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Dominik Schaniel and Theo Woike
Introduction
Keywords: structure analysis, X-ray diffraction, electron density

1 Motivation and history

The purpose of this book is to provide an introduction into the field of time-resolved
structural analysis. To this end, the fundamental notions of structural analysis and
the concept of density functional theory and its extension to include time-dependent
effects, i.e., excited nonequilibrium states, will be outlined, followed by a descrip-
tion of various techniques to determine structures of excited systems with life times
in the range of femtoseconds to seconds. Further, the different diffraction patterns
that can be expected upon various types of excitation from the ground state will be
discussed and illustrated with examples. The possibilities opened by the X-ray free-
electron laser, due to its extremely short and intense X-ray pulses, and a description
of its operating principle conclude the topic.

The desire and necessity for following the movements of atoms in space and
time have grown since the discovery of structure analysis by diffraction methods. The
standard static structure analysis reveals the structural organization of the relaxed
ground-state configuration with high precision. It is of considerable interest to know
the structural configurations of excited nonequilibrium states to identify the changes
in atomic distances relevant for the observed material properties. To be able to follow
the atomic movements in time, one needs external sources for excitation that are
synchronized with the X-ray source. Furthermore, the extension of structural analysis
to the fourth dimension required significant developments of X-ray sources, X-ray
detectors, and overall stability of the instruments.

The structure determination by X-ray diffraction is a success story, enablingmuch
of our today’s understanding of matter. An excellent review on this topic – covering
up to the 1960s and highlighting the interplay betweenmethodical, instrumental, and
theoretical advances – has been given by Buerger in Historical Atlas of Crystallog-
raphy [1]. With the development of ever more brilliant X-ray sources and faster two-
dimensional X-ray detectors, the variable time became then accessible for structure
determination in the second half of the twentieth century and is culminating today
in the developments around the X-ray Free-Electron Lasers (XFELs) making time res-
olutions of a few femtoseconds or even beyond accessible. We shall give here only a
brief recapitulation of the major steps and developments made toward time-resolved
diffraction. A first phase of developments covers the period 1940–1975, and a short
review on the historical development has been given by Green [2]. Starting as early

https://doi.org/10.1515/9783110433920-001
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2 | D.Schaniel and T. Woike

as 1942, Tsukerman and Avdeenko and one year later Altshuler reported the photo-
graphic recording of Laue diffraction patterns fromaluminum single crystalswithmil-
lisecond exposure times [3] and from steel sampleswith exposure times of 10−5 s [4]. In
the 1950s, Schall [5, 6] and Schaaffs [7–9] developed experimental setups allowing for
measurements with exposure times of 10−6 s. In 1966, Zavada and coworkers reached
time resolutions of 10−7 s [10]. The subsequent development was mainly driven by the
studies of shock-wave compressed materials, especially by Johnson and coworkers,
who reached time resolutions of about 20 ns [11] (see also Whitlock and Wark [12]).
During this first period, the development of X-ray flash techniques was important for
the advancement of the experimental possibilities (see, e.g., review by Germer [13]).
In the following period the instrumental developments of laser plasma sources [14]
and the arrival of synchrotron radiation for X-ray diffraction [15] enabled major ad-
vancements. Among the first time-resolved diffraction experiments with synchrotron
radiation sources, there was the study of the molecular mechanism responsible for
muscle contractionwith a time resolution in the rangeof 10−2 s [16–18]. Studies of laser
heated crystals were also conducted at synchrotron sources with time resolutions of
the order of 10−9 s [19]. Similarly, in the case of laser-plasma X-ray sources, first appli-
cations included time-resolved studies of biological samples with a time resolution of
10−9 s [20]. Furthermore, these laser-plasma X-ray sources allowed for straightforward
synchronization between the X-ray pulse and the laser pulse, which, on the one hand,
excites the sample under study and, on the other hand, generates the X-ray pulse via
the laser-produced plasma. Consequently, studies of laser-heated crystals with time
resolutions of 10−9 s were conducted, and the potential for increased time resolution
by using shorter laser pulses was immediately recognized [21]. Following this line,
soon picosecond (5 ⋅ 10−11 s) time-resolved X-ray diffraction studies were performed on
laser-heatedmaterials using laser plasma sources [22]. Shortly after, also femtosecond
X-ray pulses were available [23], and corresponding X-ray diffraction studies were per-
formed with a time resolution of about 10−13 s, e.g., on laser-heated organic films [24].
Using synchrotron radiation, time resolutions of a few tens of picoseconds were pos-
sible corresponding to the length of the electron bunches. Through combination with
a streak camera, time resolutions around 10−12 s were achieved [25], and finally us-
ing laser slicing techniques, time resolutions of 10−13 s were obtained [26]. The lat-
est developments yielding the highest time resolutions are made using XFELs, where
pulses of only a few femtoseconds can be produced, and maybe in the near future
even subfemtosecond time resolution can be expected [27–29]. The resolution acces-
sible by attosecond pulses is actually needed to distinguish unambiguously between
electronic excitation and nuclear motion, since, e.g., the hydrogen atom oscillation is
in the range of 10 fs. Along with the high temporal resolution, the short X-ray pulses
provide also extremely high intensities. Due to the highnumber of photons, evenweak
scattering processes can be investigated, and moreover nonlinear phenomena can be
created, studied, and technologically exploited. For example, the wave mixing be-
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tween an X-ray wave and a tunable wave in the optical spectrum [30] yields a spectral
variability of X-ray frequencies with exceptionally high resolution.

2 About the book

This book is organized in five chapters, which can be separately studied. The reader
is supposed to be familiar with the basic concepts of crystallography; however, all
important notions will be detailed or illustrated via examples. We restrict ourselves
to X-rays and X-ray diffraction. Concerning the developments made in time-resolved
electron diffraction, we refer the reader to the book by Zewail [31].

We start the introduction to the topic with a survey on structural analysis from
crystalline to amorphousmaterials, which illustrates to what extent and to which pre-
cision static structure determination is nowadays possible. R. Neder discusses these
details explicitly on the example of atomic composition of nanoparticles using thepair
distribution function (PDF) after a short outline of the structure analysis on crystalline
materials.

K. Schwarz and P. Blaha discuss the quality that can be obtained by DFT calcu-
lations of the relaxed ground state, illustrated exemplarily on the example of BaBiO3
using their program package Wien2k. More generally, they introduce the method of
density functional theory through several examples, discuss the approximations that
are made for the different functionals, and explain the LAPW method. One obtains
the electron density distribution, electric field gradients, and magnetism quantities,
which can also be obtained from the refinement of the experimental electron density
by, e.g., a multipolar model and thus can be compared to the theoretical results. The
band structure and density of states of solid-state materials are elementary results of
the DFT.

Excited states, their structure, electron density distribution, and spectroscopic
properties can be elucidated by time-dependent density functional theory (TDDFT).
V. Olevano starts with the basic theoretical framework and explains through several
examples the efficacy of TDDFT. Then an analysis of excitations with or without mo-
mentum transfer follows. On the example of silicon the outstanding challenges of
TDDFT, especially with respect to the extension of the kernels, are discussed.

The chapter Time-resolved structural analysis by S. Pillet sums up a compre-
hensive overview of the various methods for observing structural changes by time-
resolved X-ray diffraction. Different cases of the induced structural perturbations are
discussed in real and reciprocal space through analysis of the diffraction patterns, il-
lustrating what can be expected from suchmeasurements and what quality is needed
to be able to detect the corresponding phenomena. There follows a description of
the experimental methods for time-resolved diffraction and excitations on different
time scales. Finally, the question is discussed what information can currently be ob-
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4 | D.Schaniel and T. Woike

tained from the measurement of the time-dependent electron density distribution
ρ(r, t).

To conclude, the chapter Ultrafast science by B. Patterson deals with the inves-
tigation of photoinduced coherent phenomena, the use of correlation techniques of
short X-ray pulses for the structural analysis of molecules, and examples for nonlin-
ear X-ray optics. The chapter concludes with a summary on the operating principle of
the XFEL.

3 Electron density distribution and structure factors
The following chapters deal with an extension of static structure analysis to include
the variable time. Mostly, and especially from the experimental point of view, this will
be restricted to the analysis of the motion of nuclei. However, recall that X-rays are
mainly scatteredby the electrons, and thereforeX-ray diffraction allowsus in principle
to investigate in detail the electron density distribution ρ(r). The X-ray diffraction is
described by the interaction of a radiation field with a quantum mechanical system
in the first Born approximation, where the interaction between the photons and the
scattering system is weak, and no excited states are involved in the elastic scattering.
The scattering process changes the quantummechanical system from the initial state
|ψm⟩ to the final state |ψn⟩ and the incident wave with propagation vector ki to the
outgoing wave with propagation vector kf . As will be detailed in the chapter Static
Structural Analysis, the structure factor F(H) is the Fourier transform of the electron
density in the unit cell:

F(H) = F̂[ρuc(r)] = ∫
uc
ρ(r)e2π𝚤H⋅rdr. (1)

The measurement of the Bragg intensities for the scattering vectors H allow therefore
in principle for the determination of the electron density ρ(r). However, due to the fact
that the number of observed reflections is finite and only the moduli of the structure
factors F(H) are known but not their phases, a model of the electron density ρ(r) has
to be elaborated. In the followingwe shall discuss briefly the twomainmodels applied
today, the independent atommodel (IAM) and themultipolar model (MM). For a more
in-depth treatment of the subject, the interested reader is referred to the excellent text-
book by Coppens [32] and the comprehensive overview about charge-density-related
research edited by Gatti and Macchi [33].

3.1 The independent atom model IAM

In the independent atommodel the unit cell electrondensity ρuc(r) is approximatedby
a sumover atomic densities from isolated atoms,which consist of spherical symmetric
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atomic densities ρj(r) centered at the nuclear position rj of the atom j:

ρuc(r) =∑
j
ρj(r)δ(r − rj). (2)

The structure factor is then given by

F(H) = F̂[ρuc(r)] =∑
j
fj(H)e2π𝚤H⋅rj (3)

with the atomic form factor fj(H) given by the Fourier transform of the atomic density
ρj(r) at the scattering vector H:

fj(H) = ∫ρj(r)e2π𝚤H⋅rdr. (4)

Up to now, we have ignored that the observable electron density is in fact the re-
sult of a thermal average over many vibrational states due to the movement of the
atoms. Within the Born–Oppenheimer approximation, the electrons follow the nuclei
instantaneously. Assuming that the electrons can be assigned to specific nuclei, the
thermally averaged electron density is a superposition of atomic densities that follow
rigidly the motion of the nuclei. This can be expressed as a convolution of a proba-
bility density function pj(r), giving the probability of atom j to be displaced from its
equilibrium position rj and a static atomic density ρj,static(r). The unit cell density is
then given by

ρuc(r) =∑
j
[ρj,static(r) ∗ pj(r)] ∗ δ(r − rj). (5)

In general the displacement models are harmonic, and this convolution approxima-
tion is termed the rigid pseudo-atom approximation. For the structure factor, it follows

F(H) = F̂[ρuc(r)] =∑
j
fj(H)Tj(H)e2π𝚤H⋅rj (6)

with fj(H) now the static atomic structure factor and Tj the atomic temperature factor,
often referred to as the Debye–Waller factor

Tj(H) = ∫pj(r′)e2π𝚤H⋅r
′dr′. (7)

The correct deconvolution of thermal motion and atomic structure factors is crucial
for ameaningful description of the electron density distribution. Mostly harmonic ap-
proximations are applied for the description of the thermal motion, whereby isotropic
or anisotropic displacements of the atoms are modeled by Gaussian probability dis-
tributions. If high-resolution data are available, applications of models beyond the
harmonic approximation are possible.
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6 | D.Schaniel and T. Woike

The independent atom model is the main tool used for routine structure analy-
sis based on X-ray diffraction, yielding reliable and precise models for the nuclear
static structure. It is based on a spherical electron density distribution, so whenever
asphericity or chemical bonding effects are negligible, it works perfectly. However,
whenever the valence electrons constitute a significant part of the total electron den-
sity distribution, the IAM is not sufficient for an accurate description of the electron
density. For example, in the case of the hydrogen atom, it leads to an underestimation
of bond distances due to bonding effects. Considering a purely spherical electron den-
sity distribution, the one electron of the hydrogen involved in the chemical bonding
results in an electron density distribution with its center shifted toward the atom it is
bonding to. This effect is well known, and models for correction have been developed
and may be applied in structure refinement programs. Another drawback of IAM is
that it assumes the atoms in a crystal to be neutral. This is in general not the case due
to charge transfer between atoms or due to asphericity of the electron density distri-
bution, responsible for, e.g., molecular dipole moments. This effect is, for example,
clearly visible in atoms such as oxygen via their so-called lone-pairs, i.e., the doubly
filled nonbonding orbitals.

To improve the description of the electron density distribution, the IAM has been
extended by adding a term accounting for charge transfer between atoms. In this so-
called κ-formalism, one separates the scattering contributions due to valence and in-
ner shell electrons, ρcore and ρval, respectively, by writing

ρatom = ρcore + Pvκ3ρval(κr), (8)

where Pv is the valence shell population parameter, and κ is a parameter allowing for
contraction or expansion of the valence shell, i.e., it scales the radial coordinate r.
Normalizing the atomic form factors to one electron and using the core electron pop-
ulation Pc , we obtain for the structure factor

F(H) =∑
j
[{Pc,jfcore,j(H) + Pv,jfval,j(H/κ)}e2π𝚤H⋅rjTj(H)]. (9)

The κ-model allows only changing the radial form of the electron density distribution
by contraction or expansion. This might be helpful for simple cases like the hydrogen
atom, where only one electron has to be treated. Therefore this model is rarely used
on its own; however, it is very useful as a first step toward a more complex model.

3.2 The multipolar model

The multipolar model uses atom-centered multipolar functions for the description of
the electron density. The most popular model used today is the so-called Hansen–
Coppens model, introduced in 1978 [34]. It combines radial and angular functions to
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describe the density of each atom as follows:

ρatom = Pcρcore(r) + Pvκ3ρval(κr) +
lmax

∑
l=0

κ′3Rl(κ′r)
l
∑
m=0

Plm±dlm±(θ,φ), (10)

where the two first terms correspond to the κ-formalism introduced in the preceding
paragraph, including the core and valence electron population parameters Pc and Pv .
This type of multipolar model is termed valence-density formalism since it allows for
contraction or expansion of the valence shell via the κ parameters in the radial terms
Rl and an aspherical description via the angular terms dlm, which accounts for chem-
ical bonding effects. The choice of suitable radial and angular functions is crucial.
Typically, single Slater functions ζ are employed.

The aspherical atomic form factor fj(H) and the corresponding structure factor
F(H) are then obtained by the Fourier transform:

fj(H) = Pc,jfcore,j(H) + Pv,jfval,j(H/κ)

+ 4π
lmax

∑
l=0

l
∑
m=0
∑
p
Plm±𝚤l⟨jl(S/κ′)⟩dlm±(β,γ) (11)

and

F(H) =∑
j
fj(H)e2π𝚤H⋅rTj(H). (12)

In equation (11), ⟨jl⟩ denotes the Fourier–Bessel transform

⟨jl(S/κ′)⟩ = ∫ jl(2πSr)Rl(r)r2dr (13)

with jl the spherical Bessel functions. Thedensity functions dlm± containing the spher-
ical harmonics describe the charge density in the form ofmultipoles. Overall, the elec-
tron density distribution ρ(r) is thus described as a sum of pseudo-atomic densities.
Each of these is composed of a spherical part ρcore for the core and ρval for the va-
lence shell and of a set of spherical harmonic functions to describe the aspherical part.
Themultipoles can then be developed up to the degree (dipole, quadrupole, octupole,
hexadecapole, etc.) adequate for the system under study. Note that the summation in-
cludes also monopoles (l = 0), which may be omitted for first- and second-row atoms
but are necessary to describe themore diffuse outer s-electron shell of transitionmetal
atoms. The description of the electron density distribution with a multipolar model
such as the Hansen–Coppens model has the advantage that it gives quite an intuitive
viewof the electron distribution aswe are used to by the orbital description of the elec-
tron clouds. Moreover, due to the fact that the density ρ(r) is related to the probability
of finding an electron in a certain volume according to ρ(r) ∼ ψψ∗(r), it is a quantity
that can be obtained by theory and thus allows for direct comparison between theory
and experiment (see the chapter DFT calculations of solids in the ground state).
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8 | D.Schaniel and T. Woike

Once the electron density distribution is determined, by theory or experiment,
we can perform a topological analysis and derive properties, such as the electrostatic
potential, dipolemoments, etc. A quantitative analysis of the topological properties of
the density ρ(r) is possible using the quantum theory of atoms in molecules (QTAIM)
developed by Bader [35]. It is not the purpose of this book to describe thesemethods in
detail, and we refer the reader to the specialized literature and the book of Bader [35].
Some examples are treated in the chapterDFT calculations of solids in the ground state.

We immediately recognize that the description with a multipolar model will sig-
nificantly increase the number of parameters in the least square refinements. There-
fore the requirements for experimental electrondensity determination in terms of data
completeness, redundancy, and precision are high. Typically, we need complete data
sets up to resolutions of sinθ/λ ∼ 1.2Å−1. Special caremust be taken to deconvolute the
smearing of the electron density deformation due to thermal motion from the other
effects we are interested in, such as chemical bonding, polarization, etc. It is the va-
lence electron distribution, which is the most affected by the mentioned effects. Since
this part of the electron density distribution is more diffuse in direct space than the
core electron density distribution, it is more contracted in reciprocal space. This im-
plies that the structure factors at low resolution sinθ/λ are more affected than those
at high resolution. As a consequence, in general, we first perform a so-called high-
order refinement, using only data above a certain sinθ/λ threshold, which allows
us to obtain a good deconvolution of thermal motion. Typical threshold values are
sinθ/λ > 0.7 − 0.8Å−1. Once the standard structural and thermal parameters are ob-
tained from this kind of IAM refinement, we proceed to the refinement of the mul-
tipolar model including the whole data set. Most often, we start by calculating and
inspecting so-called deformation electron density maps. The deformation density is
defined as the difference between the total observed density ρobs and the spherical
density ρIAMcalc calculated with a spherical reference model (IAM). It corresponds thus
to a Fourier difference map, yielding the residual density after a refinement according
to IAM:

Δρ(r) = ρobs − ρIAMcalc . (14)

These maps illustrate bonding features and aspherical electron density distributions
and allow for proper choice of themultipolar expansion level needed. To test the valid-
ity of the refined model, there exists a large number of statistical tools, which should
be applied systematically. Because the number of parameters is high, special atten-
tion has to be paid not to overinterpret the refinement results. Figure 1 shows in the
left panel as an example the deformation electron density obtained after a spher-
ical refinement (IAM) of the data calculated according to equation (14) for sodium
nitroprusside (Na2[Fe(CN)5NO]2H2O, SNP) in the plane spanned by Fe, C2, and N4.
SNP crystallizes in the orthorhombic space group Pnnm. The central iron atom of the
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Figure 1: (Left) deformation electron density Δρ(r) and (right) static deformation electron density
Δρstatic(r) in the Fe–C2–N4 plane of the [Fe(CN)5NO]2− anion. In blue (positive) and red (negative)
contours drawn at 0.05eÅ−3 [36].

[Fe(CN)5NO]2− anion is octahedrally coordinatedbyone almost linearNO (Fe–N–Oan-
gle of 175.96°) andfiveCN ligands. Thedeformationmap illustrates clearly the bonding
features in the NO and CN groups and toward the central metal atom. The deforma-
tion electron density around the iron atom is highly anisotropic as can be seen from
Figure 1. A multipolar model can account for all of these features and allows us to de-
rive further quantities such as d-orbital populations, atomic charges, etc. [32]. After
performing a successful multipolar refinement, we can calculate the electron density
according to equation (10). From this the so-called static deformation electron density
is calculated, which is the difference between the density calculated from the multi-
polar model and that calculated from the independent atom model:

Δρstatic(r) = ρMMcalc − ρIAMcalc . (15)

This kind of deformationmap has the advantage to be noise free and especially avoids
the thermal smearing effects due to the atommotions (Debye–Waller factor), hence the
name static. These maps are thus perfectly suited for comparison with ab initio calcu-
lations (see the chapter DFT calculations of solids in the ground state) since calcula-
tions are in general performed at T = 0 K. Figure 1 shows in the right panel the static
deformation electron density for the same plane as the deformation density in SNP.
We immediately recognize the muchmore prominent bonding features, including the
lone pairs on the oxygen and nitrogen atoms, which are now clearly visible due to the
reduced thermal smearing. The anisotropic electron distribution around the central
iron atom is now striking, and we can clearly see the depletion of the dx2−y2 and dz2
orbitals compared to the dxy , dxz , and dyz orbitals (see also [37]).
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Concerning time-resolved studies, the requirements with respect to data quality
and completeness represent a considerable challenge, and currently a detailed mod-
elling of time-resolved data based on themultipolar model are not possible. However,
first steps toward the time-resolved study of the electron density distribution aremade
and will be discussed in the chapter Time-resolved structural analysis.
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Introduction

The main focus of this book is placed on the analysis of X-ray diffraction by dynami-
cally changing structures. The details of the time-dependent formalism are presented
in the chapter Time-resolved structural analysis of this book. Here the groundwork for
the time-resolved scattering is laid out, starting with the analysis of a static structure.
Where relevant, differences between a static structure and the time-resolved structure
are pointed out.

The time resolution limit in this chapter is down to the time-scale where the mea-
surement still yields averaged positions, i.e., measurement/averaging time longer
than typical vibration of atoms around equilibrium positions.

It is expected that the reader is familiarwith a crystallographic description of crys-
tals, which can be found in any textbook on crystallography, like Refs. [1–3]. Aspects
of the structure determination from measured Bragg intensities can be found in text-
books [1, 4–8].

1 Basic diffraction algorithm

An atomic structure can be studied in a diffraction experiment with any radiation
whose wavelength is of the order of interatomic distances or shorter. This holds for
X-rays, electrons, and neutrons. It is obvious that X-rays, which are a section of the
electromagnetic spectrum in the wavelength range from approximately 0.2 down to
0.001 nm, can be diffracted by a grating with dimensions of the same order of magni-
tude. In a classical description, electrons and neutrons are treated as particles. Since
their mass is very small, a quantummechanical description of electrons and neutrons
with wave properties is more appropriate for diffraction experiments. Given the wave
nature of electrons and neutrons, they can be diffracted by crystals just as well as
X-rays. The strength of the interaction between matter and the radiation increases
from neutrons to X-rays to electrons. For this reason, time-resolved neutron diffrac-
tion has not yet reached the very short time scale that can be achieved with X-rays.
Another reason for the limited time resolution in a neutron experiment is the compar-
atively small neutron velocity. At a speed of approximately 2.2 km/s for thermal neu-

https://doi.org/10.1515/9783110433920-002

 EBSCOhost - printed on 2/13/2023 8:46 PM via . All use subject to https://www.ebsco.com/terms-of-use



14 | R.B. Neder

trons, the neutron will travel 2.2 nm per picosecond. Let us assume a crystal of just
100-nm diameter, which results in an extremely small volume for neutron diffraction.
A thermal neutron requires 45 ps to traverse the sample. As a result, the neutron wave
will see the entrance and the exit part of the crystal at considerably different times.
Compare this to X-rays that travel at 300 000 km/s. A photon will traverse the same
crystal in just 0.3 fs! Thus X-rays will inherently allow for much better time resolution.
On the other hand, the very strong interactionbetweenelectrons andmattermakes the
quantitative treatment of their diffracted intensity much more complicated. A quan-
titative analysis of electron diffraction patterns is just emerging. Since time-resolved
X-ray diffraction is the dominant experimental technique, this section focuses on the
treatment of X-ray interaction with matter.

X-rays can interact with matter in a variety of processes, schematically shown in
Figure 1. The incoming X-ray photon may be absorbed completely, and its energy be
transferred to electrons within the structure. Alternatively, the X-ray photon may be
scattered. Here we need to distinguish the elastic case where the scattered photon has
the same energy as the incoming photon and the inelastic case where the energy of
the scattered photon differs from the energy of the incoming photon. For structural
analysis of the internal structure of condensed matter, the elastically scattered wave
is of predominant interest. In the first inelastic scattering event, called Compton scat-
tering, the photon may interact with a single electron and transfer part of its energy
to the electron. The resulting scattering is isotropically distributed. As this process oc-
curs randomly throughout the structure and independently at different atoms, it is an
incoherent process. In a second type of inelastic scattering event, the X-ray photon
can also interact with the collective vibrations of the crystal, the phonons. In this pro-
cess the photon may loose or gain a small amount of energy depending on whether
a phonon is excited or dampened. As the energy of X-rays is in the keV range and
that of phonons in the meV range, the X-ray energy change is very small. This inelas-
tic scattering is much more relevant in the realm of neutron scattering as the energy
of neutrons with a wavelength around 1Å is some tens of meV and thus much more
similar to that of phonons. Finally, in another elastic scattering event, the X-ray pho-
ton may also interact with the magnetic moments of the structure, allowing insight
into the order of these magnetic moments. With respect to fast structural changes, the

Figure 1: Schematic illustration of interaction between
X-rays and matter.
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elastic scattering is themost important part and is derived in detail in this introductory
chapter.

Finally, let us briefly consider the absorption process.When anX-ray photon is ab-
sorbed, its energy is completely transferred to an electron, which may be excited into
an unoccupied state within the crystal or may leave the crystal as a so-called photo-
electron. The excited electron leaves behind a hole. Secondary processeswill relax the
crystal back into its ground state. Electrons from higher energy levels will relax into
the lower level, and the energy difference will be released as electromagnetic radia-
tion, so-called fluorescence radiation. As an alternative process, the energy released
when an electron relaxes from a higher energy level to a lower level may in turn excite
another electron, a process called Auger electron emission.

1.1 Diffraction by electrons, atoms, molecules, and crystals

In a diffraction experiment the relevant information thought after is the relative in-
tensity of X-rays scattered by the atoms in the crystal. To derive an expression for this
intensity, we need to start with the scattering process of the X-ray photon with a sin-
gle electron. It turns out that this can be done quite well with a classical description.
A detailed quantum mechanical derivation yields the same results; see, for example,
Ref. [9].

Within this classical approach keep in mind that X-rays are part of the electro-
magnetic spectrum. The oscillating electric field vector of the incident X-ray photon
causes an oscillating acceleration of the electron. The oscillating electron in turn will
emit electromagnetic radiation with the same frequency as the incoming X-ray pho-
ton, and thus this process is called elastic as the frequencies and thereby the energies
of incoming and scattered X-ray photons are identical.

The elastic scattering of X-rays by a single free electron is the most basic process.
This process can be described in terms of a fundamental unit, the Thompson scat-
tering length or classical electron radius. To derive this length, consider a scattering
process at a single electron. Anumber of photons per second impinges on this electron
and the scattered wave is observed by a detector at distance R over a solid angle ΔΩ
(Figure 2). This incoming flux Φ0, the number of photons per second and per unit
area, is proportional to the square of the electric field strength and the speed of light.

Figure 2: Schematic illustration of elastic X-ray scatter-
ing.
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The latter follows from the consideration that all photons within a distance c ⋅ t pass
through our unit area in time t, andwe getΦ0 ∝ c|E|2/ℏω. Here ℏ is the Plank constant
divided by 2π, and ω is the circular frequency of the incoming radiation.

The intensity recorded by the detector in turn is proportional to the square of the
scattered electric field strength, the speed of light, and the area of the detector. This
area can be written as R2ΔΩ, and we obtain ISC ∝ c|ESC|2/ℏω ⋅ (R2ΔΩ). The differential
cross section that describes the strength of the scattering process is defined as the
scattered intensity normalized for incoming flux and solid angle:

( dσ
dΩ
) = ISC
Φ0ΔΩ
. (1)

Inserting the individual expressions for incident flux and measured intensity, we
obtain

( dσ
dΩ
) = c|ESC|

2/ℏω ⋅ (R2ΔΩ)
c|E0|2/ℏωΔΩ

= |ESC|
2R2

|E0|2
. (2)

Within our classical description, the oscillating incoming electric field forces the
electron to oscillate, and this oscillating electric charge −e in turn emits a spherical
electromagnetic wave with modulus of the electric field |ESC| ∝ −ee2π𝚤kR/R. Here we
adopt the nomenclature to depict the length of the wave vector as k = 1/λ, rather than
2π/λ. Consider a photon that travels along the positive x-axis with polarization direc-
tion of the electric field vector along the y-axis (Figure 3). If we observe the scattered
radiation within the x–z plane, then we will see an effective acceleration ay indepen-
dent of the angle between the incoming and scattered radiation. If we observe the
scattered radiation within the x–y plane, then we will see an effective acceleration
ay cosψ, where ψ is the angle between the positive x-direction and our observation
direction. Initially, let us focus on the scattering in the x–z plane, where we can write
the observed scattered electric field as a function of distance and time t as

ESC(R, t) ∝
−e
R
ay(t′). (3)

Figure 3: Schematic illustration of elastic X-ray scatter-
ing by a single electron.
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Wehave to refer to the acceleration at time t′ = t −R/c, since the scattered phonon has
to travel the distance Rwith velocity c. The acceleration of the electron is proportional
to its charge and the incoming electric field and inversely proportional to the electron
mass: ay(t′) =

−eE0
m e−2π𝚤f ⋅t′ . Here f is the regular frequency, and with Ein = E0e−2π𝚤ft as

the incoming time-dependent electric field, we obtain

ay(t′) =
−eE0
m

e−2π𝚤f ⋅(t−R/c) = −eEin
m

e2π𝚤f ⋅R/c = −eEin
m

e2π𝚤⋅kR. (4)

This expression for the acceleration can be inserted into equation (3), and this
equation, rearranged to reflect the ratio between the scattered and incident electric
fields, becomes

ESC(R, t)
Ein
∝(e

2

m
) 1
R
e2π𝚤⋅kR. (5)

The next step in the development of the scattering theory is to consider a single
atom. Instead of a single electron, we have a continuous electron density distribution
around the nucleus. Thus we will have to integrate over all waves scattered through-
out this density distribution. Figure 4 schematically shows the electron density dis-
tribution with two arbitrarily chosen scattering centers. Each is a point source of a
scattered wave, and the scattered amplitude is proportional to the electron density at
this point. Since the atomic dimensions are extremely small compared to sample-to-
detector distances, a far-field approximation is well justified. In this approximation,
we can treat both, the incoming and the outgoing waves as plane waves rather than
spherical waves. The angle between the outgoing wave vectors k is for all practical
matters zero. The geometrical path difference between the rays I and II is the sum of
the bold sections A and B with A = −s0r and B = sr, where s0 and s are the unit vec-
tors in the direction of the wave vectors k0 and k, respectively. The minus sign in the
expression for A results from the fact that in this geometry the projection of r onto s0
results in a vector that is opposite in direction to s0. Thus we get, as the phase dif-
ference between the two scattered waves, Γ = 2π

λ (s − s0)r = 2πSr with the scattering
vector S = (s − s0)/λ. Note that another customary depiction is to use a symbol Q for
the scattering vector with the definition Q = 2π(s − s0)/λ = 2πS. Correspondingly, the
wave vectorsmust nowbedefinedwith length 2π/λ. The only difference between these

Figure 4: Schematic illustration of atomic form factor. In the
forward direction, all waves scattered at different locations
have the same phase. With increasing scattering angle the
phase difference between the two waves increases.
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nomenclatures is the question whether to include the factor of 2π within the scatter-
ing vector, respectively wave vector, or whether to write it as a separate factor. In this
bookwewill write the factor 2π as a separate factor as is customary in crystallographic
literature. As pointed out in the deduction of the scattering by a single electron, the
scattered intensity by the scattered electron is proportional to its charge. Accordingly,
the scattered intensity by a small volume dr is proportional to the electron density.
For the interference of two waves scattered by different volumes, the absolute phase
of the individual waves is not relevant. The main aspect is the phase shift between
any twowaves. Without loss of generality, we can therefore define the phase of a wave
scattered at the origin to be zero. By placing the origin within the center of the atom,
for the scattered amplitude, we obtain

A(S) = r0 ∫
V
ρ(r)e2π𝚤Srdr = r0f (S), (6)

where f (S) is known as the atomic form factor, and the integration is carried out over
the volume V of the atom. For S = 0, the integral will simply yield the total integral
over the electron density, i.e., the number of electrons of the atom. For larger values
of S, the exact value of course depends on the exact electron density distribution. The
values of the atomic form factor f have been calculated from quantum mechanical
calculations and are tabulated, for example, in the International Tables for Crystal-
lography, vol C [10]. These calculations have been carried out for an individual free
atom or ion with the assumption of spherical symmetry for the electron density dis-
tribution. This approximation does neglect the effect of chemical bonds within a crys-
tal and is known as the independent atom model (IAM). In the presence of chemical
bonds, this assumption is no longer strictly valid, and small deviations from the spher-
ical model can be observed. These deviations can be modeled and allow insight into
the detailed electron density distribution of chemically bonded atoms; see the chap-
ter Introduction in this book and further references therein. Within the assumption of
the spherical electron density distribution, let us have a qualitative look at the con-
sequences for the scattering by a single atom. Mathematically speaking, the integral
in equation (6) is the Fourier transform of the electron density. Recall the following
two properties of a Fourier transform F(h) of a function f (x): Scaling the amplitude of
f (x) translates into scaling the amplitude of F(h): Fourier[p ⋅ f (x)] = p ⋅ Fourier[f (x)].
Scaling the x-coordinate of f (x) translates into the inverse scaling of the h-coordinate
of F(h):

Fourier[f (a ⋅ x)] = 1/aF(h/a). (7)

Thefirst almost trivial result is that ifwe compare twoatomswithdifferent number
of electrons, then the scattered amplitude by the atom is proportional to the number of
electrons. That is the reason why light elements like Hydrogen contribute much less
to an X-ray scattering pattern than heavier elements. The second result is that if we
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spread out the electron density by a factor a, then the atomic form factor shrinks by
the reciprocal of this factor. To a very crude approximation, we can describe the radial
electron density distribution by a Gaussian distribution

ρ(r) = 1
σ√2π

e−
r2

2σ2 . (8)

The Fourier transform of this Gaussian distribution is again a Gaussian distribution:

f (S) = σ
√2π

e−
1
2 S

2σ2 . (9)

If we decrease the width σ, then the Fourier transform will become wider. Thus if we
take the same number of electrons and place them with higher density closer to the
nucleus, then the effect is that the atomic form factor will decrease slower with in-
creasing diffraction angle. Thus heavier atoms tend to dominate X-ray diffraction pat-
terns in two aspects. With their higher electron number, their scattering amplitude is
larger, and sincemost of their electrons will be boundmore closely to the nucleus, the
decrease of their atomic form factor with increasing scattering angle is also slower.

We are now ready to group several atoms into a larger unit, either a molecule or
an extended three-dimensional solid. Stayingwithin the independent atommodel,we
can describe the continuous electron density distribution of the group by splitting it
into a sum over individual atoms located at position rk and a sum over the electron
density within each individual atom. The scattering by each atom can be described by
the atomic form factor as treated in the previous paragraphs. The molecular electron
density can thus be described as ρM (r) = ∑Nk=1 ρ(r − rk). Here the sum runs over all N
atoms k in the molecule. To calculate the scattered amplitude, we need to integrate
over the entire molecule volume: Fm(S) = ∫V ∑

N
k=1 ρ(r − rk)e

2π𝚤Sr. Within the indepen-
dent atom model, we can now exchange the sequence of the integration and summa-
tion. Within the volume VA of each atom, we define a temporary vector Rj from the
center of atom k to the local electron density:

Fm(S) =
N
∑
k=1
∫
VA

ρ(Rj)e2π𝚤S(rk+Rj)dRj =
N
∑
k=1
[∫

VA
ρ(Rj)e2π𝚤SRjdRj]e2π𝚤Srk . (10)

The term in square brackets is just the atomic form factor from equation (6), and
we obtain

Fm(S) =
N
∑
k=1

fk(S)e2π𝚤Srk . (11)

This function is called the molecular form factor. In analogy to the atomic form
factor, it describes the scattered amplitude by a single molecule and depends on
the molecular shape, and thus its name. The molecular form factor in general is
a smoothly varying function. As the molecule may possess no internal symmetry,
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the molecular form factor has different values along the different components of the
scattering vector S.

Note that, in the derivation of themolecular form factor, no assumptionwasmade
with respect to the position of the individual atoms nor to the existence of any chemi-
cal bond.We can therefore use the same arguments to expand the expression to that of
a crystal. With the exception of quasicrystals, we can describe the atom arrangement
in a crystal as a sum of identical unit cells, each placed at a corner of the lattice. Each
atom position can then be described as rk = ua + vb +wc + rj, where vectors a, b, and
c are the base vectors of the lattice, and rj is a vector from the origin of the individual
unit cell to the atom j. Indices u, v,w are integer numbers. From equation (11) we now
get the scattered amplitude of the whole crystal as

FCr(S) =
U
∑
u=1

V
∑
v=1

W
∑
w=1

Nunit

∑
j=1

fj(S)e2π𝚤S(ua+vb+wc+rj). (12)

Here U ,V ,W are the numbers of unit cells in the crystal, and Nunit is the number
of atoms per unit cell. By writing the sums over all nodes of the lattice as individual
sums over the three base vectors we make the implicit assumption that the crystal is
a block of U × V ×W unit cells. This does not affect the main purpose of the current
derivation, the so-called structure factor. We can write this in more general terms as a
sum over all lattice nodes irrespective of the outer shape of any limiting surface. The
following arguments remain identical independent of the crystal shape we assume.
As the content of each unit cell is identical to each other, the sum over the content is
independent of the sum over all lattice nodes and can be factored out:

FCr(S) = [
Nunit

∑
j=1

fj(S)e2π𝚤Srj][
U
∑
u=1

V
∑
v=1

W
∑
w=1

e2π𝚤S(ua+vb+wc)] = F(S)FLattice(S). (13)

The first factor is called the unit cell structure factor or more often just the struc-
ture factor F. Its value depends on the position of the atoms within a unit cell, i.e.,
the crystal structure, and thus its name. In the field of crystal structure analysis from
(X-ray) diffraction data, this is the most important quantity as it relates the atomic
position, i.e., the crystal structure, to the diffracted amplitudes. The second factor is
related to the extent of the lattice and is of less importance, except for nanocrystalline
samples. For a reasonably large crystal, the number of unit cells U ,V ,W will be very
large, easily some tens of thousands. Under these circumstances, the lattice factor will
be almost zero everywhere, except if the product S(ua+vb+wc) is integer. If this holds,
then each of the complex exponents is simply one, and the sum is equal to the total
number of unit cells in the crystal.

In the appendix to this chapter theproperties of theFourier transformaredetailed.
Youwill find a proof that the Fourier transform of an infinite sumof delta distributions
equally spaced at a common distance is in turn an infinite sum of delta distributions
spaced at the reciprocal distance. The second factor in equation (13) is such a Fourier
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transformof a threedimensional lattice. In equation (114) in the appendix, the variable
in the Fourier space S has to satisfy the condition that S − h

a = 0 for integer h. In three
dimensions, this condition holds for every component of S, and we can write this as
S(ua + vb +wc) = 1. With S written as a commonly known reciprocal space vector S =
(ha∗ + kb∗ + lc∗), we obtain that (ha∗ + kb∗ + lc∗)(ua + vb +wc) = 1.

This condition is fulfilled for any integer h,k, l and u, v,w if we defined the vectors
a∗, b∗, and c∗ such that the products a∗a = b∗b = c∗c = 1 and all mixed products
a∗b = a∗c = b∗a = b∗c = c∗a = c∗b = 0. This second set of conditions implies that any
base vector of the direct space is normal to twobase vectors in the reciprocal space and
vice versa. The first condition supplies a proper scaling of the reciprocal space. If we
write the three base vectors of the direct space as ai and the three base vectors of the
reciprocal space as a∗j , then the definition can be written concisely as aia∗j = δij . Here
δij is the Kronecker symbol with δii = 1 and δij,i≠j = 0. An equivalent vectorial definition
of reciprocal space is obtained of the vector product of any two real space base vectors,
normalized by the unit cell volume: a∗ = 1

V (b ∧ c), b
∗ = 1

V (c ∧ a), c
∗ = 1

V (a ∧ b). The
unit cell volume in turn can be calculated from V = a(b ∧ c) = b(c ∧ a) = c(a ∧ b).

Now let us look at the terms aia∗j = δij . By our definition, a∗ =
1
V (b ∧ c), which

implies that a∗ is normal to b and c. Thus the scalar products a∗b = a∗c = 0. The
scalar product is defined as aa∗ = |a||a∗|cos(<a,a∗). Here |a|cos(<a,a∗) is the length
d of a vector a projected onto a vector a∗, i.e., of a vector parallel to a∗. This length d is
exactly the distance between adjacent 100 lattice planes that are spanned by vectors
b and c. This gives for the scalar product:

aa∗ = d100|a∗| = d100
1
V
(|b ∧ c|) = 1

V
[d100|b||c| sin(<b,c)]. (14)

As d100 is the height of the parallelepiped spanned by vectors a, b, and c, the term
in square brackets is equal to the unit cell volume, and the scalar product is equal to
1. The other relationships hold in an analogous fashion. This implies the important
general relationship that any reciprocal lattice vector S = (ha∗ + kb∗ + lc∗) stands nor-
mal to the lattice plane with Miller indices hkl and has the inverse length of the lattice
plane distance.

To illustrate the properties of this reciprocal lattice, let us have a look at the usual
derivation of Bragg’s law. In Figure 5, two atoms 1, 2 are symbolized on adjacent lattice

Figure 5: Schematic illustration of Bragg’s law.
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planes separated by distance d. Up to the line 1A, the two X-ray photons travel paral-
lel at constant phase relationship. From line 1B onward the scattered photons travel
parallel again at different but constant phase relationship. Here we have implicitly
used the Fraunhofer approximation that the point of detection at which the two pho-
tons are observed is at a distance that is much longer than the distance d between the
lattice planes. Under this approximation, very well justified for the very small inter-
planar distances in a crystal, the two scattered photons travel indeed along parallel
lines. We thus have the geometrical detour taken along the lower path as the length of
lines A2 and 2B. With the angle Θ between the plane and the incoming, respectively
the scattered, photon paths, this geometrical detour is Γ = A2+2B = 2d sin(Θ). The two
scattered waves interfere constructively if this geometrical detour is an integer multi-
ple of the wavelength, and we obtain Bragg’s law: nλ = 2d sin(Θ). Rather than to refer
to higher orders of n, it is more convenient to divide this equation by n. On the right-
hand side we will silently replace the original distance d between two lattice planes
by d/n the distance between virtual lattice planes equally spaced at d/n: λ = 2d sin(Θ).

Before we address the issue that any of the two atoms can be moved parallel to
the lattice plane without affecting the phase difference, let us use this simple deriva-
tion to illustrate the meaning behind reciprocal space. In Figure 5 the wave vectors of
the incoming and scattered waves are denoted as vectors ki and k. As long as we are
dealing with purely elastic scattering, the lengths of these two vectors are identical
and equal to |ki| = |k| = 1/λ. With this condition and as both vectors are at an angle Θ
to the plane, the vector S = k−ki stands normal to the lattice plane. Now consider the
shaded triangle or, equivalently, the lower nonshaded one. In this triangle, we have
|S|/2 = |k| sin(Θ). With |ki| = |k| = 1/λ, we obtain |S| = 2 sin(Θ)/λ. This is equivalent to
Bragg’s law if we define the length of the vector |S| as the inverse of the lattice plane
spacing, |S| = 1/d.

This equality allows us to word Bragg’s equation in terms of reciprocal vectors,
i.e., vectors in a system with dimensions 1 over length. Define the system of vectors
S = (ha∗ + kb∗ + lc∗) that each are normal to the lattice plane with Miller indices hkl
and that are of length |S(hkl)| = 1/dhkl . Waves scattered elastically by atoms on any lat-
tice plane interfere constructively if the incoming wave vector and the scattered wave
vector are of equal length 1/λ and form a triangle with vector S. Geometrically, this
relationship can be sketched by placing the end point of the incoming wave vector ki
at the origin of reciprocal space and the scattered wave vector k at the starting point
of ki .

Drawing all possible vectors k around the starting point of ki, we obtain a sphere,
the Ewald sphere. If the reciprocal space is oriented so that the reciprocal origin is on
the surface of the Ewald sphere, then constructive interference occurs if any reciprocal
space vector is also on the surface of theEwald sphere as this is the condition S = k−ki .

Figure 6 illustrates the derivation of Bragg’s law again. This time, however, the
atom 1 on the upper plane has been shifted by some arbitrary amount parallel to the
plane. The geometrical beampath difference between the photons scattered in atoms 1
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Figure 6: Schematic illustration of Bragg’s law
for atoms shifted parallel to the lattice plane.

and 2 is the difference between lines 1B and A2. With r the vector between the two
atoms, the length of line 1B is 1B = rk

|k| , and that of A2 is A2 = rki
|ki|

, which gives the
overall beam path difference as

Γ = 1B −A2 = rk
|k|
− rki
|ki|
= r(k − ki)
|k|
.

Notice that so far we have not really referenced the lattice plane at all. This derivation
simply assumes the interference between the waves scattered by two atoms that are
at a separation r. Constructive interference is observed if the geometrical beam path
difference is equal to an integer multiple of the wavelength λ,

nλ = r(k − ki)
|k|
. (15)

Now replacing the vector k − ki by the vector S, the vector normal to the lattice
plane, we obtain

nλ|k| = rS (16)

or

n = rS.

We observe constructive interference if the projection of the interatomic vector
onto the vector normal to the lattice plane results in a vectorwhose length is an integer
multiple of the interplanar spacing. As the length of this projection, i.e., the value of
the scalar product rS, does not change when a vector normal to S is added to r, a shift
of the atoms parallel to the lattice plane does not change the derivation of Bragg’s law.

1.2 Structure factor

In Section 1.1 the basic scattering equation has been derived to yield the expression
for the wave scattered by the crystal as

FCr(S) = [
Nunit

∑
j=1

fj(S)e2π𝚤Srj][
U
∑
u=1

V
∑
v=1

W
∑
w=1

e2π𝚤S(ua+vb+wc)] = F(S)FLattice(S). (17)
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The second factor in this equation is the reciprocal lattice, and the first factor is
the so-called structure factor. In this section,we analyze the properties of the structure
factor in more detail. As the crystal is considered to be strictly periodic, it is sufficient
to carry out the summation over all atoms in a single unit cell, since the summation
over all unit cells results in the second factor, the reciprocal lattice.

In the approximation of the independent atommodel, the electron density distri-
bution around each atom can be considered to have spherical symmetry. This means
that the atomic form factor is a function of the reciprocal scattering vector length only.
Usually, this is implicitly assumed, and the atomic form factor is denoted simply as f .

In this simplified notation, we can write the structure factor as

F(S) = [
Nunit

∑
j=1

fje2π𝚤Srj]. (18)

Using the equality e2π𝚤x = cos(2πx) + 𝚤 sin(2πx), we can write the structure factor
equivalently as

F(S) =
Nunit

∑
j=1

fj[cos(2πSrj) + 𝚤 sin(2πSrj)]. (19)

The scalar product can be written as

Srj = (ha∗ + kb∗ + lc∗)(xja + yjb + zjc) = hxj + kyj + lzj , (20)

since the scalar product of a reciprocal and direct vector is either 1 or 0. At this point,
it is convenient to write the last term as the product of a 1 × 3 row matrix with a 3 × 1
column matrix:

(h,k, l)(
xj
yj
zj
)= hxj + kyj + lzj . (21)

Thus the structure factor equivalently is

F(S) =
Nunit

∑
j=1

fje2π𝚤Srj =
Nunit

∑
j=1

fj[cos(2πSrj) + 𝚤 sin(2πSrj)]

=
Nunit

∑
j=1

fj[cos(2π(hxj + kyj + lzj)) + 𝚤 sin(2π(hxj + kyj + lzj))]

=
Nunit

∑
j=1

aj + 𝚤
Nunit

∑
j=1

bj (22)

with

aj = fj cos(2π(hxj + kyj + lzj)), (23)
bj = fj sin(2π(hxj + kyj + lzj)). (24)
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All forms are identical, and we will use any form according to circumstance. The
sums over the real and imaginary parts can be carried out independently to yield

F(S) = A + 𝚤B = |F(|S|)|e𝚤ϕ (25)

with

A =
Nunit

∑
j=1

fj[cos(2π(hxj + kyj + lzj))], (26)

B =
Nunit

∑
j=1

fj[sin(2π(hxj + kyj + lzj))]. (27)

As for any complex number, its modulus is calculated as

|F(S)| = √F(S)F∗(S) = √(A + 𝚤B)(A − 𝚤B) = √A2 + B2, (28)

and the phase angle is related to the real and imaginary parts by

B
A
= tan(ϕ). (29)

This complex number represents the wave scattered by the reciprocal lattice vector S
or, equivalently worded, the wave scattered at the lattice planewithMiller indices hkl.
The amplitude of the scattered wave is the modulus of the structure factor, and its
phase angle is given by ϕ.

The individual contributions (aj, bj) to the structure factor can be understood as a
vector in the complex number plane. The total structure factor will have a large ampli-
tude if all these individual complex vectors are parallel to each other. These complex
vectors are parallel to each other if the scalar product S ⋅ rk is of identical value. As
|S| = 1/dhkl, the scalar product corresponds to the height of atom j between the lattice
planes. Accordingly, the amplitude of the structure factor is high if all atoms are at (ap-
proximately) the same hight between the lattice plane (hkl). The location of the main
electrondensity determines the phase angle of the structure factor. If all (ormost) elec-
trons are on the lattice plane, then the phase angle is zero, and if most electrons are
midway between the lattice plane, then the phase angle is 180°.

The actual intensity detected by the detector is proportional to the squared am-
plitude:

I(S) = |F(S)|2 = A2 + B2. (30)

This intensity does not carry any information of the phase angle ϕ. Reconstruc-
tion of the atomic structure from the intensities measured in a diffraction experiment
requires the phase angles to be reconstructed by a suitable algorithm. This is the scope
of structure determination techniques; see, for example, Refs. [1, 4–8].
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To compare the intensity of reflections S and −S, let us calculate these explicitly:

I(S) = F(S)F∗(S)

= [
Nunit

∑
j=1

fj[cos(2π(hxj + kyj + lzj))] + 𝚤
Nunit

∑
j=1
[fj sin(2π(hxj + kyj + lzj))]]

⋅ [
Nunit

∑
j=1

fj[cos(2π(hxj + kyj + lzj))] − 𝚤
Nunit

∑
j=1
[fj sin(2π(hxj + kyj + lzj))]]

= [A + 𝚤B] ⋅ [A − 𝚤B] = [A2 + B2]. (31)

The inversion of a vector S inverts all signs of theMiller indices hkl, andwe obtain:

I(−S) = F(−S)F∗(−S)

= [
Nunit

∑
j=1

fj[cos(−2π(hxj + kyj + lzj))] + 𝚤
Nunit

∑
j=1
[fj sin(−2π(hxj + kyj + lzj))]]

⋅ [
Nunit

∑
j=1

fj[cos(−2π(hxj + kyj + lzj))] − 𝚤
Nunit

∑
j=1
[fj sin(−2π(hxj + kyj + lzj))]]

= [
Nunit

∑
j=1

fj[cos(2π(hxj + kyj + lzj))] − 𝚤
Nunit

∑
j=1
[fj sin(2π(hxj + kyj + lzj))]]

⋅ [
Nunit

∑
j=1

fj[cos(2π(hxj + kyj + lzj))] + 𝚤
Nunit

∑
j=1
[fj sin(2π(hxj + kyj + lzj))]]

= [A − 𝚤B][A + 𝚤B] = [A2 + B2] = I(S). (32)

Thus the intensities of the wave scattered by the vector S and the wave scattered
by the vector −S are identical. This is known as Friedel’s law. As this holds for any
vector pair, reciprocal space symmetry always includes a center of inversion, even if
the crystal structure itself does not. Friedel’s lawdoes breakdown if one ormore atoms
strongly absorb the incoming X-ray photons. Strong absorption occurs if the energy
of the incident X-ray photon is close to the energy level of core electrons. Resonant
effects result, and the atomic form factor takes on amore general form, f − f ′ + 𝚤f″. For
noncentrosymmetric structures, these complex atomic form factors result in different
intensities for reflections hkl and h̄k̄ ̄l.

The calculation of the structure factor includes the summation over all atoms in
the unit cell. Instead of the explicit sum over all atoms, we can take an arbitrary atom
1 at x,y, z and apply all symmetry operations (W,w) of the space group to this atom.
Let us denote the symmetry operation as r′j =Wjr1 + wj, where the 3 × 3 matrix Wj
describes the rotational part of the symmetry operation, and the vector wj describes
any translational part. The translational part may arise if the symmetry operation is
a centering vector, a glide plane, or a screw axis or if the symmetry element is not
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located at the unit cell origin. The structure factor for this equivalent set of atoms is

F(S) =
Nunit

∑
j=1

fje2π𝚤S[Wjr1+wj]. (33)

Applying a further arbitrary symmetry operation (U,u) to all symmetry operations
of the group, we will generate exactly the same group. The symmetry elements will be
in a different sequence, but this is irrelevant. The sum over all j symmetry operations
will still copy atom 1 onto all atom positions in the unit cell. If a symmetry operation
shifts an atom to a location outside the unit cell, then we can shift it back into the
original cell. As the Miller indices hkl are restricted to integer numbers, the argument
2π(hxj + kyj + lzj) to the cosine and sine functions remains effectively the same as we
simply add an integer multiple of 2π to the argument. Thus our structure factor is

F(S) =
Nunit

∑
j=1

fje2π𝚤S(U[Wjr1+wj]+u) = [
Nunit

∑
j=1

fje2π𝚤SU[Wjr1+wj]]e2π𝚤Su. (34)

Since the vector u is independent of the index j, it has been taken out of the sum-
mation. The term SU = S′ is a symmetrically equivalent reciprocal space vector, and
the equation can be written as

F(S) = [
Nunit

∑
j=1

fje2π𝚤S
′rj]e2π𝚤Su = F(S′)e2π𝚤Su, (35)

and by rearranging we obtain

F(S′) = F(S)e−2π𝚤Su. (36)

If the scalar product S ⋅u in the complex exponential e−2π𝚤Su is equal to zero, then
the two structure factors for a reciprocal vector S and its symmetrically equivalent vec-
tor S′ are absolutely identical. If the scalar product is nonzero, then the amplitudes
are still identical, but the phases of the two structure factors differ. As the intensity
is the square of the amplitude, the intensities of all symmetrically equivalent reflec-
tions are identical. Since the translational components of the symmetry elements of
the space group do not influence the intensities, the symmetry of reciprocal space is
that of the point group to which the space group belongs.

Since Friedel’s law always adds a center of symmetry, the reciprocal point group
is the supergroup of the point group, which contains a center of symmetry. These 11
point groups are called Laue classes; see Table 1.

1.2.1 Systematic extinctions

Symmetry operations such as centering vectors, glide planes, and screw axes include
a translational component that shifts the image in addition to the rotational part of
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Table 1: Laue classes.

Laue group Point groups

̄1 1 ̄1
2/m 2 m 2/m
mmm 222 mm2 2/m 2/m 2/m
4/m 4 4 4/m
4/mmm 422 4mm 42m 4/m 2/m 2/m
3̄ 3 3̄
3̄2/m 32 3m 3̄2/m
6/m 6 6 6/m
6/mmm 622 6̄2m 6mm 6/m 2/m 2/m
m3̄ 23 m3̄
m3̄m 432 4̄3m 4/m3̄2/m

the symmetry operation. These symmetry operations have a systematic effect on the
structure factors such that a subset of the structure factors systematically have zero
intensity.

Centering vectors, most glide planes, and the 21 screw axes create a pair of sym-
metrically equivalent atoms. The d-glide planes and the other screw axis create a
larger group. For any atom k in the asymmetric unit we can list the atoms created by
this special symmetry operation in a subset {rk , [W1rk + w1],…}. The complete unit
cell content is achieved by applying all other symmetry operations to this subset. The
contribution of this subset to the structure factor is

fk[e2π𝚤Srk + e2π𝚤S[W1rk+w1] +⋯] = fk[e2π𝚤Srk + e2π𝚤SW1rke2π𝚤Sw1 +⋯]. (37)

This contribution to the structure factor will not result in any special value for all
possible and arbitrary atom positions rk , except for all those reciprocal space vectors
for which the symmetry operationW is a neutral operation with S = SW. For the cen-
tering operations, the symmetry matrixW is a unit matrix, and the relationship holds
for all reciprocal space vectors. For glide planes, the relationship holds for those recip-
rocal space vectors that are within that plane through reciprocal origin that is parallel
to the glide plane. Finally, for the screw axes, the relationship holds for all reciprocal
space vectors along a line through reciprocal origin parallel to the screw axis. For this
set of reciprocal space vectors, the contribution to the structure factor is

fke2π𝚤Srk [1 + e2π𝚤Sw1 +⋯]. (38)

The value of the term in square brackets is independent of the atom position, and
thus its value is a property of the space group, not a property of the special crystal
structure. The term may be zero for a set of the reflections for which S = SW. If this
term is zero, then the contributionof this set of atoms to the structure factor is zero. The
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complete structure factorwill also be zero as the complete structure factor results from
a sum over all atoms k in the asymmetric unit and all further symmetry operations.

At this point, it is easier to break the general discussion into sections for the indi-
vidual symmetry types.

Let us first consider those centering operations that create exactly one copy of the
original atoms. These are A-, B-, C, and I-Bravais lattices. The term in square brackets
in equation (38) consists of the first two terms 1 + e2π𝚤Sw. This term will be zero if the
second term will be equal to −1. The necessary condition for this is that the scalar
product Sw = hwx +kwy + lwz is equal to

1
2 since [1+e

2π𝚤1/2] = [1−1] = 0. As an example,
take the body-centeredBravais lattice.Herew = [1/2, 1/2, 1/2], and the condition for the
term to be equal to zero is Sw = (h/2 + k/2 + l/2) = (h + k + l)/2 = 1/2. This condition is
fulfilled for all reciprocal space vectors for which h + k + l is 2n + 1, an odd number.

For the face-centered Bravais lattice, we have three centering operations with
w1 = [1/2, 1/2,0],w2 = [1/2,0, 1/2], andw3 = [0, 1/2, 1/2]. Accordingly, the term of equa-
tion (38) in square brackets [1 + e2π𝚤Sw1 + e2π𝚤Sw2 + e2π𝚤Sw3 ] will be equal to zero if one
of the exponentials is equal to −1 and the other two cancel. This is fulfilled for any
reciprocal space vector with h+ k = 2n+ 1, or h+ l = 2n+ 1, or k + l = 2n+ 1. Table 2 lists
the conditions for all Bravais lattice types.

Table 2: Centering operations and reflection conditions for Bravais lattices.

Bravais lattice Centering operation(s) Reflection condition
I = 0 for I ≠ 0 for

P [0,0,0] None all
A [0, 1/2, 1/2] k + l = 2n + 1 k + l = 2n
B [1/2,0, 1/2] h + l = 2n + 1 h + l = 2n
C [1/2, 1/2,0] h + k = 2n + 1 h + k = 2n
I [1/2, 1/2, 1/2] h+k+ l = 2n+1 h + k + l = 2n
F [0, 1/2, 1/2]

[1/2,0, 1/2]
[1/2, 1/2,0]

h + k = 2n + 1
or h+ l = 2n+ 1
or k + l = 2n+ 1

h + k = 2n
and h + l = 2n
and k + l = 2n
eee; ooo

R [1/3,2/3, 1/3]
[2/3, 1/3,2/3]

−h + k + l ≠ 3n −h+ k + l = 3n

The last column lists the reflection conditions as listed for each space group in the In-
ternational Tables for Crystallography and in standard text books on diffraction. Keep
in mind that some intensities may still be zero for a given crystal structure. This will,
however, be a result of the special atom arrangement in this structure and not a sys-
tematic effect due to the presence of a symmetry operation that includes a transla-
tional component.
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All but the d-glide planes produce a pair of atoms. Again, the term in square brack-
ets of equation (38) is 1 + e2π𝚤Sw. Consider a c-glide plane normal to the b-axis with
w = [0,0, 1/2]. The mirror operation is a neutral element for [h,0, l], and only these
reciprocal space vectors are affected. With Sw = (h ⋅ 0 + 0 ⋅ 0 + l/2) = l/2 = 1/2, the con-
dition for the square term to be zero is l = 2n + 1. Analogous arguments hold for the
other glide plane types and the other glide plane orientations. Table 3 lists the glide
planes normal to a b-axis and the resulting conditions. For a full table, refer to the
International Tables or to standard text books.

Table 3: Glide components and reflection conditions for glide planes normal to a b-axis.

Glide plane Glide component(s) Reflection condition
I = 0 for h0l with I ≠ 0 for h0l with

a [1/2,0,0] h = 2n + 1 h = 2n
c [0,0, 1/2] l = 2n + 1 l = 2n
n [1/2,0, 1/2] h + l = 2n + 1 h + l = 2n
d [1/4,0, 1/4] h + l ≠ 4n h + l = 4n

For all screw axes, the rotational part of the symmetry operation results in a neutral
operation for the reciprocal space vectors along the line through reciprocal origin that
is parallel to the screw axis. As an example, consider a 21 screw axis parallel to the
b-axis. The reciprocal space vectors affected by the screw axis are the [0,k,0] vectors.
The translational component isw = [0, 1/2,0], and the term in square brackets is zero
since Sw = (0 ⋅0+k ⋅1/2+0 ⋅0) = k/2 = 1/2. Accordingly, reciprocal space vectors [0,k,0]
with k = 2n + 1 have zero intensity. Corresponding arguments hold for the other screw
axis types.

1.2.2 Projections and slices in direct and reciprocal space

In this section, we derive the effect that the limitation of either the Fourier or direct
space has on the other space. These considerations will be helpful later on when we
consider the effect of limiting the diffraction signal to pure elastic scattering or to in-
tegrate the diffraction signal over all inelastically scattered components.

In its full form the structure factor is

F(hkl) =
Nunit

∑
j=1

fj[e2π𝚤(hxj+kyj+lzj)]. (39)

We can now arbitrarily consider a slice in reciprocal space at l = 0:

F(hk0) =
Nunit

∑
j=1

fj[e2π𝚤(hxj+kyj+0zj)]. (40)
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The net effect of the limitation to l = 0 is that all z components of the atoms have
become irrelevant. The identical result will be achieved if we project all atoms along
the c-axis into the xy0 plane. Essentially, we have done an integration of direct space
along the c-axis.

1.3 Debye–Waller factor

So far we assumed that the atoms were at rest. As the book is concerned with time-
resolved crystal structures, it should be obvious that we need to consider atoms in
motion as well. Although the average crystal structure remains unchanged as a func-
tion of time, atoms are never at rest but will oscillate around their average position
due to the thermal energy. Due to the interactions with the surrounding atoms, an in-
dividual atom is located within a potential well. The detailed shape of this potential
depends on the chemical bonds involved and the local symmetry around the given
atom. For the moment, we simplify this potential to a harmonic potential. This is in
fact a fairly good approximation to any potential as long as the energy of the atom is
small. Each atom moves around within this potential well. If we consider the motion
of two atoms that are far apart, we can expect that the motions of these two atoms
are completely independent. This breaks down as we consider atoms that are much
closer to each other and ultimately are immediate neighbors. The displacement of one
atom will exert a force on the neighboring atoms and will displace these neighboring
atoms in turn. This correlatedmovement can be described as a common displacement
wave or a collective excitation of the lattice, a phonon. Thesewill be dealt with inmore
detail in later chapters.

Let us first use a bit of a hand-waving argument to derive the influence of this inde-
pendent atom movement onto the scattered amplitude. We assume that the data col-
lection time is long compared to the duration of a single oscillation of any given atom.
With this assumption, we can describe the time-averaged atom position by a proba-
bility density function. Given a harmonic potential, the probability density function
(pdf) of the atoms is a Gaussian distribution:

pdf(r) = 1
√2πσ

e−
(r−r0)

2

2σ2 . (41)

The time-averaged electron density of an atom can thus be described as the con-
volution of the electron density of an atom at rest by the probability density function

ρth(r) = ρst(r) ⊗ Gaussian. (42)

Since the scattered amplitude is the Fourier transform of the electron density, for
the contribution by a single atom that is undergoing thermal motion around its aver-
age position, we obtain

Fourier(ρth(r)) = Fourier(ρst(r)) ⋅ Fourier(Gaussian). (43)
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The Fourier transform of the electron density is the atomic form factor, and since
the Fourier transform of a Gaussian distribution is again a Gaussian distribution, for
the atomic form factor of an atom with thermal motion, we obtain

fth(S) = fst(S) ⋅ e−8π
2⟨u2⟩( sin(Θ)λ )

2
. (44)

Here ⟨u2⟩ is the mean square displacement of the atom, which is in the range of
0.01Å2. The right factor in equation (44) is commonly called the Debye–Waller factor.
The argument in the exponent can be expressed equally as

−8π2⟨u2⟩(sin(Θ)
λ
)
2
= −2π2⟨u2⟩(2 sin(Θ)

λ
)
2
= − 1

2
(2π)2h2⟨u2⟩

= −B(sin(Θ)
λ
)
2
= − 1

2
Q2⟨u2⟩. (45)

A comparison of the first and fourth expressions shows that B = 8π2⟨u2⟩. The term
B is more commonly used in the realm of neutron diffraction. Before we look at a
more rigorous derivation, let us analyze the influence of the Debye–Waller factor on
the structure factor and respectively the observed intensities. The exponent is a scalar
function of the diffraction angle and respectively of the length of the reciprocal vec-
tor. Accordingly, the effect of the Debye–Waller factor is a dampening of the scattered
amplitude with increasing scattering angle.

As the interaction time between the X-ray photon and the electron cloud of an
atom is much faster than the vibrational speed of the atom itself, we can also describe
the diffraction as the time average of many snapshots with the structure at rest but
with the atoms slightly off their respective average position. As explained in the pre-
vious section, the structure factor decreases if the height distribution of the atoms
between the lattice planes increases. Recall that the d-spacing of a lattice plane is the
inverse value of the length of the reciprocal lattice vector dhkl = 1/|Shkl|. With increas-
ing distance to the origin of reciprocal space, i.e., with increasing Bragg angle Θ, the
root mean square displacement √⟨u2⟩ thus becomes an increasing fraction of the lat-
tice plane spacing dhkl . As a consequence, the atoms are more widely spread between
the lattice planes, and accordingly the structure factor will diminish with increasing
Bragg angle just as derived in the rough derivation above. A second consequence will
become clear in the section on disordered structures andwill be justmentioned at this
point. If we consider the individual atomic vibrations as independent, then the struc-
ture can be considered as a disordered structure in which the atoms are randomly dis-
placed from their ideal time-averaged positions. This random displacement will give
rise to an isotropically distributed diffuse background intensity. Essentially, the in-
tensity lost from the Bragg reflections is distributed into the reciprocal space between
the Bragg reflections. If, on the other hand, the atoms vibrate collectively as phonons,
then the displacement can be described by a displacement wave. The scattering effect
of such a displacement wave is a satellite reflection at a distance that is the inverse
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of the wavelength. A multitude of phonons with different wavelengths is excited in
the crystal. These phonons have wavelength distributed over many multiples of the
unit cell length. Thus the corresponding scattering is typically broadened into a dif-
fuse peak underneath the Bragg reflections, the so-called thermal diffuse scattering.
If the amplitude of phonons in a particular direction is especially strong, then we can
observe a streak of diffuse scattering in reciprocal space.

Now let us look at a more rigorous derivation of the Debye–Waller factor; see also
Refs. [11, 12]. At any instance in time, we can write the current atomic position as the
sum of the average position plus a displacement:

rj = ⟨rj⟩ + uj . (46)

The structure factor can then be written as

F(S) =
N
∑
j=1

fj(|S|)e2π𝚤(S(⟨r⟩j+uj)) =
N
∑
j=1

fj(|S|)e2π𝚤(S⟨r⟩j)e2π𝚤(Suj). (47)

This term needs to be averaged over time to yield:

⟨F(S)⟩ = ⟨
N
∑
j=1

fj(|S|)e2π𝚤(S⟨r⟩j)e2π𝚤(Suj)⟩. (48)

The atomic form factor and the average atom position are of course time-inde-
pendent variables and can be taken out of the average operation:

⟨F(S)⟩ =
N
∑
j=1

fj(|S|)e2π𝚤(S⟨r⟩j)⟨e2π𝚤(Suj)⟩. (49)

The time average of the last factor can be obtained by expanding this term in a
power series:

⟨e2π𝚤Su⟩t = 1 −
1
2
(2π)2⟨(Su)2⟩t +

1
24
(2π)4⟨(Su)4⟩t −⋯. (50)

We can compare this power series to that of a Gaussian function, conveniently written
as the Debye–Waller factor:

e−
1
2 (2π)

2⟨(Su)2⟩t = 1 − 1
2
(2π)2⟨(Su)2⟩t +

1
8
(2π)4⟨(Su)2⟩2t −⋯. (51)

As the first two terms are identical, we can approximate for small displacements:

⟨e2π𝚤hu⟩t ≈ e
− 12 (2π)

2⟨(hu)2⟩t , (52)

which is exactly the expected result. Let us, however, test this approximation with
commonly observed values for the atomic displacement parameter. With ⟨u2⟩ and
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MoKα at 0.709Å and a diffraction angle of 30°, the argument to the exponential func-
tion becomes

(2π)2⟨(Su)2⟩t = (2π)
2 2 sin2(30°)0.01Å

2

(0.709Å)2
= 0.785. (53)

This is by no means a small value, and the cut off after the linear term is a gross ap-
proximation! This simple derivation apparently is flawed although it seems to give the
correct result. The time average actually needs to be taken as an average over all indi-
vidual modes of vibration:

⟨e2π𝚤Su⟩t = ⟨e
2π𝚤h∑k uk⟩t . (54)

In the harmonic approximation, all individual modes are independent, and the
sum in the exponent can be replaced by a product of individual exponential terms:

⟨e2π𝚤S∑k uk⟩t =∏
k
e⟨2π𝚤Suk⟩t . (55)

The amplitude of an individual mode is much smaller and the approximation by a
power series terminated after the linear term is justified:

⟨e2π𝚤S∑k uk⟩t =
N
∏
k
(1 − 1

2
(2πSuk)2) ≈ e−

1
2 (2π)

2⟨(Su)2⟩t . (56)

The last approximation holds for the limit of large N , and we now have the result that

⟨e2π𝚤Su⟩t ≈ e
− 12 (2π)

2⟨(Su)2⟩t . (57)

Finally, we make the approximation that the individual modes are displaced
isotropically, and we can separate the average over the scalar product into the aver-
age over the displacement to yield

⟨e2π𝚤Su⟩t ≈ e
− 12 (2π)

2(S)2⟨u⟩2t . (58)

If the atomic displacements are not isotropically distributed, then we can describe
their effect on the structure factor as

F(hkl) =
N
∑
j=1

fj(|hkl|)e2π𝚤(hxj+kyj+lzj)e−2π
2hiUijhj . (59)

Here the Uij are dimensionless parameters that describe the effects of anisotropic dis-
placements. We can now define the tensor UL as

UL =(

⟨Δx2⟩
a∗a∗

⟨ΔxΔy⟩
a∗b∗

⟨ΔxΔz⟩
a∗c∗

⟨ΔxΔy⟩
a∗b∗

⟨Δy2⟩
b∗b∗

⟨ΔyΔz⟩
b∗c∗

⟨ΔxΔz⟩
a∗c∗

⟨ΔyΔz⟩
b∗c∗

⟨Δz2⟩
c∗c∗

). (60)
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This tensor can be transformed to its principal axes. In the transformed state the
tensor elements along the main diagonal give access to the mean square displace-
ments along each of these axes. Keep in mind that even the anisotropic atomic dis-
placement parameters assume a harmonic potential. With higher-order terms the ef-
fect of an anharmonic potential can be described as well.

1.4 Patterson function

To understand the relationship between the observed intensities and the structure, es-
pecially the structure as a function of time, we start with a derivation of the so-called
Patterson function. Recall that the intensity is the product of the structure factor with
its conjugate complex, I(S) = F(S) ⋅ F∗(S). Now considering the inverse Fourier trans-
form of the intensity, we obtain

Fourier−1[I(S)] = Fourier−1[F(S) ⋅ F∗(S)]. (61)

The Fourier transform of the product on the right-hand side can be split into the con-
volution of the individual Fourier transforms:

Fourier−1[I(S)] = Fourier−1[F(S)] ⊗ Fourier−1[F∗(S)]. (62)

If we consider X-ray diffraction, then the Fourier transform of the structure factor is
the electron density ρ(r). The Fourier transform of the conjugate complex structure
factor is the conjugate complex of the electron density at −r:

Fourier−1[I(S)] = ρ(r) ⊗ ρ∗(−r)
= ρ(r) ⊗ ρ(−r) = P(u). (63)

Here we have replaced the complex conjugate of the electron density by the electron
density itself, since the electron density is of course a real-valued number. Thus the
inverse Fourier transform of the intensity is the convolution of the electron density
with the electron density inverted at the origin. Such a convolution is an autocorrela-
tion function. An autocorrelation function hasmaxima at u if the electron density has
high values at r and r + u. Thus the Patterson function P(u) has maxima at the posi-
tions corresponding to interatomic vectors u, schematically illustrated in Figure 7.

In the classical use of the Patterson function, the intensities are restricted to the
integrated intensity at the reciprocal lattice points, i.e., at the points where S = ha∗ +
kb∗ + lc∗. For this case, the Fourier transform in equation (63) reduces to a Fourier
series:

P(u) =
Nunit

∑
j=1
|F(hkl)|2e−2π𝚤(hu+kv+lw). (64)
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Figure 7: Relationship between a simple molecule, top,
and the Patterson function, bottom. The numbers at the
Patterson vectors indicate the corresponding atom pair.

Hereu = ua+vb+wc is the vector in the Patterson space. Although the Patterson space
is a direct space with base vectors that have a dimension of lengths, it is a good idea
to separate the Patterson space from the usual direct space of the crystal structure,
since the information in the former is related to interatomic distances, not to the actual
structure. The Patterson space has the identical periodicity as the direct space, as can
easily be proven if we consider the value of the Patterson space at a point u′ = (u +
m)a + (v + n)b + (w + o)c with integer numbersm,n,o:

P(u′) =∑
hkl
|F(hkl)|2e−2π𝚤(h(u+l)+k(v+m)+l(w+n))

=∑
hkl
|F(hkl)|2e−2π𝚤(hu+kv+lw)e−2π𝚤(hm+kn+lo). (65)

As (hm + kn + lo) is an integer number for any integer h,k, l and integer m,n,o, the
second exponential function equals one, and thus P(u′) = P(u).

If, on the other hand, the intensity distribution throughout complete reciprocal
space is taken into the Fourier transform, a generalized Patterson function results. As
the Fourier transform is now a Fourier integral rather than a Fourier series, the gener-
alized Patterson function is no longer periodic. This generalized Patterson function is
related to the pair distribution function obtained in a powder diffraction experiment
and to the 3D-PDF.

1.5 X-ray scattering is integration in time, and neutron is purely
elastic scattering

The Patterson function P(u) defined in the previous section gives the probability to
find a pair of atoms at distance u. At first sight, it may sound unusual to refer to the
Patterson function with a probability in mind. As long as we consider a perfect crystal
structure with strict periodicity, the probability to find an atom pair at distance u and
an equivalent pair at distance u′ = u + ma + nb + oc, where m,n,o are integer num-
bers, is of course the same. As soon as we allow the structure to contain (randomly
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distributed) defects, the concept of a probability to find a pair of atoms at a separation
u becomes more evident.

This concept can be extended into a consideration of the probability to find a pair
of atoms not only at a given distance, but also after some time [13]. This generalized
four-dimensional Patterson function is the autocorrelation function of the space and
time-dependent electron density:

P(u, t) = ∫∫ρ(R,T)ρ(u +R, t + T)dRdT

= ρ(r, t) ⊗ ρ(−r, −t). (66)

In the previous section, we focused on a static structure. The Patterson function
was defined as the inverse Fourier transform of the observed intensity. Accordingly,
the intensity is the Fourier transform of the Patterson function. Likewise, we can now
define the Fourier transform of the generalized time-dependent Patterson function.
This will give a generalized intensity in the four-dimensional space,

|F(S, ν)|2 = ∫∫P(u, t)e2π𝚤(Su+νt)dudt. (67)

Here S = k − ki is the usual reciprocal space vector that describes the change of the
incoming wave vector k. The frequency ν describes the change of frequency between
the incoming and scattered radiations.

The following special caseswill helpus to illustrate the concept of this generalized
Patterson function and the information that is present in a diffraction experiment.

In general, the four-dimensional Patterson function P(u, t) describes the proba-
bility to find a pair of atoms separated by a vector u after time t. At the special vector
u = 0 the generalized Patterson function describes the probability to find any atom at
the same position after time t:

P(0, t) = ∫∫ρ(R,T)ρ(R, t + T)dRdT . (68)

As in any autocorrelation function, the integration over time T serves to collect all
pairs of atoms at position u at time interval t throughout all times T . The integration
over space R serves to average over all atoms irrespective of their actual position. At
the point u = 0 the generalized Patterson function is related to the diffusion of atoms.
If the atoms do not diffuse away from their average position, then the value P(0, t) is
constant for all times larger than the vibrational period of the atoms. If atoms do un-
dergo a diffusion process, then the probability to find an atom at the identical position
decreases with increasing time interval t.

In a neutron diffraction experiment, it is possible to restrict the measured inten-
sity to the purely elastic scattering. A corresponding X-ray experiment currently re-
quires ultrahigh energy resolution, which in turn requires a long exposure time. Thus
a purely elastic X-ray scattering experiment is usually not performed for time-resolved
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experiments. Still, it is instructive for the moment to consider a purely elastic X-ray
diffraction experiment. Accordingly, we obtain the generalized intensity at no change
in frequency ν:

|F(S,0)|2 = ∫∫P(u, t)e2π𝚤(Su)dudt. (69)

As the complex exponentiation is independent of time t, we can interchange the inte-
grations and write

|F(S,0)|2 = ∫[∫P(u, t)dt]e2π𝚤(Su)du. (70)

The integration over time t gives the time-averaged Patterson function or, in other
words, the autocorrelation function of the time-averaged electron density. Recall the
relationship between the structure factor F(hk0) and the structure projected or aver-
aged along the c-axis. This is the corresponding term in time. Thus the purely elastic
scattering is related to the time-averaged electron density distribution.

At the other extreme, the measurement may include all inelastic contributions.
This is the normal case for X-ray diffraction as most X-ray detectors do not have suf-
ficient energy resolution to distinguish between purely elastically and inelastically
scattered photons. At a common X-ray energy around 12 keV, the room-temperature
phonon energy of 25meV causes a very small energy change of the scattered photon. A
very high resolution detector setup is required to detect this small energy change. This
high resolution in turn requires longmeasurement times, excluding excellent time res-
olution for time-resolved experiments. Accordingly, the measured intensity usually is
the integral over all frequencies ν:

∫|F(S, ν)|2dν = ∫∫[P(u, t)dt]e2π𝚤(Su)δ(t)dudt. (71)

In analogy to the integration over all coordinates along the c-axis to obtain F(hk0),
we now have the integration over all frequencies to obtain the generalized Patterson
function P(u,0) at time difference zero:

∫|F(S, ν)|2dν = ∫P(u,0)e2π𝚤(Su)du. (72)

This corresponds to a snapshot in time with a momentarily static structure. As the
counting time for a diffraction experiment is nonzero, the actual measured intensity
corresponds to a time average of these individual snapshots.

1.6 Averaging in time and space

In the previous section, we pointed out that the X-ray diffraction pattern corresponds
to a snapshot in time. As the exposure time typically extends over a finite time span,
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an average is performed over the various structure snapshots during this time span.
Simultaneously, an average in space is performed as well. Here we need to distinguish
two aspects of the average in space related to the coherence of the incoming X-rays
and the structural coherence of the sample.

The termcoherence length refers to the extendoverwhich the incomingX-raypho-
tons are coherent, i.e., have a fixed phase relationship. The coherence length varies
widely for different experimental setups. Along the X-ray beam path, the longitudinal
coherence length ranges from a few hundred nm for a laboratory source [14] to sev-
eral μm at a well-collimated coherent synchrotron beam line. The transverse coher-
ence length is typically roughly half as wide. With respect to the crystal structure, the
coherence length refers to the extend over which the lattice is reasonably perfect. The
structural coherence length is thus related to themosaicity of the crystal structure. The
structural coherence is thus a sample-dependent value that widely varies from a few
hundred nm of an ideal imperfect crystal [1, 15, 16] to several mm in a perfect silicon
crystal. Generally, however, it will, at least in the transverse direction, be larger than
the X-ray coherence length. Figure 8 illustrates these aspects schematically. Within
each 5 × 5 block, the structure is locally coherent, and small angle boundary disloca-
tions and other similar defects separate these blocks from each other.

With respect to diffraction, the term coherent diffraction refers to the interference
of waves with a strict phase relationship. The waves can add up constructively only if
the phase difference is an integermultiple of 2π. The total intensity is the square of the
sum of all individual amplitudes. If waves overlap incoherently, then no strict phase
relationship exists, and the total intensity is the sum of the individual intensities. In
Figure 8 the black waves are coherent with respect to each other but incoherent with
respect to the red wave group.

Figure 8: Schematic illustration of coherence
within the structure and between the X-ray pho-
tons.
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Recall that we split the equation for the structure factor, equation (17), into two parts,
the sum over all atoms in one unit cell and the sum over all unit cells. The implicit
assumption behind this separation is that the structure is structurally coherent in the
sense that we assume that all unit cells are periodically spaced and that their unit cell
contents are all equal. As the sum over all unit cells builds up the reciprocal lattice,
we can see that the structural coherence is a necessary condition for the existence of
Bragg reflections. At the same time, this separation implicitly assumes as well that
the radiation is coherent as we assume a fixed and well-defined phase relationship in
the propagating wave field. In the transverse direction, we assume identical phases
and, in the longitudinal direction, a wave that is periodic in space. Without either of
these two coherence aspects, the scattering at each individual atom would occur at
a random phase, and the interference by the individual secondary waves radiated by
each atom would produce random noise only.

The reverse conclusion is that if Bragg reflections are observed in an experiment
the coherence conditions are met sufficiently well. In a standard analysis the inten-
sity of the Bragg reflections is integrated over a finite region in reciprocal space and
assigned to a triplet of integer hkl values. Within the scope of this analysis, we auto-
matically assume that the crystal is strictly periodic in space.

In the following section on disordered structures, we deal in more detail with the
average in space, and we defer the detailed discussion to that section. For a moment,
it is sufficient to realize that as long as we can observe Bragg reflections, the crystal is
periodic in space, at least on the average. Small deviations will affect the Bragg inten-
sities only in aminor sense, similar to the effect of the thermalmotion in Section 1.3 on
theDebye–Waller factor. Under these conditions,we can describe the average electron
density at a position runit within a single average unit cell as

⟨ρ(runit)⟩ =
1
N
∫∑

R
ρ(runit +R, T)dT , (73)

where the summation is over all N unit cells. We canwrite the contribution of an atom
to the structure factor as the combination of the average atomic form factor at the av-
erage position with a local deviation: fj = ⟨f ⟩+Δfj and rj = ⟨r⟩+Δrk to obtain a general
structure factor by calculating a sum over all atoms in the structure:

⟨F(S)⟩ =
Nat

∑
j=1
(⟨f ⟩ + Δfj)e2πiS(r+Δrj). (74)

The average atomic form factor and the average position are simply the arithmetic
averages of the corresponding values. Note that at this point we have not specified
whether the average is taken as a sum over all atom positions at fixed time or as the
average over all states at a fixed position at different times or as a combination of both.
If we exclude diffusion, then the time-averaged form factor will not change with time
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at any position k but will remain identical to fj = ⟨f ⟩ + Δfj . We obtain the average form
factor only by averaging in space over all symmetrically equidistant sites in all unit
cells.

If a site in the unit cell is occupied bymore than a single-atom species, then equa-
tion (73) can be split into the outer sum over all sites in the unit cell and the inner sum
over all atom species that occupy this particular site. The average form factor at a site
k in the unit cell can then be expressed as the individual form factors for atom type j
multiplied by the probability to find an atom of type j at the site k. This probability is
usually referred to as occupancy Occj of site k by atom type j, ⟨fk⟩ = ∑j Occj ⋅ fj .

Due to thermal motion, the atom will always be displaced from the average posi-
tion, at least by a possibly very small amount as long aswe look at the structure at time
differences that are smaller than the vibrational period of the atoms. As pointed out in
the section on the Patterson function, the integration over all energies performed by
the X-ray detector corresponds to a single snapshot in timewith the structuremomen-
tarily frozen, and the X-ray intensity is the average over many such snapshots. Within
such a single snapshot, the atoms at long distances are displaced independently from
each other. At short distances, atoms tend to be displaced predominantly by acoustic
phonons and, as a consequence, tend to be displaced along similar directions and by
similar amounts. As a consequence, the interatomic distance distributions as seen by
the pair distribution function (PDF) tend to be narrower at shorter distances, as will
be discussed inmore detail in the section on the PDFmethod later in this chapter. The
average over all atom positions within such a single snapshot results in an electron
density that is “smeared” out by the probability density function that describes the
probability to find an atom at a given position.

Averaging the local position over many snapshots, we will see the atom subject to
the same probability density function. At this state, the time average becomes identi-
cal to the space average. Currently, all X-ray diffraction patterns require an exposure
time that is long compared to the vibrational periodicity of the individual atoms. The
experimentally obtained diffraction pattern will therefore consist of many individual
snapshots, which all see an individual atom at slightly different positions. Effectively,
the long exposure time averages the structure in time.

This holds in a slightly different way for any stroboscopic experiment. In such an
experiment the final exposure consists of a series of many individual short exposures
that by themselves do not yield sufficient intensity. The sum of these individual ex-
posures comprises the final data set. At first glance, this time average appears to be
identical to the time average of a single long exposure, and indeed, for any exposure
time beyond several picoseconds, it is exactly the same. During the time that it takes
for the photon to travel the lateral coherence length, the scattering at a given position
is coherent. Beyond this time, no well-defined phase relationship holds any longer.
This leads to an incoherent average in time.
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2 Disordered structures

No crystal is perfect in the strictest sense of mathematical abstraction. Trivially speak-
ing, a perfect periodic lattice is infinite in size, and thus the surface of each crystal is a
defect in itself. Even in thermodynamic equilibrium, no crystal is perfect since a – pos-
sibly very small – amount of impurities like wrong atom types or vacancies will be
present. Many types of defects can be present within the average crystal structure
[17–20]. Loosely, we can classify these defects into two classes. On the one hand, de-
fects exist thatmodify the crystal on a large scalewhile the content of neighboring unit
cells remains essentially the same. On the other hand, we have defects thatmodify the
individual unit cells but leave the overall average lattice undisturbed. These are limit-
ing cases, and defects will usually show both effects on the crystal structure. A feature
common to the presence of any defect in a crystal structure is that the strict periodicity
no longer holds. This in turn has two major effects. First of all, the strict adherence to
the 230 space groups is no longer required. Due to the lack of strict periodicity, the
crystal does not even belong to the space group P1 any longer, but has no symmetry
at all. Most disordered crystals will still have a crystal structure that is close to that
of the corresponding average structure and thus close in the local symmetry to that
of the proper space group. The second aspect is the occurrence of additional broad
diffuse scattering between the Bragg reflections. This diffuse scattering has a peak in-
tensity several orders of magnitude less than that of the Bragg reflections. For highly
disordered materials, the integral intensity of the diffuse scattering can, however, be
a significant fraction of the total scattered intensity.

2.1 Types of disordered structures

To classify disordered structures, two aspects of the disorder need to be taken into
account. The first aspect is the defect type present within the structure, and the sec-
ond aspect is the distribution of these defects throughout the crystal. The two aspects
are somewhat independent of each other. In combination with the relaxed symmetry
constraints and the already large number of crystal structure types, these two aspects
cause a very large number of observed disorder types.

The defect types that may be present in disorderedmaterials can be characterized
by their respective dimensions. The most basic defect type is point defects, which are
ever present even in almost perfect crystal structures. These point defects may be in-
dividual wrong atom types on the site of regular atoms, missing atoms at a site, or
interstitial atoms. As the individual interatomic distances between any atom pair are
slightly different, point defects are usually accompanied by a local distortion of the
neighboring atom positions. Thus point defects are not strictly zero-dimensional de-
fects but slightly extended defects. This results in a small cluster if the immediate dis-
torted environment of the point defect is also included. No sharp boundary exists to
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extended clusters of a locally slightly different structure. Such point defects are the
dominant defects in nonstoichiometric compounds like alloys. As a one-dimensional
defect, we can classify inclusion compounds with linear channels. A prominent ex-
ample is urea inclusion compounds. The urea molecules form a host structure with
infinite channels that can host linear hydrocarbon molecules with a wide variety of
chain lengths. Within a given channel, a zig-zag hydrocarbon chain can be present in
one of three possible orientations that differ by a 120° rotation. Along each channel,
the hydrocarbon molecules are placed with almost perfect periodic distance. The in-
dividual molecules are, however, not always in the same orientation. From any given
channel to a neighboring channel there is no strict order of the hydrocarbon orienta-
tion. Thus these structures exhibit good (distance) periodicity along the channel axis
and strong disorder in the plane normal to the channels. Planar two-dimensional de-
fects are common in layeredmaterials. Here an individual layer has perfect periodicity
within each layer. The stacking sequence of the layers along the third axis is subject
to disorder. Common examples are clay minerals, micas, and materials that can be
described on the basis of the closed-packed structure types. As the energy differences
between the cubic closed-packed structure and the hexagonal closed-packed struc-
ture are very small, defects are likely to occur. Finally, three-dimensional defects are
extended clusters of a (slightly) different structure within a host material.

Apart from these defect types, we need to consider their distribution throughout
the host crystal. As the simplest type of distribution, we can have a random distribu-
tion of individual defects. This distribution type is typically present if the defect con-
centration is low. Under these circumstances, the local distortions around the defect
will have subsided to sufficiently small values not to cause an interaction between the
position of one defect and another. At higher defect concentrations the local changes
of the structurewill affect the location of nearby defects, and the defectswill no longer
be distributed at random. Instead, the location of two defects will be correlated. In
contrast to the periodic structure of a perfect crystal, the resulting order of the defect
distribution is not perfect. A well defined distance relationship between defect pairs
tends to exist for short distances only.With increasing distance, this orderwill eventu-
ally die out, and defects that are separated by distances of several unit cells will bear
no distance correlation. This order is referred to as a short-range order.

2.2 Basic diffuse scattering theory

To point out the fundamental aspects of diffuse scattering,we need to extend the basic
intensity equation that was derived for the intensity of a perfect crystal structure:

I(S) =
Nat

∑
i=1

Nat

∑
j=1

fifje2πiS⋅(ri−rj). (75)
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In a disordered material, atoms i and jmay be replaced by another atom type and
may be displaced from the corresponding position in the average structure. Thus the
actual atomic form factor at positions i and j can be written as ⟨f ⟩ + Δf , where ⟨f ⟩ is
the average atomic form factor at this site, and Δf is the deviation from this average
atomic form factor at a specific position. Likewise, the position can be represented as
an average position plus a local deviation, ⟨r⟩+Δr. As the crystal is no longer periodic,
the summation needs to be carried out over all atoms of the crystal, not just the atoms
in a single unit cell. This yields

I(S) =
Nat

∑
i=1

Nat

∑
j=1
(⟨f ⟩i + Δfi)(⟨f ⟩j + Δfj)e2πiS⋅((⟨r⟩i+Δri)−(⟨r⟩j+Δrj)). (76)

This equation can be split into the individual sums by separating the average and
local deviation of the atomic form factors:

I(S) =
Nat

∑
i=1

Nat

∑
j=1
(⟨f ⟩i)(⟨f ⟩j)e2𝚤πS⋅((⟨r⟩i+Δri)−(⟨r⟩j+Δrj))

+
Nat

∑
i=1

Nat

∑
j=1
(⟨f ⟩i)(Δfj)e2𝚤πS⋅((⟨r⟩i+Δri)−(⟨r⟩j+Δrj))

+
Nat

∑
i=1

Nat

∑
j=1
(Δfi)(⟨f ⟩j)e2𝚤πS⋅((⟨r⟩i+Δri)−(⟨r⟩j+Δrj))

+
Nat

∑
i=1

Nat

∑
j=1
(Δfi)(Δfj)e2𝚤πS⋅((⟨r⟩i+Δri)−(⟨r⟩j+Δrj)). (77)

To demonstrate the effects of disorder on the diffraction pattern, we can look at
two illustrating limiting situations: pure substitutional disorder,where the atomic dis-
placements from the ideal sites are zero or at least completely uncorrelated, and pure
displacement disorder, where all deviations from the average atomic form factors are
zero. In the first case, the uncorrelated atomic displacements cause an effect equiva-
lent to the Debye–Waller factor. If, for a moment, we set the atomic displacements to
zero, we obtain

I(S) =
Nat

∑
i=1

Nat

∑
j=1
(⟨f ⟩i)(⟨f ⟩j)e2𝚤πS⋅(⟨r⟩i−⟨r⟩j)

+
Nat

∑
i=1

Nat

∑
j=1
(⟨f ⟩i)(Δfj)e2𝚤πS⋅(⟨r⟩i−⟨r⟩j)

+
Nat

∑
i=1

Nat

∑
j=1
(Δfi)(⟨f ⟩j)e2𝚤πS⋅(⟨r⟩i−⟨r⟩j)

+
Nat

∑
i=1

Nat

∑
j=1
(Δfi)(Δfj)e2𝚤πS⋅(⟨r⟩i−⟨r⟩j). (78)
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The first term describes the contribution by the pure average structure, and the terms
are identicalwithin eachunit cell. By its very definition, the average atomic form factor
is identical from unit cell to unit cell. Likewise, the average atom positions are identi-
cal within all unit cells, and we can factor out this first summation into a contribution
by a single unit cell and a lattice factor. This is exactly the formalism used to derive
the structure factor in Section 1.2. Thus this term describes the Bragg intensities. Note
that the value of the first sum does not depend on the distribution of the local devi-
ations from the average atomic form factor. The intensity of the Bragg reflections is
not affected at all by the local distributions of the specific atoms! The remaining three
sums are due to the distribution of the local deviations from the average atomic form
factor. The detailed intensity that is derived from these three sums depends on the
distribution of the local deviations from the average atomic form factors. The distribu-
tion of these defects is not periodic; otherwise, we would have a new perfect crystal
structure. As a consequence, the intensity distribution is no longer limited to theBragg
positions but is continuously distributed throughout reciprocal space. Generally, all
atomic form factors decrease in magnitude with increasing length of the reciprocal
space vector S. Correspondingly, the deviations from the average atomic form factor
also decrease. For pure substitutional disorder, the diffuse scattering tends to decrease
in intensitywith increasingdistance to the origin of reciprocal space, i.e.,with increas-
ing Bragg angle 2Θ.

In the other limiting case, we can assume pure displacement disorder. At each
given site a position is occupied by the average atom, and thus all deviations Δf are
zero. In this case, only the first term in equation (77) remains:

I(S) =
Nat

∑
i=1

Nat

∑
j=1
⟨f ⟩i⟨f ⟩je2𝚤πS⋅((⟨r⟩i+Δri)−(⟨r⟩j+Δrj))

=
Nat

∑
i=1

Nat

∑
j=1
⟨f ⟩i⟨f ⟩je2𝚤πS⋅(⟨r⟩i−⟨r⟩j)e2𝚤πS⋅(Δri−Δrj). (79)

If the individual deviations Δr from the average position are distributed throughout
the crystal structure with no correlation to each other and all deviations are isotropi-
cally oriented, thenweobtain the case of an ideal crystalwith pure randomatomic dis-
placement. The scattering consists of the Bragg reflections whose intensity is damp-
ened by a Debye–Waller term and additional diffuse scattering. The diffuse scattering
itself is isotropically distributed throughout the reciprocal space. The argument of the
last factor in this equation increases linearly with |S|. Correspondingly, this termmod-
ifies the intensity more and more with increasing distance from the reciprocal origin.
Generally speaking, the pure displacement diffuse scattering tends to increase with
increasing distance from the reciprocal origin. In the cases where the atomic displace-
ments are parallel to each other, a systematic extinction of the diffuse scattering can
be observed in those sections of reciprocal spacewhere the scalar product S ⋅ (Δri −Δrj)
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is zero, i.e., where the reciprocal vector is normal to the displacements. This extinc-
tion rule is used, for example, to distinguish longitudinal and transverse displacement
waves.

These two cases are usually not really present in their pure form in a crystal struc-
ture. In case of substitutional disorder, the replacement of one atom by another at a
given site in the unit cell is accompanied by at least small positional deviations as the
individual atomic radiiwill differ. Likewise, displacements of atoms from their average
site position are often accompanied and influenced by local changes in the composi-
tion. To treat these general cases, the exponent in equation (75) is usually separated
into terms equivalent to equation (79):

I(S) =
Nat

∑
i=1

Nat

∑
j=1
(⟨f ⟩i + Δfi)(⟨f ⟩j + Δfj)e2𝚤πS⋅((⟨r⟩i+Δri)−(⟨r⟩j+Δrj))

=
Nat

∑
i=1

Nat

∑
j=1
(⟨f ⟩i + Δfi)(⟨f ⟩j + Δfj)e2𝚤πS⋅(⟨r⟩i−⟨r⟩j)e2𝚤πS⋅(Δri−Δrj). (80)

In the next step the last factor can be approximated by a power series:

I(S) =
Nat

∑
i=1

Nat

∑
j=1
(⟨f ⟩i + Δfi)(⟨f ⟩j + Δfj)e2𝚤πS⋅(⟨r⟩i−⟨r⟩j)

⋅ [1 + 2𝚤πS ⋅ (Δri − Δrj) −
1
2
(2πS ⋅ (Δri − Δrj))

2

− 1
6
𝚤(2πS ⋅ (Δri − Δrj))

3 +⋯]. (81)

This equation contains both the Bragg reflections and the diffuse scattering. If the
terms with the form factors are separated again into average parts and local devia-
tions, then we can split off the Bragg reflections from this equation. In the remaining
expressions, the four terms in the square brackets describe parts of the diffuse scatter-
ing, each depending on a different power of displacement. The first term is indepen-
dent of the displacements and describes the effects of substitutional disorder, usually
referred to as chemical short-range order (SRO). The second term with linear depen-
dence on the displacements is commonly known as the size effect. The third termwith
square dependency is referred to as Huang scattering and thermal diffuse scattering.

The terms with even powers of the displacement cause diffuse scattering that is
symmetric around the Bragg reflections, whereas those with odd powers cause an-
tisymmetric diffuse scattering. Careful analysis of the diffuse scattering distribution
allows us to assess the character of the main disorder contributions. This analysis in
the reciprocal space tremendously helps to build an initial disorder model.

Both Huang and thermal diffuse scatterings are caused by the distortions due to
long-range part of the displacement field around a given defect [21]. Huang scattering
refers to the pure static displacement fields caused by substitutional disorder when
different ionic radii are involved or extended clusters distort their environment.
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To gain insight into the different types of diffuse scattering and their relationship
with the defects, we can describe the crystal as the sum of the average structure plus
a sum over all defect types, each of these convoluted with the corresponding distribu-
tion:

ρ(r) = ⟨ρ(r)⟩ + ∑
types

ρdefect,type(r) ⊗Distrtype(r). (82)

The diffraction pattern is the Fourier transform of this electron density, and we obtain

F(S) = Fhkl(S) + ∑
types

Fourier[ρdefect, type(r)] ⋅ Fourier[Distrtype(r)]. (83)

The first term is the group of all Bragg reflections, and the second comprises all of the
diffuse scattering. Lets analyze a few basic defect and distribution types.

If the defects are point defects or very small clusters, their Fourier transform is
constant or at least varies very slowly throughout the reciprocal space with nonzero
values essentially all over the reciprocal space. Next, let us assume linear defects like
guest molecules in a 1D channel of the host structure. Without loss of generality, we
can place the linear axis of the object parallel to the c-axis through the origin of the
space. For a strictly one-dimensional guest molecule, all x and y coordinates are zero,
and the structure factor of such an object is

F(S) =
N
∑
j=1

fje2π𝚤(h0+k0+lz) =
N
∑
j=1

fje2π𝚤lz . (84)

This structure factor is independent of both h and k. Apart from the form factor
dependency, the structure factor is identical for all h and k. If the molecules are ar-
ranged periodically with repeat distance Δz along the c-axis, then the structure factor
is limited to l values where lΔz is integer. In combination with the constant values
for all h and l, this gives a set of equidistant planes in reciprocal space. The distance
between these planes need not be a simple multiple of the c∗ length of the host crys-
tal.

Next, let us consider planar defects, where we can write the structure factor as

F(S) =
N
∑
j=1

fje2π𝚤(hx+ky+l0) =
N
∑
j=1

fje2π𝚤(hx+kl). (85)

This yields constant F(S) values along c∗. The most common planar defect con-
sists of stacks of layers that are perfectly periodic within the ab-plane. This periodicity
limits the structure factor to integer values of h and k, and the structure factor consists
of lines of constant intensity parallel to c∗ through integer positions of h and k. As c∗

is normal to a and b, the diffuse scattering is limited to a line normal to the individual
planes.

 EBSCOhost - printed on 2/13/2023 8:46 PM via . All use subject to https://www.ebsco.com/terms-of-use



48 | R.B. Neder

Finally, we consider extended three-dimensional defects like extended domains
or exsolutions of a secondary phase. Their scattering is best described like that of an
individual crystal with very limited dimensions.We can formally describe such an ob-
ject as an infinite object multiplied in direct space by a shape function. Accordingly,
the structure factor of such a defect is limited to the points of the respective recip-
rocal lattice. The peaks are widened due to the convolution with the Fourier trans-
form of the shape function. Still, they are limited to small regions in the reciprocal
space.

Similar arguments can now be developed for the distribution of the defects in
the direct space. First, let us consider a random distribution of defects. This distri-
bution can be described as a sum of origins of the respective defect with arbitrary
positions:

Distrtype(r) =
N
∑
j=1

δ(r − rj). (86)

The Fourier transform of a delta distribution at position rj is a complex number with
unit modulus and phase defined by the scalar product of vectors S and r. Thus the
Fourier transform of the distributions of origins is

Fourier(Distrtype(r)) =
N
∑
j=1

e2π𝚤(Srj). (87)

With a random distribution of the positions the sum is a random complex number.
Thus the Fourier transform of the randomly distributed defect origins gives a homo-
geneously distributed noise in reciprocal space.

If the defects are correlated along a single direction in direct space and are com-
pletely uncorrelated along the other two directions, then we have a strictly one-
dimensional distribution of defect origins along this one unique direction. We can
place the line of one of these distributions into the origin of the direct space, and we
have

Distrtype(z) =
N
∑
j=1

δ(z − zj). (88)

As all x and y coordinates are zero, the Fourier transform of this distribution is

Fourier(Distrtype(z)) =
N
∑
j=1

e2π𝚤(lzj). (89)

Thus the Fourier transform is independent of h and k and thus constant within the
a∗b∗ plane of the reciprocal space. The random distribution of such one-dimensional
defect distributionswithin the a–b plane of the direct space only introduces a random
phase similar to the completely random defect distribution. Along c∗ the structure
factor depends on the specific distribution.
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3 Pair distribution function

3.1 Theory

The data analysis of disorderedmaterials that exist only as polycrystallinematerials is
hampered by the projection of all of reciprocal space into the one-dimensional powder
pattern. This implies a loss of information as all vectors of identical length in recip-
rocal space fall onto a single data point in the powder pattern. The smooth diffuse
scattering becomes evenmore featureless upon this projection. Thus themodulations
that can be observed in the powder diffraction pattern can usually not be associated
with a single diffuse feature. An interpretation is not straightforward and therefore
requires the test of several disorder models.

Fortunately, the pair distribution function (PDF) technique exists that allows a
muchmore straightforward interpretation and initial model building [22]. Essentially,
the PDF is a histogram of all interatomic distances that can be derived by the Fourier
transform of the properly corrected observed intensities. As such, it resembles the Pat-
terson function used in single-crystal structure determination techniques, and its in-
formation content is similar. The important difference lies in the input that goes into
the respective Fourier transforms. The Patterson function is based on the intensities
of the integrated Bragg reflections only. Thus its Fourier coefficients are at the integer
grid points of the reciprocal lattice. As a consequence, the Patterson function has the
same translational periodicity of the crystal structure and does not yield information
on disorder beyond the limited information within the Bragg reflections. The PDF in
both its variants, the more commonly used powder PDF [22] and the single crystal or
3D PDF [23], uses all of reciprocal space as input into the Fourier transform. For this
reason, the PDF is also referred to as total scattering since the total diffraction pat-
tern, consisting of Bragg reflections and diffuse scattering, is used. Since the contin-
uous data points underneath the Bragg reflections are used in the Fourier transform
as well, the resulting function in direct space is no longer periodic. As such, it con-
tains information on both the average periodic structure and the local deviations that
reflect the disordered part of the structure.

After proper background subtraction, correction for absorption, inelastic thermal
scattering, Compton scattering, and normalization, the experimental intensity I(Q) is
changed to yield a normalized scattering function S(Q). Despite the name scattering
function, we should keep in mind that this is still a pattern related to the intensity,
rather than the crystallographic structure factor. The latter contains information on
theamplitudeandphaseof the scatteredwave,whereasboth the intensity I(Q) and the
normalized scattering function S(Q) contain information on the amplitude only. The
experimental reduced pair distribution function is calculated through a sine Fourier
transform according to

G(r) = 2
π
∫
Qmax

Qmin

Q[S(Q) − 1] sin(Qr)dQ. (90)
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The result of this Fourier transform is a diagram in direct space. It consists of peaks at
positions r that correspond to interatomic distances. To illustrate this, we can derive a
qualitative picture of the PDF by following the steps from the diffraction process back
to the PDF. The structure factor F(h) is the Fourier transform of the scattering density,
i.e., the electron density if we focus on X-ray diffraction:

F(S) = Fourier(ρ(r)). (91)

As the next step, the intensity measured in a diffraction experiment is propor-
tional to the structure factor squared:

I(S) = |F(S)|2 = F(S) ⋅ F∗(S). (92)

Next, we perform the inverse Fourier transform of the intensity and use the multi-
plication theorem, which states that the Fourier transform of a product is equal to the
convolution of the Fourier transform of the individual factors:

Fourier[I(S)] = Fourier[F(S)] ⊗ Fourier[F∗(S)], (93)

where ⊗ denotes the convolution of two terms. The Fourier transform of the structure
factor is, of course, the original scattering density. The Fourier transform of the con-
jugate complex structure factor gives the conjugate complex scattering density at −r,
and we obtain

Fourier[I(S)] = ρ(r) ⊗ ρ∗(−r) = ρ(r) ⊗ ρ(−r). (94)

For the last equality, we have used the fact that the scattering function is a real-valued
function. For any such function, the conjugate complex value is identical to the origi-
nal value. This last result shows that theFourier transformof the intensity is the convo-
lution of the scattering density with the scattering density inverted at the origin. This
convolution corresponds to the so-called autocorrelation function,which has peaks at
distances r that separate positions in the scattering function with high values. These
distances are the interatomic distances within the structure. Compare this develop-
ment to the Patterson function derived in the initial section.

Note that in this qualitative derivation we did not rely on any assumptions on the
internal order of the structure for which the structure factor and the intensitywere cal-
culated, or obtained from a diffraction experiment. Thus we can expect that the PDF
yields information on the interatomic distances in any kind of structure, crystalline,
disordered, amorphous, liquid, or even gaseous. This was actually the driving force
behind the original PDF developments [24].

As G(r) is calculated via the Fourier transform of the experimental data, it is in-
fluenced by two experimental conditions that need be considered in the choice of the
appropriate experimental setup. The first aspect is the value of Qmax in equation (90).
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Compared to an idealized G(r) where Qmax is infinity, the effect of a finite Qmax can be
described as a multiplication of the powder pattern to infinite Qmax by a box function
with value 1 for Q < Qmax and zero for Q > Qmax. The Fourier transform of this multi-
plication leads to the convolution of the experimental G(r) by the Fourier transform
of the box function:

G(r) = Fourier[I∞(Q) ⋅ Box(Qmax)] = G∞(r) ⊗ Fourier[Box(Qmax)]. (95)

The Fourier transform of the box function is a sinc function:

Fourier[Box(Qmax)] =
sin(Qmaxr)
Qmaxr

. (96)

The effect of this convolution of the idealized G(r)with the sinc function is a widening
of the G(r) peaks with decreasing Qmax. Theminimum Qmax value that should be used
is approximately 20Å−1. Smaller values of Qmax lead to rather wide PDF peaks and
thus to considerable peak overlap.

The second experimental aspect to consider is the instrumental angular resolu-
tion. It is sufficient to simplify the experimental conditions a little bit by assuming that
the resolution function is constant over the entire 2Θ region.We can then describe the
effect of the instrumental resolution as a convolution of an idealized powder pattern.
The Fourier transform of this convolution turns it into a regular multiplication:

G(r) = Fourier[Iideal(Q) ⊗ Res(Q)] = Gideal(r) ⋅ Fourier[Res(Q)]. (97)

Under the assumption that the resolution function can be described by a Gaus-
sian function with width σ, its Fourier transform is again a Gaussian with width 1/σ.
Thus the effect of a relaxed angular resolution is a dampening of the experimentalG(r)
at increasing r. If the focus is placed on the very local order within the first tens of Å,
then the instrumental resolution can be relaxed considerably in favor of increased in-
tensity, which helps to improve the achievable time resolution. If, on the other hand,
the focus is placed on the interpretation of extended domain structures at several tens
to some 100Å, then the instrumental resolution must be optimized at a loss of in-
tensity. Modern high resolution synchrotron powder beam lines typically offer a min-
imum wavelength around 0.3Å, which is sufficiently short to achieve a good value
of Qmax.

The calculated reduced pair distribution function can readily be calculated from
a structural model according to

G(r) = 1
Nr

N
∑
i=1

N
∑
j=1

fifj
⟨f ⟩2

δ(r − rij) − 4πρ0r. (98)

Here N is the number of atoms in the structure model, rij is the distance between
atoms i and j, and ρ0 is the number density, i.e., the number of atoms per unit vol-
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ume. The atomic form factors are commonly approximated by their values at a fixed
Q-value, often either at Q = 0 or at a Q-value approximately equal to Qmax/2. As the
Q-dependence of the atomic form factor is not too different for different atom types,
the actual value of Q at which the atomic form factor is calculated is not very critical,
since a similar Q-dependence is present in the nominator and denominator.

This equation corresponds to a static structure with all atoms at rest, and thus it
represents a snapshot in time. As long as the experiment corresponds to a time av-
erage, the displacements of the atoms from their average position need be modeled
properly. Two different techniques can be applied to model the atomic distributions.
If the structure model consists of a large number of atoms, then each atom can be dis-
placed from its ideal position. The displacement distributionmust be chosen tomatch
the expected occupational probability density function. To model (an)isotropic ther-
mal vibrations, a Gaussian distribution is adequate. Similar probability density distri-
butions may be chosen to describe anharmonic displacements or static displacement
within a disordered structure. As an effect of such a displacement, the distance distri-
butions between atoms are widened. If the model consists of several thousand atoms,
then the calculated PDF is a smoothly varying function.

For smaller models that consist of a few atoms or a few hundred atoms, an alter-
native approximation is commonly used. The initial calculated PDF of equation (98)
is convoluted with a Gaussian distribution D(r) = 1

√2πσ e
− r2

2σ2 , which also effectively
widens the peaks of the calculated PDF. As the PDF in equation (98) corresponds to
the projection of all interatomic distance vectors into the one-dimensional space, it
is not straightforward to describe an anisotropic displacement. At distances beyond
approximately 2 nm, this model proves to be a very good approximation for thermal
and random static displacements. Any two atoms are displaced independently from
each other, and the σ of the Gaussian distribution corresponds to the sum of the two
isotropic displacement parameters ui . At shorter distances, this model neglects corre-
lated displacement of neighboring atoms. As a good deal of the atomic displacements
from the average position is due to acoustic phonons, atoms at close distances tend
to be displaced at any given moment in time into a similar direction. Time averag-
ing these correlated displacements result in approximately the same distance as if the
atoms were at rest. As a consequence, the peaks in a PDF have a width that increases
as a function of interatomic distance r. The effect is described either by a 1/r or by a
1/r2 dependence that needs be subtracted from the width at long distances:

σ(r) = σ − clin
r
; σ(r) = σ −

cquad
r2
. (99)

Here clin and cquad are two sample-dependent parameters [22]. In the futurewith XFEL
sources, a single exposure of a very small sample volume in a time frame of ps may
become available.
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3.2 Experiments

Fundamentally, a diffraction experiment for a powder PDF does not differ from a stan-
dard powder diffraction experiment. As pointed out in the previous section, a crucial
requirement for a good PDF is a high value of Q = 4π sin(Θ)/λ. With Cu Kα radiation,
a maximum value of Q = 8Å−1 can be achieved, which is not sufficient for a well-
resolved PDF. Starting with Mo Kα and Qmax = 17Å

−1, reasonable values are achieved.
Predominantly, however, synchrotron radiation from specialized high-energy X-ray
beam lines is used. At the moment, these are 11-ID-B at the APS, ID15 and ID31 at the
ESRF, and in the near future beam lines at PETRA, DIAMOND, and NSLS II. Future
beam lines can be expected to follow as the number of PDF based experiments is in-
creasing rapidly. These beam lines provide a very intense beam, typicallywith primary
beam energies near 60 or 90 keV, which correspond to wavelengths of approximately
0.2 or 0.14Å, respectively. At these shortwavelengths amaximumvalue ofQmax = 20 to
40Å−1 is readily achieved. At the same time, these beam lines provide sufficient flux to
perform a good PDFmeasurement within a second. Several of the existing beam lines
will be upgraded, and themeasurement time can be expected to drop down to a range
close to 0.1 s. Although this is a very long time compared to the timescale of chemical
reactions, stroboscopic experiments will give access to time-resolved experiments in
the near future.

To achieve these Qmax and time-scale values, the typical setup follows the design
reported by Chupas et al. [25]. The primary beam impinges onto a capillary or flat sam-
ple in transmission mode. Without further collimation, the diffracted beams are de-
tected by a large and fast area detector. Currently, these aremostly detectors originally
developed for medical applications and use amorphous silicon as a primary detector
material. As the absorption of high energy X-rays by silicon is actually low, new detec-
tor designs are starting to be available that use Ge or CdTe as a primary absorber. As
the detection efficiency increases considerably, the minimum detection time can be
reduced accordingly. These detector types allow a repetition rate of up to kHz, at least
for a few seconds.

The available detectors offer an area of approximately 40 × 40cm2. If the primary
beam is placed onto the center of the detector, then the largest diffraction angle at the
side point of the detector is

2Θmax = tan−1(
W
2D
), (100)

whereW is the full width of the detector, and D is the sample to detector distance. At a
width of 40 cm and a sample to detector distance of 20 cm this gives 2Θmax = 45°. Up to
this point, all powder rings are complete, which gives the optimum measured inten-
sity. As 2Θ is increased, the powder rings are partially outside the active detector area,
reducing the initially measured intensity. This reduction is easily corrected, however,
the signal-to-noise ratio increases as less and less of the powder ring is recorded.
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At the corner of the detector the maximum diffraction angle is

2Θmax = tan−1(
W
√2 ⋅D
) (101)

with 2Θmax = 54° for the width and distances as given in the previous example.
A further increase of 2Θmax can be achieved if the detector is placed asymmetri-

cally behind the primary beam.At the utmost extreme, the detector can be placed such
that the primary beam is close to one corner, which gives the maximum 2Θ angle in
the opposite corner as

2Θmax = tan−1(
√2W
D
) (102)

with 2Θmax = 70°.With the typical wavelengths of 0.2 Å and 0.1 Å, the different settings
yield maximum Q values of 36Å−1 and 72Å−1, respectively (Table 4).

Table 4:Maximum Qmax values for different experimental configurations.

Primary beam position 2Θmax Qmax [Å
−1] for λ = 0.2Å Qmax [Å

−1] for λ = 0.1Å

center 45° at the edge 24 48
corner 54° at the corners 28 57
corner 70° at opposite corner 36 72

The table shows that a largeQmax value is readily achieved even if only the central part
of the detector up to the edges is used. A measurement that fully uses the large Qmax
values, of course, requires longer counting times as the elastically scattered intensity
decreases with increasing Qmax whereas the inelastic contribution (mostly Compton
scattering) increases.

As pointed out in the theory section, the value of Qmax partially determines the
width of the PDF peaks. For room temperature measurements, the thermal motion
of atoms add a substantial contribution to the PDF peak widths. A Qmax in excess of
30Å−1 will not significantly reduce the peak width any longer as it is now dominated
by thermal motion. Thus, for most applications, a Qmax value of 20 to 25Å−1 gives a
good compromise between the opposing requirements to reduce the PDF peak width
and to decrease counting times.

As the general setup for a PDF experiment is simple, a few constraints exist to
set up additional sample environment options. These options include cooling and
heating devices, as well as more complex sample environments. The latter were, for
example, used to study nanoparticle synthesis [26–28] and the interaction between
nanoparticles and the surrounding fluid [29].
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3.3 Data treatment
Several steps are needed to transform the initial 2D area detector signal into the ex-
perimental PDF. These steps include:
(1) radial integration
(2) background subtraction
(3) corrections for Compton scattering and further experimental features
(4) the actual Fourier transform

The initial data treatment requires to integrate the 2D diffraction data into a one-
dimensional conventional powder diffraction pattern. Several routines are available
that perform this task more or less automatically (Refs. [30, 31]). A main step that the
user has to be aware of and that requires careful handling is the treatment of detector
defects. Any 2D are detector will have several pixels that systematically miscount the
intensity, and these pixels will have to be masked out prior to integration. Otherwise,
erroneous intensities in the diffraction pattern will result, particularly if the defect
consists of an extended line of defect pixels.

The background in an experiment intended to obtain the PDF will not differ from
the background in any other powder diffraction experiment. For a classical analysis
of a powder diffraction experiment in reciprocal space like a Rietveld refinement, the
background can be treated as a polynomial that is fitted to the data in addition to the
Bragg intensities. For a PDF analysis, the whole diffraction pattern will eventually un-
dergo the Fourier transform. The data will include the very high Q-region. In this part
of the diffraction pattern, all Bragg reflections will have diminished in peak intensity
and have broadened to overlap almost completely. Therefore, the background can no
longer be identifiedwith any certainty. Instead, the background has to bemeasured in
a separate experiment. Care has to be taken to ensure that the background intensity is
measured with sufficient counting time to avoid any statistical noise at high Q-values.

The further treatment is most commonly performed in a semiempirical matter
within the software package PDFgetX3. This software allows the user to tune the sam-
ple composition, the background scale factor, and an empirical polynomial. The sam-
ple composition is used to calculate and subtract the Compton scattering and should
ideally be obtained in a separate analysis. Likewise, the background scale should cor-
respond to the counting time ratios. If the sample absorption cannot be neglected, but
is not known exactly, we can tune the background scale factor slightly to account for
the reduced scattering by the part of the sample holder that is partly shielded by the
sample.

3.4 Analysis and refinement
The exact analysis of an experimental PDF, of course, depends on the actual sample
at hand and the information we seek to obtain about the sample. The PDF technique
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is most useful for samples that are disordered or even amorphous. Well crystalline
materials that exhibit sharp Bragg peaks and little or no diffuse scattering are more
easily analyzed in reciprocal space with Rietveld methods. Especially, if very good
time resolution requirements are crucial, then a powder pattern for Rietveld analy-
sis can bemeasured in much less time than a pattern for proper PDF analysis. For this
analysis, the limiting factor for the time resolution is really still the detector read out
time.

Thus themain emphasis in this section is placed on strategies to unravel the local
order at a scale of a few nm. For truly amorphous samples like glasses or liquids, no
structural correlation exists in atom positions beyond the first few neighbor shells.

Three different approaches have become very popular. The first approach is es-
sentially a transfer of the Rietveld method into direct space, whereas the second and
third approaches attempt to model larger sections of a structure or whole nanoparti-
cles.

In the first approach, the sample is modeled as a single unit cell or as a block of
a fewunit cells. Extended distances are calculatedwith periodic boundary conditions.
The approach allows us to refine atom coordinates, atomic displacement parameters,
and occupancies with a standard least-squares algorithm. Thus the algorithm is very
fast and well suited to follow structural changes in time-resolved experiments. As the
structure is modeled as a single unit cell or a few unit cells, the capability of this ap-
proach to model extended disorder is limited. As periodic boundary conditions are
used to derive the PDF peaks at distances beyond the diameter D of the initial box,
the structure effectively is periodic beyond this diameter. Any defect to be analyzed
has to fit inside a radius that corresponds to half the box diameter. Longer distances r
correspond to the same atom pair at D − r in the opposite direction. Despite this lim-
itation, the method has been used very successfully to analyze changes in the local
order beyond the box diameter. To achieve this effect, the refinement is limited to a
finite distance range from rmin to rmax. If the sample at hand consists, for example,
of small domains, then a refinement limited to short distances reflects the structure
within a single domain, whereas a refinement restricted to longer distances reflects
the average crystal structure.

In the second approach, the sample is modeled as a large box that consists of
several thousand to ten thousand atoms. Periodic boundary conditions are applied
beyond this large box. The so-called reverse Monte Carlo algorithm is used to mod-
ify the structure to achieve a good agreement between experimental and calculated
PDFs. Small random modifications of the initial structure such as individual shifts or
an exchange of two atoms are applied. If such a modification results in an improved
agreement, then themodification is accepted. Otherwise, themodificationmay still be
accepted, but the probability to accept such a badmodification decreaseswith a Boltz-
mandistribution probability. Thus by accepting somebadmodifications the algorithm
maintains the ability to jump out of a local energy minimum. Under ideal conditions,
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the structure can be an arbitrary guess, and we do not have to know anything be-
yond the average chemical composition. An educated guess, of course, tremendously
speeds up the convergence. Once the algorithm has converged to a good agreement
between the observed and calculated PDFs, the structure needs to be analyzed with
respect to the defects and the local ordering scheme that has evolved. This algorithm
is particularly well suited for highly disordered materials such as glasses or liquids.

The third approach uses tools to expand an initial unit cell to a large block and
to introduce defects and disorder into this block of atoms. Periodic boundary condi-
tions may be applied, but the algorithm allows us equally well to calculate the diffrac-
tion pattern or PDF from a finite set of atoms. This enables the algorithm to model in-
herently nonperiodic objects like decorated nanoparticles. In contrast to the reverse
Monte Carlo algorithm, a reasonably good estimate of the defect structure must be
developed prior to the refinement.

3.5 3D PDF

As the powder PDF is based on a powder diffraction experiment, it inherits all the
advantages and disadvantages of a powder diffraction experiment, especially with re-
spect to time-resolved data collection. The main advantage is the comparatively short
exposure time required and the ease to add extended experimental setups for the con-
trol of external conditions like temperature, pressure, and electric andmagnetic fields.
The main disadvantage is the projection of the original three-dimensional recipro-
cal space into a one-dimensional diffraction pattern. All points in reciprocal space
at identical modulus of the scattering vector S end up at the same point in the pow-
der diffraction experiment. All information on the relative orientation of the reciprocal
space vectors is lost. As a consequence, it becomes muchmore difficult to analyze dif-
fuse scattering in a powder diffraction experiment. The analysis of diffuse scattering
from a single crystal retains the full information on the orientation of the diffuse scat-
teringwithin three-dimensional reciprocal space. Themain disadvantagewith respect
to time-resolvedmeasurements is the long counting time,which even at a synchrotron
source is in the range of an hour.

As an alternative approach to the powder PDF technique, the 3D PDF and partic-
ularly the 3D Δ-PDF have been developed. This 3D-PDF is calculated from the experi-
mental intensity data via the Fourier transform as well. In contrast to the powder PDF,
the intensity data are those of a single crystal experiment that include both the Bragg
reflections and the diffuse intensity. A complete three-dimensional volume of recipro-
cal space is needed for the Fourier transform. In this respect the 3D-PDF corresponds
closely to the classical Patterson function analysis. As pointed out in the section on the
PDF, the Patterson function is a periodic function in direct space. If the total scatter-
ing is used to calculate the Fourier transform, then the resulting generalized Patterson
function in 3D, i.e., the 3D-PDF is no longer periodic.
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3.6 Nanoparticle example ZnSe

In this section, we illustrate the PDF technique using ZnSe as an example (from [32]
and [33]). Figures 9 and 10 show an overview of the full experimental PDF of nanocrys-
talline ZnSe together with that of crystalline ZnSe measured under identical condi-
tions. The PDF peaks for the nanocrystalline ZnSe are insignificantly small starting

Figure 9: Experimental PDF of nanocrystalline (blue) and crystalline (red) ZnSe. The data were col-
lected at beam line BW5, DESY at 15 K using a wavelength of 0.01 nm. Modified after Neder [33].

Figure 10: Experimental PDF of nanocrystalline and crystalline ZnSe. Interatomic distance peaks in
the first 1 nm. For both samples the peak width increases with increasing distance r. For the crys-
talline ZnSe it reaches an asymptotic value at low r, whereas the peaks for the nanocrystalline sam-
ple become broader over a wider r range. Modified after Neder [33].
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around 3.5 nm, whereas those for the crystalline ZnSe extend well beyond 6nm. This
difference points to a diameter of approximately 3.5 nm for the nanocrystalline sam-
ple. This diameter agrees with the particle size determined from the powder pattern
via the Scherrer equation [1] or from profile analysis (see the contributions by Le Bail
andScardi [34] and references therein). As thePDF is obtained from thediffractionpat-
tern, its information content is identical to that of the diffraction pattern in reciprocal
space. This holds for the diameter as well, which, strictly speaking, is the diameter
of a structurally coherent domain within the sample. Other techniques such as small
angle scattering or transmission electron microscopy (TEM) may observe a different
diameter. If the sample consists of individual crystallites whose physical diameter is
identical to the coherence length, then all techniques give the samediameter. If, on the
other hand, several structurally coherent domains are irregularly intergrown, then the
size of the object, as observed in the diffraction pattern or the PDF, does not change,
whereas the diameter calculated from the small angle scattering signal indicates a
larger size. In the study on ZnSe the TEM data agree with the 3.5 nm size as observed
in the powder pattern and the PDF. Bulk ZnSe crystallizes in the zincblende structure
(space group F43m).

The calculated PDF in Figure 11 is based on an ideal 3.5-nm spherical ZnSe particle
with the zincblende structure. The overall agreement confirms the structural model.
Significant differences indicate that themodel is far fromperfect. Thenearest neighbor
peak is not reproduced well, nor are the significant peaks in the experimental PDF
around 2.4 nm.

Under favorable situations, the very local structure of the nanoparticles can be
deduced from the PDF data. From Figure 10 we can see that the first two interatomic

Figure 11: Result of the fit of a spherical ZnSe nanoparticle with perfect zincblende structure to the
experimental data. The calculated PDF is in black, the difference curve has been offset for clarity.
Modified after Neder [33].
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distances in ZnSe are at 0.2439 and 0.3991 nm. With the exception of data collected
with anomalous scattering, the PDF determined from an X-ray pattern does not reveal
right away with which particular atom pairs a given distance distributions can be as-
sociated. Since we have a chemically simple ZnSe compound, chemical experience
indicates though that the shortest distance is a Zn–Se bond and that the second dis-
tance corresponds to a distance within the coordination shell of the central atom. Fig-
ure 10 includes a schematic layout of the first distances in such a binary compound.
Within this triangle, all bond distances are known. The resulting bond angle in the
central atom is easily calculated to be 109.80°, and this value is in very good agree-
ment with the ideal tetrahedral bond angle of 109.47°. It is reasonable to conclude that
the local structure is tetrahedrally coordinated. As the next two distances are alsowell
resolved, their distances at 0.4660 and 0.5640nm can be used to deduce even more
about the structure.We canwrite these distances as 0.4660nm = 0.2439nm√11/3 and
0.5640nm = 0.2439nm√16/3. The multiples of √1/3 are typical for a cubic structure,
here with lattice parameter 0.5640nm. Longer distances can be interpreted likewise.
The general principle can, however, be applied to more complex crystal structures as
well; see Refs. [35–37].

Figure 12 shows the intermediate distance range for both samples. For this partic-
ular sample, all peaks in the nanoparticle PDF are shifted to slightly shorter distances
compared to that of the bulk structure. This is a straight indication that the interatomic
distances of this particular nanocrystalline ZnSe are shortened by a factor of 0.9955.
To interpret these subtle differences, the experimental conditions for the two samples
had to be exactly the same. This includes the primary wavelength, sample to detector
distance, and sample temperature. To derive a more complete structural model, let

Figure 12: Intermediate distance range. Note the peak width differences in the range 2.0 to 2.2 nm.
Modified after Neder [33].
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us focus on the different peak widths. The peaks located at 2.0 and at 2.2 nm have al-
most identical width for both, the nanoparticle and the bulk structure. In contrast, the
peaks at distances of approximately 2.1 and 2.3 nmaremuchwider for thenanoparticle
compared to those of the crystalline sample. At first glance, this appears to be a con-
tradictory result. For the nanocrystalline sample, the distance between atom pairs is
well defined for pairs separated by both 2.0 and 2.2 nm. The distance at 2.1 nm, which
is in between these first two distances, is not well defined at all. We can resolve this
contradiction with a proper defect model. The distances in the PDF obtained from a
powder diffraction pattern correspond to the projection of all interatomic distances
into one dimension. Interatomic vectors of similar distances but very different direc-
tion produce peaks at a similar position in the PDF space. Correspondingly, we can
resolve the contradiction by assuming that the observed distances are due to inter-
atomic vectors that point into different directions. TEM images of the nanocrystalline
sample did not indicate any dislocations and associated strain field. The best model
for this sample turned out to be that consisting of a disordered nanocrystalline sample
with stacking faults between local Wurtzite–Zincblende-type structures. As the TEM
images indicated an ellipsoidal shape, the spherical shape can be replaced by an el-
lipsoidwith rotational symmetry around the hexagonal c-axis. This symmetry fitswell
to the local symmetry of the individual layers stacked along the hexagonal c-axis.

The first interatomic distance peak at 0.2439 nm for the samples is significantly
narrower than all the following peaks; see Figure 10. This effect is due to a corre-
latedmotion of the atoms. Immediate neighbors tend to vibrate in the same direction,
whereas atoms at longer distance vibrate completely independently. Thus the time av-
erage at these short distances gives a different result compared to the average at longer
distances. If all atoms were to vibrate independently from each other, the width of the
interatomic distance distribution would be independent of the interatomic distance r.
Its widthwould correspond to the convolution of the two probability density functions
that describe the time-averaged position of the individual atoms. To correct for the cor-
related motion, the PDF algorithm allows for a distance-dependent correction of the
width.

The final model consists of an ellipsoidally shaped particle with rotational sym-
metry around the c-axis. The final fit is shown in Figure 13, refined parameters are
listed in Table 5. The fit is of excellent quality, especially in the distance range above
2 nm, where all features are reproduced. The refined lattice parameters are slightly
smaller than the corresponding parameters for crystalline ZnSe at the identical tem-
perature. This is in accordance with the observation that the PDF peaks are shifted to
slightly smaller distances. The stacking fault parameter indicates that on average the
nanoparticle structure is predominantly a zincblende type, and a perfect zincblende
structure can be described by a stacking fault parameter of one. The 30% stacking
fault probability is extremely high compared to bulk materials. This value indicates
that, for such a very small object, the energy differences between the Zincblende and
Wurtzite structure are not significant enough to drive the nanoparticle fully into the
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Figure 13: Final result of the refinement of an ellipsoidal model with stacking faults. Modified after
Neder [33].

Table 5: Refined ZnSe nanoparticle parameters.

Parameter Refined value

a-lattice parameter 0.3987 nm
c-lattice parameter 0.6492 nm
z (Zn) 0.3688
ADP 0.0083
Stacking fault probability 0.71
Diameter in a–b plane 2.9 nm
Diameter along [001] 3.9 nm

Zincblende type. Surface effects of the decoration by ligand molecules are the likely
reason. The ellipticity agrees well with the TEM images for nanoparticles.

Appendix A. Properties of a Fourier transform

The Fourier transform of a function f (r) is defined as

F(S) = ∫
∞

−∞
f (r)e2π𝚤Srdr. (103)

The inverse Fourier transform is defined as

f (r) = ∫
∞

−∞
F(S)e−2π𝚤SrdS. (104)
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This simple relationship between the Fourier transform and its inverse holds if the
exponent iswrittenwith explicit factor 2π. If the factor 2π is combinedwith the Fourier
space variable S asQ = 2πS, then the constant factor 1/√(2π)must be included in both
equations.

Table 6 summarizes a few basic properties of the Fourier transform, which hold
for any real-valued or complex function f (r).

Table 6: Properties of the Fourier transform.

Real space Fourier transform space

1 f (r) F (S)
2 F (−r) F (−S)
3 f ∗(r) F ∗(−S)
4 f (r − a) e2πiSaF (S)
5 f (ax) 1/aF (S/a)
6 f (r) + g(r) F (S) +G(S)

A.1 Convolution and multiplication theorem

The multiplication theorem states that the Fourier transform of the product of two
functions in one space is equal to the convolution of the individual Fourier transforms:

F[f (r) ⋅ g(r)] = F(S) ⊗ G(S). (105)

The convolution theorem states that the Fourier transform of a convolution of two
functions in one space is equal to the product of the individual Fourier transforms:

F[f (r) ⊗ g(r)] = F(S) ⋅ G(S). (106)

A.2 Derivation of the lattice factor

A lattice in one dimension can be written as an infinite sum of delta distributions

g(r) =
∞

∑
j=−∞

δ(r − ja). (107)

The Fourier transform of a single delta distribution at point ja is calculated from the
explicit Fourier integral as

F[δ(r − ja)] = ∫
∞

−∞
δ(r − ja)e2π𝚤Srdr. (108)
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With the special properties of the delta distribution, the integrand is zero except when
r = ja, and thus we can write

F[δ(r − ja)] = e2π𝚤Sja ∫
∞

−∞
δ(r − ja)dr = e2π𝚤Sja. (109)

The last equality follows from the basic property of the delta distribution that the in-
tegral over the delta distribution is equal to one. For the position r = 0, the complex
number e2π𝚤S0 = 1.

Since the Fourier transform of a sum of functions is equal to the sum of the indi-
vidual Fourier transforms, we obtain the Fourier transform of the infinite lattice:

F[g(r)] =
∞

∑
j=−∞

e2π𝚤Sja. (110)

For an infinite series of exponentiations, we have the relationship
∞

∑
j=0

xj = (1 − x)−1. (111)

We can split the sum into two sums from zero to infinity and subtract the one extra
term at j = 0 to obtain

F[g(r)] =
∞

∑
j=0
[e2π𝚤Sa]j +

∞

∑
j=0
[e−2π𝚤Sa]j − 1

= [1 − e2π𝚤Sa]−1 + [1 − e−2π𝚤Sa]−1 − 1. (112)

As long as Sa is not an integer number, we can write the last line as

F[g(r)] = 1
[1 − e2π𝚤Sa]

+ 1
[1 − e−2π𝚤Sa]

− 1

= [1 − e
−2π𝚤Sa] + [1 − e2π𝚤Sa] − [1 − e−2π𝚤Sa][1 − e2π𝚤Sa]

[1 − e2π𝚤Sa][1 − e−2π𝚤Sa]
= 0 (113)

since the nominator adds up to zero. If Sa is an integer number, then each of the de-
nominators is zero, and the result is infinity. This is the case for all S = h/a where h is
an integer number. At each of these regularly spaced points in Fourier space F(S) is
infinity and we can write

Fg(r) = F(S) = 1
a

∞

∑
h=−∞

δ(S − h
a
), (114)

where the factor 1/a serves to normalize the delta distributions. The Fourier transform
of an infinite lattice is also an infinite lattice, spaced at intervals 1/a. This result can
be applied independently to each of the three dimensions of a 3D lattice as well.

 EBSCOhost - printed on 2/13/2023 8:46 PM via . All use subject to https://www.ebsco.com/terms-of-use



Static structural analysis of condensed matter: from single-crystal to amorphous | 65

A finite lattice can be written either as a finite sum of delta distributions or as an
infinite sum of delta distributionsmultiplied by a step function that equals onewithin
the range of the finite lattice and zero outside:

gfinite(r) = [
∞

∑
j=−∞

δ(r − ja)] ⋅
{
{
{

1, r ≤ Na/2,
0 otherwise.

(115)

We can now calculate the Fourier transform of this finite lattice by using the multi-
plication theorem. The Fourier transform of the box function with full width Na and
centered at zero is

Fbox(S) =
sin(πNa ⋅ S)
πNa ⋅ S

, (116)

the so-called sinc function. Thus, as the Fourier transform of the finite lattice, we ob-
tain an infinite lattice in the Fourier space, with each lattice point convoluted by a sinc
function:

F[gfinite(r)] =
∞

∑
h=−∞

δ(S − h/a)sin(πNa ⋅ S)
πNa ⋅ S

. (117)
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Introduction

The three-dimensional structure of a solid at the atomic scale and the corresponding
electron density is the basis for understanding the electronic structure of such a sys-
tem. In this chapter, we focus on the ground state of a solid and its fundamental ob-
servables. The chapter TDDFT, Excitations and Spectroscopy extends such studies to a
fourth dimension, namely time. Quantummechanical calculations play an important
role when studying the electronic structure of solids at the length scale of Å or a few
nanometers. The main scheme of the theory is the density functional theory (DFT),
which strikes a good balance between an accurate quantum mechanical treatment
and a sufficiently detailed atomic structure. A real solid is by far too complicated for
any theoretical treatment without making proper approximations or idealizations.

In this context, we discuss different aspects such as the atomic structure, the
quantum mechanical treatment of the electronic structure, focusing on density func-
tional theory (DFT), and particularly time-independent DFT in this chapter, the com-
puter codes for solvingDFT, the parameters that determine the accuracy of the results,
and various properties obtainable fromDFT calculations. This review introduces these
simulation techniques and illustrates, for selected examples, which insights we can
gain into structure-property relations.

1 Atomic structure

Let us start with the atomic structure and its idealization. The standard assumption
is that a solid is represented by a unit cell, which is repeated (in all three directions)
by applying periodic boundary conditions. Accordingly, it is assumed that a solid is
perfect, ordered, and infinite. However, a real crystal differs from this ideal situation,
for example, due to defects, impurities, surface relaxations, nonstoichiometry, disor-
der, etc. In crystallography, one averages over a certain domain and focuses on bulk
properties to determine the crystal structure in terms of a unit cell, inside which var-
ious atoms occupy atomic (Wyckoff) positions. We have discussed these and related
aspects in more detail in [1]. We assume knowledge of the basic concepts of solids
and their electronic structure. Such topics include the unit cell in the direct or recip-
rocal space (Brillouin zone), symmetry operations, translations, group theory (space

https://doi.org/10.1515/9783110433920-003
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group, point group), k vectors, Bloch theorem, band structures, and the density of
states (DOS). The reader can find details about these points, for example, in [2–4]. In
most conventional calculations the nuclei are treated as classical particles at T = 0.
The mass of any nucleus is much higher than that of an electron. Therefore, in most
cases, it is justified to make the Born–Oppenheimer approximation, in which the nu-
clei remain at fixed positions for computing the electronic states bymeans of quantum
mechanics (e.g., DFT). It is assumed that the motion of the nuclei and electrons is in-
dependent from each other and no coupling is present, which simplifies calculations.
A real strength of theory is that it can calculate artificial model systems irrespective of
their existence in nature. We can move, add, or remove atoms and thus can systemat-
ically study how such modifications affect properties. In a computer simulation, the
atomic structure is defined as an input. However, we must explore whether or not the
assumed idealized structure is a good representation of a real material, whose atomic
structure we know only approximately from experiment.

2 Quantum mechanics for treating the electronic
structure

Weneed a quantummechanical treatment to describe the electronic structure of a sys-
tem of interest and solve a many-particle Schrödinger equation, an intractable task.
With the Born–Oppenheimer approximation, we can start with the time-independent
Schrödinger equation and describe each electronic state by a many-electron wave
function (WF), often labeled ψ. Its modulus ψ∗ψ defines the electron density ρ(r),
the probability of finding an electron at position r. An alternative route to the direct
solution of the Schrödinger equation is shifting the focus of the problem from ψ to
a fundamental observable of the problem, the density ρ(r). There are two classes of
electronic structure methods, wave-function-based and density-based schemes, both
of which have their advantages and disadvantages, but there are also methods that
combine these two schemes.

2.1 Hartree–Fock and related schemes

In the Hartree–Fock (HF) method, the total electronic wave function of an N-electron
system is expressed as a determinant composed of N single-electron WFs, known
as the Slater determinant. By construction this determinant has the property that
it changes the sign when two electrons are interchanged, i.e., the Pauli exclusion
principle. The latter is treated exactly in the HFmethod and is called the exchange in-
teraction. The corresponding single electronic states are orthogonal to each other, and
each electron feels the (time-averaged) electrostatic field created by all other electrons
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(and nuclei) in the system. This problem can only be solved iteratively due to the obvi-
ous interdependence problem: we need the potential for the WFs but also the WFs for
the potential. In simple terms,we need for a selected electron theWFs of all other elec-
trons to compute the corresponding field, but to find each of theseWFs, wemust know
the field. Therefore, we must find the solution in iterating cycles, a procedure called
the self-consistent field (SCF), until self-consistency is reached. Instead of solving the
intractable N-electron Schrödinger equation, we can solve N one-electron equations
in the HF scheme, which makes computation feasible. By taking the time average (for
the field) in the HF method we make an approximation, since correlation effects are
completelymissing. They canbe includedwith postHF schemes such as configuration
interaction (CI) or coupled cluster (CC) methods not described here. Such schemes are
ab initiomethods oftenused in quantumchemistry, especially for studyingmolecules.
They can be very accurate (almost exact) but quickly become computationally very
expensive when the system size increases (for further details, see [1]).

2.2 Density functional theory

In contrast to wave-function-based methods, the fundamental idea of density func-
tional theory (DFT) is to replace the complete many-electron wave function with the
much simpler ground-state electron density as the main variable. We start with the
statement by Hohenberg and Kohn [5] proposed in 1964. For any system of interact-
ing particles in an external potential Vext(r), the density is uniquely determined. In
this formulation of DFT, they demonstrated a unique one-to-one mapping between
the external potential Vext(r) (from the nuclei) applied to a nondegenerate electronic
system and its ground-state density ρ(r), which depends on the position r, i.e., only
three coordinates. This mapping implies that the ground-state energy E of the system
is a functional of its ground-state density ρ(r). A universal functional for the energy
E[ρ(r)] can be defined in terms of the density. The exact ground state is the global
minimum value of this functional:

E = T0[ρ] + ∫Vextρ(r)dr +
1
2
∫
ρ(r)ρ(r′)
|r′ − r|

drdr′ + Exc[ρ]. (1)

For simplicity, we write equation (1) for an atom with the following terms:
(i) the kinetic energy T0 of noninteracting electrons;
(ii) the Coulomb interaction between the nucleus (with the external potential Vext)

and each electron;
(iii) the Coulomb interaction between the electrons; and
(iv) the important exchange-correlation energy Exc. The last term includes everything

not included in the other terms, namely all quantum mechanical effects, such as
exchange, static and dynamic electron–electron correlation, and the difference
between the interacting and noninteracting kinetic energies.
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In equation (1)weuseHartree atomicunits (ℏ =me = e = 1),whereme is the restmass of
an electron, and e its charge. The fundamental energy is expressed in terms ofHartree,
and the length with respect to the Bohr radius. A Hartree is the ground-state energy
of the electron in the hydrogen atom, and the Bohr radius is its average ground-state
radius (1 Bohr ≈ 0.529Å). One commonly uses these units for atoms or molecules. For
solids, however, the standard unit for the energy is Rydberg, which differs exactly by
a factor of two, i.e., 1Rydberg = 1

2 Hartree = ∼13.605eV.
In principle, DFT is an exact formulation; however, we do not fully know how to

express the interaction between individual electrons. We can only prove that the total
energy of the system is a functional of the density whose explicit mathematical form
is unknown and thus requires approximations. Mathematics calls this case functional
instead of function.

Kohn and Sham [6] (KS) proposed a scheme to make DFT calculations feasible.
Their idea relies on mapping the interacting many-body system (the nuclei and elec-
trons) onto a noninteracting system of KS electrons (quasiparticles) that lead to the
true density. They introduced orthonormal auxiliary functions Φi (Kohn–Sham or-
bitals), which allow the density to be expressed as

ρ(r) =∑
i
ni|Φi(r)2| (2)

with occupation numbers ni . For such a fictitious system,wewrite the total wave func-
tion as a Slater determinant of these monoelectronic wave functions, the KS orbitals.
The latter are obtained by applying the variational method to minimize the total en-
ergy, where the number of electrons is constraint to a constantN . This idea introduces
the KS equations

[− 1
2
∇2 + Vext(r) + VC[ρ(r)] + Vxc[ρ(r)]]Φi(r) = ϵiΦi(r) (3)

with a local one-body potential, the KS potential, mimicking all interelectronic in-
teractions via Hartree and exchange-correlation (XC) contributions. Since this poten-
tial is averaged over time, it has been called the mean field approximation (mainly
in many-body physics). In equation (3), we have the terms of the kinetic energy,
the external potential (from the nuclei), the Coulomb potential VC, and the impor-
tant exchange-correlation potential Vxc, which formally is the functional derivative
of Exc (in equation (1)) with respect to the density ρ. The KS orbitals should be oc-
cupied according to the Aufbau principle (defining ni in equation (2)) and solved
self-consistently (as in the Hartree–Fock scheme). Such iteration cycles are neces-
sary, since we need the potential to compute the KS orbitals, from which we obtain
the density according to equation (2). Knowing the density, we can compute the po-
tential for the next iteration. If this can be done with integer occupation numbers ni,
then the system is said to be V-representable. This means that the ground-state den-
sity can be associated with a Hamiltonian that has an external potential V(r). Levy
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[7] and Lieb [8] independently proposed a more general variational routine requiring
the density to be only N-representable, which means that it can be derived from an
antisymmetric wavefunction. When we express the total energy as in equation (1),
approximations are necessary. Writing the density as in equation (2) suggests that we
can write the kinetic energy as a sum of kinetic energies of the KS orbitals, but there
remains a difference. We can express the kinetic energy as the single-particle kinetic
energy plus a correction. In the third term of equation (1) the nominator should be
in terms of the two-particle density ρ(2)(r, r′), which may be interpreted as the proba-
bility that an electron exists at point r given that a second electron exists at point r′.
This term makes the many-particle problem very difficult to solve, forcing us to make
an approximation. If the two electrons were completely uncorrelated, then the two-
particle density ρ(2)(r, r′) would be just the product of the one-particle densities (or
probabilities) ρ(2)(r, r′) = ρ(r)ρ(r′) plus a correction. Another problem is the treatment
of the Coulomb interaction according to the third term in equation (1). This term con-
tains the Coulomb interaction of an electron with itself (the self-interaction), which is
unphysical. In an exact treatment of exchange (as, e.g., in the Hartree–Fock scheme)
a complete cancellation of this unphysical term occurs. However, in DFT there often
remains a self-interaction error due to the approximations used for Exc. Consequently,
the last term in equation (1) must contain all these effects, namely the correction to
the kinetic energy, the exchange (Pauli repulsion), and correlation effects (repulsion
between electrons), including the self-interaction correction. The specific form of the
unknown part of the exchange-correlation functional Exc[ρ] has been the focus of
many investigations, leading to a large variety of functionals discussed in literature,
e.g., in [9].

2.3 Density functional theory functionals

The real advantage of DFT is thatwedonot need to know themany-electronWF,which
depends for each electron on three position coordinates and the spin and thus on 4N
variables for N electrons. In principle, this is an enormous simplification, since the
density ρ(r) even for very large systems depends only on three coordinates. There is
only one system for which these expressions for Exc and Vxc can be accurately deter-
mined, namely the homogeneous electron gas [10], which is a highly idealized case
for describing a simple metal. If we pick out one single electron, then we can ex-
press the density of the remaining N − 1 electrons by the original total density and an
exchange-correlation hole. The exchange hole comes from the Pauli exclusion prin-
ciple (for electrons with the same spin) and must integrate to −1, but the correlation
hole accounts for the Coulomb repulsion of electrons with opposite spin and contains
no charge. The size of this hole depends on the density: for a high (low) density case,
the hole is small (big). For any real system, the density is not constant, and thus we
must approximate Exc. The choice of DFT functionals is an active field of research.
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The reader should look at the newest literature, for example, in the review [1], which
covers some aspects. Here we just mention the main categories of the conventional
exchange-correlation functionals:
(i) In the local density approximations (LDA) [6, 10] the concept is the following:

the density ρ(r) at a given position r has a certain value. By assuming that this
density is constant throughout spacewe can use the Exc of the homogeneous elec-
tron gas, where Ex is known analytically, and Ec has been calculated numerically
by quantum Monte Carlo [10]. In LDA we make this local approximation for each
point r.

(ii) Since, in practice, the density varies around point r, we can – as a next step – in-
clude a gradient term leading to the generalized gradient approximation (GGA) for
which various forms have been parameterized, for example, the one by Perdew–
Burke–Ernzerhof (PBE) [11] or a later refinement for solids, called PBEsol [12].

(iii) The meta-GGAs [13] depend on ρ, ∇ρ, ∇2ρ, and/or the kinetic energy density τ,
respectively. The use of τ allows us to detect regions of space where the density
is dominated by orbital overlap or single-electron contributions and even van der
Waals regions can be identified. It allows amore flexible construction of function-
als. With it, we obtain higher accuracy for more properties (energetics and bond-
ing distances) [14–16], but it leads to a more complicated, nonlocal potential, so
that self-consistency is more difficult.

(iv) Some functionals include an explicit dependence on occupied orbitals (some-
times only for selected orbitals). This allows in principle an exact treatment of ex-
change, but since exact correlation is unknown and a balanced description of ex-
change and correlation is very important for obtaining results in agreement with
experiment,we should not use exact exchangewith someapproximate (local) cor-
relation. Here the hybrid functionals [17] should be mentioned, which take only a
certain fraction of theHartree–Fock scheme (with the exact treatment of exchange
using KS orbitals) and combine it with a standard GGA to account for correlation.
For highly correlated systems, especially for those containing late transition ele-
ments (with localized 3d electrons) or rare earth atoms (with 4f electrons), a Hub-
bard U is often used, where the parameter U accounts for the energy penalty (re-
pulsion) of occupying 3d or 4f electrons on the same atom (instead of delocalizing
them). The parameter U is defined as U = E(dn+1) + E(dn−1) − 2E(dn). This leads to
schemes like LDA+U or GGA+U [18], which are useful in systems where the com-
petition between localized and delocalized (d or f ) states determine the property
of a solid.

There is a large variety of chemical bonding from insulators tometals andmagnetic or
van der Waals interactions. Covalent, ionic, or metallic bonds can be well described
within DFT, but van der Waals forces are relatively weak (compared to the others),
mainly originating from induced dipole moments, but play an important role in inter-
molecular interactions. They can be included in modern calculations using various
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approximations as indicated in [19].Whereas in particular a semiclassical treatment is
possible and computationally very simple, other methods have strong nonlocal char-
acter and become increasinglymore expensive. The golden standard for van derWaals
interactions in quantum chemistry, coupled cluster theory (CCSD(T)), can hardly be
applied in solids, and calculations based on the adiabatic-connection fluctuation–
dissipation theorem (ACFDT) in the random phase approximation (RPA) are still very
expensive [20], and their accuracy is still amatter of debate. Unfortunately, there is not
an optimumDFT functional that works well for all cases and properties, making com-
promises necessary. We refer the reader to a recent paper [21] critically analyzing DFT
functionals in terms of accuracy and addressing their differences for molecules and
solids. So far, the focus was still on ground-state properties. In the next section, we
discuss excitations probing unoccupied states. In the simple one-electron picture, we
describe optical excitations from occupied to empty band states, which strictly speak-
ing is not justified. Nevertheless, this one-electron approach is often used and works
well for metallic systems. However, for insulators, this scheme leads (e.g., with LDA
or GGA) to band gaps that are often too small by 30–50% [22]. A pragmatic way to ob-
tain quite good band gaps is the use of the Tran–Blaha modified Becke–Johnson (TB-
mBJ) potential [23]. In this semiempirical scheme the original Becke–Johnson poten-
tial, which is a meta-GGA potential designed to reproduce exact exchange potentials
in free atoms, was modified using a density-based parameter that can be calculated
on the fly for each compound. It yields band gaps comparable to very expensive GW
calculations [24], which are considered as golden standard for the calculation of band
gaps in solids.We discuss some of these aspects in the next section in connectionwith
excitation.

2.4 Excitations and Koopmans’ theorem

Let us consider the ionization process for a simple case such as an atom A (or a
molecule). The initial state is the ground state of the neutral A, but in the final
state one electron has been removed from the orbital i of the corresponding positive
ion A+. In the ionization process A→ A+ + e−, the total energy difference Eexact(A) −
Eexact(A+) = IP defines the ionization energy (or called ionization potential IP). In
Hartree–Fock theory, this total energy difference equals the orbital energy ϵi ac-
cording to Koopmans’ theorem [25] but under the assumption that we keep the wave
functions from the ground state of the atom also for the ion, as schematically shown
in Figure 1. This theorem is the basis for the single-particle description (one-electron
picture), in which excitations are interpreted in terms of orbital energies instead of
total energy differences, which would be the exact definition.

In an exact treatment, the IPexact is the total energy difference between the atom
A and the ion A+ with a separated electron. Koopmans showed that in Hartree–Fock
(HF) theory the total energy difference between the atomand the ion equals the orbital
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Figure 1: Ionization potential (IP) accord-
ing to Koopmans’ theorem [25] shown in a
schematic diagram.

energy ϵi when the electron is removed from the orbital i, provided that we keep the
ground-state orbitals (labeledΨ0). Allowing the orbitals of the ionA+ to relax (labeled
Ψ+) lowers the HF total energy of the ion by the relaxation energy Erelax. This scheme
(stillwithinHF) leads to the energydifferenceΔSCF = EAHF(Ψ0)−EA

+

HF(Ψ+). It corresponds
to the total energy difference taken between the two SCF calculations for the atom and
ion. The exact total energies (of both A and A+) are lower than the HF values by the
corresponding correlation energy Ecorr, since by definition correlation is completely
missing in HF. In practice, Ecorr is often smaller for the ion than for the neutral system,
and thus an error cancellation occurs: Ecorr(A) ≈ Erelax + Ecorr(A+)making Koopmans’
IP agree well with the exact one. This is true for many cases, but exceptions occur.

In an atom or ion, we have an integer number of electrons, namelyN andN − 1, re-
spectively. For large systems, we can expand the total energy in DFT in a power series
of continuous occupation numbers (according to equation (2)). In such a represen-
tation, the DFT orbital energies ϵi are – according to Janak’s theorem [26, 27] – the
partial derivatives of the total energy with respect to the corresponding fractional oc-
cupations numbers ni:

ϵi =
𝜕⟨E⟩
𝜕ni
. (4)

In Koopmans’ theorem [25], we have an integer change in electron number, whereas
in Janak’s theorem [26] a differential change in electron numbers is assumed. One of
us has already described this aspect more than forty years ago [28], at that timewithin
the Xα and Xαβ method, the early versions of the local density approximation (LDA)
and the generalized gradient approximation (GGA). In Figure 2 we show how the en-
ergy of the chlorine atom varies with the occupation number n3p of the top valence 3p
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Figure 2: Total energy of the chlorine atom (ion) shown as a function of the (continuous) 3p orbital
occupation number n3p (taken from Ref. [28]). The secant line ΔE/Δn represents the ionization (in
analogy to Koopmans), whereas the tangents to Etotal correspond to the eigenvalues of the ion Cl+

(ϵion), the transition state (ϵts), and the neutral Cl atom (ϵatom).

electron, i.e., the ionization process. The IP, as the energy difference between atom
and ion, corresponds to the secant at the endpoints (with n3p = 4 and 5, respectively).

Formally speaking, the KS eigenvalues are just Langrange multipliers and thus
should have no physical meaning. In practice, many researchers observed that the
eigenvalues give a reasonable description for excitations in a form of the band struc-
ture in analogy to Koopmans’ or Janak’s theorem. Themain concern is that we need to
introduce fractional occupation numbers [29, 30]. Some time ago, Slater introduced
the transition state concept [31], in which, for example, half an electron is removed
from the 1s core state (leading to a configuration 1s1.5). In such a configuration, this 1s
orbital energy can be used to estimate the position of cores states. Slater’s transition
state is also used to approximate core level spectra since it is in between the initial
and final states and thus includes some relaxations [32]. More recently, the difference
between the exact discontinuous behavior and the continuous (inexact) behavior of
most functionals was shown for the carbon atom [33] leading to a similar picture as in
Figure 2.

Back to the IP of the chlorine atom: In DFT (assuming continuous occupation
numbers), a similar slope can be obtained with Slater’s transition state, in which half
an electron has been removed (with the occupation number 4.5). Geometrically speak-
ing, the tangent at the Slater’s transition state agreeswith the secant at the ends. From
a numerical point of view, the transition state eigenvalue is easier to obtain than com-
puting the total energy difference. However, we cannot use a Slater transition state
and keep the N-representability, which requires integer occupation numbers.
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For the exact functionalExc, thehighest occupiedKSeigenvalue is exactly theneg-
ative of the ionization potential [29], but this is no longer true for DFT functionals such
as LDA or GGA. The fact that total energy differences within LDA are reasonable ap-
proximations for the ionization potentials, whereas the eigenvalues are not, suggests
that the energydifferencebenefits fromerror-cancellationby subtraction (mainly from
the self-interaction error).

For insulating solids, the LDA (or GGA) band gap (i.e., from“bare” KS eigenvalues)
is too small by 30–50% [22]. The main reason is the discontinuity between the N- and
(N +1)-electron systems [30], but it can partly also come from the self-interaction error.
Since the value of the band gap is often of fundamental importance for various appli-
cations, many attempts have been made to improve the results. Currently, the most
accurate and robust first-principles approach to determine the band gap (of weakly
correlated insulating materials) is the many-body perturbation theory in the GW ap-
proximation [34]. In this scheme, the Green’s function G is multiplied by the screened
potential W to account for the excitation process. It is significantly more demanding
in terms of computer time than conventional DFT calculations based on LDA or GGA
functionals. A simple and pragmatic way to obtain good band gaps is the choice of us-
ing the TB-mBJ potential [23], which yields rather accurate gaps for many insulators
at a computational cost comparable to GGA.

For correlated systems, the LDA+U or GGA+U schemes [18] can efficiently be used
and form a lower and upper Hubbard band approximately separated byU,whichmust
be properly chosen (which makes this method no longer ab initio). In simple metals
or early transition metals, the valence electrons form a common band and thus are
delocalized. However, in a material containing electrons from the 4f -shells (or late
transition metals), these electrons prefer localized states. This means that these elec-
trons do not want to hop from one atom to the neighboring sites, expressed by a high
U value. Such electrons form localized bands, the lower and upper Hubbard bands. In
some cases, this band separation causes a gap.

Many-body physics can treat correlation effects more accurately as, for example,
in dynamical mean field theory (DMFT), but this often requires properly chosen pa-
rameters that are a priori not known for a particular system. Recently – in a joint ef-
fort – the two fieldsmerged, for example, in schemes such as LDA+DMFT [35].We start
a DFT calculation (e.g., using LDA), transform the Bloch functions of the correlated
electrons into maximally localized Wannier functions (see, e.g., [36]), and extract ef-
fective tight-binding parameters. With these parameters, we can set up an Andersson
impurity model connected to a bath of noninteracting electrons, which can be solved
by the DMFT method, as described in a recent review [35].

Presently, Kohn–Sham (KS) density functional theory (DFT) is the state-of-the-art
ab initio method for studying the electronic properties of materials due to its balance
between accuracy and computational efficiency. In quantum chemistry, the term ab
initio refers to first-principles Hartree–Fock-based theory, excluding DFT. However,
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in solid-state theory, we call DFT an ab initio method, since it is formally exact. We
should keep in mind that, for large systems, every theory must make approximations.

2.5 DFT computer codes

Oncewe choose a particular exchange-correlation functional, themathematical prob-
lem is completely specified as a set of Kohn–Sham equations, whose solutions yield
orbitals and energies from which the total electronic properties can be evaluated.
Many groups have developed numerical solution schemes implemented in a variety
of computer codes available for solid-state simulations. Recently, a paper on the re-
producibility of DFT results was published [37], in which 40 different DFT methods
were compared to establish high-precision results for equation-of-state data. Differ-
ent computer codes should give the same results, provided that they use the same
first-principles formalism (e.g., the same DFT functional) carried to full convergence.
Although most codes differ vastly in their details of implementation, they agree very
well and thus provide reproducibility of DFT predictions. These validation tests have
shown that the deviation between accurate codes is often significantly smaller than
the typical difference between theory (based on different functionals) and experi-
mental data. In the case a code shows deviations, it should be improved, which has
been achieved during recent years. High-precision DFT calculations are essential for
developing new improvements, such as new density functionals, which may further
increase the predictive power of these simulations. The paper [37] contains many ref-
erences and details of the various computer codes, and thus we can skip them here.
We therefore just summarize the essential steps and start with the atoms, which are
the building blocks of a solid.

2.6 Atomic states and basis sets

The electronic configuration of an atom follows the Aufbau principle, which requires
us to start with the lowest energy level, the 1s state. It is deep in energy, and the cor-
responding wave function (or electron density) is near the nucleus, even more so for
heavier elements. For the additional electrons, the Pauli principle requires occupa-
tion of the next higher levels such as 2s, 2p, and so on till we reach the valence elec-
trons, which are much more delocalized. The wave functions of these electrons must
be orthogonal to the core electrons, which do not contribute to chemical bonding.
For illustration, we chose a heavy element, such as osmium (with the atomic number
Z = 76). We surround the Os nucleus by an atomic sphere with a radius of 2.36 Bohr
(about 1.25 Å) and characterize the electronic states in three categories:
(i) Core electrons (1s22s22p63s23p63d104s24p64d10) have low orbital energies varying

form −54204Ryd (for the 1s state) to about −20.6 Ryd (for the 4d states). Their
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wave functions are relatively close to the nucleus with their corresponding elec-
tron densities completely confined inside the sphere surrounding the nucleus.We
discuss the relativistic aspects in Section 3.2 in connection with Figure 4.

(ii) Semicore states (5s25p64f 14) are medium in energy (between −7 and −3 Ryd) with
more diffuse wave functions. Their densities have a small charge leakage outside
this sphere. The principle quantum number of these states is one less than that of
the valence electrons (e.g., 5s vs. 6s).

(iii) Valence electrons (6s25d6) are high in energy with delocalized wave functions
forming the bonds.

Since the core electrons do not directly contribute to chemical bonding, we try to sep-
arate themout. One possibility is to compute their wave functions for an isolated atom
but keep them unaltered for the solid description (frozen core approximation). Alter-
natively, we can obtain them from the spherically symmetric part (within the corre-
sponding atomic sphere) of the actual potential of the solid. The highly localized (or
oscillatory) behavior of these core wave functions makes a proper description diffi-
cult, especially for methods based on plane-wave expansions. To avoid this difficulty,
another approach became popular, that of adding a carefully designed repulsive com-
ponent to the Kohn–Sham potential, a so-called pseudopotential. We can work with
smoother (pseudo)wave functions, which can be well represented and thus lead to a
smaller basis set in the so-called pseudopotential schemes (see, e.g., [38]). Alterna-
tively, the projector augmented-plane-wave (PAW) approach defines an explicit trans-
formation between the all-electron and pseudopotential wave functions by means of
additional partial-wave basis functions, but their choice is not trivial and thus re-
quires expertise. In contrast to all these approaches, all-electron methods explicitly
construct basis functions that are restricted to a specific energy range as, for exam-
ple, in the linearized-augmented-plane-wave (LAPW) method [39]. It treats core and
valence electrons on equal footing (e.g., by using numerical atomic-like orbitals). The
electron density from the core electrons may vary (e.g., due to charge transfer in an
ionic system) during the SCF cycle. An all-electron treatment has the advantage of be-
ing able to include such effects, but this inevitably increases the computation time.
More details of the various methods can be found in [38, 40] in terms of concepts and
in [37] for their accuracy.

2.7 LAPWmethod andWien2k code

One of the all-electron DFT codes for solids based on the LAPWmethod is the Wien2k
code [41], which belongs to the set of most accurate codes, as shown in [37]. During
the last 38 years, we have developed this code in collaboration with many others, as
summarized in several reviews [39, 42–44]. A recent book chapter [1] describes details
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of the method, the underlying formalism, and computational aspects like paralleliza-
tion or user friendliness. It also gives many references and describes how to calculate
properties that depend on the electronic structure of solids with sufficient accuracy.
Cottenier has written a book [38], in which he explains in detail DFT and the family of
LAPW-methods. Here we just focus on the key concepts.

In the APWmethod introduced by Slater [45], the unit cell is partitioned into two
types of regions: (i) (nonoverlapping) atomic spheres centered on the atomic sites and
(ii) the remaining interstitial region (Figure 3). We can adjust the radii of the spheres
(labeled Rmt) for the various atoms. Inside each atomic sphere, the wave functions
have nearly an atomic character. By taking only the spherical part of the potential
inside this sphere, we can express the wave functions as partial waves written as a
sum of radial functions uℓ times spherical harmonics Yℓm labeled with the quantum
numbers ℓ and m. We use the muffin-tin approximation only for numerically solv-
ing the radial functions, which depend on the energies Eℓ. In the interstitial region,
where the potential varies only slowly, we can expand the wave functions in a set
of plane waves (PWs) with the vectors K defined in the reciprocal space. Each PW is
augmented (i.e., replaced) by the atomic partial waves inside the atomic sphere, and
the two types of basis functions are joined at the sphere boundary so that they agree
in value (and slope). Over the years, we have developed three types of augmentation
(APW, LAPW, APW+local orbitals), inwhich the energy dependence of the radial func-
tions is treated differently. The corresponding details can be found in various review
papers [1, 38–44], which give a summary of how to runDFT calculations usingWien2k
that reach a good convergence while being as efficient as possible. In this context,
many details are available from the user’s guide (see www.wien2k.at). In contrast to
the LCAO approach, where the basis functions are centered at the atomic positions,
the APW-based methods represent a spatially confined basis set. A high flexibility of
the APW basis functions, due to the numerically solved radial equations and the ex-
pansion (Figure 3) in the ℓm series up to ℓ = 8, are an important reason for a high
accuracy of APW-based schemes [37]. The atomic-like representation of these basis

Figure 3: The (linearized-)augmented-plane-wave
(LAPW) method: a schematic partitioning of the unit
cell into (nonoverlapping) atomic spheres (with a
muffin-tin radius Rmt) and the corresponding basis
sets, namely plane waves (PW) and atomic partial
waves in the two types of regions.
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functions helps in understanding and interpreting results. In Section 3.5, we show in
anexample (for BaBiO3) howaproperty is affectedbydetails. In our case,weuse a full-
potential and all-electronmethod, wherewe treat the core electrons by solving Dirac’s
equation, whereas the semicore and valence states are described with the scalar rela-
tivistic scheme. When needed, spin-orbit coupling can be included (see Section 3.1).
For computational details and aspects like accuracy and full convergence, the reader
should refer to the review paper [1].

3 DFT results

In this chapter, we describe some general aspects of DFT calculations and illustrate
with a few examples the concepts and results of such calculations. In an old review
[46] a rather complete presentation of electronic structure calculations was given for
transitionmetal carbides andnitrides (crystallizing in the simple cubicNaCl structure)
illustrating band structure, the SCF cycle, (partial) DOS, chemical bonding (including
charge transfer), electron densities, total energy, and x-ray emission spectra (XES).
These concepts are still valid. We further present selected and more recent results,
but differing in detail.

3.1 Relativistic effects

In a solid that contains heavier elements, relativistic effects become important. The
inner electrons of such an element can reach a high velocity (approaching the speed
of light) causing a mass enhancement and an orbital contraction. Therefore, we must
solve Dirac’s equation instead of Schrödinger’s equation. The difference is illustrated
in Figure 4 for the 1s orbital of Os. From a nonrelativistic to a relativistic treatment
the 1s orbital is significantly lowered in energy by about 468 Ryd to −5420 Ryd. This
large shift in energy leads to a contraction of the 1s orbital, causing a higher screening
of the nuclear charge. This relativistic treatment significantly affects the valence elec-
trons, whose wave functions must be orthogonal to all inner electrons as illustrated
in Figure 4 for the 6s orbital of Os.

In addition to the mass-velocity term, the Darwin s-shift (Zitterbewegung) affects
the orbital energies, and the spin-orbit coupling causes a splitting in ℓ + s and ℓ − s
states as, for example, into the p1/2 and p3/2 states. Such shifts (with orbital contrac-
tion or expansion) combined with spin-orbit splitting are schematically illustrated in
Figure 5 for the valence electrons of Os. This spin-orbit term is large for low-lying states
but gets smaller for the valence states, for which they can introduce a splitting in the
band structure. Theseorbital energiesprovide thebasis for the three categories of core,
semicore, and valence states as discussed in Section 2.2.
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Figure 4: Electron density of the 1s and 6s states in the osmium atom compared between nonrel-
ativistic and relativistic descriptions. Note that the radial scale differs by a factor of one hundred
between the two orbitals.

Figure 5: Schematic picture shows how relativity
affects the orbital energies of the valence and
semicore electrons of osmium, causing a contrac-
tion or expansion of the corresponding orbitals
and a splitting due to spin-orbit (SO) coupling.

The 5d and 6s states of Au (Z = 79) are shifted in a similar way to those of Os (Z = 76),
causing the d-bands to move closer to the Fermi energy. This affects the optical prop-
erties, which differ significantly in the 3d − 4d − 5d series of Cu, Ag, Au. The main
difference in this series comes from the relativistic effect, as will be discussed in the
next section in connection with Figure 7.

3.2 Band structure and density of states

The self-consistent solution of the Kohn–Sham (KS) equations – for a uniformmesh of
k-points in the irreducible Brillouin zone – yields the KS energies and the correspond-
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ingKSorbitals. A plot of theseKS energies alonghigh-symmetry lines defines the band
structure, a fundamental result of solid-state calculations. Formally, we should not
interpret the KS energies as one-particle excitation energies of the system, since they
are simply Lagrange multipliers. However, in practice, they are often used to inter-
pret electronic excitations, especially since spectroscopy causes great interest in one-
electron energies. Here it helps to label the energy bands in the form of irreducible
representations [2]. With this symmetry information, we can distinguish between al-
lowed and forbidden transitions byusing, for example, dipole selection rules. Inmany
cases, especially for metallic systems, the band structure works quite well for inter-
preting excitations, even over a large energy range. There are many examples in the
literature illustrating that the calculated energy bands are in close agreementwith, for
example, angle-resolved photoemission spectra (ARPES), as shown for VSe2 (for de-
tails, see Strocov et al. [47]). There are also exceptions that show significant deviations
between this form of theory and experiment.

Here we show (Figure 6) the band structure (including spin-orbit coupling) of the
semiconductor InSb using two approximations, namely the GGA functional in the PBE
formulation [11] and the TB-mBJ potential [23] (see Section 2.3). Using PBE yields no
gap, but with the second choice, TB-mBJ, a small gap opens, and the energies of both
the occupied and empty bands agree well with experimental data [48]. Using the TB-
mBJ potential is a simple and pragmatic way to obtain good band gaps at a compu-
tational cost comparable to GGA, as was shown in [23]. However, TB-mBJ is just an
exchange potential but not an energy functional, and thus we cannot use it for the en-

Figure 6: Band structure of InSb for two
DFT functionals, namely PBE [11] and TB-
mBJ [23]. The experimental (occupied
and unoccupied) band states [48] are
indicated with red circles.
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ergy or the related forces, which we would need for structure optimizations. For each
KS eigenvalue En(k), the modulus of the corresponding KS orbital leads to an electron
density that is normalized in the unit cell. We can decompose this charge by exploit-
ing the LAPWbasis set into a contribution qout (from the interstitial region outside the
spheres) and those from the atomic regions (labeled by the atom number t):

1 = qout +∑
tℓ
qtℓ. (5)

The partial atomic charges within each atomic sphere, qt , can be decomposed further
in qtℓm according to the angular momentum ℓ and sometimes to m (e.g., px , py , pz ).
The wave function contains the complete information of each state, but it is a com-
plex function in three dimensions. The partial charges compress this information to
the chemically important part and allow a characterization with a few numbers. This
decomposition is very useful especially for analyzing the character of a band. These
partial charges depend on the choice of sphere radii and thus should not be over-
interpreted, but they are very useful in interpreting chemical bonding (see, e.g., the
band-character analysis of the refractorymetal compoundTiC described in Section 6.2
of [43]). In Section 3.5, we illustrate the usefulness of these partial charges for the per-
ovskite BaBiO3.

From the KS eigenvalues En(k) computed on a sufficiently fine k-grid in the Bril-
louin zone (or its irreducible part based on symmetry) we can obtain the density of
states (DOS) by counting each state with a weight of one. By using the partial charges
(equation (5)) we can decompose the total DOS into partial DOS that specify the chem-
ical character. When a covalent bond originates essentially from two orbitals located
at neighboring atoms (A andB), their contributions showup in the corresponding par-
tial DOS in the relevant energy range. Bonding and anti-bonding states betweenA and

Figure 7: Density of states of gold from a nonrelativistic (nrel) treatment, scalar relativistic (scalar),
and additionally including spin-orbit (so) coupling.
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B can be visualized by their partial-DOS, where, for example, in the bonding state the
A contribution is big, but the one from B is small, whereas the opposite weights are
present in the antibonding state.

Relativistic effects influence the energy bands, especially when a solid contains
heavy elements as mentioned in Section 3.1 and illustrated in Figure 5 for Os. In the
3d, 4d, 5d series Cu, Ag, and Au, the relative position of the valence d and s orbitals
changes drastically (similar to the Os case of Figure 5) and thus affects the optical
properties. The density of states for Au (Figure 7) shows that due to relativistic effects
the main peaks, originating from the Au-5d bands, are shifted up in energy (by about
1.7eV), closer to the Fermi level. The fact that goldhas adifferent absorption thanCuor
Ag is mainly due to relativity. In addition, the energy bands also split due to spin-orbit
coupling leading to a more peaked DOS.

3.3 Total energy and forces for structure optimization

It is crucial for the total energy to consider how relativity is included in a computa-
tion.We illustrate this in Figure 8 for the energy-versus-volume predictions for Os. The
equilibrium volume is about 8 percent smaller using a scalar-relativistic [49] versus
the nonrelativistic calculation. Including the spin-orbit coupling affects the results by
less than half a percent. We performed these calculations with the same functional,
namely PBEsol [12], using Wien2k [41]. The equilibrium volume also varies (by a few
percent) using different functionals as has been demonstrated in many studies. One
of these cases was illustrated for elemental silicon (as one example) presented in Fig-
ure 8 of [1], where LDA or GGAwere used as the DFT functional to find the equilibrium

Figure 8: The total energy (with respect to the minimum energy) of hcp osmium (Z = 76) is shown
as a function of unit cell volume (using PBEsol) for three methods of treating relativistic effects:
(i) nonrelativistic (nrel), (ii) scalar relativistic (srel), and (iii) adding the spin-orbit coupling (so) to the
srel case. The experimental equilibrium volume was taken from [50].
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unit cell. LDA mainly overbinds leading to a volume less than experiment, whereas
PBE predicts a too large equilibrium volume. Experiment is often in between. Other
functionals can perform better than LDA or GGA, as was shown in [51] for many com-
pounds.

The choice of the DFT functional affects the total energy and especially its min-
imum, determining the equilibrium volume. We refer the reader to a recent publica-
tion [21] critically analyzing DFT functionals in terms of accuracy.Wewant tomention
again the reproducibility study, based on equation-of-state data, comparing 40 differ-
ent DFT codes as documented in [37]. Here it is appropriate to mention that there are
cases where these details matter. For example, when we are close to a phase transi-
tionunder pressure, predicting a too small equilibriumvolumewithinDFTmay induce
a phase transition, which does not occur at the real volume. A similar situation can
happen near metal–insulator transitions or for a ferroelectric transition. A typical ex-
ample is the family of perovskites like SrTiO3, where Ti is bound to the six neighboring
oxygen atoms forming an octahedron. Such corner-shared octahedra can rotate or tilt
in a more or less rigid-unit mode. By applying pressure, or changing the cation (cor-
responding to chemical pressure), phase transitions occur. For many solids, a small
volume change does not significantly affect their properties. However, in recent years
the focus is much more on such instabilities, because these are often materials of in-
terest for applications (e.g., switching devices). In Section 3.5, we show one example,
namely the perovskite BaBiO3, for which several aspects will be shown.

For a given atomic structure, DFT allows us to compute not only the total energy
but also the forces acting on all the atoms in a unit cell. When atomic (Wyckoff) po-
sitions are fixed by symmetry, the corresponding force must be zero, but otherwise a
structure relaxation is possible. Bymoving the atoms according to the forces acting on
themwecanfind thenearest equilibriumgeometrywhere the forces vanish. This struc-
ture optimization is an important step, especially in cases where the atomic structure
is not well defined or determined by experiment. Structures with impurities, defects,
or surfaces are typical examples, where such an optimization is important and where
DFT usually yields good results. We illustrate this aspect for the oxygen-deficient dou-
ble perovskite YBaFe2O5, which shows a phase transition around 308K between an
orthorhombic (space group Pmma) and a tetragonal (space group P4/mmm) phase.
Many references for this compound are given in [52], including DFT results. In both
phases, the magnetic moments of the two types of Fe atoms are antiferromagnetically
ordered. In the low-temperature phase, a charged ordered (CO) state appears in which
Fe2+ and Fe3+ occupy different atomic positions (as sketched in Figure 9), whereas
at high temperatures, a valence-mixed (VM) state exists, in which all Fe atoms are
equivalent and have the formal oxidation state Fe2.5+. Such a change between the CO
and VM phase is called a Verwey transition. A conventional GGA calculation leads
to a metallic behavior, in contrast to experiment, and finds magnetic moments that
are too small. GGA+U calculations, however, predict this perovskite to be an insula-
tor with magnetic moments in agreement with experiment. This DFT calculation can
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Figure 9: The experimental nearest-neighbor distances
(in Å) around the Fe2+ and Fe3+ in the charged ordered
(CO) phase of YBaFe2O5 (see Table IV in [52]).

explain all known experimental data. The nearest-neighbor distances (shown in Fig-
ure 9) agree well between DFT and experiment and are the crucial quantities between
the CO andVMphase. In the COphase the oxygen between the Fe2+ and Fe3+ along the
x-axis, O3, differ significantly in bond length (2.109Å and 1.976Å, respectively). A sim-
ilar effect appears for the O1 position along the z-axis forming a short bond and a long
bond, respectively. However, in the VM phase, all Fe–O distances are close to 2 Å. This
structural distortion is mainly responsible for a change between the CO and VMphase
and becomes apparent in the electron density (as, e.g., shown in [52] or in Section 6.3
in [1]).

In this example, the authors computed the phonons by the direct method [53]. In
a suitable large supercell, a single atom is displaced in a certain direction (x, y, or z),
and the forces that appear for all other atoms are computed. From a set of such atomic
displacements in all directions and for all the atoms, we can derive force constants in
the harmonic approximation yielding the dynamicalmatrix that allows us to calculate
the phonon dispersions. Symmetry helps to reduce this set to independent displace-
ments saving computer time. According to the Born–Oppenheimer approximation, in
each of these many DFT calculations the nuclei are at fixed nuclear position and thus
assumed to be at rest. However, knowing the forces (or the derived dynamic matrix),
we can calculate the phonons.Wemention one example, namely Y2Nb2O7, which – in
the proposed pyrochlore structure – would have imaginary phonon frequencies, in-
dicating an instability (for details, see [54] or Chapter 6.4 in [1]). By following such
unstable phonons the authors proposed a relaxed equilibrium structure.

3.4 Electron density, electric field gradients, and magnetism
The fundamental variable in DFT is the electron density, which we can compare with
experimental data (for details, see, e.g., [55]). In DFT, it is obtained, as noted in equa-
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tion (2), by summing over all occupied states in an atom or solid. We can decompose
the total density into contributions from the core, semicore, and valence states. A va-
riety of tools (like XCrysDen [56]) allow us to visualize the (three-dimensional) den-
sity. We can even compute the density corresponding to a selected energy window
of electronic states to visualize their bonding character. By taking the difference be-
tween the crystalline density and a superposition of atomic densities placed at the
atomic position of the crystal we obtain a difference density Δρ = ρcryst − ρatoms, which
shows chemical bonding effects much more clearly (see discussion of Figure 10 and
Section 3.5). This is the real space analog to x-ray diffraction in reciprocal space using
atomic structure factors. When we want to compare the computed electron densities
with experimental data, we must take into account the motion of the nuclei. In most
DFT calculations, the nuclei are assumed to be at rest, whereas in an experiment this
motion must be considered, for example, by means of Debye–Waller factors.

Figure 10: The electric field gradients (EFG) in the high-temperature superconductor YBa2Cu3O7 is
illustrated with the following: (i) unit cell (top left); (ii) schematic bonding between Cu1-d and O1-py
(top right); (iii) the partial charges qtℓ inside the four types of oxygen spheres (decomposed accord-
ing to the symmetries px , py , and pz ), and the EFG components Vaa, Vbb, and Vcc (labeled according
to the lattice vectors a, b, c in the x, y, z directions); (iv) the difference density Δρ = ρcryst − ρatoms
(bottom right), the crystal density minus the superposed atomic (ionic) densities, in the y–z plane.
For further details, see [57].

In a magnetic system, the total density is the sum of the contributions from the spin-
up and spin-down electrons, but their difference defines the magnetization density,
which determines the magnetic moments. This definition is valid for the special case
of collinearmagnets such as ferro-, antiferro-, or ferrimagnets. However, there are also
noncollinear magnets in which the magnetic moments at different atomic positions
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are canted, such as in the case of UO2 [58]. To find how themagnetic moments are ori-
ented with respect to the crystal structure, spin-orbit interactions must be included.
The orientation of the magnetic moments with respect to the crystal axes requires a
relativistic treatment. This information is needed, for example, to calculate the mag-
netic anisotropy energy, which often is a very small quantity but important for appli-
cations. In a fully relativistic treatment, the spin is no longer a good quantumnumber,
and thuswemust express each state as a combination of two spin states. Another class
of solids are the half-metallic ferromagnets, in which the energy bands have metallic
character for one spin state but form a gap for the other. This is an important property
for spintronic applications. For more details, see, for example, Chapter 4 in [42].

It is a strength of theory to allow various decompositions, which are often useful
for interpreting properties, but these may depend on the basis set used in a calcula-
tion, for example, when deriving atomic charges. In a linear-combination-of-atomic-
orbitals (LCAO) scheme, we take the weights of all atomic orbitals centered at a given
atom to determine howmuch charge corresponds to that atom (Mulliken’s population
analysis). In an LAPW scheme, the charge inside the related atomic sphere gives an
atomic charge, but this value clearly depends on the chosen atomic radius. An alter-
native, that is, basis-set independent, is the “atoms inmolecules” (AIM) procedure by
Bader [59], which is based on a topological analysis of the density. It uniquely defines
volumes (‘‘atomic basins’’) that contain exactly one nucleus by enforcing a zero-flux
boundary: ∇ρ ⋅ n = 0. Inside such an ‘‘atomic basin,’’ this scheme uniquely defines
the Bader charge for a given density independent of how this density is obtained (by
theory or experiment) [57].

Nuclei with a nuclear quantum number I ≥ 1 have an electric quadrupole mo-
ment Q. One of them is, for example, the most important Mössbauer isotope 57Fe. The
nuclear quadrupole interaction is a product of such a moment Q and the electric field
gradient (EFG). We can measure this interaction, for example, by experiments like
Mössbauer spectroscopy or nuclear magnetic resonance (NMR). The EFG is a ground-
state property directly obtainable within DFT. As discussed in Section 6.4 of [43] the
EFG originatesmainly from the asymmetry of the electron density around the nucleus.
This makes the EFG very sensitive to small structural changes, in particular, distor-
tions around the nucleus in question.

The EFG is illustrated in Figure 10 for the high-temperature superconductor
YBa2Cu3O7, for which themain effects are shown for the oxygen atoms focusing onO1,
the oxygen between the Cu1 atoms (along the y direction). The structure consists of the
following planes: Cu1–O1, Ba–O, the Cu2–oxygen plane (in which superconductivity
occurs), and the Y plane in the center of the unit cell. The EFG is mainly proportional
to the asymmetric charge distribution around the given nucleus [57]. In this unit cell,
there are four types of oxygen atoms, which have different environments and thus
partial charges qtℓ (according to equation (5)) that vary for the directions x, y, and z.
Let us focus on the oxygen atom O1, which forms strong bonds to the neighboring
atoms Cu1 along the y direction. In a simple and schematic MO picture (Figure 10 top
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right), the O1-py orbital forms a strong covalent bond with the Cu1-d orbital leading
to a bonding and antibonding state, where the latter remains partly unoccupied. The
other p orbitals (px and pz ) have no nearby neighbor and thus form more a nonbond-
ing state, which remains fully occupied. The partial charges consequently differ for
the three directions with y being the smallest (see Table in Figure 10). Equal partial
charges for px , py , and pz would lead to a spherically symmetric charge distribution
around oxygen. In the present case, however, we have an asymmetry that becomes
apparent in the difference density Δρ = ρcryst − ρatoms (shown in right bottom of Fig-
ure 10). It shows how the superposed (spherically symmetric) atomic (ionic) densities
change due to chemical bonding in the SCF cycles to reach the final crystal density
ρcryst. The deviation fromspherical symmetry is themain origin for the EFG, a traceless
tensor, whose principal component is always found in the same direction where the
p-occupation number is smallest (highlighted in blue in the table shown in Figure 10).
The calculated EFGs agree well with the experimental data for all oxygen atoms (for
further details, see [57]).

3.5 Atomic and electronic structure illustrated for BaBiO3

We illustrate by an example of the perovskite BaBiO3 how various tools can help ana-
lyzing the electronic structure. This compound becomes superconducting by partially
substituting Ba by K, as studied more than twenty years ago [60]. The undoped mate-
rial is a semiconductor in which the perovskite structure is unstable with respect to a
breathing type distortion (and a tilting of the octahedra). This means that one octahe-
dron (around Bi-1) expands while the neighboring octahedra (around Bi-2) contract.
Figure 11 shows how the energy varies (and is lowered) when the oxygen position de-
viates from the perovskite equilibriumposition x = 0.25 by a displacement u according
to this breathing mode.

In a very simple chemical picture, it is argued that, in this structure, Bi has an
oxidation state 4+ but prefers to disproportionate according to the equation 2Bi4+ ↔
Bi3+ +Bi5+ as illustrated in Figure 12. Such a case is called a breathing mode, in which
Bi3+ (labeled Bi-1) forms a large octahedron, whereas the neighboring Bi5+ (labeled
Bi-2) forms a small octahedron. The total energy (for the lattice constant of 9.03Å) is
119 787.261 Ryd. Note that the displacement changes the total energy in the tenth dec-
imal place (a fraction of 1 mRyd), illustrating the high numerical precision necessary
for such studies. The barrier height changes drastically as a function of lattice con-
stant (volume). For the large lattice constant of 9.03Å, the minimum is reached for
displacement u = 0.006, leading to bond distances between oxygen and Bi-1 and Bi-2
of 2.30Å and 2.21 Å, respectively (Figure 11). A partial substitution of Ba by K, form-
ing Ba1−xKxBiO3, shows only a single minimum [60], which is indicative of a strong
electron–phonon interaction being responsible for superconductivity.
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Figure 11: Breathing mode in BaBiO3 calculated as a frozen phonon (starting from the ideal per-
ovskite with u = 0) forming a small Bi-2 (Bi5+) and a neighboring large Bi-1 (Bi3+) octahedron by
moving the oxygen atoms (from its position x = 0.25) by a displacement u (in fractional coordinates).
The barrier for this breathing mode depends on the lattice constant of the crystal, where the blue ar-
row (in the top figure) indicates the equilibrium state for the large lattice constant 9.03 Å, for which
we show the atomic structure (enlarging the displacement for visibility).

Figure 12 shows the energy bands for the cubic perovskite and the distorted structure,
where lower lying bands are not included. The semicore states of Ba-5p form narrow
bands around−12 eVbelow theFermi energyEF . Thenext higher bandsbetweenabout
−11 and −7eV originate from the Bi-6s states. From about −5eV to EF are the oxygen 2p
bands, which have contributions from the orbitals of neighboring atoms. In the unoc-
cupied bands (in the energy range around +6eV), mainly Ba-6s and Bi-6p states con-
tribute. For the breathing distortion, the most important effect is the splitting of the
band (between L and W) that crosses EF . This band originates mainly from O-pz or-
bitals interacting with the Bi-6s orbitals. The bond length between the Bi and O atoms
differ between 2.21 Å and 2.30Å (Figure 11) and thus affect the bonding.

The difference in bond length becomes apparent, for example, in the difference
electron density, a concept we briefly summarize here. We start a DFT calculation by
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Figure 12: Band structure of BaBiO3 in the ideal perovskite structure (left) and at the equilibrium
(blue arrow in Figure 11) for the breathing mode with a displacement of u = 0.006 (right). The circles
show the Bi-s character of the bands for Bi-1 (black) and Bi-2 (blue). The labels to the right indicate
the main character of the various bands.

putting all the atomic densities at the corresponding positions in the crystal structure
and obtain a superposed atomic density ρatoms, whichmeans that we construct a den-
sitywithout any interaction. After the self-consistentDFT calculation is completed,we
obtain the crystal density ρcryst, which contains all interactions like charge transfer,
covalent ormetallic bonding, polarization, etc. However, the total crystal density con-
tains so many electrons that bonding effects are hardly visible, especially for Bi (with
83 electrons). By taking the difference Δρ = ρcryst − ρatoms we focus on the changes
caused by chemical bonding. Back to the BaBiO3 example, in the distorted structure
(blue arrow in Figure 11)we show thedifference density (Figure 13)whichhas an asym-
metry in the density around the oxygen atoms. Let us take the oxygen on the z-axis
where Δρ is negative toward Bi-1 or Bi-2 with a small asymmetry but positive perpen-
dicular (the x–y plane). This deviation from spherical symmetry around the oxygen
atom causes a large electric field gradient (EFG), as discussed in [60]. We discuss the
chemical origin for this asymmetric charge distribution further (in connection with
Figure 14 and Table 1).

Another useful tool is the decomposition of the total density of states (DOS) into
partial DOS according to the partial charges defined in equation (5). As mentioned in
Section 3.2, for each eigenvalue En(k), the modulus of the corresponding orbital leads
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Figure 13: The difference electron
density Δρ = ρcryst − ρatoms is shown
for the breathing mode in BaBiO3
(blue arrow in Figure 11) in the front
plane of the crystal. The Bi–O bond
distances show the small and large
octahedra around Bi-2 and Bi-1, re-
spectively.

to an electron density normalized in the unit cell. In the LAPWmethod,we can decom-
pose this charge into contributions from all the atomic regions (called qtℓ) and deter-
mine howmuch an angular momentum ℓ (and sometimesm) contributes to this state.
Instead of counting each state with a weight of one – leading to the total DOS – we
can instead weight it with a qtℓ value leading to a partial DOS. We illustrate the use-
fulness of these partial DOS for the distorted BaBiO3 in Figure 14, which clearly shows
the main character of the bands. This information allows labeling the bands in Fig-
ure 12. Here we just select a few characterizations: the Ba-5p and Bi-6s bands have
little contributions from other orbitals, but in the energy range between −6 and +2eV
the interaction betweenBi andoxygenbecomes apparent. The peak in theDOSaround
−5eV comes mainly from an interaction between the Bi-6p (Bi-6s) and O-pz orbitals.
The O-pz orbitals strongly interact forming bands with a broad bandwidth (−5.2 to
+1.8eV). In contrast to the O-pz , the O-(px + py) orbitals interact less and thus have a
smaller bandwidth (−3.5 to −0.9eV). The split bands near EF originate from an (anti-
bonding) interaction between O-pz orbitals (for the ligand along the z-axis) and Bi 6s
orbitals (for Bi-1 and Bi-2), as can be seen from the peaks in the partial DOS near EF
and also from the asymmetry in the difference density Δρ (Figure 13).

From the simple ionic picture for Bi5+ and Bi3+ we would expect a charge den-
sity difference of 2 between the two Bi atoms, but in reality this difference is rather
small – about 0.03 electrons inside the Bi-atomic spheres (with radius 1.10Å) – and
thus much smaller than 2 (see Table 1). We want to make some additional comments
and focus on the charge distribution around the two Bi atoms (Table 1). We had to
choose a relatively small sphere for the Bi atoms to avoid overlapping spheres when
we enforce the breathing distortion. Consequently, according to equation (5), a large
fraction of the electron density resides outside a Bi sphere and is instead located in the
interstitial region or in other atomic spheres (as schematically shown in Figure 3). Bi-1
is at the center of the large octahedron with a Bi-1 oxygen distance of 2.30Å, whereas
in the small octahedron, Bi-2 has a much shorter Bi–O distance of 2.11 Å (Figures 11
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Figure 14: Partial densities of states (DOS) of BaBiO3 in the breathing mode minimum for atomic
contributions of Ba, Bi-1, Bi-2, and O. For oxygen, a further decomposition into s, pz , and px + py is
given in the second panel, followed (top panel) by a similar decomposition of the DOS for Bi-1 (red)
and Bi-2 (blue) into s (solid line) and p (dashed line) contributions. Note the very different scales.

qtℓ Bi-1 (Bi3+) Bi-2 (Bi5+)

s 1.042 0.913
p 0.365 0.419
d 9.512 9.542
f 0.026 0.039

total 10.949 10.918

Table 1: Partial charges qtℓ (in electrons) of the semicore and
valence electrons of BaBiO3 for the two Bi atoms Bi-1 and
Bi-2. They are computed inside the Bi sphere (with radius
2.08Bohr ∼ 1.10Å) for the equilibrium structure (Figure 11,
blue arrow) of the breathing mode u = 0.006.

and 13). In the large Bi-1 octahedron, we find about 0.13 emore s-like charge inside the
Bi sphere as compared to the smaller Bi-2 octahedron (Table 1). However, the other par-
tial charges – originating from p-, d-, and f -like partial waves (Figure 3) – are larger in
the Bi-2 sphere. These off-site contributions originate from the tails of O-2p orbitals,
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which are reexpanded in the Bi sphere, and are larger when the Bi–O distance is
smaller. This reduces the total charge difference between Bi-1 and Bi-2. In total, there
is more density around Bi3+ than around Bi5+, as expected, but the integrated charge
inside the sphere differs only by 0.03 e, which is much less than expected from an
oxidation state description.

There is another surprise that the 6s band of the less oxidized Bi-1 (Bi3+) is lower
in energy than that of Bi-2 (Bi5+) for both peaks in the partial DOS (Figure 14) around
−10eV below or near EF . This is also apparent from Figure 12, which shows the atomic
character of these split bands in the same energy regions. In a simple picture, we
would argue that the more positively charged states should be lower in energy. The
reverse order of the energy positions for the Bi-1 and Bi-2 6s bands must come from
electrostatics. The partially negatively charged oxygen ions surround both of these
atoms and cause a destabilizing potential, which gets stronger the closer the ions are
and thus affects Bi-2 more than Bi-1.

This is just one example illustrating how to get insight into the electronic structure
of a solid by analyzing various results: the total energy, the energy bands, and their
characters derived from the partial density of states (DOS) or electron densities. Many
researchers haveused these tools in their DFT calculations for a large variety of studies
on solids (from superconductors to heterogeneous catalysts). A small representative
list of corresponding references is contained in [1].

3.6 Excitation spectra and optics in the single-electron picture
We mentioned in Sections 3.2 and 3.3 that, formally speaking, we should not inter-
pret the KS energies (in the band structure form) as excitation energies. However, this
is often done and works quite well in practice. In optical spectroscopy, direct tran-
sitions (conserving k) are computed from occupied to unoccupied states, where for
both states, KS eigenvalues are used [61]. Transition probabilities between these states
can be computed and determine the intensity of optical spectra using dipole selec-
tion rules, which clearly distinguish between allowed and forbidden transitions. In a
metallic solid, an additional Drude term accounts for the free electron contribution. In
insulators, for which the DFT gap is often too small when compared to an experimen-
tal gap, we can use a “scissor operator.” This sounds complicated, but we can simply
rigidly shift the unoccupied DFT bands to adjust the (too small) DFT band gap to the
experiment value.However, even after this correction, the theoretical absorption spec-
trum may differ from experiment, since excitonic features are completely missing in
the single-particle picture. These excitonic effects can be small (semiconductors) or
very large (insulators), and we need a proper description of the electron–hole inter-
action, for instance by solving the Bethe–Salpeter equation (BSE) [62]. Nevertheless,
angle-resolved photoemission spectra (ARPES), as discussed in connection with Fig-
ure 6, illustrate a good agreement with experiment [47]. The electron energy loss spec-
trum (EELS) can often also be successfully interpreted in a single-electron picture [63].
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Another important field is the core-level spectroscopy, which provides atom-
specific information, since the involved core states reside near the corresponding
nucleus. From a theoretical point of view, this means that the transition probabili-
ties outside the atomic sphere vanish and thus these spectra become atom specific.
A good example of this is x-ray emission spectroscopy (XES). Let us take the transition
metal carbide or nitride, ZrC or ZrN, which crystallize in the sodium chloride struc-
ture. When a core electron is removed, for example, from the 1s state in one carbon
(nitrogen) atom, valence electrons can fill this hole emitting an x-ray and yielding
the XES. According to the dipole selection rule Δℓ = ±1, we have allowed transitions
that are from p-like valence states to the 1s-core state. Consequently, the C-1s XES
shows the C-p partial DOS weighted by the transition probability. Already in 1982,
such calculations showed a good agreement with experiment [64] and explained the
difference seen between the carbide and nitride. In 1979, von Barth and Grossmann
[65] showed that the experimental XES can be well reproduced within a ground-state
calculation, rather than with a model including valence band distortions caused by a
core hole, a concept later called the “final state rule.”

A similar process occurs in x-ray absorption spectroscopy (XAS) [66], where a core
electron is excited to an unoccupied state. In this case, the final state is with a core
hole. According to the final state rule mentioned before [65], we should actually rep-
resent a situation where the core electron is excited into the conduction band. A sim-
ulation of this situation in a solid usually requires creating a supercell with a size of
about 32–128 atoms, where a core-hole on only one atom is created. The excited elec-
tron can be added to the valence electrons (in cases where the first unoccupied states
have predominantly ℓ + 1 character from the specific atom), or we neutralize the cell
by a constant background charge. The electronic structure of the atom with the core
hole changes within the self-consistency cycles. The corresponding conduction band
states are attracted more strongly due to the less screened nuclear charge and shift
down in energy, simulating the effects of an exciton. Partial screening of the core hole
can occur by charge transfer from the neighboring atoms. Since we cannot force lo-
calization of the excited electron into an orbital of the proper atom, this screening
will be incomplete. Therefore, sometimes a simulation with a smaller core hole (“half
core hole”) yields a better agreement with experiment [67, 68]. In such a simulation,
we calculate the XANES spectrum from the corresponding partial DOS and the radial
momentummatrix elements between the core and valence states. In general, a rather
good agreement can be obtained for K-edges of light elements (C,N,O) [68], but even
L and M edges of heavier elements can be well simulated [69]. Let us mention one ex-
ception, namely the L2,3 edges of light transition metal compounds, where the simple
single-particle approximation breaks down due to the 2p1/2 and 2p3/2 states being too
close together in energy [66]. The intensity ratio of the L2 and L3 peaks strongly devi-
ates from the expected 1:2 ratio. This occurs due to interference effects that change the
branching ratio and also to crystal field splitting and even spin-orbit splitting that are
not in agreement with experiment.
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To properly account for these effects, we have to go a step further and solve the
Bethe–Salpeter equations (BSE) [66], with which excitonic effects can be approxi-
mated using an effective two-particle (hole and electron) Schrödinger-like equation.
The corresponding Hamiltonian contains the energy-difference between the core and
conduction band single-electron states and in addition takes into account an attrac-
tive screened Coulomb interaction and a repulsive unscreened exchange interaction
between the hole and electron. The screening of the Coulomb interaction is consid-
ered to be nonlocal (q-dependent) but static (ω = 0). Using such an approach, a very
good agreement for the L2,3 spectra of compounds such as CaF2, TiO2, or SrTiO3 was
obtained [66].

4 Going beyond the ground state

Let us summarize the main approximation and assumptions made in running DFT
calculations, the Born–Oppenheimer approximation, in which we treat the nuclei as
classical particles at fixed atomic positions. We can obtain the Born–Oppenheimer
surface from a series of static calculations and compute phonons. For a snapshot in
lattice vibrations, the nuclei are not in their equilibrium geometry, but we can study
such an atomic arrangement (at a fixed time), which is called frozen phonons. This al-
lows us to find the equilibrium structure of a given system or study its structural phase
transitions. The inclusion of pressure is easy for such DFT calculations. Temperature
dependence is not included directly but can be included via molecular dynamics sim-
ulations or using the free energy obtained from frozen phonon calculations.

Time-independent DFT focuses on ground-state properties, but for excited states,
time-dependent DFT (TDDFT) [70, 71] is the formally correct theory. Also in TDDFT, we
mustmake severe approximations by the choice of an approximate XC-kernel, limiting
the accuracy of this scheme. In any case, quite often the standard DFT single-particle
model describes excitations rather well. A properly chosen scheme (such as a core-
hole calculation) allows studying core-excitation spectra. The band gap, an impor-
tant quantity for semiconductors or insulators, can be calculated using an adjusted
DFT functional (such as TB-mBJ [23]). If DFT single-particle theory is not sufficient,
then we can use the DFT orbitals as input for many-body perturbation theories, such
as the GWapproach [34], for better quasiparticle energies or the BSE approach [62, 66]
to account for excitonic effects. For highly correlated systems, which need a good de-
scription of the localized 3d or 4f states, inclusion of a Hubbard U may be sufficient
(GGA+U) for a proper description of the electronic structure. However, sometimes we
need to go beyond this and use schemes like the dynamical mean field theory (DMFT)
[35] to improve the agreementwith experiments. Last but not least, theweakbut some-
times important van derWaals interactions are usually notwell described by standard
DFT, requiring more sophisticated schemes to be used [33].
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In conclusion, it is appropriate at the end of this chapter to mention that any the-
oretical approach makes assumptions and must make certain approximations. Let us
summarize some already discussed aspects:
– The atomic structure model: unit cell, supercell, surface, periodic boundary con-

dition.
– Quantum mechanics: time-independent DFT, mean field, many-body theory, DFT

functionals, exchange, correlation, Born–Oppenheimer approximation.
– Accuracy: basis sets, all-electron treatment, full-potential, convergence (k-points),

relativistic effects.
– Ground state vs. excited states: single-electron picture, excitons, phonons, elec-

tron–phonon interaction, T = 0 or finite temperature, collective excitations.
– Time dependence: time averaging, static, frozen phonons, sudden approximation,

fluctuations.

In any theoretical treatment, we must find a good balance between an accurate quan-
tum mechanical treatment and a sufficiently detailed atomic structure. Approxima-
tions make simulations feasible and thus are very useful but may neglect aspects that
can be essential for certain properties. Time-independent DFT plays an important role
in theoretical descriptions, but now the explicit inclusion of time is a new challenge
and the topic of this book (for theory, see the next chapter [71]).
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Introduction

Density-functional theory (DFT) is the today condensed matter reference to calculate
from first principles ground-state properties, in particular the static atomic structure.
Time-dependent density-functional theory (TDDFT) is an extension of DFT to address
excited-state properties, dynamics, and spectroscopy. TDDFT is an in principle exact
theory to calculate ab initio electronic neutral excitations, as sampled in optical or
energy-loss spectra. However, like in DFT, the exchange-correlation functional, a fun-
damental ingredient of the theory, is unknown. We must resort to approximations,
and the local-density approximation (LDA) has less validity than in DFT, in particu-
lar on optical spectra in insulators. We here provide a simplified review of the funda-
mental aspects of the theory, theorems, frameworks, basic equations, and standard
approximations, referring to the literature for more in-depth analysis. The main fo-
cus is rather on the applications where TDDFT revealed more successful: excitations
and time-dependent electronic and ionic dynamics in atoms and molecules, optical
absorption, electron energy-loss spectroscopy (EELS), and inelastic X-ray scattering
(IXSS) in solids and nanosystems. Thanks to a continuous comparison with the ex-
periment, the review critically assesses TDDFT standard approximations, advantages,
and drawbacks, reporting on some recent progresses and current challenges. TDDFT
has achieved an overall good agreement with the experiment, allowing, on one hand,
the interpretation of experimental spectra in terms of elementary excitations and the
comprehension of the mechanisms driving physical, chemical, and even biological
processes; on the other hand, ab initio TDDFT can today predict spectroscopic and
dielectric properties with interesting returns in materials science.

1 From DFT to TDDFT: electronic excitations

In the previous chapter, we have seen how the formidablemany-body problem in con-
densedmatter, can be very efficiently tackled by density-functional theory (DFT) [1, 2].
The electronic density ρ(r) is the minimal degree of freedom needed to fully deter-

https://doi.org/10.1515/9783110433920-004
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mine any static property of a condensed matter system. DFT is an in principle exact
theory to calculate all ground-state properties, e.g., the atomic structure, the total en-
ergy, etc., with an accuracy that depends on the approximation done on the exchange-
correlation functional.

Although a very successful theory, DFT has its limits. Static DFT and the static
ground-state density ρ(r) is not sufficient to describe the dynamics and the excitation
of a system in response to an applied external time-dependent perturbation δv(r, t).
For example, in an energy-loss experiment, where electrons of charge q = −e are shot
at velocity v to a condensed matter system, the perturbation is the time-dependent
external Coulomb potential

δv(r, t) = q
|r − vt|
.

In an optical experiment, the time-dependent external perturbation can be a laser
pulse or any generic transverse electromagnetic wave in the optical limit,

δv(r, t) = (e ⋅ r)D0f (t) sin(ωt),

whereω is the light frequency, e is its polarization, D0 is the amplitude, and f (t) is the
laser pulse envelope. (Unless not evident from the context, we will omit in what fol-
lows vectorial bold notation like, e.g., in r.) These and other possible time-dependent
perturbations cannot be accounted by DFT.

Time-dependent density-functional theory (TDDFT) is an extension ofDFT that al-
lowsus todescribe excited state properties, excitations, and spectroscopy. The exceed-
ingly difficult task of calculating the wavefunction Ψ(r1,… , rN , t) of many interacting
particles by direct solution of the many-body time-dependent Schrödinger equation

i𝜕tΨ(r1,… , rN , t) =H(r1,… , rN , t)Ψ(r1,… , rN , t) (1)

is replaced by the simpler problem of calculating the time-dependent electronic den-
sity ρ(r, t), a function of only one space variable r, with evident reduction of the de-
grees of freedom. The time-dependent density alone,

ρ(r, t) = ∫dr2…drN |Ψ(r, r2,… , rN , t)|
2, (2)

is a sufficient degree of freedom to fully describe the response of a system to the
time-dependent perturbation. This is the thesis of the Runge–Gross theorem [3] (Sec-
tion 2), an extension of the DFT Hohenberg–Kohn theorem to the time-dependent
case.

In parallel to DFT, it is also possible to solve TDDFT by introduction of a fictitious
auxiliary noninteractingKohn–Shamsystem, constructed to provide the exact density
of the real system. The density and all other observables can be calculated by solving
the time-dependent independent-particle Kohn–Sham equations [4] (Section 3). The
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original system-size exponential scaling of the full many-body Schrödinger equation
is replaced in TDDFT by amuchmore favorable scaling. TDDFT can in principle access
the same system sizes as DFT, solids, molecules, up to nano- and biological systems,
complementing ground-state with excited-state studies.

Whenever the applied time-dependent external perturbation is small with respect
to the external static potential, e.g., due to the nuclei, perturbation theory can be ap-
plied on top of DFT. The system undergoes a little depart from ground state and equi-
librium, and TDDFT can be formulated in linear response from static DFT (Section 4).
This is the situation occurring in the most spread experimental techniques, probing
the response of a system to a perturbation like electron beams (electron energy-loss
spectroscopy or EELS), light or weak lasers (optical absorption spectroscopy, ellip-
sometry, etc.), or X-rays (X-ray absorption, inelastic X-ray scattering spectroscopy, or
IXSS). This is also the situation addressed by the vast majority of TDDFT applications,
aiming at the calculation of excitation energies and spectra. Here TDDFT has provided
themost impressive successes, achieving almost quantitative accuracies on, for exam-
ple, EELS and IXSS spectroscopies already at the lowest levels of approximation.

The development of more intense laser sources, together with the possibility to
study the evolution of a system out of equilibrium in pump-and-probe geometries, has
opened promising applications of TDDFT beyond the linear response regime. Here,
in parallel to experimental challenges, theory has in front the challenge of develop-
ing approximations more suitable to the nonperturbative regime; the challenge of
developing more complete formalisms, for example, allowing the access to coupled
electron–ion dynamics for applications to photo-explosion or photo-chemistry, as
those illustrated in the next chapter on time-resolved X-ray diffraction (TRXRD); or a
TDDFT formalism to address electronic quantum transport in nano- and molecular
electronics devices [5].

2 The Runge–Gross theorem

The DFT Hohenberg–Kohn theorem proves a one-to-one correspondence between a
static external potential v(r), for instance, the Coulomb potential of nuclei, and the
static ground-state density ρ(r),

v(r) ⇔ ρ(r). (3)

This is sufficient if we are only interested in the ground state, but not sufficient if we
want to study the excitation, the response of the system to an external perturbation,
such as an incident electromagnetic wave switched on at an initial time t0. The ex-
tra complication is that the external perturbation is in general represented by a time-
dependent external potential δv(r, t). The total external potential acting on the system,
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which is the sum of the static external potential due to the nuclei and the external per-
turbation,

v(r, t) = v(r) + δv(r, t), (4)

depends on time. Since the Hohenberg–Kohn theorem, equation (3), only holds be-
tween static potentials and densities, DFT does not apply. To describe the system exci-
tation, we should go beyond DFT, toward the formulation of a time-dependent theory.

The rigorous foundation of time-dependent density-functional theory is the
Runge–Gross theorem [3], an extension of the Hohenberg–Kohn theorem to the
time-dependent case. The Runge–Gross theorem states a one-to-one correspondence
between the external time-dependent potential v(r, t) and the time-dependent den-
sity ρ(r, t). However, the formulation of the theorem is not as straightforward as
the Hohenberg–Kohn theorem, equation (3). First, the density is in a one-to-one
correspondence with the class of external potentials given by v(r, t) + α(t) with an
arbitrary merely time-dependent function α(t). This issue is not peculiar to TDDFT.
The addition of a pure time-dependent function α(t) to the external potential and
to the total Hamiltonian in the full time-dependent Schrödinger equation (1) reflects
in an uninfluential merely time-dependent phase factor on the full wavefunction,
Ψ(t) → Ψ′(t) = e−iα(t)Ψ(t). Observables do not depend on the wavefunction time-
dependent phase factor e−iα(t). Second, the time-dependent external potential is in
one-to-one correspondence with the time-dependent density and a fixed initial state
Ψ0 = Ψ(t0). The initial state is a boundary condition necessary also to fix the solution
to the original first-degree differential Schrödinger equation (1). The Runge–Gross
theorem can be finally mathematically formulated as

v(r, t) + α(t)
Ψ0
⟺ ρ(r, t). (5)

For a given system, say of N electrons with their fixed form of kinetic and many-body
interaction Hamiltonians, the external potential is the only remaining degree of free-
dom. Once fixed the external potential and the initial state, every observable O is de-
termined. Thanks to the stated one-to-one correspondence, the Runge–Gross theorem
has the important corollary that every observable is a unique functional of the time-
dependent density (and of the initial state):

O(t) = O[ρ,Ψ0](t). (6)

So, knowledge of the time-evolution of the density ρ(r, t) can give access to the value
of an observable, provided that its functional form is known, without passing by
the complex many-body wavefunction and the solution of the full time-dependent
Schrödinger equation (1).

Relying on the Runge–Gross theorem, it becomes possible to build a time-depen-
dent density-functional theory in analogy to static DFTbased on theHohenberg–Kohn
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theorem. The variational principle, which holds in DFT for the energy functional
E[ρ] = ⟨Ψ|H|Ψ⟩ whose minimum, δE[ρ]/δρ(r, t) = 0, occurs at the ground-state den-
sity, can be extended also to TDDFT. Since TDDFT is a time-dependent theory, instead
of focussing on the energy, we need to introduce the action

A[ρ] = ∫
t1

t0
dt⟨Ψ(t)|i𝜕t −H(t)|Ψ(t)⟩.

The stationary points of the action, δA[ρ]/δρ(r, t) = 0, provide the exact time-depen-
dent density ρ(r, t). A possible resolution scheme for TDDFT can rely on the variational
principle: by varying the action and searching for the stationary points we can get the
exact time-dependent density of the system.

At this point, we shouldmention somedifficultieswith the Runge–Gross theorem.

Dependence on the initial state: the dependence on the initial state Ψ0 is a remark-
able complication with respect to static DFT, where observables are functionals of the
density alone. This dependence implies that we still have to deal with many-body
wavefunctions Ψ0(r1,… , rN ) and at least with the solution of the time-independent
Schrödinger equation at the initial time, although just only to fix a boundary condi-
tion. However, supposing to start from the ground state as initial state and in sys-
tems presenting a nondegenerate ground-state, the latter is a unique functional of
the static ground-state density alone, Ψ0 = Ψ0[ρ0], by the classical Hohenberg–Kohn
theorem.Observables are in this case functionals of the density alone even in the time-
dependent evolution. On the other hand, an initial state not chosen to be the ground
state would allow us to describe the sudden switch-on of the perturbation, which oth-
erwise could not be covered by the Runge–Gross theorem, and this constitutes the
second problem.

Limits of the Runge–Gross theorem: the Runge–Gross theorem has been demon-
strated for amuchmore restricted domain of validity than the Hohenberg–Kohn theo-
rem. The original Runge–Gross demonstration relies on the hypothesis that the exter-
nal potential v(r, t) is analytic at the initial time t0, that is, all time derivatives 𝜕nv/𝜕tn

exist at t0, so that v(r, t) admits a Taylor expansion in t0. This excludes many possibil-
ities, among them the adiabatical switch-on. However, though a general proof of the
Runge–Gross theorem for arbitrary time-dependent potentials v(r, t) does not exist [6],
the theoremhas been extended in the following years to other classes of potentials, so
thatwemay hope that it ismore general than actually demonstrated. In particular, the
validity of the theorem has been extended significantly for small perturbations [7, 8]
in the linear response regime, the most important for TDDFT applications.

v-representability problem: like in DFT and for the Hohenberg–Kohn theorem, the
Runge–Gross theorem states the uniqueness of the potential corresponding to a den-
sity. However, it does not state its existence. There can exist densities that do not cor-
respond to any potential [9]. This can be a problem when varying functionals with
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respect to arbitrary densities. It can becomemore critical for the existence of a Kohn–
Sham system, as we will see in the next section.

3 Time-dependent Kohn–Sham equations
The Runge–Gross theorem states that any observable is a unique functional of the
density. However, like in DFT, finding an explicit form of functionals can be rather
difficult. This is in particular true for the kinetic energy functional and motivates the
introduction of a Kohn–Sham scheme also in TDDFT.

The proof of the Runge–Gross theorem is independent from the form of themany-
body interaction between the particles. In particular, the theorem is also valid in
the case of noninteracting particles. Provided that the density is noninteracting v-
representable, there exists an unique potential associated with it. Thus we can solve
TDDFT by a Kohn–Sham scheme like in DFT. A Kohn–Sham fictitious noninteracting
system is introduced such that, by construction, it provides exactly the same density
ρ(r, t) of the real interacting system. The potential associatedwith this system is called
the Kohn–Sham potential vKS(r, t)[ρ], and it is a functional of the density (and of the
noninteracting system initial state Φ0 = Φ(t = 0)). We can solve the Kohn–Sham sys-
tem by solving an easier single-particle Schrödinger equation. With respect to static
DFT, the TDDFT Kohn–Sham equation is a time-dependent Schrödinger-like equation

i𝜕tϕKS
i (r, t) = [−

1
2
𝜕2r + vKS(r, t)]ϕKS

i (r, t), (7)

where ϕKS
i (r, t) are the Kohn–Sham wavefunctions. The density can be calculated by

a sum over Kohn–Sham wavefunctions of all occupied states:

ρ(r, t) =
occ
∑
i
|ϕKS

i (r, t)|
2. (8)

As in the static DFT case, it is convenient to split the Kohn–Sham potential into three
terms:

vKS[ρ](r, t) = v(r, t) + vH[ρ](r, t) + vxc[ρ](r, t) (9)

with an external potential v, a Hartree potential

vH[ρ](r, t) = ∫dr′
ρ(r′, t)
|r − r′|
, (10)

and an exchange-correlation potential

vxc[ρ](r, t) =
δAxc[ρ]
δρ(r, t)

(11)
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related to the exchange-correlation action Axc[ρ]. Like in DFT, the latter is unknown
and needs to be approximated.

When following the Kohn–Sham scheme, we run into further difficulties.

Noninteracting v-representability problem: as already mentioned, the v-represen-
tability becomes a more serious problem within the Kohn–Sham scheme. A real
density ρ corresponding to a real external potential v may not be noninteracting
v-representable, i.e., it may be that this density ρ is not a solution of a noninteracting
system and does not correspond to some Kohn–Sham potential vKS. In this case, the
Kohn–Sham system does not exist, and the Kohn–Sham resolution scheme is not vi-
able. The question of the noninteracting and interacting v-representabilities has been
analyzed extensively [10, 11, 6, 12] but still keeps open.

Symmetry-causality paradox: the response function δvxc[ρ](r, t)/δρ(r′, t′), called
the exchange-correlation kernel and denoted fxc[ρ](r, t, r′, t′), as we will see in Sec-
tion 4, must be causal, that is, fxc(t, t′) = 0 for all t′ > t, implying that the density
changes δρ(t′) at later times t′ > t cannot affect the exchange-correlation potential
at earlier times. But from equation (11) we could write fxc[ρ](r, t, r′, t′) = δ2Axc[ρ]/
δρ(r, t)δρ(r′, t′), which is symmetric in t and t′ in contrast to its causality. This is the
so called symmetry-causality paradox. The paradox is related to the fact that TDDFT
is inherently an out-of-equilibrium theory. The application of a time-dependent per-
turbation inevitably brings the system out of equilibrium. Formulation of TDDFT as a
truly out-of-equilibrium theory within a Keldysh formalism [13] solves the paradox.

4 TDDFT in linear response

An important simplification of the theory is achieved when working in the linear re-
sponse regime [4, 14–18]. Suppose that we can split the time-dependent external po-
tential into a purely static term (to be identified, as usual, with the potential generated
by the positive nuclei or ions) and a time-dependent perturbation term, as in equa-
tion (4):

v(r, t) = v(r) + δv(r, t)

with a time-dependent perturbation term, which is off before an initial time t0,
δv(r, t) = 0 for all t < t0, and which is in particular much smaller than the static
term,

δv(r, t) ≪ v(r). (12)

Then the theory can be factorized into an ordinary static density-functional theory
plus a linear response theory to the small time-dependent perturbation. In this case
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the Hohenberg–Kohn and Runge–Gross theorems together state that the linear re-
sponse time-dependent variation to thedensity is one-to-onewith the time-dependent
perturbation to the external potential,

δρ(r, t) ⇔ δv(r, t).

Condition (12) is usually satisfied when considering normal situations referring to
condensed matter systems submitted to small excitation. This is the case in optical
spectroscopy using ordinary light, energy-loss spectroscopy, or X-ray spectroscopies.
On the other hand, for spectroscopies implying strong electromagnetic fields, intense
lasers, etc., condition (12) does not hold anymore, and the situation cannot be de-
scribed by linear-response TDDFT.

A linear-response TDDFT (LR-TDDFT) calculation is a two-step procedure: start-
ing from the static ionic external potential v(r), we perform an ordinary static DFT
calculation of the Kohn–Sham energies ϵKSi and wavefunctions ϕKS

i (r), and so of the
ground-state electronic density ρ(r); then we do a linear-response TDDFT calculation
of the density variation δρ(r, t) corresponding to the external time-dependent pertur-
bation δv(r, t). From δρ(r, t) we can then calculate the polarizability χ of the system
defined as the linear response proportionality coefficient δρ = χδv of the density with
respect to the external potential

δρ(x1) = ∫dx2 χ(x1,x2)δv(x2), (13)

where we have used the notation x for the space and time variables, x = {r, t}, possibly
including also the spin index, x = {r, t,σ}. For the remainder of the chapter,when itwill
be clear fromcontext,wewill simplify thenotation omitting convolutionproducts∫dx
as in equation (13).

It is possible to follow a Kohn–Sham scheme also in linear-response TDDFT. A fic-
titious noninteracting Kohn–Sham (KS) system is introduced under the hypothesis
that its density response δρKS is equal to the density response of the real system,
δρ = δρKS, but in response to an effective (Kohn–Sham) perturbation,

δvKS(x) = δv(x) + δvH(x) + δvxc(x), (14)

composed of the real external perturbation δv(x) plus the Hartree term

δvH(x1) = ∫dx2w(x1,x2)δρ(x2) (15)

and the exchange-correlation term

δvxc(x1) = ∫dx2 fxc[ρ](x1,x2)δρ(x2) (16)

with the instantaneous static Coulomb interaction

w(x1,x2) =
1
|r2 − r1|

δ(t1, t2)

 EBSCOhost - printed on 2/13/2023 8:46 PM via . All use subject to https://www.ebsco.com/terms-of-use



TDDFT, excitations, and spectroscopy | 109

and

fxc[ρ](x1,x2) =
δvxc[ρ](x1)
δρ(x2)

,

which is called the exchange-correlation kernel and is the fundamental quantity in
linear-response TDDFT and, at the same time, the big unknown of the theory. We will
consider it again all over the rest of this chapter and in particular in Sections 6, 13,
and 14 to provide approximations to it, evaluate their performances and drawbacks,
and study possible improvements.

For the fictitious KS independent particle system, we can introduce the corre-
sponding Kohn–Sham polarizability χKS by

δρ(x1) = ∫dx2 χKS(x1,x2)δvKS(x2), (17)

that is, the polarizability of the independent-particle system that responds to the ex-
ternal perturbation δvKS by the density variation δρ. By applying perturbation theory
to the Kohn–Sham equation (7) it can be shown that the Kohn–Sham polarizability is
provided by the Adler–Wiser [19, 20] analytic expression

χKS(r1, r2,ω) =∑
i,j
(f KSi − f KSj )

ϕKS
j (r1)ϕKS∗

i (r1)ϕKS
i (r2)ϕKS∗

j (r2)
ω − (ϵKSj − ϵKSi ) + iη

, (18)

where ϵKSi are the DFT Kohn–Sham energies, ϕKS
i (r) are the respective wavefunc-

tions, and f KSi are their occupation numbers (η is an infinitesimal introduced to have
well-defined Fourier transforms, χ(τ = t2 − t1) → χ(ω), for polarizabilities and other
response functions). The Kohn–Sham polarizability can hence be calculated once we
have solved the static DFT Kohn–Sham problem. By combining equations (13), (17),
and (14) we can express the polarizability χ of the real system in a Dyson-like form

χ = χKS + χKS(w + fxc)χ (19)

or also in an explicit form

χ = (1 − χKSw − χKSfxc)
−1χKS (20)

in terms of the Kohn–Sham polarizability χKS and of the unknown exchange-corre-
lation kernel fxc. So, once we have an expression for the kernel, it is relatively easy to
calculate, within LR-TDDFT, the full polarizability χ of the real system.

The polarizability χ is a fundamental quantity of any condensed matter system. It
directly contains the excitation energies of the system, as we will see in Section 5. In
Section 7, we will see that χ is directly related to the dielectric function and so to opti-
cal spectroscopy, EELS, and other experimental observables and spectra. The macro-
scopic dielectric function also enters intoMaxwell equations inmatter. So, knowledge
of the polarizability or, equivalently, of the dielectric function fully determines the di-
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electric properties of a condensedmatter system. In nonmagnetic systems, the dielec-
tric polarizability is alone sufficient to fully determine the behavior of matter under
electromagnetic fields.

5 Excitation energies

To study excitations or to have direct access to spectroscopy, it is convenient to pass
from the time space to the frequency ω-space. After the Fourier transform, all the
convolution products in the time space, like the definition of the polarizability equa-
tion (13), become direct products in the frequency space,

δρ(ω) = χ(ω)δv(ω).

From the latter expression we can see that the frequencies ωl where the polarizabil-
ity χ diverges correspond to the resonances, self-sustainedmodes of the system. These
frequencies are the excitation energies of the system and can be extracted from the an-
alytic structure of the polarizability by looking for the poles ωl of the full polarizabil-
ity χ. These are different from the poles of the zeroth-order Kohn–Sham polarizability
χKS, which, as we can see from equation (18), correspond to the differences between
the static DFT Kohn–Sham eigenvalues, ωKS

t = ϵKSj − ϵKSi . By introducing a compact
Hartree plus exchange-correlation kernel fHxc =w + fxc in equation (20),

χ = (1 − χKSfHxc)
−1χKS, (21)

we can see that the inverse operator (1 − χKSfHxc)−1 has the task to bring the poles of
its right operand χKS, that is, the excitations of the Kohn–Sham fictitious noninteract-
ing system, to the poles of the full polarizability χ, that is, the excitations of the real
system. Rewriting equation (21) as

[1 − χKS(ω)fHxc(ω)]χ(ω) = χKS(ω) (22)

and neglecting its real space r, r′ structure, we can see that the poles ωl of χ(ω)must
correspond to the zeros of the term [1 − χKS(ω)fHxc(ω)] for the right-hand side of the
equation, χKS(ω), to remain finite at ωl . More rigorously, the true excitation energies
ωl are precisely those frequencies where the eigenvalues of the integral operator [1 −
χKS(ω)fHxc(ω)] vanish. Therefore, the search for the excitation energies of the real sys-
tem can be recast into an eigensystemproblem. After some algebra, the true excitation
energies can be calculated as the eigenvalues ωl of the matrix equation

(
A B
B∗ A∗

)(
X
Y
) =ωl (

1 0
0 −1
)(

X
Y
) , (23)
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where

Att′ =ωKS
t δtt′ + 2∫drdr′ ρKS∗t (r)fHxc(r, r′)ρKSt′ (r′),

Btt′ = 2∫drdr′ ρKS∗t (r)fHxc(r, r′)ρKS−t′(r′),

ωKS
t = ϵKSj − ϵKSi ,

ρKSt (r) = ϕKS∗
i (r)ϕKS

j (r).

We can also consider a quadratic form of equation (23),

MFl =ω2
l Fl , (24)

or can also consider an approximation, known as the Tamm–Dancoff approximation
(TDA), consisting in the neglect of the coupling Bmatrix, B = 0.

Equations (23) and (24), known in chemistry as the Casida equations [21–24] allow
us to directly calculate the excitation energies ωl of a finite system, like a molecule or
an atom. We will see in Section 9 an application of these equations to the calculation
of the excitations in the helium atom. On this system, in Figure 1, we will compare the
starting DFT Kohn–Sham energy differencesωKS

t and the final TDDFT excitation ener-
gies ωl obtained as solutions of equation (23) or (24), to the exact excitation energies
obtained by an exact Hylleraas-like calculation [25] or measured with high-accuracy
experiments in helium.

We canalso calculate the oscillator strength associatedwith the excitationωl from
the eigenvector Fl or (X Y). Physically, an oscillator strength can be interpreted as the
probability for the system to make the transition to the excited state, exactly like the
Einstein coefficients of time-dependent perturbation theory andFermi’s golden rule in
noninteracting systems, e.g., the hydrogen atom. An oscillator strength equal to zero
indicates a forbidden transition.

6 RPA and ALDA exchange-correlation kernel
approximations

As we anticipated in Section 4, TDDFT would be an exact theory if we knew the
exact density-functional form of the exchange-correlation term. Like in DFT, this
term has to be approximated. The most common approximations for the exchange-
correlation kernel fxc are the random-phase approximation (RPA) and the adiabatic
local-density approximation (indicated as ALDA or TDLDA). In the RPA approximation
the exchange-correlation kernel is set to zero, fxc = 0, and exchange-correlation ef-
fects are neglected. This is not such a crude approximation as wemight think. Indeed,
exchange-correlation effects are neglected only in the linear response to the external
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perturbation, but not in the previous static DFT calculation, where they were taken
into account by choosing an appropriate exchange-correlation potential vxc in LDA or
GGA for example. Later we will see examples of the validity of this approximation.

In the adiabatic local-density approximation, the kernel is taken to be

f ALDAxc (x1,x2) =
δvLDAxc [ρ](x1)

δρ(x2)
= δ(x1,x2)fHEGxc (ρ(r)), (25)

where fHEGxc (ρ) is the exchange-correlation kernel of the homogeneous electron gas or
jellium model. The ALDA kernel is a local and ω-independent static (instantaneous)
approximation. As we will show, TDLDA is a good approximation to calculate EELS or
IXSS and even CIXS spectra. RPA and TDLDA are however unsatisfactory for optical
spectra in semiconductors and insulators, i.e., spectra where electron–hole (e–h) in-
teraction effects, giving rise to bound excitons or excitonic effects, are important. To
provide new good approximations for the exchange-correlation kernel beyond ALDA
and tomake TDDFTwork also on optical properties was themotivation of the last ten-
year research efforts. This is presented in the last part of this chapter.

7 Dielectric function and experimental spectra
From the polarizability we can calculate themicroscopic dielectric function ε(x1,x2),

ε−1 = 1 +wχ. (26)

Observable quantities and spectra are related to themacroscopic dielectric function εM
obtained from the microscopic ε by spatially averaging over a distance large enough
with respect to the microscopic structure of the system (e.g., an elementary cell in
periodic crystalline solids):

εM(r, r′,ω) = ε(r, r′,ω). (27)

It can be shown that in solids the operation of averaging corresponds to the reciprocal
space expression

εM(q,ω) =
1

ε−1G=0,G′=0(q,ω)
, (28)

that is, the macroscopic εM is the inverse of the G = G′ = 0 element (G and G′ are
reciprocal-space vectors) of the reciprocal-space inverse microscopic dielectric ma-
trix ε−1. This does not correspond to the G = G′ = 0 element of the direct microscopic
dielectric matrix ε,

εNLFM (q,ω) = εG=0,G′=0(q,ω), (29)
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if the microscopic dielectric matrix contains off-diagonal terms. Expression (29) is an
approximation (NLF) to the exact macroscopic dielectric function. By this approxima-
tion the so-called crystal local-field effects are neglected (no local-field effects, NLF).
We can see that the two expressions (28) and (29) coincide for the homogeneous elec-
tron gas or jellium model. Local-field effects are absent in the homogeneous electron
gas and marginal in weakly inhomogeneous systems (e.g., silicon). They become im-
portant in systems presenting strong inhomogeneities in the electronic density, such
as reduced dimensionality systems (2D surfaces/graphene, 1D nanotubes/wires, 0D
clusters, etc.).

The macroscopic dielectric function εM is the key quantity to calculate observ-
ables and spectra. For example, the dielectric constant is given by

ε∞ = limq→0
εM(q,ω = 0). (30)

The ordinary optical absorption, as measured, e.g., in ellipsometry, is directly related
to the imaginary part of the macroscopic dielectric function:

ABS(ω) = ℑεM(q→ 0,ω). (31)

Finally, the energy-loss function, as measured in EELS or IXSS, is related to minus the
imaginary part of the inverse macroscopic dielectric function:

ELF(q,ω) = −ℑε−1M (q,ω). (32)

8 TDDFT implementations and codes
The equations presented in the previous sections are implemented in several TDDFT
codes, thoughnot somany like in the case of DFT. TDDFT codes differ by the used basis
set, e.g., plane waves (PW), linearized augmented plane waves (LAPW), Gaussians,
etc., like in DFT. Most importantly, there are implementations in the real time-space
and in the frequency-reciprocal space.

The DP code [26] is a linear-response TDDFT pseudopotential code on a plane-
wave basis set working in the frequency-reciprocal space, although some quantities
are calculated in the frequency-real space. The code allows us to calculate dielec-
tric and optical spectra, such as optical absorption, reflectivity, refraction indices,
EELS, IXSS, and CIXS spectra. It uses periodic boundary conditions and works both
on bulk 3D systems and also, by using supercells containing vacuum, on 2D surfaces,
1D nanotubes/wires, and 0D clusters and molecules. It can deal with both insulating
or metallic systems. Several approximations to the exchange-correlation kernel are
implemented, and local-field effects can be switched on and off.

The DP code relies on a previous DFT calculation of the KS energies and wave-
functions, provided by another PW code like, for example, ABINIT [27]. The first task
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is to back Fourier transform the KSwavefunctions,ϕKS
i (G) → ϕKS

i (r), from the recipro-
cal to the real space. Then DP calculates in the real space the optical matrix elements
ρKSij (r) = ϕKS∗

i (r)ϕKS
j (r), which are Fourier transformed, ρKSij (r) → ρKSij (G), to the recip-

rocal space. The next step is the calculation of the Kohn–Sham polarizability

χKSG1G2
(q,ω) = ∑

i,j≠i
(f KSi − f KSj )

ρKSij (G1,q)ρKS∗ij (G2,q)
ϵKSi − ϵKSj −ω − iη

. (33)

At this point the RPA dielectric function and spectra in the NLF approximation are al-
ready available via εRPA-NLFM (q,ω) = 1−wχKS00 (q,ω). For approximations beyond, DP first
calculates the polarizability χ by equation (20). The ALDA exchange-correlation fxc
is calculated in the real space and then Fourier transformed in the reciprocal space.
At the end, DP calculates the dielectric function ε (equation (26)) and finally the ob-
servablemacroscopic dielectric function εM(q,ω) (equation (28)), including local-field
effects. The function εM(q,ω) is provided in an output file, both in the real and imagi-
nary parts, as a function ofω (the BZ vector q is fixed and specified as an input param-
eter to the DP code). The most time-consuming steps are the calculation of χKS, where
Fourier transforms are carried out using FFT (scalingO(N logN) instead ofO(N2)), and
the matrix inversion to calculate χ (equation (20)), which is however replaced by the
resolution of a linear system of equations (scaling O(N2) instead of O(N3)).

An example of a linear-response TDDFT code on a LAPW basis set is Elk [28]. The
Elk codeworks in the frequency-reciprocal space and allows us to performall-electron
full-potential nonpseudopotential calculations.

A real space-time implementation of TDDFT is the Octopus code [29]. The real
space implementation makes it particularly well suited to isolated systems (atoms,
molecules, clusters, etc.), though of coursewith limitations on periodic systems. How-
ever, its most important feature is that it can go beyond the linear-response TDDFT,
thanks to the explicit evaluation of the time evolution of the density.

9 TDDFT on the simplest example: He atom
The simplest many-body interacting system in nature is the helium atom. Here many-
body means just only two electrons. For this system, there are both very accurate ex-
perimental measures and theoretical calculations for the ground and excited states.
It looks a toy model, but, contrary to other widespread many-body models, it is a real
system with a real long-range Coulomb many-body interaction among electrons. So,
it represents an important workbench model for theory because, instead of compar-
ing directly with the experience, we can compare different many-body theories at the
same nonrelativistic level of physics, e.g., switching off relativistic and finite nuclear
mass effects, QED radiative corrections, etc. TDDFT is in principle an exact theory to
calculate excited states, and so exact TDDFT should work also on the helium atom.

 EBSCOhost - printed on 2/13/2023 8:46 PM via . All use subject to https://www.ebsco.com/terms-of-use



TDDFT, excitations, and spectroscopy | 115

A different issue is whether a given approximation within TDDFT, e.g., RPA or adia-
batic LDA (TDLDA), is going to provide accurate results, or at least good enough to re-
producewith an acceptable approximation, or just only qualitatively, the right physics
of a system.

The helium atom is a good example to show how TDDFT works in practice and
what are the typical results we can get out. In the example we report here, the first
step is a DFT calculation of the ground-state density and the Kohn–Sham electronic
structure, both energies ϵKSi andwavefunctionsϕKS

i (r). Then a linear-response TDDFT
calculation (equations (23) and (24)) is performed on top of DFT to get the neutral ex-
citation energies, to be compared with the transition energies observed in an optical
absorption experiment, and optionally also the oscillator strengths. The quality of a
TDDFT calculation is affected by both steps. In particular, it is affected by both the ap-
proximation for the static exchange-correlation potential vxc(r), used in the ground-
stateDFT calculation, and also by the approximation for the exchange-correlation ker-
nel fxc(r, r′,ω), used in the following linear-response TDDFT calculation. Of course, it
is preferable to coherently use the same level of approximation in both steps, e.g.,
LDA in DFT and ALDA in TDDFT, but this is not necessary. As we will see in this and
following examples, the quality of a given approximation, e.g., LDA, not necessarily
is the same in DFT and TDDFT. This depends on the system typology (e.g., isolated,
extended, 2D, etc.) and on the studied properties. We will rediscuss this point.

In Figure 1 we show both a table and a diagram presenting the excitation energies
of the helium atom for the lowest excited states n2S+1L, both the singlet S = 0 and the
triplet S = 1 series. The excitation energies are measured from the ground state 11S,
which is hence set as the zero of the energies, whereas the continuum of first ioniza-
tion, He+(1s) + e−, lies at 0.9037Ha. The result indicated in the table and in the graph
as “exact” is the accurate variational nonrelativistic calculation of Ref. [25]. It coin-
cides with the experiment within the quoted 10−4 Ha accuracy. This is to be compared
with the DFT and TDDFT results, the first two columns in the table and in the graph.

The helium atom is a fortunate case where the exact DFT static Kohn–Sham po-
tential is known [30]. This is possible since we know from very accurate variational
calculations [30] the fullmany-bodywavefunction and the density of the ground state,
from which we can derive the Kohn–Sham doubly occupied wavefunction, and invert
the Kohn–Sham equation to get the exact Kohn–Sham potential. We can then solve
the Kohn–Sham equations to find the exact Kohn–Sham energies and wavefunctions,
so to have the best starting point to perform the following linear-response TDDFT cal-
culation. In Figure 1 we present the results of such calculation [14], done using the
exact Kohn–Sham potential for the static DFT calculation and the TDLDA approxi-
mation for the linear-response TDDFT last step. These results will faithfully represent
the performances of TDDFT and the TDLDA approximation, without being affected
by approximations in the DFT first step. We first report the DFT Kohn–Sham energy
differences ωKS

ij = ϵKSj − ϵKSi calculated using the unapproximated exact Kohn–Sham
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Figure 1: Helium atom excitation energies for the lowest states n2S+1L with n = 2→ 5, L = S,P, both
the singlet S = 0 and the triplet S = 1 series. The 0 of the energy is set to the ground state 11S, so that
the continuum He+(1s) + e− is set to the ionization potential 0.9037Ha. Left: DFT Kohn–Sham energy
differences from the exact Kohn–Sham potential [30]; middle: TDDFT in the ALDA approximation [31];
right: exact nonrelativistic result [25], which, within the quoted 10−4 Ha accuracy, also coincides
with the experiment.

potential. Once again, we stress that the DFT Kohn–Sham eigenvalues are the ener-
gies of a fictitious noninteracting system, and so they are unphysical. They cannot
be interpreted as the true quasiparticle charged (addition or removal of an electron)
excitation energies of the many-body interacting system, nor their difference can be
interpreted as the neutral excitation energies. Nevertheless, we remark that, at least
in the case of He atom, the Kohn–Sham energy differences are already surprisingly
close to the exact neutral excitation energies of the system. They lie in the middle be-
tween the singlet and triplet energies, and they are a very good starting point for the
next linear-response TDDFT correction. Finally, we remark that TDDFT in the adia-
batic LDA reveals a very good approximation for the singlet–triplet splitting. This is a
surprisingly good result also in consideration of the simplicity of the TDLDA approx-
imation. For the highest excited states, TDLDA is in perfect quantitative agreement
with the exact result. However, this is the easiest part of the spectrum for TDDFT to re-
produce to. Indeed, here the singlet–triplet exchange split is small, and so the validity
of the final result is above all due to the exact DFT KS starting point. The accuracy of
the DFT-TDDFT result deteriorates when going toward the lowest energy states, and
here we see the limits of the ALDA approximation. In some cases, TDLDA inverts the
order of states, like in the case of 31S and 33P.
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Wemention however that if the same LDA approximation were applied also to the
first step static DFT calculation, the Kohn–Sham energy differences (starting point for
the TDDFT calculation) would result much worse. Apart from only the first occupied
state, the rest of the Kohn–Sham LDA energy spectrum is unbound, raised in the con-
tinuum. There is no Rydberg series in DFT Kohn–Sham LDA (or also GGA) atoms. This
is due to the wrong exponential e−r , instead of 1/r, asymptotical decay of the LDA
(and GGA) potential. This is a very difficult starting point for the TDDFT approximated
kernel to correct. So, the surprisingly good result reproduced in Figure 1 is just only
thanks to our knowledge of the exact DFT KS potential in this system. Unfortunately,
exact DFT results are only known for a few systems, mainly simple atoms.

10 TDDFT electron and ion dynamics versus TRXRD

The direct solution of the time-dependent Kohn–Sham equation (7) in real space-time
allows us to follow the evolution of a system electronic density ρ(r, t) after excitation
by an external potential δv(r, t). In this way, we can access the full (beyond linear) re-
sponse of a system submitted to a strong perturbation and have a time-resolved study
of phenomena, like the ionization of a molecule, or the breaking or the formation of
chemical bonds, etc. This is a kind of studies that become more and more available
from the experiment, thanks to the advent of ultrashort, femtosecond and below, laser
pulses and pump-and-probe experimental setups.

Figure 2 presents a real space-time TDLDA calculation [32] on an acetylene
molecule excited by a short laser pulse. The figure presents snapshots of the time-
dependent electron localization function [32, 34], a quantity related to the electron
density, current, and kinetic energy density and more suited to put into evidence
chemical bondings. The molecule is initially in its ground state (Figure 2 (a)), charac-
terized by two blobs around the hydrogen atoms and the torus typical for a triple bond
between the two carbon atoms. With the raising of the laser pulse, the electron cloud
starts to oscillate until the system ionizes, as it is evident from two blobs of electrons
that leave the system toward the left (Figure 2 (b)) and the right (Figure 2 (c)), with
wave-packets that spread with time. Later, the central torus widens (Figure 2 (d)) until
it breaks into two separate tori (Figure 2 (e)) around the two carbon atoms: this can
be interpreted as the transition from the bonding π state to the antibonding π∗ state.
The system is left into the excited state.

In the previous example the ions are kept fixed at their molecular ground-state
equilibrium position, and only electronic degrees of freedom are let evolve along the
time-dependent TDDFT dynamics. This is valid when the perturbation is small with
respect to the ionic potential and so does not cause a rearrangement of the atomic
structure, a chemical reaction, or the fragmentation of themolecule. However, we can
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Figure 2: Snapshots of the time-dependent electron localization (TD-ELF) for the excitation of acety-
lene (C2H2) by a laser pulse polarized along the molecular axis at frequency ω = 17.5eV, intensity
I = 1.2 ⋅ 1014Wcm−2, pulse duration 7 fs (Reprinted with permission from Ref. [32]. Copyright (2005)
by the American Physical Society.). The molecule is along the longitudinal axis, with the carbon
atoms represented by green and the hydrogens by white balls. The sequence shows first the ioniza-
tion of the molecule and then the transition from the bonding state π to the antibonding state π∗.
The full movie can be watched at [33].

also relax the constraint on the ion positions and perform a full electron and ion time-
dependent TDDFT dynamics. Figure 3 presents a real-space TDLDA dynamics [32] on
an ethene molecule shot by a fast nonrelativistic proton. Figure 3 (a) shows the initial
configuration with the proton (bottom white sphere) shot against the leftmost carbon
atom (green sphere) of the molecule. While approaching the molecule, the proton is
seen to dress some electronic charge (Figure 3 (b)). Then it is scattered and leaves the
system bringing part of the electronic charge (Figure 3 (c)). The molecule is left into
a perturbed excited state. In Figure 3 (d) the leftmost carbon has already broken the
bonds with the two hydrogens (which are going to form a hydrogen molecule), and in
Figure 3 (e), we can see the formation of a lone pair above it. Finally, in Figure 3 (f) the
molecule is completely explosed into a H2 molecule (left) and two CH fragments, each
with a characteristic lone pair near the C atom.

This kind of theoretical studies can be of real benefit in the interpretation of exper-
iments and a valuable complement of time-resolvedX-ray diffraction (TRXRD) studies,
as treated in the next chapter. By TRXRD we can follow the dynamics of nuclei under
the effect of an external perturbation. In the next chapter, we present an example of
a TRXRD study on the photodissociation of the I−3 ion following excitation by light
pulses of different wavelengths. Ab initio static DFT calculated data are already used
to make an energetic balance of each possible reaction pathway from the reactant to
the different possible solute species and to interpret TRXRD data. A more complete
study of the full dynamics of the I−3 photodissociation by TDDFT can be done in a way
similar to the examples we have presented on acetylene under laser excitation and on
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Figure 3: Snapshots of the time-dependent electron localization (TD-ELF) for the scattering of a pro-
ton of energy Ekin ≃ 2keV by an ethene molecule (C2H4, reprinted with permission from Ref. [32].
Copyright (2005) by the American Physical Society.). Same color scheme as in Figure 2. The se-
quence shows the breaking of bonds and subsequent creation of lone pairs, leading to the frag-
mentation of the molecule into several pieces (H2 and two CH). The full movie can be watched at [35].

the dynamics of ethene dissociation. This is already possible at the today computing
power, although care is required when dealing with atomic elements well beyond the
first rows of the periodic table.

Full TDDFT dynamics of the reaction paths in more complex molecules, like the
photoactive yellow protein (PYP) also presented in the next chapter, are still out of
reach. However, first TDDFT studies restricted only to the active regions of a protein,
like chromophores into photoactive proteins, and to its electronic degrees of freedom
were already possible, for example, on the green fluorescent protein (GFP) and its blue
mutant (BFP) [36]. Althoughwithout a full ionic and electronic dynamics, we can sup-
plement TRXRD studies by sampling a reaction path with electronic-only TDDFT cal-
culations of excitations [36]. Along this line, one serious drawback is represented by
the noncorrect representation of the so-called conical intersections (CIs) [37, 38] be-
tween potential energy surfaces of the ground and excited states (see Figure 4). CIs
play a fundamental role in photochemistry as the critical points that allow a given
chemical reaction path from the reactants to the products. The identification of the
CIs is already an important step forward in the study of photochemical reactions. Un-
fortunately, CIs are points where the traditional Born–Oppenheimer approximation
breakdowns, and coupling between ionic and electronic degrees of freedom must be
explicitly taken into account [39]. This is an active domain of research with many ef-
forts also in the direction of evaluating the crossed validity of exchange-correlation
and/or the Tamm–Dancoff approximations for a correct description of CIs.
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Figure 4: Conical intersection (CI) between ground and excited states potential energy surfaces,
allowing a radiationless decay in a photochemistry reaction.

The examples presented in this section can give an idea of what TDDFT is going to
achieve in the nearest future with increasing computer power and improved code al-
gorithms, both in the direction of more involved studies and more complex systems.
Indeed, with respect to other many-body approaches, TDDFT keeps at a reasonable
computational cost and scaling (O(N4)withN the number of atoms in themolecule or
periodic solid elementary cell), whereas TDDFT reliability is directly related to the lim-
its of validity of the chosen approximation. For instance, TDLDA is expected to over-
estimate ionization rates due to its incorrect long-range behavior. Most of the present
theoreticalwork goes in the direction of improving standard approximations to correct
this and other knowndrawbacks, like thementioned problemof conical intersections.

11 TDDFT on EELS: local-field effects

We will now show examples of typical TDDFT results using the RPA and TDLDA ap-
proximations on electron energy-loss spectra (EELS) of a prototypical system like bulk
silicon. Figure 5 shows the EELS experimental spectrum measured [40] at q ∼ 0, that
is, almost zero-momentum transfer (red dots). The spectrum presents a single peak at
16.7 eV, corresponding to the plasmon resonance collective excitation of bulk silicon.
We then show the energy-loss function calculated [41] by the DP code in the RPA NLF
(without local-field effects), the RPA (with local-field effects), and TDLDA approxima-
tions. We remark an overall agreement of TDLDA with the experiment. Both the po-
sition and strength of the plasmon resonance are correctly reproduced by the TDLDA
approximation. We can also conclude that in this q ∼ 0 case, the RPA result is not that
bad and at least qualitatively in agreement. The plasmon energy is already well repro-
duced at the level of the RPA without local-field effects. Local-field effects improve on
the resonance height.
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Figure 5: Energy-loss spectra (EELS) in silicon at q ≃ 0 momentum transfer. Left (reproducing Figure 3
of Ref. [42]): Energy-loss function in the RPA without (NLF, light green dot-dashed line) and with
local-field effects (blue dashed line), TDLDA (black continuous line), EELS experiment (red dots from
Ref. [40]). Right (reproducing Figure 2 of Ref. [43]): Energy-loss function in the RPA (blue dashed
line), GW-RPA (green dashed line), Bethe–Salpeter approach (BSE brown continuous line), EELS
experiment (red dots from Ref. [40]).

This surprising result can be explained when looking at Figure 5 (right panel), where
we present the bulk silicon EELS calculated [43] by solving the Bethe–Salpeter equa-
tion (BSE) in the GW approximation within the framework of ab initio many-body
quantum field theory. The latter is an approach relying on second quantization of
fields and the electronic propagator or Green functionG(x1,x2) as fundamental degree
of freedom, instead of the (time-dependent) density ρ(x) of DFT and TDDFT. Ab initio
many-body Green function theory is an alternative to DFT and TDDFT, with the im-
portant advantage that approximations within the theory are more easily to find by
physical intuition. For example, the GW approximation to the self-energy can be seen
as an evolution of the Hartree–Fockmethod by replacing the bare Fock exchangewith
a screened exchange, thus introducing some correlations in the formof screening. The
disadvantage of two-point Green functions G(x1,x2) is that they are much heavier to
calculate with respect to single-point densities ρ(x) as in DFT and TDDFT. The scaling
of Green function methods with the number of electrons is more unfavorable than in
DFT and TDDFT, so that GW and BSE calculations are restricted to much simpler sys-
tems. Bulk silicon is still an affordable system for Green function methods, so that the
GWandBSE results here can represent not only a comparison term for TDDFT, but also
an invaluable tool to understand the physics at bench thanks to their more intuitive
physical meaning. For instance, the GW approximation on the self-energy introduces
electron–electron (e–e) interaction self-energy effects on top of the RPA approxima-
tion. In Figure 5 we remark that the introduction of these effects (GW-RPA curve) sur-
prisingly worsens the result. GW shifts the plasmon position to the highest energies

 EBSCOhost - printed on 2/13/2023 8:46 PM via . All use subject to https://www.ebsco.com/terms-of-use



122 | V. Olevano

and faraway from the experiment. On the other hand, introduction of electron–hole
(e–h) interaction effects on top of GW, as by resolution of the Bethe–Salpeter equation
(BSE curve), restores a good agreement with the experiment by shifting back again
the plasmon resonance. To a large extent, e–e and e–h interaction effects compensate
each other in EELS. As a consequence, the RPA lowest level of approximation, which
neglects both effects, is already a good approximation. To improve upon RPA, we can-
not introduce only one of them and should take into account both. This seems to be
the case of the ALDA kernel, at least for EELS spectra.

We now discuss local-field effects and their importance. As introduced in Sec-
tion 7, local-field effects are directly related to density inhomogeneities of the system.
They enter into play with the departure from homogeneity and become increasingly
important with the increase of density inhomogeneity. To illustrate these points, we
take the example of graphite [44, 45], which is a system of intermediate 3D/2D charac-
ter: it is in fact a 3D bulk solid, but its carbon atoms are arranged in 2D flat planes of
graphene, weakly bounded and stacked one on top of the other. As a consequence of
this particular atomic structure, the system looks homogeneous in the xy-direction,
whereas it appears to be inhomogeneous along the z-direction. This can be appre-
ciated in EELS by varying the direction of the momentum q transferred to the sam-
ple with respect to the system crystal axes. In Figure 6, we report EELS spectra taken
[44, 45] for graphite at almost zero-momentum transfer, q ≃ 0, but oriented along sev-
eral directions: from the in-plane direction (q parallel to the graphene planes) to the
out-of-plane direction (q perpendicular to the graphene planes and parallel to the
z axis). The red dots are the spectra measured at the indicated experimental setup
angles θ with respect to the z axis. We then report RPA spectra calculated with and
without local-field effects (respectively LF and NLF). For momentum transfer in the
in-plane direction, where EELS samples a homogeneous system,we cannot notice any
appreciable difference between the RPA-NLF andRPA-LF spectra. Along this direction,
local-field effects are negligible, and theRPA-NLF is a goodapproximation.Differences
between spectra start to appear for q departing from the in-plane direction. Local-field
effects become more and more important by going toward the out-of-plane direction.
Inclusion of themneatly improves the result: the RPA-LF result is in very good, quanti-
tative agreement with the experiment at all sampled directions. Only the θ = 30∘ direc-
tion shows a small difference between the RPA-LF curve and the experiment, which
is probably due to a small difference between the calculated and experimental angle
collections [44]. For this direction, we also show the TDLDA spectrum, which does
not show any appreciable difference with respect to RPA-LF. Exchange-correlation ef-
fects, as accounted by the ALDA approximation, are small also in all other directions
at almost zero, q ≃ 0, transferred momentum. Graphite is a good example to show the
importance of local-field effects and their relation to density inhomogeneities.

Graphite is also a good example to show the fundamental contribution of ab initio
theory to a correct interpretation of experimental findings. In Figure 6, right, we report
the in-plane RPA NLF graphite EELS spectrum, which we have already seen to be in
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Figure 6: EELS spectra of graphite (from Ref. [44, 45]) for small q transferred momentum at several
directions, from in plane (top) to out-of-plane (bottom). Red dots: experiment; blue dashed line: RPA
without LF effects; black solid line: RPA with LF; green dot-dashed line: TDLDA.

quantitative agreement with the experiment. We also show in comparison the RPA
NLF real (ℜε) and imaginary (ℑε) parts of the macroscopic dielectric function. This
comparison allows us to provide an unambiguous interpretation of EELS spectra and
excitations. EELS peaks can be associatedwith either single-particle or collective exci-
tations. Single-particle excitations are associated with electron–hole “optical” transi-
tions, for example, the excitation of one electron from a valence to a conduction band
as by a photon. They appear as peaks in the imaginary part of the dielectric func-
tion, which is directly related to the optical absorption (Section 7). EELS peaks that
have a direct correspondence in the imaginary part of the dielectric function are to
be classified as single-particle excitations. On the other hand, collective excitations
are associated with the collective motion of the plasma of electrons, e.g., plasmons.
A plasmon resonance is by definition in direct correspondence to the zeros of the real
part of the dielectric function: indeed, at the frequencies where ε(ω) = 0, the system
supports self-sustained modes E(ω) = D(ω)/ε(ω) without the presence of an external
field D. In graphite (Figure 6, right) the only visible structure in the EELS that can be
associated with a single-particle excitation is the low-energy shoulder from 0 to 6 eV,
directly corresponding to themain peak in ℑε, which is due to transitions from π to π∗
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states. The two main EELS peaks at 7 and 28 eV are both associated with zeros of ℜε:
therefore they are both bulk plasmon collective excitations. We can go further with
the interpretation. The real and imaginary parts of the dielectric function are related
by Kramers–Kronig relations, so that a peak in the imaginary part is followed by a
characteristic s-shaped feature in the real part, occasionally producing a crossing to
zero. In graphite the imaginary part presents twomain absorption peaks: a low-energy
peak (0–6 eV) due to single-particle excitations involving only transitions from π to
π∗ states, the closest to the Fermi energy, and a highest energy peak (14 eV), involving
transitions also from σ and to σ∗ states. This can be verified in an ab initio calculation
(not in an experiment) by selectively removing those states from the calculation. In
between the twomain peaks the optical absorption falls almost to zero, so that also in
the real part, there is a separation between the two characteristic Kramers–Kronig fea-
tures and the zero-crossings. The plasmon arising from the first low-energy 0-crossing
is to be associated with the collective motion of only π electrons, whereas it is the col-
lective motion of all (valence) electrons that gives rise to the highest energy plasmon.
This justifies the interpretation of the twomain graphite excitations as π-plasmon and
total plasmon, respectively.

We conclude this section by discussing local-field effects under reduction of the
system dimensionality, from 3D graphite to 2D graphene. In Figure 7, we show the

Figure 7: Graphene vs graphite electron energy-loss spectra (EELS). Left: TDDFT RPA approximation
calculation of graphene energy-loss function at q ≃ 0 for both out-of-plane (top) and in-plane (bot-
tom) momentum transfer directions, with (magenta continuous lines) and without (dashed black
lines) local-field effects. Right: TDDFT RPA LF energy-loss functions (top) of graphite (yellow dot-
dashed line) and graphene (magenta continuous line) as compared to the EELS experiment by Eber-
lein et al. [46] (bottom) for a single graphene monolayer (pink curve), two layers of graphene (blue),
five (black) and more than ten layers of graphene (yellow). Reprinted with permission from Ref. [46].
Copyright (2008) by the American Physical Society.
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energy-loss function of graphene for the in-plane and the out-of-plane momentum
transfer directions in the RPA with and without local-field effects. Like in graphite,
local-field effects are negligible in the in-plane direction, where the electron density
is homogeneous. On the other hand, local-fields are responsible for a strong suppres-
sion, a depolarization effect in the out-of-plane z direction along which the density
goes to zero in the vacuum. The same effect can also be observed in 1D nanotubes
or nanowires [47, 48] along directions orthogonal to the tube/wire axis. In Figure 7,
left, we show the in-plane EELS spectra calculated by TDDFT in the RPA LF approx-
imation for both graphite and graphene. In the same figure, right, we also show the
experimental [46] EELS spectra taken for one graphene monolayer, and up to ten lay-
ers of graphene that, from a dielectric point of view, can already be considered bulk
graphite. The TDDFT calculation [49, 50] predicted the correct shift of both plasmons
in going from graphite to graphene (shifts emphasized by the black arrows in the top-
left panel of Figure 7), although with an overestimation of the oscillator strength of
the π plasmon.

12 TDDFT on IXSS: exchange-correlation effects

Wehave seen that inEELS spectra at almost zero-momentum transfer, q ≃ 0, exchange-
correlation effects as accounted by the adiabatic LDA approximation are small, and
the RPA approximation is already in a very good agreement with the experiment.
This is not the case for finite momentum transfer. Exchange-correlation effects be-
come more important when going to the largest q. Although it is possible to acquire
energy-loss spectra at small though finite q, an experimental technique that allows
us to access the range of very large q (up to several Brillouin zones) is inelastic X-ray
scattering spectroscopy (IXSS). IXSS requires to use intense synchrotron radiation
X-rays as primary beam and detects the scattered photons at given angle related to
the momentum transfer. IXSS measures the dynamic structure factor S(q,ω), which is
related to the macroscopic dielectric function εM (q,ω) by

S(q,ω) = q2

4π2ρ
(−ℑε−1M (q,ω)),

where ρ is the electron density.We see that the dynamic structure factor is directly pro-
portional to the energy-loss function −ℑε−1M , so that EELS and IXSSmeasure in practice
the same observable, though with different resolution at different regimes.

Again for the prototypical bulk silicon, we show in Figure 8 the experimental dy-
namic structure factor [51] at different transferred momenta along the [111] direction.
Once again, we compare the experiment to the TDDFT results in the RPA with local-
field (LF) effects and the TDLDA approximations. At the smallest q the two approxi-
mations provide almost no different results, like we have already seen for q ≃ 0 at the
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Figure 8: Silicon dynamic structure factor S(q,ω) for different transferred momenta q along the [111]
direction (from Ref. [51]). Red lines: experimental inelastic X-ray spectrum (IXSS) taken at the Eu-
ropean synchrotron radiation facility (ESRF); green dashed lines: TDDFT in the RPA with local-field
effects approximation; black lines: TDDFT in the ALDA approximation.

example of graphite (Figure 6). Exchange and correlation effects, as accounted by the
adiabatic LDA exchange-correlation kernel, are negligible at the lowest q but become
more important with increasing q. At q = 0.80 a.u., we observe an already marked dif-
ference of TDLDA with respect to RPA in the direction of an improved agreement with
the experiment. At the largest q, TDLDA and RPA present large differences, especially
in the low-energy spectral range where TDLDA is in an almost quantitative agreement
with the experiment. Two conclusions can be drawn: (1) in the energy-loss function,
exchange and correlation effects are important at the largest transferred momenta;
(2) adiabatic LDA is a good approximation to the TDDFT exchange-correlation kernel
at least on the energy-loss function low-energy range.

In Figure 9, we focus on the q = 1.32 a.u. to provide an analysis with more details.
The effect of local fields can be appreciated as nonnegligible by comparingRPALF and
NLF spectra. Local-fields have the effect to push spectral weight from low to high en-
ergies. Surprisingly, the RPA NLF result appears closest to the experiment. Inclusion
of exchange-correlation effects on top restores a good result, as if there were a com-
pensation between LF and xc effects. However, a more careful analysis shows that the
RPA NLF result cannot even qualitatively capture important aspects. At 17 eV the ex-
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Figure 9: Silicon dynamic structure factor at q = 1.32 a.u. along the [111] direction (from Figure 4 of
Ref. [42] and Figure 1 of Ref. [51]). Red line: IXSS experiment [52, 51]; short-dashed brown line: TDDFT
in the RPA without local-field effects (NLF) approximation; long-dashed green line: TDDFT in the RPA
with local-field (LF) effects; black continuous line: TDDFT in the ALDA approximation (TDLDA); blue
dot-dashed line: TDLDA plus lifetime effects.

periment presents a characteristic asymmetric feature (small peak/shoulder followed
by a steep rise) typical for a Fano resonance [53]. This is the interpretation given by
Schülke et al. [54] by using a model. The Fano resonance would result from the inter-
action of the silicon plasmon ∼17 eV discrete excitation (see the q ≃ 0 EELS in Figure 5)
with the continuum of electron–hole excitations. In Figure 9 we can see that TDLDA
is in a quantitative agreement with the experiment in the low-energy range and up
to 22 eV. The 17 eV asymmetric feature is perfectly reproduced by TDLDA. This is also
the case for the RPA LF result, apart from an underestimation of the spectral intensity.
On the other hand, we observe a peak at 17 eV in the RPA NLF result, but we do not
observe the characteristic asymmetry with the following steep rise. We can see that
local-fields related to nondiagonal elements of the microscopic dielectric matrix play
an important role in the Fano mechanism.

Finally, we observe that the TDLDA result starts to present deviations from the
experiment beyond 22 eV. We observe well-defined peaks, which are however in cor-
respondence to perceptible structures in the experiment. This disagreement has been
attributed to lifetime effects [51] that in principle are accounted by the exact exchange-
correlation kernel fxc of TDDFT but not by the TDLDA approximation. An approxi-
mative inclusion of such effects, as by introducing a Fermi-liquid imaginary part to
the single-particle energies or by adding an equivalent non-Hermitian kernel f LFxc [51],
would produce a better result like the TDLDA + Lifetime spectrum of Figure 9. From
the present example we can conclude that the adiabatic LDA approximation can al-
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ready bring an important part of exchange-correlation effects but of course presents
its limits. One of them is certainly the lack of lifetime effects.

We can think that the very good performances of TDDFT on the energy-loss func-
tion and related observables we have shown so far are restricted only to particularly
simple systems, like silicon, graphite, and graphene. Wemay wonder about the limits
and a breakdown of TDDFT on a more complex system, like, for example, strongly-
correlated systems. In reality, TDDFT is in principle an exact theory to calculate neu-
tral excitation and optical/energy-loss spectra. This is granted by the Runge–Gross
theorem and all the formal developments of the theory. So exact, nonapproximated
TDDFT is able to describe energy-loss spectra no matter the condensed matter sys-
tem. However, we might ask about the limits of the adiabatic LDA approximation and
a breakdown of TDLDA on more complex systems. High-temperature superconduc-
tors cuprates can certainly be considered a severe workbench to check the validity of
TDLDA. The cuprate pairingmechanism allowing such high critical temperatures is so
far unknown, albeit 30 years of theoretical efforts. A large part of the scientific com-
munity believes that the pairing mechanism and superconductivity are related to a
strong correlation physics. They certainly show a nonconventional, not yet explained
physics. Checking the validity of TDLDA on the energy-loss function of cuprates can
represent a severeworkbench for theALDAapproximation. The energy-loss function is
in particular related to the screening of the system and so also to antiscreening ranges
where the pairing is going to occur. So, study of the energy-loss function and of the
screening is not even a marginal one for the purpose of understanding superconduc-
tivity mechanisms.

In Figure 10, we report the dynamic structure factor S(q,ω) of YBCO (YBa2Cu3O7)
as a function of exchanged energy and momentum [55]. The experimental S(q,ω) has
been measured by an IXSS experiment at the European Synchrotron Radiation Facil-
ity (ESRF) on a YBCO sample in the normal phase. The theoretical spectra are TDDFT
calculations in the RPA with local field effects and ALDA (TDLDA) approximations.
Already at a first look, the complexity and the physical richness of this system are
immediately evident. We cannot enter into the detailed interpretation of all the exci-
tations in YBCO, like we did for graphite, and their effect on the dielectric screening.
This can be found in the original reference [55]. Here we just only report that even in
YBCO the TDLDA approximation does not breakdown and is perfectly able to describe
and interpret almost all excitations together with their dispersion in the experimental
dynamic structure factor (apart from the energy region D+E in the figure, for which a
discussion is provided in [55]). Although the spectra reported here and in Ref. [55] refer
to the normal, nonsuperconducting phase of YBCO, it can nevertheless be considered
a success of TDDFT. Manifestations of a nonconventional physics are indeed already
present in the normal phase, and the whole phase diagram of cuprates still awaits for
a coherent explanation.
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Figure 10: Inelastic X-ray scattering spectra (IXSS) in YBCO (Ref. [51]). The dynamic structure fac-
tor S(q,ω) is plot in false colors (rightmost bar) as a function of exchanged momentum and energy.
The first two panels refer to TDDFT calculations of S(q,ω) in the RPA (with local field effects) and
ALDA (TDLDA) approximations, whereas the third is the IXSS experiment taken at the European syn-
chrotron radiation facility (ESRF). The most prominent spectral features are labeled A-G on the ALDA
and experimental plots. The nominal core-electron excitation energies are marked with dashed lines
and labeled in the RPA plot. The dispersion of features C and D are marked with dots as a guide for
the eye.

13 Optical spectroscopy: TDLDA drawbacks

We begin this section by presenting an example of application to the study of optical
properties where TDDFT and theory brought an important contribution: the study of
the optical visual degradation of Leonardo Da Vinci’s iconic self-portrait (Figure 11,
[56, 57]). Diagnostic studies of the state of conservation and degradation causes and
rates of artworks are an invaluable information for conservators and restorers to estab-
lish the best conditions for their public enjoy, if suitable, or to plan possible restora-
tions. Access to the most precious or most degraded artistic heritage by intrusive and
destructive experimental techniques is very often refused by art critics and operators.
This was the case of the Leonardo Da Vinci’s self-portrait, red chalk on paper, nowa-
days not anymore exposed to public and external agents. For a diagnostic study of its
conservation state, the acquisition of optical spectra by only reflection under expo-
sure to ordinary (nonintense and noncoherent) light were solely agreed. Without the
possibility of an ordinary chemical analysis of a small piece of the artwork or other
experimental manipulations, resort to theory was the only possibility to characterize
the state of degradation of the masterpiece.
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Figure 11: Experimental (lines) and TDDFT theoretical (symbols) optical absorption spectra (right) of
three spots on Leonardo Da Vinci’s iconic self-portrait (left, Pr2 in blue, Pr1 in red, Pv in black and
taken on the back side of the portrait). The atomic structure of pristine cellulose and three repre-
sentative oxidized groups (evidenced by dashed circles) of aged cellulose, diketone, ketone, and
aldehyde is shown in the middle panel. Reproduced from Figures 1, 2, and 3 of [56] with the permis-
sion of AIP Publishing.

TDDFT optical spectra calculations by the DP code were carried out for pristine cel-
lulose, main component of paper, and several products of cellulose ageing, oxidized
groups such as diketone, ketone, and aldehyde (some of them shown in Figure 11)
that act as chromophores and are responsible for the yellowing of cellulose. Theoret-
ical TDDFT spectra were calculated and then used as a reference to characterize ex-
perimental spectra measured at different spots on the artwork, chosen to explore the
largest range of its conservation state, from the best conserved to the most degraded
points (indicated on the portrait in Figure 11). A linear combination of TDDFT spectra
corresponding to single oxidized groups was determined by a best fit with the exper-
imental spectra. The linear coefficients of the fit provided an estimate of the concen-
tration of chromophores responsible for paper ageing and made it possible to obtain
chemical information of the artwork by nondestructive and nonintrusive optical mea-
sures. This has allowed us to establish the present status of the masterpiece – to be
compared with future analysis for a measure of the degradation rate – and the main
causes of degradation along the artwork history, e.g.,moisture, to be carefully avoided
in any future conservation program.

The very good match between TDDFT and measured spectra in Figure 11 is effec-
tive, i.e., we cannot obtain it by simply adjusting the fitting coefficients in a linear
combination of spectra of other chromophores or completely different materials that
are certainly absent from the artwork [56, 57]. We can be surprised by the accuracy of
TDDFT calculations that were carried out using the adiabatic local-density approxi-
mation (ALDA or TDLDA). As we will illustrate in the following, TDLDA present severe
drawbacks on optical spectra of infinite bulk solids, like, for example, an underesti-
mation of the optical absorption onset. For instance, the TDLDA gap of bulk cellulose
was found to be 5.15 eV, whereas cellulose does not absorb light above 200 nm (below
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6 eV). However, the yellow color seen in aged paper is mainly due to oxidized cellu-
lose chromophores, absorbing below 5 eV and in the highest energy band of visible
light, violet and blue, and continuing to scatter lowest energy yellow and red pho-
tons. These absorption peaks are due to transitions between electronic states that are
localized around the oxidized groups, in practice to be considered as defects of the
cellulose bulk crystal. So, the orbitals involved in this range of the optical spectrum
and in these transitions are very much localized on the chromophore defects and do
not mix with delocalized periodic Bloch states. A local exchange-correlation approxi-
mation can be expected to work reasonably well in these situations, and this explains
the good results obtained by Refs. [56, 57]. So, on optical spectra of defects, like also
in isolated systems as atoms or molecules, TDLDA works reasonably well and much
better than in periodic solids, as we will see in the next example.

TDDFT is an in principle exact theory to calculate all neutral excitations and so
also optical spectra. The question is whether the most common TDDFT approxima-
tions RPA and TDLDA are good enough to capture the physics of excitations of, e.g.,
optical absorption. Figure 12 presents the experimental imaginary part of the macro-
scopic dielectric function ℑε(ω) (red dots), directly related to the optical absorption,
measured by the ellipsometry experiment of Ref. [58] in bulk silicon. In the same fig-
ure, we show TDDFT calculations, as by the DP code [41], of the RPA with and without
LF effects andTDLDAspectra.We remark “some”qualitative agreement of TDDFTwith
the experiment:we observe in the experiment three peaks, at 3.5, 4.3, and 5.3 eV,which

Figure 12: Optical absorption in silicon. Left (reproducing Figure 2 of Ref. [42]): Imaginary part of
the macroscopic dielectric function in the RPA without (NLF, green dot-dashed line) and with local-
field effects (blue dashed line), TDLDA (black continuous line), ellipsometry experiment (red dots
from Ref. [58]). Right (reproducing Figure 1 of Ref. [59]): Imaginary part of the macroscopic dielectric
function in the RPA (blue dashed line), GW-RPA (green dot-dashed line), Bethe–Salpeter equation
approach (BSE, brown continuous line), ellipsometry experiment (red dots from Ref. [58]).
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are more or less reproduced by three structures in the theory, whether in the RPA or
TDLDA approximation. Comparing RPA curveswith LF andwithout them (NLF), local-
field effects seem to have the same weight as exchange-correlation effects. We also re-
mark that there is no improvement in going from theRPA to the TDLDAapproximation.
The agreement with the experiment is unsatisfactory for two reasons:
(1) The TDLDA (or RPA) optical onset appears red-shifted by ∼0.6eV with respect to

the experiment. Not only the onset, but also the whole spectrum seems rigidly
red-shifted with respect to the experiment by those 0.6 eV.

(2) The height of the first lowest energy peak seems underestimated by the theory
with respect to the experiment. Both in RPA and TDLDA, this peak appears like
a shoulder of the main peak, whereas in the experiment, it is of almost the same
height. Nevertheless, we remark some agreement between theory and experiment
on the height of the second and third highest energy peaks.

The cause of the first problem seems quite easy to trace. Indeed, 0.6 eV is exactly
the band gap underestimation of the DFT-LDA Kohn–Sham electronic structure with
respect to the true, quasiparticle electronic structure in silicon. A quasiparticle self-
energy calculation, as in the GW approximation [60, 61] within the framework of
many-body perturbation theory, takes into account in a satisfactory way correlation
electron–electron (e–e) interaction effects and corrects the DFT band gap underesti-
mation. A GW-RPA spectrum, calculated using an RPA approximation on top of a GW
electronic structure, appears blue-shifted with respect to the KS-RPA spectrum by a
0.6 eV (see the GW-RPA curve in Figure 12, right). GW-RPA improves on the position
of the optical onset and all other structures. The remaining discrepancies with the
experiment, in particular the underestimation of the first low-energy peak, have to be
ascribed to electron–hole (e–h) interaction effects stillmissing in theGW-RPAapproxi-
mation to the polarizability. Inclusion of e–h interaction diagrams to the polarizability
(vertex corrections), as by solution of the Bethe–Salpeter equation (BSE) within the
framework of many-body perturbation theory, fully captures all the physics involved
in optical spectroscopy. This is demonstrated by a BSE calculation [59] of the silicon
optical absorption. The BSE curve (Figure 12, right) corrects the underestimation of
the first peak and is in good agreement with the experiment.

Apparently, BSE seems also to slightly blue-shift the GW-RPA spectrum. How-
ever, accurate verification of results [59] has shown that in silicon there is negligible
(<0.1 eV) BSE correction to GW excitation energies. The first absorption peak in sil-
icon is not really a bound exciton, i.e., an electron–hole bound state. Nevertheless,
its strength is strongly determined by electron–hole interaction (excitonic) effects. So
the reshape of the spectrum from GW-RPA (without e–h) to BSE (with e–h interaction
effect) is just only a redistribution of oscillator strength fromhigh to low energies. This
transfer of oscillator strength from high to low energy is the typical e–h interaction
excitonic effect in small band-gap semiconductors. In these systems the screening is
intermediate between metals and insulators.

 EBSCOhost - printed on 2/13/2023 8:46 PM via . All use subject to https://www.ebsco.com/terms-of-use



TDDFT, excitations, and spectroscopy | 133

The effect of e–h interactions is much more spectacular in large band-gap insu-
lators, where interactions are almost unscreened. An electron promoted by a photon
into a conduction state interacts stronglywith the hole left in the valence band, so that
they can be bound into an exciton at an energy level lower than a pair of free electron
and hole. In the optical absorption spectrum, excitons appear as discrete peaks at an
energy lower than the band-gap, which corresponds to the onset of the continuum of
electron–hole pairs. This is particularly evident in solids of rare gas elements.

In Figure 13, we report the experimental [62] optical absorption spectrum (red
dots) of solid argon. The band-gap in solid argon is 14.2 eV, and the dielectric constant
is very close to 1. At a low energy, we observe discrete peaks, which are available opti-
cal excitations of the systemwithin the band-gap: this is a whole series of bound exci-
tons due to e–h interaction effects. The energy difference between the band-gap/onset
of the continuum and the exciton is defined as the exciton binding energy. In solid ar-
gon the binding energy of the first exciton is up to 2 eV, among the largest exciton
binding energies. In Figure 13, we present also TDDFT spectra. Both the RPA and the
TDLDA approximations miss completely the excitons and produce an unsatisfactory
result, unlike silicon far to be even qualitative. Within many-body perturbation the-
ory the GW-RPA approximation corrects the onset of the continuum, aligning it to the
band-gap energy, but still misses the excitons. Only the Bethe–Salpeter equation in-
troduces the right physics to capture excitons. In the optical absorption of solid argon
the BSE correction to GW-RPA is spectacular.

Figure 13: Optical absorption in solid argon (from Ref. [63]). Left: red line, experiment; blue dashed
line, RPA; brown continuous line, TDLDA. Right: red line, experiment; dot-dashed green line, GW-
RPA; black continuous line, Bethe–Salpeter equation result. There are two exciton series, the spin
triplet n and the singlet n′. Nonspin-polarized calculations are supposed to reproduce only the spin
singlet n′ series. The band-gap is 14.2 eV in argon.

 EBSCOhost - printed on 2/13/2023 8:46 PM via . All use subject to https://www.ebsco.com/terms-of-use



134 | V. Olevano

Within many-body perturbation theory, the Bethe–Salpeter equation on top of the
GW approximation proved to contain the right many-body physics to describe opti-
cal properties of condensed matter systems. On the other hand, within TDDFT, the
RPA and also the ALDA approximations do not contain suchmany-body physics. Note
that this is a drawback of the approximations, not of TDDFT, which is in principle an
exact theory for optical excitations. The problem is that the ALDA approximation is
missing some important characteristics of the exact xc kernel directly related to e–h
interaction effects.

14 Beyond TDLDA: long-range contribution (LRC)
kernel and developments

Both in solid argon and in silicon (Figures 12 and 13), we have seen that the TDLDA
optical absorption is almost coincident with the RPA. A local kernel like ALDA has in
practice no effect. This can be explained by the following argument [41]: the xc kernel
appears in equation (19) only in a term χKSfxc, where it is coupled to the Kohn–Sham
polarizability χKS. In the optical limit as q→ 0, the Kohn–Sham polarizability goes
to zero as limq→0 χKS(q) ∼ q2 → 0, as it can be seen from equation (33) and from the
fact that ρKSij (q) ∼ q → 0. A local kernel like ALDA behaves as a constant as q → 0,
limq→0 f ALDAxc = const, so that the term limq→0 χKSf ALDAxc = 0 goes to zero in the optical
limit. This explains why ALDA results cannot differ from taking tout court fxc = 0, like
in RPA. To depart fromRPA,wehave to consider xc kernels containing nonlocal contri-
butions. First attempts having introduced semilocal or short-range nonlocality [42, 41]
proved to be still not sufficient. The true exact kernel of insulators and semiconduc-
tors must contain an ultranonlocal, long-range 1/q2 Coulomb-like contribution. In the
optical limit an ultranonlocal kernel diverges, limq→0 fxc =∞, in such a way to have a
finite contribution from the χKSfxc term. This is the onlyway for an xc kernel to produce
in the optical limit a departure from the RPA fxc = 0 approximation [64].

A first step toward the solution of TDLDA drawbacks on optical excitations in
semiconductors and insulators was the introduction of the so-called long-range con-
tribution (LRC) only, also dubbed α/q2 kernel for its mathematical shape in reciprocal
space [41, 65],

f LRCxc (q) =
α
q2
. (34)

Here α is a material-dependent parameter that should reduce to zero in metals and
in jellium (homogeneous electron gas) model, which is known not to present an LRC
contribution in its kernel. From its real space expression

f LRCxc (r, r′) =
α

4π|r − r′|
, (35)
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it can be seen that this kernel contains an ultranonlocal, i.e., a long-range Coulomb-
like contribution. This is an important difference with respect to the local ALDA ker-
nel (25), but also with respect to nonlocal or semilocal kernels [42]. As we will see,
this is the characteristics that must be owned by the true exact xc kernel of insula-
tors and semiconductors to properly account for e–h interaction and, more generally,
many-body effects.

When introducing a kernel of the form α/q2 [64], the optical absorption (TDDFT
KS-LRC curve in Figure 14) finally starts to differ appreciably fromRPA and TDLDA.We
observe a redistribution of spectral weight from low to large energies when taking a
positive LRC (α > 0). At increasing α, the first peak is more andmore damped, until we
can achieve a situation where the optical onset arises at larger energies, thus correct-
ing the Kohn–Sham band-gap underestimation. However, for a kernel of the simple
only one-parameter form α/q2, it is difficult to correct both RPA drawbacks, i.e., the
underestimation of the optical onset (lack of e–e interaction effects) and the underes-
timation of the low-energy spectral weight (lack of e–h excitonic effects). Of course,
the true exact kernel should correct the Kohn–Sham independent particle polarizabil-
ity χKS for both effects. In general the kernel can always be split into two components:

fxc = f e–exc + f e–hxc . (36)

The first component introduces e–e self-energy effects and brings the Kohn–Shampo-
larizability χKS to a quasiparticle GW-RPA polarizability χQP:

χQP = χKS + χKSf e–exc χQP, (37)

Figure 14: Optical absorption in silicon. Imaginary part of the macroscopic dielectric function in the
LRC on top of χKS (green dot-dashed line, reproducing with higher convergence solid line of Fig-
ure 6.5 in Ref. [41]), LRC on top of χQP (black continuous line, reproducing Figure 1 of Ref. [65]), TDDFT
RPA (blue dashed line), and ellipsometry experiment (red dots from Ref. [58]). Right: Relationship
|α| parameter (y-axis) dielectric constant ε−1∞ (x-axis) (reproducing Figure 12 of Ref. [67]) for several
materials.
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whereas the second term introduces e–h excitonic effects and leads to the final full
polarizability χ:

χ = χQP + χQP(w + f e–hxc )χ. (38)

In practice [65], we can skip the first step and directly calculate χQP by the Adler–
Wiser formula (18), using a rigid scissor operator (SO) correction of Kohn–Sham con-
duction energies with respect to valence. The SO correction can be adjusted to the
ab initio GW band-gap correction, which is in a good agreement with experimentally
measured band-gaps. This should provide a result close to the GW-RPA spectrum of
Figure 12. The remaining task of introducing e–h excitonic effects is then taken by an
f e–hxc = f LRCxc = α/q2 long-range contribution kernel. This term has the task to transfer
oscillator strength in the backward direction, from high to low energies, exactly like
BSE on top of GW (Figure 12). This is done by a negative divergence, α < 0.

The result of this TDDFT SO-LRC approach [65] is presented for silicon in Figure 14.
The TDDFT SO-LRC is in practice as good as the Bethe–Salpeter result with respect to
the experiment, but at a much cheaper computational cost. The BSE and LRC kernels
seem to reproduce the same physics, i.e., the transfer of spectral weight from high to
low energy, characteristic of excitonic effects in intermediate screening semiconduc-
tors. The amplitude of the transfer is modulated by the parameter α, and the direction
is due to its negative sign. The strength α of the divergency should be inversely propor-
tional to the screening in the system. The smaller the screening (large band-gap insu-
lators), the larger α. α is expected to be 0 for metals (e–h interaction fully screened).
In fact, it can be found that an α provided by the linear expression

α = −4.615ε−1∞ + 0.213 (39)

(see also Figure 14), where ε∞ is the dielectric constant of the material, either experi-
mental or RPA (with some correction to the coefficients), can provide results close to
the BSE approach and in a good agreement with the experiment. For silicon, we have
α ≃ −0.2.

This approximation provides a good result for semiconductors and small bandgap
insulators like diamond, but it breaks down for large band-gap insulators (e.g., MgO)
and in particular in systems presenting more than one bound exciton. We can further
complicate the LRC expression, introducing more than one parameter or a frequency
dependence [68, 69] and have some improvement but at the cost of more and more
empirical expressions. Following a less empirical route and by reverse engineering
from theBethe–Salpeter equation,we canderive an expression of the TDDFT xc kernel
related to the BSE kernel Ξ =W , whereW = ε−1w is the screened Coulomb interaction.
This kernel, the dubbed Nanoquanta kernel (NQ) [65, 66, 70–75] can be written in a
diagrammatic condensed form as
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whereG is theGreen function, i.e., the electron (forward) or the hole (backward arrow)
propagator. This kernel is rooted into the Bethe–Salpeter kernel Ξ =W , which intro-
duces an interaction between the electron and the hole (the wiggly line between the
electron and hole propagators). When plugged into the TDDFT equation (19), the NQ
kernel must provide by construction the same result as the Bethe–Salpeter equation.

The Nanoquanta kernel result [63] for solid argon is presented in Figure 15. Like
the Bethe–Salpeter kernel (Figure 13), the NQ kernel is able to reproduce the complete
series of three peaks associated with bound excitons in argon, whereas RPA, TDLDA,
and GW-RPA fail. Note that this Nanoquanta approach has addressed also the other
xc kernel f e–exc term responsible for the e–e interaction self-energy effects. This has
demonstrated that a full TDDFT kernel, able to account for both e–e and e–h, exists
and can be calculated, thoughwith a computational effort not much cheaper than the
many-body GW and BSE approaches.

More recent developments have tried to improve upon the Nanoquanta and LRC
kernels by following self-consistent approaches [76], by relying on beyond LDA, e.g.,
meta-GGA functionals within pure TDDFT [77, 78], and finally, relying on approxima-

Figure 15: Optical absorption in solid argon (from Ref. [63]). Red line: experiment; blue dashed line:
RPA; green dot-dashed line: TDLDA; black continuous line: Nanoquanta (NQ) kernel. There are two
exciton series, the spin triplet n and the singlet n′. Nonspin-polarized calculations are supposed to
reproduce only the spin singlet n′ series. The band-gap is 14.2 eV in argon.
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tions beyond LDA and not routed anymore into the jellium model, toward, e.g., the
jellium-with-gap model [79].

15 Outlook and conclusions

Wehave provided a simple but necessarily incomplete introduction to TDDFT, review-
ing just only the main issues and some of the problems still awaiting for a solution.
Among the main challenges still in front, we can mention: the description of the Ry-
dberg series in atoms (Section 9); double excitations in molecules [80], where two
electrons are promoted to excited states, which questions the validity of the adiabatic
approximation; charge-transfer excitations in organic molecules, that is, excitations
where the electron and hole wavefunctions have small or no overlap; conical intersec-
tions in photochemistry reaction paths (Section 10), where the Born–Oppenheimer
approximation is under question; memory effects in the electron and ion dynamics
(Section 10); many-body effects in optical spectra of solids (Section 14). All these
are problems of the approximations to the exchange-correlation functional, not of
TDDFT theory itself. As illustrated at the example of optical spectra, developments
beyond standard approximations (e.g., adiabatic LDA, GGA, etc.) have the potentiality
to cure or alleviate these problems. For more complete reviews of TDDFT problems,
challenges, developments, and perspectives, we refer to Refs. [81, 82] and references
therein.

We have provided only a few examples where the vast majority of TDDFT appli-
cations mainly lie, excitations and spectroscopy in the linear response regime, and
where also standard approximations work better. We have also shown some exam-
ples of beyond-linear electron and even ion dynamics (Section 10), out of the few
nonlinear TDDFT applications available in the literature. We would like to mention
here very recent applications of TDDFT to nonlinear optics [83, 84], allowing the ac-
cess to multiple photon excitations by intense lasers, second harmonic generation,
and providing spectra in a good agreement with experiments. Next years experimen-
tal developments going in the direction to have more intense and coherent laser and
X-ray sources (like the XFEL facility in Hamburg), with improved spatial resolution
andwith pump and probe setups allowing the study of the time evolution with a reso-
lution achieving the femtosecond and below, will certainly stimulate TDDFT develop-
ments and applications in the same direction. The dynamics of the fragmentation of
the ethene molecule (Section 10) is today an isolated but promising example of what
TDDFT can do in the next years to supplement future experiments, understandmech-
anisms beyond physical, chemical, and even biological processes, and finally achieve
the power of prediction toward the engineering of newmaterials, for example, in pho-
tovoltaics.
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Introduction

Without any doubt, one of the most fundamental properties of a solid is its crystallo-
graphic structure. A thorough understanding of the physical properties of condensed
matter requires a detailed mapping of the atomic structure and its dynamics over
multiple length scales and different time scales. Several methods may provide a
detailed description of the structural organization of matter, such as elastic scat-
tering/diffraction of X-rays, neutrons or electrons, X-ray absorption spectroscopies
(EXAFS and XANES), and magnetic resonance spectroscopies (NMR, NQR). X-ray
diffraction is nowadays routinely applied through laboratory diffractometer setups
run by X-ray tube or rotating anode sources, whereas synchrotron radiation facilities,
owing to their wavelength tunability and high spatial and temporal coherence, afford
additional possibilities of unique experiments such as resonant X-ray diffraction or
coherent scattering.

In broad areas of physics, chemistry, and biology, there is a strong demand for
a precise characterization of the geometric structure and its evolution in time with
respect to the processes governed by this evolution. For instance, the reactivity and
function of molecules and biomolecules are determined by the interplay between
their electronic and geometric structures. Much of today’s condensed matter physics
is dominated by understanding and controlling the interplay between electrons,
spins, and the underlying lattice, giving rise to various ordered/disordered states
with remarkable physical properties. Imaging the dynamics of these three degrees
of freedom at the molecular level is mandatory if a deep theoretical understanding
of materials is to be achieved. As far as atomic configurations are concerned, the
femtosecond vibration of molecular bonds sets a fundamental limit between differ-
ent regimes. The structural dynamics of complex systems built from many atoms
involve intermediates and transition states on a multidimensional energy landscape.
In the solid state, the whole processes may cover 15 orders of magnitude in time (from
femtoseconds to seconds) and more than seven orders of magnitude in space (from
subangstroms tomicrometers). Detailed information on the dynamic behavior of such
systems may be provided by various time-resolved techniques that employ a pump–
probe scheme in a very general sense. The pump is used to perturb the system from
its equilibrium state, whereas the probe monitors the subsequent response of struc-

https://doi.org/10.1515/9783110433920-005
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tural, electronic, or spin degrees of freedom. Depending on which degree of freedom
is to be monitored, various time-resolved techniques have been developed over the
last few decades. Time-resolved photoelectron spectroscopy allows for a mapping of
the transient energy distribution of the electrons. Time-resolved optical spectroscopy
(transmission, reflectivity, second harmonic generation) probes an optical response
that is sensitive to carrier distribution, i.e., the electronic response of the solid after
perturbation. Time-resolved vibrational spectroscopy (infrared or Raman) explores
the potential energy landscape of the ground or excited states. Besides these tech-
niques, time-resolved X-ray and electron scattering have the potential to monitor
directly the atomic positions in real time and provide direct evidence for the atomic
displacements as a function of time.

Figure 1 gives the time scales of a range of chemical and physical phenomena oc-
curring in solution or in the crystalline phase. Electronic motions, exchange interac-
tions between electronic spins, are the fastest processes in the femtosecond and sub-
femtosecond regimes. Atomic motions and molecular vibrations occur on a slightly
slower time scale (femtosecond to picosecond); for instance, the stretching vibration
frequency of a carbonyl C=O chemical bond is of order 52 THz (∼1 720cm−1), so that it
takes nearly 19 fs for completing one vibration period. Optical and acoustic phonons
(lattice vibration), as well as vibrational cooling, occur on the picosecond time scale.
Heat diffusion and thermal transfers in crystalline solids happen on the microsecond
to millisecond time scale.

Figure 1: Timescales of various chemical and physical processes in solution and crystalline solids.

Crystalline materials correspond to a very special case characterized by a regular
structural organization, periodic in space (translational invariance) and highly sym-
metric. The physical properties of crystals are defined by relations between measur-
able quantities, which formost of them (exceptmass and volume) have to be specified
in direction and magnitude: crystals are intrinsically anisotropic, and their physical
properties are described by tensors.

The central concern of this chapter may be formulated as follows: we are in-
terested in the structural response of a solid while it is driven by an applied time-
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dependent force that modifies its properties. By studying the response of the system,
that is, how it evolves irreversibly toward a final state or recovers reversibly to the
equilibrium state, we can learn important information on the system itself.

Figure 2 describes a very simple illustration of structural perturbation of a molec-
ular crystalline solid built from diarylethene molecules, which exhibit an open-ring
molecular conformation transformed to a closed-ring conformation upon ultraviolet
(λ = 365nm) laser irradiation. This process has a purelymolecular origin, but the pho-
toinduced structural change triggers amicroscopic local distortion of the crystal pack-
ing, which in turn transforms to a macroscopic single-crystal deformation: a square
crystal with corner angles of 88° and 92° reversibly changes to a lozenge shape with
corner angles of 82° and 98°. In parallel, the optical absorption change turns the crys-
tal from transparent to blue.

Figure 2:Modification of macroscopic physical properties associated to a photoinduced molecular
structural change. The change from the open- to the closed-ring conformation of the 1,2-bis(2-ethyl-
5-phenyl-3-thienyl)perfluorocyclopentene molecules in crystals upon ultraviolet laser irradiation
triggers modifications of crystal shape and optical absorption [1]. Reprinted by permission from
Macmillan Publishers Ltd, copyright (2007).

In this chapter, we describe the approaches developed to determine the evolution of
the structural organization of matter in the time domain. We present the methods,
instruments, and applications from various disciplines (physics, chemistry, biology)
and perspectives. Hereafter, we restrict ourselves to X-ray scattering methods applied
to crystalline and noncrystalline materials. X-rays are highly appropriate for prob-
ing the structural dynamics of matter for several reasons: (i) their short wavelength
(nearly 1 Å and below) is compatible with interatomic distances allowing a high spa-
tial resolution to be achieved, (ii) they present high penetration depth in matter, and
(iii) pulsed X-ray sources are readily available (synchrotron radiation and X-ray Free-
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Electron Laser facilities). Progress in time-resolved X-ray scattering has closely fol-
lowed the advances in X-ray sources and techniques over the years. The development
of optical laser sources was certainly the very first breakthrough for fast time-resolved
experiments. Over the last decades, the advent of third-generation synchrotron radia-
tion facilities provided the brightest source of tunable X-rays, with pulse durations of
the order of tens to hundreds of picoseconds. The setting up of table-top laser plasma
sources in the late nineties delivered a real revolution opening the field to femtosec-
ond time resolution, albeit with rather limited flux. More recently, the advent of X-ray
Free-Electron Laser (XFEL) sources and slicing modes at synchrotrons already push
the frontier of temporal and spatial resolution, with fantastic beam characteristics in
terms of peak brightness, spatial coherence, and pulse duration, clearly opening a
new area of ultrafast time-resolved X-ray scattering.

Structural dynamics is still at its infancy; many new open questions related to
chemical, physical, or biological processes are still to be solved, facing important
scientific and technological challenges. Time-resolved structural studies hold the
promise of brilliant scientific advances in the time domain down to attoseconds for
the near future.

This chapter is organized as follows. In Section 1, we introduce time in the general
formalism of X-ray scattering of noncrystalline and crystalline systems. Experimental
methods are detailed in Section 2. Selected examples of structural dynamics in sol-
vated molecules, nanoparticles, and crystalline solids probed by time-resolved X-ray
scattering techniques are described in Section 3.

1 Time-resolved X-ray scattering formalism for
a driven sample

In this section, we derive general equations for time-resolved X-ray scattering. The for-
malism should be general enough to cover crystal, nanocrystal, or solution scattering
with time resolution from femtosecond to second.

In a very general case (see the chapter Static structural analysis of condensed mat-
ter), X-rays are scattered by the electron density distribution of the sample, which is
simply the sum of all the contributions of the Nat atoms at position ri constituting the
entire probed sample:

ρ(r) =
Nat

∑
i=1

ρi(r − ri). (1)

In a first approximation, called the Independent Atom Model (IAM), the atomic elec-
tron density distribution ρi(r− ri) is considered spherical and unperturbed by the for-
mation of interatomic chemical bonds (independent atoms). This approximation is
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valid for most of the cases, especially if we are interested only in the structural anal-
ysis. More specific formalisms based on a multipolar expansion of the atomic elec-
tron density have been developed in the literature to go beyond this approximation;
the reader is referred to the more specialized literature for further information on that
topic [2]. The total electrondensity ρ(r) introducedhere from the experimental point of
view is the fundamental observable of DFT-based calculations discussed in the chap-
ter DFT calculations of solids in the ground state.

When an incident X-ray beam interacts with a complex system built from a large
collection of atoms, whether it is a liquid, a small cluster, or a crystalline solid, the
complex amplitude of the scatteredwave in a general direction is described in electron
units by

A(S) =
Nat

∑
i=1

fie2𝚤πS⋅ri , (2)

where fi is the atomic form factor for an atom i situated at the position ri, fi is the
Fourier transform of the corresponding spherical atomic electron density ρi(r − ri),
S is the scattering vector defined by (s − s0)/λ, where s0 and s are unit vectors in the
directions of the incident and diffracted beams, and λ is the X-ray wavelength. The
scattered intensity is obtained as

I(S) = A(S) × A∗(S) =
Nat

∑
i=1

Nat

∑
j=1

fifje2𝚤πS⋅(ri−rj). (3)

According to equation (3), it is important to note that the X-ray scattered signal does
not provide any information on the instantaneous atomic positions, but rather on the
pairwise interatomic vectors ri − rj . This equation can be indistinctly applied to any
kind of sample, whether it is crystalline or noncrystalline. Even at absolute zero tem-
perature, the atoms are vibrating around their equilibrium positions, which we can
simply describe in a first approximation by a harmonic behavior. The correspond-
ing function describing the nuclear configurations is the probability density func-
tion P(u). The dynamic atomic electron density is simply the convolution of the static
(“frozen” lattice approximation) electron density by the probability density function:

ρdynamic(r) = ρstatic ⊗ P(r) = ∫
V
ρstatic(r − u) × P(u)du. (4)

This leads byFourier transform to the atomic form factor being theproduct of the static
atomic form factor with the Fourier transform of the probability density function:

f (S) = fstatic(S) × T(S). (5)

In the isotropic harmonic approximation, the probability distribution P(u) averaged
over all populated energy levels takes aGaussian formP(u) = 1

√2πU e
−u2
2U , whereU = ⟨u2⟩
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is the mean square displacement of the atoms around their equilibrium position req
due to thermal vibrations (Figure 3). Following this, we have

T(S) = e−2π2US2 = e−8π
2U sin2 θ

λ2 = e−B
sin2 θ
λ2 , (6)

where T(S) is called theDebye–Waller factor. It describes the attenuation of X-ray scat-
tering or coherent neutron scattering caused by thermal motion; it depends on the
scattering vector S (or the scattering angle θ in the isotropic approximation).

Figure 3: Scheme of harmonic potential (left) and associated probability density function due to
atomic displacements (right), where u is the displacement of the atom around its equilibrium posi-
tion req, and U is the atomic mean square displacement.

During a conventional X-ray scattering experiment, the duration of the X-ray funda-
mental interaction with matter is of the order of a few femtoseconds, whereas the
whole experimentmay last several hours.As a consequence, during the scatteringpro-
cess, the X-rays “see” the atoms of the crystal as frozen at their instantaneous position
spatially distributed in the crystal according to their probability distribution function
around the equilibrium position. The factor T(S) corresponds therefore to a spatial
and temporal average of the atomic positions.

Consider now the time-resolved case. When the system is subject to a perturba-
tion, its electron density is modified, and so is the potential energy hypersurface,
which induces forces on the nucleus. As a response, the structure evolves as a func-
tion of time spanning the complete time scales from fs to s. We have thus to consider
the total electron density as a time-dependent quantity ρ(r, t) that interacts with the
incident X-ray pulse whose temporal shape is defined by X(t): this is the semiclassical
approximation. Equation (3) becomes

I(S, t) = ∫
∞

0
X(t)

Nat

∑
i=1

Nat

∑
j=1

fifje2𝚤πS⋅(ri(t)−rj(t))dt. (7)

The goal here is to derive the transient electron density as a function of time and build
a comprehensive time-dependent structural model. The very general experiment is
depicted in Figure 4. It consists in (1) pump the sample with an appropriate pertur-
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Figure 4: General scheme of a time-resolved experiment. The measured signal I(S, t + Δt) is used
to model the time-dependent structural response to the perturbation. The dynamical process to be
studied may be reversible or irreversible.

bation of duration τpump, (2) probe the sample using X-ray scattering and acquire the
scattered signal I(S, t) during a period τprobe, and (3) build a structural model out of
the time-dependent scattered signal.

Equation (7) states that thedynamic electrondensity distribution,which is probed
in a time-resolved experiment, is the average electrondensity integrated over theX-ray
probe pulse. In this case, depending on the time resolution of the scattering experi-
ment τprobe and on the time resolution of the pump perturbation τpump, different sit-
uations may be considered. For a time resolution longer than the characteristic time
of atomic vibrations (few tens of femtoseconds to picoseconds), the probability den-
sity function can describe appropriately the atomic vibrational behavior just like a
conventional nontime-resolved experiment. For ultrafast measurements, two situa-
tions have to be considered. When the atoms are perturbed and displaced from their
equilibrium positions in a noncoherent manner, the time average approximation is
not valid anymore, whereas the spatial average still holds. Accordingly, the system
is simply seen during τprobe in a static configuration with atoms displaced from their
equilibrium positions, as illustrated in Figure 5 (a); the probability density function
is still a good approximation. When a coherent perturbation is produced, leading to
a coherent displacement of the atoms, neither the temporal nor the spatial average
holds (Figure 5 (b)).

Depending on the sample considered, crystalline solid or solution, this time-
resolved scattering formalism has to be adapted. It is worth noting that in the solution
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Figure 5: Instantaneous displacement of neighboring atoms during an (a) ultrafast incoherent and
(b) ultrafast coherent perturbations.

scattering scientific community, the scattering vector is denoted q, whereasH is used
in the crystallographic community. For consistency with the corresponding literature,
we use these two definitions appropriately.

1.1 Time-resolved scattering of noncrystalline samples

A noncrystalline sample such as a solution (solute molecules diluted in a solvent) is
constituted from a statistical ensemble of subsystems (molecules) randomly oriented,
where only short-range ordering can develop. A solution is considered as an isotropic
statistically homogeneous sample. We are thus interested in finding the average scat-
tered intensity from equation (3) when the constituting molecules are allowed to take
with equal probability all orientations in space. In terms of q = (4π sinθ)/λ, the aver-
age for each exponential term is given by

⟨e2𝚤πS⋅rij⟩ = 1
4πr2ij
∫
π

ϕ=0
e𝚤qrij cosϕ2πr2ij sinϕdϕ =

sinqrij
qrij
, (8)

where rij = |ri − rj|. The scattered intensity is thus simply given by

I(q) = S(q) =
Nat

∑
i=1

f 2i +
Nat

∑
i=1

Nat

∑
j≠i=1

fifj
sinqrij
qrij
, (9)

which is also called theDebye scattering equation. It is important to note that owing to
the spherical average, only the magnitudes of the interatomic distances are involved
in equation (9), contrary to the more general equation (3). For practical modeling,
the scattering can be decomposed into three contributions (Figure 6): a solute-only
term (yellow arrows), a solvent only term (blue arrows), and a solute–solvent cross
correlation term (green arrows):

S(q) = S(q)solute + S(q)solute−solvent + S(q)solvent. (10)

The schematic of a pump–probe time-resolved X-ray solution scattering experi-
ment is given in Figure 7. The sample is contained in a capillary and consists of protein
molecules that are periodically excited by a pulsed laser and then probed by pulsed
X-rays. The time-dependent scattering signal is accumulated at various time delays t
on a bidimensional detector.
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Figure 6: Schematic representation of the three contributions to the scattered signal of a molecule
dissolved in water. Yellow arrows depict atomic pairs of the solute only, blue arrows depict atomic
pairs of the solvent, and green arrows correspond to solute–solvent atomic pairs.

Figure 7: Schematic of a time-resolved X-ray solution scattering experiment. The solution is con-
tained in a capillary or flowed through a liquid jet, which is irradiated by an optical laser pump
pulse. X-ray pulses generated by a synchrotron are selected after a time delay t using a combi-
nation of high-speed choppers and shutters and sent to the sample. The reference scattering
data recorded before the laser pulse are subtracted from the positive time delay data to provide
the difference net scattering signal ΔS(q, t) [3–7]. Reprinted from [4] with permission from ACS
(http://pubs.acs.org/doi/10.1021/acs.accounts.5b00198).
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In a highly diluted solution, the total scattering signal contains a large background
scattering from the solvent, so that the net signal on the photoinduced structural re-
organization within the sample is derived in a pump–probe sequence from the dif-
ference in the pre- and post-pump scattered intensity ΔS(q, t) at a pump–probe time
delay t. It may be decomposed as

ΔS(q, t) = ΔS(q, t)solute + ΔS(q, t)solute−solvent + ΔS(q, t)solvent. (11)

The term ΔS(q, t)solvent is very sensitive to the thermodynamic variables of the sol-
vent, such as temperature, pressure, and density. These variables are modified due
to the energy transfer from light-absorbing solute molecules to the surrounding sol-
vent molecules. The change in the solvent scattering at a given time delay t may be
described by two hydrodynamic variables as [8]

ΔS(q, t)solvent = (
𝜕S
𝜕T
)
ρ
ΔT(t) + (𝜕S

𝜕ρ
)
T
Δρ(t), (12)

where ΔT(t) and Δρ(t) represent the temperature and density changes of the solvent
after the laser pulse. Building a structural model out of the difference in the scattered
signal ΔS(q, t) requires first to define all the k different species involved in the com-
plete transformation, equilibrium species, and transient species and to define their
characteristic individual scattering functions Sk(q). The time evolution is encoded in
kinetic functions ck(t) defining the respective time-dependent concentration of the k
species. Accordingly, equation (11) is rewritten as

ΔS(q, t) = ΔS(q, t)solute related + ΔS(q, t)solventonly,

ΔS(q, t) = [∑
k
ck(t)Sk(q) − Sg(q)∑

k
ck(0)] + (

𝜕S
𝜕T
)
ρ
ΔT(t) + (𝜕S

𝜕ρ
)
T
Δρ(t), (13)

where Sg(q) is the scattering intensity related to the reactants. The structural model
is built by starting from an atomic configuration and calculating the corresponding
scattering signal using the partial Debye formula:

Sk(q) =
Nk
at

∑
i=1

fifi +
Nk
at

∑
i=1

Nk
at

∑
j≠i=1

fifj
sinqrij
qrij
, (14)

where the sum runs over all the Nk
at atoms of the kth molecule. The calculation of

the Debye equation is highly time and resource consuming due to the large possible
combinations over i and j indices. In practice, the Debye formula can be expressed in
terms of the radial distribution functions gij(r) (available, for instance, frommolecular
dynamic simulations) [5]:

Sk(q) =
Nk
at

∑
i=1

f 2i +
Nk
at

∑
i=1

Nk
at

∑
j≠i=1

fifj ∫
∞

0
(gij(r) − 1)

sinqr
qr

4πr2dr. (15)
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1.2 Time-resolved scattering of crystalline materials

In the case of crystallinematerials, theperiodic long-rangeorderingof the constituting
atoms in the crystal leads to important modifications of equations (1) and (3). For a
crystal, the total electron density defined in equation (1) can be simplified noticeably
by considering translational invariance and symmetry properties of the crystal. We
can consider theNat atoms arranged inN identical unit cells containing n atoms each.
The atomic position vector ri can be replaced by ri = RN + ri0, where RN defines the
position of the Nth unit cell, and ri0 is the local atomic position in that unit cell:

ρ(r) =
Nat

∑
i=1

ρi(r − ri) = [∑
N
δ(r −RN )] ⊗ [

n
∑
j=1

ρj(rj0)]. (16)

The first term on the right-hand side takes nonzero values only at the origin of the
unit cells of the crystal, whereas the second term is the superposition of the atomic
electron densities (j runs from 1 to n) within a reference unit cell placed at the origin
of the crystal.

The Fourier transform of the crystal total electron density given by equation (16)
leads to the structure factor of the crystal (constituted from na × nb × nc unit cells):

Fcrystal(H) =∑
N
e2𝚤πH⋅RN ×

n
∑
j=1

fje2𝚤πH⋅rj0

= Γ(H) × F(H), (17)

where Γ(H) is the interference function, and F(H) is the unit cell scattering factor.
These two functions contain very important information on the structural organiza-
tion in the crystal. The interference function represents the long-range structural co-
herence, whereas the structure factor determines the scattering of a unit cell. For a
crystalline solid, equation (3) is therefore given by

I(S) = I(H) =∑
N
∑
N′
e2𝚤πH⋅(rN−rN′ ) ×

n
∑
i=1

n
∑
j=1

fifje2𝚤πH⋅(ri0−rj0). (18)

By comparison with solution scattering discussed in the previous section the funda-
mental periodicity of a crystal leads to a fantastic enhancement of the X-ray scattered
signal at specific regular positions S =H in the reciprocal space defined by the scatter-
ing vectorH = ha∗ + kb∗ + lc∗ with h,k, l taking only integer values and corresponding
to the nodes of the reciprocal lattice.

A perturbation of the crystal may modify the two functions Γ(H) and F(H) in dif-
ferent ways, so that the outcome of a time-resolved X-ray scattering experiment for a
crystalline sample is a complete description of the temporal evolution of the interfer-
ence function and the scattering factor. As will be described further, the signature of
several important structural distortions of the crystal may be obvious on the diffrac-
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tion pattern of a crystal under perturbation. As a consequence, X-ray diffraction is a
powerful technique to investigate the physical mechanisms by which the crystal re-
sponds to the external perturbation. Figures 8 and 9 illustrate the major cases of crys-
tal distortions and the corresponding diffraction patterns, on which we will base our
discussions of selected examples of time-resolved structural studies from the litera-
ture later on in this chapter (Section 3).

Case (a) illustrated in Figure 8 corresponds to a regular 2D crystal in equilibrium
ground state (GS) with one atom at the origin of the unit cell with perfect translational
symmetry given by the interference function Γ(H). The atoms are distributed around
their mean position with amplitudes given by the atomic displacement parameter (or
Debye–Waller parameter B). The corresponding Bragg peaks in reciprocal space are
regularly spaced with low-intensity oscillations owing to finite-size effects in the cal-
culation of the Fourier transform (calculation for a crystal of 50 × 50 unit cells).

In case (b), the scattering power of 10% of the atoms randomly distributed over
the entire crystal has beenmodified to simulate a randomdistribution of 10%photoex-
cited species. The perfect periodicity is preserved in terms of unit cell shape, and, as
a consequence, the position of the Bragg peaks is not modified in the reciprocal space
(Figure 8 (b), middle and right). On the contrary, the structure factor of the unit cell is
modified, and so is the respective intensity of each Bragg peak with respect to the reg-
ular crystal of case (a). In that case, X-ray diffraction provides a spatial average of the
crystal structure. The structure factor for such a random distribution (RD) with a frac-
tion p of excited state (ES) and (1 − p) ground state (GS) species may be approximated
by

FRD(H) = (1 − p) ×
n
∑
j=1

f GSj e2𝚤πH⋅rj0 + p ×
n
∑
j=1

f ESj e2𝚤πH⋅rj0

= (1 − p) × FGS(H) + p × FES(H), (19)

and therefore the Bragg intensity is proportional to

F2RD(H) = (1 − p)2 × |FGS(H)|
2 + p2 × |FES(H)|

2

+ p(1 − p) × (FGS(H)F∗ES(H) + FES(H)F∗GS(H)). (20)

Note that this randomdistribution is reflected by ahigh background incoherently scat-
tered signal in Figure 8 (b), center. In case (c), the photoexcited species are clusterized
at the center of the crystal. The position of the Bragg peaks is not modified, but the
respective intensities are modified. In the cluster model (CM), the Bragg intensity is
proportional to

F2CM(H) = (1 − p) × |FGS(H)|
2 + p × |FES(H)|

2. (21)

One important aspect is that although 10%of themolecules have been switched to the
photoexcited state as for case (b), the intensity of the Bragg reflections is different from
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Figure 8: Diffraction patterns of selected model cases of distortions of a regular initial 50× 50 crystal
structure (30 × 30 for case d). In each diagram, left: the representation of a 2D crystal. Pink dots rep-
resent unperturbed initial species (for instance, ground-state molecules); green dots represent per-
turbed species (for instance, excited-state molecules). Middle: the corresponding 2D [hk0] diffrac-
tion pattern computed from the direct Fourier transform of the crystal configuration. Right: the inten-
sity along the [h00] section of the diffraction pattern. (a) A regular undistorted crystal. (b) A crystal
with 10% excited-state species randomly distributed. (c) 10% excited-state species forming a cluster
(domain model). (d) A crystal with a large excited-state cluster accompanied with structural relax-
ations.

case (b). In a real experiment, the careful analysis of the Bragg intensities therefore
allows us to distinguish between the two extreme situations and decide whether the
photoexcited species are randomly distributed or clusterized in the crystal [9].
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In the last case, depicted in Figure 8 (d), a lattice distortion accompanies the clus-
terization of the atomic or molecular species. Long-range order is lost, and the crystal
is in a heterogeneous configuration. The photoexcited state exhibits lattice constants
larger than those of the ground state, leading to important structural relaxation at the
domain boundary to preserve the continuity of the crystal. The corresponding diffrac-
tion pattern therefore exhibits a splitting of the Bragg peaks in two contributions, one
for each lattice constant.

We have seen in the previous section that the atoms in any structure are subject to
internal and external vibrational modes. This has important consequences in a crys-
talline solid and modifies strongly the diffraction pattern. Different situations are de-
picted in Figure 9.

Collective modulations of the crystal structure induce very systematic and very
characteristic features. The activation of a single coherent acoustic phonon generates
a collective and concerted oscillation of the atoms around their equilibrium positions,
which manifests as weak sidebands in the vicinity of the Bragg peaks (case (e) in Fig-
ure 9). The activation of multiple thermal phonons reduces the global intensity of
Bragg peaks, as shown in Figure 9 (f), a phenomenon summarized in the well-known
Debye–Waller factor. This thermal vibration effect causes decoherence in the diffrac-
tion phenomenon (loss of spatial and temporal phase relationship); the observed at-
tenuation in diffracted intensity is given by equation (5). Static incoherent atomic dis-
placement induces similar attenuation on the Bragg peak intensities (Figure 9 (g)) and
as such is indistinguishable fromdynamic atomic displacements froma single temper-
ature diffraction experiment (Figure 9 (f)). A static periodic modulation of the struc-
ture is shown in Figure 9 (h), which could correspond, for instance, to a Peierls-type
lattice distortion. The modulation induces here a dimerization of the structure and
correspondingly a doubling of the unit cell parameter in the x direction. This dou-
bling corresponds to the appearance of weak superlattice reflections in the reciprocal
space. Monitoring the intensity of superlattice reflections gives direct insights on the
amplitude of atomic displacement under dimerization. For a nondimerized structure,
the intensity of the superlattice reflections is null.

In the context of time-resolved X-ray diffraction studies on externally perturbed
systems, any of these model cases may be detected and therefore qualitatively inter-
preted in termsof perturbationof the corresponding crystal structure. Thequantitative
monitoring of the temporal evolution of the intensity distribution over the entire re-
ciprocal space provides detailed information on the kinetics of the physical processes
under investigation. For instance, the temporal evolution of the intensity of superlat-
tice reflections provides details on the photoinduced melting of charge and orbital
order inmanganites (see examples detailed in Section 3.7). The fitting of the evolution
of Bragg intensities during photoexcitation in spin crossover molecular complexes al-
lowed the determination of kinetic parameters of metastable state domain nucleation
and growth [10]. The intensity of acoustic phonon sidebands has also beenmonitored
after ultrafast photoexcitation [11–14].

 EBSCOhost - printed on 2/13/2023 8:46 PM via . All use subject to https://www.ebsco.com/terms-of-use



Time-resolved structural analysis: probing condensed matter in motion | 157

Figure 9: Diffraction patterns of selected model cases of coherent and incoherent distortions of a
regular initial 50 × 50 crystal structure. Left of each diagram: the representation of a 6 × 6 zoom
of the 2D crystal. Middle: the corresponding 2D [hk0] diffraction pattern computed from the direct
Fourier transform of the crystal configuration. Right: the intensity along the [h00] section of the
diffraction pattern and a section of the crystal along the x axis. (e) A crystal whose atoms are dis-
placed by a coherent acoustic phonon propagating along the x direction. (f) A crystal whose atoms
are displaced by incoherent phonons that could be approximated by a Debye–Waller (DW) factor.
Right: three different values of B (defined in equation (6)) have been used for comparison purposes.
(g) A crystal with static atomic disorder. (h) A crystal with a dimerization along the x direction.

As illustrated in Figure 9 (e, f), the impact of an ultrafast laser on a crystal may gen-
erate incoherent or coherent phonons whose influence on the Bragg intensities may
be fundamentally different. For instance, laser excitation of Ge below the nonther-
mal melting threshold results in the transfer of electronic energy to incoherent lat-
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Figure 10: Left: X-ray diffraction intensity from the (400) peak of germanium for weak laser excita-
tion. Republished with permission of IOP Publishing Ltd, from [15]; permission conveyed through
Copyright Clearance Center, Inc. Right: Bragg intensity of the (222) reflection in bismuth as a func-
tion of time delay between the optical pump pulse and the X-ray probe pulse [16]. Reprinted by per-
mission from Macmillan Publishers Ltd, copyright (2003).

tice vibrations increasing the temperature of the material. In that case, a global de-
crease in intensity of Bragg peaks is observed (see Figure 10, left) [15], correspond-
ing to a transient and time-dependent increase in the Debye–Waller parameter B(t)
(Figure 9 (f, g)). On the contrary, the excitation of coherent lattice vibrations using an
ultrafast laser leads to a strongly coherent displacive excitation in the crystal. The in-
duced atomic motion was detected by measuring the weak oscillations in the optical
reflectivity and X-ray Bragg peak intensity at the phonon frequency that are produced
by the lattice vibrations (Figure 10, right) [16]. In this situation, the instantaneous po-
sitions of the atoms in the crystal are strongly correlated, introducing coherence.

Following case Figure 9 (f), the expression of the Debye–Waller factor given in
equation (6) may be used to estimate lattice heating in crystals following a laser pulse
from the systematic decrease in Bragg peak intensities. Assuming in a rough approxi-
mation that the Debye–Waller factor is identical for all the atoms of the structure, the
structure factor may be written as

F(H) =
n
∑
j=1

fje2𝚤πH⋅rj0e
−Bj

sin2 θ
λ2

= e−B
sin2 θ
λ2

n
∑
j=1

fje2𝚤πH⋅rj0 , (22)

and the corresponding scattered intensity is approximated by

I(H) ≈ e−2B
sin2 θ
λ2

n
∑
i=1

n
∑
j=1

fifje2𝚤πH⋅(ri0−rj0). (23)

The logarithm of the ratio of the Bragg intensities with laser on and laser off is then
simply

ln (R) = ln[ Ion(H)
Ioff(H)
] = −2ΔBsin

2 θ
λ2
+ K. (24)
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Figure 11: Example of photo-Wilson plot ln (R) = ln [ Ion(H)Ioff(H)
] as a function of sin2 θ

λ2 . The slope of the
fitted line is −2ΔB [17]. Reproduced with permission of the International Union of Crystallography.

By plotting the ratio ln (R) = ln [ Ion(H)Ioff(H)
] as a function of sin2 θ

λ2 we can directly estimate
the increase in average of the Debye–Waller parameter ΔB due to laser lattice heating.
An illustration of this approach, called a photo-Wilson plot, is given in Figure 11.

2 Time-resolved X-ray scattering experimental
methods

The advent of ultrafast spectroscopy and pump–probe techniques in the 1960s made
possible the observation and identification in real time of the optical and vibrational
signatures of transient events, metastable species, and excited states up to femtosec-
ond resolution. The extension of this approach to keVhardX-ray and electronultrafast
scattering provided a way to study the structural dynamics of matter in real time with
subpicosecond and subangstrom resolutions. We discuss in this section the typical
experimental methods of time-resolved X-ray scattering that have been developed so
far.

2.1 Instrumental considerations

For time-resolved structural studies, the choice of X-ray technique and X-ray source,
especially in terms of achievable time resolution, is defined by the nature and the tem-
poral evolution of the dynamical phenomenon. Depending on the reversibility or irre-
versibility of the dynamical process, a repetitive (stroboscopic) or single shot experi-
ment is carried out (see Figure 4).
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2.1.1 The pump–probe approach

Themost efficient and usedmethod to perform time-resolved experiments is to use the
so-called pump–probe approach. In a typical pump–probe experiment, a dynamical
process is initiated by applying a pump perturbation S(t) to a sample (a short laser
pulse, a pressure pulse, a periodic electric field, etc.) whose response is detected af-
ter a tunable time delay Δt through an X-ray probe pulse X(t). The time-dependent
evolution of the nonequilibrium atomic structure of the sample can be monitored by
measuring the X-ray scattered signal as a function of Δt. Different schemes may be
used to achieve time resolution in a pump–probe experiment:
(1) Using an intrinsically pulsed X-ray source such as a synchrotron or an X-ray Free-

Electron Laser (XFEL) or a mechanically chopped X-ray source. This corresponds
to the first case in Figure 12. The time resolution is provided by the characteristics
of the pump pulse S(t) and the probe X-ray pulse X(t) and our ability to adjust
precisely the time delay Δt.

Figure 12: Principle of time-resolved X-ray scattering pump–probe measurement with (a) an intrinsi-
cally pulsed X-ray beam provided by a synchrotron or an XFEL and (b) a quasi-continuous X-ray beam
with a scattered signal sampled by a fast gated detector. The scattered signal is recorded during four
different time windows in this example.

(2) Using a continuous X-ray source (laboratory X-ray tube) or quasi-continuous X-
ray beam (synchrotron when its temporal structure is not used) and sampling the
scattered signal at the pump–probe rate by a fast gated detector such as hybrid
pixel detectors or streak cameras. In addition to the previous criteria, time reso-
lution depends on the gating characteristics of the detector as well.

The overall time resolution is given by

τ = (τ2pump + τ2probe + τ2mismatch + τ2jitter + τ2detector)
1/2, (25)

where τpump and τprobe are the pump and probe pulse widths, respectively, τmismatch
is the mismatch in the temporal overlap between the pump and probe pulses, τjitter
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is the timing jitter between the pump and probe pulses, and τdetector is the opening
window of the gated detector if used.

2.1.2 X-ray sources

The choice of X-ray source for time-resolvedX-ray scattering experiments depends crit-
ically on several factors such as the projected time regime and the required character-
istics of the X-ray beam in terms of monochromaticity, energy, coherence, and inten-
sity [18].

Experiments may be conducted with conventional laboratory X-ray diffraction
setups equipped with X-ray tubes or rotating anodes, delivering a continuous X-ray
beam. Time resolution is provided in two ways. In the first approach, a sequence
of repetitive X-ray pulses is generated from the continuous X-ray beam using a fast
optical chopper, which is a multislot blade rotating at a very high rotating speed, de-
livering X-ray pulses of a few µs length at frequencies up to 100 kHz. The X-ray detector
used in this configuration may be a conventional CCD or image-plate system [19]. Us-
ing this kind of instrument, the time resolution that can be achieved is limited by the
duration of the X-ray probe pulse generated by the rotating chopper and therefore by
the width of the blade slots and rotation speed. This method corresponds to case (a)
depicted in Figure 12. The second approach uses a fast gated X-ray detector (hybrid
pixel array detector or streak camera) synchronized with the application of the pump
pulse. The detector accumulates the desired scattered signal only during chosen time
windows as depicted in case (b) of Figure 12. The maximum time resolution in that
case is given by the response time of the electronics of the X-ray detector (typically, in
the nanosecond range at present for hybrid pixel array detector and subpicosecond for
streak camera). The major drawback of laboratory-based time-resolved instruments,
which limit their application, is the very modest X-ray flux during each measurement
cycle.

Owing to the increased sophistication, stability, and brightness of the now avail-
able third-generation synchrotron radiation sources, time-resolved diffraction tech-
niques have evolved drastically over the last decade [20]. Intense hard X-ray pulses
(∼1012 ph/s) are generated by synchrotrons such as Spring-8 (Japan), European Syn-
chrotron Radiation Facility (ESRF, France), Advanced Photon Source (APS, USA),
SOLEIL (France), PETRA III (Germany), or Swiss Light Source (SLS, Switzerland).
In a synchrotron, the radiofrequency cavity compensates the energy loss due to
synchrotron emission and compresses the pulse duration of the electron bunch to
typically 100 ps. Of major importance for time-resolved experiments is the fact that
synchrotron storage rings can be run in different modes, corresponding to different
filling patterns (distribution of the electron bunches cycling in the ring) such as the
uniform filling mode, 4-bunch mode, and 16-bunch mode (equidistant bunch filling
modes), hybrid modes with a single pulse opposite to multibunch. A train of short
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X-ray pulses with different temporal structures (pulse width and pulse separation)
may be generated. For instance, for the ESRF storage ring in the 16-bunch mode, X-
ray pulses of nearly 100 ps duration are separated by 176 ns at an orbit frequency of
approximately 355 kHz. A combination of heat-load chopper and high-speed chopper
is conveniently used to select and isolate a short sequence of pulses, or even a single
pulse, out of the pulse train of the synchrotron [21–23]. The frequency of the choppers
is phase-locked to the temporal structure of the storage ring. The ultimate time reso-
lution that can be achieved is limited by the width of the synchrotron pulse, typically
in the range 60–100ps. It is important to recognize that for such experiments, most of
the X-rays generated by the ring are blocked by the chopper to isolate short pulses. As
a consequence, the effective flux in the selected pulse is very limited, which requires
an initial ultrabright synchrotron. For pump–probe experiments, an additional per-
turbation pump (for instance, pulsed laser) is synchronized with the X-ray pulses.
A typical experimental scheme is given in Figure 13.

Figure 13: Schematic of a pump–probe time-resolved X-ray diffraction experiment using the tempo-
ral structure of a synchrotron. Adapted from [7] in accordance with the Creative Commons Attribution
(CC BY) license.

Ultrashort pulseswith duration down to 100 fsmay be produced and selected in a syn-
chrotron storage ring by several techniques [20], such as the low-alpha mode (using
specific optics in the storage ring to shorten the electron bunch) or the laser-slicing
method. In this latter case, an intense femtosecond infrared laser is locked with the
radiofrequency clock of the synchrotron and aligned with the accelerated electron
bunches in an undulator. The interaction between the high electric field of the ultra-
short laser light pulse and the relativistic electrons results in an energy modulation of
a thin slice of the electron bunch, which leads to a transverse spatial separation from
the main bunch. Pulses of synchrotron radiation from the offset electrons occur with

 EBSCOhost - printed on 2/13/2023 8:46 PM via . All use subject to https://www.ebsco.com/terms-of-use



Time-resolved structural analysis: probing condensed matter in motion | 163

the same duration as the duration of the laser light pulse [24, 25]. This technique is,
for instance, implemented at the synchrotron SLS [26] and BESSY II [27].

Laser-drivenplasma table-top sources offer anattractive alternative to accelerator-
based sources [28–32]. Monochromatic X-ray pulses are generated by focusing very
intense (1015–1016W/cm2) femtosecond optical pulses onto a metallic target (Cu or
Ti). First, hot electrons are generated by ionization of the atoms of the target through
a thin plasma layer. The hot electrons interact with the incident laser pulse and are
further accelerated back toward the solid target atoms with a net energy gain. The
hot electrons excite K-shell electrons from atoms in the bulk of the metal target. The
K-shell holes are filled by recombination of electrons from higher shells, emitting the
characteristic Kα hard X-ray lines. The principle of radiation is therefore similar to
that in a conventional X-ray tube or rotating anode. The duration of the Kα emission is
governed by the thermalization time of the electrons in the target and by the duration
of the laser pulse near 100 fs. These sources have been used to study the structural dy-
namics of nonthermalmelting or, for instance, acoustic and optical coherent phonons
in semiconductors [31]. A schematic illustration of a laser plasma X-ray source syn-
chronized with a pump laser for time-resolved crystallography is shown in Figure 14.
Such a scheme is very convenient for pump–probe photo-induced experiments, since
the optical pulses of the laser system are used at the same time to generate the X-rays
by focusing on the metal target and as the pump excitation of the sample. The delay
between the pump and probe pulses is easily adjusted by changing the optical path
length in a delay stage.

The XFELs are the most recent pulsed X-ray sources, which are characterized by
high brightness (higher than 1010 ph/pulse), high coherence (∼100% transverse, ∼1%
longitudinal), and short pulse duration (∼100 fs) with a repetition rate of ∼100Hz. The
XFEL radiation is achieved by the self-amplification of spontaneous emission of high-

Figure 14: Schematic of a table-top X-ray diffraction instrument with ultrafast plasma X-ray source.
800-nm laser pulses are generated by an ultrafast Ti:sapphire laser producing 45-fs pulses of 5-mJ
energy. The output of the laser is separated by a beam splitter to pump the sample and generate
probe X-ray pulses at the characteristic Cu Kα photon energy of 8.05 keV (wavelength 0.154 nm) by
focusing on a Cu target. The delay between pump and probe is adjusted through a delay stage. The
diffracted signal is collected on a large-area X-ray CCD detector. Reprinted with permission from [29].
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energy high-peak current and ultrashort pulsed electron bunches in long-aligned un-
dulators. The fundamental principles of XFEL radiation and technical details of the
instrument are given in the chapter Ultrafast Science.

2.1.3 Detectors for time-resolved X-ray scattering

Depending on the time-resolved experiment, several types of detectors may be used.
When the X-ray beam is either pulsed or chopped, a conventional integrating detector
such as an image-plate (IP) or a CCDdetectormay be efficient.When a selectionwithin
a sequence of X-ray pulses is needed, for instance, for selecting a single X-ray bunch
out of a multibunch mode of a synchrotron, a fast detector is required. For that pur-
pose, a silicon avalanche photodiode (APD) or an X-ray streak camera with temporal
responses in the nanosecond and subpicosecond regime, respectively, are appropri-
ate [33, 34].

The recent development of gated single-photon-counting pixel area detectors
(PAD) has opened new possibilities in the area of pump–probe time-resolved X-ray
experiments [35–37]. These detectors can be gated with resolution in the nanosecond
regime, which is faster than the separation between individual X-ray bunches at syn-
chrotron radiation sources; X-ray choppers are not needed anymore to select single
X-ray pulses. For slower time-resolved experiments (millisecond to microsecond), the
detector can be gated to enable the measurement of the X-ray signal in tunable ac-
quisition windows, allowing time-resolved measurements to be conducted with X-ray
tubes on laboratory instruments [36] without the need for an X-ray beam chopper (Fig-
ure 12 (b)). One limitation of such detectors is their read-out time, which should be
sufficiently short to enable sampling at the pump–probe repetition rate (for a 100Hz
repetition rate, the read-out time should be, for instance, less than 10ms).

2.2 The perturbation

Most of the half a million crystal structures determined through single crystal or pow-
der X-ray or neutron diffraction experiments have been conducted at ambient condi-
tions (i.e., at 298K and 0.1MPa). Detailed structural information can be provided by
investigating systems out of equilibrium and monitoring the return to equilibrium as
a function of time. For that purpose, we need a way to perturb the system by acting
on one of its degrees of freedom while probing the structural degrees of freedom. The
physical properties of crystallinematerialsmaybe alteredbyapplying various kinds of
external stimulus, such as electric field, light irradiation, temperature, pressure, and
chemical environment. All these perturbation means have to be classified depend-
ing on whether they induce a change of potential energy surface (optical excitation)
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or simply disturb the system on the ground-state potential energy surface (pressure
jump, acoustic pulses, temperature jump, electric field).

2.2.1 Optical excitation

When amolecule or a solid absorbs an optical photonwith energy ranging from ultra-
violet to near-infrared, an electronic transition may occur, characterized by an ultra-
fast redistribution of the electron density while the nuclei retain the same configura-
tion as the ground state. Such a primary excited state is referred as the Franck–Condon
state (Figure 15). This process is ultrafast, within a few fs, much faster than half the
intramolecular vibrations. The initial electronic excitation is followed by several types
of secondary processes. The redistributed electron density induces forces on the nu-
cleus that define the initial direction of the subsequent structural trajectories on the
excited potential energy surface. The Franck–Condon state being unstable, the nuclei
structurally relax within tens of femtoseconds to a few picoseconds: the excited state
is equilibrated to a new structure with structural coordinates (qES1) different from the
ground state (qGS). This equilibrated excited state ES1 can relax directly to the ground
state or further evolve to a series of secondary excited states (ES2,…) through inter-
nal conversion (electronic transitions without change of spin multiplicity) or inter-
system crossing (electronic transitions with change of spin multiplicity). Relaxations
from these secondary excited states proceed by emission of photons (fluorescence or
phosphorescence processes) or through radiationless transitions.

From the primary populated Franck–Condon state, different situations may hap-
pen to relax the excess of energy depending on the time-scale of the reaction dynam-
ics. Slow processes (characteristic times in the ns–s range) are activated, governed by

Figure 15: Schematic of the interaction of light with
a molecule in the ground state (GS) and subsequent
processes. q is a generalized molecular coordinate.
FC is the Franck–Condon short-lived excited state, ES1
and ES2 are the first and second thermally equilibrated
excited states. Reprinted from [38] by permission from
John Wiley & Sons, Inc.
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random diffusion of atoms and molecules, the intermediate conformations being dis-
persed through a Boltzmann distribution on the potential energy surface of ES1: relax-
ation occurs incoherently (heat generation and diffusion). For ultrafast dynamics (in
the femto- to picosecond regime), the atoms andmolecules canmove on the potential
energy surface without dephasing, and relaxation occurs through electron–phonon
coupling by emission of coherent phonons.

The complete photophysical properties of a system are usually determined using
time-resolved transient optical absorption and emission experiments at visible and
ultraviolet frequencies, often completed by time-resolved vibrational spectroscopy,
which has a structural sensitivity. The dynamics and spectral signatures of the var-
ious intermediate excited states are thus precisely defined, reflecting the specific elec-
tronic, vibrational, and rotational states. These techniques alone can, however, pro-
vide only limited information on the exact structural coordinates associated with the
dynamical process. Combining optical pump excitation with X-ray scattering probe
techniques, the structural changes of rapidly evolving systems can be resolved with
atomic resolution down to the ultrafast time scale.

In the context of structural dynamics, optical transitions are conveniently trig-
gered using fast lasers as optical pump sources, easily available over the ns to fs time
scale, and covering the entire UV to IR spectral range. The complete response of the
sample depends on the individual absorption cross-section of the photoactive atoms
or molecules and the quantum yield of the different photoinduced processes. Accord-
ingly, in practice, only a fraction of the photoactive elements are effectively in the de-
sired excited state while probed by X-ray scattering techniques. A quite intense pump
laser and a very accurate X-ray scattering experiment are necessary.

2.2.2 Electric field

There have been considerable efforts and significant achievements in X-ray crystallog-
raphy under an applied external electric field. Piezoelectric crystals are characterized
by the appearance of a dielectric polarization in response to an applied mechanical
stress (direct piezoelectricity) or development of a macroscopic deformation or strain
in response to an applied electric field (inverse piezoelectricity). Ferroelectric mate-
rials possess a macroscopic electric polarization PS , which can be reversed by an ex-
ternal electric field. This process, called polarization switching, is usually described
as the nucleation and growth of domains with a switched spontaneous polarization
parallel to the electric field. This ferroelectric transitionmay be coupled to other prop-
erties of the material such as strain or magnetic order, leading to multiferroicity. The
complete mechanism is depicted in Figure 16 as a typical P–E hysteresis loop, start-
ing from a crystal initially in a multidomain state. When the positive electric field is
applied, polarization switching occurs, leading to the appearance of intrinsic lattice
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Figure 16: Polarization switching (P–E hys-
teresis loop) in ferroelectrics under applied
electric fields.

strain. Reversing the electric field induces polarization switching with nucleation and
growth of so-called 180°-domains.

The structural response of a crystal to an applied external electric field involves
different spatial lengths from atomic and bond length distortions to mesoscopic do-
mainnucleationandgrowthanddomainwallmotions. The entire responseof the crys-
tal spans several decades of time from the purely ultrafast elemental electron density
redistribution under the electric field to the domain wall motion limited by the speed
of sound (∼1–4000ms−1) and depends on the sample geometry (single crystal, thin
film, or thin-film ceramic) and mechanism [39–41]. Quite slow domain wall velocities
of a few meters per second correspond to short switching characteristic times (e.g.,
nanoseconds) for thin crystalline films of a few hundred nanometers thickness. Do-
main nucleation occurs in the submicrosecond time scale. Lattice deformations and
interatomic bond distortions are subtle effects, which require very accurate and ex-
tremely stable experiments. The deformation of the unit cell (lattice strain) related
to polarization switching may be followed accurately using X-ray diffraction under a
unipolar applied static electric field. The deformation of the unit cell (or strain [ϵij])
is related to the electric field through the piezoelectric tensor [dijk] of rank three: ϵij =
dijkEk , where dijk are the coefficients of linear electrostriction (converse piezoelectric
effect). Due to the crystal symmetry, the elements dijk are not independent.

Applications of such methodologies have focused on piezoelectric (quartz,
GaAsO4) and ferroelectric materials (BaTiO3, PbZr1−xTixO4 (PZT) ceramics), covering
dynamics of ferroelectric or ferroelastic domains, propagation of elastic deformation
in solids, dynamics of texture in piezoelectric ceramics, using experiments developed
at synchrotron radiation facilities or dedicated laboratory diffraction instruments.

2.2.3 Pressure pulses

During the last decades, high-pressure crystallography has evolved into a verymature
approach, which can be regularly applied in laboratories and dedicated synchrotron
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facilities [42]. Structural analysis in nonambient conditions under variable high pres-
sure extends the understanding of the solid state, allowing the determination of phase
diagrams, the exploration of polymorphism, phase transitions, solid state cohesion
forces, and structure-property relationships in a more general perspective. Using var-
ious pressure cells (e.g. diamond-anvil cell), high pressures of several tens of giga-
Pascals (GPa) may be routinely applied on single crystals and powder samples. These
cells use a pressure medium to impose hydrostatic conditions (i.e., the applied pres-
sure is isotropic on the sample).

In the time domain, dedicated pressure cells have been developed to generate
pressure jumps in the range 0.1–500MPa on the millisecond time scale [43]. Appli-
cation area covers soft condensed matter and biomolecular phase transformations.
The most efficient method to generate much faster and much higher pressure pulses,
which can be further synchronizedwith X-ray diffraction experiments, is using a pow-
erful pulsed laser [44]. Focusing a laser pulse of short duration (subnanosecond) and
high intensity on the surface of a sample create a plasma, which expands outward
and drives a shock wave in the sample. The induced shock pressure is related to the
characteristics of the laser and target; pressures up to nearly 15GPa have been pro-
duced in the context of time-resolved diffraction experiments. Using thismethod, only
uniaxial pressures may be applied. Reported investigations concern strain propaga-
tion in silicon [32, 45, 46], bismuth [47, 48], or the bcc(α)-to-hcp(ϵ) phase transition in
shock-compressed iron [49] with time resolutions of nanosecond to picosecond. It has
been shown that the propagation of the shock wave in the crystalline sample changes
the interplanar distances, leading to a shift and broadening of the Bragg peaks. Time-
resolvedmonitoring of the rocking curve evolution provides direct insight into the lat-
tice response with respect to the transient strain propagation. Typical velocities of the
propagating front were estimated to be a few km⋅s−1, which correspond to time do-
mains of a few nanoseconds, setting the required time resolution of the diffraction
experiment to subnanosecond. Quite recently, elastic shock waves in diamond have
been imaged using X-ray phase contrast imaging at an XFEL source [50].

2.2.4 Fast solution mixing

Many important technology production processes take place on heterogeneous reac-
tion systems. Improvement of these processes requires techniques and experimen-
tal setups yielding detailed structural information during the reaction process in real
time. Specific reaction cells, called stopped-flow cells, have been designed for mixing
the reactants of the reaction with high speed and enabling X-ray diffraction measure-
ments to be performed in situ as the reaction proceeds [51]. Measurements are per-
formed at a delay Δt after mixing the reactants. The specificity of these experiments
is their irreversible nature, preventing any stroboscopic procedure to be applied. The
basic idea is to continuously refresh the sample by a continuous flow. This technique
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has recently evolved dramatically in view of XFEL experiments: mixing jet systems
have been designed, enabling time resolution of 250 µs [52].

2.2.5 Mode-selective vibrational excitation

We have discussed before the process by which absorption of an optical photon can
electronically excite the systemandbring it to the excitedpotential energy surface.Op-
tical excitation can also beused to probe the dynamics of the electronic ground state of
the system through selective excitation of vibration modes using mid-infrared pulsed
laser light. These intense femtosecond pulses in the mid-infrared can be tuned into
resonance with infrared-active crystal lattice modes (phonons) of the solid [53–59].
Driven by the pulsed field, the atoms oscillate about their equilibrium positions along
the normal coordinate of the considered mode. This concept has been clearly demon-
strated for rhombohedrally distorted perovskite La0.7Sr0.3MnO3, for which the reso-
nant excitation of the infrared-active phonon mode at 605cm−1 (20 THz) correspond-
ing to the Mn–O stretching mode induces the excitation of a Raman-active mode (at
1.2 THz) corresponding to the rotation of oxygen octahedral around the Mn cations.
The intensity modulation of relevant X-ray Bragg peaks, resulting from atomic mo-
tions along the phonon coordinate, was followed using time-resolved ultrafast X-ray
diffraction and adjusted to a model of driven damped harmonic oscillator [59].

3 Time-resolved structural analysis: model case
studies

In the previous section, we have described in detail all the instruments and meth-
ods typically used to derive dynamic structural information from time-resolved X-ray
scattering experiments. We present in this section a representative selection of exper-
iments and results published in the literature on very different sample types, from
solvatedmolecules in liquid phase to the behavior of individual molecules in a crystal
and to cooperative effects in crystalline solids. These chosen examples can be identi-
fied according to the model cases illustrated in Figures 8 and 9.

3.1 Static relaxed metastable states and photostationary states

The methods of X-ray crystallography have been extended to derive the structure of
photosensitive molecules in an out-of-equilibrium metastable state with extended
lifetime; this approach is termed photocrystallography. Single crystals containing
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the desired photosensitive entity are illuminated with a laser of appropriate wave-
length in well-chosen temperature conditions to populate a high concentration of
metastable state molecules in the crystal, and the corresponding crystal structure is
determined to extract the structural configuration of the species in the metastable
state. Representative examples are photoinduced metastable states of molecular co-
ordination complexes with spin state change, photoinduced linkage isomerism (e.g.,
nitrosyl complexes), photoinduced cis–trans isomerism of organic molecules. Inmost
of these cases, the photoinduced process has a purely molecular origin, modulated
by the environment in the crystal packing. We can take one representative example
of this family to illustrate the methods and concepts of structural determination of
out-of-equilibrium states.

[RuCl(NO)2(PPh3)2]BF4 is a photoswitchable dinitrosyl pentacoordinated com-
pound [60]. Infrared spectroscopy analysis has shown that photoexcitation with light
of appropriate wavelength (405 nm) results in a strong modification of the symmet-
rically νs(NO) and asymmetrically νas(NO) coupled NO stretching vibrations, which
are measured in the ground state (GS) at 1866cm−1 and 1686cm−1, respectively (Fig-
ure 17). After photoexcitation at 10K, the appearance of two new vibrational bands
at 1871 cm−1 and 1653cm−1 indicates a conformation change of the nitrosyl groups
toward a photogenerated metastable state (ES) assigned to a photoinduced linkage
isomer. Variable-temperature infrared kinetic measurements in the range 80–114K
showed that the photoisomer decay follows a thermally activated Arrhenius behavior
with an activation energy of 0.22 eV.

The infrared analysis allows defining the appropriate experimental conditions for
the photocrystallographic investigation. According to the Arrhenius behavior, the ES
to GS relaxation is temperature dependent in a well-predictable and tunable manner.

Figure 17: Left: Molecular structure of the [RuCl(NO)2(PPh3)2]+ cationic complex in the ground state.
Right: Infrared spectra (range 1620–1920cm−1) of [RuCl(NO)2(PPh3)2]BF4 at 10 K. Arrows indicate
new lines arising upon illumination with light of the wavelength 405 nm. Underlined numbers refer
to positions of ground state (GS) bands [60]. Reproduced with permission of the International Union
of Crystallography.
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Under continuous laser excitation, the kinetics of thepopulation n(t) of themetastable
state results from a competition between the GS to ES photoexcitation and the ES to
GS relaxation with rate constants k1 and k−1, respectively. The evolution equation of
the excitation process is given by

Φphotoexcitation =
dn(t)
dt
= (1 − n(t))k1. (26)

The concentration of excited molecules grows exponentially:

n(t) = 1 − e−k1t. (27)

Similarly, the evolution equation of the relaxation process is given by

Φrelaxation =
dn(t)
dt
= −n(t)k−1. (28)

The whole process may be described by the following equation:

dn(t)
dt
= Φphotoexcitation −Φrelaxation = (1 − n(t))k1 − n(t)k−1. (29)

Solution of equation (29) gives the temporal evolution of the metastable state popula-
tion:

n(t) = 1 − 1 + nstat(e
(k1+k−1)t − 1)

e(k1+k−1)t
(30)

with nstat =
k1

k1+k−1
. The final population reached as t→∞ is called the photostationary

state nstat and is illustrated in Figure 18 for different values of the rate constants.

Figure 18: Evolution of the population of metastable state n(t) as a function of the initial conditions
(n(0) = 0 or n(0) = 1) and photoexcitation and relaxation rate constants (k1, k−1).
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In addition to this kinetic competition, a limited photoconversionmay also result from
an overlap between absorption bands of the ground state and metastable state, lead-
ing to an additional competition between photoinduced ground state to metastable
state and photoinduced metastable state to ground-state conversion.

In the case of [RuCl(NO)2(PPh3)2]BF4, X-ray diffraction experiments were con-
ducted at very low temperature to minimize the metastable state to ground state
relaxation effect and therefore to reach a high photostationary population nstat. First
indications of the structural reorganization are provided by the so-called photodiffer-
ence map, which is the Fourier transform of the difference between the photoexcited
and ground-state structure factors. The phases of the structure factors are required
to compute this electron density map but are not accessible experimentally. As a
first approximation, the phases of the ground-state and photoirradiated states are
considered to be equal to those of the ground state calculated from the ground-state
structural model. This approximation is of better validity in the case of centrosym-
metric structures:

Δρ(r) = ρES(r) − ρGS(r)

= 1
V
∑
hkl
[|FobsES (H)| − |FobsGS (H)|]e𝚤φ

calc
GS e−2𝚤πH⋅r. (31)

This Fourier summation requires completeness of the Bragg peak intensity measure-
ments to avoid any bias or artefacts in the map. The corresponding photodifference
map for [RuCl(NO)2(PPh3)2]BF4 is given in Figure 19.

TheX-raydiffraction experimentwas conductedona single crystal in thephotosta-
tionary state, which therefore contains at the same timemolecules in the ground state

Figure 19: Left: 3D photodifference map with isosurface of ±4.0eÅ−3 (red, negative; blue, positive)
at 10 K after irradiation with 405 nm. The map is based on 8634 independent measured reflections.
Right: Section of the photodifference map in the RuN1N2 plane with isocontour of ±1.0eÅ−3 (red,
negative; blue, positive) [60]. Reproduced with permission of the International Union of Crystallog-
raphy.
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andmolecules in themetastable state, which are spatially randomly distributed in the
sample. This corresponds to the situation (b) in Figure 8 discussed before. The total
electron density of the crystal at any instant t during the photoexcitation is given by

ρ(r, t) =
2
∑
i=1

ci(t)ρi(r), (32)

which for only two species (GS and photoexcited ES) at the photostationary state
reduces to

ρ(r, t =∞) = cGSρGS(r) + cESρES(r). (33)

Accordingly, the diffracted Bragg intensities are given by equation (20). From this,
a structural model of the photogenerated metastable state was built and refined by
least-square methods against the experimentally measured data. The result is given
in Figure 20. It shows a rotation of one of the two nitrosyl groups.

Figure 20: Structural reorganization upon photoexcitation
(ground state GS in blue, photoexcited state in red) [60]. Re-
produced with permission of the International Union of Crys-
tallography.

This example illustrates the efficiency of photocrystallography to derive the atomic
positions of photoinduced molecular metastable states. In the present example, the
population of themetastable state in the crystalwas estimated to 52(1)%,whichmeans
that the measured crystal contained almost half of the molecules in the ground-state
structural configuration, and half in the photogenerated metastable state configura-
tion with a random spatial distribution. As is shown in Figure 21, the information
about the structural contrast between photoexcited state and ground state evaluated
as (IES(H) − IGS(H))/IGS(H) is quite large in the structure factor amplitude with 52%
population. This contrast would be significantly reduced at a photostationary state
with a metastable state population of only 10%.

3.2 Time-resolved X-ray solution scattering to study molecular
photodynamics: photodissociation of I−3 in methanol

Using the photocrystallographic approach described in the previous example, the
molecular structure of out-of-equilibrium photoexcited states can be derived accu-
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Figure 21: Contrast in Bragg peak intensities between the photoexcited state (IES(H)) and the ground
state (IGS(H)) for two different populations of the photogenerated metastable state at the photosta-
tionary state.

rately with atomic resolution in a quasi-static situation in a crystal. At the photosta-
tionary state (t →∞ in Figure 18), the system is not evolving as a function of time
during the X-ray diffraction experiment.

Time-resolved X-ray solution scattering has been developed at synchrotron radia-
tion sources to investigate the dynamics of chemical reactions in real time. Solutions
are much simpler to handle than crystals and much less demanding in terms of sam-
ple requirements, but more demanding in terms of brightness of the X-ray beam. Un-
fortunately, solution scattering is much less informative than crystal diffraction. Only
average isotropic information can be obtained due to the homogeneity and orienta-
tion randomness of the sample, with the exception of coherent scattering techniques
(see the chapter Ultrafast Science).

In a solution, the dynamics are not only determined by the potential energy sur-
face of the reactant–product species, but the surrounding solvent also plays a crucial
role in modifying the energies of all species and defining the reaction pathway.

One of the simplest photoinduced chemical reactions studied by X-ray time-
resolved solution scattering is the photodissociation of the triiodide ion I−3 [61, 3]. This
study followed a pump–probe approach and is illustrative of the potential of such
experiments, aiming at deriving the reaction pathways and identifying the structural
signature of various intermediate species and their respective time-dependent con-
centration changes. Such processes may be simulated by theoretical calculation as
well (see the chapter TDDFT, Excitation and Spectroscopy). The changes in the nuclear
coordinates in real time were directly recorded by varying the time delay between
the laser pulse and the X-ray probe pulse. As shown in Figure 22, I−3 may undergo
three different possible dissociation pathways: two-body dissociation (I−2 + I), three-
body dissociation (I− + I + I), and I2 formation (I2 + I−). Time-resolved X-ray solution
scattering has, at the same time, the potential to discriminate between these three
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Figure 22: Candidate reaction pathways for the photodissociation of I−3 in solution, involving two-
body and three-body dissociations [61, 3]. Adapted from [3] in accordance with the Creative Com-
mons Attribution (CC BY) license.

possibilities by detecting the presence of every intermediate species and to derive
their precise molecular structure.

Time-resolved X-ray solution scattering experiments were conducted using the
laser pump–probe scheme at the beamline NW14A at KEK. Laser pulses of 2-ps dura-
tion and 400-nm wavelength (second harmonic generation of the output pulses from
an amplified Ti:Sapphire laser system) were focused by a lens to a spot of 300 µm on a
10-mM solution of I−3 ions in methanol, which was circulated to refresh continuously
themeasured sample. 100-ps X-ray pulseswith 3×108 photons per pulsewere focused
on the sample to perfectly overlap spatially with the pump laser pulses. The scattering
signal was acquired with an area detector at various time delays: 100 ps, 300ps, 1 ns,
3 ns, 10 ns, 30 ns, 50 ns, 100ns, 300ns, 1 µs, and 3 µs. The corresponding experimental
difference scattering curves qΔS(q, t) are shown in Figure 23 (a, b).

Detailed information of the structural dynamics can be retrieved from a global
fitting procedure of the full set of difference scattering curves using equation (13). In
practice, atom–atom pair distribution functions (PDF) gR(r) are calculated for the dif-
ferent chemical species (reactant, intermediate, product, and solvent) from molecu-
lar dynamic simulations combined with quantum chemical calculations for instance
(see the chapter Static structural analysis of condensedmatter in this book for the gen-
eral scheme). Then the corresponding scattering curves Sk(q) for the solute-only and
solute–solvent cross terms are computed from the sine Fourier transform of gR(r). The
solvent term is then derived using a separate solvent-heating time-resolved X-ray so-
lution scattering experiment, where the pure solvent is vibrationally excited by near-
infrared light [8]. The theoretical difference scattering curves are finally calculated
from all these contributions. The experimental ΔS(q, t) curves at various time delays
are related to each other through reaction kinetics, i.e. the time-dependent concentra-
tion change of all the solute species (ck(t) in equation (13)). The global fitting proce-
dure therefore aims at retrieving the individual scattering curves Sk(q) of all the chemi-
cal species and their respective concentration change ck(t). For the photodissociation
of I−3 , the time-resolved X-ray solution scattering data were analyzed by considering
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Figure 23: (a) Time-resolved difference X-ray scattering curves qΔS(q, t) for the photodissociation
of I−3 : experimental curve in black, and theoretical fit in red. (b) Corresponding difference radial dis-
tribution functions rΔS(r, t), calculated by the sine-Fourier transform of qΔS(q, t). (c) Experimen-
tal and theoretical difference scattering curves and (d) radial distribution function at time delay of
100 ps using the three dynamic models given in Figure 22. Adapted from [3] in accordance with the
Creative Commons Attribution (CC BY) license.

the three candidate reaction pathways; Figure 23 (c, d) show the results for the 100-ps
delay data. Themodel employing a two-body pathway gives a much better fit than the
model employing the three-body dissociation or the I2 formation pathway. The radial
distribution function rΔS(r, t) provides a more intuitive real space view of the results.
Bond lengths of various I–I atomic pairs are given in the top panel of Figure 23 (d),
which help identifying the structure of the different species. The negative peak near
6Å indicates the depletion of the I1–I3 distance in the parent I−3 ions. The broad fea-
ture around 3–4Å is a combination of the depletion of the I1–I2 and I2–I3 distances in
the parent I−3 ions, and the formation of the I–I bond in the I−2 ions.

From the global analysis over the entire time range from100ps to 3 µs, the reaction
dynamics of the different species involvedmay be retrieved, as illustrated in Figure 24.
After 400nm laser photoexcitation, excited I−3 ions dissociate into I−2 and I within less
than 100ps, which is the time resolution of the experiment. The ions I−2 and I then
recombine in approximately 80ns. To extract more quantitative information on the
structure of the ground I−3 and intermediate I−2 species, maximum likelihood methods
have been developed for fitting the experimental scattering curves. Quite accurate I–I
bond distances of 3.03(4) and 2.94(3) Å were calculated for I−3 , and 3.59(4) Å for I−2 .

This typical photodissociation study shows that by combining the structural
sensitivity of X-ray scattering to the current nearly 100 ps time resolution achiev-
able at third generation synchrotron radiation sources, the structural dynamics in
solution may be elucidated in detail and in a quantitative manner. Other examples
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Figure 24: (a) Time-dependent concentration changes of the different transient solute species after
photodissociation of I−3 in methanol. (c) Reaction mechanism deduced from the global fitting to the
scattering curves [61, 3]. Adapted from [3] in accordance with the Creative Commons Attribution (CC
BY) license.

of time-resolved X-ray solution scattering studies cover the photochemistry of small
molecules (CHI3, HgI2, HgBr2, I2, Br2) and more complex transition metal photosensi-
tive molecules (Ru3(CO)12, [Pt2(P2O5H2)4]4− or cis-[Ru(bpy)2(py)2]2+) [62–70].

Due to the time resolution limitation at synchrotron radiation facilities, faster phe-
nomena such as bond breaking and bond formation are out of reach. The very first
direct observation of bond formation in solution has been carried out using XFEL ra-
diationwith a time resolutionof nearly 500 fs in the gold trimer [Au(CN)2−]3 [71]. Owing
to the faster time resolution, femtosecond X-ray pulses generated from XFEL sources
mayalsoprovidenewknowledgeon theultrashort time scale dynamics, suchas coher-
ent vibrational relaxation (periodic oscillations along the reaction coordinate) of the
transient species on the hot ground-state potential or of the excited reactant species
on the excited-state potential.

3.3 Molecular response: kinetic and chemical mechanisms of the
bacterial blue light receptor PYP (photoactive yellow protein)
from femtoseconds to seconds from solution and crystal X-ray
scattering

The bacterial blue light photoreceptor PYP (photoactive yellow protein) has been for a
long time used as a prototype system to develop time-resolved X-ray scattering meth-
ods covering nearly ten decades of time resolution. This is therefore an excellent ex-
ample from the literature to illustrate to which extent a combination of different time-
resolved small-angle and wide-angle scattering techniques performed in solution or
single crystal can provide a unified view of a complex sequence of structural modifi-
cations triggered by an initial photoinduced reaction.

All biological and chemical reactions involve amotionof atoms that proceeds via a
series of transient intermediate states with lifetimes spanning a wide time range from
femtoseconds to seconds. Watching a protein function in real time with atomic reso-
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lution is a definite goal in molecular biophysics. The relationship between a protein
function and its structure is controlled by its dynamical properties, where molecular
motions play a crucial role in various processes such as bond breaking, side-chain ro-
tation, helix motion, etc. A complete understanding of protein function requires spe-
cific experiments capable of tracking both its structure and its dynamics. A fantastic
breakthrough in protein structural sciencewas achieved in themid-1990s by the group
led by K. Moffat and M. Wulff. It has developed the first time-resolved X-ray crystal-
lography approach to catch transient three-dimensional structures of a protein (myo-
globin) as it changes in response to ligand (carbon monoxide, CO) dissociation and
rebinding [72, 73]. This polychromatic (Laue) X-ray diffraction experiment on single
crystal was a real technological challenge; the very intense 150 ps X-ray pulses at the
European Synchrotron Radiation Facility opened the way to understand the kinetics
and dynamics of protein functions with atomic resolution. The focus of time-resolved
structural analysis in this context is the following:
(i) Dynamics: identify the 3D detailed atomic and molecular rearrangements be-

tween the different k intermediate species (k is a priori unknown).
(ii) Kinetics: derive the associated time-dependent concentration profiles ck(t) and

transition rates.

These scattering results provide a structural foundation to time-resolved spectro-
scopic investigations in solution and molecular dynamics simulations.

The typical experiment consists in photolysis of the crystal with a short visible
laser pulse to initiate the biological reaction andmonitoring the subsequent structural
changes by collecting X-ray diffraction data at various time delays. Difference Fourier
electron density maps (so-called photodifference maps) are then calculated at each
time delay, and a structural model is built from the electron density maps, revealing
the difference between the average structure at a time delay t with the ground-state
structure.

PYP is a small photoreceptor protein that has served as a useful model system
for understanding the photoreception and the subsequent signal transduction at a
molecular level; the structure of the protein is given in Figure 25. This representative
example is a success story, which followed the instrumental evolution from the pio-
neering Moffat’s experiment at third-generation synchrotron (ESRF) in 1996 to recent
ultrafast XFEL measurements, accompanying the continuous improvement in analy-
sis methods and time resolution of the diffraction experiments. It served as a particu-
lar challenging test to explore the limitation and improvements of time-resolved X-ray
scattering methods.

The chromophore in PYP is p-coumaric acid (pCA, 4-hydroxycinnamic acid); it is
located in an inner binding pocket of the protein, attached covalently, and experienc-
ing a network of hydrogen bonds with the residues of the pocket. Upon absorption
of a blue photon (λmax ∼ 446nm) by the pCA chromophore, PYP enters a completely
reversible photocycle illustrated in Figure 25, which has been revealed by transient
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Figure 25: Simplified photocycle of photoactive yellow protein, which shows the different inter-
mediates and the time scale between the formation of each. The dark state pG is activated by
absorption of a blue photon (450 nm) that initiates the whole reversible cycle [4, 74]. Reprinted
from [74] Copyright (2016), with permission from Elsevier and from [4] with permission from ACS
(http://pubs.acs.org/doi/10.1021/acs.accounts.5b00198).

visible absorption spectroscopy. The protein is photoexcited from the pG ground state
to an electronically excited state pG∗, from which pCA undergoes a very fast trans-to-
cis isomerization, followed by thermal relaxations to red-shifted intermediates (pR1,
pR2, λmax ∼ 465nm), to blue-shifted intermediates (pB1, pB2, λmax ∼ 355nm). Sponta-
neous return topGbya relatively slowprocess completes the cycle.Along the complete
reaction path, hydrogen bonds are continuouslymodified, which couple to protein re-
arrangements, resulting in changes in shape and electrostatic potential at the protein
surface, likely at the origin of the signal transduction. The long lifetime of the pB states
(ms) allows a recognition of the signal by the organism.

3.3.1 Time-resolved X-ray crystallography from 100ps to 1 s

The very first experiment aimed at structurally characterizing the important long-lived
signaling pB state andwas carried out at the National Synchrotron Light Source (NSLS
at Brookhaven National Laboratory) [75]. The PYP single crystal was exposed to con-
tinuous laser illumination at 496.5 nm for 200ms until the photostationary state was
produced. The laser was then turned off, and the crystal was exposed to a 10ms poly-
chromatic X-ray pulse. This sequencewas repeated 10 to 16 times to improve the signal
statistics. The procedure was then repeated for each rotation position of the crystal to
measure the complete diffraction sphere. The experiment provided a set of dark and
light-on Bragg peak intensities, fromwhich the corresponding dark |FGS(H)| and light-
on |FES(H)| structure factor moduli where calculated. The photodifference |FES(H)| −
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|FGS(H)| electron densitymapswere computed, fromwhich the structure of the photo-
stationary state was refined, revealing significant structural modifications, including
trans-to-cis isomerization of the pCA chromophore.

Earlier intermediates in the photocycle (pR states) were detected in a similar way,
using the specific time structure of the ESRF synchrotron [76]. Here, a shorter time de-
lay of 1 ns was used, synchronizing a 7-ns laser pulse with the X-ray pulse of 150-ps
duration of the synchrotron operating in a single-bunch mode. The trans-to-cis iso-
merization was observed as complete within the time delay 1 ns.

In those two pioneering experiments, although a pump–probe scheme was used,
the structural information that can be obtained is rather obscured by the fact that a
single time delay is analyzed as a single point in a rather conventional structural re-
finement. In thegeneral case, each timedelayΔt corresponds to amixture of structural
configurations. Deconvolution of the structure of the individual intermediates is there-
fore quite difficult. A major breakthrough in terms of methodology was introduced by
a global structural refinement ofmany diffraction data setsmeasured atmany time de-
lays.More than 40 time delays covering 10 decades from 100ps to 1 sweremeasured at
the Advanced Photon Source (APS) and ESRF and combined [77, 78]. The complete de-
termination of the kinetic mechanism and identification of the intermediates was car-
ried out using a mathematical procedure called Singular Value Decomposition (SVD),
which we briefly describe here.

The experimental pump–probe procedure consists in measuring X-ray diffraction
data at fixed time delays Δt after pump laser pulses. The negative time point (for in-
stance, −20ns) corresponds to a situation in which the X-ray pulse arrives in advance
of the laser pulse,which provides the dark ground state pG. For each timedelayΔt, the
3D difference electron density map Δρ(r, Δt) is computed from the Fourier transform
of the difference between photoexcited and dark structure factor moduli ΔF(hkl, Δt).
Figure 26 shows the difference in electron density for PYP at Δt = 100ps.

The method of SVD allows extracting time-independent difference electron den-
sities for relevant intermediates from the mixture of time-dependent densities at each
time point. First, anM ×N data matrix A is constructed by arrangingM grid points of
Δρ(r, Δt) at N time points. SVD decomposes this time- and real-space-dependent data
matrix A into three matrices: the matrix U of left singular vectors corresponding to
time-independent difference electron densitymaps, thematrixVT (transpose of ama-
trix V ) of right singular vectors containing the time dependence of the corresponding
left singular vectors, and the matrix S whose diagonal elements (the singular values)
represent the degree to which the left and right singular vectors contribute to the data
matrix. In a mathematical form, A = USVT .

Using an SVD and global data analysis methodology, accurate structures of all
the intermediates and the rate parameters for interconversion between them were re-
covered. Four intermediates, denoted pR0, pR1, pR2, and pB0, were required to ac-
count for the time-dependent difference density maps. Figure 27 shows the results in
different forms: time-dependent population of each intermediate in the photocycle
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Figure 26: Superposition of the ground state (magenta) and 100-ps (green) electron density maps
of PYP, together with corresponding structural changes. Large amplitude atomic displacements are
depicted as yellow arrows [78].

(Figure 27 (B)) and structures of the four intermediates overlaid with corresponding
electron density maps (Figure 27 (C–F)).

3.3.2 Time-resolved solution scattering from 100ps to 1 s

Such a study illustrates the detailed structural kinetic information that can be re-
trieved at atomic-scale resolution from time-resolved X-ray diffraction experiments
on crystals. Time-resolved crystallography effectively probes the dynamical structure
with high spatial and temporal resolution. However, wemaywonderwhether the crys-
tal environmentmay restrict large structural changes due to inherent crystal contacts.
This is important in the case of PYP since time-resolved spectroscopic studies in so-
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Figure 27: Results of the kinetic global structural analysis. (A) Kinetic model. (B) Time-dependent
populations of each intermediate in the PYP photocycle. (C–F) Electron density maps and structure of
the different intermediates [78].

lution and crystalline phases suggest that the reaction pathways depend on the sam-
ple phase. The reaction path visualized by time-resolved X-ray crystallography may
not represent the kinetic mechanism applicable in solution. In this situation, pump–
probe X-ray solution scattering methods have been employed with the same temporal
resolution as the crystallographic investigations, i.e., from picoseconds to millisec-
onds [4, 79, 80]. The goal of solution scattering measurements is to investigate the
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molecularmechanismbywhich pCAphotoisomerization drives the protein conforma-
tional changes that lead to the PYP signaling state. In that sense, it is perfectly com-
plementary to time-resolved X-ray crystallography, probing a different spatial scale.

The first measurement was performed at the ESRF in the 16-bunch filling mode
(16 equally spaced intensebunches). Thephotoreactionwas initiatedwith laser pulses
at 460nmand sent to a capillary containing the solution sample. X-raypulses at−50µs
and at 21 time delays from 3.16 µs to 300ms probed the sample. The corresponding
time-resolved difference scattering curves qΔS(q, t) are given in Figure 28. The com-
plete set of data curves was analyzed using an SVD scheme to provide (i) the indi-
vidual time-independent difference scattering curves for the four major components
assigned to the pR1, pR2, pB1, and pB2 intermediates (corresponding to the photocy-
cle illustrated in Figure 25) and (ii) the associated time-dependent populations. Those
populations compare quite well with the time-resolved crystallographic results.

The molecular shape was reconstructed from the individual scattering curves of
each intermediate. Let us recall that solution scattering corresponds to an orientation
averaging of the scattered signal due to the randomorientation of the solutemolecules
in the solvent at the probed time scale (µs–ms). To get relevant structural informa-

Figure 28: (b) Time-resolved difference scattering curves qΔS(q, t) of PYP in solution and model
curves calculated from the kinetic analysis (in red). (d) Difference scattering curves of the different
intermediates. (e) Population changes of the different intermediates as a function of time. Reprinted
from [4] with permission from ACS (http://pubs.acs.org/doi/10.1021/acs.accounts.5b00198).

 EBSCOhost - printed on 2/13/2023 8:46 PM via . All use subject to https://www.ebsco.com/terms-of-use



184 | S. Pillet

Figure 29: Global molecular shapes of the
protein intermediates in solution obtained
from the shape reconstruction method of
solution scattering data. Reprinted from
[4] with permission from ACS (http://
pubs.acs.org/doi/10.1021/acs.accounts.
5b00198).

tion from the orientation average curve, a specific Monte Carlo modeling procedure
was used as detailed in [4]. The results are given in Figure 29. It shows large confor-
mational changes of the protein, especially a protrusion of the N-terminal domain in
the signaling pB1 and pB2 states, which proves that the photoinduced reorganization
propagates from the inner chromophore to the entire protein along the photocycle.
The protein volume gradually increases and becomes maximal in the final interme-
diate. In addition, the data reveal that a common kinetic mechanism is applicable to
both crystalline and solution phases.

A separate time-resolved X-ray solution scattering experiment was performed
with a much shorter ∼150ps time resolution [80]. Solution scattering data were mea-
sured at the APS running in the hybrid filling mode (a single bunch isolated from
the remaining bunches). The solution was contained in a silica capillary, which was
translated along a direction orthogonal to the X-ray and laser beams to refresh the
sample between each pump–probe cycle. The originality of this measurement is that
the time resolution is much shorter than the rotational diffusion of the solution. For
PYP in solution, the absorption probability of the pCA chromophore depends on the
angle between the laser polarization vector and the transition dipolemoment for pCA,
which is nominally aligned along the pCA long axis. Photoisomerization of pCA trig-
gers the protein contraction as identified in the photocrystallographic experiments
detailed above. Accordingly, photoactivation of PYP produces an anisotropic orienta-
tional distribution of photoexcited pR0 states that favors PYP whose pCA is aligned
with the laser polarization axis. Scattering from an anisotropic orientational distribu-
tion of pR0 intermediates can produce an anisotropic X-ray scattering pattern, which
was recorded in a time-resolved manner in this experiment.

The difference scattering signal was analyzed using an SVD scheme. The results
are given in Figure 30. We can see that the derived time-dependent population of the
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pR0 and pR1,2 states matches perfectly the longer evolution of the previous experi-
ment (Figure 28). The small angle part of the scattering curves (shaded area in Fig-
ure 30 (A)) was integrated and divided by the ground-state amplitude to compute the
relative change (Figure 30 (B)). The nearly 1.8% increase in integrated small angle X-
ray scattering (SAXS) signal corresponds to a volume change of −0.25%, reflecting a
global contraction of the protein.

Figure 30: (A) Time-resolved Small Angle X-ray Scattering (SAXS) data recorded as a function of
pump–probe time delay. (B) (top) Time dependence of the integrated SAXS intensity (integration
over the shaded region of figure A). (bottom) Time-dependent population of the different intermedi-
ates. Reprinted with permission from [80]. Copyright (2013) American Chemical Society.

3.3.3 Serial crystallography at XFEL facilities

The crystal and solution scattering experiments detailed in the previous sectionswere
all based on a pump–probe measurement scheme, which is applicable to reversible
photoactivated processes only. This was the case of the reversible photocycle of PYP.
For nonreversible processes, an alternativemeasurement strategy has to be employed,
such as time-resolved serial crystallography [81–84]. Synchrotron-based diffraction
experiments are currently restricted to strongly scattering, relatively large crystals due
to the X-ray beam brilliance. The time resolution is at the moment limited to about
100 ps (extended to 100 fs in slicing modes as presented in Section 2) by the duration
of the probe X-ray pulse. As shown in Figure 25, the very earliest events of the pho-
tocycle of PYP, the photoisomerization of the pCA chromophore occurs on ultrafast
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time scales and therefore could not be resolved with the synchrotron experiments
described before. The method of serial femtosecond crystallography at XFEL sources
has opened new possibilities for structural crystallography. In a typical experiment, a
stream of nano- or microcrystals suspended in mother liquor, which could be close to
the physiological conditions, is delivered by a liquid jet injector to the laser interaction
region. The jet is further illuminated by very intense X-ray pulses from a free-electron
laser X-ray source. Amassive X-ray dose is delivered to the sample by the femtosecond
X-ray pulse, leading to a destruction of the crystal, but only after the diffraction signal
has been recorded (see the description and Figure 1 in the chapter Ultrafast science).
Using such an approach, each crystal is illuminated only once by the laser and X-ray
pulse before the next crystal arrives. Using this measurement protocol, much smaller
crystalsmay bemeasured, butmore importantly, irreversible photoinduced processes
can be measured. The very first serial femtosecond crystallography experiment con-
ducted on PYP was performed at the LCLS (Linac Coherent Light Source, Stanford)
[83]. By comparison with the previous Laue synchrotron experiments, the difference
electron densitymaps have shownanice similarity, establishing the importance of the
methods for challenging studies at much shorter time scales in the fs to ps range [84].
Through this high temporal resolution experiment, the structural dynamics of the
trans-to-cis photoisomerization reaction of pCA has been monitored.

3.4 From the molecular to the macroscopic crystal response:
successive steps of the dynamical process of photoinduced
spin transitions

In the previous example, the molecules were considered as noninteracting entities in
a crystal, whose photoexcitation may be considered as a spatially random unimolec-
ular process. The structure of the transient excited states could be derived through
time-resolved X-ray crystallography. In cooperative crystals, for which the constitut-
ing elements (atoms/ions/molecules) interact through various kinds of interactions,
the unimolecular approximationmay not be valid, the photoinduced events being not
independent anymore. In such cases, we may expect not only the rates, but also the
mechanisms to depend on the environment. In the following, we consider iron coor-
dination complexes as representative examples of cooperative solids; their structural
dynamics have been quite extensively studied.

The molecular switching phenomenon in Fe-coordination complexes (Fe(II) and
Fe(III) complexes), especially those with FeN6 coordination environment exhibiting
the so-called spin-crossover phenomenon, is quite well understood and documented.
The electron configuration of Fe(II) ions consists of six electrons distributed within 3d
atomic orbitals. In perfect octahedralOh coordination, five d orbitals are split into two
subsets, namely dxy , dxz , dyz , which are the basis of the t2g irreducible representation,
and dz2 and dx2−y2 , which are the basis of the eg irreducible representation. The t2g
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orbitals are nonbonding, whereas the eg orbitals are antibonding, so that the trans-
fer of one electron from a t2g orbital to a eg orbital is accompanied by an elongation
of the Fe–N bond distance, which may be taken as the reaction coordinate. For Fe(II)
complexes, the bond length typically increases by 0.20Å. As a consequence, the Fe–N
bond stretching frequency shows amarked difference between the high-spin (HS) and
the low-spin (LS) states, lying around 390–430cm−1 in the LS state and 210–250cm−1

in the HS state, associatedwith a softer potential owing to themore antibonding char-
acter in the HS state.

As an illustrative example of Fe(II)-based complexes, Figure 31 shows the po-
tential energy diagram (Djablonski diagram) of [FeII(bpy)3]2+ in water. The energy
diagram shows that the 1A1(t62g) electronic state is the LS ground state, 5T2(t42ge2g)
is the HS lowest excited state. Higher in energy are several higher excited singlet,
triplet, and quintet states (ligand field or metal centered states), and low lyingmetal–
ligand charge transfer (MLCT) states. The dynamics of the switching in spin-crossover
and LS Fe-complexes has been explored extensively through transient optical ab-
sorption spectroscopy and X-ray absorption spectroscopy experiments performed in
solution [85]. Thesemeasurements allowdrawing a general scheme for the fundamen-
tal molecular processes. Fe(II) molecular complexes undergo an LS to HS molecular
photoinduced spin state switching on a sub-ps time scale. More specifically, electrons
from the 1A1-singlet ground state are excited optically in the higher lyingMLCT bands,
fromwhich the electronic population relaxes to the 5T2 state via intersystem crossing.
The photoexcited HS state can last from ns to days and has been extensively char-
acterized for many systems through very-low-temperature measurements, as well as
ns transient optical measurements at more elevated temperatures (typically at 100–
250K). The exact pathway by which the MLCT state relaxes to the 5T2 state is system
dependent and is still a matter of debate in the literature, especially whether a triplet
3T1 state is involved.

Figure 31: Potential energy diagram of
[FeII(bpy)3]2+ in water. Reprinted from [85],
Copyright (2010), with permission from Else-
vier.
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In the solid state, the photoactive Fe(II) (or Fe(III)) molecules are confined in
a crystalline matrix of other molecules with which they interact, rendering the
mechanisms more complex. We may expect that the photoinduced dynamics fol-
low a complex pathway from the molecular switching extending to the macroscopic
scale through a sequence of different processes spanning almost ten decades in
time. This mechanism has been studied on a prototype Fe(III) spin-crossover com-
plex [(TPA)Fe(III)(TCC)]PF6 (TPA denotes tris(2-pyridylmethyl)amine, and TCC de-
notes 3,4,5,6-tetrachlorocatecholate) whose molecular structure is shown in Fig-
ure 32. For this complex, the ⟨Fe–N⟩ bond length varies from ⟨Fe–N⟩LS = 1.967(3)Å
to ⟨Fe–N⟩HS = 2.127(3)Å determined from X-ray crystallography and structural refine-
ment at thermal equilibrium (at 400K in the complete HS state and at 80K in the
complete LS state). In a crystal containing a fraction XHS of HS molecule and (1−XHS)
LS molecules, the spatially averaged bond distance is given by

⟨Fe–N⟩ = XHS⟨Fe–N⟩HS + (1 − XHS)⟨Fe–N⟩LS. (34)

Pump–probe time-resolved optical and X-ray spectroscopy measurements have
shown that the out-of-equilibrium transformation dynamics in Fe(II)-based com-
plexes triggered by a femtosecond laser pulse exhibits a succession of consecutive
steps, spanning sub-ps to µs time scale [85]. The variation in intensity of the transmit-
ted probe light (ΔI/I) measured at 600nm on a single crystal of [(TPA)Fe(III)(TCC)]PF6
after femtosecond excitation at 800nm is given in Figure 32. First, the absorption
of light locally switches a small fraction ΔXhν

HS ≈ 1% of molecules from LS to HS in
the sub-ps time scale. This is called the photoinduced step. The absorption is then
constant until 1–10 ns, and no further molecular switching occurs. During this in-
terval, photoexcited molecules release heat through electron–phonon coupling and
phonon–phonon relaxation processes. Fifty ns after photoexcitation, the fraction of
HS molecules increases during a second step, and finally a third step is identified by
a further increase of the HS population on the microsecond regime.

Figure 32: Left: Molecular structure of [(TPA)Fe(III)(TCC)]PF6 (TPA denotes tris(2-pyridylmethyl)amine,
and TCC denotes 3,4,5,6-tetrachlorocatecholate). Right: Differential intensity of transmitted probe
light (ΔI/I) measured on a single crystal of [(TPA)Fe(III)(TCC)]PF6 after femtosecond excitation at
800nm at 200K probed at 600nm [86–89]. Reprinted from [88], Copyright (2010), with permission
from Elsevier.
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To draw a complete structural dynamics picture, time-resolved X-ray diffraction
experiments have been performed with 100ps resolution at X-ray synchrotron radi-
ation facilities. The results are given in Figure 33. From the structural analysis, the
time-dependent unit cell parameter a(t) and ⟨Fe–N⟩(t) bond distances have been re-
trieved with high accuracy. From ⟨Fe–N⟩(t) the time evolution of the HS fraction may
be computed and compared to the visible absorption spectroscopy results as

⟨Fe–N⟩(t) = XHS(t)⟨Fe–N⟩HS + (1 − XHS(t))⟨Fe–N⟩LS (35)

and

XHS(t) =
⟨Fe–N⟩(t) − ⟨Fe–N⟩LS
⟨Fe–N⟩HS − ⟨Fe–N⟩LS

. (36)

Although collective effects are at the origin of the observed physical properties, this
crystallographic treatment follows case (b) of Figure 8, assuming a random distribu-
tion of photoexcited species. In addition, oscillation of Bragg peak intensity reveals
the presence of ultrafast acoustic phonons after laser pulse excitation (case (e) of Fig-
ure 9). In some particular cases, a clear time-resolved evolution of the width of the
Bragg peaks is observed and attributed to strain and inhomogeneities development
in the crystal (this corresponds therefore to case (d) of Figure 8). The evolution of all
these parameters parallels the visible transient absorption behavior nicely and allows
defining the complete transformationmechanism covering time scales from femtosec-
onds to seconds (Figure 33, right). During the three successive steps, the HS molecule

Figure 33: Time-dependent structural changes: (b) evolution of the average Fe–N bond distance
Δ⟨Fe–N⟩, (c) evolution of the unit cell parameter a, (d) schematic drawing of the complete dynamics.
Reprinted with permission from [89]. Copyright (2009) by the American Physical Society.
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population XHS(t) is revealed by the temporal evolution of the ⟨Fe–N⟩(t) average bond
length evolution. A nearly 3% instantaneous increase of HS-state molecules occurs
just after the pump laser pulse during the 100 ps of the phototransformation, which
is the time resolution of the diffraction experiment. Faster processes are not resolved
with this experimental configuration. The molecular structure is unchanged in the
1–10 ns range. During this time, the unit cell volume remains constant. Volume ex-
pansion involves propagation of cell deformation, limited by the speed of sound, and
therefore occurs at slower time scale. This first step is therefore a unimolecular pro-
cess. Volume expansion occurs in a few tens of nanoseconds owing to combined ex-
pansion of phototransformed HS molecules and local heating by nonradiative en-
ergy dissipation of relaxing higher lying charge transfer states. The HS population
increases from 3% to 6% in the microsecond time scale associated with a thermally
activated process resulting from the heating. Ultimately, the crystal recovers thermal
equilibrium in the millisecond time scale. It is worth noting that steps 2 and 3 rely
on elastic wave propagation and heat diffusion processes and, as such, are expected
to depend strongly on the size and shape of the probed samples, owing to different
available degrees of freedom for energy redistribution.

The crystal structure of the monoclinic form of [(TPA)Fe(III)(TCC)]PF6 was eval-
uated at two delays, 500 ps and 50 µs, from accurate time-resolved X-ray diffraction
measurements performed at the Advanced Photon Source (APS, BioCARS beamline).
The corresponding photodifference maps are given in Figure 34. These two maps
show significant electron density redistribution upon excitation. At 500 ps, a shift of
electron density around Fe1 toward O1 is observed, even more pronounced at 50 µs.
A structural refinement based on the intensity ratios has been performed to derive the
complete molecular geometry change. A systematic Fe–N and Fe–O bond elongation
has been characterized.

The example of [(TPA)Fe(III)(TCC)]PF6 described in this section highlights that
time-resolved X-ray scatteringmethods on single crystals have the potential to resolve
the structural dynamics over different time scales and different length scales. As a

Figure 34: Photodifference maps of the monoclinic form of [(TPA)Fe(III)(TCC)]PF6 for (a) the 500ps
data and (b) the 50 µs data with isosurfaces (red positive, blue negative) of ±0.14eÅ−3, and
±0.46eÅ−3, respectively. Reproduced from Ref. [86] with permission from the PCCP Owner Societies.

 EBSCOhost - printed on 2/13/2023 8:46 PM via . All use subject to https://www.ebsco.com/terms-of-use



Time-resolved structural analysis: probing condensed matter in motion | 191

matter of fact, the transient displacement of Bragg peaks allowed deriving the tempo-
ral evolution of the unit cell (volume expansion and distorsion). Altered dynamics are
expected to happen for nanoparticles or low-dimensional systems. Indeed, the time
scale for processes (ii) and (iii) have been reported much faster in nanoparticles of
the SCO system [Fe(pz)Pt(CN)4]. For that purpose, appropriate methods for the time-
resolved structural analysis of nanoscale objects are required; this is the subject of the
next section.

3.5 Time-resolved total X-ray scattering: dynamic behavior of
nanoscale systems

Total X-ray scattering coupled to Debye function analysis in reciprocal space, or pair
distribution function (PDF) analysis in the real space has revolutionized the struc-
tural determination of disordered and nanoscale materials (see the chapter Static
structural analysis of condensed matter). This nanocrystallographic approach has ex-
pandedmuch recently owing to the growing accessibility to high-flux X-ray beamlines
at third-generation synchrotron sources. The advances in terms of beam stability, flux,
and X-ray detector technologies render possible the time-resolved or time-dependent
extension of themethod. This has enabled the in situ studies of materials as functions
of temperature, pressure, or reaction coordinate.

One of the first time-resolved PDF analyses was performed at the Advanced Pho-
ton Source, using a fast-readout (30Hz) silicon detector [90]. The study focused on the
reduction of PtIVO2 to metallic Pt0 under hydrogen gas at elevated temperature. The
completemeasurement took ∼6s for 200 consecutiveG(r)measurements. The process
is irreversible, and therefore, no stroboscopic techniquewas used. The intensity of the
peaks corresponding to Pt–O and Pt⋯Pt distances was followed as a function of time
to detect the appearance of Pt0 (Figure 35). The PDF of the final product was success-
fully refined as the face-centered cubic structure of metallic Pt0.

Catalytic processes have been investigated measuring total X-ray scattering of
∼2nm size Pt nanoparticles while changing periodically every 30 s the external en-
vironment between stoichiometric (stoic; 2CO:O2) and oxidizing (ox; CO:5O2) condi-
tions, total X-ray scattering data being collected every 1 s [91]. The temporal resolution
of the experiment was therefore 1 second. Structural changes have been detected in
the PDF, which indicated that the nanoparticles adapt rapidly and reversibly to the
modulated chemical environment.

Themechanismsof formationof nanoparticles for variousmaterials, suchasWO3,
TiO2, Pt, Pt3Gd, and maghemite (γ-Fe2O3), has been followed by in situ time-resolved
total X-ray scattering coupled to pair distribution function analysis using a specifically
designed reactor for hydrothermal synthesis [92–96]. The precursor solution was in-
serted and heated monitoring the scattering signal during the reaction progress with
a resolution of nearly 1 second. The analysis provided in real-time direct information
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Figure 35: (a) Series of 200 PDFs collected over ∼6s for the in situ reduction of PtIVO2 to metallic Pt0

under hydrogen gas. (b) Relative peak intensity corresponding to the Pt⋯Pt and Pt–O bond lengths
during the reaction [90]. Reproduced with permission of the International Union of Crystallography.

on the buildup of local structure (first-neighbor interatomic bond formation, polyhe-
dral transformation) and cluster growth through the damping of the correlations in
the PDF at longer distances. The presence of transient structural species may also be
detected. The data can be further fit to kinetic models such as the Avrami model of
nucleation and growth.

The evolution of the atomic structure during maghemite (γ-Fe2O3) nanoparticle
formation provides a very illustrative experiment [95]. The goal was to understand
how tetrahedral and octahedral iron oxide units link to form crystalline maghemite
nanoparticles. The precursor solution contained ammonium iron(III) citrate. The ex-
perimental PDF of the precursor solution presents sharp peaks, characteristic of Fe–
O, C–C, and C–O bonds, which have beenmodeled as octahedrally coordinated Fe(III)
[FeO6] complexes,whichmost probably formcoordinationpolymers [Fe(H2cit)(H2O)]n
in solution. The formation of maghemite was followed at temperatures ranging from
270 to 370 °C and at 250 bar using the hydrothermal synthesis setup. The correspond-
ing time-dependent PDFs obtained at 320° are given in Figure 36. As can be seen, just
after initiation of the reaction, the precursor peaks in the range 2.5–5.5Å decrease in
intensity, corresponding to a change of Fe coordination. This relates to a decompo-
sition of the citrate ions in CO, CO2, and H2O. Simultaneous peaks at 3.2 Å and 3.5 Å
appear, indicating the formation of Fe–Fe and Fe–O correlations. The final structure
agrees with the crystalline spinel form γ-Fe2O3. After 10–20 s, the peaks detected in
the range 2.9–3.5 Å indicate that the octahedral and tetrahedral Fe environments (FeO,
FeT) may be distinguished in the nanoclusters (Figure 36). The appearance of the FeO–
FeT correlation peak in the PDF is delayed, which demonstrates that the primary clus-
ters in the solution consist exclusively of edge-sharing [FeO6] units with very short-
range order. After ∼10 s, the presence of a peak at 3.5 Å corresponds to the disordered
maghemite-like assembly of tetrahedrally (corner sharing) and octahedrally (edge-
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Figure 36: Left: (A) Contour plot of the low r-range PDFs obtained at 320° and (B) selected PDFs at
the initial stages during maghemite formation. Right: Proposed structural model for the mechanism
of formation and growth of maghemite γ-Fe2O3 nanoparticles: initial formation of octahedrally co-
ordinated iron to edge-sharing cluster and condensation through tetrahedrally coordinated iron
atoms. Adapted with permission from [95]. Copyright (2014) American Chemical Society.

sharing) coordinated iron atoms. The complete process proposed by the authors is
depicted on the right panel in Figure 36.

3.6 Time-resolved crystallography under external applied electric
field

The structural response of piezoelectric and ferroelectric materials has been stud-
ied through quasi-static and time-resolved X-ray diffraction methods on single crys-
tals and ceramics. This provides nice illustrative examples of case (d) of Figure 8.
BaTiO3 is amodel ferroelectric system, which has been studied in detail. It has a cubic
perovskite-type structure (space group Pm3̄m) in the high-temperature phase and un-
dergoes a first-order ferroelectric phase transition to a tetragonal phase (space group
P4mm) at Tc = 400K. In the tetragonal phase, Ti is displaced in the crystallographic
c direction, resulting in a spontaneous polarization along the c-axis (Figure 37). Six
polarization orientations are possible in the crystal in the tetragonal phase, forming
90°-domains and 180°-domains due to the cubic to tetragonal symmetry reduction. In
tetragonal BaTiO3, the application of an electric field results in a displacement of the
Ti atom along the electric field direction, giving rise to a lattice distortion as shown in
Figure 37 (b). When the electric field is applied along the direction of spontaneous po-
larization, the c-axis of the lattice elongates, whereas in contrast, the a-axis shrinks.
The components d33 and d31 of the piezoelectric tensor may be derived from this unit
cell deformation as given in Figure 37.

X-ray diffraction measurements have been performed using the BL-1A beamline
of the Photon Factory of the high-energy accelerator research organization (KEK) in
Japan [97]. The X-ray beam was incident on the c-face and a-face of a monodomain
BaTiO3 single crystal, applying the static electric field in the direction of spontaneous
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Figure 37: (a) Tetragonal structure of BaTiO3 perovskite. (b) Piezoelectric effect. The Ti atom is dis-
placed along the direction of the applied electric field leading to a lattice distortion depicted as blue
dotted lines. When an electric field is applied along the direction of spontaneous polarization, the
c-axis elongates giving a positive value of d33, whereas the a-axis contracts giving a negative value
of d31.

polarization along the c-axis direction. The amplitude of the electric field was at least
ten times larger than the coercitive field (∼1kV cm−1) necessary for domain switch-
ing. The measurements were first performed for the positive (E+) direction and then
changed to the negative direction (E−). A linear expansion of the c-axis and linear
contraction of the a-axis was observed (Figure 38), corresponding to estimated val-
ues of 149(54)pmV−1 and −82(61)pmV−1 of the piezoelectric coefficients d33 and d31,
respectively.

Figure 38: Left: Elongation of the c-axis of BaTiO3 versus electric field E applied along the direction
of the spontaneous polarization P. Right: Contraction of the a-axis versus electric field E applied
perpendicularly to the spontaneous polarization P. Republished with permission of IOP Publishing
Ltd, from [97]; permission conveyed through Copyright Clearance Center, Inc.

 EBSCOhost - printed on 2/13/2023 8:46 PM via . All use subject to https://www.ebsco.com/terms-of-use



Time-resolved structural analysis: probing condensed matter in motion | 195

The dynamics of polarization switching was further investigated using a weaker peri-
odic electric field of ±22 V across a 1-mm thick single crystal of BaTiO3 [98]. An alter-
nating sinewave electric fieldwith a frequency of 250 kHzwas applied along the c-axis
direction. Thediffraction experimentwas conductedon theSCDbeamlineof theANKA
synchrotron. The diffraction signal was recorded using an avalanche photodiode syn-
chronized to the period of the external electric field. The position and intensity of the
(400) Bragg peak was followed in a time-resolved manner to probe the lattice defor-
mation (related to the peak position Δd/d) and position of the titanium relative to the
symmetry position in the unit cell (related to the intensity of the peak ΔI/I). A peri-
odic angular shift of the Bragg peak was detected (Figure 39, left), which described
a hysteresis loop of the lattice strain Δd/d (upper panel of Figure 39, right), as also
schematized in Figure 8 (d). Since the electric field was weak compared to the coerci-
tive field, the change in integrated intensity can entirely be attributed to the change
of the structure factor (lower panel of Figure 39, right) and therefore atomic displace-
ment within the unit cell (equation (18)).

Figure 39: Left: Time-average and time-resolved displacement of the (400) Bragg peak under peri-
odic electric field. Upper right: Hysteresis loops of the change of the intensity ΔI/I (triangles) and
strain Δd/d (circles) of the (400) peaks as a function of applied electric field. Lower right: Change in
Bragg peak intensity as a function of temperature (triangles) and dielectric response of the crystal
(squares). Reprinted with permission from [98].
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A similar experiment with a much higher electric field was conducted using the
BL02B1 beamline at Spring-8 to follow the lattice strain response during and after
polarization reversal. A sequence of X-ray pulses of 4-µs width was isolated from
the 508MHz frequency of the synchrotron, which defined the time resolution of
the experiment. A cyclic bipolar square wave electric voltage Vext(t) with 600Hz
frequency, matching the X-ray pulse frequency, was applied to a single crystal of
BaTiO3. The delay Δt was controlled. The schematic of the experiment is given in
Figure 40.

Figure 40: Schematics of the experimental setup for time-resolved X-ray diffraction under electric
field at Spring-8 BL02B1. X-rays out of the synchrotron are selected by an X-ray chopper. The bipolar
square wave external electric field Vext(t) with amplitude 125 V and period 1667 µs is applied on the
sample [99]. Copyright 2011 The Japan Society of Applied Physics.

The measured voltage V(t) on the crystal is given in Figure 41. It shows the polar-
ity switching and periodicity of the external square wave voltage Vext(t) with addi-
tional oscillations, defining six regimes schematized in Figure 41 (labeled I,… ,VI).
The corresponding tetragonality c/ameasured through time-resolvedX-ray diffraction
is given in parallel. In region I, the crystal is in amonodomain state with tetragonality
c/a = 1.0110. When Vext becomes positive, polarization reversal occurs and is com-
pleted at Δt ∼ 50µs. The sample should be in a multidomain state in this time region.
In region II, c/a decreases because the electric field is opposite to the spontaneous
polarization of the sample. 180°-domains are forming and growing. In region III, c/a
increases to a value of 1.0114. Then both V(t) and c/a(t) behave with damped oscil-
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Figure 41: Top: (a) Time dependence of the effective electric voltage V(t) applied to BaTiO3 single
crystal plate for a bipolar square wave driving electric voltage. (b) Enlarged V(Δt) showing the six
time periods (labeled I,… ,VI). (c) Tetragonality c/a as a function of Δt. Bottom: Schematic of the
ferroelectric domain structure and crystal structure expected in each time region. Adapted from [99]
and [100]. Copyright 2011 The Japan Society of Applied Physics.

lation in regions IV and V and finally diminish at Δt ∼ 800µs. This is attributed to
piezoelectric vibration corresponding to a vibration of the lattice strain.

From these experiments we can conclude that a domain motion in ferroelectric
crystals occurs in the µs time scale. The domain wall dynamics in the model system
Pb(ZrxTi1−x)O3 (PZT) has been specifically investigated using time-resolved X-ray and
neutron diffraction experiments to follow the transient and cooperative motions dur-
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ing polarization switching. It has been observed that at progressive higher electric
field, the speed of polarization switching scales with the magnitude of the electric
field but is limited by the propagation velocity of elastic deformations in the crystal,
which is several km/s. Time-resolved diffraction experiments have been conducted at
the Advanced Photon Source using a focused X-ray beam to a 115-nm spot using Fres-
nel zone plate optics [101]. In PZT crystals, the (002) and (002̄) Bragg reflections of the
tetragonal phase correspond to opposite polarization states and can differ in intensity
by 30% or more, resulting from the noncentrosymmetric unit cell. Probing the peak
position and intensity of the (002) reflection gives insights on the lattice strain and
domain switching, respectively. X-ray bunches of 100 ps separated in time by 153 ns
were used from the synchrotron. Bipolar electric field cycles of 18V pulses (E+ and
E−) were applied to the sample with a repetition rate of 10 kHz. The amplitude of the
electric field (18V) is higher than the coercitive field, and polarization switching oc-
curred during the electric pulses. At the onset of the electric field, the (002)Bragg peak
shifted to a higher angular 2θ value, corresponding to a shrinking of the PZT lattice
along the c-axis (Figure 42). Hundreds of nanoseconds later, the (002) peak shifted to
a lower 2θ value, and in parallel, the intensity decreased. Two points denoted a and b
were defined on the intensity curve I(t) and assigned to the beginning and end of the
scattering signature of the reversal of the piezoelectric response.

Figure 42: Left: Intensity and 2θ position of the PZT (002) Bragg reflection during the switching of
the remnant polarization by a −18V pulse. Right top: Polarization switching time in a 20 × 20µm2

area. Right bottom: polarization switching time as a function of distance along the arrows depicted
in the inset. Reprinted with permission from [101]. Copyright (2006) by the American Physical Soci-
ety.
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One important specificity of this experiment was the focusing of the X-ray beam to
115 nm, which was used to map spatially the response of the PZT sample to the elec-
tric field, so that the domain wall displacement can be directly imaged in the time
domain. The position in time of the midpoint a−bwasmonitored as a function of the
position of the beam on the sample. This midpoint was associated with the switch-
ing time at each spatial position; it corresponds to the time needed for a polarization
domainwall to travel from the nucleation site to themeasurement position. The corre-
spondingmap is given in Figure 42, right. It shows the nucleation site, domain growth
direction, and domain wall velocity. The distribution of nucleation sites is limited to
a single nucleus in the bottom right corner. The linear plot of the switching time as a
function of position gives an average domain wall velocity of 40ms−1 for 18V electric
pulses, which is below the limit set by elastic deformation.

The experiments detailed above focused on the time evolution of only a few rele-
vant Bragg peaks to probe themacroscopic domain switching and lattice strain during
polarization switching. Understanding the mechanisms of polarization switching re-
quires a characterization of the crystal structure at subangstrom resolution as a func-
tion of time under an external applied electric field. This requires measuring with
high accuracy the intensity change of all Bragg reflections up to subatomic resolu-
tion (high reciprocal space coverage). Such experiments have been conducted on the
model piezoelectric systemquartz using a quasi-static electric field [102, 103]. α-quartz
is a piezoelectric material whose structure is formed by corner-sharing SiO4 tetrahe-
dra; it crystallizes in the trigonal P3121 (or P3221) space group (ap = 4.91Å, cp = 5.40Å).
For a long time, the origin of piezoelectricity of α-quartz was attributed to a displace-
ment of the Si4+ andO2− ionic sublattices under the influence of the electric field. Crys-
tallographic experiments have been performed under a periodically reversed electric
field with four stages E+/0/E−/0 to avoid charge accumulation, and with low switch-
ing frequency (quasi-static mode). For fields of about E0 < 3kVmm−1, variations of
Bragg peak intensities of a few percent were observed. The change of the fractional
coordinates of the atoms in the unit cell changes the intensities of the Bragg reflec-
tions through the change of structure factor:

I(H,E) ∝ |F(H,E)|2 = |
Nat

∑
j=1

fje2𝚤πH⋅(rj+Δrj)|
2

. (37)

We neglect in these expressions the atomic electron density polarization under the
electric field, which would modify the atomic scattering factors fj .

The modulation of the Bragg peak intensity was followed and modeled using the
response ratios defined as the relative intensity variation in the perturbed (E ≠ 0) and
unperturbed crystal (E = 0) using a least-squares refinement procedure:

η(H,E) = I(H,E) − I(H,E = 0)
I(H,E = 0)

. (38)

The results of the experiment indicate that the bond distances Si–O are very little af-
fected, but both a deformation and a reorientation of rigid SiO4 tetrahedra are induced
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by the electric field [102, 103]. These distortions increase slightly the dipole compo-
nents of the Si–O–Si fragments along the field direction, which is consistent with the
small values of the piezoelectric coefficients of α-quartz.

The transient atomic displacements during a resonant vibration of α-quartz have
been investigated through time-resolved X-ray diffraction measurements at the beam-
line BL02B1 of the Spring-8 synchrotron facility. The specificity of the experiment is
that a single crystal of quartz was made vibrating in resonance with its thickness-
shear vibration (resonance frequency of f0 = 30MHz) to amplify the physical phe-
nomenonand render it possible tomeasurewithX-ray diffraction. Applying an electric
field in this special direction distorts the trigonal unit cell to a triclinic one; the dis-
tortion may be quantified by the values of the angles α, β and γ with respect to the
nonprimitive C-centered orthorhombic unit cell (a = 4.91Å, b = 8.50Å, c = 5.40Å, and
α = β = γ = 90°). The time profile of the experiment is illustrated in Figure 43. It was im-
posed by the fixed frequency 26.1 kHz of the single electron bunch of the synchrotron
storage ring. Short 50 ps X-ray pulses were isolated using a high-speed mechanical
chopper. A sine-wave electric field of varying amplitude (E0 < 0.2kVmm−1) was ap-
plied perpendicular to the faces of the quartz crystal with a frequency f close to f0 to
drive the resonant vibration. The time-dependent crystal structure was investigated
over one complete period of electric field by varying the time delay Δt.

The angles β and γ change according to a sine wave with a period of f −10 = 33ns,
whereas the other lattice constants a, b, c, α donot change appreciably. Themaximum
of angular distortion varies linearly with the applied electric field amplitude E0. This

Figure 43: Schematic of the time-resolved experiment with hybrid alternating electric field (b) and
repetitive short-pulse X-rays (d). The applied electric field consists of a sequence of 1 000 cycles of a
30MHz sine wave repeated periodically and separated by 5 µs. Short-pulse X-rays with a pulse width
of 50 ps and repetitive frequency of 26.1 kHz are used as a probe. Reproduced from [104], with the
permission of AIP Publishing.
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resonant lattice vibration is observed only in a narrow frequency band as shown in
Figure 44. The amplitude and phase behaviors are consistent with the Lorentzian dis-
tribution and arctangent curve as a function of the frequency of a harmonic oscillator
under driving and damping forces (see the fitting in Figure 44).

Figure 44: Unit cell parameters and Bragg intensity of α-quartz vibrating under alternating electric
fields along the Y ′-axis. Left: (a) Change of α,β,γ as a function of time under the resonant alternat-
ing electric field with f = f0 and E0 = 0.18kV/mm. (b) Change of α,β,γ at Δt = 25ns as a function
of E0. (c) Changes of the amplitude and phase of the Δγ sine curve of (a) as a function of the fre-
quency shift (f − f0). (d) Change of intensity of the (11 − 5) and (−390) Bragg reflections as a function
of Δt. Right: Structural changes: change of the Si–O–Si angles. Reproduced from [104], with the
permission of AIP Publishing.

Associated atomic motions in the unit cell were detected as changes of Bragg peak in-
tensity (Figure 44) with the same frequency as the driving electric field. Crystal struc-
tures at the maximum of distortion (Δt = 9ns and Δt = 25ns) were determined by a
least-squares refinement over 3 700 measured Bragg reflections. The strained triclinic
unit cell of quartz contains three crystallographically independent SiO4 tetrahedra
(labeled 1–3 in Figure 44). No change in Si–O distances and O–Si–O angles were de-
tected, indicating that the SiO4 tetrahedra are hardly distorted by the driven resonant
lattice strain. On the contrary, Si–O–Si angles, bridging SiO4 tetrahedra, show sig-
nificant distortions from the ideal 143.66° in the nondistorted trigonal structure. This
bending vibration results from the response of each local Si–O–Si dipole moment,
which behaves synchronized to the applied periodic electric field.

This time-resolved X-ray diffraction experiment highlights that the response of a
quartz piezoelectric crystal to an applied resonant electric field can be traced back to
the atomic displacements with a nanosecond time resolution. A complete structural
dynamics can be mapped out.
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In addition to electric field stimuli, the structural dynamics in piezoelectric and
ferroelectric solids have been probed using ultrafast laser pulses to initiate strain
waves, which can be further probed by time-resolved X-ray diffraction techniques
[105–108]. The idea is to design a thin layer of ferroelectric material deposited on a
layer of a metallic electrode used as a transducer (for instance, SrTiO3). The metallic
electrode is excited by femtosecond light pulses, leading to a quasi-instantaneous
temperature rise. The resulting heat expansion is limited by the speed of sound and
proceedswithin picoseconds. This launches a strainwave in the ferroelectricmaterial.
The propagation of the strain wave is then investigated through the shift of the Bragg
peak position. The in-plane and out-of-plane structural dynamics of PZT and PbTiO3
have been studied that way [105–107].

3.7 Dynamics of long-range ordering from time-resolved X-ray
crystallography

We have seen at the beginning of this chapter that X-ray diffraction on single crys-
tals is characterized by the crystal scattering factor Fcrystal(H) (equation (17)), which is
the product of the unit-cell scattering factor by the interference function Fcrystal(H) =
Γ(H)×F(H), where Γ(H) describes long-range ordering and periodicity of the crystal. A
modification of the crystal periodicity has direct consequences on theX-ray diffraction
pattern, as illustrated in Figure 9 (h) for a unit cell doubling resulting from a dimeriza-
tion process. As a consequence, a detailed time-resolved X-ray diffraction study of the
temporal evolution of the interference function has the potential to provide evidences
of transient changes in long-range structural ordering of a crystal. This is related to
case (h) in Figure 9.

Transition metal oxides represent a very important class of materials in solid
state physics; their ground-state properties are driven by a balance among several
correlated processes, such as orbital and charge ordering, magnetism (spin), and
lattice degrees of freedom [109]. Mixed valence manganites with perovskite structure
provide illustrative examples of this delicate interplay, leading to very rich phase dia-
grams characterized by phase transitions and the appearance of interesting physical
properties such as magnetic ordering or colossal magnetoresistance. Time-resolved
X-ray diffraction analyses have been performed on crystalline thin films and single
crystals of doped manganites to probe the individual dynamics of the orbital, charge,
and lattice parameters [110–113]. Among others, the half-doped Pr0.5Ca0.5MnO3 has
been subject to specific attention. It undergoes a phase transition around To = 250K,
below which charge ordering occurs connected to orbital ordering as depicted in Fig-
ure 45 (b) with a symmetry lowering from Pbnm space group at high temperature to
P21/m space group below the phase transition. The formation of a charge-ordered
state is manifested by the charge-density modulation at the Mn site with localization
of Mn3+ and Mn4+ cations, whereas orbital ordering leads to an alternating pattern of
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Figure 45: (b) Electron configuration of Mn4+ ions and splitting of the 3d states for Mn3+ ions un-
der the Jahn–Teller effect associated with distortions of the oxygen octahedra at the Mn3+ sites in
Pr0.5Ca0.5MnO3. The red arrows indicate the photoinduced transition. (c) Schematic of the structure
within the (ab) plane in the charge and orbital ordered state. Orbital ordering induces a doubling
of the unit cell along the b-axis and a symmetry change from orthorhombic Pbnm to monoclinic
P21/m [110]. Reprinted by permission from Macmillan Publishers Ltd, copyright (2014).

occupied orbitals within the crystallographic (ab) plane. The modulation is commen-
surate with the lattice periodicity at low temperature, characterized by a doubling of
the unit cell along the b-axis (Figure 45 (c)). It has been reported that the modulation
changes to incommensurate in a temperature range just below the transition tempera-
ture To [114]. In the commensurate phase, the diffraction pattern exhibits superlattice
reflections, reflecting the additional periodicity of the charge and orbital degrees of
freedom, and Jahn–Teller lattice distortion. The main reflections (0k0) with k even
characterize the average basis structure. Superstructure reflections can be classified
in three classes, each sensitive to a specific component of the phase transition: with
k odd, (0k/20) reflections are sensitive to orbital order and Jahn Teller distortion,
(0k0) reflections are sensitive to the charge order, and (hk/2l) reflections measure the
overall structural distortion.

Time-resolved X-ray diffraction has been performed using the XFEL source at the
Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. Op-
tical pulses of 55 fs with a wavelength of 800nm excited the sample with a repetition
rate of 120Hz. X-ray probe pulses of 50 fs were focused on the sample [110]. The X-ray
energy was tuned in the vicinity of theMn K edge using a silicon (111)monochromator
to adopt resonance conditions allowing discrimination of the charge and orbital or-
der [115]. The optical excitation at 800nm mainly excite the Mn3+ intrasite transition
which drives the Jahn–Teller distortion depicted in Figure 45 (b). This photoinduced
electronic excitation leads to an ultrafast change of the atomic potential, allowing fur-
ther structural changes. Time-resolved X-ray diffraction data for various selected re-
flections as functions of pump laser fluence are shown inFigure 46 (a–c). Theobserved
dynamics show a fast component, which cannot be resolved given the experimental
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Figure 46:Measured (a–c) and simulated (d–f) evolution of the normalized diffracted X-ray inten-
sities for three superlattice reflections. (a, d) The (2̄ 1

20) reflection, which is sensitive to structural
distortion only. (b, e) The (0 5̄

20) reflection, which is sensitive to orbital ordering. (c, f) The (03̄0)
reflection which is sensitive to charge ordering [110]. Reprinted by permission from Macmillan Pub-
lishers Ltd, copyright (2014).

resolution, and a strong 2.45 THz modulation attributed to a coherent optical phonon
mode triggered by the ultrafast pump pulse. The almost vanishing intensity of all the
superstructure reflections is the signature of photoinduced disappearance of orbital
and charge order, known as orbital and charge-order melting. This is unambiguous
evidence that the lattice symmetry has changed at high pump fluence. The oscillation
and therefore coherent motions persist only for a short time at high fluence before the
phase transition is completed. The diffraction data has been modeled appropriately
using a time-dependent order parameter formalism (Figure 46 (d–f)).

As shown in this example, the enhancement of the scattered X-ray signal at very
specific positions in reciprocal space (Bragg positions) owing to crystal periodicity (re-
flected by the interference function Γ(H)) allows probing in real time the dynamics of
long-range ordering of various degrees of freedom in a crystal and therefore evaluate
the coupling between them. Half-doped Pr0.5Ca0.5MnO3 is a specific case, exhibiting
a commensurate superstructure associated with a unit-cell doubling below the phase
transition. The dynamics of charge density waves, which are commensurate or incom-
mensurate spatial modulations of the electron density accompanied by a collective
lattice distortion in a crystal, have been studied using similar time-resolved X-ray or
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electron diffraction experiments [116–119]. Nonthermalmelting and transition to long-
livedmodulated states in the picosecond time scale have been revealed bymonitoring
the temporal dependence of the intensity, position, and profile of relevant superlattice
reflections related to the charge density waves.

3.8 Going beyond the structural dynamics from time-resolved
X-ray diffraction

Along this chapter, we have seen that time-resolved X-ray scattering (solution scatter-
ing and crystal diffraction) can provide detailed information on the structural dynam-
ics of solids and liquids at time scales that cover several orders of magnitude from
hundreds of femtosecond to seconds.

Recalling that X-rays are scattered by the electrons of the sample, the X-ray scat-
tered signal in a given stationary experiment is directly related to the 3D electron den-
sity distribution by the Fourier transform of the complex structure factor:

ρ(r) = 1
V
∑
H
F(H)e−2𝚤πH⋅r

= 1
V
∑
H
|F(H)|e𝚤φ(H)e−2𝚤πH⋅r (39)

with the experimentally measured intensity being proportional to the square of the
structure factor modulus,

I(H) ∝ |F(H)|2. (40)

In a structural analysis, the assumption of neutral independent atoms (IAM: inde-
pendent atommodel) is generally considered, so that atomic nuclear positions are di-
rectly assigned to regions of high electron density accumulations. This simple IAMap-
proximation is valid for structural purposes only and completely neglects interatomic
and intermolecular bonding. Using accurate X-ray diffraction experiments, the equi-
librium time-averaged electron distribution can be determined in a crystalline solid
with high degree of precision and high level of spatial resolution (typically, 0.1 Å). In
practice, themethod uses a sophisticated atomic centeredmultipolar modeling to un-
cover the deformation of the atomic electron clouds to form chemical bonding [2]. This
approach is nowadays very mature and used almost routinely for getting numerous
chemical, biological, and physical insights on ground state or unperturbed systems.
In terms of experimental conditions, the requirements are quite drastic:
– High accuracy (high signal-to-noise ratio) on the measured Bragg peak intensity

since the deformation of the valence electron density is a tiny effect.
– Completeness of the measured Bragg reflection data set (complete coverage of re-

ciprocal space) to avoid series termination in equation (39) and therefore artefacts
in the modeled electron density distribution.
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– Short X-ray wavelength (hard X-rays) to extend the Fourier summation as far as
possible in the reciprocal space to achieve subangstrom resolution in the direct
space modeled electron density distribution.

Probing the changes in the electron density distribution in a time-resolved manner
would extend the investigateddynamicsmuchbeyondapurely structural picture, pro-
viding access to additional electronic degrees of freedom. Recovering the transient 3D
electron density distribution is nevertheless a very challenging task if we consider the
aforementioned requirements:
– The sensitivity of time-resolved diffraction experiments, that is, the detectable

changes in Bragg peak intensity ΔI/I0 = (I(t) − I0)/I0 depends on the stability of
the pump–probe scheme parameters, such as pump intensity, probe intensity, fo-
cusing position on the sample, overlap of pump and probe pulses on the sample,
stability of the controlled delay, etc.

– Photon counting statistics of the X-ray detection system combined with the X-ray
flux of the source limit the detectability of weak intensity changes.

– Completeness of the reciprocal space coverage has proved feasible with millisec-
ond to picosecond experiments performed at synchrotron radiation facilities,
given the large literature on the subject (see, for instance, the example of the bac-
terial blue light receptor PYP, Section 3.3). On the contrary, measuring a complete
sphere of reciprocal space with femtosecond time-resolution with single crystal
diffraction experiments is a current challenge.

In addition, such experiments raise a fundamental question. In the time-resolved ex-
tension of the X-ray scattering process, the electron density ρ(r) in equation (39) is
replaced by a time-dependent analogue ρ(r, t). Assuming that the X-ray pulse dura-
tion is longer than the dynamical time scale of the electron wave packets, the elec-
tronic wave packet remains unchanged before and after the scattering process, and
the usual treatment applies by just considering time as a new parameter. The outcome
of an experiment should be the electron density distribution at different time delays
after triggering the perturbation. This is the semiclassical approximation. For ultra-
short X-ray pulses, typically in the femtosecond time regime, a full quantum theory of
light–matter interactions has to beused. This is out of the scope of the present chapter;
general concepts to treat this problem have been proposed in the literature [120–123].

Pioneering experiments in the frame of the semiclassical approximation have
been performed using time-resolved powder X-ray diffraction with a table-top laser-
driven plasma source at the Max Born Institute in Berlin. In addition to the purely
structural dynamics, these experiments have provided new pictures of the spatial
rearrangement of electronic charges within electronically excited crystals. The very
first experiments concerned ionic materials (NH4)2SO4, KH2PO4, LiBH4, LiH, and
NaBH4 [124–129]. The reconstructed time-dependent electron density distributions
ρ(r, t) reveal important ultrafast phenomena:

 EBSCOhost - printed on 2/13/2023 8:46 PM via . All use subject to https://www.ebsco.com/terms-of-use



Time-resolved structural analysis: probing condensed matter in motion | 207

– Transient charge density maps in ammonium sulfate (NH4)2SO4 reveal concerted
charge transfer from the sulfate anion and proton transfer from the ammonium
cation within 100 fs, further periodically modulated by low-frequency lattice
phonon modes with modification of the hydrogen bond geometry [124, 125].

– In potassiumdihydrogenphosphate KH2PO4, a pronounced photoinduced charge
transfer from the potassium atom to the oxygen atoms of the H2PO−4 ions is char-
acterized by the transient charge density maps. This charge relocation is modu-
lated by low-frequency lattice modes, coherently excited upon photoexcitation.
The results can explain the ultrafast dynamic response of such ionic ferroelectric
materials [126].

– In LiBH4, an anion-to-cation charge transfer is evidenced, leading to a transient
electric polarization inducedby thehigh optical field of the pump laser [127]. Com-
parisons have been made with the similarly characterized photoinduced charge
transfer in LiH and NaBH4 [128, 129]. LiH behaves differently from the series, the
charge being shifted from Li to H, enhancing the ionicity of the material.

We illustrate here in more detail the approach using the photoinduced charge trans-
fer process in the crystals of [Fe(bpy)3]2+(PF−6 )2 mapped by femtosecond X-ray pow-
der diffraction. The crystal structure of [Fe(bpy)3]2+(PF−6 )2 is shown in Figure 48 (a).
The diffraction experimental setup is illustrated in Figure 14. In solution, optical ex-
citation of the molecular entities [Fe(bpy)3]2+ populates the singlet metal-to-ligand-
charge-transfer states (1MLCT), from which the system decays via intersystem cross-
ing into a high-spin quintet state (5T2) on a sub-150 fs time scale. In the here con-
sidered femtosecond X-ray powder diffraction, the sample, consisting of a crystalline
powder, is excited with sub-50 fs laser pulses at 800nm initiating the photoinduced
charge-transfer process, which is probed by diffracting 100 fs Cu Kα pulses at 8.04 keV
from the excited powder at variable pump–probe time delay. For each time delay, the
diffraction pattern consists of Debye–Scherrer rings, which are radially integrated to
provide the pattern (intensity as a function of diffraction angle 2θ) given in Figure 47,

Figure 47: Left: powder X-ray diffraction pattern recorded using the X-ray plasma source (integra-
tion time of 8 hours). Right: transient changes of Bragg peak intensity as a function of time delay
between the optical pump pulse and X-ray probe pulse. Reproduced from [130], with the permission
of AIP Publishing.
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left. It consists of nearly 20well-separated Bragg peaks, whose intensity is determined
by profile fitting as a function of time delay (Figure 47, right). Pronounced intensity
changes of a few percent are characterized.

The electron density maps have been computed at various time delays by the
Fourier transform of the corresponding structure factor moduli derived from the mea-
sured Bragg intensities, using the Maximum Entropy Method formalism to retrieve
the structure factor phases. The map derived from the data at a pump–probe delay
of 250 fs is given in Figure 48 (b). It highlights a charge transfer from Fe to the bpy

Figure 48: (a) Unit cell of [Fe(bpy)3]2+(PF−6 )2. (b) Contour plots of the change of electron density
distribution at 250 fs pump–probe delay. The dashed line indicates the stationary electron density.
(c)–(e) Transient changes of the electron density integrated over fragment subvolumes Fe, bpy, and
hexafluorophosphate counter-ion. Reproduced from [131], with the permission of AIP Publishing.
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unit together with an increase in the Fe–bpy distance, as usually observed for 1A1 to
5T2 transition in FeII spin-crossover complexes. A net charge transfer from the PF−6
counter-ion is also evidenced by a negative difference electron density at the PF−6 po-
sition. The charge transfer has been further traced by integrating the difference elec-
tron density over space regions of the different structural fragments: Fe, bpy, and PF−6
(Figure 48 (c)). The overall transferred charge is quite large, implying a nonlocal ef-
fect, attributed to the formation of polarons within the crystal lattice (polarization of
the surrounding of photoexcited charge-transfer species).

From the results attained so far we can conclude that a real atomic resolution ap-
propriate for a sophisticatedmultipolarmodeling is currently out of reach, but obtain-
ing detailed information on the transient 3D electron density distribution is neverthe-
less possible. Fragment integrated charges, as derived in the previous example, can
highlight charge-transfer processes. Fantastic new insights on photoinduced mecha-
nisms, such as charge transfer, dipole enhancement, bond formation and breaking,
and exciton dynamics, may thus be revealed. Investigating early photoinduced elec-
tron transfer events before the nuclear degrees of freedomhave yet adapted to the elec-
tronic configuration of the excited state is an exciting perspective, which would open
new opportunities for chemical reactions to be imaged in real time through diffraction
techniques.

4 Perspectives
In view of the important progresses wemight anticipate for the near future, structural
dynamics is probably only at its infancy. Many interesting progresses are already on
the way.

Time-resolved electron diffraction offers an important alternative to time-resolved
X-ray diffraction. It is a very mature approach, which achieves routinely time reso-
lutions of hundreds of femtoseconds. Electrons have scattering cross-sections about
five orders of magnitude higher than X-rays, which decreases the penetration depth
into matter, an obvious limitation, but allows measurements to be performed on di-
luted systems, for instance, in the gas phase. Time-resolved electron diffraction has
been very efficient in the studies of the temporal evolution of chemical reactions, giv-
ing direct evidence on the dynamical evolution of relaxation pathways from the ex-
cited states. Phase transitions, such as the photoinduced metal–insulator transition
in vanadium dioxide, have also been the subject of investigations. Ultrafast electron
diffraction will rapidly advance to cover the attosecond time domain by compression
of femtosecond electron packets [132]. Although the nuclear motions can occur as fast
as femtoseconds, the electron dynamics span the attosecond time regime. A method-
ology has been proposed for attosecond electron imaging and diffraction, and numer-
ical simulations confirm the feasibility of the approach under realistic experimental
conditions. In parallel, attosecond Laue X-ray diffraction has been envisioned at XFEL
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sources. The fundamental idea relies on theHeisenberg uncertainty principle, accord-
ing to which a bandwidth of X-rays should be generated at attosecond time scale, ren-
dering possible Laue diffraction experiments in the serial crystallography approach.

There have been technological revolutions in the past decades in the develop-
ment of high-energy-accelerator-based coherentX-ray sources at third-generation syn-
chrotron radiation facilities and XFELs. These sources emit ultrabright X-rays with a
high degree of coherence allowing new imaging possibilities to be set up [133]. Several
coherent diffraction imagingmethods in transmission and reflectionmodes have been
developed. The general procedure is to illuminate an object with a coherent laser-like
beam and collect the scattered X-rays with an area detector and a high spatial res-
olution on the detector. Using appropriate phase retrieval algorithms, the image of
the object can be reconstructed. The possibilities of such methods for time-resolved
structural analysis is evidenced by the three-dimensional imaging of the generation
and subsequent evolution of coherent acoustic phonons in individual gold nanocrys-
tals on the picosecond time scale performed with a femtosecond XFEL source [134].
Besides time-resolved experiments, this method has a high potential for the struc-
tural analysis of noncrystalline and/or individual objects, including biological ma-
terials, cells, and viruses, albeit at present with a limited spatial resolution >10nm.
Using XFEL, coherent diffraction imaging has already been applied to study individ-
ual viruses or biological nanocomposites.

A chemical reaction transforms molecules from one structure to another with in-
teratomic bond making and breaking being essential processes. Understanding the
chemical dynamics that connect structures and function along a reaction pathway re-
mains extremely challenging. Time-resolved X-ray solution scattering has the poten-
tial to really improve our understanding of chemical reaction pathways. The increas-
ing accuracy in themeasurements show that detailed structural information at atomic
resolution can be achieved with current third-generation synchrotrons in the liquid
phase. This is on the way to be extended to time-resolved X-ray scattering studies of
chemical reaction dynamics in diluted gases at intense XFELs. The very first experi-
ment of this kind considered the ultrafast ring-opening reaction of 1,3-cyclohexadiene
to form linear 1,3,5-hexatriene, a prototype reaction for the understanding of a large
class of organic reactions [135]. Combined with ab initio structure calculations, tran-
sient features in the X-ray scattering pattern have been assigned to short-lived inter-
mediates defining the whole molecular trajectory of the reaction. These remarkable
results demonstrate the capability of capturing molecular motions with atomic spa-
tial resolution and femtosecond time resolution in the gas phase.
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Introduction

With the development of dedicated synchrotron facilities beginning in the 1970s, X-ray
sources underwent dramatic improvement, bringing new possibilities for investigat-
ing matter with X-rays, as illustrated in the previous chapters. The average source
brightness, defined as photons per time, area, solid angle, and bandwidth, of a mod-
ern synchrotron beamline exceeds that of a laboratory source bymore than ten orders
of magnitude, and as we have seen, a pulse duration as short as tens of picoseconds
permits the study of rapid changes in the sample under investigation. In 2009, X-ray
source characteristics made a quantum leap with the advent of the LINAC Coherent
Light Source (LCLS), the world’s first X-ray Free-Electron Laser (XFEL), at the reconfig-
ured Stanford Linear Accelerator Center in Menlo Park, California. In contrast to the
synchrotron, which emits quasi-continuously, the XFEL emits intense short pulses of
radiation at a typical repetition rate of 100Hz. These pulses are extremely intense,
with a peak brightness more than ten orders of magnitude greater than that of a state-
of-the-art synchrotron, and they have a very short duration, less than 100 fs. Further-
more, since emission occurs on average into fewer than 1.5 optical modes, the radia-
tion has a high transverse coherence. Disadvantages of XFEL radiation are a relatively
poor longitudinal coherence – the relative bandwidth of the emitted X-rays is typically
0.1%–and large pulse-to-pulse fluctuations in the centralwavelength, spectral shape,
and integrated pulse energy. But perhaps the most important limitation of a typical
XFEL compared to a synchrotron is that whereas a synchrotron simultaneously sup-
plies radiation to 20 or so beamlines, at an XFEL, only one or two experiments can
operate at a time.

These properties of XFEL radiation allow novel applications and call for novel
measurement techniques. A large class of XFEL experiments are characterized as
“diffract-before-destroy.” A 20-fs XFEL pulse containing 1011 10 keV hard X-ray pho-
tons implies a peak power of 8GW, and, when focused to a 5 × 5µm2 spot, produces
a peak fluence of 6.4µJ/µm2. Liquid water has an absorption length for 10 keV pho-
tons of 2mm, and hence the maximum absorbed energy density is 20eV/nm3, which
eventually produces a destructive temperature rise of almost 800 °C.

The key here is the word “eventually”: destruction of the sample is effectively de-
layed due to the finite atomic velocities of the exploding sample. Figure 1 shows a
simulation [1] of an XFEL pulse striking a single protein molecule. Note that during

https://doi.org/10.1515/9783110433920-006
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Figure 1: A simulation of a 2-fs FWHM XFEL pulse of 3 × 1012 12 keV photons per 100 nm diameter fo-
cus spot striking a single lysozyme protein molecule [1]. The dots represent individual atoms: white,
H; grey, C; blue, N; red O; yellow S. Note that the 2-fs XFEL pulse effectively samples an undisturbed
molecule, the basis of “diffract-before-destroy.” Reprinted by permission from Macmillan Publish-
ers Ltd.

a sufficiently short duration XFEL pulse, the inertia of the atoms causes the molecule
to remain largely intact, in principle allowing the collection of diffraction scattering
patterns that reflect the structure of the unperturbed molecule. In a sense, the short
XFEL pulse “outruns” the radiation damage inflicted to the sample. For a protein sam-
ple, modern synchrotron beamlines are sufficiently bright that severe sample damage
occurs within seconds, generally requiring the sample to be cryogenically cooled and
severely limiting theamount of data that canbeacquired fromasmall sample.Diffract-
before-destroy at an XFEL avoids these limitations, but it requires that the sample be
replaced by an identical copy prior to each shot, e.g., introduced as a stream of par-
ticles carried by a gas or liquid jet or prepositioned on the surface of a sample holder
and scanned by the incoming beam. Furthermore, since each sample has a different
orientation, sophisticated sorting software is required to analyze the orientation of
each shot and to combine the information frommany shots into a consistent data set,
which is then analyzed to yield the desired structural information.

In principle, individual molecules can serve as identical samples for a diffract-
before-destroy experiment, and a long-term goal of several XFEL research groups is to
determine the atomic-scale structure of protein molecules in this way. Principal prob-
lems are presently the lack of sufficient peak X-ray intensity to orient a single-shot
diffraction pattern and uncontrolled background scattering from the carrier material.

One of the most successful applications of short-wavelength XFEL pulses to date
has, however, been “serial protein crystallography,” in which diffract-and-destroy
experiments are performed on nanometer-size protein crystals (for a review, see,
e.g., [2]). For many protein systems, these can be made in large numbers and can be
introduced into theXFELbeam in a liquid jet of compatible solvent, and the crystalline
Bragg reflections produce sufficiently strong diffraction spots to orient single-shot pat-
terns. Since it is not yet possible to synchronize the delivery of individual nanocrystals
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with the arrival of the XFEL pulses, a relatively large amount of protein material is
wasted, but the advantages of the technique are the effective avoidance of radiation
damage and the avoidance of cryogenic cooling. A further advantage of using crys-
talline samples in a diffract-before-destroy experiment is the “self-termination” effect
of Bragg scattering [3]: Even if an XFEL pulse is longer in duration than the time re-
quired for the sample to be destroyed, scattering from the perturbed sample during
the latter part of the pulse produces only a weak diffuse background to the strong
Bragg scattering from the intact crystal during the early part of the pulse.

However, dramatic changes in the electronic structure – excitation and ioniza-
tion – may occur on the time scale of the XFEL pulse duration, and since it is the elec-
trons that scatter the X-rays (“Thompson scattering”), there can be important conse-
quences for the diffraction pattern. For the case of serial crystallography using protein
nanocrystals, careful simulation [4] has shown that the resulting diffraction pattern
reflects an “effective” scattering strength for each atom, which is modified from that
of an unperturbed atom. Since this effective form factor changes with pulse fluence
and duration, we can in principle use this effect to control the atomic visibility and
hence to obtain information on the crystallographic phase. We note here that in Ham-
burg, Germany, a laboratory-based XFEL is under development, incorporating THz
acceleratingmodules and an optical undulator [5]. The resulting sub-fs pulses should
effectively “outrun” even electronic damage in the sample.

A possible attractive alternative to single-particle imaging with an XFEL for struc-
tural studies is offered by the “cross-correlation” technique, described in Section 2 of
this chapter, which allows structural studies of a randomly positioned and oriented
ensemble of identical particles.

The combination at an XFEL of short-wavelength short-pulse duration and high
peak intensity leads to another class of experiments: “pump–probe” investigations of
dynamicprocesses on the atomic scale [6].Here, a “pump” signal creates anonequilib-
riumsituation in the sampleunder investigation, andafter a suitable delay, the sample
is “probed” using the XFEL pulse. By repeating the experiment, either with the same
sample after it has returned to equilibrium or with a copy of the original sample, and
by using a different pump–probe delay interval, a “molecular movie” can be effec-
tively constructed, frame by frame. The sample may be a collection of photosensitive
molecules, which can be efficiently and promptly excited by a short, intense electro-
magnetic pulsewith a suitablewavelength (UV,Vis, IR, or perhaps even terahertz), the
range of delays can be chosen to bracket typical chemical reaction and electronic de-
activation times (ps), and the probe experiment can be a scattering experiment (such
as serial crystallography, single-particle imaging, or diffuse scattering [7]) or a spec-
troscopic measurement (X-ray absorption or emission spectroscopy [6, 8]). Important
results have been obtained with pump–probe photo-chemistry at XFELs on both in-
organic and organic catalytic systems [9].

A special case of pump–probe experiments involves the photoexcitation of atomic
vibrations and subsequent probing using X-rays. This has been demonstrated with
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XFELs for the case of molecules in solution [10, 11], but most work has involved pho-
toexcited lattice vibrations in solids, the so-called “coherent phonons.” These experi-
ments are discussed in Section 1. A further special case of pump–probe, perhaps with
a delay interval of zero, uses the nonlinear interaction of two intense X-ray pulses or
anX-ray and an optical pulse. Two examples of the nonlinear interactions usingX-rays
are discussed in Section 3: stimulated X-ray Raman scattering and X-ray optical sum-
frequency generation. The chapter closes with a semirigorous mathematical explana-
tion of XFEL operation, a short description of existing and plannedXFEL facilities and
an outlook on the future of XFEL science.

1 Time-resolved X-ray diffraction studies of
photoexcited coherent phonons

1.1 Electronic time scales in condensed matter

The properties of materials are principally determined by the electrons that bind
together their constituent atoms. As described in earlier chapters, the ground-state
characteristics of matter, i.e., the molecular and crystal structure and the response
to low-energy thermal, electrical, and magnetic perturbations, are generally well un-
derstood. To a large degree, this understanding is based on the Born–Oppenheimer
approximation: because atomic nuclei are much heavier than the electrons, it is as-
sumed that the electrons react instantaneously to a perturbation and that the nuclei
move in a self-consistent field produced by an electron distribution that is in local
and temporal equilibrium. But upon closer examination, we find that perturbed elec-
trons do not respond instantaneously and, furthermore, that competitive processes
on ultrafast time scales determine important dynamical properties – in particular,
regarding chemical (e.g., catalytic) and optical properties.

Themost convenientmethod of quickly creating a nonequilibrium electron distri-
bution– excited electrons andholes – in condensedmatter is irradiation by an intense
optical laser pulse. It is then interesting to consider the timescales for energy distribu-
tion and relaxation of such excited carriers and how they ultimately equilibrate with
the motion of the atomic nuclei. The timescale for electron–electron interactions is of
the order of the plasma frequency νp of an electron gas with a density appropriate to
that of condensed matter, nel ≈ 5 × 1029 e−/m3:

1
νp
= 2π√

ϵ0me
nele2
≈ 0.16 fs. (1)

Upon excitation of a solid by photons with energy above the bandgap, electron–hole
pairs are created. These will then diffuse, with a diffusion constant of the order of that
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for a low-density plasma: Dp ≈ 40cm2/s [12]. For a typical optical absorption length
labs ≈ 100nm, the carriers leave the absorption region on a timescale

τdiff =
l2abs
Dp
≈ 250 fs. (2)

Ultimately, the electrons and holes will recombine, either radiatively or nonradia-
tively. Near-bandgap electron–hole pairs in semiconductors have lifetimes spanning
the timescales of ns to ms [13], whereas X-ray-initiated core electron excitations have
lifetimes in the range 10 ps–0.1 fs [14].

In this section, we describe how ultrafast X-ray diffraction (XRD) can be used
to indirectly probe electron dynamics following photoexcitation of the sample. The
nonequilibrium electron distribution modifies the interatomic bonding forces, and if
the duration of the optical pulse is shorter than a typical vibration period of the host
atoms (100 fs), then lattice vibrations are generated, which may be detected by ultra-
fast X-ray diffraction. Sufficiently intense excitation may even produce displacement
amplitudes close to or exceeding the “Lindemann stability limit” (approximately 15%
of the nearest-neighbor distance [15]), resulting in “nonthermal melting.”

1.2 Coherent phonon generation in bismuth

Lattice vibrations in solids are coupled to electronic excitations via the electron–
phonon interaction; basically, a lattice distortion influences the electric susceptibility,
and vice versa, giving rise to impulsive stimulated Raman scattering [16, 17]. In stim-
ulated Raman scattering, SRS (Figure 2 (a)), an “excitation” wave with frequency ω1
brings the system from the ground state g to a real or virtual highly excited state e,
and a simultaneous “stimulation” wave with somewhat lower frequency ω2 causes a

Figure 2: (a) Inelastic stimulated Raman scattering (SRS) of two optical frequency components ω1
and ω2, based on the electron–phonon coupling between electronic and lattice degrees of freedom,
generates a phonon of frequencyΩ via a virtual highly excited state e. (b) A single, sufficiently short-
duration optical pulse may contain both frequency components ω1 and ω2, resulting in “impulsive”
stimulated Raman (ISRS) scattering and the generation of coherent phonons.
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stimulated decay to a low-lying excited state f . The result is the creation of a phonon
excitation with frequency Ω = ω1 −ω2 and the coherent amplification of the stimula-
tion wave ω2. In impulsive stimulated Raman scattering, ISRS (Figure 2 (b)), a single
broadband wave with center frequencyωimp, e.g., obtained from a single pulse of suf-
ficiently short duration, provides both excitation and stimulation. A good reference
for SRS and other nonlinear optical effects is the book by Boyd [18].

The creation with SRS of a phonon excitation may be understood in terms of a
sudden, optically induced change in the atomic potential of the lattice, which pro-
duces a nonequilibrium state, in which a significant fraction of the atoms in a crystal
begin to vibrate in phase about a new equilibrium position (“displacive excitation”).
If this excitation occurs in phase in the entire sample, then we speak of a coherent
nonequilibrium quantum state, also known as a “Glauber” state [19]. In this section,
we describe the detection of the Glauber state via ultrafast time-resolved XRD, but the
associated periodic modulation of the electric susceptibility implies that the Raman
interaction can also be used to optically detect coherent phonons, e.g., via the time-
dependent optical reflectivity.

A large literature exists on optically generated and detected coherent phonons
in bismuth. The choice of bismuth is due to its structural simplicity, its low optical
phonon frequencies and its strong electron–phonon interaction. To observe atomic-
scale features of coherent phononcreationanddecaywithin theunit cell of the crystal,
ultrafast pump–probe X-ray diffraction (XRD) is required, using a short-duration opti-
cal pumppulse followeda variable delay later by a short-durationhardX-raypulse. Al-
though most ultrafast XRD studies of coherent phonons have to date been performed
using laser-plasma sources [20] and sliced synchrotron beams [21], the intense, sub-
picosecond pulses of the XFEL are now preferred.

At room temperature, bismuth has the rhombohedral A7 structure [22] (a =
4.7461Å, α = 57.23°) with a two-atom basis at

r0± = ±a(ξ0, ξ0, ξ0) (3)

with ξ0 = 0.2334 (Figure 3 (b)). This value is the result of a small Peierls distortion (Fig-
ure 3 (a)) of a perfect cubic structure (α = 60°, ξ0 = 0.25). Cubic bismuth would be a
metal with a half-filled conduction band; the Peierls distortion lowers the total free
energy (electronic plus elastic) and reduces the electron density of states at the Fermi
level; this interaction between crystal structure and electron density is the origin of
the strong electron–phonon interaction in this material.

An optical phonon periodically displaces the atoms according to

r± = r0± ± u(t). (4)

For u(t) parallel to the [111] crystal axis, the phonon mode is A1g ; there are also
two additional modes, denoted Eg , with motion perpendicular to [111].
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Figure 3: (a) The Peierls instability [23]. Under special circumstances, it may be energetically favor-
able for a metallic crystal to undergo a spontaneous lattice distortion, forming atomic dimers and
doubling the crystal unit cell. In the reciprocal space, the Brillouin zone is halved, and a gap opens
at the Fermi level, causing a lowering of the electronic energy, which more than compensates the
increase in elastic energy. In bismuth, such a Peierls coupling between the lattice and electronic
degrees of freedom is responsible for the large electron–phonon interaction. (b) The unit cell of Bi,
indicating the two-atom basis oriented along the [111] direction [24]. Reprinted with permission from
the American Physical Society.

The electronic excitation caused by a short-duration optical laser pulse suddenly
changes the electron distribution among bonding and antibonding states and hence
alters the interatomic potential. This results in a new equilibrium neighbor distance,
producing a displacively excited coherent A1g phonon, which corresponds to oscilla-
tions with amplitude aδ∥(0) along the three-fold axis (Figure 4 (a)). The subsequent
atomic displacements then are

u(t) = aδ∥(t)(1, 1, 1). (5)

Figure 4: (a) The displacive excitation of coherent A1g phonons by the inelastic scattering of intense
pulses of optical radiation [21]. (b) The atomic displacements for the A1g optical phonon in Bi pro-
duce changes in the diffracted X-ray intensity, which are opposite for the 111 and 222 reflections [21].
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1.3 X-ray diffraction observation of coherent phonons in Bi

The diffracted X-ray intensity for Bi, corresponding to a Bragg reflection with recipro-
cal lattice vector Ghkl =

2π
a (hkl), is given by

Ihkl ∝ |Shkl|2 ∝ cos2 (Ghkl ⋅ r+)exp (−⟨(u ⋅Ghkl)2⟩), (6)

where the exponential term is the Debye–Waller factor. For the A1g optical phonon
mode and symmetrical reflections hhh, we thus have (disregarding for the moment
the Debye–Waller term):

Ihhh(t) ∝ cos2 {6πh[ξ + δ∥(t)]}
≈ cos2 (6πhξ ) − 6πh sin (12πhξ )δ∥(t)

=
{
{
{

0.095 − 11.0δ∥(t), 111,
0.657 + 35.8δ∥(t), 222,

(7)

where a Taylor expansion in δ∥ has been truncated at the linear term; see Figure 4 (b).
In a “slicing” source of ultrashort X-ray pulses, an optical laser pulse is used to

deflect a short-duration section of the circulating electron bunch at a synchrotron,
allowing the extraction of a short but low-intensity X-ray pulse [25]. Using such a
source, a single crystal of Biwas pumpedwith 800nm, 1.4mJ/cm2 light pulses of 115 fs
duration, and probed at glancing incidence with 7.1 keV X-ray pulses of 140 fs dura-
tion [26, 27]. The resulting changes measured in the intensities of the X-ray diffraction
Bragg reflections are shown as functions of pump–probe delay in Figure 5 (a). Strong

Figure 5: (a) Time-dependent changes in X-ray diffraction intensities from photo-pumped Bi, show-
ing, for the 111 and 222 reflections, oscillations attributable to displacively excited coherent A1g
optical phonons [26]. (b) The atomic position parameter ξ(t) for the A1g coherent optical phonon,
extracted from the 111 and 222 diffraction data from Figure 4 (a) [26]. Note that this atomic-scale in-
formation cannot be obtained from optical reflectivity measurements. Reproduced with permission
of the International Union of Crystallography.
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oscillations fromcoherentA1g optical phonons are seen for the 111 and 222 reflections–
as predicted, the oscillations are 180° out of phase. Using equation (7), the atomic po-
sition parameter ξ (t) = ξ0+δ∥(t) can be extracted from these data (see Figure 5 (b)); the
fitted oscillation frequency is 2.65 THz, the peak-to-peak vibration amplitude is 2.7 pm,
and the exponential damping time, due to a combination of electronic relaxation and
diffusion, is 2.9 ps. It should be noted that a direct measurement of the phonon vibra-
tion amplitude is only possible with time-resolved XRD. As will be discussed further,
such experiments demonstrate a decrease in the A1g frequency with increasing pump
fluence due to “electronic softening” of the atomic potential.

1.4 Density functional theory calculations of photoexcited
phonon dynamics

Phonondynamics in a solid are determinedby the potential energy surface seenby the
atoms. This surface is accessible using the density functional theory (DFT) described
in an earlier chapter [28–31]. The pertinent phonon frequencies can be computed, e.g.,
using a supercell “frozen phonon” formalism or via dynamical force matrices in “den-
sity functional perturbation theory” (DFPT) [32].

To compute the atomic potential in photoexcited Bi as a function of degree of elec-
tronic excitation (see Figure 6 (a)), Murray et al. [28] used the “constrained DFT” tech-
nique [33], in which the valence band occupation at each point in the Brillouin zone

Figure 6: (a) The atomic potential energy for symmetric (A1g) optical k = 0 phonons in Bi as a function
of the atomic coordinate 2ξ and the fractional electron–hole plasma density n [28]. Note the shift of
the potential minimum (responsible for a displacive phonon excitation) and electronic softening (re-
sponsible for an excitation-dependent phonon frequency) with increasing n at low excitation levels
and ultimately the disappearance of the 2ξ0 = 0.5 potential barrier upon strong excitation (pre-
dicting a photoinduced structural phase transition). Reprinted with permission from the American
Physical Society. (b) A compilation of the dependence of A1g coherent optical phonon frequencies on
the excitation pump fluence, measured with X-ray techniques [20]. Reproduced with the permission
of AIP Publishing.
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is weighted by a Fermi–Dirac distribution with temperature kBT = 0.5eV, such that
the average energy per electron–hole, 1.5 eV, is equal to the pump photon energy. This
assumes sufficiently rapid electron–electron scattering to assure a local equilibrium.
Separate values for the chemical potential for electrons and holes were constrained
in such a way as to guarantee the assumed photoexcited electron–hole plasma den-
sity n. The figure shows the atomic potential energy as a function of n and the atomic
coordinate 2ξ , which was fit to the expression

E(n,x) =
8
∑
i=0

2
∑
j=0

aij(2ξ − 0.5)2inj . (8)

At small values of n, the computed optical phonon frequency undergoes an approx-
imately linear “electronic softening” with increasing n, in good agreement with ex-
periment (Figure 6 (b)). Although the potential is clearly anharmonic, particularly at
high photoexcitation, the authors of the study claim that themost significant effect on
the phonon frequency at low excitation levels is a general photoexcited flattening or
“electronic softening.” At sufficiently high excitation, it is predicted that the potential
barrier 2ξ0 = 0.5 disappears, indicating a photoinduced structural phase transition.

1.5 Asymmetric photo-excitation of TO coherent Eg phonons

We have seen that the hhh (and in particular, the 111) Bragg reflections in Bi are sen-
sitive to the A1g phonon mode, with longitudinal vibrations along the three-fold C3
symmetry axis (Figure 3 (b)). The transverse Eg phonon mode involves atomic motion
perpendicular to this axis, e.g., along the two-fold C2 axis, and if we include suchmo-
tion, then the atomic displacement vector in equation (4) now becomes

u(t) = aδ∥(t)(1, 1, 1) + aδ⟂(t)(1,0, ̄1) (9)

with the corresponding 111 and 001 diffracted intensities

I111 ∝ cos2 {6π[ξ + δ∥(t)]},
I001 ∝ cos2 {2π[ξ + δ∥(t) − δ⟂(t)]}. (10)

Note that the 111 reflection is only sensitive to A1g displacements, but that a 001 mea-
surement makes also the Eg mode accessible.

Johnsonet al. [27] haveperformed time-resolvedpump–probeXRDmeasurements
on Bi with a flexible geometry, allowing observations of both 111 and 001 diffractions
with optical pump pulses whose polarization can be varied with respect to the C3 di-
rection (i.e., the pump polarization can include a component perpendicular to the
crystal symmetry axis). Analysis of this experiment resulted in the transverse atomic
oscillations as a function of the sample temperature shown in Figure 7. The absorbed
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Figure 7: Temperature-dependent transverse optical phonon (Eg) oscillations in Bi, excited with a
pump polarization component perpendicular to the C3 symmetry axis and extracted using equa-
tion (10) from combined 111 and 001 diffraction measurements [27]. The plots show the transverse
atomic displacement aδ⟂(t). Reprinted with permission from the American Physical Society.

pump fluence 1.6mJ/cm2 was similar to that used for the A1g data in Figure 5. Com-
pared to theA1g oscillations, notice for Eg : the lower oscillation frequency (1.8–1.9 THz
vs 2.65 THz), the much smaller and temperature-dependent peak-to-peak oscillation
amplitude (0.2–0.1 pm vs 2.7 pm) and the shorter damping time (0.3–0.1 ps vs 2.9 ps),
together with the fact that the Eg vibrations oscillate with a sine curve about zero,
whereas A1g shows a vertically offset cosine curve. As discussed both qualitatively
[27] and quantitatively [34, 31], these features are compatible with a model for Eg
phonon photoexcitation, in which a transversely polarized pump pulse produces a
short-lived asymmetric electron distribution (Figure 8). This asymmetric distribution
causes the phase-shifted Eg oscillations, and its rapid (fs) temperature-dependent de-
cay to a symmetric distribution explains the small, T-dependent Eg phonon oscilla-
tion amplitude.

1.6 Squeezed-state coherent phonons

In a further study of ultrafast pump–probe XRD in photoexcited bismuth, Johnson
et al. [24] observed oscillations in the diffracted intensity from the (10 ̄1) and (112̄)
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Figure 8: Transient changes in valence electron distributions, computed using DFT, for optical pump
pulses polarized along (a) the asymmetric [10 ̄1] and (b) the symmetric [111] crystal directions [31].
The red and blue isosurfaces indicate regions where the electron density is respectively increased
and decreased by 0.0002el/aBohr3 . A short-lived asymmetric electron distribution is believed to be
responsible for the excitation of Eg phonon vibrations. Reprinted with permission from the American
Physical Society.

Figure 9: The time-dependent change in the direction-projected mean-square atomic displacement
for the (10 ̄1) and the (112̄) diffraction planes in Bi [24]. The curves have been displaced vertically.
The dashed curve is a DFT simulation for the (112̄) plane at room temperature. Reprinted with per-
mission from the American Physical Society.

planes. Although the corresponding reciprocal lattice vectors are perpendicular to
[111], and hence such data may be expected to show oscillations characteristic of the
Eg phonon mode, the authors argue [24] that these will be unobservably weak. In-
stead, they assign the observed oscillations to variations in the Debye–Waller factor
in equation (6) and extract from the experimental data the time-dependent change in
the projected variances Δ⟨(u ⋅ Ĝhkl)2⟩ (Figure 9).

An oscillation in the variance of the displacement of a harmonic oscillator (HO)
occurs upon a sudden change (at t = 0) in the HO potential. For the (10 ̄1) and the (112̄)
diffraction data of Figure 9, this HO is believed to correspond to a weighted average of
the phonon modes over the Brillouin zone [24]; in a model calculation, it is assumed
that thesemode frequencies, andhence the effectiveHO frequency, suddenly decrease
upon optical pumping by the factor λ = 0.88. Such a sudden softening of the HO po-
tential implies that an HO wavefunction, which is an energy eigenfunction prior to
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Figure 10: (a) A one-dimensional quantum harmonic oscillator (HO) with eigenfrequency ω in a po-
tential V(Q) (solid parabolic curve) is for times t < 0 in the energy eigenstate Ψ(Q). (Q is the spatial
coordinate.) (b) At time t = 0, the potential is suddenly softened to the eigenfrequency ω′ = λω < ω;
the HO state is no longer an eigenstate. (c–f) For times t > 0, the Q-variance oscillates at the fre-
quency 2ω′. From [26]. Reproduced with permission of the International Union of Crystallography.

t = 0, is at later times no longer an eigenfunction and hence shows a variance which
oscillates at twice the new effective HO frequency (Figure 10).

A simple demonstration of this behavior for a suddenly softened one-dimensional
quantum harmonic oscillator has been given by [35, 36]. The wavefunction at t = 0+ is
identical to that for t < 0:

ψ(x,0) = (mω
πℏ
)
1/4
e−

mω
2ℏ x

2
, (11)

and this wavefunction implies the following initial expectation values and variances:

⟨x(0)⟩ = 0,

⟨p(0)⟩ = −𝚤ℏ⟨ d
dx
⟩ = 0,

⟨x(0)p(0)⟩ = 𝚤ℏ
2
,

⟨p(0)x(0)⟩ = − 𝚤ℏ
2
,

Δx2(0) = ⟨x2(0)⟩ − ⟨x(0)⟩2 = ℏ
2mω
,

Δp2(0) = ⟨p2(0)⟩ − ⟨p(0)⟩2 = ℏmω
2
,

Δx(0)Δp(0) = ℏ
2
. (12)

At t = 0+, the HO eigenfrequency is assumed to undergo a slight instantaneous change
from ω to λω. In the Heisenberg picture, the Hamiltonian and equations of motion for
t > 0 are given by

Ĥ = p̂
2m
+ mλ

2ω2x̂2

2
,
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dx̂
dt
= 1
𝚤ℏ
[x̂(t), Ĥ] = p̂(t)

m
,

dp̂
dt
= 1
𝚤ℏ
[p̂(t), Ĥ] = −mλ2ω2x̂(t), (13)

implying the following solutions for the position and momentum operators:

x̂(t) = x̂(0)cosλωt + p̂(0)
mλω

sinλωt,

p̂(t) = p̂(0)cosλωt −mλωx̂(0) sinλωt. (14)

We square these and take expectation values to obtain the variances

Δx2(t) = Δx2(0)cos2 λωt + ⟨p̂
2(0)⟩

m2λ2ω2 sin
2 λωt,

Δp2(t) = Δp2(0)cos2 λωt +m2λ2ω2⟨x̂2(0)⟩ sin2 λωt, (15)

or

Δx2(t) = Δx
2(0)
2
{(1 + 1

λ2
) + (1 − 1

λ2
)cos 2λωt},

Δp2(t) = Δp
2(0)
2
{(1 + λ2) + (1 − λ2)cos 2λωt}. (16)

Notice that the sudden decrease in eigenfrequency (λ < 1) causes the momentum vari-
ance to periodically drop below its value at t = 0. This effect is known as “squeezing”
and is the subject of a large literature, in particular, with regard to the photon boson
field [37].

1.7 Further X-ray investigations of photoexcited vibrations

Displacive-excited coherent optical phonons have also been observed with ultrafast
XRD in several manganites [38, 39]. Also, photoexcited acoustic phonons can be gen-
erated in gold nanoparticles and observed with ultrafast XRD via periodic changes
in the coherent diffraction features near crystal Bragg reflections [40]. Besides crystal
diffraction peaks, atomic vibrations using time-resolved diffuse X-ray scattering can
also be observed. In thisway, acoustic phonons generated by photoinduced squeezing
can be observed and analyzed to produce a wave-vector dependence of the electron–
phonon interaction in germanium [41]. In addition, using time-resolved diffuse scat-
tering from molecules in solution, two photoexcited oscillation frequencies (3 and
4 THz) have been observed of the 6 nitrogen atoms surrounding the central cobalt
atom of organo-metallic molecules [Co(terpy)2]

2+ in water [11]. Molecular vibrations
canalso beobservedusingnontime-resolvedX-ray spectroscopybyperforming inelas-
tic Raman scattering at X-ray wavelengths. Although it is not able to directly measure
vibration amplitudes, this technique has the advantage over optical measurements of
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elemental specificity – by measuring the inelastic energy losses for an incident pho-
ton energy close to a characteristic X-ray core excitation resonancewe can enhance the
sensitivity for vibrations that involve a particular element. In this way, at the 530 eV
oxygen resonance in liquid acetone (C3H6O), the fundamental C–O stretch frequency,
at 52 THz, can be observed along with nine higher harmonics [10]. Such observations
can yield the shape of the possibly anharmonic interatomic potential energy surface.

2 Ultrafast correlated X-ray scattering on static
molecules in solution

2.1 Protein structure from X-rays

Diffraction on crystalline samples, generally at a synchrotron source, is the standard
X-ray-based method of determining the structure of biological macromolecules with
atomic resolution (0.5–2Å) [42]. However, this method has several drawbacks. The re-
quirement of large (>1000µm3), high-quality crystals is often a major bottleneck, in
particular, for proteins and protein complexes, which are also difficult to isolate and
purify. Membrane proteins, which represent a significant fraction of both the human
genome and of the targets for designer pharmaceuticals, are notoriously difficult to
crystallize in three dimensions. Packing protein molecules in a crystal lattice intro-
duces molecular contacts, which may induce significant structural perturbations. Ra-
diation damage by the incident synchrotron beam typically limits the allowable expo-
sure time of a protein crystal to the order of seconds. Asmentioned in the Introduction
to this chapter, the advent of serial femtosecond crystallography at X-ray free-electron
lasers [2] has the potential of avoiding several of these drawbacks.

A lower resolution alternative (10–50Å) to macromolecular X-ray diffraction from
crystals is small-angle X-ray scattering (SAXS) on liquid solutions [43]. By introducing
the liquid sample into the beam via a flowing liquid jet we are also able to perform
synchronized optical pumping and SAXS probing to study photoinduced structural
changes at time scales down to picoseconds [44].

In aSAXSexperiment (Figure 11 (a)), incidentmonochromatichardX-rays (>5keV)
with incident wavevector qin = 2π/λ, are scattered through an angle 2θ to an area de-
tector. Because of the isotropy of the solvent and randomly-orientedmacromolecules,
the resulting scattering pattern I(q), as a function of q = |qout − qin|, consists of con-
centric “Debye–Scherrer-like” rings, reflecting the structure factor of the scatterers.
For elastic scattering (qout = qin), the scattering wavevector and the scattering angle
are related by

q = 4π sinθ
λ
. (17)

 EBSCOhost - printed on 2/13/2023 8:46 PM via . All use subject to https://www.ebsco.com/terms-of-use



236 | B.D. Patterson

Figure 11: (a) The small-angle X-ray scattering (SAXS) geometry with the incident X-rays (black) scat-
tering on a sample (light blue) to produce a ring-like pattern at the detector. We assume elastic scat-
tering, implying incoming and outgoing wavevectors of equal magnitude (qin = qout = 2π/λ) and
a scattering wavevector q = 4π sinθ/λ. (b) Extraction of a low-resolution 3D structure of a subunit
of yeast V-ATPase from SAXS in solution under the assumption of uniform density [45]. The mea-
sured SAXS pattern of subunit C (curve 1, left) yielded the bead model (center), which corresponds to
the calculated scattering pattern 2. The right-hand model and pattern 3 represent the known high-
resolution structure of the structurally similar subunit H. Reproduced with permission of John Wiley
& Sons.

In spite of their simple radial symmetry, the analysis of SAXS patterns has been de-
veloped to the point where using the assumed constraints such as uniform density,
low-resolution molecular shapes may be determined [43] (Figure 11 (b)).

In 1977, Kam [46] described a possible extension of SAXS, which uses the fact that,
for a finite number of static scattering molecules, the scattering patterns are not per-
fectly axially symmetric: they show intensity fluctuations, which can be analyzed in
terms of correlation functions. Although, as the molecules change their orientations,
these fluctuations vary from exposure to exposure, Kam argued that the correlation
functions are specific to themolecular structure and can provide additional structural
information, perhaps even down to atomic resolution.

A principal requirement of Kam’s method is that the sample remains stationary
during the X-ray exposure. According to the Stokes–Einstein–Debye relation [47], the
reorientation time of a molecule in solution is given by

τrot =
4πηR3H
3kBT
, (18)

where RH is the hydrodynamic radius of the molecule, η is the viscosity of the solvent,
kB is the Bolzmann constant, and T is the temperature. The radius RH , which includes
the solvation shell around the molecule, is comparable to [48] the molecular radius of
gyration Rg , which we will encounter later in this section. The value of RH for the pro-
tein lysozyme is 1.9 nm [49], and the viscosity of water is 0.89 mPa s, implying a room-
temperature reorientation time of 6.2 ns. The challenge is now to accumulate sufficient
scattered X-ray counts in individual sub-ns SAXS exposures to allow the computation
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of meaningful intensity correlation functions. This is just now becoming feasible with
XFEL sources, and the technique has been named correlated X-ray scattering (CXS).

The following discussion of CXS is largely based on the excellent tutorial review
byKirian [50] and the publication byMalmerberg et al. [51], and the following assump-
tions are made: We assume that an incoming X-ray photon is scattered at most once
in the sample (kinematic approximation), and we ignore inelastic processes and ab-
sorption. Further, we disregard background scattering from the solvent, which is to be
subtracted from the experimentally observed patterns. We take the sample-detector
distance to be much larger than the size of the sample (Fraunhofer limit), and by con-
sidering only small-angle scattering (q≪ qin), we take the Ewald sphere to be flat. Fi-
nally, we avoid interparticle interference effects by assuming that although the coher-
ence length of the incoming X-ray beam is larger than a single molecule, it is smaller
than the intermolecule distance.

It should be noted that the CXSmethod, besides providing structural information
on identical individual particles ormolecules, canalso be applied to the studyof short-
range order in colloidal suspensions. Furthermore, with repeated exposures, it is even
possible to observe transient effects [52].

2.2 Model-independent analysis of SAXS data

Our goal is to determine from small-angle X-ray scattering the parameters that charac-
terize the electronic charge density ρ(r) of themolecule under study [51]. Of particular
interest is the density autocorrelation function or Patterson function

γ(r′) = ∫ρ(r)ρ(r + r′)dr, (19)

the Fourier transform of which is proportional to the q-dependent scattered X-ray in-
tensity from a single molecule,

I1(q) ∝ ∫
V
γ(r)e𝚤q⋅rdr. (20)

The sample consists of N identical molecules with random orientations ω. The expo-
sure number k of such an ensemble produces the scattering pattern

I(k)(q) =
N
∑
α
I1(q;ωα

k) (21)

(the inclusion of the parameter ωα
k specifies the orientation of the αth molecule for

exposure number k), and an average over many such exposures yields the radially
symmetric SAXS pattern

ISAXS(q) = ISAXS(q) = ⟨I(k)(q)⟩
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= ⟨∫γ(r′)e𝚤q⋅Rωr′dr′⟩
ω

= ∫ r2γ̄(r)sin (qr)
qr

dr. (22)

Here, Rω is a rotation matrix, and γ̄(r) is the rotationally averaged Patterson function.
Due to this rotational averaging, ISAXS(q) can either be measured by averaging many
brief exposures, each with frozen molecular orientations, or with a single long expo-
sure, during which the molecules are allowed to rotate. An inverse transformation of
ISAXS(q) yields γ̄(r):

γ̄(r) ∝ ∫
∞

0
q2ISAXS(q)

sin (qr)
qr

dq, (23)

from which the rotationally-averaged pair density distribution function P(r), related to
the pair distribution function discussed in an earlier chapter, is obtained:

P(r) = r2 γ̄(r). (24)

A measure of the maximum linear dimension of the molecule, dmax, is given by the
value of r for which P(r) drops to zero. Further model-independent structural infor-
mation is obtained [53] from a so-called Guinier plot of ln [ISAXS(q)] vs q2. For small q,
such a plot yields a straight line with slope

d ln [ISAXS(q)]
d(q2)

≈ −
R2g
3
. (25)

Here Rg is the so-called radius of gyration, another measure of the molecular size,
which is defined as the rms distance from each of the atoms of themolecule, weighted
by its X-ray scattering factor, to their centroid.

As noted before (Figure 11 (b)), by incorporating additional constraints, such as
the assumption of a uniform density inside the molecule, low-resolution shape infor-
mation can be determined from SAXS data by iterative fitting.

2.3 Model-independent analysis of CXS data

The basic idea of CXS is that correlation function analysis of the short-duration mea-
surements of the scattering from immobile molecules can provide additional struc-
tural information to that available from SAXS. Figure 12 shows how, from an experi-
mental scattering exposure, one-, two-, and three-point correlation functions are com-
puted [54]. The one-point correlation function is essentially SAXS. In the following,we
concentrate on the two-point correlation function (Figure 12 (b)): For exposure num-
ber k, the counting rates at two pixels in the scattering detector correspond to the scat-
tered intensities I(k)(q1) and I(k)(q2). The opening angle between the two q-vectors is
Δϕ (labeled ψ in Figure 12 (b)).
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Figure 12: Scattering images and cross-correlation definition [54]. Three examples of the 3 751 differ-
ent scattering images of the gold nanostructures of Figure 15 (d) on a logarithmic color scale. Super-
imposed on the patterns (a), (b), and (c) are parameters pertinent to computing the one-, two-, and
three-point correlation functions, respectively. In frame (b), the opening angle between the scat-
tering vectors q1 and q2 is labeled ψ; in the present text, this angle is denoted Δϕ. The red dashed
circles indicate the paths of azimuthal averaging. The inset in (a) shows the experimental ISAXS(q)
(here denoted C(1)(q)), where the green dashed curve is the subtracted background signal. The red
bars correspond to a wave-vector interval Δq = 0.1nm−1. Reprinted by permission from Macmillan
Publishers Ltd.

We define the experimental two-point correlation function as the average over the
many individual X-ray exposures k of the product of the two scattered intensities:

Cexp(qi ,qj) = ⟨I(k)(qi)I(k)(qj)⟩k . (26)

The N-particle correlation function is an average over the product of two single-
particle scattering intensities (first line of equation (27)): each particle has the unique
orientation ωα

k , where the indices α,β ∈ 1,N specify the particles, and k specifies the
X-ray exposure. In the second line of the equation, we split the sums over particles
into correlated quantities (α = β) and uncorrelated quantities (α ≠ β), and in the third
line, we take the limit of a large number of exposures:

CN (qi ,qj) = ⟨
N
∑
αβ
I1(qi ;ωα

k)I1(qj ;ω
β
k)⟩

k

=⟨
N
∑
α
I1(qi ;ωα

k)I1(qj ;ωα
k) +

N
∑
α≠β

I1(qi ;ωα
k)I1(qj ;ω

β
k)⟩

k

→ N⟨I1(qi ;ω)I1(qj ;ω)⟩ω + (N
2 −N)⟨I1(qi ;ω)⟩ω⟨I1(qj ;ω)⟩ω. (27)

Note that the average of a product of uncorrelated quantities is equal to the product of
their averages and that the first term is the correlation function for a single particle:

C1(qi ,qj) = ⟨I1(qi ;ω)I1(qj ;ω)⟩ω. (28)

We then rearrange equation (27):

C1(qi ,qj) =
1
N
Cexp(qi ,qj) − (N − 1)⟨I1(qi ;ω)⟩ω⟨I1(qj ;ω)⟩ω

≈ 1
N
[Cexp(qi ,qj) − ISAXS(qi)ISAXS(qj)]. (29)
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Thus we find an important result: the single-particle correlation function can be de-
termined from repeatedmeasurements ofmany-particle diffractionpatterns. The chal-
lenge remains to relate C1 to the electron density ρ(r) of a single particle.

What is the optimumnumber of particlesN to be exposed in the X-ray pulses? The
correlated scattering arises from the fluctuations in intensity around a ring of constant
q in Figure 12 (b), which in turn are due to the fact that N is finite; these fluctuations
will hence be strongest for small N . However, for small N , we have little or no scatter-
ing. It can be shown theoretically [50] and experimentally [54] that the signal-to-noise
ratio, and hence the achievable spatial resolution in ρ(r), is, to a good approximation,
independent of N .

To extract structural information from C1, we take account of the axial geometry of
the scattering arrangement (Figure 11 (a)), consider the symmetric case of q = qi = qj,
and expand C1 in terms of Legendre polynomials (the index n specifies the azimuthal
pixel position around the ring with q = constant):

C1(q,q) ≡ C1(q, Δϕ)
= ⟨I(k)(q,ϕn)I(k)(q,ϕn + Δϕ)⟩k,n

= 1
4π

lmax

∑
l=0

Bl(q)Pl(cosΔϕ). (30)

The, as yet unknown, single-particle functions γ(r) and I1(q) can be expanded in
spherical harmonics Ylm:

γ(r) =∑
lm
γlm(r)Ylm( ̂r),

I1(q) = ∫
V
γ(r)exp (𝚤q ⋅ r)dr

=∑
lm
Ilm(q)Ylm(q̂), (31)

and from equation (20), using the properties of the spherical harmonics [55] and the
spherical Bessel functions jl, we can relate Ilm and γlm:

Ilm(q) = 4π∫
dmax

0
γlm(r)r2jl(qr)dr. (32)

Friedel’s law in crystallography states that in the single-scattering “kinematical” ap-
proximation and ignoring resonant scattering effects (which lead to complex atomic
scattering factors), the scattering is symmetric in q: I(q) = I(−q). This implies that only
even values of l are allowed in the expansion of equation (32).

If we consider the isotropic term

I00(q) = 4π∫
dmax

0
γ00(r)r2

sin (qr)
qr

dr, (33)
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where

γ00(r)r2 ≡ γ̄(r)r2 = P(r), (34)

then we again obtain the pair density distribution function.
According to Kam [46] and Saldin [56], the Ilm of equation (31) are related to the

expansion coefficients of C1 (equation (30)) by

Bl(q) =
m
∑
l=−m
|Ilm(q)|

2, (35)

and in the limit of small q, a Guinier-type expansion of equation (32) yields:

Ilm(q) ∝ ql(1 −
q2R2lm
2l + 3
), (36)

where the coefficients Rlm are related to the second-order multipole moment of the
Patterson function:

R2lm =
∫dmax
0 [γ(r)r

2]rl+2Y∗lm( ̂r)dr

2∫dmax
0 [γ(r)r

2]rlY∗lm( ̂r)dr
. (37)

Equation (35) then implies

Bl(q) ∝ exp(2l lnq −
2q2R2l
2l + 3
), (38)

where

R2l =
1

2l + 1

l
∑
l=−m
ℜ(R2lm). (39)

Thus, a small-q Guinier analysis of Bl(q), which, through equation (30), can be
extracted from the experimentally determined single-particle correlation function
C1(q, Δϕ) (Figure 12), yields a set of l-dependent effective radii Rl, instead of the sin-
gle radius Rg = R0 provided by SAXS. As an example, Malmerberg et al. [51] have
performed simulations, which demonstrate that the quotient R2/Rg can be used as a
model-independent “shape descriptor” for the single particle (Figure 13). We thus see
that an analysis of the two-point correlation measured with CXS can directly provide
structural information going beyond that available from a SAXS measurement. As in
the SAXS case (Figure 11 (b)), by imposing additional constraints, for example, on
the positivity, the extent, the uniformity, and/or the symmetry of ρ(r), it has been
simulated by Donatelli et al. [57] that more information, at higher resolution, can also
be obtained from CXS data (Figure 14). The dependence of the achievable resolution
on the experimental parameters is also discussed in [57].
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Figure 13: Example of a model-independent CSX shape descriptor for l = 2 [51]. The ratio R2/Rg is
plotted against the degree of anisotropy for ellipsoidal (black dots) and cylindrical (red squares)
scatterers, allowing the identification of prolate or oblate features. Reproduced with permission of
the International Union of Crystallography.

Figure 14: Reconstructions, in side (above) and top (below) views, of the pentameric ligand-gated
ion channel (pLGIC) protein [57]. (Left) Original shape. (Center) Reconstruction from simulated CXS
data, without imposing a symmetry constraint. (Right) CXS reconstruction, with the constraint of
5-fold symmetry.

2.4 The 2D case

It has been mathematically demonstrated [58] that, for random molecular alignment
in three dimensions, it is not possible, in amodel-independent fashion, to extract from
the measured CXS correlations the effective scattering pattern I1(q) corresponding to
a single particle. Had this been the case, it would have been possible, using standard
iterative phasing algorithms [59], to realize Kam’s original desire of directly determin-
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ing the molecular electron density ρ(r) from the measured CXS data. However, this is
possible for particles aligned along a single axis parallel to the incident beam, as has
been demonstrated experimentally for strongly scattering mesoscopic structures [54]
(Figure 15). For such an alignment, we can write the two-point correlation function as
a “ring cross-correlation,” which is a function of the scattering vector magnitudes qi
and qj and their opening angle Δϕ (denoted ψ in Figure 12 (b)), and which is a sum
over the individual particles and is averaged over the exposures:

C(qi ,qj) ≡ C(qi ,qj , Δϕ)
= ⟨I(k)(qi ,ϕn)I(k)(qj ,ϕn + Δϕ)⟩k,n. (40)

The experiment of Pedrini et al. [54] is described in Figure 15. To create a strongly
scattering ensemble of identical but randomly oriented “particles” in two dimensions,
many gold structures (350 nm across, 500-nm thick) were photolithographically gen-
erated on a thin silicon nitride membrane (Figure 15 (d)). Hard X-rays (6.2 keV) from
a synchrotron were then scattered from this sample (Figure 15 (a)). To acquire many

Figure 15: The 2D CXS experiment of Pedrini et al. [54]. Many stationary mesoscopic (350 nm across,
500-nm thick) three-legged gold structures were nanofabricated on a thin Si3N4 membrane with
random orientations and placement. Many inequivalent CXS exposures were effectively made by
acquiring scattering images for different positions of a tightly focused (dashed orange rectangle in
frame d) 6.2 keV X-ray beam. From these scattering patterns, one-, two-, and three-point correlation
functions were extracted and averaged, and, as described in the publication, the single-particle
scattering function I1(q,ϕ) could be extracted in a model-independent fashion (frame b, the red bar
corresponds to 0.1nm−1). Finally, using standard iterative phase-retrieval techniques, the scattering
function was inverted to yield the real-space image of a single particle (frame c), which shows a
close resemblance to an electron microscope image (frame e). The red bars in (c) and (e) correspond
to 100 nm. Reprinted by permission from Macmillan Publishers Ltd.
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inequivalent exposures, 3 751 measurements were performed with different positions
of the sample in the focused X-ray beam (dashed orange rectangle in Figure 15 (d)).
For each exposure, one-, two- and three-point correlation functions were computed.
The optimal size of a pixel for use in sampling the scattering pattern is the Shannon
pixel [50], corresponding to a solid angle at the detector

ΔΩ = ( λ
2dmax
)
2
, (41)

where dmax is the largest molecular dimension. For ring cross-correlation with reso-
lution dmin = 2π/qmax, this corresponds to a ring width Δq = π/dmax and a number of
angular pixels in the outer ring of NΔϕ = 4πdmax/dmin.

To obtain the (projected) real space image ρ(r,ϕ), we must (a) extract from
C1(qi ,qj , Δϕ) the single-particle diffraction pattern I1(q,ϕ) and (b) determine the scat-
tering phases necessary to invert I1(q,ϕ) to the image ρ(r,ϕ). We begin by expanding
the (as yet unknown) single-particle intensity in circular harmonics:

I1(q,ϕ) =∑
m
Im(q)e𝚤mϕ =∑

m
I∗−m(q)e𝚤mϕ =∑

m′
I∗m′ (q)e−𝚤m

′ϕ. (42)

Again, since I1 is real, by Friedel symmetry, only even values of m are allowed, and
Im(q) = I∗−m(q). The single-particle correlation function can then be written as

C1(qi ,qj , Δϕ) =
1
2π
∫ I1(qi ,ϕ)I1(qj ,ϕ + Δϕ)dϕ

= ∑
m,m′

Im(qi)I∗m′ (qj)e−𝚤m
′ϕ 1
2π
∫e𝚤(m−m

′)ϕdϕ

=∑
m
Im(qi)I∗m(qj)e−𝚤mΔϕ. (43)

Taking the Fourier transform, we obtain

Qm(qi ,qj) ≡
1
2π
∫
2π

0
C1(qi ,qj , Δϕ)e𝚤mΔϕdΔϕ

=∑
m′
Im′ (qi)I∗m′ (qj)

1
2π
∫
2π

0
e𝚤(m−m

′)ΔϕdΔϕ

= Im(qi)I∗m(qj). (44)

Thus, from the ring autocorrelations, i.e., with qi = qj = q, we can obtain the magni-
tudes of the Fourier coefficients:

|Im(q)| = √Qm(q,q). (45)

Hence the first problem of constructing I1(q,ϕ) from C1 is one of phase-retrieval.
Pedrini et al. [54] have shown that this can in principle be accomplished without
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imposing real-space constraints, by using in addition the three-point correlations.
Pedrini’s resulting I1(q,ϕ) is shown in Figure 15 (b). The stationary, relatively large,
strongly scattering gold structures they used produced sufficient scattering to mea-
sure the three-point correlations at a synchrotron; for molecular scatters, an accurate
measurement of higher-order correlations suffers from a low signal-to-noise ratio and
will probably require an XFEL with high repetition rate [50].

The second problem, the inverse transformation of I1(q,ϕ) to the real-space image
ρ(r,ϕ) is also a phase-retrieval problem, which in this case can be solved by standard
iterative techniques, incorporating, in addition to the reciprocal space constraint, real-
space constraints, such as limiting the maximum size of the particle (“support”) and
requiring that ρ(r,ϕ) > 0 everywhere (“positivity”) [59]. Pedrini’s resulting ρ(r,ϕ) (Fig-
ure 15 (c)) shows a strong resemblance to a scanning electron microscope image of
one of the structures (Figure 15 (e)). We note that an elegant approach to simultane-
ously solving both phase retrieval problems (e.g., simultaneously refining I1(q,ϕ) and
ρ(r,ϕ)), in the general framework of iterative projection algorithms has been proposed
by [60].

3 Nonlinear X-ray optics

3.1 General considerations

The optical laser was invented in 1960, and its coherence, high spectral brightness,
and short-duration pulses opened the floodgates for investigations of nonlinear op-
tical and ultrafast phenomena: Second-harmonic generation was observed in 1961,
sum-frequency generation and stimulated Raman scattering were observed in 1962,
and picosecond mode-locked pulses were invented in 1963. The Nobel Prize for opti-
cal laser developments was awarded in physics to Townes, Basov, and Prokhorov in
1964. High peak-brightness X-ray pulses have nowbeen available at XFELs since 2009,
and work is underway tomake use of nonlinear optical effects at X-ray wavelengths in
novel spectroscopic applications; published observations include: an XFEL-pumped
atomic laser using ionized Ne gas [61], amplified stimulated X-ray emission in sili-
con [62], second-harmonic X-ray generation in diamond [63], and optical/X-ray four-
wave mixing using a transient grating [64]. Particularly interesting potential applica-
tions of nonlinear X-ray effects, highlighted in this section, are stimulated X-ray Ra-
man scattering and nonlinear mixing of optical and X-ray wavelengths. Among the
many textbooks on nonlinear optical phenomena, we note the excellent reference by
Boyd [18].

The interaction of a polarizable material with a varying electric field produces a
time-dependent electric polarization, which can be expanded as a power series in the
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field strength:

P(t) = ϵ0[χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) +⋯]
≡ P(1)(t) + P(2)(t) + P(3)(t) +⋯. (46)

For a superposition of light waves, where the electric field consists of several oscil-
lating components, the nonlinear terms in the polarization mix contributions with
different frequencies, and the resulting Fourier components of the polarization are
expressed in terms of the frequency-dependent nonlinear susceptibilities χ(s):

P(s)(ωk) = ϵ0χ(s)(ωk =ω1 +ω2 +⋯+ωs)E(ω1)⋯E(ωs), (47)

where the frequency ωk can be any algebraic sum of the (positive and negative) fre-
quencies that are active in the interaction.

Light-matter interactions are divided into two categories [18]:
(a) A parametric (p) process, also called passive or elastic, leaves the material prop-

erties unchanged if we disregard a small energy dissipation in the intermediate
state. The material thus acts as a catalyst for a change in the radiation fields.

(b) In a nonparametric (np) process, also called active or inelastic, the material un-
dergoes a large energy loss to or gain from the radiation field.

For parametric processes of any order, the source term on the right-hand side of equa-
tion (47) is proportional to the corresponding susceptibility, and for a nonparametric
process, the cross-section for light scattering is proportional to the imaginary part of
an odd-order susceptibility times the modulus squared of each field involved. Both
types of interaction are generally enhanced by the presence of a nearby resonance.
Materials with inversion symmetry have a vanishing second-order susceptibility. Ex-
amples of light-matter interactions are:
(a) 1st-order p: light propagation with linear dispersion.
(b) 1st-order np: single-photon absorption or emission.
(c) 2nd-order p: second-harmonic generation, sum- and difference-frequency gener-

ation.
(d) 3rd-order np: spontaneous and stimulated Raman scattering.
(e) 3rd-order p: parametric four-wave mixing.

3.2 Stimulated Raman scattering at X-ray wavelengths

Conventional resonant inelastic X-ray scattering (RIXS) [65, 66] is a synchrotron-
based, photon-in/photon-out, chemically specific spectroscopic method, which al-
lows the study in solids of, e.g., intra-d-band charge-transfer and collective excita-
tions [67], without the limitations of probing depth, low ambient EM-fields, sample
conductivity and surface quality presented by photoemission. In spite of resonance
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enhancement, themain drawback of RIXS is its low efficiency, generally 10−5 of elastic
Rayleigh scattering.

Like its Raman scattering optical analog, the RIXS technique relies on sponta-
neous emission from a photoexcited state to produce the observed outgoing photon.
RIXS and Raman scattering are 3rd-order nonparametric interactions. At sufficiently
high incoming photon fluence, the efficiency of stimulated Raman scattering, another
3rd-order nonparametric process (Figure 2 (a), Section 1) exceeds that of the spon-
taneous process, with gains in efficiency at optical wavelengths of up to 107. Using
ps–fs optical pulses, a variety of techniques have been devised of performing time-
dependent stimulated Raman scattering. One of these, time-resolved coherent anti-
Stokes Raman scattering (t-CARS), is shown schematically in Figure 16. Here, a first
stimulated Raman scattering event (with excitation and stimulated waves ω1 and ω2)
prepares the system in an excited state f , which may be a coherent superposition of
two ormore closely spaced (by δΩ) states. If so, this superpositionwill develop during
the experimentally variable time interval τ, exhibiting so-called “quantum beating.”
At the end of this interval, a second stimulated Raman scattering event (ω1 and ωAS)
projects the pertinent superposition onto the ground state g. Note that the first stim-
ulated scattering event is a normal “Stokes” scattering (ω1 > ω2), and the second is
an “anti-Stokes” scattering (ω1 <ωAS). The strength of the stimulated ωAS signal may
show damped oscillations as functions of the duration of the time interval τ, making
the quantum beats visible and thus allowing a determination of the lifetime of the
coherent excited state. A particularly attractive application of X-ray t-CARS would re-
quire additional flexibility in the configuration of multicolor incident X-ray waves. If
the excitation process is made resonant with one atom (e.g., nitrogen) of, for exam-
ple, an aminophenol (C6H7NO) molecule and the probe process with a different atom
(e.g., oxygen), then we may be able to directly observe, in real time, an ultrafast co-

Figure 16: X-ray t-CARS, time-resolved coherent anti-stokes Raman scattering [68], is perhaps the
“holy grail” of non-linear X-ray optics. It is based on two sequential stimulated Raman scattering
events, separated by a variable time delay τ. As the delay is varied, the strength of the anti-Stokes
signal ωAS is predicted to show quantum beats, reflecting a coherent superposition of intermediate
states |f ⟩. Taken as a single event, t-CARSmay be considered to be an example of parametric four-
wave mixing.
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herent energy transfer across a molecule. The quantum-beating pattern observed in
such an experiment may make visible interference effects arising from the quantum
superposition of different transfer pathways [69].

We consider the feasibility of observing stimulated Raman scattering at X-ray
wavelengths by comparing expressions for the cross-sections for spontaneous and
stimulated Raman scattering to determine the minimum source characteristics for
observing the latter [70]. Both spontaneous and stimulated Raman scatterings are
governed by the third-order nonlinear susceptibility χ(3)(ω2 = ω2 + ω1 − ω1). For the
differential cross-section for stimulated Raman scattering, with incident beams at
both ω1 and ω2, Lee and Albrecht [71] derive the following expression:

d2σstim
dΩ2dω2

= 32π
2ℏω1ω2
ϵ0c2N

F(ω2)ℑ(χ(3)), (48)

where dΩ2 and dω2 are the solid angle and bandwidth of the outgoing radiation, F(ω2)
is the incidentω2 photon flux per unit scattered frequency, and N is the number of ac-
tive atoms/volume. As discussed by these authors and others [72, 73], a spontaneous
emission is identical to a stimulated emission inwhich the stimulating radiation arises
from the zero-point field of the black-body spectrum. The Planck radiation law, which
gives the number of emitted photons per second, area, steradian, and frequency in-
terval, is

FBB(ω,T) ∝
ω2

c2
( 1

e
ℏω
kBT − 1
+ 1
2
). (49)

For spontaneous optical radiation at room temperature, only the zero-point photons
are of importance, and hence

Fspon(ω2) = FBB(ω2,0) ∝
ω2
2

c2
. (50)

With the correct numerical prefactors, Lee and Albrecht show that

d2σspon
dΩ2dω2

=
ℏω1ω3

2
πϵ0c4N

ℑ(χ(3)). (51)

We thus see that stimulated Raman scattering predominates over spontaneous Raman
scattering (i.e., σstim > σspon) when the incident ω2 flux exceeds that from the zero-
point black-body radiation. Quantitatively, the stimulated and spontaneous Raman
cross-sections derived by Lee and Albrecht [71] are equal for

F(ω2) =
ω2
2

32π3c2
, (52)

which, for a photon energy of 720 eV (the L2 absorption edge of Fe), a Gaussian,
bandwidth-limited pulse of FWHM duration Δt = 2 fs with an FWHM bandwidth of
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ℏΔω = 0.9eV, and a focus spot of (10µm)2, corresponds to 4 ⋅ 106 photons/pulse. This
may be supplied by an advanced XFEL. It should be noted that the efficient observa-
tion of stimulated X-ray Raman scattering requires that stimulated emission occurs
before relaxation by competing deactivation processes, principally Auger decay. This
necessitates to use simultaneous, extremely short-duration (i.e., femtoseconds, ac-
cording to Ref. [14]) X-ray pulses at the two frequenciesω1 andω2. Perhaps, the sub-fs
laboratory-scale XFEL foreseen in Ref. [5] could be of use here. The first evidence for
stimulated X-ray Raman scattering has been observed in Ne gas [74], and effects in
solids have been theoretically treated by Föhlisch and coworkers [75] and Stöhr and
Scherz [76].

3.3 Enhancing the valence electron contribution to diffraction
with X-ray/optical sum-frequency generation

A 2nd-order parametric nonlinear effect, which is also promising for XFEL applica-
tions, is sum-frequency generation (SFG). A shortcoming of structural studies of mat-
ter with X-ray diffraction is that X-rays are scattered by both the numerous tightly
bound electrons in the atomic cores and the relatively fewer weakly bound valence
electrons. For studies of chemical bonding effects, which depend sensitively on the
spatial distribution of valence electrons, it would be advantageous if we could se-
lectively enhance their contribution to X-ray scattering. A possible method of achiev-
ing this goal is offered by X-ray/optical sum-frequency generation, which produces
an X-ray scattering signal only from those electrons that are polarized by the optical
field.

SuchX-ray/optical SFGhas recently beendemonstrated [77] at the LINACCoherent
Light Source XFEL (Figure 17 (a)). The second-order nonlinear SFG effectmixed 1.55 eV
optical pulses (2-ps duration, 1010W/cm2) with 8 keV X-ray pulses (80-fs duration),
which were simultaneously incident on a diamond crystal. Momentum conservation
was fulfilled with the aid of a Bragg reflection G, and the frequency-shifted X-rays
were discriminatedwith a high-resolution crystal analyzer. To interpret the strength of
the measured sum-frequency signal (Figure 17 (b)), the authors use a two-component
model, in which the electrons of diamond belong either to a spherically symmetric
atomic fraction or to a nonspherically symmetric bond fraction. According to models
of atomic binding in covalent semiconductors [78], the bond fraction principally con-
tributes to the optical response. Under this assumption, Glover et al. [77] derive the fol-
lowing relation between the X-ray/optical SFG scattering factor FX/OQ and δρQ(Elight),
the Fourier component at wave-vector Q of the light-induced charge density (in cgs
units):

δρQ(Elight) = −𝚤Q ⋅ Elight
3(ϵ − 1)
4π(ϵ + 2)

FX/OQ , (53)
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Figure 17: (a) The experimental setup used by Glover et al. [77] to measure the 111 Fourier component
of the optically induced perturbation of the electron charge density in diamond. (b) The measured
X-ray/optical SFG spectrum. The strength of the SFG peak, located 1.55 eV above the incident X-ray
photon energy, implies a nonlinear conversion efficiency of 3 ⋅ 10−7. Reprinted by permission from
Macmillan Publishers Ltd.

whereElight is the optical electric field, ϵ is the dielectric constant, and the local nature
of the electric field is accounted for via the Clausius–Mossotti relation. The measured
SFG scattered intensity at the scattering vector Q = G111 + kO (kO is the optical wave-
vector) implies a nonlinear X-ray conversion efficiency of 3 ⋅ 10−7. This corresponds
to

δρ111(Elight) = 0.84 ⋅ 10−4 e−/Å3. (54)

Support for the assumption that the bond charge is principally responsible for the op-
tical response is given in Figure 18. A density-functional calculation of the ground-
state valence charge density is shown in Figure 18 (a), with a profile plotted along
the [111] direction in Figure 18 (d). Note that the valence charge is maximum at strong
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Figure 18: The results of density-functional calculations for diamond of (a, d) the ground-state
valence charge density and (b, e) the changes induced in the valence charge density by a dc elec-
tric field of 2.7 ⋅ 108 V/m along the [111] direction. Superposing the two plots (c, f) demonstrates
that the positions of the field-induced changes coincide with the local maxima (“bond peaks”) in the
ground-state valence charge density [77]. Reprinted by permission from Macmillan Publishers Ltd.

“bond peaks,” on either side of the bond-center position. The change in charge den-
sity caused by applying a dc electric field of 2.7 ⋅ 108 V/m along the [111] direction is
shown in Figures 18 (b) and (e) to produce localized positive and negative regions.
This electric field is chosen to be equal to the amplitude of the [111] component of the
optical electric field applied in the experiment. By superposing the ground-state den-
sity and the induced changes (Figures 18 (c) and (f)) we clearly see that electric field
effects, and by extension the optical effects, are maximal along the interatomic bond.
A Fourier analysis of the induced (static) valence charge density changes yields the
value δρ111 = 1.07 ⋅ 10−4 e−/Å

3, which is considered to be a quite good agreement with
experiment (equation (54)). It is, of course, highly desirable to perform a true crys-
tallographic mapping of the optically induced charge density at atomic resolution.
This requires the measurement of many additional SFG Bragg reflections. It should be
noted that since sum-frequency generation is a second-order nonlinear optical effect,
by symmetry it should vanish in a centro-symmetric material such as diamond. In
spite of this, it is observable due to the Doppler and Lorentz mechanisms: the first in-
volving an acceleration by the X-ray electric field of the optically induced charge den-
sity and the second involving a “figure-8”motion of the electrons in theX-raymagnetic
field [79].
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4 The X-FEL operating principle

4.1 A graphical description of synchrotron radiation

In his introductory “Lectures on Physics,” Feynman gives an elegant graphical expla-
nation of how synchrotron radiation is generated [80, 81]. Feynman considers an elec-
tron moving along the path r(τ) as seen by an observer at the point (x,y, z), and he
distinguishes between τ, the time in the frame of the electron (the emitter time), and
t, the time in observer’s frame (the observer time); r(τ) is the true path of the electron,
and r′(t) is the apparent path. Feynman gives a rigorous expression for the electric
and magnetic fields of the moving electron:

E(x,y, z) = e
4πϵ0
[
̂r′

r′ 2
+ r
′

c
d
dt
(
̂r′

r′ 2
) + 1

c2
d2 ̂r′

dt2
],

B = − 1
c
̂r′ ∧ E. (55)

The first term in the electric field is the familiar 1/r2 Coulomb law, and the second term
is a relativistic correction. Of interest here is the third, radiation termErad, which in the
far-field decreases more slowly as 1/r. Complications arise from the appearance of the
apparent position r′ and the observer time t, which, for relativistic motion, may differ
dramatically from the true position r and the emitter time τ. For example, suppose
that we observe from the position z = R0 the motion of an electron following the true
trajectory r(τ) in the vicinity of the origin. In Figure 19, the positions of the observer
and electron are indicated (in two dimensions), along with the apparent position of
the electron r′(x′, z′) and the corresponding unit vector ̂r′. Note that ̂r′ points from
the observer toward the electron. For a distant observer (x′ ≪ R0, z′ ≈ −R0), we have

̂r′ = x′x̂ + z′ ẑ
√x′ 2 + z′ 2

≈ (
x′

R0
)x̂ − ẑ, (56)

and the radiation term in the expression for E becomes

Erad =
e

4πϵ0c2
d2 ̂r′

dt2
≈

e
4πϵ0c2

d2

dt2
(
x′

R0
)x̂

≈ e
4πϵ0c2R0

a′⟂(t) ̂r⟂. (57)

Figure 19: The motion of an electron near the origin is fol-
lowed by an observer at z = R0 [81]. Reproduced with the
permission of the American Association of Physics Teach-
ers.
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Note that the radiation field decreases with distance as 1/R0, is perpendicular to the
electron-observer direction, and is proportional to the transverse component a′⟂(t) of
the apparent acceleration. From a distant vantage point at z = R0, we consider the
motion of an electron that follows the circular trajectory shown in Figure 20 (a). A seg-
ment of this trajectory near time zero corresponds to that in a bendingmagnet or near
a pole of the FEL undulator. Because of the nonzero propagation time of light over the
distance R0 − z, the observer time t associated with the emitter time τ for an electron
with coordinate z(τ) is given by

t = τ + R0
c
− z(τ)

c
. (58)

In what follows, we disregard the constant term R0/c. As shown in Figure 20 (a), the
true path r(τ) of the electron is the dark “electron” circle. A point moving with the
same angular velocity on the slightly larger “light” circle moves with speed c. In Fig-
ure 20 (b), we use a graphical method to construct from the true x-coordinate x(τ)
(points) the apparent position x′(t) (dark curve). Each of the x(τ) points is shifted in
time to account for the light propagation. Consider, for example, point −4. Because it
is more distant from the observer than the origin, the apparent time is later than the
true time, and we move the point in Figure 20 (b) to the right by the corresponding
line segment in Figure 20 (a). Analogously, point +5 undergoes a shift to earlier time.
The result for the apparent particle trajectory x′(t) is a curtate cycloid. Of particular
importance for synchrotron radiation is the sharp cusp in x′(t), which occurs at the
moment when the electron moves directly toward the observer (t = 0). At this point
in the trajectory, the large apparent transverse acceleration causes the emission of an
intense burst of synchrotron radiation. For a quantitative discussion of this radiation
and an extension of these arguments to the case of a periodic magnetic undulator, see
Ref. [81].

Figure 20: (a) An electron undergoes circular motion at an orbital “electron” radius r [81]. (b) Its ap-
parent x-position x′(t) is obtained from the true position x(τ) by a translation along the time-axis
by the light propagation time z/c. This procedure yields a curtate cycloid for x′(t), which is equiv-
alent to the path traced out by the position of the electron at t = 0 as the diagram in (a) is unrolled
along the circle with slightly larger (“light”) radius R = r/β. This figure is adapted from Ref. [80].
Reproduced with the permission of the American Association of Physics Teachers.
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Figure 21: Schematic illustration of the components of an XFEL.

4.2 The XFEL microbunching instability

The principle of XFEL operation was invented and demonstrated with a prototype
at Stanford University in the early 1970s by Madey [82]; for a detailed description,
see [83]. The active medium in an XFEL consists of highly collimated bunches of rela-
tivistic electrons traversing a long magnetic undulator (see Figure 21). Contrary to the
closed orbits of synchrotrons, where stochastic synchrotron radiation degrades the
electron beam quality, the XFEL uses a linear accelerator (LINAC). A pulse of relativis-
tic electronswith relativistic factor γ = 1/√1 − β2 = 1/√1 − v2/c2 ≫ 1moves along anun-
dulator, experiencing the periodic magnetic field By = B0 cos (kuz), where ku = 2π/λu,
and λu is the undulator period. The Lorentz force on the electron leads to the following
equations of motion:

γm ̈z = −e ̇xBy ,
γm ̈x = e ̇zBy . (59)

We first assume that ̇z ≈ const ≡ β̄≫ ̇x and find:

̇x = cK
γ
sinωut, (60)

where ωu = kuβ̄c, and the “undulator parameter” is defined as K = eB0λu
2πmc . Averaging

over many undulator periods, we find

⟨ ̇z⟩ = ⟨√β2c2 − ̇x2⟩ = [1 − 1
2γ2
(1 + K

2

2
)]c ≡ β̄c. (61)

The x-oscillation causes emission of undulator radiation with wavelength λ. Consider
in Figure 22 successive wavefronts, corresponding, from left to right, to emission at
points B and A on the electron trajectory. From the figure we see that the condition
for coherent superposition is λu/β̄ = λu + λ, where λu is the undulator period, and the
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Figure 22: Coherent radiation wavefronts from successive
undulator poles at A and B.

average value of the z-component of the electron velocity is

β̄c = [1 − 1
2γ2
(1 + K

2

2
)]c. (62)

We thus arrive at the “undulator equation” for the wavelength of the radiation:

λ = λu
2γ2
(1 + K

2

2
). (63)

At this resonant condition, the radiation overtakes the electrons by one wavelength
per undulator period.

The major difference between undulator radiation at a synchrotron and at the
XFEL is that the radiation field in the very long XFEL undulator becomes sufficiently
strong to influence the electron trajectory. The electron energy is W = γmc2, which
varies under the influence of the radiation field Ex(t)

dW
dt
= −e ̇x(t)Ex(t). (64)

This interaction is strongest when | ̇x| is at its maximum, i.e., at the zero-crossings of
the electron trajectory. Assuming plane-wave radiation, Ex(t) = E0 cos (kz −ωt +ψ0),
and using the expression for ̇x(t) (equation (60)), we obtain

dW
dt
= −eKcE0

2γ
(sinψ+ − sinψ−), (65)

where ψ± = [(k ± ku)β̄c − kc]t +ψ0 =ψ0 − ct[k(1 − β̄) ∓ kuβ̄]. Since ψ− is always rapidly
changing, the sinψ− contribution to dW

dt averages to zero. A constant energy transfer
between electrons and radiation occurs when ψ+ = const, i.e., for

k(1 − β̄) = kuβ̄,
2π
λ
(1 − β̄) = 2π

λu
β̄ ≈ 2π

λu
,

λ = λu(1 − β̄) =
λu
2γ2
(1 + K

2

2
). (66)
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Thus, a constant energy transfer occurs for a radiation wavelength that satisfies the
undulator equation (63).

Consider now the electron motion caused by the radiation field. The quantity ψ =
ψ+ is called the “ponderomotive phase,” and its time dependence is given by ̇ψ =
−k(1− β̄)c + kuβ̄c. We define the relative energy “deviation” η ≡ (γ − γr)/γr and the rela-
tive energy “detuning” Δ ≡ (γ0 − γr)/γr , where γr is the “resonant” value for which the
undulator equation (63) is satisfied, γ0 is the average value, and η, Δ ≪ 1. After some
algebra, we obtain

̇ψ = 2kuc(η + Δ). (67)

On the other hand, the energy transfer is given by

dW
dt
= −e ̇xEx = −

eKcE0
2γ0

sinψ =mc2 ̇γ =mc2γ0 ̇η, (68)

implying that η̇ = − eKcE02mcγ20
sinψ. Taking a second time derivative, we obtain

̈ψ = −Ω2 sinψ, (69)

which is the equation of motion for a physical pendulumwith frequencyΩ =√ ekuKE0mγ20
.

The pendulum motion can be represented in a (ψ, ̇ψ) phase-space plot (Figure 23),
where oscillatory and rotational trajectories are separated by a curve called the sep-
aratrix. Interaction in the XFEL undulator of a pulse of electrons with its own radia-
tion field causes the initially uniform density distribution along the pulse to become
modulated, with a period equal to the radiation wavelength λ. We see how this occurs
by plotting electron trajectories in the phase space (Figure 24). The horizontal axis in
Figure 24, the ponderomotive phase ψ, is essentially the z-coordinate of an electron
in the pulse, in a coordinate system moving with the electrons at their average veloc-
ity β̄c. A fraction of thepulse equal in length to somewhatmore than twice the radiated

Figure 23: Oscillatory (blue) and rotational (red) motions
of an electron in phase space is separated by the “sepa-
ratrix” (black).
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Figure 24: The development of an initially uniform electron distribution in phase space in the XFEL
undulator (for zero detuning (Δ = 0)). The ponderomotive phase ψ and its time derivative ̇ψ effec-
tively correspond to the position in a moving reference frame and the particle energy, respectively.
At the point where “microbunches” are established (red), the undulator is terminated.

Figure 25: Schematic comparison of the incoherent radiation of randomly positioned electrons (left)
and coherent radiation from microbunches (right).

wavelength λ is shown; the plot is repeated to the left and right. By equation (67) the
vertical axis gives the deviation η of the electron energy from the resonant condition
γ = γr . Dots show the successive positions of the initially uniformly distributed (blue)
electrons. At the final situation shown (red), the approximate alignment of the dots at
well-defined phases implies the formation of microbunches (Figure 25) and hence a
strong density modulation of the pulse with a period equal to λ.

4.3 Self-amplified spontaneous emission

Whereas an electron pulse with randomly distributed electrons, as in a synchrotron,
radiates incoherently,microbunchingwith periodicity λ, as occurs in theXFEL, results
in coherent emission. For incoherent emission, the total radiated power Pincoh = NP1
is the sum of that emitted by each of the N electrons in the pulse. For coherent emis-
sion, the radiated electric field Ecoh = NE1 adds up, implying a total power Pcoh = N2P1,
which is amplified by the factor N . For a typical pulse charge of 200 pC, N ≈ 109!
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XFEL operation thus proceeds as follows (Figure 26): the initially homogeneous
electron pulse enters the undulator and spontaneously emits incoherent radiation. As
the radiation field builds up,microbunching begins to develop, implying increasingly
coherent emission and hence stronger microbunching and an exponential increase in
the radiation power. It is arranged so that maximum microbunch modulation occurs
at the end of the undulator, after which the electrons are discarded, and the radia-
tion is directed to the experiment. This process is called ‘self-amplifying spontaneous
emission’ (SASE).

Figure 26: Schematic logarithmic plot of the X-ray power produced by an electron bunch as a func-
tion of distance it has travelled along the magnetic undulator. After an initial phase of “lethargic”
growth of spontaneous undulator radiation, the initially homogeneous electron distribution in the
bunch begins to form “microbunches.” These microbunches begin to radiate coherently, causing
an exponential power increase and a sharper definition of the microbunches. If the undulator is ex-
tended beyond the position of optimal microbunching, then energy begins to flow back from the
photon field to the electron motion, and the X-ray power decreases.

4.4 Worldwide XFEL facilities

The first hard X-ray free-electron laser (XFEL), the LINACCoherent Light Source (LCLS)
at the reconfigured Stanford linear accelerator, went into operation in April 2009 [84].
This was followed in June 2011 by the SACLA facility in Hyogo, Japan [85], and in Oc-
tober 2016 by the PAL facility in Pohang, South Korea [86]. Further XFELs presently
under construction are the European XFEL in Hamburg, Germany [87], and the Swiss-
FEL in Villigen-Würenlingen, Switzerland [88]. In addition, there are two operating
soft X-ray lasers, FLASH in Hamburg, Germany [89], and FERMI in Trieste, Italy [90].
The pulse repetition rate of an XFEL is typically 100–120Hz. By the use of supercon-
ducting acceleration technology the European XFEL will produce “macropulses” at
10Hz, each of which consists of up to 2 700 “micropulses,” at 220-ns intervals. The
FERMI machine is quite special in that it uses a harmonic of an external optical laser
to “seed” the XFEL emission. This results in a greatly improved FEL spectral stability
and opens up novel possibilities for tailoring the FEL pulses. At the time of writing,
the LCLS is undergoing an upgrade to a superconducting machine, and the SwissFEL
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has demonstrated lasing at 25 nm and is constructing a second undulator beamline
for soft X-rays.

5 Outlook

The self-amplification of spontaneous emission (SASE) mode of XFEL operation was
presented in Section 4 of this chapter, and the applications of XFEL pulses highlighted
in Sections 1–3 of the chapter for studying the structure and dynamics of condensed
matter are based on this mode. It is expected that in the future, XFEL machines will
go beyond simple SASE to offer significant improvement in performance and conve-
nience.

The first XFELs have basically been single-user machines with only one experi-
ment operating at any time. First experience has been made at the LCLS with spectral
optical beam splitters, so-called “large-offset monochromators,” in which a thin dia-
mondcrystal introduced into theX-raybeamdiffracts aportionof thebeam toabranch
beamline [91]; the majority of the radiation proceeds straight ahead to the principal
user. Amore attractive possibility for simultaneously supplyingmultiple users will be
to generate and accelerate multiple electron bunches in the electron source and lin-
ear accelerator. Using a fast-switchingmagnet, individually configurable bunches can
then be directed into two different undulators, allowing the independent choice of all
relevant beam parameters.

Early XFELs have had pulse repetition rates of typically 100Hz, limited by power
requirements in the electron accelerator and by the thermal load on the X-ray optics.
If the sample tolerates it, for example, in the gas phase or a rapidly flowing liquid
stream, with improved detectors with faster frame rates, then a significantly higher
repetition rate could bring a big advantage for so-called “photon-hungry” measure-
ments. An example is the cross-correlation scattering technique discussed in Sec-
tion 2. Some experiments would also benefit from a higher average photon intensity
with a lower peak intensity, as would be provided by a high repetition rate machine
with reduced electron charge per bunch. For power consumption reasons, an XFEL
with high repetition rate must use superconducting acceleration technology [87].

A prominent example of a photon-hungry experiment is resonant inelastic X-ray
scattering (RIXS) [67]. Here the well-defined incoming photon energy is scanned
across sample resonances, and the inelastically scattered radiation is dispersed using
a high-resolution spectrometer, allowing the selective excitation and observation of
collective phenomena in the sample. Because of the narrowbandwidth required of the
incoming beam and the low spectrometer acceptance, a high average X-ray intensity
is a necessity. With short pulses at an XFEL and with optical pumping, pump–probe
RIXS can be performed in a photoexcited nonequilibrium sample [8].
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X-ray photoelectron spectroscopy (XPS), in which incoming photons eject charac-
teristic photoelectrons dispersively detected in an electron spectrometer, is a versatile
technique for investigating occupied electronic states [92]. Again, it would be intrigu-
ing to perform XPS at an XFEL in a pump–probe arrangement. But an intense X-ray
pulse will generate many photoelectrons in a small area, and their mutual repulsion
will severely degrade themeasured photoelectron energy. This “space-charge” broad-
ening can be reduced in a high-repetition-rate XFEL with high average but reduced
peak intensity.

As noted earlier, SASE pulses are very intense, with short duration and high trans-
verse coherence. But the longitudinal coherence and the reproducibility in terms of
center wavelength and pulse energy are very poor. Reproducible, narrow bandwidth
pulses can be produced by “seeding” the XFEL emission process: short-wavelength
photonswith awell-defined energy are injected along the electron beamas it traverses
the undulator, inducing microbunching and radiation at a single desired wavelength.
The seeding beam can be provided by a synchronized external laser, generally operat-
ing at a subharmonic of the XFEL emission. Laser-seeding allows versatile control of
the FEL emission, but to date, it has only been demonstrated in the very soft extreme
ultraviolet (XUV) wavelength range [90]. Alternatively, by introducing a wavelength
filter half-way along the XFEL undulator and deflecting the electrons around it using
amagnetic “chicane,” an XFEL can be “self-seeded,” as has been demonstrated at the
LCLS at both hard [93] and soft [94] X-ray wavelengths. Presently, self-seeding suffers
from large pulse energy fluctuations due to bunch-to-bunch variations in electron en-
ergy and by a broad spectral “pedestal” background from unfiltered SASE radiation.

Particularly promising options for XFEL machine development are based on
manipulations of the electron beam prior to and during the emission process [95].
A position-dependent shift in kinetic energy (“chirp”) is imprinted on the electron
bunch as it is accelerated, and the relative time delay between the bunch and the
growing photon pulse is successively altered by small electron chicanes situated
between the individual undulator modules. In this way, the XFEL photons in each
module can, for example, interact with electrons that are as yet unperturbed by the
FEL emission process (“fresh bunch”), and the result can be an extremely high peak
XFEL power, perhaps reaching terawatts, a subfemtosecond pulse duration, or even
multiple, multicolor pulses with a variable interpulse delay. The last of these could
be highly attractive for the nonlinear X-ray methods discussed in Section 3. Even
more ambitious schemes have been proposed for producing XFEL pulses and pulse
trains with pulse durations entering the subattosecond domain [96]. The value of
such pulses, for example, for time-resolved inner-shell electron spectroscopy, will,
however, be limited by the time-energy uncertainty relation ΔEΔt(FWHM) ≥ 1.8 fs eV:
a 1 attosecond pulse has an energy bandwidth exceeding 1 800 eV.

However, the justification for further XFEL development and facility realization
depends on a robust, blossoming palette of science applications. In the opinion of the
author, the techniques highlighted in this chapter represent interesting candidates.
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This Outlook concludes with comments on other promising XFEL techniques and ap-
plications.

As noted in the Introduction to this chapter, serial crystallography using nano-
meter-sized protein crystals that are renewed with each shot is presently among the
most popular XFEL applications. Considering the XFEL emission spectrum, crystal-
lography can benefit both from a narrower bandwidth for achieving higher structural
resolution and from a broader bandwidth for increasing the number of observable re-
flections in a single shot [97]. Ahigher pulse intensitywill also benefit crystallography:
Diffraction of coherent radiation from a finite-sized crystal produces additional weak
diffraction features between the Bragg reflections. A significantly improved signal-
to-noise ratio from an increased incoming intensity, reduced background scattering,
and improved detector performance may allow the use of these coherent diffraction
features to determine the crystallographic phase [98]. Finally, as discussed in the
Introduction, photosensitive proteins in crystalline form may be optically pumped
and subsequently probed with the diffraction of short-duration X-ray pulses, yielding
a molecular movie [99]. Here it should be recalled that since distortions propagate
through a molecule with approximately the speed of sound (of order 1 nm/ps), struc-
tural changes on the XFEL time scale of 10 fs will be only 0.1 Å, necessitating a high
experimental resolution.

Further interesting applications of time-resolved XFEL crystallography are the
studies of materials under extreme conditions and of defect dynamics. “Ramp com-
pression” by ns-duration optical laser pulses produces a high-pressure shock wave in
a solid, accompanied by only a moderate temperature increase; a record pressure of
560GPa has been recently achieved in iron [100]. In combination with powder diffrac-
tion from synchronized XFEL pulses, we then have the opportunity to investigate the
structure of ultrahigh-pressure phases [101]. Ion-implantation into a solid is predicted
to initiate a “defect cascade” of vacancy-interstitial clusters, which develops on the
nanometer and picosecond length and time scales [102]. With a suitable synchronized
ion-implantation pump, diffraction-based methods of defect characterization [103]
and diffraction imaging may be used at the XFEL to follow the statistical behavior of
such cascades.

The combination of spectroscopy and diffraction in a tandem experiment can dra-
matically increase the amount of obtainable information. Single-shot spectroscopic
techniques, such as dispersively-detected X-ray emission spectroscopy [104] or the
“high energy resolution off-resonant spectroscopy” (HEROS) technique [105] are par-
ticularly well suited to the XFEL, where a scan over energy is often unrealistic. Op-
timizing ultrafast photoinduced catalytic reactions at the surface of nanoparticles in
solution may be of vital importance to the development of renewable energy sources
and time-dependent measurements at an XFEL, both of the crystallography of the
nanoparticle (using the pair-distribution function) and of the chemical spectroscopy
of the surface reaction, could supply important information not available with other
techniques [106].
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