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Historical foreword on the centenary after Felix
Hausdorff’s classic Set Theory

From Euclid’s “Elements” (III c. BC), the most extensive and influential mathemat-
ical treatise of the antiquity, mathematics was presented as the totality of several
separate domains such as arithmetic, algebra, and geometry. Until the nineteenth
century, these domains (and analysis, appearing in XVII c.) were developed rather
independently. There was no general foundation connecting them in any integrity.

This peculiarity distinguished mathematics disadvantageously from the most
part of natural sciences, since each of them were united up to this time in some
special integrities on the base of some uniting concepts going back to philosophy of
the antiquity. For physics, the notion of atom, for chemistry the notion of chemical
element, and for biology the notion of biological cell became such uniting concepts.

This situation inmathematics changed cardinally when Georg Cantor (1845–1918)
developed the theory of abstract sets consisting of abstract elements, i.e. connected
with each other by only one membership relation. Unfortunately, such a general idea
allowed the use such boundless and indicationless notions as the set of all sets.
This brought to the discovery of paradoxes in Cantor’s set theory and induced the
distrust to it among mathematicians. But Set Theory as a dream has been defended
by David Hilbert (1862–1943). In his famous expression, “Aus dem Paradies, das
Cantor uns geschaffen, soll uns niemand vertreiben können”, or in English, “From
the paradise, that Cantor created for us, no-one can expel us” (D. Hilbert, Grundlagen
der Geometry, Teubner, Leipzig-Berlin, 1930, p.274). Hilbert used the word paradise
because he excellently understood that some well-postulated set theory can be that
general foundation, which will give the opportunity to unite arithmetic, algebra,
geometry, analysis, and other domains of mathematics in a unique integrity.

Felix Hausdorff (1868–1942) was one of thosemathematicians whowere occupied
with the creating and forming of thismathematical set-theoretical paradise.

In his famous book, Grundzüge der Mengenlehre [Vien, Leipzig, 1914; 2nd ed.
Mengenlehre, Walter de Gruyter, Berlin, 1927], F. Hausdorff described the architecture
of contemporary mathematics in the form of a tree with the set theory as a trunk and
all separate domains of mathematics as its branches. Hausdorff himself laid there the
foundations of two suchmain domains of mathematics, function theory andmeasure
and integration theory. This outstanding book became a model for all subsequent
authors who certainly built their books dealing with any branch of mathematics on
the basis of the set theory.

Starting at Hausdorff’s initial architecture of mathematics, a group of mathemati-
cians acting under the pseudonym Nicolas Bourbaki described the final architecture
of contemporary mathematics. On the basis of set theory and formal logic, they intro-
duced a general concept of a mathematical structure and a more substantial concept

https://doi.org/10.1515/9783110550948-204
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of a mathematical system consisting of a principle carrier set and a totality of some
mathematical structures on this set connected by certain logical axioms [N. Bourbaki,
Eléments de Mathématique. Livre I. Théorie des ensembles. Chapitres 1–4, Hermann,
Paris, 1956–1960]. This allowed presenting every branch of the “mathematical tree”
as a mathematical theory studying some separated totality of mathematical systems
with their own special structures and axioms.

Thus, the books of Hausdorff and Bourbaki have played the leading role in the
consolidation ofmathematics aswell asmathematicians on the basis of just a few gen-
eral ideas: element, set, structure, system (with an indispensable and indiscernible
involvement of logical tools).

Unfortunately, Bourbaki’s book on sets and structures turned out to be so for-
malized and difficult that it could not eclipse Hausdorff’s book and become an
acknowledged introduction to contemporary mathematics.

The aforementioned famous book by Hausdorff expounding on the set theory,
the theory of (real-valued) functions, and the measure and integration theory as
foundations of mathematics plays this role up to our days, of course, along with
remarkable later books of other authors such as K. Kuratowski and A. Mostovski
[Set theory. North-Holland Publishing Company, Amsterdam, 1967], K. Kuratowski
[Topology. Volume 1, Academic Press, New York-London, 1966], and so on. Surely, for
the past centenary after the first edition of Hausdorff’s book in 1914, these domains (as
the trunk and twomain branches) ofmathematics developed swiftly. Therefore, in our
time, they differ considerably from those in the beginning of the twentieth century.

The discovery of paradoxes in Cantor’s set theory forced mathematicians to bring
the strictness up to a higher level. Therefore,mathematics advanced from the naive set
theory expounded by Hausdorff to axiomatic set theories with strict logical language
and adjusted axioms restricting the bounds of mathematical creation. The Zermelo –
Fraenkel set theory and the Neumann–Bernays –Gödel set theory became the most
well-known axiomatic set theories. At present, there are remarkable texts on this
subject, although almost all of them are rather intended for particular specialists than
for a wide circle of mathematicians.

Further, using von Neumann’s approach to the construction of ordinal and car-
dinal numbers, mathematicians were able to construct at first the set of natural
numbers and then the following sets of integer, rational, and real numbers within
the aforementioned axiomatic set theories. This achievement allowed overcoming the
gaps in Hausdorff’s book, where (a) ordinal and cardinal numbers were introduced
not as some special sets but on the naive level by means of extended notions such
as “thing”, “symbol”, and others, and (b) number theory was lacking since it was
considered as a prolegomenon to the naive set theory.

The enormous virtue of Hausdorff’s book is the general theory ofmeasurable (real-
valued) functions on descriptive spaces (a descriptive space is a set with a fixed set of
its subsets). The extreme importance and naturalness of the family of all measurable
functions follows from the famous Borel – Lebesgue –Hausdorff theorem asserting
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that (a) this family is closed under all natural mathematical operations (in particular,
addition, multiplication, division, and so on) and uniform convergence and (b) every
family of (real-valued) functions on a set with thementioned properties is some family
of all measurable functions on some descriptive space. This family is extraordinary
abundant in its concrete forms.

However, it turned out that the concept of a measurable function is not sufficient
for the solution of some problems which arose later in function theory. Thus, in 2006,
the family of uniform functions on a prescriptive space was discovered (a prescriptive
space is a setwith afixed set of its finite covers). The importance andnaturalness of the
family of all uniform functions follows from the characterization theorem (proved in
2008) asserting that (a) this family is closedunder all naturalmathematical operations
(in particular, addition, multiplication, bounded division, and so on) and uniform
convergence and (b) every family of (real-valued bounded) functions on a set with the
mentioned properties is some family of all uniform functions on some prescriptive
(in particular, descriptive) space. This family also became sufficiently abundant in its
concrete forms (for example the family of all Riemann integrable functions on the real
interval was described as some family of all uniform functions on it).

Further, the most important concrete family of measurable functions considered
in Hausdorff’s book is the family of Borel functions on a descriptive space. The out-
standing result about this family presented in his book is the Lebesgue-Hausdorff
classification describing the family of Borel functions on a metric space by means
of the transfinite application of the Baire operation of addition of the pointwise limits
of sequences of functions from the preceding families. This result essentially uses the
remarkable transfinite construction of Borel sets given by William Henry Young and
Hausdorff himself. However, these classifications and constructions are not valid for
an arbitrary descriptive space.

Thus, in 2002, newmore general and more complicated constructions and classi-
fications were created. It is remarkable that the finest classification (2014) uses, in the
capacity of the initial functional family, some narrow family of uniform functions.

In the first edition of his book published in 1914, Hausdorff also expounded on
an important branch of mathematics, the theory of the Lebesgue integral. Naturally,
for the past centenary, the measure and integration theory had an enormous devel-
opment. This is reflected in the large number of excellent books on this domain with
different degrees of generality and profundity. From the times of Lebesgue and Young,
two parallel points of view were developed in integration theory: the first considers
the integral as a special structure over a descriptive space with some measure; the
second considers the integral as a superstructure over a functional linear space
with some linear functional on it. For many years, the efforts of many outstanding
mathematicians were devoted to the proof of the parallelism of these points of view.

For the most popular topological space with a Radon measure, this supposed
parallelism is known as the Riesz –Radon– Fréchet problem of characterization of
Radon integrals as linear functionals. The solution of this problem as well as of the
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problem of the general parallelism in the most general and complete form took up
almost one hundred years.

Finally, although the Lebesgue integral substantially darkened the Riemann
integral, the latter continued to develop and in result has been generalized onto an
arbitrary Tychonoff topological space with some bounded positive Radon measure. It
is remarkable that the description of Riemann integrable functions requires involving
some family of uniform functions. By the same token, the Riemann integrable func-
tions was characterized in 2006 and this characterization is completely different from
the famous Lebesgue characterization (as almost everywhere continuous functions)
even for the real interval.

All previously described (along with many other) changes and achievements
happening in the centenary after the first edition of Hausdorff’s book are reflected
(in detail and in up-to-date mathematical language) in the present comprehensive
two-volume book Sets, Functions, Measures published by Walter de Gruyter in 2018.

The present work expounds set theory, the theory of (real-valued) functions, and
the measure and integration theory as the fundamental domains of contemporary
mathematics successively built on each other. It may be said that the authors of this
book have attempted to solve one hundred years later the problem solved successfully
by Hausdorff at the beginning of the twentieth century. In particular, continuing
Hausdorff’s line, the material of the book is presented in such a way that there is no
need for references to other sources.

V. K. Zakharov and T. V. Rodionov
October 2017
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Preface

The book’s title Sets, Functions, Measures shows that it is devoted to the exposition
of the most general fundamentals of mathematics. It may be said that the book goes
back to the famous Set Theory by Felix Hausdorff [1914], where he expounded the set
theory, the function theory, and the function theory as the general fundamentals of
mathematics. The authors of this book have attempted to solve a hundred years later
the problem solved successfully by F. Hausdorff in the beginning of 20th century.

Themanner of exposition also goes back to the manner of F. Hausdorff. As in “Set
Theory”, we set as an object to expound the most general results of the set theory,
the function theory, and the measure theory in such a way that there was no need for
references to other sources. Since the number theory was not included by F. Hausdorff
in his book, we, following the indicated line, considered it necessary to eliminate
this minor defect and to expound the theory of natural, integer, rational, and real
numbers, deducing it from the set theory itself.

It follows from the above that this book is addressed to awide range ofmathemati-
cians, and it can be useful both to mature mathematicians and to students and young
mathematicians, who would like to be acquainted with the fundamentals of the listed
theories.

According to its title, the book is divided into three chapters, each leaning on the
other subsequently and is supplied with special appendices. The content of the book
and the motivations of the authors are explicitly given in the introduction to each
chapter. Here, we shall touch only some of the peculiarities of the presented material.

The first chapter is devoted to the theory of classes, sets, and numbers. This
theory is expounded in the framework of Neumann–Bernays –Gödel axiomaticswith
generality, completeness, and thoroughness. It is called the Neumann–Bernays –
Gödel set theory (NBG). The summit of this chapter is the theory of real and extended
real numbers, including the theory of series in the extended real line [−∞,∞]. The
other version of the theory of sets (the Zermelo – Fraenkel set theory with the choice
axiom (ZF)) is presented in Appendix A (see A.2).

The second chapter is devoted to the theory of functions. It is based on the
first chapter, especially on its last section. It contains together with the more or less
standard material a lot of new and non-trivial materials such as the theory of uniform
functions on prescriptive spaces.

The third chapter is devoted to the general theory of measure and integral. It is
based on two preceding chapters, especially on the theory of series in the extended
real line. This allows us to consider measures taking their values in [−∞,∞] at
the very beginning. Note that in the last chapter, the authors widely used ideas
and methods expounded in the remarkable books of Fremlin [1974], Jacobs [1978],
and Konig [1997]. The particular value of this chapter consists of the solution of the
problemof characterization of Lebesgue integrals and the problemof characterization

https://doi.org/10.1515/9783110550948-205
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xviii | Preface

of Radon integrals in the most general cases, and the key tool in the solution of the
second problem is some concrete family of uniform functions.

Appendix A is devoted to the characterization of all natural models of the NBG
and ZF set theories. Thesemodels are extremely important in virtue of their simplicity.
For the reader’s convenience, the first section of this appendix describes the structure
of an arbitrary first-order language (theory) and contains necessary notions from
mathematical logic. In the second and third sections, the proper axioms and axiom
schemes of the ZF set theory are formulated, the notions of ordinals, cardinals,
and inaccessible cardinals are introduced, and properties of cumulative Mirimanov–
Neumann sets are described. Thus, these sections are good supplements to the first
chapter, giving amore profoundpresentation about contemporarymathematical logic
and axiomatic set theories.

Appendix B is devoted to the local theory of sets giving the solution of Maclane’s
problem of constructing a new andmore flexible axiomatic set theory that could serve
as an adequate logical foundation for all the naive category theory.

Appendix C is devoted to the proof of the compactness theorem for some gener-
alized second-order language. The compactness theorem is valid for the first-order
language, but it is not valid for the usual second-order language.

Appendix D contains historical notes on the famous Riesz –Radon–Fréchet
problem of characterization of Radon integrals as linear functionals.

Each chapter C is divided into sections with two-valued numeration C.P. Each
section is divided into subsections with three-valued numeration C.P.S. Important
statements in each subsection such as lemmas, propositions, and theorems are num-
bered in a subsection by natural numbers in the manner Lemma N, Proposition N,
TheoremN.When referring in some subsection to statements from another subsection
C.P.S, we use number C.P.S in round brackets in the manner N (C.P.S).

The symbol is used throughout the text to indicate the end of a proof.
If somenotionhas several names, then the other names arewritten in parentheses

after the name chosen by the authors as the main name.
To shorten writings, we use themethod of parallel writing in the following form. A

shortwriting “A 𝜋 [𝜘, 𝜌, . . .] B p [q, r, . . .] C.” is equivalent to the following full writing:
“(1) A 𝜋 B p C; (2) A 𝜘 B q C; (3) A 𝜌 B r C; . . . ”, where the capital letters denote some
texts and the small letters denote some words, word combinations, or formulae.

By the recommendation of the publisher, the book is divided into two volumes.
For the convenience of readers, each volume is equipped by the same index of terms,
index of notations, and bibliography.

The authors express their profound gratitude to the Rector of the Lomonosov
Moscow State University, Professor Victor Antonovich Sadovnichy for his continuous
support during the twenty-year work on this book under the aegis of the University.
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1 Fundamentals of the theory of classes, sets,
and numbers

Introduction

The first chapter is devoted to the theory of classes, sets, and numbers. It is the basis
for all other chapters.

In particular, we need notions of a class and a property of a class.
In connectionwith the notion of a class, it is not enough for us to use the theory of

sets inZermelo – Fraenkel’s axiomatics (ZF) (seeAppendixA,A.2), but it isnecessary to
use the theory of classes and sets inNeumann–Bernays –Gödel’s axiomatics (NBG).

For the axiomatic construction of the theory of classes and sets, we have chosen
not the finitary version of NBG, presented for instance in [Mendelson, 1997], but a sim-
pler equivalent version, close to the version presented by Kelley [1975]. In this ver-
sion, several explicit axioms from the finitary version of NBG, claiming the existence
of some classes, are substituted by one axiom scheme AS2 (see 1.1.5) using the select-
ing term {x | 𝜑(x)} with an arbitrary formula 𝜑 (see [Mendelson, 1964, ch. 4, 1]). The
finitary version of NBG and the proof of equivalence between the scheme and finitary
versions are given in Appendix B (see B.7.3).

The first chapter begins with a strict inductive definition of formulas.
Not having the notion of a natural number at this stage of the theory, we were

forced to give rather unaccustomed definitions of deducibility and correctness be-
cause we could not use chains 𝜎1, 𝜎2, . . . , 𝜎n, usually used in mathematical logic. For
the strict definition of deducibility and correctness, we need the full family of axioms,
i. e. not only the proper axioms and axiom schemes about classes and sets, but also
the initial logical axiom schemes LAS1 – LAS14 (see 1.1.4) and the rules of deduction
(≡ rules of inference).

The presented logical axiom schemes and rules of deduction are used also directly
in proofs of some starting mathematical assertions such as Proposition 1 (1.1.5).

Furthermore, we were forced to introduce in the first chapter the new unaccus-
tomed notion of a (multivalued) collection of classes ⟮Ai ⊂ A | i ∈ I⟯ in addition to
the usual notion of a simple collection (≡ indexed family) of sets (ai ∈ A | i ∈ I). These
notions reflect our intuitive ideas about collections of totalities and collections of
wholenesses.

In addition, the necessity to have finite suits (pairs, triplets, quadruplets,. . . ) of
classes forced us to introduce a new notion of (multivalued) sequential suits of classes
⟮A, A⟯, ⟮A, A, A⟯, ⟮A, A, A, A⟯,. . . ; and on this base to define sequential products
of classes A × A, A × A × A, A × A × A × A,. . . (see 1.1.12).

All the above-mentioned topics constitute the main part of the first section of
the first chapter. The other three sections are devoted to the theory of ordinal, car-
dinal, natural, and real numbers.

https://doi.org/10.1515/9783110550948-001
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2 | 1.1 Classes and sets

The use of axiom of regularity A6 (see 1.1.11) makes it possible to simplify strongly
the definition of ordinal and cardinal numbers. The theory of ordinal and cardinal
numbers is given by themethod of J. Neumann. In thismethod, an ordinal is just equal
to the class of all preceding ordinals. The operations over ordinal and cardinal num-
bers are described sufficiently in details.

Naturalnumbers aredefinedas someordinalnumbers. The theoryof realnumbers
isbasedon theprogressiveextensionof thesetofnaturalnumbers.Theoperationsover
numbers are introducedgradually starting from theoperationsover cardinalnumbers.

Note, that proofs of all basic mathematical assertions of the first section are very
detailed. However, further in the book, proofs gain a form more habitual for the most
of mathematical texts.

1.1 Classes and sets

The axiomatic theory of classes and sets postulates the existence of some undefinable
objects called classes and sets and formulates the rules of action with them. Axiomat-
ics of the theory of classes and sets consists of two parts. The first part is logical andde-
scribes rules of construction of correct conclusions about classes and sets. The second
part is propermathematical anddescribes someprimaryproperties of classes and sets.

1.1.1 Symbols, symbol-strings, and texts of the theory of classes and sets

The theory of classes and sets uses the following special symbols (≡ signs):¬ (the nega-
tion); ∧ (sometimes &) (the conjunction); ∨ (the disjunction); ⇒ (the implication);
∀ (the quantifier of generality); ∃ (the quantifier of existence); {|} (the selector); ∈ (the
belonging).

The symbols ¬, ∧, ∨,⇒, ∀, ∃, and {|} are called logical. The symbols ¬, ∧, ∨,⇒ are
called the logical propositional connectives. The symbol ¬ is unary; the symbols ∧, ∨,
⇒, and {|} are binary.

The symbol ∈ is the single proper special symbol. It is binary as well.
These special symbols have the following sense: ¬ . . . (It is not. . . ); ⋅ ⋅ ⋅ ∧ . . .

(. . .and. . . ); ⋅ ⋅ ⋅ ∨ . . . (. . .or. . . ); . . . ⇒ . . . (. . . implies. . . ; If. . . , then. . . ); ∀ . . . (For all. . . ;
For any. . . ); ∃ . . . (There is. . . ; There exists. . . ); {⋅ ⋅ ⋅ | . . . } (All. . .with the property. . . );
⋅ ⋅ ⋅ ∈ . . . (. . .belongs to. . . ; . . . is an element of. . . ; . . . is a member of. . . ).

In the capacity of general symbols (≡ signs), the theory of classes and sets uses
the letters of Latin, Greek, Gothic, and other alphabets, Arabic and Roman numerals,
the comma“,”, the point “.”, the colon “:”, the prime “”, covers “ ̄, ̂, ̌, ̃,. . . ”, circles
“∘, ⊗, ⊕,. . . ”, the round, curly, square, broken, and angular brackets “(,), {,}, [,], ⟮, ⟯,
⟨, ⟩”, the blank symbol (␣), and so on.

The special and general symbols compose the initial alphabet of the theory of
classes and sets (note that it is neither a class nor a set).
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1.1.2 Formulas and terms | 3

A symbol-string (≡ expression) of the theory of classes and sets is a sequence of
symbols of the initial alphabet of this theory except theblank symbol,written oneafter
another. More strictly a symbol-string is defined by induction in the following way: 1.
every symbol 𝛼 is a symbol-string; 2. if 𝜎 and 𝜌 are symbol-strings, then 𝜎𝜌 and 𝜌𝜎 are
symbol-strings. A letter-string is a symbol-string every symbol of which is a letter.

The usage of only symbol-strings brings to insuperable difficulties. Therefore, fur-
ther new designating (≡ reducing, shortening) symbols and symbol-strings will be in-
troduced. A designating symbol-string 𝜎 for a symbol-string 𝜌 is introduced in the form
of the symbol-string 𝜎 ≡ 𝜌 or 𝜌 ≡ 𝜎 (𝜎 is a designation for 𝜌). Examples of designating
symbol-strings are the following: A ⊂ B, A = B, A∪B,⌀,N,∏⟮Ai ⊂ A | i ∈ I⟯, the real
line, the function exp, and so on.

On the level of epilogic and epimathematics (i. e. before carrying out formal de-
scriptions) the following initial opportunities of a mathematician for reasoning about
symbol-strings are assumed: 1. the opportunity to insert one symbol-string into an-
other symbol-string (inparticular towrite alongside); 2. the opportunity to distinguish
a part of a symbol-string in the capacity of a new symbol-string.

If a symbol-string 𝜌 is a part of a symbol-string 𝜎 staying in one of the three
following positions: . . . 𝜌, 𝜌 . . . , . . . 𝜌 . . . , then we say that 𝜌 occurs in 𝜎 (or else 𝜌 is
an occurrence in 𝜎).

A sequence of symbol-strings, written one after another with the blank symbol ␣
between them, is called a text of the theory of classes and sets. More strictly text is
defined by induction in the following way: 1. every symbol-string 𝜎 is a text; 2. if Φ
and Ψ are texts, thenΦ␣Ψ and Ψ␣Φ are texts.

We say that a textΦ occurs in a text Σ (or elseΦ is an occurrence in Σ), ifΦ is a part
of the text Σ, staying in one of the three following positions: . . . ␣Φ,Φ␣ . . . , . . . ␣Φ␣ . . . .

The following initial opportunities of a mathematician for reasoning about texts
are assumed: (1) the opportunity to insert one textΦ into another textΨ (in particular
to write alongside), inserting every occurrence Ω in the text Φ in the capacity of an
occurrence in the textΨ; (2) the opportunity to distinguish a part of a textΨ in the ca-
pacity of a new text Φ so that every occurrence Ω in the text Φ is also an occurrence
in the initial text Ψ.

Note that in practice the blank symbol ␣ is simply omitted or substituted by
the usual point, if there is no confusion in understanding.

Not all of possible symbol-strings and texts can be used in the theory of classes
and sets. In the next subsection, we shall describe the admissible ones.

1.1.2 Formulas and terms

At first, we shall describe those symbol-strings which are admissible in the theory of
classes and sets. The exacting reader can find the more formalized exposition of this
material in Appendix A (see A.1).
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4 | 1.1 Classes and sets

Admissible symbol-strings are divided into two types: terms and formulas. Intu-
itively, terms are symbol-strings representing objects, and formulas are symbol-strings
representing statements about these objects.

For variables, we shall use the letters of Latin, Greek, Gothic, and other alphabets.
Now, we shall give the inductive definition of terms and formulas and free and

connected occurrences of variables (≡ arguments) in them.
1) Every variable x is a term with the single free occurrence of the variable x. Such

a term is called a letter term.
2) Every symbol-string (x ∈ y) for any letter terms x and y is a formula with the two

free occurrence of the variables x and y. Such a formula is called simplest rela-
tional.

3) Every symbol-string (¬𝜑), (𝜑 ∧ 𝜓), (𝜑 ∨ 𝜓) and (𝜑 ⇒ 𝜓) for any formulas 𝜑 and 𝜓
is a formula. Such a formula is called derivative logical.
Every free occurrence of some variable in the formula 𝜑 is called a free occur-
rence of this variable in the formula (¬𝜑). Every free occurrence of some variable
in the formulas 𝜑 and 𝜓 is called a free occurrence of this variable in the formulas
(𝜑 ∧ 𝜓), (𝜑 ∨ 𝜓) and (𝜑 ⇒ 𝜓).

4) Every symbol-string (∀x𝜑)and (∃x𝜑) for any formula𝜑 is a formula. Sucha formula
is called derivative quantified.
Every free occurrence of some (except x) variable in the formula 𝜑 is called a free
occurrence of this variable in the formulas (∀x𝜑) and (∃x𝜑). Every occurrence of
the variable x in the formulas (∀x𝜑) and (∃x𝜑) is called the connected occurrence.

A variable x is called a free [connected] variable of a term or a formula 𝜁 if there is at
least one free [connected] occurrence of x in 𝜁. If there is no free variable for a symbol-
string 𝜁, then 𝜁 is called closed.

If a variable x is a free variable of a formula 𝜑 [term 𝜏], then this is denoted
by 𝜑(x) [𝜏(x)]. If another variable y is a free variable of the formula 𝜑, then this is
denoted by 𝜑(x)(y), 𝜑(y)(x), 𝜑(x, y) or 𝜑(y, x); the notation 𝜑(x, y, z) is defined in
a similar way, and so on. Every not closed formula 𝜑 has lists ⃗l of its free variables.
We can divide a list ⃗l of free variables of 𝜑 into two different lists x⃗ and p⃗ and use
the parametric list x⃗, p⃗, where x⃗ is some list of basic free variables of 𝜑 and p⃗ is
some list of auxiliary free variables of 𝜑. All the said statements are valid also for
the term 𝜏.

If at least one of the free variables of the formula 𝜑 [term 𝜏] occurs in the symbol-
string x, y, then we shall write 𝜑|x, y| [𝜏|x, y|]. If at least one of the free variables of
the formula 𝜑 [term 𝜏] occurs in the symbol-string x, y, z, then we shall write 𝜑|x, y, z|
[𝜏|x, y, z|], and so on.

If 𝜁 is a term or a formula and 𝜏 is a term, then the symbol-string obtained by the
substitution of every free occurrence of a variable x in the symbol-string 𝜁 by the term 𝜏
is denoted by 𝜁(x ‖ 𝜏). In this case, we say also that 𝜏 substitutes for free occurrences
of x in 𝜁. If x does not occur freely in 𝜁, then 𝜁(x ‖ 𝜏) is 𝜁 itself.
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1.1.3 Axioms, deducibility, and theorems | 5

A letter term y is called free for a variable x in the symbol-string 𝜁 if every free
occurrence of x in 𝜁 is not a free occurrence in some quantified formulas ∀y𝜓 and ∃y𝜓
occurring in 𝜁.

If 𝜁 is a term [formula] and a term 𝜏 is free for a variable x in 𝜁, then the symbol-
string 𝜁(x ‖ 𝜏) is a term [formula]. Every free occurrence of some variable y (except x)
in 𝜁 and every free occurrence of some variable z in the term 𝜏 are free occurrences of
these variables in the symbol-string 𝜁(x ‖ 𝜏).

If the term 𝜏 is free for the variable x in the symbol-string 𝜁, then alongwith 𝜁(x ‖ 𝜏)
we shall write also 𝜁(𝜏).

Further, instead of the formula ((𝜑 ⇒ 𝜓) ∧ (𝜓 ⇒ 𝜑)), we shall use the designation
(𝜑 ⇔ 𝜓) and say that 𝜑 is equivalent to 𝜓. Also, along with the formulas (∀x((x ∈ y) ⇒
𝜑(x))) and (∃x((x ∈ y) ∧ 𝜑(x))), we shall sometimes write ((∀x ∈ y)𝜑) and ((∃x ∈ y)𝜑),
respectively. Such the quantifiers are called bounded.

Formulas and terms contain round brackets. However, for the facilitation of no-
tations, some round brackets are omitted frequently; in particular, the exterior pair of
brackets are omitted. When omitting the brackets the agreement is used that the sym-
bol ¬ is stronger that the symbols ∧ and ∨, the symbols ∧ and ∨ have the equal status
and both are stronger than the symbol⇒, which is stronger than⇔. The quantifiers
∀ and ∃ have the equal status and both are stronger than every previous logical sym-
bol. The symbol ∈ is stronger than every logical symbol.

1.1.3 Axioms, deducibility, and theorems

After that as symbol-strings, terms, formulas were defined, it is necessary to select
some basic symbol-strings.

Alongwith the initial language of the theory of classes and sets, we shall use some
broader language (epilanguage) for this theory. In this epilanguage, we need variables
for formulas of the theory of classes and sets. Now, we shall give the inductive defini-
tion of formula schemes:
1) if f is a variable for formulas, then f is a formula scheme;
2) if 𝜌 and 𝜎 are formula schemes, then (¬𝜑), (𝜑 ∧ 𝜓), (𝜑 ∨ 𝜓), and (𝜑 ⇒ 𝜓) are for-

mula schemes;
3) if 𝜌 is a formula scheme and x is a variable of the initial language, then (∀x𝜌)

and (∃x𝜌) are formula schemes.

The following property is easily proved by induction:
If f is a variable for formulas, 𝛾(f ) is a formula scheme, 𝜑 is a formula, then 𝛾(f ‖ 𝜑)

is a formula.
This formula 𝛾(f ‖ 𝜑) is called a formula generated by the formula scheme 𝛾.
Some fixed text Γ is called an axiom text if every symbol-string 𝛾 occurring in Γ

is either a formula or a formula scheme. If 𝛾 is a formula in this text, then it is called
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6 | 1.1 Classes and sets

an explicit axiom. If 𝛾 is a formula scheme in this text, then it is called anaxiom scheme.
Every formula generated by the axiom scheme 𝛾 is called an implicit axiom.

LetΓbeafixedaxiom text,Ψbe some text, such that every symbol-stringoccurring
in it is a formula, and 𝛿 be a formula.

The text Ψ is called a deduction from the condition 𝛿 and the axiom text Γ if for
every formula 𝜓 occurring in the text Ψ at least one of the following conditions is
fulfilled:

Dc1. 𝜓 is a rewriting of the formula 𝛿 or some explicit axiom occurring in the text Γ;
Dc2. 𝜓 is some implicit axiom generated by some axiom scheme occurring in the

text Γ;
Dc3. some formulas𝜑 and (𝜑 ⇒ 𝜓) occurs in the textΨ, such that𝜑 precedes (𝜑 ⇒ 𝜓)

and (𝜑 ⇒ 𝜓) precedes 𝜓 (the rule of implication);
Dc4. some formula 𝜑(x) occurs in the text Ψ such that 𝜑 precedes 𝜓, x is not a free

variable of formula 𝛿, and 𝜓 is the formula (∀x𝜑) (the rule of generalization with
the condition 𝛿).

The final formula 𝜌 occurring in the deduction Ψ from the condition 𝛿 and the axiom
text Γ is called the result of the deduction Ψ (or deduced by the deduction Ψ) from
the condition 𝛿 and the axiom text Γ.

The textΨ is called a deduction from the axiom text Γ if for every formula 𝜓 occur-
ring in the text Ψ at least one of the following conditions is fulfilled:

D1. 𝜓 is a rewriting of some explicit axiom occurring in the text Γ;
D2. 𝜓 is some implicit axiom generated by some axiom scheme occurring in the

text Γ;
D3. some formulas 𝜑 and (𝜑 ⇒ 𝜓) occurs in the text Ψ such that 𝜑 precedes (𝜑 ⇒ 𝜓)

and (𝜑 ⇒ 𝜓) precedes 𝜓 (the rule of implication ormodus ponens (MP));
D4. some formula 𝜑(x) occurs in the text Ψ such that 𝜑 precedes 𝜓 and 𝜓 is the for-

mula (∀x𝜑) (the rule of (unconditional) generalization (Gen)).
The final formula 𝜌 occurring in the deductionΨ from the axiom text Γ is called the re-
sult of the deduction Ψ (or deduced by the deduction Ψ) from the axiom text Γ.

Any formula is called true (in the sense of deducibility from the axiom text Γ) if it
is a result of some deduction from the axiom text Γ. A formula 𝜑 is called false if the
formula ¬𝜑 is true.

Usually, the indication of the axiom text Γ in all the definitions mentioned above
is omitted because Γ is fixed.

The text 𝛿 ⊢ 𝜌.Ψ consisting of the base 𝛿 for the deduction Ψ, the symbol of de-
duction ⊢, the result 𝜌 of the deduction Ψ, and the deduction Ψ written one after an-
other is called a theoremof conditional deduction. The text 𝛿 ⊢ 𝜌 is called the statement
(≡ assertion, formulation), the formula 𝛿 is called the condition, the formula 𝜌 is called
the conclusion, and the deduction Ψ is called the proof of the theorem of conditional
deduction 𝛿 ⊢ 𝜌.Ψ.
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1.1.3 Axioms, deducibility, and theorems | 7

If formulas 𝜋 and 𝜌 occur in some theorems of conditional deduction (𝛿 ∧ 𝜋) ⊢
𝜌.Φ and (𝛿 ∧ 𝜌) ⊢ 𝜋.Ψwith the conditions 𝛿 ∧ 𝜋 and 𝛿 ∧ 𝜌, respectively, then the con-
clusions𝜋 and 𝜌 are calledmutually deducible or equivalent under the condition 𝛿. This
situation will be denoted by 𝛿 ⊢ (𝜋 ∼ 𝜌).

The text 𝛿 ⊢ (𝜋 ∼ 𝜌).Φ.Ψ, composed of the parts of the theorems of conditional
deduction (𝛿 ∧ 𝜋) ⊢ 𝜌.Φ and (𝛿 ∧ 𝜌) ⊢ 𝜋.Ψ, is called a theorem of conditional equiva-
lence. The text 𝛿 ⊢ (𝜋 ∼ 𝜌) is called the statement, the formula 𝛿 is called the condition,
the formulas𝜋 and 𝜌 are called the conclusions, and the deductionsΦ andΨ are called
the proof of the theorem of conditional equivalence 𝛿 ⊢ (𝜋 ∼ 𝜌).Φ.Ψ.

Theorems of conditional deduction and theorems of conditional equivalence are
usually called simply conditional theorems.

The theorem of conditional deduction 𝛿 ⊢ 𝜌.Ψ is usually written in the following
form:

Theorem. Let 𝛿. Then, 𝜌.
Proof. Ψ.
The theorem of conditional equivalence 𝛿 ⊢ (𝜋 ∼ 𝜌).Φ.Ψ is usually written in the fol-
lowing form:

Theorem. Let 𝛿. Then, the following conclusions are equivalent:
1) 𝜋;
2) 𝜌.
Proof. 1) ⊢ 2).Φ.

2) ⊢ 1). Ψ.
The text ⊢ 𝜌.Ψ consisting of the symbol of deduction ⊢, the result 𝜌 of the deductionΨ
and the deduction Ψ written one after another is called a theorem of unconditional
deduction. The text ⊢ 𝜌 is called the statement, the formula 𝜌 is called the conclu-
sion, and the deductionΨ is called the proof of the theorem of unconditional deduction
⊢ 𝜌.Ψ.

If formulas 𝜋 and 𝜌 occur in some theorems of conditional deduction 𝜋 ⊢ 𝜌.Φ and
𝜌 ⊢ 𝜋.Ψ with the conditions 𝜋 and 𝜌, respectively, then the conclusions 𝜋 and 𝜌 are
calledmutually deducible or equivalent. This situation will be denoted by ⊢ (𝜋 ∼ 𝜌).

The text ⊢ (𝜋 ∼ 𝜌).Φ.Ψ, composed of the parts of the theorems of conditional de-
duction𝜋 ⊢ 𝜌.Φ and𝜌 ⊢ 𝜋.Ψ, is called a theoremof unconditional equivalence. The text
⊢ (𝜋 ∼ 𝜌) is called the statement, the formulas 𝜋 and 𝜌 are called the conclusions, and
thedeductionsΦ andΨare called theproof of the theoremof unconditional equivalence
⊢ (𝜋 ∼ 𝜌).Φ.Ψ.

Theoremsof unconditional deduction and theoremsof unconditional equivalence
are usually called simply unconditional theorems.
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8 | 1.1 Classes and sets

The theorem of unconditional deduction ⊢ 𝜌.Ψ is usually written in the following
form:

Theorem. 𝜌.
Proof. Ψ.
The theorem of unconditional equivalence ⊢ (𝜋 ∼ 𝜌).Φ.Ψ is usually written in the fol-
lowing form:

Theorem. The following conclusions are equivalent:
1) 𝜋;
2) 𝜌.
Proof. 1) ⊢ 2).Φ.

2) ⊢ 1). Ψ.
Sometimes, in statements of these theorems, some explanatory texts about some
terms and formulas occurring in these theorems can be used. In this case, the form of
these theorems can be slightly modified.

In some cases, alongwith the form “Let 𝛿. Then, 𝜌.” the forms “If 𝛿, then 𝜌.”, “Sup-
pose 𝛿. Then, 𝜌.”, and others are used.

Sometimes, alongwith the short initial phrases “Let 𝜌.”, “If 𝜌,”, “Suppose 𝜌.”, and
others we shall use the more expanded initial phrases “Let we are given 𝜌.”, “If we are
given 𝜌,”, “Suppose we are given 𝜌.”, and others.

In the theoremof conditional equivalence, the forms “Then,𝜋 if and only if 𝜌.” and
“Then, for𝜋 it is necessary and sufficient 𝜌.” are also used. Alongwith thewords “if and
only if”, the shorter variant “iff” is used. In the theorem of unconditional equivalence,
these forms without the word “Then” are also used.

Note that along with the word “theorem” the words “proposition”, “lemma”,
“corollary” and others are used for the designation of less important results.

Some important properties obtain usually special names in the following form.
A text “𝜏 is called T if 𝜑(𝜏)” including a term 𝜏, a formula 𝜑(𝜏) and a text T is called
a definition (of the property of the term 𝜏 bymeans of the formula 𝜑). The text T is called
a name of the property 𝜑(𝜏).

With the usage of the definition “𝜏 is called T if 𝜑(𝜏)” the theorem ⊢ 𝜑(𝜏).Ψ as-
serting that the term 𝜏 possesses the property 𝜑(𝜏) is usually written in the following
form:

Theorem. 𝜏 is T.
Proof. Ψ.
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1.1.4 Logical axiom schemes of the theory of classes and sets | 9

The following logical epitheorem of deduction (the deduction theorem) is valid.

Theorem. Let 𝛿, 𝜌 be formulas. Suppose the theorem 𝛿 ⊢ 𝜌.Φ of conditional deduction
holds, where the deduction Φ is constructed without applying the rule of generaliza-
tion Dc4 to the free variables of the formula 𝛿. Then, there exists a deduction Ψ such
that the theorem ⊢ (𝛿 ⇒ 𝜌).Ψ of unconditional deduction holds.

This epitheorem is used when one needs in the formula 𝛿 ⇒ 𝜌, but it is very difficult
to deduce it. In this case, the simpler deduction Φ of 𝜌 from 𝛿 is constructed, and
by the epitheorem of deduction, it is possible to conclude that the formula 𝛿 ⇒ 𝜌 is
deducible.

Further, we begin to fix some concrete axiom text of the theory of classes and sets.

1.1.4 Logical axiom schemes of the theory of classes and sets

Axiomsandaxiomschemesof the theory of classes and sets are diveded in two classes:
logical and proper (non-logical).

In this subsection, we shall formulate some logical axiom schemes of the theory
of classes and sets which use only the special logical symbols from 1.1.1.

Further, 𝜑, 𝜓, 𝜒 denote variables for formulas and 𝜏 denotes a term.

LAS1. (𝜑 ⇒ (𝜓 ⇒ 𝜑)).
LAS2. (𝜑 ⇒ 𝜓) ⇒ ((𝜑 ⇒ (𝜓 ⇒ 𝜒)) ⇒ (𝜑 ⇒ 𝜒)).
LAS3. ((𝜑 ∧ 𝜓) ⇒ 𝜑).
LAS4. ((𝜑 ∧ 𝜓) ⇒ 𝜓).
LAS5. ((𝜑 ⇒ 𝜓) ⇒ ((𝜑 ⇒ 𝜒) ⇒ (𝜑 ⇒ (𝜓 ∧ 𝜒)))).
LAS6. (𝜑 ⇒ (𝜑 ∨ 𝜓)).
LAS7. (𝜓 ⇒ (𝜑 ∨ 𝜓)).
LAS8. ((𝜑 ⇒ 𝜒) ⇒ ((𝜓 ⇒ 𝜒) ⇒ ((𝜑 ∨ 𝜓) ⇒ 𝜒))).
LAS9. ((𝜑 ⇒ ¬𝜓) ⇒ (𝜓 ⇒ ¬𝜑)).
LAS10. ((¬(¬𝜑)) ⇒ 𝜑).
LAS11. ((∀x𝜑) ⇒ 𝜑(x ‖ 𝜏)) if 𝜏 is free for x in 𝜑.
LAS12. (𝜑(x ‖ 𝜏) ⇒ (∃x𝜑)) if 𝜏 is free for x in 𝜑.
LAS13. ((∀x(𝜓 ⇒ 𝜑(x))) ⇒ (𝜓 ⇒ (∀x𝜑))) if x is not a free variable of 𝜓.
LAS14. ((∀x(𝜑(x) ⇒ 𝜓)) ⇒ ((∃x𝜑) ⇒ 𝜓)) if x is not a free variable of 𝜓.
Using axiom schemes LAS13 and LAS14 and rules of deduction D3 and D4 in 1.1.3 we
obtain the following derivative rules of (unconditional) deduction:

D5. there is in the deductionΨ some formula (𝜒 ⇒ 𝜑(x)), such that𝜒does not contain
the free variable x of 𝜑, (𝜒 ⇒ 𝜑(x)) precedes𝜓, and𝜓 is the formula (𝜒 ⇒ (∀x𝜑));
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10 | 1.1 Classes and sets

D6. there is in the deduction Ψ some formula (𝜑(x) ⇒ 𝜒), such that 𝜒 does not
contain the free variable x of 𝜑, (𝜑(x) ⇒ 𝜒) precedes 𝜓, and 𝜓 is the formula
((∃x𝜑) ⇒ 𝜒).

The derivative rules of (conditional) deduction Dc5 and Dc6 are obtained by adding
to D5 and D6 the condition that x is not a free variable of the formula 𝛿.

The rules of deduction D6 and Dc6 are used often in the following case. Suppose
thatwededuced the formula∃x𝜑 andweneed todeduce the formula (∃x𝜑) ⇒ 𝜒. Then,
it is sufficient to deduce the simpler formula 𝜑(x) ⇒ 𝜒.
Remark. We can take initially only axiom schemes LAS1 – LAS12 and rules D1, D2, D3,
D5, and D6. Then, the rule D4 can be obtained as a derivative rule of deduction.

This means that the deducibility under axiom schemes LAS1 – LAS14 and rules
D1 –D4 can be interchanged by the deducibility under axiom schemes LAS1 – LAS12
and rules D1, D2, D3, D5, and D6. The same is valid for the (conditional) deducibil-
ity under axiom schemes LAS1 – LAS14 and rules Dc1 –Dc4 and the (conditional) de-
ducibility under axiom schemes LAS1 – LAS12 and rules Dc1, Dc2, Dc3, Dc5, and Dc6,
respectively.

1.1.5 First non-logical axioms and axiom schemes of the theory of classes and sets

“Intuitively, ∈ is to be thought of as the membership relation and the values of the
variables are to be thought of as classes. . . .The axiomswill revealmore aboutwhatwe
have mind. They will provide us with the classes we need in mathematics and appear
modest enough sowhat contradictions are not derivable from them” [Mendelson, 1997,
ch. 4, § 1].

AclassA is calleda set if∃x(A ∈ x).AclassA is calledaproper class if¬(∃x(A ∈ x)).
A class B is called a subclass of a class A if ∀x(x ∈ B ⇒ x ∈ A). This formula is

denoted by B ⊂ A. In this case, we also say that B is contained in A, B is a part of A,
A contains B. Classes A and B are called equal if A ⊂ B and B ⊂ A, i. e. ∀x(x ∈ A ⇔
x ∈ B). This formula is denoted by A = B. The formula ¬(A = B) is denoted by A /= B.
The formula ¬(x ∈ A) is denoted by x ∉ A.
A1. (The extensionality axiom.) (A = B) ⇒ (A ∈ C ⇔ B ∈ C).
A formula 𝜑 is called predicative (≡ such that every connected variable of 𝜑 is a vari-
able for sets) if all symbol-strings ∀x and ∃x, occurring in the formula 𝜑, are situ-
ated only in positions of the following kind: ∀x((∃X(x ∈ X)) ⇒ . . .) and ∃x((∃X(x ∈
X)) ∧ . . .).
AS2. (The full comprehension axiom scheme.) Let 𝜑(x, p⃗) be a predicative formula,

such that X is not a free variable of 𝜑. Then, ∃X∀x((x ∈ X) ⇔ ((∃Y(x ∈ Y)) ∧
𝜑(x, p⃗))).
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1.1.5 First non-logical axioms and axiom schemes of the theory of classes and sets | 11

This axiom scheme postulates the existence of the unique class depending on the
parameter p⃗ and denoted by 𝜏(p⃗) ≡ {x | 𝜑(x, p⃗)}. It will be said that the class 𝜏(p⃗) is
selected by the property 𝜑(x, p⃗).

Having the equality of classes, we can introduce some convenient designa-
tions. A class {x | ∃a((∃A(a ∈ A)) ∧ (x = 𝜏(a)) ∧ 𝜑(a))}, where 𝜏 is any class with
a parameter a, and 𝜑 is any formula freely containing the variable a, will be de-
noted shortly by {𝜏(a) | 𝜑(a)}. A class {x | ∃a((∃A(a ∈ A)) ∧ ∃b((∃B(b ∈ B)) ∧ (x =
𝜏(a, b)) ∧ 𝜑(a, b)))} will be denoted also by {𝜏(a, b) | 𝜑(a, b)}, and so on.

It follows fromAS2 that if B is a class and 𝜑 is a formula as in AS2, then {x | (x ∈ B)
∧ 𝜑} is a subclass of B. It is denoted also by {x ∈ B | 𝜑}.

Bymeans of axiomA1 and axiom schemeAS2,we can construct some classes from
others.

Let A and B be classes. The class {x | x ∈ A ∨ x ∈ B} is called the (binary) union of
the classes A and B and is denoted by A ∪ B. The class {x | x ∈ A ∧ x ∈ B} is called the
(binary) intersection of the classes A and B and is denoted by A ∩ B.
Lemma 1.
1) A ∪ A = A, A ∩ A = A;
2) A ∪ B = B ∪ A, A ∩ B = B ∩ A (the commutativity of union and intersection);
3) (A ∪ B) ∪ C = A ∪ (B ∪ C), (A ∩ B) ∩ C = A ∩ (B ∩ C) (the associativity of union and

intersection);
4) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C), A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (the distributivity

of union with respect to intersection and intersection with respect to union).

The proof of these equalities follows directly from the definitions and axiom scheme
AS2.

The class {x | x ∉ A} is called the complement of the class A and is denoted by Ac.

Lemma 2.
1) (Ac)c = A;
2) (A ∪ B)c = Ac ∩ Bc;
3) (A ∩ B)c = Ac ∪ Bc.

The proof of these equalities also follows directly from the definitions.
The class B ∩ Ac is called the complement of the class A in the class B or the differ-

ence of the classes B and A and is denoted by B\A.
The class {x | x /= x} is called the empty (≡ void, vacuous) classand is denotedby⌀.
Classes A and B are called disjoint if A ∩ B = ⌀.
The class {x | x = x} is called universal and is denoted by U.

Lemma 3. The following conclusions are equivalent:
1) A is a set;
2) A ∈ U.
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12 | 1.1 Classes and sets

Proof. 1) ⊢ 2). Let A be a set. Take the formula x = x. Then, by axiom scheme AS2,
the equality A = A implies A ∈ U.

2) ⊢ 1). This follows from axiom scheme AS2.

The following assertions are used very often without the exact indication.

Lemma 4.
1) ⌀ ⊂ A,⌀ ∪ A = A,⌀ ∩ A = ⌀, and⌀c = U;
2) A ⊂ U, A ∪ U = U, A ∩ U = A, and Uc = ⌀;
3) If A ⊂ B and B ⊂ C, then A ⊂ C;
4) A ⊂ B is equivalent to A ∪ B = B;
5) A ⊂ B is equivalent to A ∩ B = A.

Proof. We shall check only the inclusion ⌀ ⊂ A. Let X ∈ ⌀. It was mentioned above
that X ∉ ⌀. Therefore, by LAS1 (1.1.4) (X ∉ ⌀) ⇒ ((X ∉ A) ⇒ (X ∉ ⌀)). By rule of im-
plication D3 (1.1.3), we get (X ∉ A) ⇒ ¬(X ∈ ⌀). By LAS9 (1.1.4), we get ((X ∉ A) ⇒
¬(X ∈ ⌀)) ⇒ ((X ∈ ⌀) ⇒ ¬¬(X ∈ A)). Again by rule of implication D3 (1.1.3), we get
(X ∈ ⌀) ⇒ ¬¬(X ∈ A). By the same rule, this implication and the formula X ∈ ⌀ im-
ply ¬¬(X ∈ A). By LAS10 (1.1.4), ¬¬(X ∈ A) ⇒ (X ∈ A). Finally, again by the same rule,
we conclude that X ∈ A.

All the other assertions follow directly from the corresponding definitions.

LetA be a class. The class {x | x ⊂ A}will be called the complete (full) ensemble (≡ class
of all parts) of the class A and will be denoted by P(A).
Lemma 5.
1) P(U) = U.
2) X ∈ P(A) iff X is a set and X ⊂ A.

Proof. 1. Let X be a class and X ∈ P(U). Then, X is a set and so X ∈ U by Lemma 3.
Conversely, if X ∈ U, then X is a set and by Lemma 4 we have X ⊂ U. Therefore,
X ∈ P(U).

2. Consider 𝜑(x), such that x ⊂ A. Let X ∈ P(A). Then, X is a set and the condition
X ∈ {x | 𝜑(x)} implies by axiom scheme AS2 that X ⊂ A. Conversely, let X be a set and
X ⊂ A. Then, 𝜑(X) implies by AS2 that X ∈ {x | 𝜑(x)} = P(A).
Proposition 1. A = ⌀ iff ∀x(x ∉ A).
Proof. Let A = ⌀. Take any class x. Suppose that x ∈ A. Since A = ⌀, we get x ∈ ⌀.
Then, by axiom scheme AS2 x /= x. But this contradicts the obvious equality x = x.
It follows from this contradiction that x ∉ A. By rule of deduction D4 (1.1.3), we get
∀x(x ∉ A).
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Conversely, let ∀x(x ∉ A). By Lemma 4, we get⌀ ⊂ A. Let y ∈ A. Take any class z.
By axiomschemeLAS11 (1.1.4),wehave (∀x(x ∉ A)) ⇒ (z ∉ A). By rule of deductionD3
(1.1.3), z ∉ A. Suppose that y = z. Then, by axiom A1 (y = z) ⇒ ((y ∈ A) ⇔ (z ∈ A)).
By rule of deduction D3 (1.1.3), we conclude that (y ∈ A) ⇔ (z ∈ A) and by the same
reason, z ∈ A. However,this contradicts the formula z ∉ A. From this contradiction,
we infer that y /= z. By rule of deduction D4 (1.1.3), we get ∀z(y /= z). Now, by axiom
scheme LAS11 (1.1.4), we have (∀z(y /= z)) ⇒ (y /= y). Again, by rule of deduction D3
(1.1.3), y /= y. Finally, by axiom scheme AS2, we get y ∈ ⌀. This means that A ⊂ ⌀. As
a result, we get A = ⌀.
Remark. Axiom scheme AS2 is the single axiom scheme in our axiomatic family A1,
AS2, and A3–A8, which uses an arbitrary formula 𝜑. That is why AS2 is very power-
ful creative axiom scheme. However, axiom scheme AS2 can be replaced by several
weak explicit axioms, which are specific cases of AS2. The detailed exposition of this
material is given in B.7.3.

1.1.6 First axioms of existence of sets

A3. (The axiom of the full ensemble.) For every set A, there exists a set P, such that for
every class X the condition X ⊂ A implies X ∈ P.

Lemma 1. Let A be a set and X ⊂ A. Then, X is a set.

Proof. By axiom A3, X ⊂ A implies X ∈ P. Consequently, X is a set.

Corollary 1. If A is a set and 𝜑 is a formula as in AS2, then {x ∈ A | 𝜑} is a subset of
the set A.

Lemma 2. Let A be a set. Then:
1) P(A) is a set;
2) X ⊂ A iff X ∈ P(A).
Proof. Consider the set P from axiom A3. Let X ∈ P(A). Then, X is a set. Therefore, by
axiom scheme AS2 (1.1.5) X ⊂ A. Consequently, by axiom A3, X ∈ P. This means that
P(A) ⊂ P. Then, by Lemma 1 we get P(A) is a set.

Now, let X ⊂ A. By Lemma 1, we see that X is a set. By AS2, X ∈ P(A).
According to this lemma, for a set A, the class P(A)may be called the set of all parts
of the set A or the set of all subsets of the set A.

Proposition 1. The class U is not a set, i. e. it is a proper class.
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Proof. Consider the class R ≡ {x | x ∉ x}. Suppose that R is a set. Then, by virtue of
axiomschemeAS2 (1.1.5), R ∈ R is equivalent to R ∉ R, but this is impossible. It follows
from this contradiction that our supposition is not true, and so R is not a set.

By Lemma 4 (1.1.5), R ⊂ U. Now, by Lemma 1, we conclude that U is not a set.

Let A be a class. The class {x | x = A} is called the solitary class of the class A and is
denoted by {A}.
Lemma 3. Let A be a set. Then:
1) X ∈ {A} iff X = A;
2) {A} ⊂ P(A);
3) {A} is a set.
Proof. 1. Let X ∈ {A}. Then, X is a set, and so by axiom scheme AS2 (1.1.5), X = A.
Conversely, if X = A, then X is a set and again by AS2 X ∈ {A}.

2. If X ∈ {A}, then by Proof 1, X = A. Thus, X is a set and X ⊂ A. Now, by AS2
X ∈ P(A). As a result, {A} ⊂ P(A).

3. By Lemma 2, we see that P(A) is a set. Therefore, by Proof 2 and Lemma 1, we
have that {A} is a set as well.
A4. (The axiom of the binary union.) If A and B are sets, then A ∪ B is a set as well.

Non-ordered and ordered pairs of classes
Let A and B be classes. The class {A} ∪ {B} is called the non-ordered pair of the classes
A and B and is denoted by {A, B}.
Lemma 4. Let A and B be sets. Then:
1) {A, B} is a set;
2) X ∈ {A, B} iff X = A or X = B.

Proof. 1. It follows from Lemma 3 and axiom A4 that {A, B} is a set.
2. If X ∈ {A, B}, then X is a set and so by axiom scheme AS2 (1.1.5) (X ∈ {A}) ∨

(X ∈ {B}). Hence, by Lemma 3 (X = A) ∨ (X = B). Conversely, if (X = A) ∨ (X = B),
then again by Lemma 3 (X ∈ {A}) ∨ (X ∈ {B}). In both cases, X is a set. Now, by axiom
scheme AS2 X ∈ {A} ∪ {B} = {A, B}.
Let A and B be classes. The class {{A}, {A, B}} is called the coordinate (≡ ordered) pair
(≡ pair of Kuratowski) of the classes A and B with the left member A and the right mem-
ber B and is denoted by ⟨A, B⟩. Along with the name “member”, the name “coordi-
nate” and others are used.

Lemma 5. If A and B are sets, then ⟨A, B⟩ is a set.
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Proof. By Lemmas 3 and 4,we see that {A} and {A, B} are sets. Therefore, by axiomA4,
⟨A, B⟩ is a set as well.
Proposition 2. Let A, B, C, and D be sets and ⟨A, B⟩ = ⟨C, D⟩. Then, A = C and
B = D.

Proof. By Lemmas 3 and 4, we have that {A}, {B}, {C}, {D}, {A, B}, and {C, D} are sets.
From {C} ∈ ⟨A, B⟩ by virtue of axiom scheme AS2 (1.1.5), we get either the equal-
ity (I) {C} = {A} or the equality (II) {C} = {A, B}. From {C, D} ∈ ⟨A, B⟩, we get either
the equality (III) {C, D} = {A} or the equality (IV) {C, D} = {A, B}. Equality (II) is ful-
filled if and only if A = C = B. In this case, (III) and (IV) coincide and give C = D = A.
Thus, A = C = D = B. In the case, when we have Equality (III), the arguments are the
same.

Now, suppose that we have equality (I) or (IV). Then, C = A and either C = B or
D = B. If C = B, then we get the case (II). If D = B, then A = C and B = D.

Corollary 1. Let A and B be sets and ⟨A, B⟩ = ⟨B, A⟩. Then, A = B.

Let A and B be classes. The class {x | ∃a∃b ((a ∈ A) ∧ (b ∈ B) ∧ (x = ⟨a, b⟩))}, con-
sisting of all coordinate pairs ⟨a, b⟩, will be called the coordinate (≡ direct, Cartesian)
product of the classes A and B and will be denoted by A ∗ B.
Proposition 3.
1) A ∗ (B ∪ C) = (A ∗ B) ∪ (A ∗ C), (A ∪ B) ∗ C = (A ∗ C) ∪ (B ∗ C) (the distributivity

of union with respect to multiplication);
2) A ∗ (B ∩ C) = (A ∗ B) ∩ (A ∗ C), (A ∩ B) ∗ C = (A ∗ C) ∩ (B ∗ C) (the distributivity

of intersection with respect to multiplication);
3) (A ∩ C) ∗ (B ∩ D) = (A ∗ B) ∩ (C ∗ D).
All of these equalities are checked by the direct application of the definitions.

Proposition 4. Let A and B be sets. Then, A ∗ B is a set as well.

Proof. Let a ∈ A and b ∈ B. Then, {a} ⊂ A and {b} ⊂ B. Consequently, {a} ⊂ A ∪ B,
{b} ⊂ A ∪ B, and {a, b} ⊂ A ∪ B. By axiom A4, A ∪ B is a set. Therefore, by Lemma 2,
we get {a} ∈ P(A ∪ B) and {a, b} ∈ P(A ∪ B). By Lemma 3, we see that {a} is a set. By
Lemma 4, we see that {a, b} is also a set. Therefore, by virtue of Lemma 4, we get
⟨a, b⟩ = {{a}, {a, b}} ⊂ P(A ∪ B). By Lemma 2, we have that P(A ∪ B) is a set and
⟨a, b⟩ ∈ P(P(A ∪ B)). Again, by Lemma 2, we obtain that P(P(A ∪ B)) is a set. As
a result, A ∗ B is contained in the setP(P(A ∪ B)). By Lemma 1, we have that A ∗ B is
a set.
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1.1.7 Correspondences

Let A and B be classes. A subclass u ⊂ A ∗ B of the product A ∗ B is called a corre-
spondence (≡multivalued mapping) from the class A into the class B and is denoted by
u : A B.

Let u : A B be a correspondence. If a ∈ A, b ∈ B and ⟨a, b⟩ ∈ u, thenwe shall
say that the element b is a value of the correspondence u on (or at) the argument a.
The subclass {b ∈ B | ⟨a, b⟩ ∈ u} of the class B is called the class of values of the cor-
respondence u on (or at) the argument a ∈ A and is denoted by u⟨a⟩. It is clear that
the class u⟨a⟩ may be empty for some elements a. Along with ⟨a, b⟩ ∈ u, we shall
write sometimes b ∈ u⟨a⟩.

The class {a ∈ A | ∃b ∈ B (b ∈ u⟨a⟩)} is called the class of assignment (≡ do-
main of definition) of the correspondence u and is denoted by dom u. The class
{b ∈ B | ∃a ∈ A (b ∈ u⟨a⟩)} is called the class of values of the correspondence u and is
denoted by rng u.

The correspondence u : A B will be called total, if dom u = A, i. e. u⟨a⟩ /= ⌀
for every a ∈ A. The correspondence u will be called single-valued, if for every ele-
ment a ∈ dom u, the corresponding class u⟨a⟩ contains a single element of the class B
in that sense that b, b ∈ u⟨a⟩ implies b = b. This single element b ∈ u⟨a⟩ is called
the value of the correspondence u on (or at) the argument a and is denoted by u(a) or
simply by ua.

The class {x | ∃u ((u : A B) ∧ (x = u))}of all correspondences from the classA
into the class B, which are sets, will be denoted by Cor(A, B). Its subclass of all cor-
respondences u : A B, such that for every a ∈ A the class u⟨a⟩ is a set will be
denoted by Cors(A, B).

Let X be a subclass of the class A. The class {b ∈ B | ∃a ∈ X (b ∈ u⟨a⟩)} is called
the image of the subclass X of the class A under the correspondence u and is denoted
by u[X]. It is clear that u[{a}] = u⟨a⟩ and u[A] = rng u.

For X, consider the class v ≡ {⟨a, b⟩ ∈ u | a ∈ X}. The correspondence v : X B
is called the restriction of the correspondence u : A B on the subclass X and is
denoted by u|X or restX u. In this case, the correspondence u is called an extension
of the correspondence v. For X, consider also class w ≡ {⟨a, b⟩ ∈ u | (a ∈ X) ∧
(b ∈ u[X])}. The correspondence w : X u[X] is called the strict restriction of the
correspondence u : A B on the subclass and is denoted by u‖X.

The correspondence u : A B is called surjective (≡ a correspondence onto,
a surjection) if for every b ∈ B there exists a ∈ A, such that b ∈ u⟨a⟩. The correspon-
dence u is called injective (≡ mutually one-valued, an injection), if from b ∈ u⟨a⟩ and
b ∈ u⟨a⟩ it follows that a = a. The correspondence u is called bijective (≡ a bijection)
if it is surjective and injective simultaneously.

Let A be a class. The particular correspondence u : A A, such that u⟨a⟩ = {a}
for every a ∈ A is called the identical correspondence from the class A into the class A
and is denoted by IdA : A A. It is called also the diagonal of the product A ∗ A. If
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X is a subclass of the class A, then the particular correspondence IdA |X is called the
identical (≡ canonical) correspondence from the subclass X into the class A and will be
denoted by IdX,A : X A.

Let u : A B be a correspondence. The correspondence {⟨b, a⟩ ∈ B∗
A | ⟨a, b⟩ ∈ u} from the class B into the class A is called inverse to the correspon-
dence u and is denoted by u−1 : B A.

Let Y be a subclass of the class B. The subclass u−1[Y] ≡ {a ∈ A | ∃b ∈ Y (b ∈
u⟨a⟩)} of the class A is called the preimage of the subclass Y under the correspon-
dence u. It is clear that u−1[{b}] = u−1⟨b⟩ and u−1[B] = dom u.

Let u : A B and v : B C be correspondences. The correspondence {⟨a, c⟩ ∈
A ∗ C | ∃b ∈ B ((b ∈ u⟨a⟩) ∧ (c ∈ v⟨b⟩))} from the class A into the class C is called
the composition (≡ product) of the correspondences u and v and is denoted by v ∘ u or
simply by vu.

Lemma 1. Let u : A B be a correspondence and X be a subclass of the class A.
Then, u|X = u ∘ IdX,A.
Proof. It is clear that u|X = {⟨a, b⟩ ∈ u | a ∈ X} = {⟨x, b⟩ ∈ X ∗ B | ∃a ∈ A ((a ∈ IdX,A⟨x⟩) ∧ (b ∈ u⟨a⟩))} = u ∘ IdX,A.
Proposition 1. Let u : A B, v : B C and w : C D be correspondences.
Then:
1) w ∘ (v ∘ u) = (w ∘ v) ∘ u;
2) (v ∘ u)−1 = u−1 ∘ v−1;
3) (u−1)−1 = u;
4) u ∘ IdA = IdB ∘u = u.

All of these equalities are checked by the direct application of the definitions.

Lemma 2. Let u : A B and v : A C be correspondences. Then, the following
conclusions are equivalent:
1) u = v;
2) u⟨a⟩ = v⟨a⟩ for every a ∈ A.
Proof. 1) ⊢ 2). Let b ∈ u⟨a⟩. Then, ⟨a, b⟩ ∈ u = v implies b ∈ v⟨a⟩. Thus, u⟨a⟩ ⊂ v⟨a⟩.
Similarly, v⟨a⟩ ⊂ u⟨a⟩.

2) ⊢ 1). Let p ∈ u. Then, there are a ∈ A and b ∈ B, such that p = ⟨a, b⟩. From
b ∈ u⟨a⟩ = v⟨a⟩, we infer that p = ⟨a, b⟩ ∈ v. Thus, u ⊂ v. Similarly, v ⊂ u.

1.1.8 Mappings

Here we shall consider the most important kind of correspondences.
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Let A and B be classes. A total single-valued correspondence u : A B is called
a mapping (≡ simple correspondence, function, transformation, operator and so on)
from the class A into the class B and is denoted by u : A → B.

It is clear that the properties from the definition of a mapping u are equivalent
to the properties IdA ⊂ u−1 ∘ u and u ∘ u−1 ⊂ IdB. The mapping u is denoted also by
a ∈ A → u(a) ∈ B, a → u(a) (a ∈ A), b = u(a) (a ∈ A) and so on with a suitable mod-
ification and simplification. The class rng u of values of the mapping u has the follow-
ing description: rng u = {b ∈ B | ∃a ∈ A (b = u(a))}.
Remark. The class {⟨a, b⟩ ∈ A∗B | b = u(a)} is called sometimes the graphof themap-
ping u : A → B. But it is clear that this class is equal to the class u itself. Therefore,
there is no difference between a mapping and its graph.

The class {x | ∃u ((u : A → B) ∧ (x = u))} of all mappings from the class A into
the class B which are sets will be denoted by Map(A, B). It is also called the degree of
the class B with the exponent A and is denoted by BA.

Proposition 1. Let A and B be sets. Then,Map(A, B) and Cor(A, B) are sets as well.
Proof. Let u ∈ Map(A, B). By the definition, u ⊂ A ∗ B. By Proposition 4 (1.1.6), A ∗
B is a set. Therefore, by Lemma 2 (1.1.6) u ∈ P(A ∗ B). This means that Map(A, B) ⊂
P(A ∗ B). Now, from Lemma 2 (1.1.6) and Lemma 1 (1.1.6), it follows that Map(A, B) is
a set. For Cor(A, B), the proof is the same.

Let u : A → B be a mapping. If X is a subclass of the class A, then the restriction
u|X : X B and the strict restriction u‖X : X u[X] from 1.1.7 are alsomappings.
Therefore, they will be denoted by u|X : X → B and u‖X : X → u[X], respectively.

For the notation of an injective, surjective or bijective mapping u : A → B we
shall write u : A B, u : A B and u : A B, respectively. Classes A and B
are called equivalent or equipollent (A ∼ B) if there exists some bijective mapping
u : A B.

If A is a class, then the identical correspondence IdA : A A from 1.1.7 is a bi-
jective mapping, such that IdA⟨a⟩ = {a} for every a ∈ A. Therefore, it will be called
the identical mapping from the class A onto the class A and as the mapping will be
denoted by idA : A A. Thus, by the definition, idA(a) = a for every a ∈ A.

If X is a subclass of the class A, then the identical correspondence IdX,A : X A
from the subclass X into the class A from 1.1.7 is an injective mapping, such that
IdX,A⟨x⟩ = {x} for every x ∈ X. Therefore, as the mapping, it will be denoted by
idX,A : X A. Thus, by the definition, idX,A(x) = x for every x ∈ X.
Lemma 1. Let A, B and C be classes and u : A → B and v : B → C be mappings. Then,
the composition correspondence v ∘ u is a mapping as well.
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Proof. Denote v ∘ u by w. By Proposition 1 (1.1.7), we have w−1 ∘ w = u−1 ∘ (v−1 ∘ v) ∘ u ⊃
u−1 ∘ idB ∘u = u−1 ∘ u ⊃ idA and w ∘ w−1 = v ∘ (u ∘ u−1) ∘ v−1 ⊂ v ∘ idB ∘v−1 ⊂ v ∘ v−1 ⊂ idC.
These inclusions means that w is a mapping.

Lemma 2. Let A and B be classes and u : A → B and v : B → A be mappings. Then,
1) if u is bijective, then u−1 ∘ u = idA and u ∘ u−1 = idB;
2) if v ∘ u = idA and u ∘ v = idB, then u and v are bijective, v = u−1 and u = v−1.

Proof. 1. Since u is a mapping, we have u−1 ∘ u ⊃ idA and u ∘ u−1 ⊂ idB. Besides,
u−1 is a mapping as well. Moreover, by Proposition 1 (1.1.7), (u−1)−1 = u. Therefore,
u ∘ u−1 = (u−1)−1 ∘ u−1 ⊃ idB and u−1 ∘ u = u−1 ∘ (u−1)−1 ⊂ idA. From these inclusions,
we get the necessary equalities.

2. Let ⟨b, a⟩ ∈ v. Then, for a ∈ A there is c ∈ B, such that ⟨a, c⟩ ∈ u. Therefore,
⟨b, c⟩ ∈ u ∘ v = idB implies c = b. Consequently, ⟨a, b⟩ ∈ u gives ⟨b, a⟩ ∈ u−1.
Thus, v ⊂ u−1.

Let ⟨b, a⟩ ∈ u−1, i. e. ⟨a, b⟩ ∈ u. For b ∈ B, there is d ∈ A, such that ⟨b, d⟩ ∈ v. Hence,
⟨a, d⟩ ∈ v ∘ u = idA implies d = a. Thus, ⟨b, a⟩ ∈ v gives u−1 ⊂ v. Finally, v = u−1.

It follows from here that u−1 is a mapping. Hence, u is bijective.
Analogously, u = v−1 implies that v is bijective.

Lemma 3. Let A, B and C be classes, and u : A → B and v : A → C bemappings. Then,
the following conditions are equivalent:
1) u = v;
2) u(a) = v(a) for every a ∈ A.
Proof. 1) ⊢ 2). From ⟨a, v(a)⟩ ∈ v = u, we conclude that v(a) ∈ u⟨a⟩. Since u⟨a⟩ con-
sists of the single element u(a), we get v(a) = u(a).

2) ⊢ 1). Let p ∈ u. Then, there is a ∈ A, such that p = ⟨a, u(a)⟩. Consequently,
p = ⟨a, v(a)⟩ ∈ v. Thus, u ⊂ v. Analogously, v ⊂ u.

The following properties of mappings are used very often and practically without spe-
cial references.

Lemma 4. Let A and B be classes; X, X, and X be subclasses of the class A; Y, Y ,
and Y be subclasses of the class B and u : A B be a correspondence. Then:
(i) u[X ∪ X] = u[X] ∪ u[X];
(ii) u[X ∩ X] ⊂ u[X] ∩ u[X].
If besides the correspondence u is a mapping u : A → B, then
(iii) u[X \ X] ⊃ u[X]\u[X];
(iv) u−1[Y ∪ Y] = u−1[Y] ∪ u−1[Y];
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(v) u−1[Y ∩ Y] = u−1[Y] ∩ u−1[Y];
(vi) u−1[Y\Y] = u−1[Y] \ u−1[Y];
(vii) X ⊂ u−1[u[X]];
(viii) u[u−1[Y]] = Y ∩ u[A];
(ix) u[X ∩ u−1[Y]] = u[X] ∩ Y.
If, moreover, the mapping u is injective, then in the assertions (ii) and (iii), we have
the equalities.

Proof. The formulas (i) – (viii) are proved by the direct checking. Therefore, we
shall prove only the formula (ix). Let y ∈ u[X] ∩ Y. Then, there is x ∈ X, such that
y = ux ∈ Y. Consequently, x ∈ X∩ u−1[Y] and y ∈ u[X∩ u−1[Y]]. Conversely, according
to the formulas (ii) and (viii), u[X ∩ u−1[Y]] ⊂ u[X] ∩ u[u−1[Y]] = u[X] ∩ Y.
The following statement will be used several times in the sequel.

Lemma 5. Let A, B be classes and U be a class of mappings u ⊂ A ∗ B, such that dom
u ⊂ A, rng u ⊂ B and either u ⊂ v or v ⊂ u for every u, v ∈ U. Let w ≡ {z | ∃u ∈ U
(z ∈ u)}. Then:
(i) w is a mapping, such that domw ⊂ A and rngw ⊂ B;
(ii) domw = {x | ∃u ∈ U (x ∈ dom u)};
(iii) a ∈ domw implies w(a) = u(a) for each u ∈ U, such that a ∈ dom u, so that

w| dom u = u;
(iv) rngw = {y | ∃u ∈ U (y ∈ rng u)}.
Proof. Let p ∈ w. Then, p ∈ u ⊂ A ∗ B for some u ∈ U. Therefore, w ⊂ A ∗ B. Let now
⟨a, b⟩ ∈ w and ⟨a, c⟩ ∈ w. Then, there exist u and v in U, such that ⟨a, b⟩ ∈ u and
⟨a, c⟩ ∈ v.Weknow that u ⊂ v or v ⊂ u; say u ⊂ v. Then, ⟨a, b⟩ ∈ v and (a, c) ∈ v imply
b = c. Thus, w is a single-valued correspondence.

Let a ∈ domw. Then, ⟨a, b⟩ ∈ w for some b ∈ B. Thus, ⟨a, b⟩ ∈ u for some u ∈ U,
where a ∈ dom u. By axiom scheme AS2 (1.1.5), a ∈ {x | ∃u ∈ U (x ∈ dom u)}.

Conversely, let z ∈ {x | ∃u ∈ U (x ∈ dom u)}. Then, by AS2, z ∈ dom u for some
u ∈ U. Thus, ⟨z, b⟩ ∈ u for some b ∈ B. Hence, ⟨z, b⟩ ∈ w, i. e. z ∈ domw. As a result,
we get Equality (ii). Consequently, dom u ⊂ domw for every u ∈ U.

Let a ∈ domw and a ∈ dom u. Then, ⟨a, u(a)⟩ ∈ u ⊂ w implies w(a) = u(a) be-
cause w is single-valued. Let a ∈ dom u. Then, by Equality (ii), a ∈ domw. By
the proved property, w(a) = u(a). This means that w| dom u = u.

Let b ∈ rngw. Then, ⟨a, b⟩ ∈ w for some a ∈ A. Thus, ⟨a, b⟩ ∈ u for some u ∈ U,
where b ∈ rng u. By AS2, b ∈ {y | ∃u ∈ U (y ∈ rng u)}.

Conversely, let z ∈ {y | ∃u ∈ U (y ∈ rng u)}. Then, byAS2 z ∈ rng u for some u ∈ U.
Thus, ⟨a, z⟩ ∈ u for some a ∈ A. Hence, ⟨a, z⟩ ∈ w, i. e. z ∈ rngw. As a result, we get
Equality (iv).
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Lemma 6. Let A, B and C be classes. Then:
1) A ∗ B ∼ B ∗ A with respect to the bijection ⟨a, b⟩ → ⟨b, a⟩ (the commutativity of

the coordinate product);
2) (A ∗ B) ∗ C ∼ A ∗ (B ∗ C) with respect to the bijection ⟨⟨a, b⟩, c⟩ → ⟨a, ⟨b, c⟩⟩

(the associativity of the coordinate product).

Proof. 1. Denote A∗B by P and B∗A by Q. Consider the correspondence u ≡ {⟨x, y⟩ ∈
P ∗ Q | ∃𝛼 ∈ A ∃b ∈ B ((x = ⟨𝛼, 𝛽⟩) ∧ (y = ⟨𝛽, 𝛼⟩))} ⊂ P ∗ Q. It is clear that dom u = P.
Suppose that ⟨p, q⟩ ∈ u and ⟨p, r⟩ ∈ u. Then, p = ⟨a, b⟩ for some a ∈ A and b ∈ B. By
axiom scheme AS2 (1.1.5), we get q = ⟨b, a⟩ and r = ⟨b, a⟩. Consequently, q = r. This
means that the correspondence u is single-valued. Thus, u is a mapping.

Let u(p) = u(p) for some p = ⟨a, b⟩ and p = ⟨a, b⟩. Then, by AS2 ⟨p, u(p)⟩ ∈ u
and ⟨p, u(p)⟩ ∈ u imply that u(p) = ⟨b, a⟩ and u(p) = ⟨b, a⟩. Therefore, by virtue
of Proposition 2 (1.1.6), the equality ⟨b, a⟩ = ⟨b, a⟩ gives b = b and a = a. In result
p = p. This means that u is injective.

Now, let q = ⟨b, a⟩ ∈ Q. Take p ≡ ⟨a, b⟩ ∈ P. By Lemma 5 (1.1.6), p and q are sets,
where ⟨p, q⟩ is a set aswell. Therefore, the formula ∃𝛼 ∈ A ∃b ∈ B ((p = ⟨𝛼, 𝛽⟩) ∧ (q =
⟨𝛽, 𝛼⟩))means by axiom scheme AS2 that ⟨p, q⟩ ∈ u, i. e. q = u(p). This means that u
is surjective.

2. Denote (A ∗ B) ∗ C by P and A ∗ (B ∗ C) by Q. Consider the correspondence
u ≡ {⟨x, y⟩ ∈ P ∗ Q | ∃𝛼 ∈ A ∃𝛽 ∈ B ∃𝛾 ∈ C ((x = ⟨⟨𝛼, 𝛽⟩, 𝛾⟩) ∧ (y = ⟨𝛼, ⟨𝛽, 𝛾⟩⟩))} ⊂
P ∗ Q. In the similar manner as above, it is checked that u is a bijective mapping
from P onto Q.

Finally, we shall introduce three important mappings which will be constantly used
further.

Projections and derivative mapping
Let A and B be non-empty classes. Consider the correspondences prA ≡ {⟨⟨a, b⟩, c⟩ ∈(A ∗ B) ∗ A | a = c} and prB ≡ {⟨⟨a, b⟩, c⟩ ∈ (A ∗ B) ∗ B | b = c}.
Lemma 7. The correspondences prA and prB are surjective mappings prA : A∗B A
and prB : A ∗ B B, such that prA(a, b) = a and prB(a, b) = b for every ⟨a, b⟩ ∈
A ∗ B.
Proof. For each element ⟨a, b⟩ ∈ A ∗ B, we have ⟨⟨a, b⟩, a⟩ ∈ prA. Thus, domprA =
A ∗ B. Let ⟨⟨a, b⟩, c⟩ ∈ prA and ⟨⟨a, b⟩, d⟩ ∈ prA. Then, a = c and a = d imply c = d.
Hence, prA is single-valued. Thus, prA is a mapping from A ∗ B into A, such that
prA(a, b) = a.

Let a0 ∈ A. Since B is non-empty, there is some element b0 ∈ B. Now, from
the equality prA(a0, b0) = a0 we conclude that the mapping prA is surjective.

For prB, the arguments are the same.
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The mappings prA : A ∗ B A and prB : A ∗ B B are called the projections onto
the factors A and B, respectively.

Let A, B, A, and B be classes and u : A → B and u : A → B bemappings. Con-
sider the correspondence 𝜋 ≡ {⟨⟨a, a⟩, ⟨b, b⟩⟩ ∈ (A ∗ A) ∗ (B ∗ B) | (b = u(a)) ∧
(b = u(a))}.
Lemma 8. The correspondence𝜋 is amapping𝜋: A∗A → B∗B, such that𝜋(⟨a, a⟩) =
⟨u(a), u(a)⟩ for every ⟨a, a⟩ ∈ A ∗ A.

Proof. For each element, ⟨a, y⟩ ∈ A ∗ A we have ⟨⟨a, a⟩, ⟨u(a), u(a)⟩⟩ ∈ 𝜋. Thus,
dom𝜋 = A ∗ A. Let ⟨⟨a, a⟩, ⟨b, b⟩⟩ ∈ 𝜋 and ⟨⟨a, a⟩, ⟨c, c⟩⟩ ∈ 𝜋. Then, b = u(a),
b = u(a), c = u(a) and c = u(a) imply b = c and b = c, where ⟨b, b⟩ = ⟨c, c⟩.
Thus, 𝜋 is single-valued. Thus, 𝜋 is a mapping from A ∗ A into B ∗ B, such that
𝜋(a, a) = ⟨u(a), u(a)⟩.
Themapping 𝜋: A∗A → B∗B will be called the derivative mapping of themappings
u : A → B and u : A → B with respect to the coordinate products A ∗ A and B ∗ B

and will be denoted by (u : A → B) ∗m (u : A → B) or simply by u ∗m u.
Let A and B be classes and u : A → B be a mapping.
Define a mapping 𝛼: P(A) → P(B), setting 𝛼(X) ≡ u[X] for every subset X of

the class A. The mapping 𝛼 will be called the derivative mapping of the mapping
u : A → B with respect to the ensembles P(A) and P(B) and will be denoted by
Pm(u : A → B) or simply Pm(u).

Also, for a class I, define a mapping 𝛿 : AI → BI setting 𝛿(f ) ≡ u ∘ f for every f ∈
AI . The mapping 𝛿 will be called the derivative mapping of the mapping u : A → B
with respect to the degrees AI and BI and will be denoted by (u : A → B)Im or simply
(u)Im.

1.1.9 Multivalued and simple collections

Consider now the important parallel terminology for correspondences andmappings.
Let I be a fixed class. A correspondence u : I A from the class I into a class A

will be called also a (multivalued) collection of subclasses and subsets of the class A,
indexed by the class I, andwill be denoted also by u ≡ ⟮Ai ⊂ A | i ∈ I⟯ : I A, where
Ai ≡ u⟨i⟩ or in a shorter form by u ≡ ⟮Ai ⊂ A | i ∈ I⟯ or by ⟮Ai ⊂ A | i ∈ I⟯. The class Ai
will be called the component of the collection u with the index i ∈ I. The class I is called
the class of indices of the collection u. If for every i ∈ I the class Ai is a set, then u will
be called a (multivalued) collection of subsets of the class A.

If the correspondence u is total, i. e. Ai ̸= ⌀ for every i ∈ I, then the collection
u ≡ ⟮Ai ⊂ A | i ∈ I⟯ will be called total as well.
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A collection u ≡ ⟮Ai ⊂ U | i ∈ I⟯ will be called also a collection of classes and sets
and will be denoted also by u ≡ ⟮Ai | i ∈ I⟯. If for every i ∈ I the class Ai is a set, then
u will be called a collection of sets.

It is clear that any mapping u : I → A is a multivalued collection u ≡ ⟮Ai ⊂ A |
i ∈ I⟯ : I A, such that Ai ≡ {ai} and ai ≡ u(i). This multivalued collection will
be called a (simple) collection of elements of the class A and will be denoted by
u ≡ (ai ∈ A | i ∈ I) or in a shorter form by u ≡ (ai ∈ A | i ∈ I) or by (ai ∈ A | i ∈ I).
Thus, the notion of the simple collection u ≡ (ai ∈ A | i ∈ I) is another form of the no-
tion of the mapping u : I → A. The set ai will be called the member (≡ coordinate) of
the collection u with the index i ∈ I. The class I ≡ dom u is called the class of indices
of the collection u. The class rng u ≡ {x ∈ U | ∃i ∈ I (x = ai)} will be called the class of
members of the collection u and will be denoted by {ai | i ∈ I}.

A simple collection u ≡ (ai ⊂ U | i ∈ I)will be called also a simple collection of sets
and will be denoted also by u ≡ (ai | i ∈ I).

Let u ≡ ⟮Ai ⊂ A | i ∈ I⟯ be a collection and X be a subclass of the class I. Then,
the correspondence v ≡ u|X : X A is a collection v ≡ ⟮Ax ⊂ A | x ∈ X⟯. It will be
called the restriction of the collection u on the subclass X of the class I. And the collec-
tion u will be called an extension of the collection v. The same terminology is valid for
simple collections u ≡ (ai ⊂ A | i ∈ I).

The identical correspondence IdI : I I from 1.1.7 is a multivalued collection,
which will be called the identical collection of single element subsets of the class I and
will be denoted also by IdI ≡ ⟮{i}i ⊂ I | i ∈ I⟯, where {i}i ≡ {i} for every i ∈ I.

Similarly, the identical mapping idI : I I from 1.1.8 is a collection, which will
be called also the identical collection of elements of the class I andwill be denoted also
by idI ≡ (ii ∈ I | i ∈ I), where ii ≡ i for every i ∈ I.

If X is a subclass of the class I, then the identical correspondence IdX,I : X I
from 1.1.7 is a multivalued collection, which will be called the identical collection of
single element subsets of the subclass X of the class I and will be denoted also by
IdX,I ≡ ⟮{x}x ⊂ I | x ∈ X⟯, where {x}x ≡ {x} for every x ∈ X.

Similarly, the identical mapping idX,I : X I from 1.1.8 is a collection, which
will be called also the identical collection of elements of the subclass X of the class I
and will be denoted also by idX,I ≡ {xx ∈ I | x ∈ X}, where xx ≡ x for every
x ∈ X.
Lemma 1. Let u ≡ ⟮Ai ⊂ A | i ∈ I⟯ and v ≡ ⟮Bi ⊂ B | i ∈ I⟯ be multivalued collections.
Then, the following conclusions are equivalent:
1) u = v;
2) Ai = Bi for every i ∈ I.
The same statement is valid for simple collections.

Proof. This statement is a particular case of Lemma 2 (1.1.7).
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Lemma 2. Let u ≡ ⟮Ai ⊂ A | i ∈ I⟯ : I A be a collection of subsets of a class A.
Then, there exists a unique mapping v : I → P(A), such that v(i) = Ai for every i ∈ I.
Proof. By the definition from 1.1.5, we see that Ai ∈ P(A) for every i ∈ I. Therefore,
we can consider the correspondence v ≡ {⟨i, x⟩ ∈ I ∗P(A) | x = Ai}. If i ∈ I, then Ai =
Ai means by axiom scheme AS2 (1.1.5) that ⟨i, Ai⟩ ∈ v. Thus, dom v = I. Suppose that
⟨i, p⟩ ∈ v and ⟨i, q⟩ ∈ v. Then, by axiom scheme AS2 p = Ai and q = Ai. Therefore,
p = q. This means that the correspondence v is single-valued. Thus, v is a mapping
and v(i) = Ai. The uniqueness of v follows from Lemma 3 (1.1.8).

Corollary 1. Let u ≡ ⟮Ai ⊂ A | i ∈ I⟯ be a collection of sets of a class A. Then, there exists
the unique simple collection v = (Ai ∈ P(A) | i ∈ I).
Corollary 2. Let u ≡ ⟮Ai ⊂ U | i ∈ I⟯ be a collection of sets. Then, there exists the unique
simple collection v ≡ (Ai ⊂ U | i ∈ I).
Proof. It follows from Corollary 1 and Lemma 5 (1.1.5).

Consider the correspondence 𝜑 ≡ {⟨u, v⟩ ∈ Cor(I, A) ∗ Map(I,P(A)) | ∀i ∈ I (v(i) =
u⟨i⟩)}.
Lemma 3. Let I /= ⌀. Then, 𝜑 is a bijective mapping 𝜑: Cor(I, A) Map(I,P(A)),
such that 𝜑⟮Ai ⊂ A | i ∈ I⟯ = (Ai ∈ P(A) | i ∈ I) for every collection ⟮Ai ⊂ A | i ∈ I⟯ of
subsets of the class A.

Proof. Byvirtue of Corollary 2 to Lemma2,weget dom 𝜑 = Cor(I, A). Let ⟨u, v⟩ ∈ 𝜑 and
⟨u, w⟩ ∈ 𝜑. Then, v(i) = u⟨i⟩ and w(i) = u⟨i⟩ imply v(i) = w(i) for every i ∈ I. There-
fore, by Lemma 3 (1.1.8) v = w. Thus, 𝜑 is single-valued. Thus, the correspondence 𝜑
is a mapping, such that (𝜑u)(i) = u⟨i⟩ for every i ∈ I.

Suppose that 𝜑u = 𝜑u for some u, u ∈ Cor(I, A). Then, by Lemma 3 (1.1.8),
(𝜑u)(i) = (𝜑u)(i) for every i ∈ I. Therefore, u⟨i⟩ = u⟨i⟩ for every i ∈ I implies by
Lemma 1 that u = u. This means that 𝜑 is injective.

Let now v ≡ (Ai ∈ P(A) | i ∈ I) ∈ Map(I,P(A)). Consider the class u ≡ {x | ∃i ∈ I
(∃a ∈ Ai (x = ⟨i, a⟩))}. If y ∈ u, then by axiom scheme AS2 (1.1.5) ∃i ∈ I (∃a ∈ Ai(y = ⟨i, a⟩)). Then, y = ⟨i, a⟩ for some i ∈ I and a ∈ Ai. Since Ai is a set, by axiom
scheme AS2 Ai ⊂ A. Therefore, y ∈ I ∗ A. This means that u ⊂ I ∗ A. Thus, u is a
multivalued collection.

Take any l ∈ I. If d ∈ u⟨l⟩, then p ≡ ⟨l, d⟩ ∈ u. Besides, by axiom scheme AS2
(1.1.5), p = ⟨m, e⟩ or some m ∈ I and e ∈ Am. From the equality ⟨l, d⟩ = ⟨m, e⟩, we
infer by virtue of Proposition 2 (1.1.6) that m = l and e = d. As a result, d ∈ Al, where
u⟨l⟩ ⊂ Al. Conversely, if f ∈ Al ⊂ A, then we can take the element ⟨l, f ⟩ ∈ I ∗ A. Using
axiom schemes LAS12 (1.1.4) and AS2 (1.1.5), we deduce that ⟨l, f ⟩ ∈ u, i. e. f ∈ u⟨l⟩,
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where Al ⊂ u⟨l⟩. Thus, we get the equality u⟨l⟩ = Al for every l ∈ I. This means that u
is a multivalued collection u ≡ ⟮Ai ⊂ A | i ∈ I⟯. By the definition of 𝜑, we have 𝜑u = v.
Consequently, 𝜑 is surjective.
Corollary 1. Let I be a non-empty class. Then, for the universal class U the correspon-
dence 𝜑 is a bijective mapping 𝜑: Cor(I, U) Map(I, U), such that 𝜑⟮Ai | i ∈ I⟯ =(Ai | i ∈ I) for every collection of sets ⟮Ai | i ∈ I⟯.
It follows from Lemma 3 and Corollary 1 to it that working only with sets we could use
only simple collections. But the necessity to have collections of classes for the future
use forced us to introduce the new unaccustomed notion of a (multivalued) collection.

1.1.10 The union and intersection of a multivalued collection

Let u ≡ ⟮Ai ⊂ U | i ∈ I⟯ be a (multivalued) collection of classes and sets, indexed by
the (non-empty) class I.

The class rng u = {x | ∃i (i ∈ I ∧ x ∈ Ai)} is called the union of the (multivalued)
collection u and is denoted by ⋃⟮Ai | i ∈ I⟯. The class {x | ∀i ((i ∈ I) ⇒ (x ∈ Ai))} is
called the intersection of the (multivalued) collection u and is denoted by⋂⟮Ai | i ∈ I⟯.
It is clear that Ai ⊂ ⋃⟮Ai | i ∈ I⟯ and ⋂⟮Ai | i ∈ I⟯ ⊂ Ai for every i ∈ I. Besides, ⋂⟮Ai |
i ∈ I⟯ ⊂ ⋃⟮Ai | i ∈ I⟯.

The collection u is called a cover of a class D, if D = ⋃⟮Ai | i ∈ I⟯. The collection u
is called pairwise disjoint, if Ai ∩Aj = ⌀ for every element i /= j from I. The collection u
is called a partition (≡ dissection) of a class D, if u is a pairwise disjoint cover of D.

Let u ≡ ⟮Ai | i ∈ I⟯ be a cover of a class D. Any restriction u|J ≡ ⟮Ai | i ∈ J⟯ of
the collection u on the subclass J ⊂ I, such that u|J is a cover of the class D as well is
called a subcover of the cover u.

A cover w ≡ ⟮Ck | k ∈ K⟯ of the class D is called a refinement of the cover u if for
every k ∈ K there is an index i ∈ I, such that Ck ⊂ Ai. It is clear that every subcover of
the cover u is a refinement of u.

Lemma 1. Let u ≡ ⟮Ai | i ∈ I⟯ be a collection of subclasses of a class A. Then:
1) A \ ⋃⟮Ai | i ∈ I⟯ = ⋂⟮A \ Ai | i ∈ I⟯;
2) A \ ⋂⟮Ai | i ∈ I⟯ = ⋃⟮A \ Ai | i ∈ I⟯.
Proof. 1. Let x ∈ A \⋃⟮Ai | i ∈ I⟯. Since Ai ⊂ ⋃⟮Ai | i ∈ I⟯, we get x ∉ Ai, i. e. x ∈ A \ Ai
for every i ∈ I. Consequently, x ∈ ⋂⟮A \ Ai | i ∈ I⟯. Conversely, let x ∈ ⋂⟮A \ Ai | i ∈ I⟯.
Then, x ∉ Ai for every i ∈ I, i. e. x ∉ ⋃⟮Ai | i ∈ I⟯. Therefore, x ∈ A \ ⋃⟮Ai | i ∈ I⟯.

Conclusion 2 is checked in the similar way.

Let u ≡ ⟮Ai | i ∈ I⟯ be a (multivalued) collection. The class ⋃⟮Ai ∗ {i} | i ∈ I⟯ is called
the disjoint union of the (multivalued) collection u andwill be denoted by⋃d⟮Ai | i ∈ I⟯.
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For every i ∈ I, there is the canonical injection inji : Ai ⋃d⟮Ai | i ∈ I⟯, such that
inji(a) = ⟨a, i⟩ for every a ∈ Ai.

Denote the class ⋃⟮Ai | i ∈ I⟯ by P and the class ⋃d⟮Ai | i ∈ I⟯ by Q. Consider
the correspondence 𝛼 ≡ {⟨x, y⟩ | (x ∈ P) ∧ (y ∈ Q) ∧ (∃i ∈ I ((x ∈ Ai) ∧ (y = ⟨x, i⟩)))} ⊂
P ∗ Q.
Lemma 2. Let ⟮Ai | i ∈ I⟯ be a pairwise disjoint collection. Then, the correspondence 𝛼
is a bijective mapping 𝛼: ⋃⟮Ai | i ∈ I⟯ ⋃d⟮Ai | i ∈ I⟯, such that 𝛼(p) = ⟨p, i⟩ for
every p ∈ Ai and i ∈ I.
Proof. Let p ∈ P. Then, p ∈ Aj for some index j ∈ J. Consider the element q ≡ ⟨p, j⟩ ∈
Q. Then, we have the formula (p ∈ Aj) ∧ (q = ⟨p, j⟩). By axiom scheme LAS12 (1.1.4),
we have the formula (p ∈ Aj) ∧ (q = ⟨p, j⟩) ⇒ ∃i ∈ I ((p ∈ Ai) ∧ (q = ⟨p, i⟩)). By con-
dition 3 from 1.1.3, we get the formula ∃i ∈ I ((p ∈ Ai) ∧ (q = ⟨p, i⟩)). Now, by axiom
scheme AS2 (1.1.5), we conclude that ⟨p, q⟩ ∈ 𝛼. Thus, dom 𝛼 = P.

Suppose that ⟨p, q⟩ ∈ 𝛼 and ⟨p, r⟩ ∈ 𝛼. Then, by axiom scheme AS2, ∃i ∈ I (p ∈
Ai ∧ q = ⟨p, i⟩) and ∃i ∈ I (p ∈ Ai ∧ r = ⟨p, i⟩). Therefore, p ∈ Ak and q = ⟨p, k⟩ for
some k ∈ I and p ∈ Al and r = ⟨p, l⟩ for some l ∈ I. From p ∈ Ak ∩Al, we conclude that
k = l. As a result, q = r. This means that the correspondence 𝛼 is single-valued. Thus,
𝛼 is a mapping, such that 𝛼(p) = ⟨p, i⟩ for every p ∈ Ai.

Let 𝛼(p) = 𝛼(p) for some p, p ∈ P. Then, ⟨p, 𝛼(p)⟩ ∈ 𝛼 and ⟨p, 𝛼(p)⟩ ∈ 𝛼 imply
by AS2, that p ∈ Am and 𝛼(p) = ⟨p,m⟩ for somem ∈ I and p ∈ An and 𝛼(p) = ⟨p, n⟩
for some n ∈ I. By virtue of Proposition 2 (1.1.6), we infer from these conditions that
p = p. This means that 𝛼 is surjective.

Now, let q ∈ Q. Then, q ∈ A𝜘 ∗ {𝜘} for some index 𝜘 ∈ I, i. e. q = ⟨p, 𝜘⟩ for some
p ∈ A𝜘 ⊂ P. By Lemma 5 (1.1.6), ⟨p, q⟩ is a set. Aswell as above, we deduce the formula
∃i ∈ I ((p ∈ Ai) ∧ (q = ⟨p, i⟩)), andbyaxiomschemeAS2,we conclude that ⟨p, q⟩ ∈ 𝛼,
i. e. q = 𝛼(p). This means that 𝛼 is surjective.
Proposition 1. Let ⟮Ai | i ∈ I⟯ be a collection of classes. Then:
1) if u : K I is a surjective mapping, then ⋃⟮Ai | i ∈ I⟯ = ⋃⟮Au(k) | k ∈ K⟯ and⋂⟮Ai | i ∈ I⟯ = ⋂⟮Au(k) | k ∈ K⟯ (the general commutativity of union and intersec-

tion);
2) if I = ⋃⟮Im | m ∈ M⟯ for somecollection ⟮Im | m ∈ M⟯, then⋃⟮Ai | i ∈ I⟯ = ⋃⟮⋃⟮Ai |

i ∈ Im⟯ | m ∈ M⟯ and ⋂⟮Ai | i ∈ I⟯ = ⋂⟮⋂⟮Ai | i ∈ Im⟯ | m ∈ M⟯ (the general asso-
ciativity of union and intersection).

The proof of these equalities follows directly from the definitions.
Some useful special form of the general associativity will be derived in the end

of 1.1.13 (see Proposition 1 (1.1.13) and its corollary).

Corollary 1. Let ⟮Ai | i ∈ I⟯ be a collection of classes. Then:
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1) if u : K I is a bijective mapping, then⋃d⟮Ai | i ∈ I⟯ = ⋃d⟮Au(k) | k ∈ K⟯;
2) if a collection ⟮Im | m ∈ M⟯ is a partition of the class I, then there exists a bi-

jection 𝛽: ⋃d⟮Ai | i ∈ I⟯ ⋃d⟮⋃d⟮Ai | i ∈ Im⟯ | m ∈ M⟯, such that 𝛽(⟨x, i⟩) =
⟨⟨x, i⟩,m⟩ for every m ∈ M, i ∈ Im and x ∈ Ai.

Corollary 2. Let ⟮Ai | i ∈ I⟯ be a collection of classes, j ∈ I and K ≡ I \ {j} /= ⌀. Then,
⋃⟮Ai | i ∈ I⟯ = Aj ∪ ⋃⟮Ai | i ∈ K⟯ and⋂⟮Ai | i ∈ I⟯ = Aj ∩ ⋂⟮Ai | i ∈ K⟯.
Corollary 3. Let ⟮Ai | i ∈ I⟯ be a collection of classes, I = {j, k} and j /= k. Then, ⋃⟮Ai |
i ∈ I⟯ = Aj ∪ Ak and⋂⟮Ai | i ∈ I⟯ = Aj ∩ Ak.

Lemma 3. Let ⟮Ai ⊂ A | i ∈ I⟯ and ⟮Bj ⊂ B | j ∈ J⟯ be collections of corresponding sub-
classes, and u : A B be a correspondence. Then:
(i) u[⋃⟮Ai | i ∈ I⟯] = ⋃⟮u[Ai] | i ∈ I⟯;
(ii) u[⋂⟮Ai | i ∈ I⟯] ⊂ ⋂⟮u[Ai] | i ∈ I⟯.
If in addition the correspondence u is a mapping u : A → B, then
(iii) u−1[⋃⟮Bj | j ∈ J⟯] = ⋃⟮u−1[Bj] | j ∈ J⟯;
(iv) u−1[⋂⟮Bj | j ∈ J⟯] = ⋂⟮u−1[Bj] | j ∈ J⟯.
If besides the mapping, u is injective, then (ii) becomes an equality.

All of these formulas are proved by the direct checking.
Let ⟮Ai | i ∈ I⟯and ⟮Bi | i ∈ I⟯be (multivalued) collections of classes and ⟮ui | i ∈ I⟯

be a (multivalued) collection of mappings ui : Ai → Bi. Define a mapping 𝛿 : ⋃d⟮Ai |
i ∈ I⟯ → ⋃d⟮Bi | i ∈ I⟯ setting 𝛿(⟨a, i⟩) ≡ ⟨ui(a), i⟩ for every i ∈ I and a ∈ Ai. Themap-
ping 𝛿 will be called a derivative mapping of the (multivalued) collection of mappings
⟮ui : Ai → Bi | i ∈ I⟯with respect to the disjoint unions⋃d⟮Ai | i ∈ I⟯ and⋃d⟮Bi | i ∈ I⟯
and will be denoted by⋃dm⟮ui : Ai → Bi | i ∈ I⟯ or simply by⋃dm⟮ui | i ∈ I⟯.
Lemma 4.
1) If all the mappings ui are injective [surjective, bijective], then the mapping⋃dm⟮ui |

i ∈ I⟯ is injective [surjective, bijective] as well.
2) If ⟮ui : Ai → Bi | i ∈ I⟯ and ⟮vi : Bi → Ci | i ∈ I⟯ are two collections of mappings,

then⋃dm⟮vi ∘ ui | i ∈ I⟯ = ⋃dm⟮vi | i ∈ I⟯ ∘ ⋃dm⟮ui | i ∈ I⟯.
All of these conclusions are proved by the direct checking because of the pairwise
disjointness of components of the collections ⟮Ai ∗{i} | i ∈ I⟯, ⟮Bi ∗{i} | i ∈ I⟯ and ⟮Ci ∗{i} | i ∈ I⟯.
1.1.11 The other axioms of existence of sets

In this subsection, we shall introduce the other axioms of the theory of classes and
sets except the axiom of choice which will be introduced in 1.1.12.
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A5. (The axiom of the general union.) Let ⟮Ai ⊂ U | i ∈ I⟯ be a multivalued collection
of sets, indexed by the set I. Then,⋃⟮Ai | i ∈ I⟯ is a set as well.

Lemma 1.
1) Let u ≡ ⟮Ai | i ∈ I⟯ be a multivalued collection of sets, indexed by a set I. Then, u is

a set.
2) Let u : A → B be a mapping from a set A into a class B. Then, rng u and u are sets.

Proof. 1. By axiomA5, A ≡ ⋃⟮Ai | i ∈ I⟯ is a set. Let p ∈ u. Then, by axiom scheme AS2
(1.1.5) p = ⟨i, x⟩ for some i ∈ I and x ∈ U. From ⟨i, x⟩ ∈ u, we conclude that x ∈ u⟨i⟩ ≡
Ai, where x ∈ A. By virtue of axiom scheme LAS12 (1.1.4) and the rule of deduction D3
(1.1.3),we get the formula∃i ∈ I (∃x ∈ A (p = ⟨i, x⟩)). Now, by axiomschemeAS2 (1.1.5)
p ∈ I ∗A. As a result, u ⊂ I ∗A. By Proposition 4 (1.1.6), I ∗A is a set. Now, by Lemma 1
(1.1.6), u is a set.

2. Let now u : A → B be a mapping from a set A into a class B. By the definition
from 1.1.8, u is a multivalued collection u ≡ ⟮Ba | a ∈ A⟯, such that Ba ≡ u⟨a⟩ = {u(a)}
for every a ∈ A. Since u(a) ∈ B, u(a) is a set. Then, byLemma3 (1.1.6)Ba is a set aswell.
Now, by statement 1, u is a set. Besides, by axiom A5 and the definition from 1.1.10,
rng u ≡ ⋃⟮Ba | a ∈ A⟯ is a set.
A6. (The axiom of regularity (≡ foundation).) Let A be a class and A /= ⌀. Then, there

exists an element a ∈ A, such that a ∩ A = ⌀.
Lemma 2. A ∉ A.
Proof. Suppose that A ∈ A. Then, A is a non-empty set. Besides A is a single element
of the class {A}. By axiom A6, there is 𝛼 ∈ {A}, such that 𝛼 ∩ {A} = ⌀. Since 𝛼 = A, we
get A ∩ {A} = ⌀ and 𝛼 ∈ A. As a result, 𝛼 ∈ A ∩ {A} = ⌀. It follows from this contra-
diction that A ∉ A.
Corollary 1. Let A be a set. Then, A /= {A}.
Proof. Suppose that A = {A}. Then, A ∈ A. But this contradicts Lemma 2.

Lemma 3. If A ∈ B, then B ∉ A.
Proof. Suppose that A ∈ B and B ∈ A. Then, A and B are sets. By Lemma 4 (1.1.6),
{A, B} is a set and x ∈ {A, B} is equivalent to either x = A or x = B. By axiom A6,
there is 𝛼 ∈ {A, B}, such that 𝛼 ∩ {A, B} = ⌀. If 𝛼 = A, then B ∈ 𝛼. As a result, B ∈
𝛼 ∩ {A, B} = ⌀. If 𝛼 = B, then A ∈ 𝛼. As a result, A ∈ 𝛼 ∩ {A, B} = ⌀. In both cases, we
get the contradiction. Thus, B ∉ A.
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A7. (The axiom of infinity.) There exists a set A, such that ⌀ ∈ A, and a ∈ A implies
a ∪ {a} ∈ A.

It follows from the axiom that ⌀ is a set. It will be denoted further also by 0. By
Lemma 3 (1.1.6), {0} is also a set. By axiom A4 (1.1.6), the class 0 ∪ {0} is also a set.
This set will be denoted by 1. Analogously, the class 1 ∪ {1} is a set. It will be denoted
by 2. In the similar manner we define the sets 3 ≡ 2 ∪ {2}, 4 ≡ 3 ∪ {3} and so on.
Lemma 4.
1) 0 ⊂ 1 ⊂ 2 ⊂ 3 ⊂ 4 and so on.
2) 0 /= 1 /= 2 /= 3 /= 4 and so on.
3) 0 ∈ 1; 0 ∈ 2 and 1 ∈ 2; 0 ∈ 3, 1 ∈ 3, and 2 ∈ 3; 0 ∈ 4, 1 ∈ 4, 2 ∈ 4, and 3 ∈ 4; and

so on.

Proof. 1. All of these inclusions follow from the definitions.
2. Suppose that 1 = 2 = 1 ∪ {1}. Then, {1} ⊂ 1. Since 1 is a set, we get by Lemma 3

(1.1.6) that 1 ∈ 1. But this contradicts Lemma 2. Thus, 1 /= 2. The similar arguments are
used for the other inequalities.

3. All the belongings follow from the definitions.

Let A and A be sets. Consider the correspondence v : 2 U, such that v ≡ {⟨0, A⟩,
⟨1, A⟩}.
Proposition 1. Let A and A be sets. Then:
1) dom v = 2 and rng v = {A, A};
2) v is a collection (Xi ∈ {A, A} | i ∈ 2), such that X0 = A and X1 = A.

Proof. 1. By Lemma 5 (1.1.6), ⟨0, A⟩ and ⟨1, A⟩ are sets. Therefore, by Lemma 4 (1.1.6),
v is a set and x ∈ v iff either x = ⟨0, A⟩ or x = ⟨1, A⟩. Consequently, v = 2, A ∈ rng v
and A ∈ rng v. By virtue of Lemma 4 (1.1.6), {A, A} ⊂ rng v. Conversely, if y ∈ rng v,
then by axiom scheme AS2 (1.1.5) ∃i ∈ 2 (⟨i, y⟩ ∈ v). Hence, ⟨j, y⟩ ∈ v for some j ∈ 2. If
j = 0, then ⟨0, y⟩ ∈ v. Thus, either ⟨0, y⟩ = ⟨0, A⟩ or ⟨0, y⟩ = ⟨1, A⟩. In the first case by
Proposition 2 (1.1.6), y = A. The second case is impossible in virtue of Lemma 4 (1.1.6)
and Proposition 2 (1.1.6). As a result, y = A ∈ {A, A}. If j = 1, then in the similar way
⟨1, y⟩ ∈ v impliesy = A ∈ {A, A}.Thismeansthatrng v ⊂ {A, A}.Thus,rng v = {A, A}.

2. Now, by the definition from 1.1.9, v is the collection (v⟨i⟩ ⊂ {A, A} | i ∈ 2). Sup-
pose that X, X ∈ v⟨0⟩. Then, ⟨0, X⟩ ∈ v and ⟨0, X⟩ ∈ v. Since 0 /= 1, we infer that
⟨0, X⟩ = ⟨0, A⟩ and ⟨0, X⟩ = ⟨0, A⟩. By virtue of Proposition 2 (1.1.6), X = A = X.
This means that the subclass v⟨0⟩ ⊂ {A, A} consists of the single element X0 = A. By
the same arguments, we check that the subclass v⟨1⟩ consists of the single element
X1 = A. Therefore, by the definition from 1.1.9 v = (Xi ∈ {A, A} | i ∈ 2), where X0 = A
and X1 = A.
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Sequential pairs, triplets, and suits of sets
This collection v ≡ (Xi ∈ {A, A} | i ∈ 2), such that v(0) ≡ X0 ≡ A and v(1) ≡ X1 ≡ A

will be called the (simple) sequential pair of the sets A and A with the zero member A
and the firstmember A andwill be denoted by (A, A). Alongwith the name “member”
the name “coordinate” and others will be used.

Let A, A, A, A, . . . be sets. The collection (Xi ∈ U | i ∈ 3), such that X0 ≡ A,
X1 ≡ A and X2 ≡ A will be called the (simple) sequential triplet of the sets A, A,
and A and will be denoted by (A, A, A). The collection (Xi ∈ U | i ∈ 4), such that
X0 ≡ A, X1 ≡ A, X2 ≡ A and X3 ≡ A will be called the (simple) sequential quadru-
plet of the sets A, A, A and A and will be denoted by (A, A, A, A), and so on.
The sets (A, A), (A, A, A), (A, A, A, A),. . . will be called (simple) sequential suits
of sets.

The sequential pair (A, A) has the best properties of the coordinate pair ⟨A, A⟩.
Lemma 5. Let A, A, B and B be sets. If (A, A) = (B, B), then A = B and A = B.
The similar properties are valid for corresponding triplets, quadruplets, and so on.

Proof. By the definition, (A, A) = (Xi ∈ {A, A} | i ∈ 2), where X0 ≡ A and X1 ≡ A,
and (B, B) = (Yi ∈ {B, B} | i ∈ 2), where Y0 ≡ B and Y1 ≡ B. By virtue of Lemma 1
(1.1.9), {Xi} = {Yi} for every i ∈ 2. Since Xi and Yi are sets, we get Xi = Yi for every i.
Therefore, A ≡ X0 = Y0 ≡ B and A ≡ X1 = Y1 ≡ B.

(Multivalued) sequential pairs, triplets, and suits of classes
Now, we shall introduce another pair suitable also for classes. Let A and A be classes.
Consider the correspondence u ≡ {x | ∃i ∈ 2 (∃s ∈ U ((x = ⟨i, s⟩) ∧ ((i = 0) ⇒ (s ∈
A)) ∧ ((i = 1) ⇒ (s ∈ A))))}.
Proposition 2.
1) dom u = 2 and rng u = A ∪ A;
2) u is a collection ⟮Xi ⊂ A ∪ A | i ∈ 2⟯, such that X0 = A and X1 = A.

Proof. All the assertions follow from the equalities u = {⟨i, s⟩ ∈ 2∗U | ((i = 0) ⇒ (s ∈
A)) ∧ ((i = 1) ⇒ (s ∈ A))} = {⟨0, a⟩ | a ∈ A} ∪ {⟨1, a⟩ | a ∈ A}.
This multivalued collection u ≡ ⟮Xi ⊂ A ∪ A | i ∈ 2⟯, such that u⟨0⟩ = X0 = A and
u⟨1⟩ = X1 = A will be called the (multivalued) sequential pair of the classes A and A

with the zero component A and the first component A and will be denoted by
⟮A, A⟯.

Let A, A, A, A, . . . be classes. The (multivalued) collection ⟮Xi ⊂ U | i ∈ 3⟯,
such that X0 ≡ A, X1 ≡ A and X2 ≡ A will be called the (multivalued) sequential
triplet of the classes A, A and A and will be denoted by ⟮A, A, A⟯. The (multi-
valued) collection ⟮Xi ⊂ U | i ∈ 4⟯, such that X0 ≡ A, X1 ≡ A, X2 ≡ A and X3 ≡ A
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will be called the (multivalued) sequential quadruplet of the classes A, A, A and A

and will be denoted by ⟮A, A, A, A⟯, and so on. The classes ⟮A, A⟯, ⟮A, A, A⟯,
⟮A, A, A, A⟯,. . . will be called (multivalued) sequential suits of classes and sets.
Lemma 6. If ⟮A, A⟯ = ⟮B, B⟯, then A = B and A = B. The similar properties are valid
for corresponding triplets, quadruplets, and so on.

Proof. By the definition, ⟮A, A⟯ = ⟮Xi ⊂ A∪A | i ∈ 2⟯, where X0 = A and X1 = A, and
⟮B, B⟯ = ⟮Yi ⊂ B ∪ B | i ∈ 2⟯, where Y0 = B and Y1 = B. By virtue of Lemma 1 (1.1.9),
Xi = Yi for every i ∈ 2. Therefore, A ≡ X0 = Y0 ≡ B and A ≡ X1 = Y1 ≡ B.

Since ⟮A, A⟯ is a multivalued collection, we can consider its union and intersection.
The classes⋃⟮A, A⟯ ≡ ⋃⟮Xi ⊂ A∪A | i ∈ 2⟯ and⋂⟮A, A⟯ ≡ ⋂⟮Xi ⊂ A∪A | i ∈ 2⟯will
be called the union and the intersection of the (multivalued) sequential pair ⟮A, A⟯,
respectively. Since 2 is a set, then for every set A and A by virtue of axiomA6, the class
⋃⟮A, A⟯ is a set. This implies by Lemma 1 (1.1.6) that⋂⟮A, A⟯ is a set as well.
Lemma 7. ⋃⟮A, A⟯ = A ∪ A and⋂⟮A, A⟯ = A ∩ A.

Proof. 1. By the definition from 1.1.10⋃⟮A, A⟯ ≡ {x | ∃i ∈ 2 (x ∈ Xi)}. Let p ∈ ⋃⟮A, A⟯.
Then, by axiom scheme AS2 (1.1.5), ∃i ∈ 2 (p ∈ Xi). Therefore, for some j ∈ 2 we have
p ∈ Xj. If j = 0, then p ∈ X0 = A. If j = 1, then similarly, p ∈ X1 = A. In both cases,
p ∈ A ∪ A. This means that⋃⟮A, A⟯ ⊂ A ∪ A.

Conversely, let q ∈ A∪A. Then, by the definition from 1.1.5, q ∈ A ∨ q ∈ A. There-
fore, q ∈ X0 ∨ q ∈ X1, i. e. (k ∈ 2) ∧ (q ∈ Xk). Now, by axiom scheme LAS12 (1.1.4) and
rule of deduction D3 (1.1.3), we get the formula ∃i ((i ∈ 2) ∧ (q ∈ Xi)). Consequently,
by virtue of axiom scheme AS2 (1.1.5), we infer that q ∈ ⋃⟮A, A⟯. This means that
A ∪ A ⊂ ⋃⟮A, A⟯.

2. Analogously, by the definition from 1.1.10, ⋂⟮A, A⟯ ≡ {x | ∀i ((i ∈ 2) ⇒ (x ∈
Xi))}. Let p ∈ ⋂⟮A, A⟯. Then, ∀i ∈ 2 (p ∈ Xi) implies p ∈ X0 ∩ X1 = A ∩ A. As a result,
⋂⟮A, A⟯ ⊂ A ∩ A.s

Conversely, let q ∈ A ∩ A. Then, by the definition from 1.1.5, q ∈ A ∧ q ∈ A.
Therefore, q ∈ X0 ∧ q ∈ X1. Consequently, we have the formula (i ∈ 2) ⇒ (q ∈ Xi).
Now, by rule of deduction D4 (1.1.3), we get the formula ∀i ((i ∈ 2) ⇒ (q ∈ Xi)). By ax-
iom scheme AS2 (1.1.5), this implies q ∈ ⋂⟮A, A⟯. As a result, A ∩ A ⊂ ⋂⟮A, A⟯.
Let A, A, A, A, . . . be classes. The classes ⋃⟮A, A, A⟯, ⋃⟮A, A, A, A⟯,. . . and
the classes ⋂⟮A, A, A⟯, ⋂⟮A, A, A, A⟯,. . . will be called the unions, and corre-
spondingly, the intersections of the (multivalued) sequential triplet ⟮A, A, A⟯, quadru-
plet ⟮A, A, A, A⟯,. . . and will be denoted by A ∪ A ∪ A, A ∪ A ∪ A ∪ A,. . . and
correspondingly, by A ∩ A ∩ A, A ∩ A ∩ A ∩ A,. . . .

Let A, A, A, A, . . . be sets. The set rng(A, A, A) (see 1.1.9 and axiom A5) of
members of the sequential triplet (A, A, A) will be called the non-ordered triplet of
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the sets A, A and A and will be denoted by {A, A, A}. The set rng(A, A, A, A)
of members of the single-valued sequential quadruplet (A, A, A, A)will be called
the non-ordered quadruplet of the sets A, A, A and A and will be denoted by
{A, A, A, A}, and so on. The sets {A, A}, {A, A, A}, {A, A, A, A},. . . will be
called non-ordered suits of sets.

Lemma 8. Let X, A, A, A, A, . . . be sets. Then:
1) X ∈ {A, A, A} iff X = A ∨ X = A ∨ X = A;
2) X ∈ {A, A, A, A} iff X = A ∨ X = A ∨ X = A ∨ X = A;
3) and so on.

Proof. By the definition, {A, A, A} = {x | ∃i (i ∈ 3 ∧ x = Xi)}, where X0 ≡ A, X1 ≡ A

and X2 ≡ A. If X ∈ {A, A, A}, then by axiom scheme AS2 (1.1.5) ∃i (i ∈ 3 ∧ X = Xi).
Consider the formula i ∈ 3 ∧ X = Xi. If i = 0, then X = X0 = A; if i = 1, then X = X1 =
A; if i = 2, then X = X2 = A. Thus, X = A ∨ X = A ∨ X = A.

Conversely, let X = A ∨ X = A ∨ X = A. This implies ((X = X0) ∧ (0 ∈ 3)) ∨ ((X =
X1) ∧ (1 ∈ 3)) ∨ ((X = X2) ∧ (2 ∈ 3)), where (k ∈ 3) ∧ (X = Xk). Now, by axiom scheme
LAS12 (1.1.4) and by rule of deduction D3 (1.1.3), we get the formula ∃i ((i ∈ 3) ∧ (X =
Xi)). By axiom scheme AS2, X ∈ {A, A, A}.

For other cases, the arguments are the same.

Remark. Lemma 5 shows that, in fact, the pairs of sets ⟨A, A⟩ and (A, A) are similar
objects. But for suits of sets with several (three, four,. . . ) members, the situation be-
comes completely different. The sequential suits (A, A, A), (A, A, A, A),. . . are
easily defined.Moreover, generalization of the coordinate pair ⟨A, A⟩ requires the use
of theangular brackets (for example in the form ⟨⟨A, A⟩, A⟩, ⟨⟨⟨A, A⟩, A⟩, A⟩,. . . ).
But for the bracket form, it is very difficult to formulate the property of associativity of
the products (A∗A)∗A, ((A∗A)∗A)∗A,. . . . That is whywewere forced to intro-
duce the unaccustomed notion of (simple) sequential suits of sets (A, A), (A, A, A),
(A, A, A, A),. . . .

Moreover, the necessity to have suits of classes forced us to introduce the other
unaccustomed notion of (multivalued) sequential suits of classes ⟮A, A⟯, ⟮A, A, A⟯,
⟮A, A, A, A⟯. . . . In particular, we use them for the definition of the sequential prod-
ucts of classes A ∗ A, A ∗ A ∗ A, A ∗ A ∗ A ∗ A,. . . in 1.1.12.

Let A, A, A, . . .be classes. Then, ⟮A, A⟯, ⟮A, A, A⟯,. . . are the correspondingmulti-
valued collections. The classes⋃d⟮A, A⟯,⋃d⟮A, A, A⟯,. . . will be called the disjoint
unions of the (multivalued) sequential pair ⟮A, A⟯, triplet ⟮A, A, A⟯,. . . and will be
denoted by A∪d A, A∪d A ∪d A,. . . . By the definitions of the disjoint union, themul-
tivalued sequential pair and the union we have A ∪d A = ⋃d⟮Xi | i ∈ 2⟯ = ⋃⟮Xi ∗ {i} |
i ∈ 2⟯ = (A ∗ {0}) ∪ (A ∗ {1}). In the similar manner it is checked that A ∪d A ∪d A =
(A ∗ {0}) ∪ (A ∗ {1}) ∪ (A ∗ {2}), and so on.
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Besides, let B, B, B, . . . be classes and u : A → B, u : A → B, u : A →
B,. . . be corresponding mappings. Then, ⟮B, B⟯, ⟮B, B, B⟯,. . . and ⟮u, u⟯, ⟮u, u,
u⟯,. . . are the corresponding multivalued collections. The derivative mapping ⋃dm⟮u, u⟯ : A ∪d A → B ∪d B from 1.1.10 of the multivalued sequential pair ⟮u, u⟯ with
respect to the disjoint unions A ∪d A and B ∪d B will be denoted by u ∪dm u.
The derivative mapping ⋃dm⟮u, u, u⟯ : A ∪d A ∪d A → B ∪d B ∪d B from 1.1.10
of the multivalued sequential triplet ⟮u, u, u⟯ with respect to the disjoint unions
A∪d A∪d A and B∪d B∪d B will be denoted by u∪dm u∪dm u, and so on. It is clear
that (u ∪dm u)(⟨a, 0⟩) = ⟨u(a), 0⟩ and (u ∪dm u)(⟨a, 1⟩) = ⟨u(a), 1⟩ for every a ∈ A
and a ∈ A. Similarly, (u∪dm u∪dm u)(⟨a, 0⟩) = ⟨u(a), 0⟩, (u∪dm u∪dm u)(⟨a, 1⟩) =
⟨u(a), 1⟩ and (u ∪dm u ∪dm u)(⟨a, 2⟩) = ⟨u(a), 2⟩ for every a ∈ A, a ∈ A and
a ∈ A, and so on.

Remark. The axiom A5 is equivalent to the conjunction of the two following weaker
axioms A5 and A5 presented in [Kelley, 1975].
A5. (The axiom of values.) If u : A → B is a mapping from a set A into a class B, then

the class rng u of values of the mapping u is a set.
A5. (The axiom of the union.) If A is a set and ⟮aa ⊂ U | a ∈ A⟯ = 𝜑−1(idA) is themulti-

valued collection from Corollary 1 to Lemma 3 (1.1.9), such that aa ≡ a for every
a ∈ A, then⋃⟮aa | a ∈ A⟯ is a set.

It is clear that A5 and A5 are the particular cases of A5. Now, we shall prove that A5
is deduced from A5 and A5.

Let u ≡ ⟮Ai ⊂ U | i ∈ I⟯ be amultivalued collection of sets, indexed by a set I. Con-
sider the class X ≡ ⋃⟮Ai | i ∈ I⟯. Take the collection v ≡ 𝜑(u) = (Ai ∈ U | i ∈ I) from
Corollary 1 to Lemma 3 (1.1.9). By axiom A5, R ≡ rng v ≡ {Ai | i ∈ I} is a set, and by
axiom A5, Y ≡ ⋃⟮rr | r ∈ R⟯ is a set as well.

If x ∈ X, then x ∈ Ai for some i ∈ I. Since r ≡ Ai ∈ R, we get x ∈ rr, where x ∈ Y.
As a result, X ⊂ Y. Conversely, if y ∈ Y, then y ∈ rr = r for some r ∈ R. But r = Ai for
some i ∈ I. Therefore, y ∈ Ai implies x ∈ X. As a result, Y ⊂ X. Thus, X = Y.

By Lemma 3 (1.1.5), Y ∈ U. Now, using axiom A1 (1.1.5) and rule of deduction D3
(1.1.3), we deduce that X ∈ U. Thus, X is a set.

1.1.12 The product of a multivalued collection. The axiom of choice

Let u = ⟮Ai ⊂ U | i ∈ I⟯ be a (multivalued) collection of classes, indexed by a (non-
empty) class I. Consider the class A ≡ ⋃⟮Ai | i ∈ I⟯.

The class {e ≡ (ai ∈ A | i ∈ I) ∈ Map(I, A) | ∀i ∈ I (ai ∈ Ai)}, consisting of all sim-
ple collections e ≡ (ai ∈ A | i ∈ I) of elements of the class A, such that ai ∈ Ai for every
i ∈ I, is called the (indexed, direct or Cartesian) product of the multivalued collection u
and is denoted by∏⟮Ai | i ∈ I⟯. The class Ai is called the factor of the product∏⟮Ai |
i ∈ I⟯ with the index i.
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From the preceding axioms, we can not conclude that if a collection ⟮Ai | i ∈ I⟯
is total and I /= ⌀, then∏⟮Ai | i ∈ I⟯ /= ⌀. To prove such a property, it is necessary to
introduce another axiom.

Lemma 1. Let ⟮Ai | i ∈ I⟯ be a (multivalued) collection of sets indexed by a set I. Then,∏⟮Ai | i ∈ I⟯ is also a set.
Proof. Denote⋃⟮Ai | i ∈ I⟯byA. By thedefinition,∏⟮Ai | i ∈ I⟯ ⊂ Map(I, A). By axiom
A5 (1.1.11), A is a set. Therefore, by Proposition 1 (1.1.8), Map(I, A) is a set as well. Now,
by virtue of Lemma 1 (1.1.6),∏⟮Ai | i ∈ I⟯ is a set.
A8. (The axiom of choice.) Let A be a non-empty set. Then, there exists a mapping

p : P(A) \ {⌀} → A, such that p(P) ∈ P for every non-empty subset P of the set A.

Any such a mapping is called a choice mapping for the set A.

Theorem 1 (Russell). The following statements are equivalent:
1) the axiom of choice;
2) if ⟮Ai | i ∈ I⟯ is a total (multivalued) collection of sets, indexed by a non-empty set I,

then the set∏⟮Ai | i ∈ I⟯ is non-empty.
Proof. 1) ⊢ 2). Consider the class A ≡ ⋃⟮Ai | i ∈ I⟯. By axiom A5 (1.1.11), A is a set. By
axiom A8, there is a choice mapping, p : P(A) \ {⌀} → A. Since Ai ∈ P(A) \ {⌀} for
every i ∈ I, we can consider the correspondence e ≡ {⟨i, a⟩ ∈ I ∗ U | a = p(Ai)}. It is
clear that dom e = I. Let ⟨i, a⟩ ∈ e and ⟨i, b⟩ ∈ e. Then, a = p(Ai) and b = p(Ai) imply
a = b. Thus, e is single-valued. Thus, e is amapping e : I → U, such that e(i) = p(Ai) ∈
Ai. Therefore, e ∈ ∏⟮Ai | i ∈ I⟯.

2) ⊢ 1). Let A be a non-empty set. By Lemma 2 (1.1.6),P(A) is also a set. By Propo-
sition 1 (1.1.5), there exists a set a, such that a ∈ A. By Lemma 3 (1.1.6), {a} ⊂ A.
From the equality a = a by axiom scheme AS2 (1.1.5), we get a ∈ {a}. By Proposition 1
(1.1.5), this implies {a} /= ⌀. By Lemma 3 (1.1.6), {a} is a set. Suppose that {a} ∈ {⌀}.
Then, by axiom scheme AS2 (1.1.5), {a} = ⌀. It follows from this contradiction that
{a} ∉ {⌀}. By Lemma 2 (1.1.6), {a} ∈ P(A). As a result, {a} ∈ P(A) \ {⌀}. Again by
Proposition 1 (1.1.5) this means that I ≡ P(A) \ {⌀} /= ⌀. Consider the identical collec-
tion idI ≡ (ii ∈ I | i ∈ I) from 1.1.9. According to Lemma 3 (1.1.9), we can take the mul-
tivalued collection ⟮ii ⊂ A | i ∈ I⟯ = 𝜑−1(idI). By the condition, ∏⟮ii | i ∈ I⟯ /= ⌀. By
virtue of Proposition 1 (1.1.5), there exists a mapping p : I → ⋃⟮ii | i ∈ I⟯, such that
p ∈ ∏⟮ii | i ∈ I⟯. If a ∈ A, then it was checked above that a ∈ {a} ∈ I. Therefore,
A ⊂ ⋃⟮ii | i ∈ I⟯. Conversely, if b ∈ ⋃⟮ii | i ∈ I⟯, then b ∈ j for some j ∈ I. By Lemma 5
(1.1.5), j ⊂ A. Thus, b ∈ A. This means that A = ⋃⟮ii | i ∈ I⟯. As a result, p is a map-
ping from I into A, such that p(i) ∈ ii = i. Consequently, p is a choice mapping for the
set A.
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Now, we shall connect the product of a collection, introduced here, and the binary
coordinate product, introduced in 1.1.6.

Theorem 2. Let ⟮Ai | i ∈ I⟯ be a collection of sets, indexed by a set I, j ∈ I and K ≡ I \
{j} /= ⌀. Then, there exist bijectivemapping𝛽: ∏⟮Ai | i ∈ I⟯ Aj∗∏⟮Ai | i ∈ K⟯ and𝛾 : ∏⟮Ai | i ∈ I⟯ (∏⟮Ai | i ∈ K⟯)∗Aj„ such that𝛽(ai | i ∈ I) = ⟨aj , (ai | i ∈ K)⟩and𝛾(ai | i ∈ I) = ⟨(ai | i ∈ K), aj⟩ for every collection (ai | i ∈ I) ∈ ∏⟮Ai | i ∈ I⟯.
Proof. Denote∏⟮Ai | i ∈ I⟯ by E and∏⟮Ai | i ∈ K⟯ by D. Consider the correspondence𝛽 ≡ {⟨e, ⟨a, d⟩⟩ ∈ E ∗ (Aj ∗D) | (a = e(j)) ∧ (d = e|K)}. It is clear that dom𝛽 = E. Sup-
pose that ⟨e, ⟨a, d⟩⟩ ∈ 𝛽 and ⟨e, ⟨a, d⟩⟩ ∈ 𝛽. Then, a = e(j), d = e|K, a = e(j) and
d = e|K. Hence, a = a and d = d. As a result, ⟨a, d⟩ = ⟨a, d⟩. This means that 𝛽 is
single-valued. Thus, 𝛽 is a mapping from E into Aj ∗ D, such that 𝛽(e) = ⟨e(j), e|K⟩.

Let 𝛽(e) = 𝛽(f ) for some e, f ∈ E. Then, the equality ⟨e(j), e|K⟩ = ⟨f (j), f |K⟩ im-
plies by Proposition 2 (1.1.6) that e(j) = f (j) and e|K = f |K. By Lemma 3 (1.1.8), e(k) =
f (k) for every k ∈ K. Therefore, e(i) = f (i) for every i ∈ I. Again, by this Lemma 3, e = f .
This means that 𝛽 is injective.

Denote⋃⟮Ai | i ∈ I⟯ by A and⋃⟮Ak | k ∈ K⟯ by C. Let ⟨b, d⟩ ∈ Aj ∗ D. By the defi-
nition, d ∈ Map(K, C) and d(k) ∈ Ak. Consider the correspondence e ≡ {⟨i, x⟩ ∈ I ∗A |((i ∈ K) ⇒ (x = d(i))) ∧ ((i = j) ⇒ x = b)}. It is clear that dom e = I. Let ⟨i, x⟩ ∈ e and
⟨i, y⟩ ∈ e. If i ∈ K, then x = d(i) and y = d(i) imply x = y = d(i) ∈ Ai ⊂ A. If i = j, then
x = b and y = b imply x = y = b ∈ Aj ⊂ A. This means that e is single-valued. Hence,
e ∈ Map(I, A) and e(i) ∈ Ai for every i ∈ I, i. e. e ∈ E. From e|K = d and e(j) = b, it fol-
lows that 𝛽(e) = ⟨b, d⟩. This means that 𝛽 is surjective.

For 𝛾, the arguments are the same.

Corollary 1. Let ⟮Ai | i ∈ I⟯ be a collection of sets, such that I = {j, k} and j /= k. Then,
there exist bijective mappings 𝛽 : ∏⟮Ai | i ∈ I⟯ Aj ∗Ak and 𝛾 : ∏⟮Ai | i ∈ I⟯
Ak∗Aj, such that𝛽(ai | i ∈ I) = ⟨aj , ak⟩ and 𝛾(ai | i ∈ I) = ⟨ak , aj⟩ for every collection(ai | i ∈ I) ∈ ∏⟮Ai | i ∈ I⟯.
Proof. Consider themappings u : Aj∗∏⟮Ai | i ∈ K⟯ → Aj∗Ak and v : (∏⟮Ai | i ∈ K⟯)∗
Aj → Ak ∗Aj, such that u(⟨a, (ai | i ∈ K)⟩) = ⟨a, ak⟩ and v(⟨(ai | i ∈ K), a⟩) = ⟨ak , a⟩,
where K ≡ I \ {j} = {k}. It is easy to check that u and v are bijective. Then, 𝛽 ≡ u ∘ 𝛽
and 𝛾 ≡ v ∘ 𝛾 are necessary bijections.

Product of multivalued pairs, triplets, . . .
Let A and A be classes. Consider the multivalued sequential pair ⟮A, A⟯ from 1.1.11.
Since ⟮A, A⟯ is a collection, we can consider its product. The class∏⟮A, A⟯ ≡ ∏⟮Xi ⊂
A ∪ A | i ∈ 2⟯will be called the (sequential) product of the multivalued sequential pair
⟮A, A⟯ and will be denoted by A × A.
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For classes A, A, A, A, . . ., the classes∏⟮A, A, A⟯,∏⟮A, A, A, A⟯,. . . will
be called the (sequential)products of themultivalued sequential triplet ⟮A, A, A⟯,mul-
tivalued sequential quadruplet ⟮A, A, A, A⟯,. . . and will be denoted by A × A × A,
A × A × A × A,. . . .

Let A be a class. Consider the sets 2, 3, 4, . . . according to 1.1.8 A2, A3, A4, . . .,
denote the degrees of the class A with the exponents 2, 3, 4, . . ., respectively.

Consider also the sequential products A ×A, A ×A ×A, A ×A ×A ×A,. . . . It is easy
to check that A2 = A × A, A3 = A × A × A, A4 = A × A × A × A,. . . .

The binary products A ∗ A and A × A are different objects. But there is the fol-
lowing similarity between them.

Lemma 2. Let A, A, A, A, . . . be classes. Then, A × A = {(a, a) | a ∈ A ∧ a ∈
A}, A × A × A = {(a, a, a) | a ∈ A ∧ a ∈ A ∧ a ∈ A}, A × A × A × A =
{(a, a, a, a) | a ∈ A ∧ a ∈ A ∧ a ∈ A ∧ a ∈ A},. . . .
Proof. By the definition from 1.1.11, ⟮A, A⟯ ≡ ⟮Xi ⊂ A ∪ A | i ∈ 2⟯, where X0 = A and
X1 = A. Denote A × A by P and {(a, a) | a ∈ A ∧ a ∈ A} by Q. By Lemma 7 (1.1.11),
⋃⟮A, A⟯ = A∪A. Therefore, by the definition, P = {p ∈ Map(2, A∪A) | ∀i ∈ 2 (p(i) ∈
Xi)}. Let p ∈ P. Then, p(0) ∈ X0 = A and p(1) ∈ X1 = A. Denote p(0) by a and p(1)
by a. Since rng p = {a, a} ⊂ A ∪ A, we conclude that p ∈ Map(I, {a, a}), i. e. p =
(xi ∈ {a, a} | i ∈ 2). Besides, p(0) = a and p(1) = a means that p = (a, a) ∈ Q. Thus,
P ⊂ Q.

Conversely, let q ≡ (b, b) ∈ Q. By the definition, q = (yi ∈ {b, b} | i ∈ 2), where
y0 ≡ b ∈ A ≡ X0 and y1 ≡ b ∈ A ≡ X1. Since {b, b} ⊂ A ∪ A, we conclude that q =
(yi ∈ A∪A | i ∈ 2) ∈ Map(2, A∪A) and q(i) = yi ∈ Xi for every i ∈ 2. Thus, q ∈ P. Thus,
Q ⊂ P.

As a result, P = Q. For the other cases, the arguments are the same.

The equality A × A = {(a, a) | a ∈ A ∧ a ∈ A} is resembling the equality A ∗ A =
{⟨a, a⟩ | a ∈ A ∧ a ∈ A} from 1.1.6.

Lemma 3. Let A and A be non-empty sets. Then, there exists a bijective mapping
𝛽 : A × A A ∗ A, such that 𝛽(a, a) = ⟨a, a⟩ for every (a, a) ∈ A × A.

Proof. According to 1.1.11 ⟮A, A⟯ ≡ ⟮Xi ⊂ A ∪ A | i ∈ 2⟯, where X0 ≡ A and X1 ≡ A.
Therefore, X0∗X1 = A∗A. By virtue of Lemma4 (1.1.6) and Lemma4 (1.1.11), 2 = {0, 1}.
By Corollary 1 to Theorem 2, there is a bijectivemapping𝛽 : ∏⟮Xi | i ∈ 2⟯ X0∗X1,
such that 𝛽(xi | i ∈ 2) = ⟨x0, x1⟩ for every collection (xi | i ∈ 2) ∈ ∏⟮Xi | i ∈ 2⟯. It fol-
lows from above that 𝛽 is a bijection 𝛽 : A × A A ∗ A. If (a, a) ∈ A × A, then
by the definition from 1.1.11 (a, a) ≡ (xi ∈ {a, a} | i ∈ 2), where x0 = a and x1 = a.
Therefore, 𝛽(a, a) = 𝛽(xi | i ∈ 2) = ⟨x0, x1⟩ = ⟨a, a⟩.
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Remark. Lemmas 2 and 3 show that, in fact, the binary products A∗A and A×A are
similar objects. But for the products with several (three, four,. . . ) factors, the situation
becomes completely different. The sequential products A × A × A, A × A × A ×
A,. . . are easily defined. However, generalization of the binary coordinate product
A ∗A requires the use of the round brackets (for example in the form of (A ∗A) ∗A,
((A ∗ A) ∗ A) ∗ A,. . . ). But for the bracket form, it is very difficult to formulate
the property of associativity of the product. As to the indexed product ∏⟮Ai | i ∈ I⟯
(in particular, the sequential products A ×A ×A, A ×A ×A ×A,. . . ), the property
of associativity can be formulated andprove in large generality (see Theorem3below).

By this reason, we shall use further as a rule the sequential products A × A,
A × A × A, A × A × A × A,. . . . The single case, where we are forced to use the bi-
nary coordinate product X ∗ Y, is the assignment of correspondences, mappings, and
collections in the form u ⊂ X ∗ Y.

Correspondences of several arguments (variables)
Let A, B be classes and u : A B be a correspondence. Let X, X, X, . . . be classes.
If A ⊂ X × X, then u will be called also a correspondence of the two arguments (≡ vari-
ables) x and x. If A ⊂ X × X × X, then u will be called also a correspondence of
the three arguments (≡ variables) x, x, and x, and so on. Let ⟮Xi | i ∈ I⟯ be a multi-
valued collection of classes, indexed by a class I. If A ⊂ ∏⟮Xi | i ∈ I⟯, then u will be
called a correspondence of the arguments xi for i ∈ I. The similar terminology is used
for mappings u : A → B.

Thus, for correspondences (and in particular mappings) of several arguments we
have, by the definition, the following inclusions: u ⊂ (X×X)∗B, u ⊂ (X×X×X)∗B,
and so on.

Similarly, let u ≡ ⟮Ai ⊂ U | i ∈ I⟯ be a (multivalued) collection indexed by a class I.
Let X, X, X, . . . be classes. If I = X × X, then u will be called also a (multivalued)
collection, indexed by elements of the classes X and X. If I = X × X × X, then u
will be called also a (multivalued) collection, indexed by elements of the classes X,
X, and X, and so on. In these cases, along with the notations u ≡ ⟮A(x,x) | (x, x) ∈
X × X⟯, u ≡ ⟮A(x,x ,x) | (x, x, x) ∈ X × X × X⟯,. . . , we shall use also the notations
u ≡ ⟮Axx | x ∈ X, x ∈ X⟯, u ≡ ⟮Axxx | x ∈ X, x ∈ X, x ∈ X⟯,. . . . The similar ter-
minology and notations are used also for simple collections u ≡ (Ai | i ∈ I) of sets Ai.

Thus, for collections of several arguments, we have by the definition the following
inclusions: u ⊂ (X × X) ∗ U, u ⊂ (X × X × X) ∗ U, and so on.

Commutativity and associativity of the product
Theorem 3. Let ⟮Ai | i ∈ I⟯ be a total collection of sets, indexed by non-empty set I.
Then:
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1) if u : K I is a bijective mapping, then there exists a bijection 𝛽: ∏⟮Ai | i ∈
I⟯ ∏⟮Au(k) | k ∈ K⟯, such that 𝛽e = e ∘ u, i. e. 𝛽(ai | i ∈ I) = (au(k) | k ∈ K) for
every e = (ai | i ∈ I) ∈ ∏⟮Ai | i ∈ I⟯ (the commutativity of the product);

2) if a collection ⟮Im ⊂ I | m ∈ M⟯ is a partition of the set I for some set M /= ⌀
(see 1.1.10), then there exists a bijection 𝛽: ∏⟮Ai | i ∈ I⟯ ∏⟮∏⟮Ai | i ∈ I⟯ |
m ∈ M⟯, such that 𝛽(ai | i ∈ I) = ((ai | i ∈ Im) | m ∈ M) for every (ai | i ∈ I) ∈∏⟮Ai | i ∈ I⟯ (the associativity of the product).

Proof. 1. Denote Au(k) by Bk. It is evident that e ∘u ∈ ∏⟮Bk | k ∈ K⟯ for every e ∈ ∏⟮Ai |
i ∈ I⟯. Consequently, 𝛽 is a correctly defined mapping. Let 𝛽e = 𝛽f for some e, f ∈
∏⟮Ai | i ∈ I⟯. Then, for every k ∈ K we get e(u(k)) = f (u(k)). Since u is a bijection, we
conclude by virtue of Lemma 3 (1.1.8) that e = f . Thus, 𝛽 is injective.

Let h ∈ ∏⟮Bk | k ∈ K⟯. Consider the mapping e ≡ h ∘ u−1 : I → A. If i ∈ I and k ≡
u−1(i), then e(i) = h(k) ∈ Bk = Au(k) = Ai. Consequently, e ∈ ∏⟮Ai | i ∈ I⟯. As a result,𝛽(e) = e ∘ u = h ∘ u−1 ∘ u = h. This means that 𝛽 is surjective.

2. Denote ∏⟮Ai | i ∈ I⟯ by E and ∏⟮Ai | i ∈ Im⟯ by Bm. By Theorem 1, these sets
are non-empty. Consider the multivalued collection 𝜘 ≡ ⟮Bm | m ∈ M⟯. Again, by
Theorem 1, the set F ≡ ∏⟮Bm | m ∈ M⟯ is non-empty. Let e ≡ (ai | i ∈ I) ∈ E. Then,
em ≡ e|Im = (ai | i ∈ Im) ∈ Bm. Therefore, f ≡ (em | m ∈ M) ∈ F. Consequently, 𝛽 is
correctly defined mapping.

Let 𝛽(e) = 𝛽(e). Then, e|Im = e|Im for every m ∈ M implies e(i) = e(i) for every
i ∈ Im. Thus, e = e. Thus, 𝛽 is injective.

Let f ∈ F. Then, f (m) ∈ Bm. Therefore, f (m)(i) ∈ Ai for every i ∈ Im. Since ⟮Im | m ∈
M⟯ is a partition of I, we can correctly define a collection e ≡ (ai | i ∈ I) ∈ E, setting
ai ≡ f (m)(i) for every i ∈ Im. Then, e|Im = f (m) for every m ∈ M. Hence, 𝛽(e) = (e|Im |
m ∈ M) = (f (m) | m ∈ M) = f . This means that 𝛽 is surjective.

Projections into the subproduct and into the factor
Let ⟮Ai | i ∈ I⟯ be a multivalued collection of classes, indexed by a class I. Let J be
a non-empty subclass of I. Then, the mapping (ai | i ∈ I) → (ai | i ∈ J) from ∏⟮Ai |
i ∈ I⟯ into ∏⟮Ai | i ∈ J⟯ is called the projection into the subproduct ∏⟮Ai | i ∈ J⟯ and
is denoted by pJ . Similarly, the mapping (ai | i ∈ I) → aj from∏⟮Ai | i ∈ I⟯ into Aj is
called the projection into the factor Aj and is denoted by prAj

or simply
by prj.

Lemma 4. Let ⟮Ai | i ∈ I⟯be a total collection of sets indexed by a non-empty set I. Then,
for every index j ∈ I and for every non-empty subset J ⊂ I the projections pJ and prj are
surjective.

Proof. If J = I, then the assertion is evident. Therefore, suppose that K ≡ I \ J /= ⌀.
Let f ∈ ∏⟮Aj | j ∈ J⟯. By Theorem 1, there is a collection g ∈ ∏⟮Ak | k ∈ K⟯. Consider
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the collection e ∈ ∏⟮Ai | i ∈ I⟯, such that e(j) ≡ f (j) for every j ∈ J and e(k) ≡ g(k) for
every k ∈ K. Then, pJ(e) = e|J = f .

For the other projection, the arguments are analogous.

Derivative mapping with respect to the product
Let ⟮Ai | i ∈ I⟯ and ⟮Bi | i ∈ I⟯ be two collections of classes with the same class of
indices. Let ⟮ui | i ∈ I⟯ be a corresponding collection of mappings ui : Ai → Bi. De-
fine a mapping 𝜋: ⟮Ai | i ∈ I⟯ → ∏⟮Bi | i ∈ I⟯ setting 𝜋((ai | i ∈ I)) ≡ (ui(ai) | i ∈ I)
for every e ≡ (ai | i ∈ I) ∈ ∏⟮Ai | i ∈ I⟯. The mapping 𝜋 will be called the derivative
mapping of the collection of mappings ⟮ui : Ai → Bi | i ∈ I⟯ with respect to the prod-
uct ∏⟮Ai | i ∈ I⟯ and ∏⟮Bi | i ∈ I⟯ and will be denoted by ∏m⟮ui : Ai → Bi | i ∈ I⟯ or
simply by∏m⟮ui | i ∈ I⟯.

In the particular case, let I be the set 2, 3, . . .; A, A, A, . . . and B, B, B, . . . be
classes and u : A → B, u : A → B, u : A → B,. . . be corresponding mappings.
Then, ⟮A, A⟯, ⟮A, A, A⟯,. . . , ⟮B, B⟯, ⟮B, B, B⟯,. . . , and ⟮u, u⟯, ⟮u, u, u⟯,. . . are
the corresponding collections. The derivative mapping∏m⟮u, u⟯ : A ×A → B × B of
the sequential pair ⟮u, u⟯with respect to the products A×A and B×Bwill be denoted
by u×m u. The derivativemapping∏m⟮u, u, u⟯ : A×A×A → B×B×B of the se-
quential triplet ⟮u, u, u⟯with respect to the productsA×A×A and B×B×Bwill be
denoted by u×m u ×m u, and so on. It is clear that (u×m u)(a, a) = (ua, ua) for ev-
ery (a, a) ∈ A×A, (u×m u×m u)(a, a, a) = (ua, ua, ua) for every (a, a, a) ∈
A × A × A, and so on.

If ⟮Ai | i ∈ I⟯ is a collection of classes indexed by a class I, such that Ai = A for
some class A and every index i ∈ I, then the product∏⟮Ai | i ∈ I⟯ of the multivalued
collection ⟮Ai | i ∈ I⟯ and the degree AI of the class A with the exponent I coincide.

Therefore, if ⟮Bi | i ∈ I⟯ is a collection, such that Bi = B for some class B and every
index i ∈ I, and ⟮ui | i ∈ I⟯ is a collection of mappings ui : Ai → Bi, such that ui = u
for somemapping u : A → B and every index i ∈ I, then themappings∏m⟮ui | i ∈ I⟯ :∏⟮Ai | i ∈ I⟯ → ∏⟮Bi | i ∈ I⟯ and (u)Im : AI → BI coincide (see 1.1.8).

Lemma 5. Let ⟮Ai | i ∈ I⟯, ⟮Bi | i ∈ I⟯, and ⟮Ci | i ∈ I⟯ be collections of classes, indexed
by a class I, and ⟮ui : Ai → Bi | i ∈ I⟯ and ⟮vi : Bi → Ci | i ∈ I⟯ be collections of corre-
sponding mappings. Then:
1) ∏m⟮vi | i ∈ I⟯ ∘ ∏m⟮ui | i ∈ I⟯ = ∏m⟮vi ∘ ui | i ∈ I⟯;
2) if all the mappings ui are injective, then the mapping∏m⟮ui | i ∈ I⟯ is injective as

well.

Moreover, if ⟮Ai | i ∈ I⟯ and ⟮Bi | i ∈ I⟯ are collections of sets, indexed by the set I, then:
3) if all the mappings ui are surjective, then the mapping∏m⟮ui | i ∈ I⟯ is surjective as

well;
4) if all the mappings ui are bijective, then the mapping∏m⟮ui | i ∈ I⟯ is bijective as

well.
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Proof. The statements 1 and 2 follow from the definitions and Lemma 1.
3. Let (bi ∈ Bi | i ∈ I) ∈ ∏⟮Bi | i ∈ I⟯. Consider the non-empty sets Di ≡ u−1i (bi) ⊂

Ai. By Theorem 1 and Proposition 1 (1.1.5), there exists a collection (di ⊂ D | i ∈ I) ∈
∏⟮Di | i ∈ I⟯. From the equality∏m⟮ui | i ∈ I⟯(di | i ∈ I) = (ui(di) | i ∈ I) = (bi | i ∈ I),
we conclude now that the mentioned mapping is surjective.

4. It follows from 2 and 3.

Corollary 1. The corresponding conclusions are valid for corresponding suits ⟮A, A⟯,
⟮A, A, A⟯,. . . , ⟮B, B⟯, ⟮B, B, B⟯,. . . , ⟮C, C⟯, ⟮C, C, C⟯,. . . , ⟮u, u⟯, ⟮u, u, u⟯,. . . ,
and ⟮v, v⟯, ⟮v, v, v⟯,. . . .

1.1.13 Formulas of the distributivity for union, intersection, and product
of a multivalued collection

Theorem 1. Let ⟮Im | m ∈ M⟯ be a collection of sets and ⟮𝜘m | m ∈ M⟯ be a collection of
collections of sets 𝜘m ≡ ⟮Ami | i ∈ Im⟯, indexed by non-empty sets M and Im. Consider
the set U ≡ ∏⟮Im | m ∈ M⟯. Then:
1) ⋃⟮⋃⟮Ami | i ∈ Im⟯ | m ∈ M⟯ = ⋃⟮⋃⟮Amu(m) | m ∈ M⟯ | u ∈ U⟯ (the general distribu-

tivity of union);
2) ⋂⟮⋂⟮Ami | i ∈ Im⟯ | m ∈ M⟯ = ⋂⟮⋂⟮Amu(m) | m ∈ M⟯ | u ∈ U⟯ (the general distribu-

tivity of intersection);
3) ⋂⟮⋃⟮Ami | i ∈ Im⟯ | m ∈ M⟯ = ⋃⟮⋂⟮Amu(m) | m ∈ M⟯ | u ∈ U⟯ (the general distribu-

tivity of intersection with respect to union);
4) ⋃⟮⋂⟮Ami | i ∈ Im⟯ | m ∈ M⟯ = ⋂⟮⋃⟮Amu(m) | m ∈ M⟯ | u ∈ U⟯ (the general distribu-

tivity of union with respect to intersection);
5) ∏⟮⋃⟮Ami | i ∈ Im⟯ | m ∈ M⟯ = ⋃⟮∏⟮Amu(m) | m ∈ M⟯ | u ∈ U⟯ (the general dis-

tributivity of product with respect to union);
6) ∏⟮⋂⟮Ami | i ∈ Im⟯ | m ∈ M⟯ = ⋂⟮∏⟮Amu(m) | m ∈ M⟯ | u ∈ U⟯ (the general dis-

tributivity of product with respect to intersection).

Proof. Consider the sets Em ≡ ⋃⟮Ami | i ∈ Im⟯, Fm ≡ ⋂⟮Ami | i ∈ Im⟯, Gu ≡ ⋃⟮Amu(m) |
m ∈ M⟯, Hu ≡ ⋂⟮Amu(m) | m ∈ M⟯ and Qu ≡ ∏⟮Amu(m) | m ∈ M⟯.

1. Denote the left part of Equality (1) by E and the right part by G. Let e ∈ E. Then,
e ∈ Ami for somem ∈ M and i ∈ Im. By Lemma 4 (1.1.12), prm[U] = Im. Therefore, there
is u ∈ U, such that i = prm(u) = u(m). Consequently, e ∈ Amu(m) ⊂ Gu ⊂ G. As a result,
E ⊂ G. Conversely, let g ∈ G. Then, g ∈ Amu(m) for some u ∈ U and m ∈ M. By the def-
inition of the product, u(m) ∈ Im. Therefore, g ∈ Amu(m) ⊂ Em ⊂ E. As a result, G ⊂ E.
Thus, E = G.

2. Denote the left part of Equality (2) by F and the right part by H. Let f ∈ F.
Then, f ∈ Ami for every m ∈ M and i ∈ Im. Take any u ∈ U and m ∈ M. Since u(m) ∈
Im, we have f ∈ Amu(m). By rule of deduction D4 (1.1.3), we get the formula ∀u ∈ U
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(f ∈ Amu(m)). By virtue of axiom schemeAS2 (1.1.5), f ∈ Hu. Similarly, the formula ∀u ∈
U (f ∈ Hu) implies f ∈ H. As a result, F ⊂ H. Conversely, let h ∈ H. Then, h ∈ Amu(m)

for every u ∈ U and m ∈ M. Take any m ∈ M and i ∈ Im. Since prm[U] = Im, there is
u ∈ U, such that i = u(m). Consequently, h ∈ Ami. As above, this implies h ∈ Fm and
then h ∈ F, where H ⊂ F. Thus, F = H.

3. Denote the left part of Equality (3) by E and the right part by H. Let e ∈ E.
Then, e ∈ Ami for every m ∈ M and some i ∈ Im. As above, there is u ∈ U, such that
i = u(m). Therefore, e ∈ Amu(m) for every m ∈ M implies e ∈ Hu. By virtue of axiom
scheme LAS12 (1.1.4) and rule of deduction D3 (1.1.3), we get the formula ∃u ∈ U (e ∈
Hu). By axiom scheme AS2 (1.1.5), we get e ∈ H. As a result, E ⊂ H. Conversely, let
h ∈ H. Then, h ∈ Amu(m) for some u ∈ U and every m ∈ M. Since u(m) ∈ Im, we get
the formula ∃i ∈ Im (h ∈ Ami), where h ∈ Em for every m ∈ M. This implies h ∈ E. As a
result, H ⊂ E. Thus, E = H.

4. Denote the left part of Equality (4) by F and the right part by G. Let f ∈ F. Then,
f ∈ Ami for some m ∈ M and every i ∈ Im. Take any u ∈ U. Since u(m) ∈ Im, we have
f ∈ Amu(m). As above, this implies f ∈ Gu. By rule of deductionD4 (1.1.3), we get the for-
mula ∀u ∈ U (f ∈ Gu), where f ∈ G. As a result, F ⊂ G. Conversely, let g ∈ G. Then,
g ∈ Amu(m) for every u ∈ U and somem ∈ M. Take any i ∈ Im. Since prm[U] = Im, there
is u ∈ U, such that i = u(m). Consequently, g ∈ Ami. By rule of deduction D4 (1.1.3),
we get the formula ∀i ∈ Im (g ∈ Ami), where g ∈ Fm. As above, this implies g ∈ F. As a
result, G ⊂ F. Thus, F = G.

5. Denote the left part of Equality (5) by P and the right part by Q. Let p ∈ P. Then,
p = (em ∈ Em | m ∈ M). Take any m ∈ M. It follows from em ∈ Em, that em ∈ Ami for
some i ∈ Im. Therefore, the subset Jm ≡ {i ∈ Im | em ∈ Ami} of the set Im is non-empty.
By rule of deduction D4 (1.1.3), we get the formula ∀m ∈ M (Jm /= ⌀). Consider the set
I ≡ ⋃⟮Im | m ∈ M⟯ and the correspondence𝜋 ≡ {⟨m, x⟩ ∈ M∗I | x ∈ Jm}. It is clear that𝜋⟨m⟩ = Jm. By virtue of the mentioned formula, dom𝜋 = M. Thus, 𝜋 is a multival-
ued collection ⟮Jm ⊂ I | m ∈ M⟯. By virtue of Theorem 1 (1.1.12), ∏⟮Jm | m ∈ M⟯ /= ⌀.
Therefore, by Proposition 1, there exists amapping u : M → ⋃⟮Jm | m ∈ M⟯, such that
u(m) ∈ Jm for every m ∈ M. It is clear that u ∈ U.

If m ∈ M, then u(m) ∈ Jm implies em ∈ Amu(m). Thus, we get the formula ∀m ∈
M (em ∈ Amu(m)). By axiom scheme AS2 (1.1.5), this means that p = (em | m ∈ M) ∈
Qu. By virtue of axiom scheme LAS12 (1.1.4) and rule of deduction D3 (1.1.3), we get
the formula ∃u ∈ U (p ∈ Qu). By axiom scheme AS2 (1.1.5), we get p ∈ Q. As a result,
P ⊂ Q.

Conversely, let q ∈ Q. Then, q ∈ Qu for some u ∈ U, where q ∈ Map(M, Gu) and
q(m) ∈ Amu(m) for every m ∈ M. From u(m) ∈ Im, we conclude that q(m) ∈ Em for ev-
erym ∈ M. Thus, q ∈ Map(M,⋃⟮Em | m ∈ M⟯) and q(m) ∈ Em for everym ∈ M, where
q ∈ P. As a result, Q ⊂ P. Finally, P = Q.

6. Denote the left part of Equality (6) by P and the right part by Q. Let p ∈ P. Then,
p = (fm ∈ Fm | m ∈ M). Take any m ∈ M. It follows from fm ∈ Fm that fm ∈ Ami for ev-
ery i ∈ Im. Take any u ∈ U. From u(m) ∈ Im, we conclude that fm ∈ Amu(m). By rule of
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deduction D4 (1.1.3), we get the formula ∀m ∈ M (fm ∈ Amu(m)). This gives p ∈ Qu. Sim-
ilarly, we get the formula ∀u ∈ U (p ∈ Qu), where p ∈ Q. As a result, P ⊂ Q.

Conversely, let q ∈ Q. Then, q ∈ Qu for every u ∈ U. Thus, q(m) ∈ Amu(m) for every
m ∈ M. Take any m ∈ M and i ∈ Im. Then, as in the proof of 1, there is u ∈ U, such
that i = u(m). Consequently, q(m) ∈ Ami. This gives the formula ∀i ∈ Im (q(m) ∈ Ami),
where q(m) ∈ Fm. Similarly, this gives the formula ∀m ∈ M (q(m) ∈ Fm), where q ∈ P.
As a result, Q ⊂ P. Thus, P = Q.

Corollary 1. In the conditions of Theorem 1, there is some bijection 𝛿 : ∏⟮⋃d⟮Ami | i ∈
Im⟯ | m ∈ M⟯ ⋃d⟮∏⟮Amum(m) | m ∈ M⟯ | u ∈ U⟯.
Proof. Denote the left part of thismapping by R and the right part by S. Since Amu(m) /=⌀ for everym ∈ M, we can consider the non-empty setsQu ≡ ∏⟮Amu(m) | m ∈ M⟯, Ru ≡∏⟮Amu(m) ∗ {u(m)} | m ∈ M⟯ and Su ≡ Qu ∗ {u} for every u ∈ U. Then, ⟮Ru | u ∈ U⟯ and⟮Su | u ∈ U⟯ are multivalued collections.

By formula 5 of Theorem 1, R = ∏⟮⋃⟮Ami ∗ {i} | i ∈ Im⟯ | m ∈ M⟯ = ⋃⟮Ru | u ∈ U⟯.
It is easy to check that the mapping 𝛽u : Ru → Su, such that 𝛽u(⟨amu(m), u(m)⟩ | m ∈
M) = ⟨(amu(m) | m ∈ M), u⟩ is a bijection for every u ∈ U. The multivalued collection
⟮Ru | u ∈ U⟯ is pairwise disjoint. In fact, let u, v ∈ U and u /= v. Suppose that there ex-
ists r ∈ Ru ∩ Rv. By the condition, r = (xm ∈ Amu(m) ∗ {u(m)} | m ∈ M) and r = (ym ∈
Amv(m) ∗ {v(m)} | m ∈ M). Take any m ∈ M. Then, xm = ⟨a, u(m)⟩ and ym = ⟨b, v(m)⟩
for some a ∈ Amu(m) and b ∈ Amv(m). In virtue of Lemma 1 xm = ym. Therefore, by virtue
of Proposition 2, u(m) = v(m). By rule of deduction D4 (1.1.3), we get the formula ∀m ∈
M (u(m) = v(m)). Again, by Lemma 1 (1.1.9), we conclude that u = v. From the ob-
tained contradiction, it follows that Ru ∩ Rv = ⌀. That is why we can correctly de-
fine a mapping 𝛿 from R = ⋃⟮Ru | u ∈ U⟯ into S = ⋃⟮Su | u ∈ U⟯ setting 𝛿(r) ≡ 𝛽u(r)
for every r ∈ Ru. It is easy to check that 𝛿 is a bijection.
Corollary 2. Let ⟮Xj | j ∈ J⟯ and ⟮Yk | k ∈ K⟯ be multivalued collections of sets, indexed
by non-empty sets J and K. Then:
1) ⋃⟮Xj | j ∈ J⟯ ∪ ⋃⟮Yk | k ∈ K⟯ = ⋃⟮Xj ∪ Yk | (j, k) ∈ J × K⟯;
2) ⋂⟮Xj | j ∈ J⟯ ∩ ⋂⟮Yk | k ∈ K⟯ = ⋂⟮Xj ∩ Yk | (j, k) ∈ J × K⟯;
3) ⋃⟮Xj | j ∈ J⟯ ∩ ⋃⟮Yk | k ∈ K⟯ = ⋃⟮Xj ∩ Yk | (j, k) ∈ J × K⟯;
4) ⋂⟮Xj | j ∈ J⟯ ∪ ⋂⟮Yk | k ∈ K⟯ = ⋂⟮Xj ∪ Yk | (j, k) ∈ J × K⟯;
5) ⋃⟮Xj | j ∈ J⟯ × ⋃⟮Yk | k ∈ K⟯ = ⋃⟮Xj × Yk | (j, k) ∈ J × K⟯;
6) ⋂⟮Xj | j ∈ J⟯ × ⋂⟮Yk | k ∈ K⟯ = ⋂⟮Xj × Yk | (j, k) ∈ J × K⟯.
Proof. Take M ≡ 2, I0 ≡ J, I1 ≡ K, A0i ≡ Xi for every i ∈ J, A1i ≡ Yi for every i ∈ K,
𝜘0 ≡ ⟮Xj | j ∈ J⟯ = ⟮A0i | i ∈ I0⟯, 𝜘1 ≡ ⟮Yk | k ∈ K⟯ = ⟮A1i | i ∈ I1⟯ and U ≡ J×K = ∏⟮Im |
m ∈ M⟯.

Then, all the necessary equalities are particular cases of the corresponding equal-
ities of Theorem 1.
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The formulas of this corollary are called the formulas of the binary distributivity.
Formula 5 gives us the ability to obtain some special form of the general associa-

tivity.

Proposition 1. Let ⟮ Ji | i ∈ I⟯ be a collection of non-empty sets indexed by a non-empty
set I and ⟮Ak | k ∈ K⟯ be a collection of sets indexed by the set K ≡ ⋃⟮{i} × Ji | i ∈ I⟯.
Then,

⋃⟮Ak | k ∈ K⟯ = ⋃⟮⋃⟮Aij | j ∈ Ji⟯ | i ∈ I⟯ and
⋂⟮Ak | k ∈ K⟯ = ⋂⟮⋂⟮Aij | j ∈ Ji⟯ | i ∈ I⟯.

Proof. Consider the sets Ki ≡ {i}× Ji. Then, ⟮Ki | i ∈ I⟯ is a partition of the set K. There-
fore, according to assertion 2 of Proposition 1 (1.1.10), we get the equality B ≡ ⋃⟮Ak |
k ∈ K⟯ = ⋃⟮⋃⟮Ak | k ∈ Ki⟯ | i ∈ I⟯. Consider the bijective mappings ui : Ji Ki such
that ui(j) = (i, j) for every j ∈ Ji. Then, assertion 1 of Proposition 1 (1.1.10) implies
⋃⟮Ak | k ∈ Ki⟯ = ⋃⟮Aij | j ∈ Ji⟯. Thus, B = ⋃⟮⋃⟮Aij | j ∈ Ji⟯ | i ∈ I⟯.

For the intersection, the arguments are the same.

Corollary 1. Let I and J be non-empty sets and ⟮⟮Aij | j ∈ J⟯ | i ∈ I⟯ be a collection of
collections of sets. Then:
1) ⋃⟮⋃⟮Aij | j ∈ J⟯ | i ∈ I⟯ = ⋃⟮⋃⟮Aij | i ∈ I⟯ | j ∈ J⟯ = ⋃⟮Aij | (i, j) ∈ I × J⟯;
2) ⋂⟮⋂⟮Aij | j ∈ J⟯ | i ∈ I⟯ = ⋂⟮⋂⟮Aij | i ∈ I⟯ | j ∈ J⟯ = ⋂⟮Aij | (i, j) ∈ I × J⟯.
Proof. Consider the collections ⟮Ji | i ∈ I⟯, where Ji ≡ J and ⟮𝜄i | i ∈ I⟯, where 𝜄i ≡ {i}.
Then, ⋃⟮𝜄i | i ∈ I⟯ = I and ⋃⟮Ji | i ∈ I⟯ = J. Take also the sets Ki ≡ {i} × Ji and K ≡
⋃⟮Ki | i ∈ I⟯. Since the mapping u : I × I → I such that u(i, i) = i is surjective, asser-
tion 1 of Proposition 1 (1.1.10) and assertion 5 of Corollary 2 to Theorem 1 imply that
K = ⋃⟮{i} × Ji | i ∈ I⟯ = ⋃⟮𝜄i × Ji | (i, i) ∈ I × I⟯ = ⋃⟮𝜄i | i ∈ I⟯ × ⋃⟮Ji | i ∈ I⟯ = I × J.
According to Proposition 1, we infer that ⋃⟮⋃⟮Aij | j ∈ J⟯ | i ∈ I⟯ = ⋃⟮Ak | k ∈ K⟯ =⋃⟮Aij | (i, j) ∈ I × J⟯.

Similarly, ⋃⟮⋃⟮Aij | i ∈ I⟯ | j ∈ J⟯ = ⋃⟮Aij | (j, i) ∈ J × I⟯. Since the mapping
v : J×I → I×J such that v(i, j) = (j, i) is bijective, by assertion 1 of Proposition 1 (1.1.10)
we get⋃⟮Aij | (i, j) ∈ I × J⟯ = ⋃⟮Aij | (j, i) ∈ J × I⟯.

The second assertion is proved in the same way.

1.1.14 Binary relations. Equivalence relations. Preorder and order relations

Let A be a fixed class. A subclass 𝜃 ⊂ A2 = A × A of the sequential product A × A is
called a (binary) relation on the class A. If (a, b) ∈ 𝜃, then we shall say that a is in
the relation 𝜃 with b and shall write also a𝜃b.
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If B is a subclass of the class A, then the relation 𝜃B ≡ 𝜃 ∩ (B × B) is called the re-
lation on the subclass B, induced by the relation 𝜃, or the restriction of the relation 𝜃 on
the subclass B.

The relation 𝜃 is called symmetric, if (a, a) ∈ 𝜃 implies (a, a) ∈ 𝜃. It is called anti-
symmetric, if (a, a) ∈ 𝜃and (a, a) ∈ 𝜃 implya = a. It is called reflexive, if (a, a) ∈ 𝜃 for
every a ∈ A. It is called transitive, if (a, a) ∈ 𝜃 and (a, a) ∈ 𝜃 imply (a, a) ∈ 𝜃. It is
called total (≡ connecting), if either (a, a) ∈ 𝜃, or (a, a) ∈ 𝜃, or a = a. A subclass B of
the class A is called a chain with respect to the relation 𝜃, if the relation 𝜃B is total on B.

An element a ∈ A is called minimal [maximal] with respect to the relation 𝜃, if
a ∈ A and (a, a) ∈ 𝜃 [(a, a) ∈ 𝜃] imply a = a. An element b of a subclass B of
the class A is called a minimal [maximal] element of the subclass B with respect to
the relation 𝜃, if b is a minimal [maximal] in the class B with respect to the relation 𝜃B,
i. e. b ∈ B and (b, b) ∈ 𝜃 [(b, b) ∈ 𝜃] imply b = b.

Equivalence relations, factor-classes, and factor-correspondences
A reflexive, symmetric, and transitive relation 𝜀 on the class A is called an equivalence
relation or simply an equivalence on A. In this case, along with (a, a) ∈ 𝜀, we shall
write a ∼ a or a = a(mod 𝜀) and shall say that a is equivalent to a with respect to
∼≡ 𝜀 or a is equal to a modulo 𝜀.

Let 𝜀 be an equivalence relation on the class A. If a ∈ A, then the subclass {a ∈ A |
(a, a) ∈ 𝜀} of the class A is called the equivalence class of the element a, with respect
to 𝜀 and is denoted by 𝜀a, āmod 𝜀 or simply by ā. It is clear that ā /= ⌀ for every a ∈ A,
and if a, a ∈ A, then either ā = ā or ā ∩ ā = ⌀.

Let n be some fixed neutral element of A. The equivalence class of the element n
will be called the neutral subclass of A with respect to n and 𝜀 and will be denoted by
An. The common examples are n = 0 and n = 1.

The subclass {x | ∃a ∈ A (x = ā)} of the class P(A) \ {⌀}, consisting of all equiv-
alence classes ā which are sets, is called the factor-class of the class A with respect to
the equivalence relation 𝜀 and is denoted by A/𝜀 or simply by Ā.

Consider the correspondence p ≡ {⟨a, x⟩ ∈ A ∗ (A/𝜀) | a ∈ x}.
Lemma 1. Let A be a class and 𝜀 be an equivalence on A. Then, the correspondence
p : A A/𝜀 is single-valued and surjective. If besides A is a set, then A/𝜀 is a set and
p is a surjective mapping p : A A/𝜀.
Proof. If ⟨a, x⟩ ∈ p and ⟨a, y⟩ ∈ p, then a ∈ x and a ∈ y imply x = y. Thus, p is single-
valued. If x ∈ Ā, then x /= ⌀ and so there is a ∈ A, such that a ∈ x. Then, ⟨a, x⟩ ∈ p.
This means that p is surjective.

Now, letA be a set. Then, by Lemma 1 (1.1.6) ā is a set aswell for every a ∈ A. There-
fore, ⟨a, ā⟩ ∈ p for every a ∈ A. Thus, dom p = A. By virtue of Lemmas 2 and 1 (1.1.6), Ā
is a set. As a result, p is a surjectivemapping from the set A onto the set Ā.
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The correspondence p : A A/𝜀 is called the factor-correspondence from the class A
onto the factor-class A/𝜀with respect to the equivalence 𝜀. IfA is a set, then themapping
p : A A/𝜀 is called the factor-mapping from the set A onto the factor-set A/𝜀 with
respect to the equivalence 𝜀.

Consider the identical collection idA/𝜀 ≡ (xx ∈ P(A)\{⌀} | x ∈ A/𝜀) from 1.1.9, such
that xx = x. By virtue of Lemma 3 (1.1.9), there exists the multivalued collection ⟮xx ⊂
A | x ∈ A/𝜀⟯ = 𝜑−1(idA/𝜀).
Lemma 2. Let A be a set and 𝜀 be an equivalence on A. Then, ⟮xx ⊂ A | x ∈ A/𝜀⟯ is a par-
tition of the set A.

Proof. If a ∈ A, then by Lemma 1 (1.1.6), x ≡ ā is a set. Therefore, x ∈ Ā and a ∈ x = xx.
Consequently, A = ⋃⟮xx | x ∈ Ā⟯. Besides, x /= y implies xx ∩ yy = ⌀.
This multivalued collection ⟮xx ⊂ A | x ∈ A/𝜀⟯ is called the partition of the set A deter-
mined by the equivalence 𝜀.
Lemma 3. Let a collection of sets ⟮Ai | i ∈ I⟯, indexed by a set I, be a partition of a set A.
Then, there is an equivalence 𝜀 on A and a bijection u : A/𝜀 I, such that xx = Au(x)
for every component xx of the partition of A determined by 𝜀.
Proof. Consider the relation 𝜀 ≡ {(a, a) ∈ A × A | ∃i ∈ I (a ∈ Ai ∧ a ∈ Ai)}. If a ∈ A,
then there is i ∈ I, such that a ∈ Ai. Therefore, (a, a) ∈ 𝜀. This means that 𝜀 is reflex-
ive. Let (a, a) ∈ 𝜀 and (a, a) ∈ 𝜀. Then, there are i, j ∈ I, such that a, a ∈ Ai and
a, a ∈ Aj. From a ∈ Ai∩Aj, we infer that i = j. Therefore, (a, a) ∈ 𝜀. Thus, 𝜀 is tran-
sitive. Finally, let (a, a) ∈ 𝜀. Then, a, a ∈ Ai for some i. Therefore, (a, a) ∈ 𝜀, i. e. 𝜀 is
symmetric. Thus, 𝜀 is an equivalence relation.

Consider the set Ā ≡ A/𝜀 and the correspondence u ≡ {⟨x, i⟩ ∈ Ā ∗ I | x = Ai}. Let
x ∈ Ā. Then, x = ā for some a ∈ A. By the definition, A = ⋃⟮Ai | i ∈ I⟯. Therefore, a ∈
Ai for some i ∈ I. If a ∈ x, then (a, a) ∈ 𝜀 implies a, a ∈ Aj. From a ∈ Ai∩Aj, we infer
that i = j. Thus, a ∈ Ai, where x ⊂ Ai. Conversely, if a ∈ Ai, then (a, a) ∈ 𝜀 implies
a ∈ ā = x, where Ai ⊂ x. Thus, x = Ai and ⟨x, i⟩ ∈ u. This means that dom u = Ā.

If ⟨x, i⟩ ∈ u and ⟨x, j⟩ ∈ u, then x = Ai and x = Aj. Therefore, i = j. Thismeans that
u is single-valued. As a result, u is a mapping u : Ā → I, such that x = Au(x).

If u(x) = u(y), then x = Au(x) = Au(y) = y means that w is injective. Let i ∈ I. Take
a ∈ Ai and x ≡ ā ∈ Ā. It was deduced above that these conditions imply ⟨x, i⟩ ∈
u, where i = u(x). This means that u is surjective. As a result, u is bijective and
xx = Au(x).

Preorder and order relations
A reflexive and transitive relation 𝜃 on the class A is called a preorder relation or simply
a preorder on A. In this case, we say also that 𝜃 preorders A. Also, in this case, along
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with (a, a) ∈ 𝜃 we shall write a ⩽ a or a ⩾ a and shall say that a is smaller than or
equal to a or a is greater than or equal to a with respect to ⩽≡ 𝜃. If besides a /= a, then
we shall write a < a or a > a and shall say that a is smaller than a or a is greater
than a.

If 𝜃 is a preorder on the class A and B is a subclass of A, then the restriction 𝜃B is
a preorder on the class B.

An antisymmetric preorder relation onA is called an order relation or simply an or-
der on A. A total order relation on A is called a linear order on A. If 𝜃 is an order [a linear
order] on the classA and B is a subclass ofA, then the restriction 𝜃B is an order [a linear
order] on B.

If 𝜃 is a transitive relation on the class A, then the relation 𝜃∪{(a, a) ∈ A×A | a =
a} is a preorder on A. If 𝜃 is a preorder on A, then the relation 𝜂 ≡ {(a, a) ∈ A × A |
(a, a) ∈ 𝜃} is called the preorder on A opposite to the preorder 𝜃.

The preorder and order relations are so important in mathematics that there is
an extensive row of notions connectedwith them. Therefore, all the necessary notions
connected with the preorder and order relations used in this book, we shall consider
in the separate subsection 1.1.15 (and also in the following sections).

1.1.15 Basic notions connected with preorder and order relations

A class A with a preorder ⩽ on A will be called a preordered class and will be denoted
by ⟮A, ⩽⟯ or sometimes simply by A. If ⩽ is an order, then ⟮A, ⩽⟯ is called an ordered
class.

Monotonicity
Let ⟮A, ⩽⟯ and ⟮B, ⩽⟯ be preordered classes and u : A → B be a mapping.

The mapping u is called increasing [decreasing] if a ⩽ a implies u(a) ⩽ u(a)
[u(a) ⩾ u(a)]. An increasing mapping is called also order preserving or monotone;
a decreasing mapping is called also order changing or antimonotone.

The mapping u is called strictly increasing [strictly decreasing] if a < a implies
u(a) < u(a) [u(a) > u(a)].

The increasing mapping u will be called isotone if u(a) ⩽ u(a) implies a ⩽ a.
The decreasing mapping u will be called antiisotone if u(a) ⩾ u(a) implies a ⩽ a.

Preordered classes ⟮A, ⩽⟯ and ⟮B, ⩽⟯ are called order equivalent (⟮A, ⩽⟯ ≈ ⟮B, ⩽⟯) if
there exists some isotone bijective mapping u : A B.

Since themapping u : A → B can be considered as the collection u ≡ (ba | a ∈ A),
where ba ≡ u(a) for every a ∈ A, the given terminology can be easily reformulated for
the collection (ba | a ∈ A).
Lemma 1. Let ⟮A, ⩽⟯ and ⟮B, ⩽⟯ be ordered classes and u : A → B be a mapping. Then:
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1) if u is isotone, then u is injective and strictly increasing;
2) if u is isotone and surjective, then u is bijective, and inverse mapping u−1 : B → A

is also isotone.

Proof. 1. Let a and a be arbitrary elements, such that ua = ua. Then, ua ⩽ ua im-
plies a ⩽ a and ua ⩽ ua implies a ⩽ a. As a result, a = a. Thus, u is injective.

Let a < a. Then, ua ⩽ ua and ua /= ua. Thus, ua < ua, i. e. u is strictly
increasing.

2. By Proof 1, u is bijective. If b ⩽ b, then u(u−1b) ⩽ u(u−1b) implies u−1b ⩽ u−1b.
If u−1b ⩽ u−1b, then applying u we get b = u(u−1b) ⩽ u(u−1b) = b. Thus, u−1 is
isotone.

Intervals
Let ⟮A, ⩽⟯ be a preordered class and a, b ∈ A. The subclass {c ∈ A | a < c < b} of
the class A is called the open interval with the beginning a and the end b and is de-
noted by ]a, b[. The subclass {c ∈ A | a ⩽ c ⩽ b} of the class A is called the closed
interval with the beginning a and the end b and is denoted by [a, b]. In the similar way
the half-open (≡ half-closed) intervals ]a, b] and [a, b[ are defined. Any subclass X
of the class A, such that ]a, b[⊂ X ⊂ [a, b] will be called an interval (of the general
kind) with the beginning a and the end b and will be denoted by |a, b|. Sometimes, a
is called the left end and b is called the right end of the corresponding interval.

A subclass B of A is called convex if [b, b] ⊂ B for every b, b ∈ B.
The subclass {c ∈ A | c < b} of the class A is called the open initial interval with

the end b and is denoted by ]←, b[. The subclass {c ∈ A | c ⩽ b} of the class A is
called the closed initial interval with the end b and is denoted by ]←, b]. In the similar
way, the open ]a,→[ and the closed [a,→[ final intervals with the beginning a are
defined.

Let ⟮A, ⩽, {n}⟯ be an ordered class with the fixed neutral element n ∈ A. The sub-
class An ≡ [n,→ [≡ {a ∈ A | a ⩾ n}will be called themain part of A with respect to the
neutral element n. The common examples are n = 0 and n = 1.

Let X be a subclass of an preordered class A. The subclass X is called initial in
the class A, if ]←, b] ⊂ X for every b ∈ X. The subclass X is called final in the class A,
if [a,→[⊂ X for every a ∈ X.

The subclass X is called coinitial to the class A, if ]←, b] ∩ X /= ⌀ for every b ∈ A.
The subclass X is called cofinal to the class A, if [a,→[∩X /= ⌀ for every a ∈ A.

An element y ∈ X is called the greatest element of the subclass X if X ⊂]←, y].
An element x ∈ X is called the smallest element of the subclass X if X ⊂ [x,→[. If ⩽
is an order, then the greatest and the smallest elements of the subclass X are unique
and they will be denoted respectively by gr X and sm X.

Supremum and infimum, greatest and smallest members
Let (ai ∈ A | i ∈ I) be a collection of elements of the class A, indexed by some class I.
We consider here simple collections (ai ∈ A | i ∈ I). But in the particular case of the
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identical collection (ii ∈ I ⊂ A | i ∈ I) (see 1.1.9), we shall use alongwith the collection
terminology also the set terminology for the set I.

An element a ∈ A is called an upper [a lower] bound of the collection (ai | i ∈ I)
and the collection (ai | i ∈ I) is called (order) bounded above [below]by the element a if
ai ⩽ a [ai ⩾ a] for every i ∈ I. The collection (ai | i ∈ I) is called (order) bounded above
[below], if there is in A an upper [a lower] bound of the collection (ai | i ∈ I). It is called
(order) bounded, if it is bounded above and below.

The preordered class ⟮A, ⩽⟯ is called upward [downward] directed (≡ filtering) if
every sequential pair (a, a) of elements of A is bounded above [below].

Let ⟮A, ⩽A⟯ and ⟮B, ⩽B⟯ be preordered classes. A mapping u : A → B is called (or-
der) bounded if for every (order) bounded set E ⊂ A the set u[E] is (order) bounded
in B.

An element a ∈ A is called the greatest lower bound or infimum of the collection
(ai | i ∈ I) if (1) a is a lower bound of (ai | i ∈ I) and (2) a ⩾ a for every lower bound
a of (ai | i ∈ I). If ⩽ is an order, then this element is unique and is denoted by inf(ai |
i ∈ I). If I ⊂ A, then we use also the notation inf I ≡ inf (ii | i ∈ I).

An element a ∈ A is called the smallest upper bound or supremum of the collection
(ai | i ∈ I) if (1) a is an upper bound of (ai | i ∈ I) and (2) a ⩽ a for every upper bound
a of (ai | i ∈ I). If ⩽ is an order, then this element is unique and is denoted by sup(ai |
i ∈ I). If I ⊂ A, then we use also the notation sup I ≡ sup (ii | i ∈ I).

Both the supremumand the infimumof the collection (set) will be called the exact
bounds of this collection (set).

It is evident that for every collection 𝛼 ≡ (ai ∈ A | i ∈ I) and 𝛽 ≡ (bi ∈ A | i ∈ I)
and element a, b ∈ A such that ai ⩽ bi for every i ∈ I, a = sup 𝛼, b = sup𝛽, we have
a ⩽ b. The similar property is valid for the greatest lower bound.

Let ⟮A, ⩽⟯ and ⟮B, ⩽⟯ be ordered classes and u : A → B be a mapping. The map-
ping u is called preserving exact upper [lower] bounds if a = sup E [a = inf E] implies
ua = sup u[E] [ua = inf u[E]] for any a ∈ E and E ⊂ A. The mapping is called preserv-
ing any exact bounds if it preserves both the exact upper and lower bounds.

Lemma 2. Let ⟮A, ⩽⟯, and ⟮B, ⩽⟯ be ordered classes and u : A → B be a surjective
and isotone mapping. Then, u and u−1 : B → A (see Lemma 1) preserve any exact
bounds.

Proof. Let a ∈ A, E ⊂ A, and a = sup E. Then, ua ⩾ ue for every e ∈ E. Let b ∈ B and
b ⩾ ue for every e ∈ E. Then, b = ua for some a ∈ A. By condition, ua ⩾ ue implies
a ⩾ e for every e ∈ E. Hence, a ⩾ a and b ⩾ ua. This means that ua = sup u[E]. For
the infimum, the arguments are similar.

According to Lemma 1, the inverse mapping u−1 is also surjective and isotone.
Therefore, it preserves any exact bounds.
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In the particular case, let I be the sets 2, 3, . . . and a, a, a, . . . be elements of A. Then,
(a, a), (a, a, a),. . . are the corresponding collections. Therefore, we can consider
the elements sup(a, a), sup(a, a, a),. . . , and inf(a, a), inf(a, a, a),. . . .

The elements sup(a, a), sup(a, a, a), . . .will be called the supremums of the
simple sequential pair (a, a), triplet (a, a, a), . . . and will be denoted also by a ∨ a,
a ∨ a ∨ a, . . . . By the definition of the simple sequential pair from 1.1.11, we have
a ∨ a = sup (xi | i ∈ 2), where x0 ≡ a and x1 ≡ a. In the similar manner, a ∨ a ∨ a =
sup (xi | i ∈ 3), where x0 ≡ a, x1 ≡ a, and x2 ≡ a, and so on.

The elements inf(a, a), inf(a, a, a), . . .will be called the infimums of the simple
sequential pair (a, a), triplet (a, a, a), . . . andwill be denoted also by a∧a, a∧a ∧
a, . . . .

For the preordered class ⟮A, ⩽⟯ an element aj ∈ {ai | i ∈ I} is called the greatest
[smallest]member of the collection (ai ∈ A | i ∈ I) if ai ⩽ aj [ai ⩾ aj] for every j ∈ I. If ⩽
is an order, then the greatest and the smallest member of the collection (ai | i ∈ I) are
unique and will be denoted by gr (ai | i ∈ I) and sm (ai | i ∈ I), respectively.

As above, the elements gr(a, a), gr(a, a, a), gr(a, a, a, a),. . .will be called
the greatest member of the pair (a, a), triplet (a, a, a), quadruplet (a, a, a, a),. . .
and will be denoted also by a ⊻ a, a ⊻ a ⊻ a, a ⊻ a ⊻ a ⊻ a, . . . .

The elements sm(a, a), sm(a, a, a), sm(a, a, a, a),. . .will be called the
smallest members of the pair (a, a), triplet (a, a, a), quadruplet (a, a, a, a),. . .
and will be denoted also by a ⊼ a, a ⊼ a ⊼ a, a ⊼ a ⊼ a ⊼ a, . . .

For the preordered class ⟮A, ⩽⟯ if aj is the greatest [smallest] member of the col-
lection (ai | i ∈ I), then aj is a supremum [infimum] of (ai | i ∈ I).

For the preordered class ⟮A, ⩽⟯ an element aj ∈ {ai | i ∈ I} is called the maximal
[minimal] member of the collection (ai ∈ A | i ∈ I) if ai ⩾ aj [ai ⩽ aj] implies ai = aj.
If ⩽ is an order and aj is the greatest [smallest] member of the collection (ai | i ∈ I),
then aj is a unique maximal [minimal] member of (ai | i ∈ I).

The ordered class ⟮A, ⩽⟯ is called upward [downward] lattice-ordered if for every
sequential pair (a, a) of elements of A there is the sup(a, a) [inf(a, a)]. It is called
lattice-ordered if it is upward and downward lattice-ordered simultaneously. In this
case, the order ⩽ is called latticed.

Let ⟮A, ⩽, {n}⟯ be a lattice-ordered class with some fixed neutral element n ∈ A.
The elements a+ ≡ a ∨ n and a− ≡ a ∧ n will be called the positive and the negative
parts of an element a ∈ A (with respect to the neutral element n). Respectively, the sub-
classes A+ ≡ {a+ ∈ A | a ∈ A} and A− ≡ {a− ∈ A | a ∈ A}will be called the positive and
the negative parts of the class A (with respect to the neutral element n). Note that in this
case, A+ = An, i. e. the positive part and the main part coincide.

Let U ≡ ⟮A, ⩽A⟯ be an ordered class. An ordered class V ≡ ⟮B, ⩽B⟯ is called com-
pletely (order) closed in the ordered class U if the following properties hold:
1) B ⊂ A;
2) ⩽B = ⩽A |B ∗ B;
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3) if a ∈ A and a = supA (bi | i ∈ I) for some simple collection (bi ∈ B | i ∈ I), then
a ∈ B;

4) if a ∈ A and a = infA (bi | i ∈ I) for some simple collection (bi ∈ B | i ∈ I), then
a ∈ B.

Let U ≡ ⟮A, ⩽A⟯ be a lattice-ordered class. A lattice-ordered class V ≡ ⟮B, ⩽B⟯ is called
a lattice-ideal (≡ an l-ideal) of the lattice-ordered class U if the following properties
hold:
1) B ⊂ A;
2) ⩽B = ⩽A |B ∗ B;
3) ∨B = ∨A|(B ∗ B) ∗ B;
4) ∧B = ∧A|(B ∗ B) ∗ B;
5) ∀ a ∈ A ∀ b, b ∈ B (b ⩽A a ⩽A b ⇒ a ∈ B).
The ordered class ⟮A, ⩽⟯ is called upward [downward] (order) complete if for every col-
lection of elements of A there is its supremum [infimum]. It is called (order) complete
if it is upward and downward complete.

The ordered class ⟮A, ⩽⟯ is called upward [downward] Dedekind complete if for
every bounded above [below] collection of elements of A there is its supremum
[infimum]. It is called Dedekind complete if it is upward and downward Dedekind
complete.

Proposition 1. Let ⟮A, ⩽⟯ be an ordered class, I and M be classes, (ai ∈ A | i ∈ I) and(xm ∈ A | m ∈ M) be collections and a ∈ A. Then:
1) if u : K I is a surjective mapping, then a = sup(ai | i ∈ I) iff a = sup(au(k) | k ∈

K); analogously, a = inf(ai | i ∈ I) iff a = inf(au(k) | k ∈ K) (the general commuta-
tivity of supremum and infimum);

2) if I = ⋃⟮Im | m ∈ M⟯ for somemultivalued collection ⟮Im | m ∈ M⟯and xm = sup(ai |
i ∈ Im), then a = sup(ai | i ∈ I) iff a = sup(xm | m ∈ M); analogously, if xm = inf(ai |
i ∈ Im), then a = inf(ai | i ∈ I) iff a = inf(xm | m ∈ M) (the general associativity of
supremum and infimum).

Proof. Conclusion 1 follows directly from the definitions.
2. Let a = sup(ai | i ∈ I). Then, a ⩾ xm for every m ∈ M. Let y ∈ A and y ⩾ xm for

every m. Then, y ⩾ ai for every i ∈ Im and m ∈ M implies y ⩾ a. Thus, a = sup(xm |
m ∈ M). Conversely, let a = sup(xm | m ∈ M). Then, a ⩾ xm ⩾ ai for every i ∈ Im and
m ∈ M. Let y ∈ A and y ⩾ ai for every i ∈ I. Then, y ⩾ xm for everym ∈ M implies y ⩾ a.
Thus, a = sup(ai | i ∈ I).

The checking for the infimum is analogous.

Corollary 1. Let ⟮A, ⩽⟯ be an ordered class and x, y, a, a, a, a ∈ A. Then:
1) sup(a, a) = a and inf(a, a) = a;
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2) a = sup(a, a) iff a = sup(a, a); analogously, a = inf(a, a) iff a = inf(a, a)
(the commutativity of the supremum and the infimum);

3) if x = sup(a, a)and y = sup(a, a), then a = sup(a, a, a) iff a = sup(x, a)
and also iff a = sup(a, y); analogously, if x = inf(a, a) and y = inf(a, a), then
a = inf(a, a, a) iff a = inf(x, a) and also iff a = inf(a, y) (the associativity
of the supremum and the infimum).

The following result represents some special form of the general associativity.

Proposition 2. Let ⟮A, ⩽⟯ be an ordered class, I be a non-empty set. Let ⟮Ji | i ∈ I⟯ be
a collection of non-empty sets, (xi ∈ A | i ∈ I) be a collection, (ak ∈ A | k ∈ K) be a col-
lection indexed by the set K ≡ ⋃⟮{i} × Ji | i ∈ I⟯, and a ∈ A. Then:
1) if xi = sup (aij | j ∈ Ji), then a = sup (xi | i ∈ I) iff a = sup (ak | k ∈ K);
2) if xi = inf (aij | j ∈ Ji), then a = inf (xi | i ∈ I) iff a = inf (ak | k ∈ K).
Proof. Consider the sets Ki ≡ {i} × Ji. Then, ⟮Ki | i ∈ I⟯ is a partition of the set K.
Suppose a = sup (ak | k ∈ K). Then, according to assertion 2 of Proposition 1 (1.1.15),
we get the equality a = sup (sup (ak | k ∈ Ki) | i ∈ I). Consider the bijective map-
pings ui : Ji Ki such that ui(j) = (i, j) for every j ∈ Ji. Then, assertion 1 of Proposi-
tion 1 (1.1.15) implies sup (ak | k ∈ Ki) = sup (aij | j ∈ Ji) = xi. Thus, a = sup (xi | i ∈ I).

Conversely, if a = sup (xi | i ∈ I), then by the above, we have the equality
a = sup (sup (ak | k ∈ Ki) | i ∈ I) = sup (ak | k ∈ K).

The second assertion is proved in the same way.

Corollary 1. Let ⟮A, ⩽⟯ be an ordered class, I and J be non-empty sets, (xi ∈ A | i ∈ I)
be a collection, ((aij ∈ A | j ∈ J) | i ∈ I) be a collection of collections, and a ∈ A.
Then:
1) if xi = sup (aij | j ∈ J) and yj = sup (aij | i ∈ I), then a = sup (aij | (i, j) ∈ I × J) iff

a = sup (xi | i ∈ I) = sup (yj | j ∈ J);
2) if xi = inf (aij | j ∈ J) and yj = inf (aij | i ∈ I), then a = inf (aij | (i, j) ∈ I × J) iff

a = inf (xi | i ∈ I) = inf (yj | j ∈ J).
Proof. Consider the collections ⟮Ji | i ∈ I⟯, where Ji ≡ J and ⟮𝜄i | i ∈ I⟯, where 𝜄i ≡ {i}.
Then, ⋃⟮𝜄i | i ∈ I⟯ = I and ⋃⟮Ji | i ∈ I⟯ = J. Take also the sets Ki ≡ {i} × Ji and K ≡
⋃⟮Ki | i ∈ I⟯. Since the mapping u : I × I → I such that u(i, i) = i is surjective, asser-
tion 1 of Proposition 1 (1.1.10) and assertion 5 of Corollary 2 to Theorem 1 (1.1.13) imply
that K = ⋃⟮{i} × Ji | i ∈ I⟯ = ⋃⟮𝜄i × Ji | (i, i) ∈ I × I⟯ = ⋃⟮𝜄i | i ∈ I⟯ × ⋃⟮Ji | i ∈ I⟯ =
I × J.

Suppose a = sup (xi | i ∈ I). Then, according to Proposition 2, we infer that
a = sup (ak | k ∈ K) = sup (aij | (i, j) ∈ I × J).

Conversely, if a = sup (aij | (i, j) ∈ I × J), then by the above, we have
a =sup (ak | k ∈ K) = sup (sup (ak | k ∈ Ki) | i ∈ I) = sup (xi | i ∈ I).
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Similarly, we prove that sup (yj | j ∈ J) = sup (aij | (j, i) ∈ J × I). Since the map-
ping v : J × I → I × J such that v(i, j) = (j, i) is bijective, by assertion 1 of Proposi-
tion 1 (1.1.10) we get sup (aij | (i, j) ∈ I × J) = sup (aij | (j, i) ∈ J × I).

The second assertion is proved in the same way.

Note that neither the analogue of the properties of the general distributivities 3 and 4
from Theorem 1 (1.1.13) nor the analogue of the property of distributivity 4 from
Lemma 1 (1.1.5) are valid for the supremum and the infimum.

Here we shall prove the analogue of the properties of the general distributivities
1 and 2 from Theorem 1 (1.1.13).

Theorem 1. Let ⟮A, ⩽⟯ be an ordered class, ⟮Im | m ∈ M⟯ be a total multivalued collec-
tion of sets indexed by a non-empty set M and U ≡ ∏⟮Im | m ∈ M⟯. Let a ∈ A, (𝜘m | m ∈
M) be a collection of collections of elements 𝜘m ≡ (ami ∈ A | i ∈ Im), and (em ∈ A | m ∈
M) and (gu ∈ A | u ∈ U) be collections of elements. Then:
1) if em = sup(ami | i ∈ Im) and gu = sup(amu(m) | m ∈ M), then a = sup(em | m ∈ M)

iff a = sup(gu | u ∈ U) (the general distributivity of supremum);
2) if em = inf(ami | i ∈ Im) and gu = inf(amu(m) | m ∈ M), then a = inf(em | m ∈ M) iff

a = inf(gu | u ∈ U) (the general distributivity of infimum).
Proof. 1. Let a = sup(em | m ∈ M). Then, a ⩾ ami for everym ∈ M and i ∈ Im. If u ∈ U,
then u(m) ∈ Im implies a ⩾ amu(m). Thus, a ⩾ gu for every u ∈ U. Let x ∈ A and x ⩾
gu for every u ∈ U. Then, x ⩾ amu(m) for every u ∈ U and every m ∈ M. Let i ∈ Im. By
Lemma 4 (1.1.12), prm[U] = Im. Therefore, there is u ∈ U, such that i = prm(u) = u(m).
Consequently, x ⩾ ami for every i ∈ Im. Thus, x ⩾ em for everym ∈ M. This implies x ⩾
a. As a result, a = sup(gu | u ∈ U).

Conversely, let a = sup(gu | u ∈ U). Then, a ⩾ amu(m) for every u ∈ U and m ∈ M.
If i ∈ Im, then as above i = u(m) for some u ∈ U. Therefore, a ⩾ ami for every i ∈ Im
implies a ⩾ em for every m ∈ M. Let y ∈ A and y ⩾ em for every m ∈ M. Then, y ⩾ ami
for every i ∈ Im and every m ∈ M. If u ∈ U, then u(m) ∈ Im implies y ⩾ amu(m) for
every m ∈ M. Thus, y ⩾ gu for every u ∈ U implies y ⩾ a. This means that
a = sup(em | m ∈ M).

Conclusion 2 is checked completely in the same manner.

Corollary 1. Let ⟮A, ⩽⟯ be an ordered class and J and K be non-empty sets. Let (xj ∈
A | j ∈ J), (yk ∈ A | k ∈ K) and (z(j,k) ∈ A | (j, k) ∈ J × K) be collections of elements and
a, x, y ∈ A. Then:
1) if x = sup(xj | j ∈ J), y = sup(yk | k ∈ K) and z(j,k) = sup(xj , yk), then a = sup(x, y)

iff a = sup(z(j,k) | (j, k) ∈ J × K);
2) if x = inf(xj | j ∈ J), y = inf(yk | k ∈ K) and z(j,k) = inf(xj , yk), then a = inf(x, y) iff

a = inf(z(j,k) | (j, k) ∈ J × K).
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Proof. Take M = 2, I0 ≡ J, I1 ≡ K, a0i ≡ xi for every i ∈ J, a1i ≡ yi for every i ∈ K,
𝜘0 ≡ (xj | j ∈ J) = (a0i | i ∈ I0), 𝜘1 ≡ (yk | k ∈ K) = (a1i | i ∈ I1) and U ≡ J × K = ∏⟮Im |
m ∈ M⟯.

Then, all the necessary conclusions are particular cases of the corresponding con-
clusions of Theorem 1.

The formulas of Corollary 1 are called the formulas of the binary distributivity of
the supremum and the infimum.

Nets and order-convergence
Let, for a moment, A be any class. Any collection (a𝜇 ∈ A | 𝜇 ∈ M) of elements of A
indexed by the principal set M of an upward directed preordered set ⟮M, ⩽⟯ is called
a net in the class A. A net y ≡ (b𝜈 ∈ A | 𝜈 ∈ N) is called a subnet of the net x ≡ (a𝜇 ∈ A |𝜇 ∈ M), if there exists a mapping u ≡ (𝜇𝜈 ∈ M | 𝜈 ∈ N) : N → M, such that:
1) for every 𝜇 ∈ M, there exists 𝜈 ∈ N, such that 𝜘 ∈ N and 𝜘 ⩾ 𝜈 imply 𝜇𝜘 ⩾ 𝜇;
2) x ∘ u = y, i. e. a𝜇𝜈 = b𝜈 for every 𝜈 ∈ N.
A net in the class A is also called a net of elements of A. In the similar way, we can
define a net x ≡ ⟮A𝜇 ⊂ A | 𝜇 ∈ M⟯ of subclasses of the class A and its subnet y ≡ ⟮B𝜈 ⊂
A | 𝜈 ∈ N⟯.

The mapping u is called thinning the net x out.

Lemma 3. Let ⟮M, ⩽⟯ and ⟮N, ⩽⟯ be upward directed preordered sets and u ≡ (𝜇𝜈 ∈
M | 𝜈 ∈ N) : N → M be an increasing mapping, such that the subset u[N] is cofinal to
the set M. Then, for every class A and every net x ≡ (a𝜇 ∈ A | 𝜇 ∈ M), the composition
x ∘ u = (a𝜇𝜈 ∈ A | 𝜈 ∈ N) is a subnet of the net x.
Proof. By the condition for every 𝜇 ∈ M, there is 𝜈 ∈ N, such that 𝜇𝜈 ⩾ 𝜇. Therefore, if𝜘 ∈ N and 𝜘 ⩾ 𝜈, then 𝜇𝜘 ⩾ 𝜇𝜈 ⩾ 𝜇.
Now, again, let ⟮A, ⩽⟯ be a preordered class. If (a𝜇 ∈ A | 𝜇 ∈ M) is an increasing [de-
creasing] net, thenwe shall sometimeswrite (a𝜇 | 𝜇 ∈ M) ↑ [(a𝜇 | 𝜇 ∈ M) ↓]. A net (a𝜇 |𝜇 ∈ M) is called increasing to an element a ∈ A, if (a𝜇) ↑ and a = sup(a𝜇 | 𝜇 ∈ M). A net(a𝜇 | 𝜇 ∈ M) is called decreasing to an element a ∈ A, if (a𝜇) ↓ and a = inf(a𝜇 | 𝜇 ∈ M).
In these cases, we shall write (a𝜇 | 𝜇 ∈ M) ↑ a and (a𝜇 | 𝜇 ∈ M) ↓ a, respectively, or
more simple a𝜇 ↑ a and a𝜇 ↓ a.

A net (a𝜇 | 𝜇 ∈ M) is called order-convergent to an element a ∈ A and a is called
an order-limit of the net (a𝜇), if there exist nets (b𝜇 ∈ A | 𝜇 ∈ M) ↑ a and (c𝜇 ∈ A | 𝜇 ∈
M) ↓ a, such that b𝜇 ⩽ a𝜇 ⩽ c𝜇 for every 𝜇 ∈ M. A net can converge to many elements;
the class of all order-limits of the net (a𝜇) is denoted by o-lim(a𝜇 | 𝜇 ∈ M). When
the net (a𝜇) has exactly one order-limit a, then we shall write a = o-lim(a𝜇 | 𝜇 ∈ M).
If ⩽ is an order, then every net (a𝜇) can have exactly one order-limit.
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An element a ∈ A is called the limit inferior of a net (a𝜇 ∈ A | 𝜇 ∈ M), if there ex-
ists a net (b𝜇 ∈ A | 𝜇 ∈ M) ↑ a, such that b𝜇 = inf(a𝜈 | 𝜈 ∈ M, 𝜈 ⩾ 𝜇). It is denoted by
lim(a𝜇 | 𝜇 ∈ M). An element a ∈ A is called the limit superior of the net (a𝜇 ∈ A | 𝜇 ∈
M), if there exists a net (c𝜇 ∈ A | 𝜇 ∈ M) ↓ a, such that c𝜇 = sup(a𝜈 | 𝜈 ∈ M, 𝜈 ⩾ 𝜇).
It is denoted by lim(a𝜇 | 𝜇 ∈ M). It is obvious that if these limits exist for the net
(a𝜇 | 𝜇 ∈ M), then lim a𝜇 ⩽ lim a𝜇.

Lemma 4. Let ⟮A, ⩽⟯ be an ordered class, a ∈ A and (a𝜇 ∈ A | 𝜇 ∈ M), (b𝜇 ∈ A | 𝜇 ∈
M) ↑, (c𝜇 ∈ A | 𝜇 ∈ M) ↓benets, such that b𝜇 = inf(a𝜈 | 𝜈 ∈ M, 𝜈 ⩾ 𝜇)and c𝜇 = sup(a𝜈 |𝜈 ∈ M, 𝜈 ⩾ 𝜇). Then, the following conclusions are equivalent:
1) a = o-lim(a𝜇 | 𝜇 ∈ M);
2) a = lim(a𝜇 | 𝜇 ∈ M) = lim(a𝜇 | 𝜇 ∈ M).
Proof. 1) ⊢ 2). By the condition, there exist nets (v𝜇 ∈ A | 𝜇 ∈ M) ↑ a and (w𝜇 ∈ A | 𝜇 ∈
N) ↓ a, such that v𝜇 ⩽ a𝜇 ⩽ w𝜇 for every 𝜇 ∈ M. Let 𝜆 and 𝜇 be arbitrary elements ofM.
If 𝜈 ⩾ 𝜆, then v𝜆 ⩽ v𝜈 ⩽ a𝜈 implies v𝜆 ⩽ inf(a𝜈 | 𝜈 ∈ M, 𝜈 ⩾ 𝜆) = b𝜆 ⩽ b𝜈. If 𝜈 ⩾ 𝜇, then
w𝜇 ⩾ w𝜈 ⩾ a𝜈 implies w𝜇 ⩾ sup(a𝜈 | 𝜈 ∈ M, 𝜈 ⩾ 𝜇) = c𝜇 ⩾ c𝜈.

Since M is upward directed, there is 𝜈 ∈ M, such that 𝜆 ⩽ 𝜈 and 𝜇 ⩽ 𝜈. There-
fore, v𝜆 ⩽ b𝜆 ⩽ b𝜈 ⩽ a𝜈 ⩽ c𝜈 ⩽ c𝜇 ⩽ w𝜇. From these inequalities, we deduce that b𝜆 ⩽
inf(w𝜇 | 𝜇 ∈ M) = a and c𝜇 ⩾ sup(v𝜆 | 𝜆 ∈ M) = a. Let x ∈ A and x ⩾ b𝜆 for every 𝜆 ∈
M. Then, b𝜆 ⩾ v𝜆 implies x ⩾ sup(v𝜆 | 𝜆 ∈ M) = a. Thus, a = sup(b𝜆 | 𝜆 ∈ M). Let now
y ∈ A and y ⩽ c𝜇 for every𝜇 ∈ M. Then, c𝜇 ⩽ w𝜇 implies y ⩽ inf(w𝜇 | 𝜇 ∈ M) = a. Thus,
a = inf(c𝜇 | 𝜇 ∈ M). As a result, a = lim(a𝜇 | 𝜇 ∈ M) and a = lim(a𝜇 | 𝜇 ∈ M).

2) ⊢ 1). By the conditions b𝜇 ↑ a, c𝜇 ↓ a and b𝜇 ⩽ a𝜇 ⩽ c𝜇 for every 𝜇 ∈ M. This
means a = o-lim(a𝜇 | 𝜇 ∈ M).
Finally, let ⟮Ui | i ∈ I⟯ be a collection of preordered classes Ui ≡ ⟮Ai , ⩽Ai

⟯, indexed by
a class I. Define a binary relation 𝜃on the product E ≡ ∏⟮Ai | i ∈ I⟯, setting (e, e) ∈ 𝜃
for elements e ≡ (a

i | i ∈ I) and e ≡ (a
i | i ∈ I) of the class E, if a

i ⩽Ai
a
i for every

i ∈ I. It is evident that 𝜃 is a preorder on the class E. Thepreordered class ⟮E, 𝜃⟯ is called
the product of the collection of preordered classes ⟮Ui | i ∈ I⟯ and will be denoted by
∏0⟮Ui | i ∈ I⟯ or simply by∏0⟮Ai | i ∈ I⟯.

Let U ≡ ⟮A, ⩽A⟯ and U ≡ ⟮A, ⩽A⟯ be preordered classes. Consider the corre-
sponding collection ⟮U, U⟯ ≡ ⟮Xi | i ∈ 2⟯ of preordered classes from 1.1.11, such that
X0 ≡ U and X1 ≡ U. The preordered class ∏0⟮U, U⟯ ≡ ∏0⟮Xi | i ∈ 2⟯ will be called
the product of the pair ⟮U, U⟯ and will be denoted by U ×0 U or simply by A ×0 A.

In the similar way, for preordered classes U ≡ ⟮A, ⩽A⟯, U ≡ ⟮A, ⩽A⟯, U ≡ ⟮A,
⩽A⟯, U ≡ ⟮A, ⩽A⟯,. . . . the preordered classes ∏0⟮U, U, U⟯, ∏0⟮U, U, U,
U⟯,. . . will be called the products of the triplet ⟮U, U, U⟯, quadruplet ⟮U, U, U,
U⟯,. . . and will be denoted by U ×0 U ×0 U, U ×0 U ×0 U ×0 U,. . . .
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1.2 Ordinals and ordinal numbers

This section is devoted to the theory of ordinals and ordinal numbers. We follow
J. Neumann’s definition of an ordinal, which may seem strange to those habituated
to G. Cantor’s point of view (where an ordinal is the “order type” of a well-ordered
set). In J. Neumann’s approach, an ordinal is just equal to the class of all preceding
ordinals.

1.2.1 The property of minimality. The principle of induction

A relation 𝜃 on a class A (see 1.1.14) is called a relation with the property of minimality
[maximality], if every non-empty subclass B of the class A has a minimal [maximal]
element b ∈ B with respect to the relation 𝜃 (see 1.1.14).

A linearly ordered class ⟮A, ⩽⟯ is calledwell-ordered if the order relation ⩽ has the
property of minimality or equivalently if every non-empty subclass B of the class A
has the unique smallest element sm B ∈ B. If ⟮A, ⩽⟯ is a well-ordered class and B is a
subclass of the class A, then ⟮B, ⩽⟯ is also a well-ordered class.
Lemma 1. Let A be a class and 𝜃 be a total relation on A with the property of minimality.
Then:
1) the relation 𝜃 is antisymmetric and transitive (see 1.1.14);
2) the relation ⩽ ≡ 𝜃 ∪ {(a, a) ∈ A × A | a = a} is a linear order on A;
3) the linearly ordered class ⟮A, ⩽⟯ is well-ordered.
Proof. 1. Let a, b ∈ A, (a, b) ∈ 𝜃 and (b, a) ∈ 𝜃. By the condition, the set {a, b} has a
minimal element x. Suppose that a /= b. If x = a, then b /= x implies (b, a) = (b, x) ∉
𝜃. If x = b, then a /= x implies (a, b) = (a, x) ∉ 𝜃. But this contradicts the condition.
It follows from this contradiction that our supposition is not true. Thus, a = b. This
means that 𝜃 is antisymmetric.

Let (a, b) ∈ 𝜃 and (b, c) ∈ 𝜃. Suppose that (a, c) ∉ 𝜃. Since 𝜃 is total, we conclude
that either a = c or (c, a) ∈ 𝜃. If a = c, then (a, b) ∈ 𝜃and (b, a) ∈ 𝜃 imply a = b,where
b = c. As a result, (a, c) ∈ 𝜃, but this contradicts (a, c) ∉ 𝜃.

Suppose now that a /= c. Then, (c, a) ∈ 𝜃. Besides, (a, b) ∈ 𝜃, (b, c) ∈ 𝜃 and
(a, c) ∉ 𝜃 imply b /= c and a /= b. By the condition, the set {a, b, c} has a minimal
element x. If x = a, then x = a /= c implies (c, a) = (c, x) ∉ 𝜃 by virtue of the property
of minimality. Similarly, if x = b, then x = b /= a implies (a, b) = (a, x) ∉ 𝜃. Finally, if
x = c, then x = c /= b implies (b, c) = (b, x) ∉ 𝜃. In all the cases, we got the contradic-
tion. Thus, our supposition that (a, c) ∉ 𝜃 is not true, i. e. (a, c) ∈ 𝜃. This means that
𝜃 is transitive.

2. Since 𝜃 is transitive, the relation ⩽ ≡ 𝜃 ∪ {(a, a) ∈ A × A | a = a} is a preorder
on A. Since 𝜃 is antisymmetric, the relation ⩽ is an order. Finally, since 𝜃 is total, the
order ⩽ is linear.
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3. Let ⌀ /= B ⊂ A. Then, by the condition B has a minimal element b ∈ B with
respect to 𝜃. Let b ∈ B and b ⩽ b. Suppose that (b, b) ∈ 𝜃. By the property of min-
imality for 𝜃, we conclude that b = b. If (b, b) ∉ 𝜃, then from the definition of the
relation ⩽we conclude that b = b. This means that the order relation ⩽ has the prop-
erty of minimality.

Theorem 1 (The principle of induction). Let ⟮A, ⩽⟯ be an ordered class and the relation
of order ⩽ has the property of minimality. If B is a non-empty subclass of the class A such
that the conditions a ∈ A and ]←, a[⊂ B imply a ∈ B, then B = A.

Proof. Suppose that C ≡ A \ B /= ⌀. Then, C has a minimal element x ∈ C. Consider
the interval Y ≡]←, x[. Suppose that Y = ⌀. Then, Y ⊂ B implies x ∈ B, but this is im-
possible. Suppose now that Y /= ⌀. If y ∈ Y, then y < x implies y ∉ C, because x is a
minimal element of C. Thus, y ∈ B. This means that Y ⊂ B. By the condition, this im-
plies x ∈ B, but this is impossible. In both the cases, we get the contradiction. Thus,
B = A.

Corollary 1. Let ⟮A, ⩽⟯ be an ordered class and the relation of order⩽ has the property of
minimality. Let𝜑(x) be a formula such that every connected variable of𝜑 is a variable for
sets. Consider the subclass B ≡ {x ∈ A | 𝜑} (see 1.1.5) of the class A. If B is a non-empty
subclass such that the conditions a ∈ A and ]←, a[⊂ B imply a ∈ B, then B = A.

1.2.2 The relation of Neumann on the universal class. Ordinals

The relation 𝜌 ≡ {(x, y) ∈ U × U | x ∈ y ∨ x = y} on the universal class U is called the
relation of J. Neumann. Along with the relation 𝜌, consider also the correspondence
𝜎 ≡ {⟨a, b⟩ ∈ U ∗ U | a ∈ b ∨ a = b}.
Lemma 1. There is the canonical bijection u : 𝜌 𝜎 such that u(x, y) = ⟨x, y⟩ for ev-
ery (x, y) ∈ 𝜌.
Proof. Consider the correspondence u ≡ {⟨(x, y), ⟨a, b⟩⟩ ∈ 𝜌 ∗ 𝜎 | a = x ∧ b = y}.
From ⟨(x, y), ⟨x, y⟩⟩ ∈ u, we conclude that dom u = 𝜌. Let ⟨(x, y), ⟨a, b⟩⟩ ∈ u and
⟨(x, y), ⟨c, d⟩⟩ ∈ u. Then, a = x, b = y, c = x and d = y imply ⟨a, b⟩ = ⟨c, d⟩ = ⟨x, y⟩.
Hence u is single-valued. Thus, u is a mapping from 𝜌 into 𝜎 such that u(x, y) = ⟨x, y⟩.
If ⟨a, b⟩ ∈ 𝜎, then u(a, b) = ⟨a, b⟩ means that u is surjective. Finally, if u(x, y) =
u(x, y), then ⟨x, y⟩ = ⟨x, y⟩ implies x = x and y = y in virtue of Proposition 2
(1.1.6). Hence (x, y) = (x, y), i. e. u is injective.
Proposition 1. The classes 𝜌 and 𝜎 are proper classes.
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Proof. Suppose at first that 𝜎 is a set. Then, by Lemma 3 (1.1.6), {𝜎} is a set and 𝜎 ∈ {𝜎}.
By Lemma 3 (1.1.5), 𝜎 and {𝜎} belong to U, where ⟨𝜎, {𝜎}⟩ ∈ U ∗ U. Thus, ⟨𝜎, {𝜎}⟩ ∈ 𝜎.
As a result, we get the following chain 𝜎 ∈ {𝜎} ∈ ⟨𝜎, {𝜎}⟩ ∈ 𝜎.

Consider the class A ≡ {x | x = 𝜎 ∨ x = {𝜎} ∨ x = ⟨𝜎, {𝜎}⟩}. By axiom A6 (1.1.11),
there exists an element a ∈ A such that a ∩ A = ⌀. By the definition a ∩ A = {z | (z =
𝜎 ∨ z = {𝜎} ∨ z = ⟨𝜎, {𝜎}⟩) ∨ z ∈ a}.

If a = 𝜎, then ⟨𝜎, {𝜎}⟩ ∈ 𝜎 implies z = ⟨𝜎, {𝜎}⟩ ∈ a ∩ A. If a = {𝜎}, then 𝜎 ∈ {𝜎} im-
plies z = 𝜎 ∈ a ∩A. If a = ⟨𝜎, {𝜎}⟩, then {𝜎} ∈ ⟨𝜎, {𝜎}⟩ implies z = {𝜎} ∈ a ∩A. In all the
three cases, we get the contradiction to the equality a ∩ A = ⌀.

Thismeans that our supposition is not valid, and 𝜎 is a proper class. Suppose now
that 𝜌 is a set. Then, by Lemma 1 and axiom A5 (1.1.11) 𝜎 = rng u is a set, but this is
not true. Thus, 𝜌 is a proper class.
Let A be a class. By Lemma 4 (1.1.5) A ⊂ U, where A × A ⊂ U × U. Therefore, we
can consider the restriction 𝜃A ≡ 𝜌 ∩ (A × A) of J. Neumann’s relation 𝜌 on the
subclass A.

A class A is called transitive or complete if x ∈ a ∈ A implies x ∈ A. A transitive
class A, connected by J. Neumann’s relation 𝜃A, so that a, b ∈ A implies a ∈ b, b ∈ a,
or a = b, is called an ordinal (in the sense of J. Neumann). An ordinal, which is a set,
is called an ordinal number. According to 1.1.11, we obtain that 0 ≡ ⌀ is an ordinal
number.

Proposition 2. Let 𝛼 be an ordinal. Then, 𝜃𝛼 is a linear order on 𝛼, and the linearly or-
dered class ⟮𝛼, 𝜃𝛼⟯ is well-ordered.
Proof. Let⌀ /= x ⊂ 𝛼. By axiom A6 (1.1.11), there exists a ∈ x such that a ∩ x = ⌀. Take
any element b ∈ x such that (b, a) ∈ 𝜃𝛼. From a ∩ x = ⌀, it follows that b ∉ a. Thus,
b = a. This means that a is a minimal element of x. Thus, 𝜃𝛼 is a total relation on 𝛼
with the property of minimality. Besides, 𝜃𝛼 = 𝜃𝛼 ∪{(a, a) ∈ 𝛼×𝛼 | a = a}. Therefore,
by virtue of Lemma 1 (1.2.1), 𝜃𝛼 is a linear order on 𝛼, and the linearly ordered class
⟮𝛼, 𝜃𝛼⟯ is well-ordered.
According to this proposition, if 𝛼 is an ordinal and a, b ∈ 𝛼, then along with a ∈ b ∨
a = b we can write a ⩽ b.

Corollary 1. Let 𝛼 be an ordinal and a, b ∈ 𝛼. Then, a < b iff a ∈ b.
Proof. This equivalence follows from the definitions and Lemma 2 (1.1.11).

According to this, along with 𝛼 ∈ 𝛽, we can write 𝛼 < 𝛽 for ordinal numbers 𝛼 and 𝛽.
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1.2.3 Properties of ordinals

Lemma 1. Let 𝛼 be an ordinal, 𝛽 ⊂ 𝛼, 𝛽 /= 𝛼, and the class 𝛽 is transitive. Then, 𝛽 ∈ 𝛼.
Proof. By virtue of Proposition 2 (1.2.2), the subclass 𝛼 \ 𝛽 has a minimal element y.
Check that 𝛽 = y. Let x ∈ y. Since 𝛼 is transitive, we conclude that x ∈ 𝛼. Then, by
Corollary 1 to Proposition 2 (1.2.2), x ∈ y implies x < y. Thus, x ∉ 𝛼 \ 𝛽, where x ∈ 𝛽.
As a result, y ⊂ 𝛽. Conversely, let x ∈ 𝛽. From y ∉ 𝛽, we conclude that y /= x. Suppose
that y ∈ x. Since 𝛽 is transitive, we conclude that y ∈ 𝛽 ∩ (𝛼 \ 𝛽) = ⌀. It follows from
this contradiction that x ∈ y. As a result, 𝛽 ⊂ y, where 𝛽 = y ∈ 𝛼.
Lemma 2. Let 𝛼 and 𝛽 be ordinals. Then, either 𝛼 ⊂ 𝛽 or 𝛽 ⊂ 𝛼.
Proof. The class 𝛼∩𝛽 is transitive. By Lemma 1, either 𝛼∩𝛽 = 𝛼 or 𝛼∩𝛽 ∈ 𝛼. In the first
case, 𝛼 ⊂ 𝛽. In the second case, 𝛼 ∩ 𝛽 ∉ 𝛽. In fact, if 𝛼 ∩ 𝛽 ∈ 𝛽, then 𝛼 ∩ 𝛽 ∈ 𝛼 ∩ 𝛽, but
this is impossible in virtue of Lemma 2 (1.1.11). Now, by virtue of Lemma 1, we deduce
that 𝛼 ∩ 𝛽 = 𝛽, where 𝛽 ⊂ 𝛼.
Corollary 1. Let 𝛼 and 𝛽 be ordinals. Then, 𝛼 ∈ 𝛽, 𝛽 ∈ 𝛼, or 𝛼 = 𝛽.
Lemma 3. Let 𝛼 be an ordinal and 𝛽 ∈ 𝛼. Then, 𝛽 is an ordinal number.
Proof. Let x, y ∈ 𝛽. Then, x, y ∈ 𝛼. By virtue of Proposition 2 (1.2.2) we get x ∈ y, y ∈ x,
or x = y. Thus, the relation 𝜃𝛽 is connecting on 𝛽.

Let y ∈ b ∈ 𝛽. Then, b ∈ 𝛽 ∈ 𝛼 implies y ∈ b ∈ 𝛼. This again implies y ∈ 𝛼. Thus,
𝛽, b and y belong to 𝛼. Therefore, by Corollary 1 to Proposition 2 (1.2.2) y ∈ b and b ∈ 𝛽
imply y < b and b < 𝛽. Thus, y < 𝛽, where y ∈ 𝛽. This means that 𝛽 is transitive. Thus,
𝛽 is an ordinal.
By virtue of axiom scheme AS2 (1.1.5), the class Ord ≡ {x | x is an ordinal} consists of
all ordinal numbers. Consider J. Neumann’s relation 𝜃 ≡ 𝜌 ∩ (Ord×Ord) on the class
Ord.

Theorem 1. The class Ord is an ordinal, but not an ordinal number.

Proof. By virtue of Lemma 3, Ord is transitive. By virtue of Corollary 1 to Lemma 2,
𝜃 is connecting on Ord. Therefore, Ord is an ordinal. Suppose that Ord is an ordinal
number. Then, Ord ∈ Ord. But by Lemma 2 (1.1.11), this is impossible.

Corollary 1. Ord is the unique ordinal, which is not an ordinal number.

Proof. The conclusion follows from Theorem 1 and Corollary 1 to Lemma 2.
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Corollary 2. The class ⟮Ord, 𝜃⟯ is well-ordered.
Proof. The conclusion follows from Theorem 1 and Proposition 2 (1.2.2).

Lemma 4. Let 𝛼 be an ordinal and a, b ∈ 𝛼. Then, a ⩽ b iff a ⊂ b.

Proof. By Lemma 3, a and b are ordinals. Let a ⩽ b, i. e. a ∈ b ∨ a = b. If a = b, then
a ⊂ b. If a ∈ b, then x ∈ a ∈ b implies x ∈ b, where a ⊂ b. Conversely let a ⊂ b. If a =
b, then a ⩽ b. If a /= b, then by Lemma 1 we get a ∈ b, where a ⩽ b.

Lemma 5. Let 𝛼 be an ordinal number. Then, 𝛼 = {x | x ∈ Ord ∧ x < 𝛼} ⊂ Ord.
Proof. Let 𝛽 ∈ 𝛼. Then, by Lemma 3, we obtain that 𝛽 is an ordinal number, i. e. 𝛽 ∈
Ord. Besides, 𝛼 ∈ Ord. Therefore, from Theorem 1 and Corollary 1 to Proposition 2
(1.2.2) we deduce that 𝛽 < 𝛼. This means that 𝛽 ∈ {x | x ∈ Ord ∧ x < 𝛼}. Conversely let
𝛽 ∈ {x | x ∈ Ord ∧𝛽 < 𝛼}. Then, 𝛽 ∈ Ord and 𝛽 < 𝛼. By the same reason, we conclude
that 𝛽 ∈ 𝛼.
Corollary 1. Let 𝛼, 𝛽 ∈ Ord and 𝛼 ⩽ 𝛽. Then, 𝛼 = {x | x ∈ 𝛽 ∧ x < 𝛼} ≡]←, 𝛼[ in 𝛽.
Lemma 6. Let A ⊂ Ord be some class of ordinal numbers and ⟮aa ⊂ U | a ∈ A⟯ =
𝜑−1(idA) be the multivalued collection from Corollary 1 to Lemma 3 (1.1.9) such that
aa ≡ a for every a ∈ A. Then, the class 𝛼 ≡ ⋃⟮aa | a ∈ A⟯ is an ordinal.
Proof. Let x ∈ y ∈ 𝛼. Then, y ∈ b for some b ∈ A. Therefore, x ∈ y ∈ b implies x ∈ b.
Thus, x ∈ 𝛼. This means that the class 𝛼 is transitive.

Now, let x, y ∈ 𝛼. Then, x ∈ a and y ∈ b for some a, b ∈ A. By Lemma 3, we have
that x and y are ordinal numbers. By Corollary 1 to Lemma 2, x ∈ y, y ∈ x, or x = y.
This means that 𝜃𝛼 connects 𝛼.
For every ordinal number 𝛼 ∈ Ord, the class 𝛼 ∪ {𝛼} is denoted by 𝛼 + 1.
Proposition 1. Let 𝛼 ∈ Ord. Then, 𝛼 + 1 is an ordinal number, 𝛼 < 𝛼 + 1, and 𝛼 + 1 is a
minimal element of the subclass {y ∈ Ord | 𝛼 < y} of the class Ord with respect to the
relation 𝜃.
Proof. Let x ∈ a ∈ 𝛼 + 1 ≡ 𝛼 ∪ {𝛼}. If a ∈ 𝛼, then x ∈ 𝛼. If a ∈ {𝛼}, then by Lemma 3
(1.1.6), a = 𝛼, where x ∈ 𝛼. Thus, x ∈ 𝛼 + 1. This means that the class 𝛼 + 1 is
transitive.

Let a, b ∈ 𝛼+1. If a, b ∈ 𝛼, then a ∈ b, b ∈ a, or a = b. If a, b ∈ {𝛼}, then a = 𝛼 = b.
If a ∈ 𝛼 and b ∈ {𝛼}, then b = 𝛼 implies a ∈ b. Finally, if a ∈ {𝛼} and b ∈ 𝛼, then a = 𝛼
implies b ∈ a. This means that the class 𝛼 + 1 is connected by the relation 𝜃𝛼+1.
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Thus, 𝛼 + 1 is an ordinal. By Lemma 3 (1.1.6), {𝛼} is a set. Therefore, by axiom A4
(1.1.6), 𝛼 + 1 is a set as well. Thus, 𝛼 + 1 is an ordinal number.

By Lemma 3 (1.1.6), 𝛼 ∈ {𝛼}. Therefore, 𝛼 ∈ 𝛼 + 1. Using Theorem 1 and Corollary 1
to Proposition 2 (1.2.2), we conclude that 𝛼 < 𝛼 + 1.

Thus, 𝛼+ 1 ∈ B ≡ {y ∈ Ord | 𝛼 < y}. Let 𝛽 ∈ B and 𝛽 ⩽ 𝛼+ 1. Suppose that 𝛽 /= 𝛼+ 1.
Using the same arguments as above,we conclude that𝛼 < 𝛽 implies𝛼 ∈ 𝛽 and𝛽 < 𝛼+1
implies 𝛽 ∈ 𝛼 + 1. If 𝛽 ∈ 𝛼, then by virtue of Lemma 3 (1.1.11), this contradicts 𝛼 ∈ 𝛽. If
𝛽 ∈ {𝛼}, then 𝛽 = 𝛼 by virtue of Lemma 2 (1.1.11) contradicts 𝛼 ∈ 𝛽. Thismeans that 𝛼+1
is a minimal element of the subclass B.

Corollary 1. Let 𝛼 ∈ Ord. Then, 𝛼 + 1 ⊂ Ord and⋃⟮aa | a ∈ 𝛼 + 1⟯ = 𝛼.
Proof. Let x ∈ 𝛼. Take a ≡ 𝛼. Then, x ∈ 𝛼 ∈ {𝛼} ⊂ 𝛼+ 1 means that x ∈ aa and a ∈ 𝛼+ 1.
Thus, x ∈ 𝛽 ≡ ⋃⟮aa | a ∈ 𝛼 + 1⟯.

Conversely, let x ∈ 𝛽. Then, x ∈ aa for some a ∈ 𝛼 + 1. If a ∈ 𝛼, then x ∈ a ∈ 𝛼 im-
plies x ∈ 𝛼. If a ∈ {𝛼}, then a = 𝛼 implies x ∈ 𝛼. Thus, 𝛽 = 𝛼.
An ordinal 𝛼 is called a limit ordinal if 𝛼 /= ⌀ and 𝛼 /= 𝛽+ 1 for every ordinal number 𝛽.
Corollary 2. Ord is a limit ordinal.

Lemma 7. Let A ⊂ Ord be some set of ordinal numbers. Then, there exists 𝛼 ∈ Ord such
that 𝛼 ⩾ a for every a ∈ A.
Proof. By Lemma 6, the class 𝛼 ≡ ⋃⟮aa | a ∈ A⟯ is an ordinal. By axiom A5 (1.1.11),
𝛼 is a set. Thus, 𝛼 ∈ Ord. If a ∈ A, then a ⊂ 𝛼. Therefore, by Lemma 4we get a ⩽ 𝛼.
Lemma 8. Let A ⊂ Ord be some set of ordinal numbers. Then, the class Ord \A is non-
empty and has a minimal element.

Proof. By virtue of Theorem 1, we get B ≡ Ord \A /= ⌀. By virtue of Corollary 2 to
Theorem 1, B has a minimal element.

Lemma 9. Let 𝛼, 𝛽 ∈ Ord and 𝛼 is a maximal element of the subset 𝛽 ⊂ Ord. Then,
𝛽 = 𝛼 + 1.
Proof. By Corollary 1 to Proposition 2 (1.2.2), 𝛼 < 𝛽. It follows from Proposition 1
that 𝛼 + 1 is a minimal element of the subclass Y ≡ {y ∈ Ord | 𝛼 < y}. Suppose that
𝛼 + 1 < 𝛽, i. e. 𝛼 + 1 ∈ 𝛽. Then, 𝛼 + 1 ⩽ 𝛼 because 𝛼 is a maximal element. But by
Proposition 1, we get 𝛼 < 𝛼 + 1. It follows from this contradiction that 𝛼 + 1 ⩾ 𝛽.
Since 𝛽 ∈ Y and 𝛼 + 1 is a minimal element of Y, we infer that 𝛼 + 1 ⩽ 𝛽. As a result,
𝛼 + 1 = 𝛽.
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Lemma 10. Let 𝛼 be a limit ordinal. Then, 𝛼 = ⋃⟮aa | a ∈ 𝛼⟯.
Proof. Let x ∈ 𝛼. Then, x + 1 ⩽ 𝛼. Since 𝛼 is a limit ordinal, we infer that a ≡ x + 1 < 𝛼.
Therefore, by virtue of Proposition 1 we see that x ∈ a ∈ 𝛼 implies x ∈ ⋃⟮aa | a ∈ 𝛼⟯.
Conversely, if x ∈ ⋃⟮aa | a ∈ 𝛼⟯, then x ∈ a for some a ∈ 𝛼. By virtue of the property of
transitivity, x ∈ 𝛼. As a result, we get the necessary equality.

1.2.4 Relations between well-ordered sets

Recall that all the necessary definitions can be found in 1.1.14 and 1.1.15.

Lemma 1. Let ⟮A, ⩽⟯be awell-ordered class and u : A → A bea strictly increasingmap-
ping. Then, a ⩽ u(a) for every a ∈ A.
Proof. Suppose that there is a ∈ A such that u(a) < a. Then, the non-empty sub-
class B ≡ {a ∈ A | u(a) < a} has aminimal element b ∈ B. Therefore, u(b) < b implies
u(u(b)) < u(b). Thus, u(b) ∈ B. But the inequality u(b) < b contradicts theminimality
of b.

Proposition 1. Let ⟮A, ⩽⟯ be a well-ordered class, a, b ∈ A and a /= b. Then:
1) the well-ordered classes ⟮A, ⩽⟯ and ⟮]←, a[, ⩽⟯ are not order equivalent;
2) the well-ordered classes ⟮]←, a[, ⩽⟯ and ⟮]←, b[, ⩽⟯ are not order equivalent.
Proof. Denote ]←, a[ by Aa and ]←, b[ by Ab.

1. Suppose that there exists an isotone bijection u : A Aa. Then, we can con-
sider u as an isotone mapping u : A → A. By virtue of Lemma 1 (1.1.15), u is strictly
increasing. Therefore, it follows from Lemma 1 that a ⩽ u(a). But this inequality con-
tradicts the inequality u(a) < a.It follows from this contradiction that ⟮A, ⩽⟯ ̸≈ ⟮Aa , ⩽⟯.

2. If a < b, then a ∈ Ab and Aa is an open initial interval in the well-ordered class⟮Ab , ⩽⟯. Therefore, by virtue of conclusion 1, ⟮Ab , ⩽⟯ ̸≈ ⟮Aa , ⩽⟯. If b < a, then the argu-
ments are the same.

Lemma 2. Let ⟮A, ⩽⟯and ⟮B, ⩽⟯bewell-ordered classes, and u : A B and v : A
B be isotone bijective mappings. Then, u = v.

Proof. By virtue of Lemma 1 (1.1.15), themappings u, v, u−1 and v−1 are strictly increas-
ing. Therefore, the mapping w ≡ u−1 ∘ v : A → A is also strictly increasing. Then, by
Lemma 1, we get a ⩽ w(a) for every a ∈ A. Applying u, we get u(a) ⩽ v(a) for every
a ∈ A. Interchanging the roles of u and v in this argument, we obtain v(a) ⩽ u(a) for
every a ∈ A. From these inequalities, we conclude that u(a) = v(a) for every a ∈ A,
where u = v.
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Lemma 3. Let ⟮A, ⩽⟯ and ⟮B, ⩽⟯ be well-ordered classes, a, a ∈ A, b, b ∈ B and
u : ]←, a[ ]←, b[ and u : ]←, a[ ]←, b[ be isotone bijective mappings.
Then, either u ⊂ u or u ⊂ u.

Proof. Denote ]←, a[ by A, ]←, a[ by A, ]←, b[ by B and ]←, b[ by B. It is
clear that either A ⊂ A or A ⊂ A. Suppose that X ≡ {a ∈ A ∩ A | ua /= ua} /= ⌀.
Then, X has a minimal element x. Thus, ux /= ux. If ux < ux ∈ B, then ux ∈ B.
Therefore, there exists a ∈ A such that ux = ua. Then, ua < ux implies a < x.
Since x is aminimal element, we infer that a ∉ X, i. e. ua = ua = ux. But then a = x
contradicts a < x. It follows from this contradiction that X = ⌀. If ux > ux, then the
arguments are analogous.

1.2.5 The correspondence between well-ordered sets and ordinal numbers

Theorem 1. Let ⟮A, ⩽⟯ be a well-ordered set. Then, there are the unique ordinal number
𝛼 and the unique isotone bijective mapping u : A 𝛼 such that the well-ordered sets
⟮A, ⩽⟯ and ⟮𝛼, ⩽⟯ are order equivalent with respect to u.
Proof. Take a minimal elementm of the class A and the ordinal number 0 ≡ ⌀. Then,
we have the unique isotone bijection⌀ : ]←,m[ 0.

Consider the class U of all isotone mappings u : Aa 𝛼 for some a ∈ A and
𝛼 ∈ Ord. It follows from the first indentation that U /= ⌀. By the definition, dom u =
Aa ⊂ A. By Lemma 5 (1.2.3), 𝛼 =]←, 𝛼[ in thewell-ordered class ⟮Ord, ⩽⟯. Thus, rng u =
𝛼 ⊂ Ord.

Let u, v ∈ U, i. e. u and v are isotonebijectivemappings u : Aa 𝛼and v : Ab𝛽 for some a, b ∈ A and 𝛼, 𝛽 ∈ Ord. Then, 𝛼 =]←, 𝛼[ and 𝛽 =]←, 𝛽[ in thewell-ordered
class ⟮Ord, ⩽⟯. Therefore, by Lemma 3 (1.2.4), we have either u ⊂ v or v ⊂ u.

Consider the classes C ≡ {x | ∃u ∈ U (x ∈ dom u)} and 𝛾 ≡ {y | ∃u ∈ U (y ∈ rng u)}.
Let𝜎 ∈ y ∈ 𝛾. Then,𝜎 ∈ y ∈ rng u ∈ Ord for some u ∈ U implies𝜎 ∈ rng u, and so𝜎 ∈ 𝛾.
This means that the class 𝛾 is transitive. Let y, z ∈ 𝛾. Then, y ∈ rng u and z ∈ rng v for
some u, v ∈ U. By Lemma 3 (1.2.3), y and z are ordinal numbers. Therefore, by Corol-
lary 1 to Lemma 2 (1.2.3), y ∈ z, z ∈ y, or y = z. Thismeans that 𝜃𝛾 connects 𝛾 (see 1.2.2).
Thus, 𝛾 is an ordinal.

Consider also the classw ≡ {z | ∃u ∈ U (z ∈ u)}. According to Lemma 5 (1.1.8), w is
the surjectivemappingw : C 𝛾 such thatw| dom u = u for every u ∈ U. Let x, y ∈ C
andx ⩽ y.Then, y ∈ dom u forsomeu ∈ U.Therefore,x ∈ dom u.Consequently,w(x) =
u(x) < u(y) = w(y). Conversely let w(x) ⩽ w(y). Then, u(x) = w(x) ⩽ w(y) = u(y) im-
plies x ⩽ y. This means that w is isotone. Therefore, by Lemma 1 (1.1.15), w is injec-
tive. Thus, w is isotone bijective mapping from the well-ordered class ⟮C, ⩽⟯ onto the
well-ordered class ⟮𝛾, ⩽⟯. According to Lemma 2 (1.2.4), such a mapping w is unique.

 EBSCOhost - printed on 2/10/2023 4:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



1.2.5 The correspondence between well-ordered sets and ordinal numbers | 63

Suppose that ⟮C, ⩽⟯ is order equivalent to ⟮𝛽, ⩽⟯ for some 𝛽 ∈ Ord with respect to
an isotone bijective mapping v : C 𝛽. By virtue of Corollary 2 to Theorem 1 (1.2.3),
𝛽 < 𝛾, 𝛾 < 𝛽, or 𝛽 = 𝛾. Consider the case 𝛽 < 𝛾. By Corollary 1 to Lemma 5 (1.2.3), 𝛽 =
]←, 𝛽[ in 𝛾. By virtue of Lemma 1 (1.1.15), the mapping w−1 is isotone. Consequently,
the bijective mapping v ∘ w−1 : 𝛾 𝛽 is also isotone. Thus, ⟮𝛾, ⩽⟯ ≈ ⟮]←, 𝛽[, ⩽⟯. But
this contradicts condition 1 of Proposition 1 (1.2.4). In the case 𝛾 < 𝛽, the arguments
are the same. It follows from these contradictions that 𝛽 = 𝛾, i. e. the ordinal 𝛾 for the
class ⟮C, ⩽⟯ is unique.

Thus, if C = A, then the theorem is proven. Assume now that C /= A. Then, the
class A \ C has a minimal element x. Consider the initial interval Ax. Let a ∈ Ax. Then,
a ∈ C, i. e. Ax ⊂ C. Conversely, let c ∈ C. Suppose that x ⩽ c. Since c ∈ Aa for some
a ∈ A,we conclude that x ∈ Aa ⊂ C, but this is not so. It follows from this contradiction
that c < x, i. e. c ∈ Ax. This means that C = Ax.

Consider the new class B ≡ C∪{x}. Define amapping v : B → 𝛾+1, setting v|C ≡ w
and v(x) ≡ 𝛾. Let b ∈ B and b < x. Then, v(b) = w(b) ∈ 𝛾 implies v(b) < 𝛾 = v(x). Thus,
v is monotone. Conversely, let v(a) ⩽ v(b) for a, b ∈ B. If a, b ∈ C, then w(a) ⩽ w(b)
implies a ⩽ b. If a ∈ C = Ax and b = x then a < x = b. Finally, if b ∈ C and a = x, then
w(b) = v(b) ⩾ v(a) = v(x) = 𝛾 and w(b) ∈ 𝛾, i. e. w(b) < 𝛾, but this is impossible. As a
result, v(a) ⩽ v(b) implies a ⩽ b. This means that v is isotone. By virtue of Lemma 1
(1.1.15), v is injective. Since w is surjective, v is also surjective. Thus, v is an isotone
bijection.

Suppose that A \ C /= {x}. Then, the non-empty class A \ B has a minimal element
y. Suppose that y ⩽ x. Then, either y = x ∈ B or y < x. But the latter case means that
y ∉ A \ C, i. e. y ∈ C ⊂ B. It follows from this contradiction that y > x. Therefore, b ∈ B
implies either b ∈ C = Ax, i. e. b < x < y, or b = x < y, where b ∈ Ay. Conversely, a ∈
Ay implies a ∉ A \ B by virtue of the minimality of y, i. e. a ∈ B. This means that B =
Ay. Thus, v ∈ U. This implies 𝛾 + 1 = rng v ⊂ 𝛾. By virtue of Lemma 4 (1.2.3), 𝛾 + 1 ⩽ 𝛾
in ⟮Ord, ⩽⟯. But this contradicts the inequality 𝛾 + 1 > 𝛾 from Proposition 1 (1.2.3). It
follows from this contradiction that A \ C = {x}, i. e. A = B and v : A 𝛾 + 1 is the
necessary isotone bijection.

Entirely in the samemanner aswasmade above for themappingw and the ordinal
number 𝛾, it is checked that for the class A the mapping v and the ordinal number 𝛾
are unique.

This unique ordinal number 𝛼 from Theorem 1 is called the order type of the well-
ordered set ⟮A, ⩽⟯ and will be denoted by ord⟮A, ⩽⟯.
Proposition 1. Let ⟮A, ⩽⟯ and ⟮B, ⩽⟯ be well-ordered sets. Then,
1) ord⟮A, ⩽⟯ < ord⟮B, ⩽⟯ iff ⟮A, ⩽⟯ ≈ ⟮]←, b[, ⩽⟯ for some b ∈ B;
2) ord⟮A, ⩽⟯ > ord⟮B, ⩽⟯ iff ⟮]←, a[, ⩽⟯ ≈ ⟮B, ⩽⟯ for some a ∈ A;
3) ord⟮A, ⩽⟯ = ord⟮B, ⩽⟯ iff ⟮A, ⩽⟯ ≈ ⟮B, ⩽⟯.
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Proof. 1. Consider the isotone bijections u : A 𝛼 and v : B 𝛽 from Theorem 1.
Let 𝛼 < 𝛽. Since 𝛼 ∈ 𝛽, we can take an element b ≡ v−1(𝛼). Let a ∈ A. Then, u(a) ∈ 𝛼
implies u(a) < 𝛼. By virtue of Lemma 1 (1.1.15), the bijectivemapping v−1 is isotone and
strictly increasing. Therefore, v−1(u(a)) < v−1(𝛼) = b implies v−1(u(a)) ∈ Bb ≡]←, b[.
Now, let c ∈ Bb. Then, c < b implies v(c) < v(b) = 𝛼, i. e. v(c) ∈ 𝛼. Take an element
a ≡ u−1(v(c)). Then, v−1(u(a)) = c. This means that v−1 ∘u is a surjective mapping from
A onto Bb. It is evident that v−1 ∘ u is isotone and bijective. Thus, ⟮A, ⩽⟯ ≈ ⟮Bb , ⩽⟯.

Conversely, let ⟮A, ⩽⟯ ≈ ⟮Bb , ⩽⟯ with respect to an isotone bijection t : A Bb.
Consider the ordinal number 𝛾 ≡ v(b) and the mapping s ≡ v ∘ t ∘ u−1 : 𝛼 → 𝛽. By
virtue of Lemma 1 (1.1.15), the mappings u−1, v and t are isotone, bijective, and strictly
increasing. If x ∈ 𝛼, then t(u−1(x)) ∈ Bb implies t(u−1(x)) < b, where s(x) < v(b) = 𝛾,
i. e. s(x) ∈ 𝛾. If y ∈ 𝛾, then y < 𝛾 implies v−1(y) < b, i. e. v−1(y) ∈ Bb. Therefore, we
can take an element x = (u ∘ t−1 ∘ v−1)(y) ∈ 𝛼. Then, sx = y. This means that s is a
surjective mapping from 𝛼 onto 𝛾. Thus, s is an isotone bijection from 𝛼 onto 𝛾, i. e.
⟮𝛼, ⩽⟯ ≈ ⟮𝛾, ⩽⟯.

By virtue of Corollary 2 to Theorem 1 (1.2.3), 𝛼 < 𝛾, 𝛼 > 𝛾, or 𝛼 = 𝛾. If 𝛼 < 𝛾, then
by virtue of Corollary 1 to Lemma 5 (1.2.3), 𝛼 =]←, 𝛼[ in 𝛾. Thus, the well-ordered sets
⟮𝛾, ⩽⟯ and ⟮𝛼, ⩽⟯ are not order equivalent by virtue of Proposition 1 (1.2.4). It follows
from this contradiction that the cases 𝛼 < 𝛾 or 𝛼 > 𝛾 can not take place. Therefore,
𝛼 = 𝛾 ∈ 𝛽 implies 𝛼 < 𝛽.

2. Conclusion 2 is simply another version of conclusion 1.
3. In the notation from the proof of conclusion 1, if 𝛼 = 𝛽, then v ∘ u−1 : A B

is an isotone bijection. Conversely, if there is an isotone bijection w : A B, then
v ∘ w ∘ u−1 : 𝛼 𝛽 is an isotone bijection.
Corollary 1. Let ⟮A, ⩽⟯ and ⟮B, ⩽⟯ be well-ordered sets. Then, only the following three
conclusions take place:
1) either there are the unique element b ∈ B and the unique isotone bijection f : A

]←, b[;
2) or there are theunique element a ∈ Aand theunique isotonebijection g : ]←, a[

B;
3) or there is the unique isotone bijection h : A B.

Proof. Consider the isotone bijections u : A 𝛼 and v : B 𝛽. By virtue of Corol-
lary 2 to Theorem 1 (1.2.3), 𝛼 < 𝛽, 𝛼 > 𝛽, or 𝛼 = 𝛽.

If𝛼 < 𝛽, thenby virtue of Proposition 1 there exist an element b ∈ B andan isotone
bijection f : A ]←, b[. Suppose that there exist an element c ∈ B and an isotone
bijection g : A ]←, c[. Then, using Lemma 1 (1.1.15) we can consider the isotone
bijection g ∘ f −1 : ]←, b[ ]←, c[. Now, using conclusion 2, of Proposition 1 (1.2.4),
we deduce that b = c, and the uniqueness of f follows from Lemma 2 (1.2.4).

If 𝛼 > 𝛽, then using the analogous arguments, we deduce conclusion 2.
Finally, if 𝛼 = 𝛽, then by virtue of Proposition 1, there exists an isotone bijection

h : A B. The uniqueness of h follows from Lemma 2 (1.2.4).
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1.2.6 Natural numbers. Multivalued and simple sequences

An ordinal number 𝛼 is called a natural number, if J. Neumann’s relation 𝜃𝛼 on 𝛼 (see
1.2.2) has the property of maximality, i. e. if every non-empty subset X ⊂ 𝛼 has a maxi-
mal element xwith respect to 𝜃𝛼, i. e. such that x ∈ X and x ∈ x ∨ x = x imply x = x.
In the other notations from 1.2.2, the latter condition means that x ∈ X and x ⩽ x im-
ply x = x, i. e. x is the unique greatest element gr X of the subset X.

The class {x ∈ Ord | x is a natural number} of all natural numbers is denoted by𝜔
or by 𝜔0. It is clear that 0 ≡ ⌀ is a natural number.

Lemma 1. Let n ∈ 𝜔 and x ∈ n. Then, x ∈ 𝜔.
Proof. By virtue of Theorem 1 (1.2.3), x ∈ Ord. Besides, x ⊂ n. If x = ⌀, then x ∈ 𝜔. Let
x /= ⌀. Take any non-empty subset X ⊂ x. Then, X ⊂ n. Therefore, X has a maximal
element 𝛼 with respect to 𝜃n. But then 𝛼 is a maximal element of X with respect to 𝜃x.
Thus, x ∈ 𝜔.
Corollary 1. Let n ∈ 𝜔, 𝛼 ∈ Ord and 𝛼 < n. Then, 𝛼 ∈ 𝜔.
Lemma 2. If n ∈ 𝜔, then n + 1 ∈ 𝜔.
Proof. By Proposition 1 (1.2.3), n + 1 ∈ Ord. Let⌀ /= X ⊂ n + 1. If X ⊂ n, then X has the
greatest element. If X ∩ (n + 1 \ n) /= ⌀, then n ∈ X. Let x ∈ X. If x ∈ X ∩ n, then x < n.
If x ∈ X \ n, then x ∈ {n}, i. e. x = n. Thus, n = gr X.
Lemma 3. Let n ∈ 𝜔. Then, 0 ⩽ n < n + 1.
Proof. From 0 ⊂ n, we conclude by Lemma 4 (1.2.3) that 0 ⩽ n. Now, by Proposition 1
(1.2.3), n < n + 1.
The natural number 0 is called the null element of the class 𝜔 or zero. The natural num-
ber 1 ≡ 0 ∪ {0} = {0} is called the first element of the class 𝜔 or one. The natural number
2 ≡ 1∪{1} = {0, 1} is called the second element of the class𝜔or two. Thenaturalnumber
3 ≡ 2 ∪ {2} = {0, 1, 2} is called the third element of the class 𝜔 or three, and so on.
A natural number n ∈ 𝜔 such that n /= 0 will be called a strictly natural number. The
class {n ∈ 𝜔 | n /= 0} of all strictly natural numbers is denoted by N.

Lemma 4. Let m, n ∈ 𝜔 and m + 1 = n + 1. Then, m = n.

Proof. By Corollary 1 to Proposition 1 (1.2.3), m = ⋃⟮aa | a ∈ m + 1⟯ = ⋃⟮aa | a ∈ n +
1⟯ = n.

The following statement is extremely important in mathematics.
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Theorem 1 (the principle of natural induction). Let X ⊂ 𝜔 and 0 ∈ X. If n ∈ X implies
n + 1 ∈ X, then X = 𝜔.
Proof. Suppose that X /= 𝜔. Then, the non-empty subclass Y ≡ 𝜔 \ X of the class Ord
has the smallest element 𝛽. By the condition, 𝛽 /= 0. By Lemma 2, we get 𝛽 + 1 ∈ 𝜔.
Therefore, the non-empty subset 𝛽 of the set 𝛽 + 1 has the greatest element 𝛼 ∈ 𝛽. By
Lemma 9 (1.2.3), 𝛽 = 𝛼 + 1. From 𝛼 < 𝛽, we conclude that 𝛼 ∉ Y. Besides, 𝛼 ∈ 𝛽 ∈ 𝜔
implies by Lemma 1 that 𝛼 ∈ 𝜔. Therefore, 𝛼 ∈ X. By the condition of the theorem, we
get 𝛽 = 𝛼 + 1 ∈ X. It follows from this contradiction that X = 𝜔.
Lemmas 2 – 4 and Theorem 1 represent the Peano axioms for the natural numbers.

Theorem 2. 𝜔 ∈ Ord.
Proof. By virtue of Lemma 1, the class 𝜔 is transitive. By virtue of Corollary 1 to
Lemma 2 (1.2.3), 𝜔 is connected by 𝜃𝜔. Thus, 𝜔 is an ordinal.

By axiomA7 (1.1.11), there exists set A such that 0 ∈ A, and a ∈ A implies a∪{a} ∈
A. Consider the set X ≡ A ∩ 𝜔. Then, 0 ∈ X, and n ∈ X implies n + 1 ∈ A. By Lemma 2,
we get n + 1 ∈ 𝜔. Thus, n + 2 ∈ X. Now, by Theorem 1, we infer that X = 𝜔. Therefore,
𝜔 ⊂ A. By Lemma 1 (1.1.6), 𝜔 is a set. As a result, 𝜔 ∈ Ord.
Corollary 1. 𝜔 is a limit ordinal number.
Proof. Suppose𝜔 = 𝛽+1 for some𝛽 ∈ Ord. By Proposition 1 (1.2.3),𝜔 > 𝛽, where𝛽 ∈ 𝜔.
By Lemma 2, we get 𝜔 = 𝛽 + 1 ∈ 𝜔. But this contradicts Lemma 2 (1.1.11). Therefore,
𝜔 /= 𝛽 + 1 for every ordinal number 𝛽.
Lemma 5. Let m, n ∈ 𝜔 and m + 1 < n + 1. Then, m < n.

Proof. It is clear thatm /= n. Suppose thatm > n. Then, n ∈ m implies {n} ⊂ {m}. Since
m transitive, we conclude that n ⊂ m. Consequently, n + 1 ⊂ m implies n + 1 ⩽ m. As a
result, m + 1 < n + 1 ⩽ m, but this contradicts Proposition 1 (1.2.3). Thus, m < n.

Lemma 6. Let n ∈ N. Then, there exists the unique natural number m ∈ 𝜔 such that n =
m + 1.
Proof. Consider the greatest element m of the non-empty set n. By Lemma 9
(1.2.3), n = m + 1. By Lemma 1, we have m ∈ 𝜔. The uniqueness of m follows from
Lemma 4.

This unique natural number is denoted by n − 1.
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Lemma 7. Let (xn ∈ 𝜔 | n ∈ 𝜔) be a collection such that xn < xn+1 for every n ∈ 𝜔. Then,
for every number x ∈ 𝜔, there is an index n such that x ⩽ xn.

Proof. Consider the set X ≡ {x ∈ 𝜔 | ∃n ∈ 𝜔 (x ⩽ xn)}. By Lemma 3, we get 0 ⩽ x0.
Therefore, 0 ∈ X. Let x ∈ X. Then, x ⩽ xn < xn+1 implies xn+1 ∈ {y ∈ Ord | x < y}. By
virtue of Proposition 1 (1.2.3), x + 1 ⩽ xn+1. Thus, x + 1 ∈ X. By Theorem 1, we have
X = 𝜔.
A set X is called finite, if there exist a natural number m and a bijection u : m X.
A set X is called infinite if it is not finite.

Theorem 3.
1) Let ⟮A, ⩽⟯ be an upward directed [an upward lattice-ordered, a linearly ordered] set.

Then, every non-empty finite subset of the set A has an upper bound [the smallest
upper bound, the greatest element].

2) Let ⟮A, ⩽⟯ be a downward directed [a downward lattice-ordered, a linearly ordered]
set. Then, every non-empty finite subset of A has a lower bound [the greatest lower
bound, the smallest element].

Proof. 1. Suppose at first that ⟮A, ⩽⟯ is upward directed. Consider the set X of all num-
bers n ∈ 𝜔 such that if B is a non-empty subset of A and u : n + 1 B is a bijection,
then B has an upper bound.

Let⌀ /= B ⊂ A and u : 0+1 B. Take any b ∈ B and consider x ≡ u−1b ∈ 0+1 ≡
0 ∪ {0} = {0}. Then, x = 0 implies b ⩽ u(0) for every b ∈ B. This means that 0 ∈ X.

Suppose now that n ∈ X. Denote n + 1 by m. Let 0 /= B ⊂ A and u : m + 1 B.
Then, m + 1 = m ∪ {m} means that we can consider the set C ≡ u[m] ⊂ B ⊂ A and
the bijection v ≡ u|m. By the supposition, there exists d ∈ A such that d ⩾ c for every
c ∈ C. Let b ∈ B \ C. Then, b = u(k) for some k ∈ m + 1. Suppose that k ∈ m. Then,
b = u(k) ∈ C. It follows from this contradiction that k ∈ (m + 1) \ m = {m}. Therefore,
k = m. Thus, b = u(m). By the condition, there exists a ∈ A such that a ⩾ d ⩾ c and
a ⩾ u(m) ⩾ b for every c ∈ C and b ∈ B \ C. This means that a is an upper bound of B.
Thus, n + 1 ≡ m ∈ X. By Theorem 1, we get X = 𝜔.

Suppose now that ⟮A, ⩽⟯ is upward lattice-ordered. Then, we need to make only
some small changes in the given proof. It is clear that u(0) = sup B. By the supposi-
tion, there exists d ∈ A such that d = sup C. By the condition, there exists a ∈ A such
that a = sup{d, u(m)}. Let x ∈ A and x ⩾ b for every b ∈ B. Then, x ⩾ c for every c ∈ C
implies x ⩾ d. Besides, x ⩾ u(m). Thus, x ⩾ a. This means that a = sup B.

Finally, suppose that ⟮A, ⩽⟯ is linearly ordered. In this case, the changes in the
proof are the following ones. It is clear that u(0) = gr B. By the supposition, there ex-
ists d ∈ C such that d = gr C. If d ⩽ u(m), then u(m) = gr B. If d ⩾ u(m), then d = gr B.
Conclusion 2 is checked in the similar way.
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Corollary 1. Let ⟮A, ⩽⟯ be a non-empty finite linearly ordered set. Then, ⟮A, ⩽⟯ is well-
ordered, and the set A has the smallest and the greatest elements.

A set X is called denumerable if there exists a bijection u : 𝜔 X. A set X is called
countable, if it is either finite or denumerable. A set X is called uncountable if it is
not countable.

Lemma 8. Every denumerable set is infinite.

Proof. Suppose that a denumerable set X is finite. Then, there exist a natural num-
ber m and bijections v : m X and w : 𝜔 X. The bijection w−1 ∘ v : m 𝜔
means that the set 𝜔 is finite. Therefore, by Corollary 1 to Theorem 3 the set 𝜔 has
the greatest element n. By virtue of Lemmas 2 and 3, we have n < n + 1 ∈ 𝜔. This
means that n is not the greatest element. It follows from this contradiction that X
is infinite.

Let A be a class. A collection ⟮Ai ⊂ A | i ∈ I⟯ and a simple collection (ai ∈ A | i ∈ I) are
called finite [countable], if I is a finite [countable] set.

Sequences
Let ⟮I, ⩽⟯ be an ordered subset of the ordered set ⟮𝜔, ⩽⟯ with the order, induced by
the order on the set 𝜔 (see 1.1.14). Any (multivalued) collection ⟮Ai ⊂ A | i ∈ I⟯ of sub-
classes of the class A indexed by the principal set I of the ordered set ⟮I, ⩽⟯ will be
called a (multivalued) sequence of subclasses of the class A. Similarly, any simple col-
lection (ai ∈ A | i ∈ I) of elements of the class A will be called a (simple) sequence of
elements of the class A. According to 1.1.15, a simple sequence is a net.

A sequence t ≡ ⟮Bj ⊂ A | j ∈ J⟯ is called a subsequence of a sequence s ≡ ⟮Ai ⊂ A |
i ∈ I⟯, if there exists a mapping u ≡ (ij ∈ I | j ∈ J) : J → I such that:
1) for every number i ∈ I, there exists a number j ∈ J such that k ∈ J and k ⩾ j imply

ik ⩾ i;
2) s ∘ u = t, i. e. Aij = Bj for every j ∈ J.
The mapping u is called thinning the sequence s out. The similar definition take place
also for simple sequences.

A simple sequence can have subnets in the sense of 1.1.15, which are not sim-
ple subsequences, because N in the subnet y ≡ (y𝜈 | 𝜈 ∈ N) of the sequence s ≡
(ai ∈ A | i ∈ I) may be an arbitrary ordered set and J in the subsequence t ≡ (bj ∈
A | j ∈ J)must be a subset of 𝜔.

Now, we have the notion of sequential suits ⟮A, A⟯, ⟮A, A, A⟯, ⟮A, A, A, A⟯,
. . . , introduced in 1.1.11, and the notion of sequences ⟮Ai | i ∈ n⟯. There is the following
connection between these two important notions.
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Lemma 9. Let A be a class, n ∈ 𝜔, ⟮Ai ⊂ A | i ∈ n⟯ be a sequence of subclasses and (ai ∈
A | i ∈ n) be a simple sequence of elements of the class A. If n = 2, then ⟮Ai ⊂ A | i ∈
2⟯ = ⟮A0, A1⟯ and (ai ∈ A | i ∈ 2) = (a0, a1) (see 1.1.11). If n = 3, then ⟮Ai ⊂ A | i ∈ 3⟯ =
⟮A0, A1, A2⟯ and (ai ∈ A | i ∈ 3) = (a0, a1, a2) (see 1.1.11), and so on.
Proof. Denote a0 by a and a1 by a. Then, by the definition from 1.1.11, we see that
(a, a) ≡ (xi | i ∈ 2), where x0 ≡ a and x1 ≡ a. Thus, x0 = a0 and x1 = a1. By Lemma 1
(1.1.9), (xi | i ∈ 2) = (ai | i ∈ 2). As a result, (a0, a1) = (a, a) ≡ (xi | i ∈ 2) = (ai | i ∈ 2).

For all other cases, the checking is the same.

This lemma shows that for n ∈ 𝜔 \ 3 we can denote a sequence ⟮Ai ⊂ A | i ∈ n⟯ and a
simple sequence (ai ∈ A | i ∈ n) also by ⟮A0, . . . , An−1⟯ and (a0, . . . , an−1), respectively.

For a simple sequence (a0, . . . , an−1) of sets indexed by a set n ∈ 𝜔 \ 3 along with
the notation rng(a0, . . . , an−1)we shall use the notation {a0, . . . , an−1}. If ai = a for all
i ∈ n, then {a0, . . . , an−1} = {a}.

For a sequence ⟮A0, . . . , An−1⟯ of classes and sets indexed by a set n ∈ 𝜔 \ 3 along
with the notations ⋂⟮Ai | i ∈ n⟯, ⋃⟮Ai | i ∈ n⟯, ⋃d⟮Ai | i ∈ n⟯ and ∏⟮Ai | i ∈ n⟯, we
shall use also the notations A0 ∩ ⋅ ⋅ ⋅ ∩ An−1, A0 ∪ ⋅ ⋅ ⋅ ∪ An−1, A0 ∪d ⋅ ⋅ ⋅ ∪d An−1 and
A0 × ⋅ ⋅ ⋅ × An−1 respectively. If Ai = A for all i ∈ n, then A0 × ⋅ ⋅ ⋅ × An−1 = An.

Note that now we can not assert that every sequence and every simple sequence
are finite or countable. It will be followed from 1.3.3 and 1.3.9.

Lemma 10. Let n ∈ 𝜔 \ 2. Then, n + 1 = {0, . . . , n}.
Proof. Consider the class X ≡ {0, 1} ∪ {n ∈ 𝜔 \ 2 | n + 1 = {0, . . . , n}}. It is clear that
0, 1 ∈ X.

Since 2 + 1 ≡ 2 ∪ {2} = {0, 1} ∪ {2} = {0, 1, 2} (see 1.1.11), we infer that 1 ∈ X implies
1+1 ∈ X. If n ∈ (𝜔\2)∩X, then (n+1)+1 ≡ (n+1)∪{n+1} = {0, . . . , n}∪{n+1} = {0, . . . , n+1}
implies n + 1 ∈ X.

By Theorem 1, X = 𝜔, and therefore, {n ∈ 𝜔 \ 2 | n + 1 = {0, . . . , n}} = 𝜔 \ 2.
1.2.7 The construction of mappings by natural induction

Now, we shall study two main methods of construction of mappings with the help of
the principle of natural induction from 1.2.6.

The following theorem is called the scheme of construction of mappings by natural
induction with the passage from n to n + 1 with respect to the productive mapping V. In
this scheme, the value u(n + 1) depends only on the value u(n).
Theorem 1. Let B be a class, b0 ∈ B and V : B × 𝜔 → B be a mapping. Then, there is
the unique mapping u : 𝜔 → B such that u(0) = b0 and u(n + 1) = V(u(n), n) for every
n ∈ 𝜔.

 EBSCOhost - printed on 2/10/2023 4:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



70 | 1.2 Ordinals and ordinal numbers

Proof. First, check the uniqueness. Suppose that amapping v : 𝜔 → B possesses also
all the necessary properties. Consider the set K ≡ {n ∈ 𝜔 | u(n) = v(n)}. Then, 0 ∈ K.
If n ∈ K, then u(n + 1) = V(u(n), n) = V(v(n), n) = v(n + 1). Hence, n + 1 ∈ K. By the
principle of natural induction, we get K = 𝜔. Consequently, u = v.

Now, define a mapping u0 : 1 → B setting u. Consider the subset X of 𝜔 consist-
ing of all n ∈ 𝜔, such that for n, there is the unique mapping un : n + 1 → B, such
that: (1) un(0) = b0 and (2) un(m + 1) = V(un(m),m) for every m ∈ n. It is clear that
0 ∈ X.

Let p, q ∈ X, p < q and up : p + 1→ B, uq : q + 1 → B be the corresponding map-
pings. Consider the mapping up ≡ uq|p + 1. The mapping up : p + 1→ B possesses the
properties 1) and 2) listed above. Since such a mapping is unique, we conclude that
up = up. Thus, uq|p + 1 = up, i. e. uq(m) = up(m) for every m ∈ p + 1.

Let n ∈ X and un : n + 1 → B be the corresponding mapping. Define a mapping
un+1 : (n + 1) + 1 → B setting un+1 ≡ un ∪ {(u + 1, V(un(n), n))}. We have un+1(0) =
un(0) = b0 and un+1(m+1) = un(m+1) = V(un(m),m) = V(un+1(m),m) for everym ∈ n.
If m = n, then un+1(n + 1) = V(un(n), n) = V(un+1(n), n). Consequently, the mapping
un+1 possesses the properties 1) and 2) listed above.

Check now the uniqueness of un+1. Suppose that a mapping v : (n + 1) + 1 → B
also has the same properties. Consider the set Y ≡ {m ∈ (n + 1) + 1 | un+1(m) = v(m)} ∪
(𝜔 \ ((n + 1) + 1)). Since un+1(0) = b0 = v(0), we have 0 ∈ Y. Suppose that m ∈ Y. If
m + 1 ∈ (n + 1) + 1, then m ∈ (n + 1) + 1 implies un+1(m) = v(m). Besides, un+1(m + 1) =
V(un+1(m),m) = V(v(m),m) = v(m + 1). Thus, m + 1 ∈ Y. If m + 1 ∉ (n + 1) + 1, then
m + 1 ∈ 𝜔 \ ((n + 1) + 1) ⊂ Y. In both of the cases,m + 1 ∈ Y. By the principle of natural
induction, Y = 𝜔. This means that un+1 = v.

Define now a mapping u : 𝜔 → B, setting u(0) ≡ b0 and u(n + 1) ≡ un+1(n + 1) for
every n ∈ N. As proven above, un+1(n) = un(n). Therefore, u(n + 1) = V(un+1(n), n) =
V(un(n), n) = V(u(n), n) for every n ∈ 𝜔.
Denote by C the class of all simple sequences of the kind s ≡ (bi ∈ B | i ∈ n ∈ N).
A mapping V : C × 𝜔 → B will be called compatible with the subclass C ⊂ C if for
every n ∈ N and for every sequence s ≡ (bi ∈ B | i ∈ n) ∈ C, we have s ∪ {(n, V(s, n −
1))} ∈ C.

The following theorem is called the scheme of construction of mappings by natural
inductionwith the passage fromall m ⩽ n to n+1with respect to the productivemapping
V. In this scheme, the value u(n + 1) depends on all the values u(0), u(1),. . . , u(n).
Theorem 2. Let B be a class, b0 ∈ B, C be a subclass of the class C, such that the simple
sequence (b0) ≡ (bi ∈ B | i ∈ 1) with the single member b0 belongs to C, and V : C ×
𝜔 → B be a mapping, compatible with C. Then, there is the unique mapping u : 𝜔 → B
such that u|n ∈ C for every n ∈ N, u(0) = b0 and u(n + 1) = V(u|(n + 1), n) for every
n ∈ 𝜔.
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Proof. First, check the uniqueness. Let a mapping v : 𝜔 → B possess also all the nec-
essary properties. Consider the set K ≡ {n ∈ 𝜔 | ∀m ∈ n + 1 (u(m) = v(m))}. Then, 0 ∈
K. If n ∈ K, then u|n+1 = v|n+1 and u(n+1) = V(u|(n+1), n) = V(v|(n+1), n) = v(n+1).
Hence, n + 1 ∈ K. By the principle of natural induction from 1.2.6, we get K = 𝜔. Con-
sequently, u = v.

Now, define a mapping u0 : 1→ B, setting u0 ≡ {(0, b0)}. By the condition, u0 ∈
C. Consider the subset X of𝜔, consisting of all n ∈ 𝜔 such that for n there is the unique
sequence Sn ≡ ⟮um | m ∈ n + 1⟯ of mappings um : m + 1 → B such that: 1) um ∈ C for
everym ∈ n+1; 2) um(0) = b0 for everym ∈ n+1; 3) um|k+1 = uk for every k ∈ m ∈ n+1
and 4) um(k + 1) = V(um|(k + 1), k) for every k ∈ m ∈ n + 1. It is clear that 0 ∈ X.

Let p, q ∈ X, p < q, Sp = ⟮vm | m ∈ p + 1⟯ and Sq = ⟮wm | m ∈ q + 1⟯. Consider the
sequence Sp ≡ Sq|p + 1. The sequence Sp possesses the properties 1 – 4 listed above.
Since such a sequence is unique, we conclude that Sp = Sp. Thus, Sq|p + 1 = Sp, i. e.
wm = vm for every m ∈ p + 1.

Let n ∈ X and Sn ≡ ⟮um | m ∈ n + 1⟯. Define a mapping un+1 : (n + 1) + 1 → B,
setting un+1 ≡ un ∪ {(n + 1, V(un , n))}. Then, we have un+1 ∈ C, un+1(0) = un(0) = b0,
un+1|k+1 = un|k+1 = uk for every k ∈ n+1 and un+1(k+1) = un(k+1) = V(un|k+1, k) =
V(un+1|k+1, k) for every k ∈ n. If k ∈ n, then un+1(n+1) = V(un , n) = V(un+1|n+1,n). Con-
sequently, the sequence Sn+1 ≡ ⟮um | m ∈ n + 2⟯ possesses the properties 1 – 4 listed
above. Besides, Sn+1|n + 1 = Sn.

Check now the uniqueness of Sn+1. Suppose that a sequence T ≡ ⟮vm | m ∈ (n +
1) + 1⟯ of mappings vm : m + 1 → B also has the same properties. Consider the set
Y ≡ {m ∈ (n + 1) + 1|um = vm} ∪ (𝜔 \ ((n + 1) + 1)). Since u0(0) = b0 = v0(0), we have
u0 = v0,where0 ∈ Y. Suppose thatm ∈ Y. Ifm+1 ∈ (n+1)+1, thenm ∈ (n+1)+1 implies
um = vm. Besides, um+1|m + 1 = um = vm = vm+1|m + 1 and um+1(m + 1) = V(um+1|m + 1,
m) = V(vm+1|m+1,m) = vm+1(m+1)means that um+1 = vm+1. Thus,m+1 ∈ Y. Ifm+1 ∉(n + 1) + 1, then m + 1 ∈ 𝜔 \ ((n + 1) + 1) ⊂ Y. In both of the cases m + 1 ∈ Y. By the
principle of natural induction, Y = 𝜔. Thismeans that um = vm for everym ∈ (n+1)+1,
i. e. Sn+1 = T.

It follows from the properties proven above that n + 1 ∈ X. By the principle of nat-
ural induction, X = 𝜔.

Now, define a mapping u : 𝜔 → B in the following way. For 0, set up u(0) ≡ b0.
For n ∈ N, take the unique sequence Sn ≡ ⟮um | m ∈ n + 1⟯ and set up u(n) ≡ un(n).

We have u|1 = (u(0)) = (b0) ∈ C. Let n ∈ N and k ∈ n. Take the unique sequence
Sk ≡ ⟮vj | j ∈ k + 1⟯. As proven above, Sm = Sn|m + 1, i. e. vk = uk. Therefore, u(k) =
vk(k) = uk(k) = un(k). Thus, u|n + 1 = un ∈ C. Besides, u(n + 1) ≡ un+1(n + 1) =
V(un , n) = V(u|n + 1, n) for every n ∈ 𝜔.
Corollary 1. Let B be a class, b0 ∈ B and V : C×𝜔 → B be amapping. Then, there is the
unique mapping u : 𝜔 → B such that u(0) = b0 and u(n + 1) = V(u|(n + 1), n) for every
n ∈ 𝜔.

 EBSCOhost - printed on 2/10/2023 4:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



72 | 1.2 Ordinals and ordinal numbers

Let D be a class, B be a subclass of the class P(D), and C be the class of all simple
sequences of the kind s ≡ (Bi ∈ B | i ∈ n ∈ N). Consider the subclass Cdisj of the class
C, consisting of all pairwise disjoint sequences (Bi ∈ B | i ∈ n ∈ N), i. e. such that Bi ∩
Bj = ⌀ for every i /= j.

Corollary 2. Let D be a class, B be a subclass of the class P(D), B0 ∈ B, Cdisj be the
class of all pairwise disjoint sequences (Bi ∈ B | i ∈ n ∈ N) and V : Cdisj × 𝜔 → B be
a mapping, compatible with a class Cdisj. Then, there is the unique mapping u : 𝜔 → B

such that u(m) ∩ u(n) = ⌀ for every m /= n, u(0) = B0 and u(n + 1) = V(u|(n + 1), n) for
every n ∈ 𝜔.
Proof. Letm < n. By Theorem 2, we get u|n+ 1 ∈ Cdisj. Therefore, u(m)∩ u(n) = ((u|n+
1)(m)) ∩ ((u|n + 1)(n)) = ⌀.
Note that the indicated schemes are not absolute, but are only “the examples for imi-
tation”.

The following scheme is a generalization of the scheme from Theorem 1.

Theorem 3. Let A and B be classes, U : A → B and V : B × 𝜔 × A → B be mappings.
Then, there is the unique mapping u : 𝜔 × A → B such that u(0, a) = U(a) for every
a ∈ A and u(n + 1, a) = V(u(n, a), n, a) for every n ∈ 𝜔 and a ∈ A.
The proof of this statement is completely similar to the proof of Theorem 1.

Theorem 3 is called the scheme of construction of mappings by natural induction
with a parameter a ∈ A and the passage from n to n + 1 with respect to the produc-
tive mapping V. In this scheme, the value u(n + 1, a) depends only on the value
u(n, a).

The following scheme is a generalization of the scheme from Theorem 2.
Let A and B be fixed classes. Denote by E the class of all functional sequences of

the kind s ≡ ⟮fi ∈ Map(A, B) | i ∈ n ∈ N⟯. A mapping V : E × 𝜔 × A → B will be called
compatible with the subclass E ⊂ E, if for every n ∈ N and for every sequence s ≡ ⟮fi ∈
Map(A, B) | i ∈ n⟯ ∈ E, we have s ∪ {(n, {(a, V(s, n − 1, a)) | a ∈ A})} ∈ E.

Theorem 4. Let A and B be classes, U : A → B be a mapping, E be a subclass of the
class E such that every mapping (0, a) → U(a) from 1 × A into B belongs to E. Let
V : E ×𝜔×A → B be amapping compatible with E. Then, there is the unique mapping
u : 𝜔×A → B such that u|n×A ∈ E for every n ∈ N, u(0, a) = U(a) for every a ∈ A and
u(n + 1, a) = V(u|(n + 1) × A, n, a) for every n ∈ 𝜔 and a ∈ A.
The proof of this statement is completely similar to the proof of Theorem 2.

Theorem 4 is called the scheme of construction of mappings by natural induction
with a parameter a ∈ A and the passage from all m ⩽ n to n + 1 with respect to the
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productive mapping V. In this scheme, the value u(n + 1, a) depends on all the values
u(0, a), u(1, a),. . . , u(n, a).

In conclusion, we shall consider an example of using Theorem 1.
A simple sequence s ≡ (ai ∈ U | i ∈ I) (see 1.2.6) will be called finally constant, if

there exists j ∈ I such that ak = aj for every k ⩾ j. The sequence s will be called finally
non-constant, if for every j ∈ I there exists k > j such that ak /= aj.

Proposition 1. Let s ≡ (ai | i ∈ I) be a finally non-constant sequence. Then, there exists
a subsequence (aik | k ∈ 𝜔) (see 1.2.6) such that k ⩽ ik < ik+1 and aik /= aik+1 .

Proof. Consider i0 ≡ sm I. Since s is finally non-constant, for every i ∈ I and every
j ⩾ i there exists k > j such that ak /= ai. In fact, in the opposite case, there exist i
and j ⩾ i such that ak = ai for every k > j. Then, ak = aj+1 for every k ⩾ j + 1, i. e. s
is finally constant, but this is not so. Thus, the set Iik ≡ {l ∈ I | (l > gr{i, k}) ∧ (al /=
ai)} is non-empty. Therefore, we can define correctly a mapping V : I × 𝜔 → I, set-
ting V(i, k) ≡ sm Iik. By Theorem 1, there exists the unique mapping u : 𝜔 → I such
that u(0) = i0 and u(k + 1) = V(u(k), k) = sm{l ∈ I | (l > gr{u(k), k}) ∧ (al /= au(k))}. It
is clear, that u(k + 1) > u(k), u(k + 1) ⩾ k + 1 and au(k+1) /= au(k). Since the mapping
u ≡ (ik ∈ I | k ∈ 𝜔) : 𝜔 → I is increasing and the subset u[𝜔] is cofinal to the set I, we
conclude by Lemma 3 (1.1.15) that the composition s∘u = (aik | k ∈ 𝜔) is a subsequence
of the sequence s.

1.2.8 The principle of transfinite induction. The constructions of mappings by
transfinite induction

The principle of induction (Theorem 1) from 1.2.1 in the application to well-ordered
classes is called the principle of transfinite induction. In the application to ordinals,
the principle of transfinite induction takes the following form.

Proposition 1. Let 𝛼 be an ordinal. If B is a non-empty subclass of the class 𝛼 such that
a ∈ 𝛼 and a ⊂ B imply a ∈ B, then B = 𝛼.
Proof. By Proposition 2 (1.2.2), the relation of order on the ordinal 𝛼 has the property
of minimality. Let a ∈ 𝛼 and ]←, a[≡ {x | x ∈ 𝛼 ∧ x < a} ⊂ B. By Lemma 3 (1.2.3), a
is an ordinal number. Therefore, by Lemma 5 (1.2.3), a = {x | x ∈ Ord ∧ x < a}. By the
property of transitivity from 1.2.2 and Corollary 1 to Proposition 2 (1.2.2), x < a ∈ 𝛼 im-
plies x ∈ 𝛼. Thus, by virtue of Lemma 3 (1.2.3), a =]←, a[⊂ B. By the condition, this
implies a ∈ B. Consequently, by Theorem 1 (1.2.1) B = 𝛼.
This principle is the key component in the following scheme of construction of map-
pings by transfinite induction.

 EBSCOhost - printed on 2/10/2023 4:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



74 | 1.2 Ordinals and ordinal numbers

Let 𝛼 be an ordinal number, B be a class, and V : ⋃⟮Map(𝛽, B) | 𝛽 ∈ 𝛼⟯ → B
be a mapping. Since 0 × B = 0, the inclusion 0 ⊂ 0 × B means that 0 ∈ Map(0, B).
Consequently, 0 ∈ ⋃⟮Map(𝛽, B) | 𝛽 ∈ 𝛼⟯.
Theorem 1. Let 𝛼 be an ordinal, B be a class and V : ⟮Map(𝛽, B) | 𝛽 ∈ 𝛼⟯ → B be a
mapping. Then, there is the unique mapping u : 𝛼 + 1 → B, such that u(0) = V(0) and
u(𝛽) = V(u|𝛽) for every 𝛽 ∈ 𝛼 + 1.
Proof. First, check the uniqueness. Let a mapping v : 𝛼 + 1 → B possess all the neces-
sary properties. Consider the set X ≡ {x ∈ 𝛼 + 1 | u|x + 1 = v|x + 1}. Then, 0 ∈ X. Take
any 𝛽 ∈ 𝛼 + 1 such that 𝛽 ⊂ X. Let y ∈ 𝛽 + 1. If y < 𝛽, then y ∈ 𝛽 implies y ∈ X. There-
fore, u(y) = v(y), where u|𝛽 = v|𝛽. If y = 𝛽, then u(y) = V(u|𝛽) = V(v|𝛽) = v(y). Thus,
u|𝛽 + 1 = v|𝛽 + 1 implies 𝛽 ∈ X. By Proposition 1, we have X = 𝛼 + 1. Therefore, 𝛼 ∈ X
implies u = v.

Now, define amapping u0 : 1 → B, setting u0 ≡ {(0, V(0))}. Consider the subset X
of𝛼+1, consisting of all x ∈ 𝛼+1 such that for x there is the uniquemapping ux : x+1 →
B such that ux(0) = V(0) and ux(y) = V(ux|y) for every y ∈ x + 1. Then, 0 ∈ X.

Let p, q ∈ X and p < q. Consider the corresponding mappings up and uq and the
mapping up ≡ uq|p + 1. Then, up(0) = up(0) = V(0) and up(y) = uq(y) = V(uq|y) =
V(up|y) for every y ∈ p + 1, since by Lemma 4 (1.2.3), y ⊂ p + 1. This means that the
mapping up possesses all the necessary properties. Since such a mapping is unique,
we conclude that up = up. Thus, uq|p + 1 = up.

Let z ∈ 𝛼 + 1 and z ⊂ X. If x, y ∈ z and x < y, then uy|x + 1 = ux. Therefore,
we can define correctly a mapping v : z → B setting v(x) ≡ uy(x) = ux(x) for every
x ⩽ y in z. Define a mapping w : z + 1 → B, setting w|z = v and w(z) ≡ V(v). Then,
w(0) = v(0) = u0(0) = V(0). Let y ∈ z + 1. If y < z, then y ∈ z implies y ⊂ z and w(y) =
v(y) = uy(y) = V(uy|y) = V(v|y) = V(w|y). If y = z, then w(y) = V(v) = V(w|y). Con-
sequently, the mapping w possesses all the necessary properties, listed above. Be-
sides, w is unique. In fact, suppose that a mapping w : z + 1→ B also has the
same properties. Consider the set Y ≡ {y ∈ z + 1 | w|y + 1 = w|y + 1}. Then, w(0) =
V(0) = w(0) means that w|0 + 1 = w|0 + 1, where 0 ∈ Y. Take any r ∈ z + 1 such
that r ⩾ Y. Let 𝛽 ∈ r + 1. If 𝛽 < r then 𝛽 ∈ r implies 𝛽 ∈ Y. Therefore, w(𝛽) = w(𝛽),
where w|r = w|r. If 𝛽 = r, then w(𝛽) = V(w|r) = V(w|r) = w(𝛽). Thus, w|r + 1 =
w|r + 1 implies r ∈ Y. By Proposition 1, we get Y = z + 1. Therefore, z ∈ Y implies
w = w.

It follows from the properties proven above that z ∈ X. By Proposition 1, we get
X = 𝛼+ 1. Since 𝛼 ∈ X, we can take themapping u𝛼 : 𝛼+ 1 → B. It has all the necessary
properties.

In applications of this theorem, the mapping V is usually assigned by the following
three formulas. The first one assigns the value V(0). The second one assigns the value
V(v) for amapping v : 𝛽 → B defined on a non-limit ordinal 𝛽 ∈ 𝛼 (see 1.2.3). The third
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formula assigns the value V(v) for a mapping v : 𝛽 → B defined on a limit ordinal
𝛽 ∈ 𝛼.

1.2.9 The ordered disjoint union of well-ordered sets. The addition of ordinal
numbers

Let u ≡ ⟮Ai ⊂ U | i ∈ I⟯ be a collection of well-ordered sets, indexed by a well-ordered
set I. Define an order ⩽ on the disjoint union ⋃d⟮Ai | i ∈ I⟯ ≡ ⋃⟮Ai ∗ {i} | i ∈ I⟯ of the
collection u (see 1.1.10), setting ⟨x, i⟩ ⩽ ⟨y, j⟩ iff either i < j or i = j and x ⩽ y. The set
⋃d⟮Ai | i ∈ I⟯ with this order will be called the ordered disjoint union of the collection
u and will be denoted by⋃do⟮Ai | i ∈ I⟯.

Let A, A, A, . . . be well-ordered sets. Then, ⟮A, A⟯, ⟮A, A, A⟯,. . . are the cor-
responding multivalued collections (see 1.1.11). The ordered sets ⋃do⟮A, A⟯, ⋃do⟮A, A, A⟯,. . . will be called the ordered disjoint unions of the sequential pair ⟮A, A⟯,
triplet ⟮A, A, A⟯,. . . and will be denoted also by A ∪do A, A ∪do A ∪do A,. . . (see
1.1.11). By the definition from 1.1.11, we have A ∪d A ≡ ⋃d⟮A, A⟯ ≡ ⋃d⟮Xi ⊂ A ∪ A |
i ∈ 2⟯ = ⋃⟮Xi ∗ {i} | i ∈ 2⟯ = (A ∗ {0}) ∪ (A ∗ {1}). Thus, ⟨x, i⟩ ⩽ ⟨y, j⟩ in A ∪do A iff
either i = 0 and j = 1, or i = j = 0 and x ⩽ y in A, or i = j = 1 and x ⩽ y in A.

Lemma 1. Let ⟮Ai | i ∈ I⟯ be a collection of well-ordered sets, indexed by a well-ordered
set I. Then, the ordered set⋃do⟮Ai | i ∈ I⟯ is well-ordered.
Proof. Denote this ordered set by S. It is clear that S is linearly ordered. Take any set
⌀ /= P ⊂ S and consider the sets Pi ≡ P ∩ (Ai ∗ {i}) and J ≡ {i ∈ I | Pi /= ⌀} /= ⌀. Take
the smallest element j of the set J. Since Pj /= ⌀, we can take the smallest element
y of the set Aj. Then, q ≡ ⟨y, j⟩ is the smallest element of P. In fact, if p ∈ P, then
p = ⟨x, i⟩ ∈ Pi for some i ∈ J. Consequently, j ⩽ i. If j = i, then y ⩽ x implies q ⩽ p. If
j < i, then automatically q ⩽ p.

Let I be a well-ordered set, ⟮Im | m ∈ M⟯ be a collection of well-ordered sets, indexed
by a well-ordered set M, and ⟮Im | m ∈ M⟯ be a partition of the set I. The collection
⟮Im | m ∈ M⟯ is called an ordered partition of the well-ordered set I if: (1) the order on
every set Im is induced by the order on the set I; and (2) i ⩽ j in I for some i ∈ Im and
j ∈ In iff either m < n or m = n and i ⩽ j in Im.

The ordered disjoint union is associative in the following sense.

Proposition 1. Let ⟮Ai | i ∈ I⟯ be a collection of well-ordered sets, indexed by a well-
ordered set I and a collection ⟮Im | m ∈ M⟯ of well-ordered sets, indexed by a well-
ordered set M, be an ordered partition of the ordered set I. Then, the mapping 𝛽: ⋃do⟮Ai | i ∈ I⟯ ⋃do⟮⋃do⟮Ai | i ∈ Im⟯ | m ∈ M⟯ such that 𝛽(⟨a, i⟩) ≡ ⟨⟨a, i⟩,m⟩ for ev-
ery i ∈ Im and a ∈ Ai is bijective and isotone.
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Proof. Denote the first set by S and the second one by T. Let p ≡ ⟨x, i⟩ < q ≡ ⟨y, j⟩ in S.
Then, i ∈ Im and j ∈ In for somem and n. Ifm = n, then 𝛽p ≡ ⟨p,m⟩ < ⟨q,m⟩ ≡ 𝛽q. If
m /= n, then i /= j and p < q imply i < j and so m < n. Therefore, again 𝛽p ≡ ⟨p,m⟩ <
⟨q, n⟩ ≡ 𝛽q. This means that 𝛽 is strictly increasing (see 1.1.15). Since all the orders
are linear, we infer that 𝛽 is isotone. Let t ∈ T. Then, t = ⟨p,m⟩ for some m and p ∈
⋃do⟮Ai | i ∈ Im⟯. Therefore, p = ⟨a, i⟩ for some i ∈ Im ⊂ I and a ∈ Ai. From 𝛽p = t, we
infer that 𝛽 is surjective. Now, by Lemma 1 (1.1.15) 𝛽 is bijective.
Lemma 2. Let A, B, and C be well-ordered sets. Then, A ∪do B ∪do C ≈ (A ∪do B) ∪do C ≈
A ∪do (B ∪do C) (see 1.1.15).
The proof of Lemma 2 is analogous to the proof of Proposition 1.

Lemma 3. Let ⟮Ai | i ∈ I⟯ be a collection of well-ordered sets, indexed by a well-ordered
set I. Then, ord⋃do⟮Ai | i ∈ I⟯ = ord⋃do⟮ord Ai | i ∈ I⟯ (see 1.2.5).
Proof. Denote⋃do⟮Ai | i ∈ I⟯ by S and⋃do⟮ord Ai | i ∈ I⟯ by T. According to Theorem 1
(1.2.5), for every i ∈ I, there is the unique isotone bijection ui : Ai 𝛼i where 𝛼i ≡
ord Ai. If r ∈ S, then r = ⟨a, i⟩ for the unique elements i ∈ I and a ∈ Ai. Therefore, we
can define correctly a mapping u : S → T setting ur ≡ ⟨uia, i⟩. Let s = ⟨b, j⟩ ∈ S and
r < s. If i < j, then ur ≡ ⟨uia, i⟩ < ⟨ujb, j⟩ ≡ us. If i = j, then a < b implies by virtue of
Lemma 1 (1.1.15) uia < uib, where ur < us.

Thus, u is strictly increasing. Since all the orders are linear, we infer that u is
isotone. Let t ∈ T. Then, t = ⟨x, i⟩ for some i and x ∈ 𝛼i. Take a ≡ u−1i x ∈ Ai and r ≡
⟨a, i⟩ ∈ S. From ur = t, we infer that u is surjective. Now, by Lemma 1 (1.1.15) u is bi-
jective. Finally, using Theorem 1 (1.2.5) we conclude that ord S = ord T.
Let u ≡ (𝛼i | i ∈ I)bea simple collectionof ordinal numbers, indexedbyawell-ordered
set I. Take the collection ⟮𝛼i | i ∈ I⟯ ≡ 𝜑−1(𝛼i | i ∈ I) from Corollary 1 to Lemma 3 (1.1.9).
The ordinal number ord⋃do⟮𝛼i | i ∈ I⟯ is called the ordinal sum of the collection u and
is denoted by∑o(𝛼i | i ∈ I).

Let 𝛼, 𝛼, 𝛼, . . . be ordinal numbers. Then, (𝛼, 𝛼), (𝛼, 𝛼, 𝛼),. . . are the corre-
sponding simple collections (see 1.1.11). The ordinal sums ∑o(𝛼, 𝛼), ∑o(𝛼, 𝛼, 𝛼),. . .
will be called the ordinal sums of the simple sequential pair (𝛼, 𝛼), triplet (𝛼, 𝛼, 𝛼),. . .
and will be denoted also by 𝛼 +o 𝛼, 𝛼 +o 𝛼 +o 𝛼,. . . . By the definition from 1.1.11, we
have𝛼+o𝛼 ≡ ∑o(𝛼, 𝛼) ≡ ∑o(xi | i ∈ 2) = ord⋃do⟮xi | i ∈ 2⟯, where x0 ≡ 𝛼 and x1 ≡ 𝛼.

The ordinal sum is associative in the following sense.

Proposition 2. Let (𝛼i | i ∈ I) be a simple collection of ordinal numbers, indexed by a
well-ordered set I and the collection ⟮Im | m ∈ M⟯ of well-ordered sets, indexed by a
well-ordered set M, be an ordered partition of the ordered set I. Then, ∑o(𝛼i | i ∈ I) =∑o( ∑o(𝛼i | i ∈ Im) | m ∈ M).
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Proof. By virtue of Proposition 1 and Lemma 3, we get the equalities ∑o(𝛼i | i ∈
I) ≡ ord⋃do⟮𝛼i | i ∈ I⟯ = ord⋃do⟮⋃do⟮𝛼i | i ∈ Im⟯ | m ∈ M⟯ = ord⋃do⟮ord⋃do⟮𝛼i | i ∈
Im⟯ | m ∈ M⟯ = ord⋃do⟮∑o(𝛼i | i ∈ Im) | m ∈ M⟯ = ∑o( ∑o(𝛼i | i ∈ Im) | m ∈ M).
Lemma 4. Let 𝛼, 𝛽 and 𝛾 be ordinal numbers. Then, 𝛼 +o 𝛽 +o 𝛾 = (𝛼 +o 𝛽) +o 𝛾 = 𝛼 +o(𝛽 +o 𝛾).
The proof of Lemma 4 is analogous to the proof of Proposition 2.

Proposition 3. Let 𝛼 be an ordinal number. Then, 𝛼 + 1 = 𝛼 +o 1 (see 1.2.3).
Proof. Assume that there exists x ∈ 𝛼 ∩ {𝛼}. Then, x ∈ 𝛼 and x = 𝛼 imply 𝛼 ∈ 𝛼, but
this contradicts Lemma 2 (1.1.11). Consequently, 𝛼 ∩ {𝛼} = ⌀. By the definition from
1.2.3 and by Lemma 7 (1.1.11), 𝛼 + 1 ≡ 𝛼 ∪ {𝛼} = ⋃⟮𝛼, {𝛼}⟯ = ⋃⟮xi | i ∈ 2⟯, where x0 = 𝛼
and x1 ≡ {𝛼}. Therefore, by Lemma 2 (1.1.10), there is a bijective mapping u : ⋃⟮xi | i ∈
2⟯ ⋃d⟮xi | i ∈ 2⟯ such that up = ⟨p, i⟩ for every i ∈ 2 and p ∈ xi. Let q ∈ ⋃⟮xi | i ∈
2⟯ and p < q. Then, q ∈ xj for some j. If i = j, then p < q implies up < uq. If i < j, then
automatically up < uq. This means that u is strictly increasing (see 1.1.15). Since all
the orders are linear, we infer that u is an isotone mapping from the ordered set 𝛼 + 1
into the ordered set⋃do⟮xi | i ∈ 2⟯.

By the definition 𝛼 +o 1 = ⋃do⟮yi | i ∈ 2⟯, where y0 ≡ 𝛼 and y1 ≡ 1 = {0}. Define a
mapping v : ⋃d⟮xi | i ∈ 2⟯ → ⋃d⟮yi | i ∈ 2⟯, setting v(⟨p, 0⟩) ≡ ⟨p, 0⟩ ∈ 𝛼 ∗ {0} = y0 ∗{0} for every p ∈ x0 ≡ 𝛼 and v(⟨𝛼, 1⟩) ≡ ⟨0, 1⟩ ∈ 1 ∗ {1} for 𝛼 ∈ x1 ≡ {𝛼}. It is clear that v
is an isotone bijection from the ordered set⋃do⟮xi | i ∈ 2⟯ onto the ordered set⋃do⟮yi |
i ∈ 2⟯. As a result, the mapping v ∘ u is an isotone bijection from the ordered set 𝛼 + 1
onto the ordered set 𝛼 +o 1. By virtue of Theorem 1 (1.2.5), 𝛼 + 1 = 𝛼 +o 1.
Corollary 1. Let 𝛼 and 𝛽 be ordinal numbers. Then, (𝛼 +o 𝛽) + 1 = 𝛼 +o (𝛽 + 1).
Proof. By Proposition 3 and Lemma 4, we get (𝛼+o 𝛽)+1 = (𝛼+o 𝛽)+o 1 = 𝛼+o (𝛽+o 1) =𝛼 +o (𝛽 + 1).

1.2.10 The connection between ordinal and natural numbers

Theorem 1. Let𝛼 ∈ Ord \𝜔. Then, there are the unique limit ordinal 𝛾 ⩾ 𝜔and theunique
natural number n such that 𝛼 = 𝛾 +o n.
Proof. Consider the set B, consisting of all natural numbers and all ordinal numbers
𝛼 ⩾ 𝜔, representable in the form 𝛼 = 𝛾+o n for some limit ordinal 𝛾 ⩾ 𝜔 and somenatu-
ral number n. It is clear that all limit ordinals belong to B. By Corollary 1 to Theorem 2
(1.2.6), 𝜔 ∈ B.
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Let 𝛼 ∈ Ord and 𝛼 ⊂ B. If 𝛼 is a limit ordinal number, then 𝛼 ∈ B. If 𝛼 is a non-limit
ordinal number, then 𝛼 = 𝛽 + 1 for some ordinal number 𝛽. From 𝛽 ∈ 𝛼 ⊂ B, we infer
that either 𝛽 ∈ 𝜔 or 𝛽 ⩾ 𝜔 and 𝛽 = 𝛾 +o m for some 𝛾 ⩾ 𝜔 and m. In the first case, by
Lemma2 (1.2.6),𝛼 = 𝛽+1 ∈ 𝜔 ⊂ B, where𝛼 ∈ B. In the second case,𝛽 = ord(𝛾∪dom). By
virtue of the definition from 1.2.5 and Theorem 1 (1.2.5), there is an isotone bijection
u : 𝛾 ∪d m 𝛽. According to 1.2.9, we see that 𝛾 ∪d m = (𝛾 ∗ {0}) ∪ (m ∗ {1}) and
𝛾∪d (m+1) = (𝛾∗{0})∪((m+1)∗{1}). According to 1.2.3, we get 𝛽 ⊂ 𝛽+1 andm ⊂ m+1.
Therefore,we candefine correctly amapping v : 𝛾∪d(m+1) → 𝛽+1, setting v|𝛾∪dm ≡ u
and v(⟨m, 1⟩) ≡ 𝛽. It is clear that v is bijective. If x ∈ 𝛾 ∪d m, then v(x) = u(x) < 𝛽 =
v(⟨m, 1⟩). This means that v is strictly increasing. Since all the orders are linear, we
infer that v is isotone. Consequently, by Theorem 1 (1.2.5)𝛼 = 𝛽+1 = ord(𝛾∪do (m+1)) =𝛾 +o (m + 1) ∈ B. In all the cases, 𝛼 ∈ B. Thus, by Proposition 1 (1.2.8) B = Ord.

Check now the uniqueness of this representation. Let 𝛼 = 𝛽 +o m = 𝛾 +o n. If m =
n = 0, then 𝛾 = 𝛽. At first, suppose that m /= 0. Then, there exists an isotone bijection
u : 𝛽∪d m 𝛾∪d n. According to 1.2.9 we have that 𝛽∪d m = (𝛽∗ {0})∪ (m∗ {1}) and
𝛾∪d n = (𝛾∗ {0}) ∪ (n ∗ {1}). Assume that there exists l ∈ m such that u(⟨l, 1⟩) ∈ 𝛾∗ {0}.
Consider the non-empty subset B of m, consisting of all k ∈ m such that u(⟨k, 1⟩) ∈
𝛾 ∗ {0}. Let a ∈ m and a ⊂ B. If a = 0, then a ⩽ l implies u(⟨a, 1⟩) ⩽ u(⟨l, 1⟩) ∈ 𝛾 ∗ {0}.
Therefore, u(⟨a, 1⟩) ∈ 𝛾 ∗ {0}. This means that a ∈ B. If a > 0, then by Lemma 6 (1.2.6)
a = k + 1 for some k ∈ 𝜔. Then, k ∈ a ⊂ B. Thus, for p ≡ ⟨k, 1⟩ ∈ m ∗ {1}, we have 𝜘 ≡
u(p) ∈ 𝛾 ∗ {0}, i. e. 𝜘 = ⟨x, 0⟩ for some x ∈ 𝛾. Since 𝛾 is a limit ordinal, we infer that
x + 1 < 𝛾, i. e. x + 1 ∈ 𝛾. Consider the elements 𝜌 ≡ ⟨x + 1, 0⟩ ∈ 𝛾 ∗ {0} and q ≡ u−1(𝜌).
From u(p) = 𝜘 < 𝜌 = u(q), we conclude that p < q, where q ∈ m ∗ {1}.

Since k + 1 = a ∈ m, we can take the element r ≡ ⟨k + 1, 1⟩ ∈ 𝛽 ∪d m. Consider the
bijection 𝜀 : m m ∗ {1} such that 𝜀k = ⟨k, 1⟩ for every k ∈ m. From p < q, we in-
fer that k = 𝜀−1p < 𝜀−1q. Therefore, k < k + 1 ⩽ 𝜀−1q implies p < ⟨k + 1, k⟩ ⩽ q. Hence
𝜘 < ur ⩽ 𝜌. Assume that ur ∉ 𝛾 ∗ {0}. Then, ur ∈ n ∗ {1} implies 𝜌 < ur. From this con-
tradiction, it follows that ur ∈ 𝛾 ∗ {0} and consequently, a = k + 1 ∈ B. As a result, by
virtue of Proposition 1 (1.2.8), we conclude that B = m.

Thus, u[m ∗ {1}] ⊂ 𝛾 ∗ {0}. If s ≡ ⟨x, 0⟩ ∈ 𝛽 ∗ {0}, then s < ⟨m − 1, 1⟩ implies us <
u(⟨m−1, 1⟩) ∈ 𝛾∗{0}. Therefore, us ∈ 𝛾∗{0}. Thismeans that (𝛾∗{0})∪(n∗{1}) = rng u ⊂
𝛾∗{0}. If n /= 0, then this inclusion is impossible. If n = 0, then u is an isotone bijection
from 𝛽 ∪d m onto 𝛾 ∗ {0}. The ordered set 𝛽 ∪do m has the greatest element ⟨m − 1, 1⟩.
Therefore, u(⟨m − 1, 1⟩) is the greatest element in 𝛾 ∗ {0}. But this is impossible, since
𝛾 is a limit ordinal number. Thus, in all the cases we came to the contradictions. This
means that our assumption is not valid, i. e. u[m ∗ {1}] ⊂ n ∗ {1}. Since m /= 0, this
inclusion implies n /= 0. But then, using the similar arguments for the isotonebijection
u−1, we can deduce that u−1[n ∗ {1}] ⊂ m ∗ {1}. As a result, we get u[m ∗ {1}] = n ∗ {1}.
Therefore, m ≈ m ∗ {1} ≈ n ∗ {1} ≈ n.

It follows from the proven inclusions that u[𝛽 ∗ {0}] = 𝛾 ∗ {0}. Therefore, 𝛽 ≈ 𝛽 ∗
{0} ≈ 𝛾 ∗ {0} ≈ 𝛾. By virtue of Theorem 1 (1.2.5), we conclude that m = n and 𝛽 = 𝛾.

If n /= 0, then the arguments are the same.
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1.2.11 The other forms of the axiom of choice

The terminology of ordered classes will often be applied to the full ensemble P(A) of
a class A. Any non-empty subclass S of the class P(A) will be called an ensemble on
the class A.

On the full ensemble, P(A) define the order by inclusion setting S ⩽ T iff S ⊂ T
for S, T ∈ P(A). This order induced the order by inclusion on every ensemble S on the
class A. With respect to the order by inclusion, an element S ∈ S is amaximal member
of the ensemble S if S is a proper subset of no other element of S.

If A is an order class, then we can consider the ensemble of all chains (≡ linearly
ordered subclasses) in A. With respect to the order by inclusion on this ensemble, a
chain C in A ismaximal if C is a proper subclass of no other chain in A.

Consider the universal class U. By Lemma 5 (1.1.5), P(U) = U. An ensemble S on
the universal class U will be called an ensemble of sets.

An ensemble of sets S is called an ensemble of sets of finite character if any set
X ∈ U belongs to S iff each finite subset of the set X belongs to S.

There are a lot of situations in mathematics to which axiom of choice A8 from
1.1.12 is not immediately applicable, but to which one or another equivalent form of
this axiom is applicable at once. We next list four such equivalent forms. The names
“lemma”, “theorem”, and “principle” are attached to them only for historical reasons.

Using the axiom of choice, we can prove the following

Proposition 1. Let F be an ensemble of sets of finite character, F be a set and B be a
chain in F. Then,⋃⟮BB | B ∈ B⟯ ∈ F.

Proof. Denote the considered set by X. Let Y be anon-empty finite subclass of X. Then,
there exist a number m ∈ N and a bijection u : m Y. Define a mapping v : Y →
P(B) \ {⌀}, setting v(y) ≡ {B ∈ B | y ∈ B} /= ⌀. Take any choice mapping p : P(B) \
{⌀} → B from axiom A8 (1.1.12). Consider the mapping w ≡ p ∘ v ∘ u ≡ (Bi ∈ B | i ∈
m) : m → B.

Consider the set K of all numbers k ∈ m, such that the set {Bi ∈ B | i ∈ k + 1} has
the greatest element. Let X ≡ K∪(𝜔\m). Then, 0 ∈ X. Let n ∈ K. If n = m−1, then n+1 =
m ∈ X. Therefore, further we can assume that n < m − 1. Supposing that n + 1 = m, we
get n = m − 1. Supposing that n + 1 > m = (m − 1) + 1, we infer by Lemma 5 (1.2.6) that
n > m − 1. In both of the cases, we get contradictions. Thus, n + 1 < m, i. e. n + 1 ∈ m.
Since n ∈ K, the set {Bi | i ∈ n + 1} has the greatest element A ∈ B. If A ⩽ Bn+1, then
Bn+1 is the greatest element of the set {Bi | i ∈ (n + 1) + 1}. If A ⩾ Bn+1, then A is the
greatest element of this set. This means that n + 1 ∈ K ⊂ X. By the principle of natural
induction, X = 𝜔. Consequently, K = m. Thus, the set {Bi ∈ B | i ∈ m} has the greatest
element B.

If y ∈ Y, then y = u(i) for some i ∈ m. Since pv(y) ∈ v(y), we infer that y ∈ pv(y) =
w(i) ≡ Bi ⊂ B. Thus, Y ⊂ B ∈ F. By the condition, Y ∈ F. This implies X ∈ F.
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Theorem 1. The following conditions are equivalent:
1) (the axiom of choice) for every non-empty set A, there exists a mapping p : P(A) \

{⌀} → A such that p(P) ∈ P for every non-empty subset P of the set A;
2) (the Tukey lemma) every non-empty ensemble of sets of finite character, which is a

set, has a maximal member;
3) (the Hausdorff maximality principle) every non-empty ordered set contains a max-

imal chain;
4) (the Kuratowski – Zorn lemma) every non-empty ordered set, in which every chain

has an upper bound, has a maximal element;
5) (the Zermelo well-ordering theorem or the Zermelo principle) every set can be well-

ordered.

Proof. (1) ⊢ (2). Assume that (2) is false. Then, there exists a non-empty ensemble of
sets of finite character F, which is a set and which has no maximal member. Since F

has no maximal element, the ensemble AF ≡ {E ∈ F | E ⊃ F ∧ E /= F} is non-empty
for every F ∈ F. By Theorem 1 (1.1.12), for the collection ⟮AF | F ∈ F⟯, there exists an
element u ∈ ∏⟮AF | F ∈ F⟯, i. e. F ⊂ u(F) ∈ F and F /= u(F) for every F ∈ F.

A subensembleG ofF will be called u-inductive if it has the following three prop-
erties: (1) ⌀ ∈ G; (2) A ∈ G implies u(A) ∈ G; (3) if B is a chain in G, then⋃⟮BB | B ∈
B⟯ ∈ G. By virtue of Proposition 1, the ensemble F is u-inductive. Consider the en-
semble of sets G0 ≡ {A ∈ F | A ∈ G for every u-inductive ensembleG ⊂ F}. It is clear
that G0 is the smallest u-inductive ensemble.

Consider the subensemble H ≡ {A ∈ G0 | ∀B ∈ G0 ((B ⊂ A ∧ B /= A) ⇒ u(B) ⊂
A)}. We assert that if A ∈ H and C ∈ G0, then either C ⊂ A or u(A) ⊂ C. To prove this
assertion, take A ∈ H and consider GA ≡ {C ∈ G0 | C ⊂ A ∨ u(A) ⊂ C}. It suffices to
show thatGA is u-inductive. Since⌀ ∈ G0 and⌀ ⊂ A, (1) is satisfied. Let C ∈ GA. Then,
we have C ⊂ A and C /= A, C = A, or u(A) ⊂ C. If C ⊂ A and C /= A, then u(C) ⊂ A be-
cause A ∈ H. If C = A, then u(A) ⊂ u(C). If u(A) ⊂ C, then u(A) ⊂ u(C), because C ∈ F

implies C ⊂ u(C). Thus, in every case, u(C) ∈ GA and (2) is satisfied. Next, let B be a
chaininGA.Then,eitherC ⊂ A foreachC ∈ BorthereexistsC ∈ B, suchthatu(A) ⊂ C.
In the first case, G ≡ ⋃⟮BB | B ∈ B⟯ ⊂ A, and in the second case, u(A) ⊂ C ⊂ G. Thus,
G ∈ GA and (3) is satisfied. Thus,GA is u-inductive. Therefore,GA = G0.

Wenext assert thatH = G0.Weprove this by showing thatH is u-inductive. Since
⌀ has no proper subset,H satisfied (1). Next, let A ∈ H and B ∈ G0 be such that B ⊂
u(A) and B /= u(A). Since B ∈ G0 = GA, we have B ⊂ A. If B /= A, the definition of H

yields u(B) ⊂ A ⊂ u(A). If B = A, then u(B) ⊂ u(A). In either case, the inclusion u(B) ⊂
u(A) is valid, so u(A) ∈ H and (2) holds for H. Finally, let B be a chain in H and let
B ∈ G0 have the property that B ⊂ G ≡ ⋃⟮BB | B ∈ B⟯ and B /= G. Since B ∈ G0 = GA
for every A ∈ B, we have either B ⊂ A for some A ∈ B or u(A) ⊂ B for every A ∈ B. If
the latter alternative were true, wewould have B ⊂ G ⊂ ⋃⟮u(A) | A ∈ B⟯ ⊂ B, which is
impossible. Thus, there is some A ∈ B such that B ⊂ A. If B /= A, then u(B) ⊂ A ⊂ G,
since A ∈ H. If B = A, then B ∈ H and G ∈ G0 = GB. This implies that u(B) ⊂ G, since
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G ⊂ B is impossible. Thus, in either case, we have u(B) ⊂ G and so G ∈ H. This proves
that H satisfies (3). Therefore, H is u-inductive. As a result, H = G0.

We conclude from the above arguments that if A ∈ G0 = H and B ∈ G0 = GA, then
either B ⊂ A or A ⊂ u(A) ⊂ B. Thus, G0 is a chain. Since G0 is u-inductive, we infer
that G ≡ ⋃⟮AA | A ∈ G0⟯ ∈ G0. Applying (2), we get G ⊂ u(G) ∈ G0 and G /= u(G). This
contradiction establishes the fact that (1) implies (2).

(2) ⊢ (3). Let P be a non-empty ordered set. Consider the ensembleC of all chains
in P. It is clear that ⌀ ∈ C and {x} ∈ C for every x ∈ P. By virtue of Lemmas 2 and 1
from 1.1.6, we see that C is a set. Besides, C is an ensemble of sets of finite character.
By Tukey’s lemma, C has a maximal member.

(3) ⊢ (4). Let P be a non-empty ordered set in which every chain has an upper
bound. By (3) there is a maximal chain M ⊂ P. Let m be an upper bound for M. Then,
m is a maximal element of P. In fact, if there is x ∈ P such that m ⩽ x and m /= x, then
M ∪ {x} is a chain, which properly contains M. But this contradicts the maximality of
M.

(4) ⊢ (5). Let S be a non-empty set. Consider the ensemble Z of all well-ordered
sets ⟮W , ⩽⟯ such thatW ⊂ S. Introduce an order onZ, setting ⟮W1, ⩽1⟯ ⩽ ⟮W2, ⩽2⟯ iff ei-
therW1 = W2 and ⩽1 = ⩽2 or there exists a ∈ W2 such thatW1 = {x ∈ W2 | x ⩽2 a ∧ x /=
a} and ⩽1 ⊂ ⩽2. Take any non-empty chain C. Consider the set V ≡ {x ∈ S | ∃⟮W , ⩽⟯ ∈
C (x ∈ W)} and the binary relation 𝜃 ≡ {(x, y) ∈ V∗V | ∃⟮W , ⩽⟯ ∈ C (((x, y) ∈ W∗W) ∧
(x ⩽ y))}. It is easy to check that 𝜃 is a linear order on V. Let A be a non-empty subset of
V. Then, there exists ⟮W1, ⩽1⟯ ∈ C such that A∩W1 /= ⌀. Therefore, there is an element
a1 ∈ A ∩ W1 such that a1 ⩽ x for every x ∈ A ∩ W1. Suppose that there is an element
a2 ∈ A such that (a2, a1) ∈ 𝜃. Then, there is ⟮W2, ⩽2⟯ such that (a2, a1) ∈ W2 ∗ W2 and
a2 ⩽2 a1. Since C is a chain, we have either ⟮W1, ⩽1⟯ ⩽ ⟮W2, ⩽2⟯ or ⟮W2, ⩽2⟯ ⩽ ⟮W1, ⩽1⟯.

Consider the first case. Suppose thatW1 = W2 and ⩽1 = ⩽2. Then, a2 ∈ A ∩W1 im-
plies a1 ⩽2 a2. As a result, a1 = a2. Suppose now that there exists b ∈ W2 such that
W1 = {x ∈ W2 | x ⩽2 b ∧ x /= b} and ⩽1 ⊂ ⩽2. If a2 ⩽2 b and a2 /= b, then a2 ∈ A ∩ W1
implies a1 ⩽1 a2, where a1 ⩽2 a2. As a result, a1 = a2. If a2 ⩾2 b, then a1 ∈ W1 implies
a2 ⩾2 a1, where again a1 = a2. In all the cases, we infer that a1 is a minimal element of
A in ⟮V , 𝜃⟯. Thus, ⟮V , 𝜃⟯ is a well-ordered set. Consequently, it belongs to Z and is an
upper bound for C.

By Zorn’s lemma,Z has amaximal element ⟮W0, ⩽0⟯. IfW0 = S, then (5) is proven.
Assume thatW0 /= S. Take some s ∈ S\W0. Consider the setW ≡ W0∪{s} and the order⩽ ≡ ⩽0 ∪ ⋃{(x, s) | x ∈ W}, i. e. we place s after everything in W0. Then, ⟮W , ⩽⟯ ∈ Z.
This contradicts the maximality of ⟮W0, ⩽0⟯.(5) ⊢ (1). Let A be a non-empty set. By the condition, there exists an order ⩽ on A
such that ⟮A, ⩽⟯ is a well-ordered set. Define a choice mapping p : P(A) \ {⌀} → A,
setting p(P) ≡ sm P ∈ P for every P ∈ P(A) \ {⌀}.
Remark. There exist someother equivalent forms of the axiomof choice. In particular,
Tukey’s lemma has several equivalent variants.
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1.3 Cardinal numbers

This section is devoted to the theory of cardinal numbers. We follow J. Neumann’s
definition of a cardinal number as an ordinal number with some exclusive properties.
Cardinal numbers have some properties of natural numbers, and natural numbers
constitute a part of the class of all cardinal numbers. Thus, cardinal numbers are a
generalization of natural numbers.

1.3.1 The definition of cardinal numbers. The cardinality of natural numbers.
The first denumerable cardinal number

According to 1.1.8 classes, A and B are called equivalent or equipollent (A ∼ B) if there
exists some bijective mapping u : A B.

An ordinal number 𝛼 is called a cardinal number if for every ordinal number 𝛽
the conditions 𝛽 ⩽ 𝛼 and 𝛽 ∼ 𝛼 imply 𝛽 = 𝛼. The class of all cardinal numbers will
be denoted by Card. According to Corollary 2 to Theorem 1 (1.2.3) the class Card with
the order, induced from the class Ord, is well-ordered.

Lemma 1. Let x, y ∈ 𝜔 and x + 1 ∼ y + 1. Then, x ∼ y.

Proof. By the condition, there is a bijection u : x + 1 y + 1. Take a mapping v : x +
1 y + 1 such that v ≡ (u \ {⟨x, u(x)⟩, ⟨u−1(y), y⟩}) ∪ {⟨u−1(y), u(x)⟩, ⟨x, y⟩}. Then,
v(x) = y and v|x is a bijective mapping from x onto y.

Proposition 1. 𝜔 ⊂ Card.
Proof. Consider the set X ≡ 𝜔 ∩ Card. It is clear that 0 ∈ X. Let m ∈ X and assume
that x ≡ m + 1 ∉ X. Then, x is not a cardinal number. Therefore, there exists an or-
dinal number y < x such that y ∼ x. By Corollary 1 to Lemma 1 (1.2.6), y ∈ 𝜔. By
Lemma 6 (1.2.6), y = n + 1 for some n ∈ 𝜔. By virtue of Lemma 1, we get m ∼ n. By
virtue of Lemma 5 (1.2.6), n < m. Since m is a cardinal number, this is impossible.
This means that m + 1 ∈ X. Consequently, by the principle of natural induction,
X = 𝜔.
Lemma 2. 𝜔 ∈ Card.
Proof. Let 𝛽 ∈ Ord and 𝛽 < 𝜔. Then, 𝛽 ∈ 𝜔. By Lemma 8 (1.2.6),𝜔 is infinite. Therefore,
𝛽 ≁ 𝜔.
Lemma 3. 𝜔 is the smallest of all denumerable ordinal numbers.
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Proof. Consider the class D ≡ {𝛼 ∈ Ord | 𝛼 ∼ 𝜔}. By virtue of Corollary 2 to Theorem 1
(1.2.3), D has the smallest element 𝛽. Since 𝜔 ∈ D, we have 𝛽 ⩽ 𝜔. Suppose that 𝛽 < 𝜔.
By Corollary 1 to Lemma 1 (1.2.6), 𝛽 ∈ 𝜔. By Lemma 8 (1.2.6), 𝜔 is infinite. Therefore,
𝛽 ≁ 𝜔, i. e. 𝛽 ∉ D. It follows from this contradiction that 𝛽 = 𝜔.
The cardinal number 𝜔 is called the first denumerable cardinal number (in the sense of
Lemma 3).

1.3.2 The power of sets

Using the axiom of choice, we can prove the following

Proposition 1. Let A be a set. Then:
1) the ordinal number 𝛼 ≡ sm{𝛽 ∈ Ord | 𝛽 ∼ A} is a cardinal number;
2) if 𝛼 is a cardinal number and 𝛼 ∼ A, then 𝛼 = 𝛼.
Proof. According to Theorem 1 (1.2.11), the set A can be well-ordered. Therefore, by
virtue of Theorem 1 (1.2.5), there is an ordinal number 𝛽 such that A ∼ 𝛽. By Corollary 2
to Theorem 1 (1.2.3), the class Ord is well-ordered. Consequently, the non-empty sub-
class {𝛽 ∈ Ord | 𝛽 ∼ A} of this class has aminimal element𝛼, which is also the smallest
element of this subclass. Take any ordinal number 𝛾 ⩽ 𝛼 such that 𝛾 ∼ 𝛼. Then, 𝛾 ∼ A
implies 𝛼 ⩽ 𝛾, where 𝛾 = 𝛼. This means that 𝛼 is a cardinal number.

From the definition of 𝛼, we infer that 𝛼 ⩽ 𝛼. Besides 𝛼 ∼ A ∼ 𝛼 implies 𝛼 ∼ 𝛼.
Since 𝛼 is a cardinal number, we conclude that 𝛼 = 𝛼.
Consider the class P ≡ {⟨A, 𝛼⟩ ∈ U ∗ Card | A ∼ 𝛼}.
Corollary 1. The class P is a mapping from the universal class U into the class Card.

Corollary 2. Let A and B be sets. Then, A ∼ B iff P(A) = P(B).
Corollary 3. Let A be a set. Then, P(P(A)) = P(A).
Corollary 4. Let A bean infinite set. Then, thereexistsan injectivemapping u : 𝜔 A.

Proof. By Proposition 1, there is a bijection v : 𝛼 A. Assume that 𝛼 < 𝜔. Then, by
Corollary1 toProposition2(1.2.2),𝛼 ∈ 𝜔.Thedefinitionfrom1.2.6 implies thatA isfinite.
It follows from this contradiction that 𝛼 ⩾ 𝜔. Now, by Lemma 4, (1.2.3) and Theorem 1
(1.2.3)𝜔 ⊂ 𝛼. Consequently, themapping u ≡ v|𝜔 is a necessary injection.
For a set A, the cardinal number P(A) is called the power or cardinality of the set A. It
will be denoted also by card A or |A|.
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Proposition 2. Let 𝛼 ∈ Ord and 𝛽 ⊂ 𝛼. Then, card 𝛽 ⩽ 𝛼.
Proof. It is clear that 𝛽 is a well-ordered set. Therefore, by Corollary 1 to Proposition 1
(1.2.5), only the following three cases take place: (1) there are the unique element b ∈ 𝛽
and the unique isotone bijection f : 𝛼 ]←, b[; (2) there are the unique element
a ∈ 𝛼 and the unique isotone bijection g : ]←, a[ 𝛽; (3) there is the unique isotone
bijection h : 𝛼 𝛽.

At first, suppose that the first case takes place. Then, f (b) < b. By Lemma 1 (1.1.15),
the mapping f is strictly increasing. Thus, the mapping u ≡ f |𝛽 : 𝛽 → 𝛽 is also strictly
increasing. Therefore, by Lemma 1 (1.2.4) b ⩽ u(b) = f (b) < b. It follows from this con-
tradiction that the first case is impossible.

In the second case, a ∈ 𝛼 implies by Lemma 3 (1.2.3) that a is an ordinal number.
Therefore, by Corollary 1 to Proposition 2 (1.2.2) and Theorem 1 (1.2.3), a < 𝛼. Now, by
Corollary 1 to Lemma 5 (1.2.3), a =]←, a[ in 𝛼. Consequently, g is a bijection between
a and 𝛽. Therefore, by Proposition 1, we get card 𝛽 ⩽ a < 𝛼.

Finally, in the third case, 𝛼 ∼ 𝛽 implies by Proposition 1 that card 𝛽 ⩽ 𝛼.
Corollary 1. Let A be a set and B ⊂ A. Then, card B ⩽ card A.
Proof. By Proposition 1, there is a bijection u : A P(A). Consider the subset 𝛽 ≡
u[B] of the ordinal number P(A). Then, by Proposition 2, P(𝛽) ⩽ P(A). By Corollary 2
to Proposition 1, B ∼ 𝛽 implies P(B) = P(𝛽) ⩽ P(A).
Theorem 1 (the Schröder – Cantor – Bernstein theorem). Let A and B be sets, X ⊂ A,
Y ⊂ B, A ∼ Y and B ∼ X. Then, A ∼ B.

Proof. By Corollary 1 to Proposition 2 and Corollary 2 to Proposition 1, P(A) = P(Y) ⩽
P(B) = P(X) ⩽ P(A) implies P(A) = P(B), where A ∼ B.

This theorem can also be proven without using the axiom of choice.

Lemma 1. Let A be a set, B be a class and u : A → B be amapping. Then, card(rng u) ⩽
card A.

Proof. By Lemma 1 (1.1.11), C ≡ rng u is a set. Take a choice mapping p : P(A) \ {⌀} →
A from axiom A8 (1.1.12). Define a mapping v : C → A, setting v(c) ≡ p(u−1(c)). If
v(c1) = v(c2), then u−1(c1) ∩ u−1(c2) /= ⌀ implies c1 = c2. Thus, v is injective, where
C ∼ rng v. Now, by Corollary 2 to Proposition 1 and Corollary 1 to Proposition 2, we get
P(C) = P(rng v) ⩽ P(A).
Theorem 2 (the Cantor theorem on the cardinality of the set of all subsets). Let A be
a set. Then, card A < cardP(A).
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Proof. Define a mapping u : A → P(A), setting u(a) ≡ {a}. It is clear that u is in-
jective. Therefore, by Corollary 2 to Proposition 1 and Corollary 1 to Proposition 2,
P(A) = P(rng u) ⩽ P(P(A)). Suppose that P(A) = P(P(A)). Then, there exists a bi-
jection v : A P(A). Since v(a) = ⌀ for some a, the set P ≡ {b ∈ A | b ∉ v(b)} is
not empty. Therefore, P = v(c) for some c ∈ A such that c /= a. If c ∈ P = v(c), then
c ∉ v(c). If c ∉ v(c) = P, then c ∈ P. It follows from this contradiction that our suppo-
sition is not valid. As a result, P(A) < P(P(A)).
Corollary 1. Let 𝛼 be an ordinal number. Then, there is a cardinal number 𝛽 such that
𝛼 < 𝛽.
Proof. Take the cardinal number𝛽 ≡ cardP(𝛼). Since𝛽 is an ordinal number, we have
the opportunities 𝛼 < 𝛽 and 𝛼 ⩾ 𝛽.

If 𝛼 ⩾ 𝛽, then by Lemma 4 (1.2.3), 𝛽 ⊂ 𝛼. Hence, by Corollary 1 to Proposition 2,
card 𝛽 ⩽ card 𝛼. Now, Corollary 3 to Proposition 1 and Theorem 2 imply 𝛽 = card 𝛽 ⩽
card 𝛽 < cardP(𝛼) ≡ 𝛽.
Theorem 3. The class Card of all cardinal numbers is not a set, i. e. it is a proper class.

Proof. Assume that C ≡ Card is a set. Then, by axiom A5 (1.1.11), D ≡ ⋃⟮cc | c ∈ C⟯
is a set as well. Consider the element c ≡ P(P(D)) ∈ C. If x ∈ c, then x ∈ D, where
c ⊂ D. Consequently, by Corollary 3 to Proposition 1 and Corollary 1 to Proposition 2,
P(P(D)) ≡ c = P(c) ⩽ P(D). But this inequality contradicts Theorem 2.

1.3.3 Properties of finite sets

Lemma 1. A set A is finite iff card A ∈ 𝜔.
Proof. The assertion follows from the definition of a finite set in 1.2.6, Proposition 1
(1.3.1) and Proposition 1 (1.3.2).

Proposition 1. A set A is finite iff there exists an order relation 𝜃 on A such that the sets
⟮A, 𝜃⟯ and ⟮A, 𝜃−1⟯ are well-ordered.
Proof. Let A be a finite set, i. e. there exist a number n ∈ 𝜔 and a bijection u : n A.
Define a mapping w : n × n → A × A, setting w(i, j) ≡ (u(i), u(j)). It is clear that w is
a bijection.

By Proposition 2 (1.2.2), the linearly ordered set ⟮n, 𝜃n⟯ is well-ordered. According
to the definition from 1.2.6, the linearly ordered set ⟮n, 𝜃−1n ⟯ is also well-ordered. Con-
sider the binary relation 𝜃 ≡ w[𝜃n] on A. Then, the sets ⟮A, 𝜃⟯ and ⟮A, 𝜃−1⟯ are well-
ordered.
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Conversely, let 𝜃 be an order relation on A such that ⟮A, 𝜃⟯ and ⟮A, 𝜃−1⟯ are well-
ordered sets. By Theorem 1 (1.2.5), there are on ordinal number 𝛼 and an isotone bi-
jective mapping u : A 𝛼. Suppose that 𝜔 ⩽ 𝛼. Then, by virtue of Theorem 1 (1.2.3),
Theorem 2 (1.2.6) and Lemma 4 (1.2.3), 𝜔 ⊂ 𝛼. Thus, we can take the set B ≡ u−1[𝜔].
Since ⟮A, 𝜃−1⟯ iswell-ordered, the set B has the smallest element b. Then, b is the great-
est element of B with respect to the order 𝜃−1. Therefore, m ≡ u(b) is the greatest ele-
ment of 𝜔 = u[B] in ⟮A, ⩽⟯. But this contradicts Lemma 3 (1.2.6). It follows from this
contradiction that 𝜔 > 𝛼. By virtue of Corollary 1 to Proposition 2 (1.2.2), 𝛼 ∈ 𝜔. By
the definition from 1.2.6, A is finite.

Lemma 2. Let A and B be finite sets. Then, the set A ∪ B is finite.

Proof. By Proposition 1, there exist order relations 𝜂 and 𝜃 such that ⟮A, 𝜂⟯, ⟮A, 𝜂−1⟯,
⟮B, 𝜃⟯ and ⟮B, 𝜃−1⟯ are well-ordered sets. Consider the set C ≡ B \ A. Define a binary
relation 𝜘 on A ∪ B = A ∪ C, setting 𝜘 ≡ 𝜂 ∪ (𝜃 ∩ (C × C)) ∪ (A × C). Then, ⟮A ∪ C, 𝜘⟯ and
⟮A ∪ C, 𝜘−1⟯ are well-ordered sets. Therefore, by Proposition 1 we obtain that A ∪ C is
a finite set.

Lemma 3. Let ⟮Ai ⊂ U | i ∈ I⟯ be a collection of finite sets, indexed by a finite set I. Then,
⋃⟮Ai | i ∈ I⟯ is a finite set as well.
Proof. Consider the subset X of 𝜔 consisting of all natural numbers n such that if ⟮Ai |
i ∈ I⟯ is a collection of finite sets, indexed by a set I of the power n, then ⋃⟮Ai | i ∈
I⟯ is a finite set. It is clear that 0 ∈ X. Suppose that n ∈ X. Take any collection ⟮Ai |
i ∈ I⟯ of finite sets such that P(I) = n + 1. By Proposition 1 (1.3.2), there is a bijection
u : n + 1 → I. Consider the sets J ≡ u[n] and K ≡ {k}, where k ≡ u(n). From n + 1 =
n ∪ {n}, we infer that I = J ∪ K. By the supposition U ≡ ⋃, ⟮Ai | i ∈ J⟯ is a finite set.
Therefore, by Lemma 2, the set⋃⟮Ai | i ∈ I⟯ = U∪Ak is finite. Thismeans that n+1 ∈ X.
By the principle of natural induction, X = 𝜔.
Lemma 4. Let A and B be finite sets. Then, the sets A ∗ B and A × B are finite.

Proof. By the condition, there are a natural number n and a bijection u : n → B. Then,
themapping va : B → {a}∗B such that va(b) ≡ ⟨a, b⟩ for every b ∈ B is a bijection for
every a ∈ A. Since va ∘ u is a bijection for every a ∈ A, ⟮{a} ∗ B | a ∈ A⟯ is a collection
of finite sets, indexed by the finite set A. Consequently, by Lemma 3 the set A ∗ B is
finite. Now, by virtue of Lemma 3 (1.1.12), the set A ∗ B = ⋃⟮{a} ∗ B | a ∈ A⟯ is finite as
well.

Lemma 5. Let ⟮Ai ⊂ U | i ∈ I⟯ be a collection of finite sets, indexed by a finite set I. Then,
∏⟮Ai | i ∈ I⟯ is a finite set as well.
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Proof. Consider the subset X of 𝜔 consisting of all natural numbers n such that if ⟮Ai |
i ∈ I⟯ is a collection of finite sets, indexed by a set I of the power n, then∏⟮Ai | i ∈ I⟯
is a finite set. It is clear that 0 ∈ X. Suppose that n ∈ X. Take any collection ⟮Ai | i ∈ I⟯
of finite sets such that P(I) = n + 1. By Proposition 1 (1.3.2), there is a bijection u : n +
1 → I. Consider the element j ≡ u(n) and the set K ≡ I \ {j}. From n + 1 = n ∪ {n}, we
infer that K = u[n]. By the supposition, the set E ≡ ∏⟮Ai | i ∈ K⟯ is finite. Therefore,
by Lemma 4, the set Aj ∗ E is finite.

By virtue of Theorem 2 (1.1.12), F ≡ ∏⟮Ai | i ∈ I⟯ ∼ Aj ∗ E. Consequently, the set F
is finite. This means that n + 1 ∈ X. By the principle of natural induction, X = 𝜔.
Lemma 6. Let A be a finite set. Then, the set P(A) is finite.
Proof. Consider the subset X of 𝜔 consisting of all natural numbers n such that if A
is a set of the power n, then P(A) is a finite set. It is clear that 0 ∈ X. Suppose that
n ∈ X. Take any set A such that P(A) = n+1. By Proposition 1 (1.3.2), there is a bijection
u : n + 1 → A. Consider the sets B ≡ u[n] and C ≡ {c}, where c ≡ u(n). From n + 1 =
n∪{n}, we infer that A = B∪C and B∩C = ⌀. Consider the set Q ≡ {P∪{c} | P ∈ P(B)}.
FromQ ∼ P(B), we infer that the setQ is finite. SinceP(A) = P(B)∪Q, we conclude by
virtue of Lemma 2 that the setP(A) is finite. Thismeans that n+1 ∈ X. By the principle
of natural induction, X = 𝜔.
Lemma 7. Let A be a finite set and B ⊂ A. Then, B is a finite set as well.

Proof. By Corollary 1 to Proposition 2 (1.3.2), 𝛽 ≡ P(B) ⩽ P(A) ≡ 𝛼. By Lemma 1, we get
𝛼 ∈ 𝜔. If 𝛽 = 𝛼, then 𝛽 ∈ 𝜔. If 𝛽 < 𝛼, then by Corollary 1 to Lemma 1 (1.2.6), 𝛽 ∈ 𝜔. Now,
by Lemma 1 B is finite.

Lemma 8. Let A and B be finite sets. Then, the sets Cor(A, B) andMap(A, B) are finite.
Proof. It is clear that Map(A, B) ⊂ Cor(A, B) ⊂ P(A ∗ B). Therefore, the conclusion
follows from Lemmas 4, 6 and 7.

Lemma 9. Let A be a finite set, B be a class and u : A → B be a mapping. Then, rng u
and u are finite sets.

Proof. By Lemma 1 (1.3.2), P(rng u) ⩽ P(A). As in the proof of Lemma 7, we check that
the set rng u is finite.

Define a mapping v : A → u, setting v(a) ≡ ⟨a, u(a)⟩ for every a ∈ A. It is clear
that v is surjective. Let v(a) = v(a). Then, by Proposition 2 (1.1.6) a = a. Thus, v
is injective. Thus, v is bijective. Since A is finite, we conclude that u is finite as
well.
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Proposition 2. Let A be a finite set, B ⊂ A and B /= A. Then, card B < card A.
Proof. Consider the subset X of 𝜔, consisting of all natural numbers n such that if A
is a set of the power n + 1, A ⊂ A and A /= A, then P(A) < P(A). Let A ∼ 0 + 1 = {0}.
Then, A = {a} for some a ∈ A. If A ⊂ A and A /= A, then A = ⌀. Therefore, P(A) =
0 < 0 + 1 = P(A) by virtue of Lemma 3 (1.2.6). This means that 0 ∈ X.

Suppose that n ∈ X. Take any set A such that P(A) = (n + 1) + 1. By Proposition 1
(1.3.2), there is a bijection u : (n+1)+1 → A. Consider the sets B ≡ u[n+1] and C ≡ {c},
where c ≡ u(n+1). From (n+1)+1 = (n+1)∪{n+1}, we infer thatA = B∪C and B∩C = ⌀.

Let A ⊂ A and A /= A. Consider the sets B ≡ A∩B and C ≡ A∩C. If C = ⌀, then
A ⊂ B implies P(A) ⩽ P(B) = n+1 < (n+1)+1 = P(A) by virtue of Corollary 1 to Propo-
sition 2 (1.3.2) and Lemma 3 (1.2.6). If C /= ⌀, then C = C implies B /= B. Thus, by
the supposition, y ≡ P(B) < P(B) ≡ x. By virtue of Proposition 1 (1.2.3), y + 1 = sm{z ∈
Ord | y < z}. Therefore, y < x implies y + 1 ⩽ x.

By Proposition 1, there exist bijections v : B → x and w : B → y. Define a map-
ping f : A → x+ 1, setting f | B ≡ u and f (c) ≡ x. Similarly, define amapping g : A →
y+1, setting g | B ≡ w and g(c) ≡ y. Since themappings f and g are bijective, we infer
that P(A) = x + 1 and P(A) = y + 1. Now, by virtue of Lemma 3 (1.2.6), P(A) = y + 1 ⩽
x < x+ 1 = P(A). In both of the cases, we got the necessary inequality. This means that
n + 1 ∈ X. By the principle of natural induction, X = 𝜔.
Corollary 1. Let A be a finite set, B ⊂ A and B /= A. Then, B ≁ A.

Proof. The assertion follows from Proposition 2 and Corollary 2 to Proposition 1
(1.3.2).

The last property is characteristic for finite sets.

Lemma 10. Let A be an infinite set. Then, there exists a subset B of the set A such that
B /= A and B ∼ A.

Proof. Lemma 1 implies that 𝜘 ≡ P(A) ∉ 𝜔. By virtue of Corollary 2 to Theorem 1 (1.2.3)
and Corollary 1 to Proposition 2 (1.2.2), we get 𝜘 ⩾ 𝜔. Therefore, by Lemma 4 (1.2.3),
𝜔 ⊂ 𝜘.

By virtue of Lemma 2 (1.2.6), we can define correctly a mapping u : 𝜘 → 𝜘, setting
u(x) ≡ x + 1 ∈ 𝜔 ⊂ 𝜘 for every x ∈ 𝜔 and u(x) ≡ x for every x ∈ 𝜘 \ 𝜔. Let u(x) = u(y). If
x, y ∈ 𝜔, then x+ y = y+ 1 implies by Lemma 4 (1.2.6) x = y. If x ∈ 𝜔 and y ∈ 𝜘\𝜔, then
x + 1 = y implies by Lemma 2 (1.2.6) y ∈ 𝜔. It follows from this contradiction that this
case is impossible. Similarly, the case x ∈ 𝜘 \𝜔 and y ∈ 𝜔 is also impossible. Finally, if
x, y ∈ 𝜘\𝜔, then automatically x = y. Thismeans that u is injective. Let x ∈ 𝜘\{0} ≡ X.
If x ∈ 𝜘 \ 𝜔, then x = u(x). If x ∈ 𝜔, then by Lemma 6 (1.2.6) x = y + 1 for some y ∈ 𝜔.
Therefore, x = u(y). This means that rng u = X /= 𝜔.
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By Proposition 1 (1.3.2), there exists a bijection v : 𝜘 → A. Consider the set B ≡
v[X] /= A. Then, B ∼ X ∼ 𝜘 ∼ A.

Lemma 11. Let 𝛼 ∈ Ord \𝜔. Then, card 𝛼 = card(𝛼 + 1).
Proof. Since𝛼 ⊂ 𝛼+1,we infer byCorollary 1 to Proposition 2 (1.3.2) that P(𝛼) ⩽ P(𝛼+1).
By Lemma 10, there exists a subset X of 𝛼 such that X /= 𝛼 and X ∼ 𝛼with respect a bi-
jection u : 𝛼 → X. Consider the set Y ≡ 𝛼 \ X and take some element y ∈ Y. Define
a mapping v : 𝛼 + 1 → 𝛼, setting v | 𝛼 ≡ u and v(𝛼) ≡ y. The mapping is injective. Con-
sequently, P(𝛼 + 1) = P(rng v) ⩽ P(𝛼).

1.3.4 The first uncountable cardinal number. The enumeration of infinite cardinal
numbers

Consider the class Ω ≡ {𝛼 ∈ Ord | card 𝛼 ⩽ 𝜔}, consisting of all countable ordinal
numbers. By virtue of Lemma 2 (1.3.1) and Theorem 2 (1.3.2), 𝜔 = card𝜔 < cardP(𝜔).
Therefore, the subclass Ord \Ω is non-empty and so it has the smallest element 𝜔1.
Theorem 1.
1) 𝜔1 is a cardinal number.
2) 𝜔1 > 𝜔.
3) 𝜔1 = Ω.
4) If 𝜘 ∈ Card and 𝜘 > 𝜔, then 𝜘 ⩾ 𝜔1.
Proof. 1. If 𝛼 < 𝜔1, then 𝛼 ∈ Ω. Consequently, by Corollary 1 to Proposition 2 (1.2.2) and
Theorem 1 (1.2.3), 𝜔1 ⊂ Ω.

Suppose that 𝛼 ∼ 𝜔1. Then, P(𝜔1) = P(𝛼) ⩽ 𝜔 implies 𝜔1 ∈ Ω. But this contradicts
the definition of 𝜔1. Thus, 𝛼 ≁ 𝜔1. This means that 𝜔1 is a cardinal number.

2. Since 𝜔1 ∉ Ω, we infer that 𝜔1 = P(𝜔1) > 𝜔.
3. Let 𝛼 ∈ Ω. Suppose that 𝛼 ⩾ 𝜔1. By virtue of Lemma 4 (1.2.3) and Proposition 2

(1.3.2), 𝜔1 ⊂ 𝛼 implies 𝜔1 = P(𝜔1) ⩽ P(𝛼) ⩽ 𝜔, but this contradicts assertion 2. Conse-
quently, 𝛼 < 𝜔1, where 𝛼 ∈ 𝜔1. This means thatΩ ⊂ 𝜔1. As a result, 𝜔1 = Ω.

4. Let𝜘 be a cardinal number and𝜘 > 𝜔. Suppose that𝜔1 > 𝜘. Then,𝜘 ∈ 𝜔1 implies
𝜘 = P(𝜘) ⩽ 𝜔 by virtue of equality 3, but this contradicts the condition. Consequently,
𝜔1 ⩽ 𝜘.
It follows from this theorem that the cardinal number 𝜔1 can be called the first un-
countable cardinal number (compare with 1.3.1).

Thus, we have two infinite cardinal numbers: 𝜔0 and 𝜔1. Define now the enumer-
ation of all infinite cardinal numbers.
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Theorem 2. There is unique bijective isotone mapping ℵ: Ord Card \𝜔 such that
ℵ(0) = 𝜔0 and ℵ(1) = 𝜔1.
Proof. Denote Ord by A and Card \𝜔 by X. Consider the class U of all bijective isotone
mappings u : B → Y, where B is an initial subclass of the class A and Y is an initial
subclassof theclassX (see 1.1.15). If v ∈ U, thenbyLemma3 (1.2.4) either u ⊂ v or v ⊂ u.

Consider the correspondence w ≡ {⟨a, x⟩ ∈ A ∗ X | ∃u ∈ U (a ∈ dom u ∧ x =
u(a))}. Denote domw by C and rngw by Z. Since w = {p | ∃u ∈ U (p ∈ u)}, we con-
clude by virtue of Lemma 5 (1.1.8) that w is a mapping from C onto Z such that
C = {a | ∃u ∈ U (a ∈ dom u)}, Z = {x | ∃u ∈ U (x ∈ rng u)} andw | dom u = u for every
u ∈ U. Consequently, C is an initial subclass of the class A and Z is an initial subclass
of the class X. Besides, the mapping w is bijective and isotone.

Suppose that C /= A and Z /= X. Consider the elements a ≡ sm(A\C) and x ≡ sm(X\
Z). Take any b ∈ C and suppose that b ⩾ a. Since b ∈ dom u for some u ∈ U, we infer
that a ∈ dom u ⊂ C, but this is not true. It follows from this contradiction that b < a,
i. e. C ⊂]←, a[. Take now any b ∈]←, a[ and suppose that b ∉ C. Then, a ⩽ b, but this
is not true. It follows from this contradiction that ]←, a[⊂ C. In result C =]←, a[. Anal-
ogously, Z =]←, x[.

Consider the correspondencew ≡ w∪{⟨a, x⟩} ⊂ A∗X. Then, C ≡ domw = C∪{a}
and Z ≡ rngw = Z ∪ {x}. It follows from the previous indentation that C and Z are
initial subclasses in A and X correspondingly. Besides, w is amapping from C onto Z

such that w | C = w and w(a) = x. Therefore, the mapping w is bijective and iso-
tone. Consequently,w ∈ U. This implies a ∈ C ⊂ C, but this is not true. It follows from
the obtained contradiction that only the following three cases are possible: (1) C = A
and Z /= X; (2) C /= A and Z = X; (3) C = A and Z = X. By Lemma 5 (1.2.3), a =]←, a[= C
and Z ⊂ [0, x[= x. Since a and x are sets, we conclude that C and Z are sets. By Theo-
rem 1 (1.2.3) and Theorem 3 (1.3.2), the classes C and Z are not sets. Therefore, the first
and the second cases are not possible.

It follows from Lemma 2 (1.2.4) that the isotone bijective mapping w is unique.
Take B = 2, Y = {𝜔0, 𝜔1} and u : B → Y such that u(0) ≡ 𝜔0 and u(1) ≡ 𝜔1. Then,

u ∈ U. Therefore, w(0) = u(0) = 𝜔0 and w(1) = u(1) = 𝜔1.
The uniquely defined isotone bijectionℵ fromTheorem 2 iswritten usually in the form
of the simple collectionℵ ≡ (𝜔𝛼 ∈ Card \𝜔 | 𝛼 ∈ Ord). Thus, we have the transfinite se-
quence of cardinal numbers 0, 1, 2, . . . , 𝜔0, 𝜔1, 𝜔2, . . ..

1.3.5 Derivative cardinal numbers

Cardinal sum and product
Let (𝛼i ∈ Card | i ∈ I) be a simple collection of cardinal numbers, indexed by the (non-
empty) set I. Consider the corresponding multivalued collection ⟮𝛼i | i ∈ I⟯ ≡ 𝜑−1(𝛼i |
i ∈ I) from Corollary 1 to Lemma 3 (1.1.9). It follows from Lemma 3 (1.1.6), Proposition 4
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(1.1.6), axiom A5 (1.1.11) and the definition of disjoint union from 1.1.10 that the class
⋃d⟮𝛼i | i ∈ I⟯ is a set. The cardinal number card⋃d⟮𝛼i | i ∈ I⟯ of the set ⋃d⟮𝛼i | i ∈ I⟯
is called the (cardinal) sum of the simple collection (𝛼i | i ∈ I) and is denoted by∑(𝛼i |
i ∈ I).

By Lemma 1 (1.1.12), the class∏⟮𝛼i | i ∈ I⟯ is a set. The cardinal number card∏⟮𝛼i |
i ∈ I⟯ of the set∏⟮𝛼i | i ∈ I⟯ is called the (cardinal) product of the simple collection (𝛼i |
i ∈ I) and is denoted by P(𝛼i | i ∈ I).
Lemma 1. Let ⟮Ai | i ∈ I⟯ be a multivalued collection of sets, indexed by the set I. Then,
card⋃d⟮Ai | i ∈ I⟯ = ∑(card Ai | i ∈ I) and card∏⟮Ai | i ∈ I⟯ = P(card Ai | i ∈ I).
Proof. By the definition from 1.3.2, we see that Ai ∼ card Ai. Therefore, by Lemma 4
(1.1.10), ⋃d⟮Ai | i ∈ I⟯ ∼ ⋃d⟮card Ai | i ∈ I⟯. Similarly, by the assertion 4 of Lemma 5
(1.1.12), ∏⟮Ai | i ∈ I⟯ ∼ ∏⟮card Ai | i ∈ I⟯. Now, the assertions follow from Proposi-
tion 1 (1.3.2).

Corollary 1. Let ⟮Ai | i ∈ I⟯ be amultivalued collection of pairwise disjoint sets, indexed
by the set I. Then, card⋃⟮Ai | i ∈ I⟯ = ∑(card Ai | i ∈ I).
Proof. By Lemma 2 (1.1.10), ⋃⟮Ai | i ∈ I⟯ ∼ ⋃d⟮Ai | i ∈ I⟯. By Corollary 2 to Proposi-
tion 1 (1.3.2), card⋃⟮Ai | i ∈ I⟯ = card⋃d⟮Ai | i ∈ I⟯. Now, the necessary equality fol-
lows from Lemma 1.

Theorem 1. Let (𝛼i | i ∈ I) be a simple collection of cardinal numbers, indexed by
the set I. Then,
1) if K is a set and u : K I is a bijective mapping, then ∑(𝛼i | i ∈ I) = ∑(𝛼u(k) |

k ∈ K) and P(𝛼i | i ∈ I) = P(𝛼u(k) | k ∈ K) (the general commutativity of the sum
and the product);

2) if a collection ⟮Im | m ∈ M⟯ is a partition on the set I, indexed by the set M /= ⌀,
then ∑(𝛼i | i ∈ I) = ∑(∑(𝛼i | i ∈ Im) | m ∈ M) and P(𝛼i | i ∈ I) = P(P(𝛼i | i ∈ Im) |
m ∈ M) (the general associativity of the sum and the product).

Proof. 1. By Corollary 1 to Proposition 1 (1.1.10)⋃d⟮𝛼i | i ∈ I⟯ = ⋃d⟮𝛼u(k) | k ∈ K⟯. Thus,∑(𝛼i | i ∈ I) = ∑(𝛼u(k) | k ∈ K). By Theorem 3 (1.1.12) ∏⟮𝛼i | i ∈ I⟯ ∼ ∏⟮𝛼u(k) | k ∈ K⟯.
By Corollary 2 to Proposition 1 (1.3.2), P(𝛼i | i ∈ I) = P(𝛼u(k) | k ∈ K).

2. By Corollary 1 to Proposition 1 (1.1.10) ⋃d⟮𝛼i | i ∈ I⟯ ∼ ⋃d⟮⋃d⟮𝛼i | i ∈ I⟯ | m ∈
M⟯. Therefore, by Corollary 2 to Proposition 1 (1.3.2) and Lemma 1 ∑(𝛼i | i ∈ I) =
card⋃d⟮⋃d⟮𝛼i | i ∈ Im⟯ | m ∈ M⟯ = ∑(card⋃d⟮𝛼i | i ∈ Im⟯ | m ∈ M) = ∑(∑(𝛼i | i ∈ Im) |
m ∈ M).

By Theorem 3 (1.1.12), ∏⟮𝛼i | i ∈ I⟯ ∼ ∏⟮∏⟮𝛼i | i ∈ Im⟯ | m ∈ M⟯. Therefore, as
above P(𝛼i | i ∈ I) = card∏⟮∏⟮𝛼i | i ∈ Im⟯ | m ∈ M⟯ = P(card∏⟮𝛼i | i ∈ Im⟯ | m ∈ M) =
P(P(𝛼i | i ∈ Im) | m ∈ M).
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Theorem 2. Let ⟮Im | m ∈ M⟯ be a collection of sets and (𝜘m | m ∈ M) be a simple col-
lection of simple collections𝜘m ≡ (𝛼mi | i ∈ Im) of cardinal numbers, indexed by the non-
empty sets M and Im. Consider the set U ≡ ∏⟮Im | m ∈ M⟯. Then, P(∑(𝛼mi | i ∈ Im) |
m ∈ M) = ∑(P(𝛼mu(m) | m ∈ M) | u ∈ U) (the general distributivity of the product with
respect to the sum).

Proof. By Corollary 1 to Theorem 1 (1.1.13), ∏⟮⋃d⟮𝛼mi | i ∈ Im⟯ | m ∈ M⟯ ∼ ⋃d⟮∏⟮𝛼mu(m) | m ∈ M⟯ | u ∈ U⟯. Therefore, by Lemma 1 and Corollary 2 to Proposition 1
(1.3.2), P(∑(𝛼mi | i ∈ Im) | m ∈ M) = card∏⟮⋃d⟮𝛼mi | i ∈ Im⟯ | m ∈ M⟯ = card⋃d⟮∏⟮𝛼mu(m) | m ∈ M⟯ | u ∈ U⟯ = ∑(P(𝛼mu(m) | m ∈ M) | u ∈ U).
Let 𝛼, 𝛼, 𝛼, 𝛼, . . . be cardinal numbers. Then, (𝛼, 𝛼), (𝛼, 𝛼, 𝛼), (𝛼, 𝛼, 𝛼, 𝛼),. . .
are the corresponding simple collections (see 1.1.11).

The cardinal numbers ∑(𝛼, 𝛼), ∑(𝛼, 𝛼, 𝛼), ∑(𝛼, 𝛼, 𝛼, 𝛼),. . . will be called
the (cardinal) sums of the simple sequential pair (𝛼, 𝛼), triplet (𝛼, 𝛼, 𝛼), quadruplet
(𝛼, 𝛼, 𝛼, 𝛼),. . . and will be denoted also by 𝛼+𝛼, 𝛼+𝛼 +𝛼, 𝛼+𝛼 +𝛼 +𝛼,. . . Ḃy
the definition of the simple sequential pair from 1.1.11, we have 𝛼 + 𝛼 = ∑(xi | i ∈ 2) ≡
card⋃d⟮xi | i ∈ 2⟯ = card(𝛼 ∪d 𝛼), where x0 ≡ 𝛼 and x1 ≡ 𝛼. In the similar manner,
𝛼 + 𝛼 + 𝛼 = ∑(xi | i ∈ 3) ≡ card⋃d⟮xi | i ∈ 3⟯ = card(𝛼 ∪d 𝛼 ∪d 𝛼), where x0 ≡ 𝛼,
x1 ≡ 𝛼 and x2 ≡ 𝛼, and so on.

Analogously, the cardinal numbers P(𝛼, 𝛼), P(𝛼, 𝛼, 𝛼), P(𝛼, 𝛼, 𝛼, 𝛼),. . . will
be called the (cardinal) products of the simple sequential pair (𝛼, 𝛼), triplet (𝛼, 𝛼, 𝛼),
quadruplet (𝛼, 𝛼, 𝛼, 𝛼), . . . and will be denoted by 𝛼𝛼, 𝛼𝛼𝛼, 𝛼𝛼𝛼𝛼,. . . Ȧs
above, 𝛼𝛼 = P(xi | i ∈ 2), 𝛼𝛼𝛼 = P(xi | i ∈ 3), 𝛼𝛼𝛼𝛼 = P(xi | i ∈ 4),. . . , where
x0 ≡ 𝛼, x1 ≡ 𝛼, x2 ≡ 𝛼, x3 ≡ 𝛼,. . .

For a simple sequence (𝛼0, . . . , 𝛼n−1) ≡ (𝛼i ∈ Card | i ∈ n) (see 1.2.6) of cardinal
numbers, indexed by a set n ∈ 𝜔 \ 3, along with the notations ∑(𝛼i | i ∈ n) and
P(𝛼i | i ∈ n) we shall use also the notations 𝛼0 + ⋅ ⋅ ⋅ + 𝛼n−1 and 𝛼0 . . . 𝛼n−1.
Lemma 2.

1) Let (𝛼i | i ∈ {p}) be a simple collection of cardinal numbers, indexed by the
set {p}. Then,∑(𝛼i | i ∈ {p}) = 𝛼p and P(𝛼i | i ∈ {p}) = 𝛼p.

2) Let (𝛼i | i ∈ {p, q}) be a simple collection of cardinal numbers, indexed by the set{p, q} with different elements p /= q. Then, ∑(𝛼i | i ∈ {p, q}) = 𝛼p + 𝛼q and P(𝛼i | i ∈{p, q}) = 𝛼p𝛼q.
Proof. We shall prove only assertion 2. Consider the simple collection (xi | i ∈ 2) such
that x0 ≡ 𝛼p and x1 ≡ 𝛼q. Consider the sets I ≡ 2 and K ≡ {p, q} and the bijective map-
ping u : K I such that u(p) ≡ 0 and u(q) ≡ 1. Then, by Theorem 1, we get 𝛼p +𝛼q =∑(xi | i ∈ I) = ∑(xu(k) | k ∈ K). From xu(p) = x0 ≡ 𝛼p and xu(q) = x1 ≡ 𝛼q, we conclude
that (xu(k) | k ∈ K) = (𝛼k | k ∈ K). As a result, 𝛼p + 𝛼q = ∑(𝛼k | k ∈ K).

For the product, the arguments are the same.
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Theorem 3. Let x, y and z be cardinal numbers. Then:
1) x + y = y + x and xy = yx (the commutativity of the sum and the product);
2) x + y + z = x + (y + z) = (x + y) + z and xyz = x(yz) = (xy)z (the associativity of

the sum and the product);
3) x(y + z) = xy + xz (the distributivity of the product with respect to the

sum).

Proof. 1. Take the sets I ≡ 2 and K ≡ 2. Consider the simple collections (𝛼i ∈ {x, y} |
i ∈ I) and (𝛽k ∈ {x, y} | k ∈ K) such that 𝛼0 ≡ x, 𝛼1 ≡ y, 𝛽0 ≡ y and 𝛽1 ≡ x. Take the bi-
jective mapping u : K I such that u(0) ≡ 1 and u(1) ≡ 0. From 𝛼u(0) = 𝛼1 ≡ y ≡ 𝛽0
and 𝛼u(1) = 𝛼0 ≡ x ≡ 𝛽1, we conclude that (𝛼u(k) | k ∈ K) = (𝛽k | k ∈ K). As a result, by
virtue of Theorem 1, we get the chain of equalities x + y = ∑(𝛼i | i ∈ I) = ∑(𝛼u(k) | k ∈
K) = ∑(𝛽k | k ∈ K) = y + x.

For the product, the arguments are the same.
2. Take the sets I ≡ 3, M ≡ 2, I0 ≡ 1, and I1 ≡ {1, 2}. Then, the collection (Im | m ∈

M) is a partition on the set I. Consider the simple collections (𝛼i | i ∈ I), (𝛼i | i ∈ I0),
and (𝛼i | i ∈ I1), such that 𝛼0 ≡ x, 𝛼1 ≡ y and 𝛼2 ≡ z. Then, by Theorem 1 and Lemma 2,
we get the chain of equalities x + y + z = ∑(𝛼i | i ∈ I) = ∑(∑(𝛼i | i ∈ Im) | m ∈ M) =
∑(𝛼i | i ∈ I0) + ∑(𝛼i | i ∈ I1).

Further, by Lemma 2, we have∑(𝛼i | i ∈ I0) = 𝛼0 ≡ x and∑(𝛼i | i ∈ I1) = 𝛼1 + 𝛼2 =
y + z. As a result, we get x + y + z = x + (y + z).

In a similar way, we prove the equality x + y + z = (x + y) + z.
For the product, the arguments are the same.
3. Take the sets M ≡ 2 = {0, 1}, I0 ≡ 1, and I1 ≡ 2. Consider the simple collection

𝜘0 ≡ (𝛼0i | i ∈ I0) and 𝜘1 ≡ (𝛼1i | i ∈ I1) such that 𝛼00 ≡ x, 𝛼10 ≡ y and 𝛼11 ≡ z. Then,
using Lemma 2, we get the chain of equalities x(y + z) = 𝛼00(𝛼10 + 𝛼11) = ∑(𝛼0i | i ∈
I0) ∑(𝛼1i | i ∈ I1) = P(∑(𝛼mi | i ∈ Im) | m ∈ M). Consider the set U ≡ ∏⟮Im | m ∈ M⟯.
Then, using Theorem 2, we come to the equality x(y + z) = ∑(P(𝛼mu(m) | m ∈ M) | u ∈
U). If u ∈ U, then u(0) ∈ I0 = 1 and u(1) ∈ I1 = 2. Thus,wehaveonly twoopportunities:
either u(0) = 0 and u(1) = 0 or u(0) = 0 and u(1) = 1. Denote the first mapping by p
and the secondby q. Then,U ⊂ {p, q}. It is clear thatU = {p, q}. Therefore, by Lemma2
we obtain x(y+ z) = P(𝛼mp(m) | m ∈ M)+P(𝛼mq(m) | m ∈ M) = 𝛼0p(0)𝛼1p(1)+𝛼0q(0)𝛼1q(1) =
xy + xz.
Less general than the property of distributivity in Theorem 2 and more general than
the property of distributivity in Theorem 3 is the following property of distributivity of
the binary product with respect to the general sums.

Proposition 1. Let (xj | j ∈ J) and (yk | k ∈ K) be simple collections of cardinal num-
bers, indexed by non-empty sets J and K. Then, (∑(xj | j ∈ J))(∑(yk | k ∈ K)) = ∑(xjyk |(j, k) ∈ J × K).
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Proof. Take M ≡ 2, I0 ≡ J, I1 ≡ K, 𝛼0i ≡ xi for every i ∈ J, 𝛼1i ≡ yi for every i ∈ K, 𝜘0 ≡(xj | j ∈ J) = (𝛼0i | i ∈ I0), 𝜘1 ≡ (yk | k ∈ K) = (𝛼1i | i ∈ I1), and U ≡ J × K = ∏⟮Im | m ∈
M⟯ /= ⌀.

Then, the necessary equality is a particular case of the corresponding equality in
Theorem 2.

Corollary 1. Let x and y be cardinal numbers and (xj | j ∈ J) and (yk | k ∈ K) be simple
collections of cardinal numbers, indexed by non-empty sets J and K. Then, x∑(yk | k ∈
K) = ∑(xyk | k ∈ K) and (∑(xj | j ∈ J))y = ∑(xjy | j ∈ J).
Proof. To check the first equalitywe can take J ≡ 1 and x0 ≡ x and apply the first asser-
tion of Lemma 2. Then, this equality is a particular case of the equality of Proposition 1.
To check the second equality, we can take K ≡ 1 and y0 ≡ y.

Lemma 3. Let (𝛼i | i ∈ I) be a simple collection of cardinal numbers, indexed by a non-
empty set I, and J be a non-empty subset of I. Then:
1) if 𝛼i = 0 for every i ∈ I \ J, then ∑(𝛼i | i ∈ I) = ∑(𝛼i | i ∈ J);
2) if 𝛼i = 1 for every i ∈ I \ J, then P(𝛼i | i ∈ I) = P(𝛼i | i ∈ J).
Proof. 1. If 𝛼i = 0 ≡ ⌀, then 𝛼i∗{i} = ⌀∗{i} = ⌀. Therefore,⋃d⟮𝛼i | i ∈ I⟯ = ⋃⟮𝛼i∗{i} |
i ∈ I⟯ = ⋃⟮𝛼i ∗ {i} | i ∈ J⟯ = ⋃d⟮𝛼i | i ∈ J⟯ implies the necessary equality.

2. Denote the sets ∏⟮𝛼i | i ∈ I⟯ and ∏⟮𝛼i | i ∈ J⟯, respectively, by P and Q. By
Lemma 4 (1.1.12), the projection u ≡ pJ : P → Q is surjective. Take any elements
e ≡ (xi | i ∈ I) and f ≡ (yi | i ∈ I) of the set P and suppose that ue = uf . Then, xi = yi
for every i ∈ J. By the definition of product xi ∈ 𝛼i and yi ∈ 𝛼i for every i ∈ K ≡ I \ J.
Since 𝛼i = 1 = {0} we infer that xi = 0 = yi for every i ∈ K. Thus, e = f , i. e. the map-
ping u is injective. This means that P ∼ Q. By Corollary 3 to Proposition 1 (1.3.2), this
implies the necessary equality.

Corollary 1. Let 𝛼 be a cardinal number. Then, 𝛼 + 0 = 𝛼1 = 𝛼.
Corollary 2. Let 𝛼 and 𝛽 be cardinal numbers and (𝛼i | i ∈ I) and (𝛾i | i ∈ I) be simple
collections of cardinal numbers, indexed by the set I, such that𝛼i = 𝛼 and 𝛾i = 1 for every
i ∈ I and I ∼ 𝛽. Then, 𝛼𝛽 = ∑(𝛼i | i ∈ I) and 𝛽 = ∑(𝛾i | i ∈ I).
Proof. It is evident that 𝛽 ∼ I = ⋃⟮{i} | i ∈ I⟯ ∼ ⋃⟮{𝛾i} ∗ {i} | i ∈ I⟯ ≡ ⋃d⟮𝛾i | i ∈ I⟯. By
virtue of Proposition 1 (1.3.2), we infer that 𝛽 = ∑(𝛾i | i ∈ I). Therefore, using Corol-
lary 1 to Proposition 1 and Corollary 1 to Lemma 3, we get 𝛼𝛽 = 𝛼∑(𝛾i | i ∈ I) = ∑(𝛼𝛾i |
i ∈ I) = ∑(𝛼i | i ∈ I).
Corollary 3. Let (𝛼i | i ∈ I)bea simple collection of cardinal numbers, indexedbyanon-
empty set I. Then:
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1) if 𝛼i = 0 for every i ∈ I, then∑(𝛼i | i ∈ I) = 0;
2) if 𝛼i = 1 for every i ∈ 1, then P(𝛼i | i ∈ I) = 1;
Proof. 1. By the condition, there is j ∈ I. Denote {j} by J. Then, by Lemma 3 and
Lemma 2, we have∑(𝛼i | i ∈ I) = ∑(𝛼i | i ∈ J) = 𝛼j = 0.

2. The second assertion is checked in the same way.

Lemma 4. Let (𝛼i | i ∈ I)bea simple collectionof cardinal numbers, indexedby the (non-
empty) set I. Then, the following conditions are equivalent:
1) 𝛼i /= 0 for every i ∈ I;
2) P(𝛼i | i ∈ I) /= 0.
Proof. (1) ⊢ (2). By virtue of Theorem 1 (1.1.12),∏⟮𝛼i | i ∈ I⟯ /= ⌀. This gives (2).(2) ⊢ (1). Condition 2 implies∏⟮𝛼i | i ∈ I⟯ /= ⌀. Thismeans that there exists amap-
ping u ∈ ∏⟮𝛼i | i ∈ I⟯. Then, u(i) ∈ 𝛼i implies 𝛼i /= 0 for every i ∈ I.
The following assertion is a generalization of Lemma 4 (1.2.6).

Lemma 5. Let 𝛼 and 𝛽 be cardinal numbers and 𝛼 + 1 = 𝛽 + 1. Then, 𝛼 = 𝛽.
Proof. It follows from the definition that 𝛼 + 1 = ∑(xi | i ∈ 2) and 𝛽 + 1 = ∑(yi | i ∈ 2)
where x0 ≡ 𝛼, x1 ≡ 1, y0 ≡ 𝛽, and y1 ≡ 1. Therefore,∑(xi | i ∈ 2) = 𝛼+ 1 = 𝛽+ 1 = ∑(yi |
i ∈ 2) implies 𝛼 ≡ x0 = y0 ≡ 𝛽.

Cardinal degree
Let 𝛼 and 𝛽 be cardinal numbers. The cardinal number cardMap(𝛽, 𝛼) of the set
Map(𝛽, 𝛼) of all mappings from the set 𝛽 into the set 𝛼 is called the (cardinal) degree
of the cardinal 𝛼 with the cardinal exponent 𝛽 and is denoted by 𝛼𝛽. Note that we have
already used this notation in 1.1.8. Therefore, it is necessary to distinguish the cardinal
degree from the degree of the set 𝛼with the exponent 𝛽 as a set.
Lemma 6. Let A and B be sets and 𝛼 ≡ card A and 𝛽 ≡ card B. Then, cardMap(B, A) =
𝛼𝛽.
Proof. By the condition, there exist somebijectivemappings u : A → 𝛼 and v : 𝛽 → B.
Define a mapping w : Map(B, A) → Map(𝛽, 𝛼), setting wf ≡ u ∘ f ∘ v for every f : B →
A. It is easy to check that w is bijective. By Corollary 2 to Proposition 1 (1.3.2), this
implies the necessary equality.

Lemma 7. Let 𝛼 and 𝛽 be cardinal numbers and (𝛼i | i ∈ I) be a simple collection of
cardinal numbers, indexed by the set I such that 𝛼i = 𝛼 for every i ∈ I and I ∼ 𝛽. Then,𝛼𝛽 = P(𝛼i | i ∈ I).
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Proof. As in the proof of Lemma 6, it is checked that Map(𝛽, 𝛼) ∼ Map(I, 𝛼) =
∏⟮𝛼i | i ∈ I⟯. By Corollary 2 to Proposition 1 (1.3.2), this implies the necessary
equality.

Corollary 1. Let𝛼be a cardinal number and (𝛽i | i ∈ I)be a simple collection of cardinal
numbers, indexed by the non-empty set I. Then, 𝛼∑(𝛽i |i∈I) = P(𝛼𝛽i | i ∈ I)
Proof. Denote the left part of this equality by L and the right part by R. Consider the set
K ≡ ⋃d⟮𝛽i | i ∈ I⟯ and the collections ⟮Ki | i ∈ I⟯ and ⟮𝛼k | k ∈ K⟯ such that Ki ≡ 𝛽i ∗ {i}
for every i ∈ I and 𝛼k ≡ 𝛼 for every k ∈ K.

Then, by Lemma 6, Theorem 1, and Lemma 7, we have the equalities L ≡ cardMap
(card K, 𝛼) = cardMap(K, 𝛼) = card∏⟮𝛼k | k ∈ K⟯ ≡ P(𝛼k | k ∈ K) = P(P(𝛼k | k ∈ Ki) |
i ∈ I) = R.

Corollary 2. Let 𝛼, 𝛾 and 𝛿 be cardinal numbers. Then, 𝛼𝛾+𝛿 = 𝛼𝛾𝛼𝛿.
Proof. Consider the simple collection (𝛽i | i ∈ 2) such that 𝛽0 ≡ 𝛾 and 𝛽1 ≡ 𝛿. Then, by
Corollary 1 𝛼𝛾+𝛿 = 𝛼∑(𝛽i |i∈2) = P(𝛼𝛽i | i ∈ 2) = 𝛼𝛾𝛼𝛿.
Corollary 3. Let 𝛼, 𝛽 and 𝛾 be cardinal numbers. Then, 𝛼𝛽𝛾 = (𝛼𝛽)𝛾.
Proof. Consider the simple collection (𝛽i) | i ∈ 𝛾 such that 𝛽i ≡ 𝛽 for every i ∈ 𝛾. Then,
by Corollary 2 to Lemma 3, we get 𝛽𝛾 = ∑(𝛽i | i ∈ 𝛾). Therefore, by Corollary 1 𝛼𝛽𝛾 =
P(𝛼𝛽i | i ∈ 𝛾) = cardMap(𝛾, 𝛼𝛽) = (𝛼𝛽)𝛾.
Lemma 8. Let (𝛼i | i ∈ I)bea simple collection of cardinal numbers, indexedby the non-
empty set I, and 𝛽 be a cardinal number. Then, (P(𝛼i | i ∈ I))𝛽 = P(𝛼𝛽i | i ∈ I).
Proof. Denote the left part of this equality by L and the right part by R. Consider the set
A ≡ I ×𝛽 and the collections ⟮Ai | i ∈ I⟯, ⟮Ax | x ∈ 𝛽⟯, (𝛼a | a ∈ A), (𝜋i | i ∈ I), and (𝜋x |
x ∈ 𝛽), such that Ax ≡ I×{x} for every x ∈ 𝛽, Ai ≡ {i}×𝛽 for every i ∈ I, 𝛼a ≡ 𝛼i for every
a ≡ (i, x) ∈ A, and 𝜋x ≡ P(𝛼i | i ∈ I) for every x ∈ 𝛽.

Define the collection (ux | x ∈ 𝛽) of bijective mappings ux : Ax → I setting u(i,x) ≡
i for every (i, x) ∈ Ax. Then, by the assertion 1) of Theorem 3 (1.1.12) ∏⟮𝛼i | i ∈ I⟯ ∼∏⟮𝛼u(a) | a ∈ Ax⟯ = ∏⟮𝛼i | (i, x) ∈ Ax⟯ = ∏⟮𝛼a | a ∈ Ax⟯. Thus, by Corollary 2 to Propo-
sition 1 (1.3.2), 𝜋x = P(𝛼a | a ∈ Ax).

Therefore, by Lemma 7 and Theorem 1, we get the equalities L = P(𝜋x | x ∈ 𝛽) =
P(P(𝛼a | a ∈ Ax) | x ∈ 𝛽) = P(𝛼a | a ∈ A) = P(P(𝛼a | a ∈ Ai) | i ∈ I) = R.

Lemma 9. Let𝛼be a cardinal number. Then,𝛼0 = 1,𝛼1 = 𝛼, and 1𝛼 = 1. Besides, if𝛼 /= 0,
then 0𝛼 = 0.

 EBSCOhost - printed on 2/10/2023 4:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



1.3.5 Derivative cardinal numbers | 97

Proof. The first formula follows from the equality Map(⌀, 𝛼) = {⌀}. Since Map(1, 𝛼) ∼
𝛼,we infer byProposition 1 (1.3.2) that𝛼1 = 𝛼. The third formula follows from theequal-
ity Map(𝛼, 1) = {𝛼∗ {0}}. Finally, if 𝛼 /= ⌀, then Map(𝛼, 0) ⊂ 𝛼∗0 = 0 implies the forth
formula.

Note that 00 = 1.
Proposition 2. Let A be a set and 𝛼 be its cardinal number. Then, cardP(A) = 2𝛼.
Proof. For every subset B of the set A consider the function g : A → 2 such that
g(b) ≡ 1 for every b ∈ B and g(a) ≡ 0 for every a ∈ A \B. Define amapping 𝜒: P(A) →
Map(A, 2), setting 𝜒(B) ≡ g. Let B /= C, and suppose that there exists b ∈ B \ C. Then,
𝜒(B)(b) = 1 and 𝜒(C)(b) = 0 means that 𝜒(B) /= 𝜒(C). Therefore, 𝜒 is injective. Let
g ∈ Map(A, 2). Then, for the subset B ≡ {a ∈ A | g(a) = 1}, we have 𝜒(B) = g. This
means that 𝜒 is surjective. Consequently, 𝜒 is bijective. Using Corollary 2 to Proposi-
tion 1 (1.3.2), we get the necessary equality.

Lemma 10. Let 𝛼 and 𝛽 be cardinal numbers. Then, the following conclusions are equiv-
alent:
1) 𝛼 ⩽ 𝛽;
2) there is a cardinal number 𝛾 such that 𝛽 = 𝛼 + 𝛾.
Proof. (1) ⊢ (2). Consider the set C ≡ 𝛽 \ 𝛼 and its cardinal number 𝛾. Then, we have
the following chain of equivalences: 𝛽 = 𝛼∪ C ∼ 𝛼∪d C ∼ 𝛼∪d 𝛾. Using the Corollary 3
to Proposition 1 (1.3.2), we infer that 𝛽 = card(𝛼 ∪d 𝛾) = 𝛼 + 𝛾.(2) ⊢ (1). By Corollary 1 to Proposition 2 (1.3.2), 𝛼 = card(𝛼 ∗ {0}) ⩽ card((𝛼 ∗ {0}) ∪
(𝛾 ∗ {1})) = card(𝛼 ∪d 𝛾) = 𝛼 + 𝛾 = 𝛽.
Lemma 11. Let (𝛼i | i ∈ I) and (ai | i ∈ I) be simple collections of cardinal numbers, in-
dexed by the non-empty set I such that 𝛼i ⩽ ai for every i ∈ I. Then,∑(𝛼i | i ∈ I) ⩽ ∑(ai |
i ∈ I) and P(𝛼i | i ∈ I) ⩽ P(ai | i ∈ I).
Proof. It follows from the condition, Theorem 1 (1.2.3) and Lemma4 (1.2.3) that𝛼i ⊂ ai.
Consider the identical mapping ui ≡ id𝛼i ,ai : 𝛼i ai (see 1.1.8). By Lemma 5 (1.1.12),
themapping v ≡ ∏m⟮ui | i ∈ I⟯ : ∏⟮𝛼i | i ∈ I⟯ → ∏⟮ai | i ∈ I⟯ is injective. By Lemma 4
(1.1.10), the mapping u ≡ ⋃dm⟮ui | i ∈ I⟯ : ⋃d⟮𝛼i | i ∈ I⟯ → ⋃d⟮ai | i ∈ I⟯ is injective.
Thus, byCorollary 2 toProposition 1 (1.3.2) andCorollary 1 toProposition2 (1.3.2),∑(𝛼i |
i ∈ I) = card(rng u) ⩽ ∑(ai | i ∈ I) and P(𝛼i | i ∈ I) = card(rng v) ⩽ P(ai | i ∈ I).
Corollary 1. Let 𝛽, 𝛾, b, and c be cardinal numbers such that 𝛽 ⩽ b and 𝛾 ⩽ c. Then,
𝛽 + 𝛾 ⩽ b + c and 𝛽𝛾 ⩽ bc.
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Proof. By the definition 𝛽 + 𝛾 = ∑(𝛼i | i ∈ 2) and b + c = ∑(ai | i ∈ 2) where 𝛼0 ≡ 𝛽,𝛼1 ≡ 𝛾, a0 ≡ b and a1 ≡ c. Therefore, the inequalities 𝛼0 ⩽ a0 and 𝛼1 ⩽ a1 imply by
Lemma 11 the inequality 𝛽 + 𝛾 ⩽ b + c.

The second inequality is checked in a similar way.

Corollary 2. Let 𝛽 be a cardinal number. Then, 𝛽 ⩽ 𝛽 + 1.
Corollary 3. Let x, y and z be cardinal numbers such that x = y. Then, x + z = y + z and
xz = yz.

Proof. The equalities follow from Corollary 1 because the order relation is antisym-
metric.

Corollary 4. Let (ai | i ∈ I) be a simple collection of cardinal numbers, indexed by
the set I, and J be a subset of the set I. Then, ∑(ai | i ∈ J) ⩽ ∑(ai | i ∈ I). If, besides,
ai /= 0 for every i ∈ I \ J, then P(ai | i ∈ J) ⩽ P(ai | i ∈ I).
Proof. Define a simple collection (𝛼i | i ∈ I), setting 𝛼i ≡ ai for every i ∈ J and 𝛼i ≡ 0
(respectively 𝛼i ≡ 1) for every i ∈ I \ J. Now, apply Lemma 11.

Corollary 5. Let 𝛽, 𝛾, b and b be cardinal numbers such that 𝛽 ⩽ b, 𝛾 ⩽ c and b > 0.
Then, 𝛽𝛾 ⩽ bc.

Proof. By Lemma 7, we have 𝛽𝛾 = P(𝛽i | i ∈ 𝛾) and b𝛾 = P(bi | i ∈ 𝛾), where 𝛽i ≡ 𝛽 and
bi ≡ b. Then, Lemma 11 implies 𝛽𝛾 ⩽ b𝛾. In a similar way, bc = P(bi | i ∈ c). It follows
from the condition, Theorem 1 (1.2.3) and Lemma 4 (1.2.3) that 𝛾 ⊂ c. Therefore, by
Corollary 4 b𝛾 ⩽ bc.

Corollary 6. Let x, y and z be cardinal numbers such that x = y. Then, xz = yz and
zx = zy.

Proof. The equalities follow from Corollary 5 because the order relation is antisym-
metric.

1.3.6 Derivative natural numbers

Now, we have the definition of ordinal sum in 1.2.9 and the definition of cardinal sum
in 1.3.5. These sums may be different in general.

Todistinguish for a cardinal number𝛼 the ordinal number𝛼+1, introduced in 1.2.3,
from the cardinal sum of these numbers, we shall denote sometimes this cardinal sum
by 𝛼 +c 1.
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Lemma 1. Let m and n be natural numbers. Then, m +o n = n + m.
Proof. Denote the ordinal number in the left part of this equality by 𝛼 and the cardi-
nal number in the right part by 𝛽. Then, 𝛼 ≈ m +o n ∼ m ∪d n ∼ 𝛽 implies card 𝛼 = 𝛽.
According to Proposition 1 (1.3.2), 𝛽 ⩽ 𝛼. Therefore, by Lemma 4 (1.2.3) 𝛽 ⊂ 𝛼. By
the definition from 1.2.6, the sets m ∗ {0} ∼ m and n ∗ {1} ∼ n are finite. Thus,
by Lemma 2 (1.3.3), the set m ∪d n is finite as well. Consequently, the set 𝛼 is fi-
nite. Supposing that 𝛽 /= 𝛼, we deduce by Proposition 2 (1.3.3) that 𝛽 = card 𝛽 <
card 𝛼, but this contradicts the previous equality. As a result, we conclude that
𝛽 = 𝛼.
Thus, for natural numbers the binary ordinal and cardinal sums coincide. Moreover,
if m is a natural number, then m + 1 = m +o 1 = m +c 1.
Theorem 1. Let 𝛼 be a cardinal number. Then, the following conclusions are equivalent:
1) 𝛼 is a natural number;
2) 𝛼 < 𝛼 +c 1.
Proof. (1) ⊢ (2). By Lemma 3 (1.2.6), Proposition 3 (1.2.9), and Lemma 1, we get 𝛼 <
𝛼 +o 1 = 𝛼 +c 1.(2) ⊢ (1). Let 𝛼 < 𝛼 +c 1. Suppose that 𝛼 ∉ 𝜔. By the Proposition 3 (1.2.9) and
Lemma 11 (1.3.3), 𝛼 = card(𝛼+o 1). Consequently, 𝛼 ∼ 𝛼+o 1 ≈ 𝛼∪do 1 implies 𝛼 ∼ 𝛼∪d 1.
Therefore, by Proposition 1 (1.3.2), 𝛼 = card(𝛼 ∪d 1) = 𝛼 +c 1, but this contradicts
the initial inequality. Thus, 𝛼 ∈ 𝜔.
Lemma 2. Let 𝛼 be a cardinal number. Then, the following conclusions are equivalent:
1) 𝛼 is a natural number;
2) 𝛼 +c 1 is a natural number.
Proof. (1) ⊢ (2). By Theorem 1, Lemma 1, Proposition 3 (1.2.9), and Lemma 3 (1.2.6), we
obtain 𝛼 < 𝛼 +c 1 = 𝛼 +o 1 = 𝛼 + 1 < (𝛼 + 1) + 1 = (𝛼 +c 1) +c 1. Therefore, by Theorem 1,
we see that 𝛼 +c 1 is a natural number.

(2) ⊢ (1). Suppose that𝛼 = 𝛼+c 1. Then, Theorem 1 implies𝛼 = 𝛼+c 1 < (𝛼+c 1)+c 1 =𝛼 +c 1 = 𝛼. It follows from this contradiction that our supposition is not valid. Thus,
by Corollary 2 to Lemma 11 (1.3.5), we get 𝛼 < 𝛼 +c 1. Now, by Theorem 1, we see that 𝛼
is a natural number.

Sum, product, and raising to a degree for natural numbers
Lemma 3. Let (ni | i ∈ I) be a simple collection of natural numbers, indexed by a finite
set I. Then, the cardinal numbers ∑(ni | i ∈ I) and P(ni | i ∈ I) are natural.
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Proof. By the definition from 1.2.6, the sets ni ∗ {i} ∼ ni are finite. Thus, by Lemma 2
(1.3.3), the set X ≡ ⋃d⟮ni | i ∈ I⟯ is finite as well, where X ∼ m for some m ∈ 𝜔. By
virtue of Proposition 1 (1.3.2), this equivalence implies the first assertion of this
lemma.

By Lemma 5 (1.3.3), the set∏⟮ni | i ∈ I⟯ is finite. As above, this implies the second
assertion.

Corollary 1. Let 𝛼, 𝛼, 𝛼, 𝛼, . . . be natural numbers. Then, the cardinal numbers 𝛼 +
𝛼, 𝛼 + 𝛼 + 𝛼, 𝛼 + 𝛼 + 𝛼 + 𝛼,. . . and 𝛼 ⋅ 𝛼, 𝛼 ⋅ 𝛼 ⋅ 𝛼, 𝛼 ⋅ 𝛼 ⋅ 𝛼 ⋅ 𝛼,. . .are natural.
Note that usually the symbol of multiplication “⋅” is omitted.

Corollary 2. Let m and n be natural numbers. Then, the cardinal number mn is natural.

Proof. The assertion follows from Lemma 7 (1.3.5) and Lemma 3.

Now, we shall formulate especially for natural numbers some properties of addition,
multiplication, and raising to a degree, proven for cardinal numbers in 1.3.5.

Theorem 2. Let (ni | i ∈ I) be a simple collection of natural numbers, indexed by the fi-
nite set I. Then:
1) if K is a finite set and u : K I be a bijective mapping, then ∑(ni | i ∈ I) =∑(nu(k) | k ∈ K) and P(ni | i ∈ I) = P(nu(k) | k ∈ K) (the general commutativity of

the sum and the product);
2) if a collection ⟮Im | m ∈ M⟯ is a finite partition of the set I, indexed by the fi-

nite non-empty set M, then ∑(ni | i ∈ I) = ∑(∑(ni | i ∈ Im) | m ∈ M) and P(ni |
i ∈ I) = P(P(ni | i ∈ Im) | m ∈ M) (the general associativity of the sum and the
product).

Proof. These assertions aredirect consequences of Theorem1 (1.3.5) andLemma3.

Theorem 3. Let ⟮Im | m ∈ M⟯ be a collection of finite sets and (𝜘m | m ∈ M) be a sim-
ple collection of simple collections 𝜘m ≡ (nmi | i ∈ Im) of natural numbers, indexed by
the non-empty finite sets M and Im. Consider the finite set U ≡ ∏⟮Im | m ∈ M⟯. Then,
P(∑(nmi | i ∈ Im) | m ∈ M) = ∑(P(nmu(m) | m ∈ M) | u ∈ U) (the general distributivity
of the product with respect to the sum).

Proof. This assertion is a direct consequence of Theorem 2 (1.3.5) and Lemma 3.

Lemma 4.
1) Let (ni | i ∈ {p}) be a simple collection of natural numbers, indexed by the set {p}.

Then,∑(ni | i ∈ {p}) = np and P(ni | i ∈ {p}) = np.
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2) Let (ni | i ∈ {p, q}) be a simple collection of natural numbers, indexed by the set
{p, q} with different elements p /= q. Then, ∑(ni | i ∈ {p, q}) = np + nq and P(ni |
i ∈ {p, q}) = npnq.

Proof. This lemma is simply a special case of Lemma 2 (1.3.5).

Theorem 4. Let x, y and z be natural numbers. Then:
1) x + y = y + x and xy = yx (the commutativity of the sum and the product);
2) x + y + z = x + (y + z) = (x + y) + z and xyz = x(yz) = (xy)z (the associativity of

the sum and the product);
3) x(y + z) = xy + xz (the distributivity of the product with respect to the sum).
Proof. All the assertions are direct consequences of Theorem 3 (1.3.5) and Corollary 1
to Lemma 3.

Proposition 1. Let (xj | j ∈ J) and (yk | k ∈ K) be simple collections of natural numbers,
indexed by non-empty finite sets J and K. Then, (∑(xj | j ∈ J))(∑(yk | k ∈ K)) = ∑(xjyk |(j, k) ∈ J × K).
Proof. This assertion is a direct consequence of Proposition 1 (1.3.5), Lemma 3, and
Corollary 1 to it.

Further, we shall consider inequalities for derivative natural numbers. Before that, we
shall recall some basic inequalities.

By the definition of the first natural numbers from 1.2.6, we have 0 ∈ {0} = 1. By
Theorem 2 (1.2.6) and Corollary 1 to Proposition 2 (1.2.2), this means that 0 < 1.

By the same reason, if n ∈ 𝜔 and n > 0, then 0 ∈ n. Therefore, 1 = {0} ⊂ n by
Lemma 4 (1.2.3) implies n ⩾ 1. Conversely, if n ∈ 𝜔 and n ⩾ 1, then n ⩾ 1 > 0.
Theorem 5. Let m and n be natural numbers. Then, the following assertions are equiv-
alent:
1) m < n;
2) there is a natural number k > 0 such that n = m + k.
Proof. (1) ⊢ (2). By Lemma 10 (1.3.5), there is a cardinal number k, such that n = m+k.
It follows fromCorollary 1 to Lemma 3 (1.3.5) that k > 0. Suppose that k is not a natural
number. Then, by Corollary 2 to Lemma 11 (1.3.5) k ⩽ k +c 1. From Theorem 1, we infer
that k = k +c 1. Therefore, by Theorem 3 (1.3.5), n +c 1 = (m + k) +c 1 = m + (k +c 1) =
m + k = n. From Theorem 1, we infer that n is not a natural number. It follows from
this contradiction that k is a natural number.

(2) ⊢ (1). Let n = m+k and k ⩾ 1. By Theorem 1,m < m+1. Therefore, by Corollary 1
to Lemma 11 (1.3.5), m < m + 1 ⩽ m + k = n.
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Proposition 2. Let (mi | i ∈ I) and (ni | i ∈ I) be simple collections of natural numbers,
indexed by the non-empty finite set I, such that mi ⩽ ni for every i ∈ I. If mi < ni at least
for one index, then ∑(mi | i ∈ I) < ∑(ni | i ∈ I). If, besides, ni > 0 for every i ∈ I, then
P(mi | i ∈ I) < P(ni | i ∈ I).
Proof. Let mj < nj for some j. Consider the set K ≡ I \ {j}. By Theorem 5, nj = mj + l
for some l > 0. Using Theorem 2, Lemma 4, Lemma 11 (1.3.5), and Theorem 5, we can
deduce that ∑(ni | i ∈ I) = nj + ∑(ni | i ∈ K) ⩾ l + mj + ∑(mi | i ∈ K) = l + ∑(mi | i ∈
I) > ∑(mi | i ∈ I).

Denote∑(ni | i ∈ K) by z. Then, as above, using in addition Theorem 5 we can de-
duce that P(ni | i ∈ I) = njz = mjz + kz ⩾ mjP(mi | i ∈ K) + kz = P(mi | i ∈ I) + kz.
By Lemma 11 (1.3.5), Lemma 7 (1.3.5), and Lemma 9 (1.3.5) z ⩾ 1𝜘 = 1, where 𝜘 ≡
card K. Therefore, by Corollary 1 to Lemma 11 (1.3.5) and Corollary 1 to Lemma 3
(1.3.5) kz ⩾ k1 = k > 0. As a result, by Theorem 5, we get the second necessary
inequality.

Corollary 1. Let p, q, r and s be natural numbers such that p < q and r ⩽ s. Then, p+r <
q + s. If, besides, s > 0, then pr < qs.

Corollary 2. Let (ni | i ∈ I) be a finite simple collection of natural numbers, indexed by
the non-empty finite set I, such that ni ⩾ 0 for every i ∈ I. If ni > 0 at least for one index,
then∑(ni | i ∈ I) > 0. If, besides, ni > 0 for every i ∈ I, then P(ni | i ∈ I) > 0.
Proof. Consider the simple collection (mi | i ∈ I) such thatmi ≡ 0 for every i ∈ I. Then,
by Corollary 3 to Lemma 3 (1.3.5),∑(mi | i ∈ I) = 0. By Lemma 4 (1.3.5), P(mi | i ∈ I) =
0. Now, it is sufficient to apply Proposition 2.

Corollary 3. Let m, n and k be natural numbers such that m < n and k > 0. Then,
mk < nk.

Proof. The inequality follows from Lemma 7 (1.3.5) and the second assertion of Propo-
sition 2.

Corollary 4. Let n and k be natural numbers such that n > 0 and k > 0. Then, nk > 0.
Proof. Takem = 0. Then, by Lemma9 (1.3.5),mk = 0.Now, the inequality follows from
Corollary 3.

Corollary 5. Let m, n and k be natural numbers such that m < n and k > 1. Then,
km < kn.
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Proof. By Theorem 5, n = m + l for some l > 0. Therefore, by Corollary 2 to Lemma 7
(1.3.5), kn = kmkl. From k > 1 and l > 0,we infer by Corollary 2 andLemma9 (1.3.5) that
kl > 1l = 1. Fromm ⩾ 0, we infer by Corollary 5 to Lemma 11 (1.3.5) and Lemma 9 (1.3.5)
that km ⩾ 10 = 1 > 0. Now by Corollary 1, kmkl > km1 = km.

Corollary 6. Let m, n, and k be natural numbers. If m + k = n + k, then m = n. If k > 0
and mk = nk, then m = n.

Proof. All the assertions follows from Corollary 1 bymeans of the proof from an oppo-
site assumption.

Corollary 7. Let m and n be natural numbers such that m ⩽ n. Then, there is a unique
natural number k such that n = m + k.
Proof. If m = n, then by Corollary 1 to Lemma 3 (1.3.5) n = m + 0. If m < n, then by
Theorem 5, n = m + k for some k > 0. Suppose that n = m + l for some l. Then, by
Corollary 6, we have l = k.

If m and n are natural numbers and m ⩽ n, then the unique natural number from
Corollary 7 such that n = m + k is called the difference of the numbers n and m and is
denoted by n − m.
Corollary 8. Let k, l, m, and n be natural, numbers such that k ⩽ l and m ⩽ n. Then,
(l − k) + (n − m) = (l + n) − (k + m).
Proof. By Corollary 1 to Lemma 11 (1.3.5), k + m ⩽ l + n. By the definition of difference
l = k + p and n = m + q for p ≡ l − k and q ≡ n − m. Then, using Theorem 4 several
times, we deduce that l + n = (k + p) + (m + q) = k + (p + (m + q)) = k + ((p +m) + q) =
(k+(m+ p))+ q+((k+m)+ p)+ q = (k+m)+ (p+ q). Thus, p+ q = (l+ n)− (k+m).
Now,wecanprovean important versionof theprinciple of natural induction from1.2.6.

Theorem 6 (the general principle of natural induction). Let X ⊂ [m,→[⊂ 𝜔 and m ∈ X.
If n ∈ X implies n + 1 ∈ X, then X = [m,→[.
Proof. Consider the set Y ≡ {x − m | x ∈ X}. Then, 0 ∈ Y. If n ∈ Y, then n = x − m for
some x ∈ X. By the condition, x + 1 ∈ X. Therefore, by Corollary 8 of Proposition 2
n + 1 = (x − m) + (1 − 0) = (x + 1) − (m + 0) = (x + 1) − m ∈ Y. By Theorem 1 (1.2.6),
Y = 𝜔. Take any n ∈ [m,→[. By Corollary 7 of Proposition 2, n = m+(n−m). Therefore,
n − m ∈ 𝜔 = Y implies n − m = x − m for some x ∈ X. By the definition of difference
x = m + (n − m). Thus, n = x ∈ X. This means that X = [m,→[.

 EBSCOhost - printed on 2/10/2023 4:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



104 | 1.3 Cardinal numbers

Division of natural numbers
Theorem 7 (the Euclidean division). Let m and n be natural numbers such that n > 0.
Then, there exist unique natural numbers q and r such that m = nq + r and r < n.

Proof. If m < n, then q = 0 and r = m. If m = n, then q = 1 and r = 0 < n. Therefore,
further we shall assume that m > n. Consider the set P ≡ {x ∈ 𝜔 | m < nx}. By Theo-
rem 1,m < m+1. Besides, 1 ⩽ n. Thus, by Corollary 1 to Lemma 3 (1.3.5) and Corollary 1
to Proposition 2,m = 1m < n(m+1). Thismeans thatm+1 ∈ P, where P /= ⌀. Consider
the smallest element p of the set P. Since p ∈ N, we infer from Lemma 6 (1.2.6) that
p = q + 1 for some q. By Theorem 1, we have q < q + 1 = p. Thus, q ∉ P, i. e. nq ⩽ m.
Besides, m < np = n(q + 1) = nq + n. Now, by Corollary 7 of Proposition 2, we have
m = nq + r for a unique number r.

Suppose that r ⩾ n. Then, by Corollary 1 to Proposition 2,m = nq+ r ⩾ nq+n > m.
It follows from this contradiction that r < n.

Now, suppose that there exist numbers 𝜘 and 𝜌 such that m = n𝜘 + 𝜌 and 𝜌 < n.
Then, by Corollary 1 to Proposition 2, n𝜘 ⩽ m = n𝜘 + 𝜌 < n𝜘 + n = n(𝜘 + 1). Therefore,
𝜘 + 1 ∈ P, where q + 1 = p ⩽ 𝜘 + 1. Suppose that q > 𝜘. Then, by Corollary 1 to Proposi-
tion 2 q+ 1 > 𝜘+ 1, but this is not so. Now, suppose that q < 𝜘. Then, 𝜘 = q+ k for some
k > 0. From 1 ⩽ k, we infer by Corollary 1 to Lemma 11 (1.3.5) that q + 1 ⩽ q + k = 𝜘. By
the same, reason m < n(q + 1) ⩽ n𝜘 ⩽ m, but this is impossible. Consequently, q = 𝜘.
Finally, 𝜌 = m − n𝜘 = m − nq = r.

The number r from Theorem 7 is called the remainder at the division of the number m
by the number n. If r = 0, then the number m is called the multiple of the number n,
and the number n is called the divisor of the number m. In this case, we also say that
m is divided by n and n divides m. If r = 0, then the number q is called the quotient at
the division of the number m by the number n and is denoted by m/n.

Natural numbers that are multiples of the number 2 are called even. All the others
are called odd. By Theorem 7. even [odd] numbers m are described by the formula
m = 2q [m = 2q + 1].

By Theorem 1 (1.2.10), for every ordinal number 𝛼 ∈ Ord \𝜔, there are a unique
limit ordinal number 𝛾 ⩾ 𝜔 and a unique natural number n such that 𝛼 = 𝛾 +o n. If
the natural number n is even [odd], then the ordinal number 𝛼 is called even [odd].
Since n = 0 is even, all limit ordinal numbers are even as well.

1.3.7 Ordered sets of natural numbers

Let I bea subset of the set𝜔 (see 1.2.6). Since𝜔 is anordered set,we can induceanorder
on I, setting i ⩽ j for i, j ∈ I if i ⩽ j in𝜔. This order is called a natural order on the subset
I ⊂ 𝜔.
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Theorem 1. Let I be a subset of 𝜔, taken with its natural order, and m ∈ 𝜔. If I is finite,
then there are a unique number n ∈ 𝜔 and a unique isotone (see 1.1.5) bijection u : n \
m I. If I is denumerable, then there is a unique isotone bijection u : 𝜔 \ m I.

Proof. At first, note that by virtue of Theorem 2 (1.2.6) every non-empty subset K of 𝜔
has the smallest element sm K. By virtue of Theorem 3 (1.2.6), every non-empty finite
subset, L of 𝜔 has the greatest element gr L. Consider the number i0 ≡ sm I.

At first, assume that I is denumerable. Define an isotone injection u0 : (m + 1) \
m I, setting u0(m) ≡ i0. Consider the subset X of 𝜔, consisting of all k ∈ 𝜔 such
that for k there is a unique isotone injection uk : (m+k+1)\m I such that uk(m) ≡
i0 and uk(i + 1) = sm(I \ uk[(i + 1) \ m]) for all i ∈ (m + k + 1) \ m. It is clear that 0 ∈ X.

Let k ∈ X. Supposing that I = rng uk, we conclude that I is finite. According to
Lemma 8 (1.2.6), this contradicts the condition that I is denumerable. Therefore, I \
rng uk /= ⌀. Hence, we can define a mapping uk+1 : (m + (k + 1) + 1) \ m I, set-
ting uk+1 ≡ uk ∪ {⟨m + k + 1, sm(I \ rng uk)⟩}. The mapping uk+1 has the two necessary
properties.

Suppose that a mapping v : (m + (k + 1) + 1) I also has the same properties.
Consider the set Y ≡ {y ∈ k + 2 | v|(m + y + 1) \m = uk+1|(m + y + 1) \m} ∪ (𝜔 \ (k + 2)).
It is clear that 0 ∈ Y. Suppose that y ∈ Y. If y + 1 ∈ k + 2, then y ∈ k + 2 implies v|(m +
y + 1) \ m = uk+1|(m + y + 1) \ m. Besides, v(m + y + 1) = sm(I \ v[(m + y + 1) \ m]) =
sm(I \ uk+1[(m + y + 1) \ m]) = uk+1(m + y + 1). This means that v and uk+1 coincide on
the set (m + (y + 1) + 1) \m. Thus, y + 1 ∈ Y. If y + 1 ∉ k + 2, then y + 1 ∈ 𝜔 \ (k + 2) ⊂ Y.
In both the cases, y + 1 ∈ Y. By the principle of natural induction Y = 𝜔. This means
that we can take y = k+ 1. Then, v|(m+ (k+ 1) + 1) \m = uk+1|(m+ (k+ 1) + 1) \mmeans
that v = uk+1. This proves the uniqueness of uk+1.

It follows from the properties proven above that k + 1 ∈ X. By the principle of
natural induction X = 𝜔. Now, we shall check that ul is an extension of uk for ev-
ery l > k ⩾ 0. Fix k and l and consider the set Z ≡ {z ∈ k + 1 | ul|(m + z + 1) \ m =
uk|(m + z + 1) \ m} ∪ (𝜔 \ (k + 1)). Since ul(m) = uk(m), we have 0 ∈ Z. Suppose that
z ∈ Z. If (z+1) ∈ k+1, then z ∈ k+1 implies ul|(m+z+1)\m = uk|(m+z+1)\m. Besides,
ul(m+ z+1) = sm(I \ul[(m+ z+1)\m]) = sm(I \uk[(m+ z+1)\m]) = uk(m+ z+1). This
means that ul and uk coincide on the set (m+(z+1)+1)\m. Thus, z+1 ∈ Z. If z ∈ 𝜔\(k+1),
then z+1 ∈ 𝜔\(k+1) ⊂ Z. In both the cases, z+1 ∈ Z. By the principle of natural induc-
tion, Z = 𝜔. Thismeans thatwe can take z = k. Then, ul|(m+k+1)\m = uk|(m+k+1)\m
means that ul is an extension of uk.

Thus, we can define correctly amapping u : 𝜔\m I, setting u|(m+k+1)\m =
uk = ul|(m + k + 1) \ m for every l > k in 𝜔.

Let now q > p in𝜔\m. Then, q = m+ l and p = m+k for some l > k ⩾ 0. Therefore,
u(q) = ul−1(m + l) > ul−1(m + k) = uk(m + k). If k = 0, then u(q) > u0(m) = u(m + k) =
u(p). If k > 0, then u(q) > uk(m + k) = u(p). It follows from this property that u is iso-
tone and injective.
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Suppose that u is not surjective and take i1 ≡ sm(I \ rng u). By the construc-
tion, i0 < i1. Therefore, J ≡ {i ∈ I | i0 ⩽ i < i1} ⊂ rng u. Consider the number i2 ≡ gr J.
Then, i2 = u(m + r) for some r ∈ 𝜔. If s ∈ r, then i0 ⩽ u(m + s) < u(m + r) = i2 < i1
implies u(m + s) ∈ J, where u[(m + r + 1) \ m] ⊂ J. If there exists j ∈ J \ {i0, i2},
then j = u(m + s) for some s ∈ 𝜔. Thus, u(m + s) = j < i2 = u(m + r) implies m +
s < m + r, i. e. m + s ∈ (m + r + 1) \ m, where j ∈ u[(m + r + 1) \ m]. Thus,
u[(m + r + 1) \ m] = J.

Consequently, ur+1[(m + r + 1) \ m] = J. Therefore, u(m + r + 1) = ur+1(m + r + 1) =
sm(I \ ur+1[(m + r + 1) \ m]) = sm(I \ J) = i1, where i1 ∈ rng u.

It follows from this contradiction that u is surjective. Finally, u is bijective. Sup-
pose that there exists another isotone bijective mapping w : 𝜔 \ m I such that
w(m + k) /= u(m + k) for some k ∈ 𝜔. Consider the mapping w ≡ w|(m + k + 1) \ m.
Then, we have w(m + k) /= u(m + k) = uk(m + k), but this contradicts the uniqueness
of uk. Consequently, u is unique.

At last, assume that I is finite. Take the number i3 ≡ gr I and consider the count-
ably infinite set I ≡ I ∪ (𝜔 \ (i3 + 1)). As proven above, there exists an isotone bi-
jection u : 𝜔 \ m I. Take n such that u(n − 1) = i3. If i ∈ I, then i = u(m +
k) for some k ∈ 𝜔. Thus, u(m + k) ⩽ i3 = u(n − 1) implies m + k ⩽ n − 1, where
I ⊂ u[n \ m]. On the other hand, if m + k ∈ n \ m, then m ⩽ m + k ⩽ n − 1 im-
plies i0 ⩽ u(m + k) ⩽ i3, i. e. u(m + k) ∉ 𝜔 \ (i3 + 1), where u(m + k) ∈ I. Thus,
I = u[n \ m]. Take now u ≡ u|n \ m. Then, u : n \ m I is the necessary isotone
bijection.

Suppose that there exists another isotone bijection v : n \ m I such that
v(m+k) /= u(m+k) for some k ∈ 𝜔. Define amapping v : 𝜔\m → I, setting v|n\m ≡ v
and v(n + l) ≡ i3 + l + 1. It is clear that v is isotone bijection and v /= u. This is in
contradiction to the uniqueness of u. Consequently, u is unique.

Suppose that there exist a natural number p and an isotone bijection v : p\m
I. Then, v−1 ∘ u : n \ m p \ n is an isotone bijection. Suppose that n > p. Then,
p \ m is the initial interval ]←, p[ in the well-ordered set ⟮n \ m, ⩽⟯. But then, we get
the contradiction with conclusion 1 of Proposition 1 (1.2.4). Supposing that n < p, we
come to the contradiction in the similar manner. Thus, n = p, i. e. the number n is
unique.

1.3.8 Properties of infinite cardinal numbers

To prove the properties of infinite cardinal numbers, we introduce some order on
the class R ≡ Ord×Ord.

First, we shall give an intuitive description of this order for the set 𝜔 × 𝜔. We
shall represent 𝜔 × 𝜔 by points on a plane. An ordering will be assigned by means
of the upper and right sides of squares in the following manner: a < b < c < d < e <
f < h.
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Now, we shall give the strict definition. If 𝛼 and 𝛽 are ordinals, then by
Lemma 4 (1.2.3) gr{𝛼, 𝛽} = 𝛼∪𝛽. Consider a relation 𝜃 on R such that ((u, v), (x, y)) ∈ 𝜃
iff either gr{u, v} < gr{x, y}, or gr{u, v} = gr{x, y} and u < x, or gr{u, v} = gr{x, y}, u = x
and v < y.

Lemma 1. The relation 𝜃 is total and with the property of minimality.
Proof. Take in R any points p ≡ (u, v) and q ≡ (x, y). Since the class Ord is linearly
ordered, we have only the following cases. In the first case, gr{u, v} < gr{x, y}, where
(p, q) ∈ 𝜃. In the second case, gr{u, v} > gr{x, y}, where (q, p) ∈ 𝜃. In the third case,
gr{u, v} = gr{x, y}. Then, we have also the following alternative cases. If u < x, then
(p, q) ∈ 𝜃. If u > x, then (q, p) ∈ 𝜃. Finally, let u = x. Then, v < y implies (p, q) ∈ 𝜃;
v > y implies (q, p) ∈ 𝜃; and v = y implies p = q.

Take any P ⊂ R. Consider in R for every ordinal number x the square Qx ≡ (x+ 1)×(x+1)with the right side Sx ≡ {p ∈ R | ∃𝛽 (𝛽 ∈ Ord ∧𝛽 ⩽ x ∧ p = (x, 𝛽))} and the upper
side Tx ≡ {q ∈ R | ∃𝛼 (𝛼 ∈ Ord ∧ 𝛼 ⩽ x ∧ q = (𝛼, x))}. Consider the set X ≡ {x ∈ Ord |
Qx ∩ P /= ⌀}. By virtue of Corollary 2 to Theorem 1 (1.2.3), it has the smallest element z.
Consider the square Qz and its vertex r ≡ (z, z). It is clear that P ∩ Qz ⊂ Sz ∪ Tz.

If P ∩ Tz contains a point t /= z, then consider the set A ≡ {𝛼 ∈ Ord | ∃t (t ∈ P ∩
Tz ∧ t /= r ∧ t = (𝛼, z))}, its smallest element u, and the point q ≡ (u, z). By definition,
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(q, t) ∈ 𝜃 for every t ∈ P ∩ Tz, (q, s) ∈ 𝜃 for every s ∈ P ∩ Sz and (q, p) ∈ 𝜃 for every
p ∈ P \ Qz. Thus, q is a minimal element in P.

If P∩ Tz contains only the vertex r and P∩ Sz contains a point s /= r, then consider
the set B ≡ {𝛽 ∈ Ord | ∃s (s ∈ P ∩ Sz ∧ s /= r ∧ s = (z, 𝛽))}, its smallest element v, and
the point p ≡ (z, v). By definition, (p, s) ∈ 𝜃 for every s ∈ P∩Sz and (p, q) ∈ 𝜃 for every
q ∈ P \ Qz. Thus, p is a minimal element in P.

Finally, if P ∩ Tz and P ∩ Sz contain only the vertex r, then r is a minimal element
in P.

Corollary 1. The relation 𝜃 ∪ idOrd is well-ordering.
Proof. The assertion follows from Lemma 1 and Lemma 1 (1.2.1).

Denote the relation from this Corollary by ⩽.
Lemma 2. Let u, v, x, y be ordinal numbers such that (u, v) ⩽ (x, y). Then, (u, v) ∈
(gr{x, y} + 1) × (gr{x, y} + 1).
Proof. It is clear that gr{u, v} ⩽ gr{x, y}. Thus, by Proposition 1 (1.2.3), u ⩽ gr{x, y} <
gr{x, y} + 1. By Corollary 1 to Proposition 2 (1.2.2) u ∈ gr{x, y} + 1. The similar property
is valid for v.

Cardinal numbers from the class Card \𝜔 are called infinite or transfinite.
Theorem 1. Let 𝛼 ∈ Card \𝜔. Then, card(𝛼 × 𝛼) = 𝛼. In particular, card(𝜔 × 𝜔) = 𝜔.
Proof. Consider the classA ≡ Card \𝜔 and its subclassB ≡ {𝛼 ∈ A | card(𝛼×𝛼) = 𝛼}.
Take any x ∈ A and assume that [𝜔, x[⊂ B. By Theorem 1 (1.2.5) and Corollary 1 to
Lemma 1 for the well-ordered set A ≡ x × x, there are an ordinal number 𝛼 and an iso-
tone bijection f : A 𝛼. Since x /= ⌀, there is u ∈ x. It is evident that x ∼ x×{u} ⊂ A.
Therefore, x = card(x × {u}) ⩽ card A = 𝛼.

Let a ≡ (u, v) ∈ A, i. e. , u < x and v < x. Consider the interval I ≡ [(0, 0), a] in A.
By Lemma 2, this interval is contained in the square Q ≡ (gr{u, v} + 1) × (gr{u, v} + 1).
Let 𝛽 ∈ 𝛼 and assume that 𝛽 ∈ J ≡ [0, f (a)]. Then, 𝛽 = f (b) for some b ∈ A. It follows
from f (b) ⩽ f (a) that b ⩽ a, where b ∈ I. Therefore, 𝛽 ∈ f [I]. Consequently, J = f [I],
i. e. , J ∼ I.

At first, assume that x = 𝜔. Then, gr{u, v} ∈ 𝜔 implies gr{u, v} + 1 ∈ 𝜔 by virtue of
Lemma 2 (1.2.6). By Lemma 4 (1.3.3), the set Q is finite. By Lemma 7 (1.3.3), the set I is
also finite. As a result, the set J is finite. But by Lemma 8 (1.2.6), the set 𝜔 is infinite.
Consequently, 𝜔 ∉ J, where f (a) < 𝜔 = x.

Now, assume that x > 𝜔. If u, v ∈ 𝜔, then in the similar manner f (a) < 𝜔 < x.
Finally, if gr{u, v} ∉ 𝜔, then by Lemma 11 (1.3.3) y ≡ card(gr{u, v} + 1) = card
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gr{u, v} < x. It follows from this inequality that card(y × y) = y. Therefore, gr{u, v}+
1 ∼ y implies Q ∼ y × y ∼ y, i. e. , card Q = y. Therefore, card I ⩽ y implies card J ⩽ y <
x. Suppose that f (a) ⩾ x. Then, x ∈ J implies x ⊂ J, where x = card x ⩽ card J < x. It
follows from this contradiction that f (a) < x.

Thus, in all the cases, f (a) ∈ x. Therefore, 𝛼 = f [A] ⊂ x implies 𝛼 ⩽ x. As a
result, we get that card A = 𝛼 = x. Thismeans that x ∈ B. By the principle of induction
from 1.2.1, B = A.

Corollary 1. Let 𝛼 be an infinite cardinal number. Then, 𝛼𝛼 = 𝛼.
Corollary 2. Let 𝛼 and 𝛽 be cardinal numbers, 𝛼 be infinite, and 0 < 𝛽 ⩽ 𝛼. Then,
card(𝛼 × 𝛽) = 𝛼.
Proof. From0 ∈ 𝛽, we infer that 𝛼 ∼ 𝛼×{0} ⊂ 𝛼×𝛽 ⊂ 𝛼×𝛼. Consequently, 𝛼 ⩽ card(𝛼×
𝛽) ⩽ card(𝛼 × 𝛼) = 𝛼.
Corollary 3. Let𝛼and𝛽be cardinal numbers,𝛼be infinite, and0 < 𝛽 ⩽ 𝛼. Then,𝛼𝛽 = 𝛼.
Corollary 4. Let 𝛼 be an infinite cardinal number. Then, 𝛼 + 𝛼 = 𝛼.
Proof. By Corollary 2 to Lemma 3 (1.3.5), 2𝛼 = 𝛼 + 𝛼. By the preceding corollary, 𝛼 =
card(𝛼 × 2) = card(2 × 𝛼) ≡ 2𝛼.
Corollary 5. Let 𝛼 and 𝛽 be cardinal numbers, 𝛼 be infinite, and 𝛽 ⩽ 𝛼. Then, 𝛼 + 𝛽 = 𝛼.
Proof. By virtue of Corollary 1 to Lemma 11 (1.3.5), 𝛼 ⩽ 𝛼 + 𝛽 ⩽ 𝛼 + 𝛼 = 𝛼.
Corollary 6. Let 𝛼 be an infinite cardinal number and n be a non-zero natural number.
Then, 𝛼n = 𝛼.
Proof. Consider the set X ≡ {m ∈ 𝜔 | 𝛼m+1 = 𝛼}. It is clear that 0 ∈ X. Assume that
m ∈ X. By Corollary 2 to Lemma 7 (1.3.5),𝛼(m+1)+1 = 𝛼m+1𝛼 = 𝛼𝛼 = 𝛼. This means that
m + 1 ∈ X. By virtue of the principle of natural induction from 1.2.6 X = 𝜔.
Proposition 1. Let A be an infinite set of the power 𝛼. Then, the set of all finite subsets
of the set A has also the power 𝛼.
Proof. Denote the set of all subsets of A by F. From A ∼ 𝛼, we infer that An ∼ 𝛼n = 𝛼,
i. e. card An = 𝛼 for every non-zero natural number. By definition, An consists of all
sequences (ai ∈ A | i ∈ n). Consider also the sets Fn ≡ {B ⊂ A | card B = n}. It is clear
that Fm ∩ Fn = ⌀ and Am ∩ An = ⌀ for every m /= n from N. Consider the surjective
mapping un from An onto Fn such that un(ai ∈ A | i ∈ n) = {ai | i ∈ n} (see 1.1.9). Since
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F = ⋃⟮Fn | n ∈ N⟯, we can define correctly a surjective mapping u from S ≡ ⋃⟮An |
n ∈ N⟯ onto F setting us ≡ uns for every s ∈ An. Then, by Lemma 1 (1.3.2), card F ⩽
card S. Consider also themapping v : A F such that va ≡ {a}. Then, by Corollary 1
to Proposition 2 (1.3.2), 𝛼 = card v[A] ⩽ card F.

By Corollary 1 to Lemma 1 (1.3.5) card S = ∑(card An | n ∈ N). Since card An = 𝛼,
we infer by virtue of Corollary 2 to Lemma 3 (1.3.5) that card S = 𝛼𝜔. By Corollary 3 to
Theorem 1, 𝛼𝜔 = 𝛼. As a result, we get the inequality 𝛼 ⩽ card F ⩽ card S = 𝛼, which
give the necessary equality.

1.3.9 Properties of countable sets

Now, we can prove some basic properties of countable sets defined in 1.2.6.

Lemma 1. Any subset of countable set is countable.

Proof. Let A be countable and B ⊂ A. Then, by Corollary 1 to Proposition 1 (1.3.2)
card B ⩽ card A ⩽ 𝜔.
Lemma 2. Let A be a countable set, B be a class, and u : A → B. Then, rng u is a count-
able set.

Proof. By Lemma 1 (1.3.2) card(rng u) ⩽ card A ⩽ 𝜔.
Lemma 3. Let A and B be countable sets. Then, the sets A × B and A ∗ B are countable.

Proof. Bydefinition, there are injections u : A 𝜔 and v : B 𝜔. Then, themap-
ping w ≡ (u, A, 𝜔) ×m (v, B, 𝜔) from 1.1.12 is also an injection from A × B into 𝜔×𝜔. By
Theorem 1 (1.3.8), the set 𝜔×𝜔 is countable. Thus, by Lemma 1, the set C ≡ w[A × B] is
countable. Sincew is a bijection from A×B onto C, we infer that A×B is also countable.
Now, by virtue of Lemma 3 (1.1.12), the set A ∗ B is countable.

Proposition 1. Let ⟮Ai | i ∈ I⟯beafinite collection of countable sets. Then, the set∏⟮Ai |
i ∈ I⟯ is countable.
Proof. Consider the set X of all natural numbers n such that the assertion of this
proposition is valid for any set I with the power n+ 1. If card I = 1, then there is a bijec-
tion u : 1 I. Take the element i0 ≡ u(0). Since 1 = {0}, we infer that I = {i0}. There-
fore,∏⟮Ai | i ∈ I⟯ ∼ Ai0 . This implies that 0 ∈ X.

Assume that n ∈ X and take any collection ⟮Ai | i ∈ I⟯ such that card I = (n+ 1)+ 1.
By definition, there is a bijection v : (n + 1) + 1 I and (n + 1) + 1 = (n + 1) ∪ {n + 1}.
Consider the element j ≡ v(n + 1) and the set K ≡ I \ {j} /= ⌀. By Theorem 2 (1.1.12),
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P ≡ ∏⟮Ai | i ∈ I⟯ ∼ Aj∗Q,whereQ ≡ ∏⟮Ai | i ∈ K⟯. According toour assertion the setQ
is countable. Thus, by Lemma 3, the set Aj ∗ Q is countable. Then, the set P is also
countable. This means that n + 1 ∈ X. By the principle of natural induction from 1.2.6
X = 𝜔.
Theorem 1. Let ⟮Ai | i ∈ I⟯ be a countable collection of countable sets. Then, the set
⋃⟮Ai | i ∈ I⟯ is countable.
Proof. Denote ⋃⟮Ai | i ∈ I⟯ by S. By definition, there are countable ordinal numbers
𝛼i ≡ 𝜔 and 𝛽 ≡ 𝜔 and bijections ui : 𝛼i Ai and v : 𝛽 I. Consider the collection
⟮Bk | k ∈ 𝛽⟯of thepairwisedisjoint setsB0 ≡ Av(0),B1 ≡ Av(1)\B0,B2 ≡ Av(2)\B0∪B1,. . . ,
Bn+1 ≡ Av(n+1) \ ⋃⟮Bk | k ∈ n + 1 ∈ 𝛽⟯. It is clear that T ≡ ⋃⟮Bk | k ∈ 𝛽⟯ ⊂ S. Take any
x ∈ S. Then, x ∈ Ai for some i ∈ I. Consider the number k ≡ v−1(i). If k = 0, then x ∈
Av(0) ≡ B0. If k ⩾ 1, then x ∈ Av(k) implies either x ∈ Bk or x ∈ Av(k) ∩ ⋃⟮Bj | j ∈ k⟯. In
all the cases, x ∈ T. Thus, T = S.

Define an injective mapping U : T ⋃d⟮𝛼v(k) | k ∈ 𝛽⟯ setting U(b) ≡ ⟨u−1v(k)(b),𝛼v(k)⟩ ∈ 𝛼v(k) ∗ {𝛼v(k)} for every b ∈ Bk ⊂ Av(k). Define also an injective mapping V : ⋃d⟮𝛼v(k) | k ∈ 𝛽⟯ 𝜔 × 𝜔 setting V(⟨x, 𝛼v(k)⟩) = (x, k). Then, the mapping W ≡ V ∘ U
is an injection from S into 𝜔 × 𝜔. Using Theorem 1 (1.3.8) and Lemma 1, we infer that
the setW[S] is countable. Hence, the set S is also countable.

1.3.10 Properties of the class of all countable ordinal numbers

Note that according to Theorem 1 (1.3.4), the cardinal number 𝜔1 consists of all count-
able ordinal numbers.

Lemma 1. Let (𝛼k ∈ 𝜔1 | k ∈ K) be a countable simple collection of countable ordinal
numbers. Then, the set 𝛼 ≡ ⋃⟮𝛼k | k ∈ K⟯ has the following properties:
1) 𝛼 ∈ 𝜔1, i. e. 𝛼 is also a countable ordinal number;
2) if 𝛽 ∈ Ord and 𝛽 ⩾ 𝛼k for every k ∈ K, then 𝛽 ⩾ 𝛼, i. e. , 𝛼 = sup(𝛼k | k ∈ K) in Ord

and 𝜔1.
Proof. 1. By Theorem 1 (1.3.9), 𝛼 is countable. It is clear that the set 𝛼 is transitive
in the sense of 1.2.2. Take any elements a, b in 𝛼. Then, a ∈ 𝛼j and b ∈ 𝛼k for some
indices. By Lemma 3 (1.2.3), a and b are ordinal numbers. Thus, by Corollary 1 to
Lemma 2 (1.2.3), a ∈ b, b ∈ a, or a = b. According to 1.2.2, this means that 𝛼 is an
ordinal.

2. Take any element a ∈ 𝛼. Then, a ∈ 𝛼j for some j. By Lemma 4 (1.2.3), 𝛼j ⊂ 𝛽.
Thus, a ∈ 𝛽. This means that 𝛼 ⊂ 𝛽, where 𝛼 ⩽ 𝛽. Besides, 𝛼k ⊂ 𝛼 implies that 𝛼k ⩽ 𝛼
for every k.
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Lemma 2. Let (𝛼k ∈ 𝜔1 | k ∈ 𝜔) be a strictly increasing sequence of countable ordinal
numbers. Then, the countable ordinal number 𝛼 ≡ ⋃⟮𝛼k | k ∈ 𝜔⟯ from Lemma 1 is a limit
ordinal number (in the sense of 1.2.3).

Proof. Since the sequence is strictly increasing, 𝛼k /= 0 for some k. Thus, 𝛼 ⊃ 𝛼k /= ⌀.
Assume that𝛼 = 𝛽+1 for someordinal number𝛽. If𝛽 ⩾ 𝛼k for every k, thenbyLemma1,
𝛽 ⩾ 𝛼 = 𝛽 + 1, but this is impossible. Therefore, 𝛽 < 𝛼k for some k. Then, by Proposi-
tion 1 (1.2.3), 𝛼 = 𝛽 + 1 ⩽ 𝛼k < 𝛼k+1 ⩽ 𝛼, but this is also impossible. It follows from this
contradiction that 𝛼 /= 𝛽 + 1 For every 𝛽.
Lemma 3. Let 𝛼 and 𝛽 be countable ordinal numbers. Then, the ordinal number 𝛼 +o 𝛽
is countable.

Proof. By definition from 1.2.9, 𝛼 +o 𝛽 ≡ ord⋃do⟮xi | i ∈ 2⟯, where x0 ≡ 𝛼 and x1 ≡ 𝛽.
By Theorem 1 (1.3.9), the set S ≡ ⋃d⟮xi | i ∈ 2⟯ ≡ ⋃⟮xi ∗ {i} | i ∈ 2⟯ is countable. Thus,
the set 𝛼 +o 𝛽 ∼ S is also countable.

Corollary 1. Let 𝛼 be a countable ordinal number. Then, 𝛼+1 is also a countable ordinal
number.

Proof. The assertion follows from Lemma 3 and Proposition 3 (1.2.9).

The following theorem is called the principle of induction for countable ordinal num-
bers.

Theorem 1. Let A be a subclass of the class Ord with the following properties:
1) 0 ∈ A;
2) 𝛼 ∈ A implies 𝛼 + 1 ∈ A;
3) if (𝛼k ∈ A | k ∈ 𝜔) is a strictly increasing sequence, then⋃⟮𝛼k | k ∈ 𝜔⟯ ∈ A.
Then, 𝜔1 ⊂ A.

Proof. Suppose that the class 𝜔1 \A is non-empty. According to Proposition 2 (1.2.2), it
has the smallest element 𝛽. By property 1, 𝛽 /= 0. Suppose that 𝛽 is not a limit ordinal,
i. e. 𝛽 = 𝛾 + 1 for some ordinal number. Then, 𝛾 < 𝛽 ∈ 𝜔1 implies 𝛾 ∈ 𝜔1, and so 𝛾 ∈ A.
By property 2, 𝛽 ∈ A. It follows from this contradiction that 𝛽 is a limit ordinal.

Since 𝛽 is countable, there exists a bijection u : 𝜔 𝛽. Consider the ordinal
numbers bm ≡ u(m) and suppose that there exists a ∈ 𝛽 such that a ⩾ bm for everym.
But a = bn for some n. Therefore, bm ⩽ bn < bn + 1 implies bm ∈ bn + 1 for every m,
where 𝛽 ⊂ bn + 1. As a result, 𝛽 ⩽ bn + 1 ⩽ 𝛽, but this is impossible because 𝛽 is a limit
ordinal. Thus, for every a ∈ 𝛽, the set Sa ≡ {m ∈ 𝜔 | a < bm} is non-empty.

Take the smallest element m(a) of the set Sa. Define a mapping V : 𝛽 × 𝜔 → 𝛽
setting V(a, n) ≡ bm(a). By Theorem 1 (1.2.7), there is a unique mapping v : 𝜔 → 𝛽,
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such that v(0) = b0 and v(n + 1) = V(v(n), n) = bm(v(n)), where m(v(n)) is the smallest
element of the set Sv(n) ≡ {m ∈ 𝜔 | v(n) < bm}. Consequently, v(n+ 1) = bm(v(n)) > v(n).
In addition, the inclusion Sv(n) ≡ {m ∈ 𝜔 | v(n − 1) < v(n) < bm} ⊂ {m ∈ 𝜔 | v(n − 1) <
bm} ≡ Sv(n−1) impliesm(v(n)) ⩾ m(v(n− 1)). Suppose thatm(v(n)) = m(v(n− 1)). Then,
v(n+1) = bm(v(n)) = bm(v(n−1)) = v(n), but this is false. Thus,m(v(n)) > m(v(n−1)). Thus,
the sequences (m(v(n)) ∈ 𝜔 | n ∈ 𝜔) and (v(n) ∈ 𝛽 | n ∈ 𝜔) are strictly increasing.

It is clear that X ≡ ⋃⟮v(n) | n ∈ 𝜔⟯ ⊂ 𝛽. If b ∈ 𝛽, then b = bk for some k. Therefore,
by Lemma 7 (1.2.6), there is n such that k < m(v(n)). Suppose that bk > v(n). Then,
m(v(n)) ⩽ k. It follows from this contradiction that b = bk ⩽ v(n) < v(n + 1), where
b ∈ v(n+ 1) ⊂ X. Thus, X = 𝛽. From v(n) ∈ 𝛽 ∈ 𝜔1, we infer that v(n) < 𝛽 and v(n) ∈ 𝜔1.
Thus, v(n) ∈ A for every n. Therefore, by property 3, 𝛽 ∈ A, but this is false. We con-
clude from this contradiction that 𝜔1 ⊂ A.

Corollary 1. Let the set A ⊂ 𝜔1 have properties 1 – 3. Then, A = 𝜔1.
Note that by virtue of Lemma 1, the set 𝜔1 itself has properties 1 – 3.

1.4 Real numbers

In this section, we set forth basic information about constructions and properties of
integers, rational numbers, real numbers, and extending real numbers starting from
the set 𝜔 of natural numbers (see 1.2.6 and 1.3.6).

1.4.1 Integers

Define on the set𝜔×𝜔 a binary relation 𝜃 setting ((m, p), (n, q)) ∈ 𝜃 iffm+q = n+p.We
assert that 𝜃 is an equivalence relation. In fact, 𝜃 is obviously reflexive and symmetric.
Let (l, p)𝜃(m, q) and (m, q)𝜃(n, r), i. e. l+q = m+p andm+ r = n+q. Then, (l+ r)+q =
(l + q) + r = (m + p) + r = (m + r) + p = (n + q) + p = (n + p) + q imply by Corollary 6 to
Proposition 2 (1.3.6) that l+ r = n+p. Thismeans that (l, p)𝜃(n, r). Thus, 𝜃 is transitive.

Consider the factor-setZ ≡ (𝜔×𝜔)/𝜃 consisting of equivalence classes x ≡ 𝜃(m, p)
of all pairs (m, p) ∈ 𝜔 × 𝜔 (see 1.1.14). Elements of the set Z are called integers; and
the set Z is called the set of all integers.

Consider the factor-mapping f : 𝜔 × 𝜔 → Z from 1.1.14. By Lemma 1 (1.1.14) f is
surjective. Therefore, using Theorem 1 (1.3.8) and Lemma 2 (1.3.9) we conclude that
the set Z is countable.

Associate with every natural numberm ∈ 𝜔 the integer m̂ ≡ 𝜃(m, 0) ∈ Z, and con-
sider the mapping e from 𝜔 into Z such that em ≡ m̂. This mapping is injective. Con-
sider the set Z+ ≡ {m̂ | m ∈ 𝜔}. Since 𝜔 = card𝜔 = cardZ+ ⩽ cardZ ⩽ 𝜔, we infer that
cardZ = 𝜔, i. e. the set Z is denumerable.
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Sum of integers
Let (xi ∈ Z | i ∈ I) be a simple collection of integers xi ≡ 𝜃(mi , pi) indexed by a finite
set I. The integer 𝜃(∑(mi | i ∈ I),∑(pi | i ∈ I)) is called the sum of the simple collection
(xi ∈ Z | i ∈ I) and is denoted by∑(xi | i ∈ I). If I = n + 1 for n ∈ 𝜔 \ 2, then along with
∑(xi | i ∈ n + 1) we shall use the notation x0 + ⋅ ⋅ ⋅ + xn.

It is clear that e(∑(mi ∈ 𝜔 | i ∈ I)) = ∑(emi ∈ Z | i ∈ I).
Let x, x, x, x, . . . be integers. Then, (x, x), (x, x, x), (x, x, x, x), . . . are

the corresponding simple collections (see 1.1.11).
The integers ∑(x, x),∑(x, x, x),∑(x, x, x, x), . . . will be called the sums of

the simple sequential pair (x, x), triplet (x, x, x), quadruplet (x, x, x, x),. . . and
will be denoted also by x + x, x + x + x, x + x + x + x, . . . By the definition of
the simple sequential pair from 1.1.11 we have x + x = ∑(ai | i ∈ 2), where a0 ≡ x and
a1 ≡ x. In the similar manner, x + x + x = ∑(ai | i ∈ 3), where a0 ≡ x, a1 ≡ x and
a2 ≡ x, and so on.

Theorem 1. Let (xi ∈ Z | i ∈ I) be a simple collection indexed by a finite set I. Then:
1) if K is a finite set and u is a bijective mapping from K onto I, then ∑(xi | i ∈ I) =∑(xu(k) | k ∈ K) (the general commutativity of the sum);
2) if a collection ⟮Im ⊂ I | m ∈ M⟯ is a partition of the set I indexed by a finite non-

empty set M, then∑(xi | i ∈ I) = ∑(∑(xi | i ∈ Im) | m ∈ M) (the general associativ-
ity of the sum).

Proof. We shall denote the left parts of these equalities by L. Let xi ≡ 𝜃(mi , pi).
1. Using assertion 1 of Theorem 2 (1.3.6), we get L ≡ 𝜃(∑(mi | i ∈ I),∑(pi | i ∈ I)) =𝜃(∑(mu(k) | k ∈ K),∑(pu(k) | k ∈ K)) ≡ ∑(𝜃(mu(k), pu(k)) | k ∈ K) ≡ ∑(xu(k) | k ∈ K).
2. Analogously, using assertion 2 of the same theorem, we get L ≡ 𝜃(∑(mi | i ∈ I),∑(pi | i ∈ I)) = 𝜃(∑(∑(mi | i ∈ Im) | m ∈ M),∑(∑(pi | i ∈ Im) | m ∈ M)) ≡ ∑(𝜃(∑(mi |

i ∈ Im),∑(pi | i ∈ Im)) | m ∈ M) ≡ ∑(∑(𝜃(mi , pi) | i ∈ Im) | m ∈ M) ≡ ∑(∑(xi | i ∈ Im)| m ∈ M).
Lemma 1.
1) Let (xi ∈ Z | i ∈ {p}) be a simple collection indexed by a set {p}. Then, ∑(xi | i ∈{p}) = xp.
2) Let (xi ∈ Z | i ∈ {p, q}) be a simple collection indexed by a set {p, q} with different

elements p /= q. Then,∑(xi | i ∈ {p, q}) = xp + xq.
Proof. We shall prove only assertion 2. Consider the simple collection (ai | i ∈ 2) such
that a0 ≡ xp and a1 ≡ xq. Consider the sets I ≡ 2 and K ≡ {p, q} and the bijective map-
ping u : K → I such that u(p) ≡ 0 and u(q) ≡ 1. Then, by Theorem 1, xp + xq = ∑(ai |
i ∈ I) = ∑(au(k) | k ∈ K). From au(p) = a0 ≡ xp and au(q) = a1 ≡ xq, we infer that (au(k) |
k ∈ K) = (xk | k ∈ K). As a result, xp + xq = ∑(xk | k ∈ K).
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Corollary 1. Let (xi ∈ Z | i ∈ I) and (yi ∈ Z | i ∈ I) be simple collections indexed by a fi-
nite non-empty set I. Then,∑(xi | i ∈ I) + ∑(yi | i ∈ I) = ∑(xi + yi | i ∈ I).
Proof. Consider the setsM ≡ 2× I,Mi ≡ 2×{i}, andMk ≡ {k}× I. Consider also the ele-
ments am ≡ xi for m ≡ (0, i) and am ≡ yi for m ≡ (1, i). By assertion 2 of Lemma 1,
xi + yi = ∑(am | m ∈ {(0, i), (1, i)}) = ∑(am | m ∈ Mi). Using assertion 2 of Theo-
rem 1, we get ∑(xi + yi | i ∈ I) = ∑(∑(am | m ∈ Mi) | i ∈ I) = ∑(am | m ∈ M) because
⟮Mi | i ∈ I⟯ is a partition of M. Analogously, since ⟮Mk | k ∈ 2⟯ is also a partition of M,
we get ∑(am | m ∈ M) = ∑(∑(am | m ∈ Mk) | k ∈ 2) = ∑(am | m ∈ M0) + ∑(am | m ∈
M1) = ∑(a(0,i) | i ∈ I) + ∑(a(1,i) | i ∈ I) = ∑(xi | i ∈ I) + ∑(yi | i ∈ I).
Theorem 2. Let x, y and z be integers. Then:
1) x + y = y + x (the commutativity of the sum);
2) x + y + z = x + (y + z) = (x + y) + z (the associativity of the sum).
Proof. 1. Take the sets I ≡ 2 and K ≡ 2. Consider simple collections (ai ∈ {x, y} | i ∈
I) and (bk ∈ {x, y} | k ∈ K) such that a0 ≡ x, a1 ≡ y, b0 ≡ y, and b1 ≡ x. Take a bijec-
tive mapping u : K → I such that u(0) ≡ 1 and u(1) ≡ 0. From au(0) = a1 ≡ y ≡ b0 and
au(1) = a0 ≡ x ≡ b1, we infer (au(k) | k ∈ K) = (bk | k ∈ K). As a result, by virtue of The-
orem 1, we get the chain of equalities x + y = ∑(ai | i ∈ I) = ∑(au(k) | k ∈ K) = ∑(bk |
k ∈ K) = y + x.

2. Take the sets I ≡ 3, M ≡ 2, I0 ≡ 1, and I1 ≡ {1, 2}. Then, the collection ⟮Im ⊂ I |
m ∈ M⟯ is a partition of the set I. Consider simple collections (ai | i ∈ I), (ai | i ∈ I0),
and (ai | i ∈ I1) such that a0 ≡ x, a1 ≡ y, and a2 ≡ z. Then, by Theorem 1 and Lemma 1,
we get the chain of equalities x + y + z = ∑(ai | i ∈ I) = ∑(∑(ai | i ∈ Im) | m ∈ M) =
∑(ai | i ∈ I0) + ∑(ai | i ∈ I1).

Further, by Lemma 1∑(ai | i ∈ I0) = a0 ≡ x and∑(ai | i ∈ I1) = a1 + a2 = y + z. As
a result, we get x + y + z = x + (y + z).

In a similar way, we prove the equality x + y + z = (x + y) + z.
The element 0̂ is called the zero element inZ. For every integer x, we have the equality
0̂ + x = x + 0̂ = x.

The element 𝜃(p,m) is called the opposite element to the element x ≡ 𝜃(m, p) and
is denoted by −x. It is clear that −(−x) = x. The zero and opposite elements are con-
nected by the equality x+(−x) = −x+x = 0̂. Further, alongwith x+(−y), we shall write
also x − y; this number is called the difference of the numbers x and y.

Consider the sets Z− ≡ {−m̂ | m ∈ 𝜔} and Z∗ ≡ Z \ {0̂}.
Lemma 2.
1) Z = Z+ ∪ Z− and Z+ ∩ Z− = {0̂}.
2) For every x ∈ Z, there exist y ∈ Z+ and z ∈ Z− such that x = y + z.
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Proof. 1. Let x ≡ 𝜃(m, p) ∈ Z. Ifm = p, then x = 0̂. Ifm > p, then, by Theorem 5 (1.3.6),
there is a natural number k > 0 such that m = p + k. Therefore, x = k̂. If m < p, then
there is a natural number l > 0 such that m + l = p. Therefore, x = − ̂l.

If x ∈ Z+∩Z−, then x = m̂ and x = −n̂ for somem, n ∈ 𝜔. Therefore, ((m, 0), (0, n)) ∈
𝜃 implies m + n = 0 + 0 = 0, where m = n = 0. Thus, x = 0̂.

2. The assertion follows from 1.

It follows from Lemma 2 that for every integer x, we can define correctly its modulus
|x| ∈ Z+ setting |x| ≡ x if x ∈ Z+ and |x| ≡ −x if x ∈ Z−.

Product of integers
Let (m̂i ∈ Z+ | i ∈ I) be a simple collection indexed by a finite set I. The integer
e(P(mi ∈ 𝜔 | i ∈ I)) ∈ Z+ is called the product of the simple collection (m̂i ∈ Z+ | i ∈ I)
and is denoted by P(m̂i | i ∈ I). If I = n+1 for n = 𝜔\2, then alongwith P(m̂i | i ∈ n+1),
we shall use the notation m̂0 . . . m̂n.

The products P(m̂, m̂), P(m̂, m̂, m̂), . . . of the simple collections (m̂, m̂),
(m̂, m̂, m̂), . . . composed of elements m̂, m̂, m̂, . . .of Z+ will be denoted also by
m̂m̂, m̂m̂m̂, . . . .

Lemma 3. Let (m̂i ∈ Z+ | i ∈ I) be a simple collection indexed by a finite set I. Then:
1) if K is a finite set and u is a bijective mapping from K onto I, then P(m̂i | i ∈ I) =

P(m̂u(k) | k ∈ K);
2) if a collection ⟮Im ⊂ I | m ∈ M⟯ is a partition of the set I indexed by a finite non-

empty set M, then P(m̂i | i ∈ I) = P(P(m̂i | i ∈ Im) | m ∈ M).
Proof. We shall denote the left and right parts of these equalities by L and R, respec-
tively.

1.Usingassertion 1 of Theorem2 (1.3.6),weget L ≡ e(P(mi ∈ 𝜔 | i ∈ I)) = e(P(mu(k) |
k ∈ K)) ≡ R.

2. Analogously, using assertion 2 of the same theorem, we get L = e(P(mi ∈ 𝜔 | i ∈
I)) = e(P(P(mi | i ∈ Im) | m ∈ M)) ≡ P(e(P(mi | i ∈ Im)) | m ∈ M) ≡ R.

Corollary 1.
1) Let (m̂i ∈ Z+ | i ∈ {p}) be a simple collection indexed by the set {p}. Then, P(m̂i | i ∈{p}) = m̂p.
2) Let (m̂i ∈ Z+ | i ∈ {p, q}) be a simple collection indexed by the set {p, q}with differ-

ent elements p /= q. Then, P(m̂i | i ∈ {p, q}) = m̂pm̂q.

The proof is analogous to the proof of Lemma 1.
Let 𝜘 ≡ (xi ∈ Z | i ∈ I) be a simple collection indexed by a finite set I. Define

the product P𝜘 ≡ P(xi | i ∈ I) ∈ Z of the simple collection 𝜘 setting P𝜘 ≡ P(|xi| ∈ Z+ |
i ∈ I) if the power of the set I−𝜘 ≡ {i ∈ I | xi ∈ Z− \ {0̂}} is an even natural number, and
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P𝜘 ≡ −P(|xi| ∈ Z+ | i ∈ I) if the power of this set is an odd natural number. If I = n + 1
for n ∈ 𝜔 \ 2, then along with P(xi | i ∈ n + 1) we shall use also the notation x0 . . . xn.

Let x, x, x, x, . . . be integers. As above, the integers P(x, x), P(x, x, x),
P(x, x, x, x), . . . will be called the products of the simple sequential pair (x, x),
triplet (x, x, x), quadruplet (x, x, x, x), . . . andwill be denoted also by xx, xxx,
xxxx, . . . .

Lemma 4. Let m, n ∈ 𝜔. Then, (−m̂)n̂ = −(m̂n̂), m̂(−n̂) = −(m̂n̂), and (−m̂)(−n̂) = m̂n̂.

Proof. By definition, (−m̂)n̂ ≡ P(−m̂, n̂) ≡ P(xi | i ∈ 2) for the collection 𝜘 ≡ (xi ∈ Z |
i ∈ 2) such that x0 ≡ −m̂ and x1 ≡ n̂. Since card 2−𝜘 = card{0} = 1, we infer that P(xi |
i ∈ 2) ≡ −P(|xi| | i ∈ 2) = −(m̂n̂). The other equalities are checked in a similar way.

Proposition 1. Let (xi ∈ Z | i ∈ I) be a simple collection indexed by a finite set I, K be
a finite set, and u be a bijective mapping from K onto I. Then, P(xi | i ∈ I) = P(xu(k) |
k ∈ K) (the general commutativity of the product).

Proof. Denote the collections (xi | i ∈ I) and (xu(k) | k ∈ K) by 𝜋 and 𝜘, respectively.
Then, u[K−

𝜘] = I−𝜋 implies the equality of the powers of these sets. Thus, these pow-
ers are both odd or both even simultaneously. In the first case, using assertion 1 of
Lemma 3, we get P𝜋 ≡ −P(|xi| ∈ Z+ | i ∈ I) = −P(|xu(k)| | k ∈ K) ≡ P𝜘. In the second
case, the argument is the same.

Corollary 1.
1) Let (xi ∈ Z | i ∈ {p}) be a simple collection indexed by the set {p}. Then, P(xi | i ∈{p}) = xp.
2) Let (xi ∈ Z | i ∈ {p, q}) be a simple collection indexed by the set {p, q}with different

elements p /= q. Then, P(xi | i ∈ {p, q}) = xpxq.

The proof is analogous to the proof of Lemma 1.

Lemma 5. Let (xi ∈ Z | i ∈ I) be a simple collection indexed by a finite set I, ⟮Im ⊂ I |
m ∈ M⟯ be a partition of the set I indexed by a set M such that M = {p, q} and p /= q.
Then, P(xi | i ∈ I) = P(P(xi | i ∈ Im) | m ∈ M) = P(xi | i ∈ Ip)P(xi | i ∈ Iq).
Proof. Denote the collections (xi | i ∈ Ip), (xi | i ∈ Iq), and (xi | i ∈ I) by 𝜘p, 𝜘q, and 𝜘,
respectively. It is clear that the collection ⟮I−m𝜘m

⊂ I−𝜘 | m ∈ M⟯ is a partition of the set I−𝜘 .
Consider the natural numbers np ≡ card I−p𝜘p , nq ≡ card I−q𝜘q , and n ≡ card I−𝜘 . Accord-
ing to Corollary 1 to Lemma 1 (1.3.5), n = np + nq.

At first, consider the case when the number n is even. Then, np and nq are either
both even or both odd. In the first case,we have P𝜘p ≡ P(|xi| | i ∈ Ip) and P𝜘q ≡ P(|xi| |
i ∈ Iq). Besides, P𝜘 = P(|xi| | i ∈ I). Using assertion 2 of Lemma3andCorollary 1 to this
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lemma, we get P(|xi| ∈ Z+ | i ∈ I) = P(P(|xi| | i ∈ Im) | m ∈ M) = P(|xi| | i ∈ Ip)P(|xi| |
i ∈ Iq). As a result, P𝜘 = P(P𝜘m | m ∈ M) = P𝜘p P𝜘q. In the second case, we have
P𝜘p ≡ −P(|xi| | i ∈ Ip) and P𝜘q ≡ −P(|xi| | i ∈ Iq). Therefore, by Lemma 4 P𝜘 ≡ P(|xi| |
i ∈ I) = P(|xi| | i ∈ Ip)P(|xi| | i ∈ Iq) = (−P(|xi| | i ∈ Ip))(−P(|xi| | i ∈ Iq)) = P𝜘p P𝜘q.
By Corollary 1 to Proposition 1, P𝜘p P𝜘q = P(P𝜘m | m ∈ M).

Now, consider the case when the number n is odd. Then, either np is even and nq
is odd or np is odd and nq is even. In the first case by Lemma 4, we get P𝜘 ≡ −P(|xi| |
i ∈ I) = −(P(|xi| | i ∈ Ip)P(|xi| | i ∈ Iq)) = P(|xi| | i ∈ Ip)(−P(|xi| | i ∈ Iq)) = P𝜘p P𝜘q =
P(P𝜘m | m ∈ M). In the second case, the argument is the same.

Finally, we can prove the property of general associativity for the product of integers.

Theorem 3. Let (xi ∈ Z | i ∈ I) be a simple collection indexed by a finite set I and ⟮Im ⊂
I | m ∈ M⟯ be a partition of the set I indexed by a finite non-empty set M. Then, P(xi |
i ∈ I) = P(P(xi | i ∈ Im) | m ∈ M) (the general associativity of the product).
Proof. Consider the set X of all natural numbers n such that for every collection 𝜘 ≡
(xi ∈ Z | i ∈ I) and every partition 𝜋 ≡ ⟮Im ⊂ I | m ∈ M⟯ with cardM = n + 2 we have
the property P𝜘 = P(P(xi | i ∈ Im) | m ∈ M). By Lemma 5, 0 ∈ X.

Let n ∈ X. Take any𝜘 and𝜋 such that cardM = (n+1)+2. Fix some elementm0 ∈ M
and consider the setsM0 ≡ {m0} andM1 ≡ M \M0. It is clear thatM1 = n + 2. Consider
also the sets J0 ≡ Im0

and J1 ≡ I \ I0. Then, 𝜋1 ≡ ⟮Im | m ∈ M1⟯ is a partition of J1 and⟮Jk | k ∈ 2⟯ is a partition of I. Therefore, for the collection 𝜘1 ≡ (xi | i ∈ J1) and the par-
tition 𝜋1 we have P𝜘1 = P(P(xi | i ∈ Im) | m ∈ M1). By Corollary 1 to Proposition 1 for
the collection 𝜘0 ≡ (xi | i ∈ J0), we have P𝜘0 = P(xi | i ∈ Im0

) = P(P(xi | i ∈ Im) | m ∈
M0).

By Lemma 5 P𝜘 = P(P𝜘k | k ∈ 2) = P(P(P(xi | i ∈ Im) | Mk) | k ∈ 2) = P(P(xi | i ∈
Im) | m ∈ M) because ⟮Mk | k ∈ 2⟯ is a partition of the setM. This means that n+ 1 ∈ X.
By the principle of natural induction from 1.2.6, we infer that X = 𝜔.
Corollary 1. Let (xi ∈ Z | i ∈ I) and (yi ∈ Z | i ∈ I) be simple collections indexed by a fi-
nite non-empty set I. Then, P(xi | i ∈ I)P(yi | i ∈ I) = P(xiyj | i ∈ I).
The proof is completely similar to the proof of Corollary 1 to Lemma 1.

Theorem 4. Let x, y and z be integers. Then:
1) xy = yx (the commutativity of the product);
2) xyz = x(yz) = (xy)z (the associativity of the product).
The proof is similar to the proof of Theorem 2.

The element ̂1 is called the unity element in Z. For every integer x, we have
the equality ̂1x = x ̂1 = x (see Corollary 1 to Lemma 3 (1.3.5)).
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Lemma 6. Let m ∈ N and x ∈ Z. Then, m̂x = ∑(xi | i ∈ I) for every simple collection
(xi ∈ Z | i ∈ I) such that xi = x for every i ∈ I and I = m.

Proof. By Lemma 2 either x = n̂ or x = −n̂ for some n ∈ 𝜔. By Corollary 2 to
Lemma 3 (1.3.5) mn = ∑(ni | i ∈ I), where ni ≡ n for every i. Therefore, in the first
case, m̂x = m̂n̂ = e(mn) = e∑(ni | i ∈ I) = ∑(n̂i | i ∈ I) = ∑(xi | i ∈ I). In the second
case, by Lemma 4, m̂x = m̂(−n̂) = −(m̂n̂) = −e(mn) = −e(∑(ni | i ∈ I)) = −𝜃(∑(ni | i ∈
I), 0) = 𝜃(0,∑(ni | i ∈ I)) ≡ ∑(𝜃(0, ni) | i ∈ I) = ∑(−n̂i | i ∈ I) = ∑(xi | i ∈ I).
Lemma 7. Let m ∈ 𝜔 and x ≡ 𝜃(n, q) ∈ Z. Then, m̂x = 𝜃(mn,mq).
Proof. Consider the simple collections 𝜈 ≡ (ni ∈ 𝜔 | i ∈ m) and 𝜘 ≡ (qi ∈ 𝜔 | i ∈ m)
such that ni = n and qi = q for every i. By Lemma 6 m̂x = ∑(𝜃(ni , qi) | i ∈ I) ≡ 𝜃(∑ 𝜈,∑𝜘). By Corollary 2 to Lemma 3 (1.3.5),∑𝜈 = mn and∑𝜘 = mq.

Lemma 8. Let m ∈ 𝜔 and x ∈ Z. Then, (−m̂)x = −(m̂x).
Proof. By Lemma 2 either x = n̂ or x = −n̂ for some n ∈ 𝜔. In the first case by Lemma 4,
(−m̂)x = −(m̂n̂) = −(m̂x). In the second case, (−m̂) = m̂n̂ = −(−(m̂n̂)) = −(m̂(−n̂)) =
−(m̂x).

The distributivity of the product with respect to the sum
Theorem 5. Let x, y, z ∈ Z. Then, x(y + z) = xy + xz (the distributivity of the product
with respect to the sum).

Proof. By virtue of Lemma 2,we need to consider the following four cases: (1) x, y+z ∈
Z+; (2) x ∈ Z− and y + z ∈ Z+; (3) x ∈ Z+ and y + z ∈ Z−; and (4) x, y + z ∈ Z−. Thus,
either x = ̂l or x = − ̂l and either y+ z = k̂ or y+ z = −k̂ for some l, k ∈ 𝜔. Let y ≡ 𝜃(m, p)
and z ≡ 𝜃(n, q).

In the first case, y + z = (m + n, p + q) = k̂ ≡ (k, 0) implies m + n = p + q + k.
Therefore, x(y+z) = ̂lk̂ = 𝜃(lk, 0) in virtue of Lemma 7. But lm+ ln = lp+ lq+ lk implies
𝜃(lk, 0) = 𝜃(lm + ln, lp + lq) = 𝜃(lm, lp) + 𝜃(ln, lq) = ̂ly + ̂lz = xy + xz.

In the second case by Lemma 8 and Lemma 7, x(y + z) = (− ̂l)(y + z) = −( ̂l(y + z)) =
−( ̂lk̂) = −𝜃(lm + ln, lp + lq) = 𝜃(lp, lq, lm + ln) = 𝜃(lp, lm) + 𝜃(lq, ln) = −𝜃(lm, lp) −
𝜃(ln, lq) = −( ̂ly) − ( ̂lz) = (− ̂l)y + (− ̂l)z = xy + xz.

In the third case, y + z = (m + n, p + q) = −k̂ = (0, k) implies m + n + k = p + q.
Therefore, x(y+ z) = −( ̂lk̂) = 𝜃(0, lk). But lm+ ln+ lk = lp+ lq implies 𝜃(0, lk) = 𝜃(lm+
ln, lp + lq) = ̂ly + ̂lz = xy + xz.

Finally, in the fourth case, x(y+z) = ̂lk̂ = 𝜃(lk, 0) = 𝜃(lp+ lq, lm+ ln) = 𝜃(lp, lm)+
𝜃(lq, ln) = −𝜃(lm, lp) − 𝜃(ln, lq) = −( ̂ly) − ( ̂lz) = (− ̂l)y + (− ̂l)z = xy + xz.
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Now,we shall deduce the property of general distributivity of the product with respect
to the sum using the property of binary distributivity from Theorem 5 and the prop-
erties of general commutativity and associativity of the sum and the product. This
deduction does not depend on specific properties of the set Z and has quite general
character.

Lemma 9. Let x ∈ Z and (yj ∈ Z | j ∈ J) be a simple finite collection. Then, x∑(yj | j ∈
J) = ∑(xyj | j ∈ J).
Proof. Consider the set X of all natural numbers n such that for every collection 𝜘 ≡
(yj | j ∈ J)with card J = n+1, we have the property x∑𝜘 = ∑(xyj | j ∈ J). By Corollary 1
to Proposition 1, 0 ∈ X.

Let n ∈ X. Take any 𝜘 such that card J = (n + 1) + 1. Fix some element j0 ∈ J and
consider the sets J0 ≡ {j0} and J1 ≡ J \ J0. It is clear that card J1 = n+ 1. Since ⟮Jk | k ∈ 2⟯
is a partition of the set J, we get in virtue of Theorem 1 and Lemma 1∑𝜘 = ∑(∑(yj | j ∈
Jk) | k ∈ 2) = ∑(yj | j ∈ J0)+∑(yj | j ∈ J1) = yj0 +∑(yj | j ∈ J1). Therefore, by Theorem 5
x∑𝜘 = xyj0 + ∑(xyj | j ∈ J1) = ∑(xyj | j ∈ J0) + ∑(xyj | j ∈ J1) = ∑(∑(xyj | j ∈ Jk) | k ∈
2) = ∑(xyj | j ∈ J). This means that n + 1 ∈ X. By the principle of natural induction
from 1.2.6, we infer that X = 𝜔.
Theorem 6. Let ⟮Im | m ∈ M⟯ be a collection of finite sets and (𝜘m | m ∈ M) be a sim-
ple collection of simple collections 𝜘m ≡ (xmi ∈ Z | i ∈ Im) indexed by non-empty finite
sets M and Im. Consider the finite set U ≡ ∏⟮Im | m ∈ M⟯. Then, P(∑(xmi | i ∈ Im) | m ∈
M) = ∑(P(xmu(m) | m ∈ M) | u ∈ U) (the general distributivity of the product with re-
spect to the sum).

Proof. We shall denote the left and right parts of this equality by L and R, respectively.
Consider the set X of all natural numbers n such that L = R for every collection

𝜋 ≡ ⟮Im | m ∈ M⟯with cardM = n + 1 and every collection 𝜎 ≡ (𝜘m | m ∈ M) of simple
collections 𝜘m ≡ (xmi | i ∈ Im) indexed by non-empty finite sets Im.

LetM = {m}. Then, L = ∑(xmi | i ∈ Im) and U = Map({m}, Im). Define a bijection v
from Im onto U setting v(i) ≡ {⟨m, i⟩} for every i ∈ Im. Using assertion 1 of Theorem 1
and Corollary 1 to Proposition 1, we get R = ∑(xmu(m) | u ∈ U) = ∑(xmv(i)(m) | i ∈ Im) =∑(xmi | i ∈ Im) = L because v(i)(m) = i. This means that 0 ∈ X.

Let n ∈ X. Take any𝜋 and𝜎 such that cardM = (n+1)+1. Fix some elementm0 ∈ M
and consider the setsM0 ≡ {m0} andM1 ≡ M \M0. It is clear that cardM1 = n+ 1. Con-
sider also the collections 𝜋0 ≡ ⟮Im | m ∈ M0⟯, 𝜋1 ≡ ⟮Im | m ∈ M1⟯, 𝜎0 ≡ (𝜘m | m ∈ M0),
and𝜎1 ≡ (𝜘m | m ∈ M1). Then, forU1 ≡ ∏𝜋1,wehave P(∑ 𝜘m | m ∈ M1) = ∑(P(xmu(m) |
m ∈ M1) | u ∈ U1).

Using Theorem 3 and Lemma 9, we get L = P(∑ 𝜘m | m ∈ M) = P(P(∑ 𝜘m | m ∈
Mk) | k ∈ 2) = P(∑ 𝜘m | m ∈ M0)P(∑ 𝜘m | m ∈ M1) = (∑ 𝜘m0

) ∑(P(xmu(m) | m ∈ M1) |
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u ∈ U1) = ∑(xm0 i ∑(P(xmu(m) | m ∈ M1) | u ∈ U1) | i ∈ Im0
) = ∑(∑(xm0 iP(xmu(m) | m ∈

M1) | u ∈ U1) | i ∈ Im0
).

Consider the set U0 ≡ ∏𝜋0 = Map({m0}, Im0
) and define a bijection w from U0

onto Im0
setting w(u0) ≡ u0(m0). Using assertion 1 of Theorem 1 and Corollary 1

to Proposition 1, we get L = ∑(∑(xm0w(u0)P(xmu1(m) | m ∈ M1) | u1 ∈ U1) | u0 ∈ U0) =∑(∑(xm0u0(m0)P(xmu1(m) | m ∈ M1) | u1 ∈ U1) | u0 ∈ U0) = ∑(∑(P(xmu0(m) | m ∈ M0)
P(xmu1(m) | m ∈ M1) | u1 ∈ U1) | u0 ∈ U0).

Consider a projection𝛼 fromU0×U1 ontoU1 such that𝛼(u0, u1) = u1. Themapping
𝛼|{u0} × U1 is a bijective mapping from {u0} × U1 onto U1 for every u0 ∈ U0. Therefore,
by the property of general commutativity of the sum, we get L = ∑(∑(P(xmu0(m) | m ∈
M0)P(xm𝛼(p)(m) | m ∈ M1) | p ∈ {u0} × U1) | u0 ∈ U0). Since the collection ⟮{u0} × U1 |
u0 ∈ U0⟯ is a partition of the set U0 × U1, we can apply assertion 2 of Theorem 1. As a
result, L = ∑(P(xmu0(m) | m ∈ M0)P(xm𝛼(p)(m) | m ∈ M1) | p ∈ U0 × U1) = ∑(P(xmu0(m) |
m ∈ M0)P(xmu1(m) | m ∈ M1) | (u0, u1) ∈ U0 × U1).

Consider the bijection 𝛽 from U onto U0 × U1 such that 𝛽(u) = (r0(u), r1(u)),
where r0(u) ≡ u|M0 and r1(u) ≡ u|M1. Denote temporarily the element P(xmu0(m) | m ∈
M0)P(xmu1(m) | m ∈ M1) by z(u0,u1). Then, L = ∑(z(u0,u1) | (u0, u1) ∈ U0 × U1) = ∑(z𝛽(u) |
u ∈ U) by virtue of assertion 1 of Theorem 1. Since r0(u)(m) = u(m) for every m ∈ M0
and r1(u)(m) = u(m) for every m ∈ M1, we get z𝛽(u) = P(xmu(m) | m ∈ M0)P(xmu(m) |
m ∈ M1). As a result, L = ∑(P(xmu(m) | m ∈ M0)P(xmu(m) | m ∈ M1) | u ∈ U). Since
the collection ⟮Mk | k ∈ 2⟯ is a partition of the set M, we get in virtue of Corol-
lary 1 to Proposition 1 and Theorem 3 L = ∑(P(P(xmu(m) | m ∈ Mk) | k ∈ 2) | u ∈ U) =∑(P(xmu(m) | m ∈ M) | u ∈ U) = R.

Thismeans that n+1 ∈ X. By the principle of natural induction from 1.2.6, we infer
that X = 𝜔.
Corollary 1. Let (yj ∈ Z | j ∈ J) and (zk ∈ Z | k ∈ K) be finite simple collections. Then,
∑(yj | j ∈ J) ∑(zk | k ∈ K) = ∑(yjzk | (j, k) ∈ J × K).
Proof. Consider the collection𝜋 ≡ ⟮Im | m ∈ 2⟯ such that I0 ≡ J and I1 ≡ K and the sim-
ple collections 𝜘0 ≡ (x0i | i ∈ I0) and 𝜘1 ≡ (xi1 | i ∈ I1) such that x0i ≡ yi and x1i ≡ zi.
Then, L ≡ ∑(yj | j ∈ J) ∑(zk | k ∈ K) = P(∑(xmi | i ∈ Im) | m ∈ 2) = ∑(P(xmu(m) | m ∈
2) | u ∈ U), where U ≡ ∏𝜋. Define a bijection r : J × K → U setting r(j, k)(0) ≡ j and
r(j, k)(1) ≡ k. Then, by Theorem 1 L = ∑(P(xmr(j,k)(m) | m ∈ 2) | (j, k) ∈ J × K). Using
Corollary 1 to Proposition 1, we get P(xmr(j,k)(m) | m ∈ 2) = x0jx1k = yjzk. As a result,
L = ∑(yjzk | (j, k) ∈ J × K).

Rising to a degree for integers
Let m, n ∈ 𝜔. The integer e(mn) ∈ Z+ is called the degree of the number m̂ with the ex-
ponent n̂ and is denoted by m̂n̂.
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Let x ∈ Z. Define the degree xn̂ of the number x with the exponent n̂ setting xn̂ ≡ m̂n̂

if x = m̂, xn̂ ≡ m̂n̂ if x = −m̂ and the number n is even, and xn̂ ≡ −m̂n̂ if x = −m̂ and
the number n is odd.

Lemma 10. Let n ∈ N and x ∈ Z. Then, xn̂ = P(xi | i ∈ I) for every simple collection (xi ∈
Z | i ∈ I) such that xi ≡ x for every i ∈ I and card I = n.

Proof. By Lemma 2, either x = m̂ or x = −m̂ for some m ∈ 𝜔. By Lemma 7 (1.3.5),
mn = P(mi | i ∈ I), where mi ≡ m for every i. Therefore, in the first case xn̂ = e(mn) =
e(P(mi | i ∈ I)) ≡ P(m̂i | i ∈ I) = P(xi | i ∈ I). In the second case, if n is even, we
get again xn̂ = m̂n̂ = P(m̂i | i ∈ I) = P(|xi| | i ∈ I) ≡ P(xi | i ∈ I). If n is odd, we get
xn̂ = −m̂n̂ = −P(|xi| | i ∈ I) ≡ P(xi | i ∈ I).
Proposition 2. Let (xi ∈ Z | i ∈ I) and (yj ∈ Z+ | j ∈ J) be simple finite collections, x ∈ Z

and y, z ∈ Z+. Then:
1) x0̂ = ̂1, x ̂1 = x, and ̂1y = ̂1;
2) 0̂y = 0̂ for y /= 0̂;
3) x∑(yj |j∈J) = P(xyj | j ∈ J);
4) (P(xi | i ∈ I))y = P(xyi | i ∈ I);
5) xyz = (xy)z.
Proof. Let y ≡ m̂, z ≡ n̂, and yj ≡ m̂j.

1. If x = ̂l, then by Lemma 9 (1.3.5) x0̂ ≡ e(l0) = ̂1, x ̂1 ≡ e(l1) = x, and ̂1y ≡ e(1m) = ̂1.
If x = − ̂l, then x0̂ = e(l0) = ̂1 and x ̂1 = −e(l1) = x.

2. Since m /= 0, we get by Lemma 9 0̂y ≡ e(0m) = 0̂.
3. If x = ̂l, then by Corollary 1 to Lemma 7 (1.3.5) x∑(yj |j∈J) ≡ e(l∑(mi |j∈J)) = e(P(lmj |

j ∈ J)) ≡ P(e(lmj ) | j ∈ J) = P(xyj | j ∈ J). If x = − ̂l, then the arguments are completely
the same.

4. Denote (xi | i ∈ I) by𝜘. If y = 0̂, then 4) follows from 1). Now assume thatm /= 0.
Consider the sets I0 ≡ {i ∈ I | xi = 0̂}, I1 ≡ {i ∈ I | ∃li ∈ N (xi = − ̂li)}, and I2 ≡{i ∈ I | ∃li ∈ N (xi = ̂li)}. If I0 /= ⌀, then P𝜘 = 0̂ implies (P𝜘)y = 0̂ by virtue of 2.

Also, xyi = 0̂ for every i ∈ I0 implies P(xyi | i ∈ I) = 0̂. Therefore, in this case we get
again 4).

Further, assume that I0 = ⌀. Consider the set K ≡ {1, 2} And the collections
𝜘k ≡ (xi | i ∈ Ik). Since ⟮Ik | k ∈ K⟯ is a partition of the set I, we get by Theorem 3 and
Corollary 1 to Proposition 1 P𝜘 = P(P(xi | i ∈ Ik) | k ∈ K) = P𝜘1P𝜘2. At first assume that
m is even. If card I1 is even, then P𝜘1 ≡ P( ̂li | i ∈ I1). Therefore, P𝜘 = P𝜘1P𝜘2 = P( ̂li |
i ∈ I1)P( ̂li | i ∈ I2) = P( ̂li | i ∈ I) ≡ e(P(li | i ∈ I)) implies by Lemma 8 (1.3.5) (P𝜘)y ≡
(e(P(li | i ∈ I)))y = e((P(li | i ∈ I))m) = e(P(lmi | i ∈ I)) = P(e(lmi ) | i ∈ I) = P( ̂lm̂i | i ∈
I) = P(xyi | i ∈ I).
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If card I1 is odd, then P𝜘1 ≡ −P( ̂li | i ∈ I1). Therefore, P𝜘 = P𝜘1P𝜘2 = −P( ̂li | i ∈
I1)P( ̂li | i ∈ I2) = −P( ̂li | i ∈ I) ≡ −e(P(li | i ∈ I)) implies (P𝜘1)y ≡ (e(P(li | i ∈ I)))y =
P( ̂lm̂i | i ∈ I) = P(xyi | i ∈ I).

Finally,assumethatm isodd.Then,xyi = −e(lmi ) forevery i ∈ I1 andxyi = e(lmi ) forev-
ery i ∈ I2.Ifcard I1 iseven,thenasaboveP𝜘 = e(P(li | i ∈ I)) implies(P𝜘)y ≡ (e(P(li | i ∈
I)))y ≡ e(P(lmi | i ∈ I)) = P(e(lmi ) | i ∈ I) = P(e(lmi ) | i ∈ I1)P(e(lmi ) | i ∈ I2) = P(−e(lmi ) |
i ∈ I1)P(xyi | i ∈ I2) = P(xyi | i ∈ I1)P(xyi | i ∈ I2) = P(xyi | i ∈ I).

If card I1 is odd, then as above P𝜘 = −e(P(li | i ∈ I)) implies (P𝜘)y ≡ −(e(P(li |
i ∈ I)))y ≡ −e(P(lmi | i ∈ I)) = −P(e(lmi ) | i ∈ I) = (−P(e(lmi ) | i ∈ I1))P(e(lmi ) | i ∈ I2) =
P(−e(lmi ) | i ∈ I1)P(xyi | i ∈ I2) = P(xyi | i ∈ I1)P(xyi | i ∈ I2) = P(xyi | i ∈ I).

5. If x = ̂l, thenbyCorollary 3 toLemma7 (1.3.5) xyz ≡ e(lmn) = e((lm)n) = (e(lm))z =
(xy)z.

Now, assume that x = − ̂l. Ifm and n are even, then again xyz ≡ e(lmn) = (e(lm))z =
(xy)z. Ifm isevenandn isodd, then xyz ≡ e(lmn) = e((lm)n) = (e(lm))z = ((− ̂l)y)z = (xy)z.
If m is odd and n is even, then xyz ≡ e(lmn) = e((lm)n) = (−e(lm))z = ((− ̂l)y)z = (xy)z.
Finally, if m and n are even, then xyz ≡ −e(lmn) = −e((lm)n) = (−e(lm))z = ((− ̂l)y)z =
(xy)z.

Order properties of Z

Consider onZ the binary relation 𝜗 ≡ {(x, y) ∈ Z×Z | (∃m, n ∈ 𝜔 (x = m̂ ∧ y = n̂ ∧ m ⩽
n)) ∨ (∃m, n ∈ 𝜔 (x = −m̂ ∧ y = n̂)) ∨ (∃m, n ∈ 𝜔 (x = −m̂ ∧ y = −n̂ ∧ m ⩾ n))}. Using
Lemma 2, we can easily check that 𝜗 is a linear order. Along with (x, y) ∈ 𝜗 we shall
write also x ⩽ y. Numbers from Z+ [Z+ \ {0̂}] are called positive [strictly positive], and
numbers from Z− [Z− \ {0̂}] are called negative [strictly negative].
Lemma 11. Let m, n ∈ 𝜔. Then:
1) m̂ ⩽ n̂ iff m ⩽ n;
2) −m̂ ⩽ −n̂ iff m ⩾ n.

Proof. We check only the second assertion.
Let −m̂ ⩽ −n̂. Suppose that m < n. Then, by definition −m̂ ⩾ −n̂, where −m̂ = −n̂

and m = n. It follows from this contradiction that m ⩾ n.

Lemma 12. Let x, y ∈ Z. Then, x ⩽ y iff y − x ⩾ 0̂.
Proof. Let x = −m̂ and y = −n̂. If x ⩽ y, then by Lemma 11 m ⩾ n. Therefore, by Theo-
rem 5 (1.3.6),m = n+ k for some k ⩾ 0. By definition k̂ ⩾ 0̂. As a result, y− x = 𝜃(0, n)+
𝜃(m, 0) = 𝜃(m, n) = 𝜃(k, 0) = k̂ ⩾ 0̂. Conversely, let y−x ⩾ 0̂. Supposing that y−x = − ̂l
for some l > 0, we get by definition y − x = − ̂l < 0̂. Thus, y − x = ̂l for some l ∈ 𝜔. From
y − x = 𝜃(m, n) = 𝜃(l, 0), we infer that m = n + l ⩾ n. By definition, this implies x ⩽ y.
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In the case when x = m̂ and y = n̂, the arguments are the same.
Let x = −m̂ and y = n̂. Then, x ⩽ y and y − x = 𝜃(m + n, 0) = e(m + n) ⩾ 0̂.
Finally, let x = m̂ and y = −n̂. Then, y ⩽ x. If x ⩽ y, then x = y implies m̂ = −n̂,

where m + n = 0, and so m = n = 0. As a result, y − x = −0̂ − 0̂ = 0̂. Conversely, if
y − x ⩾ 0̂, then simultaneously y − x = −n̂ − m̂ = −e(n + m) ⩽ 0̂. Therefore, y − x = 0̂
and x = y.

Proposition 3. Let (xi ∈ Z |∈ I) and (yi ∈ Z | i ∈ I) be simple finite collections, x, y, z ∈
Z, and r, s ∈ Z+. Then:
1) if xi ⩽ yi for every i ∈ I, then ∑(xi | i ∈ I) ⩽ ∑(yi | i ∈ I); if besides xi < yi at least

for one index, then ∑(xi | i ∈ I) < ∑(yi | i ∈ I);
2) if 0̂ ⩽ xi ⩽ yi for every i ∈ I, then P(xi | i ∈ I) ⩽ P(yi | i ∈ I); if besides xi < yi at

least for one index and yi > 0̂ for every i ∈ I, then P(xi | i ∈ I) < P(yi | i ∈ I);
3) if x < y, then xz < yz for z > 0̂ and xz > yz for z < 0̂;
4) if 0̂ ⩽ x < y and r > 0̂, then xr < yr;
5) if x > ̂1 and r < s, then xr < xs.

Proof. 1. By Lemma 12 xi ⩽ yi implies yi − xi ⩾ 0̂. By virtue of Lemma 2, either yi − xi =−m̂i or yi − xi = m̂i. In the first case, yi − xi ⩽ 0̂ implies yi − xi = 0̂. Thus, in both cases,
yi − xi = m̂i for some mi ∈ 𝜔. Therefore, sum(yi − xi | i ∈ I) = ∑(m̂i | i ∈ I) ≡ e(∑mi |
i ∈ I) ⩾ 0̂. But by Theorem 1,∑(yi −xi | i ∈ I) = ∑(yi | i ∈ I)+∑(−xi | i ∈ I) = ∑(yi | i ∈
I) − ∑(xi | i ∈ I). Therefore, by Lemma 12 ∑(xi | i ∈ I) ⩽ ∑(yi | i ∈ I).

If besides xj < yj, then mj > 0. Therefore, by Proposition 2 (1.3.6), ∑(mi | i ∈ I) >
0. Consequently, ∑(yi | i ∈ I) − ∑(xi | i ∈ I) = ∑(m̂i | i ∈ I) ≡ e∑(mi | i ∈ I) > 0̂. By
virtue of Lemma 12, this implies the necessary strict inequality.

2. From the condition 0̂ ⩽ xi ⩽ yi, we infer as above that xi = m̂i and yi = n̂i for
some mi , ni ∈ 𝜔. By Lemma 11 mi ⩽ ni. Therefore, by Lemma 11 (1.3.5), P(mi | i ∈ I) ⩽
P(ni | n ∈ I). Finally, P(xi | i ∈ I) ≡ eP(mi | i ∈ I) ⩽ eP(ni | i ∈ I) ≡ P(yi | i ∈ I).

If besides xj < yj and yi > 0̂ for every i, then mj < nj and ni > 0 for every i. There-
fore, by Proposition 2 (1.3.6), P(mi | i ∈ I) < P(ni | i ∈ I). Since the mapping e is injec-
tive, we conclude that P(xi | i ∈ I) < P(yi | i ∈ I).

3. If x < y, then y−x > 0̂ implies as above that y−x = m̂ for somem > 0. Similarly,
if z > 0̂, then z = n̂ for some m > 0. Therefore, by Corollary 1 to Proposition 2 (1.3.6)
mn > 0. Thus, by Theorem 5, yz − xz = (y − x)z = e(mn) > 0̂, where by Lemma 12 xz <
yz.

If z < 0̂, then z = −n̂ for some n > 0. Therefore, by Lemma 4 yz − xz = (y − x)z =
m̂(−n̂) = −e(mn) < 0̂, where yz < xz.

4. As above, 0̂ ⩽ x < y implies x = m̂ and y = n̂ for some m, n ∈ 𝜔. By Lemma 11,
m < n. Besides, r = k̂ for some k > 0. Therefore, by Corollary 3 to Proposition 2 (1.3.6),
mk < nk. As a result, xr ≡ e(mk) < e(nk) ≡ yk.

5. As above, x = m̂, r = k̂, and x = ̂l for some m, k, l ∈ 𝜔. By Lemma 11 m > 1 and
k < l. Therefore, by Corollary 5 to Proposition 2 (1.3.6)mk < ml. As a result, xr < xs.
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Corollary 1. Let x, y, z ∈ Z.Then, x = y iff x+z = y+z.Whenz /= 0̂, thenx = y iff xz = yz.

Proof. From x ⩽ y and y ⩽ x, we infer x + z ⩽ y + z ⩽ x + z and xz ⩽ yz ⩽ xz.
Let x + z = y + z. Then, the proven property implies x = x + (z − z) = (x + z) − z =

(u + z) − z = y.
Finally, let z /= 0̂ and xz = yz. Suppose that x /= y. Then, by assertion 3 of Propo-

sition 3, xz /= yz. It follows from this contradiction that x = y.

Corollary 2 (the Archimedes principle). Let x, y ∈ Z+ and x > 0̂. Then, there is a num-
ber n ∈ N such that n̂x > y.

Proof. Since x ⩾ ̂1 and y + ̂1 > y, we infer that (y + 1)x > yx ⩾ y.

Corollary 3. Let x, y ∈ Z and xy = 0̂. Then, either x = 0̂ or y = 0̂.
Proof. Suppose that the conclusion is not valid. Then, there are the four opportunities.
If x > 0̂ and y > 0̂, then by assertion 2 of Proposition 3, xy > 0̂. If x > 0̂ and y < 0̂,
then by assertion 3 of this proposition, (− ̂1)y > (− ̂1)0̂ = 0̂, and so (− ̂1)xy > 0̂ implies
xy < 0̂. If x < 0̂ and y > 0̂, then by the same reason xy < 0̂. Finally, if x < 0̂ and y < 0̂,
then (− ̂1)x > 0̂ and (− ̂1)y > 0̂ imply xy > 0̂. In all the four opportunities, we come to
contradiction.

Proposition 4. Let (zi ∈ Z | i ∈ I) be a simple finite collection, x, y ∈ Z, and z ∈ Z+.
Then:
1) |x| = | − x|, x ⩽ |x|, and −x ⩽ |x|;
2) |P(zi | i ∈ I)| = P(|zi| | i ∈ I); in particular, |xy| = |x| |y|;
3) |xz| = |x|z;
4) if y > 0̂, then |x| ⩽ y is equivalent to −y ⩽ x ⩽ y, and |x| < y is equivalent to −y <

x < y;
5) | ∑(zi | i ∈ I)| ⩽ ∑(|zi| | i ∈ I); in particular, |x + y| ⩽ |x| + |y|;
6) ||x| − |y|| ⩽ |x − y|.
Proof. 1. It is clear that x ⩽ |x|. If x ∈ Z+, then −x ∈ Z−. This implies |x| = x and
| − x| = −(−x) = x. If x ∈ Z−, then x = −m̂ implies −x = m̂ ∈ Z+. Therefore, |x| = −x
and | − x| = −x. In both cases, |x| = | − x|. Therefore, −x ⩽ | − x| = |x|.

2. By definition, P(zi | i ∈ I) is either P(|zi| | i ∈ I) or −P(|zi| | i ∈ I). Applying 1, we
get the necessary equality.

3. Let z ≡ n̂. By Lemma 2 either x = m̂ or x = −m̂, where |x| = m̂. By definition xy

is either m̂n̂ or −m̂n̂. In both cases, by 1, we get |xz| = m̂n̂ = |x|z.
4. By assertion 1, |x| ⩽ y implies x ⩽ |x| ⩽ y and −x ⩽ |x| ⩽ y, i. e. x ⩾ −y. Con-

versely, if −y ⩽ x ⩽ y, then −y ⩽ −x ⩽ y, where |x| ⩽ y. For strict inequalities, the ar-
gument is the same.
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5. We always have zi ⩽ |zi|. By assertion 1 of Proposition 3, ∑(zi | i ∈ I) ⩽ ∑(|zi| |
i ∈ I). Similarly, −zi ⩽ |zi| implies −∑(zi | i ∈ I) = ∑(−zi | i ∈ I) ⩽ ∑(|zi| | i ∈ I). Now,
applying 4) we get the necessary inequality.

6. Using 5 and 1, we get |x| = |y + (x − y)| ⩽ |y| + |x − y| and |y| = |x + (y − x)| ⩽
|x| + |y − x| = |x| + |x − y|. Therefore, −|x − y| ⩽ |x| − |y| ⩽ |x − y|. Applying 4, we
get 6.

Further in the book, we shall identify positive integers m̂ ∈ Z+ with the corresponding
natural numbers m ∈ 𝜔.

1.4.2 Rational numbers

Define of the set Z × Z \ {0} a binary relation 𝜃 setting ((m, p), (n, q)) ∈ 𝜃 iff mq =
np. We assert that 𝜃 is an equivalence relation. In fact, 𝜃 is obviously symmetric and
reflexive. Let (l, p)𝜃(m, q) and (m, q)𝜃(n, r), i. e. lq = mp and mr = nq. Then, (lr)q =
(lq)r = (mp)r = p(nq) = (np)q and q /= 0 imply by Corollary 1 to Proposition 3 (1.4.1)
that lr = np. This means that (l, p)𝜃(n, r). Thus, 𝜃 is transitive.

Consider the factor-set Q ≡ (Z × (Z \ {0}))/𝜃 consisting of equivalence classes x ≡
𝜃(m, p) of all pairs (m, p) ∈ Z × (Z \ {0}) (see 1.1.14). Elements of the set Q are called
rational numbers or rational fractions, and the set Q is called the set of all rational
numbers.

Consider the factor-mapping f : Z × (Z \ {0}) → Q from 1.1.14. By Lemma 1 (1.1.14)
f is surjective. According to 1.4.1, the setZ is countable. Therefore, by Lemma 3 (1.3.9),
the set Z × Z is countable. Consequently, by Lemma 1 and 2 (1.3.9), the set Q is count-
able.

Associatewith every integerm ∈ Z the rational number m̂ ≡ 𝜃(m, 1) ∈ Q, and con-
sider the mapping e from Z into Q such that em ≡ m̂. This mapping is injective. Con-
sider the setQ1 ≡ {m̂ | m ∈ Z}. Since 𝜔 = cardZ = cardQ1 ⩽ cardQ ⩽ 𝜔, we infer that
cardQ = 𝜔, i. e. the set Q is denumerable.

Along with 𝜃(m, p), we shall write also m/p.

Product of rational numbers
Let (xi ∈ Q | i ∈ I) be a simple collection of rational numbers xi ≡ mi/pi indexed by
a finite set I. The rational number P(mi | i ∈ I)/P(pi | i ∈ I) is called the product of
the simple collection (xi ∈ Q | i ∈ I) and is denoted by P(xi | i ∈ I). If I = n + 1 for n ∈
𝜔 \ 2, then along with P(xi | i ∈ n + 1)we shall use the notation x0 . . . xn.

It is clear that e(P(mi ∈ Z | i ∈ I)) = P(emi ∈ Q | i ∈ I).
Let x, x, x, x, . . . be rational numbers. Then, (x, x), (x, x, x), (x, x, x, x),

. . . are the corresponding simple collection (see 1.1.11).
The rational numbers P(x, x), P(x, x, x), P(x, x, x, x),. . .will be called

the product of the simple sequential pair (x, x), triplet (x, x, x), quadruplet (x, x, x,
x),. . .and will be denoted also by xx, xxx, xxxx,. . . .
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Theorem 1. Let (xi ∈ Q | i ∈ I) be a simple collection indexed by a finite set I. Then:
1) if K is a finite set and u is a bijective mapping from K onto I, then P(xi | i ∈ I) =

P(xu(k) | k ∈ K) (the general commutativity of the product);
2) if a collection ⟮Im ⊂ I | m ∈ M⟯ is a partition of the set I indexed by a finite non-

empty set M, then P(xi | i ∈ I) = P(P(xi | i ∈ Im) | m ∈ M) (the general associativity
of the product).

Proof. We shall denote the left parts of these equalities by L. Let xi ≡ 𝜃(mi , pi).
1. Using Proposition 1 (1.4.1), we get L ≡ 𝜃(P(mi | i ∈ I), P(pi | i ∈ I)) = 𝜃(P(mu(k) |

k ∈ K), P(pu(k) | k ∈ K)) ≡ P(𝜃(mu(k), pu(k)) | k ∈ K) ≡ P(xu(k) | k ∈ K).
2. Analogously, using Theorem 3 (1.4.1), we get L ≡ 𝜃(P(mi | i ∈ I), P(pi | i ∈ I)) =𝜃(P(P(mi | i ∈ Im) | m ∈ M), P(P(pi | i ∈ Im) | m ∈ M)) ≡ P(𝜃(P(mi | i ∈ Im), P(pi | i ∈

Im)) | m ∈ M) ≡ P(P(𝜃(mi , pi) | i ∈ Im) | m ∈ M) ≡ P(P(xi | i ∈ Im) | m ∈ M).
Lemma 1.
1) Let (xi ∈ Q | i ∈ {p}) be a simple collection indexed by a set {p}. Then, P(xi | i ∈{p}) = xp.
2) Let (xi ∈ Q | i ∈ {p, q}) be a simple collection indexed by a set {p, q} with different

elements p /= q. Then, P(xi | i ∈ {p, q}) = xpxq.

The proof is analogous to the proof of Lemma 1 (1.4.1).

Corollary 1. Let (xi ∈ Q | i ∈ I) and (yi ∈ Q | i ∈ I) be simple collections indexed by a fi-
nite non-empty set I. Then, P(xi | i ∈ I)P(yi | i ∈ I) = P(xiyi | i ∈ I).
The proof is completely similar to the proof of Corollary 1 to Lemma 1 (1.4.1).

Theorem 2. Let x, y and z be rational numbers. Then:
1) xy = yx (the commutativity of the product);
2) xyz = x(yz) = (xy)z (the associativity of the product).
The proof is analogous to the proof of Theorem 2 (1.4.1).

The element ̂1 is called the unity element in Q. For every rational number x, we
have the equality ̂1x = x ̂1 = x.

The element p/m is called the inverse element to the element x ≡ m/p /= 0̂ and is
denoted by 1/x or by x−1. It is clear that (x−1)−1. The unity and inverse elements are
connected by the equality xx−1 = x−1x = ̂1. Further, along with xy−1 we shall write also
x/y; this number is called the quotient of the numbers x and y.

Consider the set Q−1
1 ≡ {1/m | m ∈ Z \ {0}}.

Lemma 2.
1) Q1 ∩Q−1

1 = {− ̂1, ̂1}.
2) For every x ∈ Q, there exist y ∈ Q1 and z ∈ Q−1

1 such that x = yz.
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Proof. 1. Let x ∈ Q1 ∩ Q
−1
1 . By definition x = m/1 and x = 1/n for some m ∈ Z and n ∈

Z \ {0}. Thus, (m, 1)𝜃(1, n) implies mn = 1. Therefore, either m, n > 0 or m, n < 0. At
first, suppose that m, n > 0 and at least one of them is greater than 1. Then, by virtue
of assertion 2 of Proposition 3 (1.4.1) we get mn > 1 ⋅ 1 = 1. Now, suppose that m, n < 0
and at least one of them is smaller than−1. Then, by the same reason,mn = |m| |n| > 1.
It follows from these contradictions that either m = n = 1 or m = n = −1.

2. By definition, x ≡ m/p for some m ∈ Z and p ∈ Z \ {0}. Consider the rational
numbers y ≡ m/1 and z ≡ 1/p. Then, yz ≡ m1/1p = x.

Let (xi ∈ Q | i ∈ I) be a simple collection of rational numbers xi ≡ mi/pi indexed by
a finite set I. To define a sum of this collection, we need to prove some preliminary
assertion.

Lemma 3. Let xi = mi/pi = ni/qi for every i ∈ I. Then, ∑(miP(pj | j ∈ I \ {i}) | i ∈
I)/P(pi | i ∈ I) = ∑(niP(qj | j ∈ I \ {i}) | i ∈ I)/P(qi | i ∈ I).
Proof. Consider the sets Ii ≡ I \{i}. Since every pair ⟮{i}, Ii⟯ is a partition of the set I, we
infer by Corollary 1 to Proposition 1 (1.4.1) and by Theorem 3 (1.4.1) that P(pi | i ∈ I) =
piP(pj | j ∈ I) and P(qi | i ∈ I) = qiP(qj | j ∈ Ii). Therefore, using the equalitiesmiqi =
nipi and Lemma 9 (1.4.1), we get ∑(miP(pj | j ∈ Ii) | i ∈ I)P(qi | i ∈ I) = ∑(miP(qi |
i ∈ I)P(pj | j ∈ Ii) | i ∈ I) = ∑(miqiP(qj | j ∈ Ii)P(pj | j ∈ Ii) | i ∈ I) = ∑(nipiP(pj | j ∈
Ii)P(qj | j ∈ Ii) | i ∈ I) = ∑(niP(pi | i ∈ I)P(qj | j ∈ Ii) | i ∈ I) = ∑(niP(qj | j ∈ Ii) | i ∈
I)P(pi | i ∈ I). This gives the necessary equality.

Sum of rational numbers
The rational number ∑(miP(pj | j ∈ I \ {i}) | i ∈ I)/P(pi | i ∈ I) is called the sum of
the simple collection (xi ∈ Q | i ∈ I) and is denoted by ∑(xi | i ∈ I). It follows from
Lemma 3 that this definition is correct. If I = n + 1 for n ∈ 𝜔 \ 2, then along with
∑(xi | i ∈ n + 1) we shall use the notation x0 + ⋅ ⋅ ⋅ + xn.

It is clear that e(∑(mi ∈ Z | i ∈ I)) = ∑(emi ∈ Q | i ∈ I).
Let x, x, x, x, . . . be rational numbers. The rational numbers∑(x, x),∑(x, x,

x), ∑(x, x, x, x), . . .will be called the sums of the simple sequential pair (x, x),
triplet (x, x, x), quadruplet (x, x, x, x), . . .and will be denoted also by x + x, x +
x + x, x + x + x + x, . . .
Theorem 3. Let (xi ∈ Q | i ∈ I) be a simple collection indexed by a finite set I. Then:
1) if K is a finite set and u is a bijective mapping from K onto I, then ∑(xi | i ∈ I) =∑(xu(k) | k ∈ K) (the general associativity of the sum);
2) if a collection ⟮Im ⊂ I | m ∈ M⟯ is a partition of the set I indexed by a finite non-

empty set M, then∑(xi | i ∈ I) = ∑(∑(xi | i ∈ Im) | m ∈ M) (the general associativ-
ity of the sum).
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Proof. We shall denote the left and right parts of these equalities by L and R, respec-
tively. Let xi ≡ mi/pi.

1. Using assertion 1 of Theorem 1 (1.4.1) and assertion 1 of Theorem 1, we get
L ≡ 𝜃(∑(miP(pj | j ∈ I \ {i}) | i ∈ I), P(pi | i ∈ I)) = 𝜃(∑(mu(k)P(pj | j ∈ I \ {u(k) | k ∈
K}), P(pu(k) | k ∈ K)) ≡ R.

2. Using assertion 2 of Theorem 1 (1.4.1), we get L = 𝜃(∑(∑(miP(pj | j ∈ I \ {i}) | i ∈
Im) | m ∈ M), P(pi | i ∈ I)). On the other hand, Rm ≡ ∑(xi | i ∈ Im) ≡ 𝜃(∑(miP(pj | j ∈
Im \ {i}) |∈ Im), P(pi | i ∈ Im)) ≡ 𝜃(am , xm), where am ≡ ∑(miP(pj | j ∈ Im \ {i}) | i ∈ Im)
and xm ≡ P(pi | i ∈ Im). Therefore, R = ∑(Rm | m ∈ M) ≡ 𝜃(∑(amP(xn | n ∈ M \ {m}) |
m ∈ M), P(xm | m ∈ M)). By Theorem 3 (1.4.1), P(xm | m ∈ M) = P(pi | i ∈ I) ≡ y.

UsingLemma9 (1.4.1),weget b ≡ ∑(amP(xn | n ∈ M\{m}) | m ∈ M) = ∑(∑(miP(pj |
j ∈ Im \ {i}) | i ∈ Im)P(xn | n ∈ M \ {m}) | m ∈ M) = ∑(∑(miP(pj | j ∈ Im \ {i})P(xn | n ∈
M \ {m}) | i ∈ Im) | m ∈ M). Consider the setsMm ≡ M \ {m} and Jm ≡ ⋃⟮In | n ∈ Mm⟯.
Since the collection ⟮In | n ∈ Mm⟯ is a partition of the set Jm, we get by virtue of The-
orem 3 (1.4.1), P(xn | n ∈ Mm) = P(P(pi | i ∈ In) | n ∈ Mm) = P(pi | i ∈ Jm). Since for
every i ∈ Im the pair ⟮Im \ {i}, Jm⟯ is a partition of the set I \ {i}, we get in the sameman-
ner P(pj | j ∈ Im \ {i})P(xn | n ∈ Mm) = P(pj | j ∈ Im \ {i})P(pi | i ∈ Jm) = P(pj | I \ {i}).
As a result, b = ∑(∑(miP(pj | I \ {i}) | i ∈ Im) | m ∈ M).

Thus, R = 𝜃(b, y) = L.

Lemma 4.
1) Let (xi ∈ Q | i ∈ {p}) be a simple collection indexed by a set {p}. Then, ∑(xi | i ∈{p}) = xp.
2) Let (xi ∈ Q | i ∈ {p, q}) be a simple collection indexed by a set {p, q} with different

elements p /= q. Then,∑(xi | i ∈ {p, q}) = xp + xq.
The proof is analogous to the proof of Lemma 1 (1.4.1).

Corollary 1. Let (xi ∈ Q | i ∈ I) and (yi ∈ Q | i ∈ I) be simple collections indexed by a fi-
nite non-empty set I. Then,∑(xi | i ∈ I) + ∑(yi | i ∈ I) = ∑(xi + yi | i ∈ I).
The proof is completely the same as the proof of Corollary 1 to Lemma 1 (1.4.1).

Theorem 4. Let x, y and z be rational numbers. Then:
1) x + y = y + x (the commutativity of the sum);
2) x + y + z = x + (y + z) = (x + y) + z (the associativity of the sum).
The proof is analogous to the proof of Theorem 2 (1.4.1).

The element 0̂ is called the zero element in Q. For every rational number x, we
have the equality 0̂ + x = x + 0̂ = x.

The element (−m)/p is called the opposite element to the element x ≡ m/p and is
denoted by−x. It is clear that−(−x) = x. The zero and opposite elements are connected
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by the equality x + (−x) = −x + x = 0̂. Further, along with x + (−y), we shall write also
x − y; this number is called the difference of the numbers x and y. If x ∈ e[Z+], then−x ∈ e[Z−]; if x ∈ e[Z−], then −x ∈ e[Z+].

Consider the setsQ+ ≡ {m/p | m ∈ Z+ ∧ p ∈ Z+ \ {0}} andQ− ≡ {−m/p | m ∈ Z+ ∧
p ∈ Z+ \ {0}}.
Lemma 5.
1) Q = Q+ ∪ Q− and Q+ ∩Q− = {0̂}.
2) For every x ∈ Q, there exists y ∈ Q+ and z ∈ Q− such that x = y + z.
Proof. 1. Let x ≡ m/p ∈ Q. If m ⩾ 0 and p > 0, then x ∈ Q+. If m ⩾ 0 and p < 0, then
m|p| = (−m)p implies x = −m/|p| ∈ Q−. Ifm ⩽ 0and p > 0, then |m|p = m(−p) implies
x = −|m|/p ∈ Q−. Finally, if m ⩽ 0 and p < 0, then m|p| = |m|p implies x = |m|/|p| ∈
Q+.

If x ∈ Q+ ∩Q−, then x = m/p and x = −n/q = (−n)/q for somem, n ⩾ 0 and p, q >
0. Therefore, mq = (−n)p = −np implies by virtue of Lemma 2 (1.4.1), mq = −np = 0.
Hence, m = n = 0, and so x = 0̂.

2. The assertion follows from 1.

Lemma 6. Let x, y ∈ Q. Then, (−x)y = −xy, x(−y) = −xy, and (−x)(−y) = xy.

Proof. By definition for x ≡ m/p and y ≡ n/q, we have (−x)y ≡ ((−m)/p)(n/q) =
(−mn)/pq = −mn/pq = −xy. The other equalities follow from the first one.

Lemma 7. Let m ∈ N and x ∈ Q. Then, m̂x = ∑(xi | i ∈ I) for every simple collection
(xi ∈ Q | i ∈ I) such that xi = x for every i ∈ I and card I = m.

Proof. By Lemma 5 either x = n/q or x = −n/q for some n ⩾ 0 and q > 0. By
Lemma 6 (1.4.1) mn = ∑(ni | i ∈ I), where ni ≡ n for every i. Consider qi ≡ q.

In the first case, m̂x = mn/q = ∑(ni | i ∈ I)/q and∑(xi | i ∈ I) ≡ ∑(ni/qi | i ∈ I) ≡∑(niP(qj | j ∈ I \ {i}) | i ∈ I)/P(qi | i ∈ I). Check that these fractions are equal. Using
Lemma 9 (1.4.1) and Theorem 3 (1.4.1), we get ∑(ni | i ∈ I)P(qi | i ∈ I) = ∑(niP(qj | j ∈
I) | i ∈ I) = ∑(niqiP(qj | j ∈ I\{i}) | i ∈ I) = (∑(niP(qj | j ∈ I\{i}) | i ∈ I))q. Thus, really
m̂x = ∑(xi | i ∈ I).

In the second case, the argument is the same.

Theorem 5. Let x, y, z ∈ Q. Then, x(y + z) = xy + xz (the distributivity of the product
with respect to the sum).

Proof. Let x ≡ l/p, y ≡ m/q, and z ≡ n/r. Then, y + z = (mr + nq)/qr, xy = ln/pq, and
xz = ln/pr. Consequently, x(y + z) = l(mr + nq)/pqr = (lmr + lnq)/pqr and xy + xz =
(lmpr+lnpq)/pqpr = (lmr+lnq)/pqr.Theseequalitiesgivethenecessaryequality.
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Lemma 8. Let x ∈ Q and (yj ∈ Q | j ∈ J) be a simple finite collection. Then, x∑(yj | j ∈
J) = ∑(xyj | j ∈ J).
The proof is analogous to the proof of Lemma 9 (1.4.1).

Theorem 6. Let ⟮Im | m ∈ M⟯ be a collection of finite sets and (𝜘m | m ∈ M) be a sim-
ple collection of simple collections 𝜘m ≡ (xmi ∈ Q | i ∈ Im) indexed by a non-empty fi-
nite sets M and Im. Consider the finite set U ≡ ∏⟮Im | m ∈ M⟯. Then, P(∑(xmi | i ∈ Im) |
m ∈ M) = ∑(P(xmu(m) | m ∈ M) | u ∈ U) (the general distributivity of the product with
respect to the sum).

The proof is completely the same as the proof of Theorem 6 (1.4.1).

Corollary 1. Let (yj ∈ Q | j ∈ J) and (zk ∈ Q | k ∈ K) be finite collections. Then, ∑(yj |
j ∈ J) ∑(zk | k ∈ K) = ∑(yjzk | (j, k) ∈ J × K).
The proof is completely the same as the proof of Corollary 1 to Theorem 6 (1.4.1).

Rising to an integer degree
Let x ≡ m/p ∈ Q and y ≡ n̂ ∈ Q1. Define the degree xy of the number x with the expo-
nent y setting xy ≡ mn/pn if n ∈ Z+ and xy ≡ (x−1)−y if n ∈ Z− \ {0} and x /= 0̂.

It is clear that e(mn) = (em)en for every m ∈ Z and n ∈ Z+.

Lemma 9. Let n ∈ N and x ∈ Q. Then, xn̂ = P(xi | i ∈ I) for every simple collection (xi ∈
Q | i ∈ I) such that xi ≡ x for every i ∈ I and card I = n.

Proof. Let x ≡ m/p. Consider the collections 𝜇 ≡ (mi ∈ Z | i ∈ I) and 𝜋 ≡ (pi ∈ Z\ {0} |
i ∈ I) such that mi ≡ m and pi ≡ p. Then, by Lemma 10 (1.4.1), xn̂ ≡ mp/pn = P𝜇/P𝜋 ≡
P(xi | i ∈ I).
Proposition 1. Let (xi ∈ Q \ {0} | i ∈ I) and (yj ∈ Q1 | j ∈ J) be simple finite collections,
x ∈ Q \ 0̂, and y, z ∈ Q1. Then:
1) x0̂ = ̂1, 0̂0̂ = ̂1, x ̂1 = x, and ̂1y = ̂1;
2) 0̂y = 0̂ for y ∈ e[N];
3) x∑(yj |j∈J) = P(xyj | j ∈ J);
4) (P(xi | i ∈ I))y = P(xyi | i ∈ I);
5) xyz = (xy)z.
Proof. Let x ≡ l/p, y ≡ m̂, z ≡ n̂, xi ≡ li/pi, and yj ≡ m̂j.

1. By assertion 1 of Proposition 2 (1.4.1), x0̂ ≡ l0/p0 = 1/1 ≡ ̂1. Similarly, x ̂1 ≡ l1/p1 =
l/p = x. If m ∈ Z+, then by definition ̂1y ≡ 1m/1m = 1/1 ≡ ̂1. Finally, 0̂0̂ ≡ 00/10 = 1/
1 ≡ ̂1.
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2. Since m ∈ Z+ \ {0}, we get by assertion 2 of Proposition 2 (1.4.1) 0̂y ≡ 0m/1m =
0/1 ≡ 0̂.

3. Denote (yj | j ∈ J) by 𝜘 and (mj | j ∈ J) by 𝜇. It was mentioned above that ∑𝜘 =
e∑𝜇.

Consider the sets J1 ≡ {j ∈ J | mj < 0} and J2 ≡ J \ J1 and the collections 𝜇1 ≡ (mj |
j ∈ J1) and 𝜇2 ≡ (mj | j ∈ J2). Since ⟮Jk | k ∈ {1, 2}⟯ is a partition of the set J, we infer
from assertion 2 of Theorem 1 (1.4.1) that∑𝜇 = ∑𝜇1 + ∑𝜇2.

First, assume that ∑𝜇 ⩾ 0. Then, using assertion 3 of Proposition 2 (1.4.1),
we get L ≡ x∑𝜇−∑𝜇1 ≡ l(∑ 𝜇−∑𝜇1)/p(∑ 𝜇−∑𝜇1) = l∑𝜇 l−∑𝜇1/p∑𝜇p−∑𝜇1 = (l∑𝜇/p∑𝜇)(l−∑𝜇1/
p−∑𝜇1 ) = x∑𝜘(P(l−mj | j ∈ J1)/P(p−mj | j ∈ J1)) = x∑𝜘P(l−mj/p−mj | j ∈ J1) = x∑𝜘P(x−yj |
j ∈ J1) ≡ M.

On the other hand, ∑𝜇 − ∑𝜇1 = ∑𝜇2 implies L = x∑𝜇2 ≡ l∑𝜇2/p∑𝜇2 = P(lmj | j ∈
J2)/P(pmj | j ∈ J2) = P(lmj/pmj | j ∈ J2) = P(xyj | j ∈ J2) ≡ N. As a result, M = N. Multi-
plying both sides by Q ≡ P(xyj | j ∈ J1) and applying assertion 2 of Theorem 1, Corol-
lary 1 to Lemma 1, and the equality x−yj xyj = (l−mj/p−mj )(p−mj/l−mj ) = ̂1, we get x∑𝜘 =
x∑𝜘P(x−yj xyj | j ∈ J1) = MQ = QN = P(xyj | j ∈ J).

Now, assume that∑𝜇 < 0. Then, as above L ≡ x−∑𝜇1 = l−∑𝜇1/p−∑𝜇1 = P(l−mj/p−mj

| j ∈ J1) = P(x−yj | j ∈ J1) ≡ M. On the other hand, −∑𝜇1 = ∑𝜇2 − ∑𝜇 implies L =
x∑𝜇2−∑𝜇 = l∑𝜇2−∑𝜇/p∑𝜇2−∑𝜇 = l∑𝜇2 l−∑𝜇/p∑𝜇2p−∑𝜇 = (l∑𝜇2/p∑𝜇2)(l−∑𝜇/p−∑𝜇) = (P(lmj

| j ∈ J2)/P(pmj | j ∈ J2))x−e∑𝜇 = P(xyj | j ∈ J2)x−e∑𝜇 ≡ N. As a result, M = N. Multiply-
ing both sides by Q ≡ P(xyj | j ∈ J1), we get ̂1 = QM = QN = P(xyj | j ∈ J)x−e∑𝜇. Now,
multiplying both sides by x∑𝜘, we get x∑𝜘 = P(xyj | j ∈ J).

4. Denote (xi | i ∈ I) by 𝜋. If m ⩾ 0, then by assertion 4 of Proposition 2 (1.4.1)
(P𝜋)y = (P(li | i ∈ I)/P(pi | i ∈ I))y ≡ (P(li | i ∈ I))m/(P(pi | i ∈ I))m = P(lmi | i ∈ I)/
P(pmi | i ∈ I) ≡ P(lmi /pmi | i ∈ I) = P(xyi | i ∈ I). If m < 0, then (P𝜋)y ≡ ((P𝜋)−1)−y =
(P(pi | i ∈ I)/P(li | i ∈ I))−y ≡ (P(pi | i ∈ I))−y/(P(li | i ∈ I))−y = P(p−y

i | i ∈ I)/P(l−yi |
i ∈ I) ≡ P(p−y

i /l−yi | i ∈ I) = P((x−1i )−y | i ∈ I) = P(xyi | i ∈ I).
5. If m ⩾ 0 and n ⩾ 0, then by assertion 5 of Proposition 2 (1.4.1) xyz ≡ lmn/pmn =

(lm)n/(pm)n = (lm/pm)z = (xy)z. If m ⩾ 0 and n < 0, then xyz ≡ p−mn/l−mn = (pm)−n/
(lm)−n = ((lm/pm)−1)−z = (xy)z. If m < 0 and n ⩾ 0, then the argument is the same. Fi-
nally, if m < 0 and n < 0, then xyz ≡ lmn/pmn = l(−m)(−n)/p(−m)(−n) = ((p−m/l−m)−1)−z =
((x−1)−y)z = (xy)z.
Order properties of Q

Consider on Q the binary relation 𝜗 ≡ {(x, y) ∈ Q × Q | ∃m, n ∈ Z ∃p, q ∈ Z \ {0} (x =
m/p ∧ y = n/q ∧ (mq − np)pq ⩽ 0)}.
Lemma 10. The relation 𝜗 is a linear order in Q.

Proof. It is clear that this relation is reflexive. Let (m/p, n/q) ∈ 𝜗 and (n/q,m/p) ∈ 𝜗.
Then, (mq − np)pq ⩽ 0 and (np − mq)pq ⩽ 0 imply by virtue of Lemma 8 (1.4.1) and
assertion 3 of Proposition 3 (1.4.1) (mq − np)pq ⩾ 0, and so (mq − np)pq = 0. Since

 EBSCOhost - printed on 2/10/2023 4:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



1.4.2 Rational numbers | 133

pq /= 0, we conclude by virtue of assertion 2 of Proposition 3 (1.4.1) that mq − np = 0,
i. e. m/p = n/q. Thus, this relation is antisymmetric.

Now, check the reflexivity. Let (l/p,m/q) ∈ 𝜗and (m/q, n/r) ∈ 𝜗, i. e. (lq−mp)pq ⩽
0 and (mr − nq)qr ⩽ 0. Since p2, q2, and r2 belong to Z+ \ {0}, we canmultiply the first
inequality by r2 and the second one by p2. Then, adding the obtained inequalities, we
get 0 ⩾ lqpqr2−mppqr2+mrqrp2−nqqrp2 = (lr−np)prq2. It follows that (lr−np)pr ⩽
0, i. e. (l/p, n/r) ∈ 𝜗. Thus, 𝜗 is an order relation.

Take any x ≡ m/p and y ≡ n/q. Then, x = mpq2/p2q2 and y = np2q/p2q2. Since
the order in Z is linear, we infer that either mpq2 = np2q, or mpq2 > np2q, or mpq2 <
np2q. In the first case, x = y. In the second case, (mq − np)pq > 0 implies y𝜗x. in
the third case, (np − mq)pq > 0 implies x𝜗y.
Further, along with (x, y) ∈ 𝜗, we shall write also x ⩽ y.

Corollary 1. Q+ = {z ∈ Q | x ⩾ 0̂} and Q− = {x ∈ Q | x ⩽ 0̂}.
Proof. Let x ≡ m/p. If x ∈ Q+, then by definition m ⩾ 0 and p > 0. Therefore, (m1 −
0p)p1 ⩾ 0 implies x ⩾ 0̂. Conversely, if x ⩾ 0̂, thenmp ⩾ 0. Ifm ⩾ 0and p > 0, then x ∈
Q+. Ifm ⩽ 0 and p < 0, then (−m)p = m(−p) implies x = (−m)/(−p) ∈ Q+. The second
equality is checked in a similar way.

Numbers fromQ+ [Q+ \ {0̂}] are called positive [strictly positive], and numbers fromQ−

[Q− \ {0̂}] are called negative [strictly negative].
Lemma 11. Let m, n ∈ Z. Then, m̂ ⩽ n̂ iff m ⩽ n.

Proof. By Lemma 12 (1.4.1) m̂ ⩽ n̂ is equivalent to m ⩽ n.

Lemma 12. Let x, y ∈ Q. Then, x ⩽ y iff y − x ⩾ 0̂.
Proof. Let x ≡ m/p and y ≡ n/q. Then, (mq − np)pq ⩽ 0 is equivalent to (0qp − (np −
mq)1)1qp ⩽ 0. But the first inequality means that x ⩽ y, and the second one means
that 0/1 ⩽ (np − mq)/qp = y − x.
Proposition 2. Let (xi ∈ Q | i ∈ I) and (yi ∈ Q | i ∈ I) be simple collections, x, y, z ∈ Q,
and r, s ∈ Q1. Then:
1) if xi ⩽ yi for every i ∈ I, then ∑(xi | i ∈ I) ⩽ ∑(yi | i ∈ I), if besides xi < yi at least

for one index, then∑(xi | i ∈ I) < ∑(yi | i ∈ I);
2) if 0̂ ⩽ xi ⩽ yi for every i ∈ I, then P(xi | i ∈ I) ⩽ P(yi | i ∈ I), if besides xi < yi at

least for one index and yi > 0̂ for every i ∈ I, then P(xi | i ∈ I) < P(yi | i ∈ I);
3) if x < y, then xz < yz for z > 0̂ and xz > yz for z < 0̂;
4) if 0̂ ⩽ x < y, then xr < yr for r > 0̂ and xr > yr for r < 0̂ and x > 0̂;
5) if r < s, then xr < xs for x > ̂1 and xr > xs for 0̂ < x < ̂1.
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Proof. Denote (xi | i ∈ I) by 𝜋 and (yi | i ∈ I) by 𝜘. Let xi ≡ mi/pi and yi ≡ ni/qi.
1. By definition ∑𝜋 ≡ ∑(miP(pj | j ∈ I \ {i}) | i ∈ I)/P(pi | i ∈ I) = ∑(miP(qi | i ∈

I)P(pj | j ∈ I \ {i}) | i ∈ I)/P(pi | i ∈ I)P(qi | i ∈ I) and ∑𝜘 = ∑(niP(pi | i ∈ I)P(qj | j ∈
I \ {i}) | i ∈ I)/P(pi | i ∈ I)P(qi | i ∈ I). By Corollary 1 to Lemma 1, the denominator of
these fraction is equal to thenumber P(piqi | i ∈ I) ≡ Z. Denote P(piqi | i ∈ I\{i})by Zi.
Then, Z = piqiZi for every i because ⟮{i}, I \ {i}⟯ is a partition of the set I. By the same
reasons P(pi | i ∈ I)P(qj | j ∈ I \ {i}) = piP(pj | j ∈ I \ {i})P(qj | j ∈ I \ {i}) = piZi and
P(qi | i ∈ I)P(pj | j ∈ I \ {i}) = qiZi.

As a result,∑𝜋 = ∑(miqiZi | i ∈ I)/Z and∑𝜘 = ∑(nipiZi | i ∈ I)/Z. Denote thenu-
merator of the first fraction by X and the numerator of the second one by Y. Since
xi ⩽ yi, we have (miqi − nipi)piqi ⩽ 0. Therefore, (XZ − YZ)Z2 = (∑((miqi − nipi)ZZi |
i ∈ I))Z2 = (∑(((miqi−nipi)piqi)Z2i | i ∈ I))Z2 ⩽ 0. Thismeans that∑𝜋 = X/Z ⩽ Y/Z =
∑𝜘.

Let in addition xj < yj for some j ∈ I, i. e. (mjqj − njpj)pjqj < 0. Then, using asser-
tions 1 and 3 of Proposition 3 (1.4.1), we infer that (XZ − YZ)Z2 < 0. This means that
∑𝜋 < ∑𝜘.

2. Bydefinition, P𝜋 ≡ P(mi | i ∈ I)/P(pi | i ∈ I) ≡ A/R and P𝜘 ≡ P(ni | i ∈ I)/P(qi |
i ∈ I) ≡ B/S. Since 0̂ ⩽ xi ⩽ yi, we infer by Lemma 12 (1.4.1) that mipi ⩾ 0 and 0 ⩽
miqipiqi ⩽ nipipiqi. Therefore, using assertion 2 of Proposition 3 (1.4.1), we get
(AS − BR)RS = P(miqipiqi | i ∈ I) − P(nipipiqi | i ∈ I) ⩽ 0. This means that P𝜋 =
A/R ⩽ B/S = P𝜘.

Let in addition yi > 0̂ for every i ∈ I and xj < yj for some j ∈ I. Then, niqi > 0 for ev-
ery i and 0 ⩽ mjqjpjqj < njpjpjqj imply by virtue of assertion 2 of Proposition 3 (1.4.1)
that ASRS < BRRS, where (AS − BR)RS < 0. This means that P𝜋 < P𝜘.

3. Let x ≡ l/p, y ≡ m/q, and z ≡ n/r. By condition (lq − mp)pq < 0. If z > 0̂, then
(0r − n1)1r < 0, i. e. nr > 0. Multiplying the first inequality by nr > 0 and r2 > 0 and
using assertion 3 of Proposition 3 (1.4.1), we get (lnqr − mnpr)prqr < 0. This means
that xz = ln/pr < mn/qr = yz. If z < 0̂, then (n1 − 0r)r1 < 0, i. e. nr < 0. Therefore, in
this case (lnqr − mnpr)prqr > 0, where xz > yz.

4. Let r ≡ u/1. By conditions lp ⩾ 0 and (lq−mp)pq < 0, where 0 ⩽ lqpq < mppq.
If r > 0̂, then u > 0. Using assertion 4 of Proposition 3 (1.4.1), we get (lqpq)u <
(mppq)u. Using assertion 4 of Proposition 2 (1.4.1), we get (luqu −mupu)puqu < 0. This
means xr ≡ lu/pu < mu/qu ≡ yr. If r < 0̂ and x > 0̂, then u < 0, lp > 0, and mq > 0.
Multiplying lqpq < mppq by lp > 0 andmq > 0, we get (qllm)(p2q2) < (pmlm)(p2q2).
By virtue of assertion 3 of Proposition 3 (1.4.1), we deduce that qllm < pmlm. As above,
this implies (qllm)−u < (pmlm)−u, and so (q−u l−u − p−um−u)l−um−u < 0. The obtained
inequality means that yr ≡ q−u/m−u < p−u/l−u ≡ xr.

5. Let s ≡ v/1. From r < s, it follows by Lemma 11 that u < v. Since x > 0̂, we can
presuppose that l > 0 and p > 0.

At first, assume that u ⩾ 0. Let x > ̂1. Then, (1p−l1)1p < 0, i. e. p2 < lp. This implies
p < l. From u < v, we infer that v = u+w forw ≡ v−u > 0. Then, by virtue of assertion 4
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of Proposition 3 (1.4.1) p < l implies pw < lw. Multiplying this inequality by lu > 0 and
pu > 0, we get lupv = (lupu)pw < (lupu)lw = lvpu. Consequently, (lupv − lvpu)pupv < 0.
This means that xr ≡ lu/pu < lv/pv ≡ xs.

Now, let x < ̂1. Then, lp < p2 implies l < p. Therefore, lw < pw. Acting as above, we
get lvpu = (lupu)lw < (lupu)pw = lupv. Consequently, (lvpu−lupv)pupv < 0. Thismeans
that xs ≡ lv/pv < lu/pu ≡ xr.

Now, assume that u < 0 ⩽ v. Let x > ̂1. Then, p < l implies 0 < p−u < l−u and 0 <
pv < lv. Multiplying these inequalities, we get p−upv < lv l−u. Consequently, (p−upv −
lv l−u)l−upv < 0. This means that xr ≡ p−u/l−u < lv/pv ≡ xs.

Now, let x < ̂1. Then, l < p implies 0 < l−u < p−u and0 < lv < pv. Multiplying these
inequalities, we get lv l−u < p−upv. Consequently, (lv l−u − p−upv)pvl−u < 0. This means
that xs ≡ lv/pv < p−u/l−u ≡ xr.

Finally, assume that u < v ⩽ 0, i. e. 0 ⩽ −v < −u. Then, −u = −v + w for w ≡
−u−(−v) > 0. Let x > ̂1. Then, p < l implies pw < lw. Multiplying this inequality by p−v

and l−v, we get p−u l−v = (p−v l−v)pw < (p−v l−v)lw = p−v l−u. Consequently, (p−u l−v −
p−v l−u)l−u l−v < 0. This means that xr ≡ p−u/l−u < p−v/l−v ≡ xs.

Now, let x < ̂1. Then, l < p implies lw < pw. Acting as above, we get p−v l−u =
(p−v l−v)lw < (p−v l−v)pw = p−u l−v. Consequently, (p−v l−u−p−u l−v)l−v l−u < 0. Thismeans
that xs ≡ p−v/l−v < p−u/l−u ≡ xr.

Corollary 1. Let x, y, z ∈ Q. Then, x = y iff x + z = y + z. When z /= 0̂, then x = y iff xz =
yz.

The proof is the same as the proof of Corollary 1 to Proposition 3 (1.4.1).

Corollary 2 (the Archimedes principle). Let x, y ∈ Q+ and x > 0̂. Then, there is a num-
ber n ∈ N such that n̂x > y.

Proof. Let x ≡ l/p and y ≡ m/q. Since x > 0̂ and y ⩾ 0̂, we infer by assertion 2 of Propo-
sition 2 that lqpq > 0 and mppq ⩾ 0. Using Corollary 2 to Proposition 3 (1.4.1), we
find a number n such that nlqpq > mppq. Consequently, ((nl)q − mp)pq > 0 implies
nx > y.

Corollary 3. Let x, y ∈ Q and xy = 0̂. Then, either x = 0̂ or y = 0̂.
The proof is the same as the proof of Corollary 3 to Proposition 3 (1.4.1).

Corollary 4. Let x, y ∈ Q and x < y. Then, there is z ∈ Q such that x < z < y.

Proof. Take z ≡ x + (y − x)/2 = (x + y)/2 = y − (y − x)/2.
Corollary 5. Let x, y ∈ Q and 0̂ < x < y. Then, 0̂ < y−1 < x−1.
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Proof. From −1 < 0, we infer by Lemma 11 that e(−1) < e0. Therefore, by virtue of as-
sertion 4 of Proposition 2 x−1 = xe(−1) > ye(−1) = y−1. Let y ≡ n/q. Since y > 0̂, we infer
that nq > 0. Consequently, y−1 = q/n > 0̂.

Modulus of a rational number
For every rational number, xwecandefine correctly itsmodulus |x| ∈ Q+ setting |x| ≡ x
if x ∈ Q+ and |x| ≡ −x if x ∈ Q−. It is clear that |x| = x ∨ (−x).
Lemma 13. Let x ≡ m/p ∈ Q. Then, |x| = |m|/|p|.
Proof. If x ∈ Q+, thenm ⩾ 0and p > 0. This implies |x| ≡ x = m/p = |m|/|p|. If x ∈ Q−,
then by Corollary 1 to Lemma 10 x ⩽ 0̂. Therefore, mp ⩽ 0. If m ⩾ 0 and p < 0, then
|m| ≡ m and |p| ≡ −p imply |x| ≡ −x ≡ (−m)/p = (−|m|)/(−|p|) = |m|/|p|. If m ⩽ 0 and
p > 0, then |m| ≡ −m and |p| ≡ p imply |x| = −x ≡ (−m)/p = |m|/|p|.
Proposition 3. Let (zi ∈ Q | i ∈ I) be a simple finite collection, x, y ∈ Q, and z ∈ Q1.
Then:
1) |x| = | − x|, x ⩽ |x|, and −x ⩽ |x|;
2) |P(zi | i ∈ I)| = P(|zi| | i ∈ I); in particular, |xy| = |x| |y|;
3) |xz| = |x|z if x /= 0̂;
4) if y > 0̂, then |x| ⩽ y is equivalent to −y ⩽ x ⩽ y, and |x| < y is equivalent to −y <

x < y;
5) | ∑(zi | i ∈ I)| ⩽ ∑(|zi| | i ∈ I); in particular, |x + y| ⩽ |x| + |y|;
6) ||x| − |y|| ⩽ |x − y|.
Proof. 1. It is clear that x ⩽ |x|. If x ∈ Q+, then −x ∈ Q−. This implies |x| ≡ x and
| − x| ≡ −(−x) = x. If x ∈ Q−, then x = −y for some y ∈ Q+. Therefore, −x = −(−y) = y.
This implies |x| ≡ −x = y and | − x| ≡ y. In both cases, |x| = | − x|. Therefore, −x ⩽
| − x| = |x|.

2. Let zi ≡ ni/ri. Denote (zi | i ∈ I) by 𝜋, (|zi| | i ∈ I) by 𝜘, (ni | i ∈ I) by 𝜇, (|ni| | i ∈
I) by 𝜈, (ri | i ∈ I) by 𝜌, and (|ri| | i ∈ I) by 𝜎. By Lemma 13 |zi| = |ni|/|ri|. Therefore,
using assertion 2 of Proposition 4 (1.4.1), we get |P𝜋| = |P𝜇/P𝜌| = |P𝜇|/|P𝜌| = P𝜈/P𝜎 ≡
P(|ni|/|ri| | i ∈ I) = P𝜘.

3. Let x ≡ l/p and z ≡ n̂. At first, assume that n ⩾ 0. Then, xz ≡ ln/pn. By Lemma 13
andassertion 3ofProposition4 (1.4.1)we infer that |xz | = |ln|/|pn| = |l|n/|p|n = (|l|/|p|)z =
|x|z. Now, assume that n ⩽ 0, i. e. n = −k for some k ⩾ 0. Then, xz ≡ (x−1)−z = pk/lk im-
plies |xz| = |pk|/|lk| = |p|k/|l|k = (|p|/|l|)−z = ((|l|/|p|)−1)−z = (|x|−1)−z ≡ |x|z.

The other assertions are checked as the corresponding assertions of Proposi-
tion 4 (1.4.1).

Corollary 1. Let x, y ∈ Q and y /= 0̂. Then, |x/y| = |x|/|y|.
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Proof. By definition y−1 = y−e(1). Therefore, using assertions 2 and 3 of this proposi-
tion, we get |x/y| = |xy−e(1)| = |x| |y−e(1)| = |x| |y|−e(1) = |x|/|y|.
Lemma 14. Let x, y ∈ Q+ and r ∈ e[N]. Then, (x + y)r ⩾ xr + yr.
Proof. Consider the set N ⊂ 𝜔 of all natural numbers n such that (x+y)e(n+1) ⩾ xe(n+1)+
ye(n+1). It is clear that 0 ∈ N. Assume that n ∈ N. Then, (x+y)e(n+2) = (x+y)e(n+1)(x+y) ⩾
(xe(n+1) + ye(n+1))(x + y) ⩾ xe(n+2) + ye(n+2) means that n + 1 ∈ N. By Theorem 1 (1.2.6),
N = 𝜔.
Further in the book, we shall identify rational numbers m̂ ∈ Q1 ≡ e[Z]with the corre-
sponding integers m ∈ Z.

1.4.3 Real and extended real numbers

A sequence 𝛼 ≡ (an ∈ Q | n ∈ 𝜔) is called bounded if there is a number b ∈ Q such
that |an| ⩽ b for every n (see also 1.1.15). A sequence 𝛼 is called inner convergent
(≡ fundamental), a Cauchy sequence if for every 𝜀 ∈ Q+ \ {0}, there is a natural num-
ber n such that |ap − aq| < 𝜀 for all p, q ⩾ n. A sequence 𝛼 is called null (≡ negligible)
if for every such an 𝜀, there is a natural number n such that |ap| < 𝜀 for all p ⩾ n.
The sets of all inner convergent and all null sequences 𝛼will be denoted byR andN,
respectively.

For a sequence 𝛼 ≡ (an ∈ Q | n ∈ 𝜔) and a number 𝜀 ∈ Q+ \ {0}, we shall consider
the sets I(𝛼, 𝜀) ≡ {n ∈ 𝜔 | ∀p, q ∈ 𝜔 (p, q ⩾ n ⇒ |ap − aq| < 𝜀)} and N(𝛼, 𝜀) ≡ {n ∈ 𝜔 |
∀p ∈ 𝜔 (p ⩾ n ⇒ |ap| < 𝜀)}. If 𝛼 is fixed, then we shall denote these sets simply by I(𝜀)
and N(𝜀), respectively. If a sequence 𝛼 is inner convergent, then I(𝛼, 𝜀) /= ⌀ for every 𝜀.
If a sequence 𝛼 is null, then N(𝛼, 𝜀) /= ⌀ for every 𝜀.
Lemma 1. Every null sequence 𝛼 is inner convergent, and every inner convergent se-
quence 𝛼 is bounded.
Proof. If 𝛼 is null, then for every n ∈ N(𝜀/2) and every p, q ⩾ n, we have |ap − aq| ⩽|ap| + |aq| < 𝜀/2 + 𝜀/2 = 𝜀. It follows that 𝛼 is inner convergent.

If 𝛼 is inner convergent, then for every n ∈ I(1) and every p, q ⩾ n we have
|ap − aq| < 1. In particular, |an+k − an| < 1 for every k ∈ 𝜔. Consider the number
b ≡ gr(|a0|, . . . , |an|, |an| + 1). Then, |ap| ⩽ b for every p ∈ 𝜔. Thus, 𝛼 is
bounded.

Lemma 2. Let (𝛼i | i ∈ I) and (𝛽i | i ∈ I) be finite simple collections of null sequences𝛼i ≡ (ain ∈ Q | n ∈ 𝜔) and bounded sequences 𝛽i ≡ (bin ∈ Q | n ∈ 𝜔), respectively.
Then, the sequence (∑(ainbin | i ∈ I) | n ∈ 𝜔) is null.
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Proof. We may assume that c ≡ card I ∈ N. Fix any 𝜀 ∈ Q+ \ {0}. Let |bin| ⩽ bi.
Consider the number b ≡ gr(bi | i ∈ I). Take any numbers ni ∈ N(𝛼i , 𝜀/(cib)), where
ci ≡ c for every i ∈ I. Using assertion 1 of Proposition 2 (1.4.2) and Lemma 7 (1.4.2), we
get | ∑(aipbip | i ∈ I)| ⩽ ∑(|aip||bip| | i ∈ I) ⩽ c(𝜀/(cb))b = 𝜀 for every p ⩾
gr(ni | i ∈ I).
Lemma 3. Let (𝛼i | i ∈ I) and (𝛽i | i ∈ I) be finite simple collections of inner convergent
sequences 𝛼i ≡ (ain ∈ Q | n ∈ 𝜔) and null sequences 𝛽i ≡ (bin ∈ Q | i ∈ I), respectively.
Then, the sequence (∑(ain + bin | i ∈ I) | n ∈ 𝜔) is inner convergent.
Proof. Wemay assume that c ≡ card I ∈ N. Denote∑(ain+bin | i ∈ I) by cn. Fix any 𝜀 ∈
Q+ \{0}; take any numbersmi ∈ I(𝛼i , 𝜀/3c) and ni ∈ N(𝛽i , 𝜀/3c). Consider the numbers
m ≡ gr(mi | i ∈ I), n ≡ gr(ni | i ∈ I), and l ≡ gr(m, n). Then by Proposition 3 (1.4.2),
Lemma 7 (1.4.2), and Corollary 1 to Lemma 4 (1.4.2), we have |cp − cq| ⩽ ∑(|(aip + bip) −(aiq + biq)| | i ∈ I) ⩽ ∑(|aip − aiq| + |bip| + |biq| | i ∈ I) = ∑(|aip − aiq| | i ∈ I) + ∑(|bip| |
i ∈ I) + ∑(|biq| | i ∈ I) < 3(c(𝜀/3c)) = 𝜀.
With every rational number a, we shall associate the constant sequence𝛼a ≡ (an ∈ Q |
n ∈ 𝜔) such that an ≡ a for every n. It is clear that 𝛼a is inner convergent and bounded.

Define on the set R a binary relation 𝜃 setting ((an | n ∈ 𝜔), (bn | n ∈ 𝜔)) ∈ 𝜃 iff(an−bn | n ∈ 𝜔) ∈ N. We assert that 𝜃 is an equivalence relation. In fact, 𝜃 is obviously
reflexive and symmetric. Let (𝛼, 𝛽) ∈ 𝜃 and (𝛽, 𝛾) ∈ 𝜃 for some 𝛼 ≡ (an), 𝛽 ≡ (bn), and𝛾 ≡ (cn). Then, (an − bn) ∈ N and (bn − cn) ∈ N. Since an − cn = (an − bn) + (bn − cn),
we infer by Lemma 2 that (an − cn) ∈ N, i. e. (𝛼, 𝛾) ∈ 𝜃. Thus, 𝜃 is transitive.

Consider the factor-set R ≡ R/𝜃 consisting of equivalence classes x ≡ 𝜃𝛼 ≡ �̄� of
all sequences 𝛼 ∈ R (see 1.1.14). Elements of the set R are called real numbers; and
the set R is called the set of all real numbers.

Associate with every rational number a ∈ Q the real number â ≡ 𝜃𝛼a ≡ �̄�a ∈ R,
and consider themapping e fromQ intoR such that ea ≡ â. Thismapping is injective.

Let (xi ∈ R | i ∈ I) be a simple collection of real numbers xi ≡ 𝜃(ain ∈ Q | n ∈ 𝜔)
indexed by a finite set I. It easily deduced from Lemma 2 that we can introduce the
following definitions.

Sum and product of real numbers
The real number 𝜃(∑(ain | i ∈ I) | n ∈ 𝜔) is called the sum of the simple collection (xi ∈
R | i ∈ I) and is denoted by∑(xi | i ∈ I). If I = n+ 1 for n ∈ 𝜔\ 2, then along with∑(xi |
i ∈ n + 1), we shall use the notation x0 + . . . + xn.

It is clear that e(∑(ai ∈ Q | i ∈ I)) = ∑(eai ∈ R | i ∈ I).
Let x, x, x, x, . . . be real numbers. Then, (x, x), (x, x, x), (x, x, x, x), . . .

are corresponding simple collections (see 1.1.11).
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The real numbers∑(x, x),∑(x, x, x),∑(x, x, x, x),. . .will be called the sums
of the simple sequential pair (x, x), triplet (x, x, x), quadruplet (x, x, x, x),. . . and
will be denoted also by x + x, x + x + x, x + x + x + x, . . .

In the similar manner, the real number 𝜃(P(ain | i ∈ I) | n ∈ 𝜔) is called the prod-
uct of the simple collection (xi ∈ R | i ∈ I) and is denoted by P(xi | i ∈ I). If I = n + 1 for
n ∈ 𝜔 \ 2, then along with P(xi | i ∈ n + 1), we shall use the notation x0 . . . xn.

It is clear that e(P(ai ∈ Q | i ∈ I)) = P(eai ∈ R | i ∈ I).
The real numbers P(x, x), P(x, x, x), P(x, x, x, x),. . . will be called the prod-

ucts of the simple sequential pair (x, x), triplet (x, x, x), quadruplet (x, x, x, x),. . .
and will be denoted also by xx, xxx, xxxx,. . .

Theorem 1. Let (xi ∈ R | i ∈ I) be a simple collection indexed by a finite set I. Then:
1) if K is a finite set and u is a bijective mapping from K onto I, then ∑(xi | i ∈ I) =∑(xu(k) | k ∈ K) and P(xi | i ∈ I) = P(xu(k) | k ∈ K) (the general commutativity of

the sum and the product, respectively);
2) if a collection ⟮Im ⊂ I | m ∈ M⟯ is a partition of the set I indexed by a finite non-

empty set M, then ∑(xi | i ∈ I) = ∑(∑(xi | i ∈ Im) | m ∈ M) and P(xi | i ∈ I) =
P(P(xi | i ∈ Im) | m ∈ M) (the general associativity of the sum and the product,
respectively).

All the assertions are direct consequences of definitions and the corresponding asser-
tions of Theorems 1 and 3 from 1.4.2.

The following assertion represents some special form of the general associativity.

Proposition 1. Let ⟮Ji | i ∈ I⟯ be a collection of finite non-empty sets indexed by a fi-
nite non-empty set I and ⟮xk ∈ R | k ∈ K⟯ be a simple collection indexed by the set K ≡
⋃⟮{i} × Ji | i ∈ I⟯. Then, ∑ (xk | k ∈ K) = ∑ (∑ (xij | j ∈ Ji) | i ∈ I) and P (xk | k ∈ K) =
P (P (xij | j ∈ Ji) | i ∈ I).
Proof. Consider the sets Ki ≡ {i}× Ji. Then, ⟮Ki | i ∈ I⟯ is a partition of the set K. There-
fore, according to assertion 2 of Theorem 1, we get the equality B ≡ ∑ (xk | k ∈ K) =∑ (∑ (xk | k ∈ Ki) | i ∈ I). Consider the bijective mappings ui : Ji Ki such that
ui(j) = (i, j) for every j ∈ Ji. Then, assertion 1 of Theorem 1 implies ∑ (xk | k ∈ Ki) =∑ (xij | j ∈ Ji). Thus, B = ∑ (∑ (xij | j ∈ Ji) | i ∈ I).

For the products the arguments are the same.

Corollary 1. Let I and J be finite non-empty sets and ⟮⟮xij ∈ R | j ∈ J⟯ | i ∈ I⟯ be a collec-
tion of collections. Then:
1) ∑(∑ (xij | j ∈ J) | i ∈ I) = ∑ (∑ (xij | i ∈ I) | j ∈ J) = ∑ (xij | (i, j) ∈ I × J);
2) P (P (xij | j ∈ J) | i ∈ I) = P (P (xij | i ∈ I) | j ∈ J) = P (xij | (i, j) ∈ I × J).
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Proof. Consider the collections ⟮Ji | i ∈ I⟯, where Ji ≡ J and ⟮𝜄i | i ∈ I⟯, where 𝜄i ≡ {i}.
Then, ⋃⟮𝜄i | i ∈ I⟯ = I and ⋃⟮Ji | i ∈ I⟯ = J. Take also the sets Ki ≡ {i} × Ji and K ≡
⋃⟮Ki | i ∈ I⟯. Since the mapping u : I × I → I such that u(i, i) = i is surjective, asser-
tion 1 of Proposition 1 (1.1.10) and assertion 5 of Corollary 2 to Theorem 1 (1.1.13) imply
K = ⋃⟮{i} × Ji | i ∈ I⟯ = ⋃⟮𝜄i × Ji | (i, i) ∈ I × I⟯ = ⋃⟮𝜄i | i ∈ I⟯ × ⋃⟮Ji | i ∈ I⟯ = I × J.
According to Proposition 1, we infer that ∑(∑ (xij | j ∈ J) | i ∈ I) = ∑ (xk | k ∈ K) =∑ (xij | (i, j) ∈ I × J).

Similarly, ∑(∑ (xij | i ∈ I) | j ∈ J) = ∑ (xij | (j, i) ∈ J × I). Since the mapping v :
J × I → I × J such that v(i, j) = (j, i) is bijective, by assertion 1 of Theorem 1, we get
∑(xij | (i, j) ∈ I × J) = ∑ (xij | (j, i) ∈ J × I).

The second assertion is proven in the same way.

Lemma 4.
1) Let (xi ∈ R | i ∈ {p}) be a simple collection indexed by a set {p}. Then, ∑(xi | i ∈{p}) = xp and P(xi | i ∈ {p}) = xp.
2) Let (xi ∈ R | i ∈ {p, q}) be a simple collection indexed by a set {p, q} with different

elements p /= q. Then,∑(xi | i ∈ {p, q}) = xp + xq and P(xi | i ∈ {p, q}) = xpxq.

The proof is analogous to the proof of Lemma 1 (1.4.1).

Corollary 1. Let (xi ∈ R | i ∈ I) and (yi ∈ R | i ∈ I) be simple collections indexed by a fi-
nite non-empty set I. Then, ∑(xi | i ∈ I) + ∑(yi | i ∈ I) = ∑(xi + yi | i ∈ I) and P(xi | i ∈
I)P(yi | i ∈ I) = P(xiyi | i ∈ I).
The proof is completely similar to the proof of Corollary 1 to Lemma 1 (1.4.1).

Theorem 2. Let x, y and z be real numbers. Then:
1) x + y = y + x and xy = yx (the commutativity of the sum and the product, respec-

tively);
2) x + y + z = x + (y + z) = (x + y) + z and xyz = x(yz) + (xy)z (the associativity of

the sum and the product, respectively).

The proof is analogous to the proof of Theorem 2 (1.4.1).

Lemma 5. Let m ∈ N and x ∈ R. Then, m̂x = ∑(xi | i ∈ I) for every simple collection
(xi ∈ R | i ∈ I) such that xi = x for every i ∈ I and card I = m.

The assertion is a direct consequence of definition and Lemma 7 (1.4.2).

Theorem 3. Let x, y, z ∈ R. Then, x(y + z) = xy + xz (the distributivity of the product
with respect to the sum).

The assertion is a direct consequence of definitions and Theorem 5 (1.4.2).
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Lemma 6. Let x ∈ R and (yj ∈ R | j ∈ J) be a simple finite collection. Then, x∑(yj | j ∈
J) = ∑(xyj | j ∈ J).
The assertion is a direct consequence of definitions and Lemma 8 (1.4.2). It can also be
proven in the same manner as Lemma 9 (1.4.1).

Theorem 4. Let ⟮Im | m ∈ M⟯ be a collection of finite sets and (𝜘m | m ∈ M) be a sim-
ple collection of simple collections 𝜘m ≡ (xmi ∈ R | i ∈ Im) indexed by non-empty finite
sets M and Im. Consider the finite set U ≡ ∏⟮Im | m ∈ M⟯. Then, P(∑(xmi | i ∈ Im) | m ∈
M) = ∑(P(xmu(m) | m ∈ M) | u ∈ U) (the general distributivity of the product with re-
spect to the sum).

The assertion is a direct consequence of definitions and Theorem 6 (1.4.2). It can also
be proven in the same manner as Theorem 6 (1.4.1).

Corollary 1. Let (yj ∈ R | j ∈ J) and (zk ∈ R | k ∈ K) be finite simple collections. Then,
∑(yj | j ∈ J) ∑(zk | k ∈ K) = ∑(yjzk | (j, k) ∈ J × K).
The proof is completely the same as the proof of Corollary 1 to Theorem 6 (1.4.1). It can
also be deduced directly from Corollary 1 to Theorem 6 (1.4.2).

The element 0̂ is called the zero element in R. For every real number x, we have
the equality 0̂ + x = x + 0̂ = x. By virtue of Lemmas 1 and 2, we also have the equality
0̂x = x0̂ = 0̂.

The number 𝜃(−an | n ∈ 𝜔) is called the opposite number to the number x ≡ 𝜃(an ∈
Q | n ∈ 𝜔) and is denoted by −x. It is clear that −(−x) = x. The zero and opposite ele-
ments are connected by the equality x + (−x) = −x + x = 0̂. Further, along with x +
(−y) we shall write also x − y; this number is called the difference of the numbers
x and y.

It is clear that e(−a) = −ea for every a ∈ Q.
The element ̂1 is called the unity element in R. For every real number, we have

the equality ̂1x = x ̂1 = x.

Proposition 2. Let x ∈ R and x /= 0̂. Then, there is a unique number y ∈ R such that
xy = ̂1.
Proof. Let x ≡ 𝜃𝛼 for some 𝛼 ≡ (an ∈ Q | n ∈ 𝜔). Since x /= 0̂, there exists a rational
number 𝜀 > 0 such that for every natural number r, there is some natural number s ⩾
r for which |as| ⩾ 𝜀. Take any number m ∈ I(𝛼, 𝜀/2), and for it take a number s > m
for which |as| ⩾ 𝜀. Then, for any p ⩾ m we have 𝜀 ⩽ |as| = |as − ap + ap| ⩽ 𝜀/2 + |ap|.
Hence, |ap| ⩾ 𝜀/2. We now define a sequence 𝛽 ≡ (bn | n ∈ 𝜔), supposing bn ≡ 1 for
every n < m and bn ≡ 1/an for every n ⩾ m. If p, q ⩾ m, then we have |bp − bq| = |ap −
aq|/|ap| |aq| < 4|ap − aq|/𝜀2.
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Take any rational number 𝛿 > 0, and for it take a number l ∈ I(𝛼, 𝜀2𝛿/4). Then, for
every p, q ⩾ gr(m, l), we have |bp−bq| < 𝛿. Thismeans that y ≡ ̄𝛽 ∈ R. From bpap−1 =
0 for every p ⩾ m, we infer that xy = ̂1.

Let xz = ̂1 and 𝛾 ≡ (cn | n ∈ 𝜔) ∈ z. Then, x(y − z) = 0̂ implies 𝜎 ≡ (an(bn − cn) |
n ∈ 𝜔) ∈ N. Take any rational number, 𝜁 > 0 and a number k ∈ N(𝜎, 𝜁𝜀/2). Then, for
p ⩾ gr(m, k) we have |bp − cp| = |ap(bp − cp)|/|ap| < 𝜁. This means that (vn − cn | n ∈𝜔) ∈ N, i. e. 𝛽𝜃𝛾. Thus, y = z.

The number y from Proposition 2 is called the inverse number to the number x and is
denoted by 1/x or by x−1. It is clear that (x−1)−1 = x. The unity and inverse elements are
connected by the equality xx−1 = x−1x = ̂1. Further along with xy−1 we shall write also
x/y; this number is called the quotient of the numbers x and y.

Corollary 1. Let x ∈ R, x /= 0̂, 𝛼 ≡ (an | n ∈ 𝜔) ∈ x, k ∈ 𝜔, a ∈ Q, and |ap| ⩾ a > 0 in Q

for every p ⩾ k. Let 𝛽 ≡ (bn ∈ Q | n ∈ 𝜔) be a sequence such that bp = 1/ap for every
p ⩾ k. Then, 𝛽 ∈ x−1.
Proof. Take any rational number 𝜀 > 0 and a number l ∈ I(𝛼, 𝜀a2). Then, for p, q ⩾
gr(k, l)we have |bp − bq| = |aq − ap|/(|ap| |aq|) < 𝜀. This means that the sequence 𝛽 is
inner convergent. Thus, we can consider the real number y ≡ 𝜃𝛽. Since apbp − 1 = 0
for p ⩾ k, we infer that xy ≡ 𝜃(anbn | n ∈ 𝜔) = 𝜃𝛼1 = ̂1. By Proposition 2, y = x−1.

Rising to an integer degree
Let x ≡ �̄� ∈ R, 𝛼 ≡ (an | n ∈ 𝜔), y ≡ k̂, and k ∈ Z. Define the degree xy of the number x
with the exponent y setting xy ≡ 𝜃(ak | n ∈ 𝜔) if k ∈ Z+ and xy ≡ (x−1)−y if k ∈ Z− \ {0}
and x /= 0̂.

It is clear that e(ak) = (ea)ek for every a ∈ Q and k ∈ Z.

Lemma 7. Let k ∈ N and x ∈ R. Then, xk̂ = P(xi | i ∈ I) for every simple collection (xi ∈
R | i ∈ I) such that xi ≡ x for every i ∈ I and card I = k.

Proof. Let x ≡ 𝜃(an | n ∈ 𝜔). Consider the numbers ani ≡ an for i ∈ I. Then, xi ≡ x =
𝜃(ani | n ∈ 𝜔) in virtue of Lemma 9 (1.4.2) implies xk̂ ≡ 𝜃(akn | n ∈ 𝜔) = 𝜃(P(ani | i ∈ I) |
n ∈ 𝜔) ≡ P(xi | i ∈ I).
Proposition 3. Let (xi ∈ R\{0̂} | i ∈ I)and (yj ∈ e[Z] | j ∈ J)be simple finite collections,
x ∈ R \ {0̂}, and y, z ∈ e[Z]. Then:
1) x0̂ = ̂1, 0̂0̂ = ̂1, x ̂1 = x, and ̂1y = ̂1;
2) 0̂y = 0̂ for y ∈ e[N];
3) x∑(yj |j∈J) = P(xyj | j ∈ J);
4) (P(xi | i ∈ I))y = P(xyi | i ∈ I);
5) xyz = (xy)z.
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All the assertions are direct consequences of definitions and the corresponding asser-
tions of Proposition 1 (1.4.2).

Further in the book, we shall identify real numbers â ∈ e[Z]with the correspond-
ing rational numbers a ∈ Q. Real numbers from R \ Q are called irrational.

Basic order properties of the real line
Consider on R the binary relation 𝜗 such that (x, y) ∈ 𝜗 iff there are sequences (an |
n ∈ 𝜔) ∈ x and (bn | n ∈ 𝜔) ∈ y and a natural number m such that ap ⩽ bp for every
p ⩾ m.

Lemma 8. The relation 𝜗 is a linear order in R.

Proof. It is clear that this relation is reflexive. Let (x, y) ∈ 𝜗 and (y, x) ∈ 𝜗. Then, there
are (an | n ∈ 𝜔), (a

n | n ∈ 𝜔) ∈ x, (bn | n ∈ 𝜔), (b
n | n ∈ 𝜔) ∈ y, and m,m ∈ 𝜔 such

that ap ⩽ bp for p ⩾ m and b
p ⩽ a

p for p ⩾ m. Take any 𝜀 ∈ Q+ \ {0}. By definition
there are k, l ∈ 𝜔 such that |ap − a

p| < 𝜀 for p ⩾ k and |bp − b
p| < 𝜀 for p ⩾ l. Therefore,

for every p ⩾ gr(k, l,m,m), we have ap − b
p ⩽ bp − b

p < 𝜀 and ap − b
p ⩾ ap − a

p > −𝜀,
where |ap − b

p| < 𝜀. This means that x = y, i. e. 𝜗 is antisymmetric.
Let (x, y) ∈ 𝜗 and (y, z) ∈ 𝜗. Then, there are (an | n ∈ 𝜔) ∈ x, (bn | n ∈ 𝜔), (b

n | n ∈𝜔) ∈ y, 𝛾 ≡ (cn | n ∈ 𝜔) ∈ z, andm,m ∈ 𝜔 such that ap ⩽ bp for p ⩾ m and b
p ⩽ cp for

p ⩾ m. Therefore, for every p ⩾ gr(m,m)wehave ap ⩽ bp = (bp−b
p)+b

p ⩽ (bp−b
p)+

cp. Consider the sequence 𝛾 ≡ (cn | n ∈ 𝜔) such that cn ≡ cn + (bn − b
n). By Lemma

3 𝛾 is inner convergent. Now, from cn − cn = bn − b
n we infer that 𝛾 ∈ z. This means

that (x, z) ∈ 𝜗. Thus, 𝜗 is transitive.
Let x ≡ 𝜗𝛼, y ≡ 𝜗𝛽, 𝛼 ≡ (an | n ∈ 𝜔), 𝛽 ≡ (bn | n ∈ 𝜔), and x /= y. Consider the se-

quence 𝛾 ≡ (cn | n ∈ 𝜔), where cn ≡ an − bn. Since 𝛾 ∉ N, there exists a rational num-
ber 𝜀 > 0 such that for every natural number r, there is some natural number s ⩾ r for
which |cs| ⩾ 𝜀. Takem ∈ I(𝛾, 𝜀/2) and s ⩾ m such that |cs| ⩾ 𝜀. Then, for any p ⩾ m, we
have 𝜀 ⩽ |cs| = |cs − cp + cp| ⩽ 𝜀/2 + |cp|. Hence, |cp| ⩾ 𝜀/2. If cm+1 ⩾ 0, then for every
p ⩾ m we have ap − bp = (cp − cm+1) + |cm+1| > −𝜀/2+ 𝜀 = 𝜀/2, i. e. ap ⩾ bp. In this case,
we infer that y𝜗x. If cm+1 < 0, thenwehave ap−bp = (cp−cm+1)−|cm+1| < 𝜀/2−𝜀 = −𝜀/2,
i. e. ap ⩽ bp. In this case, we infer that x𝜗y. This means that 𝜗 is a linear order.
Further, along with (x, y) ∈ 𝜗we shall write also x ⩽ y.

Lemma 9. Let x ≡ 𝜃(an | n ∈ 𝜔) ∈ R. Then, x /= 0 iff there are a ∈ Q+ \ {0} and m ∈ 𝜔
such that either ap > a or ap < −a for every p ⩾ m.

Proof. Let x /= 0. Then, there exists a rational number 𝜀 > 0 such that for every natural
number r, there is some natural number s ⩾ r for which |as| ⩾ 𝜀. Take k ∈ I(𝜀/2) and
s ⩾ k such that |as| ⩾ 𝜀. Then, for any p ⩾ k, we have 𝜀 ⩽ |as| = |as−ap+ap| ⩽ 𝜀/2+|ap|.
Hence, |ap| ⩾ 𝜀/2. Take l ∈ I(𝜀/4) and consider m ≡ gr(k, l). If am+1 ⩾ 0, then for every
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p ⩾ m, we have ap = (ap − am+1) + |am+1| > −𝜀/4+ 𝜀/2 = 𝜀/4. If am+1 < 0, then for every
p ⩾ m we have ap = (ap − am+1) − |am+1| < 𝜀/4 − 𝜀/2 = −𝜀/4. Now, take a ≡ 𝜀/4.

Conversely, let either ap > a or ap < −a for p ⩾ m. Then, |ap| > a for p ⩾ m. Thus,
x /= 0.
Lemma 10. Let x ≡ 𝜃(an | n ∈ 𝜔) and y ≡ 𝜃(bn | n ∈ 𝜔) be real numbers. Then, x < y iff
there are a ∈ Q+ \ {0} and m ∈ 𝜔 such that ap + a < bp for every p ⩾ m.

Proof. Consider the sequence 𝛾 ≡ (cn | n ∈ 𝜔), where cn ≡ bn − an. Since 𝛾 ∉ N, there
exists a rational number 𝜀 > 0 such that for every natural number r, there is some
natural number s ⩾ r for which |cs| ⩾ 2𝜀. Take k ∈ I(𝛾, 𝜀) and s ⩾ k such that |cs| ⩾ 2𝜀.
Then, for any p ⩾ k, we have 2𝜀 ⩽ |cs| = |cs−cp+cp| ⩽ 𝜀+|cp|. Hence, |cp| ⩾ 𝜀. By condi-
tion x < y, there are (a

n | n ∈ 𝜔) ∈ x and (b
n | n ∈ 𝜔) ∈ y, and l ∈ 𝜔 such that a

p ⩾ b
p

for p ⩾ l. Take some u ∈ I((an − a
n | n ∈ 𝜔), 𝜀/2) and v ∈ I((bn − b

n | n ∈ 𝜔), 𝜀/2), and
consider the numberm ≡ gr(k, l, u, v). Then, for every p ⩾ m, we have cp = (bp−b

p)+
b
p + (a

p − ap) − a
p > −𝜀/2 − 𝜀/2 = −𝜀 and simultaneously |cp| ⩾ 𝜀, where cp ⩾ 𝜀 > 𝜀/2.

Take the number a ≡ 𝜀/2. Then, ap + a < bp.
Conversely, let ap + a < bp for some a and m and every p ⩾ m. Then, x ⩽ y. From

bp − ap > a > 0, we infer that x < y.

Corollary 1. Let x ∈ R and x > 0. Then, x−1 > 0.
Proof. Let x ≡ 𝜃(an | n ∈ 𝜔). By Lemma 10, there are a and m such that a < ap for ev-
ery p ⩾ m. Besides, by Lemma 1, an < b for some b ∈ Q. Therefore, by Corollary 5
to Proposition 2 (1.4.2) a−1

p > b−1 > 0. Consider the sequence 𝛽 ≡ (bn ∈ Q | n ∈ 𝜔)
such that bp ≡ 1 for p < m and bp ≡ a−1

p for p ⩾ m. By Corollary 1 to Proposition 2
𝛽 ∈ x−1. From the condition 0 + b−1 < bp for p ⩾ m by Lemma 10, we infer that
x−1 > 0.
Consider the setsR+ ≡ {x∨0 | x ∈ R} = {x ∈ R | x ⩾ 0} ≡ R0 andR− ≡ {x∧0 | x ∈ R} =
{x ∈ R | x ⩽ 0} (see 1.1.15). Numbers fromR+ [R+ \ {0}] are called positive [strictly posi-
tive], and numbers fromR− [R− \{0}] are called negative [strictly negative] (with respect
to the neutral element 0). It follows from Lemma 8 thatR = R− ∪R+ andR− ∩R+ = {0}.
Lemma 11. Let a, b ∈ Q. Then, a < b in Q iff ea < eb in R.

Proof. Let a < b. Then, a + c < b for c ≡ (b − a)/2 ∈ Q. Therefore, by Lemma 10 ea <
eb. Conversely, let ea < eb and suppose that a > b. Then, there are (an | n ∈ 𝜔) ∈ ea,(bn | n ∈ 𝜔) ∈ eb, andm ∈ 𝜔 such that ap ⩽ bp for p ⩾ m. Take 𝜀 ≡ a−b, k ∈ N((an−a |
n ∈ 𝜔), 𝜀/2), and l ∈ N((bn − b | n ∈ 𝜔), 𝜀/2). Then, for every p ⩾ gr(k, l,m), we have
ap − bp = (ap − a) + a + (b − bp) − b > −𝜀/2 − 𝜀/2 + 𝜀 = 0, where ap > bp. But this
contradicts ap ⩽ bp. Thus, a < b.
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Lemma 12. For every real number x, there exists a strictly positive rational number a
such that −a < x < a.

Proof. Let x ≡ 𝜃(an | n ∈ 𝜔). By Lemma 1 |an| ⩽ b < b + 1 for some rational number b.
Therefore, −(b + 2) + 1 < −b < an + 1 < b + 2. Consider a ≡ b + 2. Then, by Lemma 10,
we infer that −a < x < a.

Lemma 13 (the Archimedes principle). Let x, y ∈ R+ and x > 0. Then, there is a number
n ∈ N such that nx > y.

Proof. ByLemma9, there is a rational number a > 0 such that x > a > 0. ByLemma12,
there is a rational number b > 0 such that y < b. Therefore, by Corollary 2 to Proposi-
tion 2 (1.4.2) na > b for some n. As a result, we get na > b > y.

Let (an | n ∈ 𝜔) ∈ x. By Lemma 10, there are a strictly positive rational number c
and a natural number m such that a + c < ap for every p ⩾ m. Then, the inequality
na + nc < nap implies by Lemma 10 the inequality na < nx. Thus, nx > y.

Corollary 1. Let x ∈ R and x > 0. Then, there is a number n ∈ N such that nx > 1.
Proposition 4. Let (xi ∈ R | i ∈ I)and (yi ∈ R | i ∈ I)be simple finite collections, x, y, z ∈
R, and r, s ∈ Z. Then:
1) if xi ⩽ yi for every i ∈ I, then ∑(xi | i ∈ I) ⩽ ∑(yi | i ∈ I); if besides xi < yi at least

for one index, then∑(xi | i ∈ I) < ∑(yi | i ∈ I);
2) if 0 ⩽ xi ⩽ yi for every i ∈ I, then P(xi | i ∈ I) ⩽ P(yi | i ∈ I); if besides xi < yi at

least for one index and yi > 0 for every i ∈ I, then P(xi | i ∈ I) < P(yi | i ∈ I);
3) if x < y, then xz < yz for z > 0 and xz > yz for z < 0;
4) if 0 ⩽ x < y, then xr < yr for r > 0 and xr > yr for r < 0 and x > 0;
5) if r < s, then xr < xs for x > 1 and xr > xs for 0 < x < 1.
Proof. Denote (xi | i ∈ I) by 𝜋 and (yi | i ∈ I) by 𝜘.

1. By definition, there are (ain | n ∈ 𝜔) ∈ xi, (bin | n ∈ 𝜔) ∈ yi, andmi ∈ 𝜔 such that
aip ⩽ bip for every p ⩾ mi. By assertion 1 of Proposition 2 (1.4.2), we get ap ≡ ∑(aip |
i ∈ I) ⩽ ∑(bip | i ∈ I) ≡ bp for every p ⩾ m ≡ gr(mi | i ∈ I). This means that∑𝜋 ⩽ ∑𝜘.
Let now xj < yj for some j ∈ I. By Lemma 10, there are a ∈ Q+ \ {0} and n ∈ 𝜔 such that
ajp + a < bjp for every p ⩾ n. Consider the collection 𝜌 ≡ (a

ip ∈ Q | i ∈ I) such that
a
jp ≡ ajp + a and a

ip ≡ aip for every i /= j. Then,∑(aip | i ∈ I) + a = ∑𝜌 < ∑(bip | i ∈ I)
for every p ⩾ gr(m, n).

By Lemma 10, we conclude that∑𝜋 < ∑𝜘.
2. We shall use the notations from 1. By assertion 2 of Proposition 2 (1.4.2),

we get ap ≡ P(aip | i ∈ I) ⩽ P(bip | i ∈ I) ≡ bp for every p ⩾ m ≡ gr{mi | i ∈ I}. This
means that P𝜋 ⩽ P𝜘. Now, let xj < yj for some j and yi > 0 for every i. Then, as above
ajp+a < bjp for every p ⩾ n. By the same reason, there are bi ∈ Q+ and ni ∈ 𝜔 such that
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0 < bi < bip for every p ⩾ ni. Therefore, in Q, we have 0 < P(bi | i ∈ I) < P(bip |
i ∈ I) for every p ⩾ gr(ni | i ∈ I). Consequently, by Lemma 10 0 < P𝜘. If xk = 0 for
some k, then P𝜋 = 0 < P𝜘. Therefore, we now assume that xi > 0 for every i. Then,
by Lemma 10, there are li ∈ 𝜔 such that aip > 0 for every i and every p ⩾ li. By asser-
tion 2 of Proposition 2 (1.4.2), we get b ≡ aP(aip | i ∈ I \ {j}) > 0. Consider the number
l ≡ gr(li | i ∈ I).

Since ap+b ⩽ P(aip | i ∈ I)+(bjp−ajp)P(aip | i ∈ I\{j}) = bjpP(aip | i ∈ I\{j}) ⩽ bp
for every p ⩾ gr(l,m, n), we conclude by Lemma 10 that P𝜋 < P𝜘.

3. Let (an | n ∈ 𝜔) ∈ x, (bn | n ∈ 𝜔) ∈ y, and (cn | n ∈ 𝜔) ∈ z. By Lemma 10, there
are a ∈ Q+ \ {0} and k ∈ 𝜔 such that ap + a < bp for p ⩾ k. At first, assume that z >
0. Then, by the same reason, there are b and l such that 0 < b < cp for p ⩾ l. Using
assertions 2 and 3 of Proposition 2 (1.4.2), we get apcp + ab ⩽ (ap + a)cp < bpcp for
every p ⩾ gr(k, l). Since ab > 0, we infer by Lemma 10 that xz < yz.

Now, assume that z < 0. Then, there are c and m such that cp + c < 0 for every
p ⩾ m. Therefore, bpcp + ac < bpcp + (bp − ap)(−cp) = apcp for every p ⩾ gr(k,m). By
Lemma 10, this implies yz < xz.

4. Let (an | n ∈ 𝜔) ∈ x, (bn | n ∈ 𝜔) ∈ y, and r ≡ em. As above ap+a < bp for p ⩾ k.
At first, assume that r > 0. By Lemma 11 m > 0. If x = 0, then by Proposition 3 xr = 0.
In this case, we can suppose that an = 0 for every n ∈ 𝜔. Therefore, by assertion 4 of
Proposition 2 (1.4.2), 0 < am < bmp for p ⩾ k. By Lemma 10, we infer that xr = 0 < yr.

Now, assume that x > 0. Then, by Lemma 10, there are b and l such that 0 < b < ap
for p ⩾ l. Therefore, byLemma14 (1.4.2), amp +am ⩽ (ap+a)m < bmp for p ⩾ gr(k, l). Since
am > 0, we infer by Lemma 10 that xr < yr.

Finally, assume that r < 0 and x > 0. Then, m < 0. By Corollary 1 to Lemma 10
x−1 > 0 and y−1 > 0. By Lemma 1, |an| ⩽ u and |bn| ⩽ v for some rational numbers
u and v and for every n. Consequently, 1/ap − 1/bp = (bp − ap)/apbp > a/uv > 0 for
p ⩾ gr(k, l). By Corollary 1 to Proposition 2 and Lemma 10, we get x−1− y−1 > 0. Adding
this inequality to the inequality y−1 > y−1, we get by assertion 1 that x−1 > y−1 > 0. Hav-
ing −r > 0 and using the inequality prove above, we get xr ≡ (x−1)−r > (y−1)−r ≡ yr.

5. Let (an | n ∈ 𝜔) ∈ x, r ≡ eu, s ≡ ev, and r < s. By Lemma 11, w ≡ v − u > 0.
At first, consider the case x > 1. By Lemma 10, there are a rational number

a > 0 and a natural number k such that 1 + a < ap for every p ⩾ k. Let u ⩾ 0. By
Lemma 14 (1.4.2), aup > (1+a)u ⩾ 1+au and awp > 1+aw. Therefore, avp−aup = aup(awp −1) ⩾(1 + au)((1 + a)w − 1) ⩾ (1 + au)(1 + aw − 1) = (1 + au)aw > 0 for p ⩾ k. By Lemma 10
xr ≡ 𝜃(aun | n ∈ 𝜔) < 𝜃(avn | n ∈ 𝜔) ≡ xs.

Let u < 0 ⩽ v. By Lemma 1 |an| ⩽ b for some rational number b. Consider the se-
quence 𝛽 ≡ (bn | n ∈ 𝜔) such that bp ≡ 1 for p < k and bp ≡ 1/ap for p ⩾ k. By Corol-
lary 1 toProposition 2𝛽 ∈ x−1. Therefore, xr ≡ (x−1)−r ≡ (𝜃𝛽)−r ≡ 𝜃(b−u

n | n ∈ 𝜔). Besides
xs ≡ 𝜃(avn | n ∈ 𝜔). Since avp −b−u

p = avp −aup = aup(awp − 1) ⩾ ((1+a)w − 1)/a−u
p ⩾ (1+aw −

1)/b−u = aw/b−u > 0 for p ⩾ k, we infer by Lemma 10 that xr < xs.
Finally, let v < 0. Then, as above, xs = 𝜃(b−v

n | n ∈ 𝜔). Since as above, b−v
p − b−u

p =
avp − aup ⩾ aw/b−u > 0 for p ⩾ k, we infer by Lemma 10 that xr < xs.
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Now, consider the case0 < x < 1. By Lemma 10, there are rational numbers c and d
and a natural number l such that 0 < c < ap < ap + d < 1 for every p ⩾ l. It is clear
that d < 1. Let u ⩾ 0. By assertion 4 of Proposition 2 (1.4.2), 0 < 1 − d < 1 implies 0 <
(1 − d)w < 1w = 1. Therefore, aup − avp = aup(1 − awp ) > cu(1 − (1 − d)w) > 0 for p ⩾ l. By
Lemma 10, this implies xs ≡ 𝜃(avn | n ∈ 𝜔) < 𝜃(aun | n ∈ 𝜔) ≡ xr.

Let u < 0 ⩽ v. Consider the number b and the sequence 𝛽 as above. Since b−u
p −

avp = aup −avp = aup(1−awp ) ⩾ (1−(1−d)w)/a−u
p ⩾ (1−(1−d)w)/b−u > 0 for p ⩾ l, we infer

by Lemma 10 that xs ≡ 𝜃(avn | n ∈ 𝜔) < 𝜃(b−u
n | n ∈ 𝜔) = xr.

Finally, let v < 0. Then, as above, b−u
p −b−v

p ⩾ (1−(1−d)w)/b−u > 0 for p ⩾ l implies
xs = 𝜃(b−v

n | n ∈ 𝜔) < 𝜃(b−u
n | n ∈ 𝜔) = xr.

Corollary 1. Let x, y, z ∈ R. Then, x = y iff x + z = y + z. When z /= 0, then x = y iff xz =
yz.

The proof is the same as the proof of Corollary 1 to Proposition 3 (1.4.1).

Corollary 2. Let x, y ∈ R and xy = 0. Then, either x = 0 or y = 0.
The proof is the same as the proof of Corollary 3 to Proposition 3 (1.4.1).

Corollary 3. Let x, y ∈ R and 0 < x < y. Then, 0 < y−1 < x−1.

Proof. By Corollary 1 to Lemma 10 x−1 > 0 and y−1 > 0. Therefore, by assertion 2 of
Proposition 4 y−1 = y−1x−1x < y−1x−1y = x−1.

Interval density of rational numbers in R

The following lemma shows the interval density of rational numbers in the set of all
real numbers.

Lemma 14. Let x, y ∈ R and x < y. Then, there is a rational number r such that
x < r < y.

Proof. At first, assume that y > 0. By Corollary 1 to Lemma 13, there is a number n ∈ N

such that a ≡ y − x > 1/n. Similarly, by Lemma 13, there is a number k ∈ N such that
k(1/n) ⩾ y. Consider the numberm ≡ sm(k ∈ 𝜔 | k/n ⩾ y). Then, (m−1)/n < y. Adding
the inequalities y ⩽ m/n and −a < −1/n, we get x = y−a < (m− 1)/n. Denote (m− 1)/n
by r.

Now, assume that y ⩽ 0. Then, as above for 0 ⩽ −y < −x, there is a rational num-
ber s such that −y < s < −x. Hence, x < −s < y. Denote −s by r.
Corollary 1. Let x, y ∈ R and x < y. Then, there are rational numbers r and s such that
x < r < s < y.
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Lemma 15. Let x, y ∈ Rand x < y. Then, there are sequences𝛼 ≡ (rn ∈ Q | n ∈ 𝜔) ↑and
𝛽 ≡ (sn ∈ Q | n ∈ 𝜔) ↓ such that x < rp < rp+1 < sq+1 < sq < y for every
p, q ∈ 𝜔.
Proof. By Corollary 1 to Lemma 14, there are r0 and s0 such that x < r0 < s0 < y.
Consider the class B ≡ Q × Q, the element b0 ≡ (r0, s0), and a choice mapping
p : P(B) \ {⌀} → B from the axiom of choice in 1.1.12. Define amapping V : B×𝜔 → B
setting V((r, s), n) ≡ p{(r, s) ∈ B | r < r < s < r}. This definition is correct since
the set {(r, s) ∈ B | r < r < s < r} is non-empty by Corollary 1 to Lemma 14.

Now, by Theorem 1 (1.2.7), there is a unique mapping u : 𝜔 → B such that u(0) =
b0 and u(n + 1) = V(u(n), n). Consider the projections pr0 and pr1 from B onto Q

such that (pr0(b), pr1(b)) = b. Define sequences 𝛼 ≡ (rn | n ∈ 𝜔) and 𝛽 ≡ (sn | n ∈ 𝜔)
setting rn ≡ pr0(u(n)) and sn ≡ pr1(u(n)). Then, (rn+1, sn+1) = u(n + 1) = V(u(n), n) =
V((rn , sn), n) implies rn < rn+1 < sn+1 < sn. Thus, 𝛼 ↑ and 𝛽 ↓.

Take any p, q ∈ N. If p = q, then x < r0 < rp < sq < s0 < y. If p < q, then x < r0 <
rp < rq < sq < s0 < y. If p > q, then x < r0 < rp < s < sq < s0 < y.

Lemma 16. Let x, y ∈ R and x < y. Then, there are sequences 𝛼 ≡ (rn ∈ Q | n ∈ 𝜔) ↓
and 𝛽 ≡ (sn ∈ Q | n ∈ 𝜔) ↑ such that x < rp+1 < rp < sq < sq+1 < y for every p, q ∈ 𝜔.
The proof is similar to the proof of Lemma 15.

Proposition 5 (the Bernoulli inequality). Let x ∈ R, n ∈ N, and x ⩾ −1. Then, (1 + x)n ⩾
1 + nx.
Proof. Consider the set N ⊂ 𝜔 of all natural numbers n such that (1+x)n+1 ⩾ 1+(n+1)x.
It is clear that 0 ∈ N.

Suppose that n ∈ N. Since 1 + x ⩾ 0, we infer by virtue of assertion 2 of Proposi-
tion 4 that (1 + x)n+2 = (1 + x)n+1(1 + x) ⩾ (1 + (n + 1)x)(1 + x) ⩾ 1 + (n + 2)x. This means
that n + 1 ∈ N. By the principe of natural induction (Theorem 1 (1.2.6)) N = 𝜔.
Corollary 1. Let x, y ∈ R, y ⩾ 0, and x > 1. Then, there is a number n ∈ N such that xn >
y.

Proof. If y ⩽ 1, then by assertion 4 of Proposition 4 xn > 1 ⩾ y for every n. Thus, further
we can presuppose that y > 1. Consider z ≡ x − 1 > 0. Then, by Proposition 5, xn =
(1 + z)n ⩾ 1 + nz for every n. By Lemma 13, there is n such that y − 1 < nz. For this n,
we infer that xn > y.

Corollary 2. Let x, y ∈ R, y > 0, and 0 < x < 1. Then, there is a number n ∈ N such that
xn < y.
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Proof. Consider z ≡ 1/x > 1. By Corollary 1 to Lemma 13, there is m ∈ N such that y >
1/m. By Corollary 1 to Proposition 5, there is n such that zn > m. As a result, we get
xn < 1/m < y.

Corollary 3. Let y, z ∈ R+ \ {0}, y ̸= z, and n ∈ N. Then, yn+1/zn ⩾ (n + 1)y − nz.
Proof. By Proposition 5 (y/z)n+1 = (1 + (y/z − 1))n+1 ⩾ 1 + (n + 1)(y/z − 1). Then, using
Proposition 3, Proposition 4, and Theorem 3, we get yn+1/zn = z(y/z)n+1 ⩾ z(1 + (n +
1)(y/z − 1)) = z + (n + 1)y − (n + 1)z = (n + 1)y − nz.
Corollary 4. Let x ∈ R, n ∈ N, and x > −1. Then, (1 + x)−n ⩾ 1 − nx.
Proof. For x = 0 we have the equality. If x > −1 and x ̸= 0, then applying Corollary 3
to y ≡ 1 and z ≡ 1 + x, we get (1 + x)−n = 1n+1/(1 + x)n ⩾ n + 1 − n(1 + x) = 1 − nx.
The following lemma shows the interval density of dyadic-rational numbers in
[0, 1] ⊂ R.

Lemma 17. Let x, y ∈ R and 0 ⩽ x < y ⩽ 1. Then, there are natural numbers k and n
such that x < k/2n < y.

Proof. Consider the number z ≡ y − x > 0. By Corollary 2 to Proposition 5, there is n
such that 1/2n < z < y. If x < 1/2n, thenwehave the necessary inequality. Thus, further
we can presuppose that 1/2n ⩽ x. Consider the non-empty set K ≡ {k ∈ N | k/2n ⩽ x}.
By Lemma 13, there is m such that m/2n > x. If k ∈ K, then k/2n ⩽ x < m/2n implies
k < m. Consequently, K ⊂ m. Thus, the set K is finite. Therefore, by Theorem 3 (1.2.6)
K has the greatest element l. It is clear that l/2n ⩽ x < (l+1)/2n = l/2n+1/2n ⩽ x+1/2n =
y − z + 1/2n < y.

Modulus of a real number
For every real number x, we can define correctly itsmodulus |x| ∈ R+ setting |x| ≡ x if
x ∈ R+ and |x| ≡ −x if x ∈ R−. It is clear that |x| = x ∨ (−x).
Lemma 18. Let 𝛼 ≡ (an | n ∈ 𝜔) ∈ x ∈ R. Then, (|an| | n ∈ 𝜔) ∈ |x|.
Proof. Let x = 0. Then,𝛼 is null. Therefore, the sequence𝛽 ≡ (|an| | n ∈ 𝜔) is also null.
Thus, 𝛽 ∈ 0 = |x|.

Now, let x > 0. Then, by Lemma 10, there are a and m such that 0 < a < ap for
p ⩾ m. Since |ap| − ap = ap − ap = 0 for p ⩾ m, we infer that 𝛽 ∈ x = |x|.

Finally, set x < 0. Then, by the same reason, there are a andm such that ap+a < 0
for p ⩾ m. Since |ap| − (−ap) = −ap + ap = 0 for p ⩾ m, we infer that 𝛽 ∈ −x = |x|.
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Proposition 6. Let (zi ∈ R | i ∈ I) be a simple finite collection, x, y ∈ R, and z ∈ e[Z].
Then:
1) |x| = | − x|, x ⩽ |x|, and −x ⩽ |x|;
2) |P(zi | i ∈ I)| = P(|zi| | i ∈ I); in particular, |xy| = |x| |y|;
3) |xz| = |x|z if x /= 0;
4) if y > 0, then |x| ⩽ y is equivalent to −y ⩽ x ⩽ y, and |x| < y is equivalent to −y <

x < y;
5) | ∑(zi | i ∈ I)| ⩽ ∑(|zi| | i ∈ I); in particular, |x + y| ⩽ |x| + |y|;
6)  |x| − |y|  ⩽ |x − y|.
Proof. 1. It is clear that x ⩽ |x|. If x ⩾ 0, then −x ⩽ 0 implies |x| ≡ x and |−x| ≡ −(−x) =
x = |x|. If x < 0, then −x > 0 implies |x| = | − (−x)| = | − x|. Therefore, −x ⩽ | − x| = |x|.

2. Let (cin | n ∈ 𝜔) ∈ zi. By Lemma 18, (|cin| | n ∈ 𝜔) ∈ |zi|. Since u ≡ P(zi | i ∈ I) =𝜃(P(cin | i ∈ I) | n ∈ 𝜔), we infer by Lemma 18 and assertion 2 of Proposition 3 (1.4.2)
that |u| = 𝜃(|P(cin | i ∈ I)| | n ∈ 𝜔) = 𝜃(P(|cin| | i ∈ I) | n ∈ 𝜔) = P(|zi| | i ∈ I).

3. Let 𝛼 ≡ (an | n ∈ 𝜔) ∈ x and z ≡ ek. Let k ⩾ 0. By Lemma 18, 𝜇 ≡ (|an| | n ∈ 𝜔) ∈|x|. Applying assertion 3 of Proposition 3 (1.4.2), we get |xz| = |𝜃(akn | n ∈ 𝜔)| = 𝜃(|akn| |
n ∈ 𝜔) = 𝜃(|an|k | n ∈ 𝜔) = (𝜃𝜇)z = |x|z.

Now, let k < 0. By Lemma 9, there are a rational number a > 0 and a natural num-
ber m such that |ap| > a for p ⩾ m. Consider the sequence 𝛽 ≡ (bn | n ∈ 𝜔) such that
bp ≡ 1 for p < m and bp ≡ 1/ap for p ⩾ m. By Corollary 1 to Proposition 2 x−1 = 𝜃𝛽.
Therefore, by Lemma 18, |x−1| = 𝜃(|bn| | n ∈ 𝜔). Since |bp| = 1/|ap| for p ⩾ m, we in-
fer as above that |x|−1 = |x−1|. Finally, using for −z, the property proven above, we get
|xz| ≡ |(x−1)−z| = |x−1|−z = (|x|−1)−z ≡ |x|z.

The other assertions are checked as the corresponding assertions of Proposi-
tion 4 (1.4.1).

Corollary 1. Let x, y ∈ R and y /= 0. Then, |x/y| = |x|/|y|.
The proof is completely the same as the proof of Corollary 1 to Proposition 3 (1.4.2).

Extended real numbers
Now, we shall consider some important extension of the set of all real numbers.

A sequence 𝛼 ≡ (an ∈ Q | n ∈ 𝜔)will be called uniformly upper [lower] unbounded
if for every b ∈ Q, there is n ∈ 𝜔 such that ap > b [ap < b] for all p ⩾ n. The sets of all
uniformly upper unbounded and all uniformly lower unbounded sequences 𝛼will be
denoted by Ru and Rl, respectively.

Consider the set R̄ ≡ R ∪ Rl ∪ Ru, in which all component sets are mutually
disjoint. Define on the set R̄ a binary relation ̄𝜃 ≡ 𝜃 ∪ (Rl × Rl) ∪ (Ru × Ru). In
the set ̄𝜃, all component sets are also mutually disjoint. It is clear that ̄𝜃 is an equiva-
lence relation.
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Consider the factor-setR ≡ R̄/ ̄𝜃 consisting of equivalence classes x ≡ ̄𝜃𝛼 ≡ �̄� of all
sequences𝛼 ∈ R̄. Elements of the setR are called extended real numbers, and the setR
is called the set of all extended real numbers. It is clear that R ⊂ R.

The extended real number∞ ≡ ̄𝜃(n ∈ Q | n ∈ 𝜔) = Ru is called the upper (≡ right,
plus) infinity or simply the infinity. The extended real number −∞ ≡ ̄𝜃(−n ∈ Q | n ∈
𝜔) = Rl is called the lower (≡ left, minus) infinity. Note that many writers use the
symbol +∞ for what we write as∞. The + sign is a more nuisance and so we omit
it.

Consider the sets R+ ≡ R+ ∪ {∞} andR− ≡ R− ∪ {−∞}. It is clear thatR = R− ∪R+

and R− ∩ R+ = {0}.
Let 𝜘 ≡ (xi ∈ R | i ∈ I) be a simple finite collection. The number ∑(xi | i ∈ I) ≡∑𝜘, called the sum of the collection 𝜘, is defined in the following cases:

1) if xi ∈ R for all i ∈ I, then∑𝜘 is the common sum of 𝜘 in R;
2) if xi ∈ R ∪ {∞} for all i ∈ I and xi = ∞ at least for one index, then∑𝜘 ≡ ∞;
3) if xi ∈ R ∪ {−∞} for all i ∈ I and xi = −∞ at least for one index, then∑𝜘 ≡ −∞.

In all other cases, the sum∑𝜘 is undefined.
The notations x0 + ⋅ ⋅ ⋅ + xn, x + x, x + x + x, x + x + x + x, . . . are defined in

the manner as it was made above.
In partial cases, we have∞+∞ = ∞, −∞+ (−∞) = −∞, and∞+ x = x +∞ = ∞

and −∞+x = x+(−∞) = −∞ for every x ∈ R. Besides, 0+x = x+0 = x for every x ∈ R.
The number −x, called the opposite number to the number x ∈ R, is defined in

the following cases:
1) if x ∈ R, then −x is the common opposite number in R;
2) −(∞) ≡ −∞;
3) −(−∞) ≡ ∞.

Consider on R the binary relation ̄𝜗 ≡ 𝜗 ∪ ({−∞} × R) ∪ {(−∞,∞)} ∪ (R × {∞}). It is
clear that ̄𝜗 is a linear order. Since all component sets are mutually disjoint, we infer
that ̄𝜗|R×R = 𝜗, i. e. ̄𝜗 is an extension of 𝜗. Further, alongwith (x, y) ∈ ̄𝜗we shall write
also x ⩽ y.

It is clear that R+ = {x ∈ R | x ⩾ 0} and R− = {x ∈ R | x ⩽ 0}. Numbers from R+

[R+ \ {0}] are called positive [strictly positive], and numbers from R− [R− \ {0}] are
called negative [strictly negative].

For every extended real number x, we can define itsmodulus |x| ∈ R+ setting |x| ≡
x if x ∈ R+ and |x| ≡ −x if x ∈ R−.

Let 𝜘 ≡ (xi ∈ R | i ∈ I) be a simple finite collection. Consider the set I−𝜘 ≡ {i ∈ I |
xi < 0}. The number P(xi | i ∈ I) ≡ P𝜘, called the product of the collection 𝜘, is defined
in the following cases:
1) if xi ∈ R for all i ∈ I, then P𝜘 is the common product of 𝜘 in R;
2) if xi = 0 at least for one index, then P𝜘 ≡ 0;
3) if xi > 0 for all i ∈ I and xi = ∞ at least for one index, then P𝜘 ≡ ∞;
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4) if xi /= 0 for all i ∈ I, then P𝜘 ≡ P(|xi| | i ∈ I) if card I−𝜘 is even and P𝜘 ≡ −P(|xi| |
i ∈ I) if card I−𝜘 is odd.

The notations x0 . . . xn, xx, xxx, xxxx,. . . are defined in the same manner as it
was made above.

In partial cases, we have ∞x = x∞ = ∞ and (−∞)x = x(−∞) = −∞ for x > 0,
and ∞x = x∞ = −∞ and (−∞)x = x(−∞) = ∞ for x < 0. Besides, 1x = x1 = x and
0x = x0 = 0 for every x ∈ R. The latter property is not so “natural” as others, but it is
very convenient for measure theory (see Chapter 3 of the book and also [Hewitt and
Stromberg, 1965, ch.II, 6.1]).

For such defined sums and products, we have the common properties of commu-
tativity, associativity, and distributivity; however, with some reservations.

Further in the book, initial intervals ]←, x[ and ]←, x] and final intervals ]x,→[
and [x,→[ in the ordered set ⟮R, ⩽⟯ (see 1.1.15) will be denoted also by ] − ∞, x[, ] −
∞, x], ]x,∞[, and [x,∞[, respectively.

If we consider the ordered set ⟮R, ⩽⟯, thenwe have the following useful equalities:
[−∞,∞] = R, [−∞,∞[= {−∞} ∪ R, ] − ∞,∞[= R, and ] − ∞,∞] = R ∪ {∞}.

1.4.4 The Cantor completeness of the real line

Sequences of real numbers
In this subsection, we shall consider simple sequences s ≡ (xn ∈ R | n ∈ N) of real
numbers indexed by infinite subsets N of the set of all natural numbers 𝜔 (see 1.2.6).
According to 1.2.6, such sequences are called infinite.

As in 1.1.15 for a preordered set ⟮M, ⩽⟯ closed final intervals [m,→[≡ {p ∈ M | p ⩾
m}with the beginnings m ∈ M will be denoted also by Mm.

According to 1.1.15, a subset N is cofinal to the set 𝜔 iff for every m ∈ 𝜔, there is
n ∈ Nm.

Lemma 1. Let N ⊂ 𝜔. Then, N is infinite iff N is cofinal to 𝜔.
Proof. LetN is infinite. Suppose that there ism ∈ 𝜔 such thatN∩𝜔m = ⌀. Then,N ⊂ m.
Since the set m is finite, the set N is also finite. It follows from this contradiction that
N is cofinal.

Conversely, let N is cofinal. Suppose that it is finite. Then, by Theorem 3 (1.2.6), it
has the greatest elementm. Therefore, N∩𝜔m+1 = ⌀, but this contradicts the cofinality
of N. Thus, N is infinite.

According to 1.2.6, a sequence t ≡ (yn ∈ R | n ∈ N) is called a subsequence of a se-
quence s ≡ (xm ∈ R | m ∈ M) if there exists a sequence (mn ∈ M | n ∈ N) such that:
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1) for every number m ∈ M, there exists a number n ∈ N such that k ∈ Nn implies
mk ∈ Mm;

2) yn = xmn
for every n ∈ N.

According to 1.1.15, a sequence s ≡ (xn ∈ R | n ∈ N) is called bounded above [below]
if there is a number b ∈ R such that xn ⩽ b [xn ⩾ b] for every n ∈ N. A sequence s is
called bounded if it is bounded above and below simultaneously or equivalently if
there is a number b ∈ R such that |xn| ⩽ b for every n ∈ N.

A sequence s is called inner convergent (≡ fundamental, a Cauchy sequence) if for
every real number 𝜀 > 0, there is a number n ∈ N such that |xp − xq| < 𝜀 for all p, q ∈ N
such that p, q ⩾ n.

A sequence s is called convergent to a number x ∈ R and the number x is called
a limit of the sequence s if for every real number 𝜀 > 0, there is a number n ∈ N such
that |xp − x| < 𝜀 for all p ∈ N such that p ⩾ n.

For a sequence s, a number x, and a number 𝜀 ∈ R+\{0}, we shall consider the sets
I(s, 𝜀) ≡ {n ∈ N | ∀p, q ∈ N (p, q ⩾ n ⇒ |xp − xq| < 𝜀)} and C(s, x, 𝜀) ≡ {n ∈ N | ∀p ∈
N (p ⩾ n ⇒ |xp−x| < 𝜀)}. If s is fixed, thenwe shall denote these sets simply by I(𝜀) and
C(x, 𝜀). If a sequence s is inner convergent, then I(s, 𝜀) /= ⌀ for every 𝜀. If a sequence s
is convergent to a number x, then C(s, x, 𝜀) /= ⌀ for every 𝜀.
Lemma 2. Let s ≡ (sn ∈ R | n ∈ N) be an infinite sequence and x, y ∈ R. Then:
1) if s is inner convergent, then s is bounded;
2) if s is convergent to x, then s is inner convergent;
3) if s is convergent to x and to y, then x = y.

Proof. 1. It is checked completely in the same manner as the corresponding assertion
in Lemma 1 (1.4.3).

2. Take any 𝜀 > 0 and some m ∈ C(x, 𝜀/2). Then, |xp − xq| ⩽ |xp − x| + |x − xq| <𝜀/2 + 𝜀/2 = 𝜀 for p, q ⩾ m.
3. Suppose that x /= y. Then, for 𝜀 ≡ |x − y| > 0, there are m ∈ C(x, 𝜀/2) and

n ∈ C(y, 𝜀/2). Therefore, |x − y| ⩽ |x − xp| + |xp − y| < 𝜀/2 + 𝜀/2 = 𝜀 for p ⩾ gr(m, n), but
this is impossible. Thus, x = y.

Thus, a sequence s can have a unique limit. To denote the property that x is a limit
of s, we shall write x = lim s or x = lim(xn | n ∈ N).
Lemma 3. Let s ≡ (xn | n ∈ N) be an infinite sequence and x ∈ R. Then, the following
conclusions are equivalent:
1) x = lim s;
2) 0 = lim(xn − x | n ∈ N);
3) 0 = lim(|xn − x| | n ∈ N).
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Proof. Theassertion follows from the equalities |xp−x| = |0−(xp−x)| = |0−|xp−x||.
Lemma 4. Let x ∈ R and 𝛼 ≡ (an ∈ Q | n ∈ 𝜔) ∈ x. Then, x = lim(an | n ∈ 𝜔).
Proof. Take any 𝜀 ∈ R+ \ {0}. By Lemma 14 (1.4.3), there is e ∈ Q such that 0 < e < 𝜀.
Take some m ∈ I(𝛼, e). Then, for every p, q ⩾ m, we have ap − e < aq < ap + e in Q.
Using the definition of the order inR, we get âp − 𝜀 < âp − ê ⩽ x ≡ 𝜃𝛼 ⩽ âp + e < âp + 𝜀
for every p ⩾ m. This implies |x − âp| < 𝜀 for p ⩾ m.

Lemma 5. Let t ≡ (xnk | k ∈ K) be a subsequence of an infinite sequence s ≡ (xn ∈ R |
n ∈ N), x ∈ R, and x = lim s. Then, the sequence t is infinite and x = lim t.

Proof. Suppose that the set K is finite. Then, by assertion 1 of Theorem 3 (1.2.6), there
is p ≡ gr(nk | k ∈ K). Since for every n ∈ N, there is l ∈ K such that nl ⩾ n, we infer that
n ⩽ nl ⩽ p for every n ∈ N. But this is impossible because N is cofinal to 𝜔. Thus, K is
infinite.

Take any 𝜀 > 0 and some m ∈ C(s, x, 𝜀). Then, |xp − x| < 𝜀 if m ⩽ p ∈ N. By def-
inition of m, there is l ∈ K such that nk ⩾ m if l ⩽ k ∈ K. Therefore, |xnk − x| < 𝜀 if
l ⩽ k ∈ K.
Lemma 6. Let s ≡ (xn ∈ R | n ∈ N) be an inner convergent sequence, t ≡ (xnk | k ∈ K)
be a subsequence of s, and x = lim t. Then, x = lim s.

Proof. Take any 𝜀 > 0 and some m ∈ I(s, 𝜀/2) and n ∈ C(t, x, 𝜀/2). By Lemma 1, there
is l ∈ N such that l > gr(m, n). By definition of a subsequence for l, there is k ∈ K such
that np ⩾ l if k ⩽ p ∈ K. Take any q ∈ N such that q ⩾ gr(l, k). By Lemma 1 for q, there
is p ∈ K such that p ⩾ q. Therefore, k ⩽ p ∈ K implies np ⩾ l. Consequently, |xq − x| ⩽|xq − xnp | + |xnp − x| < 𝜀/2 + 𝜀/2 = 𝜀. This means that x = lim s.

Lemma 7. Let x ∈ R and N be an infinite subset in 𝜔. Then:
1) lim (xn | n ∈ N) = 0 for every x ∈ [0, 1[;
2) lim (xn | n ∈ N) = ∞ for every x ∈]1,∞[.
Proof. 1. For x > 0, this assertion follows from Corollary 2 to Proposition 5 (1.4.3).

2. It follows from Corollary 1 to Proposition 5 (1.4.3).

The Cantor completeness of R

The following theoremmay be understood as the theorem about the Cantor complete-
ness of the real line ⟮R, ⩽⟯
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Theorem 1. Let an infinite sequence s ≡ (xn ∈ R | n ∈ N) be inner convergent. Then,
there exists x ∈ R such that x = lim s.

Proof. By Theorem 1 (1.3.7), there is an isotone bijection v : 𝜔 → N. Consider the
sequence t ≡ (yn | n ∈ 𝜔) such that yn ≡ xv(n). If t is finally constant in the sense
of 1.2.7, then the assertion is evidently fulfilled. If t is finally non-constant, then by
Proposition 1 (1.2.7), there exists a subsequence (ynk | k ∈ 𝜔) such that k ⩽ nk < nk+1
and ynk /= ynk+1 .

Consider the sequences u ≡ (zk | k ∈ 𝜔) and r ≡ (dk | k ∈ 𝜔) such that zk ≡ ynk and
dk ≡ |zk−zk+1|. It is clear that the sequence t is inner convergent. For any 𝜀 > 0 and any
n ∈ I(t, 𝜀) by virtue of np ⩾ p and nq ⩾ q, we infer that |zp − zq| < 𝜀 for every p, q ⩾ n.
In particular, dp < 𝜀 for every p ⩾ n.

By Lemma 4 for zp, there is a ∈ Q such that |a − zp| < dp. Thus, the set Qp ≡{a ∈ Q | |a − zp| < dp} is non-empty. Take some choice mapping c : P(Q) \ {⌀} → Q

from the axiom of choice in 1.1.12. Define a sequence 𝛼 ≡ (ap ∈ Q | p ∈ 𝜔) setting ap ≡
c(Qp). Take any rational number e > 0 and some number n ∈ I(r, 𝜀/3). Then, for every
p, q ⩾ n, we have |ap − aq| ⩽ |ap − zp| + |zp − zq| + |zq − aq| < dp + e/3 + dq < 𝜀. Thus,
the sequence 𝛼 is inner convergent. Therefore, we can take the real number x ≡ 𝜃𝛼.

Now, take any 𝜀 > 0 and some n ∈ I(t, 𝜀/2) and m ∈ C(𝛼, x, 𝜀/2) (the latter set is
non-empty by virtue of Lemma 4). Then, for every p ⩾ gr(m, n), we have |zp − x| ⩽
|zp − ap| + |ap − x| < dp + 𝜀/2 < 𝜀/2 + 𝜀/2 = 𝜀. Consequently, x = lim u. By Lemma 6
x = lim t. Since v is an isotone bijection, we conclude that x = lim s.

Theorem 1 and conclusion 2 of Lemma 2 give us the well-known Cauchy criterion of
convergence of sequences.

According to 1.1.15, a sequence s ≡ (xn ∈ R | n ∈ N) is called increasing [strictly in-
creasing, decreasing, strictly decreasing] if m, n ∈ N and m < n imply xm ⩽ xn
[xm < xn, xm ⩾ xn, xm > xn].

Proposition 1. Let an infinite sequence s ≡ (xn ∈ R | n ∈ N) be strictly increasing
[decreasing] and bounded above [below]. Then, s is inner convergent.

Proof. As in the proof of Theorem 1, take the isotone bijection v : 𝜔 → N and the
sequence t ≡ (yn | n ∈ 𝜔) such that yn ≡ xv(n). Then, yn < yn+1 ⩽ y for some real
number y.

Suppose that the sequence t is not inner convergent, i. e. there exists a real number
𝜀 > 0 such that for every natural number k, there are some natural numbers l and m
such that l,m ⩾ k, l < m, and ym − yl ⩾ 𝜀. Consider in the set B ≡ 𝜔×𝜔 the non-empty
subsets Pk ≡ {(l,m) ∈ B | (l,m ⩾ k) ∧ (l < m) ∧ (ym − yl ⩾ 𝜀)}. Take some choicemap-
ping c : P(B) \ {⌀} → B from the axiom of choice in 1.1.12. Consider the projections
pr0 and pr1 from B onto 𝜔 such that (pr0(b), pr1(b)) = b for every b ∈ B. Define
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sequences (lk ∈ 𝜔 | k ∈ 𝜔) and (mk ∈ 𝜔 | k ∈ 𝜔) setting lk ≡ pr0(c(Pk)) and mk ≡
pr1(c(Pk)). By definition, (lk ,mk) ∈ Pk.

Take b0 ≡ (l0,m0) and define a mapping V : B × 𝜔 → B setting V((p, q), n) ≡
(lk ,mk), where k ≡ gr(p, q). By Theorem 1 (1.2.7), there is a mapping u : 𝜔 → B such
that u(0) ≡ b0 and u(n + 1) = V(u(n), n) for n ∈ 𝜔. Define sequences (pn ∈ 𝜔 | n ∈ 𝜔)
and (qn ∈ 𝜔 | n ∈ 𝜔) setting pn ≡ pr0(u(n)) and qn ≡ pr1(u(n)). Then, (pn+1, qn+1) =
u(n + 1) = V(u(n), n) = V((pn , qn), n) ∈ Pk, where k ≡ gr(pn , qn). Therefore, pn+1,
qn+1 ⩾ k, pn+1 < qn+1, and yqn+1 −ypn+1 ⩾ 𝜀. Hence, pn < qn < pn+1 < qn+1. Consequently,
ypn < yqn < ypn+1 < yqn+1 and yqn+1 − yqn > yqn+1 − ypn+1 ⩾ 𝜀.

For 𝜀 > 0 and y− yq0 ⩾ 0 by Lemma 13 (1.4.3), there is n ∈ N such that n𝜀 > y− yq0 .
As a result, yqn = (yqn −yqn−1)+(yqn−1 −yqn−2)+⋅ ⋅ ⋅+(yq1 −yq0)+yq0 > n𝜀+yq0 > y > yqn . It
follows from the obtained contradiction that the sequence t is inner convergent. Thus,
the sequence s is also inner convergent.

Proposition 2. Let an infinite sequence s ≡ (xn ∈ R | n ∈ N) be increasing [decreasing]
and bounded above [below]. Then, there exists x ∈ R such that x = lim s.

Proof. As in the proof of Theorem 1, take the isotone bijection v : 𝜔 → N and the
sequence t ≡ (yn | n ∈ 𝜔) such that yn ≡ xv(n). Then, yn ⩽ yn+1 ⩽ y for some real num-
ber y. If t is finally constant in the sense of 1.2.7, then the assertion is evidently fulfilled.
If t is finally non-constant, then by Proposition 1 (1.2.7), there exists a subsequence
(ynk | k ∈ 𝜔) such that k ⩽ nk < nk+1 and ynk /= ynk+1 . Since t is increasing, we infer that
ynk < ynk+1 .

Consider the strictly increasing sequence u ≡ (zk | k ∈ 𝜔) such that zk ≡ ynk . By
Proposition 1, there is x such that x = lim u. Take any 𝜀 > 0 and some m ∈ C(u, x, 𝜀).
Then, for every p ⩾ m, we have |x − zp| < 𝜀. Therefore, for every p ⩾ nm ⩾ m, we infer
that x − yp ⩽ x − ynm = x − zm < 𝜀 and x − yp ⩾ x − ynp = x − zp > −𝜀 since p ⩽ np. As a
result, |x − yp| < 𝜀 for p ⩾ nm. Consequently, x = lim t. Since v is an isotone bijection,
we conclude that x = lim s.

Lemma 8. Let an infinite sequence s ≡ (xn ∈ R | n ∈ N) be increasing [decreasing] and
x = lim s. Then, xn ⩽ x [xn ⩾ x] for every n ∈ N.
Proof. Suppose that there is n ∈ N such that xn > x. Then, for 𝜀 ≡ xn − x, there is
m ∈ N such that |xp − x| < 𝜀 if m ⩽ p ∈ N. Take p ≡ gr(m, n). Then, xm ⩽ xp and
xn ⩽ xp imply 𝜀 ≡ xn − x ⩽ xp − x < 𝜀. It follows from this contradiction that xn ⩽ x for
every n.

Theorem 2. Let a sequence s ≡ (xm ∈ R | m ∈ M) be increasing, a sequence t ≡ (yn ∈
R | n ∈ N) be decreasing, and xm ⩽ yn for every m ∈ M and n ∈ N. Then, there exist
x, y ∈ R such that xm ⩽ x ⩽ y ⩽ yn for every m ∈ M and n ∈ N.
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Proof. By Proposition 2, there exist x = lim s and y = lim t. By Lemma 8 xm ⩽ x and
yn ⩾ y. Suppose that x > y. Take 𝜀 ≡ x − y and some numbers m ∈ C(s, x, 𝜀/2) and
n ∈ C(t, y, 𝜀/2). By Lemma 1, there are p ∈ M and q ∈ N such that p, q ⩾ gr(m, n).
Therefore, 0 ⩽ x−xp < 𝜀/2 and0 ⩽ yq−y < 𝜀/2 imply yq−xp = (yq−y)+(y−x)+(x−xp) <𝜀/2 − 𝜀 + 𝜀/2 = 0, i. e. yq < xp. But this contradicts the condition. Thus, x ⩽ y.

Corollary 1. Let ⟮In ⊂ R | n ∈ N⟯ be an infinite sequence of closed intervals such that
In ⊂ Im if n ⩾ m. Then,⋂⟮In | n ∈ N⟯ /= ⌀.
Theorem 3. The set R is uncountable.

Proof. Since 𝜔 ⊂ R, the latter set is at least denumerable. Suppose that there exists
a bijective mapping f : 𝜔 → R. Consider the set B ≡ {I ⊂ R | ∃ a, b ∈ R (a < b ∧ I =
[a, b])}. For every interval I ≡ [a, b] ∈ B, consider the intervals I ≡ [a, a + (b − a)/3],
I ≡ [a + (b − a)/3, a + 2(b − a)/3], and I ≡ [a + 2(b − a)/3, b]. It is clear that
I = I ∪ I ∪ I.

Take the interval I0 ≡ [f (0) + 1, f (0) + 2]. Define the mapping V : B × 𝜔 → B by
the following conditions: (1) if f (n + 1) ∉ I, then V(I, n) ≡ I; (2) if f (n + 1) ∈ I and
f (n + 1) ∉ I, then V(I, n) ≡ I; (3) if f (n + 1) ∈ I and f (n + 1) ∉ I, then V(I, n) ≡ I;
(4) if f (n+1) ∈ I∩I and f (n+1) ∉ I, then V(I, n) ≡ I. It follows from this definition
that f (n + 1) ∉ V(I, n) ⊂ I.

By Theorem 1 (1.2.7), there is a mapping u : 𝜔 → B such that u(0) = I0 and
u(n + 1) = V(u(n), n). Denote u(n) by In. Then, In+1 = V(In , n) implies f (n + 1) ∉ In+1 ⊂
In. By Corollary 1 to Theorem 2, there is x ∈ ⋂⟮In | n ∈ 𝜔⟯. But x = f (m) for some m.
Therefore, x ∉ Im and simultaneously x ∈ Im. Thus, R is not denumerable.

The cardinal number cardR is called the power of continuum and is denoted by c.

1.4.5 The Dedekind completeness and order properties of the extended real line

The Dedekind completeness of R

The greatest lower bound inf 𝜎 and the smallest upper bound sup 𝜎 of a collection
𝜎 ≡ (xi ∈ R | i ∈ I) indexed by a non-empty set I (see 1.1.15) can be characterized in R

by the following property of countability.

Lemma 1. For a collection 𝜎 ≡ (xi ∈ R | i ∈ I) and a number y ∈ R the following condi-
tions are equivalent:
1) y = sup 𝜎 [y = inf 𝜎];
2) y is an upper [lower] bound of 𝜎 and for every n ∈ N, there is i ∈ I such that y−1/n <

xi ⩽ y [y + 1/n > xi ⩾ y].

 EBSCOhost - printed on 2/10/2023 4:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



158 | 1.4 Real numbers

Proof. (1) ⊢ (2). Suppose that y − 1/n ⩾ xi for every i. Then, y − 1/n ⩾ y, but this is
impossible. Thus, y − 1/n < xi for some i.

(2) ⊢ (1). Let b be any upper bound of 𝜎. Suppose that y > b. Then, by Corollary 1
to Lemma 13 (1.4.3) y − b > 1/n for some n ∈ N. By condition for n, there is i such that
y−1/n < xi. As a result, xi > y−1/n > b ⩾ xi, but this is impossible. Thus, y ⩽ b, where
y = sup 𝜎.
Lemma 2. Let x ∈ R. Then, x = sup(x − 1/n | n ∈ N) = inf(x + 1/n | n ∈ N).
Proof. By assertion 1 of Proposition 4 (1.4.3), 0 ⩾ −1/n and x ⩾ x imply x ⩾ x − 1/n.
Let b ⩾ x − 1/n for every n. Suppose that b < x. By Corollary 1 to Lemma 13 (1.4.3)
m(x − b) > 1 for some m ⩾ 1. Consequently, b < x − 1/m, but this is impossible. Thus,
b ⩾ x. The first equality is checked. The second one is checked analogously.

Let ⟮A, ⩽⟯ be some ordered class (see 1.1.15). A pair ⟮R, S⟯ of non-empty subsets of
the set A is called a Dedekind cut in A if r ⩽ s for every r ∈ R and s ∈ S and R ∪ S = A.

Lemma 3. Let x ∈ R. Then, there exists a Dedekind cut ⟮R, S⟯ inQ such that x = sup(r |
r ∈ R) = inf(s | s ∈ S).
Proof. Consider the setsR ≡ {r ∈ Q | r ⩽ x}and S ≡ {s ∈ Q | x ⩽ s}. ByLemma14 (1.4.3),
there are rational numbers r and s such that x−1 < r < x < s < x+1. Therefore, the pair
⟮R, S⟯ is a Dedekind cut in Q.

Let a real number y is anupper boundof the set R. Suppose that y < x. By the same
lemma there is a rational number t such that y < t < x. By definition t ∈ R and so t ⩽ y.
It follows from this contradiction that x ⩽ y. Consequently, x = sup(r | r ∈ R).

In the same manner, it is checked that x = inf(s | s ∈ S).
Corollary 1. Let x ∈ R. Then, there exist sequences (rn ∈ Q | n ∈ 𝜔) ↑ and (sn ∈ Q | n ∈
𝜔) ↓ such that x = sup(rn | n ∈ 𝜔) = inf(sn | n ∈ 𝜔).
Proof. Consider the identical collections idR ≡ (rr | r ∈ R)and idS ≡ (ss | s ∈ S) (see 1.1.9)
for theDedekind cut ⟮R, S⟯ fromLemma3.ByLemma1, the setsRn−1 ≡ {r ∈ R | x−1/n <
r ⩽ x} and Sn−1 ≡ {s ∈ S | x + 1/n > s ⩾ x} are non-empty. Take some choice mapping
p : P(Q) \ {⌀} → Q from the axiom of choice in 1.1.12. Define sequences u ≡ (xn ∈
Q | n ∈ 𝜔) and v ≡ (yn ∈ Q | n ∈ 𝜔) setting xn ≡ p(Rn) and yn ≡ p(Sn). By definition,
x − 1/n < xn−1 ⩽ x and x + 1/n > yn−1 ⩾ x. Therefore, by Lemma 1 x = sup u = inf v.
Consider the rational numbers rn ≡ sup(xk | k ∈ n + 1) and sn ≡ inf(yk | k ∈ n + 1). It
is easy check that x = sup(rn | n ∈ 𝜔) = inf(sn | n ∈ 𝜔).
The following theorem shows the Dedekind completeness (see 1.1.15) of the real
line ⟮R, ⩽⟯.
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Theorem 1. Let a collection 𝜎 ≡ (xi ∈ R | i ∈ I) be bounded above [below]. Then, there
is a number y ∈ R such that y = sup 𝜎 [y = inf 𝜎].
Proof. Let b be an upper bound of 𝜎. Take some i ∈ I and n ∈ 𝜔. Since b − xi ⩾ 0,
there is a number m ∈ N such that b − x < m2−n. Therefore, b ⩽ x + m2−n, i. e.
x + m2−n is an upper bound of 𝜎. Consider the number p(n) ≡ sm(m ∈ N | ∀i ∈
I (xi ⩽ x + m2−n)). Then, for the interval In ≡ [x + (p(n) − 1)2−n , x + p(n)2−n], there
is an index i such that xi ∈ In. Compare the intervals In and In+1. Since the number
x+2p(n)2−(n+1) = x+p(n)2−n is an upper bound and the number x+(2p(n)−2)2−(n+1) =
x + (p(n) − 1)2−n is not an upper bound, we infer that either p(n + 1) = 2p(n) or
p(n+1) = 2p(n)−1. In any case, In+1 ⊂ In. By Corollary 1 to Theorem 2 (1.4.4), I ≡ ⋂⟮In |
n ∈ 𝜔⟯ /= ⌀.

Suppose that there are a, b ∈ I such that a < b. Then, [a, b] ⊂ In implies b − a ⩽
2−n for every n. But by virtue of Corollary 2 to Proposition 5 (1.4.3), 2−m < b − a for
some m. It follows from this contradiction that I = {y} for some y.

Suppose that y < xj for some j. Then, 2−n < xj − y for some n. Since y ∈ In, we
infer that xj > y + 2−n ⩾ x + p(n)2−n. But this contradicts the definition of the num-
ber p(n). Therefore, y is an upper bound of 𝜎. Take any upper bound d of 𝜎 and
suppose that y > d. Then, y − d > 2−n for some n. Since c ∈ In, we infer that
d < y − 2−n ⩽ x + (p(n) − 1)2−n, i. e. the latter number is an upper bound of 𝜎.
But this contradicts the definition of the number p(n). Thus, y ⩽ d. Thus,
y = sup 𝜎.
Corollary 1. Let a set X ⊂ R be bounded above [below]. Then, there is a number y ∈ R

such that y = sup(x | x ∈ X) [y = inf(x | x ∈ X)].
Corollary 2. Let ⟮R, S⟯ be a Dedekind cut inR. Then, there is x ∈ R such that x = sup(r |
r ∈ R) = inf(s | s ∈ S).
Proof. ByCorollary 1, there are x = sup R and y = inf S. Then, x ⩽ s for all s ∈ S implies
x ⩽ y. Suppose that x < y. By definition of a Dedekind cut, z ≡ (x + y)/2 ∈ R ∪ S. If
z ∈ R, then x < z ⩽ x. If z ∈ S, then y > z ⩾ y. It follows from these contradictions that
x = y.

Corollary 3. Let ⟮R, S⟯ be aDedekind cut inQ. Then, there is x ∈ R such that x = sup(r |
r ∈ R) = inf(s | s ∈ S).
Proof. By Corollary 1, there are x = sup(r | r ∈ R) and y = inf(s | s ∈ S). Then, x ⩽ y.
Suppose that x < y. By Lemma 14 (1.4.3) x < t < y for some rational number t. But
t ∈ R ∪ S. If t ∈ R, then x < t ⩽ x. If t ∈ S, then y > t ⩾ y. It follows from these con-
tradictions that x = y.
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The order completeness of R

Now, we shall generalize Theorem 1 for the ordered set ⟮R, ⩽⟯, i. e. we shall prove that
the ordered set ⟮R, ⩽⟯ is order complete (see 1.1.15 and 1.4.3).

Theorem 2. Let 𝜎 ≡ (xi ∈ R | i ∈ I) be a collection indexed by a non-empty set I. Then,
there are numbers y, z ∈ R such that y = sup 𝜎 and z = inf 𝜎.
Proof. At first, assume that there is a ∈ R such that xi ⩽ a for every i ∈ I. If xi = −∞
for every i ∈ I, then −∞ = sup 𝜎. If there is j ∈ I such that xj > −∞, then the set J ≡
{j ∈ I | xj > −∞} is non-empty. Consider the subcollection 𝜏 ≡ (xj ∈ R | j ∈ J). Since 𝜏
is bounded above, there is by Theorem 1 y ∈ R such that y = sup 𝜏. If i ∈ I \ J, then
xj = −∞ < y. Thus, y is an upper bound of 𝜎. If b ∈ R and b ⩾ xi for every i ∈ I, then
b ⩾ y. Consequently, y = sup 𝜎.

Now, assume that for every a ∈ R, there is i ∈ I such that xi > a. By definition of
the order in R from 1.4.3 y ≡ ∞ is an upper bound of 𝜎. If b ∈ R and b ⩾ xi for every
i ∈ I, then b > a for every a ∈ R. Thus, b = ∞ ⩾ y. Consequently, y = sup 𝜎.

For the infimum, the arguments are the same.

Corollary 1. Let X ⊂ R. Then, there are numbers y, z ∈ R such that y = sup(x | x ∈ X)
and z = inf(x | x ∈ X).
Corollary 2. Let ⟮R, S⟯ be a Dedekind cut inR. Then, there is x ∈ R such that x = sup(r |
r ∈ R) = inf(s | s ∈ S).
Proof. At first, assume that R /= {−∞} and S /= {∞}. Then, ⟮R1, S1⟯, where R1 ≡
R \ {−∞}, S1 ≡ S \ {∞} is a Dedekind cut in R. By Corollary 2 to Theorem 1, there
is x ∈ R such that x = sup R = inf S.

Now, consider the case S = {∞}. By Corollary 1, there are x = sup R and y = inf S.
Then, x ⩽ s for all s ∈ S implies x ⩽ y. Suppose that x < y = ∞. By definition of
a Dedekind cut, z ≡ x + 1 ∈ R ∪ S. If z ∈ R, then x < z ⩽ x. It follows from this contra-
diction that z ∈ S. Therefore, z = ∞ and x = z − 1 = ∞ = y.

The case R = {−∞} is considered in a similar way.

Some further order properties of R

Consider some order properties of R.
By Theorem 3 (1.2.6) every simple collection 𝜎 ≡ (xi ∈ R | i ∈ I) indexed by a finite

non-empty set I has the largest element gr 𝜎 and the smallest element sm 𝜎. Therefore,
according to 1.1.15, we have sup 𝜎 = gr 𝜎 and inf 𝜎 = sm 𝜎.

In particular, if I = n + 1, then x0 ∨ . . . ∨ xn = x0 ⊻ . . . ⊻ xn and x0 ∧ . . . ∧ xn =
x0 ⊼ . . . ⊼ xn (see 1.2.6).
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Also, if x, x, x, x, ⋅ ⋅ ⋅ ∈ R, then x ∨ x = x ⊻ x, x ∨ x ∨ x = x ⊻ x ⊻ x, x ∨
x ∨ x ∨ x = x ⊻ x ⊻ x ⊻ x, . . . and x ∧ x = x ⊼ x, x ∧ x ∧ x = x ⊼ x ⊼ x,
x ∧ x ∧ x ∧ x = x ⊼ x ⊼ x ⊼ x, . . .
Lemma 4. Let 𝜎 ≡ (zi ∈ R | i ∈ I) be a simple collection indexed by a non-empty set I
and z, a ∈ R. Then:
1) if z = sup 𝜎, then a + z = sup(a + zi | i ∈ I);
2) if z = inf 𝜎, then a + z = inf(a + zi | i ∈ I);
3) if z = sup 𝜎, then az = sup(azi | i ∈ I) when a ⩾ 0 and az = inf(azi | i ∈ I) when

a ⩽ 0;
4) if z = inf 𝜎, then az = inf(azi | i ∈ I)when a ⩾ 0and az = sup(azi | i ∈ I)when a ⩽

0;
5) if zi > 0 for every i ∈ I and z = sup 𝜎, then z−1 = inf(z−1i | i ∈ I);
6) if z > 0 and z = inf 𝜎, then z−1 = sup(z−1i | i ∈ I).
Proof. 1. It is clear that a+z ⩾ z+zi for every i. Let b ⩾ a+zi for every i. Then, b−a ⩾ zi
implies b − a ⩾ z, where b ⩾ a + z.

Assertion 2 is checked in a similar way.
3. Let a > 0. By assertion 3 of Proposition 4 (1.4.3) az ⩾ azi for every i. Let b ⩾ azi

for every i. Then, b/a ⩾ zi implies b/a ⩾ z, where b ⩾ az.
Let a < 0. By the same reason az ⩽ azi for every i. Let b ⩽ azi for every i. Then,

b/a ⩽ zi implies b/a ⩽ z, where b ⩽ az.
If a = 0, then the equalities are obvious.
Assertion 4 is checked in a similar way.
5. Since 0 < zi ⩽ z for every i, we infer by Corollary 3 to Proposition 4 (1.4.3) that

0 < z−1 ⩽ z−1i . Let b ⩽ z−1i for every i. If b ⩽ 0, then b ⩽ z−1. If b > 0, then by the same
reason b−1 > (z−1i )−1 = zi implies b−1 ⩾ z. Consequently, b = (b−1)−1 ⩽ z−1.

6. Since 0 < z ⩽ zi for every i, we infer as in 5) that 0 < z−1i ⩽ z−1. Let b ⩾ z−1i for
every i. Then, 0 < b−1 ⩽ zi implies b−1 ⩽ z. Consequently, b ⩾ z−1.

Corollary 1. Let x, y, z ∈ R. Then:
1) a + x ⊻ y = (a + x) ⊻ (a + y);
2) a + x ⊼ y = (a + x) ⊼ (a + y);
3) a(x ⊻ y) = ax ⊻ ay when a ⩾ 0 and a(x ⊻ y) = ax ⊼ ay when a ⩽ 0;
4) a(x ⊼ y) = ax ⊼ ay when a ⩾ 0 and a(x ⊼ y) = ax ⊻ ay when a ⩽ 0;
5) if x, y > 0, then (x ⊻ y)−1 = x−1 ⊼ y−1;
6) if x, y > 0, then (x ⊼ y)−1 = x−1 ⊻ y−1.
Lemma 5. Let x, y ∈ R. Then:
1) |x| = x ⊻ 0 + (−x) ⊻ 0 = x ⊻ 0 − x ⊼ 0;
2) x ⊻ y = (x − y) ⊻ 0 + y = (y − x) ⊻ 0 + x;
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3) x ⊼ y = x − (x − y) ⊻ 0 = y − (y − x) ⊻ 0;
4) x ⊻ y + x ⊼ y = x + y;
5) x ⊻ y − x ⊼ y = |x − y|;
6) |x| = x ⊻ (−x).
Proof. 1. If x ⩾ 0, then |x| ≡ x ⊻ 0 + (−x) ⊻ 0. If x ⩽ 0, then |x| ≡ −x = x ⊻ 0 + (−x) ⊻ 0.
The second equality follows from the first one and Corollary 1 to Lemma 4.

Assertions 2 and 3 follow from Corollary 1 to Lemma 4.
Assertion 4 follows from assertions 2 and 3.
5. Subtracting the second equality in 3) from the first equality in (2) and apply-

ing (1), we get x ⊻ y − x ⊼ y = (x − y) ⊻ 0 + (y − x) ⊻ 0 = |x − y|.
6. It is clear.

Corollary 1. Let x, y ∈ R. Then:
1) x ⊻ y = (x + y)/2 + |x − y|/2;
2) x ⊼ y = (x + y)/2 − |x − y|/2.
Lemma 6. Let a, b, x ∈ R and a ⩾ b. Then:
1) x ⊻ a ⩾ x ⊻ b;
2) x ⊼ a ⩾ x ⊼ b.
Proof. 1. Since x ⊻ a ⩾ x and x ⊻ a ⩾ a, we have x ⊻ a ⩾ x and x ⊻ a ⩾ b, where x ⊻ a ⩾
x ∨ b = x ⊻ b.

2. Analogously, x ⊼ b ⩽ x and x ⊼ b ⩽ b ⩽ a imply x ⊼ b ⩽ x ∧ a = x ⊼ a.
Now, in addition to Proposition 1 and Theorem 1 from 1.1.15 we can prove forR the fol-
lowing properties of distributivity.

Proposition 1. Let 𝜎 ≡ (xi ∈ R | i ∈ I) be a simple collection indexed by a non-empty
set I and x, e ∈ R. Then:
1) if e = sup 𝜎, then x ∧ e = sup(x ∧ xi | i ∈ I);
2) if e = inf 𝜎, then x ∨ e = inf(x ∨ xi | i ∈ I).
Proof. 1. Since e ⩾ xi, we infer by Lemma 6 that x ∧ e ⩾ x ∧ xi. Take any u ∈ R such
that u ⩾ x ∧ xi for every i. By assertion 4 of Lemma 5 x ∧ xi = x + xi − x ∨ xi and x ∧ e =
x+e−x∨e. Thus, u ⩾ x+xi−x∨xi implies u−x ⩾ xi−x∨xi, where x∨xi+u−x ⩾ xi. By
Corollary 1 to Theorem 1 (1.1.15) x ∨ e = sup(x ∨ xi | i ∈ I). Consequently, by assertions
2 and 3 of Lemma 4 x ∨ e + u − x = sup(x ∨ xi + u − x) ⩾ x ∨ xi + u − x ⩾ xi for every i.
This implies x ∨ e + u − x ⩾ e, where u ⩾ x + e − x ∨ e = x ∧ e. Thus, x ∧ e = sup(x ∧ xi |
i ∈ I).

2. The proof is a simple modification of the proof of assertion 1.
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Corollary 1. Let x, y, z, e ∈ R. Then:
1) x ⊼ (y ⊻ z) = (x ⊼ y) ⊻ (x ⊼ z) (the distributivity of the smallest element with respect

to the greatest element);
2) x ⊻ (y ⊼ z) = (x ⊻ y) ⊼ (x ⊻ z) (the distributivity of the greatest element with respect

to the smallest element).

Proof. 1. Consider the set I ≡ 2 and a simple collection 𝜎 ≡ (xi | i ∈ I) such that x0 ≡ y
and x1 ≡ z. Then, by Corollary 1 to Proposition 1 (1.1.15) e ≡ y ⊻ z = y ∨ z = x0 ∨ x1 =
sup(xi | i ∈ I). Therefore, by Proposition 1 x⊼e = x∧e = sup(x∧xi | i ∈ I) = sup(x⊼xi |
i ∈ I) = (x ⊼ x0) ∨ (x ⊼ x1) = (x ⊼ y) ⊻ (x ⊼ z).

2. The proof is a simple modification of the proof of assertion 1.

Corollary 2. Let 𝜎 ≡ (yj ∈ R | j ∈ J) and 𝜏 ≡ (zk ∈ R | k ∈ K) be simple collections
indexed by non-empty sets J and K and f , g ∈ R. Then:
1) if f = sup 𝜎 and g = sup 𝜏, then f ∧ g = sup(yj ∧ zk | (j, k) ∈ J × K);
2) if f = inf 𝜎 and g = inf 𝜏, then f ∨ g = inf(yj ∨ zk | (j, k) ∈ J × K).
Proof. 1. By Proposition 1 yj ∧ g = sup(yj ∧ zk | k ∈ K) and f ∧ g = sup(yj ∧ g | j ∈ J).
Since f ∧ g ⩾ yj ∧ zk for every j and k, by Theorem 1, there is a number u such that
f ∧ g ⩾ u = sup(yj ∧ zk | (j, k) ∈ J × K). It is clear that u ⩾ yj ∧ g and so u ⩾ f ∧ g. As a
result, f ∧ g = u.

Assertion 2 is checked in a similar way.

Theorem 3. Let ⟮Im | m ∈ M⟯ be a total multivalued collection of sets indexed by a non-
empty set M and U ≡ ∏⟮Im | m ∈ M⟯. Let (𝜘m | m ∈ M) be a collection of collections of
numbers 𝜘m ≡ (xmi ∈ R | i ∈ Im) and (em ∈ R | m ∈ M) and (gu ∈ R | u ∈ U) be collec-
tions of numbers. Then:
1) if em = sup(xmi | i ∈ Im) and gu = inf(xmu(m) | m ∈ M), then there exists x ∈ R such

that x = inf(em | m ∈ M) and x = sup(gu | u ∈ U) (the general distributivity of
the infimum with respect to the supremum);

2) if em = inf(xmi | i ∈ Im) and gu = sup(xmu(m) | m ∈ M), then there exists x ∈ R such
that x = sup(em | m ∈ M) and x = inf(gu | u ∈ U) (the general distributivity of
the supremum with respect to the infimum).

Proof. 1. If em = sup(xmi | i ∈ Im) and gu = inf(xmu(m) | m ∈ M), then for every m and
u the condition u(m) ∈ Im implies the inequality e ⩾ xmu(m). Therefore, em ⩾ gu. By
Theorem 1, there exists unique numbers x and y such that x = inf(em | m ∈ M), y =
sup(gu | u ∈ U), and x ⩾ y. We need to prove that x = y.

By Lemma 1, for every n ∈ N and every m ∈ M, there is i ∈ Im such that
em−1/n < xmi. Therefore,we can consider thenon-empty sets Jnm ≡ {i ∈ Im | em−1/n <
xmi}. By the axiom of choice from 1.1.12 for the non-empty set I ≡ ⋃⟮Im | m ∈ M⟯, there
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exists a choice mapping p : P(I) \ {⌀} → I. Define some mapping u from M into I
setting u(m) ≡ p(Jnm) ∈ Jnm ⊂ Im. Then, u ∈ U and x − 1/n ⩽ em − 1/n < xmu(m) for
every m ∈ M. Consequently, x − 1/n ⩽ gu ⩽ y. By Lemma 2 x ⩽ y, where x = y.

2. The proof is a simple modification of the proof of assertion 1.

Corollary 1. Let I be a finite set, ⟮Ji | i ∈ I⟯ be a collection of non-empty sets, U ≡ ∏⟮Ji |
i ∈ I⟯. Let (𝜎i | i ∈ I)be a collection of collections of numbers𝜎i ≡ (xiji ∈ R | ji ∈ Ji), and(zi ∈ R | i ∈ I) be a collection of numbers. Then:
1) if zi = sup 𝜎i , then inf (zi | i ∈ I) = sup (inf (xiu(i) | i ∈ I) | u ∈ U);
2) if zi = inf 𝜎i , then sup (zi | i ∈ I) = inf (sup (xiu(i) | i ∈ I) | u ∈ U).
Theorem 4 (The Birkhoff identity). Let x, y, z ∈ R. Then, |x ⊻ z − y ⊻ z| + |x ⊼ z − y ⊼ z| =
|x − y|.
Proof. Applying the formula |p − q| = p ⊻ q − p ⊼ q from Lemma 5 to the case that
p = x ⊻ z and q = y ⊻ z as well as to the case that p = x ⊼ z and q = y ⊼ z, we obtain
L ≡ |x ⊻ z − y ⊻ z| + |x ⊼ z − y ⊼ z| = (x ⊻ z) ⊻ (y ⊻ z) − (x ⊻ z) ⊼ (y ⊻ z) + (x ⊼ z) ⊻ (y ⊼ z)−
(x ⊼ z) ⊼ (y ⊼ z). Using Corollary 1 to Proposition 1 and Corollary 1 to Theorem 1 (1.1.15),
we obtain L = (x ⊻ z) ⊻ z − (x ⊼ y) ⊻ z + (x ⊻ y) ⊼ z − (x ⊼ y) ⊼ z = ((x ⊻ y) ⊻ z + (x ⊻
y) ⊼ z) − ((x ⊼ y) ⊻ z + (x ⊼ y) ⊼ z). Finally, using equalities 4) and 5) from Lemma 5, we
obtain L = (x ⊻ y + z) − (x ⊼ y + z) = x ⊻ y − x ⊼ y = |x − y|.
Corollary 1 (the Birkhoff inequalities). Let x, y, z ∈ R. Then, |x ⊻ z − y ⊻ z| ⩽ |x − y| and
|x ⊼ z − y ⊼ z| ⩽ |x − y|.

1.4.6 Natural roots of positive real numbers. Raising to a rational degree

Consider the set B ≡ 𝜔 and take the number b0 ≡ 1. Define for the set B a productive
mapping V from B × 𝜔 into B setting V(m, n) ≡ m(n + 1). Then, by Theorem 1 (1.2.7),
there is a unique mapping u from 𝜔 into B such that u(0) = b0 and u(n + 1) =
V(u(n), n) = u(n)(n + 1). The mapping u is called the factorial function. The number
u(n) is called the factorial of the number n and is denoted by n!. It follows from this re-
cursive formula that 0! = 1, 1! = 1, 2! = 1! ⋅ 2 = 1 ⋅ 2, 3! = 2! ⋅ 3 =
1 ⋅ 2 ⋅ 3, . . .

For numbers k,m ∈ 𝜔, the numberm!/(k!(m−k)!) is called thenumber of combina-
tions of m things k at a timeand is denotedby Ck

m or by (mk ). It follows from thedefinition
that C0m = 1 and Ck

m = Cm−k
m .

Theorem 1 (the Newton binomial theorem). Let a, b ∈ R and m ∈ N. Then, (a + b)m =
∑(Ck

ma
m−kbk | k ∈ m + 1) = am + C1ma

m−1b1 + . . . + Ck
ma

m−kbk + . . . + Cm−1
m a1

bm−1 + bm.
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Proof. Consider the set X of all numbers n ∈ 𝜔 such that for m ≡ n + 1, we have
the equality written above. If n = 0, then for m = 1 by Lemma 4 (1.4.3), we have
the equality∑(Ck

1 a
1−kbk | k ∈ 2) = C01 a

1−0b0 + C11a1−1b1 = (a + b)1. Thus, 0 ∈ X.
Suppose that n ∈ X. Takem ≡ n+1. Then, (a+b)m+1 = (a+b)m(a+b) = ∑(Ck

ma
m+1−k

bk | k ∈ m + 1) + ∑(Ck
ma

m−kbk+1 | k ∈ m + 1) = am+1 +∑(Ck
ma

m+1−kbk | k ∈ (m + 1) \ 1) +
∑(Ck−1

m am+1−kbk | k ∈ (m+2)\1) = am+1+∑((Ck
m+Ck−1

m )am+1−kbk | k ∈ (m+1)\1)+bm+1.
Since Ck

m + Ck−1
m = m!/k!(m − k)! + m!/(k − 1)!(m + 1 − k)! = (m + 1)!/k!(m + 1 − k)! =

Ck
m+1, we conclude that (a + b)m+1 = am+1 + ∑(Ck

m+1a
m+1−kbk | k ∈ (m + 1) \ 1) + bm+1 =

∑(Ck
m+1a

m+1−kbk | k ∈ m+2). Thismeans that n+1 ∈ X. By Theorem 1 (1.2.6), X = 𝜔.
Theorem 2. Let x ∈ R+ and m ∈ N. Then, there is a unique number a ∈ R+ such that
am = x.

Proof. If x = 0, then by Proposition 3 (1.4.3) a = 0. Therefore, we shall assume that
x > 0. Consider the sets R ≡ R−∪{r ∈ R+ | rm ⩽ x} and S ≡ {s ∈ R+ | sm ⩾ x}. By Corol-
lary 1 to Lemma 13 (1.4.3), there is n ∈ N such that x > 1/n ⩾ (1/n)m. Thus, R /= ⌀.
If x ⩽ 1, then 1m ⩾ x; if x > 1, then by Proposition 4 (1.4.3) xm ⩾ x. Thus, S /= ⌀. Be-
sides, R = R ∪ S. Take any r ∈ R and s ∈ S and suppose that r > s. Then, by Proposi-
tion 4 (1.4.3), x ⩾ rm > sm ⩾ x, but this is impossible. It follows from this contradiction
that r ⩽ s. Thus, ⟮R, S⟯ is a Dedekind cut in R in the sense of 1.4.3. By Corollary 2 to
Theorem 1 (1.4.5), there is a such that a = sup(r | r ∈ R) = inf(s | s ∈ S).

By Lemma 1 (1.4.5) for every n ∈ N, there are r ∈ R and s ∈ S such that a − 1/n <
r ⩽ a ⩽ s < a + 1/n. Therefore, (a − 1/n)m < rm ⩽ x and (a + 1/n)m > sm ⩾ x. Since
(1/n)k ⩽ 1/n for every k ∈ N, we get by virtue of Theorem 1 the inequality x < (a +
1/n)m ⩽ am + ∑(Ck

ma
m−k | k ∈ (m + 1) \ 1)/n. Denote ∑(Ck

ma
m−k | k ∈ (m + 1) \ 1) by z.

Then, again by Theorem 1 x > (a − 1/n)m = am + ∑(Ck
ma

m−k(−1/n)k | k ∈ (m + 1) \ 1) ⩾
am − ∑(Ck

ma
m−k(1/n)k | k ∈ (m + 1) \ 1) ⩾ am − z/n. Thus, am − z/n < x < am + z/n for

every n ∈ N.
Suppose that x > am. Then, by Lemma 13 (1.4.3), n(x − am) > z for some n, i. e.

x > am + z/n. But this contradicts the proven inequality. Now, suppose that x < am.
Then, in the sameway, n(am−x) > z for some n, i. e. x < am−z/n. It follows from these
contradictions that x = am.

Now, suppose that x = bm for some b. If a < b, then by assertion 4 of Proposi-
tion 4 (1.4.3) x = am < bm = x. If a > b, then by the same reason, x = am > bm = x. It
follows from these contradictions that a = b.

The number a from Theorem 2 is called the root of the number x ∈ R+ with the natural
exponent m and is denoted by m√x. It is also called the degree of the number x ∈ R+

with the exponent 1/m and in this case is denoted by x1/m.
Let r ≡ m/p be a rational number with a denominator p ∈ N and a numerator

m ∈ Z. Define the degree xr of the number x ∈ R+ with the rational exponent r setting
xr ≡ (x1/p)m if either x > 0 or m ⩾ 0.
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Proposition 1. Let 𝜋 ≡ (xi ∈ R+ \ {0} | i ∈ I) and 𝜘 ≡ (yj ∈ Q | j ∈ J) be simple finite col-
lections, x ∈ R+ \ {0}, and y, z ∈ Q. Then:
1) 1y = 1;
2) 0y = 0 for y > 0;
3) x∑(yj |j∈J) = P(xyj | j ∈ J);
4) (P(xi | i ∈ I))y = P(xyi | i ∈ I);
5) xyz = (xy)z.
Proof. Let y ≡ m/p, z ≡ n/q, and yj ≡ mj/pj for some m, n,mj ∈ Z and p, q, pj ∈ N.

1. Since 1p = 1, we infer that 11/p = 1. Therefore, 1y ≡ (11/p)m = 1m = 1.
2. Since 0p = 0, we infer that 01/p = 0. From y > 0, we infer that m > 0. Therefore,

0y ≡ (01/p)m = 0m = 0.
3. Denote P(pj | j ∈ J) by v, P(pi | i ∈ J \ {j}) by vj, and ∑(mjvj | j ∈ J) by u. Then,

by definition from 1.4.2∑𝜘 = u/v. Therefore, L ≡ x∑𝜘 = (x1/v)u. By virtue of assertion 5
of Proposition 3 (1.4.3), we have Lv = ((x1/v)v)u = xu.

On the other hand, xyj ≡ (x1/pj )mj implies R ≡ P(xyj | j ∈ J) = P((x1/pj )mj | j ∈ J). By
virtue of assertions 4 and 5 of Proposition 3 (1.4.3), we have Rv = P(((x1/pj )v)mj | j ∈
J). Since by Theorem 1 (1.4.2) v = pjvj, we infer that (x1/pj )v = xvj . Consequently, by
assertion 3 of Proposition 3 (1.4.3), Rv = P(xmjvj | j ∈ J) = xu.

As a result, we get the equality Lv = Rv. By virtue of Theorem 2, we conclude that
L = R.

4. Since L ≡ (P𝜋)y ≡ ((P𝜋)1/p)m,we infer that Lp = (P𝜋)m = P(xmi | i ∈ I). On theother
hand, R ≡ P(xyi | i ∈ I) = P((x1/pi )m | i ∈ I) implies Rp = P(((x1/pi )m)p | i ∈ I) = P(xmi |
i ∈ I). As a result, we get equality Lp = Rp, which implies L = R.

5. From yz ≡ mn/pq we infer that L ≡ xyz ≡ (x1/pq)mn. Therefore, Lpq = xmn. On
the other hand, for R ≡ (xy)z ≡ (((x1/p)m)1/q)n, we have Rq = (x1/p)mn, and as a result,
Rpq = (Rq)p = xmn. From the equality Lpq = Rpq, we conclude that L = R.

Proposition 2. Let x, y ∈ R+ \ {0} and r, s ∈ Q. Then:
1) if x < y, then xr < yr for r > 0 and xr > yr for r < 0;
2) if r < s, then xr < xs for x > 1 and xr > xs for x < 1.
Proof. Let r ≡ m/p and s ≡ n/q for m, n ∈ Z and p, q ∈ N.

1. By definition L ≡ xr ≡ (x1/p)m and R ≡ yr ≡ (y1/p)m. Therefore, Lp = xm and
Rp = ym.

If r > 0, thenm > 0. Consequently, by virtue of assertion 4 of Proposition 4 (1.4.3)
xm < ym,where Lp < Rp. Suppose that L ⩾ R. Then, by the same reason, Lp ⩾ Rp. Since
this inequality contradicts the previous one, we conclude that L < R.

For r < 0, the arguments are the same.
2. By definition, L ≡ xr ≡ (x1/p)m and R ≡ xs ≡ (x1/q)n. Therefore, Lpq = xqm and

Rpq = xpn.
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By definition from 1.4.2 r < s impliesmq /= np and (mq− np)pq ⩽ 0. Suppose that
mq − np > 0. Then, by assertion 3 of Proposition 3 (1.4.1), (mq − np)pq > 0, but this
contradicts the previous inequality. Thus, mq < np.

If x > 1, then by assertion 5 of Proposition 4 (1.4.3) xqm < xpn, where Lpq < Rpq. As
above, this implies L < R.

If x < 1, then using the similar arguments we deduce that L > R.

Now, we shall prove that rising to a natural degree and taking a natural root possess
properties of “acceleration” and “deceleration”, respectively.

Lemma 1. Let x, y ∈ R, m ∈ N, and 0 < y < x. Then, (x + y)m − xm > xm − (x − y)m.
Proof. ByTheorem 1 (x+y)m−xm = ∑(Ck

mx
m−kyk | k ∈ (m+1)\1) > ∑((−1)k+1Ck

mx
m−kyk |

k ∈ (m + 1) \ 1) = xm − (x − y)m.
Corollary 1. Let x, y ∈ R, m ∈ N, and 0 < y < x. Then, m√x + y − m√x < m√x − m√x − y.
Proof. Denote m√x by a and m√x + y − m√x by b. Then, b < m√2x − a ⩽ m√2mx − a = a.
Suppose that b ⩾ a − m√x − y, i. e. 0 < a − b ⩽ m√x − y. By Lemma 1, y = x + y − x =
(a+b)m−am > am−(a−b)m ⩾ x−(x−y) = y, but this is impossible. Now, the necessary
inequality follows from this contradiction.

Proposition 3. Let x ∈ R+ \ {0}. Then, lim( m√x | m ∈ N) = 1.
Proof. At first, assume that x > 1. Then, by virtue of Proposition 2 m√x > 1. Take 𝜀 > 0
and suppose that for every n, there ism ⩾ n such that m√x − 1 ⩾ 𝜀. By Lemma 13 (1.4.3),
there is n ∈ N such that n𝜀 > x, where m𝜀 ⩾ n𝜀 > x. At the same time, by Theorem 1
for this m, we have x ⩾ (1 + 𝜀)m = 1 + m𝜀 + ⋅ ⋅ ⋅ + m𝜀m−1 + 𝜀m ⩾ m𝜀. It follows from this
contradiction that there is n such that m ⩾ n implies 0 < m√x − 1 < 𝜀.

Now, assume that x < 1. Take 𝜀 > 0. Then, for y ≡ 1/x > 1, there is n such that m√y−
1 < 𝜀 for every m ⩾ n. Using assertion 5 of Proposition 1, we get 𝜀 > m√y − 1 = (x−1)1/m −
1 = (x1/m)−1 − 1 = 1/ m√x − 1 = (1 − m√x)/ m√x. This implies 1 > m√x > 1/(1 + 𝜀) for every
m ⩾ n. Consequently, 0 < 1 − m√x < 1 − 1/(1 + 𝜀) = 𝜀/(1 + 𝜀) < 𝜀.
In conclusion, we shall prove that R /= Q.

Lemma 2. Let r ∈ Q. Then, r2 /= 2.
Proof. Suppose that r2 = 2. Let r = m/p for some m ∈ Z and p ∈ N. We can assume
that m and p have no common divisor. From m2/p2 = 2, we infer that m2 = 2p2, i. e.
m2 is even. Suppose that m = 2k + 1 for some k ∈ Z. Then, m2 = 2k2 + 2k + 1 = 2(2k2 +
k) + 1 means that m2 is odd. It follows from this contradiction that m = 2k. But then,
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2p2 = m2 = 4k2 implies p2 = 2k2, i. e. p2 is even. As above, this implies that p = 2l for
some l ∈ N. Thus, m and p have the common divisor 2. It follows from this contradic-
tion that r2 /= 2.
Corollary 1. √2 ∈ R \ Q.

Proof. The assertion follows from Theorem 2 and Lemma 2.

1.4.7 Convergence of nets in the extended real line

Limits of nets in R

In this subsection, we shall consider nets s ≡ (xn ∈ R | n ∈ N) of extended real num-
bers indexedby the principal setN of anupwarddirected preordered infinite set ⟮N, ⩽⟯
(see 1.1.15). According to 1.2.6, such nets are called infinite.

As in 1.4.4, for a preordered set ⟮N, ⩽⟯ closedfinal intervals [n,→[≡ {p ∈ N | p ⩾ n}
with the beginnings n ∈ N will be denoted also by Nn.

A net s is called convergent to a number x ∈ R and the number x is called a limit
of the net s if for every number 𝜀 > 0, there is an index n ∈ N such that |xp − x| < 𝜀 for
all p ∈ N such that p ⩾ n.

Lemma 1. Let s ≡ (xn ∈ R | n ∈ N)be an infinite net, x, y ∈ R, and s convergent to x and
to y. Then, x = y.

Proof. Suppose that x /= y. Then, for 𝜀 ≡ |x − y| > 0, there are m, n ∈ N such that
|xp − x| < 𝜀/2 and |xq − y| < 𝜀/2 for all p, q ∈ N such that p ⩾ m and q ⩾ n. Take some
k ∈ N such that k ⩾ m and k ⩾ n. It follows from these inequalities that xr ∈ R for all
r ∈ N such that r ⩾ k. Therefore, |x − y| ⩽ |x − xr| + |xr − y| < 𝜀, but this is impossible.
Thus, x = y.

Thus, the net s can have a unique real limit. To denote the property that x ∈ R is a limit
of s, we shall write x = lim s or x = lim(xn | n ∈ N).
Lemma 2. Let s ≡ (xn | n ∈ N) be a net and x ∈ R. Then, the following conclusions are
equivalent:
1) x = lim s;
2) 0 = lim(xn − x | n ∈ N);
3) 0 = lim(|xn − x| | n ∈ N).
Proof. The assertion follows from the equalities |xp − x| = |0 − (xp − x)| =
|0 − |xp − x||.
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Thenet s is called convergent to the number x ≡ ∞ [x ≡ −∞] and the number x is called
the limit of the net s if for every real number 𝛿 > 0 [𝛿 < 0] there is an index n ∈ N such
that xp > 𝛿 [xp < 𝛿] for all p ∈ N such that p ⩾ n. This property is denoted by x = lim s
or by x = lim(xn | n ∈ N).

As above, for a net s ≡ (xn ∈ R | n ∈ N), a number x ∈ R, and a number 𝜀 ∈
R+ \ {0}, we shall consider the set C(s, x, 𝜀) ≡ {n ∈ N | ∀p ∈ N (p ⩾ n ⇒ |xp − x| < 𝜀)};
and besides for the net s, a number x = ∞ [x = −∞], and a real number 𝛿 > 0 [𝛿 < 0]
we shall consider the set C(s, x, 𝛿) ≡ {n ∈ N | ∀p ∈ N (p ⩾ n ⇒ xp > 𝛿 [xp < 𝛿])}.
Lemma 3. Let s ≡ (xn ∈ R | n ∈ N) be a net and x ∈ R. Then, for the ordered set R,
the following conclusions are equivalent:
1) x = lim s;
2) x = o-lim s (see 1.1.15).

Proof. (1) ⊢ (2). For every n ∈ N, consider the set Nn ≡ {p ∈ N | p ⩾ n}. Since the
ordered set R is order complete in the sense of 1.1.15, there are nets s ≡ (yn ∈ R |
n ∈ N) ↑ and s ≡ (zn ∈ R | n ∈ N) ↓ such that yn = inf(xp | p ∈ Nn) and zn = sup(xp |
p ∈ Nn). If l,m ∈ N, then for q ∈ Nl ∩ Nm, we have yl ⩽ yq ⩽ xq ⩽ zq ⩽ zm. Therefore,
there are y, z ∈ R such that y = sup s, z = inf s, and y ⩽ z.

At first, assume that x ∈ R. Then, by definition, for any real 𝜀 > 0, there is k ∈ N
such that |xp − x| < 𝜀 for every p ∈ Nk. It follows from this inequality that xp ∈ R for all
p ∈ Nk. Consequently, x − 𝜀 ⩽ yk ⩽ xp ⩽ zk ⩽ x + 𝜀, where yk , zk ∈ R. Then, yl ⩽ zk ∈ R

and zm ⩾ yk ∈ R for all l,m ∈ N. Therefore, y ⩽ z and z ⩾ yk imply y, z ∈ R. Besides,
x−𝜀 ⩽ yk ⩽ y and z ⩽ zk ⩽ x+𝜀. Now, using Lemma 2 (1.4.5) we infer that x ⩽ y ⩽ z ⩽ x,
where y = z = x. Thus, s ↑ x and s ↓ x. By definition from 1.1.15 x = o-lim s.

Now, assume that x = ∞. Then, by definition, for every real 𝛿 > 0, there is k ∈
N such that xp > 𝛿 for every p ∈ Nk. Therefore, y ⩾ yk ⩾ 𝛿 implies y = ∞ = x. Thus,
s ↑ x. Therefore, the net t ≡ (vn ∈ R | n ∈ N) ↓ x such that vn ≡ ∞ for every n. Since
yn ⩽ xn ⩽ vn, we conclude that x = o-lim s.

Finally, assume that x = −∞. Then, for every real 𝛿 < 0, there is k ∈ N such
that xp < 𝛿 for every p ∈ Nk. Therefore, z ⩽ zk ⩽ 𝛿 implies z = −∞ = x. Thus, s ↓ x.
Consider the net t ≡ (un ∈ R | n ∈ N) ↑ x such that un ≡ −∞ for every n. Since un ⩽
xn ⩽ zn, we conclude that x = o-lim s.

2) ⊢ 1). Let there be nets (yn ∈ R | n ∈ N) ↑ x and (zn ∈ R | n ∈ N) ↓ x such that
yn ⩽ xn ⩽ zn for every n ∈ N.

At first, assume that x ∈ R. Then, for every real 𝜀 > 0, there are l,m ∈ N such that
x ⩾ yp > x − 𝜀 and x ⩽ zq < x + 𝜀 for all p ∈ Nl and q ∈ Nm. Take k ∈ Nl ∩ Nm. Then,
x − 𝜀 < yr ⩽ xr ⩽ zr < x + 𝜀 implies xr ∈ R and −𝜀 < xr − x < 𝜀 for all r ∈ Nk. This means
that x = lim s.

Now, assume that x = ∞. Take any real 𝛿 > 0 and suppose that yn ⩽ 𝛿 for every
n ∈ N. Then,∞ = x = sup(yn | n ∈ N) ⩽ 𝛿. It follows from this contradiction that there
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is n ∈ N such that yn > 𝛿. Therefore, xp ⩾ yp ⩾ yn > 𝛿 for all p ∈ Nn. This means that
x = lim s.

Finally, assume that x = −∞. Take any real 𝛿 < 0 and suppose that zn ⩾ 𝛿 for
every n ∈ N. Then, −∞ = x = inf(zn | n ∈ N) ⩾ 𝛿. It follows from this contradiction
that there is n ∈ N such that zn < 𝛿. Therefore, xp ⩽ zp ⩽ zn < 𝛿 for all p ∈ Nn. Thus,
x = lim s.

Properties of the limits
Proposition 1. Let X ⊂ R, s ≡ (xn ∈ X | n ∈ N) and t ≡ (yn ∈ X | n ∈ N) be infinite nets,
x, y ∈ X, x = lim s, and y = lim t. Then:
1) x + y = lim(xn + yn | n ∈ N) for X = R ∪ {∞} or X = R ∪ {−∞};
2) xy = lim(xnyn | n ∈ N) for X = R or X = R \ {0};
3) 1/x = lim(1/xn | n ∈ N) for X = R \ {0};
4) x ⊻ y = lim(xn ⊻ yn | n ∈ N) for X = R;
5) x ⊼ y = lim(xn ⊼ yn | n ∈ N) for X = R.

Proof. Denote the set {l ∈ N | l ⩾ k} for k ∈ N by Nk.
1. We shall consider only the case X = R ∪ {∞}. The other case is considered in

a similar way.
At first, assume that x, y ∈ R. Take any 𝜀 > 0 and some m ∈ C(s, x, 𝜀/2),

n ∈ C(t, y, 𝜀/2), and k ∈ Nm ∩ Nn. Then, |x − xp| < 𝜀/2 and |y − yp| < 𝜀/2 imply xp ,
yp ∈ R for every p ∈ Nk. Therefore, by assertion 5 of Proposition 6 (1.4.3) |x + y − (xp +
yp)| ⩽ |x − xp| + |y − yp| < 𝜀 for every p ∈ Nk. This means that x + y = lim(xn + yn |
n ∈ N).

Now, assume that x ∈ R and y = ∞. Fix any 𝛿 > 0 and take some m ∈ C(s, x, 1),
n ∈ C(t, y, (𝛿 − x + 1) ⊻ 1), and k ∈ Nm ∩ Nn. Then, |x − xp| < 1 and yp > (𝛿 − x + 1) ⊻ 1
for every p ∈ Nk imply xp + yp > (x − 1) + (𝛿 − x + 1) = 𝛿. This means that x + y = ∞ =
lim(xn + yn | n ∈ N).

If x = ∞ and y ∈ R, then the arguments are the same. Finally, assume that
x = y = ∞. Fix any 𝛿 > 0 and take somem ∈ C(s, x, 𝛿), n ∈ C(t, y, 𝛿), and k ∈ Nm∩Nn.
Then, xp > 𝛿 and yp > 𝛿 for every p ∈ Nk imply xp + yp > 𝛿. This means that x + y =
∞ = lim(xn + yn | n ∈ N).

2. At first, consider the case X = R. Take some l ∈ C(t, y, 1). Then, |yp| ⩽ |y −
1| ⊻ |y + 1| ≡ b for every p ∈ Nl. Take any 𝜀 > 0 and some m ∈ C(s, x, 𝜀/2(|x| + 1)),
n ∈ C(t, y, 𝜀/2b), and k ∈ Nl ∩ Nm ∩ Nn. Then, by Proposition 6 (1.4.3), |xy − xpyp| ⩽|xy − xyp + xyp − xpyp| ⩽ |x| |y − yp| + |yp| |x − xp| < |x|𝜀/2(|x| + 1) + b𝜀/2b ⩽ 𝜀 for every
p ∈ Nk. This means that xy = lim(xnyn | n ∈ N).

Now, consider the case X = R \ {0}. At first, assume that x, y ∈ R \ {0}. Then, as
above, |yp| ⩽ b for every p ∈ Nl. Take any 𝜀 > 0 and some m, n and k as above. Then,
xp , yp ∈ R for every p ∈ Nk. Therefore, by the same arguments as above, we infer that
|xy − xpyp| < 𝜀 for every p ∈ Nk. This means that xy = lim(xnyn | n ∈ N).
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Now, assume that −∞ < x < 0 and y = ∞. Take any 𝛿 < 0 and some m ∈ C(s, x,
−x/2), n ∈ C(t, y, 2𝛿/x), and k ∈ Nm ∩ Nn. Then, |x − xp| < −x/2 and yp > 2𝛿/x imply
xpyp ⩽ (x/2)(2𝛿/x) = 𝛿 for every p ∈ Nk. This means that xy = −∞ = lim(xnyn |
n ∈ N).

Finally, assume that x = −∞ and y = ∞. Take any 𝛿 < 0 and some m ∈ C(s, x,
−√−𝛿), n ∈ C(t, y,√−𝛿), and k ∈ Nm ∩ Nn (see Theorem 2 (1.4.6)). Then, xp < −√−𝛿
and yp > √−𝛿 imply xpyp < 𝛿 for every p ∈ Nk. This means that xy = −∞ = lim(xnyn |
n ∈ N).

All the other opportunities are considered in a similar way.
3. Take any 𝜀 > 0 and some m ∈ C(s, x, |x|/2). Then, |x − xp| < |x|/2 implies

x−|x|/2 < xp < x+|x|/2 for every p ∈ Nm. If x > 0, then x/2 < xp; if x < 0, then xp < x/2.
In both cases, |xp| > |x|/2. Take some n ∈ C(s, x, |x|2𝜀/2) and k ∈ Nm ∩Nn. Then, |1/x−
1/xp| ⩽ |x − xp|/|x| |xp| < 𝜀 for every p ∈ Nk. This means that 1/x = lim(1/xn | n ∈ N).

4. At first, assume that x, y ∈ R. Take any 𝜀 > 0 and some m ∈ C(s, x, 𝜀/2), n ∈
C(t, y, 𝜀/2), and k ∈ Nm ∩ Nn. Then, xp , yp ∈ R for every p ∈ Nk. Therefore, by Corol-
lary 1 to Theorem 4 (1.4.5), |x ⊻ y − xp ⊻ yp| ⩽ |x ⊻ y − x ⊻ yp| + |x ⊻ yp − xp ⊻
yp| ⩽ |y − yp| + |x − xp| < 𝜀 for every p ∈ Nk. This means that x ⊻ y = lim(xn ⊻ yn |
n ∈ N).

Now, assume that x ∈ R and y = −∞. Take any real 𝜀 > 0 and somem ∈ C(s, x, 𝜀),
n ∈ C(t, y, −|x| − 𝜀), and k ∈ Nm ∩ Nn. Then, |x − xp| < 𝜀 and yp < −|x| − 𝜀 imply
yp < x − 𝜀 < xp for every p ∈ Nk. Thus, xp ⊻ yp = xp and x ⊻ y = x ∈ R imply |x ⊻ y −
xp ⊻ yp| = |x − xp| < 𝜀 for every p ∈ Nk. This means that x ⊻ y = lim(xn ⊻ yn | n ∈ N).

Finally, assume that x = ∞ and y = −∞. Take any 𝛿 > 0 and some m ∈ C(s, x, 𝛿),
n ∈ C(t, y, −𝛿), and k ∈ Nm ∩ Nn. Then, xp > 𝛿 and yp < −𝛿 for every p ∈ Nk. Since
x ⊻ y = ∞ and xp ⊻ yp = xp > 𝛿, we infer that x ⊻ y = lim(xn ⊻ yn | n ∈ N).

All the other opportunities are considered in a similar way.
Assertion 5 is checked analogously to assertion 4.

Corollary 1. Let X be R or R \ {0}, (xn ∈ X | n ∈ N) be an infinite net, x, y ∈ X, and
x = lim(xn | n ∈ N). Then, yx = lim(yxn | n ∈ N).
Proof. Consider the constant net t ≡ (yn | n ∈ N) such that yn ≡ y. Then, we get a par-
tial case of assertion 2 of Proposition 1.

Corollary 2. Let (xn ∈ R | n ∈ N) be an infinite net, x ∈ R, and x = lim(xn | n ∈ N).
Then, |x| = lim(|xn| | n ∈ N).
Proof. By Corollary 1, we have −x = lim(−xn | n ∈ N). Therefore, by assertion 4 of
Proposition 1we obtain |x| = x ⊻ (−x) = lim(xn⊻(−xn) | n ∈ N) = lim(|xn| | n ∈ N).
Corollary 3. Let s ≡ (xn ∈ R | n ∈ N) and t ≡ (yn ∈ R | n ∈ N) be infinite nets, x, y ∈ R,
x = lim s, y = lim t, and xn ⩽ yn for every n ∈ N. Then, x ⩽ y.
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Proof. By condition yn = xn ⊻ yn. Therefore, by assertion 4 of Proposition 1 we get
y = lim t = lim(xn ⊻ yn | n ∈ N) = x ⊻ y. Hence, x ⩽ y.

Proposition 2. Let X ⊂ R, 𝜎 ≡ (si | i ∈ I) be a finite collection of infinite nets si ≡ (xin ∈
X | n ∈ N), 𝜘 ≡ (xi ∈ X | i ∈ I) be a finite collection, and xi = lim(xin | n ∈ N) for every
i ∈ I. Then:
1) ∑(xi | i ∈ I) = lim(∑(xin | i ∈ I) | n ∈ N) for X = R ∪ {∞} or X = R ∪ {−∞};
2) P(xi | i ∈ I) = lim(P(xin | i ∈ I) | n ∈ N) for X = R or X = R \ {0};
3) gr(xi | i ∈ I) = lim(gr(xin | i ∈ I) | n ∈ N) for X = R;
4) sm(xi | i ∈ I) = lim(sm(xin | i ∈ I) | n ∈ N) for X = R.

Proof. We shall prove only assertion 2. All the other assertions are proven completely
in the same manner.

2. Consider the set E consisting of all numbers e ∈ 𝜔 such that the assertion 2 is
valid for all collections 𝜎 and 𝜘 with the condition card I = e + 2.

Let card I = 2. Then, I = {j, k} for some different element j and k. It can be checked
that P𝜘 = xjxk and P(xin | i ∈ I) = xjnxkn. Therefore, by virtue of assertion 2 of Propo-
sition 1 P𝜘 = xjxk = lim(xjnxkn | n ∈ N) = lim(P(xin | i ∈ I) | n ∈ N). This means that
0 ∈ X.

Suppose that e ∈ E. Take arbitrary collections 𝜎 and 𝜘 such that there is a
bijective mapping u from e + 3 onto I. Consider the element k ≡ e(e + 2) ∈ I and
the sets I0 ≡ u[e + 2] and I1 ≡ {k}. Then, ⟮Im | m ∈ 2⟯ is a partition of I and card I0 =
e + 2.

Consider the collections 𝜎m ≡ (si | i ∈ Im) and 𝜘m ≡ (xi | i ∈ Im). By the condi-
tion, P𝜘1 = xk = lim(xkn | n ∈ N) = lim(P(xin | i ∈ I1) | n ∈ N). By our supposition,
P𝜘0 = lim(P(xin | i ∈ I0) | n ∈ N). It can be checked that P𝜘 = P𝜘0P𝜘1 and P(xin | i ∈
I) = P(xin | i ∈ I0)P(xin | i ∈ I1) for every n ∈ N. Now, applying assertion 2 of Propo-
sition 1, we get P𝜘 = P𝜘0P𝜘1 = lim(P(xin | i ∈ I0)P(xin | i ∈ I1) | n ∈ N) = lim(P(xin |
i ∈ I) | n ∈ N).

This means that e + 1 ∈ E. Consequently, by Theorem 1 (1.2.6) we get E = 𝜔.
Corollary 1. Let (xn ∈ R | n ∈ N) be an infinite net, x ∈ R, k ∈ 𝜔, and x = lim(xn |
n ∈ N). Then, xk = lim(xkn | n ∈ N).
Proof. If k = 0, then x0 = x0n = 1 implies the necessary equality. If k ⩾ 1, then the
assertion follows from Lemma 7 (1.4.3) and Proposition 2.

Lemma 4. Let s ≡ (xn ∈ R \ {0} | n ∈ N) be an infinite net and lim s = ∞ or lim
s = −∞. Then, lim (1/xn | n ∈ N) = 0.
Proof. First let lim s = ∞. Take any 𝜀 > 0 and some m ∈ C(s,∞, 1/𝜀) ≡ {n ∈ N | ∀p ∈
N (p ⩾ n ⇒ xp > 1/𝜀)}. Then, xp > 1/𝜀 for every p ∈ Nm. Hence, by Corollary 3 to
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Proposition 4 (1.4.3) |1/xp − 0| = 1/xp < 𝜀 for every p ∈ Nm. This means that lim(1/xn |
n ∈ N) = 0.

Now, let lim s = −∞. Take any 𝜀 > 0 and some m ∈ C(s, −∞, −1/𝜀) ≡ {n ∈ N |
∀p ∈ N (p ⩾ n ⇒ xp < −1/𝜀)}. Then, xp < −1/𝜀 for every p ∈ Nm. Hence, by assertion 3
of Proposition 4 (1.4.3) and Corollary 3 to Proposition 4 (1.4.3) |1/xp − 0| = −1/xp =
1/(−xp) < 𝜀 for every p ∈ Nm. This means that lim(1/xn | n ∈ N) = 0.
According to 1.1.15, a net t ≡ (yn ∈ R | n ∈ N) is called a subnet of a net s ≡ (xm ∈ R |
m ∈ M) if there exists a collection (mn ∈ M | n ∈ N) such that:
1) for every index m ∈ M, there exists an index n ∈ N such that k ∈ Nn implies mk ∈

Mm;
2) yn = xmn

for every n ∈ N.
In this case, we shall say that t is a subnet of s with respect to a thinning collection
(mn ∈ M | n ∈ N).
Lemma 5. Let ⟮M, ⩽⟯ and ⟮N, ⩽⟯ be upward-directed preordered sets, a net t ≡ (yn ∈ R |
n ∈ N) be a subnet of a net s ≡ (xm ∈ R | m ∈ M), x ∈ R, and x = lim s. Then, x = lim t.

Proof. At first, assume that x ∈ R. Take any 𝜀 > 0 and some m ∈ C(s, x, 𝜀). By defi-
nition for m, there is n ∈ N such that p ∈ Nn implies mp ∈ Mm. Therefore, |x − yp| =|x − xmp

| < 𝜀 for every p ∈ Nn. This means that x = lim t.
Now, assume that x = ∞. Take any 𝛿 > 0 and some m ∈ C(s, x, 𝛿). Then, take

n ∈ N as above. Since yp = xmp
> 𝛿 for every p ∈ Nn, we infer that x = ∞ = lim t.

The case x = −∞ is considered in a similar way.

Lemma 6. Let r ≡ (xn ∈ R | n ∈ N), s ≡ (yn ∈ R | n ∈ N), and t ≡ (zn ∈ R | n ∈ N) be
nets, x ∈ R, x = lim s, x = lim t, and yn ⩽ xn ⩽ zn for every n ∈ N. Then, x = lim r.

Proof. Atfirst, assume that x ∈ R. Takeany 𝜀 > 0andsomem ∈ C(s, x, 𝜀), n ∈ C(t, x, 𝜀),
and k ∈ Nm ∩ Nn. Then, |x − yp| < 𝜀 and |x − zp| < 𝜀 for every p ∈ Nk. Therefore, yp ,
zp ∈ R for every p ∈ Nk. By the condition, the same is valid for xp. Using assertion 4 of
Proposition 6 (1.4.3), we get −𝜀 < yp − x ⩽ xp − x ⩽ zp − x < 𝜀, where |x − xp| < 𝜀. This
means that x = lim r.

Now, assume that x = ∞. Therefore, any 𝛿 > 0 and some n ∈ C(t, x, 𝛿). Then,
xp ⩾ yp > 𝛿 for every p ∈ Nn. Thus, x = ∞ = lim r.

The case x = −∞ is checked analogously.

Lemma 7. Let s ≡ (xn ∈ R | n ∈ N) be an increasing [a decreasing] net and x ∈ R. Then,
the following conclusions are equivalent:
1) x = sup s [x = inf s];
2) x = lim s.
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Proof. (1) ⊢ (2). Let x ∈ R. Take any 𝜀 > 0. Then, there is n ∈ N such that x − 𝜀 < xn.
Therefore, for every p ∈ Nn we have x − 𝜀 < xn ⩽ xp ⩽ x < x + 𝜀, where |xp − x| < 𝜀.

Let x = −∞. Then, xn = −∞ for every n ∈ N. Thus, x = −∞ = lim s.
Finally, let x = ∞. Take any 𝛿 > 0. Then, there is n ∈ N such that xn > 𝛿. Therefore,

xp ⩾ xn > 𝛿 for every p ∈ Nn. Thus, x = ∞ = lim s.
2) ⊢ 1). By Lemma 3, there are nets s ≡ (yn ∈ R | n ∈ N) ↑ x and s ≡ (zn ∈ R |

n ∈ N) ↓ x such that yn ⩽ xn ⩽ zn for every n ∈ N. Take any q ∈ N. If q ⩽ n, then
xn ⩽ zn ⩽ zq; if q ⩾ n, then xn ⩽ xq ⩽ zq. Since x = inf s, we infer that xn ⩽ x for
every n ∈ N. Let b ∈ R and b ⩾ xn for every n ∈ N. Take any p ∈ N. If p ⩽ n, then
b ⩾ xn ⩾ xp ⩾ yp; if p ⩾ n, then b ⩾ xp ⩾ yp. Since x = sup s, we infer that b ⩾ x. This
means that x = sup s.
Proposition 3. Let a net (xn ∈ R | n ∈ N) be increasing and bounded above [decreasing
and bounded below]. Then, it has the limit.

Proof. By Theorem 1 (1.4.5) on the Dedekind completeness of the real line the collec-
tion (xn | n ∈ N) have the supremum [infimum] x. By virtue of Lemma 7,
x = lim (xn | n ∈ N).

The exponential function
Define the sequence (an | n ∈ N) of functions (mappings) an : R → R setting
an(x) ≡ (1 + x/n)n for every n ∈ N and x ∈ R. Note that an(0) = 1 for every n ∈ N.

Lemma 8. Let x ∈ R, n ∈ N, n > −x. Then, an+1(x) ⩾ an(x).
Proof. If x = 0, then an+1(x) = 1 = an(x).

For x ̸= 0, put z ≡ 1 + x/n and y ≡ 1 + x/(n + 1) ̸= z. It follows from x/n > −1 that
z > 0, y > 0. Applying Corollary 3 to Proposition 5 (1.4.3), we obtain yn+1/zn ⩾ (n+1)y−
nz = n + 1 + x − n − x = 1. Hence, an+1(x) = yn+1 ⩾ zn = an(x).
Thus, for every x ∈ R, the sequence (an(x) | n ∈ N−x), where N−x ≡ {n ∈ N | n > −x},
is increasing. Prove that this sequence is bounded above.

Lemma 9. Let x ∈ R, n,m ∈ N, n > −x, m > x. Then, an(x) ⩽ (1 − x/m)−m.
Proof. Since x > −n ⩾ −nm, it follows from Corollary 4 to Proposition 5 (1.4.3) that
(1 + x/(mn))−n ⩾ 1 − x/m. Then, by assertion 4 of Proposition 4 (1.4.3), we get
(1 + x/(mn))mn ⩽ (1 − x/m)−m. Using Lemma 8, we conclude that an(x) ⩽ anm(x) =(1 + x/(mn))mn ⩽ (1 − x/m)−m.
Thus, for every x ∈ R, the sequence (an(x) | n ∈ N−x) is bounded above by every
number (1 − x/m)−m for m > x. Such m ∈ N exists by virtue of the Archimedes
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principle (Lemma 13 (1.4.3)). By Proposition 3 for every x ∈ R, there is the limit
lim (an(x) | n ∈ N).

This allows us to define the exponential function exp : R → R setting exp x ≡
lim ((1 + x/n)n | n ∈ N) for every x ∈ R. It is obvious that exp 0 = 1.
Lemma 10. Let x ∈ R. Then, 1+x ⩽ an(x) for every n > −x. If, besides, x < 1, then an(x) ⩽
1/(1 − x).
Proof. Since n > −x, we have x/n > −1. Then, Proposition 5 (1.4.3) guarantees that
an(x) ≡ (1 + x/n)n ⩾ 1 + x.

Corollary 4 to Proposition 5 (1.4.3) implies that 1/an(x) = (1+x/n)−n ⩾ 1−x. Hence,
by Corollary 3 to Proposition 4 (1.4.3), we get an(x) ⩽ 1/(1 − x) for x < 1.
Corollary 1. Let x ∈ R. Then, exp x ⩾ 1 + x. If, besides, x < 1, then exp x ⩽ 1/(1 − x).
Proof. By Lemma 10 an(x) ⩾ 1 + x for every n > −x. According to Corollary 3 to Propo-
sition 1, this implies exp x ⩾ 1 + x.

The second inequality for x < 1 is proven in the same way.

Corollary 2. Let x ∈ R. Then, exp x > 1 for every x > 0 and exp x < 1 for every x < 0.
Proof. For x > 0 by Corollary 1, we get exp x ⩾ 1 + x > 1.

For x < 0 by Corollary 1, we obtain exp x ⩽ 1/(1 − x) < 1.
Lemma 11. Let (xn ∈ R | n ∈ N) be a sequence such that lim (xn | n ∈ N) = 0. Then,
lim (an(xn) | n ∈ N) = 1.
Proof. Since lim (xn | n ∈ N) = 0, by the definition, there exists m ∈ N such that
−1/2 < xp < 1/2 for all p ⩾ m. Then, N−xp ≡ {n ∈ N | n > −xp} ⊂ {n ∈ N | n > 1/2} = N

for every p ⩾ m. Therefore, by virtue of Lemma 10, we have 1+ xn ⩽ an(xn) ⩽ 1/(1− xn)
for all n ⩾ m. By Proposition 1, we get lim (1 + xn | n ∈ N) = 0 and lim 1/(1 − xn) |
n ∈ N = 1. According to Lemma 6, this implies lim (an(xn) | n ∈ N) = 1.
Theorem 1. Let x, y ∈ R. Then, exp(x + y) = exp x ⋅ exp y.
Proof. For every n > −(x+y), we have the equality (1+x/n)(1+y/n) = (1+(x+y)/n)(1+
zn/n), where zn = xy/(n + x + y). This provides an(x)an(y) = an(x + y)an(zn). Apply-
ing the definition of the exponential function and Lemma 11 we get exp x ⋅ exp y =
exp(x + y) ⋅ 1.
Corollary 1. Let x, y ∈ R. Then:
1) exp(−x) = 1/ exp x;
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2) exp x > 0;
3) exp(x − y) = exp x/ exp y.
Proof. By Theorem 1 we have exp(−x) exp x = exp 0 = 1.

2. Assertion 1 implies exp x ̸= 0 for every x ∈ R. Then, using Theorem 1, we get
exp x = exp(x/2) exp(x/2) > 0.

3. Assertion 1 and Theorem 1 imply exp(x−y) = exp x ⋅exp(−y) = exp x/ exp y.
Theorem 2. Let (xn ∈ R | n ∈ N) be a net, x ∈ R, and x = lim (xn | n ∈ N). Then:
1) if x ∈ R, then lim (exp xn | n ∈ N) = exp x;
2) if x = ∞, then lim (exp xn | n ∈ N) = ∞;
3) if x = −∞, then lim (exp xn | n ∈ N) = 0.
Proof. 1. By the definition of limit, there existsm ∈ N such that xn−x < 1 for all n ⩾ m.
It follows from Corollary 1 to Lemma 10 that xn − x = 1 + xn − x − 1 ⩽ exp(xn − x) − 1 ⩽
1/(1 − (xn − x)) − 1 = (xn − x)/(1 − (xn − x)) for all n ⩾ m. Corollary 1 to Theorem 1
implies that (exp xn−exp x)/ exp x = exp(xn−x) − 1. ByLemma2, lim (xn − x | n ∈ N) =
0. Therefore, using Lemma 6, we get lim ((exp xn − exp x)/ exp x | n ∈ N) = 0. Hence,
lim (exp xn − exp x | n ∈ N) = 0. Finally, again, by Lemma 2, lim (exp xn | n ∈ N) = x.

2. By Corollary 1 to Lemma 10, we have exp xn ⩾ 1 + xn ≡ yn for every n ∈ N. By
Proposition1,lim (yn | n ∈ N) = 1+lim (xn | n ∈ N) = ∞.Takingzn ≡ ∞foreveryn ∈ N
we have yn ⩽ exp xn < zn. Therefore, Lemma 6 implies lim (exp xn | n ∈ N) = ∞.

3. By Corollary 1 to Theorem 1, exp xn = 1/ exp(−xn). By Corollary 1 to Proposi-
tion 1 lim (−xn | n ∈ N) = −x = ∞. It follows from (2) that lim (exp(−xn) | n ∈ N) = ∞.
Finally, by Lemma 4 lim (exp xn | n ∈ N) = lim (1/ exp(−xn) | n ∈ N) = 0.

1.4.8 Netful and sequential series in the extended real line

Let (xi ∈ X | i ∈ I) be a collection of extended real numbers from the set X ≡ R ∪ {∞}
or the set X ≡ R∪{−∞} [from the set X ≡ R or the set X ≡ R\ {0}, respectively] indexed
by a non-empty set I.

Consider the ensemblePf (I)of all finite non-empty subsets J of the set I. Endowed
Pf (I) with the order by inclusion J ⩽ K ≡ J ⊂ K. With respect to this order Pf (I) is
upwardsdirected. For everyfinite subset J of I,we can consider the extended real num-
ber sJ ≡ ∑(xj | j ∈ J) [pJ ≡ P(xj | j ∈ J)] (see 1.4.3). It is called a partial sum [product] of
the collection (xi | i ∈ I). The collection (sJ ∈ X | J ∈ Pf (I)) [(pJ ∈ X | J ∈ Pf (I))] is a net
inR. It is called the additive [multiplicative] netful series of the collection (xi ∈ X | i ∈ I)
and is denoted by Sanet(xi | i ∈ I) [Smnet(xi | i ∈ I)].

If there is an extended real number, s ∈ R [p ∈ R] such that s = lim Sanet(xi | i ∈ I)
[p = lim Smnet(xi | i ∈ I)], then s [p] is called the netful sum [product] of the collection
(xi | i ∈ I) and is denoted by∑net(xi | i ∈ I) [Pnet(xi | i ∈ I)].
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If xi ∈ R for every i ∈ I and s ∈ R [p ∈ R], then the netful series Sanet(xi | i ∈ I)
[Smnet(xi | i ∈ I)] is called convergent (in R), and the collection (xi | i ∈ I) is called
well-summarized [well-multiplied]. Along with the word “well”, the words “commuta-
tively”, “unconditionally”, and “unorderedly” are used.

Let now the considered collection (xi ∈ X | i ∈ I) be a sequence (xi ∈ X | i ∈ N) for
some infinite set N ⊂ 𝜔. In this particular case, by virtue of Theorem 1 (1.3.7), there is
a unique isotone (see 1.1.15) bijection u from N into N. Therefore, we can consider
for every number n ∈ N the finite set N(n) ≡ u[n] ∈ Pf (N), consisting of the first n
elements of the set N, and the corresponding partial sum sn ≡ sN(n) ≡ ∑(xi | i ∈ N(n))
[product pn ≡ pN(n) ≡ P(xi | i ∈ N(n))]. The sequence (sn ∈ X | n ∈ N) [(pn | n ∈ N)] is
called the additive [multiplicative] (sequential) series of the sequence (xi ∈ X | i ∈ N)
and is denoted by Sa(xi | i ∈ N) [Sm(xi | i ∈ N)].

If there is an extended real number s ∈ R [p ∈ R] such that s = lim Sa(xi | i ∈ N)
[p = lim Sm(xi | i ∈ N)], then s [p] is called the (sequential) sum [product] of the
sequence (xi | i ∈ N) and is denoted by∑(xi | i ∈ N) [P(xi | i ∈ N)].

If xi ∈ R for every i ∈ N and s ∈ R [p ∈ R], then the series Sa(xi | i ∈ N) [Sm(xi |
i ∈ N)] is called convergent (inR), and the sequence (xi | i ∈ N) is called (sequentially)
summarized [multiplied]. Along with the word “sequentially” the words “condition-
ally” and “orderedly” are used.

Lemma 1. Let X be the set R ∪ {∞} or the set R ∪ {−∞} [the set R or the set R \ {0}] and
(xi ∈ X | i ∈ N) be an infinite sequence. Then, the net Sa(xi | i ∈ N) ≡ (sn ∈ X | n ∈ N)
[Sm(xi | i ∈ N) ≡ (pn ∈ X | n ∈ N)] is a subnet of the net Sanet(xi | i ∈ N) ≡ (sJ ∈ X | J ∈
Pf (N)) [Smnet(xi | i ∈ N) ≡ (pJ ∈ X | J ∈ Pf (N))].
Proof. Consider the corresponding collection (N(n) ∈ Pf (N) | n ∈ N). By definition,
sn = sN(n). Take any J ∈ Pf (N). Since J ⊂ N ⊂ 𝜔, by Theorem 3 (1.2.6), the collection
(j ∈ 𝜔 | j ∈ J) has the greatest element j0 ∈ J. Since u is bijective, j0 = u(q) for some
q ∈ N. If j ∈ J, then j = u(p) for some p ∈ N. From the inequality u(p) = j ⩽ j0 = u(q),
we infer that p ⩽ q, where p ∈ q + 1. Denote q + 1 by n. We proven that J ⊂ u[n] ≡
N(n). If k ∈ Nn, then n ⊂ k implies N(n) ⊂ N(k), i. e. N(k) ⩾ N(n) ⩾ J in the ordered
set ⟮Pf (N), ⩽⟯.
Corollary 1. In the conditions of Lemma 1, let s ∈ R [p ∈ R] and s = ∑net(xi | i ∈ N)
[p = Pnet(xi | i ∈ N)]. Then, s = ∑(xi | i ∈ N) [p = P(xi | i ∈ N)].
Proof. Byconditions s = lim Sanet(xi | i ∈ N). Therefore, byLemma1andLemma5 (1.4.7)
s = lim Sa(xi | i ∈ N).
It follows from this corollary that if a sequence (xi ∈ R | i ∈ N) is well-summarized
[well-multiplied], then it is sequentially summarized [multiplied]. But the converse
assertions are not true. It follows from the following lemma.
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Lemma 2. Suppose N ≡ N and x ≡ (xi | i ∈ N), such that xi = (−1)i
i for every i ∈ N; then,

the sequence x is sequentially summarized but is not well-summarized.

Proof. 1. Prove that the sequence s ≡ (sn | n ∈ N), where sn = ∑ (xi | i ∈ n), is inner
convergent. Take 𝜀 > 0, n ∈ N such that n𝜀 > 1 from Lemma 13 (1.4.3), p, k ∈ N, p ⩾ n,
and q = p + k. Then, |sq − sp| = 1

p if k = 1,

|sq − sp| = 1
p
− 1
p + 1 +

1
p + 2 − . . . −

1
p + k − 2 +

1
p + k − 1 =

= 1
p
− 1
(p + 1)(p + 2) − . . . −

1
(p + k − 2)(p + k − 1) <

1
p

if k is odd and k ̸= 1, and

|sq − sp| = 1
p
− 1
p + 1 +

1
p + 2 − . . . −

1
p + k − 3 +

1
p + k − 2 −

1
p + k − 1 =

= 1
p
− 1
(p + 1)(p + 2) − . . . −

1
(p + k − 2)(p + k − 1) −

1
p + k − 1 <

1
p

if k is even. In all the cases, |sq − sp| ⩽ 1
n < 𝜀; hence, s is inner convergent. By Theo-

rem 1 (1.4.4), the sequence s is convergent and, therefore, the sequence x is sequen-
tially summarized.

2. For every k ∈ N, consider the subsets Ik = u[2k + 1] ∪ v[k + 1] and Jk = u[2k + 1] ∪
v[k + 1], where u and v are mappings from N to N such that u(n) = 2n, v(n) = 2n − 1
for all n ∈ N. We claim that for the subnets of partial sums tIk ≡ ∑ (xi | i ∈ Ik) and
tJk ≡ ∑ (xi | i ∈ Jk), we have the inequalities tIk < 1

2 < tJk for every k ⩾ 10. Indeed,
tIk = ∑ ( 1

2n | n ∈ 2k + 1)−∑ ( 1
2n−1 | n ∈ k + 1) < ∑ ( 1

2n | n ∈ 2k + 1)−∑ ( 1
2n | n ∈ k + 1) =

1
2(k+1) + . . . + 1

2⋅2k < k
2(k+1) < 1

2 and

tJk = ∑( 1
2n
| n ∈ 2k + 1) −∑( 1

2n − 1 | n ∈ k + 1) >
> ∑( 1

2n
| n ∈ 2k + 1) −∑( 1

2n − 2 | n ∈ (k + 1) \ 2) − 1 =
= 1
2
( 1
k
+ 1
k + 1 + . . . +

1
2k
) − 1 >

> 1
2
(2k − 2k−1

2k
+ 2k−1 − 2k−2

2k−1
+ . . . + 2k−5 − 2k−6

2k−6
) − 1 =

= 1
2
⋅ 6 ⋅ 1

2
− 1 = 1

2
.

Then, it follows from Lemma 5 (1.4.7) that there is no t ∈ R such that t = lim Sanet(xi |
i ∈ I) and the sequence x is not well-summarized.
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Proposition 1. Let X = [0,∞] [respectively, X = [1,∞]], 𝜎 ≡ (xi ∈ X | i ∈ N) be an infi-
nite sequence, m ≡ sm(n ∈ 𝜔 | n ∈ N)+1, and 𝜏 ≡ (tn ∈ X | n ∈ Nm) be a sequence such
that tn = ∑(xi | i ∈ N ∩ n) [tn = P(xi | i ∈ N ∩ n)] for every n ∈ Nm. Then, there is s ∈ X
[p ∈ X] such that s = sup 𝜏 [p = sup 𝜏]. Moreover, s = ∑net 𝜎 and s = ∑𝜎 [p = Pnet𝜎 and
p = P𝜎].
Proof. The sequence 𝜏 is increasing. By Theorem 2 (1.4.5), there is s ∈ R such that
s = sup 𝜏. It is clear that s ∈ X.

Take any J ∈ Pf (N). By Theorem3 (1.2.6), the collection (j ∈ 𝜔 | j ∈ J)has the great-
est element j0 ∈ J. Take n ≡ j0+1. Then, n ⩾ m. From J ⊂ N∩n, we infer that sJ ≡ ∑(xi |
i ∈ J) ⩽ tn ⩽ s. Thus, s is an upper bound of the collection 𝜂 ≡ (sJ | J ∈ Pf (N)). If b ∈ R

and b is another upper bound of 𝜂, then b is an upper bound of 𝜏. Therefore, b ⩾ s.
Consequently, s = sup 𝜂.

At first, assume that s is a real number. Then, sJ is also a real number for every J.
Take any 𝜀 > 0. Then, by Lemma 1 (1.4.5), there is J ∈ Pf (N) such that s − 𝜀 < sJ . Since
the collection 𝜂 is increasing, we get s−𝜀 < sJ ⩽ sK ⩽ s < s+𝜀 for every K ∈ Pf (N) such
that K ⩾ J. Thus, |s − s| < 𝜀means that s = lim 𝜂 ≡ ∑net 𝜎.

Now, assume that s = ∞. Take any 𝛿 > 0. Then, tn > 𝛿 for some n ∈ Nm. Denote
N ∩ n by J. If K ∈ Pf (N) and K ⩾ J, then sK ⩾ sJ = tn > 𝛿. This means that s = ∞ =
lim 𝜂 ≡ ∑net 𝜎. By Corollary 1 to Lemma 1 s = ∑𝜎.
Consider now some important example of an additive series. Let x be a real number
such that 0 < x /= 1. The sequence (xi | i ∈ 𝜔) is called the infinite geometric progression
with the base x. The corresponding additive (sequential) series Sa(xi | i ∈ 𝜔) of this
progression consists of the partial sums sn = ∑(xi | i ∈ n).We shall consider this series
in the ordered set ⟮R, ⩽⟯.
Lemma 3 (on the sum of the infinite geometric progression). Let x ∈ R and 0 < x /= 1.
Then, sn = (1 − xn)/(1 − x) < sn+1. If x < 1, then sn < ∑(xi | i ∈ 𝜔) = 1/(1 − x). If x > 1,
then n ⩽ sn < ∑(xi | i ∈ 𝜔) = ∞.

Proof. It is easy to check that (1 − x)sn = 1 − xn. Therefore, sn = (1 − xn)/(1 − x).
If x < 1, then 0 < xn+1 < xn and by Lemma 7 (1.4.4) lim(xn | n ∈ 𝜔) = 0. By virtue of

Proposition 1 (1.4.7), we get lim(1− xn | n ∈ 𝜔) = 1 and∑(xi | i ∈ 𝜔) ≡ lim(sn | n ∈ N) =
1/(1 − x). Besides, by virtue of Proposition 4 (1.4.3), sn < sn+1 < 1/(1 − x).

Now, let x > 1. If n ∈ N, then by Proposition 5 (1.4.3) xn+1 > xn ⩾ 1 + n(x − 1),
where 1 − xn+1 < 1 − xn ⩽ n(1 − x) and, respectively sn+1 > sn ⩾ n. Take any 𝛿 > 0. By
Lemma 13 (1.4.3) 𝛿 < m for some m ∈ N. Therefore, sp ⩾ sm ⩾ m > 𝛿 for every p ∈ N

such that p ⩾ m. This means that∑(xi | i ∈ 𝜔) ≡ lim(sn | n ∈ N) = ∞ (see 1.4.4).

Lemma 4. Let x ∈ R, 0 < x < 1, and (yn ∈ R | n ∈ 𝜔) be a sequence such that
|yn − yn+1| ⩽ xn for every n. Then:
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1) |yp − yq| < 2xn/(1 − x) for all p, q ⩾ n;
2) the sequence (yn | n ∈ 𝜔) is inner convergent.
Proof. 1. If p > n, then by virtue of Lemma 3, |yn −yp| ⩽ ∑(|yi −yi+1| | i ∈ p \n) ⩽ ∑(xi |
i ∈ p \ n) = xn ∑(xk | k ∈ p − n) < xn/(1 − x). If p = n, then |yn − yp| = 0 < xn/(1 − x).
Consequently, for all p, q ⩾ n we have |yp − yq| ⩽ |yp − yn| + |yn − yq| < 2xn/(1 − x).

2. Take any real 𝜀 > 0. Then, by Corollary 2 to Proposition 5 (1.4.3), xn < 𝜀(1 − x)/2
for some n ∈ N. Using assertion 1, we infer that |yp − yq| < 𝜀 for all p, q ⩾ n.

In conclusion, we shall prove the properties of general commutativity and associativ-
ity for netful sums and products.

Theorem 1.
1) Let X be the set R ∪ {∞} or the set R ∪ {−∞} [the set R or the set R \ {0}], I and K

be non-empty sets,𝜒 ≡ (xi ∈ X | i ∈ I) be a collection, u be a bijectivemapping from
the set K into the set I, and s ∈ X [p ∈ X]. Then, s = ∑net(xi | i ∈ I) iff s = ∑net(xu(k) |
k ∈ K) [p = Pnet(xi | i ∈ I) iff p = Pnet(xu(k) | k ∈ K)] (the general commutativity of
the netful sum and the netful product, respectively).

2) Let X be the set R, or the set [0,∞], or the set [−∞, 0] [the set R, or the set [1,∞],
or the set [0, 1]], I and M be non-empty sets, 𝜒 ≡ (xi ∈ X | i ∈ I) and 𝛼 ≡ (am ∈ X |
m ∈ M) be collections, a total collection ⟮Im ⊂ I | m ∈ M⟯ be a partition of the set I,
and am = ∑net(xi | i ∈ Im) [am = Pnet(xi | i ∈ Im)] for every m ∈ M. Then, s = ∑net(xi | i ∈ I) implies s = ∑net(am | m ∈ M) [p = Pnet(xi | i ∈ I) implies p = Pnet(am |
m ∈ M)]. Moreover, if X is the set [0,∞] or the set [−∞, 0] [the set [1,∞] or the set
[0, 1]], then s = ∑net 𝜒 iff s = ∑net 𝛼 [p = Pnet𝜒 iff p = Pnet𝛼] (the general associativ-
ity of the netful sum and the netful product, respectively ).

Proof. 1. We shall consider only the case X = R ∪ {∞}. Denote xu(k) by yk, (yk | k ∈ K)
by𝜓,Pf (I) byM, andPf (K) byN. Consider nets 𝜂 ≡ (sJ | J ∈ M) and 𝜗 ≡ (tL | L ∈ N)
such that sJ ≡ ∑(xi | i ∈ J) and tL ≡ ∑(yk | k ∈ L). Let s = ∑net 𝜒.

At first, assume that s is a real number. Take any real 𝜀 > 0 and some J ∈ C(𝜂, s, 𝜀).
Then, |s − sP| < 𝜀 for every P ∈ MJ . Consequently, sP ∈ R for such indices P. Consider
the set L ≡ u−1[J] ∈ N.

Take any set R ∈ NL and consider the set P ≡ u[R]. Then, L ⊂ R ⊂ K implies
J ⊂ P ⊂ I, i. e. P ∈ MJ . From sP ≡ ∑(xi | i ∈ P) ∈ R, we infer that xi ∈ R for every i ∈ P.
Therefore, by virtue of assertion 1 of Theorem 1 (1.4.3) sP = ∑(xu(k) | k ∈ R) = ∑(yk |
k ∈ R) ≡ tR. As a result, we get |s − tR| = |s − sP| < 𝜀. This means that s = lim 𝜗 =
∑net 𝜓 = ∑net(xu(k) | k ∈ K).

Now, assume that s = ∞. Take any real 𝛿 > 0 and some J ∈ C(𝜂, s, 𝛿). Then, sP > 𝛿
for every P ∈ MJ . Consider the set L ≡ u−1[J].

Take any set R ∈ NL and consider the set P ≡ u[R] ∈ MJ . If xi < ∞ for every i ∈ P,
then as above sP = ∑(xu(k) | k ∈ R) = ∑(yk | k ∈ R) ≡ tR. If xp = ∞ for some p ∈ P,
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then yr = su(r) = xp = ∞ for r ≡ u−1(p) ∈ R. Therefore, by definition of sums in R

from 1.4.3, we have sP = ∞ = tR. In both cases, as a result, we get tR = sP > 𝛿. This
means that s = ∞ = lim 𝜗 = ∑net 𝜓 = ∑net(xu(k) | k ∈ K).

Conversely, let s = ∑net(xu(k) | k ∈ K) = ∑net 𝜓. Then, we can apply the proven
property to the bijection v ≡ u−1 from I into K. As a result, yv(i) = xu(v(i)) = xi yields
s = ∑net(yv(i) | i ∈ I) = ∑net 𝜒.

2. We shall use some notations from 1). Denote the collection (xi | i ∈ Im) by 𝜒m.
Consider nets 𝜂m ≡ (sJ | J ∈ Pf (Im)) and 𝜃 ≡ (SN | N ∈ Pf (M)) such that sJ ≡ ∑(xi |
i ∈ J) and SN ≡ ∑(am | m ∈ N).

At first, consider the case X = [0,∞]. Assume that am = ∞ for some m ∈ M.
Then, ∑net 𝛼 = ∞. Take any real 𝛿 > 0. Then, there is J ∈ Pf (Im) such that sJ > 𝛿. If
P ∈ MJ, then sP ≡ ∑(xi | i ∈ P) ⩾ sJ > 𝛿. This means that ∞ = lim 𝜂 = ∑net 𝜒. As a
result,∑net 𝜒 = ∑net 𝛼.

Now, assume that am < ∞ for every m ∈ M. Then, xi < ∞ for every i ∈ I. Let
s = ∑net 𝜒. At first, assume that s is a real number. Take any real 𝜀 > 0 and some
J ∈ C(𝜂, s, 𝜀/2). Then, |s−sP| < 𝜀/2 for every P ∈ MJ . Consider the finite sets Jm ≡ J∩ Im
and the non-empty set N ≡ {m ∈ M | Jm /= ⌀}. Then, ⟮Jn | n ∈ N⟯ is a partition of J.
Define a mapping e : N → P(J) setting e(n) ≡ Jn. By Lemma 6 (1.3.3) the set P(J) is
finite. Thus, by Lemma 7 (1.3.3), the set e[N] is finite. Since e is injective, we infer that
the set N is also finite.

Take any set U ∈ Pf (M) such that U ⩾ N. Consider the number c ≡ card U. For
every u ∈ U, take some Ku ∈ Pf (Iu) such that |au − sL| < 𝜀/2c for every L ∈ Pf (Iu)
such that L ⩾ Ku. Define a collection 𝜆 ≡ ⟮Lu | u ∈ U⟯, setting Ln ≡ Kn ∪ Jn for ev-
ery n ∈ N and Lu ≡ Ku for every u ∈ U \ N. This collection is a partition of the set
L ≡ ⋃𝜆. By Lemma 3 (1.3.3), the set L is finite. Besides, L ⩾ J. Therefore, |s − sL| < 𝜀/2.
By virtue of assertion 2 of Theorem 1 (1.4.3), we have sL ≡ ∑(xi | i ∈ L) = ∑(∑(xi | i ∈
Lu) | u ∈ U) = ∑(sLu | u ∈ U). Since Lu ⩾ Ku, we have |au − sLu | < 𝜀/2c. As a result,
|s − SU | ⩽ |s − sL| + | ∑(sLu | u ∈ U) − ∑(au | u ∈ U)| < 𝜀/2 + ∑(|sLu − au| | u ∈ U) < 𝜀/
2 + (𝜀/2c)c = 𝜀. This means that s = lim 𝜃 = ∑net 𝛼.

Now, assume that s = ∞. Take any real 𝛿 > 0 and some J ∈ C(𝜂, s, 𝛿). Then, sJ > 𝛿.
Consider as above the sets Im and N and the partition ⟮Jn | n ∈ N⟯ of the set J. Take any
set U ∈ Pf (M) such that U ⩾ N. Since the net 𝜂n is increasing, we infer that an ⩾ sJn .
By virtue of assertion 2 of Theorem 1 (1.4.3), we have sj = ∑(sJn | n ∈ N). Therefore,
SU ⩾ SN = ∑(an | n ∈ N) = ∑(an−sJ | n ∈ N)+∑(sJn | n ∈ N) ⩾ sJ > 𝛿. Thismeans that
s = ∞ = lim 𝜃 = ∑net 𝛼.

Conversely, let s = ∑net 𝛼. At first, assume that s is a real number. Take any
real 𝜀 > 0 and some N ∈ C(𝛼, s, 𝜀/2). Then, |s − SU | < 𝜀/2 for every U ∈ Pf (M) such
that U ⩾ N. Consider the number c ≡ card N. For every n ∈ N take some Kn ∈ Pf (In)
such that |an − sL| < 𝜀/2c for every L ∈ Pf (In) such that L ⩾ Kn. Then, the collection𝜘 ≡ ⟮Kn | n ∈ N⟯ is a partition of the finite set K ≡ ⋃𝜘.

Take any P ∈ MK . Consider the finite sets Pm ≡ P ∩ Im and the non-empty set
U ≡ {m ∈ M | Pm /= ⌀}. Then, ⟮Pu | u ∈ U⟯ is a partition of P. As above, we check that
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the set U is finite. From K ⊂ P, we infer that sK ⩽ sP. As above, we have sK = ∑(sKn
|

n ∈ N) and sP = ∑(sPu | u ∈ U). Since au = lim 𝜂u and the net 𝜂u is increasing, we infer
by Lemma 7 (1.4.7) that∞ > au ⩾ sPu . By the same reason, s = lim 𝜃 implies s ⩾ SU .
Applying assertion 1 of Proposition 4 (1.4.3), we get sP ⩽ ∑(au | u ∈ U) ≡ SU ⩽ s.
Therefore, 0 ⩽ s − sP ⩽ s − sK = (s − SN) + (SN − sK) < 𝜀/2 + ∑(an − sKn

| n ∈ N) <
𝜀/2 + (𝜀/2c)c = 𝜀. This means that s = lim 𝜂 = ∑net 𝜒.

Now, assume that s = ∞. Take any real 𝛿 > 0 and some N ∈ C(𝛼, s.2𝛿). Then,
SU > 2𝛿 for every U ∈ Pf (M) such that U ⩾ N. Consider the number c ≡ card N. For
every n ∈ N, take some Kn ∈ Pf (In) such that |an − sL| < 𝛿/c for every L ∈ Pf (In)
such that L ⩾ Kn. Then, the collection 𝜘 ≡ ⟮Kn | n ∈ N⟯ is a partition of the finite set
K ≡ ⋃𝜘.

Take any P ∈ MK . Then, sP ⩾ sK = ∑(sKn
| n ∈ N) = ∑(sKn

− an | n ∈ N) + ∑(an |
n ∈ N) ⩾ c(−𝛿/c) + SN > −𝛿 + 2𝛿 = 𝛿. This means that s = ∞ = lim 𝜂 = ∑net 𝜒.

In the case X = [−∞, 0], the arguments are completely the same.
Finally, if X = R, then we can prove only the first implication by slight modi-

fication of the previous arguments in the case when am < ∞ for every m ∈ M and
s ∈ R.

1.4.9 The order equivalence of intervals of the real line

Define a mapping u from R into ] − 1, 1[ setting u(x) ≡ x/(1 + |x|) and a mapping v
from ] − 1, 1[ into R setting v(y) ≡ y/(1 − |y|).
Lemma 1. The mappings u and v are bijective and isotone, v = u−1 and u = v−1.

Proof. Let 0 < x < x. Then, 1 + x < 1 + x implies 1/(1 + x) > 1/(1 + x), where
u(x) = 1− 1/(1+ x) < 1− 1/(1+ x) = u(x). If x < x < 0, then u(x) = −1+ 1/(1− x) <
−1 + 1/(1 − x) = u(x). If x < 0 ⩽ x, then u(x) < 0 ⩽ u(x). Finally, if x ⩽ 0 < x,
then u(x) ⩽ 0 < u(x). This means that u is strictly monotone.

Let ux < ux and suppose that x ⩾ x. Then, ux ⩾ ux. This contradiction
shows that x < x. Thus, u is isotone in the sense of 1.1.15.

The similar arguments prove that v is also isotone. Take any point y ∈] − 1, 1[ and
the corresponding point x ≡ v(y). Then, it is easy to check that u(x) = y. Thus, u is
surjective. By Lemma 1 (1.1.15), u is bijective. Analogously, take any point x ∈ R and
the correspondingpoint y ≡ u(x). Then, v(y) = x. Thus, v is surjective, andby the same
reason as above, v is bijective.

Besides, the equalities v(u(x)) = x and u(v(y)) = y for every x ∈ R and y ∈] − 1, 1[
show that v = u−1 and u = v−1.

Define a mapping f from ] − 1, 1[ into ]a, b[ setting f (x) ≡ (b − a)x/2 + (a + b)/2 and
a mapping g from ]a, b[ into ] − 1, 1[ setting g(x) ≡ 2x/(b − a) − (a + b)/(b − a).
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Lemma 2. The mappings f and g are bijective and isotone, g = f −1 and f = g−1.

Proof. Using Proposition 4 (1.4.3), we can easily check that x < x implies f (x) <
f (x). Thus, f is strictly monotone. As in the proof of Lemma 2, it is checked that f
is isotone. Since g(f (x)) = x and f (g(y)) = y for every x ∈] − 1, 1[ and y ∈]a, b[, we in-
fer that f and g are bijective and mutually inverse.

Corollary 1. The mapping f ∘ u from R into ]a, b[ and the mapping v ∘ g from ]a, b[
into R are bijective and isotone, v ∘ g = (f ∘ u)−1, and f ∘ u = (v ∘ g)−1.
It follows from the proven properties that the ordered set ⟮R, ⩽⟯ and all its ordered
open intervals are order equivalent. According to 1.4.4, card]a, b[= cardR = c.

For every number, a ∈ R consider the mapping ta from R into R such that
ta(x) = x + a. It is called the translation on R.

Lemma 3. The mapping ta is bijective and isotone.

Proof. The assertion follows from Proposition 4 (1.4.3).

Corollary 1. The mapping ta ∘ v from ] − 1, 1[ into R is bijective and isotone and maps
the intervals ] − 1, 0[, ] − 1, 0], [0, 1[, and ]0, 1[ onto the intervals ]←, a[, ]←, a], [a,→[,
and ]a,→[, respectively.
Lemma 4. Let x ∈ R, (xn ∈ R | n ∈ N) be an infinite sequence, and x = lim(xn | n ∈ N).
Then:
1) u(x) = lim(u(xn) | n ∈ N) and ta(x) = lim(ta(xn) | n ∈ N);
2) if x ∈] − 1, 1[ and xn ∈] − 1, 1[ for every n ∈ N, then v(x) = lim(v(xn) | n ∈ N) and

f (x) = lim(f (xn) | n ∈ N);
3) if x ∈]a, b[ and xn ∈]a, b[ for every n ∈ N, then g(x) = lim(g(xn) | n ∈ N).
Proof. All the assertions follow from Proposition 1 (1.4.7) and Corollary 1 to it.

Remark. Define a mapping ū from R into [−1, 1], a mapping ̄f from [−1, 1] into [a, b],
and a mapping ̄ta from R into R, extending the corresponding mappings u, f , and ta
in the following way: ū(−∞) ≡ −1, ū(∞) ≡ 1, ̄f (−1) ≡ a, ̄f (1) ≡ b, ̄ta(−∞) ≡ −∞, and̄ta(∞) ≡ ∞. Then, these mappings are bijective and isotone. Thus, the corresponding
ordered sets are order equivalent.
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A Characterization of all natural models of
Neumann–Bernays –Gödel
and Zermelo – Fraenkel set theories

Introduction

The crises that arose in the naive set theory at the beginning of the 20th century
brought to the origin of some strict axiomatic theories. The most widely used are the
theory of sets in Zermelo – Fraenkel’s axiomatics (ZF) [Zermelo, 1908; Fraenkel, 1922]
and the theory of classes and sets in Neumann–Bernays –Gödel’s axiomatics (NBG)
[Neumann, 1929; Bernays, 1976; Gödel, 1940].

D. Mirimanov [1917], using transfinite induction, constructed the cumulative
collection (≡ hierarchy) of sets V𝛼 for all ordinal numbers 𝛼 having the following
properties:
1) V0 = ⌀;
2) V𝛼+1 = V𝛼 ∪P(V𝛼), where P(V𝛼) denotes the set of all subsets of the set V𝛼;
3) V𝛼 = ⋃⟮V𝛽 | 𝛽 ∈ 𝛼⟯ for every limit ordinal number 𝛼.
It turns out that cumulative sets V𝛼 themselves and the collection ⟮V𝛼 | 𝛼 ∈ On⟯ as a
whole have many remarkable properties. In particular, J. von Neumann proved [1929]
that the regularity axiom in ZF is equivalent to the property ∀x∃𝛼 (𝛼 is an ordinal num-
ber ∧x ∈ V𝛼) and the class ⋃⟮V𝛼 | 𝛼 ∈ On⟯ is an abstract (≡class) standard model for
the ZF theory in ZF. Models of the ZF and NBG theories of the form ⟮V𝛼, =, ∈⟯ are called
natural.

After the introduction of the concept of a (strongly) inaccessible cardinal number
in [Zermelo, 1930] and [Sierpiński and Tarski, 1930], E. Zermelo [1930] (not strictly) and
J. Shepherdson [1951, 1952, 1953] (strictly) proved that a set U is a supertransitive stan-
dard model for the NBG theory iff it has the form V𝜘+1 for a certain inaccessible cardinal
number 𝜘. Thus, the natural model of the NBG theory was described.

The Zermelo – Shepherdson theorem admits the following equivalent reformula-
tion: a set U is a supertransitive standard model for the ZF theory with the strong sub-
stitution property (∀x∀f (x ∈ U ∧ f ∈ Ux ⇒ rng f ∈ U)) iff it has the form V𝜘 for a certain
inaccessible cardinal number 𝜘.

Starting from the requirements of category theory, instead of the metaconcept of
a supertransitive standard model set with the strong substitution property for the ZF
theory C. Ehresmann [1957], P. Dedecker [1959], J. Sonner [1962], and A. Grothendieck
[Gabriel, 1962] introduced an equivalent set-theoretic concept of a universal set U
(see [MacLane, 1971, I.6] and [Forster, 1995; Holmes, 1998]), which is defined by the
following properties:

https://doi.org/10.1515/9783110550948-002
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1) x ∈ U ⇒ x ⊂ U;
2) x ∈ U ⇒ P(x), ∪x ∈ U;
3) x, x ∈ U ⇒ x ∪ x, {x, y}, ⟨x, y⟩, x × y ∈ U;
4) x ∈ U ∧ (f ∈ Ux) ⇒ rng f ∈ U (strong substitution property);
5) 𝜔 ∈ U, where 𝜔 ≡ {0, 1, 2, . . . } is the set of all finite ordinal numbers.

To deal with categories in the set-theoretic framework, they suggested to
strengthen the ZF theory by adding the universality axiom AU: each set is an ele-
ment of a certain universal set. The equivalent form of the Zermelo – Shepherdson
theorem states that the universality axiom AU is equivalent to the inaccessibility ax-
iom AI: for every ordinal number there exists an inaccessible cardinal number strictly
greater than it.

For axiomatic construction of inaccessible cardinal numbers, in [Tarski, 1938] (see
also [Kuratowski and Mostowski, 1967, IX, § 1, § 5]) A. Tarski introduced the concept of
a Tarski set U, which is defined by the following properties:
1) x ∈ U ⇒ x ⊂ U (the transitivity property);
2) x ∈ U ⇒ P(x) ∈ U (the exponentiality property);
3) ((x ⊂ U) ∧ ∀f (f ∈ Ux ⇒ rng f ̸= U)) ⇒ x ∈ U (the Tarski property).

In [Tarski, 1938], it was also proven that the set V𝜘 (≡inaccessible cumulative set) is
a Tarski set for each cardinal number 𝜘. In this paper, A. Tarski also proved that the
inaccessibility axiom AI is equivalent to the Tarski axiom AT: every set is an element
of a certain Tarski set. In connection with the Tarski theorem, the following problem
remained open: to what extent is the axiomatic concept of Tarski set is wider than the
constructive concept of inaccessible cumulative set?

In this appendix, we give an answer to this question: the concepts of an inaccessi-
ble cumulative set and of an uncountable Tarski set are equivalent.

The equivalence of the concepts of an inaccessible cumulative set andanuncount-
able Tarski set was proven using the concept of a universal set. More precisely, it was
proven that every uncountable Tarski set is universal.

As a result, we obtain the following theorem on the characterization of natural
models for the NBG set theory: the following properties are equivalent for a set U:
1) U is an inaccessible cumulative set, i. e., U = V𝜘 for a certain inaccessible cardinal

number 𝜘;
2) P(U) is a supertransitive standard model for the NBG theory;
3) U is a supertransitive standard model with the strong substitution property for the

ZF theory;
4) U is a universal set;
5) U is an uncountable Tarski set.

The Zermelo – Shepherdson theorem yields a canonical form of supertransitive stan-
dard models for the NBG theory and an (equivalent) canonical form of standard
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models with the strong substitution property for the ZF theory. However, R. Montague
and L. Vaught [1959] proved that for any inaccessible cardinal number 𝜘, there exists
an cardinal number 𝜃 < 𝜘 such that it is not inaccessible and the cumulative set V𝜃

is a supertransitive standard model for the ZF theory. Therefore, the problem on the
canonical forms of supertransitive standard models for the ZF theory turned out to be
more complicated.

Since the concept of model in the ZF theory cannot be defined by a finite set of
formulas, in this appendix, using the formula scheme and its relativization to the set
V𝜃, we introduce the concept of a (strongly) scheme-inaccessible cardinal number 𝜃
and prove a scheme analogue of the Zermelo – Shepherdson theorem.

To prove this theorem, we introduce the concept of a scheme-universal set, which
is a scheme analogue of the concept of a universal set. Moreover, here we introduce
the concept of a scheme Tarski set, which is a scheme analogue of the concept of a
Tarski set.

As a result, we prove the theorem on the characterization of natural models for
the ZF theory: the following properties are equivalent for a set U:
1) U is a scheme-inaccessible cumulative set, i. e., U = V𝜃 for a certain scheme-

inaccessible cardinal number 𝜃;
2) U is a supertransitively standard model for the ZF theory;
3) U is a scheme-universal set;
4) U is a scheme Tarski set.

In this appendix, the problemsmentioned above are solved for the ZF set theory (with
the axiomof choice). For theNBGset theory, all things are equally true. For the reader’s
convenience, we present all the necessary facts that are not sufficiently reflected in the
literature or related to the mathematical folklore, with complete proofs.

The exposition of the material is based on papers [Bunina and Zakharov, 2003;
2005; 2006; 2007].

A.1 First-order theories

A.1.1 The language of first-order theories

Theproposed theory is a first-order theory.Wewill give definition of a first-order theory
basing on [Mendelson, 1997].

The special symbols of every first-order theory T are the following:
parentheses (, );
connectives⇒ (“implies”) and ¬ (“not”);
quantifier ∀ (for all);
a countable set of variables vi, (i ⩾ 0) (in our case variables are denoted by letters

x, X, y, Y , z, Z, u, U, v, V , w,W, and also these letters with primes);
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a non-empty countable set of predicate letters Pni (n ⩾ 1, i ⩾ 0);
a countable set of functional letters Fni (n ⩾ 1, i ⩾ 0);
and, finally, a countable set of constants ai (i ⩾ 0).
General symbols are symbols that are not special, but are often used inmathemat-

ics. The special and general symbols compose the initial alphabet.
A symbol-string is defined by induction in the following way: (1) every symbol 𝛼

of the initial alphabet, except the blank-symbol, is a symbol-string; (2) if 𝜎 and 𝜌 are
symbol-strings, then 𝜎𝜌 and 𝜌𝜎 are symbol-strings.

A designating (≡ shortening) symbol-string 𝜎 for a symbol-string 𝜌 is introduced in
the form of the symbol-string 𝜎 ≡ 𝜌 or 𝜌 ≡ 𝜎 (𝜎 is a designation for 𝜌).

If a symbol-string 𝜌 is a part of a symbol-string 𝜎, staying in one of the three fol-
lowing positions: . . . 𝜌, 𝜌 . . . , . . . 𝜌 . . . , then 𝜌 is an occurrence in 𝜎 (≡ 𝜌 occurs in 𝜎).

A text is defined by induction in the following way: (1) every symbol-string 𝜎 is a
text; (2) ifΦ and Ψ are texts, thenΦ Ψ and Ψ Φ are texts.

If a textΦ is a part of a textΣ, staying in one of the three following positions: . . . Φ,
Φ . . . , . . . Φ . . . , thenΦ is an occurrence in Σ (≡ Φ occurs in Σ).

Some symbol-strings constructed from the mentioned above special symbols are
called terms and formulas of the first-order theory T.

Terms are defined in the following way:
1) a variable is a term;
2) a constant symbol is a term;
3) if Fni is a n-placed functional letter, t0, . . . , tn−1 are terms, then Fni (t0, . . . , tn−1) is a

term;
4) a symbol-string is a term if and only if it follows from the rules 1 – 3.

If Pni is some n-placed predicate letter, t0, . . . , tn−1 are terms, then the symbol-string
Pni (t0, . . . , tn−1) is called an elementary formula.

Formulas of a first-order theory T are defined in the following way:
1) every elementary formula is a formula;
2) if 𝜑 and 𝜓 are formulas, v is a variable then every symbol-string (¬𝜑), (𝜑 ⇒ 𝜓),

and ∀v(𝜑) is a formula;
3) a symbol-string is a formula if and only if it follows from the rules 1 and 2.

Let us introduce the following abbreviations:
(𝜑 ∧ 𝜓) for ¬(𝜑 ⇒ ¬𝜓);
(𝜑 ∨ 𝜓) for (¬𝜑) ⇒ 𝜓;
(𝜑 ≡ 𝜓) for (𝜑 ⇒ 𝜓) ∧ (𝜓 ⇒ 𝜑);
∃v 𝜑 is an abbreviation for (¬(∀v (¬𝜑))).
Introduce a notion of free and connected occurrence of a variable in a formula. An
occurrence of a variable v in a given formula is called connected, if v is either a variable
of an occurring in this formula quantifier ∀v or is under the action of occurring in
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this formula quantifier ∀v; otherwise an occurrence of a variable in a given formula is
called free. Thus, one variable can have free and connected occurrences in the same
formula. A variable is called a free (connected) variable in a given formula, if there
exist free (connected) occurrences of this variable in this formula, i. e. a variable can
in the same time be free and connected in one formula.

A sentence is a formula with no free variables.
If 𝜁 is a term or a formula, 𝜃 is a term, v is a variable then 𝜁(v ‖ 𝜃) denotes a symbol-

string, obtained by replacing every free occurrence of the variable v in the symbol-
string 𝜁 by the symbol-string 𝜃.

The substitution v ‖ 𝜃 in 𝜁 is called admissible, if for every free occurrence of a
variable w in the symbol-string 𝜃 every free occurrence v in 𝜁 is not a free occurrence
in some formula 𝜓, occurring in some formulas ∀w 𝜓(w) and ∃w 𝜓(w), occurring in
the symbol-string 𝜁.

In the sequel, if the substitution v ‖ 𝜃 in 𝜁 is admissible, then togetherwith 𝜁(v ‖ 𝜃)
we will write 𝜁(𝜃).

If 𝜁 is a term or a formula, 𝜃 is a term, v is a variable such that the substitution v ‖ 𝜃
in 𝜁 is admissible, then the substitution 𝜁(v ‖ 𝜃) is a term or a formula respectively.

Every free occurrence of some variable u (except v) in a symbol-string 𝜁 and every
free occurrence of some variable w in a symbol-string 𝜃 are free occurrences of these
variables in a symbol-string 𝜁(v ‖ 𝜃).
A.1.2 Deducibility in a first-order theory

A symbol-string 𝛾, equipped with some rule, is called a formula scheme of a theory
T, if:
1) this rule marks some letters (in particular, free and connected variables), occur-

ring in 𝛾;
2) this rule determines the necessary substitution of these marked letters in 𝛾 by

some terms (in particular, variables);
3) after every such a substitution in 𝛾 some propositional formula 𝜑 of the theory T

is obtained.

Every such a propositional formula 𝜑 is called a propositional formula obtained by the
application of the formula scheme 𝛾.

A text Γ consisting of symbol-strings separated by the blank-symbols is called an
axiom text, if every symbol-string 𝛾 occurring in Γ is either a formula or a formula
scheme of the theory T. If 𝛾 is a formula, then 𝛾 is called an explicit axiom of the theory
T. If 𝛾 is a formula scheme, then it is called an axiom scheme of the theory T. Every for-
mula, obtained by the application of the axiom scheme 𝛾, is called an implicit axiom
of the theory T.

Axioms and axiom schemes of every first-order theory are divided in two classes:
logical and proper (ormathematical).
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Logical axiom schemes of any first-order theory are cited below:

LAS1. 𝜑 ⇒ (𝜓 ⇒ 𝜑);
LAS2. (𝜑 ⇒ (𝜓 ⇒ 𝜒)) ⇒ ((𝜑 ⇒ 𝜓) ⇒ (𝜑 ⇒ 𝜒));
LAS3. (𝜑 ∧ 𝜓) ⇒ 𝜑;
LAS4. (𝜑 ∧ 𝜓) ⇒ 𝜓;
LAS5. 𝜑 ⇒ (𝜓 ⇒ (𝜑 ∧ 𝜓));
LAS6. 𝜑 ⇒ (𝜑 ∨ 𝜓);
LAS7. 𝜓 ⇒ (𝜑 ∨ 𝜓);
LAS8. (𝜑 ⇒ 𝜒) ⇒ ((𝜓 ⇒ 𝜒) ⇒ ((𝜑 ∨ 𝜓) ⇒ 𝜒));
LAS9. (𝜑 ⇒ 𝜓) ⇒ ((𝜑 ⇒ ¬𝜓) ⇒ ¬𝜑);
LAS10. (¬(¬𝜑)) ⇒ 𝜑;
LAS11. (∀v𝜑) ⇒ 𝜑(v ‖ 𝜃), if v is a variable, 𝜃 is a term such that a substitution v ‖ 𝜃 in

𝜑 is admissible.
LAS12. 𝜑(v ‖ 𝜃) ⇒ (∃v 𝜑) in the same conditions as in LAS11;
LAS13. (∀v(𝜓 ⇒ 𝜑(v))) ⇒ (𝜓 ⇒ (∀v𝜑)), if 𝜓 does not contain a free variable v;
LAS14. (∀v(𝜑(v) ⇒ 𝜓)) ⇒ ((∃v 𝜑) ⇒ 𝜓) in the same condition as in LAS13.

Proper axioms and axiom schemes can not be formulated in general case because they
depend on a theory. The first-order theory which does not contain any proper axioms
is called the first order predicate calculus.

The rules of deduction in the first-order theory are the following:
– the rule of implication (≡modus ponens (MP)): from 𝜑 and 𝜑 ⇒ 𝜓 it follows that 𝜓;
– the rule of generalization (Gen): from 𝜑 it follows that ∀v 𝜑.
LetΦ be a totality of formulas and 𝜓 be a formula of the theory T. A sequence f ≡ (𝜑i |
i ∈ n + 1) ≡ (𝜑0, . . . , 𝜑n) of formulas of the theory T is called a deduction of the formula
𝜓 from the totality Φ, if 𝜑n = 𝜓 and for any 0 < i ⩽ n one of following conditions is
fulfilled:
1) 𝜑i belongs toΦ;
2) there exist 0 ⩽ k < j < i such that 𝜑j is (𝜑k ⇒ 𝜑i), i. e. 𝜑i is obtained from 𝜑k and𝜑k ⇒ 𝜑i by the rule of implication MP;
3) there exists 0 ⩽ j < i such that 𝜑i is ∀x 𝜑j, where x is not a free variable of every

formula from Φ, i. e. 𝜑i is obtained from 𝜑j by the rule of generalization Gen with
the given structural requirement.

Denote this deduction either by f ≡ (𝜑0, . . . , 𝜑n) : Φ ⊢ 𝜓, or by (𝜑0, . . . , 𝜑n) : Φ ⊢ 𝜓, or
by f : Φ ⊢ 𝜓.

A totality Φa is called a totality of axioms of the theory T if Φa consists of all
explicit proper axioms of the theory T, all implicit proper axioms of the theory T,
and all implicit logical axioms of the predicate calculus. If there exists a deduction
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f : Φa ⊢ 𝜓, then the formula 𝜓 is called deducible in the axiomatic theory (T,Φa) and
the deduction f is called a proof of the formula 𝜓.

A totality of formulasΦ is called contradictory (≡ non-consistent) if every formula
of the theory T is deducible from it. In the opposite case,Φ is called non-contradictory
(≡ consistent).

An axiomatic theory (T,Φa) is called contradictory [non-contradictory] if the
totality of its axiomsΦa is contradictory [non-contradictory]. The proposition express-
ing the consistency of the theory (T,Φa) will be denoted by cons(T,Φa) or simply
cons(T).
Lemma 1. A totality of formulas Φ is contradictory if and only if the formulas 𝜑 and ¬𝜑
for some sentence 𝜑 are deducible fromΦ.
Proof. If the totality Φ is contradictory, then every sentence of the theory T is
deducible from it, in particular, 𝜑 and ¬𝜑 for arbitrary sentence 𝜑 are deducible.
Suppose now that sentences 𝜑 and ¬𝜑 are deducible from the totality Φ, and 𝜎 is an
arbitrary formula. Show that the formula 𝜎 can be deduced from 𝜑 and ¬𝜑. This is a
deduction: 1. 𝜑 ⇒ (¬𝜎 ⇒ 𝜑) (LAS1); 2. ¬𝜑 ⇒ (¬𝜎 ⇒ ¬𝜑) (LAS1); 3. 𝜑; 4. ¬𝜑; 5. ¬𝜎 ⇒ 𝜑
(MP, 1 and 3); 6. (¬𝜎 ⇒ 𝜑) ⇒ (¬𝜎 ⇒ ¬𝜑) ⇒ ¬(¬𝜎)) (LAS9); 7. (¬𝜎 ⇒ ¬𝜑) ⇒ ¬(¬𝜎) (MP,
5 and 6); 8. ¬𝜎 ⇒ ¬𝜑 (MP, 2 and 4); 9. ¬(¬𝜎) (MP, 7 and 8); 10. (¬(¬𝜎)) ⇒ 𝜎 (LAS10);
11. 𝜎 (MP, 9, and 10).

A.1.3 An interpretation of a first-order theory in a set theory

Consistency of first-order theories is often proven by the method of interpretations,
going back to A. Tarski (see [Mendelson, 1997, 2.2]).

A first-order theory S is called a set theory, if the binary predicate symbol∈belongs
to the set of its predicates symbols. This symbol denotes the belonging ratio (∈ (x, y)
is read as “x belongs to y”, “x is an element of y”, and so on.)

Let some object D be selected by means of the set theory S. We will call this
selected object D of the set theory S equipped, if in S for all n ⩾ 1 the notions of n-finite
sequence (xi ∈ D | i ∈ n) of elements of the object D, n-placed relation R ⊂ Dn, and
n-placedoperationO : Dn → D andalso anotionof an infinite sequence x0, . . . , xq , . . .
of elements of the object D are defined.

Let S be some fixed set theory with some fixed equipped object D.
An interpretation of a first-order theory T in the set theory S with the equipped object

D is a pairM, consisting of the object D and some correspondence I, assigning to every
predicate letter Pni some n-placed relation I(Pni ) in D, every functional letter Fni some
n-placed operation I(Fni ) in D, and every constant symbol ai some element I(ai) of D.

Let s be an infinite sequence x0, . . . , xq , . . . of elements of the object D.
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Define the value of a term t of the theory T on the sequence s under the interpretation
M of the theory T in the set theory S (in notation tM[s]) by induction in the following
way:
– if t ≡ vi, then tM[s] ≡ xi;
– if t ≡ ai, then tM[s] ≡ I(ai);
– if t ≡ F(t0, . . . , tn−1), where F is a n-placed functional symbol and t0, . . . , tn−1 are

terms, then tM[s] ≡ I(F)(t0M[s], . . . , tn−1M[s]).
Define the translation (satisfaction) of a formula 𝜑 on the sequence s under the interpre-
tation M of the theory T in the set theory S (in notation M ⊨ 𝜑[s]) by induction in the
following way:
– if 𝜑 ≡ (P(t0, . . . , tn−1)), where P is an n-placed predicate symbol and t0, . . . , tn−1

are terms, then M ⊨ 𝜑[s] ≡ ((t0M[s], . . . , tn−1M[s]) ∈ I(P));
– if 𝜑 ≡ (¬𝜃), then M ⊨ 𝜑[s] ≡ (¬M ⊨ 𝜃[s]);
– if 𝜑 ≡ (𝜃1 ⇒ 𝜃2), then M ⊨ 𝜑[s] ≡ (M ⊨ 𝜃1[s] ⇒ M ⊨ 𝜃2[s]);
– if 𝜑 ≡ (∀vi𝜃), then M ⊨ 𝜑[s] ≡ (∀x(x ∈ D ⇒ M ⊨ 𝜃[x0, . . . , xi−1, x, xi+1, . . . , xq ,. . . ])).
Using the abbreviations cited above, we have also the following:
– if 𝜑 ≡ (𝜃1 ∧ 𝜃2), then M ⊨ 𝜑[s] ≡ (M ⊨ 𝜃1[s] ∧ M ⊨ 𝜃2[s]);
– if 𝜑 ≡ (𝜃1 ∨ 𝜃2), then M ⊨ 𝜑[s] ≡ (M ⊨ 𝜃1 ∨ M ⊨ 𝜃2[s]);
– if𝜑 ≡ (∃vi𝜃), thenM ⊨ 𝜑[s] ≡ (∃x(x ∈ D∧M ⊨ 𝜃[x0, . . . , xi−1, x, xi+1, . . . , xq , . . . ]));
– if 𝜑 ≡ (𝜃1 ⇔ 𝜃2), then M ⊨ 𝜑[s] ≡ (M ⊨ 𝜃1[s] ⇔ M ⊨ 𝜃2[s]).
If, in the theory S, the symbol-string 𝜎(s) ≡ ((t0M[s], . . . , tn−1M[s]) ∈ I(P)) is a formula
of the theory S, then this definition implies that M ⊨ 𝜑[s] is always a formula of the
theory S.

Further in this section, we will consider the set theory S for which all symbol-
strings 𝜎(s) for every sequence s from D are formulas of the theory S. All concrete set
theories considered later in this paper will possess this property.

An interpretation M is called a model of the axiomatic theory (T,Φa) in the
axiomatic set theory (S, Ξa) with the selected equipped object D if for every sequence
s from D the translation M ⊨ 𝜑[s] of every axiom 𝜑 of the theory T is a deducible
formula in the theory (S, Ξa).

Define now the translation of the deduction f ≡ (𝜑0, . . . , 𝜑n) : Φ ⊢ 𝜓 of the formula𝜓 from the totality Φ of formulas of the theory T on the sequence s under the inter-
pretation M of the theory T in the set theory S in the form of the sequence g ≡ (M ⊨
𝜑0[s], . . . ,M ⊨ 𝜑n[s]), which is a D-bounded deduction of the formula M ⊨ 𝜓[s] from
the totality M ⊨ Φ[s] ≡ {M ⊨ 𝜑[s] | 𝜑 ∈ Φ} in such a sense that the rule of generaliza-
tion Gen ≡ 𝜎

∀x 𝜎 is used in the following D-bounded form

GenD ≡ 𝜎
∀x(x ∈ D ⇒ 𝜎) ,
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where x and 𝜎 are a variable and a formula of the theory T, respectively.

Lemma 1. A sequence g ≡ (M ⊨ 𝜑0[s], . . . ,M ⊨ 𝜑n[s]) can be canonically extended
to some sequence gext ≡ (M ⊨ 𝜑0[s], . . . ,M ⊨ 𝜑n[s])ext so that gext : M ⊨ Φ[s] ⊢ M ⊨
𝜓[s], i. e. gext is a usual deduction of the formula M ⊨ 𝜓[s] from the totality M ⊨ Φ[s].
Proof. Wewill look through all j from 1 to n. Let𝜑j be∀y 𝜑i for some i < j, where y is not
a free variable of every formula 𝜑 of the totality Φ. The parameters of every formula
M ⊨ 𝜑[s] from M ⊨ Φ[s] are only some members of the sequence s. Then M ⊨ 𝜑j[s]
is ∀x(x ∈ D ⇒ M ⊨ 𝜑i[s]), where x differs from all the parameters of the totality M ⊨
Φ[s]. We insert in g, right after the formula M ⊨ 𝜑i[s], the explicit axiom

𝜉 ≡ (M ⊨ 𝜑i(s) ⇒ (x ∈ D ⇒ M ⊨ 𝜑i[s])),
obtained from logical axiom scheme LAS1. Then applying the rule MP to the two pre-
vious formulas M ⊨ 𝜑i[s] and 𝜉, we can insert in g, after 𝜉, the formula 𝜒 ≡ (x ∈ D ⇒
M ⊨ 𝜑i[s]). Then the formula M ⊨ 𝜑j[s] ≡ ∀x 𝜒 is obtained as the usual application of
the rule Gen to the formula 𝜒.
This lemma implies that the translation of a deduction f ≡ (𝜑0, . . . , 𝜑n) : Φ ⊢ 𝜓 leads
to the deduction gext ≡ (M ⊨ 𝜑0[s], . . . ,M ⊨ 𝜑n[s])ext : M ⊨ Φ(s) ⊢ M ⊨ 𝜓[s]. This pro-
cedure is always used without any special mentioning.

Lemma 2. Let every formula from the translation M ⊨ Φ[s] of a totalityΦ of formulas of
the theory T is deducible in the axiomatic theory (S, Ξa) from the totality Ξa of axioms of
the theory S. Besides, let f ≡ (𝜑0, . . . , 𝜑n) : Φ ⊢ 𝜓. Then the deduction gext : M ⊨ Φ(s) ⊢
M ⊨ 𝜓[s] can be extended to some deduction h : Ξa ⊢ M ⊨ 𝜓[s] in the theory (S, Ξa).
Proof. Consider the deduction gext : M ⊨ Φ[s] ⊢ M ⊨ 𝜓[s]. Let gext = (𝜉0, . . . , 𝜉m).
Every formula 𝜉i of the theory S in this deduction either is one of the formulas of
the totality M ⊨ Φ[s] or follows from the previous formulas of this sequence as a
result of application of one of the rules of deduction. At first, we consider only such
𝜉i that do not follow from previous formulas of the deduction. These formulas belong
to the totality M ⊨ Φ[s]. By the lemma condition each of these formulas, 𝜉i is de-
duced in the theory (S, Ξa) from the totality Ξa of axioms of this theory, i. e. for each
𝜉i there exists a deduction gi ≡ (𝜂0i , . . . , 𝜂kii ) : (Ξa)i ⊨ 𝜉i, where (Ξa)i is some finite
subtotality of the totality Ξa. Change in the finite subtotality (Ξa)0, . . . , (Ξa)m all
free variables in such a way that they became different from those variables which
were touched by the application of rule of generalization in the deduction gext. For
i ∈ m+1 such that 𝜉i is a corollary of the previous formulaswe put ki ≡ 0, 𝜂0i ≡ 𝜉i. Then
h ≡ (𝜂00, . . . , 𝜂k00 , 𝜂01 , . . . , 𝜂k11 , . . . , 𝜂0m , . . . , 𝜂knm ) is a deduction of the formula M ⊨ 𝜓[s]
from the totality Ξa in the theory (S, Ξa).
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Lemma 3. Let for every sequence s from D, every formula from the translation M ⊨
Φa[s] of axioms of the theory (T,Φa) is deduced in the theory (S, Ξa) from the totality
Ξa of axioms of the theory (S, Ξa), i. e. M is a model of the theory (T,Φa) in the theory(S, Ξa). Under this condition, if the theory (S, Ξa) is consistent, then the theory (T,Φa)
is also consistent.

Proof. Suppose that the theory T is contradictory, i. e. there exist some formula 𝜓
of the theory T and some deduction f ≡ (𝜑0, . . . , 𝜑n) : Φa ⊢ 𝜓 ∧ ¬𝜓. Consider on an
arbitrary sequence s from D its translation g ≡ (M ⊨ 𝜑0[s], . . . ,M ⊨ 𝜑n[s]) and its
canonical extension gext : M ⊨ Φa[s] ⊢ (M ⊨ 𝜓[s] ∧ ¬M ⊨ 𝜓[s]) from Lemma 1. Then,
according to Lemma 2, there exists a deduction h : Ξa ⊢ (M ⊨ 𝜓[s] ∧ ¬M ⊨ 𝜓[s]).
However by virtue of consistency of the theory S such a deduction is impossible.
So the theory T is consistent.

A.2 Some elements of the Zermelo – Fraenkel set theory

A.2.1 The proper axioms and axiom schemes of the ZF set theory

At the beginning we will cite the list of proper axioms and axiom schemes of the
theory ZF (the Zermelo – Fraenkel set theory with the choice axiom) (see [Zermelo,
1908; Fraenkel, 1922; Kolmogorov and Dragalin, 1982; Jech, 1971]).

This theory is a first-order theory with two binary predicate symbols of belonging
∈ (we write A ∈ B) and equality = (we write A = B).

The predicate of equality = satisfies the following axiom and axiom scheme:
– ∀x(x = x) (reflexivity of equality);
– (x = y) ⇒ (𝜑(x, x) ⇒ 𝜑(x, y)) (replacement of equals),where x and y are variables,

𝜑(x, x) is an arbitrary formula, 𝜑(x, y) is constructed from 𝜑(x, x) by changing
some (not necessarily all) free occurrences of x by occurrences of y with such a
condition that y is free for such occurrences of x that are changed.

Objects of the given theory are called sets.
As above it is useful to consider the totality C of all sets A, satisfying a given for-

mula 𝜑(x). The totality C is called the class (ZF), defined by the formula 𝜑. The totality
C(u⃗) of all sets A, satisfying a formula 𝜑(x, u⃗), is called the class (ZF) defined by the
formula 𝜑 through the parameter u⃗. Along with these words we will use the notations

A ∈ C ≡ 𝜑(A), A ∈ C(u⃗) ≡ 𝜑(A, u⃗)
and

C ≡ {x | 𝜑(x)}, C(u⃗) ≡ {x | 𝜑(x, u⃗)}.
If C ≡ {x | 𝜑(x)} and 𝜑 contain only one free variable x, then the class C is called well-
defined (≡ completely determined) by the formula 𝜑.
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Every set A can be considered as the class {x | x ∈ A}.
A class C ≡ {x | 𝜑(x)} is called the subclass of a class D ≡ {x | 𝜓(x)} (denoted

by C ⊂ D) if ∀x(𝜑(x) ⇒ 𝜓(x)). Classes C and D are called equal if (C ⊂ D) ∧
(D ⊂ C).

Further, we will use the notation {x ∈ A | 𝜑(x)} ≡ {x | x ∈ A ∧ 𝜑(x)}.
If a class C is not equal to any set, then C is called a proper class. Not every class

is a set: the class {x | x ∉ x} is a proper class.
The universal class is the class of all sets V ≡ {x | x = x}.
For classes C ≡ {x | 𝜑(x)} and D ≡ {x | 𝜓(x)} define the binary union C ∪ D and the

binary intersection C ∩ D as the classes

C ∪ D ≡ {x | 𝜑(x) ∨ 𝜓(x)} and C ∩ D ≡ {x | 𝜑(x) ∧ 𝜓(x)}.
A1. (The extensionality axiom.) ∀X∀Y(∀u(u ∈ X ⇔ u ∈ Y) ⇒ X = Y).

This axiom postulates that if two sets consist of the same elements, then they are
equal.

For sets A and B, define the unordered pair {A, B} as the class {A, B} ≡ {z | z =
A ∨ z = B}.
A2. (The pair axiom.) ∀u∀v∃x∀z(z ∈ x ⇔ z = u ∨ z = v).

Axioms A2 and A1 imply that the unordered pair of sets is a set.
For sets A and B, define
— the solitary set {A} ≡ {A, A};
— the ordered pair ⟨A, B⟩ ≡ {{A}, {A, B}};
From the previous assertions, we infer that {A} and ⟨A, B⟩ are sets.

Lemma 1. ⟨A, B⟩ = ⟨A, B⟩ if and only if A = A and B = B.

AS3. (The separation axiom scheme.) ∀X∃Y∀u(u ∈ Y ⇔ u ∈ X ∧ 𝜑(u, p⃗)), where the
formula 𝜑(u, p⃗) does not contain Y as a free variable.

This axiom scheme postulates that the class {u | u ∈ X ∧ 𝜑(u, p⃗)} is a set. This set
is unique by A1. Suppose that there exist some sets Y and Y  such that ∀u(u ∈ Y ⇔
u ∈ X ∧ 𝜑(u, p)) and ∀u(u ∈ Y ⇔ u ∈ X ∧ 𝜑(u, p)). Then, by LAS11, u ∈ Y ⇔ u ∈
X ∧ 𝜑(u, p⃗) and u ∈ Y ⇔ u ∈ X ∧ 𝜑(u, p⃗), where, by LAS3 and LAS4, u ∈ Y ⇒ u ∈
X ∧ 𝜑(u, p⃗), u ∈ Y ⇒ u ∈ X ∧ 𝜑(u, p⃗),𝜑(u, p⃗) ∧ u ∈ X ⇒ u ∈ Y, and u ∈ X ∧ 𝜑(u, p⃗)
⇒ u ∈ Y . Consequently, u ∈ Y ⇔ u ∈ Y, and by the rule of generalization (Gen),
∀u(u ∈ Y ⇔ u ∈ Y), where now, by A1, Y = Y.

Consider the class C = {u | 𝜑(u, p⃗)}. Then axiom scheme AS3 can be expressed in
the following form: ∀X∃Y(Y = C(p⃗) ∩ X).

For classes A and B, define the difference A\B as the class A\B ≡ {x ∈ A | x ∉ B}.
If A is a set, then, by AS3, the difference A\B is a set.
Since A ∩ B = {x ∈ A | x ∈ B} ⊂ A, we infer, by AS3 that for any sets A and B, the

binary intersection A ∩ B is a set.
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For a class C ≡ {x | 𝜑(x)}, define the union ∪C as the class ∪C ≡ {z | ∃x(𝜑(x) ∧
z ∈ x)}.

A4. (The union axiom.)

∀X∃Y∀u(u ∈ Y ⇔ ∃z(u ∈ z ∧ z ∈ X)) ∧ z ∈ X)).
We can deduce from A4 and AS3 that for every set A its union ∪A is a set.

Wehave the equalityA∪B = ∪{A, B}. Therefore, for every setsA andB, their binary
union A ∪ B is a set.

We will call the full ensemble of a class C the class P(C) ≡ {u | u ⊆ C}.
A5. (The power set (≡ full ensemble) axiom.) ∀X∃Y∀u(u ∈ Y ⇒ u ⊂ X).
If A is a set, then, according to A5 and A1, P(A) is a set.
For classes A and B, define the (coordinate) product

A ∗ B ≡ {x | ∃u∃v(u ∈ A ∧ v ∈ B ∧ x = ⟨u, v⟩}.
The fact that A ∗ B is a set for sets A and B follows from AS3, because A ∗ B ⊆
P(P(A ∪ B)).

A class (in particular, a set) C is called a correspondence if

∀u(u ∈ C ⇒ ∃x∃y(u = ⟨x, y⟩))).
For a correspondence C consider the classes:

domC ≡ {u | ∃v(⟨u, v⟩ ∈ C)};
rngC ≡ {v | ∃u(⟨u, v⟩ ∈ C}.

If C is a set, then domC ⊂ ∪ ∪ C, by A4 and AS3, implies that domC also is a set.
A correspondence F is called a function (≡ amapping) if

∀x∀y∀y(⟨x, y⟩ ∈ F ∧ ⟨x, y⟩ ∈ F ⇒ y = y).
The formula expressing for a class F the property to be a mapping will be denoted by
func(F). For the expression ⟨x, y⟩ ∈ F, we also use the notations: y = F(x), F : x → y,
and others.

A correspondence C is called a correspondence from a class A into a class B if
domC ⊂ A and rngC ⊂ B (it is denoted by C : A B). A function F is called a func-
tion fromaclassA into a classB if dom F = A and rng F ⊂ B (it is denotedbyF : A→ B).

The formula expressing the property of the class F to be a function from the
class A into the class B will be denoted by F  A→ B. The formulas (F  A→
B) ∧ ∀x, y ∈ A(F(x) = F(y) ⇒ x = y) and (F  A→ B) ∧ rng F = B will be denoted
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by F  A B and F  A B, respectively. The conjunction of these formulas
will be denoted byF  A B. These formulas define the injectivity, the surjectivity,
and the bijectivity of the function F : A→ B, respectively.

The class {f | func(f ) ∧ dom f = A ∧ rng f ⊆ B} of all functions from a class A
into a class B which are sets is denoted by BA or by Map(A, B). Since BA ⊂ P(A ∗ B),
we infer that the class BA is a set for any sets A and B.

The restriction of the function F on the class A is defined as the class

F|A ≡ {x | ∃u∃v(x = ⟨u, v⟩ ∧ x ∈ F ∧ u ∈ A}.
The image and the inverse image of the classAwith respect to the functionF are defined
as the classes F[A] ≡ {v | ∃u ∈ A(v = F(u))} and F−1[A] ≡ {u | F(u) ∈ A}.

A correspondence C from a class A into a class B is called also a (multivalued)
collection of subclasses Ba ≡ C⟨a⟩ ≡ {y | y ∈ B ∧ ⟨a, y⟩ ∈ C} of the class B, indexed by
the class A. In this case, the correspondence C and the class rngC are denoted also
by ⟮Ba ⊂ B | a ∈ A⟯ and ∪⟮Ba ⊂ B | a ∈ A⟯ respectively. The class ∪⟮Ba ⊂ B | a ∈ A⟯
is called also the union of the collection ⟮Ba ⊂ B | a ∈ A⟯. The class {y | ∀x ∈ A(y ∈
Bx)} is called the intersection of the collection ⟮Ba ⊂ B | a ∈ A⟯ and is denoted by
∩⟮Ba ⊂ B | a ∈ A⟯. With every class A it is associated in the canonical way the col-
lection ⟮a ∈ V | a ∈ A⟯ of element sets of the class A. For this collection, the equality
∪A = ∪⟮a ⊂ V | a ∈ A⟯ is valid.

A function F from a class A into the class B is called also the simple collection of
elements ba ≡ F(a) of the classB indexed by the classA. In this case, the functionF and
the class rng F are also denoted by (ba ∈ B | a ∈ A) and {ba ∈ B | a ∈ A}, respectively.
The collection (ba ∈ V | a ∈ A) is also denoted by (ba | a ∈ A). With every class A it is
associated in the canonical way, the simple collection (a ∈ A | a ∈ A) of elements of the
class A. It is clear that {a ∈ A | a ∈ A} = A.

AS6. (The replacement axiom scheme.)

∀x∀y∀y(𝜑(x, y, p⃗) ∧ 𝜑(x, y, p⃗) ⇒ y = y) ⇒ ∀X∃Y∀x ∈ X∀y(𝜑(x, y, p⃗) ⇒ y ∈ Y),
where the formula 𝜑(x, y, p⃗) does not contain Y as a free variable.

To explain the essence of this axiom scheme, consider the class

F ≡ {u | ∃x∃y(u = ⟨x, y⟩ ∧ 𝜑(x, y, p⃗))}.
The premise inAS6 states thatF is a function. Therefore, schemeAS6 can be expressed
in the following way: func(F) ⇒ ∀X∃Y(F[X] ⊆ Y). In other words, if F is a function,
then for every set X the class F[X] is a set.

If A is a set, then by AS6 we infer that the class rng F ≡ {ba ∈ B | a ∈ A} is a set.
Then F ⊂ A × rng F implies that the class F ≡ (ba ∈ B | a ∈ A) also is a set. Therefore,
if A is a set we use the notations F : A → B and F ≡ (ba ∈ B | a ∈ A).
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A7. (The empty set axiom.) ∃x∀z(¬(z ∈ x)).
Axiom A1 implies that the set containing no elements is unique. It is denoted

by⌀.
A8. (The infinity axiom.) ∃Y(⌀ ∈ Y ∧ ∀u(u ∈ Y ⇒ u ∪ {u} ∈ Y)).
According to this axiom, there exists a set I, containing ⌀, {⌀}, {⌀, {⌀}}, and

so on.
Note that any set X with property u ∈ X ⇒ u ∪ {u} ∈ X is called inductive.
A9. (The regularity axiom.) ∀X(X ̸= ⌀ ⇒ ∃x(x ∈ X ∧ x ∩ X = ⌀)).
A function f : P(A)\{⌀} → A is called a choice function for the set A, if f (X) ∈ X

for every X ∈ P(A)\{⌀}.
The last axiom postulates the existence of a choice function for every non-empty

set.
A10≡AC. (The choice axiom.)
∀X(X ̸= ⌀ ⇒ ∃z((z  P(X)\{⌀} → X) ∧ ∀Y(Y ∈ P(X)\{⌀} ⇒ z(Y) ∈ Y))).

The described first-order theory is called the Zermelo – Fraenkel axiomatic set theory
(ZF) (with the choice axiom).

A.2.2 Ordinals and cardinals in the ZF set theory

Let A, A, A, . . .be classes, where the prime symbol () is used only for the sake of
uniformity of notations.

The collection ⟮Ai ⊂ V | i ∈ 2⟯ such thatA0 ≡ A andA1 ≡ Awill be called the (mul-
tivalued) sequential pair of the classes A and A and will be denoted by ⟮A,A⟯. The
collection ⟮Ai ⊂ V | i ∈ 3⟯ such that A0 ≡ A, A1 ≡ A, and A2 ≡ A will be called the
(multivalued) sequential triplet of the classes A, A, and A and will be denoted by
⟮A, A,A⟯, and so on.

Let now a, a, a, . . .be sets.
The simple collection (ai ∈ V | i ∈ 2) such that a0 ≡ a and a1 ≡ a will be called

the simple sequential pair of the sets a and a and will be denoted by (a, a). The sim-
ple collection (ai ∈ V | i ∈ 3) such that a0 ≡ a, a1 ≡ a, and a2 ≡ a, will be called the
simple sequential triplet of the sets a, a, and a and will be denoted by (a, a, a),
and so on.

If A, A, B, B are classes and ⟮A,A⟯ = ⟮B, B⟯, then A = B and A = B. If a, a,
b, b are sets and (a, a) = (b, b), then a = b and a = b. The similar properties are
valid also for every finite collections.

Let some collection u ≡ ⟮Ai ⊂ V | i ∈ I⟯ be indexed by a class I ̸= ⌀. The class
∏⟮Ai | i ∈ I⟯ ≡ {z ∈ V | (z : I → V) ∧ (∀x (x ∈ I ⇒ z(x) ∈ Ax))}will be called the prod-
uct of the collection u. In the particular case, if A, A, A, . . .are classes, then the
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classes ∏⟮A,A⟯, ∏⟮A,A, A⟯, . . .will be called the product of the pair ⟮A,A⟯, the
triplet ⟮A,A, A⟯, . . . and will be denoted by A × A, A × A × A, . . . .

One can check that A × A = {x ∈ V | (∃y∃y(y ∈ A ∧ y ∈ A ∧ x = (y, y)))}. It is
easily seen from this equality that the productA×A is similar to the coordinate prod-
uct A∗A, but in contrast to the latter one it is a partial case of the general product
∏⟮Ai ⊂ V | i ∈ I⟯.

IfA = A = A = . . . , thenA×A = A2 ≡ Map(2, A),A×A×A = A3 ≡ Map(3, A), . . . .
At the same time, A ∗A ̸= A2 and between the classes A ∗A and A2 there exists only a
bijective mapping of the canonical form ⟨a, a⟩ → (a, a). Namely, this stipulates the
necessity of introducing the non-coordinate product A × A, A × A × A, . . . .

If n ∈ 𝜔, then a subclass R of the class An ≡ Map(n, A) is called an n-placed cor-
respondence on the class A. A mapping O : An → A is called an n-placed operation on
the class A. Note that O ⊂ An ∗ A ̸= An+1. Therefore, an n-placed operation O can not
be considered as an (n + 1)-placed correspondence.

It can be checked thatA×A = {x | ∃y∃y(y ∈ A ∧ y ∈ A ∧ x = (y, y))} andA2 ̸=
A ∗ A.

A class P is called ordered by a binary relation ⩽⊂ P2 = P × P on P, if:
1) ∀p ∈ P(p ⩽ p);
2) ∀p, q ∈ P(p ⩽ q ∧ q ⩽ p ⇒ p = q);
3) ∀p, q, r ∈ P(p ⩽ q ∧ q ⩽ r ⇒ p ⩽ r).
If, in addition,

4) ∀p, q ∈ P(p ⩽ q ∨ q ⩽ p),
then the relation ⩽ is called the linear order on the class P.
An ordered class P is called well-ordered if

5) ∀Q(⌀ ̸= Q ⊆ P ⇒ ∃x ∈ Q(∀y ∈ Q(x ⩽ y))), i. e. every non-empty subset of the
class P has the smallest element.

Let P and Q be ordered classes. A mapping F : P → Q is called monotone (≡ increas-
ing, order preserving) if p ⩽ p implies F(p) ⩽ F(p). The mapping F is called strictly
monotone (≡ strictly increasing) if p < p implies F(p) < F(p). Themapping F is called
isotone if it is monotone and F(p) ⩽ F(p) implies p ⩽ p. It can be checked that: (1) if
F is isotone, then F is injective and strictly monotone; (2) if F is isotone and surjective,
then F is bijective and the inverse mapping F−1 : Q → P is also isotone.

Ordered classes ⟮P, ⩽⟯ and ⟮Q, ⩽⟯ are called order equivalent (in notation ⟮P, ⩽⟯ ≈
⟮Q, ⩽⟯) if there exists some isotone bijective mapping F : P Q.

If a class P is ordered by a relation ⩽ and A is a non-empty subclass of the class P,
then an element p ∈ P is called the smallest upper bound or the supremum of the sub-
class A if ∀x ∈ A(x ⩽ p) ∧ ∀y ∈ P((∀x ∈ A(x ⩽ y)) ⇒ p ⩽ y). This formula is denoted
by p = supA.
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A class S is called transitive if ∀x(x ∈ S⇒ x ⊆ S). The class S is called quasitransi-
tive if ∀x∀y(x ∈ S ∧ y ⊂ x ⇒ x ∈ S). A transitive and quasitransitive class is said to be
supertransitive.

A class [a set] S is called an ordinal [an ordinal number] if S is transitive and well-
ordered by the relation ∈ ∪ = on S. For the property of a class S to be an ordinal, we
will denote by On(S).

In the form of formula

On(S) ≡ ∀x(x ∈ S ⇒ x ⊆ S) ∧
∧ ∀x, y, z(x ∈ S ∧ y ∈ S ∧ z ∈ S ∧ x ∈ y ∧ y ∈ z ⇒ x ∈ z) ∧

∧ ∀x, y(x ∈ S ∧ y ∈ S ⇒ x ∈ y ∨ x = y ∨ y ∈ x) ∧
∧ ∀T(⌀ ̸= T ⊆ S⇒ ∃x(x ∈ T ∧ ∀y(y ∈ T ⇒ x ∈ y))).

Ordinal numbers are usually denoted by Greek letters 𝛼, 𝛽, 𝛾, and so on. The class
of all ordinal numbers is denoted by On. The natural ordering of the class of ordinal
numbers is the relation 𝛼 ⩽ 𝛽 ≡ 𝛼 = 𝛽 ∨ 𝛼 ∈ 𝛽. The class On is transitive and linearly
ordered by the relation ∈ ∪ =.

There are some simple assertions about ordinal numbers:
1) if 𝛼 is an ordinal number, A is a set, and A ∈ 𝛼, then A is an ordinal number;
2) 𝛼 = {𝛽 | 𝛽 ∈ 𝛼} for every ordinal number 𝛼;
3) 𝛼 + 1 ≡ 𝛼 ∪ {𝛼} is the smallest of all ordinal numbers that are greater than 𝛼;
4) every non-empty set of ordinal numbers has the smallest element.

Therefore, the ordered class On is well-ordered. Thus, On is an ordinal.

Lemma 1. Let A be a non-empty subclass of the class On. Then A has the smallest
element.

Proof. By the condition there exists some ordinal number 𝛼 ∈ A. Consider the class
B ≡ {x | x ∈ A ∧ x ∈ 𝛼+1}. By axiom scheme of separation AS3 this class is a set. Since
𝛼 ∈ B ⊂ On and the classOn iswell-ordered, the setBhas the smallest element𝛽. Take
an arbitrary element 𝛾 ∈ A. If 𝛾 ⩽ 𝛼, then 𝛾 ∈ B and therefore 𝛾 ⩾ 𝛽. If 𝛾 > 𝛼, then 𝛾 > 𝛽.
Thus, 𝛽 is the smallest element of the class A.

Lemma 2. If A is a non-empty set of ordinal numbers, then
1) the class ∪A is an ordinal number;
2) ∪A = sup A in the ordered class On.

Proof. (1) The set ∪A is transitive. In fact, if x ∈ y ∈ ∪A, then y ∈ 𝛼 ∈ A for some
ordinal 𝛼. By virtue of transitivity of 𝛼 we get x ∈ 𝛼, where x ∈ ∪A. It is clear that
the set ∪A is well-ordered by the relation ∈ ∪ =. (2) Show that p ≡ ∪A satisfies the
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formula p = sup A. First p is an ordinal number. Second, assume that there is x ∈ A
such that p < x, i. e. p ∈ x. Since p ∈ x and x ∈ A, we infer that p ∈ ∪A ≡ p, but it is
impossible. Therefore, ∀x ∈ A(x ⩽ p). Third, let ∃y ∈ On((∀x ∈ A(x ⩽ y)) ∧ y ∈ p).
Since y ∈ p, we infer that ∃x ∈ A(y ∈ x), but it contradicts ∀x ∈ A(x ⩽ y).
So p = sup A.
Corollary 1. The class On is a proper class.

An ordinal number 𝛼 is called successive, if 𝛼 = 𝛽 + 1 for some ordinal number 𝛽. In
the opposite case, 𝛼 is called limit. This unique number 𝛽, we will denote by 𝛼− 1. The
formula expressing for an ordinal number 𝛼, the property of being successive [limit]
will be denoted by Son(𝛼) [Lon(𝛼)].
Lemma 3. An ordinal number 𝛼 is limit if and only if 𝛼 = sup 𝛼.
The smallest (in the class On) not zero limit ordinal is denoted by 𝜔. The existence of
such an ordinal follows from A7, AS6, and AS3. Ordinals which are smaller than 𝜔 are
called natural numbers.

Remark. The principle of natural induction in ZF is quite similar to the principle of
natural induction in NBG (see Theorem 1 (1.2.6)). Moreover, all assertions about sets in
NBG hold also in ZF and have the same proofs. Therefore, in what follows, we directly
refer to such assertions from Chapter 1 when it is needed.

Collections ⟮Bn ⊂ B | n ∈ N ⊂ 𝜔⟯and (bn ∈ B | n ∈ N ⊂ 𝜔),whereN is anarbitrary sub-
set of 𝜔, are called sequences. If N ⊂ n ∈ 𝜔, then these collections are called finite; in
the opposite case, they are called infinite.

Theorem 1 (the principle of transfinite induction). Let C be a class of ordinal numbers
such that:
1) ⌀ ∈ C;
2) 𝛼 ∈ C ⇒ 𝛼 + 1 ∈ C;
3) Lon(𝛼) ∧ 𝛼 ⊂ C) ⇒ S ∈ C.
Then C = On.
Proof. Let it be false. Consider the subclass D ≡ On\C. The class D is not empty, and
therefore, according to Lemma 1, has the smallest element 𝛾. Now, 𝛾 ̸= ⌀, because
⌀ ∈ C. Thus, 𝛾 is either the successive ordinal number, or a limit one. Suppose that
𝛾 = 𝛾 + 1. Since 𝛾 ∈ 𝛾, then 𝛾 ∉ D and so 𝛾 ∈ C. Then, by condition 2 of the the-
orem, 𝛾 = 𝛾 + 1 ∈ C. Suppose that 𝛾 is a limit ordinal number. Then, 𝛾 ⊂ C, and by
condition 3 of the theorem, 𝛾 ∈ C. In both the cases, we arrive at a contradiction with
the fact that 𝛾 ∉ C. Therefore, C = On.
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Theorem 2 (the construction by transfinite induction). For every function G : V → V
there exists a unique function F : On → V, such that for every 𝛼 ∈ On the equality
F(𝛼) = G(F|𝛼) is fulfilled.
Proof. Consider the class C ≡ {f | func(f ) ∧ On(dom f ) ∧ ∀x ∈ dom f (f (x) = G(f |x))}.
Take any function f , g ∈ C and consider the numbers 𝛼 ≡ dom f and 𝛽 ≡ dom g. Let
𝛼 ⊂ 𝛽. If 𝛼 = 9, then f = ⌀ ⊂ g. If 𝛼 ̸= 0, then consider the set P ≡ {x ∈ 𝛼 | f (x) ̸= g(x)}.
Suppose that the set P is not empty. Then, P contains the smallest element 𝜋. Since
f (0) = G(f |⌀) = G(⌀) = G(g|⌀) = g(0), we infer that 𝜋 ̸= 0. By definition, for every
x ∈ 𝜋, we have f (x) = g(x), where f |𝜋 = g|𝜋. This implies f (𝜋) = G(f |𝜋) = G(g|𝜋) =
g(𝜋). But it follows from 𝜋 ∈ P that f (𝜋) ̸= g(𝜋). From this contradiction, we in-
fer that the set P is empty. Therefore, f ⊂ g. Thus, we proved that 𝛼 ⊂ 𝛽 implies
f ⊂ g. It follows from this property that 𝛼 = 𝛽 implies f = g. Consider the corre-
spondence E ≡ {z | ∃𝛼 ∈ On∃f ∈ C(𝛼 = dom f ∧ z = ⟨𝛼, f ⟩)}. From the proof above,
we infer that E is a mapping from the class D ≡ domE into the class V. We will
consider this mapping in the form of simple collection E ≡ (f𝛼 ∈ C | 𝛼 ∈ D). As was
proven above, 𝛼 ⊂ 𝛽 implies f𝛼 ⊂ f𝛽. Prove by transfinite induction that D = On.
Since ⌀ ∈ C and ⟨0,⌀⟩ ∈ E, we infer that 0 ∈ D. Let 𝛼 ∈ D. Using the function f𝛼,
define a function g : 𝛼 + 1 → V setting g|𝛼 ≡ f𝛼 and g(𝛼) ≡ G(f𝛼). From 𝛼 ∩ {𝛼} = ⌀,
𝛼 + 1 = 𝛼 ∪ {𝛼}, g = f𝛼 ∪ {⟨𝛼,G(f𝛼)⟩}, and axiom of union A4, it follows that this
definition is correct. Let x ∈ 𝛼 + 1. If x ∈ 𝛼, then g(x) = f𝛼(x) = G(f𝛼|x). By virtue of
transitivity, x ⊂ 𝛼 = dom f𝛼. Therefore, f𝛼|x = g|x implies g(x) = G(g|x). If x ∈ {𝛼},
then g(x) ≡ G(f𝛼) = G(g|x). Consequently g ∈ C and ⟨𝛼 + 1, g⟩ ∈ E implies 𝛼 + 1 ∈ D.
Let 𝛼 be a limit ordinal number and 𝛼 ⊂ D. By Lemmas 3 and 2, 𝛼 = sup 𝛼 = ∪𝛼. Let
x ∈ 𝛼. Then, x ∈ y for some y ∈ 𝛼 ⊂ D. Let x ∈ z ∈ 𝛼. If y = z, then fy(x) = fz(x). If
y ∈ z, then y ⊂ z by virtue of the embedding fy ⊂ fz implies fy(x) = fz(x). If z ∈ y,
then, in a similar way, fz(x) = fy(x). Define a function g : 𝛼 → V, setting g(x) ≡
fy(x) for any y ∈ 𝛼 such that x ∈ y. It is clear that g|y = fy. From 𝛼 = {y | y ∈ 𝛼},
g = ∪⟮fy | y ∈ g⟯, axiom scheme of replacement AS6 and axiom of union A4, it fol-
lows that this definition is correct. Check that g ∈ C. Let x ∈ dom g = 𝛼. Then, x ∈
y ∈ 𝛼 implies g(x) = fy(x) = G(fy|x) = G(g|x) since x ⊂ y ⊂ 𝛼. Now, from g ∈ C and
𝛼 = dom g, it follows that 𝛼 ∈ D. By virtue of the principle of transfinite induc-
tion, we conclude that D = On. Let x ∈ On. Then, x ∈ x + 1 ≡ 𝛼. Let x ∈ 𝛽 and x ∈ 𝛾
for some 𝛽, 𝛾 ∈ On. Since 𝛼 ⊂ 𝛽, 𝛼 ⊂ 𝛾, f𝛼 ⊂ f𝛽, and f𝛼 ⊂ f𝛾, we infer that f𝛽(x) =
f𝛼(x) = f𝛾(x). It follows that we can define correctly a function F : On → V setting
F(x) ≡ f𝛽(x) for every 𝛽 ∈ On such that x ∈ 𝛽. It is clear that F|𝛽 = f𝛽 ∈ V for ev-
ery 𝛽 ∈ On. If x ∈ On, then x ∈ x + 1 ≡ 𝛼 and x ⊂ 𝛼 implies F(x) = f𝛼(x) = G(f𝛼|x) =
G(F|x). It remains to show that the function F is unique. Assume that there is a
function F : On → V such that F(𝛼) = G(F|𝛼) for any 𝛼 ∈ On. Note that by ax-
iom scheme of replacement AS6, F|𝛼 ∈ V for any 𝛼 ∈ On. Consider the class A ≡
{𝛼 ∈ On | F(𝛼) = F(𝛼)}. Since F(0) = G(F|⌀) = G(⌀) = G(F|⌀) = F(0), we infer that
0 ∈ A, i. e. this class is non-empty. Assume that the class B ≡ On\A is non-empty.
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Then, it contains the smallest element 𝛽. If 𝛼 ∈ 𝛽, then 𝛼 ∈ A implies F(𝛼) = F(𝛼).
Thus, F|𝛽 = F|𝛽. Hence, we get F(𝛽) = G(F|𝛽) = G(F|𝛽) = F(𝛽), but this contra-
dicts the inequality F(𝛽) ̸= F(𝛽). It follows from the obtained contradiction that
A = On.
In ZF, there exists the following principle of ∈-induction.
Lemma 4. If a class C satisfies the condition ∀x ⊆ C ⇒ x ∈ C, then C = V.
Proof. Suppose that C ̸= D, i. e. D ≡ V\C ̸= ⌀. Then, there exists P ∈ D. If P ∩ D = ⌀,
then put X ≡ P. Let P ∩ D ̸= ⌀. Consider the set N containing all n ∈ 𝜔 satisfying the
condition that there exists a unique sequence u ≡ u(n) ≡ (Rk | k ∈ n + 1) of sets Rk
such that R0 = P and Rk+1 = ∪Rk for every k ∈ n. Since the sequence Rk | k ∈ 1 such
that R0 ≡ X satisfies this property, we infer that 0 ∈ N. Let n ∈ N, i. e. for n there ex-
ists a unique sequence u ≡ (Rk | k ∈ n + 1). Define the sequence v ≡ (Sk | k ∈ n + 2),
putting Sk ≡ Rk for every k ∈ n + 1 and Sn+1 ≡ ∪Rn = ∪Sn, i. e. v = u ∪ {⟨n + 1, ∪Rn⟩}. It
is clear that the sequence v possesses all necessary properties. Check its uniqueness.
Suppose that there exists a sequence w ≡ (Tk | k ∈ n + 2) such that T0 = P and ∀k ∈
n + 1(Tk+1 = ∪Tk). Consider the set M consisting of all m ∈ n + 2 such that Sm = Tm.
LetM ≡ 𝜔\(n + 2) andM ≡ M ∪M. Since S0 = P = T0, we infer that 0 ∈ M ⊂ M. Let
m ∈ M. If m = n + 1, then m + 1 = n + 2 ∈ M ⊂ M. If m < n + 1, then m + 1 ∈ n + 2 and
Sm+1 = ∪Sm = ∪Tm = Tm+1 implies m + 1 ∈ M ⊂ M. If m ∈ M, then m + 1 ∈ M ⊂ M.
Therefore, m ∈ M implies m + 1 ∈ M. By the principle of transfinite induction (The-
orem 1),M = 𝜔. Hence,M = n + 2 and v = w, i. e. the sequence v is unique. Therefore,
n + 1 ∈ N. By the principle of natural induction (see Theorem 1 (1.2.6) and Remark be-
fore Theorem 1), N = 𝜔. Thus, for every n ∈ 𝜔 there exists a unique sequence u(n). By
virtue of the uniqueness we can denote it by (Rn

k | k ∈ n + 1). Consider the following
formula of the ZF set theory: 𝜑(x, y) ≡ (x ∈ 𝜔 ⇒ y = Rx

x) ∧ (x ∉ 𝜔 ⇒ y = ⌀). By axiom
scheme of replacement AS6, for 𝜔 there exists a set Y such that ∀x ∈ 𝜔(∀y(𝜑(x, y) ⇒
y ∈ Y)). If n ∈ 𝜔, then𝜑(n, Rn

n) implies Rn
n ∈ Y. Therefore, we can define in the set𝜔×Y

an infinite sequence u ≡ (Rn ∈ Y | n ∈ 𝜔) setting u ≡ {z ∈ 𝜔×Y | ∃x ∈ 𝜔(z = ⟨x, Rx
x⟩)}.

The property of uniqueness mentioned above implies that u(m) = u(n)|(m + 1) for all
m ⩽ n. Thus, u|(n + 1) = u(n). Hence, the sequence u satisfies the following proper-
ties: R0 = P and Rk+1 = ∪Rk for every k ∈ 𝜔. Having the set u, we can take the set
A ≡ rng u ≡ {Rn | n ∈ 𝜔} and the set Q ≡ ∪A = {y | ∃x ∈ 𝜔(y ∈ Rx)} = ∪⟮Rn|n ∈ 𝜔⟯. It is
clear that Rn ⊂ Q for every n ∈ 𝜔, and therefore, P = R0 ⊂ Q. Since P∩D ̸= ⌀, we infer
that R ≡ Q ∩ D ̸= ⌀. By regularity axiom A9, there exists X ∈ R such that X ∩ R = ⌀.
Check that X ∩ D = ⌀. Suppose that there exists x ∈ X ∩ D. Since X ∈ Q, we infer that
X ∈ Rn for some n ∈ 𝜔. Therefore, x ∈ X ∈ Rn implies x ∈ ∪Rn = Rn+1 ⊂ Q. Thus, x ∈ R.
As a result, we have x ∈ X ∩ R = ⌀, but it is impossible. It follows from this contradic-
tion that X ∈ D and X ∩ D = ⌀. Thus, in both cases, X ⊂ C. By condition, X ∈ C, but it
is impossible because X ∈ D. From this contradiction, we infer that C = V.
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Sets A and B are called equivalent (A ∼ B) if there exists a bijective function u :
A B.

An ordinal number𝛼 is called cardinal if for every ordinal number𝛽 the conditions
𝛽 ⩽ 𝛼 and 𝛽 ∼ 𝛼 imply 𝛽 = 𝛼. The property of an ordinal number 𝛼 to be a cardinal we
will denote by Cn(𝛼). The class of all cardinal numbers will be denoted by Cn. The
class Cn with the order induced from the class On is well-ordered.

Lemma 5. For every set A there exists an ordinal number 𝛼 such that A ∼ 𝛼.
Now, for a set A consider the class {𝛽 | 𝛽 ∈ On ∧ 𝛽 ∼ A}. By Lemma 5 this class is
not empty and therefore it contains the smallest element 𝛼. It is clear that 𝛼 is a
cardinal number. Besides, this class contains only one cardinal number 𝛼. This
number 𝛼 is called the power of the set A (it is denoted by |A| or card A). A set of
the power 𝜔 is called denumerable. Sets of the power n ∈ 𝜔 are called finite. A set
is called countable if it is finite or denumerable. A set is called infinite if it is not
finite.

Note that if 𝜘 is an infinite cardinal number then 𝜘 is a limit ordinal number.
If 𝜘 = 𝛼 + 1, then 𝜘 = card𝜘 = card(𝛼 + 1) = card 𝛼 ⩽ 𝛼 < 𝜘, but it is impossible.
Let 𝛼 be an ordinal. A confinality of 𝛼 is the ordinal number cf (𝛼), which is equal

to the smallest ordinal number 𝛽 for which there exists a function f from 𝛽 into 𝛼 such
that ∪ rng f = 𝛼.

A cardinal𝜘 is called regular if cf (𝜘) = 𝜘, i. e. for every ordinal number𝛽 forwhich
there exists a function f : 𝛽 → 𝜘 such that ∪ rng f = 𝜘 it is valid 𝜘 ⩽ 𝛽.

A cardinal 𝜘 > 𝜔 is called (strongly) inaccessible if 𝜘 is regular and cardP(𝜆) < 𝜘
for all ordinal numbers 𝜆 < 𝜘. The property of a cardinal number 𝜘 to be inaccessi-
ble will be denoted by Icn(𝜘). The class of all inaccessible cardinal numbers will be
denoted by s In.

A.3 Cumulative sets in the ZF set theory

A.3.1 Construction of cumulative sets

Now,wewill apply the construction by transfinite induction in the following situation.
Consider the class

G ≡ {Z | ∃X∃Y(Z = ⟨X, Y⟩) ∧ ((X = ⌀ ⇒ Y = ⌀) ∨
∨ (X ̸= ⌀ ⇒ (¬func(X) ⇒ Y = ⌀) ∨

∨ (func(X) ⇒ (¬On(dom X) ⇒ Y = ⌀) ∨
∨ (On(dom X) ⇒ (Son(dom X) ⇒ Y = X(dom X − 1) ∪P(X(dom X − 1))) ∨

∨ (Lon(dom X) ⇒ Y = ∪ rng X))))))}.
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If we express the definition of the class G less formally, then G consists of all pairs
⟨X, Y⟩ for which there are the following five disjunctive cases:
1) if X = ⌀, then Y = ⌀;
2) if X ̸= ⌀ and X is not a function, then Y = ⌀;
3) if X ̸= ⌀, X is a function, and dom X is not an ordinal number, then Y = ⌀;
4) if X ̸= ⌀, X is a function, dom X is an ordinal number, and dom X = 𝛼 + 1, then

Y = X(𝛼) ∪P(X(𝛼));
5) if X ̸= ⌀, X is a function, and dom X is a limit ordinal number, then Y = ∪ rng X.
By definition,G is a correspondence. Since any set X possesses one of these properties,
we have domG = V. Since in each of these five cases the set Y is defined by a set X in a
unique way, using the property of an ordered pair from Lemma 1 (A.2.1), we infer that
G is a function from V into V.

According to Theorem 2 (A.2.2), for the function G there exists a function
F : On → V for which for any 𝛼 ∈ On, we have F(𝛼) = G(F|𝛼).

From case 1, for the function G, it follows that F(⌀) = G(F|⌀) = G(⌀) = ⌀.
From case 4, it follows that if 𝛽 is a successive ordinal number and 𝛽 = 𝛼 + 1, then

F(𝛽) = G(F|𝛽) = (F|𝛽)(𝛼) ∪P((F|𝛽)(𝛼)) = F(𝛼) ∪P(F(𝛼)).
Finally, from case 5, it follows that if 𝛼 is a limit ordinal number, then F(𝛼) =

G(F|𝛼) = ∪ rng(F | 𝛼) = ∪⟮F(𝛽) | 𝛽 ∈ 𝛼⟯.
Denote F(𝛼) by V𝛼. Thus, we obtained the collection ⟮V𝛼 ⊂ V | 𝛼 ∈ On⟯ satisfying

the following conditions:
1) V0 = ⌀;
2) V𝛼 = ∪⟮V𝛽 | 𝛽 ∈ 𝛼⟯, if 𝛼 is a limit ordinal number;
3) V𝛼+1 = V𝛼 ∪P(V𝛼).
This collection is called theMirimanov –Neumann collection, and its elements V𝛼 are
called cumulative (Mirimanov –Neumann) sets.

A.3.2 Properties of cumulative sets

Prove now some lemmas about the sets V𝛼, which we will need later.

Lemma 1. If 𝛼 and 𝛽 are ordinal numbers, then
1) 𝛼 < 𝛽 ⇔ V𝛼 ∈ V𝛽;
2) 𝛼 = 𝛽 ⇔ V𝛼 = V𝛽;
3) 𝛼 ⊂ V𝛼 and 𝛼 ∈ V𝛼+1.

Proof. (1) and (2). By means of transfinite induction we will prove that for any ordinal
number 𝛽 (𝛼 ∈ 𝛽 ⇒ V𝛼 ∈ V𝛽). If 𝛽 = ⌀, then it is clear because ∀𝛼¬(𝛼 ∈ 𝛽). If for some
ordinal number 𝛽 (𝛼 ∈ 𝛽 ⇒ V𝛼 ∈ V𝛽), then consider the ordinal number 𝛽 + 1. From
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𝛼 ∈ 𝛽 + 1, we infer that 𝛼 ∈ 𝛽 ∨ 𝛼 = 𝛽. If 𝛼 ∈ 𝛽, then, by the inductive assumption,
V𝛼 ∈ V𝛽, and since V𝛽+1 = V𝛽 ∪ P(V𝛽), we infer that V𝛼 ∈ V𝛽+1. If 𝛼 = 𝛽, then V𝛼 =
V𝛽 ∈ V𝛽+1, because V𝛽 ∈ P(V𝛽). Therefore, for 𝛽 + 1, the property 𝛼 ∈ 𝛽 + 1 ⇒ V𝛼 ∈
V𝛽+1 is fulfilled. Suppose now that 𝛽 is a limit ordinal number and ∀𝛾 ∈ 𝛽∀𝛼(𝛼 ∈ 𝛾 ⇒
V𝛼 ∈ V𝛾). Let 𝛼 belongs to 𝛽. Since 𝛽 is a limit ordinal number, it follows that 𝛼 + 1 ∈
𝛽. From V𝛽 = ∪⟮V𝛾 | 𝛾 ∈ 𝛽⟯, it follows that V𝛼+1 ⊂ V𝛽. In this case,V𝛼 ∈ V𝛼+1, implies
V𝛼 ∈ V𝛽. It is clear that 𝛼 = 𝛽 ⇒ V𝛼 = V𝛽. If V𝛼 = V𝛽, then either 𝛼 < 𝛽 or 𝛼 = 𝛽 or 𝛽 <𝛼. If 𝛼 < 𝛽, then V𝛼 ∈ V𝛽; if 𝛽 < 𝛼, then V𝛽 ∈ V𝛼. Therefore, 𝛽 = 𝛼. If V𝛼 ∈ V𝛽, then𝛼 < 𝛽, because for 𝛼 = 𝛽 it is fulfilled V𝛼 = V𝛽, and for 𝛽 < 𝛼 it is fulfilled V𝛽 ∈ V𝛼.
(3) Consider the class C ≡ {x | x ∈ On ∧ x ⊂ Vx}. Since 0 ⊂ ⌀ = V0, we infer that 0 ∈
C. If 𝛼 ∈ C, then 𝛼 ⊂ V𝛼 implies 𝛼 + 1 ≡ 𝛼 ∪ {𝛼} ⊂ V𝛼 ⊂ V𝛼+1. Let 𝛼 be a limit ordinal
number and𝛼 ⊂ C. By construction,V𝛼 = ∪⟮V𝛽 | 𝛽 ∈ 𝛼⟯. If x ∈ 𝛼, then x ∈ Cmeans that
x ⊂ Vx. Therefore, x ∈ P(Vx) ⊂ Vx+1. Since 𝛼 is a limit ordinal number then x + 1 ∈ 𝛼
implies x ∈ V𝛼. Thus, 𝛼 ⊂ V𝛼 and so 𝛼 ∈ C. By Theorem 1 (A.2.2), C = On. The lemma
is proven.

Lemma 2. For every ordinal number 𝛼 the condition z ⊂ x ∈ V𝛼 implies z ∈ V𝛼.

Proof. We will prove this assertion by transfinite induction. Let C = {𝛼 | 𝛼 ∈ On ∧
∀x∀z(z ⊂ x ∈ V𝛼 ⇒ z ∈ V𝛼)}. Show that C = On. If 𝛼 = ⌀, then it is clear that 𝛼 ∈ C.
Suppose that 𝛼 ∈ C. Prove that in this case 𝛼 + 1 ∈ C. Let z ⊂ x ∈ V𝛼+1. Since V𝛼+1 =
V𝛼 ∪P(V𝛼), we infer that x ∈ V𝛼 or x ⊂ V𝛼. If z ⊂ x ∈ V𝛼, then z ∈ V𝛼 by the inductive
assumption and therefore z ∈ V𝛼+1. If x ⊂ V𝛼 and z ⊂ x, then z ⊂ V𝛼, and therefore
z ∈ V𝛼+1. Thus, 𝛼 + 1 ∈ C. If 𝛼 is a limit ordinal number and ∀𝛽 ∈ 𝛼(𝛽 ∈ C), then from
z ⊂ x ∈ V𝛼 we infer that ∃𝛽 ∈ 𝛼(z ⊂ x ∈ V𝛽), and, by inductive assumption, we con-
clude that ∃𝛽 ∈ 𝛼(z ∈ V𝛽). From V𝛼 = ⟮V𝛽 | 𝛽 ∈ 𝛼⟯ it follows now that z ∈ V𝛼. There-
fore, by transfinite induction, C = On.
This lemma shows that any cumulative set V𝛼 is quasitransitive.

Lemma 3. For any ordinal number 𝛼, we have ∀x(x ∈ V𝛼 ⇒ x ⊂ V𝛼).
Proof. This lemma also will be proven by transfinite induction. For 𝛼 = ⌀ the given
formula is valid, because∀x¬(x ∈ V⌀). Let for some ordinal number 𝛼 it is valid∀x(x ∈
V𝛼 ⇒ x ⊂ V𝛼). Consider the ordinal number𝛼+1. If x ∈ V𝛼+1, then x ∈ V𝛼 ∨ x ∈ P(V𝛼),
or more presicely x ∈ V𝛼 ∨ x ⊂ V𝛼. In the case x ∈ V𝛼, by the inductive assumption,
x ⊂ V𝛼, and V𝛼 ⊂ V𝛼+1 implies x ⊂ V𝛼+1. If x ⊂ V𝛼, then we infer from V𝛼 ⊂ V𝛼+1 that
x ⊂ V𝛼+1. Now, let 𝛼 be a limit ordinal number and ∀𝛽 ∈ 𝛼∀x(x ∈ V𝛽 ⇒ x ⊂ V𝛽). Then,
from x ∈ V𝛼we infer that∃𝛽 ∈ 𝛼(x ∈ V𝛽). By the inductive assumption∃𝛽 ∈ 𝛼(x ⊂ V𝛽),
and therefore x ⊂ V𝛼. The lemma is proved.

This lemma shows that any cumulative set is transitive. Thus, any cumulative set is
supertransitive.
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Corollary 1. If 𝛼 and 𝛽 are ordinal numbers and 𝛼 ⩽ 𝛽, then V𝛼 ⊂ V𝛽.

Corollary 2. For every ordinal number 𝛼 the inclusion V𝛼 ⊂ P(V𝛼) and the equality
V𝛼+1 = P(V𝛼) are valid.
Proof. If x ∈ V𝛼, then by the given lemma x ⊂ V𝛼, i. e. x ∈ P(V𝛼). Thus, V𝛼 ⊂ P(V𝛼).
Therefore. V𝛼+1 = V𝛼 ∪P(V𝛼) = P(V𝛼).
Corollary 3. If 𝛼 and 𝛽 are ordinal numbers and 𝛼 < 𝛽, then |V𝛼| < |V𝛽|.
Proof. By the previous two corollaries, V𝛼 ⊂ P(V𝛼) = V𝛼+1 ⊂ V𝛽. Using Cantor’s theo-
rem, we infer that |V𝛼| < |P(V𝛼)| = |V𝛼+1| ⩽ |V𝛽|.
Lemma 4. For every ordinal number 𝛼 if x ∈ V𝛼+1, then x ⊂ V𝛼.

Proof. Suppose that x ∈ V𝛼+1. It means that x ∈ V𝛼 ∨ x ⊂ V𝛼. If x ⊂ V𝛼, then every-
thing is proven. If x ∈ V𝛼, then by the previous lemma x ⊂ V𝛼.

Lemma 5. For every ordinal number 𝛼 ∀x∀y(x ∈ V𝛼 ∧ y ∈ V𝛼 ⇒ x ∪ y ∈ V𝛼).
Proof. Wewill again use the principle of transfinite induction. If 𝛼 = ⌀, then the con-
clusion of lemma is valid, because ∀x¬(x ∈ V⌀). Let now 𝛼 = 𝛽 + 1 for some ordi-
nal number 𝛽. Then, from the formula x ∈ V𝛼 ∧ y ∈ V𝛼 by Lemma 4 we infer that
x ⊂ V𝛽 ∧ y ⊂ V𝛽. Therefore, x ∪ y ⊂ V𝛽, where x ∪ y ∈ V𝛽+1, i. e. x ∪ y ∈ V𝛼. Now, sup-
pose that 𝛼 is a limit ordinal number and ∀𝛽 ∈ 𝛼∀x∀y(x ∈ V𝛽 ∧ y ∈ V𝛽 ⇒ x ∪ y ∈ V𝛽).
Then, x, y ∈ V𝛼 implies ∃𝛽 ∈ 𝛼(x, y ∈ V𝛽). Therefore, by the inductive assumption,
∃𝛽 ∈ 𝛼(x ∪ y ∈ V𝛽), and so x ∪ y ∈ V𝛼.

Lemma 6. For every limit ordinal number 𝛼 the condition x ∈ V𝛼 implies P(x) ∈ V𝛼.

Proof. Suppose that 𝛼 is some limit ordinal number and x ∈ V𝛼. Then, there exists𝛽 ∈ 𝛼 such that x ∈ V𝛽. Show that in this case P(x) ⊂ V𝛽. By Lemma 2, from x ∈ V𝛽

and z ⊂ xwe infer z ∈ V𝛽, where ∀z(z ∈ P(x) ⇒ z ∈ V𝛽), and it means thatP(x) ⊂ V𝛽.
If P(x) ⊂ V𝛽, then P(x) ∈ V𝛽+1 ⊂ V𝛼.

Corollary 1. For every limit ordinal number 𝛼 the condition x, y ∈ V𝛼 implies {x}, {x, y},⟨x, y⟩ ∈ V𝛼.

Proof. By Lemma 6, P(x) ∈ V𝛼. By Lemma 2, {x} ⊂ P(x) implies {x} ∈ V𝛼. Now, by
Lemma 5, {x, y} ∈ V𝛼. It follows from the proved properties that ⟨x, y⟩ ∈ V𝛼.

Corollary 2. For every limit ordinal number 𝛼 the conditions X, Y ∈ V𝛼 implies
X ∗ Y ∈ V𝛼.
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Proof. Let x ∈ X and y ∈ Y. Then, {x} ⊂ X ∪ Y and {y} ⊂ X ∪ Y imply {x, y} ⊂ X ∪ Y. By
Lemma 5, X∪Y ∈ V𝛼. Since {x} ∈ P(X∪Y) and {x, y} ∈ P(X∪Y), we infer that ⟨x, y⟩ ≡
{{x}, {x, y}} ⊂ P(X ∪ Y). Hence, ⟨x, y⟩ ∈ P(P(X ∪ Y)). Therefore, X ∗ Y ⊂ P(P(X ∪ Y)).
By Lemmas 5, 6, and 2, X ∗ Y ∈ V𝛼.

Lemma 7. If 𝛼 ⩾ 𝜔, then 𝜔 ⊂ V𝛼. If 𝛼 > 𝜔, then 𝜔 ∈ V𝛼.

Proof. By Lemma 1, 𝜔 ⊂ V𝜔 ⊂ V𝛼. If 𝛼 > 𝜔, then 𝜔 ⊂ V𝜔 ∈ V𝜔+1, by Lemma 2, implies
𝜔 ∈ V𝜔+1 ⊂ V𝛼.

Let 𝜆 be an ordinal number. Consider a collection K(𝜆) ≡ ⟮M𝛽 | 𝛽 ∈ 𝜆 + 1⟯ of the
sets M𝛽 ≡ {x | x  P(|V𝛽|) |P(|V𝛽|)|} of all corresponding bijective mappings
for all 𝛽 ∈ 𝜆 + 1 and the set M(𝜆) ≡ ∪⟮M𝛽 | 𝛽 ∈ 𝜆 + 1⟯. By the choice axiom there ex-
ists a choice function ch(𝜆) : P(M(𝜆))\{⌀} → M(𝜆) such that ch(𝜆)(P) ∈ P for every
P ∈ P(M(𝜆))\{⌀}. SinceM𝛽 ⊂ M(𝜆) for𝛽 ∈ 𝜆+1, we infer that c𝛽(𝜆) ≡ ch(𝜆)(M𝛽) ∈ M𝛽,
i. e. c𝛽(𝜆) is a bijection from P(|V𝛽|) onto |P(|V𝛽|)|.
Theorem 1 (the Zakharov theorem on initial synchronization of powers of cumulative
sets). Let 𝜆 be an ordinal number. Then, for every ordinal number 𝛼 ⩽ 𝜆 there exists a
unique collection u(𝛼) ≡ u(𝜆)(𝛼) ≡ (f𝛽 | 𝛽 ∈ 𝛼+ 1) of bijective functions f𝛽 : V𝛽 |V𝛽|
such that:
1) f0 ≡ ⌀;
2) if 𝛾 < 𝛽 ∈ 𝛼 + 1, then f𝛾 = f𝛽|V𝛾;
3) if 𝛽 ∈ 𝛼 + 1 and 𝛽 = 𝛾 + 1, then f𝛽|V𝛾 = f𝛾 and f𝛽(x) = c𝛾(𝜆)(f𝛾[x]) for every

x ∈ V𝛽\V𝛾 = P(V𝛾)\V𝛾;
4) if 𝛽 ∈ 𝛼 + 1 and 𝛽 is a limit ordinal number then f𝛽 = ∪⟮f𝛾 | 𝛾 ∈ 𝛽⟯.
It follows from the uniqueness property that u(𝛼)|𝛿 + 1 = u(𝛿) for every 𝛿 ⩽ 𝛼, i. e. these
collections continue each other.

Proof. In the beginning check the uniqueness of the collection u ≡ u(𝛼). Let for 𝛼
there exist a collection v ≡ (g𝛽 | 𝛽 ∈ 𝛼 + 1) of bijective functions g𝛽 : V𝛽 |V𝛽|,
possessing properties 1–4. Consider the set D ≡ {𝛽 ∈ 𝛼 + 1 | f𝛽 = g𝛽}, the class D ≡
On\(𝛼 + 1), and the class D ≡ D ∪ D. It is clear that 0 ∈ D ⊂ D. Let 𝛽 ∈ D. If 𝛽 ⩾ 𝛼,
then 𝛽 + 1 ∈ D ⊂ D. Let 𝛽 < 𝛼. Then, 𝛽 ∈ D and 𝛽 + 1 ∈ 𝛼 + 1. Therefore, by prop-
erty 3, f𝛽+1(x) = f𝛽(x) = g𝛽(x) = g𝛽+1(x) for every x ∈ V𝛽 and f𝛽+1(x) = c𝛽(𝜆)(f𝛽[x]) =
c𝛽(𝜆)(g𝛽[x]) = g𝛽+1(x) for every x ∈ V𝛽+1\V𝛽, i. e. f𝛽+1 = g𝛽+1. So 𝛽 + 1 ∈ D ⊂ D. Thus,
𝛽 ∈ D implies 𝛽 + 1 ∈ D. Let 𝛽 be a limit ordinal number and 𝛽 ⊂ D. If 𝛽 ∩ D ̸= ⌀,
then there exists 𝛾 ∈ 𝛽 such that 𝛾 ⩾ 𝛼 + 1. Therefore, 𝛽 > 𝛾 ⩾ 𝛼 + 1 implies 𝛽 ∈
D ⊂ D. Let 𝛽 ∩ D = ⌀, i. e. 𝛽 ⊂ D. Then, for every 𝛾 ∈ 𝛽 it is valid f𝛾 = g𝛾. Since𝛽 ⊂ 𝛼 + 1, then 𝛽 ⩽ 𝛼 + 1. If 𝛽 = 𝛼 + 1, we infer that 𝛽 ∈ D ⊂ D. Let 𝛽 ∈ 𝛼 + 1. If
x ∈ V𝛽 = ∪⟮V𝛾 | 𝛾 ∈ 𝛽⟯, then x ∈ V𝛾 for some 𝛾 ∈ 𝛽. Therefore, by property 2, f𝛽(x) =
f𝛾(x) = g𝛾(x) = g𝛽(x) for every x ∈ V𝛽, i. e. f𝛽 = g𝛽. So 𝛽 ∈ D ⊂ D. Thus, the properties
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Lon(𝛽) and 𝛽 ⊂ D imply 𝛽 ∈ D. By the principle of transfinite induction, D = On.
Consequently, D = 𝛼 + 1. Therefore, u = v. Now, we will write c𝛾 instead of c𝛾(𝜆).
Consider a set C, consisting of all ordinal numbers 𝛼 ⩽ 𝜆, for which there exists
a collection u(𝛼) with properties 1–4. Consider also the classes C ≡ On\(𝜆 + 1)
and C ≡ C ∪ C. Since V0 = ⌀ and |V0| = 0, we infer that the collection u(0) ≡
(f𝛽 | 𝛽 ∈ 1) with the bijective function f0 = ⌀ : V0 |V0| possesses all properties
1–4, and therefore 0 ∈ C. Let 𝛼 ∈ C. If 𝛼 ⩾ 𝜆, then 𝛼 + 1 ∈ C ⊂ C. Let now 𝛼 < 𝜆.
Then, 𝛼 + 1 ∈ 𝜆 + 1 means that we can use the function c𝛼. Since 𝛼 ∈ C, we in-
fer that for 𝛼 there exists a unique collection u ≡ (f𝛽 | 𝛽 ∈ 𝛼 + 1). Define a collec-
tion v ≡ (g𝛽 | 𝛽 ∈ 𝛼 + 2) of bijective functions g𝛽 : V𝛽 |V𝛽|, setting g𝛽 ≡ f𝛽 for
every x ∈ V𝛼 and g𝛼+1(x) ≡ c𝛼(f𝛼[x]) for every x ∈ V𝛼+1\V𝛼 = P(V𝛼)\V𝛼. Check that
v possesses properties 1–4. Let 𝛽 ∈ 𝛼 + 2. If 𝛽 ∈ 𝛼 + 1, then properties 1–4 are evi-
dently true. Let 𝛽 = 𝛼 + 1. Then, g𝛽(x) = g𝛼+1(x) = f𝛼(x) = g𝛼(x) for every x ∈ V𝛼 and
g𝛽(x) = g𝛼+1(x) = c𝛼(f𝛼[x]) = c𝛼(g𝛼[x]) for every x ∈ V𝛽\V𝛼. Besides, g𝛽|V𝛼 = f𝛼 = g𝛼.
Therefore, 𝛾 < 𝛽 implies g𝛽|V𝛾 = g𝛼|V𝛾 = f𝛼|V𝛾 = f𝛾 = g𝛾. So 𝛼 + 1 ∈ C ⊂ C. Let 𝛼
be a limit ordinal number and 𝛼 ⊂ C. If 𝛼 ∩ C ̸= ⌀, then there exists 𝛽 ∈ 𝛼 such
that 𝛽 ⩾ 𝛼 + 1. Consequently, 𝛼 > 𝛽 ⩽ 𝜆 + 1 implies 𝛼 ∈ C ⊂ C. Let 𝛼 ∩ C = ⌀, i. e.
𝛼 ⊂ C. Then, for every 𝛽 ∈ 𝛼 there exists a unique collection u𝛽 ≡ (f 𝛽𝛾 | 𝛾 ∈ 𝛽 + 1) of
bijective functions f 𝛽𝛾 : V𝛾 |V𝛾| with properties 1–4. Since 𝛼 ⊂ 𝜆 + 1, it follows
that 𝛼 ⩽ 𝜆 + 1. If 𝛼 = 𝜆 + 1, then 𝛼 ∈ C ⊂ C. Let now 𝛼 ∈ 𝜆 + 1. For every 𝛿 ⩽ 𝛽 ∈ 𝛼
consider the collection w ≡ u𝛽|𝛿 + 1 ≡ (f 𝛽𝛾 | 𝛾 ∈ 𝛿 + 1). The collection w possesses
properties 1–4. By the uniqueness, which was proved above, w = u𝛿. Therefore,
u𝛿 = u𝛽|𝛿 + 1, i. e. f 𝛿𝛾 = f 𝛽𝛾 for every 𝛾 ∈ 𝛿 + 1. In particular, f 𝛿𝛿 = f 𝛽𝛿 for every 𝛿 ⩽ 𝛽. De-
fine a collection v ≡ (g𝛽 | 𝛽 ∈ 𝛼+ 1) of functions g𝛽, setting g𝛽 ≡ f 𝛽𝛽 for every 𝛽 ∈ 𝛼 and
g𝛼(x) ≡ f 𝛽𝛾 (x) for every x ∈ V𝛼 = ∪⟮V𝛾 | 𝛾 ∈ 𝛼⟯ and every 𝛾 ⩽ 𝛽 ∈ 𝛼 such that x ∈ V𝛾. It
is clear that g𝛽  V𝛽 |V𝛽| for every 𝛽 ∈ 𝛼. Check that g  V𝛼 → |V𝛼|. By Corol-
lary 1 to Lemma 3, V𝛾 ⊂ V𝛼. Consequently, |V𝛾| ⊂ |V𝛼|. Therefore, for every x ∈ V𝛼

it is valid g𝛼(x) ≡ f 𝛽𝛾 (x) ∈ |V𝛾| ⊂ 𝜘 ≡ ∪⟮|V𝛾| ⊂ |V𝛼| | 𝛾 ∈ 𝛼⟯ ⊂ |V𝛼|. Let x, y ∈ V𝛼 and
g𝛼(x) = g𝛼(y). Then, x ∈ V𝛾 and y ∈ V𝛿 for some 𝛾, 𝛿 ∈ 𝛼. Consider the number 𝛽,
which is greatest of the numbers 𝛾 and 𝛿. By definition, f 𝛽𝛽 (x) = g𝛼(x) = g𝛼(y) = f 𝛽𝛽 (y).
From injectivity of this function we infer that x = y. Therefore, the function g𝛼 is sur-
jective. Let z ∈ 𝜘. Then, z ∈ |V𝛾| for some 𝛾 ∈ 𝛼. Since the function f 𝛾𝛾 : V𝛾 |V𝛾| is
injective, we infer that z = f 𝛾𝛾 (x) for some x ∈ V𝛾 ⊂ V𝛼. Consequently z = g𝛼(x). Thus,
g𝛼 is a bijective function from V𝛼 onto 𝜘, i. e. V𝛼 ∼ 𝜘. By Corollary 3 to Lemma 3
|V𝛾| ∈ |V𝛼|. Therefore, there exists a set A ≡ {x ∈ |V𝛼| | ∃y ∈ 𝛼(x = |Vy|)} = {|V𝛾| |𝛾 ∈ 𝛼} of all ordinal numbers |V𝛾|. Since 𝛼 is a limit ordinal number, we infer that
A ̸= ⌀. Therefore, by Lemma 2 (A.2.2), the set ∪A = sup A is an ordinal number. If
z ∈ ∪A = {z | ∃x ∈ A(z ∈ x)}, then z ∈ |V𝛾| ⊂ 𝜘 for some 𝛾 ∈ 𝛼. Conversely, if z ∈ 𝜘,
then z ∈ |V𝛾| ∈ A for some 𝛾 ∈ 𝛼. Therefore, z ∈ ∪A. Consequently, 𝜘 = ∪A, i. e. 𝜘 is
an ordinal number. Prove that 𝜘 is a cardinal number. Let 𝛽 be an ordinal num-
ber, 𝛽 ⩽ 𝜘, and 𝛽 ∼ 𝜘. Suppose that 𝛽 < 𝜘. Then, 𝛽 ∈ 𝜘 implies 𝛽 ∈ |V𝛾| for some
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𝛾 ∈ 𝛼. Consequently, 𝛽 < |V𝛾| = card |V𝛾| ⩽ |𝜘| = |𝛽|. Since 𝛽 is an ordinal number,
we infer that |𝛽| ⩽ 𝛽. As a result, we come to the inequality 𝛽 < 𝛽, which is impos-
sible. It follows from this contradiction that 𝛽 = 𝜘. It means that 𝜘 is a cardinal
number. Since 𝜘 is a cardinal number and 𝜘 ∼ V𝛼, we infer that 𝜘 = |V𝛼|. There-
fore, g𝛼  V𝛼 |V𝛼|. Check that the collection v possesses properties 1–4. By
definition of this collection, g0 ≡ f 00 = ⌀. Let 𝛾 < 𝛽 ∈ 𝛼 + 1. If 𝛽 ∈ 𝛼, then the equal-
ity f 𝛾𝛾 = f 𝛽𝛾 , which was proved above, implies g𝛽|V𝛾 = f 𝛽𝛽 |V𝛾 = f 𝛽𝛾 = f 𝛾𝛾 ≡ g𝛾. If 𝛽 = 𝛼,
then, by construction, g𝛽|V𝛾 = g𝛼|V𝛾 = f 𝛾𝛾 ≡ g𝛾. Thus, for v property 2 is valid. Let
𝛽 ∈ 𝛼 + 1, 𝛽 = 𝛾 + 1 and x ∈ V𝛽 = P(V𝛾). If 𝛽 ∈ 𝛼, then the equality f 𝛾𝛾 = f 𝛽𝛾 , which
was proved above, implies g𝛽(x) = f 𝛽𝛽 (x) = f 𝛽𝛾 (x) = f 𝛾𝛾 (x) = g𝛾(x) for every x ∈ V𝛾 and
g𝛽(x) = f 𝛽𝛽 (x) = c𝛾(f 𝛽𝛾 [x]) = c𝛾(f 𝛾𝛾 [x]) = c𝛾(g𝛾[x]) for every x ∈ V𝛽\V𝛾. Therefore, for v
property 3 fulfilled. Property 4 follows from property 2. From the properties which
were already checked we infer that 𝛼 ∈ C ⊂ C. By the principle of transfinite induc-
tion, C = On, and therefore C = 𝜆 + 1.
Note that, since the functions c𝛾(𝜆) depend on the number 𝜆, we can not componate
the (continuing each other) collections u(𝜆)(𝛼) into one global collection indexed by
all ordinal numbers.

Corollary 1. For every limit ordinal number 𝛼 the equalities |V𝛼| = ∪⟮|V𝛽| | 𝛽 ∈ 𝛼⟯ =∪{|V𝛽| | 𝛽 ∈ 𝛼} = sup{|V𝛽| | 𝛽 ∈ 𝛼} are valid.
Proof. Consider the number 𝜆 ≡ 𝛼. By Theorem 1, there exists the corresponding col-
lection u(𝛼) ≡ (f𝛽 | 𝛽 ∈ 𝛼+ 1). Since 𝛼 is a limit ordinal number and 𝛼 ∈ 𝛼+ 1, it follows
that by property 4, f𝛼 = ∪⟮f𝛽 | 𝛽 ∈ 𝛼⟯. Therefore, |V𝛼| = rng f𝛼 = ∪⟮rng f𝛽 | 𝛽 ∈ 𝛼⟯ =∪⟮|V𝛽| | 𝛽 ∈ 𝛼⟯ = ∪{|V𝛽| | 𝛽 ∈ 𝛼} = sup{|V𝛽| | 𝛽 ∈ 𝛼}, where the latter equality follows
from Lemma 2 (A.2.2).

A.3.3 Properties of inaccessible cumulative sets

The sets V𝜘 for inaccessible cardinal numbers 𝜘 will be called inaccessible cumula-
tive sets. They have a number of specific properties. We present these properties with
complete proofs. Note that their proofs are practically absent in the corresponding lit-
erature and are not obvious.

Lemma 1. For every inaccessible cardinal number 𝜘 and every ordinal number 𝛼 ∈ 𝜘 the
property |V𝛼| < 𝜘 is valid.
Proof. Consider the set C ≡ {x ∈ 𝜘 | |Vx| < 𝜘} and the classes C ≡ On\𝜘 and C ≡
C ∪ C. Since V0 = ⌀, we have |V0| = 0 < 𝜘. Therefore, 0 ∈ C. Let 𝛼 ∈ C. If 𝛼 ⩾ 𝜘,
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then 𝛼 + 1 ∈ C ⊂ C. Let 𝛼 < 𝜘. Then, 𝛼 ∈ C. If 𝛼 + 1 = 𝜘, then 𝛼 + 1 ∈ C ⊂ C. Let
𝛼 + 1 < 𝜘. Since V𝛼 ∼ |V𝛼|, we have P(V𝛼) ∼ P(|V𝛼|). Therefore, |P(V𝛼)| = |P(|V𝛼|)|.
By Corollary 2 to Lemma 3 (A.3.2), |V𝛼+1| = |P(V𝛼)| = |P(|V𝛼|)|. Since |V𝛼| < 𝜘 and
the cardinal number 𝜘 is inaccessible, we obtain |P(|V𝛼|)| < 𝜘. Hence, |V𝛼+1| < 𝜘.
Thus, 𝛼 + 1 ∈ C ⊂ C. Let 𝛼 be a limit ordinal number and 𝛼 ⊂ C. If 𝛼 ∩ C ̸= ⌀,
then there exists 𝛽 ∈ 𝛼 such that 𝛽 ⩾ 𝜘. Therefore, 𝛼 > 𝛽 ⩾ 𝜘 implies 𝛼 ∈ C ⊂ C. Let
𝛼 ∩ C = ⌀, i. e. 𝛼 ⊂ C ⊂ 𝜘. If 𝛼 = 𝜘, then 𝛼 ∈ C ⊂ C. Let 𝛼 < 𝜘. By virtue of 𝛼 ⊂ C,
for every 𝛽 ∈ 𝛼, we have |V𝛽| < 𝜘. Therefore, sup{|V𝛽| | 𝛽 ∈ 𝛼} ⩽ 𝜘. Using the prop-
erty |V𝛽| ∈ 𝜘, we can correctly define a function f : 𝛼 → 𝜘, setting f (𝛽) ≡ |V𝛽|. It is
clear that rng f = {|V𝛽| | 𝛽 ∈ 𝛼}. By Corollary 1 to Theorem 1 (A.3.2), ∪ rng f = ∪{|V𝛽| |𝛽 ∈ 𝛼} = sup{|V𝛽| | 𝛽 ∈ 𝛼} = |V𝛼|. By virtue of the inequality, whichwas proved above,
we infer that |V𝛼| ⩽ 𝜘. Suppose that |V𝛼| = 𝜘. Then,𝜘 = ∪ rng f byvirtue of regularity of
the number𝜘 implies𝜘 ⩽ 𝛼, but this contradicts the initial inequality𝛼 < 𝜘. Therefore,
|V𝛼| < 𝜘. Consequently, 𝛼 ∈ C ⊂ C. By the principle of transfinite induction, C = On.
Thus, C = 𝜘.
Lemma 2. If 𝜘 is an inaccessible cardinal, then 𝜘 = |V𝜘|.
Proof. By Lemma 1 (A.3.2), 𝜘 ⊂ V𝜘. Therefore, 𝜘 = |𝜘| ⩽ |V𝜘|. By Corollary 1 to
Theorem 1 (A.3.2), |V𝜘| = sup(|V𝛽| | 𝛽 ∈ 𝜘). Since by Lemma 1 |V𝛽| < 𝜘, we have
|V𝜘| ⩽ 𝜘. As a result, we have 𝜘 = |V𝜘|.
Lemma 3. If 𝜘 is an inaccessible cardinal number, 𝛼 is an ordinal number such that
𝛼 < 𝜘, and f is a correspondence from V𝛼 into V𝜘 such that dom f = V𝛼 and f ⟨x⟩ ∈ V𝜘

for every x ∈ V𝛼, then rng f ∈ V𝜘.

Proof. Since 𝜘 is a limit ordinal number, we have V𝜘 = ∪⟮V𝛿 | 𝛿 ∈ 𝜘⟯. For x ∈ V𝛼 there
exists 𝛿 ∈ 𝜘 such that f ⟨x⟩ ∈ V𝛿. Therefore, a non-empty set {y ∈ 𝜘 | f ⟨x⟩ ∈ Vy} con-
tains the smallest element z. By virtue of the uniqueness of the element z we can
correctly define a function g : V𝛼 → 𝜘, setting g(x) ≡ z. Consider the ordinal num-
ber 𝛽 ≡ |V𝛼| and take some bijective mapping h : 𝛽 V𝛼. Consider the mapping
𝜑 ≡ g ∘ h : 𝛽 → 𝜘 and the ordinal number 𝛾 ≡ ∪ rng𝜑 = sup rng 𝜑 ⩽ 𝜘. Suppose that
𝛾 = 𝜘. Since the cardinal 𝜘 is regular, the supposition ∪ rng 𝜑 = 𝜘 implies 𝜘 ⩽ 𝛽 ≡ |V𝛼|.
But, by Lemma 3 |V𝛼| < 𝜘. It follows from this contradiction that 𝛾 < 𝜘. Since h is
bijective, rng𝜑 = rng g. Therefore, 𝛾 = sup rng g. If x ∈ V𝛼, then f ⟨x⟩ ∈ Vz = Vg(x).
From g(x) ⩽ 𝛾, we infer, by Lemma 1 (A.3.2) that Vg(x) ⊂ V𝛾. Consequently, f ⟨x⟩ ∈ V𝛾

by Lemma 3 (A.3.2) implies f ⟨x⟩ ⊂ V𝛾. Therefore, rng f ⊂ V𝛾. By Lemma 1 (A.3.2)
rng f ∈ V𝛾+1 ⊂ V𝜘.

Lemma 4. If 𝜘 is an inaccessible cardinal number, A ∈ V𝜘, and f is a correspondence
from A into V𝜘 such that f ⟨x⟩ ∈ V𝜘 for every x ∈ A, then rng f ∈ V𝜘.
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Proof. Since 𝜘 is a limit ordinal number, V𝜘 = ∪⟮V𝛼 | 𝛼 ∈ 𝜘⟯. Therefore, A ∈ V𝛼 for
some 𝛼 ∈ 𝜘. By Lemma 3 (A.3.2), A ⊂ V𝛼. Define a correspondence g from V𝛼 into V𝜘,
setting g|A ≡ f and g⟨x⟩ ≡ ⌀ ⊂ V𝜘 for every x ∈ V𝛼\A. Then, dom g = V𝛼 and rng g =
rng f . If x ∈ A, then g⟨x⟩ = f ⟨x⟩ ∈ V𝜘, and if x ∈ V𝛼\A, then g⟨x⟩ = ⌀ ∈ V𝜘. Therefore,
by Lemma 3, we obtain rng f = rng g ∈ V𝜘.

Corollary 1. If 𝜘 is an inaccessible cardinal number and ⟮Ba | a ∈ A⟯ is a collection of
sets such that A ∈ V𝜘 and Ba ∈ V𝜘 for every a ∈ A, then⋃⟮Ba | a ∈ A⟯ ∈ V𝜘.

Corollary 2. If 𝜘 is an inaccessible cardinal number and A ∈ V𝜘, then ∪A ∈ V𝜘.

The following assertion is due to A. Tarski [1938] (see also [Kolmogorov and Dragalin,
1982, IX, § 1, Theorem 6]). Here, we present another proof of this assertion.

Lemma 5. If 𝜘 is an inaccessible cardinal number, A ⊂ V𝜘, and |A| < |V𝜘|, then
A ∈ V𝜘.

Proof. By Lemma 2 |A| ∈ |V𝜘| = 𝜘 ⊆ V𝜘. Consider the bijection b : |A| A ⊂ V𝜘.
Lemma 4 implies A = rng b ∈ V𝜘.

Lemma 6. If 𝜘 is an inaccessible cardinal number, 𝜀 is an ordinal number, and 𝜀 ∈ V𝜘,
then 𝜀 ∈ 𝜘.
Proof. Since V𝜘 = ⋃⟮V𝛼 | 𝛼 ∈ 𝜘⟯, it follows that 𝜀 ∈ V𝛼 for some 𝛼 ∈ 𝜘. By
Lemma 3 (A.3.2) 𝜀 ⊂ V𝛼. By Lemma 1 |𝜀| ⩽ |V𝛼| < 𝜘. Suppose that 𝜀 ⩾ 𝜘. Then, 𝜘 ⊂ 𝜀
implies 𝜘 = |𝜘| ⩽ |𝜀|, what contradicts the previous inequality. Hence, 𝜀 < 𝜘.
Consider the class Π ≡ {x | ∃𝛼 ∈ On(x ∈ V𝛼)} ≡ ∪⟮V𝛼 | 𝛼 ∈ On⟯.
Lemma 7 (the von Neumann identity). Π = V.
Proof. Show that Π satisfies the principle of ∈-induction. Introduce the function
ran : Π → On, setting ran(x) ≡ the smallest ordinal 𝛼 such that x ∈ V𝛼+1. It follows
from Lemma 1 (A.3.2) that all ordinal numbers are contained in Π. Check that x ⊂ Π
implies x ∈ Π for every set x. If x = ⌀, then, by Lemma 1 (A.3.2), x = 0 ∈ V1 ⊂ Π.
Let x ̸= ⌀. Consider the following formula of the ZF set theory: 𝜑(y, z) ≡ (y ∈ Π ⇒
z = ran(y)) ∧ (y ∉ Π ⇒ z = ⌀). By axiom scheme of replacement AS6, for the set x
there exists a set B such that ∀y ∈ x∀z(𝜑(y, z) ⇒ z ∈ B). If y ∈ x, then 𝜑(y, ran(y))
implies ran(y) ∈ B. Therefore, A ≡ {z ∈ B | ∃y ∈ x(z = ran(y))} ⊂ B. By axiom scheme
of separation AS3, A is a set. By Lemma 2 (A.2.2), 𝛼 ≡ ∪A = sup A is an ordinal
number. If y ∈ x, then z ≡ ran(y) ∈ A implies z ⩽ 𝛼. Therefore, by Lemma 1 (A.3.2),
y ∈ Vz+1 ⊂ V𝛼+1. Thus, x ⊂ V𝛼+1, where x ∈ P(V𝛼+1) ⊂ V𝛼+2 ⊂ Π. By the principle of
∈-induction, we now infer that Π = V.
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A.4 Universal sets and their connection with inaccessible
cumulative sets

A.4.1 Universal sets and their properties

A set U is called universal in the ZF set theory (see [MacLane, 1971, I, 6] and [Forster,
1995; Holmes, 1998]) if it has the following properties:
1) x ∈ U ⇒ x ⊂ U (the transitivity property);
2) x ∈ U ⇒ P(x), ∪x ∈ U;
3) x ∈ U ∧ y ∈ U ⇒ x ∪ y, {x, y}, ⟨x, y⟩, x ∗ y ∈ U;
4) x ∈ U ∧ (f ∈ Ux) ⇒ rng f ∈ U (the strong substitution property);
5) 𝜔 ∈ U.
Clearly, not all of these properties are independent.

The property that a set U is universal will be denoted by U⋈. Denote byU the class
(possibly, empty) of all universal sets. It immediately follows from the definition of
a universal set that the intersection ∩A ≡ {x | ∀U ∈ A(x ∈ U)} of any non-empty sub-
classA of the class of universal sets is a universal set. Let us deduce several properties
of universal sets from these conditions.

Lemma 1. If a set U is universal, then x ∈ U ∧ y ⊂ x ⇒ y ∈ U.
Proof. If x ∈ U, then (2) impliesP(x) ∈ U and (1) impliesP(x) ⊂ U. Since y ∈ P(x), we
have y ∈ U.
This lemma shows that a universal set is quasitransitive. This fact and the transitivity
property imply that a universal set is supertransitive.

Lemma 2. If a set U is universal, then⌀ ∈ U.
Proof. This follows directly from properties 1 and 5.

Lemma 3. Let ⟮Ai | i ∈ I⟯bea collection such that I ∈ U and Ai ∈ U for every i ∈ I. Then,
∪⟮Ai | i ∈ I⟯ ∈ U.
Proof. Consider the function f : I → U such that f (i) ≡ Ai. Then, (4) implies rng f ∈ U
and (2) implies ∪⟮Ai | i ∈ I⟯ = ∪ rng f ∈ U.
Lemma 4. If U is a universal set, then x ∈ U ⇒ |x| ∈ U.
Proof. Consider the class C ≡ {𝛼 ∈ On | 𝛼 ∉ U)}. Since the class On is not a set, the
class C is non-empty. Denote its minimal element by 𝜘. Suppose that there exists an
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element x ∈ U such that 𝛼 ≡ |x| ∉ U. Then, there exists a bijection f : 𝛼 → x. It follows
from 𝛼 ∈ C that 𝜘 ⩽ 𝛼. Since 𝜘 ⊂ 𝛼, we can consider themapping g ≡ f |𝜘. Themapping
g is a bijection from 𝜘 onto y ≡ rng g ⊂ x. The inclusion y ⊂ x implies y ∈ U. Hence,
h ≡ g−1 is a function from y ∈ U onto 𝜘 ∉ U. Since 𝜘 is a minimal element of then
class C, we have ∀𝛽 ∈ 𝜘(𝛽 ∈ U). Therefore, h(z) ∈ 𝜘 provides that h(z) ∈ U for every
z ∈ y. Then (4) implies 𝜘 ∈ U what contradicts the definition of 𝜘. This contradiction
yields ∀x ∈ U(|x| ∈ U).
Let us prove that in a universal set there exists a ∈-induction principle similar to the
∈-induction principle in the ZF set theory (see Lemma 4 (A.2.2)).

Lemma 5. Let U be an universal set, C ⊂ U, and ∀x ∈ U(x ⊂ C ⇒ x ∈ C). Then, C = U.

Proof. Suppose that C ̸= U, i. e. D ≡ U\C ̸= ⌀. Then, there is P ∈ D. It is clear that
P ∈ U. If P ∩D = ⌀, then put X ≡ P. Let P ∩D ̸= ⌀. Consider the set N consisting of all
n ∈ 𝜔 such that there is a unique sequence u ≡ u(n) ≡ (Rk ∈ U | k ∈ n + 1) of the sets
Rk ∈ U such thatR0 = P andRk+1 = ∪Rk for every k ∈ n. Since the sequence (Rk | k ∈ 1)
such that R0 ≡ P possesses this property, it follows that 0 ∈ N. Let n ∈ N, i. e. for n
there is a unique u ≡ (Rk ∈ U | k ∈ n + 1). Define the sequence v ≡ (Sk ∈ U | k ∈ n + 2)
setting Sk ≡ Rk ∈ U for every k ∈ n+1 and Sn+1 ≡ ∪Rn = ∪Sn, i. e. v = u∪{⟨n+1, ∪Rn⟩}.
Since U is an universal set, Rn ∈ U implies Sn+1 ∈ U. Clearly, v has the necessary prop-
erties. Check its uniqueness.

Suppose there is a sequencew ≡ (Tk ∈ U | k ∈ n+2) such that T0 = P and∀k ∈ n+
1(Tk+1 = ∪Tk). Consider the set M consisting of all m ∈ n + 2 such that
Sm = Tm. Put M ≡ 𝜔\(n + 2) and M ≡ M ∪ M. It follows from S0 = P = T0 that 0 ∈
M ⊂ M.

Let m ∈ M. If m = n + 1, then m + 1 = n + 2 ∈ M ⊂ M. If m < n + 1, then m + 1 ∈
n + 2 and Sm+1 = ∪Sm = ∪Tm = Tm+1 imply m + 1 ∈ M ⊂ M. If m ∈ M, then m + 1 ∈
M ⊂ M. Hence, m ∈ M guarantees that m + 1 ∈ M. By the principle of natural induc-
tion (Theorem 1 (1.2.6)), M = 𝜔. Thus, M = n + 2, and therefore, v = w, i. e. the se-
quence v is unique. Hence, n + 1 ∈ N. By the principle of natural induction, N = 𝜔.
Therefore, for every n ∈ 𝜔 there is a unique sequence u(n). Since it is unique, it will be
denoted by (Rn

k | k ∈ n + 1).
Consider the following formula of the ZF set theory: 𝜑(x, y) ≡ (x ∈ 𝜔 ⇒ y =

Rx
x) ∧ (x ∉ 𝜔 ⇒ y = ⌀). By the replacement axiom scheme (AS6) there exists a set Y

such that ∀x ∈ 𝜔(∀y(𝜑(x, y) ⇒ y ∈ Y)). If n ∈ 𝜔, then 𝜑(n, Rn
n) implies Rn

n ∈ Y. There-
fore, we can define in the set 𝜔 × Y the infinite sequence u ≡ (Rn ∈ Y | n ∈ 𝜔) setting
u ≡ {z ∈ 𝜔 × Y | ∃x ∈ 𝜔(z = ⟨x, Rx

x⟩)}. The property of uniqueness mentioned above
implies that u(m) = u(n)|(m + 1) for all m ⩽ n. Thus, u|(n + 1) = u(n). Hence, the
sequence u has the following properties: R0 = P and Rk+1 = ∪Rk for every k ∈ 𝜔.
Having the sequence u we can take the set A ≡ rng u ≡ {Rn | n ∈ 𝜔} ∈ U and the set
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Q ≡ ∪A = {y | ∃x ∈ 𝜔(y ∈ Rx)} = ∪⟮Rn | n ∈ 𝜔⟯ ∈ U. It is clear that Rn ⊂ Q for every
n ∈ 𝜔, and therefore, P = R0 ⊂ Q.

Since P∩D ̸= ⌀, we infer that R ≡ Q∩D ̸= ⌀. By regularity axiom A9, there exists
X ∈ R such that X ∩ R = ⌀. Clearly, X ∈ U and X ⊂ U. Check that X ∩ D = ⌀. Suppose
that there exists x ∈ X ∩ D. Since X ∈ Q, we infer that X ∈ Rn for some n ∈ 𝜔. There-
fore, x ∈ X ∈ Rn implies x ∈ ∪Rn = Rn+1 ⊂ Q. Thus, x ∈ R. As a result, we obtain x ∈
X ∩ R = ⌀, which is impossible. It follows from this contradiction that X ∈ D and
X ∩ D = ⌀.

Thus, X ∈ U and X ⊂ C in both the cases. Therefore, X ∈ C. This contradicts X ∈ D.
Hence, C = U.

For a universal set the following analogue of the von Neumann identity from
Lemma 7 (A.3.3) holds.

Lemma 6. Let U be a universal set. Then, V𝛼 ∈ U for every 𝛼 ∈ On ∩ U and U = ∪⟮V𝛼 ⊂
U | 𝛼 ∈ On ∩ U⟯.
Proof. Consider the sets A ≡ On∩U and C ≡ {𝛼 ∈ A | V𝛼 ∈ U} and classesC ≡ On\U
and C ≡ C ∪ C. By Lemma 7 (A.3.2) 0 = V0 = ⌀ ∈ U. Hence, 0 ∈ C. Let 𝛼 ∈ C. Sup-
pose that 𝛼 + 1 ∈ A. Since 𝛼 ∈ 𝛼 + 1 ∈ U, property 1 implies 𝛼 ∈ U, and therefore,
𝛼 ∈ A ∩ C = C. Then, it follows from V𝛼 ∈ U and properties 2 and 3 that V𝛼+1 =
V𝛼 ∪ P(V𝛼) ∈ U, where 𝛼 + 1 ∈ C ⊂ C. In the case 𝛼 + 1 ∉ A, we immediately get
𝛼 + 1 ∈ C ⊂ C.

Let 𝛼 be a limit ordinal number and 𝛼 ⊂ C. Supposse that 𝛼 ∈ A. If 𝛽 ∈ 𝛼, then
𝛽 ∈ 𝛼 ∈ U implies 𝛽 ∈ A ∩ C = C. Then, the condition V𝛽 ∈ U and Lemma 1 (A.3.3)
provide the equality V𝛼 = ∪⟮V𝛽 | 𝛽 ∈ 𝛼⟯ ∈ U. Hence, 𝛼 ∈ C ⊂ C. In the case 𝛼 ∉ A we
immediately get 𝛼 ∈ C ⊂ C.

By the principle of transfinite induction (Theorem 1 (A.2.2)), C = On, and there-
fore, C = A.

By the above, we have V𝛼 ⊂ U for every 𝛼 ∈ A, where P ≡ ∪⟮V𝛼 | 𝛼 ∈ A |⊂⟯U. Show
that P satisfies the ∈-induction principle from Lemma 5. Define the function r : P → A
setting r(p) ≡ sm{𝛼 ∈ A|p ∈ V𝛼} for every p ∈ P ⊂ U.

Let x ∈ U and x ⊂ P. If x = ⌀, then x ∈ P. In what follows, we assume that x ̸= ⌀.
If y ∈ x ⊂ P, then y ∈ V𝛼 for some 𝛼 ∈ A. Hence, it follows from r(y) ⩽ 𝛼 ∈ U and
Lemma 6 (A.3.2) that r(y) ∈ A. Therefore, we can consider the function s ≡ r|x from x
to A. By property 4, R ≡ rng s ∈ U and by property 2 𝜌 ≡ ∪R ∈ U. Since ⌀ ̸= R ⊂ On,
𝜌 is an ordinal number by virtue of Lemma 2 (A.2.2). Therefore, 𝜌 ∈ A.

If y ∈ x, then s(y) ⊂ 𝜌 implies y ∈ Vs(y) ⊂ V𝜌 due to Lemma 1 (A.3.2). According to
Lemma 2 (A.3.2), x ⊂ V𝜌 ∈ V𝜌+1 implies x ∈ V𝜌+1. Property 3 and 𝜌 + 1 = 𝜌 ∪ {𝜌} ∈ U
provide 𝜌 + 1 ∈ A. Therefore, x ∈ P.

Now, it follows from Lemma 5 that P = U.
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A.4.2 Description of the class of all universal sets

The following theorem is deduced from the Zermelo – Shepherdson theorem
(see [Zermelo, 1930] (incomplete proof) and [Shepherdson, 1951; 1952; 1953] (com-
plete proof)) on the canonical form of standard supertransitive model sets for the
NBG set theory in the ZF set theory (see A.6 below). Here, we give another proof.

Theorem 1.
1) Let U be an arbitrary universal set. Then, 𝜘 ≡ sup(On ∩ U) = ∪(On ∩ U) ⊂ U is an

inaccessible cardinal number and U = V𝜘.
2) The correspondence q : U → 𝜘 such that U = V𝜘 is is an isotone injective mapping

from the class U of all universal sets into the class In of all inaccessible cardinal
numbers.

Proof. 1. Since A ≡ On ∩ U contains the element 𝜔 by virtue of property 5 from the
definition of a universal set, A is non-empty. Hence, Lemma 2 (A.2.2) implies that 𝜘 is
an ordinal number.

Suppose that 𝜘 is not a cardinal number. Then, there are an ordinal number
𝛼 < 𝜘 and a bijective function f : 𝛼 → 𝜘. Since 𝛼 ∈ 𝜘 ⊂ U, we get 𝛼 ∈ U. If 𝛽 ∈ 𝛼, then
f (𝛽) ∈ U. Then, by property 4 𝜘 = rng f ∈ U and by property 3 {𝜘} ∈ U and 𝜘+ ≡
𝜘 ∪ {𝜘} ∈ U. It follows from 𝜘+ ∈ On that 𝜘+ ∈ A, i. e. 𝜘+ ⩽ 𝜘, which is impossible.
Having this contradiction, we infer that 𝜘 is a cardinal number.

Suppose now that 𝜘 is not regular. Then, 𝛼 ≡ cf (𝜘) < 𝜘. By definition, there is a
function f : 𝛼 → 𝜘 such that ∪ rng f = 𝜘. As above, we get 𝛼 ∈ U and f (𝛽) ∈ U for all
𝛽 ∈ 𝛼, where rng f ∈ U by virtue of property 4. Since∪ rng f ∈ U, property 2 guarantees
that 𝜘 ∈ U. Similarly to the previous indentation, we arrive at a contradiction. Hence,
𝜘 is a regular cardinal.

Let 𝜆 is a cardinal number such that 𝜆 < 𝜘. Since 𝜆 ∈ 𝜘 ⊂ U, property 2 implies
P(𝜆) ∈ U. By Lemma 4 (A.4.1), |P(𝜆)| ∈ U. Therefore, |P(𝜆)| ⩽ 𝜘. If we suppose that
𝜘 = |P(𝜆)| ∈ U, then, as above, we arrive at a contradiction. Hence, |P(𝜆)| < 𝜘.

Besides, 𝜔 ∈ U implies 𝜔+ 1 = 𝜔∪{𝜔} ∈ U. Then, it follows from𝜔 ∈ 𝜔+ 1 ∈ A that
𝜔 ∈ ∪A = 𝜘.

Prove now that U = V𝜘. As was shown above, 𝜘 is a limit ordinal number, where
V𝜘 = ∪⟮V𝛽 | 𝛽 ∈ 𝜘⟯. Lemma 6 (A.4.1) provides that U = ∪⟮V𝛼 | 𝛼 ∈ A⟯. If 𝛼 ∈ A, then𝛼 ⩽ 𝜘 implies V𝛼 ⊂ V𝜘. Hence, U ⊂ V𝜘. If 𝛽 ∈ 𝜘 = ∪A, then 𝛽 ∈ 𝛼 ∈ A for some 𝛼. By
property 1, 𝛽 ∈ A. Therefore, V𝜘 ⊂ U. Thus, U = V𝜘.

2. Lemma 1 (A.3.2) implies that 𝜘 is unique. Therefore, we can define the mapping
q : U → In such that q(U) = 𝜘, where U = V𝜘. Lemma 1 (A.3.2) also guarantees that q
is isotone.

Corollary 1. If U is a universal set, then |U| is an inaccessible cardinal number, |U| =
sup(On ∩ U), and U = V|U|.
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Proof. By Theorem 1 U = V𝜘 for the inaccessible cardinal number 𝜘 ≡ sup(On ∩ U).
By Lemma 2 (A.3.3) 𝜘 = |V𝜘| = |U|.
Corollary 2. If U is a universal set, then |U| = sup(|V𝛼| | 𝛼 ∈ On ∩ U).
Proof. By Theorem 1, U = V𝜘 for the inaccessible cardinal number 𝜘 ≡ sup A, where
A ≡ On ∩ U. Since 𝜘 is a limit ordinal number, Corollary 1 to Theorem 1 (A.3.2) implies
|V𝛼| = sup(|V𝛼| | 𝛼 ∈ 𝜘). If 𝛼 ∈ 𝜘, then 𝛼 ∈ a for some a ∈ A. By the transitivity prop-
erty we get 𝛼 ∈ A. Conversely if 𝛼 ∈ A, then 𝛼 ⩽ 𝜘. Suppose that 𝛼 = 𝜘. Then, 𝜘 ∈ U.
However, in the proof of Theorem 1 we obtain that the condition 𝜘 ∈ U leads to a con-
tradiction. Hence, 𝛼 ∈ 𝜘.
Theorem 2. For any set U the following conclusions are equivalent:
1) U is a inaccessible cumulative set;
2) U is a universal set.

Proof. (1) ⊢ (2). Let U = V𝜘 for some inaccessible cardinal number 𝜘. Show that the
set U possesses each of five properties from the definition of a universal set.

The property x ∈ U ⇒ x ⊂ U follows from Lemma 3 (A.3.2). The property x ∈ U ⇒
P(x) ∈ U follows from Lemma 6 (A.3.2). The property x ∈ U ∧ y ∈ U ⇒ x ∪ y ∈ U
follows from Lemma 5 (A.3.2). Corollaries 1 and 2 to Lemma 6 (A.3.2) implies the
property x ∈ U ∧ y ∈ U ⇒ {x, y}, ⟨x, y⟩, x × y ∈ U. The property 𝜔 ∈ U follows from
Lemma 7 (A.3.2). Lemma 4 (A.3.3) and its Corollaries implies the properties x ∈ U ⇒
∪x ∈ U and x ∈ U ∧ (f ∈ Ux) ⇒ rng f ∈ U.

Thus, the set U is universal.
(2) ⊢ (1). This deduction follows directly from Theorem 1.

Corollary 1. The mapping q : U In from Theorem 1 is an isotone bijection.

Thus, the cardinalities of universal sets exhaust all inaccessible cardinal numbers.
The last theorem allows us to make the following conclusions on the structure of

the class U ≡ {U | U⋈} of all universal sets.
The relation ∈ ∪ = is an order relation on the class U. It will be denoted by ⩽, i. e.

U ⩽ V if U ∈ V or U = V. Lemma 3 (A.3.2) guarantees that the class U is transitive.
Hence, U ∈ V implies U ⊂ V, and therefore, U ⩽ V implies U ⊂ V. Prove that these
relations are equivalent.

Proposition 1. Let U and V be universal sets. Then, the relation U ⩽ V is equivalent to
the relation U ⊂ V.

Proof. We only need to verify that U ⊂ V implies U ⩽ V. By Theorem 1 U = V𝜋 and
V = V𝜘 for some inaccessible cardinal numbers 𝜋 è 𝜘. If 𝜋 = 𝜘, then U = V𝜋 = V𝜘 = V.
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If 𝜋 < 𝜘, then by Lemma 1 (A.3.2) U = V𝜋 ∈ V𝜘 = V. Finally, if 𝜋 > 𝜘, then by the same
lemma V = V𝜘 ∈ V𝜋 = U ⊂ V, which is impossible. Hence, U ⩽ V.

Theorem 3. Let the class U of all universal sets is non-empty in the ZF set theory. Then,
it is well-ordered with respect to the order ⊂. Moreover, any non-empty subclass of the
class U has a minimal element.

Proof. Let ⌀ ̸= A ⊂ U, i. e. ∀U ∈ A(U⋈). The isotone injection q : U On from
Theorem 1 maps a class A to some subclass B ≡ q[A] ≡ {x | x ∈ On ∧ ∃U ∈ A(x =
q(U))} of the class On. By Lemma 1 (A.2.2) it has a minimal element 𝜋, which is an
inaccessible cardinal. Since 𝜋 ∈ B, we have 𝜋 = q(U) for some U ∈ A, i. e. U = V𝜋.
Since q is injective and strictly monotone, U is a minimal element in the class A.

A.4.3 Enumeration of the class of all universal sets in the ZF+AU set theory and the
structural form of the universality axiom

Now, we shall consider the ZF set theory with some additional axioms. The first of
them is the universality axiom, whichmeans that for any set X there exists a universal
set containing X.

AU. (The universality axiom.) ∀X∃U(U⋈ ∧ X ∈ U).
Consider the following class in the ZF+AU set theory:

G ≡ {Z | ∃X∃Y(Z = ⟨X, Y⟩ ∧ ((X = ⌀ ⇒ Y = ∩{U | U⋈}) ∨
(X ̸= ⌀ ⇒ (¬func(X) ⇒ Y = ⌀) ∨

(func(X) ⇒ (¬On(dom X) ⇒ Y = ⌀) ∨
∨ (On(dom X) ⇒ (Son(dom X) ⇒ Y = ∩{U | U ⋈ ∧ X(dom X − 1) ∈ U}) ∨

(Lon(dom X) ⇒ Y = ∩{U | U ⋈ ∧ ∩ rng X ⊂ U}))))))}.
If we reformulate the definition of the class G less formally, then we can say that G
consists of all pairs ⟨X, Y⟩ such that the following fivemutually exclusive possibilities
take place:

i) if X = ⌀, then Y is the intersection of all universal sets (the existence of a non-
empty intersection follows from the universality axiom);

ii) if X ̸= ⌀ and X is not a function, then Y = ⌀;
iii) if X ̸= ⌀, X is a function, and dom X is not ordinal number, then Y = ⌀;
iv) if X ̸= ⌀, X is a function, dom X is an ordinal number, and dom X = 𝛼 + 1, then Y

is the intersection of all universal sets U such that X(𝛼) ∈ U (the existence of this
non-empty intersection follows from the universality axiom);
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v) if X ̸= ⌀, X is a function, and dom X is a limit ordinal number, then Y is the
intersection of all universal sets U such that ∪ rng X ⊂ U (the existence of this
non-empty intersection follows from the universality axiom).

As in A.3.1 we can check that the class G is a function from V to V.
By Theorem 2 (A.2.2) there exists a function F : On → V such that F(𝛼) = G(F|𝛼).

For every 𝛼 ∈ On.
Case i) for the function G implies that F(⌀) = G(F|⌀) = G(⌀) = ∩{U | U⋈}.
It follows from case iv) that if 𝛽 is a subsequent ordinal number and 𝛽 = 𝛼+1, then

F(𝛽) = G(F|𝛽) = ∩ {U | U ⋈ ∧ F(𝛼) ∈ U}.
Finally, case v) implies that if 𝛼 is a limit ordinal number, then F(𝛼) = G(F|𝛼) =

∩{U | U ⋈ ∧ ∪ ⟮F(𝛽) | 𝛽 ∈ 𝛼⟯ ⊂ U}.
Denote F(𝛼) by U𝛼. We have obtained the collection (U𝛼 ∈ U | 𝛼 ∈ On) possessing

the following properties:
1) U0 = ∩⟮U | U⋈⟯;
2) U𝛼+1 = ∩{U | U ⋈ ∧ U𝛼 ∈ U};
3) U𝛼 = ∩{U | U ⋈ ∧ ∪ ⟮U𝛽 | 𝛽 ∈ 𝛼⟯ ⊂ U} for any limit ordinal number 𝛼.
Let us establish several properties of this collection.

Lemma 1. In the ZF+AU set theory, the collection (U𝛼 ∈ U | 𝛼 ∈ On) has the following
properties:
1) 𝛼 ∈ 𝛽 ⇔ U𝛼 ∈ U𝛽 (strict increasing);
2) U0 is the minimal universal set (initiality);
3) if V is a universal set and U0 ⊂ V ∈ U𝛼, then V = U𝛽 for some 𝛽 ∈ 𝛼 (incompress-

ibility);
4) if V is a universal set, then V = U𝛼 for some 𝛼 (surjectivity);
5) 𝛼 ⊂ U𝛼 (absorptivity).

Proof. 1. Prove by transfinite induction that (𝛼 ∈ 𝛽 ⇒ U𝛼 ∈ U𝛽) for every ordinal num-
ber 𝛽.

If 𝛽 = 0, then it follows from ∀𝛼¬(𝛼 ∈ 𝛽).
Let ∀𝛼(𝛼 ∈ 𝛽 ⇒ U𝛼 ∈ U𝛽) for some ordinal number 𝛽. Consider the ordinal num-

ber 𝛽 + 1. It follows from 𝛼 ∈ 𝛽 + 1 that 𝛼 ∈ 𝛽 ∨ 𝛼 = 𝛽. If 𝛼 ∈ 𝛽, then by the inductive
assumption U𝛼 ∈ U𝛽 and U𝛼 ∈ U𝛽+1 because U𝛽 ⊂ U𝛽+1. If 𝛼 = 𝛽, then U𝛼 = U𝛽 ∈ U𝛽+1.
Hence, for 𝛽 + 1 we get 𝛼 ∈ 𝛽 + 1⇒ U𝛼 ∈ U𝛽+1.

Now, suppose that 𝛽 is a limit ordinal number and ∀𝛾 ∈ 𝛽∀𝛼(𝛼 ∈ 𝛾 ⇒ U𝛼 ∈ U𝛾).
Let𝛼 ∈ 𝛽. Since𝛽 is a limit ordinal number,we have𝛼+1 ∈ 𝛽. Since∪⟮U𝛾 | 𝛾 ∈ 𝛽⟯ ⊂ U𝛽,
we obtain U𝛼+1 ⊂ U𝛽. In this case,U𝛼 ∈ U𝛼+1 implies U𝛼 ∈ U𝛽.

Clearly, 𝛼 = 𝛽 ⇒ U𝛼 = U𝛽. Since U𝛼 = U𝛽 for 𝛼 = 𝛽 and U𝛽 ∈ U𝛼 for 𝛽 ∈ 𝛼, U𝛼 ∈ U𝛽

implies 𝛼 ∈ 𝛽.
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2. This property holds by construction.
3. Let V be an arbitrary universal set. If V = U0, then the property is proved.
Suppose that V ̸= U0.
Consider the class A ≡ {𝛼 ∈ On | U𝛼 ∈ V}. By construction U0 ⊂ V. By Proposi-

tion 1 (A.4.2) U0 ∈ V. Therefore, 0 ∈ A.
Consider the class F ≡ {z | ∃x ∈ A∃y ∈ In(z = ⟨x, y⟩ ∧ y = q(Ux))}, where q is the

mapping from Theorem 1 (A.4.2). It is clear that F is a mapping fromA into In. If 𝛼 ∈ A,
then F(𝛼) = q(U𝛼) ∈ q(V). Therefore, rng F ⊂ q(V). This implies that B ≡ rng F is a set.
Let 𝛼, 𝛽 ∈ A and 𝛼 ̸= 𝛽. If 𝛼 ∈ 𝛽, then property 1 proven above implies U𝛼 ∈ U𝛽. Since
q is isotone, we get F(𝛼) < F(𝛽). If 𝛽 ∈ 𝛼, then similarly, F(𝛽) < F(𝛼). This means that
the mapping F : A→ B is bijective and the inverse mapping F−1 : B A is defined.
Since B is a set, the replacement axiom scheme AS6 implies that A = rng F−1 is a set.
Therefore, in what follows, instead of A, we will write A.

Consider the non-empty class C ≡ On\A and its minimal element 𝛽. Clearly,
U𝛽 ∉ V. Then, by Proposition 1 (A.4.2) V ⊂ U𝛽. If V = U𝛽, then the property is proven.

Suppose V ∈ U𝛽 and 𝛽 = 𝛾 + 1. Then, 𝛾 ∈ A implies U𝛾 ∈ V, and therefore, prop-
erty 2 of the collection (U𝛼 ∈ U | 𝛼 ∈ On) provides U𝛽 ⊂ V. Thus, in this case,
V = U𝛽.

Suppose that 𝛽 is limit. If 𝛾 ∈ 𝛽, then 𝛾 ∈ A implies U𝛾 ∈ V and, according to the
transitivity property, we have U𝛾 ⊂ V . Hence, ∪⟮U𝛾 | 𝛾 ∈ 𝛽⟯ ⊂ V. In view of property 3
of the collection (U𝛼 ∈ U | 𝛼 ∈ On), this entails U𝛽 ⊂ V. Thus, in this case, we also
have V = U𝛽.

4. This property follows from properties 1 and 3 proven above.
5. Using property 1 and induction prove that 𝛼 ⊂ U𝛼 for every 𝛼. It is clear that

𝛼 = 0 = ⌀ ⊂ U0.
Let 𝛼 ⊂ U𝛼. Since 𝛼 + 1 ≡ 𝛼 ∪ {𝛼}, it follows from 𝛼 ⊂ U𝛼 ∈ U𝛼+1 that 𝛼 ∈ U𝛼+1.

Therefore, {𝛼} ∈ U𝛼+1. The transitivity properties 𝛼 ⊂ U𝛼+1 and {𝛼} ⊂ U𝛼+1 imply
𝛼 + 1 ⊂ U𝛼+1.

Let 𝛼 be a limit ordinal number and 𝛽 ⊂ U𝛽 for every 𝛽 ∈ 𝛼. Lemmas 2 and 3 (A.2.2)
𝛼 = sup 𝛼 = ∪𝛼 = ∪⟮𝛽 | 𝛽 ∈ 𝛼⟯. Since 𝛽 ⊂ U𝛽 ⊂ U𝛼, we get 𝛼 = ∪𝛼 ⊂ U𝛼.

This lemma implies that the collection (U𝛼 ∈ U | 𝛼 ∈ On) is a natural enumeration of
the class of all universal sets in the ZF+AU theory. The following lemma shows that
this enumeration is unique.

Lemma 2. In the ZF+AUset theory, the collection (U𝛼 ∈ U | 𝛼 ∈ On)with properties 1 – 3
from Lemma 1 is unique.

Proof. Assume that there exists a collection (W𝛼 ∈ U | 𝛼 ∈ On) possessing the proper-
ties 1 – 3 from Lemma 1. Consider the classes A ≡ {𝛼 ∈ On | U𝛼 = W𝛼} and B = On\A.
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Since U0 = W0, we get 0 ∈ A. Suppose that B ̸= ⌀. Then, by Theorem 3 (A.4.2) there
is 𝛽 = smB. If U𝛽 ∈ W𝛽, then the condition W0 = U0 ⊂ U𝛽 ∈ W𝛽 implies U𝛽 = W𝛾 for
some 𝛾 ∈ 𝛽 by virtue of property 3.

It follows from 𝛾 ∈ A thatW𝛾 = U𝛾, and therefore, U𝛽 = U𝛾 and 𝛾 ∈ 𝛽. This contra-
dicts property 1. IfW𝛽 ∈ U𝛽, then we arrive to a contradiction in a similar way. Hence,
U𝛽 = W𝛽 by virtue of Theorem 3 (A.4.2) and Proposition 1 (A.4.2). However, this contra-
dicts the definition of the class B. Thus, we arrive to a contradiction. Therefore, B = ⌀
and A = On.
Below, we shall also consider the following inaccessibility axiom, which means
that for any ordinal number 𝛼 there is an inaccessible cardinal number greater
than 𝛼.

AI. (The inaccessibility axiom.) ∀𝛼(On(𝛼) ⇒ ∃𝜘(Icn(𝜘) ∧ 𝛼 ∈ 𝜘))
The following theorem yields the structural form of the universality axiom.

Theorem 1. In the ZF set theory, the following conclusions are equivalent:
1) AU;
2) there is collection (U𝛼 ∈ U | 𝛼 ∈ On) of universal sets having properties 1 – 5 from

Lemma 1;
3) AI.

Proof. (1) ⊢ (2). This deduction was proven in Lemma 1.
(2) ⊢ (3). Take an arbitrary order number 𝛼. By Corollary 1 to Theorem 2 (1.3.2)

(see also Remark before Theorem 1 (A.2.2)), there is a cardinal number 𝛽 such that
𝛼 < 𝛽. By property 5, 𝛽 ⊂ U𝛽. Consider the cardinal number 𝜘 ≡ |U𝛽+1|. The univer-
sality implies 𝛽 ∈ U𝛽+1, and therefore, 𝛽 ⊂ U𝛽+1. Hence, 𝛽 = |𝛽| ⩽ |U𝛽+1| ≡ 𝜘. Suppose
that 𝛽 = 𝜘. Then, 𝜘 ∈ U𝛽+1 implies P(𝜘) ∈ U𝛽+1, and therefore, P(𝜘) ⊂ U𝛽+1. Applying
the Cantor theorem on the cardinality of the set of all subsets (Theorem 2 (1.3.2)),
we get 𝜘 = |𝜘| < |P(𝜘)| ⩽ |U𝛽+1| ≡ 𝜘. It follows from this contradiction that 𝛽 < 𝜘.
Therefore, 𝛼 < 𝜘. By Corollary 1 to Theorem 1 (A.4.2) 𝜘 is an inaccessible cardinal
number.

(3) ⊢ (1). Lemma 7 (A.3.3) guarantees that X ∈ V𝛼 for some ordinal number 𝛼.
By condition 3, 𝛼 < 𝜘 for some inaccessible cardinal number 𝜘. By Lemma 1 (A.3.2)
V𝛼 ∈ V𝜘. By virtue of Theorem 2 (A.4.2) the set V𝜘 is universal. By Corollary 1 to
Lemma 3 (A.3.2) V𝛼 ⊂ V𝜘. Thus, X ∈ V𝜘.

Note that the equivalence of the universality and inaccessibility axiomswas proven in
[Da Costa and Caroli, 1967] by another method. Theorem 1 shows the structure of the
class of all universal sets in the ZF+AU set theory. The amount of all universal sets and
is the same as that of ordinal numbers in the ZF set theory.
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A.4.4 Enumeration of the class of all inaccessible cardinals in the ZF+AI theory and
the structural form of the inaccessibility axiom

Now, let us enumerate all inaccessible cardinal numbers in the ZF+AI set theory.
For this purpose, consider the class

G ≡ {Z | ∃X∃Y(Z = ⟨X, Y⟩ ∧ ((X = ⌀ ⇒ Y = sm{𝜘 | Icn(𝜘)}) ∨
(X ̸= ⌀ ⇒ (¬func(X) ⇒ Y = ⌀) ∨

(func(X) ⇒ (¬On(dom X) ⇒ Y = ⌀) ∨
∨ (On(dom X) ⇒ (rng X ̸⊂ On ⇒ Y = ⌀) ∨

∨ (rng X ⊂ On ⇒ (Son(dom X) ⇒ Y = sm{𝜘 | Icn(𝜘) ∧ X(dom X − 1) ∈ 𝜘}) ∨
(Lon(dom X) ⇒ Y = sm{𝜘 | Icn(𝜘) ∧ ∪ rng X ⊂ U})))))))}.

If we reformulate the definition of the class G less formally, then we can say that G
consists of all pairs ⟨X, Y⟩ such that the following six mutually exclusive possibilities
take place:
(i) if X = ⌀, then Y is is a minimal inaccessible cardinal number (its existence fol-

lows from the inaccessibility axiom);
(ii) if X ̸= ⌀ and X is not a function, then Y = ⌀;
(iii) if X ̸= ⌀, X is a function, and dom X is not ordinal number, then Y = ⌀;
(iv) if X ̸= ⌀, X is a function, dom X is an ordinal number, and rng X ̸⊂ On, then Y =

⌀;
(v) if X ̸= ⌀, X is a function, dom X is an ordinal number, rng X ⊂ On, and

dom X = 𝛼 + 1, then Y is minimal among all inaccessible cardinals 𝜘 such that
X(𝛼) ∈ 𝜘 (its existence follows from the inaccessibility axiom);

(vi) if X ̸= ⌀, X is a function, rng X ⊂ On, and dom X is a limit ordinal number, then
Y is is minimal among all inaccessible cardinals 𝜘 such that ∪ rng X ⊂ 𝜘 (its ex-
istence follows from Lemmas 1 and 2 (A.2.2), the inaccessibility axiom, and the
transitivity of 𝜘).

As in A.3.1 we can check that the class G is a function from V to V.
By Theorem 2 (A.2.2) there exists a function F : On → V such that F(𝛼) = G(F|𝛼).

for every 𝛼 ∈ On.
Case i) for the function G implies that F(⌀) = G(F|⌀) = G(⌀) = sm{𝜘 | Icn(𝜘)}.
It follows from case v) that if 𝛽 is a subsequent ordinal number and 𝛽 = 𝛼+ 1, then

F(𝛽) = G(F|𝛽) = sm{𝜘 | Icn(𝜘) ∧ F(𝛼) ∈ 𝜘}.
Finally, case vi) implies that if 𝛼 is a limit ordinal number, then F(𝛼) = G(F|𝛼) =

sm{𝜘 | Icn(𝜘) ∧ ∪ ⟮F(𝛽) | 𝛽 ∈ 𝛼⟯ ⊂ 𝜘}.
Denote F(𝛼) by q𝛼. We have obtained the collection (q𝛼 ∈ In | 𝛼 ∈ On) of inacces-

sible cardinal numbers possessing the following properties:
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1) q0 = sm{𝜘 | Icn(𝜘)};
2) q𝛼+1 = sm{𝜘 | Icn(𝜘) ∧ q𝛼 ∈ 𝜘};
3) q𝛼 = sm{𝜘 | Icn(𝜘) ∧ ∪ ⟮q𝛽 | 𝛽 ∈ 𝛼⟯ ⊂ 𝜘} for any limit ordinal number 𝛼.
Let us establish several properties of this collection.

Lemma 1. In the ZF+AI set theory, the collection (q𝛼 ∈ In | 𝛼 ∈ On) has the following
properties:
1) 𝛼 ∈ 𝛽 ⇔ q𝛼 ∈ q𝛽 (strict increasing);
2) q0 is a minimal inaccessible cardinal number (initiality);
3) if p is an inaccessible cardinal and q0 ⊂ p ∈ q𝛼, then p = q𝛽 for some 𝛽 ∈ 𝛼

(incompressibility);
4) if p is an inaccessible cardinal, then p = q𝛼 for some 𝛼 (surjectivity);
5) 𝛼 ⊂ q𝛼 (absorptivity).

The proof is analogous to the proof of Lemma 1 (A.4.3). However, it can be obtained
from Lemma 1 (A.4.3) by using the isotone bijection q : U In from the Corollary 1
to Theorem 2 (A.4.2).

Lemma 2. In the ZF+AI set theory, the collection (q𝛼 ∈ In | 𝛼 ∈ On)with properties 1 – 3
from Lemma 1 is unique.

The proof is analogous to the proof of Lemma 2 (A.4.3).
The following theorem yields the structural form of the inaccessibility axiom.

Theorem 1. In the ZF set theory, the following conclusions are equivalent:
1) the inaccessibility axiom AI;
2) there is collection (q𝛼 ∈ In | 𝛼 ∈ On) of inaccessible cardinal numbers having prop-

erties 1 – 5 from Lemma 1.

Proof. (1) ⊢ (2). This deduction was proven in Lemma 1.
(2) ⊢ (1). Consider an arbitrary order number 𝛼. It follows from properties 5 and

1 that 𝛼 ⊂ q𝛼 ∈ q𝛼+1 ≡ 𝛽 and 𝛼 ̸= 𝛽. The transitivity implies 𝛼 ⊂ q𝛼 ⊂ 𝛽, and therefore,
the non-empty set 𝛽\𝛼 has a minimal element y. Check that 𝛼 = y.

If x ∈ y, then x ∈ y ∈ 𝛽 implies x ∈ 𝛽. Since x < y, we get x ∈ 𝛼. This means that
y ⊂ 𝛼. Conversely, let x ∈ 𝛼. It follows from y ∉ 𝛼 that y ̸= x.

If y ∈ x, then y ∈ x ∈ 𝛼 implies y ∈ 𝛼. Therefore, y ∈ 𝛼 ∩ (𝛽\𝛼) = ⌀. This contra-
diction provides x ∈ y. As a result, we obtain 𝛼 ⊂ y, and therefore, 𝛼 = y ∈ 𝛽.
Theorem 1 shows the structure of the class of all inaccessible cardinal numbers in the
ZF+AI set theory. The amount of all inaccessible cardinal numbers is the same as that
of ordinal numbers in the ZF set theory.

Now, let us connect the collections (V𝛼 ∈ V | 𝛼 ∈ On), (U𝛼 ∈ U | 𝛼 ∈ On), and(q𝛼 ∈ In | 𝛼 ∈ On) with each other.
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Theorem 2. In the equivalent ZF+AU and ZF+AI set theories, the equality Vq𝛼 = U𝛼

holds for every ordinal number 𝛼.
Proof. Since Vq0 is a universal set by virtue of Theorem 2 (A.4.2), we get U0 ⊂ Vq0 .
Let U be an arbitrary universal set. By Theorem 1 (A.4.2), U = V𝜘 for some inaccessible
cardinal number 𝜘. Lemma 1 provides 𝜘 = q𝛼 for some 𝛼. Since q0 ⊂ q𝛼, we see that
Vq0 ⊂ Vq𝛼 = V𝜘 = U. Therefore, Vq0 ⊂ ∩{U | U⋈} = U0. As a result, we have Vq0 = U0.

Consider the non-empty class A ≡ {𝛼 ∈ On | Vq𝛼 = U𝛼} and the class B ≡ On\A.
Suppose that B ̸= ⌀. Then, there is a number 𝛽 ≡ smB > 0. Consider universal sets
Vq𝛽 and U𝛽.

Suppose that Vq𝛽 ∈ U𝛽. Then, according to Lemma 1 (A.4.3), the condition U0 =
Vq0 ⊂ Vq𝛽 ∈ U𝛽 implies Vq𝛽 = U𝛾 for some 𝛾 ∈ 𝛽. It follows from 𝛾 < 𝛽 that 𝛾 ∈ A,
and therefore, Vq𝛾 = U𝛾. As a result, we obtain the equality Vq𝛽 = Vq𝛾 . Applying
Lemma 1 (A.3.2), we conclude that q𝛽 = q𝛾 and 𝛾 ∈ 𝛽, but this contradicts Lemma 1.

On the other hand, suppose that U𝛽 ∈ Vq𝛽 . Since U𝛽 is a universal set, by Theo-
rem 1 (A.4.2) we get U𝛽 = V𝜘 for some inaccessible cardinal number 𝜘. Then, it fol-
lows from Vq0 = U0 ⊂ U𝛽 = V𝜘 ∈ Vq𝛽 that q0 ⊂ 𝜘 ∈ q𝛽 in view of Lemma 1 (A.3.2). By
virtue of Lemma 1 this implies 𝜘 = q𝛾 for some 𝛾 ∈ 𝛽. Since 𝛾 ∈ A, we get Vq𝛾 = U𝛾. As
a result, we obtain the equality U𝛽 = V𝜘 = Vq𝛾 = U𝛾, where 𝛾 ∈ 𝛽, but this contradicts
Lemma 1 (A.4.3).

Using Theorem 3 (A.4.2) and Proposition 1 (A.4.2), we conclude that Vq𝛽 = U𝛽.
But this contradicts the definition of the class B. Hence, B = ⌀ and A = On.
Corollary 1. In the equivalent ZF+AU and ZF+AI set theories, the equality |U𝛼| = q𝛼
holds for every ordinal number 𝛼.
Proof. By Theorem 2 and Lemma 2 (A.3.3), we get |U𝛼| = |Vq𝛼 | = q𝛼.

A.5 Weak forms of the universality and inaccessibility axioms

A.5.1 The 𝜔-universality and 𝜔-inaccessibility axioms

Along with universality axiom AU, the following weaker 𝜔-universality axiom is con-
sidered in the ZF set theory.

AU(𝜔). (The 𝜔-universality axiom.) ∃X(∀U ∈ X(U⋈) ∧ X ̸= ⌀ ∧ ∀U ∈ X∃V ∈ X
(U ∈ V)).

The explanation of such a name of this axiom is given by the following theorem
and proposition, which is proven using Theorem 1 (A.4.2).

Theorem 1. In the ZF set theory, the following conclusions are equivalent:
1) AU(𝜔);

 EBSCOhost - printed on 2/10/2023 4:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



A.5.1 The 𝜔-universality and 𝜔-inaccessibility axioms | 225

2) for every n ∈ 𝜔 there exists a finite set of universal sets with the cardinality n + 1;
3) for every n ∈ 𝜔, there exists a finite sequence u ≡ (Uk | k ∈ n + 1) of universal sets

such that Uk ∈ Ul for any k ∈ l ∈ n + 1, i. e. the sequence u is strictly increasing;
4) there exists a universal set U∗ and for every n ∈ 𝜔 there is a unique finite strictly

increasing sequence u(n) ≡ (Un
k | k ∈ n+ 1) of universal sets such that Un

0 = U∗ and
if V is a universal set and Un

0 ⩽ V ⩽ Un
n , then V = Un

k for some k ∈ n + 1 (the incom-
pressibility property);

5) there exists a denumerable set of universal sets;
6) there exists an infinite sequence u ≡ (Un | n ∈ 𝜔) of universal sets such that Uk < Ul

for some k ∈ l ∈ 𝜔, i. e. the sequence u is strictly increasing;
7) there exists an infinite strictly increasing sequence u ≡ (Un | n ∈ 𝜔) of universal sets

such that if n ∈ 𝜔, V is a universal set, and U0 ⩽ V ⩽ Un, then V = Uk for some k ∈
n + 1 (the incompressibility property);

8) there exists an infinite set of universal sets.

Proof. (1) ⊢ (4). Consider a non-empty set W whose existence is ensured by axiom
AU(𝜔). Consider also the non-empty class W ≡ {x | x ⋈ ∧ ∃y ∈ W(x ⩽ y)}. If x ∈ W,
then x ⩽ y for some y ∈ W. AxiomAU(𝜔) guarantees that for y ∈ W there is z ∈ W such
that y < z. Hence, x < z ∈ W. Thus, for the classW, all the properties are listed in for-
mula AU(𝜔).

Since⌀ ̸= W ⊂ U, by Theorem 3 (A.4.2) there is a minimal element U∗ inW. Since
U∗ ⩽ y for every y ∈ W, we get W∗ ∈ W. The class W has the following property: if
z ∈ U and z ⩽ y for some y ∈ W, then z ∈ W.

Consider the set N consisting of all n ∈ 𝜔 such that there is a unique finite strictly
increasing sequence u = u(n) ≡ (Uk ∈ W | k ∈ n + 1) such that U0 = U∗ and if V is a
universal set and U0 ⩽ V ⩽ Un, then V = Uk for some k ∈ n + 1.

Since the sequence (Uk ∈ W | k ∈ (1) such that U0 ≡ U∗ has all the properties
listed above, we see that 0 ∈ N. Let n ∈ N. By the property of the classW for Un ∈ W
there is z ∈ W such that Un < z. Hence, the class J ≡ {x ∈ W | Un < x} is non-empty.
Therefore, by Theorem 3 (A.4.2) it has a minimal element A.

Now,we can define the sequence v ≡ (Pk ∈ W | k ∈ n+2) setting Pk ≡ Uk for every
k ∈ n + 1 and Pn+1 ≡ A, i. e. v = u ∪ {⟨n + 1, A⟩}. It is clear that, P0 = U∗ and Pk < Pl for
all k ∈ l ∈ n+2. Let V ∈ U and P0 ⩽ V < Pn+1. Then, V ∈ W and U0 ⩽ V < A. If V = Un,
then V = Pn. If V < Un, then U0 ⩽ V < Un implies V = Uk = Pk for some k ∈ n. Finally,
if V > Un, then V ∈ J. This means that A ⩽ V, but it contradicts the property V < A,
and therefore, this case is impossible. In the previous two cases, we have V = Pk for
some k ∈ n+ 1. This means that the sequence v possesses necessary properties. Check
its uniqueness.

Suppose that there exists a strictly increasing sequence w ≡ (Vk ∈ W | k ∈ n + 2)
such that V0 = U∗, and if V ∈ U and V0 ⩽ V < Vn+1, then V = Vk for some k ∈ n + 1.
Since the sequence w|n + 1 ≡ (Vk ∈ W | k ∈ n + 1) has all the properties listed above
for n, the uniqueness of the sequence u implies u = w|(n + 1), i. e. Vk = Uk ≡ Pk for all
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k ∈ n + 1. If Vn+1 < Pn+1, then P0 = V0 ⩽ Vn+1 < Pn+1 implies by above Vn+1 = Pk = Vk
for some k ∈ n+1, which is impossible. If Pn+1 < Vn+1, then V0 = P0 ⩽ Pn+1 < Vn+1 simi-
larly implies Pn+1 = Vk = Pk for some k ∈ n+1, which is also impossible. Hence, Vn+1 =
Pn+1. Thus, the uniqueness of the sequence v is proven, where n+ 1 ∈ N. By the princi-
ple of natural induction, N = 𝜔. Therefore, for every n ∈ 𝜔, there exists the indicated
unique sequence u(n). Its uniqueness allows us to denote it by (Un

k | k ∈ n + 1).
4. ⊢ (7). Consider the following formula of the ZF set theory: 𝜑(x, y) ≡ (x ∈ 𝜔 ⇒

y = Ux
x ) ∧ (x ∉ 𝜔 ⇒ y = ⌀). By the replacement axiom scheme AS6 for 𝜔 there is a

set Y such that ∀x ∈ 𝜔(∀y(𝜑(x, y) ⇒ y ∈ Y)). If n ∈ 𝜔, then 𝜑(n, Un
n ) implies Un

n ∈ Y.
Therefore, we can define the infinite sequence u ≡ (Un ∈ Y | n ∈ 𝜔) setting u ≡ {z ∈
𝜔×Y | ∃x ∈ 𝜔(z = ⟨x, Ux

x⟩)}. The property of uniquenessmentioned above guarantees
that u(m) = u(n)|m+ 1 for allm ⩽ n. Hence, u|n+ 1 = u(n). It is clear that the sequence
u possesses necessary properties. (6) ⊢ (1). Consider the following formula of the ZF
set theory: 𝜑(x, y) ≡ (x ∈ 𝜔 ⇒ y = Ux) ∧ (x ∉ 𝜔 ⇒ y = ⌀). By the replacement axiom
schemeAS6 for𝜔, there is a set Y such that∀x ∈ 𝜔(∀y(𝜑(x, y) ⇒ y ∈ Y)). If n ∈ 𝜔, then
𝜑(n, Un) implies Un ∈ Y. By the separation axiom scheme AS3, the class X ≡ {Un | n ∈𝜔} ≡ {y | ∃x ∈ 𝜔(y = Ux)} = {y | y ∈ Y ∧ ∃x ∈ 𝜔(y = Ux)} is a set. Since the sequence u
strictly increases, the set X satisfies axiom AU(𝜔).

The deductions (7) ⊢ (6) ⊢ (5) ⊢ (2) are obvious.
The deductions (4) ⊢ (3) ⊢ (2) are also obvious.
(2) ⊢ (3) and (2) ⊢ (6). Consider the non-empty class A of all finite sets consisting

of universal sets. Then, the class W ≡ ∪A is also non-empty, and therefore, it has a
minimal element U∗ in view of Theorem 3 (A.4.2).

Consider the set N consisting of all n ∈ 𝜔 such that there is a unique finite strictly
increasing sequence u = u(n) ≡ (Uk ∈ W | k ∈ n + 1) such that U0 = U∗ and if V ∈ W
and U0 ⩽ V ⩽ Un, then V = Uk for some k ∈ n+ 1 (the property ofW-incompressibility).

Since the sequence (Uk ∈ W | k ∈ (1) such that U0 ≡ U∗ has all the properties
listed above, we see that 0 ∈ N. Let n ∈ N, i. e. the sequence u ≡ (Uk ∈ W | k ∈ n + 1)
is constructed for n. Consider the finite set A ≡ {Uk ∈ W | k ∈ n + 1} of the cardinality
n + 1. By conclusion 2 for n + 2, there is a finite set B ∈ A of the cardinality n + 2.
Take a minimal element a and a maximal element b in B. By definition, a ⩾ U∗. Sup-
pose that b ⩽ Un. Then, for every c ∈ B the inequality U0 = U∗ ⩽ a ⩽ c ⩽ b ⩽ Un is
valid. If c < Un, then c ∈ W implies c = Uk for some k ∈ n by virtue of property of
W -incompressibility, i. e. c ∈ A. If c = Un, then we again get c ∈ A. As a result, we
obtain the inclusion B ⊂ A, which is impossible. This contradiction implies Un < b.
Since b ∈ W, the class J ≡ {x ∈ W | Un < x} is non-empty. Therefore, it has a minimal
element Λ.

Therefore, we can define the sequence v ≡ (Pk ∈ W | k ∈ n + 2) setting Pk ≡ Uk for
every k ∈ n+1 and Pn+1 ≡ Λ, i. e. v = u∪{⟨n+1,Λ⟩}. Further, almost in the sameway as
in the proof of deduction (1) ⊢ (4) with the replacement of U byW, we conclude that
the sequence v possesses all necessary properties and is unique. Hence, n + 1 ∈ N.
By the principle of natural induction, N = 𝜔. Therefore, for every n ∈ 𝜔, there exists
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the indicated unique sequence u(n). Its uniqueness allows us to denote it by (Un
k | k ∈

n + 1). This completes the deduction (2) ⊢ (3).
Further, almost in the sameway as in the proof of deduction (4) ⊢ (7) starting from

sequences (Un
k | k ∈ n + 1), we construct infinite strictly increasing sequence u ≡ (Un |

n ∈ 𝜔) of universal sets. This yields the deduction (2) ⊢ (6).
Thus, we obtain deductions (1) ⊢ (4) ⊢ (7) ⊢ (6) ⊢ (1) and (6) ⊢ (5) ⊢ (2) ⊢ (6) and

the equivalence 2) ∼ (3). This provides the equivalence of conclusions 1 – 7.
(8) ⊢ (6). LetW be an infinite set of universal sets. By Theorem3 (A.4.2) inW, there

is a minimal element U∗.
Consider the set N consisting of all n ∈ 𝜔 such that there is a unique finite strictly

increasing sequence u = u(n) ≡ (Uk ∈ W | k ∈ n + 1) such that U0 = U∗ and if V ∈ W
and U0 ⩽ V ⩽ Un, then V = Uk for some k ∈ n+ 1 (the property of W-incompressibility).

Since the sequence (Uk ∈ W | k ∈ 1) such thatU0 ≡ U∗ has all the properties listed
above, we see that 0 ∈ N. Let n ∈ N. Consider the set J ≡ W\{Uk | k ∈ n + 1}. It is non-
empty because the setW is infinite; hence, J has aminimal elementΛ. Clearly,Λ ̸= Un
and Λ ⩾ U∗ = U0. Suppose that Λ < Un. Then, U0 ⩽ Λ < Un implies Λ = Uk for some
k ∈ n, which is impossible. Therefore, Un < Λ.

Now,we can define the sequence v ≡ (Pk ∈ W | k ∈ n+2) setting Pk ≡ Uk for every
k ∈ n + 1 and Pn+1 ≡ Λ, i. e. v = u ∪ {⟨n + 1,Λ⟩}. It is clear that, P0 = U∗ and Pk < Pl
for all k ∈ l ∈ n + 2. Let V ∈ W and P0 ⩽ V < Pn+1. Then, U0 ⩽ V < Λ. If V = Un, then
V = Pn. If V < Un, then U0 ⩽ V < Un implies V = Uk = Pk for some k ∈ n. Finally, if
V > Un, then V > Uk for all k ∈ n + 1, and therefore, V ∈ J. This means that Λ ⩽ V,
but it contradicts the property V < Λ, and therefore, this case is impossible. In the
previous two cases, we have V = Pk for some k ∈ n + 1. This means that the sequence
v possesses necessary properties. Check its uniqueness.

Suppose that there exists a strictly increasing sequence w ≡ (Vk ∈ W | k ∈ n + 2)
such that V0 = U∗, and if V ∈ W and V0 ⩽ V < Vn+1, then V = Vk for some k ∈ n + 1.
Since the sequence w|n + 1 ≡ (Vk ∈ W | k ∈ n + 1) has all the properties listed above
for n, the uniqueness of the sequence u implies u = w|(n + 1), i. e. Vk = Uk ≡ Pk for all
k ∈ n + 1. If Vn+1 < Pn+1, then P0 = V0 ⩽ Vn+1 < Pn+1 implies by above Vn+1 = Pk = Vk
for some k ∈ n + 1, which is impossible. If Pn+1 < Vn+1, then V0 = P0 ⩽ Pn+1 < Vn+1
similarly implies Pn+1 = Vk = Pk for some k ∈ n + 1, which is also impossible. Hence,
Vn+1 = Pn+1. Thus, the uniqueness of the sequence v is proven, where n + 1 ∈ N. By
the principle of natural induction (see Theorem 1 (1.2.6) and Remark before Theo-
rem 1 (A.2.2)), N = 𝜔. Therefore, for every n ∈ 𝜔, there exists the indicated unique se-
quence u(n). Its uniqueness allows us to denote it by (Un

k | k ∈ n + 1).
Further, as in the proof of deduction (4) ⊢ (7) starting from sequences (Un

k |
k ∈ n + 1), we construct infinite strictly increasing sequence u ≡ (Un | n ∈ 𝜔) of
universal sets.

(6) ⊢ (8). As in the proof of the deduction (6) ⊢ (1) consider for the sequence u the
set X ≡ {Un | n ∈ 𝜔}. Suppse that the set X is finite. Then X has a maximal element V.
This contradicts strict increasing of u.

 EBSCOhost - printed on 2/10/2023 4:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



228 | A.5 Weak forms of the universality and inaccessibility axioms

The fact that the 𝜔-universality axiom is weaker than the universality axiom is estab-
lished in the following proposition.

Proposition 1. In the ZF set theory, the𝜔-universality axiom is deduced from the univer-
sality axiom.

Proof. Show that assertion 2 of Theorem 1 is deduced fromAU. For this purpose, prove
by induction that for every n ∈ 𝜔 there exists the finite set of universal sets with the
cardinality n + 1.

For n = 0, this means that there is at least one universal set. This assertion obvi-
ously holds.

Suppose that for some n ∈ 𝜔 there is a set of cardinality n+1 consisting of universal
sets. Denote this set by A. The universality axiom provides the existence of a universal
setU such thatA ∈ U, and therefore,A ⊂ U. IfV ∈ A, thenV ̸= U, since otherwise,U ∈
U, which is impossible. Consider the set B ≡ A ∪ {U}. Clearly, this set is of cardinality
n + 2.
Along with inaccessibility axiom AI, in the ZF set theory, the following weaker 𝜔-
inaccessibility axiom is considered.

AI(𝜔). (The 𝜔-inaccessibility axiom.) ∃X(∀x ∈ X(Icn(x)) ∧ X ̸= ⌀ ∧ ∀x ∈ X∃y ∈
X(x ∈ y)).

The explanation of such a name of this axiom is given by the following theorem
and proposition.

Theorem 2. In the ZF set theory, the following conclusions are equivalent:
1) AI(𝜔);
2) for every n ∈ 𝜔, there exists a finite set of inaccessible cardinals with the cardinality

n + 1;
3) for every n ∈ 𝜔, there exists a finite sequence u ≡ (𝜄k | k ∈ n + 1) of inaccessi-

ble cardinals such that 𝜄k < 𝜄l for any k ∈ l ∈ n + 1, i. e. the sequence u strictly
increase;

4) there exists a inaccessible cardinal 𝜘∗, and for every n ∈ 𝜔, there is a unique finite
strictly increasing sequence u(n) ≡ (𝜄nk | k ∈ n+1) of inaccessible cardinals such that𝜄n0 = 𝜘∗ and if 𝜘 is an inaccessible cardinal and 𝜄n0 ⩽ 𝜘 ⩽ 𝜄nn , then 𝜘 = 𝜄nk for some k ∈
n + 1 (the incompressibility property);

5) there exists a denumerable set of inaccessible cardinals;
6) there exists an infinite sequence u ≡ (𝜄n | n ∈ 𝜔) of inaccessible cardinals such that𝜄k < 𝜄l for some k ∈ l ∈ 𝜔, i. e. the sequence u is strictly increasing;
7) there exists an infinite strictly increasing sequence u ≡ (𝜄n | n ∈ 𝜔) of inaccessible

cardinals such that if n ∈ 𝜔,𝜘 is an inaccessible cardinal, and 𝜄0 ⩽ 𝜘 ⩽ 𝜄n, then𝜘 = 𝜄k
for some k ∈ n + 1 (the incompressibility property);

8) there exists an infinite set of inaccessible cardinals.
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The proof of this theorem is completely analogous to the proof of Theorem 1. However,
it can be also obtained from Theorem 1 by using the isotone bijection
q : U In from the Corollary 1 to Theorem 2 (A.4.2). Moreover, this result is re-
peated as Theorem 1 (B.4.1) with the complete proof.

The following proposition is an 𝜔-analogue of Theorem 1 (A.4.3).

Proposition 2. In the ZF set theory, the following axioms are equivalent:
1) the 𝜔-universality axiom AU(𝜔);
2) the 𝜔-inaccessibility axiom AI(𝜔).
Proof. Toprove the equivalence, it is sufficient to apply the isotone bijectionq : U
In from Corollary 1 to Theorem 2 (A.4.2).

A.5.2 Comparison of various forms of the universality and inaccessibility axioms

Along with axioms AU and AU(𝜔) the following axiom is considered in ZF.
ATU(𝜔). (The axiom of transitive 𝜔-universality.) There exists a set Y such that:

a) Y ̸= ⌀;
b) ∀U ∈ Y(U⋈);
c) ∀U∀V(U ⋈ ∧ U ∈ V ∧ V ∈ Y ⇒ U ∈ Y) (the transitivity property with respect to

universal sets);
d) ∀V ∈ Y∃W ∈ Y(V ∈ W) (the unboundedness property).
Lemma 1. In the ZF set theory, the following axioms are equivalent:
1) AU(𝜔);
2) ATU(𝜔).
Proof. (1) ⊢ (2). Denote by D a set whose existence is ensured by AU(𝜔). Consider the
set E ≡ {U ∈ ∪D | U⋈}. It satisfies conditions (a) and (b).

If U ∈ D, then AU(𝜔) implies ∃V ∈ D(U ∈ V). Consequently, D ⊂ E. Show that the
set E satisfies condition (c). Indeed, if U⋈ and U ∈ V ∈ E, then U ∈ V ∈ W ∈ D for
someW ∈ D. By virtue of transitivity of the setW we obtain U ∈ W ∈ D, i. e. U ∈ E.

If V ∈ E, then by definition V ∈ W ∈ D ⊂ E for some W. Hence, E satisfies
condition (d).

(2) ⊢ (1). This deduction is obvious.
An analogous lemma holds for inaccessible cardinals with the replacements of AU(𝜔)
by AI(𝜔) and ATU(𝜔) by ATI(𝜔) (the axiom of transitive 𝜔-inaccessibility).
Lemma 2. Let E be a non-empty set of universal sets with the transitivity property with
respect to universal sets, i. e. E satisfies conditions a) – c) fromLemma 1. Then E contains
a minimal universal set a0 ≡ U0 ≡ ∩U.

 EBSCOhost - printed on 2/10/2023 4:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



230 | A.5 Weak forms of the universality and inaccessibility axioms

Proof. Let V ∈ E. By Proposition 1 (A.5.1) V = a or a ∈ V. In the first case, a ∈ E. In the
second case, a ∈ V ∈ E implies a ∈ E in view of condition (c).

An analogous lemma holds for inaccessible cardinals with the replacement a ≡ U0 by
q ≡ q0 ≡ sm In.

Along with axioms AU and AU(𝜔) consider one more weaker 1-universality axiom
asserting the existence of at least one universal set.

AU(1)≡AUS. (The 1-universality axiom or the axiom of universal set.) ∃U(U⋈)
In the ZF+AU(1) the class U of all universal sets is non-empty, and therefore, con-

tains a minimal element a0 ≡ U0 ≡ ∩U.
Similarly, along with axioms AI and AI(𝜔) consider one more weaker

1-inaccessibility axiom asserting the existence of at least one inaccessible cardinal
number.

AI(1)≡AIC. (The 1-inaccessibility axiom or the axiom of inaccessible cardinal.)
∃𝜘(Icn(𝜘)).

In the ZF+AI(1), the class In of all inaccessible cardinal numbers is non-empty,
and therefore, contains a minimal element q ≡ q0 ≡ sm In.

The following proposition is a 1-analog of Theorem 1 (A.4.2) and Proposition
2 (A.5.1).

Proposition 1. In the ZF set theory, the following axioms are equivalent:
1) AU(1);
2) AI(1).

Proof. To prove the equivalence, it is sufficient to apply the isotone bijection q : U →
In from Corollary 1 to Theorem 2 (A.4.2).

The following relations between these axioms hold:

AU ⊢ AU(𝜔) ⊢ AU(1) and AI ⊢ AI(𝜔) ⊢ AI(1).
Let us show that these axioms are really different.

Statement 1.
1) If the theory ZF + AU(1) is consistent, then the theory ZF + AU(1) + ¬AU(𝜔) is

consistent.
2) If the theory ZF + AU(1) is consistent, then axiom AU(𝜔) is not deducible in ZF +

AU(1).
Proof. 1. Let U0 be a minimal universal set whose existence is ensured by axiom
AU(1). Consider the classesW ≡ {W | W ⋈ ∧ U0 ∈ W} and D ≡ {X | ∀W(W ⋈ ∧ U0 ∈
W ⇒ X ∈ W)}.
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The following two cases are possible. If the classW is non-empty, the in contains
a minimal element U1. Clearly,D ⊂ U1. If X ∈ U1 andW ∈ W, then X ∈ U1 ⊂ W implies
X ∈ W. Consequently, X ∈ D. Hence, D = U1. If the classW is empty, then D = V.

By Lemma 1 axiom AU(𝜔) is equivalent to axiom ATU(𝜔). Therefore, we consider
the equivalent theory T ≡ ZF + AUS + ¬ATU(𝜔). Consider a class standard interpre-
tation M ≡ ⟮D, I⟯ of the theory T in the set theory S ≡ ZF + AUS such that the cor-
respondence I (see A.1.3) assigning to predicate symbols = and ∈ in T 2-placed rela-
tionE ≡ {z | ∃x∃y(x ∈ D ∧ y ∈ D ∧ z = (x, y) ∧ x = y)} andB ≡ {z | ∃x∃y(x ∈ D ∧ y ∈
D ∧ z = (x, y) ∧ x ∈ y)} on D.

If D = U1, then Proposition 1 (A.5.1) guarantees that the interpretation M ≡ M =
⟮U1, I⟯ is a model of the ZF set theory in the theory S. If D = V, then it is clear that the
interpretationM is a class model of ZF in the theory S.

Check that axiom AUS holds inM. The axiom can be written as follows:

AUS ≡ ∃X(∀x(x ∈ X ⇒ x ⊂ X ∧ P(x) ∈ X ∧
∧ ∪ x ∈ X) ∧ ∀x∀y(x ∈ X ∧ y ∈ X ⇒ {x, y} ∈ X) ∧

∧ ∀x∀f (x ∈ X ∧ f  x → X ⇒ rng f ∈ X) ∧ 𝜔 ∈ X).
Consider the first case. Let s be some sequence x0, . . . , xq , . . . of elements of the do-
main U1. Taking into account the equivalences (u ∈ v)t ⇔ ut ∈ vt, (v ⊂ w)t ⇔ vt ⊂ wt,
and (u = v)t ⇔ ut = vt proved in Proposition 1 (A.6.1) below and the notation from its
proof, we obtain

ÃUSt = ∃X ∈ U1(∀x ∈ U1(x ∈ X ⇒ x ⊂ X ∧ P(x)𝜏 ∈ X ∧
∧ (∪x)𝜏 ∈ X) ∧ ∀x ∈ U1∀y ∈ U1(x ∈ X ∧ y ∈ X ⇒ {x, y}𝜎 ∈ X) ∧
∧ ∀x ∈ U1∀f ∈ U1(x ∈ X ∧ (f  x → X)𝜌 ⇒ (rng f )𝜌 ∈ X) ∧ 𝜔𝜋 ∈ X).

In the proof of Proposition 1 (A.6.1), it was established that P(x)𝜏 = P(x), (∪x)𝜏 = ∪x,
{x, y}𝜎 = {x, y}, (f  x → X)𝜌 ⇔ (f  x → X), and (rng f )𝜌 = rng f . In a similar way,
we can prove that 𝜔𝜋 = 𝜔. Therefore, ÃUSt ⇔ ∃X ∈ U1𝜒(X), where the formula

𝜒(X) ≡ ∀x ∈ U1(x ∈ X ⇒ x ⊂ X ∧ P(x) ∈ X ∧ ∪ x ∈ X) ∧
∧ ∀x ∈ U1∀y ∈ U1(x ∈ X ∧ y ∈ X ⇒ {x, y} ∈ X) ∧

∧ ∀x ∈ U1∀f ∈ U1(x ∈ X ∧ f  x → X ⇒ rng f ∈ X) ∧ 𝜔 ∈ X
is obtained by deleting indices 𝜏, 𝜎, and 𝜌 in the conjunctive kernel of formula ÃUSt.
SinceU0 is a universal set, the formula𝜒(U0) is valid for it. Thismeans that the formula
𝜒(U0) is deduced from axiom AUS in the theory S. Consequently, the formula ∃X ∈
U1𝜒(X) is deduced, and therefore, formula AUSt is also deduced.
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In the second case, it is clear that formula AUS translates (see A.1.3) on the se-
quence s of elements x0, . . . , xq , . . . of the domain V into formula AUS again. Hence,
axiom AUS holds inM.

It remains to be checked that the formula ¬ATU(𝜔) is fulfilled. By Lemma 2, we
can insert the formula U0 ∈ Y into the conjunctive kernel of axiom ATU(𝜔). Consider,
therefore, the formulas

𝜑 ≡ ATU(𝜔) ≡ ∃Y(∀U(U ∈ Y ⇒ U⋈) ∧ U0 ∈ Y ∧
∧ ∀U∀V(U ⋈ ∧ U ∈ V ∧ V ∈ Y ⇒ U ∈ Y) ∧ ∀V(V ∈ Y ⇒ ∃W(W ∈ Y ∧ V ∈ W)))
and 𝜑t ≡ M ⊨ 𝜑[s].

Let us consider the first case. Taking into account the elucidations made after
rewriting of axiom AUS, we obtain

𝜑t ⇔ 𝜑t = ∃Y ∈ U1(∀U ∈ U1(U ∈ Y ⇒ (U⋈)𝜎) ∧ U𝜏
0 ∈ Y ∧ ∀U ∈ U1∀V ∈ U1

((U⋈)𝜌 ∧ U ∈ V ∧ V ∈ Y ⇒ U ∈ Y) ∧ ∀V ∈ U1(V ∈ Y ⇒
⇒ ∃W ∈ U1(W ∈ Y ∧ V ∈ W))).

Considering the translation of the previous axiom, we have proven that (U⋈)𝜎 ⇔ 𝜒(U)
and (U⋈)𝜌 ⇔ 𝜒(U).

Since the set U0 can be determined by the formula ∃!Z(Z ⋈ ∧ ∀U(U⋈ ⇒ Z ⊂ U)),
the set U𝜏

0 is determined by the formula ∃!Z ∈ U1((Z⋈)∗ ∧ ∀U ∈ U1((U⋈)∗∗ ⇒ Z ⊂ U)).
As above, (Z⋈)∗ ⇔ 𝜒(Z) è (U⋈)∗∗ ⇔ 𝜒(U). Hence, U𝜏

0 defines from the formula
∃!Z ∈ U1(𝜒(Z) ∧ ∀U ∈ U1(𝜒(U) ⇒ Z ⊂ U)). Then, it is clear that U𝜏

0 = U0. Thus,

𝜑t ⇔ ∃Y ∈ U1(∀U ∈ U1(U ∈ Y ⇒ 𝜒(U)) ∧ U0 ∈ Y ∧ ∀U ∈ U1∀V ∈ U1(𝜒(U) ∧
∧ U ∈ V ∧ V ∈ Y ⇒ U ∈ Y) ∧ ∀V ∈ U1(V ∈ Y ⇒ ∃W ∈ U1(W ∈ Y ∧ V ∈ W))).

Suppose that the condition𝜑t is fixed and consider the set E ∈ U1 = D, which existence
follows from this condition. By condition, U0 ∈ E. Therefore, 𝜑t implies that for U0 ∈
U1 there isW ∈ U1 such thatW ∈ E and U0 ∈ W. Deduce that the setW is universal.

SinceW ∈ E, we get 𝜒(W). Let x ∈ W. It follows fromW ∈ U1 that x ∈ U1 by virtue
of the transitivity of U1. Hence, 𝜒(W) implies x ⊂ W, P(x) ∈ W, and ∪x ∈ W. Simi-
larly, if x, y ∈ W, then x, y ∈ U1 and 𝜒(W) implies {x, y} ∈ W. Finally, suppose x ∈ W
and f  x → W. Then, x ∈ U1 andW ∈ U1 imply f ⊂ x ∗W ∈ U1. Lemma 1 (A.4.1) pro-
vides f ∈ U1, and therefore, it follows from 𝜒(W) that rng f ∈ W. The properties y ⊂
x ∧ x ∈ W ⇒ y ∈ W and x, y ∈ W ⇒ (⟨x, y⟩ ∈ W ∧ x ∪ y ∈ W) are easily derived from
the properties proven above. Since x∗y ⊂ P(P(x∪y))weobtain x, y ∈ W ⇒ x∗y ∈ W.
Finally, it follows directly from 𝜒(W) that 𝜔 ∈ W. Thus,W is universal.
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Moreover, U0 ∈ W. Consequently, W ∈ W, and therefore, U1 ⊂ W. In view of
Proposition 1 (A.4.2), we conclude that W ∉ U1. On the other hand, we have deduced
from 𝜑t thatW ∈ U1.

Thus, in the theory S, we have deduced from the formula 𝜑t the formulas 𝜂 ≡ W ∈
U1 and ¬𝜂 = W ∉ U1. By the deduction theorem, we derive the formulas (𝜑t ⇒ 𝜒) and
(𝜑t ⇒ ¬𝜒) in the theory S.

Applying now the implicit logical axiom (𝜑t ⇒ 𝜒) ⇒ ((𝜑t ⇒ ¬𝜒) ⇒ ¬𝜑t) (LAS9),
we sequentially deduce the formulas (𝜑t ⇒ ¬𝜒) ⇒ ¬𝜑t and ¬𝜑t. Thus, we have de-
duced the formula ¬𝜑t from the conditionW ̸= ⌀. By the deduction theorem, the for-
mulaW ̸= ⌀ ⇒ ¬𝜑t is deduced in the theory S.

In the second case, it is clear that the formula 𝜑 translates on the sequence s of
elements x0, . . . , xq , . . . of the domainV into the formula 𝜑 again. i. e. 𝜑t = 𝜑.

Suppose that the condition 𝜑t = 𝜑 is fixed and consider the set E ∈ V = D, which
existence follows from this condition. By condition, U0 ∈ E. Then 𝜑t guarantees that
forU0 there is a universal setW ∈ E such thatU0 ∈ W, whereW ̸= ⌀. By the deduction
theorem, the formula 𝜑t ⇒ W = ⌀ is deduced in the theory S. Applying logical for-
mula (𝜑t ⇒ ¬(W = ⌀)) ⇒ (W = ⌀ ⇒ ¬𝜑t), we obtain W = ⌀ ⇒ ¬𝜑t. Thus, we have
deduced the formulaW = ⌀ ⇒ ¬𝜑t from the conditionW = ⌀. Therefore, the formula
¬𝜑t is deduced fromW = ⌀. By the deduction theorem, the formulaW = ⌀ ⇒ ¬𝜑t is
deduced in the theory S. Denote the formulaW = ⌀ by 𝜉.

Applyingnow the logical formula (𝜉 ⇒ ¬𝜑t) ⇒ ((¬𝜉 ⇒ ¬𝜑t) ⇒ ((𝜉 ∨ ¬𝜉) ⇒ ¬𝜑t)),
we sequentially deduce in the theory S the formulas (¬𝜉 ⇒ ¬𝜑t) ⇒ (𝜉 ∨ ¬𝜉 ⇒ ¬𝜑t)
and 𝜉 ∨ ¬𝜉 ⇒ ¬𝜑t. Since in the first-order theory for any formula 𝜉 the formula 𝜉 ∨ ¬𝜉
is deduced, we obtain ¬𝜑t in S.

The last formula equals to the formulaM ⊨ (¬𝜑)[s]. This means thatM is a model
of T in S.

2. We will proceed in the naive propositional logic with the implication symbol ⊃.
Denote the totalities of the axioms of the theories T and S by Φa and Ξa,

respectively.
Consider the propositionsA ≡ cons(S) ⊃ ¬(Ξa ⊢ AU(𝜔)) and B ≡ cons(S) ∧ (Ξa ⊢

AU(𝜔)). Then, ¬A = cons(S) ∧ ¬¬(Ξa ⊢ AU(𝜔)). Using the axiom ¬¬C ⊃ C, we get
¬A ⊃ B.

Clearly, B ⊃ (Φa ⊢ AU(𝜔)) and Φa ⊢ ¬AU(𝜔). Therefore, the proposition B ⊃
(Φa ⊢ AU(𝜔)) ∧ (Φa ⊢ ¬AU(𝜔)), i. e. the proposition B ⊃ ¬cons(T) is true. By the
deduction rule, ¬A ⊃ ¬cons(T).

According to (1), the proposition cons(S) ⊃ cons(T) is deduced. Hence, B ⊃
cons(T) is true. By the deduction rule, ¬A ⊃ cons(T).

Thus, the proposition (¬A ⊃ cons(T)) ∧ (¬A ⊃ ¬cons(T)) is deduced. Apply-
ing the tautology (“reductio ad absurdum”) (¬A ⊃ C) ∧ (¬A ⊃ ¬C) ⊃ A (see, e. g.,
[Kolmogorov and Dragalin, 1982, I, § 7]), we deduce the proposition A.
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Corollary 1. If the theory ZF+AU(1) is consistent, then axiom AU is not deducible in
ZF+AU(1).

Remark. In fact, we have prove that the existence of a second universal set U1, i. e. of
a set U1 such that U0 ∈ U1 and U1 = ∩{U | U⋈ ∧ U0 ∈ U} is not deducible in ZF+AU(1).
Analogous assertions hold for inaccessible cardinals with the replacement of AU(1),
AU(𝜔), and AU by AI(1), AI(𝜔), and AI, respectively.
Statement 2.
1) If the theory ZF+AU(𝜔) is consistent, then the theory ZF+AU(𝜔) + ¬AU is consistent.
2) If the theory ZF+AU(𝜔) is consistent, then axiom AU is not deducible in ZF+AU(𝜔).
Proof. 1. Let D be a set whose existence follows from Axiom AU(𝜔). Consider the
classesW ≡ {W | W ⋈ ∧ D ∈ W} and D ≡ {X | ∀W(W ⋈ ∧ D ∈ W ⇒ X ∈ W)}.

The following two cases are possible. If the classW is non-empty, the it contains
a minimal element U∗. Clearly, D = U∗. If the classW is empty, then D = V.

Consider a class standard interpretationM ≡ ⟮D, I⟯ of the theory T ≡ ZF+AU(𝜔)+
¬AU in the set theory S ≡ ZF + AU(𝜔)with the same correspondence I as in the proof
of Statement 1. According to that proof, M is a class model of the theory ZF in the
theory S.

Check that that axiom AU(𝜔) of the theory T holds in M. This axiom has
the form

AU(𝜔) ≡ ∃X(∀U(U ∈ X ⇒ U⋈) ∧ X ̸= ⌀ ∧ ∀V(V ∈ X ⇒ ∃W(W ∈ X ∧ V ∈ W))).
Consider the first case. In the same way as in the proof of Statement 1, we
establish that

AU(𝜔)t ⇔ ∃X ∈ U∗(∀U ∈ U∗(U ∈ X ⇒ 𝜒(U)) ∧ X ̸= ⌀ ∧
∧ ∀V ∈ U∗(V ∈ X ⇒ ∃W ∈ U∗(W ∈ X ∧ V ∈ W))).

Consider the set D ̸= ⌀. If U ∈ D, then U is a universal set, and therefore, the formula
𝜒(U) holds for it. Let V ∈ D. It follows fromAU(𝜔) that there isW ∈ D such that V ∈ W.
By transitivity of U∗ we deriveW ∈ U∗ fromW ∈ D ∈ U∗. This means that the formula
AU(𝜔)t is deduced from the formula AU(𝜔)t.

In the second case, it is clear that the formula AU(𝜔) translates into the formula
AU(𝜔) again, and therefore, axiom AU(𝜔) holds inM.

It remains to verify the fulfilment of the formula ¬AU.
Consider the formula 𝜑 ≡ AU ≡ ∀X∃V(V ⋈ ∧ X ∈ V). Consider the first case.

Then, 𝜑t ⇔ ∀X ∈ U∗∃V ∈ U∗(𝜒(V) ∧ X ∈ V).
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Suppose that the condition 𝜑t is fixed. Since D ∈ U∗, this condition guarantees
that there is a set W ∈ U∗ such that 𝜒(W) and D ∈ W. As in the proof of Statement 1,
we deduce from W ∈ U∗ and 𝜒(W) that the set W is universal. Moreover, D ∈ W.
Consequently, W ∈ W. This implies that W ∈ W, and therefore, U∗ ⊂ W. In view of
Proposition 1 (A.4.2), we conclude thatW ∉ U∗. On the other hand, we have deduced
from 𝜑t thatW ∈ U∗.

Thus, as in the proof of Statement 1, we conclude that the formulaW ̸= ⌀ ⇒ ¬𝜑t
is deduced in the theory S.

In the second case, it is clear that 𝜑 translates into 𝜑 again, i. e. 𝜑t = 𝜑.
Suppose that the condition 𝜑t = 𝜑 is fixed. By this condition for the set D there

is a universal set W such that D ∈ W. This implies W ∈ W, and therefore,W ̸= ⌀. By
the deduction theorem, in S the formula 𝜑t ⇒ W ̸= ⌀ is deduced. As in the proof of
Statement 1, we deduce from this formula thatW = ⌀ ⇒ ¬𝜑t.

As in the proof of Statement 1, we deduce from the formulas 𝜉 ⇒ ¬𝜑t and ¬𝜉 ⇒ 𝜑t
the formula ¬𝜑t equal to the formulaM ⊨ (¬𝜑)[s]. This means thatM is a model of T
in S.

2. The proof is the same as the proof of assertion 2 of Statement 1,

Thus, in fact, axiom AU(𝜔) is strictly weaker than axiom AU and axiom AU(1) is
strictly weaker than axiom AU(𝜔). The quite similar relation holds for axioms AI,
AI(𝜔), and AI(1).

Note that axiom AI(1) is not deducible in ZF. Moreover, by methods formalized
in the ZF set theory it is not possible to show that that axiom AI(1) is consistent with
ZF (see [Jech, 2003, Theorem 12.12]). The similar assertions are valid for axioms AI(𝜔)
and AI and for the universality axioms equivalent to them.

A.6 Characterization of all supertransitive standard models of the
ZF and NBG set theories in the ZF set theory

A.6.1 Supertransitive standard model sets with the strong substitution property
for the ZF set theory

LetU be a set in the ZF set theory. Consider onU binary relation of equality E ≡ {z ∈ U∗
U | ∃x, y ∈ U(z = (x, y) ∧ x = y)} and relation of membership B ≡ {z ∈ U ∗ U | ∃x, y ∈
U(z = (x, y) ∧ x ∈ y)}. An interpretation M ≡ ⟮U, I⟯ (see A.1.3) of the ZF or NBG the-
ories such that the correspondence I assigning to predicate symbols = and ∈ binary
relations E and B on the set U is called standard.

A set U is called standard model for the theory ZF [for the theory NBG] if the stan-
dard interpretation M ≡ ⟮U, I⟯ is a model of ZF [of NBG, respectively].
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If ∀x∀f (x ∈ U ∧ f ∈ Ux ⇒ rng f ∈ U), then we say that the set U has the strong
substitution property.

As usual for a formula 𝜑(x, y, . . . ), we denote by 𝜑U(x, y, . . . ) the relativization of
the formula 𝜑 to the set U, i. e. the formula obtained by replacement in 𝜑 all quantifier
prefixes ∀t and ∃t by quantifier prefixes ∀t ∈ U and ∃t ∈ U, respectively.
Proposition 1. In the ZF set theory, the following conclusions are equivalent:
1) U is a supertransitive standard model for ZF and U has the strong substitution

property;
2) U is universal.

Proof. (1) ⊢ (2). Consider an arbitrary sequence s ≡ x0, . . . , xq , . . . of elements of the
set U and translations of some axioms and axiom schemes of the theory ZF with re-
spect to the standard interpretation M ≡ ⟮U, I⟯ on the sequence s (see A.1.3).

Instead of 𝜃M[s] andM ⊨ 𝜑[s], we shall write 𝜃t and 𝜑t for terms 𝜃 and formulas 𝜑,
respectively.

To simplify the further presentation, we first consider the translations of certain
simple formulas. Let u and v be some sets.

The formula u ∈ v translates into the formula (u ∈ v)t = (⟨ut , vt⟩ ∈ B). Denote the
last formula by 𝛾. By definition, this formula is equivalent to the formula (∃x∃y(x ∈
U ∧ y ∈ U ∧ ⟨ut , vt⟩ = ⟨x, y⟩ ∧ x ∈ y)). Using the property of an ordered pair, we con-
clude that ut = x and vt = y. Therefore, it is deduced from 𝛾 that 𝛿 ≡ (ut ∈ vt). By the
deduction theorem, 𝛾 ⇒ 𝛿. Conversely, consider the formula 𝛿. It is proven in ZF that
for sets ut and vt, there is a set z such that z = ⟨ut , vt⟩. By virtue of logical axiom
scheme LAS3 (A.1.2) we deduce from the formula 𝛿 the formula (z = ⟨ut , vt⟩ ⇒ ut ∈
U ∧ vt ∈ U ∧ z = ⟨ut , vt⟩ ∧ ut ∈ vt). Since the formula z = ⟨ut , vt⟩ is deduced from
the axioms, the formula (ut ∈ U ∧ vt ∈ U ∧ z = ⟨ut , vt⟩ ∧ ut ∈ vt) is also deduced. By
LAS13,wededuce the formula∃x∃y(x ∈ U ∧ y ∈ U ∧ z = ⟨x, y⟩ ∧ x ∈ y) equivalent to
the formula z ∈ B, and therefore, to the formula 𝛾. By the deduction theorem, 𝛿 ⇒ 𝛾.
Thus, the first equivalence (u ∈ v)t ⇔ ut ∈ vt holds.

The formula v ⊂ w translates into the formula (v ⊂ w)t. Denote the last formula
by 𝜀. The first equivalence proven above is equivalent to the formula 𝜀 ≡ ∀u ∈ U(u ∈
vt ⇒ u ∈ wt). According to LAS11, from the formula 𝜀, we deduce the formula 𝜀 ≡
(x ∈ U ⇒ (x ∈ vt ⇒ x ∈ wt)). If x ∈ vt, then vt ∈ U and transitivity of U imply x ∈ U.
Then, the formula 𝜀 implies x ∈ vt ⇒ x ∈ wt. Consequently, by the deduction theo-
rem we deduce (𝜀 ⇒ (x ∈ vt ⇒ x ∈ wt)). By the rule of generalization (Gen), the for-
mula ∀x(𝜀 ⇒ (x ∈ vt ⇒ x ∈ wt)) is deduced. By LAS12, we deduce the formula (𝜀 ⇒
∀x(x ∈ vt ⇒ x ∈ wt)), i. e. the formula (𝜀 ⇒ vt ⊂ wt).

Conversely, let the formula vt ⊂ wt be given. Using the logical axioms, we sequen-
tially deduce from it the formulas (u ∈ vt ⇒ u ∈ wt) and (u ∈ U ⇒ (u ∈ vt ⇒ u ∈ wt)).
By (Gen) we deduce the formula 𝜀. Hence, by the deduction theorem, we get the for-
mula (vt ⊂ wt ⇒ 𝜀). Thus, the second equivalence (v ⊂ w)t ⇔ vt ⊂ wt holds.
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We obtain the third equivalence (u = v)t ⇔ ut = vt in exactly the same way as the
first equivalence.

Inwhat follows,wewillwrite not literal transformations of axiomsbut their equiv-
alent variants obtained using the mentioned equivalences.

The extensionality axiomA1 translates into the formulaA1t ⇔ A1U = ∀X ∈ U∀Y ∈
U(∀u ∈ U(u ∈ X ⇔ u ∈ Y) ⇒ X = Y).

The pair axiom A2 translates into the formula A2t ⇔ A2U = ∀u ∈ U∀v ∈ U∃x ∈
U∀z ∈ U(z ∈ x ⇔ z = u ∨ z = v).

The union axiomA4 translates into the formula A4t ⇔ A4U = ∀X ∈ U∃Y ∈ U∀u ∈
U(u ∈ X ⇔ ∃z ∈ U(u ∈ z ∧ z ∈ X)).

The power set axiom A5 translates into the formula A5t ⇔ A5U = ∀X ∈ U∃Y ∈
U∀u ∈ U(u ⊂ X ⇔ u ∈ Y).

The replacement axiom scheme AS6 translates into the formula scheme

AS6t ⇔ ∀x ∈ U∀y ∈ U∀y ∈ U(𝜑𝜏(x, y) ∧ 𝜑𝜏(x, y) ⇒ y = y) ⇒
⇒ ∀X ∈ U∃Y ∈ U∀x ∈ U(x ∈ X ⇒ ∀y ∈ U(𝜑𝜎(x, y) ⇒ y ∈ Y)),

where 𝜑𝜏 and 𝜑𝜎 are denotations of the formulas M ⊨ 𝜑[s𝜏] and M ⊨ 𝜑[s𝜎] and s𝜏 and
s𝜎 denote the corresponding changes of the sequence s under translation of the quan-
tifier overformulas indicated above. Denote the last formula scheme by 𝛼 ⇒ 𝛽.

The empty set axiom A7 translates into the formula A7t ⇔ A7U = ∃x ∈ U∀z ∈
U(z ∉ x).

The infinity axiom A8 translates into the formula A8t ⇔ A8𝜏 ≡ ∃Y ∈ U(⌀t ∈
Y ∧ ∀y ∈ U(y ∈ Y ⇒ (y ∪ {y})𝜏 ∈ Y)), where
– the set⌀t is determined by the formula A7U ;
– the set Z1 ≡ Z1(y) ≡ (y ∪ {y})𝜏 is determined by the formula ∃Z1 ∈ U∀u ∈ U(u ∈

Z1 ⇔ ∃z ∈ U(u ∈ z ∧ z ∈ {y, {y}}𝜎));
– the set Z2 ≡ Z2(y) ≡ {y, {y}}𝜎 is determined by the formula ∃Z2 ∈ U∀u ∈ U(u ∈

Z2 ⇔ u = y ∨ u = {y}𝜌);
– the set Z3 ≡ Z3(y) ≡ {y}𝜌 is determined by the formula ∃Z3 ∈ U∀u ∈ U(u ∈ Z3 ⇔

u = y).
Since M is a model of the ZF theory, all the translations written above are deducible
formulas in the ZF theory.

Therefore, the formula A7U asserts the existence of some x ∈ U denoted by ⌀t. If
z ∈ U, then A7U implies z ∉ x. Now, suppose that z ∉ U and z ∈ x. Then, by virtue of
transitivity of U we obtain z ∈ U, but it contradicts the condition. Hence, z ∉ x. Thus,
wededuce z ∉ x. By (Gen) the formula∀z(z ∉ x)meant x = ⌀ is deduced. Thus,⌀t = ⌀
and⌀ ∈ U.

Check now that if y ∈ U, then Z3 = {y}. Let u ∈ Z3. Since Z3 ∈ U and U is transitive,
we get u ∈ U. If u ∈ U, then the formula for Z3 presented above implies u = y, where
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u ∈ {y}. Therefore, Z3 ⊂ {y}. Conversely, suppose u ∈ {y}. Then, u = y. Since y ∈ U,
we get u ∈ U, where, by the same formula, we obtain u ∈ Z3. Consequently, {y} ⊂ Z3,
which implies the required equality. This equality eliminates the index 𝜌 in the for-
mula for Z2.

Using this equality, show that Z2 = {y, {y}}. Let u ∈ Z2. Then, as above, u ∈ U.
Therefore, the formula for Z2 presented above implies u = y or u = {y}, where u ∈
{y, {y}}. Consequently, Z2 ⊂ {y, {y}}. Conversely, suppose u ∈ {y, {y}}. Then, u = y ∈ U
or u = {y} = Z3 ∈ U, i. e. u ∈ U in both cases. Hence, by the same formula, we get
u ∈ Z2, where {y, {y}} ⊂ Z2. This implies the required equality. This equality elimi-
nates the index 𝜎 in the formula for Z1.

Finally, we verify that if y ∈ U, then Z1 = y ∪ {y}. Let u ∈ Z1. Since Z1 ∈ U and U
is transitive, we get u ∈ U. It follows from the formula for Z1 that there exists z ∈ U
such that u ∈ z and z ∈ {y, {y}}. Therefore, u ∈ ∪{y, {y}} ≡ Z, i. e. Z1 ⊂ Z. Conversely,
suppose u ∈ Z. Then, there exists z ∈ {y, {y}} such that u ∈ z. It follows from z = y ∈
U or z = {y} = Z3 ∈ U that z ∈ U. Then, the formula presented above implies u ∈ Z1.
Hence, Z ⊂ Z1, which implies the required equality. This equality eliminates the index
𝜏 in the formula for A8𝜏.

All said above implies A8𝜏 = ∃Y ∈ U(⌀ ∈ Y ∧ ∀y ∈ U(y ∈ Y ⇒ y∪{y} ∈ Y)). If y ∈
Y, then it follows from Y ∈ U and transitivity ofU that y ∈ U. Then, y∪{y} ∈ Y deduced
from this formula. By the deduction theorem, we deduce y ∈ Y ⇒ y ∪ {y} ∈ Y. By the
generalization rule we deduce ∀y ∈ Y(y ∪ {y} ∈ Y). Thus, we deduce from A8t the for-
mula ∃Y ∈ U(⌀ ∈ Y ∧ ∀y ∈ Y(y ∪ {y} ∈ Y)) almost coinciding with the infinity axiom
and asserting the existence of an inductive set Y ∈ U.

Using the obtained translations, let us prove that the set U is universal.
Consider the formula A2U . According to it, for any u, v ∈ U there is a correspond-

ing set x ∈ U. If z ∈ x, then by transitivity of U we get z ∈ U. Therefore, the formula
z = u ∨ z = v is deduced from it. If z = u ∨ z = v, then z ∈ U, and therefore, it is de-
duced from A2U that z ∈ x. Since A2U is deducible in ZF, by the deduction theorem
and the generalization rule the formula ∀z(z ∈ x ⇔ z = u ∨ z = v) is deduced. This
formula means that x = {u, v}. Hence, {u, v} ∈ U. By the deduction theorem, we de-
duce the formula u, v ∈ U ⇒ {u, v} ∈ U. This implies {u} ∈ U and ⟨u, v⟩ ∈ U.

Consider the formula A4U . According to it, for any X ∈ U there is a corresponding
set Y ∈ U. As above, transitivity of U implies Y = ∪X. Consequently, ∪X ∈ U, and by
the deduction theorem, we deduce the formula X ∈ U ⇒ ∪X ∈ U. This implies that it
follows from X, Y ∈ U that X ∪ Y ≡ ∪{X, Y} ∈ U.

Consider the formula A5U . According to it, for any X ∈ U, there is a corresponding
set Y ∈ U. Clearly, Y ⊂ P(X). Let y ∈ P(X). Then, y ⊂ X ∈ U implies y ∈ U in view of
quasitransitivity of U. Hence, Y = P(X). Therefore, P(X) ∈ U, and by the deduction
theorem, we deduce X ∈ U ⇒ P(X) ∈ U.

If X, Y ∈ U, then X ∗ Y ⊂ P(P(X ∪ Y)) ∈ U implies X ∗ Y ∈ U in view of quasitran-
sitivity of U.
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Consider the inductive set Y ∈ U, whose existence was proven above. Since 𝜔 is
the smallest among all inductive sets, we get 𝜔 ⊂ Y. By the quasitransitivity property,
this implies 𝜔 ∈ U.

It is obvious that property 4 from the definition of a universal set holds.
Thus, we have proven that (1) ⊢ (2).
(2) ⊢ (1). Let U be a universal set. According to A.4.1, it is supertransitive. Consider

the standard interpretationM ≡ ⟮U, I⟯of the theory ZF.Wehave translated above some
axioms and axiom schemes of ZF under the interpretationM on the sequence s. Prove
that they are deducible in ZF.

Consider the formula A1U . Let X, Y ∈ U and 𝜒 ≡ ∀u ∈ U(u ∈ X ⇔ u ∈ Y). Take
an arbitrary set u. If u ∈ X, then by transitivity of U, we obtain u ∈ U, and there-
fore, the formula u ∈ Y is deduced. Similarly, we deduce u ∈ Y from u ∈ X. Then,
by the deduction theorem, the formula u ∈ X ⇔ u ∈ Y is deduced, and by the gen-
eralisation rule (Gen), the formula ∀u(u ∈ X ⇔ u ∈ Y) is deduced. According to
the extensionality axiom A1, the equality X = Y is deduced. By the deduction the-
orem, in ZF the formula 𝜒 ⇒ X = Y is deduced. Further, by logical tools, we de-
duce A1t.

Consider the formula A2U . Let u, v ∈ U. By the property of a universal set {u, v} ∈
U. It follows from the pair axiom A2 that ∀z ∈ U(z ∈ {u, v} ⇔ z = u ∨ z = v). Then, by
LAS13, we deduce ∃x ∈ U∀z ∈ U(z ∈ x ⇔ z = u ∨ z = v). Further, by logical tools we
deduce A2t.

The separation axiom scheme AS3 translates into the formula scheme AS3t ⇔
∀X ∈ U∃Y ∈ U∀u ∈ U(u ∈ Y ⇔ u ∈ X ∧ 𝜑𝜏(u)), where Y is not a free variable in
𝜑(u) and 𝜑𝜏 denotes the formula M ⊨ 𝜑[s𝜏], where s𝜏 denote the corresponding
changes of the sequence s under translation of the quantifier overformulas ∀x(. . . ),
∃Y(. . . ), and ∀u(. . . ) indicated above. According to AS3 for X ∈ U there is Y such that
∀u ∈ U(u ∈ Y ⇔ u ∈ X ∧ 𝜑𝜏(u)). Since Y ⊂ X ∈ U, by Lemma 1 (A.4.1), we get Y ∈ U.
Therefore, AS3t is deduced in ZF.

Similar to the deducibility of A2t, we verify the deducibility of A4t and A5t.
Let us verify the deducibility of AS6t. Suppose that the formula 𝛼 holds. Consider

the set X ∈ U. According to the separation axiom scheme AS3, the set F ≡ {z ∈ U |
∃x, y ∈ U(z = ⟨x, y⟩ ∧ 𝜑𝜎(x, y))} exists. Clearly, F ⊂ U ∗ U. It follows from transitivity
of U that X ⊂ U. Therefore, there is a set Z ≡ F[X] ⊂ U. Consider the set G ≡ {z ∈ U |
∃x, y ∈ U(z = ⟨x, y⟩ ∧ 𝜑𝜎(x, y) ∧ x ∈ X)} = F|X ⊂ X ∗ Z. Let x ∈ X ⊂ U. If x ∉ dom G,
thenG⟨x⟩ = ⌀ ∈ U. Let x ∈ dom G, i. e.G⟨x⟩ ̸= ⌀. If y, y ∈ G⟨x⟩ ⊂ U, then the formula
𝜑𝜎(x, y) ∧ 𝜑𝜎(x, y) or, more precisely, the formula 𝜑𝜎(x, y, X, Y) ∧ 𝜑𝜎(x, y, X, Y)
holds (since X and Y can be free variables of the formula 𝜑𝜎). Since 𝜑𝜏(x, y) =
𝜑𝜎(x, y, X ‖ XM[s], Y ‖ YM[s]) and, similarly, for y, by virtue of LAS11 we obtain
𝜑𝜏(x, y) ∧ 𝜑𝜏(x, y). Hence, the formula 𝛼 implies y = y. Therefore, G⟨x⟩ = {y} ∈ U.
Thus, G⟨x⟩ ∈ U for every x ∈ X. By Lemma 3 (A.4.1), we get Y0 ≡ rng G = ∪⟮G⟨x⟩ | x ∈
X⟯ ∈ U.
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If x ∈ X ⊂ U, y ∈ U, and 𝜑𝜎(x, y), then ⟨x, y⟩ ∈ G implies y ∈ Y0. This means that
the formula 𝛽 deduced from the formula 𝛼. By the deduction theorem, the formula
𝛼 ⇒ 𝛽 is deduced, and therefore, the scheme AS6t is deduced.

According to Lemma 2 (A.4.1),⌀ ∈ U. Then, we deduce A7t from this and A7.
Consider the formula A8𝜏 and the set 𝜔 ∈ U. It follows from the above that

⌀t = ⌀ ∈ 𝜔. Let y ∈ U and y ∈ 𝜔. Then, as above, we check that Z3 = {y}, Z2 = {y, {y}}
and Z1 = y ∪ {y} ∈ 𝜔. By the deduction theorem, we deduce (y ∈ 𝜔 ⇒ Z1 ∈ 𝜔). Further,
by logical tools we deduce (⌀t ∈ 𝜔 ∧ ∀y ∈ U(y ∈ 𝜔 ⇒ (y ∪ {y})𝜏 ∈ 𝜔)), and therefore,
the formula A8t.

The regularity axiom translates into the formula A9t ⇔ A9𝜏 ≡ ∀X ∈ U(X ̸= ⌀t ⇒
∃x ∈ U(x ∈ X ∧ (x ∩ X)𝜏 = ⌀t)), where
– the set ⌀t is determined by A7U and, as was proven above, it coincides with the

empty set⌀,
– the set Z ≡ (x ∩ X)𝜏 is determined by the formula ∃Z ∈ U∀u ∈ U(u ∈ Z ⇔ u ∈

x ∧ u ∈ X).
Check now that if X ∈ U and x ∈ U, then Z = x∩X. Let u ∈ Z. Since Z ∈ U andU is tran-
sitive, we get u ∈ U. Therefore, it follows from the formula for Z that u ∈ x ∧ u ∈ X,
i. e. u ∈ x ∩ X. Hence, Z ⊂ x ∩ X. Conversely, suppose u ∈ x ∩ X, i. e. u ∈ x ∧ u ∈ X.
Then, by virtue of transitivity we get u ∈ U and the mentioned formula implies u ∈ Z.
Thus, x ∩ X ⊂ Z, which implies the required equality. This equality eliminates the
index 𝜏 in the formula A9𝜏.

Let X ∈ U and X ̸= ⌀t = ⌀. By the regularity axiom, there is x ∈ X such that x ∩
X = ⌀. By virtue of transitivity we get x ∈ U. Further, by logical tools, we deduce A9t.

Finally, the choice axiom A10 translates into the formula

A10t ⇔ A10𝜏 ≡
≡ ∀X ∈ U(X ̸= ⌀t ⇒ ∃z ∈ U((z  P(X)\{⌀} → X)𝜏 ∧ ∀Y ∈ U(Y ∈ (P(X)\{⌀})𝜎 ⇒

⇒ ∀x ∈ U(x ∈ X ∧ ⟨Y , x⟩𝜎 ∈ z ⇒ x ∈ Y))))),
where
– the set Z1 ≡ Z1(X) ≡ (P(X)\{⌀})𝜎 is determined by the formula∃Z1 ∈ U∀u ∈ U(u ∈

Z1 ⇔ u ∈ P(X)𝜌 ∧ u ∉ {⌀}𝜌),
– the set Z2 ≡ ⟨Y , x⟩𝜎 is determined by the formula ∃Z2 ∈ U∀u ∈ U(u ∈ Z2 ⇔ (u =

{Y}𝜎 ∨ u = {Y , x}𝜎)),
– the set Z3 ≡ {Y , x}𝜎 is determined by the formula ∃Z3 ∈ U∀u ∈ U(u ∈ Z3 ⇔ (u =

Y ∨ u = x)),
– the set Z4 ≡ {Y}𝜎 is determined by the formula ∃Z4 ∈ U∀u ∈ U(u ∈ Z4 ⇔ u = y),
and 𝜑𝜏 ≡ (z  P(X)\{⌀} → X)𝜏 denotes the formula M ⊨ 𝜑[s𝜏], where s𝜏 denote the
corresponding changes of the sequence s under translation of the quantifier overfor-
mulas ∀X(. . . ) and ∃z(. . . ) indicated above.
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Fix the conditions X ∈ U and X ̸= ⌀t = ⌀ ∈ U. As was shown above, this implies
P(X)𝜌 = P(X) and {⌀}𝜌 = {⌀}. This equality eliminates the index 𝜌 in the formula
for Z1.

Check that Z1 = P(X)\{⌀} ≡ Z. Let u ∈ Z1. Since Z1 ∈ U and U is transitive, we
get u ∈ U. Then, the formula for Z1 implies u ∈ Z. Hence, Z1 ⊂ Z. Conversely, suppose
u ∈ Z. Since P(X) ∈ U and U is transitive, we get P(X) ⊂ U. This implies u ∈ U. Con-
sequently, the mentioned formula implies u ∈ Z1. Therefore, Z ⊂ Z1, which implies
the required equality. This guarantees that Z1 is replaced by Z in the formula A10𝜏.

Consider the formula 𝜑 ≡ (z  Z → X). It is the conjunction of the following
three formulas: 𝜑1 ≡ (z ⊂ Z ∗ X), 𝜑2 ≡ (dom z = Z), and 𝜑3 ≡ (∀x(x ∈ Z ⇒ ∀y(y ∈ X ⇒
∀y(y ∈ X ⇒ (⟨x, y⟩ ∈ z ∧ ⟨x, y⟩ ∈ z ⇒ y = y))))).

Then, 𝜑𝜏 = 𝜑𝜏1 ∧𝜑𝜏2 ∧𝜑𝜏3 . Since 𝜑1 = (∀u(u ∈ z ⇒ ∃x∃y(x ∈ Z∧ y ∈ X∧u = ⟨x, y⟩))),
we obtain 𝜑𝜏1 ⇔ (∀u ∈ U(u ∈ z ⇒ ∃x ∈ U∃y ∈ U(x ∈ Z ∧ y ∈ X ∧ u = ⟨x, y⟩𝜎))). Simi-
larly, it follows from 𝜑2 = (∀x(x ∈ Z ⇒ ∃y(y ∈ X ∧ ⟨x, y⟩ ∈ z))) that 𝜑𝜏2 ⇔ (∀x ∈ U(x ∈
Z ⇒ ∃y ∈ U(y ∈ X ∧ ⟨x, y⟩𝜎 ∈ z))).

Finally, 𝜑𝜏3 ⇔ (∀x ∈ U(x ∈ Z ⇒ ∀y ∈ U(y ∈ X ⇒ ∀y ∈ U(y ∈ X ⇒ (⟨x, y⟩𝜎 ∈ z ∧
⟨x, y⟩𝜎 ∈ z ⇒ y = y))))).

By the transitivity property for x, y, and y in the formulas 𝜑𝜏1 , 𝜑𝜏2 è 𝜑𝜏3 , we
have x, y, y ∈ U. Therefore, as was shown above, the equalities ⟨x, y⟩𝜎 = ⟨x, y⟩ and
⟨x, y⟩𝜎 = ⟨x, y⟩ hold in these formulas. This implies that the formulas 𝜑𝜏1 , 𝜑𝜏2 , and𝜑𝜏3 differ from the formulas 𝜑1, 𝜑2, and 𝜑3, respectively, only by bounded quantifier
prefixes ∀ ⋅ ⋅ ⋅ ∈ U and ∃ ⋅ ⋅ ⋅ ∈ U.

For X by the choice axiom A10 there is z such that 𝜒 ≡ (z  Z → X) ∧ ∀Y(Y ∈
Z ⇒ ∀x(x ∈ X ∧ ⟨Y , x⟩ ∈ z ⇒ x ∈ Y)).

Hence, the formula 𝜑 = 𝜑1 ∧ 𝜑2 ∧ 𝜑3 is deduced, and therefore, the formulas 𝜑1,𝜑2, and 𝜑3 are also deduced.
Let u ∈ U and u ∈ z. Then, it is deduced from the formula 𝜑1 that there are x ∈ Z

and y ∈ X such that u = ⟨x, y⟩. Since x ∈ Z ∈ U, y ∈ X ∈ U, and U is transitive, we
get x, y ∈ U. This means that for the given conditions u ∈ U and u ∈ z, the formula
∃x ∈ U∃y ∈ U(x ∈ Z ∧ y ∈ X ∧ u = ⟨x, y⟩𝜎) is deduced. Applying the deduction theo-
rem and the deduction rules twice, we deduce the formula 𝜑𝜏1 .

Let x ∈ U and x ∈ Z. Then, we deduce from the formula 𝜑2 that for x there is y ∈ X
such that ⟨x, y⟩ ∈ z. It follows from y ∈ X ∈ U that y ∈ U. This means that for the
given conditions x ∈ U and x ∈ Z the formula ∃y ∈ U(y ∈ X ∧ ⟨x, y⟩𝜎 ∈ z) is deduced.
Therefore, as above, we deduce the formula 𝜑𝜏2 .

Let x ∈ U, x ∈ Z, y ∈ U, y ∈ X, y ∈ U, y ∈ X, ⟨x, y⟩ ∈ z, and ⟨x, y⟩ ∈ z. Then, it
is deduced from 𝜑3 that y = y. Applying alternately the deduction theorem and the
deduction rules several times, we deduce the formula 𝜑𝜏3 .

Thus, the formula 𝜑𝜏 is deduced.
Check that Z4 = {Y} under the conditions X ∈ U, Y ∈ U, and Y ∈ Z. Let u ∈ {Y},

i. e. u = Y ∈ U. Then, the formula for Z4 implies u ∈ Z4. Conversely, if u ∈ Z4 ∈ U, then
u ∈ U, and therefore, u = Y ∈ {Y}. This yields the necessary equality.
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Check that Z3 = {Y , x} under the conditions X ∈ U, x ∈ X, Y ∈ U, and Y ∈ Z. Let
u ∈ {Y , x}. Then, u = Y ∈ U or u = x ∈ X ∈ U implies u ∈ U, and therefore, u ∈ Z3.
Conversely, if u ∈ Z3 ∈ U, then u ∈ U and the formula for Z3 imply u = Y ∨ u = x, i. e.
u ∈ {Y , x}. This yields the necessary equality.

Finally, check that Z2 = ⟨Y , x⟩ under the indicated conditions. Let u ∈ ⟨Y , x⟩, i. e.
u = {Y} or u = {Y , x}. The previous equalities eliminate the index 𝜎 in the formula
for Z2. Since Y ∈ U and x ∈ X ∈ U, we see that x ∈ U and universality of U imply
u = {Y} ∈ U or u = {Y , x} ∈ U. Hence, u ∈ U implies u ∈ Z2. Conversely, if u ∈ Z2 ∈ U,
then u ∈ U and the formula for Z2 imply u = {Y} or u = {Y , x}, i. e. u = ⟨Y , x⟩. This
yields the necessary equality.

Since Z ∈ U and X ∈ U, we get Z ∗ X ∈ U. By Lemma 1 (A.4.1), it follows from
z ⊂ Z ∗ X that z ∈ U.

Thus, it can be deduced from axiom A10 that there exists the object z ∈ U sat-
isfying the formula 𝜒, implying the formula 𝜉 ≡ (𝜑𝜏 ∧ ∀Y ∈ U(Y ∈ Z ⇒ ∀x ∈ U(x ∈
X ∧ ⟨Y , x⟩ ∈ z ⇒ x ∈ Y)). Consequently, we deduce the formula ∃z ∈ U 𝜉 from the
fixed conditions. Applying the deduction theorem and the generalization rule several
times, we, as a result, deduce the formula A10t.

Thus, M is a supertransitive standard model of the ZF set theory.

This proposition implies that for supertransitive standardmodel sets all the assertions
presented in A.4 for universal sets hold.

Theorem 1. In the ZF set theory, the following conclusions are equivalent for a set U:
1) U = V𝜘 for the inaccessible cardinal number 𝜘 = |U| = sup(On ∩ U);
2) U is a supertransitive standard model for ZF and U has the strong substitution

property.

Proof. (1) ⊢ (2). By Theorem 2 (A.4.2), the set U = V𝜘 is universal. By Proposition 1, it
satisfies (2). (2) ⊢ (1). By Proposition 1, U is universal. By Theorem 1 (A.4.2), U = V𝜘

and 𝜘 = sup(On ∩ U). By Corollary 1 to Theorem 1 (A.4.2), 𝜘 = |U|.
This theorem gives the canonical form of supertransitive standardmodel sets with the
strong substitution property. It is equivalent to the Zermelo – Shepherdson theorem
[Zermelo, 1930; Shepherdson, 1951; 1952; 1953] on the canonical forms of supertransi-
tive standard model sets for the NBG theory in the ZF set theory (see A.6.2 below).

Unfortunately, this theorem does not yield the description of all natural models
and all supertransitive standard models of the ZF set theory. This description will be
given in A.8.3.

A.6.2 Supertransitive standard model of the NBG set theory in the ZF set theory

TheNBGset theory is a first-order theory (without equalities)with a single binarypred-
icate symbol of belonging ∈ (we write A ∈ B). The objects of the NBG theory are called
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classes. All proper axioms and axiom schemes of NBG and all corresponding defini-
tions and comments are given in subsections 1.1.5 – 1.1.12. Here we only list these ax-
ioms and axiom schemes in more formal way as it was done for the axioms of ZF in
A.2. In this list, the formula ∃X(A ∈ X)meaning that A is a set is denoted by S(A).

A1. (The extensionality axiom.) ∀y∀z((y = z) ⇒ ∀X(y ∈ X ⇔ z ∈ X)).
AS2. (The full comprehension axiom scheme.) Let 𝜑(x) be a predicative formula

such that the substitution 𝜑(x ‖ y) is admissible and such that Y is not a free variable
of 𝜑. Then, ∃Y∀y(y ∈ Y ⇔ (S(y) ∧ 𝜑(y))).

A3. (The axiom of the full ensemble.)

∀X(S(X) ⇒ ∃Y(S(Y) ∧ ∀Z(Z ⊂ X ⇔ Z ∈ Y))).
Axiom A3 is equivalent to the conjunction of the following two axioms.
A3. (The axiom of subset.) ∀X∀Y(S(X) ∧ Y ⊂ X ⇒ S(Y)).
A3. (The power set axiom.) ∀X(S(X) ⇒ S(P(X))).
A4. (The axiom of binary union.) ∀X∀Y(S(X) ∧ S(Y) ⇒ S(X ∪ Y)).
A5. (The axiom of general union.)

∀X∀Y∀Z(S(X) ∧ (Z ⊂ X ∗ Y) ∧ ∀x(x ∈ X ⇒ S(Z⟨x⟩)) ⇒ S(rng Z)).
Axiom A5 is equivalent to the conjunction of the following two axioms.
A5. (The axiom of values.)

∀X∀Y∀Z(S(X) ∧ (Z  X → Y) ⇒ S(rng Z)).
A5. (The axiom of the union.) ∀X(S(X) ⇒ S(∪X)).
A6. (The axiom of regularity.) ∀X(X ̸= ⌀ ⇒ ∃x(x ∈ X ∧ x ∩ X = ⌀)).
A7. (The infinity axiom.) ∃X(S(X) ∧ ⌀ ∈ X ∧ ∀x(x ∈ X ⇒ x ∪ {x} ∈ X)).
A8. (The axiom of choice.)

∀X(S(X) ∧ X ̸= ⌀ ⇒ ∃z((z  P(X)\{⌀} → X) ∧ ∀Y(Y ∈ P(X)\{⌀} ⇒ z(Y) ∈ Y))).
Theorem 1. In the ZF set theory, the following conclusions are equivalent for a set P:
1) P is a supertransitive standard model set for the NBG set theory;
2) P = P(U) for some universal set U.
Proof. (1) ⊢ (2). Consider an arbitrary sequence s ≡ x0, . . . , xq , . . . of elements of the
set P and translations of the axioms and the axiom schemes of the NBG theory on the
sequence s with respect to the standard interpretation M ≡ ⟮P, I⟯.

We shall write 𝜃t and 𝜑t instead of 𝜃M[s] andM ⊨ 𝜑[s] for terms 𝜃 and formulas 𝜑,
respectively.

To simplify the further presentation we first consider translations of some simple
formulas. Let u and v be some classes.

 EBSCOhost - printed on 2/10/2023 4:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



244 | A.6 Characterization of all supertransitive standard models of ZF and NBG

Exactly in the same way as in the proof of Proposition 1 (A.6.1) we verify that the
equivalences (u ∈NBG v)t ⇔ ut ∈ZF vt and (u ⊂NBG v)t ⇔ ut ⊂ZF vt hold. This implies
that the equivalence (u =NBG v)t ⇔ (ut ⊂ZF vt) ∧ (vt ⊂ZF ut) holds.

The formula X ⊂ Y ∧ Y ⊂ X of the ZF theory, which is equivalent to the formula
∀a(a ∈ X ⇔ a ∈ Y), will be temporary denoted by X ∗= Y.

Suppose that ut ∗= vt. By the extensionality axiom A1 the formula ut =ZF vt is de-
duced in ZF. By the deduction theorem, the formula ut ∗= vt ⇒ ut =ZF vt is deduced in
ZF. Conversely, suppose ut =ZF vt. Take a ∈ ut. By the schemeof replacement of equals
we deduce the formula a ∈ vt from the last equality. Then, by the deduction theorem
in ZF we obtain a ∈ ut ⇒ a ∈ vt, and by the generalization rule, we get ut ⊂ vt. Simi-
larly, the formula vt ⊂ Ut is deduced. Consequently, we deduce the formula ut ∗= vt.
By the deduction theorem, in ZF we deduce ut =ZF vt ⇒ ut ∗= vt. Thus, the equiva-
lence ut ∗= vt ⇔ ut =ZF vt holds. Hence, the equivalence (u =NBG v)t ⇔ (ut =ZF vt) is
also holds.

Inwhat follows,wewillwrite not literal transformations of axiomsbut their equiv-
alent variants obtained using the mentioned equivalences.

The extensionality axiom A1 translates into the formula A1t ⇔ A1P = ∀y ∈ P∀z ∈
P(y = z ⇒ ∀X ∈ P(y ∈ X ⇔ z ∈ X)).

The full comprehension axiom scheme AS2 translates into the formula scheme
AS2t ⇔ ∃Y ∈ P∀y ∈ P(y ∈ Y ⇔ ∃X ∈ P(y ∈ X) ∧ 𝜑𝜏(y)), where Y is not a free variable
in 𝜑(y) and 𝜑𝜏 denotes the formula M ⊨ 𝜑[s𝜏], where s𝜏 denotes the corresponding
changes of the sequence s under translation of the quantifier overformulas ∃Y(. . . ),
∀y(. . . ), and ∃X(. . . ) indicated above.

The axiomof subset A3 translates into the formula (A3)t ⇔ (A3)P = ∀X ∈ P∀Y ∈
P(∃E ∈ P(X ∈ E) ∧ Y ⊂ X ⇒ ∃F ∈ P(Y ∈ F)).

The power set axiom A3 translates into the formula (A3)t ⇔ (A3)𝜏 = ∀X ∈
P(∃E ∈ P(X ∈ E) ⇒ ∃F ∈ P(P(X)𝜏 ∈ F)), where the set Z ≡ P(X)𝜏 is determined by
the formula ∃Z ∈ P∀z ∈ P(z ∈ Z ⇔ (∃G ∈ P(z ∈ G) ∧ z ⊂ X)).

The axiom of binary union A4 translates into the formula A4t ⇔ A4𝜏 = ∀X ∈
P∀Y ∈ P(∃E ∈ P(X ∈ E) ∧ ∃F ∈ P(Y ∈ F) ⇒ ∃G ∈ P((X ∪ Y)𝜏 ∈ G)), where the set Z ≡
(X ∪ Y)𝜏 is determined by the formula ∃Z ∈ P∀z ∈ P(z ∈ Z ⇔ (∃H ∈ P(z ∈ H) ∧ (z ∈
X ∨ z ∈ Y))).

The axiom of general union A5 translates into the formula

A5t ⇔ A5𝜏 = ∀X ∈ P∀Y ∈ P∀Z ∈ P(∃E ∈ P(X ∈ E) ∧ (Z ⊂ (X ∗ Y)𝜏) ∧
∧ ∀x ∈ P(x ∈ X ⇒ ∃F ∈ P(Z⟨x⟩𝜎 ∈ F)) ⇒ ∃G ∈ P((rng Z)𝜏 ∈ G)),

where
– the class Z1 ≡ (X∗Y)𝜏 is determinedby the formula∃Z1 ∈ P∀z ∈ P(z ∈ Z1 ⇔ (∃H ∈

P(z ∈ H) ∧ ∃x ∈ P∃y ∈ P(x ∈ X ∧ y ∈ Y ∧ z = ⟨x, y⟩∗)));
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– the class Z2 ≡ Z2(x) ≡ Z⟨x⟩𝜎 is determinedby the formula∃Z2 ∈ P∀y ∈ P(y ∈ Z2 ⇔(∃K ∈ P(y ∈ K) ∧ y ∈ Y ∧ ⟨x, y⟩∗ ∈ Z));
– the class Z3 ≡ (rng Z)𝜏 is determined by the formula ∃Z3 ∈ P∀y ∈ P(y ∈ Z3 ⇔(∃L ∈ P(y ∈ L) ∧ y ∈ Y ∧ ∃x ∈ P(x ∈ X ∧ ⟨x, y⟩∗ ∈ Z));
– the class Z4 ≡ ⟨x, y⟩∗ is determined by the formula ∃Z4 ∈ P∀z ∈ P(z ∈ Z4 ⇔ ∃M ∈

P(z ∈ M) ∧ (z = {x}∗ ∨ z = {x, y}∗));
– the class Z5 ≡ {x, y}∗ is determined by the formula ∃Z5 ∈ P∀z ∈ P(z ∈ Z5 ⇔ ∃N ∈

P(z ∈ N) ∧ (z = x ∨ z = y));
– the class Z6 ≡ {x}∗ is determined by the formula ∃Z6 ∈ P∀z ∈ P(z ∈ Z6 ⇔ ∃Q ∈

P(z ∈ Q) ∧ z = x).
The regularity axiom A6 translates into the formula A6t ⇔ A6𝜏 ≡ ∀X ∈ P(X ̸= ⌀t ⇒
∃x ∈ P(x ∈ X ∧ (x ∩ X)𝜏 = ⌀t)), where
– the class Z1 ≡ ⌀t is determined by the formula ∃Z1 ∈ P∀z ∈ P(z ∈ Z1 ⇔ (∃E ∈

P(z ∈ E) ∧ z ̸= z));
– the class Z2 ≡ (x ∩ X)𝜏 is determined by the formula ∃Z2 ∈ P∀z ∈ P(z ∈ Z2 ⇔(∃F ∈ P(z ∈ F) ∧ z ∈ x ∧ z ∈ X)).
The infinity axiom A7 translates into the formula A7t ⇔ A7𝜏 ≡ ∃X ∈ P(∃E ∈ P(X ∈
E) ∧ ⌀t ∈ X ∧ ∀x ∈ P(x ∈ X ⇒ (x ∪ {x})𝜏 ∈ X)), where
– the class Z1 ≡ ⌀t is determined by the formula presented above;
– the class Z2 ≡ Z2(x) ≡ (x ∪ {x})𝜏 is determined by the formula ∃Z2 ∈ P∀z ∈ P(z ∈

Z2 ⇔ (∃F ∈ P(z ∈ F) ∧ (z ∈ x ∨ z ∈ {x}𝜎)));
– the class Z3 ≡ Z3(x) ≡ {x}𝜎 is determined by the formula ∃Z3 ∈ P∀z ∈ P(z ∈ Z3 ⇔(∃G ∈ P(z ∈ G) ∧ z = x)).
Since M is a model of the NBG theory, all the translations written above are deducible
formulas in the ZF theory.

Using the obtained translations, we prove that P = P(U) for some set U.
Consider the formula 𝜑(x) ≡ (x = x) in NBG theory. Then, AS2 defines in NBG the

implicit axiom of the form ∃Y∀y(y ∈ Y ⇔ ∃X(y ∈ X) ∧ y = y). According to the trans-
lation obtained above, this implicit axiom translates into the formula equivalent to
the formulaΦ ≡ ∃Y ∈ P∀y ∈ P(y ∈ Y ⇔ ∃X ∈ P(y ∈ X) ∧ y = y). Since this formula is
deducible in ZF, it defines in ZF some element U ∈ P.

Consider an arbitrary element X ∈ P. Let y ∈ X. Since P is transitive, we get y ∈
P, where for y the formula ∃X ∈ P(y ∈ X ∧ y = y) is deduced. By the formula Φ, we
have y ∈ U. Therefore, X ⊂ U, i. e. X ∈ P(U). Thus, we have derived the embedding
P ⊂ P(U).

Conversely, if X ∈ P(U), then quasitransitivity of P implies X ∈ P. Hence, P =
P(U).

Prove that the set U is universal.
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Let y ∈ x ∈ U ∈ P. By the transitivity of P we get x ∈ P = P(U). Therefore, y ∈ x ⊂
U implies y ∈ U. Thus, the set U is transitive.

Let y ⊂ x ∈ U ∈ P. Then, x ∈ P = P(U) and y ⊂ x ⊂ U imply y ∈ P. By virtue ofA3P
we conclude that y ∈ F for some F ∈ P. Hence, y ∈ F ⊂ U implies y ∈ U. Therefore, the
set U quasitransitive.

Check that in A3𝜏 for X ∈ E ∈ P the equality P(X)𝜏 = P(X) holds. Let z ∈ P(X).
Then, z ⊂ X ∈ P and the quasitransitivity of P imply z ∈ P. Further, z ⊂ X ∈ E ∈
P = P(U) implies z ⊂ X ∈ E ⊂ U. In view of quasitransitivity of U, it follows from
z ⊂ X ∈ U that z ∈ U ∈ P. Then, the formula for Z ≡ P(X)𝜏 presented above implies
z ∈ P(X)𝜏. Therefore,P(X) ⊂ P(X)𝜏. Thementioned formula provides also the inverse
embedding.

Let X ∈ U ∈ P. Then, X ∈ P by virtue of A3𝜏 implies P(X) = P(X)𝜏 ∈ F for some
F ∈ P. Hence, P(X) ∈ F ⊂ U implies P(X) ∈ U.

Check that in A4𝜏 for X ∈ E ∈ P and YıF ∈ P the equality (X ∪ Y)𝜏 = X ∪ Y holds.
Let z ∈ X ∪ Y. Then, z ∈ X or z ∈ Y. By virtue of transitivity of P we get X ∈ P and
Y ∈ P, where z ∈ P. Besides, z ∈ X ∈ E ⊂ U or z ∈ Y ∈ F ⊂ U implies z ∈ U ∈ P in view
of the transitivity of U. Then, the formula for Z ≡ (X ∪ Y)𝜏 presented above implies
z ∈ (X ∪ Y)𝜏. Therefore, X ∪ Y ⊂ (X ∪ Y)𝜏. The mentioned formula provides also the
inverse embedding.

Let X, Y ∈ U. Then, X, Y ∈ P implies X∪Y = (X∪Y)𝜏 ∈ G for some G ∈ P by virtue
of A4𝜏. Hence, X ∪ Y ∈ G ⊂ U implies X ∪ Y ∈ U.

Let X ∈ U ∈ P. By the above, we have P(X) ∈ U. Then, {X} ⊂ P(X) ∈ U and the
quasitransitivity of the set U imply {X} ∈ U.

Let X, Y ∈ U. By the above, we have {X, Y} = {X} ∪ {Y} ∈ U, where ⟨X, Y⟩ ∈ U.
If X, Y ∈ U, then it follows from X∗Y ⊂ P(P(X∪Y)) ∈ U and the quasitransitivity

of the set U that X ∗ Y ∈ U.
To prove other universality properties, we need some simplification of the formula

A5𝜏 obtained by translation of axiom A5.
Let z ∈ {x}. Then, z = x ∈ X ∈ P implies z ∈ P, and therefore, z ∈ Z6. Conversely, if

z ∈ Z6 ∈ P, then z ∈ P and the formula for Z6 imply z = x ∈ {x}. Therefore, Z6 = {x}.
Let z ∈ {x, y}. Then, it follows from z = x ∈ X ∈ P or z = y ∈ Y ∈ P that z ∈ Z5. Con-

versely, if z ∈ Z5, then z = x or z = y implies z ∈ {x, y}. Therefore, Z5 = {x, y}.
These equalities eliminate the asterisk in the formula for Z4. Let z ∈ ⟨x, y⟩. Then,

z = {x} or z = {x, y}. Since x ∈ X ∈ P = P(U), we get x ∈ U. Similarly, y ∈ U. By the
above, this implies {x} ∈ U or {x, y} ∈ U. Hence, z ∈ U ∈ P implies z ∈ Z4. Conversely,
if z ∈ Z4 ∈ P, then it follows from z ∈ P and the formula for Z4 that z = {x} or z = {x, y},
i. e. z ∈ ⟨x, y⟩. Consequently, Z4 = ⟨x, y⟩.

This equality eliminates the asterisk in the formulas for Z3, Z2, and Z1.
Using this conclusion, verify that Z1 = X ∗ Y. Let z ∈ Z1 ∈ P. Since P is transitive,

we get z ∈ P. Therefore, the formula for Z1 guarantees that z = ⟨x, y⟩ for some x ∈ X
and y ∈ Y. Hence, z ∈ X ∗ Y. Conversely, suppose z ∈ X ∗ Y. Then, z = ⟨x, y⟩ for some
x ∈ X ∈ P and y ∈ Y ∈ P. Since P is transitive, we get x, y ∈ P. By the above, x ∈ X ⊂ U
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and y ∈ Y ⊂ U imply z = ⟨x, y⟩ ∈ U ∈ P and z ∈ P. Hence, the formula for Z1 implies
z ∈ Z1. This yields the necessary equality.

Consequently, Z ⊂ X ∗ Y.
Using this conclusion, verify that Z3 = rng Z. Let y ∈ Z3 ∈ P. Since P is transitive,

we get y ∈ P. Therefore, the formula for Z3 implies y ∈ rng Z. Conversely, suppose y ∈
rng Z ⊂ Y ∈ P. The there is x ∈ X ∈ P such that ⟨x, y⟩ ∈ Z. Since P is transitive, we get
x, y ∈ P. Then, by the formula for Z3 we get y ∈ Z3. This yields the necessary equality.

Finally, check that Z2 = Z⟨x⟩.
Let y ∈ Z2 ∈ P. Since P is transitive, we get y ∈ P. Therefore, the formula for Z2

implies y ∈ Y and ⟨x, y⟩ ∈ Z, where y ∈ Z⟨x⟩. Conversely, suppose y ∈ Z⟨x⟩ ⊂ Y ∈ P.
Then, ⟨x, y⟩ ∈ Z. Since P is transitive, we get y ∈ P. Then, by the formula for Z2 we get
y ∈ Z2. This yields the necessary equality.

We can conclude now that the indices 𝜏 and 𝜎 disappears in the formula A5𝜏.
Using this conclusion, prove that X ∈ U implies ∪X ∈ U. Consider in ZF the sets

Y ≡ ∪X and Z ≡ {z ∈ X ∗ Y | ∃x ∈ X∃y ∈ y(z = ⟨x, y⟩ ∧ y ∈ x)}. If y ∈ x ∈ X ∈ U, then
we get y ∈ U in view of the transitivity of U. Therefore, Y ⊂ U implies Y ∈ P. Let z ∈ Z,
i. e. z = ⟨x, y⟩ for some x ∈ X and y ∈ Y such that y ∈ x. Then, y ∈ x ∈ U implies y ∈ U.
By the above, we have z = ⟨x, y⟩ ∈ U. Consequently, Z ⊂ U, i. e. Z ∈ P.

Check that for every x ∈ P such that x ∈ X, we have Z⟨x⟩ = x. If y ∈ Z⟨x⟩, then
⟨x, y⟩ ∈ Z implies ⟨x, y⟩ = ⟨x, y⟩ for some x ∈ X and y ∈ Y such that y ∈ x. Hence,
y = y ∈ x = x. Conversely, if y ∈ x ∈ X, then y ∈ Y and ⟨x, y⟩ ∈ Z provide y ∈ Z⟨x⟩.

This implies that Z⟨x⟩ = x ∈ U ∈ P for every x ∈ P such that x ∈ X ∈ U ∈ P. Since
the formula A5𝜏 is deducible in ZF, this formula guarantees that Y = rng Z ∈ G for
some G ∈ P. Hence, Y ∈ G ⊂ U.

Check that X ∈ U and f ∈ UX imply rng f ∈ U. If x ∈ X ∈ U and y ∈ U, then x ∈ U,
by above, implies ⟨x, y⟩ ∈ U. Consequently, f ⊂ X ∗ U ⊂ U provides f ∈ P. Moreover,
by above again, f (x) ∈ U provides f ⟨x⟩ = {f (x)} ∈ U ∈ P for every x ∈ X. Applying the
formula A5𝜏, we infer that rng f ∈ G for some G ∈ P. Hence, rng f ∈ U.

Simplify now the formulaA7𝜏. Check that Z1 = ⌀ZF . Let z ∈ P. Suppose that z ∈ Z1.
Then, by the formula for Z1 we obtain z ̸= z. But, according to the equality axiom, z =
z. This contradiction implies z ∉ Z1. Suppose now z ∉ P. Since Z1 ⊂ P, we get z1 ∉ Z1.
Thus, for every z, we have z ∉ Z1. According to the empty set axiomA7 of the ZF theory,
we conclude that Z1 = ⌀ZF .

Whenwe simplified the formula A5𝜏, we established that the formula for Z3 ≡ {x}𝜎
implies Z3 = {x}.

Let x ∈ X ∈ P. By the above, we have that x ∈ U implies {x} ∈ U ∈ P. By the tran-
sitivity of P we get {x} ∈ P. When we simplified the formula A4𝜏, we established that
these properties provides the equality Z2 = x ∪ {x}.

Thus, the formula A7𝜏 take the form ∃X ∈ P(∃E ∈ P(X ∈ E) ∧ ⌀ZF ∈ X ∧ ∀x ∈
P(x ∈ X ⇒ x ∪ {x} ∈ X)). Let x ∈ X, where X ∈ E ∈ P. Since P is transitive, we get
x ∈ P. Then, the formula x∪{x} ∈ X is deduced fromA7𝜏. By the deduction theorem,we
deduce (x ∈ X ⇒ x∪{x} ∈ X)and thegeneralization rulewededuce∀x ∈ X(x∪{x} ∈ X).
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Thus, it is deduced from A7𝜏 that ∃X ∈ P(∃E ∈ P(X ∈ E) ∧ ⌀ZF ∈ X ∧ ∀x ∈ X(x ∪ {x} ∈
X)), almost coinciding with the infinity axiom A8 in ZF and asserting the existence
of an inductive set X ∈ E ∈ P. Since 𝜔 is the smallest among all inductive sets, we get
𝜔 ⊂ X ∈ U. By the quasitransitivity property, this implies 𝜔 ∈ U.

Thus, we have proven that (1) ⊢ (2).
(2) ⊢ (1). Let P = P(U) for some universal set U. Consider the standard interpreta-

tion M ≡ ⟮P, I⟯ of the NBG theory. We have translated above some axioms and axiom
schemes of NBG under the interpretation M on the sequence s. Prove that they are
deducible in ZF.

Check that P is supertransitive. Let x ∈ y ∈ P. Then, x ∈ y ⊂ U implies x ∈ U.
Since U is transitive, we get x ⊂ U, and therefore, x ∈ P. Hence, P is transitive. Let
x ⊂ y ∈ P. Then, x ⊂ y ⊂ U implies x ∈ P. Hence, P is quasitransitive.

Let y, z ∈ P, y = z, and X ∈ P. Consider the formula 𝜑(y) ≡ (y ∈ X). By the scheme
of replacement of equals in ZF, we deduce the formula 𝜑(z) = (z ∈ X) for the formula
y = z. By the deduction theorem, we deduce y ∈ X ⇒ z ∈ X. Similarly, the formula z ∈
X ⇒ y ∈ X is deduced. Thus,we deduce the formula y ∈ X ⇔ z ∈ X, and therefore, the
formula X ∈ P ⇒ (y ∈ X ⇔ z ∈ X). By the generalization rule, the formula 𝜓 ≡ ∀X ∈
P(y ∈ X ⇔ z ∈ X) is deduced. Further, by the deduction theoremweget y = z ⇒ 𝜓 and
by logical tools we deduce the formula A1t.

According to AS3 in ZF, for the formula 𝜑𝜏(y) and the set U there is a set Y such
that ∀y(y ∈ Y ⇔ y ∈ U ∧ 𝜑𝜏(y)). Let y ∈ Y. Then, y ∈ U ∧ 𝜑𝜏(y). Since U ∈ P, we ob-
tain ∃X ∈ P(y ∈ X) ∧ 𝜑𝜏(y). By the deduction theorem, the formula y ∈ Y ⇒ ∃X ∈
P(y ∈ X) ∧ 𝜑𝜏(y) is deduced. Conversely, let ∃X ∈ P(y ∈ X) ∧ 𝜑𝜏(y). Then, y ∈ X ⊂ U
implies y ∈ U. Hence, y ∈ U ∧ 𝜑𝜏(y) implies y ∈ Y. By the deduction theorem, the
formula ∃X ∈ P(y ∈ X) ∧ 𝜑𝜏(y) ⇒ y ∈ Y is deduced. Thus, we deduce the formula
y ∈ Y ⇔ ∃X ∈ P(y ∈ X) ∧ 𝜑𝜏(y). It deduced from it that ∀y ∈ P(y ∈ Y ⇔ ∃X ∈ P(y ∈
X) ∧ 𝜑𝜏(y)). Since Y ⊂ U ∈ P and P is quasitransitive, we obtain Y ∈ P. Consequently,
AS2t is deduced in ZF.

Let X, Y ∈ P, X ∈ E ∈ P, and Y ⊂ X. Then, Y ⊂ X ∈ E ⊂ U and the quasitransitivity
of the universal set U imply Y ∈ U ∈ P. This means that A3t is deducible in ZF.

We have established above that for X ∈ E ∈ P the equality P(X)𝜏 = P(X) holds.
By axiom A5 in ZF, P(X) exists. Since U is universal, we see that X ∈ E ⊂ U implies
P(X) ∈ U ∈ P. This means that A3t is deducible in ZF.

Let X, Y ∈ P, X ∈ E ∈ P, and Y ∈ F ∈ P. We have established above that in these
conditions, the equality (X ∪ Y)𝜏 = X ∪ Y holds. It follows from X ∈ U and Y ∈ U that
X∪Y ∈ U ∈ P by virtue of the universality of U. Thismeans that A4t is deducible in ZF.

Let X, Y , Z ∈ P and X ∈ E ∈ P. We have derived above that in these conditions
the equality (X ∗ Y)𝜏 = X ∗ Y holds, and if Z ⊂ X ∗ Y, then the equalities Z⟨x⟩𝜎 =
Z⟨x⟩ and (rng Z)𝜏 = rng Z hold. If x ∈ X and Z⟨x⟩ ∈ F ∈ P, then X ∈ U, x ∈ U, and
Z⟨x⟩ ∈ U. Since U is universal, we get U ∗ U ⊂ U. Consider the set f ≡ {s ∈ U ∗ U |
∀x ∈ X(s = ⟨x, Z⟨x⟩⟩) ∧ ∀x(x ∉ X ⇒ s = ⟨x,⌀⟩)}. It is clear that f is a function from
X in U such that f (x) = Z⟨x⟩. Since U is universal, we infer that S ≡ rng f ∈ U, and
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therefore, T ≡ ∪S ∈ U. If t ∈ T, then t ∈ s ∈ S implies t ∈ Z⟨x⟩ for some x ∈ X. Hence,
t ∈ rng Z. Conversely, if t ∈ rng Z, then ⟨x, t⟩ ∈ Z for some x ∈ dom Z ⊂ X. Therefore,
t ∈ Z⟨x⟩ = f (x) ∈ S, and therefore, t ∈ T. Thus, rng Z = T ∈ U ∈ P. This means that
A5t is deducible in ZF.

We have derived above that⌀t = ⌀ZF . Let X ∈ P and X ̸= ⌀ZF . Verify that Z2 ≡ (x∩
X)𝜏 for x ∈ X in the formula A6𝜏 coincides with x ∩ X. Suppose that z ∈ x ∩ X; then,
z ∈ X ∈ P implies z ∈ P by virtue of the transitivity of P. By the formula for Z2 we obtain
z ∈ Z2. Conversely, suppose z ∈ Z2 ∈ P; then, z ∈ P implies z ∈ x ∩ X in view of the
formula for Z2. Hence, Z2 = x ∩ X.

By regularity axiom A9 in ZF there is x ∈ X such that x ∩ X = ⌀ZF . It follows from
x ∈ X ∈ P that x ∈ P. This means that A6t is deducible in ZF.

We have established above that in the formula A7𝜏, we have ⌀t = ⌀ZF and if x ∈
X ∈ E ∈ P, then (x ∪ {x})𝜏 = x ∪ {x}. Since U is universal, we get 𝜔 ∈ U, where 𝜔 ∈ P.
Since 𝜔 is an inductive set, we have⌀ZF ∈ X and x ∈ X ⇒ x ∪ {x} ∈ X. Further, by log-
ical tools, we deduce the formula A7t.

The axiom of choice A8 in NBG translates into the formula

A8t ⇔ A8𝜏 ≡ ∀X ∈ P(∃E ∈ P(X ∈ E) ∧ X ̸= ⌀t ⇒ ∃z ∈ P((z  P(X)\{⌀} → X)𝜏 ∧
∧ ∀Y ∈ P(Y ∈ (P(X)\{⌀})𝜎 ⇒ ∀x ∈ P(x ∈ X ∧ ⟨Y , x⟩𝜎 ∈ z ⇒ x ∈ Y),

where
– the set Z1 ≡ Z1(X) ≡ (P(X)\{⌀})𝜎 is determined by the formula ∃Z1 ∈ P∀u ∈ P(u ∈

Z1 ⇔ u ∈ P(X)𝜌 ∧ u ∉ {⌀}𝜌);
– the set Z2 ≡ ⟨Y , x⟩𝜎 is determined by the formula ∃Z2 ∈ P∀u ∈ P(u ∈ Z2 ⇔ ∃F ∈

P(u ∈ F) ∧ (u = {Y}𝜎 ∨ u = {Y , x}𝜎));
– the set Z3 ≡ {Y , x}𝜎 is determined by the formula ∃Z3 ∈ P∀u ∈ P(u ∈ Z3 ⇔ ∃G ∈

P(u ∈ G) ∧ (u = Y ∨ u = x));
– the set Z4 ≡ {Y}𝜎 is determined by the formula ∃Z4 ∈ P∀u ∈ P(u ∈ Z4 ⇔ ∃H ∈

P(u ∈ H) ∧ u = Y);
– the set Z5 ≡ {⌀}𝜌 is determined by the formula ∃Z5 ∈ P∀z ∈ P(z ∈ Z5 ⇔ (∃K ∈

P(z ∈ K) ∧ z = ⌀t));
and 𝜑𝜏 ≡ (z  P(X)\{⌀} → X)𝜏 denotes the formula M ⊨ 𝜑[s𝜏], where s𝜏 denotes the
corresponding changes of the sequence s under translation of the quantifier overfor-
mulas ∀X(. . . ) and ∃z(. . . ) indicated above.

We have established above the equality⌀t = ⌀ZF . Since⌀ZF ∈ 𝜔 ∈ U ∈ P, as was
shown above, these conditions implies Z5 = {⌀ZF}.

Fix the conditions X ∈ P, X ∈ E ∈ P, and X ̸= ⌀t = ⌀ZF . As was shown before, this
implies P(X)𝜌 = P(X).

Check that Z1 = P(X)\{⌀ZF} ≡ Z. Let u ∈ Z1 ∈ P. Since X ∈ E ⊂ U and U is univer-
sal, we get P(X) ∈ U. The quasitransitivity of U implies now Z ∈ U. Since u ∈ P, the
formula for Z1 provides that u ∈ Z. Hence, Z1 ⊂ Z. Conversely, let u ∈ Z ∈ U ∈ P. Since
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P is transitive, we get u ∈ P. The formula for Z1 implies now u ∈ Z. Hence, Z ⊂ Z1,
which yields the necessary equality. This leads to the replacement of Z1 by Z in the
formula A8𝜏.

Consider the formula 𝜑 ≡ (z  Z → X). It is the conjunction of three formulas:
𝜑1 ≡ (z ⊂ Z ∗ X), 𝜑2 ≡ (dom z = Z), and 𝜑3 ≡ (∀x(x ∈ Z ⇒ ∀y(y ∈ X ⇒ ∀y(y ∈ X ⇒
(⟨x, y⟩ ∈ z ∧ ⟨x, y⟩ ∈ z ⇒ y = y))))). Therefore, 𝜑𝜏 = 𝜑𝜏1 ∧ 𝜑𝜏2 ∧ 𝜑𝜏3 . Since 𝜑1 = (∀u(u ∈
z ⇒ ∃x∃y(x ∈ Z ∧ y ∈ X ∧ u = ⟨x, y⟩))), we obtain 𝜑𝜏1 ⇔ (∀u ∈ P(u ∈ z ⇒ ∃x ∈ P∃y ∈
P(x ∈ Z ∧ y ∈ X ∧ u = ⟨x, y⟩𝜎))). Similarly, 𝜑2 = (∀x(x ∈ Z ⇒ ∃y(y ∈ X ∧ ⟨x, y⟩ ∈ z)))
implies 𝜑𝜏2 ⇔ (∀x ∈ P(x ∈ Z ⇒ ∃y ∈ P(y ∈ X ∧ ⟨x, y⟩𝜎 ∈ z))).

Finally, 𝜑𝜏3 ⇔ (∀x ∈ P(x ∈ Z ⇒ ∀y ∈ P(y ∈ X ⇒ ∀y ∈ P(y ∈ X ⇒ (⟨x, y⟩𝜎 ∈ z ∧
⟨x, y⟩𝜎 ∈ z ⇒ y = y))))). This guarantees that 𝜑𝜏1 , 𝜑𝜏2 , and 𝜑𝜏3 differ from the formulas
𝜑1, 𝜑2, and 𝜑3, respectively, only by bounded quantifier prefixes ∀ ⋅ ⋅ ⋅ ∈ P and ∃ ⋅ ⋅ ⋅ ∈ P.

By the axiom of choice in ZF for X there is z such that 𝜒 ≡ (z  Z → X) ∧ ∀Y(Y ∈
Z ⇒ ∀x(x ∈ X ∧ ⟨Y , x⟩ ∈ z ⇒ x ∈ Y)). Hence, the formula 𝜑 = 𝜑1 ∧ 𝜑2 ∧ 𝜑3 is de-
duced, and therefore, the formulas 𝜑1, 𝜑2, and 𝜑3 are deduced.

Let u ∈ P and u ∈ z. Then, we derive from the formula 𝜑1 that there are x ∈ Z and
y ∈ X such that u = ⟨x, y⟩. Since x ∈ Z ∈ U ∈ P and y ∈ X ∈ P, by the transitivity prop-
erty we get x, y ∈ P. Thismeans that under the conditions u ∈ P and u ∈ z the formula
∃x ∈ P∃y ∈ P(x ∈ Z ∧ y ∈ X ∧ u = ⟨x, y⟩) is deduced. Applying the deduction theo-
rem and the deduction rules twice, we deduce the formula 𝜑𝜏1 .

Let x ∈ P and x ∈ Z. Then, we derive from the formula 𝜑2 that for x there is y ∈ X
such that ⟨x, y⟩ ∈ z. It follows from y ∈ X ∈ P that y ∈ P. This means that under the
conditions x ∈ P and x ∈ Z the formula ∃y ∈ P(y ∈ X ∧ ⟨x, y⟩ ∈ z) is deduced. There-
fore, as above, we deduce the formula 𝜑𝜏2 .

Let x ∈ P, x ∈ Z, y ∈ P, y ∈ X, y ∈ P, y ∈ X, ⟨x, y⟩ ∈ z, and ⟨x, y⟩ ∈ z. Then we
deduce from the formula 𝜑3 the formula y = y. Applying alternately the deduction
theorem and the deduction rules several times, we deduce the formula 𝜑𝜏3 .

Thus, the formula 𝜑𝜏 is deduced.
Check that Z4 = {Y}under the conditions X ∈ E ∈ P, Y ∈ P, and Y ∈ Z. Let u ∈ {Y},

i. e. u = Y ∈ P. Since u = Y ∈ Z ∈ U ∈ P, the transitivity implies u ∈ U ∈ P. Then, the
formula for Z4 implies u ∈ Z4. Conversely, if u ∈ Z4 ∈ P, then u ∈ P and the formula
for Z4 imply u = Y ∈ {Y}. This yields the necessary equality.

Check that Z3 = {Y , x} under the conditions X ∈ E ∈ P, x ∈ X, Y ∈ P, and Y ∈ Z.
Let u ∈ {Y , x}. Then, u = Y ∈ Z ∈ U ∈ P or u = x ∈ X ∈ E ∈ P implies u ∈ P, and there-
fore, u ∈ Z3. Conversely, if u ∈ Z3 ∈ P, then u ∈ P and the formula for Z3 imply u =
Y ∨ u = x, i. e. u ∈ {Y , x}. This yields the necessary equality.

Finally check that Z2 = ⟨Y , x⟩ under the previous condition. Let u ∈ ⟨Y , x⟩, i. e.
u = {Y} or u = {Y , x}. The previous equalities eliminate the index 𝜎 in the formula for
Z2. Since Y ∈ Z ∈ U, we get Y ∈ U. Moreover, x ∈ X ∈ E ∈ P implies x ∈ X ∈ P, i. e. x ∈
X ⊂ U. It follows now from the universality of U that u = {Y} ∈ U or u = {Y , x} ∈ U.
Hence, u ∈ U ∈ P and u ∈ P provides u ∈ Z2. Conversely, if u ∈ Z2 ∈ P, then u ∈ P and
the formula for Z2 imply u = {Y} or u = {Y , x}, i. e. u ∈ ⟨Y , x⟩. This yields the necessary
equality.
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Since Z ∈ U ∈ P and X ∈ E ∈ P, i. e. X ∈ E ⊂ U, we obtain z ⊂ Z ∗ X ∈ U by
virtue of the universality of U. By Lemma 1 (A.4.1), we get z ∈ U ∈ P, and therefore,
z ∈ P.

Thus,we see that it is deducedunder the fixed conditions from the axiomof choice
in ZF that there exists the object z ∈ P satisfying the formula 𝜒 implying the formula
𝜉 ≡ (𝜑𝜏 ∧ ∀Y ∈ P(Y ∈ Z ⇒ ∀x ∈ P(x ∈ X ∧ ⟨Y , x⟩ ∈ z ⇒ x ∈ Y))). As a result, we con-
clude that for the fixed conditions the formula ∃z ∈ P𝜉 is deduced. Applying alter-
nately the deduction theorem and the generalization rule several times, we deduce
the formula A8t.

Thus,M is a model of the NBG set theory.

Now, we can prove the Zermelo – Shepherdson theorem [Zermelo, 1930; Shepherdson,
1951; 1952; 1953].

Theorem 2. In the ZF set theory, the following conclusions are equivalent for a set P:
1) P is a supertransitive standard model set for the NBG set theory;
2) P = V𝜘+1 = P(V𝜘) for some inaccessible cardinal number 𝜘.
Proof. (1) ⊢ (2). By Theorem 1 P = P(U) for some universal set U. By Theorem 1 (A.4.2)
U = V𝜘 for some inaccessible cardinal number 𝜘. By Corollary 2 to Lemma 3 (A.3.2)
P = P(V𝜘) = V𝜘+1.(2) ⊢ (1). By Corollary 2 to Lemma 3 (A.3.2) V𝜘+1 = P(V𝜘). By Theorem 2 (A.4.2) the
set V𝜘 is universal. Now, the assertion follows from Theorem 1.

A.7 Characterization of all natural models of the NBG set theory

A.7.1 Tarski sets and their properties

A set U in ZF is called a Tarski set if it has the following properties (see [Tarski, 1938]
and [Kuratowski and Mostowski, 1967, IX, § 5]):
1) x ∈ U ⇒ x ⊂ U (the transitivity property);
2) x ∈ U ⇒ P(x) ∈ U (the exponentiality property);
3) ((x ⊂ U) ∧ ∀f (f ∈ Ux ⇒ rng f ̸= U)) ⇒ x ∈ U (the Tarski property).

A. Tarski added to the ZF theory the following axiom.
AT. (The Tarski axiom.) Every set is an element of a certain Tarski set.
In [Tarski, 1938], it was proven that AT is equivalent to inaccessibility axiom AI

(see also [Kuratowski and Mostowski, 1967, IX, § 1, Theorem 6 and § 5, Theorem 1]).

Lemma 1. For any sets U and X, the following conclusions are equivalent:
3) (x ⊂ U) ∧ ∀f (f ∈ Ux ⇒ rng f ̸= U) ⇒ x ∈ U;
3) (x ⊂ U) ∧ (|x| < |U|) ⇒ x ∈ U.
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Proof. (3) ⊢ (3). Let x ⊂ U and ∀f (f ∈ Ux ⇒ rng f ̸= U). Clearly, |x| ⩽ |U|. Suppose
that |x| = |U|. Then, there is a bijection f : x U. This contradicts the condition.
Hence, |x| < |U|. By property 3 we get x ∈ U.

(3) ⊢ (3). Let f ∈ Ux. Then, | rng f | ⩽ |x| < |U| implies rng f ̸= U. By property
3 x ∈ U.
Let us derive other properties of Tarski sets from these properties.

Lemma 2. If U is a Tarski set and x ∈ U, then |x| ∈ |U|.
Proof. By properties 1 and 2, x ∈ U impliesP(x) ∈ U andP(x) ⊂ U. By the Cantor the-
orem (Theorem 2 (1.3.2)), |x| < |P(x)| ⩽ |U|.
Lemma 3. If U is a Tarski set, then x ∈ U ∧ y ⊂ x ⇒ y ∈ U.
Proof. If x ∈ U, then by property 2, we get P(x) ∈ U and by property 1, we get P(x) ⊂
U. It follows from y ∈ P(x) that y ∈ U.
Lemma 4. If U is a Tarski set, then x ∈ U ∧ (f ∈ Ux) ⇒ rng f ∈ U.
Proof. If x ∈ U, then by Lemma 2,we get |x| < |U|. Since f ∈ Ux, we have rng f ⊂ U and
| rng f | ⩽ |x| < |U|, where, by property 3, we obtain rng f ∈ U.
Lemma 5. If U is a Tarski set, then |U| ⊂ U.

Proof. Consider the classC ≡ {x | x ∈ On ∧ x ∉ U}. This class is non-empty, since oth-
erwise the classOn is a set. Therefore, it has aminimal element𝜘. Since∀𝛼 ∈ 𝜘(𝛼 ∈ U),
we get𝜘 ⊂ U. Consequently, |𝜘| ⩽ |U|. Suppose that |𝜘| < |U|. Then, by Lemma 1𝜘 ∈ U,
which is false. Hence, |U| = |𝜘| ⩽ 𝜘, i. e. |U| ⊂ 𝜘 ⊂ U.

Lemma 6. If U is a Tarski set, then |U| ∉ U.
Proof. Suppose that 𝜘 ≡ |U| ∈ U. Then, by property 2, we infer P(𝜘) ∈ U. Lemma 2
implies 𝛼 ≡ |P(𝜘)| ∈ |U|. On account of Lemma 5, we conclude that 𝛼 ∈ U and 𝛼 ⊂ U
by virtue of property 1. By the Cantor theorem (Theorem 2 (1.3.2)) 𝛼 > |U|. But since
𝛼 ⊂ U, we get 𝛼 ⩽ |U|. This contradiction proves that |U| ∉ U.
Lemma 7. If U is a Tarski set, then |P(𝛼)| ∈ |U| holds for every ordinal number 𝛼 ∈ |U|.
Proof. Since 𝛼 ∈ |U| and |U| ⊂ U by virtue of Lemma 5, we get 𝛼 ∈ U. Then, property 2
implies P(𝛼) ∈ U. By Lemma 2 we obtain |P(𝛼)| ∈ |U|.
Lemma 8. If U is a non-empty Tarski set, then⌀ ∈ U and |U| ⩾ 5.
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Proof. Since ∀x(⌀ ⊂ x), we get x0 ≡ ⌀ ⊂ U. Since |⌀| = 0 < |U|, Lemma 1 implies
x0 ∈ U. By property 2, x1 ≡ {x0} = P(⌀) ∈ U. It follows from x0 ̸= x1 that |U| ⩾ 2.
These properties provide x2 ≡ {x1} ⊂ U and |x2| = 1 < |U|. Hence, property 3 implies
x2 ∈ U. Consequently, by x3 ≡ {x2} ⊂ U and |x3| = 1 < |U| implies x3 ∈ U. Similarly,
x4 ≡ {x3} ∈ U. Since all xi are different for i ∈ 5, we obtain |U| ⩾ 5.
Lemma 9. If U is a Tarski set, then x, y ∈ U ⇒ {x}, {x, y}, ⟨x, y⟩ ∈ U.
Proof. By Lemma8,we have |U| ⩾ 5. Therefore, {x}, {x, y} ⊂ U and |{x}| = 1 ⩽ |{x, y}| ⩽
2 < |U| imply {x}, {x, y} ∈ U in view of property 3. Hence, ⟨x, y⟩ ≡ {{x},
{x, y}} ∈ U.
Lemma 10. If U is a Tarski set, then |x| ⩾ |U| ⇒ x ∉ U.
Proof. Assume the converse, i. e. there is x such that |x| ⩾ |U| ∧ x ∈ U. By property 2,
we get y ≡ P(x) ∈ U. Since |P(x)| > |x|, we get |y| > |U|. Property 1 implies y ⊂ U. But
in this case |y| ⩽ |U|. This contradiction proves that x ∉ U.
Lemma 11. If U is a Tarski set, then x, y ∈ U ⇒ x ∪ y ∈ U.
Proof. Since ∀z(z ∈ x ∨ z ∈ y ⇒ z ∈ U), we get x ∪ y ⊂ U. It follows from x, y ∈ U and
Lemma 10 that𝛼 ≡ |x| < |U| ≡ 𝜘 and𝛽 ≡ |y| < 𝜘.We need to prove that |x∪y| < 𝜘. First,
consider the case where 𝛼 ⩽ 2 and 𝛽 ⩽ 2. Then, it is easily seen that |x ∪ y| ⩽ 4 < |U|
by virtue of Lemma 8. Therefore, x ∪ y ∈ U in view of property 3. Further, suppose
that 𝛼 ⩾ 𝛽 > 2. Consider the sets P ≡ {0} × x, Q ≡ {1} × y, S ≡ x ∪ y, and T ≡ P ∪ Q.
Define the mapping u : T → S setting u(0, a) ≡ a for every (0, a) ∈ P and u(1, b) ≡ b
for every (1, b) ∈ Q. Since u is surjective, we get |S| ⩽ |T|.

It is clear that there exist bijections g : P 𝛼 and h : Q 𝛽 ⊂ 𝛼. Define the
function f : T → P(𝛼) setting f (p) ≡ {g(p)} for every p ∈ P and f (q) ≡ 𝛼\{h(q)} for ev-
ery q ∈ Q. Since P ∩ Q = ⌀, this function is well defined. The function f is injective.
Indeed, f is injective on P and on Q. Let p ∈ P, q ∈ Q, and f (p) = f (q). Then, {g(p)} =
𝛼\{h(q)} implies 𝛼 = {g(p)} ∪ {h(q)} = {g(p), h(q)} ⩽ 2, but it contradicts our assump-
tion. Consequently, f (p) ̸= f (q). The injectivity of f implies |S| ⩽ |T| ⩽ |P(𝛼)| < 𝜘 by
virtue of Lemma 7. Then, by property 3 we get S ∈ U.
Corollary 1. If U is a Tarski set, then 𝜔 ⊂ U.

Corollary 2. If U is a Tarski set, then |U| ⩾ 𝜔.
Corollary 3. If U is a Tarski set, then x, y ∈ U ⇒ x ∗ y ∈ U.
Proof. Lemma 11 and property 2 imply B ≡ P(P(x ∪ y)) ∈ U. By Lemma 3, it follows
from A ≡ x ∗ y ⊂ B that A ∈ U.
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Lemma 12. If U is a Tarski set, then 𝛼 < |U| ⇒ |𝛼 ∗ 𝛼| < |U| holds for every ordinal
number 𝛼.
Proof. First, consider the casewhere |𝛼| ⩽ 2. Then, by Lemma8we get |𝛼∗𝛼| ⩽ |2∗2| =
4 < |U|. Further, suppose that |𝛼| > 2. Since 𝛼 < |U| ≡ 𝜘, Lemma 7 implies |P(𝛼)| < 𝜘.
The set X ≡ 𝛼 ∗ 𝛼 consists of ordered pairs ⟨𝛽, 𝛾⟩ such that 𝛽, 𝛾 ∈ 𝛼. Divide the set
X into three disjoint subsets X1 ≡ {⟨𝛽, 𝛾⟩ | 𝛽 < 𝛾 < 𝛼}, X2 ≡ {⟨𝛽, 𝛽⟩ | 𝛽 < 𝛼}, and X3 ≡{⟨𝛽, 𝛾⟩ | 𝛾 < 𝛽 < 𝛼}. Obviously, X1 ∪ X2 ∪ X3 = X. Define the function f : X → P(𝛼)
in the following way: if x1 = ⟨𝛽, 𝛾⟩ ∈ X1, then f (x1) ≡ {𝛽, 𝛾} ∈ P(𝛼); if x2 ≡ ⟨𝛽, 𝛽⟩ ∈ X2,
then f (x2) ≡ {𝛽} ∈ P(𝛼); if x3 = ⟨𝛽, 𝛾⟩ ∈ X3, then f (x3) ≡ 𝛼\{𝛽, 𝛾} ∈ P(𝛼). The function
f is injective on X1, X2, and X3. If f (x1) = f (x2), then {𝛽, 𝛾} = {𝛽} implies 𝛾 = 𝛽 < 𝛾,
which is impossible. If f (x1) = f (x3), then {𝛽, 𝛾} = 𝛼\{𝛽, 𝛾}, which is impossible in view
of 𝛼 ̸= ⌀. Finally, if f (x2) = f (x3), then {𝛽} = 𝛼\{𝛽, 𝛾} implies 𝛼 = {𝛽} ∪ {𝛽, 𝛾} = {𝛽, 𝛾},
and therefore, |𝛼| ⩽ 2, but it contradicts our assumption. This contradictory guaran-
tees that f is injective. Consequently, |X| ⩽ |P(𝛼)| < 𝜘.
The following theorem and its Corollary 1 were proved by A. Tarski [1938] (see also
[Kuratowski and Mostowski, 1967, IX, § 5]). We give here another proof.

Theorem 1. If U is a Tarski set, then 𝜘 ≡ |U| is a regular cardinal number.
Proof. Suppose that the cardinal number 𝜘 is not regular; then, 𝛼 ≡ cf (𝜘) < 𝜘 and
Lemma 5 implies 𝛼 ∈ U. By definition, there is a function 𝜑 : 𝛼 → 𝜘 such that
∪ rng𝜑 = 𝜘. Denote rng𝜑 by A and consider the cardinal number 𝛼 ≡ |A| ⩽ 𝛼 < 𝜘.
By Lemma 5, A ⊂ U and 𝛼 ∈ U. Define the function g : A → P(𝜘) in the following
way. Consider an arbitrary ordinal number 𝛽 ∈ A and the set A𝛽 ≡ {𝛾 ∈ A | 𝛾 < 𝛽}. Put𝛽 ≡ sup A𝛽 = ∪A𝛽 for A𝛽 ̸= ⌀ (see Lemma 2 (A.2.2)) and 𝛽 ≡ 0 for A𝛽 = ⌀. Consider
the set C𝛽 ≡ {𝛾 ∈ 𝜘 | 𝛽 ⩽ 𝛾 < 𝛽} and put g(𝛽) ≡ C𝛽. Show that g(𝛽1) ∩ g(𝛽2) = ⌀ for
𝛽1 ̸= 𝛽2. Indeed, let 𝛽1 < 𝛽2. Then, 𝛽1 ∈ A𝛽2 , and therefore, 𝛽1 ⩽ 𝛽2. If x ∈ g(𝛽1) ∧ x ∈
g(𝛽2), then x ∈ C𝛽1 ∧ x ∈ C𝛽2 , where x ∈ 𝜘 ∧ x < 𝛽1 ∧ 𝛽2 ⩽ x, which is impossible.
This contradiction implies that g(𝛽1) ∩ g(𝛽2) = ⌀. Check that B ≡ ∪⟮g(𝛽) | 𝛽 ∈ A⟯ = 𝜘.
It follows from the definitions of the sets g(𝛽) that B ⊂ 𝜘. Suppose now that x ∈ 𝜘.
Since ∪A = 𝜘, there is 𝛽 ∈ A such that x ∈ 𝛽. Therefore, the set D ≡ {𝛾 ∈ A | x ∈ 𝛾} is
non-empty, and therefore, it has a minimal element 𝜆. By the definition of D we get
∀𝛾 ∈ A(𝛾 < 𝜆 ⇒ 𝛾 ⩽ x), where x ⩾ 𝜆. Hence, 𝜆 ⩽ x < 𝜆, i. e. x ∈ g(𝜆). Consequently,
B = 𝜘.

Since U is a Tarski set and 𝜘 is its power, there is a bijection f : 𝜘 U. Since
𝜘 = ∪⟮g(𝛽) | 𝛽 ∈ A⟯ and the sets g(𝛽) are pairwise disjoint, we conclude that U =
∪⟮f [g(𝛽)] | 𝛽 ∈ A⟯. Denote the sets f [g(𝛽)] by U𝛽. Fix 𝛽 ∈ A. It follows from C𝛽 ⊂ 𝛽 that|U𝛽| = |C𝛽| ⩽ |𝛽|.

Consider (possibly, empty) the set F𝛽 ≡ {q ∈ U𝛽 | |q| = 𝛼}. By above, |F𝛽| ⩽ |U𝛽| ⩽|𝛽| ⩽ 𝛽. Hence, | ∪ F𝛽| = | ∪ ⟮q | q ∈ F𝛽⟯| ⩽ | ∪ ⟮q ∗ {q} | q ∈ F𝛽⟯| ≡ ∑(|q| | q ∈ F𝛽) =
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𝛼|F𝛽| ⩽ 𝛼|𝛽| = ∑(𝛼q | q ∈ 𝛽) ≡ | ∪ ⟮𝛼 ∗ {q} | q ∈ 𝛽⟯|, where 𝛼q ≡ 𝛼 for every q ∈ 𝛽. Since∪⟮𝛼 ∗ {q} | q ∈ 𝛽⟯ ⊂ 𝛼 ∗ 𝛽 ⊂ max(𝛼, 𝛽) ∗ max(𝛼, 𝛽) and max(𝛼, 𝛽) < 𝜘, by Lemma 12,
we get | ∪ F𝛽| < 𝜘. Consequently, ∪F𝛽 ∈ U and P(∪F𝛽) ∈ U.

It follows from F𝛽 ⊂ U𝛽 ⊂ U and the transitivity of U that ∪F𝛽 ⊂ U. Therefore,
by the inequality proven above, we conclude that V𝛽 ≡ U\ ∪ F𝛽 ̸= ⌀ for every 𝛽 ∈ A.
Suppose that P(∪F𝛽) ∈ ∪F𝛽. Since ∪F𝛽 ∈ P(∪F𝛽), we obtain an infinite decreasing
sequence P(∪F𝛽) ∋ ∪F𝛽 ∋ P(∪F𝛽) ∋ ∪F𝛽 ∋ . . . . This contradicts the regularity axiom.
Hence, P(∪F𝛽) ∈ V𝛽. Define the function h : A → U setting h(𝛽) ≡ P(∪F𝛽). Consider
the function h ≡ h ∘ 𝜑 : 𝛼 → U. By Lemma 4, we get M ≡ rng h = rng h ∈ U.

Evidently, |M| ⩽ 𝛼. The transitivity of U implies 𝛼 ⊂ U. If 𝛼 is an infinite number,
then for the setM ≡ M∪𝛼 ⊂ U the inequalities 𝛼 ⩽ |M| ⩽ |(M∗{0})∪(𝛼∗{1})| ≡ |M|+
𝛼 = 𝛼 hold, wherewe get the equality |M| = 𝛼. By Lemma 11, it follows from 𝛼 ∈ U and
M ∈ U thatM ∈ U. If 𝛼 is a finite (i. e. natural) number, then the set U\M is infinite by
virtue of Corollary 2 to Lemma 11. Consequently, there is an injective mapping v : 𝜔 →
U\M. Consider the natural number n ≡ 𝛼 − |M| and the finite set N ≡ v[n] ⊂ U\M. In
this case, the equality |M| = 𝛼 hold for the setM ≡ M∪N. By Corollary 1 to Lemma 11,
we get n ∈ 𝜔 ⊂ U. Therefore, by Lemma 4, we get N = rng(u|n) ∈ U. It follows from
M ∈ U and N ∈ U that M ∈ U by virtue of Lemma 11.

Sincewehave proven thatU = ∪⟮U𝛽 | 𝛽 ∈ A⟯, we haveM ∈ U𝛽 for some𝛽 ∈ A. Be-
sides, |M| = 𝛼, where M ∈ F𝛽. If x ∈ M ∈ F𝛽, then x ∈ ∪F𝛽, i. e. M ⊂ ∪F𝛽. It follows
from h(𝛽) ∈ V𝛽 = U\ ∪ F𝛽 that h(𝛽) ∉ M. However, by definition, h(𝛽) ∈ M ⊂ M. This
contradiction implies that the cardinal 𝜘 is regular.
Corollary 1. If U is a Tarski set and 𝜘 ≡ |U| > 𝜔, then 𝜘 is an inaccessible cardinal
number.

Proof. By Theorem 1 the cardinal number 𝜘 is regular. By Lemma 7 for every 𝛼 < 𝜘
we get |P(𝛼)| ∈ 𝜘. By condition, 𝜘 > 𝜔. Consequently, 𝜘 is an inaccessible cardinal
number.

Theorem 2. If U is a Tarski set, then x ∈ U ⇒ ∪x ∈ U.
Proof. Consider the numbers 𝛼 ≡ |x| and 𝜘 ≡ |U| and some bijection u : 𝛼 x. By
Lemma 2 𝛼 ∈ 𝜘. Since U is transitive, we get ∪x ⊂ U. Hence, | ∪ x| ⩽ 𝜘.

Suppose that |∪x| = 𝜘; then, there is a bijection f : ∪x 𝜘. Fix an element a ∈ 𝛼.
Then, u(a) ∈ x implies u(a) ⊂ ∪x. Therefore, we can consider the injective mapping
ga ≡ f |u(a) : u(a)  𝜘. Consider the number 𝛽a ≡ |u(a)|, a bijection va : 𝛽a u(a),
and the injective mapping ha ≡ ga ∘ va : 𝛽  𝜘. Suppose that ∪ rng ha = 𝜘. Then, by
Theorem 1, we get 𝛽a ⩾ 𝜘. However, u(a) ∈ x ⊂ U implies 𝛽a ≡ |u(a)| < 𝜘 by virtue of
Lemma 2. This contradiction provides sup rng ha = ∪ rng ha < 𝜘.

Thus, we can define the function 𝜂 : 𝛼 → 𝜘 setting 𝜂(a) ≡ sup rng ha. Consider
the set Z ≡ rng 𝜂 ⊂ 𝜘. By the above, z ⩽ 𝜘 for every z ∈ Z. Let 𝜋 be an order number
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such that z ⩽ 𝜋 for every z ∈ Z. Take any element q ∈ 𝜘 and consider the element p ≡
f −1(q) ∈ ∪x. Then, p ∈ y ∈ x for some y ∈ x. Consider the element a ≡ u−1(y) ∈ 𝛼. Since
p ∈ y = u(a), we get q = f (p) ∈ f [u(a)] = rng qa = rng ha. Hence, q ⩽ sup rng ha ≡𝜂(a) ⩽ 𝜋. This means that sup𝜘 ⩽ 𝜋. Since 𝜘 is a limit number, Lemma 3 (A.2.2) guar-
antees that 𝜘 = sup 𝜘 ⩽ 𝜋. This implies 𝜘 = sup Z = ∪Z = ∪ rng 𝜂. Now, we have 𝛼 ⩾ 𝜘
by virtue of Theorem 1. This contradicts the inequality 𝛼 < 𝜘.

Hence, | ∪ x| < 𝜘. By property 3, we conclude that ∪x ∈ U.

A.7.2 Galactic sets and their connection with Tarski sets

Let x be a set. Any finite sequence (xi | i ∈ n+1) such that x0 = x and xi+1 ∈ xi for every
i ∈ n will be called a chain of subelements of the set x (of the length n).

A set U is said to be dominant if for any set x the following conclusions are
equivalent:
1) x ∈ U;
2) all elements of any chains of subelements of the set x are of cardinality less

than |U|.
Lemma 1. Any dominant set is transitive.

Proof. Let a setU be dominant, x ∈ U, and y ∈ x. Any chain of subelements of the set y
is a subchain of some chain of subelements of the set x, and therefore, all its elements
are of cardinality less than |U|. Hence, y ∈ U.
Lemma 2. Any dominant set U has property 3 of a Tarski set, i. e. x ⊂ U ∧ |x| < |U| ⇒
x ∈ U.
Proof. Let x ⊂ U and |x| < |U|. Consider an arbitrary chain of subelements (x0, x1, . . . ,
xn) of the set x. Since x1 ∈ x0 = x ⊂ U and U is transitive by virtue of Lemma 1, x1 ∈ U
implies by induction that xi ∈ U for every i ∈ n + 1 \ 1. Hence, |xi| < |U| for every i ∈
n + 1 \ 1. Moreover, by condition, |x0| = |x| < |U|. Consequently, x ∈ U.
Proposition 1. Any Tarski set is dominant.

Proof. Let (xi | i ∈ n + 1) be a chain of subelements of the set x and x ∈ U. Since U is
transitive, using induction, we infer that xi ∈ U for every i ∈ n + 1. By Lemma 2 (A.7.1)
|xi| < |U|.

Denote by C the class consisting of sets satisfying property 2 from the definition of
dominant sets. Show that C ⊂ U. Consider the class D ≡ {x | (x ∈ U ∧ x ∈ C) ∨ x ∉ C}
and prove that it satisfies the ∈-induction principle (Lemma 4 (A.2.2)). Take some y ⊂
D. Then, for every z ∈ y we get (z ∈ U ∧ z ∈ C) ∨ z ∉ C. If z ∉ C for some z ∈ y, then
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y ∉ C, and therefore, y ∈ D. Suppose now that ∀z ∈ y(z ∈ U ∧ z ∈ C). Consider 𝛼 ≡ |y|
and 𝜘 ≡ |U|. If 𝛼 ⩾ 𝜘, then y ∉ C, where y ∈ D. Let 𝛼 < 𝜘. In this case, y ∈ U by virtue
of Lemma 1 (A.7.1). Show that y ∈ C. Indeed, consider an arbitrary chain (yi | i ∈ n + 1)
of subelements of the set y. Then, the sequence (yi | i ∈ (n + 1)\1) is a chain of subele-
ments of the set y1 ∈ y = y0. Since, by assumption, y1 ∈ C, all elements of the sequence
(yi | i ∈ (n+1)\1) are of cardinality less than 𝜘. Thus, y ∈ C. Hence, y ∈ U ∧ y ∈ C, and
therefore, y ∈ D. Then,we conclude that the classD satisfies the∈-inductionprinciple,
which yields D = V. Therefore, ∀x((x ∈ U ∧ x ∈ C) ∨ x ∉ C), i. e. C ⊂ U.

Lemma 3. For every cardinal number 𝛼, there exists no more than one Tarski set of car-
dinality 𝛼.
Proof. Suppose that there exist two Tarski sets U1 and U2 of the same cardinality 𝛼.
Let x ∈ U1. Then, by Proposition 1, we get |x| < 𝛼 = |U1| and any chain of subelements
of the set x consists of sets of cardinality less than 𝛼 = |U1|. This implies that |x| <
|U2| and any chain of subelements of the set x consists of sets of cardinality less than
|U2|. Consequently, the same Proposition provides x ∈ U2, where U1 ⊂ U2. Similarly,
we obtain U2 ⊂ U1. Thus, U1 = U2.

A set U is said to be exponential if ∀x ∈ U(P(x) ∈ U). A dominant and exponential set
will be called galactic.

Theorem 1 (the Bunina theorem on galactic sets). The following conclusions are equiv-
alent for a set U:
1) U is a Tarski set;
2) U is a galactic set.

Proof. (1) ⊢ (2). This deduction follows from the exponentiality property of Tarski sets
and Proposition 1.

(2) ⊢ (1). This deduction follows from Lemmas 1 and 2 and Lemma 1 (A.7.1).

Let us show that under the assumption of the continuum hypothesis, there exists a
dominant non-exponential set.

Lemma 4. If |2𝜔| = 𝜔1, then there is a dominant set of cardinality 𝜔1.
Proof. If |2𝜔| = 𝜔1, then to prove the existence of a dominant set of cardinality 𝜔1 it
is sufficient to prove that for a set X consisting of sets such that all their chains of
subelements consist of countable sets only, we have |X| = 𝜔1.

Since 𝜔1 ⊂ X, we get |X| ⩾ 𝜔1.
Check now that |X| ⩽ 𝜔1, i. e. there is a injection from the set X into the set of infi-

nite sequences of zeros and units.
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Any set x ∈ X can be represented as a tree whose root is the set x itself, branches
are chains of subelements, and leaves are last elements of these chains, i. e. sets con-
taining no sets (empty sets). All branches of such a tree are of finite length, and,more-
over, the number of these branches is countable. The number of stores of the tree is
also countable, and on each store, there are countably many sets (nodes or leaves of
the tree). Clearly, certain trees correspond to the same set in X (these are the trees
obtained from each other by a renumbering of vertices), but only one set in X corre-
sponds to each three X. We will consider not trees themselves but their “isomorphism
classes”.

Let us enumerate leaves of the tree in a certain way (this can be done, since the
set of leaves is countable). we put into correspondence to every such “numbered”
tree the function f ∈ 𝜔𝜔×𝜔 in the following way: f (n,m) is the maximal natural k such
that n-th and m-th leaves end branches of a certain set from the k-th store (if n = m
set f (n,m) ≡ n). We can always define such a number k, since, first, any two leaves
end the branches of the initial set x, i. e. k ⩾ 1; second, k ⩽ min(m, n). Such a func-
tion f ∈ 𝜔𝜔×𝜔 determines uniquely the isomorphism class of a tree. Therefore, |X| ⩽
|𝜔𝜔×𝜔|.

Show that |𝜔𝜔×𝜔| = |2𝜔| = 𝜔1. Since |𝜔×𝜔| = 𝜔, we get |𝜔𝜔×𝜔 = |𝜔𝜔|. The set𝜔𝜔 is the
set of infinite sequences of natural numbers. Since |𝜔𝜔| ⩾ |2𝜔|, it remains to check that
|𝜔𝜔| ⩽ |2𝜔|, i. e. to construct an injective mapping from the set of infinite sequences of
natural numbers into the set of infinite sequences consisting of zeros and units. We
do this as follows. Let N ≡ (ni ∈ 𝜔 | i ∈ 𝜔) be an infinite sequences of natural num-
bers. Put into the correspondence to this sequence the sequence M ≡ {mj ∈ 2 | j ∈ 𝜔}
of zeros and units such that for every i ∈ 𝜔 put mj ≡ 0 for j = ∑(nk | k ∈ i) + i and
mj ≡ 1 for all other j. For example, the sequence 1, 2, 3, 4, 5, . . . maps into the se-
quence 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0 . . . . This mapping is injective,
where |𝜔𝜔| = |2𝜔|, and therefore, |X| ⩽ |2𝜔|. Since |X| ⩾ |2𝜔|, the Cantor theorem (Theo-
rem 2 (1.3.2)) implies |X| = |2𝜔|. Since, by assumption, |2𝜔| = 𝜔1, we get |X| = 𝜔1. Thus,
the set X is dominant.

The fact that such a set X is not exponential is obvious, since 𝜔1 is not an inaccessible
cardinal number.

A.7.3 Characterization of Tarski sets. Characterization of all natural models
of the NBG theory

Proposition 1. Let U is a Tarski set and |U| = 𝜔. Then, U = V𝜔.

Proof. By Lemma 1 (A.3.2) 𝜔 ⊂ V𝜔. Hence, 𝜔 ⩽ |V𝜔|. Since V𝜔 = ∪⟮Vn | n ∈ 𝜔⟯ and|Vn| < 𝜔, we have |V𝜔| ⩽ 𝜔, and therefore, |V𝜔| = 𝜔. Prove that V𝜔 is a Tarski set.
By Lemma 3 (A.3.2) the set V𝜔 is transitive, by Lemma 6 (A.3.2), it is exponential.
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Check that V𝜔 has property 3. Consider some set x ⊂ V𝜔 such that |x| < |V𝜔| = 𝜔. If
y ∈ x ⊂ V𝜔 = ∪ ⟮Vn | n ∈ 𝜔⟯, then N(y) ≡ {n ∈ 𝜔 | y ∈ Vn} ̸= ⌀. Consequently, the set
N(y) has a minimal element n(y) ∈ 𝜔. Since the set x is finite, the set M ≡ {m ∈ 𝜔 |
∃y ∈ x(m = n(y))} has a maximal element n. Therefore, x ⊂ Vn implies x ∈ Vn+1 ⊂ V𝜔.
Thus, V𝜔 is a Tarski set. Since by Lemma 3 (A.7.2) a Tarski set of cardinality𝜔 is unique,
we get U = V𝜔.

Theorem 1. Let U be a Tarski set and 𝜘 ≡ |U| > 𝜔. Then,
1) U is a universal set;
2) U = V𝜘 for the inaccessible cardinal number 𝜘 = sup(On ∩ U).
Proof. 1. Show that the set U has all the properties of a universal set.

Property 1 follows from property 1 of a Tarski set. The property x ∈ U ⇒ P(x) ∈ U
follows fromproperty 2 of a Tarski set. The property x ∈ U ⇒ ∪x ∈ U follows fromThe-
orem 2 (A.7.1). The property x, y ∈ U ⇒ x∪ y ∈ U is a consequence of Lemma 11 (A.7.1).
The properties x, y ∈ U ⇒ {x, y}, ⟨x, y⟩ ∈ U follows from Lemma 9 (A.7.1). Corollary 3
to Lemma 11 (A.7.1) implies the property x, y ∈ U ⇒ x ∗ y ∈ U. Property 4 follows from
Lemma 4 (A.7.1).

Since, by condition, |U| > 𝜔, Lemma 5 (A.7.1) implies 𝜔 ∈ U.
Thus, the set U is universal.
2. Theorem 1 (A.4.2) guarantees that U = V𝜘 for the inaccessible cardinal number

𝜘 = sup(On ∩ U).
Now, we can prove the main theorem on the characterization of natural models of the
NBG set theory.

Theorem 2. In the ZF set theory, the following conclusions are equivalent for a set U:
1) U is an uncountable Tarski set;
2) U is a universal set;
3) U is an inaccessible cumulative set, i. e. U = V𝜘 for a certain inaccessible cardinal

number 𝜘;
4) U is a supertransitive standard model set for the ZF set theory and U has the strong

substitution property;
5) P(U) is a supertransitive standard model set for the NBG set theory;
6) U is an uncountable galactic set.

Proof. The deduction (1) ⊢ (3) follows from Theorem 1.
The deduction (3) ⊢ (1) follows from Lemmas 3 and 6 (A.3.2) and Lemma 5 (A.3.3).
The equivalence of (2) and (3) follows from Theorem 2 (A.4.2).
The equivalence of (2) and (4) follows from Proposition 1 (A.6.1).
The equivalence of (1) and (6) follows from Theorem 1 (A.7.2).
The equivalence of (2) and (5) follows from Theorem 1 (A.6.2).
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The deduction (3) ⊢ (1) was proven by A. Tarski [1938]. The equivalence of (3) and (4)
was, in fact, proven by Zermelo [1930] and Shepherdson [1951, 1952, 1953] (see also
[Kanamori, 2003, Theorem 1.3]). All other assertions of this Theorem belong to E. I.
Bunina and V. K. Zakharov [2006].

Consider one more axiom in ZF.
AG. (The galacticity axiom). Every set is an element of a certain galactic set.

Corollary 1. In the ZF set theory, axioms AT, AU, AI, and AG are equivalent.

The equivalence of axioms AT and AI in this corollary was proven by A. Tarski [1938]
(see also [Kuratowski and Mostowski, 1967, IX, § 5, Theorem 1]). Here another proof
using the theorem on characterization of natural models is given.

A.8 Characterization of all natural models of the ZF set theory in
the ZF set theory

A.8.1 Scheme-inaccessible cardinal numbers and scheme-inaccessible cumulative
sets

If all free variables of a formula 𝜑 are among the variables x0, . . . , xm−1, p0, . . . , pn−1,
then this situation will be denoted in the form 𝜑(x⃗, p⃗). In this case, the variables
p0, . . . , pn−1 will be called parameters. Instead of x0 ∈ A ∧ . . . ∧ xm−1 ∈ A, ∀x0 ∈
A . . . ∀xm−1 ∈ A, and ∃x0 ∈ A . . . ∃xm−1 ∈ A we shall write x⃗ ∈ A, ∀x⃗ ∈ A, and ∃x⃗ ∈ A,
respectively.

For every transitive set A every formula 𝜑(x, y, p⃗) of the ZF theory defines the cor-
respondence [𝜑(x, y, p⃗)|A] ≡ {z ∈ A ∗ A | ∃x, y ∈ A(z = ⟨x, y⟩ ∧ 𝜑A(x, y, p⃗))} ⊂ A ∗ A
depending on the parameter p⃗ (see A.6.1).

An ordinal number 𝜘 is said to be scheme-regular if
∀p⃗ ∈ V𝜘∀𝛼(𝛼 ∈ 𝜘 ∧ ([𝜑(x, y, p⃗)|V𝜘]  𝛼 → 𝜘 ⇒ ∪ rng[𝜑(x, y, p⃗)|V𝜘] ∈ 𝜘),

where 𝜑 is a metavariable denoting an arbitrary formula of ZF.
An ordinal number 𝜘 > 𝜔 is said to be (strongly) scheme-inaccessible if

1) ∀𝛼(𝛼 ∈ 𝜘 ⇒ |P(𝛼)| ∈ 𝜘);
2) 𝜘 is scheme-regular.

Lemma 1. Let an ordinal number 𝜘 satisfy the quasiexponentiality condition ∀𝛼(𝛼 ∈
𝜘 ⇒ |P(𝛼)| ⊂ 𝜘). Then, 𝜘 is a cardinal number.
Proof. Let 𝛼 be an ordinal number such that 𝛼 ⩽ 𝜘 and 𝛼 ∼ 𝜘. Then, |𝛼| = |𝜘|.
Suppose that 𝛼 < 𝜘. By the condition, |P(𝛼)| ⊂ 𝜘. Applying the Cantor theorem
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(Theorem 2 (1.3.2)), we obtain |𝛼| < |P(𝛼)| ⩽ |𝜘|. It contradicts the preceding equal-
ity. Hence, 𝛼 = 𝜘.
Corollary 1. An scheme-inaccessible ordinal number 𝜘 is a cardinal number.
Proof. If 𝛼 ∈ 𝜘, then property 1 implies |P(𝛼)| ∈ 𝜘. By virtue of transitivity, we get
|P(𝛼)| ⊂ 𝜘, where 𝜘 satisfies the conditions of Lemma 1, and therefore, 𝜘 is a cardi-
nal number.

The sets V𝜘 for scheme-inaccessible cardinal numbers 𝜘 will be called scheme-
inaccessible cumulative sets.

Lemma 2. Let𝜘 be an scheme-inaccessible cardinal number and𝛼 is an ordinal number
such that 𝛼 ∈ 𝜘. Then, |V𝛼| < 𝜘.
Proof. Consider the set C ≡ {x ∈ 𝜘 | |Vx| < 𝜘} and the classesC ≡ On\𝜘 andC ≡ C∪
C. Since V0 = ⌀, we get |V0| = 0 < 𝜘, where 0 ∈ C.

Let 𝛼 ∈ C. If 𝛼 ⩾ 𝜘, then 𝛼 + 1 ∈ C ⊂ C. If 𝛼 < 𝜘, then 𝛼 ∈ C. If 𝛼 + 1 = 𝜘, then
𝛼 + 1 ∈ C ⊂ C. Let 𝛼 + 1 < 𝜘. Since V𝛼 ∼ |V𝛼|, we getP(V𝛼) ∼ P(|V𝛼|), where|P(V𝛼)| =|P(|V𝛼|)|. By Corollary 2 to Lemma 3 (A.3.2), we have |V𝛼+1| = |P(V𝛼)| = |P(|V𝛼|)|. Since|V𝛼| < 𝜘 and the ordinal number 𝜘 is scheme-inaccessible, we obtain |P(|V𝛼|)| < 𝜘.
Consequently, |V𝛼+1| < 𝜘, and therefore, 𝛼 + 1 ∈ C ⊂ C.

Let 𝛼 be a limit ordinal number and 𝛼 ⊂ C. If 𝛼 ∩ C ̸= ⌀, then there is 𝛽 ∈ 𝛼 such
that 𝛽 ⩾ 𝜘. Therefore, 𝛼 > 𝛽 ⩾ 𝜘 implies 𝛼 ∈ C ⊂ C. Let 𝛼 ∩ C = ⌀, i. e. 𝛼 ⊂ C ⊂ 𝜘. If
𝛼 = 𝜘, òî𝛼 ∈ C ⊂ C. Suppose𝛼 < 𝜘; then, for every𝛽 ∈ 𝛼 the inequality |V𝛽| < 𝜘holds
since 𝛼 ⊂ C. Consequently, sup{|V𝛽| | 𝛽 ∈ 𝛼} ⩽ 𝜘.

Consider the formula 𝜑(x, y) ≡ (x ∈ 𝛼 ⇒ y = |Vx|) ∧ (x ∉ 𝛼 ⇒ y = ⌀).
Show that under our conditions x ∈ 𝛼 ∈ V𝜘 and y ∈ V𝜘 the equivalence (y =

|Vx|)V𝜘 ⇔ y = |Vx| holds.
The formula (y = |Vx|)V𝜘 is rewritten as (Cn(y))V𝜘 ∧ ∃f ∈ V𝜘(f  y Vx)V𝜘 .

The formula Cn(y)V𝜘 can be rewritten as On(y)V𝜘 ∧ ∀𝛼 ∈ V𝜘(On(𝛼)V𝜘 ∧ (𝛼 ⊂ y)V𝜘 ∧
∃h ∈ V𝜘(h  𝛼 y)V𝜘 ⇒ 𝛼 = y). Consider the formulaOn(y)V𝜘 under the condition
y ∈ V𝜘. This formula has the form

On(y)V𝜘 ≡ ∀x ∈ V𝜘(x ∈ y ⇒ (x ⊂ y)V𝜘 ) ∧
∧ ∀x, x, x ∈ V𝜘(x ∈ y ∧ x ∈ y ∧ x ∈ y ∧ x ∈ x ∧ x ∈ x ⇒ x ∈ x) ∧

∧ ∀x, x ∈ V𝜘(x ∈ y ∧ x ∈ y ⇒ x ∈ x ∨ x = x ∨ x ∈ x) ∧
∧ ∀T ∈ V𝜘((⌀ ̸= T ⊂ y)V𝜘 ⇒ ∃x ∈ V𝜘(x ∈ T ∧ ∀x ∈ V𝜘(x ∈ T ⇒ x ∈ x))).

Note that under the condition y ∈ V𝜘 the formula (x ⊆ y)V𝜘 ≡ ∀z ∈ V𝜘(z ∈ x ⇒ z ∈ y)
is equivalent to the formula x ⊆ y by virtue of the supertransitivity of V𝜘. Similarly,
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(⌀ ̸= T ⊆ y)V𝜘 ⇔ ⌀ ̸= T ⊆ y. The formula ∀x ∈ V𝜘(x ∈ y ⇒ x ⊆ y) is equivalent to
the formula ∀x(x ∈ y ⇒ x ⊆ y) since x ∈ y implies x ∈ V𝜘. The formula ∀x, x, x ∈
V𝜘(x ∈ y ∧ x ∈ y ∧ x ∈ y ∧ x ∈ x ∧ x ∈ x ⇒ x ∈ x) is equivalent to the formula
∀x, x, x(x ∈ y ∧ x ∈ y ∧ x ∈ y ∧ x ∈ x ∧ x ∈ x ⇒ x ∈ x) since x, x, x ∈ y
implies x, x, x ∈ V𝜘. The formula∀x, x ∈ V𝜘(x ∈ y ∧ x ∈ y ⇒ x ∈ x ∨ x = x ∨ x ∈
x) is equivalent to the formula ∀x, x(x ∈ y ∧ x ∈ y ⇒ x ∈ x ∨ x = x ∨ x ∈ x) since
x, x ∈ y implies x, x ∈ V𝜘. Finally, the formula ∀T ∈ V𝜘(⌀ ̸= T ⊆ y ⇒ ∃x ∈ V𝜘(x ∈
T ∧ ∀x ∈ V𝜘(x ∈ T ⇒ x ∈ x))) is equivalent to the formula ∀T(⌀ ̸= T ⊂ y ⇒ ∃x(x ∈
T ∧ ∀x(x ∈ T ⇒ x ∈ x))) since T ⊂ y implies T ∈ V𝜘 and x, x ∈ T implies x, x ∈ V𝜘.
Thus, On(y)V𝜘 ⇔ On(y).

This guarantees that the formula Cn(y)V𝜘 can be rewritten as On(y) ∧ ∀𝛼 ∈
V𝜘(On(𝛼) ∧ (𝛼 ⊂ y)V𝜘 ∧ ∃h ∈ V𝜘(h  𝛼 y)V𝜘 ⇒ 𝛼 = y). Since y ∈ V𝜘, we obtain(𝛼 ⊂ y)V𝜘 ⇔ 𝛼 ⊂ y, and therefore, 𝛼 ∈ V𝜘.

The formula ∃h ∈ V𝜘(h  𝛼 y)V𝜘 is written as
∃h ∈ V𝜘(∀x ∈ V𝜘(x ∈ h ⇔ ∃z ∈ V𝜘∃z ∈ V𝜘(z ∈ 𝛼 ∧ ∃z ∈ y ∧ x = ⟨z, z⟩)) ∧

∧ ∀z ∈ V𝜘(z ∈ 𝛼 ⇒ ∃z ∈ V𝜘(z ∈ y ∧ ⟨z, z⟩ ∈ h)) ∧
∧ ∀z ∈ V𝜘(z ∈ y ⇒ ∃z ∈ V𝜘(z ∈ 𝛼 ∧ ⟨z, z⟩ ∈ h)) ∧

∧ ∀z, z, z ∈ V𝜘(z ∈ 𝛼 ∧ z, z ∈ y ∧ ⟨z, z⟩ ∈ h ∧ ⟨z, z⟩ ∈ h ⇒ z = z) ∧
∧ ∀z, z, z ∈ V𝜘(z, z ∈ 𝛼 ∧ z ∈ y ∧ ⟨z, z⟩ ∈ h ∧ ⟨z, z⟩ ∈ h ⇒ z = z)).

The formula ∀x ∈ V𝜘(x ∈ h ⇔ ∃z, z ∈ V𝜘(z ∈ 𝛼 ∧ z ∈ y ∧ x = ⟨z, z⟩)) is equivalent
to the formula ∀x(x ∈ h ⇔ ∃z ∈ 𝛼∃z ∈ y(x = ⟨z, z⟩)) since z ∈ 𝛼 implies z ∈ V𝜘, z ∈
y implies z ∈ V𝜘, and x = ⟨z, z⟩ implies x ∈ V𝜘.

The formula ∀z ∈ V𝜘(z ∈ 𝛼 ⇒ ∃z ∈ V𝜘(z ∈ y ∧ ⟨z, z⟩ ∈ h)) is equivalent ∀z ∈
𝛼∃z ∈ y(⟨z, z⟩ ∈ h) since z ∈ 𝛼 implies z ∈ V𝜘 and z ∈ y implies z ∈ V𝜘. Similarly,
the formula ∀z ∈ V𝜘(z ∈ y ⇒ ∃z ∈ V𝜘(z ∈ 𝛼 ∧ ⟨z, z⟩ ∈ h)) is equivalent ∀z ∈ y∃z ∈𝛼(⟨z, z⟩ ∈ h).

The formula ∀z, z, z ∈ V𝜘(z ∈ 𝛼 ∧ z, z ∈ y ∧ ⟨z, z⟩ ∈ h ∧ ⟨z, z⟩ ∈ h ⇒ z =
z) is equivalent ∀z ∈ 𝛼∀z, z ∈ y(⟨z, z⟩ ∈ h ∧ ⟨z, z⟩ ∈ h ⇒ z = z) since z ∈
𝛼 and z, z ∈ y imply z, z, z ∈ V𝜘. Similarly, the formula ∀z, z, z ∈ V𝜘(z, z ∈𝛼 ∧ z ∈ y ∧ ⟨z, z⟩ ∈ h ∧ ⟨z, z⟩ ∈ h ⇒ z = z).

Thus, the formula Cn(y)V𝜘 is equivalent to the formula On(y) ∧ ∀𝛼(On(𝛼) ∧ 𝛼 ⊂
y ∧ ∃h ∈ V𝜘(h  𝛼 y) ⇒ 𝛼 = y). Since h  𝛼 y, we get h ⊂ 𝛼 ∗ y. By Corol-
lary 2 to Lemma 6 (A.3.2), it follows from 𝛼, y ∈ V𝜘 that 𝛼 ∗ y ∈ V𝜘, and, therefore,
h ∈ V𝜘. Hence, we obtain Cn(y)V𝜘 ⇔ Cn(y).

We know that for x < 𝜘, wehaveVx ∈ V𝜘. Therefore, as above, it can be shown that
the formula ∃f ∈ V𝜘(f  y Vx)V𝜘 is equivalent to the formula ∃f (f  y Vx).

Now, we can conclude that (y = |Vx|)V𝜘 ⇔ (y = |Vx|).
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Then, [𝜑|V𝜘] = {z | ∃x ∈ V𝜘∃y ∈ V𝜘(z = ⟨x, y⟩ ∧ (x ∈ 𝛼 ⇒ y = |Vx|) ∧ (x ∉ 𝛼 ⇒
y = ⌀) ∧ 𝛼 ∈ V𝜘)}. If y ∈ rng[𝜑|V𝜘], then ∃x(⟨x, y⟩ ∈ [𝜑|V𝜘]), i. e. y ∈ V𝜘 ∧ ∃x(x ∈
V𝜘 ∧ ((x ∈ 𝛼 ∧ y = |Vx|) ∨ (x ∉ 𝛼 ∧ y = ⌀))). Thus, y = ⌀ or y = Vx for some x ∈ 𝛼.
Conversely, if y = Vx for some x ∈ 𝛼, then y ∈ rng[𝜑|V𝜘]. Hence, rng[𝜑|V𝜘] = {|V𝛽| |𝛽 ∈ 𝛼}. By Corollary 1 to Theorem 1 (A.3.2) ∪ rng f = ∪{|V𝛽| | 𝛽 ∈ 𝛼} = sup{|V𝛽| | 𝛽 ∈𝛼} = |V𝛼|. By the inequality proven above, we obtain |V𝛼| ⩽ 𝜘.
Suppose that |V𝛼| = 𝜘; then, 𝜘 = ∪ rng[𝜑|V𝜘] implies 𝜘 ⩽ 𝛼 since 𝜘 is scheme-regular.
This contradicts the initial inequality 𝛼 < 𝜘. Hence, |V𝛼| < 𝜘. Therefore, 𝛼 ∈ C ⊂ C.

By the principle of transfinite induction, C = On, and therefore, C = 𝜘.
Lemma 3. Let 𝜘 be a scheme-inaccessible cardinal number. Then, 𝜘 = |V𝜘|.
Proof. By Lemma 2, we get 𝜘 ⊂ V𝜘. Therefore, 𝜘 = |𝜘| ⩽ |V𝜘|. By Corollary 1 to Theo-
rem 1 (A.3.2) |V𝜘| = sup(|V𝛽| | 𝛽 ∈ 𝜘). Since by Lemma 2 |V𝛽| < 𝜘, we obtain |V𝜘| ⩽ 𝜘.
As a result, we obtain 𝜘 = |V𝜘|.
Lemma 4. Let 𝜘 be a scheme-inaccessible cardinal number, 𝛼 be an ordinal number
such that 𝛼 < 𝜘, and 𝜑(x, y, p⃗) be a formula. Then, ∀p⃗ ∈ V𝜘([𝜑(x, y, p⃗)|V𝜘]  V𝛼 →
V𝜘 ⇒ rng[𝜑(x, y, p⃗)|V𝜘] ∈ V𝜘).
Proof. Since 𝜘 is a limit ordinal number, we get V𝜘 = ∪⟮V𝛿 | 𝛿 ∈ 𝜘⟯. For x ∈ V𝛼 there is𝛿 ∈ 𝜘 such that [𝜑|V𝜘](x) ∈ V𝛿. Hence, the non-empty set {y ⩽ 𝛿 | [𝜑|V𝜘](x) ∈ Vy} has
a minimal element z.

Consider some bijection h : |V𝛼| → V𝛼.
Since, by condition, v ∈ V𝜘, the formula ∀x ∈ V𝛼∃v[𝜑|V𝜘](x) = v ∧ 𝜑V𝜘 (x, v, p⃗) ∧

p⃗ ∈ V𝜘 holds. Consider the formula 𝜓(u, z) ≡ (u ∈ |V𝛼| ⇒ z = sm{y ⩽ 𝛿 | [𝜑|V𝜘](h(u))∈ Vy}) ∧ (u ∉ |V𝛼| ⇒ z = ⌀). In this case, [𝜓|V𝜘] = {v | ∃u ∈ V𝜘∃z ∈ V𝜘(v = ⟨u, z⟩ ∧𝜓V𝜘 (u, z)). Consider the formula𝜓V𝜘(u, z) inmore detail. It is equivalent to the formula
((u ∈ |V𝛼|)V𝜘 ⇒ (z = sm{y ⩽ 𝛿 | [𝜑|V𝜘](h(u)) ∈ Vy})V𝜘 ) ∧ ((u ∉ |V𝛼|)V𝜘 ⇒ (z = ⌀)V𝜘 )
equivalent to the formula (u ∈ |V𝛼|V𝜘 ⇒ ((∀y ⩽ 𝛿([𝜑|V𝜘](h(u)) ∈ Vy ⇒ z ⊂ y) ∧ ([𝜑|
V𝜘](h(u)) ∈ Vz)V𝜘 ) ∧ (u ∉ |V𝛼|V𝜘 ⇒ z = vrn). The last formula is equivalent to (u ∈
|V𝛼| ⇒ ([𝜑|V𝜘](h(u)) ∈ Vz)V𝜘 ∧ ∀y ∈ V𝜘(y ⩽ 𝛿 ∧ ([𝜑|V𝜘](h(u)) ∈ Vy)V𝜘 ⇒ z ⊂ y) ∧ (u
∉ |V𝛼| ⇒ z = ⌀).

The formula ([𝜑|V𝜘](h(u)) ∈ Vz)V𝜘 ∧ ∀y ∈ V𝜘(y ⩽ 𝛿 ∧ ([𝜑|V𝜘](h(u)) ∈ Vy)V𝜘 ⇒
z ⊂ y) is equivalent to the formula ([𝜑|V𝜘](h(u)) ∈ Vz)V𝜘 ∧ ∀y ⩽ 𝛿(([𝜑|V𝜘](h(u)) ∈
Vy)V𝜘 ⇒ z ⊂ y) since y ⩽ 𝛿 implies y ∈ V𝜘.

Consider the formula ([𝜑|V𝜘](h(u)) ∈ Vz)V𝜘 in more detail. It is equivalent to the
formula ∃w(w ∈ Vz ∧ ⟨h(u), w⟩ ∈ [𝜑|V𝜘]))V𝜘 equivalent to ∃w ∈ V𝜘(w ∈ Vz ∧ (⟨h(u),
w⟩ ∈ {a | ∃b ∈ V𝜘∃c ∈ V𝜘(a = ⟨b, c⟩ ∧ 𝜑V𝜘 (b, c, p⃗) ∧ p⃗ ∈ V𝜘)})V𝜘 ). This means that
∃w ∈ V𝜘(w ∈ Vz ∧ (u ∈ V𝜘 ∧ w ∈ V𝜘 ∧ 𝜑V𝜘 (h(u), w, p⃗) ∧ p⃗ ∈ V𝜘)V𝜘 ), i. e. ∃w(w ∈ Vz∧ 𝜑V𝜘 (h(u), w, p⃗) ∧ p⃗ ∈ V𝜘).
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Thus, the formula [𝜓|V𝜘] is equivalent to the formula

{v | ∃u ∈ V𝜘∃z ∈ V𝜘(v = ⟨u, z⟩ ∧ (u ∈ |V𝛼| ⇒
⇒ ∃w(w ∈ Vz ∧ 𝜑V𝜘 (h(u), w, p⃗) ∧ p⃗ ∈ V𝜘) ∧

∧ ∀y ∈ 𝜘(∃w(w ∈ Vy ∧ 𝜑V𝜘 (h(u), w, p⃗) ∧ p⃗ ∈ V𝜘) ⇒ z ⊂ y)) ∧ (u ∉ |V𝛼| ⇒ z = ⌀))}.
This formula is equivalent to the formula {v | ∃u ∈ V𝜘∃z ∈ V𝜘(v = ⟨u, z⟩ ∧ (u ∈ |V𝛼| ⇒
z = sm{y | ∃w(w ∈ Vy ∧ 𝜑V𝜘 (h(u), w, p⃗) ∧ p⃗ ∈ V𝜘)}) ∧ (u ∉ |V𝛼| ⇒ z = ⌀))}. Now,
we easily derive that [𝜓|V𝜘]  |V𝛼| → 𝜘.

Consider the ordinal number 𝛾 ≡ ∪ rng[𝜓|V𝜘] = sup rng[𝜓|V𝜘] ⩽ 𝜘.
Suppose 𝛾 = 𝜘; but it is impossible since the cardinal 𝜘 is quasiregular. Therefore,

𝛾 < 𝜘.
Let rng[𝜑|V𝜘] ∉ V𝜘. Then, there is t ∈ rng[𝜑|V𝜘] such that t ∉ V𝛾. To this set, some

s ∈ dom[𝜑|V𝜘] such that ⟨s, t⟩ ∈ [𝜑|V𝜘] and s ∈ V𝛼 corresponds. Moreover, h−1(s) ∈
|V𝛼|.

Consider 𝛽 ≡ [𝜓|V𝜘](h−1(s)). Since h−1(s) ∈ |V𝛼|, we get 𝛽 = sm{y | ∃w(w ∈ Vy ∧𝜑V𝜘 (s, w, p⃗) ∧ p⃗ ∈ V𝜘)} and since the formula 𝜑 is functional, we get w = t, i. e. 𝛽 =
sm{y | t ∈ Vy}. Since, by condition, t ∉ V𝛾, we get 𝛽 > 𝛾, what contradicts the condi-
tion rng[𝜓|V𝜘] ⊂ 𝛾.

Thus, rng[𝜑|V𝜘] ⊂ V𝛾 ∈ V𝜘.

Corollary 1. Let 𝜘 be a scheme-inaccessible cardinal number, A ∈ V𝜘, 𝜑(x, y, p⃗) be a
formula, and [𝜑(x, y, p⃗)|V𝜘]  A → V𝜘. Then, rng[𝜑(x, y, p⃗)|V𝜘] ∈ V𝜘.

Proof. Since 𝜘 is a limit number, we get V𝜘 = ∪⟮V𝛼 | 𝛼 ∈ 𝜘⟯, and therefore, A ∈ V𝛼 for
some 𝛼 ∈ 𝜘. By Lemma 3 (A.3.2) A ⊂ V𝛼. Consider the formula 𝜓(x, y, p⃗, A, 𝛼) ≡ (x ∈
A ∧ 𝜑(x, y, p⃗) ∨ (x ∈ V𝛼\A ∧ y = ⌀). It follows from x ∈ V𝛼\A ⊂ V𝛼 ∈ V𝜘 and the su-
pertransitivity of V𝛼 that x, V𝛼\A ∈ V𝜘. Hence, (x ∈ V𝛼\A)V𝜘 ⇔ x ∈ V𝛼\A. Therefore,𝜓V𝜘 ⇔ (x ∈ A ∧ 𝜑V𝜘 ) ∨ (x ∈ V𝛼\A) ∧ y = ⌀. Since g ≡ [𝜓|V𝜘]  V𝛼 → V𝜘, we obtain
rng g ∈ V𝜘. It follows from B ≡ rng[𝜑|V𝜘] ⊂ rng g ∈ V𝜘 that B ∈ V𝜘.

Lemma 5. Let 𝜘 be a scheme-inaccessible cardinal number and A ∈ V𝜘. Then, ∪A ∈ V𝜘.

Proof. Since 𝜘 is a limit ordinal number, we get V𝜘 = ∪⟮V𝛿 | 𝛿 ∈ 𝜘⟯. For A ∈ V𝜘 there
is 𝛿 ∈ 𝜘 such that A ∈ V𝛿. Then, for every a ∈ A, we have a ∈ V𝛿. This implies that for
every a ∈ A the non-empty set {y ⩽ 𝛿 | a ∈ Vy} has a minimal element za.

Consider some bijection h : |V𝛿| → V𝛿.
Consider the formula𝜓(u, z) ≡ (u ∈ |V𝛿| ∧ h(u) ∈ A ⇒ z = sm{y ⩽ 𝛿 | h(u) ∈ Vy})∧ (u ∉ |v𝛿| ∨ h(u) ∉ A ⇒ z = ⌀). In this case, [𝜓|V𝜘] = {v | ∃u ∈ V𝜘∃z ∈ V𝜘(v = ⟨u, z⟩∧ 𝜓V𝜘 (u, z)). Consider the formula 𝜓V𝜘 (u, z) in more details. It is equivalent to the for-

mula ((u ∈ |V𝛿|)V𝜘 ∧ (h(u) ∈ A)V𝜘 ⇒ (z = sm{y ⩽ 𝛿 | h(u) ∈ Vy})V𝜘 ) ∧ ((u ∉ |V𝛿|)V𝜘 ∨
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(h(u) ∉ A)V𝜘 ⇒ (z = ⌀)V𝜘 ). As in the proof of the previous lemma, we establish
its equivalence to the formula (u ∈ |V𝛿| ∧ h(u) ∈ A ⇒ ((∀y ⩽ 𝛿(h(u) ∈ Vy) ⇒ z ⊂
y) ∧ (h(u) ∈ Vz))V𝜘 ) ∧ (u ∉ |V𝛿| ∨ h(u) ∉ A ⇒ z = ⌀).

The formula ((∀y ⩽ 𝛿(h(u) ∈ Vy) ⇒ z ⊂ y) ∧ (h(u) ∈ Vz))V𝜘 is equivalent to the
formula ∀y ∈ V𝜘(y ⩽ 𝛿 ∧ h(u) ∈ Vy ⇒ z ⊂ y) ∧ (h(u) ∈ Vz) by virtue of h, h(u), 𝛿, Vy ,
Vz ∈ V𝜘. Since y ⩽ 𝛿 implies y ∈ V𝜘 in this case, this formula is equivalent to the
formula (∀y ⩽ 𝛿(h(u) ∈ Vy) ⇒ x ⊂ y) ∧ (h(u) ∈ Vz), i. e. the formula z = sm{y ⩽ 𝛿 |
h(u) ∈ Vy}.

Thus, the formula [𝜓|V𝜘] = {v | ∃u ∈ V𝜘∃z ∈ V𝜘(v = ⟨u, z⟩ ∧ ((u ∈ |V𝛿| ∧ h(u) ∈
A ⇒ z = sm{v ⩽ 𝛿 | h(u) ∈ Vy}) ∧ (u ∉ |V𝛿| ∨ h(u) ∉ A ⇒ z = ⌀)). We easily derive
from this that [𝜓|V𝜘]  |V𝛿| → 𝜘.

Consider the ordinal number 𝛾 ≡ ∪ rng[𝜓|V𝜘] ∈ 𝜘.
Suppose ∪A ∉ V𝜘; then, there is t ∈ ∪A such that t ∉ V𝛾. Since t ∈ ∪A, there exists

a ∈ A such that t ∈ a, where a ∉ V𝛾. If we consider s ≡ [𝜓|V𝜘](h−1(a)), the we obtain
s ⩽ 𝛾 ∧ a ∈ Vs, where a ∈ V𝛾. This contradiction yields ∪A ∈ V𝜘.

Any transitive set A and any arbitrary formula 𝜎(x; u⃗) of the ZF set theory define the
scheme set ⟨𝜎(x; u⃗)|A⟩ ≡ {x ∈ A | 𝜎A(x; u⃗)} depending on the parameter u⃗.

Lemma 6. Let𝜘be a scheme-inaccessible cardinal number and𝜑(x, y, p⃗)and𝜎(x; u⃗)be
formulas. Then, ∀p⃗, u⃗ ∈ V𝜘∀𝜀 ∈ |V𝜘|([𝜑(x, y, p⃗)|V𝜘]  ⟨𝜎(x; u⃗)|V𝜘⟩ 𝜀 ⇒ ⟨𝜎(x; u⃗)|
V𝜘⟩ ∈ V𝜘).
Proof. Denote [𝜑|V𝜘], rng[𝜑|V𝜘], and ⟨𝜎|V𝜘⟩ for given p⃗, u⃗ ∈ V𝜘 by f , R , and S, respec-
tively. Consider the formula 𝜌(y, p⃗, u⃗) ≡ ∃x(𝜎(x; u⃗) ∧ 𝜑(x, y, p⃗)). Then, 𝜌V𝜘 = ∃x ∈
V𝜘(𝜎V𝜘 (x; u⃗) ∧ 𝜑V𝜘 (x, y, p⃗)) implies ⟨𝜌(y, p⃗, u⃗)|V𝜘⟩ ≡ {y ∈ V𝜘 | ∃x(x ∈ V𝜘 ∧ 𝜎V𝜘 (x; u⃗)∧ 𝜑V𝜘 (x, y, p⃗))} = R for given p⃗, u⃗ ∈ V𝜘. By Lemma 3, we have R ⊂ 𝜀 ∈ |V𝜘| = 𝜘 ⊂ V𝜘.
Hence, R ∈ V𝜘. Consider the formula 𝜓(y, x, p⃗, u⃗) ≡ 𝜎(x; u⃗) ∧ 𝜑(x, y, p⃗). Then, 𝜓V𝜘 =
𝜎V𝜘 (x; u⃗) ∧ 𝜑V𝜘 (x, y, p⃗) implies g ≡ [𝜓|V𝜘] ≡ {t ∈ V𝜘∗V𝜘 | ∃y, x ∈ V𝜘(t = ⟨y, x⟩ ∧ 𝜎V𝜘(x; u⃗) ∧ 𝜑V𝜘 (x, y, p⃗))} = f −1. Therefore, g is a bijective mapping from R onto S. Since
R ∈ V𝜘, Corollary 1 to Lemma 4, we get S = rng g ∈ V𝜘.

A.8.2 Scheme-universal sets and their connection with scheme-inaccessible
cumulative sets

A set U is said to be scheme-universal if it has the following properties:
1) x ∈ U ⇒ x ⊂ U (the transitivity property);
2) x ∈ U ⇒ P(x), ∪x ∈ U;
3) x, y ∈ U ⇒ x ∪ y, {x, y}, ⟨x, y⟩, x ∗ y ∈ U;
4) ∀p⃗ ∈ U∀x(x ∈ U ∧ [𝜑(x, y, p⃗)|U]  x → U ⇒ rng[𝜑(x, y, p⃗)|U] ∈ U);
5) 𝜔 ∈ U.
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Similarly to Lemmas 1 and 2 (A.4.1), one can prove the following two lemmas.

Lemma 1. If a set U is scheme-universal, then x ∈ U ∧ y ⊂ x ⇒ y ∈ U.
This lemma shows that a scheme-universal set is quasitransitive. This and the transi-
tivity property imply that a scheme-universal set is supertransitive.

Lemma 2. If a set U is scheme-universal, then⌀ ∈ U and 1 ∈ U.
The following theorem is similar to Lemma 4 (A.4.1), but it has a completely different
proof.

Theorem 1. If U is a scheme-universal set, then X ∈ U ⇒ |X| ∈ U.
Proof. If X = ⌀, then |X| = 0 ∈ U. In what follows, we will assume that X ̸= ⌀. By the
Zermelo principle (Theorem 1 (1.2.11)), we can assume that the set X is well-ordered.
Take a minimal element m of the set X and consider the non-empty set A ≡ On ∩ U.

For every x ∈ X, denote by Xx the initial interval ]←, x[≡ {t ∈ X | t < x}. By
Lemma 1, it follows from Xx ⊂ X ∈ U that Xx ∈ U. If for Xx there is a mapping f such
that dom f = Xx and rng f ∈ A, then f ⊂ Xx ∗ rng f ∈ U implies f ∈ U by virtue of
Lemma 1.

Assume that for x ∈ X there are isotone bijections f and g such that dom f =
dom g = Xx and rng f , rng g ∈ On. If x = m, then f = g = ⌀. If x > m, then consider
the set X ≡ {y ∈ Xx | f (y) ̸= g(y)}. Suppose that X ̸= ⌀; then X has a minimal ele-
ment n. Consider the set Xn ⊂ Xx. Suppose that f (m) > 0 and consider z ∈ Xx such that
f (z) = 0. Since f is isotone, it follows from f (m) > f (z) that m > z, which is impossi-
ble. Consequently, f (m) = 0 = g(m) implies m < n, i. e. m ∈ Xn. Clearly, f |Xn = g|Xn.
Since an isotone bijection preserves any exact bounds, we obtain f (n) = f (sup Xn) =
sup f [Xn] = sup g[Xn] = g(sup Xn) = g(n). This contradicts the property n ∈ X. This
contradiction implies that X = ⌀, i. e. f = g.

Denote by bij(f ) and isot(f ) the formulas expressing the properties of the map-
ping f to be bijective and to be isotone, respectively. Consider the formula 𝜑(x, a;
X) ≡ (X ̸= ⌀ ∧ x ∈ X ∧ ∃f (func(f ) ∧ dom(f ) = Xx ∧ rng(f ) = a ∧ bij(f ) ∧ isot(f ) ∧
On(a)). By the above, we infer that for x ∈ X only unique f can exists, and there-
fore, only unique a, i. e. the formula 𝜑(x, a; X) is functional. Consider the function
H ≡ [𝜑|U] ≡ {z ∈ U ∗ U | ∃x, a ∈ U(z = ⟨x, a⟩ ∧ 𝜑U(x, a; X))} ⊂ U ∗ U depending on
parameter X ∈ U.

Consider the formula𝜑U(x, a; X) = (X ̸= ⌀ ∧ x ∈ X ∧ ∃f ∈ U(funcU(f ) ∧ (dom(f )
= Xx)U ∧ (rng(f ) = a)U ∧ bijU(f ) ∧ isotU(f )) ∧ OnU(a)) for x, a, X ∈ U. By virtue of
transitivity of U and the property of absoluteness of the corresponding subformulas
of this formula (see Lemma 12.10 from [Jech, 2003]) we have funcU(f ) ⇔ func(f ),
(dom(f ) = Xx)U ⇔ (dom(f ) = Xx), (rng(f ) = a)U ⇔ (rng(f ) = a), OnU(a) ⇔ On(a),
bijU(f ) ⇔ bij(f ), and isotU(f ) ⇔ isot(f ). Therefore, 𝜑U(x, a; X) ⇔ (X ̸= ⌀ ∧ x ∈ X ∧
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∃f ∈ U(func(f ) ∧ dom f = Xx ∧ rng(f ) = a ∧ bij(f ) ∧ isot(f )) ∧ On(a)) for a, x, X ∈
U. Consider the set Z ≡ domH. Since Z ⊂ X ∈ U andU is quasitransitive,we get Z ∈ U.
Hence, property 4 from the definition of a scheme-universal set implies c ≡ rngH ∈ U.
Thus,H is a function from Z into c. Since the set e ≡ ⌀ ∈ U is an isotone bijection such
that dom e = Xm = ⌀ ∈ U and rng e = ⌀ = 0 ∈ A, we conclude that H ̸= ⌀.

Let𝛼 ∈ 𝛽 ∈ c. Then,𝛽 = H(y) for some𝛽 ∈ On and y ∈ Z such that𝜑U(y, 𝛽; X). This
means that y ∈ X and there is an isotone bijection g ∈ U such that dom(g) = Xy and
rng(g) = 𝛽. Since𝛽 is an ordinal number, we conclude that𝛼 is also an ordinal number
and 𝛼 ⊂ 𝛽. Consider x ≡ g−1(𝛼) ∈ Xy. If t ∈ Xx ⊂ Xy, then g(t) < g(x) = 𝛼, i. e. g(t) ∈ 𝛼.
If 𝛾 ∈ 𝛼, then 𝛾 ∈ 𝛽 and we can take an element z ≡ g−1(𝛾) ∈ Xy. It follows from g(z) =
𝛾 < 𝛼 = g(x) that z < x, i. e. z ∈ Xx. Moreover, g(z) = 𝛾. This implies that the function
f ≡ g|Xx maps Xx on 𝛼. Clearly, it is bijective and isotone. Since f ⊂ g ∈ U and U is qu-
asitransitive, we get f ∈ U. Hence, 𝛼 = H(x) ∈ c. This means that the set c is transitive.

Let 𝛼, 𝛽 ∈ c. Then, 𝛼 = H(x) and 𝛽 = H(y) for some 𝛼, 𝛽 ∈ On and x, y ∈ Z such
that 𝜑U(x, 𝛼; X) and 𝜑U(y, 𝛽; X). This means that x, y ∈ X and there are isotone bijec-
tions f , g ∈ U such that dom(f ) = Xx, dom(g) = Xy, rng(f ) = 𝛼, and rng(g) = 𝛽. Since𝛼 and 𝛽 are ordinal numbers, we see that 𝛼 ∈ 𝛽 or 𝛽 ∈ 𝛼 or 𝛼 = 𝛽. Therefore, the set c
linearly ordered with respect to the binary relation ∈ ∪ =.

Let⌀ ̸= 𝛼 ⊂ c. By the regularity axiom there is r ∈ 𝛼 such that r ∩ 𝛼 = ⌀. Take any
s ∈ 𝛼 such that s ∈ r or s = r. It follows from r ∩ 𝛼 = ⌀ that s ∉ r. Hence, s = r. This
means that r is a minimal element in 𝛼. Consequently, c is well-ordered.

Thus, we have proven that c is an ordinal number.
Check that the functionH is bijective and isotone. Let x, y ∈ Z and x < y. Then, for

ordinal numbers a ≡ H(x) and b ≡ H(y) there are isotone bijections f , g ∈ U such that
dom(f ) = Xx, dom(g) = Xy, rng(f ) = a, and rng(g) = b. Consider the ordinal num-
ber a ≡ g(x) ∈ b. If t ∈ Xx, then t < x < y implies g(t) < g(x) ≡ a, i. e. g(t) ∈ a. If
𝛼 ∈ a ⊂ b, then for the element s ≡ g−1(𝛼) it follows from 𝛼 < a that s < x, i. e. s ∈ Xx
and g(s) = 𝛼. Therefore, the function f  ≡ g|Xx is an isotone bijection from Xx onto a.
IT follows from the uniqueness proven above that f  = f . Thus, f ⊂ g implies a ⊂ b.
Suppose that a = b; then, Xx = f −1[a] = f −1[a] = g−1[a] = g−1[b] = Xy. This contra-
dicts the inequality x < y. Hence, a ∈ b, i. e. a < b. Conversely, let x, y ∈ Z and a < b.
Since a ∈ b, we can take the element x ≡ g−1(a) ∈ Xy. If t ∈ Xx , then t < x < y
implies g(t) < g(x) = a, i. e. g(t) ∈ a. If 𝛼 ∈ a ⊂ b, then for the element s ≡ g−1(𝛼) it
follows from 𝛼 < a that s = g−1(𝛼) < g−1(a) = x, i. e. s ∈ Xx and g(s) = 𝛼. Therefore,
the function f  ≡ g|Xx is an isotone bijection from Xx onto a. Consider the isotone
bijections p ≡ f −1 : a Xx and p ≡ f −1 : a Xx . We prove, as above, that
p = p. Consequently, Xx = Xx implies x = x < y.

Thus, the surjective function H is isotone. Therefore, H is an isotone bijection
from Z ⊂ X onto c ∈ A. Assume that Z ̸= X; then, the set X\Z has aminimal element y.
Consider the initial interval Xy. If x ∈ Xy, then x ∈ Z, i. e. Xy ⊂ Z. Conversely, let x ∈ Z.
Suppose that y ⩽ x. Consider the ordinal number a ≡ H(x). For it there is a bijection
f ∈ U such that dom(f ) = Xx and rng(f ) = a. If y = x, then y ∈ Z, which is impossible.
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Suppose y < x. Consider the ordinal number b ≡ f (y) ∈ a and the isotone bijection
g ≡ f |Xy from Xy onto b. Since g ⊂ f ∈ U and U is quasitransitive, we obtain g ∈ U.
Hence, b = H(y) and y ∈ Z, which is impossible. This contradiction implies x < y, i. e.
x ∈ Xy. As a result, we obtain Xy = Z.

Consider the set Y ≡ Z ∪ {y} and define the function f : Y a ≡ c + 1 set-
ting f |Z ≡ H and f (y) ≡ c. Let x, x ∈ Y and x < x. If x, x ∈ Z, then f (x) = H(x) <
H(x) = f (x). If x ∈ Z and x = y, then f (x) = H(x) ∈ c implies f (x) < c = f (x). There-
fore, f is strictly monotone. Conversely, let f (x) < f (x) for x, x ∈ Y. If x, x ∈ Z, then
H(x) < H(x) implies x < x. If x ∈ Z and x = y, then x < y = x. If x ∈ Z and x = y,
then f (x) = H(x) ∈ c. Consequently, f (x) < c = f (x). This contradicts the condition.
As a result, we obtain x < x. Hence, f is isotone, and therefore, f is bijective.

Assume that X\Z ̸= {y}. Then, the non-empty set X\Y has a minimal element x.
If x = y, then x ∈ Y, which is impossible. If x < y, then x ∉ X\Z, i. e. x ∈ Z ⊂ Y, which
is also impossible. Hence, y < x. Let t ∈ Y. If t ∈ Z = Xy, then t < y < x, i. e. t ∈ Xx. If
t = y < x, then we again get t ∈ Xx. Therefore, Y ⊂ Xx. Conversely, if t ∈ Xx, then t < x
implies t ∉ X\Y, i. e. t ∈ Y. As a result, we obtain Y = Xx. Consequently, f is an isotone
bijection from Xx onto a. It follows from y ∈ X ∈ U that y ∈ U. Hence, ⟨y, c⟩ ∈ U and
{⟨y, c⟩} ∈ U. Further, H ⊂ Z ∗ c ∈ U implies H ∈ U by vitrue of the quasitransitivity
of U, and therefore, f = H ∪ {⟨y, c⟩} ∈ U. This means that a = H(x) ∈ c ∈ a, which is
impossible. This contradiction implies X = Y. Thus, f is an isotone bijection from X
onto a. Since a = c ∪ {c} ∈ U, we get a ∈ A.

If Z = X, then put a ≡ c and f ≡ H.
Thus, in any case, we have constructed the isotone bijection f ∈ U from X onto

a ∈ A. Since |X| ⊂ a ∈ U, the quasitransitivity of U implies |X| ∈ U.
Now, let us show that in a scheme-universal set, as in a universal set, the ∈-induction
principle similar to the ∈-induction principle in ZF holds (see Lemma 4 (A.2.2) and
Lemma 5 (A.4.1)).

Lemma 3. Let U be a scheme-universal set, C ⊂ U, and ∀x ∈ U(x ⊂ C ⇒ x ∈ C). Then,
C = U.

Proof. The proof is similar to the proof of Lemma 5 (A.4.1) except its central part
changing as follows. Denote Rx

x by Rx. Consider the following formula of ZF: 𝜑(x, y) ≡
(x ∈ 𝜔 ∧ y = Rx). Consider also the formula 𝜑U(x, y) ≡ ((x ∈ 𝜔)U ∧ (y = Rx)U) for
x, y ∈ U. Since x, 𝜔, y, Rx ∈ U, using the transitivity of the set U, one can prove that
(x ∈ 𝜔)U ⇔ x ∈ 𝜔 è (y = Rx)U ⇔ y = Rx. Hence, 𝜑U(x, y) ⇔ 𝜑(x, y) for x, y ∈ U. Con-
sider the function

[𝜑|U] ≡{z ∈ U ∗ U | ∃x, y ∈ U(z = ⟨x, y⟩ ∧ 𝜑U(x, y))} =
{z ∈ U ∗ U | ∃x, y ∈ U(z = ⟨x, y⟩ ∧ 𝜑(x, y))} =
{z ∈ U ∗ U | ∃x, y ∈ U(z = ⟨x, y⟩ ∧ x ∈ 𝜔 ∧ y = Rx)} ⊂ U ∗ U .
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It is clear that dom[𝜑|U] = 𝜔 èA ≡ rng[𝜑|U] = {q ∈ U | ∃p ∈ 𝜔(q = Rp)}. Since [𝜑|U] 𝜔 → U, properties 5, 4, and 2 from the definition of a scheme-universal set guarantees
that A ∈ U and Q ≡ ∪A ∈ U. Evidently, Q = {y | ∃n ∈ 𝜔(y ∈ Rn)}. Hence, Rn ⊂ Q for
every n ∈ 𝜔, and therefore, P = R0 ⊂ Q. It follows from the uniqueness property men-
tioned above that u(m) = u(n)|(m + 1) for all m ⩽ n, i. e. Rm

k = Rn
k for every k ∈ m + 1.

Therefore, ∪Rk = ∪Rm
m = ∪Rm+1

m = Rm+1
m+1 ≡ Rm+1.

For a scheme-universal set, as well as for a universal set, the following analogue of
the von Neumann identity holds (see Lemma 7 (A.3.3) and Lemma 6 (A.4.1)).

Lemma 4. Let U be a scheme-universal set. Then,
1) V𝛼 ∈ U for every 𝛼 ∈ On ∩ U;
2) U = ∪⟮V𝛼 ⊂ U | 𝛼 ∈ On ∩ U⟯.
Proof. 1. Consider the sets A ≡ On∩U and C ≡ {𝛼 ∈ A | V𝛼 ∈ U} and the classes C ≡
On\U and C ≡ C ∪C. By Lemma 2 0 = V0 = ⌀ ∈ U. Hence, 0 ∈ C. Let 𝛼 ∈ C. Suppose
that 𝛼 + 1 ∈ A. Since 𝛼 ∈ 𝛼 + 1 ∈ U, by property 1, we get 𝛼 ∈ U, and therefore, 𝛼 ∈ A ∩
C = C. Then, the condition V𝛼 ∈ U implies V𝛼+1 = V𝛼 ∪P(V𝛼) ∈ U by virtue of proper-
ties 2 and3. Therefore,𝛼+1 ∈ C ⊂ C. If𝛼+1 ∉ A, thenwe immediately get𝛼+1 ∈ C ⊂ C.

Let 𝛼 be a limit ordinal number and 𝛼 ⊂ C. Suppose that 𝛼 ∈ A. If 𝛽 ∈ 𝛼, then
𝛽 ∈ 𝛼 ∈ U implies 𝛽 ∈ A ∩ C = C.

Consider the functional formula 𝜑(x, y) ≡ (x ∈ 𝛼 ⇒ y = Vx) ∧ (x ∉ 𝛼 ⇒ y = ⌀).
Then, [𝜑|U] = {z | ∃x ∈ U∃y ∈ U(z = ⟨x, y⟩ ∧ (x ∈ 𝛼 ⇒ y = Vx)U ∧ (x ∉ 𝛼 ⇒ y = ⌀)U)
∧ 𝛼 ∈ U}. Since, by condition, 𝛼 ∈ U and x ∈ 𝛼 ⇒ vx ∈ U, this formula is equivalent
to the formula {z | ∃x ∈ U∃y ∈ U(z = ⟨x, y⟩ ∧ (x ∈ 𝛼 ⇒ y = Vx) ∧ (x ∉ 𝛼 ⇒ y = ⌀))}.
Evidently, in this case, [𝜑|U]  𝛼 → U and rng[𝜑|U] = ⟮Vy | y ∈ 𝛼⟯. By property 4,
⟮Vy | y ∈ 𝛼⟯ ∈ U, and therefore, V𝛼 = ∪⟮Vy | y ∈ 𝛼⟯ ∈ U. Hence, 𝛼 ∈ C ⊂ C. If 𝛼 ∉ A,
then we immediately get 𝛼 ∈ C ⊂ C.

By the transfinite induction principle we conclude that C = On, and therefore,
C = A.

2. It follows from the above that V𝛼 ⊂ U for every 𝛼 ∈ A. Hence, P ≡ ∪⟮V𝛼 | 𝛼 ∈
A⟯ ⊂ U. Check that P satisfies the ∈-induction principle from Lemma 3. Consider the
formula 𝜑(u, z) ≡ (u ∈ P ⇒ z = sm{𝛼 ∈ A | p ∈ V𝛼}) ∧ (u ∉ P ⇒ z = ⌀).

Let x ∈ U and x ⊂ P. If x = ⌀, then x ∈ P. In what follows, we assume that x ̸= ⌀.
If y ∈ x ⊂ P, then y ∈ V𝛼 for some 𝛼 ∈ A. Hence, 𝜑(y) ⩽ 𝛼 ∈ U implies 𝜑(y) ∈ A by
virtue of Lemma 1. Therefore, we can consider the functional formula 𝜓 ≡ 𝜑|x. It is
easy to prove that [𝜓|U]  x → A. By property 4, we get R ≡ rng[𝜓|A] ∈ U, and by
property 2, we get 𝜌 ≡ ∪R ∈ U. Since⌀ ̸= R ⊂ On, Lemma 2 (A.2.2) implies that 𝜌 is an
ordinal number. Consequently, 𝜌 ∈ A.

If y ∈ x, then [𝜓|U](y) ⊂ 𝜌 implies y ∈ V[𝜓|U](y) ⊂ V𝜌 in view of Lemma 1 (A.3.2).
Then, by virtue of Lemma 2 (A.3.2), it follows from x ⊂ V𝜌 ∈ V𝜌+1 that x ∈ V𝜌+1. By
property 3, it follows from 𝜌 + 1 = 𝜌 ∪ {𝜌} ∈ U that 𝜌 + 1 ∈ A. Consequently, x ∈ P.

Now, Lemma 3 implies P = U.
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Theorem 2. Let U be a scheme-universal set. Then,
1) U = V𝜘 for 𝜘 ≡ sup(On ∩ U) = ∪(On ∩ U) ⊂ U;
2) 𝜘 is a scheme-inaccessible cardinal number;
3) the correspondence q : U → 𝜘 such that U = V𝜘 is an isotone injective mapping

from the class U of all scheme-universal sets into the class In of all scheme-
inaccessible cardinal numbers.

Proof. 1. Since A ≡ On ∩ U contains the element 𝜔 by property 5, it is non-empty.
Then, by Lemma 2 (A.2.2) 𝜘 is an ordinal number.

Let 𝜘 ∈ U. Then, according to the properties of a scheme-universal set, we get 𝜘 +
1 = 𝜘 ∪ {𝜘} ∈ U. Since 𝜘 + 1 ∈ On, we get 𝜘 + 1 ∈ (On ∩ U), i. e. 𝜘 + 1 ⩽ 𝜘, which is
impossible. Hence, 𝜘 ∉ U.

Suppose that 𝜘 = 𝛼 + 1 for some ordinal number 𝛼; then, 𝛼 ∈ U since 𝜘 ⊂ U and
𝛼 ∈ 𝜘. Since 𝜘 = 𝛼 ∪ {𝛼}, the properties of a scheme-universal set imply 𝜘 ∈ U, which
is impossible.

Thus, 𝜘 is a limit ordinal number.
Therefore, V𝜘 = ∪⟮V𝛽 | 𝛽 ∈ 𝜘⟯. By Lemma 4, we get U = ∪⟮V𝛼 | 𝛼 ∈ A⟯. If 𝛼 ∈ A,

then 𝛼 ⩽ 𝜘 implies V𝛼 ⊂ V𝜘. Hence, U ⊂ V𝜘. If 𝛽 ∈ 𝜘 = ∪A, then 𝛽 ∈ 𝛼 ∈ A for some
𝛼. Property 1 guarantees that 𝛽 ∈ A. Therefore, V𝜘 ⊂ U.

Thus, U = V𝜘.
2. Obviously, 𝜘 ̸= 0.
Suppose that theordinal number𝜘 is not scheme-regular; then∃𝛼(𝛼 ∈ 𝜘 ∧ [𝜑|U] 

𝛼 → 𝜘 ∧ ∪ rng[𝜑|U] = 𝜘) for some formula 𝜑(x, y, p⃗). But 𝛼 ∈ U and 𝜘 ⊂ U im-
ply rng[𝜑|U] ∈ U in view of property 4 of a scheme-universal set, and therefore,
∪ rng[𝜑|U] ∈ U. Hence, ∪ rng[𝜑|U] ̸= 𝜘. This contradiction provides that the ordinal
number 𝜘 is scheme-regular.

Let 𝜆 be an ordinal number such that 𝜆 < 𝜘. Since 𝜆 ∈ 𝜘 ⊂ U, property 2 im-
plies P(𝜆) ∈ U. By Theorem 1, we get |P(𝜆)| ∈ U. Hence, |P(𝜆)| ⩽ 𝜘. Assuming that
𝜘 = |P(𝜆)| ∈ U, as above, we arrive at a contradiction. Therefore, |P(𝜆)| < 𝜘.

3. Using Lemma 1 (A.3.2), we conclude that 𝜘 is unique. Therefore, we can de-
fine themapping q : U → In such that q(U) = 𝜘, where U = V𝜘. Lemma 1 (A.3.2) also
guarantees that q is isotone.

Corollary 1. If U is a scheme-universal set, then |U| is a scheme-inaccessible cardinal
number, |U| = sup(On ∩ U), and U = V|U|.

Proof. By Theorem 2 U = V𝜘 for the scheme-inaccessible cardinal number 𝜘 ≡
sup(On ∩ U). By Lemma 3 (A.8.1) 𝜘 = |V𝜘| = |U|.
Theorem 3. For any set U the following conclusions are equivalent:
1) U is a scheme-inaccessible cumulative set;
2) U is a scheme-universal set.
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Proof. (1) ⊢ (2). Let U = V𝜘 for a scheme-inaccessible cardinal number 𝜘 > 𝜔. Prove
that the set U is scheme-universal. The property x ∈ U ⇒ x ⊂ U follows from
Lemma 3 (A.3.2).

The property x ∈ U ⇒ P(x) ∈ U follows from Lemma 6 (A.3.2). The property x ∈
U ∧ y ∈ U ⇒ x ∪ y ∈ U follows from Lemma 5 (A.3.2). The property x ∈ U ∧ y ∈ U ⇒
{x, y}, ⟨x, y⟩, x ∗ y ∈ U follows from Corollaries 1 and 2 to Lemma 5 (A.3.2). The prop-
erty 𝜔 ∈ U follows from Lemma 7 (A.3.2). The property x ∈ U ⇒ ∪x ∈ U follows from
Lemma 5 (A.8.1). The property x ∈ U ∧ [𝜑|U]  x → U ⇒ rng[𝜑|U] ∈ U follows from
Corollary 1 to Lemma 4 (A.8.1). Thus, the set U is scheme-universal.

(2) ⊢ (1). This deduction follows directly from Theorem 2.

A.8.3 Supertransitive standard models of the ZF set theory in the ZF set theory

In this subsection, we consider supertransitive standard models of the ZF set theory
in the ZF set theory.

Proposition 1. In the ZF set theory, the following conclusions are equivalent for a set U:
1) U is a supertransitive standard model set for ZF;
2) U is a scheme-universal.

Proof. Consider an arbitrary sequence s ≡ x0, . . . , xq , . . . of elements of the set U and
translations of some axioms and axiom schemes of the ZF theory with respect to the
standard interpretation M ≡ ⟮U, I⟯ on the sequence s.

Instead of 𝜃M[s] and M ⊨ 𝜑[s], we write 𝜃t and 𝜑t for terms 𝜃 and formulas 𝜑,
respectively.

To simplify the further presentation, we first consider the translations of certain
simple formulas. Let u and v be some sets.

The formula u ∈ v translates into the formula (u ∈ v)t = (⟨ut , vt⟩ ∈ B). Denote the
last formula by 𝛾. By definition, this formula is equivalent to the formula (∃x∃y(x ∈
U ∧ y ∈ U ∧ ⟨ut , vt⟩ = ⟨x, y⟩ ∧ x ∈ y)). Using the property of an ordered pair, we con-
clude that ut = x and vt = y. Therefore, it is deduced from 𝛾 that 𝛿 ≡ (ut ∈ vt). By the
deduction theorem, 𝛾 ⇒ 𝛿. Conversely, consider the formula 𝛿. It was proven in ZF
that for sets ut and vt there is a set z such that z = ⟨ut , vt⟩. By virtue of logical axiom
scheme LAS3 we deduce from the formula 𝛿 the formula (z = ⟨ut , vt⟩ ⇒ ut ∈ U ∧ vt ∈
U ∧ z = ⟨ut , vt⟩ ∧ ut ∈ vt). Since the formula z = ⟨ut , vt⟩ is deduced from the axioms,
the formula (ut ∈ U ∧ vt ∈ U ∧ z = ⟨ut , vt⟩ ∧ ut ∈ vt) is also deduced. By LAS13, we
deduce the formula ∃x∃y(x ∈ U ∧ y ∈ U ∧ z = ⟨x, y⟩ ∧ x ∈ y) equivalent to the for-
mula z ∈ B, and therefore, to the formula 𝛾. By the deduction theorem, 𝛿 ⇒ 𝛾. Thus,
the first equivalence (u ∈ v)t ⇔ ut ∈ vt holds.

The formula v ⊂ w translates into the formula (v ⊂ w)t. Denote the last formula by
𝜀. By the first equivalence proven above is equivalent to the formula 𝜀 ≡ ∀u ∈ U(u ∈
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vt ⇒ u ∈ wt). According to LAS11, from the formula 𝜀 we deduce the formula 𝜀 ≡
(x ∈ U ⇒ (x ∈ vt ⇒ x ∈ wt)). If x ∈ vt, then vt ∈ U and transitivity of U imply x ∈ U.
Then, the formula 𝜀 implies x ∈ vt ⇒ x ∈ wt. Consequently, by the deduction theo-
rem we deduce (𝜀 ⇒ (x ∈ vt ⇒ x ∈ wt)). By the rule of generalization (Gen) the for-
mula ∀x(𝜀 ⇒ (x ∈ vt ⇒ x ∈ wt)) is deduced. By LAS12, we deduce the formula (𝜀 ⇒
∀x(x ∈ vt ⇒ x ∈ wt)), i. e. the formula (𝜀 ⇒ vt ⊂ wt).

Conversely, let the formula vt ⊂ wt be given. Using the logical axioms, we sequen-
tially deduce from it the formulas (u ∈ vt ⇒ u ∈ wt) and (u ∈ U ⇒ (u ∈ vt ⇒ u ∈ wt)).
By (Gen) we deduce the formula 𝜀. Hence, by the deduction theorem, we get the for-
mula (vt ⊂ wt ⇒ 𝜀). Thus, the second equivalence (v ⊂ w)t ⇔ vt ⊂ wt holds.

We obtain the third equivalence (u = v)t ⇔ ut = vt in exactly the same way as the
first equivalence.

Inwhat follows,wewillwrite not literal transformations of axiomsbut their equiv-
alent variants obtained by using the mentioned equivalences.

The extensionality axiomA1 translates into the formulaA1t ⇔ A1U = ∀X ∈ U∀Y ∈
U(∀u ∈ U(u ∈ X ⇔ u ∈ Y) ⇒ X = Y).

The pair axiom A2 translates into the formula A2t ⇔ A2U = ∀u ∈ U∀v ∈ U∃x ∈
U∀z ∈ U(z ∈ x ⇔ z = u ∨ z = v).

The union axiomA4 translates into the formula A4t ⇔ A4U = ∀X ∈ U∃Y ∈ U∀u ∈
U(u ∈ X ⇔ ∃z ∈ U(u ∈ z ∧ z ∈ X)).

The power set axiom A5 translates into the formula A5t ⇔ A5U = ∀X ∈ U∃Y ∈
U∀u ∈ U(u ⊂ X ⇔ u ∈ Y).

The replacement axiom scheme AS6 translates into the formula scheme

AS6t ⇔ ∀x ∈ U∀y ∈ U∀y ∈ U(𝜑𝜏(x, y) ∧ 𝜑𝜏(x, y) ⇒ y = y) ⇒
⇒ ∀X ∈ U∃Y ∈ U∀x ∈ U(x ∈ X ⇒ ∀y ∈ U(𝜑𝜎(x, y) ⇒ y ∈ Y)),

where 𝜑𝜏 and 𝜑𝜎 are denotations of the formulas M ⊨ 𝜑[s𝜏] and M ⊨ 𝜑[s𝜎] and s𝜏

and s𝜎 denote the corresponding changes of the sequence s under translation of
the quantifier overformulas indicated above. Denote the last formula scheme by
𝛼 ⇒ 𝛽.

The empty set axiom A7 translates into the formula A7t ⇔ A7U = ∃x ∈ U∀z ∈
U(z ∉ x).

The infinity axiom A8 translates into the formula A8t ⇔ A8𝜏 ≡ ∃Y ∈ U(⌀t ∈
Y ∧ ∀y ∈ U(y ∈ Y ⇒ (y ∪ {y})𝜏 ∈ Y)), where
– the set⌀t is determined by the formula A7U ;
– the set Z1 ≡ Z1(y) ≡ (y ∪ {y})𝜏 is determined by the formula ∃Z1 ∈ U∀u ∈ U(u ∈

Z1 ⇔ ∃z ∈ U(u ∈ z ∧ z ∈ {y, {y}}𝜎));
– the set Z2 ≡ Z2(y) ≡ {y, {y}}𝜎 is determined by the formula ∃Z2 ∈ U∀u ∈ U(u ∈

Z2 ⇔ u = y ∨ u = {y}𝜌);
– the set Z3 ≡ Z3(y) ≡ {y}𝜌 is determined by the formula ∃Z3 ∈ U∀u ∈ U(u ∈ Z3 ⇔

u = y).
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Since M is a model of the ZF theory, all the translations written above are deducible
formulas in the ZF theory.

Therefore, the formula A7U asserts the existence of some x ∈ U denoted by ⌀t. If
z ∈ U, then A7U implies z ∉ x. Now, suppose that z ∉ U and z ∈ x. Then, by virtue of
transitivity of U we obtain z ∈ U, but it contradicts the condition. Hence, z ∉ x. Thus,
wededuce z ∉ x. By (Gen) the formula∀z(z ∉ x)meant x = ⌀ is deduced. Thus,⌀t = ⌀
and⌀ ∈ U.

Check now that if y ∈ U, then Z3 = {y}. Let u ∈ Z3. Since Z3 ∈ U and U is transitive,
we get u ∈ U. If u ∈ U, then the formula for Z3 presented above implies u = y, where
u ∈ {y}. Therefore, Z3 ⊂ {y}. Conversely, suppose u ∈ {y}. Then, u = y. Since y ∈ U,
we get u ∈ U, where, by the same formula, we obtain u ∈ Z3. Consequently, {y} ⊂ Z3,
which implies the required equality. This equality eliminates the index 𝜌 in the for-
mula for Z2.

Using this equality, show that Z2 = {y, {y}}. Let u ∈ Z2. Then, as above, u ∈ U.
Therefore, the formula for Z2 presented above implies u = y or u = {y}, where u ∈
{y, {y}}. Consequently, Z2 ⊂ {y, {y}}. Conversely, suppose u ∈ {y, {y}}. Then, u = y ∈ U
or u = {y} = Z3 ∈ U, i. e. u ∈ U in both cases.Hence, by the same formulaweget u ∈ Z2,
where {y, {y}} ⊂ Z2. This implies the required equality. This equality eliminates the
index 𝜎 in the formula for Z1.

Finally, we verify that if y ∈ U, then Z1 = y ∪ {y}. Let u ∈ Z1. Since Z1 ∈ U and U
is transitive, we get u ∈ U. It follows from the formula for Z1 that there exists z ∈ U
such that u ∈ z and z ∈ {y, {y}}. Therefore, u ∈ ∪{y, {y}} ≡ Z, i. e. Z1 ⊂ Z. Conversely,
suppose u ∈ Z. Then, there exists z ∈ {y, {y}} such that u ∈ z. It follows from z = y ∈
U or z = {y} = Z3 ∈ U that z ∈ U. Then, the formula presented above implies u ∈ Z1.
Hence, Z ⊂ Z1, which implies the required equality. This equality eliminates the index
𝜏 in the formula for A8𝜏.

All said above implies A8𝜏 = ∃Y ∈ U(⌀ ∈ Y ∧ ∀y ∈ U(y ∈ Y ⇒ y∪{y} ∈ Y)). If y ∈
Y, then it follows from Y ∈ U and transitivity ofU that y ∈ U. Then, y∪{y} ∈ Y deduced
from this formula. By the deduction theorem, we deduce y ∈ Y ⇒ y ∪ {y} ∈ Y. By the
generalization rule we deduce ∀y ∈ Y(y ∪ {y} ∈ Y). Thus, we deduce from A8t the for-
mula ∃Y ∈ U(⌀ ∈ Y ∧ ∀y ∈ Y(y ∪ {y} ∈ Y)) almost coinciding with the infinity axiom
and asserting the existence of an inductive set Y ∈ U.

Using the obtained translations, let us prove that the set U is scheme-universal.
Consider the formula A2U . According to it, for any u, v ∈ U there is a correspond-

ing set x ∈ U. If z ∈ x, then by transitivity of U we get z ∈ U. Therefore, the formula
z = u ∨ z = v is deduced from it. If z = u ∨ z = v, then z ∈ U, and therefore, it is de-
duced from A2U that z ∈ x. Since A2U is deducible in ZF, by the deduction theorem
and the generalization rule, the formula ∀z(z ∈ x ⇔ z = u ∨ z = v) is deduced. This
formula means that x = {u, v}. Hence, {u, v} ∈ U. By the deduction theorem, we de-
duce the formula u, v ∈ U ⇒ {u, v} ∈ U. This implies {u} ∈ U and ⟨u, v⟩ ∈ U.

Consider the formula A4U . According to it, for any X ∈ U there is a corresponding
set Y ∈ U. As above, transitivity of U implies Y = ∪X. Consequently, ∪X ∈ U, and by
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the deduction theorem, we deduce the formula X ∈ U ⇒ ∪X ∈ U. This implies that it
follows from X, Y ∈ U that X ∪ Y ≡ ∪{X, Y} ∈ U.

Consider the formula A5U . According to it, for any X ∈ U there is a corresponding
set Y ∈ U. Clearly, Y ⊂ P(X). Let y ∈ P(X). Then, y ⊂ X ∈ U implies y ∈ U in view of
quasitransitivity of U. Hence, Y = P(X). Therefore, P(X) ∈ U, and by the deduction
theorem, we deduce X ∈ U ⇒ P(X) ∈ U.

If X, Y ∈ U, then X ∗ Y ⊂ P(P(X ∪ Y)) ∈ U implies X ∗ Y ∈ U in view of quasitran-
sitivity of U.

Consider the inductive set Y ∈ U, whose existence was proven above. Since 𝜔 is
the smallest among all inductive sets, we get 𝜔 ⊂ Y. By the quasitransitivity property,
this implies 𝜔 ∈ U.

Property 4 from the definition of a scheme-universal set holds automatically.
Thus, we have proven that (1) ⊢ (2).
(2) ⊢ (1). Let U be a scheme-universal set. According to A.8.2, it is supertransitive.

Consider the standard interpretation M ≡ ⟮U, I⟯ of the theory ZF. We have translated
above some axioms and axiom schemes of ZF under the interpretation M on the se-
quence s. Prove that they are deducible in ZF.

Consider the formula A1U . Let X, Y ∈ U and 𝜒 ≡ ∀u ∈ U(u ∈ X ⇔ u ∈ Y). Take an
arbitrary set u. If u ∈ X, then by transitivity of U, we obtain u ∈ U, and therefore, the
formula u ∈ Y is deduced. Similarly, we deduce u ∈ Y from u ∈ X. Then, by the deduc-
tion theorem, the formula u ∈ X ⇔ u ∈ Y is deduced, and by the generalisation rule
(Gen), the formula ∀u(u ∈ X ⇔ u ∈ Y) is deduced. According to the extensionality ax-
iom A1, the equality X = Y is deduced. By the deduction theorem, in ZF, the formula
𝜒 ⇒ X = Y is deduced. Further, by logical tools we deduce A1t.

Consider the formula A2U . Let u, v ∈ U. By the property of a universal set {u, v} ∈
U. It follows from the pair axiom A2 that ∀z ∈ U(z ∈ {u, v} ⇔ z = u ∨ z = v). Then, by
LAS13, we deduce ∃x ∈ U∀z ∈ U(z ∈ x ⇔ z = u ∨ z = v). Further, by logical tools we
deduce A2t.

The separation axiom scheme AS3 translates into the formula scheme AS3t ⇔
∀X ∈ U∃Y ∈ U∀u ∈ U(u ∈ Y ⇔ u ∈ X ∧ 𝜑𝜏(u)), where Y is not a free variable in 𝜑(u)
and 𝜑𝜏 denotes the formulaM ⊨ 𝜑[s𝜏], where s𝜏 denote the corresponding changes of
the sequence s under translation of the quantifier overformulas ∀x(. . . ), ∃Y(. . . ), and
∀u(. . . ) indicated above. According to AS3 for X ∈ U there is Y such that ∀u ∈ U(u ∈
Y ⇔ u ∈ X ∧ 𝜑𝜏(u)). Since Y ⊂ X ∈ U, by Lemma 1 (A.8.2), we get Y ∈ U. Therefore,
AS3t is deduced in ZF.

Similar to the deducibility of A2t, we verify the deducibility of A4t and A5t.
Let us verify the deducibility of AS6t. Suppose that the formula 𝛼 holds. Consider

the set X ∈ U. According to the separation axiom scheme AS3, the set F ≡ {z ∈ U |
∃x, y ∈ U(z = ⟨x, y⟩ ∧ 𝜑𝜎(x, y))} exists. Clearly, F ⊂ U ∗ U. It follows from transitivity
of U that X ⊂ U. Therefore, there is a set Z ≡ F[X] ⊂ U. Consider the set G ≡ {z ∈ U |
∃x, y ∈ U(z = ⟨x, y⟩ ∧ 𝜑𝜎(x, y) ∧ x ∈ X)} = F|X ⊂ X ∗ Z. Let x ∈ X ⊂ U. If x ∉ dom G,
thenG⟨x⟩ = ⌀ ∈ U. Let x ∈ dom G, i. e.G⟨x⟩ ̸= ⌀. If y, y ∈ G⟨x⟩ ⊂ U, then the formula
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𝜑𝜎(x, y) ∧ 𝜑𝜎(x, y) or, more precisely, the formula 𝜑𝜎(x, y, X, Y) ∧ 𝜑𝜎(x, y, X, Y)
holds (since X and Y can be free variables of the formula 𝜑𝜎). Since 𝜑𝜏(x, y) =
𝜑𝜎(x, y, X ‖ XM[s], Y ‖ YM[s]) and, similarly, for y, by virtue of LAS11 we obtain
𝜑𝜏(x, y) ∧ 𝜑𝜏(x, y). Hence, the formula 𝛼 implies y = y. Therefore, G⟨x⟩ = {y} ∈ U.
Thus, G⟨x⟩ ∈ U for every x ∈ X. By properties 4 and 2 of a scheme-universal set, we
get Y0 ≡ rng G = ∪ ⟮G⟨x⟩ | x ∈ X⟯ ∈ U.

If x ∈ X ⊂ U, y ∈ U, and 𝜑𝜎(x, y), then ⟨x, y⟩ ∈ G implies y ∈ Y0. This means that
the formula 𝛽 deduced from the formula 𝛼. By the deduction theorem, the formula
𝛼 ⇒ 𝛽 is deduced, and therefore, the scheme AS6t is deduced.

According to Lemma 2 (A.8.2),⌀ ∈ U. Then, we deduce A7t from this and A7.
Consider the formula A8𝜏 and the set 𝜔 ∈ U. It follows from the above that ⌀t =

⌀ ∈ 𝜔. Let y ∈ U and y ∈ 𝜔. Then, as above, we check that Z3 = {y}, Z2 = {y, {y}} and
Z1 = y ∪ {y} ∈ 𝜔. By the deduction theorem, we deduce (y ∈ 𝜔 ⇒ Z1 ∈ 𝜔). Further, by
logical tools we deduce (⌀t ∈ 𝜔 ∧ ∀y ∈ U(y ∈ 𝜔 ⇒ (y ∪ {y})𝜏 ∈ 𝜔)), and therefore, the
formula A8t.

The regularity axiom translates into the formula A9t ⇔ A9𝜏 ≡ ∀X ∈ U(X ̸= ⌀t ⇒
∃x ∈ U(x ∈ X ∧ (x ∩ X)𝜏 = ⌀t)), where
– the set ⌀t is determined by A7U and, as was proven above, it coincides with the

empty set⌀,
– the set Z ≡ (x ∩ X)𝜏 is determined by the formula ∃Z ∈ U∀u ∈ U(u ∈ Z ⇔ u ∈

x ∧ u ∈ X).
Check now that if X ∈ U and x ∈ U, then Z = x ∩ X. Let u ∈ Z. Since Z ∈ U and U is
transitive, we get u ∈ U. Therefore, it follows from the formula for Z that u ∈ x ∧ u ∈
X, i. e. u ∈ x ∩ X. Hence, Z ⊂ x ∩ X. Conversely, suppose u ∈ x ∩ X, i. e. u ∈ x ∧ u ∈ X.
Then, by virtue of transitivity we get u ∈ U and the mentioned formula implies u ∈ Z.
Thus, x∩X ⊂ Z, which implies the required equality. This equality eliminates the index
𝜏 in the formula A9𝜏.

Let X ∈ U and X ̸= ⌀t = ⌀. By the regularity axiom there is x ∈ X such that x∩X =
⌀. By virtue of transitivity we get x ∈ U. Further, by logical tools we deduce A9t.

Finally, the choice axiom A10 translates into the formula

A10t ⇔ A10𝜏 ≡
≡ ∀X ∈ U(X ̸= ⌀t ⇒ ∃z ∈ U((z  P(X)\{⌀} → X)𝜏 ∧

∧ ∀Y ∈ U(Y ∈ (P(X)\{⌀})𝜎 ⇒ z(Y)𝜎 ∈ Y))),
where
– the set Z1 ≡ Z1(X) ≡ (P(X)\{⌀})𝜎 is determined by the formula∃Z1 ∈ U∀u ∈ U(u ∈

Z1 ⇔ u ∈ P(X)𝜌 ∧ u ∉ {⌀}𝜌),
– the set Z2 ≡ z(Y)𝜎 is determined by the formula ⟨Y , Z2⟩𝜌 ∈ z,
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and 𝜑𝜏 ≡ (z  P(X)\{⌀} → X)𝜏 denotes the formula M ⊨ 𝜑[s𝜏], where s𝜏 denote the
corresponding changes of the sequence s under translation of the quantifier overfor-
mulas ∀X(. . . ) and ∃z(. . . ) indicated above.

Fix the conditions X ∈ U and X ̸= ⌀t = ⌀ ∈ U. As was shown above, this implies
P(X)𝜌 = P(X) and {⌀}𝜌 = {⌀}. This equality eliminates the index 𝜌 in the formula
for Z1.

Check that Z1 = P(X)\{⌀} ≡ Z. Let u ∈ Z1. Since Z1 ∈ U and U is transitive, we
get u ∈ U. Then, the formula for Z1 implies u ∈ Z. Hence, Z1 ⊂ Z. Conversely, sup-
pose u ∈ Z. Since P(X) ∈ U and U is transitive, we get P(X) ⊂ U. This implies u ∈ U.
Consequently, the mentioned formula implies u ∈ Z1. Therefore, Z ⊂ Z1, which im-
plies the required equality. This guarantees that Z1 is replaced by Z in the formula
A10𝜏.

Consider the formula 𝜑 ≡ (z  Z → X). It is the conjunction of the following
three formulas: 𝜑1 ≡ (z ⊂ Z ∗ X), 𝜑2 ≡ (dom z = Z), and 𝜑3 ≡ (∀x(x ∈ Z ⇒ ∀y(y ∈ X ⇒
∀y(y ∈ X ⇒ (⟨x, y⟩ ∈ z ∧ ⟨x, y⟩ ∈ z ⇒ y = y))))).

Then, 𝜑𝜏 = 𝜑𝜏1 ∧ 𝜑𝜏2 ∧ 𝜑𝜏3 . Since 𝜑1 = (∀u(u ∈ z ⇒ ∃x∃y(x ∈ Z ∧ y ∈ X ∧ u =
⟨x, y⟩))), we obtain 𝜑𝜏1 ⇔ (∀u ∈ U(u ∈ z ⇒ ∃x ∈ U∃y ∈ U(x ∈ Z ∧ y ∈ X ∧ u =
⟨x, y⟩𝜎))). Similarly, it follows from 𝜑2 = (∀x(x ∈ Z ⇒ ∃y(y ∈ X ∧ ⟨x, y⟩ ∈ z))) that
𝜑𝜏2 ⇔ (∀x ∈ U(x ∈ Z ⇒ ∃y ∈ U(y ∈ X ∧ ⟨x, y⟩𝜎 ∈ z))).

Finally, 𝜑𝜏3 ⇔ (∀x ∈ U(x ∈ Z ⇒ ∀y ∈ U(y ∈ X ⇒ ∀y ∈ U(y ∈ X ⇒ (⟨x, y⟩𝜎 ∈ z ∧
⟨x, y⟩𝜎 ∈ z ⇒ y = y))))).

By the transitivity property for x, y, and y in the formulas 𝜑𝜏1 , 𝜑𝜏2 è 𝜑𝜏3 , we
have x, y, y ∈ U. Therefore, as was shown above, the equalities ⟨x, y⟩𝜎 = ⟨x, y⟩ and
⟨x, y⟩𝜎 = ⟨x, y⟩ hold in these formulas. This implies that the formulas 𝜑𝜏1 , 𝜑𝜏2 , and𝜑𝜏3 differ from the formulas 𝜑1, 𝜑2, and 𝜑3, respectively, only by bounded quantifier
prefixes ∀ ⋅ ⋅ ⋅ ∈ U and ∃ ⋅ ⋅ ⋅ ∈ U. For X by the choice axiom A10 there is z such that
𝜒 ≡ ((z  Z → X) ∧ ∀Y(Y ∈ Z ⇒ z(Y) ∈ Y)).

Hence, the formula 𝜑 = 𝜑1 ∧ 𝜑2 ∧ 𝜑3 is deduced, and therefore, the formulas 𝜑1,𝜑2, and 𝜑3 are also deduced.
Let u ∈ U and u ∈ z. Then, it is deduced from the formula 𝜑1 that there are x ∈ Z

and y ∈ X such that u = ⟨x, y⟩. Since x ∈ Z ∈ U, y ∈ X ∈ U, and U is transitive, we
get x, y ∈ U. This means that for the given conditions u ∈ U and u ∈ z the formula
∃x ∈ U∃y ∈ U(x ∈ Z ∧ y ∈ X ∧ u = ⟨x, y⟩𝜎) is deduced. Applying the deduction theo-
rem and the deduction rules twice, we deduce the formula 𝜑𝜏1 .

Let x ∈ U and x ∈ Z. Then, we deduce from the formula 𝜑2 that for x, there is y ∈
X such that ⟨x, y⟩ ∈ z. It follows from y ∈ X ∈ U that y ∈ U. This means that for the
given conditions x ∈ U and x ∈ Z the formula ∃y ∈ U(y ∈ X ∧ ⟨x, y⟩𝜎 ∈ z) is deduced.
Therefore, as above, we deduce the formula 𝜑𝜏2 .

Let x ∈ U, x ∈ Z, y ∈ U, y ∈ X, y ∈ U, y ∈ X, ⟨x, y⟩ ∈ z, and ⟨x, y⟩ ∈ z. Then, it
is deduced from 𝜑3 that y = y. Applying alternately the deduction theorem and the
deduction rules several times, we deduce the formula 𝜑𝜏3 .

Thus, the formula 𝜑𝜏 is deduced.
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Since z  Z → X, we get z⟨Y⟩ = {z(Y)}. If Y ∈ U and Y ∈ Z1 = Z, then Z2 ∈ U
implies ⟨Y , Z2⟩𝜌 = ⟨Y , Z2⟩. Then, ⟨Y , Z2⟩ ∈ z implies Z2 ∈ z⟨Y⟩, where Z2 = z(Y).
Therefore, for the function z, the conditions Y ∈ U and Y ∈ Z1 imply Z2 = z(Y) ∈ Y.

Since Z = Z1 ∈ U and X ∈ U, we get Z ∗ X ∈ U. It follows from z ⊂ Z ∗ X by
Lemma 1 (A.8.2) that z ∈ U.

Thus, we see that it is deduced from axiom A10 that there exists the object z ∈ U
satisfying the formula 𝜒, implying the formula 𝜉 ≡ (𝜑𝜏 ∧ ∀Y ∈ U(Y ∈ Z1 ⇒ Z2 ∈ Y)).
Consequently, we deduce the formula ∃z ∈ U 𝜉 from the fixed conditions. Applying
alternately the deduction theorem and the generalization rule several times, we, as a
result, deduce the formula A10t.

Thus,M is a supertransitive standard model of the ZF set theory.

Corollary 1. Any uncountable scheme-inaccessible cumulative set V𝜘 is a supertransi-
tive standard model set for the ZF set theory.

Proof. The assertion follows from Proposition 1 and Theorem 3 (A.8.2).

Using Theorems 2 and 3 (A.8.2) and Proposition 1, we infer the following theorem.

Theorem 1. In the ZF set theory, the following conclusions are equivalent for a set U:
1) U = V𝜘 for the scheme-inaccessible cardinal number 𝜘 = |U| = sup(On ∩ U);
2) U is a supertransitive standard model set for the ZF set theory.

Proof. (1) ⊢ (2). By Theorem 3 (A.8.2), the set U = V𝜘 is scheme-universal. By Proposi-
tion 1, the set U is a supertransitive standard model set.

(2) ⊢ (1). By Proposition 1 U is scheme-universal. By Theorem 2 (A.8.2) U = V𝜘 and𝜘 = sup(On ∩ U). By Corollary 1 to Theorem 2 (A.8.2) 𝜘 = |U|.
This theorem yields the canonical form of supertransitive standard model sets for the
ZF set theory. Thus, we have described all natural models of the ZF set theory.

A.8.4 Tarski scheme sets. Characterization of all natural models of the ZF set theory

A set U in the ZF set theory will be called a scheme Tarski set if:
1) x ∈ U ⇒ x ⊂ U (the transitivity property);
2) x ∈ U ⇒ P(x), ∪x ∈ U;
3) ∀p⃗, u⃗ ∈ U(([𝜑(x, y, p⃗)|U]  ⟨𝜎(x; u⃗)|U⟩  𝜀) ∧ 𝜀 ∈ |U| ⇒ ⟨𝜎(x; u⃗)|U⟩ ∈ U),where

𝜑 and 𝜎 are metavariables denoting arbitrary formulas of ZF;
4) 𝜔 ∈ U and |U| ⊂ U.

It follows from A.7.1 that any Tarski set of uncountable cardinality is a scheme
Tarski set.
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Lemma 1. If U is a scheme Tarski set and x ∈ U, then |x| ∈ |U|.
The proof is completely the same as the proof of Lemma 2 (A.7.1).

Lemma 2. Any scheme Tarski set is supertransitive.

The proof is completely the same as the proof of Lemma 1 (A.7.1).

Lemma 3. If U is a scheme Tarski set and x, y ∈ U, then {x}, {x, y}, ⟨x, y⟩ ∈ U.
Proof. Consider the formulas 𝜎1(s; u) ≡ (s = u), 𝜎2(s; u, v) ≡ (s = u ∨ s = v), 𝜑1(s, t; u)≡ (s = u ⇒ t = 0), and 𝜑2(s, t; u, v) ≡ (s = u ⇒ t = 0) ∧ (s = v ∧ v = u ⇒ t = 0) ∧
(s = v ∧ v ̸= u ⇒ t = 1). Then, X1 ≡ ⟨𝜎1(s; x)|U⟩ = {x} and X2 ≡ ⟨𝜎2(s; x, y)|U⟩ = {x, y}.

Consider the correspondences f1 ≡ [𝜑1(s, t; x)|U] and f2 ≡ [𝜑2(s, t; x, y)|U]. If s ∈
X1 and ⟨s, t⟩ ∈ f1, then s = x and t = 0. Therefore, f1 is an injective mapping from X1
into {0} ≡ 1 ∈ |U|. By property 3, X1 ∈ U.

Now, let s ∈ X2 and ⟨s, t⟩ ∈ f2. If s = x, then t = 0. If s = y ∧ y = x, then t = 0. If
s = y ∧ y ̸= x, then t = 1. Therefore, f2 is an injective mapping from X2 into {0, 1} = 2 ∈|U|. By property 3, X2 ∈ U. Thus, we conclude that ⟨x, y⟩ ∈ U.
Corollary 1. If U is a scheme Tarski set and x, y ∈ U, then x ∪ y ∈ U.
Proof. Lemma 3 and property 2 imply x ∪ y = ∪{x, y} ∈ U.
Corollary 2. If U is a scheme Tarski set and x, y ∈ U, then x ∗ y ∈ U.
Proof. Since x ∗ y ⊂ P(P(x ∪ y)) ∈ U, by Lemma 2, we get x ∗ y ∈ U.
Lemma 4. Let U be a scheme Tarski set, 𝜑(a, b; ⃗r) be a formula in the ZF, and x ∈ U. If
⃗r ∈ U and [𝜑(a, b; ⃗r)|U]  x → U, then rng[𝜑(a, b; ⃗r)|U] ∈ U.
Proof. Denote [𝜑(a, b; ⃗r)|U] and rng[𝜑|U] for a given ⃗r ∈ U by f and R, respectively.
Consider the formula 𝜌(b; ⃗r, y) ≡ ∃a ∈ y𝜑(a, b; ⃗r). Then, ⟨𝜌(b; ⃗r, x)|U⟩ = {b ∈ U | ∃a ∈
U(a ∈ x ∧ 𝜑U(a, b; ⃗r))} = R for given ⃗r, x ∈ U.

Consider the formula 𝜓(b, c; ⃗r, y) ≡ ∀a ∈ c(a ∈ y ∧ 𝜑(a, b; ⃗r)) ∧ ∀a ∈ y(𝜑(a, b; ⃗r)
⇒ a ∈ c) and the correspondence [𝜓(b, c; ⃗r, y)|U] = {t ∈ U∗U | ∃b, c ∈ U(t = ⟨b, c⟩ ∧
∀a ∈ c(a ∈ y ∧ 𝜑U(a, b; ⃗r)) ∧ ∀a ∈ y(𝜑U(a, b; ⃗r) ⇒ a ∈ c))}. It is easily proven that the
correspondence g ≡ [𝜓(b, c; ⃗r, x)|U] is an injectivemapping from R into S ≡ P(x) such
that g(b) = f −1(b) for every b ∈ R.

Properties 2 and 4 and Lemma 1, we get S ∈ U, |S| ∈ |U|, and |S| ∈ U. Con-
sider some bijection h : S |S|. By Corollary 2 to Lemma 3 S ∗ |S| ∈ U. It follows
from h ⊂ S ∗ |S| that h ∈ U by virtue of Lemma 2. Consider the formula 𝜒(s, t; e) ≡
(⟨s, t⟩ ∈ e). Then, for value of the parameter e equal to h, we have [𝜒(s, t; h)|U] ≡
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{z ∈ U ∗ U | ∃s, t ∈ U(z = ⟨s, t⟩ ∧ ⟨s, t⟩ ∈ h)} = h. It remains to take the composition
of the mappings g and h. For this purpose consider the formula 𝜁(b, t; ⃗r, y, e) ≡ ∃s ∈
P(y)(∀a ∈ s(a ∈ y ∧ 𝜑(a, b; ⃗r)) ∧ ∀a ∈ y(𝜑(a, b; ⃗r) ⇒ a ∈ s) ∧ ⟨s, t⟩ ∈ e) and the cor-
respondence [𝜁(b, t; ⃗r, y, e)|U] = {z ∈ U ∗ U | ∃b, t ∈ U(z = ⟨b, t⟩ ∧ ∃s ∈ P(y)(∀a ∈
s(a ∈ y ∧ 𝜑U(a, b; ⃗r)) ∧ ∀a ∈ y(𝜑U(a, b; ⃗r) ⇒ a ∈ s) ∧ ⟨s, t⟩ ∈ e)}. It is clear that F ≡
[𝜁(b, t; ⃗r, x, h)|U] = h ∘ g. Consequently, F is an injective mapping from R to |S| ∈ U.
By property 3, R ∈ U.
Proposition 1. Any scheme Tarski set is scheme-universal.

Proof. The assertion follows from properties 2 and 4, Lemma 3, Corollaries 1 and 2 to
Lemma 3, and Lemma 4.

Theorem 1 (the Zakharov theorem on the characterization of natural models of the ZF
set theory). In the ZF set theory, the following conclusions are equivalent for a set U:
1) U isa scheme-inaccessible cumulative set, i. e. U = V𝜘 for some scheme-inaccessible

cardinal number 𝜘;
2) U is a scheme-universal set;
3) U is a supertransitive standard model set for the ZF set theory;
4) U is a scheme Tarski set.

Proof. The equivalence of (1) and (2) follows from Theorem 3 (A.8.2).
The equivalence of (2) and (3) follows from Theorem 1 (A.8.3). The deduction

(4) ⊢ (2) follows from Proposition 1 (A.8.3). (1) ⊢ (4). Let U = V𝜘 for some scheme-
inaccessible cardinal number 𝜘 > 𝜔. Show that U is a scheme Tarski set. The property
x ∈ U ⇒ x ⊂ U follows from Lemma 3 (A.3.2). The property x ∈ U ⇒ P(x) ∈ U follows
from Lemma 6 (A.3.2). The property x ∈ U ⇒ ∪x ∈ U follows from Lemma 5 (A.8.1).
Property 3 follows from Lemma 6 (A.8.1). The property 𝜔 ∈ U follows from
Lemma 7 (A.3.2). Finally, the property |U| ⊂ U follows from Lemma 1 (A.3.2) and
Lemma 1 (A.8.2). Thus, U is a scheme Tarski set.
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B Local theory of sets as a foundation for category
theory and its connection with the Zermelo –
Fraenkel set theory

Introduction

The crises that arose in the naive set theory at the beginning of the 20th century
brought to the origin of some strict axiomatic theories of mathematical totalities.

The most widely used of them are the theory of sets in Zermelo – Fraenkel’s
axiomatics (ZF) (see A.2 and also [Kuratowski and Mostowski, 1967; Tourlakis, 2003b])
and the theory of classes and sets in Neumann–Bernays –Gödel’s axiomatics (NBG)
(see 1.1 and also [Kelley, 1975;Mendelson, 1997]).

These axiomatic theories eliminated all the known paradoxes of naive set the-
ory at the expense of the sharp restriction of possible expressive means. At the same
time, they gave the opportunity to include almost all then-existing mathematical
objects and constructions within the framework of these theories.

In 1945, the new mathematical notion of a category was introduced by Eilenberg
andMacLane in their initial paper [Eilenberg andMacLane, 1945]. Henceforth, the cat-
egory theory became an independent branch of mathematics. But from the very be-
ginning, the category theory unfortunately not did not go within the framework of the
theory of sets in Zermelo – Fraenkel’s axiomatics but evenwithin the framework of the
theory of classes and sets inNeumann–Bernays –Gödel’s axiomatics NBG (see [Eilen-
berg and MacLane, 1945]).

By this reason, S.MacLane [1961] put the general problemof constructing anewand
more flexible axiomatic set theory that could serve as an adequate logical foundation for
all the naive category theory.

Different variants of new axiomatic theories of mathematical totalities, adjusted
for ones or others needs of category theory, were proposed by C. Ehresmann [1957],
P. Dedecker [1959], J. Sonner [1962], A. Grothendieck [Gabriel, 1962], N. da Costa
[1965, 1967], J. Isbell [1966], S. MacLane [1969, 1971], S. Feferman [1969],
H. Herrlich, and G. Strecker [1979], and others.

C. Ehresmann, P. Dedecker, J. Sonner, and A. Grothendieck introduced the impor-
tant notion of a (categorical) universe U, i. e. such totality of objects, which satisfies
the following properties of closedness:
1) X ∈ U ⇒ X ⊂ U (Ehresmann–Dedecker did not propose this property);
2) X ∈ U ⇒ P(X), ∪ X ∈ U;
3) X, Y ∈ U ⇒ X ∪ Y , {X, Y}, ⟨X, Y⟩, X × Y ∈ U;
4) X ∈ U ∧ (F ∈ UX) ⇒ rng F ∈ U;
5) 𝜔 ∈ U (𝜔 = {0, 1, 2, . . . } is here the set of all finite ordinal numbers).

https://doi.org/10.1515/9783110550948-003
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Within the framework of such a universe, it is possible to develop a quite rich cate-
gory theory, in particular, the theory of categories with direct and inverse limits. To
satisfy all needs of category theory, these authors proposed to strengthen the ZF or
the NBG set theory by the strong axiom of universality, postulating that every set be-
longs to some universal set. In MacLane’s axiomatics, the existence of at least one uni-
versal set is postulated. Similar versions were proposed by J. Isbell and S. Feferman.
Herlich – Srecker’s axiomatics have dealings with objects of three types: sets, classes,
and conglomerations.

Within the framework of each of these axiomatics, some definitions of a cate-
gory and a functor are given. But the notions of a category given in [Isbell, 1966;
MacLane, 1969; 1971; Feferman, 1969; Herrlich and Strecker, 1979] are not closed with
respect to such important operations of naive category theory as “the category of
categories” and “the category of functors” (see [Hatcher, 1982, 8.4]).

Within the framework of the axiomatic theories from [Ehresmann, 1957;Dedecker,
1959; Sonner, 1962; Gabriel, 1962], the definition of aU-category, U-functor and natu-
ral U-tranformation consisting of subsets of a universal set U is given. This notion of
a category is closed with respect to such operations as theV-category ofU-categories
and the V-category of U-functors, where V is some universal set containing the uni-
versal set U as an element.

Axiomatics from [Da Costa, 1965; 1967] also give definitions of a category and a
functor closed under mentioned operations of naive category theory. But N. da Costa
uses logic with non-constructive rule of deduction 𝜑(V1), 𝜑(V2), 𝜑(V3), ⋅ ⋅ ⋅ ⊢ ∀t 𝜑(t),
where V1, V2, . . . , Vn , . . . is an infinite sequence of constants which denotes universes
like the NBG-universe (see [Da Costa, 1967]).

In connection with logical difficulties of constructing a set-theoretical foundation
for all naive category theory, different attempts to construct purely arrow-axiomatic
foundations were undertaken (see [Lawvere, 1966; Blanc and Preller, 1975; Blanc and
Donnadieu, 1976]).Butinattemptsofarrow-axiomaticdescriptionofindexedcategories
and fiber categories, their own logical difficulties appeared (see [Hatcher, 1982, 8.4]).

Consider nowmorepreciselywhat thementionedabove formulationofMacLane’s
problemmeans. To do it, we need to have the strict definition of a category. This defini-
tion became possible after the elementary (≡ first-order) category theories Tc took their
shapes. There are many such theories, two-sorted and one-sorted (see, for example,
[MacLane, 1971, I.3, I.8], [Hatcher, 1982, 8.2], [Goldblatt, 1979, 2.3, 11.1]). But for every
set theory S, there exist canonical one-to-one correspondences between the totalities
of models of these theories in the theory S. Therefore, for the strict definition of a
category, one can use any elementary theory Tc. According to the definition of Law-
vere [1966] (see also [Hatcher, 1982, 8.2]), a category in some set theory S is any model
of the theory Tc in the theory S. The complete [a partial] formalization of naive cate-
gory theory C in the set theory S is an adequate translation of all [some] notions and
constructions of naive category theory C into strict notions and constructions for cat-
egories (as models of the theory Tc) in the set theory S.
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Alongwith the notion of a category in the set theory S, there exists also the notion
of an abstract category in S. An abstract category in the set theory S is any abstract
model of the theory Tc in the set theory S. The complete [a partial] abstract formal-
ization of naive category theory C in the set theory S is an adequate translation of all
[some] notions and constructions of naive category theory C into strict notions and
constructions for abstract categories (as abstract models of the theory Tc) in the set
theory S.

According to these definitions, abstract categories in the ZF set theory can be con-
sidered also on classes (as abstracts of the ZF set theory), and abstract categories in
the set theory NBG can be considered also on assemblies (as abstracts of the the-
ory NBG). However, the complete abstract formalization of naive category theory C
in any set theory S is impossible because it is impossible to take abstracts of abstracts.
Only a partial abstract formalization of C in S is possible. It means that the notions of
an abstract category in S and a partial abstract formalization of C in S have only an
auxiliary value with respect to the notions of a category in S and the complete formal-
ization of C in S.

Therefore, more precisely, the MacLane’s problem is understood as constructing a
set theory that admits the complete formalization of naive category theory C in this set
theory.

According to the definitions, mentioned above categories in the ZF set theory can
be considered only on sets, but categories in the set theory NBG can be considered
also on classes. But the complete formalization of naive category theory C in these set
theories is impossible because it is impossible to define the operations “the category
of categories” and “the category of functors” (at least nowadays we have no methods
of approach to this formalization).

By this reason, C. Ehresman, P. Dedecker, J. Sonner andA. Grothendieck proposed
the idea of formalization of naive category theory Cwithin the framework of the ZF+AU
set theory with the axiom of universality AU stronger than the ZF set theory. Using
the totality of universal sets, we can make the complete adequate translation of all
notions and constructions of naive theory C to the strict notions and constructions for
categories in ZF+AU. It holds also for the sets theories of N. da Costa.

For other mentioned set theories, such a complete translation is impossible.
Therefore, the theory ZF+AU and the sets theories of da Costa are the most adequate
with respect to MacLane’s problem. Moreover, by virtue of the deficiency of da Costa’s
set theories mentioned above the set theory ZF+AU is more preferable.

However, the theory ZF+AU is too strong for the complete formalization of cat-
egory theory by virtue of redundancy of the totality of all universal sets, because for
formalization of the operations “the category of categories” and “the category of func-
tors” it is sufficient to have only a countable totality of universal sets as it is done in
da Costa’s axiomatics.

The ZF+AU(𝜔) set theory with the axiom of 𝜔-universality AU(𝜔) postulating the
existence of an infinite totality of universal sets is weaker than ZF+AU and satisfies
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all needs of the theory C. But it leaves behind the limits of categorical consideration
such mathematical systems that are not elements of universal sets from this infinite
totality.

Therefore, the necessity arose to create a set theory S having an infinite totality U
of some objects of the theory S, called universes and satisfying the following condi-
tions:
1) S has to be in some sense weaker than the redundant ZF+AU;
2) S has to satisfy all needs of the theory C in such an extent as the ZF+AU(𝜔)

does it;
3) in the contrary to ZF+AU(𝜔) the theory S has not to have objects laying outside of

the totality of universes U.

In 2000, V. K. Zakharov proposed in the capacity of more adequate foundation of cat-
egory theory the local theory of sets (LTS), satisfying all these conditions, and in 2003,
heproposed its equiconsistent strengthening: the locallyminimal theory of sets (LMTS)
(see [Zakharov, 2005b; Zakharov et al., 2006]). The main idea of the LTS and the the
LMTS consist in that for the construction of a set theory satisfying conditions 1 – 3 it is
not necessary to assign a global set-theoretical structure, but it is sufficient to assign
only local variants of this structure in each universe U.

The local theory of sets tries to remain all positive that is contained in the globally
internal concept of Ehresmann–Dedecker – Sonner –Grothendieck.

The locally external ideology of the LTS states that it is necessary to take the NBG-
universe as the basic one and to duplicate externally its local copies, and to get some
hierarchy of universes with the following properties:
1) every class belongs as a set to some universal class, which is a usual NBG-

universe;
2) all subclasses of a given universal class are sets of any larger universal class (the

property of value change);
3) there exists the least universal class (≡ the infra-universe), belonging to all other

universal classes.

The first of these properties is similar to the axiom of universality mentioned above.
Thus, in the LTS the notion of a big totality becomes relative: totalities that are

“big” in one universe become “small” in any larger universe.
This appendix is devoted to rigorous development of the expressed ideas.
In the first section, all proper axioms and axiom schemes of the LTS are stated and

the important set-theoretical constructions are defined.
In the second section, such key categorical constructions as “the category of cat-

egories” and “the category of functors” are formalized in the LTS. As in the globally
internal concept, in the LTS, all categorical notions and constructions are defined only
within the framework of local NBG-universes. Therefore, categories under considera-
tion are called local.
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In the third section, the notions of ordinals, cardinals, and inaccessible cardinals
in the LTS are introduced, cumulative Mirimanov–Neumann classes are constructed,
and the connection between universal classes and cumulative classes with indices
that are inaccessible cardinals are stated. Through that, it was proven that the as-
sembly of all universal classes in the LTS is well-ordered with respect to the order
by inclusion U ⊂ V and has some more complicated structures. Here, we also carry
out the globalization, i. e. for the assembly of all classes we define almost all local set-
theoretical constructions excluding themost important construction of the full union,
which is basic for the construction by transfinite induction.

In the fourth section, the relative consistency between the LTS and the ZF set the-
ory with some additional axioms is stated. It is also shown there that the LTS satisfies
conditions 1 – 3 on a set theory S indicated above and, therefore, gives the solution of
the MacLane problem of constructing an adequate foundation for the naive category
theory. The stricter version of the solution is considered in B.6.3.

In the fifth section, the method of abstract interpretation is considered. Further,
with its help, the independence of the introduced additional axioms and the unde-
ducibility in the LTS of the global axiom scheme of replacement are stated.

Finally, in the seventh section, the finite axiomatizability of the LTS and the NBG
set theory is proven.

For the reader’s convenience, this appendix contains all necessary notions aswas
done in the whole book. Proofs are all detailed, making them useful for young math-
ematicians.

B.1 The local theory of sets

B.1.1 Proper axioms and axiom schemes of the local theory of sets

The local theory of sets is a first-order theory with two predicate symbols: a binary
predicate symbol of belonging ∈ (write A ∈ B) and an unary predicate symbol of uni-
versality ⋈ (write A ⋈), and also with two constants ⌀ (the empty class) and a (the
infra-universe). The set of functional letters in the LTS is empty. By this reason, terms
in the LTS are constant symbols and variables.

Objects of the LTS are called classes.
A notation 𝜑(u⃗) is used for the formula 𝜑(u0, . . . , un−1), where u0, . . . , un−1 are free

variables of the formula 𝜑.
By technical reasons, it is useful to consider the totalityC of all classesA satisfying

a given formula 𝜑(x). This totality C is called the assembly defined by the formula 𝜑.
The totality C of all classes A, satisfying the formula 𝜑(x, u⃗), is called the assembly
defined by the formula 𝜑 through the parameter u⃗. Along with these, we will use the
notations

A ∈ C ≡ 𝜑(A), A ∈ C ≡ 𝜑(A, u⃗) and C ≡ {x | 𝜑(x)}, C ≡ {x | 𝜑(x, u⃗)}.
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If C ≡ {x | 𝜑(x)} and 𝜑 contains only one free variable x, then the assembly C is called
well-defined by the formula 𝜑. Assemblies will be usually denoted by semibold Latin
letters.

Every class A can be considered as the assembly {x | x ∈ A}.
The universal assembly is the assembly of all classes V ≡ {x | x = x}.
An assembly C ≡ {x | 𝜑(x)} is called a subassembly of an assembly D ≡ {x | 𝜓(x)}

(in notation, C ⊂ D) if ∀x(𝜑(x) ⇒ 𝜓(x)). Assemblies C andD are called equal if (C ⊂ D)
∧ (D ⊂ C) (in notation, C = D).

We will use the notation {x ∈ A | 𝜑(x)} ≡ {x | x ∈ A ∧ 𝜑(x)}.
A1. (The extensionality axiom.) ∀y ∀z ((y = z) ⇒ (∀X (y ∈ X ⇔ z ∈ X))).
Let 𝛼 be some fixed class. A class A will be called a class of the class 𝛼 (≡ 𝛼-class)

if A ⊂ 𝛼. A class A is called a set of the class 𝛼 (≡ 𝛼-set) if A ∈ 𝛼.
A formula 𝜑 is called 𝛼-predicative (see [Mendelson, 1997, 4.1]) if for all variables x

all symbol-strings ∀x and ∃x, occurring in the formula 𝜑, are situated only in the fol-
lowing positions: ∀x(x ∈ 𝛼 ⇒ . . . ) and ∃x(x ∈ 𝛼 ∧ . . . ).

In what follows, we use symbol-strings of the form x⃗, p⃗ ≡ x1, . . . , xm , p1, . . . , pn
with m ⩾ 1 and n ⩾ 0, assuming that the case n = 0 corresponds to the symbol-string
x1, . . . , xm. The variables x1, . . . , xm will be called basic and the variables p1, . . . , pn
will be called auxiliary (or parameters for 𝜑). If all variables of 𝜑 occur among the
symbol-string x⃗, p⃗ only, we shall write 𝜑[x⃗, p⃗].

The short symbol-strings ∀x⃗ and ∃x⃗ are the designations for the symbol-strings
∀x1 . . . ∀xm and ∃x1 . . . ∃xm, respectively.

AS2. (The full comprehension axiom scheme.) Let 𝜑[x, p⃗] be an X-predicative for-
mula such that the substitution 𝜑[x ‖ y, p⃗] is admissible. Then,

∀X(∃Y(∀y((y ∈ Y) ⇔ (y ∈ X ∧ 𝜑[y, p⃗])))).
This axiom scheme postulates that for each class X and any X-predicative formula
𝜑[x, p⃗], there exists a unique class defined as {x ∈ X | 𝜑[x, p⃗]}.

Let A be a class and an assembly C ≡ {x | 𝜑(x)} is defined by A-predicative for-
mula𝜑. IfC ⊂ A, then the assemblyC is a class. ByAS2, there exists a class B ≡ {x ∈ A |
𝜑(x)}. If x ∈ C, then ∀x(𝜑(x) ⇒ x ∈ A) implies x ∈ B. Therefore, C ⊂ B. Conversely, if
x ∈ B, then, by AS2, x ∈ A ∧ 𝜑(x), i. e. x ∈ C. Hence, C = B.

A3. (The empty class axiom.) ∀Z ((∀x(x ∉ Z)) ⇔ Z = ⌀).
Lemma 1. ∀X (⌀ ⊂ X).
Proof. Denote the formulas x ∈ ⌀ and x ∈ X by 𝜑 and 𝜓, respectively. Since it follows
from A3 that ¬𝜑, by rules of deduction we obtain 𝜑 ⇒ 𝜓. Applying the rule of general-
ization, we get ∀x (x ∈ ⌀ ⇒ x ∈ X).
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A class 𝛼will be called universal if 𝛼 ⋈.
A4. (The axiom of equiuniversality.) ∀U ∀V ((U = V) ⇒ (U ⋈ ⇔ V ⋈ )).
This axiom postulates that equal classes are simultaniously universal or not uni-

versal.
A5. (The infra-universality axiom.) a ⋈ ∧ ∀U (U⋈ ⇒ a ⊂ U).
This axiom postulates that the class a is the “smallest” universal class. We will

call it infra-universal or the infra-universe.
A6. (The universality axiom.) ∀X ∃U (U ⋈ ∧ X ∈ U).
This axiom postulates that every class A is an element of some universal class.
The following axioms explain what the notion “universality” means.
A7. (The transitivity axiom.) ∀U (U⋈ ⇒ ∀X (X ∈ U ⇒ X ⊂ U)).
This axiom postulates that if 𝛼 is a universal class, then every 𝛼-set is an 𝛼-class.
A8. (The subset (or quasitransitivity) axiom.)

∀U (U⋈ ⇒ ∀X ∀Y (X ∈ U ∧ Y ⊂ X ⇒ Y ∈ U)).
This axiom postulates that if 𝛼 is a universal class then every subclass of every 𝛼-set
is an 𝛼-set.

Within the framework of every class 𝛼we can define all basic set-theoretical con-
structions.

For every class A the 𝛼-class P𝛼(A) ≡ {x ∈ 𝛼 | x ⊂ A} is called the full 𝛼-ensemble
of the class A.

A9. (The full ensemble axiom.) ∀U (U⋈ ⇒ ∀X (X ∈ U ⇒ PU(X) ∈ U)).
This axiom postulates that if 𝛼 is an universal class and A is an 𝛼-set, thenP𝛼(A)

is an 𝛼-set.
For classes A and B the 𝛼-class A⋃𝛼 B ≡ {x ∈ 𝛼 | x ∈ A ∨ x ∈ B} is called the

𝛼-union of the classes A and B; the 𝛼-class A⋂𝛼 B ≡ {x ∈ 𝛼 | x ∈ A ∧ x ∈ B} is called
the 𝛼-intersection of the classes A and B.

A10. (The binary union axiom.)

∀U (U⋈ ⇒ ∀X ∀Y (X ∈ U ∧ Y ∈ U ⇒ X ∪U Y ∈ U)).
This axiom postulates that if 𝛼 is a universal class then the binary 𝛼-union of 𝛼-sets is
an 𝛼-set. Axioms A10 and A8 imply that the same holds also for the binary
𝛼-intersection.

For a class A consider the solitary 𝛼-class {A}𝛼 ≡ {x ∈ 𝛼 | x = A}.
Call the 𝛼-class {A, B}𝛼 ≡ {A}𝛼⋃𝛼{B}𝛼 the unordered 𝛼-pair, and the 𝛼-class

⟨A, B⟩𝛼 ≡ {{A}𝛼, {A, B}𝛼}𝛼 the coordinate 𝛼-pair of the classes A and B.

Lemma 2. Let 𝛼 be a universal class and a, b ∈ 𝛼. Then, {a}𝛼, {a, b}𝛼 and ⟨a, b⟩𝛼 are𝛼-sets.
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Proof. If a is an 𝛼-set, then by A9 P𝛼(a) ∈ 𝛼. From {a}𝛼 ⊂ P𝛼(a) by A8, it follows that{a}𝛼 is an 𝛼-set.
FromA10, now,wehave that {a, b}𝛼 ∈ 𝛼. This fact togetherwith {a}𝛼 ∈ 𝛼 according

to the proven property implies ⟨a, b⟩𝛼 ∈ 𝛼.
Corollary 1. Let 𝛼 be a universal class and a, a, b, b ∈ 𝛼 and ⟨a, b⟩𝛼 = ⟨a, b⟩𝛼.
Then, a = a and b = b.

For classes A and B, the 𝛼-class A ∗𝛼 B ≡ {x ∈ 𝛼 | ∃y ∃z (y ∈ A ∧ z ∈ B ∧ x = ⟨y, z⟩𝛼)}
will be called the coordinate 𝛼-product of classes A and B.

Lemma 3. Let 𝛼 be a universal class and A, B ∈ 𝛼. Then, A ∗𝛼 B ∈ 𝛼.
Proof. Let a ∈ A and b ∈ B. Then, {a}𝛼 ⊂ A ∪𝛼 B and {b}𝛼 ⊂ A ∪𝛼 B implies {a, b}𝛼 ⊂
A ∪𝛼 B. By A10, A ∪𝛼 B ∈ 𝛼. According to Lemma 2, {a}𝛼 ∈ P𝛼(A ∪𝛼 B) and {a, b}𝛼 ∈
P𝛼(A ∪𝛼 B). By the same reason, ⟨a, b⟩𝛼 = {{a}𝛼, {a, b}𝛼}𝛼 ⊂ P𝛼(A ∪𝛼 B). Hence,
⟨a, b⟩𝛼 ∈ P𝛼(P𝛼(A ∪𝛼 B)). Therefore, A ∗𝛼 B ⊂ P𝛼(P𝛼(A ∪𝛼 B)) ∈ 𝛼. By A8, we have
A ∗𝛼 B ∈ 𝛼.
Further, A and B will denote some fixed 𝛼-classes.

An 𝛼-subclass u of the 𝛼-class A ∗𝛼 B will be called an 𝛼-correspondence from
the 𝛼-class A into the 𝛼-class B and will be denoted also by u : A 𝛼 B. The for-
mula u ⊂ A ∗𝛼 B will be denoted also by u  A 𝛼 B. For the 𝛼-correspondense
u : A 𝛼 B consider the 𝛼-classes

dom𝛼 u ≡{x ∈ 𝛼 | x ∈ A ∧ ((∃y (y ∈ B ∧ ⟨x, y⟩𝛼 ∈ u))} and
rng𝛼 u ≡{y ∈ 𝛼 | y ∈ B ∧ ((∃x (x ∈ A ∧ ⟨x, y⟩𝛼 ∈ u))}.

The𝛼-subclass Ba ≡ u⟨a⟩ ≡ {y ∈ 𝛼 | y ∈ B ∧ ⟨a, y⟩𝛼 ∈ u} of the𝛼-class Bwill be called
the 𝛼-class of values of the 𝛼-correspondence u on the element a ∈ A, the 𝛼-subclass
u[A] ≡ {y ∈ 𝛼 | y ∈ B ∧ (∃x (x ∈ A ∧ ⟨x, y⟩𝛼 ∈ u)} of the class B the image of the sub-
class A of the class A with respect to the 𝛼-correspondence u. It is clear that u[{a}𝛼] =
u⟨a⟩ for each a ∈ A and u[A] = rng𝛼 u.

If u⟨a⟩ contains a single element b ∈ B (in such sense that ∃y (y ∈ B ∧ u⟨a⟩ =
{y}𝛼)), then this single element b is called a value of the 𝛼-correspondence u on the
element a ∈ A and is denoted by u(a) or by ba.

An 𝛼-correspondence u will be called total if dom𝛼 u = A and single-valued if
u⟨a⟩ = {u(a)}𝛼 for every a ∈ dom𝛼 u. The single-valued 𝛼-correspondence is called
also the 𝛼-mapping (≡ 𝛼-function).

The total single-valued 𝛼-correspondence u : A 𝛼 B is called the 𝛼-mapping
(≡ 𝛼-function) from the 𝛼-class A into the 𝛼-class B and is denoted by u : A →𝛼 B. A
formula, expressing the property for the 𝛼-class u to be an 𝛼-mapping from the 𝛼-class
A into the 𝛼-class B, will be denoted by u  A →𝛼 B.
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An 𝛼-mapping u : A →𝛼 B is called:
– injective if ∀x, y ∈ A(u(x) = u(y) ⇒ x = y) (it is denoted by u : A 𝛼 B);
– surjective if rng𝛼 u = B (it is denoted by u : A 𝛼 B);
– bijective (≡one-to-one) if it is injective and surjective (it is denoted by

u : A 𝛼 B).

The 𝛼-class {x ∈ 𝛼 | x  A →𝛼 B} of all 𝛼-mappings from the 𝛼-class A into the 𝛼-class
B which are 𝛼-sets will be denoted by BA

(𝛼) or by Map𝛼(A, B).
A11. (The full union axiom.)

∀U(U⋈ ⇒ ∀X∀Y∀z(X ∈ U ∧ Y ⊂ U ∧ (z ⊂ X ∗U Y) ∧
∧ (∀x(x ∈ X ⇒ z⟨x⟩ ∈ U))) ⇒ (rngU z ∈ U))).

An 𝛼-correspondence u from 𝛼-class A into 𝛼-class Bwill also be called a (multivalued)
𝛼-collection of 𝛼-subclasses Ba of the 𝛼-class B, indexed by the 𝛼-class A. In this case,
the class u and the formula u  A 𝛼 B will be denoted also by ⟮Ba ⊂ B | a ∈ A⟯𝛼
and u  ⟮Ba ⊂ B | a ∈ A⟯𝛼, respectively. An 𝛼-mapping u from A into B will also
be called a simple 𝛼-collection of the elements b𝛼 of the 𝛼-class B, indexed by the
𝛼-class A. In this case, the class u, the class rng u, and the formula u  A →𝛼 B
are denoted also by (ba ∈ B | a ∈ A)𝛼, {ba ∈ B | a ∈ A}, and u  (ba ∈ B | a ∈ A)𝛼,
respectively.

The 𝛼-class {y ∈ 𝛼 | ∃x ∈ A(y ∈ Bx)} is called the 𝛼-union of 𝛼-collection ⟮Ba ⊂ B |
a ∈ A⟯𝛼 and is denoted by ∪𝛼⟮Ba ⊂ B | a ∈ A⟯𝛼. The 𝛼-class {y ∈ 𝛼 | ∀x ∈ A(y ∈ Bx)} is
called the 𝛼-intersection of 𝛼-collection ⟮Ba ⊂ B | a ∈ A⟯𝛼 and is denoted by ∩𝛼⟮Ba ⊂
B | a ∈ A⟯𝛼.

In these terms and notations, the axiom of full unionmeans that if 𝛼 is a universal
class and ⟮Ba ⊂ B | a ∈ A⟯𝛼 is an 𝛼-collection of 𝛼-subsets Ba of the 𝛼-class B, indexed
by the 𝛼-set A, then its 𝛼-union ∪𝛼⟮Ba ⊂ B | a ∈ A⟯𝛼 is an 𝛼-set.

With 𝛼-class A, it is associated in the canonical way the 𝛼-collection ⟮a ⊂ 𝛼 |
a ∈ A⟯𝛼 of one-element 𝛼-sets of the 𝛼-class A (according to axiom A7, a ∈ A ⊂ 𝛼 im-
plies a ⊂ 𝛼). The 𝛼-union of this 𝛼-collection ⟮a ⊂ 𝛼 | a ∈ A⟯𝛼 is called the 𝛼-union
(≡ 𝛼-sum) of the 𝛼-class A and is denoted by ∪𝛼A. If 𝛼 is a universal class and A is an
𝛼-set, then ∪𝛼A is also an 𝛼-set. With every 𝛼-class A, it is associated in the canonical
way the simple 𝛼-collection (a ∈ A | a ∈ A)𝛼 of elements of the 𝛼-class A. It is clear that{a ∈ A | a ∈ A}𝛼 = A.

The next axiom serves, in particular, to exclude the possibility for a set to be its
own element.

A12. (The regularity axiom.)

∀U (U⋈ ⇒ ∀X (X ⊂ U ∧ X ̸= ⌀ ⇒ ∃x (x ∈ X ∧ x ∩U X = ⌀))).
The next axiom postulates the existence of the infinite set.
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A13. (The infra-infinity axiom.)

∃X (X ∈ a ∧ ⌀ ∈ X ∧ ∀x (x ∈ X ⇒ (x ∪a {x}a ∈ X))).
Denote the postulated a-set by 𝜋.

This axiom implies that the class⌀ is an a-set. By axiomA5,⌀ is an 𝛼-set for every
universe 𝛼.

Consider the a-class 𝜘 ≡ {Y ∈ a | Y ⊂ 𝜋 ∧ ⌀ ∈ Y ∧ ∀y (y ∈ Y ⇒ (y ⊂ a ∧ y⋃a{y}a ∈ Y))}. Since 𝜘 ⊂ Pa(𝜋), axioms A9 and A8 imply that 𝜘 is an 𝛼-set.
Consider the a-class 𝜔 ≡ {y ∈ a | ∀Y (Y ∈ 𝜘 ⇒ y ∈ Y)}. Since 𝜔 ⊂ 𝜋, we infer by

axiom A8 that 𝜔 is an a-set. Call it the a-set of natural numbers. By axiom A5, 𝜔 is
an 𝛼-set for every universe 𝛼.

Consider the initial natural numbers 0 ≡ ⌀, 1 ≡ 0⋃a{0}a, 2 ≡ 1⋃a{1}a, . . . . From
the definitions of 𝜘 and 𝜔, it follows that 0, 1, 2, ⋅ ⋅ ⋅ ∈ 𝜔. By axiom A7, 0, 1, 2, ⋅ ⋅ ⋅ ∈ 𝛼
for every universe 𝛼.

The last axiom postulates the existence of a choice function.
A14. (The choice axiom.) ∀U (U⋈ ⇒ ∀X (X ∈ U ∧ X ̸= ⌀ ⇒ ∃z ((z  PU(X) \{⌀}U →U X) ∧ ∀Y (Y ∈ PU(X) \ {⌀}U ⇒ z(Y) ∈ Y)))).
The description of the list of mathematical axioms and axiom schemes of the LTS

is finished. It was proposed by V. K. Zakharov [2005b].

B.1.2 Some constructions in the local theory of sets

Almost all modern mathematics (except naive category theory and naive theory of
mathematical systems) can be formalized within the framework of the infra-universe
a. Only the mentioned naive theories require using other higher universes.

To show that all naive category theory can be formalized within the framework
of the local theory of sets we need to introduce an analogue of the coordinate 𝛼-pair
⟨A, B⟩𝛼 working also with 𝛼-classes A and B not only with 𝛼 sets a and b (see Corol-
lary 1 to Lemma 2 (B.1.1)).

Now, let 𝛼 be some fixed universal class.
Let A, A, A, . . . , be 𝛼-classes, where the prime symbol () is used only for the

sake of uniformity of notations.
The 𝛼-collection ⟮𝛼i ⊂ 𝛼 | i ∈ 2⟯𝛼, such that 𝛼0 ≡ A and 𝛼1 ≡ A will be called the

(multivalued) sequential 𝛼-pair of 𝛼-classes A and A and will be denoted by ⟮A, A⟯𝛼.
The 𝛼-collection ⟮𝛼i ⊂ 𝛼 | i ∈ 3⟯𝛼, such that 𝛼0 ≡ A, 𝛼1 ≡ A, and 𝛼2 ≡ A, will be called
the (multivalued) sequential 𝛼-triplet of 𝛼-classes A, A, and A and will be denoted by
⟮A, A, A⟯𝛼, and so on.

Let now a, a, a, . . .be 𝛼-sets.
The simple 𝛼-collection (ai ∈ 𝛼 | i ∈ 2)𝛼, such that a0 ≡ a and a1 ≡ a will be

called the simple sequential 𝛼-pair of 𝛼-sets a and a and will be denoted by (a, a)𝛼.
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The simple 𝛼-collection (ai ∈ 𝛼 | i ∈ 3)𝛼, such that a0 ≡ a, a1 ≡ a, and a2 ≡ a, will
be called the simple sequential 𝛼-triplet of 𝛼-sets a, a, and a and will be denoted by
(a, a, a)𝛼, and so on.

If A, A, B, and B are 𝛼-classes and ⟮A, A⟯𝛼 = ⟮B, B⟯𝛼, then A = B and A = B. If
a, a, b, and b are 𝛼-sets and (a, a)𝛼 = (b, b)𝛼, then a = b and a = b. The similar
properties are valid also for every finite 𝛼-collections. Thus, the 𝛼-pairs ⟮A, A⟯𝛼 and(a, a)𝛼 possess the mentioned property of the Kuratowski 𝛼-pair ⟨a, a⟩𝛼 (see Corol-
lary 1 to Lemma 2 (B.1.1)). However, in contrast to the latter one, the 𝛼-pair ⟮A, A⟯𝛼
works also for 𝛼-classes not only for 𝛼-sets.

Let some𝛼-collection u ≡ ⟮Ai ⊂ 𝛼 | i ∈ I⟯𝛼 be indexedby𝛼-class I ̸= ⌀. The𝛼-class
∏𝛼⟮Ai ⊂ 𝛼 | i ∈ I⟯𝛼 ≡ {z ∈ 𝛼 | (z : I →𝛼 𝛼) ∧ (∀x (x ∈ I ⇒ z(x) ∈ Ax))} will be called
the 𝛼-product of the 𝛼-collection u. In the particular case A, A, A, . . .are 𝛼-classes,
then the 𝛼-classes ∏𝛼⟮A, A⟯𝛼, ∏𝛼⟮A, A, A⟯𝛼, . . .will be called the 𝛼-product of the
𝛼-pair ⟮A, A⟯𝛼, the 𝛼-triplet ⟮A, A, A⟯𝛼, . . .andwill be denoted by A ×𝛼 A, A ×𝛼 A×𝛼
A, . . .

One can check that A×𝛼A = {x ∈ 𝛼 | (∃y∃y(y ∈ A ∧ y ∈ A ∧ x = (y, y)𝛼))}. It is
seen from this equality that the𝛼-product A×𝛼A is similar to the coordinate𝛼-product
A ∗𝛼 A, but in contrast to the latter one, it is a partial case of the general product
∏𝛼⟮Ai ⊂ 𝛼 | i ∈ I⟯𝛼.

If A = A = A = . . . , then A ×𝛼 A = A2
(𝛼) ≡ Map𝛼(2, A), A ×𝛼 A ×𝛼 A = A3

(𝛼) ≡
Map𝛼(3, A), . . . . At the same time, A ∗𝛼 A ̸= A2

(𝛼), between the 𝛼-classes A ∗𝛼 A and
A2
(𝛼), there exists only a bijective 𝛼-mapping of the canonical form ⟨a, a⟩ → (a, a).

Namely, this stipulates the necessity of introducing the non-coordinate 𝛼-product
A ×𝛼 A, A ×𝛼 A ×𝛼 A, . . .

If n ∈ 𝜔, then an 𝛼-subclass R of the 𝛼-class An
(𝛼) ≡ Map𝛼(n, A) is called n-placed

𝛼-correspondenceon𝛼-class A.𝛼-mappingO : An
(𝛼) →𝛼 A is called n-placed𝛼-operation

on𝛼-class A. Note thatO ⊂ An
(𝛼)∗𝛼A ̸= An+1

(𝛼) . Therefore, an n-placed operationO cannot
be considered as an (n + 1)-placed correspondence.

B.2 The MacLane problem on a set-theoretical foundation for the
naive category theory. The solution of this problem within the
framework of the local theory of sets

By the naive notion of a category, we mean the notion of metacategory, given by
S. MacLane in [1971]. According to [MacLane, 1971], a metacategory consists of a
objects a, b, c, . . . , arrows f , g, h, . . . , and four operations f → dom f , f → codom f ,
a → ia, and f , g → g ∘ f , satisfying some additional conditions. Unfortunately, even
such a pathological object as the metacategory of all metacategories satisfies this
definition.

The MacLane problem appeared because of the internal contradictoriness of the
notion of metacategory. The aim of any formalization of the naive category theory is 1)
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to construct some axiomatic theory (set-theoretical, arrow ormixed) and 2) to give in it
a strict definition of some fundamental notion that (a) corresponds to the naive under-
standing of a category, (b) is closedwith respect to all operations and constructions of
naive category theory, (c) includes in itself all known important concrete examples
of categories, and (d) cuts off such naive pathological examples as the metacategory
of all metacategories.

B.2.1 The definition of a local category in the local theory of sets

Using all notations of the previous section we can formalize the naive notion of a cat-
egory in the following way. For a universe 𝛼 we define an 𝛼-category as a big two-
sorted algebraic system with two relations and one operation (see [Bourbaki, 1954;
1957; Zakharov and Mikhalev, 2000c]). For this purpose we will use the notion of an
𝛼-collection of 𝛼-classes and an 𝛼-pair of 𝛼-classes introduced in the previous section.

Consider fixed a-setΩc, consisting of three elements of the class 𝛼, denoted by the
signs #, ∘, and↔, called the symbol of partition, the symbol of composition, and the
symbol of identification, respectively. The set Ωc is called a signature of the category.
Since a ⊂ 𝛼, we infer thatΩc is also an 𝛼-set for every universe 𝛼.

Fix some universe 𝛼.
Consider an 𝛼-pair A ≡ ⟮Obj, Arr⟯𝛼, containing two 𝛼-classes Obj and Arr, and

the 𝛼-collection sc ≡ ⟮𝜔A ⊂ 𝛼 | 𝜔 ∈ Ωc⟯𝛼 with the three components 𝜁 ≡ sc⟨#⟩ ≡ #A, 𝜂 ≡
sc⟨∘⟩ ≡ ∘A, and 𝜗 ≡ sc⟨↔⟩ ≡↔A.

An 𝛼-class C ≡ ⟮A, sc⟯𝛼 will be called an 𝛼-category (≡ a category of the class 𝛼) if
the 𝛼-classes Obj, Arr, 𝜁, 𝜂, and 𝜗 occur in the sequential conjuction of the following
formulas (written in informal way):

Pc1. (𝜁 ⊂ (Obj ×𝛼 Obj) ∗𝛼 Arr) ∧ (𝜂 ⊂ (Arr ×𝛼 Arr) ∗𝛼 Arr) ∧ (𝜗 ⊂ Obj ∗𝛼 Arr);
This formula postulates that the partition assignes to every pair of elements ofObj

some 𝛼-class of elements of Arr; the composition assignes to every pair of elements of
Arr some third element Arr, and the identification assignes to every element of Obj
some element of Arr.

Pc2. (rng𝛼 𝜁 = Arr) ∧ (∀x, y ∈ Obj×𝛼Obj (x ̸= y ⇒ 𝜁⟨x⟩⋂𝛼 𝜁⟨y⟩ = ⌀)); 𝜁 is usually
written in the form of the 𝛼-collection 𝜁 ≡ ⟮Arr(𝜋, 𝜘) ⊂ Arr | (𝜋, 𝜘)𝛼 ∈ Obj ×𝛼 Obj⟯𝛼; in
this notation the indicated propertymeans that the 𝛼-class Arr is equal to the 𝛼-union
of this pairwise disjoint 𝛼-collection.

Pc3. (dom𝛼 𝜂 = {x ∈ 𝛼 | ∃u ∃v ∃w ∃v ∃w ((u, v, w ∈ Obj) ∧ (v, w ∈ Arr) ∧ (v ∈
Arr(u, v)) ∧ (w ∈ Arr(v, w)) ∧ (x = (v, w)𝛼))}) ∧ (𝜂 : dom𝛼 𝜂 → Arr);

Pc4. (𝜗 : Obj →𝛼 Arr) ∧ (∀X ∈ Obj(𝜗(X) ∈ Arr(X, X))) ∧ (∀f ∈ Obj(𝜗(f ) ∈ Arr
(f , f ))); 𝜗 is usually written in the form of the simple 𝛼-collection 𝜗 ≡ (i𝜋 ∈ Arr | 𝜋 ∈
Obj)𝛼, where i𝜋 ≡ 𝜗(𝜋);

Pc5. 𝜂⟮Arr(𝜋, 𝜘) ×𝛼 Arr(𝜘, 𝜌)⟯ ⊂ Arr(𝜋, 𝜌) for every elements 𝜋, 𝜘, 𝜌 ∈ Obj;
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Pc6. 𝜂(𝜂(F, G), H)) = 𝜂(F, 𝜂(G, H)) for every elements 𝜋, 𝜘, 𝜌, 𝜎 ∈ Obj and every
elements F ∈ Arr(𝜋, 𝜘), G ∈ Arr(𝜘, 𝜌) and H ∈ Arr(𝜌, 𝜎);

Pc7. 𝜂(F, i𝜋) = F and 𝜂(i𝜋, G) = G for every elements 𝜋, 𝜘, 𝜌 ∈ Obj and every ele-
ments F ∈ Arr(𝜘, 𝜋) and G ∈ Arr(𝜋, 𝜌).

𝛼-Categories defined in such a way can be called local.
Elements F of the class Arr(𝜋, 𝜘) are called arrows from the object𝜋 to the object 𝜘.

The formula F ∈ Arr(𝜋, 𝜘) is also denoted by F : 𝜋 ⋅→ 𝜘. The correspondence 𝜂 is called
the composition and is usually denoted simply by ∘; in this case along with ∘(F, G)we
write also G ∘ F.

An 𝛼-category C is called small, if C is an 𝛼-set. An 𝛼-Category C is called locally
small if every 𝛼-class Arr(𝜋, 𝜘) is an 𝛼-set.
Remark. In category theory, the refusal of the term “a morphism F from an object 𝜋
to an object 𝜘” took its place by the following reason. For algebraic systems U and V,
the notion of homomorphism f from U to V is usual; for smooth manifolds U and V,
the notion of a diffeomorphism f from U to V is usual, and so on; the generalization of
all these notions is the notion of amorphism of mathematical systems (see [Bourbaki,
1954; Zakharov and Mikhalev, 2000b]). However, mathematical systems U, V, . . . of
a type C and morphisms f from U to V of a status S do not form a category because
the morphism f does not define uniquely the system V; therefore, for some systems,
the property ⟮U, V⟯ ̸= ⟮U, V⟯ ⇒ Mor(U, V) ⋂Mor(U, V) ̸= ⌀ is possible. But this
property contradicts the property Pc2. To form the corresponding category, it is nec-
essary to take not morphisms f from U into V, but triplets ⟮f , U, V⟯, which can be
naturally called arrows from the system U into the system V defined by themorphisms f
(see [MacLane, 1971, I.8]).

B.2.2 Functors and natural transformations and generated by them “the category
of categories” and “the category of functors” in the local theory of sets

Let C and D be 𝛼-categories. An 𝛼-class Φ ≡ ⟮ΦO ,ΦT⟯𝛼 will be called a (covariant)
𝛼-functor (≡ a functor of the class 𝛼) from the 𝛼-category C to the 𝛼-category D if:
1) ΦO is an 𝛼-mapping from the 𝛼-class ObjC into the 𝛼-class ObjD;
2) ΦT is an 𝛼-mapping from the 𝛼-class ArrC into the 𝛼-class ArrD;
3) ΦT(F) ∈ ArrD(ΦO(𝜋),ΦO(𝜘)) for every objects 𝜋, 𝜘 ∈ ObjC and every arrow

F ∈ ArrC(𝜋, 𝜘);
4) ΦT(G ∘ F) = ΦT(G) ∘ ΦT(F) for every objects 𝜋, 𝜘, 𝜌 ∈ ObjC and every arrows

F ∈ ArrC(𝜋, 𝜘) and G ∈ ArrC(𝜘, 𝜌);
5) ΦT(i𝜋) = iΦO(𝜋) for every object 𝜋 ∈ ObjC.
Usually, 𝛼-mappingsΦO andΦT are denoted by one symbolΦ.
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𝛼-Functors are exactly homomorphisms between 𝛼-categories considered as alge-
braic systems.

The compositionΨ∘Φ of an 𝛼-functorΦ ≡ ⟮ΦO ,ΦT⟯𝛼 fromC toD and an 𝛼-functor
Ψ ≡ ⟮ΨO ,ΨT⟯𝛼 from D to E is the 𝛼-functor ⟮ΨO ∘ ΦO ,ΨT ∘ ΦT⟯𝛼 from C to E.

The identity 𝛼-functor IC for the 𝛼-category C is the 𝛼-functor ⟮idObjC, idArrC⟯𝛼,
containing the two identical mappings for the 𝛼-classes ObjC and ArrC, respectively.

Now, we will formalize the operation of naive category theory known as “the cat-
egory of categories”.

Take any universe 𝛽 such that 𝛼 ∈ 𝛽.
Consider the 𝛽-class Cat𝛽𝛼 ≡ {X ∈ 𝛽 | X is a 𝛼-category} of all 𝛼-categories C.
Consider also the 𝛽-class f Arr𝛽𝛼 ≡ {X ∈ 𝛽 | ∃x ∃Y ∃Z ((Y , Z are 𝛼-categories) ∧ (x

is an 𝛼-functor from Y to Z) ∧ (X = ⟮x, Y , Z⟯𝛼))} of all 𝛼-functorial arrows F ≡ ⟮Φ,
C,D⟯𝛼.

For every simple 𝛽-pair (C,D)𝛽 of 𝛼-categories C and D, consider the 𝛽-class
f Arr𝛽𝛼(C,D) ≡ {X ∈ 𝛽 | ∃x ∃Y ∃Z ((Y , Z are 𝛼-categories) ∧ (x is an 𝛼-functor from
Y to Z) ∧ (X = ⟮x, Y , Z⟯𝛼))}. Consider the 𝛽-collection 𝜁 ≡ ⟮f Arr𝛽𝛼(C,D) ⊂ f Arr𝛽𝛼 |(C,D)𝛽 ∈ Cat𝛽𝛼 ×𝛽 Cat𝛽𝛼⟯𝛽.

Consider the 𝛽-correspondence 𝜂 from f Arr𝛽𝛼 ×𝛽 f Arr𝛽𝛼 to
f Arr𝛽𝛼, generated by the

composition of 𝛼-functors and consider the 𝛽-mapping 𝜗 from Cat𝛽𝛼 to
f Arr𝛽𝛼 such that𝜗(C) = ⟮IC,C,C⟯𝛼.

These 𝛽-classes give us the opportunity to consider the 𝛽-correspondence sc fromΩc into 𝛽 such that sc⟨#⟩ ≡ 𝜁, sc⟨∘⟩ ≡ 𝜂, and sc⟨↔⟩ ≡ 𝜗.
As a result, we get the 𝛽-category C𝛽

𝛼 ≡ ⟮⟮Cat𝛽𝛼, f Arr𝛽𝛼⟯𝛽, sc⟯𝛽. It will be called the
𝛽-category of all 𝛼-categories and all 𝛼-functorial arrows between them.

Now, letC andD be fixed 𝛼-categories. Suppose thatΦ andΨ are 𝛼-functors from
C to D. A simple 𝛼-collection T = (t𝜋 ∈ ArrD | 𝜋 ∈ ObjC)𝛼 will be called a (natural)
𝛼-transformation from the 𝛼-functorΦ to the 𝛼-functor Ψ if:
1) t𝜋 ∈ ArrD(Φ(𝜋),Ψ(𝜋)) for every object 𝜋 from ObjC;
2) Ψ(F) ∘ t𝜋 = t𝜘 ∘ Φ(F) for every objects 𝜋, 𝜘 from ObjC and every arrow F from

ArrC(𝜋, 𝜘).
The composition U ∘ T of an 𝛼-transformation T = (t𝜋 ∈ ArrD | 𝜋 ∈ ObjC)𝛼 from
Φ to Ψ and an 𝛼-transformation U = (u𝜋 ∈ ArrD | 𝜋 ∈ ObjC)𝛼 from Ψ to Ω is the
𝛼-transformation (u𝜋 ∘ t𝜋 ∈ ArrD | 𝜋 ∈ ObjC)𝛼 fromΦ toΩ.

The identity 𝛼-transformation IΦ from the 𝛼-functor Φ to the 𝛼-functor Φ is the
𝛼-transformation (IΦ(𝜋) ∈ ArrD | 𝜋 ∈ ObjC)𝛼 fromΦ toΦ.

Finally, we will formalize the operation of naive category theory known as “the
category of functors”.

Consider the 𝛽-class Funct𝛽𝛼(C,D) of all 𝛼-functors from the 𝛼-category C to
the 𝛼-category D. Also consider the 𝛽-class cArr𝛽𝛼 ≡ {X ∈ 𝛽 | ∃x ∃Y ∃Z ((Y , Z are
𝛼-functors from C to D) ∧ (x is an 𝛼-transformation from Y to Z) ∧ (X = ⟮x, Y , Z⟯𝛼))}
of all 𝛼-transformational arrows F ≡ ⟮T,Φ,Ψ⟯𝛼.
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For every simple 𝛽-pair (Φ,Ψ)𝛽 of 𝛼-functors Φ and Ψ from C to D, consider
the 𝛽-class cArr𝛽𝛼(Φ,Ψ) ≡ {X ∈ 𝛽 | ∃x ((x is an 𝛼-transformation from Φ to Ψ) ∧ (X =
⟮x,Φ,Ψ⟯𝛼))}. Consider the 𝛽-collection 𝜁 ≡ ⟮cArr𝛽𝛼(Φ,Ψ) ⊂ cArr𝛽𝛼 | (Φ,Ψ)𝛽 ∈ Funct𝛽𝛼
C,D) ×𝛽 Funct𝛽𝛼(C,D)⟯𝛽.

Consider the 𝛽-correspondence 𝜂 from cArr𝛽𝛼 ×𝛽 cArr𝛽𝛼 to
cArr𝛽𝛼 generated by the

composition of 𝛼-transformations.
Consider the 𝛽-mapping 𝜗 from Funct𝛽𝛼(C,D) to cArr𝛽𝛼, such that 𝜗(Φ) =

⟮IΦ,Φ,Φ⟯𝛼.
These 𝛽-classes give us the opportunity to consider the 𝛽-correspondence sc fromΩc into 𝛽 such that sc ⟨#⟩ ≡ 𝜁, sc ⟨∘⟩ ≡ 𝜂, and sc ⟨↔⟩ ≡ 𝜗.
As a result, we get the 𝛽-category F𝛽

𝛼(C,D) ≡ ⟮⟮Funct𝛽𝛼(C,D), cArr𝛽𝛼⟯𝛽, sc ⟯𝛽. It
will be called the 𝛽-category of all 𝛼-functors from the 𝛼-category C to the 𝛼-category
D and all 𝛼-transformational arrows between 𝛼-functors.

The constructionsC𝛽
𝛼 andF𝛽

𝛼(C,D) show that thenotionof an𝛼-category is closed
with respect to such important operations of naive category theory as “the category of
categories” and “the category of functors”. Thus, the notion of an 𝛼-category has all
the good properties of the notion of an U-category.

B.3 Universal classes, ordinals, cardinals, and cumulative classes
in the local theory of sets

B.3.1 The relativization of formulas of the LTS to universal classes. The
interpretation of the ZF set theory in universal classes

We use the abbreviations ∀x ∈ X(𝜑) for ∀x(x ∈ X ⇒ 𝜑) and ∃x ∈ X(𝜑) for ∃x(x ∈
X ∧ 𝜑). As in A.6.1 by 𝜑U , we denote the formula (the relativization of the formula
𝜑 to the class U) received by changing in 𝜑 all subformulas of the form ∀x(𝜑) and
∃x(𝜑) to ∀x ∈ U𝜑 and ∃x ∈ U𝜑, respectively.
Statement 1. Let U be a universal class in the LTS. Consider the interpretation M ≡
⟮U, I⟯ of the ZF set theory in the LTS in which the correspondence I assigns to the
predicate symbols ∈ZF and =ZF the binary U-correspondences B ≡ {z ∈ U | ∃x ∈ U∃y ∈
U(z = (x, y)U ∧ x ∈LTS y)} and E ≡ {z ∈ U | ∃x ∈ U∃y ∈ U(z = (x, y)U ∧ x =LTS y)} on
the class U. Then, the interpretation M is a model of the ZF set theory in the LTS.

Proof. We need to check that in the LTS there exists a deduction of the formula or the
scheme of formulas M ⊨ 𝜑[s] for every proper axiom or axiom scheme 𝜑 of the ZF set
theory and every sequence s ≡ x0, . . . , xq , . . . of elements of the class U.

On s, axiom A1 is translated into the formula M ⊨ A1[s] = A1U ≡ ∀X ∈ U∀Y ∈
U(∀u ∈ U(u ∈ X ⇔ u ∈ Y) ⇒ X = Y). By the definition of equality in the LTS, this
formula is evidently deducible.
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On s, axiom A2 is translated into the formula M ⊨ A2[s] = A2U ≡ ∀u ∈ U(∀v ∈
U∃x ∈ U∀z ∈ U(z ∈ x ⇔ z = u ∨ z = v).

For the U-sets u and v, consider the unordered U-pair x ≡ {u, v}U . By Lemma 2
(B.1.1) x ∈ U. From the corresponding definitions, we infer that x = {u}U ∪ {v}U = {y ∈
U | y ∈ {u}U ∨ y ∈ {v}U} = {y ∈ U | y = u ∨ y = v}. By axiom scheme AS2 (LTS), we
have ∀z ∈ U(z ∈ x ⇔ z = u ∨ z = v), and we get the desired deducibility.

On s, the axiom scheme of separation AS3 is translated into the scheme M ⊨
AS3[s] ≡ ∀X ∈ U∃Y ∈ U∀u ∈ U(u ∈ Y ⇔ u ∈ X ∧ 𝜑U(u, p⃗M[s])), where Y is not a free
variable of the formula 𝜑(u, p⃗).

By AS2 (LTS), for the U-predicative formula 𝜑U(u, p⃗M[s]) and U-set X, there
exists an U-class Y ≡ {u ∈ U | 𝜑U(u, p⃗M[s]) ∧ u ∈ X} such that u ∈ Y ⇔ (u ∈ U ∧ u ∈
X ∧ 𝜑U(u, p⃗M[s])). Since Y ⊂ X ∈ U, we have, by subset axiom A8 ( LTS), Y ∈ U, and
it gives us the desired deducibility.

On s, the axiom of union A4 is translated into the formula M ⊨ A4[s] = A4U ≡
∀X ∈ U∃Y ∈ U∀z ∈ U∀u ∈ U(u ∈ z ∧ z ∈ X ⇒ u ∈ Y).

For the U-set X and the corresponding U-predicative formula, by AS2 (LTS), there
exists the U-class Z ≡ {w ∈ U | ∃x, y ∈ U(x ∈ X ∧ y ∈ x ∧ w = ⟨x, y⟩U)} ⊂ X ∗U U.
Since Z⟨x⟩ = x ∈ U for any x ∈ X, by the axiom of full union A11 (LTS), Y ≡ ∪U⟮x ⊂ U |
x ∈ X⟯U ≡ rngU Z ∈ U. If u ∈ z ∈ X, then u ∈ Y, and we get the desired deducibility.

On s, the axiom of power set A5 is translated into the formulaM ⊨ A5[s] = A5U ≡
∀X ∈ U∃Y ∈ U∀u ∈ U(u ⊂ X ⇒ u ∈ Y).

For theU-set X, by AS2 (LTS), there exists anU-class Y ≡ PU(X) ≡ {x ∈ U | x ⊂ X}.
By axiom A8 (LTS), Y ∈ U. If u ∈ U and u ⊂ X, then, by AS2, u ∈ Y, and we get the
desired deducibility.

On the sequence s, the axiom scheme of replacement AS6 is translated into the
scheme

M ⊨ AS6[s] ≡ ∀x ∈ U∀y ∈ U∀y ∈ U(𝜑U(x, y, p⃗M[s]) ∧
∧ 𝜑U(x, y, p⃗M[s]) ⇒ y = y) ⇒ ∀X ∈ U∃Y ∈ U(∀x ∈ U(x ∈ X ⇒

⇒ ∀y ∈ U(𝜑U(x, y, p⃗[s]) ⇒ y ∈ Y)))))
where p⃗M[s] denotes the line of values of the terms p0, . . . , pm−1 on s under the inter-
pretation M.

By AS2 (LTS), for the U-predicative formula 𝜑U(x, y, p⃗[s]), there exists the U-class
F ≡ {z ∈ U | ∃x, y ∈ U(z = ⟨x, y⟩U ∧ 𝜑U(x, y, p⃗M[s]))}. From the formula scheme cited
above, we infer that the U-classes F is a U-function.

Consider any U-set X and the U-class Y ≡ F[X]. Consider the U-class G ≡ {z ∈ U |
∃x, y ∈ U(z = ⟨x, y⟩U ∧ 𝜑U(x, y, p⃗M[s]) ∧ x ∈ X} = F|X ⊂ X∗U Y. If x ∈ X, then G⟨x⟩ =⌀ ∈ U for x ∉ domU F and G⟨x⟩ = {F(x)}U for x ∈ domU F. Therefore, by the axiom of
full union A11 (LTS), Y = rngU G ∈ U.
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If x ∈ X, y ∈ U, and𝜑U(x, y, p⃗M[s]), then ⟨x, y⟩U ∈ F. Thus, y ∈ F[X] ≡ Y. It proves
the formula scheme M ⊨ AS6[s].

On s, the axiom of empty set A7 is translated into the formulaM ⊨ A7[s] = A7U ≡
∃x ∈ U∀z ∈ U(¬(z ∈ x)).

The empty U-set⌀LTS, by axiom A3 (LTS), possesses the necessary property ∀z ∈
U(z ∉ ⌀LTS).

On s, the axiom of infinity A8 is translated into the formula M ⊨ A8[s] ≡ ∃Y ∈
U(⌀ ∈ Y ∧ ∀y ∈ U(y ∈ Y ⇒ y ∪U {y}U ∈ Y)).

Consider the a-set 𝜋 postulated by axiom of infra-infinity A13 (LTS). By this ax-
iom,⌀ ∈ 𝜋 and, if y ∈ U and y ∈ 𝜋, then y ∪a {y}a ∈ 𝜋. Check that A ≡ y ∪a {y}a = y∪U{y}U ≡ B. Let x ∈ A. Then, x ∈ a and x ∈ y ∨ x = y. Since by axiom A5 (LTS) a ⊂ U,
then x ∈ U. Therefore, x ∈ B. Conversely, let x ∈ B, i.ė., x ∈ U and x ∈ y ∨ x = y. Since
y ∈ 𝜋 ∈ a, we have, by axiom A7 (LTS), y ∈ a. If x ∈ y, then by the same reason, x ∈ a.
If x = y, then again x ∈ a. Thus, in each case x ∈ a. Therefore, x ∈ A. From the equality
which was proven above we infer that y ∪U {y}U ∈ 𝜋. It means that the translation of
axiom A8 (ZF) is deduced in the LTS.

On s, the axiom of regularity A9 is translated into the formula M ⊨ A9[s] ≡ ∀X ∈
U(X ̸= ⌀ ⇒ ∃x ∈ U(x ∈ X ∧ x∩U X = ⌀)). This formula is evidently deduced from the
axioms of transitivity A7 (LTS) and regularity A12 (LTS).

Finally, on s, the choice axiom A10 is translated into the formula M ⊨ A10[s] ≡
∀X ∈ U(X ̸= ⌀ ⇒ ∃z ∈ U((z  PU(X) \ {⌀}U →U X) ∧ ∀Y ∈ U(Y ∈ PU(X) \ {⌀}U ⇒
z(Y) ∈ Y))).

If ⌀ ̸= X ∈ U, then by choice axiom A14 (LTS), there exists the class z such
that (z  PU(X) \ {⌀}U →U X) ∧ ∀Y(Y ∈ PU(X) \ {⌀}U ⇒ z(Y) ∈ Y). By axiom A9,
PU(X) ∈ U, and, by axiom A8, A ≡ PU(X) \ {⌀}U ∈ U. Therefore, by Lemma 3 (B.1.1)
B ≡ A∗U X ∈ U. From z ⊂ B according to axiomA8, we infer that z ∈ U, and that gives
us the required deducibility.

According to Statement 1, we can use in every universal class U all assertions for
U-classes and U-sets which can be proven in ZF for the classes and sets.

B.3.2 The globalization of local constructions

In the samemanner as in ZF for classes (see A.2.1), we define in the LTS for assemblies
A and B and classes A and B the following assemblies:
1) P(A) ≡ {x | x ⊂ A};
2) A ∪ B ≡ {x | x ∈ A ∨ x ∈ B};
3) A ∩ B ≡ {x | x ∈ A ∧ x ∈ B};
4) {A} ≡ {x | x = A};
5) {A, B} ≡ {A} ∪ {B} = {x | x = A ∨ x = B};
6) ⟨A, B⟩ ≡ {A, {A, B}};
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7) A ∗ B ≡ {x | ∃y ∈ A∃z ∈ B(x = ⟨y, z⟩)};
8) ∪A ≡ {x | ∃y ∈ A(x ∈ y)}.
In the same manner as in ZF changing the word “class” to the word “assembly”
and the word “set” to the word “class”, we define in the LTS a correspondence C
with the domain domC and the class of values rngC, a function (≡ a mapping) F, a
correspondence C : A B, a function F : A→ B, a (multivalued) collection ⟮Ba ⊂ B |
a ∈ A⟯with the union∪⟮Ba ⊂ B | a ∈ A⟯ and the intersection∩⟮Ba ⊂ B | a ∈ A⟯, a simple
collection (ba ∈ B | a ∈ A) with the assembly of members {ba ∈ B | a ∈ A}, the (multi-
valued) sequential pair ⟮A, A⟯, triplet ⟮A,A, A⟯, . . .of assemblies A, A, A, . . . , the
simple sequential pair (a, a), triplet (a, a, a), . . .of classes a, a, a, . . . , the prod-
uct ∏⟮Ai ⊂ A | i ∈ I⟯ of a collection ⟮Ai ⊂ A | i ∈ I⟯, the product A × A, A × A × A,
. . .of the pair ⟮A,A⟯, triplet ⟮A,A, A⟯, . . .of assemblies A, A, A, . . . , an n-placed
relation R ⊂ An ≡ Map(n, A) on an assembly A, an n-placed operation O : An → A on
an assembly A, and so on.

One can check that the pairs ⟨a, b⟩ and (a, b) possesses the usual property:
⟨a, b⟩ = ⟨a, b⟩ ⇔ a = a ∧ b = b and (a, b) = (a, b) ⇔ a = a ∧ b = b for every
classes a and b.

With every assemblyA, it is associated in the canonical way the collection ⟮a ⊂ V |
a ∈ A⟯ of element classes of the assembly A and the simple collection (a ∈ A | a ∈ A)
of elements of the assembly A. The equalities ∪A = ∪⟮a ∈ V | a ∈ A⟯ and A = {a ∈ A |
a ∈ A} are valid for them.

Now, we will state the connection between local notions and constructions and
corresponding global ones.

Lemma 1. Let 𝛼 and 𝛽 be universal classes, A ∈ 𝛼, and A ∈ 𝛽. Then, P𝛼(A) = P𝛽(A) =
P(A).
Proof. Let x ∈ P𝛼(A), i. e. x ∈ 𝛼 and x ⊂ A. Since A ∈ 𝛽, by axiom A8, x ∈ 𝛽. There-
fore, x ∈ P𝛽(A). Hence, P𝛼(A) ⊂ P𝛽(A). The converse implication is checked
analogously.

It is clear that P𝛼(A) ⊂ P(A). The inclusion P(A) ⊂ P𝛼(A) can be checked as
above.

Corollary 1. For every class A the assembly P(A) is a class.
Proof. By the axiom of universality A6, for A, there exists a universal class 𝛼 such that
A ∈ 𝛼. Then, by the proven lemma, P(A) = P𝛼(A). But by axiom scheme AS2, P𝛼(A)
is a class.

Lemma 2. Let 𝛼 and 𝛽 be universal classes, A, B ⊂ 𝛼, and A, B ⊂ 𝛽. Then, A ∪𝛼 B =
A ∪𝛽 B = A ∪ B and A ∩𝛼 B = A ∪𝛽 B = A ∩ B.
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Proof. Let x ∈ A ∪𝛼 B, i. e. x ∈ 𝛼, and x ∈ A ∨ x ∈ B. Then, x ∈ 𝛽, and therefore,
x ∈ A ∪𝛽 B. Thus, A ∪𝛼 B ⊂ A ∪𝛽 B. The converse inclusion can be checked in the
same way.

It is clear that A∪𝛼 B ⊂ A∪B. The inclusion A∪B ⊂ A∪𝛼 B is checked as was done
above.

Lemma 3. Let 𝛼 and 𝛽 be universal classes, A, B ∈ 𝛼, and A, B ∈ 𝛽. Then, {A}𝛼 ={A}𝛽 = {A}, {A, B}𝛼 = {A, B}𝛽 = {A, B} and ⟨A, B⟩𝛼 = ⟨A, B⟩𝛽 = ⟨A, B⟩.
Proof. If y ∈ {A}𝛼 ≡ {x ∈ 𝛼 | x = A}, then y = A ∈ 𝛽, and therefore, y ∈ {x ∈ 𝛽 |
x = A} ≡ {A}𝛽. Thus, {A}𝛼 ⊂ {A}𝛽. The converse inclusion is checked in the same way.
It is clear that {A}𝛼 ⊂ {a}. The inclusion {A} ⊂ {A}𝛼 is checked as was done above.

Now, according to the proven assertions and Lemma 2, {A, B}𝛼 ≡ {A}𝛼 ∪𝛼 {B}𝛼 ={A}𝛽 ∪𝛼 {B}𝛽 = {A}𝛽 ∪𝛽 {B}𝛽 ≡ {A, B}𝛼. Similarly, {A, B}𝛼 = {A, B}.
Finally, by Lemma 2 (B.1.1) {A}𝛼 ∈ 𝛼, {A}𝛽 ∈ 𝛽, {A, B}𝛼 ∈ 𝛼 and {A, B}𝛽 ∈ 𝛽. There-

fore, by the properties proven above, {A}𝛽 ∈ 𝛼 and {A, B}𝛽 ∈ 𝛼.
Consequently, applying the equality proven above, we get

⟨A, B⟩𝛼 ≡ {{A}𝛼, {A, B}𝛼}𝛼 = {{A}𝛽, {A, B}𝛽}𝛼 = {{A}𝛽, {A, B}𝛽}𝛽 ≡ ⟨A, B⟩𝛽.
Similarly, ⟨A, B⟩𝛼 = ⟨A, B⟩.
Corollary 1. For every class A, the assembly {A} is a class.
Proof. By the axiom of universality A6, for A, there exists a universal class 𝛼 such that
A ∈ 𝛼. Then, by the proven lemma {A} = {A}𝛼. But, by axiom scheme AS2, {A}𝛼 is a
class.

Lemma 4. Let 𝛼 and 𝛽 be universal classes, A, B ⊂ 𝛼, and A, B ⊂ 𝛽. Then, A ∗𝛼 B =
A ∗𝛽 B = A ∗ B.
Proof. Let x ∈ A ∗𝛼 B, i. e. x ∈ 𝛼 and ∃y∃z(y ∈ A ∧ z ∈ B ∧ x = ⟨y, z⟩𝛼). Since
y ∈ A ⊂ 𝛽, we have y ∈ 𝛽. Similarly, z ∈ 𝛽. By Lemmas 2 (B.1.1) and 3 (B.3.2), x =
⟨y, z⟩𝛼 = ⟨y, z⟩𝛽 ∈ 𝛽. Therefore, x ∈ 𝛽 and ∃y∃z(y ∈ A ∧ z ∈ B ∧ x = ⟨y, z⟩𝛽), i. e.
x ∈ A ∗𝛽 B. Therefore, A ∗𝛼 B ⊂ A ∗𝛽 B. The inverse inclusion is checked in the
same way.

It is clear that A ∗𝛼 B ⊂ A ∗ B. The inclusion A ∗ B ⊂ A ∗𝛼 B can be checked as
above.

Lemma 5. Let 𝛼 and 𝛽 be universal classes, A, B ⊂ 𝛼 and A, B ⊂ 𝛽. Then, for every class
u, the following assertions are equivalent:
1) u  A 𝛼 B [, respectively, u  A →𝛼 B];
2) u  A 𝛽 B [, respectively, u  A →𝛽 B];
3) u  A B [, respectively, u  A → B].
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Besides, dom𝛼 u = dom𝛽 u = dom u and rng𝛼 u = rng𝛽 u = rng u.
Proof. (1) ⊢ (2). By Lemma 4, u ⊂ A ∗𝛼 B = A ∗𝛽 B. Therefore, dom𝛽 u ⊂ A. If x ∈ A,
then, by (1), x ∈ A = dom𝛼 u. Therefore, x ∈ 𝛼 and ⟨x, y⟩𝛼 ∈ u for some y ∈ B. By
Lemma 3, ⟨x, y⟩𝛽 ∈ u. Hence, x ∈ dom𝛽 u. Thus, A ⊂ dom𝛽 u. As a result, dom𝛽 u = A.

Let ⟨x, y⟩ ∈ u and ⟨x, y⟩𝛽 ∈ u for some x ∈ A. Then, y, y ∈ rng𝛽 u ⊂ B. Since
x, y, y ∈ 𝛼 and x, y, y ∈ 𝛽, we infer by Lemma 3, that ⟨x, y⟩𝛼 = ⟨x, y⟩𝛽 ∈ u and
⟨x, y⟩𝛼 = ⟨x, y⟩𝛽 ∈ u. From (1), we now infer y = y. It means that u  A →𝛽 B.

All other deducibilities are proven in the same manner.
The equalities dom𝛼 u = dom𝛽 u = dom u and rng𝛼 u = rng𝛽 u = rng u are checked

with the help of Lemma 3 in an obvious way.

Lemma 6. Let 𝛼 and 𝛽 be universal classes, A ⊂ 𝛼, and A ⊂ 𝛽. Then, ∪𝛼A = ∪𝛽A = ∪A.
Proof. By definition, ∪𝛼A ≡ ∪𝛼⟮a ⊂ 𝛼 | a ∈ A⟯𝛼 ≡ {z ∈ 𝛼 | ∃y ∈ A(z ∈ y)}. Therefore, if
x ∈ ∪𝛼A, then x ∈ y ∈ A ⊂ 𝛽, by axiom A7, implies x ∈ 𝛽. Thus, x ∈ ∪𝛽A. Thus, ∪𝛼A ⊂∪𝛽A. The inverse inclusion is checked similarly.

It is clear that ∪𝛼A ⊂ ∪A. The inclusion ∪A ⊂ ∪𝛼A is checked in the same way as
above.

Corollary 1. For every class A, the assembly ∪A is a class.

Proof. By the axiom of universality A6, for A, there exists a universal class 𝛼 such that
A ∈ 𝛼. Then, by the previous lemma, ∪A = ∪𝛼A. But, ∪𝛼A, by axiom scheme AS2, is a
class.

Unfortunately, for classes A and B, we cannot yet prove that the assemblies A ∪ B,
A ∩ B, {A, B}, ⟨A, B⟩, and A ∗ B are classes. It will be done in B.3.5 (see Corollary 3 to
Theorem 1 (B.3.5)).

B.3.3 Ordinals and cardinals in the local theory of sets

In the same manner as in ZF, changing the word “class” to the word “assembly” and
the word “set” to the word “class” in the LTS, we can define ordered and well-ordered
assemblies, ordinals and ordinal numbers.

In the same manner as in ZF, changing the word “class” to the word “U-class”,
the word “set” to the word “U-set”, and the word “relation” to the word “U-relation”,
in the LTS for every universal class U we can define U-ordered and well-U-ordered
U-classes, U-ordinals, and U-ordinal numbers with the following change of the defi-
nition of a well-U-ordered U-class. Namely, an U-ordered U-class P is called well-U-
ordered, if ∀Q(Q ⊂ U ∧ ⌀ ̸= Q ⊂ P ⇒ ∃x ∈ U(x ∈ Q ∧ ∀y ∈ U(y ∈ Q ⇒ x ⩽ y))), what
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means that every non-empty U-subclass of the U-class P has the smallest element.
From x, y ∈ Q ⊂ P ⊂ U, we infer that this formula is equivalent to the formula ∀Q(⌀ ̸=
Q ⊂ P ⇒ ∃x ∈ Q(∀y ∈ Q(x ⩽ y))), cited in condition 5 from the definition of a well-
ordered class in ZF. But in the LTS, this formula has a wider sense, namely, it means
that every non-empty subclass of the U-class P has the smallest element (compare
with Lemma 1 (A.2.2) in ZF).

It implies that the following lemma is fulfilled.

Lemma 1. Let U be auniversal class and𝛼 ∈ U. Then, the following assertions are equiv-
alent:
1) 𝛼 is an ordinal number;
2) 𝛼 is a U-ordinal number.
Now, we will infer from this lemma that the assembly On ≡ {x | On(x)} of all ordinal
numbers in the LTS is well-ordered by the relation ∈ ∪ =.
Lemma 2. The assembly On is well-ordered by the relation ∈ ∪ =.
Proof. Let 𝛼 and 𝛽 be ordinal classes and 𝛼 ̸= 𝛽. By the axiom of universality A6, 𝛼 ∈ U
and 𝛽 ∈ V for some universal classes U and V. Then, either 𝛼 ̸⊂ 𝛽 or 𝛽 ̸⊂ 𝛼. Let for
certainty 𝛽 ̸⊂ 𝛼. In this case, by subset axiom A8, the non-empty V-set 𝛽 \ 𝛼 = {𝜂 ∈ V |
𝜂 ∈ 𝛽 ∧ 𝜂 ∉ 𝛼} ∈ V has the smallest element 𝛾 ∈ V. We have 𝛾 ∉ 𝛼, by the definition of
the V-set 𝛽 \ 𝛼. Since every element 𝛾 by virtue of the minimality of 𝛾 is an element
of 𝛼, we have 𝛾 ⊆ 𝛼. By the subset axiom, 𝛾 ∈ U. From 𝛾 ∉ 𝛼 and 𝛾 ⩽ 𝛼, it follows that
𝛾 = 𝛼, i. e. 𝛼 ∈ 𝛽.

We proved that ∈ ∪ = is a linear order on the assembly On. Show that this
assembly is well-ordered with respect to the given order. Suppose that we have some
non-empty class S of ordinal numbers. Consider a universe U, containing S. Then,
by axiom A7, S ⊂ U. By Lemma 1, S is a U-class of U-ordinal numbers. Since by
Statement 1 (B.3.1), the universe U is a model of the ZF set theory, we infer that the
U-class S of U-ordinal numbers has the smallest element.

The next lemma is similar to Lemma 1 (A.2.2), but it has completely another proof.

Lemma 3. Let A be a non-empty subassembly of the assembly On. Then, A has the
smallest element.

Proof. By condition, there exists some ordinal number 𝛼 ∈ A. By the axiom of univer-
sality A6 (LTS), there exists a universal class U such that 𝛼 ∈ U. Consider the assembly
B ≡ {x ∈ U | x ∈ A ∧ x ∈ 𝛼 ∪U {𝛼}U}. By full comprehension axiom scheme AS2 (LTS),
this assembly is an U-class. Since 𝛼 ∈ B ⊂ On and the assembly On is well-ordered,
we infer that the class B has the smallest element 𝛽. Take an arbitrary element 𝛾 ∈ A.
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If 𝛾 < 𝛼, then 𝛾 ∈ 𝛼 ∈ U, where, by the axiom of transitivity A7 (LTS), 𝛾 ∈ U. Therefore,
in this case, 𝛾 ∈ B and hence 𝛾 ⩾ 𝛽. If 𝛾 = 𝛼, then again 𝛾 ∈ B and so 𝛾 ⩾ 𝛽. Finally, if
𝛾 > 𝛼, then 𝛾 > 𝛽. Therefore, 𝛽 is the smallest element of the assembly A.

Lemma 4. Let 𝛼 be an ordinal number. Then:
1) the assembly 𝛼+ ≡ 𝛼 + 1 ≡ 𝛼 ∪ {𝛼} is an ordinal number:
2) 𝛼+ is the smallest of all ordinal numbers which are greater than the number 𝛼.
Proof. 1. By axiom A6, 𝛼 ∈ U for some U⋈. Let x ∈ 𝛼+U ≡ (𝛼 + 1)U ≡ 𝛼 ∪U {𝛼}U . Then,
x ∈ U and either x ∈ 𝛼 or x = 𝛼. Therefore, x ∈ 𝛼+. Let y ∈ 𝛼+. In this case, either
y ∈ 𝛼 or y ∈ 𝛼. In both the cases, y ∈ U. It means that y ∈ 𝛼+U . Thus, 𝛼+ = 𝛼+U and
𝛼+ is a U-ordinal number and therefore an ordinal number. It is clear that
𝛼+ > 𝛼.

2. Let 𝛽 be an ordinal number such that 𝛽 > 𝛼. Suppose that 𝛼+ > 𝛽. Then, 𝛽 ∈ 𝛼+,
i. e. either 𝛽 ∈ 𝛼 or 𝛽 = 𝛼, but it contradicts to the condition 𝛽 > 𝛼. From this contra-
diction, we infer that 𝛽 ⩾ 𝛼+.
An ordinal number 𝛼+ will be called the successor of the ordinal number 𝛼.
Lemma 5. If A is a non-empty class of ordinal numbers, then:
1) ∪A is an ordinal number;
2) ∪A = sup A in the ordered assembly On.

Proof. By axiom A6, A ∈ U for some universal class U. Then, by axiom A7, A ⊂ U.
Consider the assembly X ≡ ∪A and the U-class Y ≡ ∪UA. By Lemma 6 (B.3.2), X = Y.
By Lemma 2 (A.2.2) from ZF and Statement 1 (B.3.1), Y is an U-ordinal number;
and therefore, by Lemma 1, it is an ordinal number. Thus, X is also an ordinal
number.

Let a ∈ A. If X < a, then X ∈ a ∈ A implies X ∈ ∪A = X, but it is impossible. From
which a ⩽ X, and so X is anupper boundof the classA. Let𝛼be anordinal number and
𝛼 ⩾ a for every a ∈ A. Suppose that X > 𝛼. Then, 𝛼 ∈ X = ∪A implies 𝛼 ∈ a for some
a ∈ A. Hence, 𝛼 < a, but it is impossible. Therefore, X ⩽ 𝛼. Thus, X = sup A inOn.

A limit ordinal is an ordinal which is not equal to 𝛼+ for any ordinal number 𝛼.
As in A.2.2, classes A and B are called equivalent (A ∼ B) if there exists a one-to-

one (≡ bijective) function u : A B.
An ordinal number 𝛼 will be called cardinal, if for every ordinal number 𝛽 the

conditions 𝛽 ⩽ 𝛼 and 𝛽 ∼ 𝛼 imply 𝛽 = 𝛼. The assembly of all cardinal numbers will be
denoted by Cn. The assembly Cn with the order, induced from the assembly On, is
well-ordered.

Let U be a universal class. U-Classes A and B are called U-equivalent (A ∼U B) if
there exists a bijective U-function u : A U B.

A U-ordinal number 𝛼 is called U-cardinal if for every U-ordinal number 𝛽 the
conditions 𝛽 ⩽ 𝛼 and 𝛽 ∼U 𝛼 imply 𝛽 = 𝛼.
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Proposition 1. Let U be a universal class and 𝛼 ∈ U. Then, the following assertions are
equivalent:
1) 𝛼 is a cardinal number;
2) 𝛼 is an U-cardinal number.
Proof. (1) ⊢ (2). By Lemma 1, 𝛼 is a U-ordinal number. Let 𝛽 be a U-ordinal number
such that𝛽 ⩽ 𝛼and𝛽 ∼U 𝛼. Itmeans that there exists a bijectiveU-mapping f : 𝛽 U𝛼. By axiom of transitivity A7, 𝛽 ⊂ 𝛼 ⊂ U. Therefore, by Lemma 5 (B.3.2), f  𝛽 𝛼.
Hence, 𝛽 ∼ 𝛼. By condition 1, we get 𝛽 = 𝛼.

(2) ⊢ (1). By Lemma 1,𝛼 is an ordinal number. Let𝛽be anordinal number such that
𝛽 ⩽ 𝛼 and 𝛽 ∼ 𝛼. It means that there exists a bijective mapping f : 𝛽 𝛼. By axiom
A7, 𝛽 ⊂ 𝛼 ⊂ U. Therefore, by Lemma 5 (B.3.2) f  𝛽 U 𝛼, i. e. 𝛽 ∼U 𝛼. By condition
2, we infer 𝛽 = 𝛼.
The power cardU A of a set A ∈ U in a universe U is a U-cardinal 𝛼 ∈ U such that there
exists a one-to-one U-mapping f : A U 𝛼. The power card A of a class A is a cardi-
nal 𝛼 such that A ∼ 𝛼.
Proposition 2. Suppose that A ∈ U ∈ V, U⋈, and V⋈. Then, card A = cardU A = cardV A <
cardV U .

Proof. Let cardU A = 𝛼, 𝛼 ∈ U, Then, 𝛼 ∈ V. By definition, there exists a one-to-one
function f : A U 𝛼. By Lemma 5 (B.3.2), f  A V 𝛼.

By Proposition 1, 𝛼 is a U-cardinal number. Therefore, 𝛼 = cardV A.
Similarly, by Lemma 5 (B.3.2) f  A 𝛼, and by Proposition 1, 𝛼 is a cardinal

number. Thus, 𝛼 = card A.
Show now that cardV A < cardV U . According to Statement 1 (B.3.1), cardV A ⩽

cardV U. Suppose that cardV A = cardV U = 𝛼, 𝛼 ∈ V .
From the assertions proven above, we infer that cardU A = cardV A = 𝛼 implies

𝛼 ∈ U. By axiomA7,𝛼 ⊂ U,𝛼 ⊂ V, andU ⊂ V. By the definition ofV-power, there exists
a bijective V-function f : 𝛼 V U. According to Lemma 5 (B.3.2), f  𝛼 U U. By
the axiom of full union A11, U = rngU f ∈ U.

We infer that U ∈ U, but it is impossible.

An inaccessible cardinal number is defined in the LTS aswas done in the ZF set theory.
A U-cardinal number 𝜘 will be called U-regular if for every U-ordinal number 𝛽,

forwhich there exists aU-function f : 𝛽 →U 𝜘 such that∪U rngU f = 𝜘, it is valid𝜘 ⩽ 𝛽.
A U-cardinal number 𝜘 > 𝜔0 ≡ 𝜔will be called U-inaccessible if 𝜘 is U-regular and for
every U-ordinal number 𝜆 from 𝜆 ∈ 𝜘 it follows that PU(𝜆) ∈ 𝜘.
Proposition 3. Let U be a universal class and 𝛼 ∈ U. Then, the following conditions are
equivalent:
1) 𝛼 is an inaccessible cardinal number;
2) 𝛼 is a U-inaccessible U-cardinal number.
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Proof. (1) ⊢ (2). By Proposition 1, 𝛼 is an U-cardinal number. Let 𝛽 ∈ U, 𝛽 be a
U-ordinal number, and there exist a U-mapping f : 𝛽 →U 𝛼 such that ∪U rngU f = 𝛼.
By Lemma 1, 𝛽 is an ordinal number. Since 𝛽, 𝛼 ∈ U, then, by the axiom of transi-
tivity 𝛽, 𝛼 ⊂ U. Therefore, by Lemma 5 (B.3.2), f  𝛽 → 𝛼 and rngU f = rng f , where𝛼 = ∪U rng f . By Lemma 6 (B.3.2), 𝛼 = ∪ rng f . Since 𝛼 is a regular cardinal number, we
infer that 𝛼 ⩽ 𝛽. Hence, 𝛼 is a U-regular U-cardinal number.

Let 𝛽 ∈ U, 𝛽 is an U-ordinal number and 𝛽 ∈ 𝛼. By Lemma 1, 𝛽 is an ordinal num-
ber. Since 𝛼 is inaccessible, then P(𝛽) ∈ 𝛼. By Lemma 1 (B.3.2), PU(𝛽) = P(𝛽) ∈ 𝛼.
Therefore, 𝛼 is a U-inaccessible U-cardinal number.

(2) ⊢ (1). By Proposition 1, 𝛼 is a cardinal number. Let 𝛽 be an ordinal number and
let f : 𝛽 → 𝛼 be amapping such that∪ rng f = 𝛼. Suppose that𝛽 ∈ 𝛼 ∈ U. By the axiom
of transitivity A7, 𝛽 ∈ U. By Lemma 1, 𝛽 is a U-ordinal number. By A8, 𝛽, 𝛼 ⊂ U. There-
fore, by Lemma 1 f  𝛽 →U 𝛼 and rng f = rngU f . By Lemma 6 (B.3.2) 𝛼 = ∪ rngU f =∪U rngU f . Since 𝛼 is a U-regular U-cardinal number, we infer that 𝛼 ⩽ 𝛽 < 𝛼, but it is
impossible. From this contradiction, we infer that the case 𝛽 ∈ 𝛼 is impossible. Thus,
𝛼 ⩽ 𝛽. Hence, 𝛼 is a regular cardinal number.

Let 𝛽 be an ordinal number and 𝛽 ∈ 𝛼. By axiom A7, 𝛽 ∈ U. By Lemma 1 𝛽 is a
U-ordinal number. Since 𝛼 is U-inaccessible, thenPU(𝛽) ∈ 𝛼. By Lemma 1 (B.3.2) and
Proposition 2 cardP(𝛽) = cardPU(𝛽) = cardU PU(𝛽) ∈ 𝛼. Therefore, 𝛼 is an inaccessi-
ble cardinal number.

In the LTS, we can use the principle of transfinite induction by virtue of the well-
ordering of the assembly of all ordinals. Show that

Theorem 1 (the principle of transfinite induction in the LTS). Let C be an assembly of
ordinal numbers such that:
1) ⌀ ∈ C;
2) 𝛼 ∈ C ⇒ 𝛼 + 1 ∈ C;
3) (𝛼 is a limit ordinal number ∧ 𝛼 ⊂ C) ⇒ 𝛼 ∈ C.
Then, C = On.
Proof. Suppose that it is not true. Consider the subassembly D ≡ On \ C.

Since the assembly D is not empty, we infer by Lemma 3 that it has the smallest
element.

Then, 𝛾 ̸= ⌀, because ⌀ ∈ C. Therefore, 𝛾 is either 𝛽+ for some ordinal number 𝛽
or a limit ordinal number. Suppose that 𝛾 = 𝛽+1. Since 𝛽 ∈ 𝛾, it follows that 𝛽 ∉ D and
so 𝛾 ∈ C. By condition 2 of the theorem, 𝛾 = 𝛽+1 ∈ C. From this contradiction, we infer
that 𝛾 ̸= 𝛽 + 1. Now, the case remains when 𝛾 is a limit ordinal number. In this case,
𝛾 = sup 𝛾 and 𝛾 ⊂ C; thus, by the condition 3 of the theorem, 𝛾 = sup 𝛾 ∈ C. Therefore,
the assembly D is empty and so C = On.
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Theorem 2 (the principle of natural induction in the LTS). Let C be some assembly in
LTS such that:
1) ⌀ ∈ C;
2) for all n ∈ 𝜔 the condition n ∈ C implies n + 1 ∈ C.
Then, 𝜔 ⊆ C.
Proof. Consider the assembly C̃ = C ∩ 𝜔. This assembly is not empty because ⌀ ∈
C ∧ ⌀ ∈ 𝜔 ⇒ ⌀ ∈ C̃, andbesides, it contains only ordinal numbers. Suppose now that
the assertion of the theorem is not fulfilled. In this case, the assembly C = {x | x ∈
𝜔 ∧ x ∉ C̃} is not empty because it is a subassembly of On, and therefore contains the
smallest element 𝛼 ∈ 𝜔. We know that 𝛼 ̸= ⌀, because ⌀ ∈ C̃. Since 𝛼 ∈ 𝜔 and 𝛼 ̸= ⌀,
then there exists 𝛽 such that 𝛼 = 𝛽 + 1. In this case, 𝛽 ∈ C̃ because 𝛼 is the smallest
ordinal number in C. By condition 2 of the theorem, in this case, 𝛽 + 1 ∈ C̃, i. e. 𝛼 ∈ C̃,
and we get the contradiction with our assumption.

B.3.4 Cumulative classes in the LTS and their connection with universal classes

Using all previous material, we will construct cumulative classes in the LTS.
Consider an arbitrary universe U. Since it is a model of ZF, we can, using the con-

struction by transfinite induction, define cumulative U-sets VU
𝛼 for every U-ordinal

number 𝛼 ∈ U. By the axiom of universality A6 and Lemma 1, for every ordinal num-
ber 𝛼we define some cumulative U-set VU

𝛼 for every universe U such that 𝛼 ∈ U.
Lemma 1. Let U andW be universal classes and𝛼 be an ordinal number such that𝛼 ∈ U
and 𝛼 ∈ W. Then, VU

𝛼 = VW
𝛼 .

Proof. Wewill prove it by the transfinite induction. Consider the subassemblyC of the
assembly On, consisting of all ordinal numbers 𝛼 such that either 𝛼 ∈ U, 𝛼 ∈ W and
VU
𝛼 = VW

𝛼 , or 𝛼 ∉ U, or 𝛼 ∉ W.
Since ⌀ ∈ U, ⌀ ∈ W, VU

⌀ = ⌀ and VW
⌀ = ⌀, it follows that VU

⌀ = VW
⌀ . Therefore,

⌀ ∈ C.
Let 𝛼 ∈ C. If 𝛼 ∉ U or 𝛼 ∉ W, then respectively 𝛼+ 1 ∉ U or 𝛼+ 1 ∉ W, i. e. 𝛼 + 1 ∈ C.

Let 𝛼 ∈ U, 𝛼 ∈ W. By the facts proven in section A.2, VU
𝛼+1 = VU

𝛼 ∪U PU(VU
𝛼 ) and VW

𝛼+1 =
VW
𝛼 ∪W PW (VW

𝛼 ). By assumption, VU
𝛼 = VW

𝛼 ≡ V𝛼. Since V𝛼 ∈ U and V𝛼 ∈ W, it follows
byLemma 1 (B.3.2) thatPU(V𝛼) = PW (V𝛼). Hence,VU

𝛼+1 = V𝛼∪UPU(V𝛼) ≡ P andVW
𝛼+1 =

V𝛼 ∪W PU(V𝛼) ≡ Q. By axiomA9 (LTS),PU(V𝛼) ∈ U andPU(V𝛼) ∈ W. Using axiomA7,
we can easily check that P = Q. Thus, VU

𝛼+1 = VW
𝛼+1. Therefore, 𝛼 + 1 ∈ C.

Let𝛼 be a limit ordinal number such that𝛼 ⊂ C. If𝛼 ∉ U or𝛼 ∉ W, then𝛼 ∈ C. Con-
sider the case 𝛼 ∈ U and 𝛼 ∈ W. By axiom A7, 𝛼 ⊂ U and 𝛼 ⊂ W. Since 𝛼 ⊂ C, we have
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VU
𝛽 = VW

𝛽 ≡ V𝛽 for all 𝛽 ∈ 𝛼. According to assertions from A.3.1, we get VU
𝛼 = ∪U⟮VU

𝛽 |𝛽 ∈ 𝛼⟯U and VW
𝛼 = ∪W ⟮VW

𝛽 | 𝛽 ∈ 𝛼⟯W . Since VU
𝛽 = VW

𝛽 = V𝛽 and V𝛽 ∈ U, V𝛽 ∈ W for all
𝛽 ∈ 𝛼, we can write that VU

𝛼 = ∪U⟮V𝛽 | 𝛽 ∈ 𝛼⟯U , and VW
𝛼 = ∪W ⟮V𝛽 | 𝛽 ∈ 𝛼⟯W . Show that

R ≡ ∪U⟮V𝛽 | 𝛽 ∈ 𝛼⟯U = ∪W ⟮V𝛽 | 𝛽 ∈ 𝛼⟯W ≡ S.
Let x ∈ R. Then, x ∈ U and x ∈ V𝛽 for some 𝛽 ∈ 𝛼. Since x ∈ V𝛽 ∈ W, we have, by

axiom A7, x ∈ W. Therefore, x ∈ S. Thus, R ⊂ S. The converse implication is checked
similarly. Thus, we infer that VU

𝛼 = R = S = VW
𝛼 . It means that 𝛼 ∈ C.

By Theorem 1 (A.2.2), C = On.
Using this lemma, we can for every 𝛼 ∈ On define in the LTS the cumulative class V𝛼

(we draw a line over V𝛼 to differ these classes from the corresponding classes in ZF) as
the U-class VU

𝛼 for every universe U, satisfying the condition 𝛼 ∈ U. In the result, we
get the Mirimanov –Neumann collection ⟮V𝛼 ⊂ V|𝛼 ∈ On⟯ in the LTS. It satisfies prop-
erties 1–3 of the Mirimanov–Neumann collection in ZF, listed in section A.2.

Lemma 2. The collection ⟮V𝛼 ⊂ V | 𝛼 ∈ On⟯ possesses the following properties:
1) 𝛼 = 𝛽 ⇐⇒ V𝛼 = V𝛽;
2) 𝛼 < 𝛽 ⇐⇒ V𝛼 ∈ V𝛽.

Proof. At the beginning we will show that 𝛼 < 𝛽 implies V𝛼 ∈ V𝛽. Suppose that
𝛽 ∈ U for some universe U. Then, 𝛼 ∈ U implies V𝛼 = VU

𝛼 and V𝛽 = VU
𝛽 . By State-

ment 1 (B.3.1), our assertion follows now from the fact that in ZF, by Lemma 1 (A.3.2)
𝛼 < 𝛽 ⇒ V𝛼 ∈ V𝛽. Now, we will prove all assertions of the lemma. The assertion
𝛼 = 𝛽 ⇒ V𝛼 = V𝛽 is proven above. If V𝛼 = V𝛽, then either 𝛼 < 𝛽 or 𝛼 = 𝛽, or 𝛽 < 𝛼.
If 𝛼 < 𝛽, then V𝛼 ∈ V𝛽; if 𝛽 < 𝛼, then V𝛽 ∈ V𝛼, therefore 𝛽 = 𝛼.

The assertion 𝛼 < 𝛽 ⇒ V𝛼 ∈ V𝛽, is already proven. If V𝛼 ∈ V𝛽, then 𝛼 < 𝛽, because
for 𝛼 = 𝛽, we have V𝛼 = V𝛽, and for 𝛽 < 𝛼, we have V𝛽 ∈ V𝛼.

The following theorem shows that all universal classes in the LTS are cumulative sets
for inaccessible cardinal indices.

Theorem 1. Let U be an arbitrary universal class. Then:
1) 𝜘 ≡ sup(On ∩ U) = ∪(On ∩ U) ⊂ U is an inaccessible cardinal number;
2) U = V𝜘;
3) the correspondence q : U → 𝜘 such that U = V𝜘 is an injective isotone mapping

from the assembly U of all universal classes into the assembly In of all inaccessible
cardinal numbers.

Proof. 1. Since A ≡ On ∩ U is a non-empty class, because it contains the element
0 ≡ ⌀, we infer, by Lemma 5 (B.3.3) that 𝜘 is an ordinal number.

Suppose that 𝜘 is not a cardinal number. In this case, there exist an ordinal
number 𝛼 < 𝜘 and a bijective function f : 𝛼  𝜘. Since 𝜘 ⊂ U and 𝛼 ⊂ U, we have,

 EBSCOhost - printed on 2/10/2023 4:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



B.3.4 Cumulative classes in the LTS and their connection with universal classes | 307

by Lemma 4 (B.3.2) 𝛼 ∗ 𝜘 = 𝛼 ∗U 𝜘. Therefore, f is a U-function f : 𝛼 U 𝜘. Since𝛼 ∈ 𝜘 ⊂ U and f (x) ∈ 𝜘 ⊂ U for every x ∈ 𝛽, by the axiom of full union, for the uni-
versal class U we infer that 𝜘 = rngU f ∈ U ∩ On and therefore, by the axiom of
binary union, 𝜘+U ≡ 𝜘 ∪U {𝜘}U ∈ U. By Lemma 4 (B.3.3) 𝜘+U = 𝜘+ ∈ On. Thus, 𝜘+U ⩽𝜘 < 𝜘+U , but it is impossible. From this contradiction, we infer that 𝜘 is a cardinal
number.

Suppose that the cardinal𝜘 is not regular. Then,𝛼 ≡ cf (𝜘) < 𝜘. Bydefinition, there
exists a function f : 𝛼 → 𝜘 such that sup f [𝛼] = 𝜘. As above, f is a U-function f : 𝛼 →U𝜘 and rngU f ∈ U. It is clear that rngU f ⊂ f [𝛼]. Conversely, if y ∈ f [𝛼], then y = f (x) for
some x ∈ 𝛼. Since f (x) ∈ 𝜘 ⊂ U, we have y ∈ U. Consequently, y ∈ rngu f . As a result,
f [𝛼] = rngU f ∈ U. By the axiom of full union, 𝜘 = sup f [𝛼] = ∪f [𝛼] = ∪U⟮y ⊂ U | y ∈
f [𝛼]⟯U ∈ U . Similarly, as was done before, the property 𝜘 ∈ U brings us to the contra-
diction. Therefore, 𝜘 is a regular cardinal.

Let 𝜆 be a cardinal number such that 𝜆 < 𝜘. Since 𝜆 ∈ 𝜘 ⊂ U, we have, by the
axiom of full ensemble and by Lemma 1 (B.3.2) P(𝜆) = PU(𝜆) ∈ U. Consequently,𝛼 ≡ cardP(𝜆) = cardPU(𝜆). According to Proposition 2 (B.3.3), this last number is
equal to the number cardU PU(𝜆) ∈ U. Thus, 𝛼 ∈ U ∩ On. Therefore, 𝛼 ⩽ 𝜘. Suppose
that 𝜘 = 𝛼. Then, 𝜘 ∈ U. But as above this property leads us to the contradiction. As a
result, we infer that 𝛼 < 𝜘.

Now, it remains only to show that 𝜘 > 𝜔. Since 𝜔 ∈ a (see after axiom A13 in sec-
tion B.1), we have 𝜔 ∈ U and so 𝜔 + 1 = 𝜔 ∪ {𝜔} ∈ U. Therefore, 𝜔 ∈ 𝜔 + 1 ∈ A implies
𝜔 ∈ ∪A = 𝜘.

Assertion 1 is proven.
2. From (1) it follows that 𝜘 is a limit ordinal number.
Therefore, V𝜘 = ∪⟮V𝛽|𝛽 ∈ 𝜘⟯. Since 𝛽 ∈ 𝜘 ⊂ U, we have, by the definition, V𝛽 =

VU
𝛽 ⊂ U. Consequently, V𝜘 ⊂ U. Conversely, let x ∈ U. By Lemma 7 (A.3.3)Π = V in ZF.

Similarly, ∪U⟮VU
𝛼 | 𝛼 ∈ On ∩ U⟯ = U in the LTS. Therefore, x ∈ VU

𝛼 for some 𝛼 ∈ A ⊂ U.
Since VU

𝛼 = V𝛼, we have x ∈ V𝛼 ⊂ V𝜘. Therefore, U ⊂ V𝜘. As a result, we infer that
U = V𝜘.

3. From Lemma 2, we infer that 𝜘 is unique. Therefore, we can define a mapping
q : U → In such that q(U) = 𝜘, where U = V𝜘. From Lemma 2 we also infer that q is
isotone.

Corollary 1. If U is a universal class, then𝜘 ≡ card U is an inaccessible cardinal number
and U = V𝜘.

Proof. According to Theorem 1, we only need to show that for any inaccessible cardi-
nal number 𝜘, we have card V𝜘 = 𝜘.

Consider some universal classW such that 𝜘 ∈ W. In this case, V𝜘 = VW
𝜘 ∈ W. By

Proposition 2 (B.3.3), card V𝜘 = cardW V𝜘. Since the universe W is a model of ZF, by
Lemma 2 (A.3.3) the property 𝜘 = cardW VW

𝜘 = card V𝜘 is fulfilled in it.
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Therefore, if U is a universal class, then, by Theorem 1, U = V𝜘, where 𝜘 is an
inaccessible cardinal number. Our assertion now follows directly from the property
card U = card V𝜘 = 𝜘.
Corollary 2. In the LTS, the equality ∪⟮V𝛼 | 𝛼 ∈ On⟯ = V is valid.

Proof. Weneed to show that for an arbitrary class x in the LTS the assertion x ∈ ∪⟮V𝛼 |𝛼 ∈ On⟯ is valid, i. e. there exists 𝛼 ∈ On such that x ∈ V𝛼.
By the axiom of universality, there exists a universe U such that x ∈ U, and, by

Theorem 1, U = V𝜘 for some 𝜘 ∈ On. Therefore, x ∈ V𝜘, i. e. our assertion is true.

Theorem 1 allows tomake the following conclusions about the structure of the assem-
bly U ≡ {U | U⋈} of all universal classes.

The relation ∈ ∪ = is a relation of order on the assembly U. We will denote it by
⩽, i. e. U ⩽ V, if U ∈ V or U = V. By axiom A7, the assembly U is transitive. Therefore,
U ∈ V implies U ⊂ V. Thus, U ⩽ V implies U ⊂ V. We will prove now that these rela-
tions are equivalent.

Proposition 1. Let U and V be universal classes. Then, the relation U ⩽ V is equivalent
to the relation U ⊂ V.

Proof. We only need to check that U ⊂ V implies U ⩽ V. By Theorem 1, U = V𝜋 and
V = V𝜘 for some inaccessible cardinals 𝜋 and 𝜘. If 𝜋 = 𝜘, then U = V𝜋 = V𝜘 = V. If
𝜋 < 𝜘, then, by Lemma 2 U = V𝜋 ∈ V𝜘 = V. Finally if 𝜋 > 𝜘, then, by the same lemma,
V = V𝜘 ∈ V𝜋 = U ⊂ V, but it is impossible. Therefore, U ⩽ V.

Corollary 1. The infra-universe a is the smallest element in the assemblyU of all univer-
sal classes.

Corollary 2. If U is a universal class, then either U = a or a ∈ U.
Corollary 3. With the universal class a it is associated a unique inaccessible cardinal
number 𝜘∗ such that a = V𝜘∗ . This number is the smallest in the assembly In of all inac-
cessible cardinal numbers.

Thus, in the LTS, there exists at least one inaccessible cardinal number.
Provenowthat in theLTS thereexistsmore thanone inaccessible cardinalnumber.

B.3.5 The structure of the assemblies of all universal classes and all inaccessible
cardinals in the local theory of sets

Proposition 1. In the LTS for every ordinal number 𝛼, there exists an inaccessible cardi-
nal number 𝜘 such that 𝛼 < 𝜘.
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Proof. By the axiom of universality, 𝛼 ∈ U for some universal class U. By Theo-
rem 1 (B.3.4), U = V𝜘 for some inaccessible cardinal 𝜘. By definition, V𝛼 = VU

𝛼 ⊂
U = V𝜘. By Lemma 2 (B.3.4) 𝛼 ⩽ 𝜘. Suppose that 𝜘 = 𝛼. Then, 𝜘 ∈ U. But this prop-
erty leads to the contradiction, as it was shown in the proof of Theorem 1 (B.3.4).
Therefore, 𝛼 < 𝜘.
This property is similar to the axiom of universality, which postulates that every class
in the LTS is an element of some universal class.

The parallelism between properties of universal classes and inaccessible cardi-
nals in the LTS is confirmed also by the following assertions.

Theorem 1. The assembly U of all universal classes with respect to the order ⊂ is
well-ordered. Furthermore, every subassembly of the assembly U has the smallest
element.

Proof. Let ⌀ ̸= A ⊂ U. Using the injective and strictly monotone mapping q : U → 𝜘
from the assembly U into the assembly On of the form U = V𝜘 from Theorem 1 (B.3.4),
we can consider for the assembly A the subassembly B ≡ q[A] ≡ {x | x ∈ On ∧ ∃U ∈
A(z = q(U))} of the assembly On. By Lemma 3 (B.3.3), it has the smallest element 𝜋,
which is an inaccessible cardinal. Since 𝜋 ∈ B, we have 𝜋 = q(U) for some U ∈ A, i. e.
U = V𝜋. Since themapping q is injective and strictly monotone, it follows that U is the
smallest element in the assembly A.

Corollary 1. For every class A, there exists a universe U(A) which is the smallest in the
assembly of all universes U such that A ∈ U.
Corollary 2. The intersection ∩A ≡ {x | ∀U ∈ A(x ∈ U)} of any non-empty assembly
A of universal classes is a universal class.

Proof. By Theorem 1, the subassembly A of the assembly U has the smallest element
U. It is clear that∩A ⊂ U. IfV ∈ A, thenU ⩽ V impliesU ⊂ V. Therefore,U ⊂ ∩A. Thus,
∩A = U.

Theorem 1 allows to finish the globalization of local constructions, which was started
in B.3.2.

Corollary 3. For every class A and B, the assemblies A ∪ B, A ∩ B, {A, B}, ⟨A, B⟩, and
A ∗ B are classes.

Proof. By the axiom of universality A6, for A and B, there exist universal classes 𝛽
and 𝛾 such that A ∈ 𝛽 and B ∈ 𝛾. By Theorem 1, either 𝛽 ⊂ 𝛾 or 𝛾 ⊂ 𝛽. Therefore, there
exists a universal class 𝛼 (𝛼 = 𝛽 or 𝛼 = 𝛾) such that 𝛽, 𝛾 ⊂ 𝛼. Thus, A, B ∈ 𝛼. By the
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axiom of transitivity A7, A, B ⊂ 𝛼. Therefore, by Lemmas 2 – 5 (B.3.2) A ∪ B = A ∪𝛼 B,
A∩B = A∩𝛼B, {A, B} = {A, B}𝛼, ⟨A, B⟩ = ⟨A, B⟩𝛼, and A∗B = A∗𝛼B. By axiom scheme
AS2, the right parts of all these equalities are classes, because they are defined by
𝛼-predicative formulas.

Corollary 4. Let n ∈ 𝜔\1 andF be an assembly such thatF is amapping from the class n
into the assembly V. Then, the assembly F is a class.

Proof. Consider the assemblyK ⊂ n, consistingof all natural numbers k ∈ n such that
the assembly F|(k + 1) is a class. Consider the assembly K ≡ 𝜔 \ n and the assembly
K ≡ K ∪ K.

Since F|1 = ⟨0, F(0)⟩, we infer by Corollary 1 to Theorem 1 that F|1 is a class.
Let k ∈ 𝜔 and k ∈ K. If k < n − 1, then k + 1 ∈ n. Since in this case k ∈ K, the

assembly F|(k + 1) is a class. By Corollary 3 to Theorem 1, the assembly ⟨k + 1, F(k + 1)⟩
is also a class. Now, from the equality F|(k + 2) = F|(k + 1) ∪ {⟨k + 1, F(k + 1)⟩} by the
mentioned corollary we infer that the assembly F|(k + 2) also is a class. It means that
k + 1 ∈ K ⊂ K.

If k ⩾ n − 1, then k + 1 ⩾ n implies k + 1 ∈ K ⊂ K.
Applying Theorem 2 (B.3.3), we conclude that 𝜔 ⊂ K ⊂ 𝜔. Therefore, K = n. Con-

sequently, n − 1 ∈ K means that the assembly F = F|((n − 1) + 1) is a class.
Corollary 5. Let A, A, A, . . . be classes. Then, the assemblies (A, A), (A, A, A), . . .
are classes.

Proof. By definition, the assemblies (A, A), (A, A, A), . . . are the particular cases of
sequences (A0, . . . , An−1)when n ∈ 𝜔\2. But, by the previous corollary, the sequences(A0, . . . , An−1) are classes.
Thus, the assembly V of all classes in the LTS allows us to produce almost all set-
theoretical constructions which are possible in a universal class or in the NBG-
universe, except the construction of full union, which is basic for the construction
by transfinite induction. The fact that the construction of full union is impossible
in the LTS follows from Statement 1 (B.6.1). It means that the global assembly of all
classes in the LTS with respect to its constructive possibilities is muchmore poor than
local universal classes in it.

The next theorem describes the structure of the assemblyU of all universes in the
LTS. It is proven with the help of Theorem 1.

Theorem 2. In the LTS, for every n ∈ 𝜔, there exist a unique universal class U and a
unique U-sequence of universal classes u(n) ≡ (Uk ∈ U|k ∈ n + 1)U such that U0 = a,
Uk ∈ Ul for every k ∈ l ∈ n+1 and if V is an universal class and U0 ⊂ V ∈ U, then V = Uk
for some k ∈ n + 1 (the property of incompressibility).

 EBSCOhost - printed on 2/10/2023 4:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



B.3.5 The structure of the assembly of all universal classes | 311

From the property of uniqueness, it follows that u(n) | m + 1 = u(m) for all m ⩽ n,
i. e. these finite sequences continue each other.

Proof. Consider the set N, consisting of all n ∈ 𝜔, for which there exist a unique uni-
versal class U and a unique sequence of universal classes u ≡ u(n) ≡ (Uk ∈ U | k ∈
n + 1)U such that U0 = a, Uk ∈ Ul for any k ∈ l ∈ n + 1 and if V is a universal class and
U0 ⊂ V ∈ U, then V = Uk for some k ∈ n + 1.

By Corollary 1 to Theorem 1, for the infra-universe a, there exists a universe U∗

which is the smallest from all universes U such that a ∈ U. Since the universe U ≡ U∗

and the sequence (Uk ∈ U | k ∈ 1) such that U0 ≡ a, satisfy all mentioned properties,
we have 0 ∈ N. Let n ∈ N. Consider the assemblyV ≡ {i | i⋈ ∧ u ̸= U ∧ ∀k ∈ n+ 1(u ̸=
Uk)}. By axiom A6, for U, there exists a universal class K such that U ∈ K. Therefore,
the assemblyV is non-empty and consequently, by Theorem 1, it contains the smallest
elementV. Clear thatV ̸= U andV ⩾ U∗ > U0. Suppose thatV ∈ U. Then,U0 ⩽ V ∈ U,
by supposition, implies A = Uk for some k ∈ n + 1, but it is impossible. Therefore,
U ∈ V.

Thus, in the universe V we can define a V-sequence v ≡ (Vk ∈ V | k ∈ n + 2)V ,
setting Vk ≡ Uk for every k ∈ n + 1 and Vn+1 ≡ U. It is clear that V0 = a and Vk ∈ Vl
for every k ∈ l ∈ n + 2. Let W be a universe and V0 ⩽ W ∈ V. Then, U0 ⊂ W ∈ V. If
W = U, then W = Vn+1. If W ∈ U, then U0 ⊂ W ∈ U implies W = Uk = Vk for some
k ∈ n + 1. Finally, if U ∈ W, then U0 ∈ U1 ∈ ⋅ ⋅ ⋅ ∈ Un ∈ U ∈ W implies W ∈ V. There-
fore, V ⊂ W. But this case is impossible. From the two previous cases, we infer that
W = Vk for some k ∈ n + 2. It means that the pair V and v possesses all neces-
sary properties. Check its uniqueness. Suppose that there exist a universe W and
a W-sequence of universes w ≡ (Wk ∈ W | k ∈ n + 2)|W such that W0 = a, Wk ∈ Wl
for all k ∈ l ∈ n + 2 , and if K is a universe and W0 ⊂ K ∈ W, then K = Wk for some
k ∈ n + 2.

Consider theuniverseU ≡ Wn+1 and theU-sequence u ≡ (Uk
 ∈ U | k ∈ n + 1)U

such that Uk
 ≡ Wk for every k ∈ n + 1. It is clear that U

0 = W0 = a and Uk
 ≡ Wk ∈

Wk ≡ Ul
 for every k ∈ l ∈ n + 1. If K is a universe and U0

 ⩽ K ∈ U, then U
0 ⩽ K ∈ U

and W0 ⩽ K ∈ Wn+1 ∈ W. By the axiom of transitivity A7, W0 ⊂ K ∈ W. Therefore, by
assumption, K = Wk for some k ∈ n + 2. Since K ∈ Wn+1, we have K = Wk = U

k for
some k ∈ n + 1. Thus, the pair U and u possesses all the properties for n mentioned
above. Therefore, by virtue of the uniqueness of this pair, we infer that U = U = Wn+1
and u = u = w|n + 1, i. e. Wn+1 = U ≡ Vn+1 and Wk = Uk ≡ Vk for all k ∈ n + 1. Thus,
w = v. IfW ∈ V, then V0 = W0 ⊂ W ∈ V, by the above, impliesW = Vk = Wk for some
k ∈ n + 2, but it is impossible. If V ∈ W, then W0 = V0 ⊂ V ∈ W in a similar manner
implies V = Wk = Vk for some k ∈ n + 2, but this is impossible. Thus, W = V and the
uniqueness of the universe V and the sequence v is proven. Therefore, n+1 ∈ N. By the
principle of natural induction, N = 𝜔. Thus, for any n ∈ 𝜔, there exists the mentioned
unique pair V and u.
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Unfortunately, in the LTS, in contrast to ZF, where there is the axiom scheme of
replacement, we have no means to componate all these finite sequences into one
infinite sequence of universal classes.

With the help of Proposition 1 (B.3.5), we can prove the following

Theorem 3. In the LTS, for every n ∈ 𝜔, there exists a unique sequence c(n) ≡ (𝜘k ∈ I |
k ∈ n+1) of inaccessible cardinals such that 𝜘0 = 𝜘∗, 𝜘k ∈ 𝜘l for every k ∈ l ∈ n+1 and if𝜋 is an inaccessible cardinal and 𝜘0 ⩽ 𝜋 < 𝜘n, then 𝜋 = 𝜘k for some k ∈ n (the property
of incompressibility).

From the property of uniqueness, it follows that c(n)|m + 1 = c(m) for all m ⩽ n, i. e.
these finite sequences continue each other.

The proof is similar to the proof of the previous theorem.
The remark, whichwasmade after Theorem 2, is valid also in this case: in the LTS,

there are nomeans to construct from these finite sequences continuing each other one
infinite sequence of inaccessible cardinals. In the next section, we show how to do it
in the ZF set theory.

B.4 Relative consistency between the LTS and the ZF set theory

B.4.1 Additional axioms on inaccessible cardinals in the ZF set theory

To prove the relative consistency, we need to write the axioms on inaccessible car-
dinals in more formal way. Therefore, we are forced to adduce the following formal
definitions in the ZF set theory (some of these notions, notations, and axioms were
also considered in A.2, A.4, and A.5):
– 𝛼 is an ordinal number ≡ On(𝛼) ≡ (∀x(x ∈ 𝛼 ⇒ ∀y(y ∈ x ⇒ y ∈ 𝛼))) ∧ (∀x, y, z

(x, y, z ∈ 𝛼 ∧ x ∈ y ∧ y ∈ z ⇒ x ∈ z)) ∧ (∀x, y(x, y ∈ 𝛼 ⇒ x ∈ y ∨ x = y ∨ y ∈ x))
∧ ∀z(⌀ ̸= z ⊂ 𝛼 ⇒ ∃x(x ∈ z ∧ ∀y(y ∈ z ⇒ x ∈ y)));

– f is a function ≡ func(f ) ≡ ∀x∀y∀y(⟨x, y⟩ ∈ f ∧ ⟨x, y⟩ ∈ f ⇒ y = y);
– f  A → B ≡ func(f ) ∧ dom f = A ∧ rng f ⊂ B;
– 𝜘 is a cardinal number ≡ Cn(𝜘) ≡ On(𝜘) ∧ ∀x(On(x) ∧ (x = 𝜘 ∨ x ∈ 𝜘) ∧ ∃u(u 

x 𝜘) ⇒ x = 𝜘);
– 𝜘 is a regular cardinal number ≡ Rcn(𝜘) ≡ Cn(𝜘) ∧ ∀x(On(x) ∧ ∃u(u  x →

𝜘 ∧ ∪ rng u = 𝜘) ⇒ (𝜘 = x ∨ x ∈ 𝜘));
– 𝜘 is an inaccessible cardinal number ≡ Icn(𝜘) ≡ Rcn(𝜘) ∧ ∀x(On(x) ∧ x ∈ 𝜘 ⇒

cardP(x) ∈ 𝜘);
AIC. (The axiom of inaccessible cardinal.) ∃𝜘(Icn(𝜘)) (see A.5.2).

AI(𝜔). (The 𝜔-inaccessibility axiom.) ∃X(∀x ∈ X(Icn(x)) ∧ X ̸= ⌀ ∧ ∀x ∈ X∃y ∈
X(x ∈ y)). (see A.5.1).
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AI(𝜔 + 𝜔). ≡ ∃X∃Y(∀x ∈ X∀y ∈ Y(Icn(x) ∧ Icn(y) ∧ x ∈ y) ∧ X ̸= ⌀ ∧ Y ̸= ⌀ ∧
∀x ∈ X∃x ∈ X(x ∈ x) ∧ ∀y ∈ Y∃y ∈ Y(y ∈ y));

AI. (The inaccessibility axiom.) ∀𝛼(On(𝛼) ⇒ ∃𝜘(Icn(𝜘) ∧ 𝛼 ∈ 𝜘)) (see A.4.3).
Consider the class (possibly empty) In ≡ {x | Icn(x)} of all inaccessible cardinal

numbers in the ZF set theory.
The adduced list will allow us later in process of investigation of corresponding

interpretations to look accurately what values some derivative terms such as rng u,
∪ rng u,P(x), {x}, x∪{x}, ⟨x, y⟩, dom f , rng f , and others take under the interpretation,
and also what formulas such formulas as z ⊂ 𝛼, u  x → 𝜘, and others are translated
into.

Theorem 1. In the ZF set theory, the following assertions are equivalent:
1) AI(𝜔);
2) for every n ∈ 𝜔, there exists a finite set of inaccessible cardinals of the power n + 1;
3) for every n ∈ 𝜔, there exists a finite sequence u ≡ (𝜄k | k ∈ n + 1) of inaccessible car-

dinals such that 𝜄k < 𝜄l for all k ∈ l ∈ n + 1, i. e. the sequence u is strictly increasing;
4) there exists an inaccessible cardinal 𝜘∗ and for every n ∈ 𝜔, there exists a unique

finite strictly increasing sequence u(n) ≡ (𝜄nk | k ∈ n + 1) of inaccessible cardinals
such that 𝜄n0 = 𝜘∗ and from the fact that 𝜘 is an inaccessible cardinal and 𝜄n0 ⩽ 𝜘 ⩽ 𝜄nn ,
it follows that 𝜘 = 𝜄nk for some k ∈ n + 1 (the property of incompressibility);

5) there exists a denumerable set of inaccessible cardinal;
6) there exists an infinite sequence u ≡ (𝜄n | n ∈ 𝜔) of inaccessible cardinals such that𝜄k < 𝜄l for every k ∈ l ∈ 𝜔, i. e. the sequence u is strictly increasing;
7) there exists an infinite strictly increasing sequence u ≡ (𝜄n | n ∈ 𝜔) of inaccessible

cardinals such that from n ∈ 𝜔, 𝜘 is an inaccessible cardinal, and 𝜄0 ⩽ 𝜘 ⩽ 𝜄n it fol-
lows that 𝜘 = 𝜄k for some k ∈ n + 1 (the property of incompressibility);

8) there exists an infinite set of inaccessible cardinals.

Proof. (1) ⊢ (4). Let I be a non-empty set, the existence of which is postulated by
axiom AI(𝜔). Consider the non-empty class I ≡ {x | Icn(x) ∧ ∃y ∈ I(x ⩽ y)}. If x ∈ I,
then x ⩽ y for some y ∈ I. By AI(𝜔), for y ∈ I, there exists z ∈ I such that y < z. There-
fore, x < z ∈ I. Thus, the class I possesses all the properties, listed in formula AI(𝜔).

Since ⌀ ̸= I ⊂ In, by Lemma 1 (A.2.2) in I there exists the smallest element 𝜘∗.
From 𝜘∗ ⩽ y for every y ∈ I, we infer that 𝜘∗ ∈ I. The class I possesses the following
property: if z ∈ In and z ⩽ y for some y ∈ I, then z ∈ I.

Consider the set N, consisting of all n ∈ 𝜔, for which there exists a unique
sequence u ≡ u(n) ≡ (𝜄k ∈ I | k ∈ n + 1) such that 𝜄0 = 𝜘∗, 𝜄k < 𝜄l for every k ∈ l ∈ n + 1
and 𝜘 ∈ In and = 𝜄0 ⩽ 𝜘 < 𝜄n imply 𝜘 = 𝜄k for some k ∈ n.

Since the sequence (𝜄k ∈ I | k ∈ 1) such that 𝜄0 ≡ 𝜘∗ possesses all the mentioned
properties, we infer that 0 ∈ N. Let n ∈ N. By the property of the class I, for 𝜄n ∈ I,
there exists z ∈ I such that 𝜄n < z. Therefore, the class J ≡ {x ∈ I | 𝜄n < x} is not empty.
Hence, by Lemma 1 (A.2.2), it contains the smallest element 𝛼.
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Therefore,we candefinea sequence v ≡ (𝜋k ∈ I | k ∈ n+2), setting𝜋k ≡ 𝜄k for every
k ∈ n + 1 and 𝜋n+1 ≡ 𝛼, i. e. v = u ∪ {⟨n + 1, 𝛼⟩}. It is clear that 𝜋0 = 𝜘∗ and 𝜋k < 𝜋l for
all k ∈ l ∈ n+ 2. Let 𝜘 ∈ In and 𝜋0 ⩽ 𝜘 < 𝜋n+1. Then, 𝜘 ∈ I and 𝜄0 ⩽ 𝜘 < 𝛼. If 𝜘 = 𝜄n, then𝜘 = 𝜋n. If 𝜘 < 𝜄n, then 𝜄0 ⩽ 𝜘 < 𝜄n implies 𝜘 = 𝜄k = 𝜋k for some k ∈ n. Finally, if 𝜘 > 𝜄n,
then𝜘 ∈ J. Thus,𝛼 ⩽ 𝜘, but it contradicts the property𝜘 < 𝛼. Therefore, this case is im-
possible. It follows from the two previous cases that 𝜘 = 𝜋k for some k ∈ n+1. It means
that the sequence v possesses all the necessary properties. Check its uniqueness. Sup-
pose that there exists a sequence w ≡ (𝜘k ∈ I | k ∈ n + 2) such that 𝜘0 = 𝜘∗, 𝜘k < 𝜘l for
all k ∈ l ∈ n+2, and 𝜘 ∈ In and 𝜘0 ⩽ 𝜘 < 𝜘n+1 imply 𝜘 = 𝜘k for some k ∈ n+1. Since the
sequence w|n + 1 ≡ (𝜘k ∈ I | k ∈ n + 1) possesses all the mentioned properties for n, by
virtue of the uniqueness of the sequence u we infer that u = w|(n + 1), i. e. 𝜘k = 𝜄k ≡ 𝜋k
for all k ∈ n + 1. If 𝜘n+1 < 𝜋n+1, then 𝜋0 = 𝜘0 ⩽ 𝜘n+1 < 𝜋n+1 by the above implies 𝜘n+1 =𝜋k = 𝜘k for some k ∈ n+1, but it is impossible. If𝜋n+1 < 𝜘n+1, then𝜘0 = 𝜋0 ⩽ 𝜋n+1 < 𝜘n+1
in a similar way implies 𝜋n+1 = 𝜘k = 𝜋k for some k ∈ n + 1, but it is also impossible.
Therefore, 𝜘n+1 = 𝜋n+1. Hence, the uniqueness of the sequence v is proven. Conse-
quently, n + 1 ∈ N. By the principle of natural induction, N = 𝜔. Thus, for every n ∈ 𝜔,
there exists the unique mentioned sequence u(n). By virtue of its uniqueness, we can
denote it by (𝜄nk | k ∈ n + 1).

(4) ⊢ (7). Consider the following formula of the ZF set theory: 𝜑(x, y) ≡ (x ∈ 𝜔 ⇒
y = 𝜄xx) ∧ (x ∉ 𝜔 ⇒ y = ⌀). By the axiom scheme of replacement AS6 (ZF), for 𝜔, there
exists a set Y such that ∀x ∈ 𝜔(∀y(𝜑(x, y) ⇒ y ∈ Y)). If n ∈ 𝜔, then 𝜑(n, 𝜄nn) implies
𝜄nn ∈ Y. Therefore, we can in the set 𝜔 × Y define an infinite sequence u ≡ (𝜄n ∈ Y |
n ∈ 𝜔), setting u ≡ {z ∈ 𝜔 × Y | ∃x ∈ 𝜔(z = ⟨x, 𝜄xx⟩)}. It follows from the mentioned
above property of uniqueness that u(m) = u(n)|m + 1 for all m ⩽ n. Hence, u|n + 1 =
u(n). It is clear that the sequence u possesses all the necessary properties.

(6) ⊢ (1). Consider the next formula of the ZF set theory: 𝜑(x, y) ≡ (x ∈ 𝜔 ⇒ y = 𝜄x)∧ (x ∉ 𝜔 ⇒ y = ⌀). By axiomschemeAS6 (ZF), for𝜔, there exists a set Y such that∀x ∈
𝜔(∀y(𝜑(x, y) ⇒ y ∈ Y)). If n ∈ 𝜔, then 𝜑(n, 𝜄n) implies 𝜄n ∈ Y. By axiom scheme AS3
(ZF), a class X ≡ {𝜄n | n ∈ 𝜔} ≡ {y | ∃x ∈ 𝜔(y = 𝜄x)} = {y | y ∈ Y ∧ ∃x ∈ 𝜔(y = 𝜄x)} i a set.
Since the sequence u is strictly increasing, then the set X satisfies axiom AI(𝜔).

Deducibilities (7) ⊢ (6) ⊢ (5) ⊢ (2) are evident.
Deducibilities (4) ⊢ (3) ⊢ (2) are also evident.
(2) ⊢ (3)and (2) ⊢ (6). Consider thenon-empty classAof all finite sets of inaccessible

cardinals. Then, the class I ≡ ∪A is also non-empty, and therefore, by Lemma 1 (A.2.2)
in I there exists the smallest element 𝜘∗.

Consider the set N, consisting all n ∈ 𝜔, for which there exists a unique sequence
u ≡ u(n) ≡ (𝜄k ∈ I | k ∈ n + 1) such that 𝜄0 = 𝜘∗, 𝜄k < 𝜄l for all k ∈ l ∈ n + 1 and 𝜘 ∈ I and𝜄0 ⩽ 𝜘 < 𝜄n imply 𝜘 = 𝜄k for some k ∈ n (the property of I-incompressibility). Since the
sequence (𝜄k ∈ I | k ∈ 1) such that 𝜄0 ≡ 𝜘∗, possesses all the listed properties, we have
0 ∈ N. Let n ∈ N, i. e. for n the sequence u ≡ (𝜄k ∈ I | k ∈ n + 1) is constructed. Con-
sider the finite set A ≡ {𝜄k ∈ I | k ∈ n + 1} of the power n + 1. By condition 2, for n + 2,
there exists a finite set B ∈ A of power n + 2. Take in B the smallest element a and the
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greatest element b. By definition, a ⩾ 𝜘∗. Suppose that b ⩽ 𝜄n. Then, for every c ∈ B,
the inequality 𝜄0 = 𝜘∗ ⩽ a ⩽ c ⩽ b ⩽ 𝜄n is valid. If c < 𝜄n, then from c ∈ I, by the prop-
erty of I-incompressibility, we infer that c = 𝜄k for some k ∈ n, i. e. c ∈ A. If c = 𝜄n, then
again c ∈ A. In the result, we come to the inclusion B ⊂ A, but it is impossible. From
this contradiction, we infer that 𝜄n < b. Since b ∈ I, the class J ≡ {x ∈ I | 𝜄n < 𝜘} is not
empty. Therefore, by Lemma 1 (A.2.2), it contains the smallest element 𝛼.

Consequently, we can define sequence v ≡ (𝜋k ∈ I | k ∈ n + 2), setting 𝜋k ≡ 𝜄k for
every k ∈ n+1 and𝜋n+1 ≡ 𝛼, i. e. v = u∪{⟨n+1, 𝛼⟩}. Then, in almost the samemanner as
in thededuction (1) ⊢ (4) changing Inby I,wemake sure that the sequence v possesses
all the necessary properties and that it is unique. Therefore, n+1 ∈ N. By the principle
of natural induction, N = 𝜔. Thus, for every n ∈ 𝜔, there exists the unique mentioned
sequence u(n). By virtue of its uniqueness, we can denote it by (𝜄nk | k ∈ n + 1). Thus,
deduction (2) ⊢ (3) is finished.

Now, as in deducibility (4) ⊢ (7) using the sequences (𝜄nk | k ∈ n + 1), we construct
an infinite strictly increasing sequence u ≡ (𝜄n | n ∈ 𝜔) of inaccessible cardinals. It
gives us deduction (2) ⊢ (6).

Thus, the following deducibilities and equivalences are proven: (1) ⊢ (4) ⊢ (7) ⊢
(6) ⊢ (1) and (6) ⊢ (5) ⊢ (2) ⊢ (6) and (2) ∼ (3). This implies immediately the equiva-
lence of all assertions 1–7.

(8) ⊢ (6). Let I be an infinite set of inaccessible cardinals. By Lemma 1 (A.2.2) in I,
there exists the smallest 𝜘∗.

Consider the set N, consisiting of all n ∈ 𝜔, for which there exists a unique
sequence u ≡ u(n) ≡ (𝜄k ∈ I | k ∈ n + 1) such that 𝜄0 = 𝜘∗, 𝜄k < 𝜄l for every k ∈ l ∈ n + 1,
and𝜘 ∈ I and 𝜄0 ⩽ 𝜘 < 𝜄n imply𝜘 = 𝜄k for some k ∈ n (theproperty of I-incompressibility).

Since a sequence (𝜄k ∈ I | k ∈ 1) such that 𝜄0 = 𝜘∗, possesses all the listed proper-
ties, we infer that 0 ∈ N. Let n ∈ N. Consider the set J ≡ I \ {𝜄k | k ∈ n + 1}. It is not
empty because in the opposite case, the set I has to be finite; therefore, it contains the
smallest element 𝛼. It is clear that 𝛼 ̸= 𝜄n and 𝛼 ⩾ 𝜘∗ = 𝜄0. Suppose that 𝛼 < 𝜄n. Then,𝜄0 ⩽ 𝛼 < 𝜄n by the condition n ∈ N implies 𝛼 = 𝜄k for some k ∈ n, but it is impossible.
Thus, 𝜄n < 𝛼.

Therefore,we candefinea sequence v ≡ (𝜋k ∈ I | k ∈ n+2), setting𝜋k ≡ 𝜄k for every
k ∈ n + 1 and 𝜋n+1 ≡ 𝛼, i. e. v = u ∪ {⟨n + 1, 𝛼⟩}. It is clear that 𝜋0 = 𝜘∗ and 𝜋k < 𝜋l for
all k ∈ l ∈ n + 2. Let 𝜘 ∈ I and 𝜋0 ⩽ 𝜘 < 𝜋n+1. Then, 𝜄0 ⩽ 𝜘 < 𝛼. If 𝜘 = 𝜄n, then 𝜘 = 𝜋n. If𝜘 < 𝜄n, then 𝜄0 ⩽ 𝜘 < 𝜄n implies 𝜘 = 𝜄k = 𝜋k for some k ∈ n. Finally, if 𝜘 > 𝜄n, then 𝜘 > 𝜄k
for all k ∈ n + 1. Hence, 𝜘 ∈ J. Therefore, 𝛼 ⩽ 𝜘, but it contradicts the property 𝜘 < 𝛼.
Therefore, this case is impossible. It follows from the two previous cases that 𝜘 = 𝜋k
for some k ∈ n+1. It means that the sequence v possesses all the necessary properties.

Check its uniqueness. Suppose that there exists a sequencew ≡ (𝜘k ∈ I | k ∈ n+2)
such that 𝜘0 = 𝜘∗, 𝜘k ∈ 𝜘l for all k ∈ l ∈ n + 2, and 𝜘 ∈ I and 𝜘0 ⩽ 𝜘 < 𝜘n+1 imply 𝜘 =
𝜘k for some k ∈ n + 1. Since the sequence w|n + 1 ≡ (𝜘k ∈ I | k ∈ n + 1) possesses all
properties for n mentioned above, by virtue of the uniqueness of the sequence u, we
infer that u = w|n+1, i. e.𝜘k = 𝜄k ≡ 𝜋k for all k ∈ n+1. If𝜘n+1 < 𝜋n+1, then𝜋0 = 𝜘0 ⩽ 𝜘n+1
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< 𝜋n+1, by the above, implies 𝜘n+1 = 𝜋k = 𝜘k for some k ∈ n + 1, but it is impossible. If
𝜋n+1 < 𝜘n+1, then𝜘0 = 𝜋0 ⩽ 𝜋n+1 < 𝜘n+1 in a similarway implies𝜋n+1 = 𝜘k = 𝜋k for some
k ∈ n + 1, but it is also impossible. Therefore, 𝜘n+1 = 𝜋n+1. Thus, the uniqueness of the
sequence v is proven. Consequently, n + 1 ∈ N. By the principle of natural induction,
N = 𝜔. Hence, for every n ∈ 𝜔, there exists the unique mentioned sequence u(n). By
virtue of its uniqueness, we can denote it by (𝜄nk | k ∈ n+1). Further, as in the deduction(4) ⊢ (7), using the sequences (𝜄nk | k ∈ n+1)weconstruct the infinite strictly increasing
sequence u ≡ (𝜄n | n ∈ 𝜔) of inaccessible cardinals.(6) ⊢ (8). In the same manner as in the proof of deducibility (6) ⊢ (1) for the
sequence u, consider the set X ≡ {𝜄n | n ∈ 𝜔} of its members. Suppose that the set X
is finite. Then, X contains the greatest element 𝜘, but it contradicts the fact that the
sequence U is strictly increasing.

Proposition 1. In the ZF set theory, the following assertions are equivalent:
1) AI(𝜔 + 𝜔);
2) there exist infinite sequences u ≡ (𝜄m | m ∈ 𝜔) and v ≡ (𝜘n | n ∈ 𝜔) of inaccessible

cardinals such that 𝜄k < 𝜄m < 𝜘l < 𝜘n for every k ∈ m ∈ 𝜔 and l ∈ n ∈ 𝜔, i. e. the
sequences u and v are strictly increasing and continue each other.

Proof. (1) ⊢ (2). By AI(𝜔 + 𝜔), there exist sets X and Y, satisfying axiom AI(𝜔). There-
fore, by Theorem 1, there exist strictly increasing infinite sequences u ≡ (𝜄m ∈ X |
m ∈ 𝜔) and v ≡ (𝜘n ∈ Y | n ∈ 𝜔). By AI(𝜔 + 𝜔), 𝜄k < 𝜘l for all k, l ∈ 𝜔.(2) ⊢ (1). Similarly to the proof of the deducibility (6) ⊢ (1) from Theorem 1, we
check that the classes X ≡ {𝜄m | m ∈ 𝜔} and Y ≡ {𝜘n | n ∈ 𝜔} are sets. These sets satisfy
axiom AI(𝜔 + 𝜔).
It becomes clear from assertion 2 of this proposition that ZF+AI(𝜔 + 𝜔) ensures the
existence of 𝜔 + 𝜔 different inaccessible cardinals.

Now, we will clear up the correlation between the axioms on inaccessible cardi-
nals:
– AIC ≡ there exists at least one inaccessible cardinal;
– AI(𝜔) ∼ there exists an infinite set of inaccessible cardinals;
– AI(𝜔 + 𝜔) ∼ there exist two following one after another infinite sets of inaccessible

cardinals;
– AI≡ for every ordinal𝛼, there exists an inaccessible cardinal which is greater than𝛼.
Proposition 2. In the ZF set theory, the deducibilities AI ⊢ AI(𝜔+𝜔) ⊢ AI(𝜔) ⊢ AIC are
valid.

Proof. Prove that from AI we can infer property 2 of Proposition 1. The arguments
repeats completely the proof of deducibility (1) ⊢ (2) from Theorem 1.

 EBSCOhost - printed on 2/10/2023 4:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



B.4.2 “Forks” of relative consistency | 317

Using now the equivalence of (2) and AI(𝜔 + 𝜔), we get the proof of deducibility
AI ⊢ AI(𝜔 + 𝜔). All other deducibilities are evident.
In Appendix A, it is proven that in the ZF set theory, the axiom of inaccessibility AI is
equivalent to the axiom of universality

AU ≡ ∀X∃U(U ⋈ ∧ X ∈ U),
where U⋈ denotes the property of a set U to be universal (see Theorem 1 (A.4.3)).
Hence, the set theories ZF+AI and ZF+AU are equivalent.

It that appendix, it is also proven that in ZF the axiom of 𝜔-inaccessibility AI(𝜔) is
equivalent to the axiom of 𝜔-universality

AU(𝜔) ≡ ∃X(∀U ∈ X(U⋈) ∧ X ̸= ⌀ ∧ ∀U ∈ X∃V ∈ X(U ∈ V)),
postulating the existence of an infinite set of universal sets (Proposition 2 (A.5.1)).
Therefore, the set theories ZF+AI(𝜔) and ZF+AU(𝜔) are also equivalent.

B.4.2 “Forks” of relative consistency

Using globalization of local constructions in the LTS, which was made above, we can
prove the following statement.

Statement 1. All axioms of the ZF set theory, except the axiom scheme of separation
(AS3) and the axiom scheme of replacement (AS6), are deducible in the LTS as formulas
of the LTS.

Proof. For every formula 𝜑 in the first-order theory, the formula scheme 𝜑 ⇒ 𝜑 is
deduced. By the definition of equality in the LTS, it gives us the formula ∀u(u ∈ X ⇔
u ∈ Y) ⇒ X = Y. Formula A1 is inferred from it by the rule Gen.

For classes u and v, by Corollary 3 to Theorem 1 (B.3.5), there exists the class {u, v}.
By definition, z ∈ {u, v} ≡ z = u ∨ z = v. Using the scheme 𝜑 ⇒ 𝜑, we get the formula
(z ∈ {u, v}) ⇔ z = u ∨ z = v. By the rule Gen, logical axiom scheme LAS12, and the
rule MP, we can infer from it the formula ∃x∀z(z ∈ x ⇔ z = u ∨ z = v). Formula A2
(ZF) is inferred from it by the rule Gen.

For a class X, by Corollary 1 to Lemma 6 (B.3.2), there exists a class ∪X. By defi-
nition, u ∈ ∪X ≡ ∃z(u ∈ z ∧ z ∈ X). Using the formula scheme 𝜑 ⇒ 𝜑, we get the for-
mula (u ∈ ∪X) ⇔ ∃z(u ∈ z ∧ z ∈ X). By the ruleGen, logical axiomschemeLAS12, and
the ruleMP, the formula∃Y∀u(u ∈ Y ⇔ ∃z(u ∈ z ∧ z ∈ X)) is inferred from it. Formula
A4 (ZF) is inferred from it by the rule Gen.
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For a class X, by Corollary to Lemma 1 (B.3.2), there exists the class P(X). By
definition, u ∈ P(X) ≡ u ⊂ X. As it was done above, we consecutively infer the for-
mulas u ∈ P(X) ⇔ u ⊂ X, ∀u(u ∈ P(X) ⇔ u ⊂ X), ∃Y∀u(u ∈ Y ⇔ u ⊂ X), and
A5 (ZF).

Consider the class 𝜋, which exists by axiom of infra-infinity A13 (LTS). Let u ∈ 𝜋.
Then, u ∈ 𝜋 ∈ a by the axiom of transitivity A7 implies u ∈ a. Therefore, by
Lemma 3 (B.3.2) {u}a = {u}. By Lemma 2 (B.1.1), {u} ∈ a. By A7 u, {u} ⊂ a. Hence, by
Lemma 2 (B.3.2) u ∪ {u} = u ∪a {u} = u ∪a {u}a. By virtue of A13, we infer u ∪ {u} ∈ 𝜋.
Since we did not apply the rule of generalization, then by the deduction theorem
and by the generalization rule, the formula ∀u(u ∈ 𝜋 ⇒ u ∪ {u} ∈ 𝜋) is deduced.
Since, by A13, 𝜋 ̸= ⌀, we infer that by the derivative rule of conjuction, the formula
𝜋 ̸= ⌀ ∧ ∀u(u ∈ 𝜋 ⇒ u ∪ {u} ∈ 𝜋) is deduced. Using logical axiom scheme LAS12 and
the rule MP, we infer from it formula A7 (ZF).

For every non-empty class X, by the axiom of universality A6, there exists a
universal class 𝛼 such that X ∈ 𝛼. By the axiom of transitivity A7, X ⊂ 𝛼. From the
axiom of regularity A12 (LTS), the formula ∃x(x ∈ X ∧ x ∩𝛼 X = ⌀) is deduced. Since
x ∈ X ⊂ 𝛼, we have, by A7, x ⊂ 𝛼. Hence, by Lemma 2 (B.3.2) x ∩𝛼 X = x ∩ X. Thus, the
formula ∃x(x ∈ X ∧ x ∩ X = ⌀) is deduced. By the theorem of deduction, the formula
X ̸= ⌀ ⇒ ∃x(x ∈ X ∧ x ∩ X = ⌀) is deduced. By the rule Gen, we infer from it formula
A8 (ZF).

Consider in the LTS the empty class ⌀. From A3 (LTS), the formula ∀z(z ∉ ⌀) is
deduced. Using LAS12 and MP, we infer formula A9 (ZF) from it.

For every non-empty class X, by A6, there exists a universal class 𝛼 such that
X ∈ 𝛼. From choice axiom A14 (LTS), we infer the formula ∃z((z  P𝛼(X) \ {⌀}𝛼 →𝛼

X) ∧ ∀Y(Y ∈ P𝛼(X) \ {⌀}𝛼 ⇒ z(Y) ∈ Y)). By Lemmas 1 and 3 (B.3.2), P𝛼(X) = P(X)
and {⌀}𝛼 = {⌀}. Therefore, z  P(X) \ {⌀} →𝛼 X. By the axiom of transitivity A7,
X ⊂ 𝛼 and ⌀ ⊂ 𝛼. Consequently, by Lemma 5 (B.3.2) z  P(X) \ {⌀} → X. Thus, the
formula ∃z(z  P(X) \ {⌀} → X) ∧ ∀Y(Y ∈ P(X) \ {⌀} ⇒ z(Y) ∈ Y)) is deduced. By
the theorem of deduction and the rule Gen, formula A10 (ZF) is deduced from it.

Undeducibility in the LTS of the axiom scheme of replacement will be proven later.
The existence of inaccessible cardinal numbers in the LTS proven in B.3.4 and

B.3.5 allows to prove the following statement.

Statement 2. If the LTS is consistent, then the theory ZF+AIC is consistent.

Proof. ByaxiomA6, for a fixeduniverseU0, there exists a universeU such thatU0 ∈ U.
Consider the interpretation M ≡ ⟮U, I⟯ of the ZF set theory in the LTS, described in
the proof of Statement 1 (B.3.1). Prove that this interpretation is a model of ZF+AIC.
According to the proof of Statement 1 (B.3.1), we need only to consider the translation
of axiom AIC and prove its deducibility in the LTS.
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We will use all notations of the proof of Statement 1 (B.3.1).
On the sequence s axiom AIC is translated into the formula 𝜑0 ≡ M ⊨ AIC[s] =

AICU ≡ ∃x ∈ U(Icn(x))U , where
– 𝜑1(x) ≡ (Icn(x))U ≡ (Rcn(x))U ∧ ∀x ∈ U((On(x))U ∧ x ∈ x ⇒ cardU PU(x) ∈ x), where
– 𝜑2(x) ≡ (Rcn(x))U ≡ (Cn(x))U∧∀x ∈ U((On(x))U ∧ ∃u ∈ U(u  x →U x ∧

∪U rngU u = x) ⇒ (x = x ∨ x ∈ x)), where
– 𝜑3(x) ≡ (Cn(x))U ≡ (On(x))U ∧∀x ∈ U((On(x))U ∧ (x = x ∨ x ∈ x) ∧ ∃u ∈

U(u  x U x) ⇒ x = x), where
– 𝜑4(x) ≡ (On(x))U ≡ ∀x ∈ U(x ∈ x ⇒ ∀y ∈ U(y ∈ x ⇒ y ∈ x))) ∧ (∀x, y, z ∈

U(x, y, z ∈ x ∧ x ∈ y ∧ y ∈ z ⇒ x ∈ z)) ∧ (∀x, y ∈ U(x, y ∈ x ⇒ x ∈ y ∨ x =
y ∨ y ∈ x))∧∀z ∈ U(z ̸= ⌀∧∀x ∈ U(x ∈ z ⇒ x ∈ x) ⇒ ∃x ∈ U(x ∈ z∧∀y ∈ U(y ∈
z ⇒ x ∈ y))),

– (On(x))U = 𝜑4(x ‖ x) ≡ 𝜑4(x), and
– ((On(x))U = 𝜑4(x ‖ x) ≡ 𝜑4(x).
The comparison of the formula 𝜑4(x) with the definition shows that the subformula
𝜓 ≡ ∀x ∈ U(x ∈ z ⇒ x ∈ x) is unusual in it. But in that place, where it is staying, it
is equivalent to the formula 𝜓 ≡ z ⊂ x. If x ∈ z, then from z ∈ U, by the axiom of
transitivity A7 (LTS), it follows x ∈ U and therefore x ∈ x. Thus, we can substitute
𝜓 for 𝜓. Under this substitution we see that the formula 𝜑4(x) means that x is a
U-ordinal number in the universal class U. Consequently, 𝜑4(x) and 𝜑4(x) mean
that x and x are U-ordinal numbers.

It leads to the following form of the formula 𝜑3(x):
𝜑3(x) = (x is an U-ordinal number) ∧ ∀x ∈ U((x is an U-ordinal number) ∧

∧ (x ⩽ x) ∧ ∃u ∈ U(u  x U x) ⇒ x = x).
In this formula, the subformula 𝜒 ≡ ∃u ∈ U(u  x U x) is unusual. Since x,
x ∈ U, we infer that u ⊂ x∗U x ∈ U, by the axiomof subset A8, implies u ∈ U. There-
fore, 𝜒 is equivalent to the formula 𝜒 ≡ ∃u(u  x →U x). Substituting 𝜒 for 𝜒, we
see that 𝜑3(x)means that x is a U-cardinal number.

It leads to the following form of the formula 𝜑2(x):
𝜑2(x) = (x is an U-cardinal number) ∧ ∀x ∈ U((x is an U-ordinal number) ∧

∧ ∃u ∈ U(u  x →U x ∧ ∪U rngU u = x) ⇒ (x ⩽ x)).
By the same reasons as above, in 𝜑2, the quantifier prefix ∃u ∈ U can be replaced by
∃u. But then the formula 𝜑2(x)means that x is a U-regular U-cardinal number.
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It leads to the following form of the formula 𝜑1(x):
𝜑1(x) = (x is a U-regular U-cardinal number) ∧

∧ ∀x ∈ U((x is a U-ordinal number) ∧ x ∈ x ⇒ cardU PU(x) ∈ x).
This means that x is a U-inaccessible U-cardinal number in the universe U. Thus,
axiom AIC has been translated into the formula 𝜑0 ≡ M ⊨ AIC[s] = ∃x ∈ U(x is a
U-inaccessible U-cardinal number).

Infer this formula in the LTS. By Corollary 3 to Proposition 1 (B.3.4), there exists
an inaccessible cardinal number 𝜘 such that a = V𝜘. Since 𝜘 ⊂ a ⊂ U0 ∈ U, we have,
by the axiom of subset A8, 𝜘 ∈ U. By Proposition 3 (B.3.3), 𝜘 is an U-inaccessible
U-cardinal number. As a result, we deduced the desired formula.

Statement 2was provenwith the help of constructing amodel of the ZF set theory+AIC
in the LTS. It follows from Theorem 3 (B.3.5) that to construct a model of the LTS in
the theory ZF it is necessary to have in ZF at least the same as in Theorem 3 (B.3.5)
“metasequence” c(0), c(1), . . . , c(n), . . . of finite incompressible sequences c(n) ≡
(𝜘nk | k ∈ n + 1) of inaccessible cardinals. But in ZF, this metasequence can be global-
ized by the axiom scheme of replacement into the usual unfinite sequence c ≡ (𝜘n ≡𝜘nn | n ∈ 𝜔). The existence of such an infinite sequence of inaccessible cardinals, as
Theorem 1 (B.4.1) shows, is equivalent to axiom AI(𝜔).

Using Theorem 1 (B.4.1), we can prove the following statement.

Statement 3. If the theory ZF+AI(𝜔) is consistent, then the LTS is consistent.
Proof. Consider the sequence (𝜄n | n ∈ 𝜔) from Theorem 1 (B.4.1) and the set A ≡
{𝜄n | n ∈ 𝜔}. By Lemma 2 (A.2.2), 𝛼 ≡ ∪A = sup A is an ordinal number. Further, in-
stead of V𝜄n we will write Wn. Since 𝜄n ⩽ 𝛼, we have Wn ⊂ V𝛼. Therefore, D ≡ ∪⟮Wn |
n ∈ 𝜔⟯ ⊂ V𝛼. ByAS3,D is a set. Since 0 < 𝜄n < 𝜄n+1 ⩽ 𝜄n+1, we obtain, by Lemma 1 (A.3.2)
⌀ = V0 ∈ Wn ∈ Wn+1 ⊂ D for every n ∈ 𝜔.

The set D is transitive. If y ∈ D, then y ∈ Wm for some m, and Lemma 3 (A.3.2)
implies that y ⊂ Wm ⊂ D. Similarly, with the help of Lemma 2 (A.3.2) we can check
that if x ⊂ y ∈ D, then x ∈ D. We will often use later these two properties.

Choose the set D in the capacity of the domain of interpretation of the LTS in the
theory ZF+AI(𝜔). Consider in D the subset R ≡ {x ∈ D | ∃n ∈ 𝜔(x = Wn)}. Define a cor-
respondence I, assigning to the predicate symbol ∈ in the LTS the two-placed relation
B ≡ {z ∈ D × D | ∃x, y ∈ D(z = (x, y) ∧ x ∈ y)}, to the symbol ⋈ in LTS the one-placed
relation R, and to the constant symbols⌀ and a in the LTS the elements⌀ andW0 of
the set D, respectively.

Let s be some sequence x0, . . . , xq , . . . of elements of D. We will consider transla-
tions M ⊨ 𝜑[s] of axioms and axiom schemes of the LTS on the sequence s under the
interpretation M and will prove their deducibility in the theory ZF+AI(𝜔). Instead of
𝜃M[s] and M ⊨ 𝜑[s] we will write 𝜃t and 𝜑t for terms 𝜃 and formulas 𝜑, respectively.
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To simplify our account further, consider at first the translations of some basic
formulas. Let u and v be some classes in the LTS.

The formula u ∈ v is translated into the formula (u ∈ v)t = ((ut , vt) ∈ B). Denote
this last formulaby𝛾. Bydefinition, this formula is equivalent to the formula (∃x∃y(x ∈
D ∧ y ∈ D ∧ (ut , vt) = (x, y) ∧ (x ∈ y)). Using the property of a sequential pair, we
conclude that ut = x and vt = y. Consequently, the formula 𝛿 ≡ (ut ∈ vt) is deduced
from 𝛾. By the theorem of deduction, 𝛾 ⇒ 𝛿. Conversely, consider the formula 𝛿.
In the ZF set theory, one can prove that for sets ut and vt, there exists the set z
such that z = (ut , vt). By virtue of LAS3, the formula (z = (ut , vt) ⇒ ut ∈ D ∧ vt ∈
D ∧ z = (ut , vt) ∧ ut ∈ vt) is deduced from 𝛿. Since the formula z = (ut , vt) is deduced
from axioms, we infer that the formula (ut ∈ D ∧ vt ∈ D ∧ z = (ut , vt) ∧ ut ∈ vt) is
also deduced. By LAS12, the formula ∃x∃y(x ∈ D ∧ y ∈ D ∧ z = (x, y) ∧ x ∈ y) is
deduced, and it is equivalent to the formula z ∈ B and so to the formula 𝛾. By
the theorem of deduction, 𝛿 ⇒ 𝛾. Thus, the first equivalence (u ∈ v)t ⇔ ut ∈ vt is
valid.

The formula v ⊂ w is translanted into the formula (v ⊂ w)t. Denote this last
formula by 𝜀. By the equivalence proven above, it is equivalent to the formula 𝜀 ≡
∀u ∈ D(u ∈ vt ⇒ u ∈ wt). According to LAS11, the formula 𝜀 ≡ (x ∈ D ⇒ (x ∈ vt ⇒
x ∈ wt)) is deduced from the formula 𝜀. If x ∈ vt, then vt ∈ D and the transitivity
of the set D imply x ∈ D. Then, the formula 𝜀 implies x ∈ vt ⇒ x ∈ wt. Conse-
quently, by the theoremof deduction, the formula (𝜀 ⇒ (x ∈ vt ⇒ x ∈ wt)) is deduced.
By the rule of generalization, the formula ∀x(𝜀 ⇒ (x ∈ vt ⇒ x ∈ wt)) is deduced.
By LAS13, we infer the formula (𝜀 ⇒ ∀x(x ∈ vt ⇒ x ∈ wt)), i. e. the formula
(𝜀 ⇒ vt ⊂ wt).

Conversely, let the formula vt ⊂ wt be given. With the help of logical axioms
we can consecutively infer from it the formulas (u ∈ vt ⇒ u ∈ wt) and (u ∈ D ⇒
(u ∈ vt ⇒ u ∈ wt)). By the rule Gen, the formula 𝜀 is deduced. Therefore, by the theo-
rem of deduction, the formula (vt ⊂ wt ⇒ 𝜀) is deduced. Thus, the second equivalence
(v ⊂ w)t ⇔ vt ⊂ wt is valid.

It follows from this equivalence that we get the equivalence (v =LTS w)t ⇔(vt ⊂ wt) ∧ (wt ⊂ vt). By the axiom of extensionality A1 (ZF), the last formula im-
plies vt =ZF wt. By the theorem of deduction in the ZF set theory, the formula
((vt ⊂ wt) ∧ (wt ⊂ vt) ⇒ vt = wt) is deduced. Conversely, if vt =ZF wt, then, by the re-
placement of equals principle (see thebeginningof sectionA.2), the formula (u ∈ vt ⇒
u ∈ wt) is deduced. By the rule Gen, the formula vt ⊂ wt is deduced. Similarly, the
formula wt ⊂ vt is deduced. Therefore, the formula (vt ⊂ wt) ∧ (wt ⊂ vt) is also de-
duced. By the deduction theorem, the formula (vt =ZF wt ⇒ (vt ⊂ wt) ∧ (wt ⊂ vt)) is
deduced. Thus, we get the third equivalence (v =LTS w)t ⇔ vt =ZF wt.

Further on, we will write not literal translations of axioms and axiom
schemes, but their equivalent variants, which are received by using the proven
equivalences (u ∈LTS v)t ⇔ ut ∈ZF vt, (v ⊂LTS w)t ⇔ vt ⊂ZF wt, and (v =LTS w)t ⇔
vt =ZF wt. We will denote these equivalent variants, using the sign “̃”
over them.
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Ãt1 ≡ ∀y ∈ D∀z ∈ D((y = z) ⇒ (∀X ∈ D(y ∈ X ⇔ z ∈ X))).
In ZF, the formula y = z ⇒ z = y can be proven in the following way. By the

property of changing equals, we have (y = z ⇒ (y = y ⇒ z = y)). Since the formula
y = y is valid for any y, we obtain y = z ⇒ z = y. Besides, by the property of chang-
ing equals, (y = z) ⇒ (y ∈ X ⇒ z ∈ X) and (z = y) ⇒ (z ∈ X ⇒ y ∈ X) are deduced.
With y = z ⇒ z = y, then (y = z) ⇒ (y ∈ X ⇐ z ∈ X) and (y = z) ⇒ (y ∈ X ⇔ z ∈ X)
are deduced. Now, by LAS1 and the rule of generalization ∀X ∈ D((y = z) ⇒ (y ∈ X ⇔
z ∈ X)) is deduced. From LAS13 and the rule of generalization, the formula Ãt1 is
deduced.

ÃSt2: if 𝜑(x) be an X-predicative formula of the LTS such that the substitution
𝜑(x ‖ y) is admissible and 𝜑 does not contain Z as a free variable, then ∀X ∈ D(∃Z ∈
D(∀y ∈ D((y ∈ Z) ⇔ (y ∈ X ∧ 𝜑𝜏(y))))), where 𝜑𝜏 denotes the formula M ⊨ [s𝜏], in
which by s𝜏 we denote the corresponding change of the sequence s under the trans-
lation of the quantifier over-formulas ∀X(. . . ), ∃Y(. . . ) and ∀y(. . . ), indicated above.

Since 𝜑𝜏 is a formula of ZF, we infer that ÃSt2 is deduced from AS3 (ZF). By
AS3 (ZF), for X ∈ D, there exists Z such that ∀y(y ∈ Z ⇔ y ∈ X ∧ 𝜑𝜏(y)). Therefore,
Z ⊂ X ∈ D. By the definition of D, there exists n ∈ 𝜔 such that X ∈ Wn. By Lemma 2
(A.3.2), Z ∈ Wn ⊂ D. Thus, for X ∈ D, there exists Z ∈ D such that ∀y ∈ D(y ∈ Z ⇔ y ∈
X ∧ 𝜑𝜏(y)).

Ãt3 ≡ ∀Z ∈ D((∀x ∈ D(x ∉ Z)) ⇔ Z = ⌀).
Fix the condition Z ∈ D. Consider the formula 𝜒 ≡ ∀x(x ∈ D ⇒ x ∉ Z). If x ∈ Z

then, by condition, x ∈ D and then 𝜒 implies x ∉ Z. If x ∉ Z, then evidently 𝜒 implies
x ∉ Z. Consequently, under our condition from 𝜒 it is deduced x ∉ Z. By the rule of
generalization from 𝜒, it is deduced ∀x(x ∉ Z). By axioms A1 and A7 (ZF), ∀x(x ∉ Z)
implies Z = ⌀. Thus, from the totality Z ∈ D and 𝜒 it is deduced Z = ⌀. By the theorem
of deduction, Z ∈ D implies the formula 𝜒 ⇒ Z = ⌀. Conversely, by A1 and A7, Z = ⌀
implies ∀x(x ∉ Z). Therefore, from the totality Z ∈ D and Z = ⌀ we can infer 𝜒. By the
theorem of deduction, from Z ∈ D, we can infer the formula Z = ⌀ ⇒ 𝜒. Therefore,
from the condition Z ∈ D the formula𝜒 ⇔ Z = ⌀ is deduced. By the theoremof deduc-
tion, the formula Z ∈ D ⇒ (𝜒 ⇔ Z = ⌀) is deduced. Thus, by the rule of generalization
the formula Ãt3 is deduced.

Ãt4. ∀U ∈ D∀V ∈ D((U = V) ⇒ (U ∈ R ⇔ V ∈ R)). By the property of changing
equals, we have (U = V) ⇒ (U ∈ R ⇒ V ∈ R). By the proof above, (U = V) ⇒ (V =
U), and therefore (U = V) ⇒ (V ∈ R ⇒ U ∈ R). It follows that (U = V) ⇒ (U ∈ R ⇔
V ∈ R), and by the rule of generalization, we infer the formula Ãt4.

Ãt5.W0 ∈ R ∧ ∀U ∈ D(U ∈ R ⇒ W0 ⊂ U).
The formula W0 ∈ R is deduced in ZF+AI(𝜔) by virtue of AS3. Therefore, we

need only to deduce the formula ∀U ∈ D(U ∈ R ⇒ W0 ⊂ U). In another form, we can
write this formula as ∀U ∈ D(∃n ∈ 𝜔(U = Wn) ⇒ W0 ⊂ U). By virtue of Corollary 1 to
Lemma 3 (A.3.2), 𝜄0 ⩽ 𝜄n impliesW0 ⊂ Wn for every n ∈ 𝜔. It follows from this assertion
that the mentioned formula is deduced in ZF+AI(𝜔).

Ãt6. ∀X ∈ D∃U ∈ D(U ∈ R ∧ X ∈ U).
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It follows from X ∈ D that X ∈ Wn for some n ∈ 𝜔. Consider U = Wn. Then, X ∈ D
implies U ∈ D ∧ U ∈ R ∧ X ∈ U, and as a result, we obtain Ãt6.

Ãt7 ≡ ∀U ∈ D(U ∈ R ⇒ ∀X ∈ D(X ∈ U ⇒ X ⊂ U)).
It follows from U ∈ R that U = Wn for some n ∈ 𝜔, and X ∈ Wn implies X ⊂ Wn by

Lemma 3 (A.3.2). This gives the desired formula.
Ãt8 ≡ ∀U ∈ D(U ∈ R ⇒ ∀X ∈ D∀Y ∈ D(X ∈ U ∧ Y ⊂ X ⇒ Y ∈ U)).
Since from U ∈ R, it follows that U = Wn for some n ∈ 𝜔, we need only to prove

that for any X, Y from D it is valid (X ∈ Wn ∧ Y ⊂ X ⇒ Y ∈ Wn). But it directly follows
from Lemma 2 (A.3.2).

Ãt9 ≡ ∀U ∈ D(U ∈ R ⇒ ∀X ∈ D(X ∈ U ⇒ PU(X)𝜏 ∈ U)),where the set Z ≡ PU(X)𝜏
is defined by the formula ∃Z ∈ D(∀y ∈ D((y ∈ Z) ⇔ (y ∈ U ∧ y ⊂ X))).

At first, check that if U ∈ R, X ∈ D, and X ∈ U, then Z = P(X). Let y ∈ Z. Since
Z ∈ D, it follows from the property of transitivity that Z ⊂ D. Consequently, y ∈ D.
But in this case y ∈ D and y ∈ Z imply y ⊂ X, i. e. y ∈ P(X). Conversely, let y ∈ P(X),
i. e. y ⊂ X. From X ∈ D, by the property of the set D proven above, we get y ∈ D. It
follows from U ∈ R that U = Wn for some n ∈ 𝜔. Consequently, y ⊂ X ∈ Wn implies by
Lemma 2 (A.3.2) that y ∈ Wn = U. But then y ∈ D, y ∈ U, and y ⊂ X imply y ∈ Z, and
it proves the desired equality.

By Lemma 6 (A.3.2), X ∈ Wn implies Z = P(X) ∈ Wn = U. From here, the formula
Ãt9 is deduced by logical means.

Ãt10 ≡ ∀U ∈ D(U ∈ R ⇒ ∀X ∈ D∀Y ∈ D(X ∈ U ∧ Y ∈ U ⇒ (X∪UY)𝜏 ∈ U)),where
the set Z ≡ (X ∪U Y)𝜏 is determined from the formula ∃Z ∈ D(∀y ∈ D((y ∈ Z) ⇔ (y ∈
U ∧ (y ∈ X ∨ y ∈ Y)))).

In the same manner as at the deduction of formula Ãt9, we check that the con-
ditions U ∈ R, X ∈ D, Y ∈ D, X ∈ U and Y ∈ U imply the equality Z = X ∪ Y, and also
U = Wn for some n ∈ 𝜔. By Lemma 5 (A.3.2), X, Y ∈ Wn implies Z = X ∪ Y ∈ Wn = U.
From here the formula Ãt10 is deduced.

Ãt11 ≡ ∀U ∈ D(U ∈ R ⇒ ∀X ∈ D∀Y ∈ D∀z ∈ D((X ∈ U ∧ Y ⊂ U ∧ (z ⊂ (X ∗U Y)𝜎)∧ (∀x ∈ D(x ∈ X ⇒ z⟨x⟩𝜏 ∈ U))) ⇒ ((rngU z)𝜎 ∈ U))), where
– the set Z1 ≡ (X ∗U Y)𝜎 is determined from the formula ∃Z1 ∈ D(∀y ∈ D((y ∈ Z1) ⇔(y ∈ U ∧ (∃u ∈ D∃v ∈ D(u ∈ X ∧ v ∈ Y ∧ y = ⟨u, v⟩∗U)))));
– the set Z2 ≡ Z2(x) ≡ z⟨x⟩𝜏 is determined from the formula ∃Z2 ∈ D(∀y ∈ D((y ∈ Z2) ⇔ (y ∈ U ∧ y ∈ Y ∧ ⟨x, y⟩∗U ∈ z)));
– the set Z3 ≡ (rngU z)𝜎 is determined from the formula ∃Z3 ∈ D(∀y ∈ D((y ∈ Z3) ⇔(y ∈ U ∧ y ∈ Y ∧ (∃x ∈ D(x ∈ X ∧ ⟨x, y⟩∗U ∈ z))))).
As before, we check that the conditions U ∈ R, u ∈ D, v ∈ D, u ∈ U, and v ∈ U imply
consecutively the equalities {u}∗U = {u}, {u, v}∗U = {u, v} and ⟨u, v⟩∗U = ⟨u, v⟩, where
U = Wn for some n ∈ 𝜔. By Corollary 1 to Lemma 6 (A.3.2), u, v ∈ Wn implies ⟨u, v⟩∗U =⟨u, v⟩ ∈ Wn = U.

Thus, in its turn, we infer that the conditions U ∈ R, X ∈ D, Y ∈ D, X ∈ U, Y ⊂ U,
x ∈ D, and x ∈ X imply the equalities Z1 = X ∗ Y, Z2 = z⟨x⟩ and Z3 = rng z. Let we
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have also the condition ∀x ∈ D(x ∈ X ⇒ z⟨x⟩𝜏 ∈ U). Since z is a correspondence
from X into Y ⊂ U, it follows that z is a correspondence from X into Wn. If x ∈ X ∈ D,
then from the transitivity of D it follows x ∈ D. Therefore, this additional condi-
tion implies z⟨x⟩ = z⟨x⟩𝜏 ∈ Wn. Since X ∈ Wn, it follows by Lemma 4 (A.3.3) that
(rngU z)𝜎 = rng z ∈ Wn = U. From here, by logical means, we infer the formula Ãt11.

Ãt12 ≡ ∀U ∈ D(U ∈ R ⇒ ∀X ∈ D(X ⊂ U∧X ̸= ⌀ ⇒ ∃x ∈ D(x ∈ X∧(x∩UX)𝜏 = ⌀))),
where the set Z ≡ (x ∩U X)𝜏 is determined from the formula ∃Z ∈ D(∀y ∈ D((y ∈ Z) ⇔
(y ∈ U ∧ (y ∈ x ∧ y ∈ X)))).

If we fix some U ∈ R, i. e. U = Wn for n ∈ 𝜔, then we need to prove the formula
∀X ∈ D(X ⊂ Wn ∧ X ̸= ⌀ ⇒ ∃x ∈ D(x ∈ X ∧ (x ∩Wn

X)𝜏 = ⌀)). Since X ⊂ Wn implies
X ∈ D, and x ∈ X implies x ∈ D, it follows that this formula can be transformed to the
formula ∀X(X ⊂ Wn ∧ X ̸= ⌀ ⇒ ∃x(x ∈ X ∧ (x ∩Wn

X)𝜏 = ⌀)). For x, X ∈ Wn we have((x ∩Wn
X)𝜏 = x ∩ X), therefore we only need to prove that ∀X ⊂ Wn(X ̸= ⌀ ⇒ ∃x(x ∈

X ∧ x ∩ X = ⌀)). But it is the direct consequence from the axiom of regularity in ZF.
Ãt13 ≡ ∃X ∈ D(X ∈ W0 ∧ ⌀ ∈ X ∧ ∀x ∈ D(x ∈ X ⇒ ((x ∪W0

{x}W0
)𝜏 ∈ X))), where

– the set Z1 ≡ (x ∪W0
{x}W0

)𝜏 is determined from the formula ∃Z1 ∈ D(∀y ∈ D((y ∈ Z1) ⇔ (y ∈ W0 ∧ (y ∈ x ∨ y ∈ {x}∗W0
))));

– the set Z2 ≡ {x}∗W0
is determined from the formula ∃Z2 ∈ D(∀y ∈ D((y ∈ Z2) ⇔(y ∈ W0 ∧ y = x))).

From the conditions X ∈ D, X ∈ W0, x ∈ D, and x ∈ X, it follows that Z2 = {x} and
therefore Z1 = x ∪ {x}. Consider in ZF the set X ≡ 𝜔. This set evidently satisfies the
condition⌀ ∈ X ∧ ∀x ∈ X(x ∪ {x} ∈ X). We need to prove that 𝜔 ∈ W0. SinceW0 = V𝜄0
and 𝜄0 > 𝜔, by the definition of an inaccessible cardinal, it follows by Lemma 7 (A.3.2)
that 𝜔 ∈ W0.

Ãt14 ≡ ∀U ∈ D(U ∈ R ⇒ ∀X ∈ D(X ∈ U ∧ X ̸= ⌀ ⇒ ∃z ∈ D((z  PU(X) \ {⌀}U→U X)𝜎∧ ∀Y ∈ D(Y ∈ (PU(X) \ {⌀}U)𝜏 ⇒ z(Y)𝜏 ∈ Y)))), where
– the set Z1 ≡ (PU(X) \ {⌀}U)𝜏 is determined from the formula ∃Z1 ∈ D(∀y ∈ D((y ∈

Z1) ⇔ (y ∈ U ∧ (y ∈ PU(X)∗ ∧ y ∉ {⌀}∗U))));
– the set Z2 ≡ z(Y)𝜏 is defined from the formula Z2 ∈ U ∧ ⟨Y , Z2⟩𝜏U ∈ z;
– 𝜂𝜏 denotes the formula M ⊨ 𝜂[s𝜏], in which s𝜏 denotes the corresponding change

of the sequence s under the translation of the quantifier over-formulas ∀U(. . . ),
∀X(. . . ), and ∃z(. . . ), indicated above.

Fix the conditions U ∈ D, U ∈ R, X ∈ D, and X ∈ U. Denote PU(X) \ {⌀}U by S and
P(X) \ {⌀} by T. We have proven above that X ∈ U and ⌀ ∈ U imply PU(X)∗ = P(X)
and {⌀}∗U = {⌀}. Since U ∈ R, it follows that U = Wn for some n ∈ 𝜔. Therefore, by
Lemma 6 (A.3.2) X ∈ U implies P(X) ∈ U, and, by Lemma 2 (A.3.2) it implies T ∈ U.
By Lemma 3 (A.3.2), y ∈ T ∈ U implies y ∈ U. All these properties imply Z1 = T.

If Y ∈ D and Y ∈ Z1, then Y ∈ T ∈ U implies Y ∈ U. As it was stated above, Z2 ∈ U
and Y ∈ U imply ⟨Y , Z2⟩𝜏U = ⟨Y , Z2⟩. Then, ⟨Y , Z2⟩ ∈ z implies Z2 ∈ z⟨Y⟩. From here
and from the previous conditions, we cannot yet infer that Z2 = z(Y).
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Consider the formula 𝜑 ≡ (z  PU(X) \ {⌀}U →U X). It is the conjuction of the
three following formulas: 𝜑1 ≡ (z ⊂ S ∗U X), 𝜑2 ≡ (domU z = S), and 𝜑3 ≡ (∀x(x ∈ S ⇒∀y(y ∈ X ⇒ ∀y(y ∈ X ⇒ (⟨x, y⟩U ∈ z ∧ ⟨x, y⟩U ∈ z ⇒ y = y))))).

Therefore, 𝜑𝜎 = 𝜑𝜎1 ∧ 𝜑𝜎2 ∧ 𝜑𝜎3 . Since 𝜑1 = (∀u(u ∈ z ⇒ u ∈ U ∧ ∃x∃y(x ∈ S ∧ y ∈
X ∧ u = ⟨x, y⟩U))), it follows that 𝜑𝜎1 ⇔ (∀u ∈ D(u ∈ z ⇒ u ∈ U ∧ ∃x ∈ D∃y ∈ D(x ∈
Z1 ∧ y ∈ X ∧ u = ⟨x, y⟩∗U))). Similarly, 𝜑2 = (∀x(x ∈ S ⇒ x ∈ U ∧ x ∈ S ∧ ∃y(y ∈ X ∧
⟨x, y⟩U ∈ z))) implies 𝜑𝜎2 ⇔ (∀x ∈ D(x ∈ Z1 ⇒ x ∈ U ∧ x ∈ Z1 ∧ ∃y ∈ D(y ∈ X ∧⟨x, y⟩∗U ∈ z))).

Finally,𝜑𝜎3 ⇔ (∀x ∈ D(x ∈ Z1 ⇒ ∀y ∈ D(y ∈ X ⇒ ∀y ∈ D(y ∈ X ⇒ (⟨x, y⟩∗U ∈ z ∧⟨x, y⟩∗U ∈ z ⇒ y = y))))).
For X, by choice axiom A10 (ZF), there exists z such that 𝜒 ≡ (z  P(X) \ {⌀} →

X) ∧ ∀Y(Y ∈ P(X) \ {⌀} ⇒ z(Y) ∈ Y).
Consider the formula 𝜓 ≡ (z  P(X) \ {⌀} → X). As above 𝜓 = 𝜓1 ∧ 𝜓2 ∧ 𝜓3,

where 𝜓1 = (∀u(u ∈ z ⇒ ∃x∃y(x ∈ T ∧ y ∈ X ∧ u = ⟨x, y⟩))), 𝜓2 = (∀x(x ∈ T ⇒ x ∈
T ∧ ∃y(y ∈ ∧ ⟨x, y⟩ ∈ z))) and 𝜓3 = (∀x(x ∈ T ⇒ ∀y(y ∈ X ⇒ ∀y(y ∈ X ⇒ (⟨x, y⟩ ∈
z ∧ ⟨x, y⟩ ∈ z ⇒ y = y))))).

Since T ∈ U, by Corollary 2 to Lemma 6 (A.3.2), we get T ∗ X ∈ U. The formula 𝜓1
means that z ⊂ T ∗ X. Therefore, z ∈ U and z ∈ D.

Deduce from these properties the formula 𝜑𝜎1 . Let u ∈ D and u ∈ z. Then, u ∈
z ∈ U, by Lemma 3 (A.3.2) implies u ∈ U. From the formula 𝜓1, it follows that for u,
there exist x ∈ T and y ∈ X such that u = ⟨x, y⟩. By Lemma 3 (A.3.2), x, y ∈ U ⊂ D. We
have stated above that in this case ⟨x, y⟩∗U = ⟨x, y⟩. Since x ∈ T and T = Z1, it follows
x ∈ Z1. Thus, from u ∈ z it is deduced the formula (u ∈ U ∧ ∃x ∈ D∃y ∈ D(x ∈ Z1 ∧ y ∈
X ∧ u = ⟨x, y⟩∗U)). Applying the theorem of deduction and the rules of deduction, we
deduce the formula 𝜑𝜎1 .

Let x ∈ D and x ∈ Z1 = T. Since T ∈ U, it follows by Lemma 3 (A.3.2) that x ∈ U.
From the formula 𝜓2, we infer that for x, there exists y ∈ X such that ⟨x, y⟩ ∈ z. The
condition y ∈ X ∈ D, by the transitivity of D, implies y ∈ D. Similarly, y ∈ X ∈ U by
Lemma 3 (A.3.2) implies y ∈ U. But in this case ⟨x, y⟩ = ⟨x, y⟩∗U . Thus, from x ∈ Z1, it
is deduced the formula (x ∈ U ∧ x ∈ Z1 ∧ ∃y ∈ D(y ∈ X ∧ ⟨x, y⟩∗U ∈ z)). From here, as
above, we deduce the formula 𝜑𝜎2 .

Let x ∈ Z1 = T, y ∈ D, y ∈ X, y ∈ D, y ∈ X, ⟨x, y⟩∗U ∈ z, and ⟨x, y⟩∗U ∈ z. As above,
these conditions imply ⟨x, y⟩ ∈ z and ⟨x, y⟩ ∈ z. But then, the formula 𝜓3 implies
y = y. Applying several times in turn the theorem of deduction and the rules of
deduction, we deduce from the formula 𝜓 the formula 𝜑𝜎3 .

Thus, the formula 𝜑𝜎 is deduced.
Since z  T → X, it follows that z⟨Y⟩ = {z(Y)}. Consequently, from Z2 ∈ {z(Y)},

we infer that Z2 = z(Y). Therefore, for the function z the conditions Y ∈ D and Y ∈
Z1 = T imply Z2 = z(Y) ∈ Y.

All this means that from axiom A10 (ZF), the existence of an object z is deduced,
satisfying the formula 𝜒, from which the formula 𝜉 ≡ 𝜑𝜎 ∧ ∀Y ∈ D(Y ∈ Z1 ⇒ Z2 ∈ Y)
is deduced. Therefore, in ZF from the fixed conditions, it is deduced the formula
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∃z ∈ D(𝜉). Applying several times the deduction theorem and the generalization rule,
we deduce, as a result, the formula Ãt14.

Since all the translations of the axioms of LTS turned out to be deducible formulas
of ZF+AI(𝜔), it follows that the LTS is consistent.
An absence in the LTS of an axiom scheme like the axiom scheme of replacement
in the ZF set theory apparently renders the interpretation of the ZF set theory+AI(𝜔)
impossible in the LTS. But this interpretation becomes possible, if to strengthen the
LTS by the following axiom.

AU(𝜔). (The 𝜔-universality axiom.) ∃X(∀U ∈ X(U⋈) ∧ X ̸= ⌀ ∧ ∀U ∈ X∃V ∈ X
(U ∈ V)).

Consider also the following axiom in the LTS.
ATU(𝜔). (The axiom of transitive 𝜔-universality.) There exists a set Y such that:

a) Y ̸= ⌀;
b) ∀U ∈ Y(U⋈);
c) ∀U∀V(U ⋈ ∧ U ∈ V ∧ V ∈ Y ⇒ U ∈ Y) (the transitivity property with respect to

universal sets);
d) ∀V ∈ Y∃W ∈ Y(V ∈ W) (the unboundedness property).
Lemma 1. In the LTS, the following assertions are equivalent:
1) AU(𝜔);
2) ATU(𝜔).
Proof. (1) ⊢ (2). Denote by D the class, the existence of which is postulated by axiom
AU(𝜔). It follows from the axiom of universality A6 that D ∈ 𝛼 for some universal
class 𝛼. By the axiom of transitivity, A7, ∀V ∈ D(V ∈ 𝛼). By Corollary 2 to Propo-
sition 1 (B.3.4), a ∈ 𝛼 or a = 𝛼. It is clear that the second case contradicts AU(𝜔).
Therefore, a ∈ 𝛼.

Consider the class E ≡ {U ∈ 𝛼 | U ⋈ ∧ ∃V ∈ D(U ∈ V)}. If U ∈ D, then, by AU(𝜔),
∃V ∈ D(U ∈ V). Thus,D ⊂ E. The class E is universally transitive. IfU⋈ andU ∈ V ∈ E,
then U ∈ V ∈ W ∈ D for some W. Using axiom A7, we get by turns U ∈ W ∈ D ∈ 𝛼,
U ∈ W ∈ 𝛼, and U ∈ 𝛼. Therefore, U ∈ E.

If V ∈ E, then, by definition, V ∈ W ∈ D ⊂ E for some W. Therefore, E has prop-
erty (d).

(2) ⊢ (1). This deduction is obvious.
Lemma 2. Let E be a non-empty class of universes with the property of transitivity with
respect to universes, i. e. E possesses properties a) – c) from Lemma 1. Then, a ∈ E.
Proof. Let V ∈ E. By Corollary 2 to Proposition 1 (B.3.4), V = a or a ∈ V. In the first case
a ∈ E. In the second case, a ∈ V ∈ E implies a ∈ E.
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Statement 4. If LTS +AU(𝜔) is consistent, then ZF+AI(𝜔) is consistent.
Proof. Consider the class C, the existence of which is postulated by axiom AU(𝜔).
According to axiom of universality A6, there exists a universal class D such that C ∈ D.
Consider the interpretationM ≡ ⟮D, I⟯ of the ZF set theory in the LTS, described in the
proof of Statement 1 (B.3.1). In the proof of Statement 1 (B.3.1), it was established that
the interpretationM is amodel of ZF in the LTS, and so amodel of ZF in the LTS+AU(𝜔).
Check the deducibility of the translation of axiom AI(𝜔) under the interpretation M
on an arbitrary infinite sequence s ≡ x0, . . . , xq , . . . of elements of the class D. This
translation has the form 𝜑 ≡ M ⊨ AI(𝜔)[s] = ∃X ∈ D(∀x ∈ D(x ∈ X ⇒ Icn(x)D) ∧ X ̸=
⌀ ∧ ∀y ∈ D(y ∈ X ⇒ ∃z ∈ D(z ∈ X ∧ y ∈ z))). In the proof of Statement 2, it was
established that the formula Icn(x)D means that x is a D-inaccessible D-cardinal
number in the LTS.

By Theorem 1 (B.3.4), there exists the injective mapping q : U  In such that
q(𝛼) ⊂ 𝛼 and 𝛼 = Vq(𝛼). If 𝛼 ∈ C, then q(𝛼) ⊂ 𝛼 ∈ C ∈ D, by axioms A7 and A8, implies
q(𝛼) ∈ D. Therefore, p ≡ q|C is an injective mapping from C into D. Since C ⊂ D, it
follows by Lemma 5 (B.3.2) that p  C D D and K ≡ rng p = rngD p ⊂ D. Hence,
p  C D K. Since p(𝛼) ∈ D, it follows, by the axiom of the full union A11, that
K ∈ D. From C ̸= ⌀, it follows that K ̸= ⌀. If𝜘 ∈ K, then𝜘 ∈ D. By Proposition 3 (B.3.3),
𝜘 is a D-inaccessible D-cardinal. Consequently, K consists of D-inaccessible
D-cardinals.

By axiom AU(𝜔), for 𝜘 ∈ K and 𝛽 ≡ V𝜘 ∈ C, there exists 𝛾 ∈ C such that 𝛽 ∈ 𝛾.
Consider the inaccessible cardinal 𝜆 ≡ p(𝛾) ∈ K ⊂ D. Since q is strictly monotone, it
follows that 𝜘 ∈ 𝜆. Consequently, the formula 𝜓(K) ≡ (∀x ∈ D(x ∈ K ⇒ (x is a
D-inaccessible D-cardinal)) ∧ K ̸= ⌀ ∧ ∀y ∈ D(y ∈ K ⇒ ∃z ∈ D(z ∈ K ∧ y ∈ z)))) is
deduced in the LTS+AU(𝜔). Thus, the formula 𝜑 = ∃X ∈ D𝜓(X) is also
deduced.

Axiom AU(𝜔) allows to componate the continuing each other finite sequences of uni-
versal classes from Theorem 2 (B.3.5) into one infinite sequence.

Proposition 1. In the LTS, the following assertions are equivalent:
1) AU(𝜔);
2) there exist a universal class X and an infinite strictly increasing X-sequence u ≡

(Un ∈ X | n ∈ 𝜔)X of universal classes such that from n ∈ 𝜔, V is a universal class,
and U0 ⊂ V ⊂ Vn it follows that V = Vk for some k ∈ n + 1 (the property of incom-
pressibility);

3) there exists a universal class X such that Un
k ∈ X for any k ∈ n + 1 and any n ∈ 𝜔,

where u(n) ≡ (Un
k ∈ U(n) | k ∈ n + 1)U(n) are the continuing each other strictly

increasing incompressible U(n)-sequences of universal classes from
Theorem 2 (B.3.5).
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Proof. (1) ⊢ (2). Consider the class A, the existence of which is postulated by axiom
AU(𝜔). By the axiom of universality, there exists a universal class X such that A ∈ X.
By Theorem 1 (B.3.5) in the class A, there exists the smallest element 𝛼.

In the same way as in the proof of Theorem 2 (B.3.5), it is proven that for every
n ∈ 𝜔, there exists a unique X-sequence of universal classes u(n) ≡ (Uk ∈ A | k ∈
n + 1)X such that U0 = 𝛼, Uk ∈ Ul for every k ∈ l ∈ n + 1, and if V is a universal class
and U0 ⊂ V ⊂ Un, then V = Uk for some k ∈ n + 1 (the property of incompressibility).
It follows from the property of uniqueness that u(n)|(m + 1) = u(m) for all m ⩽ n,
i. e. these finite sequences continue each other. By virtue of this uniqueness, we can
denote the sequence u(n) by (Un

k | k ∈ n + 1).
Consider the X-class𝜔∗XA and the X-correspondence u ≡ {z ∈ 𝜔∗XA | ∃x ∈ 𝜔(z =⟨x, Ux
x⟩X)}. Since u⟨n⟩ = {Un

n }X ∈ X for every n ∈ 𝜔, it follows that u  𝜔 →X A. By the
axiom of transitivity, Un ≡ Un

n ∈ A ∈ X implies Un ∈ X. Therefore, u is an X-sequence
(Un ∈ X | n ∈ 𝜔).(2) ⊢ (3). From the property of uniqueness of the U(n)-sequence u(n) and the
class U(n) from Theorem 2 (B.3.5), it follows that u|n + 1 = u(n), i. e. Un+1 = U(n) and
Uk = Un

k for any n ∈ 𝜔 and any k ∈ n + 1. Therefore, Un
k ∈ X.(3) ⊢ (1). Consider the X-class Y ≡ {y ∈ X | ∃x ∈ 𝜔(y = Ux

x )} = {Un
n ∈ X | n ∈ 𝜔}X.

Since the U(n)-sequences u(n) are strictly increasing and continue each other, it
follows that the class Y satisfies axiom AU(𝜔).
It follows fromassertion 2 of this statement that the LTS+AU(𝜔) resembles the axiomat-
ics of N. da Costa [1965, 1967] with the denumerable set of constantsU1, . . . , Un , . . . for
universes with axioms like the axiom X ⊂ Un ⇒ X ∈ Un+1. However, the theory of da
Costa uses the non-constructive rule of deduction (namely, the 𝜔-rule of Carnap) and
some properties of natural numbers.

Corollary 1. In the theory LTS+AU(𝜔), there exist a universal class X and an infi-
nite strictly increasing incompressible X-sequence of universal classes u ≡ (Um ∈ X |
m ∈ 𝜔)X, and also for every n ∈ 𝜔 there exist a unique universal class V and a unique
finite strictly increasing incompressible V-sequence of universal classes v(n) ≡ (Vk ∈
V | k ∈ n + 1)V such that V0 = X.

From the property of uniqueness, it follows that v(n)|(l + 1) = v(l) for all l ⩽ n, i. e.
these finite sequences continue each other.

Proof. By Proposition 1, there exist the corresponding X and u ≡ (Um ∈ X | m ∈ 𝜔)X.
Further, similarly to the proof of Theorem 2 (B.3.5), it is deduced the existence of cor-
responding V and v(n) ≡ (Vk ∈ V | k ∈ n + 1)V .
Roughly speaking, LTS+AU(𝜔) ensures the existence of 𝜔 + ∀n different universal
classes.

It follows from this corollary and the remark, which was done before Theo-
rem 1 (B.4.1) that to construct a model of the LTS+AU(𝜔) in the ZF set theory, it is
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necessary to have in ZF at least two infinite sequences u ≡ (𝜄m | m ∈ 𝜔) and v ≡ (𝜘n |
n ∈ 𝜔) of inaccessible cardinals such that 𝜄k < 𝜄m < 𝜘l < 𝜘n for every k ∈ m ∈ 𝜔 and
l ∈ n ∈ 𝜔. But the existence of such infinite sequences, as Proposition 1 (B.4.1) shows,
is equivalent to axiom AI(𝜔 + 𝜔).

With the help of Proposition 1 (B.4.1), we can prove the following statement.

Statement 5. If the theory ZF+AI(𝜔+𝜔) is consistent, then the theory LTS+AU(𝜔) is also
consistent.

Proof. In the same way, as in the proof of Statement 3, consider the sequences (𝜄m |
m ∈ 𝜔) and (𝜘n | n ∈ 𝜔) from Proposition 1 (B.4.1). Consider the sets A ≡ {𝜄m | m ∈ 𝜔}
and B ≡ {𝜘n | n ∈ 𝜔}. Further, instead of V𝜄m and V𝜘n we will write Wm

 and Wn
,

respectively. Consider the ordinal numbers 𝛼 ≡ ∪A = sup A and 𝛽 ≡ ∪B = sup B and
the sets D ≡ ∪⟮Wm

 | m ∈ 𝜔⟯ ⊂ V𝛼 and E ≡ D ∪ ∪⟮Wn
 | n ∈ 𝜔⟯ ⊂ V𝛽. It is clear that⌀ = V0 ∈ W0

 ∈ Wk
 ∈ Wm

 ⊂ D ⊂ V𝛼 ⊂ W0
 ∈ Wl

 ∈ Wn
 ⊂ E ⊂ V𝛽 for every 0 ∈ k ∈

m ∈ 𝜔 and 0 ∈ l ∈ n ∈ 𝜔. Therefore, by Lemma 2 (A.3.2) we infer thatWk
,Wl

 ∈ E for
all k, l ∈ 𝜔.

Choose the set E as the domain of interpretation of LTS+AU(𝜔) in the set theory
ZF+AI(𝜔 + 𝜔). Consider in E the subsets R ≡ {x ∈ E | ∃m ∈ 𝜔(x = Wm

)} and S ≡ {x ∈
E | ∃n ∈ 𝜔(x = Wn

 ∨ x = Wn
)}. Define a correspondence J, assigning to the predi-

cate symbol ∈ in the LTS the two-placed relation C ≡ {z ∈ E×E | ∃x, y ∈ E(z = (x, y) ∧
x ∈ y)}, to the symbol ⋈ in the LTS, the one-placed relation S ⊂ E, and to the con-
stant symbols ⌀ and a in LTS, the elements ⌀ and W0

 of the domain E. Consider
the interpretation N ≡ (E, J) of the LTS in the theory ZF+AI(𝜔 + 𝜔), which is similar
to the interpretation M ≡ ⟮D, I⟯, described in the proof of Statement 3. Prove that this
interpretation is a model of the LTS+AU(𝜔). According to the proof of Statement 3, we
need only to consider the translation of axiom AU(𝜔) and to prove its deducibility in
ZF+AI(𝜔 + 𝜔).

Let s ≡ x0, . . . , xq , . . . be an arbitrary sequence of elements of the set E. The
translation of axiom AU(𝜔) under the interpretation N on the sequence s has the
form 𝜑 ≡ N ⊨ AU(𝜔)[s] ≡ ∃X ∈ E(∀U ∈ E(U ∈ X ⇒ U ∈ R) ∧ X ̸= ⌀ ∧ ∀V ∈ E(V ∈
X ⇒ ∃W ∈ E(W ∈ X ∧ V ∈ W))).

Since 𝜄m < 𝜘0 < 𝜘1 for every m ∈ 𝜔, it follows that Wm
 ∈ W0

 ∈ W1
. By

Lemma 2 (A.3.2), R ∈ W1
, and therefore, R ∈ E. From W0

 ∈ R, it follows that R ̸=
⌀. If U ∈ E and U ∈ R, then U = Wm

 for some m ∈ 𝜔. Since 𝜄m < 𝜄m + 1 ⩽ 𝜄m1, by
Lemma 1 (A.3.2) we infer that U = Wm

 ∈ Wm+1
 ≡ V ∈ R ⊂ E. Consequently, for the

set R in ZF+AI(𝜔 + 𝜔) the formula 𝜓(R) ≡ (∀U ∈ E(U ∈ R ⇒ U ∈ R) ∧ R ̸= ⌀ ∧ ∀V ∈
E(V ∈ R ⇒ ∃W ∈ E(W ∈ R ∧ V ∈ W))) is deduced. Thus, the formula𝜑 ≡ ∃X ∈ E𝜓(X)
is also deduced.

Thus, we have proven the following chain of interpretations:

ZF + AIC ≺ LTS ≺ ZF + AI(𝜔) ≺ LTS + AU(𝜔) ≺ ZF + AI(𝜔 + 𝜔) ≺ ZF + AI,
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where T ≺ S denotes the interpretability of the theory T in the set theory S. Denot-
ing by cons(T) the consistency of the theory T, we get the converse chain of relative
consistency:

cons(ZF + AI) ⇒ cons(ZF + AI(𝜔 + 𝜔)) ⇒ cons(LTS + AU(𝜔)) ⇒
⇒ cons(ZF + AI(𝜔)) ⇒ cons(LTS) ⇒ cons(ZF + AIC).

These chains were proven by V. K. Zakharov and E. I. Bunina in [2006]. The similar
chains remain valid, apparently, if we change the theory ZF by the theory NBG.

It follows from Proposition 2 (B.4.1) that inside the theory ZF+AI, which is the
strongest of thementioned ones, the chain ofmutual interpretations can be continued
further, if we take as the next steps theories LTS+AU(𝜔+𝜔), ZF+AI(𝜔+𝜔+𝜔), and so on.

Since, according to Theorem 1 (A.4.3), the theories ZF+AU and ZF+AI are equiv-
alent, it follows from Proposition 2 (B.4.1) that the theory ZF+AI(𝜔) is weaker than
the theory ZF+AU. It follows from Statement 3 that the LTS is weaker than ZF+AI(𝜔).
Hence, the LTS is weaker than the theory ZF+AU. Thus, the LTS satisfies condition 1
formulated in the introduction.

It follows from Theorem 2 (B.3.5) that the LTS, so as the theories ZF+AU(𝜔) and
ZF+AI(𝜔) (see B.4), has a countable totality of different universes, and therefore, sat-
isfies all needs of category theory in such an extent as the theory ZF+AU(𝜔) does it.
Therefore, the LTS satisfies condition 2.

Finally, axiom of universality A6 from B.1.1 asserts that in the LTS there are no
objects, which are not elements of this countable totality of universes. By the same
token, the LTS satisfies condition 3.

As a result, we obtain that the LTS is more adequate foundation for category theory
than the theories ZF+AU and ZF+AU(𝜔). Moreover, the consistency of the theory
ZF+AU(𝜔) implies the consistency of the LTS. Besides, the LTS is a more adequate
foundation for category theory than the set theory of da Costa, because the existence
of a countable totality of universes in the LTS is deduced, but is not postulated be-
forehand as in the axiomatics of da Costa. This saves from the necessity to attract
externally the natural numbers and their properties.

Note also that in B.6, we will show that in the LTS we cannot prove that the con-
structed in Theorem 2 (B.3.5) assemblies’ sequence of finite U(n)-sequences u(n) ≡
(Un

k ∈ U(n) | k ∈ n+ 1)U(n) of universal classes Un
k can be continued as was done in the

assertion 3 of Proposition 1. It means that in the LTS, we have only countable assembly
of universes from Theorem 2 (B.3.5).

B.5 The proof of relative consistency by the method of abstract
interpretation

The method of abstract interpretation, going back to K. Gödel (see [Jech, 1971, 10]), is
the direct generalization of the method of interpretation stated in the section A.1.
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B.5.1 Abstracts of a set theory

Let S be some set theory (see A.1). We will consider that either S is a theory with
the equality or, in S, the equality is introduced by the formula (A ⊂ B) ∧ (B ⊂ A).
We introduced classes in the ZF set theory (A.1.1) and assemblies in the LTS (B.1.1).
Now in exactly the same way we introduce the abstracts C ≡ {x | 𝜑(x)} and C(u⃗) ≡ {x |
𝜑(x, u⃗)} in an arbitrary set theory S. For the abstracts C ≡ {x | 𝜑(x)} and D ≡ {x | 𝜓(x)}
as in B.1.2, we define the formulas C ⊂ D and C = D. Define the formula C ∈ y as a no-
tation for the formula ∃z(z ∈ y ∧ z = C).

As in B.3.2 for abstracts A and B and objects A and B of the set theory S, we intro-
duce the abstractsP(A), A ∪ B, A ∩ B, {A}, {A, B}, ⟨A, B⟩, A ∗ B, and ∪A.

Similarly, we define in S a correspondence C with the domain of definition domC
and the rangeof values rngC, a function (≡amapping)F,acorrespondenceC : A B,
a function F : A→ B, a (multivalued) collection ⟮Ba ⊂ B | a ∈ A⟯ with the union ∪⟮Ba ⊂
B | a ∈ A⟯ and the intersection ∩⟮Ba ⊂ B | a ∈ A⟯, a simple collection (ba ∈ B | a ∈ A)
with the abstract ofmembers {ba ∈ B | a ∈ A}, the (multivalued) sequential pair ⟮A, A⟯,
triplet ⟮A, A,A⟯, . . .of abstracts A, A, A, . . . , the simple sequential pair (a, a),
triplet (a, a, a),. . .of objects a, a, a, . . . , the product ∏⟮Ai ⊂ A | i ∈ I⟯ of a collec-
tion ⟮Ai ⊂ A | i ∈ I⟯, the product A × A, A × A × A, . . .of the pair ⟮A,A⟯, triplet
⟮A,A, A⟯, . . .of abstracts A,A, A, . . . , an n-placed relation R ⊂ An ≡ Map(n, A) on
an abstract A, an n-placed operation O : An → A, and so on.

The abstract U ≡ {x | x = x}, consisting of all objects of the theory S, is called
universal.

Note that, operating with abstracts, we are always staying within the framework
of formulas of the set theory S.

B.5.2 The abstract interpretation of a first-order theory in a set theory

A set theory S will be called finitely closed (≡ closed up to finite collections) if in the
theory S some formula on(x) defines natural numbers as the objects of this theory and
for every natural number n ⩾ 1 every abstractF that is amapping from the object n into
the universal abstract U is an object of the theory S.

In a finitely closed set theory S, we define the abstract 𝜔 ≡ {x | on(x)}, consisting
of all natural numbers. Therefore, in such a theory abstracts s : 𝜔 → A are defined.
They can be called abstract infinite sequences of elements of the abstract A.

Suppose that in a set theory S we have selected by means of this theory some
abstract D ≡ {x | 𝜑(x)}.

Let S be some fixed finitely closed set theory with some selected abstract D.
An abstract interpretation of a first-order theory T in the finitely closed set theory S

with the selected abstract D is a pair M, consisting of the abstract D and some corre-
spondence I, assigning to every predicate letter Pni some n-placed relation I(Pni ) in D,
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every functional letter Fni some n-placed operation I(Fni ) inD, and every constant sym-
bol ai some element I(ai) of D.

Let s be some abstract infinite sequence x0, . . . , xq , . . . of elements of the abstract
D ≡ {x | 𝜑(x)}.

Define the value of a term t of the theory T on the sequence s under the abstract
interpretationM of the theory T in the set theory S (in notation tM[s]) by induction in
the following way:
– if t ≡ vi, then tM[s] ≡ xi;
– if t ≡ ai, then tM[s] ≡ I(ai);
– if t ≡ F(t0, . . . , tn−1), where F is an n-placed functional symbol and t0, . . . , tn−1 are

terms, then tM[s] ≡ I(F)(t0M[s], . . . , tn−1M[s]).
Since I(F) is an operation fromDn intoD, it follows that for the term t ≡ F(t0, . . . , tn−1),
we have tM[s] ∈ D. Consequently, the value of a term is always an element of the
abstract D, i. e. it is some object of the theory S.

Define the translation of the formula 𝜑 on the sequence s under the abstract inter-
pretationM of the theory T in the finitely closed set theory S (in notationM ⊨ 𝜑[s]) by
induction in the following way:
– if 𝜑 ≡ (P(t0, . . . , tn−1), where P is a n-placed predicate symbol and t0, . . . , tn−1 are

terms, thenM ⊨ 𝜑[s] ≡ ((t0M[s], . . . , tn−1M[s]) ∈ I(P));
– if 𝜑 ≡ (¬𝜃), thenM ⊨ 𝜑[s] ≡ (¬M ⊨ 𝜃[s]);
– if 𝜑 ≡ (𝜃1 ⇒ 𝜃2), thenM ⊨ 𝜑[s] ≡ (M ⊨ 𝜃1[s] ⇒ M ⊨ 𝜃2[s]);
– if 𝜑 ≡ (∀vi𝜃), then

M ⊨ 𝜑[s] ≡ (∀x(x ∈ D ⇒ M ⊨ 𝜃[x0, . . . , xi−1, x, xi+1, . . . , xq , . . . ])).
On other formulas the translation is continued similarly to A.1.3.

This definition needs in some explanation. For the formula 𝜑 ≡ (P(t0, . . . , tn−1))
the symbol-string ((t0M[s], . . . , tn−1M[s]) ∈ I(P)) is a formula of the theory S. We have
mentioned above that the values of the terms tiM[s] are objects of the theory S. Since
the theory S is finitely closed, it follows that the abstract v ≡ (t0M[s], . . . , tn−1M[s]) is an
object of the theory S. By definition, I(P) is a subabstract of the abstractDn. Therefore,
the symbol-string (v ∈ I(P)) is, in fact, a formula of the theory S. It follows from the
other items of this definition that as a result of the translation we always get formulas
of the theory S. Thus,M ⊨ 𝜑[s] is a formula of the theory S.

An abstract interpretation M is called an abstract model of the axiomatic theory
(T,Φa) in the axiomatic finitely closed set theory (S, Ξa) with the selected abstract D, if
for every abstract sequence sof elements ofD the translationM ⊨ 𝜑[s]of every axiom𝜑
of the theory T is a deducible formula in the theory (S, Ξa).

All other definitions and assertions from A.1.3 are transferred to the case of
abstract interpretation under the corresponding insignificant changes.
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B.6 Undeducibility of some axioms in the LTS

In this section, all proofs are given by the method of abstract interpretation described
in the previous section.

B.6.1 The undeducibility of the axiom scheme of replacement

In B.3, we have made the globalization of almost all main constructions used in naive
set theory.

Now, we need only to know if in the LTS one can deduce the global axiom scheme
of replacement.

ASR. (The axiom scheme of replacement.) Let 𝜑(x, y) be a formula of the LTS and
𝜑 does not contain Y as a free variable. Then, ∀x∀y∀y(𝜑(x, y) ∧ 𝜑(x, y) ⇒ y = y) ⇒
∀X∃Y∀x ∈ X∀y(𝜑(x, y) ⇒ y ∈ Y).
Statement 1.
1) If the LTS is consistent, then LTS + ¬ASR is consistent.
2) If the LTS is consistent, then axiom scheme ASR is not deducible in the LTS.

Proof. 1. Consider for n ∈ 𝜔 the classU and theU-sequence u(n) fromTheorem2 (B.3.5).
By virtue of their uniqueness, we can denote them by U(n) and u(n) ≡ (Un

k ∈ U(n) |
k ∈ n + 1)U(n).

Consider the assembly C ≡ {z | ∃x∃y(x ∈ 𝜔 ∧ y ∈ U(x) ∧ z = ⟨x, y⟩)}. It is clear
that C is a correspondence from the class 𝜔 into the assembly V such that C⟨n⟩ = Un
for every n ∈ 𝜔. Therefore, C can be written as the collection C ≡ ⟮U(n) ∈ V | n ∈ 𝜔⟯.
Consider the assemblies D ≡ ∪⟮U(n) | n ∈ 𝜔⟯ = {y | ∃x ∈ 𝜔(y ∈ U(x))} and R ≡ {y |
∃x ∈ 𝜔(y = U(x))}. By Theorem 2 (B.3.5), U(m) = Um+1

m+1 = Un+1
m+1 ∈ Un+1

n+1 = U(n) ⊂ D for
any m ∈ n ∈ 𝜔. Therefore, R ⊂ D. Besides,⌀ ∈ U0 ⊂ D implies⌀ ∈ D.

By virtue of Corollaries 4 and 1 to Theorem 1 (B.3.5), the LTS is a finitely closed set
theory.

Choose the assembly D as in the capacityof the domain of abstract interpretation
of the theory T ≡ LTS + ¬ASR in the finitely closed set theory S ≡ LTS.

Define the correspondence I, assigning to the predicate symbol ∈ in T the two-
placed relation B ≡ {z | ∃x∃y(x ∈ D ∧ y ∈ D ∧ z = (x, y) ∧ x ∈ y)} on D, to the predi-
cate symbol⋈ in T the one-placed relationRonD, and to the constants⌀ and a in T the
elements⌀ and U0 of the domainD, respectively. Consider the abstract interpretation
M ≡ ⟮D, I⟯.

Let s be an abstract sequence x0, . . . , xq , . . . of elements ofD. Wewill consider the
translationsM ⊨ 𝜑[s] of axioms and axiom schemes of the theory T on the sequence s
under the interpretation M and will prove their deducibility in the set theory S.
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Instead of 𝜃M[s] and M ⊨ 𝜑[s], we will write 𝜃t and 𝜑t for terms 𝜃 and formulas 𝜑,
respectively.

The assembly D is transitive. If y ∈ D, then y ∈ U(m) for some m. By axiom A7,
y ⊂ U(m) ⊂ D. Besides, if x ⊂ y ∈ D, then x ∈ D. By axiom A8, x ⊂ y ∈ U(m) implies
x ∈ U(m) ⊂ D. We will often use these two properties in our proofs further.

To further simplify the account, consider first the translations of some simple
formulas. Let u and v be some classes in the LTS.

The formula u ∈ v is translated into the formula (u ∈ v)t = ((ut , vt) ∈ B). By Corol-
lary 5 to Theorem 1 (B.3.5), the assembly (ut , vt) is a class, i. e. there exists the class z
such that z = (ut , vt). Therefore, similarly to the arguments from the proof of State-
ment 3 (B.4.2) we establish the first equivalence (u ∈ v)t ⇔ ut ∈ vt.

Further, similarly to the proof of Statement 3 (B.4.2), we establish the second
equivalence (v ⊂ w)t ⇔ vt ⊂ wt.

This equivalence immediately implies the third equivalence (v = w)t ⇔ vt = wt.
We will nowwrite not literal translations of axioms and axiom schemes, but their

equivalent variants which are received by using the proven equivalences (u ∈ v)t ⇔
ut ∈ vt, (v ⊂ w)t ⇔ vt ⊂ wt and (v = w)t ⇔ vt = wt. We will denote these equivalent
variants, using the sign “̃” over them.

Ãt1 ≡ ∀y ∈ D∀z ∈ D((y = z) ⇒ (∀X ∈ D(y ∈ X ⇔ z ∈ X))).
This formula is directly deduced from the axiom of extensionality A1 in the

LTS.
ÃSt2: if 𝜑(x) be an X-predicative formula in the LTS such that the substitution

𝜑(x ‖ y) is admissible and 𝜑 does not contain Y as a free variable, then ∀X ∈ D(∃Y ∈
D(∀y ∈ D((y ∈ Y) ⇔ (y ∈ X ∧ 𝜑𝜏(y))))), where 𝜑𝜏 denotes the formula M ⊨ 𝜑[s𝜏],
in which by s𝜏 we denote the corresponding change of the sequence s under the
translation of the quantifier over-formulas ∀X(. . . ), ∃Y(. . . ), and ∀y(. . . ), indicated
above.

Let X ∈ D. Check that the formula 𝜑𝜏 is also X-predicative.
Suppose that the subformula 𝜓 ≡ ∃x(x ∈ X ∧ . . . ) occurs in the formula 𝜑. Then,

the subformula 𝜓𝜏 occurs in the formulas 𝜑𝜏. By the proven equivalence, taking into
account the external quantification by X, the formula 𝜓𝜏 is equivalent to the formula
𝜓 ≡ ∃x(x ∈ D ∧ x ∈ X ∧ . . . ). If x ∈ X, then it follows from the transitivity of D that
x ∈ D. Consequently, the formula𝜓 is equivalent to the formula𝜓∗ ≡ ∃x(x ∈ X ∧ . . . ).
Substituting in the formula 𝜑𝜏 the subformula𝜓𝜏 by the equivalent formula𝜓∗, we get
the formula 𝜑∗, which is equivalent to the formula 𝜑𝜏 and contains the subformula
𝜓∗ ≡ ∃x(x ∈ X ∧ . . . ). Making this substitution with all subformulas of the form 𝜓
in the formula 𝜑, we get the formula 𝜑×, which is equivalent to the formula 𝜑𝜏 and
contains only subformulas of the form 𝜓∗.

Now, suppose that the formula 𝜑 contains the subformula 𝜒 ≡ ∀x(x ∈ X ⇒ . . . ).
Then, the subformula 𝜒𝜏 occurs in the formula 𝜑𝜏. Therefore, it occurs also in the
formula 𝜑×. As above, the formula 𝜒𝜏 is equivalent to the formula 𝜒 ≡ ∀x(x ∈ D ⇒
(x ∈ X ⇒ . . . )).
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Consider the formula 𝜒. We deduce from it the formula 𝜎 ≡ (x ∈ D ⇒ (x ∈ X ⇒
. . . ). If x ∈ X, then x ∈ X ∈ D, by the transitivity of D, implies x ∈ D. It means that 𝜒
and x ∈ X imply the subformula (x ∈ X ⇒ . . . of the formula 𝜎 and so the formula
𝜒∗ ≡ ∀x(x ∈ X ⇒ . . . ). By the theorem of deduction in the LTS, we deduce the formula
𝜒 ⇒ 𝜒∗.

Conversely, consider the formula 𝜒∗. By LAS12, it implies the subformula (x ∈
X ⇒ . . . ). By LAS1, the formula 𝜎 is deduced. By the theorem of deduction in the LTS,
the formula 𝜒∗ ⇒ 𝜎 is deduced. By the rule of generalization, the formula ∀x(𝜒∗ ⇒ 𝜎)
is deduced. By virtue of LAS13, the formula 𝜒∗ ⇒ 𝜒 is deduced. Thus, in the LTS, we
deduce the equivalence of the formulas 𝜒 and 𝜒∗.

Substituting in the formula 𝜑×, the subformula 𝜒𝜏 by the equivalent formula 𝜒∗,
we get the formula 𝜑×∗, which is equivalent to the formula 𝜑× and contains the sub-
formula 𝜒∗ ≡ ∀x(x ∈ X ⇒ . . . ). Making this substitution with all subformulas of the
form 𝜒 in the formula 𝜑, we get the formula 𝜑××, which is equivalent to the formula 𝜑𝜏
and contains only subformulas of the form 𝜓∗ and 𝜒∗. Consequently, the formula 𝜑××
is X-predicative.

Therefore, by AS2 from the LTS, X ∈ D implies the formula 𝜋 ≡ (∃Y(∀y(y ∈ Y ⇔
(y ∈ X ∧ 𝜑××(y))))). Consider the formula 𝛼 ≡ (∀y ∈ Y ⇔ (y ∈ X ∧ 𝜑××(y)))). The for-
mula 𝛼, by LAS11, implies the formula 𝛽 ≡ (y ∈ Y ⇔ (y ∈ X ∧ 𝜑××(y))). By LAS1,
from 𝛼, we infer the formula 𝛾 ≡ (y ∈ D ⇒ 𝛽). Consequently, from X ∈ D and 𝛼, we
infer the formula 𝛿 ≡ (y ∈ D ⇒ (y ∈ Y ⇔ (y ∈ X ∧ 𝜑𝜏(y)))). By the rule of generaliza-
tion, we infer the formula 𝜀 ≡ (∀y ∈ D(y ∈ Y ⇔ (y ∈ X ∧ 𝜑𝜏(y)))).

Besides, from 𝛼, we infer the formula Y ⊂ X. Since X ∈ D, by the second property
of the totalityD proven above, we get Y ∈ D. Therefore, from X ∈ D and 𝛼, we infer the
formula Y ∈ D ∧ 𝜀. By LAS12, it implies the formula 𝜘 ≡ ∃Y ∈ D𝜀.

Thus, by the theorem of deduction, from X ∈ D, we infer the formula 𝛼 ⇒ 𝜘. By
the rule of generalization, we infer the formula ∀Y(𝛼 ⇒ 𝜘). Then, by LAS14, from
X ∈ D, we infer the formula 𝜋 ⇒ 𝜘.

Since we have already deduced above the formula 𝜋 under the condition X ∈ D,
by the rule of implication, we infer the formula 𝜘. By the theorem of deduction in
the LTS, the formula (X ∈ D ⇒ 𝜘) is deduced. Thus, by the rule of generalization, the
formula ÃSt2 is deduced.

Ãt3 ≡ ∀Z ∈ D((∀x ∈ D(x ∉ Z)) ⇔ z = ⌀).
Fix the condition Z ∈ D. Consider the formula 𝜒 ≡ ∀x(x ∈ D ⇒ x ∉ Z). If x ∈ Z,

then, by the property of transitivity, x ∈ D and then 𝜒 implies x ∉ Z. If x ∉ Z, then evi-
dently,𝜒 implies x ∉ Z. Thus, under our condition,we infer that𝜒 implies x ∉ Z. By the
rule of generalization, 𝜒 implies ∀x(x ∉ Z). By axiom A3, 𝜒 implies Z = ⌀. By the the-
orem of deduction, Z ∈ D implies the formula 𝜒 ⇒ Z = ⌀. Conversely, Z = ⌀, by A3,
implies ∀x(x ∉ Z). Therefore, Z ∈ D and Z = ⌀ imply the formula (Z = ⌀ ⇒ 𝜒). Thus,
the condition Z ∈ D implies the formula (𝜒 ⇔ Z = ⌀). By the theorem of deduction,
we infer the formula Z ∈ D ⇒ (𝜒 ⇔ Z = ⌀). So, by the rule of generalization, we infer
the formula Ãt3.
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Ãt4 ≡ ∀U ∈ D∀V ∈ D((U = V ⇒ (U ∈ D ⇔ V ∈ R)).
Let U = V. If U ∈ R, then U = Un for some n ∈ 𝜔. Then, V = Un implies V ∈ R,

and vice versa. Therefore, U ∈ R⇔ V ∈ R.
Ãt5 ≡ U0 ∈ R ∧ ∀U ∈ D(U ∈ R ⇒ U0 ⊂ U)).
Consider the formulas 𝜑(x, y) ≡ (x ∈ 𝜔 ∧ y = U(x)) and 𝜓 ≡ ∃x 𝜑(x, y). Since

0 ∈ 𝜔∧U(0) = U(0), by LAS12 in the LTS,we infer the formula∃x(x ∈ 𝜔∧U(0) = U(x)),
i. e. the formula 𝜓(y ‖ U(0)). By definition, it means that U(0) ∈ R.

If U ∈ R, then U = U(n) for some n ∈ 𝜔. If n = 0, then U(0) = U. If n > 0, then, as
it was indicated at the beginning of the proof, U(0) ∈ U(n). By the axiom of transi-
tivity A7, U(0) ⊂ U(n) = U. By the theorem of deduction in the LTS, we infer the for-
mula 𝛼 ≡ (U ∈ R ⇒ U(0) ⊂ U). By LAS1, we infer the formula (U ∈ D ⇒ 𝛼) and, by
the rule of generalization, we infer the formula ∀U ∈ D𝛼. Thus, we infer the formula
Ãt5.

Ãt6 ≡ ∀X ∈ D∃U ∈ D(U ∈ R ∧ X ∈ U).
From X ∈ D, it follows that X ∈ U(n) for some n ∈ 𝜔. In the same way as in the

deduction of At5, we prove the deducibility of the formula U(n) ∈ R ⊂ D. Conse-
quently, from X ∈ D, we infer the formula 𝛼 ≡ (U(n) ∈ D ∧ U(n) ∈ R ∧ X ∈ U(n)). By
LAS12, we infer the formula 𝛽 ≡ ∃U ∈ D(U ∈ R ∧ X ∈ U). By the theorem of deduction
in the LTS, we infer the formula 𝛾 ≡ (X ∈ D ⇒ 𝛽). By the rule of generalization, we
infer Ãt6.

Ãt7 ≡ ∀U ∈ D(U ∈ R ⇒ ∀X ∈ D(x ∈ U ⇒ x ⊂ U)).
This formula is deduced from axiom A7 in the LTS.
Ãt8 ≡ ∀U ∈ D(U ∈ R ⇒ ∀X ∈ D∀Y ∈ D(X ∈ U ∧ Y ⊂ X ⇒ Y ∈ U)).
This formula is deduced from subset axiom A8 in the LTS.
Ãt9 ≡ ∀U ∈ D(U ∈ R ⇒ ∀X ∈ D(X ∈ U ⇒ PU(X)𝜏 ∈ U)), where the U-class Z ≡

PU(X)𝜏 is determined from the formula ∃Z ∈ D(∀y ∈ D((y ∈ Z) ⇔ (y ∈ U ∧
y ⊂ X))).

First check that if U ∈ R, X ∈ D, and X ∈ U, then Z = PU(X) ≡ Y. Let y ∈ Z.
Since Z ∈ D, by the proven above transitivity, y ∈ D. But then, y ∈ D and y ∈ Z im-
ply y ∈ U ∧ y ⊂ X, i. e. y ∈ Y. Conversely, let y ∈ Y, i. e. y ∈ U ∧ y ⊂ X. Since X ∈ D,
by the proven above second property of the assembly D, we get y ∈ D. From U ∈ R, it
follows that U is a universal class. Therefore, by subset axiom A8, y ⊂ X ∈ U implies
y ∈ U. But then, y ∈ D, y ∈ U and y ⊂ X implies y ∈ Z, which prove the required
equality.

By axiom A9, X ∈ U implies Z = Y ∈ U. From here, by logical means, we infer the
formula Ãt9.

Ãt10 ≡ ∀U ∈ D(U ∈ R ⇒ ∀X ∈ D∀Y ∈ D(X ∈ U ∧ Y ∈ U ⇒ (X∪U Y)𝜏 ∈ U)), where
the U-class Z ≡ (X ∪U Y)𝜏 is determined from the formula ∃z ∈ D(∀y ∈ D((y ∈ z) ⇔
(y ∈ U ∧ (y ∈ X ∨ y ∈ Y)))).

In the same way as in the deduction of the formula Ãt9, we check that the con-
ditions U ∈ R, X ∈ D, Y ∈ D, X ∈ U, and Y ∈ U imply the equality Z = X ∪U Y, where
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U is a universal class. By axiom A10, Z = X ∪U Y ∈ U. From here, we infer the formula
Ãt10.

Ãt11 ≡ ∀U ∈ D(U ∈ R⇒ ∀X ∈ D∀Y ∈ D∀z ∈ D((X ∈ U ∧ Y ⊂ U ∧ (z ⊂ (X ∗U Y)𝜎)
∧ (∀x ∈ D(x ∈ X ⇒ z⟨x⟩𝜏 ∈ U))) ⇒ ((rngU z)𝜎 ∈ U))), where
– the U-class Z1 ≡ (X ∗U Y)𝜎 is determined from the formula ∃Z1 ∈ D((∀y ∈ D((y ∈

Z1) ⇔ (y ∈ U ∧ (∃u ∈ D∃v ∈ D(u ∈ X ∧ v ∈ Y ∧ y = ⟨u, v⟩∗U)))));
– the U-class Z2 ≡ Z2(x) ≡ z⟨x⟩𝜏 is determined from the formula ∃Z2 ∈ D(∀y ∈

D((y ∈ Z2) ⇔ (y ∈ U ∧ y ∈ Y ∧ ⟨x, y⟩∗U ∈ z)));
– the U-class Z3 ≡ (rngU z)𝜎 is determined from the formula ∃Z3 ∈ D(∀y ∈ D((y ∈

Z3) ⇔ (y ∈ U ∧ y ∈ Y ∧ (∃x ∈ D(x ∈ X ∧ ⟨x, y⟩tU ∈ z))))).
We check, as above, that the conditions U ∈ R, u ∈ D, v ∈ D, u ∈ U, and v ∈ U imply
successively the equalities {u}∗U = {u}U , {u, v}∗U = {u, v}U , and ⟨u, v⟩∗U = ⟨u, v⟩U , where
U is a universal class. By Lemma 2 (B.1.1), u, v ∈ U implies ⟨u, v⟩∗U = ⟨u, v⟩U ∈ U.

From here in its turn, we infer that the conditions U ∈ R, X ∈ D, Y ∈ D, X ∈
U, Y ⊂ U, x ∈ D, and x ∈ X imply the equalities Z1 = X ∗U Y, Z2 = z⟨x⟩, and Z3 =
rngU z. Let use have one more condition ∀x ∈ D(x ∈ X ⇒ z⟨x⟩𝜏 ∈ U). Since z is a
U-correspondence from X into Y ⊂ U, it follows that z is a U-correspondence from X
into U. If x ∈ X ∈ D, then from the transitivity of D we infer that x ∈ D. Therefore, the
additional condition implies z⟨x⟩ = z⟨x⟩𝜏 ∈ U. Since X ∈ U, it follows by the axiom of
full union A11 that Z3 = rngU z ∈ U. From here, by logical means, we infer the formula
Ãt11.

Ãt12 ≡ ∀U ∈ D(U ∈ R ⇒ ∀X ∈ D(X ⊂ U ∧ X ̸= ⌀ ⇒ ∃x ∈ D(x ∈ X ∧ (x ∩U X)𝜏 =
⌀))), where the U-class Z ≡ (x ∩U X)𝜏 is determined from the formula ∃Z ∈ D(∀y ∈
D((y ∈ Z) ⇔ (y ∈ U ∧ (y ∈ x ∧ y ∈ X)))).

Check that the conditions U ∈ R and X ∈ D imply the equality Z = x ∩U X ≡ Y.
Let y ∈ Z. Since X ∈ D, it follows that y ∈ D. But in this case y ∈ D and y ∈ Z imply
y ∈ U ∧ y ∈ x ∧ y ∈ X, i. e. y ∈ Y. Conversely, let y ∈ Y, i. e. y ∈ U ∧ y ∈ x ∧ y ∈ X.
Since y ∈ X ∈ D, it follows that y ∈ D. Consequently, y ∈ Z, which proves the required
equality. From U ∈ R, it follows that U is a universal class.

By the axiom of regularity A12, for ⌀ ̸= X ⊂ U, there exists x ∈ X such that
Z = Y = ⌀. Since x ∈ X ∈ D, it follows x ∈ D. From here, by logical means, we infer
the formula Ãt12.

Ãt13 ≡ ∃X ∈ D(X ∈ U0 ∧ ⌀ ∈ X ∧ ∀x ∈ D(x ∈ X ⇒ ((x ∪U0
{x}U0

)𝜏 ∈ X))), where
– the U0-class Z1 ≡ Z1(x) ≡ (x ∪U0

{x}U0
)𝜏 is determined from the formula ∃Z1 ∈

D(∀y ∈ D((y ∈ Z1) ⇔ (y ∈ U0 ∧ (y ∈ x ∨ y ∈ {x}∗U0
))));

– the U0-class Z2 ≡ Z2(x) ≡ {x}∗U0
is determined from the formula ∃Z2 ∈ D(∀y ∈

D((y ∈ Z2) ⇔ (y ∈ U0 ∧ y = x))).
From the conditions X ∈ D, X ∈ U0 = a, x ∈ D, and x ∈ X it follows that Z2 = {x}a and
therefore, Z1 = x ∪a {x}a.
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Consider the a-set 𝜋 from the axiom of infra-infinity A13. It is clear that 𝜋 ∈ a =
U0 ⊂ D. Since𝜋 possesses the property𝜋 ∈ U0 ∧ ⌀ ∈ 𝜋 ∧ ∀x ∈ 𝜋(Z1(x) ∈ 𝜋), it follows
that in the LTS the formula Ãt13 is deduced.

Ãt14 ≡ ∀U ∈ D(U ∈ R ⇒ ∀X ∈ D(X ∈ U ∧ X ̸= ⌀ ⇒ ∃z ∈ D((z  PU(X)\{⌀}U →U
X)𝜎 ∧ ∀Y ∈ D(Y ∈ PU(X) \ {⌀}U)𝜏 ⇒ z(Y)𝜏 ∈ Y)))), where
– the U-class Z1 ≡ Z1(X) ≡ (PU(X) \ {⌀}U)𝜏 is determined from the formula ∃Z1 ∈

D(∀y ∈ D((y ∈ Z1) ⇔ (y ∈ U ∧ (y ∈ PU(X)∗ ∧ y ∉ {⌀}∗U))));
– theU-class Z2 ≡ Z2(Y) ≡ z(Y)𝜏 is determined from the formula Z2 ∈ U ∧ ⟨Y , Z2⟩𝜏U ∈

z;
– 𝜂𝜏 denotes the formulaM ⊨ 𝜂[s𝜏], in which s𝜏 denotes the corresponding change

of the sequence s under the translation of the quantifier over-formulas ∀U(. . . ),
∀X(. . . ), ∃z(. . . ), and ∀Y(. . . ), indicated above.

Fix the conditions U ∈ U, U ∈ R, X ∈ D, and X ∈ U. We established above that under
these conditionsPU(X)∗ = PU(X) and {⌀}∗U = {⌀}U∗. From here, by virtue of the tran-
sitivity ofD, as above, we infer Z1 = PU(X) \ {⌀}U ≡ T. From U ∈ R, it follows that U is
a universal class. Consequently, by A9, PU(X) ∈ U. Therefore, by A8, T ∈ U.

If Y ∈ D and Y ∈ Z1, then Y ∈ T ∈ U implies Y ∈ U. As it was established above,
Z2 ∈ U and Y ∈ U imply ⟨Y , Z2⟩𝜏U = ⟨Y , Z2⟩U . Then, ⟨Y , Z2⟩U ∈ z implies Z2 ∈ z⟨Y⟩.
From here and from the previous conditions, we cannot yet infer that Z2 = z(Y).

Consider the formula 𝜑 ≡ (z  T →U X). It is the conjuction of the three follow-
ing formulas:𝜑1 ≡ (z ⊂ T∗U X), 𝜑2 ≡ (domU z = T), and 𝜑3 ≡ (∀x(x ∈ T ⇒ ∀y(y ∈ X ⇒
∀y(y ∈ X ⇒ (⟨x, y⟩u ∈ z ∧ ⟨x, y⟩U ∈ z ⇒ y = y))))).

Therefore, 𝜑𝜎 = 𝜑𝜎1 ∧ 𝜑𝜎2 ∧ 𝜑𝜎3 . Since 𝜑1 = (∀u(u ∈ z ⇒ u ∈ U ∧ ∃x∃y(x ∈ T ∧ y ∈
X ∧ u = ⟨x, y⟩U))), it follows that 𝜑𝜎1 ⇔ (∀u ∈ D(u ∈ z ⇒ u ∈ U ∧ ∃x ∈ D∃y ∈ D(x ∈
Z1 ∧ y ∈ X ∧ u = ⟨x, y⟩∗U))). Similarly, 𝜑2 = (∀x(x ∈ T ⇒ x ∈ U ∧ x ∈ T ∧ ∃y(y ∈ X ∧
⟨x, y⟩U ∈ z))) implies 𝜑𝜎2 ⇔ (∀x ∈ D(x ∈ Z1 ⇒ x ∈ U ∧ x ∈ Z1 ∧ ∧ ∃y ∈ D(y ∈ X ∧
⟨x, y⟩∗U ∈ z))).

Finally, 𝜑𝜎3 ⇔ (∀x ∈ D(x ∈ Z1 ⇒ ∀y ∈ D(y ∈ X ⇒ ∀y ∈ D(y ∈ X ⇒ (⟨x, y⟩∗U ∈ z ∧⟨x, y⟩∗U ∈ z ⇒ y = y))))).
By virtue of the properties of transitivity for x, y and y in the formulas 𝜑𝜎1 , 𝜑𝜎2 ,

and 𝜑𝜎3 , we have x, y, y ∈ U. Therefore, by the proof above (see the proof of deducibil-
ity of Ãt11), in these formulas, we have the equalities Z1 = T, ⟨x, y⟩∗U = ⟨x, y⟩U , and⟨x, y⟩∗U = ⟨x, y⟩U . It follows fromhere that the formulas𝜑𝜎1 , 𝜑𝜎2 , and𝜑𝜎3 differ from the
formulas 𝜑1, 𝜑2, and 𝜑3, respectively, only by the bounded quantifier prefixes ∀ . . . ∈ D
and ∃ . . . ∈ D.

For X, by choice axiom A14, there exists z such that 𝜒 ≡ (z  PU(X) \ {⌀}U →U
X) ∧ ∀Y(Y ∈ PU(X) \ {⌀}U ⇒ z(Y) ∈ Y).

Thus, in the LTS, we infer the formula 𝜑 = 𝜑1 ∧ 𝜑2 ∧ 𝜑3, and consequently, the
formulas 𝜑1, 𝜑2, and 𝜑3.

Let u ∈ D and u ∈ z. Then, from the formula 𝜑1, we infer that there exist x ∈ T
and y ∈ X such that u = ⟨x, y⟩U . Since x ∈ T ∈ U and y ∈ X ∈ U, it follows that, by
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the property of transitivity, x, y ∈ U ⊂ D. It means that under the given conditions
u ∈ D and u ∈ z in the LTS, we infer the formula (u ∈ U ∧ ∃x ∈ D∃y ∈ D(x ∈ T ∧ y ∈
X ∧ u = ⟨x, y⟩U)). Applying two times the theorem of deduction and the rules of
deduction, we infer the formula 𝜑𝜎1 .

Let x ∈ D and x ∈ Z1 = T. Then, from the formula 𝜑2, we infer that for x, there
exists y ∈ X such that ⟨x, y⟩U ∈ z. From y ∈ X ∈ D, by the transitivity of D, it follows
that y ∈ D. It means that under the given conditions x ∈ D and x ∈ T in the LTS, we
infer the formula (x ∈ U ∧ x ∈ T ∧ ∃y ∈ D(y ∈ X ∧ ⟨x, y⟩U ∈ z)). From here, as in the
previous indentation, we infer the formula 𝜑𝜎2 .

Let x ∈ D, x ∈ Z1 = T, y ∈ D, y ∈ X, y ∈ D, y ∈ X, ⟨x, y⟩U ∈ z, and ⟨x, y⟩U ∈ z.
Then, from the formula 𝜑3, we infer that y = y. Applying several times in turn the
theorem of deduction and the rule of deduction, we infer the formula 𝜑𝜎3 .

Thus, the formula 𝜑𝜎 is deduced.
Since z  T →U X, it follows that z⟨Y⟩ = {z(Y)}U .
Consequently, from Z2 ∈ U{z(Y)}U , we conclude that Z2 = z(Y). Therefore, for the

U-mapping z, the conditions Y ∈ D and Y ∈ Z1 = T imply Z2 = z(Y) ∈ Y.
Since T ∈ U and X ∈ U, it follows that by Lemma 3 (B.1.1) T ∗U X ∈ U. From

z ⊂ T ∗U X by axiom A8, it follows that z ∈ U ⊂ D.
All this means that from axiom A14, we deduce the existence of an object z, sat-

isfying the formula 𝜒, from which we infer the formula 𝜉 ≡ 𝜑𝜎 ∧ ∀Y ∈ D(Y ∈ Z1 ⇒
Z2 ∈ Y). By the same token, in the LTS from the fixed conditions, we infer the formula
∃z ∈ D𝜉. Applying several times in turn the theorem of deduction and the rule of
generalization, we infer, as a result, the formula Ãt14.

Consider now the translation of axiom scheme of replacement ASR.
ÃSRt: if 𝜑(x, y) be a formula of the theory T that does not contain Y as a free

variable, then ∀x ∈ D∀y ∈ D∀y ∈ D(𝜑∨(x, y) ∧ 𝜑∨(x, y) ⇒ y = y) ⇒ ∀X ∈ D∃Y ∈
D∀x ∈ D(x ∈ X ⇒ ∀y ∈ D(𝜑∧(c, y) ⇒ y ∈ Y)), where 𝜑∨ and 𝜑∧ denote the formulas
M ⊨ 𝜑[s∨] and M ⊨ 𝜑[s∧], respectively, in which by s∨, we denote the correspond-
ing change of the sequence s under the translation of the indicated above quantifier
over-formulas ∀x(. . . ), ∀y(. . . ), and ∀y(. . . ), and by s∧, we denote the correspond-
ing change of the sequence s under the translation of the indicated above quantifier
over-formulas ∀X(. . . ), ∃Y(. . . ), ∀x(. . . ), and ∀y(. . . ).

Denote the first part of this scheme by 𝛼 and the second part by 𝛽. Then, ÃSRt =
(𝛼 ⇒ 𝛽). Therefore, the equivalence (¬(𝛼 ⇒ 𝛽)) ⇔ (𝛼 ∧ ¬𝛽) implies

(¬ÃSR)t = (∀y ∈ D∀y ∈ D∀y ∈ D(𝜑∨(x, y) ∧ 𝜑∧(x, y) ⇒ y = y)) ∧
∧ (∃X ∈ D∀Y ∈ D∃x ∈ D(x ∈ X ∧ ∃y ∈ D(𝜑∧(x, y) ∧ y ∉ Y))).

Further on, the first part of this scheme, we will denote by 𝛼, and the second part
by 𝛽. For the adduced concrete formula 𝜑 below, the symbol-strings 𝛼 and 𝛽 will be
formulas of the LTS.

 EBSCOhost - printed on 2/10/2023 4:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



340 | B.6 Undeducibility of some axioms in the LTS

Consider the following formulas of the theory T: 𝜓(x, y, z) ≡ (x ∈ 𝜔 ∧ a ∈ y ∧ y ⋈
∧ (z  x + 1 →y y) ∧ ∀k ∈ x + 1(z(k)⋈) ∧ z(0) = a ∧ ∀k ∈ x + 1(∀l ∈ x + 1(k ∈ l ⇒
z(k) ∈ z(l))) ∧ ∀V((V ⋈ ∧ z(0) ⊂ V ∧ V ∈ y) ⇒ ∃k ∈ x + 1(V = z(k)))) and 𝜑(x, y) ≡
∃z𝜓(x, y, z), where x + 1 denotes the class x ∪a {x}a.

For the formula 𝜑, we have the following translations:
– 𝜑∨(x, y) ⇔ ∃z ∈ D(x ∈ 𝜔𝜎 ∧ a ∈ y ∧ y ∈ R ∧ (z  x+ 1 →y y)𝜎 ∧ ∀k ∈ D(k ∈ (x+

1)𝜎 ⇒ z(k)(k ∈ (x + 1)𝜎 ⇒ ∀l ∈ D(l ∈ (x + 1)𝜎 ⇒ (k ∈ l ⇒ z(k)𝜎 ∈ z(l)𝜎))) ∧ ∀V ∈
D((V ∈ R ∧ (z(0)𝜎 ⊂ V) ∧ V ∈ y) ⇒ ∃k ∈ D(k ∈ (x + 1)𝜎 ∧ (V = z(k)𝜎)));

– 𝜑∧(x, y) ⇔ ∃z ∈ D(x ∈ 𝜔𝜏 ∧ a ∈ y ∧ y ∈ R ∧ (z  x + 1→y y)𝜏 ∧ ∀k ∈ D(k ∈ (x +
1)𝜏 ⇒ z(k)𝜏 ∈ R) ∧ z(0)𝜏 = a ∧ ∀k ∈ D(k ∈ (x + 1)𝜏 ⇒ ∀l ∈ D(l ∈ (x + 1)𝜏 ⇒ (k ∈
l ⇒ z(k)𝜏 ∈ z(l)𝜏))) ∧ ∀V ∈ D((V ∈ R ∧ (z(0)𝜏 ⊂ V) ∧ V ∈ y) ⇒ ∃k ∈ D(k ∈ (x +
1)𝜏 ∧ (V = z(k)𝜏)))),

where 𝜃𝜎, 𝜃𝜏, 𝜂𝜎, and 𝜂𝜏 denote the terms 𝜃M[s𝜎] and 𝜃M[s𝜏] and the formulasM ⊨ 𝜂[s𝜎]
andM ⊨ 𝜂[s𝜏], in which s𝜎 and s𝜏 denote the corresponding changes of the sequences
s∨ and s∧ under the translation of the quantifier over-formula ∃z ∈ D(. . . ).

Check that 𝜔𝜎 = 𝜔 and 𝜔𝜏 = 𝜔. By means of the formula On(x), the class 𝜔 is
assigned by the formula 𝜈 ≡ ∃!z(On(z) ∧ z ̸= ⌀ ∧ ∀x(On(x) ⇒ z ̸= x ∪a {x}a) ∧ ∀y((On(y) ∧ y ̸= ⌀ ∧ ∀x(On(x) ⇒ y ̸= x ∪a {x}a)) ⇒ z ⊂ y)), which is deduced in the
theory T. Therefore, with regard to the proven above three equivalences, the value
𝜔𝜎 is defined from the formula 𝜈𝜎 ⇔ ∃!z ∈ D(OnD(z) ∧ z ̸= ⌀ ∧ z ∈ a ∧ ∀x ∈ D(OnD
(x) ∧ x ∈ a ⇒ z ̸= (x∪a {x}a)∗ ∧ ∀y ∈ D((OnD(y) ∧ y ̸= ⌀ ∧ y ∈ a ∧ ∀x ∈ D(OnD(x) ∧
x ∈ a ⇒ y ̸= (x ∪a {x}a)∗)) ⇒ z ⊂ y)) because a is translated into a.

Since the assembly D is transitive, we can prove by direct check, using the def-
inition of the formula On(z) from the beginning of B.4, that for z ∈ D, we have the
equivalence onD(z) ⇔ On(z).

When we checked the deducibility of formula Ãt13, we established that the con-
ditions x ∈ D and x ∈ a imply the equality (x ∪a {x}a)∗ = x ∪a {x}a. Therefore, the
formula 𝜈𝜎 is equivalent to the formula 𝜈, which differs from the formula 𝜈 only by
bounded quantifier prefixes ∃ . . . ∈ D and ∀ . . . ∈ D. But since the formula 𝜈 and the
formula 𝜈 contain the subformulas z ∈ a, x ∈ a, and y ∈ a, which immediately imply
the restrictions z ∈ D, x ∈ D, and y ∈ D, it follows that in the LTS we infer the equiva-
lence 𝜈 ⇔ 𝜈 ⇔ 𝜈𝜎. From the equivalence 𝜈 ⇔ 𝜈𝜎, it follows that 𝜔𝜎 = 𝜔. In the same
way, it is checked that 𝜔𝜏 = 𝜔.

Wehave checked above that under the conditions x ∈ 𝜔,𝜔 ∈ a, and a ∈ Dby virtue
of the transitivity ofD it is valid the equality (x+1)𝜎 = x∪a {x}a = x+1.We also checked
that under the condition y ∈ R the equivalence (z  x + 1 →y y)𝜎 ⇔ (z  x + 1→y y)
is valid. Therefore, z(i)𝜎 = z(i) for every i ∈ x+ 1. The same is valid for the variant with
the sign 𝜏.

Therefore,𝜑∨(x, y) and𝜑∧(x, y) are equivalent to the same formula𝜑∗(x, y) ≡ ∃z ∈
D(x ∈ 𝜔 ∧ a ∈ y ∧ y ∈ R ∧ (z  x + 1 →y y) ∧ ∀k ∈ D(k ∈ x + 1 ⇒ z(k) ∈ R) ∧ z(0) =
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a ∧ ∀k ∈ D(k ∈ x + 1 ⇒ ∀l ∈ D(l ∈ x + 1 ⇒ (k ∈ l ⇒ z(k) ∈ z(l)))) ∧ ∀V ∈ D((V ∈ D ∧
(z(0) ⊂ V) ∧ V ∈ y) ⇒ ∃k ∈ D(k ∈ x + 1 ∧ V = z(k))))).

In the sameway as in theproof of Theorem 1 (B.3.5) in the LTS,we infer the formula

∀x∀y∀y∀z∀z(𝜓(x, y, z) ∧ 𝜓(x, y, z) ⇒ y = y ∧ z = z),
which means that y and z are defined uniquely by x. We also infer the formula

∀x∀x∀y∀y∀z∀z((𝜓(x, y, z) ∧ 𝜓(x, y, z) ∧ x ∈ x) ⇒
⇒ ∀k ∈ k + 1(z(k) = z(k)) ∧ (z(x + 1) = y))),

which means that for m ∈ n, the sequence u(n) continues the sequence u(m) and
Un
m+1 = U(m).
Deduce now the formula ∀x∀y∀z(𝜓(x, y, z) ⇒ ∀k ∈ ((x + 1) \ 1)∃x∃y∃z(x ∈

x ∧ 𝜑(x, y, z) ∧ z(k) = y)), which means that all members of the sequence u(n),
beginning from thefirst one, are constructed from theprevious classesU(m) form ∈ n.

Denote the formula ∀k ∈ ((x + 1) \ 1)∃x∃y∃z(x ∈ x ∧ 𝜓(x, y, z) ∧ z(k) = y)
by 𝜂(x, y, z). We will infer this formula under the condition 𝜓(x, y, z). The formula
𝜓(x, y, z) postulates that x is a natural number, y is a universal class, greater than a,
and there exists a finite y-sequence of universal classes u(x) ≡ (yk ∈ y | k ∈ x+1)y such
that y0 = a, yk ∈ yl for all k ∈ l ∈ x + 1, and if V is a universal class and y0 ⊂ V ∈ y,
then V = yk for some k ∈ x + 1. By Theorem 2 (B.3.5), for every x ∈ 𝜔 such a sequence
exists and is unique, and, besides, u(x)|m + 1 = u(m) for all m ⩽ x.

The formula 𝜂(x, y, z)has the form∀k(k ∈ (x+1)\1 ⇒ ∃x∃y∃z(x ∈ x ∧ 𝜓(x, y,
z) ∧ z(k) = y). Show that from our conditions and the condition k ∈ (x + 1) \ 1, the
formula 𝜂(x, y, z, k) ≡ ∃x∃y∃z(x ∈ x ∧ 𝜓(x, y, z) ∧ z(k) = y) is deduced.

Consider x such that x+1 = k. This is possible because 1 ⊆ k. By Theorem 2 (B.3.5)
for the given x, there exist y and z such that 𝜓(x, y, z). Since x ∈ k ⊆ x, it follows
that x ∈ x. It remains to show that z(k) = y, i. e. y = yk in the sequence u(x). Since
𝜓(x, y, z), it follows that a = y0 ∈ y, i. e. y0 ∈ y. Since y⋈, there are only three
possibilities: 1. y ∈ y; 2) y = y; 3) y ∈ y. In the first case, y = z(l) for some l ⩽ x < x,
but this is impossible; in the second case, the sequences u(x) and u(x) have to coin-
cide, but this it impossible because x < x. As a result, only case 3 y ∈ y is possible.
Thus, y0 ⊂ y ∈ y, and consequently, by the condition, y = ym for some m ∈ x + 1.
Show that m = k. If m < k, then ym = z(m), but it is impossible because z(m) ∈ y
for all m < k. If m > k, then, taking V ≡ yk, we get the condition y0 ⊂ V ∈ y, which
imply V = yl for l < k, but it is also impossible. Therefore, y = yk, i. e. z(k) = y. Thus,
under the conditions 𝜓(x, y, z) and k ∈ (x + 1) \ 1, we infer the formula 𝜂(x, y, z, k),
and so, by the theorem of deduction, under the condition 𝜓(x, y, z) we infer the
formula k ∈ (x + 1) \ 1 ⇒ 𝜂(x, y, z, k), from here by the rule of generalization, the
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formula 𝜂(x, y, z) is deduced. Then, applying the theorem of deduction and the rule
of generalization one more time, we get the required formula.

Consequently, z(k) ∈ R for all k ∈ x + 1. Take in the capacity of value of the vari-
able X the class 𝜔. Since 𝜔 ∈ a = U(0) ⊂ D, it follows that 𝜔 ∈ D. Take any Y ∈ D.
Then, Y ∈ U(x0) for some x0 ∈ 𝜔. This means that in the LTS the formula ∃x∃y
(∃!z(𝜓(x, y, z) ∧ Y ∈ y) is deduced. Denote the unique values of the variables y and z,
corresponding to the value x0, by y0 and z0. From all this, it follows that the formula
𝜓(x0, y0, z0) ∧ Y ∈ y0 is deduced.

By definition, y0 ∈ R ⊂ D. From the previous arguments, it follows that z0(k) ∈ R
for any k ∈ x0 + 1. It is clear that k ∈ D and l ∈ D.

If V ∈ D and V ∈ R, then V⋈, and therefore, the conditions z0(0) ⊂ V and V ∈ y0,
implies ∃k ∈ D(k ∈ x0 + 1 ∧ V = z0(k)). Thus, in the LTS, the following formula is
deduced:

𝛿(x0, y0, z0) ≡ (x0 ∈ 𝜔 ∧ a ∈ y0 ∧ y0 ∈ R ∧ (z0  x0 + 1→y0 y0) ∧ ∀k ∈ D(k ∈
x0 + 1 ⇒ z0(k) ∈ R) ∧ z0(0) = a ∧ ∀k ∈ D(k ∈ x0 + 1 ⇒ ∀l ∈ D(l ∈ x0 + 1 ⇒ (k ∈ l ⇒
z0(k) ∈ z0(l)))) ∧ ∀V ∈ D((V ∈ R ∧ z0(0) ⊂ V ∧ V ∈ y0) ⇒ ∃k ∈ D(k ∈ x0 + 1 ∧ V =
z0(k))))).

Since z0  x0 + 1→y0 y0, it follows that, by axiom A11, P ≡ rngy0 z0 ∈ y0. There-
fore, z0 ⊂ ((x0 + 1)∗y0P) ≡ Q. Besides, x0 + 1 ∈ 𝜔 ∈ a ∈ y0 implies x0 + 1 ∈ y0. By
Lemma 3 (B.1.1), Q ∈ y0. Consequently, by axiom A8, z0 ∈ y0 ∈ D. Hence, we get
z0 ∈ D. Thus, in the LTS, the formula 𝜑∗(x0, y0) = ∃z ∈ D𝛿(x0, y0, z0) is deduced.
Besides, the formula Y ∈ y0 was deduced. By the axiom of regularity A12, the formula
y0 ∉ Y is deduced.

By the same token, we deduced the formula 𝜑 ∧ (x0, y0) ∧ y0 ∉ Y. Since x0 ∈
D, x0 ∈ 𝜔, and y0 ∈ D, further, by logical means, we infer the formula ∃x ∈ D(x ∈
𝜔 ∧ ∃y ∈ D(𝜑∧(x, y) ∧ y ∈ Y). Since 𝜔 ∈ D and Y ∈ D, then further by logical means,
we infer the formula 𝛽.

Let now x, y, y ∈ D, x ∈ 𝜔, ∈y, a ∈ y, y ∈ R, and y ∈ R.
Infernowthe formula𝜑∗(x, y) ∧ 𝜑∗(x, y) ⇒ y = y.Consider thecondition𝜇(x, y,

y) ≡ 𝜑∗(x, y) ∧ 𝜑∗(x, y). According to this condition, for a natural number x, there
exist universal classes y and y from R, greater than a and finite sequences of uni-
versal classes u(x) ≡ (yk ∈ y | k ∈ x + 1)y, and u(x) ≡ (yk ∈ y | k ∈ x + 1)y such that
y0 = y0 = a,yk ∈ yl andyk ∈ yl foranyk ∈ l ∈ x+1,andifV andW areuniversalclasses
fromRandy0 ⊂ V ∈ y,y0 ⊂ W ∈ y, thenV = ym,W = yl forsomem, l ∈ x+1.Suppose
that y ̸= y. Since yand y areuniversalclasses, it followsthat in thiscaseeither y ∈ y or
y ∈ y. Suppose, for example, that y ∈ y. SetW ≡ y. We getW ∈ R ∧ a ⊂ W ∧ W ∈ y,
W = yl for some l ∈ x + 1. Thus, y = yl for l ∈ x + 1. Similarly, for any k < x + 1,
there exists l(k) < x + 1 such that yk = yl(k). Since ∀k ∈ x + 1(yk ∈ y), it follows that∀k ∈ x+1(yl(k) ∈ yl), i. e. l(k) ∈ l forall k ∈ x+1.Besides, if k,m ∈ x+1and k ̸= m, then
yl(k) ̸= yl(m)

. Consequently, thereexists an inclusionof theset x+1 into theset l ∈ x+1,
but it is impossible. The case y ∈ y is checked in just the same way. Consequently,
y = y. Applying the theoremofdeduction,wededuce the formula𝜇(x, y, y) ⇒ y = y.
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Thus, the formula 𝜑∨(x, y) ∧ 𝜑∨(x, y) ⇒ y = y is deduced. From here, by logical
means, the formula 𝛼 is deduced.

As a result, in the theory S, the formula 𝛼 ∧ 𝛽 is deduced, which is equal to the
formula (¬̃ASR)t with the given concrete formula 𝜑.

Since all the translations of the axioms of the theory T turned out to be deducible
formulas of the theory S, it follows that the theory T is consistent.

2. We will argue in naive propositional logic with the symbol of implication ⊃.
Denote byΦa and Ξa the totalities of axioms of the theories T ≡ LTS + ¬ASR and

S ≡ LTS, respectively.
Consider the propositions A ≡ cons(S) ⊃ ¬(Ξa ⊢ ASR) and B ≡ cons(S) ∧ (Ξa ⊢

ASR). Then, ¬A = cons(S) ∧ ¬¬(Ξa ⊢ ASR). Using LAS10, we get ¬A ⊃ B.
It is clear that B ⊃ (Φa ⊢ ASR) and Φa ⊢ ¬ASR. Thus, the proposition B ⊃ (Φa ⊢

ASR) ∧ (Φa ⊢ ¬ASR), i. e. the expression B ⊃ ¬cons(T) is valid.
By the rule of deduction, ¬A ⊃ ¬cons(T).
According to item 1 of our statement, the proposition cons(S) ⊃ cons(T) is valid.

Therefore, B ⊃ cons(T) is valid. By the rule of deduction, we have ¬A ⊃ cons(T).
Thus, the proposition (¬A ⊃ cons(T)) ∧ (¬A ⊃ ¬cons(T)) is deduced. Applying

the tautology (¬A ⊃ C) ∧ (¬A ⊃ ¬C) ⊃ A (see [Kolmogorov and Dragalin, 1982, I, 7]),
we infer the proposition A.

With the help of more complicated abstract interpretation, one can prove also that if
the LTS is consistent, then axiom scheme ASR is not deducible in the LTS+AU(𝜔).

In B.3wehave proven the closeness of the assemblyV of all classes in the LTSwith
respect to all basic finite set-theoretical operations. Therefore, we can, in the assembly
V, define on classes such basic mathematical systems as groups, topological spaces,
automats, and other, and also definemorphisms between them. By the same token,we
can inV consider abstract categories of all suchmathematical systemsandmorphisms
between them.

From the undeducibility in the LTS of the global axiom scheme of replacement,
it follows that the assembly V does not possess the fourth of the five properties of
the Eresmann–Dedecker – Sonner –Grothendieck universe listed in the introduction
and necessary for developing in this universe valuable category theory. Therefore, the
theory of abstract categories in the LTS will be essentially poorer than the theory of
(local) categories in the LTS.

In particular, these abstract categories ofmathematical systemswill not be closed
with respect to such infinite operations as the sum ∪⟮Ai | i ∈ I⟯ and the product
∏⟮Ai | i ∈ I⟯ of the collection ⟮Ai | i ∈ I⟯ of objects Ai of these categories and will
consequently be abstract categories without direct and inverse limits (see [Bucur and
Deleanu, 1972, ch. 2, 1; ch. 3, 2]).

On the contrary, the set theories ZF or NBGwith the axiom of universality abstract
categories of mathematical systems with the point of view of naive category theory do
not differ absolutely from local U-categories of mathematical systems.
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B.6.2 The independence of axiom AU(𝜔) of the axioms of the LTS

In section B.4, we compared the LTS with the ZF set theory with some additional
axioms. The fact that axiom AIC postulating the existence of an inaccessible cardinal
is independent of the axioms of the ZF set theory is well-known (see [Jech, 1971, 13]).
Consequently, axioms AI(𝜔) and AI(𝜔 + 𝜔), postulating the existence of infinite sets
of inaccessible cardinals, are also independent of the axioms of the ZF set theory.

It remained only to clarify the independence of axiom AU(𝜔) postulating the
existence of an infinite class of universal classes of the axioms of the local theory of
sets.

Statement 1.
1) If the LTS is consistent, then the LTS+AU(𝜔) is consistent.
2) If the LTS is consistent, then axiom AU(𝜔) is not deducible in the LTS.
Proof. 1. By Lemma 1 (B.4.2), axiom AU(𝜔) is equivalent to axiom ATU(𝜔). Therefore,
wewill consider the equivalent theory T ≡ LTS+¬ATU(𝜔). Consider the abstract inter-
pretationM ≡ ⟮D, I⟯ of the theory T in the finitely closed set theory S ≡ LTS, described
in the proof of Statement 1 (B.6.1). In the proof of Statement 1 (B.6.1), we established
that the interpretationM is an abstract model of the LTS in the set theory S.

By virtue of Lemma 2 (B.4.2) in the conjunctive kernel of axiom ATU(𝜔), we can
insert one more formula a ∈ Y. Therefore, consider the formula

𝜑 ≡ ATU(𝜔) ≡ ∃Y(∀U(U ∈ Y ⇒ U⋈) ∧ a ∈ Y ∧ ∀U∀V(U ⋈ ∧ U ∈ V ∧ V ∈ Y ⇒
U ∈ Y) ∧ ∀V(V ∈ Y ⇒ ∃W(W ∈ Y ∧ V ∈ W))).

The translation of this formula on some abstract sequence s of elements of the
assembly D under the interpretationM has the form of the formula

𝜓 ≡ M ⊨ 𝜑[s] = ∃Y ∈ D(∀U ∈ D(U ∈ Y ⇒ U ∈ R) ∧ a ∈ Y ∧ ∀U ∈ D∀V ∈ D(U ∈
R ∧ U ∈ V ∧ V ∈ Y ⇒ U ∈ Y) ∧ ∀V ∈ D(V ∈ Y ⇒ ∃W ∈ D(W ∈ Y ∧ V ∈ W))).

Suppose that the condition 𝜓 is fixed and consider a class E ∈ D, the existence
of which follows from this condition. Consider the classes An ≡ {x ∈ U(n) | ∃k ∈ n +
1(x = Un

k )}, consisting of all members of U(n)-sequences u(n) from Theorem 2 (B.3.5).
Further, along with Un

n , we will write Un.
Prove by the natural induction that An ⊂ E for every n ∈ 𝜔. Consider the assem-

blyX ≡ {x | x ∈ 𝜔 ∧ Ax ⊂ E}. If n = 0, then U0 ∈ E implies A0 ≡ {x ∈ U(0) | ∃k ∈ 1(x =
U0
k )} ⊂ E. Thus, 0 ∈ X.
Let n ∈ X, i. e. Un

k ∈ E for every k ∈ n + 1. By the property of the class E, there
exists V ∈ D such that V ∈ E and Un ∈ V. Besides, Un ≡ Un

n = Un+1
n ∈ Un+1

n+1 ≡ Un+1. If
Un+1 = V, thenUn+1 ∈ E. LetUn+1 ∈ V. In the proof of Theorem 2 (B.3.5), we established
that Un+1 = U(n) ∈ R. Since V ∈ E, by the property of the class E, we conclude that
Un+1 ∈ E. Finally, let V ∈ Un+1. Then, V ∈ D and V ∈ E imply V ∈ R. Consequently, V
is a universal class. From V ∈ Un+1 ∈ U(n + 1), by the axiom of universality, we infer
that V ∈ U(n + 1). Therefore, the condition Un+1

0 = a ⊂ V ∈ U(n + 1), by the property
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of incompressibility from Theorem 2 (B.3.5) implies the equality U = Un+1
k for some

k ∈ n + 2. From V ∈ Un+1
n+1 , it follows that k < n + 1. Hence, Un+1

n = Un
n ≡ Un ∈ V = Un+1

k
implies n < k < n+1, but this is impossible. From the obtained contradiction, we infer
that the third case V ∈ Un+1 is impossible. By virtue of Proposition 1 (B.3.4) and Theo-
rem 1 (B.3.5), there are no other possibilities except the considered three cases. In the
first and the second cases. we get Un+1 ∈ E. Besides, Un+1

k = Un
k ∈ E for all k ∈ n + 1.

So An+1 ⊂ E implies n + 1 ∈ X. By the principle of natural induction in the LTS (Theo-
rem 2 (B.3.3)) 𝜔 ⊂ X.

Thus, from the formula 𝜓, we deduced the formula 𝜒 ≡ ∀x ∈ 𝜔(Ux ∈ E). Besides,
from 𝜓 one can infer E ∈ D. Consequently, E ∈ U(m) = Um+1 for some m ∈ 𝜔. There-
fore, Um+1 ∉ E. This means that from 𝜓 the formula ¬𝜒 is inferred. By the theorem of
deduction, in the theory S, we deduce the formulas (𝜓 ⇒ 𝜒) and (𝜓 ⇒ ¬𝜒).

Applying now LAS9 and the logical explicit axiom (𝜓 ⇒ 𝜒) ⇒ ((𝜓 ⇒ ¬𝜒) ⇒ ¬𝜓),
we consecutively deduce the formulas (𝜓 ⇒ ¬𝜒) ⇒ ¬𝜓 and ¬𝜓. The last formula is
equal to the formulaM ⊨ (¬𝜑)[s]. Thus,M is an abstract model of T in S.

2. The proof is similar to the proof of assertion 2 from Statement 1 (B.6.1).

Thus, axiomAU(𝜔) does not depend of axioms of the LTS, i. e. it is a new axiom for the
LTS.

Corollary 1. If the LTS is consistent, then the assertion 3) from Proposition 1 (B.4.2) is
not deducible in the LTS.

It follows from here that in the LTS, there is only countable assembly of universes,
constructed in Theorem 2 (B.3.5), and there are nomeans to continue it further on like
this was done in assertion 3 from Proposition 1 (B.4.2).

B.6.3 The locally minimal theory of sets

The local theory of sets with additional axiom, which states that infinite class of
universes does not exist, will be called the locally minimal theory of sets (LMTS),
i. e. LMTS≡ LTS+¬AU(𝜔). Statement 1 (B.6.2) implies that the LTS and the LMTS are
mutually consistent.

In the LMTS, the assembly U of all universal classes has the following complete
description.

Theorem 1. In the LMTS, an assembly sequence (u(n) | n ∈ 𝜔) of finite U(n)-sequences
u(n) ≡ (Un

k ∈ U(n) | k ∈ n + 1)U(n) of universal classes from Theorem 2 (B.3.5) includes
all universal classes; more strict, ∀U(U⋈ ⇒ ∃n ∈ 𝜔(U = Un

n )).
Proof. Consider an assemblyU∗ ≡ {U | U⋈ ∧ ∃n ∈ 𝜔(U = Un

n )}. Suppose thatU∗ ̸= U,
i. e. there exists a universal class X such that X ∉ U∗.
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Fix numbers n ∈ 𝜔 and k ∈ n+ 1. Suppose that X = Un
k . Then, by Theorem 2 (B.3.5)

X = Un
k = Uk

k ∈ U∗, but it is not true. Therefore, X ̸= Un
k for all n ∈ 𝜔 and k ∈ n + 1. By

Theorem 1 (B.3.5) and Proposition 1 (B.3.4), either X ∈ Un
k or U

n
k ∈ X. Suppose that X ∈

Un
k . By Corollary 2 to Proposition 1 (B.3.4), U

n
0 = a ⊂ X ∈ Un

k . By axiomA8 from LTS, we
have Un

0 ∈ Un
k . Since k ⩽ n, we have that n ⩾ 1. Thus, Un−1

0 = a ⊂ X ∈ Un
k ⊂ Un

n = U(n −
1). By the property of incompressibility from Theorem 2 (B.3.5), X = Un

l for some k ∈
n + 1. But we have proven above that it is impossible. This contradiction implies that
Un
k ∈ X for all n ∈ 𝜔 and k ∈ n + 1.
Therefore, according to Proposition 1 (B.4.2), we deduce axiom AU(𝜔), but it is

impossible if the LMTS is consistent. Consequently, our assumption is not true and
U∗ = U.
We have proven that the LMTS satisfies the two following properties: (1) it has the
property of universal comprehension, which is expressed as universality axiom A6
(∀x∃U(x ∈ U ∧ U⋈)); (2) it has countable metasequence (assembly) of all universes.
Neither ZF+AU nor ZF+AU(𝜔) (see the Introduction to this Appendix and subsec-
tion A.4.3 and A.5.1 in Appendix A) does not satisfy these two properties.

Besides, Statement 1 (B.6.1) implies that the LMTS is strictly weaker than the theo-
ries ZF+AU and ZF+AU(𝜔). Therefore, the LMTS satisfies conditions 1–3, given in intro-
duction. Thus, this theory ismore natural for category theory than the theories ZF+AU
and ZF+AU(𝜔). In comparisonwith the LTS, the LMTS satisfies condition 3 in a stricter
form.

B.7 The finite axiomatizability of the LTS and the NBG set
theory

The local theory of sets has 13 axioms (A1, A3 –A14) and one axiom scheme AS2
(see B.1.1). In this section, we show that this axiom scheme can be replaced by finitely
many axioms that are special cases of the comprehension axiom scheme. This means
that the LTS and the LMTS (see B.6.3), as well as the NBG set theory, are finitely
axiomatizable.

Note that the finite axiomatizability cannot be proven by using the sketch of the
proof of the finite axiomatizability of NBG given in [Mendelson, 1997] because of the
condition that the formula 𝜑 in axiom scheme AS2 of the LTS must be X-predicative.
Thus, we introduce two more axioms, which look rather unusual for those familiar
with the proof given in Mendelson’s book.

In contrast to [Mendelson, 1997, 4.1], we present the detailed proof of the finite
axiomatizability theorem for the LTS (see Theorem 2 (B.7.2)). This gives us the pleasant
opportunity to present the abridged proof of Bernays’ outstanding result on the finite
axiomatizability of the very NBG set theory in B.7.3.
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B.7.1 Replacement of the full comprehension axiom scheme by finitelymany axioms

Associate axiom schemeAS2with explicit axiomsA2.1 –A2.15 stated below. Denote by
LTS* the theory determined by axioms A1, A2.1 –A2.15, A3, A6, A7, and A12.

A2.1. (The pair axiom.) ∀A, B∃Y∀y(y ∈ Y ⇔ (y = A ∨ y = B)).
According to this axiom, in LTS* for any classes A and B, the unordered pair {A, B}

exists.
Define in LTS* the ordered pair ⟨A, B⟩ ≡ {{A}, {A, B}}, where {A} ≡ {A, A}.
Put ⟨A⟩ ≡ A and define the ordered suits ⟨A0, . . . , An+1⟩ ≡ ⟨⟨A0, . . . , An⟩, An+1⟩ for

n ⩾ 1 by induction.
Lemma 1. If ⟨A, B⟩ = ⟨A, B⟩, then A = A and B = B.

Lemma 2. U ⋈ ∧ ⟨A, B⟩ ∈ U ⇒ A, B ∈ U.
Corollary 1. U ⋈ ∧ ⟨A0, . . . , An+1⟩ ∈ U ⇒ A0, . . . , An+1 ∈ U.
A2.2. (The local pair axiom.) ∀U(U⋈ ⇒ ∀A, B ∈ U({A, B} ∈ U)).

According to the local pair axiom A2.2, A, B ∈ U implies ⟨A, B⟩ ∈ U. It is easily
proven by induction that A1, . . . , An ∈ U implies ⟨A1, . . . , An⟩ ∈ U.

A2.3. (The axiom of specification of local universal elements.)

∀U(U⋈ ⇒ ∃Y∀y(y ∈ Y ⇔ y ∈ U ∧ y⋈)).
A2.4. (The axiom of specification of a local restriction.)

∀A∀U(U⋈ ⇒ ∃Y∀y(y ∈ Y ⇔ y ∈ U ∧ y ∈ A)).
A2.5. (The axiom of specification of a local frame.)

∀A∀U(U⋈ ⇒ ∃Y∀y(y ∈ Y ⇔ y ∈ U ∧ A ∈ y)).
A2.6. (The axiom of specification of a local product.)

∀U(U⋈ ⇒ ∀A∃Y∀y(y ∈ Y ⇔ y ∈ U ∧ ∃a, v(a, v ∈ U ∧ a ∈ A ∧ y = ⟨a, v⟩))).
Check that in axiomA2.6 andother axioms, the subformula y = ⟨a, v⟩ isU-predicative.
This subformula has the form 𝜂 ≡ ∀z(z ∈ y ⇔ z ∈ ⟨a, v⟩). Consider the formula 𝜁 ≡
∀z ∈ U(z ∈ y ⇔ z ∈ ⟨a, v⟩). It is clear that 𝜂 ⇒ 𝜁. Let 𝜁 and take an arbitrary z. If z ∈ y,
then y ∈ U implies z ∈ U. Therefore, 𝜁 and z ∈ y imply z ∈ ⟨a, v⟩. By the deduction
theorem, we deduce from 𝜁 the formula z ∈ y ⇒ z ∈ ⟨a, v⟩. Conversely, if z ∈ ⟨a, v⟩,
then by axiom A7, it follows from ⟨a, v⟩ ∈ U that z ∈ U. Hence, 𝜁 implies z ∈ y.
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By the deduction theorem, we deduce from 𝜁 the formula z ∈ ⟨a, v⟩ ⇒ z ∈ y.
Hence, by the generalization rule, we deduce from 𝜁 the formulas y ⊂ ⟨a, v⟩ ≡ ∀z(z ∈
y ⇒ z ∈ ⟨a, v⟩) and ⟨a, v⟩ ⊂ y ≡ ∀z(z ∈ ⟨a, v⟩ ⇒ z ∈ y). Therefore, 𝜁 ⊢ y = ⟨a, v⟩
(see [Kolmogorov and Dragalin, 1982, III, 2]). By the deduction theorem, 𝜁 ⇒ 𝜂. Thus,
we get 𝜂 ⇔ 𝜁.

A2.7. (The first axiom of specification of a local permutation.)

∀U(U⋈ ⇒ ∀A∃Y∀y(y ∈ Y ⇔ y ∈ U ∧ ∃u, v(u, v ∈ U ∧ y = ⟨u, v⟩ ∧ ⟨v, u⟩ ∈ A))).
A2.8. (The second axiom of specification of a local permutation.)

∀U(U⋈ ⇒ ∀A∃Y∀y(y ∈ Y ⇔
⇔ y ∈ U ∧ ∃u, v, w(u, v, w ∈ U ∧ y = ⟨u, v, w⟩ ∧ ⟨v, w, u⟩ ∈ A))).

As above, we can check that the subformula y = ⟨u, v, w⟩ in axioms A2.8 and A2.9 is
U-predicative.

A2.9. (The third axiom of specification of a local permutation.)

∀U(U⋈ ⇒ ∀A∃Y∀y(y ∈ Y ⇔
⇔ y ∈ U ∧ ∃u, v, w(u, v, w ∈ U ∧ y = ⟨u, v, w⟩ ∧ ⟨u, w, v⟩ ∈ A))).

A2.10. (The axiom of specification of local membership.)

∀U(U⋈ ⇒ ∃Y∀y(y ∈ Y ⇔ y ∈ U ∧ ∃u, v(u, v ∈ U ∧ y = ⟨u, v⟩ ∧ u ∈ v))).
A2.11. (The axiom of specification of a local complement.)

∀U(U⋈ ⇒ ∀A∃Y∀y(y ∈ Y ⇔ y ∈ U ∧ y ∉ A)).
A2.12. (The axiom of specification of a local binary union.)

∀A∀B∀U(U⋈ ⇒ ∃Y∀y(y ∈ Y ⇔ y ∈ U ∧ (y ∈ A ∨ y ∈ B))).
It follows from this axiom that in LTS* for any A, B, and U⋈, there exists a U-class
A ∪U B.

A2.13. (The axiom of specification of a local domain of definition.)

∀A∀U(U⋈ ⇒ ∃Y∀y(y ∈ Y ⇔ y ∈ U ∧ ∃z(z ∈ U ∧ ⟨y, z⟩ ∈ A))).
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Unfortunately, unlike the proof of the finite axiomatizability theorem for the NBG
set theory given in [1997], the condition of X-predicativity of the formula 𝜑 in axiom
scheme AS2 prevents the reduction of the elementary subformulas pk ∈ pl and pk⋈
for k, l ∈ n + 1 \ 1 of the formula 𝜑(x1, . . . , xm ; p1, . . . , pn) in the proof of Proposition 1
below to the equivalent formulas

∃xj(∀xi(xi ∈ xj ⇔ xi ∈ pk) ∧ xj ∈ pl) and ∃xj(∀xi(xi ∈ xj ⇔ xi ∈ pk) ∧ xj⋈)
because these equivalent formulas are not X-predicative. Thus, we are forced to
introduce two more axioms, which look rather unusual for the reader familiar with
the NBG set theory.

A2.14. (The axiom of specification of external universal elements.)

∀A∀U(U⋈ ⇒ ∃Y∀y(y ∈ Y ⇔ y ∈ U ∧ A⋈)).
A2.15. (The axiom of specification of external membership.)

∀A∀B∀U(U⋈ ⇒ ∃Y∀y(y ∈ Y ⇔ y ∈ U ∧ A ∈ B)).
The theory determined by axiomsA1, A2.1 –A2.15, andA3–A14will be called the finite
axiomatizable local theory of sets and will be denoted by LTSf .

B.7.2 The deductive equivalence of the theories LTS and LTSf

Lemma 1. The formula

∀A∀B∀U(U⋈ ⇒ ∃Y∀y(y ∈ Y ⇔ y ∈ U ∧ y ∈ A ∧ y ∈ B))
is deducible in the LTS*.

Proof. By axiom A2.11, there exist Y  and Y such that ∀y(y ∈ Y ⇔ y ∈ U ∧ y ∉ A)
and ∀y(y ∈ Y ⇔ y ∈ U ∧ y ∉ B). By A2.1, there is Y such that ∀y(y ∈ Y ⇔ y ∈
U ∧ (y ∈ Y ∨ y ∈ Y)). By axiom A2.11, again, there is Y such that ∀y(y ∈ Y ⇔ y ∈
U ∧ y ∉ Y ).

Suppose y ∈ Y; then y ∈ U ∧ y ∉ Y . Hence, y ∉ Y ∧ y ∉ Y, and therefore, y ∈
A ∧ y ∈ B. By the deduction theorem the formula y ∈ Y ⇒ y ∈ U ∧ y ∈ A ∧ y ∈ B is
deducible in the LTS*.

Conversely, suppose y ∈ U ∧ y ∈ A ∧ y ∈ B; then y ∉ Y  and y ∉ Y. Hence, y ∉
Y, and therefore, y ∈ Y. By the deduction theorem, the formula y ∈ U ∧ y ∈ A ∧ y ∈
B ⇒ y ∈ Y is deducible. Further, by logical tools, we deduce the required formula.
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This lemma means that in the LTS* for any A, B, and U⋈ the class A ∩U B exists.
Prove that in the LTS* for U⋈, there exists a U-class determined by the elementary

formula y ∈ y.
Lemma 2. The formula ∀X(X ∉ X) is deducible in the LTS*.
Proof. By the universality axiom A6, X ∈ U for some universal class U. By axiom A2.1,
there is the class {X} ≡ {X, X} ⊂ U such that X ∈ {X}U . By A3, {X} ̸= ⌀. Then, the regu-
larity axiom A12 guarantees that there exists x ∈ {X} such that x ∩U {X} = ⌀. By A2.1,
x ∈ U ∧ x = X. Suppose that X ∈ X. Since X ∈ U, Lemma 1 (B.7.1) implies X ∈ X∩U {X} =⌀. But this contradicts axiom A3. Therefore, X ∉ X.
Corollary 1. The formula ∀U∀y(y ∈ ⌀ ⇔ y ∈ U ∧ y ∈ y) is deducible in the LTS*.
Proof. Let y ∈ ⌀. By empty class axiom A3, y ∈ ⌀ ∧ y ∉ ⌀. By the law of non-
contradiction, ¬(y ∈ ⌀ ∧ y ∉ ⌀). By the falsehood elimination rule, y ∈ U ∧ y ∈ y.
According to the deduction theorem, the formula y ∈ ⌀ ⇒ y ∈ U ∧ y ∈ y is deduced
in the LTS*. Conversely, let y ∈ U ∧ y ∈ y. By Lemma 2, y ∈ y ∧ y ∉ y. As above, we
obtain the formula y ∈ U ∧ y ∈ y ⇒ y ∈ ⌀. The required formula is deduced by the
generalization rule.

Corollary 2. The formula ∀U(U⋈ ⇒ ∃Y∀y(y ∈ Y ⇔ y ∈ U ∧ y ∈ y) is deducible in the
LTS*.

Proof. Verify that the empty class ⌀ can be taken as Y. Let y ∈ ⌀. By the empty class
axiom, we get y ∉ ⌀. Then, the falsehood elimination rule yields y ∈ U ∧ y ∈ y. Con-
versely, let y ∈ U ∧ y ∈ y. Corollary 1 implies y ∈ ⌀.
Corollary 3. The formula ∀z∀U∀y(y ∈ ⌀ ⇔ y ∈ U ∧ z ∈ z)) is deducible in the LTS*.
Proof. The proof is quite similar to that of Corollary 1.

Corollary 4. The formula ∀z∀U(U⋈ ⇒ ∃Y∀y(y ∈ Y ⇔ y ∈ U ∧ z ∈ z)) is deducible in
the LTS*.

Lemma 3. The formula

∀U(U⋈ ⇒ ∀A∀B∃Y∀y(y ∈ Y ⇔ y ∈ U ∧ ∃a, b(a, b ∈ U ∧ a ∈ A ∧ b ∈ B ∧
y = ⟨a, b⟩)))

is deducible in the LTS*.
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Proof. By axiom A2.6, there are classes Y and Z such that

𝜉 ≡ ∀y(y ∈ Y ⇔ y ∈ U ∧ ∃a, w(a, w ∈ U ∧ a ∈ A ∧ y = ⟨a, w⟩)) and
𝜁 ≡ ∀y(y ∈ Z ⇔ y ∈ U ∧ ∃b, w(b, w ∈ U ∧ a ∈ A ∧ y = ⟨b, w⟩)).

By axiom A2.7, there is a class Y  such that 𝜂 ≡ ∀y(y ∈ Y ⇔ y ∈ U ∧ ∃u, v(u, v ∈
U ∧ y = ⟨u, v⟩ ∧ ⟨v, u⟩ ∈ Z)).

Suppose y ∈ Y; then the formula 𝜂 implies y ∈ U ∧ ∃u, v(u, v ∈ U ∧ y = ⟨u, v⟩ ∧
⟨v, u⟩ ∈ Z)). According to the formula 𝜁, we get ∃b, w(b, w ∈ U ∧ b ∈ D ∧ ⟨v, u⟩ =
⟨b, w⟩). By Lemma 1 (B.7.1), v = b and u = w. Hence, y = ⟨u, v⟩ = ⟨u, b⟩. Thus, we
obtain the formula 𝜃 ≡ y ∈ U ∧ ∃u, b(u, b ∈ U ∧ b ∈ B ∧ y = ⟨u, b⟩). By the deduc-
tion theorem, we deduce the formula y ∈ Y ⇒ 𝜃.

Conversely, suppose 𝜃; then y ∈ U ∧ y = ⟨u, b⟩U for some u, b ∈ U such that
b ∈ B. Consider z = ⟨b, u⟩. Since u, b ∈ U, axiom A2.2 provides z ∈ U. According to
the formula 𝜁, we get z ∈ Z. Thus, y ∈ U ∧ ∃u, b(u, b ∈ U ∧ y = ⟨u, b⟩ ∧ ⟨b, u⟩ ∈ Z).
Applying the formula 𝜂, we conclude that y ∈ Y . By the deduction theorem, the
formula 𝜃 ⇒ y ∈ Y is deducible in the LTS*. Consequently, the formula 𝜉 ≡ ∀y(y ∈
Y ⇔ 𝜃) is deducible as well.

According to Lemma 1, there exists the class Y ≡ Y ∩U Y; for this class, we have
∀y(y ∈ Y ⇔ y ∈ U ∧ y ∈ Y  ∧ y ∈ Y). The formula 𝜉 implies ∃a, w(a, w ∈ U ∧ a ∈
A ∧ y = ⟨a, w⟩). The formula 𝜒 implies ∃u, b(u, b ∈ U ∧ b ∈ B ∧ y = ⟨u, b⟩). By
Lemma 1 (B.7.1), u = a and w = b. Hence, ∃a, b(a, b ∈ U ∧ a ∈ A ∧ b ∈ B ∧ y =
⟨a, b⟩U), from where we obtain the required assertion.

Corollary 1. The formula∀U(U⋈ ⇒ ∀A∀B∃Y∀u, v(⟨u, v⟩ ∈ Y ⇔ ⟨u, v⟩ ∈ U ∧ u ∈ A ∧
v ∈ B)) is deducible in the LTS*.
Proof. Consider the class Y from Lemma 3. Let u and v be arbitrary classes. Let y ≡
⟨u, v⟩ ∈ Y. Then, Lemma 3 implies y ∈ U ∧ ∃a, b ∈ U(a ∈ A ∧ b ∈ B ∧ y = ⟨a, b⟩).
Therefore, u = a ∈ A and v = b ∈ B, where u, v ∈ U. By the deduction theorem, the
formula ⟨u, v⟩ ∈ Y ⇒ u, v ∈ U ∧ ⟨u, v⟩ ∈ U ∧ u ∈ A ∧ v ∈ B is deducible in LTS*.

Conversely, let y ≡ ⟨u, v⟩ ∈ Y ∧ u ∈ A ∧ v ∈ B ⇒ ⟨u, v⟩ ∈ Y. By Lemma 3, y ∈
Y. By the deduction theorem, we deduce the formula u, v ∈ U ∧ ⟨u, v⟩ ∈ U ∧ u ∈
A ∧ v ∈ B ⇒ ⟨u, v⟩ ∈ Y. Further, by logical tools,wededuce the required formula.

Corollary 2. Let n ⩾ 2. Then, the formula
∀A1 . . . ∀An∀U(U⋈ ⇒ ∃Y∀u1 . . . ∀un(⟨u1, . . . , un⟩ ∈ Y ⇔

⇔ ⟨u1, . . . , un⟩ ∈ U ∧ u1 ∈ A1 ∧ . . . ∧ un ∈ An))
is deducible in the LTS*.
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Proof. The proof is by induction on n. Suppose that the assertion holds for n. Fix
A1, . . . , An+1 and U⋈. By the inductive hypothesis, there is a class Z such that 𝜁 ≡
∀z1 ⋅ ⋅ ⋅ ∀zn(⟨z1, . . . , zn⟩ ∈ Z ⇔ ⟨z1, . . . , zn⟩ ∈ U ∧ z1 ∈ A1 ∧ . . . ∧ zn ∈ An). For the
classes Z and An+1, consider the class Y from Corollary 1.

Let ⟨u1, . . . , un+1⟩ ≡ ⟨z, v⟩ ∈ Y, where z ≡ ⟨u1, . . . , un⟩ and v ≡ u. By Corollary 1,
z, v ∈ U ∧ ⟨z, v⟩ ∈ U ∧ z ∈ Z ∧ v ∈ An+1. By the formula 𝜁, u1, . . . , un ∈ U ∧ z ∈ U ∧
u1 ∈ A1 ∧ . . . ∧ un ∈ An. Then, by the deduction theorem, we deduce the formula
⟨u1, . . . , un+1⟩ ∈ Y ⇒ u1, . . . , un+1 ∈ U ∧ ⟨u1, . . . , un+1⟩ ∈ U ∧ u1 ∈ A1 ∧ . . . ∧ un+1 ∈
An+1. Denote the condition and the conclusion in this formula by 𝜂 and 𝜃, respectively.
Thus, we have deduced the formula 𝜂 ⇒ 𝜃.

Conversely, let 𝜃. By Lemma 3 (B.3.2), z ≡ ⟨u1, . . . , un+1⟩U ∈ U. Then, using the
formula 𝜁, we get z ∈ Z. Since z, un+1 ∈ U ∧ ⟨z, un+1⟩U ∈ U ∧ z ∈ Z ∧ un+1 ∈ An+1, by
Corollary 1, we get ⟨z, un+1⟩U ∈ Y, i. e. the formula 𝜂 is deduced. By the deduction the-
orem, we deduce the formula 𝜃 ⇒ 𝜂. Further, by logical tools, we deduce the required
formula for n + 1.
The proofs of the following three lemmas are similar to that of Corollary 1 to Lemma 3.

Lemma 4. In the LTS*, axiom A2.8 is equivalent to the formula ∀A∀U(U⋈ ⇒ ∃Y∀u, v,
w(⟨u, v, w⟩ ∈ Y ⇔ ⟨u, v, w⟩ ∈ U ∧ ⟨v, w, u⟩ ∈ A)).
Lemma 5. In the LTS*, axiom A2.9 is equivalent to the formula ∀A∀U(U⋈ ⇒ ∃Y∀u, v,
w(⟨u, v, w⟩ ∈ Y ⇔ ⟨u, v, w⟩ ∈ U ∧ ⟨u, w, v⟩ ∈ A)).
Lemma 6. In the LTS*, axiom A2.10 is equivalent to the formula ∀U(U⋈ ⇒ ∃Y∀u, v(⟨u,
v⟩ ∈ Y ⇔ ⟨u, v⟩ ∈ U ∧ u ∈ V)).
We prove the following assertion by a method similar to that used in [1997] to prove
Proposition 4.4 butwith anumber of substantial changes related to theU-predicativity
of the formula 𝜑.
Proposition 1. Let 𝜑[x⃗, p⃗] be a U-predicative formula such that the substitution 𝜑[x⃗ ‖
y⃗, p⃗] is admissible. Then, the formula ∀U(U⋈ ⇒ ∃Y∀y⃗(⟨y⃗⟩ ∈ Y ⇔ ⟨y⃗⟩ ∈ U ∧ 𝜑[y⃗, p⃗]))
is deducible in the LTS*.

Proof. We shall prove by induction on the number s ∈ 𝜔 of logical connectives and
quantifiers in the formula 𝜑. Denote by A(s) the following assertion:

for every m ⩾ 1 and n ⩾ 0, for every variable Y, for every formula of the LTS* having
the form 𝜑(x1, . . . , xm ; p1, . . . , pn) such that:

1.𝜑 is composed of variables, the predicate symbols∈ and⋈, and the logical symbols
∃, ¬, and ∨ ;

2. 𝜑 contains precisely s logical symbols ∃, ¬, and ∨ ;
3. 𝜑 is U-predicative;
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and for every symbol-string y⃗ ≡ y1, . . . , ym such that the substitution 𝜑[x⃗ ‖ y⃗, p⃗] is ad-
missible; the formula ∀U(U⋈ ⇒ ∃Y∀y⃗(⟨y⃗⟩ ∈ Y ⇔ ⟨y⃗⟩ ∈ U ∧ 𝜑(y⃗; p⃗))) is deducible in
LTS*.

We shall prove this assertion, using the complete induction principle A(0) ∧ ∀s
(∀r < s(A(r)) ⇒ A(s)) ⇒ ∀s(A(s)).

Let s = 0. Then, the formula 𝜑 has one of the following forms: xi⋈, pk⋈, xi ∈ pk,
pk ∈ xi, pk ∈ pl, or xi ∈ xj for i, j ∈ (m + 1) \ 1 and k, l ∈ n \ (n + 1) \ 1.

If xi⋈, then by axiomA2.3, there is a class Y such that ∀yi(yi ∈ Y ⇔ yi ∈ U ∧ yi⋈).
If xi ∈ pk, then by axiom A2.4, there is a class Y such that ∀yi(yi ∈ Y ⇔ yi ∈

U ∧ yi ∈ pk).
If pk ∈ xi, then by axiom A2.5, there is a class Y such that ∀yi(yi ∈ Y ⇔ yi ∈

U ∧ pk ∈ yi).
If xi ∈ xi, then by Corollary 2 to Lemma 2, there is a class Y such that ∀yi(yi ∈ Y ⇔

yi ∈ U ∧ yi ∈ yi).
If pk⋈, thenbyaxiomA2.14, there is a class Y such that∀yi(yi ∈ Y ⇔ yi ∈ U ∧ pk⋈).
If pk ∈ pl for k ̸= l, then by axiom A2.15, there is a class Y such that ∀yi(yi ∈ Y ⇔

yi ∈ U ∧ pk ∈ pl).
Finally, if pk ∈ pk, then by Corollary 2 to Lemma 2, there is a class Y such that

∀yi(yi ∈ Y ⇔ yi ∈ U ∧ pk ∈ pk).
By Corollary 2 to Lemma 3 for A1 = U, . . . , Ai−1 = U, Ai = Y, Ai+1 = U, . . . , Am =

U, there is Z such that ∀y⃗ (⟨y⃗⟩ ∈ Z ⇔ ⟨y⃗⟩ ∈ U ∧ yi ∈ Y). From the formulas deduced
above, we conclude that ∀y⃗(⟨y⃗⟩ ∈ Z ⇔ ⟨y⃗⟩ ∈ U ∧ 𝜑[y⃗, p⃗]). This means that the asser-
tion is proven in the cases considered above.

It remains to consider the case xi ∈ xj for i ̸= j. It can be assumed that i < j.
By axiom A2.10, there is a class Y such that 𝜁 ≡ ∀u(u ∈ Y ⇔ u ∈ U ∧ ∃yi , yj(yi , yj ∈
U ∧ u = ⟨yi , yj⟩U ∧ yi ∈ yj)).

If i = 1, then put Xi = Y.
Let i > 1.ByCorollary 1 toLemma3 forA = Y andB = U, there isaclassX1 such that𝜂 ≡ ∀u, y1(⟨u, y1⟩U ∈ X1 ⇔ u, y1 ∈ U ∧ ⟨u, y1⟩U ∈ U ∧ u ∈ Y). Let ⟨yi , yj , y1⟩U ∈ X1.

Then, it follows from 𝜂 and 𝜁 that ⟨yi , yj⟩U , y1 ∈ U ∧ ⟨yi , yj , y1⟩U ∈ U ∧ yi , yj ∈ U ∧
yi ∈ yj. Hence, we get the formula 𝜃 ≡ yi , yj , y1 ∈ U ∧ ⟨yi , yj , y1⟩U ∈ U ∧ yi ∈ yj. Con-
versely, suppose 𝜃. By axiom A2.2, u ≡ ⟨yi , yj⟩U ∈ U. Then, 𝜁 implies u ∈ Y. Further, 𝜂
implies ⟨yi , yj , y1⟩U ∈ X1. By the deduction theorem, the formula ⟨yi , yj , y1⟩U ∈ X1 ⇔𝜃 is deduced in LTS*. By the generalization rule, 𝜉 ≡ ∀yi , yj , y1(⟨yi , yj , y1⟩U ∈ X1 ⇔ 𝜃).

By Lemma 4, for A ≡ X1, there is a class X2 such that

𝜒 ≡ ∀y1, yi , yj(⟨y1, yi , yj⟩U ∈ X2 ⇔
⇔ y1, yi , yj ∈ U ∧ ⟨y1, yi , yj⟩U ∈ U ∧ ⟨yi , yj , y1⟩U ∈ X1).

We deduce from the formulas 𝜉 and 𝜒 the formula ∀y1, yi , yj(⟨y1, yi , yj⟩U ∈ X2 ⇔
y1, yi , yj ∈ U ∧ ⟨y1, yi , yj⟩U ∈ U ∧ yi ∈ yj). If i = 2, then put Xi ≡ X2. If i > 2, then it
is proven in a similar way, by induction, that in the LTS* there is a class Xi such
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that 𝛾 ≡ ∀y1, . . . , yi , yj(⟨y1, . . . , yi , yj⟩U ∈ Xi ⇔ y1, . . . , yi , yj ∈ U ∧ ⟨y1, . . . , yi , yj⟩U ∈
U ∧ yi ∈ yj).

If j = i + 1, then put Yij ≡ Xi. Let i + 1 < j. By Corollary 1 to Lemma 3 for A = Xi
and B = U, there is a class Xi1 such that 𝛿 ≡ ∀w, yi+1(⟨w, yi+1⟩U ∈ Xi1 ⇔ w, yi+1 ∈
U ∧ ⟨w, yi+1⟩U ∈ U ∧ w ∈ Xi).

Denote ⟨y1, . . . , yi⟩U by u. Let ⟨u, yj , yi+1⟩U ∈ Xi1. Then, 𝛿 for w ≡ ⟨u, yj⟩U implies
⟨u, yj⟩, yi+1 ∈ U ∧ ⟨u, yj , yi+1⟩U ∈ U ∧ ⟨u, yj⟩U ∈ U. Now, 𝛾 implies ⟨u, yj⟩, yi+1 ∈ U ∧⟨u, yj , yi+1⟩U ∈ U ∧ y1, . . . , yi , yj ∈ U ∧ yi ∈ yj. Hence, 𝜘 ≡ u, yj , yi+1 ∈ U ∧ ⟨u, yj ,
yi+1⟩U ∈ U ∧ yi ∈ yj. Conversely, let 𝜘. By axiom A2.2, w ≡ ⟨u, yj⟩U ∈ U. Therefore,
it follows from 𝛾 that w ∈ Xi. Further, 𝛿 implies ⟨u, yj , yi+1⟩U ∈ Xi1. By the deduction
theorem, the formula ⟨u, yj , yi+1⟩U ∈ Xi1 ⇔ 𝜘 is deduced in the LTS*. By the general-
ization rule, we deduce the formula 𝜀 ≡ ∀u, yj , yi+1(⟨u, yj , yi+1⟩U ∈ Xi1 ⇔ 𝜘).

By Lemma 5 for A ≡ Xi1, there is a class Xi2 such that

𝜋 ≡ ∀u, yi+1, yj(⟨u, yi+1, yj⟩U ∈ Xi2 ⇔
⇔ u, yi+1, yj ∈ U ∧ ⟨u, yi+1, yj⟩U ∈ U ∧ ⟨u, yj , yi+1⟩U ∈ Xi1).

The formulas 𝜀 and 𝜋 imply ∀u, yi+1, yj(⟨u, yi+1, yj⟩U ∈ Xi2 ⇔ u, yi+1, yj ∈ U ∧ ⟨u, yi+1,
yj⟩U ∈ U ∧ yi ∈ yj). This implies the formula

∀y1, . . . , yi+1, yj(⟨y1, . . . , yi+1, yj⟩U ∈ Xi2 ⇔
⇔ y1, . . . , yi+1, yj ∈ U ∧ ⟨y1, . . . , yi+1, yj⟩U ∈ U ∧ yi ∈ yj).

If j = i + 2, then put Yij ≡ Xi2. If j > i + 2, then it is proven in a similar way, by induc-
tion, that in the LTS*, there is a class Yij such that ∀y1, . . . , yj(⟨y1, . . . , yj⟩U ∈ Yij ⇔
y1, . . . , yj ∈ U ∧ ⟨y1, . . . , yj⟩U ∈ U ∧ yi ∈ yj).

Further, starting at Yij and using the induction, we prove that there is a class Z,
such that ∀y1, . . . , ym(⟨y1, . . . ym⟩U ∈ Z ⇔ y1, . . . , ym ∈ U ∧ ⟨y1, . . . , ym⟩U ∈ U ∧ yi ∈
yj). This means that ∀y⃗(⟨y⃗⟩U ∈ Z ⇔ ⟨y⃗⟩U ∈ U ∧ 𝜑[y⃗, p⃗]). Thus, we have A(0).

Suppose that the required assertion is proven for any r < s and 𝜑[x⃗, p⃗] contains s
logical connectivities and quantifiers.

Let 𝜑 be ¬𝜓. By inductive hypothesis, there is a class Z such that 𝜁 ≡ ∀y⃗(⟨y⃗⟩U ∈
Z ⇔ ⟨y⃗⟩ ∈ U ∧ 𝜓[y⃗, p⃗]).

Consider for the classes Z and U the class Y from axiomA2.11 such that 𝜒 ≡ ∀y(y ∈
Y ⇔ y ∈ U ∧ y ∉ Z). Let ⟨y⃗⟩U ∈ Y. Then, 𝜒 implies ⟨y⃗⟩ ∈ U ∧ ⟨y⃗⟩U ∉ Z. But it deduced
from 𝜁 that ⟨y⃗⟩ ∉ Z ⇒ (⟨y⃗⟩ ∉ U ∨ ¬𝜓[y⃗, p⃗]). Therefore, the formula ⟨y⃗⟩ ∈ U ∧ (⟨y⃗⟩U ∉
U ∨ ¬𝜓[y⃗, p⃗]) is deduced. It is equivalent to the formula (⟨y⃗⟩ ∈ U ∧ ⟨y⃗⟩ ∉ U) ∨ (⟨y⃗⟩ ∈
U ∧ ¬𝜓[y⃗, p⃗]). By the falsehood elimination rule, we get ⟨y⃗⟩ ∈ U ∧ ¬𝜓[y⃗, p⃗]. By the
deduction theorem, the formula ⟨y⃗⟩U ∈ Y ⇒ ⟨y⃗⟩U ∈ U ∧ 𝜑[y⃗, p⃗] is deduced in the
propositional calculus.

Let ⟨y⃗⟩U ∈ U ∧ 𝜑[y⃗, p⃗]. Then, (⟨y⃗⟩U ∈ U ∧ ¬𝜓[y⃗, p⃗]) ∨ (⟨y⃗⟩ ∈ U ∧ ⟨y⃗⟩U ∉ U). It
is equivalent to the formula ⟨y⃗⟩U ∈ U ∧ (¬𝜓[y⃗, p⃗] ∨ ⟨y⃗⟩U ∉ U). The last formula,
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together with the formula 𝜁, implies the formula ⟨y⃗⟩U ∈ U ∧ ⟨y⃗⟩U ∉ Z. Using 𝜒,
we obtain ⟨y⃗⟩U ∈ Y. By the deduction theorem, the formula ⟨y⃗⟩U ∈ U ∧ 𝜑[y⃗, p⃗] ⇒⟨y⃗⟩U ∈ Y is deduced in the propositional calculus.

Applying thegeneralization rule,wededuce the formula∀y⃗(⟨y⃗⟩U ∈ U ∧ 𝜑[y⃗, p⃗] ⇔⟨y⃗⟩U ∈ Y).
Let 𝜑 be 𝜓 ⇒ 𝜃, which is equivalent to the formula ¬𝜓 ∨ 𝜃. By inductive hypothe-

sis, there are classes Z1 and Y2 such that 𝜁 ≡ ∀y⃗(⟨y⃗⟩U ∈ Z1 ⇔ ⟨y⃗⟩U ∈ U ∧ 𝜓[y⃗, p⃗]) and𝜂 ≡ ∀y⃗(⟨y⃗⟩U ∈ Y2 ⇔ ⟨y⃗⟩U ∈ U ∧ 𝜃[y⃗, p⃗]). By A2.11, for Z1, there is a class Y1 such that𝜉 ≡ ∀y⃗(⟨y⃗⟩U ∈ Y1 ⇔ ⟨y⃗⟩U ∈ U ∧ ⟨y⃗⟩U ∉ Z1). ByA2.12, for Y1 and Y2, there is Y such that𝜒 ≡ ∀y⃗(⟨y⃗⟩U ∈ Y ⇔ ⟨y⃗⟩U ∈ U ∧ (⟨y⃗⟩U ∈ Y1 ∨ ⟨y⃗⟩U ∈ Y2)).
Let ⟨y⃗⟩ ∈ Y. Then, it follows from 𝜒, 𝜂, and 𝜉 that ⟨y⃗⟩U ∈ U ∧ ((⟨y⃗⟩U ∈ U ∧ ⟨y⃗⟩U ∉

Z1) ∨ (⟨y⃗⟩U ∈ U ∧ 𝜃[y⃗, p⃗]), which is equivalent to the formula ⟨y⃗⟩U ∈ U ∧ (⟨y⃗⟩U ∈
U ∨ 𝜃[y⃗, p⃗]). Using 𝜁, we get ⟨y⃗⟩U ∈ U ∧ (⟨y⃗⟩U ∉ U ∨ ¬𝜓) ∨ 𝜃). It is equivalent to
(⟨y⃗⟩U ∈ U ∧ ⟨y⃗⟩U ∉ U) ∨ (⟨y⃗⟩U ∈ U ∧ (¬𝜓 ∨ 𝜃)). By the falsehood elimination rule,
we obtain ⟨y⃗⟩U ∈ U ∧ (¬𝜓 ∨ 𝜃). By the deduction theorem, the formula ⟨y⃗⟩U ∈ Y ⇒⟨y⃗⟩U ∈ U ∧ (¬𝜓 ∨ 𝜃) is deduced in the propositional calculus.

Conversely, let ⟨y⃗⟩U ∈ U ∧ (¬𝜓 ∨ 𝜃). Then, we get (⟨y⃗⟩U ∈ U ∧ ⟨y⃗⟩U ∉ U) ∨ (⟨y⃗⟩U∈ U ∧ ¬𝜓) ∨ (⟨y⃗⟩U ∈ U ∧ 𝜃)), where ⟨y⃗⟩U ∈ U ∧ (⟨y⃗⟩U ∉ U ∨ ¬𝜓 ∨ (⟨y⃗⟩U ∈ U ∧ 𝜃)),
which is equivalent to ⟨y⃗⟩U ∈ U ∧ (¬(⟨y⃗⟩U ∈ U ∧ 𝜓) ∨ (⟨y⃗⟩U ∈ U ∧ 𝜃)). Applying 𝜁
and 𝜂, we obtain ⟨y⃗⟩U ∈ U ∧ (⟨y⃗⟩U ∉ Z1 ∨ ⟨y⃗⟩U ∈ Y2), which is equivalent to ⟨y⃗⟩U ∈
U((⟨y⃗⟩U ∈ U ∧ ⟨y⃗⟩U ∈ Z1) ∨ ⟨y⃗⟩U ∈ Y2). Applying 𝜉, we get ⟨y⃗⟩U ∈ U ∧ (⟨y⃗⟩U ∈ Y1 ∨⟨y⃗⟩U ∈ Y2). Applying 𝜒, we get ⟨y⃗⟩U ∈ Y. By the deduction theorem, the formula
⟨y⃗⟩U ∈ U ∧ (𝜓 ∨ ¬𝜃) ⇒ ⟨y⃗⟩U ∈ Y is deduced in the propositional calculus.
By the generalization rule, we deduce the formula ∀y⃗(⟨y⃗⟩U ∈ Y ⇔ ⟨y⃗⟩U ∈ U ∧𝜑[y⃗, p⃗]).

Finally, let 𝜑[x⃗, p⃗] be ∃z(z ∈ U ∧ 𝜓[y⃗, z, p⃗]). By the inductive hypothesis, for
the formula 𝜓[y⃗, z, p⃗], there is a class Z such that 𝜁 ≡ ∀y⃗∀z(⟨y⃗, z⟩U ∈ Z ⇔ ⟨y⃗, z⟩U ∈
U ∧ 𝜓[y⃗, z, p⃗]).

By axiom A2.13, there is class Y such that 𝜒 ≡ ∀y⃗(⟨y⃗⟩U ∈ U ⇔ ⟨y⃗⟩U ∈ U ∧ ∃z(z ∈
U ∧ ⟨y⃗, z⟩U ∈ Z)).

Let ⟨y⃗⟩U ∈ Y. Then, 𝜒 implies ⟨y⃗⟩U ∈ U ∧ ∃z(z ∈ U ∧ ⟨y⃗, z⟩U ∈ Z). Applying 𝜁,
we obtain ⟨y⃗⟩U ∈ U ∧ ∃z(z ∈ U ∧ ⟨y⃗, z⟩U ∈ U ∧ 𝜓[y⃗, z, p⃗]), where ⟨y⃗⟩U ∈ U ∧ ∃z(z ∈
U ∧ 𝜓[y⃗, z, p⃗]). By thededuction theorem, the formula ⟨y⃗⟩U ∈ Y ⇒ ⟨y⃗⟩U ∈ U ∧ ∃z(z ∈
U ∧ 𝜓[y⃗, z, p⃗]) is deduced in the propositional calculus.

Conversely, let ⟨y⃗⟩U ∈ U ∧ ∃z(z ∈ U ∧ 𝜓[y⃗, z, p⃗]). By axiomA2.2, ⟨y⃗, z⟩U ≡ ⟨⟨y⃗⟩U ,
z⟩U ∈ U. Consequently, ⟨y⃗⟩U ∈ U ∧ ∃z(z ∈ U ∧ ⟨y⃗, z⟩U ∈ U ∧ 𝜓[y⃗, z, p⃗]). Applying 𝜁,
weget ⟨y⃗⟩U ∈ U ∧ ∃z(z ∈ U ∧ ⟨y⃗, z⟩U ∈ Z). Using𝜒,weobtain ⟨y⃗⟩U ∈ Y. By thededuc-
tion theorem, the formula ⟨y⃗⟩U ∈ Y ∧ ∃z(z ∈ U ∧ 𝜓[y⃗, z, p⃗]) ⇒ ⟨y⃗⟩U ∈ Y is deduced
in the propositional calculus.

By the generalization rule, we deduce the formula ∀y⃗(⟨y⃗⟩U ∈ Y ⇔ ⟨y⃗⟩U ∈ U ∧𝜑[y⃗, p⃗]).
Thus, the assertion is proven for s.
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Corollary 1. Let 𝜑[x, p⃗] be a U-predicative formula such that the substitution 𝜑[x ‖
y, p⃗] is admissible. Then, the formula ∀U(U⋈ ⇒ ∃Y∀y(y ∈ Y ⇔ y ∈ U ∧ 𝜑[y, p⃗])) is
deducible in the LTS*.

Theorem 1. Let 𝜑[x, p⃗] be an X-predicative formula such that the substitution 𝜑[x ‖
y, p⃗] is admissible. Then, the formula ∀X∃Y∀y(y ∈ Y ⇔ y ∈ X ∧ 𝜑[y, p⃗]) is deducible
in the LTS*.

Proof. Instead of 𝜑[x, p⃗], we shall write simply 𝜑[x].
By the universality and transitivity axioms A6 and A7, there is a universal class U

such that X ⊂ U. Check that the formula 𝜑[x] is equivalent to some U-predicative for-
mula 𝜑[x].

Suppose that 𝜑 contains the subformula 𝜉 ≡ ∀x𝜀 or 𝜂 ≡ ∃x𝜀. By assumption,
𝜉 = ∀x(x ∈ X ⇒ 𝛾) and 𝜂 = ∃x(x ∈ X ∧ 𝛿). Consider the formulas 𝜉 ≡ ∀x(x ∈ U ⇒
(x ∈ X ⇒ 𝛾)) and 𝜂 ≡ ∃x(x ∈ U ∧ x ∈ X ∧ 𝛿). It is clear that the formula 𝜉 ⇒ 𝜉 is
deducible in LTS*. Conversely, suppose that 𝜉 holds and x ∈ X. Since X ⊂ U, we get
x ∈ U. It follows from 𝜉 that 𝛾 holds. Hence, by the deduction theorem, the formula
x ∈ X ⇒ 𝛾 is deduced in LTS*. By the generalization rule, the formula 𝜉 is deduced.
Again, by the deduction theorem we deduce 𝜉 ⇒ 𝜉. Hence,the equivalence 𝜉 ⇔ 𝜉 is
deduced in the LTS*. Similarly, the equivalence 𝜂 ⇔ 𝜂 is deduced. These equivalences
imply that the formula 𝜑 is equivalent to some U-predicative formula 𝜑.

Consider the U-predicative formula x ∈ X ∧ 𝜑[x]. By Corollary 1 to Proposition 1,
there exists a class Y such that 𝜒 ≡ ∀y(y ∈ Y ⇔ y ∈ U ∧ y ∈ X ∧ 𝜑[y]). It is clear that
𝜒 implies the formula y ∈ Y ⇒ y ∈ X ∧ 𝜑[y]. Let y ∈ X ∧ 𝜑[y]. Since X ⊂ U, using 𝜒,
we deduce y ∈ Y. By the deduction theorem, the formula y ∈ X ∧ 𝜑[y] ⇒ y ∈ Y is
deduced in the LTS*. Hence, the formula 𝜒 implies the formula 𝜓 ≡ ∀y(y ∈ Y ⇔ y ∈
X ∧ 𝜑[y]). Finally, by logical tools we deduce the formula ∀X∃Y𝜓.
Theorem 2 (The Zakharov theorem on the finite axiomatization of the LTS). The theo-
ries LTS and LTSf are deductively equivalent.

Proof. It follows from Theorem 1 that the LTS is weaker than the LTSf .
On the other hand, it is clear that axioms A2.3 –A2.15 are specific cases of ax-

iom scheme AS2. Axiom A2.1 is deduced in the LTS by virtue of Corollary 3 to Theo-
rem 1 (B.3.5). If U is a universal class and A, B ∈ U, then by Lemma 2 (B.1.1) {A, B}U ∈
U. But by Lemma 3 (B.3.2) {A, B} = {A, B}U . This means that axiom A2.2 is deduced in
the LTS. Therefore, the LTSf is weaker than the LTS.

B.7.3 The finite axiomatization of the NBG set theory by P. Bernays

Here, we shortly consider the finite axiomatization of the NBG set theory discovered
and proven by P. Bernays [1968].
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Further, as in A.6.2, the formula ∃X(A ∈ X) meaning that the class A is a set
is denoted by S(A). All proper axioms and axioms schemes of NBG was listed also
in A.6.2.

Associate axiom scheme AS2 with explicit axioms A2.1 –A2.9 stated below.
A2.1. (The unordered pair axiom.)

∀a, b(S(a) ∧ S(b) ⇒ ∃Y(S(Y) ∧ ∀y(S(y) ⇒ (y ∈ Y ⇔ (y = a ∨ y = b))))).
A2.2. (The specification axiom for a product.)

∀A∃Y∀y(S(y) ⇒ (y ∈ Y ⇔ ∃a, v(S(a) ∧ S(v) ∧ a ∈ A ∧ y = ⟨a, v⟩))).
A2.3. (The first specification axiom for a permutation.)

∀A∃Y∀y(S(y) ⇒ (y ∈ Y ⇔ ∃u, v(S(u) ∧ S(v) ∧ y = ⟨u, v⟩ ∧ ⟨v, u⟩ ∈ A))).
A2.4. (The second specification axiom for a permutation.)

∀A∃Y∀y(S(y) ⇒ (y ∈ Y ⇔ ∃u, v, w(S(u) ∧ S(v) ∧ S(w) ∧ y

= ⟨u, v, w⟩ ∧ ⟨v, w, u⟩ ∈ A))).
A2.5. (The third specification axiom for a permutation.)

∀A∃Y∀y(S(y) ⇒ (y ∈ Y ⇔ ∃u, v, w(S(u) ∧ S(v) ∧ S(w) ∧ y

= ⟨u, v, w⟩ ∧ ⟨u, w, v⟩ ∈ A))).
A2.6. (The specification axiom for membership.)

∃Y∀y(S(y) ⇒ (y ∈ Y ⇔ ∃u, v(S(u) ∧ S(v) ∧ y = ⟨u, v⟩ ∧ u ∈ v))).
A2.7. (The specification axiom for a complement.) ∀A∃Y∀y(S(y) ⇒ (y ∈ Y ⇔ y ∉ A)).

A2.8. (The specification axiom for binary intersection.)

∀A∀B∃Y∀y(S(y) ⇒ (y ∈ Y ⇔ (y ∈ A ∧ y ∈ B))).
A2.9. (The specification axiom for a domain of definition.)

∀A∃Y∀y(S(y) ⇒ (y ∈ Y ⇔ ∃z(S(z) ∧ ⟨y, z⟩ ∈ A))).
The theory of classes and sets determined by axioms A1, A2.1 –A2.9 will be denoted
by NBG*. Introduce in the NBG* some basic notions.

 EBSCOhost - printed on 2/10/2023 4:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



358 | B.7 The finite axiomatizability of the LTS and the NBG set theory

The set Y in axiom A2.1 is unique by A1. It is called the unordered pair of the sets a
and b and is denoted by {a, b}. It has a and b as its only members.

If a is a set, then the singleton {a} is the set {a, a} consisting of exactly one ele-
ment a.

Theorderedpair of a and b is definedbyKuratovski’s formula ⟨a, b⟩ ≡ {{a}, {a, b}}.
Following the proof of Proposition 2 (1.1.6) and using in it axiom A2.1 instead of axiom
scheme AS2, one can prove that ⟨a, b⟩ = ⟨a, b⟩ implies a = a and b = b.

The ordered triple of a, b, and c is defined as ⟨a, b, c⟩ ≡ ⟨⟨a, b⟩, c⟩. Similarly,
the ordered suits of sets a1, . . . , an can be defined by induction as ⟨a1, . . . , an⟩ ≡⟨⟨a1, . . . , an−1⟩, an⟩.
Lemma 1. In the NBG*, the formula ∃Y∀y(S(y) ⇒ (y ∈ Y ⇔ ∃A(y ∈ A))) is deduced.
Proof. Consider the class X from axiom A2.6. By axiom A2.9 for X, there is the class Y
such that 𝜉 ≡ ∀y(S(y) ⇒ (y ∈ Y ⇔ ∃z(S(z) ∧ ⟨y, z⟩ ∈ X))). Then, for every y ∈ Y, we
have ⟨y, z⟩ ∈ X and ⟨y, z⟩ = ⟨u, v⟩ for some sets u and v. This implies y = u and z =
v, and therefore, y ∈ z. By the deduction theorem, we deduce the formula y ∈ Y ⇒
∃A(y ∈ A).

Conversely, let y ∈ A for some class A. Then, {y} is a set and y ∈ {y}. Denote {y}
by z. Consider the set x ≡ ⟨y, z⟩. Then, usingA2.6,we infer that x ∈ X. By thededuction
theorem, we deduced the formula ∃A(y ∈ A) ⇒ y ∈ Y.

Thus, we have the equivalence y ∈ Y ⇔ ∃A(y ∈ A) and the formula 𝜂 ≡ S(y) ⇒
(y ∈ Y ⇔ ∃A(y ∈ A)). Applying the generalization rule, we get the formula ∀y(𝜂). As a
result, we deduce the necessary formula ∃Y∀y(𝜂).
The class Y in this lemma is unique by A1. It is called the universe of all sets and is
denoted by U.

Lemma 2. In the NBG*, the formula ∃Z∀z(S(z) ⇒ (z ∈ Z ⇔ ∀A(z ∉ A))) is deduced.
Proof. According to axiom A2.7, for the class U, there is a class Z such that 𝜁 ≡
∀z(S(z) ⇒ (z ∈ Z ⇔ z ∉ U)).

Let S(z) and z ∈ Z. Then, z ∉ U implies ∀A(z ∉ A). By the deduction theorem, we
deduce the formula z ∈ Z ⇒ ∀A(z ∉ A).

Conversely, let S(z) and ∀A(z ∉ A). Then, z ∉ U. Hence, by 𝜁 we infer that z ∈ Z.
By the deduction theorem, we obtain the formula ∀A(z ∉ A) ⇔ z ∈ Z.

Thus, we have the equivalence z ∈ Z ⇔ ∀A(z ∉ A) and the formula 𝜃 ≡ S(z) ⇒
(z ∈ Z ⇔ ∀A(z ∉ A)). Applying the generalization rule, we get the formula ∀z(𝜃). As
a result, we deduce the necessary formula ∃Z∀z(𝜂).
The class Z in this lemma is unique by A1. It is called the empty class and is denoted
by⌀.
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Thus, axioms A1, A2.1 –A2.9 gave the opportunity to prove the existence of the
empty class ⌀. Unfortunately, they do not give the opportunity to prove that ⌀ is a
set. Therefore, we need some other axioms, in particular, the infinity axiom (A7), to
assert that ⌀ is a set. These detailed reasoning about the empty set ⌀ allows us to
avoid using the explicit empty set axiom presented in [1997, 4.1].

But explicit axioms A1, A2.1 –A2.9 allow us to eliminate axiom scheme AS2.
For m ⩾ 1 and n ⩾ 0, consider the list of variables x⃗, p⃗ ≡ x1, . . . , xm , p1, . . . , pn. If𝜑 is a formula whose variables occur among the symbol-string x⃗, p⃗ only, then we shall

write 𝜑[x⃗, p⃗].
The following proposition was proven by P. Bernays.

Proposition 1. Let 𝜑[x⃗, p⃗] be a predicative formula such that the substitution 𝜑[x⃗ ‖
u⃗, p⃗] is admissible. Then, the formula∃Y∀y(S(y) ⇒ (y ∈ Y ⇔ ∃u1, . . . , um(S(u1) ∧ . . . ∧
S(um) ∧ y = ⟨u1, . . . , um⟩ ∧ 𝜑[u⃗, p⃗]))) is deducible in the NBG*.
The proof of this remarkable result may be carried out in amanner similar to the proof
of Proposition 1 (B.7.2).

Corollary 1. Let 𝜑[x, p⃗] be a predicative formula such that the substitution 𝜑[x ‖ y, p⃗] is
admissible. Then, the formula ∃Y∀y(y ∈ Y ⇔ ∃Z(y ∈ Z) ∧ 𝜑[y, p⃗]) is deducible in the
NBG*.

The theory of classes and sets determined by axioms A1, A2.1 –A2.9, A3 –A8 will be
denoted by NBGf .

Theorem 1 (The Bernays theorem on the finite axiomatization of the NBG set theory).
The theories NBG and NBGf are deductively equivalent.

Proof. Corollary 1 to Proposition 1 shows that the NBG is weaker than the NBGf .
On the other hand, it is clear that axioms A2.2 –A2.9 are specific cases of axiom

schemeAS2. AxiomA2.1 is deduced in the NBG by virtue of Lemma 4 (1.1.6). Therefore,
the NBGf is weaker than the NBG.
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C Compactness theorem for generalized
second-order language

Introduction

For the first-order language, the compactness theorem was proven by K. Gödel and
A. I. Maltsev (see e.g. [Tourlakis, 2003a, 1.5.42]). It was also proven by J. Loś [1955]
by means of the method of ultraproducts (see also [Ershov and Palyutin, 1984, § 17],
[Maltsev, 1973, 8.3], [Mendelson, 1997, 2.14]).

Unfortunately, for the usual second-order language (see e.g. [Maltsev, 1973, § 6],
[Mendelson, 1997, Appendix], [Takeuti, 2013, § 16]) the compactness theorem does
not hold (see e.g. [Mendelson, 1997, Appendix], [Boolos et al., 2007, §18]). Moreover,
the method of ultraproducts is also inapplicable to second-order models.

A possible way out of this situation is to refuse the most vulnerable place in
the construction of ultraproducts connected with the factorization with respect to
an ultrafilter, i. e. to stay working with the ordinary non-factorized product. This
refusal compels us instead of the single usual set–theoretical equality = to use sev-
eral generalized equalities ≈first and ≈second for first and second orders, and instead
of the single usual set-theoretical belonging ∈ to use several generalized belongings
<−𝜏. By this reason, it is necessary to refuse the usual set-theoretical interpretation
(𝛾(x0), . . . , 𝛾(xk)) ∈ 𝛾(u) of the second basic (after equality) atomic formula
(x0, . . . , xk)u and to replace it by the generalized interpretation (𝛾(x0), . . . ,𝛾(xk))<−𝜏𝛾(u), where x𝜏ii are variables of the first-order types 𝜏i, u𝜏 is a variable of
the second-order type 𝜏 = [𝜏0, . . . , 𝜏k] (i. e. predicate), and 𝛾 is some evaluation of
variables on some mathematical system U.

This appendix is devoted to rigorous development of the expressed general idea.
A short presentation of this idea was announced in [Zakharov, 2008b]; the complete
proof was given in [Zakharov and Yashin, 2014].

In the capacity of initial formulas, the formulas of the following two forms
were taken: the formula y𝜎𝛿𝜎z𝜎 for the generalized equality 𝛿𝜎 and the formula
(x𝜏00 , . . . , x𝜏kk )𝜀𝜏u𝜏 for the generalized belonging 𝜀𝜏, where y𝜎 and z𝜎 are the variables of
the first- or second-order type 𝜎 and x𝜏ii and u𝜏 are the variables of the first-order types𝜏i and the second-order type 𝜏 ≡ [𝜏0, . . . , 𝜏k], respectively.

These atomic formulas are interpreted on an evaluated mathematical system
⟮U, 𝛾⟯ (with an evaluation 𝛾 of variables on U) in the following generalized way:
𝛾(y) ≈𝜎 𝛾(z) and (𝛾(x0), . . . , 𝛾(xk))<−𝜏𝛾(u), where ≈𝜎 is a generalized ratio of equality
and <−𝜏 is a generalized ratio of belonging. Generalized equalities and generalized
belongings are connected with each other by the initial principle of change of equals
(see axiom E4 from C.1.3).

More exactly, we introduce a generalized second-order signature Σg2 containing, in
addition to individual and predicate constants and variables, the symbols 𝛿𝜏 and 𝜀𝜏.
https://doi.org/10.1515/9783110550948-004
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With respect to this signature formulas𝜑 in the language L(Σg2 ) are defined by common
induction, when we start from the above-mentioned atomic formulas.

To give a semantics of the language L(Σg2 ), wedefinemathematical systems U of the
signature Σg2 . The satisfaction of a formula 𝜑 on a system U with respect to an evaluation
of variables 𝛾 is defined according to the above-mentioned generalized interpretation
of the atomic formulas (in notation U ⊨ 𝜑[𝛾]).

The semantics for the language L(Σg2 ) presented in this appendix differs both
from the standard semantics (see [Mendelson, 1997, Appendix], [Takeuti, 2013, §16])
and from the Henkin semantics (see [Mendelson, 1997, Appendix], [Takeuti, 2013, §21],
[Rossberg, 2004; Shapiro, 1991; Väänänen, 2001]), which restricts the range of values
of the evaluation 𝛾(x𝜏) for a variable x𝜏 of a second-order type 𝜏 by some subset of the
set P(𝜏(X)) of the terminal 𝜏(X) of the mathematical system U ≡ ⟮X, S⟯.

In this appendix, the following generalized compactness theorem is proven:
Let Φ be a set of formulas of the language L(Σg2 ). Let for every finite subset f of the

set Φ there exist a mathematical system Uf of the signature Σg2 and an evaluation of
variables 𝛾f on the system Uf such that Uf ⊨ 𝜑[𝛾f ] for every formula 𝜑 ∈ f . Then, there
exist a mathematical system U of the signature Σg2 and an evaluation of variables 𝛾 on
the system U such that U ⊨ 𝜑[𝛾] for every formula 𝜑 ∈ Φ (see Theorem 1 (C.3.3)).

This system U is constructed with the help of some ultrafilter starting from the
systems Uf by means of the method of infraproducts based on the refusal of the Łós
factorization.

The most delicate point in the proof of the generalized compactness theorem is
the demonstration of the property of infrafiltration for a quantified formula ∃x𝜏𝜓 for
a variable x𝜏 of a second-order type 𝜏 = [𝜏0 . . . , 𝜏k], which requires some preliminary
assertions (see Propositions 2 (C.2.4) and 1 (C.3.2)).

To enlarge the area of possible applications of the above-mentioned generalized
compactness theorem, it is proven in a polygrade language with basic and auxil-
iary grades. Therefore, interpretations are defined on polygrade domains of the form
[A0, . . . , Am , K0, . . . , Kn−1], where K0, . . . , Kn−1 are the fixed auxiliary sets (which are
absent when n = 0). It allows to consider in capacity of models modules AK over the
fixed ring K.

The presence of the suite H ≡ [K0, . . . , Kn−1] of the fixed auxiliary sets requires
introducing the additional condition of H-concordance of mathematical systems U ≡
⟮X, S⟯ and V ≡ ⟮Y , T⟯, where S and T are the polygrade superstructures over the sup-
ports X ≡ [A0, . . . , Am , K0, . . . , Kn−1] and Y ≡ [B0, . . . , Bm , K0, . . . , Kn−1]. This condi-
tion means the similarity of the systems U and V with respect to all elements of the
signature Σg2 connnected with the fixed auxiliary suite H. Also, we use the similar con-
dition of H-concordance of an evaluation 𝛾 on the system U and an evaluation 𝛿 on the
system V. In turn, this entails the necessity of introducing the additional condition of
H-concordance in defining the satisfactions U ⊨ (∃x𝜏𝜑)[𝛾] and U ⊨ (∀x𝜏𝜑)[𝛾], which
is not required for n = 0, i. e. when the auxiliary suite is absent.

At the end of the appendix, the method of infraproducts is applied for the con-
struction of models of the second-order generalized Peano–Landau arithmetic. The
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supports of these models are the generalized Baire sets N
F
0, which are uncountable in

general.
In this appendix we fix any rich axiomatic set theory ST such as ZF, NBG, LTS, and

so on. Therefore, the general term set in ST can mean the set in ZF, the class in NBG
and LTS, and so on.

C.1 Types, formations, terminals, signatures, and formulas

C.1.1 Types

For fixed integers m, n ∈ 𝜔, define by induction the semitypes and the types:
1) for any i ∈ m + 1, the symbol-string ⟨i, 1⟩ is the semitype and the type;
2) for any j ∈ n the symbol-string, ⟨j, 0⟩ is the semitype and the type;
3) if 𝜏 is a type, then 𝜏 is the semitype:
4) if 𝜏 is a semitype, then [𝜏] is the type;
5) if 𝜏0, . . . , 𝜏k are semitypes and k ⩾ 1, then (𝜏0, . . . , 𝜏k) is the semitype.
This definition is a generalization of the corresponding definition from [Takeuti, 2013,
§ 20].

Further, instead of [(𝜏0, . . . , 𝜏k)], we shall write simply [𝜏0, . . . , 𝜏k]. Thus, the
notation [𝜏0, . . . , 𝜏k]may be used for k ⩾ 0.

Semantics of semitypes and types will be explained in the next section.
Types ⟨i, 1⟩ and ⟨j, 0⟩will be called the first-order types. If 𝜏0, . . . , 𝜏k are first-order

types and k ⩾ 0 then [𝜏0, . . . , 𝜏k] will be called the second-order type.
For a type 𝜏 ≡ [𝜏0, . . . , 𝜏k]with k ⩾ 0, the types 𝜏0, . . . , 𝜏k will be called the parents

of the type 𝜏 and will be denoted by p0𝜏,. . . , pk𝜏, respectively. Consider the set P(𝜏) ≡{p0𝜏, . . . , pk𝜏} of all parents of the type 𝜏.
For any first-order type 𝜏, put formally p𝜏 ≡ 𝜏 and P(𝜏) ≡ {p𝜏} = {𝜏}.
With any type 𝜏, we associate the semitype ̌𝜏 of the type 𝜏 as follows:

1) if 𝜏 is a first-order type, then ̌𝜏 ≡ 𝜏;
2) if 𝜏 = [𝜏1] and 𝜏1 is a semitype, then ̌𝜏 ≡ 𝜏1.
In other words, the semitype of a type is obtained by omitting the square brackets.

Auxiliary types are defined by induction in the following way:
1) any type of the form ⟨j, 0⟩ is an auxiliary type for every j ∈ n;
2) if 𝜏 is an auxiliary type, then [𝜏] is the auxiliary type;
3) if 𝜏0, . . . ,𝜏k are auxiliary types and k ⩾ 1, then [𝜏0, . . . , 𝜏k] is an auxiliary type.
A type will be called basic if it is not auxiliary.

Thus, for a second-order type 𝜏 ≡ [𝜏0, . . . , 𝜏k], the index set k + 1 is decomposed
on two subsetsM(𝜏) and N(𝜏), so that for any 𝜇 ∈ M(𝜏) the type 𝜏𝜇 is basic and for any𝜈 ∈ N(𝜏) the type 𝜏𝜈 is auxiliary.
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C.1.2 Formations and terminals

Further in the appendix, K0, . . . , Kn−1 are fixedauxiliary sets. If n = 0, then all the fixed
sets are absent.

Define the formation G ≡ [P0, . . . , Pl−1] of the rank l ∈ 𝜔 in the following way:
1) G ≡ [P0, . . . , P−1] ≡ ⌀ for l = 0;
2) G ≡ [P0, . . . , P0] ≡ P for l = 1;
3) G ≡ [P0, . . . , Pl−1] ≡ (Pi | i ∈ l) ≡ (P0, . . . , Pl−1) for l ⩾ 2.
Further on, we fix the auxiliary formation H ≡ [K0, . . . , Kn−1] of the rank n ∈ 𝜔.

Define the formation X ≡ [A0, . . . , Am , K0, . . . , Kn−1] of the rank m+1|n over the set
H in the following way:
1) X ≡ [A0, . . . , Am , K0, . . . , Kn−1] ≡ [A0, . . . , Am] for n = 0 and m ∈ 𝜔;
2) X ≡ [A0, . . . , Am , K0, . . . , Kn−1] ≡ ⟨[A0, . . . , Am], [K0, . . . , Kn−1]⟩ for n ⩾ 1 and

m ∈ 𝜔.
The sets A0, . . . , Am are called basic in X. A formation Xmay be without auxiliary sets
but should contain at least one basic set.

Define the terminals 𝜏(X) of the semitypes 𝜏 over the formation X by induction:
1) ⟨i, 1⟩(X) ≡ Ai;
2) ⟨j, 0⟩(X) ≡ Kj;
3) if 𝜏 is a semitype, then [𝜏](X) ≡ P(𝜏(X)), wherePdenotes taking the set of all parts

of the intended set (see 1.1.6);
4) if 𝜏0, . . . , 𝜏k are semitypes and k ⩾ 1, then (𝜏0, . . . , 𝜏k)(X) ≡ 𝜏0(X) × . . . × 𝜏k(X).
Thus, for semitypes 𝜏0, . . . , 𝜏k with k ⩾ 1, for the type 𝜏 ≡ [𝜏0, . . . , 𝜏k], and for its semi-
type ̌𝜏 = (𝜏0, . . . , 𝜏k), the following equalities 𝜏(X) = P(𝜏0(X) × . . . × 𝜏k(X)) and ̌𝜏(X) =
𝜏0(X) × . . . × 𝜏k(X) are fulfilled.

C.1.3 Signatures and formulas

A non-empty set Θ of types 𝜏 will be called the type domain of rank m + 1|n if 𝜏 ∈
Θ implies p𝜏 ∈ Θ for every parent p𝜏 of the type 𝜏. In the type domain Θ, select the
belonging type subdomain Θb ≡ {𝜏 ∈ Θ | ∃k ∈ 𝜔∃𝜏0, . . . , 𝜏k ∈ Θ(𝜏 = [𝜏0, . . . , 𝜏k])}.

A collection Σc ≡ ⟮Σ𝜏c | 𝜏 ∈ Θ⟯ of collections Σ𝜏c ≡ ⟮𝜎𝜏𝜔 | 𝜔 ∈ Ω𝜏⟯ of constants 𝜎𝜏𝜔 of
the types 𝜏 will be called the signature of constants of the type domain Θ. Sets Ω𝜏 may
be empty, and then Σ𝜏c = ⌀.

The constants 𝜎𝜏𝜔 of the first-order type 𝜏 are called individual or objective. The
constants of other types are called predicate.

A collection Σe ≡ ⟮𝛿𝜏 | 𝜏 ∈ Θ⟯ of binary predicate symbols of (generalized) equali-
ties 𝛿𝜏 of the types 𝜏 will be called the signature of (generalized) equalities of the type
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domain Θ. It follows from the definition of the type domain that for every equality
symbol 𝛿𝜏, the collection Σe contains necessarily the equality symbols 𝛿p𝜏 for every
parent p𝜏 of the type 𝜏.

A collection Σb ≡ ⟮𝜖𝜏 | 𝜏 ∈ Θ⟯ of binary predicate symbols of (generalized) belong-
ings 𝜖𝜏 of the types 𝜏 will be called the signature of (general) belongings of the type
domain Θ.

A collection Σv ≡ ⟮Σ𝜏v | 𝜏 ∈ Θ⟯ of denumerable sets Σ𝜏v of variables x𝜏, y𝜏, . . . of the
types 𝜏 will be called the signature of variables of the type domain Θ. The sets Σ𝜏v may
be empty. The variables x𝜏, y𝜏, . . . of the first-order types 𝜏 are called individual or
objective. The variables of other types are called predicate.

Further, we shall always assume that for every type 𝜏 ∈ Θ there are either con-
stants or variables of this type.

The quadruple Σg ≡ Σc|Σe|Σb|Σv will be called the (polygrade) generalized signa-
ture of the rank m + 1|n or the signature with generalized equalities and belongings.

The language L(Σg) of the generalized signature Σg consists of:
1) all types 𝜏 from the type domain Θ;
2) all members of all signatures from Σg;
3) logical symbols ¬, ∨, ∧,⇒, ∀, and ∃;
4) parenthesis.

If the type domain Θ contains first- and second-order types only and at least one
second-order type, then we shall say that the signature Σg and the language L(Σg)
have the second order (see [Mendelson, 1997, Appendix], [Dalen, 1997, 4]). In this case,
the notations Σg2 and L(Σg2 )will be used.

Constants and variables of a type 𝜏 are called terms of the type 𝜏 of the
language L(Σg).

Atomic formulas of the language L(Σg) are defined in the following way:
1) if q and r are terms of a type 𝜏 ∈ Θ, then q𝛿𝜏r is an atomic formula;
2) if 𝜏0, . . . , 𝜏k are types from Θ for k ⩾ 0, 𝜏 ≡ [𝜏0, . . . , 𝜏k] ∈ Θb, q

𝜏0
0 , . . . , q

𝜏k
k are

terms of the types 𝜏0, . . . , 𝜏k, respectively, and r𝜏 is a term of the type 𝜏, then
(q𝜏00 , . . . , q𝜏kk )𝜖𝜏r𝜏 is an atomic formula; in particular, for k = 0, the symbol-string
q𝜏00 𝜖[𝜏0]r[𝜏0] is an atomic formula.

The formulas of the language L(Σg) are constructed from atomic ones with the use of
connectives∨,∧,¬,⇒, quantifiers∃x𝜏 and∀x𝜏with respect to variables x𝜏, and paren-
thesis.

The logical axiom schemes of the (polygrade) type theory in the language L(Σg)
of the generalized signature Σg are the schemes of the predicate calculus (see 1.1.4),
where variables and terms substituting each other must be of the same type
𝜏 ∈ Θ.

In addition to these axiom schemes, consider the following equality axioms for
types 𝜏 ∈ Θ.
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E1. ∀x𝜏(x𝛿𝜏x).
E2. ∀x𝜏, y𝜏(x𝛿𝜏y ⇒ y𝛿𝜏x).
E3. ∀x𝜏, y𝜏, z𝜏(x𝛿𝜏y ∧ y𝛿𝜏z ⇒ x𝛿𝜏z).
E4. (The initial principle of change of equals.) ∀x𝜏00 , y𝜏00 , . . . , x𝜏kk , y𝜏kk , u𝜏, v𝜏(x0𝛿𝜏0

y0 ∧ . . . ∧ xk𝛿𝜏k yk ∧ u𝛿𝜏v ⇒ ((x0, . . . , xk)𝜖𝜏u ⇔ (y0, . . . , yk)𝜖𝜏v))), where 𝜏 ≡[𝜏0, . . . , 𝜏k].
The inference rules in the depicted type theory are:

𝜑, 𝜑 ⇒ 𝜓
𝜓 (MP) and

𝜑(x𝜏)
∀x𝜏𝜑(x𝜏) (Gen).

If there are non-logical axioms or axiom schemes written by second-order formulas
of the language L(Σg2 ), we shall say that a (mathematical) generalized second-order
theory is given.

C.2 Mathematical systems of the signature Σg with generalized
equalities and belongings

C.2.1 The definition of a mathematical system of the generalized signature Σg

Let Σg be a fixed signature of the rank m + 1|n defined in C.1.3. Fix also a formation
X ≡ [A0, . . . , Am , K0, . . . , Kn−1] of the rank m + 1|n.

For the formation X and the signature Σg, consider the following collections:
1) the collection Sc ≡ ⟮S𝜏c | 𝜏 ∈ Θ⟯ of collections S𝜏c ≡ ⟮s𝜏𝜔 | 𝜔 ∈ Ω𝜏⟯ of constant struc-

tures s𝜏𝜔 ∈ 𝜏(X) of the types 𝜏;
2) the collection Se ≡ ⟮≈𝜏| 𝜏 ∈ Θ⟯ of generalized ratios of equality ≈𝜏⊂ 𝜏(X) × 𝜏(X) of

the types 𝜏 on the sets 𝜏(X), containing the usual set-theoretic ratios of equality =
on the sets 𝜏(X), i. e. such ratios ≈𝜏 that for every elements r, s ∈ 𝜏(X) the equality
r = s implies the generalized equality r ≈𝜏 s;

3) the collection Sb ≡ ⟮<−𝜏 | 𝜏 ∈ Θb⟯ of generalized ratios of belonging <−𝜏 ⊂ ̌𝜏(X) ×𝜏(X)
of the types 𝜏, containing the usual set-theoretic ratios of belonging ∈ from the
sets ̌𝜏(X) into the sets 𝜏(X), i. e. such ratios <−𝜏 that for every elements p ∈ ̌𝜏(A) and
P ∈ 𝜏(X) the belonging p ∈ P implies the generalized belonging p<−𝜏P;

4) the collection Sv ≡ ⟮𝜏(X) | 𝜏 ∈ Θ⟯ of the terminals 𝜏(X) of the types 𝜏 over the
formation X.

The quadruple S ≡ ⟮Sc , Se , Sb , Sv⟯ of the above-mentioned collections will be called a
(polygrade) superstructure of the signature Σg over the formation X.

The pair U ≡ ⟮X, S⟯ will be called amathematical system of the generalized signa-
tureΣg with the support (carrier) X and the superstructure S. This notion is a generaliza-
tion of the notion of an algebraic system of the signature Σ1 (see [Ershov and Palyutin,
1984, § 15]).
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The mathematical system U ≡ ⟮X, S⟯ will be called also an interpretation of the
signature Σg on the support X.

Further, for a type 𝜏 = [𝜏0, . . . , 𝜏k] and elements p ≡ (p(0), . . . , p(k)), q ≡
(q(0), . . . , q(k)) ∈ ̌𝜏(X) = 𝜏0(X)×⋅ ⋅ ⋅×𝜏k(X) alongwith p(0) ≈𝜏0 q(0)∧⋅ ⋅ ⋅∧p(k) ≈𝜏k q(k),
we shall also write p ≈ ̌𝜏 q.

C.2.2 Concordance of mathematical systems of the generalized second-order
signature

Twomathematical systems U ≡ ⟮X, S⟯ and V ≡ ⟮Y , T⟯ of the signatureΣg2 will be called
H-concordant if:
1) for every auxiliary type 𝜏 ∈ Θ and every 𝜔 ∈ Ω𝜏, the constants s𝜏𝜔 ∈ 𝜏(X) and

t𝜏𝜔 ∈ 𝜏(Y) = 𝜏(X) coincide, where by the definition of terminals 𝜏(X) = 𝜏(Y);
2) for every auxiliary type 𝜏 ∈ Θ, the equalities ≈𝜏⊂ 𝜏(X) × 𝜏(X) and ≈𝜏⊂ 𝜏(Y) × 𝜏(Y)

coincide, where as above 𝜏(Y) × 𝜏(Y) = 𝜏(X) × 𝜏(X);
3) for every auxiliary type 𝜏 ∈ Θb, the belongings <−𝜏 ⊂ ̌𝜏(X) × 𝜏(X) and <−𝜏 ⊂ ̌𝜏(Y) ×

𝜏(Y) coincide, where by the same reason, ̌𝜏(Y) × 𝜏(Y) = ̌𝜏(X) × 𝜏(X);
4) for every suite p ≡ (p(0), . . . , p(k)) ∈ s𝜏𝜔 ⊂ ̌𝜏(X) = 𝜏0(X) × ⋅ ⋅ ⋅ × 𝜏k(X), there exists

a suite q ≡ (q(0), . . . , q(k)) ∈ t𝜏𝜔 ⊂ ̌𝜏(Y) = 𝜏0(Y) × ⋅ ⋅ ⋅ × 𝜏k(Y) such that q(𝜈) = p(𝜈),
and for every q, there exists p such that p(𝜈) = q(𝜈) for every 𝜈 ∈ N(𝜏) and every
type 𝜏 ≡ [𝜏0, . . . , 𝜏k], such that M(𝜏) ̸= ⌀ and N(𝜏) ̸= ⌀.

Theproperty ofH-concordancemeans the identity of the systemsU andV with respect
to all elements connected with the auxiliary set H.

The generalized equalities ≈𝜏 and the generalized belongings <−𝜏 admit some
additional conditions.

A system U will be called balanced if ∀P, Q ∈ 𝜏(X)(P ≈𝜏 Q ⇔ ∀p ∈ P∃q ∈ Q(q ≈ ̆𝜏

p) ∧ ∀q ∈ Q∃p ∈ P(p ≈ ̆𝜏 q)), where 𝜏0, . . . , 𝜏k ∈ Θ, k ⩾ 0, and 𝜏 ≡ [𝜏0, . . . , 𝜏k] ∈ Θ.
A system U will be called regular if ∀p ∈ ̆𝜏(X)∀P ∈ 𝜏(X)(p<−𝜏P ⇔ ∃q ∈ P(p ≈ ̆𝜏 q)),

where 𝜏0, . . . , 𝜏k ∈ Θ, k ⩾ 0, and 𝜏 ≡ [𝜏0, . . . , 𝜏k] ∈ Θ.
A system U will be called normal if ∀p, q ∈ 𝜎(X)(p ≈𝜎 q ⇔ p = q)∧∀p ∈ ̆𝜏(X)∀P ∈

𝜏(X)(p<−𝜏P ⇔ p ∈ P).
A system U will be called extensional if ∀P, Q ∈ 𝜏(X)(P ≈𝜏 Q ⇔ ∀p(p<−𝜏P ⇒

p<−𝜏Q) ∧ ∀q(q<−𝜏Q ⇒ q<−𝜏P)), where 𝜏 ∈ Θb.

C.2.3 Evaluations and models

An evaluation on a system U ≡ ⟮X, S⟯ of the signature Σg is a mapping 𝛾, defined on the
set of all variables of the signature Σg and associating with the variable x𝜏 of the type
𝜏 ∈ Θ, the element 𝛾(x𝜏) of the terminal 𝜏(X) (see [Ershov and Palyutin, 1984, § 16],
[Takeuti, 2013, 16.17]). The pair ⟮U, 𝛾⟯ consisting of the system U of the signature Σg
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and the evaluation 𝛾 on U will be called an evaluated mathematical system of the
signature Σg.

Evaluated mathematical systems ⟮U, 𝛾⟯ and ⟮V , 𝛿⟯ of the signature Σg2 will be
called H-concordant if:
1) the systems U and V are H-concordant;
2) for every auxiliary type 𝜏 ∈ Θ the evaluations 𝛾(x𝜏) ∈ 𝜏(X) and 𝛿(x𝜏) ∈ 𝜏(Y) = 𝜏(X)

coincide, i. e. 𝛾(x𝜏) = 𝛿(x𝜏) (see C.2.1);
3) for every suite p ≡ (p(0), . . . , p(k)) ∈ 𝛾(x𝜏) ⊂ ̌𝜏(X) = 𝜏0(X) × ⋅ ⋅ ⋅ × 𝜏k(X) there

exists a suite q ≡ (q(0), . . . , q(k)) ∈ 𝛿(x𝜏) ⊂ ̌𝜏(Y) = 𝜏0(Y) × ⋅ ⋅ ⋅ × 𝜏k(Y) such that
q(𝜈) = p(𝜈) and, for every q there exists p such that p(𝜈) = q(𝜈) for every 𝜈 ∈ N(𝜏)
and every type 𝜏 = [𝜏0, . . . , 𝜏k] such that M(𝜏) ̸= ⌀ and N(𝜏) ̸= ⌀.

The property ofH-concordancemeans the identity of the evaluated systems ⟮U, 𝛾⟯ and
⟮V , 𝛿⟯ with respect to all elements connected with the auxiliary set H.

An evaluation 𝛾 on a system U and an evaluation 𝛿 on a system V will be called
H-concordant if they satisfy conditions 2) and 3) from the previous definition.

Define the value q[𝛾] of a term q with respect to the evaluation 𝛾 on the system U in
the following way (see [Ershov and Palyutin, 1984, § 16], [Maltsev, 1973, § 6], [Mendel-
son, 1997, 2.2], [Shoenfield, 2001, 2.5]):
– if 𝜎𝜏𝜔 is a constant of a type 𝜏 ∈ Θ, then 𝜎𝜏𝜔[𝛾] ≡ s𝜏𝜔;
– if x𝜏 is a variable of a type 𝜏 ∈ Θ, then x𝜏[𝛾] ≡ 𝛾(x𝜏).
Define the satisfaction (translation as in A.1.3) of a formula 𝜑 of the language L(Σq2 ) on
a system U of the signature Σq2 with respect to an evaluation 𝛾 (in notation, U ⊨ 𝜑[𝛾])
by induction in the following way (see [Mendelson, 1997, 2.2], [Shoenfield, 2001, 2.5],
[Takeuti, 2013, 16.17]):
1) if q and r are terms of a type 𝜏 ∈ Θ and 𝜑 ≡ (q𝛿𝜏r), then U ⊨ 𝜑[𝛾] is equivalent to

q[𝛾] ≈𝜏 r[𝛾];
2) if 𝜏0, . . . , 𝜏k are types fromΘ for k ⩾ 0, 𝜏 ≡ [𝜏0, . . . , 𝜏k] ∈ Θ, q0, . . . , qk are terms of

the types 𝜏0, . . . ,𝜏k, respectively, r is a term of the type 𝜏, and 𝜑 ≡ (q0, . . . , qk)𝜖𝜏r,
then U ⊨ 𝜑[𝛾] is equivalent to (q0[𝛾], . . . , qk[𝛾])<−𝜏r[𝛾];

3) if 𝜑 ≡ ¬𝜓, then U ⊨ 𝜑[𝛾] iff U ⊨ 𝜓[𝛾] is not true;
4) if 𝜑 ≡ (𝜓 ∨ 𝜉), then U ⊨ 𝜑[𝛾] iff U ⊨ 𝜓[𝛾] or U ⊨ 𝜉[𝛾];
5) if 𝜑 ≡ (𝜓 ∧ 𝜉), then U ⊨ 𝜑[𝛾] iff U ⊨ 𝜓[𝛾] and U ⊨ 𝜉[𝛾];
6) if 𝜑 ≡ (𝜓 ⇒ 𝜉), then U ⊨ 𝜑[𝛾] iff that U ⊨ 𝜓[𝛾] implies U ⊨ 𝜉[𝛾];
7) if 𝜑 ≡ ∃x𝜏𝜓, then U ⊨ 𝜑[𝛾] is equivalent to U ⊨ 𝜓[𝛾] for some evaluation 𝛾

H-concordant with 𝛾 and such that 𝛾(y𝜎) = 𝛾(y𝜎) for every variable y𝜎 ̸= x𝜏;
8) if 𝜑 ≡ ∀x𝜏𝜓, then U ⊨ 𝜑[𝛾] is equivalent to U ⊨ 𝜓[𝛾] for every evaluation 𝛾

H-concordant with 𝛾 and such that 𝛾(y𝜎) = 𝛾(y𝜎) for every variable y𝜎 ̸= x𝜏.

Note that bringing into use in points 7) and 8) of this definition the additional (in
comparison with [Ershov and Palyutin, 1984, § 16], [Mendelson, 1997, 2.2], [Shoenfield,
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2001, 3.2]) property of H-concordance of the evaluations 𝛾 and 𝛾 is stipulated by the
initial polygrade structure of considered mathematical systems and by the presence
of the fixed auxiliary formation H ≡ [K0, . . . , Kn−1].

LetΦ be a set of formulas of the language L(Σq2 ). An evaluated mathematical sys-
tem ⟮U, 𝛾⟯ of the signature Σq2 will be called amodel for the set Φ if U ⊨ 𝜑[𝛾] for every
formula 𝜑 ∈ Φ (see [Ershov and Palyutin, 1984, § 17]).

A model ⟮U, 𝛾⟯ will be called balanced, regular, normal, extensional, etc. if the
system U is the same.

A model ⟮U, 𝛾⟯ for a set Φ will be called second-order if at least one formula from
Φ contains at least one second-order variable.

Remark that if a system U ≡ ⟮X, S⟯ is considered in an axiomatic set theory, then
the satisfaction of a closed formula 𝜑 of the language L(Σg2 ) with respect to any eval-
uation 𝛾 is reduced to correctness of the relativization 𝜑r of 𝜑 on the corresponding
terminals of the support X in this set theory.

In particular, since equality axioms E1 – E4 are closed formulas, their relativiza-
tions E1r –E4r take the following forms:

E1r ≡ ∀x ∈ 𝜏(X)(x ≈𝜏 x);
E2r ≡ ∀x, y ∈ 𝜏(X)(x ≈𝜏 y ⇒ y ≈𝜏 x);
E3r ≡ ∀x, y, z ∈ 𝜏(X)(x ≈𝜏 y ∧ y ≈𝜏 z ⇒ x ≈𝜏 z);
E4r ≡ ∀x0, y0 ∈ 𝜏0(X) . . . ∀xk , yk ∈ 𝜏k(X)∀u, v ∈ 𝜏(X)(x0 ≈𝜏0 y0 ∧ . . . ∧ xk ≈𝜏k yk∧

∧ u ≈𝜏 v ⇒ ((x0, . . . , xk) <−𝜏u ⇔ (y0, . . . , yk) <−𝜏v)), where 𝜏 ≡ [𝜏0, . . . , 𝜏k],
k ⩾ 0, and all types are in Θ.

The satisfaction of formulas E1r –E3r means that all generalized equalities ≈𝜏 are
equivalence relations on corresponding sets 𝜏(X), and the satisfaction of formula
E4r means the initial principle of change of equals in the atomic formula with the
generalized belonging <−𝜏.

Further on, we shall say that a system U of the signature Σg2 has true generalized
equalities and belongings if axioms E1 – E4 from C.1.3 are satisfied on U with respect
to some (and, consequently, to any) evaluation 𝛾. This means that formulas E1r –E4r

are correct for the system U in the used set theory.

C.2.4 The generalized equality of values of evaluations and satisfiability

For every formula 𝜑 of the language L(Σg2 ) we define the formula 𝜑∗ by induction:
1) 𝜑∗ ≡ 𝜑 for every atomic formula 𝜑;
2) (𝜓 ∧ 𝜉)∗ ≡ 𝜓∗ ∧ 𝜉∗;
3) (¬𝜓)∗ ≡ ¬𝜓∗;
4) (∃x𝜏𝜓)∗ ≡ ∃x𝜏𝜓∗;
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5) (𝜓 ∨ 𝜉)∗ ≡ ¬(¬𝜓∗ ∧ ¬𝜉∗);
6) (𝜓 ⇒ 𝜉)∗ ≡ ¬(𝜓∗ ∧ ¬𝜉∗);
7) (∀x𝜏𝜓)∗ ≡ ¬(∃x𝜏(¬𝜓∗)).
A formula𝜑 is said to be normalizable if for everymathematicalΣg2 -systemU and every
evaluation 𝛾 on U the following condition holds: U ⊨ 𝜑[𝛾] ⇔ U ⊨ 𝜑∗[𝛾].
Lemma 1. Let formulas𝜓 and 𝜉 be normalizable. Then, formulas𝜓∧𝜉, ¬𝜓,𝜓∨𝜉,𝜓 ⇒ 𝜉,
∀x𝜏𝜓, and ∃x𝜏𝜓 are normalizable too.
The proof of this lemma uses the definition of satisfiability and some well known
tautologies only, so it is omitted.

Proposition 1. Every formula of the language L(Σg2 ) of the generalized second-order
signature Σg2 is normalizable.
Proof. Denote byΦ the set of all formulas of the language L(Σg2 ). The subset of the setΦ consisting of formulas containing at most n ∈ 𝜔 logical symbols ¬, ∧, ⇒, ∨, ∃, ∀,
denote byΦn. It is clear thatΦ = ⋃⟮Φn | n ∈ 𝜔⟯.

Prove by the complete induction principle the following assertion A(n): every
formula 𝜑 ∈ Φ is normalizable.

If n = 0, then the formula 𝜑 is atomic, and so by the definition of the operation
𝜑 → 𝜑∗ we have 𝜑∗ ≡ 𝜑. Consequently, the assertion A(0) is true.

Suppose that for all m < n the assertion A(m) is true. Let 𝜑 ∈ Φn. If 𝜑 ≡ 𝜓 ∧ 𝜉,𝜑 ≡ ¬𝜓, 𝜑 ≡ ∃x𝜏𝜓, 𝜑 ≡ 𝜓 ∨ 𝜉, 𝜑 ≡ 𝜓 ⇒ 𝜉, or 𝜑 ≡ ∀x𝜏𝜓, then 𝜓, 𝜉 ∈ Φn−1. Therefore, by
the induction hypothesis, the formulas 𝜓 and 𝜉 are normalizable. By Lemma 1 the
formula 𝜑 is normalizable. Hence the assertion A(n) is true.
Proposition 2. Let U be a mathematical system of the second-order signature Σg2 with
true generalized equalities and belongings. Then, for every formula 𝜑 of the language
L(Σg2 ) and every H-concordant evaluations 𝛾 and 𝛿 on the system U such that 𝛾(x𝜏) ≈
𝜏𝛿(x𝜏) for every variable x𝜏 of every type 𝜏 ∈ Θ the properties U ⊨ 𝜑[𝛾] and U ⊨ 𝜑[𝛿] are
equivalent.

Proof. The set of all formulas 𝜑 of the language L(Σg2 ) constructed by induction from
the atomic formulas with the use of connectives ¬ and ∧ and quantifier ∃ denote byΨ.
The subset of the setΨ consisting of formulas containing atmost n ∈ 𝜔 logical symbols
¬, ∧, and ∃ denote by Ψn. It is clear that Ψ = ⋃⟮Ψn | n ∈ 𝜔⟯.

Prove by the complete induction principle the assertion A(n): for every formula
𝜑 ∈ Ψn and every mentioned evaluations 𝛾 and 𝛿 the assertion of the Proposition
holds.
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Let n = 0 and𝜑 ∈ Ψ0. Then,𝜑 is an atomic formula. At first consider the atomic for-
mula 𝜑 of the form q𝜏𝛿𝜏r𝜏. Suppose that q𝜏 = x𝜏 and r𝜏 = 𝜎𝜏𝜔. Then, U ⊨ 𝜑[𝛾] is equiv-
alent to 𝛾(x) ≈𝜏 s𝜏𝜔 and U ⊨ 𝜑[𝛿] is equivalent to 𝛿(x) ≈𝜏 s𝜏𝜔. Since, by our condition𝛾(x) ≈𝜏 𝛿(x), assuming U ⊨ 𝜑[𝛾] and using axioms E2r and E3r we infer U ⊨ 𝜑[𝛿]. The
inverse inference is checked in the same way. For the terms q𝜏 and r𝜏 of other forms
the reasons are quite similar.

Now, consider the atomic formula 𝜑 of the form (q𝜏00 , . . . , q𝜏kk )𝜀𝜏rk for 𝜏 ≡ [𝜏0, . . . ,𝜏k] ∈ Θb. Assume that q𝜏𝜆𝜆 = x𝜏𝜆𝜆 and r𝜏 = u𝜏 for some variables x𝜆 and u. Then,
U ⊨ 𝜑[𝛾] is equivalent to (𝛾(x0), . . . , 𝛾(xk)) <−𝜏𝛾(u) and U ⊨ 𝜑[𝛿] is equivalent to
(𝛿(x0), . . . , 𝛿(xk)) <−𝜏𝛿(u).

Suppose U ⊨ 𝜑[𝛾]. Since, by our condition, 𝛾(x𝜏𝜆𝜆 ) ≈𝜏𝜆 𝛿(x𝜏𝜆𝜆 ), using axiom E4r we
infer U ⊨ 𝜑[𝛿]. The inverse inference is checked in the sameway. For the terms q𝜏𝜆𝜆 and
r𝜏 of other kinds the reasons are quite similar.

Assume that assertion A(m) is true for every m < n. Let 𝜑 ≡ ∃x𝜏𝜓. Then, 𝜓 ∈ Ψn−1.
Let be given some H-concordant evaluations 𝛾 and 𝛿 such that 𝛾(x𝜏) ≈𝜏 𝛿(x𝜏).

Suppose U ⊨ 𝜑[𝛾]. It is equivalent to U ⊨ 𝜓[𝛾] for some evaluation 𝛾,
H-concordant with 𝛾 and such that 𝛾(y) = 𝛾(y) for any y𝜎 ̸= x𝜏.

Define an evaluation 𝛿 on U setting 𝛿(y) ≡ 𝛿(y) for every y𝜎 ̸= x𝜏 and 𝛿(x) ≡
𝛾(x). Then, 𝛿(y) = 𝛿(y) ≈𝜎 𝛾(y) = 𝛾(y) and 𝛿(x) = 𝛾(x), i. e. 𝛿(x) ≈𝜏 𝛾(x).

Check that the evaluations 𝛿 and 𝛾 are H-concordant. If 𝜎 is an auxiliary first-
order type, then 𝛿(y𝜎) ≡ 𝛿(y) = 𝛾(y) = 𝛾(y). If 𝜏 is an auxiliary first-order type, then
𝛿(x𝜏) = 𝛾(x𝜏).

Let 𝜎 and 𝜏 be second-order types. Let p ∈ 𝛿(y𝜎) = 𝛿(y). Since 𝛿 and 𝛾 are
H-concordant, for p there exists q ∈ 𝛾(y) such that q(𝜈) = p(𝜈) for every 𝜈 ∈ N(𝜎).
Since 𝛾 and 𝛾 are H-concordant, there exists r ∈ 𝛾(y) such that r(𝜈) = q(𝜈). Thus,
for p, there is r ∈ 𝛾(y) such that r(𝜈) = p(𝜈) for every 𝜈 ∈ N(𝜎). The inverse prop-
erty can be established in the same way. The property of H-concordancy for x𝜏 holds
automatically because 𝛿(x𝜏) ≡ 𝛾(x𝜏).

Since 𝛿 and 𝛾 are H-concordant in the above mentioned sense and 𝛿(x𝜏) ≈
𝛾(x𝜏), then, by our condition, U ⊨ 𝜓[𝛾] ⇔ U ⊨ 𝜓[𝛿]. Consequently, we obtain the
property U ⊨ 𝜓[𝛿]. By construction, 𝛿(y) = 𝛿(y) for every y𝜎 ̸= x𝜏.

Check that the evaluations 𝛿 and 𝛿 are H-concordant. If 𝜎 is an auxiliary first-
order type, then 𝛿(y𝜎) = 𝛿(y). If 𝜏 is an auxiliary first-order type, then 𝛿(x𝜏) = 𝛾(x) =
𝛾(x) = 𝛿(x).

Let 𝜎 and 𝜏 bee second-order types. Since 𝛿(y𝜎) = 𝛿(y), the property of
H-concordancy obviously holds. Let p ∈ 𝛿(x). Since 𝛿 and 𝛾 are H-concordant, we
see that there exists q ∈ 𝛾(x) such that q(𝜈) = p(𝜈). Since 𝛾 and 𝛾 are H-concordant,
there exists r ∈ 𝛾(x) = 𝛿(x) such that r(𝜈) = q(𝜈). Thus, r(𝜈) = p(𝜈) for every 𝜈 ∈ N(𝜏).
The inverse property is established in the same way.

By the definition of satisfiability, we conclude that U ⊨ 𝜑[𝛿]. The inverse inference
of U ⊨ 𝜑[𝛾] from U ⊨ 𝜑[𝛿] is established quite analogously.
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Now, let 𝜑 ≡ 𝜓 ∧ 𝜉. Then, 𝜓, 𝜉 ∈ Ψn−1. Consequently, U ⊨ 𝜓[𝛾] ⇔ U ⊨ 𝜓[𝛿] and
U ⊨ 𝜉[𝛾] ⇔ U ⊨ 𝜉[𝛿]. From here, (U ⊨ 𝜓[𝛾] ∧ U ⊨ 𝜉[𝛾]) ⇔ (U ⊨ 𝜓[𝛿] ∧ U ⊨ 𝜉[𝛿]). Thus,
U ⊨ 𝜑[𝛾] ⇔ U ⊨ 𝜑[𝛿].

Finally, let 𝜑 ≡ ¬𝜓. Then, 𝜓 ∈ Ψn−1. Consequently, U ⊨ 𝜓[𝛾] ⇔ U ⊨ 𝜓[𝛿]. From
here, U ⊨ 𝜑[𝛾] ⇔ ¬(U ⊨ 𝜓[𝛾]) ⇔ ¬(U ⊨ 𝜓[𝛿]) ⇔ U ⊨ 𝜑[𝛿].

This proves that the assertion A(n) is true. By the complete induction principle,
the assertion A(n) is true for every natural number n ∈ 𝜔, i. e. the assertion of the
Proposition holds for every formula 𝜑 ∈ Ψ.

Now, let 𝜑 be an arbitrary formula of the language L(Σg2 ). In virtue of Proposi-
tion 1 we have U ⊨ 𝜑[𝛾] ⇔ U ⊨ 𝜑∗[𝛾] and U ⊨ 𝜑[𝛿] ⇔ U ⊨ 𝜑∗[𝛿]. By the definition of
the operation 𝜑 → 𝜑∗, we have 𝜑∗ ∈ Ψ. As was shown above, U ⊨ 𝜑∗[𝛾] ⇔ U ⊨ 𝜑∗[𝛿].
As a result, we obtain the equivalence U ⊨ 𝜑[𝛾] ⇔ U ⊨ 𝜑[𝛿].

C.2.5 An example of a good model for the second-order equality axioms

Construct for axioms E1 –E4 a regular, balanced, extensional, second-order model.
Take m = 0, n = 0, 𝜌 ≡ ⟨0, 1⟩, 𝜎 ≡ [𝜌], Θ ≡ {𝜌, 𝜎}, Ω𝜌 = ⌀, Ω𝜎 = ⌀, Σ𝜌c = ⌀, andΣ𝜎c = ⌀. Then, Σe ≡ (𝛿𝜌, 𝛿𝜎), Θb = {𝜎}, Σb ≡ (𝜀𝜏 | 𝜏 ∈ Θb), i. e. Σb consists of the sym-

bol 𝜀𝜎 = 𝜀[𝜌] only, and the collection Σv ≡ (Σ𝜏v | 𝜏 ∈ Θ) consists of a denumerable set Σ𝜌v
of variables x𝜌, y𝜌, . . . of the first-order type 𝜌 and a denumerable set Σ𝜎v of variables
u𝜎, v𝜎, . . . of the second-order type 𝜎.

Consider the one-grade signature Σ0 ≡ Σc | Σe | Σb | Σv of the rank 1|0 and its
language L(Σ0). This language contains the three atomic formulas: x𝜌𝛿𝜌y𝜌, u𝜎𝛿𝜎v𝜎,
and x𝜌𝜀𝜎u𝜎.

Take the set of all closed segments of straight lines on the plane as the set A ≡ A0.
Then, X = A. Since Ω𝜌 = Ω𝜎 = ⌀, there are no constants. For segments p, q ∈ A, put
p ≈𝜌 q if q is obtained from p by some parallel transfer. For sets P, Q ∈ P(A) of seg-
ments put P ≈𝜎 Q if (∀p ∈ P∃q ∈ Q(p ≈𝜌 q)) ∧ (∀q ∈ Q∃p ∈ P(q ≈𝜌 p)). For a segment
p ∈ A and a set of segments P ∈ P(A) put p <−𝜎P if and only if ∃q ∈ A(q ≈𝜌 p ∧ q ∈ P),
i. e. the segment p can be transferred into the set P by some parallel transfer.

The collection of terminals Sv ≡ ⟮𝜏(X) | 𝜏 ∈ Θ⟯ consists of the terminal 𝜌(X) = A
and the terminal 𝜎(X) = P(A).

The constructed collections form the one-grade superstructure S over the set
X = A. Consider the mathematical system U ≡ ⟮A, S⟯ of the signature Σ0.
Proposition 1. The above-constructed mathematical system U together with any evalu-
ation 𝛾 of variables of the language L(Σ0) on the system U forms the regular, balanced,
extensional, second-order model for equality axioms E1 – E4.

Proof. The correctness of the equality axioms is evident. The regularity follows from
the definition. The same is true for the balance property.
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Check the extensionality property. Let P, Q ∈ 𝜎(A) = P(A). Assume p ∈ P. Then,
p <−𝜎P. Suppose the right side of the extensionality formula. By condition we conclude
p<−𝜎Q. By the regularity property, there exists an element q ∈ Q such that q ≈𝜌 p. The
inverse finding of an element p ∈ P for a given element q ∈ Q such that p ≈𝜌 q is es-
tablished quite similarly. In accordance with the definition of the equality ≈𝜎, we con-
clude that P ≈𝜎 Q. Thus, we have inferred the left side of the extensionality formula. It
follows from the correctness of axiom E4r that the left side implies the right one.

C.3 Infraproducts, infrafiltration, and generalized
compactness theorem

C.3.1 Infraproducts of collections of evaluated mathematical systems of the
generalized second-order signature Σg2

Let F be a set and ⟮Uf | f ∈ F⟯ be a pairwise H-concordant collection of mathemat-
ical systems of the second-order signature Σg2 with true generalized equalities and
belongings.

By definition, Uf ≡ ⟮Xf , Sf ⟯, where Xf ≡ [A0f , . . . , Amf , K0, . . . , Kn−1].
Consider the sets Ai ≡ ∏⟮Aif | f ∈ F⟯ and the formation X ≡ prod ⟮Xf | f ∈ F⟯ ≡[A0, . . . , Am , K0, . . . , Kn−1].
Let 𝜏 ≡ [𝜏0, . . . , 𝜏k] be a second-order type and k ⩾ 0.
If 𝜇 ∈ M(𝜏), then 𝜏𝜇 = ⟨i, 1⟩ for some i. Thus, 𝜏𝜇(X) = Ai = ∏⟮Aif | f ∈ F⟯ =∏⟮𝜏𝜇(Xf ) | f ∈ F⟯. If 𝜈 ∈ N(𝜏) then 𝜏𝜈 = ⟨j, 0⟩ for some j. Thus, 𝜏𝜈(X) = Kj = 𝜏𝜈(Xf )

for every f ∈ F. This means that the terminals of different parent types of the type
𝜏 over the formation X have quite different constitutions. Therefore, it is convenient
to introduce the following notation. For elements p ∈ ̌𝜏(X) = 𝜏0(X) × ⋅ ⋅ ⋅ × 𝜏k(X) and
f ∈ F, define the element p(f ) ∈ ̌𝜏(Xf ) = 𝜏0(Xf ) × ⋅ ⋅ ⋅ × 𝜏k(Xf ) setting p(f )(𝜇) ≡ p(𝜇)(f )
for every 𝜇 ∈ M(𝜏) and p(f )(𝜈) ≡ p(𝜈) for every 𝜈 ∈ N(𝜏)).

For elements P ⊂ ̌𝜏(X) and f ∈ F, define the element P⟨f ⟩ ⊂ ̌𝜏(Xf ) setting P⟨f ⟩ ≡
{𝜉 ∈ ̌𝜏(Xf ) | ∃p ∈ P(p(f ) = 𝜉)}.

LetD be a subset of the setP(F), i. e. an ensemble on F. Define some superstruc-
ture S of the signature Σg2 over the formation X.

First, define some constant structures s𝜏𝜔 ∈ 𝜏(X) for 𝜏 ∈ Θ and 𝜔 ∈ Ω𝜏.
If 𝜏 is a basic first-order type, then 𝜏(X) = ∏⟮𝜏(Xf ) | f ∈ F⟯. Therefore, define

s𝜏𝜔 ∈ 𝜏(X) setting s𝜏𝜔( f ) ≡ s𝜏𝜔f for every f ∈ F. If 𝜏 is an auxiliary first-order type, then
𝜏(X) = 𝜏(Xf ) and s𝜏𝜔f does not depend on the index f . Therefore, put s𝜏𝜔 ≡ s𝜏𝜔f for some
(and then for every) f ∈ F.

If 𝜏 = [𝜏0, . . . , 𝜏k] is a second-order type, then put s𝜏𝜔 ≡ {p ∈ ̌𝜏(X) | ∀f ∈ F(p(f ) ∈
s𝜏𝜔f )}.

As a result, we obtain the collections S𝜏c ≡ ⟮s𝜏𝜔 | 𝜔 ∈ Ω𝜏⟯ and the collection
Sc ≡ ⟮S𝜏c | 𝜏 ∈ Θ⟯.
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Now, define generalized equalities ≈𝜏⊂ 𝜏(X) × 𝜏(X).
If 𝜏 is a basic first-order type, then for p, q ∈ 𝜏(X) put p ≈𝜏 q iff ∃G ∈ D∀g ∈

G(p(g) ≈𝜏,g q(g)). If 𝜏 is an auxiliary first-order type, then the equality ≈𝜏,f does not
depend on the index f . Therefore, for p, q ∈ 𝜏(X) put p ≈𝜏 q iff p ≈𝜏,f q for some (and
then for every) f ∈ F.

If 𝜏 = [𝜏0, . . . , 𝜏k] is a second-order type, then for P, Q ⊂ ̆𝜏(X) put P ≈𝜏 Q iff
∃G ∈ D∀g ∈ G(P⟨g⟩ ≈𝜏,g Q⟨g⟩).

As a result, we obtain the collection Se ≡ ⟮≈𝜏| 𝜏 ∈ Θ⟯.
Now, define the generalized belongings <−𝜏 ⊂ ̌𝜏(X) × 𝜏(X). Let 𝜏 ∈ Θb. By defini-

tion, 𝜏 = [𝜏0, . . . , 𝜏k] for some 𝜏0, . . . , 𝜏k ∈ Θ. For p ∈ ̌𝜏(X) and P ⊂ ̌𝜏(X) put p <−𝜏P iff
∃G ∈ D∀g ∈ G(p(g)<−𝜏,gP⟨g⟩)¹.

Thus, we obtain the collection Sb ≡ ⟮<−𝜏 | 𝜏 ∈ Θb⟯.
Consider also the collection Sv ≡ ⟮𝜏(X) | 𝜏 ∈ Θ⟯ consisting of the 𝜏-terminals of the

formation X.
The constructed collections compose the superstructure S ≡ ⟮Sc , Se , Sb , Sv⟯

over the formation X. Therefore, we can consider the mathematical system U ≡ ⟮X, S⟯
of the signature Σg2 . It will be called the infra-D-product of the collection of mathe-
matical systems ⟮Uf | f ∈ F⟯ of the generalized second-order signature Σg2 and will be
denoted by infra-D-prod ⟮Uf | f ∈ F⟯.

An ensemble D on F is called a filter on F if it has the following properties:
1) ∀ G, H ∈ D (G ∩ H ∈ D);
2) ∀ G ∈ D ∀H ∈ P(F) (G ⊂ H ⇒ H ∈ D).
A filter D is called proper if D ̸= P(F), and a proper filter D is called an ultrafilter
if for any proper filter E on F such that D ⊂ E we have D = E, i. e. D is a maximal
element in the set of all proper filters on F (see 1.1.15).

Further on, we assume that D is a filter.
Now, let ⟮⟮Uf , 𝛾f ⟯ | f ∈ F⟯ be a pairwise H-concordant collection of evaluated

mathematical systems of the second-order signature Σg2 with true generalized equali-
ties and belongings.

Define an evaluation 𝛾 on the system U ≡ infra-D-prod ⟮Uf | f ∈ F⟯ in the follow-
ing way.

Let x be a variable of a type 𝜏. If 𝜏 is a first-order basic type, then define
𝛾(x) ∈ 𝜏(X) setting 𝛾(x)(f ) ≡ 𝛾f (x) for every f ∈ F. If 𝜏 is an auxiliary first-order type,
then put 𝛾(x) ≡ 𝛾f (x) for some (and then for every) f ∈ F.

If 𝜏 = [𝜏0, . . . , 𝜏k] is a second-order type, then put 𝛾(x) ≡ {p ∈ ̌𝜏(X) | ∀f ∈ F(p(f ) ∈
𝛾f (x))}.

The evaluation 𝛾 will be called the crossing of the collection of evaluations
⟮𝛾f | f ∈ F⟯ and will be denoted by ⋈ ⟮𝛾f | f ∈ F⟯.

1 Note that theusage of a generalizedbelongingwas explored in the forcingmethod in the form x ∈p y
(see e. g., [Shoenfield, 2001, 9.8]).
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Lemma 1. Let ⟮⟮Uf , 𝛾f ⟯ | f ∈ F⟯ be a pairwise H-concordant collection of evaluated
mathematical systems of the second-order signature Σg2 and let every evaluated mathe-
matical system ⟮Uf , 𝛾f ⟯ be a model for equality axioms E1 – E4. Then, the pair ⟮infra-D-
prod ⟮Uf | f ∈ F⟯, ⋈⟮𝛾f | f ∈ F⟯⟯ is also a model for axioms E1 – E4.
Proof. Let t0, t0 ∈ 𝜏0(X), . . . , tk , tk ∈ 𝜏k(X), P, P ⊂ ̆𝜏(X) = 𝜏0(X) × . . . × 𝜏k(X),
p ≡ (t0, . . . , tk), p ≡ (t0, . . . , tk), p ≈ ̆𝜏 p, and P ≈𝜏 P.

Assume that p <−𝜏P. By the definition of the belonging, ∃G1 ∈ D∀g ∈ G1(p(g) <−𝜏,g
P⟨g⟩). By the definition of the first-order equalities, ∃G2 ∈ D∀g ∈ G2(p(g) ≈ ̆𝜏,g p(g)).
Finally, by the definition of the second-order equalities ∃G3 ∈ D∀g ∈ G3(P⟨g⟩ ≈𝜏,g
P⟨g⟩). Since every system ⟮Ug , 𝛾g⟯ satisfies E4, we see that p(g) <−𝜏,gP⟨g⟩ for every
g ∈ G ≡ G1 ∩ G2 ∩ G3. Thus, p <−𝜏P. Hence, p<−𝜏P ⇒ p <−𝜏P. The inverse implication
is checked quite similarly. This proves axiom E4. The validity of axioms E1, E2, E3 is
obvious.

Further, for a formula 𝜑 ∈ L(Σ) the set {f ∈ F | Uf ⊨ 𝜑[𝛾f ]} will be denoted by G𝜑.

Lemma 2. Let 𝜏 = [𝜏0, . . . , 𝜏k] be a second-order type. Let s𝜏𝜔 be the constants con-
structed above for the support X ≡ prod⟮Xf | f ∈ F⟯. Then, s𝜏𝜔⟨f ⟩ = s𝜏𝜔f for every f ∈ F.
Proof. Let 𝜉 ∈ s𝜏𝜔⟨f ⟩, i. e. 𝜉 = p(f ) for some p ∈ s𝜏𝜔. By definition, 𝜉 = p(f ) ∈ s𝜏𝜔f . Conse-
quently, s𝜏𝜔⟨f ⟩ ⊂ s𝜏𝜔f .

Conversely, let 𝜉f ∈ s𝜏𝜔f . Since the collection of systems ⟮Uf | f ∈ F⟯ is H-
concordant, using the axiom of choice, we can find a collection (𝜉g | g ∈ F \ {f }) such
that 𝜉g ∈ s𝜏𝜔g and 𝜉g(𝜈) = 𝜉f (𝜈) for every 𝜈 ∈ N(𝜏). Define the element p ∈ ̆𝜏(X) setting
p(𝜇)(g) ≡ 𝜉g(𝜇) for every g ∈ F and every 𝜇 ∈ M(𝜏) and p(𝜈) ≡ 𝜉f (𝜈) for every 𝜈 ∈ N(𝜏).
Then, p(g) = 𝜉g ∈ s𝜏𝜔g for every g ∈ F implies p ∈ s𝜏𝜔. Since 𝜉f = p(f ), we have 𝜉f ∈
s𝜏𝜔⟨f ⟩. Hence, s𝜏𝜔f ⊂ s𝜏𝜔⟨f ⟩.
Lemma 3. Let 𝜏 = [𝜏0, . . . , 𝜏k] be a second-order type. Let x be a variable of the type 𝜏
and 𝛾(x) be the evaluation constructed above for the system U ≡ ⟮X, S⟯. Then,
𝛾(x)⟨f ⟩ = 𝛾f (x) for every f ∈ F.
The proof is completely similar to the proof of the previous lemma.

C.3.2 Infrafilteration of formulas of the second-order language L(Σg2) of the
generalized second-order signature Σg2

Consider a non-empty set F and a filter D on F.
By analogy with the first-order language (see [Ershov and Palyutin, 1984, § 17],

[Maltsev, 1973, 8.2]), a formula 𝜑 of the language L(Σg2 ) of the second-order signatureΣg2 with generalized equalities and belongings will be called infrafiltrated with
respect to the filterD if for every pairwise H-concordant collection ⟮⟮Uf , 𝛾f ⟯ | f ∈ F⟯ of
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evaluated mathematical systems of the second-order signature Σg2 with true gener-
alized equalities and belongings the property infra-D-prod⟮Uf | f ∈ F⟯ ⊨ 𝜑[⋈⟮𝛾f | f ∈
F⟯] is equivalent to the property {g ∈ F | Ug ⊨ 𝜑[𝛾g]} ∈ D.

Lemma 1. Every atomic formula is infrafiltrated with respect to any filter D on the
set F.

Proof. First, consider an atomic formula 𝜑 of the form q𝜏𝛿𝜏r𝜏. Assume that q𝜏 = x𝜏

and r𝜏 = 𝜎𝜏𝜔. Then, U ⊨ 𝜑[𝛾] is equivalent to 𝛾(x) ≈𝜏 s𝜏𝜔, and analogously for the pair
⟮Uf , 𝛾f ⟯.

Let 𝜏 be a first-order type. Let G𝜑 ∈ D, i. e. 𝛾g(x) ≈𝜏,g s𝜏𝜔g for every g ∈ G𝜑 ∈ D.
If 𝜏 is a basic type, then 𝛾g(x) = 𝛾(x)(g) and s𝜏𝜔g implies 𝛾(x)(g) ≈𝜏,g s𝜏𝜔(g) for every
g ∈ G𝜑 ∈ D. Thus, 𝛾(x) ≈𝜏 s𝜏𝜔. If 𝜏 is an auxiliary type, then 𝛾g(x) = 𝛾(x) and s𝜏𝜔g = s𝜏𝜔.
Besides, ≈𝜏,g coincides with ≈𝜏. Hence, 𝛾(x) ≈𝜏 s𝜏𝜔. In both cases, we have obtained the
property U ⊨ 𝜑[𝛾].

Conversely, let U ⊨ 𝜑[𝛾], i. e. 𝛾(x) ≈𝜏 s𝜏𝜔. If 𝜏 is a basic type, then there exists
G ∈ D such that 𝛾(x)(g) ≈𝜏,g s𝜏𝜔(g) for every g ∈ G. But it means that 𝛾g(x) ≈𝜏,g s𝜏𝜔g,
i. e. Ug ⊨ 𝜑[𝛾g] for every g ∈ G ∈ D. Since G ⊂ G𝜑, we have G𝜑 ∈ D. If 𝜏 is an auxiliary
type then 𝛾f (x) ≈𝜏,f s𝜏𝜔f for every f ∈ F. Consequently, G𝜑 ∈ D again.

Now, let 𝜏 ≡ [𝜏0, . . . , 𝜏k] be a second-order type. Let G𝜑 ∈ D, i. e. 𝛾g(x) ≈𝜏,g s𝜏𝜔g
for every g ∈ G𝜑 ∈ D. According to Lemmas 2 and 3 (C.3.1), the equalities s𝜏𝜔g =
s𝜏𝜔⟨g⟩ and 𝛾g(x) = 𝛾(x)⟨g⟩ are correct. Therefore, 𝛾(x)⟨g⟩ ≈𝜏,g s𝜏𝜔⟨g⟩ for every g ∈ G𝜑.
Consequently, 𝛾(x) ≈𝜏 s𝜏𝜔, i. e. U ⊨ 𝜑[𝛾].

Conversely, let U ⊨ 𝜑[𝛾], i. e. 𝛾(x) ≈𝜏 s𝜏𝜔. By the definition of the second-order
equality, 𝛾(x)⟨g⟩ ≈𝜏,g s𝜏𝜔⟨g⟩ for some G ∈ D and every g ∈ G. Using Lemmas 2
and 3 (C.3.1), we obtain 𝛾g(x) ≈𝜏,g s𝜏𝜔g, i. e. Ug ⊨ 𝜑[𝛾g] for every g ∈ G. Since G ⊂ G𝜑,
we infer that G𝜑 ∈ D.

For the terms q𝜏 and r𝜏 of other forms, the reasons are quite similar.
Now, consider an atomic formula 𝜑 of the form (q𝜏00 , . . . , q𝜏kk )𝜀𝜏r𝜏 for 𝜏 ≡ [𝜏0, . . . ,𝜏k] ∈ Θb. Assume that q𝜏𝜆𝜆 = x𝜏𝜆𝜆 and r𝜏 = u𝜏 for some variables x𝜆 and u. Then, U ⊨

𝜑[𝛾] is equivalent to (𝛾(x0), . . . , 𝛾(xk)) <−𝜏𝛾(u) and analogously for the pair ⟮Uf , 𝛾f ⟯.
Let G𝜑 ∈ D, i. e. (𝛾g(x0), . . . , 𝛾g(xk)) <−𝜏,g𝛾g(u) for every g ∈ G𝜑 ∈ D. Consider the

elements 𝜉f ≡ (𝛾f (x0), . . . , 𝛾f (xk)) and p ≡ (𝛾(x0), . . . , 𝛾(xk)) ∈ ̆𝜏(X). Let f ∈ F. Then,
p(f )(𝜇) ≡ p(𝜇)(f ) = 𝛾(x𝜇)(f ) = 𝛾f (x𝜇) = 𝜉f (𝜇) for every 𝜇 ∈ M(𝜏) and p(f )(𝜈) ≡ p(𝜈) =
𝛾(x𝜈) = 𝛾f (x𝜈) = 𝜉f (𝜈) for every 𝜈 ∈ N(𝜏). Consequently, p(f ) = 𝜉f . By Lemma 2 (C.3.1),
𝛾f (u) = 𝛾(u)⟨f ⟩. As a result, we obtain p(g) <−𝜏,g𝛾(u)⟨g⟩ for every g ∈ G𝜑 ∈ D. By defi-
nition, it means that p <−𝜏𝛾(u), i. e. U ⊨ 𝜑[𝛾].

Conversely, let U ⊨ 𝜑[𝛾], i. e. (𝛾(x0), . . . , 𝛾(xk)) <−𝜏𝛾(u). By the definition of the
second-order belonging, for p ≡ (𝛾(x0), . . . , 𝛾(xk)) there exists G ∈ D such that
p(g) <−𝜏,g𝛾(u)⟨g⟩ for every g ∈ G. By Lemma 3 (C.3.1) 𝛾(u)⟨g⟩ = 𝛾g(x). By the previous
subsection, 𝜉g = p(g). Consequently, 𝜉g<−𝜏,g𝛾g(u), i. e. Ug ⊨ 𝜑[𝛾g] for every g ∈ G.
Since G ⊂ G𝜑, we infer that G𝜑 ∈ D.

For the terms q𝜏𝜆𝜆 and r𝜏 of other forms, the reasons are quite similar.
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A proof of the property of infrafiltration for the quantified formula ∃x𝜏𝜑 for the
polygrade language L(Σg2 ) of the generalized second-order signature Σg2 is more
delicate than for the first-order language. Therefore, we begin it with a subsidiary
proposition.

Let ⟮⟮Uf , 𝛾f ⟯ | f ∈ F⟯ be a pairwise H-concordant collection of evaluated math-
ematical systems of the second-order signature Σg2 with true generalized equalities
and belongings. Let 𝛽 be an evaluation on the system U ≡ infra-D-prod⟮Uf | f ∈ F⟯,
H-concordant with the evaluation 𝛾 ≡ ⋈⟮𝛾f | f ∈ F⟯.

For the evaluation 𝛽 and for every f ∈ F define the evaluation 𝛿f on the system Uf
in the following way. Let x be a variable of a type 𝜏. If 𝜏 is a basic first-order type, then
put 𝛿f (x) ≡ 𝛽(x)(f ). If 𝜏 is an auxiliary first-order type, then put 𝛿f (x) ≡ 𝛽(x). If 𝜏 is a
second-order type, then put 𝛿f (x) ≡ 𝛽(x)⟨f ⟩.
Proposition 1.
1) The collection ⟮⟮Uf , 𝛿f ⟯ | f ∈ F⟯ of the evaluated mathematical systems ⟮Uf , 𝛿f ⟯ of

the second-order signature Σg2 with true generalized equalities and belongings is
pairwise H-concordant;

2) the evaluated systems ⟮Uf , 𝛾f ⟯ and ⟮Uf , 𝛿f ⟯ are H-concordant;
3) for the evaluation 𝛿 ≡ ⋈⟮𝛿f | f ∈ F⟯, the equalities 𝛿(x𝜏) ≈𝜏 𝛽(x𝜏) hold for any

variable x𝜏;
4) the evaluations 𝛿 and 𝛽 are H-concordant.
Proof. 1. Let x be a variable of a type 𝜏. If 𝜏 is an auxiliary first-order type, then
𝛿f (x) = 𝛽(x) = 𝛿g(x) for every f , g ∈ F.

Let 𝜏 ≡ [𝜏0, . . . , 𝜏k] be a second-order type. Fix some f , g ∈ F. Consider an arbi-
trary element 𝜉 ∈ 𝛿f (x) = 𝛽(x)⟨f ⟩. By definition, 𝜉 = p(f ) for some p ∈ 𝛽(x) ⊂ ̌𝜏(X) =
𝜏0(X) × . . . × 𝜏k(X) Consider the element 𝜂 ≡ p(g) ∈ 𝛽(x)⟨g⟩ = 𝛿g(x). Then, 𝜂(𝜈) =
p(g)(𝜈) = p(𝜈) and 𝜉(𝜈) = p(f )(𝜈) = p(𝜈) implies 𝜂(𝜈) = 𝜉(𝜈) for every 𝜈 ∈ N(𝜏). The
inverse finding the element 𝜉 corresponding to the given element 𝜂 is realized in the
similar manner.

2. If 𝜏 is an auxiliary first-order type, then 𝛿f (x𝜏) ≡ 𝛽(x𝜏) and 𝛾(x𝜏) ≡ 𝛾f (x𝜏). By
condition, 𝛽(x𝜏) = 𝛾(x𝜏). Consequently, 𝛿f (x𝜏) = 𝛾f (x𝜏).

Let 𝜏 ≡ [𝜏0, . . . , 𝜏k] be a second-order type. Consider an arbitrary element
𝜉 ∈ 𝛾f (x). By virtue of Lemma 3 (C.3.1) we have 𝛾f (x) = 𝛾(x)⟨f ⟩. Since 𝜉 ∈ 𝛾(x)⟨f ⟩, by
definition, there exists p ∈ 𝛾(x) such that 𝜉 = p(f ). By condition, for p ∈ 𝛾(x), there
is q ∈ 𝛽(x) such that q(𝜈) = p(𝜈) for any 𝜈 ∈ N(𝜏). Consider the element 𝜂 ≡ q(f ) ∈
𝛽(x)⟨f ⟩ = 𝛿f (x). Then, 𝜂(𝜈) = q(f )(𝜈) = q(𝜈) = p(𝜈) = p(f )(𝜈) = 𝜉(𝜈). The inverse con-
dition is checked in the same way.

3. Let x be a variable of a type 𝜏. If 𝜏 is a basic first-order type, then by the defi-
nition of the evaluations 𝛿 and 𝛿f , we obtain 𝛿(x)(f ) ≡ 𝛿f (x) = 𝛽(x)(f ) for any f ∈ F,
i. e. 𝛿(x) = 𝛽(x). If 𝜏 is an auxiliary first-order type, then 𝛿(x) = 𝛿f (x) = 𝛽(x) for some
f ∈ F.
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Let 𝜏 be a second-order type. By virtue of Lemma 3 (C.3.1), we get 𝛿(x)⟨f ⟩ =
𝛿f (x) = 𝛽(x)⟨f ⟩ for any f ∈ F. By the definition of the second-order equality, we con-
clude that 𝛿(x) ≈𝜏 𝛽(x).

4. Let 𝜏 be an auxiliary first-order type. Then, 𝛿(x𝜏) = 𝛿f (x𝜏) for some f ∈ F. By
definition, 𝛿f (x𝜏) = 𝛽(x𝜏). Consequently, 𝛿(x𝜏) = 𝛽(x𝜏).

Let 𝜏 = [𝜏0, . . . , 𝜏k] be a second-order type. Let p ∈ 𝛽(x). By the definition of
the cut, p(f ) ∈ 𝛽(x)⟨f ⟩ = 𝛿f (x) for every f ∈ F. By the definition of the crossing,
p ∈ 𝛿(x). Thus, for p ∈ 𝛽(x), there exists q = p ∈ 𝛿(x) such that q(𝜈) = p(𝜈) for every
𝜈 ∈ N(𝜏).

Conversely, let q ∈ 𝛿(x𝜏). By the definition of the crossing, q(f ) ∈ 𝛿f (x) = 𝛽(x)⟨f ⟩
for every f ∈ F. Fix some element f0 ∈ F. By the definition of the cut, there is p ∈ 𝛽(x)
such that p(f0) = q(f0). If 𝜈 ∈ N(𝜏), then p(f0)(𝜈) = q(f0)(𝜈). However p(f0)(𝜈) = p(𝜈)
and q(f0)(𝜈) = q(𝜈). Therefore, p(𝜈) = q(𝜈) for every 𝜈 ∈ N(𝜏).
Proposition 2. Let a formula 𝜓 be infrafiltrated with respect to the filter D. Then, the
formula ∃x𝜏𝜓 is infrafiltrated with respect to D as well.

Proof. Denote the formula ∃x𝜏𝜓 by 𝜑. Let G𝜑 ∈ D, i. e. Ug ⊨ 𝜑[𝛾g] for every g ∈ G𝜑 ∈
D. Further, we shall write simply G instead of G𝜑.

The presented satisfaction propertymeans thatUg ⊨ 𝜓[𝛾g] for some evaluation 𝛾g,
H-concordant with the evaluation 𝛾g and such that 𝛾g(y) = 𝛾g(y) for every y𝜎 ̸= x𝜏. For
every f ∈ F, define the evaluation 𝛿f setting 𝛿f ≡ 𝛾f if f ∈ F\G and 𝛿f ≡ 𝛾f if f ∈ G. Check
that the evaluated systems ⟮Uf , 𝛿f ⟯ and ⟮Ug , 𝛿g⟯ are H-concordant for every f , g ∈ F. If
f , g ∈ F\G, then 𝛿f = 𝛾f and 𝛿g = 𝛾g. Since the evaluations 𝛾f and 𝛾g are H-concordant,
our assertion is true. Let f , g ∈ G. Then, 𝛿f = 𝛾f and 𝛿g = 𝛾g. Let x be a variable of a
type 𝜏.

For an auxiliary first-order type 𝜏, we have 𝛾f (x) = 𝛾f (x) and 𝛾g(x) = 𝛾g(x). Since
the evaluations 𝛾f and 𝛾g are H-concordant, we infer that 𝛾f (x) = 𝛾g(x). Consequently,𝛿f (x) = 𝛾f (x) = 𝛾g(x) = 𝛿g(x).

Let 𝜏 be a second-order type. Let p ∈ 𝛿f (x) = 𝛾f (x). Then, there exists q ∈ 𝛾f (x)
such that q(𝜈) = p(𝜈) for every 𝜈 ∈ N(𝜏). Since the evaluations 𝛾f and 𝛾g are
H-concordant, there is r ∈ 𝛾g(x) such that r(𝜈) = q(𝜈). Since the evaluations 𝛾g and𝛾g are H-concordant as well, there exists s ∈ 𝛾g(x) = 𝛿g(x) such that s(𝜈) = r(𝜈) =
q(𝜈) = p(𝜈) for any 𝜈 ∈ N(𝜏). The inverse condition is checked in the same
way.

In the cases when f ∈ F\G and g ∈ G, or conversely, the arguments are similar.
Thus, the collection ⟮⟮Uf , 𝛿f ⟯ | f ∈ F⟯ of evaluated mathematical systems of the

signature Σg2 with true generalized equalities and belongings is pairwise
H-concordant. Consider the evaluation 𝛿 ≡ ⋈⟮𝛿f | f ∈ F⟯.

Check that 𝛿(y) = 𝛾(y) for every y𝜎 ̸= x𝜏. Let 𝜎 be a basic first-order type. If
g ∈ G, then 𝛿(y)(g) = 𝛿g(y) = 𝛾g(y) = 𝛾g(y) = 𝛾(y)(g). If f ∈ F\G, then 𝛿(y)(f ) = 𝛿f (y) =𝛾f (y) = 𝛾(y)(f ). Consequently, 𝛿(y) = 𝛾(y).
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Let 𝜎 be an auxiliary first-order type. Then, 𝛿(y) = 𝛿f (y) = 𝛾f (y) = 𝛾(y) for some
f ∈ F\G.

Let 𝜎 be a second-order type. If f ∈ G, then 𝛿f (y) = 𝛾f (y) = 𝛾f (y). If f ∈ F\G, then𝛿f (y) = 𝛾f (y). Let p ∈ 𝛿(y). By the definition of the crossing, p(f ) ∈ 𝛿f (y) for every f ∈ F.
By the above, p(f ) ∈ 𝛾f (y) for every f ∈ F. This means that p ∈ 𝛾(y), whence 𝛿(y) ⊂
𝛾(y). The inverse inclusion is checked in the same way. Consequently, 𝛿(y) = 𝛾(y).

Thus, for every y ̸= x, we have 𝛿(y) = 𝛾(y).
Check that the evaluations 𝛾 and 𝛿 are H-concordant. Let y𝜎 ̸= x𝜏.
If 𝜎 in an auxiliary first-order type, then 𝛿(y) = 𝛾(y).
Let 𝜎 be a second-order type. It was proven above that 𝛿(y) = 𝛾(y). Consequently,

for every p ∈ 𝛿(y), there is q ≡ p ∈ 𝛾(y) such that q(𝜈) = p(𝜈) for any 𝜈 ∈ N(𝜎).
If 𝜏 is an auxiliary first-order type, then 𝛿(x) = 𝛿f (x) = 𝛾f (x) = 𝛾(x) for some

f ∈ F\G.
Let 𝜏 be a second-order type. Let p ∈ 𝛾(x𝜏). By the definition of the crossing, p(f ) ∈

𝛾f (x) for every f ∈ F. If f ∈ F\G, then 𝛿f = 𝛾f . If g ∈ G, then 𝛿g = 𝛾g and the evaluations𝛾g and 𝛾g are H-concordant.
Consider the non-empty set A ≡ ⋃⟮𝛾g(x) | g ∈ G⟯. Define the mapping 𝛼: G →

P(A) \ {⌀} setting 𝛼(g) ≡ {𝜂 ∈ 𝛾g(x) ⊂ A | ∀𝜈 ∈ N(𝜏)(𝜂(𝜈) = p(g)(𝜈))}. According to the
point 3 of the definition of H-concordant systems, the set 𝛼(g) is non-empty.

By the axiom of choice, there exists a function ch : P(A) \ {⌀} → A such that
chP ∈ P. Consider the function 𝛽 ≡ ch ∘ 𝛼 : G → A and the corresponding collection
𝛽 = (𝜂g ∈ A | g ∈ G). Since 𝜂g = 𝛽(g) = ch(𝛼(g)) ∈ 𝛼(g), thenwehave 𝜂g(𝜈) = p(g)(𝜈) =
p(𝜈) for every 𝜈 ∈ N(𝜏).

Define the element q ∈ ̌𝜏(X) setting q(𝜇)(f ) ≡ p(𝜇)(f ) for every f ∈ F\G, q(𝜇)(g) ≡
𝜂g(𝜇) for every g ∈ G and every 𝜇 ∈ M(𝜏), and q(𝜈) ≡ 𝜂g(𝜈) = p(𝜈) for every 𝜈 ∈ N(𝜏)
and every g ∈ G.

Then, q(f )(𝜇) = q(𝜇)(f ) = p(𝜇)(f ) = p(f )(𝜇) for every𝜇 ∈ M(𝜏)and q(f )(𝜈) = q(𝜈) =
p(𝜈) = p(f )(𝜈) for every 𝜈 ∈ N(𝜏) implies q(f ) = p(f ) ∈ 𝛾f (x) = 𝛿f (x) for every f ∈ F\G.
If g ∈ G, then q(g)(𝜇) = q(𝜇)(g) = 𝜂g(𝜇) for every 𝜇 ∈ M(𝜏) and q(g)(𝜈) = q(𝜈) = 𝜂g(𝜈)
for every 𝜈 ∈ N(𝜏) implies q(g) = 𝜂g ∈ 𝛾g(x) = 𝛿g(x). Consequently, by the definition
of the crossing, q ∈ 𝛿(x𝜏). Besides, q(𝜈) = p(𝜈) for every 𝜈 ∈ N(𝜏). The inverse find-
ing the element p corresponding to the given element q is realized in the similar
manner.

Thus, the evaluations 𝛾 and 𝛿 are really H-concordant.
By condition and construction, Ug ⊨ 𝜓[𝛿g] for every g ∈ G ∈ D. Since the formula

𝜓 is infrafiltered, the obtained property implies the property U ⊨ 𝜓[𝛿]. Since the eval-
uation 𝛿 is H-concordant with the evaluation 𝛾 and 𝛿(y𝜎) = 𝛾(y𝜎) for every y𝜎 ̸= x𝜏, we
obtain the property U ⊨ 𝜑[𝛾].

Conversely, let U ⊨ 𝜑[𝛾]. It is equivalent to U ⊨ 𝜓[𝛽] for some evaluation 𝛽,
H-concordant with the evaluation 𝛾 and such that 𝛽(y) = 𝛾(y) for every y𝜎 ̸= x𝜏.

Consider the evaluation 𝛿 ≡ ⋈⟮𝛿f | f ∈ F⟯ fromProposition 1, corresponding to the
evaluation 𝛽. According to Proposition 1, the evaluations 𝛿 and 𝛽 are H-concordant
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and 𝛿(z𝜌) ≈𝜌 𝛽(z𝜌) for every variable z𝜌. It follows from Proposition 2 (C.2.4) that
the property U ⊨ 𝜓[𝛽] is equivalent to the property U ⊨ 𝜓[𝛿]. Since the formula 𝜓 is
infrafiltrated, the property U ⊨ 𝜓[𝛿] is equivalent to the property G ≡ {g ∈ F | Ug ⊨𝜓[𝛿g]} ∈ D.

By Proposition 1, the evaluations 𝛿g and 𝛾g are H-concordant. Let y𝜎 ̸= x𝜏. If
𝜎 is a basic first-order type, then 𝛿g(y) = 𝛽(y)(g) = 𝛾(y)(g) = 𝛾g(y). If 𝜎 is an auxil-
iary first-order type, then 𝛿g(y) = 𝛽(y) = 𝛾(y) = 𝛾g(y). Finally, if 𝜎 is a second-order
type, then 𝛿g(y) = 𝛽(y)⟨g⟩ = 𝛾(y)⟨g⟩. Since by Lemma 3 (C.3.1) 𝛾(y)⟨g⟩ = 𝛾g(y), we
have 𝛿g(y) = 𝛾g(y). Consequently, in all the cases 𝛿g(y) = 𝛾g(y) for every y𝜎 ̸= x𝜏.
Therefore, the property Ug ⊨ 𝜓[𝛿g] is equivalent to the property Ug ⊨ 𝜑[𝛾g]. Thus,{g ∈ F | Ug ⊨ 𝜑[𝛾g]} = G ∈ D. This implies G𝜑 ∈ D.

The following two lemmas are the same as ones for the first-order language.

Lemma 2. Let formulas 𝜓 and 𝜉 be infrafiltrated with respect to the filter D. Then, the
formula 𝜓 ∧ 𝜉 is infrafiltrated with respect to D as well.

Proof. Denote the formula 𝜓 ∧ 𝜉 by 𝜑. Let G𝜑 ∈ D, i. e. Ug ⊨ 𝜑[𝛾g] for all g ∈ G𝜑 ∈ D.
This property is equivalent to the conjunction of the properties Ug ⊨ 𝜓[𝛾g] and Ug ⊨𝜉[𝛾g]. Since these formulas are infrafiltrated, it is equivalent to the conjunction of the
properties U ⊨ 𝜓[𝛾] and U ⊨ 𝜉[𝛾], but it is equivalent to the property U ⊨ 𝜑[𝛾].

Conversely, let U ⊨ 𝜑[𝛾]. It is equivalent to the conjunction of the properties
U ⊨ 𝜓[𝛾] and U ⊨ 𝜉[𝛾]. Then, G𝜓 ∈ D and G𝜉 ∈ D. Consider G ≡ G𝜓 ∩ G𝜉. Then,
Ug ⊨ 𝜓[𝛾g] and Ug ⊨ 𝜉[𝛾g] implies Ug ⊨ 𝜑[𝛾g] for every g ∈ G ∈ D. Hence, G𝜑 ∈ D.

Lemma 3. Let a formula 𝜓 be infrafiltrated with respect to the ultrafilter D. Then, the
formula ¬𝜓 is infrafiltrated with respect to D as well.

Proof. Denote the formula ¬𝜓 by 𝜑. By assumption, the properties G𝜓 ∈ D and
U ⊨ 𝜓[𝛾] are equivalent.

By definition, F \ G𝜑 = {g ∈ F | the property Ug ⊨ 𝜑[𝛾g] does not hold}. But
Ug ⊨ 𝜑[𝛾g] is equivalent to the assertion that the property Ug ⊨ 𝜓[𝛾g] does not hold.
Consequently, the property Ug ⊨ 𝜓[𝛾g] is equivalent to the assertion that the property
Ug ⊨ 𝜑[𝛾g] does not hold. It implies F\G𝜑 = G𝜓.

Let G𝜑 ∈ D. SinceD is an ultrafilter, we have G𝜓 = F\G𝜑 ∉ D. Thus, the property
U ⊨ 𝜓[𝛾] does not hold. By the definition of the satisfiability, it means that U ⊨ 𝜑[𝛾].

Conversely, let U ⊨ 𝜑[𝛾]. Then, the property U ⊨ 𝜓[𝛾] does not hold. Therefore,
G𝜓 ∉ D. Since D is an ultrafilter, we have G𝜑 = F\G𝜓 ∈ D.

Theorem 1 (Zakharov). Every formula 𝜑 of the language L(Σg2 ) of the second-order sig-
nature Σg2 with generalized equalities and belongings is infrafiltrated with respect to any
ultrafilter D on the set F.
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Proof. The set of all formulas 𝜑 of the language L(Σg2 ), constructed by induction from
atomic formulas by means of the connectives ¬ and ∧ and the quantifier ∃, will be
denoted byΨ. The subset of the setΨ, consisting of all formulas containing at most n
logical symbols ¬, ∧, and ∃, will be denoted by Ψn. Obviously, Ψ = ⋃⟮Ψn | n ∈ 𝜔⟯.

Using the complete induction principle, we shall prove the following assertion
A(n): every formula 𝜑 ∈ Ψn is infrafiltrated.

If n = 0, then 𝜑 is an atomic formula. By Lemma 1 (C.3.2), it is infrafiltrated. Con-
sequently, A(0) holds.

Assume that for every m < n the assertion A(m) holds. Let 𝜑 ∈ Ψn. If 𝜑 = ¬𝜓, then𝜓 ∈ Ψn−1. Therefore, 𝜓 is infrafiltrated. By Lemma 3, the formula 𝜑 is infrafiltrated as
well. If 𝜑 = 𝜓∧ 𝜉, then 𝜓, 𝜉 ∈ Ψn−1. Therefore, by the inductive assumption, the formu-
las𝜓 and 𝜉 are infrafiltered. By Lemma 2, the formula𝜑 is infrafiltrated aswell. Finally,
if 𝜑 = ∃x𝜏𝜓, then 𝜓 ∈ Ψn−1. Consequently, as above, the formula 𝜓 is infrafiltrated. By
Proposition 2, the formula 𝜑 is infrafiltrated as well. Thus, the assertion A(n) holds.

By the complete induction principle, the assertion A(n)holds for every n ∈ 𝜔. This
means that any formula 𝜑 ∈ Ψ is infrafiltrated.

Let 𝜑 be an arbitrary formula of the language L(Σg2 ). Consider for 𝜑 the accom-
panying formula 𝜑∗ defined in C.2.4. By the definition of the operation 𝜑 → 𝜑∗, we
have 𝜑∗ ∈ Ψ. By the proven above, the formula 𝜑∗ is infrafiltrated, i. e. {g ∈ F | Ug ⊨𝜑∗[𝛾g]} ∈ D ⇔ U ⊨ 𝜑∗[𝛾]. Proposition 1 (C.2.4) implies the equivalences U ⊨ 𝜑∗[𝛾] ⇔
U ⊨ 𝜑[𝛾] and Ug ⊨ 𝜑∗[𝛾g] ⇔ Ug ⊨ 𝜑[𝛾g]. As a result, we get the following chain of
equivalences: {g ∈ F | Ug ⊨ 𝜑[𝛾g]} ∈ D ⇔ {g ∈ F | Ug ⊨ 𝜑∗[𝛾g]} ∈ D ⇔ U ⊨ 𝜑∗[𝛾] ⇔
U ⊨ 𝜑[𝛾]. It means that the formula 𝜑 is infrafiltrated.
This theorem has one important corollary. Let Φ be some set of formulas of the lan-
guage L(Σg2 ) of the generalized second-order signature Σg2 . Let the set Φ has a model
⟮U0, 𝛾0⟯ of the signature Σg2 with true generalized equalities and belongings. Take an
arbitrary set F and an arbitrary ultrafilterD on F. Consider the collection of the mod-
els ⟮⟮Uf , 𝛾f ⟯ | f ∈ F⟯ such that ⟮Uf , 𝛾f ⟯ ≡ ⟮U0, 𝛾0⟯. The infra-D-product infra-D-prod
⟮Uf | f ∈ F⟯ of the collection ⟮Uf | f ∈ F⟯will be called the infra-D-power of the system
U0 with the exponent F and will be denoted by infra-D-power(U0, F). The crossing⋈⟮𝛾f | f ∈ F⟯ of the collection ⟮𝛾f | f ∈ F⟯will be called the crossing of the evaluation 𝛾0
in the quantity F and will be denoted by ⋈⟮𝛾0, F⟯.
Corollary 1. Let Φ be some set of formulas of the language L(Σg2 ). If the set Φ has
a model ⟮U0, 𝛾0⟯ of the signature Σg2 with true generalized equalities and belong-
ings, then for every set F and every ultrafilter D on F, the set Φ has also the model
⟮infra-D-power ⟮U0, F⟯, ⋈⟮𝛾0, F⟯⟯ of the signature Σg2 with true generalized equalities
and belongings.

This implies that if a set Φ of formulas of the language L(Σg2 ) has a model with
true generalized equalities and belongings, then it has the same model of an ar-
bitrary large power. Therefore, the generalized second-order logic has the upper
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Lövengame– Skolemproperty, in contrastwith the standard second-order logic,which
does not have this property (see [Mendelson, 1997, Appendix, (III)]).

C.3.3 Compactness theorem for formulas of the language L(Σg2) of the generalized
second-order signature

Theorem 1 (the Zakharov compactness theorem for generalized second-order lan-
guage). Let Φ and Ψ be some sets of formulas of the language L(Σg2 ) of the gener-
alized second-order signature Σg2 . Let for every finite subset f of the set Φ, the set of
formulas f+(E1 – E4)+Ψ has a model ⟮Uf , 𝛾f ⟯ of the signature Σg2 such that collection
⟮⟮Uf , 𝛾f ⟯ | f ∈ F⟯ is pairwise H-concordant. Then, the set of formulas Φ+(E1 – E4)+Ψ
has a model ⟮U, 𝛾⟯ of the signature Σg2 .
Proof. Consider the set F ≡ {f ⊂ Φ | 0 < |f | < 𝜔}of all finitenon-empty subsets fromΦ.

For an element f ∈ F, consider the set Ff ≡ {g ∈ F | f ⊂ g}. Since f ∈ Ff , we have
Ff ̸= ⌀. The ensembleC ≡ {Ff | f ∈ F}has the finite intersectionproperty, i. e. it ismul-
tiplicative. Hence, there is some ultrafilter D on the set F including the set C.

Consider the system U ≡ infra-D-prod ⟮Uf | f ∈ F⟯ and the evaluation 𝛾 ≡ ⋈⟮𝛾f |
f ∈ F⟯ on the system U constructed in C.3.1. By Lemma 1 (C.3.1), U is a system with the
true generalized equalities and belongings.

Prove that the evaluated system ⟮U, 𝛾⟯ is a model for the setΦ.
Suppose 𝜑 ∈ Φ. Consider the set F{𝜑}. By condition, U{𝜑} ⊨ 𝜑[𝛾{𝜑}]. Consider the set

G𝜑 ≡ {g ∈ F | Ug ⊨ 𝜑[𝛾g]}. If g ∈ F{𝜑}, then {𝜑} ⊂ g implies 𝜑 ∈ g. Therefore, Ug ⊨ 𝜑[𝛾g].
Consequently, F{𝜑} ⊂ G𝜑. Since F{𝜑} ∈ D, we have G𝜑 ∈ D.

By Theorem 1 (C.3.2), we infer the property U ⊨ 𝜑[𝛾]. Thus, ⟮U, 𝛾⟯ is a model
for the set Φ. The fact that ⟮U, 𝛾⟯ is a model for the set Ψ follows immediately from
Theorem 1 (C.3.2).

C.3.4 Uncountable models of the second-order generalized Peano– Landau
arithmetic

First, we describe the Peano– Landau arithmetic in the generalized second-order lan-
guage of the one-grade signature of the rank 1|0.

Put m = 0 and n = 0, i. e. we shall consider the single basic first-order type of the
form 𝜋 ≡ ⟨0, 1⟩ without auxiliary first-order types. Consider the second-order types
𝜘 ≡ [𝜋] and 𝜌 ≡ [𝜋, 𝜋] and the type domain Θ ≡ Θg

Ar2 ≡ {𝜋, 𝜘, 𝜌} of the rank 1|0 with
the belonging type subdomainΘb ≡ {𝜘, 𝜌}.

PutΩ𝜋 ≡ 1,Ω𝜘 ≡ ⌀,Ω𝜌 ≡ 1, and consider the collections Σ𝜋c ≡ (𝜎𝜋𝜔 | 𝜔 ∈ Ω𝜋) = 𝜎𝜋0 ,Σ𝜘c ≡ (𝜎𝜘𝜔 | 𝜔 ∈ Ω𝜘) = ⌀, and Σ𝜌c ≡ (𝜎𝜌𝜔 | 𝜔 ∈ Ω𝜌) = 𝜎𝜌0. They compose the signature of
constants of the type domainΘ of the form Σc ≡ (Σ𝜏c | 𝜏 ∈ Θ) = (𝜎𝜋0 ,⌀, 𝜎𝜌0) containing

 EBSCOhost - printed on 2/10/2023 4:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



C.3.4 Uncountable models of the second-order generalized Peano– Landau arithmetic | 383

the constant 𝜎𝜋0 , which is an objective first-order constant for denoting the natu-
ral number 0, and the constant 𝜎𝜌0, which is a predicate second-order constant for
expressing the succession relation of Peano between a natural number a and its
successor a + 1.

Further, along with 𝜎𝜋0 and 𝜎𝜌0, we shall simply write 0 and 𝜎, respectively.
Take the signature of the generalized equalities of the type domain Θ of the form

Σe ≡ (𝛿𝜏 | 𝜏 ∈ Θ) = (𝛿𝜋, 𝛿𝜘, 𝛿𝜌) containing the first-order equality 𝛿𝜋 and the second-
order equalities 𝛿[𝜋] and 𝛿𝜋,𝜋.

Take the signature of the generalized belongings of the type domainΘ of the form
Σb ≡ (𝜀𝜏 | 𝜏 ∈ Θb) = (𝜀𝜘, 𝜀𝜌).

Finally, take a denumerable set Σ𝜋v of objective variables x𝜋, y𝜋, . . . of the first-
order type 𝜋 and denumerable sets Σ𝜘v and Σ𝜌v of predicate variables u𝜘, v𝜘, . . . and
u𝜌, v𝜌, . . . of the second-order types 𝜘 and 𝜌, respectively.

They form the signature Σv ≡ (Σ𝜏v | 𝜏 ∈ Θ) = (Σ𝜋v , Σ𝜘v , Σ𝜌v) of variables of the type
domain Θ.

Consider the one-grade generalized signature ΣgAr2 ≡ Σc|Σe|Σb|Σv of the rank 1|0
and its language L(ΣgAr2). Terms p, q, r, . . . of this language are constants and variables
only, the atomic equality formulas have the forms q𝜋𝛿𝜋r𝜋, q𝜘𝛿𝜘r𝜘, and q𝜌𝛿𝜌r𝜌. Respec-
tively, the atomic belonging formulas have the forms q𝜋𝜀𝜘r𝜘 and (p𝜋, q𝜋)𝜀𝜌r𝜌.

Further, along with x𝜋, y𝜋, . . . and 𝛿𝜋, we shall simply write x, y, . . . and 𝛿.
The axioms of the second-order generalized Peano– Landau arithmetic are the fol-

lowing ones.

A1. ∀x1, x2, y((x1, y)𝜀𝜌𝜎 ∧ (x2, y)𝜀𝜌𝜎 ⇒ x1𝛿x2).
A2. ∀x, y1, y2((x, y1)𝜀𝜌𝜎 ∧ (x, y2)𝜀𝜌𝜎 ⇒ y1𝛿y2).
A3. ∀x, y((x, y)𝜀𝜌𝜎 ⇒ ¬(y𝛿0)).
A4. ∀u𝜘(0𝜀𝜘u𝜘 ∧ ∀x, y(x𝜀𝜘u𝜘 ∧ (x, y)𝜀𝜌𝜎 ⇒ y𝜀𝜘u𝜘) ⇒ ∀z(z𝜀𝜘u𝜘)).
Consider the following generalized extensionality properties.

PE1. ∀u𝜘, v𝜘(u𝜘𝛿𝜘v𝜘 ⇔ ∀x(x𝜀𝜘u𝜘 ⇔ x𝜀𝜘v𝜘)).
PE2. ∀u𝜌, v𝜌(u𝜌𝛿𝜌v𝜌 ⇔ ∀x, y((x, y)𝜀𝜌u𝜌 ⇔ (x, y)𝜀𝜌v𝜌)).
Consider the set N0 ≡ 𝜔 of all natural numbers constructed in the NBG set theory
(see 1.2.6) or in any set theory ST mentioned in Introduction.

For the formation N0 of the rank 1|0 and the signature ΣgAr2, consider the fol-
lowing collections S𝜋c ≡ ⟮s𝜋𝜔 | 𝜔 ∈ Ω𝜋⟯ = s𝜋0, S𝜘c ≡ ⟮s𝜘𝜔 | 𝜔 ∈ Ω𝜘⟯ = ⌀, and S𝜌c ≡ ⟮s𝜌𝜔 |𝜔 ∈ Ω𝜌⟯ = s𝜌0. They compose the collection of constant structures Sc ≡ ⟮S𝜏c | 𝜏 ∈ Θ⟯ =⟮s𝜋0 ,⌀, s𝜌0⟯, containing the constant structure s𝜋0 ∈ 𝜋(N0) = N0, which is the initial
natural number, and the constant structure s𝜌0 ∈ 𝜌(N0) = P(N0 ×N0), which is the set
of all pairs of natural numbers of the form ⟨a, a + 1⟩.

Further, along with s𝜋0 and s
𝜌
0, we shall write simply 0 and s, respectively.
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Consider the collection of the equality ratios of the form Se ≡ ⟮≈𝜏| 𝜏 ∈ Θ⟯ =⟮≈𝜋, ≈𝜘, ≈𝜌⟯ ≡ ⟮= |N2
0, = |P(N0)2, = |P(N0 × N0)2⟯ containing in the capacity of the

first-order equality ratio ≈𝜋 and of the second-order equality ratios ≈𝜘 and ≈𝜌 the
restrictions on the indicated sets one and the same set-theoretical equality = in the
NBG set theory.

Consider the collection of the belonging ratios of the form Sb ≡ ⟮<−𝜏 | 𝜏 ∈ Θ⟯ =⟮<−𝜘, <−𝜌⟯ ≡ ⟮∈ |N0 × P(N0), ∈ |(N0 × N0) × P(N0 × N0)⟯ containing in the capacity of
the belonging ratio <−𝜘 and <−𝜌 the restrictions on the indicated sets one and the same
set-theoretical belonging ∈ in the NBG set theory.

Finally, take the collection of the terminals over the formationN0 of the form Sv ≡⟮𝜏(N0) | 𝜏 ∈ Θ⟯ = ⟮𝜋(N0), 𝜘(N0), 𝜌(N0)⟯ = ⟮N0,P(N0),P(N0 × N0)⟯.
These collections compose the one-grade superstructure SAr2 ≡ ⟮Sc , Se , Sb , Sv⟯ of

the signature ΣgAr2 of the rank 1|0 over the formation N0.
The system Ar2 ≡ ⟮N0, SAr2⟯ of the signature ΣgAr2 can be called the natural series

of Peano – Landau of the second order in the NBG set theory, because it models in NBG
the following Peano– Landau postulates.

P1. ∀a1, a2, b(⟨a1, b⟩ ∈ s ∧ ⟨a2, b⟩ ∈ s ⇒ a1 = a2).
P2. ∀a, b1, b2(⟨a, b1⟩ ∈ s ∧ ⟨a, b2⟩ ∈ s ⇒ b1 = b2).
P3. ∀a, b(⟨a, b⟩ ∈ s ⇒ b ̸= 0).
P4. ∀P(0 ∈ P ∧ ∀a, b(a ∈ P ∧ ⟨a, b⟩ ∈ s ⇒ b ∈ P) ⇒ ∀c(c ∈ P)).
Consider an evaluation 𝛾 on the system Ar2 such that 𝛾(x) ∈ 𝜋(N0) = N0, 𝛾(u𝜘) ∈𝜘(N0) = P(N0), and 𝛾(u𝜌) ∈ 𝜌(N0) = P(N0 × N0).

For the evaluated system ⟮Ar2, 𝛾⟯ the following assertion holds.
Lemma 1. The evaluated system ⟮Ar2, 𝛾⟯ is the standard model for the set of formulas
E1, E2, E3, E4, A1, A2, A3, A4, PE1, and PE2 of the language L(ΣgAr2).
Proof. The satisfactions Ar2 ⊨ A1[𝛾], Ar2 ⊨ A2[𝛾], Ar2 ⊨ A3[𝛾], and Ar2 ⊨ A4[𝛾] fol-
low from the correctness for the system Ar2 of Peano– Landau postulates P1, P2, P3,
and P4, respectively. The other satisfactions are checked immediately.

Therefore, the evaluated system ⟮Ar2, 𝛾⟯ and also the mathematical system Ar2
(see A.1.3) can be called the generalized natural series of Peano– Landau of the
second order in the NBG set theory. Note that along with the NBG set theory any
set theory ST mentioned in Introduction can be used.

Now, construct an uncountable model. Take an arbitrary set F and an arbitrary
ultrafilter D on F. Consider the system infra-D-power(Ar2, F) and the evaluation
⋈(𝛾, F) defined in C.3.2.
Theorem 1. The evaluated system ⟮infra-D-power(Ar2, F), ⋈(𝛾, F)⟯ is the generalized
model for the set of formulas E1, E2, E3, E4, A1, A2, A3, A4, PE1, and PE2 of the language
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L(ΣgAr2). The support of the model is the generalized Baire set N
F
0 (see [Engelking, 1977,

4.3.G]). If |F| ⩾ 𝜔, then the support is uncountable.
Proof. The assertion follows from Lemma 1 and Theorem 1 (C.3.2).
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absolutely continuous semimeasure [measure]
3.2.4

absolutely homogeneous mapping 4∘ (2.2.7)
abstract B.5.1
– infinite sequence B.5.2
– interpretation B.5.2
–model B.5.2
– , universal B.5.1
additive
– ensemble 2.1.1
– evaluation 3.1.1
–mapping 3∘ (2.2.7)
– series of collection² [sequence] of real

numbers 1.4.8
admissible substitution A.1.1
a-envelope 2.4.4
a-foundation 2.1.1
Alexandrov
–algebra 2.1.1
– set 2.1.1
– space 2.1.1
– theorem 2.3.5
Alexandrov –Stone– Fremlin integral

representation theorem 3.4.2
algebra
– , Banach 8∘ (2.2.7)
– , lattice-ordered linear 3∘ (2.2.4)
– , seminormed 8∘ (2.2.7)

– , linear 2.2.4
– , seminormed 8∘ (2.2.7)

algebra (of sets) 2.1.1
– , Alexandrov 2.1.1
– generated by ensemble 2.1.1
almost
–distributable function 2.5.1
– everywhere 3.3.1
–measurable function 2.5.1
– uniform function 2.5.1
antiisotone mapping 1.1.15
antimonotone mapping 1.1.15
antisymmetric relation 1.1.14

Archimedean ordered linear space 9∘ (2.2.7)
Archimedes principle 1.4.1, 1.4.2, 1.4.3
arrow B.2.1
– , 𝛼-functorial B.2.2
– , 𝛼-transformational B.2.2
a-space 2.1.1
assembly
–defined by formula B.1.1
– universal B.1.1
– ordered B.3.3
–well-ordered B.3.3
associativity of
– cardinal product 1.3.5
– cardinal sum 1.3.5
– infimum 1.1.15
– intersection of classes 1.1.5
– intersection of collection 1.1.10
–netful product 1.4.8
–netful sum 1.4.8
–product 1.3.6 (N), 1.4.1 (Z), 1.4.2 (Q),

1.4.3 (R)
– product of classes 1.1.8
–product of collection 1.1.12
– sum 1.3.6 (N), 1.4.1 (Z), 1.4.2 (Q), 1.4.3 (R)
– supremum 1.1.15
–union of classes 1.1.5
– union of collection 1.1.10
auxiliary
– carrier of mathematical system 1∘ (2.2.2)
– sets 2.2.2, C.1.2
– type C.1.1
axiom 1.1.3
–of binary union 1.1.6 (NBG), B.1.1 (LTS)³
– of choice 1.1.12 (NBG), A.2.1 (ZF), B.1.1 (LTS)
– , empty class B.1.1
– , empty set A.2.1
– , equiuniversality B.1.1
– , explicit 1.1.3
– , extensionality 1.1.5, A.2.1, B.1.1
– of full ensemble 1.1.6 (NBG), A.2.1 (ZF),

B.1.1 (LTS)

2 In this index, any articles (a, an, the) are omitted.
3 In this index, for terms having different values in different set theories, the abbreviations in brackets
indicate subsections where the term is explained within the framework of the corresponding theory.
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– , full union B.1.1
– of foundation 1.1.11
– , galacticity A.7.3
–of general union 1.1.11
– , implicit 1.1.3
– , inaccessibility A.4.3
– , 𝜔-inaccessibility A.5.1
– , 1-inaccessibility A.5.2
–of inaccessible cardinal A.5.2
–of infinity 1.1.11, A.2.1
– , infra-infinity B.1.1
– , infra-universality B.1.1
– , local pair B.7.1
– , pair A.2.1 (ZF), B.7.1 (LTS)
– , power set A.2.1, A.6.2
– , quasitransitivity B.1.1
– of regularity 1.1.11 (NBG), A.2.1 (ZF), B.1.1 (LTS)
– scheme 1.1.3
– , full comprehension 1.1.5, B.1.1
– , replacement A.2.1
– , separation A.2.1

– , subset B.1.1
– , Tarski A.7.1
– text 1.1.3
– , transitivity B.1.1
– of union 1.1.11 (NBG), A.2.1 (ZF)
– of universal set A.5.2
– , universality A.4.3 (ZF), B.1.1 (LTS)
– , 𝜔-universality A.5.1
– , transitive A.5.2

– , unordered pair B.7.3
– , 1-universality A.5.2
–of values 1.1.11
– axioms of Peano 1.2.6
axioms of second-order generalized

Peano– Landau arithmetic C.3.4
axioms of specification B.7.1 (LTS), B.7.3 (NBG)

Baire
– envelope of functional family 2.2.4
– extension of Cb(T ,G) 2.5.2
– , bounded 2.2.4

– collection for functional family 2.2.4, 2.3.7
– functional hierarchy 2.3.7
– functions of class 𝛼 2.2.4
– , bounded 2.2.4

Baire –Borel correlation 2.3.7, 2.4.7
Banach
–algebra 8∘ (2.2.7)

– lattice-ordered space 8∘ (2.2.7)
– local convergence classification theorem

2.3.7
– space 6∘ (2.2.7)
balanced mathematical system C.2.2
band disjoint to set 3.2.2
band generated by set 3.2.2
base of topology 1∘ (3.5.1)
belonging 1.1.1, A.1.3
– , generalized C.1.3
– type subdomain C.1.3
Beppo Levi theorem 3.3.3
Bernays theorem on finite axiomatization of

NBG B.7.3
bijection 1.1.7, A.2.1, B.1.1
bimeasure 3.5.5
Birkhoff
– identity 1.4.5, 2.2.2
– inequalities 1.4.5, 2.2.2
binary
– additive ensemble 2.1.1
– additive evaluation 3.1.1
– intersection 1.1.5, A.2.1
–multiplicative ensemble 2.1.1
– relation 1.1.14
– superadditive evaluation 3.1.1
– union 1.1.5, A.2.1
bipositive mapping 4∘ (2.2.7)
Borel
– envelope of ensemble 2.1.3
– function 2.3.7
–of class 𝛼 2.3.7

– integrable function 3.5.6
–well-integrable function 3.5.6
– functional hierarchy 2.3.7
–measure on Rn 3.1.6
– set 2.1.1, 2.1.3
Borel – Lebesgue
– initial evaluation on Rn 3.1.4
–measurable subsets of Rn 3.1.6
–measure, extended 3.1.6
Borel – Lebesgue–Hausdorff theorem on

normal families 2.3.6
Borel – Radon measure 3.5.3
– , narrow 3.5.4
– , wide 3.5.3
Borel – Radon triplet 3.5.5
boundary of parallelepiped 3.1.6
boundary of set in topological space 1∘ (3.5.1)
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bounded
– collection 1.1.15
– function 2.2.1
–mapping 1.1.15 (of preordered classes), 7∘

(2.2.7) (seminorm bounded)
– set 1.1.15 (in preordered class),

1∘ (3.1.4) (in Rn)
boundedly normal
– envelope of functional family 2.2.4, 2.4.6
– family of functions 2.2.4, 2.4.6
boundedness indicies of functional 3.6.4
Bourbaki theorem 3.6.3, 3.6.4
Bunina theorem on galactic sets A.7.2

Cantor completeness of R 1.4.4
Cantor theorem on cardinality of set of all

subsets 1.3.2
cardinal degree 1.3.5
cardinal number 1.3.1, A.2.2, B.3.3
– , first denumerable 1.3.1
– , first uncountable 1.3.4
– , inaccessible A.2.2
– , U-inaccessible B.3.3
– , regular A.2.2
– , U-regular B.3.3
U-cardinal number B.3.3
cardinal product
– of simple collection 1.3.5
– of sequential suit [pair, . . . ] 1.3.5
cardinal sum of simple collection 1.3.5
cardinality of set 1.3.2
carrier of mathematical system 1∘ (2.2.2)
carrier of semimeasure [measure] 3.5.1
𝛼-category (category of class 𝛼) B.2.1
– , local B.2.1
– , locally-small B.2.1
– , small B.2.1
Cauchy criterion 1.4.4
– for uniform convergence 2.2.3
Cauchy sequence 1.4.3, 1.4.4
chain w. r. t.⁴ relation 1.1.14
– , maximal 1.2.11
chain of subelements of set A.7.2
choice
– axiom 1.1.12 (NBG), A.2.1 (ZF), B.1.1 (LTS)
–mapping 1.1.12, A.2.1

class 1.1.5, B.1.1
– of assignment of correspondence 1.1.7
– of class 𝛼 B.1.1
– , completely order closed 1.1.15
– completely determined by formula A.2.1
– , Dedekind complete 1.1.15
– , 𝛼-Dedekind complete 1∘ (2.2.8)
– defined by formula A.2.1
– , downward directed 1.1.15
– , empty 1.1.5
– , latticed 1.1.15
– , lattice-ordered 1.1.15
– , order 𝛼-closed 1∘ (2.2.8)
– , order complete 1.1.15
– , ordered 1.1.15, A.2.2
– , preordered 1.1.15
– , proper 1.1.5, A.2.1
– , quasitransitive A.2.2
– selected by property 1.1.5
– , solitary 1.1.6
– , supertransitive A.2.2
– , transitive 1.2.2, A.2.2
– , universal 1.1.5, B.1.1
– , upward directed 1.1.15
–of values of correspondence 1.1.7
–well-defined by formula A.2.1
– , well-ordered 1.2.1, A.2.2
𝛼-class B.1.1
closed
–final interval 1.1.15
– initial interval 1.1.15
– set 2.1.1
closedly regular evaluation 3.5.1
closure of set in topological space 1∘ (3.5.1)
closure (in F (T ))
– , pointwise 2.2.4
– , bounded 2.2.4

– , uniform 2.2.4
– , bounded 2.2.4

co-ensemble 2.1.1
cofinal subclass 1.1.15
cofinality of ordinal number A.2.2
co-foundation 2.1.1
coinitial subclass 1.1.15
collection 1.1.9, A.2.1
– , bounded 1.1.15

4 In this index, the words “with respect to” are abbreviated to “w. r. t.”.
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– , commutatively summarized [multiplied]
1.4.8

– , countable 1.2.6
–of extensions of ensemble of types Σ, Δ, Λ,

and Γ 2.1.2
– , finite 1.2.6
– , identical 1.1.9
– , multivalued 1.1.9, A.2.1
– , pairwise disjoint 1.1.10
– , simple 1.1.9, A.2.1
– , total 1.1.9
– , unconditionally summarized [multiplied]

1.4.8
– , uniformly bounded 2.2.2
– , well-summarized [well-multiplied] 1.4.8
–with graduation 2.4.4
𝛼-collection B.1.1
commutatively summarized [multiplied]

collection 1.4.8
commutativity of
– cardinal product 1.3.5
– cardinal sum 1.3.5
– infimum 1.1.15
– intersection of classes 1.1.5
– intersection of collection 1.1.10
–netful product 1.4.8
–netful sum 1.4.8
–product 1.3.6 (N), 1.4.1 (Z), 1.4.2 (Q),

1.4.3 (R)
– product of classes 1.1.8
–product of collection 1.1.12
– sum 1.3.6 (N), 1.4.1 (Z), 1.4.2 (Q), 1.4.3 (R)
– supremum 1.1.15
–union of classes 1.1.5
– union of collection 1.1.10
compact
–descriptive space 2.1.1
– set 2.1.1
compactly regular evaluation 3.5.1
complement of class 1.1.5
complete
– ensemble 1.1.5, 2.1.1
– evaluation 3.1.4
–pseudometric space 2∘ (2.2.7)
– saturated [strongly saturated] extension 3.1.4
– seminormed linear space 6∘ (2.2.7)
completely
– additive ensemble 2.1.1
– additive evaluation 3.1.1

– normal
– envelope of functional family 2.2.4, 2.3.6
– family of functions 2.2.4, 2.3.6

–multiplicative ensemble 2.1.1
– order closed class 1.1.15
completion of semimeasurable [measurable]

space 3.1.4
completion of semimeasure [measure] 3.1.4
composition of
– correspondences 1.1.7
– function and measure 3.3.7
–𝛼-functors B.2.2
–𝛼-transformations B.2.2
conclusion of theorem 1.1.3
H-concordant mathematical systems C.2.2
H-concordant evaluated mathematical systems

C.2.3
conditionally summarized [multiplied] sequence

1.4.8
congruence 1∘ (2.2.6)
conic space 1∘ (3.4.2)
conic operator 1∘ (3.4.2)
connected occurrence 1.1.2
connecting relation 1.1.14
constant function 2.2.1
constants C.1.3
– individual C.1.3
–predicate C.1.3
continuous function 2.3.1
consistent theory [totality] A.1.2
contradictory theory [totality] A.1.2
convergent
–net (in R) 1.4.7
–net in topological space 2∘ (2.2.7)
– sequence (in R) 1.4.4
– series of collection [sequence] of real numbers

1.4.8
convex mapping 4∘ (2.2.7)
convex subclass 1.1.15
coordinate
–pair 1.1.6
–𝛼-pair B.1.1
– product 1.1.6, A.2.1
–𝛼-product B.1.1
co-perfect ensemble 2.1.1
correspondence 1.1.7, A.2.1
– , bijective 1.1.7, B.1.1
– , identical 1.1.7
– , injective 1.1.7, B.1.1
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– , inverse to 1.1.7
– , simple 1.1.8
– , single-valued 1.1.7, B.1.1
– , surjective 1.1.7, B.1.1
– , total 1.1.7, B.1.1
– of several arguments 1.1.12
𝛼-correspondence B.1.1
countable set 1.2.6, A.2.2
countably
– additive ensemble 2.1.1
– additive evaluation 3.1.1
– additive foundation 2.1.1
–multiplicative ensemble 2.1.1
– step function 2.2.4
cover
– of class 1.1.10
–of set 2.1.5
– , one-member 2.1.5

covering 2.1.5
–multiplicative 2.1.5
cozero-set 2.2.5
– of level n 2.2.5
crossing of collection of evaluations C.3.1
crossing of evaluation C.3.2
cumulative classes B.3.4
cumulative sets A.3.1
– , inaccessible A.3.3
– , scheme-inaccessible A.8.1

Daniell functions 3.6.2
Darboux sums 3.7.1
Darboux – Jordan sums 3.7.3
decomposition of functional
– , Riesz 2.2.8
decomposition of semimeasure [measure]
– , Jordan 3.2.1
– , Lebesgue 3.2.4
– , Riesz 3.2.2
–w. r. t. semimeasure [measure] 3.2.4

decreasing
–mapping 1.1.15
–net 1.1.15
– in F (T ) 2.2.3

– sequence 1.4.4
Dedekind
– complete class 1.1.15
– completeness of R 1.4.5
– cut 1.4.5
𝛼-Dedekind complete class 1∘ (2.2.8)

deduction
– , D-bounded A.1.3
– from axiom text 1.1.3
– from condition and axiom text 1.1.3
– from totality A.1.2
– , symbol of 1.1.3
– theorem 1.1.3
deducible formula A.1.2
degree of
– cardinal 1.3.5
– class 1.1.8
– integer 1.4.1
– natural number 1.3.6
– rational number 1.4.2
– real number
– , integer 1.4.3
– , rational 1.4.6

dense set w. r. t. ensemble 2.1.4
density of measure w. r. t. measure 3.3.7
denumerable set 1.2.6, A.2.2
derivative ensembles 2.1.1
derivative mapping of mapping(s) w. r. t.
– degrees 1.1.8
– ensembles 1.1.8
– coordinate products 1.1.8
derivative mapping of collection of mappings

w. r. t. products 1.1.12
designation 1.1.1
descriptive space 2.1.1
– , compact 2.1.1
–with covering 2.1.5
–with negligence 2.1.4
difference
–of classes 1.1.5, A.2.1
– of integers 1.4.1
– of natural numbers 1.3.6
–of real numbers 1.4.3
– , symmetrical 2.1.4
Dini property 3.6.1
Dini theorem 2.3.4
directed class
–upward [downward] 1.1.15
disjoint
– classes 1.1.5
– collection 1.1.10
– elements (in lattice-ordered linear space)

3.2.2
–union 1.1.10
–union of sequential suit [pair, . . . ] 1.1.11
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dissection of class 1.1.10
distance between points (in metric space) 1∘

(2.2.7)
distributable function 2.3.1
distributivity of
– cardinal product 1.3.5
– cardinal sum 1.3.5
– infimum 1.1.15
– in R 1.4.5

– intersection of classes
–w. r. t. union 1.1.5
–w. r. t. multiplication 1.1.6

– intersection of collection 1.1.13
–product 1.3.6 (N), 1.4.1 (Z), 1.4.2 (Q),

1.4.3 (R)
– product of collection 1.1.12
– supremum 1.1.15
– in R 1.4.5

–union of classes
–w. r. t. intersection 1.1.5
–w. r. t. multiplication 1.1.6

–union of collection 1.1.13
division of natural numbers 1.3.6
divisor of number 1.3.6
domain of definition of correspondence 1.1.7
dominant set A.7.2
dominated convergence theorem 3.3.3
dual to ordered linear space 2∘ (2.2.8)
dual to seminormed linear space 7∘ (2.2.7)

edge ensemble 2.1.1
Egorov theorem 3.3.1
empty class 1.1.5, B.1.1
– axiom B.1.1
empty set axiom A.2.1
ensemble 1.2.11, 2.1.1
– , additive 2.1.1
– closed under
– complement 2.1.1
– difference 2.1.1

– , complete 1.1.5, 2.1.1, A.2.1
– , co-perfect 2.1.1
– , derivative 2.1.1
– , disjointly additive 2.1.1
– , disjointly multiplicative 2.1.1
– , edge 2.1.1
– , extended derivative 2.1.1
– , complete 1.1.5, 2.1.1, A.2.1
– , hereditary 2.1.4

– , ideal 2.1.4
– , initial derivative 2.1.1
– , latticed 2.1.1
– , multiplicative 2.1.1
– , perfect 2.1.1
– , reducible 2.1.1
– , saturated 2.1.1
– , separable 2.1.1
– of sets of finite character 1.2.11
– , Young–Hausdorff 2.1.2
– , Zakharov – Koldunov 2.1.2
envelope function from above [below] 2.2.9
envelope of ensemble
– , Borel 2.1.3
envelope of functional family
– , Baire convergence 2.2.4, 2.3.7
– , normal 2.2.4, 2.3.6
– , boundedly 2.2.4, 2.4.6
– , completely 2.2.4, 2.3.7

envelopment properties 3.6.2
essentially
– bounded function 2.2.7
–bounded part of functional family 2.2.7
–positive [negative] set for measure 3.2.1
– uniform convergence 2.2.7
equality axioms C.1.3
equiuniversality axiom B.1.1
equivalent classes 1.1.8, A.2.2, B.3.3
U-equivalent classes B.3.3
equivalent formulas 1.1.3
equivalence relation 1.1.14
equivalence of functions w. r. t. ideal 2.1.4
equivalence class of element 1.1.14
Euclidean division 1.3.6
evaluable topological space 3.5.1
evaluated mathematical system C.2.2
evaluation 3.1.1
– , additive 3.1.1
– , bounded 3.1.1
– , complete 3.1.4
– , decreasing 3.1.1
– defined on topological space 3.5.1
– , finite [𝜎-finite, 𝜏-finite] 3.1.1
– , increasing 3.1.1
– , initial Borel – Lebesgue 3.1.4
– , internally finite 3.1.1
– , inner regular 3.4.1
– , Jordan 3.7.3
– , locally bounded 3.5.1
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– , locally complete 3.1.4
– , lower continuous 3.4.1
– , natural 3.1.1
– , negative 3.1.1
– , outer regular 3.4.1
– , positive 3.1.1
– , regular 3.4.1
– , saturated 3.1.4
– , strongly saturated 3.1.4
– , subadditive 3.1.1
– , superadditive 3.1.1
– , topological 3.5.1
– , topologically internally finite 3.5.1
– , upper continuous 3.4.1
evaluation on mathematical system C.2.3
even natural number 1.3.6
exact bounds 1.1.15
exact functional 3.6.1
explicit axiom 1.1.3
exponential function 1.4.7
exponential set A.7.2
exponentiality property A.7.1
extended
–Borel – Lebesgue measure 3.1.6
–Radon measure 3.5.3
–Radon triplet 3.5.5
– real number(s) 1.4.3
extendedly Lebesgue integrable function 3.3.2,

3.3.6
extending mapping 3.4.1
extension of
– correspondence 1.1.7
– collection 1.1.9
– ensemble of types Σ, Δ, Λ, and Γ 2.1.2
– initial family Cb(T cG) 2.5.2
–measure
– , complete saturated [strongly saturated]

3.1.4
– , large complete saturated [strongly

saturated] 3.1.5
– , Lebesgue–Caratheodory 3.1.5

– of narrow bounded Borel – Radon measure
3.5.4

extensional mathematical system C.2.2
extensionality axiom 1.1.5, A.2.1, B.1.1

factor-class of class w. r. t. equivalence 1.1.14
factor-correspondence w. r. t. equivalence

1.1.14

factor-ensemble of ensemble w. r. t. ideal 2.1.4
factor-mapping w. r. t. equivalence 1.1.14
family of functions 2.2.4
– closed under
–bounded inversion 2.2.4
–finite addition 2.2.4
–finite exact bounds 2.2.4
–finite multiplication 2.2.4
– inversion 2.2.4
–multiplication by real numbers 2.2.4
–pointwise convergence 2.2.4
–Stone truncation 2.2.4
–uniform convergence 2.2.4

– , normal 2.2.4
– , boundedly 2.2.4
– , completely 2.2.4, 2.3.7

– separating points and closed sets 3.5.2
– truncatable 2.2.9
Fatou lemma 3.3.3
Fine –Gillman– Lambek problem 2.5.2
finer partition 3.7.1
filter (of sets) C.3.1, 2.1.4
final
– interval 1.1.15
– subclass 1.1.15
finally constant [non-constant] sequence 1.2.7
finite
– collection 1.2.6
– evaluation 3.1.1
– set 1.2.6, A.2.2
finitely
– additive ensemble 2.1.1
– additive evaluation 3.1.1
– closed set theory B.5.2
–multiplicative ensemble 2.1.1
– superadditive [subadditive] evaluation 3.1.1
formation C.1.2
– , auxiliary C.1.1
formula 1.1.2, A.1.1
– , atomic C.1.3
– , closed 1.1.2
– , elementary A.1.1
– , false 1.1.3
– , infrafiltrated C.3.2
– , normalizable C.2.4
– , predicative 1.1.5
– , 𝛼-predicative B.1.1
– scheme 1.1.2, A.1.2
– , true 1.1.3
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foundation 2.1.1
foundation axiom 1.1.11
free occurrence 1.1.2, A.1.1
frontier of set in topological space 1∘ (3.5.1)
full comprehension axiom scheme 1.1.5, B.1.1
full ensemble 1.1.5, 2.1.1
– axiom 1.1.6 (NBG), B.1.1 (LTS)
full 𝛼-ensemble B.1.1
full union axiom B.1.1
function 1.1.8, A.2.1
– , Baire
–of class 𝛼 2.2.4

– , Borel measurable 2.3.7
–of class 𝛼 2.3.7

– , bounded 2.2.1
– of bounded variation D.1.1
– , constant 2.2.1
– , continuous 2.3.1
– continuous at point 1∘ (3.7.2)
– , Daniell 3.6.2
– , distributable 2.3.1
– , almost 2.5.1

– , essentially bounded 2.2.7
– , exponential 1.4.7
– , extendedly Lebesgue integrable 3.3.2, 3.3.6
– , infimal 3.6.2
– , Lebesgue integrable 3.3.2, 3.3.6
– , Lebesgue 𝜎-integrable 3.3.2, 3.3.6
– , majorized by function 2.2.4
– , measurable 2.3.1
– , almost 2.5.1

– , positive [negative] 2.2.1
– , Riemann integrable 3.7.1
– in classical sense (for Rn) 3.7.3

– , Riemann–Stiltjes integrable D.1.2
– , quasidistributable 2.5.2
– , quasimeasurable 2.5.2
– , quasiuniform 2.5.2
– , real-valued 2.2.1
– , semicontinuous 2.3.8, 3.5.2
– , semimeasurable 2.3.8
– separating points and closed sets 3.5.2
– , set 3.1.1
– , signed 2.2.4
– , step 2.2.4
– , countably 2.2.4
– , quite 2.2.4
– , quite countably 2.2.4

– , supremal 3.6.2

– , symmetrizable 2.4.5
– , uniform 2.4.1
– , almost 2.5.1

– , uniformly continuous 2.3.1
– , universally integrable 3.3.6
–with compact support 3.5.2
functional 6∘ (2.2.7)
– , exact [𝜎-exact] 3.6.1
– , locally tight 3.6.1
– , natural 3.6.4
– , pointwise continuous [𝜎-continuous] 2.2.8
– representable by Lebesgue integral over

measurable space 3.4.2
– , quite locally tight 3.6.1
– , tight 3.6.1
– , uniformly order bounded 2.2.8
𝛼-functor (functor of class 𝛼) B.2.2
– , identity B.2.2
𝛼-functorial arrows B.2.2
fundamental sequence
– in R 1.4.3, 1.4.4
– in pseudometric space 2∘ (2.2.7)

galactic set A.7.2
galacticity axiom A.7.3
general structure of mathematical system 1∘

(2.2.2)
generalization rule 1.1.3
geometric progression 1.4.8
graduation of collection 2.4.4
graph of mapping 1.1.8
greatest
– element of subclass 1.1.15
–member of collection 1.1.15
– lower bound of collection 1.1.15

Hahn decomposition 3.2.1
Halmos–Hewitt – Edwards theorem 3.6.3
Hausdorff
–maximality principle 1.2.11
– space 2∘ (3.5.1)
– theorem on normal envelope 2.3.6
homogeneous mapping 3∘ (2.2.7)
homomorphism
–of linear spaces 3∘ (2.2.7)
– of lattice-ordered linear spaces 3∘ (2.2.7)
hull of covering 2.1.5
hulls of ensemble 2.1.1
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ideal negligence 2.1.4
ideal of linear algebra 3∘ (2.2.6)
ideal ensemble (of sets) 2.1.4
identical
– collection 1.1.9
– correspondence 1.1.7
identity
– , Birkhoff 1.4.5, 2.2.2
–𝛼-functor B.2.2
–𝛼-transformation B.2.2
– , Neumann A.3.3
image of subclass under correspondence 1.1.7,

A.2.1
implication rule 1.1.3
implicit axiom 1.1.3
improvement property 2.1.1
inaccessibility axiom A.4.3
inaccessible cardinal number A.2.2
U-inaccessible cardinal number B.3.3
inaccessible cumulative sets A.3.3
increasing
–mapping 1.1.15
–net 1.1.15
– in F (T ) 2.2.3

– sequence 1.4.4
individual constants C.1.3
induction
– , natural 1.2.6, B.3.3
– , general principle of 1.3.6
– , construction of mappings by 1.2.7

– , principle of 1.2.1
– , transfinite 1.2.8, A.2.2, B.3.3
– , construction of mappings by 1.2.7, A.2.2

inductive set A.2.1
inequality
– , Bernoulli 1.4.3
– , Birkhoff 1.4.5
inferior limit of net 1.1.15
infimal functions 3.6.2
infimum
–of simple collection 1.1.15
–of set 1.1.15
– of simple sequential pair [triplet, . . . ] 1.1.15
infinite
– geometric progression 1.4.8
– sequence A.2.2
– set 1.2.6, A.2.2
infinity
– axiom 1.1.11, A.2.1

– in R 1.4.3
infra-infinity axiom B.1.1
infrafiltrated formula C.3.2
infra-D-power of system C.3.2
infra-D-product of collection of mathematical

systems C.3.1
infra-universal class B.1.1
infra-universality axiom B.1.1
initial
– alphabet 1.1.1, A.1.1
– interval 1.1.15
– subclass 1.1.15
–Borel – Lebesgue measure 3.1.4
injection 1.1.7, A.2.1
inner convergent sequence
– in R 1.4.3, 1.4.4
– in pseudometric space 2∘ (2.2.7)
inner regular evaluation 3.4.1
inner uniformly convergent sequence 2.2.3
inscribe set in functional family 2.2.9
integer(s) 1.4.1
integrable function 3.3.2, 3.3.6
integral of function 3.3.2, 3.3.6
interior of set in topological space 1∘ (3.5.1)
internally finite evaluation 3.1.1
interpretation of first order theory A.1.3
– , abstract B.5.2
– , standard A.6.1
interpretation of signature on support C.2.1
intersection of classes 1.1.5
𝛼-intersection of 𝛼-classes B.1.1
intersection of collection 1.1.10, A.2.1
𝛼-intersection of 𝛼-collection B.1.1
intersection of sequential suit [pair, . . . ] 1.1.11
interval in preordered class
– , closed 1.1.15
– , final 1.1.15
– of general kind 1.1.15
– , half-open 1.1.15
– , initial 1.1.15
– , open 1.1.15
inverse image of subclass under

correspondence 1.1.7, A.2.1
irrational number(s) 1.4.3
isomorphism
–of lattice-ordered linear spaces [algebras] 5∘

(2.2.7)
– of seminormed lattice-ordered linear spaces

[algebras] 6∘ (2.2.7)
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–of seminormed linear spaces 6∘ (2.2.7)
isotone mapping 1.1.15

J0-extension of Cb(T ,G) 2.5.2
Jordan
–decomposition 3.2.1
–partition 3.7.1
– , prime 3.7.1

–measurable set 3.7.3
–measure 3.7.3

Kuratowski pair 1.1.6
Kuratowski – Zorn lemma 1.2.11

L-space 8∘ (2.2.7)
language of generalized signature C.1.3
large complete saturated extension of measure

3.1.5
large complete strongly saturated extension of

measure 3.1.5
lattice (of sets) 2.1.1
– generated by ensemble 2.1.1
lattice envelope 2.1.1
latticed ensemble 2.1.1
l-ideal
– of lattice-ordered class 1.1.15
– of lattice-ordered linear space 3∘ (2.2.6)
– of lattice-ordered linear algebra 3∘ (2.2.6)
lattice-ordered
– class 1.1.15
– linear algebra 5∘ (2.2.4)
– linear space 4∘ (2.2.4)
Lebesgue
–decomposition of measure w. r. t. measure

3.2.4
–dominated convergence theorem 3.3.3
– integrable function 3.3.2, 3.3.6
– integral 3.3.2, 3.3.6
– theorem on countable additivity of integral

3.3.3
Lebesgue–Caratheodory extension of measure

3.1.5
Lebesgue–Hausdorff local convergence

classification theorem 2.3.7
Lebesgue–Radon–Nikodym theorems 3.3.8
Lebesgue–Urysohn theorem on Cantor

staircase 2.3.5
lemma
– , Fatou 3.3.3

– , Tukey 1.2.11
– , Kuratowski – Zorn 1.2.11
limit of net 1.1.15, 1.4.7
– in R 1.4.7
– in topological space 2∘ (2.2.7)
– inferior 1.1.15
– , order- 1.1.15
– , pointwise (in F (T )) 2.2.3
– superior 1.1.15
– , uniform (in F (T )) 2.2.3
limit of sequence in R 1.4.4
limit ordinal 1.2.3, A.2.2, B.3.3
linear
– algebra 3∘ (2.2.4)
–mapping 3∘ (2.2.7)
– order 1.1.14, A.2.2
– space 2∘ (2.2.4)
– subalgebra 2∘ (2.2.6)
– subspace 2∘ (2.2.6)
local completion of semimeasurable

[measurable] space 3.1.4
local completion of semimeasure [measure]

3.1.4
locally bounded evaluation 3.5.1
locally compact space 2∘ (3.5.1)
locally tight functional 3.6.1
logical axiom schemes 1.1.4, A.1.2, C.1.3
lower
–bound of collection 1.1.15
– , greatest 1.1.15

–boundedness index of functional 3.6.4
–𝜎-continuous [continuous] evaluation 3.4.1
–Darboux sum 3.7.1
– regularization of function 3.7.2
– semimeasurable function 2.3.8
Lusin theorem 3.5.2

M-algebra 8∘ (2.2.7)
M-space 8∘ (2.2.7)
main convergence classification theorem 2.3.7
main fine convergence classification theorem

2.4.7
main open sets 2.5.2
main part of ordered class 1.1.15
majorized
– function 2.2.4
– set 2.2.4
mapping 1.1.8, A.2.1
– , additive 3∘ (2.2.7)

 EBSCOhost - printed on 2/10/2023 4:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



Index of terms | 397

– , antiisotone 1.1.15
– , antimonotone 1.1.15
– , bipositive 4∘ (2.2.7)
– , choice 1.1.12
– compatible with subclass 1.2.7
– , conic 1∘ (3.4.2)
– , convex 4∘ (2.2.7)
– , decreasing 1.1.15
– , derivative
–w. r. t. degrees 1.1.8
–w. r. t. ensembles 1.1.8
–w. r. t. coordinate products 1.1.8
–of collection of mappings w. r. t. products

1.1.12
– extending 3.4.1
– , homogeneous 3∘ (2.2.7)
– , absolutely 4∘ (2.2.7)
– , positively 4∘ (2.2.7)

– , increasing 1.1.15, A.2.2
– , strictly 1.1.15, A.2.2

– , isotone 1.1.15, A.2.2
– , linear 3∘ (2.2.7)
– , modulusly monotone 4∘ (2.2.7)
– , monotone 1.1.15, A.2.2
– , multiplicative 4∘ (2.2.7)
– , multivalued 1.1.7
– , order bounded 1.1.15
– , order changing 1.1.15
– , order preserving 1.1.15
– , order regular 4∘ (2.2.7)
– , preserving exact bounds 1.1.15
– , positive 4∘ (2.2.7)
– , seminorm [norm] bounded 7∘ (2.2.7)
– , subadditive 4∘ (2.2.7)
– , sublinear 4∘ (2.2.7)
– , submultiplicative 4∘ (2.2.7)
– thinning net out 1.1.15
– thinning sequence out 1.2.6
𝛼-mapping B.1.1
mathematical system 1∘ (2.2.2), C.2.1
– , balanced C.2.2
– , evaluated C.2.3
– , extensional C.2.2
– , normal C.2.2
– , regular C.2.2
–with true generalized equalities and

belongings C.2.3
maximal
– element w. r. t. relation 1.1.14

– chain 1.2.11
–member of collection 1.1.9
member of collection 1.1.9
– , greatest [smallest] 1.1.15
– , maximal [minimal] 1.1.15
measure 3.1.1
– absolutely continuous w. r. t. measure 3.2.4
– concentrated on set 3.2.4
– , extended Borel – Lebesgue 3.1.6
– , initial Borel – Lebesgue 3.1.4
– , Jordan 3.7.3
– , narrow 3.1.1
– , overfinite 3.2.1
– singular to measure 3.2.4
– , wide 3.1.1
measurable function 2.3.1
– , almost 2.5.1

measurable space 3.1.1
measurable topological space 3.5.1
mesh of partition D.1.2
metric 1∘ (2.2.7)
– space 1∘ (2.2.7)
– topology 1∘ (2.2.7)
minimal
– element w. r. t. relation 1.1.14
–member of collection 1.1.9
Mirimanov– von Neumann collection A.3.1,

B.3.4
Mirimanov– von Neumann sets A.3.1
model of axiomatic theory A.1.3
– , abstract B.5.2
– , standard A.6.1
model for totality of formulas C.2.3
– , balanced C.2.3
– , extensional C.2.3
– , normal C.2.3
– , regular C.2.3
– , second-order C.2.3
modulus of
– element in lattice-ordered space 4∘ (2.2.4)
– integer 1.4.1
– overfinite semimeasure [measure] 3.2.2
– rational number 1.4.2
– real number 1.4.3
– real-valued function 2.2.2
modulusly monotone mapping 4∘ (2.2.7)
modus ponens 1.1.3, A.1.2
monotone mapping 1.1.15
multiple of number 1.3.6
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multiplicative
– ensemble 2.1.1
– covering 2.1.5
–mapping 4∘ (2.2.7)
– series of collection [sequence] of real numbers

1.4.8
–unit 4∘ (2.2.4)
multivalued
– collection 1.1.9
–mapping 1.1.7
– sequence 1.2.6
mutually deducible formulas 1.1.3

Nakano–Shimogaki problem 2.5.2
narrow measure 3.1.1
narrow Radon measure 3.5.4
natural evaluation 3.1.1
natural functional 3.6.4
natural induction 1.2.6
natural number(s) 1.2.6, A.2.2
– , even 1.3.6
– , odd 1.3.6
natural series of Peano– Landau of second

order C.3.4
negative part of element (in lattice-ordered

class) 1.1.15
negative part of lattice-ordered class 1.1.15
negligence (on descriptive space) 2.1.4
– , ideal 2.1.4
negligible sequence 1.4.3
negligible set 3.1.1
neighborhood of point 1∘ (3.5.1)
net 1.1.15
– , convergent to number 1.4.7
– , increasing [decreasing] in F (T ) 2.2.3
– , strictly 2.2.3

– , increasing [decreasing] to element 1.1.15
– , order-convergent to element 1.1.15
– , pointwise convergent 2.2.3
– , uniform convergent 2.2.3
netful series of collection of real numbers 1.4.8
netful sum [product] of collection of real

numbers 1.4.8
Neumann relation 1.2.2
Neumann identity A.3.3
neutral subclass 1.1.14
Newton binomial theorem 1.4.6
non-consistent theory [totality] A.1.2
non-contradictory theory [totality] A.1.2

non-ordered
–pair 1.1.6, A.2.1
–𝛼-pair B.1.1
– suit 1.1.11
norm 2.2.7
–of convergence in mean 3.3.4
–of uniform convergence 2.2.7
norm bounded functional [mapping] 7∘ (2.2.7)
norm dual to seminormed linear space

7∘ (2.2.7)
normed
–metric 6∘ (2.2.7)
– lattice-ordered linear algebra 8∘ (2.2.7)
– lattice-ordered linear space 8∘ (2.2.7)
– linear algebra 8∘ (2.2.7)
– linear space 6∘ (2.2.7)
– topology 7∘ (2.2.7)
normal
– envelope of family of functions 2.2.4, 2.3.6
– family of functions 2.2.4, 2.3.6
–mathematical system C.2.2
– topological space 2.1.1
normalizable formula C.2.4
nowhere dense set 2.1.4
null sequence 1.4.3
null set 3.1.1
number
– , cardinal 1.3.1, A.2.2
– , first denumerable 1.3.1
– , first uncountable 1.3.4

– , natural 1.2.6, A.2.2
– , ordinal 1.2.2
– , limit 1.2.3, A.2.2, B.3.3

– , U-ordinal B.3.3
– , successive A.2.2

– , rational 1.4.2
– , real 1.4.3

–objective constants C.1.3
occurrence 1.1.1, A.1.1
– , connected 1.1.2, A.1.1
– , free 1.1.2, A.1.1
odd natural number 1.3.6
one-member cover of set 2.1.5
one-valued correspondence 1.1.7
open
–ball (in pseudometric space) 1∘ (2.2.7)
– final interval 1.1.15
– initial interval 1.1.15
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–neighborhood of point 1∘ (3.5.1)
– set 2.1.1
– in pseudometric space 1∘ (2.2.7)
– in seminormed space 7∘ (2.2.7)

– topology 2.1.1
– unit ball (in seminormed space) 7∘ (2.2.7)
openly regular evaluation 3.5.1
operator 1.1.8
– linear 3∘ (2.2.7)
order 1.1.14
– changing mapping 1.1.15
– complete class 1.1.15
–dual to ordered linear space 2∘ (2.2.8)
– equivalent classes 1.1.15, A.2.2
–by inclusion 1.2.11
– , linear 1.1.14, A.2.2
–preserving mapping 1.1.15
– , natural (on a subset of 𝜔) 1.3.7
– relation 1.1.14
order bounded
– collection 1.1.15
– function 2.2.1
–mapping 1.1.15
– set 1.1.15
order-convergent net 1.1.15
order dual to ordered linear space 2∘ (2.2.8)
order-limit of net 1.1.15
order regular mapping 4∘ (2.2.7)
order type of well-ordered set 1.2.5
ordered
–assembly B.3.3
– class 1.1.15, A.2.2
–disjoint union 1.2.9
– linear space 4∘ (2.2.4)
– , Archimedean 9∘ (2.2.7)

– pair 1.1.6, A.2.1
U-ordered U-class B.3.3
orderly summarized [multiplied] sequence 1.4.8
ordinal 1.2.2, A.2.2
– , limit 1.2.3, A.2.2, B.3.3
U-ordinal B.3.3
ordinal number 1.2.2, A.2.2
– , even 1.3.6
– , odd 1.3.6
– , scheme-inaccessible A.8.1
– , scheme-regular A.8.1
– , successive A.2.2
U-ordinal number B.3.3
ordinal sum 1.2.9

oscillation of function
–on set 2.2.1
– on cover 2.3.1
outer regular evaluation 3.4.1
overfinite semimeasure [measure] 3.2.1

pair
– , non-ordered 1.1.6, A.2.1
– , ordered 1.1.6
– , sequential 1.1.11, A.2.2
𝛼-pair B.1.1
pairwise disjoint collection 1.1.10
parallelepiped in Rn 2.1.1
– , half-bounded 1∘ 3.1.6
parent measures of Radon bimeasure 3.5.5
parents of type C.1.1
partial product [sum] of collection of real

numbers 1.4.8
partial structures of mathematical system 2.2.2
partition of class 1.1.10
partition of well-ordered set 1.2.9
Peano axioms (for natural numbers) 1.2.6
Peano– Landau postulates C.3.4
perfect ensemble 2.1.1
n-placed correspondence on class A.2.2
n-placed operation on class A.2.2
pointwise
– continuous [𝜎-continuous] functional 2.2.8
– closure 2.2.4
– convergent net 2.2.3
– limit in F (T ) 2.2.3
pointwisely dense family 2.2.4
positive mapping 4∘ (2.2.7)
positive part of element (in lattice-ordered

class) 1.1.15
positive part of lattice-ordered class 1.1.15
positively homogeneous mapping 4∘ (2.2.7)
power of
– class B.3.3
– continuum 1.4.4
– set 1.3.2, A.2.2, B.3.3
precompact set 2∘ (3.5.1)
predicative formula 1.1.5
𝛼-predicative formula B.1.1
preimage of subclass under correspondence

1.1.7, A.2.1
pre-L-space 8∘ (2.2.7)
pre-M-space 8∘ (2.2.7)
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preorder 1.1.14
– relation 1.1.14
– , opposite 1.1.14
preordered class 1.1.15
prescriptive space 2.1.5
preserve exact bounds 1.1.15
prime Jordan partition 3.7.1
principal carrier of mathematical system 1∘

(2.2.2)
principle
– , Archimedes 1.4.1, 1.4.2, 1.4.3
–of induction 1.2.1
– of natural induction 1.2.6
–of transfinite induction 1.2.6, A.2.2
– , Hausdorff maximality 1.2.11
– , Zermelo 1.2.11
– of ∈-induction A.2.2
product of classes 1.1.6, A.2.1
𝛼-product of 𝛼-classes B.1.2
product of
– collection 1.1.12, A.2.2
– collection of preordered classes 1.1.15
– correspondences 1.1.7
– function and measure 3.3.7
– integers 1.4.1
– natural numbers 1.3.6
– rational numbers 1.4.2
– real numbers 1.4.3
– sequential pair [triplet, . . . ] 1.1.12, A.2.2
𝛼-product of 𝛼-collection B.1.2
product
– , cardinal 1.3.5
– , netful (in R) 1.4.8
– , partial (in R) 1.4.8
projections onto factors 1.1.8
projection
– into factor 1.1.12
– into subproduct 1.1.12
Prokhorov property of functional 3.6.1
proof of formula A.1.2
proof of theorem 1.1.3
property
– (D) 3.6.1
– , Dini 3.6.1
– (E) 3.6.2
– (E𝜎) 3.6.2
– , exponentiality A.7.1
– , improvement 2.1.1
– , reduction 2.1.1

– , separation 2.1.1
– , Stone
–of functional family 2.2.9
–of set 2.1.4

– , strong substitution A.4.1, A.6.1
– , Tarski A.7.1
– , transitivity A.4.1, A.7.1, A.8.2, A.8.4
pseudometric 1∘ (2.2.7)
– space 1∘ (2.2.7)
– topology 1∘ (2.2.7)

quasidistributable function 2.5.2
quasimeasurable function 2.5.2
quasitransitive class A.2.2
quasitransitivity axiom B.1.1
quasiuniform function 2.5.2
quite
– countably step function 2.2.4
– locally tight functional 3.6.1
– step function 2.2.4
– topological evaluation 3.5.1
quadruplet
– , sequential 1.1.11
quotient at division 1.3.6 (N), 1.4.2 (Q),

1.4.3 (R)

Radon bimeasure 3.5.5
– , bounded 3.5.5
Radon integral 3.5.3
Radon measure 3.5.3
– , extended 3.5.3
– , narrow 3.5.4
Radon triplet 3.5.5
Radon–Saks –Kakutani theorem 3.6.4
raising of real number to
– integer degree 1.4.3
– rational degree 1.4.6
rational number(s) 1.4.2
real number(s) 1.4.3
real-valued function 2.2.1
reducible ensemble 2.1.1
reduction property 2.1.1
refinement of cover 1.1.10
reflexive relation 1.1.14
Regoli theorem on completely normal families

2.3.6
regular cardinal A.2.2
U-regular cardinal B.3.3
regular mathematical system C.2.2
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regularity axiom 1.1.11 (NBG), B.1.1 (LTS)
regularization of function
– , lower 3.7.2
– , upper 3.7.2
relation (binary relation) 1.1.14
– , antisymmetric 1.1.14
– , connecting 1.1.14
– , Neumann 1.2.2
– , order 1.1.14
– , preorder 1.1.14
– , reflexive 1.1.14
– , symmetric 1.1.14
– , total 1.1.14
– , transitive 1.1.14
–with property of minimality [maximality] 1.2.1
relativization of formula to class B.3.1
relativization of formula to set A.6.1
remainder at division 1.3.6
restriction of
– collection 1.1.9
– correspondence 1.1.7, A.2.1
– relation 1.1.14
Riemann
–extension of Cb(T ,G) 2.5.2
– integrable function 3.7.1
– in classical sense (for Rn) 3.7.3

– integral 3.7.1
– in classical sense (for Rn) 3.7.3

Riemann–Stiltjes
– integrable function D.1.2
– integral D.1.2
– integral sum D.1.2
Riesz decomposition
–of functional 2.2.8
–of semimeasure 3.2.2
– in Riesz space 2.2.4
–w. r. t. semimeasure [measure] 3.2.4

Riesz –Kantorovich theorem 2.2.8
Riesz – Radon– Fréchet problem 3.5.3
Riesz representation theorem D.1.4
Riesz space 4∘ (2.2.4)
ring (of sets) 2.1.1
– generated by ensemble 2.1.1
root of real number with natural exponent 1.4.6
rules of deduction 1.1.3
– , derivative 1.1.4
rule of generalization 1.1.3, A.1.2
rule of implication 1.1.3, A.1.2

satisfaction of formula w. r. t. evaluation on
system C.2.3

saturated
–ensemble 2.1.1
– evaluation 3.1.4
– extension
– , large complete 3.1.5
– , complete 3.1.4

saturation
–of ensemble 2.1.1
– of semimeasurable space [measure] 3.1.4
–of semimeasure [measure] 3.1.4
scheme set A.8.1
scheme Tarski set A.8.4
scheme-regular ordinal number A.8.1
scheme-inaccessible ordinal number A.8.1
scheme-inaccessible cumulative set A.8.1
scheme-universal set A.8.2
selection from partition D.1.2
semimeasurable functions 2.3.8
semimeasurable space 3.1.1
semimeasurable topological space 3.5.1
semimeasure 3.1.1
– absolutely continuous w. r. t.

semimeasure 3.2.4
– concentrated on set 3.2.4
– , overfinite 3.2.1
– singular to semimeasure 3.2.4
seminorm 6∘ (2.2.7)
– bounded mapping [functional] 7∘ (2.2.7)
– dual to seminormed linear space 7∘ (2.2.7)
– of essentially uniform convergence 2.2.7
–of integral convergence 3.3.4
seminormed
–pseudometric 6∘ (2.2.7)
– lattice-ordered linear algebra 8∘ (2.2.7)
– lattice-ordered linear space 8∘ (2.2.7)
– linear algebra 8∘ (2.2.7)
– linear space 6∘ (2.2.7)
– topology 7∘ (2.2.7)
semiring 2.1.1
semitype C.1.1
– of type C.1.1
sentence A.1.1
separable ensemble 2.1.1
separation axiom scheme A.2.1
separation property 2.1.1
sequence 1.2.6, A.2.2
– , bounded 1.4.3, 1.4.4
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– , Cauchy 1.4.3, 1.4.4
– , decreasing 1.4.4
– , strictly 1.4.4

– , commutatively summarized
[multiplied] 1.4.8

– , conditionally summarized [multiplied] 1.4.8
– , convergent to number 1.4.4
– , finally constant 1.2.7
– , finally non-constant 1.2.7
– , finite A.2.2
– , fundamental
– in R 1.4.3, 1.4.4
– in pseudometric space 2∘ (2.2.7)

– , increasing 1.4.4
– , strictly 1.4.4

– , infinite A.2.2
– , abstract B.5.2

– , inner convergent
– in R 1.4.3, 1.4.4
– in pseudometric space 2∘ (2.2.7)

– , inner uniformly convergent 2.2.3
– , multivalued 1.2.6
– , null 1.4.3
– , sequentially summarized [multiplied] 1.4.8
– , simple 1.2.6
– , unconditionally summarized [multiplied]

1.4.8
– , uniformly fundamental 2.2.3
– , uniformly upper [lower] unbounded 1.4.3
– , well-summarized [well-multiplied] 1.4.8
sequential
– pair 1.1.11, A.2.2
–product of sequential pair [triplet, . . . ] 1.1.12
–quadruplet 1.1.11
– triplet 1.1.11, A.2.2
– suit 1.1.11
– sum [product] of sequence of real numbers

1.4.8
sequentially additive evaluation 3.1.1
sequentially summarized [multiplied] sequence

1.4.8
series of collection [sequence] of real numbers

1.4.8
– , netful [sequential] 1.4.8
– , additive [multiplicative] 1.4.8

set 1.1.5 (NBG), A.2.1 (ZF)
– , Alexandrov 2.1.1
– of all subsets of set 1.1.6
–of all parents of type C.1.1

– , Borel 2.1.1, 2.1.3
– , cardinality of 1.3.2
–of class 𝛼 B.1.1
– , compact 2.1.1
– , countable 1.2.6, A.2.2
– , cumulative A.3.1
– , inaccessible A.3.3
– , scheme-inaccessible A.8.1

– , denumerable 1.2.6, A.2.2
– , dense w. r. t. ensemble 2.1.4
– , dominant A.7.2
– , essentially positive [negative] 3.2.1
– , exponential A.7.2
– , finite 1.2.6, A.2.2
– function 3.1.1
– , galactic A.7.2
– , infinite 1.2.6, A.2.2
– , inductive A.2.1
– , inscribed [𝜎-inscribed] in functional family

2.2.9
– , Jordan measurable 3.7.3
– , main open 2.5.2
– , majorized by function 2.2.4
– , nowhere dense w. r. t. ensemble 2.1.4
– , order bounded 1.1.15
– , precompact 2∘ (3.5.1)
– , scheme A.8.1
– , scheme-universal A.8.2
– , solitary A.2.1
–with Stone property 2.1.4
– , symmetrizable 2.1.1, 2.4.5
– , Tarski A.7.1
– , scheme A.8.4

– theory 1.1.1, A.1.3
– , topologically bounded (in Rn) 1∘ 3.1.4
– , uncountable 1.2.6
– , universal A.4.1
𝛼-set B.1.1
signature
–of generalized belongings C.1.3
–of category B.2.1
– of constants C.1.3
–of generalized equalities C.1.3
– , generalized C.1.3
–of variables C.1.3
signed function 2.2.4
simple
– collection 1.1.9
– correspondence 1.1.8
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–sequence 1.2.6
single-valued correspondence 1.1.7
singular semimeasure [measure] 3.2.4
smallest
– element of subclass 1.1.15
–member of collection 1.1.15
–upper bound of
– collection 1.1.15
– set 1.1.15
– subclass A.2.2

solitary
– class 1.1.6
–𝛼-class B.1.1
– set A.2.1
space
– , Alexandrov 2.1.1
– , Banach 6∘ (2.2.7)
– , lattice-ordered 8∘ (2.2.7)

– , conic 1∘ (3.4.2)
– , descriptive 2.1.1
–with covering 2.1.5
– , compact 2.1.1

–with evaluation 3.1.1
– , Hausdorff 2∘ (3.5.1)
– , lattice-ordered linear 4∘ (2.2.4)
– , locally compact 2∘ (3.5.1)
– , linear 4∘ (2.2.4)
–with measure 3.1.1
– , metric 1∘ (2.2.7)
– , normed linear 6∘ (2.2.7)
– , complete 2.2.7

– , ordered linear 4∘ (2.2.4)
– , prescriptive 2.1.5
– , pseudometric 1∘ (2.2.7)
– , complete 2∘ (2.2.7)

–with semimeasure 3.1.1
– , seminormed linear 6∘ (2.2.7)
– , complete 6∘ (2.2.7)

– , topological 2.1.1
standard
– interpretation A.6.1
–model A.6.1
– topology
–on R 1∘ (2.3.1)
– on Rn 1∘ (3.1.6)

statement of theorem 1.1.3
step function 2.2.4
– , countably 2.2.4
– , quite 2.2.4

Stone
– truncation 2.2.4
–property of functional family 2.2.9
–property of set 2.1.4
strong order unit 4∘ (2.2.4)
strong saturation
–of semimeasurable [measurable] space 3.1.4
–of semimeasure [measure] 3.1.4
strong substitution property A.4.1, A.6.1
strongly saturated
–evaluation 3.1.4
– extension
– , large complete 3.1.5
– , complete 3.1.4

strongly scheme-inaccessible ordinal number
A.8.1

strongly inaccessible cardinal A.2.2
subadditive evaluation 3.1.1
subadditive mapping 4∘ (2.2.7)
subalgebra of linear algebra 2∘ (2.2.6)
subassembly B.1.1
subclass 1.1.5, A.2.1
– , cofinal 1.1.15
– , coinitial 1.1.15
– , convex 1.1.15
– , final 1.1.15
– , initial 1.1.15
subcover of cover 1.1.10
sublinear mapping 4∘ (2.2.7)
submultiplicative mapping 4∘ (2.2.7)
subnet of net 1.1.15
subordinated to element (in lattice-ordered

linear space) 3.2.2
subsequence of sequence 1.2.6
subset 1.1.5
– axiom B.1.1
– , uniformly order bounded (in Fb(T )) 2.2.2
subspace of linear space 2∘ (2.2.6)
succession relation of Peano C.3.4
successive ordinal number A.2.2
successor of
– natural number C.3.4
–ordinal number B.3.3
suit
– , non-ordered 1.1.11
– , sequential 1.1.11
sum
– , cardinal 1.3.5
– , netful (in R) 1.4.8
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– , partial (in R) 1.4.8
– , ordinal 1.2.9
sum of
– integers 1.4.1
– natural numbers 1.3.6
– rational numbers 1.4.2
– real numbers 1.4.3
superadditive evaluation 3.1.1
superstructure of signature over formation C.2.1
supertransitive class A.2.2
superior limit of net 1.1.15
support of
– function 3.5.2
–mathematical system 1∘ (2.2.2), C.2.1
– semimeasure [measure] 3.5.1
supremal functions 3.6.2
supremum
–of simple collection 1.1.15
–of set 1.1.15
– of subclass A.2.2
–of simple sequential pair [triplet, . . . ] 1.1.15
surface of parallelepiped 3.1.6
surjection 1.1.7, A.2.1
symbol-string 1.1.1, A.1.1
symmetric relation 1.1.14
symmetrizable
– function 2.4.5
– set 2.1.1, 2.4.5

Tarski axiom A.7.1
Tarski property A.7.1
Tarski set A.7.1
term 1.1.2, A.1.1, C.1.3
– free for variable 1.1.2
terminal C.1.2
theorem 1.1.3
– , Alexandrov 2.3.5
– , Alexandrov –Stone – Fremlin integral

representation 3.4.2
– , Banach local convergence

classification 2.3.7
– , Beppo Levi 3.3.3
– , Bernays (on finite axiomatization

of NBG) B.7.3
– , Borel – Lebesgue–Hausdorff 2.3.6
– , Bourbaki 3.6.3, 3.6.4
– , Bunina (on galactic sets) A.7.2
– , Cantor (on cardinality of set of all

subsets) 1.3.2

–on characterization of Radon integrals with
respect to positive Borel – Radon measures
3.6.3

–of deduction 1.1.3
– , Dini 2.3.4
– , Egorov 3.3.1
– , Halmos–Hewitt – Edwards 3.6.3
– , Hausdorff 2.3.6
– , improvement 2.1.1, 2.1.3
– , Lebesgue–Hausdorff local convergence

classification 2.3.7
– , Lebesgue–Radon–Nikodym 3.3.8
– , Lebesgue–Urysohn 2.3.5
– , Lebesgue dominated convergence 3.3.3
– , Lusin 3.5.2
– , main convergence classification 2.3.7
– , main fine convergence classification 2.4.7
– , Newton binomial 1.4.6
–on one-step pointwise limits 2.3.7
– , Radon–Saks –Kakutani 3.6.4
– , reduction 2.1.1
– , Regoli 2.3.6
– , Riesz –Kantorovich 2∘ (2.2.8)
– , Riesz representation D.1.4
– , Russell 1.1.12
– , Schröder – Cantor –Bernstein 1.3.2
– , reduction 2.1.1, 2.1.3
– , separation 2.1.1, 2.1.3
– , untwining 2.1.3
– , Young–Daniell 3.6.2
– , Zakharov
–on boundedly normal families 2.4.6
–on characterization of family of Riemann

integrable functions 3.7.2
–on characterization of Lebesgue integrals as

linear functionals 3.4.2
–on characterization of natural models of ZF

A.8.4
–on characterization of Radon integrals w. r. t.

positive Radon measures 3.6.2
–on characterization of Radon integrals w. r. t.

Radon bimeasures 3.6.4
–on compactness for generalized

second-order language C.3.3
–on finite axiomatization of LTS B.7.2
–on initial synchronization of powers of

cumulative sets A.3.2
–on Lebesgue integral with respect to linear

combinations of finite measures 3.3.8
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– , Zakharov –Rodionov
–on boundedly normal envelope 2.4.6
–on characterization of Radon integrals w. r. t.

arbitrary Radon measures 3.6.4
–on completely normal envelope in

descriptive form 2.3.6
–on completely normal envelope in

constructive form 2.3.7
–on completely normal families 2.3.7

– , Zermelo well-ordering 1.2.11
– , Zermelo –Shepherdson A.6.2
thinning
–net out (mapping) 1.1.15
– sequence out (mapping) 1.2.6
tight functional 3.6.1
topological evaluation 3.5.1
topological space 2.1.1
–with evaluation 3.5.1
–with measure 3.5.1
– , normal 2.1.1
– , perfect 2.1.3
–with semimeasure 3.5.1
topologically bounded set in Rn 1∘ 3.1.4
topologically internally finite evaluation 3.5.1
topology 2.1.1
– , metric 1∘ (2.2.7)
– , pseudometric 1∘ (2.2.7)
– , standard
–on R 1∘ (2.3.1)
– on Rn 1∘ (3.1.6)

total
– collection 1.1.9
– correspondence 1.1.7
– relation 1.1.14
– variation of evaluation 3.1.3
trace of ensemble 2.1.1
transfinite induction 1.2.8, A.2.2
transformation (mapping) 1.1.8
𝛼-transformation from functor to functor B.2.2
𝛼-transformational arrows B.2.2
transitive
– class 1.2.2, A.2.2
– relation 1.1.14
–𝜔-universality axiom A.5.2
transitivity axiom B.1.1
transitivity property A.4.1, A.7.1, A.8.2, A.8.4
translation on R 1.4.9
translation of formula on sequence under

interpretation A.1.3

translation of formula on sequence under
abstract interpretation B.5.2

triplet
– , non-ordered 1.1.11
– , sequential 1.1.11, A.2.2
truncatable family of functions 2.2.9
truncation 2.2.4
Tukey lemma 1.2.11
type C.1.1
– , auxiliary C.1.1
– , basic C.1.1
– , first-order C.1.1
– domain C.1.3
– , second-order C.1.1

u-fundamental sequence 2.2.3
ultrafilter C.3.1
unconditionally summarized [multiplied]

collection 1.4.8
uncountable set 1.2.6
uniform
– closure 2.2.4
– function 2.4.1
– , almost 2.5.1

– limit in F (T ) 2.2.3
uniformly
–order bounded functional 2.2.8
–order bounded collection [set] in Fb(T ) 2.2.2
– continuous function 2.3.1
– convergent net 2.2.3
–dense family 2.2.4
– fundamental sequence 2.2.3
union of classes 1.1.5
𝛼-union of 𝛼-classes B.1.1
union of collection 1.1.10, A.2.1
– , disjoint 1.1.10
– , ordered disjoint 1.2.9
𝛼-union of 𝛼-collection B.1.1
union of sequential suit [pair, . . . ] 1.1.11
– , disjoint 1.1.11
– , ordered disjoint 1.2.9
unit
– , multiplicative 3∘ (2.2.4)
– , strong order 4∘ (2.2.4)
– , weak order 4∘ (2.2.4)
unit function 2.2.1
unity element 1.4.2 (Q), 1.4.3 (R)
universal
– abstract B.5
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–assembly B.1.1
– class 1.1.5, A.2.1, B.1.1
– set A.4.1
universality axiom A.4.3 (ZF), B.1.1 (LTS)
universally integrable functions 3.3.6
unordered
–pair 1.1.6, A.2.1
–𝛼-pair B.1.1
– suit 1.1.11
upper bound of collection 1.1.15
– , smallest 1.1.15
upper boundedness index of functional 3.6.4
upper continuous [𝜎-continuous] evaluation

3.4.1
upper Darboux sum 3.7.1
upper regularization of function 3.7.2
upper semimeasurable function 2.3.8

value of term on sequence under interpretation
A.1.3

value of term on sequence under abstract
interpretation B.5.2

value of term w. r. t. evaluation on system C.2.3
variable 1.1.2
– , connected 1.1.2, A.1.1
– , free 1.1.2, A.1.1
– , objective C.1.3
– , predicate C.1.3
variation of evaluation 3.1.3
variation of measure
– , positive [negative] 3.2.1

weak order unit 4∘ (2.2.4)
well-multiplied collection 1.4.8
well-ordered assembly B.3.3
well-ordered class 1.2.1, A.2.2
well-U-ordered U-class B.3.3
well-summarized collection 1.4.8
wide
–Borel – Radon extension of narrow bounded

Borel – Radon measure 3.5.4
–measure 3.1.1
– Radon measure 3.5.3

Young–Daniell theorem 3.6.2
Young–Hausdorff
–ensembles 2.1.2
– classification theorems 2.1.3

Z-extension of Cb(T ,G) 2.5.2
Z0-extension of Cb(T ,G) 2.5.2
Zakharov theorem
–on boundedly normal families 2.4.6
–on characterization of
– family of Riemann integrable functions 3.7.2
– Lebesgue integrals as linear functionals

3.4.2
–natural models of ZF A.8.4
–Radon integrals w. r. t. positive Radon

measures 3.6.2
–Radon integrals w. r. t. Radon bimeasures

3.6.4
–on finite axiomatization of LTS B.7.2

–on compactness for generalized second-order
language C.3.3

–on initial synchronization of powers of
cumulative sets A.3.2

–on Lebesgue integral with respect to linear
combinations of finite measures 3.3.8

Zakharov – Koldunov
–ensembles 2.1.2
– classification theorems 2.1.3
Zakharov – Rodionov theorem
–on boundedly normal envelope 2.4.6
–on characterization of Radon integrals w. r. t.

arbitrary Radon measures 3.6.4
–on completely normal families 2.3.7
–on completely normal envelope
– in descriptive form 2.3.6
– in constructive form 2.3.7

Zermelo principle 1.2.11
Zermelo –Shepherdson theorem A.6.2
zero element 1.4.1 (Z), 1.4.2 (Q), 1.4.3 (R), 2.2.4

(in linear space)
zero evaluation 3.1.2
zero function 2.2.1
zero-set 2.2.5

𝛾-hull of ensemble 2.1.1

𝛿-co-foundation 2.1.1
𝛿-hull of ensemble 2.1.1
𝛿-multiplicative ensemble 2.1.1
𝛿-ring (of sets) 2.1.1

𝜀-co-foundation 2.1.1
𝜀-hull of ensemble 2.1.1
𝜀-multiplicative ensemble 2.1.1
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𝜂-co-foundation 2.1.1
𝜂-hull of ensemble 2.1.1
𝜂-hull of covering 2.1.5
𝜂-multiplicative ensemble 2.1.1

𝜆-hull of ensemble 2.1.1

𝜎-additive ensemble 2.1.1
𝜎-additive evaluation 3.1.1
𝜎-algebra (of sets) 2.1.1
𝜎-continuous evaluation 3.4.1
pointwise 𝜎-continuous functional 2.2.8
𝜎-Daniell functions 3.6.2
𝜎-exact functional 3.6.1
𝜎-finite evaluation 3.1.1
𝜎-hull of ensemble 2.1.1
𝜎-ideal of sets 2.1.4
𝜎-infimal functions 3.6.2

𝜎-integrable function 3.3.2
𝜎-inscribe set in functional family 2.2.9
𝜎-lattice (of sets) 2.1.1
𝜎-ring (of sets) 2.1.1
𝜎-supremal functions 3.6.2

𝜏-additive ensemble 2.1.1
𝜏-finite evaluation 3.1.1
𝜏-hull of ensemble 2.1.1

𝜑-additive ensemble 2.1.1
𝜑-hull of ensemble 2.1.1

𝜔-inaccessibility axiom A.5.1
𝜔-universality axiom A.5.1
– , transitive A.5.2

∈-induction principle A.2.2
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Latin alphabet

A(S) 2.4.4
A(T , S) 2.1.1
𝜈ac𝜇 3.2.4
AD(T , S, I), AD(T , S) 2.5.1
AG A.7.3
AI A.4.3, B.4.1
AI(𝜔) A.5.1, B.4.1
AI(𝜔 + 𝜔) B.4.1
AI(1) A.5.2
AIC A.5.2, B.4.1
AM(T , S, I), AM(T , S) 2.5.1
Arr B.2.1
f Arr𝛽𝛼,

cArr𝛽𝛼 B.2.2
Ar2 C.3.4
ASR B.6.1
AS2 1.1.5, B.1.1
AS3 A.2.1
AS6 A.2.1
AT A.7.1
ATU(𝜔) A.5.2, B.4.2
AU(T , S, I), AU(T , S) 2.5.1
AU A.4.3
AU(𝜔) A.5.1, B.4.2
AU(1) A.5.2
AUS A.5.2
A1 1.1.5, A.2.1, B.1.1
A1, . . . , A4
(Peano– Landau arithmetic) C.3.4
A2 A.2.1
A2.1, . . . , A2.9 B.7.3 (NBG)⁵
A2.1, . . . , A2.15 B.7.1 (LTS)
A3 1.1.6 (NBG), B.1.1 (LTS)
A3, A3 A.6.2
A4 1.1.6 (NBG), A.2.1 (ZF), B.1.1 (LTS)
A5 1.1.11 (NBG), A.2.1 (ZF), B.1.1 (LTS)
A5, A5 1.1.11
A6 1.1.11 (NBG), B.1.1 (LTS)
A7 1.1.11 (NBG), A.2.1 (ZF), B.1.1 (LTS)
A8 1.1.12 (NBG), A.2.1 (ZF), B.1.1 (LTS)

A9, A10 A.2.1 (ZF), B.1.1 (LTS)
A11, A12, A13, A14 B.1.1

B(T , S) 2.1.1, 2.1.3
B(A(T )), Bb(A(T )) 2.2.4
Fb(T ), Ab(T ) 2.2.1
b(𝜑), b(𝜑) 3.6.4
Bc(T ,G) 3.5.4
Fbc(T ,G), Abc(T ,G) 3.5.2
BI(T ,G, 𝜇), BI(T ,G,m) 3.5.6
BM(T , S) 2.3.7
BN(A(T )) 2.2.4
BSM(T , S), BSMb(T , S) 2.3.8
bu-Lim A(T ), bp-Lim A(T ) 2.2.4
BV(T ) D.1.1

C(T ,G) 2.3.1
Cx f 2.2.7
C
𝛽
𝛼 B.2.2

c 1.4.4
Ac 1.1.5
+c 1.3.5
Ckm 1.4.6
Fc(T ,G), Ac(T ,G) 3.5.2
car 𝜇 3.5.1
Card 1.3.1
card A 1.3.2, A.2.2
Cat𝛽𝛼 B.2.2
cf (𝛼) A.2.2
cl S 1∘ (3.5.1)
CN(A(T )) 2.2.4
Cn(𝛼) A.2.2, B.4.1
Cn A.2.2
Cn B.3.3
co-S 2.1.1
cons(T ,Φa), cons(T ) A.1.2
Cor(A, B), Cors(A, B) 1.1.7
CovS 2.1.5
Cov A(T ) 2.4.6
coz, cozn 2.2.5
Coz, CozN 2.2.5

5 In this index, for notations having different values in different set theories, the abbreviations
in brackets indicate subsections where the notation is explained within the framework of the
corresponding theory.
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(D) (property (D)) 3.6.1
D(T , S) 2.3.1
D(S) 2.1.4
⋃d⟮Ai | i ∈ I⟯ 1.1.10
⋃d⟮A, A

⟯,⋃d⟮A, A
, A⟯,. . . 1.1.11

D𝜏(T , A(T ), 𝜑), D𝜎(T , A(T ), 𝜑) 3.6.2
Dc1, Dc2, Dc3, Dc4 1.1.3
Dc5, Dc6 1.1.4
⋃dm⟮ui | i ∈ I⟯ 1.1.10
⋃dm⟮u, u⟯,⋃dm⟮u, u , u⟯,. . . 1.1.11
∪d, ∪dm 1.1.11
⋃do, ∪do 1.2.9
dom u 1.1.7, A.2.1
domf 𝜀 3.1.1 1.1.11
D1, D2, D3, D4 1.1.3
D5, D6 1.1.4

(E) (property (E)) 3.6.2
SE 2.5.1
e(K) 3.4.1
‖ ⋅ ‖ 6∘ (2.2.7)
‖ ⋅ ‖e, ‖ ⋅ ‖eu, ‖ ⋅ ‖eu,A(T ) 2.2.7
Eval(T , S), Evalb(T , S),
Evalf (T , S), Eval(T , S)0 3.1.2
Eval(T , S, ] − ∞,∞]),
Eval(T , S, [−∞,∞[) 3.1.2
exp 1.4.7
(E𝜎) (property (E𝜎)) 3.6.2
E1, E2, E3, E4 C.1.3

F𝛼 2.1.3
F
𝛽
𝛼 B.2.2

domf 𝜀, Sf (𝜀), S𝜎f (𝜀), S𝜏f (𝜀) 3.1.1
𝜇f 3.1.4
Pf (I) 1.4.8
F |s, t| 3.1.6
F (T ), Fb(T ) 2.2.1
F+(T ), F−(T ) 2.2.2
F (T , I), Fb(T , I) 2.2.7
F̂b(T , I), F∞(T , I) 2.2.7
fr S 1∘ (3.5.1)
func(f ) A.2.1, B.4.1
Funct𝛽𝛼 B.2.2
F0 3.7.2

G𝛼 2.1.3
Gen 1.1.3, A.1.2, C.1.3
GenD A.1.3

gr X 1.1.15
gr (ai | i ∈ I) 1.1.15
gr(a, a), gr(a, a, a), . . . 1.1.15
G0 3.7.2

H𝛿(T , S), H𝜎(T , S) 2.1.1
H0

𝜎(T ,R, 𝜇), Hf
𝜎(T ,R, 𝜇),

H
𝜎f
𝜎 (T ,R, 𝜇) 3.1.5

I(T ,M(T )), I(T , A(T ),M(T )) 3.3.6
I(C(T ), BV(T )) D.1.3
I(N𝜑) 2.1.4
I(A(T )), I𝜎(A(T )) 2.2.9
‖ ⋅ ‖i 3.3.4
Icn(𝜘) A.2.2, B.4.1
IdA, IdX ,A 1.1.7
iff 1.1.3
In A.2.2, B.4.1
In B.3.4
inf⟮ai | i ∈ I⟯ 1.1.15
inf I 1.1.15
inf(a, a), inf(a, a, a), . . . 1.1.15
infra-D-power(U0, F ) C.3.2
infra-D-prod⟮Uf | f ∈ F ⟯ C.3.1
int S 1∘ (3.5.1)
iv f D.1.2
i𝜇 f 3.3.2
I𝜏(T , A(T )), I𝜎(T , A(T )) 3.6.2

J(T ,G,M, 𝜇) 3.7.1

K(T , S) 2.1.1
K𝛼 2.1.3
K(T , S, 𝜀), Kl(T , S, 𝜀) 3.1.4

l(f ) 3.7.2
L(Σg2 ), L(Σ

g
2 ) C.1.3

L(T , S) 2.1.1
L𝛼 2.1.3
L(T ,K) 3.4.1
L(T ,R, 𝜇), L0(T ,R, 𝜇),
Lf (T ,R, 𝜇), L𝜎f (T ,R, 𝜇) 3.1.5
L(T ,M, 𝜇), Lb(T ,M, 𝜇), L∞(T ,M, 𝜇) 3.3.1
L1(T ,M, 𝜇) 3.3.4, 3.3.6
LAS1, . . . , LAS14 1.1.4, A.1.2
LI(T ,M, 𝜇), LIe(T ,M, 𝜇),
LI𝜎(T ,M, 𝜇) 3.3.2 (𝜇 ⩾ 0), 3.3.6
lim(a𝜇 | 𝜇 ∈ M), lim(a𝜇 | 𝜇 ∈ M) 1.1.15
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lim(xn | n ∈ N) 1.4.4
Lim𝛼 A(T ), Limb

𝛼 A(T ) 2.2.4
Lon(𝛼) A.2.2
LTS*, LTSf B.7.1

M(𝜏) C.1.1
M(T , S), Mb(T , S) 2.3.1
u ∗m u, Pm(u), (u)Im 1.1.8
∏m⟮ui | i ∈ I⟯ 1.1.12
u ×m u, u ×m u ×m u 1.1.12
Em(T , A(T )), Em(A(T )) 2.2.4
M(T ), Mn(T ), Mw(T ) 3.1.2
M(T , I𝜎(A(T )))0, M

e(T , I𝜎(A(T )))0 3.4.2
M(T , I(A(T )))0, M

e(T , I(A(T )))0 3.4.3
M#(T ,R, 𝜇), M≠(T ,R, 𝜇) 3.1.4
M̂(T ,R, 𝜇), ̂̂M(T ,R, 𝜇) 3.1.5
M∞(T ,M, 𝜇) 3.3.1
Map(A, B) 1.1.8, A.2.1
Meas(T ,R), Measb(T ,R),
Measf (T ,R), Meas(T ,R)0 3.1.2
Meas(T ,R, ] − ∞,∞]),
Meas(T ,R, [−∞,∞[) 3.1.2
Measof (T ,R) 3.2.1
Meas(T ,M0, I

𝜎(A(T )))0,
Measb(T ,M0, I

𝜎(A(T ))) 3.4.2
Meas(T ,M0, I(A(T )))0,
Measb(T ,M0, I(A(T ))) 3.4.3
MI(T ,M, 𝜇), MIe(T ,M, 𝜇),
MI𝜎(T ,M, 𝜇) 3.3.2 (𝜇 ⩾ 0), 3.3.6
a = a(mod 𝜀) 1.1.14
A ∼ Bmod I, Smod I 2.1.4
f ∼ gmod I 2.2.6
MP 1.1.3, A.1.2, C.1.3

N 1.2.6
N0 C.3.4
N(A(T )) 2.2.4
N(𝜏) C.1.1
An (main part of A) 1.1.15
N(S) 2.1.4
N(T , S, 𝜀), N0(T , S, 𝜀), Nl(T , S, 𝜀) 3.1.4
(A(T ))nat 3.6.4
NBG*, NBGf B.7.3

∑o, +o 1.2.9
Oint 2.3.1
Opar 3.1.6
Ost 2.3.1 (on R), 3.1.6 (on Rn)

O0 2.5.2
Obj B.2.1
o-lim(a𝜇 | 𝜇 ∈ M) 1.1.15
On(𝛼) A.2.2, B.4.1
On A.2.2
On B.3.3
on(x) B.5.2
Ord 1.2.3
ord⟮A, ⩽⟯ 1.2.5

P(A) (power of set A) 1.3.2
P(A) 1.1.5, A.2.1, B.3.2
P(𝜏) C.1.1
P(𝛼i | i ∈ I) (cardinal product) 1.3.5
P(xi | i ∈ I) 1.4.1 (in Z), 1.4.2 (in Q), 1.4.3 (in R)
P(xi | i ∈ N) (product of sequence) 1.4.8
P(fi | i ∈ I) 2.2.1 (in F (T ))
pm, pm 3.5.5
Pf (I) 1.4.8
Pm(u) 1.1.8
Pc1, . . . , Pc7 B.2.1
P1, P2, P3, P4 C.3.4
P|s, t|, Ppar 2.1.1
Parf (S, E), Par𝜎(S, E) 3.1.3
Parf (S, E), Par𝜎(S, E), Par𝜎(S, E) 3.1.3
PE1, . . . , PE4 C.3.4
p-lim (fn | n ∈ N) 2.2.3
p-Lim A(T ) 2.2.4
Pnet(xi | i ∈ I) 1.4.8
prA 1.1.8
pJ, prAj , prj 1.1.12

Q, Q1, Q+, Q− 1.4.2
QD(T , S, I), QD(T , S) 2.5.2
QM(T , S, I), QM(T , S) 2.5.2
QU(T , S, I), QU(T , S) 2.5.2
qSt(T , S), qStc(T , S) 2.2.4

R, R+, R−, R, R+, R− 1.4.3
r𝜇 f 3.7.1
R(T , S), R𝛿(T , S), R𝜎(T , S) 2.1.1
R0

𝜎(T ,R, 𝜇), Rf
𝜎(T ,R, 𝜇), R𝜎f

𝜎 (T ,R, 𝜇) 3.1.5
R(T ,G), Rb(T ,G), Re(T ,G), R⋆(T ,G) 3.5.5
RB(T ,G), RBb(T ,G) 3.5.5
RB(T ,G, A(T )) 3.6.4
Rcn(𝜘) B.4.1
restX u 1.1.7
RI(T ,G,M, 𝜇) 3.7.1
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RI(T , v) D.1
Rmf 3.7.3
RMn(T ,G), RMn⋆(T ,G) 3.5.4
RMw(T ,G), RMwe(T ,G), RMw⋆(T ,G)

3.5.3
RMw(T ,G,M) 3.5.3
RMwe(T ,G, A(T ))0, RMw⋆(T ,G, A(T ))0

3.6.3
rng u 1.1.7, A.2.1
⟮R, S⟯ 1.4.4

S(T , S) 2.4.5
S(f , 𝜘), s(f , 𝜘) 3.7.1
S(f , v, 𝜇) D.1.2
SE 2.5.1
S|s, t| 3.1.6
𝜈s𝜇 3.2.4
�̌�S, 𝜑S 3.6.2
S ≡ ⟮Sc , Se , Sb , Sv ⟯ C.2.1
SCl(T , S), SCu(T , S) 2.3.8, 3.5.2
SI(T ,M, 𝜇) 3.6.1
sign f 2.2.4
Slb(T ,M, 𝜇) 3.3.1
sm X 1.1.15
sm (ai | i ∈ I) 1.1.15
sm(a, a), sm(a, a, a), . . . 1.1.15
Sanet(xi | i ∈ I), Smnet(xi | i ∈ I)
Sa(xi | i ∈ N), Sm(xi | i ∈ N) 1.4.8
SMeas(T ,R), SMeasb(T ,R),
SMeasf (T ,R), SMeas(T ,R)0 3.1.2
SMeas(T ,R, ] − ∞,∞]),
SMeas(T ,R, [−∞,∞[) 3.1.2
SMeasof (T ,R) 3.2.1
SMeasof (T ,R)+, SMeasof (T ,R)− 3.2.2
SMl(T , S), SMu(T , S) 2.3.8
Son(𝛼) A.2.2
SP(S, I) 2.1.4
Spar 2.1.1
St(T , S), Stc(T , S) 2.2.4
sup⟮ai | i ∈ I⟯ 1.1.15
sup I 1.1.15, A.2.2
sup(a, a), sup(a, a , a), . . . 1.1.15
S𝜏(T , A(T )), S𝜎(T , A(T )) 3.6.2
supp f 3.5.2
supp 𝜇 3.5.1

U 1.1.5, B.5.1
U A.4.1
U B.7.3

U(T ,C), U(T , S) 2.4.1
u(f ) 3.7.2
‖ ⋅ ‖u, ‖ ⋅ ‖u,A(T ) 2.2.7
U(A(T )), Ub(A(T )) 2.2.4
U(T , S), UE(T , S) 2.1.1
U0(𝜇) 3.7.2
Us(T , S, 𝜀) 3.1.4
UI(T ,M(T )) 3.3.6
u-lim (fn | n ∈ N) 2.2.3
u-Lim A(T ) 2.2.4

V B.1.1
V𝛼 A.3.1
V𝛼 B.3.4
v(𝜀, 𝜋) 3.1.3
v(v, 𝜌) D.1.1
var 𝜀, v(𝜀) 3.1.3
var(v) D.1.1
v+(𝜇), v−(𝜇) 3.2.1

WI(T ,G,m) 3.5.6

Z, Z+, Z−, Z∗ 1.4.1
zer, Zer 2.2.5

Greek alphabet

Γ𝛼(T , S) 2.1.2
Γ(T ,G,M, 𝜇) 3.7.1
S𝛾 2.1.1

Δ𝛼(T , S) 2.1.2
Δ(T ,G,M, 𝜇) 3.7.1
S𝛿 2.1.1

S𝜀 2.1.1

S𝜂 (𝜂-hull of ensemble) 2.1.1
C𝜂 (𝜂-hull of covering) 2.1.5

𝜃I, 𝜃I,A(T ), 𝜃A0(T ,I) 2.2.6
Θ𝛼(T ,R) 2.1.2
Θ2
Ar2 C.3.4

𝜆 (Borel – Lebesgue measure) 3.1.4
𝜆×, �̂�, ̂�̂�, �̃� 3.1.6
R𝜆, L𝜆, M̂𝜆,

̂̂
M𝜆 3.1.6

Λ𝛼(T , S) 2.1.2
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S𝜆 2.1.1
Λ(𝜇) (integral) 3.3.2 (for 𝜇 ⩾ 0), 3.3.6

Π A.3.3
A(T )𝜋, A(T )𝜋 3.6.1
∏⟮Ai | i ∈ I⟯ 1.1.12, A.2.2
∏⟮A, A⟯,∏⟮A, A, A⟯, . . . 1.1.12, A.2.2
∏m⟮ui | i ∈ I⟯ 1.1.12
∏0⟮Ui | i ∈ I⟯ 1.1.15
∏0⟮U, U

⟯,∏0⟮U, U
 , U⟯ 1.1.15

Σ𝛼(T , S) 2.1.2
∑(𝛼i | i ∈ I) (cardinal sum) 1.3.5
∑(xi | i ∈ I) 1.4.1 (in Z), 1.4.2 (in Q), 1.4.3 (in R)
∑(xi | i ∈ N) (sum of sequence) 1.4.8
∑(fi | i ∈ I) 2.2.1 (in F (T ))
𝜎(f , 𝜋) 3.3.2
𝜎(f , 𝜔), Σ(f , 𝜔) 3.7.3
∑net(xi | i ∈ I) 1.4.8
∑o 1.2.9
S𝜎 2.1.1
S𝜎f (𝜀) 3.1.1
Σc, Σe, Σb, Σv C.1.3
Σg, Σg2 C.1.3
ΣgAr2 C.3.4

S𝜏 2.1.1
S𝜏f (𝜀) 3.1.1

Y𝛼(T , S) 2.1.2

S𝜑 2.1.1

𝜒(R) 2.2.4

𝜔 1.2.6, A.2.2, B.1.1, B.5.2
Ω, 𝜔1 1.3.4
𝜔(f , E) 2.2.1
𝜔(f , 𝜋) 2.3.1
Ω(T ,G, J,m) 3.7.3

Digits

0 1.2.2, 1.2.6
0A 2∘ (2.2.4)
A0(T , I) 2.2.7
A0 (main part of A) 1.1.15
Eval(T ,R)0 3.1.2

SMeas(T ,R)0, Meas(T ,R)0 3.1.2
S0(𝜀) 3.1.1
∏0⟮Ui | i ∈ I⟯ 1.1.15
∏0⟮U, U

⟯,∏0⟮U, U
 , U⟯ 1.1.15

0, 1 2.2.1
1̄, ‖ ⋅ ‖1̄ 2.2.7
1, 2, 3, 4, . . . 1.1.11, 1.2.6
1A 3∘ (2.2.4)
k ∈ 2, n \ 1, (n + 1) \ 2, 𝜔 \ 3 . . . 1.2.6
A2, A3, . . . 1.1.12
u−1[Y], u−1⟨b⟩ 1.1.7, A.2.1
x−1 (inverse number) 1.4.2, 1.4.3

Arrows

u : A B 1.1.7, A.2.1
u : x → y 1.1.8, A.2.1
u : A → B 1.1.8, A.2.1
u : A B 1.1.8, A.2.1
u : A B 1.1.8, A.2.1
u : A B 1.1.8, A.2.1
a𝜇 ↑ a, (a𝜇 | 𝜇 ∈ M) ↑ 1.1.15
a𝜇 ↓ a, (a𝜇 | 𝜇 ∈ M) ↓ 1.1.15
]←, b[, ]←, b], ]a,→[, [a,→[ 1.1.15
F  A → B A.2.1, B.4.1

Other symbols of operations and relations

a ∈ A 1.1.5
a ∈ 𝛼 (ordinals) 1.2.2
k ∈ n, k ⊂ n (natural numbers) 1.2.6
<−𝜏 C.2.1

A ∼ B 1.1.8, A.2.2, B.3.3
a ∼ a 1.1.14
A ∼ Bmod I 2.1.4
f ∼ gmod I 2.2.6
A∼ 2∘ (2.2.8)

⟮A, ⩽⟯ ≈ ⟮B, ⩽⟯ 1.1.15, A.2.2
≈𝜏, ≈ ̌𝜏 C.2.1

A ∪ B 1.1.5, A.2.1, B.3.2
A ∪ A ∪ A, . . . 1.1.11
a0 ∪ . . . ∪ an−1 1.2.6
∪C A.2.1, B.3.2
⋃⟮Ai | i ∈ I⟯ 1.1.10, A.2.1
⋃⟮A, A⟯,⋃⟮A, A , A⟯, . . . 1.1.11
⋃d⟮Ai | i ∈ I⟯,⋃dm⟮ui | i ∈ I⟯ 1.1.10
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⋃d⟮A, A
⟯,⋃d⟮A, A

, A⟯,. . . 1.1.11
⋃dm⟮u, u⟯,⋃dm⟮u, u , u⟯,. . . 1.1.11
∪d, ∪dm 1.1.11
⋃do, ∪do 1.2.9

A ∩ B 1.1.5, A.2.1, B.3.2
A ∩ A ∩ A, . . . 1.1.11
a0 ∩ . . . ∩ an−1 1.2.6
⋂⟮Ai | i ∈ I⟯ 1.1.10, A.2.1
⋂⟮A, A⟯,⋂⟮A, A, A⟯, . . . 1.1.11

B\A 1.1.5, A.2.1
n\k, 𝜔\k (natural numbers) 1.2.6
P\Q 2.1.4

. . . ∨ . . . (. . .or . . . ) 1.1.1
a ∨ a, a ∨ a ∨ a, . . . 1.1.15
a ⊻ a, a ⊻ a ⊻ a, . . . 1.1.15
P ∨ Q 2.1.4
S ∨ R 2.1.1
A(T )∨, A(T ) ∨ 2.2.8
ϕ, 𝜑∨ 3.6.2

A(T ), A(T )  3.6.1

. . . ∧ . . . (. . .and . . . ) 1.1.1
a ∧ a, a ∧ a ∧ a, . . . 1.1.15
a ⊼ a, a ⊼ a ⊼ a, . . . 1.1.15
P ∧ Q 2.1.4
𝜋1 ∧ 𝜋2 (coverings) 2.1.5
⋀(𝜋𝛼 | 𝛼 ∈ A) 2.1.5
S ∧ R 2.1.1
A(T )∧, A(T ) ∧ 2.2.8
𝜑∧, 𝜑∧ 3.6.2

A(T ), A(T )  3.6.1
(A(T ))nat 3.6.4

a ⩽ a, a ⩾ a, a < b, b > a 1.1.14
a ⩽ b, 𝛼 < 𝛽 (ordinals) 1.2.2
⟮A, ⩽⟯ 1.1.15
f < g, f ⩽ g, f ≪ g 2.2.2
⩽A 1∘ (2.2.6)
𝜈 ≪ 𝜇 3.2.4

+o 1.2.9
+c 1.3.5
+A (in linear space A) 2∘ (2.2.4)
𝛼 + 1, 𝛼+ 1.2.3, B.3.3

x + x, x + x + x, . . . 1.4.1 (in Z), 1.4.2 (in Q),
1.4.3 (in R)

f + g 2.2.1 (in F (T ))
a+, A+ 1.1.15
f+ 2.2.2
𝜇+, SMeasof (T ,R)+, Measof (T ,R)+ 3.2.2
F (T )+ 2.2.2
v+(𝜇) 3.2.1

−x 1.4.1, 1.4.2, 1.4.3
n − m 1.3.6
−f , f − g 2.2.1
−A 2∘ (2.2.4)
a−, A− 1.1.15
f− 2.2.2
𝜇−, SMeasof (T ,R)−, Measof (T ,R)− 3.2.2
F (T )− 2.2.2
v−(𝜇) 3.2.1
u−1[Y], u−1⟨b⟩ 1.1.7
x−1 (inverse number) 1.4.2, 1.4.3

A(T )∗ 2.3.6
A ∗ B 1.1.6, A.2.1, B.3.2
u ∗m u 1.1.8
𝜇∗ (for semimeasure 𝜇) 3.1.5
𝜑∗ (for formula 𝜑) C.2.4

v ∘ u 1.1.7
A(T ) ⃝ 2.2.8

A × A, A × A × A, . . . 1.1.12
a0 × . . . × an−1 1.2.6
u ×m u, u ×m u ×m u 1.1.12
U ×0 U, U ×0 U ×0 U 1.1.15
A× 6∘ (2.2.7)
𝜇× 3.1.5
𝜆× 3.1.6

xx, xxx, . . . 1.4.1 (in Z), 1.4.2 (in Q),
1.4.3 (in R)

fg 2.2.1 (in F (T ))

f ⋅ 𝜇 (product of function and measure) 3.3.7

m/n 1.3.6 (in N)
m/p 1.4.2 (in Q)
x/y 1.4.2 (in Q), 1.4.3 (in R)
A/𝜀 1.1.14
S/I 2.1.4
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1/f , f /g 2.2.1
A(T )/𝜃, A(T )/A0(T , I) 2.2.7

𝜇 ⊥ 𝜈, B⊥, B⊥⊥, 𝜇⊥⊥ 3.2.2

Brackets

u(a) 1.1.8
(u)Im 1.1.8
(ai ∈ A | i ∈ I), (ai | i ∈ I) 1.1.9, A.2.1
(A, A), (A, A , A), . . . 1.1.11, A.2.2
𝜑(x, y), 𝜑(p⃗), 𝜑( ⃗x, p⃗) 1.1.2, A.8.1, B.1.1

u[X] 1.1.7, A.2.1
u−1[Y] 1.1.7, A.2.1
]a, b[, [a, b], ]a, b], [a, b[ 1.1.15
]←, b[, ]←, b], ]a,→[, [a,→[ 1.1.15
] − ∞, x[ , ] − ∞, x], ]x,∞[ , [x,∞[ 1.4.3
tM[s] A.1.3
tM[s] A.1.3
q[𝛾] C.2.3
M ⊨ 𝜑[s] A.1.3
M ⊨ 𝜑[s] B.5.2
U ⊨ 𝜑[𝛾] C.2.3
𝜑[ ⃗x], 𝜑[ ⃗x, p⃗] B.1.1
[𝜑(x, y, p⃗)|A] A.8.1

⟨A, B⟩ 1.1.6, A.2.1, B.3.2
u⟨a⟩ 1.1.7
u−1⟨b⟩ 1.1.7
⟨𝜎(x; u⃗)|A⟩ A.8.1

{A}, {A, B} 1.1.6, A.2.1, B.3.2
{A, A , A}, . . . 1.1.11
{ai | i ∈ I} 1.1.9
{xx ∈ I | x ∈ X} 1.1.9
{a0, . . . , an−1} 1.2.6
{x | 𝜑(x)}, {x | 𝜑(x, p⃗)} 1.1.5, A.2.1
{x ∈ A | 𝜑(x)} 1.1.5, A.2.1

⟮T , S⟯, ⟮T ,G⟯ 2.1.1
⟮T ,C⟯ 2.1.5
⟮T , S, I⟯ 2.1.4
⟮T , S, 𝜀⟯ 3.1.1
⟮Ai ⊂ A | i ∈ I⟯, ⟮Ai | i ∈ I⟯ 1.1.9, A.2.1
⟮A, A⟯, ⟮A, A , A⟯, . . . 1.1.11, A.2.2
⟮Axx | x ∈ X , x ∈ X⟯, . . . 1.1.12
⟮{x}x ⊂ I | x ∈ X⟯ 1.1.9
⟮R, S⟯ 1.4.4

|a, b| 1.1.15
𝜑|x, y| 1.1.2
|x| 1.4.1 (in Z), 1.4.2 (in Q), 1.4.3 (in R)
|f | 2.2.2 (in F (T ))
|a| 4∘ (2.2.4) (in lattice-ordered

space)
|𝜇| 3.2.2 (in SMeasof (T ,R))
|A| (≡ card A) 1.3.2, A.2.2, B.3.3

‖ ⋅ ‖∞ 2.2.7
‖ ⋅ ‖u, ‖ ⋅ ‖u,A(T ,I) 2.2.7
‖ ⋅ ‖e, ‖ ⋅ ‖eu, ‖ ⋅ ‖eu,A(T ) 2.2.7
‖ ⋅ ‖1̄ 2.2.7
‖ ⋅ ‖i 3.3.4
‖ ⋅ ‖ 7∘ (2.2.7)

Infinities

∞, −∞ 1.4.3
A∞(T ) 2.2.7
F∞(T ) 2.2.7
‖ ⋅ ‖∞ 2.2.7
L∞(T ,M, 𝜇), M∞(T ,M, 𝜇) 3.3.1
] − ∞, x[ , ] − ∞, x], ]x,∞[ , [x,∞[ 1.4.3

Ascenders

ā, Ā 1.1.14
1̄ 2.2.7
A(T , I), F (T , I), Fb(T , I) 2.2.6
P 2.1.4
𝜘(k), 𝜘(k) 2.4.4
̄̄𝜀 3.1.3
𝜑, 𝜑 3.6.2
b(𝜑), b(𝜑) 3.6.4
∀ ⃗x, ∃ ⃗x A.8.1, B.1.1
𝜑∨, 𝜑∨, 𝜑∧, 𝜑∧ 3.6.2

Ŝ (for ensemble S) 2.1.1
F̂b(T , I) 2.2.7
𝜑, �̌�, �̌�S, 𝜑S 3.6.2
̌𝜏 (for type 𝜏) C.1.1
̌𝜇, ̄𝜇, 𝜇, 𝜇, 𝜇#, 𝜇≠ (for semi-

measure 𝜇) 3.1.4
A† 2∘ (2.2.8)
‖ ⋅ ‖ 7∘ (2.2.7)
⟮A, ‖ ⋅ ‖A⟯

, A 7∘ (2.2.7)
𝜑∗ (for formula 𝜑) C.2.4

 EBSCOhost - printed on 2/10/2023 4:56 PM via . All use subject to https://www.ebsco.com/terms-of-use



416 | Index of notations

𝜇∗, 𝜇×, ̂𝜇, ̃𝜇 (for semimeasure 𝜇) 3.1.5
𝜆×, �̂�, ̂�̂�, �̃� 3.1.6

Special cases of using upper and lower indices

BA 1.1.8, A.2.1
𝛼𝛽 1.3.5
𝜑U (relativity of formula 𝜑 to class U) A.6.1,

B.3.1
An (= A × . . . × A) 1.2.6
xn (= x ⋅ ⋅ ⋅ x) 1.4.1, 1.4.2, 1.4.3
m√x, xp/m 1.4.6
f r , m√f 2.2.1
P𝛼, ∪𝛼, ∩𝛼,⋃𝛼,⋂𝛼, {. . .}𝛼, ⟨. . .⟩𝛼, ⟮. . .⟯𝛼, ∗𝛼,

𝛼,→𝛼, 𝛼, 𝛼, 𝛼, dom𝛼,
rng𝛼, BA(𝛼), Map𝛼(A, B) B.1.1

∏𝛼, ×𝛼 B.1.2
∼U, cardU B.3.3

Miscellaneous

¬, ∧, ∨,⇒, ∀, ∃, ≡ 1.1.1, A.1.1
∈, =, ⊂, ⊃, /=, ̸∈ 1.1.5, A.2.1, B.1.1

#, ∘,↔ B.2.1
⇔ 1.1.2, A.1
⊢ 1.1.3, A.1.2, B.5.2
⌀ 1.1.5, B.1.1
ℵ 1.3.4
a B.1.1
U⋈ A.4.1, B.1.1
⋈⟮𝛾f | f ∈ F ⟯ C.3.1
⋈⟮𝛾0, F ⟯ C.3.2
𝜁(v ‖ 𝜏) (substituted in formula) 1.1.2, A.1.1
u|X, u‖X (restriction of correspondence) 1.1.7
m + 1|n (rank of formation, etc.) C.1.2
[𝜑(x, y, p⃗)|A] A.8.1
⟨𝜎(x; u⃗)|A⟩ A.8.1
n!, (mk ) 1.4.6
∫ f d𝜇 3.3.2, 3.3.6
(R) ∫ f d𝜇 3.7.1
M ⊨ 𝜑[s] A.1.3
M ⊨ 𝜑[s] B.5.2
U ⊨ 𝜑[𝛾] C.2.3
{x | 𝜑(x)}, {x | 𝜑(x, p⃗)} 1.1.5, A.2.1
{x | 𝜑[x, p⃗]} B.1.1
{x ∈ A | 𝜑(x)} 1.1.5, A.2.1, B.1.1
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