
C
o
p
y
r
i
g
h
t

2
0
1
8
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 10:16 AM via
AN: 1728069 ; Stefan Bjrnander.; C++17 By Example : Practical Projects to Get You up and Running with C++17
Account: ns335141

C++17 By Example

Stefan Bj rnander

BIRMINGHAM - MUMBAI

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++17 By Example
Copyright 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Merint Mathew
Acquisition Editor: Chaitanya Nair
Content Development Editor: Lawrence Veigas
Technical Editor: Adhithya Haridas
Copy Editor: Safis Editing
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Aishwarya Gangawane
Graphics: Jisha Chirayil
Production Coordinator: Deepika Naik

First published: February 2018

Production reference: 1220218

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78839-181-8

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

I dedicate this book to my parents, Ralf and Gunilla, my sister, Catharina, her husband,
Magnus, and their sons, Emil and Rasmus.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Contributors

About the author
Stefan Bj rnander is the author of the books Microsoft Windows C++ and C++ Windows
Programming. He holds a Master of Engineering and a Licentiate in Computer Science. He
has worked as a software developer and as a teacher in computer science and mathematics
for many years.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the reviewer
Mark Elston is a software architect for an automated test equipment company working
primarily in the IC and mobile device test world. However, his 30 years of experience
includes developing aircraft and missile simulations for the Air Force and Navy, hardware
control systems for NASA, and tester operating systems for commercial products. He has
also developed several Android applications for fun. His latest passion is delving into the
world of functional programming and design.

I would like to thank my wife for her understanding when I had a chapter to finish
reviewing. I would also like to thank the Pack team for giving me the opportunity to work
with them on this project. It has been enlightening and entertaining. Finally, I would like
to thank the author for taking even my smallest comments into account. It is a pleasure to
be part of a project where your input is valued.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents
Preface 1

Chapter 1: Getting Started with C++ 6
Rolling the dice 7
Understanding classes – the Car class 14

Extending the Car class 20
A class hierarchy – the Person, Student, and Employee classes 24
A simple data type – the stack 29
A more advanced data type – the queue 33
Summary 36

Chapter 2: Data Structures and Algorithms 37
The List class 38

The Cell class 38
The Iterator class 39
The List class 41
Adding a list to an existing list 46
Erasing a value from the list 48

The Set class 51
Union, intersection, and difference operations 57

Basic searching and sorting 59
The select sort algorithm 60
The insert sort algorithm 61
The bubble sort algorithm 62

The extended List class 65
The ReverseIterator class 67

The extended Set class 82
Union, intersection, and difference 84

Advanced searching and sorting 89
The merge sort algorithm 90
The quick sort algorithm 92

Summary 93

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[ii]

Chapter 3: Building a Library Management System 94
The Book class 95

Writing the book 98
Reading the book 98
Borrowing and reserving the book 100
Displaying the book 100

The Customer class 101
Reading the customer from a file 103
Writing the customer to a file 104
Borrowing and reserving a book 105
Displaying the customer 105

The Library class 106
Looking up books and customers 110
Adding a book 111
Deleting a book 111
Listing the books 112
Adding a customer 113
Deleting a customer 114
Listing the customers 115
Borrowing a book 115
Reserving a book 117
Returning a Book 118
Saving the library information to a file 120
Loading the library information from a file 120

The main function 121
Summary 122

Chapter 4: Library Management System with Pointers 123
The Book class 124

Reading and writing the book 126
Borrowing and reserving the book 127
Displaying the book 127

The Customer class 128
Reading and writing the customer 130
Borrowing and reserving a book 130
Displaying the customer 131

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iii]

The Library class 132
Looking up books and customers 135
Adding a book 136
Deleting a book 136
Listing the books 138
Adding a customer 138
Deleting a customer 139
Listing the customers 140
Borrowing a book 141
Reserving a book 142
Returning a book 144
Looking up books and customers 145
Marshmallowing 147
Saving the library information to a file 147

Writing the book objects 147
Writing the customer objects 148
Writing the borrower index 148
Writing the reservation indexes 149
Writing the loan book indexes 150
Writing the reservation book indexes 150

Loading the library information from a file 151
Reading the book objects 151
Reading the customer objects 152
Reading the borrower index 152
Reading the reservation indexes 153
Reading the loan book indexes 153
Reading the reservation book indexes 154

Deallocating memory 155
The main function 155

Summary 156

Chapter 5: Qt Graphical Applications 157
Creating the clock application 157

Setting up the environment 158
The Clock class 158
The main function 163

Setting up reusable classes for windows and widgets 165

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iv]

Adding a listener 165
The base window class 166
The base widget class 174

Building the drawing program 185
The Figure base class 185
The Line sub class 188
The Rectangle sub class 193
The Ellipse sub class 196
Drawing the window 198
Drawing the widget 200
The main function 210

Building an editor 211
The Caret class 211
Drawing the editor window 214
Drawing the editor widget 216
The main function 226

Summary 227

Chapter 6: Enhancing the Qt Graphical Applications 228
Improving the clock 228

The Clock class 228
The main function 232

Improving the drawing program 232
The Figure class 233
The Line class 235
The Rectangle class 241
The Ellipse class 247
The DrawingWindow class 252
The DrawingWidget class 254
The main function 270

Improving the editor 271
The EditorWindow class 271
The EditorWidget class 274
The main function 295

Summary 296

Chapter 7: The Games 297

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[v]

Othello 297
The game widget 298

The OthelloWindow class 306
The OthelloWidget class 308
The main function 315

Noughts and crosses 315
The NaCWindow class 316

The NaCWidget class 317
The main function 322

Summary 323

Chapter 8: The Computer Plays 324
Othello 324

The OthelloWindow class 324
The OthelloWidget Class 327
The main function 336

Noughts and Crosses 337
The NaCWindow class 337

The NaCWidget class 339
The main function 348

Summary 349

Chapter 9: Domain-Specific Language 350
Introducing the source language – a simple example 351

The grammar of the source language 352
The target language 355
The colors 356
Error handling 357
The value 359

The scanner 361
Building the parser 370

Parsing the instructions of the language 373
Parsing the expressions of the language 375
Type checking the expression 378
Evaluating the values of the expressions 380

The viewer 381
The main function 386

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[vi]

Summary 387

Chapter 10: Advanced Domain-Specific Language 388
Improving the source language – an example 389
Improving the grammar 391
The Token and the Scanner 392
The parser 393
The evaluator 404
The main function 411
Summary 413

Other Books You May Enjoy 414

Index 417

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface
C++ is a general-purpose programming language built with a bias towards embedded
programming and systems programming. Over the years, C++ has evolved and is used to
develop software for many different sectors. Given its versatility and robustness, C++ is a
wonderful language to start your coding journey with. This book covers exciting projects
built in C++ that show how to implement the language in different scenarios. While
developing these projects, you will not only learn the language constructs but also how you
can use C++ to meet your software requirements.

In this book, you will study a set of applications written in C++, ranging from abstract
datatypes to library management systems, graphical applications, games, and a Domain-
Specific Language (DSL).

Who this book is for
This book is for developers who would like to develop software in C++. Basic programming
experience would be an added advantage.

What this book covers
, Getting Started with C++, introduces you to Object-Oriented Programming (OOP)

in C++. We start by looking into a simple program that rolls a dice. We write the code,
compile, link, and execute the program. We then continue by constructing a simple object-
oriented hierarchy, with pointers and dynamic binding. Finally, we create two simple
abstract data types: stack and queue. The stack is a set of values ordered in a bottom-to-top
manner, where only the top-most value is accessible, while the queue is a traditional queue
where we inspect values at the front and add values at the rear.

, Data Structures and Algorithms, builds on what was learned in the previous
chapter, especially the list and set abstract datatypes. We also introduce templates and
operator overloading, and we look into linear and binary search algorithms and the insert,
select, bubble, merge, and quicksort algorithms.

, Building a Library Management System, will help you develop a real-world
system: a library management system that is made up of books and customers. The books
keep track of the customers that have borrowed and reserved them, and the customers keep
track of the books they have borrowed and reserved.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[2]

, Library Management System with Pointers, further develops the library
management system. In the previous chapter, each book and customer were identified by
integer numbers. In this chapter, however, we work with pointers. Each book holds
pointers to the customers that have borrowed or reserved it, and each customer holds
pointers to the books they have borrowed or reserved.

, Qt Graphical Applications, dives into three graphical applications that we develop
with the Qt graphical library: an analog clock with hour, minute, and second hands, a
drawing program that draws lines, rectangles, and ellipses in different colors, and an editor
where the user can input and edit text. We will learn how to handle windows and widgets
as well as menus and toolbars in the Qt Library. We will also learn how to draw figures and
write text, and how to catch mouse and keyboard input.

, Enhancing the Qt Graphical Applications, further develops the three graphical
applications: the analog clock, the drawing program, and the editor. We add digits to the
clock dial, we add the possibility to move, modify, and cut-and-paste figures in the drawing
program, and we add the possibility to change font and text alignment in the editor.

, The Games, introduces you to basic game development. In this chapter, we
develop the games Othello, and Noughts and Crosses with the Qt library. In Othello, two
players take turn adding marks, colored black and white, to the game grid in order to
enclose the opponent's marks. In Noughts and Crosses, two players take turns adding
noughts and crosses to a game grid in order to place five marks in a row.

, The Computer Plays, empowers the computer to play against a human player. In
Othello, the computer tries to add marks that enclose as many as possible of the opponent s
marks. In Nought and Crosses, the computer tries to add marks to obtain five marks in a
row, and to prevent the opponent to get five marks in a row.

, Domain Specific Language, teaches you to develop a Domain-Specific Language
(DSL), which is a language intended for a specific domain. More specifically, we develop a
language for writing graphical objects in a Qt widget. We start by formally defining our
language with a grammar. We then write a scanner that recognizes meaningful sequences
of characters, a parser that checks that the source code complies with the grammar, and a
viewer that displays the graphical objects.

, Advanced Domain Specific Language, improves on our Domain-Specific
Language in several ways: we add selection and iteration that alter the flow of the program,
we add variables that can be assigned to values during the program execution, and we add
functions with parameters and a return value.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[3]

To get the most out of this book
This book is intended for every reader, from the beginner to the more proficient C++
programmer. However, some previous experience with C++ is useful.

The examples of this book are developed in Visual Studio and Qt Creator.

Download the example code files
You can download the example code files for this book from your account at

. If you purchased this book elsewhere, you can visit
 and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at .1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
. We also have other code bundles from our rich

catalog of books and videos available at . Check
them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:

.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[4]

Conventions used
There are a number of text conventions used throughout this book.

: Indicates code words in text. For example; "Let's continue with a class
hierarchy, where is the base class with and as its sub classes:"

A block of code is set as follows:

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

Person(string name);

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"In the first dialog we just press the Next button:"

Warnings or important notes appear like this.

Tips and tricks appear like this.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[5]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at .

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit , selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit .

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

11
Getting Started with C++

This chapter provides an introduction to Object-Oriented Programming (OOP) in C++. We
start by looking into a simple program that rolls a dice. We write the code and compile, link,
and execute the program.

Then we continue by constructing a simple object-oriented hierarchy, involving the
base class and its two subclasses, and . We also look into pointers and
dynamic binding.

Finally, we create two simple data types stack and queue. A stack is constituted of a set of
values ordered in a bottom-to-top manner, where we are interested in the top value only. A
queue is a traditional queue of values, where we add values at the rear and inspect values
at the front.

In this chapter, we will cover the following topics:

We start by implementing a simple game: rolling the dice. Its main purpose is to
provide an introduction to the environment and teach you how to set up the
project, and how to compile, link, and execute the program.
Then we start looking at object-oriented programming by writing a class
hierarchy with as the base class and and as
subclasses. This provides an introduction to inheritance, encapsulation, and
dynamic binding.
 Finally, we write classes for the abstract data types stack and queue. A stack is a
structure where we both add and remove values at the top, while a queue is more
like a traditional queue where we add values at the rear and remove them from
the front.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[7]

Rolling the dice
As an introduction, we start by writing a program that rolls a dice. We use the built-in
random generator to generate an integer value between one and six, inclusive:

Main.cpp

In the preceding program, the initial directives allow us to include header files,
which mostly hold declarations of the standard library. We need the header file to
use the random generator, the header file to initiate the random generator with the
current time, and the header file to write the result.

The standard library is stored in a called . A can be considered
a container holding code. We gain access to the standard library with the

 directive.

Every C++ program holds exactly one function. The execution of the program always
starts in the function. We use the and standard functions to initialize the
random generator, and to generate the actual random value. The percent () is the
modulus operator, which divides two integers and gives the remainder of the division. In
this way, the value of the integer variable is always at least one and at most six.
Finally, we write the value of the variable with , which is an object used by the
standard library to write text and values.

The programs of the first four chapters were written with Visual Studio, while the programs
of the remaining chapters are written with Qt Creator.

The following are instructions on how to create a project, write the code, and execute the
application. When we have started Visual Studio, we follow the following steps to create
our project:

First, we select the New and Project items in the File menu, as shown in the1.
following screenshot:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[8]

We choose the Win32 Console Application type, and name the project :2.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[9]

In the first dialog we just press the Next button:3.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[10]

In the second dialog, we choose the Empty project checkbox and click on the4.
Finish button. In this way, a project without files will be created:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[11]

When we have created our project, we need to add a file:5.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[12]

We choose a C++ File(.cpp) and name it :6.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[13]

Then, we input the code in the file:7.

Finally, we execute the program. The easiest way to do this is to choose the Start8.
Debugging or Start Without Debugging menu option. In this way, the program
is compiled, linked, and executed:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[14]

The output of the execution is displayed in a command window:9.

Understanding classes the Car class
Let's continue by looking at a simple class that handles a car, including its speed and
direction. A class is a very central feature in object-oriented languages. In C++, its
specification is made up of two parts its definition and implementation. The definition
part is often placed in a header file (with the suffix), while the implementation part is
placed in a file with the suffix, as in the and files. However, template
classes, which are introduced in , Building a Library Management System, are stored
in one file only.

A class is made up of its members, where a member is a field or a method. A field holds a
value of a specific type. A method is a mathematical abstraction that may take input values
and return a value. The input values of a method are called parameters. However, in C++ it
is possible to define a function without parameters and without return types.

An object is an instance of the class; we can create many objects of one class. The methods
can be divided into the following:

Constructor: A constructor is called when the object is created
Inspector: An inspector inspects the fields of the class
Modificator: A modificator modifies the values of the fields
Destructor: A destructor is called when the object is destroyed

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[15]

Ideally, the methods of a class don't give direct access to the fields, as this would mean that
the method names/types would have to change if the fields change. Instead, the methods
should give access to a class property. These are the conceptual elements of a class that may
not map to a single field. Each member of the class is , , or :

A member is accessible by all other parts of the program.
A member is accessible only by its own members or members of its
subclasses, which are introduced in the next section.
A member is accessible by its own members only. However, that is not
completely true. A class can invite other classes to become its friends, in which
case they are given access to its and members. We will look
into friends in the next chapter.

The following class definition has two constructors and one destructor. They always
have the same name as the class in this case. The destructor is preceded by a tilde (). A
constructor without parameters is called the default constructor.

More than one method can have the same name, as long as they have
different parameter lists, which is called overloading. More specifically, it
is called context-free overloading. There is also context-dependent
overloading, in which case two methods have the same name and
parameter list, but different return types. However, context-dependent
overloading is not supported by C++.

Consequently, a class can hold several constructors, as long as they have different
parameter lists. However, the destructor is not allowed to have parameters. Therefore, a
class can hold only one destructor:

Car.h

The and methods are inspectors returning the current speed and
direction of the car. The return values hold the type, which is short for integer. They are
marked as constant with the keyword since they do not change the fields of the class.
However, a constructor or destructor cannot be constant:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[16]

The , , , and methods are modificators,
setting the current speed and direction of the car. They cannot be marked as constant since
they change the fields of the class:

The and fields hold the current speed and direction of the car. The
 indicates that they are members of a class, as opposed to fields local to a

method:

In the implementation file, we must include the header file. The directive
is part of the preprocessor and simply causes the content of the file to be included in
the file. In the previous section, we included system files with the angle bracket characters
(and). In this case, we include local files with quotes (). The system include files (with
angle brackets) include system code that are part of the language, while local include files
(with quotes) include code that we write ourselves, as part of our project. Technically, the
system include files are often included from a special directory in the file system, while the
local include files are often included locally in the filesystem:

Car.cpp

The default constructor initializes both and and set it to . The colon ()
notation is used to initialize the fields. The text between two slashes () and the end of the
line is called a line comment and is ignored:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[17]

The second constructor initializes both and to the given parameter
values:

In the preceding constructors, it would be possible to use the assignment operator ()
instead of the class initialization notation, as in the following code. However, that is
considered to be inefficient since the code may be optimized with the preceding
initialization notation. Note that we use one equals sign () for assignments. For the
comparison of two values, we use two equals signs (), a method which is introduced in

, Data Structures and Algorithms:

The destructor does nothing in this class; it is included only for the sake of completeness:

The and methods simply return the current speed and direction
of the car:

A plus sign directly followed by an equals sign is called compound assignment and causes
the right value to be added to the left value. In the same way, a minus sign directly followed
by an equals sign causes the right value to be subtracted from the left value.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[18]

The text between a slash () directly followed by an asterisk (), and an asterisk directly
followed by a slash, is called a block comment and is ignored:

Now it is time to test our class. To do so, we include the file, just as we did in the
 file. However, we also include the system header file. As in the

previous section, the system headers are enclosed in arrow brackets (and). We also need
to use the to use its functionality.

Main.cpp

In C++, a function can be a part of a class or can be free-standing without a class. Functions
of a class are often called methods. A function is a mathematical abstraction. It has input
values, which are called parameters, and returns a value. However, in C++ a function is
allowed to have zero parameters, and it may return the special type void, indicating that it
does not return a value.

As mentioned in the previous section, the execution of the program always starts at the
function named , and every program must have exactly one function named .
Unlike some other languages, it is not necessary to name the file .

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[19]

However, in this book, every file holding the function is named out of
convenience. The keyword indicates that does not return a value. Note that
while constructors and destructors never return values, and are not marked with ,
other methods and functions that do not return values must be marked with :

We create an object of the class that we call . An object is an instance of the
class; is one of many cars:

When writing information, we use the object (short for console output), which
normally writes to a text window. The operator made up of two left arrow brackets () is
called the output stream operator. The directive makes the next output start at the
beginning of the next line:

A object is a constant object of the class. This means that it can only be
initialized by one of the constructors and then inspected, but not modified. More
specifically, only constant methods can be called on a constant object, and only methods
that do not modify the fields of the object can be constant:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[20]

When we execute the code, the output is displayed in a command window:

Extending the Car class
In this section, we modify the class. In the earlier version, we initialized the fields in the
constructors. An alternative way to initialize the fields is to initialize them directly in the
class definition. However, this feature shall be used with care since it may result in
unnecessary initializations. If the second constructor in the class is called, the fields are
initialized twice, which is ineffective.

Car.h

While the class is defined in the file, its methods are defined in the file.
Note that we begin by including the file, in order for the definitions of the methods
to comply with their declaration in :

Car.cpp

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[21]

Moreover, the class of the previous section has some limitations:

It is possible to accelerate the car indefinitely, and it is possible to decelerate the
car to a negative speed
It is possible to turn the car so that the direction is negative or more than 360
degrees

Let's start by setting the maximum speed of the car to miles/hour. If the speed exceeds
 miles per hour we set it to miles/hour. We use the statement, which takes a

condition, and executes the following statement if the condition is true. In the case here, the
statement is enclosed by brackets. This is not necessary since it is only
one statement. However, it would be necessary in the case of more than one statement. In
this book, we always use the brackets for clarity, regardless of the number of statements.

Car.cpp

If the speed becomes negative, we change the sign of the speed to make it positive. Note
that we cannot write . That would set the speed to zero since it
would subtract the speed from itself.

Since the value is negative, it becomes positive when we change the sign. We also turn the
car by degrees to change its direction. Note that we also, in this case, must check that
the car does not exceed the speed limit.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[22]

Also, note that we must check whether the direction is less than 180 degrees. If it is, we add
 degrees; otherwise, we subtract degrees to keep the direction in the interval to
 degrees. We use the statement to do that. If the condition of the

statement is not true, the statement after the keyword is executed:

When turning the car, we use the modulo (), operator. When dividing by , the modulo
operator gives the remainder of the division. For instance, when 370 is divided by the
remainder is 10:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[23]

The function creates one object of the class . We start by writing its
speed and direction, then we accelerate and turn left and again write its speed and
acceleration. Finally, we decelerate and turn right and write its speed and direction one last
time:

Main.cpp

When we execute the code, the output is displayed in a command window as follows:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[24]

A class hierarchy the Person, Student, and
Employee classes
Let's continue with a class hierarchy, where is the base class with and

 as its subclasses:

As a person has a name, we use the C++ standard class string to store the name. The
 keyword marks that the method is subject to dynamic binding, which we

will look into later in this section:

Person.h

We include the header, which allows us to use the class:

Person.cpp

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[25]

The and classes are subclasses of , and they inherit
publicly. Sometimes the term extension is used instead of inheritance. The inheritance can
be , , or :

With inheritance, all members of the base class have the same access to
the subclass
With inheritance, all members of the base class become
protected in the subclass
With inheritance, all and members of the base class
become private in the subclass

The and classes have the text fields and :

Student.h

The file defines the methods of the class:

Student.cpp

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[26]

The subclass can call a constructor of the base class by stating its with the colon
notation (). The constructor of calls the constructor of with the name as a
parameter:

We must state that we call in rather than by using the double colon
notation ():

The class is similar to . However, it holds the field instead
of .

Employee.h

The file defines the methods of the class.

Employee.cpp

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[27]

The constructor initializes the name of the person and the company they are employed by:

Finally, the function starts by including the system header files and
, which hold declarations about string handling and input and output streams.

Since all standard headers are included in the standard namespace, we gain access to the
system declaration with the the directive.

Main.cpp

We define the three objects, , , and , and we call on each of
them. In all three cases the method of the class , , and is
called:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[28]

The asterisk () marks that is a pointer to an object of , rather than an
object of . A pointer to an object holds the memory address of the object, rather than
the object itself. However, at the moment it does not hold any address at all. We will soon
assign it to the address of an object:

The ampersand () is an operator that provides the address of an object, which is assigned
to the pointer . We assign in turn to the addresses of the ,

, and objects and call in each case. As is marked as virtual
in , , in the class of the object the pointer currently points at, is called. Since

 is marked as virtual in the base class , it is not necessary to mark as
virtual in the subclasses and . When accessing a member of a pointer to
an object, we use the arrow () operator instead of the point operator.

When points at an object of , print in is called:

When points at an object of , in is called:

When points at an object of , print is called:

This process is called dynamic binding. If we omit the virtual marking in , static
binding would occur and print in would be called in all cases.

The concept of object-oriented programming is built on the three cornerstones of
encapsulation, inheritance, and dynamic binding. A language that does not support any of
these features cannot be called object-oriented.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[29]

A simple data type the stack
A stack is a simple data type where we add values to the top, remove the value on the top,
and can only inspect the top value. In this section, we implement a stack of integers. In the
next chapter, we look into template classes that can hold values of arbitrary types. We use a
linked list, which is a construction where a pointer points at the first cell in the linked list,
and each cell holds a pointer to the next cell in the linked list. Naturally, the linked list must
end eventually. We use to mark the end of the linked list, which is a C++ standard
pointer to a special null address.

To begin with, we need a class to hold each cell of the linked list. The cell holds an integer
value and a pointer to the next cell in the list, or if it is the last cell of the list. In the
following section, we will look into cell classes that hold pointers to both the previous and
the next cell.

Cell.h

It is possible to implement methods directly in the class definition; they are called inline
methods. However, it is usually done for short methods only. A rule of thumb is that inline
methods shall not exceed one line:

Each cell holds a value and the address of the next cell in the linked list:

Cell.h

A cell is initialized with a value and a pointer to the next cell in the linked list. Note that
 has the value if the cell is the last cell in the linked list:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[30]

In a stack, we are in interested in its top value only. The default constructor initializes the
stack to be empty. Push adds a value at the top of the stack, top returns the top value, pop
removes the top value, size returns the number of values in the stack, and empty returns

 if the stack is empty. The bool type is a logical type that can hold the values or
.

Stack.h

The field is a pointer to the first cell of the linked list holding the values
of the stack. When the stack is empty, will hold the value . The

 field holds the current size of the stack:

The header is included for the assert macro, which is used to test whether certain
conditions are true. A macro is part of the preprocessor that performs certain text
replacements.

Stack.cpp

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[31]

The default constructor sets the stack to empty by initializing the pointer to the first cell to
 and the size to zero:

When pushing a new value at the top of the stack, we use the new operator to dynamically
allocate the memory needed for the cell. If we run out of memory, is returned,
which is tested by the assert macro. If equals , the execution is
aborted with an error message. The exclamation mark () followed by an equals sign ()
constitutes the not-equal operator. Two plus signs () constitute the increments operator,
which means that the value is increased by one.

The increment operator actually comes in two versions prefix () and postfix
(). In the prefix case, the value is first increased and then returned, while in the
postfix case the value is increased but the original value is returned. However, in this case,
it does not matter which version we use since we are only interested in the result that the
value of is increased by one:

When returning the top value of the stack, we must first check that the stack is not empty,
since it would be illogical to return the top value of an empty stack. If the stack is empty,
the execution is aborted with an error message. The single exclamation mark () is the
logical operator. We return the top value, which is stored in the first cell in the linked
list:

We must also check that the stack is not empty when popping the top value of the stack. We
set the pointer to the first cell in the linked list to point at the next cell. However, before that,
we must store the first pointer, , in order to deallocate the memory of the
cell it points at.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[32]

We deallocate the memory with the operator:

In the same way as the increment operator above, two minus signs () constitutes the
 operator, which decreases the value by one:

The method simply returns the value of the field:

A stack is empty if the pointer to the first cell pointer equals . Informally, we say
that the pointer is null if it equals :

We test the stack by pushing, topping, and popping some values.

Main.cpp

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[33]

When printing a Boolean value, the operator does not print or , but
rather one for and zero for . In order to really print or we use the

 operator. It takes three values, separated by a question mark () and a colon ().
If the first value is the second value is returned. If the first value is the third
value is returned:

A more advanced data type the queue
A queue is a model of a traditional queue; we enter values at the rear, and inspect and
remove values at the front. It is also possible to decide on the number of values it holds and
whether it is empty.

Similar to the stack in the previous section, we implement the queue with a linked list. We
reuse the class; however, in the queue case, we need to set the next link of a cell.
Therefore, we rename to and add the new method:

Cell.h

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[34]

We implement the queue with a linked list in a manner similar to the stack. The constructor
initializes an empty queue, enters a value at the rear of the queue, removes
the value at its front, return the current size of the queue, and returns if it
is empty:

Queue.h

In the stack case, we were only interested in its top, which was stored at the beginning of
the linked list. In the queue case, we are interested in both the front and rear, which means
that we need to access both the first and last cell of the linked list. Therefore, we have the
two pointers, and , pointing at the first and last cell in
the linked list:

Queue.cpp

When the queue is created, it is empty; the pointers are null and the size is zero. Since there
are no cells in the linked list, both the cell pointers points at :

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[35]

When entering a new value at the rear of the queue, we check if the queue is empty. If it is
empty, both the pointers are set to point at the new cell. If it is not empty, the last cell next-
pointer is set to point at the new cell, and then the last cell pointer is set to be the new cell:

The first method simply returns the value of the first cell in the linked list:

The method sets the first cell to point at the second cell. However, first we must
store its address in order to deallocate its memory with the C++ standard operator:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with C++ Chapter 1

[36]

We test the queue by entering and removing a few values. We enter the values one, two,
and three, which are placed in the queue in that order. We then remove the first two values,
and enter the value four. Then the queue holds the values three and four:

Main.cpp

Summary
In this chapter, we have looked into the basics of object-oriented programming. We have
started by creating a project and executing a program for rolling a dice. We have also
created a class hierarchy, including the base class and its two subclasses
and . By defining pointers to the objects, we have performed the dynamic
binding.

Finally, we have created two data types stack and queue. A stack is a structure where we
are interested in the value at the top only. We can add values at the top, inspect the top
value, and remove the top value. A queue is a traditional queue where we enter values at
the rear while we inspect and remove values from the front.

In the next chapter, we will continue to create data types, and more advanced data types,
such as lists and sets. We will also look into to more advanced features of C++.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

22
Data Structures and Algorithms

In the previous chapter, we created classes for the and abstract datatypes. In
this chapter, we will continue with the and abstract datatypes.

Similar to the stack and queue of the previous chapter, a list is an ordered structure with a
beginning and an end. However, it is possible to add and remove values at any position in
the list. It is also possible to iterate through the list.

A set, on the other hand, is an unordered structure of values. The only thing we can say
about a set is whether a certain value is present. We cannot say that a value has any position
in relation to any other value.

In this chapter, we will look at the following topics:

We will start with a rather simple and ineffective version of the list and set
classes. We will also look into basic algorithms for searching and sorting.
Then we will continue by creating more advanced versions of the list and set
classes, and look into more advanced searching and sorting algorithms. We will
also introduce new concepts such as templates, operator overloading, exceptions,
and reference overloading.

We will also look into the searching algorithms linear search, which works on
every sequence, ordered and unordered, but is rather ineffective, and binary search, which
is more effective but only works on ordered sequences.

Finally, we will study the rather simple sorting algorithms, insert sort, select sort, and
bubble sort, as well as the more advanced and more effective merge sort and quick sort
algorithms.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[38]

The List class
The class is a more complicated abstract data type than the stack and the
queue. It is possible to add and remove values at any location in the list. It is also possible to
iterate through the list.

The Cell class
The cell of this section is an extension of the cell of the and sections. Similar to
them, it holds a value and a pointer to the next cell. However, this version also holds a
pointer to the previous cell, which makes the list of this section a double-linked list.

Note that the constructor is , which means that the cell object can be created by its
own methods only. However, there is a way to circumvent that limitation. We can define a
class or a function to be a friend of . In this way, we define as a
friend of . This means that has access to all private and protected
members of , including the constructor, and can thereby create objects.

Cell.h:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[39]

Cell.cpp:

The Iterator class
When going through a list, we need an iterator, which is initialized to the beginning of the
list and step-wise moves to its end. Similar to the preceding cell, the constructor of

 is private, but we define as a friend of too.

Iterator.h:

The third constructor is a constructor. It takes another iterator and then copies it. We
cannot just accept the iterator as a parameter. Instead, we define a reference parameter. The
ampersands (&) states that the parameter is a reference to an iterator object rather than an
iterator object. In this way, the memory address of the iterator is sent as a parameter instead
of the object itself. We also state that the object referred to is constant, so that it cannot be
altered by the constructor.

In this case, it is necessary to use a reference parameter. If we had defined a simple iterator
object as a parameter it would have caused indefinite circular initialization. However, in
other cases, we use this technique for efficiency reasons. It takes less time and requires less
memory to pass the address of the object than to copy the object itself as a parameter:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[40]

The methods returns if the iterator has not yet reached the end of the list,
and moves the iterator one step forwards, towards the end of the list, as shown in the
following example:

In the same way, the method returns if the iterator has not yet reached
the beginning of the list, and moves the iterator one step backward, to the
beginning of the list:

Iterator.cpp:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[41]

The List class
The class holds methods for finding, adding, inserting, and removing values,
as well as comparing lists. Moreover, it also holds methods for reading and writing the list,
and iterating through the list both forwards and backwards. The linked list is in fact a
double-linked list. We can follow the links of the cells in both directions: from the beginning
to the end as well as backwards from the end to the beginning.

LinkedList.h:

The constructor and the method both copies the given list:

The destructor deallocates all memory allocated for the cells in the linked list:

The methods search for the . If it finds the , it returns and
sets to the position of the :

The and methods compare this linked list to the given linked list and
return if they are equal or not equal, respectively, as shown in the following code
snippet:

What if we want to add a value or another list to an existing list? The methods adds a
value or another list at the end of this list, and inserts a value or a list at the position
given by the iterator:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[42]

The method erases the value at the given position, and erases every value in
the list, as shown in the following example:

The method removes the values from the first iterator to the last iterator, inclusive.
The second parameter is a default parameter. It means that the method can be called with
one or two parameters. In case of one parameter, the second parameter is given the value in
the declaration, which in this case is the that represents the position
one step beyond the end of the list. This implies that when is called with one
iterator, every value from that iterator, inclusive, to the end of the list are removed. The

 pointer is in fact a special pointer that is converted to the type it points at or is
compared to. In this case, a pointer to . Informally, we can say that a point is null when
it holds the value :

The and methods return iterators located at the first and last value of the list:

The and methods read the values of the list from an input file stream and write
its values to an output file stream. A file stream is used to communicate with a file. Note
that the and objects, which we have used in earlier sections, are in fact input and
output stream objects:

Similar to the queue of the earlier section, the list holds pointers to the first and last cell in
the linked list:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[43]

LinkedList.cpp:

The constructor simply calls to copy the values of the parameter:

The method copies the given list into its own linked list:

The destructor simply calls clear to deallocate all the memory allocated by the cells of the
linked list:

The method iterates through the linked list and deallocates every cell:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[44]

For each cell in the linked list, we must first save its address in , move
forward in the linked list, and deallocate the cell. If we would simply call on

, the following call to would not work since, in that case, we would
call a method of a deallocated object:

When the list has become empty, both cell pointers are null and the size is zero:

The method iterates through the linked list, sets , and returns
when it has found the value. If it does not find the value, is returned and

 remains unaffected. In order for this to work, must be a
reference to an object rather than an object itself. A pointer to an

 object would also work:

If two lists have different sizes, they are not equal. Likewise, if they have the same size, but
not the same values, they are not equal:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[45]

However, if the list holds the same size and the same values, they are equal:

When we have to decide whether two lists are not equal, we simply call . The
exclamation mark () is the logical operator, as shown in the following example:

When adding a value to the list, we dynamically allocate a cell:

If the first cell pointer is null, we set it to point at the new cell since the list is empty:

However, if the first cell pointer is not null, the list is not empty, and we set the next pointer
of the last cell pointer to point at the new cell:

Either way, we set the last cell pointer to point at the new cell and increase the size of the
list:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[46]

Adding a list to an existing list
When adding a whole list to the list, we act the same way for each value in the list as when
we added a single value in previously. We dynamically allocate a new cell, if the first
cell pointer is null, we assign it to point at the new cell. If it is not null, we assign the last cell
pointer's next-pointer to point at the new cell. Either way, we set the last cell pointer to
point at a new cell:

The statement repeats for as long as its condition is true. In this case, for as long as
we have not reached the end of the list:

If is null, our linked list is still empty and points to the first cell
of a new linked list. In that case, we let point at the new cell:

If is not null, our list is not empty and shall not be modified.
Instead, we set the next pointer of to point at the new cell:

Either way, the last cell pointer is set to the new cell pointer:

Finally, the list cell pointer is set to point at its next cell pointer. Eventually, the list cell
pointer will be null and the statement is finished:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[47]

When inserting a value at the position given by the iterator, we set its previous pointer to
point at the cell before the position in the list (which is null if the position is the first one in
the list). We then check whether the first cell pointer is null in the same way as in the
preceding methods:

When inserting a list, we begin by checking whether the position represents the null
pointer. In that case, the position is beyond the end of our list, and we just call instead:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[48]

We check whether the list to be inserted is empty by comparing
 with . Since points at the first value

of the list, the list is empty if it is null:

Erasing a value from the list
The method simply calls with the given position as both its start and end
position:

When erasing a value from the list, we iterate through the list and deallocate the cell for
each value to be removed:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[49]

When we have to erase the cells, we have three cases to consider. If the last cell before the
first removed cell is not null, meaning that there is a part of the list remaining before the
remove position, we set its next pointer to point at the first cell after the removed position.
If the last cell before the first removed cell is null, we set the first cell pointer to point at that
cell:

We do the same thing with the position of the list remaining after the last cell to be
removed. If there is a remaining part of the list left, we set its first cell's previous pointer to
the last cell of the list remaining before the removed part:

When reading a list, we first read its . Then we read the values:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[50]

When writing a list, we write the values separated by commas and enclosed by brackets (" "
and " "):

We test the list by adding some values and iterate through them, forwards and backward.

Main.cpp:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[51]

When executing the code, the output is displayed in a command window:

The Set class
A set is an unordered structure without duplicates. The class is a subclass of

. Note that the inheritance is private, causing all public and protected members
of to be private in .

Set.h:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[52]

The method returns if the set has the values. Note that we do not care about
any order in the set:

The method returns if the given value, or each value in the given set,
respectively, is present:

The method inserts the given value or each value of the given set. It only inserts
values not already present in the set, since a set holds no duplicates:

The method removes the given value or each value of the given set, if present:

The , , and methods simply call their counterparts in . Since
there is no order in a set it would be meaningless to also override in :

The , , and free-standing functions are friends to
, which means that they have access to all private and protected members of .

We cannot name the method since it is a keyword in
C++.

Note that when a method in a class is marked as a , it is in fact not a method of that
class, but rather a function:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[53]

The and methods read and write the set in the same way as their counterparts
in :

The , , and functions that were friends of are
declared outside the class definition:

Set.cpp:

The constructors call their counterparts in . The default constructor (without
parameters) calls, in fact, the default constructor of implicitly:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[54]

The destructor calls implicitly its counterparts in , which deallocates the
memory associated with the values of the set. In this case, we could have omitted the
destructor, and the destructor of would still be called using the following
code:

The method simply clears the set and adds the given set:

The sets are equal if they have the same , and if every value of one set is present in the
other set. In that case, every value of the other set must also be present in the first set:

The method uses the iterator of to iterate through the set. It returns
 if it finds the value:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[55]

The second method iterates through the given set and returns if any of its
values are not present in the set. It returns if all its values are present in the set:

The first method adds the value if it is not already present in the set:

The second method iterates through the given set and inserts every value by calling
the first insert method. In this way, each value not already present in the set is inserted:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[56]

The first method removes the value and returns if it is present in the set. If it
is not present, it returns :

The second method iterates through the given set and removes each of its values. It
returns if at least one value is removed:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[57]

Union, intersection, and difference operations
The function creates a resulting set initialized with the left-hand set and then
adds the right-hand set:

The method is a little bit more complicated than the or
methods. The intersection of two sets, A and B, can be defined as the difference between
their union and their differences:

A B=(A B)-((A-B)-(B-A))

The method creates a result set with the left-hand set and then removes the
right-hand set:

The method is similar to its counterpart in . However, is called
instead of . In this way, no duplicates are inserted in the set:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[58]

The method is also similar to its counterpart in . However, the set is
enclosed in brackets (" " and " ") instead of squares (" " and " "):

We test the set by letting the user input two sets and evaluate their union, intersection, and
difference.

Main.cpp:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[59]

Basic searching and sorting
In this chapter, we will also study some searching and sorting algorithms. When searching
for a value with linear search we simply go through the list from its beginning to its end.
We return the zero-based index of the value, or minus one if it was not found.

Search.h:

Search.cpp:

We use the method of the list to obtain the iterator that we use to go through the
list; returns as long as there is another value in the list and moves the
iterator one step forward in the list:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[60]

Now we study the select sort, insert sort, and bubble sort algorithms. Note that they take a
reference to the list, not the list itself, a parameter in order for the list to become changed.
Also note that the reference is not constant in these cases; if it was constant we would not be
able to sort the list.

Sort.h:

Sort.cpp:

The select sort algorithm
The select sort algorithm is quite simple, we iterate through the list repeatedly until it
becomes empty. For each iteration, we found the smallest value, which we remove from the
list and add to the resulting list. In this way, the resulting list will eventually be filled with
the same values as the list. As the values were selected in order, the resulting list is sorted.
Finally, we assign the resulting list to the original list:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[61]

The insert sort algorithm
In the insert sort algorithm, we iterate through the list, and for each value we insert it at its
appropriate location in the resulting list. Then we assign the resulting list to the original list:

The function takes a list and a value and places the value at its correct location in
the list. It iterates through the list and places the value before the first value that it is less. If
there is no such value in the list, the value is added at the end of the list:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[62]

The bubble sort algorithm
The bubble sort algorithm compares the values pairwise and lets them change place if they
occur in the wrong order. After the first iteration, we know that the largest value is located
at the end of the list. Therefore, we do not need to iterate through the whole list the second
time, we can omit the last value. In this way, we iterate through the list at most the number
of the values in the list minus one, because when all values except the first one is at it's
correct location, the first one is also at its correct location. However, the list may be properly
sorted before that. Therefore, we check after each iteration if any pair of values has been
swapped. If they have not, the list has been properly sorted and we exit the algorithm:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[63]

The function swaps the values at the locations given by the iterators:

We test the algorithms by adding some values to a list, and then sort the list.

Main.cpp:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[64]

We use the class to go through the list and call for each value in
the list:

We also test the search algorithm for values not present in the list, their indexes will be
minus one:

We sort the list by the bubble sort, select sort, and insert sort algorithms:

One way to classify searching and sorting algorithms is to use the big O notation.
Informally speaking, the notation focuses on the worst-case scenario. In the insert sort case,
we iterate through the list once for each value, and for each value, we may have to iterate
through the whole list to find its correct location. Likewise, in the select sort case we iterate
through the list once for each value, and for each value, we may need to iterate through the
whole list.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[65]

Finally, in the bubble sort case, we iterate through the list once for each value and we may
have to iterate through the whole list for each value. In all three cases, we may have to
perform n2 operations on a list of n values. Therefore, the insert, select, and bubble sort
algorithms have the big-O n2, or O (n2) with regards to their time efficiency. However, when
it comes to their space efficiency, bubble sort is better since it operates on the same list,
while insert and select sort demand an extra list for the resulting sorted list.

The extended List class
In this section, we will revisit the class. However, we will expand it in several
ways:

The class had a set of and methods. Instead, we will replace each
pair with a pair of overloaded reference methods.
The previous list could only store values of the type . Now we will define
the list to be , which allows it to store values of arbitrary types.
We will replace some of the methods with overloaded operators.

 and were free-standing classes. Now we will let them be inner
classes, defined inside .

List.h:

In the classes of the earlier sections, the list stored values of the type . However, in
these classes, instead of we use the template type , which is a generic type that can
be instantiated by any arbitrary type. The class of this section is ,
with the generic type :

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[66]

The method is overloaded in two versions. The first version is constant and returns a
constant value. The other version is not constant and returns a reference to the value. In this
way, it is possible to assign values to the cell's value, as shown in the following example:

The construct means that the methods return a reference to a pointer to a
object. That reference can then be used to assign a new value to the pointer:

Instead of and , we overload the equal and not-equal operators:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[67]

We also replace the increment and decrement methods with the increment () and
decrement () operators. They come in two versions each prefix and postfix. The version
without parameters is the prefix version (and) and the version with an integer
parameter is the postfix version (and). Note that we actually do not pass an integer
parameter to the operator. The parameter is included only to distinguish between the two
versions, and is ignored by the compiler:

We replace the and methods with two overloaded dereference
operators (). They work in a way similar to the methods in the preceding
class. The first version is constant and returns a value, while the second version is not
constant and returns a reference to the value:

The ReverseIterator class
In order to iterate from the end to the beginning, as well as from the beginning to the end,
we add . It is nearly identical to used previously; the only
difference is that the increment and decrement operators move in opposite directions:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[68]

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[69]

In the earlier section, there was only the and methods, which return an iterator.
In this section, the and methods are used for forward iteration, while
and (stands for reverse begin and reverse end) are used for backward iteration:

We replace the and methods with overloaded input and output stream
operators. Since they are functions rather than methods, they need their own template
markings:

Note that when we implement the methods of a class, we do so in the header file.
Consequently, we do not need an implementation file when implementing a
class.

Similar to the class definitions, the method definitions must be preceded by the
keyword. Note that the class name is followed by the type marker :

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[70]

Note that when we implement a method of an inner class, we need to include both the
names of the outer class () and inner class () in the implementation:

Since is a class, it is not known to the compiler that its inner class
 is, in fact, a class. As far as the compiler knows, the iterator could be a type, a

value, or a class. Therefore, we need to inform the compiler by using the
 keyword:

The following operator versions are implemented in the same way as its method
counterparts in the previous version of . That is, the method has been
replaced by the equation operator (), and the method has been
replaced by the not-equal operator ():

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[71]

The increase operator has been replaced with both the prefix and postfix version
of . The difference between them is that the prefix version does not take any
parameters, while the postfix version takes a single integer value as parameter. Note that
the integer value is not used by the operator. Its value is undefined (however, it is usually
set to zero) and is always ignored. It is present only to distinguish between the prefix and
postfix cases:

The operator also comes in a prefix and a postfix version, and works in a way
similar to the operator:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[72]

The dereference operator also comes in two versions. The first version is constant and
returns a value. The second version is not constant and returns a reference to the value,
instead of the value itself. In this way, the first version can be called on a constant object, in
which case we are not allowed to change its value. The second version can be called on a
non-constant object only, we can change the value by assigning a new value to the value
returned by the method:

There are three constructors of the class. The first constructor is a
default constructor, the second constructor is initialized with a pointer, and the third
constructor is a constructor. It takes a reference to another object,
and initializes the pointer:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[73]

The equality operator initializes the pointer with the pointer of the given
 object reference:

Two reverse iterators are equal if their cell pointers point at the same cell:

The difference between the increase and decrease operators of the and
 classes is that in the increment operators calls next and the

 operators call in . In it is the other way
around: the increment operators call and the decrement operators call . As
the names implies: iterates forward, while iterates
backwards:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[74]

The default constructor of initializes the list to become empty, with the pointer
to the first and last cell set to null:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[75]

The assignment operator copies the values of the given list, in the same way as the non-
template method:

Note that we use the reference version of the method, which allows us to assign
values to the method call. Since returns a reference to the next pointer of the cell, we
can assign value of to that pointer:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[76]

The destructor simply calls the method, which goes through the linked list and
deletes every cell:

When the cells are deleted, the pointer to the first and last cell is set to null:

Two lists are equal if they have the same size, and if their cells hold the same values:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[77]

The method adds a cell with a new value at the end of the list, as shown in the
following example:

The second version of adds the given list at the end of the list, as shown in the
following example:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[78]

The method adds a value or a list at the given position:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[79]

The and methods remove a value of a sub-list from the list:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[80]

The input stream operator first reads the of the list, and then the values themselves:

The output stream operator writes the list on the given stream, surrounded by brackets and
with the values separated by commas:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[81]

We test the class by letting the user input a list that we iterate automatically
with the statement, as well as manually with forward and backward iterators.

Main.cpp:

Note that it is possible to use the statement directly on the list since the extended list
holds the method, which returns an iterator with the prefix increment () and
dereference () operators:

We can also iterate through the list manually with the and methods of the
 class:

With the and methods and the class we iterate from its
end to its beginning. Note that we still use increment () rather than decrement (), even
though we iterate through the list backwards:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[82]

The extended Set class
The class of this section has been extended in three ways compared to the version of the
earlier section:

The set is stored as an ordered list, which makes some of the methods more
efficient
The class is a template; it may store values of arbitrary types as long as those
types support ordering
The class has operator overloading, which (hopefully) makes it easier and more
intuitive to use

In C++ it is possible to define our own types with the keyword. We define
 of to be the same iterator as in . In the earlier section,

was a free-standing class that we could reuse when working with sets. However, in this
section, is an inner class. Otherwise, could not be accessed when
handling sets since inherits privately. Remember that when we inherit
privately, all methods and fields of the base class become private in the subclass.

Set.h:

We replace the and methods with overloaded operators for comparison.
In this way, it is possible to compare two sets in the same way as when comparing, for
instance, two integers:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[83]

We replace the , , and methods with the operators
for addition, multiplication, and subtraction:

The function is called by the set methods to perform efficient merging of sets. Since it
is a function rather than a method, it must have its own template marking:

Similar to the preceding class, we replace the and methods with
overloaded stream operators. Since they also are functions rather than methods, they also
need their own template markings:

The constructors look pretty much the same, compared to the non-template versions:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[84]

When testing whether two sets are equal, we can just simply call the equality operator in
 since the sets of this section are ordered:

Similar to the earlier classes, we test whether two sets are not equal by calling .
However, in this class, we use the equality operator explicitly by comparing the own object
(by using the pointer) with the given set:

Union, intersection, and difference
We replace the , , and methods with the addition,
subtraction, and multiplication operators. They all call , with the sets and different
values for the , , and parameters. In case of union, all three of
them are , which means that values present in the left-hand set only, or in both sets, or
in the right-hand set only shall be included in the union set:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[85]

In case of intersection, only is , which means that the values present in both
sets, but not values present in only one of the sets, shall be included in the intersection set.
Take a look at the following example:

In case of difference, only is true, which means that only the values present in the
left-hand set, but not in both the sets or the right-hand set only, shall be included in the
difference set:

The method takes two sets and the three Boolean values , , and
. If is true, values present in the left-hand set only are added to the

resulting set, if is true, values present in both sets are added, and if is
, values present in the right-hand set only are added:

The statement keeps iterating while there are values left in both the left-hand set and
right-hand set:

If the left-hand value is smaller, it is added to the resulting set if is . Then the
iterator for the left-hand set is incremented:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[86]

If the right-hand value is smaller, it is added to the resulting set if is . Then
the iterator for the right-hand set is incremented:

Finally, if the values are equal, one of them (but not both, since there are no duplicates in a
set) is added and both iterators are incremented:

If is , all remaining values of the left-hand set, if any, are added to the
resulting set:

If is , all remaining values of the right-hand set, if any, are added to the
resulting set:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[87]

Finally, the resulting set is returned using the following:

When performing the union operator to this set and another set, we simply call the addition
operator. Note that we return our own object by using the pointer:

In the same way, we call the multiplication and subtraction operators when performing
intersection and difference on this set and another set. Look at the following example:

When reading a set, the number of values of the set is input, and then the values themselves
are input. This function is very similar to its counterpart in the class. However,
in order to avoid duplicates, we call the compound addition operator () instead of the

 method:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[88]

When writing a set we enclose the value in brackets (" " and " ") instead of squares (" " and
" "), as in the list case:

We test the set by letting the user input two sets, which we iterate manually with iterators
and automatically with the statement. We also evaluate the union, intersection, and
difference between the sets.

Main.cpp:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[89]

When we execute the program, the output is displayed in a command window:

Advanced searching and sorting
We looked at linear search in the earlier section. In this section, we will look at binary
search. The binary search algorithm looks for the value in the middle of the list, and then
performs the search with half of the list. In this way, it has O(log2n) since it splits the list in
half in each iteration.

Search.h:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[90]

The merge sort algorithm
The merge sort algorithm divides the list into two equal sublists, sorts the sublists by
recursive calls (a recursive call occurs when a method or function calls itself), and then
merges the sorted sublist in a way similar to the method of the extended version of
the class in the earlier section.

Sort.h:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[91]

The method of this section is reusing the idea of in the extended class
earlier in this chapter:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[92]

The quick sort algorithm
The quick sort algorithm selects the first value (called the pivot value) and then places all
values less than the pivot value in the smaller sublist, and all values greater or equal to the
pivot value in the larger sublist. Then the two lists are sorted by recursive calls and then just
concatenated together. Let's look at the following example:

The merge sort algorithm is balanced in a way that it always divides the list into two equal
parts and sorts them. The algorithm must iterate through the list once to divide them into
two sublists and sorts the sublists. Given a list of values, it must iterate through its n values
and divide the list log2n times. Therefore, merge sort O(n log2n).

The quick sort algorithm, on the other hand, is, in the worst case (if the list is already
sorted), no better than insert, select, or bubble sort: O(n2). However, it is fast in the average
case.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Structures and Algorithms Chapter 2

[93]

Summary
In this chapter, we have created classes for the abstract datatypes list and set. A list is an
ordered structure with a beginning and an end, while a set is an unordered structure.

We started off with rather simple versions where the list had separate classes for the cell
and iterator. Then we created a more advanced version where we used templates and
operator overloading. We also placed the cell and iterator classes inside the list class.
Finally, we introduced overloaded reference methods.

In the same way, we started by creating a rather simple and ineffective version of the set
class. Then we created a more advanced version with templates and operator overloading,
where we stored the values in order to be able to perform the union, intersection, and
difference operations in a more effective way.

Moreover, we have implemented the linear and binary search algorithms. The linear search
works on every unordered sequence, but it is rather ineffective. The binary search is more
effective, but it only works on ordered sequences.

Finally, we looked into sorting algorithms. We started with the simple but rather ineffective
insert, select, and bubble sort algorithms. Then we continued with the more advanced and
effective merge and quick sort algorithms.

In the next chapter, we will start to build a library management system.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

33
Building a Library Management

System
In this chapter, we study a system for the management of a library. We continue to develop
C++ classes, as in the previous chapters. However, in this chapter, we develop a more real-
world system. The library system of this chapter can be used by a real library.

The library is made up of sets of books and customers. The books keep track of which
customers have borrowed or reserved them. The customers keep track of which books they
have borrowed and reserved.

The main idea is that the library holds a set of books and a set of customers. Each book is
marked as borrowed or unborrowed. If it is borrowed, the identity number of the customer
that borrowed the book is stored. Moreover, a book can also be reserved by one or several
customers. Therefore, each book also holds a list of identity numbers for the customers that
have reserved the book. It must be a list rather than a set, since the book shall be loaned to
the customers in the order that they reserved the book.

Each customer holds two sets with the identity numbers of the book they have borrowed
and reserved. In both cases, we use sets rather than lists since the order they have borrowed
or reserved the books does not matter.

In this chapter, we will cover the following topics:

Working with classes for books and customers that constitute a small database
with integer numbers as keys.
Working with standard input and output streams, where we write information
about the books and customers, and prompt the user for input.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[95]

Working with file handling and streams. The books and customers are written
and read with standard C++ file streams.
Finally, we work with the generic classes and from the C++ standard
library.

The Book class
We have three classes: , , and :

The class keeps track of a book. Each book has an author and a title, and a
unique identity number.
The class keeps track of a customer. Each customer has a name and an
address, and a unique identity number.
The class keeps track of the library operations, such as adding and
removing books and customers, borrowing, returning, and reserving books, as
well as listing books and customers.
The function simply creates an object of the class.

Moreover, each book holds information on whether it is borrowed at the moment. If it is
borrowed, the identity number of the customer who has borrowed the book is also stored.
Each book also holds a list of reservations. In the same way, each customer holds sets of
books currently borrowed and reserved.

The class holds two constructors. The first constructor is a default constructor and is
used when reading books from a file. The second constructor is used when adding a new
book to the library. It takes the name of the author and the title of the book as parameters.

Book.h

The and methods simply return the author and title of the book:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[96]

The books of the library can be read from and written to a file:

A book can be borrowed, reserved, or returned. A reservation can also be removed. Note
that when a book is borrowed or reserved, we need to provide the identity number of the
customer. However, that is not necessary when returning a book, since the class keeps
track of the customer that has currently borrowed the book:

When the book is borrowed, the customer's identity number is stored, which is returned by
:

The method returns true if the book is borrowed at the moment. In that case,
 returns the identity number of the customer who has borrowed the book:

A book can be reserved by a list of customers, and returns that list:

The field is static, which means that it is common to all objects of the class:

The output stream operator writes the information of the book:

The field is true when the book is borrowed. The identity of the book and
potential borrower are stored in and :

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[97]

The name of the author and the title of the book are stored in and :

More than one customer can reserve a book. When they do, their identities are stored in
. It is a list rather than a set because the reservations are stored in

order. When a book is returned, the next customer, in reservation order, borrows the book:

In this chapter, we use the generic , , and classes from the C++ standard
library. Their specifications are stored in the , , and header files. The and

 classes hold a set and a list similar to our set and list classes in the previous chapter. A
map is a structure where each value is identified by a unique key in order to provide fast
access.

Book.cpp

Since is static, we initialize it with the double colon () notation. Every static
field needs to be initialized outside the class definition:

The default constructor does nothing. It is used when reading from a file. Nevertheless, we
still must have a default constructor to create objects of the class:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[98]

When a new book is created, it is assigned a unique identity number. The identity number
is stored in , which is increased for each new object:

Writing the book
A book is written to a stream in a similar manner. However, instead of we use .
They work in a similar manner:

When reading a string we use instead of the stream operator, since the stream
operator reads one word only, while reads several words. When writing to a
stream, however, we can use the stream operator. It does not matter whether the name and
title are made up of one or several words:

Similar to the reading case here, we first write the number of reservations in the list. Then
we write the reservation identities themselves:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[99]

Reading the book
When reading any kind of value (except strings) from a file, we use the method, which
reads a fixed number of bytes. The operator gives us the size, in bytes, of the

 field. The operator can also be used to find the size of a type. For
instance, gives us the size in bytes of a value of the type . The type must
be enclosed in parentheses:

When reading string values from a file, we use the C++ standard function to read
the name of the author and the title of the book. It would not work to use the input stream
operator if the name is made up of more than one word. If the author or title is made up of
more than one word, only the first word would be read. The remaining words would not be
read:

Note that we use the method to read the value of the field, too, even
though it holds the type rather than :

When reading the reservation list, we first read the number of reservations in the list. Then
we read the reservation identity numbers themselves:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[100]

Borrowing and reserving the book
When the book is borrowed, becomes and is set to the
identity number of the customer that borrowed the book:

It is a little bit different when the book is reserved. While a book can be borrowed by one
customer only, it can be reserved by more than one customer. The identity number of the
customer is added to . The size of the list is returned for the caller to
know their position in the reservation list:

When the book is returned, we just set to false. We do not need to set
 to anything specific. It is not relevant as long as the book is not borrowed:

A customer can remove themselves from the reservation list. In that case, we call on
:

Displaying the book
The output stream operator writes the title and author of the book. If the book is borrowed,
the customer's name is written, and if the reservation list is full, the reservation customers'
names are written:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[101]

We use the double-colon notation () when accessing a static field, such as
 in :

The Customer class
The class keeps track of a customer. It holds sets of the books the customer
currently has borrowed and reserved.

Customer.h

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[102]

The method returns true if the customer has at least one book borrowed at
the moment. In the class in the next section, it is not possible to remove a customer
who currently has borrowed books:

In the same way, as in the class, which was used previously, we use the static field
 to count the identity number of the customers. We also use the output

stream operator to write information about the customer:

Each customer has a name, address, and unique identity number. The sets and
 hold the identity numbers of the books currently borrowed and

reserved by the customer. Note that we use sets instead of lists, since the order of the books
borrowed and reserved does not matter:

Customer.cpp

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[103]

Since is a static field, it needs to be defined outside the class:

The default constructor is used when loading objects from a file only. Therefore, there is no
need to initialize the fields:

The second constructor is used when creating new book objects. We use the
 field to initialize the identity number of the customer; we also initialize

their and :

Reading the customer from a file
The method reads the information on a customer from the file stream:

In the same way, as in the method of the class, we have to use the
function instead of the input stream operator, since the input stream operator would read
one word only:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[104]

Writing the customer to a file
The method writes information on the customer to the stream in the same way as in
the class previously:

When writing a set, we first write the size of the set, and then the individual values of the
set:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[105]

Borrowing and reserving a book
When a customer borrows a book, it is inserted into the loan set of the customer:

In the same way, when a customer reserves a book, it is inserted into the reservation set of
the customer:

When a customer returns or unreserves a book, it is removed from the loan set or
reservation set:

Displaying the customer
The output stream operator writes the name and address of the customer. If the customer
has borrowed or reserved books, they are written too:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[106]

The Library class
Finally, the class handles the library itself. It performs a set of tasks regarding
borrowing and returning books.

Library.h

The method looks up a book by the author and title. It returns true if the book
is found. If it is found, its information (an object of the class) is copied into the object
pointed at by :

In the same way, looks up a customer by the name and address. If the
customer is found, true is returned, and the information is copied into the object pointed at
by :

The application of this chapter revolves around the following methods. They perform the
tasks of the library system. Each of the methods will prompt the user for input and then
perform a task, such as borrowing or returning a book.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[107]

The following methods perform one task each, which are looking up the information about
a book or a customer, adding or deleting a book, listing the books, adding and deleting
books from the library, and borrowing, reserving, and returning books:

The and methods are called at the beginning and the end of the execution:

There are two maps holding the books and the customers of the library. As mentioned
previously, a map is a structure where each value is identified by a unique key in order to
provide fast access. The unique identity numbers of the books and customers are the keys:

Library.cpp

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[108]

Between executions, the library information is stored in the file on the hard
drive. Note that we use two backslashes to represent one backslash in the . The first
backslash indicates that the character is a special character, and the second backslash states
that it is a backslash:

The constructor loads the library, presents a menu, and iterates until the user quits. Before
the execution is finished, the library is saved:

Before the menu is presented, the library information (books, customers, loans, and
reservations) is loaded from the file:

The while statement continues as long as is true. It remains false until the user chooses
the Quit option from the menu:

The user inputs an integer value from the console input stream (), which is stored in
:

We use a statement to perform the requested task:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[109]

Before the program is finished, the library information is saved:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[110]

Looking up books and customers
The method iterates through the book map. It returns true if a book with the
author and title exists. If the book exists, its information is copied to the object pointed at by
the parameter and true is returned, as long as the pointer is not null. If the book
does not exist, false is returned, and no information is copied into the object:

Note that may be . In that case, only true is returned, and no information
is written to the object pointed at by :

In the same way, iterates through the customer map and returns true, as
well as copies the customer information to a object if a customer with the name
exists:

Also, in this case, may be . In that case, only true is returned. When
adding a new customer, we would like to know if there already is a customer with the same
name and address:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[111]

Adding a book
The method prompts the user for the name and title of the new book:

If a book with the and already exists, an error message is displayed:

If the book does not already exist, we create a new object that we add to the book
map:

Deleting a book
The method prompts the user for the author and title of the book, and deletes
it if it exists:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[112]

If the book does not exist, an error message is displayed:

When a book is being deleted, we iterate through all customers and, for each customer,
return, and unreserve the book. We do that for every book just in case the book has been
borrowed or reserved by customers. In the next chapter, we will work with pointers, which
allow us to return and unreserve books in a more effective manner.

Note that when we iterate through a map and obtain each object, we need to put
it back in the map after we have modified the values of its fields:

Finally, when we have made sure the book exists, and when we have returned and
unreserved it, we remove it from the book map:

Listing the books
The method is quite simple. First, we check if the book map is empty. If it is
empty, we write If the book map is not empty, we iterate through it, and for
each book, we write its information to the console output stream ():

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[113]

Adding a customer
The method prompts the user for the and of the new
customer:

If a customer with the same and already exists, an error message is
displayed:

Finally, we create a new object that we add to the customer map:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[114]

Deleting a customer
The method deletes the customer if they exist:

If the customer has borrowed at least one book, it must be returned before the customer can
be removed:

However, if the customer has reserved books, we just unreserve them before removing the
customer:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[115]

Listing the customers
The method works in a way similar to . If there are no
customers, we write If there are customers, we write them to the
console output stream ():

Borrowing a book
The method prompts the user for the and of the book:

If a book with the and does not exist, an error message is displayed:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[116]

Also, if the is already borrowed, an error message is displayed:

Then we prompt the user for the customer's and :

If there is no with the and , an error message is displayed:

However, if the book exists and is not already borrowed, and the customer exists, we add
the book to the loan set of the customer and mark the book as to be borrowed by the
customer:

Note that we have to put the and objects back into their maps after we have
altered them. In the next chapter, we will work with a more direct approach to pointers:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[117]

Reserving a book
The method works in the same way as . It prompts the user for
the and of the book:

Similar to the case, we check that the book with the and exists:

However, one difference compared to is that the book must have been
borrowed in order to be reserved. If it has not been borrowed, there is no point reserving it.
In that case, the user should borrow the book instead:

If the book exists and has not been borrowed, we prompt the user for the and
 of the customer:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[118]

If the customer does not exist, an error message is displayed:

Moreover, if a book has already been borrowed by the customer, we display an error
message:

If the book exists and has been borrowed, but not by the customer, we add the customer to
the reservation list for the book and the book to the reservation set of the customer:

Also, in this case, we have to put the and objects back into their maps:

Finally, we write the position of the customer in the reservation list:

Returning a Book
The method prompts the user for the author and title of the book:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[119]

If the book does not exist, an error message is displayed:

If the book has not been borrowed, an error message is displayed:

Unlike the methods described previously, in this case, we do not ask for the customer.
Instead, we return the book and look up the book in the reservation list of each customer:

If the book has been reserved, we look up the first customer in the reservation list, remove
them from the reservation list, and let them borrow the book:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[120]

Saving the library information to a file
When saving the library information, we first open the file:

If the file was correctly opened, first we write the number of books, and then we write the
information for each book by calling on the objects:

In the same way, we write the number of customers, and then the information of each
customer, by calling :

Loading the library information from a file
When loading the library information from a file, we use the same method we would for

. We start by opening the file:

We read the number of books and then the information of each book:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[121]

For each book, we create a new object, read its information by calling , and add it
to the book map. We also calculate the new value of the static field by assigning
it the maximum value of itself and the identity number of the book:

In the same way, we read the number of customers and then the information of each
customer by calling :

For each customer, we create a object, read its information from the file, add it to
the customer map, and calculate a new value for the static field:

The main function
Finally, we write the function, which executes the library. It is quite easy; the only
thing to do is to instantiate an object of the class. Then the constructor displays the
main menu:

Main.cpp

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Library Management System Chapter 3

[122]

Summary
In this chapter, we built a library management system made up of the classes ,

, and .

The class holds information about a book. Each object holds a unique identity
number. It also keeps track of the borrower (if the book is borrowed) and a list of
reservations. In the same way, the class holds information about a customer.
Similar to the book, each customer holds a unique identity number. Each object
also holds a set of borrowed and reserved books. Finally, the class provides a set
of services, such as adding and removing books and customers, borrowing, returning, and
reserving books, as well as displaying lists of books and customers.

In this chapter, each book and customer have a unique identity number. In the next chapter,
we will look into to the library system again. However, we will omit the identity numbers
and work with pointers instead.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

44
Library Management System

with Pointers
In this chapter, we will continue to study a system for the management of a library. Similar
to , Building a Library Management System, we have three classes ,

, and . However, there is one large difference: we do not work with
identity numbers. Instead, we work with pointers; each object holds a pointer to the
customer (an object of the class) that has borrowed the book as well as a list of
pointers to the customers that have reserved the book. In the same way, each customer
holds sets of pointers for the books (objects of the class) they have borrowed and
reserved.

However, this approach gives rise to a problem; we cannot store the values of pointers
directly in the file. Instead, when we save the file we need to convert from pointers to
indexes in the book and customer lists, and when we load the file we need to transform the
indexes back to pointers. This process is called marshmallowing.

In this chapter, we are going to dive deeper into the following topics:

Just as in , Building a Library Management System, we will work with
classes for books and customers that constitute a small database. However, in this
chapter, we will work directly with pointers instead of integer numbers.
As we work with pointers instead of integer numbers, the file handling becomes
more complicated. We need to perform a process called marshmallowing.
Finally, we will work with the generic standard C++ classes, and .
However, in this chapter they hold pointers to book and customer objects instead
of objects.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[124]

The Book class
Similar to the system of the previous chapter, we have three classes: , , and

. The class keeps track of a book, where each book has an author and a title.
The class keeps track of a customer, where each customer has a name and an
address. The class keeps track of the library operations, such as borrowing,
returning, and reserving. Finally, the function simply creates an object of the
class.

The class is similar to the class of , Building a Library Management
System. The only real difference is that there are no identity numbers, only pointers.

Book.h:

We do not have a method returning the identity number of the book, since the books in this
chapter do not use identity numbers.

The method returns the address of the customer who has borrowed the book,
or if the book is not borrowed at the moment. It comes in two versions, where the
first version returns a reference to a pointer to a object. In that way, we can
assign a new value of the pointer to the customer. The second version is constant, which
means that we can call it on constant objects:

Note that we do not have a method in this chapter. We do not need it since
 returns if the book is not borrowed at the moment.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[125]

In this chapter, returns a list of customer pointers instead of integer
values. It comes in two versions, where the first version returns a reference to the list. In
that way, we can add and remove pointers from the list. The second version is constant and
returns a constant list, which means it can be called on constant objects and returns a
list that cannot be changed:

The output stream operator works in the same way as in , Building a Library
Management System:

The and fields are strings similar to , Building a Library
Management System:

However, we have omitted the field, since we do not use identity numbers in
this chapter. We have also replaced the and fields with

, which is initialized to since the book is not borrowed from the
beginning:

The field holds a list of pointers to the customers that have
reserved the book, rather than a list of integer identity numbers of , Building a
Library Management System:

Book.cpp:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[126]

The default constructor is similar to the constructor of , Building a Library
Management System:

The second constructor is also similar to the constructor of , Building a Library
Management System. However, there is no field to initialize:

Reading and writing the book
The and methods have been shortened in this chapter. They only read and
write the author and title of the book. The potential loan and reservation lists are read and
written by the and methods of the class:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[127]

Borrowing and reserving the book
When a customer reserves a book, the pointer to the object is added to the
reservation pointer list of the book. The size of the list is returned for the customer to be
notified of their position in the reservation list:

When a customer returns a book, we simply set to , which
indicates that the book is no longer borrowed:

The method simply removes the customer pointer from the
reservation list:

Displaying the book
The output stream operator writes the title and author, the customer that has borrowed the
book (if any), and the customers that have reserved the book (if any):

If the book is borrowed, we write the borrower to the stream:

If the reservation list of the book is not empty, we iterate through it, and for each
reservation, we write the customer:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[128]

The Customer class
The class of this chapter is similar to the class of , Building a
Library Management System. Again, in this case, the difference is that we work with pointers
instead of integer identity numbers.

Customer.h:

The , , , and take a pointer to a
 object as the parameter:

The and methods return sets of pointers, rather
than sets of integer identity numbers:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[129]

The output stream operator is unchanged, compared to , Building a Library
Management System:

The and fields store the name and address of the customer, just as in
, Building a Library Management System:

The and fields hold pointers to objects,
rather than integer identity numbers:

Customer.cpp:

The constructors are similar to the constructors of , Building a Library Management
System. The first constructor does nothing and is called when the customer list is loaded
from a file:

The second constructor initializes the name and address of the customer. However,
compared to the constructor of , Building a Library Management System, there is
no field to initialize:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[130]

Reading and writing the customer
Similar to the preceding case, the and methods have been shortened.
They only read and write the name and address. The loan and reservation sets are read and
written in the class, shown as follows:

Borrowing and reserving a book
The method adds the book pointer to the loan set and removes it from the
reservation set in case it was reserved:

The method simply adds the book pointer to the reservation list, and
 and remove the book pointer from the loan and reservation

sets:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[131]

Displaying the customer
The output stream operator works in the same way as in , Building a Library
Management System. It writes the name and address of the customer, as well as the sets of
borrowed and reserved books (if any):

If the loan list of the customer is not empty, we iterate through it, and for each loan, we
write the book:

In the same way, if the reservation list of the customer is not empty, we iterate through it,
and for each reservation, we write the book:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[132]

The Library class
The class is quite similar to its counterpart in , Building a Library
Management System. However, we have added lookup to transform between
pointers and list indexes when saving and loading the library information to a file:

Library.h:

The destructor deallocates all the dynamically allocated memory of this application:

The and methods return pointers to and
objects. If the book or customer does not exist, is returned:

The and methods take a pointer, search the
book and customer lists after the object pointed at, and return its index in the lists:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[133]

The and methods take an index and return a pointer
to the object at the position in the book and customer lists:

The and methods save and load the library information from a file. However,
they are more complicated than their counterparts in , Building a Library
Management System:

The and fields hold pointers to and
objects, rather than the objects themselves, as in , Building a Library Management
System:

Library.cpp:

The constructor is identical to the constructor of , Building a Library Management
System:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[134]

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[135]

Looking up books and customers
The method of this chapter searches for the object with the author and
title, in a way similar to , Building a Library Management System. However, if it
finds a object that matches the author and title, it does not copy the information to a
given object. Instead, it simply returns a pointer to the object. If it does not find the
object, is returned:

In the same way, tries to find a object that matches the name
and address. If it finds the object, its pointer is returned. If it does not find it, is
returned:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[136]

Adding a book
The method prompts the user for the author and the title:

When checking if the book already exists, we call . If the book exists, a pointer
to the object is returned. If the book does not exist, is returned. Therefore, we
test whether the return value does not equal . If it does not equal , the
book already exists and an error message is displayed:

When adding the book, we dynamically create a new object with the operator. We
use the standard C++ macro to check that the book pointer is not null. If it is null,
the execution will be aborted with an error message:

Deleting a book
The method deletes a book from the library by prompting the user about the
author and title of the book. If the book exists, we return, unreserve, and delete it:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[137]

We obtain a pointer to the object by calling :

If the pointer is , the book does not exist and an error message is displayed:

We check whether the book has been borrowed by looking up the borrower:

If the pointer returned by is not , we return the book by calling
 of the borrower. In that way, the book is no longer registered as borrowed by

the customer:

Moreover, we need to check whether the book has been reserved by any other customer.
We do so by obtaining the reservation list of the book and, for every customer in the list, we
unreserve the book:

Note that we do not check whether the book has actually been reserved by the customer, we
simply unreserve the book. Also note that we do not need to put back any object to the list,
since we work with pointers to objects and do not copy objects:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[138]

When removing the book, we remove the book pointer from the book pointer list, and then
deallocate the object. It may seem strange that we first display the message and then
delete the book pointer. However, it has to be in that order. After we have deleted the
object, we can do nothing with it. We cannot delete the object and then write it, it would
cause memory errors:

Listing the books
When listing the books, we first check whether the list is empty. If it is empty, we simply
write :

However, if the list is not empty, we iterate through the book pointer list and, for each book
pointer, dereference the pointer and write the information:

Adding a customer
The method prompts the user for the name and address of the customer:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[139]

If a customer with the name and address already exists, an error message is displayed:

When adding the customer, we dynamically create a new object that we add to
the customer object pointer list:

Deleting a customer
When deleting a customer, we look them up and display an error message if they do not
exist:

If the customer with the given name and address does not exist, an error message is
displayed. Consider the following code:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[140]

If the customer has borrowed at least one book, they cannot be deleted, and an error
message is displayed, which is shown as follows:

However, if the customer has not borrowed any books, the customer is first removed from
the reservation list of every book in the library, shown in the following code:

Then the customer is removed from the customer list, and the object is
deallocated by the operator. Again, note that we first must write the customer
information, and then delete its object. The other way around would not have worked since
we cannot inspect a deleted object. That would have caused memory errors:

Listing the customers
When listing the customer, we go through the customer list and, for each customer,
dereference the object pointer and write the information of the object:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[141]

Borrowing a book
When borrowing a book, we start by prompting the user for the author and title, which is
shown in the following code snippet:

We look up the book and if the book does not exist, an error message is displayed, which is
shown in the following code:

If the book has already been borrowed by another customer, it cannot be borrowed again:

We prompt the user for the name and address of the customer:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[142]

If there is no customer with the given name and address, an error message is displayed:

Finally, we add the book to the customer's loan set and we mark the customer as the
borrower of the book:

Reserving a book
The reservation process is similar to the preceding borrowing process. We prompt the user
for the author and title of the book, as well as the name and address of the customer, which
is shown as follows:

If the book does not exist, an error message is displayed:

If the book has not been borrowed, it is not possible to reserve it. Instead, we encourage the
user to borrow the book:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[143]

We prompt the user for the name and address of the customer:

If the customer does not exist, an error message is displayed:

If the customer has already borrowed the book, they cannot also reserve the book:

Finally, we add the customer to the reservation list of the book and we add the book to the
reservation set of the customer. Note that there is a list of reservation customers for the
book, while there is a set of reserved books for the customer. The reason for this is that
when a book is returned, the first customer in the reservation list borrows the book. There
are no such restrictions when it comes to a set of reservations for a customer:

We notify the customer of its position on the reservation list:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[144]

Returning a book
When returning a book, we prompt the user for its author and title. However, we do not ask
for the customer who has borrowed the book. That information is already stored in the

 object:

If the book with the given author and title does not exist, an error message is displayed:

If the customer with the given name and address does not exist, an error message is
displayed:

When we have returned the book, we need to find out whether any customer has reserved
it:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[145]

If there is at least one customer in the reservation list of the book, we obtain that customer,
remove them from the reservation list of the book, mark the customer as the borrower of the
book, and add the book to the loan set of the customer:

Looking up books and customers
When saving and loading the library information from a file, we need to transform between
pointers to and objects and indexes in the book and customer lists. The

 method takes a pointer to a object and returns its index in the book list:

If we reach this point, the execution is aborted with an error message by the macro.
However, we should not reach this point, since the pointer should be in the book
pointer list:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[146]

The method performs the opposite task. It finds the object pointer at
the position given by in the book pointer list. The macro aborts the
execution with an error message if the index is outside the scope of the list. However, that
should not happen since all indexes shall be within the scope:

The method gives the index of the pointer in the
customer pointer list, in the same way as shown in the preceding
method:

The method looks up the index of the pointer in the
customer pointer list in the same way as shown in the preceding method:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[147]

Marshmallowing
The and methods of the class of this chapter are a bit more complicated
than their counterparts in , Building a Library Management System. The reason for
this is that we cannot save pointers directly, since a pointer holds a memory address that
can be changed between executions. Instead, we need to save their indexes to the file. The
process of transforming pointers to indexes and indexes to pointers is called
marshmallowing. When saving the library, we divide the saving process into several steps:

Saving the book list: At this point, we save the author and title only.
Saving the customer list: At this point, we save the name and address only.
For each book: Save the borrower (if the book is borrowed) and the (possibly
empty) reservation list. We save the customer list indexes, rather than the
pointers to the customers.
For each customer, we save the loan and reservation sets. We save the book list
indexes, rather than the pointers to the books.

Saving the library information to a file
The method opens the file and, if it was successfully opened, reads the books and
customers of the library:

Writing the book objects
We save the book objects. We only save the author and title of the books by calling
for each object. We do not save the potential borrower and reservation list at this
point.

We start by writing the number of books in the list to the file:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[148]

Then we write the information of each book to the file by calling on each object
pointer:

Writing the customer objects
We save the customer objects. Similar to the preceding book case, we only save the name
and address of the customers by calling for each object. We do not save
sets of borrowed and reserved books at this point.

In the same way, as in the preceding book case, we start by writing the number of
customers on the list to the file:

Then we write the information of each customer to the file by calling the method on
each object pointer:

Writing the borrower index
For each object, if the book is borrowed we look up and save the index of the

, rather than the pointer to the object:

For each book, we start by checking if it has been borrowed. If it has been borrowed, we
write the value to the file, to indicate that it is borrowed:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[149]

Then we look up the index of the customer that has borrowed the book in the customer
pointer list and write the index to the file:

If the book is not borrowed, we just write the value to the file, to indicate that the
book has not been borrowed:

Writing the reservation indexes
As a book can be reserved for more than one customer, we iterate through the list of
reservations and save the index of each customer in the reservation list:

For each book, we start by writing the number of reservations of the book to the file:

Then we iterate through the reservation list and, for each reservation, we look up and write
the index of each customer that reserved the book:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[150]

Writing the loan book indexes
For each customer, we save the indexes of the books they have borrowed. First, we save the
size of the loan list and then the book indexes:

For each customer, we start by writing the number of loans to the file:

Then we iterate through the loan set and, for each loan, we look up and write the index of
each book to the file:

Writing the reservation book indexes
In the same way, for each customer, we save the indexes of the books they have reserved.
First, we save the size of the reservation list and then the indexes of the books they
reserved:

For each customer, we start by writing the number of reserved books to the file:

Then we iterate through the reservation set and, for each reservation, we look up and write
the index of each book to the file:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[151]

Loading the library information from a file
When loading the file, we proceed in the same manner as when we saved the file:

Reading the book objects
We read the size of the book list, and then the books themselves. Remember that we have so
far read the author and title of the books only:

We start by reading the number of books:

Then we read the books themselves. For each book, we dynamically allocate a object,
read its information by calling on the pointer, and add the pointer to the book pointer
list:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[152]

Reading the customer objects
In the same way, we read the size of the customer list and then the customers themselves.
Up until this point, we read the name and address of the customers only:

We start by reading the number of customers:

Then we read the customers themselves. For each customer, we dynamically allocate a
 object, read its information by calling on the pointer, and add the pointer to

the book pointer list:

Reading the borrower index
For each book, we read the customers that have borrowed it (if any) and the list of
customers that have reserved the book:

If is , the book has been borrowed. In that case, we read the index of the
customer. We then look up the pointer of the object, which we add to the
reservation list of the book:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[153]

If is , the book has not been borrowed. In that case, we set the pointer to
the customer that has borrowed the book to :

Reading the reservation indexes
For each book, we also read the reservation list. First, we read the size of the list and then
the customer indexes themselves:

We start by reading the number of reservations of the book:

For each reservation, we read the index of the customer and call to
obtain the pointer to the object, which we add to the reservation pointer list of
the book:

Reading the loan book indexes
For each customer, we read the set of borrowed books:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[154]

We start by reading the size of the loan list:

For each loan, we read the index of the book and call to obtain the pointer
to the object, which we add to the loan pointer list:

Reading the reservation book indexes
In the same way, for each customer, we read the set of reserved books:

We start by reading the size of the reservation list:

For each reservation, we read the index of the book and call to obtain the
pointer to the object, which we add to the reservation pointer list:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[155]

Deallocating memory
Since we have added dynamically allocated and objects to the lists, we
need to deallocate them at the end of the execution. The destructor iterates through the
book and customer pointer lists and deallocates all the book and customer pointers:

The main function
Similar to , Building a Library Management System, the function simply
creates a object:

Main.cpp

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Library Management System with Pointers Chapter 4

[156]

Summary
In this chapter, we built a library management system similar to the system of ,
Building a Library Management System. However, we omitted all integer identity numbers
and replaced them with pointers. This gives us the advantage that we can store loans and
reservations more directly, but it also makes it harder for us to save and load them into a
file.

In , Qt Graphical Applications, we will look at graphical applications.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

55
Qt Graphical Applications

In , Library Management System with Pointers, we developed abstract datatypes
and a library management system. However, those applications were text-based. In this
chapter, we will look into three graphical applications that we will develop with the Qt
graphical library:

Clock: We will develop an analog clock with hour, minute, and second hands,
with lines to mark hours, minutes, and seconds
The drawing program: A program that draws lines, rectangles, and ellipses in
different colors
The editor: A program where the user can input and edit text

We will also learn about the Qt library:

Windows and widgets
Menus and toolbars
Drawing figures and writing text in the window
How to catch mouse and keyboard events

Creating the clock application
In this chapter and the next chapter, we will work with Qt, which is an object-oriented class
library for graphical applications. We will also work with Qt Creator, instead of Visual
Studio, which is an integrated development environment.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[158]

Setting up the environment
When creating a new graphical project in Qt Creator, we select New File or Project in the
File menu, which makes the New File or Project dialog window become visible. We select
Qt Widgets Application, and click the Choose button.

Then the Introduction and Project Location dialog becomes visible. We name the project
, place it in an appropriate location, and click the Next button. In the KitSelection

dialog, we select the latest version of the Qt library, and click Next. In the
Class Information dialog, we name the base class of the application . Normally, the
window of a graphical application inherits a class. In this case, however, we are
dealing with a relatively simple application. Therefore, we inherit the Qt class ,
even though a widget often refers to a smaller graphical object that is often embedded in the
window. In Qt Creator, it is possible to add forms. However, we do not use that feature in
this chapter. Therefore, we uncheck the Generate form option.

All class names in Qt start with the letter .

Finally, in the Project Management dialog, we simply accept the default values and click
Finish to generate the project, with the files and .

The Clock class
The project is made up by the files , , and . The class
definition looks a little bit different compared to the classes of the previous chapters. We
enclose the class definition with include guards. That is, we must enclose the class definition
with the preprocessor directive , , and . The preprocessor performs
text substitutions.

The and directives work as the statement in C++. If the condition is not
true, the code between the directives is omitted. In this case, the code is included only if the

 macro has not previously been defined. If the code is included, the macro becomes
defined at the next line with the directive. In this way, the class definition is
included in the project only once. Moreover, we also include the system header files

 and in the header file rather than the definition file.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[159]

Clock.h:

Since is a subclass of the Qt class, the macro must be included,
which includes certain code from the Qt library. We need it to use the and
macros shown here:

The constructor takes a pointer to its parent widget, for which the default is :

The method is called by the framework every time the window needs to be
repainted. It takes a pointer to a object as parameter, which can be used to
determine in which way the repainting shall be performed:

 is a Qt system class that handles a timer. We will use that to move the hands of the
clock:

The definition file is mainly made up of the method, which handles the
painting of the clock.

Clock.cpp:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[160]

In the constructor, we call the base class with the parameter
(which may be):

We set the title of the window to . In Qt, we always use the function for literal text,
which in turn calls the Qt method in the Qt class that
makes sure the text is translated into a form suitable to be displayed. We also resize the size
of the window to 1000 x 500 pixels, which is appropriate for most screens:

We need a way to connect the timer with the clock widget: when the timer has finished its
countdown, the clock shall be updated. For that purpose, Qt provides us with the Signal
and Slot system. When the timer reaches its countdown, it calls its method . We
use the method together with the and macros to connect the call to

 with the call to the method in the Qt class, which updates the
drawing of the clock. The macro registers that the call to timeout shall raise a signal,
the macro registers that the update method shall be called when the signal is raised,
and the method connects the signal with the slot. We have set up a connection
between the timer's timeout and the update of the clock:

The method is called every time the window needs to be repainted. It may be
due to some external cause, such as the user resizes the window. It may also be due to a call
to the method of the class, which in turn eventually calls

.

In this case, we do not need any information about the event, so we enclose the
parameter in comments. The and methods give the width and height of the
paintable part of the window, in pixels. We call the method to decide the minimum
side of the window, and the method of the class to find the current
time for the clock:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[161]

The class can be viewed as a painting canvas. We start by initializing it to
appropriate aliasing. We then call the and methods to transform the
physical size in pixels to the logical size of * units:

We paint 60 lines for the minutes. Every fifth line shall be a little bit longer to mark the
current hours. For each minute, we draw a line, and then we call the Qt method,
which rotates the drawing by degrees. In this way, we rotate the drawing by 6 degrees 60
times, which sums up to 360 degrees, a whole lap:

A complete leap is 360 degrees. For each line we rotate by degrees, since 360 divided by 60
is degrees. When we are finished with the rotations, the drawing is reset to its original
settings:

We obtain the current hour, minute, second, and millisecond from the object:

We set the pen color to black and the background color to gray:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[162]

We define the endpoints of the hour hand. The hour hand is a little bit thicker and shorter
than the minute and second hands. We define three points that constitute the endpoint of
the hour hand. The base of the hour hand is 16 units long and located 8 units from the
origin. Therefore, we set the x coordinate of the base points to and , and the y
coordinate to . Finally, we define the length of the hour hand to units. The value is
negative in order to correspond with current rotation:

The method saves the current settings of the object. The settings are later
restored by the method:

We find out the exact angle of the current hour hand by calculating the hours, minutes,
seconds, and milliseconds. We then rotate to set the hour hand. Each hour corresponds to 30
degrees, since we have 12 hours, and 360 degrees divided by 12 is 30 degrees:

We call the method with the three points of the hour hand:

We draw the minute hand in the same way. It is a little bit thinner and longer than the hour
hand. Another difference is that while we had 12 hours, we now have 60 minutes. This
gives that each minute corresponds to degrees, since 360 degrees divided by 60 is 6
degrees:

When calculating the current minute angle, we use the minutes, seconds, and milliseconds:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[163]

The drawing of the second hand is almost identical to the drawing of the previous minute
hand. The only difference is that we only use seconds and milliseconds to calculate the
second angle:

The main function
In the function, we initialize and start the Qt application. The function can take
the parameters and . It holds the command-line arguments of the applications;

 holds the number of arguments and the array holds the arguments themselves.
The first entry of always holds the path to the execution file, and the last entry is
always . The class takes and and initializes the Qt
application. We create an object of our class, and call to make it visible. Finally,
we call of the object.

Main.cpp:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[164]

To execute the application, we select the Run option on the project:

The execution will continue until the user closes the window by pressing the close
button in the top-right corner:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[165]

Setting up reusable classes for windows and
widgets
In graphical applications, there are windows and widgets. A window is often a complete
window with a frame holding title, menu bar, and buttons for closing and resizing the
window. A widget is often a smaller graphical object, often embedded in a window. In the
Clock project, we used only a class that inherits the class. However, in this
section we will leave the Clock project and look into more advanced applications with both a
window and a widget. The window holds the frame with the menu bar and toolbar, while
the widget is located in the window and takes care of the graphical content.

In the following sections of this chapter, we will look into a drawing program and an editor.
Those applications are typical document applications, where we open and save documents,
as well as also cut, copy, paste, and delete elements of the document. In order to add menus
and toolbars to the window, we need to inherit the two Qt classes, and

. We need to add menus and toolbars to the window frame, and
 to draw images in the window's area.

In order to reuse the document code in the applications introduced in the remaining part of
this chapter and in the next chapter, in this section, we define the classes and

. Those classes will then be used by the drawing program and the editor
later in the following sections of this chapter. sets up a window with the
and menus and toolbars, while provides a framework that sets up
skeleton code for the , , , , , , , , and items.
In this section, we will not create a new Qt project, we will just write the classes

 and , which are used as base classes in the drawing program
and editor later in this chapter, and the macro, which is used to set up menu and
toolbar items.

Adding a listener
A listener is a method that is called when the user selects a menu item or a toolbar item. The

 macro adds a listener to the class.

Listener.h:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[166]

Due to Qt rules regarding menus and toolbars, the listener called by the Qt Framework in
response to a user action must be a function rather than a method.

A method belongs to a class, while a function is free-standing.

The macro defines both a friendly function and a method. The Qt
Framework calls the function, which in turns calls the method:

The macro is defined as a pointer to the method:

The listener method takes an pointer as a parameter and returns a Boolean value:

The base window class
The class sets up a document window with the and menus and
toolbars. It also provides the method, which is intended for subclasses to add
application-specific menus and toolbars.

MainWindow.h:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[167]

The method adds a menu item, with a potential accelerator key, toolbar icon,
and listeners to mark the item with a checkbox or a radio button:

We use the macro to add a listener to decide whether a menu item shall
be enabled. The listeners return if the item shall be enabled. is a sub
class of the Qt class , which we will define in the next section. With the

 macro, we add the , , ,
, and methods to the class. They will be

called when the user selects a menu item:

The method is called before a menu becomes visible; it calls the listener of the
items of the menu to decide whether they shall be disabled or annotated by a checkbox or a
radio button. It is also called by the framework in order to disable toolbar icons:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[168]

The and fields hold maps of listeners for the menu items. The
preceding method uses them to decide whether to disable the item, or
annotate it with a checkbox or a radio button:

MainWindow.cpp:

The constructor calls the constructor of the Qt class, with the parent widget
pointer as its parameter:

When a menu item is added, it is connected to an action. The destructor deallocates all
actions of the menu bar:

The method adds the standard menu to the menu bar; is a Qt
method that returns a pointer to the menu bar of the window:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[169]

Similar to the method which connects the menu item with the
method in the following code snippet. The Qt macros and ensure that

 is called before the menu becomes visible. The method sets the
enable, checkbox, and radio bottom status for each item of the menu before the menu
becomes visible. It also sets the enable status of toolbars images. The method
is called before each menu becomes visible in order to enable or disable the items, and to
possibly mark them with check boxes or radio buttons:

The Qt method adds a toolbar to the window's frame. When we call
 here, the menu item will be added to the menu and, if present, to the toolbar:

The method adds the , , , , and menu items. It takes
the following parameters:

A pointer to the menu the item shall belong to.
The item text. The ampersand () before the text () indicates that the next
letter () will be underlined, and that the user can select that item by pressing Alt-
N.
Accelerator information. is a Qt enumeration holding accelerator
key combinations. indicates that the user can select the
item by pressing Ctrl-N. The text will also be added to the item text.
The name of an icon file (). The icon of the file is displayed both to the left of
the item text and on the toolbar. The icon file itself is added to the project in Qt
Creator.
A pointer to the toolbar, if the item is not connected to a toolbar.
The text displayed when the user hovers with the mouse over the toolbar item.
Ignored if the item is not connected to a toolbar.
Listeners (default) that are called before the menu and toolbar become
visible, and deciding whether the item is enabled or marked with a checkbox or a
radio button:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[170]

When there are no changes in the document since it was last saved, the document does not
need to be saved and the item shall be disabled. Therefore, we add an extra
parameter, indicating that the method shall be called to enable or disable
the menu and toolbar item:

The menu item has no key sequence. Moreover, it does not have a toolbar entry.
Therefore, the name of the icon file and the toolbar text are default objects and the
toolbar pointer is :

The method adds a horizontal line between two items:

The method adds the menu to the window's menu bar in the same way
as the preceding menu:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[171]

The method adds a menu item to the menu bar and a toolbar icon to the
toolbar. It also connects the item with the method that is called when the user
selects the item, and methods that enable the item and annotate it with a checkbox or radio
button. An accelerator is added to the action, unless it is zero. The parameter
defines whether the item is part of a group. If is not , the item is
annotated with a checkbox if is , and with a radio button if it is not. In
the case of radio buttons, only one radio button in the group will be marked at the same
time:

If is not empty, we load the icon from the file in the project resource and then
create a new object with the icon:

If is empty, we create a new object without the icon:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[172]

We connect the menu item to the selection method. When the user selects the item, or clicks
on the toolbar icon, is called:

If the accelerator key is not zero, we add it to the action pointer:

Finally, we add the action pointer to the menu pointer in order for it to process the user's
item selection:

If is not , we add the action to the toolbar of the window:

If the status tip is not empty, we add it to the tooltip and status tip of the toolbar:

If the enable listener is not null, we add to a pair made up of a pointer to the
central widget of the window and the listener. We also call the listener to initialize the
enable status of the menu item and toolbar icon:

In the same way, if the check listener is not null, we add a pointer to the central widget of
the window and the listener to . Both and are used
by , as follows. We also call the listener to initialize the check status of the
menu item (toolbar icons are not checked):

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[173]

Finally, if the group pointer is not null, we add the action to it. In that way, the menu item
will be annotated by a radio button rather than a checkbox. The framework does also keep
track of the groups and makes sure only one of the radio buttons of each group is marked at
the same time:

The method is called before a menu or toolbar icon becomes visible. It makes
sure each item is enabled or disabled, and that the items are annotated with checkboxes or
radio buttons.

We start by iterating through the enable map. For each entry in the map, we look up the
widget and the enable function. We call the function, which returns or , and use
the result to enable or disable the item by calling on the action object pointer:

In the same way, we iterate through the check map. For each entry in the map, we look up
the widget and the check function. We call the function and use the result to check the item
by calling and on the action object pointer. The Qt Framework
makes sure the item is annotated by radio buttons if it belongs to a group, and a checkbox if
it does not:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[174]

The base widget class
 is a skeleton framework for applications that handle documents. It

handles the loading and saving of the document, and provides methods to be overridden by
subclasses for the , , , and menu items.

While the preceding class handles the window frame, with its menus and
toolbars, the class handles the drawing of the window's content. The idea
is that the subclass of creates an object of a subclass to that
it puts at the centrum of the window. See the constructors of and

 in the following sections.

DocumentWidget.h:

The constructor takes the name of the application, to be displayed at the top banner of the
window, the filename mask to be used when loading and storing documents with the
standard file dialogs, and a pointer to a potential parent widget (normally the enclosing
main window):

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[175]

The method sets the path of the current document. The path is displayed at
the top banner of the window and is given as a default path in the standard load and save
dialogs:

When a document has been changed, the modified flag (sometimes called the dirty flag) is
set. This causes an asterisk () to appear next to the file path at the top banner of the
window, and the and menu items to be enabled:

The method is an auxiliary method that puts together the title of the
window. It is made up by the file path and a potential asterisk () to indicate whether the
modified flag is set:

The method is overridden from and is called when the user closes
the window. By setting fields of the parameter, the closing can be prevented. For
example, if the document has not been saved, the user can be asked if they want to save the
document or cancel the closing of the window:

The method is an auxiliary method that displays a message box if the user tries
to close the window or exit the application without saving the document:

The following methods are called by the framework when the user selects a menu item or
clicks a toolbar icon. In order for that to work, we mark the methods as slots, which is
necessary for the macro in the call:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[176]

When a document has not been changed, it is not necessary to save it. In that case, the
and menu items and toolbars images shall be disabled. The
method is called by before the menu becomes visible. It returns true only
when the document has been changed and needs to be saved:

The method is an auxiliary method that tries to write the file. If it fails, a
message box displays an error message:

The following methods are virtual methods intended to be overridden by subclasses. They
are called when the user selects the , , , and menu items:

The following methods are called before the edit menu becomes visible, and they decide
whether the , , , and items shall be enabled:

The following methods are called when the user selects the , , , and
items or toolbar icons:

The field holds the name of the application, not the document. In the
next sections, the names will be Drawing and Editor. The field holds the mask
that is used when loading and saving the document with the standard dialogs. For instance,
let us say that we have documents with the ending . Then the mask could be

. The field holds the path of the current document. When the
document is new and not yet saved, the field holds the empty string.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[177]

Finally, is true when the document has been modified and needs to be
saved before the application quits:

Finally, there are some overloaded auxiliary operators. The addition and subtraction
operators add and subtract a point with a size, and a rectangle with a size:

The and methods write and read a point from an input stream:

The and methods write and read a color from an input stream:

The method creates a rectangle with as its center and as its size:

DocumentWidget.cpp:

The constructor sets the name of the application, the file mask for the save and load
standard dialogs, and a pointer to the enclosing parent widget (usually the enclosing main
window):

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[178]

The destructor does nothing, it is included for completeness only:

The method calls to update the text on the top banner
of the window:

The method also calls to update the text on the
top banner of the window. Moreover, it calls on the parent widget to update
the icons of the toolbars:

The title displayed at the top banner of the toolbar is the application name, the document
file path (if not empty), and an asterisk if the document has been modified without being
saved:

The method displays a message box if the document has been modified without
being saved. The user can select one of the following buttons:

Yes: The document is saved, and the application quits. However, if the saving
fails, an error message is displayed and the application does not quit.
No: The application quits without saving the document.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[179]

Cancel: The closing of the application is cancelled. The document is not saved.

If the document is cleared, is called, which is intended to be overridden by a
subclass to perform application-specific initialization. Moreover, the modified flag and the
file path are cleared. Finally, the Qt method is called to force a repainting of the
window's content:

If the document is cleared, uses the standard open dialog to obtain the file path of
the document:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[180]

If the file was successfully read, the modified flag is cleared, the file path is set, and
is called to force a repainting of the window:

However, if the reading was not successful, a message box with an error message is
displayed:

The method simply returns the value of . However, we
need the method for the listener to work:

The method is called when the user selects the or menu item or
toolbar icon. If the document has already been given a name, we simply try to write the file.
However, if it has not yet been given a name we call , which displays the
standard Save dialog for the user:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[181]

The method is called when the user selects the menu item (there is no
toolbar icon for this item). It opens the standard open dialog and tries to write the file. If the
writing was not successful, is returned. The reason for this is that closes
the window only if the writing was successful:

The method tries to write the file by calling write, which is intended to be
overridden by a subclass. If it succeeded, the modified flag and the file path are set. If the
file was not successfully written, a message box with an error message is displayed:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[182]

The method is called when the user selects the menu item. It checks whether
it is clear to close the window, and exits the application if it is:

The default behavior of and is to call ,
since they often are enabled on the same conditions:

The default behavior of is to simply call and :

The default behavior of the rest of the cut-and-copy methods is to return and do
nothing, which will leave the menu items disabled unless the subclass overrides the
methods:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[183]

Finally, is called when the user tries to close the window. If the window is
ready to be cleared, is called on , which causes the window to be closed,
and is called on the global object, which causes the application to quit:

However, if the window is not ready to be cleared, is called on , which
causes the window to remain open (and the application to continue):

Moreover, there are also the set of auxiliary functions for handling points, sizes, rectangles,
and color. The following operators add and subtract a point with a size, and return the
resulting point:

The following operators add and subtract an integer from a rectangle, and return the
resulting rectangle. The addition operator expands the size of the rectangle in every
direction, while the subtraction operator shrinks the rectangle in every direction:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[184]

The and functions write and read a point from a file. They write
and read the x and y coordinates separately:

The and functions write and read a color from a file. A color is
made up of the , , and components. Each component is an integer value
between and inclusive. The methods write and read the components from a file
stream:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[185]

When the components have been read, we create a object that we assign the
parameter:

The function creates a rectangle centered around the point:

Building the drawing program
Let's now start a new project, where we take advantage of the main window and document
widget classes of the previous section The drawing program. We will start with a basic
version in this chapter, and we will continue to build a more advanced version in the next
chapter. With the drawing program of this chapter we can draw lines, rectangles, and
ellipses in different colors. We can also save and load our drawings. Note that in this project
the window and widget classes inherit from the and classes
of the previous section.

The Figure base class
The figures of the application constitute a class hierarchy where the is the base
class. Its subclasses are , , and , which are described later on.
We cannot use the names Rectangle and Ellipse for our classes, since that would clash with
Qt methods with the same names. I have chosen to simply add an ' ' to the names.

The class is abstract, which means that we cannot create an object of the class. We
can only use it as a base class, which sub classes inherit.

Figure.h:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[186]

The following methods are pure virtual, which means that they do not need to be defined.
A class with at least one pure virtual method becomes abstract. The sub classes must define
all the pure virtual methods of all its base classes, or become abstract themselves. In this
way, it is guaranteed that all methods of all non-abstract classes are defined.

Each sub class defines and returns the identity enumeration of its class:

Each figure has a first and last point, and it is up to each sub class to define them:

The method returns if the figure is hit by the point:

The method moves the figures a certain distance:

The method draws the figure on the painter area:

The and methods write and read the figure from a file; is constant since
it does not change the figure:

The method returns the color of the figure. It comes in two versions, where the first
version is constant and returns a reference to a constant object, while the second
version is non-constant and returns a reference to a non-constant object:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[187]

The methods apply to two-dimensional figures (rectangles and ellipses) only. They
return if the figure is filled. Note that the second version returns a reference to the

 field, which allows the caller of the method to modify the value of :

When a figure is marked, it is drawn with small squares at its corners. The side of the
squares are defined by the static field :

The and methods are auxiliary methods that read and write a
color. They are static since they are called by methods outside the class hierarchy:

Each figure has a color, and it could be marked or filled:

The file holds the definitions of the class. It defines the
 field as well as the and methods.

Figure.cpp:

 must be defined and initialized in global space since it is static. We define the
size of the mark squares to be pixels:

The default constructor is called only when figures are read from a file:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[188]

The and methods write and read the color of the figure, and whether the figure
is filled:

The Line sub class
The class is a sub class of . It becomes non-abstract by defining each pure
virtual method of . A line is drawn between two end-points, represented by the

 to fields in :

Line.h:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[189]

The default constructor is called only when reading objects from a file; simply
returns the identity enumeration of the line:

A line has two endpoints. Both points are set when the line is created, the second point is
then modified when the user moves it:

The method returns if the mouse click is located on the line (with some
tolerance):

The method moves the line (both its end-points) the given distance:

The method draws the line on the object:

The and methods write and read the end-points of the line from a file stream:

The first and last points of the line are stored in the object:

The file defines the methods of the class.

Line.cpp:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[190]

The method is called when the user adds a new line to the drawing. It
sets both its end-points:

The method is called when the user has added the line and modifies its
shape. It sets the last point:

The method tests whether the user has clicked with the mouse on the line. We
have two cases to consider. The first case is a special case that occurs when the line is
completely vertical, when the x-coordinates of the end-points are equal. We use the Qt

 class to create a rectangle surrounding the line, and test whether the point is
enclosed in the rectangle:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[191]

In a general case, where the line is not vertical, we start by creating an enclosing rectangle
and test if the mouse point is in it. If it is, we set to the leftmost point of

 and , and to the rightmost point. We then calculate
the width () and height () of the enclosing rectangle, as well as the
distance between and in the x and y directions (and

).

Due to uniformity, the following equation is true if the mouse pointer hits the line:

However, in order for the left-hand expression to become exactly zero, the user has to click
exactly on the line. Therefore, let us allow for a small tolerance. Let's use the
field:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[192]

We must convert to a double in order to perform non-integer division:

If the mouse point is located outside the rectangle enclosing the line, we simply return
:

The method simply moves both the endpoints of the line:

When drawing the line, we set the pen color and draw the line. The method of the
 class returns the color of the line:

When writing the line, we first call in to write the color of the figure. We
then write the endpoints of the line. Finally, we return the Boolean value of the output
stream, which is if the writing was successful:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[193]

In the same way, when reading the line, we first call in to read the color of the
line. We then read the endpoints of the line and return the Boolean value of the input
stream:

The Rectangle sub class
 is a sub class of that handles a rectangle. Similar to , it holds two

points, which holds opposite corners of the rectangle:

Rectangle.h

Similar to the preceding class, has a default constructor that is used
when reading the object from a file:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[194]

Rectangle.cpp

The and methods work in a way similar to their
counterparts in : sets both the corner points, while

 sets the last corner point:

The method is simpler than its counterpart in :

If the rectangle is filled, we simply check whether the mouse click hit the rectangle by
calling in :

If the rectangle is not filled, we need to check whether the mouse clicked on the border of
the rectangle. To do so, we create two slightly smaller and larger rectangles. If the mouse
click hit the larger rectangle, but not the smaller one, we consider the rectangle border to be
hit:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[195]

When moving the rectangle, we simply move the first and last corners:

When drawing a rectangle, we first set the pen color by calling in :

If the rectangle is filled, we simply call on the object:

If the rectangle is unfilled, we disable the brush to make the rectangle hollow, and we then
call on the object to draw the border of the rectangle:

The method first calls in , and it then writes the first and last corners
of the rectangle:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[196]

In the same way, first calls in , and then reads the first and last corners of
the rectangle:

The Ellipse sub class
 is a sub class of that handles an ellipse. Part of the functionality of

 is reused in . More specifically, ,
, , , and are overridden from .

Ellipse.h:

Ellipse.cpp:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[197]

The method of is similar to its counterpart in . We use the
Qt class to create elliptic objects that we compare to the mouse click:

If the ellipse is filled, we create an elliptic region and test whether the mouse click hit the
region:

If the ellipse in unfilled, we create slightly smaller and larger elliptic regions. If the mouse
click hit the smaller region, but not the smaller one, we consider the border of the ellipse to
be hit:

When drawing an ellipse, we first set the pen color by calling in :

If the ellipse is filled, we set the brush and draw the ellipse:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[198]

If the ellipse is unfilled, we set the brush to hollow and draw the ellipse border:

Drawing the window
The class is a sub class to the class of the previous section.

DrawingWindow.h:

DrawingWindow.cpp:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[199]

The constructor sets the size of the window to * pixels:

The field is initialized to point at an object of the
class, which is then set to the center part of the window:

The standard file menu is added to the window menu bar:

We then add the application-specific format menu. It is connected to the
method of the class of the previous section:

The format menu holds the color and fill items:

The fill item will be enabled when the next figure of the drawing program is a two-
dimensional figure (rectangle or ellipse):

For the figure menu, we create a new action group for the line, rectangle, and ellipse item.
Only one of them shall be marked at the same time:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[200]

The currently selected item shall be marked with a radio button:

The destructor deallocates the figure group that was dynamically allocated in the
constructor:

Drawing the widget
 is a sub class of in the previous section. It handles

mouse input, painting of the figures, as well as saving and loading of the drawing. It also
provides methods for deciding when the menu items shall be marked and enabled.

DrawingWidget.h:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[201]

The , , and are overridden
methods that are called when the user presses or releases one of the mouse keys or moves
the mouse:

The method is called when the window needs to be repainted. That can
happen for several reasons. For instance, the user can modify the size of the window. The
repainting can also be forced by a call to the method, which causes to
be called eventually:

The method is called when the user selects the new menu item,
is called when the user selects the save or save as item, and is called when the
user selects the open item:

The and methods are called when the user selects the color and fill menu
items:

The method is called before the user selects the format menu. If it returns
, the fill item becomes enabled:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[202]

The , , and methods are also
called before the figure menu becomes visible. The items become marked with a radio
button if the methods return :

The , , and methods are called when the user selects the
line, rectangle, and ellipse menu items:

When running, the application can hold the , , or modes:

: When the application is waiting for input from the user.
: When the user is adding a new figure to the drawing. Occurs when the

user presses the left mouse button without hitting a figure. A new figure is added
and its end-point is modified until the user releases the mouse button.

: When the user is moving a figure. Occurs when the user presses the left
mouse button and hitting a figure. The figure is moved until the user releases the
mouse button.

The field holds the color of the next figure to be added by the user;
 decides whether the next figure (if it is a rectangle or an ellipse) shall be

filled. The method holds the identity integer of the next type of figure
(line, rectangle, or ellipse) to be added by the user:

When the user presses a mouse button and moves a figure, we need to store the previous
mouse point in order to calculate the distance the figure has been moved since the last
mouse events:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[203]

Finally, holds pointers to the figures of the drawing. The top-most
figure in the drawing is placed at the end of the list:

DrawingWidget.cpp:

The constructor calls the constructor the base class with the title
. It also sets the save and load mask to , which means

that the default files selected by the standard save and load dialogs have the suffix :

The destructor deallocates the figure pointers of the figure pointer list:

The method sets the application mode and calls in the
main window for the toolbar icons to be correctly enabled:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[204]

When the user selects the new menu item, is called. The figures of the figure
pointer list are deallocated, and the list itself is cleared:

The next figure to be added by the user is a black line, and the filled status is :

The method is called when the user selects the save or save as menu items:

We start by writing the current color and fill status. We then continue by writing the size of
the figure pointer list, and the figures themselves:

For each figure, we first write its identity number, and we then write the figure itself:

If the file was not possible to open, is returned:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[205]

The method is called when the user selects the open menu item. In the same way
as in previously, we read the color and fill status, the size of the figure pointer
list, and then the figures themselves:

When reading the figure, we first read its identity number, and call to create
an object of the class corresponding to the figure's identity number. We then read the fields
of the figure by calling on its pointer. Note that we do not really know (or care) what
kind of figure it is. We simply call read to the figure pointer, which in fact points to an
object of , , or :

The method dynamically creates an object of the , , or
 class, depending on the value of the parameter:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[206]

The method is called when the user selects the color menu item. It sets the color of
the next figure to be added by the user:

The method is called before the format menu becomes visible, and returns
 if the next figure to be added by the user is a rectangle or an ellipse:

The method is called when the user selects fill menu item. It inverts the
 field. It also sets the modified flag since the document has been affected:

The , , and methods are called
before the figure menu becomes visible. If they return , the items become checked with
a radio button if the next figure to be added is the figure in question:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[207]

The , , and methods are called when the user selects the
items in the figure menu. They set the next figure to be added by the user to the figure in
question:

The method is called every time the user presses one of the mouse keys.
First, we need to check if they have pressed the left mouse key:

In the call to in the following snippet, we need to keep track of the latest
mouse point in order to calculate the distance between mouse movements. Therefore, we
set to the mouse point:

We iterate through the figure pointer list and, for each figure, we check if the figure has
been hit by the mouse click by calling . We need to iterate backwards in a rather
awkward manner in order to find the top-most figure first. We use the
class and the and methods in order to iterate backwards:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[208]

We use the dereference operator () to obtain the figure pointer in the list:

If the figure has been hit by the mouse click, we set the application mode to move. We also
place the figure at the end of the list, so that it appears to be top-most in the drawing, by
calling and on the list. Finally, we break the loop since we have
found the figure we are looking for:

If the application mode is still idle (has not moved), we have not found a figure hit by the
mouse click. In that case, we set the application mode to create and call to
find a figure to copy. We then set the color and filled status as well as the points of the
figure. Finally, we add the figure pointer to the figure pointer list by calling
(which is added at the end of the list in order for it to appear at the top of the drawing) and
set the modified flag to , since the drawing has been modified:

The is called every time the user moves the mouse. First, we need to
check that the user presses the left mouse key when they move the mouse:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[209]

We then check the application mode. If we are in the process of adding a new figure to the
drawing, we modify its last point:

If we are in the process of moving a figure, we calculate the distance since the last mouse
event and move the figure placed at the end of the figure pointer list. Remember that the
figure hit by the mouse click was placed at the end of the figure pointer list in the
preceding :

Finally, we update the current mouse point for the next call to . We also
call the update method to force a repainting of the window:

The method is called when the user releases one of the mouse
buttons. We set the application mode to idle:

The method is called every time the window needs to be repainted. It may
happen for several reasons. For instance, the user may have changed the size of the
window. It may also be a result of a call to in the Qt class, which forces a
repainting of the window and an eventual call to .

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[210]

We start by creating a object, which can be regarded as canvas to paint on, and
set suitable rendering. We then iterate through the figure pointer list, and draw each figure.
In this way, the last figure in the list is drawn at the top of the drawing:

The main function
Finally, we start the application in the function by creating an application object,
showing the main window and executing the application.

Main.cpp:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[211]

The following output is received:

Building an editor
The next application is an editor, where the user can input and edit text. The current input
position is indicated by a caret. It is possible to move the caret with the arrow keys and by
clicking with the mouse.

The Caret class
The class handles the caret; that is, the blinking vertical line marking the position of
the next character to be input.

Caret.h:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[212]

The and methods show and hide the caret. In this application, the caret is never
hidden. However, in the advanced version in the next chapter, the caret will be hidden on
some occasions:

The method sets the current size and position of the caret, and paints it on the
 object:

The method is called every time the caret blinks:

The field is true when the caret is visible:

The field handles the timer that makes the caret blink:

The field handles the timer that makes the caret blink:

The file holds the definitions of the methods of the class.

Caret.cpp:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[213]

The constructor connects the timer signal to , with the result that is called
for every timeout. The timer is then initialized to milliseconds. That is, will be
called every milliseconds, and the caret becomes shown and hidden every 500
milliseconds:

The and methods set the field and force a repainting of the caret
area by calling on the parent window:

The method sets the size and position of the caret. However, the width of the caret is
always set to one, which makes it appear as a thin vertical line:

The method is called every 500 milliseconds. It inverts and forces a
repaint of the caret. This gives the result that the caret blinks at an interval of one second:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[214]

The method is called every time the caret needs to be repainted. The caret is drawn if
both and are true, which they are if the caret is set to be visible and
the caret is blinking; that is, that the caret is visible in the blinking interval. The area of the
caret is cleared before the call to paint, so that if no drawing occurs, the caret is cleared:

Drawing the editor window
 is a sub class of in the previous section. It handles the closing

of the window. Moreover, it also handles the key press event.

EditorWindow.h:

The method is called every time the user presses a key, and
is called when the user tries closing the window:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[215]

The class is in fact rather small. It only defines the constructor and the
destructor, as well as the and methods.

EditorWindow.cpp:

The constructor sets the size of the window to * pixels and adds the standard file
menu to the menu bar:

The and methods just pass the message to their counterpart
methods in the editor widget, which is located at the center of the window:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[216]

Drawing the editor widget
The class is a sub class of of the previous section. It
catches the key, mouse, resizing, and closing events. It also overrides the methods for
saving and loading documents.

EditorWidget.h:

The is called when the user presses a key, and is called
when the user clicks with the mouse:

The method is an auxiliary method that calculates the index of the character
the user clicks at with the mouse:

The method is called when the window needs to be repainted, and
 is called when the user resizes the window. We catch the resize event in this

application because we want to recalculate the number of characters that fits on each line:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[217]

Similar to the drawing program in the previous section, is called when the
user selects the New menu item, is called when the user selects the save or save
as items, and is called when the user selects the open item:

The method is called to set the caret as a response to user input or a mouse click:

When the user moves the caret up or down, we need to find the index of character over or
under the caret. The easiest way to do that is to simulate a mouse click:

The method is an auxiliary method that calculates the number of lines, and the
position of each character on each line:

The field holds the index of the position for the user to input text. That
position is also where the caret is visible:

The field holds the caret of the application:

The text of the editor is stored in :

The text of the editor may be distributed over several lines; keeps track of the
first and last index of each line:

The preceding method calculates the rectangle of each character in the editor
text, and places them in :

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[218]

In the application of this chapter, all characters hold the same font, which is stored in
:

 and hold the width and height of a character in :

The class is rather large. It defines the functionality of the editor.

EditorWidget.cpp:

We initialize the text font to 12-point :

The constructor sets the title to and the file suffix for the standard Load and Save
dialogs to . The height and average width, in pixels, of a character in the text font are set
with the Qt class. The rectangle of each character is calculated, and the caret is set
to the first character in the text:

The method is called when the user selects the new menu item. It clears the
text, sets the caret, and recalculates the character rectangles:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[219]

The method is called when the user selects the save or save as menu items. It
simply writes the current text of the editor:

We use the field of the input stream to decide if the writing was successful:

If it was not possible to open the file for writing, is returned:

The method is called when the user selects the load menu item. It reads all the
text of the editor by calling on the input stream:

When the text has been read, the character rectangles are calculated, and the caret is set:

We use the field of the input stream to decide if the reading was successful:

If it was not possible to open the file for reading, is returned:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[220]

The is called when the user presses one of the mouse buttons. If the user
presses the left button, we call to calculate the index of the character clicked
at, and set the caret to that index:

The is called when the user presses a key. First, we check if it is an arrow
key, the delete, backspace, or return key. If it is not, we insert the character at the position
indicated by the caret:

If the key is the left-arrow key, and if the edit caret is not already located at the beginning of
the text, we decrease the edit index:

If the key is the right-arrow key, and if the edit caret is not already located at the end of the
text, we increase the edit index:

If the key is the up-arrow key, and if the edit caret is not already located at the top of the
editor, we call to simulate that the user clicks with the mouse at a
point slightly over the current index. In that way, the new edit index will at the line over the
current line:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[221]

If the key is the down-arrow key, we call to simulate that the user
clicks with the mouse at a point slightly under the current index. In that way, we the edit
carat will be located at the character directly beneath the current character. Note that if the
index is already at the bottom line, nothing happens:

If the user presses the delete key, and the edit index is not already beyond the end of the
text, the current character is removed:

If the user presses the backspace key, and the edit index is not already at the beginning of
the text, the character before the current character is removed:

If the user presses the return key, the newline character () is inserted:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[222]

If the user presses a readable character, it is given by the method, and we insert its
first character at the edit index:

When the text has been modified, we need to calculate the character rectangles, set the caret,
and force a repaint by calling :

The method simulates a mouse click by calling
and with the given point:

The method creates a rectangle holding the size and position of the caret, and
then hides, sets, and shows the caret:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[223]

The method calculates the edit index of the given mouse point:

First, we set the coordinate to the text, in case it is below the text:

We calculate the line of the mouse point:

We find the index on that line:

The method is called when the user changes the size of the window. The
character rectangles are recalculated since the lines may be shorter or longer:

The method is called every time there has been a change in the text or when the
window size has been changed. It iterates through the text and calculates the rectangle for
each character:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[224]

First, we need to divide the text into lines. Each line continues until it does not fit in the
window, until we reach a new line, or until the text ends:

We then iterate through the lines and, for each line, calculate the rectangle of each character:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[225]

The method is called when the window needs to be repainted:

We iterate through the text of the editor and, for each character except the new line, we
write in its appropriate position:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[226]

The main function
Finally, the function works in a way similar to the previous applications of this
chapter we create an application, create an editor window, and execute the application.

Main.cpp:

The following output is obtained:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Qt Graphical Applications Chapter 5

[227]

Summary
In this chapter, we have developed three graphical applications with the Qt library an
analog clock, a drawing program, and an editor. The clock shows the current hour, minute,
and second. In the drawing program we can draw lines, rectangles, and ellipses, and in the
editor, we can input and edit text.

In the next chapter, we will continue to work with the applications, and develop more
advanced versions.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

66
Enhancing the Qt Graphical

Applications
In , Qt Graphical Applications, we developed graphical Qt applications involving
an analog clock, a drawing program, and an editor. In this chapter, we will continue to
work on the three graphical applications of , Qt Graphical Applications. However,
we will make the following improvements:

Clock: We will add digits to the clock dial
The drawing program: We will add the ability to move and modify figures, to cut
and paste them, and to mark one or several figures
The editor: We will add the ability to change font and alignment as well as to
mark a text block

In this chapter, we will continue to work with the Qt libraries:

Windows and widgets
Menus and toolbars
Mouse and keyboard events

Improving the clock
In this chapter, we will replace the version of clock dial markings with digits.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[229]

The Clock class
The class definition is similar to the one in , Qt Graphical Applications. The
timer updates the window 10 times each second. The constructor initializes the clock and

 is called every time the window needs to be repainted.

Clock.h:

Clock.cpp:

Similar to , Qt Graphical Applications, the constructor sets the header of the
window to , the window size to 1000 x 500 pixels, initializes the timer to
send a timeout message every milliseconds, and connect the message to the

 method, which forces the window to be repainted for each timeout:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[230]

The method is called every time the window needs to be repainted. We will
start by calculating the side of the clock and obtaining the current time:

We then create and initialize a object. We call and to match
the physical size (pixels) to the logical size of 200 x 200 units:

As we write digits to the clock in this version of the chapter, we add the font
, points, to the painter:

We write the digits of the clock, to , as shown in the following code:

A whole leap is 360 and the angle between two consecutive digits is 30 , since 360 divided
by 12 is 30:

The and coordinates of the digits are calculated by the sine and cosine functions.
However, first, we need to transform the degrees to radians since sine and cosine accept
radians only. This is shown in the following code:

The methods write the digit, as follows:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[231]

When the digits have been written, we draw the , , and hands in the
same way as in , Qt Graphical Applications:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[232]

The main function
The function is similar to the one in , Qt Graphical Applications. It creates an
application object, initializes the clock, and executes the application.

Main.cpp:

Output:

Improving the drawing program
The drawing program of this chapter is a more advanced version of the drawing program
of , Qt Graphical Applications. In this version, it is possible to modify a figure, to
enclose one or more figures and then change their colors, and to cut and paste figures.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[233]

The Figure class
The class is rather similar to the one in , Qt Graphical Applications.
However, , , , and have been added.

Figure.h:

In this version, the pure virtual method has been added. That is due to the cut and
paste. When pasting a figure we want to create a copy of it, without actually knowing
which class the object belongs to. We could not do that with the copy constructor only. This
is actually the main point of this section: how to use pure virtual methods and how to take
advantage of dynamic binding. We need , which calls the copy constructor of its class
to return a pointer to the new object:

In this version of the drawing program, sets fields to indicate whether the figure
shall be modified or moved. If the user grabs one of the marked points of the figure (which
varies between different kinds of figures), the figure shall be modified. Otherwise, it shall be
moved. The method is called when the user grabs one of the corners of the figure.
In that case, the figure shall be modified rather than moved:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[234]

The method returns if the figure is completely enclosed in the area. It is
called when the user encloses figures with the mouse:

The method is called when the user double-clicks at the figure, each figure
performs some suitable action:

The methods return and set the field. When a figure is marked, it is
annotated with small squares:

Figure.cpp:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[235]

The and methods write and read the color of the figure and whether it is filled.
However, they do not write or read the marked status. A figure is always unmarked when
written or read:

The Line class
The class is a subclass of .

Line.h:

As mentioned in the preceding section, decided whether the line shall be
modified or moved. If the user grabs one of its endpoints, only that endpoint shall be
moved. If the user grabs the line between the endpoints, the line shall be moved. That is,
both the endpoints of the line shall be moved:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[236]

The method checks whether the line is completely enclosed by the area:

The method does nothing in the class. However, we still need to define
it, since it is pure virtual in . If we had not defined it, would have been
abstract:

The method modifies the line in accordance with the settings of the
preceding . If the user grabs one of the endpoints, that endpoint is moved.
Otherwise, the whole line (both the endpoints) is moved:

The method returns a slightly larger area if the line is marked, in order to include the
marking squares:

The field keeps track of the movement or modification of the line. When the
line is created, is set to . When the user grabs the first or last
endpoint of the line, is set to or . When the user grabs
the line between the endpoints, is set to :

The method decides whether the user has clicked on the line, with some
tolerance:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[237]

Line.cpp:

When a line becomes created, the line mode is set to the last point. That means that the last
point of the line will be changed when the user moves the mouse:

The method is called when a line is being pasted. The copy constructor of is
called to set the color of the figure. Note that we call the constructor with a
object as a parameter, even though it takes a reference to a object as a parameter.
We are allowed to do this since is a subclass of and the object will be
transformed into a object during the call. Moreover, the first and last endpoints are
copied. Note that we do need to copy the value since its value is set when the
user creates, modifies, or moves the line only:

The method uses the copy constructor to create a new object, which is then returned:

The method is called shortly after the line is being created. The reason
for this call is that we do not create a object directly. Instead, we create the line
indirectly by calling . We then need to initialize the end-points by calling

:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[238]

The method is called when the user clicks with the mouse. First, we check whether
they have clicked at the first endpoint. We use the field to create a small square,
with the first endpoint in its center. If the user clicks on the square, is set to

 and is returned:

In the same way, we create a small square with the last endpoint in its center. If the user
clicks at the square, is set to and is returned:

If the user does not click on either of the endpoints, we check if they click on the line itself.
If they do, is set to and is returned:

Finally, if the user does not click on one of the endpoints or the line itself, they missed the
line altogether and is returned:

The method returns if the line is completely enclosed by the area. It is quite
easy, we just check whether the two end-points are located inside the area:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[239]

The method is identical to in the version of , Qt
Graphical Applications:

The method moves the first or last endpoint, or both of them, depending on the
settings of in the preceding method:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[240]

The method simply moves both the end-points of the line:

The method draws the line. The difference between this version and the version of
, Qt Graphical Applications, is that it also draws the squares at the end-points of the

line if it is marked:

The method returns the area covering the line. If the line is marked, the area is slightly
expanded in order to cover the squares marking the endpoints:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[241]

Similar to the version of , Qt Graphical Applications, and call their
counterparts in and then write and read the two endpoints of the line:

The Rectangle class
 is a subclass of . It is an expanded version of the version of

, Qt Graphical Applications. The method has been modified, and
 have been added.

Rectangle.h:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[242]

Rectangle.cpp:

When a rectangle is added by the user, its mode is . That means that
the bottom-right corner of the rectangle will be moved when the user moves the mouse:

The copy constructor copies the rectangle. More specifically, first it calls the copy
constructor of the class, then it copies the top-left and bottom-right corner. Note
that it does not copy the field, since it is used when the user moves the
mouse only:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[243]

The method creates and returns a pointer to a new object by calling the copy
constructor:

The method is called when the user clicks with the mouse. Similar to the
preceding bool , we start by checking whether they have clicked at any of the corners.
If they have not, we check whether they have clicked on the rectangle border or inside the
rectangle, depending on whether it is filled.

We start by defining a small square covering the top-left corner. If the user clicks on it, we
set the field to and return :

We continue by defining a square covering the top-right corner. If the user clicks on it, we
set to and return :

If the user clicks at the square covering the bottom-right corner, we set
to and return :

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[244]

If the user clicks at the square covering the bottom-left corner, we set to
 and return :

If the user does not click at any of the corners of the rectangle, we check the rectangle itself.
If it is filled, we check whether the mouse pointer is located inside the rectangle itself. If it is,
we set to and return :

If the rectangle is not filled, we define slightly larger and smaller rectangles. If the mouse
click is located inside the larger rectangle, but not in the smaller one, we set

 to and return :

Finally, if the user does not click at one of the corners or the rectangle itself, they missed the
rectangle and we return :

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[245]

The method is quite simple. We simply check if the top-left and bottom-right
corners are located inside the rectangle:

The method is called when the user double-clicks with the mouse. If the call
to returns , is called. In the rectangle case, the filled status is
changed a filled rectangle becomes unfilled and an unfilled rectangle becomes filled:

The first call to is a call to the version that returns a reference to the field,
which allows us to change the returned value:

The method modifies the rectangle in accordance with the field,
which was set by the preceding . If it is set to one of the four corners, we modify
that corner. If not, we move the whole rectangle:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[246]

The method is quite simple. It just changes the top-left and bottom-right corners:

The method returns the area covering the rectangle. If it is marked, we slightly expand
the area in order for it to cover the marking squares:

The method draws the rectangle; with a full brush it is filled and with a hollow brush
if it is unfilled:

If the rectangle is marked, the four squares covering the corners of the rectangle are also
drawn:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[247]

The and methods first call their counterparts in in order to write and
read the color of the rectangle. Then it writes and reads the top-left and bottom-right
corners:

The Ellipse class
 is a direct sub class of and an indirect subclass of that

draws a filled or unfilled ellipse:

EllipseX.h:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[248]

Similar to the preceding rectangle case, checks whether the user grabs the ellipse
in one of its four corners, or if the ellipse itself shall be moved:

The method modifies the ellipse in accordance with the settings of
following in preceding :

While the preceding rectangle could be grabbed by its four corners, the ellipse can be
grabbed by its left, top, right, and bottom points. Therefore, we need to add the

 enumeration value, which modifies the bottom-right corner of the area
covering the ellipse:

EllipseX.cpp:

In contrast to the preceding line and rectangle cases, we set the field to
, which is valid when the ellipse is being created only:

The copy constructor does not need to set the and fields, since
it is taken care of by the copy constructor of , which is being called by the copy
constructor of :

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[249]

Similar to the preceding rectangle case, checks whether the user grabs the ellipse
by one of its four points. However, in the ellipse case, we do not check the corners of the
rectangle. Instead, we check the left, top, right, and bottom position of the ellipse. We create
a small square for each of those positions and check whether the user clicks on them. If they
do, we set the field to an appropriate value and return :

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[250]

If the user does not click on any of the four positions, we check whether they click on the
ellipse itself. If it is filled, we use the Qt class to create an elliptic region and we
check whether the mouse point is located inside the region:

If the ellipse is unfilled, we create slightly larger and smaller elliptic regions and then check
whether the mouse point is located inside the larger region, and also inside the smaller one:

Finally, if the user does not click at any of the grabbing positions or the ellipse itself, we
return :

The method modifies the ellipse in accordance with the settings of
in :

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[251]

The method draws the ellipse with a solid brush if it is filled, and with a hollow brush
if it is unfilled:

If the ellipse is marked, the four squares covering the top, left, right, and bottom points of
the ellipse are also drawn:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[252]

The DrawingWindow class
The class is similar to the version of the previous chapter. It overrides the

 method.

DrawingWindow.h:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[253]

DrawingWindow.cpp:

The constructor initializes the window size to 1000 x 500 pixels, puts the drawing widget in
the middle of the window, adds the standard File and Edit menus, and adds the
application-specific Format and Figure menus:

The Format menu holds the , , and items as well as the Figure submenu:

The user selects the Modify item when they want to mark or modify existing figures
instead of adding new figures:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[254]

The Figure menu is a submenu holding the , , and items. It
becomes a submenu when we add it to the Format menu:

The DrawingWidget class
The class is the main class of the application. It catches the mouse and
paint events. It also catches the menu item selections of the File, Edit, and Figure menus.

DrawingWidget.h:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[255]

Unlike the version of , Qt Graphical Applications, this version overrides the cut and
copy event methods:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[256]

The field holds the values , , or
. The mode is active when the user is not pressing the mouse. The

 mode becomes active when the user grabs a figure and modifies or moves it
(depending on which part of the figure the user grabs). Finally, the
mode becomes active when the user clicks at the window without hitting a figure. In that
case, a rectangle is shown, and every figure enclosed by the rectangle becomes marked
when the user releases the mouse button. The user can delete or cut and paste the marked
figure, or change their color or the filled status. When the user releases the mouse button,
the mode again becomes :

The field holds the values or . In mode, when the user
clicks with the mouse, is set to or ,
depending on whether they hit a figure. In mode, a new figure is added, regardless of
whether the user hits a figure. The kind of figure to be added is set by ,
which holds the values , , or :

The color of the next figure to be added to the drawing is initialized to black, and the filled
status is initialized to false (unfilled). In both cases, it can later be changed by the user:

We need to save the latest mouse point in order to calculate distances between mouse
movements:

Pointers to the figures of the drawing are stored in . The top-most figure
is stored at the end of the list. When the user cuts or copies one or several figures, the
figures are copied and the pointers to the copies are stored in :

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[257]

When holds and the user presses the mouse button without hitting
a figure, a rectangle becomes visible in the window. That rectangle is stored in

:

DrawingWidget.cpp:

The constructor calls the constructor of the base class to set the header of
the window to , and to set the file suffix of the drawing files to :

The destructor does nothing, it has been included for the sake of completeness only:

The method sets the application mode and calls in the
main window for the toolbar icons to be correctly enabled:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[258]

The method is called when the user selects the menu item. We start by
deallocating every figure in the figure and copy pointer lists, and they clear the list
themselves:

The current color and filled status are set to black and false (unfilled). The action mode is set
to and the add figure identity is set to , which means that when the user presses
the mouse button a black line is added to the drawing:

The method is called when the user selects the or menu items:

If the file was successfully opened, we start by writing the next color and filled status:

We then write the number of figures in the drawing, and then we write the figures
themselves:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[259]

For each figure, first we write its identity value, we then write the figure itself by calling
 on its pointer. Note that we do not know which class the figure pointer points at. We

do not need to know that, since is a pure virtual method in the base class :

We return the output stream converted to , which is true if the writing was successful:

If the file was not successfully opened, we return :

The method is called when the user selects the Open menu item. We read the
parts of the file in the same order as we wrote them in the preceding :

If the file was successfully opened, we start by reading the next color and filled status:

We then write the number of figures in the drawing, and then we write the figures
themselves:

For each figure, first we read its identity value, we then create a figure of the class indicated
by the identity value by calling . Finally, we read the figure itself by calling

 on its pointer:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[260]

We return the input stream converted to , which is true if the reading was successful:

If the file was not successfully opened, we return :

The method dynamically creates an object of the , , or
 class, depending on the value of the parameter:

The method is called before the Edit menu becomes visible in order to
enable the Copy item. It is also called by the framework in order to enable the Copy toolbar
icon. It returns if at least one figure is marked, and by then it is ready to be copied. If it
returns , the Copy item and toolbar icon become enabled:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[261]

The method is called when the user selects the Copy menu item. To start with, it
deallocates every figure in the copy pointer list and clears the list itself:

Then, we iterate through the figure pointer list and add the pointer to a copy of each
marked figure to the copy pointer list. We call on each figure pointer to provide us
with the copy:

The method is called before the Edit menu becomes visible to enable the
Paste item. It is also called by the framework to enable the paste toolbar icon. If the copy
pointer list is not empty, it returns , and thereby enables the Paste item and image.
That is, it returns if there are figures ready to be pasted:

The method is called when the user selects the Paste item in the Edit menu, or
when they select the paste image in the edit toolbar. We iterate through the copy pointer list
and add a copy (which we obtain by calling) of the figure to the figure pointer list,
after we have moved it 10 pixels downwards and to the right:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[262]

Finally, when the figures have been added to the list, we force an eventual call to the
 by calling :

The method is called every time the user selects the Delete menu item or toolbar
icon. We iterate through the figure pointer list and remove every marked figure:

Also, in this case, we force an eventual call to by calling the method,
after the figures have been deleted:

The method is called every time the user selects the item in the Format
menu. We start by obtaining the new color by calling the static method in the Qt

 class:

If the color is valid, which it is if the user has closed the dialog by pressing the Ok button
rather than the Cancel button, and if they have chosen a new color, we set the next color to
the new color and set the modified flag. We also iterate through the figure pointer list and,
for each marked figure, set the color of the figure:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[263]

If at least one figure is marked, we force an eventual call to by calling update:

The method is called before the item in the Format menu becomes
visible:

In mode, we iterate through the figure pointer list. If at least one rectangle or ellipse
is marked, we return and the item becomes enabled:

If no rectangle or ellipse is marked, we return and the item becomes disabled:

In the mode, we return if the next figure to be added by the user is a rectangle or
an ellipse:

We are not supposed to reach this point. The macro call is for debugging purposes
only. However, we still must return a value at the end of the method:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[264]

The method is called when the user selects the item in the Format menu:

In the mode, we iterate through the figure pointer list and invert the filled status of
all marked figures. If at least one figure changes, we force an eventual call to
by calling :

We also invert the filled status of the next figure to be added:

In the mode, we invert the filled status of the next figure to be added by the user:

The method is called before the item in the Format menu
becomes visible. In mode, it returns and enables the item:

The method is called when the user selects the item in the Format menu.
It sets the action mode to :

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[265]

The method is called before the item in the submenu becomes
visible. It returns , and the item becomes checked (with a radio button, since the item
belongs to a group) in case of add action mode, and the next figure to be added is a line:

The method is called when the user selects the item in the submenu. It set
the action mode to and the next figure to be added by the user to a line:

The method is called before the item in the
submenu becomes visible. It returns in case of action mode and if the next figure
to be added is a rectangle:

The method is called when the user selects the item. It sets the
action mode to and the next figure to be added by the user to a rectangle:

The method is called before the item in the submenu
becomes visible. It returns in case of action mode and if the next figure to be
added is an ellipse:

The method is called when the user selects the item. It sets the action
mode to and the next figure to be added by the user to an ellipse:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[266]

The method is called when the user presses one of the mouse buttons.
We store the mouse point in , to be used in as follows:

In case of mode, we first iterate through the figure pointer list and unmark every
figure:

We then iterate through the list again, to find if the user has hit a figure. Since the top-most
figure is placed at the end of the list, we need to iterate through the list backward. We do so
by using the type of the Qt class:

If we found out (by calling on the figure) that a figure has been hit by the user's
mouse click, we set the application mode to and mark the figure. We also
remove it from the list and add it to the end of the list, to make it appear top-most in the
drawing. Finally, we break the loop since we have found a figure:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[267]

If we have not found a figure, we set the application mode to and
initialize the top-most and bottom-right corners of the enclosing rectangle to the mouse
point:

In case of action mode, we create a new figure by calling with the
identity of the next figure to be added by the user as a parameter. We then set the color,
filled status of the new figure, and initialize its endpoints:

When the new figure has been created and initialized, we add it at the end of the figure
pointer list and set the application mode to , since the
method will continue to modify the last figure in the list, just as if the user had hit a figure
in the mode. We also set the modified flag since we have added a figure to the
drawing:

Finally, we force an eventual call to by calling :

The method is called when the user moves the mouse. If they also press
the left mouse button, we save the mouse point to future calls to and
calculate the distance since the last call to or :

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[268]

In the mode, we modify the current figure (the figure placed at the end of the figure
pointer list) by calling . Remember that the figure can be either modified or moved,
depending on the settings in the call to in previously. We also set
the modified flag since the figure has been altered:

In case of the enclosing rectangle, we just update its bottom-right corner. Note that we do
not set the modified flag since no figure has yet been altered:

Finally, we force an eventual call to by calling :

The method is called when the user releases a mouse button. If it is
the left mouse button, we check the application mode. The only mode we actually are
interested in is the enclosing rectangle mode:

We iterate through the figure pointer list and call on each figure. Each figure that
is completely enclosed by the rectangle becomes marked, removed from the list, and added
to to be later added at the end of the figure pointer list:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[269]

Each figure which is completely enclosed by the rectangle is removed from the figure
pointer list:

Finally, all enclosed figures are added at the end of the list in order to appear top-most in
the drawing:

When the user has released the mouse button, the application mode is set to idle, and we
force an eventual call to by calling :

The method is called when the user double-clicks one of the buttons.
However, is always called before . If the
preceding call to has made point at the clicked
figure, we call on that figure. This may cause some change in the figure,
depending on which kind of figure it is:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[270]

Finally, is called when the content of the window needs to be repainted.
Before the call, the framework clears the window:

We iterate through the figure pointer list and draw every figure. The last figure in the list is
placed at the end of the list, to appear at the top of the drawing:

In case of enclosing rectangle mode, we draw a hollow rectangle with a light-gray border:

The main function
The function is similar to the function of the previous applications it creates an
application, shows the drawing window, and starts the execution of the application.

Main.cpp:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[271]

The output is shown in the following screenshot:

Improving the editor
The editor of this chapter is a more advanced version of the editor of , Qt
Graphical Applications. In this version, it is possible to change the font and alignment of the
text, to mark text, and to cut and paste text.

The EditorWindow class
The class of this chapter is similar to the class of , Qt Graphical
Applications. It catches the key pressing event and the window closing event.

EditorWindow.h:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[272]

EditorWindow.cpp:

The constructor initializes the editor window. It sets the size of the window to 1000 x 500
pixels. It also dynamically creates an editor widget and adds the standard File and Edit
menus:

The Figure menu is different, compared to , Qt Graphical Applications. We add the
item and the submenu Alignment, to which, in turn, we add the three items: left,
center, and right:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[273]

We also add a toolbar for the menu:

The key pressing event and the window closing event are passed on to the editor widget:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[274]

The EditorWidget class
The class is similar to the version of , Qt Graphical Applications.
However, methods and listeners to handle the font and alignment have been added.

EditorWidget.h:

The , , and are called when the
user presses a mouse button, moves the mouse, and releases the mouse button:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[275]

The method is called when the user selects the New menu item,
is called when they select Save or Save As, and is called when they select the
Open menu item:

The , , and methods are called before
the submenu becomes visible. They then annotate a radio button to the selected
alignment:

The , , and methods are called when the user selects one of the
items of the Alignment submenu:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[276]

In this version of the editor, we have two modes edit and mark. The edit mark is active
when the user inputs text or moves the caret with the arrow key, while the mark mode is
active when the user has marked a block of the code with the mouse. The caret is visible in
edit mode, but not in mark mode:

The text can be aligned in the left, center, and right direction:

In edit mode, holds the index to place the next character to be input by the
user, which also is the position of the caret. In mark mode, and

 hold the indexes of the first and last marked character:

The object holds the caret of the editor. The caret is visible in edit mode, but not in
mark mode:

The field holds the text of the editor, and holds the text which
is cut or pasted by the user:

The text of the editor is divided into lines; the index of the first and last character of each
line is stored in :

The current font of the text is stored in . The height in pixels of a character of
the current font is stored in :

The and methods store the last mouse point in order
to calculate the distance between mouse events:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[277]

Similar to the method of , Qt Graphical Applications, is an auxiliary
method that calculates the enclosing rectangle of each character of the text. However, the
version of this chapter is more complicated since it has to take into consideration whether
the text is left, center, or right-aligned:

The enclosing rectangles are stored in , and then used by the caret and
:

EditorWidget.cpp:

The constructor sets the window header to and the file suffix to :

The text font is initialized to point . The application mode is set to
edit, the index of the next character to be input by the user is set to zero, and the text is left-
aligned from the beginning:

The rectangles enclosing the characters are calculated by , the caret is initialized
and shown since the application holds edit mode from the beginning:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[278]

The method is called when the user selects the New menu item. We start by
setting the application mode to edit and the edit index to zero. The text font is set to
point Times New Roman. The text of the editor is cleared, the rectangles enclosing the
characters are calculated by , and the caret is set:

The method is called when the user selects the Save or Save As menu items.
The file format is quite simple: we write the font on the first line, and then the text of the
editor on the following lines:

We use the field of the input stream to decide if the writing was successful:

If we could not open the file for writing, we return :

The method is called when the user selects the Open menu items. Similar to
 previously, we read the first line and initialize the text font with the text. We

then read the editor text:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[279]

When the text is read, we call to calculate the rectangles enclosing the
characters of the text. We then set the caret and return , since the reading was
successful:

We use the field of the input stream to decide if the reading was successful:

If we could not open the file for reading, we :

The method is called before the Edit menu becomes visible. It is also called
by the framework to decide whether the copy toolbar icon shall be enabled. It returns true
(and the item becomes enabled) if the application holds mark mode, which means that the
user has marked a part of the text, which can be copied:

The method is called when the user selects the Copy item. We copy the marked text
into :

The method is also called before the Edit menu becomes visible. It
returns (and the item becomes visible) if the copy text is not empty. That is, if there is
a block of text that has been copied and is ready to be pasted:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[280]

The method is called when the user selects the Paste menu item. In mark mode,
we call , which causes the marked text to be deleted:

We then insert the copied text into the editor text. We also update , since the
edit index after the text has been copied shall be the position after the inserted text:

Finally, we calculate the rectangles enclosing the characters of the text, set the caret to the
new index, set the modified flag since the text has been altered, and call to force an
eventual call to in order to display the new text:

The method is called when the user selects the Delete menu item or the Delete
toolbar icon. The effect is similar to the event when the user presses the Delete key.
Therefore, we prepare a keypress event with the Delete key, which we use as a parameter in
the call to .

Note that there is no method because the user can always use the
Delete item. In edit mode, the next character is deleted. In mark mode, the marked text is
deleted:

 is called before the Format menu becomes visible. It returns in edit
mode, since it would be illogical to change the font on all characters when a subset of them
is marked:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[281]

The method is called when the user selects the menu item. We let the user
select the new font with the Qt class:

If the user closes the dialog by pressing the Ok button, we set the font of the editor
() field and the modified flag:

We calculate the newly enclosed rectangles by calling , set the caret, and force an
eventual call to by calling :

The , , and methods are called before
the alignment submenu becomes visible. They return to the current alignment:

The , , and methods are called when the user selects the ,
, and menu item. They set the alignment and the modified flag.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[282]

They also calculate the new enclosing rectangles, set the caret, and force an eventual call to
 by calling :

The method is called when the user presses one of the mouse buttons.
We call to find the character index the user clicked on. For the time being,
both the first and last mark index is set to the mouse index. The last index may later be
changed by a call to in the following snippet. Finally, the mode is set to
mark, and the caret is hidden:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[283]

The method is called when the user moves the mouse. We set the last
mark index to the mouse index and force an eventual call to by calling

:

The method is called when the user releases the mouse button. If the
user has moved the mouse to the original start position of the mouse movement, there is
nothing to mark and we set the application in edit mode. In that case, we set the edit index
to the first mark index, and set and show the caret (since it shall be visible in edit mode).
Finally, we force an eventual call to by calling :

 is called when the user presses a key on the keyboard. Depending on the
application mode (edit or mark), we call or the
following to further process the key event:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[284]

 handles the key press in edit mode. First, we check if the key is an
arrow key, page up or down, Delete, Backspace, or return key:

In the case of the left-arrow key, we move the edit index one step backward, unless it is
already at the beginning of the text:

In the case of the right-arrow key, we mode the edit index one step forward, unless it is
already at the end of the text:

In the case of the up-arrow key, we calculate the appropriate and position for the
character on the previous line, unless it is already on top of the text. We then call

, which has the same effect as if the user has clicked on the character
above the line:

In the same way, in the case of the down-arrow key, we move the edit index one line
downwards unless it is already at the bottom of the text.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[285]

We calculate the appropriate and position for the character on the line below and call
, which has the same effect as if the user has clicked at the point:

In the case of the Delete key, we remove the current key, unless we are at the end of the text.
That is, if we are one step beyond the last character:

In the case of the backspace key, we move the edit index one step backward, unless it
already is at the beginning of the text, and call . In this way, we remove the
previous character and move the edit index one step backward:

In the case of the return key, we simply insert the new line character to the text:

If the key is not a special key, we check whether it is a regular character by calling on
the key event pointer. If the text is not empty, add its first character to the text:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[286]

Finally, we calculate the enclosing rectangles, set the caret, and force an eventual call to
 by calling :

 is called when the user presses a key in mark mode:

In case of the left-arrow key, we set the application to edit mode and the edit index to the
minimum of the first and last marked index. However, if the minimum index is located at
the beginning of the text, we do nothing:

On the other hand, in the case of the right-arrow key, we set the application to edit mode
and the edit index to the maximum of the first and last marked index. However, if the
maximum index is located at the end of the text, we do nothing:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[287]

In case of the up and down arrows, we simulate a mouse click one line above or below the
current line, just as in the previous edit case:

In the mark mode, the delete and backspace keys perform the same task they delete the
marked text:

We remove the marked text from the edit text, set the modified flag, set the application to
edit mode, set the edit index to the minimum of the first and last marked index, and show
the caret:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[288]

The return key case is similar to the previous edit mode case, with the difference that we
first delete the marked text. We then add a new line to the editor text:

If the key is not a special key, we check if it is a regular key by calling on the key event
pointer. If the text is not empty, the user has printed a regular key, and we insert the first
character in the editor text:

Finally, we calculate the new rectangles enclosing the characters, set the caret, and force an
eventual call to by calling :

The method is called when the user moves the caret up or down. It
simulates a mouse click by calling and , with
suitably prepared event objects:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[289]

The method sets the caret to the appropriate size and position in edit mode.
Firstly, we use to find the rectangle of the correct character. We then create a
new rectangle that is of only one-pixel width, in order for the caret to appear as a thin
vertical line:

The method takes a mouse point and returns the index of the character at
that point. Unlike the version of , Qt Graphical Applications, we need to take into
consideration that the text may be center or right-aligned:

If the mouse point is below the text of the editor, the index of the last character is returned:

Otherwise, we start by finding the line of the mouse point, and obtain the indexes of the
first and last character on the line:

If the mouse point is located to the left of the first character on the line (which it may be if
the text is center or right-aligned), we return the index of the first character of the line:

If the mouse point, on the other hand, is located to the right of the line, we return the index
of the character next to the last character of the line:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[290]

Otherwise, we iterate through the character on the line and, for each character, we check
whether the mouse point is located inside the character's enclosing rectangle:

If the mouse point is located inside the rectangle, we check if it is closest to the left or right
border of the rectangle. If it is closest to the left border, we return the index of the character.
If it is closest to the right border, we instead return the index of the next character:

We are not supposed to reach this point. The macro is added for debugging
purposes only:

The method is called when the user resizes the window. We calculate the
rectangles enclosing the characters, since the width of the window may have changed,
which may cause the lines to hold fewer or more characters:

The method divides the text into lines, and calculates the rectangles enclosing
every character of the text. The indexes of the first and last character of each line are stored
in , and the enclosing rectangles are stored in :

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[291]

We use the Qt class to obtain the height of a character of the editor font. The
height is stored in . The method gives the width of the window
content, in pixels:

We start by iterating through the editor text in order to divide the text into lines:

When we encounter a new line, we add the first and last index of the current line to
:

Otherwise, we call the method of the Qt object to obtain the width of the
character, in pixels:

If the character makes the width of the line exceed the width of the window content, we add
the first and last index to and start a new line.

However, we have two different cases to consider. If the current character is the first
character of the line, we have the (rather unlikely) situation that the width of that character
exceeds the width of the window content. In that case, we add the index of that character as
both the first and last index to . The first index of the next line is the character
next to that character:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[292]

If the current character is not the first character of the line, we add the indexes of the first
character and the character preceding the current character to . The index of
the next line becomes the index of the current character:

If the character does not make the width of the line exceed the width of the window
content, we simply add the width of the character to the width of the line:

Finally, we need to add the last line to :

When we have divided the text into lines, we continue to calculate the enclosing rectangles
of the individual characters. We start by setting to zero, since it holds the top position
of the line. It will be increased by the line height for each line:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[293]

Depending on the alignment of the text, we need to decide where the line starts. In the case
of left alignment, we set the left position of the line to zero:

In case of center alignment, we set the left position to half of the difference between the
width of the window content and the line. In this way, the line will appear at the center of
the window:

In case of right alignment, we set the left position to the difference between the width of the
window content and the line. In this way, the line will appear to the right in the window:

Finally, when we have decided the starting left position of the line and the width of each
individual character of the text, we iterate through the line and calculate the enclosing
rectangle for each character:

For the very last line of the text, we add a rectangle holding the position beyond the last
character:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[294]

The top field is increased by the height of the line for each new line:

The method is called by the framework every time the window needs to be
repainted, or when we force a repainting by calling . The framework clears the
content of the window before the call to :

First, we create a object that we then use to write on. We set some rendering and
the font of the text:

We calculate the minimum and maximum index of the marked text (even though we do not
yet know if the application holds mark mode):

We iterate through the text of the editor. We write every character except a new line:

If the character is marked, we write it with white text on a black background:

If the character is not marked, we write it with black text on a white background:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[295]

When the colors of the text and background have been set, we look up the rectangle
enclosing the character and write the character itself:

Finally, we also paint the caret:

The main function
The function is similar to the main function of the previous applications: it creates an
application, shows the drawing window, and starts the execution of the application.

Main.cpp:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Enhancing the Qt Graphical Applications Chapter 6

[296]

The output is shown in the following screenshot:

Summary
In this chapter, we have developed more advanced versions of the analog clock, the
drawing program, and the editor. The clock shows the current hour, minute, and second.
The drawing program, allows the user to draw lines, rectangles, and ellipses. The editor
allows the user to input and edit text. The clock face has digits instead of lines. In the
drawing program we can mark, modify, and cut and paste figures, and in the editor, we can
change font and alignment and mark a text block.

In , The Games, we will start developing the games Othello and Nought and
Crosses.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

77
The Games

In , Enhancing the QT Graphical Applications, we developed an analog clock, a
drawing program, and an editor with the Qt graphical library. In this chapter, we continue
by developing the Othello and Noughts and Crosses games with the Qt library. You will
find a description of these games after this introduction. We start in this chapter with basic
versions, where two players play against each other. In , The Computer Plays, we
improve the games so that the computer plays against the human.

Topics we will cover in this chapter include:

Introduction to game theory. We develop a game grid where the players take
turns to add their marks to the game grid.
We announce the winner. In Othello, after each move, we calculate how many of
the opponent's marks can be changed. When every position of the game grid has
been occupied, we declare the winner or a draw.
In Noughts and Crosses, we count the number of marks in a row. If there are five
marks in a row, we declare the winner.
We continue to use C++ features such as classes, fields, and methods. We also
continue to use Qt features such as windows and widgets.

Othello
In Othello, the game grid is empty at the beginning of the game. During the game, two
players take turns adding marks, colored in black and white, to the game grid. Each time a
player adds a mark, we look at the other marks and see if the new mark causes any of the
opponent s marks to be enclosed. In that case, we swap the color of the opponent s enclosed
marks.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Games Chapter 7

[298]

For instance, if the black player adds a black mark in a position where the three marks to
the left are white and the fourth mark is black, the three white marks are being enclosed by
the two black marks, and they are swapped to black marks. When every position on the
game grid has been occupied by white and black marks, we count the marks and the player
with the most marks is the winner. If there is an equal number of black and white marks, it
is a draw.

Here's what our game should look like:

The game widget
First of all, we need a game grid. The class is common to all the applications of
this chapter and of , The Computer Plays. In , Qt Graphical Applications
and , Enhancing the QT Graphical Applications, we developed the

 class, since we worked with document-based applications. In this chapter
and , The Computer Plays, we instead develop the class.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Games Chapter 7

[299]

The class of the two previous chapters and the class of this
chapter and the next chapter have both similarities and differences. They are both
subclasses of the Qt class , and they are both intended to be embedded in a
window. However, while was intended to hold a document,

 is intended to hold a game grid. It draws the grid and catches mouse clicks in
the positions of the grid. is an abstract class that lets it its subclass define
methods that are called when the user clicks the mouse or when a mark in one of the
positions of the game grid needs to be repainted.

However, we reuse the class from the previous chapters to hold the main
window of the application, with its menu bar.

GameWidget.h

The constructor initializes the number of rows and columns of the game grid:

The method sets every position in the game grid to zero, which is assumed to
represent an empty position. Therefore, every class that inherits shall let the
value zero represent an empty position:

The method is called when the user changes the size of the window. Since
the number of rows and columns is constant, the width and height of each position is
changed in accordance with the new size of the window:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Games Chapter 7

[300]

The is called when the user presses one of the mouse buttons,
 is called when the window needs to be repainted, and is called

when the user clicks on the close box at the top-right corner of the window:

The and methods are pure virtual methods intended to be
overridden by subclasses; is called when the user clicks at a position in the grid,
and is called when a position needs to be repainted. They are pure virtual
methods, whereas is abstract, which means that it is only possible to use

 as a base class. The subclasses of must override the methods to
become non-abstract:

The method displays a message box that asks the user if they really want to quit
the game:

The method is called before the menu becomes visible. The
item is enabled when a game is in progress:

The and methods are called when the user selects the Quit or Exit menu
items:

The and methods return and set the value of the
 field:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Games Chapter 7

[301]

The and methods get and set a value at a position in the game grid. The value is an
integer; remember that an empty position is assumed to hold the value zero:

The field is true as long as a game is in progress. The and
 fields hold the number of rows and columns of the game grid;

and hold the height and width in pixels of each position in the game grid.
Finally, is a pointer to a buffer holding the values of the positions of the game
grid:

The file holds the definitions of the methods of the class, the
mouse event methods, and the menu methods, as well as the drawings and settings of the
marks.

GameWidget.cpp

The constructor initializes the number of rows and columns of the grid, dynamically
allocates its memory, and calls to clear the grid:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Games Chapter 7

[302]

The method returns the value at the position indicated by the row and column and
sets the value. The buffer holding the values is organized in rows. That is, the first part of
the buffer holds the first row, and then the second row, and so on:

The method sets every position to zero, since zero is assumed to represent an
empty position:

The menu item is enabled as long as a game is in progress:

If a game is in progress when the user selects to quit the game, a message box with a
confirmation question is displayed:

If the user presses the button, is returned:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Games Chapter 7

[303]

The method is called when the user selects the Quit menu item. If the call to
 returns true, is set to false and update is called, which

eventually forces a repaint of the window where the game grid is cleared.

The method is called when the user selects the Exit menu item. If the call to
 returns true, the application is exited. This is shown in the following code:

The method is called when the user resizes the window. The row height and
column width are recalculated since the number of rows and columns is constant regardless
of the size of the window. We divide the height and width of the window by the number of
rows and columns plus two, since we add extra rows and columns as margins. Consider the
following code:

The method is called when the user clicks on the window:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Games Chapter 7

[304]

The column width and row height are subtracted from the mouse point, since the game grid
is enclosed by margins:

If the mouse point is located inside one of the game grid positions, and that position is
empty (zero), the pure virtual method is called, which takes care of the actual
action of the mouse click. In the next section, black and white marks are added to the game
grid, and in the Noughts and Crosses application later on. Noughts and crosses are added
to the game grid:

If the rows and columns clicked are located in the game grid (rather than in the margins
outside the game grid) and the position is empty (zero), we call the , which is a
pure virtual method, with the row and column:

The method is called when the window needs to be repainted. If a game is in
progress (is true), the rows and columns are written, and then for each
position in the game grid, the pure virtual method is called, which takes care of
the actual painting of each position:

First, we iterate through the rows and for each row, we write a letter from to . There are
26 letters of the alphabet, and we assume there are no more than 26 rows:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Games Chapter 7

[305]

Then we iterate through the columns, and for each column, we write its number:

A pure virtual method is a method that is not intended to be defined in the
class, only in its subclasses. A class holding at least one pure virtual
method becomes abstract, which means that it is not possible to create
objects of the class. The class can only be used as a base class in a class
hierarchy. A class that inherits an abstract class must define each pure
virtual method of the base class, or become abstract itself.

Finally, we iterate through the game grid, and for each position, we call the pure virtual
method with the rectangle of the position and its current mark:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Games Chapter 7

[306]

The method is called when the user clicks on the close box at the top-right
corner of the window. If the call to returns true, the window is closed, and the
application is exited:

The OthelloWindow class
The class is a subclass of from , Enhancing the QT Graphical
Applications. It adds menus to the window and sets the class here, which is
a subclass of , to its central widget.

OthelloWindow.h

The field holds a pointer to the widget located in the center of the
window. It points at an object of the class. This is shown in the following
code:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Games Chapter 7

[307]

The file defines the methods of the class.

OthelloWindow.cpp

The constructor sets the title of the window to and the size to 1000 x 500 pixels:

An object is dynamically created and placed at the center of the window:

We add the menu to the menu bar and connect the method to the menu,
which causes it to be called before the menu becomes visible:

The user can choose the black or white color to make the first move. The
 and methods are called before the

items become visible. The items become disabled when a game is in progress:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Games Chapter 7

[308]

When a game is in progress, the user can quit the game. The item becomes disabled when
no game is in progress:

The user can exit the application at any time:

The destructor deallocates the widget in the center of the window:

The OthelloWidget class
 is a subclass of the class we defined at the beginning of this

chapter. It becomes a non-abstract class by overriding and , which are
called when the user clicks at a position in the game grid and when a position needs to be
repainted.

OthelloWidget.h

A mark in Othello can be black or white. We use the enumeration to store values on
the game grid. The item holds a value of zero, which is assumed to be
to represent an empty position:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Games Chapter 7

[309]

The and listeners are called before the
 and menu items become visible in order to enable them. Note

that the listeners and methods must be marked as public slots for the menu framework to
allow them as listeners:

The and methods are called when the and
 menu items are selected by the user:

The method checks if every position on the game grid has been occupied by
a black or white mark. If it has, the marks are counted, and the winner is announced unless
it is a draw:

The method is called when one of the players has made a move. It calculates the
positions to be turned as a result of the move:

The method calculates the set of marks to be turned if the player places the
mark in the position given by the row and column:

The field is alternatively given the values and of the
preceding enumeration, depending on which player is about to do the next move.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Games Chapter 7

[310]

It is initialized by or , as shown in the previous code:

The class holds the functionality of the game. It allows the player to add
black and white marks to the game grid, turn marks, and announce the winner.

OthelloWidget.cpp

The and menu items are enabled when there is not already a
game in progress:

The and methods set a new game in progress, set the
mark to make the first move (black or white), clear the grid, and update the window to
paint an empty game grid:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Games Chapter 7

[311]

The is called when the player clicks an empty position on the game grid. We
set the position with the next mark, turn every mark that is affected by the move, and
update the window to reflect the change:

We check if the move has caused the game grid to become full and switch the next mark:

The method is called when a position in the game grid needs to be repainted. We
draw a black or white ellipse with black borders if the position is not empty. If the position
is empty, we do nothing. Note that the framework clears the window before the call to
repaint:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Games Chapter 7

[312]

The method counts the number of positions that are occupied by black and
white marks or are empty:

If there are no empty positions left, the game is over, and we announce the winner, unless it
is a draw. The winner is the player with the most marks in their color:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Games Chapter 7

[313]

The method calls to obtain the set of positions where the mark shall
be turned. Then each position in the set is set to the mark in question.

In this application, is the only method that calls . However, in
, The Computer Plays, will also be called to calculate the move of

the computer player. Therefore, the functionality of and are divided
into two methods:

The method counts the number of marks that will be turned for each
position on the game grid, in all eight directions:

Each integer pair in refers to a direction in accordance with the compass
rising:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Games Chapter 7

[314]

The size of an array can be decided by dividing its total size (in bytes) by the size of its first
value:

We iterate through the directions and, for each direction, keep moving as long as we find
the mark of the opponent:

The and fields hold the current row and column as long as we iterate in that
direction:

We gather the marks we find during the iteration in :

If we reach one of the borders of the game grid, or if we find an empty position, we break
the iteration:

If we find the player's mark, we add the direction set to the total set and break the iteration:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Games Chapter 7

[315]

If we do not find the player's mark or an empty position, we have found the opponent's
mark, and we add its position to the direction set:

The main function
The function works in the same way as in the previous Qt applications. It creates an
application, shows the Othello window, and executes the applications. The execution
continues until the method is called, which it is when the user closes the window or
selects the Exit menu item.

Main.cpp

Noughts and crosses
The Noughts and Crosses application sets up a game grid and allows two players to play
each other. In Noughts and Crosses, two players take turns adding noughts and crosses to a
game grid. The player that first manages to place five marks in a row wins the game. The
marks can be placed horizontally, vertically, or diagonally. While each player tries to place
five of their own marks in a row, they must also try to prevent the opponent from placing
five marks in a row.

In , The Computer Plays, the computer plays against the human.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Games Chapter 7

[316]

The NaCWindow class
We reuse the from the game widget section. The class is similar to

. It adds the and menu items to the
window's menu bar.

NaCWindow.h

The file holds the definitions of the methods of the class.

NaCWindow.cpp

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Games Chapter 7

[317]

The NaCWidget class
The class handles the functionality of Noughts and Crosses. It allows two
players to play each other. In , The Computer Plays, we will write a game where
the computer plays the human.

NaCWidget.h

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Games Chapter 7

[318]

Similar to the Othello application, a position in the game grid can hold one of three values:

 (which is zero)

The enumeration corresponds to the , , and values:

The file holds the definitions of the methods of the class.

NaCWidget.cpp

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Games Chapter 7

[319]

The and methods are called before
the menu becomes visible. The and menu items are
enabled if there is no game in progress:

The and methods are called when the user selects the
 and menu items. They set the game in progress, set the

first mark to make the first move (), and force a repainting of the game grid by
calling :

The method is called when the players click a position in the game grid. We set
the next mark at the position, check if one of the players has won the game, swap the next
move, and repaint the window by calling :

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Games Chapter 7

[320]

The method is called when a position in the game grid needs to be repainted:

We set the pen color to black, and in the case of a nought, we draw an ellipse, as follows:

In the case of a cross, we draw two lines between the top-left and bottom-right corners and
between the top-right and bottom-left corners:

In the case of an empty position, we do nothing. Remember that the framework clears the
window before the repainting:

When a player has made a move, we check if the move has led to victory. We call
 in four directions to and see if the move has caused five marks

in a row:

For the north and south directions, the code would be:

 For the west and east directions, the code would be:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Games Chapter 7

[321]

For the northwest and southeast directions, the code would be:

For southeast and northwest, it would be:

If the move has caused five marks in a row, we display a message box with the winner
(black or white). In Noughts and Crosses, there can be no draw:

The game grid is cleared, and is thereby ready for another game:

The method counts the number of marks in a row. We the
number of marks in both directions. For instance, if both and are
minus one, we decrease the current row and column by one for each iteration. That means
that we call in the northeast direction in the first iteration. In the second
iteration, we call in the opposite direction, that is, in the southwest direction:

We keep counting until we encounter one of the game grid borders, or we find a mark that
is not the mark we are counting, that is, the mark of the opposite player or an empty mark:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Games Chapter 7

[322]

In the second iteration, we subtract the row and column steps instead of adding them. In
this way, we call in the opposite direction. We also initialize the current rows
and columns by adding the steps in order, so we do not the middle mark
twice:

The main function
The function creates the application, shows the window, and executes the application
until the user closes the window or selects the Exit menu item.

Main.cpp

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Games Chapter 7

[323]

The output for the preceding code is as follows:

Summary
In this chapter, we developed the two games, Othello and Noughts and Crosses. We were
introduced to game theory, and we developed a game grid where the players take turns to
add their marks. In Othello, we developed methods to count the number of marks to change
for each move, and in Noughts and Crosses, we developed methods to recognize if one of
the players had managed to place five marks in a row if they had, we declared them the
winner.

In , The Computer Plays, we will develop more advanced versions of these games,
where the computer plays against a human.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

88
The Computer Plays

In this chapter, we continue to work on the Othello and Noughts and Crosses games. The
new part of this chapter is the computer playing against the human; instead of two human
players, the computer plays against a human.

Topics we will cover in this chapter include:

Game-theory reasoning. In both games, the human or the computer can make the
first move, and we add code for the computer to play against the human.
In Othello, for each move, we scan the game grid and try to find the move that
causes the highest number of the human's marks to be swapped.
In Noughts and Crosses, we try to find the position in the game grid that gives us
the highest number of marks in a row, or, if the human is about to get five in row,
we have to place the computer s mark in a position that prevents that.
An introduction to random number generation. If the computer can choose
between several equivalent moves, it shall randomly select one of the moves.
We continue to use C++ features such as classes, fields, and methods. We also
continue to use Qt features such as windows and widgets.

Othello
In the Othello application of this chapter, we reuse the and

 classes of the previous chapter.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Computer Plays Chapter 8

[325]

The OthelloWindow class
The class is rather similar to its counterpart in the previous chapter.
However, in addition to the menus and items, the window of this version also holds
submenus. The submenus will be added by calling the method in the

 file.

OthelloWindow.h

The file holds the definitions of the methods of the
 class.

OthelloWindow.cpp

The title of the window has been changed to :

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Computer Plays Chapter 8

[326]

There are two submenus of the Game menu, and :

The submenu holds the two items and
:

The submenu holds two items, and :

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Computer Plays Chapter 8

[327]

The OthelloWidget Class
The class holds the functionality of Othello. It allows the computer to play
against a human:

OthelloWidget.h

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Computer Plays Chapter 8

[328]

The file holds the definitions of the methods of the
 class:

OthelloWidget.cpp

The , ,
, and methods are called

before the and submenus. They become enabled if there
is no game in progress:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Computer Plays Chapter 8

[329]

The and methods are called when
the user selects one of the items of the submenu. They set the computer
mark to black or white, start the game by setting the mark in the middle of the game grid,
and update the window:

The and methods are called when the user
selects one of the items of the submenu. They set the computer mark to
black or white and update the window. They do not set any mark in the game grid. Instead,
the human is to make the first move:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Computer Plays Chapter 8

[330]

The method is called when the user clicks one empty position in the game grid.
We start by setting the next mark at the position, and turn the marks as a result of the move:

If the human's move did not cause the game grid to become full, we call to
 to set the computer mark to the position, causing the maximum

number of opposite marks to be turned. We then update the window and call
again to decide if the computer move caused the game grid to become full:

The method is called when a position in the game grid needs to be repainted. It
draws the mark in the same way as in the previous chapter:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Computer Plays Chapter 8

[331]

The method of this chapter is also similar to its counterpart in the previous
chapter. It checks whether the game grid is full. If it is full, the winner is announced, or else
it is a draw:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Computer Plays Chapter 8

[332]

The method calculates the move of the computer that generates
the highest number of turned opposite marks. We iterate through the computer marks and,
for each mark, call to obtain the maximum number of opposite marks
that would be turned if we placed the marks at that position. For each mark, we also obtain
the number of neighbours, which is valuable if we do not find any marks to turn.

The and fields hold the maximum number of turnable
marks and neighbours; holds a list of the maximum sets of positions of
turnable marks, and holds a list of the maximum number of
neighbours:

We iterate through all the positions in the game grid. For each empty position, we obtain
the number of opposite marks to be turned if we were to place our mark in that position.
We also obtain the number of opposite neighbours:

If we find a set of turnable marks that is larger than the current maximum set, we set the
 field to the size of the new turnable set, insert the current position in the

set, clear (since we do not want its previous smaller sets), and add the
new set.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Computer Plays Chapter 8

[333]

We add the current set for the sake of simplicity; it is easier to add it to the set than to store
it in any other way:

If the new set is not empty and of equal size to the maximum set, then we simply add it to
:

We also check the number of neighbours of the current position. We work in the same way
as in the set case. If the neighbours are more than the maximum number of
neighbours, we clear and add the new position:

If there is at least one neighbour, and the neighbours is equal to the maximum number of
neighbours, we add it to the list:

If there is at least one position where we will turn at least one opposite mark, we choose it.
If there are several positions that will turn the same amount of opposite marks, we
randomly select one of them. We use the C standard functions , , and to
obtain a random integer number.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Computer Plays Chapter 8

[334]

The random number generator algorithm takes a start value and then generates a sequence
of random numbers. The function initializes the generator with a start value, and
then is called repeatedly in order to obtain new random numbers. In order to not call

 with the same start value every time (which would result in the same random
number sequence), we call with the result of a call to the standard C function,
which returns the number of seconds since January 1, 1970. In this way, the random number
generator is initialized with a new value for each game, and we obtain a new sequence of
random numbers by repeatedly calling :

When we have obtained the set of positions to be turned, we iterate through the set and set
the computer mark to all its positions:

If there is no position that would cause opposite marks to be turned, we look at the
neighbours instead. In the same way, we randomly select one of the positions with the
maximum number of neighbours. Note that we do not need to iterate through any set; in
this case, we only set one mark:

The method is called when the human has made a move. It calls to
obtain a set of turnable opposite marks, and then iterates through the set and sets each
position in the game grid:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Computer Plays Chapter 8

[335]

The method calculates the set of turnable opposite marks and number of
neighbours of the given position:

Each integer pair in refers to a direction in accordance with the compass
rising:

The size of an array can be decided by dividing its total size (in bytes) by the size of its first
value:

We iterate through the directions and, for each direction, keep moving as long as we find
the mark of the opponent:

The and fields hold the current row and column as long as we iterate through a
direction:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Computer Plays Chapter 8

[336]

First, we check if we have a neighbor of the opponent mark in the closest position. If we
have not reached one of the borders of the game grid, and if there is an opponent mark in
the position, we increase :

We gather the marks we find during the iteration in :

If we reach one of the borders of the game grid, or if we find an empty position, we break
the iteration:

If we find the player's mark, we add the to the total set and break the
iterations:

If we do find the player's mark or an empty position, we have found the opponent's mark,
and we add its position to the direction set:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Computer Plays Chapter 8

[337]

The main function
As always, the function creates an application, shows the window, and executes the
application until the user closes the window or selects the Exit menu item.

Main.cpp

Noughts and Crosses
The Noughts and Crosses application of this chapter is based on the version in the previous
chapter. The difference is that in this version the computer plays against a human.

The NaCWindow class
The class is similar to the class in the previous section (NaC is
an abbreviation for Noughts and Crosses). It adds two submenus to the game menu, where
the computer or human makes the first move and selects a nought or cross:

NaCWindow.h

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Computer Plays Chapter 8

[338]

The file holds the definitions of the methods of the class:

NaCWindow.cpp

The title has been changed to :

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Computer Plays Chapter 8

[339]

The NaCWidget class
The class has been improved compared to the version in the previous chapter.
It holds the and methods for the
computer to play against the human:

NaCWidget.h

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Computer Plays Chapter 8

[340]

The file holds the definitions of the methods of the class:

NaCWidget.cpp

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Computer Plays Chapter 8

[341]

The , ,
, and methods decide

whether to enable the , , , and
 menu items. They are all enabled when there is no game in progress:

The , , , and
 are called when the user selects the ,

, , and menu items. They set the game in progress, set
the computer and human marks to nought and cross, and update the window. In cases
where the computer makes the first move, it is placed in the middle of the game grid in
order to use the game grid as effectively as possible:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Computer Plays Chapter 8

[342]

The method is called when the human player clicks an empty position in the
game grid. We start by setting the mark to the position and updating the window:

If the human's move did not cause them to win the game, we calculate the next move of the
computer, set the position, check if the move has caused the computer to win the game, and
update the window:

The method is called when a position needs to be repainted. It is similar to its
counterpart in the previous chapter. It draws a nought or a cross:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Computer Plays Chapter 8

[343]

The method is also similar to its counterpart in the previous chapter. It
decides if the latest move has caused five marks in a row. If it has, the winner is announced:

The method counts the number of marks in a row. It has been improved
compared to its counterpart in the previous chapter. In this version, we also count the
highest possible number of marks in a row that the move can lead to. Since is
called by , we need to know how many marks in a row the move
may lead to:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Computer Plays Chapter 8

[344]

The field holds the number of marks in a row that we would get if we placed
our mark at the given position; holds the number of marks in a row we possibly
can get if we continue to add marks in that row. The reason is that the computer will not
add marks to a row that cannot become five in a row:

We iterate through the game grid in the given direction:

As long as we find the mark, we increase both and :

If we find an empty position, we add (since a free row is better than a closed row) to
the , and continue to increase the :

If we find neither the computer mark nor an empty position, we must have found the
human's mark, and we break the iteration:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Computer Plays Chapter 8

[345]

At the end of each iteration, we add the row and columns steps to the current row and
column:

We perform a similar iteration in the opposite direction. The only difference is that we
subtract the row and columns steps at the end of each iteration, instead of adding to them:

If the free count is at least five, we return the mark count. If it is less than five, we return
zero, since we cannot obtain five in a row in this direction:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Computer Plays Chapter 8

[346]

The method calculates the computer move that causes the
maximum numbers of marks in a row. We count both the computer and human's rows,
since we may be facing a situation where we need to stop the human from winning instead
of maximizing the computer's chance to win.

The and fields hold the maximum number of marks
in a row that we have found so far. The and hold the
position that causes the maximum number of marks in a row for the computer and the
human:

We iterate through the game grid. For each empty position, we try to set the computer and
human mark and see how many marks in a row that would cause:

We obtain the maximum number of marks in a row for the computer and human mark. If it
is larger than the previous maximum number, we clear the list and add the position to the
list:

If the new number of marks in a row is greater than zero or equals the maximum number,
we just add the position:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Computer Plays Chapter 8

[347]

We do the same for the human mark as the computer mark:

Finally, we reset the position to the empty value:

The computer or human must have at least one in a row for a position:

If the computer's value is at least two and larger the human value, or if the human value is
less the four, we randomly select one of the computer's maximum moves:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Computer Plays Chapter 8

[348]

However, if the computer cannot make at least two in a row, or if the human is about to get
five in a row, we randomly select one of the human's maximum moves:

The method calculates the maximum number of marks in a row that
the given position may cause by calculating the larger value of its four directions:

The main function
Finally, the function works at it always does in the Qt applications:

Main.cpp

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Computer Plays Chapter 8

[349]

Summary
In this chapter, we have developed more advanced versions of the games of the previous
chapter. In both Othello and Noughts and Crosses, we have added code that lets the
computer play against the human. In Othello, we looked for the position in the game grid
that would cause the highest number of the opponent s marks to be changed. In Noughts
and Crosses, we searched for the move that gave the computer the highest possible number
of marks in a row, preferably five in a row. However, we also had to search for the potential
number of marks in a row for the opponent, and prevent their next move if it led to victory.
Now, I suggest that you sit back and enjoy a couple of rounds with the computer before
moving on to the next chapter.

In the next chapter, we will start developing a Domain-Specific Language (DSL), which is
a language intended for a specific domain. We will develop a DSL for specifying the
drawings of graphical objects, such as lines, rectangles, ellipses, and text, as well as the
settings for color, font, pen and brush style, and alignment. We will also write a viewer that
displays the graphical objects.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

99
Domain-Specific Language

In the previous chapters, we developed the games Othello and Noughts and Crosses with
the Qt library. In this chapter, we will start to develop a Domain-Specific Language (DSL),
which is a language intended for a specific domain. More specifically, we will develop a
language for writing graphical objects in a Qt widget. The language allows us to draw lines,
rectangles, ellipses, and to write text. Moreover, it does allow us to choose color as well as
pen and brush style for the graphical objects. It also allows us to choose font and alignment
for the text.

Topics we will cover in this chapter include:

First, we will informally look into the source code of our DSL by looking at an
example. We will draw graphical objects and set their color, style, and font.
We will formally define our language with grammar.
When we have defined the grammar, we write the scanner. The scanner reads the
source code and recognizes meaningful sequences of characters, called tokens.
When we have written the scanner, we write the parser. The parser can be
considered the heart of our DSL. It requests new tokens from the scanner, when
needed. It checks that the source code complies with the grammar, and it
generates a sequence of actions. Each action holds an instruction, such as setting
the color or drawing a line.
Finally, we write a viewer that reads the action sequence generated by the parser
and displays the graphical objects in a Qt widget.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[351]

Introducing the source language a simple
example
The source language of our DSL is made up by a sequence of instructions. There are
instructions for drawing graphical objects such as lines, rectangles, ellipses, and text. We
also have instructions for setting the color and style of the objects as well as font and
alignment of the text. Finally, there is instruction for assigning values to a name.

Let us look at an example. The following code draws a rectangle and writes text. Note that
the language is not case-sensitive, that is, it does not matter whether we use small or capital
letters in our code. We start by defining the top-left corner of a rectangle:

We use the coordinate operators to extract the x and y coordinates of the top-left point and
define the bottom-right corner:

We use the predefined values and to set the style of the pen and
brush:

We use the predefined color for the pen and create our own color for the
brush. We can create a new color with three values corresponding to their red, green, and
blue components. Each component can hold a value between 0 and 255, inclusive:

We continue to add a text, with font and alignment. We choose point
with left horizontal alignment and top vertical alignment:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[352]

The instructions of this example will be divided into meaningful parts by the scanner; the
parser will check that the instructions comply with the grammar and generate a sequence of
actions read by the viewer and display the following Qt widget:

The grammar of the source language
The source language of our DSL needs to be exactly defined. We do that by
defining grammar for the language. Grammar is made up by rules (in italic style), keywords
(in bold style), separations, and punctuations.

The rule is the start rule. The arrow () means that a program is made up by an
instructions list. The arrow can be read as:

In the grammar, an asterisk () means zero or more. Hence, an instruction list is made up by
zero or more instructions:

The assignment instruction takes a name followed by the assignment operator (), an
expression, and a semicolon. The instructions for setting the pen and brush color and style
take one expression, so do the settings of the font and alignment. The instructions for
drawing lines, rectangles, and text take two expressions. Note that every instruction is
terminated by a semicolon ().

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[353]

The vertical bar () can be read as or. An instruction is an assignment or the setting of the
pen color or the setting of the brush color, and so on:

The next part of the parser to define is the expressions. First, we look at the operators of the
expressions. We also have to look into the priority of the operators. For instance,
multiplication and division have higher priority than addition and subtraction. The
operators of the grammar have the following priorities:

Expression Operator Priority

Addition Subtraction Lowest

Multiplication Division

Primary Highest

We define two rules each for addition and subtraction, as well as for multiplication and
division. We start with the lowest priority level, which is addition and subtraction. In the

 rule we call the rule, which handles multiplication and
division expressions, and we call the rule to examine the rest of the
expression:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[354]

In the rule we look into the next token. If it is a plus or a minus, we have
an addition or subtraction expression. We call to handle expressions of
higher priority. Finally, we call the rule again in case of another plus or
minus. However, if the first token is neither a plus nor a minus, we do nothing:

 and work in the same way as
and shown previously:

The primary expression is a point, an x or y coordinate, a color, a font, a name, or a value. A
point is made up by two expressions holding the x and y coordinate of the point. A
coordinate takes an expression holding a point and gives it an x or y coordinate:

A color expression is made up by its red, green, and blue components, while a font
expression is made up by the name and size of the font:

An expression can be enclosed in parentheses in order to change the priority of the
expression. For instance, in the expression 2 + 3 x 4, multiplication takes precedence over
addition, but in the expression (2 + 3) x 4, addition takes precedence over multiplication:

Finally, an expression can be a name earlier associated with a value, or simply a value:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[355]

The target language
The target language is defined by a sequence of actions. Informally, the actions correspond
to the instructions of the grammar. We have actions for setting the color or style of a pen or
a brush, and for setting the horizontal or vertical alignment of the text, as well as actually
drawing the lines, rectangles, ellipses, and text of the drawing. Later in this chapter, we will
write a parser that generates a sequence of actions, and a viewer that reads the actions and
displays graphical objects in a Qt widget.

An object holds the identity of the action (which is defined by the
enumeration in the class, as follows) together with, at most, two values.

Action.h:

The file holds the definitions of the methods of the class.

Action.cpp:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[356]

The constructor takes the action identity and at most two values:

The colors
When setting the color of the pen or brush, we need to submit the color with the instruction.
We can use the color rule in the preceding grammar to create our own color. However,
there is a set of predefined colors of the Qt class . The following scanner defines a set
of predefined objects (, , ...) and maps them to their names. For instance,
the user can write the following instruction in the source code:

In that case, since the name is associated with the object , the pen color is
set to .

Colors.h:

The file holds the definitions of the colors in the file.

Colors.cpp:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[357]

Each color is defined by its red, green, and blue component. Each component holds a value
from 0 to 255, inclusive. For instance, the color holds the full value of the blue
component and zero of the other components, while is a blend of red and green:

Error handling
There are some functions for error handling: checks whether a condition is true and
reports an error if it is not. The and functions report a
syntactic and semantic error, while throws an exception that is caught and reported
by the function.

Error.h:

The file holds the definitions of the file.

Error.cpp:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[358]

We use the C++ standard class to compound the error message:

The method returns an object of the C++ standard class, and returns a
character pointer that is converted to a object in the call:

A syntax error occurs when the scanner finds a character sequence that does not constitute a
token, or when the parser detects that the token sequence does not comply with the
grammar. We will cover the topic soon; for now, just remember that a scanner can report
errors too:

A semantic error occurs when an unknown name is found, or when the types of an
expression do not comply:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[359]

The method has a similar effect to the macro. It checks whether the condition
is true. If it is not true, is called, which eventually throws an error
exception:

The value
There are several kinds of values in the language, which are used to set the color or style of
the pen or brush, or to set the end-points of a line, or to set the name of the font, or the
alignment of the text: numerical (), string (), color (), font (),
point (), pen style (), brush style (::), and horizontal
or vertical alignment (::).

Value.h:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[360]

The file holds the definitions of the methods of the class.

Value.cpp:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[361]

The non-default constructors initialize the object with appropriate values:

The scanner
The scanner is a part of the application that accepts the source code and generates a
sequence of tokens. A token is the smallest meaningful part of the source code. For instance,
the characters f, o, n, and t make up the keyword font, and the characters 1, 2, and 3
constitute the numerical value 123.

However, first we need the class to keep track of the tokens. The field is
set to a value of the enumeration . In the case of a name, the field holds the
name, and in the case of a value, the field holds the value.

Token.h:

The enumeration holds all the tokens of the scanner. They are divided into
keywords, operators, punctuation, and separators, as well as names and values. In order to
avoid converting between different enumerations, the enumeration is used by the
scanner, parser, and viewer. The enumeration is used by the scanner to
distinguish between the different tokens by the parser when type checking and evaluating
expressions, and by the class to distinguish between different actions.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[362]

The first part (to) is keywords of the language:

The second part (to) is operators:

The next part is parentheses, assignment (), comma, and semicolon:

Finally, the last part is the name, value, and end-of-file marking:

Each token can be annotated with a name or a value:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[363]

The file holds the definitions of the methods of the class.

Token.cpp:

The default token is initialized with an end-of-file token:

Most tokens hold only a value of the enumeration:

Tokens can also hold a name or a value:

The class takes the source code and divides it into tokens. A token can also be
associated by a name or a value.

Scanner.h:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[364]

The method initializes the names of the keywords and operators:

The method scans the buffer and returns the next token. If there is no
recognizable token, an error exception is thrown that is later caught by the function:

The field holds the source code; holds the index of the next
character in the buffer to be examined (the index is initialized to zero);
holds the names of the keywords; holds a map of color, alignment, and pen
and brush style values, and hold a list of operators:

In previous chapters, we have used the C++ standard classes , , , , and
. In this chapter, we will use the Qt classes , , , , and

instead. They work approximately in the same way:

The file holds the definitions of the methods of the class.

Scanner.cpp:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[365]

The global field keeps track of the current line in the source code, in order for the
error messages to state the line number:

The macro adds a token to the operator list. For instance,
 adds the pair of and to the list:

The macro adds a keyword to the keyword map. For instance,
 adds the pair of and to the map. Note

that the part of the keyword (the last two characters) text is removed:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[366]

The macro adds a value to the value map. For instance,
 adds the pair of aqua and the object Aqua to the map.

Note that the text is converted to lower case. Also note that only the last part after the last
potential pair of colons () is included:

 adds the pair of align left and the
value to the map. Again, note that only the last segment of the value's name is stored as
text:

In the constructor, we load the buffer into the field. We also add the null-
character () in order to find the end of the buffer in an easier way:

The method scans the buffer and returns the token found. First, we iterate as
long as we find new-line, white-space, or line comment. In case of a new line, we increase
the line count:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[367]

A white-space is regular space, a horizontal or vertical tabulator, a return character, or new
line. We use the method to check whether the character is a white-space:

If we encounter the beginning of a line comment (), we continue until we find the end of
the line () or the end of the buffer ():

If we do not find a new line, white-space, or line comment, we break the iteration and
continue looking for the next token:

When we have scanned through the potential white-spaces and comments, we start looking
for the real tokens. We start by checking if the next character in the buffer is a null character
(). If it is a null character, we have found the end of the source code and return end-of-
file. Remember that we added a null character at the end of the buffer in the constructor,
just to be able to recognize the end of the file:

If the next token is not end-of-file, we check if it is an operator. We iterate through the
operator list and check if the buffer begins with any of the operator's text. For instance, the
add operator holds the text :

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[368]

When we have found the operator, we increment the buffer index, and return the token:

If the buffer does not begin with an operator, we look after a name representing a keyword,
a value, or simply a name. We start by checking if the buffer begins with a letter or the
underscore character (), since a name is allowed to start with a letter or an underscore.
However, the remaining characters can be digits besides the letters and underscores:

We iterate until we find a character that is not a letter, digit, or underscore:

We extract the text and increase the buffer index:

The text can hold a keyword, a value, or a name. First, we check whether the text is present
in the keyword map. If it is present, we just return the token associated with the keyword
text:

We then check whether the text is present in the value map. If it is present, we return a
value token with the value annotated to the token. The value can later be obtained by the
parser:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[369]

If the text is neither a keyword nor a value, we assume that it is a name and return a name
token with the name annotated to the token. The name can later be obtained by the parser:

When we have looked for a name without finding it, we start looking for a string instead. A
string is a text enclosed by double quotes (). If the next character in the buffer is a
double quote, it is the beginning of a text. We remove the double quote from the buffer and
iterate until we find the end quote of the text:

If we find a null character before the end of the text, a syntax error is reported since we have
found the end of the file inside the text:

When we have found the end quote, we increase the buffer index and return a value token
with the text as its annotated value. The text can later be obtained by the parser:

If the next character in the buffer is a digit, we have found a numerical value, with or
without decimals. First, we iterate as long as we find digits in the buffer:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[370]

When we no longer find any digits, we check whether the next character in the buffer is a
dot (). If it is a dot, we continue to iterate as long as we find digits:

When we no longer find any digits, we increase the buffer index and return a value token
with the annotated value. The value can later be obtained by the parser:

Finally, if none of the preceding cases apply, the source code is syntactically incorrect, and
we report a syntax error:

We return an end-of-file token, simply because we have to return a value. However, we will
never reach this point of the code since the call caused an exception to be
thrown:

Now that we have looked at the scanner, we will continue to look at the parser in the next
section.

Building the parser
Now that we have looked into the scanner, it is time to move on to the parser. The parser
checks that the source code complies with the grammar. It also performs type checking and
generates the action list, which is later displayed by the viewer, as follows. The
class mirrors the grammar in that way the it holds one method for each grammar rule.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[371]

Parser.h:

The constructor takes a grammar object and the action list, which is empty at the beginning.
The parser calls the scanner each time it needs a new token:

The method checks whether the given token equals the next token obtained by the
scanner. If it does not, a syntax error is reported:

The remaining methods of the class are divided into methods for instructions and
expressions in the grammar, as well as methods for type checking and evaluation of
expressions:

We also add a method to the parser for each expression rule in the grammar:

When evaluating the values of expressions, we need to check the types of the values. For
instance, when adding two values, both of the operands shall have numerical values:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[372]

The field holds the next token obtained by the scanner, and
holds the scanner itself. The field holds a reference to the action list given in
the constructor. Finally, holds a map for the names assigned to values by the
assignment rule:

The file holds the definitions of the methods of the class.

Parser.cpp:

The constructor initializes the references to the scanner and the action list, and sets the
 field to the first token obtained by the scanner. Then the parsing process

begins by calling . When the instruction list has been parsed, the only
remaining token shall be the end-of-file token:

The field keeps track of the current line of the source code so that a syntax error
can be reported with the correct line number:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[373]

The method keeps iterating until it encounters the end-of-file token:

The method compares the next token obtained by the scanner with the given token.
If they do not comply, a syntax error is reported. If they do comply, the next token is
obtained by the scanner:

Parsing the instructions of the language
The method holds a sequence of switch cases, one case for each category of
instructions. We will look into the next token obtained by the scanner:

In the case of a name, we parse the name, assignment (), the following expression, and a
semicolon:

If the name is already associated with a value, a semantic error is reported:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[374]

The settings of pen and brush colors and styles, as well as fonts and alignments, are a little
bit more complicated. We call to parse and evaluate the value of an
expression. The type of the expression is checked, and an object is added to the
action list:

The drawing of lines, rectangles, ellipses, and text takes two expressions, whose values are
evaluated and type checked:

If none of the preceding tokens apply, a syntax error is reported:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[375]

Parsing the expressions of the language
An expression, at its lowest priority level, is made up by two multiplication or division
expressions. First, we call , which is the next expression in increasing
priority order, to obtain the left value of a possible addition or subtraction expression, and
then , which checks if there actually is such an expression:

The method checks whether the next token is a plus or a minus. In that
case, we have an addition or subtraction expression, the token is matched, the left and right
values are type checked, and the resulting expression is evaluated and returned:

The method works in a way similar to shown previously.
It calls and , which look for multiplication
and division. Multiplication and division have higher priority than addition and
subtraction. As stated in The grammar of source language section previously, we need a new
pair of rules in the grammar, with two pairs of methods in the parser for the
addition/subtraction and multiplication/division expressions:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[376]

Finally, the primary expression is made up by a point, coordinate, color, or font expression.
It can also be made up by an expression enclosed in parentheses, a name (in which case we
look up its value), or a value:

The coordinate expression takes a point and returns its x or y coordinate. We match the
keyword and the parentheses and call expressions in between. We then check that the value
of the expression is a point, and finally call to extract the x or y coordinate:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[377]

A point expression is made up by the keyword and two numerical expressions: the x
and y coordinate:

A color expression is made up by the keyword and three numerical expressions: the
red, green, and blue components:

A font expression is made up by the keyword and two expressions: the name of the
font (string) and its size (numerical):

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[378]

An expression can be enclosed by parentheses. In that case, we match the parentheses and
call in between to obtain the value of the expression:

In case of a name, we look up its value in the assignment map and return the value. If there
is no value, a semantic error is reported:

In the case of a value, we simply return the value:

In any other case, a syntax error is reported:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[379]

Type checking the expression
The first method checks the type of an expression with one value. When setting
a pen or brush style, the type must be a pen or brush style, respectively:

When setting a color or a font, the value must be a color or a font, respectively:

When setting an alignment, the value must be an alignment:

When extracting the x or y coordinate from a point, the value must be a point:

The second method takes two values. The drawing instructions must take two
points:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[380]

The drawing of text instructions must take a point and a string:

Evaluating the values of the expressions
The first method returns the value of an expression with one value. The x and y
coordinate operators return the x or y coordinate of the point:

The assertion is for debugging purposes only, and we return false simply because the
method has to return a value:

Finally, the second method evaluates the value of expressions with two values.
First, we extract numerical values and evaluate the arithmetic expressions:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[381]

In case of division by zero, a semantic error is reported:

Finally, in the point expression, we return a point value holding the two numerical values
holding its x and y coordinates:

As in the first evaluate case previously, the assertion is for debugging purposes only, and
we return false simply because the method has to return a value:

The viewer
Finally, it is time to write the viewer, the last part of our DSL. The viewer iterates through
the actions and displays the graphical objects. The class inherits the Qt class

, which displays a widget on the screen.

ViewerWidget.h:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[382]

The constructor calls the constructor of the base class and stores a reference to the
action list:

The main part of the class is the method. It gets called every time the widget
needs to be repainted and iterates through the actions list:

The default constructor of is called, which initializes the font to an appropriate
system font. Both the horizontal and vertical alignment is centered. Finally,
holds a reference to the action list generated by the parser:

The file holds the definitions of the methods of the
class.

ViewerWidget.cpp:

The constructor calls the constructor of the base class with the parent widget,
initializes the reference, sets the title of the widget, and sets an appropriate
size:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[383]

The method is called every time the widget needs to be repainted. First, the
 object is defined, we then iterate through the action list:

The action creates a new pen with the new color and current style, which is
added to . In the same way, the action creates a pen with the new
style and the current color:

We set the color and style of the brush in the same way as we set the pen previously. The
only difference is that we create a brush instead of a pen:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[384]

In the case of the font, we call on . Thereafter, the font is associated to
, and will be used when writing text:

The horizontal and vertical alignment are stored in and
, which are values that are later used when writing text:

Now, it is time to actually draw some graphical objects. A line is simply drawn between
two points, while a rectangle or ellipse has top-left and bottom-right corners, which are
placed in a rectangle that is used as a parameter to the calls to and

:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[385]

Finally, we write text. We start by extracting the point to center the text around and the text
to draw. We then obtain the size of the text (in pixels) with the Qt class:

In the case of left horizontal alignment, the left side of the text is the x coordinate of the
point. In the case of center alignment, the left side of the text is moved to the left with half
the text width, and in the case of right alignment, the left side is moved to the left with the
whole text width:

In the same way: in the case of top vertical alignment, the top side of the text is the y
coordinate of the point. In the case of center alignment, the top side of the text is moved
upwards with half of the text height, and in the case of bottom alignment, the top side is
moved upwards with the whole text height:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[386]

The main function
Finally, the main function calls the static method on the scanner in order to initialize
its tokens, keywords, and values. A object is created, the source code is read
and parsed, and the viewer widget is created. It executes the action list and displays the
graphical objects. The application executes until the user presses the close button in the top-
right corner.

Main.cpp:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Domain-Specific Language Chapter 9

[387]

In the case of a syntactic or semantic error, its message is displayed in a message box:

Summary
In this chapter, we started to develop a DSL that generates a sequence of actions creating
graphical objects, which are viewed in a widget. Our DSL supports instructions for drawing
graphical objects such as lines, rectangles, ellipses, and text, and for setting the color, style,
and alignment of the objects. It also supports expressions with arithmetic operators.

The language of our DSL is defined by grammar and is made up by a scanner that scans the
text for meaningful parts, the parser checks that the source code complies with the grammar
and generates a sequence of actions, which is read and executed by the viewer.

In the next chapter, we will continue to develop our DSL. The DSL of this chapter only
supports code executed in straight sequence. However, in the next chapter, we will add
function calls as well as selection and iteration (the and instructions).

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

110
Advanced Domain-Specific

Language
In the previous chapter, we developed a domain-specific language (DSL). In this chapter,
we will improve the language in several ways:

We will add selection and iteration. More specifically, we will add the and
 instructions. In the language of the previous chapter, the actions were

executed in a straightforward manner. In this chapter, it is possible to select
between alternatives and to iterate over a part of the code.
We will add variables. In the previous chapter, we could assign values to a name
once. In this chapter, however, values are assigned to names that can be
reassigned during the execution of the program.
We add functions, with parameters and return values. In the previous chapter, a
program was made up of a sequence of instructions. In this chapter, it is a
sequence of functions. Similar to C++, there must be a function where the
execution starts.
Finally, we will add another module in the process from the source code to
the viewer. In the previous chapter, the parser generated a sequence of actions
that were displayed by the viewer. In this chapter, the parser generates a
sequence of directives, which in turn are evaluated to actions by the evaluator.
Since the language of this chapter supports selection, iteration, variables, and
functions calls, it starts to look like a traditional programming language.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Domain-Specific Language Chapter 10

[389]

Topics we will cover in this chapter include:

Just as in the previous chapter, we will informally look into the source code of
our DSL by looking at an example. However, in this example we will use
variables and function calls, we will also use the and instructions.
We will then formally define our language with grammar. The grammar is an
extension of the grammar of the last chapter. We will add instructions for
functions definitions, calls, and returns, as well as selection () and iteration
().
When we have defined the grammar, we will write the scanner. The scanner of
this chapter is almost identical to the scanner of the previous chapter. The only
difference is that we will add a few keywords.
When we have written the scanner, we will write the parser. The parser is an
extension of the parser of the previous chapter, we add methods for functions,
selection, and iteration. However, the parser of the previous chapter generated a
sequence of actions, which were read and executed by the viewer. In this chapter,
however, the parser instead generates a sequence of directives that are read by
the evaluator.
In this chapter, the next step is the evaluator rather than the viewer. The
evaluator takes the directive sequence generated by the parser, and generates a
sequence of actions which are read and executed by the viewer. The evaluator
works with maps that assign values to names. There is a stack of value maps that
make sure that each called function gets its own fresh value map. There is also a
value stack that stores temporary values when evaluating expressions. Finally,
there is the call stack, holding return addresses for function calls.
Finally, the viewer works in the same way as in the previous chapter. It iterates
through the action list generated by the evaluator and displays the graphical
objects in a Qt widget.

Improving the source language an example
Let's look at a new example, where we define and call a function named that
draws a triangle with different pens in different sizes. Note that the functions do not have to
occur in any particular order.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Domain-Specific Language Chapter 10

[390]

We start by setting the and variables to . They hold the x coordinate of the
left-most corner of the first triangle, and its base length. We also set the variable to
zero; its value will be used in the iteration:

We continue to iterate as long as is less than four. Note that in this chapter we add
Boolean values to the class. When holds an even value, we set the pen style to
a solid line, and when it holds an odd value, we set the pen style to a dashed line. Note that
we have extended the language with relational expressions and the modulus () operator:

We set the top-left point of the triangle, and call the function to perform the
actual drawing of the triangle:

After the call to , we increase the base length of the next triangle, and the left-
most corner:

In the function, we call and functions to
obtain the top-right and bottom-middle points of the triangle. Finally, we draw the three
lines of the triangle by calling :

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Domain-Specific Language Chapter 10

[391]

The function extracts the x and y coordinate of the top-left point, and returns
a point where the x coordinate has been increased by the length of the base of the triangle:

The function also extracts the x and y coordinates of the top-left point.
Then it calculates the x and y coordinates of the middle-bottom point and returns :

The output of the execution of the code is shown in the following screenshot:

Improving the grammar
In this chapter, we will improve the grammar of our language. To begin with, a program is
made up by a sequence of functions rather than instructions. Technically, a program can
hold zero functions. However, a semantic error will report that the function is
missing:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Domain-Specific Language Chapter 10

[392]

The definition of a function is made up by the keyword , a list of names enclosed
by parentheses and a list of instructions enclosed by brackets. The is made up of
zero or more names, separated by commas:

When it comes to instructions, we add the calling of a function. We can either call the
function directly, as an instruction (in the preceding example), or as a
part of an expression (and).

We also add the instruction and the instructions, with or without the part.
Finally, there is also the block instruction: a list of instructions enclosed by brackets:

When it comes to expressions, the only difference is that we have added function calls. The
 is a list of zero or more expressions, separated by commas:

The Token and the Scanner
Similar to the previous chapter, the final target code of the language is the actions, even
though they are generated by an evaluator rather than the parser. The class is
identical to the class of the previous chapter. So are the and classes,
as well as the colors and error handling. However, the and classes have
been extended. The enumeration has been extended with more token identities.

Token.h:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Domain-Specific Language Chapter 10

[393]

In the same way, in has been extended with the keywords.

Scanner.cpp:

The parser
The parser has been extended with methods corresponding to the new rules of the
grammar. Moreover, the parser of this chapter does not generate actions; instead, it
generates directives. The reason for this is that, while the source code of the previous
chapter holds instructions that were executed from the beginning to the end, the source
code of this chapter holds selection, iteration, and function calls that can alter the flow of the
instructions. Therefore, it makes sense to introduce a middle layer the parser generates
directives that are evaluated to become actions.

Since the language of this chapter supports functions, we need the class to store
the functions. It stores the names of the formal parameters and the start address of the
function.

Function.h:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Domain-Specific Language Chapter 10

[394]

The file holds the definitions of the methods of the class.

Function.cpp:

Since the parser in this chapter generates a sequence of directives rather than actions, we
also need the class to hold the directives. In most cases, a object
only holds its identity of the enumeration. However, in the case of a function call,
we need to store the name of the function and the number of actual parameters. In the case
of a function definition, we store a reference to the object. In the case of an
expression made up by a name of a value, we need to store the name or value. Finally, there
are several kinds of jump directives, in which case we need to store the address.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Domain-Specific Language Chapter 10

[395]

Directive.h:

The file holds the definitions of the methods of the class.

Directive.cpp:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Domain-Specific Language Chapter 10

[396]

In most cases, we only create an object of the class with a directive identity:

The jump directives need the jump address:

When assigning a value to a variable, we need the name of the variable. However, we do
not need the value since it will be stored on a stack. Also, when an expression is made up of
a name, we need to store the name:

The directive for function calls needs the name of the function and the number of actual
parameters:

When an expression is made up simply of a value, we just store the value in the directive:

Finally, in a function definition we store an object of the class:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Domain-Specific Language Chapter 10

[397]

The class has been extended with the methods for the new rules in the grammar:
function definitions and the , , , and instructions.

Parser.h:

The method gathers the formal parameters of the function, while
 gathers the actual parameters of the function call:

The method has also been added to the class, since a function can
be explicitly called as an instruction, or as a part of an expression:

The file holds the definitions of the methods of the class.

The start method of the parser of this chapter is . It calls
 as long as it does not reach end-of-file.

Parser.cpp:

The method parses a function definition. We start by matching the
 keyword and store the name of the function:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Domain-Specific Language Chapter 10

[398]

The function name is followed by the parameter name list enclosed by parenthesis. We store
the name list in the field. We cannot call the field , since that name has
already been taken by the method:

We store the current size of the directive list size as the start address of the function, create a
 object with the name list and start address, and add a object with the

function to the directive list:

The name list is followed by a list of instructions enclosed by brackets:

Just to be sure the function really returns the controls back to the calling function, we add a
 object with the token identity:

When the function has been defined, we check that there is no other function with the same
name:

If the function is named , it is the start function of the program and it cannot have
parameters:

Finally, we add the function to the :

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Domain-Specific Language Chapter 10

[399]

The method parses a comma-separated list of names enclosed in parentheses:

We continue as long as we do not encounter a right parenthesis:

After we have matched the name, we check whether the next token is a right parenthesis. If
it is, we have reached the end of the name list and break the iteration:

If the next token is not a right parenthesis, we instead assume that it is a comma, match it,
and continue to iterate with the next expression:

Finally, before we return the name list, we need to check that no name occurs twice in the
name list. We iterate through the name list and add the names to a set:

The method looks a little bit different in this chapter since it is placed
inside a block of instructions. We iterate as long as we do not encounter a right bracket:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Domain-Specific Language Chapter 10

[400]

As a function can be explicitly called as an instruction, or as part of an expression, we
simply call and match the semicolon in the case of a call instruction:

In the return instruction, we match the keyword and check whether it is followed
by a semicolon. If it is not followed by a semicolon, we parse an expression and then
assume that the next token is a semicolon. Note that we do not store the result of the
expression. The evaluator will place its value on a stack later in the process:

In the case of the keyword, we match it and parse an expression enclosed by
parentheses:

If the expression becomes evaluated to a false value, we shall jump over the instruction
following the expression. Therefore, we add a directive, intending to jump
over the instruction following the keyword:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Domain-Specific Language Chapter 10

[401]

If the instruction is followed by the keyword, we match it and add a directive,
that is intended to jump over the part in the case of a true value of the expression of
the instruction:

We then set the jump address of the preceding directive. If the expression is not
true, the program shall jump to this point:

On the other hand, if the expression of the instruction is true, the program shall jump
over the part to this point:

If the instruction is not followed by the keyword, it shall jump to this point in the
program if the expression is not true:

In the case of the keyword, we match it and store the current index of the directive
list in order for the program to jump back to this point after every iteration:

We then parse the expression and its enclosing parentheses:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Domain-Specific Language Chapter 10

[402]

In the case that the expression is not true, we add an directive in order for the
program to jump out of the iteration:

We add a directive after the instruction following the expression, so that the
program can jump back to the expression at the end of each iteration:

Finally, we set the address of the directive at the beginning of the
instruction, so that it can jump to this point in the program if the expression is not true:

In the case of a left bracket, we have a sequence of instructions enclosed by brackets. We
parse the pair of brackets and call :

Finally, in the case of a name, we have an assignment. We match the keyword, and the
assignment operator (), parse the expression, and match the semicolon. We then add an

 object to the directive list holding the name to be assigned a value. Note that we do
not store the value of the expression, since it will be pushed on a value stack by the
evaluator:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Domain-Specific Language Chapter 10

[403]

The method matches the keyword, stores the name of the function,
parses the parameter expressions, and adds a object holding the call to the
directive list. Note that we do not check whether the function exists or count the number of
parameters at this point, since the function may be not yet defined. All type checking is
taken care of by the evaluator later in the process:

The method parses a list of expressions. Unlike the preceding name list
case, we do not return the list itself, only its size. The expressions generate directives of their
own, their values are stored on a stack by the evaluator later in the process:

We iterate as long as we do not encounter a right parenthesis:

After parsing the expression, we check whether the next token is a right parenthesis. If it is,
the expression list is finished and we break the iteration:

If the next token is not a right parenthesis, we assume it is a comma, match it, and continue
the iteration:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Domain-Specific Language Chapter 10

[404]

Finally, after the iteration, we return the number of expressions:

The evaluator
The evaluator evaluates a sequence of directives and generates a list of actions that are later
read and executed by the viewer. The evaluation starts with the directive on the first line,
which is a jump to the start address of the function. The evaluation stops when it
encounters a directive without a return address. In that case, we have reached the
end of and the execution shall be finished.

The evaluator works against a stack of values. Each time a value has been evaluated it is
pushed on the stack, and each time values are needed to evaluate an expression they are
popped from the stack.

Evaluator.h:

The constructor of the class evaluates the directive list with the help of the
functions map:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Domain-Specific Language Chapter 10

[405]

The and methods are identical to the previous chapter. They have
been moved from to . The methods check that the
expressions associated with the token have the correct types, and the methods
evaluates the expressions:

When an expression is being evaluated, its value is pushed on . When a
variable is assigned a value, its name and the value are stored in . Note that, in
this chapter, a value can be assigned to a variable more than once. When a function calls
another function, the value map of the calling function is pushed on in
order to give the called function a fresh value map, and the return address is pushed on

:

The file holds the definitions of the methods of the class:

Evaluator.cpp:

The constructor of the class can be regarded as the heart of the evaluator.

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Domain-Specific Language Chapter 10

[406]

The field in the constructor is the index of the current object
in the directive list. Normally, it is increased for each iteration. However, it can be assigned
different values due to or instructions as well as function calls and returns:

When a function is called, we start by looking up the function name in the function map
and report a semantic error if we do not find it. Then we check that the number of actual
parameters equals the number of formal parameters (the size of the name list in the

 object):

When we call the function, we push the index of the next directive on the return address
stack, so that the called function can return to the correct address. We push the value map
of the calling function at the value map stack, so we can retrieve it after the call. We then
clear the value map so that it is fresh to be used by the called function. Finally, we set the
directive index to the start address of the called function, which moves the control to the
beginning of the called function. Note that we do nothing about the actual parameter
expressions. They have already been evaluated, and their values are pushed at the value
stack:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Domain-Specific Language Chapter 10

[407]

At the beginning of a function, we pop the value stack for each parameter and associate
each parameter name with its value in the value map. Remember that the parameter
expressions were evaluated before the call to the function, and that their values were
pushed on the value stack. Also remember that the first parameter was pushed first and is
placed below the other parameters in the stack, which is why we assign the parameters in
reverse order. Finally, remember that the value map of the calling function was pushed on
the value map stack, and that the value stack was cleared during the function call, so that
the current value map is empty at the beginning of the function:

When returning from a function, we first check whether the return address stack is empty.
If it is not empty, we perform a normal function return. We restore the value map of the
calling function by popping the value map stack. We also set the directive index to the
address following the function call by popping the return address stack:

If the return address stack is empty, however, we have a special case we have reached the
end of the function. In that case, we shall not return to a calling function (there is no
calling function). Instead, we shall just finish the execution of the evaluator by calling
return. Remember that we are in the constructor of the class, and that we return
from the constructor:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Domain-Specific Language Chapter 10

[408]

The directive has been added by the parser when parsing the or
instructions. We pop the value stack; if it is false we perform a jump by setting the directive
index by calling the method of the directive. Remember that we, in this chapter,
have added Boolean values to the class:

If the value is true, we do not perform a jump; we simply increase the directive index:

The directive performs an unconditional jump; we simply set the new directive index.
Since the and directives have been generated by the parser, we do not
need to perform any type checking:

The set directives work in a way corresponding to the parser of the previous chapter. The
value of the expression has been pushed to the value stack during the evaluation of an
earlier directive. We pop the value of the value stack and check that it holds the correct
type. Then we add the action with the value to the action list and increase the directive
index:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Domain-Specific Language Chapter 10

[409]

Also, the draw directives are similar to the parser in the previous chapter. Their first and
second value are popped in reverse order, since the first value was pushed first and thereby
is placed below the second value on the stack. We then check that the values have correct
types, add the action to the action list, and increase the directive index:

The assignment directive associates a name with the value in the value map. Note that if the
name already has been associated with a value, the previous value is overwritten. Also note
that the value map is local to the current function, potential calling functions have their own
value maps pushed on the value map stack:

In an expression with one value, its value is popped from the stack, its type is checked, and
the resulting value of the expression is evaluated and pushed on the value stack. Finally, the
directive index is increased:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Domain-Specific Language Chapter 10

[410]

In an expression with two values, its first and second value are popped from the stack (in
reverse order), their types are checked, and the resulting value of the expression is
evaluated and pushed on the value stack. Finally, the directive index is increased:

In a color expression, the red, green, and blue component values are popped from the value
stack (in reverse order), their types are checked, and the resulting color is pushed on the
value stack. Finally, the directive index is increased:

In a font expression, the values of the name and size are popped from the value stack (in
reverse order) and their types are checked. The resulting font is pushed on the value stack
and the directive index is increased:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Domain-Specific Language Chapter 10

[411]

In the case of a name, we look up its value and push it on the value stack and increase the
directive index. If there is no value associated with the name, a semantic error is reported:

Finally, when we have a value, we just push it on the value stack and increase the directive
index:

The main function
Finally, the function is almost identical to the previous function.

Main.cpp:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Domain-Specific Language Chapter 10

[412]

The only difference is that the parser generates a sequence of directives rather than actions,
as well as a function map, which is sent to the evaluator that generates the final action list
that is read and executed by the viewer that displays the graphical objects:

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Domain-Specific Language Chapter 10

[413]

Summary
In this chapter, we have improved the DSL that we started to work on in the previous
chapter. We have added selection, iteration, variables, and function calls. We have also
added the evaluator, which takes the directives generated by the parser and generates the
actions read and executed by the viewer. When the directives are being executed, the values
of the expressions are stored on a stack, the values assigned to names are stored in a map,
and the return address of function calls are stored on a stack.

This was the final chapter, I hope you have enjoyed the book!

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Beginning C++ Programming
Richard Grimes

ISBN: 978-1-78712-494-3

Get familiar with the structure of C++ projects
Identify the main structures in the language: functions and classes
Feel confident about being able to identify the execution flow through the code
Be aware of the facilities of the standard library
Gain insights into the basic concepts of object orientation
Know how to debug your programs
Get acquainted with the standard C++ library

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You May Enjoy

[415]

Modern C++ Programming Cookbook
Marius Bancila

ISBN: 978-1-78646-518-4

Get to know about the new core language features and the problems they were
intended to solve
Understand the standard support for threading and concurrency and know how
to put them on work for daily basic tasks
Leverage C++ s features to get increased robustness and performance
Explore the widely-used testing frameworks for C++ and implement various
useful patterns and idioms
Work with various types of strings and look at the various aspects of compilation
Explore functions and callable objects with a focus on modern features
Leverage the standard library and work with containers, algorithms, and iterators
Use regular expressions for find and replace string operations
Take advantage of the new filesystem library to work with files and directories
Use the new utility additions to the standard library to solve common problems
developers encounter including string_view, any, optional and variant types

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You May Enjoy

[416]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

A
actions
advanced domain specific language
 main function
advanced searching algorithm
advanced sorting algorithm

B
base widget class , , , , ,
base window class , ,
block comment
bold style
Book class
 about , , , ,
 book, borrowing ,
 book, displaying ,
 book, reading ,
 book, reserving ,
 book, writing ,
bubble sort algorithm ,

C
call stack
Car class
 about ,
 extending ,
Caret class ,
Cell class
class
class hierarchy , ,
clock application
 Clock class , , ,
 creating
 enhancing
 environment, setting up

 main function ,
compound assignment
Customer class
 about , ,
 book, borrowing ,
 book, reserving ,
 customer, displaying ,
 customer, reading
 customer, reading from file
 customer, writing
 customer, writing to file

D
dice
 rolling , ,
difference method
directives ,
Domain Specific Language (DSL)
 about ,
 main function
drawing program
 building
 DrawingWidget class , , , ,
 DrawingWindow Class
 Ellipse sub class ,
 EllipseX class ,
 enhancing
 Figure base class ,
 Figure class ,
 Line class ,
 Line sub class , ,
 main function ,
 Rectangle class ,
 Rectangle sub class
 widget, drawing , , , , ,
 window, drawing ,

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

[418]

E
editor
 building
 Caret class ,
 EditorWidget class , , , , ,

, ,
 EditorWindow class ,
 enhancing
 main function ,
 widget, drawing , , , , ,
 window, drawing ,
Ellipse sub class ,
EllipseX class ,
evaluator
 about ,
 working , ,

F
field
Figure base class ,
Figure class
functions

G
grammar
 about
 enhancing

I
insert sort algorithm
intersection method
iteration
iterator class

L
Library class
 about , ,
 book objects, reading
 book objects, writing
 book, adding ,
 book, borrowing ,
 book, deleting ,
 book, reserving , ,

 book, returning ,
 books, listing ,
 books, searching , ,
 borrow index, reading
 borrowed index, writing
 customer objects, reading
 customer objects, writing
 customer, adding ,
 customer, deleting ,
 customers, listing ,
 customers, searching , ,
 library information, loading from file ,
 library information, saving to file ,
 loan book indexed, writing
 loan book indexes, reading
 main function
 main function, writing
 marshmallowing
 memory, deallocating
 reservation book indexes, reading
 reservation book indexes, writing
 reservation indexes, reading
 reservation indexes, writing
Line class ,
Line sub class , ,
List class
 about , , ,
 Cell class
 extending ,
 iterator class
 list, adding ,
 ReverseIterator class , , , ,
 value, erasing
 value, erasing from list
listener
 adding

M
marshmallowing ,
merge sort algorithm
method
 about
 constructor
 destructor
 inspector

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

[419]

 modificator

N
NaCWindow class
Noughts and Crosses application
 about ,
 main function ,
 NaCWidget class , , , , , ,

,
 NaCWindow class ,

O
Object-Oriented Programming (OOP)
Othello
 about ,
 game widget , ,
 main function ,
 OthelloWidget class , , , , ,

,
 OthelloWindow class ,
overloading

P
paintEvent method
parameters
parser
 about , , , , ,
 building ,
 expression value, evaluating
 expression, type checking
 language expression, parsing ,
 language instruction, parsing ,
pivot value

Q
queue , , ,
quick sort algorithm

R
read method
Rectangle class ,
Rectangle sub class
reusable classes
 listener, adding

 setting up, for widgets
 setting up, for windows
ReverseIterator class , , , ,

S
scanner , , , , ,
Scanner class
searching algorithm
select sort algorithm
selection
Set class
 about , ,
 difference ,
 difference operations
 extending ,
 intersection , ,
 union , ,
sorting algorithm
 about
 bubble sort algorithm ,
 insert sort algorithm
 select sort algorithm
source language
 about
 colors
 enhancing ,
 error handling ,
 grammar
 target language
 value ,
stack , , ,

T
token ,
Token class

U
unionSet function

V
value stack
variables
viewer
 about

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

 writing , ,

W
widget
 base widget class , , , , ,

 reusable classes, setting up
windows
 base window class , , ,
 reusable classes, setting up
write method

 EBSCOhost - printed on 2/9/2023 10:16 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with C++
	Rolling the dice
	Understanding classes – the Car class
	Extending the Car class

	A class hierarchy – the Person, Student, and Employee classes
	A simple data type – the stack
	A more advanced data type – the queue
	Summary

	Chapter 2: Data Structures and Algorithms
	The List class
	The Cell class
	The Iterator class
	The List class
	Adding a list to an existing list
	Erasing a value from the list

	The Set class
	Union, intersection, and difference operations

	Basic searching and sorting
	The select sort algorithm
	The insert sort algorithm
	The bubble sort algorithm

	The extended List class
	The ReverseIterator class

	The extended Set class
	Union, intersection, and difference

	Advanced searching and sorting
	The merge sort algorithm
	The quick sort algorithm

	Summary

	Chapter 3: Building a Library Management System
	The Book class
	Writing the book
	Reading the book
	Borrowing and reserving the book
	Displaying the book

	The Customer class
	Reading the customer from a file
	Writing the customer to a file
	Borrowing and reserving a book
	Displaying the customer

	The Library class
	Looking up books and customers
	Adding a book
	Deleting a book
	Listing the books
	Adding a customer
	Deleting a customer
	Listing the customers
	Borrowing a book
	Reserving a book
	Returning a Book
	Saving the library information to a file
	Loading the library information from a file

	The main function
	Summary

	Chapter 4: Library Management System with Pointers
	The Book class
	Reading and writing the book
	Borrowing and reserving the book
	Displaying the book

	The Customer class
	Reading and writing the customer
	Borrowing and reserving a book
	Displaying the customer

	The Library class
	Looking up books and customers
	Adding a book
	Deleting a book
	Listing the books
	Adding a customer
	Deleting a customer
	Listing the customers
	Borrowing a book
	Reserving a book
	Returning a book
	Looking up books and customers
	Marshmallowing
	Saving the library information to a file
	Writing the book objects
	Writing the customer objects
	Writing the borrower index
	Writing the reservation indexes
	Writing the loan book indexes
	Writing the reservation book indexes

	Loading the library information from a file
	Reading the book objects
	Reading the customer objects
	Reading the borrower index
	Reading the reservation indexes
	Reading the loan book indexes
	Reading the reservation book indexes

	Deallocating memory
	The main function

	Summary

	Chapter 5: Qt Graphical Applications
	Creating the clock application
	Setting up the environment
	The Clock class
	The main function

	Setting up reusable classes for windows and widgets
	Adding a listener
	The base window class
	The base widget class

	Building the drawing program
	The Figure base class
	The Line sub class
	The Rectangle sub class
	The Ellipse sub class
	Drawing the window
	Drawing the widget
	The main function

	Building an editor
	The Caret class
	Drawing the editor window
	Drawing the editor widget
	The main function

	Summary

	Chapter 6: Enhancing the Qt Graphical Applications
	Improving the clock
	The Clock class
	The main function

	Improving the drawing program
	The Figure class
	The Line class
	The Rectangle class
	The Ellipse class
	The DrawingWindow class
	The DrawingWidget class
	The main function

	Improving the editor
	The EditorWindow class
	The EditorWidget class
	The main function

	Summary

	Chapter 7: The Games
	Othello
	The game widget
	The OthelloWindow class
	The OthelloWidget class
	The main function

	Noughts and crosses
	The NaCWindow class
	The NaCWidget class
	The main function

	Summary

	Chapter 8: The Computer Plays
	Othello
	The OthelloWindow class
	The OthelloWidget Class
	The main function

	Noughts and Crosses
	The NaCWindow class
	The NaCWidget class
	The main function

	Summary

	Chapter 9: Domain-Specific Language
	Introducing the source language – a simple example
	The grammar of the source language
	The target language
	The colors
	Error handling
	The value

	The scanner
	Building the parser
	Parsing the instructions of the language
	Parsing the expressions of the language
	Type checking the expression
	Evaluating the values of the expressions

	The viewer
	The main function
	Summary

	Chapter 10: Advanced Domain-Specific Language
	Improving the source language – an example
	Improving the grammar
	The Token and the Scanner
	The parser
	The evaluator
	The main function
	Summary

	Other Books You May Enjoy
	Index

