the Transfinite. Where the former goes beyond any possibility of determination
(and is ultimately identified with God), the latter is regarded as an increasable quantity, which
displays different sizes, expressed by different (transfinite) cardinal numbers. See Cantor (1883),
and Jané (1995) for a comprehensive analysis of Cantor’s Absolute.
12 See Arrigoni (2007) for a more extensive illustration of reflection and large cardinals. Starting
from a suggestion of Magidor, Bagaria has recently proposed to embrace not only reflection
between stages of the universe but also reflection between structures within the universe. In this
way one may derive most large cardinals known to now, which are thus said to be “natural” by
Bagaria. See Bagaria (2005).
13 Many have contested, however, that the conception is partly only intelligible only due to
our prior familiarity, got through purely mathematical work, with the principles/axioms it is
supposed to shed light on. See e.g. Jané (2005).
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results about sets. The iterative concept of set is an intuitive concept and this concept has
lead to no contradiction.(Wang (1996), p. 553)

Notice that the views expressed in these quotations do not amount to
quasi-platonism. What is missing to them is an account that combines the
equation “set theoretic truth = truth for the iterative concept” with a view of truth
that, not satisfying the realist meta-condition, still does obey the ontological
condition. That so an account is possible is not clear prima facie. In fact, on the
one hand, the equation is per se compatible with full Platonism (just assume
either that the universe of all sets described by the iterative concept is a “well
determined reality” independent from us, or that that concept is in itself a
well determined reality). On the other hand, the equation “set theoretic truth
= truth for the iterative concept” may come together with the view that, far from
satisfying the ontological condition, set theoretic truth does fail in doing so: if one
embraces no Platonism with regard to either concepts or objects, one may see the
iterative concept and the picture of the universe implied by it asmen-mademental
contents, and regard sentences true for the iterative concept and V as true of and
for our “thoughts” (about sets and set structures). Under these circumstances
theywould express states of affairs that ultimately depend on us, holding because
of us.

To see how quasi-Platonism may be formulated starting from the equation
“set theoretic truth = truth for the iterative concept”, recall that the ontological
condition was described above as fulfilled if states of affairs expressed by
sentences stand out as independent from cognitive or spatio-temporal features
of the individuals that utter the latter. However, no mention was made of features
that may be shared among many individuals. Thus, if one is able to argue that
there is nothing involving any individualmathematician and his/her peculiarities
in how “thoughts” like the iterative concept of set came to light – and in how we
came to refer to it, explore it and make discourses about it – one may perhaps be
in the position of arguing that, although expressing “thoughts” of ours about sets
and set structures, the iterative concept, V, and what holds in it according to that
concept, still can be seen as contents that objectively hold.

In fact in the literature one finds accounts according to which the iterative
concept, and the related picture of the universe, have to be understood as
powerful metaphors emerged through years of mathematical work, inspired by
the results obtained all along in set theory and constrained by them. It was the
shared effort of a community of research that has produced the iterative concept,
and the picture of the universe “implied by it”. This was possible once the overall
features of a formal structure shaped by and emerged from purely mathematical
work becamewell understood and people were able to convey (part of) its content
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by an effective narrative (the iterative concept) and a pictorial illustration (the
cumulative hierarchy V).¹⁴

The moral of the story is that, being no invention of any individuals, and
being constrained by themathematical results obtained all along by set theorists,
the iterative concept, the universe V, and statements expressing what is true for
them, are such that people can be intentionally related to them as to autonomous
contents, independent from the individual subjects, no matter whether they ulti-
mately originated inhuman cognition (long timemathematicalwork, paraphrase,
and successful communication). Statements true for the iterative concept can
thus be legitimately regarded as satisfying the ontological condition, hence the
epistemic and the functional ones, without committing to Platonism.

Conclusions seemingly analogous to the above have been drawn by Gödel
in 1947/64, where he uses the expression “mathematical intuition” for the act
through which we are intentionally related to the iterative concept and the
universe V as to autonomous contents.

[. . . ] the question of the objective existence of the objects of mathematical intuition [. . . ]
is not decisive for the problem under discussion here. The mere psychological fact of the
existence of an intuition which is sufficiently clear to produce the axioms of set theory and
an open series of extensions of them suffices to give meaning to the question of the truth or
falsity of propositions like Cantor’s Continuum Hypothesis.(Gödel (1983), pp. 484–485)

In 1947/64, however, Gödel is silent on how and from what the mathematical
intuition he invokes, and its objects, may have originated.¹⁵ These issues have
been explicitly investigated by some contemporary authors. Following again
a suggestion by Gödel, concepts and themes of Husserl’s phenomenology are
applied to give a systematic account of the constitution in human cognition
of the objects of mathematical intentionality (concepts, structures, and objects
in a proper sense), of the objectivity of the states of affairs that are known
to be true for them and, hence, of mathematical truth. To enter into details
of phenomenological accounts of objectivity and truth in mathematics goes
beyond the scope of this paper. I refer to the relevant literature for suitable
exemplifications.¹⁶

14 See my overview in Arrigoni (2011), pp. 337–60, 355 ff. Note also that, although referring
back to Gödel 1947/64, accounts of set theoretical contents in terms of the iterative concept, first
appeared in articles of the 1970’s, whereas set theory was born at the end of the 19th century.
15 See Hauser (2006) for a very comprehensive phenomenological interpretation of Gödel’s
views.
16 See Tieszen (1989) for a general phenomenological account of mathematics, and Hauser
(2001), Hauser (2006) for accounts focussed on set theory.
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6 No-Platonism-at-all
Not differently fromQuasi Platonism, no-Platonism-at-all starts fromassumptions
which are per se be compatible with alternative accounts of set theoretic truth,
in particular with both Platonism and quasi-Platonism. In fact the original
suggestion for no-Platonism-at-all stems from Gödel’s papers. In his 1947/64
Gödel suggests that axioms that are very successful (extrinsically evident axioms)
deserve to be regarded as true.

[. . . ] even disregarding the intrinsic necessity of some new axiom, an even in the case it has
no intrinsic necessity at all, a probable decision about its truth is possible also in another
way, namely, inductively, by studying its success [. . . ] There might be axioms so abundant
in their verifiable consequences, shedding so much light upon a whole field, and yielding
such powerful methods for solving problems [. . . ] that no matter whether or not they are
intrinsically necessary, they would have to be accepted. (Gödel (1983), p. 477)

Recognizing sentences of set theory as true since intertwined with successful
mathematics, and suggesting that they should be adopted as axioms, lead to
no-Platonism-at-all if one is ready to make two further claims. First one must
contend that the truth of statements connected with successful mathematics is
ultimately a matter of convention, although not an arbitrary one. It is grounded
in the decision of taking distinguished sentences as constraints in enlarging our
set theoretic knowledge, and reduces to the fact that a community of research
converges on starting from them in enlarging its views, and on not revising them
(if not provisionally, to see what consequences this may lead to).¹⁷

17 Steel’s description (in his 2000) of what he thinks an axiom should be is worth quoting since
he just points to the features I mention here.

By axiom I shall mean: assumption to be adopted by all, as part of a broadest point of
view. The “broadest point of view” proviso ismeant to exclude from attention the temporary
adoption of restrictive assumptions as a convenient device for avoiding irrelevant structure.
V = L is often assumed temporarily for such reasons by set theorists who do not believe it,
just as “all functions are C∞” is sometimes assumed by differential geometers who do not
believe it. (Steel (2000), p. 422)

On the other hand, one must also be ready to acknowledge that there is no more in our decision
of ascribing truth to “successful” sentences, and use them as axioms, than the fruitfulness
of the mathematics they produced and/or are connected with. I.e. mathematical success and
fruitfulness have not to be regarded as hinting at further properties of sentences, to be be invoked
in the first place in ascribing truth to them and in accounting for the decision to do that. Instead
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Hardly can one find no-Platonism-at-all formulated in these terms in contem-
porary set theory. Success is in fact often invoked as a hint of truth, but the latter is
mostly intended as not resulting from success alone. In fact the truth of successful
axioms is usually accounted for in a Platonist or quasi-Platonist way in set
theory. This seems to be Gödel’s case. This is also true of some authors who have
focussed on the success of large cardinal axioms (and related principles) in more
recent times. Often the point is made that having discovered the compatibility
of some very successful, but not intuitively plausible, large cardinal axioms with
principles inspired by the iterative concept and the absoluteness of the universe,
has played a decisive role in regarding these axioms as legitimately true, as if
success alone could hardly produce this result.

The case of the axiom of a measurable cardinal (MC) has been especially
discussed in the literature. Although successful, it was felt to lack evidence in
its original formulation (1930) and people were reluctant to take it as true.¹⁸ The
situation changed, however, since its connection with elementary embeddings
was later discovered. Being truth preserving transformations of the universe
V into a subclass resembling it, equipped with the standard ∈ relation, ele-
mentary embeddings are seen as connected with reflection. Hence their exis-
tence is regarded as intrinsically evident. Today MC is usually presented as
follows.

Nowadays definitions of measurable cardinals and their generalizations are phrased in
terms of elementary embeddings [. . . ] A cardinal κ is measurable if and only if there is an
elementary embedding j of V into a transitive target model M with κ being the least ordinal
moved by j (the critical point of j). Progressively stronger large cardinal notions such as
supercompact cardinals are obtained by demanding yet more resemblance between M and
V. It turns out that through elementary embeddings a connection with the Absolute can be
established lending support to Godel’s contention that in the last analysis every axiom of
infinity should be derived from the (extremely plausible) principle that V is undefinable.
(Hauser, 2006, p. 536)¹⁹

truth is to be understood as a status that sentences come to be awarded by in the long run due to
mathematical merits acknowledged to them.
18 Measurable cardinals were introduced by Ulam in 1930 as cardinals carrying a measure i.e.
a function μ : κ 󳨃→ [0,1] so that μ(κ) = 1, μx = 0 for all x ∈ κ, and, for pairwise disjoint {Xn :
n ∈ ω} ⊆ P(κ), μ(∪nXn) = Snμ(Xn). This is indeed equivalent to the existence of a non-principal
κ-complete ultrafilter over κ, a propertywhichgeneralizes aproperty ofω. Generalization seemed
not enough, however, for seeingmeasurable cardinals plausible as theywere first introduced. See
Kanamori (1994) for technical details.
19 See also Bagaria (2005).
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Analogous discourses aremade about the axiomof ProjectiveDeterminacy (PD).²⁰
PD is described by Woodin as the true axiom for the structure H(ω1).²¹

There are natural questions about H(ω1) which are not solvable form ZFC. However there
are axioms for H(ω1) which resolve this question, providing a theory as canonical as that
of number theory, and which are clearly true. But the truth of these axioms became evident
only after a great deal of work. For me, a remarkable aspect of this is that it demonstrates
that the discovery of mathematical truth is not a purely formal endeavour. (Woodin (2001),
p. 681.)

Woodin apparently refers here to the work done in set theory in order to both
exploit the consequences of Projective Determinacy, and to establish the linkage
existing between PD and large cardinal axioms. The latter are implicitly regarded
asmore suitable candidates for set theoretic truth than PD, since connected to the
iterative concept and the absoluteness of V. This explainswhy the proof of PD from
the existence of infinitely many Woodin’s cardinal may be said to have decisively
contributed to make the truth of PD fully evident.²²

The change in the status of PD after being proved to depend on Woodin
cardinals, is pointed out also by Hauser, with an interesting coda on Gödel.

Unlike some large cardinal axioms, however, determinacy axioms are not evident by
themselves, but are accepted mainly in view of their fruitful consequences. That raised the
challenge to derive those consequences and evendeterminacy axioms themselves from large
cardinals, a task that looked difficult given that large cardinals and determinacy seemingly
bear no relation to each other. Nevertheless, in the end it has become clear that these two
classes of axioms are really one class of axioms. Gödel might have interpreted this as a
confirmation of his realistic views, forwewouldhaveno explanation for such anunexpected
convergence unless these two kinds of axioms describe different aspects of one underlying
reality. (Hauser (2006), p. 5)

20 PD is the axiom of projective determinacy, stating the determinacy of games having a
projective set as payoff set. For X ⊆ℝ, the infinite two-person game GX(A) associated to the payoff
set A ∈ ωX is defined as follows. There are two players, I and II; I initially chooses x(0) ∈ X, II
chooses x(1) ∈ X, I chooses x(2) ∈ X. Let the resulting x ∈ ωX be a play of the game. I wins if
x ∈ A otherwise II wins. A winning strategy for I is a function s: ∪2nn∈ωX 󳨃→ X so that , for y ∈ ωX
enumerating II’s plays and s ∗ y denoting the play in which II plays y and I plays according to s,
s∗y : y ∈ ωX ⊆ A. A winning strategy for II is defined analogously. GX(A) is determined iff a player
has a winning strategy. Both the projective hierarchy of sets of reals and PD are investigated in
Moschovakis (1980).
21 H(ω1) is the structure of sets of cardinality less than ω1, the smallest uncountable cardinal.
22 The proof of PD from the existence of infinitely manyWoodin cardinals is due to Martin-Steel
(1989). Woodin cardinals are defined in terms of elementary embedding (see Kanamori (1994)).
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In light of these quotations, it is no surprise that accounts of truth closer to
no-Platonism-at-all are to be found in contemporary set theory when it comes to
suggest that principles incompatible with large cardinals and/or PD do deserve
to be regarded as new set theoretic truths. This is done e.g. within the program
recently launched in Arrigoni, Friedman (2013), the so-called Hyperuniverse
Program (HP). Within the HP one aims at enlarging the realm of set theoretic
truths at an axiomatic level so as to arrive at solutions to questions independent
from ZFC. To do so one selects among several candidate sentences, according
to whether they fulfil criteria for truth stated in advance. More precisely, one
adopts a multiverse perspective and consider all possible countable transitive
models of the system ZFC, supposed to be an undeniable corpus of set theoretic
truths (the Hyperuniverse is exactly the collection of all these models).²³ One
then makes a selection among members of the Hyperuniverse preferring those
who satisfy maximality properties stated in metamathematical terms: preferred
members of the Hyperuniverse aremodels which neutralize the effects of possible
manipulations of them (widening and lengthening) when it comes to prove con-
sistency – hence theymaximize consistency.²⁴ Themembers of the Hyperuniverse
which are so so selected, are finally regarded as repositories for new set theoretic
truths. In fact it is suggested that the statements they prove the consistency of
(which includemany solutions to independent questions) are assumed as new set
theoretic axioms, as new truths to beginwith to enlarge our views beyond ZFC. No
matter if they turn out to be contradictory with (large) large cardinal axioms and
PD (although not with their consistency).

It isworth stressing thatwithin theHyperuniverseProgram, it is theprocedure
through which one arrives at selecting models and sentences holding in them
that makes the latter suitable candidates to the role of new set theoretic axioms
and new set theoretic truths, exactly its alleged reasonableness and its successful
outcomes (after all, it leads to solutions to independent questions).²⁵

Sentences “true in V” are meant to be sentences that are or should be regarded by
set-theorists as definitive, i.e., ultimate andnot revisable.Within theHyperuniverseProgram
two sorts of statements are regarded as being qualified for this status [being true]. The first
are those set-theoretic statements that, due to the role that they play in the practice of set

23 See Arrigoni and Friedman (2013) for details and the choice of the multiverse as consisting of
all countable tarnsitive models of ZFC as a suitable one to start with.
24 See Arrigoni and Friedman (2013) for details.
25 See quotation below fromArrigoni and Friedman (2013) for an account of the ZFC truthwithin
the HP. As a result, within the Hyperuniverse Program, truth (or, better, truth beyond ZFC) stands
out as the outcome of a reasonable convention.
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theory and, more generally, of mathematics, should not be contradicted by any further
set-theoretic statement that aims to be itself accepted as ultimate and not revisable. Let
us call these statements de facto set theoretic truths. The axioms of ZFC are examples
of such truths. But secondly, within the Hyperuniverse Program, one is ready to regard
as true in V statements that, beyond not contradicting de facto set-theoretic truth, obey
a condition for truth explicitly established at the outset (i.e., they hold in all preferred
universes of sets). Let us call these de jure set-theoretic truths. Note that, as intended by
the Hyperuniverse Program, formulating de jure set theoretic truths is an autonomously
regulated process. No external constraint is imposedwhile one is engaged in it, in particular
there is no independently existing well-determined reality to which one must be faithful.
Instead, in searching for de jure set-theoretic truths one is only expected to follow justiable
procedures. It cannot be excluded at the outset that at some time the need will arise to
modify the procedures adopted, in order to integrate them with other, equally reasonable
procedures.(Arrigoni and Friedman, 2013, pp. 80—81)

It must be said, however, that this philosophical approach to truth, explicit in
the first formulation of the program, has been partly abandoned in its most
recent versions. In fact the focus now seems to be on the alleged intrinsic
evidence of the metamathematical properties satisfied by the selected members
of the Hyperuniverse. Since the latter may be described as maximality properties
(the selected members of the hyperuniverse maximize consistency), they are
understood as compatible with the iterative concept, implying the maximality
or absoluteness of V.²⁶ Again one is faced with the implicit assumption that
something more is needed to ascribe truth to sentences than a decision based on
the success and the reasonableness of a selection procedure for them.

This is not the moral I want to draw here, though. In fact I contend that, no
matter how it has evolved, the Hyperuniverse Program in its original formulation
stands out as a relevant case study in the debate about truth in contemporary set
theory.What itmakes it interesting are not somuch the concrete proposals for new
set theoretic axioms that it leads to. In fact hardly principles contradicting large
cardinal axioms are likely to find overall acceptance in today set theory. Not only
the latter are clearly intrinsically evident, while the axiom proposals emerging
form the HP seems not to be so, at least prima facie. Large cardinal axioms are
extremely successful, too. Hence any decision to regard them as preferable to any
sentence contradicting them has a solid rationale also from the perspective of
no-Platonism-at-all. It is instead the way the Hyperuniverse Program addresses

26 See e.g. Antos et al. (2015). Notice that this claimmay be debatable: looking at V as a structure
(as an ontological domain) and focussing on it as model (a metamathematical device) may not
be the same. Why an absolutely infinite structure should maximize consistency when employed
as a model?
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the quest for truth in set theory that makes it especially remarkable, and possibly
a source of inspiration for new developments aimed at enlarging the corpus of
set theoretic truths (beyond ZFC or, perhaps beyond ZFC + large cardinal axioms)
in a multiverse scenario. One sees truth as primarily consisting in a function
that sentences can have, and add that they can have it not only if they satisfy
the ontological and the epistemic condition first. Instead one is ready to regard
truth as the outcome of a decision which may require time and is grounded on
mathematical developments and a reasonable agreement. Finally one is open
towards anunusual scenario,with “thinner” truths possibly coming togetherwith
“fatter” ones, and consider how far this heuristic approach can lead him/her
(beyond ZFC or, perhaps beyond ZFC + large cardinal axioms).
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Gödel, Searle, and the Computational
Theory of the (Other) Mind

Abstract: According to Sergio Galvan, some of the arguments offered by Lucas
and Penrose are somewhat obscure or even logically invalid, but he accepts their
fundamental idea that a humanmind does not work as a computationalmachine.
His main point is that there is a qualitative difference between the principles of
the logic of provability and those of the logic of evidence and belief. To evaluate
this suggestion, I shall first compare it with Searle’s concept of “intentionality”,
and then introduce a distinction between two different senses of intentionality:
a reflexive-transcendental sense and a positive (that is, historical empirical or
formal logical) one. In the first of these senses, the nature of human reason is such
that we have no idea how a real material system – or the corresponding formal
one – could instantiate it. However, although this will turn out to be an important
element of truth in Searle’s and Galvan’s conception, it does not exclude the
opposite truth of Turing’s functionalism: because intentionality, intuition, vision
or insight – taken in their reflexive-transcendental sense – are simply invisible
to the scientific eye, a man and a machine (or a robot) that is and one that is
not endowed with intentionality are de facto indistinguishable from a strictly
scientific point of view. For this reason, we might eventually be entitled, or
even — by the practical precautionary principle – morally obliged, to attribute
minds to machines.

1 Introduction
In an article about Gödel and the computational model of the mind, Sergio
Galvan examined the implications of Gödel’s incompleteness theorems for the
philosophyofmindwith special attention to thedebate thatwas initiatedbyLucas
and Penrose (Galvan (2004)). According to Galvan, some of the arguments offered
by these authors are somewhat obscure or even logically invalid, but he accepts
their fundamental idea that a human mind does not work as a computational
machine. His main point is that there is a qualitative difference between the
principles of the logic of provability and those of the logic of evidence and belief.
He develops this difference in the light of the considerations put forward in
Gödel’s Gibbs lecture “Some Basic Theorems on the Foundations of Mathematics
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and Their Implications” (1951) and in a subsequent paper on the topic now
reprinted in Gödel (1995), the third volume of Gödel’s Collected Works.

The aim of this paper is to present and evaluate one particular aspect
of Galvan’s conclusions, namely that around which his notions of “vision”,
“intuition”, and “understanding” revolve. In order to do this, it will be useful
to compare this focal point of Galvan’s reflections with Searle’s Chinese Room
thought experiment. For this reason, Sections 2 and 3 are devoted to a brief
reconstruction of Galvan’s and Searle’s points of view, respectively. In Section 4,
I shall try to show that Searle’s concept of “intentionality” – but the same
applies, mutatis mutandis, to Galvan’s notions of vision, evidence, intuition,
etc. – distinguishes the human mind from a (computational) machine only if
it is understood in a much more radical sense than usual. For this purpose, I
shall introduce the distinction between two different senses of intentionality:
a reflexive-transcendental sense and a positive (that is, historical empirical or
formal logical) one. In the first of these senses, the nature of human reason is
such that we have no idea how a real material system – or the corresponding
formal one – could instantiate it. However, paradoxically enough, although this
insight is an important element of truth in Searle’s and Galvan’s conception,
it also leads to the opposite truth contained in Turing’s functionalism: from a
strictly scientific point of view, intentionality, intuition, vision or insight – in
their reflexive-transcendental sense – are simply invisible to the scientific eye.
A man and a machine (or a robot) that is and one that is not endowed with
intentionality are de facto indistinguishable from an empirical or from a logical
point of view. The lacuna left open by any purely empirical evidence should be
filled up by recourse to the practical precautionary principle, which, in particular
circumstances or under particular conditions, might eventually morally oblige us
to attribute minds to machines.

2 Galvan’s reconstruction of Gödel’s point of view
As already mentioned, Galvan’s main concern is to test the soundness of the
conclusions that, according to Luca and Penrose, can be drawn from Gödel’s
incompleteness theorems in the minds versus machines debate. According to
Gödel, for every set of axioms which is sufficiently strong for arithmetic, if the
system is consistent, there is what is now called a Gödelian sentence or formula
that is true in ordinary arithmetic, but of which we cannot give a ‘formal’ proof
‘in the system’. However, a human mind can recognise the truth of a Gödelian
formula. According to Lucas and Penrose, this is sufficient to affirm that a human
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mind, unlike any computational machine, is not bound by the rules of any
formal system, and that there can be no axiomatization of it or of its thought
processes. As Lucas says in a well-known passage (quoted by Galvan himself),
“we can see that the Gödelian formula is true: any rational being could follow
Gödel’s argument, and convince himself that the Gödelian formula, although
unprovable-in-the-system, was nonetheless – in fact, for that very reason – true.”
(Lucas (1961), pp. 113–115)

Briefly stated, the first argument discussed by Galvan is that mind’s capacity
for seeing that the Gödelian formula is true “in-the-system” makes it different in
principle from any machine. Against this argument Putnam raised the seemingly
fatal objection that, strictly speaking, the human mind can know that the
Gödelian formula G(T) is true only under the condition of knowing that the formal
theory T is consistent, “which is unlikely if T is very complicated”.¹

It might be objected that “there are reasons which are known to the mind,
but not to the machine for asserting the consistency of T” (Galvan (2004), p. 150).
But, as Galvan rightly notes, these reasons can be in principle made treatable by
mathematical methods, that is, they are accessible to the machine “to the extent
that it is conceived dynamically, as a machine capable of acquiring always new
information.”²

1 Putnam(1960), p. 153.Galvangivesus amoreprecise logical formulationof Putnam’s objection:
cf. Galvan (2004), p. 152. Putnam’s objection was taken up and developed, for example, by
Shapiro (2003), pp. 25–26, and Raatikainen (2005), pp. 520–523 and 2015). McCall (1999), in a
certain sense,may be regarded as an attempt to reverse this conclusion and to show that “[f]or the
machine, the category ‘not yet proven but true’ does not exist.” (McCall (1999), p. 531); however,
in my opinion, Raatikainen (2002) has shown convincingly that McCall’s argument is unsound.
On McCall’s paper, see also Gaifman (2000). On reflection, Putnam’s objection finally develops
a remark made by Turing against what he called “The Mathematical Objection”. The objection
is the following. In the imitation game, in the last analysis because of Gödel’s incompleteness
theorems, there will be some questions to which a digital computer “will either give a wrong
answer, or fail to give an answer at all however much time is allowed for a reply.” This should
prove that there is “a disability of machines to which the human intellect is not subject.” (Turing
(1950), pp. 444–445) The first part of Turing’s twofold reply is that which anticipates Putnam’s
objection: “although it is established that there are limitations to the powers of any particular
machine, it has only been stated, without any sort of proof, that no such limitations apply to the
human intellect.” (Turing (1950), p. 445)
2 Galvan (2004), p. 150. This is also the point Turing made in his second reply to the already
mentioned “Mathematical Objection”. Turing says that “our superiority can only be felt on such
an occasion in relation to the one machine over which we have scored our ‘petty triumph’. There
would be no question “of triumphing simultaneously over all machines. In short, then, there
might be men cleverer than any given machine, but then again there might be other machines
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For Galvan, the difficulties that the first argument must face led not only
Lucas, but also Penrose to provide another argument in favour of the contention
that the human mind is not a machine: whereas a mind knows, or at least
believes that it is consistent, a machine does not know or believe it. As far as the
machine in concerned, to know or to believe only means to “derive” (cf. Galvan
(2004), pp. 150–151). Galvan takes up and improves Feferman’s claim that this
second argument contains the element of truth of the first, in the sense that
“understanding is essential, and it is just this aspect of actual mathematical
thought that machines cannot share with us.” (Feferman (1995), par. 4.3; on this
point, cf. also Salmon (2001), p. 100) It is precisely the working experience of
mathematicians that distinguishes in principle between human and machine
thinking (cf. Galvan (2004), p. 155).

In order to clarify this basic idea, Galvan compares the principles of the logic
of evidence with those of the logic of provability. This comparison brings to light
the difference between the functioning of the mind and the functioning of the
machine and is Galvan’s most distinctive contribution to this issue. For example,
in contrast with provability theory, the principle of ω-completeness holds for
the logic of evidence. According to Galvan’s intensional reading, the possible
formulation of this principle

∀x𝔼A(x)→𝔼∀xA(x)
where𝔼denotes the evidence operator, states that, if it is possible tomake evident
that every natural number n (mapping the numeral n) is A, then it is evident that
all standardnatural numbers areA (Galvan (2004), p. 158). Galvanadmits that this
is by nomeans sufficient to prove that there are truths which can be known by the
human mind, but which are forever incapable of becoming known by a machine.
However, hemaintains that itmeans that the humanmind follows different routes
in the treatment of truths, becausefinitisticmeans arenot sufficient to justify them
(Galvan (2004), p. 163). This is, in his opinion, the real teaching of Lucas and
Penrose. In this sense “evidence” (or intuition) “outdoes the performances that
a machine is capable of, without meaning that the mind is capable of grasping
the truth of sentences inaccessible to the machine.” (Galvan (2004), p. 162)

How can this difference be evaluated and explained? Galvan’s answer comes
from the rereading of some pages which Gödel devoted to the consequences
of his incompleteness theorems in his now well-known 1951 Gibbs lecture
(Gödel (1995)). The most important consequence is that mathematics cannot

cleverer again, and so on.” (Turing (1950), pp. 444–445.) On this point see also Feferman 1995,
par. 4.5
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be exhausted (or ‘completed’) by finitistic mathematics (in this sense, Hilbert’s
program in its original form was truly refuted by Gödel’s theorems: see
for example Raatikainen (2003)). According to Gödel, this admits of two
explanations: “Either mathematics is incompletable in this sense, that its evident
axioms can never be comprised in a finite rule, that is to say, the human mind (even
within the realm of pure mathematics) infinitely surpasses the powers of any finite
machine, or else there exist absolutely unsolvable diophantine problems.” (Gödel
(1995), p. 310; italics Gödel’s. Cf. Galvan (2004), p. 163).

Because Gödel inclined to deny that there are “absolutely unsolvable dio-
phantine problems”, this disjunctive conclusion, to which for instance Shapiro
(1998) had already called attention and which is also called “Gödel’s dichotomy”
(cf. Feferman (2006) and Feferman (2009), p. 209), is tantamount to cautiously
affirm that the human mind “surpasses the powers of any finite machine”, or, as
Galvan prefers to say, that Gödel inclined to think that “the mind has resources
that are not at the disposal of the machine” (Galvan (2004), p. 164).

However, as Galvan concedes, Gödel implicitly recognised that either alterna-
tive is theoretically possible.³ In fact, the second one has been defended by many
philosophers who share a naturalistic view of the mind, but it is easy to see that
Turing was making the same point when he said that “it has only been stated,
without any sort of proof, that no such limitations apply to the human intellect.”
(cf. footnote 1 of the present paper; see also Galvan (2004), p. 167 footnote, who,
among others, referred to Benacerraf (1967), Dennett (1995), andGaifman (2000)).
According to this line of thought, thehumanmind is identical to amachine insofar
as itmay overcome the limitations that itsworkhaduncoveredusing only finitistic
means. If one admits that for any statement unprovable in a particular formal
system, there are other formal systems inwhich the statement is provable, there is
no reason to reject the same possibility for the concept of evidence, which might
be regarded as a “contracted derivability” from the point of view of another theory
(Galvan (2004), pp. 167–168).

Although either alternative is theoretically possible, according to Galvan
some of Gödel’s remarks weaken the last-mentioned one: “the thesis which
identifies truth with derivability in a superordinate theory is legitimate only [...]
under the condition that the superordinate theory is itself sound, that is, that
it leads to consequences that are at least arithmetically true.” To demand the
soundness of Peano Arithmetic is tantamount to demand that Peano’s axioms are
justified. However, the fact that the axioms are a simple extension of Primitive

3 This has been recently reaffirmed by many authors: see, for instance, Feferman (2009),
pp. 211–212; Raatikainen (2015), p. 45.
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Recursive Arithmetic “is not sufficient to justify them”. We needmore substantive
reasons, but of what kind are they?

According to the first alternative, to which Gödel and Galvan incline, they are
“reasons of evidence”: they consist in “the capacity to grasp [. . . ] contents which
are abstract andnot finite, and intowhichwe cannot gain insight through forms of
finitistic evidence.” (Galvan (2004), p. 164) In the case of the second alternative,
they must be “inductive” or “selectionist reasons”, since “reasons of evidence”
are ruled out by the context (Galvan (2004), pp. 168–169).

In this way, Galvan tries to put the difference between minds and machines
down to the difference between “reasons of evidence”, on the one hand, and
“inductive” or “selectionist reasons”, on the other. And this way of putting the
matter not only vindicates Gödel’s idea that something is lost in translating the
concept of proof, understood as that which provides evidence, into a merely
formal or mechanistic concept, but can also be much more easily defended by
such arguments as we find in Hume, Popper, or even Husserl.

Against inductivist and selectionist accounts, Galvan argues, for instance,
that “induction presupposes kinds of abstract evidence, which are of intensional
kindand resemble those ofmathematical knowledge: for example, it is impossible
to make sound inductions, without the power of grasping an adequate set of
projectable predicates.” (Galvan (2004, p. 169)) The same conclusion follows
if induction is regarded as a method that makes it possible to pass from the
particular to the general, from one particular case to the totality, to which it
belongs. This is because in this case induction would coincide with the power
of intuitively grasping general truths from the examination of a particular fact or
object, that is, of the “structure of PRA and of the concrete and finite objects of its
natural model”.⁴

From this the more general conclusion is readily, though cautiously, drawn
that “there are not sufficient grounds for regarding a computational model of the
mind – based on the analogy between the mind and the functioning program
(formal system) of the brain – as justified, even in the long run. On the contrary,
the difficulties highlighted by a due consideration of the limitation theorems seem
to point in different directions.” (Galvan (2004), p. 172).

The arguments offered by Galvan are perhaps indirectly influenced by some
Scholastic accounts of intuition, but Husserl’s phenomenology has probably

4 Galvan (2004, p. 70). A similar, thoughnot identical, point had already beenmadeby Feferman
(1995). Cf. for instance §40.3: “Mathematical Thought as it is actually produced is notmechanical;
I agree with Penrose that in this respect, understanding is essential, and it is just this aspect of
actual mathematical thought that machines cannot share with us.” (italics in the original).
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exerted the strongest influence on them, through the mediation of Gödel himself.
In fact, as shown by Tieszen (1998), Husserl’s ideas directly relevant to Gödel’s
comments in 1961 “are related to the fact that human cognition, includingmathe-
matical cognition, exhibits intentionality.” (Tieszen (1998), p. 182).Moreprecisely,
both Husserl and Gödel maintain that there must be a kind of mathematical intu-
ition or insight that accounts for ourmathematical knowledge, that is, inHusserl’s
language, an intuition of “mathematical essences” (cf. Tieszen (1998), p. 189).

If we combine this with the obvious connexion between Gödel’s incomplete-
ness theorems and the Turing test, we are naturally led to a comparison between
Galvan’s conclusions and Searle’s Chinese Room thought experiment. Already
Gödel remarked that Turing’swork gave an analysis of the concept of “mechanical
procedure” or “computationprocedure” thatwas equivalentwith that of a “Turing
machine” (Gödel (1986), p. 369. On this point, cf. for example Feferman (2009)).
And what was for Turing a possible objection to be rebutted (cf. Turing (1950),
p. 444) – or perhaps an objection already implicitlymet by regarding the imitation
game as a scientifically sound substitute for philosophical questions concerning
“understanding” and “intuition” (for this interpretation, cf. Shapiro (1998)), was
for Lucas the foundation of his anti-mechanistic argument: “Gödel’s theorem
must apply to cybernetical machines, because it is of the essence of being a
machine, that it should be a concrete instantiation of a formal system.” (Lucas
(1961), p. 113).

Both historical connexions are important and strongly suggest a comparison
of Galvan’s conclusions – and especially of his concepts of “vision”, intuition”,
and “understanding” of a Gödel’s sentence being true “in the system” – with
Searle’s Chinese Room thought experiment, based on the concept of intention-
ality and highly critical of the computational theory of the mind. In my opinion,
there is an element of truth in their claim,which I’m going to take up and develop,
in a somewhat different way, and which, paradoxically enough, will make it
consistentwith the opposite element of truth contained in Turing’s functionalism.

3 Turing, Searle, and the Chinese Room
Thought Experiment

One the most important targets of Searle’s Chinese Room thought experiment⁵
was the Turing test, chargedwith “behaviourism” (Searle (1980a), p. 423) and, just

5 Cf. Searle (1980a), pp. 417–418. For the most concise formulations of this thought experiment
that I have found, see Searle (1999), p. 115.
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like strong AI in general, “functionalism”. As far as behaviourism is concerned,
Searle later said:

[T]he Turing Test [. . . ] is a straight expression of behaviorism. If it walks like a duck and talks
like a duck, etc., then it is a duck, and if it behaves exactly as if it understood Chinese then
it does understand Chinese. [. . . ] If you accept the behavioristic criterion for the presence
of the mental, then the mental is unlikely to be anything truly substantive of a biological
nature. It is unlikely to be like digestion or photosynthesis or the secretion of bile, or any
other natural human biological process. So the behaviourism of the Turing Test goes well
with the idea that the mind is something formal and abstract. (Searle (2002), pp. 66–67)

According to Searle, this is intimately connected with the functionalist claim,
which he also considers at the heart of the Turing test, that the system that
implements the program is irrelevant and any hardware implementation “will
do, provided only that it is rich enough and stable enough to carry the program.”
However, although the program enables the person of the Chinese Room thought
experiment to pass the Turing test for understanding Chinese, the person in
question “does not understand a word of Chinese” (Searle (2002), p. 51).

As Searle says, the main point of his thought experiment is that the purely
formal, abstract or syntactical processes of an implemented computer program
“couldnot by themselves be sufficient to guarantee the presence ofmental content
or semantic content of the sort that is essential to human cognition.” (Searle
(2002), pp. 51–59) He put his thought experiment also in the form of a logical
argument: “1. Programs are formal (syntactical). 2.Minds have contents (semantic
contents). 3. Syntax is not identical with nor sufficient by itself for semantics.
From these we can derive: Programs are neither sufficient for nor identical with
minds; i.e. strong AI is false.” (Searle (1991), p. 526). For this reason, he points
out that it is intrinsically impossible to duplicate intentionality by computational
means.

In this connection may be mentioned the “Robot Reply”. According to this
objection, it is possible not only to develop programs consisting only in a set of
rules that establish the permissible and necessary transitions from one state of
the machine to another, but also programs with semantic import, which interact
with the robot’s environment.⁶

Against this Searle insisted over and over again that, if intentionality is
defined as “the feature of certain mental states by which they are directed at or

6 Cf. Searle (1991), p. 526; cf. also Searle (1980a), p. 420. Among those who have endorsed
versions of this objection, see especially Fodor (1980), Boden (1988), pp. 238–251, Crane (2003),
p. 127–128, Melnyk (1996), p. 400, and Haugeland (2002), p. 386.
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about objects and states of affairs in the world”, the addition of “perceptual”
and “motor” capacities does not add intentionality to any computer program
(Searle (1980a), p. 424, footnote 3). To illustrate this point, he devises a variant
of his thought experiment. Suppose that, instead of the computer, you put a
homunculus inside the robot. All he does is manipulate formal symbols; he
receives “information” from the robot’s “perceptual” apparatus and gives out
“instructions” to its motor apparatus without being aware of either of these facts.
Unlike the traditional homunculus, he doesn’t know what’s going on (cf. Searle
(1980a), p. 420).

From this quick sketch of Searle’s view, it should be clear that, in so far as the
philosophical consequences of Gödel’s incompleteness theorems are concerned,
what is common to both Searle’s and Galvan’s view is not only the intention to
point out the shortcomings of the computational point of view, but also, more
especially, to claim that understanding, semantic meaning, intuition, and in a
word intentionality, are properties that man has but the machine lacks. However,
there is a difference. In comparisonwith Galvan, who does not say anything about
this point, Searle does not exclude the possibility in general of duplicating human
intelligence. For him, there is no reason in principle why we could not build a
machine able to perceive, act, understand, learn, etc., since our bodies with our
brains are precisely such “intentional” machines; and it follows therefore that a
machine can have intentionality if it does duplicate – either mechanically or in
any other way – the biological structure of animal brains:

We know that thinking is caused by neurobiological processes in the brain, but there is no
logical obstacle to building amachine that could duplicate the specific causal powers of the
brain to produce thought processes. The point, however, is that any such machine would
have to be able to duplicate the specific causal powers of the brain to produce the biological
process of thinking. Themere shuffling of formal symbols is not sufficient to guarantee these
causal powers, as the Chinese room shows. (Searle (1999), p. 116; in the same sense, see also
Searle (1980a), p. 417)

All the important objections to Searle’s thought experiment were practically
published along with Searle’s original 1980a presentation, and now they exist
in many different versions. Here I shall confine myself to pointing out Searle’s
wavering treatment of the nature of intentionality.

In different ways, and to different degrees, many authors have noticed the
presence of a certain tension in Searle’s thought (see, for example, Dennett (1987),
p. 336; Jacquette (1989), pp. 618–619; Preston (1995), pp. 139–141; Melnyk (1996),
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Corcoran (2001), Winograd (2002), p. 87). Moreover, that here is a general tension
at the bottom of his thought we find explicitly stated by Searle himself:

There is [. . . ] an interesting tension. It is not at all easy to reconcile the basic facts with
a certain conception we have of ourselves. Now, the question is, how we square this
self-conception of ourselves as mindful, meaning-creating, free, rational, etc. agents, with a
universe that consists entirely of mindless, meaningless, unfree, nonrational brute physical
particles? In the end, perhaps we have to give up on certain features of our self-conception,
such as free will. I see this family of questions as setting the agenda not only for my own
work, but for the subject of philosophy for the foreseeable future. (Searle, 2006, p. 102)

On the one hand, intentionality is for Searle a “biological phenomenon, and
it is as likely to be as causally dependent on the specific biochemistry of its
origins as lactation, photosynthesis or any other biological phenomena.” (Searle
(1980a), p. 424) Accordingly, Searle claims that intentionality, understanding,
and meaning as such can be technically realized in a machine, provided it is
made of biological stuff or imitates the specific biochemistry of the brain. On the
other hand, Searle maintains that “the mind consists of qualia [...] right down to
the ground” (Searle (1992), p. 20), that consciousness and intentionality can be
understood only from the “the point of view of the agent, from my point of view”
(Searle (1980a), p. 420) or from “the first person point of view” (Searle (1980b),
p. 451; Searle (1992), p. 16), and that “the ontology of the mind is a first-person
ontology” (Searle (1992), p. 20). This is a strong antinaturalistic tendency in
Searle’s thought and, notwithstanding Searle’s complaints (cf. for example Searle
(1992), p. xii), it seems to be inconsistent with the claim that intentionality is a
“biological phenomenon”, or, more in general, with the “biological naturalism”
(Searle (1992), p. 1) he claims for his view.

Thus, that there is a tension in Searle’s concept of intentionality there can be
no doubt. Moreover, it is apparent that this wavering repeats and reflects the ten-
sion that according to Galvan exists between the two fundamental interpretations
of Gödel’s incompleteness theorems. Here, in a very generalized sense, we have
in another form the same problem. But the changed conditions of the problem
make its solution more significant for our purposes. What is the source of the
mentioned tension in Searle’s concept of intentionality? To answer this question
throws light upon Searle’s fundamental epistemological mistake and, at least in
a certain sense, suggests a way out of Gödel’s dichotomy, so far as this is related
to Turing’s way of putting the question whether machines can think.

On the one hand, Searle is at least in part aware of the perspectival character
of intentionality or, more generally, of human knowledge. According to him,
every intentional state has an aspectual shape, in the sense that it is directed
at an object only “under an aspect”. This applies just as much to conscious as
to unconscious mental phenomena: “unconscious mental phenomena [...] to the
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extent that they are genuinely intentional [...] must in some sense preserve their
aspectual shape even when unconscious, but the only sense we can give to the
notion that they preserve their aspectual shape when unconscious is that they
are possible contents of consciousness.” (Searle (1992), pp. 159–160).

On the other hand, as we have pointed out, Searle insists that intentionality
is produced by the brain⁷, and this claim, on reflection, is inconsistent with
the thesis of the aspectual or perspectival character of intentionality because it
sees the brain or some of its properties as an ultimate constituent of matter or
reality. If an ultimate biochemical phenomenon existed independently of any
particular point of view, if it existed in itself, apart from our knowledge interests,
it would be a kind of atomic, self-enclosed reality. This sort of separateness
does not and cannot exist. What we call the brain and its properties (including
intentionality as a biological phenomenon) cannot exist or be understood apart
from theoretical construals of some type. They appear as biochemical realities
only through the concepts, terms and technical apparatuses that define the
particular viewpoint from which biochemistry investigates reality. However, the
perspective of biochemistry does not have any ontological priority over either that
of physics or that of any other discipline.

Dennet remarked that Searle adopts, at least in part, the conceptual appara-
tus of Cartesianism (cf. Dennett (1987), p. 336, Hauser (2002), p. 129), but this is
true in a different way from how he would expect. On reflection, to assume at the
outset that intentionality is an empirical property resulting from causal-biological
processes is only another way (not idealistic, but naturalistic) of hypostatising
thought. And this is as gratuitous as, for example, the assumption of Driesch’s
entelechy. In both cases, the activity of consciousness is turned into a fact
consisting of biological stuff. However, unlike the human brains, which one may
only investigate by the usual methods of observation and experimentation, the
devices of the laboratory will not help us to understand both Driesch’s entelechy
and intentionality in Searle’s sense. Intentionality as a biological phenomenon
is an empirical hypothesis about the causal origin of a fundamental power of the
human mind. This hypothesis, however, is inferred from that which it presumes
to explain, namely the possibility of ascribing meaning to real entities such as
ink marks on paper. Obviously enough, if one admits that only organic (human,
animal, and perhaps vegetal) stuff has intentionality, in the sense of purporting to
represent objects, the falsehoodof the Turing testmaybe regarded as tautological.
But then the objection that this is question begging would be fatal: this is exactly
the question to be answered.

7 Moreover, according to Searle, we have a biologically evolved innate capacity both for
“individual” (cf. Searle (1983), p. 8) and for “collective intentionality” (Searle (1995), p. 37).
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4 Two senses of intentionality and the truth
of functionalism

As I have stressed, the perspective of biochemistry does not have any ontological
priority over either that of physics or that of any other discipline. However, what is
the point of view from which this judgment is made? Each of the special sciences
has methods and concepts that reflect its point of view, but none of them has
the means to answer the questions about the nature and conditions of its own
kind of knowledge.What the concept “physics”means, is a question that does not
belong to any special science, and especially not to physics, because thedevices of
the laboratory will not help us to answer this question. This business, consisting
in the task of defining the special form of rationality of each science, belongs
to philosophy of science, in which philosophy and science, though distinct in
principle, cooperate and are really supplementary and inseparable.

From this point of view, it may be said that the mentioned tension in Searle’s
concept of intentionality arises from the opposition of science and philosophy:
even though a particular, biological meaning of intentionality is regarded as fully
compatible with a truly philosophical one, still they are placed by Searle, without
mediation, side by side, as independent things that cannot cooperate with one
another. If the essential opposition or antagonism of philosophy and sciencewere
accepted, nothing better than something similar to “Gödel’s dichotomy” could
result from our efforts: either the human mind has resources that are not at the
disposal of the machine, and in particular the capacity to grasp contents that
are abstract and not finite, or it can only gain insight through forms of finitistic
evidence and there is no difference in principle between the humanmind and the
machine. However, as I shall tray to show, both alternatives are viable, though in
different senses.

More precisely, the distinction between two senses of the term “intentional-
ity”, as a scientific (for example, biological) phenomenon on the one hand, and
as a general philosophical concept, intimately connectedwith understanding and
meaning, on theother, is anecessarybutnot sufficient conditionboth for escaping
the tension in Searle’s corresponding concept and, at least in a certain sense, for
overcoming “Gödel’s dichotomy”.

What we need is something which will enable us to grasp the two senses
of intentionality in their necessary relationship of distinction and unity.⁸ A brief
consideration of the perspectival character of intentionality will be sufficient

8 What I can say here is necessarily sketchy. For some more details, see Buzzoni (2013).
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to directly support this connection, made up of both unity and distinction. On
the one hand, as we have pointed out, aspectuality is an essential ingredient
of the concept of intentionality: every intentional state has an aspectual shape
in the sense that it is directed at an object only “under an aspect”. “Aspects”
or “aspectual shapes” here refer, roughly, to what spoke of in connection with
seeing-as phenomena: e.g., seeing things as alike and seeing ambiguous pictures
(e.g., Necker cubes, duck-rabbits) as one thing or the other. Seeing the duck-rabbit
picture (cf. Wittgenstein (1958), II, xi) as a duck would (in these terms) be seeing
its duck aspect or seeing it “under” its duck aspect.⁹

On the other hand, the definition of a particular (for example, biochemical)
perspective presupposes its distinction from other particular perspectives such
as those of physics, sociology, or of any other particular scientific discipline,
and this distinction cannot be effected by means of the limited conceptions of
any special perspective, but only from a wider and more comprehensive point
of view. In other words, intentionality, as aspectuality, implicitly presupposes a
different sense of intentionality, which is the very condition for understanding
any determinate intentional act directed at any particular aspect of reality. More
in general, we cannot be aware of the aspectual or perspectival character of
intentionality (i.e. of the fact that all intentional acts dependuponcertain adopted
points of view) unless we are aware of our capacity in general to distinguish,
change, abandon, invent, or to put in question old and/or novel points of view
from which reality can be seen. Seeing a picture as a duck is seeing it under
an aspect because we imagine, implicitly or explicitly, that it can have other
different aspects, that it can be seen from other different angles (for instance,
as a rabbit or as some lines on the sheet). In other words, to know a particular
point of view in its particularity means to assume the capacity in principle to
go beyond any particular point of view, to modify or to replace it by a new
one that does not yet exist. This capacity to know reality from a potentially
infinite (not determinable a priori) number of perspectives or theoretical points
of view, or conversely this capacity to understand that every real object cannot be

9 As far as intentionality is concerned, apart from Husserl’s concept of ‘Abschattungen’ and
Wittgenstein’s analysis of seeing-as phenomena (cf. Wittgenstein (1958), II, xi), this point has
been more recently made especially by Haldane (1989), Putnam (1992), and McGinn (2004).
Haldane maintained that any psychological description of human persons must contain, at
least in part, the concepts by means of which they understand the world. Such a description
is unavoidably intensional. Thus, since no sentence that is entirely extensional implies an
intensional one, “there can be no deductive explanation of the emergence of intentional states”
(Haldane (1989), p. 310). To think a always means to think a in one way or another and this
determines the irreducible intensionality of intentional contexts (Haldane (1989), p. 312).
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representatively exhausted even if wemultiplied these points of view indefinitely,
cannot itself be reduced to one particular point of view; in particular, it can be
reduced neither to a computational (Turing) nor to a biochemical entity (Searle).
Thus, the analysis of the oscillation in Searle’s notion of intentionality leads us
to distinguish, and at the same time to connect with one another, two senses
of intentionality, namely a reflexive-transcendental (or pre-operational) and a
positive point of view.

In order to cast a little more light on this matter, I shall connect it with the
notion of thought experiment. As I have just said, the fact that every intentional
state is directed at an object only “under an aspect” presupposes our capacity
of modifying the available points of view or of inventing new ones from which
to see reality differently. In other words, the awareness that the content of a
particular intentional act would have been different if we had adopted a different
point of view, in its turn, presupposes the capacity of the mind to assume that
every de facto given reality could be different. The world appears to us as it
does only because we can imagine, at the same time as we perceive it, that it
might have been different. This radically counterfactual character of the mind,
which can experience and acknowledge something as real only after having taken
into consideration the possibility of its non-existence, is the wellspring of all
hypotheses and of all particular thought experiments.

The ability of the mind to assume any reality hypothetically or counterfac-
tually is, in Kant’s terms, a transcendental fact of reason. It cannot be reduced
to any particular intentional act relative to any particular object because it is
the condition of the possibility of conceiving all particular hypotheses and all
particular objects. In my opinion, what Searle calls “intentionality” or “semantic
understanding”, and what in Galvan appears as “understanding”, “vision” or
“intuition”, is really nothing but another way of expressing the counterfactual
nature of human reason.

A very important conclusion follows from this fundamental thesis when
we try to answer the following question: Assuming that we have succeeded in
building thinking beings or machines, which are endowed with the ability to
assume any reality hypothetically or counterfactually, howmight we come to know
that? It is clear that, in order to find a solution to the problem at hand, Searle’s
thesis that the essence of thought and intentionality is chemical and biological
has no advantage over the computational point of view; and perhaps it may even
be regarded as a serious obstacle to finding an answer. In fact, to deduce that
knowledge from the fact that these beings ormachines behave as if they possessed
intentionality in Searle’s sense, is a genuine option for Turing but not for Searle.
For we know that for Searle, behavioural indistinguishability is insufficient to
establish intentionality: as we have seen, Turing’s “mistake” lies in thinking that,
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if “it walks like a duck and talks like a duck, etc., then it is a duck, and if it
behaves exactly as if it understood Chinese then it does understand Chinese.”
(Searle (2002), p. 66) If this is accepted, to know that we have duplicated human
intelligence would be a much more difficult undertaking than in the case of the
Turing test if we had done just that by means of “an artefact” or “a man-made
machine”.

But the truth is that we have no idea how a real material system, which can al-
ways occur and develop in only oneway, could instantiate the hypothetical-reflexive
domain of the mind, which can always contradict itself. If we mean by “material
reality” concrete, particular reality, whichwe canmodify bymeans of our body ei-
ther directly or through themediation of instruments, we cannot understand how
intentionality in its transcendental sense couldbe implemented in amachine. The
possibility of robots made of biochemical stuff does not alter the substantial fact:
biochemical stuff too always occurs and develops in only one way; it can neither
contradict itself nor be counterfactual with respect to any other given reality.

This does not mean that from this point of view we cannot find an important
element of truth as well in Searle’s Chinese Room argument and in Galvan’s
notions of a “vision”, “evidence” or “intuition”, as in Turing’s implicit function-
alism. On the one hand, given the counterfactual nature of the mind, as we
are acquainted with it in the first person, the only way to conjecture that there
is the same ‘intentionality’ in ourselves as well as in other people is to start
from empirical knowledge obtained by means of our body’s interaction with the
surrounding empirical reality. It is only when we succeed, at least to some extent
and in certain respects, in reconstructing causal interactions in the first person
that we come to guess intentionality in its transcendental sense and to pick out
certain entities to which we attribute a mind, without falling into coarse or truly
primitive anthropomorphism.

Obviously, not all intentional acts that we experience in ourselves are
equally relevant to this process of ascribing intentionality to other people. Some
intentional acts (for example, reading and writing, giving answers to questions
(Turing’s imitation game!), having new ideas, laughing over a joke, etc. seem to be
more probably connected with the capacity of intentionality in its transcendental
sense, that is to say with the capacity of making anything which is immediately
given into a possibility or a problem. It is no accident that these kinds of
behaviours are at the bottom of most ‘Granny Objections’ to the Turing test (cf.
http://users.ecs.soton.ac.uk/harnad/Hypermail/Explaining.Mind96/0069.html).

On the other hand, strictly speaking, the intentionality in its pre-operational,
pre-predicative or transcendental sense as well as the understanding of the truth
of G(T) in a formal system cannot be realized in any particular or concrete in-
stantiation ofwhatever kind. Intentionality, in its pre-operational, pre-predicative
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or transcendental sense both eludes all operational procedures that aim to
grasp it entirely because is the condition of the possibility of all our particular
intentional acts. Each concrete, particular ability may be added or subtracted
in the Chinese Room thought experiment without altering the substantial fact
concerning intentionality in its transcendental sense: if a robot did not already
possess intentionality in this sense, there would be no way for him to gain it by
accumulating particular abilities; if he did already possess it, he would continue
to have it – at least in the formof pure possibility –whatever particular abilities he
may lose. Even if amachinepassed theTuring test in oneof itsmost radical forms¹⁰
, this would still be insufficient to claim that intentionality and consciousness,
in their transcendental sense, are encapsulated by the correct performance of
computations.

That is another way of making the objection that Searle discussed under the
heading of “The OtherMinds Reply”. In fact, the problem raised by the Turing test
is intimately connected with the problem of other minds. To be more precise, it is
essentially the same problem; indeed, when we are with other people, we are in
principle in the same situation in which we would be if we were with machines
that are able to successfully pass one of the generalized versions of the Turing test.

Searle’s reply to the objection of “The Other Minds Reply” is very short: we
simply assume that other persons have minds, just as in physics we assume the
existence of the objects we deal with (Searle (1980a), p. 422). Admittedly, in most
daily life contexts, the doubt concerning the existence of other people (whom we
may regard, at least in a sense andhypothetically, as not subject to theGödelian in
principle limitation) may seem, and rightly so, abstruse and hard to understand.
But first, even if this is admitted, the question remains how we come to have
the concept of a mind that is not subject to Gödel’s incompleteness theorems.
Empirical-scientific considerations are necessary for this concept, but they are
not sufficient, since they are relevant only if connected with the philosophical
presupposition of intentionality in its transcendental sense. From particular in-
tentional states we have to trace our way to the intentional-personal source which
accompanies them as the condition of their possibility. We could not conceive
of this concept if we did not presuppose in ourselves – in our thinking, acting,

10 See for example Erion (2001), p. 37; Harnad (1991), p. 44; Bringsjord et al. (2001). Some
scholars have maintained that, even in its original form, the Turing test is already “too hard”
and there is no need for even stronger versions of the Test (French (1990); on this point, see also
French (1995) and French (2000)). In my opinion, the generalised versions go against the letter,
but not the spirit of Turing’s question and answer method, which was chosen so that the test
could be in principle extended to any human activity that is relevant to a comparison between
humans and machines (cf. Turing (1950), p. 433).
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loving, etc. – an instantiation of the same universal concept of intentionality
(understanding, intuition, vision, etc.). In other words, the belief that there
are other minds presupposes that we already have the reflexive-transcendental
concept of the mind, that we understand its counterfactual nature, its capacity
of contradicting itself and its being the source of whatever particular intentional
acts or operations we are able to carry out. Moreover, in all more or less doubtful
cases, intentionality, with its self-transcendence and presence in absence, turns
out to be a very evasive andmysterious process in everyday life too. In these cases,
we are confronted with the question whether particular, apparently intentional
abilities or performances warrant our treating their carriers as human persons.

Summing up, we may say that, contrary to what Searle believes, inten-
tionality, taken in its reflexive-trascendental sense, is simply invisible to the
scientific eye. A man and a machine or a robot that is and one that is not
endowed with intentionality are no different for empirical science, since there is
no empirically detectable difference between them that yields a definite criterion
for intentionality in its transcendental sense.

This must be reconciled both with Turing’s defence of machine ‘intelligence’
and Searle’s (or Galvan’s) argument to the opposite effect. In fact, the main
strength of functionalism lies here. The Turing test is, so to speak, the other side
of Wittgenstein’s private language argument: “what is left over – Wittgenstein
asked – if I subtract the fact that my arm rises from the fact that I raise my arm?”
(Wittgenstein 1956, § 621) According to our previous account of intentionality,
the answer must be: absolutely nothing empirically detectable. Exactly as Turing
wanted to show, and as occurs in Wittgenstein’s example of the beetle, “one can
‘divide through’ by the thing in the box; it cancels out, whatever it is.”¹¹ And
this, pace Searle, applies equally to a robot made with screws and bolts as to an
android composed of organic matter. The question of the nature of the material
basis necessary to carry intelligence and intentionality is here irrelevant. As far
as this point is concerned, functionalism, interpreted in one of its more general
senses according to which beings with different physiology or hardware could
have the same types of mental states as humans, is in principle a tenable view,
even in case empirical research tookde facto very different paths. In principle, one

11 Wittgenstein (1956), par. 293. In this sense, Obermeier, who revisited Searle’s thought
experiment from a Wittgensteinian point of view, is right in saying “a Wittgensteinian account
of ‘understanding’ does indeed support claims made by advocates of ‘strong AI’ that pertain to
the role and function of language in the understanding process.” (Obermeier (1983), p. 340). But
this, for reasons already given, does not exclude intentionality in the transcendental sense.
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can set no absolute limit to scientific research and its technological realizations,
including the materials used therein.

A little reflection shows that this point of view is close to that of the
“new mysterians”, who assert the inexplicability of conscience and thought (cf.
Flanagan (1991), p. 313. Cf. also the very similar claims made by authors as
different as Fodor and McGinn (Fodor (1998), p. 83; McGinn (1991), p. 61). And
it is no accident that, at least in a certain sense, even Turing could be considered
a representative of this point of view. Turing wrote:

I do not wish to give the impression that I think there is no mystery about consciousness.
There is, for instance, something of a paradox connected with any attempt to localise it.
But I do not think these mysteries necessarily need to be solved before we can answer the
question with which we are concerned in this paper. (Turing (1950), p. 447)

Turing’s answer to what he called the “mathematical objection” should be
interpreted in the light of this passage. Turing’s answer certainly pointed out
that what cannot be proved in a system can be proved in another formal system,
but it also alludes to the fact that one must leave open the possibility that the
limits of today’s computers, whose architecture we know very well, may yet be
transcended by human artefacts, the nature of which we cannot tell in advance,
and the possibility of which – exactly as in the case of our mind – we cannot even
comprehend.

This is not to deny that there is a fundamental divergence fromWittgenstein,
Turing, and the functionalism of the early Putnam (and this same divergence
indirectly provides an important point of contact with Galvan’s conclusions).
The inference from our particular abilities or operations to the ascription of
intentionality in its reflexive sense is not a scientific inference, since it does
not begin and end with empirical propositions as must be the case, at least in
principle, in the experimental sciences. However, while scientific inquiry must
simply ignore it because intentionality (consciousness, understanding, intuition,
vision, etc.) in its transcendental sense falls outside the field of observation and
experience, the philosophical reflection is able to signal but not to solve the “mys-
tery” of intentionality (consciousness, understanding, intuition, vision, etc.). In a
word, if the reflexive-transcendental sense of intentionality is constitutive of the
nature of the mind, it is impossible to produce both scientific and philosophical
“proofs” of the existence of other minds, or, what is the same, neither science nor
philosophy canprovide a generally reliable criterion for answering Turing’s philo-
sophical question in particular empirical circumstances (to borrow a metaphor
fromHeraclitus, thehumanperson is similar to the oracle atDelphi,whichneither
utters nor hides his meaning, but shows it by signs). It is important to notice
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that, although this conclusion sets a limit to the empirical sciences, in another
sense it allows science to follow its own path, legitimately ignoring, as far as
experience is concerned, any philosophical-transcendental prohibition against
investigating and producing (historical-empirical) intentionality, intelligence or
consciousness.

This brings me to a final point, to which, in a certain sense, all that has
been said so far may be regarded as leading up. If, on the one hand, the
scientific eye is blind to reflexive-transcendental intentionality, and, on the
other hand, philosophy cannot definitely prove the existence of other minds, an
important consequence follows: we need a practical principle, capable of finding
a bridge across the gulf separating intentionality given in the first person and
intentionality given as a power of the outer world.

Thebest candidate for aprinciple that satisfies this condition is perhaps the so
called precautionary principle.¹² This principle, extrapolated from bioethical and
ecological contexts, provides an important rule for deciding in doubtful cases,
in particular regarding, so to speak, ‘intermediate’ beings, which could with
certainty be placed neitherwithin norwithout the properly human realm. In these
cases we need such a principle because are faced with the problemwhether these
beings should be treated, or fully treated, as human persons.

Generally, our decision as to how strong the evidence should be for accepting
ahypothesis as validateddependsupon the gravity, in an ethical sense, of the con-
sequences thatmight dependuponour erroneously accepting or not accepting the
hypothesis (cf. Rudner (1954)). The evasive and positively (i.e. empirically and/or
logically) inaccessible nature of intentionality in its reflexive-transcendental
sense, which characterizes the human mind, encourages the highest prudence.
With regard to the present case, the precautionary principle urges us to include
among human persons the greatest possible number of doubtful cases. This is
surely one of the most important reasons why some people are treated as persons
in spite of the fact that they would be unable to pass the Turing test even in some
of their more simple or restricted versions.

In the same sense, the precautionary principle gives an important con-
tribution to the question of whether, for instance by Turing’s imitation game
(and a fortiori by one of its generalizations), we would be morally obliged to
attribute minds to machines. In particular circumstances or under particular
conditions, the precautionary principlemightmorally oblige us to attributeminds
to machines. In most cases, the passing of the Turing test should be sufficient

12 On the precautionary principle, cf. for example Gollier et al. (2000), Foster et al. (2000), and
Fisher et al. (2006).
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to orient our practical decisions and to provide a last bulwark against possible
discrimination, at least ifweapply the criterionunderlying theTuring test, namely
the reciprocal and symmetrical use of language, and we combine it with both
the acknowledgment of the value of the human person and the precautionary
principle. If some day we were able to build artificial life systems that took part
in our conversations and cooperated with us on common projects, we would very
probably be morally obliged to treat them as human persons. Such a possibility,
nomatter how improbable in the light of our current state of AI and neuroscience,
cannot be excluded a priori, even though a final decision can be taken only in
concrete circumstances.

And the same holds a fortiori for alien beings from another planet who might
be able to cooperate with us; differences in colour, genetic inheritance, in the fact of
being made of flesh and blood or screws and bolts could hardly legitimize different
decisions as to whether or not to treat these beings as human persons. Here lies
the moral truth and the emotional appeal of functionalism: we cannot help but
feeling that, in Steven Spielberg’s “A.I.”, David, a “mecha” or mechanical boy
of the future, even though not endowed with a human body, has thoughts and
feelings like us:machines that pass the Turing test in such a strong version should
be included among intentional entities.
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Massimilano Carrara
Naïve Proof and Curry’s Paradox

1 Introduction
In classical first order logic (FOL), trivialism, the truth of all sentences, and
explosion, the derivability of any sentence, are obtained using the rule ex
contradictione quodlibet (ECQ): A,¬A ⊢ B. The classical justification for ECQ rests
on the alleged evidence that no contradiction can be true, evidence rejected in
paraconsistent theories, in particular by dialetheists, who hold that there are
dialetheiae, i.e. propositions that are both true and false.¹ Indeed, dialetheism
maintains the thesis that there are true contradictions, i.e. true sentences of form
(A ∧ ¬A), called dialetheiae. More generally, they call dialetheia any sentence
that is both true and false. In an extensive series of papers and books (see for
example, Priest (1979), Priest (2001), Priest (2002), Priest (2006a), Priest (2006b)),
Priest claims that the paradoxical sentences obtained from self-reference are
dialetheiae.²

In standard natural deduction of FOL, ECQ can be derived using reductio ad
absurdum (RAA) and other apparently non-problematic rules. It is a standard
derived rule of FOL. But if you hold that there are dialetheiae, in order to avoid
trivialism, RAA should be immediately rejected. Unfortunately, banishing RAA is
insufficient to avoid trivialism: Curry’s paradox, from which trivialism follows,
can be generated without using RAA, but with just modus ponens (MP) and the
derived rule of Absorption, i.e. ABS: (A → (A → B)) ⊢ (A → B). In order to save
dialetheism from trivialism, Priest adopts in the Logic of Paradox (LP) (1979) the
material conditional, for which he rejects the general validity ofMP.

The crucial problem is whether trivialism can follow even from logical prin-
ciples that are dialetheistically correct. In this paper I concentrate, specifically,
on a notion that Priest himself introduced in The Logic of Paradox (1979), i.e.

1 Priest uses the terms ‘dialetheiae’ and ‘true contradictions’ to indicate ‘gluts’. propositions both
true and false, a term coined by K. Fine in Fine (1975). For an introduction to dialetheism, see e.g.
Berto (2007).
2 Adiscussion on the same topic is in Beall (2009), Colyvan (2009), andWeber (2010). For a short
general introduction to the topic, see Murzi and Carrara (2015).
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that of naïve proof, a notion amplified in his Is Arithmetic Consistent? (1994) and
developed also in other texts (Priest (2006b)).

In The Logic of Paradox, Priest developed an argument, grounded in the
notion of naïve proof, to the effect that Gödel’s first incompleteness theorem
would suggest the presence of dialetheiae in the standard model of arithmetic.
Chihara (1984), Shapiro (2002), and others Berto (2009), for example, criticised
the argument. Much of the criticismwas directed against the notion of naïve proof
itself, in particular against the thesis that everything that is naively provable is
true. Surely, if the notion of naïve proof is understood as embracing all proofs
performed by real working mathematicians, as Priest seems to suggest, the thesis
is hardly tenable. The aim of the paper is to show that from a notion of naïve
proof – dialetheically acceptable – trivialism follows.

Finally, I would like to point out here that part of Sergio Galvan’s research
was on naïve proof and Gödel’s incompleteness theorems.³ I hope this paper can
help others recognise the importance of these arguments and their implications
for logic and its philosophy. In so doing, I hope to follow some steps of Sergio
Galvan’s research.

2 Curry’s paradox and its arithmetical
formalisation

Curry’s paradox belongs to the family of so-called paradoxes of self- reference (or
paradoxes of circularity). In short, the paradox is derived from natural-language
from sentences like (a):
(a) If sentence (a) is true, then Santa Claus exists.

Suppose that the antecedent of the conditional in (a) is true, i.e. that sentence
(a) is true. Then, by MP, Santa Claus exists. In this way, the consequent of (a) is
proved under the assumption of its antecedent. In other words, we have proved
(a). Finally, byMP, Santa Claus exists.

Of course, we could substitute any arbitrary sentence for ‘Santa Claus exists’,
for example, that ‘you will win the lottery’, etc., whichmeans that every sentence
can be proved: from Curry’s paradox, trivialism follows. Priest (1979, IV. 5)
observes that, in a semantically closed theory, usingMP and ABS

ABS (A→ (A→ B)) ⊢ (A→ B)

3 Thenotion of naïve proof andGödel’s incompleteness theoremshave beendeveloped by Sergio
Galvan in particular in Galvan 1983, Galvan 1992, pp. 183–202).
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a version of Curry’s paradox is derivable. In what follows, I reconstruct his
argument in the language of first order arithmetic with a truth predicate.⁴ Let L be
the language of first order arithmetic and N be its standardmodel. Extend L to the
language L∗ by introducing a new predicate T. With reference to a codification of
the syntax of L∗ by natural numbers, extend N to amodel N∗ of L∗ by interpreting
T as the truth predicate of L∗, so that, for all n ∈ N, T(n) is true iff n is the code of
a true sentence A of L∗, in symbols n = ⌜A⌝.

Of course, classically, suchan interpretation is impossible, because the theory
obtained by adding to Peano arithmetic (PA) the truth predicate for the extended
language L∗ with Tarski’s biconditionals is inconsistent. Not so for dialetheism,
where inconsistent models are accepted. But if one uses the classical rules of
the conditional in natural deduction (from which ABS is derivable) and Tarski’s
scheme, i.e.:

T(⌜A⌝)↔ A

the model N∗ turns out to be trivial. Let A be any sentence of L∗. By diagonalisa-
tion, there is a natural number k such that

k = ⌜T(k)→ A⌝
We can derive A as follows:

1 (1) T(k)↔ ⌜T(k)→ A⌝ Tarski’s schema
2 (2) T(k) Assumption
1,2 (3) T(k)→ A 1, 2MP
1,2 (4) A 2, 3MP
1 (5) T(k)→ A) 2, 4→ Introduction
1 (6) T(k) 1, 5MP
1 (7) At 5, 6MP

Priest blocks this derivation in LP by rejecting the general validity of MP.
According to him, this rule is not valid but quasi-valid, i.e. valid insofar as no
dialetheia is involved. Priest (2006a), in order to rejectMP, identifies, in the object
language, (A→ B) with (¬A ∨ B). Then, the rejection proceeds as follows:
Proof. Suppose thatA is a dialetheia; (¬A∨B) is true even if B is not. In this case, if
you infer B from A and (A→ B), you get from true premises a not-true conclusion.
This shows thatMPmay fail to preserve truth. Thus, the possibility of dialetheiae
justifies the rejection ofMP. qed

4 I follow here Carrara and Martino (2011), and Carrara et al. (2011).
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In the next sections I first introduce a notion of naïve proof (§3), then I argue (§4)
how it is possible to obtain Curry’s paradox using it, without adoptingMP.

3 On naïve proofs
Let us consider naïve proof, a notion introduced by Priest in his The Logic of
Paradox (1979) in order to argue that Gödel’s first incompleteness theorem would
suggest the presence of dialetheiae in the standard model of arithmetic. Priest
describes the naïve notion of proof as follows:

Proof, as understood by mathematicians (not logicians), is that process of deductive
argumentation by which I establish certain mathematical claims to be true. In other words,
suppose I haveamathematical assertion, say a claimofnumber theory,whose truthor falsity
I wish to establish. I look for a proof or a refutation, that is a proof of its negation. [. . . ] I will
call the informal deductive arguments from basic statements naïve proofs. (Priest, 2006b,
p. 40)

The alleged paradox should be suggested by the analogy of the familiar informal
proof of Gödel’s undecidable sentence G with the liar’s paradox:

As is clear to anyone who is familiar with Gödel’s theorem, at its heart there lies a paradox.
Informally the ‘undecidable’ sentence is the sentence ‘this sentence is not provable’.
Suppose that it is provable; then, sincewhatever is provable is true, it is not provable. Hence
it is not provable. But we have just proved this. So it is provable after all (as well). (Priest
(2006b), p. 237)

This argument is well known and widely discussed in the literature. Following
Dummett, we can call it the simple proof argument (Dummett (1959)). It is
worth noticing that the simple proof holds even dialetheically. Some people have
maintained that this proof implicitly uses the consistency of PA, which, according
to Gödel’s second incompleteness theorem, is formally unprovable. Observe,
however, passim that the proof at issue does not assume the consistency of PA,
but by virtue of the fact that what is provable is true, dialetheically, consistency
does not follow. Nor does the proof exploit RAA, but the tertium non datur, which
dialetheically holds. The proof runs as follows:

Proof. G is provable or not provable. But if it is provable, then it is true and hence,
as it says, (also) unprovable. In any case, it is unprovable and hence true. qed

Priest holds that the naïve notion of proof of an L-sentence is recursive so that the
predicate ‘P’ of naïve provability is arithmetic. It follows that the relative Gödel’s
sentence G is a dialetheia. Priest’s argument for the claim that the notion of
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naïve proof is recursive rests on the observation, supported by Dummett, that
any mathematical proof of a sentence is recognisable as such. So, the argument
goes, given a sentence A and a finite sequence p of formulas, one can decide
whether p is a proof of A or not. It follows, by Church’s thesis, that the relation
between a proof and its conclusion is recursive. Priest’s conclusion presupposes
the following:
(i) naïve proofs form a well-determined set codifiable by a set S of natural

numbers, and
(ii) there is a mechanical procedure for deciding whether a number belongs to S

or not.

I am not going to discuss the evidence for either (i) and (ii). I would like to just
consider naïve proof as a dialetheically acceptable notion and see what happens
in terms of self-reference paradoxes, specifically in the case of Curry’s paradox.

4 Naïve proofs and Curry’s paradox
The new version of Curry’s paradox⁵ here proposed is obtained without making
use of MP. I just make use of the notion of naïve poof. Consider the extension
L󸀠 of the language L of first order arithmetic, obtained by introducing a new
predicate P(x). Extend the standard model N of arithmetic to the model N󸀠,
where P is interpreted as naïve provability for the language L󸀠 (with reference to
a numerical codification of the syntax of L󸀠). More precisely, P(⌜A⌝) means: It is
naïvely provable that A is true in N.

In Naïve Proofs, Priest observes, “It is analytic that whatever is naïvely
provable is true. Naïve proof is just that sort of mathematical argument that
establishes something as true. And since this is analytic, it is itself naively
provable [. . . ]” (Priest (2006b), p. 238). Moreover, he argues, “If something is
naïvely proved then this fact itself constitutes a proof that A is provable” (Priest
(2006b), p. 238).

On the basis of the above remarks, one can argue that:
(a) P(⌜A⌝)→ A is naively provable;
(b) If A is naïvely provable, then P(⌜A⌝) is naïvely provable.

5 A version of this paradox is in Carrara and Martino (2011) and Carrara et al. (2011).
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Similarly, let us extend L to a language L∗ by introducing a binary predicate
D(x, y). Then, we can extend the standard model N to the model N∗ of L∗, where
D is interpreted as the naïve deducibility relation for L∗ (with reference to a
codification of L∗). D(x, y)means the following:
– y is naively deducible from x.

Or, in more explicit terms:
– There is a naïve proof that, assuming that x is true in N∗, leads to the

conclusion that y is true in N∗.

Consider a natural deduction system. Rules of elimination and introduction for D,
analogous to (a) and (b) stated above, are as follows:

(DE) FrompremisesA andD(⌜A⌝, ⌜B⌝), one canderive B. The conclusiondepends
on all assumptions upon which the premises depend.

(DI) From premise B, depending on the unique assumption A, one can infer
D(⌜A⌝, ⌜B⌝), discharging A.

Theorem. From (DE) and (DI), trivialism follows.

Proof. Let A be any L∗-sentence. By diagonalisation, we get a natural number k
such that k = ⌜D(k, ⌜A⌝)⌝. Using k as a name of D(k, ⌜A⌝), suppose that k is true.
Since k says that A is deducible from k and deduction is sound, A is true. So we
have proved A from the assumption k. Hence D(k, ⌜A⌝), i.e. k, is true. And, since
deduction is sound, A is true. qed

A formal proof of A in natural deduction (where k is used again as a name of
D(k, ⌜A⌝) is as follows.

1 (1) k Assumption
1 (2) D(k, ⌜A⌝) 1, Identity
1 (3) A 1,2 DE
(4) D(k, ⌜A⌝) 1, 3 DI (discharging (1))
(5) k 4, Identity
(6) A 4, 5 DE

Since A is arbitrary, N∗ is trivial. But N∗ differs from N only for the introduction of
the relation of naïve deducibility: the arithmetical sentences of L are interpreted
in N∗ as in N. Therefore N is trivial as well.
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5 Conclusion
In this paper, I took a notion of naïve proof, defended by Priest in his discussion of
Gödel’s theorem. I consider his characterisation of the notion via (a) and (b). By
using it, a new version of Curry’s paradox is proposed, obtained without making
use ofMP.
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Human conceptions [. . . ] are relative, but these relative conceptions go to compound
absolute truth. These relative conceptions, in their development, move towards absolute
truth and approach nearer and nearer to it.

V. I. U. Lenin,Materialism and Empirio-Criticism, 1908

[S]cience and theology [. . . ] share a common conviction that there is truth to be sought.
Although in both kinds of enquiry this truth will never be grasped totally and exhaustively,
it can be approximated to in an intellectually satisfying manner that deserves the adjective
‘verisimilitudinous’, even if it does not qualify to be described in an absolute sense as
‘complete’.

John Polkinghorne, Quantum Physics and Theology, 2007

1 Introduction
Explicating verisimilitude has proved a challenging task since Popper first intro-
duced the notion in 1963. After Popper’s definition was shown to be untenable
(Miller (1974), Tichy (1974)), logicians and philosophers of science have put
forward a number of competing explications of what does it mean for a theory
or hypothesis h to be closer to the truth than another one (for surveys, see
Niiniluoto (1998) and Oddie (2014)). As a result, the conceptual landscape of
different accounts of verisimilitude is now quite crowded. In the attempt to
put some order in this landscape, verisimilitude theorists have recently devised
alternative classifications of existing accounts of this notion (Zwart (2001); Zwart
and Franssen (2007); Schurz andWeingartner (2010); Schurz (2011); Oddie (2013,
2014)). In this paper, we aim at exploring and extending what Schurz (2011) calls
the “conjunctive” approach to verisimilitude (as opposed to the “disjunctive”
one).

We proceed as follows. In section 2, we briefly survey the post-Popperian
research program on verisimilitude and draw a pocket map of the landscape of
conjunctive accounts of verisimilitude. Then, in Section 3 we focus on the “basic
feature” approach to verisimilitude, which has been developed in some recent
papers by the present authors1. We present two new measures of verisimilitude

1 For early versions and motivations, see Festa (2007a,b,c, 2009, 2011, 2012) and Cevolani et al.
(2011) for a more detailed exposition; for discussion of some applications see Cevolani (2011,
2013, 2014a,b, 2015, 2016), Cevolani and Calandra (2010), Cevolani and Crupi (2015), Cevolani
and Festa (2009), Cevolani et al. (2010, 2011, 2012)), and Cevolani et al. (2013). Note that Theo
Kuipers’ explication of “descriptive verisimilitude” (Kuipers, 1982) anticipates some of the key
ideas of the basic feature approach.
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grounded on our basic feature approach, the second being a generalization of the
first, which in turn is a generalization of the original measure presented in our
previous contributions. In Section 4, we conclude by hinting at some surprising
relations between our measures and other well-known verisimilitude measures.

2 Conjunctive approaches to verisimilitude
We start by introducing a small amount of notation and terminology in section
2.1. In section 2.2, we present Popper’s original definition of verisimilitude and
the post-Popperian research program arising from its failure. We then focus on so
called conjunctive approaches to truthlikeness in section 2.3.

2.1 A propositional framework for verisimilitude

We assume that “the world” is described by a propositional language Ln with n
atomic propositions a1, . . . , an.2 Within Ln, one can express 22

n logically distinct
propositions, including the tautological and the contradictory ones; as usual,
these are denoted ⊤ and ⊥, respectively. Given two propositions h and g, h is said
to be logically stronger than gwhen h entails g but g does not entail h (in symbols:
h ⊨ g but g ⊭ h). Figure 1 displays the 22n = 16 propositions of L2–with p and q as
atoms. We shall make use of this toy language to illustrate some features of the
definitions of verisimilitude discussed in the paper, and to compare them.

Among the factual, i.e., neither tautological nor contradictory, propositions
of Ln, some play a special role and deserve special mention. A basic proposition
is an atom or its negation (e.g., p, ¬p, q, ¬q are the basic propositions of L2 in
Figure 1). The notation ±ai, where “±” can be “¬” or nothing, will be employed to
denote an arbitrary basic proposition of Ln.

A conjunction ±a1∧ . . .∧±am ofm basic propositions (0≤m ≤ n), at most one
for eachatomic one,will be called a conjunctive propositionof Ln. Ifm =0, then the
conjunctive proposition is tautological; ifm =1, it is a basic proposition; and ifm =
n, it is a so called constituent of Ln. Note that the q = 2n constituents z1, . . . , zq are

2 One may argue that an adequate explication of verisimilitude should not be restricted to
theories stated in simple propositional languages. Still, as shown for instance in theworks quoted
in the previous note, verisimilitudemeasures for propositional theories prove both adequate and
fruitful in the analysis of some relevant issues in formal epistemology and the philosophy of
science
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⊥

¬p∧ q p∧¬q

p↔¬q

p∧ q

q p

p∨ q

¬p∧¬q

¬p ¬q

¬p∨¬q

p↔ q

¬p∨ q p∨¬q

⊤

Fig. 1. The 16 (logically distinct) propositions of language L2 (with atoms p and q) represented
in increasing order of logical strength, from the top to the bottom of the diagram: if two
propositions are (directly or indirectly) connected, the upper one is a consequence of the lower
one.

the logically strongest factual propositions of Ln. As Figure 1 shows, constituents
are weaker than a contradiction but stronger than any other proposition (the
constituents of L2 are the four conjunctions p ∧ q, p ∧ ¬q, ¬p ∧ q, and ¬p ∧ ¬q).
The negation of a constituent, i.e., a disjunction of the form ±a1 ∨ . . . ∨ ±an, is
called by Carnap (1950b, p. 405) a content element of Ln (in Figure 1, p∨q, p∨¬q,¬p ∨ q, and ¬p ∨ ¬q are the four content elements of L2). These are the weakest
factual propositions of Ln, stronger than a tautology but weaker than any other
proposition.

Note that each constituent is logically incompatible with any other, and that
only one of them can be true; the true constituent is denoted t and is the strongest
true proposition expressible in Ln. Intuitively, a constituent completely describes
a possible world, i.e., a possible state of affairs of the relevant domain; thus, t
can be construed as “the (whole) truth”, i.e., as the complete true description of
the actual world in Ln. When one of the constituents of Ln is identified with the
truth t, it partitions the set of propositions of Ln into the class T = Cn(t) of the true
ones and its complement F, containing the false ones. In the following, we shall
assume, for the sake of illustration, that p ∧ q is the truth of the toy language in
Figure 1.
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The specular of a conjunctive proposition ±a1 ∧ . . . ∧ ±am is the conjunction
of the negations of all its basic propositions ±ai.3 As an example, in Figure 1¬p ∧ ¬q is the specular of the truth p ∧ q. In general, the specular of the truth is
denoted f . Intuitively, f can be construed as the “worst” constituent of Ln, i.e., as
the completely false description of the actual world. Note the difference between
the specular of the truth f – i.e., ¬p∧¬q in Figure 1 – and the negation of the truth¬t, which is the only false content element of Ln – i.e., ¬p ∨¬q.

Any proposition h of Ln is construed here as expressing a possible theory
or hypothesis about the world. Intuitively, the verisimilitude of h depends on
how much true information h provides about the world. In this connection,
let Cn(h) = {g : h ⊨ g} be the class of propositions entailed by h (where Cn
denotes the operation of classical logical consequence), i.e., what Popper (1963b,
p. 218) called the “logical content” of h. For our purpose, it will be useful to
consider also the “basic content” of h, i.e., the set B(h) = {±ai : h ⊨ ±ai} of the
basic propositions entailed by h or, as we may say, of the basic consequences
of h. Of course, for any h,B(h) ⊂ Cn(h), i.e., all basic consequences of h are
consequences of h.

Finally, few words about probability. A probability measurem defined on the
propositions of Ln is called a logical probability measure when it assigns to each
constituent zi of Ln the same value m(zi) = 1/2n (cf. Carnap 1950b, ch. 5). For any
proposition h of Ln, m(h) is the proportion of constituents entailing h out of the
total number of constituents:

(1) m(h) = ∑
zi⊨h

m(zi) = |{zi : zi ⊨ h}|2n

It follows that all basic propositions have the same degree of logical probability:

(2) m(±ai) = 1/2

3 This notion of specularity was first introduced, as far as we know, by Festa in an unpublished
1982 manuscript; a summary of his results was then provided by Niiniluoto (1987, p. 319–321).
Roughly in the same years, Oddie (1986, pp. 49–50) introduced the term “reversal” to denote
the same concept (defined for arbitrary propositions, not just conjunctive ones). The term
“inverse” has then been used later by Zwart (2001, p. 25) to refer to the same notion. In this
connection, one should note that Zwart (ibidem, pp. 32 ff. and 56 ff.) discusses also a “specularity
property” and acknowledges, following Kuipers (1987b, p. 85), that “the term is Roberto
Festa’s” (ibidem, note 66); however, he doesn’t mention that, despite the common terminology,
Festa’s notion of “specular” and Kuipers’ specularity property are actually quite unrelated
(cf. Festa (1987, p. 153 ff)).
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Assuming that h is consistent (as we shall always assume in the following), the
conditional logical probability of g given h is defined as usual, i.e., m(g|h) =
m(h ∧ g)/m(h). This is the proportion of the cases (i.e., constituents) in which g
is true out of the total number of cases in which h is true. If m(g|h) > m(g), i.e.,
if h raises the initial proportion of cases in which g is true, it is customary to say
that h is positively relevant for g.4 Following Salmon (1969, p. 63), if h is positively
relevant for g we shall say that h partially entails g or, equivalently, that g is a
partial consequence of h. Note that, if h (fully) entails g, then g is true in all cases
where h is true; in other words, any non-tautological consequence of h is also a
partial consequence of h.

It also follows immediately that, as far as basic propositions are concerned, h
partially entails ±ai just in case m(±ai|h) > 1/2. Accordingly, we call b(h) = {±ai :
m(±ai|h) > 2} the set of partial basic consequences of h. To illustrate, one can
check,with reference to Figure 1, that thepartial basic consequences of, say, p∨¬q
form the set b(p ∨¬q) = {p,¬q}. Of course, any basic consequence of h – i.e., any
basic proposition “fully” entailed by h – is also a partial basic consequence of h:
in other words, we have that B(h) ⊂ b(h).

2.2 The post-Popperian research program
on verisimilitude

In the early sixties of the past century, the controversy between Popper’s and
Carnap’s followers concerning the goals of science and the growth of knowledge
urged Popper (1963b, ch. 10) to introduce the first formal explication of verisimil-
itude. Popper believed that science aims neither at highly probable nor at induc-
tively well confirmed theories, but at theories with a high degree of verisimilitude,
a notion which “represents the idea of approaching comprehensive truth [and]
thus combines truth and content” as the two fundamental cognitive goals of
inquiry (Popper, 1963b, p. 237).

In Popper’s intentions, the idea of verisimilitude should have supported his
realist and falsificationist views about science, by showing how it is possible to
keep together two apparently opposite tenets: i.e., that our best theories are bold
conjectures which are likely false (and will be quite surely falsified in the future)
and that still science progresses toward truth. If a false theory can be closer to the
truth than another false theory, Popper argued, then one can coherentlymaintain

4 For a detailed analysis of the concepts of positive and negative relevance see Carnap (1950a,
cg. 6) and Salmon (1969).
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a falsificationist attitude in methodology and a realist view of the main aim of
science, i.e., truth approximation.5

In order to defend the ideas outlined above, Popper (1963b) introduced a
definition of verisimilitude based on an apparently very sound intuition: themore
true propositions and the less false propositions a theory h entails, the greater its
verisimilitude. More precisely, recalling that Cn(h) is the class of consequences of
h, let CnT(h) = Cn(h)∩ T = Cn(h)∩ Cn(t) denote the class of true consequences of
h, and CnF(h) = Cn(h) ∩ F the class of false consequences of h, to the effect that
CnT(h)∪ CnF(h) = Cn(h). Then, according to Popper (1963b, p. 233), h is closer to
the truth than g if and only if h has no less true consequences than g (and possibly
more) and no more false consequences (and possibly less).

Definition 1 (Popperian verisimilitude). h is at least as close to the truth as g iff:

CnT(h) ⊇ CnT(g) and CnF(h) ⊆ CnF(g)
Moreover, h is closer to the truth than g if at least one of the above inclusion
relations is strict.

When Definition 1 first appeared in the tenth chapter of Conjectures and
Refutations, it didn’t attract much attention, perhaps because most readers
found the definition exactly as it should be (cf. Kuipers 2000, p. 139). Pop-
per’s definition became famous about ten years later, when Miller (1974) and
Tichý (1974) independently proved that it was completely inadequate. More
precisely, they showed that no false theory h can be closer to the truth than
another (true or false) theory g according to Popper’s Definition 1. This so called
Tichý-Miller theorem proved fatal for Popper’s explication of verisimilitude, since
it showed that Definition 1 is worthless for the very purpose for which Popper
introduced it – i.e., ordering false theories according to their closeness to the
truth.

The surprising failure of Popper’s attempt urged logicians and philosophers
of science to develop more adequate definitions of verisimilitude. As a result,
the conceptual landscape of different accounts of verisimilitude is now very
crowded, different scholars having put forward a number of competing and
partially conflicting explications of what does it mean for a theory to be closer
to the truth than another one (for an early collection, see Kuipers (1987a) and,
for surveys, see Niiniluoto (1998) and Oddie (2014)). At the moment, the work in

5 Formost recent critical discussion about this view of scientific progress, see, e.g., Cevolani and
Tambolo (2013a), Niiniluoto (2014) and Rowbottom (2015).
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this area follows three different paths. First, the search for adequate explications
of verisimilitude is still an active area of study, as the contributions by, e.g.,
Festa (2007a,b,c), Schurz andWeingartner (2010), Cevolani et al. (2011), Northcott
(2013), and Kuipers (2015) testify. Second, such explications are being applied
to the analysis of both classical problems in the philosophy of science (see,
e.g., Cevolani and Tambolo (2013a,b), Cevolani et al. (2013), Tambolo (2015),
Niiniluoto (2014, 2015) on the analysis of scientific progress) and of issues in
formal epistemology or even cognitive psychology (see, e.g., Cevolani et al. (2010,
2012); Cevolani and Crupi (2015); Cevolani and Schurz (2017) on the analysis of
paradoxes of rational belief, and Cevolani and Calandra (2010), Cevolani et al.
(2011), Kuipers (2011), [Niiniluoto 2011], and Schurz (2011) on the connections
between verisimilitude and belief revision). Finally, verisimilitude theorists have
recently devised alternative classifications of existing accounts of this notion, in
order to investigate the differences, similarities, and possible connections among
the different approaches (Zwart (2001); Zwart and Franssen (2007); Schurz and
Weingartner (2010); Schurz (2011); Oddie (2013, 2014)). Our point of departure is
this recent debate on the most appropriate way to classify accounts of verisimil-
itude, and in particular the distinction between “conjunctive” and “disjunctive”
approaches, to which we now turn.

2.3 Mapping the landscape of conjunctive
accounts of verisimilitude

In some recent papers, Gerhard Schurz has convincingly argued that the way in
which theories are represented in the first place can have significant implications
in assessing their verisimilitude (Schurz and Weingartner (2010), Schurz (2011)).
More precisely, he distinguishes two approaches to theory representation. Within
the first, a theory h is represented as a conjunction of minimal “content parts”,
i.e., of the smallest items of information provided by h on the world; as an
example, h may be the conjunction of its consequences in some language. The
second approach instead represents h as a disjunction of maximal “alternative
possibilities”, like the possible worlds or the models of the underlying language.
Of course, the above distinction parallels the familiar one between two equivalent
ways of expressing sentences in formal languages, namely, the one between
conjunctive and disjunctive normal forms.6

6 As immaterial as this distinction may be from a purely logical point of view, it can have signifi-
cant implications for the formal analysis of epistemological concepts, including verisimilitude, as
Schurz andWeingartner (2010, p. 424) observe (cf. also Carnap (1950a, §72–73), especially p. 407).
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Within both approaches, one can distinguish different accounts of verisimil-
itude, according to the different ways of construing the relevant notion of
either content part or alternative possibility. Here, we shall focus only on the
conjunctive approach. Schurz (2011, csec. 2.2) surveys five conjunctive accounts
of verisimilitude proposed in the literature, including our own basic feature
approach, to be discussed in greater detail in Section 3. All these accounts retain
the following fundamental Popperian intuition:

h is at least as close to the truth as g iff
all true content parts of g are also true content parts of h and
all false content parts of h are also false content parts of g.

However, they differ on how these content parts are defined. The following
list displays, in order of appearance in the literature, a number of conjunctive
accounts, including the ones identified by Schurz (2011).
– In Popper’s account (cf. Definition 1), the content parts of h are arbitrary

logical consequences of h; as mentioned, such an account is untenable due
to the Tichý-Miller theorem. All other accounts mentioned below eschew his
problem.

– In Mortensen’s (1978; 1983) account, classical logic is abandoned in favour of
a relevant logic, to the effect that not all classical consequences of h count as
relevant consequences of h.

– In the “short theorems” account (Mott, 1978), the content parts of h are
special consequences of h, comparable to, but different from, the relevant
consequences in Schurz’s and Gemes’ accounts below.

– In the “relevant element” account (Schurz and Weingartner, 1987, 2010;
Schurz, 2011), the content parts of h are relevant consequences of h, according
to the definition of relevance developed by Schurz in a number of papers (see
especially Schurz 1991).

– In Gemes (2007)’ account, the content parts of h are also relevant conse-
quences of h, but the notion of relevance is different from the one employed
by Schurz.

– In the “basic feature” account (e.g., Cevolani et al. 2011), the content parts
of h are the “basic” consequences of h, i.e., the basic propositions entailed
by h.

– In the “Carnapian” account (Cevolani 2016), the content parts of h are the
content elements (in the sense of Carnap 1950b, p. 405) entailed by h, i.e., its
weakest factual consequences.

With the exception of Popper’s one, all the above accounts have a trait in
common: the set of content parts of h is a proper subset of the class of its
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logical consequences (cf. Schurz 2011, p. 206). This means that only some of the
consequences of h are deemed relevant as far as verisimilitude assessments are
concerned. In all cases, this is sufficient to avoid the unwelcome consequences of
the Tichý-Miller theorem. Moreover, all conjunctive accounts (including Popper’s
one) meet what Oddie (2013, p. 1651) calls the “strong value of content for truths”
principle, i.e, the requirement that, among truths, verisimilitude increases with
content:

if h and g are true and h is logically stronger than g,
then h is more verisimilar than g.

This principle – or at least its weaker version, saying that if h is true and entails
g, then h is at least as close to the truth as g – is regarded by most verisimilitude
theorists, including Popper himself, as “an essential desideratum for any theory
of verisimilitude” (Oddie, 2014, sec. 1). For these and other reasons, Schurz and
Weingartner (2010, sec. 3) defend conjunctive accounts as intrinsically plausible
and delivering cognitively more manageable assessments of verisimilitude.

Interestingly, the landscape of conjunctive approaches seems to be concep-
tually delimited by two extreme positions. The first is represented by Popper’s
original definition; the second is the newly introduced “Carnapian” definition of
verisimilitude (see Cevolani 2016, for details). While for Popper verisimilitude
depends on the set of all the consequences of h, assessments of Carnapian
truthlikeness are based only on the set of the weakest consequences of h,
i.e., the content elements entailed by h. Between these two extremes, one can
arguably place all other conjunctive accounts, according to the different classes of
consequences of h they isolate as relevant for verisimilitude comparison. Notably,
both the extremes are inadequate as accounts of verisimilitude, but for different
reasons: the Popperian account because of the Tichý-Miller theorem, and the
Carnapian account since it meets the implausible condition according to which
verisimilitude increases with logical strength (not only among true but also)
among false theories:

if h and g are false and h is logically stronger than g,
then h is more verisimilar than g.

Such condition, that Oddie (2013, p. 1654) has dubbed “the strong value of content
for falsehoods”, is rejected by virtually all verisimilitude theorists, the only
exception being David Miller, whose favoured account of verisimilitude satisfies
it (cf. Miller 1978, 1994, 2006).
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3 The basic feature approach to verisimilitude
In this section, we focus on our own conjunctive account of verisimilitude of
propositional theories, i.e., the basic feature approach. We proceed in two steps,
presenting in turns two variants of this approach. In the first, the verisimilitude of
h depends on the categorical information that h provides about the basic features
of the world (section 3.1). A discussion of the limitations of this version then leads
to a second, refined one, according to which the verisimilitude of h is measured
in terms of the partial information provided by h about the basic features of the
world (section 3.2).

3.1 Verisimilitude as categorical information
about the basic features of the world

The key intuition underlyingmost explications of verisimilitude can be expressed
as follows: a theory h is verisimilar when h tells many things about the world
and many of these things are true. In this sense, as Popper (1963b, p. 237) noted,
the idea of verisimilitude “combines truth and content”: h has to provide much
information about the world, and most of this information has to be true, in
order to make h (highly) verisimilar. Within the basic feature approach, the
verisimilitude of h only depends on what h says about the basic features of
the world. These are n independent facts which may or may not obtain in the
world (like “it’s raining” and “it’s not raining”) and are described by the atomic
propositions of Ln. Accordingly, the key intuition above can be rephrased as
follows: h is verisimilar when h provides much information about the basic
features of theworld andmost of this information is true (cf. Cevolani et al. 2011).7

An immediate refinement of the above intuition concerns quantitative
verisimilitude, i.e., the definition of an appropriate measure of the verisimilitude
of a theory h. We will assume that such measure depends only on the amount of
true and false information that h provides about the basic features of the world.
More precisely, we require that the verisimilitude of h is an increasing function of
the amount of true information and a decreasing function of the amount of false
information provided by h on those basic features. There are many different ways

7 If rather sparse, consonant intuitions are recurrent in the literature on verisimilitude; cf., e.g.,
Brink and Heidema (1987, sec. 4); Oddie (1987, sec. 2), Kuipers (1982). Interestingly, similar ideas
also appear in the field of “veristic social epistemology” (cf. Goldman (1999, sect. 3.4).
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of specifying such a function; two of them will be discussed in this and the next
section.

Recalling that B(h) = {±ai : h ⊨ ±ai} is the set of the basic consequences of h,
its cardinality |B(h)| arguably provides a simple measure of the total amount of
information provided by h about the n basic features of the world. In fact, this is
equivalent to saying that (i) the amount of information provided by h about ±ai
is 1 if h entails either ai or its negation ¬ai, and is 0 in the case where h entails
neither of them; and, (ii) the total amount of information provided by h about the
n basic features of theworld is just the sumof the amount of information provided
by h about each of them. By dividing this number of basic consequences of h by
n, the following normalized measure is obtained:

(3) Inf(h) ≡ |B(h)|n
As one can check, Inf(h) varies between the minimum information provided by a
tautology and the maximum information provided by a constituent:

(4) Inf(⊤) = 0 ≤ Inf(h) ≤ 1 = Inf(zi)
Using now Popper’s definitions (presented in Section 2.2) as a benchmark, we
shall say that BT(h) = B(h)∩ T is the class of true basic consequences (or of basic
truths) of h, and BF(h)= B(h)∩F the class of its false basic consequences (or basic
falsehoods). Accordingly, the amount InfT(h) of true information provided by h
about the n basic features of the world may be defined along the same lines of
definition (3):

(5) InfT(h) ≡ |BT(h)|
n

In the same way, the amount InfF(h) of false information provided by h about the
n basic features of the world is defined as:

(6) InfF(h) ≡ |BF(h)|
n

It is easy to check that the information Inf(h) provided by h is the sum of the true
and false information provided by h:

(7) Inf(h) = InfT(h)+ InfF(h)
Interestingly, a simple measure of the verisimilitude of h is obtained from (7) by
replacing the “plus” sign with the “minus” one:

(8) Vs(h) ≡ InfT(h)− InfF(h)
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In words, the verisimilitude of h is the difference between the amount of true and
false information provided by h about the basic features of the world.8

The following inequalities are immediate consequences of definition (8):

Vs(f) = −1 ≤ Vs(h) ≤ 1 = Vs(t)(9)
Vs(⊤) = 0(10)

Note that (9) says that Vs(h) varies between −1, i.e., the verisimilitude of the
complete falsehood, and1, i.e., the verisimilitude of the truth. Equality (10) shows
that the verisimilitude of a tautology is a sort of natural middle point: Vs(h) > 0
iff the number of basic truths exceeds the number of basic falsehoods of h, while
Vs(h) < 0 iff the number of basic falsehoods exceeds the number of basic truths
of h.

The definition of verisimilitude just presented is essentially identical to the
one proposed in our earlier work as limited to the class of conjunctive theories.
For this kind of theories, as we argued in those earlier contributions, Vs provides
perfectly adequate assessments of verisimilitude. Here, definition (8) is given for
arbitrary theories, so that Vs is intended to measure the verisimilitude of both
conjunctive and non-conjunctive ones. However, it is easy to show that, as a
general measure of the verisimilitude for propositional theories,Vs is inadequate.

To see this, let us define the “conjunctive counterpart” of h, denoted c(h),
as the strongest conjunctive statement entailed by h or, equivalently, as the
conjunction of the basic propositions entailed by h. It is now easy to check
that, according to Vs, the verisimilitude of h is equal to the verisimilitude of its
conjunctive counterpart:

Vs(h) = Vs(c(h))
This already raises a problem for Vs. In fact, it is clear that two theories h
and g may have the same conjunctive counterpart even if they are not logically
equivalent. As an example, one can check that any possible disjunction of basic
propositions has the same, tautological counterpart:

c(±a1 ∨±a2) = c(±a1 ∨±a2 ∨±a3) = c(±a1 ∨±a2 ∨ . . . ∨±an) = c(⊤) = ⊤.
This fact is sufficient to show that Vs is a very coarse grained measure, since it
assigns the same degree of verisimilitude to significantly different theories. In

8 As an immediate consequence of equalities (7) and (8), we find that Vs(h) can be expressed
in terms of Inf(h) and InfF(h) or, alternatively, in terms of Inf(h) and InfT(h): Vs(h) = Inf(h) −
2InfF = 2InfT − Inf(h).
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particular, if h is non-tautological but so weak that it doesn’t entail any basic
proposition, then h is assigned the same verisimilitude as the tautology, namely
0. For instance, whatever the truth t of Ln, one obtains that:

Vs(±a1 ∨±a2) = Vs(±a1 ∨±a2 ∨±a3) = Vs(±a1 ∨±a2 ∨ . . . ∨±an) = Vs(⊤) = 0.
As another example, with reference to Figure 1, all the content elements of L2, as
well as p↔ q and p↔¬q, are deemed as truthlike as a tautology.

The equalities above show that Vs doesn’t deliver intuitively sound verisimili-
tude assessments for non-conjunctive theories. Fortunately, as we argue in detail
in section 3.2 below, there is a natural way of defining a verisimilitudemeasure for
arbitrary theories which improves on Vs under this respect and is still based on
the fundamental insight of the basic feature approach. To recall, according to this
approach verisimilitude depends on howmuch true information h provides about
the basic features of the world. Until now, we have worked with a “categorical”
notion of information: h provides information about ±ai just in case h logically
entails ±ai; otherwise, h doesn’t provide any information at all. Such notion,
however, is too restrictive: intuitively, it is clear that, for instance, p ∨ q does
provide at least some information about p, although not so much information
as that provided by p itself. On the contrary, definition (3) implies that p ∨
q provides zero information about p, exactly as a tautology does: in short, a
categorical account of information is too crude to deliver a fine grained definition
of verisimilitude. To this purpose, we need amore graded, non-categorical notion
of information, according towhich the informationprovidedby h on±ai is just the
degree to which h entails ±ai. Such notion of “partial” information is introduced
in the next subsection.

3.2 Verisimilitude as partial information
about the basic features of the world

Recalling that ±ai : m(±ai|h) > 1
2 is the set of partial basic consequences of h, a

simple definition of the amount of information provided by h about each of its
partial basic consequences is the plain difference m(±ai|h) − 1

2 . Intuitively, such
difference measures the “distance” between the conditional logical probability
m(±ai|h) and the absolute logical probability m(±ai). By multiplying the above
expression by 2, one obtains the normalized measure

(11) infi(h) = 2× (m(±ai|h)−1/2)
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Note that inf i(h) is always positive and takes 1 asmaximum value, when h entails±ai.9 By summing up the information provided by h about each of its partial
consequences, one obtains the total amount of information provided by h on the
basic features of the world, which can be normalized dividing by n:

(12) inf(h) ≡ 1
n ∑
±ai∈b(h)

infi(h)

Again, one can easily see that inf(h) varies between the minimum information
provided by a tautology and themaximum information provided by a constituent:

(13) inf(⊤) = 0 ≤ inf(h) ≤ 1 = inf(zi)
Let us now denote bT(h) = b(h) ∩ T the class of basic truths partially entailed by
h, and bF(h) = b(h)∩F the class of basic falsehoods partially entailed by h. Then,
the amount infT(h) of true partial information provided by h about the n basic
features of the world is defined as:

(14) infT(h) ≡ 1
n ∑
±ai∈bT (n)

infi(h)

i.e., as the normalized amount of information provided about the basic truths
partially entailed by h. Similarly, the amount infF(h) of partial false information
provided by h about the n basic features of the world is defined as the normalized
amount of information provided about the basic falsehoods partially entailed by
h:

(15) infF(h) ≡ 1
n ∑
±ai∈bF(n)

infi(h)

It should be clear that the above definitions are structurally identical to those
given in the previous section for the categorical case (in particular, definitions
(12), (14), and (15), on the one hand, are the counterparts of definitions (3), (5),
and (6), on the other hand). For this reason, it is not surprising that similar
considerations can be repeated here for the case of partial information. First, it
is easy to see that inf(h) is the sum of the true and false information provided
by h:

(16) inf(h) = infT(h)+ infF(h)

9 Indeed, in this case, the partial information provided by h reduces to the categorical one (see
definition 1). However, according to definition (11), h provides some partial information about
±ai also when h entails neither ai nor ¬ai .
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Second, one can again obtain from (16) a definition of verisimilitude simply by
changing the sign in the right side of the equation:

(17) vs(h) ≡ infT(h)− infF(h)
In words, the verisimilitude of h is the difference between the amounts of partial
true and false information provided by h.10 The following two equalities are the
counterparts of equations (9) and (10):

vs(f) = −1 ≤ vs(h) ≤ 1 = vs(t)(18)
vs(⊤) = 0(19)

As before, these equalities mean that vs(h) varies between a maximum given by
the verisimilitude of the truth and a minimum given by the verisimilitude of its
specular. Moreover, the verisimilitude of a tautology discriminates between those
h for which the amount of partial true information exceeds the amount of partial
false information, and hence vs(h) > 0, and those for which the opposite is true,
and hence: vs(h) < 0.

Table 1 displays the degrees of verisimilitude of the 16 propositions of our toy
example in Figure 1, as measured by both Vs and vs (and assuming that p ∧ q
is the truth in L2).11 Note that the two measures agree on all the conjunctive

Table 1. The verisimilitude of the 16 (logically distinct) propositions of L2 as assessed by
measures Vs and vs, assuming that p ∧ q is the truth. True propositions are on the left, their
false negations on the right.

h Vs(h) vs(h) ¬h Vs(¬h) vs(¬h)

1 ⊤ 0 0 9 ⊥ 0 0
2 p∨ q 0 0.33 10 ¬p∧¬q –1 –1
3 p∨¬q 0 0 11 ¬p∧ q 0 0
4 p 0.5 0.5 12 ¬p –0.5 –0.5
5 ¬p∨ q 0 0 13 p∧¬q 0 0
6 q 0.5 0.5 14 ¬q –0.5 –0.5
7 p→ q 0 0 15 ¬p∨¬q 0 0
8 p∧ q 1 1 16 ¬p∨¬q 0 –0.33

10 As an immediate consequence of equalities (16) and (17), we find again that vs(h) can be
expressed in terms of inf(h) and infF(h) or, alternatively, in terms of inf(h) and infT(h): vs(h) =
inf(h)−2infF(h) = 2infT − inf(h).
11 For completeness, table 1 also includes (in cell 9) the logically false statement ⊥. According
to Popper (1963b, Addendum 3, pp. 393 ff); see also Schurz and Weingartner (2010, sect. 2)),
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theories, including the constituents. However, they disagree on the remaining,
non-conjunctive theories, since vs is, as desired, more fine-grained than Vs. To
be sure, in such a simple language as L2, this is evident only for statements p ∨ q
and ¬p ∨¬q (corresponding to cells 2 and 16 in the table).

By considering slightlymore complex languages, however, it becomes clearer
that vs is actually an adequate measure of truthlikeness for non-conjunctive
theories. A couple of examples will illustrate this point. Assume that t = a1 ∧
a2 ∧ a3 is the truth in L3. Then, as far as disjunctions of basic propositions are
concerned, one can easily check that, for instance, the following statements are
in increasing order of truthlikeness:

vs(¬a1 ∨¬a2) ≅ −0.22
vs(¬a1 ∨¬a2 ∨¬a3) ≅ −0.14
vs(¬a1 ∨¬a2 ∨ a3) ≅ −0.05
vs(¬a1 ∨ a2) = 0
vs(¬a1 ∨ a2 ∨ a3) ≅ 0.05
vs(a1 ∨ a2 ∨ a3) ≅ 0.14
vs(a1 ∨ a2) ≅ 0.22

(20)

Note that, on the contrary, Vs is 0 for all the above statements. The reason, as
we said, is that vs, but not Vs, is sensitive also to small amounts of information
provided by weak hypotheses on the basic features of the world. For instance,
while Vs cannot discriminate between the verisimilitude of h = a1 and that of
the slightly stronger hypothesis g = a1 ∧ (a2 ∧ a3) – since one can check that
Vs(h) = Vs(g) = 0.5, one instead obtains that vs(g) ≅ 0.55 > 0.5 = vs(h), i.e.,
that vs is sensitive to the small increase of true partial information provided
by g over h.

contradictions should have the minimum degree of verisimilitude; measure vs instead assigns
them an intermediate degree of verisimilitude (i.e., 0), on a par with tautologies. This is because
both tautologies and contradictions, for different reasons, don’t really provide any information
about the truth: the former being completely uninformative, the latter providing exactly the same
(maximal) amount of true and false information. Here, we decided not to consider contradictions
as really relevant hypotheses, in line with much discussion on verisimilitude (cf., e.g., Niiniluoto
(1987, p. 150)).
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4 Concluding remarks
We conclude our discussion by pointing out some general properties of measure
vs. As mentioned in Section 2, all post-Popperian accounts of verisimilitude
eschewwhatOddie (2013, p. 1652) calls “the relative trivialization of verisimilitude
for falsehoods”, which, as the Tichý-Miller theorem showed, plagued Popper’s
original definition. Our account is no exception, since it is easy to check that:

if h and g are false, it may be that vs(h) > vs(g)
An example is provided by the first two equalities in (20), which show that
vs(¬a1 ∨¬a2) ≅ −0.22 < −0.14 ≅ vs(¬a1 ∨¬a2 ∨¬a3). More interestingly, vs also
avoids “the absolute trivialization of verisimilitude for falsehoods” (Oddie, 2013,
p. 1652), i.e., it meets the following condition:

if h is false and g is true, it may be that vs(h) > vs(g).
As an example, vs(a1 ∧ a2 ∧ ¬a3) ≅ 0.33 > vs(¬a1 ∨ a2) = 0. Another attractive
aspect of vs is that it does not satisfy the implausible condition that verisimilitude
increases with logical strength among falsehoods:

if h and g are false, and h ⊨ g, it may be that vs(h) < vs(g).
The first example given above illustrates also this point: ¬a1 ∨ ¬a2 is stronger,
but less verisimilar, than ¬a1 ∨ ¬a2 ∨ ¬a3. More generally, as we said, f is the
least verisimilar statement of the language and, at the same time, it is as strong
as any other falsehoods can be. In particular, f is stronger but less verisimilar
than the negation of the truth, i.e., of the false content element of the language:
in our example in L3, we have that vs(f) = vs(¬a1 ∧ ¬a2 ∧ ¬a3) = −1 < −0.14 ≅
vs(¬a1 ∧¬a2 ∧¬a3) = vs(¬t).

Finally, and quite surprisingly, vs violates the weak value of content for
truths, i.e., the condition, discussed in Section 2.3 above, according to which
verisimilitude increases with logical strength among truths. In fact, it is easy to
check that:

if h and g are true, and h ⊨ g, it may be that vs(h) < vs(g).
An example is again provided by the equalities in (20): vs(¬a1 ∨ a2) = 0 < 0.05 ≅
vs(¬a1 ∨ a2 ∨ a3). The circumstance that vs violates the weak value of content
for truths has several interesting implications that, due to space limitations,
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we cannot explore here. Following Popper (1963b), many other theorists regard
this condition as an important desideratum for verisimilitude; see, for instance,
Niiniluoto (1987, p. 133) and Schurz and Weingartner (1987, p. 49), Schurz and
Weingartner (2010, p. 417). Still, this desideratum is violated by the well-known
Tichý-Oddie “average” measure of verisimilitude, and indeed by all “likeness”
accounts as characterized by Oddie (2013, p. 1668 ff.). Here we can only anticipate
that this striking similarity between vs and the average measure is by no means a
coincidence, since, in spite of their completely different conceptual foundations,
these two measures of verisimilitude are indeed identical.12

12 For a proof of this claim see Cevolani and Festa (unpublished).
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Mental Causation and Nonreductive
Physicalism, an Unhappy Marriage?

Abstract: Peter Menzies is among those contemporary philosophers of mind
who have tried most deliberately to make mental causation compatible with
nonreductive physicalism, thus proving the invalidity of Kim’s causal exclusion
argument (Kim (2005), p. 17). The compatibility between mental causation and
nonreductive physicalism will be the focus of this essay. In the first part, I shall
expound the tenets of Menzies’ theory of mental causation. In the second, I shall
emphasise the difficulties his theory encounters, that jeopardise his attempt to
reconcile mental causation with physicalism, even though the sort of physicalism
he champions takes a quite liberal shape.

1 Exposition of Menzies’ theory
Peter Menzies is among those contemporary philosophers of mind who have
tried most deliberately to make mental causation compatible with nonreductive
physicalism, thus proving the invalidity of Kim’s causal exclusion argument
(Kim (2005) p. 17). Menzies’ attempt rests mainly on the distinction between
a conception of cause as sufficient cause – where causation is understood as
causal sufficiency – and a notion of cause as difference-making cause – where
causation is interpreted instead as counterfactual dependence. OnMenzies’ view,
“the fundamental error of this principle (that of exclusion) is that it mistakes
causal sufficiency for causation.” (2013, p. 71). Let us now look in more detail at
what Menzies means by difference-making cause.

1.1 Truth conditions for making a difference (causal relevance)

The state S1 makes a difference to the state S2 in the actual world just in case 1. if in any
relevantly similar possible situation S1 holds, S2 also holds; and 2. if in any relevantly
similar situation world S1 does not hold, S2 does not hold (2013, p. 73).
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More formally, the definition of difference-making cause is introduced through the
semantics of counterfactuals:

S1 makes a difference to the state S2 iff 1. S1◻→S2 and 2. ¬S1◻→¬S2 (2013, p. 74).

Menzies’ interpretation of counterfactuals is borrowed from the standard
possible- worlds semantics of David Lewis (1973). According to Lewis, truth
conditions for counterfactuals should be expressed in terms of a similarity –
or closeness – relation between possible worlds. The similarity relation “is
represented by an assignment to each possible world w of a system of spheres
of worlds centred on w. The system of spheres conveys information about the
similarity of worlds to the world w at the centre. The smaller a sphere, the more
similar tow are theworlds in it. Sowhenever oneworld lies in some sphere around
w and another lies outside it, the first world is more similar to w than the second.
In terms of this system of spheres, (...) the truth conditions for counterfactuals
are as follows: P ◻→ Q is true in world w if and only if Q is true in all the closest
P-worlds to w.” (1973, p. 74).

It is worth noting that, in the semantics that Menzies elaborated with List
in their (2009) essay, the smallest sphere containing the actual world w always
contains more worlds besides w – this differs from Lewis’ original semantics.
The reason for this difference rests on the fact that conditions 1. and 2. must
be able to exclude difference-making causes that are either too specific, or not
specific enough. The following example, devised by Yablo (1992) and taken
up by Menzies, will illustrate both the notion of difference-making cause, and
the specific characteristic of the aforementioned List-Menzies’ semantics. The
example will be developed further in the second part of this essay, in reference
to aspects that Menzies himself considers as problematic, and those he neglects
by considering them to be irrelevant.

1.2 Yablo’s example of the pigeon, and its treatment
in the semantics of counterfactuals

Yablo gives the example of a pigeon (Sophie) that is trained to peck a red target
when such a target is shown to it (p. 257ff). OnMenzies’ counterfactual approach,
the following counterfactuals thus hold true:

1 Target is red ◻→ pigeon pecks
2 Target is not red ◻→ pigeon does not peck
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Clearly, the truth of the two counterfactuals attests that the target’s redness is the
cause of the pigeon’s pecking. On the contrary, even if it is true that

1’ Target is scarlet ◻→ pigeon pecks
we cannot affirm that the target’s being scarlet is a relevant cause of the
pigeon’s pecking, because the following counterfactual does not hold true:

2’ Target is red, but not scarlet ◻→ pigeon does not peck

In fact, even though the target is not scarlet, it is true that the pigeon pecks it,
since the target is still red, albeit a different hue from scarlet.

Placing this example in the context of List-Menzies’ semantics permits us to
capture all of its clarifying power. To say that the red is the cause of peckingmeans
that in all of the closest worlds to the actual world w, where it holds true that the
target is red, it also holds true that the pigeon pecks. Now, among those worlds
there are some whose hue of red is different from that of the target in the actual
world. For example, there is a scarlet target. Thus, since the pigeon pecks in those
worlds, too, the counterfactual 1’ is valid. But among these worlds, there are also
ones whose target is red but not scarlet. Despite that, the pigeon pecks in those
worlds, too, so that the counterfactual 2’ is falsified. Conversely, let us suppose
that the pigeon is put in front of a target that is colourful, but not red. Clearly,
if the relevant conditions are always the same, the pigeon does not peck. In this
case, being the first counterfactual falsified, one cannot say that being colourful
is the relevant cause of pecking.

What is the meaning of all this? Well, List-Menzies’ semantics allows us to
identify the actually relevant causes, i.e. those that are neither too specific nor not
specific enough. In effect, taking into consideration the many worlds where the
various shades of red may occur, allows us to highlight the actual relevant cause
of pecking. This does not consist in a specific hue of red, but in its being abstractly
red. In other words, the requirement that the closest worlds to w are many, avoids
the danger of regarding the relevant cause to be the possession of too specific a
quality. Clearly, if the set of the closest worlds to w were the singleton of w, the
relevant cause of pecking would be somemore specific quality than merely being
red. By contrast, that the pigeon does not peck if the target is merely coloured
means we can exclude the notion that the relevant cause could be less specific
than red.

From the example of the pigeon, we can now move to the analysis of the
general structure of mental causation.
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1.3 Counterfactual analysis of mental causation

On List-Menzies’ theory of relevant causation, mental event M is the cause of B –
the rising of the arm – if the following two counterfactuals hold true:

1. M ◻→ B
2. ¬M ◻→ ¬B
Between M and B there is the same kind of relationship that exists between the
red target and the pecking. Aswith the case of the pigeon, the relevant causemust
not be overly specific, so the mental cause must not be so specific to encompass
its realiser – say Ni. In this case, in fact, B’s relevant cause would be no longerM
– in its multiple realisability – but M, as it is instantiated by its specific realiser
Ni. In other words, the subject of the arm’s rising would not act as moved by the
mental state M, but as realized by Ni.

The symmetry between the two cases is also reflected in the fact that M and
its realiser Ni are not counterfactually parallel. Indeed, although

1’ Ni ◻→ B

holds true,

2’ ¬Ni ◻→ ¬B
does not, because it is possible that another realiser ofM – say Nj – causes B, the
arm rising. The language of counterfactual semantics is very enlightening on this
point: in the closest B-worlds, where Ni does not hold true, it is possible thatM is
realized by Nj.

Menzies’ main purpose in conducting the previous analysis is to revise the
exclusion principle. However, in this essay, I shall not follow in detail Menzies’
criticismof the traditional exclusionprinciple. Instead, I shall focus on the revised
principle, as it is presented in List and Menzies (2009), and in Menzies (2013) and
Menzies (2015).

1.4 Revised exclusion principle

According to List-Menzies, the exclusion principle features two formulations: the
upwards and the downwards.
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a. Revised exclusion principle (upwards formulation): if state S causes state B,
then no state S∗ that supervenes on S causes B.

In its application to the mental domain, the principle establishes that the
subvenient cause – the neural event Ni, that is, the realiser of mental event M –
excludes the supervenient: the mental state M.

b. Revised exclusion principle (downwards formulation): if state S causes state
B, then no state S∗ that realizes S causes B.

In its application to the mental domain, the principle establishes that the
supervenient cause – the mental event M – excludes the subvenient: the realiser
Ni of mental event M.

It is easy to see that theupwards exclusionprinciple coincides– in its results –
with Kim’s exclusion principle, whilst the downwards principle seems to be an
open denial of that. This is because of the difference between the notion of cause
displayed in Kim’s original principle and that displayed in Menzies’ new version.
According to Kim, the cause is conceived as a sufficient cause, whereas, according
toMenzies, the cause is to be understood as a relevant cause. This allows us better
to grasp why the relevant cause of B is M, and not its realiser Ni: M could be
realised by realiser Nj, instead of Ni.

However, Menzies is quite cautious in introducing principle b. In fact, he
adds the concept of sensitivity of a mental cause M to a physical realiser N.
By deploying this notion he obtains a more refined version of the downwards
exclusion principle. Let us now examine how the sensitivity concept looks.

The causal relation betweenM and B is realisation-sensitive if B does not hold
true in all the closest ¬N-worlds to the M-worlds (that is, worlds where M has a
different realiser than N, that is, the actual one).

Conversely:
The causal relation betweenM and B is realisation-insensitive if B holds true

at least in some of the closest ¬N-worlds to theM-worlds (that is, worlds whereM
has a different realiser than N, i.e. the actual one).

Now, depending on the definitions introduced, Menzies can obtain two
remarkable results.

1 Compatibility result: if M causes B, then N causes B iff the causal relation
between M and B is realisation-sensitive.

And

2 Downwards exclusion result: if M causes B, then N does not cause B iff the
causal relation between M and B is realisation-insensitive.
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Although these results are a reformulation of the revised exclusion principle,
they are nevertheless significant, since they allow us to derive some important
implications. The first is the revision to which Menzies submits the principle of
causal closure, and the criticism he levels at it. Further implications concern the
specific nonreductive physicalist solution to the problem ofmental causation that
is endorsed by authors with whom Menzies can be compared.

1.5 Revised principle of causal closure

In the light of his theory of causation, Menzies not only revises the exclusion
principle, but also the principle of causal closure. The latter is usually formalised
as follows:

CCP Every physical effect has a physical sufficient cause (2015, p. 23)

So far, the direction in which Menzies imparts his revision of the principle should
be clear. Since he sees the cause as relevant cause and not as sufficient cause,
the principle must be changed accordingly. The notion of sufficient cause must
be replaced with that of relevant cause. As a result, we obtain the following
principle:

CCPR For every physical effect there is a physical difference-making cause (2015,
p. 37)

Revised in this way, it is clear why Menzies criticises the principle: he maintains
that it is false. If the mental causes are not physical, and the mental cause –
under normal circumstances – is the relevant cause, there cannot – on pain of
overdetermination – be a relevant physical cause of the same effect.

1.6 Some implications concerning the nonreductive
physicalist solution to the problem of mental
causation

Several nonreductive physicalists support a compatibility argument on which
physical behaviour B follows causally both from M and its physical realiser N.

Thesis of compatibility: “Any piece of intentional behavior has two causes: a
mental state and the neural state that realizes it” (2013, p. 81). The mental and
the neural cause are not partial causes, in the way that the presence of oxygen
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and a short circuit are each partial causes of a fire. Indeed, on the nonreductive
physicalist approach, the mental and the neural state are each causally sufficient
for the physical effect. The overdetermination of the effect on the part of the
two causes, moreover, is not problematic, since the causes are not accidentally
overdetermined – as in the case of the two assassins who kill the same person –
but, rather, are essentially overdetermined, in so far as a necessity relation occurs
between the mental cause and its realiser.

Among supporters of the compatibility thesis, Menzies mentions Shoemaker
(2007) in particular. It will be useful to afford brief attention to Shoemaker,
because he deploys Yablo’s relation between determinable and determinate in
order to illustrate the relation between the mental cause and the neural.

Shoemaker, referring to the example of pigeon, Sophie, maintains that the
scarlet (the determined) is a realiser of the red (the determinable), because the
causal powers of the red are a subset of the causal powers of the scarlet. Here,
saying that an instantiation of the red is a cause of the pecking, is fully compatible
with saying that an instantiation of the scarlet is also a cause of the pecking.
We just need to add that the realiser is a cause, because, even though only the
causal powers of the red are necessary for Sophie’s pecking, they are inherited
from the scarlet. In other words, the instance of the scarlet is a sufficient cause
of Sophie’s pecking, but only as far as it coincides with an instance of the red
(2007, p. 14).

Overdetermination is avoided, because – although the mental state M and
the neural N are both causes of behaviour B, N has its causal role in virtue of the
causal role ofM. Shoemaker gives the example of Smith’s death by a salvo of shots
from a firing squad, of which only one – the one shot by Jones – hits Smith. In that
case, it can be said that the salvo of shots fired by the whole squad causes Smith’s
death, in virtue of the shot fired by Jones.

However, Menzies continues to be critical of the compatibilist thesis. He
questions (2013, p. 82) the two principles on which the thesis rests: the idea of
causation as causal sufficiency, and the principle of transmission of causal suffi-
ciency through the realization relation. Menzies puts forward several reasons in
order to rebut these principles. Yet, his main reason derives from the downwards
exclusion principle. The consequence to be drawn from this principle is that,
when a mental state M causes a behaviour B in a realisation-insensitive way,
then the neural state N that realises the mental cannot be the cause of B. Thus,
under realisation-insensitivity, downwards exclusion rules out the double cause
required by compatibilism. This result is reinforced by Menzies’ conviction that
cases of realisation-insensitivity are normal, while those of realisation-sensitivity
represent an exception.
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2 Physicalism, causal closure, downwards
exclusion principle

2.1 Determinable/determinate, mental cause/physical realiser

Menzies uses the example of Yablo’s pigeon to illustrate the difference between
sufficient cause and relevant cause, and to show reasons for preferring the
relation of causation in terms of relevant cause to that of sufficient. In Yablo’s
example, moreover, the relation between determinable (determinable property)
and determinate (determinate property) plays a pivotal role with respect to
the relation between relevant cause and its realiser. Menzies, instead, is quite
sceptical about this parallelism. “The account of the causal efficacy of mental
properties that Yablo provides is, unfortunately, limited in its application because
it presupposes that mental properties are related to their underlying neural
properties as determinables to determinates. In its place, I shall offer an alter-
native account of causal claims” (2008, p. 197). In its place, Menzies proposes an
alternative conception of the cause–one that underlines the contrastive character
of causal relations. Nevertheless, although he is critical of Yablo’s approach, he
accepts his basic tenets. For this reason, Menzies’ theory, like Yablo’s, should be
subject to criticism.

In the first place, Menzies neglects an aspect of the relation between deter-
minable and determinate that, inmy opinion, is important for the very distinction
between sufficient and relevant cause.What is the aspect he neglects to consider?
Hedisregards the significance of the causal relation as a relation of production (on
this, see Crane (2008), par. 5; Hall (2004)). This prevents him from seeing that only
the determined, not the determinable, can play the role of a cause as a productive,
hence sufficient, cause. In fact, the determinable relates to the determinate as
an abstract to the concrete. The determinable is abstract in the sense of being
a universal with respect to the determinate, which is a particular. Now, only the
concretes (objects or states of affairs) can be causally efficacious. That is why the
causation relation cannot exist between an abstract and a concrete behaviour, but
only among concretes – i.e. among concrete events or facts, and among instances
of properties and not among properties. If, at this point, we think of red in general
as an abstract, and of this red, as a concrete, we must admit that it is not abstract
red that is causally efficacious, but this red, endowedwith a specific shade, hue or
brightness. In conclusion, within the conception of cause as production capacity,
it is not abstract red, but only this red that can be a cause, since it does not make
sense to say that to be abstractly A causally implies to be B; at most, we can say
that x as A causes B.
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This analysis – in appealing to the causal relation as production – does not
directly touch Menzies’ theory of relevant causation. From the causal point of
view, even an abstract aspect can be relevant, like an abstract property that is
instantiated in different ways. Nevertheless, the phenomenon of causation would
not take place if it did not occur among concrete events. This means that the
relevant cause could not play its difference-making role if it did not act within
a complex of conditions that enabled it to produce the effect. How should this
complex look? It should be such as to guarantee that the additional conditions
it encompasses – when united with the relevant cause – are able to product
the effect. But this could not occur if the state of affair constituted by these
conditions, plus the relevant cause, were not maximally determined. That is, the
complex must be a concrete state of affairs, since only a concrete state of affairs,
as previously said, is endowed with causal efficacy. Thus, in order forM to be the
relevant cause of behaviour B, it is necessary that there is a set X of conditions
such that X∧M is a sufficient condition of B. Of course, X should also encompass
a concrete physical realiser N of M. In conclusion, just as the properties of the
objects involved in an event could not be relevant causes of the event-effect if
there were not the entire sufficient cause of the event-effect, so M could not be
the relevant cause of B if X ∧M were not a sufficient condition of B.

If the notion of sufficient cause –, even when distinct from that of relevant
cause –, is presupposed by the latter, why does Menzies not take this into
account in the formulation of the causal closure principle, instead of rebutting
its usual formulation? Note that this question appears still more pertinent if we
consider what Menzies himself says –, that is, that the weakening of the centring
requirement is owing to the fact that the counterfactual P ◻→ Qmust “express the
condition that P would be sufficient in the circumstances for Q” (2015, p. 31). In
my opinion, the only reason thatMenzies could givewas that hewas only ready to
assume one form of causal relation: that expressed through relevance. The notion
of a cause is unique because that of sufficient condition (of course, without the
concept of production cause) is absorbed into the relevant cause. This is also why
Menzies reformulates the causal closure principle in terms of difference-making
cause, and, for this reason, rejects it. But this move is not justified, if the concept
of sufficient cause – albeit absorbed into the relevant cause – continues to be
presupposed.

2.2 Downwards exclusion principle: some open questions

From downwards exclusion principle one obtains that, if M causes B and the
causal relation between M and B is realisation-insensitive, then N is not cause
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of B. This result poses a number of problems for those who, like Menzies,
support nonreductive physicalism. Indeed, what does it mean that the causal
relation between M and B is realisation-insensitive? In List and Menzies (2009)
we can find the following definition: “Call the causal relation between M and
B realization-insensitive if B continues to be present even under some small
perturbations in the realization of M, or formally, if B is present in some
closest ¬N worlds that are M-worlds” (p. 496). A better definition is proposed
in Menzies (2015): “An event M that is actually realized by a physical event N is
realization-insensitive cause of another event P (with respect to N) iff a) M is a
difference-making cause of P; and b) some of the closest ¬N world in which M
holds are worlds in which P holds”, (p. 40).

Let us try to comprehend the second definition accurately. If we stick to its
formalmeaning, the definition reads thatM is realisation-insensitive with respect
to its actual realiser N, if a) B is present in all the closest M-worlds to the actual
world and b) in some of those worlds N is not present. Now one wonders, in
the M-worlds where B occurs, but realiser N is not present, is any other physical
realiser present, which, say, plays the role of the actual realiser N? On the basis of
the first definition, it seems that the answer is positive, since the authors speak
of “small perturbations in the realization of M”; however, the formal structure
of the definition does not exclude more daring kinds of interpretation. I believe
that the preferable interpretation depends on the concrete meaning one is willing
to give to the relation of closeness. Now, if the nonreductive physicalist who
shares Menzies’ causal notion wants to keep his feet firmly on physical terrain,
he cannot accept that the causal relation between M and B is insensitive with
regard to all the physical realisations taken collectively, meaning that M might
be a difference-making cause of B, regardless of any realiser. The nonreductive
physicalist can only accept that insensitivity regards each of the realisers taken
one by one, so that, if realiser Ni does not exist, the alternative physical realiser
Nj does exist. But if this is so, it means that the relevant cause of B is not M, but
the existence of a realiser ofM. Indicatingwith phyreal x ofM the relation of being
a physical realiser of M, it would, in fact, be true that:

1 ∃x (phyreal x of M) ◻→ B
2 ¬∃x (phyreal x of M) ◻→ ¬B
Following this result, what is the role ofM? It does not cease to be relevant, but the
analysis revealsM’s nature as a formal cause more than an efficient cause.M is a
formal cause because it is a structural component common to all its realisers. On
Menzies’ approach, moreover, it is uncertain whether M is endowed with causal
powers that are not inherited from its neural basis. The most that can be said,
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from within a physicalist framework, is that the cause of B is a certain Ni as
realiser of M.

2.3 A dualistic outcome? It seems not

At this point, one can see the convergence of the results obtained in the previous
two paragraphs. The common outcome is that the mental cause could not
have causal relevance if behaviour B were not produced by the specific realiser
that, in turn, plays the role of instantiating the cause. Just as the red is the
difference-making cause of Sophie’s pecking because the target’s concrete colour
causes the pigeon’s pecking as far as it is red (and not, for example, as far as it is
scarlet), so M is the difference-making cause of B because the cerebral event N is
the sufficient condition of B as far as it is a realiser of M (and not of some other
mental event).

However, in the examination of mental causation, we cannot stop at this
analogy. It is hardly possible not to be doubtful about the hypothesis that realiser
N derives from a mere concretisation of the mental event. Mental events are
not abstract entities, like red (as universal) with respect to this red. My current
thought that “now it is raining” is a concrete mental event, localised in time,
and attributable to a specific subject. But, then, that which is concrete cannot be
made even more concrete – or, that which is superdetermined cannot be further
determined. Therefore, the relation between M and N cannot be equated to that
between universal and concrete.

That themental cause is not related to its realiser as an abstract to a concrete,
but as something concrete to something else concrete, should make us think.
Strictly speaking, this asymmetry does not allow us to say that M causes B,
because the property that competes to N is not M, but that of being a realiser
of M. So, if one keeps supporting the thesis of the sufficient cause as concrete
production capacity, it should be said that the relevant cause (in counterfactual
sense) is notM, but being a realiser ofM: not this realiser, but any of its realisers.
Menzies, of course, would non accept this conclusion, since he would reject
the notion of sufficient causation. But if we take into account the reflexions we
have developed in paragraph 2.1, we cannot exempt ourselves from accepting
the virtuous compatibility of the two theories of causation. This leads us straight
towards a contributing conception of mental causation: the mental cause and
some of its physical realisers are essential, thus both relevant, components of
the sufficient cause of behaviour. In the subsequent pages, I want to discuss
this view in the light of the critical remarks that Menzies makes in (2015),
pp. 38–39.
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2.4 Breaking of causal closure and contributing theory
of causation

As we have alreadymentioned, in (2015), Menzies intends to show that the causal
closure principle, formulated in terms of relevant cause, is false. On his view,
it is false that “for every physical effect there is a physical difference-making
cause” (p. 37). It is false because the relevant cause is the mental, not its physical
realiser.

The rejection of this principlemay seeman element that could rupturemental
causation’s physicalist character. Indeed, some authors have wondered whether
the refusal of this principle is compatible with Menzies’s explicit endorsement
of physicalism, even when understood in a nonreductive way (Bermudez and
Cahen (2015), p. 54). As I have argued in 2.2., it seems tome that Menzies’ rebuttal
of causal closure is not incompatible with physicalism. There is no question
of incompatibility, if, although M’s relevance consists in its insensitivity to the
single realiser, this does not rule out its dependence on any realiser in each
of the M-worlds where B is present. In fact, the falsity of the revised closure
principle does not regard M’s being nevertheless physically realized. But, then,
the breaking of the causal closure – as hypothesised by Menzies – would not
be as significant as it might seem at first glance. Only if the mental cause were
independent from its realisers in a stronger way – so to be able to exert real causal
powers besides those inherited by its realisers – would the breaking of the causal
closure principle be real indeed. In that case – that is, if themental cause had real
causal powers that were not not inherited from its physical realisers – the mental
event should be understood as an essential contributing cause, along with the
(likewise essential) physical contributing cause, consisting in its actual realiser. In
this way, the relation between mental and corresponding neural event would not
be between cause and its realiser, but between two events that contribute together
to the realization of the effect.

The plausibility of this interpretation is confirmed by the fact that it is briefly
discussed and rejected by Menzies in paragraph 3 of (2015). According to him,
we cannot treat the realiser N the same way as the mental cause, since: “... the
mental event M, differently realized, would have produced the same effect. So in
the light of this, it is difficult to maintain that M and N should be assimilated
to the paradigm of contributing causes” (p. 39). However, this criticism is not
compelling. First of all, we can reply that M is an essential contributing cause
togetherwith any of the realisers that – although not essential if taken singularly –
are essential if taken disjunctively. Secondly, the contributing thesis is necessary
if one maintains that M is bearer of causal powers that are not inherited by N. To
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express the idea that the mental cause is endowed with its own causal powers,
the relation of closeness among worlds can be defined as follows. Let

Z ∧N ∧M⇒ B

express the relation of sufficient causation of B by N ∧ M in the context of the
remaining conditions Z. Let Z contain all that is relevant in order for B to occur
in virtue of N ∧ M – for example, let Z contain the set of the natural laws in
force in the actual world, but also the exclusion of M’s realisers that are actually
not active. Thus let the closeness relation among worlds be determined by Z.
Then

1 N ∧M ◻→ B (in all the closest N ∧M-worlds to the actual world B holds);
2 ¬(N ∧M) ◻→ ¬B (in all of the closest worlds to the actual world where N ∧M

does not occur, B does not hold).

This means that the difference-making cause of B in the actual world is a
composite cause, whose components N and M are both essential (on the notion
of composite cause, see Corradini (2015), p. 117).

3 Conclusions
Nonreductive physicalism – in any of its versions – needs a robust notion of
mental causation. This is necessary to distinguish it from forms of reductive
physicalism, like identity theory, that gives special importance to the physical
realisers of mental states. A decisive aspect of nonreductive physicalism is that
the mental cause should be – to a certain degree – independent from its physical
realisers. But when is a mental cause independent from its realisers? Menzies
explains that this is the case when it meets the requisite of relevance. However,
although Menzies’ theory of causal relevance is sound and accurately designed,
some of its aspects threaten its robustness.

First, the difference-making cause is more similar to a formal cause than
to an efficient one; moreover, its relevance lies on the notion of necessary
cause, rather than sufficient and production cause. Furthermore, the adoption of
Yablo’ s parallelism between determinable/determinate and mental/neural only
reinforces the mental cause’s flaw of being merely a formal cause.

But all of these aspects signify a larger problem that affects physicalism:
be it reductive or nonreductive, the independence it assures to mental cau-
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sation pertains, at most, acknowledgment of its relevance. It does not go far
enough to afford it autonomous causal powers that are not derived from their
physical realisers. As a consequence, not even Menzies – as a nonreductive
physicalist – has succeeded in finding the right place for mental causation within
physicalism.
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Abstract: Philosophy of mathematics of last fifty years has been dominated by
the metaontological stance according to which one fundamental problem of
the ontology of mathematical theories is the existence of mathematical objects
and the related epistemic access to them. But during the last ten years another
fecund and promising metaphysical framework has been developed: the key
idea (which goes back to Aristotle) is that the main problem of metaphysics is
about the relation of grounding among various levels of reality. Although this
approach should be relevant for almost all the metaphysical questions, however,
there are few attempts to extend these intuitions to the debate in philosophy
of mathematics. The aim of this, preliminary, work is analysing some possible
outcomes of the grounding approach in metaphysics of mathematics.1

1 Easy proof of existence of numbers
Let us take into exam the following inference:

(P) There exist prime numbers
(C) There exist numbers

It is an one-premise argument which appears to be perfectly valid: if the premise
(P) is true, it will be true the conclusion (C) too. Obviously, the problem is whether
the inference is also sound, namely, if the premise is true. However, it is a trivial
truth of naïve arithmetic that there exist numbers divisible just for 1 and for
itself. But then, the conclusion follows: there exist numbers. It would seem that
oceans of ink (since Plato) has been wasted: mathematics does not push in
front of a complicate ontological question, the existence of numbers is a trivial

1 This essay is dedicated to Sergio Galvan who, twenty years ago, showed me astonishing
universes and taught me a lot of things. But, above all, he taught me how to learn infinite
others. I would like to thank Alessandro Giordani and Ilaria Canavotto for their insightful
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Ground (Ascona, 2015); Andrea Sereni, Alfredo Tomasetta, Luca Zanetti and all attenders to the
Grounding Seminar (IUSS, Pavia 2015).
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consequence of a trivial truth. On the other hand, it does not seem reasonable to
admit that (P) is false:

(P) is a mathematical truism. It commands Moorean certainty, as being more credible than
any philosopher’s argument to the contrary. (Schaffer (2009), p. 357)

Paraphrasing David Lewis, how philosophers could be so intellectually arrogant
to put in doubts a so basilar truth based simply on the fact that a consequence
of (P) is (C), that there exist numbers? More specifically, it is difficult to think
that any argument which tries to show that (P) is false can have a degree of
rational warrant higher than naïve arithmetic. However, to accept (C) is not
philosophically innocuous: numbers are entities supposedly abstract, not located
in space and time; moreover, they lack causal powers. For these reasons, it
is so difficult to find a place for those exotic entities in a general naturalis-
tic framework. What is, in other terms, the place of mathematical objects in
nature?

There are, roughly, two families of strategies to face this problem: according
to first approach, the mathematical language has to be interpreted at face value.
Quoting a famous passage, the truth conditions of the sentence “There are at
least three large cities older than New York” are structurally identical to the truth
conditions of “There are at least three perfect numbers greater than 17”. According
to the other approach, the daily mathematical language has to be paraphrased in
such way that it can show its actual ontological commitment.

The classical position in philosophy of mathematics belonging to the first
group is the Platonism. Usually, the Platonist accepts with no many problems an
inference as those previously discussed: reality is not confined to a space-time
region. There exist other regions of being, inhabited by other entities. An almost
immediate consequence of this ontological point of view is the problem of
epistemic access to these entities: if knowledge is essentially connected to any
form of causal interaction and if, by definition, mathematical entities lack these
kinds of interactions, how can we know something about them? Even in this
case, very roughly, the realist philosopher can decide to enlarge his conception
of epistemic access (by introducing some form of intuition) or modify the terms of
the problem, trying to show that knowledge of mathematical entities is, actually,
mediated by the access to particular states of the world less troublesome from a
naturalistic point of view.

Who does not want to embrace the Platonist path, but at the same time
wants tomaintain the at face value interpretation ofmathematical sentences, has,
roughly, at disposal two strategies about the inference in exam:
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(i) Hecan try to show that the premise (P) aswell as the conclusion (C) are literally
false. It is not true that there exist prime numbers. And the reason is that
there exist no numbers. The entities postulated by mathematical theories are
fictional and, as a consequence, mathematics is literally false. It is a strongly
eliminative strategy (or skeptical, Fine (2001)) advocated by, for instance,
Hartry Field (Field (1980), Field (1989)).

(ii) Second strategy, which we can call physicalist, is rather neglected (cf.
Bigelow (1988)). It accepts the argument in its original form but it denies the
background metaphysical assumption, that is, the abstractness of numbers.
In other terms, the idea is trying to show that arithmetic is literally true and
perfectly acceptable in a naturalistic framework. Mathematical entities and
their properties are, according to this view, citizens of a naturalistic world, as
all physical entities.2

If one think that the theoretical costs of the optionswhichdonot alter the standard
semantics of the mathematical language are untenable, he can adopt a different
strategy and argue for a paraphrase of (P) and (C). The idea is that (P) does
not literally express a truth but it must be relativized, for instance, to a specific
theoretical framework. Let us assume, for the sake of simplicity, that when one
says that it is a basilar arithmetical truth that there exist prime numbers, actually,
he is stating that “it is provable, in arithmetic, that there exist prime numbers”.
So, our inference can be paraphrased, roughly, as:

(P*) In arithmetic, it is provable that there exist prime numbers
(C*) In arithmetic, it is provable that there exist numbers

The argument is valid and (very probably) sound too. It is trivially true that in
arithmetic it is provable that there exist prime numbers and, then, conclusion
follows. But, say the advocates of this strategy, from that it does not follow any
direct commitment to the metaphysical claim (C), that there exist numbers. Here
one is only committed to certain facts concerning arithmetic proofs. It is still
open, of course, the question about the connection between the truth that it is
provable that there are numbers and the fact that, actually, there are numbers.
In other terms, this is about a sort of bridge-principle which links, in some
way, facts concerning mathematical provability with truth tout court. Obviously,

2 This strategy could refer to Mill’s intuitions. Field too, in his fictionalist program, shows
how to lay down a physical theory (Newton’s physics) with no use of mathematical entities, by
substituting real numbers with spatio-temporal points, assumed as concrete entities.
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the anti-platonist can argue against the existence of these bridge-principles,
saving, then, the moorean trust in naïve arithmetic without buying the expensive
Platonist metaphysics.

As discussed in Schaffer (2009), Fine (2001), Correia andSchnieder (2012), the
reason of this kind of philosophical reactions has to be looked for in the general
conceptionofmetaphysical enterprise, dominating for about four decades: as said
before, the task of metaphysics is to determine what there is and the method to
lead this inquiry is to focus on the ontological commitment of our best theories
(cf. Schaffer (2009), p. 348). The outcome of this stance, which we call Quinean,3
will be a list, an inventory, and consequently, the image of the world will be flat,
lacking metaphysical structure. On the contrary, for the grounding theorists –
who inspire more or less explicitly to Aristotle – the aim of metaphysics is
to explain the relations of dependence and grounding among various levels of
reality, and, hence, to provide a structured image of the world. The consequences
for philosophy of mathematics are relevant and already Aristotle underlined
the point:

It is also true also to say, without qualification, that the objects of mathematics exist, and
with the character ascribed to them by mathematicians (Metaph. 1077b31-3)

It is obvious that numbers exist; little more than a triviality, given the almost
indubitable truth of arithmetic. This does not mean that numbers are not
interesting from the philosophical point of view: simply, what is interesting is not
their presence in an hypothetical universal catalogue but their fundamentality.
How do numbers exist? Is their existence independent or are they grounded in
more fundamental levels of reality which do not have an arithmetical nature? In
Aristotelian terms we could ask: are numbers substances?

The ontology of mathematics is dominated by the Quinean paradigm; for this
reason it is interesting to investigate how to apply the intuitions of grounding to
these problems. In this preliminary work I would try to apply some intuitions
about a metaphysical framework of grounding to problems of philosophy of
mathematics. In particular, I shall take into exam two options: to consider
arithmetical facts as fundamental and, conversely, to consider them as grounded
in other basilar facts. Before that, however, it is worthy to spend some words on
the very relation of grounding I am applying in the following. Basing on (Correia

3 That does not mean that all who share Quine’s general view about metaphysics agree with his
specific thesis; Peter van Inwagen and Stewart Shapiro are two important examples, respectively
for general metaphysics and philosophy of mathematics.
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and Schnieder (2012), Fine (2012)) let us define the grounding as the fundamental
metaphysical tie which links facts:

[A] ⊳ [B]
This can be read as: the fact that A grounds the fact that B; B because (or since)
A; B happens in virtue of A and so on. Let us assume that the grounding relation
is irreflexive (that is, it does not hold that [X] ⊳ [X]), asymmetrical, (that is, if
[A] ⊳ [B] then it is not that [B] ⊳ [A]), and transitive: [A] ⊳ [B] and [B] ⊳ [C],
then [A] ⊳ [C]. By embedding questions of philosophy of mathematics in this
grounding conceptual framework, immediately the following problem arises:
simple arithmetical facts as [2+3 = 5] seem to be the prototype of necessary facts,
and nevertheless “it seems that it’s apt for explanation in terms of facts about
numbers, mathematical structures, or the like. Indeed, we seem to be possessed
of the resources to ground some amongst our necessities.” (Bliss, Trogdon 2014)

In other terms, the intuition here at stake is that although the arithmetical
facts as very simple equivalences can be rightly considered necessary, neverthe-
less these facts seem to be dependent on more basic facts.4

Enough for the preliminaries; it is time to start our analysis. This paper
is essentially divided in two parts which concern, respectively, the position
according to which the arithmetical facts are fundamental and the position for
which they are not fundamental. As a matter of fact, the latter will be the most
rich in philosophical ideas.

2 Fundamental arithmetical facts
Mathematical Platonism advocates the existence and the fundamentality of
mathematical, say arithmetical, facts. Historically, it can be traced to Dedekind
themost comprehensive attempt to formally characterize the intuition concerning
facts about natural numbers. And there is room to claim that Dedekind’s axioma-
tization does catch the structure of natural numbers. That is described by axioms
in which just three primitive terms occur: the zero, the succession function and
the predicate “being a natural number”.

And Dedekind’s theorem confirms the success – at least from a certain point
of view – of the proposed axiomatization: any system of objects which satisfies

4 In the following, we do not take into account Fine’s idea according to which the metaphysical
necessity has to be grounded on the essences of things.
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the axioms of arithmetic is structurally identical. And in a realistic perspective,
the categoricity is surely a relevant result.

However, thing are not so plain. To guarantee the categoricity, the axioms
of arithmetic must be expressed in the second order predicate language. This
remarkable expressive increase makes the system computationally intractable:
second order logic is semantically incomplete.5 Mainly for that reason, the
foundational studies are progressively abandoned the theories expressed in
higher order logic. If, on the other hand, one adopts Peano first-order arithmetic,
which is semantically complete, he looses the categoricity: there are a (infinite)
plethora of different systems of objects which make true the axioms. They are the
famous non standard models of arithmetic.

Now, which consequences for the view according to which there are funda-
mental arithmetical facts? If one advocates this position, it is plausible to suppose
that there is just one class of genuine arithmetical facts; the other systems of
objects – which make true the axioms but are not isomorphic to the standard
model – should not be included among the fundamental arithmetical facts.

The reason for that is easy: in the non standard models there exist infinite
elements which possess an infinite number of predecessors. Now: either it is a
fundamental fact that there are non standard numbers or it is a fundamental fact
that there are not. Various reasons suggest to consider the standard model the
natural choice. If true, that suggests a possible answer to the question about the
identity of fundamental arithmetical facts: they are the series of standard natural
numbers, i.e. what Peano-Dedekind axioms characterize up to isomorphism.

3 Non fundamental arithmetical facts
If one does not want to state that there are fundamental arithmetical facts and, at
the same time, he aims to save the soundness of very common inferences as the
previous, it is natural to consider the existence of arithmetical facts as dependant
on other kinds of facts. The question of ontology of mathematics is, therefore,
stated as: (natural) numbers and their relations exist, of course, but they are not
the fundamental entities of thisworld. Let us see, as examples, three philosophies
of mathematics which can be interpreted in this light: the eliminative modal
structuralism, an example of formalism and the neologicism provide respectively

5 But Dedekind cannot know this; it has to wait about fifty years since the publication of Was
Sind und Was Sollen Zahlen so that Kurt Gödel discovered the incompleteness of second order
logic.
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the conceptual resources to reduce arithmetical facts to categories of more basilar
facts which concern (possible) structures, proofs, and relations among concepts.
In the following, we will roughly present the key issues of any proposal; then
we will discuss the possible relations between grounding and philosophy of
mathematics.

3.1 Structuralism

The key intuition of structuralism (cf. Reck Price, Hellman, Resnik, Shapiro,
Benacerraf) is roughly the following: mathematics – in this case, arithmetic –
does not talk about objects but about structures, namely complex entities in
which what is ontologically relevant are the relations among the items and not
the allegedly nature of them. Arithmetic, then, does not describe properties of
numbers, intended as individuals, but investigates the features of the structure of
natural numbers, inwhich the single numbers arenothingbut place-holders,with
no specific property. The number “three” has no essence but being the successor
of the successor of the successor of 0.

The eliminative modal version (settled by Hellman) provides a paraphrasing
procedure of the sentences of ordinary arithmetic. Let us see how it works.

First of all, let PA2 be the conjunction of the second order Peano Axioms. The
only non logical terms are: N, s, 0 which mean respectively “natural number”,
“successor”, and “zero”. For convenience, let us indicate the non logical terms
occurring in axioms as: PA2(0, s,N). Now, let us take into exam any sentence of
naïve arithmetic as 2+3 = 5. Formally: +(s(s(0)), s(s(s(0)))) = s(s(s(s(s(0))))). For
convenience, let us call this sentence: A(0, s,N). Now, we have that the ordinary
sentence of arithmetic 2+3 = 5 is equivalent to PA2(0, s,N)→ A(0, s,N). But we
can further generalize and substitute to every non logical term a suited variable. 0
will be a variable x, the successor function a functional variable f and, in the end,
the predicate of being a natural number, a predicate variable X. We have, so, the
propositional functions: PA2(x, f,X) and A(x, f,X). At this point, nothing prevent
us to universally quantify:

A↔∀x∀f∀X(PA2(x, f,X)→ A(x, f,X))

Let us notice some things. First of all, any sentence of arithmetic becomes the
universalization of a conditional:

Puremathematics is the class of all propositions of the form “p implies q”, where p and q are
propositions containing one or more variables, the same in two propositions, and neither p
nor q contains any constants except logical constants (Russell (1903), p. 3)
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Secondly, if the paraphrase is sound, there is no more reference to arithmetical
states of affairs; in other terms, A does not “actually” speak about numbers but
about structural relations among individuals, classes, and functions.

Instead, what we assert with an arithmetic statement A is now something about all objects,
all one-place functions, and all one-place predicates or sets; since themain logical operators
in A are unrestricted universal quantifiers. (Reck and Price (2000), p. 356)

When PA2(x, f,X) is true?When a certain system of objects satisfies the structural
properties indicated in the formula; specifically, PA2(x, f,X) is satisfied by any
discrete linear order with a first element and no last element, in which any two
elements are separated by a finite number of links. Such structures are normally
called ω-sequences. The nature of the items of the ω-sequences as well as of the
relations which are defined on them are totally irrelevant; if the succession of
Roman emperors had gone on forever, the sequence:

Augustus, Tiberius, Gaius, . . .

would have been another instance of this pattern. The insight of structuralism is
that mathematics – in this case arithmetic – does not talk about numbers and
relations among them but it refers to any ω-sequence. This form of structuralism
proposes to paraphrase the ordinary sentences of arithmetic (as 2 + 3 = 5)
by universal generalizations rather complex. There is the problem of falsity of
antecedent, that is, the problem of vacuity of conditional. Russell proposed to
assume a sort of axiom of infinity for the lowest type of objects. Less demanding
from an ontological point of view is Hellman’s modal twist:

A↔◻∀x∀f∀X(PA2(x, f,X)→ A(x, f,X))

Now, the vacuity can be avoided by a less strong assumption, that is:

⬦∃x∃f∃X(PA2(x, f,X)

This completes Hellman’s modal structuralism: any arithmetical sentence is,
actually, a universal conditional which is not about “numbers” or mathematical
objects but it is a structural logical relation provided that the existence of an
omega sequence is assumed as possible.
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3.2 Formalism

Structuralism is not the only proposal of reduction of mathematical truth.
According to formalist insight, the objects ofmathematics are syntactic patterns of
symbols which have not an independent meaning. Mathematical truth is nothing
but a form of provability within a suited formal theory. There are (at least) two
fundamental issues in formalist (and neo-formalist) program:

i To find a formal theory which grasps the most part of intuitively accepted
truths in a specified domain (e.g.: arithmetic, analysis, geometry,. . . )

ii To warrant the reliability of the chosen theory

Historically, the second point has been the attempt to provide a finitary proof of
consistencyof formalized theories. Gödel’s results ratified sharp limits to this task.
Concerning the first point, an interesting choice is first-order Peano arithmetic
with the omega-rule. The omega-rule is an inference with the following form:

P(0),P(1),P(2), . . . ,P(n), . . . ⊢ ∀nP(n)
If a certain property holds of 0, 1, and so on, for any natural number, it holds
for all natural numbers. The features of this theory are: PAω is not recursively
axiomatizable, and for that – one can argue – it is not a completely formal theory.
Moreover, PAω, if consistent, it is complete, i.e., any arithmetical sentence is
provable or refutable within it. For that reason, PAω is a good candidate to grasp
the intuitive idea of mathematical truth.6 So, the formalist paraphrase is as the
following:

T(A)↔ PAω ⊢ A
Therefore, if formalism is sound, we say that is not correct to speak about the
existence of numbers and their properties; on the contrary, the only “real things”
are determinate syntactical relations of provability.

6 This point is delicate. Of course, there is no agreement about the meaning of “formal” in
formalism. If formalism is intended in a quite narrow sense, any attempt to catch mathematical
truth by formalism is limited by Gödel’s results. So, we can relax these constraints and accept an
infinitary theory as Peano arithmetic plus omega-rule. If this choice is acceptable froma formalist
point of view is a crucial point but we do not take it into account here.
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3.3 Neo-Logicism

Probably, the most animated field of research in philosophy of mathematics
during the last three decades is the so-called neologicism (or neo-fregeanism).
The neo-logicist insight is close to Frege’s original intuition: mathematics is
nothing but a branch of logic; therefore, the truths of mathematics are partic-
ular kinds of logical truths. The core of the neo-logicist program is to prove
(second-order) Peano’s Axioms from a strongly enough basic logic plus some
principles usually called principles of abstraction. Among these, the most known
is Hume’s principle:

HP ∀F∀G(#F = #G↔ F ≈ G)
here, # is an operator which yields terms starting from concepts and whose
intended meaning is “the number of”. F and G are higher-order variables which
denote concepts whilst F ≈ G states that there is a 1-1 correspondence between
F and G. The right hand side of the biconditional has two prominent features:
it is expressible in pure logical terms (provided that one can quantify on higher
order variables) and it is epistemically prior on the left-hand side. (HP) proves
the existence of numbers: let us assume that #F = #F ↔ F ≈ F. Logically, we
have F ≈ F; so, #F = #F. But then, ∃x(x = #F), that is there are numbers. A good
part of the debate within neologicism takes into exam the ontological inflation
of the abstraction principles and their semantic status (for instance, are they
analytic?). For our purposes, the key concept is the following: the existence of
mathematical objects depends, in a certain way, on specific equivalence relations
among concepts.

4 Grounding arithmetical facts
These three examples do not complete, of course, the possible alternatives; but
here we are interested in a different question: various philosophies of mathemat-
ics suggest different kinds of fundamental facts which supposedly ground the
arithmetical facts. It is natural to think that there is just one right answer; therefore
all the weight is on the shoulders of the philosopher of mathematics; but how to
justify our choice? How to justify that, say, structuralism is the true story about
mathematics? There are (at least) two general strategies: according to the first one,
a particular option is justified by classical considerations as ontological economy,
explanatory power, acceptability from a naturalistic point of view and so on. In
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case at discussion, for instance, one could advocate the eliminative structuralism
being more sober from an ontological point of view; at the end of the day, all
arithmetical facts are grounded, according to eliminative structuralism, just on
the possibility of an omega-sequence of elements. And this could be considered a
fair prize for the truth of arithmetic.

Alternatively, we can decide to rely on considerations about the grounding
relations which would stem from that. For instance, let us assume, again, that we
are asking if the modal eliminative structuralism is true; well, we have to look at
the grounding relations between “structural” facts and arithmetical facts. Accord-
ing to our schema, indeed, we have that arithmetical facts would be grounded in
facts about possible structures. But, one could argue, it is not plausible that facts
about possible omega-sequences ground actual arithmetical facts. Let us notice
that the argumentative manoeuvres are different: in the first case, we inquiry
the right relation of grounding by means of general considerations which do not
entail the very grounding relation between structural and arithmetical facts. In
the second case, on the contrary, the true story about the arithmetical facts is told
by considerations about the grounding relations.

But what if we were unable to judge what grounding relation is the correct
grounding relation? In other terms, what if we cannot know whether the arith-
metical facts are grounded in facts about concepts or facts about structures or
whatever? This impossibility could be not simply an epistemic limitation; there
could be the case that there is no fact of the matter about the grounding relation
of mathematical facts and other kinds of more fundamental facts. We will get in a
situation like the following:

[...Structures...] ⊳ [A]
[...Proofs...] ⊳ [A]
[...Concepts...] ⊳ [A]
That is, the same arithmetical fact [A] (in our example, the fact that 2 + 3 = 5) is
grounded in very different systems of facts concerning, respectively, (possible)
structures, proofs, relations among concepts, and so on. This is a case of
over-determination of grounding and, even if it is not inconsistent, there is room
for a piece of scepticism.

It is natural to think these proposals cannot all be correct. If a fact about thenumbers obtains
in virtue of some fact about the provability of a sentence in PA, it is implausible that it should
also obtain in virtue of some quite different fact about all omega sequences (Rosen (2011),
p. 129)

How to react to this phenomenon of over-determination?
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– This is a case of illusory ground since there is a more fundamental fact, let us
call it [B], which is the ground of the facts about structures, proof, concepts
and so on. Therefore, the arithmetical fact is really grounded on [B], and the
case of over-determination is not problematic. Of course, it still remains a
problem: [A] has a plurality of immediate grounds; and one can legitimately
ask why [A] is mediately grounded by [. . . structures. . . ], [. . .proofs. . . ] and so
on rather than by [B] directly?

– Since there are different grounds, there are different arithmetical facts. This
is Rosen’s choice:

On this view, there is no such thing as the system of natural numbers. There are rather
the formalist numbers, facts about which are grounded in facts about provability in
PAω, the modal structuralist numbers, facts about which are grounded in facts about
all possible omega systems, and so on. (Rosen (2011), pp. 129–130)

So, our schema becomes:

[...Structures...] ⊳ [A∗]
[...Proofs...] ⊳ [A ∗∗]
[...Concepts...] ⊳ [A ∗∗∗]
Where [A∗], [A ∗ ∗], [A ∗ ∗∗], . . . are different arithmetical facts with different
grounding relations. The important point is, however, the following:

Since the differences between these systems of numbers make no mathematical difference,
the language and practice of mathematics will have had no occasion to distinguish them.
(Rosen (2011), p. 130).

Rosen’s idea is to embrace a sort of semantic indeterminateness of standard
arithmetic language. Since there are many kinds of arithmetical facts which
differentiate just by way in which they are grounded, “it makes no sense to speak
of the fact that 235 + 657 = 892”. As a matter of fact:

There are rather many equally qualified facts in the vicinity, each concerning numbers of
some determinate kind, each grounded in some determinate way in underlying facts (Rosen
(2011), p. 130)

Let us briefly discuss Rosen’s proposals. We will notice two things: first, if one
accepts a relation of truthmaking between facts and propositions, he must accept
cases of truthmaking over-determination; second,wewill followRosen’s intuition
by showing a possible development.
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5 Elaborating
Let us assume that there is a relation of truthmaking between facts and proposi-
tions. So we say that the proposition < A > is made true by (or in virtue of) the
fact [T]:

[T] 󳀀󳨐< A >
So, in our case, we have that the same true arithmetical proposition is made true
by different facts:

[A∗] 󳀀󳨐< 2+3 = 5 >
[A ∗∗] 󳀀󳨐< 2+3 = 5 >
Now, following Rosen, [A∗] and [A∗∗] are different facts, with different grounds.
However, they make true the same ordinary arithmetical sentence. The cases
of truth-making over-determination are not, as for grounding, incoherent but
doubtful. Usually, cases of two (or more) different truthmakers which make true
the same proposition are acceptable provided that they are in a way related, say,
by an inclusive relation. So, the fact that the ball is scarlet is a truthmaker for the
proposition <the ball is red>; but also the fact that the ball is red is a truthmaker
for the same proposition. If we assume that they are two different facts we get in a
case of over-determination. However, it is arguable that the two facts in question
are in a way connected: in particular, one (that the ball is scarlet) is included in a
more general fact (that the ball is red). But nothing similar happens in our case:
there is no relation of inclusion or the like between facts concerning (possible)
structures and facts concerning proofs or relations of equinumerosity among
concepts. A very dramatic solution could be to state that there are also different
mathematical truths but this is not only implausible but also in contradictionwith
the general assumption of the entire argument, that arithmetic is true. Despite this
phenomenon of truthmaking overgeneration, Rosen’s proposal is interesting, so
let me elaborate his point.

Let [X∗] be the class of all arithmetical structural facts (that is, facts which
are grounded in the possible structures); [Y∗] the class of arithmetical formalist
facts (facts grounded in the provability within a suited theory); [Z∗] the class of
arithmetical neo-logicist facts (facts grounded in some abstraction principle plus
logic) and so on. Let < Ar > be the set of all arithmetical truths. So we have:

[X∗] 󳀀󳨐< Ar >
[Y∗] 󳀀󳨐< Ar >
[Z∗] 󳀀󳨐< Ar >
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Itmeans that the different systems of arithmetical facts are arithmetically indistin-
guishable. Now, if we accept this, it is arguable that we are in presence of another
fact:

[Ar − Ind([X∗], [Y∗], [Z∗], . . .)]
Namely, the fact that the arithmetical facts grounded on possible structure,
proofs, abstraction principles, and so on, are identical from the arithmetical
point of view. This complex fact has other facts as components (and a complex
relation). Now, this fact should be in turn grounded since its components are not
primitive facts; but what is, now, the structure of grounding relations? It should
be something as the following:

[...structures...] ⊳ [X∗]
[...models...] ⊳ [Y∗] ⊳ [Ar − Ind([X∗], [Y∗], [Z∗], . . .)]
[...proofs...] ⊳ [Z∗]
Let us notice that in this case we have no phenomena of over-determination of
grounding: every fact about structures, proofs, concepts, respectively grounds
different arithmetical facts. These facts, together, ground the complex fact of
arithmetical not-distinguishability. By transitivity of grounding, we can say that
the fact of arithmetical indistinguishability is grounded by facts about structures,
proofs, concepts, and so on. So, we get the first conclusion: we save Rosen’s
intuition about the grounding of arithmetical facts. And, our guide for finding
the grounding relations is deeply connected with the concept of reduction of
arithmetical truths. But we are not forced to choose just one true reduction nor to
accept embarrassing cases of over-determination of grounding. There are many
arithmetical* facts, all arithmetically equivalent.

We are now in the position to state our conjecture: from the grounding
analysis of arithmetic we can say that the subject of arithmetic is constituted by
the common features of different facts. It is easy to notice a structuralist flavour in
this characterization; as Benacerraf puts, the subject of arithmetic is the common
structure shared by all the omega-sequences. However, in case we considered the
fact about the arithmetical indistinguishability concerns facts about structures
too. And one could consider it a sort of meta-structuralism.

Perhaps there is room for a further conjecture. The starting point is the follow-
ing reflection: [. . . Structures . . . ], [. . . Proofs . . . ],[. . .Concepts. . . ] are extremely
heterogeneous facts. How is it possible that they ground arithmetical facts which
exhibit structurally identical features? Here, I propose a parallel which could help
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us to refine our intuitions. Let us consider the well-known debate on ‘natural’ and
‘artificial’ consciousness:

[. . .Neurones. . . ] ⊳ [. . .Cerebral consciousness. . . ]
[. . .Microchips. . . ] ⊳ [. . .Artificial consciousness. . . ]
So, let us assume that these relations of grounding hold: the human con-
sciousness is grounded in some (very complex) facts about neurons while an
(hypothetical) artificial consciousness is grounded in some (very complex) facts
about microchips. Well, let us assume that the two kinds of consciousness are,
as a matter of fact, totally indistinguishable: we are in a context similar to
science-fiction AI. We then say that:

[. . .Neurones. . . ] ⊳ [. . . Cerebral consciousness. . . ]
󳶚

[. . .not-distinguishability of consciousness...]△
[. . . Microchips. . . ] ⊳ [. . .Artificial consciousness. . . ]

I think that this case is analogous to what presented in case of arithmetic.
But here (maybe in a stronger manner than in the previous one) we have the
strong feeling that the fact according to which speaking and interacting with a
robot or with a human is the same thing cannot be a brute contingence. Why the
artificial and natural consciousness are so similar, in fact, they are – some certain
respects – the same thing? My conjecture is that there is some deep metaphysical
fact which grounds the not distinguishability of the consciousness.

So, returning to our subject matter, there is some deep metaphysical fact
which grounds the fact that facts so different show common arithmetical features.
This fact is not the grounding of the fundamental facts about structures, proofs,
or concepts. That is, it is not a supergrounding basilar fact. The reason is that the
facts in question are too heterogeneous to have a common ground.

Of course, it is not easy to understand the nature of this fact; I can presume
that it has to do with the concept of discrete and ordinate succession. For this,
I will call it [Ω]. Therefore, the final schema of grounding should appear as the
following:

[...structures...[Ω]] ⊳ [X∗]
[...models...[Ω]] ⊳ [Y∗] ⊳ [Ar − Ind([X∗], [Y∗], [Z∗], . . .)]
[...proofs...[Ω]] ⊳ [Z∗]
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[Ω] is not a separate fact. If it were, we should admit that there exists, after all, a
fundamental arithmetical fact, against the general reductive assumption made
by Rosen. Of course, there is no problem, in principle, with this solution. But
we think that [Ω] is a component of very different facts concerning very different
kinds of entity. [Ω], so to speak, is the (arithmetical) form of all these facts (about
possible structures, proofs, and so on) and it is this form which grounds the fact
that, from an arithmetical point of view, all the particular arithmetical facts are
not distinguishable. One can object that the existence of arithmetical forms of this
kind seems precisely to be the sort of non-reducible fact about arithmetic. [Ω] has
the explicative function, that is, of providing a good reason of why so different
and heterogeneous facts share a common “arithmetic” feature. So, if we do not
want concede that this is a brute contingency we have to postulate a reason for
that. But we are not committed to the existence of a separate proto-arithmetic
fact [Ω]. [Ω] seems to be the mode in which are “made” facts about structures
or concepts of proofs. To emphasize that mode means to focus on their common
features, namely, on their arithmetical properties.

6 Conclusion
In this paper we tried to extend the metaphysical approach of grounding to
the philosophy of mathematics. As working hypothesis, we focused on the
fundamentality (if any) of arithmetical facts. A provisional conclusion seems to
be the following: both we consider the arithmetical facts as fundamental and
we consider them as grounded, it seems unavoidable the reference to a common
structure of all systems which exhibit arithmetical features. From this point
of view, one can claim that, by focusing on the grounding relations between
arithmetical facts, it is vindicated a form of meta-structuralism.
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Lorenzo Fossati
Risk vs Logic. Karl Barth and Heinrich
Scholz on Faith and Reason

Abstract: The paper analyzes a few questions of Heinrich Scholz on Karl Barth’s
dialectic theology: is it possible to view theology as a science? What is the
meaning of a «theological proposition»? Which minimal formal constraints of
meaningfulness shared with other sciences shall be observed in theological
research? These issues are the necessary prerequisites for any rational discourse,
hence for questions related to faith.

The paper aims at recalling the «classical» question of the scientific status of
theology. I will start by illustrating how theology has been shaped in the previous
century, taking the cue from Karl Barth and considering the origins and premises
of his position; then I will try to outline some possible connections with other
philosophical and theological conceptions (be them both in favor of or against)
and eventually I will focus on the debate he sparked off between Barth and
Heinrich Scholz, a less known and influential author, but nonetheless a very
important one in the history of epistemology and analytical philosophy, at least
(but not only) in the German-speaking field of research. The background of this
investigation is the general issue of how and whether it is possible to deal with a
theological question from a philosophical point of view. It is highly likely to argue
the assumptions I will provide, but maybe this is the right way for it to be.1

1 The starting point
It is not controversial that the theology of the twentieth century springs from the
crisis of the protestant liberal theology, whose history «ends» with Harnack and

1 One of the masters I am intellectually in debt is Sergio Galvan who taught me to use this
kind of sensibility in research. I express my deep gratitude and esteem to him and I cherish
fond memories of our discussions, including his annoyance at the most esoteric pages of some
contemporary theologians or philosophers: in complete frustration we often asked ourselves
«What does that mean?», echoing the most venerable «Was meinst du eigentlich?».
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Troeltsch: while looking for the kerygma, the essential core of Christianity, the
historic-critical method of the liberal theologians, in its various manifestations,
leads to an almost total destruction of the specificity of Christianity, i.e. its own
object of inquiry. Once deprived of any historical stratification and theoretical
Hellenization covering, such essential core should be the message of the Gospel:
«God and soul, the soul and its God» (Harnack (1900), p. 68); the Gospel therefore
does not announce the coming of the Son, but rather that of the kingdom of God.
In the attempt to find what is specific in the Christianity, the liberal theology that
makes use of other sciences’ method seems:
(a) First of all to make it hard to distinguish the Christian message from a too

secularized ethical imperative, no matter how elevated it is (Troeltsch (1998)
p. 146: Christianity has the highest relevance for us as the «strongest andmost
concentrated revelation of personalistic religious apprehension»);

(b) Secondly it ceases to have its own disciplinary specificity.

There is then a double reaction from dialectic theology in its «restoring» intent:
(a) Primarily it has to be restored andguaranteed the characteristic ofChristianity

of being irreducible, compared to the other ethical proposals and religions:
placing it at the first place in a «classification» that takes into account only
gradual and not qualitative differences cannot be enough;

(b) Secondly, theology should stand out from other sciences and human dis-
courses and set its own criteria of rigor and scientific validity, starting from its
own object: its method cannot be borrowed from other fields of knowledge.

From this double point of view, therefore, we can probably better get themeaning
of the «ganz Anderes», the «wholly Other» which Karl Barth stresses; from then
on Barth’s stance has become a miles stone for the theological thinking. Quoting
Hobsbawn’s expression, also the theological 20th century is short, starting in the
1922 with the second edition of Römerbrief (Barth (2010)); on the other hand the
influence of this book is not over yet, so we cannot talk about short century at
least for the following five years.

In Barth’s opinion the Word of God is the object of theology. Given the two
above mentioned aspects we can conclude that:
(a) As far as the specificity of Christian religion is concerned, compared to other

religions and moral systems, the judgment of God is the «no» to the world
and to human history, marked with sin and death, and it is (dialectically)
overcome by the «yes» of the Incarnation and Resurrection of Christ: for the
world, His Word is «crisis». Since it is not possible a way that begins with the
man and leads to God (on the contrary, it is only the Grace coming from Him
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that allows the human to establish a contact with Him), it is impossible to
include the Christianity in the human attempts to reach the absolute.

(b) As for the specificity of theology as a science, faith is interpreted inKierkegaard
terms as a leap, a risk, a void space for Grace: the discourse of theology,
therefore, should stick to its object (that is theWord of God, definitely spoken
by Christ) and the criterion of its scientific validity has to be identified in the
«objectivity» [Sachlichkeit], in its appropriateness to its object that has to be
deciphered, starting from the text, the Scripture.

Barth of course went further this dialectic stage and expressed his new ideas
in Kirchliche Dogmatik, his unfinished magnum opus, on which he has worked
from 1932 to death, in 1968. The work contains relevant differences compared
to Römerbrief, particularly the «otherness» between God and man is moderated.
However, as for the two questionswe brought up, Barth’s position gets radical and
does not tone down:
(a) On the one hand, the theology of the Word of God becomes rigorous, as a

Christology that states «the recognition of the humanity of God on the basis of
the recognition of His divinity»: God always remains «Other» than the world,
but He gets close to it in terms of alliance and reconciliation thanks to His
Word in Christ. This means that a connection between Christianity and other
–Menschliches, Allzumenschliches – approaches is still impossible.

(b) On the other, theology is nonetheless linked to the community of the Church
and «only in this way it becomes a possible science and gets its meaning»,
proving itself to be a science neither independent nor without presupposi-
tions.

At a closer look then the fundamental difference from the first assumption, i.e.
the convergence between God andman, does not lie in amitigation of the original
thesis (which is anyway present), but rather in a radicalization and a deeper
consequentiality with respect to the theological object, i.e. the nature of theWord,
in Christ addressed to the man.

2 Dualisms
Those philosophers who examine Barth’s position can find in it many typical
themes of the contemporary thinking, even though it is better to avoid a too
simplistic overlapping: Barth indeed does not want to be a philosopher (see Barth
(1960)) and criticizes the theology for being too close to the philosophy of religion

 EBSCOhost - printed on 2/12/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use



122 | Lorenzo Fossati

or culture (which is the mistake of liberal theology). Nonetheless there are some
theoretic premises that the philosopher can consider as being part of his field of
study (as Pannenberg (1973) did, but in the opposite direction, being a theologian
who deals with philosophical issues).

As paradoxically as it may sound I would like to introduce a parallelism;
Barth starts by doubting the historicist results and approaches to Christianity and
theology; but when he focuses on the irreducibility of the Word of God and puts
the theology against any other science in a radical dualism, it echoes the epis-
temic dualism, developed within the German historicism, between explanation
[Erklären] and understanding [Verstehen] (see Dilthey (1883)).

While the «sciences of nature» [Naturwissenschaften] try to «explain» the
physical world by connecting each single fact to the generality of laws and putting
them into a causal chain, the «human sciences» [Geisteswissenschaften] have
to «understanding» a human and not physical phenomenon, that it is then not
a simple «fact», but an «event». In the humanities – history first of all, then
psychology and philosophy – man is at the same time subject and object of the
analysis and since he cannot abstract himself, he is not able to follow an empirical
method of research.

Such epistemic dualism is clearly based on an ontological dualism – between
subject and object, man and world – a master of whom we can identify at the
origin of the so-called «modernity» in Descartes; this of course holds only for
a rough connection, since the references to Plato or to the Aristotelian physics,
claiming that a celestial body is an autonomous object of research compared to
the sublunary one, could be equally valid.

Here then it is possible to find an interesting hint, if we consider that one of
the crucial turning points of the 17th century «scientific revolution» lies exactly
in the refusal to treat in a different way the two kind of movements (even though
it is now acknowledged that even in the Middle Age some authors had followed
the same direction). A unified theory on the physical world, able to follow a
unifiedmethod,makes it necessary the affirmation of an epistemic and ontological
monism. I believe that the Diltheyan dualism is easier to understand if we do
not interpret it as the attempt of an unlikely pre-modern recovery, but as the
attempt to label as science an area that seems to be cut off from the criteria of
scientific rigor and accuracy or, at least, extremely downsized from a reductionist
standpoint.

However these methodological distinctions, that wanted to extend and not
to limit the scientific enterprise, are historically at the basis of the hermeneutical
thinking that criticizes the empirical science in general terms: it does not only
distinguish between explanation and understanding, but it subordinates the first
to the second, considering explanation a derived – or degenerated – kind of
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understanding. Let us consider the topic of «technology», the pure rechnendes
Denken that remains at the level of things and that Heidegger opposes to the
Andenken looking for the meaning of Being; moreover let us think about the
result (maybe less radical and explicit) generated by the critics of the Frankfurter
Schule to the instrumentelle Vernunft of the Enlightenment or the approach to the
problem in the fundamental work for the contemporary hermeneutics,Wahrheit
und Methode by Hans Georg Gadamer.

Therefore I think it is useful to compare Barth and Dilthey, at least in order
to understand the nature of their likewise «theoretical maneuver», since the two
of them share the need of a distinction and an irreducible autonomy to both the
object of their discipline and the method that characterizes such discipline: here
emerges the typical Kantian issue on the conditions of possibility of a (precise
form of) knowledge, hence the goal is not stricto sensu «anti-scientific», but on
the contrary aims at extending the field of the science, and not at reducing it.

And what about the possible convergence between Barth and hermeneutics
in terms of «subordination» – in one case of the explaining to the understanding,
in the other of the reason to the faith? I will try to illustrate it in the following
paragraph.

3 Theological legacies
If establishing a distinction between different spheres seems to be a defense
of the science, rather than from it, is nonetheless true that it is legitimate to
ask whether this idea is, in Karl Popper’s words, a strategy of immunization: a
theory cannot be put under criticism from «outside», because such criticism is
rejected and considered non pertinent. . . only because it could be fatal! Thus the
argumentation comes full circle because the claim that the criteria of scientific
validation of empirical sciences do not hold for human sciences would derive not
only from the ontological and gnoseological dualism we mentioned before, but
primarily by a Christian theological legacy that places the man at the centre of the
world. Karl Löwith (1949) comes to similar conclusions, when he affirms that the
philosophy of history is nothing else that the secularized version of eschatology,
whereas Ernst Topitsch (1958, 1990) goes further and does not connect the
spirit-nature dualism just to the theological or religious legacy of Christian reli-
gion, but even to themystery-magic legacy of Gnosticism, to the ecstatic-cathartic
representations of the mythical thinking and of the ancestral shamanism, of
which both metaphysics and Christianity would be epiphenomena.

Whatever it may be true, anthropocentrism, far from being the conclusion
of an ontological or metaphysical argumentation, would then be a missing
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assumption of the investigation, which would eventually compromise it. But
here we have to cope with the recurrent problem that shows up every time that
a reductionist request is brought on the table: those who support it deny that
there are differences that exclude it and blame the opponent for mystification or
dogmatism, while the opponent in his turn objects that it is the reductionist the
blind and simplistic between the two of them.

If this can hold for the methodological question (we can quote The Poverty
of Historicism by Karl R. Popper (1957), or the so-called Positivismusstreit of
the Sixties between Frankfurter Schule and critical rationalism, see Adorno and
et al. (1969)), as regards theology and theology as science, the issue crosses the
need of a lack of presuppositions [Voraussetzungslosigkeit] and of a lack of value
judgments that for Weber are required to the scientific enterprise (see Weber
(1919)). From this point of view it is clear that theology is exposed to a checkmate,
since it cannot meet none of the two requirements, thus placing itself ipso facto
outside the domain of science.

Popper [1963a] criticized the «manifestation theory of knowledge» that aims
at combining classical rationalism and empiricism in order to look for a founda-
tion of the knowledge, substituting the religious authority with the authority of
evidence, be it drawn from the reason or the empirical data. When Hans Albert
(1968) translated this concept he used the expression «Offenbarungsmodell der
Erkenntnis», thus making immediately evident the association (due basically to
the terminological identity)with the religious revelation, that in thisway becomes
the archetype of the «dogmatic» thinking, i.e. an alternative to the fallibilistic and
critical approach that instead proceeds by means of conjectures and refutations,
and that includes the scientific enterprise as its most mature accomplishment.
It’s William Warren Bartley III (1984) that claims the contraposition between
the critical rationalism and the «retreat to commitment»: critical rationalism
gives up committing to a justification or to a final grounding of the proposed
theories because the result of the task would be necessarily judged as dogmatic
and therefore irrational. Instead Popper’s methodology identifies the scientific
character in the falsifiability and, by extension, the rationality in the possibility
to be full-blooded criticized (including critical rationalism itself).

In this sense Barth becomes the privileged interlocutor for Bartley: the
theologian assumes the impossibility of «value-freedom» and the lack of pre-
suppositions in science, thus placing at the same level any human cognitive
enterprise and rejecting the accusation of dogmatism for the theology, because
any science can be charged by the same accusation. If it crossed someone’s mind
to reject the idea by opposing an value-free and «scientific» (!) conception of
science, Barth could just reply: «tu quoque» – all dogmatic, no dogmatic.
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For the critical rationalism then the only possible way is to renounce to an im-
possible need (the grounding) in favor of a practicable one (the critique); Barth’s
strategy instead goes on the opposite direction, towards a radical grounding,
starting from the irreducibility to its own object (the Word of God) and being
consequent and adherent to it. The criterion of the scientific status of theology has
to be identified from the reality or actuality of the subject-matter [Sachlichkeit] or
the adequacy of the discipline to its subject-matter [Sachhaltigkeit, Gegenstands-
gemäßeit] (see Barth (1932–1967): I/1, 7).

As I said before this conclusionmay seem, froma«rationalistic» point of view,
quite similar to the «disqualifying» result thehermeneutics comes towhen it deals
with the explaining issue: there explanation is subordinated to comprehension,
here reason is subordinated to faith.

4 Theology as a science
In this respect, if we want to outline a general framework of the positions we are
analyzing (provided that we cannot show all their pluralistic richness), there are
two basic models in the development of the self-comprehension of theology as a
science:
(a) First of all, the model that considers it a theoretical science, a speculative

science on God: sacra doctrina has to come from axioms taken from the
articles of faith, the dogmas. Among them, with reference to Analytica
posteriora (I, 9, 76a), for Thomas Aquinas theology is a «derived science»
that takes its own principles from a «science», i.e. the evident knowledge of
the articles of faith that God and the angels possess, which is assumed by
theology through lumen fidei and not thanks to lumen rationis.

(b) The second model traces back to Duns Scotus and considers theology
as a practical science: this model aims at restoring one of the first
self-comprehension of theology as sapientia (already present in Augustine)
that combines in itself both the theoretical and practical aspects, treating the
centrality of God as the Summum Bonum orienting the human affection and
action, rather than a simple object of knowledge. Cognitio practica, in Scotus’
system, is superior to any other speculative knowledge, since it is about the
knowledge of an end.

In the Scholastics we can find this alternative, that anyway – I would sug-
gest – obtains the right relevance only later on, if we consider it as the source
of the so-called «anthropologic turn» in theology of the 20th century: if in
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the context of Scholastics God was affirmed with reference to a theoretical
(cosmological-metaphysical) demonstration, in the newunderstanding the object
of theology is not only God, but the relationship between man and God. Therefore
we can see in the «anthropologic turn» not only a simple fallback or a strategy
of immunization, but the recovery of a different comprehension of theology
as a practical, non theoretical science (in the established terms). Such turn is
not dictated from the outside, but it grows up autonomously in the theological
grounding of the ontological and teleological structure of the human being in
relation to God.

On the subject of the scientific status of theology another relevant contrapo-
sition has become central in the context of Enlightenment:
(a) on the one hand we have natural theology and religions,
(b) on the other, positive (or revealed) theology and religions,

based on the model of the relation between natural and positive law. Lessing
(2001, §§ 9, 11) concludes that «all the positive and revealed religions are
consequently equally true and false» and that «the best positive or revealed
religion is the one containing few conventional additions to the natural religion
and limiting as little as possible the good effects of the natural religion». As
regards such conclusion one can object that the evaluation could be opposite,
if we consider the concept of natural religion as a mere abstraction that comes
from the positive religion which is not, then, arbitrary but the only real and deter-
mined. The same problem arises in the tension between the natural-metaphysical
(rational) theology and the positive-revealed (dogmatic) one: is it really possible
a natural-metaphysical theology without presuming somehow a dimension of
faith where to actually find the believer? The question triggers off the alternative
between theoretical andpractical theologywith reference to the questionwhether
it is possible a theological science, regardless of the subject that practices it and
regardless of the Church.

Barth answers with a clear and double «no»: there is no theology that is not
revealed, there is no theology that is speculative. Taking the faith of the Church
as the foundation of theology seems however a clear example of «immunization
of the critics», since only believers could practice such discipline, because they
accept certain presuppositions that the rational approach cannot investigate and
they start from their own self-comprehension based on those very premises. To
those who object to this auto-referential «seclusion» Barth would reply that even
the opponent would end up being in such context, since fideism is the necessary
situation for any kind of investigation, including the rational, scientific and critical
one. We also recall the widely debated expression by Karl Popper (1945) in The
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Open Society and its Enemieswhich places at the origin of the critical rationalism
an «irrational faith in the reason».

Whether it is «ecclesiastic» or not, theologywouldnot existwithout premises,
since no human cognitive enterprise is able to satisfy such need. I believe that this
is the point where the ideal connection between hermeneutics (in a wide sense)
and theology (in a modern «20th» sense) takes place.

5 Scholz’s requirements
Barth, as we have seen, is ready to include theology in the realm of sciences, at
least in the Kirchliche Dogmatik period, and this is made possible because the
scientific status is defined by two aspects: the adequacy of the discipline to its
object and the rejection of irrationality, an accusation that positive or «natural»
sciences can no longer address to theology nor to any other form of knowledge,
that is, to no one. It is useful to remind the more epistemological work by Barth,
Fides quaerens Intellectum [1931], where in the comparison with Anselm the
Augustinian topic of «credo ut intelligam» is restored; in this principle the priority
is given to the credere, but a role is assigned also to the intelligere. Including
theology into the sciences takes nonetheless its high toll and for many aspects
it is unacceptable for Barth’s opponent, who is supposed to criticize in the first
place Barth’s criterion of scientific validity.

This is the starting point of the objections that Heinrich Scholz makes in
his essay Wie ist eine evangelische Theologie als Wissenschaft möglich? [«How is
an evangelical theology possible as science»], appeared in 1931 on the journal
Zwischen den Zeiten, the «official» organ of dialectical theology. The adequacy
to the object [Sachlichkeit] in fact is not a question that we can figure out
(a) independently from a formal criterion that establishes what and how can be

defined as the object of a science;
(b) independently from the need of controllability of its propositions.

Such requirements make it possible a judgment on the objectivity and conse-
quently on the truth of a proposition, since, if they do not exist, a «dogmatic» –
non scientific – result is unavoidable: any discourse could claim to be scientific,
just in so far as it proves to be «faithful» to its own object which, however, is part
of the discourse itself: astronomy is thus equal to astrology.

The minimal and uncontested requirements [nichtumstrittene Mindest-
forderungen] that, according to Scholz, can constitute a better criterion for
labeling any discipline as a science have a pure formal character, that is, they
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leave out of consideration the specificity of the object, of the matter of a specific
science:
(1) The propositional postulate [Satzpostulat]: «Apart from questions and defini-

tions, in a science only propositions can appear, that is assertions that are
said to be true» (Scholz (1931), p. 19); in this postulate it is clearly implied
the principle of non contradiction, which de facto is theminimal condition of
possibility of a science, insofar as it seeks the true and avoids the false.

(2) The coherence postulate [Koherenzpostulat]: «We can speak of science only
if all the propositions that are part of a science can be formulated as
propositions of the objects of a certain specific domain» (ibi: p. 20); there
exist then a unified domain of objects that excludes all the non-pertinent
propositions.

(3) The controllability postulate [Kontrollierbarkeitspostulat]: the fact that the
affirmations of science have a demand of truth (according to 1) is not enough;
instead «we have to request such demand to be controlled in some manner»
(ibi: p. 21). Controllability however has to be interpreted in a more general
sense than the one proposed by the Neo-empiristic principle of verifiability,
which obviously cannot be applied to theology (andmaybe to anything else –
a crucial point Scholz was well aware of in 1931).

Scholz adds also two other «contestable» [umstrittene] requirements:
(4) The independence postulate [Unabhängigkeitspostulat] refers to the absence

of presuppositions in the propositions of a science. According to it «for the
propositions of a science it is not acceptable that they are said to come from
the pressure of some prejudice» (ibidem). Here Scholz goes back to Aristotle
in his Analytica posteriora (I) and does not claim that science could assume
anything; this would be absurd even for mathematics, that on the contrary
formulates its own requirements in such clear and precise [klar und pünktlich]
axioms that they make it the model of science; we are here talking about the
necessity that the judgment is based on an objective demonstration and not
on a subjective and uncontrolled prejudice.

(5) The concordance postulate [Konkordanzpostulat], according to which only
propositions that do not contradict the true propositions of other disciplines
can be part of a science; particularly, Scholz refers to «‘our’ physics and ‘our’
biology» (ibi: p. 23); the domain of knowledge has to be unified, as well as
the world that is the object of such knowledge, and both have to respect the
principle of non contradiction.

The two last postulates proposed by Scholz have a weaker grip in theology since
the discipline is in a particular critical situation. For example, regarding (5)
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the very concept of miracle contradicts by definition with what the empirical
science admits; for the (4) the personal adhesion to the contents of faith is not
only identifiable with a presupposition, which is structurally necessary but at
least objective, but with a subjective prejudice that determines and grounds the
demand for truth of the believed propositions.

Turning to postulate (4) and Aristotle Scholz mentions also the maximal
requirement that we can demand to science, based on the model of mathematics:
(6) The axiomatic character, on whose basis «propositions of science should

be able to split into two classes of propositions: the propositions where
being true is a presupposition belong to the first class; we call them the
principles [Grundsätze] oraxioms [Axiome]. Thepropositionswhere being true
is deducted [deduziert] or proved [beweisen] on the basis of the being true
presupposed by axioms belong to second class. We call these propositions
theorems [Lehrsätze oder Theoreme]» (ibi: p. 24). Dogmatic theology takes
hits propositions from the creed of the Church, and therefore could in a
certain way follow such postulate, but still the second aspect regarding
the demonstration of theorems, remains problematic: «Affirming is easy,
demonstrating is difficult, so difficult that today many philosophers do not
know any more how it is difficult. And how it is beautiful, because it is so
difficult» (ibi: p. 29).

Evaluating the minimal conditions and their implications, as well as the difficul-
ties in applying them to theology, Scholz’s conclusion appears to be non-positive:
how is it possible to control the truth of the fundamental theological propositions,
i.e. regarding God and Christ, the world and the man, as they appear in the
Gospel. . . without taking into account the Gospel itself? For Scholz it is indeed
impossible and «the only thingwe can try to do is to seek the foundation somehow
able to support [stützen] the faith in the truth of this propositions» (ibi: p. 48): the
domain of science then seems to exclude an Evangelic dogmatic which can only
exist as «a personal profession of faith, in its strictest meaning, excluded by any
mundane evidence» (ibidem).

6 Barth’s risk
A year later, in the first volume of Kirchliche Dogmatik [1932–1967, pp. 6ff],
Barth categorically rejects the conditions expressed by Scholz: «We cannot
grant anything without betraying theology, because any concession would mean
abandoning the theme of theology». He does not exclude only the coherence and
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controllability postulates, butmaintains that the principle of non contradiction is
only partially admissible.

Barth, however, does not want to share Scholz’s conclusion, according to
which it is unlikely for theology to be a science, since it is more similar to
a subjective profession of faith, independent from any mundane and objec-
tive evidence. Barth, on the contrary, claims for theology the scientific status
since
(a) it is a human strive towards truth,
(b) it pursuits a «specific object»,
(c) it follows «a way of knowing consequent per se» (ibidem).

But what is the meaning of the last statement (c) if we do not admit the principle
of non contradiction (see 1 in Scholz)? And how can we expect to «account for
everyone» without accepting the controllability postulate (see 3)?

Such questions seems to confirm Scholz’s doubts about a theology «that
interprets faith as a risk in such a radical way that one cannot predict anymore
how it is possible to reach any propositions starting from this risk [. . . ] that can be
said to be true» (1931, p. 39). It does not make sense to ask whether a risk is true
or false. . . In one word, it is a reductio in mysterium.

Barth too in 1930 referred to risk when he defined theology as «the science
of faith», being «free obedience» that represents «the risk of a highly uncertain
obedience» (p. 384); the theologian does not possess any evidence able to prove
the consistency of his enterprise, «but he feels the Word of God and meditates on
it» (ibi: p. 383). The point is philosophically crucial, since the possible scenario is
problematic.

First of all, if the fundament of theology is the risk that the theologian takes
on as a (human) subject, then the absolute priority of the object, i.e. God and His
Word, is brought into question, but this is the very opposite of the purpose from
Barth’s perspective.

Secondly if the starting point of theology is the positivity of Revelation,
but theology comes to the Word of God, taking its cue from the risk of faith
the theological consciousness takes on, then an irrational subjectivism lacking
any justifications and giving up any intersubjective and rational discourse takes
place – a intersubjective and rational discourse considered mundane and thus
able to corrupt its own «radically other» object. In short, did not we end up
parceling out the object into its infinite risks taken on by the believers towards
the object, «risking» (!) dissolving it?
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7 Second round
So far we can conclude that both for Scholz and Barth it is not possible to label
theology as science in its «ordinary» meaning, even though (and it is relevant) in
Barth’s opinion, theology is still a science and not a simple profession of faith,
since he reshapes the concept of science so that he can include the theology in
it (or maybe the other way round, since he defines such concept, starting from
theology, as Bartley maintains).

On the one hand, then, Scholz and Barth agree that theology has nothing to
dowith science, on the other, however, they do not agree on the general definition
of «science» and on the possibility to give theology a scientific status; moreover
Barth specifies that theology has nothing to do with the other sciences, even
though it is scientific itself: the first part of his conclusion is similar but the second
part is opposite, since it comes from other premises: this is a very important detail
since what matters here is how onemaintain a thesis, rather that the fact that it is
maintained.

In 1936 Scholz turns back to the question with Was ist unter einer theologis-
chen Aussage zu verstehen? [«What is to intend by theological proposition?»], i.e.
his contribution to the collection of papers for the 50th anniversary of Barth,
where his opposition is neater, or better, it is expressed in a more precise
manner.

The starting point for Scholz (1936, p. 25) is the following: given that it
is generally demanded for an proposition to be able to be true or false, in a
theological proposition it is the result of a determination [Festsetzung] (ibi: p. 27)
and an agreement [Verabredung] (ibi: p. 28).

On the contrary, for Barth a proposition is theological:
(a) if its object is God or it is referable to a proposition on God,
(b) but first and foremost if «this proposition is not a rational proposition»

(ibi: p. 33).

This last characteristic deserves some insights, because of its apparent paradoxi-
cal nature, and Scholz claims that he can conclude that for Barth a proposition is
«rational»
(c) «if it appears evident to the ‘natural’ man» (ibi: p. 34).

Since we have to establish what is the «natural man» in Barth’s terms, we have to
infer that
(d) «with natural man we mean a man to whom a theological proposition in

Barth’s sense does not appear evident» (ibidem).
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Scholz’s conclusion is in between ironic and desolate: «It is impossible to become
more circular than that». What leads to such circle is the Barthian refusal of the
proposed minimal requirements and his claim that the theological proposition
is a proposition on God but non rational. Furthermore, another «danger» is the
claim to explain the non rationality of theology by turning down the deductive
reasoning, since «nobody will forbid a theological proposition from having some
logical consequence [logischen Folgen]» (ibi: p. 36), at least because «any logic
consequence of a theological proposition will be a theological proposition itself»
(ibidem). The «risk» Barth talks about, i.e. the opposition to rationality and logic
(that is the expression of rationality par excellence), does not lead only to a
circular and paradoxical position, but turns into a «danger», because in Scholz’s
opinion «it is, in any case, dangerous to deny a thinking being the deduction
[Schließen]» (ibidem). Thiswouldmean to deny «themost essential instrumentwe
have as thinking beings to make clear for ourselves [um uns klar zu werden] what
we think. [. . . ] But if wewere created by God, thenwe have to conclude [schließen]
thatHewantedus tomakeuse of the intellectHe gaveus, so thatwedidnot appear
bad or unfaithful holders» (ibi: p. 37).

To sum up, Scholz rejects the idea that it is enough for a proposition to
be controllable or demonstrable in order to be considered as non theological:
he insists that it is impossible to renounce to logic, thus turning again to the
epistemicminimal requirements proposed before; at a deeper look they just make
explicit what is implicit in the very concept of assertion and proposition, that is
in the logic of propositions:
(1) every proposition always affirms something as true and consequently it

excludes the contradiction and non truth (according to the propositional
postulate);

(2) every proposition always refers to something else that is always distinct
from it; different propositions can then refer to the same object and can be
considered as a description of it, given that they respect the non contradiction
that makes them co-possible (according to the coherence postulate);

(3) every proposition reveals itself as an hypothesis on an object that can
correspond to it or not, make it true or false (according to the controllability
postulate).

From the very notion of propositionwe infer that a proposition ismeaningful only
if it shows somehow the condition under which it is true: this however does not
mean for Scholz a servile acceptance of verificationism, since this requirement
does not admit only an empirical controllability; Scholz shows in fact the needof a
kind of provability: even the theological propositions cannot avoid logic. If Scholz
maintains that «only through deduction we are generally led from obscurity to
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clearness [aus demDunklen ins Helle]» (ibidem) does thatmean that he rejects any
acceptation of theology? I would not say that. What it is left out is just a theology
that is exclusively positive or revealed.

We can hear in this regard an echo of Thomas’s saying gratia non tollit natura
sed perficit, which coincides with the condition of possibility of any human
approach to God, be it due to human action or to God’s Grace. Every science,
roughly speaking, being a human enterprise, has to be carried on in a humanway,
that is with logic, at least in asmuch as it claims to have a cognitive character: the
scientific status of theology is to be found – or not found – on this point.

8 «Aus dem Dunklen ins Helle»
In conclusion I think that the analysis of Scholz’s objections and the history of
this debate does not have just an «archeological» meaning. These objections may
seem very naïf, and generally speaking a theologian can always consider the
observation made by a philosopher or a logician reductive or non pertinent. I do
not think so; first of all theology, as anyother humancognitive enterprise, can take
advantage of objections, but above all because our researches have always aimed
at passing «from obscurity to clearness», as Scholz said. We have to admit tough
that not every philosopher believes such ideal of clearness to be fundamental
(there is a great deal of examples of that), therefore analyzing this debate could be
strictly useful from a philosophical and not only historical point of view, as a sort
of case study of the contrast between analytical philosophy and hermeneutics.

We would not discuss any theoretical problem if we did not believe that it is
important to look for the conditions of possibility of a «rational» solution (I would
rather say «scientific»), and this should also apply to theological problems. In the
Gospel, after all, it is said: «Sit autem sermo vester: “Est, est”, “Non, non”; quod
autem his abundantius est, a Malo est» (Mt 5;37).
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Aldo Frigerio
On the Ontology of Biological Species

Abstract: In this paper, two different ontological views concerning biological
species are analyzed. On the first view, species are universals instantiated by
the members of the species, while, according to the second view, species are
complex individuals formed by the members of the species. An alleged decisive
argument in favour of the second view is based on the fact that biological species
evolve, while abstract entities such as universals cannot change. It is shown that
this argument is far from decisive because other kinds of abstract entities such
languages are said to evolve. It is, then, illustrated in which sense we can say that
abstract entities, such as biological species and languages, change.

For a long time, biological species were considered universals or kinds of which
the organisms that are members of the species are instances. Indeed, the rela-
tionship between species and organisms belonging to the species was regarded
as the paradigm of the relations between universals and particulars. This view,
which dominated from Aristotle to Linneaus, was undermined by Evolutionism.
According to this theory, biological species have a temporal beginning and a
temporal end, and they evolve and change. Abstract entities, such as universals,
are usually conceived as timeless and, thus, as entities that havenobeginning and
no end and cannot undergo changes and transformations. Many scholars have
concluded that biological species cannot be kinds and that every attempt to deny
this was anti-Evolutionist and fixist because it would have implied the negation
of the thesis that species evolve1. A new ontological interpretation of species and
of the relations between species and members of species was necessary. Michael
Ghiselin and David Hull, among others, have claimed that species are complex
individuals and that organisms belonging to a species are parts of that species2.
Other examples of complex individuals to which species can be compared are
firms. Of course, individuals have a beginning and an end, and they can change
over time. Therefore, they seem to be the right ontological category into which to
place biological species.

1 For such a view, see Hull (1965a), Hull (1965b), and Sober (1980).
2 See, in particular, Ghiselin (1966), Ghiselin (1974), Hull (1976), Hull (1978), and Ghiselin (1987).
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The view that species are individuals suffers from problems that can hardly
be overcome3. However, it is not my aim here to review these problems. This essay
has another aim: the main reason for adopting the species-as-individuals view
is that species evolve; therefore, we need to investigate whether the evolution
of species is compatible with the thesis that species are kinds. We will see
that we actually speak of the beginning, extinction, and evolution of entities
different from biological species that are undoubtedly abstract. Therefore, the
evolution of species can hardly undermine their abstract status. Moreover, it will
be shown how timeless entities can have a temporal evolution. Timeless status
and evolution do not seem to be, in the first analysis, compatible: our aim is to
show that they actually are. Among the abstract entities usually seen as evolving,
in light of the philosophical education of the author of this essay, I will pay
particular attention to languages. Other examples, such as theories and cultures,
would be equally suitable for the aims of this paper.

This essay is structured as follows. In Section 1, some definitions of the
species-as-kinds view, which dominated from Plato to Linneaus, are analyzed.
In Section 2, the concepts of species as individuals and the reasons they were
adopted are examined. A decisive reason seems to be that species evolve, while
kinds are timeless entities. In Section 3, it is shown that biological species
and languages are similar in several aspects and that the fact that languages
evolve does not prevent us from considering them abstract entities. Therefore,
the argument based on the evolution of species in favor of the view that species
are individuals is much less strong than appears at first glance. In Section 4, it is
shown how it is possible that abstract entities, such as languages and biological
species, can have a beginning, an end, and an evolution. Section 5 contains some
concluding remarks.

1 Biological species as kinds
Traditionally, classification is regarded as an operation that assigns an individual
to a class on the basis of its properties and features. The basic idea is that
individuals have different properties and features, and they can be classified
by virtue of the properties they exhibit. Kinds are defined as properties or as
sets of properties and features that can be instantiated by individuals. It is
well-known that different philosophical positions concerning the ontological

3 For a review of such problems, cf. Stamos (2003).
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status of kinds are possible. Realist views conceive of kinds as entities that exist
autonomously, while, according to conceptualist views, kinds exist solely in our
minds. Intermediate positions are also possible. Here, no stance concerning the
ontological status of kinds will be taken. It will suffice to say that, whatever
their ontological status, they are usually considered abstract entities that are not
existing in space and time, unlike the individuals that instantiate them. In many
cases, the individual’s membership to a kind is defined on the ground of a set
of necessary and sufficient conditions that the individual must satisfy in order
to belong to the kind. The individual belongs to the kind only if it satisfies these
conditions. Such conditions are often identified with the possession of the set of
properties and features that identify the kind. The possession of each of these
properties is considered a necessary condition for belonging to the kind, while
the possession of all the properties is thought to be a sufficient condition for the
membership of the individual to the kind.

More flexible views of the membership to a kind are, however, possible.
Rather than a question of yes or no, the membership to a kind can be regarded
as a question of degree. In this case, to belong to a kind, the individual does not
need to possess every property that forms the kind but only a substantial number
of them. Here, I will not deal with the question of whether or not the membership
to a kind is a matter of degree. For the aims of this essay, the important thing is
that the membership to a kind is evaluated on the basis of a set of properties or
features that the individual must possess.

A biological organism’s membership of a species was interpreted along
these lines until the advent of Evolutionism. Biological species were thought of
as abstract kinds that were instantiated by biological organisms. This sort of
approach goes back, at the least, to Plato. The Latin word species is a translation
of the Greek word eidos, which means “idea” or “form”. It has the same root as
a Greek verb meaning “to see” and it is related to the idea of what is seen and of
visible form. Plato used this word, whichwas very common in everyday language,
to refer to a newmetaphysical category – that is, what would be called universalia
ante res in medieval times, to entities graspable only by themind, which coincide
with the abstract and immutable essences of perceivable things. Concrete and
perceivable individuals are onlymore or less successful copies of these immutable
Forms.

However, Plato did not apply his metaphysical view explicitly to biological
species. Aristotle was the first philosopher who focused his attention on the
biological realm. In Posterior Analytics and Metaphysics, Aristotle seems to
endorse a classification method based on the division: to grasp the essence of a
thing, oneneeds to understand its generic nature and the features that distinguish
that thing from the other things that share its generic nature. These features are
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the specific difference, and they coincide with the species to which the thing
belongs. However, in his biological writing, such as Parts of Animals, Aristotle
is far less clear regarding the method for classifying biological organisms. He
acknowledges that it is often difficult or impossible to draw clear borderlines
between the biological and nonbiological world and among the biological kinds
(Aristotle 588b4–13) and that some organisms can belong to a kind for certain
aspects and to another kind for other aspects (Aristotle 588b 13–17). Moreover,
his main aim in biological writing is likely to investigate the principles at the
basis of the distribution of characters or parts of animals. In particular, his
project is to study the necessary correlation among organs and which organs
are functionally necessary to the lives of certain kinds of organism4. Aristotle is
committed to the study of the relations among the parts of an organism, of their
function, and of the relations between organisms and the environments in which
they live.

Some interpreters see tension between Aristotle’s logical and metaphysical
writings on the one hand and his biological writings on the other hand. There
would be inconsistencies between the more aprioristic and essentialist approach
of the first group of writings and the more empirical and pragmatic approach of
the second group. Moreover, in Aristotle’s writings, eidos would have two senses
that are not completely compatible: the first sense is logical and conceptual and
is very close to Plato’s and Pythagoreans’ sense, expressing the form of objects;
the second sense is related to the dynamic and vital principle of the organization
of biological life5. Other interpreters do not see such a contrast between the two
groups of Aristotle’s writings and believe that the view expressed in the biological
writings is not in opposition to the view expressed in the logical andmetaphysical
writings6.

Whatever the solution to this dispute, Aristotle’s reception in the Middle
Ages and in the ensuing centuries was often mediated by Neoplatonic readings,
such as that of Porphyry’s Isagoge. Commentaries were focused on his logic
and metaphysical writings, and their aim was often to reconcile Aristotle with
Plato. Even after the discovery of the whole Aristotelian corpus in the XII century,
very little attention was devoted to the biological writings. By consequence, the
method of the division for genus and specific difference was inherited by the
Renaissance naturalists and was followed even after the scientific revolution.

4 For such an interpretation of Aristotle’s biological writings, see Wilkins (2009) and Richards
(2010).
5 On this contrast, see, in particular, Richards (2010).
6 Cf., for instance, Stamos (2003), pp. 107–111.
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Studies focused on the biological world began with medieval bestiaries and
herbariums and were carried on by the naturalists of the Renaissance period.
One of the most important figures was Andrea Cesalpino (1519–1603). In his De
plantis libri XVI and Questionum Peripateticarum, he refers explicitly to Aristotle
by arguing that knowledge consists of the predication andhierarchy of universals.
He is also Aristotelian in his method of classification, which is grounded on the
two fundamental functions of plants –nutritive and reproductive. It is on the basis
of the systems of organs and features, which have the nutritive and reproductive
functions, that Cesalpino divides plants. For the first time, he proposes a systemof
cataloguing that is not based on the alphabetical order of the names of plants, as
in the previous herbariums, but hierarchical, even though his hierarchy is limited
to species and genera and does not include kingdoms, classes, and orders, as in
Linneaus’ system7.

Cesalpino’s work was carried on by John Ray (1627–1705) and, above all,
by Linneaus (1707–1778). The latter employed sexual (“fructification”) characters
in plants for his botanical classifications, following the Aristotelian tradition,
according to which functional characters are central to taxonomies. Linneaus’
system is hierarchical and, therefore, follows Aristotle’s method of division. In
contrast to what is usually believed, the tradition I sketched out here is not fixist
and anti-evolutionist in principle. For instance, Linneaus allows for some new
biological species to arise through hybridization8. In his Systema Naturae (tenth
edition, 1758), Linneaus writes that God created an original individual or mating
pair for each genus and that new species were produced by intergeneric crosses.
In the thirteenth edition of 1770, he goes even further and hypothesizes that the
original breeding pairs or individuals might instead represent orders, rather than
genera, and that even new genera, as well as species, might be formed through
hybridization. However, Linneaus’ evolutionism has a twofold limit. In the first
place, he does not allow for methods of the formation of new species different
from hybridization. The possibility of mutation in the transmission of hereditary
characters had not yet been discovered, and it was thought that a couple of
organisms belonging to a species could not generate organisms belonging to
a different new species. In the second place, given the couples of individuals
belonging to each genus, the species that can arise by hybridization from these
couples are rigidly predetermined9.

7 Some information on the work of Cesalpino can be found in Larson (1968) andWilkins (2009),
pp. 56–57.
8 Cf. Larson (1968), p. 293 and Eriksson (1983), pp. 94–95.
9 Cf. Ereshefsky (2003), p. 207.
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Georges-Louis Buffon (1707–1778) was Linneaus’ main opponent. As regards
the classification of living beings, Buffon proposes a criterion that differs from
that of Linneaus, who was mainly interested in the characters of individuals.
He, instead, embraces the criterion of breeding with fertile progeny: an organism
belongs to the species S if it can mate with organisms that are members of S,
thereby producing a potential limitless progeny10. This criterion will be at the
basis of the biological concept of species advanced by Theodosius Dobzhansky
and Ernst Mayr in the XX century. By consequence, Buffon does not consider
a species a set of individuals linked together by relations of resemblance but a
genealogy of individuals – that is, historical successions held together by repro-
ductive relations11. This view was embraced by Diderot in the Encyclopédie and
adopted by Kant12. This emphasis on genealogy, rather than on the similarities
among the members of a certain species, paved the way for a new conception of
biological species no more regarded as abstract entities instantiated by singular
organisms but as historical and complex entities formed by genealogical chains
of organisms. The door was open for a different view of species not considered as
abstract entities but as individuals.

2 Species as individuals
The concept of species that Darwin held has been vigorously debated for a long
time13. Whatever it was, his evolutionary theory played a seminal role in the
changeof the ontological paradigmregardingbiological species in the secondhalf
of the XX century. By introducing the concepts of mutation and natural selection,
Darwin, in the first place, highlights new possibilities of evolution for species that
previous naturalists had not discovered, limiting them to hybridization. In the
second place, he makes it clear that evolution does not follow predictable lines
that can be inferred from existing individuals. In the third place, Darwin claims
that evolution canoccur gradually over very longperiods. The evolution of species
does not necessarily occur only instantaneously, as in the case of hybridization,
but also step by step and in a so slowway that cannot be appreciated by observing
only a few generations.

According to the naturalists previous to Darwin, the offspring of a couple
of organisms belonging to a species can diverge from their ancestors only by

10 Cf. Lovejoy (1968).
11 Cf. Sloan (1979).
12 Sloan (1979), pp. 127–128.
13 I will not attempt to outline even the general lines of this debate here; I refer to Stamos (2007).

 EBSCOhost - printed on 2/12/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use



Ontology of Species | 141

contingent characters. Essential and defining characters must remain the same
through generations. In Darwin’s evolutionary view, this is not true and, in
principle, every character of an organism can disappear in its offspring. This
raises serious troubles for the classification of individuals and for their division
into species. We can arrange organisms on a continuum along which they very
gradually modify their traits; therefore, it is difficult to divide them sharply and
to say unequivocally where the organisms belonging to a species finish and the
organisms belonging to another begin on the continuum. Division in species
seems to be arbitrary. Moreover, the distinction between defining and contingent
characters disappears: every character can change, and none is necessarily
constant through generations. When a character changes, it is difficult to decide
whether it was a defining character of the species, so that the species evolved
into another one, or whether it was contingent, so that the species remained the
same. Every character is not stable in principle; therefore, the distinction between
defining and contingent characters is difficult to trace.

How does one react to this state of affairs? A conventionalist perspective
can be assumed by affirming that every distinction we trace in the biological
world is arbitrary and conventional14. However, this is not the prevalent opinion
among biologists and philosophers of biology, who are usually inclined to state
the reality of species. Therefore, some alternative definitions of biological species
have been formulated, and these are not grounded on the characters possessed by
singular organisms – because they can vary in an almost limitless way – but on
the relations among the members of the same species. In particular, two kinds of
relations have been the focus: interbreeding relations and genealogical relations
among organisms. Interbreeding relations are at the basis of the biological
concept of species, which is probably, the most popular concept of biological
species between the 1930s and the 1970s. According to this concept, a species is a
group of individuals that can breed together and are reproductively isolated from
other organisms15. The gene flow among the members of the same species and
the lack of gene flow with the members of other species contribute to preserving
the genetic pool of the species as relatively constant by recombining the genes of
deviant individuals with those of conspecific individuals and by protecting the
genetic pool from the introgression of genes belonging to individuals of other
species. In this way, the most favorable combinations of genes are preserved,

14 For conventionalist views, see Vrana and Wheeler (1992) and Hendry (2000) and, for some
aspects, see also Hey (2001).
15 For the modern biological concept of species, see Dobzhansky (1935), Dobzhansky (1937),
Mayr (1942), Mayr (1949), and Mayr (1970).
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and the production of too great a number of disharmonious, incompatible gene
combinations is prevented.

In this framework, speciation is accounted for as the reproductive isolation
of a population of organisms from the other members of the species due, for
instance, to natural barriers. The consequence of suchphysical isolation turns out
to be the separate evolution of the isolated population, which does not recombine
its genetic pool with that of conspecific members. As a result of this independent
evolution, the genetic pool of the isolated population becomes deviant compared
to that of other members of the species, so that, even though the physical
barrier is removed, the two populations can no longer interbreed. Since they
became two reproductively isolated communities, they belong to two different
species.

The drawbacks of the biological species concept – not the least of which
is the fact that the concept can be applied only to sexual species, while most
existing species are uniparental – had the effect that since the 1970s, biologists are
mostly inclined to a different concept of species that is based not on interbreeding
relations but on descent relations. The basic idea is that an individual is amember
of the species S only if it descends from another individual of S. However, we
cannot speak of a unique phylogenetic concept of species but rather of a family
of concepts related to each other but having remarkable differences. In particular,
a phylogenetic concept is incomplete unless it is not specified when a speciation
episode occurs – that is, when an individual descending from amember of S is no
longer a member of S. If this is not specified, the definition has the consequence
that every descendant of an individual belonging to S is a member of S, and thus,
that speciation is impossible. In this framework, the arising of a new species can
be indicated either by the reproductive isolation of a community of individuals
from the other descending members16 or by the appearance of a new particular
trait that is not present in the ancestors of an individual17.

In some cases, phylogenetic concepts are based on more abstract criteria,
which are sometimes difficult to interpret, such as those of G. Simpson, who
defines a species as “a lineage (an ancestral-descendant sequence of populations)
evolving separately from others and with its own unitary evolutionary roles and

16 Therefore, this view mixes elements of the phylogenetic concept of species with elements of
the biological concept. Cf. Henning (2001).
17 These phylogenetic concepts, which are grounded on traits that are not present in the
ancestors of a population, mix elements of the phylogenetic concept of species with elements
of the classical morphological concept, as a set of individuals that instantiate some properties.
Cf. Rosen (1978), Eldredge and Cracraft (1980), and Nelson and Plamick (1981).
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tendencies”18, or those of E. Wiley, who defines a species as “a single lineage
of ancestor–descendant populations which maintains its identity from other
lineages and which has its own evolutionary tendencies and historical fate”19.
Of course, until there is clarification regarding what is intended by “evolutionary
tendencies” and “historical fate”, these definitions risk being generic and vague.

However that may be, everyone agrees that the phylogenetic criterion is not
a sufficient condition for the definition of species. All living organisms likely
descend from a unique organism or from a few organisms that lived some billions
of years ago, but they obviously do not belong to the same species. Moreover, it
can be questioned whether the phylogenetic criterion is a necessary condition for
belonging to a species. Suppose, for example, that an organism that has both
the genotype and the phenotype of lions is produced in a laboratory by means
of a very advanced technique. According to the phylogenetic criterion, such an
organism is not a lion because it does not descend from amember of the species of
lions even though this organism is completely indistinguishable from other lions
due to its features. This consequence is very difficult to accept.

However, it is not my aim to criticize the concepts of species grounded on the
relations among the organisms rather than on their characters. It will suffice to
say that these concepts have favored a new view of species that are not regarded
as abstract kinds instantiated by singular organisms but as complex individuals
composed of singular organisms. As Ghiselin (1974) argues, species are similar
to firms. To decide whether a person is employed to a certain firm, we do not
have to observe his or her features but the relations between him or her and the
other employees of that firm. By consequence, a firm is not a species instantiated
by its employees but a complex individual whose employees are parts linked by
some relations. Indeed, the unity of the firm is due to the relations among its
employees. The same can be said about species. In order to evaluate whether an
individual belongs to a biological species, its features are merely an indication.
What is decisive is the relations between the individual and the other members of
the species. It is, therefore, natural to consider a species as a complex individual
whose cohesion is determined by the relations among its members. Besides
firms, biological species can be compared to other complex individuals whose
unity is due to the relations among their members, such as musical bands or
families.

However, the biological and phylogenetic concepts of species do not
have the species-as-individuals view as a necessary consequence. In fact, the

18 Simpson (1961), p. 153.
19 Wiley (1981), p. 25.
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species-as-kinds views that have relations among members as a criterion of
membership are also possible20. To be sure, if the membership criterion is based
on the relation amongmembers, it ismore natural to consider species as complex
individuals whose cohesion is a result of the relations among the organisms that
are parts of the species21. Moreover, given the evolution and the change of species,
the difficulty in finding abstract traits that are common to every member of the
species has the consequence that relational criteria are generally preferred22.

If relational criteria suggest but do not imply the view of species as individu-
als, there is another argument that seems to have the species-as-individuals view
as a necessary consequence: species have a beginning in time, an evolution, and
an end. They seem to be temporal entities. Abstract entities are, instead, usually
conceived of as timeless. Therefore, biological species cannot be abstract entities
and, thus, cannot be kinds. Therefore, they are individuals23. The evolution of
species seems to be a decisive reason for considering them complex individuals
rather than kinds.

3 Evolving abstract entities
However convincing this argument may appear, it is not decisive. In fact, there
are plenty of entities, almost unanimously considered abstract, that evolve or,
at least, that we say evolve and change: languages, theories, cultures etc. These
entities appear to have a beginning in time, an evolution, and an end, exactly as
biological species. But this does not prevent us from considering them abstract.
Therefore, the evolution of biological species cannot be a decisive argument for
considering them individuals. Here, I will focus in particular on languages in

20 The basic idea is that the essential property for belonging to the kind K is to have a certain
relation with an individual i. For such views, see Okasha (2002) and LaPorte (2004).
21 For the thesis that the relational criteria formembership of a species naturally lead to the view
of species as individuals, cf. Crane (2004).
22 Some of the scholars who have expressed their preference for the thesis that species are
individuals areGhiselin (1966), Ghiselin (1974),Hull (1976),Hull (1978),Holsinger (1984), Ghiselin
(1987), and Coleman and Wiley (2001).
23 For these arguments, see Hull (1978), “[species] are the entities which evolve as a result of
selection at lower levels (. . . ) Species as the results of selection are necessarily lineages, not sets
of similar organisms” (p. 343). See also Stamos (2003): “on themodem view species are supposed
to evolve. But if a species is an abstraction, or if it has an abstraction as one of its properties, then
it cannot evolve” (p. 179) and Kunz (2012): “The idea of a biological class in the Aristotelian and
Linnaean sense as existing in reality and the reality of organisms being subject to evolution, in a
state of constant change with regard to their traits, are incompatible with each other” (p. 22).
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light of both my philosophical education and the fact that biological species and
languages show a relevant resemblance, which was noticed by Darwin himself:

The formation of different languages and of distinct species, and the proofs that both
have been developed through a gradual process, are curiously the same [. . . ] The frequent
presence of rudiments, both in languages and in species, is still more remarkable [. . . ]
Languages, like organic beings, can be classed in groups under groups; and they can be
classed either naturally according to descent, or artificially by other characters. Dominant
languages and dialects spread widely and lead to the extinction of other tongues [. . . ] The
same language never has two birth places. Distinct languages may be crossed or blended
together.We see variability in every tongue, and newwords are continually cropping up; but
as there is a limit to the powers of memory, single words, like whole languages, gradually
become extinct [. . . ] The survival or preservation of certain favoured words in the struggle
for existence is natural selection. Darwin (1871), pp. 59–61.

We can summarize these observations in the following points:
– Languages, as species, have a beginning in time, evolve, and become extinct.

In languages, new words are continuously introduced while others fall into
disuse. Two or more words of similar meaning can compete, and one of them
can replace the others. In the same way, members of a species compete with
each other, and some traits can survive to the detriment of others.

– By evolving, a language can result in another language (anagenesis) or can
divide itself into two ormore languages that descend from the first one (clado-
genesis). Therefore, the genealogical trees of languages can be reconstructed
as genealogical trees of species are reconstructed. Comparing the two kinds
of trees can be fruitful and can lead to a more precise reconstruction of them
both.24

– Languages have internal varieties (dialects). Similarly, species often have
varieties. It is sometimes difficult to establish whether two idioms are dialects
of the same language or two different languages, because criteria can conflict
with each other or be vague. In the same way, it is sometimes difficult to
establish whether two populations are two varieties of the same species or
two different species. In these cases, too, the criteria are often vague and in
conflict.

– In some spatial regions, two languages can be contiguous and shade one into
other. For instance, there can be dialects that are intermediate between two
languages or varieties that have some of the characters of each of the two
languages. Likewise, two species can crossbreed and generate varieties and
species that are intermediate between the two.

24 For these kinds of attempts, see Cavalli-Sforza (2000).
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– Linguists reconstruct the genealogy of languages by observing their features.
Biologists do the same by observing the features of the members of different
species.

– Synchronic anddiachronic conceptions of languages are possible. Diachronic
conceptions are committed to the study of the development of languages in
time and to the reconstruction of the genealogical relations among languages.
Instead, synchronic linguistics studies linguistic systems in certain temporal
sections and the relations among words at those times. Likewise, synchronic
and diachronic conceptions of species are possible. Diachronic conceptions
relate to the reconstruction of the slice of the genealogical tree in which a
species is located, while synchronic conceptions relate to the study of the
traits and the behavior of the members of a species at a certain time25

It is clear, however, that languages are complex abstract entities. A language is
constituted by two components: a) a systemof signs and b) a set of syntactic rules.
More in detail:
1. The first component of languages is a system of signs that have meaning

(the lexicon of a language). The term “system” is often used because there
is no language formed by a single sign and because the signs of language
(the words) have a number of relationships of different kinds: phonetic,
morphologic, grammatical, and semantic. Consider, for instance, the class of
words having the suffix -ful in English (useful, forgetful, hopeful, etc.) or the
class of common nouns. For the semantic relations, consider, for instance,
the synonyms, hypernyms, andhyponyms or thewords belonging to the same
semantic field.

2. Syntactic rules allow for themerging of words to createmore complex linguis-
tic structures, such as phrases, sentences, and texts. Not every combination
of words is permitted (consider, for example, the string: *the go with thus
because), and syntactic rules establish what combinations are allowed.

Linguistic signs are types that are instantiated in the tokens that the speakers use.
Whenwemake reference to the signs of a language, we clearlymean the types and
not the tokens. Therefore, signs are abstract entities, and the first component of
a language is constituted by a set of abstract entities. But the second component
is abstract, too, being constituted by a set of rules. By consequence, languages
are complex abstract entities that are formed by simpler abstract entities. Similar

25 For the diachronic and synchronic conceptions of species and for a comparison with the
analogous linguistic conceptions, see Stamos (2002).
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considerations could be extended to theories or cultures, but this issue will not
be discussed here.

4 How can abstract entities evolve?
The fact that languages – that is, abstract entities that have several similarities
to biological species – evolve is significant evidence that the argument against
the species-as-kinds view based on their evolution does not succeed. However,
a question is in order: how can timeless entities evolve and change? Timeless
entities should not be able to change, because change requires time (in fact, based
on some views, temporal entities are in time just because they change). How can
languages change if they are timeless entities? In this section, it will be shown in
which sense languages evolve and how this sense can be extended to biological
species.

The types included in the system of signs of a language during a certain
period are the types that are instantiated by the speakers of that language. In
more common terms, the words that constitute a language at a certain period of
time are the words that are employed by the speakers of that language in that
period. The words that are no longer used, the words that are used by other
linguistic communities, and the possible words that are not used by any linguistic
community are clearly not part of a certain language l at a certain time t. The
principle for including a sign in the sign system of l at t is to have a certain number
of instances (tokens) at t. Of course, the precise number of instances required
for inclusion in the sign system of l is vague. A word does not become a word
of a language l simply because a single speaker of l uses it, nor is it a word of l
even though a restricted number of speakers occasionally use it. Lexicographers
must decide case by case whether to include a word in the dictionary of l, and
their choices could be questionable and not be adopted by other lexicographers.
However, lexicographers usually agree on the words of l. For instance, the word
heat is certainly part of the lexical system of English, while the word Zeitschrift is
not and is apart of another lexical system.Except in extremecases, lexicographers
agree about the system of signs of a language l at t.

In parallel, the syntactic rules that are part of l at t are the rules that are
employed by the speakers of l at t – that is, the rules that are instantiated at
that time. In this case too, the number of instances necessary for inclusion in
the grammar of l is not completely clear. Again, the fact that a single speaker of l
uses a certain construction is not sufficient for including that construction in the
grammar of l. However, except in extreme cases, linguists usually agree about the
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rules that are part of l and can codify them in grammar books. To sum up, we
can say that a language l at a time t is constituted by the signs and the rules that
are instantiated by the speakers of l at t, leaving vague the required number of
instances.

Now, suppose that a certain word w of l falls into disuse and is no longer
employed by the speakers of l at time t’. The sign system of l will no longer
include w among its types. How does one react to this situation? There are two
possibilities: either by affirming that, because the system changed, the speakers
speak a language that differs from l or affirming that they still speak l even if l has
changed a little. In the first case, we have two languages: the language l spoken
at t and the language l’ spoken at t’. These languages differ just because w is
included in the sign system of l but not in the sign system of l’. In the second
case, we have a single language - l - that changes because it includes w in its sign
system at t but not at t’. We usually adopt the second way of considering this
matter: we would not think that English is no longer spoken because a single
word is no longer used. We would not say that a language that is different from
English is spoken. Rather, wewould say that English has changed a little bit—that
is, has evolved. Similarly, although more stable than the lexicon of a language,
syntactic rules can fall into disuse and be replaced by other rules. We would not
say, however, that a language is no longer spoken if a single grammar rule has
changed. Rather,wewould say that the grammar of a single languagehas changed
a little.

Notice, however, that both signs and grammar rules are abstract and timeless
objects that do not change over time. What changes is the fact that a word has
instances or that a rule is in use: the instances of words and rules are temporal,
but the words and rules are not. The fact that a language changes does not imply
that the types of that language change. The temporal aspect of a languagedoesnot
descend from the types that compose it but from the fact that the types included
in the sign and grammar systems of a language at a time t are those that have
instances at t. So, what changes are the tokens, not the types.

Suppose that the changes in the lexicon of a language increases, for example,
as a result of the introduction of many foreign words and the replacement of
many existing words. Moreover, suppose that the grammar of the language also
undergoes important modifications. Is the language still the same, or has a new
language arisen? There is a great deal of vagueness here and many intermediate
cases in which a decision is impossible. However, if the changes are substantial
and broad, then we would no longer say that it is still the same language with
modifications but rather that a new language has arisen.

Can these considerations be extended to biological species? I believe so.
Suppose that biological species are complex systems of abstract traits. On this
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view, a species is not defined by a single trait, but by a system of phenotypic
and genotypic traits26. The traits that should be included in the definition of a
species are the traits that are instantiated by the members of the species. If one or
more populations of organisms instantiate a set of traits S, then the species will
be constituted by S. As in the case of languages, there might be some problems
regarding which traits are included in S. For example, the absence of a trait in
only one member of a species is not sufficient for the exclusion of that trait from
the set S. A substantial number of members of the species must fail to have that
trait in order to exclude it from S. Conversely, if a trait is instantiated in a large
number ofmembers of the species, but not in everymember, it could be necessary
to introduce a name for a variety of organisms within the species—that is, the
organisms that possess this trait. They constitute a race or a subspecies. Similar
cases can be foundwith languages: if a considerable subset of speakers of l uses a
certain specific lexicon that is partly different from that used by the other speakers
of l, then linguists often identify a dialect within the language—that is, the dialect
spoken by the speakers using that specific lexicon. If the differences between the
organisms of S that exhibit these specific traits and the other members of S are
numerous and significant, one can questionwhether they are simply a racewithin
the species S and affirm that they belong to a different species. Likewise, if the
differences in the lexicon that is employed by a subset of the speakers of l and that
spoken by the other speakers of l are numerous and significant, one can question
whether these speakers simply speak a dialect of l and affirm that they actually
speak a language that is different from l. The question of whether two populations
are two varieties of the same species or two different species is a normal subject
of discussion among biologists.

Now, suppose that one of the traits s of S begins to fail to be instantiated in the
members of the species, for example, as a result of mutated climatic conditions
that tend to disfavor s. After a certain time, s is nomore exhibited by themembers
of the species. Also, in this case, two reactions are possible: we can say either that
a new species S’ has arisen and that S’ differs from S because of the lack of s or
that S has evolved and changed due to the fact that s is no longer included in the
set of traits S. In addition, in this case, we are inclined to react in the second way
if s is just one of several traits included in S. Notice that in this case, too, the traits
of S are abstract and timeless. What changes is the fact that some of these traits

26 For the sake of simplicity, I do not include relational traits, such as the possibility of
interbreeding with other individuals of the same species, or the genealogical relations with other
individuals of the same species. However, these relational characters can be included in the traits
that define a species, even if this necessarily causes some complications.
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are instantiated at different times. The organisms that instantiate the traits are
historical entities, but the traits are not.

In parallel to languages, when the traits of S change in a massive way, it
can be debated whether the evolved organisms belong to S or to a new species.
Biologists can and often do disagree on this point. However, it is plain that when
the changes are several and very significant, there is no doubt that S is extinct
and that the evolved individuals belong to a species that is different from S.
Both anagenesis and cladogenesis are allowed in this framework, as they occur
regularly in linguistic evolution.

5 Conclusion
The strongest argument in favour of the species-as-individuals view is based on
the fact that species have a temporal beginning, evolve, and become extinct,
while abstract entities are timeless. However, the comparison with languages
shows that this argument is much less strong than it might initially appear. In
fact, it is possible to affirm that biological species are historical even though they
are constituted by a set of abstract traits. As seen in Section 2, there are other
reasons, although none decisive, for adopting the species-as-individuals view,
grounded on the fact that for membership of a species, relational rather than
intrinsic criteria seem to be central. Arguments of this kind depend on the success
of the biological and phylogenetic definitions of species at the expense of the
phenotypic and genotypic definitions. In fact, arguments can be advanced that
aim to show that biological and phylogenetic definitions are insufficient and that
phenotypic and genotypic traits cannot be neglected in a definition of species.
However, this is a topic for another paper.
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Maria Carla Galavotti
Who is Afraid of Subjective Probability?

Abstract: Although accredited by a great many people across a wide range of
fields, the subjective interpretation of probability is still the target of skepticism
and bitter criticism. In particular, it is accused of being unable to account for the
objective meaning usually attached to probability in science, and of neglecting
evidence that could support such a meaning. Its adoption in other contexts, for
instance as applied in courts of justice, has also been opposed for similar reasons.
This paper argues that criticism of subjective probability is largely motivated
by misunderstanding. To support this claim, attention will be called to some
aspects of Bruno de Finetti’s viewpoint that have by and large been neglected by
the literature, and to Frank Plumpton Ramsey’s way of accounting for objective
probability within the subjective theory, which has not received much attention
either.

1 Subjectivism under attack
To start with, some criticismmoved against the subjective theory of probability by
authors working in different fields will be recalled.

In a “Technical report” on a sensitive subject, namely the chance of California
being hit by an earthquake before 2030, statisticians David Freedman and Philip
Stark criticize the subjective interpretation of probability – which they call
‘Bayesian’, following a currentlywidespread but disputable tendency because the
two categories do not overlap sincemanyBayesians do not embrace the subjective
theory. They write that “According to Bayesians, probability means degree of
belief. This is measured on a scale running from 0 to 1. An impossible event has
probability 0; the probability of an event that is sure to happen equals 1. Different
observers need not have the same beliefs, and differences among observers do not
imply that anyone is wrong. The Bayesian approach, despite its virtues, changes
the topic. For Bayesians, probability is a summary of an opinion, not something
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inherent in the system being studied. If the USGS says ‘there is chance 0.7 of at
least one earthquake with magnitude 6.7 or greater in the Bay Area between 2000
and 2030’, the USGS is merely reporting its corporate state of mind, and may
not be saying anything about tectonics and seismicity. More generally, it is not
clear why one observer should care about the opinion of another. The Bayesian
approach therefore seems to be inadequate for interpreting earthquake forecasts”
(Freedman and Stark (2003), pp. 2–3).1

In a recent publication, philosopher of science Guido Bacciagaluppi, com-
menting on Bruno de Finetti’s subjectivism writes: “Exchangeability is an as-
sumption about the structure of one’s subjective priors, and is entirely indepen-
dent of any objective behaviour of the system under consideration. [...] according
to de Finetti there is no sense in which our probability judgments are right or
wrong. As de Finetti very graphically expresses, PROBABILITY DOES NOT EXIST”
(Bacciagaluppi (2014), pp. 402–405).

Criminal law expert Mike Redmayne argues that the assessment of evidence
in court needs objective probability, and discards subjectivismbecause “when the
only constraint on rational belief is coherence among a belief set, it can seem that
anything goes” (Redmayne (2003), p. 276).

In a similar vein, philosopher of science Larry Laudan, author of a number
of writings on epistemological issues concerning criminal trials, objects to the
use of Bayes’ method in court on the grounds that prior probabilities are the
expression of the “subjective hunches” of those who fix them, which would lead
to the admission of arbitrary and discretional probability judgments.2

In a nutshell, the major charge moved against subjectivism is that it involves
probability evaluations that are merely the expression of personal beliefs, and
disregard empirical, ‘objective’ information.

2 Subjectivism vindicated3

As mentioned by Bacciagaluppi in the above quoted passage, Bruno de Finetti
maintained that “probability does not exist”, and wanted this sentence printed in

1 More criticism on the ‘Bayesian’ approach can be found in Freedman (1995).
2 See Laudan (2003) and Laudan (2006). More comments on the criticismmoved by Laudan and
other authors to the adoption of subjective probability in the context of criminal Lawcanbe found
in Galavotti (2012).
3 This section draws passages from Galavotti (2001) and Galavotti (2009).
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capital letters in the Preface to the English edition of his Theory of Probability.4
No doubt, his insistence upon this claim has been an obstacle to the diffusion
of the subjective interpretation among scientists and other people operating in
fields permeated with the conviction that probability should have an objective
meaning. Nevertheless, de Finetti’s claim should not be taken to mean that once
coherence is satisfied probability can take on any value, nor that for a subjectivist
there is noproblemof objectivity of probability evaluations. Surely this is notwhat
de Finetti meant. De Finetti rejected the “distortion” of “identifying objectivity
and objectivism” (de Finetti (1962b), p. 344), but did not deny that evaluations of
probability should obey a criterion of objectivity. In other words: de Finetti did
not reject objectivity, but objectivism, namely the idea that probability depends
entirely on some aspects of reality and is to be uniquely determined by evidence,
an idea that he deemed “a dangerous mirage”.

Albeit for de Finetti objective probability (uniquely determined, inherent
to facts) does not exist, there is a problem of objectivity, namely the problem
of devising “good probability appraisers”.5 In order to satisfy the criterion of
objectivity, probability should be evaluated taking into account all available
evidence, including frequencies and symmetries. That said, de Finetti thought
it would be a mistake to put these elements, which are useful ingredients
of the evaluation of probability and when available should not be ignored, at
the basis of its definition. This kind of mistake, in his opinion, is made by
the upholders of those interpretations that define probability only in terms of
frequency or symmetry, namely frequentism, logicismand the classical approach.
By contrast, de Finetti exhorts us not to conflate the definition of probability with
its evaluation.

Having distinguished between definition and evaluation, de Finetti clarifies
what he means by the evaluation of probability, emphasizing that the process
through which probability judgments are obtained is more complex than is
assumed by the other interpretations of probability, which define probability on
the basis of a unique criterion. The choice of one particular function (among
those satisfying coherence) is the result of a complex procedure, which in-
volves context-dependent, and therefore subjective elements. To be sure, every
evaluation of probability results from “the conjunction of both objective and
subjective elements at our disposal” (de Finetti, 1973, p. 366). Far from neglecting
objective information, de Finetti reaffirms that both “(1) the objective component,

4 See de Finetti (1970), English edition 1975.
5 The expression is borrowed from the Bayesian statistician I.J. Good. See Good (1965) and Good
et al. (1962).
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consisting of the evidence of known data and facts; and (2) the subjective
component, consisting of the opinion concerning unknown facts based on known
evidence” (de Finetti, 1974a, p. 7) are essential. To sum up, according to de Finetti
“subjectivism is one’s degree of belief in an outcome, based on an evaluation
making the best use of all the information available to him and his own skill. [...]
Subjectivists [...] believe that every evaluation of probability is based on available
information, including objective data” (de Finetti, 1974b, p. 16). These passages
should be sufficient to absolve de Finetti from the charge of overlooking objective
information, and to consider equally acceptable whatever evaluation is made.

Against the habit of relying on ready-made recipes applicable to all situations,
de Finetti calls attention to the context-dependent character of both the objective
and subjective components of probability evaluations. He invites us to consider
that factual evidence must be collected carefully and skillfully, and that its
exploitation depends onwhat elements are deemed relevant to the problemunder
consideration. Furthermore, the collection and exploitation of evidence depends
on a number of contextual considerations, often of economic nature, but of other
kinds as well. In an array of situations ranging from medical diagnosis and
prognosis to weather and economic forecasts, it is hard to deny that personal
experience and the degree of evaluator expertise play a crucial role on how to
weigh experiential data.

Although the intrinsic context sensitivity of probability evaluation makes the
idea of absolute objectivity nonsensical and, as pointed out by Bacciagaluppi,
probability judgments cannot be deemed right or wrong, for subjectivists it is
perfectly sensible to regard some evaluations as better than others. For that
purpose they adopt a number of methods devised for improving probability
evaluations, which are the object of a vast literature to which de Finetti has made
a substantial contribution, partly in collaboration with Leonard Jimmie Savage.
Their approach revolves around penalty methods like Brier’s rule, named after
the meteorologist who applied it to weather forecasts.6 Methods of this kind are
perfectly legitimate and justifiable within a subjectivist framework: as de Finetti
emphasized: “though maintaining the subjectivist idea that no fact can prove
or disprove belief, I find no difficulty in admitting that any form of comparison
between probability evaluations (of myself, of other people) and actual events
may be an element influencing my further judgment, of the same status as any
other kind of information” (de Finetti (1962a), p. 360).

The preceding considerations show that the claim that the subjective inter-
pretation of probability involves a commitment to an “anything goes” approach

6 For more on this see Dawid and Galavotti (2009).
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is ill-founded. That said, it is undeniable that de Finetti was more concerned with
the application of probability to everyday life, andmore specifically to those situa-
tions where only scant information is available, than to science. In the pragmatist
spirit that imbues his perspective, de Finetti regarded science as a continuation
of everyday life, and held that subjective probability is perfectly adequate for
both. His attitude is rooted in the result known as “de Finetti’s representation
theorem”, which shows that with increasing evidence the adoption of Bayes’ rule
in conjunction with exchangeability guarantees convergence between subjective
degrees of belief and observed frequencies.7

Although de Finetti did not explicitly address the issue of defining a notion
of “probability in science”, Frank Ramsey did, coming to an insightful way of
accommodating the notions of “chance” and “probability in physics” within the
subjective outlook.

3 Subjectivism and probability in science8

Ramsey’s insightful way of accounting for the notions of chance and probability
in physics deserves more attention than it has received in the literature. First of
all, Ramsey defines chance as degree of belief of a special kind. Its peculiarity
is that of being always referred to a system of beliefs rather than to the beliefs
entertained by single agents acting in certain situations. The systems to which
chance is referred peculiarly include laws and other statements describing the
behaviour of thephenomenaunder consideration, suchas correlation statements.
Taken in conjunction with the empirical knowledge possessed by the users of
the system, such laws entail degrees of belief representing chances, to which
the beliefs of different agents should approximate. This notion typically applies
to chance phenomena like games of chance, whose behaviour is described by
systems that cannot be modified by the addition of deterministic laws ruling the
occurrence and non-occurrence of a given phenomenon.

On the basis of this concept of chance, Ramsey defines probability in physics
as chance referred to a more complex system, namely a system making reference
to scientific theories. In otherwords, probabilities occurring in physics are derived
from physical theories, and can be taken as ultimate chances to mean that within

7 This result, which was found by de Finetti as early as 1928, is spelled out in some detail in
de Finetti (1937).
8 This section draws passages from Galavotti (1995) and Galavotti (1999).

 EBSCOhost - printed on 2/12/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use



156 | Maria Carla Galavotti

the theoretical framework in which they occur there is no way of replacing
them with deterministic laws. Chances derive their objective character from the
theories which are “taken as true” because they meet with the consensus of the
scientific community. In this connection it is worth noticing that within Ramsey’s
perspective the truth of theories is accounted for in pragmatic terms. In fact
Ramsey holds the view, whose paternity is usually ascribed to Charles Sanders
Peirce, that theorieswhich attain “universal assent” in the long run are eventually
accepted by the scientific community and taken as true. Along similar lines,
Ramsey characterizes a “true scientific system” with reference to a system to
which the opinions of everyone, grounded on experimental evidence, are bound
to converge.9

Plainly, Ramsey’s suggestion makes it is perfectly possible to accommodate
within the subjective outlook a notion of probability endowed with the objective
character that is required by science. The idea that probability as degree of belief
can be guided and even determined by scientific theories is fully compatible
with de Finetti’s viewpoint. As a matter of fact, the posthumous volume Filosofia
della probabilità contains some remarks admitting that probability distributions
belonging to scientific theories can be taken as “more solid grounds for subjective
opinions” (de Finetti (1995), English edition 2008, p. 63). As an example, de Finetti
mentions statistical mechanics. Such remarks provide evidence that late in his
life de Finetti entertained the idea that probabilities occurring in physics are
endowed with a peculiar robustness which derives from the theories describing
the behavior of the phenomena under consideration, and explain how their
probability should be fixed.10

4 Conclusion
The preceding remarks aimed to show that the subjective theory of probability
is quite different from the way in which it is often depicted. Far from representing
an anything goes approach, subjectivismhas the resources to distinguish between
good and badways of evaluating probability, and also to account for the notion of
objective probability. While such resources can already be found in the version of
subjectivism elaborated by its principal founders, namely Ramsey and de Finetti,

9 See Ramsey “Truth and Probability” and “Chance”, both written in 1928 and published in
Ramsey (1931), “General Propositions and Causality” also in Ramsey (1931) reprinted in Ramsey
(1990). See also Ramsey (1991), notes 67 and 69.
10 This is argued in some detail in Galavotti (2001) and Galavotti (2005).
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more recent work by a long list of authors such as Richard Jeffrey, Patrick Suppes,
Brian Skyrms, Wolfgang Spohn, to mention but a few, has more to offer to those
who are not afraid of the term “subjectivism”. Granted that the term is not a happy
one – Savage proposed substituting it with “personalism”, but his suggestion has
not won much acclaim – one should nonetheless take the trouble to understand
what it has to offer.
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Georg Gasser
Agent-causation and Its Place in Nature

1 Doubting Humeanism
Many contemporary philosophers are consciously or unconsciously in the grip of
a Humean conception of reality. A Humean conception of reality claims that all
that exists, ultimately speaking, are basic entities of a specific type (events, for
instance) and relations between them. Relations are described as causal if their
relata succeed temporally, are contiguous, are qualitatively similar and follow a
repetitive pattern. For causation to happen, no further ontological ingredient is
required. One can dub such a conception of reality “structuralist” and “actualist”:
“structuralist” because the world is ultimately a complex structure of spatiotem-
poral relations depending on the specific distribution of basic entities, and
“actualist” because the basic entities are locally instantiated qualities. Thus, to
use Hume’s famous phrase, all ultimate entities seem entirely loose and separate;
they seem conjoined but never connected.(Hume (1999), 7.2.26.) A prominent
contemporary defender of this view is David Lewis. According to him,

all there is to theworld is a vastmosaic of localmatters of particular fact, just one little thing
and then another. (Lewis (1999), ix)

Such a view is, ontologically speaking, extremely sparse, which makes it attrac-
tive. It complies with the researcher’s old dream to explain nature’s complexity
in strikingly simple terms. Take, for instance, the observation that salt dissolves
in water. Explaining this observation requires no recourse to a substance, salt,
or its special dispositional properties, such as being water-soluble; to account
for the electrostatic process of hydration, all that we need to do is point to the
physico-chemical properties of salt and water.

Among the major motives of philosophers defending a Humean account is
the worry that reference to dispositions and powers unnecessarily conflates our
ontology and, even worse, opens the door to entities which science cannot grasp.
The vase’s disposition to break appears invisible; all that we can see is that the
vase breaks when struck with a hammer. Salt’s disposition to dissolve in water
is unobservable; all that we can observe is that the grains of salt have dissolved
after being placed in a sufficient quantity of unsaturated water. Given that the
physico-chemical structures of the entities involved in these causal processes
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are open for empirical investigation, why suppose that there are dispositional
properties? Lewis emphasises this view when he writes that

[t]he point of defending Humean Supervenience is [. . . ] to resist philosophical arguments
that there are more things in heaven and earth than physics has dreamt of. (Lewis (1999),
p. 474)

Without going into further detail, it should be obvious that a conception of the
world as ultimately consisting of loose and separate entities in certain structural
relations to each other lacks the means for explaining why the world displays the
kind of regularity that we experience. For the central point of this view is to deny
that anything more robust can be said about the world’s holding together and
unfolding (rather) regularly over time. Thus Helen Beebee admits that

if there really is nothing in virtue of which the universe is regular, then the fundamental
nature of the universe is analogous to the story being played out on the computer screen:
it’s just a continuous fluke that things go on in the orderly way that they do. (Beebee (2006),
p. 527)

From theperspective of commonsense, this consequence of aHumeanconception
of reality seems hard to swallow. Galen Strawson, for instance, argues that part
of a realistic outlook of reality is the view that material objects inhabiting this
world can affect and modify each other in particular ways, and these events of
affecting and modifying are constitutive of what we take causation to be.1 The
common-sense view of causation involves an element of production: If a grain
of salt dissolves in water, then water molecules affect its crystalline grid in such
a way as to break up the stable structure of the grid. The interactions between
water molecules and molecules of the crystalline grid cause the grain to dissolve.
Similarly, if a porcelain vase is struck by a hammer, then the force exerted by the
hammer affects the fragile structure of the vase, thereby producing its breakage. If
this production viewof causation is taken seriously, then it apparently contradicts
a Humean notion of causation.2

Strawson’s critique goes a step farther. A mere production view of causation
could also be true in a disordered world where entities act on each other
arbitrarily. This, however, does not seem to be our world. Things appear to persist
through time and to interact with each other in a regular fashion. The obvious

1 Strawson (1987). A structurally similar argument can be found in Esfeld (2007).
2 Of course, things get evenworse once it comes to human action.Within aHumeanmetaphysics
one cannot admit that our experience as agents in the world as being veridical. A similar
argument as Strawson’s can also be found in Esfeld (2007).
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explanation for this observation, according to Strawson, is that thingspossess and
retain certain properties throughout their existence. In virtue of their respective
properties, some things can enter into certain forms of interaction with other
things. Thus, the assumption that things dispose of a determinate nature is a
more probable explanation of the persisting order of our world than the Humean
indication that the world’s regularity is all just a matter of luck.

Other arguments have recently been advanced which bolster Strawon’s
argument. Here is one: some philosophers of science point out that the ultimate
structure of reality does not preclude dispositional properties. Take electrons,
for instance: these don’t seem to have an inner structure, but they have spin,
negative charge, a magnetic moment, etc. These properties are best described as
dispositional; and if electrons indeed are structureless, then these dispositions
are not reducible to anything purely categorical. To put it another way, these
dispositions are fundamental and ungrounded.3 Although it is reasonable to
assume that the dispositions of a complex object ? such as the fragility of a vase or
the solubility of a grain of salt ? are based on the object’s microphysical structure,
it does not follow that all dispositions are reducible to non-dispositions. It follows
only that a rather large number of dispositions of macro-sized objects is reducible
to a small number of dispositions at the microphysical level. Molnar summarizes
the discussion as follows:

our best credentialled sources of empirical knowledge suggest, to a very high degree of
probability, that there are no properties that could serve as putative bases for the powers
of the fundamental constituents of the physical world. (Molnar (2006), p. 137)

Interestingly, David Lewis’s description of nature’s fundamental properties as

perfect natural intrinsic qualities, or of point sized-occupants of points. (Lewis (1999), p. 226)

seems to fit the characterization of an entity’s basic dispositions. If electrons
lack an inner structure, as current physical theories suggest, then an electron’s
spin or charge is a (i) fundamental, (ii) natural, and (iii) intrinsic quality which
(iv) is instantiated at a point. Nevertheless Lewis did not regard dispositions
as belonging to the fundamental level of reality. One major reason for Lewis’s
rejection of dispositions appears to be his worry that metaphysical speculation
might go far beyond what empirical evidence takes for granted; another is his
commitment to Hume’s denial of any necessary connections in nature. Both
reasons may be questioned, however: regarding the first reason, contemporary

3 See Mumford (2007) who speaks of the ungrounded argument.
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scientific theory speaks openly about the dispositional nature of ultimate phys-
ical particles. Regarding the second, Hume’s metaphysical and epistemological
reasons for denying any robust notion of causation are highly contestable. There
is thus ample room for debate whether we should follow a Humean account of
reality.

This bringsme to the second argument for Strawson’s view: contrary toHume,
we do directly experience causation. I consciously say “causation” instead of
“necessary connection” because I think that Hume was right to claim that we
are unable to see necessary connections. He was wrong, however, to identify
causation with a necessary connection. Briefly put, here is why4: In order for
a causal process to be truly necessary, cause A would have to produce the
effect B under any circumstances. Causal processes take time, however, and
it is therefore always conceivable that a causal process will at some point be
interrupted or suspended by an interfering factor so that the effect does not
come about. Examples of such cases are legion; nature’s causal order is after
all untidy.

If this argument is sound, then intermingling causation and necessity results
in a distorted view of causation. Anscombe calls attention to this point in her
observation that

[e]ffects derive from, arise out, come of, their causes. [. . . ] Now analysis in terms of necessity
or universality does not tell us of this derivedness of the effect; rather it forgets about
that. For the necessity will be that of laws of nature; through it we shall be able to derive
knowledge of the effect from knowledge of the cause, or vice versa, but that does not show
us the cause as source of the effect. (Anscombe (1993), pp. 91–92)

In other words, necessity’s natural home is the realm of logic; it is a relation
holding between propositions. Causation, by contrast, holds between states of
affairs in nature. Its modal force is less strong than necessity, for a cause can
produce a corresponding effect but its doing so (because of possible interferences)
is not necessary. Once the notion of necessity is separated from that of causation,
we are in a better position to understand what it might possibly mean to
experience causation.

Taking up the view that an entity can in virtue of its causal properties
enter a certain spectrum of interactions with other entities, we can conceive of
causation as amanifestation of the respective entities’ causal properties. An entity
disposes of a specific dispositional causal profile which is manifested if the right
circumstances obtain. We are aware of this dispositional nature in many cases:

4 In Mumford and Anjum (2011), chap. 3., this argument is developed and defended in detail.
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we know that we should not light a cigarette at a gas station, for gas has the
disposition of being flammable. We know that we should not touch an electric
cable, for electricity has the disposition of causing dangerous injuries. We know
that a porcelain vase is fragile, so to protect it when shipping it we pack it in
styrofoam.

But it is not just the way we think about these and similar situations which
indicates that we are familiar with the dispositional causal profile of many
material objects. A strong case can bemade for the claim thatwe even have amore
direct and immediate access to the world’s causal powers. Consider the following
cases: You are lost in thought and you bump into a door. You are lifting weights in
the gymand you feel how the dumbbells exert a pull on your arms. You experience
the effort it takes to cycle up on a mountain. I would like to argue that in these
examples we experience the causal powers of various objects firsthand — the
hardness of the door, the heaviness of the weights, and the gravity on the slope.
Material objects resist our planned activities in various ways, and we feel the
effort it takes to overcome this resistance. We even have a specific sensory system
for perceiving these causal influences and for responding appropriately to them:
proprioception, that is, one’s capacity to track one’s bodily location, posture and
limb position. A propioceptory system enables us to register the causal influences
imposed onus by amaterialworld and to respond to it accordingly. Liftingweights
requires a sense of the right amount of effort required: If you exercise too little
force, you will not succeed in lifting the weights; if you use too much, you will
throw the weights over your shoulder.

To sum up: The Humean claim that, metaphysically speaking, causation is
nothing more than a constant conjunction of one entity next to another is highly
disputable. I presented three arguments that create room for discussion. First, the
Humean view is disputable from the perspective of a realist outlook on reality: it
is hard to believe that the rather ordinary course of the world is just a matter of
luck and that no metaphysical explanation accounting for this order is available.
Second, the Humean view is disputable from the perspective of contemporary
science: current theories of particle physics seem to suggest that the nature of
the ultimate physical particles is dispositional rather than categorical. Third, it is
disputable from the perspective of our experience: an argument can bemade that
as embodied beings we do indeed experience causation, because the materiality
of the world often resists our actions and successful agency requires overcoming
this resistance of the material world. From these arguments a further argument,
appealing to coherence, may be constructed. Accepting a productive view of
causation enables us to connect our commonsense view of reality with scientific
findings about the world’s physicality and our experience as embodied agents
in a material world. Thus, a productive account of causation contributes to the
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groundwork for a coherent view of reality ranging from physical particles to our
“Lebenswelt”.

2 Events, powers and substances
The previous section contrasted two general metaphysical pictures of reality. It is
easy to see that a Humean account is inimical to the very concept of agent causa-
tion, for the Humean metaphysics lacks a robust causal understanding. It is thus
unsurprising that agent causation is viewed with skepticism by those in the grip
of Humean assumptions. In this paragraph I will undertake a closer examination
of event causation. I will argue that, once an appropriatemetaphysical framework
is admitted, a case for reducing event causation to agent causation can be made.

If we consider everyday speech, then we notice that event- and agent-causal
formulations are common. We say such things as “Gill caused the vase to break”
and “Gill’s hitting the vase caused it to break”, or “The bomb caused great
damage” and “The bomb’s going off caused great damage”. The grammatical
subject of the verb “to cause” can be an animate human being such as Gill, or an
inanimate artefact such as a bomb, or it can be a particular event. Since objects
and events belong to different ontological categories, one may infer that ordinary
parlance suggests the existence of two different forms of causation — causation
by an agent5 and causation by an event.

However, standard contemporary causal accounts suggest that agent-causation
can be analysed semantically in terms of event-causation, where the former is
ontologically reducible to the latter. The idea is as follows: A statement such as
“Agent A caused event e” can be analysed in terms of

I “There is an event xwhich involves agent A, and event x caused event e.” (Lowe
(2008), p. 123)

The causal structure of many causative verbs appears to support this analysis.
Consider verbs suchas “kill”, “put down”, “stop”, “rip”, etc.Wemay say that these
verbs convey the semantic meaning of a means-end-structure. “To kill” means to
cause the death of a living being by the use of somemeans to be further specified;
“to put down”means to change an object’s position by ceasing to hold it; “to stop”

5 Following the Latin term “agens” I use it in a rather liberal way tantamount to the concept of
substance. Thus, If I am talking about “agent causation” it comprises causation by all kinds of
substances. There is no need to restrict this concept to animated or even only rational beings.
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means to cause the cessation of an object’s motion by exercising some force upon
it, etc. In these cases a sentence of the structure “A killed B” can be translated
event-causally in “A’s killing caused B’s death”. However, this proposal is open to
a number of objections.

First, it is widely assumed that certain actions, so-called basic actions, defy
such an analysis. Basic actions are not brought about by the performing of some
other action but are instead performed directly by the agent. Take, for instance,
blinking. If I decide to blink immediately, then I blink immediately. The question
by what means I was able to blink does not seem to have any reasonable answer.
I may blink in order to do something else, such as giving you a previously agreed
sign in a poker game. Blinking can thus be a means toward a further end, but in
order to blink I don’t have to perform any other action first. Pointing out that my
eyelid muscles have to be moved properly for my blinking to take place is of no
help here. The proper movements of the relevant body parts is a necessary bodily
requirement for blinking, but because thesemovements are outside our conscious
control, they can hardly be described as further actions. On the contrary, it
seems more appropriate to say that, by blinking, we cause these movements as
physiological realizers of the blinking.

Second, it is a mistake to assume that a noun-phrase referring to an object
as the grammatical subject of the verb “to cause” is an elliptic form of speaking
because the standard logical form contains a noun-phrase referring to a particular
event.6 Consider the following sentences:
– “The bomb destroyed the bridge” vs. “The exploding bomb caused the

collapsing of the bridge”
– “John lighted a match” vs. “John’s lightening the match caused the igniting

of the match”
– “Gill opens a window” vs. “Gill’s moving her hand caused the opening of the

window”.

Notice that the sentences on the left are not syntactically incomplete. Translating
these sentences into an event-causal form as shown on the right does not imply
adding anything that was previously missing. Rather, such a translation requires
us to provide additional information about the events involved, for the verb “to
cause” does not as such convey the depth of meaning of the verbs in question
used in combination with the grammatical subject and object in the left-hand
sentences. Generally, we know that a bomb destroys a bridge by causing it to
collapse due to the force of the blast, and we are aware that lighting a match

6 For a detailed analysis of this and related issues see Keil (2000), pp. 373–383.
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amounts to striking it on a rough surface until it ignites. Without this (implicit)
knowledge, a desired translation in event-causal terms would fail. The last
example complicates matters further. Though we know that a human person has
to do something to open a window, it is hard to identify two events here. The
movement of the person’s hand simply consists in the opening of the window.
It is unreasonable to claim that the movement of the hand takes place first and
then this causes the opening of the window. A reformulation along the lines of
“the moving of the hand happened in such a way that the window opens in
the next instant” is at best a clumsy reformulation of the easily comprehensible
sentence that a person opens awindowwith her hand (instead of with the electric
window opener), but is never a more lucid explication of that sentence. It is more
than disputable that, if someone opens a window, a second event takes place
at all. Thus, sentences of the logical form on the left cannot automatically be
transformed into sentences of the logical form on the right. The assumption that
a sentence conveying causal information can be divided into two events, a prior
cause and a subsequent effect, is more than doubtful.

Third, consider the following proposals for translating a sentence such as “By
doing X, A causes Y” into “A’s X-ing caused Y’s F-ing” or “There is an event
x which is an action of A, and event x caused event y”. Although the proposed
translations “A’s X-ing caused Y’s F-ing” and “There is an event x which is an
action of A, and event x caused event y” appear structurally similar, there is a
crucial difference between them. If I refer to A’s X-ing, I remain neutral about A’s
role in causing an event. It could be that A’s X-ing happens automatically and so
cannot be brought under any intentional action description. If I say instead that
event x is an action of A’s, then A’s active role is explicitly confirmed because,
for an action to take place, an agent is required who or which brings it about.
It appears to be a clear category mistake to say that events can perform actions
too. If I am right, then these considerations seem to vindicate the claim that
agent-causation ought to be differentiated from event-causation. Consequently,
the thing for a proponent of event causation to do is find a way to define the
concept of action without any reference to an agent actively bringing it about.
“A’s action” has to be analysed in event-causal terms with no allusion to the
agent at all.

UweMeixner discusses twoways how thismight be achieved (Meixner (2001),
pp. 323–335). Either you aim to spell out a non-causal concept of agency, or you
aim to describe the events causing the action as not being causally related to the
agent herself. Consider the latter strategy first: if actions are events caused by
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other events which cannot be causally attributed to the agent herself, then one
must claim that

the causal role assigned to the agent by common sense reduces to, or supervenes on, causal
relations among events and states of affairs. (Velleman (2000), p. 130)

In other words, the level of action-involving events is transferred from an agential
or personal to a sub-agential or sub-personal level. Causal mechanisms within
the agent assume the role traditionally assigned to the agent herself. It is doubtful
whether such a strategy is of any real help. A mere transference from the agential
to the sub-agential level masks the original analysandum without providing any
positive account of it. If all we say is that actions are not directly attributable to the
agent herself but to action-initiatingmechanismswithin her, then, still, a positive
account must be given of the sense in which this mechanism initiates an action
rather than a mere reaction or reflex.

To put it another way: as long as actions are distinct kinds of events,
something has to account for this difference. The obvious suggestion within
a causal framework is to look at the causal history of actions for identifying
the special causal ingredient which turns a causally “ordinary” event into an
“action-event”. This suggestion entails a distinction of two different forms of
causation: events which cause action-events and events which cause ordinary
events. Although we might be in a position to spell out such a distinction in
event-causal terms only, a causal dichotomy still lurks which is structurally
parallel to the distinction between agent causation and event causation. In either
case a special concept of causation is invoked to explain the production of an
action.

This brings me to the second strategy. The obvious way to circumvent the
challenge of explicating the special causal history of actions is to abandon any
formof agent-causal jargonaltogether. Onemight say, for instance, that the causes
of an action are within the agent herself but that no special action-initiating
mechanisms are involved. To attribute an action to an agent, it suffices to show
that the causes are within the agent. Once this approach is pursued, however, it
is hard to see how the concept of action can be meaningfully attributed to the
analysandum at all. As Irving Thalberg remarked many years ago, on such a view
the agent mutates into a mere area where

‘his’ calculations, his perceptual judgments, his noble and base inclinations, perhaps his
repressed fantasies, his conscious terrors, rages, lusts and devotions, either contend or
blend with each other. Even if these proceedings do generate agitation of his limbs, why
should we say that this is “his act”. (Thalberg (1980), p. 220)
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If the criterion for attributing an action to an agent is only its spatial relation, then
we seem to be deprived of anymeans of identifying the specific difference between
an intentionally executed action and amere bodily motion happening to us. Both
events may be “of the agent” in terms of taking place within the agent. But now
we are left empty-handed. No proper concept of action is available anymore. The
very precondition for differentiating a person’s action from any other form of her
bodily motion — that something is up to the agent — is discarded.

These reflections show that the project of reducing agent causation to event
causation encounters severe problems on the semantic and ontological levels.
If agents perform any actions at all, it is likely that they perform basic actions,
and these are not explicable in terms of one event causing another. Rather, basic
actions seem to be performed by an agent directly, which amounts to an instance
of irreducible agent causation. The aim of reducing agent causation to something
non-agential results ultimately in the annihilation of the very notions of agent and
action. Agent causation is not reduced to but swallowed by event causation.

In light of these prospects, one might ask whether it might not be worthwhile
to try to change the direction of analysis. Instead of explaining agent causation in
terms of event causation, one could aim at explaining event causation in terms of
agent causation:

II Event x caused event e if and only if there was some agent A, some manner of
acting F, some agent B, and somemanner of acting G, such that x consists in
A’s F-ing and A by F-ing, caused e, which consisted in B’s G-ing.7

This analysis accords well with the outline of the dispositionalist metaphysics
drawn in the first paragraph. Consider oncemore the statement that the exploding
bomb causes the bridge to collapse. This statement is true because the following
conditions are met: (i) There is a substance, the bomb, and part of its specific
dispositional causal profile is to be explosive. (ii) Due to particular circumstances,
this disposition was manifested; and its manifestation consists in the bomb’s
exploding. (iii) There is another substance, the bridge, disposing of another
specific causal profile. This profile includes the disposition to collapse if a strong
enough force acts upon it. (iv) The exploding of the bomb is a strong enough force,
and therefore thebridge’s disposition to collapse ismanifested; thismanifestation
consists in the event of the bridge collapsing.

This account explains how the two events, the explosion of the bomb and
the collapse of the bridge, are causally connected. The connection results from

7 This is an expanded proposal of the one suggested in Lowe (2008), p. 136.
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substanceswhich, in virtue of their properties, dispose of a causal profilewhich is
manifested under certain conditions. Causation involves the exercise of different
substances which act with and against each other in a variety of ways.8 It is not
hard to see that this account gives an important role to events in causation but
at the same time implies that events themselves are causally impotent. Events do
not cause other events to happen; rather, events are the result of particularswhich
interact with each other by manifesting their respective causal dispositions. If a
particular’s dispositional causal profile were not be manifested, then no event
would be instantiated; the reason is that the underlying particular would be
inactive. Surprisingly, therefore, this view accords with the Humean claim that
events are causally impotent — although its reasons differ significantly from the
Humean’s. The Humean claim says that causal potency is not a basic feature of
reality, for all that there is, are loose and separate events which succeed each
other. The account defended here, by contrast, claims that events are causally
inert because they are parasitic upon the causal workings of particulars.

Apart from thewidespread acceptance of a broadlyHumean framework, there
is a further explanation for the predominance of event causal accounts which is
suggested by Lowe.9 He thinks that we tend to resort to this account when we
are at least partially ignorant about the real powers at work in a given case of
causation. We can claim that event x caused event e even though we are not in a
position to explain in detail why this is so because we are unable to identify the
specific substances acting upon each other. Events are epistemically more easily
accessible than the underlying powerful substances, and this epistemic accessi-
bility mistakenly involves the inclination to ascribe ontological primacy to events
as well as substances. Mumford makes a similar observation when he writes that

we need to distinguish a factive level of what happens in epistemically easy events from a
transfactual level of powers that combine to produce those events. (Mumford (2009), p. 108)

The account proposed here holds that agent causation enjoys ontological and
conceptual primacy, and it explains how events factor into this picture. Due to
lack of space I leave more detailed explications for another occasion. My point
is simply that a Humean causal account is by no means the only game in town.
On the contrary, there are strong reasons favoring the alternative account of agent
causation. I conclude this section by examining three influential objections put
forward against it.

8 A detailed explication of this view – although in pandispositionalist terms — is found in
Mumford (2009).
9 Lowe (2008), pp. 138–139.
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2.1 The timing objection

The timing objection against agent causation says:

How could an event possibly be determined to happen at a certain date if its total cause
contained no factor towhich the notion of date has any application? Andhow can the notion
of date have any application to anything that is not an event? (Broad (1952), p. 215)

The kernel of this objection is that reference to a cause should explain why its
effect occurredat a given timeandnot earlier or later. Pointing to a substanceholus
bolusdoes not provide such an explanation because a substance exists before and
presumably also after the explanandum.What appears to be correct about Broad’s
objection is the claim that an entity’s causing something results in that some-
thing’s happening. A change calls for an answer to the question of what exactly
effectuated this change now. However, as we have seen, this observation does not
imply that agent causation ought to be substituted by event causation. It is one
thing to claim that a particular can only cause bymanifesting its dispositions and
quite another thing to claim that events themselves are causes. If a substance
disposes of a particular causal profile, then an event consists of a substance’s
causing something due to this profile. Thus, the event depends upon the sub-
stance’s being causally active in oneway or another. Consequently, events are not
the right ontological category by which to account for direct causation, because
it does not seem proper to say that events dispose of causal powers. This is not to
deny that events take place when causation takes place. Rather, it is to deny that
events themselves are the causal source bringing about the effect to be explained.

Note that this explication does not claim that a substance as such is the cause
of a determinate effect. This claim would indeed be mysterious, because it is hard
to see how a substance would manage to bring about an effect without acting in
one way or another. Thus, a proponent of agent causation should not say that
causation consists in a simple alteration of the event-causal model by replacing
the event as cause with the agent as cause. The idea is not that one causal
relatum is substituted with another.10 Rather, the claim is that causation is less
a relation between two separated entities than a manifestation of a substance’s
causal profile acting upon another substance (or substances). Causation is not
a relation tying together two relata together nomologically, probabilistically or
counterfactually; rather, it is the transition of a substance’s causal state from

10 Clarke (2003), p. 186, makes such a suggestion when he writes that “when an agent causes
an event, the relation in which the agent stands to that event is the very same one in which one
event stands to another when the first causes the second.”
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potency to actuality, a transition which entails a range of effects upon other
substances. These effects in turn manifest determinate effects depending on their
specific causal profile.11

2.2 The objection of non-analysability

The objection of non-analysability claims that the agent’s directly causing some-
thing remains mysterious because there is no way to analyse the causal relation
between the agent and his or her causing. The fact that event causation allows
for such an analysis whereas agent causation does not appears to be a crucial
objection to the latter. However, we must bear in mind that the concept of the
non-analysability is built into the very concept of agent causation. The notion of
“directly causing” excludes any internal causal structure and therefore no further
causal analysis is available.

Take the example of a radium-atom decaying spontaneously. If we under-
stand that the atom’s nature is to decay spontaneously and unpredictably, it is
no longer relevant to ask why the nucleus decays now and not at some other
moment. Any attempt to divide the event of decaying into two separate further
events, one being the cause and the other the consecutive effect, is doomed to
fail. All that can be said is that a spontaneous decay is the cause of several
effects, such as the emitting of alpha particles and gamma rays. Similarly, one
can claim that a spontaneous action is directly caused by an agent itself. Any
further causal analysis will lead us down the wrong path, because we will begin
to look for items inside the agent to give an action-explanation. This is not to
ignore themajor differences between an atomdecaying suddenly, the neighbour’s
cat moving spontaneously and my directly bringing about the intention to finish
this paper. However, what all these cases have in common is the same basic
ontological structure of causation: in each case an entity is endowedwith specific
causal powers which enable it to produce a range of effects directly, so that no
external causal trigger is required in the first place.

2.3 The impossibility objection

One may accept the answers to the two previous objections but advance this one
instead:Althoughagent causation as such seems theoretically intelligible, there is

11 Mumford (2009) defends a pandispositionalist version of this account. He sees causation as a
shifting around of different powers as his title of the paper indicates.
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a strong reasonwhy it is impossible. You, the proponent of agent causation, claim
that substances have certain causal powers in virtue of having certain properties.
If a substance’s propertieswere different, then its causal profilewould be different
too. Consequently, the real cause of the substance’s behavior seems to be that
substance’s having its intrinsic properties, not the substance itself.12

This objection works on the basis of a metaphysical distinction between
powerful properties possessed by a substance, on the one hand, and the (power-
less) substance itself, on the other. Someone may limit the ontological function
of a substance to being merely the bearer of powerful properties. Then the
substance (or agent) itself vanishes from the causal picture of reality – for only
the substances’s intrinsic properties relate causally to each other. It is disputable,
however, whether the distinction between a substance and its properties amounts
to a distinctio realis, as opposed to a mere distinctio rationis. We are able to
draw a conceptual distinction between the substance as mere substratum and
the “full-blown” substance with qualities. Yet this distinction does not entail
any real, metaphysical distinction. A substance is not a mereological complex
entity consisting of simple entities such as a substratum, properties and genuine
relations of support between substratum and properties. Rather, a property is
a mode of the substance, one of its ways of being. Thus, if we are to drive a
wedge between a substance’s inherent causal impotence and its having powerful
properties, we must assume an ontologically debatable separation between a
substance and its properties.

Here my argument that agent causation is a serious alternative to event
causation comes to an end. It should have become clear that, once a meta-
physical framework of substances disposing of causal powers is established,
agent causation fits naturally into it. In the final section I discuss evidence from
developmental psychology and cognitive science indicating that the concept of
agent causation is not only embedded in a particularmetaphysical framework but
is also deeply ingrained in our pre-theoretical grasp of ourselves and theworldwe
inhabit.

3 Natural born agents?
As already indicated, the concept of agent causation is generally connected with
free and rational actions.13 The agent, so an oft-told story goes, has the unique

12 For this objection see Clarke (2003), pp. 188–193.
13 See for instance O’Connor (2001).
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power to respond to reasons and to form intentions for actions accordingly.
Thus agent causation is essentially intentional and purposive, in contrast to the
blind processes of nature which can be reconstructed in event-causal terms. I
have argued that there are metaphysical reasons for overcoming this dichotomy,
because all real causation consists in substances acting upon each other. In this
section I argue that there is epistemic evidence that, from the very beginning,
our conceptual system is permeated by the idea of an agent being able to move
its body spontaneously. If these epistemic data are true, they correspond with
a metaphysics of powerful agents in broad terms and undermine the view to
consider only intentional action as agent-caused.

3.1 Agent causation and developmental research

The ability to ascribemental states such as beliefs, desires and intentions to other
people begins rather late in child development and takes years to become fully
functional. However, the ability to distinguish between self-moving goal-directed
agents and entities in need of an external source of movement emerges much
earlier.14 Research suggests that 6-month-old infants already have a rudimentary
capacity to distinguish between humans and inanimate objects in terms of
goal-directed movements (Kuhlmeier et al. (2004)).

Spelke, Phillips and Woodward, for instance, discuss a study indicating that
infants at this age do not apply what they call the “principle of contact” to the
movement of humanbeings. (Spelke et al. (1995)). This principle says that physical
objects move when another object comes into contact with them. In the study,
7-month-old infants were confronted with two different videotaped scenarios,
one involving objects and another involving people. In the object-scenario, one
inanimate object moved behind a screen and another emerged from the side of
the screen. Infants looked longer at this scenario if the second object had begun
to move before touching the first object. In the person-scenario, by contrast, a
person moved behind the screen and a second person emerged from the side of
the screen. If the second person had begun to move before coming into contact
with the first, infants showed no signs ofmore attentively observing this scenario.
Rather, they looked longer if the two people made contact first before the second
person moved. These findings suggest that 7-month-old infants perceive only
people, and not inanimate objects, as being capable of self-propulsion. Other
studies complement these findings by showing that 9-month-olds consider the

14 This paragraph echoes mainly Steward (2009).
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self-propulsion of an inanimate object like a robot anomalous, leading to negative
reactions and emotional distress (Poulin-Dubois et al. (1996)).

This intriguingly secure grasp of spontaneous human movement in contrast
to the motion of inanimate objects is not confined specifically to human agency.
Gelman, for example, argues that humans are bornwith skeletal causal principles
which, in combination with perceptual and other cues, lead us to acquire
knowledge about animated and inanimated entities in general early on.15

She calls one principle the “innards principle”. It says that self-propelled
agents have insides that enable them to move on their own; she calls another the
“external-agent principle”, and this applies to entities that are not in a position to
move on their own.

Moreover, infants around the age of one year seem to have a sophisticated
non-mentalistic understanding of goal-directed actions which Gergely and Csibra
call the “teleological stance”.16 According to the authors, infants at this age
interpret actions as means to an end and evaluate the actions in the light of
their efficacy. They can also generate inferences to identify relevant aspects of the
action-context which justify the means even if the circumstances are not directly
visible to them. The important point for our discussion is that the teleological
stance does not involve a conscious ascription of mental states to the agents
involved. Rather, it arises from the relationships among three elements: the
action, the possible goal and the situational context. Once two of these three
elements are given, 12-month-olds are capable of making an inference to the
missing element by applying what the authors call the “rationality principle”.
This principle assumes that the agent will use the most effective means available
in the situational context as the infant perceives it.

Without going into further details, the overall picture suggests that ample
evidence supports the view that a basic conception of goal-directed andpurposive
agency, in contrast to an inanimate object’s mechanistic movement, is part and
parcel of our foundational conceptual make-up. One immediate consequence
of this distinction appears to be that we directly conceive of animals mov-
ing their bodies, presuming that they possess a body which they move in a
non-mechanistic way. We do not apply the principle of contact or the external
agent principle in order to understand how an animal moves its body. Rather, we
apply these principles to inanimate entities: we are inclined to say that there is a

15 Gelman (1990). See also Setoh et al. (2013) which confirms the assumption that the innards
principle goes hand in hand with the ascription of basic biological properties, for instance that
even quite diverse animals are not hollow.
16 Gergely and Csibra (2003).
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certain part of this entity, the motor, whose function it is to set the entire object
in motion mechanistically. Two further insights accompany this rather “holistic”
understanding of an animal17 and its body. On the one hand, one might say that,
once an animal is said to possess a body, then that animal will in some sense
be aware of possessing it. The distinction between the animal itself and its body
seems to assume that the former has a certain subjective perspective on its body
and theworldwhich enables this distinction in the first place. If the animal lacked
such a perspective, then one might wonder what supports the claim that the
animal is not identical with its body. On the other hand, one might say that, once
an animal is said to possess a body, then the animal will also exercise some form
of control upon it. And controlling one’s body — even if only minimally — is what
grounds the capacitywhich humans experience as freewill. Helen Stewardmakes
this suggestion:

Our natural inclination is to think of an animal as a creature that can, within limits, direct its
own activities and which has certain choices about the details of those activities. (Steward
(2009), p. 226)

This view converges nicely with the concept of agent-causation which claims,
in a nutshell, that the agent has the capacity to bring about her activities
directly. Agent-causation, then, not only has a natural home within a general
metaphysical framework of powerful substances, but is also ubiquitous among
animals. This is not to deny that some entities which we categorize as animals
may ultimately, because their movements (contrary to appearances) are reducible
to mere stimulus-reaction-mechanisms, turn out not to be true agents. Nor is it to
conflate self-reflective rational agency with less complex forms of animal agency.
The point is simply that there is no need to restrict agent causation to being the
explanans of very special phenomena such as instances of full-blown rational
decision-making.

3.2 Agent causation and enactivism

There is further evidence that agency should be considered to be a widespread
and basic feature of our existence. Traditionally perception was seen as a passive
process, in the sense that sensory input from the world enters the visual system

17 A traditional substance dualist picture of animated beings is opposed to this understanding
of animal movements for it subscribes to a rather mechanistic understanding of how the mind
moves the body. The latter is considered as a physical object related to the mind only externally.
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and is converted in the brain into a mental image which is, ideally, a correct
representation of the perceived object. The perceiver is conceived of, as Alva Noë
has put it, as an automatic brain-photoreceptor system whose contents are static
snapshot-like retinal images (Noë (2004)). For some time now this conception
has been challenged by an alternative picture, so-called enactivism. Simply put,
enactivism argues that perception is not a process in the brain whereby the
perceptual apparatus constructs a mental representation out of the sensory input
provided. Rather, the animal is actively engaged in perceiving, because perceiving
itself is a skillful activity performed by the entire animal. This claim is based
on the thesis that our perceptual apparatus is essentially connected with our
sensorimotor and proprioceptive systems.

To illustrate this point, take vision as a paradigm model of perception. We
tend to consider vision as a kind of photographic system: you open your eyes
and, thanks to a complex internal process, a focused image of the world in front
of you follows immediately. If movement is involved in this model at all, then it
is merely as a means of adjusting your perspective in order to gain a better hold
of what you wish more sharply to focus on. Moving the camera to the right place
and taking the picture are two different events, related only externally. However,
there is empirical evidence indicating that this picture is inadequate. Research
about blindness, for instance, shows that there are forms of blindness that are
not connected with dysfunctions in the visual system as such but rather with the
organism’s inability to integrate sensory input with patterns of movement. An
example is given by attempts to restore vision to patients whom cataracts have
made congenitally blind.18 A cataract is a clouding of the lens of the eye which,
in turn, affects vision. If the above camera-model were correct, then removing the
cataract would result in removing the thing which impairs the animal’s vision.
Once the lens is cleared, light passes through to the retina unhindered, which
should result in the animal’s receiving a sharp image. Interestingly, however, case
studies suggest that this does not happen. The surgery restores visual sensation,
but this does not automatically restore the ability to see clearly. Immediately after
the surgery, some patients continue to suffer a form of blindness. They report that
their visual sensations are chaotic, confusing and uninformative to them.

From an enactivist perspective, the plausible explanation is that these pa-
tients cannot see because their visual impressions are not coupled with sensori-
motor (self-)knowledge. In normal perceivers, sensation goes hand in hand with
capacities for movement; we naturally turn our eyes towards an object of interest,
we reach towards an object that catches our attention, we reflexively block our

18 The example is taken from Noë (2004), p. 4.

 EBSCOhost - printed on 2/12/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use



Agent-causation | 177

face with our hands if an object moves towards us. In all of these examples,
sensory impressions are automatically coupled with spontaneous movement.
One might say that the perceiving subject’s visual impressions naturally fit the
perceiver’s movements because there is an implicit understanding that what is
seen depends also on one’s own body-posture and movements. The abovemen-
tioned patients seem to lack this sort of understanding. They fail to integrate the
perceptual objectswith their own changingmovements (or theways inwhich they
might move over time), and this failure results in visual impressions which lack
any useful content for the perceiver—who experiences this as a formof blindness.

There is further evidence that normal vision itself depends on self-produced
movement and concurrent visual feedback. Held and Hein (1963) performed a
classical study inwhich two kittens, one “active” and one “passive”were attached
to an apparatus functioning like a carousel with black, white and metal-colored
strips on the walls inside. The carousel was moved by the movements of the
active kitten who was attached firmly but flexibly to it. The passive kitten was
also attached to the apparatus but it was carried in a gondula. It could not
move by itself but it was moved in the gondola by the movements of the other
kitten. The apparatus was constructed in such a way that the gondula moved in
accordance with the movements of the active kitten. The kittens could see neither
each other nor their own limbs, but theywere able tomove their heads freely. Both
kittens thus received the same visual input, but only the active kitten, because
of its self-movement, received direct sensorimotor stimulation as well. The
findings of this experiment are telling: only the active kittens developed normal
depth-perception and visually guided paw placement responses. It seems that
only through self-movement and concurrent visual feedback can animals develop
functioning visually guided behavior. A foundational feature of perception is an
implicit practical knowledge of howmovements of one’s body give rise to changes
in sensory stimulation.

If we adopt an enactivist standpoint on vision, then we might not only
question the assumption that vision amounts to a passive process of internally
representing the world, but we might go a step farther. If an animal is essentially
an active embodied being situated in a determinate environment, then why
assume that an internal representation intervening between the animal and the
world is needed at all? Why not simply suppose that the world is immediately
present to the animal? If you want to reach out for a cup of tea, then why assume
that doing so requires an internal representation of the cup in front of you? The
alternative enactivist account suggests that the very directing of your gaze to the
cup amounts to a direct perceiving of the cup as something reachable. The idea
is that the cup assumes the role of guiding the hand in your act of reaching
for it. In other words, representation may not be required in order for action to
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followon. If animals have fundamentally agential natures, then theymayperceive
the world directly as full of opportunities for action. This echoes Heidegger’s
analysis of being-in-the-world which emphasizes that our primary understanding
of the world is not one of objects describable in terms of numbers, measures and
weights, but of a world loaded with references for use. We perceive the world
primarily from the perspective of agents, not observers.

These considerations should suffice to motivate the claim that an enactivist
model of perception can support the concept of agent causation proposed in
this article. If the agential nature fundamentally shapes the animal’s being in
the world, then agent-causal terms may provide the most adequate metaphysical
reconstruction of this nature. The animal’s experience of the world presupposes
its active engagement with the world. Any reconstruction in non-agential terms
seems to miss the most basic features of what it means for an animal to be
alive. This view nicely complements Steward’s metaphysical conception of the
animal as a self-moving entity which executes some form of direct control over
its body. And it might also help us explain why the distinction between animated
and inanimated beings figures so centrally in our conceptual scheme. Being
self-moving animals ourselves, it is unsurprising that this basic existential feature
is mapped into our basic understanding of the world.

4 Conclusion
The contemporary discussion of agent causation focuses on the causal production
of free rational action, where such action is seen in radical opposition to
the omnipresent event-causal processes which determine natural phenomena.
However, if the above arguments are correct, then all causation, whether animate
or inanimate, can be modelled along the structural features of agent-causation.
First, causation always involves one substance acting on, or being acted on by,
another substance. Second, within the animal kingdom agent causation is a
mundane phenomenon, because animals themselves are natural-born agents.
Third, as a consequence, the production of free rational action is a variation
of ordinary animal agent causation brought about by rational animals. One
might wonder about the bad philosophical press which agent causation thus
far received. Perhaps this reputation has less to do with the concept of agent
causation itself than with a long concatenation of philosophical distortions and
biases. Substance-dualist worries, empiricist epistemological meticulousness, an
overemphasis on mechanistic-reductionist thinking, and a deep mistrust of our
commonsense reasoning may have obscured our view of something right under
our noses: the fact that, when we experience and interact with the world, we are
first and foremost agents.
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Alessandro Giordani
Quantified Modal Justification Logic with
Existence Predicate

1 Introduction
Systems of explicit modal logic provide a powerful framework for characterizing
modal concepts as arising from the existence of appropriate sources. It is well
known that, within the standard semantic framework of epistemic logic, the
notion of knowledge is typically defined by assuming that a proposition is known
to be true precisely when it is true in every epistemically possible world. If we
adopt the view that evidence is the source of knowledge, we are led to endorse
an analysis of knowledge according to which a poposition is known to be true
preciselywhen it is accepted as true on the basis of some piece of evidence, so that
the truth of that proposition in every epistemically possible world can be viewed
as grounded on the existence of some piece of evidence for it1. Similarly, within
the standard semantic framework of modal logic the notion of necessary truth is
characterized by assuming that a proposition is necessarily true precisely when it
is true in every ontically possible world. So, if we adopt the view that essence is
the source of necessity, we are led to endorse an analysis of necessity according to
which a poposition is necessarily true precisely when it is true on the basis of the
essence of the entities to which it is referring, so that the truth of that proposition
in every ontically possible world can be viewed as grounded on the existence of
essences2. In what follows, wewill develop these intuitions by constructing a sys-
tem of quantified modal logic of justification, endowed with a specific predicate
of existence, which can help us to model both situations where the distinction
between actual and potential possession of a justification is crucial and situations

This paper is dedicated to Sergio Galvan, who first introduced me to modal logic and metamath-
ematics. He inspired and encouraged me in my researches during the years and is an admirable
example of philosophical insight and passion for the truth.

1 Systems of explicit epistemic logic are known as justification logics, which are development of
systems of logic of proofs originally proposed by Artemov. See Artemov (2001, 2008); Artemov
and Nogina (2005); Fitting (2005) for a general introduction.
2 Systems of explicit ontic logic are developed in Giordani (2013) for interpreting the logic of
essence.
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where sources of knowldge are subjected to change.3 The paper is structured as
follows. In section 2 the basic system of quantified modal justification logic we
are interested in is introduced from an axiomatic point of view. In section 3 the
system previously introduced is proved to be sound and complete with respect to
a suitable possibile world semantics. Finally, the system is extended in order to
incorporate a predicate of existence, to be intended as indicating acknowledged
existence, and some observations are made on its usefulness.

2 The main system

2.1 The language of justification logic

In this section the basic language L of the systems of quantified modal logic of
justification is proposed.

Definition 1. Terms of L.
The set Tm(L) of terms of L is defined according to the following rules:

t := c | x | (t ⋅ t) | (t + t) | !t | genx(t)
where x is an element of a countable set {xi}i∈ℕ of variables and c is an element
of a countable set {ci}i∈ℕ of constants.

Definition 2. Formulas of L.
The set Fm(L) of formulas of L is defined according to the following rules:

φ := p | ¬φ | (φ ∧φ) | ∀xφ | ◻φ | t : φ
where p is an element of a countable set {pi}i∈ℕ of propositional variables and t
is a term in Tm(L).

In what follows, composite terms are said to be closed if no free variable
occurs in them, where all the variables constituting a term are counted as free
except the ones occurring as indices in terms like genx(t).

Intuitively, terms in Tm(L) are interpreted on structured sources of justifi-
cation and formulas like t : φ are interpreted as stating that t is a source of

3 A reference possible world semantics for quantified justification logic is proposed in Fitting
(2008).

 EBSCOhost - printed on 2/12/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use



Modal Justification Logic | 181

justification for φ. It is then assumed that sources of justification, or justifiers,
are abstract entities provided with a specific structure and subjected to a set of
operations. In particular, the operations ⋅, +, ! are used to construct new sources
from basic ones. Here, t ⋅ s is intended as a justifier that provides justication for
all the sentences that can be justified by applying modus ponens to premises
justified by t and by s, while t + s is intended as a justifier providing justication
for all the sentences that can be justified either by t or by s. In addition, ! is a
justication checker: it returns a justifier !t for the sentence stating that t is a source
of justification for φ, provided that t is indeed such a source.

2.2 Axiomatization

Definition 3. Axioms of quantified modal justification logic.

Let us introduce the following groups of axioms4.

Group I: propositional axioms andmodus ponens.

Any set of classical propositional axioms is appropriate

Group II: quantification axioms
Q1: ∀x(φ1→ φ2)→ (φ1→∀xφ2), x not free in φ
Q2: ∀xφ→ φt

x, t free for x in φ
RQ: if ⊢ φ, then ⊢ ∀xφ

Group III: modal axioms
N1: ◻(φ1→ φ2)→ (◻φ1→◻φ2)

N2: ∀x◻φ→◻∀xφ
N3: ◻φ→ φ
N4: ◻φ→◻◻φ
N5: ¬◻φ→◻¬◻φ
RN: if ⊢ φ, then ⊢ ◻φ

Group IV: justification axioms
J1: t1 : (φ1→ φ2)→ (t2 : φ1→ t1 ⋅ t2 : φ2)

J2: t1 : φ ∨ t2 : φ→ t1 + t2 : φ
J3: t : φ→!t : t : φ
J4: t : φ→ φ

4 Axioms are introduced schematically. Accordingly, an axiom can be identified with the set of
its instances. Note also that in group III axioms N2 and N4 can be derived from the other ones
plus the axioms in group II.
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J5: t : φ→◻φ, where t is closed
JQ: ∀x(t : φ)→ genx(t) : ∀xφ
RJ: if c : φ ∈ C, then⊢ c : φ, where C is a constant specification

A constant specification for L is any set of formulas c : φ, where φ is formula
of L and c is a constant. The general idea is that constants are sources for
the justification of formulas and constant specifications are relations connecting
sources and justified formulas. In the present context, a constant specification
is said to be axiomatically appropriate, if all the axioms are justified by some
constant, and uniform, if c : φ ∈ C⇒ c : φy

x ∈ C, for every x and every y that is
free for x in φ. Wewill onlyworkwith axiomatically appropriate uniform constant
specifications, so that any axioms turn out to be justified by some source and any
source that justifies an axiom instance also justifies all of its variants.

Definition 4. System QLJS5.

A system of quantified modal justification logic QLJ(A,C) is characterized by
axioms of groups I, II, III, a particular selectionA of axioms from group IV, and a
particular axiomatically appropriate uniformconstant specificationC. The system
we are primarily interested in is
– QLJS5 =QLJ(C,A), withA = group IV
System QLJS5 is obtained by combining, using JQ and J5, the basic system LJ
of logic of factive justification, given by the axioms of group I, plus J1, J2, J3,
J4, and RJ, with a standard QS5 system of quantified logic for ontic necessity,
which in turn is obtained by combining the standard S5 system of propositional
modal logic for ontic necessity with a system of first order logic, as axiomatized
by the axioms and rules of groups I-II. In addition, in this system C is required
to be such that c : φ ∈ C only if φ is an axiom of groups I-IV. This last condition
ensures that only logical axioms and and logical theorems are justified by closed
terms.

Theorem 1. if ⊢QLJS5 φ, then ⊢QLJS5 t : φ, for some closed term t.

Proof. By induction on the length of a derivation. If φ is an axiom instance, then
the conclusion follows from RJ, since all the constants are closed terms. If φ is
derived from ⊢ φ and ⊢ φ → ψ by modus ponens, then ⊢ s : φ and ⊢ t : (φ →
ψ), where both s and t are closed, by induction hypothesis, and the conclusion
follows by J1, given that t ⋅ s is closed. Suppose φ is derived by RJ. Then φ has
the form c : ψ for some ψ. Hence, ⊢ !c : c : ψ, by J4, with !c closed. Suppose φ is
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derived byRQ. Thenφ has the form ∀xψ for someψ, and ⊢ψ. Hence, by induction
hypothesis, ⊢ t : ψ, with t closed, and so ⊢ ∀x(t : ψ) by Q3. Thus, ⊢ genx(t) : ∀xψ,
by J2, and the conclusion follows, since x is not free in genx(t). Suppose, finally,
that φ is derived by RN. Then φ has the form ◻ψ for some ψ, and ⊢ ψ. Thus,
by induction hypothesis, ⊢ t : ψ, with t closed. Since ⊢ t : ψ → ◻ψ, by JN, and⊢ !t : t : ψ, by J4, we obtain ⊢ c : (t : ψ→◻ψ), by RJ, so that ⊢ c ⋅ !t : ◻ψ, by J1, and
the conclusion follows, given that c ⋅ !t closed. ◻
Hence, QLJS5 enjoys internalization, since every derivable formula can be associ-
ated with a piece of evidence justifying it.

3 Semantics
The semantics for L is based on the notions of justification model and modal
model, and constitutes an extension of the semantics for the logic of justification.
A justification model provides references for the terms in Tm(L), while a modal
model allows us to define the notion of truth with respect to the formulas in
Fm(L). The fundamental ideaunderlying the semantics of the logic of justification
is that an agent is justified in assuming that a certain proposition is true precisely
when that proposition holds in all the epistemic worlds that are admitted by the
agent, i.e., in all the epistemicworlds that are compatiblewith her epistemic state.
Furthermore, the agent has a justifier for assuming that a certain proposition
is true precisely when she is justified in believing the proposition by virtue
of possessing a justifier which is admissible for it. Finally, it is possible for
the agent to acquire a justifier for assuming that a certain proposition is true
precisely when there is a possible world where she actually has a justifier for
assuming it. As a consequence, in order to model the epistemic state of an agent,
we have to introduce the following elements: (1) a set of epistemic worlds; (2)
a relation of ontic accessibility between them, determining which worlds are
possiblewith respect to anyworld; (3) a relationof epistemic accessibility between
them, determining which worlds are compatible with the epistemic state of the
agent; (4) a set of justifiers, provided with a set of operations allowing us to
construct composite justifiers from elementary ones; (5) a selection function,
determiningwhich justifiers are admissible for each proposition at each epistemic
world.

Let us now present all the elements in turn.
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3.1 Justification model

Definition 5. justification frame for L.
A justification frame for L is a tupleD = ⟨D, ⋅D ,+D , !D , genD⟩ where

(i) D ̸= ⌀
(ii) ⋅D : D ×D→ D
(iii) +D : D ×D→ D
(iv) !D : D→ D
(v) genD : (D→ D)→ D

Intuitively, D is a set of justifiers and, in accordance with the intended inter-
pretation of the language anticipated in the first section: ⋅D is a function taking
pairs ⟨d1,d2⟩ of justifiers and returnig a justifier for every proposition that is the
consequent of an implication justified by d1 and an antecedent justified by d2;+D is a function taking pairs ⟨d1,d2⟩ of justifiers and returnig a justifier for every
proposition justified by either d1 or d2; !D is a function taking a justifier d and
returnig a justifier checking whether d justifies a proposition; finally, genD is a
function taking functions from justifiers to justifiers and returnig a new kind of
justifier, whose characterization is presented below.

Definition 6. justification model for L.
A justification model for L is a tuple ⟨D,ℑ⟩ whereD is a justification structure

and ℑ : Tm(L)→ D is an interpretation mapping both variables and constants ofL
on elements of D. As usual ℑdx is the re-interpretaion of x on d based on ℑ, which is
the interpretation such that

ℑdx (y) ={{{
d if x = y
ℑ(x) otherwise

ℑ can be extended to a valuation ℑ[ ] of all terms in Tm(L) by setting

ℑ[x] = ℑ(x)
ℑ[c] = ℑ(c)
ℑ[t1 ⋅ t2] = ℑ[t1] ⋅D ℑ[t2]
ℑ[t1 + t2] = ℑ[t1]+D ℑ[t2]
ℑ[!t] =!Dℑ[t]
ℑ[genx(t)] = genD(λℑ(x).ℑ[t])
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In the last condition λℑ(x).ℑ[t] is the function such that λℑ(x).ℑ[t](d) = ℑdx [t],
based on the fact that ℑ[t] = ℑℑ(x)x [t].

3.2 Modal model

Definition 7. modal frame for L.
A modal frame for QLJS5 is a tuple ⟨W,R,K,D,ℑ,E⟩ where

– W is a set of worlds
– R ⊆W ×W is an equivalence relation of ontic accessibility
– K ⊆W ×W is a reflexive and transitive relation of epistemic accessibility
– ⟨D,ℑ⟩ is a justification model
– E : W × D × IntD → ℘(Fm(L)) is a selection function assigning to each triple
(w,d,ℑ) of worlds, justifiers, and interpretations the sets of formulas of L
justified by d at w under interpretation ℑ.

E is required to satisfy the following closure conditions, where E(w,d1,ℑ) ∘
E(w,d2,ℑ) is the set containing the consequents of implications contained in
E(w,d1,ℑ) with antecedents in E(w,d2,ℑ).

E1: E(w,d1,ℑ) ∘ E(w,d2,ℑ) ⊆ E(w,d1 ⋅D d2,ℑ)
E2: E(w,d1,ℑ)∪ E(w,d2,ℑ) ⊆ E(w,d1 +D d2,ℑ)
E3: φ ∈ E(w,d,ℑ)andd = ℑ(t)⇒ t : φ ∈ E(w, !Dd,ℑ)
E4: ∀d ∈ D(φ ∈ E(w,ℑdx [t],ℑdx ))⇒∀xφ ∈ E(w,ℑ[genx(t)],ℑ)
E5: φ ∈ E(w,ℑ[t],ℑ)⇒∀v(R(w, v)⇒M, v 󳀀󳨐 φ), if t is closed

E6: {φ | c : φ ∈ C} ⊆ E(w,ℑ(c),ℑ)
E7: ℑ1

φ= ℑ2⇒ φ ∈ E(w,d,ℑ1)⇔ φ ∈ E(w,d,ℑ2)
EM: K(w, v)⇒ E(w,d,ℑ) ⊆ E(v,d,ℑ)

where, in E6,
φ= is identity relative to the values assigned to free variables in φ. EM

is a monotonicity requirement, which states that all the evidence possessed in a
world w is preserved at any world to which w has an access.

Definition 8. modal model for QLJS5.
A modal model for L is a tupleM = ⟨W,R,K,D,ℑ,E,V⟩ where

(i) ⟨W,R,K,D,ℑ,E⟩ is a modal frame for L and
(ii) V :W ×Var→ {0,1} is a valuation of the propositional variables of L.
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If M = ⟨W,R,K,D,ℑ,E,V⟩, then Md
x = ⟨W,R,K,D,ℑdx ,E,V⟩, where ℑdx is the

re-interpretaion of x on d based on ℑ.

Definition 9. truth at a world in a model for QLJS5.

M,w 󳀀󳨐 p⇔ V(w, p) = 1
M,w 󳀀󳨐 ¬φ⇔M ̸󳀀󳨐 φ

M,w 󳀀󳨐 (φ1 ∧φ2)⇔M 󳀀󳨐 φ1 andM 󳀀󳨐 φ2

M,w 󳀀󳨐 ∀xφ⇔∀d ∈ D(Md
x ,w 󳀀󳨐 φ)

M,w 󳀀󳨐 ◻φ⇔∀v(R(w, v)⇒M, v 󳀀󳨐 φ)

M,w 󳀀󳨐 t : φ⇔∀v(K(w, v)⇒M, v 󳀀󳨐 φ) and φ ∈ E(w,ℑ[t],ℑ)
Corollary 1. (Monotonicity).M,w 󳀀󳨐 t : φ⇒∀v(K(w, v)⇒M, v 󳀀󳨐 t : φ).

Proof. SupposeM,w 󳀀󳨐 t : φ. Then ∀v(K(w, x)⇒M, x 󳀀󳨐 φ) and φ ∈ E(w,ℑ[t],ℑ).
Suppose K(w, v). Then ∀x(K(v, x) ⇒ K(w, x)), since K is transitive, and so∀x(K(v, x)⇒M, x 󳀀󳨐 φ), since K(w, x)⇒M, x 󳀀󳨐 φ. Thus, K(w, v)⇒ ∀x(K(v, x)⇒
M, x 󳀀󳨐 φ) and K(w, v) ⇒ φ ∈ E(v,d,ℑ), by EM, and so ∀v(K(w, v) ⇒ M,
v 󳀀󳨐 t : φ). ◻
The definition of the relation of logical consequence is the usual one: X ⊩QLJS5 φ
iffM,w 󳀀󳨐 X⇒M,w 󳀀󳨐 φ, for everyM,w, whereM,w 󳀀󳨐 X precisely whenM,w 󳀀󳨐 φ
for every φ ∈ X. In what follows, we will also write
R(w) for {v | R(w, v)}
K(w) for {v | K(w, v)}
M,R(w) 󳀀󳨐 φ for ∀v(R(w, v)⇒M, v 󳀀󳨐 φ)
M,K(w) 󳀀󳨐 φ for ∀v(K(w, v)⇒M, v 󳀀󳨐 φ)

In the next two sections we will prove our main result, which is that systemQLJS5
is sound and strongly completewith respect to the class ofmodalmodel forQLJS5.

3.3 Soundness

QLJS5 is sound with respect to the class of modal model for QLJS5.

Theorem 2. (Soundness).
X ⊩QLJS5 φ⇒ X ⊢QLJS5 φ, for all X and φ.
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We will only focus on the validity of the axioms concerning proofs. The proofs of
the validity of axioms in groups I-III are standard.

J1: t1 : (φ1→ φ2)→ (t2 : φ1→ t1 ⋅ t2 : φ2)

Proof. SupposeM,w 󳀀󳨐 t1 : (φ1→ φ2) andM,w 󳀀󳨐 t2 : (φ1). Then∀v(K(w, v)⇒M, v 󳀀󳨐 φ1→ φ2) and φ1→ φ2 ∈ E(w,ℑ[t1],ℑ), by def. 󳀀󳨐∀v(K(w, v)⇒M, v 󳀀󳨐 φ1) and φ1 ∈ E(w,ℑ[t2],ℑ), by def. 󳀀󳨐∀v(K(w, v)⇒M, v 󳀀󳨐 φ2) and φ2 ∈ E(w,ℑ[t1 ⋅ t2],ℑ), by E1 ◻
J2: t1 : φ ∨ t2 : φ→ t1 + t2 : φ
Proof. SupposeM,w 󳀀󳨐 ti : φ, i = 1,2. Then∀v(K(w, v)⇒M, v 󳀀󳨐 φ) and φ ∈ E(w,ℑ[ti],ℑ), by def. 󳀀󳨐∀v(K(w, v)⇒M, v 󳀀󳨐 φ) and φ ∈ E(w,ℑ[t1 + t2],ℑ), by E2

M,w 󳀀󳨐 t1 + t2 : φ, by def. 󳀀󳨐 ◻
J3: t : φ→!t : t : φ

Proof. SupposeM,w 󳀀󳨐 t : φ. Then∀v(K(w, v)⇒M, v 󳀀󳨐 φ) and φ ∈ E(w,ℑ[t],ℑ), by def. 󳀀󳨐∀v(K(w, v)⇒M, v 󳀀󳨐 t : φ) and t : φ ∈ E(w, !Dℑ[t],ℑ), by monotonicity and E3
M,w 󳀀󳨐!t : t : φ, by def. 󳀀󳨐 ◻

J4: t : φ→ φ

Proof. SupposeM,w 󳀀󳨐 t : φ. Then∀v(K(w, v)⇒M, v 󳀀󳨐 φ) and φ ∈ E(w,ℑ[t],ℑ), by def. 󳀀󳨐
M,w 󳀀󳨐 φ, since K is reflexive
M,w 󳀀󳨐 φ, by def. 󳀀󳨐 ◻

J5: t : φ→◻φ, t closed
Proof. SupposeM,w 󳀀󳨐 t : φ. Then∀v(K(w, v)⇒M, v 󳀀󳨐 φ) and φ ∈ E(w,ℑ[t],ℑ), by def. 󳀀󳨐∀v(R(w, v)⇒M, v 󳀀󳨐 φ), by E5, since t is closed

M,w 󳀀󳨐 ◻φ, by def. 󳀀󳨐 ◻
JQ: ∀x(t : φ)→ genx(t) : ∀xφ.
Proof. SupposeM,w 󳀀󳨐 ∀x(t : φ).
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∀d ∈ D(Md
x ,w 󳀀󳨐 t : φ), by def. 󳀀󳨐∀d ∈ D(∀v(R(w, v)⇒Md

x , v 󳀀󳨐 φ) and φ ∈ E(ℑdx [t],ℑdx )), by def. 󳀀󳨐∀d ∈ D(∀v(R(w, v)⇒Md
x , v 󳀀󳨐 φ)) and ∀d ∈ D(φ ∈ E(ℑdx [t],ℑdx )), by logic∀v(R(w, v)⇒∀d ∈ D(Md
x , v 󳀀󳨐 φ)) and ∀d ∈ D(φ ∈ E(ℑdx [t],ℑdx )), by logic∀v(R(w, v)⇒∀d ∈ D(Md
x , v 󳀀󳨐 φ)) and ∀xφ ∈ E(ℑ[genx(t)],ℑ), by E4∀v(R(w, v)⇒M, v 󳀀󳨐 ∀xφ) and ∀xφ ∈ E(ℑ[genx(t)],ℑ), by def. 󳀀󳨐

M,w 󳀀󳨐 genx(t) : ∀xφ, by def. 󳀀󳨐 ◻
RJ: if c : φ ∈ C, then ⊢ c : φ.
Straightforward, given E6.

3.4 Completeness

Let us now focus on the completeness theorem.

Theorem 3. completeness.
X ⊩QLJS5 φ⇒ X ⊢QLJS5 φ, for all X and φ.

The proof is by construction of a canonical model. As usual, we start with a
consistent set of formulas X and extend it to amaximally consistent andwitnessed
set X∗ in a languageL∗ containing a countable set {ni}i∈ℕ of newconstants,where
a set X∗ is said to be witnessed provided that, for every φ and every variable x,
there is some variable y such that φy

x →∀xφ ∈ X∗. X∗ is then such that
1. X ⊆ X∗
2. φ ∈ X∗⇔¬φ ∉ X∗
3. (φ1 ∧φ2) ∈ X∗⇔ φ1 ∈ X∗ and φ2 ∈ X∗
4. ∀xφ ∈ X∗⇔ φt

x ∈ X∗ for all t ∈ Tm(L∗)
We will also exploit the following well-known facts, where w/◻ = {ψ | ◻ψ ∈ w}:
Fact 1. If X is a consistent subset of Fm(L) then there is a consistent witnessed
subset of Fm(L∗) which includes X.

Fact 2. If X is amaximally consistent witnessed subset of Fm(L∗) and ◻φ ∉ X, then
w/◻,¬φ is included in a consistent witnessed subset of Fm(L∗).

Proof. See Hughes and Cresswell (1996) (theorems 14.1 and 14.2, pp. 258–261).
Axiom ∀x◻φ→◻∀xφ is essential for proving fact 2. ◻
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The constant specification C has to be extended accordingly. In particular, a new
constant specification C∗ is defined from C as follows. Let φ ∈ L∗ be any new
axiom instance and n1 . . . nk be the sequence of new constants occuring in it.
Then φ ∈ C∗(c) precisely when there is a corresponding instance φx1...xk

n1...nk ∈ C(c),
where x1 . . . xk is a sequence of old variables not occurring in φ. Since φ is an
axiom instance, φx1...xk

n1...nk is an axiom instance, so that φx1...xk
n1...nk ∈ C(c) for some

constant c. Since C is axiomatically appropriate and uniform, C∗ is axiomatically
appropriate and uniform by definition. Coming back to the construction of the
canonical model, the more involved part concerns the construction of a suitable
justification frame for the new language L∗.

Definition 10. canonical justification frame for L∗.
The canonical justification frame for L∗ is a tuple ⟨D,ℑ⟩ where

– D is defined as follows:
– D is the set of terms of L∗
– ⋅D is such that d1 ⋅D d2 = (d1 ⋅ d2)
– +D is such that d1 +D d2 = (d1 + d2)
– !D is such that !Dd =!d
– genD is such that genD(λx.t) = genx(t)

where λx.t is the function such that λx.t(d) = tdx .
– ℑ is the canonical assignment such that ℑ(t) = t, for all terms t.

Lemma 1. Let t be a term and y a variable in t. Then ℑdy [t] = tdy .
Proof. by induction on the length of a term.

Case 1: y = x. Then ℑdy [x] = d = ydy
Case 2: y ̸= x. Then ℑdy [x] = x = xdy
ℑdy [c] = ℑdy (c) = c = cdy
ℑdy [t1 ⋅ t2] = ℑdy [t1] ⋅D ℑdy [t2] = t1dy ⋅ t2dy = (t1 ⋅ t2)dy
ℑdy [t1 + t2] = ℑdy [t1]+D ℑdy [t2] = t1dy + t2dy = (t1 + t2)dy
ℑdy [!t] =!Dℑdy [t] =!tdy = (!t)dy
As to genx(t), note that λℑ(x).ℑ[t](d)=ℑdx [t]= tdx , by the inductive hypothesis,

and that ℑdy [genx(t)] = ℑ[genx(t)], since x is not free in genx(t).

Case 1: y = x. Then ℑdy [genx(t)] = genD(λℑ(x).ℑ[t])
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Thus ℑdy [genx(t)] = genD(λx.t) = genx(t) = (genx(t))dy
Case 2: y ̸= x. Then ℑdy [genx(t)] = genD(λℑdy (x).ℑdy [t])
Thus ℑdy [genx(t)] = genD(λx.tdy ) = genx(tdy ) = (genx(t))dy ◻

Corollary 2. Let φ be a formula. Then Md
x ,w 󳀀󳨐 φ⇔M,w 󳀀󳨐 φd

x .

Proof. Straightforward, by the previous lemma. ◻
Definition 11. canonical model

The canonical modal model for L∗ is the tuple ⟨W,R,K,D,ℑ,E,V⟩ where
– ⟨D,ℑ⟩ is the canonical justification frame
– W is the set of maximally consistent sets in L∗
– R is such that R(w, v)⇔ w/◻ = {φ | ◻φ ∈ w} ⊆ v
– K is such that K(w, v)⇔ w/K = {φ | ∃t(t : φ ∈ w)} ⊆ v
– E is such that E(w,d,ℑd󸀠x ) := {φ | φd󸀠

x ∈ w/d}
– V is such that V(p) = {w | p ∈ w}
Hence, the set of formulas justified by d under ℑd󸀠x is the set of variants of formulas
in w/d where d󸀠 is substituted for x.

Lemma 2. (Canonicity Lemma). Let M = ⟨W,R,K,D,ℑ,E,V⟩ be the canonical
model for QLJS5. Then M is a model for QLJS5.

Hence, it is to be shown that
– K is reflexive and transitive
– E satisfies the conditions

– E1: C(c) ⊆ E(w,ℑ(c),ℑ)
– E2: E(w,d1,ℑ) ∘ E(w,d2,ℑ) ⊆ E(w,d1 ⋅D d2,ℑ)
– E3: E(w,d1,ℑ)∪ E(w,d2,ℑ) ⊆ E(w,d1 +D d2,ℑ)
– E4: φ ∈ E(w,d,ℑ)andd = ℑ(t)⇒ t : φ ∈ E(w, !Dd,ℑ)
– E5: ∀d(φ ∈ E(w,ℑdx [t],ℑdx ))⇒∀xφ ∈ E(w,ℑ[genx(t)],ℑ)
– E6: φ ∈ E(w,ℑ[t],ℑ)⇒∀v(R(w, v)⇒M, v 󳀀󳨐 φ)
– E7: ℑ1

φ= ℑ2⇒ φ ∈ E(w,d,ℑ1)⇔ φ ∈ E(w,d,ℑ2)
– EM: K(w, v)⇒ E(w,d,ℑ) ⊆ E(v,d,ℑ)

Conditions E1-E4 follows from RJ and axioms J1, J2, J3.
Condition E5 follows from JQ.

Proof. Suppose φ ∈ E(w,ℑdx [t],ℑdx ), for all d. Then
φ ∈ E(w, tdx ,ℑdx ), for all d, by lemma 1
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φd
x ∈ w/tdx , for all d, by the deifintion of E
(t : φ)dx ∈ w, for all d, by the deifnition of substitution∀x(t : φ) ∈ w, since w is witnessed
genx(t) : ∀xφ ∈ w, by axiom JQ∀xφ ∈ w/genx(t), by the definition of w/genx(t)∀xφ ∈ E(w,ℑ[genx(t)],ℑ), by the definition of E ◻

Condition E6 follows from J◻.
Proof. Condition E6.

Suppose φ ∈ E(w,ℑ[t],ℑ). Then
φ ∈ E(w, t,ℑ), by lemma 1
t : φ ∈ w, by the deifnition of E◻φ ∈ w, by axiom J◻
φ ∈ w/◻, by the definition of w/◻∀v(R(w, v)⇒ φ ∈ v), by the definition of R∀v(R(w, v)⇒M, v 󳀀󳨐 φ), by the inductive hypothesis ◻

Lemma 3. (Truth Lemma). Let M = ⟨W,R,K,D,ℑ,E,V⟩ be the canonical model
for QLJS5. Then M,w 󳀀󳨐 φ⇔ φ ∈ w.
Proof. By cases.

(i) t : φ ∈ w.
φ ∈ w/t, by the definition of w/t
φ ∈ E(w, t,ℑ) = E(w,ℑ[t],ℑ), by lemma 1
φ ∈ w/K and φ ∈ E(w,ℑ[t],ℑ), by the definition of w/K∀v(K(w, v)⇒ φ ∈ v) and φ ∈ E(w,ℑ[t],ℑ), by the definition of K∀v(K(w, v)⇒M, v 󳀀󳨐 φ) and φ ∈ E(w,ℑ[t],ℑ), and so M,w 󳀀󳨐 t : φ

(ii): t : φ ∉ w. Then φ ∉ E(w,ℑ[t],ℑ), and so M,w ̸󳀀󳨐 t : φ ◻

4 Acknowledged existence of proofs
Let us extend our language by adding a new predicate 𝔼 of existence, more pre-
cisely acknowledge existence. The systemQLJS5E of quantifiedmodal justification
logic with existence is based on languageL(𝔼) is the extension ofQLJS5 obtained
by adding the following axioms.
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Group V: existence axioms
E1: 𝔼(t1 ⋅ t2)→𝔼(t1)∧𝔼(t2)
E2: 𝔼(t1 + t2)→𝔼(t1)∧𝔼(t2)
E3: 𝔼(!t)→𝔼(t)

Intuitively, a proposition like 𝔼(t) states that the agent has acknowledged the
existence of t, or that t is explicitly available to the agent. It is assumed that it
is necessary for the agent to possess a proof t to construct every piece of evidence
that constitutes t. Hence, axioms E1-E3 are immediately justified in view of this
assumption. The semantic framework is changed accordingly. In particular, a
frame is a tuple ⟨W,R,K,D,ℑ, δ,E⟩ where
– ⟨W,R,K,D,ℑ,E⟩ is a modal frame
– δ : W → ℘(D) is a selection function assigning to each world w ∈ W the set

of justifiers available at w, and it is required to satisfy the following closure
conditions:
δ1: d1 ⋅D d2 ∈ δ(w)⇒ d1,d2 ∈ δ(w)
δ2: d1 +D d2 ∈ δ(w)⇒ d1,d2 ∈ δ(w)
δ3: !Dd ∈ δ(w)⇒ d ∈ δ(w)

Finally, the truth definition of a formula like 𝔼(t) is given as follows
– M,w 󳀀󳨐 𝔼(t)⇔ ℑ(t) ∈ δ(w)
It is not difficult to see that conditions δ1-δ4 ensure the validity of axioms E1-E4
and that the system is complete when δ in the canonical model is defined so that
δ(w) = {t |𝔼(t) ∈ w}.

4.1 Kinds of justification

Given the possibility of expressing actual proof possession, a number of different
epistemic notions comes to be definable. In particular, with respect to justifiers,
the following distinctions can be introduced.

𝔼(j)∧ j : φ �� ⋄𝔼(j)∧ j : φ �� j : φ

Hence, we are in a position to distinguish between
1. the fact that j justifies φ
2. the fact that it is possible to possess a j justifing φ
3. the fact that the agent actually possess a j justifing φ
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4.2 Kinds of knowledge

Given the possibility of expressing actual proof possession, the notion K of actual
knowledge turns out to be definable and,with respect to knoweldge, the following
distinctions can be introduced, resting on the idea that knowledge is given by the
existence of a justifier.

Kφ
��

��

�� ⋄Kφ
��

��

�� ⋄AKφ
��

��∃x(𝔼(x)∧ x : φ) �� ⋄∃x(𝔼(x)∧ x : φ) �� ∃x(x : φ)

𝔼(j)∧ j : φ ��

��

⋄𝔼(j)∧ j : φ ��

��

j : φ

��

In this diagram, Kφ is a notion of actual knowledge, defined as possession of a
justifier for φ; ⋄Kφ is the corresponding notion of potential knowledge, defined
as the possibility of possessing a justifier for φ ; and ⋄AKφ is a notion of abstract
possible knowledge, defined as the mere existence of a justifier for φ.

The foregoing distinctions are of interest in different context. In particular,
they can be exploited for developing different kinds of analyses in epistemic logic
and formal epistemology.5

5 Among the main areas of application, see Baltag et al. (2014); Dean and Kurokawa (2010); Duc
(1997); Van Benthem and Velazquez-Quesada (2010).
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Franz von Kutschera
The Case for Conceptualism

Abstract: Themain tenets of this paper are: (1) The realistic conception of abstract
objects is responsible for the logical and set theoretical paradoxes. (2) The usual
objections against conceptualism are invalid. (3) Conceptualism is a suitable
frame for theories of abstract objects.

1 Abstract objects
Abstract objects are concepts, propositions, sets, numbers, theories, ideals,
poems, symphonies etc. They are distinguished from physical and psychological
phenomena by not existing in time and therefore cannot be causes or effects. The
topic of this paper is the ontological status of abstract objects. In effect it is the
traditional problem of universals, even if I shall bemore concernedwith sets than
with concepts.

The existence of abstract objects is denied by nominalism. Medieval nom-
inalism was directed against essentialism, against real essences of things. It
recognized only concrete individuals but nothing universal, hence its motto:
universale est vox. A predicate like “red” does not express a property but is just a
common, an ambiguous name –we cannot say “four red things”, since this would
presuppose the property of being red. For nominalists red things have nothing in
common but being called “red” – well, that is another property, but you cannot
think without conceiving and that means employing concepts.

At the beginning of modern philosophy Thomas Hobbes revived nominalism,
though not in a strictly consequent way, since he assumed a similarity between
the objects for which a common name stands.1 Contemporary nominalism was
developed mainly by Stanislaw Lesniewski, Nelson Goodman and David Lewis.
It has little to do with the medieval idea. The nominalistic “Ersatz” for sets
are wholes, consisting of parts. Their logic is mereology. Goodman called his
mereological calculus the calculus of individuals, but for him individuals are
not just concrete objects but anything that is a model of his calculus. Models
are, for instance, complete Boolean algebras without a null element, which are

1 See Leviathan, ch. 4 and De corpore I, 2.9.
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very powerful systems of set theory. David Lewis has added a neighbourhood
relation to the calculus of individuals as a basis for the definition of topological
concepts. Modern nominalism, then, does not deny the existence of abstract
objects anymore, it just uses another name for them.

2 The controversy about universals
The controversy about abstract objects is about their ontological status. There are
mainly two positions:
– For Platonism or Realism, whose motto is: universalia ante res, they belong to

a third realm of being besides the physical and the mental.
– For Conceptualism, whose motto is: universalia in mente, they are mental

constructs.

TheAristotelian position that universals exist only in concrete things – universalia
in rebus – has never been made sufficiently precise. If properties exist in things
they areparticulars, not universals. The ideawas: Concrete thingsmust have some
trait that justifies the application of a universal like ‘red’. This trait, however,
would have to be at once particular and universal. Therefore I shall restrict my
discussion of universals to realism and conceptualism.

3 Platonism
Because of the usual objections against conceptualism, which I shall discuss
later, most logicians and mathematicians so far have been realists. Georg Cantor,
one of the pioneers of set theory, was a realist just as Gottlob Frege2 and
Kurt Gödel. Gödel writes: “Classes and concepts may [...] be conceived as real
objects [...] existing independently of our definitions and constructions. [...] It
seems to me that the assumption of such objects is quite as legitimate as the
assumption of physical bodies and there is quite asmuch reason to believe in their
existence. They are in the same sense necessary to obtain a satisfactory theory of
mathematics as physical bodies are necessary to obtain a satisfactory theory of
sense perceptions”.3

2 See Kutschera (1989), 10.2.
3 Gödel (1944), p. 137.

 EBSCOhost - printed on 2/12/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use



The Case for Conceptualism | 197

For Gödel mathematics is something like a natural science of the world of
abstract objects, not a science of intellectual constructs. That was also Frege’s
position. For himabstract objects, concepts or propositions (Gedanken, as he said)
and sets, were not constructed but discovered. In his paperDer Gedanke from 1918
he tries to showfirst that propositions are neither physical things normental ideas
and then says: “The result, then, seems to be that propositions are neither things
of the external world nor ideas (Vorstellungen). A third realmhas to be recognized.
What belongs to it equals ideas in that it cannot be perceived by the senses and
concrete things in that it needs no subject to whose conscious life it belongs. The
proposition, e.g., expressed by the theorem of Pythagoras, is true timelessly and
independently of whether someone believes it to be true. It needs no subject.
It is not only true since it has been discovered – rather it is like a planet that,
long before it was discovered, has been acting on other planets and been acted
upon by them.”4 And again: “In thinking we do not generate propositions but
grasp them.”5 And: “Propositions are not psychological entities and thinking is
not an inner production and construction but a grasping of propositions which
are already there.”6

As these quotations show Frege remained a Platonist as long as he lived. He
never suspected that this position might be the origin of his troubles with set
theory or even in any way problematic, although it is really much more natural to
think of concepts andpropositions as somethingwe form instead of somethingwe
find out there in an intangible and invisible objective realm. As sets are extensions
of concepts it would have been more natural to think of them also as generated
together with the concepts.

4 Epistemological problems
Platonism, first of all, has serious epistemological problems. It proposes a realistic
conception of abstract objects and the states of affairs concerning them – let
me call them abstract states – and that would have to be defined by their
analytical independence of mental states of affairs, of our thoughts, perceptions
and imaginations. The intuition is that you cannot infer mental states from
mathematical ones, andvice versa; eachpossible abstract state is compatiblewith
each possible mental state.

4 Frege (1967), p. 353 f.
5 Frege (1967), p. 359.
6 Frege (1976), p. 102.
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This description, however, becomes trivial if abstract states are analytic,
for then all possible abstract states hold in all possible worlds and therefore
are compatible with all other possible states. Thus a realist has to assume that
abstract states are synthetic. Logical and mathematical truths, however, can be
recognized a priori, i.e. independently of empirical observations. Aside from very
few authors as John Stuart Mill nobody considers mathematical truths as empir-
ical and maintains that the statement “5+4 = 9” is an inductive generalization of
observations that 5 apples and 4 apples are 9 apples, 5 cherries and 4 cherries
are 9 cherries, etc., and could be falsified by future observations. Only very few
authors like Kant and Fichte admit synthetic truths a priori and for them they are
about the mental, about our ways of thinking and perceiving. The result, then, is
this: Since abstract truths can be know a priori they are about the mental or they
are analytic. In both cases they cannot be conceived realistically.

At least in simple logical andmathematical statements we are free from error.
But as Frege said: “With the step into an external world I exposemyself to error.”7
Theworld of abstract objects cannot then be an externalworld as Platonismhas it.

5 Logical paradoxes
I do not want to go into these epistemological problems of Platonism any deeper,
the main theses of my paper is rather: The realistic conception of abstract objects
is responsible for the logical and set theoretical paradoxes.

From the beginning of his work in logic Frege’s central intention was to
clear up the meaning and the basis of number theoretic propositions.8 With his
set-theoretical foundation of arithmetic in the first volume of the Grundgesetze
which appeared in 1893 – the main ideas are already contained in the Grundlagen
der Arithmetik from 1884 – he seemed to have reached his goal. This book was the
outcome of unusually penetrating, careful and far reaching considerations, for-
mulated in a formal systemof unequalled exactness. In it Frege hadproven a great
number of theorems of logic, set theory and arithmetic. He even tried to show (in
§31), that each well-formed expression of his formal language has exactly one ex-
tension. If this proof were correct it would establish the consistency of the system.

All this was ample legitimation for Frege’s claim in the introduction to the
first volume of his Grundgesetze: “It is quite unlikely that such a construction

7 See Frege (1967), p. 358.
8 Frege (1976), pp. 359 f and Frege (1983), p. 282.
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could be erected on a defective and uncertain ground. [...] And only a [similarly]
detailed demonstration that on other fundamental assumptions a better and
firmer building could be constructed I should accept as a refutation of my
theory, or if someone should show that my principles lead to evidently wrong
consequences. But that nobody will achieve.” (p. XXVI)

Already in the appendix of the second volume of the same work from 1903,
however, we read: “For a scientific author there is nothing more disagreeable
than if, after the conclusion of his work, one of its foundations is upset. Into this
situation I was put by a letter of Mr. Bertrand Russell when the present work was
already being printed.” (p. 253) In an appendix Frege could only briefly point out
the contradiction, Russell’s paradox, and make a proposal how to avoid it. This
proposal has later been shown to be ineffective by St. Lesniewski in 1938 an by
W.V. Quine in 1955, but from the beginning it was no more than a hasty attempt to
patch the leak, an attempt which Frege himself did not take seriously afterwards;
he never referred to it again.

Georg Cantor, a contemporary of Frege, never set up a theory of sets satisfying
modern criteria of exactness as they were laid down by Frege. He, therefore,
could view the set theoretical paradoxes he had discovered already before 1902
as strange but only ephemeral phenomena. For Frege, however, they were plainly
and simply a catastrophe. For according to the principle ex falso quodlibet a
single contradiction implies everything, so that a contradiction is not just a local
breakdown but a global catastrophe. It is characteristic for Frege’s intellectual
honesty that he did not try to deceive either himself or others about this disaster.
For the rest of his life he tried in vain to overcome it. In his letter to Russell of June
22th he writes: “Anyway, your discovery is very strange andwill perhaps initiate a
great progress in logic, annoying as it seems at first glance.”9 As clear-sighted as
this conjecture proved to be, Frege himself had no part in this progress. He never
found “the right point of view”, as he wrote in the same letter, and so the rapid
development of logic and set theory after the turn of the century, for which he had
laid the foundations, went on without him.

In his Grundgesetze der Arithmetik Frege does not speak of sets but of courses
of values of functions. As this is just a minor point I will ignore it here. Frege’s
concept of a set is the classical one of an extension of a predicate. The set of
frogs is the extension of the predicate “frog”, and it has as elements exactly those
things that are frogs. Frege’s set theory – or “naive set theory” as hindsight has
it – is defined by two simple axioms that are direct consequences of this concept.
The axiom of comprehension says: Every (one-place, 1st order) predicate has an

9 Frege (1976), p. 215.
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extension. The axiom of extensionality is: Sets that have exactly the same elements
are identical. These two principles seem to be quite trivial and harmless as they
just explicate the notion of a set.

Nevertheless they give rise to Russell’s paradox and a number of other con-
tradictions. Russell’s set is the set of all sets that are not elements of themselves.
It is an element of itself if and only if it is not an element of itself. In fact the
paradox follows from the comprehension axiom alone. But where is the mistake
in that simple principle? For someone as Frege who had recognized set theory as
the basis of mathematics this was a tormenting and deeply frustrating problem.
He was acquainted with the attempts of Russell and Ernst Zermelo to weaken
set theory so that the known contradictions could not be derived anymore in
the usual way. In type-theoretical systems as well as in those of axiomatic set
theory the classical comprehension principle is restricted. Frege rightly thought
all of themadhoc and intuitively unconvincing. Type-theory, he saw,makes sense
only as a higher predicate-logic and as such Frege himself had employed it in his
Begriffsschrift from 1879.10 Systems of axiomatic set theory as the standard ZFF
from the beginning of the 1920s, on the other hand, try to restrict set formation
only so far that it still yields the sets necessary for the mathematically important
theories of cardinal and ordinal numbers. Such systems, then, are chosen from
purely pragmatic aspects and remain intuitively unconvincing. They are a far
from the ideal to derive the basic principles of set theory from an intuitively
well-defined concept of set and do not identify the origin of the paradoxes. That,
I maintain, is the realism that seems to come so naturally to mathematicians and
that is still the basis of the (simple) theory of types and axiomatic set theory.
Realism has to take the universe of all existing sets as given and therefore has
no reason whatsoever not also to assume the existence of Russell’s set. Thus it
has no acceptable way out of his paradox.

6 Objections to conceptualism
While Platonism cannot account for the a priori evidence of logical and
mathematical statements conceptualism can do so since the nature of our own
constructs cannot be hidden from us. A conceptualistic notion of concepts and

10 Frege’s letter to Russell from September 23th 1902, Frege (1976), p. 277 f. Against Russell’s
suggestions (see. his letter of 8.8.1902 in Frege (1976), p.226) Frege insisted that sets are objects,
and that there is no natural basis for a distinction of sorts or levels of objects as there is in the
realm of concepts. (See. Frege’s answer to Russell’s letter of 23.9.1902 in Frege (1976), p.227 f.)
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propositions was first developed by the Stoics. According to them concepts
and propositions belong to the realm of the mental. They are constructs of
our thinking, formed by us and not discovered, as Frege believed. The usual
objections to this notion are:

1)Mental states and acts are states and acts of a certain subjectwhile concepts
have no subject.

2) A concept as that of prime number is timeless. If it were a mental construct
we would have to say that it probably came into being in the 6th century B.C. in
Babylonian mathematics.

The answer to both objections is that we have to distinguish between tokens
and types, between particular acts and act types, between John’s conceiving of a
certain object as a frog on a certain day and concepts as forms of such acts. Types
of acts have no individual subjects and no situation in time.

7 A constructivistic conceptualism
For a satisfactory conceptualistic theory of abstract objects we have to construct
these objects in a systematic way. A concept, first of all, is a type of conceiving
objects in a certain way, e.g. as green or as a frog. We can also reflect on concepts
as ways of conceiving and make them the object – in the wider sense of a topic –
of considerations and characterize them by using other concepts. Reflection does
not make objects in the narrow, categorial sense out of con-cepts, of course. They
remain something that can also be used and applied. On a first level concepts
are applied to individuals of a set U. If we reflect on them and consider them as
new objects our universe of discourse is enlarged andwemay form new concepts,
concepts of a second level such as ‘is a transitive relation’ or ‘is a property of John’.
We may then iterate this step and pass on to a still larger domain containing also
the concepts of level 2 as objects and define concepts of level 3 on it. In this way
we can construct an open hierarchy of concepts and their domains, but we never
arrive at a set of all concepts.

This constructive approach to concepts arises from the basic idea of concep-
tualism, from the ideas of concepts as types of mental acts, and does not fit into a
realistic notion of concepts. For a Platonist there is the eternal set of all objectively
existing concepts and an all including universe of discourse. Therefore there is
also the property of being a property that does not apply to itself. Clearly this
property applies to itself if and only if it does not apply to itself. This paradox
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cannot be constructed in the conceptualistic hierarchy of concepts since it yields
no concepts that are defined for themselves.

For conceptualists there is a corresponding hierarchy of propositions: Propo-
sitions of level 1 are those that are not about propositions, propositions of higher
levels can also be about those of a lower level. In such ahierarchyTarski’s paradox
of self-applying propositions cannot be constructed:11 A universal proposition of
the form ‘All propositions have the property E’ – for instance: ‘All propositions
maintained by Max are false’ – is called “self-applying” if it has property E itself,
in our example: if the proposition is not maintained by Max or is wrong. Is the
proposition, that all propositions are not self-applying, self-applying or not? It is
self-applying if and only if it is not self-applying. This paradox has the same struc-
ture as that of the self-applying concepts and Russell’s paradox.We don’t need an
axiom of comprehension for it but just the realistic assumption that all objectively
existing universal propositions forma single given class. Then in this class there is
the difference of self-applying and not self-applying propositions, and the propo-
sition that all of them are not self-applying is already among them. A conceptual-
ist, however, will say: If we have a set P1 of propositions wemaymake statements
about all propositions in P1 and form appropriate propositions. But since forming
them, we presuppose the elements of P1 they cannot be among these elements. If
we enlarge the set P1 to P2 by adopting the new elements the word “all” changes
its meaning if applied to the elements of the larger set P2 instead of to P1. The
proposition that all propositions of P1 are not self-applying does not belong to
P1. It is not about itself, and therefore the contradiction vanishes.

8 A conceptualist set theory (1st version)
How a conceptualistic theory of sets may look is shown by the theory George
Boolos developed in his paper The iterative concept of set (1971). His notion of a
set is conceptualistic: Sets are not given but formed. They are formed by collecting
already existing objects. Cantor wrote: “By a ‘set’ we understand every collection
M of well-defined and clearly distinguished objects of perception or thought
(called ’elements’ of M) into a whole.”12

I shall describe the theory only intuitively. The process of set-formation starts
with a class, V0, of given individuals. In pure set theory this class will be empty,

11 Tarski has formulated it for sentences, see Tarski (1949), p. 80, footnote 11.
12 Cantor (1895-1897), §1.
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but for the heuristic exposition let us first suppose that there are individuals. In a
first step we can form arbitrary sets of objects from V0. These sets are new objects
so that we can enlarge V0 to a class V1 that contains all collections of elements of
V0. If ℘(X) is the power set of X, we then have

a) V1 = V0 ∪℘(V0).

This step may be repeated, so that we generally have

b) Vn+1 = Vn ∪℘(Vn).

If theVn are defined in thisway for all natural numbers n, i.e. for all finite ordinals,
we can, in a next step, form the set Vω as the union of all the Vn’s – ω being the
smallest transfinite ordinal. Therefore we set

c) Vω =⋃α<ω Vα.

Thus in Vω as the universe of discourse we obtain no new objects. New objects
come up only if wemove on from Vω to Vω+1, and so on. Let α, β,𝛾, ... be ordinals,
and λ, λ󸀠, ... limit numbers, i.e. ordinals that have no immediate predecessor. Let
us further assume now that V0 is empty. Then we have

d) Vα+1 = ℘(Vα) and Vλ =⋃α<λ Vα.

The result is the well-known cumulative von-Neumann hierarchy of sets. If O(x),
the order of set x, is the smallest ordinal α such that x ∈ Vα, we have x ∈ y→O(x)<
O(y). Therefore all sets are grounded, i.e. there is no infinite sequence of (not
necessarily different) sets inwhich eachone contains thenext as an element. Each
iterative notion of set in the general sense that sets are constructed step by step,
where every step presupposes the existence of the objects already constructed,
gives rise only to grounded sets.

Since ordinal numbers are to be introduced only in set theory, we cannot
already use them in the axioms of such a theory. Therefore these considerations
have only a heuristic function. I cannot define an axiomatic theory here, but
Boolos has shown that Zermelo-Fraenkel set theory (with the axiom of founda-
tion, i.e. ZFF) is an appropriate system for his iterative concept of set. This can
best be seen by substituting Dana Scott’s equivalent system Σ for ZFF.13

13 See Scott (1974).
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Boolos’ conception of sets as collections is not very convincing, however.
We know how to collect physical things like stamps or coins, although not into
a “whole” but only into some sort of container, but how do we collect abstract
objects? And how can we collect infinitely many objects? How can a new object –
the empty set – be generated by collecting nothing? Or something different from a
penny – namely the unit set of this penny – by collecting just one penny? Andwhy
should the collection of two collections be different from what you get by simply
collecting their elements?

9 A conceptualist set theory (2nd version)
Intuitively the classical notion of set as an extension of a predicate is much more
convincing than that of a collection.14 According to it sets are introduced relatively
to a set U of given objects by abstraction in the form {x ∈ U : A[x]} – the set of all
x ∈ U to which the predicate A[x] applies. The quantifiers in this predicate have to
be restricted to U also, so that no other objects are assumed, and the names must
stand for objects from U. Again I sketch this way of building a hierarchy of sets
only intuitively: We begin with a set U0 of individuals. If all quantifiers in A[x]
are restricted to U0, we create a new object {x ∈ U0 : A[x]} as the extension of the
predicate A[x] on U0. Let the set of sets we can construe in this way be D(U0) then
U1 is to beD(U0)∪U0. The next setsUα+1 are defined in the sameway. If λ is a limit
ordinal we have Uλ = ⋃α<λ Uα. The difference to our first approach is that we use
D(Uα) instead of the power set℘(Uα). Up toUω there is nodifference, but generally
D(Uα) is a proper subset of℘(Uα).D(Uα)maybedefinedby set operations asGödel
has shown in (1940).15

If U is the union of all Uα, it is the class of constructible sets. Again we can
assign every x ∈ U an order Or(x), the smallest ordinal α with x ∈ Uα. For x ∈ y we
then have Or(x) < Or(y). It is not generally true anymore, however, that Or(y) ≤ α,
if for all x such that x ∈ y we have Or(x) < α, as for the the collective concept of
set. There O(x) is the smallest ordinal greater than every order of an element of
x. Here we can only say that Or(x) is greater than all the orders of elements of x.
There may be subsets of Uα which are not elements of Uα+1 but only elements of
some U𝛾 for which 𝛾 is much larger than α +1.

All sets in U are grounded again. If r(x, y) is the relation on U holding if the
construction of y presupposes the existence of x this relation is grounded. In our

14 See Kutschera (2001).
15 See Jech (2003), pp. 175 ff.
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second version of set theory, however, r(x, y) does not hold only if x is connected
by an ∈-chain with y, i.e. if there are z1, ..., zn with x ∈ z1, z1 ∈ z2, ..., zn ∈ y. The
construction of y may also presuppose sets that are neither elements of y nor
elements of elements of y, and so on.

We also need principles for the existence of Uα-sets. The most attractive one
is the power-set axiom:

PA: x ∈ U→ ℘(x) ∈ U.
It is not provable in the theory of constructible sets but consistent with it. If we
add it this theory is equivalent to ZFF. All the necessary considerations are due
to Gödel.

In this paper I have not been concerned with formal systems but only with
the idea that the only satisfactory approach to a theory of abstract objects is
a constructive conceptualism and that it is also the only satisfactory way of
eliminating the set-theoretical paradoxes. Sets are not something discovered in
a Platonic sky but mental constructs. We have to build them step by step from
individuals, sets of individuals, and so on. This yields a hierarchy of sets in which
the paradoxes cannot be construed anymore. This hierarchy is open in the sense
that it may be continued indefinitely. There is neither a set of all sets nor a set of
all concepts or a set of all propositions.
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Wolfgang Lenzen
Two days in the life of a genius

1 Introduction
Gottfried Wilhelm Leibniz (1646–1716) is generally regarded as the last “universal
scientist” who exhibited an extraordinary knowledge in almost all fields of
science. In particular, he was a brilliant mathematician who, independently of
Newton, invented the infinitesimal calculus and who discovered the importance
of the dyadic number system as a basis for calculating machines. When he
died at the age of 70, he left behind an extensive and widespread collection of
papers on topics ranging from Theology, Jurisprudence, Medicine, Philosophy,
Philology, Geography and all kinds of historical investigations to Mathematics,
the Natural Sciences and some less scientific matters such as the Military
and the Foundation of Societies and Libraries. But throughout his life, Leibniz
didn’t publish a single paper on logic, except perhaps for the mathematical
dissertation “De Arte Combinatoria” or the juridical disputation “De Condition-
ibus”. The former incidentally deals with some issues in the traditional theory
of the syllogism, while the latter contains some interesting observations about
the validity of principles of what is nowadays called deontic logic. Leibniz’s
main aim in logic, however, was to extend Aristotelian syllogistic to a “Calculus
Universalis”. Although there exist several drafts for such a calculus which seem
to have been composed for publication, Leibniz appears to have remained
unsatisfied with these attempts. Anyway he refrained from sending them to
press.

In June 1690, after having spent almost three years in Bavaria, Austria, and
Italy where he completed the task of inquiring the origin of the House of Welf,
Leibniz returned to Hanover. Not much is known about his scientific activities
during that time. In the chronicle of Leibniz’s life and work, it is only reported
that in July he solved a mathematical problem put forward by J. Bernoulli, and
that in the first two days of August he composed two papers entitled “Primaria
calculi logici fundamenta” and “Fundamenta calculi logici”1.

1 Cf. Müller and Krönert (1969, p. 104—105).
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The aim of the present contribution is to scrutinize these short but very
sophisticated papers in order to show that Leibniz was not only a mathematical
mastermind, but also a genius logician.

2 Systematic background
In order to facilitate the understanding of Leibniz’s logical investigations, let us
briefly summarize the main elements of his logic as they have been developed
above all in the “General Inquiries” of 1686 (GI, for short)2.

2.1 The Algebra of concepts, L1

This calculus presupposes a potentially infinite set of monadic predicates or
concepts A, B, C ... for which the following operators are defined:

A = B “A is the same as B”; “A coincides with B”
A ∈ B “A contains B”; “A is B”
AB the conjunction of A and B
∼∼ A the negation of A
P(A) “A is possible”; “A is ‘a thing’”; “A is ‘being’”

Identity or “coincidence” of conceptsmay be axiomatized by the law of reflexivity,

Iden 1: A = A (GI, §171),

in conjunction with the rule of substitutivity: “That A is the same as Bmeans that
one can be substituted for the other in any proposition without loss of truth”3, i.e.

Iden 2: If A = B, then α[A]↔ α[B].

By means of these two principles, one easily derives the following corollaries:

Iden 3: A = B→ B = A
Iden 4: A = B ∧ B = C→ A = C
2 Cf. the text-critical edition in Acad VI, 4, 739–788; an English translation may be found in LLP,
47–87.
3 Cf. LLP, 52; cf. also Cout, 362: “Idem autem esse A ipsi B significat alterum alteri substitui posse
in propositione quacunque salva veritate”.
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Iden 5: A = B→∼ A =∼ B
Iden 6: A = B→ AC = BC.4
Let it be noted in passing that identity might as well be defined by means of the
operator of conceptual containment, ∈, according to the law:
Iden 7: A = B↔ A ∈ B ∧ B ∈ A.5
Conversely, the relation ∈ can be defined in terms of = according to the law
“Generally ‘A is B’ is the same as ‘A = AB’” (GI, §83):

Cont 1: A ∈ B↔ A = AB.
The following two laws express the reflexivity and the transitivity of the ∈-relation:
“B is B” (GI, §37); “If A is B and B is C, A will be C” (GI, §19), i.e.:

Cont 2: A ∈ A
Cont 3: A ∈ B ∧ B ∈ C→ A ∈ C.
The most fundamental principle for the operator of conceptual conjunction says:
“That A contains B and A contains C is the same as that A contains BC” (GI, §35),
i.e.:

Conj 1: A ∈ BC↔ A ∈ B ∧A ∈ C.
Conjunction or “addition”, as Leibniz sometimes also calls it, is idempotent and
symmetric: “AA = A” (GI, §171); “AB = BA” (Cout: 235, ♯7):

Conj 2: A = AA
Conj 3: AB = BA.
Some further theorems comprise:

Conj 4: AB ∈ A “AB is A” (Cout: 263).
Conj 5: AB ∈ B “AB is B” (GI, §38).

4 Cf. GI §6: “If A coincides with B, B coincides with A”; §8: “If A coincides with B and B coincides
with C, then A also coincides with C”; §2: “If A and B coincide, so also do Not-A and Not-B”; §171:
“Fifth, if A = B, AC = BC”.
5 Cf. GI §30: “That A is B and B is A is the same as that A and B coincide”.
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Thenext operator is conceptual negation, ‘not’. Leibniz had serious problemswith
finding the proper laws governing this operator. From the tradition, he knew little
more than the “law of double negation”:

Neg 1: ∼∼ A = A “Not-Not-A = A” (GI, §96).

One important step towards a complete theory of conceptual negation was to
transform the informal principle of contraposition, ‘Every A is B, therefore every
Not-B is Not-A’ into the following abstract axiom:

Neg 2: A ∈ B→∼ B ∈∼ A.6
Furthermore Leibniz discovered various variants of the “law of consistency”:

Neg 3: A ̸=∼ A
Neg 4: A = B→ A ̸=∼ B.
In the GI these principles (which are easily seen to be equivalent to each other)
are formulated as follows: “A proposition false in itself is ‘A coincides with Not-A”’
(§11) and Seventh: “If A = B, then A ̸= Not-B” (§171).

Similarly, the subsequent two principles are provably equivalent to each
other:

Neg 5*: A ∉∼ A
Neg 6*: A ∈ B→ A ∉∼ B.7
These principles have been marked with a ‘*’ to indicate that they are not
absolutely valid but have to be restricted to self-consistent terms!

This remarks leads us to the last operator of L1, conceptual self-consistency
or possibility, P(A), which can be defined by the following equivalence:

Poss 1: P(A)↔ A ∉ (B ∼ B).
Thus in GI §§32–33 Leibniz explains: “B Not-B is impossible; or, if B Not-B = C, C
will be impossible. So if A =Not-B, ABwill be impossible.” Leibniz used to express
the impossibility of a concept A also by calling it “not being” (“non Ens”) or not

6 GI §77: “In general, ‘A is B’ is the same as ‘Not-B is Not-A”’.
7 Cf. GI §43: “It is false that B contains Not-B, i.e. B doesn’t contain Not-B”; and §91: “A is B,
therefore A isn’t Not-B”.
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being a “thing” (“non est res”). E.g., in §171 of GI he states: “Eighth, A Not-A is not
a thing”, i.e.

Poss 2: ¬P(A ∼ A).
A characteristic property of the operator P is expressed by the law:

Poss 3: A ∈ B ∧ P(A)→ P(B).8

Furthermore, there exists a fundamental relation between the containment oper-
ator ∈ and the impossibility of a corresponding complex concept:

Poss 4a: A ∈∼ B↔¬P(AB)
Poss 4a: A ∈ B↔¬P(A ∼ B).
Thus in GI, §200 Leibniz notes: “If I say ‘AB does not exist’, this is the same as if I
were to say ‘A contains Not-B’ [...]. Similarly, if I say ‘A Not-B does not exist’, this
is the same as if I were to say [...] ‘A contains B’ ”.9 With the help of the operator
‘P’, the earlier principles Neg 5* and Neg 6* can be corrected as follows:

Neg 5: P(A)→ A ∉∼ A
Neg 6: (P(A)→ A ∈ B→ A ∉∼ B).
A complete axiomatization of L1 may be obtained by adding the following
counterpart of the “ex contradictorio quodlibet”:

Neg 7: (A −A) ∈ B.
As a corollary of Neg 7, the impossible concept A ∼ A contains besides B also ∼ B
and hence (B ∼ B), just as conversely (B ∼ B) ∈ (A ∼ A), i.e. (A ∼ A) = (B ∼ B). In
other words, two self-inconsistent concepts necessarily coincide:

Poss 5: ¬P(A)∧¬P(B)→ A = B.

8 Cf. GI §55: “If A contains B and A is true, B is also true”. The variant A ∈ B ∧¬P(B)→¬P(A) is
formulated, e.g., in Acad VI, 4, 935: “Not-being or impossible is what involves a contradiction as
A = BC Not-C. Hence, what involves something impossible is itself impossible”.
9 Cf. also Cout 407/408: “ ‘A contains B’ is a true proposition if A not-B entails a contradiction.
[...] Hence it follows that A not-B implies a contradiction if ‘A is B’ is a true proposition, because
for ‘A’ one can substitute the equivalent term ‘AB’ and obtain ‘AB not-B’ what is a manifest
contradiction.”
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To conclude our discussion of L1, let it be pointed out that Leibniz frequently
made the gross mistake of equating ‘A isn’t B’ and ‘A is Not-B’. Again and again
he assumed that the following principle is correct:

Neg 8*: A ∉ B↔ A ∈∼ B.
Thus in a preliminary version of §33 GI, he put forward the “Axiom: ‘A does not
contain B’ is the same as ‘A contains Not-B’”.10 And in §82 he maintained once
more that “‘B isn’t A’ is the same as ‘B is Not-A’, therefore ‘B ̸= AY’ is the same as
‘B = Y Not-A’.” As was argued above in connection with Neg 6*, one “half” of the
equivalenceNeg 8* is “almost” correct, i.e. A ∈∼ B entails A ∉ B provided that A is
self-consistent. However, this additional premise P(A) doesn’t suffice to warrant
the validity of the other “half” of Neg 8*! As will turn out in section 2.2 below,
the inference A ∉ B↔ A ∈∼ B holds only in the rare case where A is an individual
concept!

Thus in a paper of around 1685, he put forward a “Second Rule of contradic-
tion: the truth of ‘A is the same as B’ coincides with the falsity of ‘A is the same as
Not-B’.”11 Also in the ripe paper “Fundamenta Calculi Logic” of 1690 which will
be analyzed in more detail below, a first version of principle (14) said: “‘A = B’
is equivalent to ‘A ̸= Not-B’.” Of course, one “half” of the equivalence Neg 9* is
correct, since according to Neg 4, A =∼ B entails A ̸= B; but the other “half” is
so-to-speak “absolutely” wrong; the inference from A ̸= B to A =∼ B would not
even hold under the additional assumption that A is an individual concept.12

2.2 The Quantifier Logic, L2

Leibniz’s quantifier logic L2 results from L1 by the introduction of so-called
“indefinite concepts”. These concepts are symbolized by letters from the end of
the alphabet X,Y,Z, ..., and they function as quantifiers ranging over concepts.
Thus in the GI Leibniz explains:

(16) An affirmative proposition is ‘A is B’ or ‘A contains B’ [...]. That is, if we substitute the
value for A, one obtains ‘A coincides with BY’. For example, ‘Man is an animal’, i.e. ‘Man’

10 Cf. Acad VI, 4, p. 753, text-critical apparatus to line 21.
11 Cf. Acad VI, 4, 624.
12 In Lenzen 1986 it is shown that in his “darker moments” Leibniz again and again resorted to
Neg 8* and Neg 9* although in other moments he had clearly recognized the invalidity of these
principles.
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is the same as ‘a ... animal’ (namely, ‘Man’ is ‘rational animal’). For by the sign ‘Y’ I mean
something undetermined, so that ‘BY’ is the same as ‘Some B’, or ‘a ... animal’ [...], or ‘A
certain animal’. So ‘A is B’ is the same as ‘A coincides with some B’, i.e. ‘A = BY’.

With the help of the modern symbol for the existential quantifier, the latter law
can be expressed more precisely as follows:

Cont 4: A ∈ B↔∃Y(A = BY).
As Leibniz himself noted, the formalization of the UA according to Cont 4 is
provably equivalent to the simpler representation according to Cont 3:

It is noteworthy that for ‘A = BY’ one can also say ‘A =AB’ so that there is no need to introduce
a new letter.13

On the one hand, according to the rule of existential generalization,

Exist 1: If α[A], then ∃Yα[Y].
A = AB immediately entails ∃Y(A = YB). On the other hand, if there exists some Y
such that A = YB, then according to Iden 6, AB = YBB, i.e. AB = YB (by Conj 2)
and hence (by the premise A = YB) AB = A.14

Next observe that Leibniz often used to formalize the particular affirmative
proposition ‘Some A is B’ by means of the indefinite concept Y as ‘YA ∈ B’. In
view of principle Cont 4, this representation can further be transformed into the
(elliptic) equation YA = ZB. However, both formalizations are inadequate because
they are easily shown to be provable in L2! According to Cont 4, BA ∈ B, hence by
Exist 1:

Conj 6: ∃Y(YA ∈ B).
Similarly, according to Cont 3, AB = BA, hence a twofold application of Exist 1
yields:

Conj 7: ∃Y∃Z(YA = BZ).

13 Cf. Cout 366; cf. also LLP 56, fn. 1.
14 Exactly the same proof was given in “Primaria Calculi Logici Fundamenta” to be examined
below.
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These tautologies, of course, cannot adequately represent the particular af-
firmative proposition ‘Some A are B’. Similarly, the corresponding formulas∃Y(YA ∈∼ B) and ∃Y∃Z(YA = Z ∼ B) fail to constitute correct formalizations of the
particular negative proposition ‘Some A are not B’.

In order to resolve these difficulties, let us consider a draft of a calculus
probably written between 1686 and 169015, where Leibniz proved principle

Neg 10*: A ∉ B↔∃Y(YA ∈∼ B).
Leibniz’s proof of this important law is really remarkable:

(18) [...] ‘A isn’t B’ is the same as to say ‘there exists a Y such that YA is Not-B’. If ‘A is B’
is false, then ‘A Not-B’ is possible by [POSS 4A]. ‘Not-B’ shall be called ‘Y’. Hence YA is
possible. Hence YA is Not-B. Therefore we have shown that, if it is false that A is B, then QA
is Not-B. Conversely, let us show that if QA is Not-B, ‘A is B’ is false. For if ‘A is B’ would be
true, ‘B’ could be substituted for ‘A’ and we would obtain ‘QB is Not-B’ which is absurd.

To conclude the sketch of L2, let us consider some of the rare passages where
an indefinite concept functions as a universal quantifier. In a draft of a calculus
probably written between 1686 and 1690, Leibniz put forward the principle “‘A is
B’ is the same as ‘If L is A, it follows that L is B’”:

Cont 5: A ∈ B↔∀Y(Y ∈ A→ Y ∈ B).
Furthermore, in §32 GI, Leibniz at least vaguely recognized that just as (according
to CONJ 6) A ∈ B is equivalent to ∃Y(A = YB), so the negation A ∉ B is equivalent
to the condition that, for any indefinite concept Y, A ̸= BY:
Cont 6: A ∉ B↔∀Y(A ̸= YB).16
With the help of the universal quantifier ‘∀’, Leibniz’s conception of individual
concepts as maximally-consistent concepts can be formalized as follows:

Ind 1: Ind(A)↔df P(A)∧∀Y(P(AY)→ A ∈ Y).

15 Cf. Cout 259–261, or the text-critical edition in Acad VI 4, 171. The editors of Acad guess that
the paper was written around 1686
16 Cf.AcadVI, 4, 753: “(32) Propositio Negativa. A non continet B, seuA esse (continere) B falsum
est, seu A non coincidit BY”. The last passage “seu A non coincidit BY” had been overlooked by
Couturat and it is therefore also missing in Parkinson’s translation!
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Thus A is an individual concept iff A is self-consistent and A contains every
concept Y which is compatible with A.17 Note, incidentally, that Ind 1 might be
simplified by requiring that, for each concept Y, A either contains Y or contains∼ Y:
Ind 2: Ind(A)↔∀Y(A ∈∼ Y↔ A ∉ Y).
As a corollary it follows that the invalid principle Neg* 8 holds only when it is
restricted to individual concepts:

Neg 8: Ind(A)→ (A ∉ B↔ A ∈∼ B).
Already in the “Calculi Universalis Investigationes” of 1679, Leibniz had pointed
out:

[...] if two propositions are given with exactly the same singular [!] subject, where the
predicate of the one is contradictory to the predicate of the other, then necessarily one
proposition is true and the other is false. But I say: exactly the same [singular] subject, for
example, ‘This gold is a metal’, ‘This gold is a not-metal’.18

The crucial issue here is that Neg* 8 holds only for individual concepts as,
e.g., ‘Apostle Peter’, but not for general concepts as, e.g., ‘man’. The text–critical
apparatus of the Academy–edition reveals that Leibniz was somewhat diffident
about this decisive point. He began to illustrate the above rule by the correct
example “if I say ‘Apostle Peter was a Roman bishop’, and ‘Apostle Peter was not
a Roman bishop’” and then he went on, erroneously, to generalize this law for
arbitrary terms: “or if I say ‘Every man is learned’ ‘Every man is not learned”’.
Finally he noticed this error “Here it becomes evident that I ammistaken, for this
rule is not valid.”

17 The underlying idea of the completeness of individual concepts has been formulated in § 72
GI as follows: “So if BY is [“being”], and the indefinite term Y is superfluous, i.e., in the way that
‘a certain Alexander the Great’ and ‘Alexander the Great’ are the same, then B is an individual. If
the term BA is [“being”] and if B is an individual, then A will be superfluous; or if BA = C, then
B=C.” For a closer interpretation of this idea cf. Lenzen 2004.
18 Cf. Acad VI, 4, 217–218; a discussion of this important passage may be found in Lenzen (1986,
pp. 23–24).
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2.3 Formal Representations of the Categorical Forms

The traditional theory of the syllogism may be considered as the logic of the
four categorical forms of a universal affirmative (UA), universal negative (UN),
particular affirmative (PA), and particular negative (PN) proposition:

UA Every A is B UN No A is B

PA Some A is B PN Some A isn’t B

These propositions can be represented in Leibniz’s logic in various ways. In
particular, one obtains the following “homogenous” formalization in terms of the
operator ∈ which will be referred to as Schema 1:
A ∈ B A ∈∼ B

A ∉∼ B A ∉ B

The homogeneity consists in two facts:
(i) The formula for the UN is obtained from the UA by just replacing predicate

B with ∼ B; this is the formal counterpart of the traditional principle of
obversion according to which ‘No A is B’ is equivalent with ‘Every A is not-B’.

(ii) In accordance with the traditional laws of opposition, the formulas for the
particular propositions are just the negations of the »opposite« universal
propositions.

In view of Cont 1, Schema 1may be transformed into Schema 2:

A = AB A = A ∼ B

A ≠ A ∼ B A ≠ B

Similarly, given Poss 4, Schema 1may be transformed into Schema 3:

¬P(A ∼ B) ¬P(AB)

P(AB) P(A ∼ B)
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Furthermore, with the help of indefinite concepts, one can form Schema 4:

∃Y(A = YB) ∃Y(A = Y ∼ B)

∀Y(A ≠ Y − B) ∀Y(A ≠ YB)

Leibniz used to work with various elements of these representations, often
combining them into inhomogeneous schemata such as Schema 5*:

∃Y(A = YB) ∃Y(A = Y ∼ B)

∃Y∃Z(YA = ZB) ∃Y∃Z(YA = Z ∼ B)

But here the representations of PA and PN are inadequate because these formulas
are theorems of L2! The conditions for PAandPN, however,may easily be corrected
by adding the requirement that YA is self-consistent. One thus obtains Schema 5:

∃Y(A = YB) ∃Y(A = Y ∼ B)

∃Y∃Z(P(YA)∧ YA = ZB) ∃Y∃Z(P(YA)∧ YA = Z ∼ B)

3 Primaria Calculi Logici Fundamenta
In this section two drafts of a logical calculus shall be considered which Leibniz
had written on one and the same sheet of paper (LH IV, 7B2, 3). The untitled essay
on the “recto” side bears the date 1 Aug. 1690; the other essay on the “verso”
side is an immediate sequel to the first and bears the title “Primaria Calculi
Logici Fundamenta”. Both papers have been published in Cout (232–235), but
only the second one was included in Parkinson’s translation (LLP, 90–92). Un-
fortunately, text-critical versions from the Academy-edition are not yet available.
The following text contains some deleted passages which were not reproduced
in Couturat’s nor, therefore, in Parkinson’s edition. I did not, however, aim at
providing a full apparatus of all variants of the text19 but included only those
passageswhich seem essential for a full understanding of the problems dealt with

19 I rather leave this task to the professional staff of the Leibniz Research Centre at the University
of Münster.
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here. These passages have been translated into English, while the original Latin
text is reproduced in the footnotes.

3.1 The first draft

August 1st, 1690
Each categorical proposition can be conceived as a simple term to which either ‘is’ or ‘is
not’ is added (“secundi adjecti”). Thus ‘Every man is rational’ can be conceived as ‘Man
not-rational is not (or is “not being”)’.
‘Some man is learned’ yields ‘Man learned is “being”’
‘No man is a stone’ yields ‘Man stone is “not being”’
‘Some man is not learned’ yields ‘Man not learned is “being”’
From this conception the laws of conversion and of opposition become immediately evident.
Thus, the UN and the PA can be simply converted because in the above reduction both terms
are treated in the same way. Nevertheless it is evident that the reduced version differs from
the original one, i.e. ‘Some man is learned’ is different from ‘Man learned is “being”’ since
by the latter it is simultaneously expressed that someman is learned and that some learned
is a man.
There is an opposition between the UN and the PA, namely between ‘AB is not “being”’ and
‘AB is “being”’.
There is an opposition between the UA and the PN, namely between ‘A Not-B is not “being”’
and ‘A Not-B is being”’.

Leibniz begins his investigations with the homogeneous Schema 3 in which the
laws of opposition are trivially satisfied. Clearly, the formula for the PN, P(A ∼ B),
is the negation of the UA, ¬P(A ∼ B), just as the PA, P(AB), directly negates the
UN, ¬P(AB). The next step, however, turns out to bemuchmore difficult to prove:

But let us see how subalternation or subsumption can be derived from our conception.
‘Every man is an animal’, therefore ‘Some man is an animal’. ‘A Not-B is not “being”’,
therefore ‘AB is “being”’.
‘No man is a stone’, therefore ‘Some man isn’t a stone’. ‘AB is not “being”’, therefore ‘A
Not-B is “being”’ and ‘B Not-A is ‘being”.
The following inference is not valid: ‘AB is “being”’, hence ‘A Not-B is not “being”’.
That something is not “being” cannot be inferred in a regular way unless there is a
contradiction such as ‘A Not-A is not “being”’.

According to Schema 3, the laws of subalternation amount to the conditions that¬P(A ∼ B) entails P(AB), and that ¬P(AB) entails P(A ∼ B), respectively. In other
words, at least one proposition from the pair P(AB),P(A ∼ B)must be true. It may
well happen that both propositions are true, for, as Leibniz rightly remarks, the
truth of one proposition, say P(AB), doesn’t entail that the other, P(A ∼ B), has to
be false. In general, a negative proposition of the type ¬P(B) can only be proven
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by finding a contradictory conceptA ∼ A contained in B. Anyway, Leibniz goes on
as follows:

This inference must be proved: ‘A Not-B is not “being”’, hence ‘AB is “being”’ i.e. this
inference must be proved: ‘Every A is B’, therefore ‘Some A is B’.
I have proved this inference somewhere else as follows: ‘Every A is B’. ‘Some A is A’;
therefore ‘Some A is B’. But this proof presupposes a syllogism of the First figure. Namely
‘Every A is B’; ‘Some C is A’, therefore ‘Some C is B’. By reduction: ‘A Not-B is not “being”’,
‘AC is “being”’, therefore ‘CB is “being”’. How can this inference be proved?

Leibniz here reminds himself that the wanted proof of:

Poss 6*: ¬P(A ∼ B)→ P(AB).

might be obtained in the same way as, in a previous paper, he had derived the
informal law of subalternation from the syllogism Darii. On the background of
Schema 3, Darii takes the form

Poss 7: ¬P(A ∼ B)∧ P(AC)→ P(CB).

The “trick” of the syllogistic proof of subalternation consists in simply setting
C = A20. This yields the inference ¬P(A ∼ B) ∧ P(AA)→ P(AB), i.e. after an easy
transformation:

Poss 6: P(A)→ (¬P(A ∼ B)→ P(AB)).

The latter principle shows that Leibnz’s earlier subalternation principle Poss 6*
has to be restricted to self-consistent concepts A. For clearly, if one starts from the
impossible concept A = C ∼ C, then both AB and A ∼ B will be self-contradictory,
too. Furthermore, a proof of Poss 6 now becomes easily available, provided that
one iswilling to assumePoss4A,A ∈ B↔¬P(A ∼ B), as an axiom. For if¬P(A ∼ B),
then A ∈ B and hence A = AB (according to Cont 1); therefore the premise P(A)
immediately yields P(AB)!

Unfortunately, Leibniz did not discover this proof but continued as follows:

Since the validity of the inference [of subalternation] is not easily discernible from this
reduction [Schema 3], it cannot be regarded as the optimal resolution. Thus it is better to
reduce everything to equivalences, i.e. to equations:

20 Cf. “Of theMathematical Determination of Syllogistic Forms” in LLP, 107: “Subalternation [...]
is proved as follows: Every A is B, Some A is A, therefore Some A is B, which is an argument in
Darii.”
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A = YB is the UA, where the adjunct Y is like an additional unknown term: ‘Every man’ is
the same as ‘A certain animal’.
YA = ZB is the PA. ‘Some man’ or ‘Man of a certain kind’ is the same as ‘A certain learned’.
A = Y not-B. ‘No man is a stone’, i.e. ‘Every man is a not-stone’, i.e. ‘Man’ and ‘A certain
not-stone’ coincide.
YA = Z not-B. ‘A certain man isn’t learned’ or ‘is not-learned’, i.e. ‘A certain man’ and ‘A
certain not-learned’ coincide.

So Leibniz now resorts to the much more complicated and inhomogeneous
Schema 5* and he announces optimistically:

From these [representations] all principles are demonstrated, for example:
‘Everyman is an animal’; therefore ‘Someman is an animal’. For A = YB, hence ZA21 = ZYB.
Set ZY =W, then ZA =WB.
‘No man is a stone’; therefore ‘Some man is not a stone’; [is proved] in the same way. For
A = Y not-B, hence ZA = ZY not-B, i.e. ZA =W not-B.

These elliptic proofs are formally correct, for if there exists, e.g., a concept Y
such that (A = YB), one can choose some such Y, i.e. set A = YB. Hence for
arbitrary Z, ZA = ZYB; so if one sets ZY = W, it follows that ∃Z∃W(ZA = WB),
i.e. the PA according to Schema 5* is satisfied. However, this demonstration is less
worth than it might appear because — as was pointed out in section 2.2 above —
the conclusion ∃Z∃W(ZA = WB) is a tautology!22 Anyway, having thus »proved«
the laws of subalternation, Leibniz next turns to the principles of conversion. The
conversion of the PA is trivial:

‘Some man is learned’; therefore ‘Some learned is a man’. YA = ZB, hence ZB = YA.

But the corresponding conversion of the UN reveals a serious difficulty. Let us
consider Leibniz’s first approach which was afterwards crossed out:

‘No man is a stone’; therefore ‘No stone is a man’. A = YNot-B, hence Not-A = Not-(YNot-B)
= B. This inference presupposes the fundamental equation not- (YNot-B) = B, i.e. negating
that some are excluded is to put every.23

21 As has already been noticed in Cout 234, fn. 1, Leibniz erroneously wrote ‘ZB’ instead of ‘ZA’.
22 The same remark applies to the second proof where the formula for the PN, ∃Z∃W(ZA =
W ∼ B), is “derived” from the formula for the UN, ∃Y(A = Y ∼ B).
23 “Nullus homo est lapis, Ergo Nullus lapis est homo. A = Y non-B, Ergo non-A = non(Y non-B) =
B. Supponitur scilicet haec consequentia aequatio fundamentalis non(Y non-B)=B, seunegando
quendam excludi est poni omnem.” The text continues with the remark “Sed non patet et haec
consequentia A = B ergo non-A” then it breaks off.
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What Leibniz here temporarily assumes as a “fundamental equation”, viz.∼ (Y ∼ B) = B, can’t, however, be correct, because it would entail (by negating
both sides of the equation) that Y ∼ B =∼ B. Hence the premise A = Y ∼ B
would coincide with A =∼ B while as a matter of fact only A ∈∼ B holds by
assumption, but not conversely ∼ B ∈ A! Furthermore, if one explicates the
elliptic equation ∼ (Y ∼ B) = B by inserting the existential quantifier ∃Y, the
resulting formula ∃Y(∼ (Y ∼ B) = B) becomes a theorem of L224, but it doesn’t
correctly formalize what Leibniz had in mind when hemaintained that “negating
that some are excluded is to put [or affirm] every”. This cryptic remark appears
to be an anticipation of the modern law ¬∃y¬By ↔ ∀yBy which establishes a
logical relation between the existential and the universal quantifier (ranging
over individuals). But such a law cannot, as such, be formalized in L2 since the
quantifiers there range over concepts! Anyway, Leibniz must have noticed that
something is wrong with the above argument, for he deleted the passage and
continued as follows:

‘No man is a stone’, therefore ‘No stone is a man’ reveals a difficulty in this resolution.
Somewhere else we have proved this as follows. ‘Noman is a stone’. ‘Every stone is a stone’.
Therefore, ‘No stone is a man’. [This is a mood] in the Second Figure, but then the Second
Figuremust first be proved, although this is not difficult from our [investigations]. Let us first
exhibit the difficulty of the proof of the simple conversion of the UN.
A = YNot-B, hence B = ZNot-A. Let us make an analysis. If this inference is valid, then
A = YNot-(ZNot-A). Thus it must be shown that A and YNot-(ZNot- A) are the same, e.g.,
‘man’ and ‘some not-(some not-man)’ coincide, for an arbitrary thing besides man is a
certain not-man. Any such thing, for example ZNot-A, can be called W25. Then we obtain
A= YNot-W. Forman, at any rate, is oneof those thingswhichareNot-W. Otherwise a certain
A would beW, i.e. XA = TW or XA = TZNot-A which is absurd. For if ‘A = YNot-W’ is false,
then ‘XA = TW’ is true. This inference still has to be confirmed.

The last paragraph is difficult to understand because of three reasons. First, the
subject matter itself is logically quite complicated. Second, Leibniz’ “elliptic”
formalization by means of the indefinite concepts Y, Z, W, X, and T doesn’t
make entirely clear which one is to be taken as an existential, and which one as
a universal quantifier. Third, Leibniz several times switches between an entirely
abstract and a more concrete level where concept A is replaced by ‘man’. Let’s try
to reconstruct his thoughts step by step!

24 For let Y be =∼ B; then ∼ (Y ∼ B) =∼ (∼ B ∼ B) =∼∼ B = B!
25 For the sake of an easier exposition, I have replaced Leibniz’s ‘M’ by ‘W’; therefore in the
subsequent passage it became necessary to put ‘X’ for ‘W’.
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On the background of Schema 5*, the law of conversion which Leibniz tries to
prove here amounts to a variant of the principle of contraposition. For in view of
Cont 1, the former Neg 2, i.e. (A ∈∼ B)→ (B ∈∼ A), is equivalent to:
Neg 11: ∃Y(A = Y ∼ B)→∃Z(B = Z ∼ A).
Since Leibniz is not entirely sure whether this principle is valid, he argues
indirectly: If Neg 11 is correct, then — assuming that for some Y (i): A = Y ∼ B
— there has to exist some Z such that (ii): B = Z ∼ A. But then ‘Z ∼ A’ may be
substituted for ‘B’ in (i), so that one obtains the (elliptic) equation (iii): A = Y ∼
(Z ∼ A). Next he tries to verify (iii) by setting W = Z ∼ A, thus obtaining (iv):
A = Y ∼ W. Now if (iv) -– or more explicitly (v): ∃Y(A = Y ∼ W) — would not be
true, in other words, if the UN ‘Every A is not-W’ according to Schema 5*would be
false, onemight infer that the PA, i.e. ‘SomeA isW’ or (vi):∃X∃T(XA = TW) is true.
Replacing ‘W’ again by the expression ‘Z ∼ A’, one would obtain (vii): ∃X∃T(XA =
TZ ∼ A), and finally by setting ‘V’ for ‘TZ’ one gets (viii): ∃X∃T(XA = V ∼ A)which,
as Leibniz maintains, is “absurd”.

This complicated proof raises a number of questions. First, is formula (viii)
really “absurd”, i.e. is it correct to generalize the former principle of consistency
Neg 3, A ̸=∼ A, in such a way that, for every Y and Z, YA must be different from
Z ∼ A:
Neg 12*: ∀Y∀Z(YA ̸= Z ∼ A)?
Second, is Leibniz’s inference from (v) to (vi) logically warranted, i.e. does the
falsity of the UN according to Schema 5*, ¬∃Y(A = Y ∼ B), entail the truth of
the PA, ∃Y∃Z(YA = ZB)? In a certain way, this question may trivially be affirmed
since the formula ∃Y∃Z(YA = ZB) itself is a theorem of L2.26 So what is at stake
here is rather, whether the corresponding inference still holds when Schema 5* is
amended to Schema 5. In other words, how could Leibniz prove the following law

Neg 13: ¬∃Y(A = Y ∼ B)→∃Y∃Z(P(YZ)∧ YA = ZB)?
We need not enter this difficult question here because Leibniz himself appears
to have felt that his »proof« of NEG 11 was not entirely conclusive. He continued
the essay with the subsequent considerations which emphasize the fundamental
character of the law of contraposition:

26 This proof is not trivial because Schema 5 is not homogeneous!
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‘Every man is an animal’, therefore ‘Every not-animal is a not-man’, A = YB is the same
as Not-B = Z Not-A. This inference is fundamental, and the two expressions are equivalent
because of the nature of ‘every’.
Thus I assume these principles: A = B, therefore Not-A = Not-B, or vice versa; and A = YB,
therefore Z Not-A = Not-B, i.e. if ‘man’ coincides with ‘a certain animal’, namely ‘rational
animal’, then ‘not animal’ coincides with ‘a certain not-man’. For this depends on the
transition from individuals to ideas. When I say ‘Every man is an animal’, then I want this,
that the men are found among the animals, i.e. if something is not an animal, it is neither a
man.
On the other hand, when I say ‘Every man is an animal’, I mean that the notion of animal
is contained in the idea of man. And the two methods of approach by notions and by
individuals are contrary to each other: Just as all men are part of all animals, i.e. all men
are included in all animals, so conversely the notion of animal is in the notion of man; and
just as there are other animals besidesmen, something has to be added to the idea of animal
to yield the idea of man; for by augmenting conditions [to the notion], the number [of the
individuals] decreases.

The draft ends with the following notes which are eventually crossed out and
continued in more detail on the backside of the paper:

The primary bases of a logical calculus.
‘A = B’ is the same as ‘A = B is true’;
‘A ̸= B’ is the same as ‘A = B is false’.
A = A.
A ̸= B Not-A.
‘A = B’, ‘A ̸= Not − B’ and ‘Not −A = Not − B’ are equivalent.27

This deleted passage has been added here because it shows once again that
Leibniz was inclined tomake the grossmistake of Neg 9*where ‘A = B’ is equated
with ‘A ̸=∼ B’.
3.2 The second draft

The primary bases of a logical calculus.
(1) ‘A = B’ is the same as ‘A = B is true’
(2) ‘A ̸= B’ is the same as ‘A = B is false’
(3) A = A
(4) A ̸= B Not-A

Instead of (4), Leibniz had originally formulated the weaker principle A ̸=∼ A, but
then he generalized Neg 3 by adding ‘B’. This amounts to the assumption that,

27 “Primaria Logici fundamenta: idem est A = B et A = B est vera. Idem est A non = B et A = B
est falsa. A = A. Eadem sunt A = B et A non = non B et non A = non B.”
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for every B, A is different from B ∼ A. In the formalism of L2 this principle takes
the form

Neg 14*: ∀Y(A ̸= Y ∼ A).
In contrast to Neg 3, Neg 14* is not unrestrictedly valid but holds only under the
assumption that A is self-consistent:

Neg 14: P(A)→∀Y(A ̸= Y ∼ A).
Take any A such that P(A), and assume, that for some Y, A = Y ∼ A. Adding ‘A’
on both sides of this equation yields AA = AY ∼ A, hence A = AY ∼ A. But this is
absurd because A was assumed to be self-consistent while AY ∼ A contains A ∼ A
and hence is impossible.

Leibniz goes on listing some further fundamental principles:

(5) ‘A = Not-Not-A’
(6) AA = A.
(7) AB = BA.
(8) ‘A = B’, ‘Not-A = Not-B’, ‘A not ̸= B’ are the same.

At the end of the last line, Leibniz had originally added ‘A ̸= Not-B’28 as another
formula presumably equivalent to the expressions of (8); but he immediately
recognized that this assumption is untenable. As a matter of fact, it would repeat
the gross mistake of Neg 9* according to which A = B is equivalent to A ̸=∼ B.
But, as Leibniz sets out to explain, only one “half” of this equivalence, namely
the inference A = B→ A ̸= B, is valid:

(9) If A = B, it follows that A ̸= Not-B. I prove this in this way. If it does not follow, let A =
Not-B (by assuming the contrary). Therefore (by hypothesis) B = Not-B, which is absurd. It
can also be proved in this way. B ̸=Not-B (by 4), therefore [because of the premise A = B] A ̸=
Not-B.
(10) If A = AB, there can be assumed a Y such that A = YB. This is a postulate, but it can also
be proved, for A itself at any rate can be designated by Y.
(11) If A = B, then AC = BC. But it does not follow: AC = BC, hence A = B. For let A = BC, then
one obtains AC = BC by [11]29 and (6).
(12) ‘A = AB’ and ‘Not-B = Not-B Not-A’ coincide.
(13) If A = YB, it follows that A = AB. I prove this as follows. A = YB (by hyp.), therefore AB =
YBB (by [11]) = YB (by 6) = A (by hyp.). Hence the universal affirmative can be expressed as
follows: A = AB or A = YB.

28 In the manuscript: ‘A non = non B’.
29 Leibniz erroneously has ’10’ here.
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A few comments are in order here.
– Principle (10) exhibits one of the few passages where Leibniz explicitly

uses the existential quantifier “there can be assumed a Y such that”. The
principle itself offers a straightforward application of the fundamental rule
of existential generalization, Exist 1, since from ‘A = AB’ it is inferred that∃Y(A = YB).

– The converse inference is later proved in (13) so that the UA can alternatively
be formalized by ‘A = AB’ or by ‘∃Y(A = YB)’.

– Principle (11) not only asserts the law of “addition”, Iden 6, but also states
that the converse principle of “subtraction”, AC = BC → A = B, is invalid.
Leibniz’s proof is a bit elliptic but it can be completed as follows: Let A = BC
in such a way that C is an “essential” component of “A”, i.e. such that A does
not coincide with B alone. Then the premise A = BC entails AC = BCC = BC;
but in this equation, AC = BC, one may not “subtract” concept C since by
assumption A ̸= B.

– Principle (12) represents a version of the law of contraposition, Neg 2, where
the ∈-expressions are replaced by equations according to Cont 1 .

Next Leibniz considers several other formalizations of the remaining categorical
forms:

The particular affirmative thus: YA = YAB or YA = ZB, or also AB = AB, i.e. AB is “being” or
[AB and AB] can stand for each other, or A ̸= A Not-B.
The universal negative ‘No A is B’ thus: A = Y Not-B, i.e. A = A Not-B, i.e. AB is “not being”.
The particular negative ‘Some A isn’t B’ thus: A ̸= AB, or A Not-B is “being”.

It is somewhat surprising to see that Leibniz considers no less than five different
formalizations for the PA. The fourth and fifth condition, ‘P(AB)’ and ‘A ̸= A ∼ B’,
are familiar from Schema 3 and Schema 2, respectively. The first two expressions,
‘YA = YAB’ and ‘YA = ZB’, are based on the idea of abbreviating ‘Some A’ by ‘YA’
and thus to represent the PA by ‘YA ∈ B’. This formula can be transformed by
means of Cont 1 into ‘YA = YAB’ or by means of Cont 4 into ‘YA = ZB’. But both
conditions are inapt to represent the PA, because, as was stressed several times
before, they are mere tautologies!30

The same holds for the third condition ‘AB = AB’ which, according to Iden 1,
is a primitive tautology of L1! The background for this unusual approach is an
idea already discussed in the GI. In § 128 Leibniz argues that if a PN ‘No A is B’

30 To be somewhat more precise, the corresponding formulas with added quantifiers, ∃Y(YA =
YAB) and ∃Y∃Z(YA = ZB), are theorems of L2.
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is true, then A = A ∼ B and hence (according to Poss 4a) “AB is an impossible,
or rather a false term”. Leibniz doubts whether such a “false” term may ever be
consistently usedwithin logical inferences. In particular, he is not certainwhether
the fundamental identity ‘A = A’ holds for such a “false” term. Therefore affirming
the identity ‘AB = AB’ (or affirming that ‘AB’ and ‘AB’ can “stand for each other”)
appears to be tantamount to saying that ‘AB’ is not a “false”, but a self-consistent
(“being”) term. Consequently, in § 152 he suggests to formalize the PA alternatively
by ‘AB = AB’ or by ‘P(AB)’. But a bit later (§ 155) he concludes that “all things
considered, then, it will perhaps be better for us to say that, in symbols at least,
we can always put A = A, though nothing is usefully concluded from this when A
is not a thing”.

The three formalizations of the UN are all correct. In view of the proof given
in (10), (13), ‘A = Y ∼ B’, or more explicitly ‘∃Y(A = Y ∼ B)’, is provably equivalent
to the standard requirement according to Schema 2, ‘A = A ∼ B’; and the other
condition ‘¬P(AB)’ is familiar from Schema 3.31 Finally, the PA can adequately be
represented either by ‘A ̸= AB’ according to Schema 2 or by ‘P(A ∼ B)’ according to
Schema 3. In what follows, however, Leibniz decides to continue with the simpler
Schema 2:

But let us see if the following alone are sufficient:
Univ. Aff. A = AB. Part. Neg. A ̸= AB. Univ. Neg. A = A Not-B. Part. Aff. A ̸= A Not-B.
If A = AB, then A ̸= A Not-B, i.e. Part. Aff. follows from Un. Aff.
Proof: Let A = A Not-B (by assuming the contrary). Since A = AB (by hyp.) we obtain A
Not-B = AB, which is absurd by (4). Or more briefly: A Not-B ̸= AB (by 4); if one substitutes
here ‘A’ for ‘AB’ (for they are equivalent by hyp.) one gets A Not-B ̸= A, Q.E.D.
If A = A Not-B, then A ̸= AB, i.e. Part. Neg. follows from Univ. Neg.
Proof: A not-B ̸= AB (by 4). Substitute ‘A’ for ‘A not-B’ (for they are equivalent, by hyp.), and
one gets A ̸= AB.
‘A ̸= A Not-B’ and ‘B ̸= B Not-A’ are equivalent, i.e. the particular affirmative proposition can
be simply converted.

So here again, like in the previous draft, Leibniz faces the problem of having to
prove the law of conversion of the PA which, in view of Schema 3, now takes the
shape of the following variant of the law of contraposition:

Neg 15: A ̸= A ∼ B↔ B ̸= B ∼ A.

31 It may be worthwhile mentioning that in a preliminary version of the text Leibniz had
erroneously mixed up the negation in the corresponding formulas: “Universalis negativa hic:
non A = YB vel non A = non AB”.
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A first attempt (afterwards deleted) runs as follows:

Proof: Set (1) A ̸= A ∼ B (by hyp.), then I say B will be ̸= B Not-A. For if this would not be
the case, then (2) ‘B = B Not-A’ would be true (by the contrary hyp.), and if this value of B
is substituted in (1) one obtains A ̸= A Not-(B Not- A) what is absurd because A = A Not-(B
Not-A).32

This argument is formally correct, and it could be accepted as a proof of Neg 15 if
the concluding assertion ‘A = A ∼ (B ∼ A)’ might be taken for granted. As a matter
of fact, this formula is a theorem of L1,

Neg 16: A = A ∼ (B ∼ A).
In view of Cont 1, Neg 16 says as much as A ∈∼ (B ∼ A), which can be derived
in L1 as follows: Since, by the trivial Conj 4, B ∼ A ∈∼ A, the ordinary law of
contraposition, Neg 2, entails ∼∼ A ∈∼ (B ∼ A) and hence, by eliminating double
negation, A ∈∼ (B ∼ A). However, this consideration doesn’t represent a real proof
of Neg 16 (nor, therefore, a proof of Neg 15), but only a derivation of one variant
of the law of contraposition from the other.33

Leibniz apparently was not satisfied with this result for he started a second
attempt:34

Proof: From A ̸= A Not-B it follows (by 9) B ̸= B Not-A. Therefore also conversely; or
immediately, ‘A = A Not-B’ coincides with ‘B = B Not-A’ (by 9), therefore also their negations
coincide. Q.E.D.

The problem with this “proof”, however, is that principle (9), which Leibniz here
relies on, is (much) too weak to warrant the crucial inferences. Leibniz must have
felt this, for he makes a third attempt.

32 “Demonstratio: Ponatur (1)A non=A nonB (exhyp.) ajo foreB non=B nonA. Sit enim falsum
si fieri potest, ergo verum erit (2) B = B non A (ex hyp. contraria) qui valor ipsius B substituatur
in 1 fiet A non = A non (B non A) quod est absurdum nam A = A non (B non A)”.
33 Conversely, Neg 2 may be derived from Neg 16 as follows. Assume ∼ B ∈∼ A, hence ∼ B =∼
B ∼ A (by Cont 1) and therefore (by Iden 5 and Neg 1) B =∼ (∼ B ∼ A); hence from Neg 16 (with
‘∼ B’ substituted for ‘B’), i.e. A = A ∼ (∼ B ∼ A), one gets A = AB, i.e. A ∈ B. Hence we have
shown (∼ B ∈∼ A→ A ∈ B), which is just one “half” of Neg 2; the second “half” follows in the
same way.
34 The following text was preceded by a deleted passage (not edited in Cout) which contains
the same idea: “Idem sic demonstrari potest A non = A non B (ex hyp.) Ergo (per 9) B non = B
non A.”
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Let us see if we can deduce ‘B = B Not-A’ from ‘A = A Not-B’ in another way. If A = A Not-B,
then AB = AB Not-B, hence AB is “not being”. But if we deduce ‘A = A Not-B’ from ‘AB’ is
“not being”, we might with equal justice deduce its reciprocal ‘B = B Not-A’.

This argument has to be reconstructed as follows: Since A = A ∼ B entails AB =
AB ∼ B, it follows that ¬P(AB). Hence, as a variant of principle Poss 4a one
obtains

Poss 8a: A = A ∼ B→¬P(AB).
Now ¬P(AB) is equivalent to ¬P(BA); therefore – Leibniz appears to argue — one
may conversely infer the reciprocal formula B = B ∼ A from ¬P(BA). But this
argument overlooks that, unlike Poss 4a, Poss 8a has only been proven as a
(one-way) implication but not as an equivalence! Again Leibniz must have felt that
his »proof« was not conclusive, for he made a fourth attempt:

Perhaps it can be proved as follows without making any supposition. Let AB be “being”,
then A ̸= A Not-B; for if Awould be = A Not-B, ABwould be = AB Not-B and so ABwould not
be “being” which is contrary to the hypothesis. With equal justice [it follows] B ̸= B Not-A.
When it is said that AB is “being” or not “being”, it is presupposed that A and B are “being”.
Let us see if it can be shown conversely: A ̸= A Not-B, therefore AB is “being”! Now if,
assuming A and B to be “being”, AB were not “being”, then one of them, A or B, would
evidently involve the contradictory of what the other involves. Let us assume, therefore,
that A involves C and B involves Not-C (fromwhich, again, it follows that B involves D and A
involvesNot-D, namelyD =Not-C). LetA = EC and B = FNot-C. Now EC = ECNot-(FNot-C)35,
i.e. EC contains Not-(F Not-C) (or, whatever involves C, involves the negation of that which
negates C). That is, A = A Not-B which is contrary to the hypothesis.
Therefore ‘AB is “being”’, ‘A ̸= A Not-B’ and ‘B ̸= B Not-A’ are equivalent, i.e. follow from
each other mutually.
Similarly, ‘AB is not “being”’, ‘A = A Not-B’ and B = B Not-A’ are equivalent.
So we have found the key which permits us to use the reduction of complex to incomplex
terms.

As the concluding sentence shows, Leibniz believes to have eventually found a
proof of the fundamental relation between “complex terms”, i.e. propositions of
type A ∈ B (or A ∈∼ B), and “incomplex terms”, i.e. assertions like ‘A ∼ B is not
“being”’ (or ‘A not-B is not “being”’). This fundamental relation, which in the GI
had been formulated, e.g., by Poss 4, now takes the shape

Poss 8a: A = A ∼ B↔¬P(AB).

35 This important principle (see Neg 17 below) had been underlined by Leibniz; this emphasis
obviously escaped Couturat’s attention.
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If this principle really had been proved, then also the crucial principle Neg 15,
which was intrinsically at stake all the time, could be considered as proven.
However, a closer inspection of the foregoing text reveals that only one “half”
of the equivalence, namely A = A ∼ B→¬P(AB), actually was proved36, while the
“proof” of the converse implication, ¬P(AB)→ A = A ∼ B, rests on two additional
(unproven!) principles, namely:

Poss 9: P(A)∧ P(B)∧¬P(AB)↔∃Y(A ∈ Y ∧ B ∈∼ Y).
Neg 17: EC = EC ∼ (F ∼ C).
Now, Poss 9 turns out to be deductively equivalent to Poss 8b 37, and Neg 17 is
easily shown to be deductively equivalent to Neg 16.38 Hence we end up with the
following situation.

At the beginning of the “Primaria Calculi Logici Fundamenta”, Leibniz listed
a number of fundamental principles, i.e. axioms which need not themselves
be proved but which may rightly be assumed as a basis for proving other
theorems. Among these “Fundamenta” he had originally subsumed the principle
of contraposition in the form of (12), A = AB↔∼ B =∼ B ∼ A. When Leibniz later
tries to derive the laws of the theory of the syllogism from the “Fundamenta”, he
is thrown back to the principle of contraposition. But now he is no longer willing
to use either (12) or its counterpart Neg 2, A ∈ B ↔∼ B ∈∼ A, as an axiom, but
obstinately tries to prove it. In the end, however, Leibniz at best derives (12) from
other principles like

Neg 15: A ̸= A ∼ B↔ B ̸= B ∼ A

36 This proof is exactly the same argument that had been analyzed above in connection with
Poss 8a.
37 Note, first, that Leibniz’s premises P(A) and P(B) are redundant. If ¬P(A), then A contains
every concept, hence in particular A ∈∼ B so that there exists a Y, viz. Y =∼ B, such that A ∈ Y ∧
B ∈∼ Y. Similarly, if¬P(B), B contains every concept, hence B ∈∼ A, so that again there exists a Y,
viz. Y = A, such that A ∈ Y∧B ∈∼ Y. HencePoss 9may be simplified to¬P(AB)→∃Y(A ∈ Y∧B ∈∼
Y). This principle is deductively equivalent to the crucial »half« of Poss 8b, ¬P(AB)→ A = A ∼ B,
i.e. ¬P(AB)→ A ∈∼ B, because (i) if there exists a Y such that A ∈ Y ∧B ∈∼ Y, then ∼∼ Y ∈∼ B and
hence A ∈∼ B; (ii) if conversely A ∈∼ B, then trivially there exists a Y such that A ∈ Y ∧ B ∈∼ Y,
namely Y =∼ B!
38 Since ‘E’ may be chosen in Neg 18 as an arbitrary concept, one may in particular set E = C
so that one obtains: CC = CC ∼ (F ∼ C), i.e. C = C ∼ (F ∼ C), i.e. an alphabetic variant of Neg 16.
Conversely, Neg 18 is immediately obtained from Neg 16, i.e. C = C ∼ (F ∼ C), by the “addition”
of ‘E’.
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Neg 16: A = A ∼ (B ∼ A)
Neg 17: CA = CA ∼ (B ∼ A)
which constitute just variants of the same law. Or he derives the principle of
contraposition from principles like Poss 8, Poss 9, which are in a certain sense
even stronger than Neg 2 and which should therefore also not be accepted as
“fundamental”.

Thedraft of the “Fundamenta” endswith somemiscellaneous considerations:

In each term A or not-A is contained, if A is not contained, not-A will be contained, and
the other way round; therefore ‘not containing A’ and ‘containing not-A’ are equivalent, or
‘A = Y not-B’ and ‘A ̸= ZB’ are equivalent, or ‘A =A not-B’ and ‘A ̸=AB’ are equivalent. Hence
bad.39
Hence we have arranged matters better in the following paper of 2 August 1690.
Not-AB is contained in not-B, or not-B = not-B not-AB.
If A = BC, is A : C = B where this is to be understood that C is removed from A? Reducing
this to primitive terms, let B = CE, then A = CEC or A = CE, so that A : C is not always = B.
So this is only valid in the case of primitive terms.
Wherever we generally have EB and ‘E’ is understood as ‘any’, ‘B’ can be substituted [for
‘EB’]; for taking [‘B’] for ‘[E]’40, one obtains EB = BB = B.
If not-AB ̸= A not-B, then not-AB = B not-A, and vice versa, i.e. ‘Not-AB ̸= A not-B’ and
‘Not-AB = B not-A’ are equivalent.

The first paragraph nicely illustrates one of the main problems of Leibniz’s logic
– the lack of the operator of conceptual disjunction! To be sure, the operator ‘A ∪
B’ might easily be introduced in L1 by definition, namely as the negation of the
conjunction of the negated disjuncts:

Disj 1 A ∪ B :=∼ (∼ A∩ ∼ B)
Furthermore, Leibniz appears to have known this “De-Morgan-law”, at least as a
law for the correspondingpropositional operators, α∨β↔¬(¬α∧¬β).41 Butwithin
all his drafts of a universal calculus, Leibniz never seriously took conceptual

39 This passage is missing in LLP.
40 Leibniz erroneously has ‘sumendo E pro B’ instead of ‘sumendo B pro E’.
41 Cf. Acad VI, 4, 899: “‘Or’ is the negation of a negative pair; it is worthwhile noting that while
the negation of a negation is an affirmation, the negation of a negative pair is not a simple
affirmation but an alternative affirmation; thus ‘Peter or Paul is coming’ is the same as to say
‘It is false that neither Peter nor Paul is coming’. This proposition can also be reduced to the two
following propositions: ‘If Peter is not coming, then Paul is coming’ and ‘If Paul is not coming,
then Peter is coming’.”
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conjunction into account. When he now notes that “in each term A or not-A is
contained”, hemay somehowhave “felt” that the tautological concept ‘A or not-A’
is contained in every concept B:

Disj 1 B ∈ A∪ ∼ A.
But since he doesn’t have the appropriate tool of conceptual disjunction at hand,
he tries to paraphrase this by means of propositional disjunction as

Neg 18* B ∈ A ∨ B ∈∼ A.
This, however, is just a variant of the invalid “half” of the notorious principle
Neg 8*. Leibniz gradually recognizes the invalidity of Neg 18* when he first
transforms it into the assertion that ‘B ∉ A’ and ‘B ∈ A’ are equivalent, and then
further into the statements that ‘A ̸= A ∼ B’ and ‘A = AB’ are equivalent, or
(according to Cont 4) that ‘∃Y(A = Y ∼ B)’ and ‘∀Z(A ̸= ZB)’ are equivalent.42

Furthermore Leibnizmentions the law∼ B =∼ B ∼ (AB), i.e.∼ B ∈∼ (AB), which
is easily shown to be deductively equivalent to the principle of contraposition,
Neg 2.43

Next he remarks that one may not simply “subtract” a conjunct C from the
“sum” BC. E.g., if B = CE and A = BC, so that BC = CEC = CE, it doesn’t follow that
B = E. The hint that such a “subtraction” is valid only in the case of primitive terms
most likely refers to the calculus of “real addition” which Leibniz had developed
above all in the paper “Non inelegans specimen demonstrandi in abstractis” of
around 1687.44

The next brief remark apparently has to be understood as follows: If a formula
α contains ‘EB’ where the indefinite concept E functions as a universal quantifier
(“any B”), then α[EB] entails α[B]. This law of L2,

Univ 1 ∀Yα[YB]→ α[B],

is rather trivial and it doesn’t seem to stand in any relevant relation to the other
problems and principles under discussion here.

42 It should be noted that during the last two steps of transformation, Leibniz interchanges the
variables ‘A’ and ‘B’.
43 Assuming Neg 2, the trivial AB ∈ B immediately yields ∼ B ∈∼ (AB). Conversely Neg 2 can be
derived as follows: Suppose A ∈ B; then A = AB and further ∼ A =∼ (AB); hence in ∼ B ∈∼ (AB)
one may substitute ‘∼ A’ for ‘∼ (AB)’ thus obtaining the desired conclusion ∼ B ∈∼ A.
44 Cf. Acad VI 4, 845–855; a discussion of this calculus may be found in Lenzen (2000).
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The final observation, however, once again appears to be related to the
notorious problemof the lack of conceptual disjunction. Leibniz somehow “feels”
that the negation of AB is equivalent to the disjunction of ∼ A and ∼ B:
Disj 3 ∼ (AB) = (∼ A)∪ (∼ B).
But since he doesn’t have ‘∪’ as a conceptual operator at hand, he tries to
paraphrase this law as the implication

Neg 19a* ∼ (AB) ̸= A ∼ B→∼ (AB) = B ∼ A.
which might as well be rephrased as the disjunction

Neg 19b* ∼ (AB) = A ∼ B∨ ∼ (AB) = B ∼ A.
Leibniz further recognizes that (because of the symmetry AB = BA) “vice versa”∼ (AB) ̸= B ∼ A would then entail ∼ (AB) ̸= A ∼ B, so that Neg 19a* might be
strengthened into the equivalence

Neg 19a* ∼ (AB) ̸= A ∼ B↔∼ (AB) = B ∼ A.
However, none of these variants is valid! Consider, e.g., the special case B =∼ A.
Then ∼ (AB) =∼ (A ∼ A) becomes the tautological concepts, ⊤, and Neg 19b*
therefore maintains, that ⊤ either coincides with A ∼ B = A ∼∼ A = AA = A, or ⊤
coincides with B ∼ A =∼ A ∼ A =∼ A. As a matter of fact, however, there are many
concepts A such that neither A nor ∼ A is a tautology!

4 Fundamenta Calculi Logici
August 2nd, 1690
The Bases of the Logical Calculus
(1) ‘A = B’ is the same as ‘A = B is a true proposition’.
(2) ‘A ̸= B’ is the same as ‘A = B is a false proposition’.
(3) A = AA, i.e. the addition of a letter to itself is here redundant.
(4) AB = BA, i.e. transposition makes no difference.
(5) ‘A = B’ means that one can be substituted for the other, ‘B’ for ‘A’ and ‘A’ for ‘B’; i.e. they
are equivalent.
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The following two paragraphs deleted by Leibniz are missing in Parkinson’s
edition although they had been edited by Couturat:

(6) What contains A not-A is “not being” or a “false term”.
(7) Every term contains A or not-A.

Principle (6) will be picked up in (9) below. (7) might theoretically be interpreted
as the correct principleDisj 2 according towhich every B contains the tautological
concept ‘A or not-A’. But there is little evidence that Leibniz had this interpreta-
tion inmind. In all likelihood,what hemeant is rather thewrong principle that, for
every B, either B contains A, or B contains not-A. As has been explained already
in section 2.1 above, the inference from B ∉ A to B ∈∼ A holds only in the rare
special case where B is an individual concept! The fact that Leibniz crossed out (7)
indicates that he recognized the invalidity of this principle. Anyway he continued
as follows:

(6) ‘not’ immediately repeated cancels itself.
(7) Therefore A = Not-Not-A.
(8) Further, ‘A = B’ and ‘A not ̸= B’ are equivalent.
(9) What contains ‘A not-A’ is “not being” or a false term; e.g., if C = AB Not-B, C would be
“not being”.

Principle (9) is just a variant of Poss 1, i.e. it defines that a concept C is impossible
if and only if C ∈ B ∼ B. In the margin Leibniz adds a grammatically awkward
remark probably to be connected to (9):

A false proposition results if, by the admittance of it, terms which are assumed as true yield
something false.

The following deleted paragraph45 was not edited by Couturat:

(10) In every term A or not-A is contained, i.e. if B ∉ CA (breaks off ).

Again it is theoretically possible that Leibniz here had envisaged the correct
principleDisj 2: B ∈ A∪ ∼ A, but in all likelihood he only repeated the old mistake
of assuming Neg 18*, i.e. (B ∈ A∨B ∈∼ A), or B ∉ A→ B ∈∼ A. For he paraphrased
‘B ∉ A’ by ‘if B ̸= CA’ before recognizing that it would be wrong to continue ‘then
B = D not-A’, i.e. B ∈∼ A.

45 (10) In omni termino inest A vel non A, seu si B non = CA (breaks off ).
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The following three articles are unproblematic.

(10) ‘A ̸= B’ and ‘B ̸= A’ are equivalent. This follows from (5).
(11) ‘A = B’ and ‘not-A = not-B’ are equivalent, for since A can be substituted for B by (5),
so substitution in ‘not-A’ yields ‘not-B’, i.e. for ‘not-B’ can be substituted ‘not-A’. Similarly
it is shown that ‘not-A’46 can be substituted for ‘not-B’. Hence, because A and B can be
substituted for each other, i.e. since A = B, also ‘not-A’ and ‘not-B’ can be substituted for
each other, i.e. not-A = not-B. But as not-A = not-B has been derived from A = B, so also
not-not-A = not-not-B, i.e. A = B, will be derived from not-A = not-B. Hence these truths
follow from each other or are equivalent.
(12) If A = B, then AC = BC. This is proved from (5). But it does not follow: AC = BC, therefore
A = B. For if A would be only = BC, then one would obtain (by 3) AC = BC.

(12) expresses the trivial principle Iden 6 together with the observation that the
converse implication is not valid. As was explained already in section 3.2, one
may not simply “subtract” a concept C from the equation AC = BC. The above
proof obviously has to be understood as follows: If A is “only” the same as BC,
i.e. if A does not coincide with either B or C alone, then A = BC nevertheless
entails AC = BCC = BC. Thus if subtracting C would be generally admissible, one
would obtain A = B in contradiction to the assumption that A coincides “only”
with BC.

The following paragraph deals with variants of the principle of consistency.
Themanuscript reveals that Leibnizwas searching, so-to-speak, for the »strongest
possible generalization« of Neg 3 (or its counterpart Neg 4). Leibniz started with
the simple Neg 4:

(131) If A = B, then A ̸= not-B, otherwise.47.

This version breaks off and is immediately replaced Neg 3:

(132) A ̸=∼ A48.

Next he strengthens this into:

(133) AB ̸= C non-B; and therefore also A ̸=∼ A; and in the same way (leaving out).49.

46 As was already noted in Cout 421, fn. 4, Leibniz erroneously has ‘A’ instead of ‘not-A’.
47 (12) “Si A = B sequitur A non = non B, alioqui”; this was not edited by Couturat.
48 In the original: A non = non A. This principle and the following variant had been numbered
as ‘(12)’ while the (final) (12) originally was ‘(13)’.
49 In the original: AB non = C non-B; atque ideo et A non = non A et eodem modo (omissis).
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This version is (partially) crossed out and modified as follows:

(134) B ̸=∼ B and even more generally AB ̸= C not-B. Proof. For let be (1) AB = C not-B; but
(2) AB = ABAB (by art. 3) and ABAB = ABC not-B (by no. 1 of this art.). Therefore, arguing
from the first to the last, AB = ABC not-B which is absurd according to (9), for AB would be
a false term, i.e. implying a contradiction.

Finally Leibniz inserts the concept letter ‘E’ in all subformulas ‘C non-B’ and thus
obtains the “official” version:

(135) B ̸=∼ B and evenmore generally AB ̸= C not-EB. Proof. For let be (1) AB = C not-EB; but
(2) AB = ABAB (by art. 3) and ABAB = ABC not-EB (by no. 1 of this art.). Therefore, arguing
from the first to the last, AB = ABC not-EB which is absurd according to (9), for AB would
be a false term, i.e. implying a contradiction.50

It has already been shown in section 3.2 that Neg 3may be generalized by adding
a concept C on the “right hand” side51 of the inequality B ̸=∼ B. Somewhat more
exactly, if B is self-consistent, then B can’t coincide with C ∼ B, for any C:
Neg 14 P(B)→ B ̸= C ∼ B.
Furthermore, in section 3.1 we already encountered the problem whetherNeg 12*
is valid, i.e. whether (or under which premises) concepts A and C may be added
on both sides of the inequality ‘B ̸=∼ B’ to yield ‘AB ̸= C ∼ B’. Leibniz himself now
provides an answer. As the proof of version (134) shows, AB ̸= C ∼ B, provided that
‘AB’ is not “a false term, i.e. not implying a contradiction”:

Neg 12 P(AB)→ AB ̸= C ∼ B.
Clearly, if AB = C ∼ B, then adding ‘AB’ on both sides of the equation yields
ABAB = ABC ∼ B, hence AB ∈ B ∼ B, i.e. ¬P(AB).

However, the corresponding argument of version (135) doesn’t represent a
proof for the stronger principle:

Neg 20* P(AB)→ AB ̸= C ∼ (EB).

50 Cf. Cout 422; in Couturat’s edition thewords ‘et eodemmodo (omissis)’ were retained because
they had (erroneously) not been crossed out by Leibniz.
51 Of course, every inequality δ ̸= ϵ is symmetric and may therefore be transformed into ϵ ̸= δ.
The “right hand side” of the inequality B ̸=∼ B here simply means the side which contains the
negation operator. If in contrast C is added on the “left hand side” (not containing ∼), then the
requisite premise is not P(B) but P(∼ B)!
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where a third concept, E, is inserted within the scope of the negation operator.
If A is compatible with B, it doesn’t follow that, for arbitrary concepts C and E,
AB ̸= C ∼ (EB). Contrary to Leibniz’s claim, ‘ABC ∼ (EB)’ is not generally a “false”
term!What can only bemaintained is that for any E compatible with AB, ABmust
be different from C ∼ (EB):
Neg 20 P(ABE)→ AB ̸= C ∼ (EB).52
The manuscript continues with some preliminary versions of (14) which have not
been edited by Couturat:

(141) AB = AB not-(C not-B)
(142)53 ‘A = B’ and ‘A ̸= not-B’ are equivalent. For let be A = B, then I say it follows A ̸= not-B.
For if (1) A would be = A not-B, one would obtain B = not-B (by (1)) what is absurd by 13.
Similarly, let A not be = not-B, then I say it follows A = B. For assume A ̸= (breaks off ).
(143) ‘A = A not-B’ and ‘A ̸= AB’ are equivalent. For let us first show that ‘A = A not-B’ entails
‘A ̸= AB’. For let be (1) A = A not-B; then I say it follows that A ̸= AB. For if we set, if this is
possible, (2) A = AB, then we get (from (1)) A = AB not-B what is absurd by (9), or we get
(from (2)) AB = A not-B in contradiction to (13). Let us also show that A = A not-B follows
from A ̸= AB. For if we set A ̸= A not-B and A ̸= AB (breaks off ).54

Somewhat surprisingly version 141 doesn’t deal with an inequality like those in
Neg 12 andNeg 20, but instead puts forward the equality AB = AB ∼ (C ∼ B)which
is just another version of the principle of contraposition:

Neg 16 B = B ∼ (C ∼ B).

52 Since C is an arbitrary concept, the exact meaning of textbfNeg 20 is better brought out by
means of a universal quantifier as P(ABE)→ ∀Y(AB ̸= Y ∼ (EB)). This principle may be proved
as follows. Assume (for the sake of reductio ad absurdum) that for some Y, say Y = C, AB = C ∼
(EB); “adding” EB on both sides yields ABBE = CEB ∼ (EB), hence ABBE = ABE contains the
contradictory concept EB ∼ (EB), i.e. ¬P(ABE). The converse implication ∀Y(AB ̸= Y ∼ (EB))→
P(ABE) also is provable; setting Y = AB, ∀Y(AB ̸= Y ∼ (EB)) entails AB ̸= AB ∼ (EB), i.e. AB ∉∼
(EB); a fortiori AB ∉∼ E (since ∼ E ∈∼ (EB) by Conj 4 and contraposition); thus bymeans of Poss
4a one obtains P(ABE).
53 Although in the manuscript (142) is standing on top of (141), it seems that it was composed
later. For (142) was squeezed in small letters in an empty space between (141) and (13).
54 (14)Aequivalent A = B et A non = non B. Sit enim (1) A = B, ajo sequi A non = non B. Nam si
esset A = non B foret B = non B (per 1) quod est abs. per art. 13. Similiter sit A non = non B, ajo
sequi A = B. Est enim A non = (breaks off ).
AB = AB not-(C not-B)
AequivalentA =A non B etA non=AB. Namostendamusprimo exA =A non B sequiA non=AB.
Esto enim (1) A = A non B ajo sequi A non = AB. Nam ponamus si fieri potest esse (2) A = AB, fiet
(ex 1) A = AB non-B quod est absurdum per 9 vel fiet (ex 1) AB = A non B contra 13. Ostendemus
et ex A non = AB sequi A = A non B. Nam ponamus A non = A non B et A non = AB (breaks off ).
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Version 142 once again contains the gross mistake Neg 9* of assuming that A = B
would be equivalent to A ̸=∼ B. Leibniz easily derives A ̸=∼ B from A = B, but when
he tries to construct a similar proof for the converse implication, A ̸=∼ B→ A = B,
he notices the error and breaks off.

Version 143 in a similar way repeats the mistake Neg 8* of claiming that A =
A ∼ B, i.e. A ∈∼ B, is equivalent to A ̸= AB, i.e. A ∉ B. Given the tacit assumption
that A is self-consistent, Leibniz’s proof for the implication A = A ∼ B→ A ̸= AB is
absolutely correct; but when he tries to construct a similar proof for the converse
implication, A ̸= AB→ A = A ∼ B, he once more notices the error and breaks off.

The final version of (14) runs as follows:

(14) If A = B, it follows that EA ̸= C not-FB. For EA ̸= C not-FA (by 13); therefore, substituting
(by hyp.) ‘B’ for the last ‘A’, EA ̸= C not-FB. It makes no difference when some proposition
is negated.

This proof is formally correct, but it heavily relies on principle (13) which, as was
shown above, is valid only in the case where concept F is compatible with EA:
P(EAF)! A similar critique applies to the subsequent paragraph:

(15) If A = FB, it follows that EA ̸= C not-FGB. For EA ̸= C not-GA (by 13). Therefore
substituting ‘FB’ for ‘A’ yields EA ̸= C not-FGB.

It remains a bit mysterious why Leibniz dealt with the complicated issue of
generalized principles of consistency at all in such a great detail. Probably he
was hoping to make use of them in the still unfinished business of proving the
principle of contraposition. This topic will be picked up in following paragraph 17.
First, however, in (16) Leibniz presents another proof of the simple principle of
consistency Neg 5*:

(16) If A = A not-B, then A ̸= AB. For A ̸= AB not-B (by 9), therefore (substituting ‘A not-B’
for ‘A’ by the hyp. here) A not-B ̸= AB not-B, therefore A ̸= AB.

Couturat thought that Leibniz here committed the fallacy of “subtracting” ‘C’ from
AC = BC to infer A = B.55 As a matter of fact, however, what is at stake is not an
equation but an inequality, and it is logically absolutely correct to “subtract” the
concept ∼ B from ‘A ∼ B ̸= AB ∼ B’ to infer ‘A ̸= AB’.

The following paragraph crossed out by Leibniz was not edited by Couturat:

“Scholion: In every term a given term is contained either affirmatively or negatively, e.g.
Every” (breaks off ).

55 Cf. Cout 422, fn. 2: “Ici Leibniz paraît conclure de AB = BC à A = B, ce qui n’est pas possible
en général...”.
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Here Leibniz considers once again the principle (A ∈ B ∨ A ∈∼ B) which holds
only for individual concepts, but not for arbitrary concepts. Since Leibniz crossed
out the sentence, he obviously recognized that the principle is invalid. The paper
concludes with the following four paragraphs:

(17) Not-B = not-B not-(AB), i.e. not-B contains not-AB, or not-B is not-AB.
This remains to be proved in our calculus.
(18) C = C not-(A not-C); follows from (17) by putting ‘not-C’ for ‘B’.
(19) ‘A = AB’ and ‘not-B = not-B not-A’ are equivalent. This is the conversion by contraposi-
tion.
For if (1) A = AB while (2) not-B = not-B not-(AB) (by 17), then putting ‘A’ for ‘AB’ in num. 2
yields not-B = not-B not-A. The other way round, if (1) not-B = not-B not-A, while (2) not-B =
not-B not-(AB) (by 17), joining (1) and (2) yields A = AB. (However, this inference is quite
dubious by the note to 12. For we have, though, B not-A = B not-AB, but does this entail
A = AB? Certainly, if BC = BD, then indeed C = D if C and B have nothing in common.)
(20) Not-AB ̸= Y not-B and Not-AB = Z not-A are equivalent, i.e. Not-AB ̸= not- AB not-B and
Not-AB =Not-AB not-A are equivalent; for ‘not-AB’ put ‘X’ on one side. For Not-AB contains
at least one of ‘not-A’ or ‘not-B’. So if it does not contain one, it will contain the other; which,
however, does not exclude that it contains both.

(17), (18), and (19) all represent variants of the principle of contraposition. Just
like (18) follows from (17) by substituting ‘∼ C’ for ‘B’, so conversely (17) follows
from (18) by substituting ‘∼ B’ for ‘C’. Furthermore, (18) (and hence also (17)) is
easily derivable from (20), because, e.g., the theorem A ∼ C ∈∼ C (Conj 3) entails∼∼ C ∈∼ (A ∼ C) (by Neg 2) and therefore C ∈∼ (A ∼ C), i.e. (18).56 As Leibniz
attempts to show in (19), the “normal” version of the principle of contraposition,
i.e. (A ∈ B ↔∼ B ∈∼ A), or (A = AB ↔∼ B =∼ (AB)), conversely follows from
(17). Leibniz first derives (A = AB →∼ B =∼ (AB)) from (17): ∼ B =∼ B ∼ (AB), by
substituting ‘A’ for ‘AB’ (which is permitted because of the premise A = AB) thus
obtaining ∼ B =∼ B ∼ A. Next Leibniz tries to derive the converse implication in a
similarway from (17), but here he encounters a difficulty. The premise∼ B =∼ B ∼A
in conjunction with (17), ∼ B =∼ B ∼ (AB), immediately entails that ∼ B ∼ A =∼
B ∼ (AB); but from this equation one may not simply “subtract” ‘∼ B’ to obtain∼ A =∼ (AB) (from which the wanted conclusion A = AB would easily follow by
Iden 5). Leibniz himselfwaswell aware of this problemand remindedhimself that
a “subtraction” is not generally validbut holds only in case of “uncommunicating”
terms.

In the final (20), Leibniz once more comes very close to discovering the law
Disj 3, ∼ (AB) ∈∼ A∪ ∼ B. But – let it be repeated – since he doesn’t have the

56 The idea of this proof was outlined in the GI; cf. §§ (76a) and (77).
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operator of conceptual disjunction at hand, he “has to” paraphrase this bymeans
of propositional disjunction as

Neg 21* ∼ (AB) ∈∼ A∨ ∼ (AB) ∈∼ B.
As was pointed out by Couturat in 1903, Neg 21* is invalid.57 Actually Leibniz
himself had noticed the invalidity of this principle already in 1686.58 Hence
his search for the “Fundamenta calculi logici”, which he carried out in August
1690, was not crowned with success. The derivation of Neg 2 from (17) remained
incomplete; and even if he had found a complete and sound derivation59, this
wouldn’t have been of great help since, as Leibniz noted above, the premise, (17),
still “remains to be proved in our calculus”.

The last quotation exhibits the greatest weakness of the brilliant logician – he
was too ambitious! Leibniz wanted to prove the principle of contraposition while
it should rather be considered (or, indeed, “has to” be considered)60 as an axiom,
i.e. a fundamental principle needed for proving other theorems but not itself in
need of being proved. It is a certain irony of fate that, by 1690 at the latest, Leibniz
had discovered all “Fundaments of the logical calculus” but still believed that he
had not yet achieved this goal.

Even though, then, the essays of 1st and 2nd August are not masterpieces
in the sense of finishing or rounding off Leibniz’s search for the fundaments of
a universal calculus of concept logic, they are apt to support Bertrand Russell’s
opinion on Leibniz:

Apart from his eminence as a mathematician and as the inventor of the infinitesimal
calculus, he was a pioneer in mathematical logic, of which he perceived the importance
when no one else did so.

57 Cf. Cout 423, fn. 3. The invalidity becomes even more obvious if one transforms Neg 21* (by
contraposition) into A ∈ AB ∨ B ∈ AB.
58 Cf. GI, § 105: “If A contains not-(BC), it doesn’t therefore follow that either A contains not-B
or A contains not-C [...]”.
59 E.g., Leibniz might have argued that since one »half« of the principle of contraposition, A ∈
B→∼ B ∈∼ A, has already been proved, the other “half”, ∼ B ∈∼ A→ A ∈ B, is easily obtained by
substituting ‘∼ B’ for ‘A’ and ‘∼ A’; one thus obtains ∼ B ∈∼ A→∼∼ A ∈∼∼ B, hence by the trivial
Neg 1 ∼ B ∈∼ A→ A ∈ B.
60 Of course, whether or not a certain principle must be assumed as an axiom depends on the
remaining axiomatic base of the calculus. If, e.g., Leibniz would have beenwilling to accept Poss
4b as an axiom, thenNeg 2might have been proved as follows. If A ∈ B, then by Poss 4b ¬P(A ∼
B), hence ¬P(∼ BA) or ¬P(∼ B ∼∼ A), i.e. (again by Poss 4b) ∼ B ∈∼ A.
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He did work onmathematical logic which would have been enormously important if he had
published it; he would, in that case, have been the founder of mathematical logic, which
would have become known a century and a half sooner than it did in fact.61

And thepresent investigationshopefully also support the following claimofmine:

Leibniz is the most important logician between Aristotle and Frege [. . . ] Leibniz’s logical
ideas were so far ahead of his time that even at the beginning of the 20th century they
remained, almost inevitably, misunderstood.62

5 Abbreviations of Leibniz’s Works
Acad = German Academy of Science (ed.), G. W. Leibniz, Sämtliche Schriften und

Briefe, Series VI, Philosophische Schriften, Darmstadt 1930, Berlin 1962 ff.
Cout = Louis Couturat (ed.), Opuscules et fragments inédits de Leibniz, Presses

Universitaires de France 1903; reprint Hildesheim (Olms) 1961.
GI = Generales Inquisitiones de Analysi Notionum et Veritatum, first text-critical

edition by Franz Schupp, Meiner 1982; cf. also Acad vol. 4, 739–788.
LLP = G. H. R. Parkinson (ed.), Leibniz Logical Papers — A Selection, Oxford

Clarendon Press 1966.

61 Cf. Russell (1946, p. 618 and 613/614).
62 Cf. Lenzen (1983, pp. 418–419).
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Winfried Löffler
Multiple Religious Belonging:
A Logico-Philosophical Approach

1 Introduction: A typically Western problem?
And whose problem?

In Austria and various other European states many official forms, e.g. for getting
a certificate of registration or enrolling a child in a school, contain a box to fill
in one’s “Religious Confession”. This box is usually rather small, it would hardly
be possible to fill in more than one religion, and there is also no need for that:
to most people the very idea of filling in more than one religion would sound
absolutely queer. It goes without saying for almost anyone that, if at all, one
can only belong to or be a member of exactly one religion.1 Multiple religious
belonging (i.e., roughly spoken, the “adherence” or “belonging” tomore than one
religion), hence, seems so obviously problematic that it ismore or less a non-topic
in the Western World. There are of course some remarkable personalities who
participated in more than one religion and whose live and fate found high public
attention.Many of themare RomanCatholics (Antony deMello, RaimonPanikkar,
Henri Le Saux, Hugo Enomiya Lasalle, Paul F. Knitter etc.), and a good part
of this attention goes back to the problems which they had with the official
Catholic church. This only underpins that multiple religious belonging is seen
problematic in the West. According to the distinguished theologian and expert
for Asian religions Peter C. Phan, however, things are very much different in
Asia: multiple religious belonging [MRB] is rather the rule than the exception in
certain regions of Asia2, since especially local religious identities often draw from
various religions and many people feel in a natural way connected to more than
one tradition. (Whether this is always appropriately called “multiple religious
belonging”, or whether it is rather a form of “practical inclusivism” will be a
matter of discussion in sections 3 and 7).

1 Explorative telephone calls in spring 2016 to Austrian authorities which are in charge of such
issues confirmed the suspicion that the topic is nonexistent there. It was partly even hard tomake
the question understandable and to keep away the suspicion of a mere hoax call.
2 Phan (2003, p. 498)
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But is MRB a topic for the philosophy of religion at all? Other disciplines,
or so one might be tended to think, could be more apt to address it, especially
theology, sociology, psychology and history of religion. Theological questions
concerning MRB might be those (and they are of a normative, not descriptive
kind): Asmembers of XY (Buddhists, Christians, . . . ), what should we think about
other religions and their members? E.g., what is the function of other religions
(perhaps their function in a larger-scale divine plan), and is there something like
salvation possible for their members? In the Christian realm, questions of that
fashion are often labelled as a “theology of the religions”. Some questions of the
sociology of religion concerning MRB might revolve around what forms of MRB
exist, how numerous they are in fact, whether they grow in number etc. These
questions are descriptive in nature, similar to the questions which the psychology
of religionmight pose: Howdopeople livingwithMRB feel and think? E.g., do they
feel enriched or do they, perhaps for a certain time, also suffer under a sort of bad
conscience? How can processes of adopting MRB be described and explained, be
it in cases of an individually andnewly adoptedMRB, or in caseswhereMRB is the
standard product of religious socialization? Likewise, the history of religionmight
raise descriptive questions about individual and collective MRB phenomena and
their developments in past and present.

What, finally, might be relevant philosophical questions revolving around
MRB? (Is there anything left to do at all for philosophers of religion, given the
previously mentioned and pretty long list of issues discussed by scholars from
other disciplines?) As philosophers are experts in questions of explication and
the clarification of concepts, such questions might obviously be these:
– What concepts (e.g. what concepts of “religion”, “belonging” etc.) are tacitly

in the background?
– Especially: What is the conceptually appropriate way to address the topic? In

the (in sum rather scarce) literature, the most frequent candidates are “mul-
tiple religious belonging”, “multiple religious participation”, and “multiple
religious identity”. But sometimes there is a worry being exposed whether
the former concepts might be too static and too much focused on religions
with clear members/participants – the Abrahamitic religions Judaism, Chris-
tianity, and Islam might be too much in the foreground here. “Multiple
religious identity” is proposed as a more open notion in that respect.3 The
question of appropriate concepts of course connects to descriptive questions
of religious studies here: it cannot be answered without a deeper look at the
self-understanding of believers of different religions. (Throughout this paper

3 See, e.g., Bernhardt and Schmidt-Leukel (2008)
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I will opt for “multiple religious belonging” as my working-concept. But this
is for mere pragmatic reasons, and there is no theoretical claim connected
with that option. All that will be said can also be reformulated using another
concept.)

– There are some concepts in the semantic neighborhood of MRB which are
not to be confused with MRB, especially “syncretism”, “patchwork spir-
ituality / religiosity”, “inclusivism / inclusivist religiosity”, “conversion”.
Nevertheless, a part of the literature seems to burdened with unclear con-
ceptual borders here. Again, explications might serve as a means of clarity
here.

– Lastly, philosophers of religion might ask the question whether MRB – in a
certain understanding of the term – is a rational position.4

In this paper, I will first propose that many of the philosophical questions
around MRB might ultimately go back to ambiguities in the notion of “religion”
(section 2). This leads to a clearer analysis of the various questions arising
around MRB and it is proposed that the greatest obstacles for MRB are to
be expected around the theoretical conflicts between religions (section 3); the
logical reasons for that are easy to identify (section 4). A promising conceptual
tool for estimating the chances for rational MRB is the familiar distinction
between exclusivism, inclusivism and pluralism which can be adapted for our
tasks. As one might expect, an exclusivist standpoint would make rational MRB
impossible and a pluralist one rather easily possible (section 5). On inclusivist
backgrounds, however, the question for MRB suggests a couple of logical distinc-
tions, and on the whole the prospects for rational MRB appear astonishingly poor
(section 6).

2 The background of the problem:
what is “religion”?

There is a wide consensus about the fact that there is no consensus in con-
temporary religious studies about an adequate definition of “religion”. As a

4 In ch.2 of my Einfuührung in die Religionsphilosophie (Loeffler (2006)) I defend the claim that
the question for the (ir-)rationality of religious beliefs should be regarded as the central task of
philosophy of religion; questions for the nature of religion and the religious mind, the functions
of religious speech and the structure of religious explanations are of course important, but they
are just subsidiary questions to the question for (ir-)rationality.
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consequence, many scholars today have more or less discarded this question
(which was highly topical some time ago). The reason is basically that “religious”
phenomena are too manifold to admit of a clear demarcation; sometimes even
their adequate description is difficult. Nevertheless, there are still some defenders
of “essentialist” and “functionalist” attempts to define religion. According to
“essentialists”, a “religion” is anything that displays a certain essential core (and
“the assumption of certain world-transcendent realities like gods, spirits etc.”
is a popular candidate which is often proposed as this core). However, this has
the somewhat awkward consequence that certain forms of Buddhism would not
be religions. And the general question might be raised whether any proposal
made here can ever be free of the perspective of certain religions which serve as
paradigms. Itmight just be aprejudice to see this reference to transcendenceas the
core of religion; but suchprejudices arenot harmless since theymight blindfoldus
for other important aspects of the religions. “Functionalists”, on the other hand,
define “religion” as anything that fulfils certain functions, be it individually (e.g.
creating a sense of life and stabilizing the psyche) or socially (stabilizing certain
aspects of social life). An obvious problem of such functionalist definitions is
that they tend to be too wide; political ideas, sports, music, fashion, consuming
goods, engaging in social and charity activities etc. may have similar functions,
yet they are not religions. Furthermore, functionalist views fit best to traditional,
religiously homogeneous societies: for such societies, it appears plausible that
religions contribute to their stabilization. On the background of pluralist, partly
secular societies, however, it is not obvious what is being stabilized by religions.
What, e.g., is being stabilized by the various churches and religious associations
in a religiously pluralist state like Germany or the United States? Some religions
even take a clear critical stance towards the political and economic mainstream
in many countries (think of the Catholic Social Doctrine, or – as a more radical
example – religious terrorism); what is being stabilized by such (peaceful or
violent) critical forms of religion? The possible reply that, e.g., the religious
terrorist contributes to stabilize a fundamentally different conception of social life
seems rather far-fetched and artificial.

Given these shortcomings of essentialist and functionalist definitions, it
might be more appropriate to content oneself with a (broadly Wittgensteinian)
exemplary definition of “religion”: Although there is no general definition of
“game” (since games are toomanifold in their characters), the notion of a “game”
can be introduced in sufficient clarity by reference to some doubtless examples
of games and the various family-resemblances between these examples and
other cases. Likewise, it should be sufficient to begin with some doubtless and
well-understood examples of religions, list up some of their features (which they
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might, however, display in different degrees) and take this list as a guideline to
identify other religions via family-resemblances.

Religions as complex phenomena usually display the following features:5
– They are realized in a social group with more or less clear borders/member-

ships and inner social structures;
– within this group there can be “religious experts” or “functionaries” with

special roles, abilities, or competences (think of priests, munks and nuns,
media, prophets, templewardens and the like);

– there can be festivities, rituals, and other more or less formally fixed proce-
dures;

– many religions know significant (“holy”) places, times, and objects, there can
be “taboos” like untouchable things or persons, places forbidden to enter,
forbidden kinds of food or drinks, etc.

– religions contain some (more or less elaborate) theory-like core of claims
(“God created the world”, “God exists and is a Trinity”, “all conceptualiza-
tions of ultimate reality are illusions”, . . . )

– religions offer a (more or less elaborate) world-picture with descriptive and
evaluative aspects, e.g. they make proposals about what parts of “reality” do
exist, where we humans come from, where we will ultimately go, what goals
are “really” important in life etc.

– religions comprise a more or less detailed special code of behavior, which
may contain individual moral commandments as well as commandments for
social behavior;

– many religions expect (and partly cultivate) extraordinary states of the body
and/or the mind or extraordinary forms of communication (like meditation,
prayer, ecstatic states etc.)

It should be stressed that different religions may put a very different emphasis
on these features (even if probably any religion displays at least something from
each point this list). E.g. there are highly ritualized religions as well as others
who focus more on the moral behavior of their members, or others who are in
the first place an offer of a world picture. It may also be that religions change
their emphases in the course of their history (e.g., Catholicism before the 1960s
put much more emphasis on the exactness of detailed rituals than it does today;
conversely, Protestantism (at least in Central Europe) today has a tendency to
appreciate rituals somewhat higher than in the past). We shall see that these
variances between different religions also influence the possibilities of MRB.

5 The list is not exhaustive. See also Loeffler (2006) (footnote 4), 9–18.
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3 Where MRB problems appear
3.1 According to the Indonesian theologian Albertus Bagus Laksana6, discus-
sions about MRB revolve around one or more of the following three dimensions:

(1) around the practice of meditation;
(2) around questions of intellectual / theological assent;
(3) around questions of institutional affiliation.

If we take these three dimensions as the starting-point of a more general
reflection, we see that all the above-listed features of religion, can, in a loose
sense, also be grouped along these three dimensions; they fall into:

(1*) practical features: rituals, festivities, holy places, times, objects, taboos
etc., extraordinary of body states / mind states / communication forms (prayers,
meditations, ecstatic states, . . . );

(2*) theoretical features: theory-like core; World-picture, descriptive and
evaluative;

(3*) social features: social groups with memberships, structures, “experts”,
functionaries; religious code of behavior.

Laksana’s list appears somewhat overly specified (e.g., MRB might not only
become a topic concerning the practice ofmeditation, but also concerning rituals,
visiting holy places or observing religious holidays); but it is illuminating sincewe
could take it as standing pars pro toto for the three groups of features of religion.
Hence, we shall in a somewhat more general sense say that MRB problems may
appear on the level of the practical, the theoretical and the sociological aspects of
religions.

3.2 As a general hypothesis, I propose that it is the level of the social features
(3*) and (especially) of the theoretical features (2*) which tends to create problems
or obstacles for MRB. In somewhat more detail, one could presume that:
– The more a religion emphasizes “practical” aspects, the easier is MRB also to

other religions;
– the more a religion emphasizes its “theoretical” aspects, the more difficult is

MRB;

6 Laksana (2014)
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– the clearer-cut the social aspects are (e.g., memberships and internal struc-
tures), the more obstacles for MRB are to be expected;

– the more a practical feature is separable from theoretical ones, the easier
is multiple religious participation in it (examples might be inter-religious
activities to help the poor, or inter-religious New Year celebrations);

– MRB can become especially difficult where religions have clear-cut mem-
bership conditions and/or initiation rituals with an “exclusive” implication
(e.g., according to the standard interpretations of the Christian baptism or the
Islamic recitation of the creed (Shahada) for the first time, these rituals imply
a renunciation of all rival religious affiliations.

– One might add, for the sake of precision, that full-blown MRB should be
distinguished from a sort of “practical inclusivism” (i.e. the constellation
where persons would declare some religion to be their primary one, but
include various (especially) practical aspects, e.g. festivities, rituals and even
some beliefs from other religions into their own special shaping of religion.
The difference to MRB is that such people would presumably not feel as
members of more than one religion.

3.3 It is not always clear from the outset whether a phenomenon or a social
practice should be labelled as “(non-)religious”, and moreover these labelings
are not always uniform across different religions. For example, venerating the
family ancestors would be seen by many Chinese and Vietnamese people not so
much as a religious practice, but as a normal aspect of appropriate and decent
social behavior. Consequently, this practice is observed, e.g., also bymany atheist
party members, ancestors’ altars are found also in Christian Vietnamese families,
etc. Nevertheless, an important aspect of the Chinese rites controversy during
the 17th and 18th centuries between the Vatican and the Jesuit missionaries
revolved around these practices. The example might be insightful for the relation
between theoretical and non-theoretical features of religions; we shall return to
that relation in the next section.

4 The logical reasons of the problem
We have seen so far that MRB tends to cause problems when features on the
social level and especially on the theoretical level are involved, i.e. when person
somehow have to decide between social and/or theoretical options. But why is
that so? There is a simple logical reason for that: It is only theoretical claims
that can be contrary or contradictory to each other directly. It is usually only
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for theoretical claims that it makes sense to construe a decision situation of
the structure “P or non- P?”; where social or especially practical aspects are at
stake, apparently similar decision-situations might go back to a connection with
theoretical interpretations. This claim will be elucidated in what follows.

With few exceptions, practical actions (seen as such) cannot be contrary
or contradictory. E.g., lighting candles in a temple and in a church is as such
not contra(dicto)ry; celebrating Chinese and Western festivities is as such not
contra(dicto)ry; trying to learn from holy persons of different religious traditions
is as such not contra(dicto)ry. (There are, of course, certain metaphysical incom-
patibilities between actions: e.g., one cannot go to temple and church at the same
time, etc. But for the present topic of MRB such incompatibilities are irrelevant.)
Likewise, social features or actions (seen as such) are not contra(dicto)ry: For
example, being a member of two or more religions, being a Christian monk and
a Zen Master at the same time is as such not incompatible. The problems arise
when practical actions and social actions or features are connected with specific
theoretical claims fromone or both involved religions.Within a certain theoretical
framework, practical actions and social features/actions can become appear con-
tra(dicto)ry. E.g., a theoretical claim like “lighting candles in a holy place means
tacitly subscribing to all the doctrines which are taught there” might turn a rather
innocent practice into a veritable interreligious problem. (To name an example,
the famous 17th/ 18th century debates about the activities of Matteo Ricci S.J.
and other missionaries to China were also burdened by claims like “allowing
some Chinese rituals to Chinese Christians means denying God’s uniqueness”).
Apparently, some initiation rituals which are connected with declaring certain
theoretical beliefs (or rejecting some other beliefs) put up special obstacles for
MRB, when these declarations / rejections create logical incompatibilities with
other religions. The connection with theoretical beliefs might be patent and
obvious (as in the baptism of an adult, where the catechumen is explicitly asked
for certain beliefs), or it might result from a speech-act-theoretical analysis of the
ritual situation.

5 MRB and theoretical conflicts between
religions: three options

5.1 So far we have seen that MRB is most easily possible on the practical side
of religions; and that difficulties can arise where practical aspects are connected
with theoretical claims, and where clear membership borderlines are connected
with certain requirements of assent to theoretical contents. Seen from that angle,
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we might presume that in general MRB is easier for many Eastern religions (with
their focus on practical aspects, and few clear initiation rituals), and that a
lot of de-facto-MRB works smoothly without being a problem or without even
being noticed. In that sense, Laksana’s7 claim that “local cultural spaces” (with
their special mix of traditions) are more important for religious identities in
Asia than the adherence or the feeling of belonging to certain religions seems
plausible. Conversely, it appears that MRB tends to be difficult in religions with
a strong emphasis on theoretical aspects and clear membership and initiation
requirements, as in many Western religions. It his hence no surprise that many
of the prominent and notorious personalities in the MRB discourses (see section
1 above) were Catholics who faced many obstacles on their personal way.

5.2 Still, the foregoing considerations do not fully exclude MRB also in cases
where “theorycentered” religions are involved, and there are also some credible
examples for it. But in what sense is it logically possible and to what extent is it
rational?

The answer to these questions depends on the stance which a person takes
in the question of the logical relations between different religions. A plausible
conceptual approach to tackle this question is the usual and well-entrenched
distinction between exclusivism, inclusivism and pluralism, but it seems helpful
to begin with a qualification here. The distinction can be understood in two
different ways which are not always clearly distinguished: firstly in an episte-
mological (or, more specifically) truth-related way (i.e. as revolving around the
truth claims of one (or more) religion(s)), and secondly in a salvation-related
way, as a distinction of positions about the prospects of an ultimate salvation (or
other forms of ultimate fulfillment) for the adherents of one (or more) religion(s).
Salvationrelated exclusivists see a possibility of salvation only for adherents of
one religion, inclusivists see it also for adherents of a range of other religions
(perhaps with more difficulties, and provided they have sufficient similarities
to the own religion), and pluralists see it for the adherents of all religions.
The distinction is probably more often taken as a salvation-related one, but in
the present context it will be understood in the epistemological, truth-related
way.8 I.e. will ask for the rationality of MRB in cases where religions with a

7 See footnote 6 above.
8 Various combinations of the two readings are thinkable. E.g., one can be an exclusivist
concerning truth and yet have an inclusivist or even pluralist conception concerning salvation:
One might, e.g., think that only one religion contains true religious propositions, but that the
doctrine of this religion admits of a possible salvation of members of some or perhaps even all
other religions, their entirely false doctrines notwithstanding. This is in itself not inconsistent;
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strong theoretical side are involved – and this before the different backdrops of
exclusivist, inclusivist and pluralist standpoints concerning the truth-claims of
different religions.

5.3 Truth-related exclusivists hold that only one religion contains true reli-
gious propositions, and that hence all the others contain can only false religious
propositions.9 At closer look, such a position is in fact a very demanding one,
rather a matter for strong religious fundamentalists and probably hardly ever
defended seriously. E.g., it would require that even similar-sounding propositions
of other religions are entirely false. If two religions A and B hold doctrines, e.g.,
about some form of divine creator of the world, then an exclusivist interpreter
of A would have to consider the B-beliefs about the creator as entirely false –
i.e. not even as partially true, vaguely true, analogically true, verisimilar (or as
containing a grain of truth in some other form).10 It is easy to see that MRB (if
“belonging” implies the acceptance of at least one religious proposition of the
respective religion11) would appear as epistemologically irrational.

5.4 Truth-related inclusivists hold that only one religion grasps the full truth,
but that other religions may well contain many partial truths and valuable
insights. Inclusivism seems to be the position of Christian and Islamicmainstream
theologies, and also e.g. many Buddhists share it.12 It might seem that from an

the appearance of inconsistence emerges only when salvation is believed to be connected with
believing some or all of the true religious sentences.
9 The adjacent problem of the proper demarcation between religious and non-religious propo-
sitions is only mentioned, but not further investigated here. Exclusivists would probably not
incline to hold that members of other religions are wrong in all of their claims, be they religious
or non-religious.
10 Presumably, most purported “exclusivists” would at closer investigation rather turn out as
inclusivists who attribute only very few (and/or perhaps very general and/or unimportant) truths
to other religions.
11 The considerations in this and the following chapter are in many points inspired by the first
part of Bernard Bolzano’s Lehrbuch der Religionswissenschaft, here especially §§20–22. Bolzano’s
significance as a forefather of analytic philosophy of religion is still widely underrated.
12 A classical Catholic inclusivist statement is the Declaration “Nostra Aetate” (1965) of the
SecondVatican Council, especially ch. 2: “From ancient times down to the present, there is found
among various peoples a certain perception of that hidden powerwhich hovers over the course of
things and over the events of human history; at times some indeed have come to the recognition
of a Supreme Being, or even of a Father. This perception and recognition penetrates their lives
with a profound religious sense. Religions, however, that are bound upwith an advanced culture
have struggled to answer the same questions by means of more refined concepts and a more
developed language. Thus in Hinduism, men contemplate the divine mystery and express it
through an inexhaustible abundance of myths and through searching philosophical inquiry.
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inclusivist standpoint the prospects for rational forms ofMRB are better. However,
things are overall not as simple as they might initially appear; we shall hence
postpone the discussion of the possibilities of MRB under inclusivist assumptions
to a section of its own (sect. 6).

5.5 Truth-relatedpluralistshold that thedoctrinal corpora of all (or at least: of
all the major or more important) religions are equally true. Such a claim would of
course require some conceptual and/or logical devices to neutralize the apparent
contradictions between the religions. A usual approach to do this is to declare the
various religions as different versions of telling the same existentially important
truth about the central object of religion (a famous and well-known way to put
this is John Hick’s thesis that the (transcategorical) “Real” manifests itself in
various forms of appearance13). Provided that these logical problems can really be
overcome, it seems obvious that MRB would be possible and not particularly dif-
ficult from a pluralist standpoint, since the theoretical clashes between religions
vanish.14 But a requirement forMRB evenunder pluralist assumptions is of course
that the social aspects of the involved religions (including the “self-understanding
beliefs”, see 6.1 below) are not, e.g., perceived as leading to mutual exclusions
between religions. (Another question is of course whether the pluralist account
as such is plausible; we shall come back to this question in section 7.2 below.)

They seek freedom from the anguish of our human condition either through ascetical practices
or profound meditation or a flight to God with love and trust. Again, Buddhism, in its various
forms, realizes the radical insufficiency of this changeable world; it teaches a way by whichmen,
in a devout and confident spirit, may be able either to acquire the state of perfect liberation,
or attain, by their own efforts or through higher help, supreme illumination. Likewise, other
religions found everywhere try to counter the restlessness of the human heart, each in its own
manner, by proposing “ways,” comprising teachings, rules of life, and sacred rites. The Catholic
Church rejects nothing that is true and holy in these religions. She regards with sincere reverence
those ways of conduct and of life, those precepts and teachings which, though differing in many
aspects from the ones she holds and sets forth, nonetheless often reflect a ray of that Truth which
enlightens all men. Indeed, she proclaims, and ever must proclaim Christ “the way, the truth,
and the life” (John 14:6), in whom men may find the fullness of religious life, in whom God has
reconciled all things to Himself.” (My italics.)
13 Hick (1992)
14 A more radical variant of truth-related pluralism would of course suspend all realist claims
connected with religious language. Religious claims, under such a view, would not refer to some
objective transcendent reality which is described from different perspectives, but they would
just be internally true if uttered appropriately within the respective religious language-systems
which have no interesting relations between them. MRB would of course easily be possible here.
However, I fear that such an understanding of religion is at odds with the semantic intuitions of
most religious believers; hence it will not be further investigated here.
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6 MRB under inclusivist assumptions:
A surprising nest of logical problems

Let us now analyze the prospects of rational forms of MRB under inclusivist
assumptions. Although inclusivism will in itself be considered the preferable
option of the three (see 7.2 below), it will turn out that the possibilities for
(rational) MRB under inclusivist assumptions are less promising than one might
perhaps expect. More precisely, we shall see that some forms of MRB seem
theoretically easily conceivable, but they appear practically unrealistic (6.2),
whereas the more realistic and relevant forms of MRB will turn out surprisingly
difficult to specify (6.3): At closer inspection, although there is a huge spectrum
of possible logical relations between religious belief systems, not too many of
them endorse genuine and rational MRB. From a logical standpoint – so one
might summarize – things are not as simple as they might initially seem, given
the overall open and MRB-friendly appeal of inclusivism.

6.1 Three preliminary remarks on religious belief-systems and adherence: The
following considerations are based on a couple of idealizing assumptions and
provisos.15 A first one is that the actual sets of beliefs of the individual adherents
correspond to the so-to-say “doctrinal standards” of their respective religions (or
at least the average/mainstream sets of beliefs; we come to that point in aminute).
I.e., we abstract from the fact that in practice people sometimes arrange their
highly individual and non-standard sets of the beliefs they accept (or which they
know of and/or which they find relevant). Under this assumption we shall ask for
the prospects of logically consistent and rationally acceptable forms ofMRB given
that the involved persons have an inclusivist standpoint concerning the truths of
religious beliefs.

Another qualification is in place concerning the exact content of these
“doctrinal standards”. One might tend to believe that the doctrinal standards of
religions are simply to be equated with the entireties of their respective doctrines,
and adherencewould be simply defined by assent to these entire belief-sets. But it
was already Bernard Bolzano in the early 19th century who rightly observed that
there is a certain variety here and that the religion of a group is best defined as the

15 These assumptions are not especially connected with inclusivism. In principle they would
also be relevant for marginally more precise accounts of pluralism and exclusivism and the
possibilities of MRB there (hence they could also have been introduced in section 5 above).
However, since their impact and relevance is better seen in the context of inclusivism, they are
being introduced here.
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set of propositions that is believed bymost of the members of a group.16 Bolzano
said this on the background of a comparatively clear-cut religion like Catholicism
(with its Catechisms etc.); a fortiori it should be kept in mind for religions whose
stock of doctrines is fuzzier in character. It is hence not belief in the entirety
of doctrines which should be seen as defining the adherence to a religion, but
rather belief in amainstream or average set of them.Where set-theoreticalmodels
will be used below, the outer circles will hence represent such average sets of
beliefs.

Moreover, the relatedphenomenonofunequalweights of propositions should
be taken into account: not every doctrinal proposition of a religion has the same
importance and relevance for the adherence to a religion. This can be seen, among
others, by the role of creeds: creeds summarize the most important doctrinal
propositions assent to which is often regarded as necessary for adherence.17 In
the models below, there will hence be a (simplified) distinction between core
propositions (represented by the inner circles) and the average set of proposi-
tions (outer circles), and the former are always assumed to be subsets of the
latter.18

6.2 A first (but rather unrealistic) scenario of inclusivist MRB – total inclusion:
A general distinction for inclusivist scenarios seems to be the following: the
doctrines of a purported “including” religion can contain the doctrines of an
“included” one completely, or there might only be a partial overlapping between
the two19 involved religions. Let us begin with the theoretically conceivable case
that one religious belief-system A is completely “included” in another system
B, i.e. that the doctrinal propositions of A constitute a subset of B’s doctrinal

16 Bolzano, loc.cit., §22 n.4.
17 Catholic theology explicitly talks about a “hierarchy of truths” (see, e.g., Catechism of the
Catholic Church (1992), § 90), but similar views exist also in other religions. In Islam, the
affirmative recitation of the shahada, a sort of minimal creed (“There is no god but God.
Muhammad is themessenger of God.”) is even constitutive formembership. – There is of course a
mass of possibleweightingproblems lurkingherewhich I canonlymention: Should apersonwho
fails to believe inonemember of the core-set, but believes in thewhole average set be considereda
non-adherent? If no, should shebe consideredmore/less anadherent than someonewhobelieves
only in the core set, but not more? Can lacks in beliefs in the core be outbalanced by numerous
beliefs outside the core? Does adherence admit of degrees at all?
18 This is another idealizing assumption: What almost all members of a religion believe can
be more, less or even something different from the core propositions of that religion. I do not
address the questions of how and by whom the core propositions are singled out. Religions need
not necessarily have a clear-cut procedure or social mechanism to do that.
19 In order to keep things simple, we consider only the case of two involved religions.
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propositions, and that hence all adherents of B should eo ipso also be adherents
of A.20

Given our assumptions above, this theoretical case should now be some-
what specified: if what most adherents of A believe is a subset of what most
adherents of B believe, and if also the core propositions of A are a subset of
the core propositions of B, and if most adherents believe in their respective core
propositions, then most adherents of B should also be adherents of A. And this
would hence (in a sense) constitute a form of MRB. However, it appears doubtful
whether relevant examples for such a form really exist. Of course, quite clear-cut
sub-groups of certain religions do indeed exist, sometimes they define themselves
by additional doctrinal propositions which go beyond the mainstream doctrines.
(E.g., there are Catholic Christians whose religious life is centered around the
messages from certain controversial visionaries and/or places of pilgrimage,
i.e. they have a richer set of core of propositions.) In principle, regarding the
structures of belief-sets alone and leaving aside the aspect of self-understanding,
such a scenario would constitute a form of MRB would appear as rational. But
the adherents to such sub-groups would presumably not understand themselves
as adherents to a religion B of its own in addition to their religion A, but
rather as adherents to A with a special addendum or a special focus on certain
doctrines.

The foregoing considerations might remind us that there is a special ingre-
dient in the belief-sets of most adherents of religions which might in general
considerably reduce the prospects for genuine MRB: the belief that describes the
self-understanding of a person as an adherent of this or the other religion. Let
us call it, for short, the self-understanding belief. It is not necessarily a matter
of a private, subjective commitment, it might also well be a part of a collective
understanding of identity (“we A-adherents in distinction from the adherents of
B, C, ...”). Andonemight presume that this self-understandingbelief ranks among
the more important beliefs in the belief-system of a religious person. We shall
come back to these self-understanding beliefs later on.

6.3 Inclusivist MRB scenarios with partial overlapping: The case that the
sets of doctrinal propositions of the involved religions do not entirely, but only
partially overlap is the practically more relevant one, and it appears to openmore
logical space for MRB, at least prima facie. Given our foregoing considerations,
we might construct a variety of scenarios here. Again, we consider the case of

20 Those who find this claim prima facie counterintuitive are reminded that someone who
believes into a bigger set of doctrinesa fortioribelieves in a smaller one, but not conversely. Hence
the number of adherents shrinks with the number of accepted propositions.
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only two involved religions A and B, and we stepwise introduce qualifications as
before.

(i) The overlapping might comprise the whole sets of average beliefs (i.e. the
sets of beliefs which are held by most members of the involved religions A and
B), or this might not be the case. In the first case, it might seem hard to explain
why we speak of two separate religions at all, since the nonoverlapping areas of
the belief-sets will only contain non-standard additional beliefs of individual
believers or groups of them. Nevertheless, such a case is possible (e.g., the
de-facto overlapping between the entire “average belief-sets” of A and B might
have gone hitherto unnoticed); hence, if the self-understanding beliefs (“we are
A-adherents” and “we are B-adherents”) are not seen as mutually exclusive, then
MRB to A and B might be possible and rational. In the second case, however, i.e.
when the overlapping does not comprise the entire “average belief-sets” of the
involved religions, a purported MRB status would be – although psychologically
possible – not entirely rational, since it relies on (partial) self-deception: if
someone honestly believes to be an adherent of A and B, but fails to share the
average belief-sets of (one of) these religions, and if “adherence” goes along with
sharing standard beliefs, then she is not even fully rational in her beliefs about
her respective adherence(s), and a fortiori in her beliefs about her MRB status.

(ii) The aforementioned distinction between core propositions and other propo-
sitions of a religion complicates things also here. It is of course an empirical
matter how the average belief-sets of religions de facto relates to the respective
sets of their core beliefs: it is by no means excluded that the average belief-sets
of the adherents omit certain core beliefs (as they are singled out, e.g. in creeds,
catechisms, by renowned theologians, etc.) or even contradict them.21 But let us,
for the sake of simplicity, assume that the set of core beliefs is always a (proper
or improper) sub-set of the average beliefs of a religion, i.e. that the adherents
of a religion by and large believe in all the core propositions of their religion.
(Maybe they believe also inmore, but not in less and not in something different or
something incompatible with the core beliefs.) The following diagram shows that
even under such simplifying assumptions a lot of scenarios22 are conceivable, of

21 Such differences do not seem far-fetched; see – for the Christian realm – the familiar laments
about the hiatus between academic theology and the practice of faith and about the decline of
religious knowledge.
22 In the following diagrams, I assume that the set of the core propositions of a religion are
always a proper subset of the set of all its propositions, i.e. that every religion contains also some

 EBSCOhost - printed on 2/12/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use



256 | Winfried Löffler

which a non-complete23 selection will be graphically modelled here (outer circles
represent the averagebelief sets of the two involved religionsA andB, inner circles
represent their respective core beliefs; in the last scenario down right, the core
beliefs of A and B are supposed to be identical):24

A B A B A B

A B A B A B

I

A B

II

A B

III

A B
IV

A B

V

A B

VI

A B

non-core propositions. By dropping this (probably realistic) assumption for one or both involved
religion(s), some more scenarios are easily conceivable.
23 Throughout the models, I assume that the sets of average beliefs do always only partially
overlap and neither do they coincide nor does one include the other. Dropping this (realistic)
assumption would yield more possible scenarios. Moreover, many models (e.g. II and III in the
box) would allow “mirrored” versions if A and B are exchanged.
24 Another – in fact bold – assumption behind the following diagrams is the inner logical
consistency of the belief-sets of A and of B respectively.
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If we reduce our demands and take it as sufficient for the adherence to a religion
that all of its core beliefs are accepted,25 then it is obvious that only in the six
last (boxed) scenarios there can be forms of rational MRB; some of them by the
adherents of both religions A and B, some of them only by the adherents of one
of them.26

In sum, despite the open and inviting appearance of inclusivismwhichmight
raise the expectations also for MRB, our closer analysis suggests that rational
MRB is surprisingly difficult to realize. At closer look, namely, the six remaining
scenarios turn out quite demanding in practice (and hence probably not too
realistic): Scenarios III and V assume that the core of one religion comprises also
the full core of another (which raises the aforementioned problem whether the
two religions will understand themselves as distinct at all, and not modifications
of one).

Scenarios I and IVare less demanding in that point, but they assume that both
involved religions do not see any falsities (or lacking points) in their cores: both
cores aremutually accepted by both religions (see footnote 24 above) . In practice,
this is not too realistic, since different religions define and legitimate themselves
usually by some differences in the cores.

Scenario II assumes this only for one religion: In our diagram, religion A
would regard the entire core of religion B as a part of its non-core beliefs, but not
(entirely) vice versa. This might perhaps appear as the less demanding and most
realistic scenario, but it is affected by a coherence problem: The A-adherent –
if she should really feel as an adherent of B as well – should probably regard
the corebeliefs of B as core-beliefs. This does of course not raise a consistency
problem (since we assumed in footnote 24 that everything that A-adherents
believe is consistent), but a correlation or coherence problem: The A-adherent in
scenario II would in fact have two sets of core-beliefs in her belief set without a
guideline about how they correlate, how they hang together and how the internal

25 We need that assumption to make MRB possible at all: In our models, MRB is only possible
where someone subscribes to the core beliefs (and perhaps also to the average beliefs) of
one religion and at least to the core beliefs of another. Requiring more, i.e. requiring that she
subscribes to both average sets, would either require believing in something she actually does
not believe, or be a fallback into the model of total inclusion (6.2). – The assumption is one the
one hand not unrealistic and on the other hand not a contradiction: Since the average set is only
what most adherents believe, someone who only accepts the core beliefs does not thereby turn
into a non-adherent.
26 This is an interesting result in itself: The rationality of MRB is non-symmetric in character: If
it is rational for an adherent of A to be also an adherent of B, this does not imply that it is also
rational for an adherent of B to be also an adherent of A. However, it can be rational.
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weighting between them should be managed (core-beliefs, as we saw above, are
important and have the function to structure and to guide a religious world-view;
a multiplicity of incoherent sets of corebeliefs is hence at least pragmatically
difficult to live with).

Scenario VI, finally, presupposes that two religions have completely identical
cores. This invites, a fortiori, a similar objection to the one raised above against
scenarios I and IV.

6.4 Where inclusivist MRB tends toward pluralism: Nevertheless, especially
scenario VI (and perhaps, to a lesser extent also I, III and V) might have a certain
initial attractivity for friends of the possibility of MRB. What different religions
claim in their cores, or so the suggestion might go, is ultimately more or less
identical. Hence, anMRBwhich also comprises the theoretical aspects should not
be such a big problem. This position is of course viable, but it is probably at odds
with the usual self-understanding of religions and their belief-systems, and it is
hence not very realistic if taken as a still inclusivist position. In order to assimilate,
e.g. the doctrinal core-beliefs of Christianity, Judaism, Islam and Hinduism so far
that they can be regarded as identical, substantialmodificationsmust bemade (in
the first place, probably, omissions and/or generalizations of core doctrines). The
result of such an assimilation process, and an MRB based on it, would resemble
a pluralist re-interpretation of these religions more than an inclusivist position.

7 Taking stock
7.1 In a nutshell, the insights of the foregoing chapters might be summarized as
follows:MRBwhich does justice to the theoretical aspects of religion is impossible
in an exclusivist framework, easily possible under a pluralist one and more
difficult than onemight expect under an inclusivist one (the latter two alwayswith
the proviso that the social aspects of the religions do not erect too many practical
obstacles).

7.2 Hence, a complete answer to the question whether rational MRB is
possible will have to include a commentary on the preliminary question whether
the exclusivist, pluralist or inclusivist frameworks are plausible at all. It would
transcend the scope of this paper to take a detailed stance in this decades-long
debate, hence the following (unduly short) remarks do not intend more than to
adumbrate the author’s position. Exclusivism (as defined above in the demanding
sense that only one religion can contain true sentences at all) seems doubtlessly
false, given the obvious big similarities between many religions (many purported
“exclusivists” will probably rely on a self-misunderstanding and in fact be
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restrictive and non-generous inclusivists which grant other religions only few
correct insights).

Pluralism seems false as well, however in a much less obvious way. From
the many objections put forward in the literature,27 I mention only two very
striking ones: (a) Pluralism has to choose between the Scylla of substantial
re-interpretation of religious doctrines (tomake themmutually consistent in some
restricted interpretation) and the Charybdis of applying a hardly intelligible and
non-standard notion of the “truth” of religious claims. The “truth” of obviously
inconsistent religious claims under a pluralist interpretation seems to be rather
something like practical or spiritual utility for personal growth; in such a sense of
“truth”, linguistically inconsistent claimsmight indeedbe true. (b) Some religious
doctrines make explicit epistemological claims which are hard to reconcile with
religious claims, but also hard to re-interpret into a “less troublesome” form.
E.g. it is held in certain Buddhist traditions as a rather high-rank claim that “all
conceptualizations of ultimate reality are illusions”. There is no easy way at the
horizonhow to reshape this claim in a less literalway. But if this claim is amember
in the set of claims which the pluralist has to take seriously, then not all claims
canbe true. Inclusivism seemsby far themost viable and theoretically satisfactory
position. It does justice to the similarities and differences of the religions in a
plausible way. Much of what the pluralist claims in support of his position can
also be seen as a support of inclusivism. E.g., there are strikingly similar spiritual
values between many religions: the respect to and safeguarding of creation,
the striving for humanity, wisdom and self-cultivation, the ideal of universal
brotherhood, the preference for social order and the striving for a “sanctification”
of personal and social life, and some more. This phenomenon can be seen as
evidence not only for a pluralist, but also for an inclusivist standpoint. Similar
spiritual values would be hardly explainable if there were not strong theoretical
similarities between the religions. That the adherents of the individual religions
naturally see their religions as the ones grasping the full truth (or having at least
the optimal access to truth), need not be noxious. Especially, it can be sufficient
for a peaceful cohabitation in religious tolerance and cooperation, if the “solution
to the puzzle about the right religion” is left to God or the Ultimate Reality, and
human beings do not arrogate the position as a violent executor of purported
religious truths.

7.3 In sum then, the foregoing considerations suggest a rather limited space
for rational and genuine MRB: A truth-related reading of the debate between
exclusivism, inclusivism and pluralism suggests that pluralism (which would

27 For a similar position see, e.g., the clear exposition in Weidemann (2007), chapter 2.4.
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provide themost promising background for rationalMRB) is amuch less plausible
position than inclusivism. (Exclusivism can stay out of consideration anyway.)
But under inclusivist assumptions, the possibilities for rational and genuineMRB
turned out to be surprisingly marginal (or more precisely, they would hold for
rather unrealistic accounts of religion only). Moreover, it should not be forgotten
that even these rathermeager possibilities rested on a number idealizing assump-
tions about religionswhichwere invested to establish the rather simplifiedmodels
used above. Presumably, things aremuchmore complicated for “real life” forms of
religion (which would further reduce the logical space for rational genuine MRB).
All this suggests that many forms of purported “MRB” should at closer scrutiny
perhaps better be described as mere forms of practical inclusivism or and/or of
de-facto social multi-adherences without a full theoretical account behind them.
This should of course not be read as an invitation to disrespect or devaluate such
forms; even where their theoretical description and/or self-understanding might
be deficient, theymight still be valuable forms of enrichment from other religious
traditions and important bridges between them.28

28 I am indebted to Christian Tapp for various constructive comments on an earlier draft of this
paper.
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approach to definitions by abstraction by paying special attention to its Grass-
mannian roots and the teaching of elementary geometry in nineteenth century
Germany (especially to debates on the concept of “direction”). Moreover, I em-
phasized the originality of Frege in taking the extension of a concept as the value
of the abstraction operator thereby identifying, for instance, the direction of a
line a with the extension of the concept “x is parallel to a”. In this paper, I will
take for granted the results of that article and I will only flag my use of them by
referring to the article at the appropriate junctions. My attention in this paper
will focus on the logico-foundational analysis of definitions by abstraction in
the Peano school and in Russell. We will see that many of the philosophical
debates at the time foreshadowed contemporary debates in the neologicist
literature.
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1 Peano and his school1

In Mancosu (2015a), I pointed out that in 1887 Helmholtz referred to Hermann
Grassmann in describing the process that leads from an equivalence relation
to an identity of abstracta. His main examples came from physics (masses,
weights, temperatures etc.). Of course, Frege in 1884 had also, but without using
the terminology of abstraction, discussed the same type of concept formation
(through definitions that we now call ‘by abstraction’). In the same article I also
pointed out that Frege’s §64 in the Grundlagen is influenced by Grassmann and
especially the essay Geometrische Analyse of 1847.

(Peano, 1888) contains the first description by Peano of definition ‘by ab-
straction’. The terminology is not there yet (one has to wait to 1894 for the first
full explicit use of ‘definizione per astrazione’ in a review by Vailati) but all the
elements are in place. It is important to point out that the title of Peano’s work is
Calcolo geometrico secondo l’Ausdehnungslehre di H. Grassmann, which unequiv-
ocally shows Grassmann’s influential role in shaping reflection on abstraction in
the nineteenth century. In section 1 of this work, Peano defines equality between
twoentities of a certain system,written a = b, tomeana relationbetween elements
of the system that satisfies symmetry and transitivity. Interestingly, he only states
the properties but does not name them.2 In section 80, Peano gives examples of
relations that satisfy (1) neither symmetry nor transitivity; (2) symmetry but not
transitivity; (3) transitivity but not symmetry; (4) both symmetry and transitivity.
The latter are the important relations for definitions by abstraction. I recall that
when a relation R satisfies that for every a there is a b such that aRb, reflexivity
follows from symmetry and transitivity. His examples of relations that satisfy both
symmetry and transitivity are:
1. the number a is equal to the number b;
2. the number a is congruent to a number b with respect to a fixed module;3

1 On Peano and his school see Borga et al. (1985) and Roero (2010). On Peano and abstraction
with special attention to cardinal numbers see also Freguglia (1982).
2 The explicit use of notions such as reflexivity, symmetry and transitivity in the Peano school
seems to originate with Vailati (1892) and De Amicis (1892). Vailati in 1892 claims originality
for introducing the word ‘reflexivity’. De Amicis also credits Vailati with the introduction of
‘reflexivity’ and both credit de Morgan with the introduction of ‘transitivity’. De Amicis coined
‘convertible’ [conversivo] for what we call ‘symmetric’ but his terminology did not catch on.
Symmetric, in this sense, was introduced by Schröder in 1890.
3 This is the only time that a number-theoretic example is given in this context by the Peano
school. This occurrence does not contradict my claim in Mancosu (2015a) that number-theoretic
examples were not considered candidates for abstraction by Frege and the Peano school. In a
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3. the straight line a is parallel to the straight line b;
4. the straight line a coincides with the straight line b;
5. figure a can be superposed over figure b.

These are called equalities according to the definition given in section 1. The
relation of identity is a case of equality but not every equality coincides with
identity. Peano explains that one can define several equalities over a system of
entities depending on the specific properties of the entities one decides to take
into consideration.

Every equality between the entities of a system that is different from identity is equivalent to
the identity between the entities that are obtained from those of the given systemabstracting
from all and only those properties that distinguish an entity from those equal to it. Thus, the
equality “the segment AB can be superposed over the segment A󸀠B󸀠” is equivalent to the
identity between entities that can be obtained from every segment by abstracting from all
those properties that distinguish it from all those to which it can be superposed. The entity
that results from this abstraction is called the magnitude [grandezza] of the segment; the
former equality is thus equivalent to the identity of the magnitudes of the two segments. If
we agree to indicate identity with the sign =, the equality just considered can be written as

grAB = grA󸀠B󸀠

Analogously, the equality “the line AB is parallel to the line A󸀠B󸀠” can be written
direction AB = direction A󸀠B󸀠

and so on.4 (Peano (1888), pp. 152–154)

nutshell, the reason is that number theory in the nineteenth century workedwith representatives
of the equivalence classes and thus the function associated to the equivalence relation yields not
new abstract elements but rather elements of the domain over which the equivalence relation is
defined (so, numbers (minimal residues) in the case of congruence andminimal quadratic forms
in the case of quadratic forms).
4 Ogni uguaglianza tra gli enti di un sistema, diversa dall’identità, equivale all’identità tra gli
enti che si ottengono da quelli del sistema dato astraendo da tutte e sole quelle proprietà che
distinguono un ente dai suoi eguali. Così l’eguaglianza “il segmento AB è sovrapponibile al
segmento A󸀠B󸀠” equivale all’identità tra gli enti che si ottengono da ogni segmento astraendo
da tutte le proprietà che lo distinguono da quelli con cui è sovrapponibile. L’ente che risulta da
questa astrazione viene chiamato grandezza del segmento; l’eguaglianza precedente equivale
quindi all’identità delle grandezze dei due segmenti. Se conveniamo di indicare col segno =
l’identità, l’eguaglianza ora considerata si potrà scrivere:

grAB = grA󸀠B󸀠

Analogamente, l’eguaglianza “la retta AB è parallela ad A󸀠B󸀠” si può scrivere:
direzione AB = direzione A󸀠B󸀠

e così via.
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Peano comes back to the topic of definitions by abstraction in 1894 in his “No-
tations de Logique Mathématique”. After having discussed explicit definitions,
in §38 he turns to a new sort of definition that is important in mathematics
(there is no reference to Frege in Peano’s discussion). He actually does not quite
talk of ‘definition by abstraction’ but he claims that one introduces concepts by
abstraction and by doing so one defines an equality.

There are concepts that are obtained by abstraction which constantly enrich the mathe-
matical sciences but that cannot be defined in the stated form [namely, with an explicit
definition, PM]. Let u be an object; by abstraction one obtains a new object φu; one cannot
form an equality

φu = known expression

since φu is an object whose nature is completely different from all those that have hitherto
been considered. Hence one defines the equality by stating

hu,v .→: φu = φv . = . pu,v Def.

where hu,v is the assumption on the objects u and v; φu = φv is the equality that is being
defined; it has the same meaning as pu,v, which is a condition, or relation, between u and
v,5 with a well known meaning. (Peano (1894), p. 95)6

The claim that the left-hand side and the right-hand side of the equivalence have
the samemeaning will be repeated bymany in the Peano school but it is of course
something many people will dispute.7

Then Peano states that the equality among the newly introduced objects,
and a fortiori the equivalence relation, must satisfy the properties of reflexivity,

5 For typographical reasons, I have replaced throughout the Peano symbol for material condi-
tional with→.
6 “Il y a des idées qu’on obtient par abstraction, et dont s’enrichissent incessamment les sciences
mathématiques, qu’on ne peut pas définir sous la forme énoncée. Soit u un objet; par abstraction
on déduit un nouveau objet φu; on ne peut pas former une égalité

φu = expression connue,
car φu est un objet de nature différente de tous ceux qu’on a jusqu’à présent considérés. Alors on
définit l’égalité, et l’on pose

hu,v .→: φu = φv . = . pu,v Def.
où hu,v est l’hypothése sur les objets u et v; φu = φv est l’égalité qu’on définit; elle signifie la
même chose que pu,v qui est une condition, ou relation, entre u et v, ayant une signification bien
connue.” Frege makes parallel comments in Grundlagen, § 69; see Brandom (1986).
7 It is, for instance, denied byCrispinWright andBobHalewhohowever try to articulate inwhich
sense the left-hand side and the right-hand side of the equivalence have the same ‘content’.
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symmetry, and transitivity (this time using this terminology; see also Burali-Forti
(1894b)). I would like to draw attention to an important shift between this
presentation and the one in 1888. One of the examples given by Peano in 1888
was that of congruence in number theory. In 1894 congruence is not mentioned
among the examples. And this is certainly not on account of the fact that
congruence in 1894 had ceased to satisfy the relevant properties for being an
equivalence relation. Rather, the ontological spin given by Peano to definitions by
abstraction, namely what is introduced is a new object φu, does not capture what
happens in number theory in the nineteenth century where the object introduced
is usually a representative of the equivalence class and thus not a new object
(see footnote 4).

Peano says that a relation that satisfies the three properties in question
has ‘the properties of equality’. The object denoted by φu is what one obtains
considering all andonly the properties that it has in commonwith all other objects
v that are equivalent to u, so that one also has φv.

Peano then provides a list of examples, beginning with the theory of ratios in
Euclid. He also presents examples taken from arithmetic (broadly construed): the
introduction of rationals from the integers by means of pairs using Stolz (1885),
the introduction of irrationals as lim sups of sets of rationals. Moving to geometry,
Peano mentions the introduction of length and direction. About the latter he
writes:

The relation between two unbounded straight lines “a is parallel to b” has the properties of
equality. It has been transformed into “direction of a = direction of b”, or “point at infinity
of a = point at infinity of b”. One cannot define an equality of the form: “point at infinity of
a” = “expression formed with the words of Euclid’s Elements” (Peano, 1894, p. 47)8

The latter remark is doubly connected to the ontological role that Peano as-
cribes to definitions by abstraction. It is exactly because the entity is undefin-
able using the previous vocabulary that a definition by abstraction results in
something ontologically fruitful. But once again, I repeat, this also shows why
the normal use of abstraction in number theory is, from this point of view,
spurious in that the entity introduced (the representative) is simply one of the
old entities and thus definable if the old entity was definable or available as
a primitive entity. By way of further geometrical examples, Peano mentions

8 La relation entre deux droites illimitées “la a est parallèle à la b” a les propriétés de l’égalité.
Elle a été transformée en “direction de a = direction de b”, ou “point à l’infini de a = point à
l’infini de b”. On ne peut pas former une égalité de la forme: “point à l’infini de a” = “expression
composée avec les mots des Éléments d’Euclide”
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the introduction of vectors, quaternions as pairs of vectors, and concludes
with Cantorian cardinalities, points beyond infinity in hyperbolic geometry, and
Grassmann’s geometrical forms. He also warns that the introduction of definition
by abstraction is not always fruitful or desirable. He mentions as an unfruitful
abstraction the case of ‘shape’ (arising from similarity of geometric figures)
and then states that projectivity also satisfies the conditions for introducing an
equality.

In section 40, Peano comments on the fact that the equalities introduced
by a definition by abstraction are true identities and explains why there are no
failures of substitutivity (i.e. why one cannot argue from 2/3 = 4/6 and 2/3 is an
irreducible fraction to 4/6 is an irreducible fraction).

At this point, many people in the Peano school began writing about defini-
tions by abstraction. I will also recall that Russell in 1900 discovered Peano’s
contributions and this led to his (Fregean) techniques of eliminating definitions
by abstraction in terms of explicit definitions. But such techniques had also
already been anticipated by Burali-Forti, who will later repudiate them.

Let us consider Burali-Forti’s LogicaMatematica of 1894b.9 Burali-Forti offers
a taxonomy of definitions into four types and considers definitions by abstraction
as the fourth type in his classification (pp. 140–145). The exposition is very similar
to that given by Peano in 1894 although there are small variations in terminology.
Burali-Forti explains that such definitions are used “when the entity x that one
wants to define is obtained as an abstraction of a determined complex of known
entities”. The primary example discussed by Burali-Forti concerns the definitions
of the abstract entities ‘rational numbers’. Burali-Forti comments:

In some cases not even the previous type of definition [by postulates, PM] can be adopted.
This happens when the entity x that one wants to define is obtained as an abstraction of a
determined complex of known entities.

A rational number, for instance, can be defined as an abstract entity obtained from a
pair of integers. If m, n are integers, with m/n we indicate an entity which depends on m
and n and the mode of dependency, which can be stipulated at will (except for keeping in
mind what result one wants to reach), defines, by abstraction, the entity m/n.

In general: if u is the known entity (for instance, the pair m, n of integers), then the
thing that one wants to define (for instance, the rational number m/n), is a function φ of u.
For φu one needs to define the relation indicated by the sign =, saying what is the meaning,
for the things φu, φv, of the relation φu = φv. Such Def has the form

hu,v .→: φu = φv . = . pu,v

9 Burali-Forti’s Logica Matematica, in both the 1894 and 1919 editions, has been recently
reprinted with an insightful introduction by Gabriele Lolli (see Burali-Forti (2013) and Lolli
(2013)).
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where hu,v is the assumption relative to the things u, v; pu,v is the proposition, whose
meaning is already known, containing u, v, and that we set equivalent to the relation
φu = φv that has to be defined.10 (Burali-Forti (1894b), p. 140)11

However, Burali-Forti does not seem to realize that this only defines an identity
between terms of the form φu = φv and not an arbitrary identity φu = x (for an x
which is not given in the form φv, for some v). Indeed, he goes on to assert that
one can also provide an explicit definition of the class of entities:

The class H of entities defined as abstract functions φ of known entities u, v, . . . is defined,
by means of a definition of first species [i.e. an explicit definition, PM], by setting

H = xε(uεM.x = φu.– =u Λ)

where M is a known class, and this definition is read “H is the complex of entities x such
that there exists at least a u in the class M for which it holds that x is identical to φu”12
(Burali-Forti (1894b), p. 141)

Frege had given up definitions by abstraction because the equality x = φy, where
x is not given in the form φz, for some z, is not specified by the definition by
abstraction.13 One should add that in the Fregean case the situation was more

10 In certi casi neanche la forma precedente di definizione può essere adottata. Ciò avviene
quando l’ente x che si vuole definire, si ottiene come astrazione di un complesso determinato
di enti noti. Un razionale, p. es., può esser definito come ente astratto ottenuto da una coppia di
numeri interi. Essendo m, n due numeri interi, con m/n indichiamo un ente che dipende da m e
da n, e il modo di dipendenza, che noi possiamo stabilire ad arbitrio, (salvo il risultato al quale
si vuol giungere), definisce, per astrazione, l’ente m/n. In generale: se u è la cosa nota (p. es., la
coppia m, n di numeri interi), allora la cosa che si vuol definire (p. es. il razionale m/n), è una
funzione φ di u. Per φu bisogna definire la relazione indicata dal segno =, dicendo quale è per le
cose φu, φv, il significato della relazione φu = φv. Tale Def ha la forma

hu,v .→: φu = φv . = . pu,v

ove hu,v è l’ipotesi relativa alle cose u, v; pu,v è la prop. contenente u, v avente già significato
noto, e che poniamo equivalente alla relazione φu = φv da definire.
11 Burali-Forti immediately goes on to mention that, starting from an appropriate relation, one
can also define new abstractions on abstracts entities.
12 La classe H di enti, definiti come funzioni astratte φ degli enti noti u, v, . . . risulta, con una
definizione di prima specie, definita, ponendo

H = xε(uεM.x = φu.– =u Λ)

ove M è una classe nota, e tale definizione si legge “H è il complesso degli enti x tali, che esiste
almeno un u della classe M, per il quale x è identico a φu”.
13 On account of one of the examples used by Frege in his discussion this has become known as
the Caesar problem.
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dire on account of the need to use such equalities in contexts inwhich they simply
could not be eliminated.14

Burali-Forti discusses in detail the introduction of rational and irrational
numbers. He points out that the right-hand side in such definitions must be
given by a relation which satisfies the properties of reflexivity, symmetry, and
transitivity, – properties that are in turn inherited by the equality so that φu = φu,
if φu = φv then φv = φu, and if φu = φv and φv = φw then φu = φw. This
is followed by some geometrical examples with equivalence of plane figures,
parallelism of lines and planes (thereby introducing areas, directions or points
at infinity, and orientation [giacitura]). I remark that the relation of congruence
modulo a certain natural number is not given as an example (nor is any other
example from number theory). Finally, an interesting example comes with the
notion of ‘meaning’ [significato]. Burali Forti abstracts from logically equivalent
propositions to obtain the ‘meaning’ or the ‘value’:15

If A and B are propositions, the relation A→ B.B→ A or, A is equivalent to B, is reflexive,
symmetric, and transitive (p. 27).We obtain then from each proposition A the abstract entity
value of A or meaning of A: and we say that “The meaning of A is equal to the meaning of
B, just in case A is equivalent to B”. An analogous observation holds when A and B are
classes.16(Burali-Forti (1894b), p. 147)

When applied to classes, this principle is nothing else than Frege’s Basic Law V
(whether Burali-Forti had seen Frege’s 1893 work at this stage, I do not know;
Peano published a review of it in 1895). Finally, Burali-Forti explains that there
is no failure of substitutivity originating from the definitions by abstraction under
consideration. The examples are the sameas those Peanoused in 1894 concerning
irreducible fractions.17

14 The issue, which concerns Frege’s definition of the successor through the ancestral, has been
discussed at length in Dummett (1991), [Hale and Wright 2001], and [Heck 2011], just to name
three prominent examples from the extensive literature on this matter.
15 (Brandom (1986), p. 281 andp. 292) persuasively points out that all semantical notions inFrege
(sense, reference, thought, truth value etc.) are introducedbymeansof definitions by abstraction.
16 Se A, B sono proposizioni, la relazione A → B.B → A o, A è equivalente a B, è riflessiva,
simmetrica e transitiva (p. 27). Otteniamo allora da ogni prop. A l’ente astratto valore di A o
significato di A: e diciamo che “Il significato di A è eguale al significato di B, quando A è
equivalente a B”. Analoga osservazione vale quando A, B sono classi.
17 Così, p. es., 4/5 è frazione irreduttibile; ma 4/5 = 8/10; dunque 8/10 è frazione irreduttibile.
Il che è falso. Ed è falso perchè frazione irreduttibile, non è una funzione del razionale 4/5,
ma invece una funzione della coppia (4,5), diversa dalla funzione R‘(4,5) o 4/5. Se dunque
definiamo il razionale come una funzione di una coppia di numeri, con i termini frazione
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Aperusal of Burali-Forti’s work in set theory during this period shows that the
terminology preferred by him is that of ‘introduction of abstract entities’. Thus
in 1896a in his work on finite classes, he presents the Cantorian introduction
of cardinal numbers by means of a definition by abstraction and claims that
the left-hand side and the right-hand side of the equivalence have the same
meaning. The finite cardinalities are seen as ‘abstract entities’ which are the
values of functions with domain the finite classes (see note 1, p. 51).18 In his
1896b, Cantorian cardinalities and ordinal numbers are also introduced bymeans
of definitions by abstraction but without using this terminology and talking
about the introduction of ‘abstract entities’ which are functions of given classes
or, as Burali-Forti says in 1894a, p. 177, one can ‘define a class of abstract
entities’ (ordinal numbers) for which ’the identity is defined’ by the appropriate
equivalence.

In this 1894a paper, Burali-Forti refers to Peano (1894) which shows Peano’s
leading role in these reflections (we have already seen that Peano had written
about suchmatters already in 1888). As far as I havebeenable to establish, thefirst
complete and explicit use of the expression ‘definition by abstraction’ appears in
a review of Burali-Forti (1894b) written by Vailati in 1894. In the review, Vailati
says that “the Author [Burali-Forti] gives special attention to the particular case
of the so-called definition by abstraction [definizione per astrazione]”. From now
on the terminology becomes standard. Peano will use it in several articles and
contributions starting in 1899 (see Peano (1899a), p. 12; Peano (1899b), p. 135;
Peano (1900), p. 13, and then in many publications and reviews in 1901). Espe-
cially interesting is the definition given in the dictionary of mathematics where
he shows awareness that a definition by abstraction does not define in isolation
the terms flanking the equality on the left-hand side of the biconditional. He says:

Abstraction. In mathematical logic one calls “definition by abstraction” the definition of a
function φx with the form: φx = φy. = . (expression formed with previously given signs),
that is one does not define the sign φx in isolation, but only the equality φx = φy.19 (Peano
(1901c), p. 7)

irreduttibile non indichiamo più un razionale nel senso inteso prima.” (Burali-Forti (1894b),
p. 148)
18 Incidentally, a detailed study of this article by Burali-Forti would repay detailed attention. He
aimsat proving thePeanoaxioms for arithmetic from theabstractionprinciple for finite Cantorian
cardinalities using only the logical notions of class and correspondence.
19 Astrazione. Dicesi in logica matematica “definizione per astrazione” la definizione di una
funzione φx avente la forma: φx = φy. = . (espressione composta coi segni precedenti), cioè non
si definisce il segno isolato φx, ma solo l’uguaglianza φx = φy.
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In order to complete the treatment of the pre-Russell phase, let us consider briefly
Burali-Forti (1899), Burali-Forti (1901) and Peano (1901a), Peano (1901b).

Burali-Forti (1899) shows already from its title the preoccupation with a
characterization of equality, which is carried out in terms of the by now familiar
technique of introduction of new abstract objects through a function operating
on elements that are related by an equivalence relation. Using the standard
stock of examples (length, area, volume, shape, direction, orientation etc.) from
geometry (once again, congruency modulo n is not used), Burali-Forti recaps
the elements of the theory and the distinction between equality and identity.
The article is of interest only because it contains the roots of an ‘operator’
approach to the introduction of new entities, such as the rational numbers,
that Burali-Forti will in the following years try to present as an alternative way
to introduce by an explicit definition the entities normally obtained through a
definition by abstraction. Indeed, he claimed that his definitions of rational and
irrational numbers are to be considered as explicit definitions if the notions of
magnitude and correspondence are granted.20 Burali-Forti went on to claim that
it is onlywhenone cannot give suchan explicit definition that another approach is
necessary and lists the definitions of cardinal number, ordinal number, direction,
orientation, length, areas, volumes, mass, and temperature as relevant cases.
But rather than describing the usual definitions by abstraction, he proceeded to
show how in effect one can obtain any definition by abstraction as a consequence
of an explicit definition of the class of elements that constitutes the range of
the abstracting function. The text is hard to parse because rather than defining
the range through an equivalence relation on which the abstraction must be
considered, he defines the range by means of the function itself.

Moving now to the essential cases of definition by abstraction, Burali-Forti
explains that by saying that x is a length one claims that x is a simple element and
spells out this condition by stating that for such an element the phrase ‘y is an x’
does not have any meaning. He articulates a linguistic distinction between length
and length of. Suppose length(x) (‘length’ is not italicized) is the function given
by the definition by abstraction. For a specific segment a, length(a) is a simple
element called the length of a. Then Burali-Forti explains:

Whenwe say, for instance, that x is a length, wemean to say that x is a simple element that is
a function (for example) of a segment [this simply means that x = length(a) for a segment a,
PM], and this function [that is length(a), which is x] is common to all the segments that can

20 The same type of ‘operator’ approach is defended, in contraposition to the introduction of
rationals by abstraction, in Peano’s 1901a. For some considerations on Burali-Forti’s operator
theory, which I cannot further discuss here, see Lolli (2013).
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be superimposed to each other. If a is a segment, the function of a being considered [namely
length(a), that is x] is indicated by the phrase length of a. Thus, while the word length is a
commonnoun, a class, the word length of is a correspondence between the segments and
the class length. In the same way, cardinal number indicates a class and cardinal number
of indicates a correspondence between the classes and the simple elements that are the
elements of the class cardinal number.21 (Burali-Forti (1899), pp. 257–258)

Thus, length stands for a class containing the different lengths of segments, and
thus it is not a simple entity, whereas each length(a), for a segment a, is a
simple element which is a member of length. In the case of cardinal numbers
Cardinal is the class, thus a complex entity, of all simple elements that are
values of functions preserving equinumerosity. I will not get into the details of
the kind of advantage Burali-Forti thought he had accomplished by making this
move. He defined the notion of cardinal number as ‘one of the correspondences
f between classes and simple elements such that for any class u, the classes v
for which fv = fu are all, and the only, classes similar to u’. In his discussion
he also realized that this definition was not unique on account of the fact that
several functions could satisfy the relevant condition. The most important thing
concerning this contribution is that Burali-Forti thinks of the individual cardinals
(as opposed to the class Cardinal) as simple elements that cannot be further
analyzed. This is in contrast to Russell’s definition of each cardinal as a class of
classes.

In 1900, Russell met Peano and some members of his school in Paris and, as
is well known, this was a turning point in his intellectual career. At the meeting
in Paris, Peano had talked about definitions and Burali-Forti, who could not
be present, sent a contribution on the definitions of irrational numbers that
was read by Couturat. Peano (1901a) has nothing to offer22 on the matter of
definition by abstraction but Burali-Forti’s article (1901) goes back to the issue

21 Lorsque nous disons, par example, que x est une longueur, nous entendons dire que x est
un element simple qui est fonction (par exemple) d’un segment [this simply means that x =
length(a) for a segment a], et cette fonction [that is length(a), which is x] est commune à tous
les segments superposables entre eux. Si a est un segment, la fonction considérée de a [namely
length(a), that is x] est indiquée par la phrase longueur de a. Donc, tandis que le mot longeur est
un nom commun, une classe, le mot longueur de est une correspondence entre les segments et
la classe longueur. De même, nombre cardinal indique une classe, nombre cardinal des indique
une correspondence entre les classes et des éléments simples qui sont les elements de la classe
nombre cardinal.
22 Actually, in this paper (but this was added only in 1901 after the lecture was delivered), Peano
contrasts in a footnote (p. 286) the introduction of fractions by abstraction and the ‘operator’
approach he is championing.
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and is relevant for us. Burali-Forti claims to be able to classify all definitions into
three sorts: nominal, by postulates, and by abstraction. From the classification
he attempted to draw an important philosophical distinction between concepts
and intuitions. His idea was that any x that is defined by a nominal (explicit)
definition is a concept. Intuitions are those x’s that can be given only through
a definition by postulation or a definition by abstraction. It follows, according to
Burali-Forti, that whether something is a concept is an absolute notion, whereas
whether something is an intuition depends on the state of science. Indeed,
notions that were introduced by postulation (as in axiomatic systems) or by
abstraction might then be able to be explicitly defined at a later stage of research.
The formal characterization of definition by abstraction given by Burali-Forti in
this article is standard but he repeats that one can define nominally the range
of an abstraction function. For instance direction is {x : there is a straight line
a such that x = direction of a}. Notice that, as previously explained, there is
a difference between direction and direction of. The former is a class made up
of simple entities (the directions of a, for arbitrary segments a). On the basis
of this opposition between concepts and intuitions, Burali-Forti classified the
definitions of number given byDedekind andPeano (by postulates) and by Cantor
(by abstraction) all as intuitions. He then contrasted those definitions with his
definition of natural number, which he claimed to be an explicit definition. He
made the same claim for his theory of rational numbers and the integers. I will not
enter the details of the alleged explicit definition given by Burali-Forti for it would
force me to present his theory of magnitude. I will only mention that it is clear
that we have here some sort of foundational program that aims at eliminating
definitions by postulation and definitions by abstraction in favor of nominal
(explicit) definitions. I think this goal was also shared by Peano and affects
Russell’s approach to this issue. Regardless whether one can grant Burali-Forti
the successes he claimed, both Peano andBurali-Forti agreed that Cantor’s theory
of cardinal and ordinal numbers could not be reduced to explicit definitions at the
then current state of science.

2 Russell and Couturat
The above was the state of the discussion on definition by abstraction when
Russell discovered the Peano school and entered the fray with his article on
relations, Russell (1901). Not surprisingly, we find Russell emphasizing the
issue of when a definition by abstraction can be turned into a nominal def-
inition. There is a draft of Russell (1901) published in vol. 3 of the Collected
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Papers23 where Russell’s first reference is to Burali-Forti (1901) (Russell (1993),
p. 590). Even the first claim, in the original English version, about the advantage
of introducing functions defining them through the notion of relation is strictly
connected to the previous debate:

The following notation appears to introduce at once a simplification and a generalization
of manymathematical theories; and it enables us to render all definitions nominal. (Russell
(1993), p. 590)24

Russell’s contribution to abstraction have already been the subject of scholarly
scrutiny and thus I will be brief.25 Gregory Moore summarizes quite clearly the
major results of the paper on relation vis-à-vis definition by abstraction:

To obtain a definition of cardinal numbers, he [Russell] used what Peano called “definition
by abstraction”. That is, given an equivalence relation R, there is a functionφx such that xRy
if and only if φx = φy; thus, for example, the relation of one-one correspondence between
two classes x and y gives rise to the function “cardinal number of x” (Peano (1894), p.
45). But Russell regarded it as necessary, in order to obtain such a function φ (or, as he
preferred to put it, a many-one relation S), to introduce a primitive proposition stating that
any equivalence relation R can be written as the relative product of a many-one relation S
and its converse (V.I, §I, *6.2). He applied this primitive proposition, which in the Principles
he called the Principle of Abstraction (1903, p. 166), to the relation of similarity between
classes, thereby obtaining such a relation S; then he defined the class Nc of all cardinal
numbers as the codomain of S. But in a marginal comment by this definition, he recognized
the problem that S is not uniquely determined: “This won’t do: there may be many such
relations as S. Nc must be indefinable” (V.1, §3, *1.4). While in his first draft (Appendix
V.I) he freely referred to the cardinal number of a class without any mention of S, in the
published version (Paper 8) he took a particular S as given and only defined individual
cardinal numbers in terms of S. Nevertheless, sometime between February and July 1901, he
added a sentence to the effect that, for any equivalence relation R, we can always take the
equivalence class of a term u as “the individual indicated by the definition by abstraction;
thus for example the cardinal number of a class u would be the class of classes similar to u”
(8, 320). This was the famous Frege-Russell definition of cardinal number. Russell applied
it not only to the relation of one-one correspondence, in order to obtain cardinal numbers,
but to any equivalence relation whatever. (Russell (1993), p. xxvii)

23 Caveat lector: the English translation published by Marsh and corrected by Russell in 1956
has important changes with respect to the original, in particular on the issues I am discussing.
24 The 1956 translation reads like the French published text: “and it permits us to give
nominal definitions whenever definitions are possible”. (Russell (1993), p. 315) The reference to
Burali-Forti, which was in the English draft (Russell (1993), p. 590), was however removed from
the published version.
25 See, for instance, the analysis of Russell on definitions by abstraction given in Vuillemin
(1971), Rodriguez-Consuegra (1991), and Grattan-Guinness (2000).
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In Russell’s own words:

P6.2 is the converse of P6.1. It affirms that all relations which are transitive, symmetrical,
and non-null can be analyzed as products of a many one relation and its converse, and
the demonstration gives a way in which we are able to do this, without proving that there
are not other ways of doing it. P6.2 is presupposed in the definitions by abstraction, and it
shows that in general these definitions do not give a single individual but a class, since the
class of relations S is not in general an element. For each relation S of this class, and for
all terms x of R, there is an individual that the definition by abstraction indicates; but the
other relations S of that class do not in general give the same individual. [. . . ] Meanwhile, we
can always take the class ρx, which appears in the definition of Prop 6.2, as the individual
indicated by the definitions by abstraction; thus for example the cardinal number of a
class u will be the class of classes similar to u. (Russell (1993), p. 320; [preliminary English
draft of Russell (1901)])

According to Russell then, we obtain in this way a nominal definition of the
cardinality of a class (in addition to the concept of cardinality itself). Indeed,
in Principles of Mathematics (1903, p. 112) he will argue that the new theory of
relations is the only one that allows to give up both definitions by postulation
and by abstraction. Once again, he refers in a note to Burali-Forti (1901):

Moreover, of the three kinds of definitions admitted by Peano — the nominal definition, the
definition by postulates, and the definition by abstraction [a note here refers to Burali-Forti
(1901)] — I recognize only the nominal: the others, it would seem, are only necessitated by
Peano’s refusal to regard relations as part of the fundamental apparatus of logic, and by his
somewhat undue haste in regarding as an individual what is really a class. (Russell (1903),
p. 112)

Like Burali-Forti, Russell worries about the non-uniqueness of the relation S
(Burali-Forti’s worry was the analogous one about the function corresponding
to S). These latter issues will be central in the later discussion on Russell’s
transformation of definitions by abstraction into nominal definitions.

The treatment of abstraction in Principles is somewhat confused due to the
stratified nature of the composition of the text. In the middle of writing the book,
Russell discovered his technique for eliminating abstraction but some passages
in the text reflect an older state of things. This much he admitted in a letter, dated
December 10, 1903, addressed to Couturat who had asked for clarifications on this
matter (Russell (1993), pp. 726–727; Couturat’s letter was dated December 7, 1903,
see Schmid (2001), pp. 343–345).

In Principles, Russell proceeded, almost in Fregean manner, by first offering
a definition of number by abstraction only to criticize it and replace it with a
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nominal definition.26 Unlike Burali-Forti, Russell takes the values of the abstrac-
tion function to be classes and thus not simple entities. Peano in 1901b, p. 70,
explicitly provides a definition by abstraction of Cantorian cardinalities, using
the symbolism Num(a) for a class a, but explicitly rejects the idea of identifying
Num(a) with the class of all classes that are in one-one correspondence with
a, for he explains that Num(a) and the classes of classes that are in one-one
correspondence with it are “objects which have different properties.” It is unclear
whether Peano’s refusal to identify Num(a) with a class originates from a
belief, shared with Burali-Forti, that Num(a) must be simple or whether purity
of methods issues might be at stake.27 I will recall here that when Dedekind
discussed a proposal by Weber concerning a theory of number in which the
numbers are defined as classes of classes, he rejected the proposal exactly with
motivations very similar to those of Peano’s (see Reck (2003), p. 385). Dedekind
wrote:

If one wishes to pursue your approach I should advise not to take the class itself (the system
ofmutually similar systems) as thenumber (Anzahl, cardinal number), but rather something
new (corresponding to this class), something themind creates. (cited in Reck (2003), p. 385)

Russell rejected Peano’s position and claimed not to be able to see what these
different properties between the two entities might be. He added:

Probably it appeared to him immediately evident that a number is not a class of classes. But
something may be said to mitigate the appearance of paradox in this view. (Russell (1903),
p. 115)

Russell adduced some considerations for making it less objectionable to identify
numbers with classes and concluded that the strategy outlined for cardinal
numbers could be used in all definitions by abstraction:

Wherever Mathematics derives a common property from a reflexive, symmetrical and
transitive relation, all mathematical purposes of the supposed common property are
completely served when it is replaced by the class of terms having the given relation to the
given term; and this is precisely the case presented by cardinal numbers. For the future,
therefore, I shall adhere to the above definition, since it is at once precise and adequate to
all mathematical uses. (Russell (1903), p. 116)

26 I shall first set forth the definition of numbers by abstraction; I shall then point out formal
defects in its definition, and replace it by a nominal definition. (Russell (1903), p. 112)
27 Such objections are repeated in Burali-Forti (1909) and Catania (1911). According to
Burali-Forti a “simple entity is one that is not a class.” For Peano’s alternative conceptions of
the numerosity function see Mancosu (2015b).
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Russell’s main objection to definitions by abstraction consists in the fact that the
function postulated in the abstraction is not unique:

Now this definition by abstraction, and generally the process employed in such definitions,
suffers from an absolutely fatal formal defect: it does not show that only one object satisfies
the definition. Thus instead of obtaining one common property of similar classes, which is
the number of the classes in question, we obtain a class of such properties, with no means
of deciding how many terms this class contains. (Russell (1903), p. 114)

In section 111 of Principles two possible solutions to the lack of uniqueness were
discussed and eventually Russell settled for an identification of the number of a
class a with the class of all classes that are in one-one correspondence [similar]
to a. As we have seen, Russell proposed to apply this strategy to all definitions by
abstraction.

Couturat (1905) also rejects definitions by abstraction in favor of explicit
definitions obtained through Russell’s principle of abstraction. After having
explained what this principle amounts to, Couturat (1905, p. 50, note 1) uses a
turn of phrase that stems from Russell’s letter to Couturat from December 10,
1903: “Thus, the principle of abstraction does not lead to an abstraction but
on the contrary it allows one to dispense with abstraction and to replace it”28

28 “Le principe d’abstraction n’a donc pas pour resultat d’effectuer l’abstraction, mais au
contraire d’en dispenser et de la remplacer.” (Couturat (1905), p. 50, note 1) Since the exchange
between Russell and Couturat is not easily available I add the part of the correspondence
that is relevant here. Couturat to Russell, December 7, 1903: “Seulement, je voudrais avoir un
eclaircissement sur le principe d’abstraction. Vous dites (p. 166) que vous avez appliqué ce
principe aux nombres cardinaux. Or dans la 2e partie je ne vois pas que vous ayez fait usage
de ce principe, puisque vous y définissez le nombre cardinal comme une classe de classes (p.
115, 136). Et pourtant vous dites, dans votre Préface (p. IX), que le principe d’abstraction vous
permet de définir les nombres comme classes. C’est ce que je ne comprends pas. Vous n’avez pas
besoin de ce principe pour définir par ex. les classes équivalentes (similar); et ce principe peut
vous server à déduire d’une classe de classes équivalentes l’idée du nombre cardinal qui est leur
propriété commune. Il vous fournit donc les nombre cardinaux comme des entités singulières,
et non comme des classes de classes. De même, quand vous l’appliquez à des quantités égales,
il vous fournit la grandeur commune à toutes ces quantités, c. à d. une et identique en toutes.
Il semble que vous ayez oublié d’appliquer votre principe au nombre, car vous ne le formulez
explicitement que dans la 3e Partie (p. 166, 220) ce qui est un peu tard. Autre question: Quelle est
la valeur et la nature de ce principe? Ce n’est pas, apparemment, un principe premier, un axiome
indémontrable (Pp.). Mais alors, comment le démontrez-vous? Cela me paraît difficile, car il est
éminemment synthétique; en effet, il fait surgir d’une simple relation entre 2 entités une 3e entité
nouvelle. Ecrivons en symbols:
aSb.→ .aRc.bRc
(S sym. et transitive; R rel. uniforme [many one]).
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(see also Russell (1914)). Needless to say, this method of elimination is also
followed by Whitehead and Russell in Principia Mathematica even though the
set up is much more complicated on account of the predicative theory of types
motivated by the paradoxes.

Indeed, all would have been logically unobjectionable had it not been for
the discovery of Russell’s paradox. The discovery, which took place in summer
1901, i.e. in themiddle of writing Principles, affected the reduction of definition by
abstraction at least in those cases, such as cardinal (see section 111 of Principles)
and ordinal (see section 231 of Principles) numbers, where the classes (of classes)
turned out to be paradoxical. Russell already discussed this problem in Principles.
On p. 305 he admitted that his method of turning definitions by abstraction into
nominal definitions “is philosophically subject to the doubt resulting from the
contradiction set forth in Part I, ch.x”. In this connection, Russell referred to
the appendix of Principles where he discussed at length Frege’s system and the
contradiction he had obtained from the axioms postulated by Frege.

In light of the paradoxes it was not at all clear whether definitions by
abstraction could be dispensed with and, in the case of set theory, Weber [1906],
Weyl [1910], and Hausdorff [1914] were resigned to treat ordinal and cardinal
numbers as objects introduced by abstraction about whose nature nothing more
precise could be said.

The story of the various proposals addressing this paradox and the conse-
quences for abstraction principles would have to take on boardmost of the debate
on the foundations of mathematics between Principles and the formalization of
most systems of logic and set theory well into the thirties. This is obviously not
feasible here and the last section will instead look at the reactions within the

On comprend la déduction inverse:
aRc.bRc.→ .aSb (car S = RR̆)
qui élimine c, mais la déduction directe, qui introduit c (et même le determine) paraît un peu
forte, c. à d. paradoxale.” (Schmid (2001), pp. 343–344)
Russell replied as follows on December 10, 1903: “Au sujet du principe d’abstraction il se trouve
sans doute une obscurité dans mon livre, qui resulterait de ce que je l’ai accepté autrefois
comme axiome, tandis que je l’ai pu démontrer plus tard. La demonstration se trouve dans la
Revue de Mathématique Vol. VII: je crois que le numéro est 6.28, mais je n’ai pas le volume ici.
L’essentiel duprincipe, tel qu’il se démontre, est de substituer la classemêmedes objets dont il est
question à la qualitè hypothétique commune à tous ces objets. Au lieu de “principe d’abstraction”
j’aurais mieux fait de l’appeler “principe remplaçant l’abstraction”. Quand on a une relation S
symmétrique et transitive, la classe des objets qui ont avec a la relation S remplace, dans le
calcul, la propriété commune à tous ces objets, que suppose le sens commun. Je ne nie pas qu’il
y ait souvent une telle propriété, mais il n’est pas nécessaire de l’introduire; elle serait en général
indéfinissable, et la classe a toutes les qualités dont on a besoin.” (Schmid (2001), p. 346)
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Peano school to the Russellian solution and to the problem of accounting for
definitions by abstraction.

3 Padoa on definitions by abstraction and
further developments

One of the best papers written on definitions by abstraction is Padoa (1908).
Padoa starts with explicit definitions (which is his preferred terminology for what
Peano and Burali-Forti called nominal definitions). In an explicit definition one
sets a (definitional) equality between expressions meant to indicate that the new
expression is introduced as short hand for a longer known expression. In this way
the definiens acquires a meaning and the equality can be interpreted as ‘means’.
He then considered definitions by abstraction given in the following form. For
K a known class and R an equivalence relation, the form of any definition by
abstraction is:
1. If “a and c are (individuals belonging to) K” then “Fa = Fb” means “aRb”

where F is the function one wants to define. For instance: if “a and b are
polygons”, then “area of a = area of b” means a is equivalent to b. By keeping K
as the class of polygons and letting R denote similarity, respectively equivalence,
one defines the functions ’form of’ and ’area of’. He added:

Since the defined notation is “Fa = Fb”, equation 1 does not explicitly indicate either the
meaning of F or that of “Fa”. In other words, it only authorizes the use henceforth of the
sole expression “Fa = Fb”, because (using the reverse procedure) it teaches to substitute
only to this expression an expression of known meaning (“aRb”).29 (Padoa (1908), p. 94)

To begin with, Padoa entertains the possibility of considering that the defini-
tion by abstraction results in an explicit definition of the complex expression
“Fa = Fb”. He then asks whether this definition is arbitrary and points out that
the questionmight appear paradoxical since all nominal definitions are arbitrary.
Padoa argues as follows. In an explicit definition, say α, we have as a part of α the
definiendum that contains new vocabulary with respect to the language available

29 Poichè la notazione definita è “Fa = Fb” la 1 non indica esplicitamente il significato nè di F nè
di “Fa”. In altri termini, essa autorizza ad usar poi la funzione F nella sola scrittura “Fa = Fb”,
perchè (usando il procedimento inverso) solo a questa essa insegna a sostituire una scrittura di
significato noto (“aRb”).
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previously to introducing α. Itwould seem reasonable therefore that, using the old
language and theory available before the introduction of the explicit definition α,
α cannot be deduced from the theory. Padoa then rhetorically asks:would it not be
reasonable also to say that α cannot be contradicted in the theory available before
its introduction? But, he claims, this is not so, when the defined notion expresses
a condition whose principal symbols are already known.

In order to explain his point, Padoa focuses on a relation R defined on
objects of a class K. Padoa calls a relation R ‘egualiforme’ (I will translate this
as ‘equiform’) if it is reflexive, symmetric and transitive.30 Let me remark that this
is the first time that equivalence relations receive a special name to characterize
them. Now Padoa proves Theorem I, namely from the definition by abstraction
(1) if a and b are in K, “Fa = Fb” means “aRb”, one infers
(2) R is ‘equiform’ in K

The argument, which relies on the assumption that the meaning of ‘=’ on the left
hand side of (1) is known, shows that (1) cannot be assumed arbitrarily unless (2)
has already been established. In other words, the ‘equiformity’ of R is a necessary
condition for introducing a definition such as (1). Thus, if from the theory previous
to the introduction of (1), the negation of (2) were to result, (1) would lead to
contradiction; by contrast, if the previous theory does not allow either to prove
or to refute (2), then (1) plays both the role of a definition and of a postulate.

Having thus established that definitions such as (1) are not arbitrary, taken as
an explicit definition of the complex “Fa = Fb” when R is assumed “equiform”,
leads Padoa to ask whether (1) might not be interpreted as an implicit definition
of F. And here the main objection to using F only in contexts such as “Fa = Fb”
does not originate, says Padoa, from purely formal considerations, but by the fact
that (1) does not individuate the meaning [il significato] of F. Padoa gives many
examples of this indeterminacy of meaning. Let’s consider one of them. If a and
b are polygons, aRbmeans “a is equivalent to b” (a and b can be decomposed in
parts that are respectively superposable) and “area” is the intended F given in (1).
He then remarks:

We do not contest that (1) can be legitimately assumed as an explicit Df of “area of a = area
of b”; but we deny that (1) individuates themeaning of “area of a”.31 (Padoa (1908), p. 97)

30 Even in the Italian contributions, this terminology will not assert itself. Burali-Forti [1912]
speaks of a ‘normal’ relation and Cipolla [1914] of ‘uniform’ relation. Cipolla [1914] follows the
account of definition by abstraction given by Russell and Padoa.
31 Non contestiamo che la (1) possa legittimamente assumersi quale Df esplicita di “area di a =
area di b”; ma neghiamo che la (1) individui il significato di “area di a”.
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If the recipient had ignored the meaning of “Fa” as “area of”, the definition by
abstractionwon’t succeed in conveying it to him/her. In fact, one could attribute to
F the meaning “twice the area of”, “three times the area of”, “half of the area of”,
etc. (where ‘area’ is still taken in the original informalmeaning). In short “area of”
as it appears in a definition of the form (1) can be interpreted with infinitely many
different meanings. One interesting objection to this line of thought that Padoa
considers consists in claiming that the meaning of “area of” given by (1) has a
meaning that consists of “all the meaning compatible with (1)”. And here Padoa’s
objection does not seem so strong, for he says:

But then before (1) can teach us the meaning of “area of” one needs to have found all
its meanings compatible with (1); and how can the reader verify to have considered all of
them?32 (Padoa (1908), p. 98)

How would, Padoa continues, the reader have included among the meanings of
“area of a” that given by “volume of the prism having a base of area a and height
a segment of constant length”, which also satisfies (1)?

The point is repeated using examples with directions, orientations, etc.
A useful footnote makes clear that in the case of directions one must use the
relation “a is parallel to b or a coincides with b” which is an ‘equiform relation’
whereas “a is parallel to b” is not. This is connected to the fact that for much of
the nineteenth century “x is parallel to y” was not taken to be reflexive.

So far the treatment has been critical. Now Padoa moves to a pars costruens
and defines explicitly the “abstraction of a with respect to R” and proves a
relevant theorem about it. Here is the passage:

Let us stipulate first of all the following explicit Df : Definition. If K is a class and R is an
equiform relation on K and if a is an arbitrary element of K, then “abstraction of a with
respect to R” means “the set of all and only those K that bear the relation R to a.” For
instance: if a is a polygon, then “abstraction of a with respect to the relation is equivalent
to a” is “the set of all and only those polygons x such that x is equivalent to a”. Then we
show the following Theorem II. If K is a class on which R defines an equiform relation and
if a and b are in K, then (indicating, for the sake of brevity, with Fa and Fb the abstractions
of a and b with respect to R): “Fa = Fb” if and only if “aRb”.33(Padoa (1908), p. 100)

32 Ma allora, prima che la 1) ci apprenda il significato di “area di” bisogna aver trovato tutti i suoi
significati compatibili con la 1); e come si accerta il lettore di averli considerati tutti?
33 Stabiliamo anzitutto la seguente Df esplicita: Definizione. Se K è una classe in cui R è una
relazione egualiforme e se a è un individuo arbitrario di K, allora “astrazione di a rispetto ad R”
significa “l’insieme di tutti e soli quei K che stanno nella relazione R con a.” Ad es.: se a è un
poligono, allora “astrazione di a rispetto alla relazione è equivalente a” è “l’insieme di tutti e soli
i poligoni x tali che x è equivalente ad a”. Poi dimostriamo il seguente
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Of course, this is the Russellian solution and one wonders how Padoa, after the
publication of Russell’s Principles in 1903 and of Couturat (1905), could present
this result without attributing it to Russell. Perhaps the answer is at the very
beginning of the article where Padoa says that his reflections go back to 1901
and that what he had in mind to present at a conference in Livorno (at the
Second Congress of the Italian Philosophical Society) at the time (1901) was later
developed by Russell and Couturat. But since, he continued, their writings had
not yet enjoyed a large readership and because they did not treat the matter with
the simplicity and generality required, he had decided to write this article for the
occasion of the meeting in 1906 from which the 1908 publication stems.

If theorem I showed that the relation R had to be ‘equiform’ as a necessary
condition for the definition to be successful, theorem II provided a sufficient
condition for it. Thus, the definition of “abstraction of” and theorem II constitute
a “theory of abstraction”. If one from the outset chooses, among the possible
meanings for F, that entity given by “abstraction of”, it turns out that a definition
by abstraction of the form (1) is a theorem of the theory of abstraction. Coming
back to the examples with areas of polygons we immediately reach an explicit
definition of “area of a”, for a polygon a, by setting “area of a” as “the abstraction
of a with respect to the relation ‘is equivalent to’”. Then the original definition by
abstraction canbe regained as a theoremof the theory of abstraction. Incidentally,
Padoa also makes no mention of Frege’s work in this connection.

Padoa also remarked that one can simply get rid of the word “abstraction”
and define “area of a” as “the set of polygons that are equivalent to a”.We are now
moving towards the standard set-theoretic territory. But Padoa does not seem to
have yet digested the lesson of Russell’s paradox, for he also applies the reasoning
to defining the number of a finite class a as the class of all classes that are in
one-one correspondence with a.

Padoa concluded with the following methodological lesson:

One could object, I will not deny it, that common sense and experience will guide each time
the writer to use definitions by abstraction exclusively when dealing with equiform relations
on the considered class, thus avoiding any danger of contradiction.

But it might have been useful to point out that if theorem I clarifies the necessity of such
a condition, theorem II specifies its sufficiency.

And although the aid, real or alleged, of intuition would lead each time the writer to
consider the concepts ambiguously defined by abstraction (in the usual way) as perfectly

Teorema II. Se K è una classe in cui R è una relazione egualiforme e se a e b sono K, allora (per
brevità, indicando ordinatamente con Fa ed Fb le astrazioni di a e di b rispetto ad R): “Fa = Fb”
quando e sol quando “aRb”.
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individuated, it will not have been useless to underline that the ambiguity was intrinsic to
the type of Df [1] and to indicate a general procedure that — freeing us from the treacherous
aid of intuition — will transfer the explicit individuation of mathematical abstractions from
the psychological and epistemological domains to the logical realm.34(Padoa (1908), p. 103)

This last statement is a wonderful summary of the removal of the psychological
roots of the abstraction process in favor of a merely logical description of it. It is
exactly this move that bothered Angelelli (see 1984, 2004, 2013) but then again
it seems to me that most of his worries reduce to an issue of semantics. Is it
appropriate to refer to this definitional method with the word abstraction given
that the tiewith thepsychological processhasbeen severed?Perhapsnot butwhat
difference does it make? We could simply call the logico-mathematical process
abstraction*.

On the contributions that follow this paper by Padoa, I will have to be very
brief. An important text in this connection is Elementi di Calcolo Vettoriale, con
numerose applicazioni alla Geometria, alla Meccanica e alla Fisica-Matematica,
by Burali-Forti and Marcolongo (published in 1909). The text was translated
into French in 1910. It is important for two reasons. The first is that Burali-Forti
attempts to bypass the use of Russell’s classes of classes (against which he argues
in favor of considering the abstract entities as simple) and does so by stating
a “logical postulate” to which the function F and the class that constitutes the
range of this function are unique. This proposal was shown to be incoherent in
Maccaferri [1913] and even though Burali [1912] already attempted to rectify his
claim the only thing to point out about this latter article is Burali-Forti’s rejection
of definitions by abstraction in favor of a newoperator theory that Burali-Forti will
develop in the second edition ofMathematical Logic in 1919.

Incidentally, Maccaferri (1913) uses new examples to show the indeterminacy
of meaning that is constitutive of definitions by abstraction but nothing he
presents marks a decisive improvement on Padoa (1908), which Maccaferri dis-

34 Si potrà obbiettare, ed ionon lo contesto, che il buon senso e l’esperienzaguidanovolta a volta
il trattatista a giovarsi delle consueteDf per astrazione sol quando si tratti di relazioni egualiformi
nella classe considerata, evitando così ogni pericolo di contraddizioni.
Ma può essere stato utile notare che, se il teorema I chiarisce la necessità di tale condizione, il
teorema II ne precisa la sufficienza.
Ed ancorchè il soccorso, reale o presunto, dell’intuizione inducesse volta a volta il trattatista
a ritener perfettamente individuate le idee ambiguamente definite per astrazione (nel modo
consueto) — non sarà stato inutile rilevare che l’ambiguità — era insita a quel tipo di Df [1]
e additare un procedimento generale che — affrancando dal malfido ausilio dell’intuizione —
trasporti, dai campi psicologico e gnoseologico al campo logico, la individuazione esplicita delle
astrazioni matematiche.
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covered, as he declares in an afterword appended to the article, only after writing
his article and with which he is pleased to agree. In his treatment Maccaferri
ends up favoring the Russellian solution for turning definitions by abstraction
into explicit definitions (or nominal definitions). He claims that nothing is
simpler than choosing the Russell class as the value of the abstraction function
and asks:

Which function, of all the elements u related by the relation α, is simplest than the one that
yields the very class of all those elements given that there is no criterion for choosing among
them a unique element rather than any other one? And moreover every element b of the
Russell class depends only on the elements thatmake it up, namely on the u’s that are related
among them by the relation α.35

The other reason why Burali-Forti and Marcolongo is of interest is for their
lengthy appendix on definitions by abstraction that contains also the interesting
definition by abstraction of Grassmann’s forms. (See appendix to this article
where the text is translated from the French edition).

Finally, I will mention Catania (1911) as an interesting discussion of the
advantages and disadvantages of the Russellian principle of abstraction in com-
parison to that of Peano using only simple entities. Catania sides against Russell’s
approach and expresses optimism about the operator approach that Burali-Forti
is developing (Catania himself will publish further work in this direction in the
following years).

In Bindoni (1912) one finds an argument, resting on Burali-Forti’s mistaken
postulate, that the entities defined by abstraction and the class defined using
nominal definitions (Russell-style) are identical. As for Peano (1911), it surpris-
ingly contains no comments on definitions by abstraction. Peano (1915) however
devotes a whole article to definitions by abstraction where he takes a rather
pragmatic attitude as to which types of definitions are better. There are some
interesting further examples of definition by abstraction relating toworks by Fano
on special relations between real numbers (such as ‘belongs to the same algebraic
field’ or ‘having a form R ± √R’) and different orders of infinities (Mago (1913)).
Nothing Peano says in this article addsmuch to the previous discussion. However,

35 “Quale funzione, di tutti gli u legati dalla relazione α, più semplice che non sia quella che
fa ottenere la classe stessa di quegli elementi, poichè non c’è un criterio per scegliere tra essi
l’uno elemento piuttosto che l’altro? E d’altra parte ciascun elemento b della classe di Russell
dipende soltanto dagli elementi che lo compongono, cioè dagli u legati fra loro dalla relazione
α.” (Maccaferri, 1913, p. 170)
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hedid claim credit for the expression ‘definitionpar abstraction’ by referring to his
Peano (1894). But we have seen that this is only partially correct.

4 Conclusion
The foundational discussion on definition by abstraction goes on to include
Burali-Forti (1919), Weyl (1910), Carnap (1929), Natucci (1923), Dubislav (1931)
(3rd edition), and Scholz and Schweitzer (1935) (see also Cassina (1961)). The
discussion in the 1920s and 1930s takes place against the background of the
monumental Principia Mathematica and the use of definitions in context which
is prominent in it. This naturally brings about a reconfiguration of the debate on
definitions by abstraction but it is my sense that these works aremostly derivative
from the previous discussion involving the Italian logicians centered around the
Peano school, Russell, and Couturat.36 In particular, the important ontological
and semantical issues related to definitions by abstraction had already been
characterized within the early discussion in the Italian school. Those discussions
included:
(a) ontological issues (the nature of the entities obtained by abstraction, simple

or complex?, and, if complex, can they be identified with classes?);
(b) semantical issues (indeterminacy of meaning and reference in the concept

and terms, respectively, obtained by abstraction; sameness of meaning
between the left hand side and the right hand side of the equivalence);

(c) logical issues (nature of the definition; necessary and sufficient properties
required for its success; elimination of such definitions etc.)

Some of these points were of course foreshadowed by Frege and some were to
reappear with a vengeance in the contemporary debate on neologicism.

5 Appendix
From Burali-Forti, C., and Marcolongo, R., Eléments de calcul vectoriel avec
de nombreuses applications à la géométrie, à la mécanique et à la physique
mathématique, Hermann, Paris, 1910, pp. 213–216.

36 Vuillemin (1971) contains many interesting developments including discussions of White-
head, Carnap, Russell, etc.
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Historical and Critical Notes

On definitions by abstraction

It is well known that, for instance, prime number and spherical surface can be
given a definition (nominal or absolute) of the following form:

“prime number” = “integer with only two divisors”
“spherical surface” = “locus of points that are equidistant from a given point”.

These are definitions in which the right hand side has a well known and precise
meaning.

The samemethod of definition cannot be applied to vector, geometrical forms,
direction, length, weight, mass, etc. For such entities it is better to employ a type of
definition that can be called definition by abstraction. We deem it useful to state
explicitly in what it consists and how onemust apply it, for one often applies it in
an unprecise fashion.

Equality

One can give, following Leibniz, an absolute and universalmeaning to the sign =.
(1) “if x and y are arbitrary entities, one has x = y if and only if every property of

x is also a property of y”

And since “to be a property of x” can always be logically expressed by the
statement “x is an element of a certain class u”, the previous statement takes the
form
(1󸀠) “x = y if and only if every class u that contains x also contains y.”
Let us immediately make the following remark, which we will use later on: once
we have defined in this fashion, following Leibniz, the relation designated by the
symbol =, it is no longer allowed to define once more, for some newly introduced
elements, the relation x = y. From (1) and (1’) one infers:

(2)
{{{
x = x
x = z and y = z entails x = y (Euclid)

and it is to these two properties that are reduced the three usual properties,
reflexive (x = x), symmetric (x = y entails y = x) and transitive (x = y and y = z entail
x = z). It is customary to say that the properties given in (2) are the characteristic
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properties of equality. This is not exact. In fact, the relations “it is equivalent to”,
“is similar to”, for instance, satisfy the conditions in (2). However, they do not
satisfy condition (1) because the relation “x is equivalent to y and y is a triangle”
does not necessarily entail “x is a triangle”. And similarly “x is similar to y and
the volume of y is a cubic meter” does not necessarily entail “the volume of x is
a cubic meter”. In other words, condition (1) entails the conditions in (2) but the
converse does not hold. While (1) defines a unique relation, identity or absolute
equality, the properties in (2) define a class of relations, and the number of these
relations is infinite, forwe cannot put a bound to their construction. It follows that
for the infinite relations defined by using (2), it is not allowed to make use of the
sign = if one wants to preserve this sign to designate, as it is customary, the precise
Leibnizian sense of absolute equality or identity.

Definition by Abstraction

This type of definition is based on the following principle of general logic.
Let us assume that for whichever elements x, y, z of a class u, the relation α

between the [elements of] u, satisfies the following properties:

(3)
{{{
xαx
xαz and yαz entails xαy

Then there exists a unique class v and a unique function f which satisfies the
following properties.
1. For any x in u, fx is an element of v;
2. For any h in v, there exists at least one element x of u such that fx = h;
3. For any x and y in u, one has fx = fy if and only if x is in the relation α with y,

that is xαy.

It follows that v and f are determinate functions of u and α; the proposition xαy
between the pairs x and y, infinite in number, of elements in u, is expressed by
means of the unique identity fx = fy; for the infinite number of pairs of elements
of u related by α, one can substitute a unique element of the class v.37

37 This last remark shows the practical importance of definition by abstraction which yields
for instance the rational numbers, the real numbers, the complex numbers, as simple entities
whereas for Mr. Russell they are classes, classes of classes, ordered pairs of classes of classes,
which are very complicated to handle.
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Let us apply for instance definition by abstraction in order to obtain the
geometrical entities called directions (or points at infinity). The class u will be
the class of straight lines; α will express the relation “is parallel to”. Since the
conditions in (3) are verified38, the function f exists: we will call it direction. In
what follows the class v of directions also exists.

In a similar way one obtains, starting from the relation “is parallel to” for
planes, the class ofdirections of planes (or lines at infinity); from the relation “it can
be superposed over” for segments, one obtains the lengths; from “is equivalent
to” the areas and volumes; from “is similar to” the shape of a geometrical figure.
And starting from suitably chosen relations one obtains the weights, masses,
temperatures, quantities of heat,..., the sense of a succession of 2, 3, 4 points etc.

The proper definition (from a logical point of view) of vectors that we should
have given [this refers to the textbook from which this appendix is taken, PM] is
the following.

Let us consider the class u containing all the ordered pairs of points and the
relation α defined as follows:

(A,B)α(C,D)

if and only if
(4) “the middle point between A and D” = “middle point between B and C”.

The relation (α) verifies the conditions (3). Consequently, the function f and the
class v exist. Let us write, by definition,

f(A,B) = B −A
and let us call “vector from A to B” the entity f(A,B), or B − A; in this way one
obtains the definition of the class of vectors.

In the text, in order not to wander off too much from the usual form of
definitions, we have written

B −A = D − C
when the relation (4) holds. We have thus defined in this way the relation =
between two vectors. However, as we have remarked, this is no longer permitted,
once one admits Leibniz’s universal notion of equality.

38 The line a is parallel to the line b in the following two cases: 1) if a coincides with b; 2) if a
and b are on the same plane and have no point in common. This is the definition that we adopt
here and not Euclid’s definition.
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For what concerned the forms F1 (p. 17), the class u consists of all the pairs
made up by a point and a real number; the relation α is the following:

(x1,A1;x2,A2; ...;xn ,An)α(y1,B1;y2,B2; ...;ym ,Bm)

if and only if, for any arbitrary chosen point O, we have
n∑
1
xi(Ai −O) = m∑

1
yi(Bi −O)

The conditions expressed in (3) are verified etc. One can proceed in the same way
for the forms F2, F3 (appendix, p. 181).
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Uwe Meixner
Intelligible Worlds

Abstract: The paradigmatic mereological relation is the relation of spatial part.
Already much less paradigmatic is the relation of temporal part. The realm of
abstract entities seems to be the ontological region where the notion of part and
whole has no application at all. In what follows, I will contend that this is not
true. There are part-whole relationships between abstract entities, and indeed
relationships that are systematic to the point of constitutingmereologically struc-
tured universes of abstract entities, “intelligible worlds”, as I will call them (in
translation of the Latin “mundi intelligibiles”). The part-whole relations between
abstract entities differ significantly from those between spatial, or temporal, or
spatio-temporal entities. However, there are also significant analogies between
abstract and concrete part-whole relations.

1 Preliminaries
The paradigmatic mereological relation is the relation of spatial part. Already
much less paradigmatic is the relation of temporal part. The realm of abstract
entities seems to be the ontological regionwhere the notion of part andwhole has
no application at all. In what follows, I will contend that this is not true. There are
part-whole relationships between abstract entities, and indeed relationships that
are systematic to the point of constituting mereologically structured universes of
abstract entities, “intelligible worlds”, as I will call them (in translation of the
Latin “mundi intelligibiles”). The part-whole relations between abstract entities
differ significantly from those between spatial, or temporal, or spatio-temporal
entities. However, there are also significant analogies between abstract and
concrete part-whole relations, as we shall see.

The basic mereological language is a language of first-order predicate logic
in which “(xPy)” and “(x = y)” (and all the variants of these two expressions
that can be produced by employing all manners of replacing “x” and “y” in them
by “x”, “y”, “z”, “u”, “v”, “w”, “x󸀠”, “y󸀠”, etc.) are the only basic predicates.
The basic logical constants are ¬ (negation), → (material implication), ∀ (the
all-quantifier) and ι (the operator of definite description). As is well known,
this basis is sufficient for defining all truth-functional connectives, and in the
first place ∧, ∨, and ↔, in other words: conjunction, non-exclusive disjunction,

Uwe Meixner: University of Augsburg
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and material equivalence. In order to save brackets, it is stipulated that binding
strength decreases from left to right in the following series: ¬, ∧, ∨, →, ↔. And
note that the embracing brackets in the basic predicates (and in the sentences
formed from them by saturation with terms) will be omitted, unless the predi-
cate – or a one-place predicate resulting from it by substitution of a term for a
variable – constitutes the range of a quantifier, or the range of the operator of
definite description (or of another term-forming operator), or the range of the
negation-operator (¬). Further bracket-saving measures, here implemented, are
the following: Outer brackets – that is, such as occur if the expression enclosed
by them is not within another expression – will always be omitted. Brackets
within ∧-chains and ∨-chains will always be omitted. As far as brackets are
concerned, the defined predicate ̸= (x ̸= y := ¬(x = y)) is treated just like the basic
predicate =.

The indicated basis also suffices to define all at-most-N quantifiers and
all at-least-N quantifiers, and therefore also all precisely-N quantifiers (where
N stands for any Arabic numeral designating a natural number). The most
prominent at-least-N quantifier is the at-least-1 quantifier, or in other words,∃, which is defined as follows: ∃xA[x] := ¬∀¬A[x]. The most prominent pre-
cisely-N quantifier is the precisely-1 quantifier, ∃=1, which is defined as follows:∃=1xA[x] := ∃x(A[x]∧∀y(A[y]→ y = x)).1

The logic employed is classical first-order logic with identity and definite
descriptions. I will not bother to write down this logic, since it is well known.
What deserves some attention, however, is the treatment here accorded to definite
descriptions. The two relevant axiom-schemata are these: ∃=1xA[x]→ A[ιxA[x]]
and ¬∃=1xA[x] → ιxA[x] = ιy(y ̸= y). Thus, a definite description ιxA[x] whose
condition of normalcy ∃=1xA[x] is not fulfilled designates the same object as is
designated by “ιy(y ̸= y)”; this object is some arbitrarily chosen object in the
universe of discourse.

To the extent deductions and proofs are presented in what follows, these
deductions and proofs are going to be informal (for the sake of readability). But,
of course, they can be transposed into the strict or formal mode – if one is ready
to undergo the trouble.

1 The variables “x” and “y” are used in this definition in a merely representative fashion.
Other contexts will require the use of other variables. It does not matter which variables are
employed as long as syntactic well-formedness and the structure required by the definitions is
preserved. These observations apply to all definitions and also to all axioms and theorems that
follow.
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2 A mereology for abstract entities
First of all, here are two definitions of mereological predicates, and one definition
of a mereological operator (all three defined expressions will be needed right
away):

D1: xP∗y := xPy ∧¬∀u(xPu)2
D2: EL(z) := ∀x(xP∗z→ x = z)
D3: σyA[y] := ιu(∀y(A[y]→ yPu)∧∀x(∀y(A[y]→ yPx)→ uPx))

D1 defines what is meant by “x is a non-trivial part of y”; it is this: x is a part of y
without being a part of everything (in the universe of discourse). D2 defines what
is meant by “z is an elementary whole”; it is this: every non-trivial part of z is
z. Note that D2 is not quite the definition of “AT(z)” (or: “z is an atom”); for the
definition of this latter predicate is this:

D4: AT(z) := ∀x(xPz→ x = z)
In other words, an atom is something that has no proper parts (since ¬∃x(xPz ∧¬(x = z)) is logically equivalent to∀x(xPz→ x = z). It is trivially provable that every
atom is an elementary whole; the converse, however, is not provable.

D3, finally, defines what is meant by “the sum of all y such that A[y]”; it is
this: the mereologically smallest entity (in the universe of discourse) that comprises
all entities (in the universe of discourse) that satisfy A[y]. The principles A4
and A3 below guarantee for every predicate A[y] (expressible in the language)
that the condition of unique fulfilment is satisfied for the following predicate
corresponding to A[y]: ∀y(A[y] → yPu) ∧ ∀x(∀y(A[y] → yPx) → uPx). Thus,
σyA[y] always refers to what, judging by its meaning (or sense), it is supposed
to refer to.

Consider, then, the following series of axioms and axiom-schemata:

A1: ∀x∀y∀z(xPy ∧ yPz→ xPz)
A2: ∀x(xPx)
A3: ∀x∀y(xPy ∧ yPx→ x = y)
A4: ∃u(∀y(A[y]→ yPu)∧∀x(∀y(A[y]→ yPx)→ uPx))
A5: ∀x∀y(∀z(EL(z)∧ zPx→ zPy)→ xPy)
A6: ∀x(xP∗σuA[u]→∃z(zP∗x ∧∃y(A[y]∧ zP∗y)))

2 Regarding embracing brackets, “(xP∗y)” acts just like “(xPy)”.

 EBSCOhost - printed on 2/12/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use



292 | UweMeixner

The natural interpretation of this axiomatic theory is that it (truthfully) describes
some intelligible world (in the sense introduced in section 1).3 In fact, there are
several candidates for what it naturally describes, as we shall see. But what is it
that makes it appropriate to say that this mereology, A1–A6, is naturally about
abstract entities? It is simply the fact that it is not natural to view it as amereology
for concrete entities. There are some features of it which make interpreting it
as a mereology for concrete entities unnatural – indeed, which make such an
interpretation unfeasible for paradigmatic concrete totalities, like real space and
real time. This is already the case if one takes the mereology as it is, but it is most
dramatically apparent if one adds existence assumptions that lift A1–A6 above
the level of trivial satisfiability.

Consider σu(u ̸= u), in other words: ιu(∀y(y ̸= y → yPu) ∧ ∀x(∀y(y ̸= y →
yPx)→ uPx)). On the basis of A4 and A3, it is easy to prove

T1: ∀x(σu(u ̸= u)Px)
and its corollary

T2: ∃y∀x(yPx)
Obviously, it is not a natural mereological feature of concrete entities that there
is an entity among them which is a part of all of them. If we look at real space,
there is no spatial whole which is a spatial part of every spatial whole, and if we
look at real time, there is no temporal whole which is a temporal part of every
temporalwhole. ThusT2 (and therefore the conjunction of the principles ofwhich
T2 is a logical consequence) is not true of spatial wholes, and not true of temporal
wholes. In fact, even if space-points were counted as spatial wholes and there
were only two space-points, there would be no spatial whole that is a part of every
spatial whole; and even if time-points were counted as temporal wholes and there
were only two time-points, therewouldbeno temporalwhole that is a part of every
temporal whole.

Consider next elementary wholes, as defined by D2. If (using D1) we unpack
the definiens of EL(z) – ∀x(xP∗z→ x = z) – and bring the result into a different but
logically equivalent form, we obtain:

T3: ∀z(EL(z)↔∀x(xPz ∧ x ̸= z→∀u(xPu)))

3 What is (truthfully) described by a theory is called a “model” for it. A model for a theory can
be artificially concocted, made up by applying ad hoc procedures and constructions; it can be
specially sought out – or it can be simply natural.
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T3 (a consequence of mere logic and definitions) says that the elementary wholes
are precisely the entities all of whose proper parts are parts of every entity. This
entails that each elementary whole that is different from σu(u ̸= u) has σu(u ̸= u)
as its one and only proper part. How does this follow? Consider that it is precisely
what is stated by T6 below. But, first of all, we have T4:

T4: ∀x󸀠(∀u󸀠(x󸀠Pu󸀠)↔ x󸀠 = σu(u ̸= u))
Proof. (I) Suppose x󸀠 = σu(u ̸= u); hence by T1: ∀u󸀠(x󸀠Pu󸀠). Suppose ∀u󸀠(x󸀠Pu󸀠);
by T1: ∀x(σu(u ̸= u)Px); hence x󸀠Pσu(u ̸= u) ∧ σu(u ̸= u)Px󸀠; hence by A3: x󸀠 =
σu(u ̸= u). qed

From T3 and T4 we get:

T5: ∀z(EL(z)↔∀x(xPz ∧ x ̸= z→ x = σu(u ̸= u)))
And therefore:

T6: ∀z(EL(z) ∧ z ̸= σu(u ̸= u)→ σu(u ̸= u)Pz ∧ σu(u ̸= u) ̸= z ∧ ∀x(xPz ∧ x ̸= z→
x = σu(u ̸= u)))

Proof. Suppose EL(z)∧ z ̸= σu(u ̸= u); hence according to T1 (and the symmetry of
non-identity): (i) σu(u ̸= u)Pz∧σu(u ̸= u) ̸= z; and according toT5: (ii) ∀x(xPz∧x ̸=
z→ x = σu(u ̸= u)). qed

Now, evidently, neither spatial nor temporal wholes are entities that have exactly
one proper part. Perhaps some of them have no proper parts, but certainly none
of them have exactly one proper part. In fact, it is one of the most widespread
mereological intuitions that if any entity y has a proper part x – and certainly
there are such entities – that then it must also have at least one other proper
part, namely, the complement of x relative to y; moreover, the complementing
proper part of y is intuited to have no part in common with the complemented
proper part of y. As convincing as this may sound (or rather look: one sees it
“in the mind’s eye”), it is nonetheless only true of concrete entities and concrete
part-whole relations: For some intelligible worlds, not only T6 is true but also∃z(EL(z) ∧ z ̸= σu(u ̸= u)) (as we shall see); the logical consequence of this is
that, for such worlds, ∃z∃=1x(xPz ∧ x ̸= z) is also true – squarely contradicting
thewidespreadmereological intuition.Moreover, if one followsA1–A6, then there
simply are no complements as intended by the above-mentioned widespread
intuition; because everything (in the universe of discourse) has a part in common
with everything, due to T1.
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And there is yet more food for wonder here. For some intelligible worlds,∃≥2z(EL(z)∧ z ̸= σu(u ̸= u)) is true (as we shall see); it follows on the basis of T6
that there are two elementary wholes, both different from σu(u ̸= u), which both
have σu(u ̸= u) as their sole proper part. How can this be? What distinguishes the
two if they are identical with respect to proper parts? That there is something that
distinguishes them is inconceivable for concrete entities; but for abstract entities
it is quite a different matter (as we shall see).

Finally, if onehears ofatoms, the immediate association is that there aremany
of them and that other entities – in fact, all other entities of a given kind – are
composed of them, in such amanner that the sets of atoms that go into composing
those other entities are different if the entities themselves are different. This is the
intuitive view of atoms, which treats atoms as concrete entities. But on the basis
of the above principles it turns out that there is only one atom, σu(u ̸= u):
T7: AT(σu(u ̸= u))∧∀z(AT(z)→ z = σu(u ̸= u))
Proof. (I) Suppose xPσu(u ̸= u); by T1: σu(u ̸= u)Px; hence by A3: x = σu(u ̸= u).
Therefore: ∀x(xPσu(u ̸= u) → x = σu(u ̸= u)); hence by D4: AT(σu(u ̸= u)). (II)
Suppose AT(z); by T1: σu(u ̸= u)Pz; hence by supposition andD4: σu(u ̸= u) = z,
hence z = σu(u ̸= u). Therefore: ∀z(AT(z)→ z = σu(u ̸= u)). qed

Since there is only oneatom (in theuniverse of discourse), nothing (in theuniverse
of discourse) can be composed of atoms (plural). And if one allowed (departing
fromcommonusage, but not unacceptably) that somethingmay also be composed
of just one atom, then it is – according to A1–A6, and assuming ∃≥2z(EL(z) ∧ z ̸=
σu(u ̸= u)) – still not true that different entities which are composed of one atom
are each composed of a different atom: the various elementary wholes that differ
from σu(u ̸= u) are all composed of one atom, but it is always the same atom,
σu(u ̸= u), as we have already seen (consider the consequences of T6).

InA1–A6, the role of atoms is transferred to the elementary wholes. Not for the
predicate AT(z), but for the predicate EL(z), it is provable.

T8: ∀x(x = σz(EL(z)∧ zPx))
Proof. (I) It is an easy consequence of A4, A3, and D3: ∀u(EL(u) ∧ uPx →
uPσz(EL(z) ∧ zPx)); hence by A5: xPσz(EL(z) ∧ zPx). (II) Suppose EL(u) ∧
uPσz(EL(z) ∧ zPx)); if ∀x󸀠(uPx󸀠), then uPx; if, on the other hand, ¬∀x󸀠(uPx󸀠),
then uP∗σz(EL(z)∧ zPx)) according to D1, and consequently by A6: ∃z󸀠(z󸀠P∗u ∧∃y(EL(y) ∧ yPx ∧ z󸀠P∗y)); hence by logical transformations and by making use
of the assumption EL(u): ∃z󸀠∃y(EL(u) ∧ EL(y) ∧ z󸀠P∗u ∧ z󸀠P∗y ∧ yPx); hence by
D2: ∃z󸀠∃y(EL(u) ∧ EL(y) ∧ z󸀠 = u ∧ z󸀠 = y ∧ yPx); hence uPx. It has now been
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proven: ∀u(EL(u)∧ uPσz(EL(z)∧ zPx)→ uPx); hence by A5: σz(EL(z)∧ zPx)Px.
By combining (I) and (II), it follows on the basis of A3: x = σz(EL(z)∧ zPx). qed

T9: ∀x∀y(x ̸= y→∃z(EL(z)∧ zPx ∧¬(zPy))∨∃z(EL(z)∧ zPy ∧¬(zPx)))
Proof. Proof: Suppose x ̸= y; hence by A3: ¬(xPy)∨¬(yPx). If the first alternative
of this disjunction is true, then by A5: ∃z(EL(z) ∧ zPx ∧ ¬(zPy)); if the second
alternative is true, then again by A5: ∃z(EL(z) ∧ zPy ∧ ¬(zPx)); hence in either
case: ∃z(EL(z)∧ zPx ∧¬(zPy))∨∃z(EL(z)∧ zPy ∧¬(zPx)). qed

Thus, every entity (in the universe of discourse) is the sum of its elementary
parts (i.e., the sum of the elementary wholes that are parts of it), and if entities
(in the universe of discourse) differ, then they differ with respect to at least one
elementary part.

3 Complement, foundation, and top
If x is the sum of all elementary wholes that are parts of x, what is the sum of all
elementary wholes that are not parts of x? – This latter sum is the complement
of x:

D5: com(x) := σz(EL(z)∧¬zPx)
We have so far been looking at the foundations of intelligible worlds structurally
defined by A1–A6; we now take a look at their tops. The tops are opposite to the
foundations, or in other words: the tops are the complements of the foundations
(and vice versa). To put it in an exact manner: the entities in a given top (of
an intelligible world structurally defined by A1–A6), that is, the comprehensive
wholes (among them σu(u = u)), are precisely the complements of the entities in
the foundation: they are the complements of the elementarywholes (among these
σu(u ̸= u)).

The following definitions are the counterparts of D1, D2, and D4:

cD1: xPoy := xPy ∧¬∀u(uPy)
cD2: CO(z) := ∀x(zPox→ x = z)
cD4: TO(z) := ∀x(zPx→ x = z)
cD1 defines what is means for x to be a distinguished part of y: x is a part of y
without everything (in the universe of discourse) being a part of y; cD2 defines
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what it means for z to be a comprehensive whole: every entity (in the universe of
discourse) of which z is a distinguished part is identical to z; cD4 defines what it
means for z to be a totality: every entity (in the universe of discourse) of which z is
a part is identical to z. The following theorems, then, are the counterparts of the
theorems T1–T9:

cT1: ∀x(xPσu(u = u))
cT2: ∃y∀x(xPy)
cT3: ∀z(CO(z)↔∀x(zPx ∧ x ̸= z→∀u(uPx)))
cT4: ∀x󸀠(∀u󸀠(u󸀠Px󸀠)↔ x󸀠 = σu(u = u))
cT5: ∀z(CO(z)↔∀x(zPx ∧ x ̸= z→ x = σu(u = u)))
cT6: ∀z(CO(z)∧ z ̸= σu(u = u)→ zPσu(u = u)∧ σu(u = u) ̸= z ∧∀x(zPx ∧ x ̸= z→

x = σu(u = u)))
cT7: TO(σu(u = u))∧∀z(TO(z)→ z = σu(u = u))
cT8: ∀x(x = σz∀y(CO(y)∧ xPy→ zPy))
cT9: ∀x∀y(x ̸= y→∃z(CO(z)∧ xPz ∧¬(yPz))∨∃z(CO(z)∧ yPz ∧¬(xPz)))
The proofs of cT1–cT9 (which I shall not present here) are somewhat harder to
achieve than the proofs of T1–T9, since the principles A1–A6 have an orientation
towards the foundations of the intelligible worlds structurally defined by them,
not towards their tops. In proving cT1–cT9, it is helpful to avail oneself of the
following six theorems, which, taken together, establish a match between tops
and foundations:

T10: ∀x(EL(x)∧¬∀u(xPu)→ (xPσz(EL(z)∧ B[z])↔ B[x]))

Proof. Assume EL(x)∧¬∀u(xPu). (I) Suppose B[x]; hence by the assumption, A4,
A3,D3: xPσz(EL(z)∧B[z]). (II) Suppose xPσz(EL(z)∧B[z]); hence by the assump-
tion and D1: xP∗σz(EL(z) ∧ B[z]); hence by A6: ∃z󸀠(z󸀠P∗x ∧ ∃y(EL(y) ∧ B[y] ∧
z󸀠P∗y)); hence by logical transformations and the assumption: ∃z󸀠∃y(EL(x) ∧
EL(y)∧ z󸀠P∗x∧ z󸀠P∗y∧B[y]); hence byD2: ∃z󸀠∃y(EL(x)∧EL(y)∧ z󸀠 = x∧ z󸀠 = y∧
B[y]); hence B[x]. qed

T11: ∀x(com(com(x)) = x)
Proof. (I) Suppose EL(u)∧uPcom(com(x)). If∀u󸀠(uPu󸀠), then uPx. If¬∀u󸀠(uPu󸀠),
then according toT10: uPσz(EL(z)∧¬(zPcom(x)))↔¬(uPcom(x)), and therefore
because of uPcom(com(x)) andD5: ¬(uPcom(x)); and then once more according
to T10: uPσz󸀠(EL(z󸀠)∧¬(z󸀠Px))↔¬(uPx), and therefore because of ¬(uPcom(x))
and D5: uPx. (II) Suppose EL(u) ∧ uPx. If ∀u󸀠(uPu󸀠), then uPcom(com(x)). If
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¬∀u󸀠(uPu󸀠), then according to T10 (as we have just seen): uPcom(com(x)) ↔¬(uPcom(x))↔ uPx, and therefore because of uPx: uPcom(com(x)). On the basis
of (I) and A5, we have: com(com(x))Px; on the basis of (II) and A5, we have:
xPcom(com(x)); on the basis of A3, we therefore obtain: com(com(x)) = x. qed

T12: ∀x∀y(xPy↔ com(y)Pcom(x))

Proof. (I) Assume xPy; suppose EL(z󸀠)∧ z󸀠Pcom(y); if ∀u(z󸀠Pu), then z󸀠Pcom(x);
if ¬∀u(z󸀠Pu), then by T10 and D5 from z󸀠Pcom(y): ¬(z󸀠Py); hence by A1 and
the assumption: ¬(z󸀠Px), hence by A4, A3, D3: z󸀠Pσz(EL(z) ∧¬(z󸀠Px)), hence by
D5: z󸀠Pcom(x). We have now established: ∀z󸀠(EL(z󸀠)∧ z󸀠Pcom(y)→ z󸀠Pcom(x));
hence by A5: com(y)Pcom(x). (II) Assume com(y)Pcom(x); hence on the ba-
sis of what has already been established in (I) [the left-to-right part of T12]:
com(com(x))Pcom(com(y)); hence on the basis of T11: xPy. qed

T13: ∀z(CO(z)↔ EL(com(z)), ∀z(CO(com(z))↔ EL(z)))

Proof. (I) Assume CO(z), hence by cD2 and cD1: ∀x(zPx ∧ ¬∀u󸀠(u󸀠Px) →
x = z). Suppose x󸀠Pcom(z) ∧ ¬∀u󸀠(x󸀠Pu󸀠); hence by T12 and T11: zPcom(x󸀠) ∧¬∀u󸀠(com(u󸀠)Pcom(x󸀠)); hence ¬∀u󸀠(u󸀠Pcom(x󸀠)) [for if ∀u󸀠(u󸀠Pcom(x󸀠)) were
true, then certainly also ∀u󸀠(com(u󸀠)Pcom(x󸀠))would be true]. Therefore, on the
basis of the assumption, we have: com(x󸀠) = z, hence: com(com(x󸀠)) = com(z),
hence by T11: x󸀠 = com(z). We have now seen: ∀x󸀠(x󸀠Pcom(z) ∧ ¬∀u󸀠(x󸀠Pu󸀠) →
x󸀠 = com(z)), hence by D1 and D2: EL(com(z)). (II) Assume EL(com(z)),
hence by D2 and D1: ∀x(xPcom(z) ∧ ¬∀u󸀠(xPu󸀠) → x = com(z)). Suppose
zPx󸀠 ∧ ¬∀u󸀠(u󸀠Px󸀠); hence by T12: com(x󸀠)Pcom(z) ∧ ¬∀u󸀠(com(x󸀠)Pcom(u󸀠));
hence ¬∀u󸀠(com(x󸀠)Pu󸀠) [for if ∀u󸀠(com(x󸀠)Pu󸀠) were true, then certainly also∀u󸀠(com(x󸀠)Pcom(u󸀠))would be true]. Therefore, on the basis of the assumption,
we have: com(x󸀠) = com(z), hence: com(com(x󸀠)) = com(com(z)), hence by T11:
x󸀠 = z.We have now seen: ∀x󸀠(zPx󸀠∧¬∀u󸀠(u󸀠Px󸀠)→ x󸀠 = z), hence by cD1 and cD2:
CO(z). The second part of T13 is an easy corollary of the first part, given T11. qed

T14: σu(u = u) = com(σu(u ̸= u))
Proof. (I) Because of cT1: com(σu(u ̸= u))Pσu(u = u). (II) Assume EL(z󸀠) ∧
z󸀠Pσu(u = u); if ∀u󸀠(z󸀠Pu󸀠), then z󸀠Pcom(σu(u ̸= u)); if ¬∀u󸀠(z󸀠Pu󸀠), then¬(z󸀠Pσu(u ̸= u)),4 and therefore: z󸀠Pσz(EL(z) ∧ ¬(zPσu(u ̸= u))), on the

4 If z󸀠Pσu(u ̸= u), then z󸀠 = σu(u ̸= u) (because of T7 and D4), and consequently ∀u󸀠(z󸀠Pu󸀠)
because of T1.
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basis of A4, A3, D3; hence z󸀠Pcom(σu(u ̸= u)) because of D5. We have now
established: ∀z󸀠(EL(z󸀠) ∧ z󸀠Pσu(u = u) → z󸀠Pcom(σu(u ̸= u))); hence by A5:
σu(u = u)Pcom(σu(u ̸= u)). Given (I) and (II), T14 follows by A3. qed

T15: ∀x(CO(x)↔∃y(EL(y)∧ x = com(y))),∀x(EL(x)↔∃y(CO(y)∧ x = com(y)))

Proof. (I) Assume CO(x); hence by T13: EL(com(x)); hence by T11: EL(com(x))∧
x = com(com(x)); hence ∃y(EL(y) ∧ x = com(y)). (II) Assume ∃y(EL(y) ∧ x =
com(y)); by T13: ∃y(EL(y) ∧ CO(com(y)) ∧ x = com(y)); hence CO(x). The proof
of the second part of T15 is entirely analogous. qed

4 Models for A1–A6
When we look at the contents of the theorems cT1–cT9, it turns out that
part-whole-relations between certain concrete entities are to some extent as
blatantly out of accord with what those theorems are implying as they are out of
accord with what T1–T9 are implying. For example, one will not find a spatial
whole (that is, a part of real space) that differs from the spatial totality (that is,
from real space) in such amanner that it is a proper part only of the spatial totality;
at least this is true if one does not count space-points as spatial wholes.5 And
one will not find a temporal whole (that is, a part of real time) that differs from
the temporal totality (real time) in such a manner that it is a proper part only
of the temporal totality. It is true that A1–A6 do not entail that there is a whole
that differs from the totality in such a manner that it is a proper part only of
the totality. But the mere extra assumption ∃z(CO(z) ∧ z ̸= σu(u = u)) (“There
is at least one comprehensive whole that differs from the totality”) will yield∃z(zPσu(u = u) ∧ σu(u = u) ̸= z ∧ ∀x(zPx ∧ x ̸= z → x = σu(u = u))) on the basis
of cT6.

It is, however, not without good reason that I put an emphasis on the phrase
“to some extent” in the first sentence of this section (section 4). There are concrete
totalities (each unique in the relevant model) which are such that some of their
proper parts are proper parts only of them (in the relevant model). Consider a
group G, consisting of four people; let G be the totality. Clearly, G is a concrete,
non-abstract entity, and so are all of its subgroups (whether or not the members
of G – the four people themselves – are counted as subgroups of G, that is, as

5 If one does count space-points as spatial wholes, then one can say that real space without a
certain (arbitrary) space-point is a spatial whole of the envisaged kind.
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singleton subgroups of G). It is evident that each of the four three-membered
subgroups of G differs from G in such a manner that it is a proper part (proper
subgroup) only of G. Moreover, it is easily seen that, if the universe of discourse
encompasses G and all of its subgroups (of people) and nothing else, then all the
theorems in cT1–cT9 turn out to be true – given that “xPy” and “σu(u = u)” are
understood in the straightforward sense that the stipulated universe of discourse
suggests.6

Readers may wonder whether the mereological model for cT1–cT9 that has
G for its totality – in short: the G-model – satisfies not only cT1–cT9 but also
T1–T9, because it simply satisfies A1–A6. If that were true, then there would be
a concrete and rather natural model for a mereology that – at first – looked as if
it was naturally appropriate only for intelligible worlds. To decide the matter, one
has to be clear on the question of which entities, precisely, are in the stipulated
universe of discourse. It comprises at least G, the four three-membered subgroups
of G, and the six two-membered subgroups of G. Does it comprise anything else?
Since the stipulated universe of discourse comprises G and all subgroups of G and
nothing else, further candidates for being in the universe of discourse can only
be one-membered and zero-membered subgroups of G (consisting of members
of G: certain people). But an empty subgroup of G – a group which would be a
subgroup of every subgroup of G – is out of the question, and singleton subgroups
of G – each to be identified with one of the four members of G – are groups
only by courtesy. In the strict acceptation of the word “group”, there is nothing
else in the universe of discourse than the already mentioned eleven entities; in a
liberal acceptation of “group”, four singleton subgroups of G are in the universe
of discourse in addition to the eleven entities already mentioned.

Let us adopt the liberal position. The effect of this is that A1–A3, A5 and A6
turn out to be true; butA4, as it stands, cannot be true for the G-model; onlyA4󸀠 is
true for it:∃yA[y]→∃u(∀y(A[y]→ yPu)∧∀x(∀y(A[y]→ yPx)→ uPx)).7 Therefore,

6 G is the group which consists of Andrew, Anna, Nina, and Vladimir. The group which consists
of Anna and Nina is a proper part of G, and so is the group which consists of Anna and Andrew.
The (intended mereological) sum of these two proper parts of G is the group which consists of
Anna, Nina, and Andrew, which group, too, is a proper part of G. The sum of all (self-identical)
entities in the universe of discourse is certainly G. (According to the strict view, the number of
those entities is 11; according to the liberal view, their number is 15.)
7 Thus, in the axiom-system whose models are the models that are just like the G-model, only
A4 needs to be replaced (by A4󸀠), whereas A1–A3, A5 and A6 can be retained. However, certain
simplifications are recommendable: In A5, “EL(z)” should be replaced by “AT(z)”, and in A6,
“P∗” should be replaced by “P”. These simplifications are possible in view of D1, D2, and D4,
and the fact that for the models that are just like the G-model (they contain at least one proper
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the G-model is after all not a concrete naturalmodel forA1–A6. But there certainly
are abstract natural models forA1–A6. An entirely commonplace natural abstract
model forA1–A6 is obtained by stipulating that the universe of discourse is to
contain all the subsets of a certain set S, andnothing else (it does notmatterwhich
set S is, it may even be the empty set), and by interpreting “xPy” as “x is a subset
of y”. Then the elementary wholes (the entities that satisfy “EL(x)”) turn out to
be the singleton subsets of S plus the empty set; and the comprehensive wholes
(the entities that satisfy “CO(x)”) turn out to be S plus the subsets of S that differ
from S only by lacking precisely one element of S (“element” being taken in the
set-theoretical sense).

The abstract natural models for A1–A6 become more interesting if one adds
an axiom-schema of infinity to A1–A6, for example in the following way:

A7: ∃≥1z(EL(z)∧¬AT(z))∧ (∃≥Nz(EL(z)∧¬AT(z))→∃≥N+1z(EL(z)∧¬AT(z)))
Instead of ∃≥1z(EL(z) ∧ ¬AT(z)) ∧ (∃≥Nz(EL(z) ∧ ¬AT(z)) → ∃≥N+1z(EL(z) ∧¬AT(z))), one can just as well choose ∃≥1z(CO(z) ∧ ¬TO(z)) ∧ (∃≥Nz(CO(z) ∧¬TO(z))→∃≥N+1z(CO(z)∧¬TO(z))) as axiom-schema of infinity. For on the basis
of A1–A6, the former schema and the latter are deductively equivalent: whichever
of the two schemata one chooses as the one which is to be axiomatic, one will be
able to obtain the other one as a theorem.

Let the universe of discourse comprise, then, all the subsets of the set of
natural numbers and nothing else, with “xPy” being interpreted as “x is a subset
of y”. This stipulation, obviously, provides us with an abstract natural model
for A1–A6 plus A7. The most interesting natural abstract models for A1–A6 plus
A7 are, however, the following two: (I) Let the universe of discourse comprise
all states of affairs and nothing else, with “xPy” being interpreted as “x is
intensionally contained in y” (for example, the state of affairs that Peter is born
earlier than John is intensionally contained in the state of affairs that John is
born later than Peter, and the state of affairs that Peter has a date of birth is
intensionally contained in the state of affairs that Peter is born earlier than
John. (II) Let the universe of discourse comprise all properties of individuals and
nothing else, with “xPy” being interpreted as “x is intensionally contained in
y” (for example, the property of having a colour is intensionally contained in
the property of being red, and the property of being extended is intensionally
contained in the property of having a colour). If one accepts the world of states

– that is, at least two-membered – group and no empty group), ∀x¬∀u(xPu) is always true; this
fact makes xP∗y equivalent to xPy, and EL(z) equivalent to AT(z).
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of affairs and the world of properties of individuals (both aremundi intelligibiles)
as universes (of discourse) that conform to the descriptions provided by A1–A6
plusA7, then this presupposes that one has made, in both cases, twomomentous
decisions in addition to the, doubtless, momentous decision to accept states of
affairs and properties of individuals in huge numbers: one has decided to accept
that entities which intensionally contain each other (be they states of affairs or
properties of individuals) are identical to each other, that is, one has opted for
a “coarse-grained” individuation of states affairs and properties of individuals
(otherwise A3 would be violated); and one has decided to accept that, with each
state of affairs and each property of individuals, also its complement – or: its
negation, as one says if talk is about states of affairs or properties – is a state
of affairs, respectively, property of individuals. Each of these – in all – three
decisions has been severely disapproved of by this or that philosopher. Yet, if
one accepts abstract entities at all, and if one considers states of affairs and
properties to beabstract entities, then–within the ontological framework defined
by these two conditions (in fact, they point to yet further decisions) – all of the
metaphysical decisions mentioned seem perfectly all right.

WhatA1–A6plusA7mean for states of affairs and for properties of individuals
is explored in great detail (albeit in a somewhat different terminology) in my
books Axiomatic Formal Ontology and The Theory of Ontic Modalities. Here, I
would merely like to point out a few fascinating consequences which this formal
mereological theory has for states of affairs and properties of individuals (taken
to be abstract entities). Already in A1–A6 the following theorem is provable:

T16: ∀x(CO(x)∧¬TO(x)↔∀y(yPx↔¬(com(y)Px)))
T16 says that the comprehensive wholes which are not totalities – in other
words (in view of cT7), the comprehensive wholes which are different from
σu(u = u) – are precisely the mereologically maximal-consistent wholes, where
a mereologically maximal-consistent whole is defined as an entity such that
for each entity (in the universe of discourse) it is true that either that entity
itself or its complement (but not both) is a part of it. Given A7, the number of
comprehensive wholes which are not totalities – that is (by T16), the number
of maximal-consistent wholes – is infinite (since there are precisely as many
comprehensive wholes which are not totalities as there are elementary wholes
which are not atoms, as can be proven in A1–A6: T13, second part, T14, and T15,
first part, can be used as lemmas in the proof).

What are the maximal-consistent wholes if the entities in the universe of
discourse are precisely the states of affairs? They are the possible worlds, in
abstracto conceived of as maximal-consistent states of affairs (developing an
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idea that can be gathered from Wittgenstein’s Tractatus). And what are the
maximal-consistentwholes if the entities in theuniverse of discourse are precisely
the properties of individuals? In that case, they are the notiones completae
of Leibniz, conceived of as maximal-consistent properties of individuals, each
notio completa being the sum of all the properties a given individual has in a
given possible world. The metaphysically profound question is whether there
is an essential one-to-one match between individuals and notiones completae
(qua maximal-consistent properties of individuals), or not. This question has
two parts: (A) Does necessarily each notio completa have an individual as its
one and only exemplifier, such that, necessarily, different notiones have different
individuals as their sole exemplifiers, and such that necessarily there is for
each individual a notio completa which has it as its sole exemplifier? (B) May
a notio completa have a certain individual x as exemplifier without this being
necessarily so? If question (A) is answered by “yes” and question (B) by “no”,
then there is indeed an essential one-to-one match between individuals and
notiones completae, and one might as well identify the individuals (disregarding
concreteness) with the notiones completae: the maximal-consistent properties of
individuals. Among the interesting consequences of making this identification
would be, for example, (i) the exemplification of a property by an individual
– or in other words: the having of a property by an individual – turns into a
single-category mereological relation: xEXEMy := CO(x)∧¬TO(x)∧ yPx; and (ii)
the intuition that an actual individual x could have had other properties than it
really has canonly be accommodatedby saying thatwhat is really (literally)meant
by this is the following: a counterpart of x (a certainmaximal-consistent property)
has (comprises) other properties than x, but is not actual.8

5 The geography of A1-to-A6 worlds
For each intelligible world W which conforms to (the descriptions provided
by) A1–A6 the following is true: the number of entities in W is 2c(EL&¬AT),
where c(EL&¬AT) is the number of elementary wholes in W that are not atoms.
c(EL&¬AT) is taken from 0,1,2,3, ...;ℵ0. Each intelligible A1-to-A6 world with
1 ≤ c(EL&¬AT) has two distinct poles: a south pole: σu(u ̸= u), and a north pole:
σu(u = u), with σu(u ̸= u) ̸= σu(u = u). Each A1-to-A6 world with 2 ≤ c(EL&¬AT)

8 For more on the application of “actual” to properties of individuals and states of affairs, see
my books Meixner (1997) and Meixner (2006).
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has at least one latitudebetween the twopoles. If 3≤ c(EL&¬AT), then thenumber
of latitudes between the poles is ≥ 2 and the number of northern latitudes is equal
to the number of southern latitudes. If 2 ≤ c(EL&¬AT) and c(EL&¬AT) is an even
number, then there is an equator: a latitude which is neither a southern nor a
northern latitude, but the border between the southern and the northern half of
the world concerned. Each entity in an A1-to-A6world is either the south pole, or
the north pole, or is in one of the latitudes of the intelligible world. No entity in a
higher (more northern) latitude is ever part of an entity in a lower (more southern)
latitude. The south pole is the entity (in the world concerned) that consists of no
non-atomic elementarywholes (of theworld concerned). In thefirst latitudeabove
the south pole, there are the entities which consist of precisely one non-atomic
elementary whole; in the second latitude above the south pole, there are the
entities which consist of precisely two non-atomic elementary wholes; . . . ; in the
second latitude below the north pole, there are the entities which consist of all
but two non-atomic elementary wholes; in the first latitude below the north pole,
there are the entities which consist of all but one non-atomic elementary wholes.
The north pole is the entity which consists of all non-atomic elementary wholes.
The complement of the south pole is the north pole; the complement of an entity
in theNth latitude above the south pole is in theNth latitude below the north pole;
the complement of an entity in an equator is – in the equator.

Below, are the distribution schemata of entities inA1-to-A6worlds of the first
seven cardinalities. Each summand in the sum-expressions stands for the number
of entities to be found at the respective latitude or pole; the first summand (at the
left) refers to the south pole, the last summand (at the right) to the north pole,
the summands in between refer to the latitudes between the poles, one after the
other; the central summand – if there is one – refers to the equator:

20 = 1
21 = 1+1
22 = 1+2+1
23 = 1+3+3+1
24 = 1+4+6+4+1
25 = 1+5+10+10+5+1
26 = 1+6+15+20+15+6+1
...

Consider again the natural model for A1–A6 plus A7 which has precisely the
subsets of the set of natural numbers in the universe of discourse, with “xPy”
being interpreted as “x is a subset of y”. The world of this model has, besides
the two poles (the south pole is the empty set, the north pole the set of natural
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numbers), a denumerably infinite number of southern latitudes, each of them
occupied by a denumerably infinite number of finite sets (first singletons, then
pairs, then triples, then . . . ); and it has a denumberably infinite number of
northern latitudes, each of them occupied by a denumerably infinite number of
denumerably infinite sets; and it has an equator, occupiedbya superdenumerably
infinite number of denumerably infinite sets.

6 Other intelligible worlds
The system A1–A6 plus A7 is certainly sufficient for determining that natural
models of it are abstract, in other words, intelligible worlds. It is, however, not
the case that every infinite intelligible world can serve as a model of A1–A6 plus
A7. Obviously, neither the world of natural numbers nor the world of pure sets9
satisfies A1–A6 (though there are countless sub-regions of the world of pure sets
that satisfy A1–A6 and A7). Just for the sake of curiosity: Which axiomatic system
could serve as a mereology for the world of natural numbers (which world must
be carefully distinguished from the world of the sets of natural numbers)? For
obtaining such a mereology, the natural step is to interpret “xPy” as “x ≤ y”. This
immediately yields the principlesA1–A3, which, since the intended interpretation
is now very different from the interpretation originally intended, are re-named
into B1–B3:

B1: ∀x∀y∀z(xPy ∧ yPz→ xPz)
B2: ∀x(xPx)
B3: ∀x∀y(xPy ∧ yPx→ x = y)
The linearity of the world of natural numbers is captured in a mereological
way (given B1 and B3) by the following principle (which principle makes B2
superfluous: B2 is straightforwardly deducible from it):

B4: ∀x∀y(xPy ∨ yPx)
The infinity and the discreteness of the world of natural numbers (given B1, B3,
and B4) is captured in a mereological way by the following principle:

B5: ∀x∃z(xPz ∧ x ̸= z ∧¬∃z󸀠(xPz󸀠 ∧ x ̸= z󸀠 ∧ z󸀠Pz ∧ z󸀠 ̸= z))

9 Pure sets are the sets – conforming to a chosen axiomatic set theory – thatwould be still around
if there were nothing else but sets.
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On the basis of B5 and B4, it is provable:

T󸀠1: ∀x∃=1z(xPz ∧ x ̸= z ∧¬∃z󸀠(xPz󸀠 ∧ x ̸= z󸀠 ∧ z󸀠Pz ∧ z󸀠 ̸= z))
Proof. All that remains to be done in view of B5 is to demonstrate uniqueness.
Assume, therefore, for reductio: xPz ∧ x ̸= z ∧ ¬∃z󸀠(xPz󸀠 ∧ x ̸= z󸀠 ∧ z󸀠Pz ∧ z󸀠 ̸= z) ∧
xPu ∧ x ̸= u ∧¬∃z󸀠(xPz󸀠 ∧ x ̸= z󸀠 ∧ z󸀠Pu ∧ z󸀠 ̸= u)∧ u ̸= z. Because of B4: zPu ∨ uPz.
If zPu, then xPz ∧ x ̸= z ∧ zPu ∧ z ̸= u – contradicting ¬∃z󸀠(xPz󸀠 ∧ x ̸= z󸀠 ∧ z󸀠Pu ∧
z󸀠 ̸= u). If, on the other hand, uPz, then xPu ∧ x ̸= u ∧ uPz ∧ u ̸= z – contradicting¬∃z󸀠(xPz󸀠 ∧ x ̸= z󸀠 ∧ z󸀠Pz ∧ z󸀠 ̸= z). qed

D󸀠1: succ(x) := ιz(xPz ∧ x ̸= z ∧¬∃z󸀠(xPz󸀠 ∧ x ̸= z󸀠 ∧ z󸀠Pz ∧ z󸀠 ̸= z))
D󸀠1 defines the all-important successor-functor for natural numbers. The follow-
ing Peano-axiom is a theorem of the present system:

T󸀠2: ∀x∀y(succ(x) = succ(y)→ x = y)
Proof. Assume succ(x) = succ(y). By T󸀠1 and D󸀠1: xPsucc(x) ∧ x ̸= succ(x) ∧¬∃z󸀠(xPz󸀠 ∧ x ̸= z󸀠 ∧ z󸀠Psucc(x) ∧ z󸀠 ̸= succ(x)) and yPsucc(y) ∧ y ̸= succ(y) ∧¬∃z󸀠(yPz󸀠 ∧ y ̸= z󸀠 ∧ z󸀠Psucc(y)∧ z󸀠 ̸= succ(y)), hence by logical transformations:
(i) ∀z󸀠(xPz󸀠 ∧ z󸀠Psucc(x)∧ z󸀠 ̸= succ(x)→ x = z󸀠) and (ii) ∀z󸀠(yPz󸀠 ∧ z󸀠Psucc(y)∧
z󸀠 ̸= succ(y)→ y = z󸀠). Now, by B4: xPy ∨ yPx. In the first case, xPy ∧ yPsucc(x)
[since yPsucc(y) and succ(x) = succ(y)] ∧ y ̸= succ(x) [since y ̸= succ(y) and
succ(x) = succ(y)], and therefore on the basis of (i): x = y. In the second case,
yPx ∧ xPsucc(y) [since xPsucc(x) and succ(x) = succ(y)] ∧ x ̸= succ(y) [since
x ̸= succ(x) and succ(x) = succ(y)], and therefore on the basis of (ii): y = x, hence
x = y. qed

Consider next the following two axiom-schemata (which are immediately evident
in view of the intended interpretation):

B6a: ∃zA[z]→∃u(A[u]∧∀z(A[z]→ uPz))
B6b: ∃=NzA[z]→∃u(A[u]∧∀z(A[z]→ zPu))

(where “N” stands for any Arabic numeral except “0”)10

10 The mere use of Arabic numerals (as in ∃=1zA[z], ∃=2zA[z], ∃=3zA[z], ...) does not mean
that one is using or presupposing arithmetic: ∃=NzA[z] is definable entirely without the use of
arithmetic.
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Using B3, it is easy to deduce the following theorems from B6a and B6b:

T󸀠3a: ∃zA[z]→∃=1u(A[u]∧∀z(A[z]→ uPz))
T󸀠3b: ∃=NzA[z]→∃=1u(A[u]∧∀z(A[z]→ zPu))

And we have the following definitions:

D󸀠2a: νxA[x] := ιu(A[u]∧∀z(A[z]→ uPz))
D󸀠2b: σxA[x] := ιu(A[u]∧∀z(A[z]→ zPu))

νxA[x] is the mereological nucleus of the natural numbers that satisfy the pred-
icate A[u], in other words: νxA[x] is the smallest natural number that satisfies
A[u]; σxA[x] is the mereological sum of the natural numbers that satisfy the
predicate A[u], in other words: σxA[x] is the largest natural number that satisfies
A[u] (obviously, the mereological sum of natural numbers is not the arithmetical
sum of them). An expression of the form νxA[x] is not guaranteed to have, for just
any predicate A[x], a referent that conforms to its meaning; it is guaranteed to
have such a referent only for predicates A[x] for which ∃zA[z] is true (see T󸀠3a).
In turn, an expression of the form σxA[x] is not guaranteed to have, for just any
predicate A[x], a referent that conforms to its meaning; it is guaranteed to have
such a referent only for predicates A[x] for which ∃=NzA[z] is true (see T󸀠3b).

The following important theorems can now be proven, which show that the
mereology of natural numbers is, after all, a mereology for abstract entities in a
manner which is to some extent analogous to the way in which A1–A6 plus A7 is
a mereology for abstract entities. According to these theorems, there is a part of
everything which, at the same time, is the one and only atom; there is no natural
concrete model for such a proposition.

T󸀠4: ∀z(νx(x = x)Pz)
Proof. On the basis of T󸀠3a, D󸀠2a, and the (provable) logical truth ∃x(x = x), we
obtain (using the logic of definite descriptions): ∀z(z = z → νx(x = x)Pz); hence
because of ∀z(z = z): ∀z(νx(x = x)Pz). qed

T󸀠5: ¬∃z(zPνx(x = x)∧ z ̸= νx(x = x))
Proof. If zPνx(x = x), then it follows because of T󸀠4 and B3: z = νx(x = x)). qed

T󸀠6: ∀y(¬∃z(zPy ∧ z ̸= y)→ y = νx(x = x))
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Proof. Assume ¬∃z(zPy ∧ z ̸= y); by T󸀠4: νx(x = x)Py; hence νx(x = x) = y, hence
y = νx(x = x). qed

Given the first definition in the following series of definitions,

D󸀠3: 0 := νx(x = x), 1 := succ(0), 2 := succ(1), 3 := succ(2), etc.11
another Peano-axiom is easily provable:

T󸀠7: ¬∃y(succ(y) = 0)
Proof. Suppose succ(y) = 0; hence by D󸀠3: succ(y) = νx(x = x). By T󸀠1, D󸀠3:
yPsucc(y) ∧ y ̸= succ(y). Hence yPνx(x = x) ∧ y ̸= νx(x = x) – contradicting
T󸀠5. qed

But what about the central Peano-axiom, the schema of complete induction? The
schema of complete induction is directly assumed in the present system,

B7: A[0]∧∀x(A[x]→ A[succ(x)])→∀xA[x],
since there appears to be nomore perspicuous way than B7 to describe the aspect
of the world of natural numbers thatB7 is aiming at – except, perhaps, the infinite
axiom ∀x(x = 0 ∨ x = 1 ∨ x = 2 ∨ ... ∨ x = N ∨ ...), taken to cover all and only
expressionsN that are definable in theway indicated inD󸀠3. This axiom, however,
is an infinitely long expression (requiring an infinitistic logic); it is, therefore,
non-standard. With ∀x(x = 0∨ x = 1∨ x = 2∨ ... ∨ x = N ∨ ...) in place, B7 is easily
provable (employing infinitistic logic): Assume A[0] ∧ ∀x(A[x] → A[succ(x)]);
hence (using D󸀠3 ): A[0],A[1],A[2], ...,A[N], ...; hence: ∀x(x = 0→ A[x]), ∀x(x =
1 → A[x]), ∀x(x = 2 → A[x]), ..., ∀x(x = N → A[x]), ...; hence: ∀x(x = 0 ∨ x =
1∨x = 2∨ ...∨x =N∨ ...→A[x]); hence because of∀x(x =0∨x =1∨x =2∨ ...∨x =
N ∨ ...): ∀xA[x].

11 Alternatively one could define: 0 := νx(x = x), 1 := νx(x ̸= 0), 2 := νx(x ̸= 0∧ x ̸= 1), 3 := νx(x ̸=
0∧ x ̸= 1∧ x ̸= 2), etc., and then prove: 1 = succ(0), 2 = succ(1), 3 = succ(2), etc. For example,
“1 = succ(0)” is proven as follows: Since ∀y(y ̸= 0→ νx(x ̸= 0)Py) and succ(0) ̸= 0, we have:
νx(x ̸= 0)Psucc(0); and secondly we have: 0Pνx(x ̸= 0) ∧ 0 ̸= νx(x ̸= 0); and thirdly we have:
¬∃z󸀠(0Pz󸀠∧0 ̸= z󸀠∧z󸀠Psucc(0)∧z󸀠 ̸= succ(0)). Therefore: νx(x ̸=0)= succ(0), hence: 1= succ(0).
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Carlo Nicolai
Necessary Truths and Supervaluations

1 Hierarchies of theories and evidences
Logical complexity is one of the most fascinating and deep facts stemming from
the incompleteness phenomena, and it is also one of the main themes of Sergio
Galvan’s ongoing journey into logic and philosophy. Just tomention awell-known
example, the complexity of the set of elementary truths of a first-order theory1
containing a modicum of arithmetic will always exceed – in a formally precise
sense – the complexity of the set of theorems of that theory.

The mismatch between truth and provability is one of the central research
interests of Sergio Galvan, as it became clear already with his first work on Tarski
(Galvan, 1973). The incompleteness theorems determine a hierarchy of ‘natural’
theories given by consistency strength or similar means of comparison. The con-
sistency of Zermelo-Fraenkel set theorywith choice ZFC canbeproved for instance
in ZFC plus the existence of the least wordly cardinal, which will then occupy a
higher position than ZFC in the hierarchy. More generally, it is a consequence of
Gödel’s results that the consistency of a sufficiently rich T can only be proved
in theories ‘stronger’ than T. Suitable set existence axioms, but also reflection
principles and truth principles, have all been employed to properly extend T to
theories that are capable of deriving its consistency or equivalent statements.

As Galvan (1992) lucidly points out, there is little epistemological interest in
justifying the acceptance of T under assumptions stronger than T, at least if the
kind of justification we are after is close to a fully-fledged foundation. Galvan’s
analysis of incompleteness, therefore, suggests to read-off, in the hierarchy of
theories given by pure strength, a finer-grained hierarchy of explanation. To this
hierarchy belong theories that are capable of formalizing andmaking explicit our
commitment to theories lying lower down in the hierarchy. The theory PA+Con(PA)
(cf. §2), obtained by adding a (intensionally correct) consistency statement to PA,
will not belong to Galvan’s hierarchy of explanation, although its consistency
strength trivially exceeds the one of PA; the simple assumption of the consistency
of PA does not represent in fact an explanation of our acceptance of PA, in
Galvan’s sense, but amere stipulation. By contrast, the subsystemof second-order

1 Here by theory we always intend theory in classical logic.
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arithmetic ACA will belong to the hierarchy of explanation as it can define a full
truth predicate for PA – more specifically, a full truth class for PA: this suffices for
formalizing in ACA the metatheoretic proof of the soundness of PA.

It is therefore natural to assume that one way to climb up Galvan’s hierarchy
of explanation, given a trustworthy starting point T, is to assume a theory of truth
for it. In thisway onemayachieve a sort of ‘explanatory foundation’ (Galvan, 1992)
– even though not a full justification of our trust in the base theory – rooted in our
grasp of the notion of truth for T. There are several ways to add a theory of truth
to a ground theory; a comprehensive treatment is Halbach (2014).

In this paper we investigate a possible extension of this method. One might
see this work as an attempt to climb up Galvan’s hierarchy of explanation by
resorting to our grasp of ‘logical’ concepts such as truth itself but also of other
modal notions, in primisnecessity.2 In otherwordswe investigate the possibility of
extending our base theory with ‘natural’ axioms governing modalities conceived
as predicates and not as operators. This line of research is receiving new attention
in the recent literature; Quine, Carnap, Montague have all already considered
formal treatments of predicative uses of modal notions,3 but the success of
possible world semantics for operator modal logic and the presence of paradoxes
in the predicate setting (see §3) have distracted much attention from it.

Halbach et al. (2003) have restored some confidence in the possibility of
bridging the gap between modal logics and formal approaches to modal no-
tions conceived as predicates. They have shown that, despite the presence of
paradoxes, it is still possible to extend possible-worlds semantics to languages
featuring modal predicates at least for some modal frames (cf. §4.1). Halbach and
Welch (2009) have even suggested a generalization to arbitrary frames: a variant
of their construction will be considered below.

The reader familiar with operator modal logics should not be worried: the
predicate approach can be considered a generalization modal logics. Anything
that can be said and proved in the operator approach can be mimicked in the
predicate setting when suitable restrictions to the predicate language have been
performed (see Gupta (1982) and Schweizer (2002)): it is in fact always possible
to define an operator via a predicate. What we will say below will be no threat to
the usual operator approach; paradoxes arise only when the expressive power of
predicates and diagonalization comes into the picture. For the interested reader,
Stern (2015) is a thorough and up to date treatment of the current research on

2 We consider truth as a modal notion in the same vein of some medieval logicians such as
William of Ockham. See for instance part II of the Summa Logicae.
3 See for instance Carnap (1934), Quine (1960), Montague (1970).
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syntactical treatments of modalities, including many original contributions by
Stern himself.

We end this introductory section with three caveats. First of all we refer to
truth, necessity, possibility, etc. as ‘logical’ notions in a rather liberal sense.
Of course we do not advocate the view that the theories considered below
amount to ‘logics’ in the very same sense in which first-order logic is ‘logic’;
rather we highlight the different possibilities that one faces when extending a
given base theory. In this sense we oppose ‘logical’ principles, such as the ones
characterizing concepts such as truth and necessity, to ontologically committing
‘mathematical’ principles, such as set existence assumptions. Furthermore, it is
not our intention to suggest a revision of modal logics: the predicate approach,
in our view, is a framework that naturally that naturally captures the ubiquitous
predicative uses of modalities, and it is in this respect an interesting alternative
to modal logics or its extensions. Finally, in this work we will only able to
partially accomplish the promised ascent given by the combination of alethic
modalities. Since the predicate approach to modalities is a lively but young
field of research, there is some work required before tackling a fully-fledged
proof-theoretic investigation of modal theories: in particular, as we shall see later
on, consistency is a highly nontrivial matter.

Plan of The (rest of the) Paper. In §2 we introduce some of the preliminaries
needed in the core sections of the paper. Further terminology and notation will
be introduced in §4.1. In §3 we focus on some well-known paradoxes of the
predicate approach such asMontague’s, and on some lesswell-knownantinomies
essentially due to the interaction of more than one modal predicate. §4 will be
devoted to possible worlds semantics for languages expanding our base language
Lwith a primitive necessity predicate: we first describe some strategies available
to retain a classical interpretation of necessity by restricting the modal space,
and then remove these restrictions via a quasi-classical interpretation of necessity
based on supervaluations. §5 will finally be devoted to deductive systems: we
extend Cantini’s theory of truth VF with axioms for necessity and prove its
soundness with respect to a multimodal semantics obtained by adapting the
semantics given in §4. We conclude in §6 with some comments to the content of
the previous sections and sketch some possible extensions.

2 Some preliminaries
Robinson’s arithmetic Q is often considered to be the theoretical lower-bound
for the derivability of non-intensional independence results such as Gödel’s first
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incompleteness theorem, Tarski’s and Montague’s theorems. Let L = {0,S,+,×}.
The axioms of Q are the universal closures of the following formulas:

Sx ̸= 0Q1
Sx = Sy→ x = yQ2
x ̸= 0→∃y (x = Sy)Q3
x +0 = xQ4
x +Sy = S(x + y)Q5
x ×0 = 0Q6
x ×Sy = (x × y)+ xQ7

The axiom Q3 is a weak form of induction and it indispensable to characterize
the successor function, as in its absence there may be nonzero natural numbers
without a predecessor. Q3 becomes derivable, however, when induction is added
to Q.4

Peano arithmetic (PA) will play an important role in what follows: it is the
result of adding to Q the schema of mathematical induction

(Ind) φ(0)∧∀x(φ(x)→ φ(Sx))→∀xφ(x)
for all L-formulas φ(v) with at most v free.

PAwill be the theory formalizing the structure and properties of the bearers of
modal ascriptions. We assume a standard arithmetization of the usual primitive
recursive syntactic notions and operations of L and its extensions as it can be
found, for instance, in Galvan (1992). In practice, we will work in a definitional
extension of PA in which function symbols (e.g. for syntactic operations) for some
primitive recursive functions are available. They can however be eliminated in the
usual way (see again Galvan (1992)).

As to notational conventions, we only give few instructive examples: ¬. x
stands for the L-term representing in PA the operation of prefixing a negation
symbol to x, and similarly N. t is the L-term representing the result of prefixing
the predicate N of the language LN :=L∪ {N} to the object coded by t; SentL(x) is
a PA-definable formula representing the primitive recursive set of sentences of L;
the L-formula BewT(x) represents the recursively enumerable set of theorems of
the recursive theory T; x∘ stands for the PA-definable evaluation function assign-
ing to each closed term its value. When this is clear from the context, we follow
the customary practice and do not distinguish between sentences and their codes.

4 Q is extremely weak. Saul Kripke observed in fact that cardinal numbers are a model ofQ, and
thus there are entities, such as infinite cardinals, for which Sx = x.
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We conclude this section by introducing a technical device that is often useful
to interpret self-applicable predicates. A sound translation function τ : LN → L1
for sentences of the form NN. t, replacing N(⋅) with some L1-formula ξ(⋅) should of
course yield ξ(τ.N. t) and not ξ(Nt), where the notation τ. (⋅) is like in the previous
paragraph. To achieve the required translation, one may resort to the recursion
theorem (Rogers, 1987, §11.2), that yields for any recursive f(x, y) an index e such
that f(e, y) = [e](y), where [⋅](⋅) is the universal program. If we recursively define
a function τ0 such that, in the relevant case, τ0(x,NNt) = ξ([x](Nt). ), we would
then be able to apply the recursion theorem and find an index e for τ0 such that
[e](NNt) = ξ([e](Nt). ). We are done by letting τ(x) ≅ [e](x).

3 Montague’s paradox and extensions
Paradox is one of the main challenges that the proponent of the predicate
approach tomodalities has to face. In this section we introduce some paradoxical
patterns of reasoning daunting the predicate approach by distinguishing the
unimodal framework, in which our ground language is extended with only one
modality, and a multimodal setting, in which more modalities are taken to
interact. As it happens, paradox arises in both frameworks.

Montague’s paradox is arguably the most fudamental form of paradoxicality
in the unimodal setting. The theorem can be stated also in a more general form
(Montague, 1974), but here we shall be content with the following.

Lemma 4 (Montague). Let T ⊇ Q and assume there is a unary (possibly defined)
predicate χ such that, for all φ ∈LT:

T ⊢ χ⌜φ⌝ → φ(T)
if T ⊢ φ, then T ⊢ χ⌜φ⌝(NEC)

Then T is inconsistent.

Proof. By the diagonal lemma, there is a sentence 𝛾of LT such that

T ⊢ 𝛾↔ ¬χ⌜𝛾⌝
Now we reason in T as follows:

χ⌜𝛾⌝→ 𝛾 (T)
χ⌜𝛾⌝→ ¬𝛾 def. of 𝛾
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¬χ⌜𝛾⌝𝛾 by def. of 𝛾
χ⌜𝛾⌝ (NEC)

qed

It is easy to seewhy Lemma4 or variants thereof have ledmany authors, including
Montague, to conclude that virtually no modal reasoning can be carried out
in the predicate approach to modality. (T) and (NEC) are in fact basic for our
understanding of some modalities, above all de dicto necessity.

This is, as we shall see shortly, a rather hasty conclusion. There are many
examples of predicative uses of modalities in our philosophical reasoning,
including core claims such as ‘There are a posteriori necessary truths’, or ‘Any
analytic judgment is necessary’, that are most naturally formalized using modal
predicates. Some portions of our reasoningwith predicativemodal asciptions can
be rescued from paradox.5

One might argue at this stage that, as in the case of the Liar paradox,
there is a straightforward way out of paradox given by Tarski’s hierarchy of
languages. If this is obviously true for the unimodal setting, when we move to
languages featuring at least two modalities typing is not a sufficient solution
anymore. Halbach (2006), for instance, produced the following, illuminating
example involving two modalities M1 and M2 that closely resemble truth and
necessity.

To formulate Halbach’s result, let T ⊇ Q and expand LT with predicates M1
and M2; call the resulting language L+. We say that φ ∈ L+ does not contain Mi
if it does not contain any used occurrences of it, but it may contain mentioned
occurrences.

Proposition 1 (Halbach). Let T+ extend T with the axiom schemata

M1⌜φ⌝ ↔ φ for all φ ∈L+ not containing M1.(1)
M2⌜φ⌝ → φ with φ ∈L+ not containing M2(2)

φ
M2⌜φ⌝ with φ ∈L+ not containing M2(3)

Then T+ is inconsistent.

5 Surely that are ways to strengthen the operator approach and mimic the expressive power
of modal predicates, but one can hardly deny that the resulting formalizations will be less
natural.
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Proof. We reason in T+:

ν↔¬M1⌜M2⌜ν⌝⌝ diagonal lemma
M2⌜ν⌝ → ¬ν by (1)
M2⌜ν⌝ → ν (2)
¬M2⌜ν⌝¬M1⌜M2⌜ν⌝⌝ by (1)
ν def. of ν
M2⌜ν⌝ (3)

qed

Our emphasis on the use\mention distinction should be now more motivated:
the paradox would in fact disappear if instead of sentences of L+ we had chosen
sentences of the ground language LT , where also mentioned occurrences of the
modalities are not allowed.

Proposition 1 is only one of the paradoxes arising from the interaction
of modal predicates. For instance, a paradox involving knowledge structurally
similar to Proposition 1 can be found in Halbach (2008); Horsten and Leitgeb
(2001) also show that seemingly innocuous assumptions on the structure of time
lead to the inconsistency of the future. Proposition 1waspreferred to other choices
for a simple reason: it suggests that multimodal paradoxes are somewhat harder
to eradicate than their unimodal cousins.

Some authors have already set the basis for a systematic study of the
multimodal paradoxes and their properties. A promising line of research consists
for instance in applying insights from diagonal modal logics to analyse the
structure of multimodal paradoxes. The fundamental idea behind this approach
is to mimic the expressive power of arithmetic by considering propositional
languages expanded with constants for modal ascriptions and a diagonal axiom
for each of them. This boost in the expressive power provides enough information
to analyse the ‘logical’ structuremultimodal paradoxes. The interested readermay
consult Egré (2005) and Fischer and Stern (2015) for further details.

4 Models for necessary truths
What has been said in the last section strongly suggests extra care in handling
expansions of L with modal predicates. Therefore in this section we start more
humbly with providing a possible-worlds semantics for the expansion of L with
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a single necessity predicate N. In the next section we will see how to combine a
truth predicate with the necessity predicate.

We exclusively focus on de dicto necessity, that is we consider only necessity
ascriptions that apply to propositions, and not de re necessity ascriptions,
which attribute a property to an (or possibly more) object by necessity. If the
formalization of de dicto necessity as a unary predicate applying to names of
sentences seems uncontroversial,6 there are several options to deal with de re
necessity or more generally de re modality. A promising option is to employ a
binary predicate applying to unary formulas (playing the role of properties) and
sequences of domain objects (variable assignments), mimicking a binary predi-
cate for satisfaction. A careful treatment to de re modality, also in comparison to
indexed modalities in modal logic, is deferred to a forthcoming work.

As we have mentioned in the introductory section, there are essentially two
ways of constructing a possible world semantics for LN = L∪ {N}. One can either
consider a specific set of frames and allow for a classical interpretation of N, or
instead imposeno restrictions to the admissible frames and interpret thenecessity
predicate in a nonclassical way. We are mostly interested in the latter option, but
for the sake of completeness we will also briefly sketch the fundamentals of the
former without proofs: some terminology and the core insights of the classical
approach will in fact also be useful later on.

4.1 Classical Interpretations of Necessity

We begin with some notions that may sound familiar from operator modal logic,
but that it is worth repeating due to the new environment. Theywill also be useful
in later sections.

Definition 1. Models ofLN will be pairs (ℕ,X)where X is the extension ofN. These
pairs are ‘worlds’ in a possible worlds model. Therefore since we are dealing with
standard models of L only, we may write (w,X) and (ℕ,X) interchangeably.
(i) A frame is a pair (W,R) with W ̸= ⌀ and R ⊆W ×W;
(ii) A possible worlds model is a triple (W,R,V), with (W,R) a frame and V a

function from worlds to subsets of LN such that for every w ∈W:

V(w) = {φ ∈LN | ∀u(wRu⇒ V(u) ⊨ φ)}

6 Obviously the controversy may arise at the level of the bearers of modal ascriptions. As usual,
the sentence or the proposition are equally good candidates. Following the recent literature we
take sentence types to be the bearers of modal ascritpions.
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(iii) A frame (W,R) admits a valuation if and only if there is a V such that (W,R,V)
is a possible worlds model.

We notice that, unsurprisingly, many basic consequences of the definitions carry
over in the predicate approach. In particular, we have the standard properties of
models of the operator modal logic K.

Lemma 5. For (W,R,V) a possible worlds model and w ∈W:
(i) (ℕ,V(w)) ⊨ N⌜φ⌝ if and only if (∀v ∈W)(wRv⇒ (ℕ,V(v)) ⊨ φ)
(ii) if (ℕ,V(v)) ⊨ φ for all v ∈W, (ℕ,V(w)) ⊨ N⌜φ⌝.
(iii) (ℕ,V(w)) ⊨ N⌜φ→ ψ⌝ ∧N⌜φ⌝ → N⌜ψ⌝
Next we finally turn to the differences between the predicate and operator
approach. If, given a frame (W,R) and worlds modelling L, we can always
construct amodel for the languageL∪ {◻} by recursively defining truth forL◻, the
same strategy fails for the languageLN. Only certain frames admit a valuation, due
to the paradoxical phenomena considered in the previous section. For instance,
Lemma 4 shows that no reflexive frame admits a valuation for the necessity
predicate.

Onemay wonder at this stage whether there are any general criteria to isolate
the frames support a valuation. To this end, we introduce new terminology.

Definition 2.
(i) A (binary) relation R is conversewell-founded on a set X iff all nonempty Y ⊆ X

have an R-maximal element.
(ii) A frame (W,R) is converse well-founded iff R is converse well-founded on W.
(iii) If (W,R) is a frame and R converse well-founded on W, the rank of w ∈W is:

ρ(w) :={{{
0, if there is no v with wRv
α +1, if ∃v(wRv ∧ ρ(v) = α ∧∀u(wRu⇒ ρ(u) ≤ α))

(iv) The converse well-founded part of {v | wRv} w.r.t. W is the largest R-upwards
closed X ⊆W such that R−1 is well-founded on X.

(v) The rankof a converse ill-foundedworld is the rankof its conversewell-founded
part.

If ρ(w) = 0, we say that w is a dead end.
Depending on the frames considered, it is possible to impose sufficient

conditions on the existence of valuations. Converse well-foundedness is one of
them. By transfinite induction on the rank of w ∈ W in a converse well-founded
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frame (W,R) one defines the valuation

(4) V(w) := {φ ∈ SentLN | ∀v(wRv⇒ (ℕ,V(v)) ⊨ φ)}
The crucial point is that if R is converse well-founded, we have the following
picture for any w ∈W,

u1 u2 un w

In other words, from anyw it is alway possible to reach a dead end, u1 in this case,
in finitely many steps. The valuation defined by (4) is thus unique, yielding

Proposition 2 (Gupta & Belnap). If (W,R) is converse well-founded, it admits a
unique valuation.

For frames containing converse ill-founded worlds, it is also possible to find a
valuation under certain circumstances. To see this, let us consider the operator
Φ : P(ω)→ P(ω)

Φ(X) := X ∩ {φ ∈ SentLN | (ℕ,X) ⊨ φ}
Φ(⋅) is a decreasing and anti-monotone operator (i.e. Φ(Y) ⊆ Y for all Y and
α ≤ β entails that Φα(Y) ⊇ Φβ(Y)). Therefore, if one starts with Φ0(LN) := Φ(LN)

and iterates the application along an ordinal path – taking intersections at limit
stages – one reaches a fixed point with associated a closure ordinal, that is a
stage κ in which Φκ(LN) = Φβ(LN) for all β ≥ κ. The closure ordinal of Φ(⋅)
has also been computed by Halbach et al. (2003) as the least α such that the
corresponding level of the constructible hierarchy Lα possesses a Σ1-elementary
end extension (Halbach et al., 2003, Prop. 21). In particular, we have κ > ωCK

1 , the
first nonrecursive ordinal.

If a frame (W,R) is transitive and has converse ill-foundedworlds w, the fixed
point Φκ(LN) can always be used as valuation when the rank of w is greater than
or equal to κ. That is

Proposition 3 (Halbach et al. (2003)). If (W,R) is transitive and the rank of its
converse ill-founded worlds is not smaller than κ, then (W,R) supports a valuation.

The closure ordinal κ is also useful to impose necessary conditions on the
existence of valuations in transitive frames. Let A be the class of admissible
ordinals (without ω) with limits (see for instance Devlin (1984)).
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Proposition 4 (Halbach et al. (2003)). If (W,R) is transitive and admits a valua-
tion, then for a converse ill-founded world w ∈W, either ρ(w) ∈ A or ρ(w) ≥ κ.
Proposition 4 tells us that if (W,R,V) is a possible worldsmodel and R is converse
ill-founded, then therewill always be, forw ∈W, an initial well-ordered portion of
‘rank’ α ∈ A or greater-equal than κ. This means that frames (W,R) whose worlds
have rank less than the first admissible ordinal ωCK

1 admit a valuation if and only
if R is converse well-founded. Moreover, Proposition 4 can be generalized to non
transitive frames, if we focus on the transitive closure of the accessibility relation.

In this brief overview ourmain intention was to highlight a fundamental fact:
if one is interested in a classical interpretation of the necessity predicate, there are
strong limitations one has to face. Again this is not a problem for the predicate
approach if opposed to the operator approach, as we have already mentioned
that the operator language can be straightforwardly translated in the predicate
language. The problem is internal to the predicate approach. There is in fact an
alternative to the classical approach sketched in this section: we can preserve the
generality of the possible worlds semantics for operator modal logics if we move
to a nonclassical setting.

4.2 Arbitrary Frames: Supervaluations

In this section we present a method for constructing possible worlds models
for arbitrary frames (W,R). As before, worlds w ∈ W are standard models
of the ground language L. The strategy is reminiscent of Kripke’s fixed-point
construction (Kripke, 1975), which can be also seen as a method for generating
models for LN in a reflexive frame ({w},R). To produce models for arbitrary W,
one has to generalize Kripke’s construction.

Halbach andWelch (2009) have proposed a similar generalization of Kripke’s
theory based on the Strong Kleene evaluation schema. We explore an alternative
option and employ the supervaluational scheme introduced by Van Fraassen
(1966). We will highlight some nice features of supervaluations as opposed to
the Strong Kleene approach after introducing few definitions and some of their
consequences.

As before, (w, F(X)) will denote a model of LN in which w specifies the
standard model of the ground language but X is now an evaluation function
F : W→ (SentLN ×SentLN ): at each world w ∈W it assigns disjoint extensions and
antiextension to N. We also define an ordering ⪯ between evaluation functions
such that F ⪯ G if, at any w ∈ W, F(w)+ ⊆ G(w)+ and F(w)− ⊆ G(w)−. We define a
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(binary) relation ⊨vf0 linking pairs (w,X) and LN-sentences φ:7

(w, F(w)) ⊨vf0 φ :⇔ (∀G)(F ⪯ G ∧G(w)+ ⊆ ω \ F(w)−⇒ (w,G(w)+) ⊨ φ)
The condition G(w)+ ⊆ ω\F(w)−, together with the disjointness of extension and
antiextension, will force consistent fixed points as extensions of the necessity
predicate; that is, at any world w for no φ ∈ LN, ¬φ and φ will be in the ultimate
extension of the necessity predicate. The relation ⊨vf0 extends the standard
supervaluational picture according to which truth is satisfaction in all candidate
extensions of a starting set; here we have merely generalized this picture to many
worlds.8

To assign a suitable interpretation to the necessity predicate, we consider a
variant of the strategy adopted by Halbach and Welch (2009) and impose further
conditions on evaluation functions. We let EV be the set of such evaluations:

Definition 3. The operator ∆ : EV→ EV, at each w ∈W, is such that:

(∆(F))(w)+ := {φ | ∀v(wRv⇒ (v, F(v)) ⊨vf0 φ)}
(∆(F))(w)− := {φ | ∃v(wRv ∧ (v, F(v)) ⊨vf0 ¬φ)}

The following is an immediate corollary of the definitions.

Corollary 3. The operator ∆ is monotone with respect to ⪯, that is, for all w ∈W,

F ⪯ G⇒ (∆(F))(w) ⪯ (∆(G))(w)
The monotonicity of ∆ implies the existence of fixed points. This follows from
abstract cardinality considerations (Moschovakis, 1974, Thm. 1.A.1). As before, we
may track the applications of ∆ on an ordinal path using suitable indices. In other
words ∆α(F)(w)denotes the αth application of ∆ to the starting evaluation function
F at a world w, taking unions at limit stages. A fixed point of ∆ will thus be an
ordinal κ such that ∆κ(F)(w) = ∆β(F)(w) for all β ≥ κ.

By reflecting on the properties of ∆(⋅), we have

Proposition 5. If F is a fixedpoint of ∆, for all φ ∈LN and frames (W,R)with w ∈W:

(w, F(w)) ⊨vf0 N⌜φ⌝ ⇔ for all v, if wRv, then (v, F(v)) ⊨vf0 φ(5)
(w, F(w)) ⊨vf0 ¬N⌜φ⌝ ⇔ exists a v with wRv and (v, F(v)) ⊨vf0 ¬φ(6)

7 This is in a sense a simplifying choice: we dispense with variable assignments as we assume
that we have constant domains and fixed names for all objects at every w ∈W.
8 There are other possible choices of the evaluational scheme, still in the supervaluational spirit.
See Burgess (1987) or Fischer et al. (2015).
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Proof.
Ad (5). (⇒) If (w, F(w)) ⊨vf0 N⌜φ⌝, then for all evaluations G ⪰ F, including F

itself: if G(w)+ ⊆ ω \ F(w)−, then (w,G(w)+) ⊨ N⌜φ⌝. Therefore, φ ∈ F(w)+. Since F
is a fixed point of ∆, F(w)+ = (∆(F))(w)+, and φ ∈ (∆(F))(w)+, that is

∀v(wRv⇒ (v, F(v)) ⊨vf0 φ)
(⇐) If for all vwithwRv, (v, F(v)) ⊨vf0 φ, by definition of ∆ also φ ∈ (∆(F))(w)+.

Again by the fixed point property, φ ∈ F(w)+. This means that for all evaluations
G ⪰ F, and a fortiori the ones in which G(w)+ ⊆ ω \ F(w)−, φ ∈ G(w)+. By the
classical satisfaction relation, (w,G(w)+) ⊨ N⌜φ⌝. By definition of ⊨vf0 we finally
obtain

(w, F(w)) ⊨vf0 N⌜φ⌝
Ad (6). (⇒): If (w, F(w)) ⊨vf0 ¬N⌜φ⌝ the for all G ⪰ F and G(w)+ ⊆ ω \ F(w)−,

φ ∉ G(w)+. A fortiori, φ ∉ω \NSentLN \F(w)− whereNSentLN is the set of numbers
that are not LN-sentences; therefore φ ∈ F(w)− = (∆(F))(w)−.

(⇐). If ∃v(wRv ∧ (v, F(v)) ⊨vf0 ¬φ), then φ ∈ (∆(F))(w)− = F(w)−. Therefore
(w,G(w)+) ⊨ ¬N⌜φ⌝ for any G ⪰ F and G(w)+ ⊆ ω \ F(w)−, that is

(w, F(w)) ⊨vf0 ¬N⌜φ⌝
qed

The minimal fixed point I∆ is obtained by closing the empty evaluation under ∆
at any world w ∈ W, and it is the minimal fixed point that we now examine to
highlight some nice features of the supervaluationist approach to necessity.

Let us call the contingency teller the sentence μ such that

Q ⊢ μ↔¬N⌜μ⌝
Montague’s paradox rules out reflexive frames in the classical setting. The
contingency teller played an important role in the proof of Lemma 4. To see how
the nonclassical setting helps in dealing with paradoxes, we now show that in
the new setting μ will be ‘gappy’, that is neither necessary or contingent, in the
minimal fixed point.

Lemma 6. Let (W,R) be a frame. The contingency teller is neither in I+∆(w) nor in
I−∆(w) for any w ∈W.

Proof. We prove the claim by induction on the construction of the minimal fixed
point of ∆.

At stage ∆0(⌀)(w) := (⌀,⌀), the claim is trivially satisfied.
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At successor stages α +1, if μ ∈ Iα+1∆ (w)+, then

(7) ∀v(wRv⇒ (v, Iα∆(v)) ⊨vf0 ¬N⌜μ⌝)
That is, μ ∉ G(v)+ ⊆ ω \ Iα∆(v)− for all suitable G, including ω \ NSentLN \ I

α
∆(v)−.

Therefore φ ∈ Iα∆(v)−, quod non by induction hypothesis.
If, by contrast, μ ∈ Iα+1∆ (w)−, there will be, for all extensions G of Iα∆,

(v,G(v)+) ⊨ N⌜μ⌝ at some accessible v. Thus μ ∈ Iα∆(v)+, again contradicting the
induction hypothesis.

Finally, if μ ∈ Iλ∆ for a limit λ, the claim follows from the previous steps by
definition of ∆(⋅). qed

By suitably adapting the argument of Lemma 6, one easily shows that ¬μ cannot
be in I∆. Moreover, a generalization of this arguments shows that there are
consistent fixed points of ∆.

As we have already observed, the operator ∆(⋅) compares to the operator
based on the Strong Kleene evaluation schema considered in Halbach andWelch
(2009). It is well-known since Kripke (1975) that the Strong Kleene schema yields
an attractive picture of self-applicable truth predicate. Above all, it yields a
compositional semantics, e.g. A∨B is truesk if and only if A is truesk or B is truesk
with A,B sentences of a base language such asL plus a primitive truth predicate.

If necessity and not truth simpliciter is at stake, one may argue that compo-
sitionality is not as important as, for instance, establishing the necessity of all
laws of classical logic; so A∨¬A should be necessary even though we do not have
the resources to find out whether A or its negation are true. The following results
show that the supervaluationist approach captures, in the predicate approach,
the picture of necessity just sketched.

Proposition 6.
(i) All logical laws, including the laws of the conditional (e.g. φ → φ for φ ∈ LN)

valid in I∆ (i.e. in I+∆(w) at any w);
(ii) Let PAN simply PA formulated in LN. All theorems of PAN are valid in I∆.

Proof. In both cases one reflects on the definition of ∆(⋅). At stage 1 of the
construction of I∆(w) for arbitrary w, we have

(∆1(⌀,⌀))(w) =⟨ {φ | ∀v(wRv⇒ (v, (⌀,⌀)) ⊨vf0 φ)},
{φ | ∃v(wRv&(v, (⌀,⌀)) ⊨vf0 ¬φ)} ⟩

By definition of ⊨vf0, therefore, all theorems of first-order logic and of PANwill get
in (∆1(⌀,⌀))(w)+; therefore by the monotonicity of ∆ also in I∆(w)+. qed
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As a corollary, N⌜μ ∨¬μ⌝will be valid in the fixed point I∆ at any world, although
μ, as we have seen already, will not be in any fixed point. In addition, also
bi-conditionals containing gappy sentences such as μ↔¬N⌜μ⌝will be in the fixed
point.

We have thus seen that there are ways to overcome the paradoxes of the
predicate approach and capture predicative uses of necessity by providingmodels
for the base language expanded with a predicate for necessity. In the next
section we consider some strategies to formulate deductive systems inspired to
the semantic construction just given.

5 A system for truth and necessity
In this section we move the first steps into combining truth and necessity. We
introduce a modal version of Cantini’s VF Cantini (1990) and prove its soundness
with respect to a modification of the semantics given in the previous section.

5.1 The theory VF

VF is the theory capturing the properties of a self-applicable (type-free) truth
predicate interpreted according to a suitable modification of the operator ∆
introduced above:

(ℕ,X) ⊨vf φ :⇔∀S(X ⊆ S ∧ con∗(S)⇒ (ℕ, S) ⊨ φ)
Here we have dropped the antiextension and we deal only with consistent
candidate extension: in particular con∗(G(w)) expresses that G(w) does not
contain negations of sentences in F(w); to avoid triviality, only consistent starting
evaluations F(w) are allowed. Let LT be the language L expanded with a unary
truth predicate T. We call the new operator Θ : P(ω)→ P(ω):

Θ(X) := {φ | (ℕ,X) ⊨vf φ}
By only a slightmodifications of the arguments already given there, we notice that
Θ is monotone and thus it has fixed points. We define by transfinite induction

I0Θ := ⌀
Iα+1Θ := Θ(IαΘ)
IλΘ := ⋃

β<λ
I
β
Θ

The minimal fixed point IΘ is simply IκΘ, where κ is the closure ordinal for Θ.
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Cantini (1990) introduced a deductive system that is sound with respect to
fixed points of Θ. It is called VF from ‘Van Frassen’, who first introduced the
supervaluational scheme to analyse vague predicates.

Definition 4. VF is formulated in LT. Its axioms are all axioms of PAT (i.e. PA
formulated in LT) and the following:

∀x⃗(T⌜φ( ̇x⃗)⌝ → φ(x⃗)) for all φ ∈LT(VF1)
∀s, t((T(s=. t)↔ s∘ = t∘)∧ (T(s ̸=. t)↔ s∘ ̸= t∘))(VF2)
∀x(AxPAT(x)→ Tx)(VF3)
∀v∀x∀t (T x(t/v)→ T∀. vx)(VF4)
∀t(Tt∘→ TT. t)(VF5)
∀s(SentLT (s∘)∧ T¬. Tx→ T¬. s∘)(VF6)
∀x, y(SentLT (x→. y)→ (T(x→. y)→ Tx→ Ty))(VF7)
∀x(T⌜Tẋ→¬T¬. ẋ⌝)(VF8)
T⌜Tẋ→ SentLT (ẋ)⌝(VF9)

It is a routine task to check, by induction on the length of the derivation in VF, that

Proposition 7 (Cantini (1990), Prop. 3.4). If X is a fixed point of Θ, then (ℕ,X) ⊨
VF.

5.2 Modal extensions of VF

To introduce a modal extension of VF, we consider a variant of the strategy
adopted by Stern (2014) to extend the Kripke-Feferman system KF.9

We first introduce predicative counterparts of the well-known modal princi-
ples (T), (4) and (E) formulated in the language LTN :=L∪ {T}∪ {N}:

∀x(SentLTN ∧Nx→ Tx)(T)
∀t (TN. t→ NN. t)(4)
∀t (T¬.N. t→ N¬.N. t)(E)

As it is well-known from operator modal logic, (T) forces reflexive frames, (4)
transitive frames, and (E) Euclidean frames. (T) in combination with (E) suffice
to force frames based on an equivalence relation.

9 See again Halbach (2014) for a thorough introduction to KF.
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We finally define the theory MVF. The theory PATN is, as one might expect,
simply PA formulated in LTN.

Definition 5 (Modal VF). MVF is the theory inLTN whose axioms are (i) the axioms
of PATN, (ii) VF formulated in LTN, (iii) the following sentences and rules:

∀t (Nt∘→ TN. t)(T-in)
∀v∀x(SentLTN (∀. vx)→ (∀tNx(t/v)→ N∀.vx))(BF)
∀s, t∀v∀x (SentLTN (∀. vx)→ (s∘ = t∘→ (Nx(s/v)↔ Nx(t/v))))(Rig1)
∀s∀t(s∘ ̸= t∘→ N(s ̸=. t))(Rig2)
∀x∀y(SentLTN (x→. y)→ (N(x→. y)→ (Nx→ Ny)))(K)

T⌜φ⌝
(Nec) N⌜φ⌝ for all φ ∈LTN

It is worth emphasising that the axiom VF3 declaring the truth of all axioms of PAT
now becomes

(8) ∀x(AxPATN(x)→ Tx)

As before, by a straightforward induction, we can conclude that all theorems of
PATN are true. This includes, for instance, all instances of excluded middle in the
language LTN.

As we have seen in the case of the paradoxes of interaction, eradicating
inconsistencies in the multimodal framework is more difficult than in the uni-
modal setting. Therefore we first ensure that MVF is consistent by reducing its
consistency to the consistency of VF. This will also give an upper bound to the
proof-theoretic strength of MVF that will be discussed further in the concluding
section. The lower bound is clear as VF is contained inMVF.

Proposition 8. MFV is consistent, if VF is.

Proof. Wedefine the primitive recursive translation τ : LTN→LT as follows, using
the remarks at the end of §2:

τ(φ) := φ for φ ∈L that is, φ arithmetical
τ(T⌜φ⌝) := Tτ. ⌜φ⌝
τ(N⌜φ⌝) := Tτ. ⌜φ⌝
τ commutes with propositional connectives and quantifiers
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In essence, the translation just maps necessity into truth. It is easy to verify that
the translations of all axioms ofMVF are provable in VF. qed

Cantini (1990) showed that VF proves the same arithmetical sentences as the
theory ID1 of elementary positive inductive definitions (see Pohlers (2009)).
Proposition 8, therefore, yields the following analysis ofMVF.

Corollary 4. MVF proves the same arithmetical sentences as ID1.

5.3 Semantics and Soundness

Proposition 8 gives us a consistency proof for MVF and indirectly a semantics for
it; in any model of VF we can construct an internal model of MVF. This does not
mean, however, that there are ‘nice’ models ofMVF: in this section we show that
there are ‘standard models’ of MVF obtained by generalizing in a rather natural
way the intended models of VF.

Wenowadapt the semantics given in §4.2 to themultimodal framework. Given
a frame F, a model of the languageLTN at a world w ∈W (again we think of w ∈W
as standard models of L) will be a triple Mw := (w,E(w),NE(w)), where E : W →
P(ω) is a function assigning to each w an extension of the truth predicate. From
this extension one standardly defines an extension of the necessity predicate
NE(w) by taking the intersection of the set of truths at all accessible worlds:

NE(w) := {φ ∈LTN | ∀v(wRv⇒ φ ∈ E(v))}
The set of truths at all accessible worlds will then be defined using again

the supervaluational scheme, but this time to define the extension of the truth
predicate and not of the necessity predicate directly. Notice now that we can drop
the superscript + or − as we are only assigning candidate extensions and not also
an antiextension to the predicate. As before, let ⪯1 an ordering of the evaluation
functions definedby: E0 ⪯1 E1 if and only if for allw ∈W, E0(w)⊆ E1(w). Therefore
we set, for φ ∈LTN:

(w, F(w),NF(w)) ⊨vf1 φ :⇔
(∀G 1⪰ F)(con∗(G(w))⇒ (w,G(w),NG(w)) ⊨ φ)

with NX(w) as above. With con∗(G(w)) we mean again that G(w) does not contain
negations of sentences in F(w); as above, to avoid triviality, we consider only
consistent starting evaluations F(w). The operator HF on evaluation functions,
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relative to a frame F, is defined as

(HF(E))(w) := {φ ∈LTN | (w,E(w),NE(w)) ⊨vf1 φ}
The following is an immediate consequence of the definitions.

Lemma 7. The operator HF is monotone with respect to ⪯1.
As before, monotonicity implies the existence of fixed points, that is evaluations
such that HF(E) = E. In a fixed point of HF(E), therefore, for any φ ∈LTN, and any
world in F,

(w,E(w),NE(w)) ⊨vf1 T⌜φ⌝ ⇔ (∀G 1⪰ E)(con∗(G(w))⇒ (w,G(w),NG(w)) ⊨ φ)(9)
(w,E(w),NE(w)) ⊨vf1 N⌜φ⌝ ⇔ ∀v(wRv⇒ φ ∈ E(v))(10)

Closing the empty evaluation function under iterated applications ofHF along an
ordinal path, we reach theminimal fixed point of IHF of HF.MVF, however, is not
only sound with respect to the minimal fixed point, but it is satisfied by all fixed
points of HF.

Proposition 9. LetF = (W,R) be a frame and R an equivalence relation. If HF(E)=
E, then (w,E(w),NE(w)) ⊨MVF for any w ∈W.

Proof. For the PATN axioms and the axioms of VF one merely adapts Cantini’s
proof. We consider the genuinely modal axioms ofMVF.

Ad (T). If (w,E(w),NE(w)) ⊨ N⌜φ⌝, then φ ∈ E(v) for all v accessible from w. By
reflexivity, φ ∈ E(w).

Ad (4).Without loss of generality,we can reasonabout (the codeof) a sentence
φ. Let us assume N⌜φ⌝ ∈ E(w). This entails:
(11) (∀G 1⪰ E)(con∗(G(w))⇒ (w,G(w),NG(w)) ⊨ N⌜φ⌝)
Therefore, for all extended evaluations G, φ ∈ NG(w), that is

(12) ∀v(wRv⇒ φ ∈ G(v))
Now assume (w,E(w),NE(w)) ⊨ ¬NN. ⌜φ⌝. There is then a v with wRv and N⌜φ⌝ ∉
E(v), that is

(13) ∃v(wRv ∧ (∃G 1⪰ E)(con∗(G(v))∧ (v,G(v),NG(v)) ⊨ ¬N⌜φ⌝)
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By iterating the same reasoning for NG(v), we find

(14) ∃v0(vRv0 ∧φ ∉ G(v0))
By transitivity, (14) contradicts (12).

The reasoning for (E) is similar to the previous case. So we consider (T-in). If
t∘ ∈ NE(w), then t∘ ∈ E(v) for all v accessible from w. If Nt ∉ E(w), then
(15) (∃G 1⪰ E)(con∗(G(w))∧ (w,G(w),NG(w)) ⊭ Nt)
Again we arrive at

(16) ∃v(wRv ∧ t∘ ∉ G(v))
But (16) contradicts G 1⪰ E and t∘ ∈ E(v).

We conclude the proof by considering the case of (K). Let us assume φ→ ψ ∈
NE(w) and φ ∈ NE(w); that is

(17) ∀v(wRv⇒ φ→ ψ ∈ E(v)∧φ ∈ E(v))
The definition of classical satisfaction yields the desired result. qed

In the following, concluding section we elaborate on the results just presented
and on the possibility of further work.

6 Conclusion
In the introduction we sketched a project: the formulation of natural systems of
interacting modalities extending a some trustworthy theory of modal ascriptions.
The ‘naturality’ criterion imposed on the project has been spelled out in terms
of a possible worlds semantics for modal predicates. We have seen that this is a
nontrivial matter; paradoxes threaten our predicative uses of modal notions and
impose severe restrictions to the space of models of the corresponding languages.

Despite these difficulties, we formulated a system of truth and necessityMVF
that adapts the motivation behind Cantini’s VF to the new language and that is
sound with respect to a rather natural semantics for truth and necessity. In §1 we
have recalled Sergio Galvan’s idea of a hierarchy of theories that are capable of
making explicit our trust in the theories lower down, starting with our preferred
theory of the bearers of modal ascriptions (e.g. PA). By Proposition 8, MVF will
prove the same arithmetical sentences as ID1: to give an idea of how this relates
to what we called Galvan’s hierarchy, we notice that, for instance, the results
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of iterating ACA for all ordinals < Γ0, the so-called Feferman-Schütte ordinal, is
reducible to ID1. Reflecting on the fact that ACAwas already sufficient to formalize
the metatheoretic soundness proof for PA, this gives us an idea of how far MVF
takes us.

There are however, also some limitations to the success of the strategy of
combining modalities. In the first place it does not seem to be possible to achieve
a full adequacy result forMVF, exactly as in the case of VF. More precisely, Fischer
et al. (2015) haveproposed the following criterionof adequacy for systemsof truth:
a system T is ω-categorical if

(18) (ℕ, S) ⊨ T⇔ S ∈M
where M is a class of acceptable interpretations of the truth predicate given
by some semantic theory of truth. Proposition 7 tells us that the right-to-left
direction holds for VF. Fischer et al. (2015), by adapting a previous result of
Philip Welch, show in fact that the left-to-right direction of (18) cannot be
achieved ifM is the class of supervaluational fixed-points: in nuce, the property
of being a supervaluational fixed point is Π1

1-complete, if (18) held, we would
have a Σ11-definition of a supervaluational fixed point. This shows also that such
categoricity result cannot be achieved forMVF.

In addition, we know already that Proposition 8 shows that the proof-
theoretic strength ofMVF does not exceed the one ofVF. This is in some sense good
news; at the conceptual level we might even welcome the fact that the notion of
necessity axiomatized by MVF is in continuity with the corresponding notion of
truth and allows for a ‘collapse’ of necessity into truth in the one world reading.
However, it is also true that the interaction of truth and necessity enriches our
expressive capability and we would like our modal theory to exceed the strength
of the truth theory on which it is based.

These drawbacks of the strategy proposed in this paper may be nonetheless
good guiding principles for adopting different strategies to combine truth and
necessity: one might for instance follow McGee (1991) and Halbach (2001) and
consider necessity as provability in a suitable system.We defer a treatment of this
option to further work, but it will most likely lead to a considerable increase in
proof-theoretic strength.
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Edmund Runggaldier
The Wittgensteinian and the ontological
(3-dimensional) reaction to the naturalistic
challenge

Abstract: Starting with a trustworthy theory T, Galvan (1992) suggests to read
off, from the usual hierarchy of theories determined by consistency strength, a
finer-grained hierarchy in which theories higher up are capable of ‘explaining’,
though not fully justifying, our commitment to theories lower down. One way
to ascend Galvan’s ‘hierarchy of explanation’ is to formalize soundness proofs:
to this extent it often suffices to assume a full theory of truth for the theory T
whose soundness is at stake. In this paper, we investigate the possibility of an
extension of this method. Our ultimate goal will be to extend T not only with
truth axioms, but with a combination of axioms for predicates for truth and
necessity.Wefirst consider twoalternative strategies for providingpossibleworlds
semantics for necessity as a predicate, one based on classical logic, the other on a
supervaluationist interpretation of necessity. We will then formulate a deductive
system of truth and necessity in classical logic that is sound with respect to the
given (nonclassical) semantics.

1 Introduction
In recent decades, the techniques available for studying the functioning of the
human brain have expanded enormously. Powerful new techniques such as
neuroimaging (e.g., fMRI, PET, SPECT) allow neuroscientists to discover how
mental states, cognition and emotion, are mapped on to neural substrata in the
brain.

The more neuroscientists know about the functioning of the brain, the more
they seem to abandon the assumption that there must be something like an Ego
or a Self which is responsible for our actions. This leads to the suspicion that not
we, but our brains, determine and control our doings; not we, but our brains do
the thinking, planning, and acting. It is the brain’s ability to perform all these
functions that makes us human.

This is the message of the new naturalistic branch in philosophy called
“neurophilosophy”. Allied to neurophilosophy are social neuroscience, neuroe-
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conomics, neuroethics andevenneurotheology.Adherents of neurotheologyhope
soon to be in a position to explain the origin of religious feelings and thought.
“Neurotheology” has become a kind of keyword for neuroscientific progress in
the field of religion. (See e.g. Alper (2008))

The message of neurophilosophy, that our Egos and Selves are ultimately
illusions, is a great challenge for our traditional world view, for Christian anthro-
pologyand theology. This challengehas explicitly or at least implicitly naturalistic
presuppositions: real entities can be described and explained in scientific terms.
Should it turn out that entities cannot be described nor accounted for in a
scientific context, they must be disregarded as unreal. The only means to achieve
knowledge is science. Thus, if the personal Self or the human soul cannot be
accounted for in scientific terms, it must be illusory.

For a naturalist, all features of the world are entirely caused by and realized
in systems of micro-elements. Their properties and behaviour are sufficient to de-
termine everything that happens in the macro-world. Every macro-phenomenon
– human action included – has arisen through natural, micro-physical, causal
processes. The existence of every macro-structure continues to depend causally
on processes of this kind.

Today, we have a variety of reactions to this naturalistic challenge. Prominent
are the answers given by the Christian Philosophers around the New Calvinists
(Alwin Plantinga, William Alston). They are basically centered on a kind of
retorsion: What happens if we apply the naturalistic stance to itself?

SergioGalvanargues against thenaturalistic presuppositions of the challenge
on the basis of Gödels proofs. There is no complete language capable of describing
all the real phenomena. A mere physicalistic or naturalistically restricted lan-
guage won’t do.

In this paper I will refer to a very popular strategy – at least in the
German-speaking world – by resorting to the philosophy of Wittgenstein.
Theologians, in particular, seem to be sympathetic to it. The advocates of a
wittgensteinian strategy emphasize the peculiarities of the every-day language as
used in practical and religious speech acts.

The strategy of adopting Wittgenstein’s later philosophy of language (vari-
ous “language-games” and “forms of life”) undoubtedly has advantages. It is,
however, in the long run, not convincing. As such it might lead to an isolation
of Christian anthropology and to an unjustified immunization of theological
propositions.

In the second part of the paper, I will refer to the strategy pursued in our
Department, at Innsbruck University, of taking up the naturalistic challenge. It
is a modest strategy which aims at elaborating the ontological presuppositions of
the challenge. These are typical for a generalization of a scientific ontology.
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Naturalists consider ontology to be a field of pure theoretical philosophy
concentrating on the question of what the most fundamental constituents of
reality are: What really exists are the “ultimates” of theoretical analysis. Thus,
for them, ontology has to conform to themethods of science and exclude the kind
of reasoning which lies within the practical domain of everyday life.

By contrast, wemaintain – in agreement with the Aristotelian tradition – that
ontology has to take into account the presuppositions of practical rationality as
well, i.e. the subjective perspective and the first-person approach to reality. In the
Aristotelian tradition, ontology has to account for both theoretical and practical
rationality.

Thus, we concentrated on the every-day assumption that there is diachronic
identity. The reasons for postulating that at least we, as human persons “endure”
and are thus diachronically identical are based on our practical life. Decisive
reasons for this view stem from our subjective experience of being intentional
agents, planning our future and remembering our past.

It is obvious that natural science has to exclude subjectivity. Science is based
on abstraction. It even abstracts from our experience of the passing time and thus
considers time as a 4th dimension. The naturalistic ontology is 4-dimensional.
We hold, however, that scientific 4-dimensionalism should be interpreted as a
mere methodological abstraction. We are not forced by science to conclude that
we, as personal agents, are 4-dimensional, extended not only in space but in time
as well.

Our strategy is modest. We know that the reasons for questioning some of the
presuppositions of naturalistic ontology are not scientific, but they result from
taking into account the immediate experience of ourselves as acting.

But let us first see how wittgensteinians tend to respond to the mentioned
naturalistic challenge stemming from neurophilosophy and its naturalistic as-
sumptions.

2 The Wittgensteinian strategy
As mentioned in the introduction, the wittgensteinian way to respond to the
naturalistic challenge is to point to the peculiarity of everyday¬ and religious
language. Because of their special status, there cannot be a real opposition or
contradiction between scientific claims on the one hand, and practical everyday
and religious speech acts and beliefs on the other. This kind of reaction arises
from the later Wittgenstein’s philosophy of language, but is already present in his
early philosophy of the Tractatus.
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Both wittgensteinian positions yield the thesis that there cannot be real
opposition between science and subjective and religious statements, but for
different reasons. The first standpoint supports the view that subjective and
religious speech acts merely appear to be statements, whereas in reality they are
expressions of feelings and attitudes; the second standpoint, stemming from the
Philosophical Investigations, stresses the view that everyday, first-person and re-
ligious speech acts belong to different language games and different forms of life.

According to the more radical position, we cannot make any cognitively
relevant statements about our inner life and God. One has to distinguish between
what can clearly be stated. i.e. scientifically described, and what can only
be shown. Ultimately, it is best to keep silent where descriptive or scientific
statements are not possible. Wittgenstein’s dictum is well known: “Whereof one
cannot speak, thereof one must be silent.” (Tractatus 7)

This position seemingly neutralizes the challenges stemming from neuro-
science and naturalism. There is no tension between scientific sentences and
religious speech acts since the latter acts are not descriptive. With subjective and
religious speech acts people do not make any cognitively relevant claims. The
function of such claims is at most expressive. Religious language is significant
insofar as it expresses a particular approach to reality, but religion cannot be
denounced as wrong.

This wittgensteinian reaction and answer to the naturalistic challenge, that
there is no Self and no God, has advantages, but amounts to an anti-cognitivist
account of worldview and religious statements. There cannot be opposition
between science and religion, but only because in a worldview (Weltanschauung)
and in religion, ultimately, we do not describe anything.

In the long run, this position cannot be satisfactory. The main objection to
any anti-cognitivist account of religious language relies on the fact that religious
people do make claims to truth. Many religious believers not only believe their
religious claims to be meaningful and true in their own context, but assume that
they are true against other worldviews. If the anti-cognitivist standpoint were
correct, a comparison between the meaningfulness and truth of worldviews and
religious beliefs would be impossible.

The anti-cognitivist reaction to the naturalistic challenge is not convincing.
Neither side, whether naturalistic or religious, is taken seriously. The naturalist
must protest since she intends to make claims about what is the case and to
separate it from mere fiction. She claims to have obtained knowledge that what
is mistakenly taken to be real, i.e. the Self and the Divine, is not real. On the other
side the faithful must protest, since for her at least some of her speech acts are
cognitively relevant. By some of her speech acts she expressesmore than feelings.
If we take both seriously, the naturalist and the faithful, we have to take seriously
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the possibility, at least in principle, of a cognitive tension between them. Many
religious speech acts imply, for example, the proposition that God exists, but this
is what the naturalist denies.

Themore popular reaction to the naturalistic challenge is to resort to the later
Wittgenstein. The supporters of this strategy hold a more moderate position by
applying apragmatic viewof language based onWittgenstein’s theory of language
games. In his Investigations, Wittgenstein proposes, as a way of establishing
meaning, the analogy of games: just as each game has its own rules determining
what can and cannot be done, so each language game has its own rules
determining what is and is not meaningful.

Language, according to the later Wittgenstein, is ultimately an instrument
for doing things. The different types of doings should not be confused or
intermingled. What one does by using words depends on the context and differs
accordingly from game to game.

The later Wittgenstein’s understanding of language fits well into the tradition
of pragmatic theories of meaning. To know the meaning of a word is to know how
to use it, i.e. to have a command of its rules and to be able to follow them. The
words used in different games can be the same, but they vary in their meaning,
since the rules for their use vary. By using words, one describes not only states of
affairs. One can ask, command, thank, greet, pray, etc.

Wittgenstein’s account of language allows of a plurality of language games.
Scientists have, as scientists, their own games, different from the games in
which they speak of themselves as responsible agents or when they use religious
language. We are thus entitled to classify first-person and religious speech
acts as part of legitimate language games which are meaningful within their
own context. These should not be confused with language games typical of
science or of empirical descriptions. Thus, what people claim about their interior
and about God in their language games cannot be challenged by scientific
propositions.

The choice of a particular language game is not arbitrary. The language games
are warranted by being embedded in a “form of life”. (Investigations §19) Forms
of life are the key to understanding the connection of language with everyday
life. The speech within a given language game is embedded in the larger context
of socio-cultural activity: “. . . the term ‘language-game’ is meant to bring into
prominence the fact that the speaking of language is part of an activity, or of
a form of life.” (Investigations §23) Against the background of such an under-
standing of the interrelation between language and life, subjective and religious
speech acts cannot be challenged by scientific statements, even less by their
generalizations.
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This reminds us of the neo-positivistic distinction between internal and
external questions. The former are tackledwithin a frame of reference tied to clear
criteria, whereas the latter refer to the status of the frames themselves (Carnap
(1950a)). An internal question in an empirical framework is, for example, “Is there
a white piece of paper on my desk?” The answer is to be found by looking. Or a
question within the framework of natural numbers could be: “Is there a prime
number smaller than 20?” The answer here is to be found by logical-mathematical
method. Questions that relate to the frameworks as such, that are accordingly
not asked inside a particular framework, as “Do numbers as such exist?, lack
any cognitive relevance whatsoever. The choice of a framework depends solely
on its practical role. If it is practically advantageous to use a particular frame of
reference, one uses it.

Of course, logical positivists were convinced that the religious frameworks
are not useful, but at least in theory they stressed – like the wittgensteinians –
tolerance and the freedom of choice. If religious frameworks or language games
should turn out not to be advantageous, they are rejected, but not for cognitive
reasons. There is simply no objective reason for choosing one form of life or
language game over another. “The form is given, the game is played, with its own
rules, on its own field. The claims, assertions and practices within a language
game or form of life cannot be fully understood from the context of another form
of life, and there are no ‘meta-criteria’ standing above all forms of life that can
decide between them.” (Nicholson (1996), p. 629)

The concept of the wittgensteinian language games and the related notions
suggest a form of linguistic and socio-cultural relativism. By developing the
concept of meaning as use within a language game, which is playedwithin a form
of life, one tends to get rid of the relation of reference between an expression and
an external reality. Against the background of Wittgenstein’s later philosophy it
does not make much sense to argue for or against the existence of God outside a
religious form of life. Analogously arguments for or against the reality of the Self
or the Ego are, outside an everyday language game, vacuous.

The theory of meaning based on the plurality of language games might be
helpful in defending the relevant language games and as such in providing an
answer to thenaturalistic challenge:Religious language is different from language
used to describe physical objects. Subjective personal claims on the reality of the
Self and statements in the first person perspective cannot be criticized from the
standpoint of empirical or natural science. Personal and religious claims cannot
be challenged by science, not even by the new discoveries of neuroscience. There
cannot be true opposition between claims of science on the one side and personal
and religious speech acts on the other.
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This wittgensteinian strategy of a defense against the naturalistic challenge,
however, has many disadvantages stemming from its relativism and its failure to
accommodate intuitions about objective truth. The strategy does not allow for
arguments on the existence of the Self or God across the borders of different
language games. The wittgensteinian theory of meaning reinforces the subjec-
tive conceptions of the Self and of religion as something insulated from and
untouchedbyother language games. The corresponding insulation leads to a kind
of immunity, protecting given claims from criticism.

On the philosophy of the language games there is a vast ongoing discussion. I
mentioned broadly some of the intuitions of this philosophy supporting a very
popular and seemingly tolerant reaction to the naturalistic challenge: Within
some language games, claims to the reality of the Self and God are possible, but
nonetheless this strategy, too, turns out to be inimical to truth claims, forestalling
the possibility of cognitively relevant arguments across the games.

As mentioned in the introduction, at our Institute we perused a more modest
response to the naturalistic challenge. We tried to clarify the presuppositions of
the naturalistic challenge, arguing on the basis of the ontological presuppositions
of practical everyday life. Even though subjectivity and thefirst personperspective
have to be excluded from scientific methods, we maintain that they play an onto-
logical role. The methodological abstraction in science does not imply that they
lack ontological relevance. If we are right, the mere naturalistic 4-dimensional
ontology has to be corrected. The subjective experience of consciously and
intentionally acting (and by acting changing the world ) conveys, so we believe,
good reasons for assuming that we are 3-dimensional agents keeping our identity
over time. We questioned the naturalistic ontological presupposition that there
is no diachronic identity, its exclusion being one main reason for the mentioned
naturalistic negation of the Ego or Self.

3 3-dimensional ontology (enduranatism)
Naturalistically-minded scientists treat time like a spatial dimension. For them
everything that exists is spread out not only in space, but in time as well. Every
real entity is extended in time too, i.e. composed of temporal stages/parts (see e.g.
Quine (1960)). In addition to the 3 spatial dimensions of depth, length and height,
naturalists consider time as a 4th dimension (Rea (2003)).

If everything is spread out in time, there cannot be diachronic identity. Thus,
naturalists have to reject the everyday assumption that we, as agents, continue
to exist in the “now” or in the ever-changing present. They have to reject the
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belief that we remain the same even if we change. 4-dimensionalists have thus
to reduce the assumption of persistence in time to a kind of continuity among
adjacent temporal stages or parts. The continuity relation among temporal parts
is weaker than diachronic identity and is neither reflexive nor transitive. It allows
for differences of degree.

The 4-dimensional ontology, called “perdurantism”, is mainly due, at least
partially, to the successful use in science of, and the successful working with
the 4-dimensional space-time system. The four-dimensional space-time system
is useful for the representation of reality over time. However, its successful
application does not imply that the world is four-dimensional.

According to the ontological positionweadhere to, called “endurantism”, real
things, human persons included, are 3-dimensional. They “endure” and are thus
called “endurers” going alongwith the “now”. Being fully present at eachmoment
of their existence they are neither extended in time nor composed of temporal
parts.

4-dimensionalism conforms to conventionalistic empiricism. In this tradition
it is commonplace to assume that individuals, living beings and human persons
included, have to be constituted or “constructed”. The constitution of individuals
is conventional, its constraints being only pragmatic. Consistent conventionalism
assumes this for the temporal dimension too. There is no “fact of thematter” about
diachronic identity. In reality there are no individuals going with the “now”.

As mentioned above, in science we need neither diachronic identity nor
3-dimensional “endurers”. For an account of the presuppositions of practical phi-
losophy, however, we need more. Everyday talk about ourselves, as responsible
agents, supports the view that we need ontologies with “endurers” remaining
identical throughout their existence. Who has done the deeds in the past? We or
some temporal parts preceding our actual parts?

The decisive reasons for postulating “endurers” and thus diachronic identity
are given by our subjective experience of being intentional agents planning, as
said, our future and remembering our past. The presuppositions of practical
rationality, agency, subjectivity, the first personperspective support endurantism.
(Runggaldier (2006))

One special strategy for countering the naturalistic generalization of
4-dimensionalism, therefore, points out the disanalogies between space and
time. As agents we are “prisoners” of time but not of space: we can choose where
to live but not when. For an agent, time necessarily has a direction, whereas space
does not.

Our uses of the indexicals “now” and “here” are disanalogous. An agent can
now make choices about, deliberate about, and have intentions regarding her
conduct later but not earlier than now. She can however make choices about,
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deliberate about, and have intentions regarding her conduct in front of as well
as behind her (Gale (2002), p. 70).

Our attitudes towards our past and future limitations are different. We prefer
the painful experiences to be in the past and the pleasant ones in the future.
Whereas we do not have any analogous spatial preference. It doesn’t matter
whether the pains and pleasures occur in any particular spatial direction from
here.

Our emotional attitudes too reveal disanalogies between space and time. In
our lives the fact that something has happened, is happening, or will happen
is reason for how we feel. For instance, we feel deep grief on hearing that a
beloved person has died. How could we account for anything like this deep grief
by assuming within a 4-dimensional ontology that ‘past’, ‘present’, and ‘future’
events all have the same kind of reality (Cockburn, 1998, p. 84 f.)?

In everyday life we state events as reasons for feelings even if we do not know
their objective dates. It often suffices to know that the relevant events are past,
present or future. By using the indexical “now” we succeed in referring to the
actual moment of time even if we do not knowwhat time it is now.We do not need
any objective time-references for that purpose. In a sense, by using indexicals,
we even say more than by using their substitutes from the objective language of
dates. It is impossible to say in a mere objective language what wemean when we
say “Thank goodness that’s over”!

My relief is not due to the fact that the event causing it takes place at a certain
date, but that it is over. It is the “overness” or “pastness” of the event that I am
thankful for. If I were not convinced that it is a fact that it is over I would not be
relieved! The belief that something has happened in the past or will happen in
the future provides us with reasons not only for acting in a certain way, but for
feeling certain emotions too. Our indexical beliefs and our experiences of acting
and feeling favor and support the thesis that at least we are “endurers” and are
thus diachronically identical with ourselves.

In real life we do not constitute/construct agents out of temporal stages,
but we presuppose that they go on, always existing in the “now”. We form
judgements presupposing diachronic identity, not inferring them from the al-
leged distribution of stages or temporal parts. In our attempt at defending
3-dimensionalism, however, we neither ignore nor negate that in order to yield
objective results, natural science has to exclude subjectivity, indexicality and the
first-person perspective. But, as said, this should be interpreted as a method-
ologically convenient assumption. It does not force us to conclude that there
is neither subjectivity nor indexicality and that there are no 3-dimensional
“endurers”.
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4 Concluding remarks
If the achievements of neuroscience in understanding how the brain works and
in identifying the substrata of mental states are interpreted naturalistically they
challenge the Christian anthropology and theology. Naturalists, in fact, stick to
the thesis that neuroscience has shown that the assumption of an Ego or a Self or
God is illusory: If our personal Self or the human soul cannot be accounted for in
scientific terms it must be an illusion!

One very popular strategy for responding to this naturalistic challenge is
wittgensteinian. However this response tends to block any significant dialogue
between neuroscience on the one hand and philosophical anthropology and
theology on the other. In the long run it is not satisfactory to thoroughly separate
the everyday and religious language games from those of science.

In our Department we hold that the dialogue between natural science and
anthropology and theology is not obsolete: it is possible to argue both for and
against the theses of neurophilosophy. Understanding how the brain works does
in any case not suffice as an adequate account of mental phenomena. Even if
successful, neurotheology, for example, would at best explain how the brain
develops religious feelings and thoughts. It surely is not sufficient for negating
the existence of God.

The exclusion of diachronic identity is one main reason for the naturalistic
negation of the Ego or Self. We thus concentrated on the thesis that human agents
are 3-dimensional “endurers”. Our modest strategy in reacting to the naturalistic
challenge consisted basically in negating its ontological presupposition that there
is no diachronic identity.

The 4-dimensional space-time system is undoubtedly very useful for scientific
purposes and for the representation of reality, but its successful use does not
imply that everything is four-dimensional. The decisive reasons against the gen-
eralization of 4-dimensionalism and for postulating 3-dimenisonal “endurers”
and thus diachronic identity stem from our experience of acting, from practical
rationality, subjectivity, and indexicality. If so, we are not forced on ontological
grounds to adhere to apurely naturalisticworldview. Thefindings of neuroscience
do not force us to believe that our Selves or Egos are illusions and that there is no
God.
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that are considered as approximate generalizations. Basic ideas concerning this
logic have been laid down inAdams (1974). The following paper presents a precise
elaboration of the logic of unconditional and conditional degrees of truths, based
on a measure-theoretic notion of entailment and support, including a restricted
completeness proof and applications to the the theory of orderings, balanced
structures and the notion of quasi-classical reasoning.

The open formula xRy → xSy (with → for material implication) may not be
true for all pairs < x, y >, but only for most of them, for instance, when R is the ‘as
least as great as’ relation among numbers of a large class, and S is the ‘greater
than’ relation. In this case xRy → xSy is regarded as an absolute approximate
generalization (a.a.g.). Adams (1974) and Carlstrom (1975) have developed a logic
of these expressions that reflects their approximate character by measuring
their degrees of truth t(−) by the proportion of values of their free variables
that satisfy them. In many cases, however, it is more plausible to consider a
generalization of the form “if x has relation R to y then it has relation S to it”
as a conditional approximate generalization (c.a.g.), which is formalized with help
of a non-material conditional operator ⇒, as xRy ⇒ ySx. Its degree of truth is
measured by the proportion of values of their free variables which satisfy their
consequent out of the values that satisfy their antecedent. For example, if we
interpret ‘xRy’ as ‘x is related to y’ in the domain of people, and ‘xSy’ as ‘x is the
son of y’, then t(xRy→ xSy) is high because xRy→ xSy is true when xRy is false
and xRy is highly false, while t(xRy⇒ xSy) is low because most pairs of related
people are not related as parent and son. For finite domains, the degrees of truth
of a.a.g.s and c.a.g.s are their absolute or conditional frequencies, respectively,
while for infinite domains, appropriate measure-theoretical generalizations are
needed.

Focusing on degrees of truth rather than on truth simpliciter requires
replacing the standard concept of entailment by a more general concept of
measure-entailment (m-entailment), roughly as follows. A.g.s φ1, . . . ,φn, either
absolute or conditional, m-entail another a.g., φ, which may also be either
absolute or conditional, if the degree of truth of φ can be guaranteed to be
arbitrarily close to 1 in a model, by requiring the degrees of truth of φ1, . . . ,φn
to be ‘sufficiently’ close to 1 in the model. Most of the results stated in Adams
(1974) and Carlstrom (1975) pertain to m-entailment in the case of absolute
a.g.s. This paper concerns extensions of these results, in particular concerning
a rather singular phenomenon that seems to have no parallel in classical
logic.

An inference that will be considered at greater length in subsequent sections
has only one premise, namely the disjunction xRy∨ yRx, which is highly true, for
instance when xRy expresses the fact that x is greater than y among numbers.
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Now, it is obvious that this premise does not m-entail xRy, that for most x and
y, x has the relation to y, since that is not highly true of the greater-than relation.
However, the curious fact is that given that xRy ∨ yRx is highly true, xRy cannot
be highly untrue. In fact, if xRy ∨ yRz is 99% true (true for 99% of the pairs of
values of x and y), then it follows from simple laws of the algebra of degrees of
truth that xRy must be at least 49.5% true. While xRy ∨ yRx does not entail xRy,
it ‘supports’ it by guaranteeing that it has a non-negligible degree of truth. This is
interesting for two reasons. First, measure-support (in short: support) differs from
both deductive and inductive support and has not been considered heretofore,
and does not arise at all in most of the calculi of approximate or fuzzy truth in
the current literature. And second, considering this phenomenon brings out a
connection between the degrees of truth of absolute and conditional a.g.s that
is important in applications. The latter will be discussed in subsequent sections,
but first we will lay down the foundations of m-entailment and support relations
among absolute and conditional a.g.s.

2 Measure-entailment among absolute a.g.s
Syntactically, an a.a.g. may be any formula φ of the first order predicate language.
What makes φ an a.a.g. is not is syntactical structure, but its semantical evalu-
ation. For reasons of simplicity, we exclude function symbols (in completeness
theorems, we must also exclude identity). We assume a standard concept of
models M =< D, I > for such a language, where D is the domain and the
interpretation function I assigns appropriate values to the nonlogical symbols
of the language. Given a model M and a formula φ = φ(x1, . . . , xn) with free
variables x1, . . . , xn, its degree of truth in M, tM(φ), is the proportion of n-tuples< d1, . . . ,dn > in D that satisfy φ in M. If φ is a sentence without free variables
then tM(φ) is defined as 1 or 0, according as φ is true or false inM. In most of the
cases that we will consider D will be finite and tM(φ) is defined, but if D is infinite
then tM(φ) must be generalized by introducing a σ-additive measure, μ, over a
Borel class of subsets of D, where tM,μ(φ) is defined as the measure of the class
of n-tuples < x1, . . . , xn > in the μn (the n-th power of μ) that satisfy φ in M. For
convenience we will omit the subscripts of ‘t’; thus when we speak of a given (or
of every, or of some) degree-of-truth function t(−)we implicitly refer to a given (or
to every, or to some, respectively) pair <M,μ >. For given t(−), f(−) =df 1− t(−) is
the corresponding degree-of-falsity function.

Degrees of truth satisfy the axioms of probability: (1) t(φ)≥0, (2) t(φυ¬φ)=1,
and (3) if φ and ψ are logically inconsistent then t(φ ∨ ψ) = t(φ) + t(ψ) (among
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other things, this entails and (4) t(¬φ) = 1 − t(φ) and (5) if φ logically implies
ψ, then t(φ) ≥ t(ψ)).1 However, and this must be stressed, degrees of truth also
satisfy certain laws that are not satisfied by probabilities in general. First, if φ and
φ󸀠 are alphabetic variants of one another (e.g., xRy and yRx), then t(φ) = t(φ󸀠).
And, if φ and ψ have no free variables in common then t(φ ∧ ψ) = t(φ) ⋅ t(ψ). In
effect, these are the properties of symmetry and independence. We may add that
de Finetti’s Theorem implies that any symmetric probability function over the
language is a mixture of independent and symmetric probability functions. This
allows us to regard symmetric probability functions on a language as mixtures
of degree of truth functions on it, and we may also say that degrees of truth are
‘factual’ or ‘statistical’ probabilities, while ‘real’ probabilities as characterized by
axioms (1)-(3) are ‘epistemic’ probabilities and depend on what one knows about
the facts. While recent work on 1st order probability logics was almost exclusively
about epistemic probabilities2, this paper concerns 1st order probability logics for
statistical probabilities, i.e., for degrees of truth.

A finite class of formulas φ1, . . . ,φn m(easure)-entails another formula, ψ,
abbreviated as φ1, . . . ,φn ⊩m ψ, iff for all ϵ > 0 there exists δ > 0 such that for
all degree-of-truth functions t, if t(φi) ≥ 1 − δ for i = 1, . . . , n, then t(ψ) ≥ 1 − ϵ.
Fromnow onwe assume that ϵ and δ range over small but non-zero real numbers.
Certain key properties of m-entailment among a.a.g.s are demonstrated in Adams
(1974), including the calculus M for m-derivability (⊢m). Some terminology: ⊩
stands for classical first order consequence in the sense that φ1, . . . ,φn ⊩ ψ iff
for all models M =< D, I > and valuation functions v (which assigns elements of
D to the variables of the language) it holds that if(M, v) satisfies all of the φi,
then (M, v) satisfies ψ. ⊢ is the corresponding notion of first order derivability
(complete for ⊩). An alphabetic variant var(φ) of formula φ results from φ
by replacing free variables by other distinct free variables; so ‘var’ may be
considered as a permutation function on the (free) variables of the language.
A variable-condensement cφ(ψ) of formula ψ with respect to formula φ results
from ψ by replacing some free variables of ψ which are not free in φ by distinct
free variables which are free in φ but not free in ψ. For example, Qxy is a
condensement of Qxz w.r.t. Rxy, but Qxx is neither an alphabetic variant of Qxz
nor a condensement of Qxz w.r.t. Rxy.

1 Axiom (3) generalizes to σ-additivity in the case of infinite sequences of formulas φ1,φ2, . . ..
2 Cf. Hawthorne’s [1998] development of a 1st order conditional probabilistic logic, and
Hailperin’s [2000] system of 1st order probability logic.
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Calculus M: φ1, . . . ,φn ⊢m ψ iff ψ is derivable from φ1, . . . ,φn by the following
three rules of inference (AV alphabetic variant, LC logical consequence, DC
disjunctive condensement):
(AV) φ ⊢m var(φ), for every alphabetic variant var(φ)
(LC) If φ1, . . . ,φn ⊢ ψ, then φ1, . . . ,φn ⊢m ψ
(DC) φ ∨ψ ⊢m φ ∨ cφ(ψ), for every condensement cφ(ψ)

M-entailment expresses the infinitesimal behaviour of degrees of truth (i.e., what
happens with t of the conclusion if t of the premises goes to 1). We are also
interested in their non-infinitesimal behaviour, which is expressed in terms of
lower bounds of the conclusion’s degree of truth – or equivalently, in terms
of upper bounds of the conclusion’s degrees of falsity – in dependence of
the premises’ degrees of truth (or falsity, respectively). We may also say that
non-infinitesimal behaviour concerns the degree of preservation of degrees of
truth. Rule (AV) strictly preserves the degree of truth (and falsity). For inferences
of classical logic (rule (LC)) it is a well-known fact that the conclusions’ degree
of falsity, f(ψ) is smaller-equal than the sum of the premises’ degrees of falsity
(cf. Adams 1965, Suppes 1965). For rule (DC), the degree of f -preservation is
bad: it holds (for all degrees-of-truth functions) that f(φ ∨ cφ(ψ)) ≤ √f(φ ∨ψ).
For example, if t(Rxy ∨ Qxz) = 0.9, then t(Rxy ∨ Qxy) ≥ 1 − √0.1 = 0.66. This
follows from an appropriate generalization of the measure-theoretic fact that
t(Fxy ∧ Gxz) ≥ (t(Fxy ∧ Gxy)2, via f(φ ∧ ψ) = t(¬φ ∧ ¬ψ) ≥ (t(¬φ ∧ ¬cφ(ψ))2 (cf.
Adams 1974, p. 6; the fact results from an application of the law of projection and
Tschebyscheff’s inequality).

In m-entailment among absolute a.g.s, the free variables may be implic-
itly understood as being quantified by an invisible most-quantifier (M) which
was explicitly introduced in Adams [1974]. It is therefore useful to compare
m-entailment with universal classical entailment ⊨u, where free variables are
implicitly understood to be quantified by an invisible strict universal quantifier
(∀), defined as follows: φ1, . . . ,φn ⊨u ψ iff for all modelsM, if the φi’s are satisfied
inM byall valuations of variables, thenψ is satisfiedby all valuations of variables.
Neither ⊨u nor ⊨m satisfies the standard structural rules of classical consequence,
because both entailment relations refer to implicitly quantified formulas. As an
example, consider the invalidity of Case Distinction: Fx ⊨u Fx ∨ ¬Fy and ¬Fx ⊨u
Fx ∨ ¬Fy, but Fx ∨ ¬Fx ⊭u Fx ∨ ¬Fy. Likewise, Fx ⊨m Fx ∨ ¬Fy and ¬Fx ⊨m
Fx ∨ ¬Fy, but Fx ∨ ¬Fx ⊭m Fx ∨ ¬Fy. On similar reasons, deduction theorem and
contraposition are invalid for both entailment relations. However, Cut, Monotony
and Modus Ponens are valid for both of them.

Both entailment relations are strictly stronger than classical entailment ⊩
(e.g., Fx ⊩u (⊩m)Fy, but Fx ⊮ Fy). Moreover,⊩u is strictly stronger than⊩m: while
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⊩u satisfies the unrestricted law of substitution (Subst): φ ⊩u φ󸀠, where φ󸀠 results
from φ by substituting any terms for variables in φ, ⊩m satisfies only the weaker
rules (AV) and (DC),which exclude substitutions by constants and allowmergings
of variables only in the special case of (DC). For example, Rxy⊩u Rzx, Rxy⊩u Rza
and Rxy ⊩u Rxx; while Rxy ⊩m Rzx, Rxy ⊮m Rza, Rxy ⊮m Rxx.3

A standard derivation of ψ from φ1, . . . ,φn is a derivation which consists,
first, in a number of applications of rule (AV) to the premises, second, in a series
of applications of rule (LC), arriving at a disjunction, to which, third, a series of
applications of rule (DC) is applied until one arrives at a disjunction of the form
ψ ∨ . . . ∨ ψ from which ψ follows by one additional (LC)-step of ∨-contraction.
The following theorem generalizes the results of Adams (1974, theorem 1) in two
respects: theorem 2.1.(6) demonstrates how a standard m-derivation can be used
to calculate a general upper bound for the conclusion’s degree of falsity fromgiven
degrees of falsity of the premises, and theorem 2.1.(5) shows how this fact can be
used as a non-infinitesimal probability semantics for m-entailment in the sense
of Schurz (1998). These extensions are not only important for practically reliable
reasoningwith calculusM (cf. Schurz 1997); theywill also be useful for the notion
of support.

Theorem 2.1. Let φ1, . . . ,φn, ψ be formulaswithout identity, where x1, . . . , xm are
the variables free in ψ. Then the following conditions are equivalent:4
(1) φ1, . . . ,φn ⊩m ψ
(2) φ1, . . . ,φn ⊢m ψ
(3) It is not the case that there exist disjoint sets D,D1, . . . ,Dm where D is

denumerable and D1, . . . ,Dm are denumerably infinite, and a model M with
domain D ∪ D1 ∪ . . . ∪ Dm such that (i) φ1, . . . ,φn are satisfied in M under
all valuations which assign distinct values in D ∪ D1 ∪ . . . ∪ Dm to distinct free
variables, and (ii) ψ is false in M under all valuations v such that v(xi) ∈ Di for
1 ≤ i ≤m.

(4) It is not the case that for all δ there exists a degree-of-truth-function t such that
t(φi) ≥ 1− δ for 1 ≤ i ≤ n, but t(ψ) ≤ 1−m−m.

(5) There exists natural numbers k1, . . . , kn , r such that for all degree-of-truth
functions, f(ψ) ≤ (Σ{ki ⋅ f(φi) : 1 ≤ i ≤ n})(1/2r).

3 A further difference consists in the fact that while with (∀) of standard first order logic we may
strictly generalize over particular variables, with (M) we may only most-generalize over all free
variables simultaneously. An extension to expressions such as (Mx)(My)Rxy (‘most x are such
that most y bear relation R to it’) is a task for the future.
4 Carlstrom (1975) shows that m-entailment is compact, i.e. 1⇔ 2 of theorem 2.1 holds also for
infinitely many premises; the restriction to the finite case is needed for theorem 2.1.(5,6).
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(6) There exists a standard-derivation of ψ from φ1, . . . ,φn such that for all
degree-of-truth functions, f(ψ) ≤ (Σ{ki ⋅ f(φi) : 1 ≤ i ≤ n})(1/2r), where ki is the
number of distinct alphabetic variants of φi introduced by (AV), and r is the
number of (DC)-steps.

Proof. We prove the equivalence of (1)-(6) by establishing the circle of implica-
tions (1)⇒ (4)⇒ (3)⇒ (6)⇒ (5)⇒ (1), and the implications (2)⇒ (1), (6)⇒ (2).
The implications (1)⇒ (4)⇒ (3) and (2)⇒ (1) are proved as in Adams (1974, pp.
8f). The implications (6)⇒ (5)⇒ (1) and (6)⇒ (2) are obvious. It remains to prove
(3)⇒ (6), by establishing¬(6)⇒¬(3) (similar to the proof of¬ (2)⇒¬ (3) in Adams
1974) as follows.

Assume no standard derivation of ψ from φ1, . . . ,φn exists. For all 1 ≤ i ≤m,
let Vi = {xi,1, xi,2, . . .} be pairwise disjoint denumerably infinite sets of variables,
with xi,1 := xi, and letVARbe the set of alphabetic variants of premisesφi(1≤ i ≤ n)
in the set of variables V1 ∩ . . . ∩Vm. Let CONC be the set of conclusion-variants of
the form ψ(x1,k1 , x2,k2 , . . . , xm,km ), for arbitrary k1, . . . , km such that xi,ki ∈ Vi; in
other words, every variable xi of ψ gets replaced by some variable in Vi. From
every disjunction of elements of CONC the disjunction ψ ∨ . . . ∨ ψ follows by
iterated applications of rule (DC) (part 3 of a standard derivation), while every
finite subset of VAR follows from the premises by applications of (AV). Since there
exists no standard-derivation, and by compactness of classical first order logic, it
follows that VARand the set of all negations of formulas in CONCmust be logically
consistent. As described inAdams (1974, p. 9), this fact implies the negation of (3);
i.e., there exists such a model whose existence is excluded in (3).

So, by contraposition, (3) implies the existence of a standard-derivation
of φ1, . . . ,φn ⊢ ψ. From the latter fact, the upper bound of the conclusion’s
degree-of-falsity as specified in (6) follows easily from the non-infinitesimal
bound behaviour of the three rules as explained above.

qed

If identity is included, the proof breaks down since neither the model M can be
assumed to be infinite nor the valuation function v can be assumed to be injective.
The rules of M are also valid also for formulas with identity5, but M is then no
longer complete. For example, let ORDINF be the first order formula asserting that
R is an irreflexive, asymmetric and transitive relation without greatest element.
Then ORDINF is only true in infinite domains. So ORDINF ⊩m ¬x = y is m-valid,

5 In particular, all classical entailments among identity formulas are m-valid. For example, ⊩m
x = x because t(x = x) = 1; x = y,Rxy ⊩m Rxx because t(x = y) = 1 implies that the size of the
domain is 1;Rxy,¬Rxx⊩m ¬x= y because t(Rxy)=1, t(Rxx)=0canonlyhold in infinite domains.
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because the set of tuples ⟨x, y⟩ satisfying ¬x = y has degree of truth 1 if and only
if the domain is infinite, but this inference is not derivable inM.6

3 Support among absolute a.g.s
Definition 3.1.
(1) φ1, . . . ,φn support ψ at level α (where α ≥ 0) iff for all ϵ > 0 there exists δ > 0

such that for all degree-of-truth-functions t, if t(φi) ≥ 1− δ for i = 1, . . . n, then
t(ψ) ≥ α − ϵ.

(2) φ1, . . . ,φn support ψ if and only if they support ψ at some positive level.

Note that if formula set ∆ supports φ at level α, then ∆ supports φ at every level
β below α. Theorem 3.1 below characterizes support in analogy to theorem 2.1.
Theorem 3.1.(2,3) show how the concept of support can be reduced to a condition
about m-entailment, namely m-inconsistency. The concepts of m-insatisfiability
and m-inconsistency are defined as one defines them in classical logic; see
theorem3.1.(2,3). By completeness (theorem2.1), bothnotions coincide.Moreover,
the argument for ¬(2)⇒ ¬ (1), in the proof of theorem 3.1, tells us that a finite
formula set Γ is m-satisfiable iff for every ϵ there exists a degree-of-truth-function
t such that for all 𝛾 ∈ Γ, t(𝛾) ≥ 1 − ϵ. Recall that the fact that φ and ψ are
m-inconsistent, i.e. that φ, ¬ψ m-entail ⊥, does not imply that φ m-entails
ψ, because m-entailment does not satisfy the rule of Reductio ad Absurdum.
However, that φ,¬ψ m-entail ⊥ implies that φ supports ψ. Theorem 3.1.(3)
gives a syntactic characterization: a derivation of ‘φ supports ψ’ consists in a
derivation of ‘φ,ψ ⊢m ⊥’. Theorem 3.1.(5) tells us that a standard-derivation for
support consist just in a series of (AV)-steps follows by (LC)-steps; (DC)-steps
are never needed, because ⊥ contains no variables. We call such a derivation an
AV-LC-derivation.

Theorem 3.1. The following conditions are equivalent:
(1) φ1, . . . ,φn support ψ.
(2) φ1, . . . ,φn ,¬ψ are m-insatisfiable; i.e., φ1, . . . ,φn ,¬ψ ⊩m ⊥.
(3) φ1, . . . ,φn ,¬ψ are m-inconsistent; i.e. φ1, . . . ,φn ,¬ψ ⊢m ⊥.
(4) Either φ1, . . . ,φn ⊩m ψ, or φ1, . . . ,φn support ψ atmost at level1−m−m,where

m is the number of free variables in ψ.

6 Carlstrom (1975) has proved completeness for formulas including identity but excluding
quantifiers.
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(5) There exist numbers k1, . . . , kn , r such that for all degree-of-truth-functions t,
t(ψ) ≥ (1/r)− (Σ{ki ⋅ f(φi) : 1 ≤ i ≤ n})/r.

(6) There exists a AV-LC-derivation of φ1, . . . ,φn ,¬ψ ⊢m ⊥ such that (i)
φ1, . . . ,φn, supports ψ at level (1/r), where r is the number of variants
of ¬ψ used in this derivation, and (ii) for all degree-of-truth-functions t,
t(ψ) ≥ (1/r) − (Σ{ki ⋅ f(φi) : 1 ≤ i ≤ n})/r, where ki is the number of variants
of φi used in this derivation.

Proof. Using theorem 2.1 we prove the equivalence of (1)-(6) by proving the two
circle of implications (2) ⇒ (6) ⇒ (5) ⇒ (1) ⇒ (2), (1) ⇒ (4) ⇒ (1), and the two
implications (3)⇒ (2), (6)⇒ (3).

(2)⇒ (6): By (2) and theorem 2.1 (2⇔ 6), there exists a standard derivation of
φ1, . . . ,φn ,¬ψ ⊢m ⊥. Since the conclusion ⊥ has no free variables, no (DC)-step
can occur in this derivation; so it must be an AV-LC-derivation. By theorem 2.1.(2⇔ 6) it follows that for all degree-of-truth-functions t, f(⊥) = 1 ≤ Σ{ki ⋅ f(φi) : 1 ≤
i ≤ n} + r ⋅ f(¬ψ), where ki and r are explained as in theorem 3.1.(6). By simple
algebraic transformation, condition (ii) of theorem 3.1.(6) follows. From (ii) and
the definition of support we directly obtain 1/r as a lower bound of the level of
support, hence condition (i).

(6) ⇒ (5) ⇒ (1) is obvious. To establish (1) ⇒ (2) we prove ¬(2) ⇒ ¬(1):
That φ1, . . . ,φn ,¬ψ does not m-entail ⊥ implies by definition that there exists
an ϵ such that for all δ there exists a degree-of-truth function t such that
t(φ1), . . . , t(φn) ≥ 1 − δ, t(¬ψ) ≥ 1 − δ and thus t(ψ) < δ, and t(⊥) ≤ 1 − ϵ (which
is trivially satisfied for arbitrary ϵ ≤ 1). But this implies, by definition of support,
that there exists no positive level α at which φ1, . . . ,φn could support ψ.

(1)⇒ (4) follows directly from theorem 2.1.(4), and (4)⇒ (1) holds since both
disjuncts of (4) imply (1). (3) ⇒ (2) follows from theorem 2.1, and (6) ⇒ (3) is
obvious. qed

That in standard-derivations of support-relations (DC)-steps are never needed (th.
3.1.(6)) may sound surprising: for example, Rxy ∨ Qxz m-entails Rxy ∨ Qxy by
rule (DC), and hence supports it. But that Rxy ∨ Qxz supports Rxy ∨ Qxy can be
derivedwithout using (DC) by the AV-LC-derivation {Rxy∨Qxz,¬(Rxy∨Qxy)} ⊢AV
{Rxy∨Qxz,Rxz∨Qxy,¬(Rxy∨Qxy),¬(Rxz∨Qxz)} ⊢LC ⊥. (Here, Γ ⊢ ∆means that
Γ ⊢ δ holds for every δ ∈ ∆, and ⊢AV means derivation by using AV-steps only.) The
AV-LC-derivation of ⊥ gives us a good (but not necessarily best) level of support
according to theorem 3.1.(6), which here is 1/2. It gives us also a non-infinitesimal
lower bound of the degree-of-truth for the supported conclusion, namely 1/2 −
f(Rxy ∨Qxz). Theorem 3.1.(4) states a general upper bound for the support-level,
based on theorem 2.1.(4), which is independent from the way in which ⊥ was
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derived; it is usually higher than the support-level calculated from theorem3.2.(5),
in our case it is 1−2−2 = 3/4.

The next theorem, 3.2, collects some useful facts. Theorem 3.2.(1) etablishes
m-entailment as the limiting kind of support with level 1 (hence m-entailment
implies support). Theorem3.1.(3) implies the important theorem3.2.(2)which tells
us that for conclusionswith just one free variable the notions ofm-entailment and
support collapse. In otherwords, considerations of support have only significance
for multi-variable formulas. The other parts of theorem 3.2 will be used in
later sections. Theorem 3.1.(6) generalizes the fact which was recognized in the
introduction: that xRy ∨ yRx supports xRy at level 1/2. Theorem 3.2.(7) explains
a special case where the support-relation is transitive.

Theorem 3.2.
(1) φ1, . . . ,φn support ψ at level 1 iff φ1, . . . ,φn m-entail ψ.
(2) If ψ has at most one free variable, then φ1, . . . ,φn support ψ iff φ1, . . . ,φn

m-entail ψ.
(3) If each of φ1, . . . ,φn m-entails each of ψ1, . . . ,ψk, respectively, then φ1 ∨ . . .∨

φn supports ψ1 ∨ . . . ∨ψk.
(4) If φ1, . . . ,φn m-entail ψ and ψ supports π, then φ1, . . . ,φn support π.
(5) If φ1, . . . ,φn m-entail ψ→ π and support ψ, then φ1, . . . ,φn support π.
(6) If var1(φ), . . . , varn(φ)arealphabetic variants of φ, then var1(φ)∨ . . .∨varn(φ)

support φ at level 1/n.
(7) If var1(φ), . . . , varn(φ) are alphabetic variants of φ, and ψ1, . . . ,ψk support

var1(φ)∨ . . . ∨ varn(φ) at level α, then ψ1, . . . ,ψk support φ at level α/n.

Proof. (1) follows from definition, and (2) is a direct consequence of theorem
3.1.(4) with n = 1. Concerning (3): suppose for reductio that φi m-entails ψj for
each 1 ≤ i ≤ n and 1 ≤ j ≤ k, but ψ1 ∨ . . . ∨ ψk is not supported by φ1 ∨ . . . ∨ φn.
Then ¬(ψ1 ∨ . . . ∨ψk)∧ (φ1 ∨ . . . ∨φn) is m-consistent by theorem 3.1.(2), whence
[φ1 ∧¬(ψ1 ∨ . . .∨ψk)]∨ . . .∨ [φn ∧¬(ψ1 ∨ . . .∨ψk)] is m-consistent, and therefore
[φ1 ∧¬ψ1]∧ . . .∨ [φn ∧¬ψk] ism-consistent. But if φi m-entails ψj (for each i and
j) then φi ∧¬ψj must be m-inconsistent, and so must be [φ1 ∧¬ψ1] ∨ . . . ∨ [φn ∧¬ψk]. (4) is clear by the definitions of m-entailment and support. Concerning (5):
Assuming the if-part, we have (a) φ1, . . . ,φn ⊩m ψ→ π and, by theorem 3.1(2), (b)
φ1, . . . ,φn ,¬ψ ⊩m ⊥. From (a) we obtain (c) φ1, . . . ,φn ,¬π ⊩m ¬ψ (by LC-steps).
(c) and (b) give us (d) φ1, . . . ,φn ,¬π ⊩m ⊥ (again by LC-steps), which implies
by theorem 3.1.(2) that φ1, . . . ,φk support π. (6) is clear from theorem 3.1.(6),
because we need n variants of ¬φ to derive a contradiction with var1(φ) ∨ . . . ∨
varn(φ). Concerning (7): Suppose that ψ1, . . . ,ψn support var1(φ)∨ . . .∨varn(φ),
hence by theorem 3.1(3), (a) ψ1, . . . ,ψn , var1(¬φ)∧ . . .∧varn(¬φ) ⊢m ⊥ (note that
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¬var(φ) = var(¬φ)). To show that ψ1, . . . ,ψn support φ we show (by theorem
3.1.(3)) that (b)ψ1, . . . ,ψn ,¬φ ⊢m ⊥. We prove the inference (c)ψ1, . . . ,ψn ,¬φ ⊢m
var1(¬φ) ∧ . . . ∧ varn(¬φ) by n (AV)-steps and (LC); and (a) + (c) give us (b). The
level α/n follows from the general fact that t(φ1)+ . . .+ t(φn)≥ t(φ1∨ . . .∨φn); and
since t(vari(φ)) is equal t(φ) for all variants vari, it follows that t(φ)≥ (t(var1(φ)∨
. . . ∨ varn(φ)))/n ≥ α/n. qed

Note that theorem 3.2.(4) does no longer hold if m-entailment is replaced by
support. For example, xRy ∨ yRx supports xRy, and xRy m-entails and thus
supports xRy ∧ yRx (by AV and LC), but xRy ∨ yRx does not support xRy ∧ yRx.
When xRy is interpreted as x > y, the degree of truth of xRy ∨ yRx approaches
1 but the degree of truth of xRy ∧ yRx equals 0. This examples tells us also that
the support-relation is not transitive, though theorem 3.2.(7) states a significant
exception.

As afinal example, consider thepremise xRy↔¬yRx – that x has relationR to
y iff y doesnot have it to x. In spite of the fact that its universalization,∀x∀y(xRy↔
yRx), is logically inconsistent, the open formula is m-consistent: since it has the
degree of truth1when xRy is interpreted as x>y in the domain of natural numbers.
An interesting thing about this is that xRy↔¬yRxm-entails both xRy ∨ yRx and¬xRy∨¬yRx, and it followings from the forgoing that xRy∨yRx supports xRy, and¬xRy ∨¬yRx supports ¬xRy – hence xRy↔¬yRx supports both xRy and ¬xRy.

4 Measure-entailment and support among
conditional a.g.s

4.1 Truthfunctional compounds of conditional a.g.s

In this section we consider m-entailment and support between conditionals of
the general form φ⇒ ψ and truthfunctional compounds of them, where φ,ψ, . . .
range over formulas of the 1st order language excluding ⇒. The conditional
operator⇒ binds the variables of φ and ψ and, thus, can also be regarded as a
dyadicmost-quantifier (M)(ψ/φ). Hence, themost-quantifier in the languagewith
conditionals is not implicit but explicit. Therefore, all standard structural laws for
classical consequence are satisfied by the m-entailment relation, provided it is
suitably extended to truthfunctional compounds of c.a.g.s – which is the task of
this section.

A conditional a.g. with an antecedent which is not logically true is called a
proper conditional a.g. An absolute a.g., φ, is defined in our conditional language

 EBSCOhost - printed on 2/12/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use



352 | Gerhard Schurz and Ernest Adams

(the 1st order language plus ⇒) as the (improper) conditional a.g. ⊤ ⇒ φ with
tautological antecedent. If ‘⊤⇒ φ’ stands alone, one may write just ‘φ’ instead of
‘⊤⇒φ’, but caremust be taken if ‘⊤⇒φ’ occurs in the scope of a truth-functional
operator: for example, ‘¬φ’ of the absolute language corresponds to ‘⊤⇒ ¬φ’ in
the conditional language, which is very different from ‘¬(⊤ ⇒ φ)’ (one cannot
express the latter assertion without an explicit most-quantifier).

We define the conditional degree-of-truth t(φ ⇒ ψ) in the standard way
as t(φ ∧ ψ)/t(φ) if t(φ) > 0, and set to 1 if t(φ) = 0.7 The degree-of-falsity
f(φ ⇒ ψ) is defined as 1 − t(φ ⇒ ψ). In the following, C,C1, . . . range over
conditional a.g.s and C,C1, . . . over set of them. Moreover, TCi , . . . range over
arbitrary truth-functional compounds of conditionals and TCi over stets of
them. M-entailment and support between a finite set of conditional a.g.s and
a conditional a.g. is defined as for absolute a.g.s. An extension of the logic
of m-entailment for propositional formulas or ‘x-formulas’ (see sec. 4.2) which
allows the conclusion to be a disjunction of conditionals was developed in Adams
(1986) and goes as follows: C⊩m C1 ∨ . . .Cn iff for all ϵ there exists δ such that for
all degree-of-truth functions t, if t(C󸀠) ≥ 1− δ for all C󸀠 ∈ C, then t(Ci) ≥ 1− ϵ for at
least one Ci(1 ≤ i ≤ n). We call these m-entailments disjunctive m-entailments.
Schurz (1997) reformulates them as m-entailments with negated conditionals
in the premise set: C,¬C1 ⊩m C2 iff for all ϵ there exists δ such that for all
degree-of-truth functions t, if t(C󸀠) ≥ 1− δ for all C󸀠 ∈ C and not t(C1) ≥ 1− ϵ, then
t(C2)≥1−ϵ. This section generalizes these extensions to arbitrary truthfunctional
compounds of conditional a.g.s (of the full 1st order language) with help of a
recursive definition of ‘ϵ-satisfaction’ and ‘δ-satisfaction’.

Definition 4.1.1. Let t be a degree-of-truth function.
(1) t ϵ-satisfies [δ-satisfies] φ⇒ ψ iff t(φ⇒ ψ) ≥ 1− ϵ [≥ 1− δ].

t ϵ-satisfies [δ-satisfies] ¬TC iff t does not δ-satisfy [ϵ-satisfy] TC.
t ϵ-satisfies [δ-satisfies] TC1 ∨ TC2 iff t ϵ-satisfies [δ-satisfies] TC1 or
t ϵ-satisfies [δ-satisfies] TC2; and likewise for ∧ and→.

(2) TC ⊩m TC󸀠 iff for all ϵ there exists δ such that for all degree-of-truth-functions,
if t δ-satisfies all TC ∈ TC, then t ϵ-satisfies TC󸀠.

Observe the ϵ-δ-switch in the clause for negated conditionals, which corresponds
to their ‘negativization’ by a premise-conclusion-switch. It is straightforward
to prove from this definition that m-entailment satisfies all rules for classical

7 A not yet elaborated alternative would consist in the use of primitive conditional
degrees-of-truths, similar to Popper functions for (epistemic) probabilities (cf. Hawthorne 1998).
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consequence. In theorem 4.1.1.(3) we assume the empty premise set to be inter-
changeable with ‘conditional Verum’⊤⇒⊤, and the empty conclusion (with zero
disjuncts) to be interchangeable with ‘conditional Falsum’ ⊤⇒⊥.
Theorem 4.1.1. Let t be a degree-of-truth function. Then:
(1) If TC and TC󸀠 are truthfunctionally equivalent, then t ϵ-satisfies [δ-satisfies] TC

iff t ϵ-satisfies [δ-satisfies] TC.
(2) (a) TC1 ∨ TC2 ⊩m TC3 iff TC1 ⊩m TC3 and TC2 ⊩m TC3.

(b) TC1 ⊩m TC2 ∧ TC3 iff TC1 ⊩m TC2 and TC2 ⊩m TC3.
(c) TC1 ∧ TC2 ⊩m TC3 iff TC1 ⊩m ¬TC2 ∨ TC3.
(d) TC1 ∧¬TC2 ⊩m TC3 iff TC1 ⊩m TC2 ∨ TC3.

(3) For every compound m-entailment TC ⊩m TC󸀠 there exists a finite set of valid
disjunctive m-entailments Ci ⊩m Di (with 1 ≤ i ≤ n, and Di a disjunction of
conditional a.g.s) such that TC ⊩m TC󸀠 is valid iff every m-entailment Ci ⊩m Di
is valid.

Proof. (Sketch) To prove (1) one shows, first, that ϵ- and δ-satisfaction is preserved
by the equivalence rules of deMorgan, double negation, elimination of → by ∨,
and ∨∧-distribution. For double negation, e.g., we argue that t ϵ-satisfies ¬¬TC
iff t does not δ-satisfy ¬TC iff t does not not ϵ-satisfy TC iff t ϵ-satisfies TC.
Since truthfunctionally equivalent formulas can be transformed into each other
by using these the equivalence laws, (1) follows by straightforward induction.
The proofs of (2) are straightforward. Concerning (3): by conjoining the premises
in TC and by (1), we first transform the given compound inference into a
covalid inference with premise in disjunctive normal form and conclusion in
conjunctive normal form. By 2(a,b),we transform this inference into a set of jointly
covalid inferences with a conjunction of unnegated or negated conditionals in
the premise, and a disjunction of those in the conclusion. We finally eliminate
negations by (2c,d) and replace the premise-conjunction by a set, and obtain a
jointly covalid set of disjunctive inferences. qed

The result of this section makes it possible to state the following complete-
ness theorems just for disjunctive inferences; its validity for compound infer-
ences follows automatically from theorem 4.1.1. By use of this theorem, also
non-infinitesimal degree-of-truth-conditions for compound inferences can be
translated into conditions for disjunctive inferences. Note finally that with help of
(negated) conditionals we may express the relation of support between absolute
a.g.s as follows:

Fact 4.1.1. φ1, . . . ,φn supports ψ iff ⊤⇒ φ1, . . . ,⊤⇒ φn ⊩m ¬(⊤⇒¬ψ).

 EBSCOhost - printed on 2/12/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use



354 | Gerhard Schurz and Ernest Adams

4.2 The ‘essentially propositional’ one-variable case

Most work on conditional probability logic has been done for propositional
languages. Formulas of a first order languagewithmonadic predicates andexactly
one free variable x are called x-formulas inAdams (1974, §4). Their degree-of-truth
functions obey not more laws than those for propositional probabilities; the ad-
ditional laws of truth-functions concern only multi-variable formulas. Therefore,
all theorems and proofs for propositional probabilistic logic can be transferred
to the logic of conditional a.g.s in the language of x-formulas. The propositional
logic of probabilistic conditionals (Adams 1965, 1975, 1977, 1986, 1988) was
transferred to x-formulas inAdams (1974, §4) andSchurz (1997). In this section,we
restrict our attention tom-entailment between (truth-functional combinations of)
conditionals φ⇒ ψ where φ,ψ are formulas of the x-formula-language (such as
Fx, Gx, Rax, ∃yRyx, etc.). A complete calculus for disjunctive inferences consists
of the following rules:

Calculus C0: C ⊢C0 C1 ∨ . . . ∨ Cn iff C1 ∨ . . . ∨ Cn is derivable from C by applying
structural rules of classical propositional inference and, in addition:
– (CC) φ⇒ ψ,ψ⇒ χ ⊢C0 φ ∧ψ⇒ χ (Cautious Cut)
– (CM) φ⇒ ψ,φ⇒ χ ⊢C0 φ ∧ψ⇒ χ (Cautious Monotony)
– (Or) φ⇒ χ,ψ⇒ χ ⊢C0 φ ∨ψ⇒ χ (Or)
– (RM) φ⇒ χ ⊢C0 (φ ∧ψ⇒ χ)∨ (φ⇒¬ψ) (Rational monotony)
– (SC) If φ ⊢ ψ, then ⊢C0 φ⇒ ψ (Supraclassicality)

Calculus C0 ‘minus’ rule (RM) coincides with the calculus P for preferential
entailment (cf. Makinson 1994).8

Well-knownderived rules are of P are (Left Logical Equivalence, LLE): If ⊢φ↔
χ, then φ⇒ ψ ⊢C0 χ⇒ ψ, (Right Weakening, RW): If ψ ⊢ χ, then φ⇒ ψ ⊢C0 φ⇒ χ,
(And): φ ⇒ ψ,φ ⇒ χ ⊢C0 φ ⇒ ψ ∧ χ and (Conditional Proof, CP): φ ∧ ψ ⇒ χ ⊢C0
φ⇒ (ψ→ χ).

Theorem 4.2.1. The following conditions are equivalent (’Π’ for ’product’):
(1) C ⊢m C1 ∨ . . . ∨ Cn
(2) C⊩C0 C1 ∨ . . . ∨ Cn
(3) For all degree-of-truth-functions, Π{f(Ci) : 1 ≤ i ≤ n} ≤ Σ{f(C󸀠) : C󸀠 ∈ C}

8 While calculi P and M have ‘Cut’ as their only structural rule, the admission of all structural
rules of propositonal logic is important for the completeness of C0. Rule (RM) corresponds to
‘rational monotony’ in the sense of Lehmann and Magidor (1992).
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For the proof cf. Adams (1986) and Schurz (1998). A fourth equivalent seman-
tical condition is expressed in terms of ranked models for x-formulas (Adams
1986, Schurz 1997), and a fifth equivalent condition is the yielding relation
as described in Adams (1986, p. 264), and Schurz (1998, p. 85–87), which in
the quantifier-free case gives a semi-tractable decision procedure. Condition
(3) establishes non-infinitesimal probability semantics for the logic of c.a.g.s
which is the basis of the probabilistically reliable non-monotonic theorem prover
developed in Schurz (1997).

As in the case for absolute x-formulas, it holds for conditional x-formulas that
if C1, . . . ,Cn do not m-entail C, then there exists a degree-of-truth function such
that t(Ci) is arbitrary close to 1 while t(C) is zero (cf. Adams 1986, p. 261). So
m-entailment and support coincide for conditional x-formulas.

4.3 The general 1st-order case

Due to the law of independence, m-entailment between conditional a.g.s with
an unrestricted number of variables satisfies the two additional rules (IndE) for
‘Independent Expansion’ and ‘IndC’ for ‘Independent Contraction’ (the rules AV
and DC are the same as for absolute a.g.s):

Calculus C1 (⊢C1): The rules of C0 plus
– (AV) φ⇒ ψ ⊢C1 var(φ⇒ ψ) for every var(φ⇒ ψ)
– (DC) ⊤⇒ φ ∨ψ ⊢C1 ⊤⇒ φ ∨ cφ(ψ) for every cφ(ψ)
– (IndE) φ⇒ ψ ⊢C1 φ ∧ χ⇒ ψ provided ∗
– (IndC) φ ∧ χ⇒ ψ ⊢C1 (φ⇒ ψ)∨ (χ⇒⊥) provided ∗
∗: χ and (φ,ψ) have no free variables in common.

The right disjunct in the conclusion of (IndC) takes care of the case where
t(χ) = 0. Rule (IndE) preserves the degree of truth exactly, and (IndC) preserves
thedegree of truth from thepremise to thefirst conclusion-disjunct exactly, except
when t(χ)=0 and thus t(χ⇒⊥)=1. Unfortunately, it is not possible to transfer the
completeness results about absolute a.g.s to conditional a.g.s with more than one
variable. One reason for this is the breakdown of the law of conditionalization:
for example, t(Fx ∧ Gy) = t(Fx) ⋅ t(Gy), but t(Fx ∧ Gy/Rxy) may differ from
t(Fx/Rxy) ⋅ t(Gy/Rxy) whenever Rxy’s extension is not decomposable into a
Cartesian product. Therefore, the unconditional rule (DC) has no conditional
counterpart. So far, it is an unsolved problem whether calculus C1 is complete,
and more generally, whether m-entailment between general 1st order c.a.g.s is
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recursively axiomatizable at all – even in the case where identity is excluded.
Calculus C1 is nevertheless highly important for practical applications because
its rules are correct (further independent correct rules have, so far, not been
found). Moreover, for conditionals derived without (DC) there exists a certain
standard-derivation, which implies a general lower bound for the degree-of-truth
of the conclusion under the additional proviso that (IndC) was not used in the
derivation:

Theorem 4.3.1.
(1) If C ⊢C1 C1 ∨ . . . ∨ Cn, then C⊩m C1 ∨ . . . ∨ Cn.
(2) If C1 ∨ . . .∨Cn is derivable from C in calculus C1without (DC), then there exists

a derivation in which all (AV) and (IndE) steps are advanced.
(3) If C1 ∨ . . . ∨ Cn has a derivation from C in calculus C1 without (DC) and (IndC),

then for all degree-of-truth-functions it holds that Π{f(Ci) : 1 ≤ i ≤ n} ≤ Σ{f(C󸀠) :
C󸀠 ∈ AVIndE(C)}, where AVInd(C) is the set of all conditionals which have been
derived from C by the rules (AV) and (IndE).

Proof. Theorem 4.3.1.(1): Correctness of (IndE) and (IndC) is obvious; correctness
of C1 follows straightforwardly.

Theorem 4.3.1.(2): It is sufficient to show that the set of conditionals derivable
from AVIndE(C) by the rules of C0 + (IndC) is closed under the rules (AV) and
(IndE):

For (CC): Assume φ ⇒ ψ is derived from φ ⇒ χ and φ ∧ χ ⇒ ψ by (CC).
Concerning (AV): By induction hypothesis (IH), var(φ) ⇒ var(χ) and var(φ) ∧
var(χ) ⇒ var(ψ) is derivable from AVIndE(C) (for arbitrary var), which implies
var(φ) ⇒ var(ψ) by one additional step of (CC). Concerning (IndE): Assume π
shares no free variables with (φ,ψ). By IH, we can derive φ ∧ π⇒ χ∗ and φ ∧ χ∗ ∧
π⇒ψ fromAVIndE(C), where χ∗ is a χ-variant which shares no free variableswith
π. One additional step of (CC) gives us φ∧ χ∗⇒ ψ, and φ∧ χ⇒ ψ is an alphabetic
variant thereof and hence derivable from it by the forgoing argument. Without
any complications the same is demonstrable for the rules (Or), (CM), and (SC). For
(RM): Assume (φ1 ∧ φ2 ⇒ ψ) ∨ (φ1 ⇒ ¬φ2) is derived from φ1 ⇒ ψ. Concerning
(AV): the argument is like that for (CC) above. The case of (IndE) is more involved:
we must show that (φ1 ∧ φ2 ∧ χ1 ⇒ ψ) ∨ (φ1 ∧ χ2 ⇒ ¬φ2) is derivable from
AVIndE(C), for arbitrary χi which have no variables common with (φ1,φ2,ψ). By
IH, φ1 ∧ χ1 ∧ χ2 ⇒ ψ is derivable from AVIndE(C). By (RM), (φ1 ∧ φ2 ∧ χ1 ∧ χ2 ⇒
ψ)∨ (φ1∧ χ1∧ χ2⇒¬φ2) follows. This gives us, by (IndC) and propositional rules,
(φ1 ∧ φ2 ∧ χ1 ⇒ ψ) ∨ (φ1 ∧ χ2 ⇒¬φ2) ∨ (χ1 ⇒⊥) ∨ (χ2 ⇒⊥). But from χ1 ⇒⊥ we
can derive φ1 ∧φ2 ∧ χ1 ⇒ ψ, and from χ2 ⇒⊥ we can derive φ1 ∧ χ2 ⇒¬φ2; and
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so we obtain (by ∨-contraction) (φ1 ∧φ2 ∧ χ1⇒ ψ)∨ (φ1 ∧ χ2⇒¬φ2). For (IndC),
we argue in the same way.9

Theorem 4.3.1.(3): If (IndC) is not used in the proof, too, then C1 ∨ . . . ∨
Cn is derivable from AVIndE(C) solely by the rules of C0, and we can apply
theorem 4.2.1 to obtain this result. qed

Theorem 4.3.1 is of importance for reliable theorem-proving in calculus C1. It
is also of significance for a claim of Weydert (1997, p. 596), which says that a
calculus essentially consisting of C0+(AV)+(IndE)+(IndC), but without the rule
(DC), is complete for 1st order m-entailment. If this were true, then rule (DC)
would be derivable from C0+(AV)+(IndE)+(IndC). Theorem 4.3.1.(2) implies that
if ⊤⇒ Rxy ∨Qxy were derivable from ⊤⇒ Rxy ∨Qxz in C0+(AV)+(IndE)+(IndC),
then it must be derivable from AVIndE(⊤ ⇒ Rxy ∨ Qxz) in C0 + (IndC). It is
easily to show that in this derivation all (IndC)-steps are eliminable, because
they can only refer to antecedents which have been introduced by (IndE), since
all elements of AV(⊤ ⇒ Rxy ∨ Qxz) have ⊤ as their antecedent. So if Weydert’s
claim were true, then ⊤ ⇒ Rxy ∨ Qxy were derivable from alphabetic variants
of ⊤ ⇒ Rxy ∨ Qxz in C0. But this cannot be because ⊤ ⇒ Rxy ∨ Qxy does not
yield ⊤ ⇒ Rxy ∨ Qxz in the sense of Adams (1975, p. 61). So the rule (DC) is not
derivable from C0+(AV)+(IndE)+(IndC), hence Weydert’s system of rules cannot
be complete for m-entailment.

The relation of support among conditional a.g.s is defined as for absolute
a.g.s. There exists no equivalent formulation of conditional support in terms of
m-inconsistency, i.e., in terms of m-entailment of ⊤⇒⊥. However, an equivalent
formulation exists in terms of ϵ-inconsistency in the sense of (Adams, 1975,
p. 51), i.e., in terms of m-entailment of φ ⇒ ⊥ from the premises and the denial
φ ⇒ ¬ψ of the supported formula φ ⇒ ψ (theorem 4.3.2.(2)). Since we have no
completeness proof for 1st order m-entailment, we can only give a correctness
condition analogous to that of theorem 4.3.1.

Theorem 4.3.2.
(1) C1, . . . ,Cn support φ⇒ ψ iff C1, . . . ,Cn ,φ⇒¬ψ ⊩m φ⇒⊥.
(2) If C1, . . . ,Cn ,φ⇒¬ψ ⊢C1 φ⇒⊥, then C1, . . . ,Cn support φ⇒ ψ.
(3) If φ ⇒ ⊥ is has a derivation from C1, . . . ,Cn ,φ ⇒ ¬ψ in C1 without (DC)

and (IndC), then (i) C1, . . . ,Cn support φ ⇒ ψ at level (1/r), where r is
the number of variants of φ ⇒ ¬ψ used in this derivation, and (ii) for all

9 Observe why the proof breaks down for (DC): if ⊤ ⇒ φ ∨ ψ’ is derived from ⊤ ⇒ φ ∨ ψ by
(DC), then by IH for (IndE), π⇒ φ∨ψ (with variable-disjoint π) is derivable from AVIndE(C), but
π⇒ φ ∨ψ’ cannot be concluded because (DC) does not hold for conditional a.g.s.
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degree-of-truth-functions t, t(φ⇒ ψ) ≥ (1/r)− (Σ{ki ⋅ f(Ci) : 1 ≤ i ≤ n})/r, where
ki is the number of variants of Ci used in this derivation.

Proof. (1), not-right implies-not-left: C1, . . . ,Cn ,φ ⇒ ¬ψ ⊮m φ ⇒ ⊥ implies by
definition that there exists ϵ such that for all δ there exists a degree-of-truth
function t such that (a) t(C1), . . . , t(Cn) ≥ 1 − δ, (b) t(φ ⇒ ¬ψ) ≥ 1 − δ, and (c)
t(φ⇒⊥) < 1− ϵ. From (c) it follows that t(φ) > 0, which together with (b) implies
that t(φ ⇒ ψ) < δ. This implies, by definition of support, that there exists no
positive level α at which C1, . . . ,Cn could support φ⇒ ψ.

(1), not-left-to-not-right: That C1, . . . ,Cn does not support φ ⇒ ψ at any
positive level α implies that (a) for every (small) α there exists δ such that for every
t, t(Ci) ≥ 1 − δ for all 1 ≤ i ≤ n, and t(φ⇒ ψ) < α, which in turn implies t(φ) > 0.
Assume for reductio that C1, . . . ,Cn ,φ⇒ ¬ψ ⊩m φ⇒ ⊥. This means that (b) for
every ϵ exists δ such that for all t, if t(Ci) ≥ 1− δ for all 1 ≤ i ≤ n and t(φ⇒¬ψ) ≥
1− δ, then t(φ⇒⊥) ≥ 1− ϵ and hence t(φ) = 0. Putting ϵ = α, (b) implies that (c)
for every small α there exists δ such that for every t, if t(Ci) ≥ 1− δ for all 1 ≤ i ≤ n
and t(φ) > 0, then t(φ⇒ ¬ψ) < α and hence, because of t(φ) > 0, t(φ⇒ ψ) ≥ α.
But (c) contradicts (a).

(2). follows from theorem 4.3.2.(1) and correctness of C1.
Concerning (3): Given the assumption, theorem 4.3.1.(3) implies that (i) for all

t, f(φ ⇒ ⊥) ≤ Σ{ki ⋅ Ci : 1 ≤ i ≤ n} + r ⋅ f(φ ⇒ ¬ψ), with ki and r as explained. If
t(φ) = 0, then t(φ⇒ ψ) = 1 and our claim is trivially satisfied. Else t(φ) > 0, and
then f(φ⇒⊥) = 1, f(φ⇒¬ψ) = t(ψ⇒ ψ), which gives our claim by (i).

qed

Weconcludewith anexample: Fx∧Fy⇒Rxy∨Ryx supports Fx∧Fy⇒Rxy at level
1/2, because two AV-instances of the denied conclusion, namely Fx∧ Fy⇒¬Rxy
itself and Fy ∧ Fx ⇒ ¬Ryx are necessary to derive Fx ∧ Fy⇒ ⊥. In the following
sections we focus on the support of antecedents of conditional a.g.s.

4.4 Entailment of conditional a.g.s with supported antecedent
and restricted 1st order completeness theorems

For present purposes, the most significant fact about a conditional a.g. is its
connection with an absolute a.g. by the following relation:

Fact 4.4.1. φ→ ψ ⊩m (φ⇒ ψ)∨ (⊤⇒¬φ), or equivalently
¬(⊤⇒¬φ),φ→ ψ ⊩m φ⇒ ψ

with f(φ⇒ ψ) ≤ f(φ→ ψ)/t(φ) for all degree-of-truth functions t.
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This follows by rule (RM) from theorem 4.3.1. Note that in this special case, the
inequality can be replaced by an equality. Fact 4.4.1 is exploited in the following:

Theorem 4.4.1. If a set of (absolute or conditional) a.g.s m-entails a material
implication φ → ψ and at the same time supports its antecedent φ, then this set
m-entails the corresponding conditional a.g. φ⇒ ψ.

Proof. This is a direct consequence of facts 4.1.1 and 4.4.1. qed

A simple application of the foregoing is that while xRy ∨ yRx does not m-entail¬xRy ⇒ yRx10, xRy ∨ yRx together with ¬xRy ∨ ¬yRx does m-entail it. Thus,
clearly xRy ∨ yRx by itself m-entails the material conditional ¬xRy → yRx, and
therefore so does the combination of xRy∨yRx and ¬xRy∨¬yRx. Moreover, since
both¬xRy and¬yRx are alphabetic variants of¬xRy, the disjunction¬xRy∨¬yRx
supports ¬xRy (by theorem 3.2.6). Hence theorem 4.4.1 guarantees that xRy∨ yRx
together with ¬xRy ∨¬yRx m-entails ¬xRy⇒ yRx.

This is our first application in which absolute a.g.s are shown to m-entail a
conditional a.g. In the area of conditional propositions, ψ ⇒ φ, where ψ and φ
are sentences, this can only happen if either φ is a logical consequence of ψ or
bothψ andφ are entailed by the premises.11 Nowwe see that this can happenwith
conditional a.g.sψ⇒φwithmore thanone free variable,when the corresponding
material conditionals, ψ→φ, arem-entailed, and the premises only support their
antecedents.

Generally speaking, theorem 4.4.1 becomes useful whenever a given set of
a.g.s, e.g. a scientific theory T, m-entails a material implication φ → ψ and we
want to infer from this fact something about the corresponding conditional a.g.
φ⇒ψ. For example, if we want to predict ψ-instances on the basis of φ-instances
we must ensure that the conditional degree of truth of ψ given φ is sufficiently
high; a high degree of truth of φ → ψ is not sufficient for this purpose (recall
the relative-son example in the introduction). Wemay utilize theorem 4.4.1 in two
ways. First, it may be that theory T also supports the antecedent of the m-entailed
implication, whence we can conclude that the conditional a.g. is m-entailed.
Second, it may be that T together with some plausible default premises (such
that there exist more than just a few objects) supports the antecedent. Then T
enriched by these default premises m-entails the conditional a.g. In the following

10 Thus, if xRy is interpreted as ¬x = y in the domain of natural numbers, then xRy∨ yRx is true
for all pairs ⟨x, y⟩ with ¬x = y, but the proportion of pairs ⟨x, y⟩ that satisfy yRx out of all those
that satisfy ¬xRy is 0.
11 This is essentially the factuality-conditionality property stated on p. 175 of Adams (1988).
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sections on applications we make use of both possibilities. But before that, we
demonstrate how certain restricted completeness theorems can be derived from
theorem 4.4.1. We can prove 1st order completeness for all conclusions of the
form (φ ⇒ ψ) ∨ (⊤ ⇒ ¬φ), and for all conditional conclusions with supported
antecedent (see theorem 4.4.2). Important for the proof is lemma 4.4.1, which tells
us that an absolute a.g. which is m-entailed by a set of conditional premises C is
alreadym-entailed by the set of material counterparts C→ =df {φ→ψ : φ⇒ψ ∈C}
of these premises.

Lemma 4.4.1.
(1) C⊩m (φ⇒ ψ)∨ (⊤⇒¬φ) iff C⊩m ⊤⇒ (φ→ ψ)
(2) C⊩m ⊤⇒ φ iff C→ ⊩m φ
(3) C⊩m (φ⇒ ψ)∨ (⊤⇒¬φ) iff C→ ⊩m φ→ ψ

Proof. (1), left-to-right, holds because both φ⇒ψ and⊤⇒¬φm-entail⊤⇒ (φ→
ψ). (1), right-to-left, follows from fact 4.4.1.

Concerning (2):The right-to-left directionholds because conditionalsm-entail
their material counterparts (by the rule CP). We prove the left-to-right direction
by contraposition. Assume C→ ⊮m φ, where x1, . . . , xm are φ’s free variables. By
theorem 2.1.3 this implies that there exists a model M such that all implications
ψ→ψ󸀠 inC→ are satisfied inMunder all valuationswhichassigndistinct values in
D∪D1 ∪ . . .∪Dm to distinct free variables, and φ is false in M under all valuations
v such that v(xi) ∈ Di for 1 ≤ i ≤m. This implies, by the argument of Adams (1974,
p. 8), that if the size of the domain goes to infinite then t(ψ → ψ󸀠) approaches
1, i.e., f(ψ → ψ󸀠) approaches 0, while t(φ) cannot be greater that 1 −m−m. Now
note that (i) f(ψ⇒ ψ󸀠) = f(ψ→ ψ󸀠)/t(ψ). We argue as follows. In the limit model,
either (ii) t(ψ) = 0, or (iii) t(ψ) > 0. In case (ii), t(ψ⇒ ψ󸀠) = 1 holds by definition.
And in case (iii), f(ψ ⇒ ψ󸀠) = 0 and hence t(ψ ⇒ ψ󸀠) = 1 follows from (i) and
f(ψ→ ψ󸀠) = 0. In both cases we obtain a limit model which gives all conditionals
in C degree-of-truth 1, but ⊤⇒ φ a degree-of-truth ≤ 1−m−m. So C⊮m ⊤⇒ φ.12

(3) follows from lemma 4.4.1.(1+2).
qed

Theorem 4.4.2 ((Restricted 1st order Completeness for C1):).
(1) C ⊢C1 (φ⇒ ψ)∨ (⊤⇒¬φ) iff C⊩m (φ⇒ ψ)∨ (⊤⇒¬φ)
(2) C ⊢C1 (φ⇒ ψ) iff C⊩m (φ⇒ ψ), provided C supports φ.

12 Observe that this argument breaks down as soon as the conclusion is a proper conditional
(φ∗ ⇒ φ), because from the fact that t(φ∗ → φ) is small we cannot conclude that t(φ∗ ⇒ φ) is
small.
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Proof. Concerning (1): Left-to-right holds by correctness of C1. Right-to-left: C ⊩m
(φ⇒ψ)∨(⊤⇒¬φ) impliesC→ ⊩m φ→ψ by lemma4.4.1.(3),which impliesC→ ⊢m
φ→ ψ by theorem 2.1. From C we obtain C→ by applying the rule (CP), and from
φ→ ψ we obtain (φ⇒ ψ)∨ (⊤⇒ ¬φ) by the rule (RM). This gives us C ⊢C1 (φ⇒
ψ)∨ (⊤⇒¬φ).

Concerning (2): Left-to-right hold by correctness of C1.Right-to-left:C⊩m (φ⇒
ψ) impliesC⊩m (φ⇒ψ)∨(⊤⇒¬φ)which implies (i)C ⊢C1 (φ⇒ψ)∨(⊤⇒¬φ) by
theorem 4.4.1.(1). ThatC supports φ implies thatC,⊤⇒¬φ ⊩m ⊤⇒⊥ by theorem
4.3.2.(1), which implies by lemma 4.4.1.(2) that C→,¬φ ⊩m ⊥. This in turn implies
that C→,¬φ ⊢m ⊥ by theorem 3.1. By applying (CP)-steps to Cwe derive C→, which
gives us C,⊤⇒ φ ⊢C1 ⊤⇒⊥ and hence (ii) C ⊢C1 ¬(⊤⇒¬φ). Now, (i) and (ii) give
us C ⊢C1 φ⇒ ψ.

qed

5 Support in theories of ordering
Theories of strict ordering, e.g., of preference between ‘options’, are commonly
based on a binary relation xPy (‘x is preferred to y’) that satisfies two axioms:13
– ASYMM xPy→¬yPx, and
– NEGTRANS (negative transitivity) xPz→ (xPy ∨ yPz).14
Familiar laws of ordering such as
– TRANS (xPy ∧ yPz)→ xPz

are then deduced from (the universal closure of) these axioms by the principles
of standard first-order logic.

Now, although we shall not bother to prove it here, most theorems of theories
of strict ordering such as TRANS are not only derivable from but are m-entailed
by ASYMM and NEGTRANS.15 The problem is that the corresponding proper
conditional a.g.s are not m-entailed. E.g.,
– ASYMMC xPy⇒¬yPx, and
– NEGTRANSC xPz⇒ (xPy ∨ yPz)

13 These relations are essentially strict weak orders (or strict quasi-orders) as characterized in
theorem 1.3, p. 33, of Roberts (1979). The equivalence classes of a strict quasi-ordering, obtained
from the equivalence relation xEy =df ¬xPy∧¬yPx, are strictly ordered.
14 This is so called here because it is equivalent to the transitivity of¬P; i.e., to (¬xPy∧¬yPz)→
¬xPz.
15 A significant exception is IRREFLEXIVITY, ¬xPx, which, because it involves a repeated
variable in its atomic constituent, is measure-independent of the other axioms.
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are not m-entailed by ASYMM and NEGTRANS. This is obvious in models M =
⟨D, I⟩, in which D is large but xPy is interpreted as x = y. Then xPy→¬yPx holds
for all x ̸= y in D, but t(xPy⇒¬yPx) = t(xPy ∧¬yPx)/t(xPy) = 0.16

Similar counterexamples show that ASYMMC together with NEGTRANS do
notm-entail NEGTRANSC. The upshot is that not only do the ‘absolute’ versions of
the laws of approximate orderings not m-entail their proper conditional counter-
parts, but none of these together with any finite subset of the proper conditional
counterparts m-entails the conditional counterparts of the remaining ones. We
cannot ‘finitely axiomatize’ theproper conditional theory of approximate ordering
relations. But should we want to?

The counterexample to the derivability of ASYMMC from ASYMM and the
other absolute ordering laws, in which xPy is interpreted as x=y, is an ‘ordering
in name only’, since it wouldn’t be recognized as an ordering in any intuitive
sense. Intuitive orderings are like those of numbers, real or rational, or like ages
of people, and these satisfy further conditions. One that we will focus on is
approximate trichotomy (also called weak connectedness):
– TRICHOT x ̸= y→ (xPy ∨ yPx).
Another one is the ‘default’ assumption that the domain contains more than one
or just a few objects. Wemay express this condition by first order sentences which
assert that there exists at least k objects,
– MINk ∃x1 . . .∃xk ∧ {xi ̸= xj : 1 ≤ i < j ≤ k}.
Observe that MINk is a sentence and hence not approximately true but either true
or false; yet it will play a role it m-entailment or support-relations. A stronger
assumption which m-entails MINk for every k would be x ̸= y, which m-entails
that the domain is potentially infinite. So we could replace MINk by x ̸= y in
theorem 5.1 below, but we do not need this stronger assumption. If we add these
two conditions to TRANS we obtain a fundamental theorem. Let an n-x-ordering
formula (in the binary predicate P) be a formula of the form xi1Pxi2 ∧ xi2Pxi3 . . . ∧
xin−1Pxin , where xi1 , xi2 , . . . , xin is some ordering of x1, . . . , xn. Moreover, let
Dist(x1, . . . , xn) be the formula⋀{xi ̸= xj : 1 ≤ i < j ≤ n} asserting that the xi denote
pairwise distinct objects, and let DIST(φ) =df DIST(x1, . . . , xn), where x1, . . . , xn
are the free variables in φ.

16 Worse, combinations of ASYMMC, NEGTRANSC, and TRANSC do not measure-entail any of
the ‘higher order transitivity laws’, TRANSnC (x1Px2∧ . . .∧xn−1Pxn)⇒ x1Pxn, and simple coun-
terexamples show that ASYMMC, NEGTRANSC,TRANS1C, . . . ,TRANSnC do not measure-entail
TRANSn+1C.
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Lemma 5.1.
(1) TRANS, TRICHOT ⊩ DIST(x1, . . . , xn)→⋁{φ : φ an n-x-ordering formula}
(2) Provided k ≥ n, MINk supports DIST(x1, . . . , xn) at level (k ⋅ (k − 1) ⋅ . . .
⋅ (k − n +1))/kn.

(3) Provided k ≥ n, {TRANS, TRICHOT, MINk} supports ⋁{φ : φ an n-x-ordering
formula}.

Proof. (1): TRICHOT and DIST(x1, . . . , xn) imply for each pair of variables xi , xj,
that (xiPxj ∨ xjPxi) will hold. If we apply distribution to the conjunction of
these disjunctions and eliminate those contradicting TRANS, we obtain the
disjunction of all possible n-x-orderingswhich is implied by TRANS, TRICHOTand
DIST(x1, . . . , xn).17

(2): If t(MINk) = 1, then the domain has at least k objects. Then given n ≤ k, the
number of n-tuples of distinct objects among k objects is k ⋅ (k−1) ⋅ . . . ⋅ (k− n+1),
hence its proportion among all kn n-tuples is (k ⋅ (k −1) ⋅ . . . ⋅ (k − n +1))/kn. Since
this function increases with increasing k, it gives us a lower bound of the number
of n-tuples of distinct objects among at least k objects, and thus, a level of support.

(3): {TRANS, TRICHOT, MINk}m-entail DIST(x1, . . . , xn)→⋁{φ : φ
an n-x-ordering formula} (by (1)) and support DIST(x1, . . . , xn) (by (2)); so they
support⋁{φ : φ an n-x-ordering formula} by theorem 3.2.(5).

qed

Theorem 5.1.
(1) Provided k ≥ n, {TRANS, TRICHOT, MINk} supports every n-x-ordering formula

at level (k ⋅ (k −1) ⋅ ⋅ ⋅ ⋅ ⋅ (k − n +1))/kn .n!
(2) Assume φ is a truthfunctional combination of open atomic P-formulas and has

free variables x1, . . . , xn. Then, if φ is consistent with {ASYMM, TRANS, TRI-
CHOT, DIST(x1, . . . , xn) }, then φ is supported by {ASYMM, TRANS, TRICHOT,
MINk}, provided k ≥ n.

(3) If φ → ψ is m-entailed by {TRANS, TRICHOT, ASYMM} and φ satisfies the
conditions of theorem 5.1.(2), then φ⇒ ψ is m-entailed by {TRANS, TRICHOT,
ASYMM, MINk}.

(4) If φ → ψ is m-entailed by {TRANS, TRICHOT, ASYMM} where φ is an
n-x-ordering formula, then φ ⇒ ψ is m-entailed by {TRANS, TRICHOT,
ASYMM}.

17 Note that without DIST(x1, . . . , xn) the implication is invalid: if all variables denote the same
individual, than no n-x-ordering is satisfied by this valuation.
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Proof. (1) is a direct consequence of lemma 5.1.(3), theorem 3.2.(7) and the fact
that there exist n! n-x-ordering formulas, whose disjunction is supported at the
level specified in lemma 5.1.(2).

Concerning (2): Given the assumptions about φ, then φ holds in at least one
model-valuation pair (M, v) satisfying TRANS, TRICHOT, ASYMM, where distinct
values are assigned to φ’s variables. In the submodel Mn of M restricted to the n
objects v(x1), . . . , v(xn), exactly one n-x-ordering formula ψ will be satisfied, and
ψ determines the interpretation of P inMn modulo isomorphism; soψmust imply
φ in the presence of TRANS, TRICHOT and ASYMM. (Or to argue syntactically:
TRANS, TRICHOT, ASYMM and ψ logically imply either xiPxj or its negation, for
1 ≤ i < j ≤ n; hence they must imply φ, because they don’t imply φ’s negation.)
Therefore, TRANS, TRICHOT, ASYMM, MINk logically imply and thus m-entail
ψ→ φ, and at the same time they support ψ by theorem 5.1.(1), so they support φ
by theorem 3.2.(5).

(3) follows directly from theorems 5.1.(2) and 4.4.1.
Concerning (4): We argue that for all ϵ there exists δ such that for all

degree-of-truth functions t with underlying model M, if t(TRANS), t(TRICHOT),
t(ASYMM) ≥ 1 − δ, then t(φ ⇒ ψ) ≥ 1 − ϵ. Let ϵ be given. Argument 1: There
exists δ such that for all models M which have at least n objects, our claim
holds. This follows from theorem 5.1.(3), since all these models satisfy MINn.
Argument 2: For the same δ as in argument 1, our claim is also satisfied for all
models M which have less than n objects, because by the presence of ASYMM,
the x-n-ordering formula φ will be false in these models for all valuations of its
variables. Therefore t(φ) will be zero and hence t(φ⇒ ψ) will be 1 in all of these
models. qed

In theorem5.1.(2), the consistencywithASYMMandDIST(x1, . . . , xn) is important.
For example, xPx is not consistent with ASYMM and hence not entailed by any
x-n-ordering; ¬xPx is consistent with ASYMMand entailed by every x-n-ordering;
xPy ∨ yPy is equivalent with the n-x-ordering xPy; finally, ¬xPy ∧ ¬yPx is not
consistent with DIST(x, y), it is equivalent with x = y and thus not entailed by any
n-x-ordering.

Applying our result to approximate orderings, we use the fact that ASYMM,
TRICHOT and TRANS logically entail all of the standard laws of ordering of
the form φ → ψ, where φ and ψ are in the language of P. In most cases, the
antecedents of these laws satisfy the conditions of theorem 5.1.(3), and therefore
the axioms together with the ‘default premise’ MINk alsom-entail the conditional
versions of these laws, φ⇒ ψ.
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The foregoing is illustrated by one of the laws of R. D. Luce’s theory of
semiorders (Luce, 1956):
– SEMIORD (xPy ∧ zPw)→ (xPw ∨ zPy).18
SEMIORD is m-entailed by TRICHOT and TRANS, and given ASYMM, TRICHOT,
TRANS andDIST(x, y, z), its antecedent xPy∧ zPw is equivalent to the disjunction
of the six 4-x-orderings xPyPzPw, xPzPyPw, xPzPwPy, zPxPyPw, zPxPwPy,
and zPwPxPy, all of which imply xPy∧ zPw. Hence according to Theorem 5.1.(3),
ASYMM, TRICHOT, TRANS and Mink with k ≥ 3 support xPy∧ zPw, and therefore
they m-entail:
– SEMIORDC (xPy ∧ zPw)⇒ (xPw ∨ zPy).
In somecases, the antecedent of a lawof ordering is itself an n-x-ordering formula.
This is the case, e.g., for ASYMM, NEGTRANS, TRANS, and all higher-order
transitivity laws TRANSn (cf. fn. 16). Theorem 5.1.(4) tells us that the conditional
versions of all of these laws are m-entailed by ASYMM, TRANS and TRICHOT
even without a default premise about the size of the domain. Also, note that
the m-consistent law xPy ↔ ¬yPx considered previously is also m-entailed by
TRICHOT and TRANS, and the present results apply to it. It is equivalent to
the conjunction of xPy → ¬yPx and ¬xPy → yPx, and since the antecedents
of both of these are n-x-formulas, their properly conditionalized versions,
xPy ⇒ ¬yPx and ¬xPy ⇒ yPx, are also measure-entailed by ASYMM, TRICHOT
and TRANS.

However, contrary to the impression thatmay be gained from the foregoing, it
should be noted that not all laws of ordering have antecedents that are consistent
with ASYMM, TRICHOT, TRANS and DIST(x1, . . . , xn). An important example is
– SUBSTINDIFF (¬xPy ∧¬yPx ∧ xPz)→ yPz,

which is a law of simple orderings. But while this law is m-entailed by TRICHOT
and TRANS, its antecedent is not consistentwith TRICHOT, TRANS andDIST(x, y).
So ¬xPy ∧¬yPx ∧ xPz is not implied by any 3-ordering, and its proper condition-
alization,
– SUBSTINDIFFC (¬xPy ∧¬yPx ∧ xPz)⇒ yPz

18 This axiom together with (xPy ∧ yPz)→ (xPw ∨ wPz) replaces NEGTRANS in Luce’s theory,
and all of this theory’s laws follow from ASYMM and NEGTRANS. Hence the results of the
present section apply to all of these laws. However, TRICHOT is not a law of this theory,
its axioms do not support it, and therefore Luce’s theory does not measure-entail laws like
SEMIORDC.
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is notm-entailed by them. This shows that the theory of approximate equivalence,
of which the theory of similarity is one application, must be studied indepen-
dently.19

In the next section we consider another empirical theory which is less widely
known than theories of ordering, but has attained some prominence in axiomatic
anthropology. This concerns balanced structures (Harary and Per Hage, 1983,
p. 44 ff).

6 Deductive support in theory of
balanced structures

These structures are exemplified by friendship relations satisfying laws F1 – F4
below. The laws are stated both informally and formally; symbolizing “x is a friend
of y” as “xFy”, and assuming that an enemy is anyone who is not a friend, they
are:
– F1 Friends of friends are friends: (xFy ∧ yFz)→ xFz,
– F2 Friends of enemies are enemies: (xFy ∧¬yFz)→¬xFz,
– F3 Enemies of friends are enemies: (¬xFy ∧ yFz)→¬xFz,
– F4 Enemies of enemies are friends: (¬xFy ∧¬yFz)→ xFz.

Note that F4 implies xFx, i.e. reflexivity of the friendship relation. Obviously these
laws are at best crude approximations even in the most polarized of societies20,
and one wants to see whether their proper conditional counterparts can be
expected to hold. In fact, with the addition of an axiom of symmetry,
– SYMM xFy→ yFx,

it can be shown that the proper conditional forms of F1 and SYMM all follow.

19 That the proper conditional versions of laws of indifference, or equivalence, are poor approx-
imations in empirical realizations of theories of ordering, such as in application to preferences,
is a major motivation for modifying these theories, e.g., as in the theory of semiorders.
20 Interpreting “xFy” as “x repels y”, these laws are better approximations in application to
electrostatic charges, although F4 is still a bad approximation since it seems to preclude the
existence of uncharged or neutral particles. Realism would require weakening the ‘extreme
polarization’ assumption to allow for this, and in the sociological case, to allow for ‘multiple
cliques’. Allowing for neutrals, enemies are simply another class and not just not friends, and
the relation ‘x is an enemy of y’ must be symbolized independently, e.g., as “xEy”. If “¬F” is
replaced by “E” throughout, axioms F1 – F4 and SYMM below remain valid, but they no longer
entail F4a, namely that two among any three persons must be friends. If neutrals are allowed
then all persons could be neutral and neither friends nor enemies. Then the proper conditional
versions of these axioms would not follow, since F4a is essential to deriving them.
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That the proper conditional formof SYMM follows from the axioms is obvious,
since F4 is equivalent to
– F4a xFy ∨ yFz ∨ zFx
all of whose disjuncts are alphabetic variants of xFy. Therefore according to
theorem 3.2.(6), F4a supports xFy at level 1/3. And, given that xFy is the
antecedent of SYMM, theorem 4.4.1 implies that
– SYMMC xFy⇒ yFx

is m-entailed by the axioms. The more difficult thing is to show that SYMM
together with F1 – F4 support the antecedent of F1, and therefore m-entail Fl’s
proper conditional form. This can be shown by direct deduction, but this lengthy
task would be more suitable for a computer-program in resolution-refutation
than for a human brain.21 We present a proof based on a general theorem and
on intuitive graph-theoretical reasoning. Recall that M = ⟨D, I⟩ is a model for a
formula φ iff M satisfies φ for all valuations of φ’s free variables.

Theorem 6.1. Suppose all formulas in L ∪ {φ} (where intuitively L is a set of ‘laws’
and φ an a.g.) are without quantifiers, identity and constants, and have x1, . . . , xn
as their free variables. Themodels of our language interpret all predicates in L∪{φ}.
Then: if φ is satisfiable in everymodel of L with exactlym ≥ n objects andan injective
valuation function (assigning distinct objects to distinct variables), then L supports
φ at level 1/m!.

Proof. Let Varm(L), be the set of all variants of the elements of L in m given
variables, and likewise for Varm(φ), Varm(¬φ). Every model of L verifies all
elements of Varm(L) and, by the assumptions of theorem 6.1, verifies at least one
element of Varm(φ) with help of an injective valuation function. Because L and
φ are free of quantifiers, identity and constants, every possible truth-valuation
on the atomic subformulas of Varm(L) is realized by exactly one model of
Varm(L) with m objects and an injective valuation function. Therefore, every
truth-function verifying each element of Varm(L) verifies one element of Varm(φ).
Hence, Varm(L) ∩Varm(¬φ) is truthfunctionally inconsistent. So, by theorem 3.1
(1⇔ 3⇔ 6), L supports φ at level 1/m! (since m! is the number of variants in m
variables). qed

21 The four axioms F1–F4 and the negated antecedent of F1, ¬xFy ∨ ¬yFz, have each 3! = 6
variants in {x, y, z}, and from these 30 premises (clauses) wemust derive a contradiction. Already
at the first layer, there exist hundreds of possible resolution steps.
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d

ba

c

e

Fig. 1

We apply theorem 6.1 to our problem by identifying φ with xFy ∧ yFz and L with
the system of axioms of balance, namely F1–F4 and SYMM. So n = 3, and we let
m = 5, i.e., we consider graphs G that have 5 ‘vertices’, a, b, c, d, e, as shown
figure 1.

Focusing first just on a, b, and c, according to F4a at least two of these must
be friends, and therefore be connected by the friendship relation. Assume that a
and b are friends, as shown by the heavy horizontal line that connects them in
the figure.

Now consider the triple b, c, and d, at least two of whichmust also be friends.
If either b and c or b and d are connected, then G has a chain of 3 connected
vertices, either a,b,c or a,b,d, and therefore xFy ∧ yFz must be satisfied in G by
the assignment either of values a, b, and c or of values a, b, and d to x, y, and z,
respectively. The only way that Gmight not have such a chain would be for c and
d to be friends, as shown in the figure. But then, what about the triple a, c, and
e, at least two of whose vertices must also be connected? This simple inspection
shows that no matter how connections are graphed between the 5 vertices in G, if
at least 2 out three of them are connected then there must be a chain of 3 of them
that are connected. Clearly, this is true of any of the finite number of graphs G on
the 5 vertices that is amodel ofL, and therefore any such graphmust have a chain
of 3 connected vertices.

Given theorem6.1, it follows that the formulaφ = xFy∧yFzmust be supported
by F1–F4, whence by theorem 4.4.1,
– F1C: (xFy ∧ yFz)⇒ xFz

is m-entailed by SYMM and F1–F4.
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That the antecedents of the remaining laws, F2–F4, are not supported by
F1–F4, is seen by considering models of F1–F4 where all individuals are friends
of each other (and, of course, also friends of themselves). The degree of truth of¬xFy is zero is these models, and therefore the degree of truth of the antecedents
of F2–F4 is zero, too. However, this does not imply that the conditional versions
of F2–F4 are not m-entailed by SYMM and F1–F4, because in models where all
individuals are friends of each other, the antecedents of F2–F4 have zero degree
of truth so that their conditional versions are trivially satisfied. In fact, detailed
considerations make is plausible that also F2C, F3C and F4C are m-entailed; we
leave this as an open conjecture.

Two remarks may be made in concluding this section. First, it shows that
in spite of appearances, rules F1–F4 are not symmetrical between friends and
enemies. It is possible according to these maxims for a society to be entirely
peaceful and friendly, but not for there to be a ‘war of all against all’. The key
‘desymmetrizing rule’ is axiom F4, which entails that no matter how numerous
enemies may be, there must at least be some friends, though no similar principle
applies to enemies.

Second, that axiom F4a supports xFy at level 1/3 is really a graph-theoretical
fact, which shows a connection between the theory of support and pure graph
theory. But what is important in this connection is not the mere fact that F4a
supports xFy, but rather the degree to which it supports it. Roughly, that F4a
supports xFy at level 1/3 means that xFy’s degree of truth can be guaranteed
to be ‘arbitrarily close to at least 1/3’ by requiring F4a to have a degree of truth
sufficiently close to 1. This requires that the proportion of ‘errors’ in the formula
xFy ∨ yFz ∨ zFx, or equivalently, the proportion of triples in the graph of the
relation F that do not satisfy the formula, should be sufficiently close to 0. Thus,
we are dealing with graphs with ‘small errors’ – but not with random errors, or
random graphs. However randomness might be defined in cases like the present
one, the assumption that errors are random is as much of an idealization as
the assumption that there are no errors. Our purpose here is to avoid idealizing
assumptions in reasoning about generalizations, and that applies just as much to
randomness as to ‘perfect exceptionlessness’.

7 Quasi-classical reasoning from
laws of entropy

Conditional a.g.s do not satisfy all logical laws which are valid for material impli-
cations. Neithermonotony φ→ψ/φ∧π→ψ, nor contraposition φ→ψ/¬ψ→¬φ
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nor transitivity φ → ψ,ψ → π/φ → π is m-valid for them. However, theorem
4.4.1 and lemma 4.4.1 tells us that in the special case where the antecedent φ of
the inferred conditional φ ⇒ ψ does not have a low degree-of-truth, all rules of
propositional logic are m-valid. For then, we may add ¬(⊤ ⇒ ¬φ) as a ‘default
premise’, which say that ‘φ is practically possible’. Let us further assume that the
degree-of-truth of the conditional a.g. φ⇒ ψ is itself extremely close to 1, in other
words, that this conditional a.g. ispractically necessary.Moreprecisely,we require
that f(φ ⇒ ψ) = f(φ → ψ)/t(φ) is some decimal powers lower that t(φ). Then it
follows that all conditional a.g.s inferable from practically necessary conditional
a.g.s by rules of propositional logic are themselves practically necessary, provided
the antecedents of the inferred conditional a.g.s are practically possible. We call
this kind of reasoning quasi-classical reasoning.

One area where quasi-classical reasoning is applied are physical or chemical
laws involving entropy. These laws express statistical facts about the behaviour of
molecules; so they are not strict laws. But due to the astronomically high number
of molecules (Avogadro’s number), their degree’s of truth are astronomically
close to 1. On the other hand, the phenomena to which these laws apply, e.g.
phenomena of diffusion due to concentration gradients, or chemical reactions,
are not astronomically rare but are practically possible – at least in our state
of the universe. So it is justified to reason quasi-classically from these laws,
although their logic is not really classical. For example, consider the law that a
concentration gradient in a gas or fluid leads to a diffusion process. Its conditional
degree of truth is astronomically close to 1 but not 1; spontaneous anti-diffusion
processes with negative entropy are physically possible. Yet we may infer, by
contraposition, that if in a gas or fluid no diffusion process takes places, then its
matter is homogeneously distributed, i.e., there is no concentration gradient. Or,
we may infer by the rule of monotony that this law holds also for more specific
classes of substances such as hot gases, electrolytic solutions, etc. Or we may
infer, by transitivity, that if a concentration gradient between certain substances
leads to a diffusion process which in turn leads to a production of heat energy,
then this concentration gradient leads to a production of heat energy. All these
example are instances of quasi-classical reasoning. Last but not least it follows
from these considerations that the intuitive difference between ‘high probability’
and ‘practical certainty’ has a logical foundation.

That the practical certainty of quasi-classical reasoning is not guaranteed in
all but in only those worlds where the antecedents of the inferred conditionals
are practically possible, can be illuminated by imagining a thermodynamically
equilibrated universe with maximal entropy. In such a universe, the absolute
probability of concentration gradients is close to zero. Where they appear,
they are caused by extremely short anti-diffusion processes. So, the law “if
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concentration-gradient, then diffusion process” would not hold in this universe
with high conditional probability. On the other hand, the contraposed law “if
no diffusion process, then no concentration gradient” would still hold with high
conditional probability. Thus, in such a universe, the contraposition from “if no
diffusion process, then no concentration gradient” to “if concentration gradient,
then diffusion process” would be invalid, because the absolute probability of the
inferred conditional’s antecedent, “concentrationgradient”, is close to zero in this
universe.
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