
Decision Making in Orthopaedic Trauma

Meir T. Marmor

Decision Making in Orthopaedic Trauma

Meir T. Marmor, MD

Orthopaedic Trauma Institute UCSF Department of Orthopaedic Surgery Zuckerberg San Francisco General Hospital and Trauma Center San Francisco, California

39 illustrations

Thieme New York · Stuttgart · Delhi · Rio de Janeiro Executive Editor: William Lamsback Managing Editor: Nikole Y. Connors Director, Editorial Services: Mary Jo Casey Production Editor: Torsten Scheihagen International Production Director: Andreas Schabert

International Marketing Director: Fiona Henderson International Sales Director: Louisa Turrell Director of Sales, North America: Mike Roseman Senior Vice President and Chief Operating

Officer: Sarah Vanderbilt President: Brian D. Scanlan Printer: Everbest Printing Co. Medical Illustrator: Andrea Hines Algorithm Drawings: Andy Ma

Library of Congress Cataloging-in-Publication Data

Names: Marmor, Meir, editor.

Title: Decision making in orthopaedic trauma /

[edited by] Meir Marmor, MD, Orthopaedic Trauma Institute, University of California San Francisco

Department of Orthopaedic Surgery, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California.

Description: First edition. | New York: Thieme, 2017. | Includes bibliographical references.

Identifiers: LCCN 2017005102 (print) | LCCN 2017006617 (ebook) |

ISBN 9781626234611 (print) | ISBN 9781626234628 (e-book)

Subjects: LCSH: Orthopaedics—Handbooks, manuals, etc. |

Wounds and injuries—Surgery—Handbooks, manuals, etc.

Classification: LCC RD732.5 .D43 2017 (print) |

LCC RD732.5 (ebook) | DDC 616.7—dc23 LC record available at https://lccn.loc.gov/2017005102

Copyright © 2017 by The Regents of the University of California. All Publishing Rights Property of Thieme Publishers.

Thieme Publishers New York 333 Seventh Avenue, New York, NY 10001 USA +1 800 782 3488. customerservice@thieme.com

Thieme Publishers Stuttgart Rüdigerstrasse 14, 70469 Stuttgart, Germany +49 [0]711 8931 421, customerservice@thieme.de

Thieme Publishers Delhi A-12, Second Floor, Sector-2, Noida-201301 Uttar Pradesh, India +91 120 45 566 00, customerservice@thieme.in

Thieme Publishers Rio de Janeiro, Thieme Publicações Ltda. Edifício Rodolpho de Paoli, 25º andar Av. Nilo Peçanha, 50 – Sala 2508 Rio de Janeiro 20020-906 Brasil +55 21 3172-2297 / +55 21 3172-1896

Cover design: Thieme Publishing Group Typesetting by DiTech Process Solutions

Printed in China by Everbest Printing Co. 5 4 3 2 1

ISBN 978-1-62623-461-1

Also available as an e-book: eISBN 978-1-62623-462-8

Important note: Medicine is an ever-changing science undergoing continual development. Research and clinical experience are continually expanding our knowledge, in particular our knowledge of proper treatment and drug therapy. Insofar as this book mentions any dosage or application, readers may rest assured that the authors, editors, and publishers have made every effort to ensure that such references are in accordance with **the state of knowledge at the time of production of the book.**

Nevertheless, this does not involve, imply, or express any guarantee or responsibility on the part of the publishers in respect to any dosage instructions and forms of applications stated in the book. **Every user is requested to examine carefully** the manufacturers' leaflets accompanying each drug and to check, if necessary in consultation with a physician or specialist, whether the dosage schedules mentioned therein or the contraindications stated by the manufacturers differ from the statements made in the present book. Such examination is particularly important with drugs that are either rarely used or have been newly released on the market. Every dosage schedule or every form of application used is entirely at the user's own risk and responsibility. The authors and publishers request every user to report to the publishers any discrepancies or inaccuracies noticed. If errors in this work are found after publication, errata will be posted at www. thieme.com on the product description page.

Some of the product names, patents, and registered designs referred to in this book are in fact registered trademarks or proprietary names even though specific reference to this fact is not always made in the text. Therefore, the appearance of a name without designation as proprietary is not to be construed as a representation by the publisher that it is in the public domain.

This book, including all parts thereof, is legally protected by copyright. Any use, exploitation, or commercialization outside the narrow limits set by copyright legislation, without the publisher's consent, is illegal and liable to prosecution. This applies in particular to photostat reproduction, copying, mimeographing, preparation of microfilms, and electronic data processing and storage.

To my wife and children who put up with me with endless patience, and to the future orthopaedic traum patients who will benefit from this book.	ıa

Contents

	Preface	
	Acknowledgments	XV
	Contributors	xvii
1	Compartment Syndrome (CS) Meir T. Marmor	2
2	Open Fracture Management	4
3	Ballistic Injuries	6
4	Vascular Injuries	8
5	Traumatic Nerve Injury	10
6	Mangled Extremity	12
7	Polytrauma Patient	14
8	Acute Pain Management	16
9	Chronic Pain Management	18
10	Venous Thromboembolism (VTE) Prevention	20
11	VTE Prevention for Patients on Anticoagulation	22
12	Embolic Disease Management	24
13	Heterotopic Ossification (HO)	26
14	Regional Anesthesia in Orthopaedic Surgery	28
15	Traumatic Anterior Shoulder Instability	30
16	Acromioclavicular Separation	32
17	Sternoclavicular Dislocation (SCD)	34

18	Clavicle Fractures	36
19	Scapulothoracic Dissociation (STD)	38
20	Scapula Fractures	40
21	Proximal Humerus Fractures	42
22	Humeral Shaft Fractures	44
23	Distal Humerus Fractures	46
24	Elbow Dislocation/ Terrible Triad Injury	48
25	Radial Head Fractures	50
26	Capitellum Fractures	52
27	Olecranon Fractures	54
28	Forearm Fractures	56
29	Distal Radius Fractures	58
30	Scaphoid Fractures	60
31	Perilunate Dislocation	62
32	Extensor Tendon Lacerations	64
33	Flexor Tendon Injuries	66
34	Finger Replantation	68
35	Finger Fractures	70
36	Metacarpal Fractures	72
37	Metacarpophalangeal (MCP) Dislocations	74
38	Phalanx Dislocations Nicole Schroeder	76

39	Femoral Shaft Fractures78R. Trigg McClellan
40	Distal Femur Fractures80Paul Toogood
41	Traumatic Knee Dislocation
42	Patella Fractures
43	Tibial Plateau Fractures
44	Tibial Shaft Fractures
45	Tibial Plafond (Pilon) Fractures
46	Ankle Fractures
47	Talus Fractures Dave Shearer
48	Calcaneus Fractures
49	Lisfranc Fractures
50	Navicular Fractures
51	Metatarsal (MT) Fractures102Dave Shearer
52	Toe Fractures
53	Pelvic Ring Fractures
54	Acetabulum Fractures
55	Hip Dislocations
56	Femoral Head Fractures
57	Femoral Intertrochanteric Fractures
58	Femoral Neck Fractures
59	Femoral Subtrochanteric Fractures

60	Spinal Cord Injury (SCI)
61	Adult C-Spine Clearance after Blunt Trauma 122 Jeremie Larouche and R. Trigg McClellan
62	Occipitocervical Dissociations (OCD)
63	Atlas (C1) Fractures and Transverse Ligament Injuries
64	C2 Odontoid (dens) Fractures
65	C2 Traumatic Spondylolisthesis
66	C3-C7 Facet Dislocations
67	C3-C7 Lateral Mass Fractures
68	Geriatric Vertebral Compression Fracture (VCF)
69	Thoracolumbar Injuries
70	Bisphosphonate Femur Fractures
71	Pathological (neoplastic) Fractures 142 Rosanna Wustrack
72	Periprosthetic Fracture THA: Acetabulum
73	Periprosthetic Fracture around THA: Femur
74	Periprosthetic Fracture around TKA: Femur
75	Periprosthetic Fracture around TKA: Tibia
76	Periprosthetic Fracture around Total Shoulder Arthroplasty (TSA)
77	Fracture Delayed and Nonunion
78	Acute Surgical Infection
79	Post-Operative Chronic Infection
80	Bone Defects

Appendix A Imaging	163
Appendix B Rehabilitation	166
Appendix C Orthoses Aarti Deshpande	170
Appendix D Estimated Time to Return to Work	172

Preface

"Truth is ever to be found in simplicity, and not in the multiplicity and confusion of things."

-Isaac Newton

"Simplicity is the ultimate sophistication."

-Leonardo da Vinci

Expecting the unexpected is the hallmark of trauma management. When dealing with orthopaedic trauma, one not only needs to deal with the unexpected, but also to have an understanding of a great number of complex of injuries and an ever-growing number of available treatments. Surgeons, physicians, nurses, therapists, and medical staff who treat musculoskeletal injuries need to have a common language and understanding of the critical decisions and management options for the various injuries. However, this information is not easy to come by. The information age in medicine has flooded the medical community with data on the effectiveness of medical treatments. At the same time, the demand for evidence-based medicine has increased the quality and sophistication of medical research, making the interpretation of medical research a task for the experts. Existing websites and textbooks are not always approachable to the non-expert orthopaedic trauma surgeon and often lack the simplicity to become useful for a large audience. In some instances, a caregiver treating orthopaedic injuries only wants to ask an expert in the field, "What would you do for these kinds of injuries?" That is where this book comes in. Rather that offering an exhaustive list of all the options of treating a given injury, the reader can quickly understand the most critical decisions and treatment options for the most common orthopaedic injuries. All of the chapters in this book were written by experts in the field of orthopaedic trauma and perioperative care, all of them working in the Orthopaedic Trauma Institute.

The Orthopaedic Trauma Institute (OTI) is a collaboration between the University of California, San Francisco (UCSF) and the Zuckerberg San Francisco General (ZSFG) Hospital and Trauma Center. The OTI is the only trauma center in San Francisco specializing in the treatment and rehabilitation of musculoskeletal injuries. The Institute provides expert care for all aspects of traumatic musculoskeletal injuries, including inpatient and outpatient orthopaedic surgical care, rehabilitation, and orthotics and prosthetics. Surgeons and physicians from the Department of Orthopaedic Surgery at UCSF with specific training and experience in treating these conditions staff the OTI. Since 2005, the OTI has put on the largest annual orthopaedic trauma surgical course in the United States, drawing instructors and attendees from over 20 countries and 40 states each year. The OTI staff also founded the Institute for Global Orthopaedics and Traumatology, which carries the global educational work of the OTI. The clinical,

educational, global work and research done in the OTI, all lend themselves to the fulfillment of the OTI mission: "To mend the injured, inspire innovators, and empower leaders to restore lives."

The chapters in this book are not a substitute for detailed, comprehensive protocols of management of the various musculoskeletal conditions listed in this book. The chapters try to distil the critical decisions needed to manage each injury. Although they are not replacements for protocols, they can form the basis for such protocols, and any protocol on a given subject will likely need to address the critical decision making showcased in this book. The book chapters are not a final word, but a snapshot of an acceptable current approach to management of a specific injury according to the understanding of contemporary biomedical research and personal experience of the chapter's author. Although largely literature based, the chapters are subjective by nature, and can only answer one question: "What would this given expert do for these types of injuries?" An effort was made to include in each chapter the pertinent imaging (dark gray blocks), decisions to be made (maroon hexagons), actions to be taken (light blue blocks) and non-operative/rehabilitation treatments (purple blocks). To aid in the understanding of the decision trees, information blocks, tables, figures, images, and abbreviation indexes were added as needed. Additionally, the authors were instructed to attach suggested readings to whenever these readings directly contribute to their decision-making process. For the most part, the chapters are arranged according to anatomic location, with general orthopaedic trauma subjects and perioperative care chapters in the beginning of the book and pathologic fractures and fracture complications at the end. To ease the finding of information, appendices summarizing the imaging, non-operative treatments, rehabilitation, and common orthotics in use for the various injuries were added. An additional appendix on a potential method for estimating time to return to work for an orthopaedic trauma patient was added as well. The readers are encouraged to add their comments to the decision trees and to tailor them to their specific workplace and patient population. We at the OTI welcome any comments on the decision-making processes or suggestions about studies that can change any of the decisions outlined in this book. These comments or suggestions can be sent directly to me (meir.marmor@ucsf.edu).

Meir T. Marmor, MD

Acknowledgments

I would like to thank my fellow co-workers at the Orthopaedic Trauma Institute (OTI), at the Zuckerberg San Francisco Hospital and Trauma Center, at Regional Medical Center of San Jose, and at Enloe Medical Center in Chico for making my daily work so enjoyable and inspiring me to make this book.

Contributors

Richard Coughlin, MD, MSc

Orthopaedic Trauma Institute UCSF Department of Orthopaedic Surgery Zuckerberg San Francisco General Hospital and Trauma Center San Francisco, California

Aarti Deshpande, CPO

Orthopaedic Trauma Institute UCSF Department of Orthopaedic Surgery Zuckerberg San Francisco General Hospital and Trauma Center San Francisco, California

Harry Jergesen, MD

Orthopaedic Trauma Institute UCSF Department of Orthopaedic Surgery Zuckerberg San Francisco General Hospital and Trauma Center San Francisco, California

Utku Kandemir, MD

Orthopaedic Trauma Institute UCSF Department of Orthopaedic Surgery Zuckerberg San Francisco General Hospital and Trauma Center San Francisco, California

Jeremie Larouche, MD

Orthopaedic Trauma Institute UCSF Department of Orthopaedic Surgery Zuckerberg San Francisco General Hospital and Trauma Center San Francisco, California

Nicolas Lee, MD

Orthopaedic Trauma Institute UCSF Department of Orthopaedic Surgery Zuckerberg San Francisco General Hospital and Trauma Center San Francisco, California

Meir T. Marmor, MD

Orthopaedic Trauma Institute UCSF Department of Orthopaedic Surgery Zuckerberg San Francisco General Hospital and Trauma Center San Francisco, California

Amir Matityahu, MD

Orthopaedic Trauma Institute UCSF Department of Orthopaedic Surgery Zuckerberg San Francisco General Hospital and Trauma Center San Francisco, California

R. Trigg McClellan, MD

Orthopaedic Trauma Institute UCSF Department of Orthopaedic Surgery Zuckerberg San Francisco General Hospital and Trauma Center San Francisco, California

Eric Meinberg, MD

Orthopaedic Trauma Institute UCSF Department of Orthopaedic Surgery Zuckerberg San Francisco General Hospital and Trauma Center San Francisco, California

Ben Mellott, PT

Physical Therapy Department Zuckerberg San Francisco General Hospital and Trauma Center San Francisco, California

Theodore Miclau, MD

Orthopaedic Trauma Institute UCSF Department of Orthopaedic Surgery Zuckerberg San Francisco General Hospital and Trauma Center San Francisco, California

Saam Morshed, MD, PhD

Orthopaedic Trauma Institute UCSF Department of Orthopaedic Surgery Zuckerberg San Francisco General Hospital and Trauma Center San Francisco, California

Masato Nagao, MD, PhD

Orthopaedic Trauma Institute UCSF Department of Orthopaedic Surgery Zuckerberg San Francisco General Hospital and Trauma Center San Francisco, California

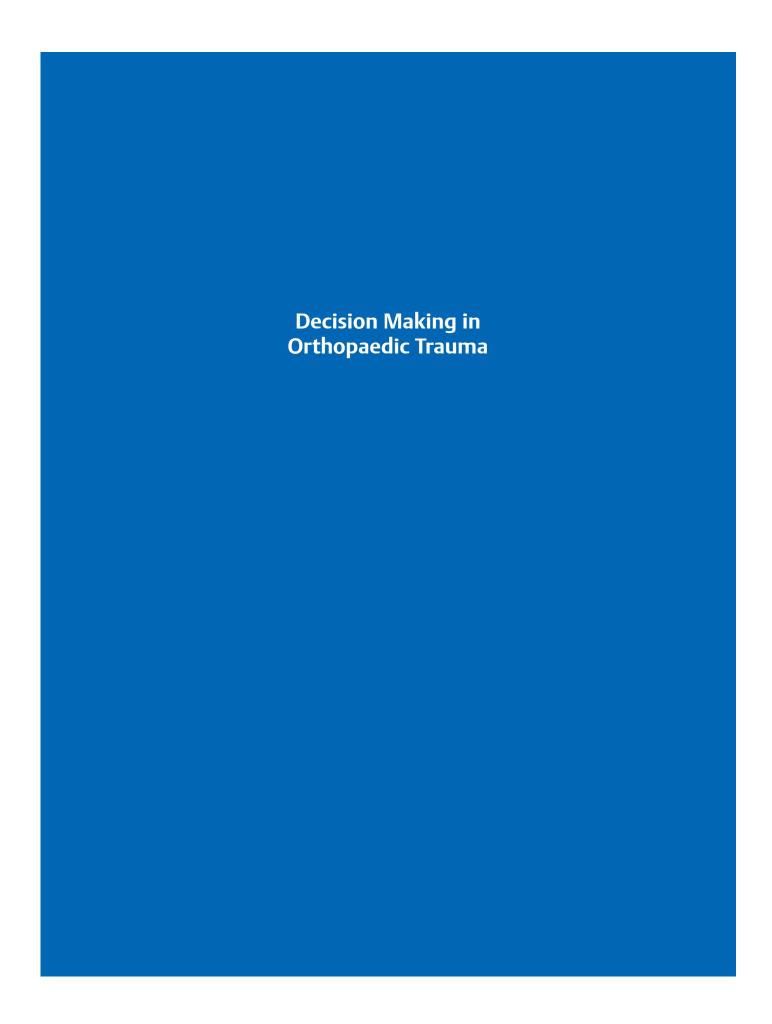
Lisa Pascual, MD

Orthopaedic Trauma Institute UCSF Department of Orthopaedic Surgery Zuckerberg San Francisco General Hospital and Trauma Center San Francisco, California

Nicole Schroeder, MD

Orthopaedic Trauma Institute UCSF Department of Orthopaedic Surgery Zuckerberg San Francisco General Hospital and Trauma Center San Francisco, California

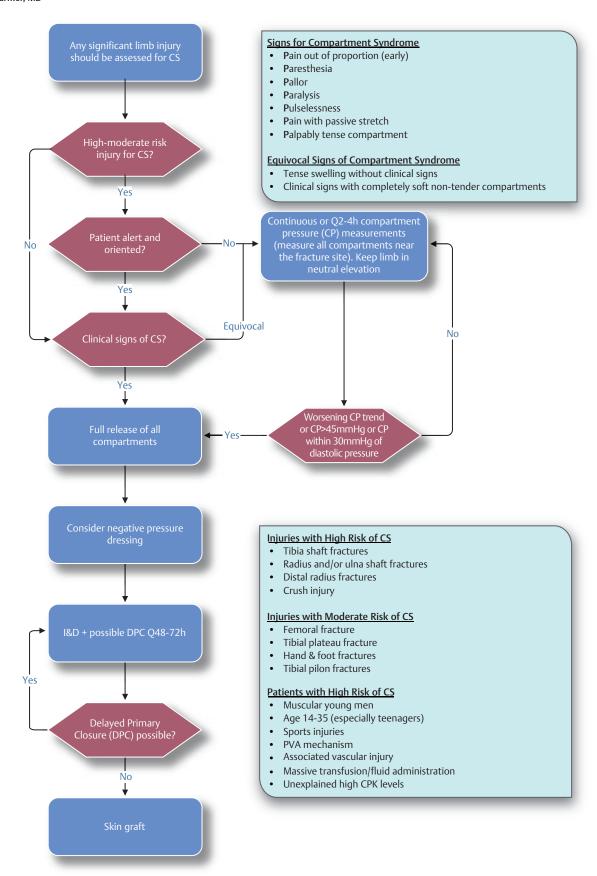
Dave Shearer, MD


Orthopaedic Trauma Institute UCSF Department of Orthopaedic Surgery Zuckerberg San Francisco General Hospital and Trauma Center San Francisco, California

Paul Toogood, MD

Orthopaedic Trauma Institute UCSF Department of Orthopaedic Surgery Zuckerberg San Francisco General Hospital and Trauma Center San Francisco, California

Rosanna Wustrack, MD

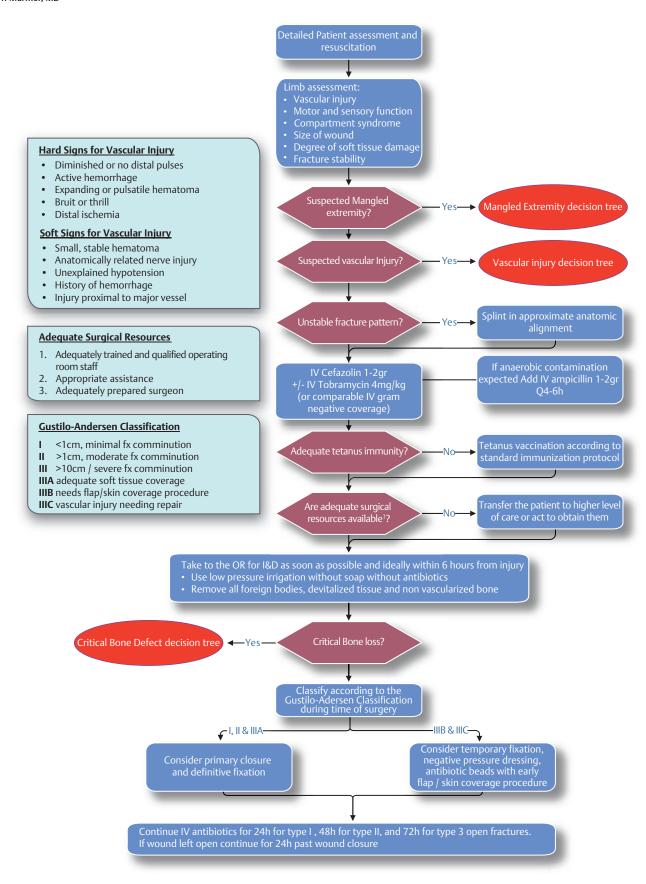

Orthopaedic Trauma Institute UCSF Department of Orthopaedic Surgery Zuckerberg San Francisco General Hospital and Trauma Center San Francisco, California

Chapter 1: Compartment Syndrome (CS)

Meir T. Marmor, MD

McQueen MM, Gaston P, Court-Brown CM. Acute compartment syndrome. Who is at risk? J Bone Joint Surg Br 2000;82(2):200–203

McQueen MM, Duckworth AD. The diagnosis of acute compartment syndrome: a review. Eur J Trauma Emerg Surg 2014;40(5):521–528


McQueen MM, Duckworth AD, Aitken SA, Court-Brown CM. The estimated sensitivity and specificity of compartment pressure monitoring for acute compartment syndrome. J Bone Joint Surg Am 2013;95(8):673–677

McQueen MM, Court-Brown CM. Compartment monitoring in tibial fractures. The pressure threshold for decompression. J Bone Joint Surg Br 1996;78(1): 99-104

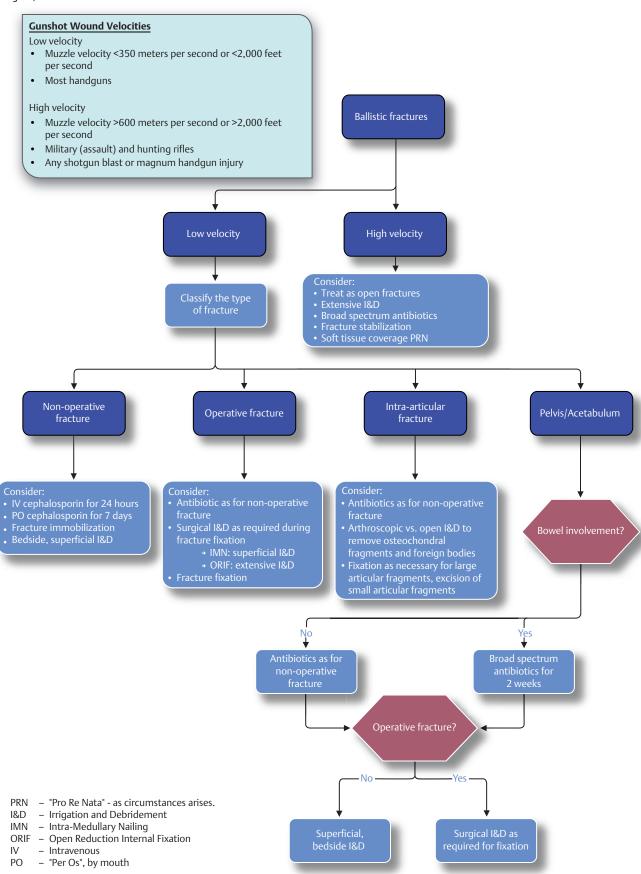
Chapter 2: Open Fracture Management

Meir T. Marmor, MD

Pollak AN, Jones AL, Castillo RC, Bosse MJ, MacKenzie EJ; LEAP Study Group. The relationship between time to surgical debridement and incidence of infection after open high-energy lower extremity trauma. J Bone Joint Surg Am 2010;92(1):7–15

Zalavras CG, Marcus RE, Levin LS, Patzakis MJ. Management of open fractures and subsequent complications. J Bone Joint Surg Am 2007;89(4):884–895

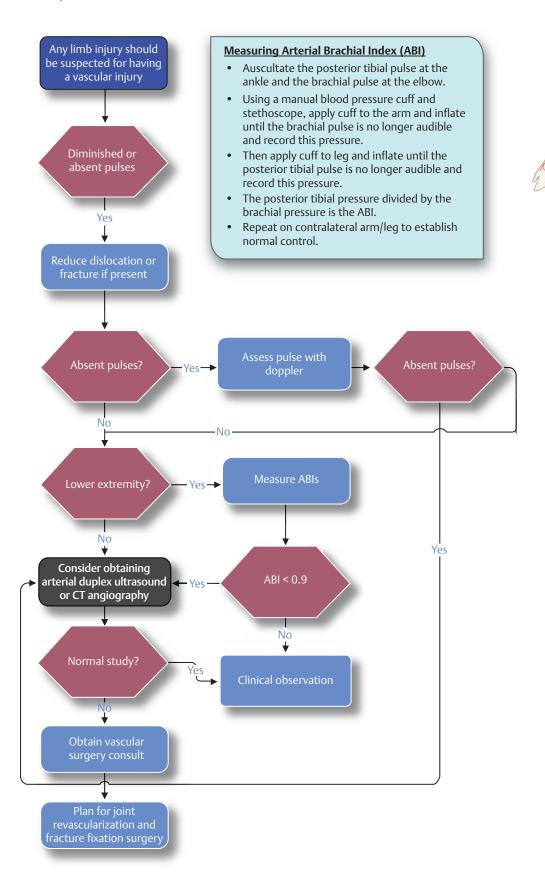
Bhandari M, Jeray KJ, Petrisor BA, et al; FLOW Investigators. A Trial of Wound Irrigation in the Initial Management of Open Fracture Wounds. N Engl J Med 2015;373(27):2629–2641


Gustilo RB, Anderson JT. Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: retrospective and prospective analyses. J Bone Joint Surg Am 1976;58(4):453–458

Fischer MD, Gustilo RB, Varecka TF. The timing of flap coverage, bone-grafting, and intramedullary nailing in patients who have a fracture of the tibial shaft with extensive soft-tissue injury. J Bone Joint Surg Am 1991;73(9):1316–1322

Chapter 3: Ballistic Injuries

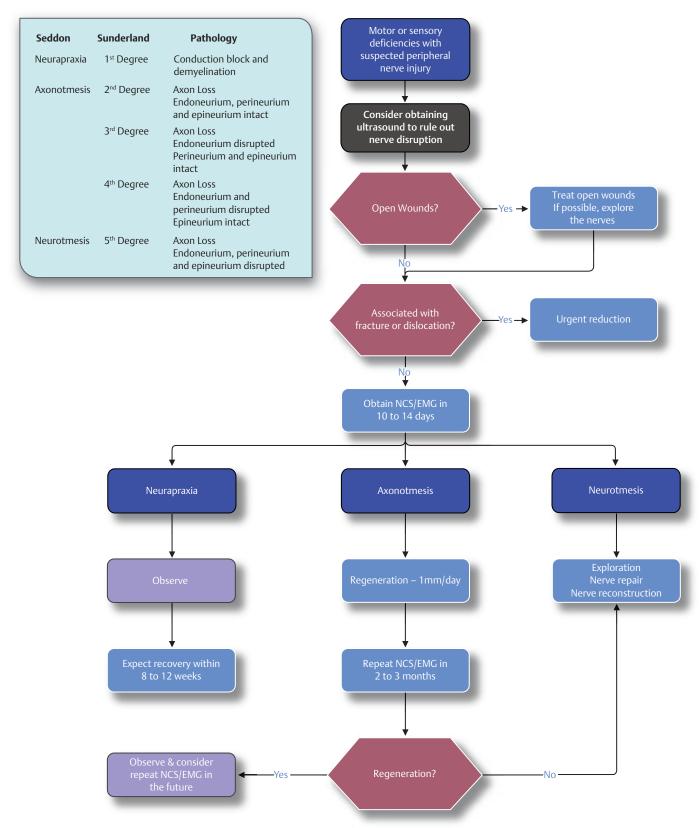
Paul Toogood, MD



Sathiyakumar V, Thakore RV, Stinner DJ, Obremskey WT, Ficke JR, Sethi MK. Gunshot-induced fractures of the extremities: a review of antibiotic and debridement practices. Curr Rev Musculoskelet Med 2015;8(3):276–289

Chapter 4: Vascular Injuries

Theodore Miclau, MD



Mills WJ, Barei DP, McNair P. The value of the ankle-brachial index for diagnosing arterial injury after knee dislocation: a prospective study. Journal of Trauma and Acute Care Surgery. 2004 Jun 1;56(6):1261-5.

Chapter 5: Traumatic Nerve Injury

Masato Nagao, MD, PhD

NCS - Nerve Conduction Study

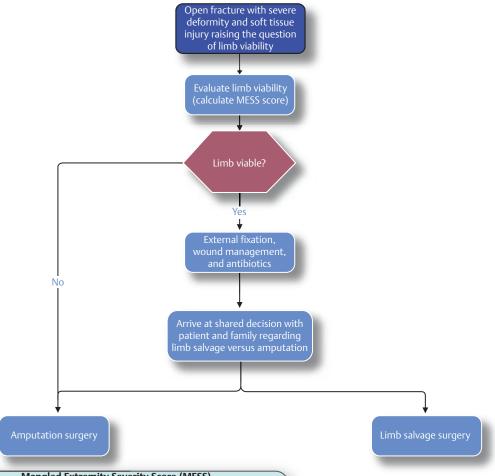
EMG – Electromyography

Seddon HJ. Three types of nerve injury. Brain 1943;66(4):237-288

Sunderland S. A classification of peripheral nerve injuries producing loss of function. Brain 1951;74(4):491-516

Sunderland S. The anatomy and physiology of nerve injury. Muscle Nerve 1990;13(9):771-784

Robinson LR. How electrodiagnosis predicts clinical outcome of focal peripheral nerve lesions. Muscle Nerve 2015; 52 (3): 321-333


Robinson LR. Traumatic injury to peripheral nerves. Muscle Nerve 2000;23(6):863–873

Campbell WW. Evaluation and management of peripheral nerve injury. Clin Neurophysiol 2008;119(9):1951–1965

Chapter 6: Mangled Extremity

Theodore Miclau, MD

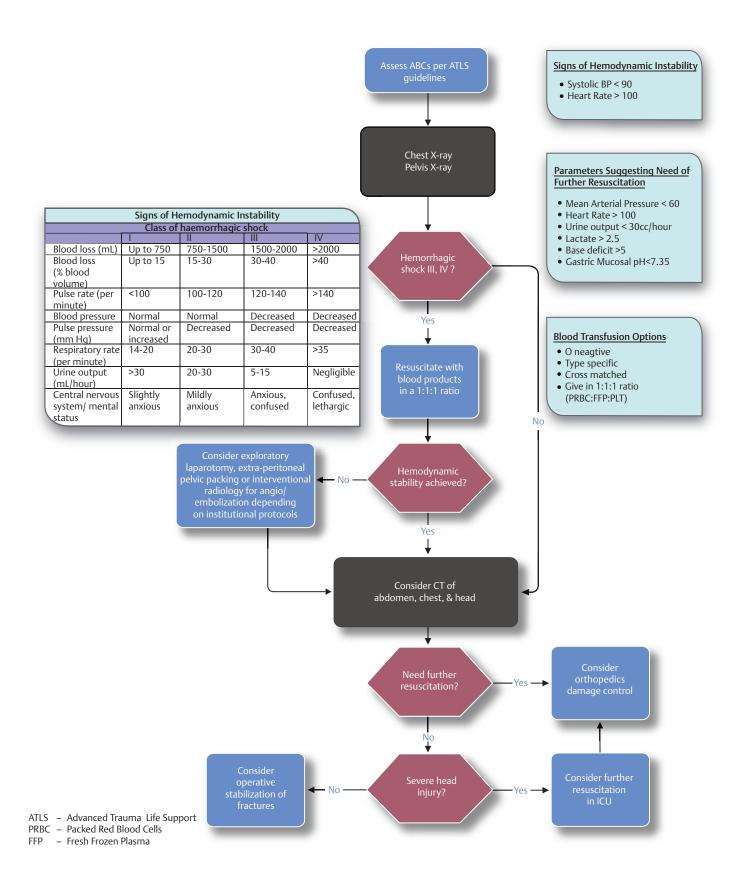
Mangled Extremity Severity Score (MESS)				
Туре	Characteristics	Injury	Points	
1	Low energy	Stab wound, simple closed	1	
		fractures, small-caliber GSW		
2	Medium energy	Open/multilevel fractures,	2	
		dislocation, moderate crush		
3	High energy	Shotgun, high-velocity GSW	3	
4	Massive crush	Logging, railroad, oil rig	4	
		accidents		
Shock Group				
1	Normotensive	BP stable	0	
2	Transiently hypotensive	BP unstable in field but	1	
		responsive to fluid		
3	Prolonged hypotension	SBP <80 mmHg in field and	2	
		responsive to IV fluids in OR		
Ischemia Group				
1	None	Pulsatile, no signs of	1	
		ischemia		
2	Mild	Diminished pulses without	2	
		signs of ischemia		
3	Moderate	No dopplerable pulse,	3	
		sluggish cap refill,		
		paresthesia, diminished		
		motor activity		
4	Advanced	Pulseless, coól, paralyzed,	4	
		numb without cap refill		
Age Group				
1	<30 year old		0	
2	>30 <50		1	
Calcu	Calculate MESS by adding the score from each category.			
MESS <=6 is consistent with a salvageable limb				

Key Results of LEAP Study

- Sickness Impact Profile and return to work is not significantly different between amputation and reconstruction at 2 years.
- Loss of plantar sensation is not a contraindication for reconstruction

Bosse MJ, MacKenzie EJ, Kellam JF, et al. An analysis of outcomes of reconstruction or amputation after leg-threatening injuries. N Engl J Med 2002;347(24):1924–1931

Busse JW, Jacobs CL, Swiontkowski MF, Bosse MJ, Bhandari M; Evidence-Based Orthopaedic Trauma Working Group. Complex limb salvage or early amputation for


severe lower-limb injury: a meta-analysis of observational studies. J Orthop Trauma 2007;21(1):70–76 $\,$

Helfet DL, Howey T, Sanders R, Johansen K. Limb salvage versus amputation. Preliminary results of the Mangled Extremity Severity Score. Clin Orthop Relat Res 1990; (256):80–86

Chapter 7: Polytrauma Patient

Saam Morshed, MD, PhD

Pape HC, Giannoudis P, Krettek C. The timing of fracture treatment in polytrauma patients: relevance of damage control orthopedic surgery. Am J Surg 2002;183(6):622–629

ATLS Subcommittee; American College of Surgeons' Committee on Trauma; International ATLS working group. Advanced trauma life support (ATLS®): the ninth edition. J Trauma Acute Care Surg 2013;74(5):1363–1366

Holcomb JB, Tilley BC, Baraniuk S, et al; PROPPR Study Group. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA 2015;313(5):471–482

Chapter 8: Acute Pain Management

Lisa Pascual, MD

Oral Long Acting Opioid of Choice • Do not exceed 3 am of acetamin

- Do not exceed 3 gm of acetaminophen (APAP) / 24 hours
- APAP (300 mg) + codeine 15 mg (#2), 30 mg (#3), 60 mg (#4) q4h
- Vicodin (5 mg hydrocodone + 500 mg APAP) q4h
- Norco or Lortab (5 mg or 7.5 mg or 10 mg + 325 mg APAP) q4-6h
- Percocet (2.5 mg or 5 mg or 7.5 mg or 10 mg oxycodone + 325 APAP) q6h

Stool Softener of Choice

- Diet (postop): fiber, water, prune juice
- Supp/Tab Bisacodyl (Dulcolax) 10mg (5-15mg) q24h
- Cap/Sol/Syr Docusate (Colace) 200mg (50-500mg) q24h or divided q6h/q12
- Tab/Sol Senna (Senokot) 15-25mg qHS (up to 2/d)
- Milk of magnesia 30-60mL/d (reg) 10 30mL/d(concentrated)

Start stress ulcer prevention with PPI (Omeprazole 20 mg daily) and H2 blocker (Famotidine 20 mg BID)

Would patient benefit from a regional block? (if not already done)

Add PCA treatment if needed

Acetaminophen (APAP) Dosages:

Weight >=50 kg: Parenteral (IV):

Treat according

to Regional Block

- IV 1000mg Q6h OR IV 650 mg Q4h
- PO 325-1000mg Q4-6h

Maximum Single Dose: 1000 mg Minimum Dosing Interval: every 4 hours Maximum Dose: 4000 mg/ 24 hours (3000mg/24 hours is ideal)

Weight < 50 kg:

 IV/PO 15 mg/kg Q6h OR 12.5 mg/kg IV Q4h

Maximum Single Dose: 15 mg/kg Minimum Dosing Interval: every 4 hours Maximum Dose: 75 mg/kg per 24 hours

APAP - Acetaminophen

NSAID - Nonsteroidal Anti-Inflammatory Drug

Patient with fracture is admitted to the hospital Fracture is splinted in the ER, limb is elevated and iced, consider regional block for hip fractures

Treat with short acting IV APAP and/or short acting IV opioid of choice

reat with stool softener

reat with IV anti-emetic

Is the patient at risk for stress ulcers?

Does patient need surgery?

general principles utilizing "multimodal" analgesia

No

Contraindications for PCA?

Yes

NSAIDS, antineuropathic and APAP treatment

Opioid Conversion Chart (equivalent doses)

IV 10mg Morphine PO 30mg Morphine Dilaudid IV 1.5mg Dilaudid PO 7.5mg Oxycodone PO 20mg PO 20mg Percocet Hydrocodone PO 30mg Codeine PO 200ma

After 24-48 hours calculate total use of opioids

Convert to long acting opioid and short acting opioid

Discontinue PCA if utilized

Plan for a narcotic tapering protocol over the first 2 weeks after surgery

General Principles

- If a patient reports he/she is in pain, then he/she is in pain
- Pain cannot be treated appropriately if it is not assessed and monitored for effects and side effects
- Analgesics are best given on a regular and not PRN basis
- For severe pain, consider IV analgesia

Short Acting IV Opiod of Choice (initial dose)

- Morphine, initial dose: 2.5mg IV
- Hydromorphone: 0.2-1mg IV
- Fentanyl 25mcq IV
- Consider dosage reduction in elderly

IV Anti-emetic of Choice

- Ondansetron (Zofran) 4mg Q8h PRN
- Promethazine (Phenergan) 6.25mg Q6h PRN
- Metocolopramide (Reglan) 10mg Q6h PRN

Patient Controlled Analgesia (PCA) of Choice

- Morphine PCA protocol
- Hydromorphone (Dilaudid) PCA

PCA Contraindications

- Inability to understand/use PCA
- Increased intra-cranial pressure
- Sleep apnea or respiratory compromise

NSAIDS of Choice

- IV Ketorolac (Toradol) 15mg Q6h
- Naproxen (Naprosyn) 500mg Q12h
- Ibuprofen (Motrin) 600mg Q6h
- + PPI: Omeprazole 20 mg daily

NSAIDS Contraindications (BARS)

- Bleeding (Coagulopathy)
- Asthma (10% of asthmatics)
- Renal Disease
- Stomach (peptic ulcer/gastritis)

Oral Long Acting Opioid of Choice

- Morphine (MS Contin) 15, 30, 60, 100 Q12h
- Oxycodone (Oxycontin) CR 10mg Q8-12h (10,20,40,80mg)

Antineuropathic of Choice

- Gabapentin
- Pregabalin

Boursinos LA, Karachalios T, Poultsides L, Malizos KN. Do steroids, conventional non-steroidal anti-inflammatory drugs and selective Cox-2 inhibitors adversely affect fracture healing? J Musculoskelet Neuronal Interact 2009;9(1):44–52

Chang AK, Bijur PE, Daviit M, Gallagher JE. Randomized clinical trial of an intravenous hydromorphone titration intravenous hydromorphone titration protocol versuis usual care for mangement of acute pain in older emergency department patients. Drugs Aging 2013;30(9):747–754

Chang AK, Bijur PE, Gallagher EJ. Randomized clinical trial comparing the safety and efficacy of a hydromorphone titration protocol to usual care in the management of adult emergency department patients with acute severe pain. Ann Emerg Med 2011;58(4):352–359

DeVellis P, Thomas SH, Wedel SK. Prehospital and emergency department analgesia for air-transported patients with fractures. Prehosp Emerg Care 1998;2(4):293–296

Gandhi K, Viscusi E. Multimodal pain management techniques in hip and knee arthroplasty. The Journal of New York School of Regional Anesthesia 2009;13:1–9

Hudcova J, Mcnicol ED, Quah CS, Carr DB. Patient controlled opioid anagesia versus conventional opioid analgesia for postoperative pain. (review) Cochrane Libr 2012

Jin F, Chung F. Multimodal analgesia for postoperative pain control. J Clin Anesth 2001;13(7):524-539

Kolber MR, Lindblad AJ, Taylor IC. We stand by our conclusion. Can Fam Physician 2015;61(1):25 $\,$

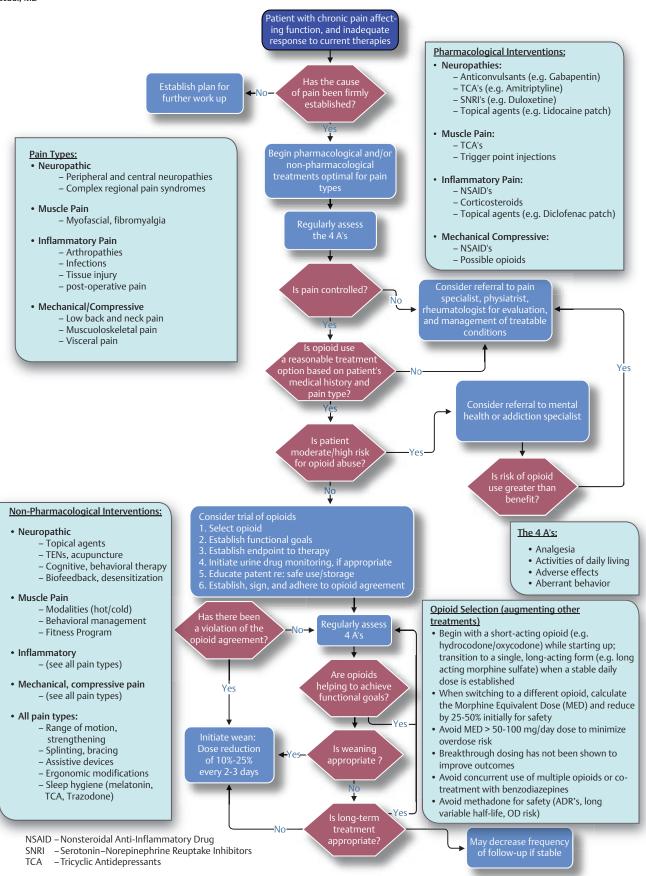
Wright JM, Price SD, Watson WA. NSAID use and efficacy in the emergency department: single doses of oral ibuprofen versus intramuscular ketorolac. Ann Pharmacother 1994;28(3):309–312

Lucas SD, Le-Windling L, Enneking FK. Regional anesthesia for the trauma patient. Pain Management - Current Issues and Opinions. 2012. ISBN: 978–953–307–813–7. http://www.intechopen.com/books/pain-management-current-issues-and-opinions/regional-anesthesia-forthe-trauma-patient

Riddell M, Ospina M, Holroyd-Leduc JM. Use of femoral nerve blocks to manage hip fracture pain among older adults in the emergency department: A systematic review. Canadian Journal of Emergency Medicine, FirstView 2015; 1–8

Ritcey B, Pageau P, Woo MY, Perry JJ. Regional nerve blocks for hip and femoral neck fractures in the emergency department: A systematic review. Canadian Journal of Emergency Medicine, FirstView 2015; 1–11

Thomas SH. Fentanyl in the prehospital setting. Am J Emerg Med 2007;25(7):842–843


Turturro MA, Paris PM, Seaberg DC. Intramuscular ketorolac versus oral ibuprofen in acute musculoskeletal pain. Ann Emerg Med 1995;26(2):117–120

Vadivelu N, Mitra S, Narayan D. Recent advances in postoperative pain management. Yale J Biol Med 2010;83(1):11-25

Chapter 9: Chronic Pain Management

Lisa Pascual, MD

American Pain Society. Guideline for the use of chronic opioid therapy in chronic non-cancer pain: Evidence review. 2009

Chou R, Fanciullo GJ, Fine PG, et al; American Pain Society-American Academy of Pain Medicine Opioids Guidelines Panel. Clinical guidelines for the use of chronic opioid therapy in chronic noncancer pain. J Pain 2009;10(2):113–130

Hooten W, Timming R, Belgrade M, Gaul J, Goertz M, Haake B, et al. Health care guideline: Assessment and management of chronic pain. Institute for Clinical Systems Improvement. (Updated November 2013)

Wisconsin Medical Society Task Force on Pain Management. Guidelines for the assessment and management of chronic pain. Wis Med J 2004;103(3):15

Chapter 10: Venous Thromboembolism (VTE) Prevention

Lisa Pascual, MD

Common Anticoagulant Drugs

Coumarins (vitamin K antagonists)

• Warfarin (coumadin)

Synthetic pentasaccharide inhibitors of factor Xa (low molecular weight heparins)

- Fondaparinux
- Idraparinux
- Enoxaparin
- Dalteparin

New Oral Anticoagulants (OAC)

Direct factor Xa inhibitors

- Rivaroxaban (Xarelto)
- Apixaban

Direct thrombin inhibitors

- Direct thro • Hirudin
- Lepirudin
- Bivalirudin
- Argatroban
- Dabigatran (Pradaxa)

Common Anti-platelet Drugs

Irreversible cyclooxygenase inhibitors

Aspirin (ASA)

Adenosine diphosphate (ADP) receptor inhibitors

- Clopidogrel (Plavix)
- Prasugrel (Effient)
- Ticagrelor (Brilinta)

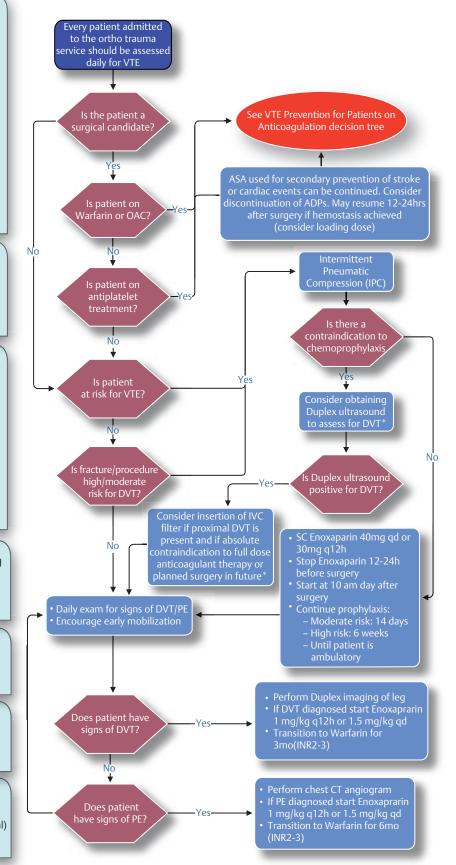
Patient-Related Risk Factors

- Increasing age
- VTE or family history of VTE
- Obesity
- Hypercoagulable state
- Congestive heart failure
- Infection
- Ventilator use
- Ascites
- Steroid use
- Alcohol use
- Pregnancy
- Oral contraceptionHormonal replacement
- Prolonged immobility or wheelchair bound

High risk fractures/procedures for VTE

- Lower extremity fractures from the knee and above (moderate risk)
- Spinal fx with paralysis
- Polytrauma or bilateral lower extremity
- Pelvic & acetabulum fxs

Signs of Deep Vein Thrombosis (DVT)


- Calf pain
- Swelling
- Fever
- Homan's sign

Signs of Pulmonary Embolism (PE)

- Pleuritic pain
- Tachypnea
- Tachycardia
- Hypoxia

Contraindication for Chemoprophylaxis

- Brain aneurysm
- Intracranial hematoma
- Spine injury and spine surgery (controversial)
- Ongoing bleeding
- Major uncorrected coagulopathy

^{*} American College of Chest Physicians Evidence-Based Clinical Practice Guidelines are against routine DVT screening and prophylactic use of inferior vena cava (IVC) filters.

Barrera, L. M., Perel, P., Ker, K., Cirocchi, R., Farinella, E., & Morales Uribe, C. H. Thrombo-prophylaxis for trauma patients. Cochrane Database of Systematic Reviews

Chassot, P., Marcucci, C., Delabays, A., & Spahn, D. (2010). Perioperative antiplatelet therapy. American Family Physician, 82(12), 1484-9.

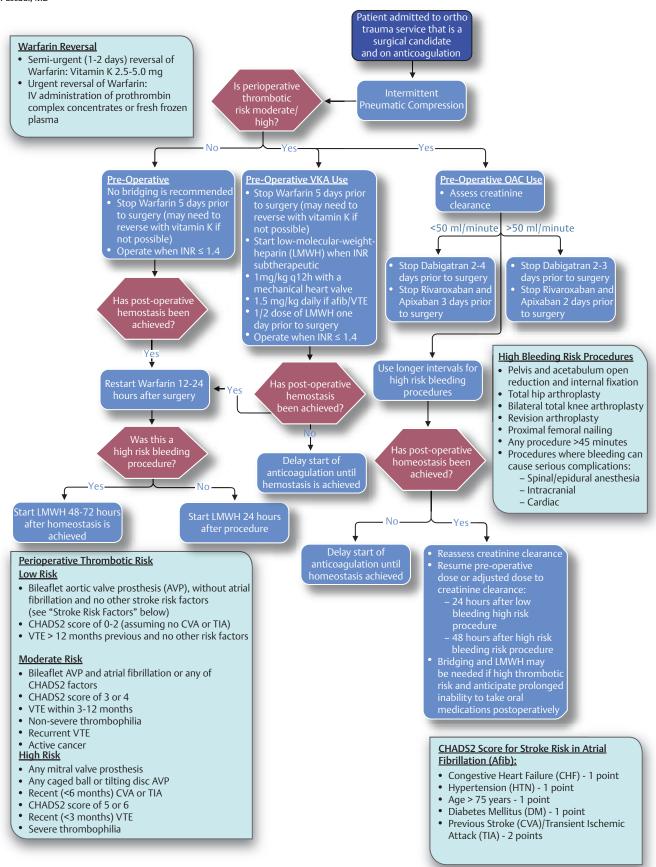
Falck-Ytter, Y., Francis, C. W., Johanson, N. A., Curley, C., Dahl, O. E., Schulman, S., et al. (2012). Prevention of VTE in orthopedic surgery patients: Antithrombotic therapy and prevention of thrombosis, 9th ed: American college of chest physicians evidence-based clinical practice guidelines. Chest, 141(2, Supplement), e2788–e325S.

Geerts, W. H., Bergqvist, D., Pineo, G. F., Heit, J. A., Samama, C. M., Lassen, M. R., et al. (2008). Prevention of venous thromboembolism: American college of chest physicians evidence-based clinical practice guidelines (8th edition). Chest, 133(6), 381S-453S.

Geerts, W. H., Pineo, G. F., Heit, J. A., Bergqvist, D., Lassen, M. R., Colwell, C. W., et al. (2004). Prevention of venous thromboembolism: The seventh ACCP conference on antithrombotic and thrombolytic therapy. Chest, 126(3, Supplement), 338S-400S.

NASS Evidence-Based Guideline Development Committee. (2009). Antithrombotic therapies in spine surgery North American Spine Society.

Toker, S., Hak, D., & Morgan, S. (2011). Deep vein thrombosis prophylaxis in trauma patients. Thrombosis, 505373


van Veen, J. J., & Makris, M. (2015). Management of peri-operative anti-thrombotic therapy. Anaesthesia, 70, 58-e23.

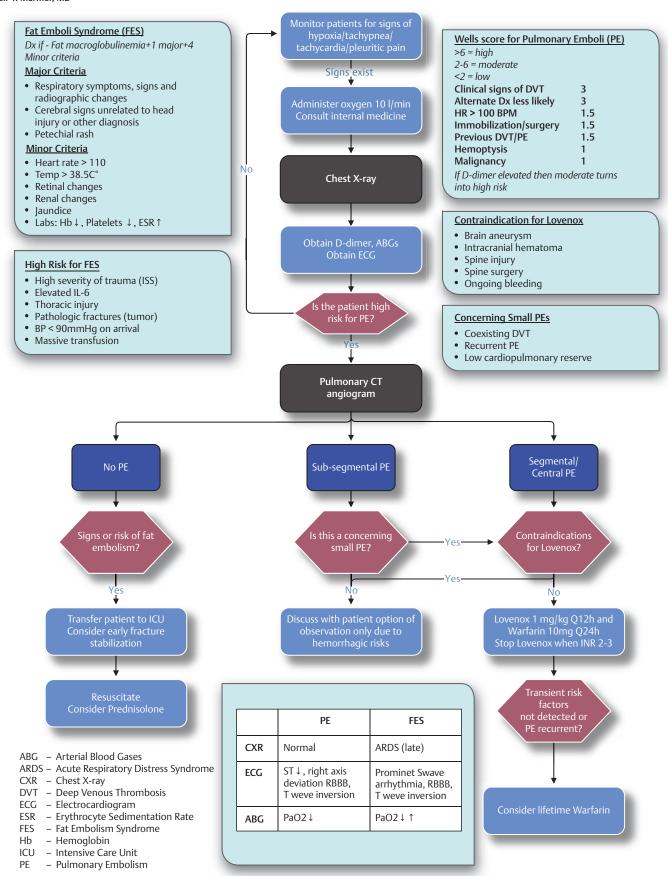
Whiting PS. (2016). Risk factors for deep venous Thrombosis following orthopaedic trauma surgery: An analysis of 56,000 patients.5(1), 2016 Jan 23;5(1):e32915. doi: 10.5812/atr.32915. eCollection 2016.

Chapter 11: VTE Prevention for Patients on Anticoagulation

Lisa Pascual, MD

VKA – Vitamin K Antagonist (see Chapter 10) OAC – new Oral Anti-Coagulants (see Chapter 10)

Douketis JD, Spyropoulos AC, Spencer FA, et al; American College of Chest Physicians. Perioperative management of antithrombotic therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012; 141(2, Suppl):e326S–e350S


Gallego P, Apostolakis S, Lip GYH. Bridging evidence-based practice and practice-based evidence in periprocedural anticoagulation. Circulation 2012;126(13):1573–1576

van Veen JJ, Makris M. Management of peri-operative anti-thrombotic therapy. Anaesthesia 2015;70(Suppl 1):58–67, e21–e23

Chapter 12: Embolic Disease Management

Wells PS, Anderson DR, Rodger M, et al. Derivation of a simple clinical model to categorize patients probability of pulmonary embolism: increasing the models utility with the SimpliRED D-dimer. Thromb Haemost 2000;83(3):416–420

Goodman LR. Small pulmonary emboli: what do we know? Radiology 2005;234 $(3){:}654{-}658$

Gurd AR, Wilson RI. The fat embolism syndrome. J Bone Joint Surg Br 1974;56B(3): 408--416

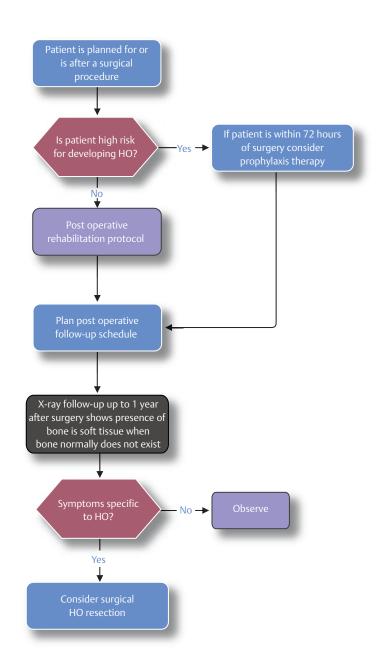
White T, Petrisor BA, Bhandari M. Prevention of fat embolism syndrome. Injury $2006;37(Suppl\ 4):S59-S67\ Review$

Chapter 13: Heterotopic Ossification (HO)

Harry Jergesen, MD

Risk for HO

- Brain Injury
- Prior history of HO
- Family history of HO
- Existing HO
- Extensive hip surgery
- Polytrauma patient
- Spinal cord injury
- Ankylosing Spondylitis
- Diffuse Idiopathic Skeletal Hyperostosis (DISH)

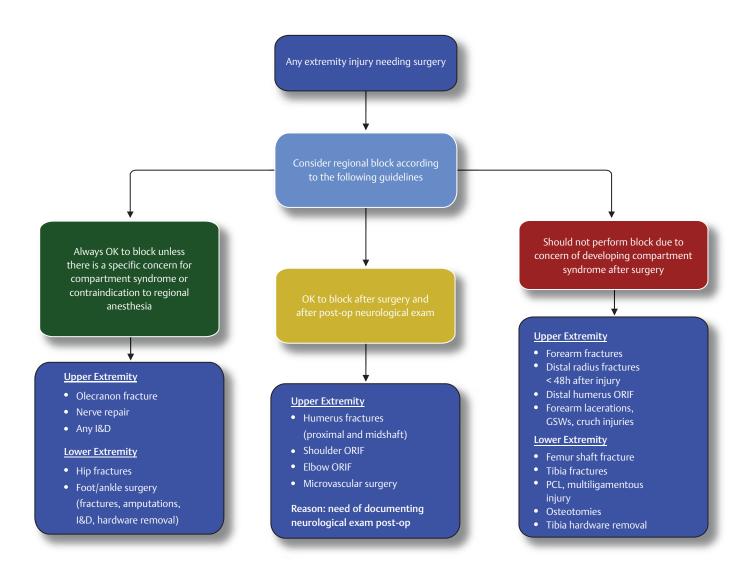

Prophylactic Therapy

NSAIDS

- Indomethacin 75mg/day for 10-42 days Radiation
- 700cGy <4 hours before surgery or within 72 hours after surgery

HO Signs, Symptoms and Complications

- Erythema
- Swelling
- Warmth
- Reduced range of motion
- Neurovascular compromise
- Severe pain



Board TN, Karva A, Board RE, Gambhir AK, Porter ML. The prophylaxis and treatment of heterotopic ossification following lower limb arthroplasty. J Bone Joint Surg Br 2007;89(4):434–440

Chapter 14: Regional Anesthesia in Orthopaedic Surgery

Meir T. Marmor, MD

Contraindications for Regional Anesthesia:

- Maximal anesthetic dose has been exceeded
- Infection at the injection site
- An allergy to local anesthetics
- Preexisting neuropathology

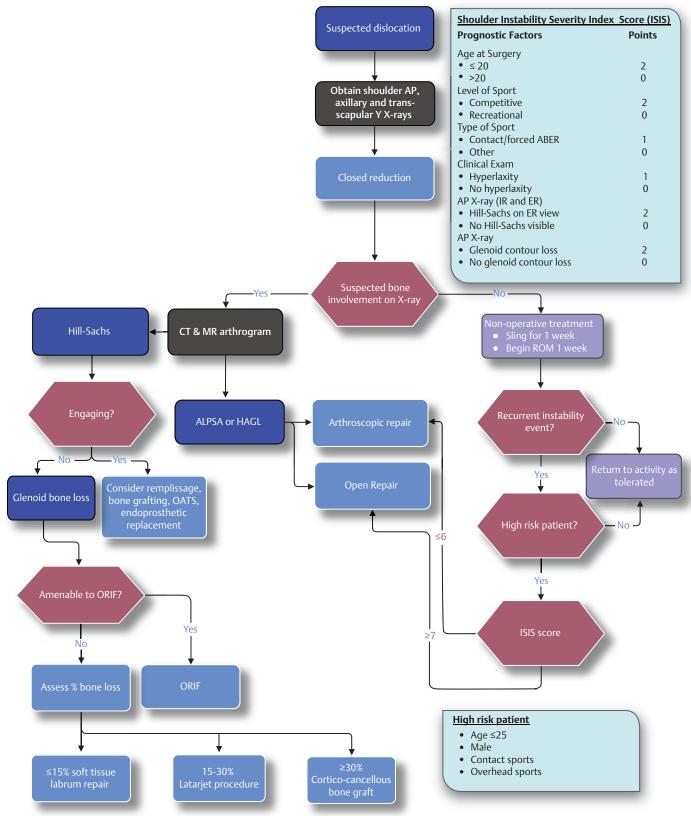
Relative Contraindications:

- Dementia
- Child
- Bleeding disorder

GSW - Gun Shot Wound

I&D – Irrigation and Debridement ORIF – Open Reduction Internal Fixation

PCL – Posterior Cruciate Ligament


Bruce BG, Green A, Blaine TA, Wesner LV. Brachial plexus blocks for upper extremity orthopaedic surgery. *J Am Acad Orthop Surg.* Jan 2012;20(1):38-47.

Wu CL, Rouse LM, Chen JM, Miller RJ. Comparison of postoperative pain in patients receiving interscalene block or general anesthesia for shoulder surgery. *Orthopedics*. Jan 2002;25(1):45-48.

Chapter 15: Traumatic Anterior Shoulder Instability

Nicolas Lee, MD

ALPSA – Anterior Labroligamentous Periosteal Sleeve Avulsion

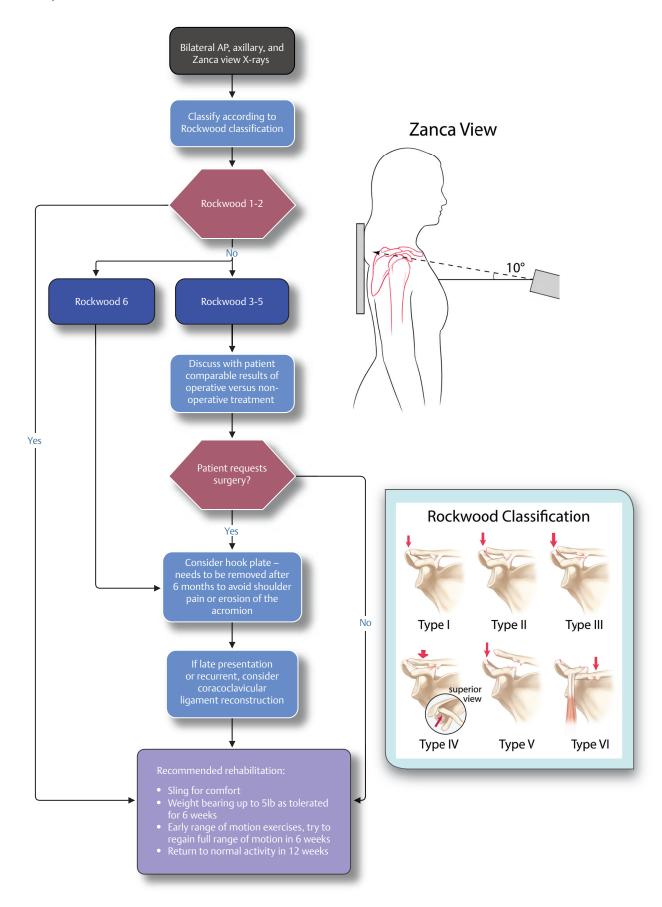
HAGL - Humeral Avulsion of the Glenohumeral Ligament

ABER – Abduction External Rotation

OATS - Osteochondral Autograft Transfer System

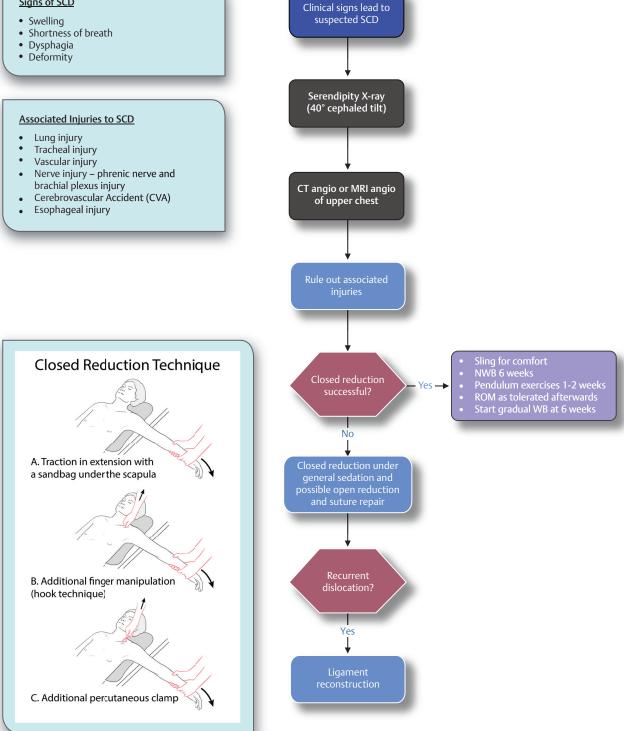
IR – Internal Rotation ER – External Rotation

Balg F, Boileau P. The instability severity index score. A simple pre-operative score to select patients for arthroscopic or open shoulder stabilisation. J Bone Joint Surg Br 2007;89(11):1470–1477


Allain J, Goutallier D, Glorion C. Long-term results of the Latarjet procedure for the treatment of anterior instability of the shoulder. J Bone Joint Surg Am 1998;80(6):841–852

Øster A. Recurrent anterior dislocation of the shoulder treated by the Eden-Hybinette operation. Follow-up on 78 cases. Acta Orthop Scand 1969;40(1):43–52

Chapter 16: Acromioclavicular Separation


Canadian Orthopaedic Trauma Society. Multicenter Randomized Clinical Trial of Nonoperative Versus Operative Treatment of Acute Acromio-Clavicular Joint Dislocation. J Orthop Trauma 2015;29(11):479–487

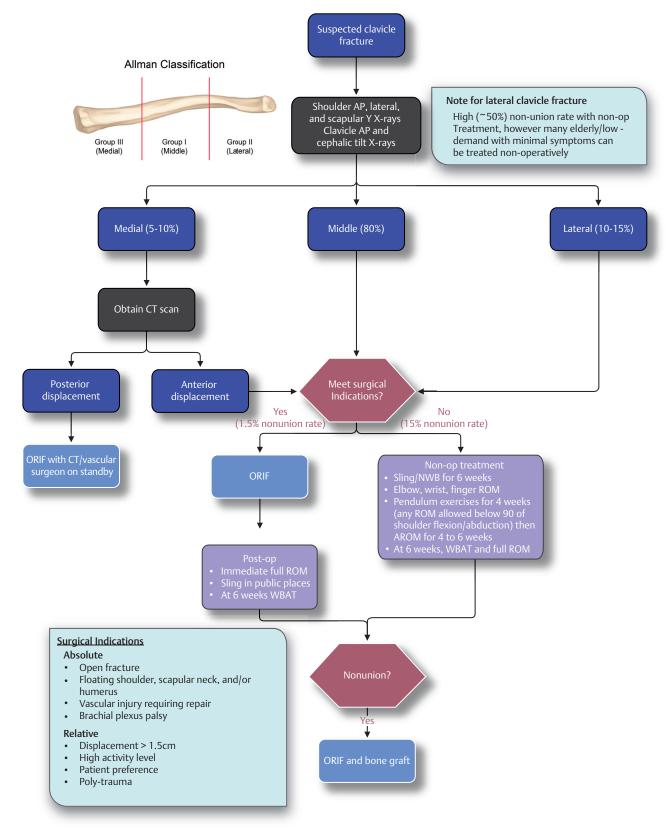
Chapter 17: Sternoclavicular Dislocation (SCD)

Orthopaedic Trauma Institute

Utku Kandemir, MD

NWB - Non Weight Bearing

ROM - Range Of Motion


WB - Weight Bearing

Eskola A, Vainionpää S, Vastamäki M, Slätis P, Rokkanen P. Operation for old sternoclavicular dislocation. Results in 12 cases. J Bone Joint Surg Br 1989;71(1):63–65

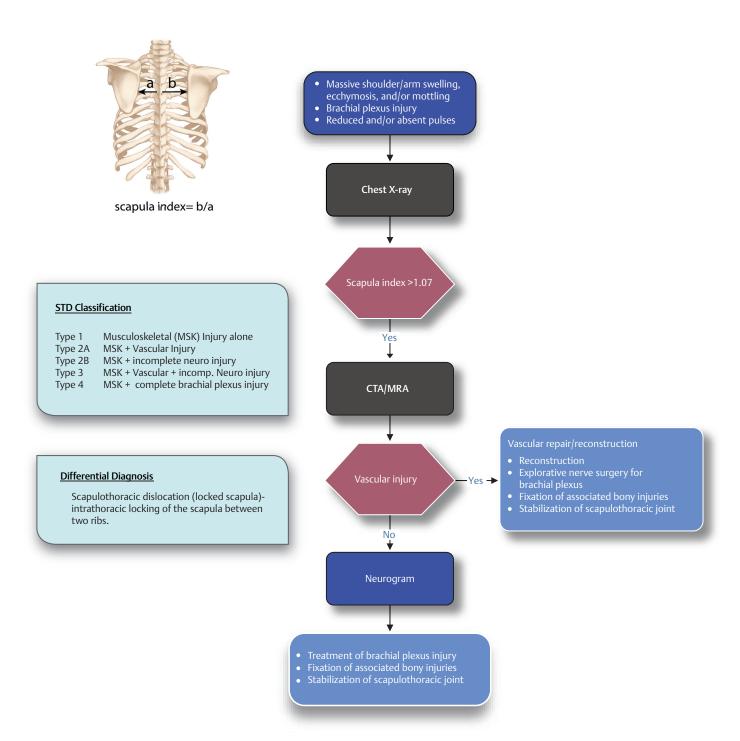
Chapter 18: Clavicle Fractures

Paul Toogood, MD

ORIF – Open Reduction Internal Fixation

ROM – Range Of Motion

WBAT – Weight Bearing As Tolerated NWB – Non Weight Bearing

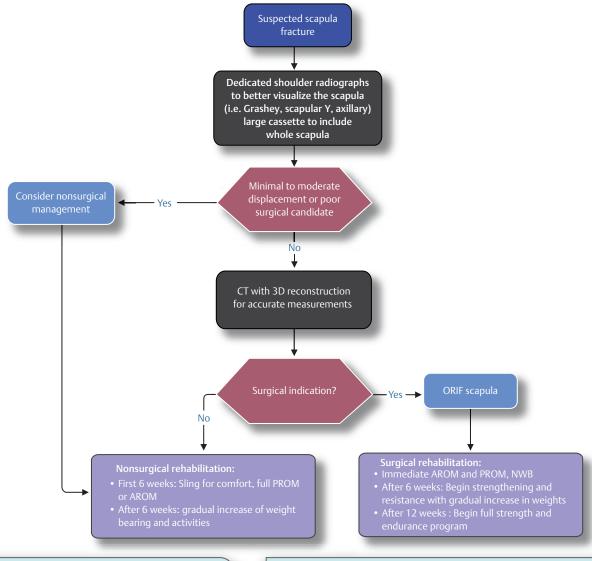

McKee RC, Whelan DB, Schemitsch EH, McKee MD. Operative versus nonoperative care of displaced midshaft clavicular fractures: a meta-analysis of randomized clinical trials. J Bone Joint Surg Am 2012;94(8):675–684

Khan LA, Bradnock TJ, Scott C, Robinson CM. Fractures of the clavicle. J Bone Joint Surg Am 2009;91(2):447–460

Chapter 19: Scapulothoracic Dissociation (STD)

Utku Kandemir, MD

Zelle BA, Pape HC, Gerich TG, Garapati R, Ceylan B, Krettek C. Functional outcome following scapulothoracic dissociation. J Bone Joint Surg Am 2004;86-A(1):2–8


Hollinshead R, James KW. Scapulothoracic dislocation (locked scapula). A case report. J Bone Joint Surg Am 1979;61(7):1102–1103

Oreck SL, Burgess A, Levine AM. Traumatic lateral displacement of the scapula: a radiographic sign of neurovascular disruption. J Bone Joint Surg Am 1984;66(5):758–763

Chapter 20: Scapula Fractures

Utku Kandemir, MD

Surgical Indications and Measurement Techniques

Intra-articular gap/step-off

Relative: ≥3 – 10 mm

Relative: 20% – 30% glenoid involvement

Medialization

Relative: ≥10 – 20mm

Glenopolar angle

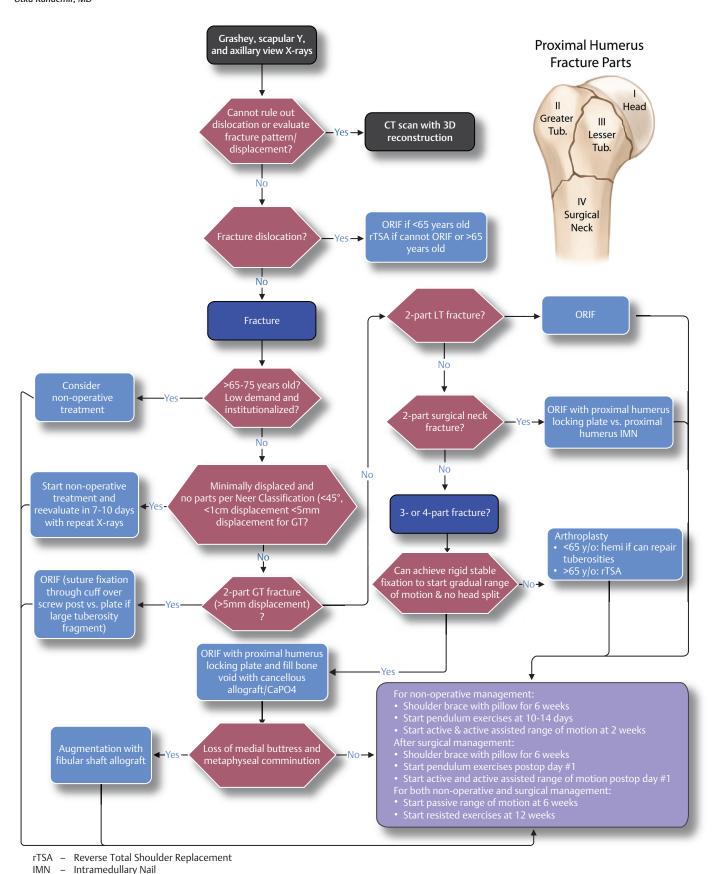
Relative: ≤20° – 22°

Angulation

Relative: $\geq 30^{\circ} - 45^{\circ}$

Glenopolar Angle Scapular Medialization

Scapular Medialization

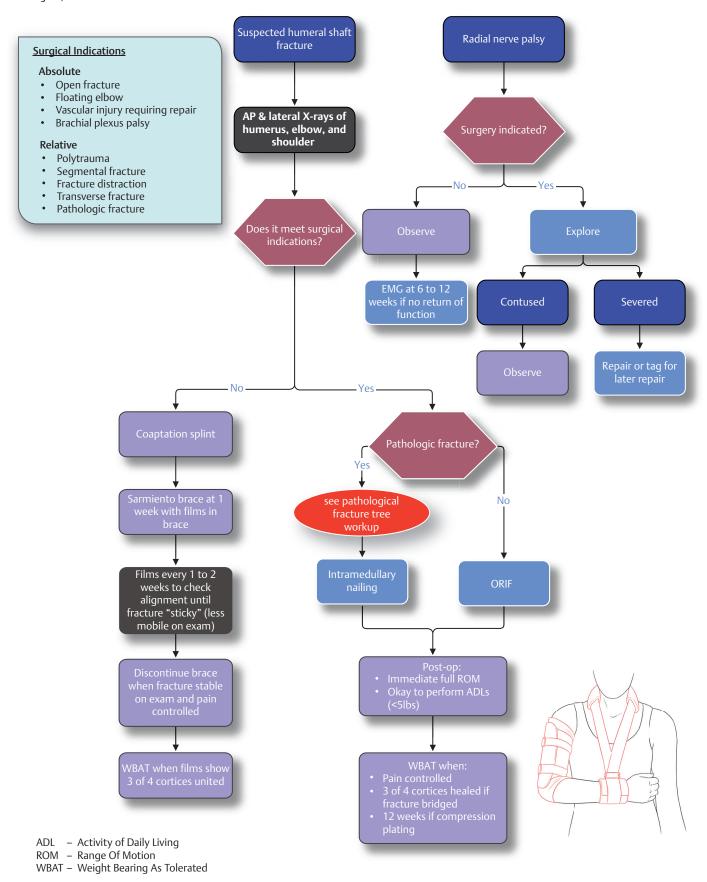

AROM – Active Range Of Motion PROM – Passive Range Of Motion ROM – Range Of Motion

Cole PA, Gauger EM, Schroder LK. Management of scapular fractures. J Am Acad Orthop Surg 2012;20(3):130–141

Chapter 21: Proximal Humerus Fractures

Utku Kandemir, MD

42

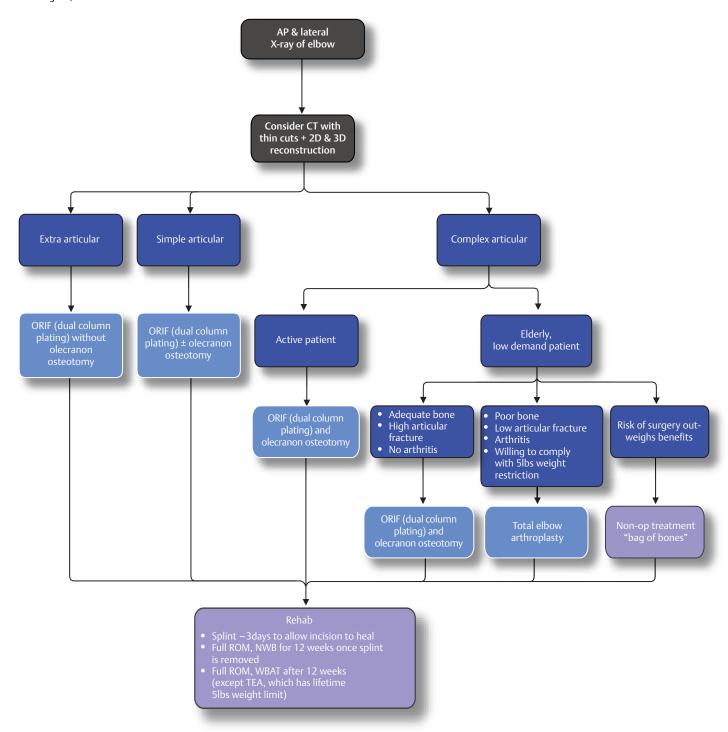

ORIF - Open Reduction Internal Fixation

Neer CS II. Displaced proximal humeral fractures. I. Classification and evaluation. J Bone Joint Surg Am 1970; 52(6): 1077-1089

Chapter 22: Humeral Shaft Fractures

Paul Toogood, MD

Sarmiento A, Kinman PB, Galvin EG, Schmitt RH, Phillips JG. Functional bracing of fractures of the shaft of the humerus. J Bone Joint Surg Am 1977;59(5):596–601


Wang X, Chen Z, Shao Y, Ma Y, Fu D, Xia Q. A meta-analysis of plate fixation versus intramedullary nailing for humeral shaft fractures. J Orthop Sci 2013;18(3):388–397

Sarahrudi K, Wolf H, Funovics P, Pajenda G, Hausmann JT, Vécsei V. Surgical treatment of pathological fractures of the shaft of the humerus. J Trauma 2009;66(3):789–794

Chapter 23: Distal Humerus Fractures

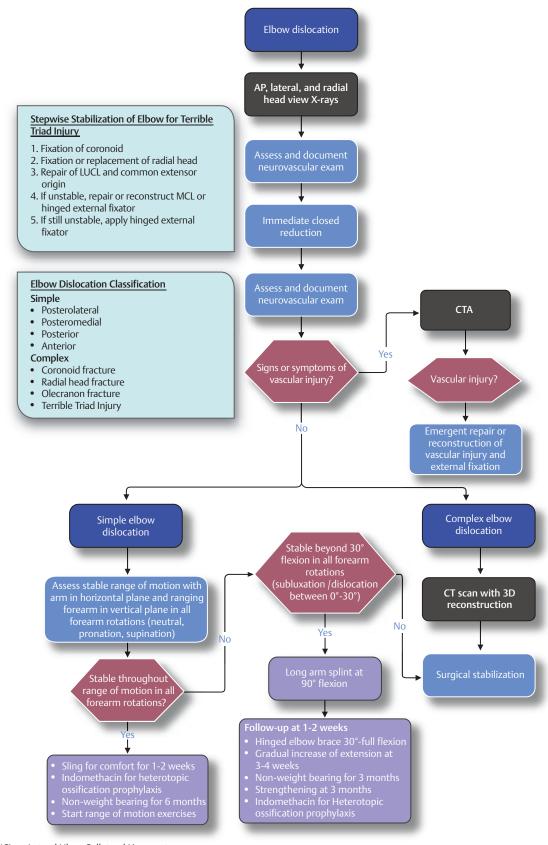
Paul Toogood, MD

AP – Anterior Posterior NWB – Non Weight Bearing

ORIF - Open Reduction Internal Fixation

ROM – Range Of Motion

TEA – Total Elbow Arthroplasty
WBAT – Weight Bearing As Tolerated

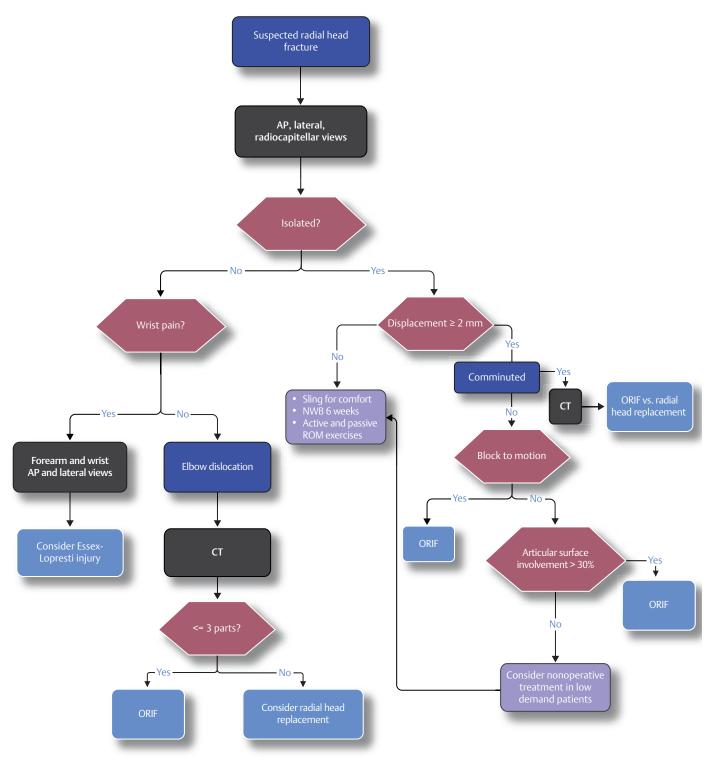

McKee MD, Veillette CJ, Hall JA, et al. A multicenter, prospective, randomized, controlled trial of open reduction--internal fixation versus total elbow arthroplasty for displaced intra-articular distal humeral fractures in elderly patients. J Shoulder Elbow Surg 2009;18(1):3–12

Caravaggi P, Laratta JL, Yoon RS, et al. Internal fixation of the distal humerus: a comprehensive biomechanical study evaluating current fixation techniques. J Orthop Trauma 2014;28(4):222–226

Chapter 24: Elbow Dislocation/Terrible Triad Injury

Utku Kandemir, MD

LUCL – Lateral Ulnar Collateral Ligament

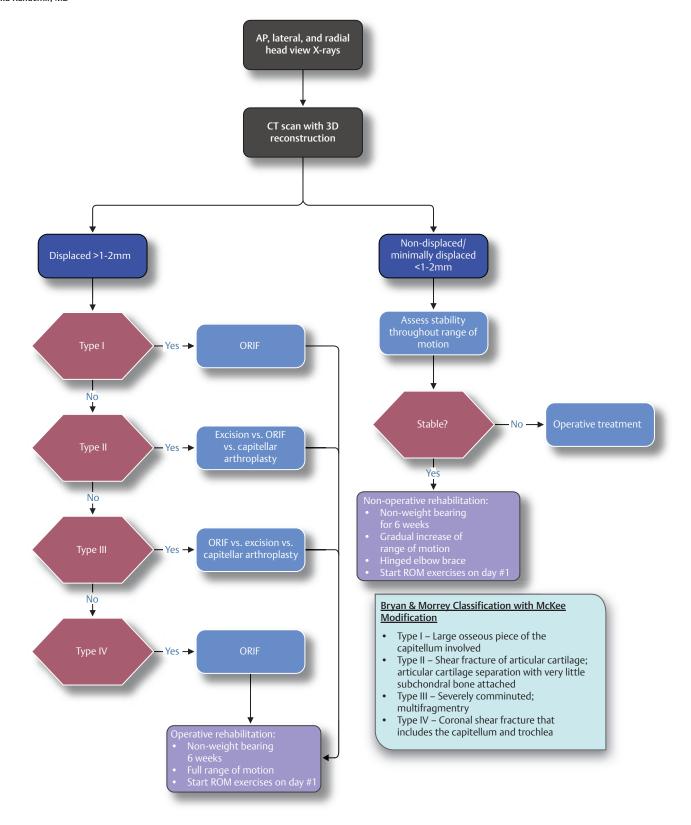

MCL – Medial Collateral Ligament

Pugh DM, Wild LM, Schemitsch EH, King GJ, McKee MD. Standard surgical protocol to treat elbow dislocations with radial head and coronoid fractures. J Bone Joint Surg Am 2004;86-A(6):1122–1130

Chapter 25: Radial Head Fractures

Nicolas Lee, MD

NWB – Non Weight Bearing ORIF – Open Reduction Internal Fixation ROM – Range Of Motion


Yoon A, Athwal GS, Faber KJ, King GJ. Radial head fractures. J Hand Surg Am 2012;37(12):2626–2634

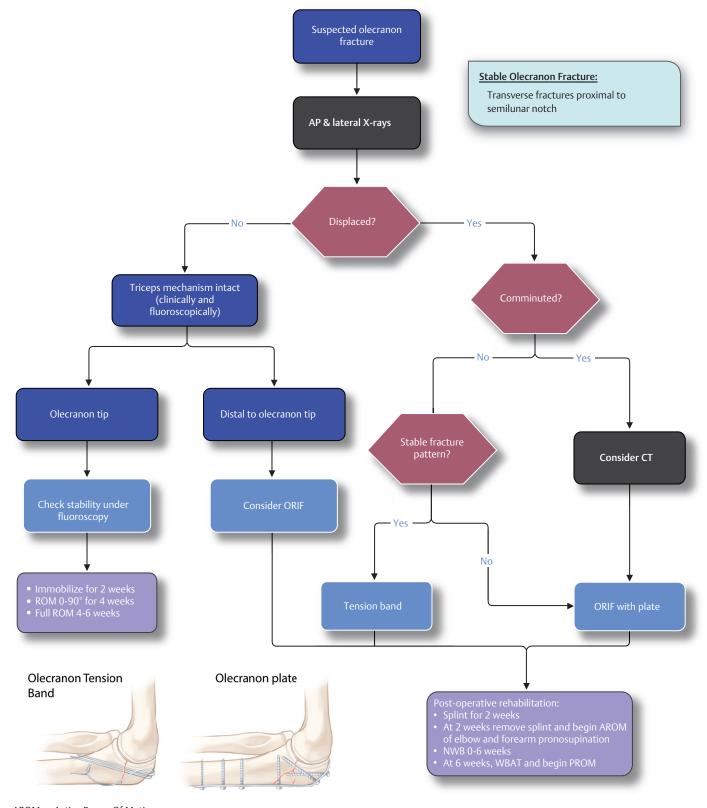
Tejwani NC, Mehta H. Fractures of the radial head and neck: current concepts in management. J Am Acad Orthop Surg 2007;15(7):380–387

Chapter 26: Capitellum Fractures

Utku Kandemir, MD

AP – Anterior to Posterior

ORIF – Open Reduction Internal Fixation


ROM - Range Of Motion

McKee MD, Jupiter JB, Bamberger HB. Coronal shear fractures of the distal end of the humerus. J Bone Joint Surg Am 1996;78(1):49–54

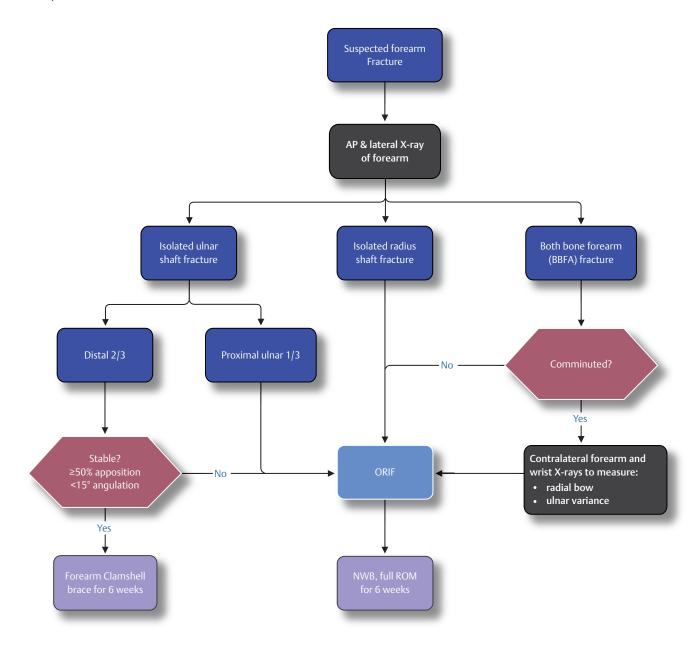
Chapter 27: Olecranon Fractures

Nicolas Lee, MD

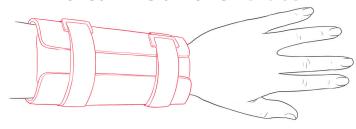
AROM - Active Range Of Motion

NWB - Non Weight Bearing

ORIF - Open Reduction Internal Fixation


PROM – Passive Range Of Motion ROM – Range Of Motion

Baecher N, Edwards S. Olecranon fractures. J Hand Surg Am 2013;38(3):593-604

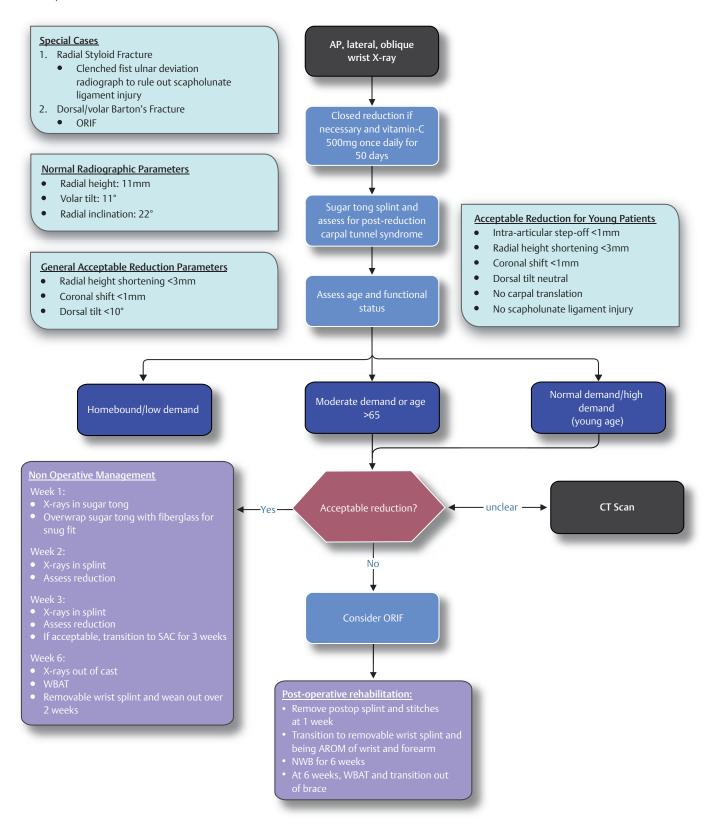

Chapter 28: Forearm Fractures

Nicolas Lee, MD

Forearm Clamshell Brace

NWB – Non Weight Bearing
ORIF – Open Reduction Internal Fixation
ROM – Range Of Motion

Schulte LM, Meals CG, Neviaser RJ. Management of adult diaphyseal both-bone forearm fractures. J Am Acad Orthop Surg 2014;22(7):437–446

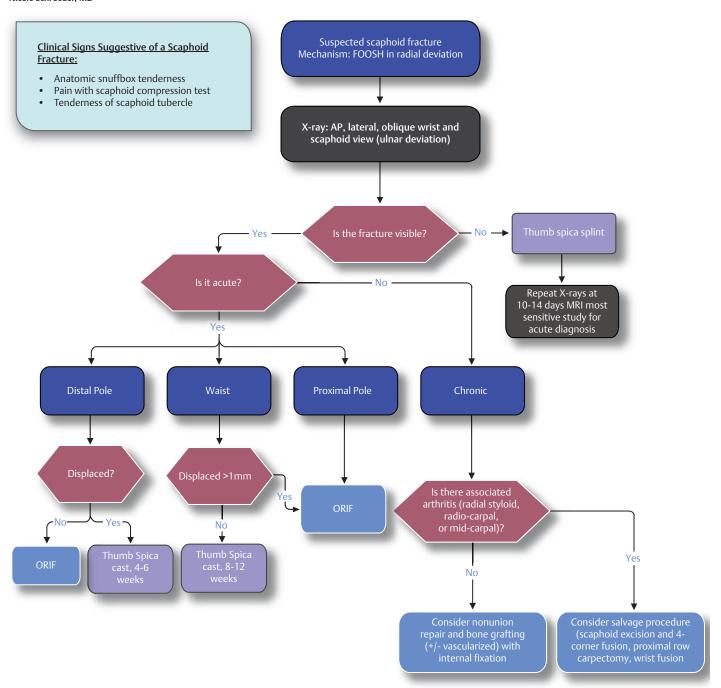

Rouleau DM, Sandman E, van Riet R, Galatz LM. Management of fractures of the proximal ulna. J Am Acad Orthop Surg 2013;21(3):149–160

Schemitsch EH, Richards RR. The effect of malunion on functional outcome after plate fixation of fractures of both bones of the forearm in adults. J Bone Joint Surg Am 1992;74(7):1068–1078

Chapter 29: Distal Radius Fractures

Nicolas Lee, MD

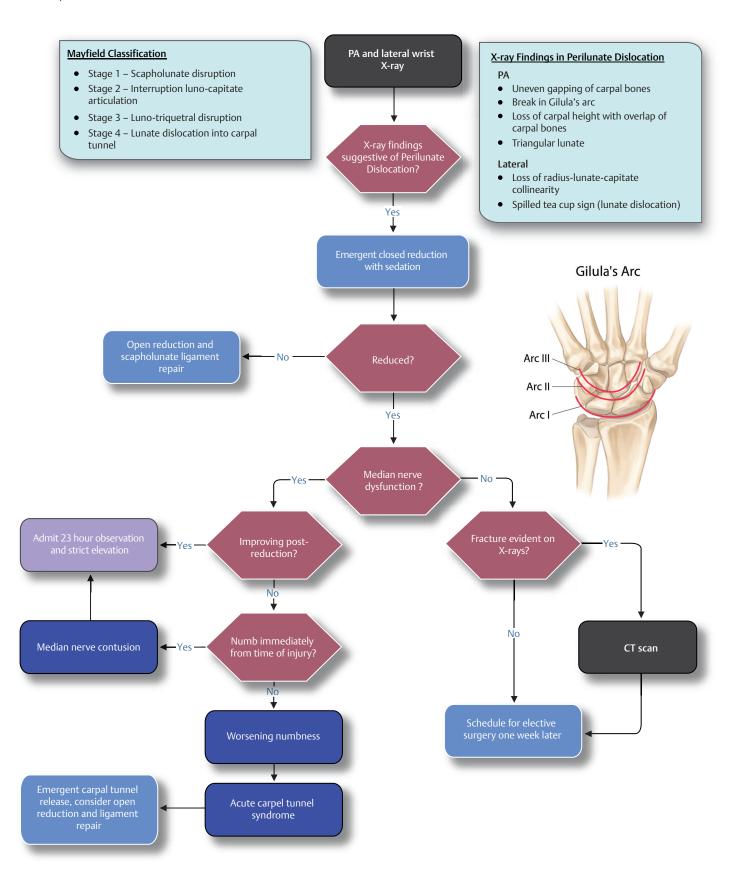
Murray J, Gross L. Treatment of distal radius fractures. J Am Acad Orthop Surg 2013;21(8):502–505


Koval K, Haidukewych GJ, Service B, Zirgibel BJ. Controversies in the management of distal radius fractures. J Am Acad Orthop Surg 2014;22(9):566–575

Zollinger PE, Tuinebreijer WE, Breederveld RS, Kreis RW. Can vitamin C prevent complex regional pain syndrome in patients with wrist fractures? A randomized, controlled, multicenter dose-response study. J Bone Joint Surg Am 2007;89(7):1424–1431

Chapter 30: Scaphoid Fractures

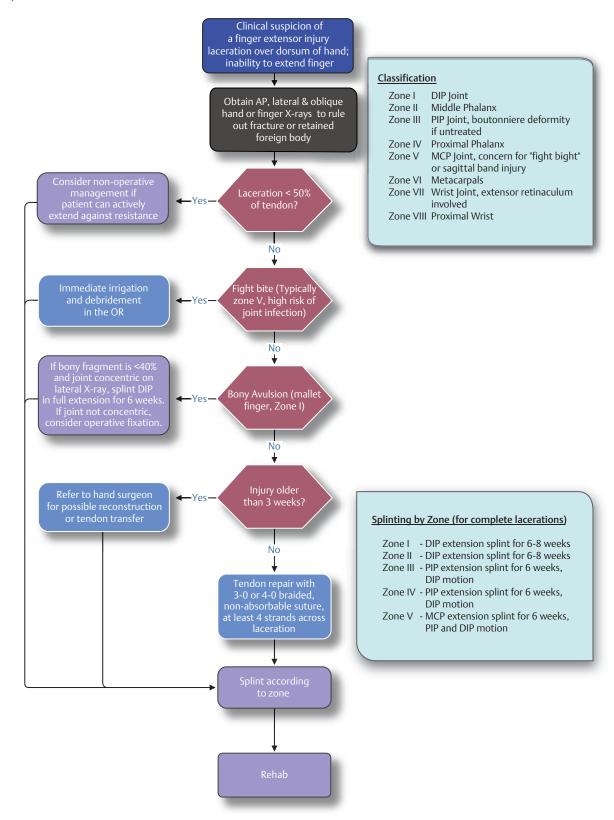
Nicole Schroeder, MD



FOOSH – Fall on Outstretched Hand ORIF – Open Reduction Internal Fixation

Chapter 31: Perilunate Dislocation

Nicolas Lee, MD



Stanbury SJ, Elfar JC. Perilunate dislocation and perilunate fracture-dislocation. J Am Acad Orthop Surg 2011;19(9):554–562

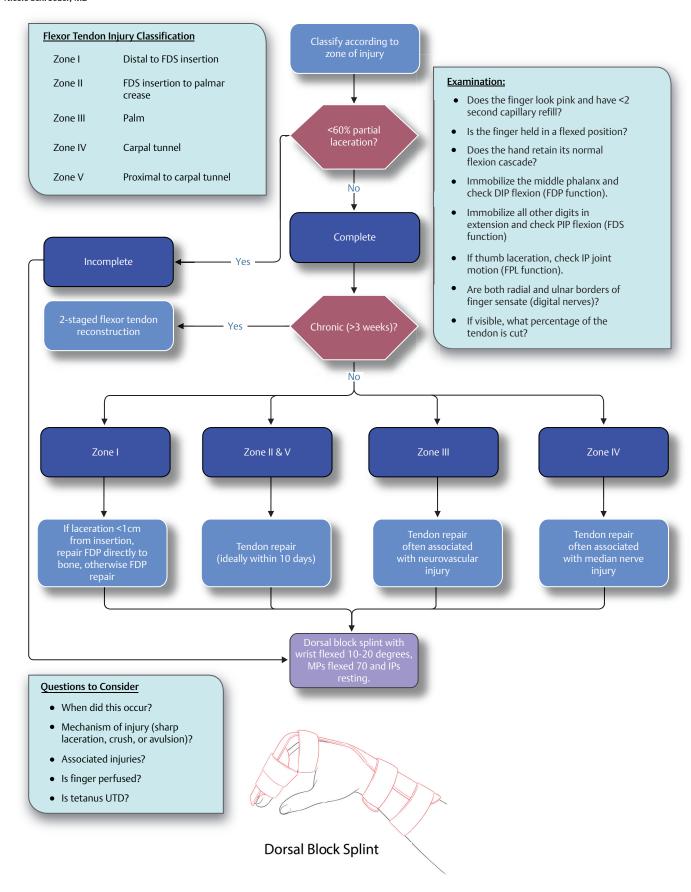
Chapter 32: Extensor Tendon Lacerations

Nicole Schroeder, MD

DIP – Distal interphalangeal (joint)

PIP – Proximal interphalangeal (joint)

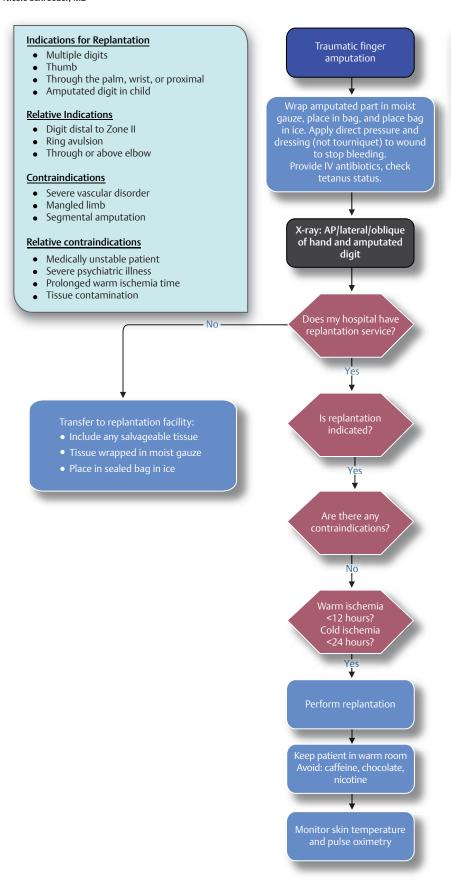
MCP – Metacarpophalangeal (joint)


Matzon JL, Bozentka DJ. Extensor tendon injuries. The Journal of hand surgery. 2010 May 31;35(5):854-61.

Amirtharajah M, Lattanza L. Open extensor tendon injuries. The Journal of hand surgery. 2015 Feb 28a;40(2):391-7.

Chapter 33: Flexor Tendon Injuries

Nicole Schroeder, MD

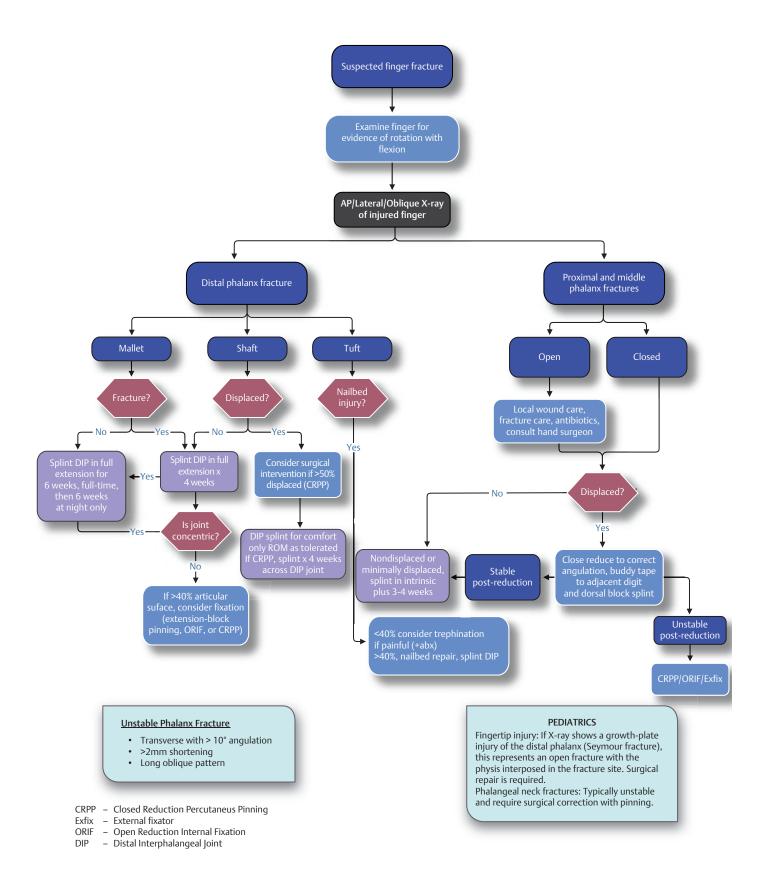


Boyer MI, Strickland JW, Engles D, Sachar K, Leversedge FJ. Flexor tendon repair and rehabilitation: state of the art in 2002. Instr Course Lect

Chapter 34: Finger Replantation

Nicole Schroeder, MD

Questions to Consider for Replantation

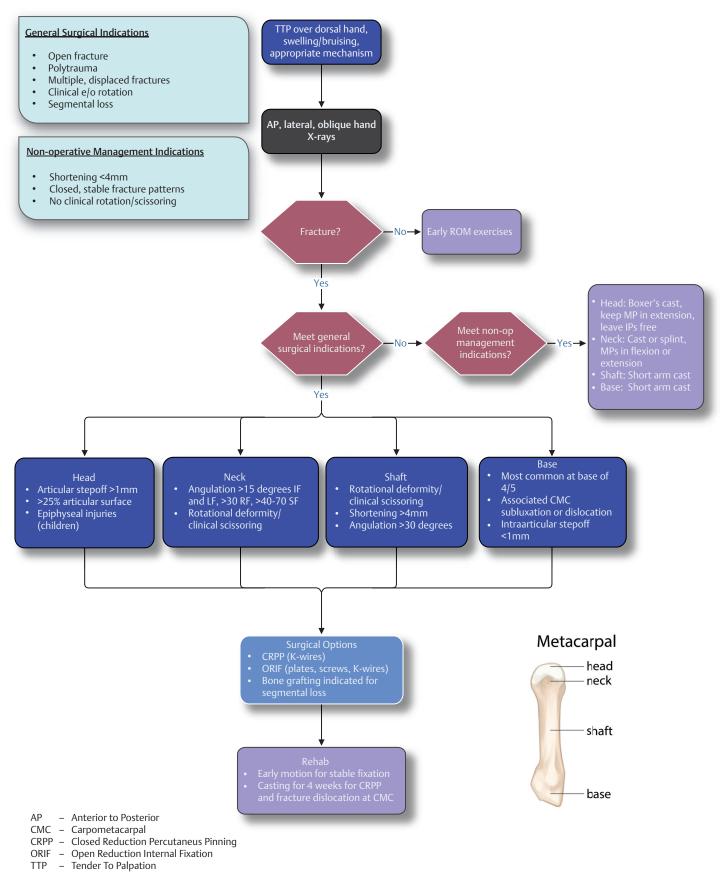

- How long ago did this happen?
- What was the exact mechanism of injury (crush, avulsion, sharp transection, etc.)?
- Medical comorbidities
- Is your hospital equipped for replantation surgery? If not consider transfer to select hospitals.

Wolfe VM, Wang AA. Replantation of the upper extremity: current concepts. J Am Acad Orthop Surg 2015;23(6):373–381

Chapter 35: Finger Fractures

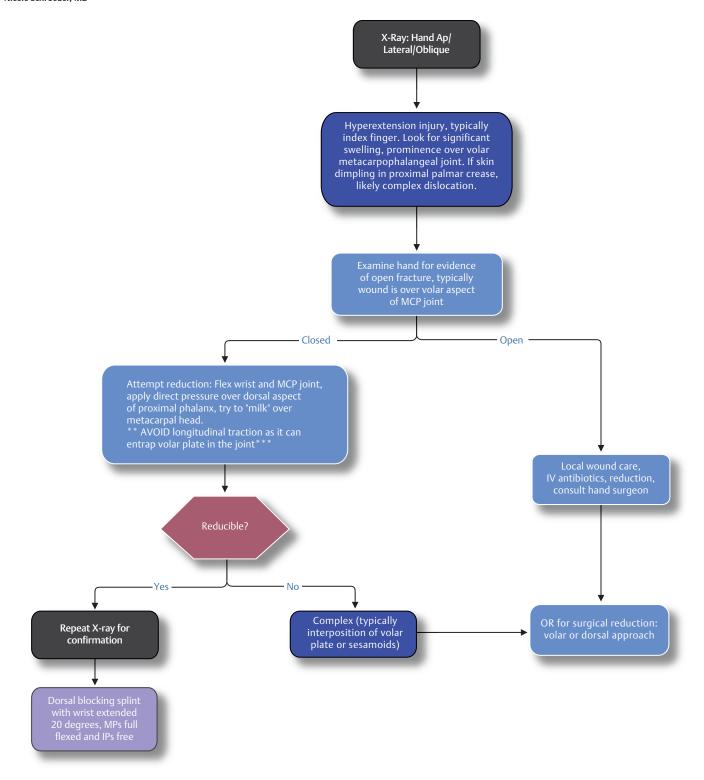
Nicole Schroeder, MD

Abzug JM, Dua K, Bauer AS, Cornwall R, Wyrick TO. Pediatric Phalanx Fractures. J Am Acad Orthop Surg 2016;24(11):e174–e183


Meals C, Meals R. Hand fractures: a review of current treatment strategies. J Hand Surg Am 2013;38(5):1021–1031, quiz 1031

Chapter 36: Metacarpal Fractures

Orthopaedic Trauma Institute

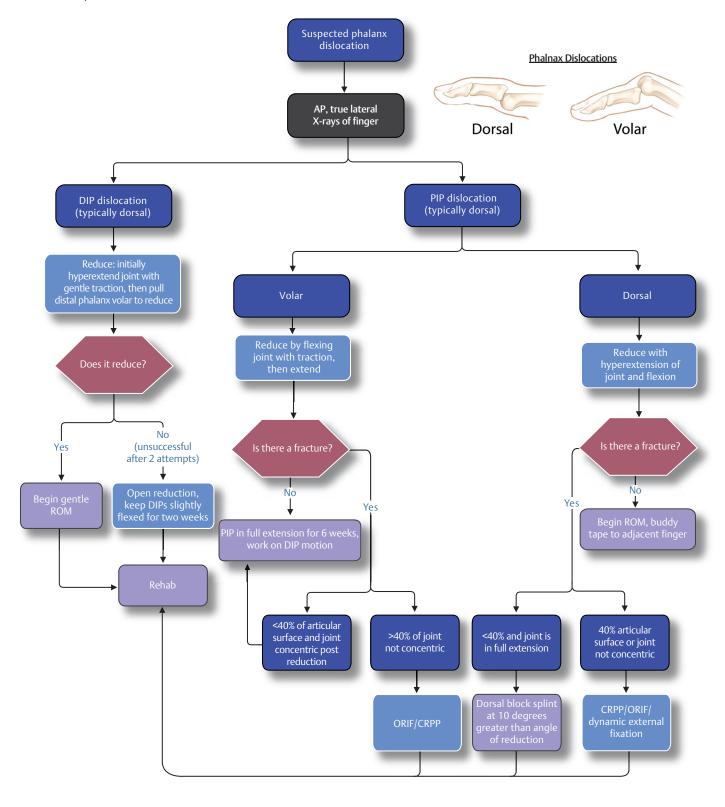


72

Chapter 37: Metacarpophalangeal (MCP) Dislocations

Nicole Schroeder, MD

MP – Metacarpophalangel joint

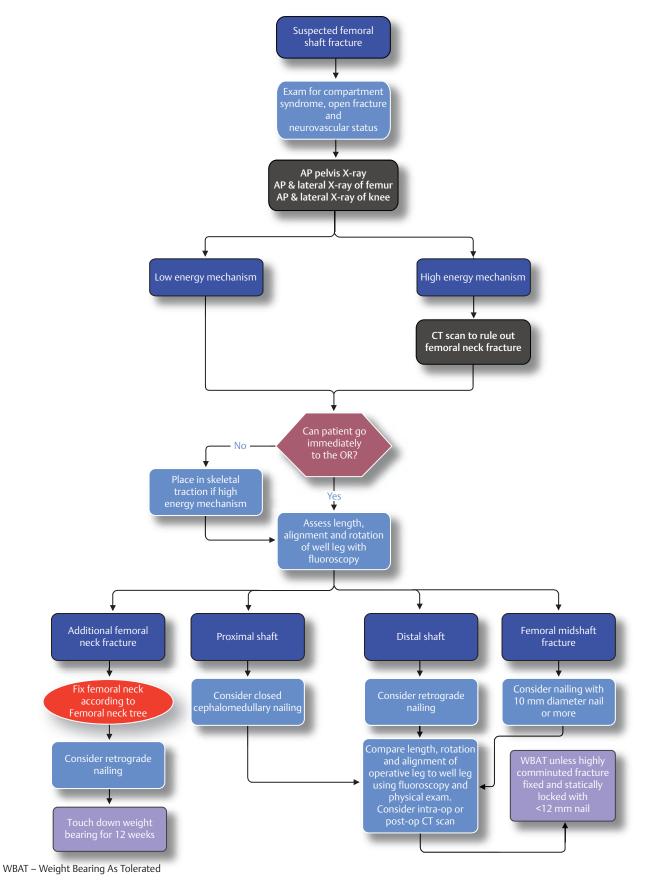

IP – Interphalangeal joint

Dinh P, Franklin A, Hutchinson B, Schnall SB, Fassola I. Metacarpophalangeal joint dislocation. J Am Acad Orthop Surg 2009;17(5):318–324

Chapter 38: Phalanx Dislocations

Nicole Schroeder, MD

DIP – Distal interphalangeal (joint)

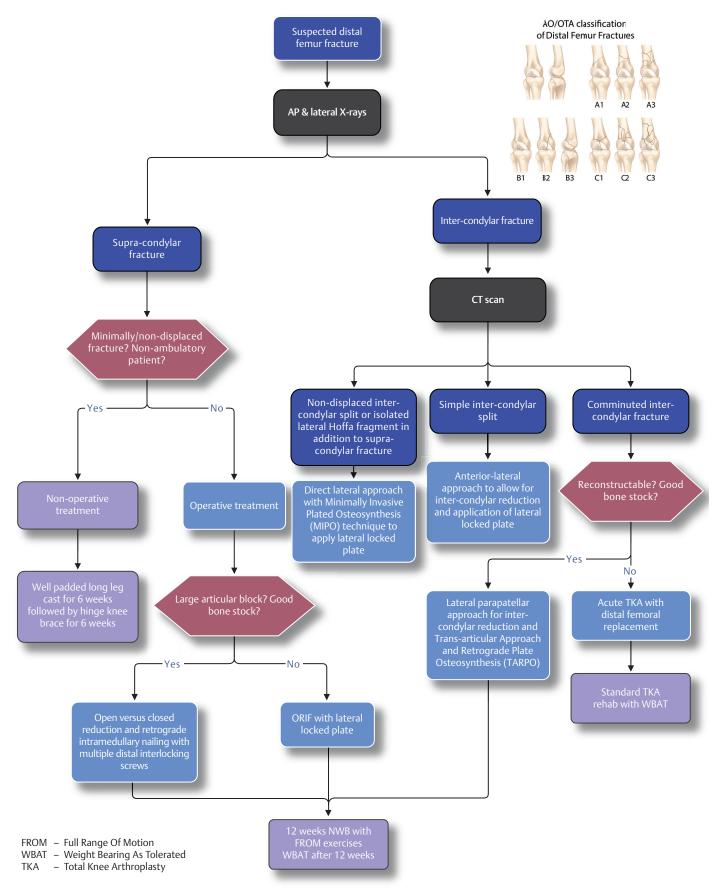

PIP - Proximal interphalangeal (joint)

Borchers JR, Best TM. Common finger fractures and dislocations. American family physician. 2012 Apr 15;85(8).

Chapter 39: Femoral Shaft Fractures

R. Trigg McClellan, MD

Tornetta P III, Kain MS, Creevy WR. Diagnosis of femoral neck fractures in patients with a femoral shaft fracture. Improvement with a standard protocol. J Bone Joint Surg Am 2007;89(1):39–43


Brumback RJ, Toal TR Jr, Murphy-Zane MS, Novak VP, Belkoff SM. Immediate weight-bearing after treatment of a comminuted fracture of the femoral shaft with a statically locked intramedullary nail. J Bone Joint Surg Am 1999;81(11):1538–1544

Krettek C, Miclau T, Grün O, Schandelmaier P, Tscherne H. Intraoperative control of axes, rotation and length in femoral and tibial fractures. Technical note. Injury 1998;29(Suppl 3):C29–C39

Chapter 40: Distal Femur Fractures

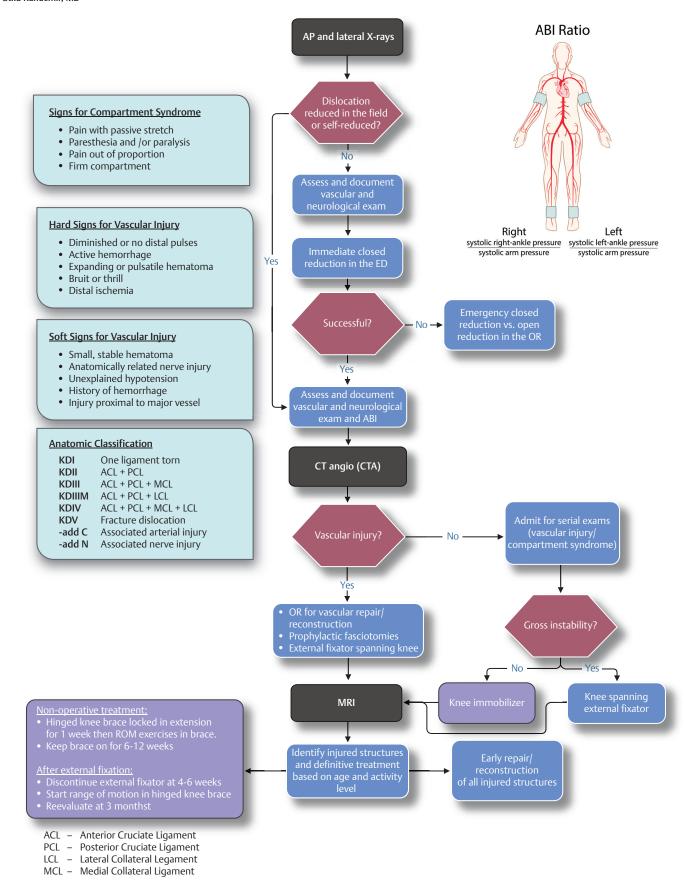
Paul Toogood, MD

Nork SE, Segina DN, Aflatoon K, et al. The association between supracondylar-intercondylar distal femoral fractures and coronal plane fractures. J Bone Joint Surg Am 2005;87(3):564-569

Rodriguez EK, Zurakowski D, Herder L, et al. Mechanical Construct Characteristics Predisposing To Non-Union After Locked Lateral Plating Of Distal Femur Fractures. J Orthop Trauma 2016; 30(8):403–8

Krettek C, Schandelmaier P, Miclau T, Bertram R, Holmes W, Tscherne H. Transarticular joint reconstruction and indirect plate osteosynthesis for complex distal supracondylar femoral fractures. Injury 1997;28(Suppl 1):A31–A41 Review

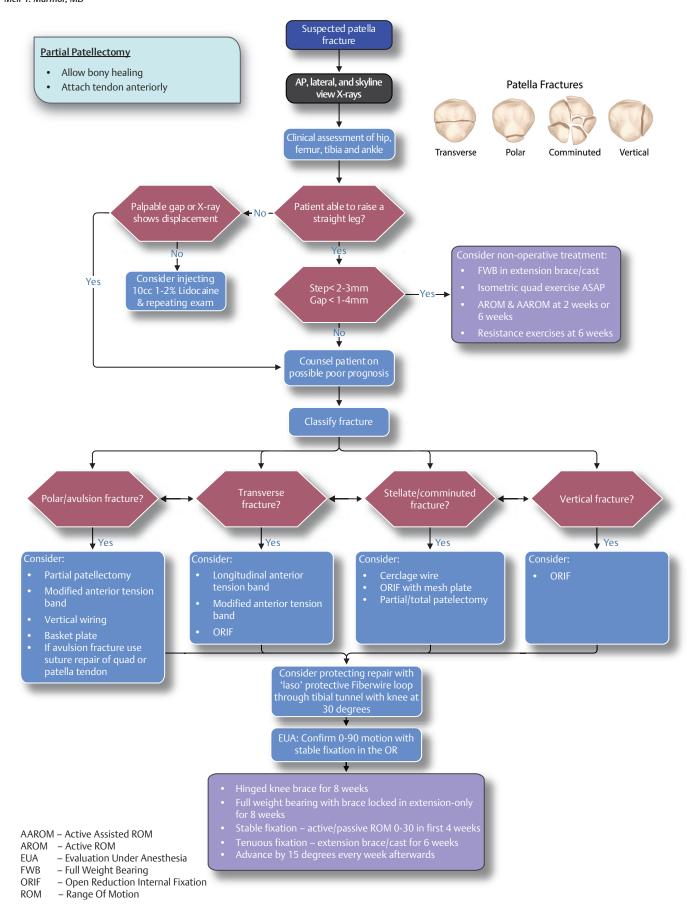
Krettek C, Müller M, Miclau T. Evolution of minimally invasive plate osteosynthesis (MIPO) in the femur. Injury 2001;32(Suppl 3):SC14–SC23 Review


Starr AJ, Jones AL, Reinert CM. The "swashbuckler": a modified anterior approach for fractures of the distal femur. J Orthop Trauma 1999;13(2):138–140

Freedman EL, Hak DJ, Johnson EE, Eckardt JJ. Total knee replacement including a modular distal femoral component in elderly patients with acute fracture or nonunion. J Orthop Trauma 1995;9(3):231–237

Chapter 41: Traumatic Knee Dislocation

Utku Kandemir, MD



Schenck RC Jr. The dislocated knee. Instr Course Lect 1994;43:127–136

Chapter 42: Patella Fractures

Meir T. Marmor, MD

Marder RA, Swanson TV, Sharkey NA, Duwelius PJ. Effects of partial patellectomy and reattachment of the patellar tendon on patellofemoral contact areas and pressures. J Bone Joint Surg Am 1993;75(1):35–45

LeBrun CT, Langford JR, Sagi HC. Functional outcomes after operatively treated patella fractures. J Orthop Trauma 2012;26(7):422–426

Berg EE. Open reduction internal fixation of displaced transverse patella fractures with figure-eight wiring through parallel cannulated compression screws. J Orthop Trauma 1997;11(8):573–576

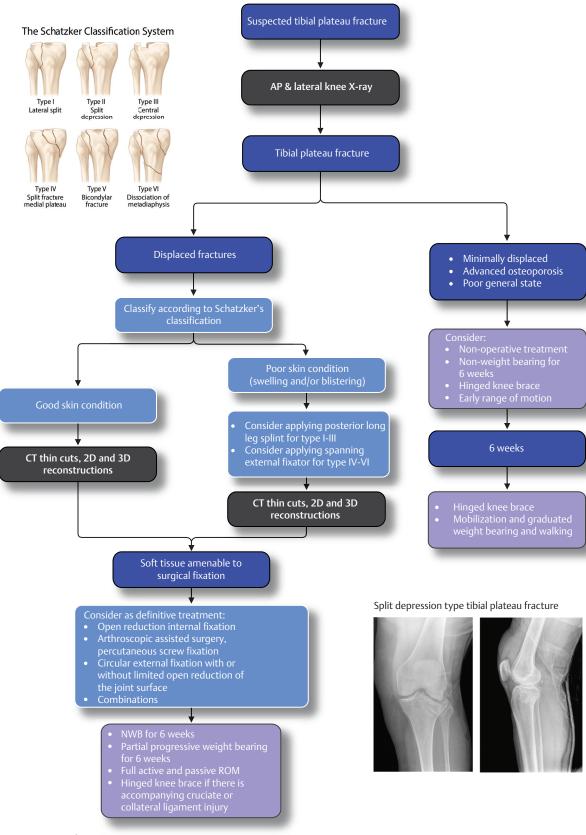
Carpenter JE, Kasman RA, Patel N, Lee ML, Goldstein SA. Biomechanical evaluation of current patella fracture fixation techniques. J Orthop Trauma 1997;11(5):351–356

West JL, Keene JS, Kaplan LD. Early motion after quadriceps and patellar tendon repairs: outcomes with single-suture augmentation. Am J Sports Med 2008;36(2):316–323

Boström A. Fracture of the patella. A study of 422 patellar fractures. Acta Orthop Scand Suppl 1972;143:1-80

Kim YM, Yang JY, Kim KC, et al. Separate Vertical Wirings for the Extra-articular Fractures of the Distal Pole of the Patella. Knee Surg Relat Res 2011;23(4):220–226

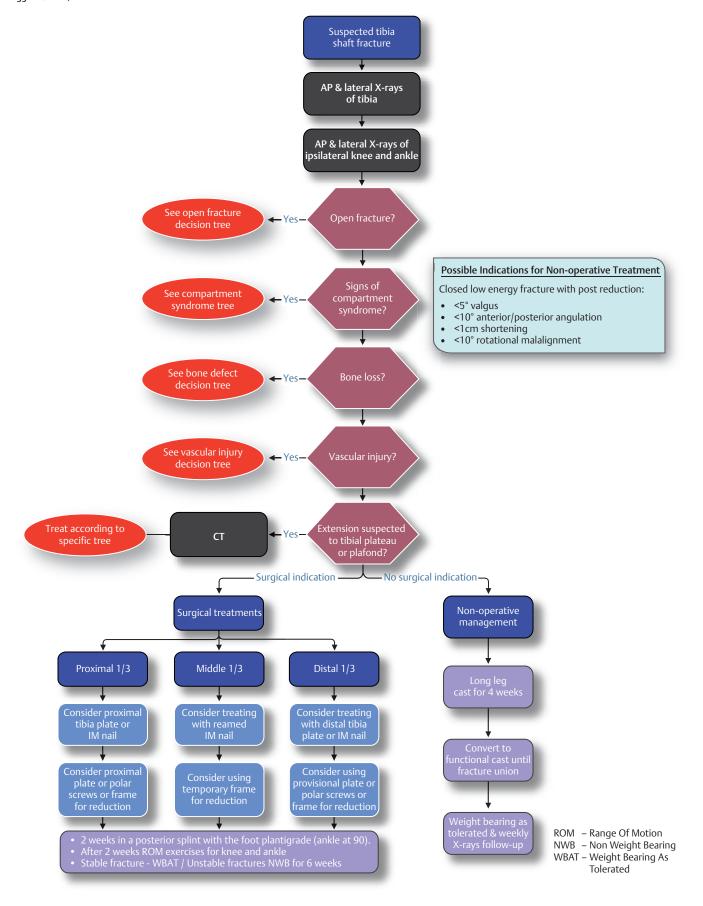
Kastelec M, Veselko M. Inferior patellar pole avulsion fractures: osteosynthesis compared with pole resection. J Bone Joint Surg Am 2004;86-A(4):696–701


Melvin JS, Mehta S. Patellar fractures in adults. J Am Acad Orthop Surg 2011;19(4):198-207

West JL, Keene JS, Kaplan LD. Early motion after quadriceps and patellar tendon repairs: outcomes with single-suture augmentation. Am J Sports Med 2008;36(2):316–323

Chapter 43: Tibial Plateau Fractures

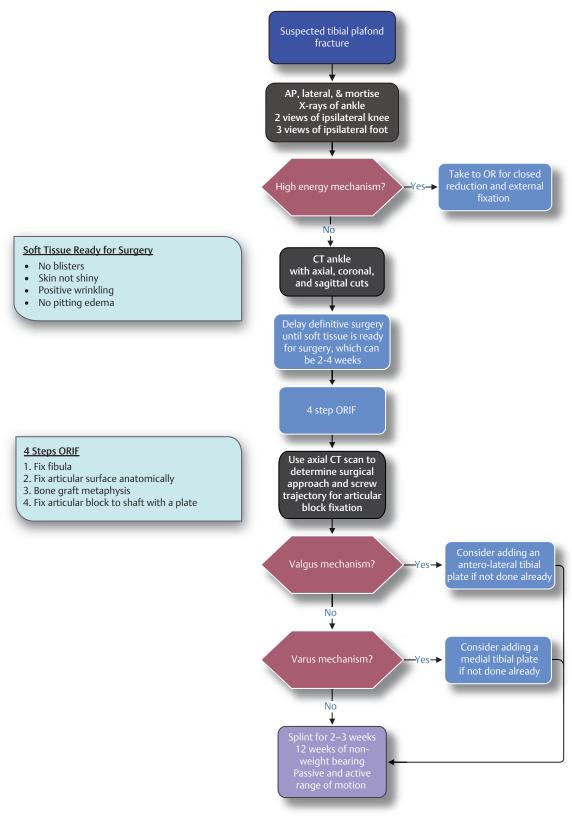
Saam Morshed, MD, PhD


NWB – Non Weight Bearing ROM – Range Of Motion

Schatzker J, McBroom R, Bruce D. The tibial plateau fracture. The Toronto experience 1968–1975. Clin Orthop Relat Res 1979; (138):94-104

Chapter 44: Tibial Shaft Fractures

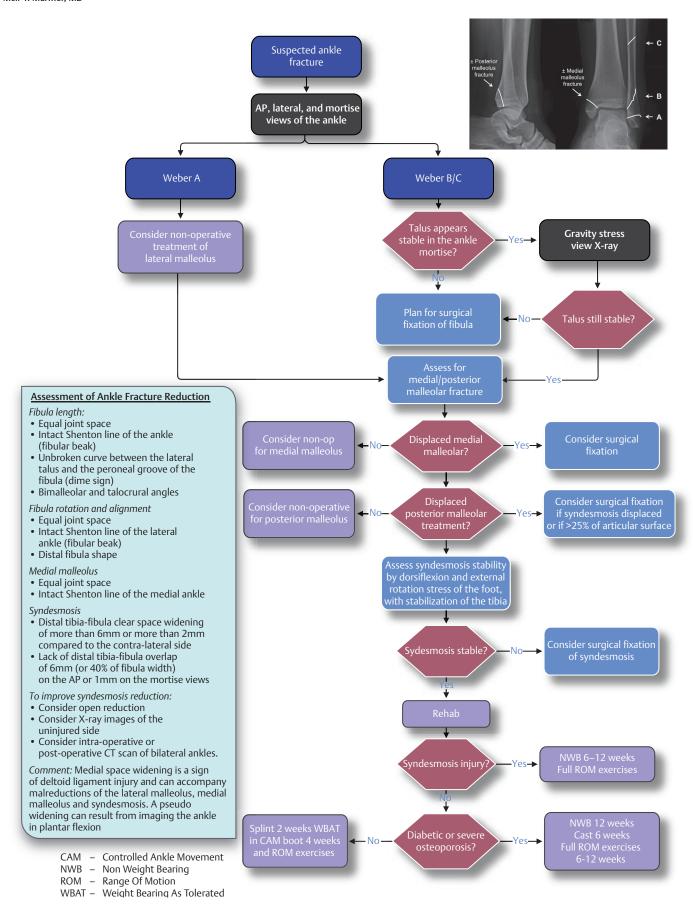
R. Trigg McClellan, MD



Sarmiento A, Gersten LM, Sobol PA, Shankwiler JA, Vangsness CT. Tibial shaft fractures treated with functional braces. Experience with 780 fractures. J Bone Joint Surg Br 1989;71(4):602–609

Chapter 45: Tibial Plafond (Pilon) Fractures

R. Trigg McClellan, MD


Sirkin M, Sanders R, DiPasquale T, Herscovici D Jr. A staged protocol for soft tissue management in the treatment of complex pilon fractures. J Orthop Trauma 1999;13(2):78–84

Rüedi TP, Allgöwer M. The operative treatment of intra-articular fractures of the lower end of the tibia. Clin Orthop Relat Res 1979; (138):105–110

Chapter 46: Ankle Fractures

Meir T. Marmor, MD

Gill JB, Risko T, Raducan V, Grimes JS, Schutt RC Jr. Comparison of manual and gravity stress radiographs for the evaluation of supination-external rotation fibular fractures. J Bone Joint Surg Am 2007;89(5):994–999

Hoelsbrekken SE, Kaul-Jensen K, Mørch T, et al. Nonoperative treatment of the medial malleolus in bimalleolar and trimalleolar ankle fractures: a randomized controlled trial. J Orthop Trauma 2013;27(11):633–637

De Vries JS, Wijgman AJ, Sierevelt IN, Schaap GR. Long-term results of ankle fractures with a posterior malleolar fragment. J Foot Ankle Surg 2005;44(3):211–217

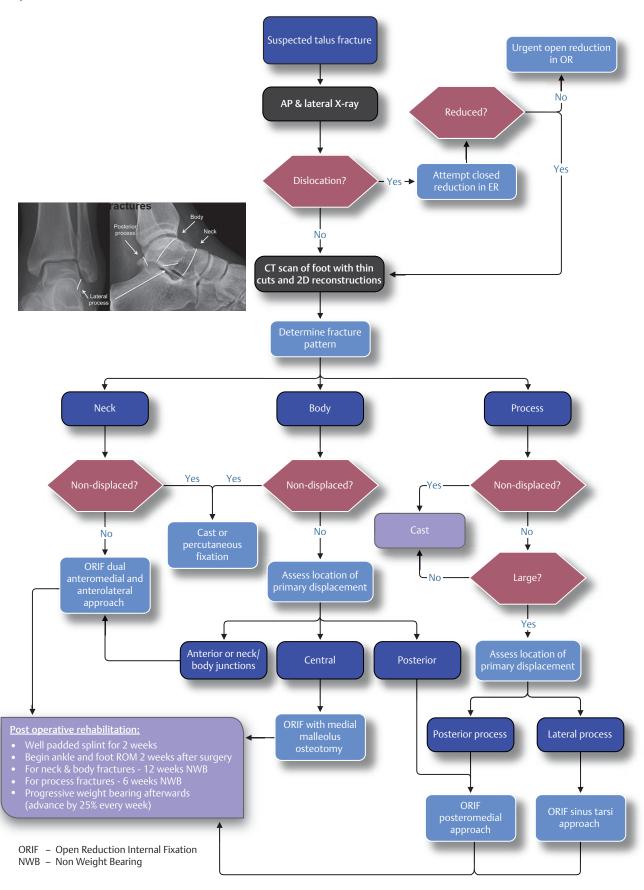
Gardner MJ, Brodsky A, Briggs SM, Nielson JH, Lorich DG. Fixation of posterior malleolar fractures provides greater syndesmotic stability. Clin Orthop Relat Res 2006;447(447):165–171

Chu A, Weiner L. Distal fibula malunions. J Am Acad Orthop Surg 2009;17(4):220-230

Marmor M, Kandemir U, Matityahu A, Jergesen H, McClellan T, Morshed S. A method for detection of lateral malleolar malrotation using conventional fluoroscopy. J Orthop Trauma 2013;27(12):e281–e284

Miller AN, Carroll EA, Parker RJ, Boraiah S, Helfet DL, Lorich DG. Direct visualization for syndesmotic stabilization of ankle fractures. Foot Ankle Int 2009;30(5):419–426

Summers HD, Sinclair MK, Stover MD. A reliable method for intraoperative evaluation of syndesmotic reduction. J Orthop Trauma 2013;27(4):196–200


Franke J, von Recum J, Suda AJ, Grützner PA, Wendl K. Intraoperative three-dimensional imaging in the treatment of acute unstable syndesmotic injuries. J Bone Joint Surg Am 2012;94(15):1386–1390

Park SS, Kubiak EN, Egol KA, Kummer F, Koval KJ. Stress radiographs after ankle fracture: the effect of ankle position and deltoid ligament status on medial clear space measurements. J Orthop Trauma 2006;20(1):11–18

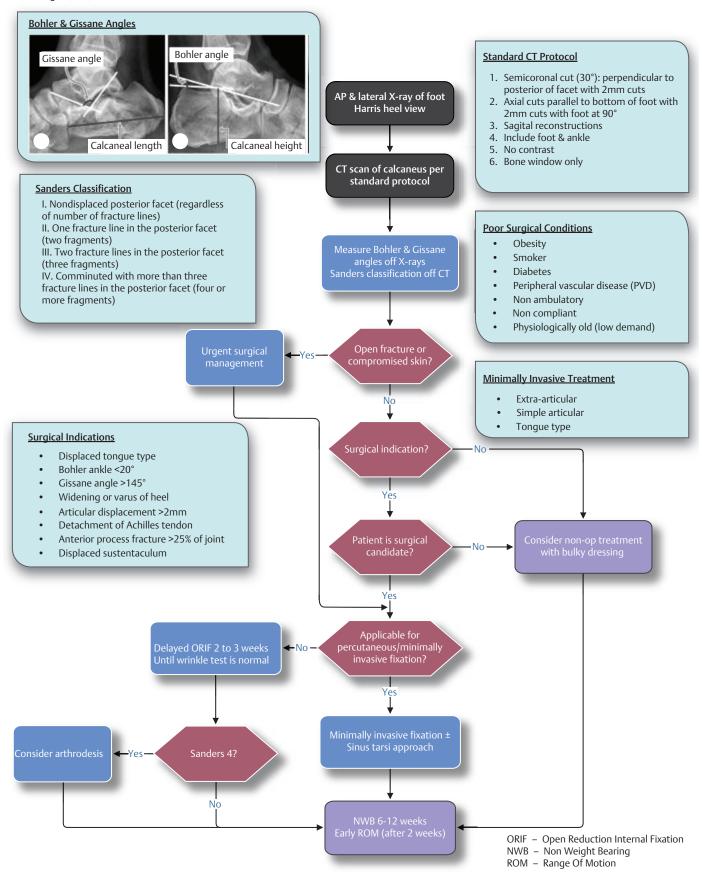
Chapter 47: Talus Fractures

Dave Shearer, MD

Vallier HA, Reichard SG, Boyd AJ, et al. A New Look at the Hawkins Classification for Talar Neck Fractures: Which Features of Injury and Treatment Are Predictive of Osteonecrosis? J Bone Joint Surg Am 2014;96(3):192–197

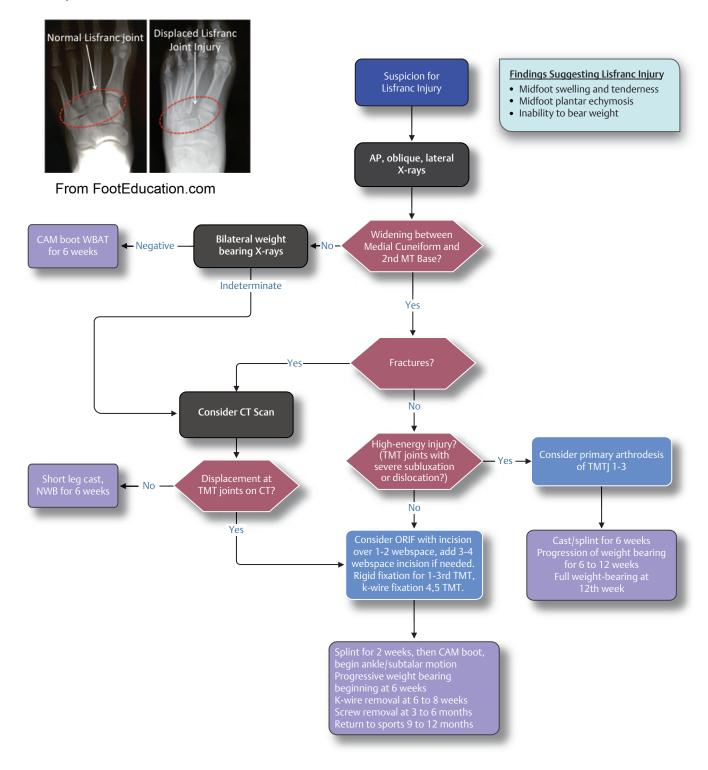
Hawkins LG. Fractures of the neck of the talus. J Bone Joint Surg Am 1970;52(5):991–1002

Lindvall E, Haidukewych G, DiPasquale T, et al. Open reduction and stable fixation of isolated, displaced talar neck and body fractures. J Bone Joint Surg Am 2004;86-A(10):2229–2234


Vallier HA, Nork SE, Benirschke SK, et al. Surgical treatment of talar body fractures. J Bone Joint Surg Am 2003;85-A(9):1716–1724

Vallier HA, Nork SE, Barei DP, Benirschke SK, Sangeorzan BJ. Talar neck fractures: results and outcomes. J Bone Joint Surg Am 2004;86-A(8):1616–1624

Chapter 48: Calcaneus Fractures



Chapter 49: Lisfranc Fractures

Dave Shearer, MD

CAM - Controlled Ankle Motion

NWB - Non Weight Bearing

WBAT - Weight Bearing As Tolerated

Benirschke SK, Meinberg E, Anderson SA, Jones CB, Cole PA. Fractures and dislocations of the midfoot: Lisfranc and Chopart injuries. J Bone Joint Surg Am 2012;94(14):1325–1337

Scolaro J, Ahn J, Mehta S. Lisfranc fracture dislocations. Clin Orthop Relat Res 2011;469(7):2078-2080

Sherief TI, Mucci B, Greiss M. Lisfranc injury: how frequently does it get missed? And how can we improve? Injury 2007;38(7):856–860

Gupta RT, Wadhwa RP, Learch TJ, Herwick SM. Lisfranc injury: imaging findings for this important but often-missed diagnosis. Curr Probl Diagn Radiol 2008;37(3):115–126

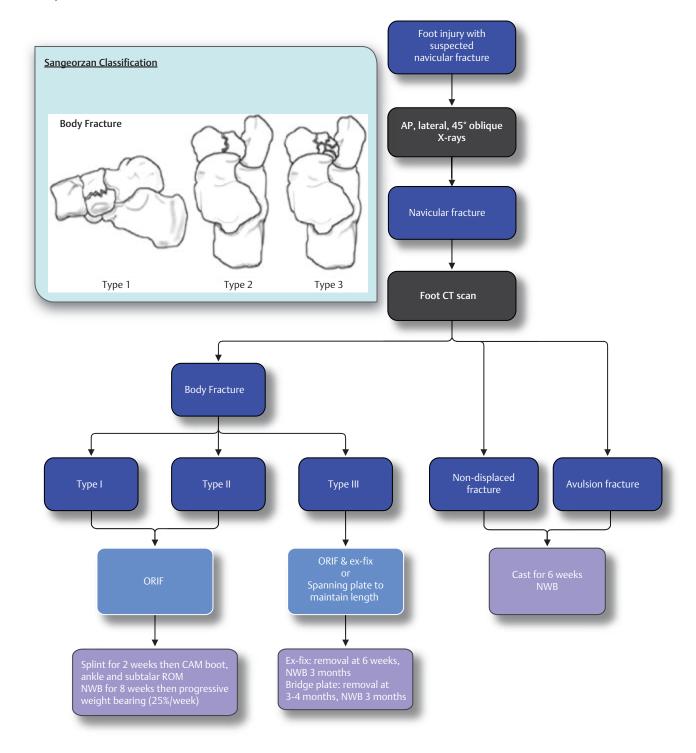
Kaar S, Femino J, Morag Y. Lisfranc joint displacement following sequential ligament sectioning. J Bone Joint Surg Am 2007;89(10):2225–2232

Henning JA, Jones CB, Sietsema DL, Bohay DR, Anderson JG. Open reduction internal fixation versus primary arthrodesis for lisfranc injuries: a prospective randomized study. Foot Ankle Int 2009;30(10):913–922

Raikin SM, Elias I, Dheer S, Besser MP, Morrison WB, Zoga AC. Prediction of midfoot instability in the subtle Lisfranc injury. Comparison of magnetic resonance imaging with intraoperative findings. J Bone Joint Surg Am 2009;91(4):892–899

Kadow TR, Siska PA, Evans AR, Sands SS, Tarkin IS. Staged treatment of high energy midfoot fracture dislocations. Foot Ankle Int 2014;35(12):1287–1291

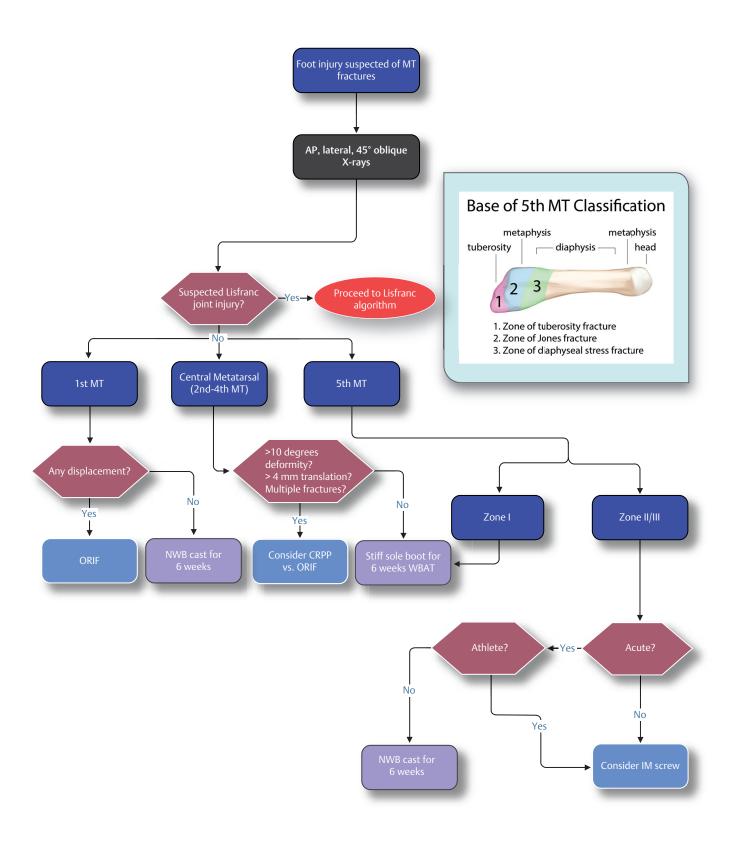
Faciszewski T, Burks RT, Manaster BJ. Subtle injuries of the Lisfranc joint. J Bone Joint Surg Am 1990;72(10):1519–1522


Coetzee JC, Ly TV. Treatment of primarily ligamentous Lisfranc joint injuries: primary arthrodesis compared with open reduction and internal fixation. Surgical technique. J Bone Joint Surg Am 2007; 89(2, Suppl 2 Pt.1):122–127

Rammelt S, Schneiders W, Schikore H, Holch M, Heineck J, Zwipp H. Primary open reduction and fixation compared with delayed corrective arthrodesis in the treatment of tarsometatarsal (Lisfranc) fracture dislocation. J Bone Joint Surg Br 2008;90(11):1499–1506

Chapter 50: Navicular Fractures

Dave Shearer, MD


Ex-Fix – External Fixator

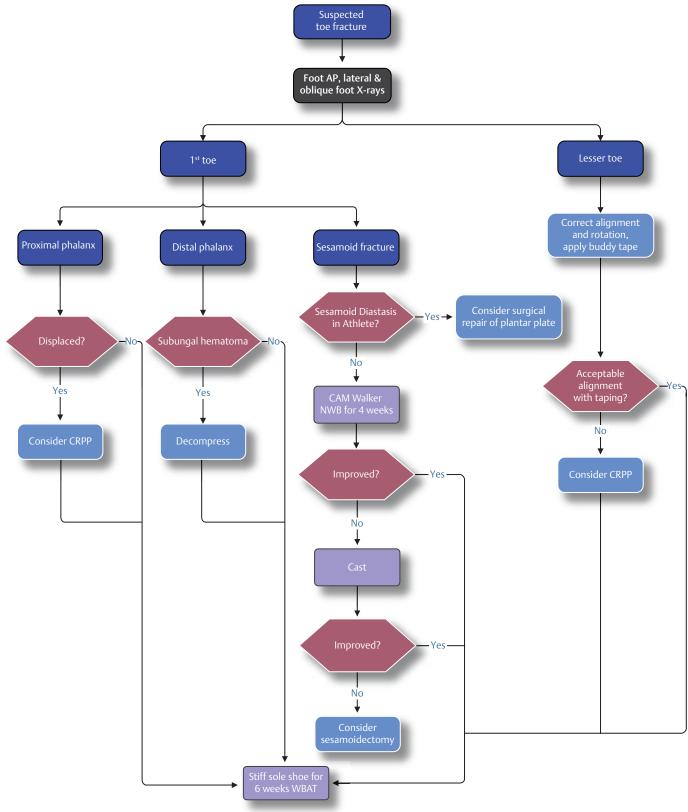
NWB – Non Weight Bearing
ORIF – Open Reduction Internal Fixation

Chapter 51: Metatarsal (MT) Fractures

Dave Shearer, MD

Torg JS, Balduini FC, Zelko RR, Pavlov H, Peff TC, Das M. Fractures of the base of the fifth metatarsal distal to the tuberosity. Classification and guidelines for non-surgical and surgical management. J Bone Joint Surg Am 1984;66(2):209–214

Shereff MJ. Fractures of the forefoot. Instr Course Lect 1990;39:133–140


Armagan OE, Shereff MJ. Injuries to the toes and metatarsals. Orthop Clin North Am 2001;32(1):1–10 $\,$

Coughlin MJ, Saltzman CL, Anderson RB, et al. Mann's surgery of the foot and ankle. Vol. 1. Philadelphia: Saunders/Elsevier; 2014

Chapter 52: Toe Fractures

Dave Shearer, MD

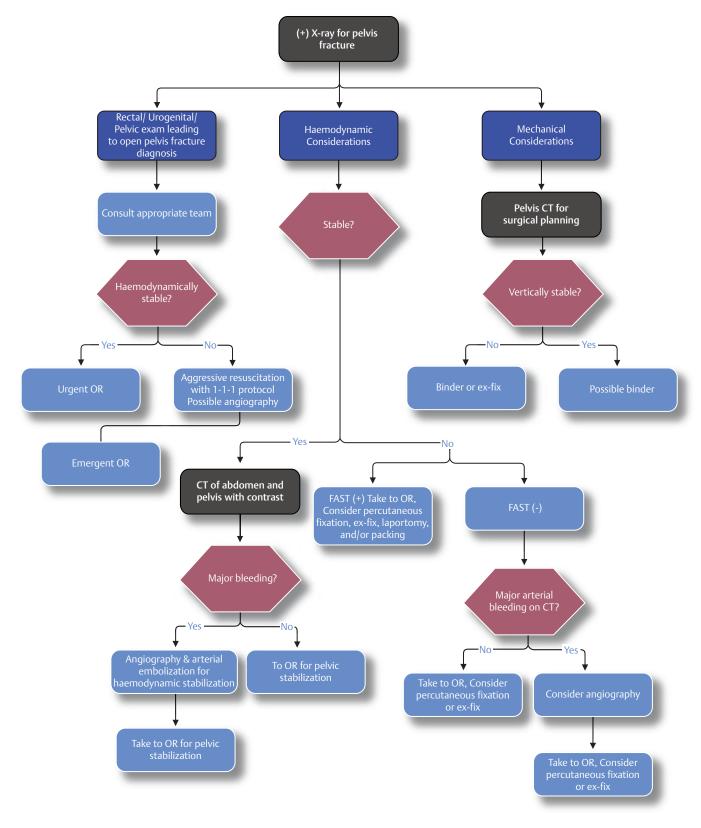
CAM – Controlled Ankle Motion

CRPP - Closed Reduction Percutaneous Pinning

NWB - Non Weight Bearing

WBAT - Weight Bearing As Tolerated

Coughlin MJ, Saltzman CL, Anderson RB, et al. Mann's surgery of the foot and ankle. Vol. 1 Vol. 1. Philadelphia: Saunders/ Elsevier; 2014.


Jahss MH. Stubbing injuries to the hallux. Foot Ankle. 1981 May; 1(6):327–332.

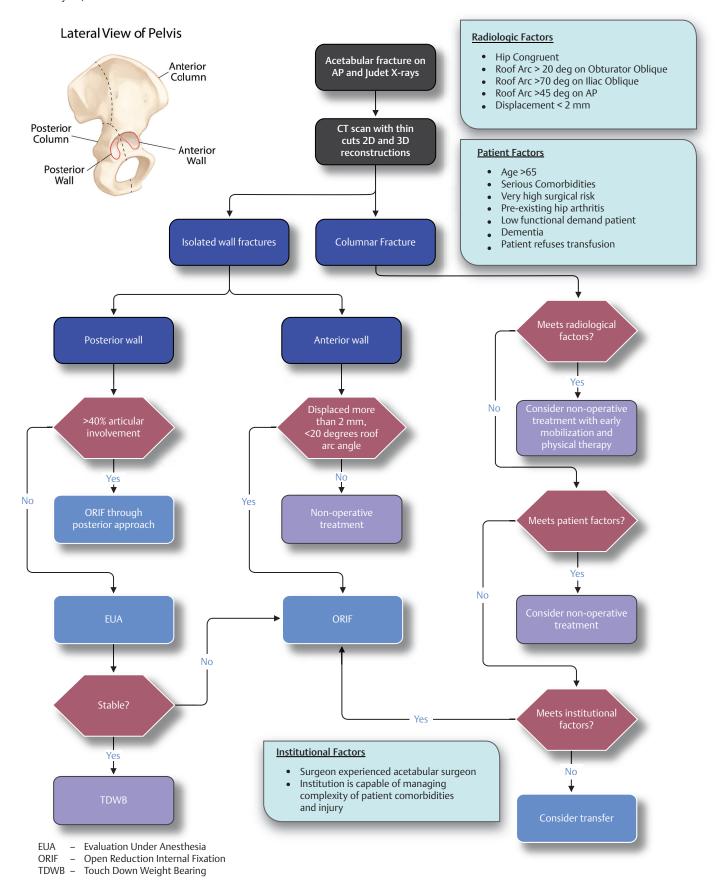
 $McCormick\ JJ, Anderson\ RB.\ The\ Great\ Toe:\ Failed\ Turf\ Toe,\ Chronic\ Turf\ Toe,\ and\ Complicated\ Sesamoid\ Injuries.\ Foot\ and\ Ankle\ Clinics.\ 2009\ Jun;14(2):135-150.$

Chapter 53: Pelvic Ring Fractures

Amir Matityahu, MD

FAST - Focused Assessment with Sonography in Trauma

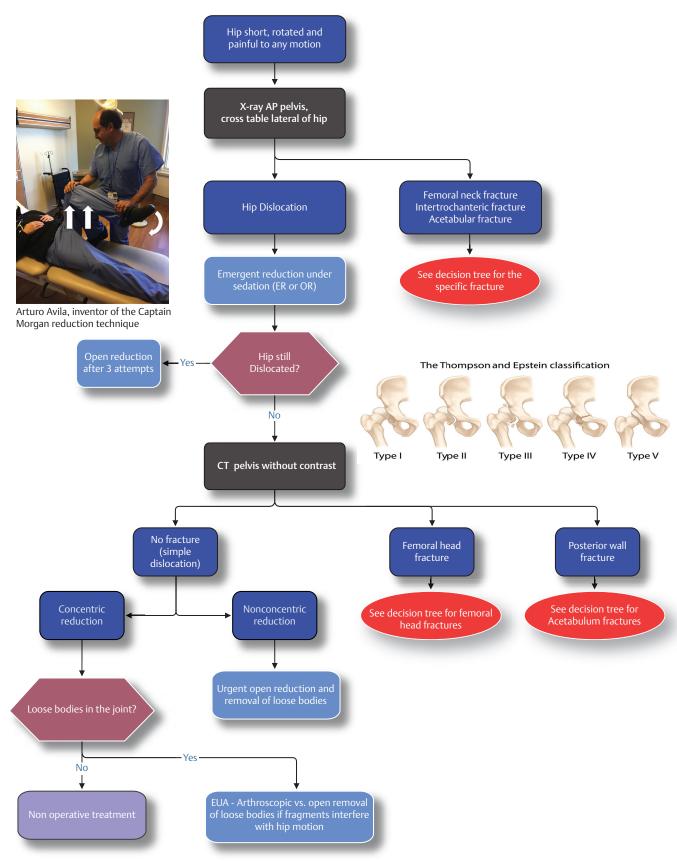
DeAngelis NA, Wixted JJ, Drew J, Eskander MS, Eskander JP, French BG. Use of the trauma pelvic orthotic device (T-POD) for provisional stabilisation of anterior-posterior compression type pelvic fractures: a cadaveric study. Injury 2008;39(8):903–906


White CE, Hsu JR, Holcomb JB. Haemodynamically unstable pelvic fractures. Injury 2009;40(10):1023–1030

Grotz MR, Allami MK, Harwood P, Pape HC, Krettek C, Giannoudis PV. Open pelvic fractures: epidemiology, current concepts of management and outcome. Injury 2005;36(1):1-13

Chapter 54: Acetabulum Fractures

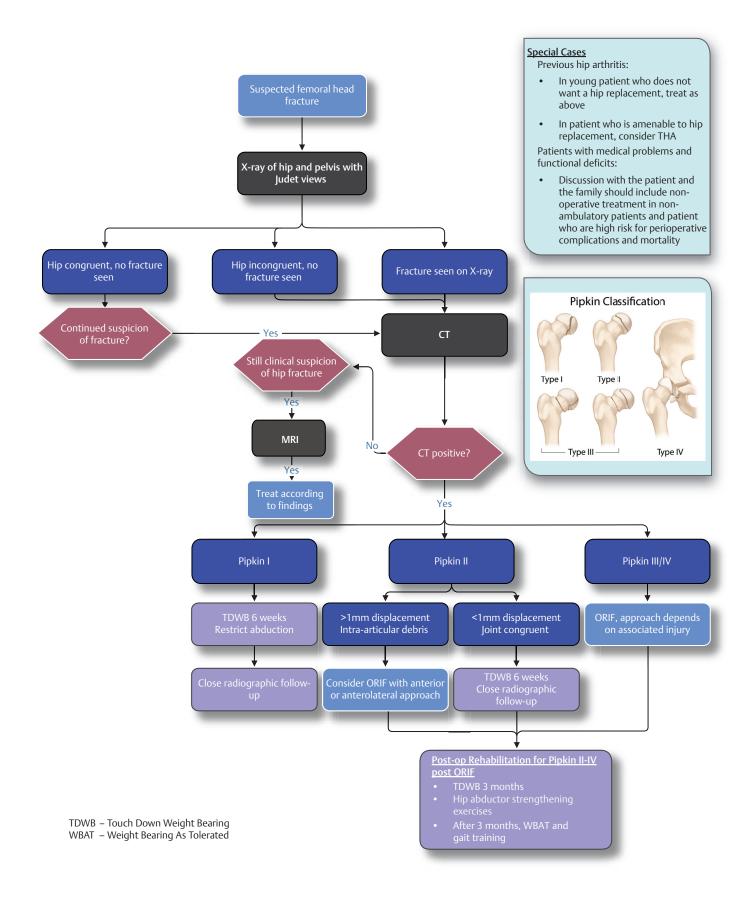
Amir Matityahu, MD


Tornetta P III. Non-operative management of acetabular fractures. The use of dynamic stress views. J Bone Joint Surg Br 1999;81(1):67–70

Vrahas MS, Widding KK, Thomas KA. The effects of simulated transverse, anterior column, and posterior column fractures of the acetabulum on the stability of the hip joint. J Bone Joint Surg Am 1999;81(7):966–974

Chapter 55: Hip Dislocations

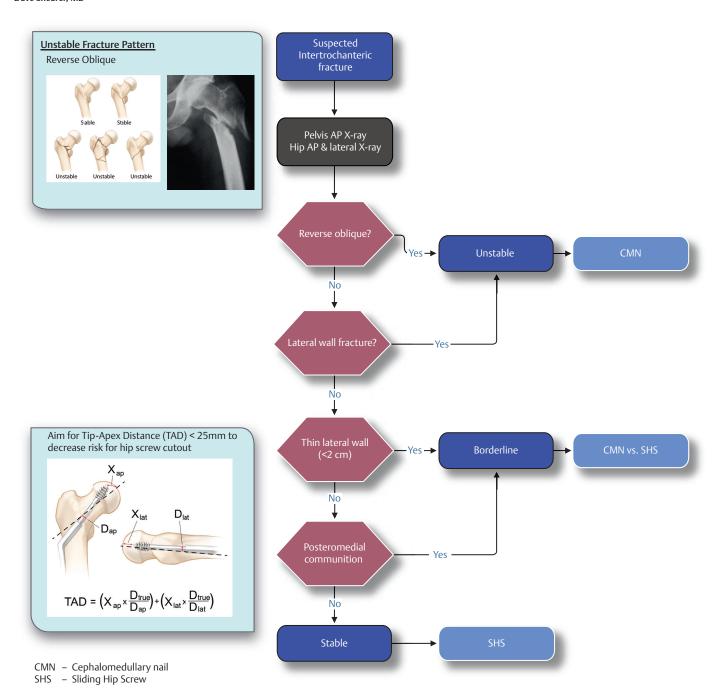
Amir Matityahu, MD


EUA - Evaluation Under Anesthesia

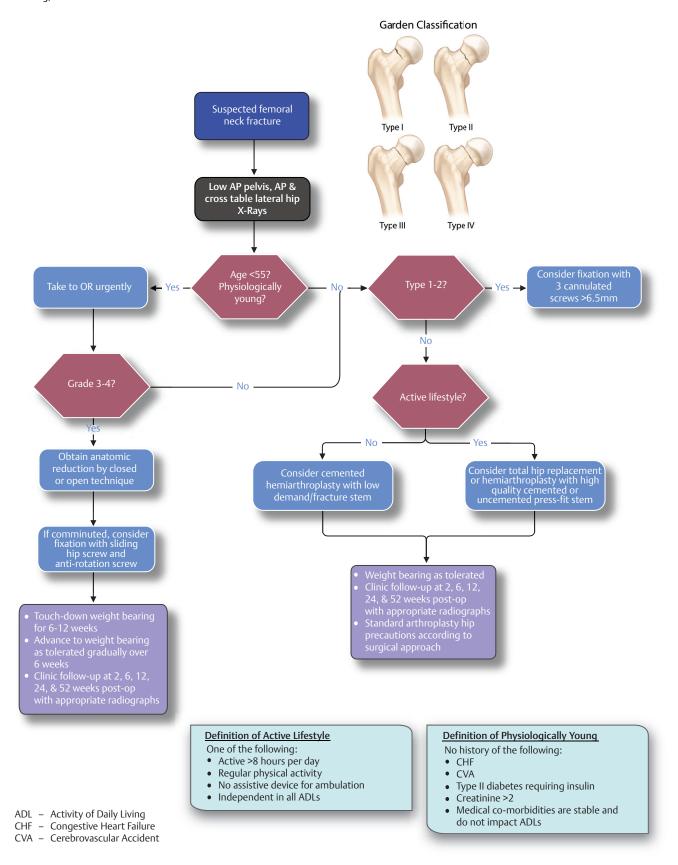
Hendey GW, Avila A. The Captain Morgan technique for the reduction of the dislocated hip. Annals of emergency medicine. 2011 Dec 31;58(6):536-40.

Chapter 56: Femoral Head Fractures

Amir Matityahu, MD



Chapter 57: Femoral Intertrochanteric Fractures

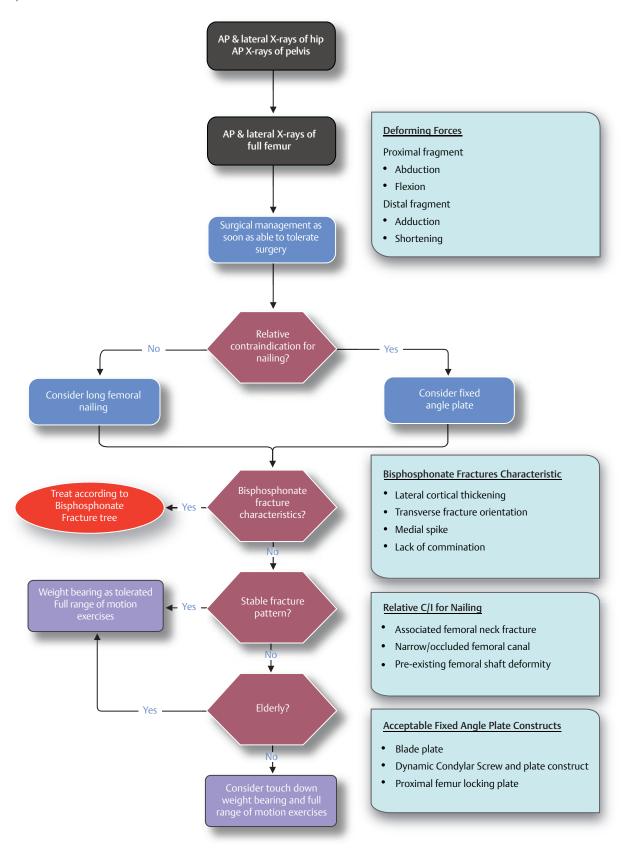

Dave Shearer, MD

Chapter 58: Femoral Neck Fractures

Eric Meinberg, MD

Barnes R, Brown JT, Garden RS, Nicoll EA. Subcapital fractures of the femur. A prospective review. J Bone Joint Surg Br 1976;58(1):2–24

Blomfeldt R, Törnkvist H, Eriksson K, Söderqvist A, Ponzer S, Tidermark J. A randomised controlled trial comparing bipolar hemiarthroplasty with total hip replace-


ment for displaced intracapsular fractures of the femoral neck in elderly patients. J Bone Joint Surg Br 2007;89(2):160–165

Evaniew N, Madden K, Bhandari M. Cochrane in CORR®: Arthroplasties (with and without bone cement) for proximal femoral fractures in adults. Clin Orthop Relat Res 2014;472(5):1367-1372

Chapter 59: Femoral Subtrochanteric Fractures

Chapter 60: Spinal Cord Injury (SCI)

Jeremie Larouche, MD and R. Trigg McClellan, MD

ASIA Impairment Scale

Α	Complete	No sensory or motor function is preserved in sacral segments S4-S5.
В	Incomplete	Sensory, but not motor, function is preserved below neurologic level and extends through sacral segments S4-S5.
c	Incomplete	Motor function is preserved below the neurologic level, and most key muscles below the neurologic level have muscle grade less than 3.
D	Incomplete	Motor function is preserved below the neurologic level, and most key muscles below the neurologic level have muscle grade greater than or equal to 3
Е	Normal	Sensoryand motor functions are normal

Note: ASIA grade E is used to identify ar individual which temporarily had a neurclogical deficit but has since regained normal sensery and motor function

Spinal Cord Syndromes A B C D E Transverse cord Hemicorc lesion Central cord syndrome Posterior cord syndrome motor proprioception, vibration pain, temperature and light touch area of lesion

Note: diagrams indicated loss of reurological function as described

Definitions


<u>Spinal Shock:</u> Loss of motor and sensation below a level of injury associated with initial areflexia/hyporeflexia. Over the course of a few days, reflexes return and become hyperreflexic.

Neogenic shock: Loss of sympathetic drive to the cardiovascular system with spinal cord injuries normally at the level of T6 or above. Manifested with:

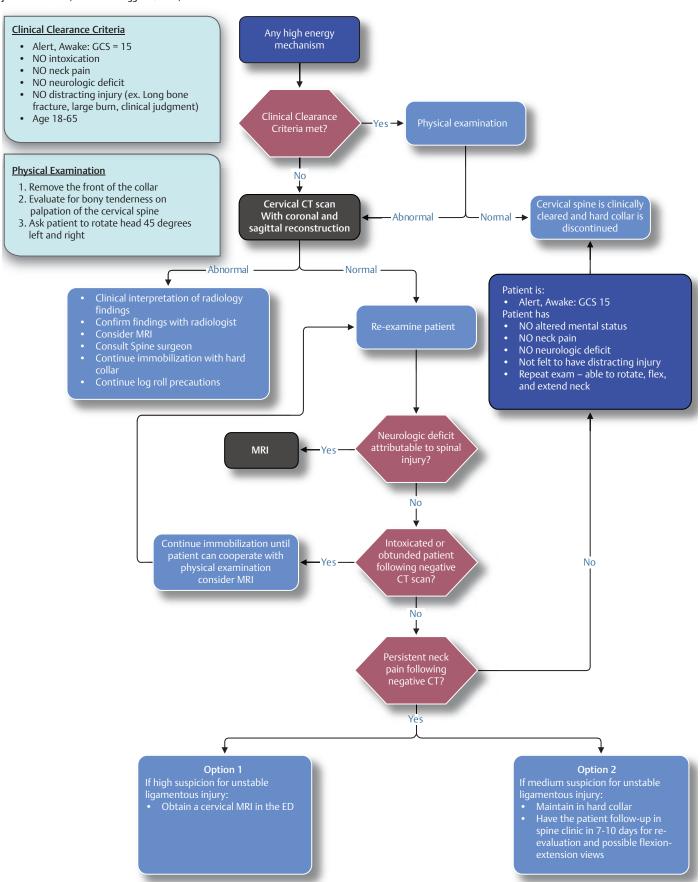
Bradycardia Hypotension

SCI Complications

- Pressure ulcers
- Deep vein thrombosis (DVT)
- Urosepsis
- Bradycardia
- Orthostatic hypotension
- Autonomic dysreflexia
- Depression

ASIA – American Spinal Injury Association

ATLS – Advanced Trauma Life Support

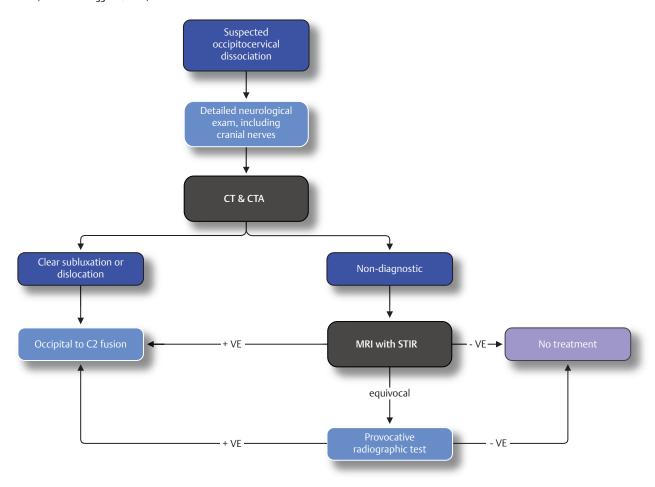

GSW - Gun Shot Wound

ATLS Subcommittee; American College of Surgeons' Committee on Trauma; International ATLS working group. Advanced trauma life support (ATLS®): the ninth edition. J Trauma Acute Care Surg 2013;74(5):1363–1366

Chapter 61: Adult C-Spine Clearance After Blunt Trauma

Jeremie Larouche, MD and R. Trigg McClellan, MD

Hoffman JR, Mower WR, Wolfson AB, Todd KH, Zucker MI; National Emergency X-Radiography Utilization Study Group. Validity of a set of clinical criteria to rule out injury to the cervical spine in patients with blunt trauma. N Engl J Med 2000;343(2):94–99


Gebauer G, Osterman M, Harrop J, Vaccaro A. Spinal cord injury resulting from injury missed on CT scan: the danger of relying on CT alone for collar removal. Clin Orthop Relat Res 2012;470(6):1652–1657

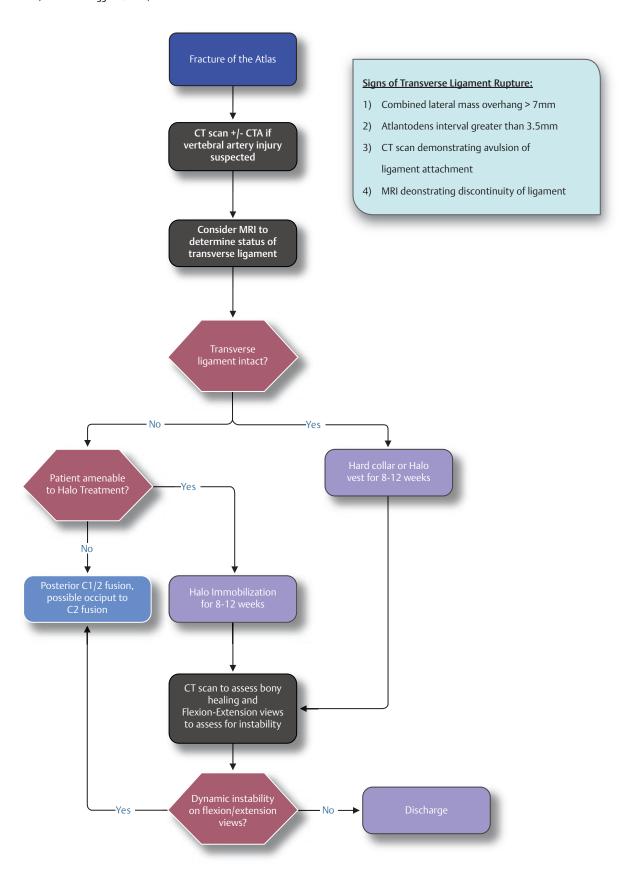
Badhiwala JH, Lai CK, Alhazzani W, et al. Cervical spine clearance in obtunded patients after blunt traumatic injury: a systematic review. Ann Intern Med 2015;162(6):429–437

Chapter 62: Occipitocervical Dissociations (OCD)

Jeremie Larouche, MD and R. Trigg McClellan, MD

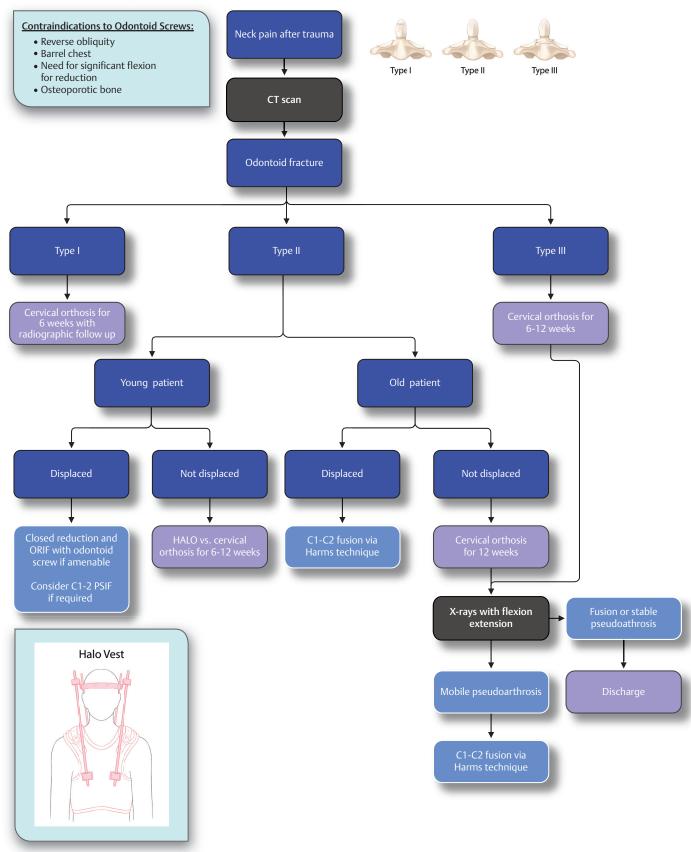
Avoid halo in the treatment of OCD

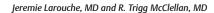
CTA – CT Angio STIR – Short Tau Inversion Recovery

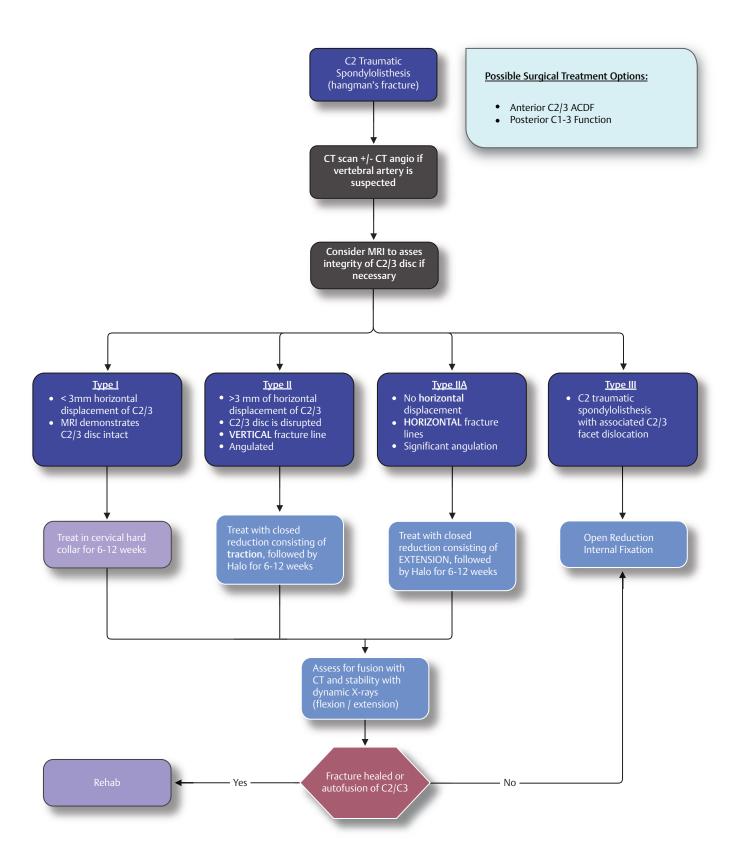

Kasliwal MK, Fontes RB, Traynelis VC. Occipitocervical dissociation-incidence, evaluation, and treatment. Curr Rev Musculoskelet Med 2016; 9(3):247-254

Child Z, Rau D, Lee MJ, et al. The provocative radiographic traction test for diagnosing craniocervical dissociation: a cadaveric biomechanical study and reappraisal of the pathogenesis of instability. Spine J 2016;16(9):1116–1123

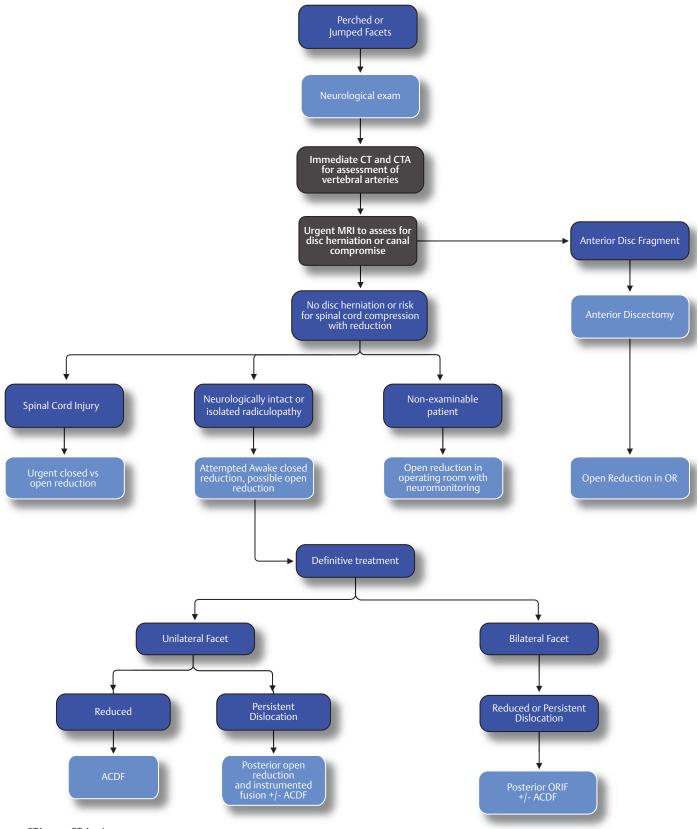
Chapter 63: Atlas (C1) Fractures and Transverse Ligament Injuries


Jeremie Larouche, MD and R. Trigg McClellan, MD

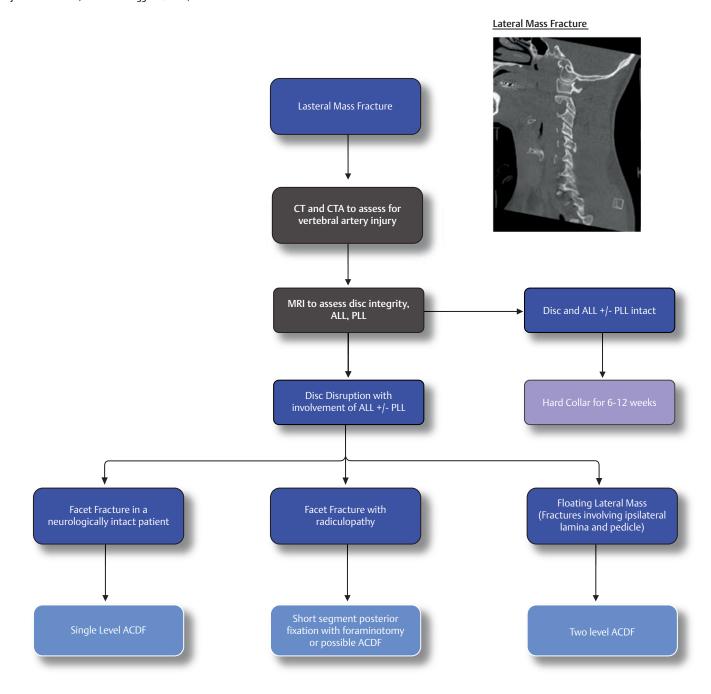

Chapter 64: C2 Odontoid (dens) Fractures


Jeremie Larouche, MD and R. Trigg McClellan, MD

Chapter 65: C2 Traumatic Spondylolisthesis



Chapter 66: C3-C7 Facet Dislocations


CTA – CT Angio

ACDF – Anterior Cervical Discectomy and Fusion
ORIF – Open Reduction Internal Fixation

Chapter 67: C3-C7 Lateral Mass Fractures

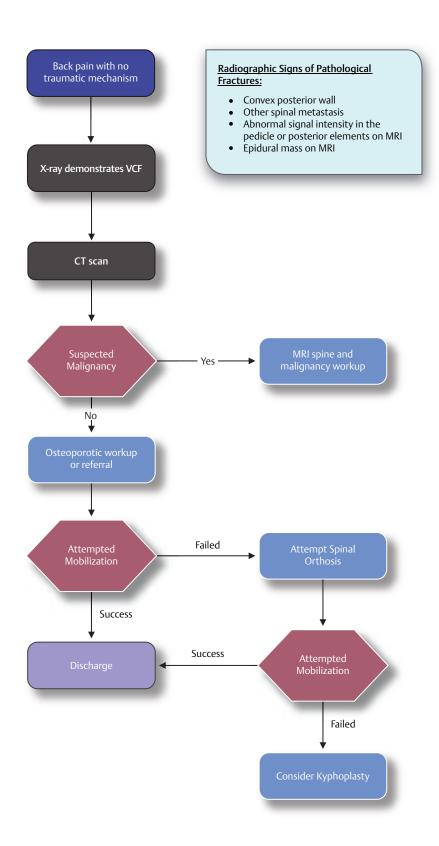
Jeremie Larouche, MD and R. Trigg McClellan, MD

ACDF - Anterior Cervical Discectomy and Fusion

CTA – CT Angio

ALL – Anterior Longitudinal Ligament PLL – Posterior Longitudinal Ligament

Aarabi B, Mirvis S, Shanmuganathan K, et al. Comparative effectiveness of surgical versus nonoperative management of unilateral, nondisplaced, subaxial cervical spine facet fractures without evidence of spinal cord injury: clinical article. J Neurosurg Spine 2014;20(3):270–277

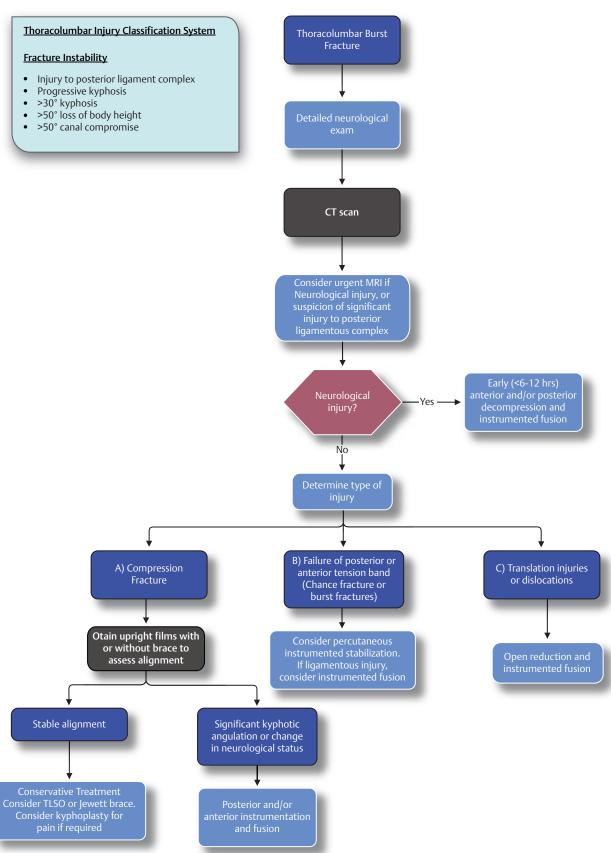

Kepler CK, Vaccaro AR, Chen E, et al. Treatment of isolated cervical facet fractures: a systematic review. J Neurosurg Spine 2015;24(2):1–8

Manoso MW, Moore TA, Agel J, Bellabarba C, Bransford RJ. Floating Lateral Mass Fractures of the Cervical Spine. Spine 2016;41(18):1421–1427

Chapter 68: Geriatric Vertebral Compression Fracture (VCF)

Jeremie Larouche, MD and R. Trigg McClellan, MD

Jung et al 2003 Radiographics Volume 23 Number 1, Discrimination of Metastatic From Acute Osteoporotic Compression Spinal Fractures with MR Imaging


Safety and efficacy of vertebroplasty for acute painful osteoporotic fractures (VAPOUR): a multicentre, randomised, double-blind, placebo-controlled trial. 2016;388(10052):1408-1416.

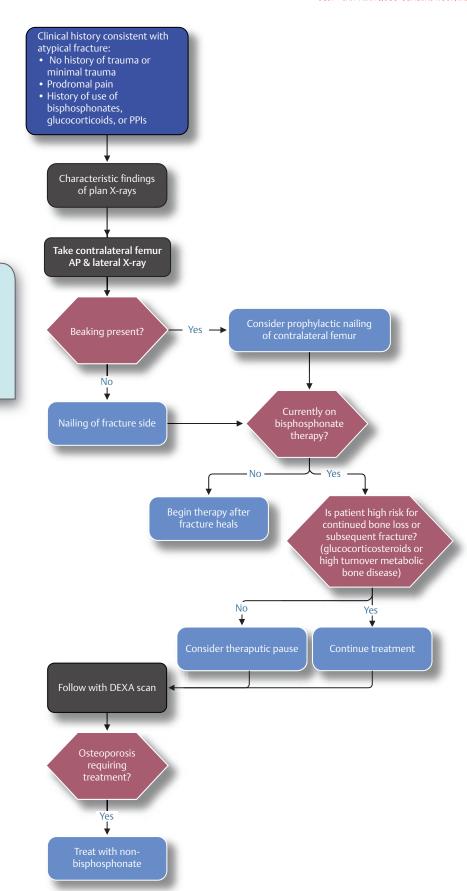
 $\label{thm:conservative} Vertebroplasty\ and\ balloon\ kyphoplasty\ versus\ conservative\ treatment\ for\ osteoporotic\ vertebral\ compression\ fractures:\ A\ meta-analysis.$

Chapter 69: Thoracolumbar Injuries

Orthopaedic Trauma Institute

Jeremie Larouche, MD and R. Trigg McClellan, MD

TLSO - Thoracolumbosacral Orthosis


Chapter 70: Bisphosphonate Femur Fractures

Eric Meinberg, MD

- Transverse or short oblique configuration
- Noncomminuted
- Localized periosteal reaction of the lateral cortex
- Generalized increase in cortical thickness of the diaphysis
- Beaked appearance of on cortex

DEXA – Dual X-ray Absorptiometry PPI – Proton Pump Inhibitor

Shane E, Burr D, Abrahamsen B, et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 2014;29(1):1–23

Chapter 71: Pathological (neoplastic) Fractures

Rosanna Wustrack, MD

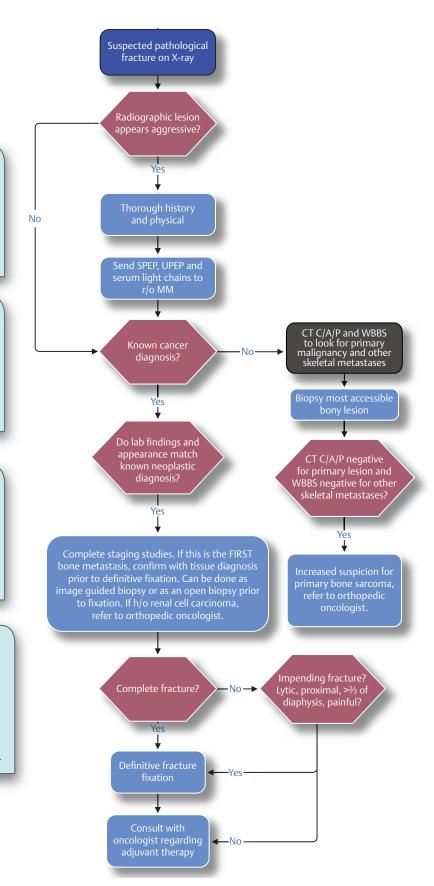
Suspected Pathologic Fracture

- Irregular fracture line
- Lytic/blastic lesion surrounding fracture site
- Known cancer diagnosis with metastatic potential

Aggressive Tumor Radiographic Characteristics

- Borders are ill-defined
- Cortical bone is destroyed
- Presence of Codman's triangle or periosteal reaction
- Surrounding soft tissue involvement

When to Biopsy?

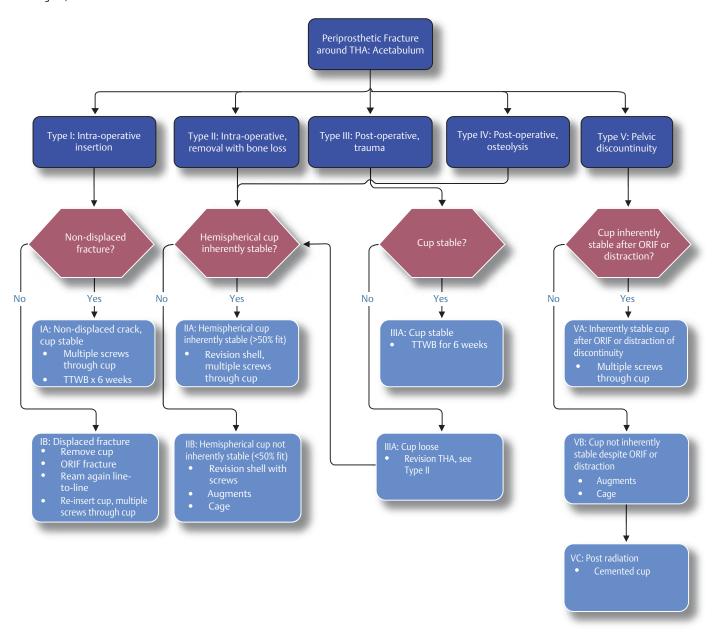

- A lesion found on CT C/A/P with an unknown cancer diagnosis
- Solitary lesion or solitary skeletal metastasis
- To confirm suspected primary
- First bone metastases in a patient with a history of carcinoma

Prinicples of Fracture Fixation:

- Assume that fracture will not heal
- Maximize early mobilization
- Consider embolization (esp. renal cell carcinoma)
- Consider adding PMMA to construct to replace pathologic bone
- Consider endoprosthetic replacement for peritrochanteric fractures for especially aggressive tumor types, ie renal cell.

CT C/A/P -CT of Chest, Abdomen and Pelvis WBBS Whole Body Bone Scan PMMA Polymethyl Methacrylate MM Multiple Myeloma SPEP Serum Protein Electrophoresis

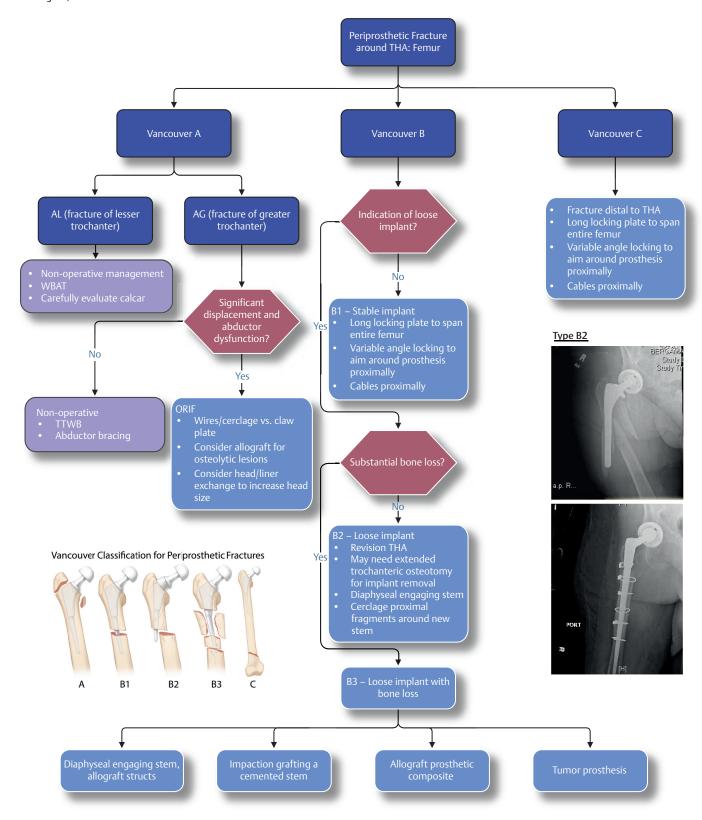
UPEP Urine Protein Electrophoresis



Rougraff BT, Kneisl JS, Simon MA. Skeletal metastases of unknown origin. A prospective study of a diagnostic strategy. J Bone Joint Surg Am. 1993 Sep;75(9):1276-81.

Chapter 72: Periprosthetic Fracture THA: Acetabulum

Paul Toogood, MD


ORIF - Open Reduction Internal Fixation TDWB - Touch Down Weight Bearing THA - Total Hip Replacement

Della Valle CJ, Momberger NG, Paprosky WG. Periprosthetic fractures of the acetabulum associated with a total hip arthroplasty. Instr Course Lect 2003;52:281–290

Chapter 73: Periprosthetic Fracture around THA: Femur

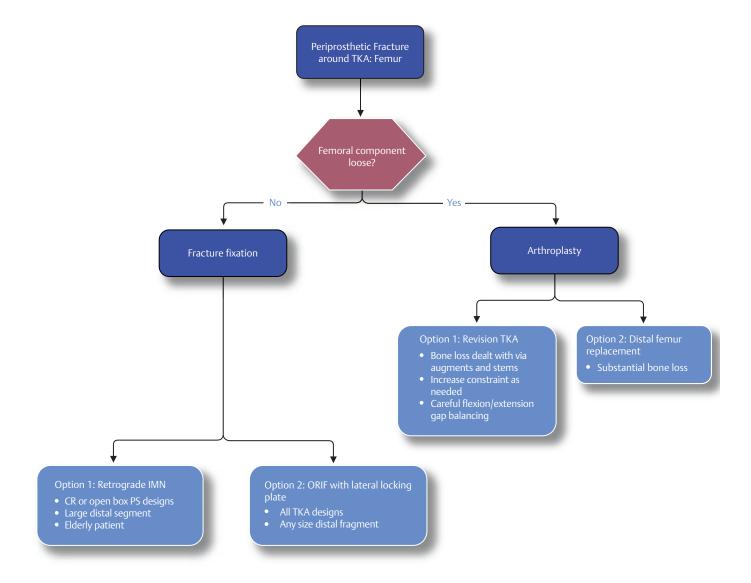
Orthopaedic Trauma Institute

Paul Toogood, MD

THR – Total Hip Replacement

TTWB – Toe Touch Weight Bearing

WBAT – Weight Bearing As Tolerated


Brady OH, Garbuz DS, Masri BA, Duncan CP. Classification of the hip. Orthop Clin North Am 1999; 30(2):215–220

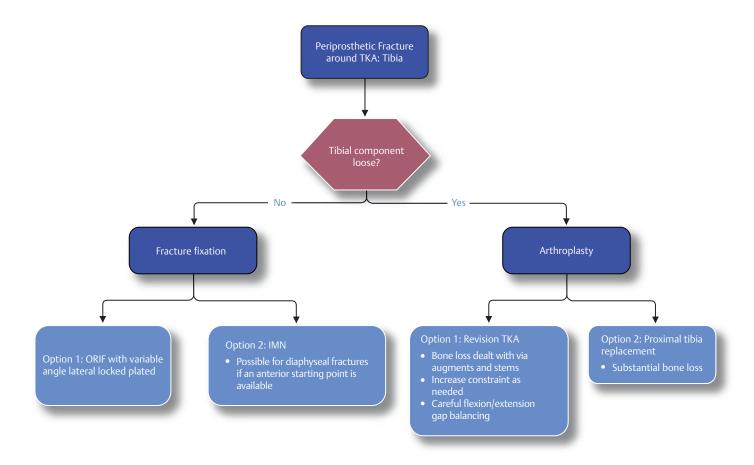
Brady OH, Garbuz DS, Masri BA, Duncan CP. The reliability and validity of the Vancouver classification of femoral fractures after hip replacement. J Arthroplasty 2000;15(1):59–62

Chapter 74: Periprosthetic Fracture around TKA: Femur

Orthopaedic Trauma Institute

Paul Toogood, MD

CR – Cruciate Retaining PS – Posterior Stabilized


IMN – Intramedullary Nail

ORIF – Open Reduction Internal Fixation TKA – Total Knee Replacement

Chapter 75: Periprosthetic Fracture around TKA: Tibia

Paul Toogood, MD

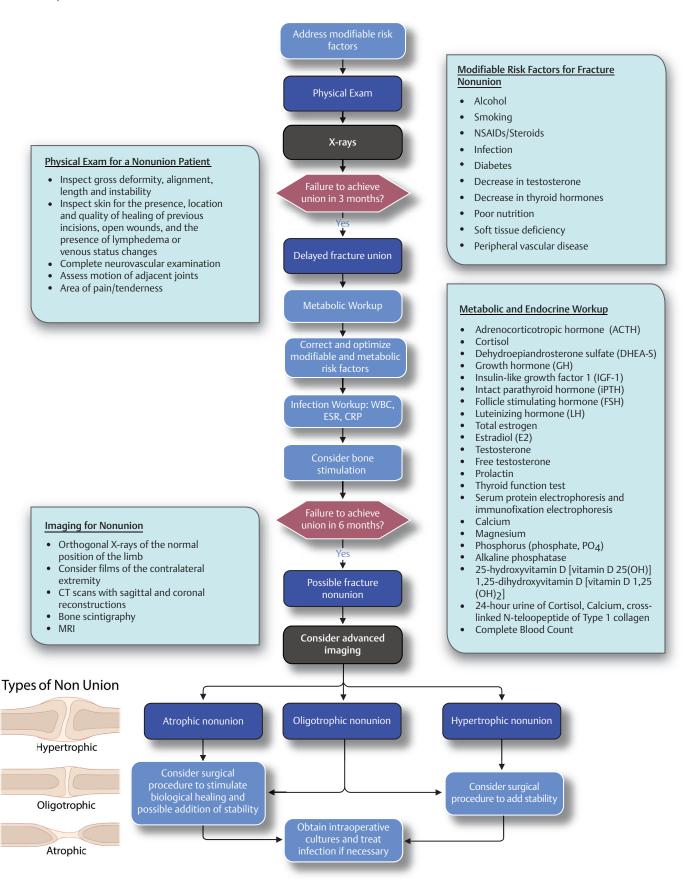
IMN – Intramedullary Nail ORIF – Open Reduction Internal Fixation

TKA – Total Knee Replacement

Chapter 76: Periprosthetic Fracture around Total Shoulder Arthroplasty (TSA)

Meir T. Marmor, MD

ORIF - Open Reduction and Internal Fixation


Kumar S, Sperling JW, Haidukewych GH, Cofield RH. Periprosthetic humeral fractures after shoulder arthroplasty. J Bone Joint Surg Am 2004;86-A(4):680–689

Hoffelner T, Moroder P, Auffarth A, Tauber M, Resch H. Outcomes after shoulder arthroplasty revision with glenoid reconstruction and bone grafting. Int Orthop 2014;38(4):775–782

Chapter 77: Fracture Delayed and Nonunion

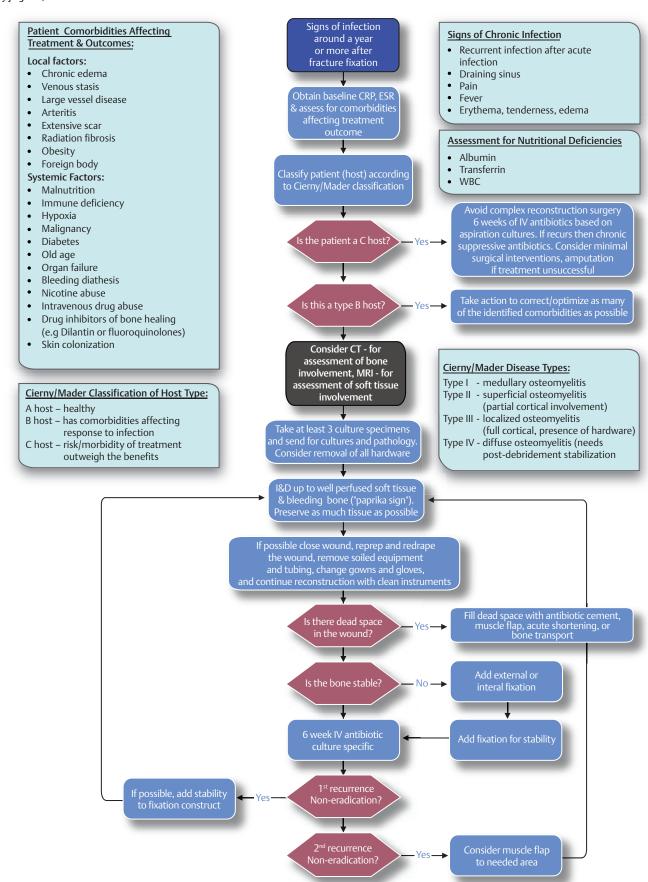
Theodore Miclau, MD

Brinker MR, O'Connor DP, Monla YT, Earthman TP. Metabolic and endocrine abnormalities in patients with nonunions. J Orthop Trauma 2007;21(8):557–570

Schenker ML, Wigner NA, Lopas L, Hankenson KD, Ahn J. Fracture repair and bone grafting. Orthopaedic Knowledge Update 2014;11:1–1

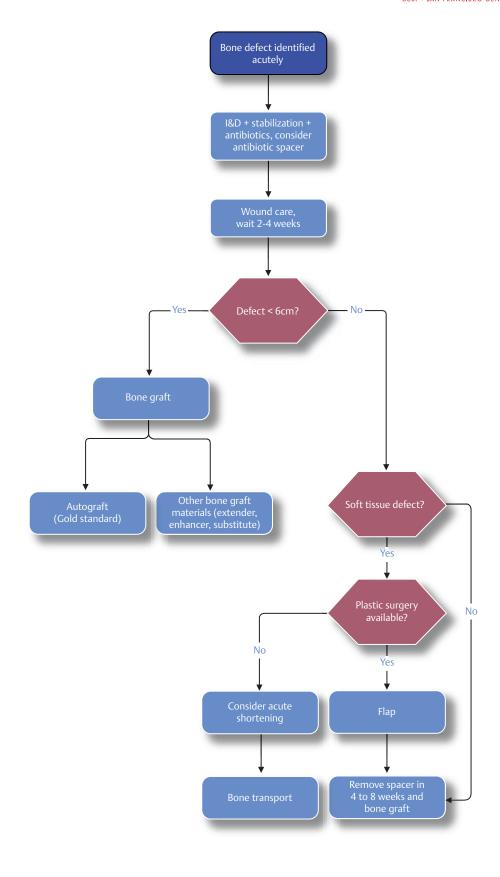
Chapter 78: Acute Surgical Infection

Harry Jergesen, MD



Chapter 79: Post-Operative Chronic Infection

Harry Jergesen, MD


Cierny G III. Surgical treatment of osteomyelitis. Plast Reconstr Surg 2011;127(Suppl 1):190S–204S

Cierny G III, Mader JT, Penninck JJ. A clinical staging system for a dult osteomyelitis. Clin Orthop Relat Res 2003; (414): 7–24

Chapter 80: Bone Defects

Theodore Miclau, MD

I&D – Irrigation and Debridement

Suggested Readings

Mauffrey C, Hake ME, Chadayammuri V, Masquelet AC. Reconstruction of Long Bone Infections Using the Induced Membrane Technique: Tips and Tricks. J Orthop Trauma 2016;30(6):e188–e193

Sen C, Kocaoglu M, Eralp L, Gulsen M, Cinar M. Bifocal compression-distraction in the acute treatment of grade III open tibia fractures with bone and soft-tissue loss: a report of 24 cases. J Orthop Trauma 2004;18(3):150–157

Sen MK, Miclau T. Autologous iliac crest bone graft: should it still be the gold standard for treating nonunions? Injury 2007;38(Suppl 1):S75–S80 Review

Appendix A: Imaging

Chapter	Extremity emergencies	Author	X-rays	Advance imaging
15	Traumatic Anterior Shoulder Instability	Lee	Shoulder AP, axillary and transscapular Y	CT & MR arthrogram
16	Acromioclavicular Separation	Marmor	Bilateral AP, axillary, and Zanca views of the shoulder	
17	Sternoclavicular Dislocation (SCD)	Kandemir	Serendipity (40° cephalad tilt)	CT angio or MRA of upper chest
18	Clavicle Fractures	Toogood	Shoulder AP, scapular Y, and lateral Clavicle AP and cephalic tilt	CT scan (for medial 1/3 fractures)
19	Scapulothoracic Dissociation (STD)	Kandemir	Chest	CTA/MRA
20	Scapula Fractures	Kandemir	Dedicated shoulder radiographs to better visualize the scapula (i.e. Grashey, scapular Y, axillary) Large cassette to include whole scapula	CT with 3D reconstruction for accurate measurements if significant displacement is identified on plain radiographs
21	Proximal Humerus Fractures	Kandemir	Grashey, scapular Y, and axillary view	CT scan with 3D reconstruction
22	Humeral Shaft Fractures	Toogood	AP & lateral views of humerus, elbow, and shoulder	
23	Distal Humerus Fractures	Toogood	AP & lateral views of elbow	Consider CT with thin cuts + 2D & 3D reconstruction
24	Elbow Dislocation/ Terrible Triad Injury	Kandemir	AP, lateral, and radial head view	CT scan with 3D reconstruction
25	Radial Head Fractures	Lee	AP & lateral views, radiocapitellar views	CT scan
26	Capitellum Fractures	Kandemir	AP, lateral, and radial head view	CT scan with 3D reconstruction
27	Olecranon Fractures	Lee	AP, lateral elbow	CT scan
28	Forearm Fractures	Lee	AP & lateral X-ray of forearm Contralateral forearm and wrist X-rays to measure: radial bow, ulnar variance	
29	Distal Radius Fractures	Lee	AP, lateral, oblique wrist X-ray	CT scan
30	Scaphoid Fractures	Schroeder	AP, lateral, oblique wrist and scaphoid view (ulnar deviation)	
31	Perilunate Dislocation	Lee	PA and lateral wrist view	CT scan
32	Extensor Tendon Lacerations	Schroeder	AP view of hand	
33	Flexor Tendon Injuries	Schroeder	AP view of hand	
34	Finger Replantation	Schroeder	AP, lateral, oblique views of hand and amputated digit	
35	Finger Fractures	Schroeder	AP, lateral, oblique views	
36	Metacarpal Fractures	Schroeder	AP, lateral, oblique hand views	
37	Metacarpophalangeal (MCP) Dislocations	Schroeder	AP, lateral, oblique hand views	
38	Phalanx Dislocations	Schroeder	AP & true lateral views of all finger joints	

Chapter	Extremity emergencies	Author	X-rays	Advance imaging
LOWER EX	CTREMITY TRAUMA			
39	Femoral Shaft Fractures	McClellan	AP & lateral views of the femur	CT scan to rule out femoral neck fracture
40	Distal Femur Fractures	Toogood	AP & lateral views of knee AP & lateral views of femur	CT scan
41	Traumatic Knee Dislocation	Kandemir	AP & lateral views	CT angio, MRI, or MRA if vascular injury suspected
42	Patella Fractures	Marmor	AP, lateral, and skyline views of the knee	
43	Tibia Plateau Fractures	Morshed	AP & lateral views of the knee	CT scan with thin cuts 2D and 3D reconstructions
44	Tibia Shaft Fractures	McClellan	AP & lateral views of the tibia AP & lateral X-rays of ipsilateral knee and ankle	CT scan to rule out articular extension
45	Tibia Plafond Fractures	McClellan	AP, lateral, & mortise views of the ankle 2 views of ipsilateral knee 3 views of ipsilateral foot	CT ankle with axial, coronal, and sagittal cuts
46	Ankle Fractures	Marmor	AP, lateral, and mortise views of the ankle, Gravity stress view to test deltoid competency	Consider CT scan for posterior malleolus fractures or for fractures extending to the tibial plafond
47	Talus Fractures	Shearer	AP & lateral view of foot AP, lateral & mortise of ankle	CT scan of foot with thin cuts and 2D reconstructions
48	Calcaneus Fractures	Coughlin	AP & lateral foot views Harris heel view	CT scan of calcaneus with thin axial cuts and 2D reconstruction per standard pro- tocol (coronal sections are perpendicular to posterior facet (~30 degrees), trans- verse sections perpendicular to coronal sections, regular sagittal sections)
49	Lisfranc Fractures	Shearer	AP, oblique, lateral foot views Bilateral weight bearing views	CT scan of foot with thin cuts and 2D reconstructions
50	Navicular Fractures	Shearer	AP, oblique, lateral foot views	CT scan of foot with thin cuts and 2D reconstructions
51	Metatarsal Fractures	Shearer	AP, oblique, lateral foot views	
52	Toe Fractures	Shearer	AP, oblique, lateral foot views	
	PELVIS AND HIP TRAUMA			
53	Pelvic Ring Fractures	Matityahu	AP, Inlet & Outlet views of the pelvis	CT scan with thin cuts 2D and 3D reconstructions
54	Acetabulum Fractures	Matityahu	AP and Judet views of the pelvis	CT scan with thin cuts 2D and 3D reconstructions
55	Hip Dislocations	Matityahu	AP pelvis, cross table lateral of hip	CT scan with thin cuts 2D
56	Femoral Head Fractures	Matityahu	AP, lateral of hip, AP pelvis with Judet views	CT scan with thin cuts 2D MRI
57	Intertrochanteric Fractures	Shearer	Pelvis AP view Hip AP & lateral view Femur AP & lateral view	
58	Femoral Neck Fractures	Meinberg	AP view of pelvis and hip Lateral view of hip AP & lateral views of ipsilateral femur	
59	Femoral Subtrochanteric Fractures	Shearer	Pelvis AP view Hip AP & lateral view Femur AP & lateral view	

Chapter	Extremity emergencies	Author	X-rays	Advance imaging			
SPINE TRA	SPINE TRAUMA						
60	Spinal Cord Injury (SCI)	Larouche/ McClellan		CT MRI			
61	Adult C-Spine Clearance after Blunt Trauma	Larouche/ McClellan		Cervical CT scan with coronal and sagittal reconstruction MRI			
62	Occipitocervical Dissociations	Larouche/ McClellan		CT and CTA MRI with STIR			
63	Atlas (C1) Fractures and Transverse Ligament Injuries	Larouche/ McClellan		CT scan +/- CTA if vertebral artery injury suspected			
64	C2 Odontoid (dens) Fractures	Larouche/ McClellan	Flexion-extension views after 12 weeks in cervical orthosis	CT scan			
65	C2 Traumatic Spondylolisthesis	Larouche/ McClellan		CT scan +/- CT angio if vertebral artery is suspected Consider MRI to assess integrity of C2/3 disc if necessary			
66	C3-C7 Facet Dislocations	Larouche/ McClellan		Immediate CT and CTA for assessment of vertebral arteries and neurological exam Urgent MRI to assess for disc herniation or canal compromise			
67	C3-C7 Lateral Mass Fractures	Larouche/ McClellan		CT and CTA to assess for vertebral artery injury MRI to assess disc integrity ALL PLL			
68	Geriatric Vertebral Compression Fracture (VCF)	Larouche/ McClellan	AP, lateral views of thoracic and lumbar spine	CT scan			
69	Thoracolumbar Fractures	Larouche/ McClellan	AP, lateral views of thoracic and lumbar spine	CT scan			

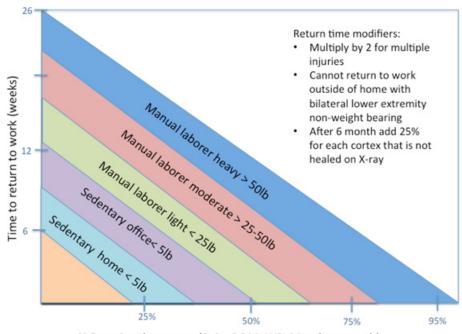
Appendix B: Rehabilitation

Chapter	Extremity emergencies	Author	Possible non-operative rehabilitation	Possible post-operative rehabilitation
15	Traumatic Anterior Shoulder Instability	Lee	Sling for 1 week Begin active ROM at 1 week	Per surgical note
16	Acromioclavicular Separation	Marmor	Same as operative	Sling for comfort Weight bearing up to 5lb for 6 weeks Early active range of motion, try to regain full range of motion in 6 weeks Return to normal activity in 12 weeks
17	Sternoclavicular Dislocation (SCD)	Kandemir	Sling for comfort NWB 6 weeks Pendulum exercises 1-2 weeks Active ROM as tolerated afterwards Start gradual WB at 6 weeks	Same as non-operative
18	Clavicle Fractures	Toogood	Sling/NWB for 6 weeks Elbow, wrist, finger ROM Pendulum exercises for 4 weeks (any ROM allowed below 90 of shoulder flexion/abduction) then AROM for 4 to 6 weeks At 6 weeks WBAT and full ROM	Immediate full passive or active ROM Sling in public places At 6 weeks WBAT
20	Scapula Fractures	Kandemir	First 6 weeks: Sling for comfort, full active or passive ROM After 6 weeks: gradual increase of weight bearing and activities	Immediate active and passive ROM, NWB After 6 weeks: Begin strengthening and resistance with gradual increase in weights After 12 weeks: Begin full strength and endurance program
21	Proximal Humerus Fractures	Kandemir	Shoulder brace with pillow for 6 weeks Start pendulum exercises at 10-14 days Start active & active assisted range of motion at 2 weeks Start passive range of motion at 6 weeks Start resisted exercises at 12 weeks	Shoulder brace with pillow for 6 weeks Start pendulum exercises postop day #1 Start active and active assisted range of motion postop day #1 Start passive range of motion at 6 weeks Start resisted exercises at 12 weeks
22	Humeral Shaft Fractures	Toogood	Coaptation splint Sarmiento brace at 1 week with films in brace1 Films every 1 to 2 weeks to check alignment until fracture "sticky" (less mobile on exam) Discontinue brace when fracture stable on exam and pain controlled WBAT when films show 3 of 4 cortices united	Immediate full ROM Okay to perform ADLs (<5lbs) WBAT when: Pain controlled; 3 of 4 cortices healed; if fracture bridged 12 weeks if compression plating
23	Distal Humerus Fractures	Toogood	Same as operative	Splint ~3 days to allow incision to heal Full ROM, NWB for 12 weeks once splint is removed Full ROM, WBAT after 12 weeks (except TEA, which has lifetime 5lbs weight limit)

Chapter	Extremity emergencies	Author	Possible non-operative rehabilitation	Possible post-operative rehabilitation
24	Elbow Dislocation/ Terrible Triad Injury	Kandemir	Elbow stable at full range of motion: Sling for comfort for 1-2 weeks Indomethacin for heterotopic ossification prophylaxis Non-weight bearing for 6 months Start range of motion exercises day #1	Per surgical note
			Elbow stable only at 30 degrees to full flexion: Hinged elbow brace 30°-full flexion at 1-2 weeks Gradual increase of extension at 3-4 weeks Non-weight bearing for 3 months Strengthening at 3 months Indomethacin for Heterotopic ossification prophylaxis	
25	Radial Head Fractures	Lee	Similar to operative	Sling for comfort NWB 6 weeks Active and passive ROM exercises
26	Capitellum Fractures	Kandemir	Non-weight bearing Gradual increase of range of motion	Non-weight bearing 6 weeks Full range of motion
			Hinged elbow brace start range of motion exercises day #1	Start range of motion exercises day #1
27	Olecranon Fractures	Lee	Immobilize for 2 weeks ROM 0-90° for 4 weeks Free ROM 4-6 weeks	Splint for 2 weeks Remove posterior long arm splint and stitches at 2 weeks Begin AROM of elbow and forearm pronosupination, NWB 0-6 weeks At 6 weeks, WBAT and begin PROM in addition to AROM
28	Forearm Fractures	Lee	Forearm Clamshell brace for 6 weeks	NWB for 6 weeks Full ROM for 6 weeks
29	Distal Radius Fractures	Lee	Week 1: X-rays in sugar tong Overwrap sugar tong with fiberglass for snug fit Week 2: X-rays in splint Assess reduction Week 3: X-rays in splint Assess reduction If acceptable, transition to SAC for 3 weeks Week 6: X-rays out of cast WBAT Removable wrist splint and wean out over 2 weeks	Remove postop splint and stitches at 1 week Transition to removable wrist splint and being AROM of wrist and forearm, NWB 0-6 weeks At 6 weeks, WBAT and transition out of brace
30	Scaphoid Fractures	Schroeder	Distal pole - Thumb Spica cast, 4-6 weeks Waist - Thumb Spica cast, 8-12 weeks	Non weight bearing for 6-8 weeks, per surgeon.
31	Perilunate Dislocation	Lee	, , , , ,	Per surgeon's guidelines
32	Extensor Tendon Laceration	Schroeder	If <60% of tendon width, ROM allowed	Depends on zone of injury, follow surgeon's guidelines
33	Flexor Tendon Injuries	Schroeder		Dorsal block splint with wrist flexed 10-20° MPs flexed 70° and IPs resting ROM per surgeon's guidelines
34	Finger Replantation	Schroeder		Per surgeon's guidelines
35	Finger Fractures	Schroeder	For stable fractures, buddy tape and early ROM	Per surgeon's guidelines
36	Metacarpal Fractures	Schroeder	Early ROM exercises	Early motion for stable internal fixation Casting for 4 weeks for CRPP, move IPs immediately.

Chapter	Extremity emergencies	Author	Possible non-operative rehabilitation	Possible post-operative rehabilitation
37	Metacarpophalangeal (MCP) Dislocations	Schroeder	Dorsal blocking splint with wrist extended 20° MPs fully flexed and IPs free Begin IP motion immediately	Per surgeon's guidelines
38	Phalanx Dislocations	Schroeder	DIP dislocation - gentle ROM once reduced PIP dorsal dislocation - buddy tape to adjacent finger, begin early ROM PIP volar dislocation - PIP splint in full extension for 6 weeks	Per surgeon's guidelines
LOWER EX	XTREMITY TRAUMA			
39	Femoral Shaft Fractures	McClellan		WBAT as tolerated for stable fracture patterns (Winquist 0-1) TDWB for unstable patterns (Winquist 2-4) Progress to WBAT at 6 weeks Knee ROM and quad strengthening at 2 weeks
40	Distal Femur Fractures	Toogood	Same as operative	12 weeks NWB with FROM exercises WBAT after 12 weeks
41	Traumatic Knee Dislocation	Kandemir	Hinged knee brace for 6-12 weeks Hinged knee brace locked in exten- sion for 1 week then ROM exercises in brace	Expectant management: Discontinue external fixator at 4-6 weeks Start range of motion in hinged knee brace Reevaluate at 3 months Early repair - per surgical note
42	Patella Fractures	Marmor	FWB only in extension brace/cast Isometric quad exercise ASAP Resistance exercises at 6 weeks (avoid active extension until 6 weeks Progressive ROM from weeks 2-6 at specified intervals, e.g. 15 degree increments per week Consider immobilization	Hinged knee brace for 8 weeks Full weight bearing only with brace locked in extension for 8 weeks For stable fixation – passive ROM 0-30 in first 4 weeks and advance by 15 degrees every week afterwards For tenuous fixation – extension brace/ cast for 6 weeks
43	Tibia Plateau Fractures	Morshed	Initial non-operative treatment: Non-weight bearing for 6 weeks Hinged knee brace Early range of motion after 6 weeks: Hinged knee brace Mobilization and graduated weight bearing and walking	NWB for 6 weeks Partial progressive weight bearing for 6 weeks Full active and passive ROM Hinged knee brace if there is accompany- ing cruciate or collateral ligament injury
44	Tibia Shaft Fractures	McClellan	Long leg cast for 4 weeks Convert to functional cast brace (Sarmiento) until fracture union Weight bearing as tolerated after 4 weeks & X-ray follow-up every 2 weeks	2 weeks in a posterior splint with the foot plantigrade (ankle at 90) ROM knee and ankle at 2 weeks WBAT at 2 weeks for stable fracture patterns NWB 6 weeks for unstable fracture patterns
45	Tibia Plafond (Pilon) Fractures	McClellan		Splint for 2-3 weeks Nonweight bearing for 12 weeks Passive and active range of motion at 2-3 weeks
46	Ankle Fractures	Marmor	WBAT for in CAM boot for 6 weeks For stable injuries 6-12 weeks NWB in short leg cast for unstable injuries	Splint 2 weeks WBAT in CAM boot and ROM exercises 4 weeks Syndesmosis injury - NWB 12 weeks, full ROM exercises Diabetic / severe osteoporosis:

Chapter	Extremity emergencies	Author	Possible non-operative rehabilitation	Possible post-operative rehabilitation
47	Talus Fractures	Shearer	Short leg cast for 6 weeks then progressive weight bearing 25% every week	Well padded splint for 2 weeks Begin ankle and foot ROM 2 weeks after surgery For neck & body fractures - 12 weeks NWB For process fractures - 6 weeks NWB Progressive weight bearing afterwards (advance by 25% every week)
48	Calcaneus Fractures	Coughlin	Same as operative	NWB 6-12 weeks Early ROM (after 2 weeks)
49	Lisfranc Fractures	Shearer	Stable ligamentous injuries: CAM boot WBAT for 6 weeks Non-displaced bony Lisfranc injuries: Cast NWB for 6 weeks	Splint for 2 weeks, then CAM boot, begin ankle/subtalar motion Progressive weight bearing at 8 weeks (25% per week) K-wire removal at 6 to 8 weeks Screw removal at 3 to 6 months Return to sports 9 to 12 months
50	Navicular Fractures	Shearer	Cast for 6 weeks NWB	ORIF: Splint for 2 weeks then CAM boot, ankle and subtalar ROM NWB for 8 weeks then progressive weight bearing (25%/week) Ex-fix: removal at 6 weeks, NWB 3 months Bridge plate: removal at 3-4 months, NWB 3 months
51	Metatarsal Fractures	Shearer	1st Metatarsal - NWB cast for 6 weeks 2-4th Metatarsals - Stiff sole postop shoe or boot for 6 weeks WBAT 5th metatarsal: Zone 1 - Stiff sole shoe or boot for 6 weeks WBAT Zone 2/3 - NWB cast for 6 weeks	Per surgical note 5th MT Zone 2/3 can begin early weight bearing after IM stabilization
52	Toe Fractures	Shearer	Heel weight bearing stiff sole shoe	Heel weight bearing stiff sole shoe
PELVIS AN	ID HIP TRAUMA			
53	Pelvic Ring Fractures	Matityahu	WBAT for stable injuries	TDWB 6-12 weeks Early ROM
54	Acetabulum Fractures	Matityahu	WBAT for stable injuries	TDWB 6-12 weeks Early ROM
55	Hip Dislocations	Matityahu	WBAT for stable injuries	TDWB 6-12 weeks Early ROM
56	Femoral Head Fractures	Matityahu	TDWB for 6 weeks with restricted abduction for Pipkin I fractures	For Pipkin II-IV injuries: TDWB 3 months Hip abductor strengthening exercises After 3 months, WBAT and gait training
57	Intertrochanteric Fractures	Shearer		Geriatric: WBAT Young: Depends on fracture pattern/ fixation
58	Femoral Neck Fractures	Meinberg	For stable (valgus impacted) injuries - WBAT Otherwise TDWB	Arthroplasty - WBAT ORIF - TDWB, early ROM
59	Femoral Subtrochanteric Fractures	Shearer		Geriatric: WBAT Young: Depends on fracture pattern/ fixation


Appendix C: Orthoses

Chapter	Extremity emergencies	Author	Recommended orthoses	Comments
UPPER EX	TREMITY TRAUMA			
15	Traumatic Anterior Shoulder Instability	Lee	Shoulder abduction brace or Airplane splint	
16	Acromioclavicular Separation	Marmor	Sling	
17	Sternoclavicular Dislocation (SCD)	Kandemir	Shoulder Immobilizer	
18	Clavicle Fractures	Toogood	Sling	
19	Scapulothoracic Dissociation (STD)	Kandemir	Shoulder Immobilizer	
20	Scapula Fractures	Kandemir	Shoulder Immobilizer or sling	
21	Proximal Humerus Fractures	Kandemir	Shoulder Immobilizer	
22	Humerus Shaft Fractures	Toogood	Sarmiento brace	Sling may be added
23	Distal Humerus Fractures	Toogood	None	
24	Elbow Dislocation/ Terrible Triad Injury	Kandemir	Elbow ROM (hinged) brace	If stable in full range of motion - no brace is needed
25	Radial Head Fractures	Lee	Elbow ROM brace	Sling may be added
26	Capitellum Fractures	Kandemir	None	
27	Olecranon Fractures	Lee	Elbow ROM brace	Sling may be added. Post-cast stabilization
28	Forearm Fractures	Lee	Forearm fracture brace	Sling may be added
29	Distal Radius Fractures	Lee	Forearm-wrist fracture brace	Wrist brace for healing fractures coming out of cast
30	Scaphoid Fractures	Schroeder	Thump spica orthosis	
31	Perilunate Dislocation	Lee		
32	Extensor Tendon Lacerations	Schroeder	Volar wrist and hand splint	
33	Flexor Tendon Injuries	Schroeder	Dorsal blocking splint	
34	Finger Replantation	Schroeder	Custom splint, depending on injury	
35	Finger Fractures	Schroeder	Finger splints	
36	Metacarpal Fractures	Schroeder	Short arm or boxers cast	
37	Metacarpophalangeal (MCP) Dislocations	Schroeder	Dorsal blocking splint	
38	Phalanx Dislocations	Schroeder	Finger splints	
LOWER EX	TREMITY TRAUMA			
39	Femoral Shaft Fractures	McClellan	None	
40	Distal Femur Fractures	Toogood	None	
41	Traumatic Knee Dislocation	Kandemir	Knee Immobilizer - initial treatment in emergency department Knee ROM (hinged) brace - after surgery	
42	Patella Fractures	Marmor	Knee Immobilizer	Followed by range of motion knee brace when beginning to mobilize
43	Tibia Plateau Fractures	Morshed	None	
44	Tibia Shaft Fractures	McClellan	Tibial fracture brace bivalve	With or without the ankle joint and foot extension

Chapter	Extremity emergencies	Author	Recommended orthoses	Comments
45	Tibia Plafond (Pilon) Fractures	McClellan	CAM Walker	After surgical fixation
46	Ankle Fractures	Marmor	CAM Walker	Well-padded splint for the first 2 weeks after surgery
47	Talus Fractures	Shearer	CAM Walker	For use when ready to begin ROM exercises, typically 2-6 weeks post-injury
48	Calcaneus Fractures	Coughlin	CAM Walker Ankle Foot Orthosis (AFO) for symp- tomatic malunions	Post-surgical possibly use rigid insert in the shoe
49	Lisfranc Fractures	Shearer	CAM Walker	For use when ready to begin ROM exercises, typically 2-6 weeks post-injury
50	Navicular Fractures	Shearer	CAM Walker	For use when ready to begin ROM exercises, typically 2-6 weeks post-injury
51	Metatarsal Fractures	Shearer	CAM Walker or post-op shoe	WBAT for 2-4th, 5th Zone 1
52	Toe Fractures	Shearer	Post-op shoe	Heel weight bearing if unstable
SPINE TRA	AUMA			
60	Spinal Cord Injury (SCI)	Larouche, McClellan		
61	Adult C-Spine Clearance after Blunt Trauma	Larouche, McClellan		
62	Occipitocervical Dislocations	Larouche, McClellan		
63	Atlas (C1) Fractures and Transverse Ligament Injuries	Larouche, McClellan	HALO	
64	C2 Odontoid (dens) Fractures	Larouche, McClellan	HALO or cervical collar	Usually after surgical fixation
65	C2 Traumatic Spondylolisthesis	Larouche, McClellan	HALO or cervical collar	
66	C3-C7 Facet Dislocations	Larouche, McClellan	Cervical collar or CTO	Depending on level
67	C3-C7 Lateral Mass Fractures	Larouche, McClellan	Cervical collar or CTO	
68	Geriatric Vertebral Compression Fracture (VCF)	Larouche, McClellan	Jewett or TLSO	Depending on compartment
69	Thoracolumbar Injuries	Larouche, McClellan	Bivalve TLSO	

The following chart should not be used to predict the time to return to work for a given patient. The chart is not validated for this purpose. Rather, the chart should be used only as the basis for a conversation with the patient on the amount of time before he or she can return to work. The chart can help the patient understand the factors that may influence the return to work time and together with his surgeon can devise a plan for returning to work.

The chart applies to all orthopaedic injuries at every given time after surgery.

% Functional recovery (Pain, ROM, WB, Muscle strength)

ROM - Range Of Motion

WB - Weight Bearing

% Functional recovery= (%Pain recovery + %ROM gain + %ability to bear weight + %muscle strength recovery) / 4

Examples for use of the chart:

- Engineer with an ankle fracture, 6 weeks after surgery, has 3/10 (pain (70% recovery), has regained 80% of his ROM compared to contralateral side, is able to place 100% of his weight on the ankle and has regained 50% of muscle strength = Sedentary office, 75% healing => can return to work.
- Motorcycle repairman that lifts more than 50lb at work with a tibia shaft fracture, 10 weeks after surgery, has 7/10 pain (30% recovery), has regained 80% of his ROM compared to contralateral side, is able to place 100% of his weight on the leg and has regained 50% of muscle strength = Manual laborer heavy, 65% functional recovery => estimated time to return to work is 6-12 weeks.
- Manual worker at a high-tech company with a distal radius fracture, 9 weeks after surgery, pain is 5/10 (50% recovery), has regained only 10% of her ROM compared to contralateral side, is able to lift only 5% the weight she is able to lift on the uninjured side and has regained 20% of muscle strength = Manual laborer light, 21.5% functional recovery => estimated time to return to work is 6-10 weeks.