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1 Introduction

1.1 The background of solitons

In 1834, a young Scottish engineer named John Scott Russell [267] made a remark-
able scientific discovery about water waves when he was conducting experiments to
determine the most efficient design for canal boats. He described in his “Report on
Waves” (Report of the 14th meeting of the British Association for the Advancement of
Science, York, September 1844 (London 1845)): “I was observing the motion of a boat
that was rapidly drawn along a narrow channel by a pair of horses, when the boat
suddenly stopped – not so the mass of water in the channel which it had put in mo-
tion; it accumulated round the prow of the vessel in a state of violent agitation, then
suddenly leaving it behind, rolled forward with great velocity, assuming the form of
a large solitary elevation, a rounded, smooth and well-defined heap of water, which
continued its course along the channel apparently without change of form or diminu-
tion of speed. I followed it on horseback, and overtook it still rolling on at a rate of
some eight or nine miles an hour, preserving its original figure some thirty feet long
and a foot to a foot and a half in height. Its height gradually diminished, and after a
chase of one or two miles I lost it in the windings of the channel. Such, in the month
of August 1834, was my first chance interview with that singular and beautiful phe-
nomenon which I have called the Wave of Translation”. He believed that this solitary
motion is the steady-state solution of shallow water wave motion. Russell failed to
prove this and to convince the physicists of his argument at that time; he also com-
plained that the mathematicians failed to predict the solitary phenomenon from the
known fluidmotion equations. A widespread controversy among physicists about the
solitary waves was caused, until 60 years later, when Korteweg and de Vries [147],
assuming a long wave asymptotic and a small amplitude, established the following
shallow water wave equation for movement in one direction only:

𝜕η
𝜕t
=
3
2
√g
l
𝜕
𝜕x
(
1
2
η2 + 2

3
αη + 1

3
σ 𝜕

2η
𝜕x2
), (1.1.1)

where η represents the elevation of the surface above the bottom, l represents the
depth of the liquid, g is the gravity acceleration, and α, σ are small but arbitrary con-
stants. They made a complete analysis of the solitary phenomenon and, finally, de-
rived the solitary wave solution with unchanging shape, which was identical to the
one described by Russell. In doing so, they proved the existence of solitary waves the-
oretically, while there still were unsolved questions: Is the solitary wave stable? Does
the shape of the solitary wave stay invariant or change after a collision? These ques-
tions have not been answered and some people even doubt that the shape of solitary
waves is destroyedwhen a collision occurs, since the solution for the nonlinear partial
differential equation of equation (1.1.1) cannot satisfy the principle of superposition.

https://doi.org/10.1515/9783110549638-001
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2 | 1 Introduction

This argument lead to the notion of “instability” of solitarywaves. Solitarywaveswere
buried for a long time, until new discoveries were made.

There exists another question: Can solitarywaves, as Russell said, appear in other
physical fields than fluid dynamics? This was also an elusive problem during the be-
ginning of the 20th century. The silence was broken by Fermi, Pasta, and Ulam [78]
in the 1950s. They conducted numerical experiments (i.e., computer simulations) of
a vibrating string that included a nonlinear term (quadratic in one test, cubic in an-
other, and a piecewise linear approximation to a cubic in a third). They made a dy-
namical system of 64 particles with forces acting between neighbors with fixed end
points. Initially, all of the energy of these oscillators is concentrated on one site. Ac-
cording to the classical theory, energy equipartition will happen as long as nonlinear
effects exist. They thought that any weak nonlinear interaction can cause the system
to transition from nonequilibrium to equilibrium. The results of their computations
showed features that surprised everyone in the field. “Instead of a gradual, continu-
ous flow of energy from the first mode to the higher modes, all the problems show an
entirely different behavior.” In fact, after a long time, almost all the energy returned
to the original initial distribution, as shown in Figure 1.1. Finding an explanation for
this phenomenon was called the famous Fermi–Pasta–Ulam (FPU) problem. Because
the investigations considered the frequency space only, they did not find the solitary
wave, so a solution to the problem was not found. Later, people simulated this situa-
tion by replacing the lattice with spring chains with mass. The correct answers to the

Figure 1.1: The energy quantity is plotted, with the units for energy being arbitrary. The initial form of
the string was a single sine wave.

 EBSCOhost - printed on 2/10/2023 3:23 PM via . All use subject to https://www.ebsco.com/terms-of-use



1.2 KdV equation and its soliton solutions | 3

FPU problem were given by Toda, who studied the nonlinear oscillation in this mode
and obtained the expected solitary wave solutions.

In 1962, numerical results made by Perring and Skyrme [245], when they inves-
tigated the elementary particles using the sine-Gordon equation, showed that such
solitary waves did not disperse, i.e., solitary waves kept their original shapes and ve-
locities invariant after the collision.

In 1965, Zabusky and Kruskal [314] investigated the interaction process of the
“soliton” in a collisionless plasma in detail through numerical simulation. Their re-
sults confirmed the hypothesis that solitons pass through one another without losing
their identity.

The aforementioned results and the fact that stable “solitons” were observed in
several physicalmodels in succession attracted the attention and interest of physicists
and mathematicians. A complete system describing solitons was formed gradually.

So, what is the definition of a “soliton”? Generally speaking, we call the localized
traveling wave solutions for nonlinear evolution equations “solitons”. The adjective
“localized” means that solutions for the field equation tend to zero or a certain con-
stant at spatial infinity [258]. We name the stable solitary wave that retains its original
shape and velocity after a collision “soliton”. In some literature, solitons are confused
with solitary waves.

In physics, the soliton is defined in terms of stable solutions for the classical field
equation whose energy density ρ(x, t) is finite and without dispersion, i.e.,

0 < H = ∫ ρ(x, t)dmx < +∞, lim
t→∞

max ρ(x, t) ̸= 0, for certain x,

wherem is the space dimension. That is to say, the soliton can be regarded as a finite
stable block mass with field energy without dispersion which cannot be destroyed
during propagation or collisions. For a lot of nonlinear wave equations, there are four
types of soliton shapes (as shown in Figure 1.2): the envelop type (bell-shaped), the
swirl type (upside-down bell-shaped), the kink type, and the anti-kink type.

Based on the study of elementary particles, topological and nontopological soli-
tons have been divided by Lee [156]. The respective definitions and investigations will
be discussed in Chapter 10, where works on nontopological solitons will be presented
briefly.

1.2 KdV equation and its soliton solutions

As mentioned, Korteweg and de Vries established the shallow water equation (1.1.1).
After modification and simplification, we have

ut + uux + μuxxx = 0, (1.2.1)
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4 | 1 Introduction

Figure 1.2: Different soliton types, where φs(ξ) denotes the traveling wave solution and u is the
velocity.

where μ is an arbitrary constant. If μ < 0, via the transformations u → −u, x → −x,
and t → −t, equation (1.2.1) transforms to

ut + uux − μuxxx = 0. (1.2.2)

Thus, we set μ > 0. Equation (1.2.1) is the well-known Korteweg–de Vries (KdV) equa-
tion.

Making u(x, t) = u(ξ ), ξ = x − Dt, and D = constant and integrating twice with
respect to ξ , we have

3μ(du
dξ
)
2
= −u3 + 3Du2 + 6Au + 6B = f (u), (1.2.3)

where A, B are constants of integration. If and only if f ≥ 0, equation (1.2.3) has a real
solution. If f (u) only has one real root, then it must be unbounded. Now, we assume
that function f (u) has three real roots, i.e., f (u) = −(u − c1)(u − c2)(u − c3), c1 < c2 < c3.
We concludeD = 1

3 (c1 +c2 +c3), A =
1
6 (c1c2 +c2c3 +c3c1), B =

1
6c1c2c3. The general form

of f (u) can be expressed by curve A in Figure 1.3.
The exact solution for equation (1.2.3) reads

u = u(x, t) = c2 + (c3 − c2)cn
2[√

c3 − c1
12μ
{x − 1

3
(c1 + c2 + c3)t}; k], (1.2.4)
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1.2 KdV equation and its soliton solutions | 5

Figure 1.3: The profile of f (u).

where k2 = (c3 − c2)/(c3 − c1). Equation (1.2.4) is usually called a cnoidal wave, whose
period is Tp = 4K√ 3μ

c3−c1
, since the real period of function cn is 2K, where K is the

Legendre elliptic integral.
Under K = 0, cn(ξ ,0) = cos ξ , the oscillation solution for equation (1.2.3) reads

u = c̄ + a cos[2√
c3 − c1
12μ
{x − 1

3
(c1 + c2 + c3)t}], (1.2.5)

where c̄ = c2+c3
2 , a = c3−c2

2 .
The casewhereK = 1, cn(ξ , 1) = sech ξ corresponds to curve B in Figure 1.3, whose

period becomes infinite as c2 → c1, i.e., the soliton solution for equation (1.2.1) is

u = c1 + (c3 − c1) sech
2[√

c3 − c1
12μ
{x − 1

3
(2c1 + c3)t}]. (1.2.6)

If c1 = u∞, c3 − c1 = a, equation (1.2.6) transforms to

u = u∞ + a sech
2[√

a
12μ
{x − (u∞ +

a
3
)t}], (1.2.7)

where u∞ is the homogeneous state at infinity and a denotes the soliton amplitude.
From solution (1.2.7), we see that the velocity which corresponds to the homogeneous
state is proportional to the amplitude, while the width is inversely proportional to the
square root of the amplitude. The amplitude is independent of thehomogeneous state.
If u∞ = 0, μ = 1, we get

u(x, t) = 3D sech2√D
2
(x − Dt), (1.2.8)

as shown in Figure 1.4.
It is known that a large range of wave equations with weak nonlinear effects can

be summed up as KdV equations assuming a long wave asymptotic and a small and
finite amplitude, such as (1) magnetohydrodynamics in cold plasmas, (2) motion in
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6 | 1 Introduction

Figure 1.4: The amplitude of u(ξ).

nonharmonic lattice, (3) ion acoustic waves in plasmas, (4) longitudinal dispersion
fluctuations in an elastic bar, (5) pressure wavemotion in amixture state of liquid and
gas, (6) the rotation of a fluid at the bottom of a tube, (7) thermal excitation of the
phonon wave packet in nonlinear lattices at low temperature, etc.

1.3 Soliton solutions for the nonlinear Schrödinger equation and
some other nonlinear evolution equations

The cubic nonlinear Schrödinger equation

iut + uxx + ν|u|
2u = 0, (1.3.1)

or a more generalized form

ut − ruxx = χu − β|u|
2u, (1.3.2)

where β = β0 + iβ1, r = r0 + ir1, i = √−1, and β0, β1, r0, r1, χ, ν are real constants, and
other equations of this type have been found in many physical areas. For example, in
beam flow of nonlinear optics,

2ik 𝜕Ψ
𝜕x
+ ∇2⊥Ψ +

n2
n0

k2|Ψ|2Ψ = 0, (1.3.3)

where ∇2⊥ =
𝜕2

𝜕r2 +
m
r
𝜕
𝜕r . The case wherem = 0 denotes the plane, whilem = 1 results in

cylindrical symmetry; Ψ = aeikθ, θ = kx − wt + ks(x, r), k represents the wave number,
and n = c0k

w = n0 +
1
2n2a

2. For the flow in two dimensions, we have

n2
n0

k2|Ψ|2Ψ = −2kiΨx − Ψxx − Ψyy . (1.3.4)

In addition, the nonlinear Schrödinger equation can also be used to describe the Lang-
muir wave in plasmas, self-modulation of one-dimensional monochromatic waves,
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1.3 Soliton solutions for the nonlinear Schrödinger equation | 7

self-focusing of two-dimensional stationary plane waves, the motion of a supercon-
ducting electron pair in an electromagnetic field, etc.

Taking account of the traveling wave solution for equation (1.3.1), we set

u(x, t) = eirx−istv(ξ ), ξ = x − Dt,

where r, s are undetermined, v is a real function, and D = constant. Substituting the
above u into equation (1.3.1), we get the ordinary differential equation

v󸀠󸀠 + i(2r − D)v󸀠 + (s − r2)v + ν|v|2v = 0. (1.3.5)

Choosing r = D
2 , s =

D2

4 − α, and (α > 0) and omitting v󸀠, we have

v󸀠󸀠 − αv − νv3 = 0. (1.3.6)

Integrating once, we get

v󸀠2 = A + αv2 − ν
2
v4. (1.3.7)

For the special case where ν > 0, A = 0,

v(x, t) = (2α
ν
)

1
2

sech α(x − Dt). (1.3.8)

It is obvious that |u|2 ∝ sech2 α(x − Dt) and v(x, t) is called the envelop soliton. Next,
we consider a more general solution for equation (1.3.1). We have

u(x, t) = Φ(x, t)eiθ(x,t), (1.3.9)

where the real functionΦ stands for the envelop wave and θ denotes the carrier wave.
Substituting equation (1.3.9) into (1.3.1) and separating the real and imaginative parts,
we have

Φxx −Φθt −Φθ2x − νΦ
3 = 0, ν > 0,

Φθxx + 2Φxθx +Φt = 0.
(1.3.10)

Supposing θ = θ(x − D1t) andΦ = Φ(x − D2t), equations (1.3.10) become

Φxx + D1Φθx −Φ(θx)
2 + νΦ3 = 0, (1.3.11)

Φθxx + 2Φxθx − D2Φx = 0. (1.3.12)

Fixing t as a constant variable in equation (1.3.12) and integrating with respect to x,
we get

Φ2(2θx − D2) = φ(t). (1.3.13)

 EBSCOhost - printed on 2/10/2023 3:23 PM via . All use subject to https://www.ebsco.com/terms-of-use



8 | 1 Introduction

Note that θx =
D2
2 when φ(t) = 0, so equation (1.3.11) becomes

∫
Φ

Φ0

dΦ
√p(Φ)
= x − D2t, (1.3.14)

where

p(Φ) = −ν
2
Φ4 +

1
4
(D2

2 − 2D1D2)Φ
2 + C.

If we take C = 0, D2
2 − 2D1D2 > 0, then Φ = 0 is the double root for p(Φ) = 0 and the

last two roots areΦ = ±Φ0 withΦ0 = √
D2
2−2D1D2
2ν . In this case,

Φ = Φ0sech[√
ν
2
Φ0(x − D2t)],

as shown in Figure 1.5.

Figure 1.5: The profile ofΦ with C = 0.

The traveling wave solution will not be obtained in the case where p(Φ) < 0. If C ̸= 0,
under the conditions [ 14 (D

2
2 − 2D1D2)]

2 + 2νC ≥ 0 or C > − 1
8ν (

D2
2
2 − 2D1D2) and C < 0, the

single roots ±Φ1, ±Φ2 will be obtained for p(Φ) = 0, which can be found in Figure 1.6.
The termΦ can be expressed in the form of the elliptic function

Φ = Φ1[1 − {(1 −
Φ21
Φ22
)sn2[
√ν
2
(x − D2t)]}]

− 12
,

where the elliptic function sn obeys mod r = 1 − Φ
2
1
Φ22
.

The well-known sine-Gordon equation

utt − uxx + sin u = 0 (1.3.15)
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Figure 1.6: The profile ofΦ with C < 0.

Figure 1.7: Kink and anti-kink solutions.

has the soliton solution

u = 4tg−1 ± {±(1 − D2)
− 12 (x − Dt)}. (1.3.16)

Kink and anti-kink types will be obtained based on the signs of the inside and outside
brace (as shown in Figure 1.7).

If the positive signs are taken for both the inside and the outside brace, solu-
tion (1.3.16) respects the kink type from Φ = 0 (x = −∞) to Φ = 2π (x = +∞). Oth-
erwise, if both negative signs are taken, the kink type will be obtained from Φ = −2π
(x = −∞) to Φ = 0 (x = +∞). The anti-kink type will be displayed under the different
signs chosen for the inside and the outside brace.

A lot of nonlinear evolution equations have soliton solutions, such as the nonlin-
ear Klein–Gordon equation, the Toda lattice equation, the Heisenberg ferromagnetic
chain equation, the nonlinear electronic filtering equation, the Boussinesq equation,
the Hirota equation, the Born–Infeld equation, etc.

1.4 The experimental observation and applications

The existence of solitons was first described by Russell in water waves. Apart from
the numerical calculations, experimental observations of solitons have been found
constantly. In the 1970s [132], the formation and propagation of ion-acoustic solitons
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were observed experimentally by Ikezi, Taylor, and Baker. Solitary pulses were ob-
served to follow the predictions of the KdV equation with respect to the shape and
velocity of the soliton. In laser target propagation, vortex solitary waves caused by
collapse and solitons generated by laser beams focusing in nonlinear medium have
also been found [122]. The problems of density pits and infrared shift, which cannot be
explained by classical theory in laser shooting, have been successfully explained by
virtue of soliton theory. In optics, the concept of optical solitons was first theoretically
proposed by Hasegawa and Tappert [123, 124]. They pointed out that the nonlinearity
of the index of refraction could be used to compensate the pulse broadening effect of
dispersion in low-loss optical fibers. Later, Bell telephone laboratories in New Jersey
reported narrowing and splitting of 7-ps-duration pulses from a mode-locked color-
center laser by a 700-m, single-mode silica-glass fiber [181].

The superconducting Josephson effect belongs to the most important subjects in
modern physics and electronic technology. In the two superconductingmaterials con-
stituting the Josephson junction, the phase difference φ between wave functions of
a Cooper pair satisfies the sine-Gordon equation [304]. The fusion of two relativistic
2π-solitons of the samepolarity into a single 4π-solitonhas been observed in a parallel
array of a Josephson junction [247].

In recent years, more aspects of solitons have been observed, in more fields. The
first reported observation of soliton explosions in a passively mode-locked fiber laser
was described by Runge et al. [266]. They reported the identification of clear explosion
signatures in measurements of shot-to-shot spectra of a Yb-doped mode-locked fiber
laser that is operating in a transition regime between stable and noise-like emission.
Soliton dynamics in charge-density waves on a quasi-one-dimensional metallic sur-
face have also been directly observed [183]. In silicon photonic crystals, soliton-effect
pulse compressionof picosecondpulses in silicon, despite two-photonabsorptionand
free carriers, has been demonstrated [26].

More experimental observations will undoubtedly promote the theoretical work
of soliton theory.

1.5 The study of soliton theory problem

Since soliton phenomena have some common characteristics and have been observed
in many nonlinear physical problems, physicists hope to use soliton theory to dis-
cuss themotion of matter under the action of nonlinearity in plasma physics, elemen-
tary particle physics, and Bose–Einstein condensations. From a mathematical point
of view, soliton solutions have been solved for a certain kind of nonlinear evolution
equations. They share important characteristics, such as Bäcklund transformation,
infinitely many conservation laws, and the notions that they can be solved by the in-
verse scattering transform, they are completely integrable, etc. There are several appli-
cations of soliton phenomena in mathematical methods: the inverse scattering trans-
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form, which is based on the boundary problems for ordinary differential equations,
and the Gelfand–Levitan–Marchenko integral equation have been extended by Lax,
Zakharov, and Shabat and Ablowitz, Kaup, Newell, and Suger to deal with a large vari-
ety of solvable nonlinear evolution equations; certain function transformations, like
Bäcklund transformation, Darboux transformation, and the Hirota method, are effi-
cient ways to obtain soliton solutions; the extended structure method by the aid of
the exterior differential form and the Lie group is also a powerful tool. In addition,
numerical simulations have been developed to discuss the stability and interaction of
solitons.

Deift and Zhou [60, 62] introduced a new and general approach, named steepest
descent method, to analyze the asymptotics of oscillatory Riemann–Hilbert prob-
lems. Such problems arise, in particular, when evaluating the lone-time behavior of
nonlinear wave equations solvable by the inverse scattering transform. Fokas [81,
80] presented the solution for the initial boundary value problem of the nonlinear
Schrödinger equation in terms of the solution of a matrix Riemann–Hilbert problem,
formulated in the complex k-plane. The Riemann–Hilbert approach in integrable sys-
tems has also been developed for a lot of mathematical and physical areas, such as
randommatrices and orthogonal polynomials [64].
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2 Inverse scattering transform

2.1 Introduction

The inverse scattering transformwasfirst introducedbyGardner,Greene,Kruskal, and
Miura during the procedure of solving the initial value problem for KdVequations [88].
After the generalization of Lax, Zakharov, and Shabat and Ablowitz, Kaup, Newell,
and Suger (AKNS), the inverse scattering transform has been developed into a gen-
eral and important method for solving a large range of nonlinear evolution equations,
including higher-dimensional and coupled ones. The main advantage of this method
is the possibility to obtain exact solutions through solving a combination of several
linear equations instead of the complex nonlinear equations [153]. In this chapter, we
will introduce the fundamental concepts, some results, and unsolvable problems of
the inverse scattering transform.

2.2 KdV equation and the associated inverse scattering transform

By the aid of the Hopf–Cole transformation

u = −2αwx
w
, (2.2.1)

the Burgers equation

ut + uux − αuxx = 0, α > 0, (2.2.2)

can be transformed into the linear heat conduction equation

wt = αwxx , (2.2.3)

which has the solution

u(x, t) =
∫
∞
−∞

x−ξ
t exp[− (x−ξ )

2

4αt −
1
2α ∫

ξ
0 u0(ξ

󸀠)dξ 󸀠]dξ

∫
∞
−∞ exp[−

(x−ξ )2
4αt −

1
2α ∫

ξ
0 u0(ξ

󸀠)dξ 󸀠]dξ
, (2.2.4)

where u0(x) is the initial value and u|t=0 = u0(x). When α → 0, solution (2.2.4) is
proved to be the generalized solution for the quasi-linear hyperbolic equation

ut + uux = 0. (2.2.5)

The question is whether there exists a similar transformation like equation (2.2.2) for
the KdV equation. Consider the KdV equation of the following form:

ut − 6uux + uxxx = 0. (2.2.6)

https://doi.org/10.1515/9783110549638-002
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If we take u(x, t) as a known function, u = v2 + vx + λ can be seen as a Riccati equa-
tion for the unknown function v(x, t). When v = φx/φ, we get the one-dimensional
Schrödinger equation

φxx − (u − λ)φ = 0, (2.2.7)

where φ is a wave function, u denotes the potential, and λ corresponds to the energy
spectrum. We notice that u is not merely dependent on x, but also on t. Therefore, φ
and λ are related to t aswell. If the solutionu for theKdVequation is smooth, bounded,
anddecaying to zero at |x|→∞, thenequation (2.2.7) existswithfinite discrete spectra
λm = −k2m (m = 1, 2, . . . ,N) for λ < 0 and continuous spectra λ = k2 (−∞ < k < ∞,
k being a real constant) for λ > 0. For a fixed t, we define the solution for scattering
problems of equation (2.2.7), where λ > 0 satisfies the boundary conditions

{
φ(x, k, t) ∼ e−ikx + b(k, t)eikx , x → +∞,

φ(x, k, t) ∼ a(k, t)e−ikx , x → −∞,
(2.2.8)

and the solution for scattering problems of equation (2.2.7), where λ < 0 satisfies the
boundary conditions

{
φm(x, km(t), t) ∼ cm(km(t), t)e

−kmx , x → +∞,

φm(x, km(t), t) ∼ e
kmx , x → −∞,

(2.2.9)

where b(k, t) is the reflection coefficient, a(k, t) is the transmission coefficient, and cm
represents the decaying factor. This satisfies

∫
∞

−∞
φ2
mdx = 1, |a|

2 + |b|2 = 1, (2.2.10)

which can be found in Figure 2.1.
In quantummechanics, the scattering problem for the Schrödinger equation is the

following. Given potential u, we set the scattering data km, cm, a(k), and b(k) and the

Figure 2.1: The scattering data.
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2.2 KdV equation and the associated inverse scattering transform | 15

wave function φ at infinity. The inverse scattering problem is to solve the potential u
by the given scattering data km, cm, a(k), and b(k) and the wave function φ at infinity.
The potential u will be solved by

u(x, t) = −2 d
dx

K(x, x, t), (2.2.11)

where K satisfies the Gelfand–Levitan–Marchenko integral equation

K(x, y, t) + B(x + y, t) + ∫
∞

x
B(y + z, t)K(x, z, t)dz = 0, y > x,

K(x, z, t) 󳨀→ 0, z →∞,
(2.2.12)

where the kernel B(x, t) is given by

B(x, t) =
N
∑
m=1

c2m(t)e
−kmx +

1
2π
∫
∞

−∞
b(k, t)eikxdk, (2.2.13)

where ∑ corresponds to the discrete spectrum and ∫ corresponds to the continuous
spectrum. We see that the inverse scattering problem cannot be successfully solved
from the above expressions. The evolution of u is decided by K for equation (2.2.11),
while K satisfies the Gelfand–Levitan–Marchenko integral equation (2.2.12), which is
solved by the scattering data of kernel B(x, t). However, the scattering data were deter-
mined by u. To break the endless loop and solve the potential u for the KdV equation,
we notice the following important relationship between a KdV equation and the cor-
responding Schrödinger equation.

Theorem 2.2.1. Taking into account the Schrödinger equation (2.2.7), we have

φxx − (u − λ)φ = 0, −∞ < x < +∞,

where the discrete eigenvalues λ1, λ2, . . . , λN are constants if u(x, t) is the solution for the
KdV equation and decays to zero as |x|→∞.

Proof. Inserting u = φxx
φ + λ into the KdV equation (2.2.6) and multiplying by φ2, we

have

λtφ
2 + [φRx − φxR]x = 0, (2.2.14)

where

R ≡ φt + φxxx − 3(u + λ)φx .

The eigenfunction and its derivatives which correspond to λn tend to zero at |x|→∞.
Integrating equation (2.2.14) with respect to x, we obtain

λnt ∫
∞

−∞
φ2
ndx = 0.

Because∫∞−∞ φ
2
ndx = 1, wehave λnt = 0, i.e., λn = constant. The proof is completed.
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If λn is constant, thismeans that thediscrete eigenvalues and the scatteringdata of
the inverse scattering problem of the Schrödinger equation can be solved through the
initial value u0(x) of the KdV equation. By virtue of λt = 0, equation (2.2.14) transforms
into

φRxx − Rφxx = 0,

which is equal to Rxx − (u − λ)R = 0. Because it is of the same form as equation (2.2.7),
R can bewritten as the linear combination of the eigenfunction of equation (2.2.7), i.e.,

R ≡ φt + φxxx − 3(u + λ)φx = Cφ + Dϕ, (2.2.15)

where C and D are related to t and ϕ and φ are the linear independent solutions for
equation (2.2.7). If we take ϕ = φ∫x0

dx
φ2 , we have Theorem 2.2.2.

Theorem 2.2.2. Under the condition of Theorem 2.2.1, the scattering data for scattering
problem (2.2.7) can be expressed as

{{{{
{{{{
{

cn(t) = cn(0)e
4k3nt ,

b(k, t) = b(k,0)e8ik
3t ,

a(k, t) = a(k,0),

(2.2.16)

where cn(0), b(k,0), a(k,0) are determined by the initial value u0(x) of the KdV equation.

Proof. For the discrete spectrum, where φn is the eigenfunction and ϕn = φn ∫
x
0

dx
φ2
n
,

we deduce that ϕn is exponentially unbounded as x → +∞. Therefore, D(t) = 0 can
be obtained from equation (2.2.15). Multiplying equation (2.2.15) byφn and integrating
over an infinite interval, we get

∫
∞

−∞
(
1
2
φ2
n)

t
dx + ∫

∞

−∞
(φnφn,xx −

3
2
φ2
n,x − 3λφ

2
n)

x
dx = c∫

∞

−∞
φ2
ndx.

Because ∫∞−∞ φ
2
ndx = 1 and due to the boundary condition, the integrations on the left

side are equal to zero, so c(t) ≡ 0. Considering φ∼cn(t)e−knx at x → +∞ and u → 0
(x → +∞), the following relationship will be obtained from equation (2.2.15):

c󸀠n(t) − 4k
3
ncn(t) = 0,

i.e., cn(t) ≡ cn(0)e4k
3
nt .

For the continuous spectrum, λ is independent of t andφ satisfies equation (2.2.15).
Taking advantage of the steady radiation condition of the plane wave, i.e.,

φ ∼ a(k, t)e−ikx , x → −∞,
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and inserting it into equation (2.2.15), we have

(at + ik
3a + 3k3a)e−ikx = Ca(k, t)e−ikx + D

a
e−ikx ∫

x

0
e2ikxdx,

at + 4ik
3a = Ca + D

a
∫
x

0
e2ikxdx.

Furthermore, we deduce

D = 0, at + (4ik
3 − C)a = 0.

Substituting φ ∼ e−ikx + b(k, t)eikx (x → +∞) into equation (2.2.15) and collecting the
coefficient of linearly independent functions e±ikx to zero, we get

C = 4ik3, bt − 8ik
3b = 0, b(k, t) = b(k,0)e8ik

3t .

It is easy to see that at = 0, which means a(k, t) = a(k,0). The proof is completed.

Theorems 2.2.1 and 2.2.2 provide the procedures for solving the initial problem for
the KdV equation by virtue of the Schrödinger equation and the following scattering
problem:

{
ut − 6uux + uxxx = 0, −∞ < x <∞, t > 0,
u(x,0) = u0(x).

As a first step, we solve the eigenvalue problem

φxx − [u0(x) − λ]φ = 0, (2.2.17)

where the scattering data at t = 0, i.e., kn, cn(0), b(k,0), can be given. The evolution of
cn(t) and b(k, t) can be obtained from equation (2.2.16), which gives

B(x + y, t) =
N
∑
n=1

c2n(t)e
−kn(x+y) +

1
2π
∫
∞

−∞
b(k, t)eik(x+y)dk

=
N
∑
n=1

c2n(0)e
8k3nt−kn(x+y) +

1
2π
∫
∞

−∞
b(k,0)ei[8k

3t+k(x+y)]dk.

As a second step, K(x, y, t)will be determined using the Gelfand–Levitan–Marchenko
integral equation

K(x, y, t) + B(x + y, t) + ∫
∞

x
B(y + z, t)K(x, z, t)dz = 0, y > x.

We deduce

u(x, t) = −2 d
dx

K(x, x; t).
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Figure 2.2: The procedures of initial problems for the KdV equation.

Following the above procedures (as seen as in Figure 2.2), the initial-value problem
for a nonlinear equation (KdV equation) has been transformed into the problem of
solving two linear equations. One is the Sturm–Liouville problem of the second-order
ordinary differential equation. The other is solving a linear integral equation. Next,
we take two examples to explain this.

If we take u0(x) = −2 sech
2 x, the corresponding eigenvalue problem for equa-

tion (2.2.17) can be solved exactly by a hypergeometric function. The normalized
constants which correspond to the discrete eigenvalue k1 = 1 are c1(0) = √2 and
b(k,0) = 0, so we get b(k, t) = 0 for t ≥ 0. The related Gelfand–Levitan–Marchenko
integral equation can be expressed as

K(x, y, t) + 2e8t−x−y + 2e8t−y ∫
∞

x
K(x, z, t)e−zdz = 0.

Assuming that K(x, y, t) is a separable variable and inserting K(x, y, t) = L(x, t)e−y into
the above integral equation, we get

L(x, t) + 2e8t−x + 2e8tL(x, t)∫
∞

x
e−2zdz = 0,

L(x, t) = −2e
x

1 + e2x−8t
, K(x, y, t) = −2e

x−y

1 + e8x−8t
.

It is easy to verify thatK(x, y, t) is indeed the unique solution for the Gelfand–Levitan–
Marchenko integral equation. Therefore, the exact solution for the initial problem of
the KdV equation is written

u(x, t) = 8e2x−8t

(1 + e2x−8t)2
= −2 sech2(x − 4t).

If we choose u(x,0) = u0(x) = −6 sech
2 x, there are two different eigenvalues, k1 = 2

and k2 = 1. If b(k,0) = 0, the solution for the KdV equation is

u(x, t) = −123 + 4 cosh(2x − 8t) + cosh(4x − 64t)
[3 cosh(x − 28t) + cosh(3x − 36t)]2

.
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In the following part, we aim to get the N-soliton solution via the inverse scattering
transform with reflection coefficient b(k, t) = 0. We only take the discrete spectrum
into account. The related Gelfand–Levitan–Marchenko integral equation is

K(x, y, t) +
N
∑
m=1

c2m(t)e
−km(x+y) +

N
∑
m=1

c2me
−kmy ∫

∞

x
e−kmtK(x, z, t)dz = 0, (2.2.18)

where cm = cm(t) = cm(0)e4k
3
mt and km > 0. Assume K(x, y, t) in the form of

K(x, y, t) = −
N
∑
m=1

cmφm(x)e
−kmy , (2.2.19)

whereφm is anundetermined function and cm is thenormalization factor. Substituting
equation (2.2.19) into equation (2.2.18) andmaking the coefficient of ekmy equal to zero,
we derive the following linear algebra equation of φm(x):

φm(x) +
N
∑
m=1

cmcn
e−(km+kn)x

km + kn
φn(x) = cme

−kmx , m = 1, 2, . . . ,N . (2.2.20)

We denote the matrices

I ≡ (δmn), C ≡ (cmcn
e−(km+kn)x

km + kn
), φ = (φ1,φ2, . . . ,φN )

T ,

E = (c1e
−k1x , c2e

−k2x , . . . , cNe
−kNx)

T
.

Therefore, we rewrite equation (2.2.20) as

(I + C)φ = E. (2.2.21)

To make sure that equation (2.2.20) is solvable for φ, we need to prove C is positive
definite. In fact,

N
∑
m=1

N
∑
n=1

pmpncmcn
e−(km+kn)x

km + kn
= ∫
∞

x
[

N
∑
m=1

pmcme
−kmz]

2

dz > 0,

which means I + C is positive definite. The unique solution for equation (2.2.20) can
be obtained using the Cramer rule. Set Qmn as the algebraic cofactor of element amn of
matrix I + C and expand it at the nth line, to obtain

△ ≡ det(I + C) =∑
m
(δmn + cmcn

e−(km+kn)x

km + kn
)Qmn,

φn(x) = △
−1∑

m
cme
−kmxQmn.
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From equation (2.2.19), y = x, we have

K(x, y, t) = −∑ cnφn(x)e
−knx

= − △−1∑
m
∑
n
cmcne

−(km+kn)xQmn

= △−1
d
dx
△ .

The potential u(x, t) for the KdV equation without reflection coefficient can be given
as

u(x, t) = −2 d
2

dx2
log det(I + C). (2.2.22)

Owing to the symmetrical structure ofK andB in theGelfand–Levitan–Marchenko
integral equation, there are two ways to solve K and B. One way is to first decide B
based on the scattering data and then solve K. The other way is to solve B by virtue of
theGelfand–Levitan–Marchenko integral equation and thenK, which satisfies the lin-
ear hyperbolic equation. This is another method to solve the inverse scattering trans-
form problem, as shown in Figure 2.3.

Figure 2.3: The inverse scattering transform procedure for KdV equation.

2.3 Lax operator and the generalization of Zakharov, Shabat,
AKNS

Consider the general nonlinear evolution equation

ut = K(u), (2.3.1)

where K(u) denotes the nonlinear operator defined in a certain proper function space.
We find two linear operators, L and B [153], which are dependent on the solution u for
equation (2.3.1), satisfying the following Lax equation:

iLt = BL − LB = [B, L], i = √−1, (2.3.2)
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whereB is the self-adjoint operator. From equation (2.3.2), we derive the eigenfunction
φ which corresponds to the operator L and eigenvalue E, i.e.,

Lφ = Eφ. (2.3.3)

If the time evolution of φ satisfies

iφt = Bφ, (2.3.4)

we can confirm that E is independent of t. In fact, we differentiate equation (2.3.3) with
respect to t and we get

i[φdE
dt
+ Edφ

dt
] = i[Lφt +

𝜕L
𝜕t
φ]

= iLφt + [BL − LB]φ
= L(iφt − Bφ) + EBφ.

Because of equation (2.3.4), iφ dE
dt = 0 will be derived.

To solve the initial problemof equation (2.3.1), we put forward the following steps,
as seen as in Figure 2.4:
(i) The eigenvalue problem. Solve the scattering quantities (eigenvalue, reflection

and diffusion coefficients, etc.) through the given initial value u(x,0) at t = 0.
(ii) Time evolution of scattering data. Based on equation (2.3.4), consider the asymp-

totic solution of B at |x|→∞ and compute the evolution of the scattering data.
(iii) The inverse problem. Construct u(x, t) from the Gelfand–Levitan–Marchenko in-

tegral equation.

Take the following KdV equation as an example:

ut − 6uux + uxxx = 0, (2.3.5)

Figure 2.4: The solving procedures for general nonlinear evolution equations.
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with the initial condition

u(x,0) = u0(x). (2.3.6)

Denote the second-order differential operator hierarchy L(t) as

L(t) ≡ − 𝜕
2

𝜕x2
+ u(x, t), (2.3.7)

where u(x, t) is the solution for equation (2.3.5), u(⋅, t) ∈ L2.
The eigenvalue problem for operator L reads

−φxx + u(x, t)φ = Eφ. (2.3.8)

As mentioned in Section 2.2, for a given u0(x), we can solve the scattering quantities
(kn, cn, n = 1, 2, . . . ,N; a(k), b(k), 0 ≤ k2 <∞).

Make the self-adjoint operator B as

B ≡ −4i 𝜕
3

𝜕x3
+ 3i(u 𝜕
𝜕x
+
𝜕
𝜕x
⋅ u), (2.3.9)

where u(x, t) satisfies the KdV equation (2.3.5). The operators L and B satisfy equa-
tion (2.3.2). Based on equation (2.3.4), the boundary condition of φ at infinity, and the
notion that u(x, t)→ 0 (|x|→∞), time evolution of the scattering quantities can easily
be obtained, which follows from the results of Theorem 2.2.2. We solve the Gelfand–
Levitan–Marchenko integral equation and u(x, t) for the initial value problem of the
KdV equation will be given.

We should point out that not all the nonlinear equations (2.3.1) can be solved by
the inverse scattering transform. Themain difficulty is that the proper operators L and
B for equation (2.3.2) cannot be found easily. Even though a certain B is found for a
given L, B is trivial probably. For example, for L = 𝜕

2

𝜕x2 + u(x, t), choosing B = i
𝜕
𝜕x , we

have Lt = ut, [B, L] = i[D, u] = iux, iLt = [B, L] ⇒ ut = ux, which is a traveling wave
equation with explicit solution u = f (x − t). Although some confusion exists, a large
variety of nontrivial nonlinear wave equations can be solved by the inverse scattering
transform. Next, we state the generalization of Zakharov, Shabat, and AKNS.

Consider the linear problem

Lv = ζv, (2.3.10)

where

L ≡ ( i ddx −iq(x, t)
ir(x, t) − ddx

) , v ≡ (v1(x, t)
v2(x, t)
) , (2.3.11)
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q(x, t) and r(x, t) are the differential functions, and ζ is constant. B is assumed in the
form of

B = (a(x, t; ζ ) b(x, t; ζ )
c(x, t; ζ ) −a(x, t; ζ )

) , (2.3.12)

where a, b, c are all the undetermined functions. The time part of the Lax equation
satisfies

i dv
dt
= Bv. (2.3.13)

We rewrite Lax equations (2.3.10) and (2.3.13) as

{
iv1,x − iqv2 = ζv1,
irv1 − iv2,x = ζv2

(2.3.14)

and

{
iv1,t = av1 + bv2,
iv2,t = cv1 − av2.

(2.3.15)

We differentiate equation (2.3.14) with respect to t and differentiate equation (2.3.15)
with respect to x, to get

{
iv1,xt − iqtv2 − iqv2,t = ζv1,t ,
irtv1 + irv1,t − iv2,xt = ζv2,t

(2.3.16)

and

{
iv1,xt = axv1 + av1,x + bxv2 + bv2,x ,
iv2,xt = cxv1 + cv1,x − axv2 − av2,x .

(2.3.17)

Omitting v1,xt and v2,xt in equations (2.3.16) and (2.3.17), we have

{
axv1 + av1,x + bxv2 + bv2,x = ζv1,t + iqtv2 + iqv2,t ,
cxv1 + cv1,x − axv2 − av2,x = irtv1 + irv1,t − ζv2,t .

(2.3.18)

Insert equations (2.3.14), (2.3.15) into equation (2.3.18) and omit v1,x, v2,x, v1,t, v2,t, to
obtain

axv1 + a(−iζv1 + qv2) + bxv2 + b(iζv2 + rv1)
= −iζ (av1 + bv2) + iqtv2 + q(cv1 − av2), (2.3.19)

cxv1 + c(−iζv1 + qv2) − axv2 − a(iζv2 + rv1)
= irtv1 + r(av1 + bv2) + iζ (cv1 − av2). (2.3.20)
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Collecting the coefficients of v1 and v2 in equations (2.3.19) and (2.3.20), respectively,
we have

v1 : ax + br = qc,
cx − 2iζc = irt + 2ar,

v2 : bx + 2iζb = iqt − 2aq,
cq − ax = br

and we get the following equations, which (a, b, c, r, q) satisfy:

𝜕a
𝜕x
= qc − rb, (2.3.21)

𝜕b
𝜕x
+ 2iζb = i𝜕q

𝜕t
− 2aq, (2.3.22)

𝜕c
𝜕x
− 2iζc = i𝜕r

𝜕t
+ 2ar. (2.3.23)

In order to maintain unity, we denote

dv
dt
= Mv, M = (A B

C −A
) .

Thus, equations (2.3.21)–(2.3.23) can be rewritten as

Ax = qC − rB, (2.3.24)
Bx + 2iζB = qt − 2Aq, (2.3.25)
Cx − 2iζC = rt + 2Ar, (2.3.26)

where A ≡ A(x, t; ζ ), B ≡ B(x, t; ζ ), C ≡ C(x, t; ζ ), r = r(x, t), and q = q(x, t).
Equations (2.3.14)–(2.3.15) and (2.3.24)–(2.3.26) compose the foundation of the in-

verse scattering transform. For given initial values r(x,0) and q(x,0), equations (2.3.14)
are used to decide the discrete eigenvalues (which are time-invariant) and the asymp-
totic behavior at |x| → ∞ of all the eigenfunctions v1(x,0; ζ ), v2(x,0; ζ ) at the initial
time. If a certain set of (rt , qt , r, q) is given, (A,B,C) will in principle be solved from
equations (2.3.24)–(2.3.26). As a next step, time evolution of the asymptotic behavior
of eigenfunctions v1, v2 at |x| → ∞ will be computed from equations (2.3.15). This in-
formation is sufficient to enable us to reconstruct the potentials r(x, t), q(x, t) at later
times. Certainly, we cannot carry this out simply, since r, q are unknown. However,
the above procedures provide us the ways to solve the exact solution for nonlinear
evolution equations via the inverse scattering transform.

First, we find some special solutions for equations (2.3.24)–(2.3.26), based on
which a general kind of nonlinear evolution equations will be obtained. We make the
following assumptions of A, B, C:

A =
N
∑
n=0

A(n)ζ n, B =
N
∑
n=0

B(n)ζ n, C =
N
∑
n=0

C(n)ζ n. (2.3.27)
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Collecting the same powers of ζ n in equations (2.3.24)–(2.3.26), it is not difficult to see
A(N) = aN (aN is independent of x and can depend on t), B(N) = C(N) = 0. B(N−1) and
C(N−1) are derived from equations (2.3.25) and (2.3.26), while A(N−1) can be obtained
from equation (2.3.24). Reiterating the process, all series of A(n), B(n), C(n) will be de-
rived. Specially, the last two equations for ζ (0) are

{
qt = 2A

(0)q + B(0)x ,

rt = −2A
(0)r + C(0)x .

(2.3.28)

Taking N = 3 as an example, we have

A = A(0) + A(1)ζ + A(2)ζ 2 + a3ζ
3,

B = B(0) + B(1)ζ + B(2)ζ 2,

C = C(0) + C(1)ζ + C(2)ζ 2.

Inserting them into equations (2.3.24)–(2.3.26), we have

A(0)x = qC
(0) − rB(0),

A(1)x = qC
(1) − rB(1),

A(2)x = qC
(2) − rB(2),

B(1)x + 2iB
(0) = −2A(1)q,

B(2)x + 2iB
(1) = −2A(2)q,

C(1)x − 2iC
(0) = 2A(1)r,

C(2)x − 2iC
(1) = 2A(2)r,

A(2) = a2, B(2) = ia3q, C(2) = ia3r.

Solving the above equations, the coefficients of A, B, C are obtained. A, B, C can be
expressed as

{{{{{{{{{
{{{{{{{{{
{

A = a3ζ
3 + a2ζ

2 + (
1
2
a3qr + a1)ζ +

1
2
a2qr −

i
4
a3(qrx − qxr) + a0,

B = ia3qζ
2 + (ia2q −

1
2
a3qx)ζ + ia1q +

i
2
a3q

2r − 1
2
a2qx −

i
4
a3qxx ,

C = ia3rζ
2 + (ia2r +

1
2
a3rx)ζ + ia1r +

i
2
a3qr

2 +
1
2
a2rx −

i
4
a3rxx .

(2.3.29)

The corresponding evolution equations, i.e., equations (2.3.28), transform to

0 = qt +
i
4
a3(qxxx − 6qrqx) +

1
2
a2(qxx − 2q

2r) − ia1qx − 2a0q,

0 = rt +
i
4
a3(rxxx − 6qrrx) −

1
2
a2(rxx − 2qr

2) − ia1rx + 2a0r,
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which include some special cases:
(i) If a0 = a1 = a2 = 0, a3 = −4i;

(a) if r = −1 (KdV equation),

qt + 6qqx + qxxx = 0, (2.3.30)

(b) if r = ∓q (MKdV equation),

qt ± 6q
2qx + qxxx = 0. (2.3.31)

(ii) If a0 = a1 = a3 = 0, a2 = −2i, r = ∓q∗ (nonlinear Schrödinger equation),

qt − iqxx ∓ 2iq
2q∗ = 0. (2.3.32)

For the KdV equation (2.3.30), the scattering problem (2.3.14) reduces to the Schrö-
dinger equation

v2,xx + (ζ
2 + q(x, t))v2 = 0. (2.3.33)

As is well known, for a real q(x, t), ζ 2 is real. The corresponding discrete eigenvalues
are located at the imaginary ζ -axis and are related to the stable solitons. Generally
speaking, the discrete eigenvalues which correspond to the localized pulses in the
solution q(x, t) are complex.

In a similar way, we can expand A, B, C in the negative powers of ζ . For instance,
for

A(x, t; ζ ) = a(x, t)
ζ
,

B(x, t; ζ ) = b(x, t)
ζ
,

C(x, t; ζ ) = c(x, t)
ζ
,

we obtain

ax =
i
2
(qr)t , qxt = −4iaq, rxt = −4iar. (2.3.34)

We list several special and important cases:
(i) If a = i

4 cos u, b = c =
i
4 sin u, r = −q =

1
2ux (sine-Gordon equation),

uxt = sin u. (2.3.35)

(ii) If a = i
4 cosh u, −b = c =

i
4 sinh u, r = q =

1
2ux (sinh-Gordon equation),

uxt = sinh u. (2.3.36)
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2.4 A more general evolution equation (AKNS equation)

The discussion in the former section suggests the question whether the evolution
equations can only be solved by the inverse scattering transform in the finite power
series expansions of ζ . In this section, we will show that a wider class of evolution
equations indeed exist [6].

Assume that A, B, C satisfy the boundary conditions

{{{
{{{
{

A(x, t; ζ )→ A0(ζ ),

B(x, t; ζ )→ 0,

C(x, t; ζ )→ 0, |x|→∞.

(2.4.1)

For the case where A, B, C take on different values on the right x → +∞ and left
x → −∞, the results can be found in [151].

In order to deduce the necessary integral conditions,we shall formally solve equa-
tions (2.3.24)–(2.3.26), which can easily be given in terms of a specific solution of equa-
tion (2.3.14). Therefore, we first examine the fundamental solutions for the eigenvalue
problem of equation (2.3.14).

Assuming q(x, t), r(x, t)→ 0 as |x|→∞, for real ζ , we define the linearly indepen-
dent solutions for equation (2.3.14), which satisfies the following asymptotic values:

{{{{{
{{{{{
{

φ→ (1
0
) e−iζx , x → −∞,

φ̄→ ( 0
−1
) eiζx , x → −∞,

(2.4.2)

{{{{{
{{{{{
{

ψ→ (0
1
) eiζx , x → +∞,

ψ̄→ (1
0
) e−iζx , x → +∞.

(2.4.3)

It is customary to let the scattering data a(ζ , t), b(ζ , t), ā(ζ , t), b̄(ζ , t) be the coefficients
relating to the following two sets of linearly independent solutions:

φ = aψ̄ + bψ→ (
ae−iζx

beiζx
) , x → +∞, (2.4.4)

φ̄ = b̄ψ̄ − āψ→ (b̄e
−iζx

−āeiζx
) , x → +∞. (2.4.5)

The coefficients a(ζ , t), b(ζ , t), ā(ζ , t), b̄(ζ , t) are given by theWronskian determinant of
φ, φ̄, ψ, ψ̄, i.e.,
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{
a = W(φ,ψ),
b = −W(φ, ψ̄),

{
ā = W(φ̄, ψ̄),
b̄ = W(φ̄,ψ),

(2.4.6)

whereW(u, v) = u1v2 − u2v1,W(ψ̄,ψ) = 1. SinceW(φ, φ̄) = −1, we have

aā + bb̄ =W(φ̄,ψ)W(φ̄, ψ̄) −W(φ, ψ̄)W(φ̄,ψ)
= (φ1ψ2 − φ2ψ1)(φ̄1ψ̄2 − φ̄2ψ̄1) − (φ1ψ̄2 − φ2ψ̄1)(φ̄1ψ2 − φ̄2ψ1)

= −φ1φ̄2(ψ1ψ̄2 − ψ̄1ψ2) + φ̄1φ2(ψ̄1ψ2 − ψ1ψ̄2)

= φ̄1φ2 − φ1φ̄2 = 1.

We will show in Section 2.5 that a(ζ , t) can be analytically extended into the upper
half plane (Im ζ > 0); ā(ζ , t) can be extended into the lower half plane (Im ζ < 0). The
discrete eigenvalues {ζk}Nk=1 of equation (2.3.14) in the upper half plane (Im ζ > 0) are
given by the zeros of a(ζ , t), where φ(ζk , t) = bk(t)ψ(ζk , t). Similarly, the zeros of ā(ζ , t)
in the lower half plane (Im ζ < 0) are also eigenvalues. At these zeros,

φ̄k( ̄ζk , t) = b̄k(t)ψ̄k( ̄ζk , t).

Because of our choice of normalization in equation (2.4.2), without loss of general-
ity, we assume that B,C → 0 (x → −∞) in equations (2.3.24)–(2.3.36). From equa-
tion (2.3.24), we find that A(x, t; ζ )→ constant (x → −∞) and it is convenient to set

lim
x→−∞

A(x, t; ζ ) = A−(ζ ), (2.4.7)

where A−(ζ ) is an arbitrary function of ζ . Since φeA−t and φe−A−t satisfy equation
(2.3.24), we have

φt = (
A − A− B
C −A − A−

)φ, (2.4.8)

φ̄t = (
A + A− B
C −A + A−

) φ̄. (2.4.9)

We check the asymptotic behavior at x → +∞, i.e.,

(
ate−iζx

bteiζx
) = (

A+ − A− limx→+∞ B
limx→+∞ C −A+ − A−

)(
ae−iζx

beiζx
) ,

from which the time evolutions of the scattering data are given by

{
at = (A+ − A−)a + B+b,
bt = C+a − (A+ + A−)b,

(2.4.10)
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{
āt = −(A+ − A−)ā − C+b̄,
b̄t = −B+a + (A+ + A−)b̄,

(2.4.11)

where A+ = limx→+∞ A, B+ = limx→+∞ Be2iζx, C+ = limx→+∞ Ce−2iζx. Under the special
case A+ = A−, B+ = C+ = 0, equations (2.4.10) and (2.4.11) transform into

{{{{{{
{{{{{{
{

a(ζ , t) = a(ζ ,0),

b(ζ , t) = b(ζ ,0)e−2A−(ζ )t ,
ā(ζ , t) = ā(ζ ,0),

b̄(ζ , t) = b̄(ζ ,0)e2A−(ζ )t .

(2.4.12)

To solve equation (2.4.12), it is necessary to find the general solution for equations
(2.3.24)–(2.3.26) anddetermineA+,B+, andC+. Assuming I(u, v) in termsof thebilinear
form, we have

I(u, v) = ∫
∞

−∞
(−qtu2v2 + rtu1v1)dx. (2.4.13)

A+, B+, and C+ can be written as

{{{
{{{
{

A+ = −I(ψ, ψ̄) + A−(aā − bb̄),
B+ = −I(ψ,ψ) + 2ab̄A−,
C+ = I(ψ̄, ψ̄) + 2ābA−.

(2.4.14)

The inverse relation to equations (2.4.4) and (2.4.5) reads

{
ψ = −aφ + b̄φ̄,
ψ̄ = bφ̄ + āφ.

(2.4.15)

Inserting equation (2.4.15) into equation (2.4.14) and substitutingA+, B+, C+ into equa-
tions (2.4.10) and (2.4.11), we have

{
at = −I(φ,ψ),
bt = I(φ,ψ),

(2.4.16)

{
āt = −I(φ̄, ψ̄),
b̄t = −I(φ̄,ψ).

(2.4.17)

Thus, the time evolution of scattering data from equation (2.4.16) can be expressed as

(
b
a
)
t
=
bta − atb

a2
=
b
a
⋅
1
ab
[bta − atb]

=
b
a
⋅
1
ab
[I(φ, bφ̄ + āφ)a − I(φ,−aφ + b̄φ̄)b]
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=
b
a
I(φ,φ)
ab
.

Similarly,

{{{{{{{{{
{{{{{{{{{
{

(
b̄
ā
)
t
=
b̄
ā
I(φ̄,φ)
āb̄
,

(
b̄
a
)
t
=
b̄
a
I(ψ,ψ)
ab̄
,

(
b
ā
)
t
=
b
ā
I(ψ̄, ψ̄)
āb
.

(2.4.18)

To this point, we have made no assumptions about q and r, except for the fairly
weak condition that the integrals I(u, v) are defined. In principle, for any qt and rt, we
should be able to compute the time evolution of the scattering data from one time step
to the next and determine q(x, t) and r(x, t) at later times from equation (2.4.18).

At present, we focus our attention on the analytic expressions for the evolution
equation. For arbitrary complex functionsΩ(ζ ) and Ω̄(ζ ), if we choose

I(ψ,ψ) = 2Ω(ζ )ab̄, (2.4.19)
I(ψ̄, ψ̄) = −2Ω̄(ζ )āb, (2.4.20)

equation (2.4.18) can be linearized. Equation (2.4.19) may be written as

∫
∞

−∞
[(rt + 2Ω(ζ )r)ψ

2
1 + (−qt + 2Ω(ζ )q)ψ

2
2]dx = 0. (2.4.21)

In fact, we notice that

I(ψ,ψ) = ∫
∞

−∞
(−qtψ

2
2 + rtψ

2
1)dx,

−ψ1ψ2|
∞
−∞ = −ψ1ψ2|−∞
= (−aφ1 + b̄φ̄1)(−aφ2 + b̄φ̄2)|−∞
= ab̄.

On the other hand, from equation (2.3.14), we obtain

−ψ1ψ2|
∞
−∞ = −∫

∞

−∞

d
dx
(ψ1ψ2)dx = −∫

∞

−∞
(qψ2

2 + rψ
2
1)dx.

Therefore, equation (2.4.21) can be derived. As can be verified from equation (2.3.14)
that the vector Ψ = (ψ2

1 ,ψ
2
2)
T satisfies

LΨ = ζΨ, (2.4.22)

where T means the transpose,

L = 1
2i
(
− 𝜕𝜕x − 2q ∫

∞
x ⋅r(y)dy −2q ∫∞x ⋅q(y)dy

2r ∫∞x ⋅r(y)dy
𝜕
𝜕x + 2r ∫

∞
x ⋅q(y)dy

) . (2.4.23)
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If we define u = (r, q)T and σ3 = ( 1 0
0 −1 ), we rewrite equation (2.4.21) as

∫
∞

−∞
[σ3ut + 2uΩ(ζ )]Ψdx = 0. (2.4.24)

IfΩ(ζ ) is an entire function, we conclude

Ω(ζ )Ψ = Ω(L)Ψ. (2.4.25)

Defining the adjoint operator L+ as

L+ = 1
2i
(
𝜕
𝜕x − 2r ∫

x
−∞ ⋅q(y)dy 2r ∫x−∞ ⋅r(y)dy

−2q ∫x−∞ ⋅q(y)dy − 𝜕𝜕x + 2q ∫
x
−∞ ⋅r(y)dy

) , (2.4.26)

equation (2.4.24) transforms into

∫
∞

−∞
[σ3ut + 2Ω(L

+)u]Ψdx = 0. (2.4.27)

Similarly, equation (2.4.20) gives

∫
∞

−∞
[σ3ut + 2Ω̄(L

+)u]Ψ̄dx = 0, Ψ̄ = (ψ̄2
1 , ψ̄

2
2)
T
. (2.4.28)

In the special case of Ω = Ω̄, in order to satisfy equations (2.4.27)–(2.4.28), it is suffi-
cient to denote

σ3ut + 2Ω(L
+)u = 0. (2.4.29)

Without loss of generality, takingΩ(ζ ) = A−(ζ ), we have

σ3ut + 2A−(L
+)u = 0. (2.4.30)

Equation (2.4.30) is the nonlinear evolution equation whose linearized dispersion re-
lation is defined byA−(ζ ) andwhich can be solved by the inverse scattering transform.
For instance,

Ω(ζ ) = A−(ζ ) = −2iζ
2,

σ3ut = (
rt
−qt
) , L+u = 1

2i
(
rx
qx
) ,

2[−2i(L+)2u] = i(rxx − 2qr
2

qxx − 2q2r
) ,

(2.4.31)

which yields

(
rt
−qt
) + i(rxx − 2qr

2

qxx − 2q2r
) = 0, (2.4.32)

which is exactly equal to equation (2.3.32) with r = ∓q∗.
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It also follows that

I(ψ, ψ̄) = −2A−(ζ )bb̄, (2.4.33)
I(φ,φ) = −2A−(ζ )ab, (2.4.34)
I(φ̄, φ̄) = 2A−(ζ )āb̄. (2.4.35)

From equation (2.4.14), we note that

A+ = A−, B+ = C+ = 0. (2.4.36)

Therefore, the inverse problem can be solved by scattering data. In the theory of con-
servation law, we show that equation (2.4.36) leads to the existence of an infinite se-
quence of integrated densities {cn}∞n=1, which stand for motion constants. The first
three are

c1 = ∫ qrdx, c2 =
1
2
∫(rqx − rxq)dx, c3 = ∫(qxrx + q

2r2)dx. (2.4.37)

We also note that, when q → 0 as |x| → ∞ and r = −1, equation (2.3.14) is associated
with the eigenvalue problem of the Schrödinger equation

v2,xx + (ζ
2 + q)v2 = 0 (2.4.38)

and the related evolution equation is

qt + ĉ(4L
+
s )qx = 0, (2.4.39)

where

L+s = −
1
4
𝜕2

𝜕x2
− q + 1

2
qx ∫
∞

x
⋅dy, (2.4.40)

ĉ(k2) = ω/k, and ω is the dispersion relation of the linearized equation. It is easy to
verify that ω = −k3 yields

qt + qxxx + 6qqx = 0. (2.4.41)

We extend these ideas by allowing the dispersion relation Ω(ζ ) to be a ratio of entire
functions, i.e.,Ω(ζ ) = Ω1(ζ )/Ω2(ζ ). Then the analog to equation (2.4.30) is

Ω2(L
+)σ3ut + 2Ω1(L

+)u = 0. (2.4.42)

If we takeΩ = iα/2(ζ − ζ1), equation (2.4.42) becomes

1
2i
(
rxt − 2r ∫

r
−∞(qr)tdy − 2i

̂ζ1rt
qxt − 2q ∫

r
−∞(qr)tdy + 2i

̂ζ1qt
) = −iα(r

q
) . (2.4.43)
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When ĉ(k2) = 1
1+k2 , an equation will be derived from equation (2.4.39), i.e.,

qt − qxxt − 4qqt + 2qx ∫
∞

x
qtdy + qx = 0, (2.4.44)

which reduces to the KdV equation under the long wave approximation and small
amplitude assumption.

A further extension of the analysis is possible and an evenwider class of evolution
equations can be obtained. The inverse scattering transform is still solvable if we do
not chooseΩ(t) = Ω̄(t), even in the cases where there are no motion invariants.

2.5 Solution of the inverse scattering problems for AKNS
equations

In this section,wemake a comprehensive study of the solvability of the inverse scatter-
ing transform problem. For the eigenvalue problem which is not self-adjoint, we still
can derive the Marchenko equation. First, we provide a discussion of the analytical
properties of the scattering data.

(1) Analytical properties of the scattering data.
For the eigenvalue problem given by equation (2.3.14) on the interval −∞ < x <

+∞, we assume q and r vanish sufficiently rapidly to zero as |x| → ∞, so in these
limits, the right-hand side in equation (2.3.14) can be neglected. Setφ, φ̄,ψ, ψ̄ to be the
Jost functions of equation (2.3.14), satisfying the boundary conditions (2.4.2)–(2.4.3).
φ and φ̄ are linearly independent, as are ψ and ψ̄. Therefore, for real ζ , we have

φ(ζ , x) = a(ζ )ψ̄(ζ , x) + b(ζ )ψ(ζ , x), (2.5.1)
φ̄(ζ , x) = −ā(ζ )ψ(ζ , x) + b̄(ζ )ψ̄(ζ , x), (2.5.2)

which define a, ā, b, b̄. From equation (2.3.14), if u(ζ , x) and v(ζ , x) are solutions for
equation (2.3.14), then we have

dW(u, v)
dx
= 0, (2.5.3)

where

W(u, v)≡u1(ζ , x)v2(ζ , x) − u2(ζ , x)v1(ζ , x). (2.5.4)

In fact, equation (2.5.3) will be derived from

[u1,x + iζu1 = qu2] ⋅ v2 + u1[v2,x − iζv2 = rv1]
−[u2,x − iζu2 = ru1] ⋅ v1 − u2[v1,x + iζv1 = qv2] = 0.
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The relations (2.4.6) andW(φ̄,φ) = 1 imply

ā(ζ )a(ζ ) + b̄(ζ )b(ζ ) = 1. (2.5.5)

The inverse of equations (2.5.1)–(2.5.2) are expressed as

ψ(ζ , x) = −a(ζ )φ̄(ζ , x) + b̄(ζ )φ(ζ , x), (2.5.6)
ψ̄(ζ , x) = ā(ζ )φ(ζ , x) + b(ζ )φ̄(ζ , x). (2.5.7)

By virtue of φ2,x − iζφ2 = rφ1 and the boundary condition φ2 → 0 (x → −∞), we have

eiζxφ2(x) = ∫
x

−∞
e2iζ (x−y)r(y)eiζyφ(y)dy. (2.5.8)

Substituting equation (2.5.8) into φ1,x + iζφ1 = qφ2 and considering φ1 → e−iζx (x →
−∞), we obtain

eiζxφ1(x) = 1 + ∫
x

−∞
M(ζ , x, y)eiζyφ1(y)dy, (2.5.9)

where

M(ζ , x, y) ≡ r(y)∫
x

y
e2iζ (x−y)q(z)dz. (2.5.10)

Under suitable conditions, we extend φ into the upper half of the ζ -plane (ζ = ξ + iη,
η > 0). To see this, let

Rn(x) ≡ ∫
x

−∞

󵄨󵄨󵄨󵄨y
n󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨r(y)
󵄨󵄨󵄨󵄨dy, (2.5.11)

Qn(x) ≡ ∫
x

−∞

󵄨󵄨󵄨󵄨y
n󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨q(y)
󵄨󵄨󵄨󵄨dy, (2.5.12)

where we assume r and q to vanish sufficiently rapidly as x → −∞ for at least some of
these integrals to exist when n > 0. For η ≥ 0, we have

󵄨󵄨󵄨󵄨e
iζxφ1(x)
󵄨󵄨󵄨󵄨 ≤ 1 + ∫

x

−∞

󵄨󵄨󵄨󵄨q(z)
󵄨󵄨󵄨󵄨dz ∫

z

−∞

󵄨󵄨󵄨󵄨r(y)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨e
iζyφ1(y)
󵄨󵄨󵄨󵄨dy

= 1 + ∫
x

−∞
Q󸀠0(z)dz ∫

z

−∞
R󸀠0(y)
󵄨󵄨󵄨󵄨e
iζyφ1(y)
󵄨󵄨󵄨󵄨dy

≤ 1 + R0(x)Q0(x) +
[R0(x)Q0(x)]2

(2!)2
+
[R0(x)Q0(x)]3

(3!)2
+ ⋅ ⋅ ⋅

or

󵄨󵄨󵄨󵄨e
iζxφ1(x)
󵄨󵄨󵄨󵄨 ≤ I0(S(x)), (2.5.13)
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where S(x) = 2(R0(x)Q0(x))1/2 and I0(S(x)) is the zero-order Bessel function with imag-
inary argument. By equations (2.5.1) and (2.5.4), we know φ1eiζx → a(ζ ) as x → +∞.
Thus, we conclude that a(ζ ) is bounded in the upper half of the ζ -plane (η ≥ 0) if
R0(∞) and Q0(∞) are finite. Returning to equation (2.4.6), we see that the Neumann
series solution of

eiζxφ1(x) = 1 + ∫
x

−∞
M(ζ , x, y)dy

+ ∫
x

−∞
M(ζ , x, y)dy∫

y

−∞
M(ζ , y, z)dz + ⋅ ⋅ ⋅ (2.5.14)

is absolutely convergent in the upper half plane. Furthermore, one may differentiate
equation (2.5.14) with respect to ζ and find that eiζxφ1(x) is analytical if η > 0. To be
analytic for η = 0, it is easy to see that simply requiring R0(∞) and Q0(∞) to be finite
is not sufficient. For instance, since ζ occurs in an exponential in equation (2.5.10),
differentiation will give a (z − y)-term. To ensure the first differential to exist at η = 0,
q and r must vanish faster than x−2 as x → ±∞. Upon doing the same for φ̄, ψ, ψ̄ as
for φ, we have the following theorem.

Theorem 2.5.1. Under the conditions

R0(∞) <∞, Q0(∞) <∞, (2.5.15)

eiζxφ(ζ , x), e−iζxψ(ζ , x) are analytic functions of ζ (η > 0), while e−iζxφ̄(ζ , x), eiζxψ̄(ζ , x)
are analytic functions of ζ (η < 0). In addition, the above four functions are bounded
when η = 0. Furthermore, for a given integer n satisfying

Rl(∞) <∞, Ql(∞) <∞, l = 0, 1, 2, . . . , n, (2.5.16)

these four functions are also n-fold differentiable at η = 0 with respect to ζ . If equa-
tion (2.5.16) is true for all n, then the range of analyticity will include the real ζ -axis
(η = 0).

As a corollary, we have the following results from equation (2.4.6).

Corollary 2.5.2. When equation (2.5.15) is satisfied, a(ζ ) is an analytic function of ζ for
η > 0 and ā(ζ ) is an analytic function of ζ for η < 0. If equation (2.5.16) is satisfied for
all n, both a(ζ ) and ā(ζ ) are analytic when η = 0.

When the more stringent conditions are placed on r and q, one can prove the fol-
lowing theorem.

Theorem 2.5.3. If there exist the finite and positive constants R̂, Q̂, and K, which satisfy

󵄨󵄨󵄨󵄨r(x)
󵄨󵄨󵄨󵄨 ≤ R̂e

−2K|x|, 󵄨󵄨󵄨󵄨q(x)
󵄨󵄨󵄨󵄨 ≤ Q̂e

−2K|x|, (2.5.17)
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for all x, then eiζxφ(ζ , x), e−iζxψ(ζ , x) are analytic functions of ζ when η > −K, while
e−iζxφ̄(ζ , x), eiζxψ̄(ζ , x) are analytic functions of ζ when η < +K.

Immediately following from equation (2.4.6), we have the following corollary.

Corollary 2.5.4. If equation (2.5.17) is satisfied, a(ζ ) is an analytic function of ζ when
η > −K, ā(ζ ) is an analytic function of ζ when η < +K, and both b(ζ ) and b̄(ζ ) are
analytic when −K < η < +K.

We note that, when q and r are on compact support, K in equation (2.5.17) can be
chosen as large as desired, so we also have the following corollary.

Corollary 2.5.5. Equation (2.5.16) is true when r and q are on compact support. Then
eiζxφ(ζ , x), e−iζxφ̄(ζ , x), e−iζxψ(ζ , x), and eiζxψ̄(ζ , x) are entire functions of ζ . Therefore,
a(ζ ), ā(ζ ), b(ζ ), b̄(ζ ) are also entire functions of ζ .

We return to equations (2.5.8)–(2.5.10) in the upper half plane of ζ . When |ζ | →
−∞, we get the asymptotic series

φ1e
iζx → 1 − 1

2iζ
∫
x

−∞
r(y)q(y)dy + O( 1

ζ 2
), (2.5.18)

φ2e
iζx → −

1
2iζ

r(x) + O( 1
ζ 2
) (2.5.19)

and, similarly,

ψ1e
−iζx →

1
2iζ

q(x) + O( 1
ζ 2
), (2.5.20)

ψ2e
−iζx → 1 − 1

2iζ
∫
∞

x
r(y)q(y)dy + O( 1

ζ 2
), (2.5.21)

while, for ζ in the lower half plane, the asymptotic series as |ζ |→∞ are

φ̄1e
−iζx → −

1
2iζ

q(x) + O( 1
ζ 2
), (2.5.22)

φ̄2e
−iζx → −1 − 1

2iζ
∫
x

−∞
q(y)r(y)dy + O( 1

ζ 2
), (2.5.23)

ψ̄1e
iζx → 1 + 1

2iζ
∫
∞

x
q(y)r(y)dy + O( 1

ζ 2
), (2.5.24)

ψ̄2e
iζx → −

1
2iζ

r(x) + O( 1
ζ 2
). (2.5.25)

Thus, in each respective half plane as |ζ |→∞, we have

a(ζ )→ 1 − 1
2iζ
∫
∞

−∞
q(y)r(y)dy + O( 1

ζ 2
), (2.5.26)

 EBSCOhost - printed on 2/10/2023 3:23 PM via . All use subject to https://www.ebsco.com/terms-of-use



2.5 Solution of the inverse scattering problems for AKNS equations | 37

ā(ζ )→ 1 + 1
2iζ
∫
∞

−∞
q(y)r(y)dy + O( 1

ζ 2
). (2.5.27)

When a(ζ ) has zero point ζk (k = 0, 1, 2, . . . ,N) in the upper half plane (η > 0), with N
being a finite number, at ζ = ζk, we have

φ = bkψ, (2.5.28)

where bk is the proportional factor. In the case where r and q are on compact support,
bk ≡ b(ζk). In addition, ā(ζ ) possesses the zero point ̄ζk (k = 0, 1, 2, . . . , N̄) in the lower
half plane. At ζ = ̄ζk, we have

φ̄ = b̄kψ. (2.5.29)

If r and q are on compact support, b̄(k) ≡ b̄( ̄ζk). N and N̄ are finite numbers.
Unlike the Schrödinger equation, whose zero points must be simple as a conse-

quence of being self-adjoint, the above eigenvalue problem may have zeros of any or-
der for a and ā. However, these cases can be analyzed as the limit of the case where
all zeros are simple. For example, a double zero of a(ζ ) at ζ1 is simply obtained when
letting a have two simple zeros at ζ1 and ζ2 and then ζ2 → ζ1.

Whenever r is linearly related to q or q∗, simplifications occur. First consider the
case

r = αq, (2.5.30)

where α is any nonzero, finite, complex constant. In this case, we have

ψ̄(ζ , x) = Sψ(−ζ , x), (2.5.31)

φ̄(ζ , x) = − 1
α
Sφ(−ζ , x), (2.5.32)

where

S = (0 1
α 0
) . (2.5.33)

Consequently,

ā(ζ ) = a(−ζ ), (2.5.34)

b̄(ζ ) = − 1
α
b(−ζ ). (2.5.35)

The zeros of a and ā are paired such that

N̄ = N , (2.5.36)
̄ζk = −ζk , k = 1, 2, . . . ,N , (2.5.37)
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b̄k = −
1
α
bk . (2.5.38)

In the case where

r = αq∗, (2.5.39)

where α is a nonzero, finite, real constant, we have

ψ̄(ζ , x) = Sψ∗(ζ ∗, x), (2.5.40)

φ̄(ζ , x) = − 1
α
Sφ∗(ζ ∗, x), (2.5.41)

which gives

ā(ζ ) = a∗(ζ ∗), (2.5.42)

b̄(ζ ) = − 1
α
b∗(ζ ∗). (2.5.43)

Similarly, the zeros of a and ā are paired, but in a different manner, i.e.,

N̄ = N , (2.5.44)
̄ζk = ζk , k = 1, 2, . . . ,N , (2.5.45)

b̄k = −
1
α
b∗k . (2.5.46)

If equations (2.5.30) and (2.5.39) bothhold,whichmeans r and r∗ arebothproportional
to q, then ζk is either purely imaginary or −ζ ∗k is also another eigenvalue.

(2) The inverse scattering transform.
First,wewill obtain the integral representations for the four Jost functions defined

by equation (2.3.14), fromwhichwewill obtain the inverse equations of theMarchenko
type. For simplicity, we assume r and q to be on compact support so that the solutions
for equation (2.3.14) and the scattering data will be entire functions of ζ . We define
the contour C to be the contour in the complex ζ -plane, starting from ζ = −∞ + i0+,
passing over all zeros of a(ζ ), and ending at ζ = +∞ + i0+. Similarly, we define C̄ as
the contour starting from ζ = −∞ + i0−, passing under all zeros of ā(ζ ), and ending at
ζ = +∞ + i0−.

Consider the integral

∫
C

dζ 󸀠

a(ζ 󸀠)
φ(ζ 󸀠, x)
ζ 󸀠 − ζ

eiζx (2.5.47)

with ζ under C. From equations (2.5.18), (2.5.19), and (2.5.26), we find the value of the
above integral to be −iπ ( 10 ). Through equation (2.5.1) and closing the contour for the
integral containing ψ̄ in the lower ζ -plane, fromequations (2.5.24)–(2.5.25), we deduce

ψ̄(ζ , x)eiζx = (1
0
) +

1
2πi
∫
C

dζ 󸀠

ζ 󸀠 − ζ
b(ζ 󸀠)
a(ζ 󸀠)

ψ(ζ 󸀠, x)eiζ
󸀠x , (2.5.48)
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for ζ below C. Similarly, considering the integral

∫
C̄

dζ 󸀠

ζ 󸀠 − ζ
φ̄(ζ 󸀠, x)
a(ζ 󸀠)

e−iζ
󸀠x , (2.5.49)

for ζ above C̄, we obtain

ψ(ζ , x)e−iζx = (0
1
) +

1
2πi
∫
C̄

dζ 󸀠

ζ 󸀠 − ζ
b̄(ζ 󸀠)
ā(ζ 󸀠)

ψ̄(ζ 󸀠, x)e−iζ
󸀠x . (2.5.50)

Likewise, replacingφeiζx and φ̄e−iζx byψe−iζx and ψ̄eiζx, respectively, in the above con-
tour integrals, we get

φ̄(ζ , x)e−iζx = −(0
1
) −

1
2πi
∫
C

dζ 󸀠

ζ 󸀠 − ζ
b̄(ζ 󸀠)
a(ζ 󸀠)

ψ(ζ 󸀠, x)e−iζ
󸀠x , (2.5.51)

φ(ζ , x)eiζx = (1
0
) −

1
2πi
∫
C̄

dζ 󸀠

ζ 󸀠 − ζ
b(ζ 󸀠)
ā(ζ 󸀠)

ψ̄(ζ 󸀠, x)eiζ
󸀠x , (2.5.52)

where ζ lies between the contours C and C̄.
Assume that φ, φ̄, ψ, ψ̄ can be represented as

ψ(ζ , x) = (0
1
) eiζx + ∫

∞

x
K(x, s)eiζsds, (2.5.53)

ψ̄(ζ , x) = (1
0
) e−iζx + ∫

∞

x
K̄(x, s)e−iζsds, (2.5.54)

φ(ζ , x) = (1
0
) e−iζx − ∫

x

−∞
L(x, s)e−iζsds, (2.5.55)

φ̄(ζ , x) = −(0
1
) e−iζx − ∫

x

−∞
L̄(x, s)eiζsds, (2.5.56)

where K, K̄, L, L̄ are column vectors. Inserting the above expressions into equa-
tions (2.5.48) and (2.5.50)–(2.5.52) and taking the Fourier transformation, we will get
the following Marchenko type:

K̄(x, y) + (0
1
) F(x + y) + ∫

∞

x
K(x, s)F(s + y)ds = 0, y > x, (2.5.57)

K(x, y) − (1
0
) F̄(x + y) − ∫

∞

x
K̄(x, s)F̄(s + y)ds = 0, y > x, (2.5.58)

L̄(x, y) + (1
0
)G(x + y) − ∫

x

−∞
L(x, s)G(s + y)ds = 0, x > y, (2.5.59)

L(x, y) + (0
1
) Ḡ(x + y) + ∫

x

−∞
L̄(x, s)Ḡ(s + y)ds = 0, x > y, (2.5.60)
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where

F(z) = 1
2π
∫
C

b(ζ )
a(ζ )

eiζzdζ , (2.5.61)

F̄(z) = 1
2π
∫
C̄

b̄(ζ )
ā(ζ )

e−iζzdζ , (2.5.62)

G(z) = 1
2π
∫
C

b̄(ζ )
a(ζ )

e−iζzdζ , (2.5.63)

Ḡ(z) = 1
2π
∫
C̄

b(ζ )
ā(ζ )

eiζzdζ . (2.5.64)

As the next step, we will prove the existence and uniqueness of the integral ker-
nels K(x, s), K̄(x, s), L(x, s), L̄(x, s) for equations (2.5.53)–(2.5.56). Substituting equa-
tion (2.5.53) into

{
ψ1,x + iζψ1 = q(x)ψ2,

ψ2,x − iζψ2 = r(x)ψ1,
(2.5.65)

we have

∫
∞

x
eiζs[(𝜕x − 𝜕s)K1(x, s) − q(x)K2(x, s)]ds

− [q(x) + 2K1(x, s)]e
iζx + lim

s→∞
[K1(x, s)e

iζs] = 0, (2.5.66)

∫
∞

x
eiζs[(𝜕x + 𝜕s)K2(x, s) − r(x)K1(x, s)]ds

− lim
s→∞
[K2(x, s)e

iζs] = 0. (2.5.67)

It is necessary and sufficient to obtain the following relations:

(𝜕x − 𝜕s)K1(x, s) − q(x)K2(x, s) = 0, (2.5.68)

(𝜕x − 𝜕s)K2(x, s) − r(x)K1(x, s) = 0, (2.5.69)

which satisfy

K1(x, x) = −
1
2
q(x), (2.5.70)

lim
s→∞

K(x, s) = 0. (2.5.71)

In order to ensure the existence of the solutions for equations (2.5.68)–(2.5.69) under
the conditions (2.5.70)–(2.5.71), we introduce the coordinates

μ = 1
2
(x + s), ν = 1

2
(x − s). (2.5.72)
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Upon transforming to these coordinates, equations (2.5.68)–(2.5.71) become

𝜕νK1(μ, ν) − q(μ + ν)K2(μ, ν) = 0, (2.5.73)
𝜕μK2(μ, ν) − r(μ + ν)K1(μ, ν) = 0, (2.5.74)

K1(μ,0) = −
1
2
q(μ), (2.5.75)

lim
μ−ν→∞

K(μ, ν) = 0. (2.5.76)

From the theory of characteristics, the solution exists and is unique. Similarly, we can
prove that K̄, L, L̄ exist and are unique.

Finally, we consider the existence and uniqueness of the solution of Marchenko
equations (2.5.57)–(2.5.60) under the following restrictions:

r(x) = −q∗(x) (2.5.77)

or

r(x) = q∗(x) (2.5.78)

and

Q(∞) = ∫
∞

−∞
|q|dx < 0.523. (2.5.79)

Neither of these restrictions is necessary. Requirements which are both necessary and
sufficient have not yet been determined.

Taking account of the homogeneous equations corresponding to equations
(2.5.57)–(2.5.58) (y > x), we have

{{{
{{{
{

φ1(y) + ∫
∞

x
φ2(s)F(s + y)ds = 0,

φ2(y) − ∫
∞

x
φ1(s)F̄(s + y)ds = 0.

(2.5.80)

Suppose φ(y) = ( φ1
φ2 ) is a solution for equation (2.5.80) which vanishes when y < x.

By the Fredholm alternatives, it is sufficient to show that φ(y) ≡ 0. We multiply equa-
tion (2.5.80) by φ∗1 and φ

∗
2 , respectively, and integrate in y, via

∫
∞

x

󵄨󵄨󵄨󵄨φi(y)
󵄨󵄨󵄨󵄨
2dy = ∫

∞

−∞

󵄨󵄨󵄨󵄨φi(y)
󵄨󵄨󵄨󵄨
2dy, i = 1, 2,

to obtain

∫
∞

−∞
{|φ1|

2+|φ2|
2+∫
∞

−∞
[φ2(s)φ

∗
1 (y)F(s+y)−φ1(s)φ

∗
2 (y)F̄(s+y)]ds}dy = 0. (2.5.81)
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We consider two special cases. First, when r = −q∗, F̄(s+y) = F∗(s+y)will be deduced
from equations (2.5.40)–(2.5.47) (α = −1). Hence, equation (2.5.81) becomes

∫
∞

−∞
{|φ1|

2 + |φ2|
2 + 2i Im∫

∞

−∞
φ∗1 (y)φ2(s)F(s + y)ds}dy = 0. (2.5.82)

The real and imaginary parts must be zero, so we know that φ(y) = 0 and the solution
for equations (2.5.57)–(2.5.58) exists and is unique. Second, if r(x) = q∗(x), the problem
is formally self-adjoint, the spectrum lies on the real axis, and F̄(s+ y) = −F∗(s+ y). In
this case, equation (2.5.81) transforms into

∫
∞

−∞
{|φ1|

2 + |φ2|
2 + 2 Re∫

∞

−∞
φ∗1 (y)φ2(s)F(s + y)ds}dy = 0. (2.5.83)

If we require

󵄨󵄨󵄨󵄨a(ζ )
󵄨󵄨󵄨󵄨 > 0, (η ≥ 0), (2.5.84)

there is no discrete eigenvalue on the real axis, so

F(z) = 1
2π
∫
∞

−∞

b(ζ )
a(ζ )

eiζzdζ . (2.5.85)

The Fourier transform of φj(y) is

φ̂j(ξ ) = ∫
∞

−∞
φj(y)e

−iξydy, (2.5.86)

which satisfies Parseval’s relation

∫
∞

−∞
|φj|

2dy = 1
2π
∫
∞

−∞
|φ̂j|

2dξ . (2.5.87)

Substituting equations (2.5.85)–(2.5.87) into equation (2.5.82) and reversing the order
of integration, we have

∫
∞

−∞
{󵄨󵄨󵄨󵄨φ̂1(−ξ )

󵄨󵄨󵄨󵄨
2
+ 󵄨󵄨󵄨󵄨φ̂
∗
2 (ξ )
󵄨󵄨󵄨󵄨
2
+ 2 Re[b(ξ )

a(ξ )
φ̂1(−ξ )φ̂

∗
2 (ξ )]}dξ = 0. (2.5.88)

If

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

b(ξ )
a(ξ )

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< 1, (2.5.89)

then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 Re[b(ξ )

a(ξ )
φ̂1(−ξ )φ̂2(ξ )]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 2󵄨󵄨󵄨󵄨φ̂1(−ξ )

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨φ̂
∗
2 (ξ )
󵄨󵄨󵄨󵄨 ≤ |φ̂1|

2 + |φ̂2|
2.
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Hence the only solution for equation (2.5.88) isφ ≡ 0, which implies the existence and
uniqueness of the solution for equations (2.5.57) and (2.5.58). In the case where r = q∗,
due to the relations āa + b̄b = 1, ā = a∗, and b̄ = b∗, equation (2.5.89) can be rewritten
as

|a|2 > 1
2
, (2.5.90)

which is more stringent than equation (2.5.84). The above condition is satisfied if

󵄨󵄨󵄨󵄨a(ζ ) − 1
󵄨󵄨󵄨󵄨 < 1 −

1
√2
. (2.5.91)

From equation (2.5.13), we deduce

󵄨󵄨󵄨󵄨a(ζ ) − 1
󵄨󵄨󵄨󵄨 ≤ I0(2Q(∞)) − 1 < 1 −

1
√2
.

Therefore, the condition Q(∞) < 0.523 in equation (2.5.79) is sufficient.

2.6 Asymptotic solutions for the evolution equations (t → ∞)

In previous sections, we explained the method of inverse scattering transforms and
pointed out that a class of nonlinear evolution equations can be solved as initial value
problems by this method. In this section, in order to determine the asymptotic behav-
ior of the solution for equation (2.4.30), we need to solve the following integral equa-
tions (y > x):

{{{{{
{{{{{
{

K(x, y; t) − (1
0
) F̄(x + y; t) − ∫

∞

x
K̄(x, s; t)F̄(s + y; t)ds = 0,

K̄(x, y; t) + (0
1
) F(x + y; t) + ∫

∞

x
K(x, s; t)F(s + y; t)ds = 0.

(2.6.1)

The asymptotic solution will be shown to be similar to that of the KdV equation, al-
though there are some important differences. In the following, we will discuss sep-
arately the contribution to the solution from the discrete spectrum, the continuous
spectrum, and their combination. In addition, we will make the estimate on the dis-
crete spectrum.

1. The discrete spectrum
Firstly, we consider the solvability of equations (2.6.1). An important difference

between the scattering problem (2.3.14) and the eigenvalue problem (2.3.33) is that
equation (2.6.1) does not necessarily have a solution and the solution for the evolution
equationwill becomeunbounded after a finite amount of time.We explain thiswith an
example. Letq(x,0), r(x,0)be the smooth initial datawhich satisfy equation (2.5.15). In
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addition, the spectrum of q(x,0), r(x,0) consists of two kinds of discrete eigenvalues,
i.e., ζ (Im ζ > 0) and ̄ζ (Im ̄ζ < 0). Then

{
F(z, t) = −iceiζz−2A0(ζ )t ,

F̄(z, t) = ic̄e−iζz+2A0(ζ )t ,
(2.6.2)

where c and c̄ are constants and A0(ζ ) is related to the linear dispersion relation. In
this case, the integral kernel is degenerate. From the relations

{{{{{{{
{{{{{{{
{

K1(x, x; t) = −
1
2
q(x, t),

K2(x, x; t) =
1
2
∫
∞

x
q(x, t)r(x, t)dx,

K̄2(x, x; t) =
1
2
r(x, t),

(2.6.3)

we have

{{{{{{{{{{
{{{{{{{{{{
{

q(x, t) = −2ic̄e
2A0( ̄ζ )t−2i ̄ζ x

D(x, t)
,

r(x, t) = −2ice
−2A0(ζ )t+2iζx

D(x, t)
,

∫
∞

x
q(x, t)r(x, t)dx = 2icc̄e

2(A0( ̄ζ )−A0(ζ ))t+2i(ζ− ̄ζ )x

(ζ − ̄ζ )D(x, t)
,

(2.6.4)

with

D(x, t) = 1 − cc̄
(ζ − ̄ζ )2

e2(A0( ̄ζ )−A0(ζ ))t+2i(ζ− ̄ζ )x . (2.6.5)

The problem is that, ifA0(ζ ), q(x,0), r(x,0) are unrestricted,D(x, t) = 0 locates at a cer-
tain countable set of points (x,0). At thesepoints, thehomogeneous integral equations
corresponding to equation (2.6.1) have infinitely many solutions and equation (2.6.1)
has no solution. None of these points (x, t) occurs at t = 0, since q(x,0), r(x,0) are
smooth and decay rapidly as |x| → ∞. However, after a finite time, both q(x, t) and
r(x, t) become unbounded at the particular location x ofD(x, t) = 0. Thus, it is possible
for q, r to satisfy equation (2.5.15) initially and to evolve with time in accordance with
equation (2.4.30). At a particular location at x, q, r will burst. This kind of “bursting”
solitons will not occur in the KdV equation, while the existence of “bursting” solitons
represents a major difference between the scattering problem (2.3.14) and the eigen-
value problem (2.3.33). For the eigenvalue problem (2.3.33), whose solution satisfies
the constraints

∫
∞

−∞
(1 + |x|)|u|dx <∞, (t = 0), (2.6.6)
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the solution satisfies the above conditions at any future time for t > 0. The occurrence
of the “burst” in a physical problem would require a reexamination of the assump-
tions.

However, if we set

r(x, t) = αq∗(x, t), α being real constant, (2.6.7)

a “burst” will never happen. We deduce D(x, t) ̸= 0, since the first conserved density
∫
∞
−∞ qrdx is time-invariant and ∫∞x qrdx is bounded. The global solution for the evolu-
tion equation can be obtained from equation (2.6.4).

We note that equation (2.6.7) includes two special cases, α = 1, α = −1, in which
a unique solution for equation (2.6.1) is known to exist, while the necessary and suffi-
cient conditions for the existence of the solution for equation (2.6.1) in a general case
have not been confirmed. For simplicity, we assume that a unique solution for equa-
tion (2.6.1) exists. The solution for equation (2.6.4) can be written as

q(x, t) = ic̄e−iφ sech θ, (2.6.8)

with

φ = i(A0(ζ ) + A0( ̄ζ ))t + ( ̄ζ + ζ )x − iγ,
θ = (A0(ζ ) − A0( ̄ζ ))t + i(ζ − ̄ζ )x + γ,

e2γ = − cc̄
(ζ − ̄ζ )2

.

Solution (2.6.8) is the basic soliton solution with speed

V = Re{A0(
̄ζ ) − A0(ζ )
−i(ζ − ̄ζ )

}, (2.6.9)

with an amplitude proportional to (ζ − ̄ζ ) and a wavelength proportional to 1/(ζ − ̄ζ ).
These waves are basically nonlinear. We take two examples to illustrate this. For the
Zakharov–Shabat problem

qt − iqxx − 2iq
2q∗ = 0, q|t=0 = q0(x),

where A0(ζ ) = −2iζ 2, r = −q∗, c̄ = c∗, and ̄ζ = ζ ∗ = ξ − iη, the solution reads

q(x, t) = 2ηe[−4i(ξ
2−η2)t−2iξx+iφ] sech[2η(x − x0) + 8ηξt]. (2.6.10)

The above soliton is an envelope of oscillating waves, with the amplitude and wave-
length depending on η, which can keep the invariant profiles during the propagation
with velocity 4ξ . For the sine-Gordon equation

uxt = sin u,
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the physical variables are

X = x + t, T = x − t, u = −∫
x

−∞
2qdz,

with A0(ζ ) =
i
4ζ , r = −q,

̄ζ = −ζ = −iη, and c̄ = −c. The soliton solution reads

u(X,T) = 4 tan−1{exp[(cη + 1
4η
)(X − X0) + (η −

1
4η
)T]}, (2.6.11)

which is called a kink solution.
For any problems solved by equation (2.3.14), as long as the spectrum is purely dis-

crete and the integral kernel is degenerate, equation (2.6.1) can always be solved. Of
course, the conditions for the existence of solution for equation (2.6.1) must be satis-
fied. The N-soliton solutions for some evolution equations have been obtained in this
way. For large time t,N-solitons propagatewith different velocities and the asymptotic
solutions are the well-separated N-waves in the form of equation (2.6.8). The separa-
tion process has been discussed in detail for the case where r = −q∗ by Zakharov and
Shabat [317]. They pointed out that the asymptotic effect on the soliton interaction is
just a phase shift.

What we know from equation (2.6.9) is that solitons corresponding to a locus of
eigenvalues share the same speed. Instead of separating each other as t →∞, amulti-
soliton structure forms, which cannot occur in the solution for the KdV equation. In
the Zakharov–Shabat problem, the locus which is defined by Re(ζ ) = ξ0 has been
analyzed. For the sine-Gordon equation, the locus is given by |ζ | = c0 and the solution
is given as

u(X,T) = 4 tan−1[ η cos{ξ (η(T − T0) − (4 − v)X)}
ξ cosh{η(v(X − X0) − (4 − v)T)}

],

where v = 2+(1/2|ζ |2).Wehavementioned that thenonlinear evolution equationwhich
was generated from an arbitrary ratio of entire functions, A0(ζ ), can be solved by the
inverse scattering transform. If A0(ζ ) has any poles, we can see from equation (2.6.9),
when the eigenvalues are near a pole of A0(ζ ), the corresponding solitons move with
extraordinary speed. This can occur in the sine-Gordon equation (A0(ζ )+ i/4ζ ), where
these high speeds are close to the speed of light. Of course, these high speedswill have
other physical interpretations, but their existence should always be significant.

2. The continuous spectrum
In this section, we consider the contribution from the continuous spectrum to the

asymptotic solution for the evolution equation. We start with the simplest possible
case, in which the initial data satisfy

R(∞)Q(∞) = ∫
∞

−∞
|r|dx∫

∞

−∞
|q|dx < 0.817 (2.6.12)
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and

R(∞)Q(∞) < 0.383. (2.6.13)

Equation (2.6.12) guarantees that there are no discrete eigenvalues, while equa-
tion (2.6.13) guarantees the validity of themethods of the inverse scattering transform.
The scattering data give

F(x, t) = 1
2π
∫
∞

−∞

b(k)
a(k)

ei(kx+2iA0(k)t)dk, (2.6.14)

F̄(x, t) = 1
2π
∫
∞

−∞

b̄(k)
ā(k)

e−i(kx+2iA0(k)t)dk. (2.6.15)

As t →∞, the dominant wave numbers in F and F̄ at a particular location x are those
whose phase is stationary. We have

χ󸀠(k) = x
t
+ 2iA󸀠0(k) = 0, (2.6.16)

χ(k) ≈ χ(k0) + (k − k0)
2χ󸀠󸀠(k0). (2.6.17)

As a specific example, under A0(ζ ) = −2iζ 2, the evolution equations are

{
iqt + qxx − 2(qr)q = 0,
irt − rxx + 2(qr)r = 0.

(2.6.18)

Then equation (2.6.16) becomes
x
t
= −8k0 (2.6.19)

and the deformed path passes through (k0) at an angle of
π
4 for F and −

π
4 for F̄, which

make the same sign as χ󸀠󸀠(k0). Asymptotically, as t →∞, for x
t being fixed, we have

{{{{{
{{{{{
{

F(x, t) = 1
4√πt

b(− x8t )
a(− x8t )

exp[− i
16
(
x
t
)
2
t + π

4
i] + O(t−

3
2 ),

F̄(x, t) = 1
4√πt

b̄(− x8t )
ā(− x8t )

exp[ i
16
(
x
t
)
2
t − π

4
i] + O(t−

3
2 ).

(2.6.20)

The integral equations (2.6.1) can be combined into

K1(x, y; t) − F̄(x + y; t) + ∫∫
∞

x
K1(x, z; t)F(z + s; t)F̄(s + y; t)dzds = 0. (2.6.21)

There is a similar equation for K̄2(x, y; t). We seek an approximation solution for equa-
tion (2.6.21) in the form of

K1(X,Y ; t) =
1

4√πt
f (X,Y) exp[ i

16
(X + Y)2t − π

4
i] + ⋅ ⋅ ⋅ (2.6.22)
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with X = x
t , Y =

y
t . Substituting equations (2.6.20) and (2.6.22) into equation (2.6.21)

and computing the integral at the stationary point, we have

f (X,Y) =
b̄
ā (−

X+Y
8 )

1 − α b̄
ā (−

X+Y
8 )

b
a (−

X+Y
8 )
, (2.6.23)

where

α = {
1
2 , if X ̸= Y ,
1
4 , if X = Y .

Because q(x, t) = 2K1(x, x; t), we get

q(x, t) ∼ − 1
2√πt

b̄
ā (−

x
4t )

1 − 1
4
b̄
ā (−

x
4t )

b
a (−

x
4t )

exp[ i
4
(
x
t
)
2
t − π

4
i], (2.6.24)

r(x, t) ∼ 1
2√πt

b
a (−

x
4t )

1 − 1
4
b̄
ā (−

x
4t )

b
a (−

x
4t )

exp[− i
4
(
x
t
)
2
t + π

4
i]. (2.6.25)

Condition (2.6.13) ensures that the denominator of equation (2.6.23) does not vanish.
For the KdV equation, the solution corresponding to equations (2.6.24) and (2.6.25) is
not a uniformly valid asymptotic approximation and it is essential to seek the similar-
ity solution. The asymptotic approximation solution for the KdV equation

ut + 6uux + uxxx = 0 (2.6.26)

can be written as

u(x, t) ∼
r0(

i
2√

x
3t )(

x
3t )

1
4 e−2(

x
3t )

3
2 t

2√3πt
[1 + O( 1

t
)], (2.6.27)

where r0(k) is the initial reflection coefficient. The similarity solution for equa-
tion (2.6.26) reads

u = 1
(3t)2/3
[f (η) − 1

(3t)1/3
f1(η) +

1
(3t)2/3

f2(η) + ⋅ ⋅ ⋅], (2.6.28)

where f (η) satisfies the following nonlinear equation:

f 󸀠󸀠󸀠 + 6ff 󸀠 − (2f + ηf 󸀠) = 0. (2.6.29)

All the other fk(η) satisfy linear equations, with η = x
(3t)1/3 = O(1). If |r0(0)| > 1, f (η)

has the second-order pole and is unbounded at finite locations. For |r0(0)| < 1, f (η) is
oscillating at η→ −∞, which is in the form of

f (η) = 2d(−η)
1
4 cos θ − 2d2(−η)−

1
2 (1 − cos 2θ) + O((η)−

5
4 ), (2.6.30)
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where

θ = 2
3
(−η)

3
2 − 3d2 ln(−η) + θ0 + O((−η)

− 32 )

and d and θ0 are the constants depending on r0(0). In the case where |r0(0)| = 1, f (η)
is in the asymptotic form (η→ −∞), i.e.,

f (η) = 1
2
η − 1

2
(−2η)−

1
2 +

1
2
(−2η)−2 − 5

2
(−2η)−

7
2 + O((−2η)−5). (2.6.31)

In this problem, equations (2.6.24) and (2.6.25) are uniformly valid, but we still expect
the similarity solution to play a role in the asymptotic development of the solution.
The similarity solution is written as

q(x, t) = Q0t
− 12 exp( i

4
x2

t
+ 2iQ0R0 log t), (2.6.32)

r(x, t) = R0t
− 12 exp(− i

4
x2

t
− 2iQ0R0 log t), (2.6.33)

whereQ0 andR0 are constants. Equations (2.6.32) and (2.6.33)will bematched to equa-
tions (2.6.24) and (2.6.25). In fact, q or r grows unboundedly as t →∞ if |Im(Q0,R0)| >
1
4 . This behavior reflects an inherent instability in equation (2.6.18). In the regions
where the spatial curvatures (qxx , rxx) are small, equation (2.6.18) is approximated by
the simplified equations

{
iqt − 2(qr)q = 0,
irt + 2(qr)r = 0.

(2.6.34)

When (qr) is a constant and Im(qr) ̸= 0, q or r grows exponentially. However, equa-
tion (2.6.13) ensures that this instability does not occur and the solution behaves well.

Therefore, if the initial conditions satisfy equations (2.6.12) and (2.6.13), the solu-
tion for equation (2.6.18) can be approximated by equations (2.6.24) and (2.6.25). If the
initial data are “small”, i.e.,

R(∞)Q(∞) = ∫
∞

−∞
|r|dx∫

∞

−∞
|q|dx ≪ 1,

and the nonlinear terms in the evolution equation are unimportant, we expect its so-
lution can be well approximated by the solution for the linearized problem.

3. Estimates of the discrete spectrum
The outstanding feature of nonlinear evolution equations which can be solved by

the inverse scattering transform is that their solutions achieve comparatively simple
asymptotic states as t → ±∞. The contribution from the continuous spectrum decays
and the dominant asymptotic solution is determined by the discrete spectrum of the
scattering problem at t = 0. In this section, we derive some simple bounds for the
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discrete eigenvalues of equation (2.3.14), for example for the location of the zero points
of a(ζ ) and ā(ζ ).

As we know, if q(x) and r(x) are related, the zeros of ā(ζ ) can be deduced from
the zeros of a(ζ ), while, if q(x) and r(x) are independent, the zeros of ā(ζ ) should be
recomputed. We assume that

{{{
{{{
{

∫
∞

−∞
|x|n󵄨󵄨󵄨󵄨q(x)

󵄨󵄨󵄨󵄨dx <∞,

∫
∞

−∞
|x|n󵄨󵄨󵄨󵄨r(x)

󵄨󵄨󵄨󵄨dx <∞,
(2.6.35)

for all n, so we conclude that a(ζ ) and ā(ζ ) are analytic on the whole plane, including
the real axis Im ζ = 0. For simplicity, we write

R = ∫
∞

−∞
|r|dx, Q = ∫

∞

−∞
|q|dx (2.6.36)

and we make the following analysis:
(1) a(ζ ) has only finitely many zeros on Im(ζ ) ≥ 0. As has been pointed previ-

ously, equation (2.6.35) guarantees that a(ζ ) is analytic for Im(ζ ) ≥ 0 and a(ζ ) → 1 as
|ζ | → ∞. It follows that the zeros of a(ζ ) are all isolated and lie in a bounded region.
Therefore, a(ζ ) has at most a finite number of zeros here.

(2) a(ζ ) can have zeros on Im(ζ ) = 0. A soliton cannot occur since there is no
square-integrable eigenfunction.

(3) Let N be the number of zeros of a(ζ ) with Im(ζ ) > 0, including the nonsimple
multiplicity zeros. Assume |ζ0| to be the radius of a circle which contains all the zeros
of a(ζ ). Making ξ+ > |ζ0| and ξ− < −|ζ0|, as |ξ±|→∞, we have

1
2π
{arg(a(ξ+)) − arg(a(ξ−))} 󳨀→ N . (2.6.37)

(4) As aforementioned, if r is proportional to q or q∗, the zeros of ā(ζ ) are paired
with the zeros of a(ζ ). In addition, if r(x) and q(x) are real, the zeros of a(ζ ) itself
occur in pairs. This pair of eigenvalues is associated with a special solution, named
“breather” or 0π-pulse, which behaves differently from the usual soliton.

(5) If r(x) = +q∗(x), the eigenvalue problem (2.3.14) is self-adjoint. There are no
eigenvalues with Im(ζ ) > 0.

(6) For arbitrary r and q, a(ζ ) has no zeros for Im(ζ ) ≥ 0 under the condition

RQ = ∫
∞

−∞
|r|dx∫

∞

−∞
|q|dx < 0.817, (2.6.38)

or more precisely,

I0(2√RQ) < 2. (2.6.39)
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Equation (2.6.39) implies that, for Im(ζ ) ≥ 0,

󵄨󵄨󵄨󵄨a(ζ ) − 1
󵄨󵄨󵄨󵄨 < 1. (2.6.40)

In fact, from equations (2.5.8), (2.5.9), and (2.5.13) and

lim
x→∞

φ1(x)e
iζx = a(ζ ),

we have

a(ζ ) − 1 = ∫
∞

−∞
r(z)∫

∞

z
q(y)e2iζ (y−z)dy(φ1e

iζz)dz,

󵄨󵄨󵄨󵄨a(ζ ) − 1
󵄨󵄨󵄨󵄨 ≤ ∫
∞

−∞

󵄨󵄨󵄨󵄨r(z)
󵄨󵄨󵄨󵄨 ∫
∞

z

󵄨󵄨󵄨󵄨q(y)
󵄨󵄨󵄨󵄨dy
󵄨󵄨󵄨󵄨φ1e

iζz 󵄨󵄨󵄨󵄨dz,

≤ I0(2√RQ) − 1. (2.6.41)

Therefore, to prove equation (2.6.40), we only need to set

I0(2√RQ) < 2.

(7) The asymptoticmethod requires not only equations (2.6.38) or (2.6.39), but also

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

b(ξ )b̄(ξ )
a(ξ )ā(ξ )

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< 2, (2.6.42)

for all real ξ . Thus, we deduce

RQ < 0.383.

Because aā + bb̄ = 1, equation (2.6.42) can be rewritten as

󵄨󵄨󵄨󵄨1 − a(ξ )ā(ξ )
󵄨󵄨󵄨󵄨 < 2
󵄨󵄨󵄨󵄨a(ξ )ā(ξ )

󵄨󵄨󵄨󵄨.

If we let a(ξ )ā(ξ ) = α + iβ, the above relation becomes

(α + 1
3
)
2
+ β2 > ( 2

3
)
2
.

Thus we require |aā| > 1
3 and |a| >

1
√3 , |ā| >

1
√3 .

Finally, we require

󵄨󵄨󵄨󵄨a(ξ ) − 1
󵄨󵄨󵄨󵄨 < 1 −

1
√3
, 󵄨󵄨󵄨󵄨ā(ξ ) − 1

󵄨󵄨󵄨󵄨 < 1 −
1
√3

and the condition which satisfies both requirements for all real ξ is

I0(2√RQ) < 2 −
1
√3
,
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i.e.,

RQ < 0.383.

(8) Approximations of the largest eigenvalues ζ0 require some additional smooth-
ness of q(x) and r(x) and the first three upper bounds on ζ have been derived.

(a) Let q(x) be continuously differentiable for x and set

q󸀠m ≡ max
x
󵄨󵄨󵄨󵄨q
󸀠(x)󵄨󵄨󵄨󵄨, A = ∫

∞

−∞
|qr|dx, B = I0(2√RQ). (2.6.43)

If

|ζ | > B
4
[A + {A2 +

4Rq󸀠m
B
}

1
2

] = ζ0, (2.6.44)

then a(ζ ) ̸= 0. Thus, all the discrete eigenvalues must lie within a circle whose radius
satisfies |ζ | ≤ ζ0, with ζ0 determined by equation (2.6.44).

We give the proof that equation (2.6.44) implies |a(ζ ) − 1| < 1. From equation
(2.6.41), we deduce

I = ∫
∞

z
q(y)e2iζ (y−z)dy = ∫

∞

0
q(z + p)e2iζpdp

= q(z)∫
∞

0
e2iζpdp + ∫

∞

0
q󸀠(z +m)pe2iζpdp,

where 0 < m < p. We have

|I| ≤ |q(z)|
2|ζ |
+
q󸀠m
4η2
, (2.6.45)

where η = Im ζ . Substituting equations (2.5.13) and (2.6.45) into equation (2.6.41), we
require

I0(2√RQ){
1
2|ζ |
∫
∞

−∞
|rq|dx + 1

4η2
R∞q
󸀠
m} < 1.

Using |ζ |2 ≥ η2 and equation (2.6.43) yields

|ζ |2 > B{A|ζ |
2
+
Rq󸀠m
4
},

from which equation (2.6.44) follows.
(b) If q(x) ∈ c2, a better bound than equation (2.6.44) will be obtained. Setting

q󸀠󸀠m = maxx |q󸀠󸀠(x)| and with ζ1 satisfying

I0(2√RQ){
1

2|ζ1|
∫
∞

−∞
|rq|dx + 1

4|ζ1|2
∫
∞

−∞
|rq󸀠|dx + 1

8η31
Rq󸀠󸀠m} < 1, (2.6.46)

a(ζ ) ̸= 0 will be derived as |ζ | > |ζ1|.
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(c) Note that the quantities obtained in equations (2.6.45) and (2.6.46) are related
to the polynomial conserved densities of integral rank. Therefore, another bound on
ζ0 will be obtained by virtue of conservation laws directly. If, for some ζ0 > 0,

∑
|cn|
|2ζ0|n
<∞, (2.6.47)

then a(ζ ) ̸= 0 for |ζ | > |ζ0|.

2.7 The mathematical theory foundation of the inverse scattering
transform

In the former sections, the sketch of procedures of solving problems by the inverse
scattering transform was introduced. However, it is just a process of obtaining the
formal solution, where the strictness of mathematics should be examined. For exam-
ple, for the existence of solution of the eigenvalue problem for the one-dimensional
Schrödinger equation in quantum mechanics, could the potential q(x) be deter-
mined uniquely by the bounded state and the reflection coefficient? What condi-
tions should a scattering matrix satisfy to make sure q(x) ∈ L12 (denoting L

1
2 : {p(x) :

∫
∞
−∞ |p(x)|(1 + x

2)dx < ∞})? Under what condition does the unique solution for the
Gelfand–Levitan–Marchenko integral equation exist? Especially, if we intend to seek
the solution for a differential equation via the inverse scattering transform, we need
to examine and prove the differentiability of the reflection coefficient, the differentia-
bility of the integral equation’s solution, the differentiability of the functions which
are constructed by the inverse scattering transform, andwhether the functions satisfy
differential equations. We call all above questions, which should be answered by the-
oretical mathematics, “the mathematical theory foundation of the inverse scattering
transform”. In this part, we only sketch some important results and give a taste of
some proofs. More details can be found in [59].

Lemma 2.7.1. For each k, Im k ≥ 0, the integral equation

m(x, k) = 1 + ∫
∞

−∞
Dk(t − x)q(t)m(t, k)dt

has a solution m(x, k), which uniquely solves the Schrödinger equation

m󸀠󸀠 + 2ikm󸀠 = q(x)m

with

Dk(y) ≡ ∫
y

0
e2iktdt = 1

2ik
(e2iky − 1),
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where the boundary condition m(x, k)→ 1 as x → +∞. In addition, 󸀠 means the deriva-
tive respective to x and m(x, k) satisfies m(x, k) = m(x,−k̄) and obeys the following esti-
mates:
(i)

󵄨󵄨󵄨󵄨m(x, k) − 1
󵄨󵄨󵄨󵄨 ≤ e

η(x)/|k| η(x)
|k|
≤ econstant/|k| constant

|k|
, k ̸= 0.

(ii)

󵄨󵄨󵄨󵄨m(x, k) − 1
󵄨󵄨󵄨󵄨 ≤ K
(1 +max(−x,0))∫∞x (1 + |t|)|q(t)|dt

1 + |k|

≤ K1
(1 +max(−x,0))

1 + |k|
. (2.7.1)

(iii)

󵄨󵄨󵄨󵄨m
󸀠(x, k)󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

dm(x, k)
dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ K2
∫
∞
x (1 + |t|)|q(t)|dt

1 + |k|

≤
K3

1 + |k|
, −∞ < x <∞.

(iv)

󵄨󵄨󵄨󵄨m
󸀠(x, k)󵄨󵄨󵄨󵄨 ≤ K4

∫
∞
x |q(t)|dt
1 + |k|

, 0 ≤ x <∞,

where η(x) = ∫∞x |q(t)|dt and constants K and kj depend on

∫
∞

−∞
(1 + |x|j)󵄨󵄨󵄨󵄨q(x)

󵄨󵄨󵄨󵄨dx, j = 0, 1, 2.

For each x, m(x, k) is analytic in Im k > 0 and continuous in Im k ≥ 0. In particular,
by (ii), m(x, k) − 1 ∈ H2+, where H2+ respects the Hardy space of the function h(k),
H2+ = {h(k) ∈ L2(−∞,∞), supp ĥ ∈ (−∞,0)}, and

ĥ = 1
π
∫
∞

−∞
e2ikyh(k)dk.

Finally, kṁ(x, k) is continuous everywhere for all Im k ≥ 0, k ̸= 0, with ṁ(x, k) =
d
dkm(x, k). If q(x) ∈ L

1
2, then ṁ(x, k) also exists and is continuous at k = 0, so we

have the estimate.
(v)

󵄨󵄨󵄨󵄨ṁ(x, k)
󵄨󵄨󵄨󵄨 ≤ constant(1 + x

2), ∀ Im k ≥ 0, q ∈ L12.
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Proof. The iterates of the Volterra integral equation always converge. We have

m(x, k) = 1 +
∞

∑
n=1

gn(x, k),

where

gn(x, k) = ∫
x≤x1≤⋅⋅⋅≤xn

Dk(x1 − x) ⋅ ⋅ ⋅Dk(xn − xn−1)q(x1) ⋅ ⋅ ⋅ q(xn)dx1 ⋅ ⋅ ⋅ dxn,

󵄨󵄨󵄨󵄨gn(x, k)
󵄨󵄨󵄨󵄨 ≤ ∫x≤x1≤⋅⋅⋅≤xn

1
|k|n
󵄨󵄨󵄨󵄨q(x1)
󵄨󵄨󵄨󵄨 ⋅ ⋅ ⋅
󵄨󵄨󵄨󵄨q(xn)
󵄨󵄨󵄨󵄨dx1 ⋅ ⋅ ⋅ dxn =

1
|k|n
(∫
∞
x |g(t)|dt)

n

n!
.

Note that |Dk(y)| ≤
1
|k| , Im k ≥ 0 has been used, so the proof of (i) is given.

Alternatively,

gn(x, k) ≤ ∫
x≤x1≤⋅⋅⋅≤xn

(x1 − x)(x2 − x1) ⋅ ⋅ ⋅ (xn − xn−1)
󵄨󵄨󵄨󵄨q(x1)
󵄨󵄨󵄨󵄨 ⋅ ⋅ ⋅
󵄨󵄨󵄨󵄨q(xn)
󵄨󵄨󵄨󵄨dx1 ⋅ ⋅ ⋅ dxn,

≤ ∫
x≤x1≤⋅⋅⋅≤xn

(x1 − x)(x2 − x) ⋅ ⋅ ⋅ (xn − x)
󵄨󵄨󵄨󵄨q(x1)
󵄨󵄨󵄨󵄨 ⋅ ⋅ ⋅
󵄨󵄨󵄨󵄨q(xn)
󵄨󵄨󵄨󵄨dx1 ⋅ ⋅ ⋅ dxn,

=
(∫
∞
x (t − x)|q(t)|dt)

n

n!
,

where |Dk(y)| ≤ y, k ≥ 0, and y ≥ 0, so we have

󵄨󵄨󵄨󵄨m(x, k) − 1
󵄨󵄨󵄨󵄨 ≤ e

γ(x)γ(x),

where

γ(x) = ∫
∞

x
(t − x)󵄨󵄨󵄨󵄨q(t)

󵄨󵄨󵄨󵄨dt.

We know that

󵄨󵄨󵄨󵄨m(x, k)
󵄨󵄨󵄨󵄨 ≤ 1 + ∫

∞

x
(t − x)󵄨󵄨󵄨󵄨q(t)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨m(t, k)
󵄨󵄨󵄨󵄨dt

= 1 + ∫
∞

x
t󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨m(t, k)
󵄨󵄨󵄨󵄨dt + ∫

∞

x
(−x)󵄨󵄨󵄨󵄨q(t)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨m(t, k)
󵄨󵄨󵄨󵄨dt

≤ 1 + ∫
∞

0
t󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨m(t, k)
󵄨󵄨󵄨󵄨dt + ∫

∞

x
(−x)󵄨󵄨󵄨󵄨q(t)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨m(t, k)
󵄨󵄨󵄨󵄨dt.

Note that the second inequality holds for x both positive and negative. Also, we have

1 + ∫
∞

0
t󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨m(t, k)
󵄨󵄨󵄨󵄨dt ≤ 1 + (1 + e

γ(0)γ(0)) ∫
∞

0
t󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨dt = K <∞.

SettingM(x, k) = m(x, k)/K(1 + |x|), p(x) = (1 + |x|)|q(x)| ∈ L1, we get

󵄨󵄨󵄨󵄨M(x, k)
󵄨󵄨󵄨󵄨 ≤ 1 + ∫

∞

x
p(t)󵄨󵄨󵄨󵄨M(t, k)

󵄨󵄨󵄨󵄨dt,
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which can be solved by iteration as above to obtain

󵄨󵄨󵄨󵄨M(x, k)
󵄨󵄨󵄨󵄨 ≤ exp{∫

∞

x
(1 + |t|)󵄨󵄨󵄨󵄨q(t)

󵄨󵄨󵄨󵄨dt} ≤ K1 <∞,

i.e.,

󵄨󵄨󵄨󵄨m(x, k)
󵄨󵄨󵄨󵄨 ≤ K2(1 + |x|).

As above,

|m − 1| ≤ ∫
∞

0
t󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨m(t, k)
󵄨󵄨󵄨󵄨dt + ∫

∞

x
(−x)󵄨󵄨󵄨󵄨q(t)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨m(t, k)
󵄨󵄨󵄨󵄨dt

≤ eγ(0)γ(0)∫
∞

0
t󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨dt + (−x)K2 ∫

∞

x
(1 + |t|)󵄨󵄨󵄨󵄨q(t)

󵄨󵄨󵄨󵄨dt.

For x ≤ 0, we have

|m − 1| ≤ K3(1 + |x|) ∫
∞

x
(1 + |t|)󵄨󵄨󵄨󵄨q(t)

󵄨󵄨󵄨󵄨dt,

while, for x ≥ 0, we have

|m − 1| ≤ eγ(0)γ(x) ≤ eγ(0) ∫
∞

x
t󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨dt.

Combining with (i), (ii) will be obtained. The estimates (iii) and (iv) will be followed
by substituting (ii) in the following equation:

m󸀠(x, k) = −∫
∞

x
e2ik(t−x)q(t)m(t, k)dt.

A direct calculation implies that m solves the Schrödinger equation uniquely with
m→ 1 as x → +∞. The locally uniform convergence of the series for m proves the
analyticity in Im k > 0 and the continuity in Im k ≥ 0.

Next, we consider the estimate of ṁ(x, k). We have

ṁ(x, k) = ∫
∞

x
Dk(t − x)q(t)ṁ(t, k)dt + ∫

∞

x
Ḋk(t − x)q(t)m(t, k)dt. (2.7.2)

For q ∈ L11, via the inequality

󵄨󵄨󵄨󵄨kḊk(t − x)
󵄨󵄨󵄨󵄨 = ∫

t−x

0
u[ 𝜕
𝜕u

e2iku]du ≤ 2|t − x|,

we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
∞

x
kḊk(t − x)q(t)m(t, k)dt

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ K(1 +max(−x,0)) ∫

∞

x
(t − x)󵄨󵄨󵄨󵄨q(t)

󵄨󵄨󵄨󵄨dt

≤ K(x) <∞.

 EBSCOhost - printed on 2/10/2023 3:23 PM via . All use subject to https://www.ebsco.com/terms-of-use



2.7 The mathematical theory foundation of the inverse scattering transform | 57

We see that ṁ(x, k) exists (k ̸= 0, Im k ≥ 0) and kṁ(x, k) is continuous even as
k → 0. In fact, limk→0 kṁ(x, k) = 0. For q ∈ L12, through

󵄨󵄨󵄨󵄨Ḋk(t − x)
󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
t−x

0
2iue2ikudu

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ (t − x)2,

we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
∞

x
Ḋk(t − x)q(t)m(t, k)dt

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∫
∞

x
(t − x)2󵄨󵄨󵄨󵄨q(t)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨m(t, k)
󵄨󵄨󵄨󵄨dt.

Assuming x < 0, we get

∫
∞

x
t2󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨m(t, k)
󵄨󵄨󵄨󵄨dt

= ∫
∞

0
t2󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨m(t, k)
󵄨󵄨󵄨󵄨dt + ∫

0

x
t2󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨m(t, k)
󵄨󵄨󵄨󵄨dt

≤ ∫
∞

0
t2󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨m(t, k)
󵄨󵄨󵄨󵄨dt + x

2 ∫
0

x

󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨m(t, k)
󵄨󵄨󵄨󵄨dt

≤ constant(1 + x2),

where the final step is derived from |m(t, k)| ≤ K(1 +max(−t,0)). If x ≥ 0, then

∫
∞

x
t2󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨m(t, k)
󵄨󵄨󵄨󵄨dt ≤ K ∫

∞

0
t2󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨dt.

Therefore, for all x,

∫
∞

x
t2󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨m(t, k)
󵄨󵄨󵄨󵄨dt ≤ K(1 − xmax(−x,0)).

Now supposing x ≥ 0, we have

∫
∞

x
(t − x)2󵄨󵄨󵄨󵄨q(t)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨m(t, k)
󵄨󵄨󵄨󵄨dt ≤ ∫

∞

x
t2󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨m(t, k)
󵄨󵄨󵄨󵄨dt ≤ K.

If x ≤ 0,

∫
∞

x
(t − x)2󵄨󵄨󵄨󵄨q(t)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨m(t, k)
󵄨󵄨󵄨󵄨dt

≤ 2∫
∞

x
t2󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨m(t, k)
󵄨󵄨󵄨󵄨dt + 2x

2 ∫
∞

x

󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨m(t, k)
󵄨󵄨󵄨󵄨dt

≤ 2K(1 + x2) + 2x2K ∫
∞

−∞

󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨(1 + |t|)dt

≤ K1(1 + x
2).

Therefore,

∫
∞

x
(t − x)2󵄨󵄨󵄨󵄨q(t)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨m(t, k)
󵄨󵄨󵄨󵄨dt ≤ K2(1 − xmax(−x,0)),
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so that

󵄨󵄨󵄨󵄨ṁ(x, k)
󵄨󵄨󵄨󵄨 ≤ K2(1 − xmax(−x,0)) + ∫

∞

x
(t − x)󵄨󵄨󵄨󵄨q(t)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨ṁ(t, k)
󵄨󵄨󵄨󵄨dt.

After iterating, we have

󵄨󵄨󵄨󵄨ṁ(x, k)
󵄨󵄨󵄨󵄨 ≤ K2(1 − xmax(−x,0))eγ(x).

This bound ensures that the iterates of ṁ(x, k) in equation (2.7.2) converge uniformly
in k, whichmakes it clear that ṁ(x, k) exists and is continuous everywhere in Im k ≥ 0,
including k = 0.

Finally, for any x,

󵄨󵄨󵄨󵄨ṁ(x, k)
󵄨󵄨󵄨󵄨 ≤ K2(1 + x

2) + ∫
∞

x
t󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨ṁ(t, k)
󵄨󵄨󵄨󵄨dt + (−x)∫

∞

x

󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨ṁ(t, k)
󵄨󵄨󵄨󵄨dt

≤ K2(1 + x
2) + ∫

∞

0
t󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨ṁ(t, k)
󵄨󵄨󵄨󵄨dt + |x|∫

∞

x

󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨ṁ(t, k)
󵄨󵄨󵄨󵄨dt

≤ K2(1 + x
2) + K2e

γ(0)(1 + x2) ∫
∞

0
t󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨dt + |x|∫

∞

x

󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨ṁ(t, k)
󵄨󵄨󵄨󵄨dt,

i.e.,

h(x, k) ≤ 1 + ∫
∞

x
(1 + t2)󵄨󵄨󵄨󵄨q(t)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨h(t, k)
󵄨󵄨󵄨󵄨dt,

with h = |ṁ(x,k)|K3(1+x2)
. Iterating this, we have

󵄨󵄨󵄨󵄨h(x, k)
󵄨󵄨󵄨󵄨 ≤ exp{∫

∞

x
(1 + t2)󵄨󵄨󵄨󵄨q(t)

󵄨󵄨󵄨󵄨dt},

i.e.,

󵄨󵄨󵄨󵄨ṁ(x, k)
󵄨󵄨󵄨󵄨 ≤ K4(1 + x

2),

which proves (v) and the lemma.

In the following, the special characters of zeros of m(x, k) in Im k ≥ 0 will be
shown.

Lemma 2.7.2. For any x, m(x, k) has a finite number of zeros in Im k ≥ 0, all of which
are simple and lie on the imaginary k-axis. If k = iβ (β > 0) is a zero for m(x, k), then
k2 = −β2 is a nondegenerate eigenvalue of the operator H ≡ − d

2

dy2 + q(y) acting in L2

(x < y < ∞) with a Dirichlet boundary condition at y = x. For any x, m(x, k) has no
zeros for real k except possibly at k = 0. If m(x,0) = 0, we say that the Dirichlet operator
− d

2

dy2 + q(y) on L2 (x < y < ∞) has a virtual level. k2 = 0 is not an eigenvalue of the
operator.
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By Lemma 2.7.1,m − 1 ∈ H2+ and

m(x, k) = 1 + ∫
∞

0
B(x, y)e2ikydy,

where B(x, y) ∈ L2 (0 < y < ∞) for each x. B has many properties which are listed in
the following.

Lemma 2.7.3. The integral equation

B(x, y) = ∫
∞

x+y
q(t)dt + ∫

y

0
dz ∫
∞

x+y−z
dtq(t)B(t, z), y ≥ 0,

has a real and unique solution B(x, y), which satisfies

B(x, y) ≤ eγ(x)η(x + y).

Especially, B(x, y) ∈ L1 ∩ L∞ (0 < y <∞) with

󵄩󵄩󵄩󵄩B(x, ⋅)
󵄩󵄩󵄩󵄩∞ ≤ e

γ(x)η(x), 󵄩󵄩󵄩󵄩B(x, ⋅)
󵄩󵄩󵄩󵄩1 ≤ e

γ(x)γ(x).

B(x, y) is absolutely continuous in x and y and satisfies

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝜕x

B(x, y) + q(x + y)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ eγ(x)η(x + y)η(x),

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝜕y

B(x, y) + q(x + y)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 2eγ(x)η(x + y)η(x).

B(x, y) solves the wave equation

𝜕2

𝜕x𝜕y
B(x, y) − 𝜕

2

𝜕x2
B(x, y) + q(x)B(x, y) = 0, y ≥ 0,

with boundary condition − 𝜕B(x,0
+)
𝜕x = −

𝜕B(x,0+)
𝜕y = q(x).

m(x, k) = 1 + ∫∞0 B(x, y)e2ikydy is the Jost function in Lemma 2.7.1.

Proof. The equation is solved by modifying the iteration of Agranovich–Marchenko
as follows:

B(x, y) =
∞

∑
n=0

Kn(x, y),

K0(x, y) = ∫
∞

x+y
q(t)dt,

Kn+1(x, y) = ∫
y

0
dz ∫
∞

x+y−z
q(t)Kn(t, z)dt, n = 0, 1, 2, . . . .
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We now show that

󵄨󵄨󵄨󵄨Kn(x, y)
󵄨󵄨󵄨󵄨 ≤

γn(x)
n!

η(x + y), n ≥ 0. (2.7.3)

Assuming that equation (2.7.3) is valid for n (it is obviously true for n = 0), we have

󵄨󵄨󵄨󵄨Kn+1(x, y)
󵄨󵄨󵄨󵄨 ≤ ∫

y

0
dz ∫
∞

x+y−z

󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨η(t + z)

γn(t)
n!

dt

≤ η(x + y)∫
y

0
dz ∫
∞

x+y−z

󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨
γn(t)
n!

dt

= η(x + y)(∫
x+y

x

󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨
γn(t)
n!
(∫

y

x+y−t
dz)dt + ∫

∞

x+y

󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨
γn(t)
n!
(∫

y

0
dz)dt)

= η(x + y)(∫
x+y

x

󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨
γn(t)
n!
(t − x)dt + ∫

∞

x+y

󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨
γn(t)
n!

ydt)

≤ η(x + y)∫
∞

x

󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨(t − x)

γn(t)
n!

dt

≤ η(x + y)∫
∞

x

󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨(t − x)
(∫
∞
t (u − x)|q(u)|du)

n

n!
dt

= η(x + y) γ
n+1(x)
(n + 1)!
.

The proof of induction is completed. We obtain |B(x, y)| ≤ eγ(x)η(x + y). Especially,
‖B(x, ⋅)‖∞ ≤ eγ(x)η(x) and

󵄩󵄩󵄩󵄩B(x, ⋅)
󵄩󵄩󵄩󵄩1 ≤ e

γ(x) ∫
∞

0
η(x + y)dy = eγ(x)γ(x).

It is obvious that B is absolutely continuous in x and y. A quick calculation shows that
B solves the wave equation. In addition,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝜕x

B(x, y) + q(x + y)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−∫

y

0
q(x + y − z)B(x + y − z, z)dz

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫
y

0

󵄨󵄨󵄨󵄨q(x + y − z)
󵄨󵄨󵄨󵄨e
γ(x+y−z)η(x + y)dz

≤ eγ(x)η(x + y)η(x).

The calculation for 𝜕B(x,y)𝜕y is similar. Finally, if we define

m(x, k) = 1 + ∫
∞

0
B(x, y)e2ikydy,

the above estimates imply thatm󸀠(x, k) exists and

m󸀠(x, k) = ∫
∞

0
[
𝜕
𝜕x

B(x, y)]e2ikydy
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= ∫
∞

0
[
𝜕
𝜕x

B(x, y) − 𝜕
𝜕y

B(x, y)]e2ikydy + ∫
∞

0
[
𝜕
𝜕y

B(x, y)]e2ikydy

= −∫
∞

0
[∫
∞

x
q(t)B(t, y)dt]e2ikydy − B(x,0) − 2ik ∫

∞

0
B(x, y)e2ikydy.

This in turn implies thatm󸀠󸀠(x, k) exists almost everywhere and we have

m󸀠󸀠 + 2ikm󸀠 = qm,

where |m(x, k)− 1| ≤ ‖B(x, ⋅)‖1 ≤ eγ(x)γ(x)→ 0 as (x → +∞). Therefore,m is the unique
Jost function of Lemma 2.7.1. The proof is completed.

Setm1(x, k),m2(x, k) as the Jost functions of Lemma 2.7.1. Let f1(x, k) ≡ eikxm1(x, k),
f2(x, k) ≡ e−ikxm2(x, k), so f1(x, k) and f2(x, k) solve the Schrödinger equation

−f 󸀠󸀠j + qfj = k
2fj, j = 1, 2,

where f1 ∼ eikx as x → +∞ and f2 ∼ e−ikx as x → −∞. Now f1(x, k) and f1(x,−k) are two
independent solutions for real k ̸= 0, since the Wronskian

[f1(x, k), f1(x,−k)] ≡ f
󸀠
1 (x, k)f1(x,−k) − f1(x, k)f

󸀠
1 (x,−k) = constant

= lim
x→+∞
(eikx(ik)e−ikx − eikx(−ik)e−ikx + o(1))

= 2ik ̸= 0.

Similarly, [f2(x, k), f2(x,−k)] = −2ik ̸= 0.
It follows that there are unique transmission coefficients T1(k), T2(k) and reflec-

tion coefficients R1(k), R2(k) satisfying

f2(x, k) =
R1(k)
T1(k)

f1(x, k) +
1

T1(k)
f1(x,−k),

f1(x, k) =
R2(k)
T2(k)

f2(x, k) +
1

T2(k)
f2(x,−k),

for real k ̸= 0. Form1 andm2, the relations are

T1(k)m2(x, k) = R1(k)e
2ikxm1(x, k) +m1(x,−k),

T2(k)m1(x, k) = R2(k)e
−2ikxm2(x, k) +m2(x,−k).

We define the scattering matrix

S(k) = (T1(k) R2(k)
R1(k) T2(k)

) , k ̸= 0.

Then

1
T1(k)
=

1
2ik
[f1(x, k), f2(x, k)] =

1
T2(k)
,
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R1(k)
T1(k)
=

1
2ik
[f2(x, k), f1(x, k)],

R2(k)
T2(k)
=

1
2ik
[f2(x,−k), f1(x, k)],

from which we see that

T1(k) = T2(k) = T(k),
R1(k)T2(−k) + R2(−k)T1(k) = 0

and

T(k) = T(−k), R1(k) = R1(−k), R2(k) = R2(−k).

Inserting the one algebraic relation into the other, we get
󵄨󵄨󵄨󵄨T(k)
󵄨󵄨󵄨󵄨
2
+ 󵄨󵄨󵄨󵄨R1(k)

󵄨󵄨󵄨󵄨
2
= 1 = 󵄨󵄨󵄨󵄨T(k)

󵄨󵄨󵄨󵄨
2
+ 󵄨󵄨󵄨󵄨R2(k)

󵄨󵄨󵄨󵄨
2
.

Here, we conclude that S(k) is a unitarymatrix for each real k ̸= 0. Using the properties
ofm1(x, k) in Lemma 2.7.1, we have

m1(x, k) = 1 + ∫
∞

−∞
(
e2ik(t−x) − 1

2ik
)q(t)m1(t, k)dt

= e−2ik( 1
2ik
∫
∞

−∞
e2iktq(t)m1(t, k)dt)

+ (1 − 1
2ik
∫
∞

−∞
q(t)m1(t, k)dt) + o(1).

On the other hand,

m1(x, k) =
R2(k)
T(k)

e−2ikxm2(x, k) +
1

T(k)
m2(x,−k)

= e−2ikx R2(k)
T(k)
+

1
T(k)
+ o(1).

The integral representations for the scattering coefficients are obtained as follows:

R2(k)
T(k)
=

1
2ik
∫
∞

−∞
e2ikxq(t)m1(t, k)dt,

1
T(k)
= 1 − 1

2ik
∫
∞

−∞
q(t)m1(t, k)dt.

Themain properties of scatteringmatrix S can be displayed by the following theorem.

Theorem 2.7.4. Let q(x) be a real potential in L11. Then

S(k) = (T1(k) R2(k)
R1(k) T2(k)

)

is continuous for all real k ̸= 0, while S(k) is also continuous at k = 0 if q(x) ∈ L22. S(k)
has the following properties:
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(I) Symmetry. We have

T1(k) = T2(k) ≡ T(k).

(II) Unitarity. We have

T(k)R2(k) + R1(k)T(k) = 0,
󵄨󵄨󵄨󵄨T(k)
󵄨󵄨󵄨󵄨
2
+ 󵄨󵄨󵄨󵄨R1(k)

󵄨󵄨󵄨󵄨
2
= 1 = 󵄨󵄨󵄨󵄨T(k)

󵄨󵄨󵄨󵄨
2
+ 󵄨󵄨󵄨󵄨R2(k)

󵄨󵄨󵄨󵄨
2
,

so that

󵄨󵄨󵄨󵄨T(R)
󵄨󵄨󵄨󵄨,
󵄨󵄨󵄨󵄨Rj(k)
󵄨󵄨󵄨󵄨 ≤ 1, j = 1, 2.

(III)Analyticity. T(k) is meromorphic in ImK > 0 with a finite number of simple poles
iβ1, . . . , iβn on the imaginary axis, while βj > 0, whose residues are

i(∫
∞

−∞
f1(x, iβj)f2(x, iβj)dx)

−1
, j = 1, 2, . . . , n.

The numbers −β21 , . . . ,−β
2
n are the simple eigenvalues of operator H. T(k) is contin-

uous in Im k ≥ 0, k ̸= 0, iβ1, . . . , iβn. If q(x) ∈ L12, then T(k) is continuous in Im k ≥ 0,
k ̸= iβ1, . . . , iβn.

(IV)Asymptotics. We have:
(i)

T(k) = 1 + O( 1
k
) as |k|→∞, Im k ≥ 0.

(ii)

Rj(k) = O(
1
k
), j = 1, 2, as |k|→∞, k is real.

Moreover, if q(x) has N-order derivatives which are in L1 (−∞ < x < ∞), then
Rj(k) = O(1/kN+1) as |k|→∞, k is real.

(iii) If H has no eigenvalues, then

T(k) − 1 ∈ H2+, 󵄨󵄨󵄨󵄨T(k)
󵄨󵄨󵄨󵄨 ≤ 1, everywhere in Im k ≥ 0.

(V) Rate at k = 0. We have

󵄨󵄨󵄨󵄨T(k)
󵄨󵄨󵄨󵄨 > 0 for all Im k ≥ 0, k ̸= 0, |k| ≤ constant|T(k)|, as k → 0.

If q(x) ∈ L22, there are two possibilities:
(i) 0 < constant ≤ |T(k)| and hence Rj(k) ≤ constant < 1, j = 1, 2, or
(ii) T(k) = αk + o(k), α ̸= 0, as k → 0, Im k ≥ 0, and 1 + Rj(k) = αjk + o(k), j = 1, 2,

as k → 0, k is real.
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(VI)Realness. We have

T(k) = T(−k), Rj(k) = Rj(−k), j = 1, 2.

Theorem 2.7.5.

R(k)
T(k)
=

1
2ik
∫
∞

−∞
e−2iktΠ1(t)dt,

1
T
= 1 − 1

2ik
∫
∞

−∞
q(t)dt − 1

2ik
∫
∞

0
Π2(t)e

2iktdt,

where

󵄨󵄨󵄨󵄨Π1(y)
󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨q(y)
󵄨󵄨󵄨󵄨 + KL(y) ∈ L

1 (−∞ < y <∞),

󵄨󵄨󵄨󵄨Π2(y)
󵄨󵄨󵄨󵄨 ≤ K(∫

∞

y/2

󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨dt + ∫

y/2

−∞

󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨dt) ∈ L

1 (0 < y <∞),

with

L(y) =
{
{
{

∫
∞
y
󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨dt, y ≥ 0,

∫
y
−∞
󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨dt, y < 0.

Theorem 2.7.6. The asymptotics for T(k),m1(x, k),m2(x, k) are displayed as follows:
(i) If q(x) ∈ L11,

m1(x, k) = 1 +
1
2ik
∫
∞

x
(e2ik(t−x) − 1)q(t)dt + 1

2(2ik)2
(∫
∞

x
q(t)dt)

2
+ o( 1

k2
),

m2(x, k) = 1 +
1
2ik
∫
x

−∞
(e2ik(x−t) − 1)q(t)dt + 1

2(2ik)2
(∫
∞

x
q(t)dt)

2
+ o( 1

k2
),

T(k) = 1 + 1
2ik
∫
∞

−∞
q(t)dt + 1

2(2ik)2
(∫
∞

−∞
q(t)dt)

2
+ o( 1

k2
).

(ii) If q(x) ∈ L11, q
󸀠(x) ∈ L1,

m1(x, k) = 1 −
1
2ik
∫
∞

x
q(t)dt + 1

2(2ik)2
(∫
∞

x
q(t)dt)

2
−

q(x)
(2ik)2
+ o( 1

k2
),

m2(x, k) = 1 −
1
2ik
∫
x

−∞
q(t)dt + 1

2(2ik)2
(∫

x

−∞
q(t)dt)

2
−

q(x)
(2ik)2
+ o( 1

k2
).

The proof is straightforward.
Theorem 2.7.7 will display some important expressions and estimates of potential

q(x) and scattering data.

Theorem 2.7.7. Assume q ∈ L11 with bounded states −β2n < ⋅ ⋅ ⋅ < −β
2
1 , norming con-

stants cj, j = 1, 2, . . . , n, and the reflection coefficient R satisfies:
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(i)

q(x) = lim
a→∞

2i
π
∫
a

−a
kR(k)e2ikxm2(x, k)dk +

n
∑
j=1
(2cj exp(−2βjx))

󸀠m2(x, iβj)

= lim
b→∞

1
b
∫
b

0
da(2i

π
∫
a

−a
kR(k)e2ikxm2(x, k)dk)

+
n
∑
j=1
(2cj exp(−iβjx))

󸀠m2(x, iβj),

where the convergence of the Cesàro means is almost everywhere.
(ii)

q(x) = F󸀠(x) + 2∫
∞

0
F󸀠(x + t)B(x, t)dt + ∫

∞

0
F󸀠(x + t)(Bx ∗ Bx)(t)dt

+
n
∑
j=1
(2cj exp(−2βjx))

󸀠m2
1(x, iβj)

= Ω󸀠(x) + 2∫
∞

0
Ω󸀠(x + t)B(x, t)dt + ∫

∞

0
Ω󸀠(x + t)(Bx ∗ Bx)(t)dt,

where

Ω(t) = F(t) +
n
∑
j=1

2cj exp(−2βjt).

(iii) If kR(k) ∈ L1,

q(x) = 2i
π
∫
∞

−∞
kR(k)e2ikxm2(x, k)dk +

n
∑
j=1
(2cj exp(−2βjx))

󸀠m2(x, iβj).

Theorem 2.7.8. Let q(x) ∈ L11 and

Ω(y) = F(y) +
n
∑
j=1

2cj exp(−2βjy).

Ω(y) and F(y) are absolutely continuous with

󵄨󵄨󵄨󵄨q(x) −Ω
󸀠(x)󵄨󵄨󵄨󵄨 ≤ K1(x)(∫

∞

x

󵄨󵄨󵄨󵄨q(t)
󵄨󵄨󵄨󵄨dt)

2
,

where K1(x) is nonincreasing,

∫
∞

a

󵄨󵄨󵄨󵄨F
󸀠(t)󵄨󵄨󵄨󵄨(1 + |t|)dt ≤ K2(a) <∞,

∫
∞

a

󵄨󵄨󵄨󵄨F(t)
󵄨󵄨󵄨󵄨dt ≤ K3(a) <∞,

for all x and a.
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Theorem 2.7.9. The necessity and sufficiency of the conditions for the matrix

(
T1(k) R2(k)
R1(k) T2(k)

) , −∞ < k <∞,

being the scattering matrix of real potential q(x) ∈ L12, are:
(i) Symmetry. We have T1(k) = T2(k) = T(k).
(ii) Unitarity. We have

󵄨󵄨󵄨󵄨T(k)
󵄨󵄨󵄨󵄨
2
+ 󵄨󵄨󵄨󵄨R1(k)

󵄨󵄨󵄨󵄨
2
= 󵄨󵄨󵄨󵄨T(k)
󵄨󵄨󵄨󵄨
2
+ 󵄨󵄨󵄨󵄨R2(k)

󵄨󵄨󵄨󵄨
2
= 1,

R1(k)T(k) + R2(k)T(k) = 0.

(iii) Analyticity. T(k) is analytic in the open upper half plane and continuous down to
the axis.

(iv) Asymptotics. We have

T(k) = 1 + O( 1
|k|
), Im k ≥ 0,

Ri(k) = O(
1
|k|
), k is real, i = 1, 2.

(v) Rate at k = 0. |T(k)| > 0, Im k ≥ 0, k ̸= 0 and either
(1) 0 < c < |T(k)| for all Im k ≥ 0, or
(2) T(k) = T(0)k + o(k), T(0) ̸= 0, Im k ≥ 0, 1 + R1(k) = ρik + o(k), i = 1, 2, k is real.

(vi) Reality. We have

Tj(k) = Tj(−k), Rj(k) = Rj(−k), j = 1, 2.

(vii)We have

Fj(y) =
1
π
∫
∞

−∞
Rj(k)e

2ikydk, j = 1, 2,

which are absolutely continuous with

∫
∞

a

󵄨󵄨󵄨󵄨F
󸀠
1(t)
󵄨󵄨󵄨󵄨(1 + t

2)dt <∞,

∫
a

−∞

󵄨󵄨󵄨󵄨F
󸀠
2(t)
󵄨󵄨󵄨󵄨(1 + t

2)dt ≤ c(a) <∞,

for all −∞ < a <∞.

For the KdV equation, the soliton solution can be constructed via the inverse scat-
tering transform. In addition, the smoothness anddecay of the solution corresponding
to the initial function as |x|→∞ will be obtained.
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Consider the initial value problem of the KdV equation

ut − 6uux + uxxx = 0,
u|t=0 = U(x).

Let the initial function U(x) satisfy:
(i) U(x) ∈ cs(R), s > 3,
(ii) Us+1(x) is piecewise continuous,
(iii) U j(x) = o(|x|−N ) for certain N > 0, j ≤ s + 1.

We solve B±(x, y, t) from the Marchenko equation

B±(x, y, t) ± ∫
±∞

0
Ω±(x + y + z, t)B±(x, z, t)dz +Ω±(x + y, t) = 0, (2.7.4)

where

Ω±(x, t) = F±(x, t) + 2∑
j=0

cj(t)e
±2ηjx ,

F±(x, t) =
1
π
∫
∞

−∞
R±(ξ , t)dξ = e

±2iξtdξ .

Therefore, let

u(x, t) = −B1,0,0+ (x,0, t) = B
1,0,0
− (x,0, t)

be the solution for the initial value problem of the KdV equation, with

B(j,k,l)(x, y, t) = 𝜕jx𝜕
k
y𝜕

l
tB = (
𝜕
𝜕x
)
j
(
𝜕
𝜕y
)
k
(
𝜕
𝜕t
)
l
B.

The existence and smoothness of the solution for the initial value problem will be
given by the following two theorems.

Theorem 2.7.10. For fixed x, t,

+ ∫
+∞

x
(1 + |s|)󵄨󵄨󵄨󵄨Ω

1,0
± (s, t)
󵄨󵄨󵄨󵄨ds <∞, for x ∈ R, (2.7.5a)

− ∫
+∞

x
(1 + |s|)󵄨󵄨󵄨󵄨Ω

1,0
± (s, t)
󵄨󵄨󵄨󵄨ds <∞, for x ∈ R, (2.7.5b)

where either equation (2.7.5a) or (2.7.5b) will be satisfied. The corresponding equa-
tion (2.7.4) has the solution B±(x, y, t), which satisfies

±∫
∞

x
(1 + |x|)󵄨󵄨󵄨󵄨B

1,0,0
± (x,0, t)

󵄨󵄨󵄨󵄨dx <∞, for x ∈ R.
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Theorem 2.7.11. For fixed t, conditions

±∫
+∞

x
(1 + s2)󵄨󵄨󵄨󵄨Ω±(s, t)

󵄨󵄨󵄨󵄨ds <∞, for x ∈ R (2.7.6)

and

R+(ξ ) = −1 + Aξ + o(ξ ) if lim
ξ→0

ξa+(ξ ) ̸= 0,

T(ξ ) = αξ + o(ξ ), α ̸= 0, as ξ → 0
(2.7.7)

are satisfied, so the solution for equation (2.7.4) fulfills

−B1,0,0+ (x,0, t) = B
1,0,0
− (x,0, t).

Moreover, if u is defined as

u(x, t) = −B1,0,0+ (x,0, t) = B
1,0,0
− (x,0, t),

then the related Schrödinger equation

Luψ ≡ ψxx + u(x, t)ψ = ζ
2ψ

has the scattering data (2.4.12).

Theorems 2.7.10 and 2.7.11 can be verified via the integral representation of reflec-
tion coefficients R±(ξ ) about the initial functionU(x). From Theorems 2.7.10 and 2.7.11,
we obtain the solution u(x, t) for the initial value problem of the KdV equation. u(x, t)
satisfies

∫
∞

−∞
(1 + |x|2)󵄨󵄨󵄨󵄨u(x, t)

󵄨󵄨󵄨󵄨dx <∞, for all t ∈ R.

We have the following theorem.

Theorem 2.7.12. (a) If j + 3l ≤ 2[N] − 6 − μ, then solution u(x, t) for the initial value
problem exists. In addition, u(j,l)(x, t) exists at t ̸= 0.

(b) u(j,0)(x, t)→ U (j)(x) as t → 0, j = 0, 1, 2.
(c) For t > 0,

u(j,0)(x, t) = {
O(|x|[

j
2 ]+3−[N]+

μ
2 ), x → +∞, j ≤ 2[N] − 6 − μ,

O(|x|−
1
2 (4−j)−δ), x → −∞, j ≤ 2.

(d) For t < 0,

u(j,0)(x, t) = {
O(|x|−

1
2 (4−j)−δ), x → +∞, j ≤ 2,

O(|x|[
j
2 ]+3−[N]+

μ
2 ), x → −∞, j ≤ 2[N] − 6 − μ,
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where δ = 1
16 , N > 6 +

μ
2 ,

μ = {
0, Jost functions f±(x,0) are linearly dependent,
2, Jost functions f±(x,0) are linearly independent.

From Theorem 2.7.12, we see that, if t < 0, u decays fast as x → +∞ and slow as
x → −∞.

2.8 Higher-order and multi-dimensional inverse scattering
problems

In Section 2.3, we considered the second-order inverse scattering problem, which can
be written in the form of the following matrix:

V = (V1
V2
) ,

Vx = iζ (
−1 0
0 1
)V + (0 q

r 0
)V , (2.8.1)

Vt = QV , Q = (A B
C −A
) . (2.8.2)

Now we consider the higher-order inverse scattering problem,

V =(
V1
...
Vn

) ,

{
Vx = iζDV + NV ,
Vt = QV ,

(2.8.3)

where D = (djδij), Nii = 0, and di is a constant. By virtue of Vxt = Vtx and ζt = 0, we
have

Qx = Nt + iζ (DQ − QD) + (NQ − QN), (2.8.4)

or

Qx = Nt + iζ [D,Q] + [N ,Q]. (2.8.5)

We aim to find Q to satisfy equation (2.8.5). Under equation (2.8.5), the two equations
of (2.8.3) are compatible, from which we can derive the nonlinear evolution equation.
Expand Q as

Q = Q(1)ζ + Q(0). (2.8.6)
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Substituting the above expansion into equation (2.8.5), we have

Q(1)x ζ + Q(0)x = Nt + [N ,Q
(0)] + iζ {[D,Q(0)] + [N ,Q(0)]} + iζ 2[D,Q(1)].

Collecting the coefficient of ζ 2, we have

i[D,Q(1)] = 0,

or

∑
k
(DikQ
(1)
kj − Q

(1)
ik Dkj) = 0.

From Dik = δikdi, we get

(di − dj)Q
(1)
ij = 0,

so

Q(1)ij = qiδij. (2.8.7)

Setting qi = constant and comparing the coefficient of ζ , we have

Q(1)x = i[D,Q
(0)] + [N ,Q(1)].

Therefore,

Q(1)ijx = i∑
k
(DikQ
(0)
kj − Q

(0)
ik Dkj) +∑

k
(NikQ

(1)
kj − Q

(1)
ik Nkj),

i(di − dj)Q
(0)
ij + (qj − qi)Nij = 0,

or

Q(0)ij =
qi − qj
i(di − dj)

Nij, i ̸= j, (2.8.8)

and Q(0)ij = 0 if i = j.

Definition. Assuming aij =
1
i
qi−qj
di−dj
= aji, we have

Q(0)ij = aijNij, i ̸= j. (2.8.9)

Comparing the coefficient of ζ (0), because Q(0)x = Nt + [N ,Q(0)], we get

aijNij,x = Nij,t +∑
k
(NikakjNkj − aikNikNkj).
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Therefore, N(N − 1) numbers of evolution equations are obtained. We have

Nij,t = aijNij,x +∑
k
(aik − akj)NikNkj, (2.8.10)

or

Nij,t = aijNij,x + ∑
k ̸=i,j
(aik − akj)NikNkj.

Making Nij = σijN∗ji (i > j), equation (2.8.10) and its conjugation are compatible if
σikσkj = −σij (i > k > j) and aij is real. Thus, the number of equations will decrease. In
fact,

N∗ij,t = ajiN
∗
ji,x + ∑

k ̸=j,i
(aij − aki)N

∗
jkN
∗
ki.

Multiplying by σij, because aij = aji, we get

Nij,t = aijNij,x + ∑
k ̸=j,i
(ajk − aki)σikN

∗
jkN
∗
ki.

Considering σij = −σikσkj, we have

Nij,t = aijNij,x + ∑
k ̸=i,j
(aik − akj)NikNkj.

In another form,

Nij,t = aijNij,x + ∑
k>j>i
(aik − akj)NikσkjN

∗
jk

+ ∑
j>k>i

NijNjk(aik − akj) + ∑
j>i>k

σikN
∗
kiNkj(aik − akj).

Example 2.8.1. If n = 3,

N =(
0 N12 N13

σ21N∗12 0 N23
σ31N∗13 σ32N∗23 0

) =(
0 A1 A2

σ21A∗1 0 A3
σ31A∗2 σ32A∗3 0

) .

Denoting a12 = V1, a13 = V2, a23 = V3, using equation (2.8.10), we derive

{{{
{{{
{

A1,t = V1A1,x + σ32(V2 − V3)A2A
∗
3 ,

A2,t = V2A2,x + (V1 − V3)A1A3,
A3,t = V3A3,x + σ21(V1 − V2)A

∗
1 A2,

(2.8.11)

where −σ31 = σ21σ32. Equations (2.8.11) are named three-wave equations. For simplic-
ity, introducing A1 = ia1u1,A2 = −ia2u2,A3 = ia3u3, and

a21 =
q2

(V1 − V3)(V1 − V2)
, a22 =

q2

(V2 − V3)(V1 − V2)
, a23 =

a1q
a2(V2 − V3)

,
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equations (2.8.11) become

{{{
{{{
{

u1,t = V1u1,x + σ32iqu2u
∗
3 ,

u2,t = V2u2,x − iqu1u3,
u3,t = V3u3,x + σ21iqu

∗
1 u2.

(2.8.12)

We expand Q to ζ 2 and obtain

Q = Q(2)ζ 2 + Q(1)ζ + Q(0).

We insert this into

Qx = Nt + iζ [D,Q] + [N ,Q]

and the following relations will be obtained:

βijNij,xx + εijNij,x − ∑
k ̸=i,j

γijk(NikNkj)x

= Nij,t + ∑
k ̸=i,j
(εkj − εik)NikNkj + Nij{2βijNikNkj + ∑

k ̸=i,j
(βkj + γikj)NjkNkj

− (βki + γkji)NikNki} + ∑
k ̸=i,j
(βkjNikNkj,x − βikNkiNik,x)

+ ∑
k ̸=i,j
∑
m ̸=i,j
(γikmNkjNimNmk − γkjmNikNkmNmj), (2.8.13)

with

aij =
q(2)i − q

(2)
j

i(di − dj)
= aji,

βij =
dij

i(di − dj)
= −βji,

γijk =
akj − aik
i(di − dj)

= γjik = γkij,

εij =
q(1)i − q

(1)
j

i(di − dj)
= εji.

In fact, collecting the coefficients of ζ 3, ζ 2, ζ 1, ζ 0, we have

i[D,Q(2)] = 0, Q(1)x = i[D,Q
(0)] + [N ,Q(1)],

Q(2)x = i[D,Q
(1)] + [N ,Q(2)],

Q(0)x = Nt + [N ,Q
(0)], Q(2)ik = q

(2)
i δik , Dik = diδik .
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From Q(2)x = i[D,Q
(1)] + [N ,Q(2)], i.e.,

i∑
k
(DikQ
(1)
kj − Q

(1)
ik Dkj) +∑

k
(NikQ

(2)
kj − Q

(2)
ik Nkj) = 0,

we have

Q(1)ij =
q(2)i − q

(2)
j

i(di − dj)
Nij = aijNij.

From

Q(1)x = i[D,Q
(0)] + [N ,Q(1)],

aijNij,x = i(di − dj)Q
(0)
ij + ∑

k ̸=i,j
(akj − aik)NikNkj + (Q

(1)
ji − Q

(1)
ii )Nij,

we derive

Q(0)ij =
aij

i(di − dj)
Nij,x + ∑

k ̸=i,j

(aik − akj)
i(di − dj)

NikNkj −
Q(1)ij − Q

(1)
ii

i(di − dj)
,

Nij = βijNij,x − ∑
k ̸=i,j

γijkNikNkj + εijNij.

Substituting the above into Q(0)x = Nt + [N ,Q(0)], equation (2.8.13) will be obtained.

Example 2.8.2. For the Boussinesq equation

Wtt −Wxx − 6(W
2)xx +Wxxxx = 0, (2.8.14)

N =(
0 0 1
N21 0 (1 +W3)N31
N31 1 0

) , (2.8.15)

whereW3 = e−2πi/3, whose eigenvalue problem is

Ψxxx + (λ + Q1)Ψ + Q2Ψx = 0, (2.8.16)

with Q1 = N31,x + N21, Q2 = (2 +W3)N31.

Example 2.8.3. If we take

N =(
0 A iB
0 0 A∗

−i 0 0
) , (2.8.17)
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the equations which describe the interaction between the infragravity and capillary
waves in shallow water will be obtained. We have

{
iAt + λAxx = AB,

Bt = −α(|A|
2)x .

(2.8.18)

Next, we consider the inverse scattering transform for higher dimensions. The
eigenvalue problems for the y-variable added are

𝜕v
𝜕x
(x, y, t) = iζd(y)v(x, y, t) + ∫

∞

−∞
N(x, y, z; t)v(x, z, t)dz, (2.8.19)

𝜕v
𝜕t
(x, y, t) = ∫

∞

−∞
Q(x, y, z; t)v(x, y, z; t)dz. (2.8.20)

Because vxt = vtx and ζt = 0, we have

Qx(x, y, z; t) = Nt(x, y, z; t) + i(d(y) − d(z))Q(x, y, z; t)

+ ∫
∞

−∞
[Q(x, z󸀠, z; t)N(x, y, z󸀠; t) − N(x, z󸀠, z; t)Q(x, y, z󸀠; t)]dz󸀠. (2.8.21)

Expanding Q as Q = Q(1) + ζQ(0), the following integral-differential equation will be
derived:

Nt(x, y, z; t) = α(y, z)Nx(x, y, z; t)

+ ∫
∞

−∞
[α(y, z󸀠) − α(y, z)]N(x, y, z󸀠; t)N(x, z󸀠, z; t)dz󸀠, (2.8.22)

with α(y, z) = [c(z)−c(y)]/i[d(z)−d(y)] = α(z, y). The symmetry conditionN(x, y, z; t) =
σ(y, z)N∗(x, z, y; t) (y > z) will be satisfied if σ(y, z󸀠)σ(z󸀠, z) = −σ(y, z), y > z󸀠 > z. Now,
we take account of the two-dimensional case. We have

{
Vx = iζDV + NV + BVy ,
Vt = QV + CVy .

(2.8.23)

We set ζt = 0, so, as B, D, C are constants,

Vxt = iζD[QV + CVy] + NtV + N(QV + CVy) + B(QyV + QVy + CVyy),
Vtx = QxV + Q[iζDV + NV + BVy] + C[iζDVy + NyV + NVy + BVyy].

By virtue of Vxt = Vtx, collecting the coefficients of V , Vy, Vyy, we get

Vyy : [C,B] = 0, (2.8.24)
Vy : iζ [C,D] + [Q,B] + [C,N] = 0, (2.8.25)
V : iζ [Q,D] + [Q,N] + Qx + CNy − BQy = Nt . (2.8.26)
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We take the simplest case, so

C = ciδij, B = biδij, D = diδij, Nii = 0,

where ai, bi, di are constants and

∑
k
(CikBkj − BikCkj) = 0 = cibi − cibi, from equation (2.8.24),

iζ [C,D] +∑
k
(QikBkj − BikQkj) +∑

k
(cikNkj − Nikckj) = 0, from equation (2.8.25).

We deduce

Qij =
ci − cj
bi − bj

Nij, i ̸= j,

Qii = qi, qi is constant.

Following the definition

aij =
ci − cj
bi − bj
= aji,

we get

Qij = aijNij, i ̸= j.

From equation (2.8.26), we deduce

iζ ∑
k
(QikDkj − DikQkj) +∑(QikNkj − NikQkj)

+ Qij,x +∑(CikNkj,y − BikQkj,y) = Nij,t . (2.8.27)

For i ̸= j, this becomes

iζ [aijNij(dj − di)] + (qi − qj)Nij + ∑
k ̸=i,j
(aik − akj)NikNkj

+ aijNij,x + ciNij,x − biaijNij,y = Nij,t . (2.8.28)

For i = j, it is satisfied logically. Notice that there exists ζ in equation (2.8.28), while
qi = qi(ζ ) is chosen. Since qi is undetermined, we take

qi − qj = iζaij(di − dj).

Equation (2.8.28) develops into

Nij,t = aijNij,x + βijNij,y + ∑
k ̸=i,j
(aik − akj)NikNkj, (2.8.29)
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where the group velocities in the y- and x-directions are written, respectively, as

βij = ci − biaij =
bjcj − cibj
bi − bj

,

aij =
ci − cj
bi − bj
.

Nij = σijN∗ji are compatible if σij = −σikσkj (i > k > j).

Example 2.8.4. Take N12 = A1, N13 = A2, N23 = A3 in the following three-wave equa-
tion:

{{{
{{{
{

A1,t = a12A1,x + β12A1,y + a32(a13 − a23)A2A
∗
3 ,

A2,t = a13A2,x + β13A2,y + (a12 − a23)A1A3,
A3,t = a23A3,x + β23A3,y + σ21(a12 − a23)A

∗
1 A3.

(2.8.30)

If we take

Vt = QV + c1Vy + c2Vyy (2.8.31)

in equation (2.8.23) and we set B, c1, c2 to be diagonal constant matrices, then

N = ( 0 A
±A∗ 0

) (2.8.32)

and the evolution equations will be

{{{
{{{
{

iAt + Axx + Ayy + (Q1 − Q2)A = 0,
Q1,x + k1Q1,y = ∓[(AA

∗)x − k1(AA
∗)y],

Q2,x + k2Q2,y = ±[(AA
∗)x − k2(AA

∗)y],

(2.8.33)

with

k1 =
ib1
√b1b2
, k2 =

ib2
√b1b2
.

The higher-dimensional nonlinear Schrödinger equation is included in equation
(2.8.33). We have

iAt + ∇
2A + kA2A∗ = 0.

If it is independent of y, equation (2.8.33) reduces to

iAt + Axx ∓ 2A
2A∗ = 0,
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which is the classic nonlinear Schrödinger equation. Similarly, if the x-coordinate is
independent, it becomes

iAt + Ayy ± 2A
2A∗ = 0.

For the two-dimensional case, the KdV equation

uxt + 6(uux)x + uxxxx + 3b
2uyy = 0,

whose corresponding eigenvalue problem is

vxx + (λ + u)v + bvyy = 0,

can be obtained from

B = ( 0 0
−b 0
) , N = ( 0 1

−u 0
) , D = (1 0

0 −1
) .
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3 Asymptotic behavior to initial value problems for
some integrable evolution nonlinear equations

3.1 Introduction

It iswell known that the asymptotic behavior of solutions for nonlinear integrable evo-
lution equations has been studied for a long time. Significant and interesting work on
the long-time behavior of nonlinear wave equations solvable by the inverse scattering
method was first carried out by Shabat [278], Manakov [173], and Ablowitz and Newell
[4] in 1973. The decisive stepwas taken in 1976when Zakharov andManakov [316]were
able to write down precise formulas, depending explicitly on initial data for the lead-
ing asymptotics of thenonlinear Schrödinger (NLS) equation in thephysically interest-
ing region x = O(t). A complete description of the leading asymptotics of the solution
of the Cauchy problem for the Korteweg–deVries (KdV) equation, with connection for-
mulas between different asymptotic regions, was presented byAblowitz and Segur [5],
butwithout precise information on thephase. In a later development [277], theyused a
modification of the method of [316] to derive the leading asymptotics for the solution
of the modified KdV (MKdV), KdV, and sine-Gordon equations, including full infor-
mation on the phase. The asymptotic formulas of the Zakharov–Manakov type were
rigorously justified and extended to all orders by Buslaev and Sukhanov [41] in the
case of the KdV equation and by Novokshenov [191] in the case of the NLS equation.
Also, both Novokshenov [192, 193] and Sukhanov [286–288] extended the method to
other equations.

The method of Zakharov and Manakov, pursued rigorously in [191–193], involves
an ansatz for the asymptotic form of the solution and utilizes techniques that are
somewhat removed from the classical framework of Riemann–Hilbert (RH) problems.
In 1981, Its [133] returned to a method first proposed in 1973 by Manakov [173], which
was tied more closely to standard methods for the inverse problem. In [133], the RH
problem was conjugated, up to small errors which decay as t → ∞, by an appropri-
ate parametrix, to a simpler RH problem, which in turn was solved explicitly by tech-
niques from the theory of isomonodromic deformations. This technique provides a vi-
able and, in principle, rigorous approach to the question of long-time asymptotics for
a wide class of nonlinear wave equations [134]. Finally we note that, in [40], Buslaev
derived asymptotic formulas for the KdV equation from an exact determinant formula
for the solution of the inverse problem.

What emerges from the developments in [133] is the following. In realizing one’s
hope for a nonlinear stationary phase or steepest descent method, the classical anal-
ysis of an oscillatory integral at the points of stationary phase must be replaced by
the analysis of an explicitly solvable RH problem localized at the points of stationary
phase.

https://doi.org/10.1515/9783110549638-003
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Recently, Deift and Zhou [60] developed a steepest descent method for oscilla-
tory RH problems. The method is computationally systematic and yields, with rigor-
ous error estimates, the long-time asymptotics of a general class of integrable systems.
A key ingredient in themethod is to deform the given RH problem to an equivalent RH
problem on an augmented contour adapted to the directions of steepest descent of the
associated phase factor (e8iz

3t+2izx for MKdV). The jump matrix vx,t for the deformed
RH problem converges in L1 ∩ L2 ∩ L∞(dz) to the identity as t → ∞ away from any
neighborhood of the stationary phase points (±z0 = ±√

−x
12t for MKdV). The problem

then reduces to an RH problemwith nontrivial jumps only in a small neighborhood of
the stationary phase points. After scaling at each stationary point, one again obtains
an RH problem of the isomonodromy type, which can be solved explicitly as in [133]
above.

In this chapter, the elegant approach to the calculation of the asymptotic solu-
tions proposed byAblowitz and Segur [5] is presented for the case of the KdV equation.
Moreover, we illustrate the nonlinear steepest descent method of Deift and Zhou [60]
by calculating the long-time asymptotics of the defocusing NLS and the MKdV equa-
tion.

3.2 Asymptotic solutions of the KdV equation

The discoveries of solitons by Zabusky and Kruskal [314] and of the inverse scattering
transform by Gardner, Greene, Kruskal, and Miura [88] have made a substantial im-
pact onmathematical physics. The basic ideas of their work, which they used to study
the KdV equation

ut + 6uux + uxxx = 0, (3.2.1)

have been shown to apply to a wide class of physically relevant problems. In particu-
lar, in this section, we consider the asymptotic solution of the KdV equation (3.2.1).

We begin by reviewing certain aspects of the inverse scattering transform. It is
assumed that u(x,0), the initial data for (3.2.1), is infinitely differentiable and vanishes
rapidly, along with its derivatives, as |x| → ∞. Further, the spectrum of u(x,0), as a
potential in

ψxx + [k
2 + u(x)]ψ = 0, (3.2.2)

is assumed to be purely continuous (here it suffices that u(x,0) ≤ 0). The reflection
coefficient r(k) and the transmission coefficient [a(k)]−1 are defined for real k by re-
quiring that the solution of (3.2.2) satisfies

ψ(x; k) ∼ [a(k)]−1e−ikx , x → −∞,
∼ e−ikx + r(k)eikx , x → +∞. (3.2.3)
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We can show that
󵄨󵄨󵄨󵄨[a(k)]

−1󵄨󵄨󵄨󵄨
2 + 󵄨󵄨󵄨󵄨r(k)

󵄨󵄨󵄨󵄨
2 = 1, 󵄨󵄨󵄨󵄨r(k)

󵄨󵄨󵄨󵄨 < 1, for k ̸= 0,
if 󵄨󵄨󵄨󵄨r(0)
󵄨󵄨󵄨󵄨 = 1, then r(0) = −1,

󵄨󵄨󵄨󵄨r(k)
󵄨󵄨󵄨󵄨 = O(k

−1), as k →∞, r(−k) = r∗(k).

(3.2.4)

The time-dependent scattering data are

r(k; t) = r(k)e8ik
3t ,

a(k; t) = a(k).
(3.2.5)

We define

B(x, t) = 1
2π
∫
∞

−∞
r(k)eikx+8ik

3tdk. (3.2.6)

B(2x, t) satisfies the linearized KdV equation. The solution of (3.2.1) can be found by
solving the following linear integral equation (for y > x):

K(x, y; t) + B(x + y; t) + ∫
∞

x
K(x, z; t)B(z + y; t)dz = 0, (3.2.7)

from which we derive

u(x, t) = 2 d
dx

K(x, x; t). (3.2.8)

The asymptotic t →∞ solution of (3.2.1) when no solitons exist can be described
in terms of several different regions connected by matching zones (see Figure 3.1). In
the following, we will give the detailed asymptotic analysis.

I. x ≥ O(t). For large, positive x, the integral in (3.2.6) can be evaluated asymptot-
ically by the method of steepest descent [3]. The result is

B(x, t) = r(iκ/2)e
−2κ3t

4√3πκt
[1 + O(t−1)], (3.2.9)

Figure 3.1: Several different regions.
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where κ2 = x
6t . The integral equation (3.2.7) has the following convergent Neumann

series solution:

K(x, y; t) = −B(x + y; t) + ∫
∞

x
B(x + z; t)B(z + y; t)dz + ⋅ ⋅ ⋅ .

Substituting the representation in (3.2.9) into this series, we show that the series is
also asymptotic (in this region only), so that

K(x, y; t) ∼ −B(x + y; t), (3.2.10)

to leading order. From (3.2.8), it then follows that, for x/t = O(1),

u(x, t) =
r( i2√

x
3t )(

x
3t )

1
4 e−2(

x
3t )

3/2t
2√3πt

[1 + O(t−1)]. (3.2.11)

The representations in (3.2.9) and (3.2.11) are not uniformly valid as x/t → 0. To obtain
such representations (which one needs in order to match), we write

B(x, t) = 1
4π(3t)1/3

∫
∞

−∞
r( κ

2(3t)1/3
)ei(κη/2+κ

3/3)dκ, (3.2.12)

where η = x/(3t)1/3. After expanding r(k) in a Taylor series near k = 0 and using the
definition of the Airy function,

Ai(η) = 1
2π
∫
∞

−∞
ei(κη+κ

3/3)dκ, (3.2.13)

we finally obtain a representation corresponding to (3.2.11) which retains its validity
as x/t → 0 (but x/t1/3 ≫ 1). We have

u(x, t) = − r(0)
(3t)2/3

Ai󸀠(η) + ir
󸀠(0)
2(3t)

Ai󸀠󸀠(η) + r󸀠󸀠(0)
2!22(3t)4/3

Ai󸀠󸀠󸀠(η)

− ir󸀠󸀠󸀠(0)
3!23(3t)5/3

Ai(4)(η) − r(4)(0)
4!24(3t)2

Ai(5)(η) + ⋅ ⋅ ⋅ ,
(3.2.14)

where η = x/(3t)1/3.
In the limit η → ∞, the representation in (3.2.14) reproduces that in (3.2.11). This

solution still is in the “linear” region (corresponding to (3.2.10)) and provides the
boundary conditions for the similarity region, in which the nonlinear terms become
important.

II. |x| ≤ O(t
1
3 ). In this region, the asymptotic solution of (3.2.1) is self-similar. It is

convenient to define new variables:

η = x
(3t)1/3
, u = (3t)−

2
3 F(η, t),
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where F satisfies the following partial differential equation

Fηηη + 6FFη − (2F + ηFη) + 3tFt = 0. (3.2.15)

As η→∞, the solution of (3.2.15) must match that in (3.2.14). This suggests an expan-
sion of the form

F(η, t) = f (η) + (3t)−
1
3 f1(η) + (3t)

− 23 f2(η) + (3t)
−1f3(η) + ⋅ ⋅ ⋅ . (3.2.16)

Substituting into (3.2.15), we obtain the following hierarchy of ordinary differential
equations:

f 󸀠󸀠󸀠 + 6ff 󸀠 − (2f + ηf 󸀠) = 0, (3.2.17a)
f 󸀠󸀠󸀠1 + 6(ff1)

󸀠 − (3f1 + ηf
󸀠
1 ) = 0, (3.2.17b)

f 󸀠󸀠󸀠2 + 6(ff2)
󸀠 − (4f2 + ηf

󸀠
2 ) = −3(f

2
1 )
󸀠, (3.2.17c)

...

f 󸀠󸀠󸀠m + 6(ffm)
󸀠 − [(m + 2)fm + ηf

󸀠
m] = −3

m−1
∑
k=1
(fkfm−k)

󸀠. (3.2.17d)

Comparing with (3.2.14), we obtain the following “initial conditions” for each of these
functions as η→∞:

f (η) ∼ −r(0)Ai󸀠(η), (3.2.18a)

f1(η) ∼
ir󸀠(0)
2

Ai󸀠󸀠(η), (3.2.18b)

f2(η) ∼
r󸀠󸀠(0)
2!22

Ai󸀠󸀠󸀠(η), (3.2.18c)

...

fm(η) ∼ −
r(m)(0)
m!(2i)m

Ai(m+1)(η). (3.2.18d)

Between (3.2.17) and (3.2.18), each of the functions in (3.2.16) is completely specified.
In particular, if

r(0) = −1

holds, then, as η→ −∞,

f (η) = 1
2
η − 1

2
(−2η)−1/2 + 1

2
(−2η)−2 − 5

2
(−2η)−7/2 + O((−2η)−5). (3.2.19)

Repeated differentiation of (3.2.17a) yields the following sequence of differential equa-
tions, which can be compared with (3.2.17):

f 󸀠󸀠󸀠 + 6ff 󸀠 − [2f + ηf 󸀠] = 0, (3.2.20a)
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(f 󸀠)󸀠󸀠󸀠 + 6(ff 󸀠)󸀠 − [3f 󸀠 + ηf 󸀠󸀠] = 0, (3.2.20b)

(f 󸀠󸀠)󸀠󸀠󸀠 + 6(ff 󸀠󸀠)󸀠 − [4f 󸀠󸀠 + ηf 󸀠󸀠󸀠] = −6[(f 󸀠)2]󸀠. (3.2.20c)

Comparing (3.2.17b) with (3.2.20) and using (3.2.18b), we see that

f1(η) = −
ir󸀠(0)
2r(0)

f 󸀠(η). (3.2.21)

As η→ −∞, it follows from (3.2.19) that f1(η) approaches a constant.
Equation (3.2.17c) determines f2(η), which has both a particular solution and a

homogeneous solution. The particular solution is apparent from comparison with
(3.2.20c), as we have

f2p(η) =
1
2
(− ir
󸀠(0)

2r(0)
)
2
f 󸀠󸀠(η). (3.2.22)

At every order, there is a particular solution in this sequence. Substitution of these
particular solutions into (3.2.16) yields the Taylor series expansion for f (η + η0),

f (η) + η0f
󸀠(η) + 1

2
η20f
󸀠󸀠(η) + 1

3!
η30f
󸀠󸀠󸀠(η) + ⋅ ⋅ ⋅ , (3.2.23)

where

η0 = −
ir󸀠(0)

2r(0)(3t)1/3
.

The effect of these terms is to determine an “asymptotically preferred” coordinate sys-
tem, in which the asymptotic solution is “centered”. It is straightforward to show that
this coordinate system is obtained from the original one (inwhich r(k)was calculated)
by a translation. We write

x̃ = x + x0, (3.2.24a)

x0 = −
ir󸀠(0)
2r(0)
. (3.2.24b)

With respect to this preferred coordinate system, r󸀠(0) vanishes, as do η0 and all of the
terms in (3.2.23) except the first.Wenote that the reflection coefficient in the translated
coordinate system is found to be r(k)e−2ikx0 .

There remains a homogeneous solution, h2(η), at the same order as (3.2.22), which
satisfies the following problem:

h󸀠󸀠󸀠2 + 6(fh2)
󸀠 − (4h2 + ηh

󸀠
2) = 0, (3.2.25a)

h2(η)→ MAi󸀠󸀠󸀠(η) as η→∞, (3.2.25b)
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where

M = 1
2!22r(0)

{r󸀠󸀠(0)r(0) − [r󸀠(0)]2}. (3.2.25c)

The relationship between reflection coefficients in simply translated systems (dis-
cussed below (3.2.24)) shows that M is invariant under translations such as (3.2.24).
In addition, the fact that 1 − |r(k)|2 is nonnegative implies (by the Taylor series about
k = 0) thatM is nonnegative. Using (3.2.19), we can show that, as η → −∞, one solu-
tion of (3.2.25a) grows exponentially. Numerical integration confirms that this branch
dominates the solution of (3.2.25) as η→ −∞. In particular, as η→ −∞,

h2(η) ∼ κMe
1
3 (−2η)

3/2
(−2η)−1/4{1 + 35

24
(−2η)−3/2 + O((−2η)−3)}, (3.2.26)

where κ ≐ 0.80 (κ is obtained by numerical integration). The point here is that, as
η→ −∞, f (η) grows linearly, so h2(η) grows exponentially. Thus, nomatter how small
(3t)−2/3 might be, the third term in (3.2.16) dominates the first for −η large enough.
We emphasize that this behavior is found only under the condition that r(0) = −1.
Otherwise, f (η) in (3.2.25a) is given by (3.2.17) rather than (3.2.19), h2(η) oscillates as
η→ −∞, and the expansion does not become disordered.

The next important term in the breakdown of the expansion in (3.2.16) is the par-
ticular solution of f4(η) which is forced by h2(η). It satisfies the differential equation

f 󸀠󸀠󸀠4p + 6(ff4p)
󸀠 − (6f4p + ηf

󸀠
4p) = −6h2h

󸀠
2. (3.2.27)

The behavior of f4p as η → −∞ is found by using (3.2.19) and (3.2.26) in (3.2.27). As
η→ −∞,

f4p(η) ∼ −
(κM)2

(−2η)3/2
e

2
3 (−2η)

3/2
, (3.2.28)

so this term is exponentially larger than h2(η).
Collecting the dominant terms in the asymptotic expansion in (3.2.16), we find

that, under the condition that r(0) = −1, as η→ −∞,

u(x, t) = (3t)−
2
3 (−2η)[− 1

4
− 1
2
(−2η)−

3
2 + ⋅ ⋅ ⋅ + {(3t)−

2
3 κM(−2η)−

5
4

⋅ e
1
3 (−2η)

3/2
+ ⋅ ⋅ ⋅} − {(3t)−

2
3 κM(−2η)−

5
4 e

1
3 (−2η)

3/2
+ ⋅ ⋅ ⋅}2 + ⋅ ⋅ ⋅]. (3.2.29)

III. −x ≥ O(t). The central concept in this region is that of a modulated similarity
solution. The solution of (3.2.1) tends to a self-similar form, modulated by two func-
tions that depend on the initial data. The more important of these two functions is
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then determined by the conservation laws. This concept was originally developed in
[276] to solve the NLS equation. The procedure here is analogous.

As discussed above, as η → −∞, there is a self-similar solution of (3.2.1) which
has the form

u = (−η)
1/4

(3t)2/3
[
∞
∑
k=0

A2k+1(−η) ⋅ (−η)
−3k/2 cos(2k + 1)θ

+
∞
∑
k=1

B2k+1(−η) ⋅ (−η)
−3(k+1)/2 sin(2k + 1)θ]

+ 1
(3t)2/3(−η)1/2

[A0(−η) +
∞
∑
k=1

A2k(−η) ⋅ (−η)
− 32 (k−1) cos 2kθ

+
∞
∑
k=1

B2k(−η) ⋅ (−η)
−3k/2 sin 2kθ],

where

θ = 2
3
(−η)−3/2 + κ ln(−η) +

∞
∑
j=0

θj(−η)
−3j/2,

Ak =
∞
∑
j=0

Ajk(−η)
−3j/2, Bk =

∞
∑
j=0

Bjk(−η)
−3j/2,

θj, Ajk, Bjk, κ are constants, θ0,A01 = 2d are arbitrary, and the others are determined
as follows: A0,0 = −2d2, A0,2 = 2d2, κ = −3d2, . . . . Thus,

u(x, t) ∼ (3t)−2/3[2d(−η)1/4 cos θ − 2d2(−η)−1/2(1 − cos 2θ)], (3.2.30)

with

θ ∼ 2
3
(−η)3/2 − 3d2 ln(−η) + θ0.

IV. −x = O(t
1
3 (ln t)

2
3 ). This region acts like a collisionless shock wave across which

the asymptotic solution changes smoothly from the growing similarity solution in II
to oscillations in III. The analysis of this region is rather complicated, so we only list
the result:

u(x, t) ∼ (3t)−
2
3 (−η)

1
4(2 ln 3t

3π
)

1
2

cos θ,

θ ∼ 2
3
(−η)

3
2 − 1

2π
(ln 3t) ln(−η).

(3.2.31)

For a detailed derivation, we refer the reader to [5].
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3.3 Nonlinear Schrödinger equation

We consider the long-time asymptotic for the Cauchy problem of the defocusing NLS
equation

{
iqt + qxx − 2|q|

2q = 0,
q(x,0) = q0(x) ∈ 𝒮(ℝ).

(3.3.1)

We begin by giving a sketch of how to get the RH problem from the inverse scattering
transformation of the NLS equation (3.3.1). Equation (3.3.1) admits the following Lax
pair representation:

𝜕xψ = (−izσ3 + Q(x, t))ψ,

𝜕tψ = (−2iz
2σ3 + Q̃(x, t, z))ψ,

(3.3.2)

where

σ3 = (
1 0
0 −1
) , Q(x, t) = ( 0 q(x, t)

q(x, t) 0
) , Q̃(x, t, z) = 2zQ − iQxσ3 − i|q|

2σ3.

Let μ(x, t, z) = ψ(x, t, z)ei(xz+2tz
2)σ3 . Then we obtain an equivalent Lax pair

μx + iz[σ3, μ] = Q(x, t)μ,

μt + 2iz
2[σ3, μ] = Q̃(x, t, z)μ,

(3.3.3)

which can be written in full derivative form as follows:

d(ei(zx+2z
2t) ad σ3μ(x, t, z)) = W(x, t, z), (3.3.4)

where ad σ3 denotes the commutatorwith respect to σ3. Also, (exp ad σ3)A can be com-
puted easily as follows:

ad σ3A = [σ3,A], ead σ3A = eσ3Ae−σ3 ,

where A is a 2 × 2 matrix and the exact 1-formW is defined by

W(x, t, z) = ei(zx+2z
2t) ad σ3 (Qμdx + Q̃μdt). (3.3.5)

We define two particular solutions of (3.3.3) as the 2 × 2 matrix-valued solutions of the
associated Volterra integral equations. We have

μ1(x, t, z) = I + ∫
x

−∞
e−iz(x−x

󸀠) ad σ3Q(x󸀠, t)μ1(x󸀠, t, z)dx󸀠, (3.3.6)

μ2(x, t, z) = I + ∫
x

∞
e−iz(x−x

󸀠) ad σ3Q(x󸀠, t)μ2(x󸀠, t, z)dx󸀠. (3.3.7)
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Let the columns of a 2 × 2 matrix μ be denoted as ([μ]1 [μ]2). It follows from (3.3.6) and
(3.3.7) that, for all (x, t), [μ1]1 and [μ2]2 are analytic and bounded in {z| Im z > 0}, while
[μ1]2 and [μ2]1 are analytic and bounded in {z| Im z < 0}.

The fact that Q and Q̃ are traceless implies det μj(x, t, z) = 1 for j = 1, 2, so
det s(z) = 1. From the symmetry properties of Q and Q̃, it follows that the eigen-
function μ(x, t, z) satisfies

(μ(x, t, z))11 = (μ(x, t, ̄z))22, (μ(x, t, z))12 = (μ(x, t, ̄z))21.

On the other hand, two solutions μj of the system of differential equations (3.3.3)
must be simply related. We have

μ1(x, t, z) = μ2(x, t, z)e
−i(zx+2z2t) ad σ3s(z). (3.3.8)

From the above symmetry property,wewrite the spectralmatrices s(z) in the following
form:

s(z) = (
a(z) b( ̄z)

b(z) a( ̄z)
) . (3.3.9)

Define

m(x, t, z) =
{
{
{

( [μ1]1a(z) [μ2]2) , Im z > 0,

([μ2]1
[μ1]2
a( ̄z) ) , Im z < 0.

(3.3.10)

Then, for each x and t, the 2 × 2 matrix functionm(x, t, z) solves the following RH
problem in z:

(i) m(x, t, z) is analytic in z for ℂ \ ℝ,
(ii) m+(x, t, z) = m−(x, t, z)vx,t(z), z ∈ ℝ, (3.3.11)
(iii) lim

z→∞
m(x, t, z) = I ,

where

m±(x, t, z) = limε→0m(x, t, z ± iε),

vx,t(z) = e
−i(xz+2tz2)σ3v(z)ei(xz+2tz

2)σ3 ≡ e−i(xz+2tz
2) ad σ3v(z), (3.3.12)

v(z) = (1 −
󵄨󵄨󵄨󵄨r(z)
󵄨󵄨󵄨󵄨
2 − ̄r(z)

r(z) 1
) ,

where r(z) = b(z)
a(z) lies in a Schwartz space and

sup
z∈ℝ

󵄨󵄨󵄨󵄨r(z)
󵄨󵄨󵄨󵄨 < 1
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is the reflection coefficient corresponding to the initial data q0(x). If we expand the
limit in (iii), we have

m(x, t, z) = I + m1(x, t)
z
+ O( 1

z
) (3.3.13)

and we obtain the following expression for q(x, t):

q(x, t) = 2i(m1(x, t))12 = 2i limz→∞
(zm(x, t, z))12. (3.3.14)

We now begin the analysis of the long-time asymptotics for the defocusing NLS
equation (3.3.1) based on theRHproblem (3.3.11). Let θ = 2z2+ xt zwith stationary phase
point z0 =

−x
4t . For simplicity, we restrict ourselves here to the physically interesting

region |z0| ≤ M for somefixed constantM. Thematrix v admits the following triangular
factorizations:

v = (1 −
̄r

0 1
)(

1 0
r 1
)

= (
1 0
r

1−|r|2 1)(
1 − |r|2 0

r 1
1−|r|2
)(

1 − ̄r
1−|r|2

0 1
) .

(3.3.15)

We choose δ(z) analytic and invertible in ℂ \ ℝ such that

δ+(z) =
{{{
{{{
{

δ−(z)(1 −
󵄨󵄨󵄨󵄨r(z)
󵄨󵄨󵄨󵄨
2), z < z0,

δ−(z) ≡ δ(z), z > z0,
δ(z)→ 1, as z →∞,

(3.3.16)

where ± refers to the orientation of ℝ from −∞ to∞. The solution to (3.3.16) is given
by the formula

δ(z) = exp{ 1
2πi
∫
z0

−∞

log(1 − |r(ξ )|2)
ξ − z

dξ}, z ∉ ℝ. (3.3.17)

It is easy to check that δ(z) and δ−1(z) are uniformly bounded in z for |z0| ≤ M.
The function m̃ = mδ−σ3 satisfies an RH problem acrossℝwith the following jump

matrix:

ṽx,t(z) = e
−itθ ad σ3(δσ3− vδ

σ3
+ )

=
{
{
{

e−itθ ad σ3 (
1 0

rδ−2−
1−|r|2 1 )(

1 − ̄rδ2+
1−|r|2

0 1
) , z < z0,

e−itθ ad σ3 ( 1 − ̄rδ20 1 ) (
1 0

rδ−2 1 ) , z > z0.
(3.3.18)

Note that, as δσ3 is diagonal, we can replacem by m̃ in (3.3.11).
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Having made the above definitions, we now describe the strategy. Suppose that
the coefficients

r
1 − |r|2
,
̄r

1 − |r|2
, r, ̄r (3.3.19)

can be replaced by some rational functions

[ r
1 − |r|2
], [

̄r
1 − |r|2
], [r], [ ̄r], (3.3.20)

respectively. Then, if the poles of these functions are appropriately placed, the RH
problem on ℝ can be deformed to the contour Σ, as shown in Figure 3.2.

Figure 3.2: The contour Σ.

Figure 3.3: The signature table for Re iθ.

Using the signature table for Re iθ (see Figure 3.3), we now see that the scalar factor-
ization (3.3.16) for δ and the triangular factorizations (3.3.18) for v have been chosen
specifically to ensure that the jump matrices for the deformed problem Σ converge
rapidly to an identity away from any neighborhood of z0, as t →∞.

To verify that the coefficients (3.3.19) can be replaced by the rational functions
(3.3.20) with well-controlled errors, we proceed as follows. We expand (i + z)10r(z) in
a fifth-order Taylor series around z0, to obtain

(i + z)10r = μ0 + μ1(z − z0) + ⋅ ⋅ ⋅ + μ5(z − z0)
5 + (i + z)10h.
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We set

[r] =
μ0 + μ1(z − z0) + ⋅ ⋅ ⋅ + μ5(z − z0)5

(i + z)10
(3.3.21)

and

β = (z − z0)
2

(i + z)4
. (3.3.22)

Observe that

h
β
= r − [r]

β
=
(z − z0)4

(z + i)6
g(z; z0), z ≥ z0, (3.3.23)

where

|g| +
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕g
𝜕z

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕2g
𝜕z2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ C(M). (3.3.24)

Since θ(z) = 2(z − z0)2 − 2z20 is one-to-one from (z0,∞) to (−2z
2
0,∞), we consider

h
β as

a function of θ. We have

h
β
(θ) = {

h
β (z(θ)), θ > −2z20,
0, θ ≤ −2z20.

It is easy to check that h
β ∈ H

2(dθ,−∞ < θ <∞).
Now, by the Fourier theory with respect to the variable θ, we have

(h
β
)(θ) = 1
√2π
∫
∞

−∞
e−isθ
̂
(h
β
)(s)ds, (3.3.25)

where

̂
(h
β
)(s) = 1
√2π
∫
∞

−∞
eisθ(h

β
)(θ)dθ. (3.3.26)

Thus,

e2itθh = 1
√2π

β∫
∞

t
ei(2t−s)θ
̂
(h
β
)(s)ds + 1

√2π
βeitθ ∫

t

−∞
ei(t−s)θ
̂
(h
β
)(s)ds

≡ hI + hII . (3.3.27)

By the Plancherel identity, as h
β ∈ H

2,

∫
∞

−∞
(1 + s2)2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

̂
(h
β
)(s)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
ds <∞. (3.3.28)
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Hence,

󵄨󵄨󵄨󵄨hI (z)
󵄨󵄨󵄨󵄨 ≤

C
|z + i|2t3/2

. (3.3.29)

On the other hand, hII (z) has an analytic continuation to the line z0 + eiπ/4ℝ+, where
it satisfies the estimate

󵄨󵄨󵄨󵄨hII (z)
󵄨󵄨󵄨󵄨 ≤

C
|z + i|2t
, (3.3.30)

again by (3.3.28). Thus,

‖hI‖L1∩L2∩L∞(z0≤z<∞) = O(t−3/2), (3.3.31)

‖hII‖L1∩L2∩L∞(z0+eiπ/4ℝ+) = O(t−1). (3.3.32)

An arbitrarily high order of decay in (3.3.31) and (3.3.32) can be obtained by using a
higher-order Taylor expansion in (3.3.21) at z0. This procedure can be found in the
following section for the MKdV equation.

Now deform the RH problem for ṽ on ℝ to the contour, as shown in Figure 3.4.

Figure 3.4: Deformation contour.

It turns out that the error estimates (3.3.31) and (3.3.32) are sufficient to ensure that the
contributions ofhIIδ−2 on z0+eiπ/4ℝ+ andhIδ−2 on (z0,∞) arenegligible for the leading
asymptotics as t →∞. Repeating the above arguments for the remaining functions in
(3.3.19), we see that they can all be replaced in the RH problem ṽ by the appropriate
rational functions in (3.3.20) with effective error control. Deforming the contour as
above, we arrive at the RH problem on Σ, as shown in Figure 3.2.

We define the scaling operator N : L2(Σ)→ L2(Σ − z0) and

f (z) 󳨃→ Nf (z) = f( z
√8t
+ z0). (3.3.33)

Denote the jumpmatrix in Figure 3.2 by δad σ3e−itθ ad σ3 [ṽ]. A straightforward computa-
tion shows that, as t →∞,

Nδad σ3e−itθ ad σ3 [ṽ]→ (δ0)ad σ3zνi ad σ3e−
iz2
4 ad σ3 [ṽ](z0), (3.3.34)

 EBSCOhost - printed on 2/10/2023 3:23 PM via . All use subject to https://www.ebsco.com/terms-of-use



3.3 Nonlinear Schrödinger equation | 93

where

δ0 = (8t)
−iν
2 e2itz

2
0eχ(z0),

ν = ν(z0) = −
1
2π

log(1 − 󵄨󵄨󵄨󵄨r(z0)
󵄨󵄨󵄨󵄨
2) > 0, (3.3.35)

χ(z) = − 1
2πi
∫
z0

−∞
log(z − ξ )d log(1 − 󵄨󵄨󵄨󵄨r(ξ )

󵄨󵄨󵄨󵄨
2).

[ṽ](z0) is defined by Figure 3.5.

Figure 3.5: [ ̃v](z0).

It follows from the exponential decay of e−
iz2
4 ad σ3 [ṽ](z0) that the asymptotic formula

in (3.3.34) has an L1 ∩L2 ∩L∞(Σ− z0) error of order (log t)/t1/2. Since δ0 is independent
of z,m0 is the solution of the RH problem on Σ − z0, so

m0
+ = m

0
−z

νi ad σ3e−
iz2
4 ad σ3 [ṽ](z0),

m0 → I as z →∞,
(3.3.36)

if and only if (δ0)ad σ3m0 is the solution of the RH problem for the jump matrix given
by the right-hand side of (3.3.34). Deforming the RH problem (3.3.36) on Σ − z0 to the
real axis, we obtain precisely the following RH problem:

m̃0
+(z) = m̃

0
−(z)e
− iz

2
4 ad σ3ziνσ3− v(z0)z

−iνσ3
+ ,

m̃0(z)→ I as z →∞.
(3.3.37)

Reinserting the z-independent factor (δ0)ad σ3 and the scaling factor 1/√8t, we obtain

q(x, t) = (2t)−1/2i(δ0)2(m̃0
1 )12 + O(

log t
t
), (3.3.38)

 EBSCOhost - printed on 2/10/2023 3:23 PM via . All use subject to https://www.ebsco.com/terms-of-use



94 | 3 Asymptotic behavior to initial value problems

if m̃0 = I + z−1m̃0
1 + O(z

−2). We set

Ψ(z) = m̃0(z)ziνσ3e−
iz2
4 σ3

and we can represent the RH problem (3.3.37) as

Ψ+(z) = Ψ−(z)v(z0),

Ψ(z)e
iz2
4 σ3z−iνσ3 → I as z →∞.

(3.3.39)

The factorization problem (3.3.39) can be solved explicitly in terms of parabolic cylin-
der functions [60]. The solution is then substituted in equation (3.3.38) to obtain, fi-
nally, the asymptotics for q(x, t). We fix M > 0 and state the asymptotics results as
follows.

Theorem 3.3.1. Let q(x, t) be the solution of the Cauchy problem of the NLS equa-
tion (3.3.1). If the initial value q0(x) ∈ 𝒮(ℝ), then, as t →∞, we have

q(x, t) = t−
1
2 α(z0)e

ix2
4t −iν(z0) log(8t) + O( log t

t
), (3.3.40)

for |z0| = | − x/(4t)| ≤ M, where

ν(z0) = −
1
2π

log(1 − 󵄨󵄨󵄨󵄨r(z0)
󵄨󵄨󵄨󵄨
2) > 0, 󵄨󵄨󵄨󵄨α(z0)

󵄨󵄨󵄨󵄨
2 =

ν(z0)
2
,

arg α(z0) =
1
π
∫
z0

−∞
log(z0 − ξ )d(log(1 −

󵄨󵄨󵄨󵄨r(ξ )
󵄨󵄨󵄨󵄨
2)) + π

4
+ arg Γ(iν) − arg r(z0).

Here, Γ is the gamma function.

Finally, we will indicate how to use the estimates on the jump matrices obtained
above, to obtain error estimates on the asymptotic solutions. In other words, we show
how to use the estimates (3.3.31) and (3.3.32) to bound the contribution of hI and hII to
the asymptotic solution. Other error estimates are similar.

We recall the solution procedure for RH problems. For an oriented contour Γwith
a factored n × n jump matrix v = b−1− b+, the RH problem on Γ,

m+ = m−v on Γ,
m→ I as z →∞,

(3.3.41)

is solved as follows [20]. Set w± = ±(b± − I) and w = w+ = w−. Let

(C±f )(z) = ∫
Γ

f (ξ )
ξ − z±

dξ
2πi
, z ∈ Γ, f ∈ L2(Γ) (3.3.42)
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and denote the Cauchy operator on Γ. As is well known, the operators C± are bounded
from L2(Γ) to L2(Γ) and C+ − C− = 1, where 1 denotes the identity operator.

Define

Cwf = C+(fw−) + C−(fw+) (3.3.43)

for the 2 × 2 matrix-valued function f and let μ be the solution of the basic inverse
equation

μ = I + Cwμ. (3.3.44)

Then

m(z) = I + ∫
Γ

μ(ξ )w(ξ )
ξ − z

dξ
2πi
, z ∈ ℂ \ Γ, (3.3.45)

is the solution of the RH problem (3.3.41). Substituting equation (3.3.45) into (3.3.14),
we learn that

q(x, t) = 2i ⋅ (− 1
2πi
) ⋅ (∫

ℝ
μ(ξ )w(ξ )dξ)

12

= − 1
π
(∫
ℝ
μ(ξ )w(ξ )dξ)

12

= − 1
π
(∫
ℝ
((1 − Cw)

−1I)w(ξ )dξ)
12
.

(3.3.46)

Here we have, for example (cf. (3.3.15)),

{{{
{{{
{

w = wx,t = (w+)x,t + (w−)x,t ,

(w+)x,t = (
0 0

re2itθ 0
) , (w−)x,t = (

0 − ̄re−2itθ

0 0
) .

(3.3.47)

Let us illustratehow to control the errorwhenwe replace r by [r]. For theRHproblem in
Figure 3.4, the error in the jumpmatrix is controlled by (3.3.31) and (3.3.32). In general,
let us assume that two sets of data w± and w󸀠± differ by

󵄩󵄩󵄩󵄩w± − w
󸀠
±
󵄩󵄩󵄩󵄩L1∩L2∩L∞ = O(t−1)

and ‖w±‖L1∩L2∩L∞ = O(1). We also assume that

󵄩󵄩󵄩󵄩(1 − Cw)
−1󵄩󵄩󵄩󵄩L2→L2 = O(1). (3.3.48)

The estimate (3.3.48) indeed holds for the NLS equation (see [61]), so the following
estimates are easily derived:

‖CwI − Cw󸀠 I‖L2 = O(󵄩󵄩󵄩󵄩w − w󸀠󵄩󵄩󵄩󵄩L2) = O(t−1), (3.3.49)
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‖Cw − Cw󸀠‖L2→L2 = O(󵄩󵄩󵄩󵄩w − w󸀠󵄩󵄩󵄩󵄩L∞) = O(t−1), (3.3.50)
󵄩󵄩󵄩󵄩(1 − Cw)

−1 − (1 − Cw󸀠 )−1󵄩󵄩󵄩󵄩L2→L2 = O(‖Cw − Cw󸀠‖) = O(t−1). (3.3.51)

We finally obtain the uniform estimate

∫((1 − Cw)
−1I)w = ∫((1 − Cw)

−1CwI)w + ∫w

= ∫((1 − C󸀠w)
−1Cw󸀠 I)w󸀠 + ∫w󸀠 + O(t−1). (3.3.52)

If w and w󸀠 correspond to r and [r], respectively, this shows that we can replace r
by [r] in the asymptotic solution of the inverse problem with a controlled error.

If the initialq0 lies in theweightedSobolev spaceH1,1 = {f ∈ L2(ℝ) : xf , f 󸀠 ∈ L2(ℝ)},
then the following result holds.

Theorem 3.3.2 ([63]). Let q(t), t ≥ 0be the solution of (3.3.1)with q0 = q(x, t = 0) ∈ H1,1

and fix 0 < κ < 1
4 . Then, as t →∞,

q(x, t) = t−
1
2 α(z0)e

ix2
4t −iν(z0) log(2t) + O(t−(

1
2+κ)), (3.3.53)

where α and ν are given as above. The error term O(t−
1
2+k) is uniform for all x ∈ ℝ.

3.4 MKdV Equation

In this section, we consider the asymptotics of the solution y(x, t) of the following
MKdV equation:

yt − 6y
2yx + yxxx = 0, −∞ < x <∞, t ≥ 0,

y(x,0) = y0(x) ∈ 𝒮(ℝ),
(3.4.1)

as t →∞. The MKdV equation (3.4.1) admits the Lax pair formulation

μx + iz[σ3, μ] = Q(x, t)μ,

μt + 4iz
3[σ3, μ] = Q̃(x, t, z)μ,

(3.4.2)

where

σ3 = (
1 0
0 −1
) , Q = ( 0 y(x, t)

y(x, t) 0
) , Q̃ = 4z2Q − 2iz(Q2 + Qx)σ3 + 2Q

3 − Qxx .

Similar to the method used to construct the RH problem for the defocusing NLS equa-
tion (3.3.1), we directly write the RH problem for the MKdV equation as follows:

{
m+(z) = m−(z)vx,t(z), z ∈ ℝ,
m(z)→ I , z →∞,

(3.4.3)
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where

m±(z) = limε→0m(z + iε; x, t),

vx,t(z) = e
−i(4tz3+xz)σ3v(z)ei(4tz

3+xz)σ3 ,
(3.4.4)

v(z) = (1 − |r(z)|
2 −r(z)

r(z) 1
) , (3.4.5)

where r(z) lies in a Schwartz space and satisfies

r(z) = −r(−z), sup
z∈ℝ

󵄨󵄨󵄨󵄨r(z)
󵄨󵄨󵄨󵄨 < 1. (3.4.6)

The solution of the inverse problem is given by

y(x, t) = 2i lim
z→∞
(zm(x, t, z))12. (3.4.7)

In particular, here θ = 4z3 + x
t z = 4(z

3 − 3z20z) with two stationary phase points

±z0 = ±√
−x
12t
. (3.4.8)

As before, we restrict ourselves to the physically interesting region, here described by
M−1 < z0 < M,M > 1 for any fixed constantM > 1. This implies x < 0.

In this case, the signature table for Re iθ consists of six regions, as shown in Fig-
ure 3.6.

Figure 3.6: The signature table of Re iθ.

Let δ(z) analytic in ℂ \ ℝ be the solution of the following scalar RH problem:

{{{
{{{
{

δ+(z) = δ−(z)(1 −
󵄨󵄨󵄨󵄨r(z)
󵄨󵄨󵄨󵄨
2), |z| < z0,

= δ−(z), |z| > z0,
δ(z)→ 1, z →∞.

(3.4.9)
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This problem can be solved by the following formula:

δ(z) = (z − z0
z + z0
)
νi
eχ(z), (3.4.10)

where

ν = − 1
2π

log(1 − 󵄨󵄨󵄨󵄨r(z0)
󵄨󵄨󵄨󵄨
2) > 0, (3.4.11)

χ(z) = 1
2πi
∫
z0

−z0
log( 1 − |r(ξ )|

2

1 − |r(z0)|2
)

dξ
ξ − z
. (3.4.12)

After conjugation, we have

δσ3− vx,tδ
−σ3
+ = e

−itθσ3 (
1 0

rδ−2− (1 − |r|
2)−1 1
)(

1 − ̄rδ2+(1 − |r|
2)−1

0 1
) eitθσ3 , |z| < z0,

= e−itθσ3 (1 −
̄rδ2

0 1
)(

1 0
rδ−2 1

) eitθσ3 , |z| > z0.

(3.4.13)
Consider |z| < z0 and let k = 4q + 1, q ∈ ℤ+ be any positive integer. Splitting

ρ(z) ≡ − ̄r(z)(1 − 󵄨󵄨󵄨󵄨r(z)
󵄨󵄨󵄨󵄨
2)−1 (3.4.14)

into even and odd parts, we obtain

ρ(z) = He(z
2) + zHo(z

2)

for suitable smooth functions He(⋅),Ho(⋅) ∈ 𝒮. Then, by Taylor’s formula with remain-
der, we have

He(z
2) = μe0 + μ

e
1(z

2 − z20) + ⋅ ⋅ ⋅ + μ
e
k(z

2 − z20)
k + 1

k!
∫
z2

z20
H(k+1)e (γ)(z

2 − γ)kdγ,

Ho(z
2) = μo0 + μ

o
1 (z

2 − z20) + ⋅ ⋅ ⋅ + μ
o
k(z

2 − z20)
k + 1

k!
∫
z2

z20
H(k+1)o (γ)(z

2 − γ)kdγ.

Set

R(z) = Rk(z) =
k
∑
i=0

μei (z
2 − z20)

i + z
k
∑
i=0

μoi (z
2 − z20)

i, h(z) = ρ(z) − R(z), (3.4.15)

where R(z) is a polynomial in z of order 2k + 1, such that

djρ(z)
dzj
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨z=±z0
= d

jR(z)
dzj
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨z=±z0
, djh(z)

dzj
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨z=±z0
= 0, 0 ≤ j ≤ k.
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As h(z) vanishes to arbitrarily high order at z = ±z0, it is possible to split it further in
analogy with (3.3.27). We proceed as follows.

For 0 < z0 < M, set α(z) = (z2 − z20)
q. Consider the Fourier transform with respect

to θ, so

(h
α
)(z) = 1
√2π
∫
∞

−∞
eisθ(z)
̂
(h
α
)(s)ds, |z| < z0, (3.4.16)

where

̂
(h
α
)(s) = − 1

√2π
∫
z0

−z0
e−isθ(z)(h

α
)(z)dθ(z), s ∈ ℝ. (3.4.17)

As z 󳨃→ θ(z) is one-to-one in |z| < z0, we define

h
α
(θ) = {

h(z(θ))
α(z(θ)) , −8z

3
0 = θ(z0) < θ < θ(−z0) = 8z

3
0,

0, |θ| ≥ 8z30.
(3.4.18)

Thus, as |θ|→ 8z30, |θ| < 8z
3
0, we have

h
α (θ) = O((z

2(θ)−z20)
k+1−q). As dz/dθ = (12(z2(θ)−

z20))
−1, we see that

h
α
∈ H j(−∞ < θ <∞), 0 ≤ j ≤ 3q + 2

2
. (3.4.19)

Split

h = 1
√2π

α(z)∫
∞

t
eisθ(z)
̂
(h
α
)(s)ds + 1

√2π
α(z)∫

t

−∞
eisθ
̂
(h
α
)(s)ds

≡ hI (z) + hII (z). (3.4.20)

Then we find

󵄨󵄨󵄨󵄨e
−2itθ(z)hI (z)

󵄨󵄨󵄨󵄨 ≤
C

tp−1/2
, (3.4.21)

for |z| ≤ z0 ≤ M and any p ≤ (3q + 2)/2.
On the other hand, from the signature of Re iθ, we deduce

󵄨󵄨󵄨󵄨e
−2itθ(z)hII (z)

󵄨󵄨󵄨󵄨 ≤
C
tq/2
, (3.4.22)

for z on the lines

z(u) = z0 + uz0e
3iπ/4, 0 ≤ u ≤ √2, (3.4.23)

z(u) = −z0 + uz0e
iπ/4, 0 ≤ u ≤ √2, (3.4.24)

 EBSCOhost - printed on 2/10/2023 3:23 PM via . All use subject to https://www.ebsco.com/terms-of-use



100 | 3 Asymptotic behavior to initial value problems

where z0 < M. Finally, fix 0 < ϵ < √2. Then on the part ϵ < u < √2 of line (3.4.23) and
(3.4.24) away from ±z0, we have

󵄨󵄨󵄨󵄨e
−2itθ(z)R(z)󵄨󵄨󵄨󵄨 ≤ Ce

−16tz30u
2
≤ Ce−16ϵ

2τ (3.4.25)

for 0 < z0 < M, where

τ = tz30 = (−x/12t
1/3)3/2. (3.4.26)

For z0 > M−1, we set

α̃(z) = ((z/z0)
2 − 1)q

(z + i)2
, (3.4.27)

rescale the phase

θ̃(z) =
z3 − 3z20z

3z20
, (3.4.28)

and, noting that 12tz20 = −x, obtain tθ(z) = |x|θ̃(z). Thus, in this case, we get, for
z0 > M−1,

󵄨󵄨󵄨󵄨e
−2itθ(z)hI (z)

󵄨󵄨󵄨󵄨 ≤
C

(1 + z2)|x|p−1/2
, |z| ≤ z0, p ≤

3q + 2
2

(3.4.29)

and, on the lines (3.4.23) and (3.4.24),

󵄨󵄨󵄨󵄨e
−2itθ(z)hII (z)

󵄨󵄨󵄨󵄨 ≤
C

|z + i|2|x|q/2
. (3.4.30)

Finally, for 0 < ϵ < √2 as above, on the part ϵ < u < √2 of the lines (3.4.23) and (3.4.24)
away from ±z0, we have

󵄨󵄨󵄨󵄨e
−2itθ(z)R(z)󵄨󵄨󵄨󵄨 ≤ C(z0)e

−4/3|x|z0u2 ≤ C(z0)e
−(4ϵ2/3M)|x| (3.4.31)

for z0 > M−1, where C(z0) is rapidly decreasing as z0 →∞.
For |z| ≥ z0, it suffices to consider z ≥ z0, as the case where z ≤ −z0 is similar.

By the method used in Section 3.3 and the above discussion, we can get the estimates
for ρ(z) = r(z). By taking complex, a similar splitting with similar estimates can be
obtained for the factors r(1 − |r|2)−1, r(z).

We summarize the results as follows. Let l be an arbitrary positive integer and let
k = 4q + 1 be sufficiently large, so that (3q + 2)/2− 1/2 > (3q + 2)/3− 1/2 > q/2 > q/3 are
all greater than l. Let L denote the contour
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L : {z = z0 + z0ue
3iπ/4 : −∞ < u ≤ √2}

∪ {z = −z0 + z0ue
iπ/4 : −∞ < u ≤ √2} (3.4.32)

and set

Lϵ : {z = z0 + z0ue
3iπ/4 : ϵ < u ≤ √2}

∪ {z = −z0 + z0ue
iπ/4 : ϵ < u ≤ √2}. (3.4.33)

Lemma 3.4.1. Let

ρ(z) = {
− r(z)(1 − 󵄨󵄨󵄨󵄨r(z)

󵄨󵄨󵄨󵄨
2)−1, |z| < z0,

̄r(z), |z| > z0.
(3.4.34)

Then ρ has a decomposition

ρ(z) = hI (z) + hII (z) + R(z), z ∈ ℝ, (3.4.35)

where R(z) is piecewise rational and hII (z) has an analytic continuation to L satisfying

󵄨󵄨󵄨󵄨e
−2itθ(z)hI (z)

󵄨󵄨󵄨󵄨 ≤
{
{
{

C
(1+|z|2)tl , z ∈ ℝ, 0 < z0 < M,

C
(1+|z|2)|x|l , z ∈ ℝ, z0 > M

−1,
(3.4.36)

󵄨󵄨󵄨󵄨e
−2itθ(z)hII (z)

󵄨󵄨󵄨󵄨 ≤
{
{
{

C
(1+|z|2)tl , z ∈ L, 0 < z0 < M,

C
(1+|z|2)|x|l , z ∈ L, z0 > M

−1,
(3.4.37)

󵄨󵄨󵄨󵄨e
−2itθ(z)R(z)󵄨󵄨󵄨󵄨 ≤

{
{
{

Ce−16ϵ
2τ, z ∈ Lϵ, 0 < z0 < M,

C(z0)e
−(4ϵ2/3M)|x|, z ∈ Lϵ, z0 > M

−1.
(3.4.38)

Taking conjugates

ρ(z) = hI (z) + hII (z) + R(z) (3.4.39)

leads to the same estimates for e2itθ(z)hI (z), e2itθ(z)hII (z), and e2itθ(z)R(z) on ℝ ∪ L̄.

We then get

{
m♯+(z) ≡ m

♯
−(z)v
♯
x,t(z), z ∈ Σ,

m♯+(z)→ I , z →∞,
(3.4.40)

on a contour Σ, as shown in Figure 3.7. On ℝ ⊂ Σ, the coefficients of v♯x,t(z) depend on
hI and on Σ \ ℝ, they depend on both R and hII (in addition to δ±).
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Figure 3.7: The contour Σ.

Figure 3.8: The contour Σ󸀠.

As t → ∞, we get e−2itθ(z)hI → 0. On Σ \ ℝ, the term e−2itθ(z)hII also converges to 0.
Similarly, on the finite “triangulaire” part of Σ \ ℝ away from ±z0, the contribution
from R(z)e−2itθ(z) can be neglected. We are left with the RH problem

m󸀠+(z) = m
󸀠
−(z)vx,t(z), z ∈ Σ󸀠,

m󸀠(z)→ I , z →∞,
(3.4.41)

on Σ󸀠, which is a union of two crosses, Σ󸀠 = ΣA󸀠 ∪ ΣB󸀠 , as depicted in Figure 3.8.
Moreover, as t →∞, the interaction between the RHproblemonΣA󸀠 andΣB󸀠 tends

to zero faster than the leading order of the solution and the contribution of ΣA󸀠 ∪ ΣB󸀠
to y(x, t) is simply the sum of the separate contributions from the two RH problems on
ΣA󸀠 and ΣB󸀠 . Symmetry implies that we need only to consider the RH problem on ΣB󸀠 .

We first extend ΣB󸀠 to a full cross by setting the jumpmatrix on the dotted lines in
Figure 3.9 equal to the identity matrix I. Define the scaling operator

N : L2(Σ̂B󸀠 )→ L2(Σ̂B󸀠 − z0),
f (z) 󳨃→ Nf (z) = f( z

√48tz0
+ z0).

Instead of (3.3.34), we have

Nδad σ3e−itθ ad σ3 [ṽ]→ (δ0B)
ad σ3zνi ad σ3e−

iz2
4 ad σ3 [ṽ](z0), (3.4.42)
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Figure 3.9: The extended contour of Σ̂B󸀠 .
where [ṽ](z0) appears in Figure 3.5 and

δ0B = (192tz
3
0)
−iν
2 e8itz

3
0eχ(z0). (3.4.43)

Thus, the calculation of the long-time behavior of the MKdV equation reduces to the
same explicitly solvable isomonodromy problem as in the NLS equation. The result is
the following. Let

ϕ(z0) = arg Γ(iν) +
3π
4
− arg r(z0)

− 1
π
∫
z0

−z0
log( 1 − |r(ξ )|

2

1 − |r(z0)|2
)

dξ
ξ − z0
, (3.4.44)

where Γ is the standard gamma function. Denote

ya = −i(
ν

3tz0
)

1
2

cos(16tz30 − ν log(192tz
3
0) + ϕ(z0)). (3.4.45)

For all x, let

z0 = √
−x
12t

(3.4.46)

and letM be fixed constant greater than 1.

Theorem 3.4.2. Suppose y0(x) lies in a Schwartz space with the reflection coefficient
r(z). Then, as t →∞, the solution y(x, t) of the MKdV equation (3.4.1) with initial value
y0(x) has uniform leading asymptotics

y(x, t) = ya + O(
log t
t
)

in the region M−1 ≤ √ −x12t ≤ M.
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4 Interaction of solitons and its asymptotic
properties

4.1 Interaction of solitons and its asymptotic properties as
t → ∞

Solitons can keep their original amplitude and shape after a nonlinear interaction,
which was first found by Kruskal and Zabusky using numerical calculations [314].
A few years later, Lax gave a rigorous analytical proof [153]. In addition, Lax analyzed
the process of interaction between two solitons in detail and pointed out that:

(i) In the casewhere the velocity c1 ≫ c2, the first envelop is higher and faster than
the second one. If the first one is located on the left side of the second one, then the
first one overtakes the other. During the interaction,we find themaximumvalue (peak
value): the bigger one absorbs the smaller and cancels it out (as seen as in Figure 4.1).

(ii) In the case where the velocity c1 ≈ c2, the bigger envelop catches up with the
smaller one. With the decreasing of the bigger amplitude and the increasing of the
smaller one, there exist two peak values. Next, this process will be exchanged in what
follows. In addition, Lax analyzed the behavior at t →∞. u(x, t) is the solution for the
KdV equation

ut + uux + uxxx = 0, (4.1.1)

where u → 0 as x = ±∞. There exist n discrete positive numbers c1, c2, . . . , cN (named
u as the eigenvelocity) and the phase θ±j , which satisfy

lim
t→±∞

u(x + ct, t) = {
s(ξ − θ±j , cj), c = cj,

0, c ̸= cj,
(4.1.2)

where s stands for the soliton solution for equation (4.1.1), ξ = x − cjt.
In the next part, based on the N-soliton solutions obtained through the inverse

scattering transform, we will prove Lax’s theory via algebraic analysis, which reads
as follows. Solutions for the KdV equation at t →∞ will be made up from the soliton
withN eigenvalues, if there exists a solitonwithN eigenvalues k1, k2, . . . , kN at t → −∞,
except for some phase shifts.

From equation (2.2.19) in Chapter 2, we have

K(x, y, t) = −
N
∑
m=1

cmφme
−kmy ,

u = −2 d
dx

K(x, x; t) = 2 d
dx

N
∑
m=1

cmφme
−kmx ,

https://doi.org/10.1515/9783110549638-004
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Figure 4.1: The interaction process when c1 ≫ c2.

≡ 2 d
dx

N
∑
m=1

fm(x) ≡ 2
N
∑
m=1

f 󸀠m(x),

with

fm(x) = cmφme
−kmx .

To compute∑m f 󸀠m (t → ±∞), we need to determine fm and rewrite

φm(x) +
N
∑
n=1

cmcn
e−(km+kn)x

km + kn
φn = cme

−kmx (4.1.3)

as

c−2m e2kmxfm(x) +
N
∑
n=1

fn(x)
km + kn

= 1 (m = 1, 2, . . . ,N). (4.1.4)

Upon derivation with respect to x, we get

c−2m e2kmxf 󸀠m(x) +
N
∑
n=1

f 󸀠n(x)
km + kn

= −2kmc
−2
m e2kmxfm. (4.1.5)

In order to discuss the asymptotic behavior at |t|→∞, we choose the motion coordi-
nate system

ξ ≡ x − 4k2pt, p = 1, 2, . . . ,N , (4.1.6)

where λp = −k2p means the eigenvalue of the pth soliton, 4k2p is the velocity, and 2k
2
p is

the amplitude. We have

c−2m e2kmx = cm(0)
−2 exp{−8km(k

2
m − k

2
p)t + 2kmξ }
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≡ cm(ξ ) exp{−8km(k
2
m − k

2
p)t},

where cm(ξ ) = cm(0)−2e2kmξ . We substitute the above expression into equations (4.1.4)
and (4.1.5), to obtain

cm(ξ )e
−8km(k2m−k

2
p)tfm +

N
∑
n=1

fn
km + kn

= 1, (4.1.7)

cm(ξ )e
−8km(k2m−k

2
p)tf 󸀠m +

N
∑
n=1

f 󸀠n
km + kn

= −2kmcm(ξ )e
−8km(k2m−k

2
p)tfm. (4.1.8)

Now, assume k1 > k2 > ⋅ ⋅ ⋅ > kN > 0.

(1) Asymptotic behavior at t →∞.
Taking the limit of equation (4.1.7), we have

{{{{{{{{{
{{{{{{{{{
{

N
∑
n=1

fn
km + kn

= 1, m = 1, 2, . . . , p − 1,

cpfp +
N
∑
n=1

fn
kp + kn

= 1, m = p,

fm = 0, m = p + 1, . . . ,N ,

which can be simplified as

p
∑
n=1

fn
km + kn

= 1 − cpδmpfp (m = 1, 2, . . . , p), (4.1.9)

p
∑
n=1

f 󸀠n
km + kn

= −cpδmp(2kpfp + f
󸀠
p) (m = 1, 2, . . . , p), (4.1.10)

f 󸀠m = −2kmfm = 0, (m = p + 1, . . . ,N). (4.1.11)

Matrix Kp = (
1

km+kn
) (m = 1, 2, . . . , p) possesses a positive determinant. In fact,

0 < detC = det(cmcn
e−(km+kn)x

km + kn
)

= det( 1
km + kn

)
N
∏
m=1

c2me
−2∑Nm=1 kmx ,

so det = ( 1
km+kn
) > 0. fm and f 󸀠m canbe solved fromequations (4.1.9) and (4.1.10) through

Gramer’s rule. We have

fm detKp =
p
∑
n=1

Kmn − cpKpmfp (m = 1, 2, . . . , p), (4.1.12)

f 󸀠m detKp = −cpKpm(2kpfp − f
󸀠
p) (m = 1, 2, . . . , p), (4.1.13)
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where Kmn is the cofactor of the matrix element ( 1
km+kn
). Denote Lp as the matrices of

Kp in which the elements of the last line are 1. Lettingm = p, we get

fp =
det Lp

detKp + cp detKp−1
,

f 󸀠p = −
2cpkpfp detKp−1

detKp + cp detKp−1
.

Summing up equation (4.1.13) and considering the expressions of fp, f 󸀠p, we obtain

p
∑
m=1

f 󸀠m detKp = −
p
∑
m=1

cpKpm(2kpfp − f
󸀠
p)

= −
p
∑
m=1

cpKpm2kpfp(1 −
cp detKp−1

detKp + cp detKp−1
)

= −
p
∑
m=1

cpKpmfp2kp
detKp

detKp + cp detKp−1

= −cp det Lpfp2kp
detKp

detKp + cp detKp−1

= −2kpcp(det Lp)
2 detKp
(detKp + cp detKp−1)2

.

Therefore,

lim
t→∞,ξfixed

p
∑
m=1

f 󸀠m = −
2kpcp

[ detKpdet Lp
+ cp

detKp−1
det Lp
]2
.

Subtracting the last line from the other lines of Kp, we obtain

detKp =
∏p−1m=1(kp − km)
∏pm=1(kp + km)

det Lp.

In like manner, subtracting the last line from the other lines of Lp,

det Lp =
∏p−1m=1(kp − km)
∏p−1m=1(kp + km)

detKp−1,

detKp
det Lp
=
∏p−1m=1(kp − km)
∏pm=1(kp + km)

,

detKp−1
det Lp

=
∏p−1m=1(kp + km)
∏p−1m=1(kp − km)

.
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Noticing that cp = cp(0)−2e2kpξ , we define ξp as

e2kpξp ≡
c2p(0)
2kp

p−1
∏
m=1
(
kp − km
kp + km

)
2

and infer

lim
t→∞,ξfixed

= lim
t→∞,ξfixed

2
p
∑
m=1

f 󸀠m =
4kpcp

[∏
p−1
m=1(kp−km)
∏p

m=1(kp+km)
+ cp
∏p−1

m=1(kp+km)
∏p−1

m=1(kp−km)
]2

= −
4kpcp

∏p−1m=1(
kp−km
kp+km
)2[ 14k2p
+ 2cp

2kp
∏p−1m=1(

kp+km
kp−km
)2 + c2p∏

p−1
m=1(

kp+km
kp−km
)4]

= −16k3pcp
p−1
∏
m=1
(
kp + km
kp − km

)
2
[1 + 2kpcp

p−1
∏
m=1
(
kp + km
kp − km

)
2
]

−2

= −8k2p[2kpcp
p−1
∏
m=1
(
kp + km
kp − km

)
2
] ⋅ [1 + 2kpcp

p−1
∏
m=1
(
kp + km
kp − km

)
2
]

−2

= −8k2pe
2kp(ξ−ξp)[1 + e2kp(ξ−ξp)]−2

= −2k2psech
2[kp(ξ − ξp)]

= −2k2psech
2[kp(x − 4k

2
pt − ξp)],

whichmeans that there exists a soliton at the surroundings of x = 4k2ptwith amplitude
2k2p and velocity 4k

2
p.

(2) Asymptotic behavior at t → −∞.
From equations (4.1.7) and (4.1.8), we get

N
∑
m=p

fn
km + kn

= 1 − cpδmpfp, (m = p, . . . ,N),

N
∑
m=p

f 󸀠n
km + kn

= −cpδmp(2kpfp + f
󸀠
p), (m = p, . . . ,N),

f 󸀠m = −2kmfm = 0, (m = 1, 2, . . . , p − 1).

The discussion when t →∞ is similar. Defining ξp as

ξpe
2kpξp ≡

c2p(0)
2kp

N
∏

m=p+1
(
kp − km
kp + km

)
2
,

we obtain

lim
t→−∞

u(x, t) = −2k2psech
2[kp(x − 4k

2
pt − ̄ξp)]
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and phase shifts

ξp − ̄ξp =
1
kp
[
p−1
∑
m=1

log(
km − kp
km + kp

) −
N
∑

m=p+1
log(

kp − km
kp + km

)].

There is another method to analyze the interaction between finite solitons. The KdV
equation reads

ut + δuux + uxxx = 0. (4.1.14)

Via introduction of the transformation u = px, we find

(pt)x + δ(
1
2
p2x)

x
+ (pxxx)x = 0.

Integrating this with respect to x, we get

pt +
1
2
δp2x + pxxx = 0. (4.1.15)

Substituting the transformation δp = 12(log F)x into the above expression and omit-
ting and meshing some terms, we have

F(Ft + Fxxx)x − Fx(Ft + Fxxx) + 3(F
2
xx − FxFxxx) = 0. (4.1.16)

Take notice of the operator L = 𝜕𝜕t +
𝜕3

𝜕x3 in equation (4.1.16), while F = 1+e
−α(x−s)+α3t (α,

s being real constants) is the special solution for Ft + Fxxx = 0. Due to the nonlinearity
of equation (4.1.16), the linear superposition is not useful. We expand the interaction
term as

F = 1 + F(1) + F(2) + ⋅ ⋅ ⋅

and we get the following series of equations by substituting the above expansion into
equation (4.1.16):

{F(1)t + F
(1)
xxx}x = 0,

{F(2)t + F
(2)
xxx}x = −3{F

(1)
xx + F

(1)
x F(1)xxx},

. . .

We terminate the first two terms of F(1) as F(1) = f1 + f2, fj = e−αj(x−sj)+α
3
j t (j = 1, 2), which

satisfy the first equation. F(2) can be solved as

{F(2)t + F
(2)
xxx}x = 3α1α2(α2 − α1)

2f1 ⋅ f2,

F(2) = (α2 − α1)
2

(α2 + α1)2
f1 ⋅ f2.
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In addition, we obtain F(3) = F(4) = ⋅ ⋅ ⋅ = 0. Consequently, the exact solution for
equation (4.1.16) can be expressed as

F = 1 + f1 + f2 +
(α2 − α1)2

(α2 + α1)2
f1 ⋅ f2, (4.1.17)

which possesses the terms of f1, f2, but not the terms of f 21 and f
2
2 . Similar results can

be generalized to N − fj. Assuming F(1) = ∑Nj=1 fj, we have

F = 1 +∑
j
fj +∑

j ̸=k
aijfjfk + ∑

j ̸=k ̸=l
ajklfjfkfl + ⋅ ⋅ ⋅ + a1,2,...,N f1f2 ⋅ ⋅ ⋅ fN .

In fact, it canbeproved thatF = det |Fmn|,withFmn = δmn+
2αm

αm+αn
fm,which corresponds

to C = (δmn +
e−(km+kn)x
km+kn
) from the inverse scattering transform. Taking N = 2, δu = δpx =

12(log F)xx, and equation (4.1.17), the solution for the KdV equation (4.1.14) reads

δu
12
= {α21f1 + α

2
2f2 + 2(α2 − α1)

2f1f2 + [(α2 − α1)/(α2 + α1)]
2

× (α22f
2
1 f2 + α

2
1f1f

2
2 )}/{[1 + f1 + f2 + [(α2 − α1)/(α2 + α1)]

2f1f2]
2
}, (4.1.18)

fj = exp[−αj(x − sj) + α
3
j t].

The one-soliton solution δu = 3α2sech2 θ−θ02 can be expressed via f = e−α(x−s)+α
3t, with

θ = αx − α3t, θ0 = sα and

δu
12
=

α2f
(1 + f )2
.

When f = 1, δu arrives at the maximum amplitude 3α2 at x = s + α2t with velocity
c = α2. For several instances, we discuss the interaction and asymptotic behavior at
t → ±∞ based on equation (4.1.18).

Case 1. f1 ≈ 1, with f2 being very large or small at area (x, t). We have:
(1) if f1 ≈ 1 and f2 ≪ 1,

δu
12
≈

α21f1
(1 + f1)2

is exactly the α1 wave;

(2) if f1 ≈ 1 and f2 ≫ 1,

δu
12
≈
[(α2 − α1)/(α2 + α1)]2α21f1f

2
2

{f2 + [(α2 − α1)/(α2 + α1)]2f1f2}2
=

α21 ̃f1
(1 + ̃f1)2

,

with

̃f1 = (
α2 − α1
α2 + α1
)
2
f1,
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which is still the following α1 wave with phase ̃s1:

̃s1 = s1 −
1
α1

log(α2 + α1
α2 − α1
)
2
.

Case 2. f2 ≈ 1, where f1 is very large or small at area (x, t). We will get the α2 wave.
Case 3. δu ≈ 0, where both f1 and f2 are very large or small.
Case 4. f1 ≈ 1 and f2 ≈ 1 denote the interaction area.
Taking account of the notion that α2 > α1 > 0, as t → −∞, we find an α1 wave. We

have

f1 ≈ 1, x = s1 + α
2
1t,

f2 = e
−α2(x−s2)+α32 t = e−α2(s−s2)−α2(α

2
1−α

2
2)t ≪ 1,

which means that there is an α1 wave at the point of x = s1 + α21t.
We find an α2 wave,

f2 ≈ 1, x = s2 −
1
α2

log(α2 + α1
α2 − α1
)
2
+ α22t,

f1 ≫ 1,

which means that there is an α2 wave at the point of x = s2 −
1
α2
log( α2+α1α2−α1

)2 + α22t, while
δu ≈ 0 at other points.

As t →∞,

α1 wave : x = s1 −
1
α1

log(α2 + α1
α2 − α1
)
2
+ α21t, f1 ≈ 1, f2 ≫ 1,

α2 wave : x = s2 + α
2
2t, f2 ≈ 1, f1 ≪ 1,

δu ≈ 0 at other points.

Therefore, we conclude that the parameters α1 and α2 keep unchanged after the inter-
action, apart from some phase shifts, so we have

α2 moving forward 1
α2

log(α2 + α1
α2 − α1
)
2
,

α1 moving backward 1
α1

log(α2 + α1
α2 − α1
)
2
.

The interaction time and location at f1 ≈ 1 and f2 ≈ 1 are

x = s1 + α
2
1t = s2 + α

2
2t, t = − s2 − s1

α22 − α
2
1
, x =

α22s1 − α
2
1s2

α22 − α
2
1
.
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4.2 Solution behavior for KdV equation under weak dispersion
action andWKB method

Consider the Burgers equation

ut + uux = ϵuxx (ϵ > 0),

where uϵ → u as ϵ → 0 and where u is the generalized solution for

ut + uux = 0.

As for the KdV equation

ut + uux = ϵuxxx ,

twoproblems concernus. Isuϵ → u established at ϵ → 0?And isu(x, t) the generalized
solution for ut + uux = 0? Generally speaking, the answer is negative. That is to say,
the solution for the KdV equation cannot tend to any discontinuous solution which
contains a shock wave.

The solution uϵ for the KdV equation

ut + uux = ϵuxxx (4.2.1)

satisfies the conditions that uϵ and its derivatives tend to zero as (|x|→∞). Also,

∫
∞

−∞
uϵ(x, t)dx = ∫

∞

−∞
u(x,0)dx = M0,

∫
∞

−∞

1
2
u2ϵ(x, t)dx = ∫

∞

−∞

1
2
u2(x,0)dx = E.

Integrating ut+uux = 0with respect to x ∈ (−∞,+∞), replacing the order of derivation
and integration of t, and mining the jump on the discontinuous line x = x(t), we get

dM
dt
+ D[u] = 1

2
[u2],

where D = dx(t)
dt , [f ] = f+ − f− = f (x(t) + 0) − f (x(t) − 0), andM = ∫

∞
−∞ u(x, t)dx. Due to

the momentum conservation, we get dM
dt = 0 and the shock wave relationship

D = dx
dt
=
1
2
[u2]
[u]
.

Wemultiply ut + uux = 0 by u and integrate it with respect to x, i.e.,

dE
dt
+ D[ 1

2
u2] = 1

3
[u3], E = ∫

∞

−∞

1
2
u2(x, t)dx,
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from which we derive dE
dt =

1
12 [u]

3. Furthermore, we conclude that dE
dt < 0, due to

the entropy condition u− > u+. As to the solution for equation (4.2.1), there exists the
identity dE

dt = 0 (E = E0). Thus, we declare that, as ϵ → 0, the solution uϵ for the KdV
equation (4.2.1) cannot tend to any discontinuous solution which contains a shock
wave for equation ut + uux = 0. Next, we will examine the asymptotic behavior of the
solution for equation (4.2.1). Suppose that the solution for equation (4.2.1) exists in the
smooth transition zone with thickness△ϵ, which connects two different states, while
△ϵ → 0 as ϵ → 0. Introducing the moving coordinate system ξ = x−x(t)

△ , t󸀠 = t, x(t) is
the unknown shock wave trajectory. As u(x, t) = u(ξ , t󸀠), we multiply equation (4.2.1)
by△, i.e.,

ϵ△−2 uξξξ − (u − D)uξ = △⋅ut󸀠 . (4.2.2)

Assume that ut󸀠 is bounded and △⋅ut󸀠 → 0 as △ → 0. While we set △ = o(ϵ
1
2 ) = ϵ1/2,

equation (4.2.2) tends to the following differential equation as ϵ → 0:

uξξξ − (u − D)uξ = 0,

where u→ u1 as ξ → +∞ and u→ u0 as ξ → −∞. In this situation, solution u(ξ , t󸀠) is
composed of the oscillatory solution, as seen in Figure 4.2.

Figure 4.2: The profile of u.

Concerning qualitative theory, we have the following theorem.

Theorem 4.2.1. The shock wave solution of the quasi-linear hyperbolic equation

ut + (f (u))x = 0 (4.2.3)

can never be obtained through the limit of the traveling wave solution for the KdV equa-
tion

ut + (f (u))x = ϵ
2uxxx . (4.2.4)
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Proof. Consider the shock wave solution

ū(x, t) = {
u0, x − Dt < 0,
u1, x − Dt > 0,

where D(u1 − u0) = f (u1) − f (u0) and f 󸀠(u1) < D < f 󸀠(u0). Take account of the traveling
wave solution u(x, t) = u(ξ ) for equation (4.2.4), with

ξ = x − Dt
ϵ
, ut = (

−D
ϵ
)
du
dξ
, ux =

1
ϵ
du
dξ
.

Therefore,

u󸀠󸀠󸀠 = [−Du + f (u)]󸀠.

We integrate once and obtain

u󸀠󸀠 = −Du + f (u) + C,

where u(ξ )→ u0 as ξ → −∞ and u(ξ )→ u as ξ → +∞. One important question comes
to mind. Do the continuous solutions with f (u1) − f (u0) = D(u1 − u0) for the boundary
value problem of the above ordinary differential equation exist?

Under the transformations

{
u󸀠 = v,
v󸀠 = −Du + f (u),

the aforementioned second-order ordinary differential equation can be transformed
into the boundary value problem of ordinary differential equations. Making

P(u) = 1
2
Du2 − F(u), F󸀠(u) = f (u), H(u, v) = 1

2
v2 + P(u),

they will be converted into the canonical equations

{
u󸀠 = v = Hv,
v󸀠 = −Du + f (u) = −Hu,

where (u0,0), (u1,0) are two critical points and v → 0 (|ξ | → ∞). If the two critical
points (u0,0) and (u1,0) are connectedbya trajectory, theymust be on the sameenergy
surface, since H(u(ξ ), v(ξ )) is a constant along the trajectory. In other words, we can
deduce P(u0) = P(u1) from H(u0,0) = H(u1,0). What we can prove is that the equality
P(u0) = P(u1) cannot be satisfied at least along the weak shock wave curve. In fact, a
weak shock wave which is connected to the left side of the state can be represented
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by a single parameter σ. We have u = u(σ), s(σ)(u(σ) − u0) = f (u(σ)) − f (u0), and
s(0) = f 󸀠(u0). p fulfills

p(u(σ)) = 1
2
s(σ)u2(σ) − F(u(σ)).

Differentiating with respect to σ, we find

ṗ(u(σ)) = 1
2
̇s(σ)u2 + s(σ)uu̇ − f (u(σ))u̇.

From the RH condition, su = f (u0 = f (u0) = 0), the above relationship can be simpli-
fied to

ṗ(u(σ)) = 1
2
̇s(σ)u2 ̸= 0.

Owing to f 󸀠󸀠(u) ̸= 0 and ̇s(σ) ̸= 0, P(u0) ̸= P(u1) can be derived. That is to say, the
aforementioned integral curve which connects the two critical points does not exist.

Figure 4.3: The contour of u.

As

H(u, v) = 1
2
v2 + P(u),

we see the equipotential line of H on the (u, v)-plane, as shown in Figure 4.3. There is
no trajectory since (u1,0) is the center point of the linearized matrix ( Huu Huv

Huv Hvv
).

The one-dimensional isothermal aerodynamics equations

{
ut − vx = 0,
vt + (P(u))x = 0,

(4.2.5)

with P󸀠(u) < 0 and P󸀠󸀠(u) > 0 give similar results (see Theorem 4.2.2).

Theorem 4.2.2. The shock wave solution for equations (4.2.5) cannot be seen as the
limit of the traveling wave solution for the corresponding dispersion equation.

For hyperbolic equations, in order to ensure the convergence of viscosity tends to be
zero, the higher-order viscosity term must be of even order, at least for the second and
fourth order.
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Now, we construct the approximation solution uϵ via the Wentzel–Kramers–
Brillouin (WKB) method. We have

ut + uux = ϵ
2uxxx , (4.2.6)

where ϵ2 ≪ 1. As we know, the WKB method is an important approximation method
inmathematical physics, which has been used to solve the linear ordinary differential
equation

ϵ2ϕxx + V(x)ϕ = 0, ϵ2 ≪ 1, (4.2.7)

whereV(x) is the slow-varying function at o(δ). Equation (4.2.7) has the following form
of solution:

ϕ(x; ϵ) ∼ ϕ(θ, x; ϵ) ≡ W(x)eiθ , θ ≡ B(x, ϵ)
ϵ
, (4.2.8)

which means that the unknown function ϕ is replaced by two unknown functionsW
and B and the variable x is replaced by two independent variables θ and x. This kind
of settings makes the solution to be a cycle of θ. There are no exponentially formed
solutions (4.2.8) for nonlinear partial differential equations. We expand u(x, t; ϵ) as
the series

u(x, t; ϵ) ∼ U(θ, x, t; ϵ) = U (0)(θ, x, t) + ϵU (1)(θ, x, t) + ⋅ ⋅ ⋅ , (4.2.9)

where θ = θ(x, t; ϵ). Assume that the cycle of θ is 1. Then

U(θ, x, t; ϵ) = U(θ + 1, x, t; ϵ).

The approximate solution u(x, t; ϵ) ≃ U(θ(x, t; ϵ), x, t; ϵ) will be obtained if θ(x, t; ϵ) is
given. In respect of the KdV equation (4.2.6), make

θ = B(x, t; ϵ)
ϵ
,

with B = o(1). The variables L = Bt, K = Bx, and l =
Bt
Bx
= L

K are independent of θ. We
have

𝜕
𝜕t
→

L
ϵ
𝜕
𝜕θ
+
𝜕
𝜕t
,
𝜕
𝜕x
→

K
ϵ
𝜕
𝜕θ
+
𝜕
𝜕x
.

Wemultiply equation (4.2.6) by ϵ/K, to obtain

lUθ + UUθ + K
2Uθθθ + ϵ[

1
K
(Ut + UUx) + 3(KU)xθθ]

+ ϵ2{ 1
K
[Kxx − U + 3(KUx)x]}

θ
+ ϵ3 1

K
Uxxx = 0. (4.2.10)
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Substituting equation (4.2.9) into (4.2.10), we will get a series of differential equations
of U (i) (i = 0, 1, . . .). The first one is

l(0)U (0)θ + U
(0)U (0)θ + K

(0)2U (0)θθθ = 0, (4.2.11)

where l(0) and K(0) are the first terms of the expansion series of l and K, respectively.
Integrating twice, we get

1
2
l(0)[U (0)] + 1

6
[U (0)]3 + 1

2
[K(0)][U (0)θ ]

2
= mU (0) + n, (4.2.12)

wherem and n are integration constants of x and t. With fixed x and t, the solution for
equation (4.2.12) can be expressed as

U (0)(θ, x, t) = −l(0) − (l(0) + 2m){a + (b − a)Cn
2[2K (k)(θ − θ0); k]}, (4.2.13)

where k2 = b−a
c−a , Cn is a Jacobi elliptic function, K are Legendre’s complete elliptic

integrals, and a, b, and c are roots for U (0)θ = 0.
When i ≥ 1,

LU (i) = Ni(U
(i−1), . . . , l(i), . . . ,K(i), . . .),

with

L ≡ l(0) 𝜕
𝜕θ
+
𝜕
𝜕θ

U (0) + [K(0)]2 𝜕
3

𝜕θ3
.

In principle,we could go on forever, since the inhomogeneous termNi only has a lower
order.What is important is that, at ϵ → 0, the limit solution for equation (4.2.6) should
be equation (4.2.11), not ut + uux = 0.

4.3 The soliton stability problem

In this section, we take account of the linear stability problem of solitons, i.e., the
stability problem of the small perturbation of stationary wave solutions for the KdV
equation,

ut + uux + μuxxx = 0, (4.3.1)

which possesses the soliton solution

u0(x) = −u∞(1 − 3 sech
2√

u∞
4μ

x), u∞ > 0. (4.3.2)

We add the perturbation term v(x, t) to equation (4.3.2), so that

u = u0(x) + v(x, t), |v| ≪ |u0|. (4.3.3)

 EBSCOhost - printed on 2/10/2023 3:23 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.3 The soliton stability problem | 119

Substituting the equation (4.3.3) into (4.3.1), we obtain

vt + u0vx + u0,xv + μvxxx = 0. (4.3.4)

Assuming v(x, t) = f (x)g(t), g(t) ∝ eσt, and σ = constant, we get the relationship
which f satisfies,

d3f
dy3
− 4(1 − 3 sech2y)df

dy
− (24sech2y tanh y + α)f = 0, (4.3.5)

where y ≡ √ u∞4μ x, α≡(−8σ/u∞)√μ/u∞. The boundary condition is

f → 0, |y|→∞. (4.3.6)

Three independent solutions for equation (4.3.5) are given as

fk = λk(λk − 2)
2eλky + 4 d2

dy2
[e(λk−1)ysechy]

= eλky[λk(λk − 2)
2 + 4e−ysech{λk(λk − 2)

− 2(λk − 1) tanh y + 2 tanh
2 y}], k = 1, 2, 3, (4.3.7)

with λk being the roots for the following cubic equation:

λ3 − 4λ − α = 0. (4.3.8)

Specially, when α = 0, λk = 0, 2,−2, fk ∝ sech2y tanh y (k = 1, 2, 3), the three indepen-
dent solutions are

{{{
{{{
{

f1 = sech
2y tanh y ≡ f0,

f2 = 3yf0 + tanh
2 y − 2sech2y,

f3 = 15yf0 + 2 sinh
2 y + 7 tanh2 y − 8 sech2y.

(4.3.9)

Notice that equation (4.3.8) has multiple root λ = ± 2
√13 at α = ∓

16
3√3 , which leads to

f1 ≡ f2 in equation (4.3.9). Therefore, it is essential to choose three new independent
solutions. Now we have

{{{{{{{{{
{{{{{{{{{
{

f1 = λ0(λ0 − 2)
2eλ0y + 4 d2

dy2
[e(λ0−1)ysechy],

f2 = yf1 + (3λ
2
0 − 8λ0 + 4)e

λ0y + 8 d
dy
[e(λ0−1)ysechy],

f3 = λ3(λ3 − 2)
2eλ0y + 4 d2

dy2
[e(λ3−1)ysechy],

(4.3.10)

where (λ0, λ3) = (2/√3,−4/√3) or (−2/√3, 4/√3). The triple root for equation (4.3.8)
will not be given. It is easy to deduce that, except for f0 in the form of equation (4.3.9),
the arbitrary combination of solutions (4.3.7), (4.3.9), and (4.3.10) cannot satisfy condi-
tion (4.3.6). From the above analysis, we conclude that solutions for the KdV equation
are stable under the small perturbation. More details about the nonlinear stabilities
of the soliton and the cnoidal wave can be found in [50].
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4.4 Water wave and wave equation under weak nonlinear action

The KdV equation was first established in 1895 by Korteweg and de Vries under the
assumption of the long wavelength approximation and a small but finite amplitude of
thewaterwave. Next,we give the derivation of theKdVequation, taking account of the
incompressible inviscid fluid in constant gravity field with space coordinates system
(x1, x2, y), velocity u = (u1, u2, v), and acceleration of gravity in the −y direction. We
have

∇ ⋅ u = 0, (4.4.1)
𝜕u
𝜕t
+ (u ⋅ ∇)u = − 1

ρ
∇P − gj. (4.4.2)

Considering the irrotational motion, i.e., rotu = 0, the velocity potential u = ∇φ, and
the equality

∇(
1
2
u2) = (u ⋅ ∇)u − rotux ⋅ u = (u ⋅ ∇)u, (4.4.3)

integrating equation (4.4.2), we obtain

p − p0
ρ0
= B(t) − φt −

1
2
(∇φ)2 − gy,

where B(t) is the arbitrary function and p0 is an arbitrary constant. Making

φ󸀠 = φ − ∫B(t)dt,

we derive

u = ∇φ, p − p0
ρ0
= −φ󸀠t −

1
2
(∇φ󸀠)2 − gy. (4.4.4)

In the following steps, we denote φ󸀠 = φ. From equation (4.4.1), we find

∇ ⋅ u = 0 󳨐⇒ ∇2φ = 0. (4.4.5)

The surface equation reads

f (x1, x2, y, t) = 0. (4.4.6)

On this surface, the fluid particle cannot pass through the surface, so the velocity of
the fluidwhich is orthogonal to the surfacemust be equal to the normal velocity of the
surface. The normal velocities of equation (4.4.6) and the fluid are written as

−ft
√f 2x1 + f

2
x2 + f

2
y
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and

u1fx1 + u2fx2 + vfy
√f 2x1 + f

2
x2 + f

2
y

,

respectively. The equal condition between them is

ft + u1fx1 + u2fx2 + vfy = 0. (4.4.7)

Particularly, equation (4.4.7) transforms into

ηt + u1ηx1 + u2ηx2 = v, (4.4.8)

when y = η(x1, x2, t) and f (x1, x2, y, t) ≡ η(x1, x2, t) − y.
In addition, p = p0 (ignoring the air motion on the free surface) and

{
{
{

ηt + φx1ηx1 + φx2ηx2 = φy ,

φt +
1
2
(φ2

x1 + φ
2
x2 + φ

2
y) + gη = 0,

(4.4.9)

where y = η(x1, x2, t), u1 = φx1 , u2 = φx3 , and v = φy. Under solid boundary conditions,
the normal velocity of flow must be zero, i.e., n ⋅ ∇φ = 0. Especially φy + φx1h0x1 +
φx2h0x2 = 0 at the bottom y = −h0(x1, x2), while φy = 0 at the horizontal bottom y =
−h0. Thus,we put the problem forward as follows. The velocity potentialφ and surface
η satisfy

∇2φ = 0, (4.4.10)

{
{
{

ηt + φx1ηx1 + φx2ηx2 = φy ,

φt +
1
2
(φ2

x1 + φ
2
x2 + φ

2
y) − gη = 0,

(4.4.11)

φy = 0, y = −h. (4.4.12)

For simplicity, we consider the one-dimensional case, i.e., η = η(x, t), φy = 0, y = 0,
and introduce two variables,

α = a
h0
, β =

h20
l2
,

where a is the amplitude, l is the wavelength, and y = h0 + η. Making x = lx󸀠, y = h0y󸀠,
t = lt󸀠

c0
, η = aη󸀠, φ = glaφ󸀠

c0
, and c20 = gh0 and omitting “󸀠”, we obtain the following

equations from equations (4.4.5), (4.4.11), and (4.4.12):

βφxx + φyy = 0, 0 < y < 1 + αη, (4.4.13)
φy = 0, y = 0, (4.4.14)
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ηt + αφxηx −
1
β
φy = 0,

η + φt +
1
2
αφ2

x +
1
2
α
β
φ2
y = 0,

}}}
}}}
}

y = 1 + αη. (4.4.15)

The formal solution for equations (4.4.13) and (4.4.14) reads

φ =
∞

∑
0
(−1)m y2m

(2m)!
𝜕2mf
𝜕x2m

β2m, (4.4.16)

where f = f0(x, t). We substitute equation (4.4.16) into the first equation of equa-
tion (4.4.15), to obtain

ηt + α[fx − (1 + αη)ηxf
󸀠
xxβ −
(1 + αη)2

2
fxxxβ + ⋅ ⋅ ⋅]ηx

+ (1 + αη)f 󸀠󸀠 − 1
3!
(1 + αη)3fxxxxβ + o(β

2) = 0,

i.e.,

ηt + {(1 + αη)fx}x − {
1
6
(1 + αη)3fxxxx +

1
2
α(1 + αη)2fxxxηx}β + o(β

2) = 0. (4.4.17)

Similarly, we substitute equation (4.4.16) into the second equation of equation (4.4.15),
to obtain

η + ft +
1
2
αf 2x −

1
2
(1 + αη)2{fxxt + αfxfxxx − αf

2
xx}β + o(β

2) = 0. (4.4.18)

Ignoring the first order of β in equations (4.4.17) and (4.4.18) and taking the derivative
of equation (4.4.18) with respect to x, we find

{
ηt + {(1 + αη)w}x = 0,
wt + αwwx + ηx = 0,

w = fx . (4.4.19)

Otherwise, if we keep the first order of β in equations (4.4.17) and (4.4.18), the following
equation will be obtained:

{{
{{
{

ηt + {(1 + αη)w}x −
1
6
βwxxx + O(αβ, β

2) = 0,

wt + αwwx + ηx −
1
2
βwxxt + O(αβ, β

2) = 0.
(4.4.20)

It is easy to see that equation (4.4.20) will be transformed into ηt + ηx = 0 under the
assumption that w = η and omitting the first order of α and β. We expand w with
respect to α and β, so we have

w = η + αA + βB + O(α2 + β2),
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where A and B are functions of η and its derivatives. Substituting the expansion into
equation (4.4.20), we get

{{{{
{{{{
{

ηt + ηx + α(Ax + 2ηηx) + β(Bx −
1
6
ηxxx) + O(α

2 + β2) = 0,

ηt + ηx + α(Ax + ηηx) + β(Bt −
1
2
ηxxt) + O(α

2 + β2) = 0.

Because ηt = −ηx + O(α, β), the derivative of t in the first order can be changed to the
derivative of x. Especially, when we choose A = − 14η

2 and B = 1
3ηxx, the above two

equations will be unified as

ηt + ηx +
3
2
αηηx +

1
6
βηxxx + O(α

2 + β2) = 0, (4.4.21)

with

w = η − 1
4
αη2 + 1

3
βηxx + O(α

2 + β2).

Neglecting the second-order term of equation (4.4.21), the classical KdV equation will
be derived:

ηt + ηx +
3
2
αηηx +

1
6
βηxxx = 0. (4.4.22)

Furthermore, we obtain the Benjamin equation,

ηt + ηx +
3
2
αηηx −

1
6
βηxxt = 0, (4.4.23)

when ηxxx = −ηxxt .
Here we propose to derive a class of generalized wave equations with weak non-

linear interaction, which we call KdV or Burgers equation [284]. We have

nt + (nu)x = 0, (4.4.24)
(nu)t + (nu2 + P)x = 0, (4.4.25)

P = P(f , n, u, fi, ni, ui, fij, nij, uij, . . .), (4.4.26)
F(f , n, u, , fi, ni, ui, fij, nij, uij, . . .) = 0, (4.4.27)

where n and u denote the number density and particle velocity, respectively, and sub-
scripts i, j denote differentiation with respect to the space and time variables x and
t. P is the function of the state variables (n, u, f ) and their derivatives. The state vari-
able f here serves as a parametric function, which defines P as a functional of n, u and
all their derivatives. Equation (4.4.24) is the familiar law of conservation of particles,
while equation (4.4.25) represents the law of momentum conservation. To give some
idea of possible forms for P and F, we list several examples of physical interest.
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(1) Gas dynamics. Here f stands for the thermodynamic pressure. For P and F, we
have

P = 1
m
(p − μux), F = P − Aργ , mn = ρ, (4.4.28)

where ρ is the density and μ is the viscosity coefficient.

(2) Shallow water wave. The number density n now stands for h, the elevation of
the water surface above the bottom of a channel. In this case the state is defined by
only two functions h, u, as

P = 1
2
gh2 − 1

3
h3(uxt + uuxx + u

2
x). (4.4.29)

(3) Hydromagnetic waves in cold plasma. Here f stands for the magnetic field
B(x, t) and we have

P = 1
2
B2, F ≡ B − n − (Bx/n)x = 0. (4.4.30)

(4) Ion-acousticwaves in cold plasma.Here f stands for the electrostatic potential,
ψ(x, t) denotes the wave function, and

P = eψ − 1
2
ψ2
x , F ≡ n − eψ + ψxx = 0. (4.4.31)

At equilibrium, all the derivatives in P and F are canceled out and we leave out the
dependence of P and F on u to preserve Galilean invariance of the system, i.e.,

P = P(f , n), F(f , n) = 0. (4.4.32)

Thus, equation (4.4.25) can be rewritten as

nut + nuux + Px = 0, Px =
𝜕P
𝜕f
𝜕f
𝜕x
+
𝜕P
𝜕n
𝜕n
𝜕x
,

via
𝜕F
𝜕f
𝜕f
𝜕x
+
𝜕F
𝜕n
𝜕n
𝜕x
= 0.

Eliminating 𝜕f𝜕x , we have

ut + uux +
a2

n
nx = 0, a2 ≡ [Pn −

Fn
Ff
Pf ].

If a2 > 0,

{{
{{
{

nt + (nu)x = 0,

ut + uux +
a2

n
nx = 0

(4.4.33)

are hyperbolic equations with two characteristic directions dx
dt = u ± a, where a is

defined as the velocity. In the limit of infinitesimal perturbations around a uniform
state, we obtain the wave equation with a constant speed of propagation,
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utt − a
2
0uxx = 0,

where a0 is the wave speed of the uniform state. We view the KdV and Burgers equa-
tions as designed to describe the slow change of one of these two waves due to both
nonlinear and dispersive (or dissipative) effects characterized by the dependence of P
and F on the derivatives. Now, we introduce two independent variables,

{
ξ = ϵα(x − a0t),

τ = ϵα+1t,
(4.4.34)

where ϵ denotes the amplitude of the initial disturbance and is assumed to be small
compared with unity. The exponent α > 0 is an undetermined number, while a0 de-
notes a certain constant velocity. By virtue of equation (4.4.34), we obtain the follow-
ing forms of equations (4.4.24) and (4.4.25):

ϵnτ + (u − a0)nξ + nuξ = 0, (4.4.35)

ϵuτ + (u − a0)uξ + n
−1Pξ = 0. (4.4.36)

We now assume that the state variables (n, f , u) can be represented asymptotically as
series in powers of ϵ about an equilibrium state A = (n, f , u) = (n0, f0,0), i.e.,

{{{
{{{
{

n = n0 + ϵn
(1) + ϵ2n(2) + ⋅ ⋅ ⋅ ,

f = f0 + ϵf
(1) + ϵ2f (2) + ⋅ ⋅ ⋅ ,

u = 0 + ϵu(1) + ϵ2u(2) + ⋅ ⋅ ⋅ .

Wesubstitute the above transformations andexpansions into theTaylor series ofP and
F around the equilibrium state A0. In the first order of approximation, all the deriva-
tives of the state variables with respect to x and t are dropped, so we have

P = P0 + Pf0 (f − f0) + Pn0 (n − n0) + Pu0 (u − u0) + O(ϵ
2),

F = F0 + Ff0 (f − f0) + Fn0 (n − n0) + Fu0 (u − u0) + O(ϵ
2).

Due to the Galilean invariance of the system, Pu0 = Fu0 = 0. From P(1) = Pf0 f
(1) +Pn0n

(1)

and Ff0
𝜕f (1)
𝜕ξ + Fn0

𝜕n(1)
𝜕ξ = 0, we deduce

𝜕P(1)

𝜕ξ
= Pf0
𝜕f (1)

𝜕ξ
+ Pn0
𝜕n(1)

𝜕ξ
= [Pn0 −

Fn0
Ff0

Pf0]
𝜕n(1)

𝜕ξ
= a20
𝜕n(1)

𝜕ξ
.

Within the second order of the above expansion, we obtain

P(2)ξ ≈ a
2
0n
(2)
ξ + A

(1)
n n(1)ξ + ϵ

α−1Bn(1)ξξ + ϵ
2α−1cn(1)ξξξ ,

where constants a20, A, B, and C are listed as follows:
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a0 A B C

Gas dynamics 2KT /m 0 −va0 0
Water waves gh0 0 0 1

3gh
3
0

Hydromagnetic B0 1 0 1
Ion-acoustic 1 0 0 1

Comparing the first order of ϵ in equations (4.4.35) and (4.4.36), we have

a0n
(1)
ξ = n0u

(1)
ξ , a0u

(1)
ξ =

a2

n0
n(1)ξ .

Integrating these above equations and noting the boundary condition for n(1) and u(l)

at ξ → ±∞, we get

a0n
(1) = n0u

(1).

In the second-order approximation of equations (4.4.35) and (4.4.36), we obtain

n(1)τ + u
(1)n(1)ξ + n0u

(2)
ξ + n

(1)u(1)ξ − a0n
(2)
ξ = 0,

i.e.,

n(1)τ + 2
a0
n0

n(1)n(1)ξ − a0n
(2)
ξ + n0u

(2)
ξ = 0.

Moreover,

a0
n0

n(1)τ +
A
n0

n(1)n(1)ξ + ϵ
α−1 B

n0
n(1)ξξ + ϵ

2α−1 C0
n0

n(1)ξξξ +
a20
n
n(2)ξ + u

(1)u(1)ξ − a0u
(2)
ξ = 0.

We now eliminate n(2)ξ and u(2)ξ and obtain the evolution equation for n(1), i.e.,

n(1)τ + (
A
2a0
+
3a0
2n0
)n(1)n(1)ξ + ϵ

α−1 B
2a0

n(1)ξξ + ϵ
2α−1 C

2a0
n(1)ξξξ = 0. (4.4.37)

If B ̸= 0 (for a dissipative system B < 0), we set α = 1 and C = 0. The resulting
equation of equation (4.4.37) is the Burgers equation. On the other hand, if B = 0 (for
a dissipative system) and α = 1

2 , we obtain the KdV equation

n(1)τ + (
A
2a0
+
3a0
2n0
)n(1)n(1)ξ +

C
2a0

n(1)ξξξ = 0.
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5 Hirota method

5.1 Introduction

The Hirota method [127], which obtains the special solution via certain transforma-
tions, is an important and direct method to derive the N-soliton solutions for certain
nonlinear evolution equations, apart from the inverse scattering transform and struc-
tural continuation methods. This method is not only applicable for the KdV, modified
KdV (MKdV), sine-Gordon, Toda lattice, and Boussinesq equations, but has also been
extended to a multitude of nonlinear evolution equations [118, 303]. The Bäcklund
transformation can also be obtained through the Hirota method [46, 302].

First, we take the KdV equation as an example to introduce the fundamental the-
ory of the Hirota method. The KdV equation takes the form of

ut + 6uux + uxxx = 0, (5.1.1)

which satisfies the boundary condition u = 0, |x| → ∞. We will solve equation (5.1.1)
via the perturbation method. Letting u = wx and integrating equation (5.1.1) with re-
spect to x, we get

wt + 3w
2
x + wxxx = 0. (5.1.2)

Here, the constant of integration is 0. Expanding w as the series of ϵ, we have

w = ϵw1 + ϵ
2w2 + ⋅ ⋅ ⋅ . (5.1.3)

Substituting equation (5.1.3) into (5.1.2) and collecting ϵ at the same order, we get the
following equations:

(
𝜕
𝜕t
+
𝜕3

𝜕x3
)w1 = 0, (5.1.4)

(
𝜕
𝜕t
+
𝜕3

𝜕x3
)w2 = −3(w1)

2
x , (5.1.5)

(
𝜕
𝜕t
+
𝜕3

𝜕x3
)w3 = −6(w1)x(w2)x , (5.1.6)

. . .

whose formal solution in the form of perturbation series will be obtained.We consider
the similar method of Padé approximation, since these series may converge slowly or
even diverge.

Substituting w = G/F into equation (5.1.2), we have

(GtF − GFt)/F
2 + 3(GxF − GFx)

2/F4

+ (GxxxF − 3GxxFx − 3GxFxx − GFxxx)/F
2

+ 6(FGxF
2
x + FGFxFxx − GF

3
x)/F

4 = 0. (5.1.7)

https://doi.org/10.1515/9783110549638-005
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Introducing a free parameter λ, we notice that the complicated expression (5.1.7) with
two unknown functions F and G can be rewritten as

[GtF − GFt + 3λ(GxF − GFx) + GxxxF − 3GxxFx + 3GxFxx − GFxxx]/F
2

+ 3(GxF − GFx)[GxF − GFx − 2(FFxx − F
2
x) − λF

2]/F4 = 0. (5.1.8)

Hereby, the following two equations are obtained:

GtF − GFt + 3λ(GxF − GFx) + GxxxF − 3GxxFx + 3GxFxx − GFxxx = 0, (5.1.9)
2(FFxx − F2x) + λF

2 − (GxF − GFx) = 0, (5.1.10)

which can also be expressed as

[
𝜕
𝜕t
−
𝜕
𝜕t󸀠 + 3λ( 𝜕𝜕x − 𝜕𝜕x󸀠) + ( 𝜕𝜕x − 𝜕𝜕x󸀠)3] ⋅ G(x, t)F(x󸀠, t󸀠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x=x󸀠 ,t=t󸀠 = 0 (5.1.11)

and

[(
𝜕
𝜕x
−
𝜕
𝜕x󸀠)2 + λ]F(x, t)F(x󸀠, t󸀠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x=x󸀠 ,t=t󸀠

− (
𝜕
𝜕x
−
𝜕
𝜕x󸀠)G(x, t)F(x󸀠, t󸀠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x=x󸀠 ,t=t󸀠 = 0, (5.1.12)

where Dx and Dt are the bilinear derivative operators defined by

Dn
t D

m
x f ⋅ g = (

𝜕
𝜕t
−
𝜕
𝜕t󸀠)n( 𝜕𝜕x − 𝜕𝜕x󸀠)mf (x, t)g(x󸀠, t󸀠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x󸀠=x,t󸀠=t . (5.1.13)

Thus, equations (5.1.11) and (5.1.12) can be transformed into

(Dt + 3λDx + D
3
x)G ⋅ F = 0, (5.1.14)

(D2
x + λ)F ⋅ F − DxG ⋅ F = 0. (5.1.15)

Through equation (5.1.15), we get

λ = (G/F)x − 2(log F)xx . (5.1.16)

Especially,

G = 2Fx (5.1.17)

will be obtained when λ = 0. Therefore, we have

u = (G/F)x = 2(log F)xx . (5.1.18)

Substituting G = 2Fx into equation (5.1.14), the following simplified D-forms can be
obtained:

(Dt + D
3
x)Fx ⋅ F = 0, (5.1.19)

or

Dx(Dt + D
3
x)F ⋅ F = 0. (5.1.20)
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5.2 Some properties of the D operator

Define Dz and the differential operator
𝜕𝜕z as

Dz = δDt + εDx ,
𝜕
𝜕z
= δ 𝜕
𝜕t
+ ε 𝜕
𝜕x
, (5.2.1)

where δ and ε are constants. The properties of the D operator can be shown as

(I) Dm
z a ⋅ 1 = (

𝜕
𝜕z
)
m
a,

(II) Dm
z a ⋅ b = (−1)

mDm
z b ⋅ a,

(II.1) Dm
z a ⋅ a = 0, m being odd,

(III) Dm
z a ⋅ b = D

m−1
z (az ⋅ b − a ⋅ bz),

(III.1) Dm
z a ⋅ a = 2D

m−1
z az ⋅ a, m being even,

(III.2) DxDta ⋅ a = 2Dxat ⋅ a = 2Dtax ⋅ a,
(IV) Dm

x exp(p1x) ⋅ exp(p2x) = (p1 − p2)
m exp[(p1 + p2)x].

Assuming that F(Dt ,Dx) is the polynomial of Dt and Dx, we have

(IV.1) F(Dt ,Dx) exp(Q1t + p1x) exp(Q2t + p2x)
= F(Q1 − Q2, p1 − p2)/F(Q1 + Q2, p1 + p2)
⋅ F(Dt ,Dx) exp[(Q1 + Q2)t + (p1 + p2)x],

(V) exp(ϵDx)a(x) ⋅ b(x) = a(x + ϵ)b(x − ϵ),
(VI) exp(ϵDz)ab ⋅ cd = [exp(ϵDz)a ⋅ c] ⋅ [exp(ϵDz)b ⋅ d]

= [exp(ϵDz)a ⋅ d] ⋅ [exp(ϵDz)b ⋅ c],

(VI.1) Dzab ⋅ c = (
𝜕a
𝜕z
)bc + a(Dzb ⋅ c),

(VI.2) D2
zab ⋅ c = (

𝜕2a
𝜕z2
)bc + 2(𝜕a

𝜕z
)Dzb ⋅ c + a(D

2
zb ⋅ c),

(VI.3) D3
zac ⋅ bc = (D

3
za ⋅ b)c

2 + 3(Dza ⋅ b)D
2
zb ⋅ c,

(VI.4) Dm
x exp(px)a ⋅ exp(px)b = exp(2px)Dm

x a ⋅ b,
(VII) exp(δDt)[exp(ϵDx)a ⋅ b] ⋅ [exp(ϵDx)c ⋅ d]

= exp(ϵDx)[exp(δDt)a ⋅ c] ⋅ [exp(δDt)b ⋅ d]
= [exp(δDt + ϵDx)a ⋅ d] ⋅ [exp(−δDt + ϵDx)c ⋅ b].

The following expressions will be useful during the transformation from nonlinear
differential equations to bilinear forms:
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(VIII) exp(ϵ 𝜕
𝜕z
)(a/b) = [exp(ϵDz)a ⋅ b]/[cosh(ϵDz)b ⋅ b],

(VIII.1) 𝜕
𝜕z
(a/b) = Dza ⋅ b

b2
,

(VIII.2) 𝜕
2

𝜕z2
(a/b) =

D2
za ⋅ b
b2
− (

a
b
)
D2
zb ⋅ b
b2
,

(VIII.3) 𝜕
3

𝜕z3
(a/b) =

D3
za ⋅ b
b2
− 3Dza ⋅ b

b2
D2
zb ⋅ b
b2
,

(IX) 2 cosh(ϵ 𝜕
𝜕z
) log f = log[cosh(ϵDz)f ⋅ f ],

(IX.1) 𝜕2

𝜕z2
log f =

D2
zf ⋅ f
2f 2
,

(IX.2) 𝜕4

𝜕z4
log f =

D4
z f ⋅ f
2f 2
− 6(

D2
zf ⋅ f
2f 2
)
2
.

Using the following expression, we transform the bilinear forms to the original non-
linear equations:

(X) exp(ϵDx)a ⋅ b = {exp[2 cosh(ϵ
𝜕
𝜕x
) log b]}[exp(ϵ 𝜕

𝜕x
)(a/b)].

Making ψ = a/b and u = 2(log b)xx, we have

(X.1) (Dxa ⋅ b)/b
2 = ψx ,

(X.2) (D2
xa ⋅ b)/b

2 = ψxx + uψ,

(X.3) (D3
xa ⋅ b)/b

2 = ψxxx + 3uψx ,

(X.4) (D4
xa ⋅ b)/b

2 = ψxxxx + 6uψxx + (uxx + 3u
2)ψ,

(XI) exp(ϵDx)a ⋅ b = exp[sinh(ϵ
𝜕
𝜕x
) log(a/b) + cosh(ϵ 𝜕

𝜕x
) ⋅ log(ab)].

Letting φ = log(a/b) and ρ = log(ab), we have

(XI.1) (Dxa ⋅ b)/ab = φx ,

(XI.2) (D2
xa ⋅ b)/ab = ρxx + φ

2
x ,

(XI.3) (D3
xa ⋅ b)/ab = φxxx + 3φxρxx + φ

3
x ,

(XI.4) (D4
xa ⋅ b)/ab = ρxxxx + 4φxφxxx + 3(ρxx)

2 + 6φ2
xρxx + φ

4
x .

We take the verification of expression (X) as an example, since all the above properties
can easily be verified. We have

2 cosh(ϵ 𝜕
𝜕x
) log b = log b(x + ϵ) + log b(x − ϵ),

exp(ϵ 𝜕
𝜕x
)(a/b) = a(x + ϵ)/b(x + ϵ).
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From expression (V), we deduce

exp(ϵDx)a ⋅ b = a(x + ϵ)b(x − ϵ).

Therefore,

exp(ϵDx)a ⋅ b = exp[2 cosh(ϵ
𝜕
𝜕x
) log b] ⋅ [exp(ϵ 𝜕

𝜕x
)(a/b)],

which is exactly expression (X). Expanding expression (X) as the power series ϵ and
truncating at the same power, expressions (X.1)–(X.4) are obtained.

5.3 Solution of the bilinear differential equation

In order to solve equation (5.1.20), we expand F as the power series of ϵ, to obtain

F = 1 + ϵf1 + ϵ
2f2 + ⋅ ⋅ ⋅ . (5.3.1)

Substituting the above expression into equation (5.1.20) and collecting the same order
of ϵ, we get

2 𝜕
𝜕x
(
𝜕
𝜕t
+
𝜕3

𝜕x3
)f1 = 0, (5.3.2)

2 𝜕
𝜕x
(
𝜕
𝜕t
+
𝜕3

𝜕x3
)f2 = −Dx(Dt + D

3
x)f1 ⋅ f1, (5.3.3)

2 𝜕
𝜕x
(
𝜕
𝜕t
+
𝜕3

𝜕x3
)f3 = −Dx(Dt + D

3
x)(f2 ⋅ f1 + f1 ⋅ f2), (5.3.4)

. . . .

Next, we focus on two kinds of solutions: (I) polynomial solutions and (II) exponential
solutions.

As regards case (I), we find the following solution for expression (5.3.2):

f1 = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + bt − 24a4tx. (5.3.5)

We choose f2 = 0 when a4 = 0, 3a1a3 = a22, and b = 12a3. Therefore, the explicit
solution for equation (5.1.20) writes

F = 1 + ϵ[a0 + a1x + (3a1a3)
1/2x2 + a3(x3 + 12t)]. (5.3.6)

Under the boundary condition of u|x=0 = 0, a1 = 0. Without loss of generality, choos-
ing ϵ = 1, we obtain

F = a3[x
3 + 12(t + constant)] (5.3.7)

and

u = 2(log F)xx = −6x(x
3 − 24t)/(x3 + 12t)2. (5.3.8)
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As regards case (II), we solve expression (5.3.2) as

f1 =
N
∑
j=1 aj exp(Ωjt + pjx). (5.3.9)

Here,Ωj+p3j = 0where pj and aj are constants. Substituting equation (5.3.9) into (5.3.3)
and by virtue of (IV) and (IV.1), we obtain

f2 =
N
∑
i>j exp(Aij + ηi + ηj), (5.3.10)

where exp(ηj) = aj exp(Ωjt + pjx) and

exp(Aij) = −
(pi − pj)[Ωi −Ωj + (pi − pj)3]
(pi + pj)[Ωi +Ωj + (pi + pj)3]

= (pi − pj)
2/(pi + pj)

2. (5.3.11)

Substituting equation (5.3.10) into (5.3.4), we get f3 via (VI.4) and equation (5.3.2), so
we have

f3 =
N
∑
i>j>k exp(Aijk + ηi + ηj + ηk), (5.3.12)

with

exp(Aijk) = exp(Aij + Aik + Ajk). (5.3.13)

Following similar procedures, we get fN and the explicit solution of F as follows:

F = ∑
μ=0,1 exp( N

∑
i>j Aijμiμj +∑j μjηj), (5.3.14)

where ∑μ=0,1 denotes the summation over all possible combinations of μ1 = 0, 1, μ2 =
0, 1, . . . , μN = 0, 1. ∑Ni>j means the summation over all possible combinations taken
from the N-elements. The parameter ϵ has been included in ai. Equation (5.3.14) and
u = 2(log F)xx give the N-soliton solutions for the KdV equation.

5.4 Application to the sine-Gordon equation, MKdV Equation

Firstly, we take the sine-Gordon equation

φxx − φtt = sinφ, (5.4.1)
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with the condition 𝜕φ𝜕x → 0 (|x|→∞), into account. We set

φ(x, t) = 4 tan−1[g(x, t)/f (x, t)], (5.4.2)

where

f (x, t) =
[N/2]
∑
n=0 ∑Ncn

a(i1, i2, . . . , i2n) ⋅ exp(ηi1 + ηi2 + ⋅ ⋅ ⋅ + ηi2n ), (5.4.3)

g(x, t) =
[(N−1)/2]
∑
m=0 ∑

Nc2m+1 a(j1, j2, . . . , j2m+1) ⋅ exp(ηj1 + ηj2 + ⋅ ⋅ ⋅ + ηj2m+1 ), (5.4.4)

a(i1, i2, . . . , i2n) : {
∏(n)k<l a(ik , il), n ≥ 2,
1, n = 0, 1,

a(ik , il) =
(pik − pil)2 − (Ωik −Ωil)2

(pik + pil)2 − (Ωik +Ωil)2

= −
(pik − pil +Ωik −Ωil)2

(pik − pil +Ωik +Ωil)2
,

ηi = pix −Ωit − η
0
i , p2i −Ω

2
i = 1,

wherepi andη0i arebothfinite arbitrary real constants,whichdetermine the amplitude
and phase of the ith soliton, respectively. For example, in the case where N = 3, the
solution is written as

f (x, t) = 1 + a(1, 2) exp(η1 + η2) + a(1, 3) exp(η1 + η3) + a(2, 3) exp(η2 + η3),
g(x, t) = exp(η1) + exp(η2) + exp(η3) + a(1, 2, 3) exp(η1 + η2 + η3),
a(1, 2, 3) = a(1, 2)a(1, 3)a(2, 3),
ηi = pix −Ωit, p2i −Ω

2
i = 1,

where η1 remains finite as t → ∞. When Ω3/p3 > Ω2/p2 > Ω1/p1 > 0, pi > 0, and
g(x, t)/f (x, t) = exp(η1), the soliton solution will be obtained as follows:

i(x, t) = −𝜕φ
𝜕x
= −2p1 sech(η1).

In the following part, we will show a brief proof that solutions (5.4.2), (5.4.3), and
(5.4.4) solve equation (5.4.1). Substituting solution (5.4.2) into equation (5.4.1), we have

fgxx − 2fxgx + fxxg − (fgtt − 2ftgt + fttg) = fg, (5.4.5)
fxxf − 2f

2
x + ffxx − (fttf − 2f

2
t + fftt)

= gxxg − 2g
2
x − (gttg − 2g

2
t + ggtt). (5.4.6)

As the next step, consider solutions (5.4.3) and (5.4.4). Then the above expressions can
be rewritten as
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n
∑
l=0∑nc l a(i1, i2, . . . , il)a(il+1, il+2, . . . , in)
⋅ h1(i1, i2, . . . , il; il+1, il+2, . . . , in) = 0, for n = 1, 3, 5, . . . ,≤ N , (5.4.7)

n
∑
l=0∑nc l(−1)la(i1, i2, . . . , il)a(il+1, il+2, . . . , in)
⋅ h2(i1, i2, . . . , il; il+1, il+2, . . . , in) = 0, for n = 2, 4, 6, . . . ,≤ N , (5.4.8)

with

h(i1, i2, . . . , il; il+1, il+2, . . . , in)
= (pi1 + pi2 + ⋅ ⋅ ⋅ + pil − pil+1 − pil+2 − ⋅ ⋅ ⋅ − pin )2
− (Ωi1 +Ωi2 + ⋅ ⋅ ⋅ +Ωil −Ωil+1 −Ωil+2 − ⋅ ⋅ ⋅ −Ωin )2.

For certain n, the following identities are formed from expressions (5.4.7) and (5.4.8):

∑
σ1 ,σ2 ,...,σn=±1(

n
∏
i=1 σi)b̂(σ1x1, σ2x2, . . . , σnxn)

⋅ ĥ1(σ1x1, σ2x2, . . . , σnxn) = 0, if n is odd, (5.4.9)

∑
σ1 ,σ2 ,...,σn=±1(

n
∏
i=1 σi)b̂(σ1x1, σ2x2, . . . , σnxn)

⋅ ĥ2(σ1x1, σ2x2, . . . , σnxn) = 0, if n is even, (5.4.10)

with

b̂(σ1x1, σ2x2, . . . , σnxn) =
(n)
∏
k<l(σkxk − σlxl)2,

ĥ1(σ1x1, σ2x2, . . . , σnxn) = (
n
∏
i=1 σixi)( n

∑
i=1 n
∏
l=1,l ̸=i
󸀠
σlxl) −

n
∏
i=1 σixi,

ĥ2(σ1x1, σ2x2, . . . , σnxn) = (
n
∑
i=1 σixi)( n

∑
i=1 n
∏
l=1,l ̸=i
󸀠
σlxl),

xi = pi +Ωi.

In fact, denoting the left side of equation (5.4.9) as D1(x1, x2, . . . , xn), we see it has the
following two properties:
(i) D1 is a symmetrical homogeneous polynomial,
(ii)

D1(x1, . . . , xn)x1=±x2 = 8x41 n
∏
i=3(x21 − x2i )2D(x3, x4, . . . , xn),

at x1 = ±x2.
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It is easy to see that equation (5.4.9) is satisfied at n = 1. Assuming that equation (5.4.9)
is satisfied at n − 2, via (i) and (ii), we find that D1 is the 2n(n − 1)th-order symmetrical
homogeneous polynomial (n)

∏
k<l(x2k − x2l )2.

On the other hand, we conclude that D1 = 0 for certain n, since it is straightforward to
find that D1 is the polynomial of the n2th order. Similarly, we find D2 = 0.

Secondly, we consider the following MKdV equation:

vt + 24v
2vx + vxxx = 0, (5.4.11)

v(x, t) = 𝜕φ
𝜕x
, (5.4.12)

tanφ(x, t) = g(x, t)/f (x, t), (5.4.13)

with

f (x, t) =
[N/2]
∑
n=0 ∑Ncn

a(i1, i2, i3, . . . , i2n) exp(ξi1 + ξi2 + ⋅ ⋅ ⋅ + ξi2n ), (5.4.14)

g(x, t) =
[(N−1)/2]
∑
n=0 ∑

Nc2m+1 a(i1, i2, . . . , i2m+1) exp(ξi1 + ξi2 + ⋅ ⋅ ⋅ + ξi2m+1 ), (5.4.15)

a(i1, i2, . . . , in) = {
∏(n)k<l a(ik , il), n ≥ 2,
1, n = 0, 1,

a(ik , il) = −
(pik − pil)2

(pik + pil)2
, ξi = pix −Ωit − ξ

0
i , Ωi = p

3
i .

When N = 3,

f (x, t) = 1 + a(1, 2) exp(ξ1 + ξ2) + a(1, 3) exp(ξ1 + ξ3) + a(2, 3) exp(ξ2 + ξ3),
g(x, t) = exp(ξ1) + exp(ξ2) + exp(ξ3) + a(1, 2, 3) exp(ξ1 + ξ2 + ξ3),
a(1, 2, 3) = a(1, 2)a(1, 3)a(2, 3), ξi = pix − p

3
i t.

When t →∞, the soliton solution reads

v(x, t) = p1/2 sech ξ1,

with

g/f = exp(ξ1), p3 > p2 > p1 > 0,
gtf − gft + gxxxf − 3gxxfx + 3gxfxx − gfxxxx = 0, (5.4.16)
ffxx − 2f

2
x + fxxf + ggxx − 2g

2
x + gxxg = 0. (5.4.17)
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The above two expressions can be written in the following forms:

[(
𝜕
𝜕t
−
𝜕
𝜕t󸀠) − ( 𝜕𝜕x − 𝜕𝜕x󸀠)3]g(x, t)f (x󸀠, t󸀠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨t󸀠=t,x󸀠=x = 0, (5.4.18)

(
𝜕
𝜕t
−
𝜕
𝜕x󸀠)2[f (x, t)f (x󸀠, t󸀠) + g(x, t)g(x󸀠, t󸀠)]󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨t󸀠=t,x󸀠=x = 0. (5.4.19)

Reconsidering equations (5.4.14) and (5.4.15), we rewrite equations (5.4.16) and (5.4.17)
as

n
∑
l=0∑nc l â(i1, i2, . . . , il)â(il+1, il+2, . . . , in)
⋅ h1(i1, i2, . . . , il; il+1, . . . , in) = 0, n = 1, 3, 5, . . . ≤ N , (5.4.20)

n
∑
l=0∑nc l(−1)lâ(i1, i2, . . . , il)â(il+1, il+2, . . . , in)
⋅ h2(i1, i2, . . . , il; il+1, . . . , in) = 0, n = 2, 4, 6, . . . ≤ N , (5.4.21)

â(i1, i2, . . . , in) = {
∏(n)k<l â(ik , il), n ≥ 2,
1, n = 0, 1,

â(ik , il) =
(pik − pil)2

(pik + pil)2
,

h1(i1, i2, . . . , il; il+1, . . . , in)
= −(p3i1 + p

3
i2 + ⋅ ⋅ ⋅ + p

3
il − p

3
il+1 − ⋅ ⋅ ⋅ − p3in)

+ (pi1 + pi2 + ⋅ ⋅ ⋅ + pil − pil+1 − ⋅ ⋅ ⋅ − pin )3,
h2(i1, i2, . . . , il; il+1, . . . , in)
= (pi1 + pi2 + ⋅ ⋅ ⋅ + pil − pil+1 − ⋅ ⋅ ⋅ − pin )2.

Furthermore, we get

∑
σ1 ,σ2 ,...,σn=±1 b̂(σ1p1, σ2p2, . . . , σnpn)
⋅ h1(σ1p1, σ2p2, . . . , σnpn) = 0, if n is odd, (5.4.22)

∑
σ1 ,σ2 ,...,σn=±1(

n
∏
i=1 σi)b̂(σ1p1, σ2p2, . . . , σnpn)

⋅ h2(σ1p1, σ2p2, . . . , σnpn) = 0, if n is even, (5.4.23)

b̂(σ1p1, σ2p2, . . . , σnpn) =
(n)
∏
k<l(σkpk − σlpl)2,

h1(σ1p1, . . . , σnpn) = −(σ1p
3
1 + σ

3
np

3
n)(σ1p1 + σ2p2 + ⋅ ⋅ ⋅ + σnpn)

3,

h2(σ1p1, . . . , σnpn) = (σ1p1 + σ2p2 + ⋅ ⋅ ⋅ + σnpn)
2.

 EBSCOhost - printed on 2/10/2023 3:23 PM via . All use subject to https://www.ebsco.com/terms-of-use



5.4 Application to the sine-Gordon equation, MKdV Equation | 137

Denoting the left side of equation (5.4.22) as D1(p1, p2, . . . , pn), we see it has the
following three properties:
(i) D1 is a symmetrical homogeneous polynomial,
(ii) D1 is the even function of p1, p2, . . . , pn,
(iii)

D1(p1, . . . , pn) = 2(2p1)
2

n
∏
m=2(p21 − p2m)2D(p3, p4, . . . , pn),

if p1 = p2.

It is easy to see that equation (5.4.22) is satisfied at n = 1. Assuming that equa-
tion (5.4.22) is satisfied at n − 2, we find that D1 is the 2n(n − 1)th-order symmetrical
homogeneous polynomial. On the other hand, it can be seen thatD1 is the polynomial
of the n(n − 1) + 3th order. Thus, we conclude that D1 = 0 for certain n. In a similar
way, we can prove equation (5.4.23).

Thirdly, we consider the nonlinear lattice equation

md2rn
dt2
= a[e−brn − e−brn+1], n = 1, 2, (5.4.24)

where rn = yn − yn−1 and a and b are constants. Via the transformation

ab
m
(e−brn − 1) = (log fn)t , (5.4.25)

Hirota obtained the following N-soliton solution for equation (5.4.24):

fn(t) = ∑
μ=0,1 exp[ N∑i<j Bijμiμj + N

∑
i=1 μixi], (5.4.26)

where

xi = βit − kin + γi, ki, γi being constants,

βi = ±(
ab
m
)
1/2
2 sin ki

2
,

eBij =
m
ab (βi − βj)

2 − 4 sinh2 ki+kj
2

m
ab (βi + βj)

2 − 4 sinh2 ki+kj
2

,

where ∑μ=0,1 denotes the summation over all possible combinations of μ1 = 0, 1, μ2 =
0, 1, . . . , μN = 0, 1.

Fourthly, we take the nonlinear electric filter equations

d2

dt2
log(1 + Vn(t)) = Vn+1(t) − 2Vn(t) + Vn−1(t) (5.4.27)
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and

dVn
dt
= (1 + V2

n)(In − In−1),
dIn
dt
= (1 + I2n)(Vn−1 − Vn) (5.4.28)

into account. N-soliton solutions for equation (5.4.27) have been obtained under the
transformation

Vn = [tan
−1 gn/fn]t (5.4.29)

and fn, gn are in the forms of

fn(t) =
(l)
∑
μ=0,1 exp[ N∑i<j Bijμiμj + N

∑
i=1 μixi],

gn(t) =
(e)
∑
μ=0,1 exp[ N∑i<j Bijμiμj + N

∑
i=1 μixi],

where

αi = βit − kin + γi,

βi = ±2 sin
ki
2
,

eBij = −
(βi − βj)2 − 4 sinh

2 ki−kj
2

(βi + βj)2 − 4 sinh
2 ki+kj

2

,

where∑(l)μ=0,1 and∑(e)μ=0,1 denote the summation over all possible combinations of μ1 =
0, 1, μ2 = 0, 1, . . . , μN = 0, 1. Particularly, we require that

N(l)
∑
i=1 μi = even integer, N(e)

∑
i=1 μi = odd integer.

Fifthly, as for the Hirota equation

iφt + 3iα|φ|
2φx + ρφxx + iσφxxx + δ|φ|

2φ = 0, (5.4.30)

the N-envelop soliton solutions can be expressed as

φ = g/f ,

f (x, t) = ∑
μ=0,1󸀠 exp[2N∑i<j Bijμiμj + 2N∑i=1 μixi],

g(x, t) = ∑
μ=0,1󸀠󸀠 exp[2N∑i<j Bijμiμj + 2N∑i=1 μixi],
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g∗(x, t) = ∑
μ=0,1󸀠󸀠󸀠 exp[2N∑i<j Bijμiμj + 2N∑i=1 μixi],

xj = kjx − βjt + γj, kj, γj all being constants,
βj = −iρk

2
j + σk

3
j , j = 1, 2, . . . , 2N , i = √−1,

kj+N = k∗j , βj+N = β∗j , j = 1, 2, . . . , 2N .

Here,

Bij = log[
α
2σ
(ki + kj)

2], for i = 1, 2, . . . ,N ; j = N + 1,N + 2, . . . , 2N

or i = N + 1,N + 2, . . . , 2N ; j = 1, 2, . . . ,N ,

Bij = − log[
α
2σ
(ki − kj)

2], for i = 1, 2, . . . ,N ; j = 1, 2, . . . ,N

or i = N + 1,N + 2, . . . , 2N ; j = N + 1,N + 2, . . . , 2N ,

where ∑μ=0,1 denotes the summation over all possible combinations of μ1 = 0, 1, μ2 =
0, 1, . . . , μ2N = 0, 1. The sums ∑󸀠μ=0,1,∑󸀠󸀠μ=0,1, and∑󸀠󸀠󸀠μ=0,1 satisfy
∑
μ=0,1󸀠μi = ∑μ=0,1󸀠μi+N , ∑μ=0,1󸀠󸀠μi = 1 + ∑μ=0,1󸀠󸀠μi+N , 1 + ∑

μ=0,1󸀠󸀠󸀠μi = ∑μ=0,1󸀠󸀠󸀠μi+N .
5.5 Bilinear Bäcklund transformation

As we know, we can obtain the bilinear forms for some nonlinear evolution equations
through the Hirota method. We consider the bilinear differential equation

F(Dt ,Dx)f ⋅ f = 0 (5.5.1)

and construct a new differential equation

[F(Dt ,Dx)f
󸀠 ⋅ f 󸀠]ff − f 󸀠f 󸀠[F(Dt ,Dx)f ⋅ f ] = 0. (5.5.2)

Obviously, if f satisfies equation (5.5.1), we deduce that f 󸀠 is another solution for
equation (5.5.1), corresponding to equation (5.5.2). Therefore, equation (5.5.2) gives
the Bäcklund transformation of f 󸀠 and f for equation (5.5.1). The following exchange
formulas should be mentioned and used:

(1) exp(D1)[exp(D2)a ⋅ b] ⋅ [exp(D3)c ⋅ d]

= exp
D2 − D3

2
[exp(

D2 + D3
2
+ D1)a ⋅ d] ⋅ [exp(

D2 + D3
2
− D1)c ⋅ b],

where Di = ϵiDx + δiDt, ϵi and δi are constants, and i = 1, 2, 3,

(2) (D2
xa ⋅ b)cd − ab(D

2
xc ⋅ d) = Dx[(Dxa ⋅ d)cb + ad(Dxc ⋅ b)],
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(3) (DxDtf
󸀠 ⋅ f 󸀠)ff − f 󸀠f 󸀠(D2

xf ⋅ f ) = 2Dx(Dtf
󸀠 ⋅ f ) ⋅ ff 󸀠,

(4) (D2
xf
󸀠 ⋅ f 󸀠)ff − f 󸀠f 󸀠(D2

xf ⋅ f ) = 2Dx(Dxf
󸀠 ⋅ f ) ⋅ ff 󸀠,

(5) (D4
x f
󸀠 ⋅ f 󸀠)ff − f 󸀠f 󸀠(D4

x f ⋅ f ) = 2Dx(D
3
xf
󸀠 ⋅ f ) ⋅ ff 󸀠 + 6Dx(D

2
xf
󸀠 ⋅ f ) ⋅ Dx(f ⋅ f

󸀠).
We take the KdV equation as an example, whose bilinear form is given by

Dx(Dt + c0Dx + D
3
x)f ⋅ f = 0, (5.5.3)

where c0 is a constant. Assuming that f is a solution for equation (5.5.3), f 󸀠 is another
one. f and f 󸀠 satisfy

[Dx(Dt + c0Dx + D
3
x)f
󸀠 ⋅ f ]ff − f 󸀠f 󸀠[Dx(Dt + c0Dx + D

3
x)f ⋅ f ] = 0. (5.5.4)

By virtue of exchange formulas (2)–(5), equation (5.5.4) becomes

2Dx{[Dt + (c0 + 3λ)Dx + D
3
x]f
󸀠 ⋅ f } ⋅ ff 󸀠

+ 6Dx[(D
2
x − μDx − λ)f

󸀠 ⋅ f ](Dxf ⋅ f
󸀠) = 0, (5.5.5)

where λ and μ are arbitrary constants. Supposing that f is a solution for equa-
tion (5.5.3), f 󸀠 is another solution for equation (5.5.3) in the case where

[Dt + (c0 + 3λ)Dx + D
3
x]f
󸀠 ⋅ f = 0, (5.5.6)

(D2
x − μDx − λ)f

󸀠 ⋅ f = 0, (5.5.7)

which are exactly the Bäcklund transformations for equation (5.5.3). Similarly, we can
obtain the Bäcklund transformation for the following nonlinear equations:
(I) Boussinesq equation. We have

(D2
t − D

2
x − D

4
x)f ⋅ f = 0, (5.5.8)

whose BTs read as

{
(Dt + aD

2
x)f
󸀠 ⋅ f = 0,

(aDtDx + Dx + D
3
x)f
󸀠 ⋅ f = 0, (5.5.9)

where a2 = −3.
(II) Kadomtsev–Petviashvili equation. We have

(DtDx + D
2
y + D

4
x)f ⋅ f = 0, (5.5.10)

whose BTs read as

{
(Dy + aD

2
x)f
󸀠 ⋅ f = 0,

(−aDyDx + Dt + D
3
x)f
󸀠 ⋅ f = 0, (5.5.11)

where a2 = 3.
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(III)Higher-order KdV equation. We have

Dx(Dt + D
5
x)f ⋅ f = 0, (5.5.12)

whose BTs read as

{{
{{
{

D3
xf
󸀠 ⋅ f = λf 󸀠 ⋅ f ,
[Dt −

15
2
λD2

x −
3
2
D5
x]f
󸀠 ⋅ f = 0. (5.5.13)

(IV)Shallow water wave equation. We have

Dx(Dt − DtD
2
x + Dx)f ⋅ f = 0, (5.5.14)

whose BTs read as

{
(D3

x − Dx)f
󸀠 ⋅ f = λf 󸀠 ⋅ f ,

(3DxDt − 1)f
󸀠 ⋅ f = μDxf

󸀠 ⋅ f . (5.5.15)
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6 Bäcklund transformations and the infinitely many
conservation laws

Bäcklund transformations were first discovered for the famous sine-Gordon equation
at the end of the 19th century. They are usually treated as nonlinear superpositions to
create a new solution from a known one.

6.1 Sine-Gordon equation and Bäcklund transformation

We consider the nonlinear Klein–Gordon equation

φtt − φxx + F
󸀠(φ) = 0. (6.1.1)

If F󸀠(φ) = φ, it is called Klein-Gordon equation; if F󸀠(φ) = sinφ, it will be the sine-
Gordon equation

φtt − φxx + sinφ = 0. (6.1.2)

In the case where sinφ∼φ, the above two equations are equivalent. When sinφ∼φ −
1
3!φ3, i.e., F(φ) = 1

2φ
2 − 1

24φ
4, we have the following φ4-field equation:

φtt − φxx + φ −
1
3!
φ3 = 0. (6.1.3)

When we choose F󸀠(φ) = sinφ + λ sin 2φ, equation (6.1.1) becomes

φtt − φxx + sinφ + λ sin 2φ = 0, (6.1.4)

which is called a double sine-Gordon equation.
Passing to the light cone coordinate,

ξ = x − t
2
, η = x + t

2
,

equation (6.1.2) transforms into

φξη = sinφ. (6.1.5)

The sine-Gordon equation was first derived in the course of investigation of surface
geometry with constant Gaussian curvature K = −1. Many physical problems can be
reduced to equations of this type, such as the propagation of vortices in Josephson
junctions. In studies of general superconducting junctions, Josephson found that the
current flow through a superconducting junction satisfies

J = J0 sinφ,
dφ
dt
=
2e
ℏ
v,

where v denotes the voltage and φ = φ1 − φ2 is the phase offset between two super-
conducting wave functions. φ satisfies the next sine-Gordon equation

https://doi.org/10.1515/9783110549638-006
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φxx + φyy − LCφtt =
2eLJ0
ℏ

sinφ,

where L,C, e, J0, ℏ are all the physical constants. Other related physical problems in-
clude crystal dislocations, wave propagation produced in the direction of magnetiza-
tion in ferromagnetic material, etc.

It is easy to find the travelingwave solutions for equation (6.1.2). Settingφ = Φ(ξ ),
ξ = x − Dt, and D = constant > 0, equation (6.1.2) converts to

(D2 − 1)Φξξ + sinΦ = 0. (6.1.6)

MultiplyingΦξ and integrating, we obtain

1
2
(D2 − 1)Φ2ξ + 2 sin

2 1
2
Φ = A, (6.1.7)

where A is the integral constant. The soliton and periodic wave solutions for equa-
tion (6.1.2) are obtained from equation (6.1.7). If we take A = 0, D2 − 1 < 0, we have

tgΦ/4 = ± exp{±(1 − D2)
− 12 (ξ − ξ0)},

or

Φ = 4tg−1 ± {±(1 − D2)
− 12 (x − Dt)}, for ξ0 = 0, (6.1.8)

which is the soliton solution for equation (6.1.2). Periodic wave solutions for equa-
tion (6.1.2) can be expressed in detail as follows:
(1) Theperiodicwave solutionwill be obtainedwhen0 < A < 2,D2−1 > 0,Φoscillates

aboutΦ = 0 in the interval −Φ0 < Φ < Φ0, andΦ0 = 2 sin−1(A2 ) 12 .
(2) The periodic wave solution will also be obtained when 0 < A < 2, D2 − 1 < 0, and
Φ oscillates aboutΦ = π in the interval π −Φ0 < Φ < π +Φ0.

(3) The helicon wave solution will be obtained when A < 0 and D2 − 1 < 0, as

Φξ = ±{
2

1 − D2(|A| + 2 sin
2 Φ
2
)}

1
2

.

(4) The helicon wave solution when A > 2 and D2 − 1 > 0 will be expressed as

Φξ = ±{
2

D2 − 1
(A − 2 sin2 Φ

2
)}

1
2

.

(5) The kink solution will be obtained when A = 2 and D2 − 1 > 0, as

tan(Φ + π
4
) = exp{±(D2 − 1)− 12 (ξ − ξ0)},

where −π < Φ < π.

Lamb solved the soliton solutions for the sine-Gordon equation via Bäcklund transfor-
mation. As for equation (6.1.5), we introduce the following Bäcklund transformation:
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{{{{
{{{{
{

𝜕φ󸀠
𝜕ξ
=
𝜕φ
𝜕ξ
+ 2λ sin(φ + φ

󸀠
2
),

𝜕φ󸀠
𝜕η
= −
𝜕φ
𝜕η
+
2
λ
sin(φ

󸀠 − φ
2
),

(6.1.9)

where λ is an arbitrary parameter. From equation (6.1.9), considering the derivative of
the first equation with respect to η, the derivative of the second equation with respect
to ξ , and the original equation φξη = sinφ, we deduce the new equation φ󸀠ξη = sinφ󸀠,
which has the exact same form as the original. Choosing φ = 0 as the seed solution,
another solution φ1 can be expressed as

φ1 = 4tg
−1[exp(± x − Dt

√1 − D2
)], D = 1 − λ

2

1 + λ2
. (6.1.10)

φ1 is a soliton solution for the sine-Gordon equation.
Generally speaking, for the sine-Gordon equation, Bäcklund transformation is a

method structuring a new solution froma known one. In otherwords, Bäcklund trans-
formation is a transformation between N-soliton and N + 1-soliton solutions. In ad-
dition, with the so-called “commutation principle”, we can get a new solution from
several existing solutions based on algebraic manipulation, while the integration of
equation (6.1.9) is not essential. That is what the principle says: “Based on the initial
solution φ0 for equation (6.1.5), we will get the same φ2, no matter the orders of equa-
tion (6.1.9) with respect to λ1 and λ2.” From the above analysis, we get the following
nonlinear superposition formulas:

tg(
φ3 − φ0

4
) =

D1 + D2
D1 − D2

tg(φ1 − φ2
4
). (6.1.11)

If φ0 = 0, φ1 and φ2 take the forms of equation (6.1.10). Inserting them into equa-
tion (6.1.11), the following Perring–Skyrme solution for equation (6.1.5) will be ob-
tained:

tgφ/4 = sh(x/√1 − D2)

ch(Dt/√1 − D2)
, (6.1.12)

which can be seen as the following superposition of two kink solutions:

tgφ/4 = sh(Dt/
√1 − D2)

Dch(x/√1 − D2)
, (6.1.13)

which can be seen as the interaction between kink and anti-kink solutions. If we take
D = ib in equation (6.1.13), another soliton solution for equation (6.1.5) will be shown
as

tgφ/4 = sin(bt/
√1 + b2)

ch(x/√1 + b2)
, (6.1.14)

whose evolution state displays the periodic attraction and repulsion betweenkink and
anti-kink solutions, named “breather”.
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Figure 6.1: The relationships between solutions φk,j and φk+1,j+1.
Now we generalize the procedure of finding soliton solutions for the sine-Gordon

equation via Bäcklund transformation. We assume that the special solutions φ1,
φ2, . . . ,φk for equation (6.1.5) will be obtained from the following Bäcklund transfor-
mations:

{{{
{{{
{

1
2
(φj,x − φj−1,x) = aj sin 1

2
(φj + φj−1),

1
2
(φj,t − φj−1,t) = − 1aj sin 1

2
(φj − φj−1), (6.1.15)

where φ0 = 0. Under suitable initial conditions, solutions for equation (6.1.5) can be
related by two parameters ak and aj as follows:

{{{{
{{{{
{

φk,j+1 = Bajφkj ,

φk+1,j = Bakφkj ,

φk+1,j+1 = BajBakφkj = Bak ⋅ Bajφkj ,

(6.1.16)

where Baj is the Bäcklund transformation for aj. The relationship between the solu-
tions can be found in Figure 6.1.

N-soliton solutions for the sine-Gordon equation can be expressed as follows:
(i) if j > 0, then φj+1,j = 0 and

φj,j = 4tg−1[e−kjx+ 1
kj
t+γjj ], γjj is constant, (−1)

j/kj < 0; (6.1.17)

(ii) if j > l, then

φl,j = φl+1,j−1 + 4tg−1[ 1
kj
− 1

kl
1
kj
+ 1

kl

]tg(
φl,j−1 − φl+1,j

4
), (6.1.18)

(−1)l 1
kl
< (−1)j 1

kj
.

We note that, in order to derive the N-soliton solutions through Bäcklund transforma-
tion, it is essential to know all the lower-order soliton solutions, which can be found
in Figure 6.2.
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Figure 6.2: Lamb profile for N-solitons. The numbers in brackets stand for the numbers of solitons.

6.2 Bäcklund transformations for a class of nonlinear evolution
equations

We presented the Bäcklund transformation for the sine-Gordon equation in the last
section. In fact, a lot of nonlinear evolution equations have corresponding Bäcklund
transformations. The transformation z(x, y)→ z󸀠(x󸀠, y󸀠) satisfies

{
P = f (x󸀠, y󸀠, z󸀠, p󸀠, q󸀠),
q = g(x󸀠, y󸀠, z󸀠, p󸀠, q󸀠), (6.2.1)

where p = 𝜕z𝜕x , q = 𝜕z𝜕y , p󸀠 = 𝜕z󸀠𝜕x󸀠 , and q󸀠 = 𝜕z󸀠𝜕y󸀠 . In a similar way, we denote r = 𝜕2z𝜕x2 ,
s = 𝜕2z𝜕x𝜕y , t = 𝜕2z𝜕y2 , r󸀠 = 𝜕2z󸀠𝜕x󸀠2 , s󸀠 = 𝜕2z󸀠𝜕x󸀠𝜕y󸀠 , and t󸀠 = 𝜕2z󸀠𝜕y󸀠2 . Setting x = x󸀠 and y = y󸀠,
considering the integrable condition dp

dy =
dq
dx of z, we have

Ω = fy󸀠 − qx󸀠 + fz󸀠q
󸀠 − qz󸀠p󸀠 + (fp󸀠 − gq󸀠 ) + fq󸀠 t󸀠 + gp󸀠r󸀠 = 0. (6.2.2)

For equation (6.2.2), two cases exist: (1) the equation is identical to zero, i.e.,

fp󸀠 − gq󸀠 = fq󸀠 = gp󸀠 = 0,
fy󸀠 − qx󸀠 + fz󸀠q

󸀠 − qz󸀠p󸀠 = 0,
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or (2)Ω = 0 gives the second-order Monge–Ampère equation. The former case results
from contact transformation, while the latter one results from Bäcklund transforma-
tion. By virtue of the Bäcklund transformation, eigenvalue problems of the inverse
scattering transform and infinitely many conservation laws will be obtained. For ex-
ample:

(1) Bäcklund transformation for the sine-Gordon equation

S = sin z (6.2.3)

can be expressed as

{{{{
{{{{
{

1
2
(p − p󸀠) = a sin[ 1

2
(z + z󸀠)],

1
2
(q + q󸀠) = a−1 sin[ 1

2
(z − z󸀠)]. (6.2.4)

Making Γ = tan[(z + z󸀠)/4], from equation (6.2.4), we have

Γx + aΓ −
1
2
p(1 + Γ2) = 0. (6.2.5)

We know the Riccati equation

Γx + 2pΓ + QΓ
2 + R = 0, (6.2.6)

which is equivalent to

{
w1,x + pw1 = −Rw2,

w2,x − pw2 = Qw1,
(6.2.7)

with Γ = w1/w2. Therefore, equation (6.2.5) is equal to

{{
{{
{

w1,x + 12aw1 =
1
2
pw2,

w2,x − 12aw2 = −
1
2
pw1,

(6.2.8)

which are exactly the eigenvalue problems of the inverse scattering transform corre-
sponding to equation (6.2.3).

If a is very small in equation (6.2.4), infinitely many conservation laws for equa-
tion (6.2.3) are obtained. In fact, taking z󸀠(x, y, a) in the form of

z󸀠(x, y, a) ≈ ∞∑
j=0 z󸀠j (x, y)aj, a→ 0, (6.2.9)

substitution of equation (6.2.9) into (6.2.4) gives∞
∑
j=0 z󸀠jyaj = zy + 2a sin[ 1

2
(
∞
∑
j=0 z󸀠j aj − z)],
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where z󸀠0 = z and z󸀠1 = 2zy as a→ 0. Because the coefficients of higher-order terms are
equal, we get

{{{{{{{{{
{{{{{{{{{
{

z󸀠2 = 2zyy ,
z󸀠3 = 2zyyy + 13 (zy)3,
z󸀠4 = 2zyyyy + 2(zy)2zyy ,
z󸀠5 = 2zyyyyy + 3(zy)2zyyy + 5zy(zyy)2 + 3

20
(zy)

5.

(6.2.10)

The energy-conserved form of equation (6.2.3) is written as

1
2
(z󸀠x2)y + (cos z󸀠 − 1)x = 0. (6.2.11)

Reconsidering equation (6.2.10) and collecting the same order of a, we get infinitely
many conservation laws. Next, we give the following terms of conserved density:

T0 =
1
2
z2x ,

T1 = 2zyyyxzx + 4zyyxzyx + z
2
yzyxzx ,

T2z7 = 2zyyyyyxzx + 4zyyyyxzyx + 4zyyxzyyyx + 6zyyyzyzxzyx
+ 3zxyyyz

2
yzx + 10zyyxzyyzyzx + 5z

2
yyzyxzx + 8zyyz

3
yxzy

+ 8z2yzyxzyyx +
3
4
z4y zyxzx + ⋅ ⋅ ⋅ .

(2) Recall the KdV equation

uy + 6uux + uxxx = 0. (6.2.12)

Making z = ∫x−∞ u(x󸀠, y)dx󸀠, we get
q + 3p2 + α = 0, α = zxxx . (6.2.13)

Assuming the Bäcklund transformation for equation (6.2.12) in the following form:

{
p = f (z, z󸀠, p󸀠),
q = φ(z, z󸀠, q󸀠, r, r󸀠, p, p󸀠), (6.2.14)

the second equation of equation (6.2.14) can be simplified to

q = φ(z, z󸀠, q󸀠, p󸀠, r󸀠), (6.2.15)

since

r = fzf + fz󸀠p
󸀠 + fpr󸀠. (6.2.16)

 EBSCOhost - printed on 2/10/2023 3:23 PM via . All use subject to https://www.ebsco.com/terms-of-use



150 | 6 Bäcklund transformations and the infinitely many conservation laws

The second-order mixed derivative of z can be written as

dp
dy
= fzq + fz󸀠q

󸀠 + fp󸀠s󸀠
or

dq
dx
= φzp + φz󸀠p

󸀠 + φq󸀠s
󸀠 + φp󸀠r

󸀠 + φr󸀠α
󸀠.

Due to the equality of the mixed derivatives and z󸀠 satisfying equation (6.2.13), we
define functionΩ(z, z󸀠, p, p󸀠, q, q󸀠, r, r󸀠) as
Ω = (fp󸀠 − φq󸀠 )s

󸀠 + fzq + fz󸀠q󸀠 − φzp − φz󸀠p
󸀠 − φp󸀠r

󸀠 + φr󸀠(q
󸀠 + 3p󸀠2) = 0. (6.2.17)

SelectingΩs󸀠 = fp󸀠 − φq󸀠 = 0, with f independent of q󸀠 and r󸀠, we have
φq󸀠q󸀠 = φq󸀠r󸀠 = 0, (6.2.18)
Ωq󸀠 = fp󸀠 fz + fz󸀠 − ffp󸀠z − p

󸀠fp󸀠z󸀠 − r󸀠fpp󸀠 + φr󸀠 = 0.

BecauseΩq󸀠r󸀠 = −fp󸀠p󸀠 + φr󸀠r󸀠 = 0, we deduce

fp󸀠p󸀠 = φr󸀠r󸀠 = a(z, z
󸀠, r󸀠), (6.2.19)

where a(z, z󸀠, r󸀠) is undetermined. Considering

Ωr󸀠r󸀠r󸀠 = −3fp󸀠p󸀠p󸀠 = 0 (6.2.20)

and equation (6.2.18), equation(6.2.19) can be written as

f (z, z󸀠, p󸀠) = b(z, z󸀠)p󸀠 + c(z, z󸀠),
φ(z, z󸀠, q󸀠, p󸀠, r󸀠) = b(z, z󸀠)q󸀠 + λ(z, z󸀠, p󸀠)r󸀠 + v(z, z󸀠, p󸀠). (6.2.21)

In the following steps, we will determine λ, c, and v. From equation (6.2.17), we have

Ωr󸀠r󸀠 = −2φr󸀠p󸀠 = 0,

from which we deduce that λ is independent of p󸀠. In addition,
v(z, z󸀠, p󸀠) = v2(z, z󸀠)p󸀠2 + v1(z, z󸀠)p󸀠 + v0(z, z󸀠), (6.2.22)

sinceΩp󸀠p󸀠p󸀠 = 0. We deem b(z, z󸀠) as a constant, so
{
p = bp󸀠 + c,
q = bq󸀠 + λr󸀠 + v2p󸀠2 + v1p󸀠 + v0, (6.2.23)
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where b is constant and c, λ, and vi (i = 0, 1, 2) are the undetermined functions of z
and z󸀠. Substituting equation (6.2.23) into Q, we get the following seven equations to
solve five unknown functions and a constant:

2v2 = −(bλz + λz󸀠 ), (6.2.24)
λ = −(bcz + cz󸀠 ), (6.2.25)
v1 = λcz − cλz , (6.2.26)
v2cz − cv2z + 3λ − bv1z − v1z󸀠 = 0, (6.2.27)
v1cz − cv1z − v0z󸀠 − bv0z = 0, (6.2.28)
bv2z + v2z󸀠 = 0, (6.2.29)
v0cz − cv0z = 0. (6.2.30)

For z belonging to equation (6.2.13), we find the third derivatives of equation (6.2.23)
as follows:

α = bα󸀠 − λr󸀠 + 2v2p󸀠2 + p󸀠[2bcczz + 2cczz + cz(bcz + cz󸀠 )]
+ c2czz + cc

2
z = 0, (6.2.31)

v2 − b + b
2 = 0, (6.2.32)

bczz + 2b + czz󸀠 = 0, (6.2.33)

c2czz + cc
2
z + v0 + 3c

2 = 0. (6.2.34)

From equation (6.2.30), we derive v0 = ψ(z󸀠)c(z, z󸀠), where ψ(z󸀠) is undetermined. In-
tegrating equation (6.2.34) once, we have

c2z + 2c + ψ + Kc
−2 = 0. (6.2.35)

Choosing K = 0, we obtain czz = −1 from equation (6.2.35) and czz󸀠 = −b from equa-
tion (6.2.33). Combining equations (6.2.32), (6.2.24), and (6.2.25), we get

cz󸀠z󸀠 = 2b + b
2. (6.2.36)

Integrating equation (6.2.36), we have

c(z, z󸀠) = m − 1
2
[z2 + 2bzz󸀠 − b(2 + b)z󸀠2] + kz + lz󸀠,

where k, l,m are integral constants. Supposing m ̸= 0, k = l = 0, the following rela-
tionships are obtained from equations (6.2.24)–(6.2.30):

λ = 2b(z − z󸀠),
v1 = −2bm − b(z

2 − 2zz󸀠 + b2z󸀠2),
v2 = b − b

2,
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ψ = −2m − 2b(1 + b)z󸀠2.
Takingb = −1, Bäcklund transformation for theKdVequation (6.2.12) canbe expressed
as

{
{
{

p + p󸀠 = m − 1
2
(z − z󸀠)2,

q + q󸀠 = (z − z󸀠)(r − r󸀠) − 2(p2 + pp󸀠 + p󸀠2). (6.2.37)

If z󸀠 = 0 for the KdV equation, equation (6.2.37) can be simplified to

{
{
{

p = m − 1
2
z2,

q = zr − 2p2 = −2mp,

whose solutions can be solved as

z = (2m)
1
2 tanh[(m

2
)

1
2

(x − 2my)]

and

u = p = msech2[(m
2
)

1
2

(x − 2my)], (6.2.38)

where u is a solution for the KdV equation (6.2.12). If we set Γ = z − z󸀠, from equa-
tion (6.2.37), we have

Γx −
1
2
Γ2 +m − 2p = 0,

which is equal to

{
{
{

v1x = (2p −m)v2,

v2x = −
1
2
v1.

(6.2.39)

(3) Recall the modified KdV (MKdV) equation

uy + 6u
2ux + uxxx = 0. (6.2.40)

In a procedure similar to the KdV equation, the integrated form of equation (6.2.40)
becomes

q + 3p2 + α = 0.

The Bäcklund transformation writes

{{
{{
{

p = bp󸀠 + a sin v,
q = bq󸀠 − 2a[br󸀠 cos v + p󸀠2 sin v + 1

2
a(p + bp󸀠)], (6.2.41)
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where b = ±1. Setting Γ = tan[ 12 (z + bz
󸀠)], we have

Γz + aΓ − p(1 + Γ
2) = 0,

which is equivalent to the following eigenvalue equations of the scattering problem
for equation (6.2.40):

{{
{{
{

w1x +
1
2
aw1 = pw2,

w2x −
1
2
aw2 = pw1.

(6.2.42)

(4) The complex conjugation form of the nonlinear Schrödinger equation reads

{
iq + r + z2 ̄z = 0,

− iq̄ + ̄r + ̄z2z = 0,
(6.2.43)

where “−” denotes the complex conjugation. The Bäcklund transformation for equa-
tion (6.2.43) is

{{
{{
{

p = p󸀠 − 1
2
iwτ + ikv,

q = q󸀠 + 1
2
τ(p + p󸀠) − kn + 14 iv(|w|2 + |v|2), (6.2.44)

where w = z + z󸀠, v = z − z󸀠, τ = ±i(b − 2|v|2)1/2, and n, b, k are real constants. Making
Γ = (b − 2|v|2)1/2/√2y, from equation (6.2.44), we get

z[Γx + ikΓ + τ
− 12 (zΓ2 + ̄z)] = z󸀠[Γx + ikΓ + τ− 12 (z󸀠Γ2 + z−1)],

which is equivalent to the following equations:

{{
{{
{

w1x +
1
2
ikw1 = −τ

− 12 ̄zw2,

w2x −
1
2
ikw1 = τ

− 12 zw1.
(6.2.45)

6.3 The commutativity of Bäcklund transformation for the KdV
equation

The KdV equation

uy + 6uux + uxxx = 0, (6.3.1)

remains invariant under the boundary terms

Bβu󸀠 :
{{
{{
{

ux = β − u
󸀠
x −

1
2
(u − u󸀠)2,

uy = −u
󸀠
y + (u − u

󸀠)(uxx − u󸀠xx) − 2[u2x + uxu󸀠x + u󸀠2x], (6.3.2)
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where β is the arbitrary Bäcklund transformation parameter. The integrated form of
equation (6.3.1) reads

uy + 3u
2
x + uxxx = 0. (6.3.3)

Theorem 6.3.1. If uβi = Bβiu0 (i = 1, 2) is the solution for equation (6.3.3), which is
obtained by Bäcklund transformation with seed solution u0 and parameter βi, we get
another new solution φ for equation (6.3.3),

φ = u0 + 2(β1 − β2)/(uβ1 − uβ2 ), (6.3.4)

where φ = Bβ1Bβ2u0 = Bβ2Bβ1u0.

Proof. Obviously, we have

u0x + uβ1 ,x = β1 − 12 (u0 − uβ1 )2, (6.3.5)

u0x + uβ2 ,x = β2 − 12 (u0 − uβ2 )2, (6.3.6)

uβ1 ,x + uβ1β2 ,x = β2 − 12 (uβ1 − uβ1β2 )2, (6.3.7)

uβ2 ,x + uβ2β1 ,x = β1 − 12 (uβ2 − uβ2β1 )2, (6.3.8)

where uβ1β2 = Bβ2Bβ1u0 and uβ2β1 = Bβ1Bβ2u0. If we set φ = uβ1β2 = uβ2β1 , from equa-
tions (6.3.5)–(6.3.8), we obtain

uβ1 ,x − uβ2 ,x = β1 − β2 + 12 (uβ1 − uβ2 )(2u0 − uβ1 − uβ2 ), (6.3.9)

uβ1 ,x − uβ2 ,x = β2 − β1 + 12 (uβ2 − uβ1 )(uβ1 + uβ2 − 2φ). (6.3.10)

Equation (6.3.9) minus equation (6.3.10) is

φ = u0 + 2(β1 − β2)/(uβ1 − uβ2 ).

It is easy to verify that equation (6.3.4) is a solution for equation (6.3.3).
Similarly, Bäcklund transformation for the MKdV equation

vy + 6v
2vx + vxxx = 0 (6.3.11)

can be expressed as

Bβu󸀠 :
{{{
{{{
{

ux = αu
󸀠
x + β sin(u + αu

󸀠),
uy = αu

󸀠
y − β[2αu

󸀠
xx cos(u + αu

󸀠) + 2u󸀠x2 sin(u + αu󸀠)
+ β(ux + αu

󸀠
x)], α = ±1,

(6.3.12)

where β is the arbitrary Bäcklund transformation parameter.
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Theorem 6.3.2. If uβi (i = 1, 2) is the solution for equation (6.3.11), which is obtained by
Bäcklund transformation with seed solution u0 and parameter β = βi (i = 1, 2), we get
another new solution for equation (6.3.11),

tan(φ − u0
2
) = α(β1 + β2

β1 − β2
) tan(

uβ1 − uβ2
2
), (6.3.13)

where φ = Bβ1Bβ2u0 = Bβ2Bβ1u0.

Example. Taking u0 = 0, we get from equation (6.3.12)

uβi = 2 tan
−1 eμi , (6.3.14)

where

μi = βix − β
3
i y + γi (6.3.15)

and γi (i = 1, 2) is an integral constant. The following solutions is obtained from equa-
tion (6.3.13):

φ = ±2 tan−1[(β1 + β2
β1 − β2
)
sinh{ 12 (μ1 − μ2)}
cosh{ 12 (μ1 + μ2)}

]. (6.3.16)

6.4 Bäcklund transformations for the higher-order KdV equation
and multi-dimensional sine-Gordon equation

In [270], Sawada and Kotera pointed out the following higher-order KdV equation:

ut + 180u
2ux + 30(uuxxx + uxuxx) + uxxxxx = 0, (6.4.1)

which possesses the bilinear form

Dx(Dt + D
5
x)f ⋅ f = 0. (6.4.2)

Based on equation (6.4.2), Sawada and Kaup [269] constructed the Bäcklund transfor-
mations

(Dt −
15
2
βD2

x −
3
2
D5
x)f
󸀠 ⋅ f = 0, (6.4.3)

(D3
x − β)f

󸀠 ⋅ f = 0, (6.4.4)

where β is the Bäcklund transformation parameter. To prove the Bäcklund transfor-
mations, we need to verify that

P ≡ f 󸀠 ⋅ f 󸀠Dx(Dt + D
5
x)f ⋅ f − ffDx(Dt + D

5
x)f
󸀠 ⋅ f 󸀠 = 0. (6.4.5)
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By virtue of the exchange formulas, equation (6.4.5) can be developed to

P = Dx[2(f
󸀠 ⋅ f ) ⋅ (Dtf

󸀠 ⋅ f ) + 3
4
(f 󸀠 ⋅ f ) ⋅ (D5

xf
󸀠 ⋅ f )

−
15
4
(Dxf
󸀠 ⋅ f ) ⋅ (D4

x f
󸀠 ⋅ f ) + 15

2
(D2

xf
󸀠 ⋅ f ) ⋅ (D3

xf
󸀠 ⋅ f )]

+
5
4
D3
x[(f
󸀠 ⋅ f ) ⋅ (D3

xf
󸀠 ⋅ f ) − 3(Dxf

󸀠 ⋅ f ) ⋅ (D2
xf
󸀠 ⋅ f )]

= Dx[2(f
󸀠 ⋅ f ) ⋅ (Dtf

󸀠 ⋅ f ) − 3(f 󸀠 ⋅ f ) ⋅ (D5
xf
󸀠 ⋅ f )

+ 15(D2
xf
󸀠 ⋅ f ) ⋅ (D3

xf
󸀠 ⋅ f )] + 5D3

x(f
󸀠 ⋅ f ) ⋅ (D3

xf
󸀠 ⋅ f ) (6.4.6)

= Dx[15β(f
󸀠 ⋅ f ) ⋅ (D2

xf
󸀠 ⋅ f ) + 15β(D2

xf
󸀠 ⋅ f ) ⋅ (f 󸀠 ⋅ f )] = 0. (6.4.7)

Bäcklund transformation for the three-dimensional sine-Gordon equation

(
3
∑
i=1 𝜕2𝜕x2i − 𝜕2𝜕t2)u = sin u (6.4.8)

has been carried out as follows:

{I 𝜕
𝜕x
+ iσ1
𝜕
𝜕x2
+ iσ3
𝜕
𝜕x3
+ σ2
𝜕
𝜕t
}{

α − iβ
2
}

= exp{iθσ1 exp[−iφσ2 exp(−τσ1)]} sin{
α + iβ
2
}, (6.4.9)

where σ1, σ2, σ3 are Pauli matrices, I is a 2 × 2 identity matrix, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ 2π,
and −∞ < τ <∞. α and β satisfy

(
3
∑
i=1 𝜕2𝜕xi2 − 𝜕2𝜕t2)α(x1, x2, x3, t) = sin α(x1, x2, x3, t), (6.4.10)

(
3
∑
i=1 𝜕2𝜕xi2 − 𝜕2𝜕t2)β(x1, x2, x3, t) = sinh β(x1, x2, x3, t), (6.4.11)

respectively. We rewrite equation (6.4.9) in the new form

{I 𝜕
𝜕x
+ iP}{α − iβ

2
} = [A1 + iA2] sin{

α + iβ
2
}, (6.4.12)

where

{{{{
{{{{
{

P = σ1
𝜕
𝜕x2
+ σ3
𝜕
𝜕x3
− iσ2
𝜕
𝜕t
,

σ1 = (
0 1
1 0
) , σ2 = (

0 −i
i 0
) , σ3 = (

1 0
0 −1
)

(6.4.13)
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and

{{
{{
{

A1 = I cos θ,

A2 = (
sin θ sinφ cosh τ (cosφ − sinφ sinh τ) sin θ

(cosφ + sinφ sinh τ) sin θ − sin θ sinφ cosh τ
) .

(6.4.14)

Dividing equation (6.4.12) into the real and imaginative parts, we get

I 𝜕
𝜕x
{
α
2
} + P{β

2
} = A1 sin(

α
2
) cosh(β

2
) − A2 cos(

α
2
) sinh(β

2
), (6.4.15)

P{α
2
} − I 𝜕
𝜕x
{
β
2
} = A1 cos(

α
2
) sinh(β

2
) + A2 sin(

α
2
) cosh(β

2
). (6.4.16)

We construct the most simple nontrivial solutions for equations (6.4.10) and (6.4.11).
Making β = β0 = 0 and α = α0 = 0 in equations (6.4.15) and (6.4.16), we derive

α1(x
1, x2, x3; θ,φ, τ) = 4 tan−1{a0 expR}, (6.4.17)

β1(x
1, x2, x3; θ,φ, τ) = {

4 tan−1{a1 expR}, R ≤ 0,

4 cosh−1{a1 expR}, R > 0,
(6.4.18)

where

R = x cos θ + x2 sin θ cosφ + sin θ sinφ(x3 cosh τ + t sinh τ) (6.4.19)

and ai (i = 0, 1) are integral constants. It can be verified that equation (6.4.17) is the
soliton solution for equation (6.4.10), while β is not amongst the soliton candidates.

6.5 Bäcklund transformation for the Benjamin–Ono equation

The Benjamin–Ono (BO) equation, which describes one-dimensional internal waves
in deep water, is expressed as

ut + 2uux + H[uxx] = 0, (6.5.1)

where H is the Hilbert operator, defined by the Cauchy principal value integral

Hf (x) = 1
π
P ∫
∞−∞ f (z)

z − x
dz.

To get the bilinear form for equation (6.5.1), we introduce the following transforma-
tion:

u(x, t) = i 𝜕
𝜕x
(log[f 󸀠/f ]), (6.5.2)
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Figure 6.3: Profile of contour C.

where

f ∝
N
∏
n=1(x − zn(t)), f 󸀠 ∝ N

∏
n=1(x − z󸀠n(t)), (6.5.3)

zn, z󸀠n are complex functions, and Im zn > 0, Im z󸀠n < 0, N ∈ Z+. Thus,
u = i(

f 󸀠x
f 󸀠 − fxf ) = i N

∑
n=1{ 1

x − z󸀠n − 1
x − zn
} (6.5.4)

and

Hu = i
π
P ∫
∞−∞ 1

z − x

N
∑
n=1{ 1

z − z󸀠n − 1
z − zn
}dz. (6.5.5)

To compute equation (6.5.5), taking the contour C (as shown in Figure 6.3) and by
virtue of the residue theorem, we have

1
2πi
∮
C

1
z − x
[

1
z − z󸀠n − 1

z − zn
]dz = res(z = zn).

Therefore,

lim
ϵ→0 1

2πi
∫
x−ϵ−∞ 1

z − x
[

1
z − z󸀠n − 1

z − zn
]dz

+ lim
ϵ→0 1

2πi
∫
c2

1
z − x
[

1
z − z󸀠n − 1

z − zn
]dz

+ lim
ϵ→0 1

2πi
∫
∞
x+ϵ 1

z − x
[

1
z − z󸀠n − 1

z − zn
]dz

=
1

x − zn
,

1
2πi

P ∫
∞−∞ 1

z − x
[

1
z − z󸀠n − 1

z − zn
]dz

=
1

x − zn
− lim
ϵ→0 1

2πi
∫
c2

1
z − x
[

1
z − z󸀠n − 1

z − zn
]dz
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=
1

x − zn
− lim
ϵ→0{ 1

2πi
∫
0

π
ϵ−1e−iθ[ 1

x + ϵeiθ − z󸀠n − 1
x + ϵeiθ − zn

]ϵieiθdθ}

=
1

x − zn
+
1
2
[

1
x − z󸀠n − 1

x − zn
]

=
1
2
[

1
x − z󸀠n + 1

x − zn
]. (6.5.6)

As a result, we derive

Hu = i
π

N
∑
n=1πi( 1

x − z󸀠n + 1
x − zn
)

= −
N
∑
n=1( 1

x − z󸀠n + 1
x − zn
)

= −[
f 󸀠x
f 󸀠 + fxf ] = − 𝜕𝜕x (log[f 󸀠f ]). (6.5.7)

Substituting equations (6.5.2) and (6.5.7) into equation (6.5.1), we have

𝜕
𝜕x
[i 𝜕
𝜕t
(log[f 󸀠/f ]) − [ 𝜕

𝜕x
(log[f 󸀠/f ])]2 − 𝜕2

𝜕x2
(log[f 󸀠f ])] = 0.

Integrating the above expressionwith respect to x and taking the integration constant
as 0, we have

i 𝜕
𝜕t
(log[f 󸀠/f ]) − [ 𝜕

𝜕x
(log[f 󸀠/f ])]2 − 𝜕2

𝜕x2
(log[f 󸀠f ] = 0,

i.e.,

i(ff 󸀠t − f 󸀠ft) − ff 󸀠xx + 2f 󸀠x fx − f 󸀠fxx = 0, (6.5.8)

which can be rewritten as

[i(f 󸀠t f − f 󸀠ft󸀠) − (f 󸀠xxf − 2f 󸀠x fx󸀠 + f 󸀠fx󸀠x󸀠)]x󸀠=x,t󸀠=t = 0, (6.5.9)

or

[i(f 󸀠t f − f 󸀠ft󸀠) − ( 𝜕𝜕x − 𝜕𝜕x󸀠)(f 󸀠x f − f 󸀠fx󸀠)]x󸀠=x,t󸀠=t = 0.
Thus, the following bilinear form for equation (6.5.1) is obtained:

(iDt − D
2
x)f
󸀠 ⋅ f = 0. (6.5.10)

Assuming that (f , f 󸀠) are a pair of solutions for equation (6.5.10), while (g, g󸀠) are de-
fined by the following Bäcklund transformations:

(iDt − 2iλDx − D
2
x − μ)f ⋅ g = 0, (6.5.11)
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(iDt − 2iλDx − D
2
x − μ)f

󸀠 ⋅ g󸀠 = 0, (6.5.12)
(Dx + iλ)f ⋅ g

󸀠 = iνf 󸀠g, (6.5.13)

where λ, μ, ν are undetermined parameters, we can prove that g and g󸀠 satisfy
(iDt − D

2
x)g
󸀠 ⋅ g = 0. (6.5.14)

In fact, equation (6.5.14) can be satisfied logically, if we derive

P = g󸀠g(iDt − D
2
x)f
󸀠 ⋅ f − f 󸀠f (iDt − D

2
x)g
󸀠 ⋅ g = 0. (6.5.15)

Taking account of

g󸀠g(Dtf
󸀠 ⋅ f ) − f 󸀠f (Dtg

󸀠 ⋅ g) = fg(Dtf
󸀠 ⋅ g󸀠) − f 󸀠g󸀠(Dtf ⋅ g),

equation (6.5.15) can be rewritten as

P = fg(iDtf
󸀠 ⋅ g󸀠) − f 󸀠g󸀠(Dtf ⋅ g) − gg

󸀠(D2
xf
󸀠 ⋅ f ) + f 󸀠f (D2

xg
󸀠 ⋅ g)

= 2iλ[fgDxf
󸀠 ⋅ g󸀠 − f 󸀠g󸀠Dxf ⋅ g] + [fgD

2
xf
󸀠 ⋅ g󸀠 − f 󸀠g󸀠D2

xf ⋅ g]

− g󸀠gD2
xf
󸀠 ⋅ f + f 󸀠fD2

xg
󸀠 ⋅ g.

By virtue of the exchange formulas

fgDxf
󸀠 ⋅ g󸀠 − f 󸀠g󸀠Dxf ⋅ g = Dxf

󸀠g ⋅ fg󸀠, (6.5.16)

fgD2
xf
󸀠 ⋅ g󸀠 − f 󸀠g󸀠D2

xf ⋅ g = Dx[(Dxf
󸀠 ⋅ g) ⋅ fg󸀠 + f 󸀠g ⋅ (Dxf ⋅ g

󸀠)], (6.5.17)

f 󸀠fD2
xg
󸀠 ⋅ g − g󸀠gD2

xf
󸀠 ⋅ f = Dx[(Dxg

󸀠 ⋅ f ) ⋅ f 󸀠g + fg󸀠 ⋅ (Dxf
󸀠 ⋅ g)] (6.5.18)

and equations (6.5.17) and (6.5.18), we have

fgD2
xf
󸀠 ⋅ g󸀠 − f 󸀠g󸀠D2

xf ⋅ g + f
󸀠fD2

xg
󸀠 ⋅ g − g󸀠gD2

xf
󸀠 ⋅ f

= 2Dx[f
󸀠g ⋅ (Dxf ⋅ g

󸀠)]. (6.5.19)

In addition,

cd(Dxa ⋅ b) − ab(Dxc ⋅ d) = Dxad ⋅ bc, (6.5.20)

so we derive

P = 2iλDxf
󸀠g ⋅ fg󸀠 + 2Dx[f

󸀠g ⋅ (Dxf ⋅ g
󸀠)]

= 2Dx[f
󸀠g ⋅ (Dx + iλ)f ⋅ g

󸀠]. (6.5.21)

Considering equation (6.5.13), we get

P = 2Dx[f
󸀠g ⋅ (iνf 󸀠g)] = 2iνDx(f

󸀠g ⋅ f 󸀠g) = 0,
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which is exactly what we need to prove. As

ν = i 𝜕
𝜕x
(log[g󸀠/g]), (6.5.22)

a new solution for the BO equation (6.5.1) is obtained.
Consider the modified BO equation

ut − 2λux + 2νe
uux + Huxx + uxHux = 0, (6.5.23)

whereH is the Hilbert operator and λ, ν are constants. In a similar way, via the follow-
ing transformation:

u(x, t) = u0 + log[
f 󸀠g
fg󸀠 ], (6.5.24)

we can prove that u(x, t) is another solution for equation (6.5.23) under the following
Bäcklund transformations:

(iDt − 2iλDx − D
2
x − μ)f ⋅ g = 0, (6.5.25)

(iDt − 2iλDx − D
2
x − μ)f

󸀠 ⋅ g󸀠 = 0, (6.5.26)
(Dx + iλ)f ⋅ g

󸀠 = iν󸀠f 󸀠g, ν󸀠 = νeu0 . (6.5.27)

Consider the wave propagation equation of streamline flow in finite depth,

ut + 2uux + G[uxx] = 0, (6.5.28)

where G is the integral operator and

G[u(x, t)] = 1
2
λ∫
∞−∞[coth π

2
λ(x󸀠 − x) − sgn(x󸀠 − x)]u(x󸀠, t)dx󸀠, (6.5.29)

where λ−1 is the parameter related to the depth of the flow. For the shallowwater wave
λ → ∞, it becomes the KdV equation. For the deep water wave, λ = 0, it reduces to
the BO equation. We make

u(x, t) = i 𝜕
𝜕x
(log[ ̄f /f ]), (6.5.30)

where

f (x, t) =
N
∏
n=1[1 + exp{λ[λ(Imzn)(x − λt) − ̄zn]}], (6.5.31)

where zn(n = 1, 2, . . . ,N) are complex, 0 < λImzn < π, and ̄f is the complex conjugation
of f . Bäcklund transformations for equation (6.5.28) read

(iDt + i(λ − 2λ
󸀠)Dx − D

2
x − μ
󸀠)f ⋅ g = 0, (6.5.32)

(iDt + i(λ − 2λ
󸀠)Dx − D

2
x − μ
󸀠) ̄f ⋅ g = 0, (6.5.33)

(Dx + iλ
󸀠)f ⋅ ḡ = iν󸀠 ̄f g, (6.5.34)

where λ󸀠, μ󸀠, ν󸀠 are undetermined parameters.
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6.6 The infinitely many conservation laws for the KdV equation

As is well known, mass, momentum, and energy conservation laws are the three im-
portant conservation laws in physics. In mathematics, if a physical problem can be
described by a differential equation in the form of

ut = K(u), (6.6.1)

the corresponding conservation law can be written in the divergence form

𝜕T
𝜕t
+
𝜕X
𝜕x
= 0, (6.6.2)

where T and X are related to the unknown function u(x, t). T denotes the density con-
servation and X is named flow conservation. When X is zero at the area boundary, it
is sure that the invariant I = ∫Tdx is independent of time.

Infinitely many conservation laws are closely related to the existence of soliton
solution. More and more instances indicate that the nonlinear equations which have
soliton solutions have a high possibility of possessing infinitely many conservation
laws. On the other hand, the conservation integral is an important mathematical tool,
based on which we can make a priori estimate on the solutions for differential equa-
tions. The a priori estimate is the core and key of the existence and uniqueness theo-
remsof solutions for differential equations. Aspointed out byLax, infinitelymany con-
servation laws are an important characteristic to distinguish the KdV equation from
other nonlinear evolution equations.

For the KdV equation

ut − 6uux + uxxx = 0, (6.6.3)

the first corresponding conservation is

ut − (3u
2 + uxx)x = 0, (6.6.4)

from which we obtain the momentum conservation

∫
∞−∞ u(x, t)dx = ∫∞−∞ u(x,0)dx = M0, (6.6.5)

where u and its derivatives are zero as |x|→∞.
Multiplying the KdV equation by u, we get the second conservation form

(
1
2
u2)

t
+ (−2u3 + uux −

1
2
u2x)

x
= 0 (6.6.6)

and the energy conservation

E = ∫
∞−∞ 1

2
u2(x, t)dx = ∫

∞−∞ 1
2
u2(x,0)dx = E0. (6.6.7)
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The third conservation law can be expressed as

(u3 + 1
2
u2x)

t
+ (−

9
2
u4 + 3u2uxx − 6uu

2
x + uxuxxx −

1
2
u2xx)

x
= 0. (6.6.8)

Furthermore,

∫
∞−∞(u3 + 12u2x)dx = ∫∞−∞(u3(x,0) + 12u2x(x,0))dx. (6.6.9)

These conservation laws were first derived by Whitham [306] and Miura [180], who
gave the conservation forms explicitly. In addition, the infinitely many conservation
laws have been obtained via a certain function transformation by Miura.

The MKdV equation

Qv ≡ vt − 6vvx + vxxx = 0 (6.6.10)

is related to the KdV equation by the following relationship.

Theorem 6.6.1. If v solves equation (6.6.10), we conclude that u = v2 + vx satisfies
equation (6.6.3), i.e.,

Pu ≡ ut − 6uux + uxxx = 0.

Proof. It is obvious that Pu = (2u + 𝜕𝜕x )Qv, so
Qv = 0 ⇒ Pu = 0.

Equation (6.6.3) remains invariant under the following scale transformations:

t → t󸀠, x → x󸀠 − 6ct󸀠, u→ u󸀠 + c,
where c is a constant. Here, setting

t󸀠 = t, x󸀠 = x + 3
2ϵ2

t, u(x, t) = u(x󸀠, t󸀠) + 1
4ϵ2
, ϵ > 0,

and v(x, t) = ϵw(x󸀠, t󸀠) + 1
2ϵ , we rewrite the transformation u = v2 + vx as

u(x󸀠, t󸀠) = w(x󸀠, t󸀠) + ϵwx󸀠(x
󸀠, t󸀠) + ϵ2w2(x󸀠, t󸀠).

Omitting 󸀠, we have
0 = Pu = ut − 6uux + uxxx

= (1 + ϵ 𝜕
𝜕x
+ 2ϵ2w)[wt − 6(w + ϵ

2w2)wx + wxxx] ≡ LRw,
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where

Rw ≡ wt − 6(w + ϵ
2w2)wx + wxxx .

We claim that u is independent of ϵ, since ϵ is not present in the KdV equation. There-
fore, from u = w+ϵwx+ϵ2w2 (ϵ≪1), we derive thatw is a function of u and ϵ. Expanding
w with respect to ϵ, we have

w = w0 + ϵw1 + ϵ
2w2 + ⋅ ⋅ ⋅

= u − ϵux − ϵ
2(u2 − uxx) + ⋅ ⋅ ⋅ ,

wherewi (i = 0, 1, 2, . . .) are polynomials of u, ux , uxx , . . .. Substituting the above expan-
sion into

Rw = wt + (−3w
2 − 2ϵ2w3 + wxx)x = 0

and collecting the coefficients of higher-order terms that are zero, infinitelymany con-
servation laws for the KdV equation are obtained.

6.7 Infinitely many conservation quantities for the AKNS equation

For the generalized Ablowitz–Kaup–Newell–Suger equation

{
v1,x = −iζv1 + qv2,
v2,x = iζv2 + rv1, (6.7.1)

the boundary conditions of the eigenfunctions φ, φ̄,ψ, ψ̄ are

φ ∼ (1
0
) e−iξx , φ̄ ∼ ( 0

−1
) eiξx , x → −∞,

ψ ∼ (0
1
) eiξx , ψ̄ ∼ (1

0
) e−iξx , x → +∞, (6.7.2)

where q, r → 0 as |x| → ∞ and ζ = ξ + iη is the eigenvalue. Applying the Wentzel–
Kramers–Brillouin method, we find

ψe−iζx ∼ (0
1
) +

1
2iζ
(

q
−∫
∞
x qrdx󸀠) + ⋅ ⋅ ⋅ ,

ψ̄eiζx ∼ (1
0
) +

1
3iζ
(
∫
∞
x qrdx󸀠
−r
) + ⋅ ⋅ ⋅ ,

φeiζx ∼ (1
0
) −

1
2iζ
(
∫
x−∞ qrdx󸀠

r
) + ⋅ ⋅ ⋅ , (6.7.3)
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φ̄e−iζx ∼ ( 0
−1
) −

1
2iζ
(

q
∫
x−∞ qrdx󸀠) + ⋅ ⋅ ⋅ ,

a(ζ ) = w(φ,ψ)∼1 − 1
2iζ
∫
∞−∞ qrdx󸀠 + ⋅ ⋅ ⋅ , (6.7.4)

ā(ζ ) = w(φ̄, ψ̄)∼1 + 1
2iζ
∫
∞−∞ qrdx󸀠 + ⋅ ⋅ ⋅ ,

where w(u, v) = u1v2 − v1u2. At x →∞, we have

ψ ∼ (0
1
) eiζx , (6.7.5)

which leads to

a(ζ ) = lim
x→∞(φ1e

iζx). (6.7.6)

Making eφ̂ = φ1eiζx, from equation (6.7.1), we get

(φ1e
iζx)x = qφ2e

iζx ,

(φ2e
−iζx)x = rφ1e

−iζx . (6.7.7)

Eliminating φ2 and using the definition of φ̂, equation (6.7.7) develops to

(
1

qe2iζx
(eφ̂)x)

x
= re−2iζxeφ̂, (6.7.8)

or

φ̂x =
1
2iζ
[−qr + φ̂2

x + q(
φ̂x
q
)
x
]. (6.7.9)

Making ζ →∞ in equation (6.7.3), we have

φeiζx ∼ (1
0
) + O(1/ζ ). (6.7.10)

We expand φ̂ with respect to ζ , to obtain

φ̂ = φ̂1
2iζ
+

φ̂2
(2iζ )2
+

φ̂3
(2iζ )3
+ ⋅ ⋅ ⋅ =∑

φ̂n
(2iζ )n
. (6.7.11)

Meanwhile, the first examples of a series of solvable equations produced by equa-
tion (6.7.9) read

φ̂1,x = −qr ⇒ φ̂1 = −∫
x−∞ qrdy,
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φ̂2,x = q( φ̂0,x
q
)
x
= qrx ⇒ φ̂2 = −∫

x−∞ qrydy, (6.7.12)

φ̂3 = −∫
x−∞(qryy − q2r2)dy.

The general recursion formula for φ̂n is

φ̂n+1 = q( φ̂n
q
)
x
+
n−1
∑
k=1 φ̂kφn−k , (n ≥ 1), (6.7.13)

where φ̂0 = 0 and φ̂1 = −qr. Noticing that a(ζ ) is independent of t, the following
conserved quantity will be obtained:

ln a(ζ ) = lim
x→∞ ln(φ1e

iζx) = lim
x→∞ φ̂ = ∞∑

1
lim
x→∞ φ̂n
(2iζ )n
. (6.7.14)

For simplicity, we write Cn = limx→∞ φ̂n, n = 1, 2, . . ., and

{{{{{{{
{{{{{{{
{

C1 = ∫
∞−∞ qrdy,

C2 = ∫
∞−∞ qrydy,

C3 = ∫
∞−∞(qryy − q2r2)dy.

(6.7.15)

For a kind of higher-order KdV equation,

ut + u
qux + uxp = 0, (6.7.16)

where p, q are nonnegative integers, p ≥ 2. Kruskal andMiura [148] have predicted the
number of conservation laws for equation (6.7.16) in 1970, as shown in Table 6.1.

This prediction has been proved perfectly through symmetric function methods.
For the more generalized KdV equation

ut + (f (u))x = βuxxx , (6.7.17)

Table 6.1: Numbers of conservation laws for equation (6.7.16).
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there exist three conservation laws for f (u) being the polynomials of u:

{{{{{{{{{{{
{{{{{{{{{{{
{

T1 = u, X1 = f (u) − βuxx ,

T2 =
1
2
u2, X2 = ∫

u

0
f 󸀠(u)udu − βuuxx + 12βu2x ,

T3 =
β
2
u2x + ∫

u

0
f (u)du,

X3 = βf
󸀠(u)u2x + β2uxuxxx − β22 u2xx + 12 f 2(u) − βf (u)uxx .

(6.7.18)

By virtue of infinitely small transformation and symmetry, it has been proved that
there exist at least three conservation laws for the following nonlinear evolution equa-
tion:

ut = H(u, u1, . . . , un), ui = D iu, D =
d
dx
, (6.7.19)

when H = Dg, where g is the grad polynomial and H(u, u1, . . . , un) is the constant
coefficient polynomial of ui.

Infinitely many conservation laws for the Boussinesq, the nonlinear Schrödinger,
and the derivative of the nonlinear Schrödinger equations have also been obtained
through Bäcklund transformation [175].

6.8 Darboux transformations

Darboux transformations were originally developed by Gaston Darboux while study-
ing the linear Sturm–Liouville problem [175]. Since the analysis of the inverse scatter-
ing transform is more difficult, Darboux transformations provided a convenient way
to study solitons and their interactions for linear and nonlinear partial differential
equations, including the nonlinear Schrödinger, KdV, Kadomtsev–Petviashvili, Toda
lattice, and sine-Gordon equations, amongst others.

In 1882, Darboux [175] studied the eigenvalue of the Sturm–Liouville equation

−Φxx + u(x)Φ = λΦ, (6.8.1)

which is usually referred to as the one-dimensional stationary Schrödinger equation
in quantummechanics, where u(x) is the given potential function and λ is the spectral
parameter. The following transformation was applied:

u[1] = u − 2(lnΦ1)xx ,

Φ[1] = (𝜕x −
Φ1,x
Φ1
)Φ =

Wr(Φ1, Φ)
Φ1
,

(6.8.2)
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where Wr is the Wronskian determinant and Φ1 is the special solution for equa-
tion (6.8.1) with λ = λ1. We easily verify that

−Φxx[1] + u[1]Φ[1] = λΦ[1]. (6.8.3)

The above transformation (6.8.2) is the classical Darboux transformation.
One way to understand the above transformation is the operator factorization

method. We consider the second-order differential operator

L = −D2 + u, D = d
dx
,

introducing a factorization L − λ = AA∗, where
A = D − v, A∗ = −D − v

are the first-order operators, which are formally adjoint to each other. The following
construction is entirely algebraic and all operators are considered as formal differen-
tial operators without boundary condition.

Definition 6.8.1. For any differential operator P of arbitrary finite order, which has
possibly complex-valued coefficients, we define P∗ as

(P∗f )g − f (Pg) = d
dx

Q(f , g)

for arbitrary C∞ functions, where Q is the polynomial of f , g.

For example, when P = A, we have

(A∗f )g − f (Ag) = − d
dx
(fg).

To construct the general operator factorization, we take Φ ̸= 0 as a solution for
the eigenvalue problem

(L − λ)Φ = 0 (6.8.4)

and make

A = ΦDΦ−1, A∗ = −Φ−1DΦ. (6.8.5)

Next, we need to verify

A∗A = L − λ. (6.8.6)

In fact,A∗A is a formally self-adjoint second-order differential operator,whose leading
term is −D2. Hence, A∗A is of the form −D2 + q. From the form of A, we find A∗AΦ = 0,
i.e., (−D2 + q)Φ = 0. Therefore, through (6.8.4) and (6.8.5),
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q = Φxx
Φ
= u − λ.

The proof of (6.8.6) is complete.
Thus, every solution Φ for (6.8.4) may result such a factorization, but it is not the

Darboux transformation we need. Similarly, we conclude that AA∗ has the same lead-
ing term with A∗A, namely,

L[1] = −D2 + u[1].

It is easy to find that

u[1] = u − 2(lnΦ)xx

and the eigenfunction for L[1] is

(L[1] − λ)Φ−1 = 0.
Obviously, the above invertible transformation is the Darboux transformation (6.8.2).

However, one problem of the classical Darboux transformation is that the higher
iteration cannot be carried out with the same spectral parameter. Recently, gener-
alized Darboux transformation has been improved by using the limit technique to
construct the rogue-wave solutions, especially the higher-order rogue-wave solutions.
Moredetails as regards generalizedDarboux transformationare listed in [121, 120, 115].
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7 Multi-dimensional solitons and their stability

7.1 Introduction

After having encountered a large number of problems as regards one-dimensional
solitons, we now consider the following question. Do multi-dimensional solitons ex-
ist? If so, how do they behave? This is a widespread concern and a very important
question. A lot of work has been done on themulti-dimensional solitons problem and
somemeaningful results have been obtained which are, but a lot more work will need
to be carried out. Of course, the problem of multi-dimensional solitons is a complex
and difficult problem, which involves a series of problems that must be solved. In the
current situation, there are at least the following questions to be dealt with. (1) Do soli-
tarywaves and standingwave solutions exist? Fromamathematical point of view, this
problem is related to the existence of nonzero solutions to some boundary value prob-
lems for nonlinear elliptic equations. (2) Are these solitary waves and standing wave
solutions stable? And can they collapse in a finite time? This question is currently
a big issue in physics. (3). Are these solutions soliton solutions, i.e., do their wave
forms and amplitudes remain unchanged (or changed slightly)? Some of these spe-
cific questions have been answered in part. In [65, 128], the authors pointed out that
there does not exist a multi-dimensional fully stable solution to the nonlinear wave
equations for a class of real (uncharged) scalar fields. In other words, if there exists a
fully stable solution, it can be stable only in the case of plane geometry. Some suffi-
cient conditions for the existence of solitary wave and standing wave solutions of the
nonlinear Klein–Gordon equation were studied in [24, 283]. The existence conditions
of multi-dimensional nonlinear Langmuir solitary wave and periodic wave solutions
were discussed in [89, 301]. The conditions for the existence of solitons formed by a
three-dimensional scalar field were studied in detail in [82] and a general theorem for
its stability was given. Numerical results were given for some special problems. The
existence and stability of the three-dimensional ion acoustic solitons in low-voltage
magnetized plasmas was shown by Zakharov. Three expressions of soliton solutions
to the two-dimensional sine-Gordon equation were given in [126]. The solitary wave
problem for the multi-dimensional nonlinear Schrödinger equation was discussed in
[2] and [171]. The cylindrical solitons in water waves were considered in [176] and the
numerical resultswere also given. Guo et al. havederived the two-dimensional Boussi-
nesq equation and the KdV equation and also discussed the problem of their solitary
wave solutions. The stability of the soliton of the nonlinear Klein–Gordon equation
in nonlinear field theory was considered in [13]. It was shown that the soliton was
unstable with the nonlinear cubic term, but it was stable when the nonlinear term is
quintic. The problem of the existence and collapse of the multi-dimensional plasma
solitons was studied and discussed in [315] and [58]. From the point of view of current
research, considering the existence of multi-dimensional solitons, a large number of

https://doi.org/10.1515/9783110549638-007
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papers are devoted to the study of fully symmetric stable solutions, such that the prob-
lem is reduced to one dimension inmathematics, i.e., to study the spherical symmetric
or column-symmetric model. As for the dynamics of multi-dimensional solitons and
the investigation of the formation of the interaction process, the use of computer nu-
merical calculation is widespread. From this point of view, it promotes the develop-
ment of computational methods and computational mathematics for a new class of
evolution equations. In this chapter, we introduce the existence results of the multi-
dimensional solitons for several important nonlinear evolution equations and their
stability and collapses are briefly introduced and commented on.

7.2 Existence problem for multi-dimensional solitons

We define the solitary wave as a solution of the wave equations when its maximal am-
plitude supx |φ(x, t)| is not vanishing as t →∞, but, for any t, it vanishes as |x|→∞.
From the point of view of physics, some physical quantities, such as electric charge,
energy, etc., are concentrated in a limited area of space in any time (i.e., nondisper-
sive). Solitarywaves generallyhave two special forms: (1) travelingwaves,φ = u(x−ct),
where c is a constant vector, and (2) standing waves, φ = exp(iωt)u(x), where ω is a
real number and i = √−1. Solitary waves are usually referred to as traveling waves,
but in recent years, standing waves with oscillation factor are also known as solitary
waves. For example, the traveling wave solution with oscillation factor for the nonlin-
ear Schrödinger equation has been called envelope solitary wave. In some literature,
solitary waves are confused with solitons, but solitons should be understood as soli-
tary waves with “some certain safety factor”, that is, the amplitude and shape of the
solitary waves are not changed or only changed slightly by an interaction. In the fol-
lowing, we discuss the existence of solitary waves and solitons for several important
nonlinear wave equations.

(I) The real nonlinear Klein–Gordon (NLKG) equation.
We have

φtt − Δφ +m
2φ + f (φ) = 0, (7.2.1)

where x = (x1, x2, . . . , xn) ∈ Rn, Δ is the Laplace operator, and m > 0. We assume that
f (0) = 0, f (reiθ) = f (r)eiθ. If φ posses the standing wave from solution (2), then equa-
tion (7.2.1) becomes

−Δu + (m2 − ω2)u + f (u) = 0. (7.2.2)

Wewill show that there exists a nontrivial solution to (7.2.2), and the solution vanishes
exponentially as |x| → ∞ when f (u) satisfies some growth conditions and |ω| < m.
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If (7.2.1) has the traveling wave solution (1), then we have

−∑
ij
aij
𝜕2u
𝜕xi𝜕xj
+m2u + f (u) = 0, (7.2.3)

where aij = δij + cicj. If |c| < 1, then (aij) is positive definite. In fact, we have∑ij aijξiξj =
|ξ |2 − (c ⋅ ξ )2 ≥ (1 − (c)2)|ξ |2 for all ξ = (ξ1, ξ2, . . . , ξn) ∈ Rn. Through some rotation
transformations, (7.2.2) and (7.2.3) can be reduced to the following equation:

−Δu + F(u) = 0, x ∈ Rn, (7.2.4)

where F(u) = f (u)+ (constant)u. We always assume F(0) = 0, which means that equa-
tion (7.2.4) always has the trivial solution u = 0. We also assume F is a real continuous
function. Let G󸀠 = F, G(0) = 0. Then we easily obtain some necessary conditions for
the solution of equation (7.2.4).

Theorem 7.2.1. If u(x, t) is the solution of (7.2.4) and vanishes as |x|→∞, then we have

(n − 2)∫ |∇u|2dx = −(n − 2)∫ uf (u)dx

= −2n∫G(u)dx. (7.2.5)

Therefore, if sF(s) or G(s) (n ̸= 1) or H(s) = (n − 2)sF(s) − 2nG(s), or −H(s) is positive
(s ̸= 0), then (7.2.4) only has a trivial solution. For any nontrivial solutions, the energy is
positive, as we have

E(t) = ∫[ 1
2
|∇u|2 − G(u)]dx

=
1
n
∫ |∇u|2dx.

Proof. We prove (7.2.5). Assuming ū represents the complex conjugation of u, we have

−(Δu)ū = ∇(∇u ⋅ ū) + |∇u|2.

Multiplying (7.2.4) by ū and integratingwith respect to x and assuming u and its deriva-
tive vanish as |x|→∞, we get

∫[|∇u|2 + Re ūF(u)]dx = 0.

On the other hand, r 𝜕ū𝜕r = ∑ xiūi and the identities
−Re uijūi = −Re(ujxiūi)j + (

1
2
xi|uj|

2)
i
+ (1 − n

2
)|uj|

2,

Re F(u)xiūi = (xiG(u))i − nG(u),

∫[(n − 2)|∇u|2 + 2nG(u)]dx = 0.

This immediately yields (7.2.5).
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Let L ≡ −∑ aij
𝜕2𝜕xi𝜕xj +a0, where the constant matrix aij is positive definite and a0 is

a positive constant. Assume F1(s), F2(s) are real continuous functions, s ∈ [0,∞), and
G1(s), G2(s) are the indefinite integrals of F1, F2, respectively. We assume they satisfy
the following conditions:

F1(s) ≥ 0, F2(s) > 0, s > 0, (7.2.6)
F1(s) = O(s), F2(s) = o(s), when s→ 0, (7.2.7)

F2(s) = o(s
l + F1(s)), s→∞, (7.2.8)

F2(s) = o(s
l + G1(s)/s), s→∞, (7.2.9)

where l = n+2
n−2 and n > 3.

Theorem 7.2.2. Assume that the conditions (7.2.6), (7.2.7), (7.2.8), and (7.2.9) hold. Then
there exist λ > 0 and the solution u ∈ H1 of

Lu + F1(u) = λF2(u), (7.2.10)

where u is nonnegative; u exponentially decays to zero as |x|→∞and∫G1(u(x))dx <∞.

Remark. Theorem 7.2.2 is still true when n = 1 or n = 2 and it can be established in
weaker conditions at this time. In what follows, we give a few examples of how to use
the results of Theorems 7.2.1 and 7.2.2.

Example 7.2.3. Given −Δu + u − |u|q−1u = 0, x ∈ Rn, n ≥ 3, q > 1.
Applying Theorem 7.2.1, we have

F(s) = s − |s|q−1s, G(s) = s
2

2
−
|s|q+1
q + 1
.

Let α−1 = 2−1 − (q + 1)−1, so while the coefficients of

(
n − 2
2
)sF(s) − nG(s) = −s2 + (1 − α−1n)|s|q+1

have the same symbol, i.e., α ≤ n or q ≥ n+2
n−2 , there does not exist a nontrivial solution.

Thus, we assume 1 < q < n+2
n−2 . Any solutions must satisfy the identity (7.2.5), that is,

α(n − 2)∫ |∇u|2dx = nα
α − n
∫ |u|2dx

= n∫ |u|q+1dx.
If we set F1(s) = 0, F2(s) = |s|q−1s, L = −Δ + I, λ = 1, then, from Theorem 7.2.2, we know
that the nonnegative solution exists.
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Example 7.2.4. Given−Δu+(m2−ω2)u+|u|p−1u−λ|u|q−1u = 0,where x ∈ Rn,m2−ω2 > 0,
and p, q are two numbers which are different from each other and bigger than 1. We
discuss four situations.

Case A: 1 < q < max(p, n+2n−2 ). Theorem 7.2.2 asserts that there exist nontrivial solu-
tions for some λ > 0. Note that

G(s) = 1
2
(m2 − ω2)s2 + 1

p + 1
|s|p+1 − λ

q + 1
|s|q+1

is bounded from below, so there exists λ∗ such that G(s) is nonnegative while λ ≥ λ∗.
By Theorem 7.2.1, there only exists the trivial solution. From Theorem 7.2.1, we know
that, if the nontrivial solution exists, the energy integralmust be positive. At this time,
we have the energy density

1
2
|φt |

2 +
1
2
|∇φ|2 + G(φ)

=
1
2
|∇u|2 + ω2u2 + G(u).

Ifω > 0and λ is slightly larger than λ∗, then it easy to prove the above is positive. These
solutions have been calculated in [315]when n = 3, p = 5, and q = 3. Interesting results
were obtained. When the energy density is positive, the perturbation of the positive
solution with respect to the initial conditions is stable. Under the above selection of
p, q, n and choosingm2 − ω2 = 1, we have

λs4 = (2s)( 1
2
λs3) ≤ 1

2
(2s)2 + 1

2
(
1
2
λs3)

2

= 2s2 + 1
8
λ2s6,

G(s) = 1
2
s2 + 1

6
s6 − λ

4
s4 ≥ ( 1

6
−

1
32
λ2)s6.

Then we get λ∗ = (4.3)− 12 .
Case B: p < q < n+2

n−2 . Applying Theorem 7.2.2, we can show that there exists an
infinite sequence of nontrivial solutions for each λ > 0.

Case C: p ≤ n+2
n−2 ≤ q. Let α−1 = 2−1 + (q+ 1)−1 and β−1 = 2−1 + (p+ 1)−1. Then α ≤ n ≤ β

and

n − 2
2

sF(s) − nG(s)

= −s2 − (1 − n
β
)|s|p+1 + (1 − n

α
)λ|s|α+1.

By Theorem 7.2.1, there exist nontrivial solutions.
Case D: n+2

n−2 < p < q. We do not know whether there exist nontrivial solutions.
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Remark. For the existence of nontrivial solutions to the equation −Δu + F(u) = 0, we
substantially required F󸀠(0) ≥ 0. In fact, assume −α = F󸀠(0) < 0, let f (s) = F(s)/s + α,
assume u(x) to be a nontrivial solution and small at infinity, and let q(x) = f (u(x)).
Then the equation can be written as −Δu + qu = αu. Assume u(x) to be sufficiently
small at infinity, such that q(x) = O(|x|−1). Then it is easy to see that the operator
−Δ + q has no positive eigenvalues, which is a contradiction. Therefore,

F󸀠(0) ≥ 0.
Wenowconsider the solution of the axisymmetric problem. The axial solutionu(r)

is continuous for r = |x| ̸= 0 and satisfies the following equation:

urr +
n − 1
r

ur − F(u) = 0, 0 < r <∞,

where F(u) = u + F1(u) − λF2(u). Then

r1−n(rn−1ur)r = urr + n − 1r ur

is continuous, so u ∈ C2, r ̸= 0. Let

q(r) = F(u(r))
u(r)
= 1 + F󸀠1(0) + p(r).

From (7.2.6) and (7.2.7), we have p(r) → 0 and r → ∞. Thus, we have q(r) ≥ 1
2 for

sufficiently large r. Set v = r(n−1)/2u. Then v satisfies
vrr − [q(r) +

(n − 1)(n − 3)
4r2

]v = 0,

(
1
2
v2)

rr
= v2r + [q(r) +

(n − 1)(n − 3)
4r2

]v2.

Thus ω = v2 satisfies ωrr ≥ ω for sufficiently large r. From this, we can derive the
exponential decay of ω and u.

In fact, for the large r, we deduce that Q = e−r(ωr + ω) is nondecreasing. If Q
remains nonpositive for large r, then we have (erω)r = e2rQ ≤ 0, so we can derive
ω = O(e−r)(r →∞). IfQ ≥ 2δ > 0, thenωr +ωmust not be integrable near infinity, but
since u ∈ H1, functions v2, v2r , ω, and ωr are all integrable in the interval k < r < ∞.
This is a contradiction and, therefore, we have proved the exponential decay of the
solutions.

The relation of the axial solution and a class of definite solutions is as follows.

Theorem 7.2.5. Assume L = I −Δ, F1 = 0, and F2 is a continuous real function such that

(i) sF2(s) > 0, s ̸= 0,
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(ii) F2(s) = O(|s|
p), |s|→∞, and

p < (n + 2)/(n − 2) = l,
(iii) F2 is an odd function and F2(0) = 0.

Then, for any γ > 0, there exist infinite axial solutions (λk ,±uk), k = 0, 1, 2, . . . , to Lu =
λF2(u), while

(Luk , uk) = γ.

Theorem 7.2.6. Assume F is a real continuous function and satisfies

(i) F(s)/s→ −∞, s→∞,
(ii) sF(s) ≥ αG(s), α > 2,
(iii) F(s) = o(s), s→ 0,
(iv) F2(s) = O(|s|

p), |s|→∞, p < (n + 2)/(n − 2) = l.

Then there exists at least one nontrivial solution for the equation Lu + F(u) = 0. If F is
an odd function, then there exist infinitely different solutions ±uk (k = 0, 1, 2, . . .).

Example 7.2.7. Given −Δu + u − |u|q−1u = 0, 1 < q < n+2
n−2 . By Theorems 7.2.5 and 7.2.6,

we can derive that there exist many axial solutions u0, u1, u2, . . . .

Example 7.2.8. Given −Δu + u + |u|p−1u − λ|u|q−1u = 0, 1 < p < q < n+2
n−2 . For any λ > 0,

we can derive that there exists at least one nontrivial solution by Theorem 7.2.6. For
large p, q, this problem remains unresolved.

(II) Consider the multi-dimensional nonlinear Langmuir wave

{{{
{{{
{

i𝜕E⃗
𝜕t
= −∇2E⃗ + nE⃗,

𝜕2n
𝜕t2
= ∇2[n + g(|E⃗|2)],

(7.2.11)

where i = √−1, E⃗ = (E1,E2, . . . ,EN ) is the complex amplitude of the high-frequency
electric field, n is the low-frequency disturbance of the ion density with respect to its
constant equilibrium state, and g is the given function of |E⃗|2. When g(|E⃗|2) = |E⃗|2,
(7.2.11) represents the Zakharov equations. When g(|E⃗|2) = χ(1−exp(−|E⃗|2)), where χ is
a positive constant, the equation corresponds to the saturated state of the ion density.
Assume k⃗ to be the unit vector of Rn and v to be the traveling wave velocity. We look
for the following traveling wave solutions of (7.2.11):

E⃗(x⃗, t) = h⃗(k⃗ ⋅ x⃗ − vt), n(x, t) = s(k⃗ ⋅ x⃗ − vt), (7.2.12)
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where h⃗ and s are the vector function and the function which is to be demanded, re-
spectively. Assume |h⃗(ξ )|, |s(ξ )| to be uniformly bounded, where ξ = k⃗ ⋅ x⃗ − vt and
assume

󵄨󵄨󵄨󵄨h⃗(ξ )
󵄨󵄨󵄨󵄨,
󵄨󵄨󵄨󵄨s(ξ )
󵄨󵄨󵄨󵄨→ 0, (|ξ |→∞).

Inserting (7.2.12) into (7.2.11), we find h⃗ = (h1, . . . , hN ) and s satisfy the equations

− iv dh⃗
dξ
+
d2h⃗
dξ 2
= s(ξ )h⃗(ξ ), (7.2.13)

(v2 − 1) d
2s

dξ 2
=

d2

dξ 2
g(|h⃗|2). (7.2.14)

Integrating (7.2.14), we have

(v2 − 1)s(ξ ) = g(|h⃗|2) + ĉξ + c, (7.2.15)

where ĉ and c are integration constants. Assuming v2 ̸= 1, from the boundedness
requirement of s(ξ ), we set ĉ = 0. We solve s(ξ ) from (7.2.15) and insert the result
in (7.2.13), to find h⃗ satisfies the complex equation

d2h⃗
dξ 2
− iv dh⃗

dξ
= (v2 − 1)−1[g(󵄨󵄨󵄨󵄨h⃗(ξ )󵄨󵄨󵄨󵄨2) + c]h⃗.. (7.2.15’)

For the sake of convenience, we write (7.2.15’) in polar form. Let

hj(ξ ) = Aj(ξ ) exp[iθ(ξ )], j = 1, 2, . . . ,N .

Then we have

d2Aj
dξ 2
+ Ajθ
󸀠
j [v − θ

󸀠
j (ξ )]

= (v2 − 1)−1Aj[g(‖A‖2) + c] (7.2.16)

d2θ
dξ 2
= [v − 2θ󸀠j (ξ )] ddξ lnAj, j = 1, 2, . . . ,N , (7.2.17)

where A = (A1,A2, . . . ,AN ), ‖A‖ = |h⃗|, θ󸀠j = dθj
dξ . Integrating (7.2.17), we get

θ󸀠j (ξ ) = (v − μjA−2j (ξ ))/2,
μj = A

2
j (0)(v − 2θ

󸀠
j (0)).

(7.2.18)

Inserting (7.2.18) into (7.2.16), we find that Aj satisfies the differential equations

d2Aj
dξ 2
= f (μj, c, A⃗)Aj, j = 1, 2, . . . ,N , (7.2.19)
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where

f (μj, c, A⃗) = (μ
2
jA
−4
j − v

2)/4 + (v2 − 1)−1[g(‖A‖2) + c]. (7.2.20)

Equation (7.2.19) can be written in the following form:

d2Aj
dξ 2
=
𝜕U
𝜕Aj
, j = 1, 2, . . . ,N , (7.2.21)

where

U(A⃗, μ⃗, c) = U1(‖A⃗‖
2, c) −

N
∑
j=1 μ2j

8A2j
, (7.2.22)

2U1(‖A⃗‖
2, c) = ∫

‖A‖2
0
[Kg(η) + γ]dη, (7.2.23)

K = (v2 − 1)−1, γ = (v2 − 1)−1c − v2
4
, (7.2.24)

where μ⃗ = (μ1, μ2, . . . , μN ). The first integral of (7.2.21) is

I(A⃗(ξ ), A⃗󸀠(ξ )) = 󵄩󵄩󵄩󵄩A⃗󸀠(ξ )󵄩󵄩󵄩󵄩2 − 2U1(
󵄩󵄩󵄩󵄩A⃗(ξ )
󵄩󵄩󵄩󵄩
2
, c) −

N
∑
j=1 μ2jA−2j (ξ )/4 = c1, (7.2.25)

where ‖A⃗󸀠(ξ )‖2 = ∑Nj=1[ dAj(ξ )
dξ ]

2 and

c1 =
󵄩󵄩󵄩󵄩A⃗
󸀠(0)󵄩󵄩󵄩󵄩2 − 2U1(

󵄩󵄩󵄩󵄩A⃗(0)
󵄩󵄩󵄩󵄩
2
, c) −

N
∑
j=1[v − 2θ󸀠j (0)]. (7.2.26)

Obviously, if μj ̸= 0 for some j, since c1 is limited, then, when

󵄩󵄩󵄩󵄩A⃗
󸀠(ξ )󵄩󵄩󵄩󵄩→ 0, 󵄩󵄩󵄩󵄩A⃗(ξ )

󵄩󵄩󵄩󵄩→ 0,

where I(A⃗(ξ ), A⃗󸀠(ξ )) → −∞, the solitary wave solution of (7.2.21) or (7.2.16) does not
exist, such that ‖A⃗(ξ )‖→ 0, ‖A⃗󸀠(ξ )‖→ 0 (|ξ |→∞). When μ = 0, we have

θj(ξ ) = θj(0) +
1
2
vξ j = 1, 2, . . . ,N . (7.2.27)

At this time, (7.2.21) becomes

d2Aj
dξ 2
=
𝜕U1
𝜕Aj
, j = 1, 2, . . . ,N . (7.2.28)

The equilibrium point of (7.2.28) is (Ae,0) ∈ R2N such that Ae is the stationary point of
U1 or satisfies the equation f (0, c, A⃗)A⃗ = 0. Ae obviously includes the cases of A = 0
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and A satisfying g(‖A⃗‖2) = v2(v2 − 1)/4c. For equation (7.2.28), letting u(ξ ) = ‖A⃗(ξ )‖2,
a direct calculation yields

d2u
dξ 2
= 2󵄩󵄩󵄩󵄩A⃗
󸀠(ξ )󵄩󵄩󵄩󵄩2 + 2A⃗(ξ ) ⋅ d2A⃗dξ 2

= 2󵄩󵄩󵄩󵄩A⃗
󸀠(ξ )󵄩󵄩󵄩󵄩2 + 2u ̃f (c, u), (7.2.29)

where ̃f (c, ‖A⃗‖2) = f (0, c,A). For a fixed c1 and μ = 0, (7.2.29) is

d2u
dξ 2
= 2[u ̃f (c, u) + c1 + 2U1(u, c)] = p(u, c, c1). (7.2.30)

The initial conditions are

u(0) = 󵄩󵄩󵄩󵄩A⃗(0)
󵄩󵄩󵄩󵄩
2
, u󸀠(0) = 2A⃗(0) ⋅ A⃗󸀠(0), (7.2.31)

󵄩󵄩󵄩󵄩A⃗
󸀠(0)󵄩󵄩󵄩󵄩2 = c1 + 2U1(

󵄩󵄩󵄩󵄩A⃗(0)
󵄩󵄩󵄩󵄩
2
, c) ≥ 0. (7.2.32)

The first integral of (7.2.30) is

[u󸀠(ξ )]2 = [u󸀠(0)]2 + ∫u(ξ )
u(0) p(η, c, c1)dη

= Q(u, c, c1, u
󸀠(0)), (7.2.33)

where u󸀠 = du
dξ . Equation (7.2.33) is true only if its right-hand side term is nonnegative.

The implicit representation of ‖A⃗‖2 can be obtained from the integral of (7.2.33). We
have

∫
‖A(ξ )‖2‖A(0)‖2 Q(η, c, c1, u󸀠(0))− 12 dη = ±ξ . (7.2.34)

We now discuss the existence of solutions with ‖A(ξ )‖ → 0 (|ξ | → ∞) to equa-
tion (7.2.28).

Theorem 7.2.9. If

Kg(u) + γ ≥ 0, ∀u ≥ 0, (7.2.35)

then there does not exist a solution of (7.2.28) such that

󵄩󵄩󵄩󵄩A⃗(0)
󵄩󵄩󵄩󵄩 > 0,

󵄩󵄩󵄩󵄩A⃗(ξ )
󵄩󵄩󵄩󵄩→ 0, (|ξ |→∞).

Proof. The condition (7.2.35) is equivalent to ̃f (c, u) ≥ 0 for u ≥ 0. By (7.2.29), we have
d2u
dξ 2 ≥ 0. We deduce that any solution ‖A⃗(ξ )‖2 corresponding to (7.2.28) is a convex
function of ξ . Therefore, it is impossible to have the solution such that ‖A⃗(0)‖ > 0 and
‖A⃗(ξ )‖→ 0 (|ξ |→∞).
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Theorem 7.2.10. Assume the following conditions hold:
(i) v2(v2 − 1) > 4c, v2 < 1;
(ii) g(s) is a strictly monotone increasing function, g(0) = 0, and there exists a positive

number u1 <∞ such that

∫
u1

0
g(η)dη = [v2(v2 − 1)/4 − c]u1, (7.2.36)

∫
u

0
g(η)dη > [v2(v2 − 1)/4 − c]u1, ∀u > u1. (7.2.37)

Then (7.2.28) has a solution A⃗(ξ ) ≥ 0, ∀ξ ∈ R with ‖A⃗(0)‖ > 0, ‖A⃗󸀠(0)‖ = 0, so we obtain
‖A⃗(ξ )‖→ 0, ‖A⃗󸀠(ξ )‖→ 0 (|ξ |→∞).

For equation (7.2.28), in order to look for themodule of the solution A⃗(ξ ) being the
periodic function of ξ , we have the following theorem.

Theorem 7.2.11. Suppose the conditions of Theorem 7.2.10 hold and there exists a real
number γe > 0 satisfying

Kg(γ2e) + γ = 0, or g(γ2e) = v
2(v2 − 1)/4 − c. (7.2.38)

Then there exists a solution A⃗(ξ ) of (7.2.28) and ‖A⃗(ξ )‖ is the periodic function of ξ .

Theorem 7.2.12. Assume the following conditions hold:
(i) g(u) is a real-valued increasing function and g(0) = 0;
(ii) v2(v2 − 1) < 4c, v2 > 1;
(iii) the initial conditions A⃗(0), A⃗󸀠(0) satisfy ‖A⃗(0)‖ > 0 and

c̃1 =
󵄩󵄩󵄩󵄩A⃗
󸀠(0)󵄩󵄩󵄩󵄩2 − 2U1(

󵄩󵄩󵄩󵄩A⃗(0)
󵄩󵄩󵄩󵄩
2
, c) ≥ 0.

Then there exists a solution A⃗(ξ ) of (7.2.28) and ‖A⃗(ξ )‖must not be the periodic function
of ξ .

(III) Consider the three-dimensional Friedberg–Lee–Sirlin (FDS) [82] nonlinear
wave equations

◻φ + α2χ2φ = 0, (7.2.39)

◻χ + α2χ|φ|2 + 1
2
χ(χ2 − 1) = 0, (7.2.40)

where ◻ ≡ 𝜕2𝜕t2 − Δ and Δ ≡ 𝜕2𝜕x21 + 𝜕2𝜕x22 + 𝜕2𝜕x23 . For the complex field, we consider the
following traveling wave solutions with oscillating factors:

φ(r, t) = 1
√2

ψ(r)e−iωt . (7.2.41)
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From (7.2.39) and (7.2.40), we get

∇2ψ − α2χ2ψ + ω2ψ = 0, (7.2.42)

∇2χ − α2ψ2χ − 1
2
(χ2 − 1)χ = 0. (7.2.43)

The electric charge is Q = ω∫ψ2d3x and the energy of the system is E = ∫ εd3χ, where

ε = 1
2
(∇χ)2 + (∇ψ)2 + 1

2
(ω2 + α2χ2)ψ2 +

1
4
(χ2 − 1)2.

Let

ξ = (α2 − ω2)
1
2 , χ = 1 − 1

2
(ξ /α)2x,

ψ = 2− 12 ξ
α
y.

(7.2.44)

Considering the spherically symmetric solution x, y as the function of r, inserting
(7.2.44) into (7.2.43), and comparing the lowest-order terms of ξ , we get

x = y2.

Furthermore, from (7.2.42) we obtain

1
r2

d
dr
(r2 dy

dr
) − y + y3 = 0 (7.2.45)

and the boundary conditions are

{{
{{
{

dy
dr
= 0, r =∞,

y = 0, r →∞.
(7.2.46)

It is easy to see that (7.2.45) and (7.2.46) have infinitelymany solutions, whereas the so-
lutionwith the lowest energy andno intersection in the radial direction corresponding
to problem (7.2.42) and (7.2.43) is the soliton solution, which is stable.

(IV) Consider the multi-dimensional nonlinear Schrödinger equation

iut + ∇
2u + q(|u|2)u = 0. (7.2.47)

Let

u = f (x󸀠1, x󸀠2, . . . , x󸀠n)eiθ , x󸀠j = xj − cjt,
θ =

N
∑
j=1 kjxj − ωt. (7.2.48)
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Then

ut = [f (−iω) −
N
∑
j−1 fx󸀠j cj]eiθ ,

uxixj = [−kikjf + i(kifx󸀠j + kjfx󸀠i ) + fx󸀠i x󸀠j ]eiθ
(j = 1, 2, . . . ,N).

Inserting this into (7.2.47), we have

ωf − i
N
∑
j=1 fx󸀠j cj + 2i N

∑
j=1 kjfx󸀠j − N

∑
j=1 k2j f + ∇󸀠 2f + q(f 2)f = 0.

Choosing cj = 2kj and eliminating the imaginary part, we get

∇󸀠 2f + (ω − N
∑
j=1 k2j )f + q(f 2)f = 0. (7.2.49)

For the spherical symmetry case, we have

1
ρn−1 𝜕𝜕ρ(ρn−1 𝜕f𝜕ρ) + (ω − N

∑
j=1 k2j )f + q(f 2)f = 0. (7.2.50)

When n = 1,ω = k2i −η
2, we get the solitary solution of the one-dimensional nonlinear

Schrödinger equation, which is stable. For the solitary solutions of n > 1, they are
unstable.

(V) In the low-voltage magnetized plasma, the three-dimensional ion acoustic
wave equations are

{{{{{{{
{{{{{{{
{

𝜕n
𝜕t
+ div nV⃗ = 0,

𝜕V⃗
𝜕t
+ (V⃗ ⋅ ∇)V⃗ = −e∇φ/M + [V⃗ ,WHi

],

Δφ = −4πe(n − n0) exp(eφ/Te).

(7.2.51)

We reduce these to the dimensionless form, so we have

𝜕u
𝜕τ
+
𝜕
𝜕ξz
(Δ ξξ + u)u = 0, (7.2.52)

where τ = 1
2ωpi t and u =

vz
2cs
. Letting u = u(ξz − λτ), we have

Δ ξξu − (λ − u)u = 0. (7.2.53)
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Figure 7.1: The graph of the solution of (7.2.54).

When λ = c2 > 0, it has the solution of exponential decay as |ξ |→∞. The simplest is
the spherical symmetry case:

1
ξ 2

d
dξ
(ξ 2 du

dξ
) − (c2 − u)u = 0. (7.2.54)

The solutionof (7.2.54) exists, as it is the three-dimensional soliton solution and stable.
Through numerical calculations, we get the graphics as shown in Figure 7.1.

(VI) Consider the two-dimensional sine-Gordon equation

φxx − φyy − φtt = sinφ. (7.2.55)

Its three soliton solutions were considered in [126]. The formal solution of (7.2.55) is

φ(x, y, t) = 4 tan−1[g(x, y, t)/f (x, y, t)],
where

f = 1 + a(1, 2)eη1+η2 + a(1, 3)eη1+η3 + a(2, 3)eη1+η3 ,
g = eη1 + eη2 + eη3 + a(1, 2)a(1, 3)a(2, 3)eη1+η2+η3 ,

a(i, j) =
(pi − pj)2 + (qi − qj)2 − (Ωi −Ωj)2

(pi + pj)2 + (qi + qj)2 − (Ωi +Ωj)2
,

ηi = pix + qiy −Ωit − η
0
i (η

0
i is a constant),

p2i + q
2
i −Ω

2
i = 1, i = 1, 2, 3,

and we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p1 q1 Ω1
p2 q2 Ω2
p3 q3 Ω3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0.

(VII) Consider the complex nonlinear field equation

∇2ψ − c−2 𝜕2ψ
𝜕t2
= k2ψ − μ2|ψ|2ψ. (7.2.56)
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Assume ψ = φ(r)eiωt, where φ(r) is real and spherically symmetric. Then (7.2.56)
is

d2φ
dr2
+
2
r
dφ
dr
= (k2 − ω

2

c2
)φ − μ2φ3, (7.2.57)

dφ
dr

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨r=0 = 0, φ→ 0, r →∞. (7.2.58)

Supposing k2 − ω2/c2 > 0 and making the transformation

r󸀠 = r(k2 − ω2/c2)
1
2 , φ󸀠 = μφ(k2 − ω2/c2)− 12 ,

we find that φ󸀠 satisfies the equation
d2φ󸀠
dr󸀠 2 + 2r󸀠 dφ󸀠dr󸀠 = φ󸀠 − φ󸀠 3.

It can be shown that the solution ψ = φ(r)eiωt of (7.2.56) is unstable for small pertur-
bations.

7.3 The stability and collapse of multi-dimensional solitons

One of the most important and natural requirements for solitons in plasma physics
and various field models is that it must be stable, that is, from the “process” point
of view, the solitons must have a sufficiently long lifetime. In other words, the soli-
ton lifetime must be much longer than the interaction characteristic of solitons. The
stability of this aspect has longitudinal stability and lateral stability by the direction
of disturbance. From the analysis and processing of the stability, we know there are
linear stability and nonlinear stability. Nonlinear stability generally refers to the sta-
bility according to some functional. This stability, which is usually considered phys-
ically, means that the energy of the system is minimized. In the multi-dimensional
case, many solitary waves are unstable.

1. Let us start with the simplest case, a real (uncharged) scalar field, as described
by the following nonlinear wave equation:

◻φ + F󸀠(φ) = 0 (◻ ≡ 𝜕2
𝜕t2
− ∇2, F󸀠(φ) = dF

dφ
). (7.3.1)

The Hamiltonian of the stationary field is

E + ∫[ 1
2
(∇φ)2 + F(φ)]dx = K + V . (7.3.2)

After the scaling transformation, φα = φ(αx), we have

E[φα] = α
2−nK + α−nV , (7.3.3)
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dE
dα

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨α=1 = 0, V = 2 − n
n

K, (7.3.4)

d2E
dα2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨α=1 = −2(n − 2)K. (7.3.5)

From (7.3.4) and (7.3.5), we see that the minimal value of E is given at n = 1, which is
stable; the maximal value of E[φ] is given at n > 2, which is unstable; an inflection
point is given at n = 2.

2. If the charged field is present, then the above situation will emerge qualitative
change. For example, for the three-dimensional FDS nonlinear wave equation (7.2.39),
(7.2.40), while

Q > Qs =
1
2
(
4
3
π
α
)
4
,

we can prove that Emin < Qm (corresponding to the free meson solution). Its solitary
solution is absolutely stable.

3. Consider the φ5 nonlinear wave equation

∇2ψ − 1
c2
𝜕2ψ
𝜕t2
= k2ψ − μ2|ψ|2ψ + λ|ψ|4ψ, (7.3.6)

where λ is real and usually positive. Considering the spherically symmetric solution,
(7.3.6) becomes

d2φ󸀠
dr󸀠 2 + 2r󸀠 dφ󸀠dr󸀠 = φ󸀠 − φ󸀠 3 + βφ󸀠 5, (7.3.7)

where

φ󸀠 = μφ(1 − ω󸀠 2)− 12 , r󸀠 = kr(1 − ω󸀠 2) 12 ,
β = λk2(1 − ω󸀠 2)/μ4. (7.3.8)

Both the first-order perturbation theory and the direct perturbation method can be
used to prove the existence of the stable solution to (7.3.6).

4. Consider the three-dimensional ion acoustic equation (7.2.53) in low-pressure
magnetized plasma. Its energy is

ℋ = ∫[
1
2
(Dξu)

2 −
1
3
u3]dξ .

Using the Hölder inequality

∫ u3dξ ≤ (∫ u2dξ)
1
2

(∫ u4dξ)
1
2
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and the interpolation inequality of ∫ u4dξ ,

∫ u4dξ ≤ 2(∫ u2dξ)
1
2

(∫ |∇u|2dξ)
3
2

, (7.3.9)

we get

ℋ ≥ ∫
(∇u)2

2
dξ − 2

3
(∫ u2dξ)

3
4

(∫(∇u)2dξ)
3
4

≥ −
1
6
(∫ u2dξ)

3
.

Then we deduce that the functional ℋ has a lower bound, so the three-dimensional
spherical soliton solution reaches an absolute minimum. Hence, it is stable.

5. Here, we turn to the collapse of the Langmuir wave. Recalling the mechanics
of the spherical shock wave concentrating effect, a similar phenomenon occurs in the
dissipationmechanism of the “Langmuir condensation” – the turbulence energy con-
denses on the longwave region of the frequency spectrum. This coalescence indicates
the instability of the multi-dimensional Langmuir solitons.

Example 7.3.1. In the φ3 approximation, the collapse of the Langmuir wave is de-
scribed by the equation

∇2(iψt + ∇
2ψ) − div(|∇ψ|2∇ψ) = 0, (7.3.10)

where ψ is the high-frequency potential envelope. Considering the spherically sym-
metric case, (7.3.10) is

iφt + ∇
2
rrφ −

n − 1
r2

φ + |φ|2φ = 0, (7.3.11)

where φ = −∇ψ and φ(0) = 0. Equations (7.3.10) and (7.3.11) have the conserved quan-
tities

s = ∫ |∇ψ|2d3r, s2 = ∫[
󵄨󵄨󵄨󵄨∇

2ψ󵄨󵄨󵄨󵄨
2
−
1
2
|∇ψ|4]d3r, (7.3.12)

s = ∫
∞
0
|φ|2r2dr,

s2 = ∫
∞
0
[󵄨󵄨󵄨󵄨(rφ)r
󵄨󵄨󵄨󵄨
2
+ 2|φ|2 − 1

2
r2|φ|4]dr,

(7.3.13)

respectively. Consider the acceleration motion of the quasi-plane soliton of (7.3.11) to
the origin (see Figure 7.2).

Let D = ⟨r2⟩φ = ∫∞0 |φ|2r4dr. Then, by (7.3.11), we have
d2D
dt2
= 6s2 − 2∫

∞
0

󵄨󵄨󵄨󵄨(rφ)r
󵄨󵄨󵄨󵄨
2dr − 4∫

∞
0
|φ|4r2dr < 6s2.
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Figure 7.2: The acceleration motion to the origin of the quasi-plane soliton of (7.3.11).

Supposing s2 ≤ 0 and integrating the above with respect to t, we have

D ≤ 3s2t
2 + c1t + c2.

When t → t0 =
c1+(c21+12c2|s2|) 12

6|s2| , the local solution of the initial value problem causes
singularity. If c1 > 0, the wave packet dispersion occurs for small t. On the contrary,
when c1 < 0, it leads to contraction.

Example 7.3.2. Consider the system of equations

div(−2i∇ψt − ∇∇
2ψ +Φ∇ψ) = 0, (7.3.14)

(
𝜕2

𝜕t2
− ∇2)Φ = ∇2(|∇ψ|2). (7.3.15)

Introducing the low-frequency potential u,

ut = Φ + |φ|
2 = Φ + |∇ψ|2, (7.3.16)

∇2u = Φt , (7.3.17)

∇2(iψt + ∇
2ψ) = div(Φ∇ψ), (7.3.18)

we easily get

s2 = ∫[
󵄨󵄨󵄨󵄨∇

2ψ󵄨󵄨󵄨󵄨
2
+Φ|∇ψ|2 + 1

2
Φ2 +

1
2
(∇u)2]d3r. (7.3.19)

Assuming s2 ≤ 0, for equations (7.3.16), (7.3.17), and (7.3.18), we can obtain the self-type
transformation in two limit cases. Under the quasi-static limit, they reduce to (7.3.10).
In the ultrasound limit, the right-hand side of (7.3.16) may ignore Φ. In the first case,
the self-type transformation of (7.3.10) is

ψ = exp{−iμ2 ln(t0 − t)}χ( ⃗ξ ), ⃗ξ =
x⃗
√t0 − t
, (7.3.20)
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where χ( ⃗ξ ) satisfies the equation

∇2(−μ2χ + 1
2
i ⃗ξ ⋅ ∇χ + ∇2χ) + div(|∇χ|2∇χ) = 0. (7.3.21)

In [58], Zakharov obtained a spherically symmetric solution in the region of | ⃗ξ | ≥ 1
μ ,

where χ satisfies the equation

i ⃗ξ ⋅ ∇χ = 2μ2χ.

Thus, we have

χ ≈ | ⃗ξ |−2iμ2χ0.
From (7.3.17), we get

s2(t) = s2(0)/√t0 − t.

In theultrasound limit,making the transformation iψt→−μ2(t)ψ, from (7.3.16), (7.3.17),
and (7.3.18), we have

∇2(−μ2(t)χ + ∇2χ) − div(Φ∇χ) = 0, (7.3.22)

Φtt = ∇
2|∇χ|2. (7.3.23)

This system of equations allows for the following transformations:

μ2(t) =
μ20

t0 − t
, χ = η(ξ )
(t0 − t)1− 2n ,

Φ =
D(ξ )
(t0 − t)
,

ξ = r(t0 − t)
− 2n ,

(7.3.24)

where n is the dimension of the space. The solution of (7.3.24) has the following prop-
erties:
(i) (7.3.24) leads to s2 = 0;

(ii) ∇2ΦΦtt ≈ (t0−t)2r2 ≈
(t0−t)2− 4n|ξ |2 ;

(iii) |φ(0, t)|2 = |∇χ(0, t)|2 = f (t) = f0(t0−t)2 ;
(iv) |Φ(0, t)| = φ0(t0 − t)

4
3 .

For the plane soliton, we deduce from (7.3.24) that ∇2ΦΦtt →∞ as t → t0. For the
two-dimensional collapse ∇2Φ/Φtt → constant and in the three-dimensional case
∇2Φ/Φtt → 0.

 EBSCOhost - printed on 2/10/2023 3:23 PM via . All use subject to https://www.ebsco.com/terms-of-use



190 | 7 Multi-dimensional solitons and their stability

Wedenote the initial selection in the three-dimensional space (in r, z coordinates)

ρ = ∇2ψ = {
ρ0√ω sin πz

2 , ω > 0,
0, ω ≤ 0,

ω = 1 − 1
4
(r2 + z2).

(7.3.25)

For the system of equations (7.3.16), (7.3.17), and (7.3.18), we also give

Φ(r, z,0) = −|∇ψ|2, Φt(r, z,0) = 0.

Equation (7.3.25) describes a dipole-type charge directed along the z-axis at t = 0.
The results show the collapse behavior at some time. In fact, it is a good descrip-

tion of the self-type transformation (7.3.24) (see Figure 7.3).

Figure 7.3: The collapse behavior of the plane soliton.
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8 Numerical computation methods for some
nonlinear evolution equations

8.1 Introduction

With the development of the soliton problem, the numerical computationmethods for
a large number of nonlinear evolution equations with soliton solutions (which have
dispersion properties in general) are also currently emerging and have been devel-
oping vigorously. In fact, the numerical computation results of nonlinear equations
have played an important role when the soliton problem began to give compelling re-
sults. For example, for the KdV equation, although the analytical processing for soli-
tary waves was done in 1895 by Korteweg and de Vries, the rich content of the non-
linear phenomenon was unknown. It was not until 1965 that Zabusky and Kruskal
obtained the Korteweg–de Vries (KdV) equation by the harmonic lattice model and
after the discovery of the maximum stability of wave forms remaining unchanged af-
ter soliton interaction, people started to become much more interested in the soliton.
Other calculations, such as the Fermi–Pasta–Ulamproblem and the calculation of the
two solitary solutions (kink) of the sine-Gordon equation by Perring and Skryme, pro-
vide an important basis for analyzing the existence of solitons in physics. With the
deepening and complexity of the study of soliton problems, especially the interaction
of multiple solitons and quasi-solitons, as well as the qualitative and quantitative re-
search for theproblemsof the existence and interaction ofmulti-dimensional solitons,
numerical calculations have already played an increasingly important role. It is no ex-
aggeration to say that, for the soliton problems in laser and plasmaphysics, numerical
computation has become the main tool to investigate stability.

For the numerical computation for nonlinear evolution equations with soliton so-
lutions, it is generally required that the calculation is stable and can adapt to the large
gradient change of soliton solutions. Also, the computational schemes must satisfy
the characteristics of conservation laws to an acceptable extent. There are two com-
monly used numerical methods. One is the finite difference method, the other is the
function approximationmethod, that is, the finite elementmethod and the collocation
method.

Now we consider the general evolution equation

ut = L(u), (8.1.1)

where L(u) is the general nonlinear differential operator. For the finite difference
method, we use the difference operator Lh(unm) to approximate L(u), where unm =
u(xm, tn), xm = mh, and tn = nk. We usually use the following equations to discretize
the time derivative:

un+1m − u
n
m = kLh(u

n
m), (8.1.2)

https://doi.org/10.1515/9783110549638-008
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unm − u
n−1
m = kLh(u

n
m), (8.1.3)

un+1m − u
n−1
m = 2kLh(u

n
m). (8.1.4)

We know that (8.1.2) is a simple display format, (8.1.3) is a simple implicit format,
and (8.1.4) is the leapfrog format. There are twomore complex and important formats.
One of these is the Crank–Nicolson format,which is the sumof (8.1.2) and (8.1.3),while
the other is a jump point format (Hopscotch format); when n+m is odd, it is calculated
in the format of (8.1.2) andwhen n+m is an even number, it is calculated in the format
of (8.1.3), so that the result of the simultaneous computation becomes the display, as
shown in Figure 8.1. In order tomake (8.1.3) explicit, the nonlinear part of Lh(unm)must
be averaged by the space

Lh(
1
2
(unm+1 + u

n
m−1)).

Figure 8.1: The jump point format.

All of these methods must satisfy the stability conditions, because otherwise the cal-
culation cannot proceed. For linear equations, the Crank–Nicolson schememaybe the
most efficient, but for nonlinear equations, it is troublesome to solve a large number
of nonlinear simultaneous equations at each step. It is well known that the leapfrog
scheme (8.1.4) is not stable for the linear heat conduction equations, but it is very suit-
able for the second-order hyperbolic equations. TheHopscotch scheme is simple, fast,
and stable, but for the parabolic equations, the time step size must be limited, k ≈ h2,
to ensure a reasonable accuracy.

The function approximation method, as the name suggests, uses the approxima-
tion solution defined in the finite-dimensional subspace to approximate the exact so-
lution u(x, t) as follows:

u(x, t) ≈ ũ(x, t) =
N
∑
i=1

ci(t)φi(x), (8.1.5)

where φi(x) are the base functions of the approximation space. They are usually
selected as trigonometric functions, which lead to the finite F-transform or pseudo-
spectral method. If we use the fragment polynomials as the local bases, we get the
finite element method. Supposing φi(x) satisfy the boundary condition, let

r(x, t) = ũt − L(ũ) =
N
∑
i=1

ċi(t)φi(x) − L(ũ). (8.1.6)
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The residual r(x, t) is required to be small in a certain sense, if one requires

∫
1

0
r(x, t)φj(x)dx = 0, j = 1, 2, . . . ,N , (8.1.7)

at this point, that is, the Galerkin method, (8.1.7) leads to a series of ordinary differen-
tial equations.

If, in a given set of points (such as Gauss points), the following condition is strictly
satisfied:

r(xj, t) = 0, j = 1, 2, . . . ,N , (8.1.8)

we get the collocation method.
In the following, we discuss the numerical methods and the calculated results for

some special nonlinear evolution equations.

8.2 Finite difference method and finite element method for
the KdV equation

In [314], the numerical calculation for the definite solution problem of the KdV equa-
tion in the following form:

ut + uux + δ
2uxxx = 0, (8.2.1)

u|t=0 = cosπx, (8.2.2)
u(x + 2, t) = u(x, t) (8.2.3)

is proceeded, using the following difference scheme:

un+1m = u
n−1
m −

1
3
k
h
(unm+1 + u

n
m + u

n
m−1)(u

n
m+1 − u

n
m−1)

− (
δ2k
h3
)(unm+2 − 2u

n
m+1 + 2u

n
m−1 − u

n
m−2)

(m = 0, 1, 2, . . . , 2N − 1), (8.2.4)
u0m = cosπxm, (8.2.5)
unm = u

n
m+2N , (8.2.6)

where k is the time step size, h = 1
N is the space step size, and unm = u(mh, nk). Themo-

mentum ∑2N−1m=0 unm of this difference scheme is conserved and the energy ∑2N−1m=0
1
2 (u

n
m)

2

is almost conserved. Choosing δ = 0.022, in this case, the initial dispersion is small
with respect to the nonlinear term, because

{max 󵄨󵄨󵄨󵄨δ
2uxxx
󵄨󵄨󵄨󵄨/max |uux|}t=0 = 0.004.
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The results are divided into three time periods.
(i) At first, the first and second terms of equation (8.2.1) play a dominant role,

which leads to the usual catch-up phenomenon. The solution is essentially deter-
mined by the hyperbolic equation ut + uux = 0 at the moment when u ≈ cosπ(x − ut).

(ii)When u is sufficiently steep, the third termbecomes important, which destroys
the formation of the discontinuous solution. At this time, the small wavelength of vi-
bration on the left is developed, the amplitude of the dispersion vibration is increased,
and finally a series of single solitons is formed.

(iii) Each soliton moves at a uniform velocity, which is proportional to the am-
plitude, and two or more solitons overlap in space due to the periodicity, producing
nonlinear interactions. After a short period of interaction, they show no influence on
their size and shape. In Figure 8.2, curve A represents the initial value (8.2.2) (t = 0),
curve B shows the image of the solution (8.2.1) when u = (cosπx−ut) generates multi-
ple values in x = 1

2 , t = tB =
1
π , and curveC shows the image of the dispersion structure

being fully developed into a series of solitons at t = 3.6tB. At this point, the maximum
positions of the solitons form a straight line.

For the Gaussian initial function, the KdV equationwas calculated in [23], consid-
ering the initial value problem

vt + vvx +
1
σ2
vxxx = 0, (−∞ < x <∞, t > 0), (8.2.7)

v|t=0 = φ(x) = e
−x2 , (−∞ < x <∞). (8.2.8)

It was found that two solitons were formed when 4 < σ < 7, there were three soli-
tons when 7 < σ < 11, four solitons when σ ≈ 11, and six solitons when σ ≈ 16. How-
ever, there do not exist solitons and there only exist dispersion vibration waves when
σ ≪ σ3 = √12. For some intermediate values σ, there are both solitons and dispersive
oscillations, as shown in Figure 8.3. Here,

σc = 6σ
2
s ∫
∞

−∞
[φ(ξ )]2dξ/(∫

∞

−∞
φ(ξ )dξ)

3
, φ(ξ ) = e−ξ

2
,

σs = √12.

Figure 8.2: The curves A, B and C as stated above.

 EBSCOhost - printed on 2/10/2023 3:23 PM via . All use subject to https://www.ebsco.com/terms-of-use



8.2 Finite difference method and finite element method for the KdV equation | 195

Figure 8.3: The figures of the solutions for the initial value problem (8.2.7)–(8.2.8) with different
values of σ.

Figure 8.4: The numerical results of initial value problem (8.2.9)–(8.2.10) using the format (8.2.4).

For the initial value problem of the KdV equation

ut + εuux + μuxxx = 0, (8.2.9)

u|t=0 =
1
2
[1 − tanh(x − 25)/25], (8.2.10)

using the format (8.2.4), the calculation results are shown in Figure 8.4.
Equation (8.2.4) is a three-tier format. The first step can be taken as (noncenter

format)

u1m = u
0
m −

1
6
ε k
h
(u0m+1 + u

0
m + u

0
m−1)(u

0
m+1 − u

0
m−1)

−
1
2
μ k
h3
[u0m+2 − 2u

0
m+1 + 2u

0
m−1 − u

0
m−2].
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The truncation error equation of this format isO[k3+kh2]. Its linear stability condition
is

k
h
(ε|u0| + (4r/h

2)) ≤ 1, |u0| ≤ max |u|. (8.2.11)

In order to reduce the amount of storage, we switch to use the two-layer format – the
Hopscotch method. For equation (8.2.9), the difference schemes are as follows:

vn+1m = v
n
m −

1
2
k
h
ε(f nm+1 − f

n
m−1) −

kμ
2h3
(vnm+2 − 2v

n
m+1 + 2v

n
m−1 − v

n
m−2),

m + n is an odd number,

vn+1m = v
n
m −

1
2
k
h
ε(f n+1m+1 − f

n+1
m−1) −

kμ
2h3
(vn+1m+2 − 2v

n+1
m+1 + 2v

n+1
m−1 − v

n+1
m−2),

m + n is an even number.

(8.2.12)

It is not difficult to verify that the truncation error of this and equation (8.2.9) is

kO(k2 + (k
h
)
2
+ h2).

Its linear stability condition is

k
h
󵄨󵄨󵄨󵄨ε|u0| − (2μ/h

2)󵄨󵄨󵄨󵄨 ≤ 1. (8.2.13)

It can be seen that, although the Hopscotch method has an advantage of less storage,
the time step that is required is smaller than that for the Zabusky–Kruskal scheme.

Another numerical method that is used for the KdV equation is the function ap-
proximationmethod.We consider the periodic initial value problem for the KdV equa-
tion as follows:

{{{
{{{
{

ut + uux + uxxx = 0, 0 < t ≤ T , x ∈ R,
u(x,0) = u0(x), x ∈ R,
u(x + 1, t) = u(x, t), ∀x, t.

(8.2.14)

Suppose that u0(x) is a function with period 1 which is sufficiently smooth and the
solution of (8.2.14) exists and is sufficiently smooth. We take the finite-dimensional
subspace Sμ as

Sμ = {χ(x), χ ∈ [0, 1]; χ can be periodic extended to Ck(R),
χ(x) is a polynomial of order less than μ − 1 in the interval
[ih, (i + 1)h](i = 0, 1, 2, . . . , h−1)}

and supposeμ, k are integers,μ−1 > k ≥ 0, and k ≥ 2. Now theGalerkin approximation
of problem (8.2.14) is defined as

(Ut + Uxxx + UUx , χ + h
3χxxx) = 0, χ ∈ Sμ,

0 ≤ t ≤ T , U(0) ∈ Sμ. (8.2.15)
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We have the following result.

Theorem 8.2.1. Assume k ≥ 2 and the initial value U(0) satisfies

󵄩󵄩󵄩󵄩U(0) − u0
󵄩󵄩󵄩󵄩L2[0,1] ≤ C1h

μ.

Then there exist constants C, h0 depending on T, u0, and C1 such that the Galerkin ap-
proximation solution of problem (8.2.15) exists for 0 ≤ t ≤ T, 0 ≤ h ≤ h0. We have the
estimate

󵄩󵄩󵄩󵄩U(t) − u(⋅, t)
󵄩󵄩󵄩󵄩L2[0,1] ≤ Ch

μ. (8.2.16)

For the numerical calculation and the study of the method for the KdV equation, we
refer the reader to [23, 72, 73, 99, 300, 314] and the articles of [1, 11, 16, 114].

8.3 Finite difference method for the nonlinear Schrödinger
equation

We consider the following definite solution problem of a class of nonlinear Schrö-
dinger equations:

iut − [a(x)ux]x + β|u|
2u + f (x)u = 0, 0 < x < 1, t > 0, (8.3.1)

u|x=0 = u|x=1 = 0, t ≥ 0, (8.3.2)
u|t=0 = u0(x), 0 ≤ x ≤ 1, (8.3.3)

where i = √−1, β > 0, a(x), f (x) are known functions, a(x) ≥ α > 0, u0(x) is a given
complex function, and u(x, t) is the unknown complex function. AssumingQ = [0, 1]×
[0, 1] is a rectangular region, we use the straight lines t = mk, x = ph to divide the
region into many small grids, where m is an integer, m ∈ [0, [T/h]], p is an integer,
and p ∈ [0, [h−1]], as shown in Figure 8.5. Supposing that all the interior point grids

Figure 8.5: Regional division diagram.
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are Qh, the remaining grids including the boundary points are sh and Ω(t) denotes
(t = constant) ∩ Qh.

Let

φx(x, t) =
1
h
[φ(x + h, t) − φ(x, t)] = D+φ,

φx̄(x, t) =
1
h
[φ(x, t) − φ(x − h, t)],

φx̂(x, t) =
1
2h
[φ(x + h, t) − φ(x − h, t)].

We similarly define φt and φ ̄t . We define the discrete norm as follows:

‖φ‖2Ω(t) = h∑
Ω

󵄨󵄨󵄨󵄨φ(x, t)
󵄨󵄨󵄨󵄨
2
,

‖φ‖2Qh
= kh∑

Qh

󵄨󵄨󵄨󵄨φ(x, t)
󵄨󵄨󵄨󵄨
2
,

‖φ‖2l,Ω = ‖φ‖
2
Ω(t) + ∑

|s|≤l

󵄩󵄩󵄩󵄩D
s
tφ
󵄩󵄩󵄩󵄩
2
Ω(t),

‖φ‖L∞(Ω) = supxi∈Ω

󵄨󵄨󵄨󵄨φ(xi)
󵄨󵄨󵄨󵄨,
󵄩󵄩󵄩󵄩D

l
tφ
󵄩󵄩󵄩󵄩L∞ = supxi∈Ω

󵄨󵄨󵄨󵄨D
l
tφ
󵄨󵄨󵄨󵄨.

We consider the following definite solution problem to the four-point implicit dif-
ference equation

iφ ̄t − [b(x)φx]x̄ + β|φ|
2φ + f (x)φ = 0, (8.3.4)

φ|sh = 0, φ|t=0 = u0(x). (8.3.5)

For the solution of (8.3.4), (8.3.5), we have the following estimates.

Lemma 8.3.1. If the following conditions hold:
(i) β > 0, f (x), b(x) are real functions;
(ii) u0(x) ∈ C0;

then we have

‖φ‖2Ω(T) ≤ 2
󵄩󵄩󵄩󵄩u0(x)
󵄩󵄩󵄩󵄩
2
L2 = E0. (8.3.6)

Proof. Multiplying (8.3.4) by φ̄, we get

iφ ̄tφ̄ − φ̄[b(x)φx]x̄ + β|φ|
4 + f (x)|φ|2 = 0. (8.3.7)

Using the partial sum and the boundary conditions, summing over Q, and taking the
imaginary part by (8.3.7), we get

∑
Q
(|φ|2̄t + k|φ ̄t |

2) = 0.

Then we immediately obtain (8.3.6).
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Lemma 8.3.2. If the conditions of Lemma 8.3.1 are satisfied and u0(x) ∈ H1, 0 ≤ α ≤
b(x) ≤ M, f |u0|2 ∈ C0, and f (x) ≥ 0, then we have the following estimate:

α
2
‖φx‖

2
Ω(T) +

β
4
󵄩󵄩󵄩󵄩φ

2󵄩󵄩󵄩󵄩
2
Ω(T) +

1
2
󵄩󵄩󵄩󵄩f

1
2φ󵄩󵄩󵄩󵄩

2
Ω(T)

≤ M󵄩󵄩󵄩󵄩u0(x)
󵄩󵄩󵄩󵄩
2
L2 +

β
2
󵄩󵄩󵄩󵄩u

2
0
󵄩󵄩󵄩󵄩
2
L2 +
󵄩󵄩󵄩󵄩f (x)u

2
0
󵄩󵄩󵄩󵄩L1 . (8.3.8)

Proof. Multiplying (8.3.4) by φ̄t, we have

i|φ ̄t |
2 − φ̄t[b(x)φx]x̄ + β|φ|

2φφ̄t + f (x)φφ̄t = 0. (8.3.9)

By (8.3.9), taking the imaginary part, multiplying by kh, and summing over Q, we get

αh
2
∑
Ω(T)

󵄨󵄨󵄨󵄨φx(T)
󵄨󵄨󵄨󵄨
2
+
βh
4
∑
Ω(T)

󵄨󵄨󵄨󵄨φ(T)
󵄨󵄨󵄨󵄨
4
+
h
2
∑
Ω(T)

f (x)󵄨󵄨󵄨󵄨φ(T)
󵄨󵄨󵄨󵄨
2

≤
Mh
2
∑
Ω(0)

󵄨󵄨󵄨󵄨φx(0)
󵄨󵄨󵄨󵄨
2
+
βh
4
∑
Ω(0)

󵄨󵄨󵄨󵄨φ(0)
󵄨󵄨󵄨󵄨
4
+
h
2
∑
Ω(0)

f (x)󵄨󵄨󵄨󵄨φ(0)
󵄨󵄨󵄨󵄨
2
.

When h ≤ h0, we immediately get (8.3.8).

Now we consider the following differential definite solution problem:

iφ ̄t − [b(x)φx]x̄ + C(x, t,φ) + g(x, t) = 0, (8.3.10)
φ|sh = 0, φ|t=0 = u0(x). (8.3.11)

For the solution φ of (8.3.10), (8.3.11), we have the following estimate.

Lemma 8.3.3. If the following conditions are satisfied:
(i) β is a real number, b(x) is a real function;
(ii) |C(x, t,φ)φ̄| ≤ M|φ|2, M is a positive constant;
(iii) u0(x) ∈ C0, g(x, t) ∈ C0(Q);

then we have

‖φ‖2Ω(T) ≤ 2(‖u0‖
2
L2 + ‖g‖

2
L2(Q))e

(2M+1)T = C2. (8.3.12)

Proof. The proof is similar to Lemma 8.3.1.

We assume that the smooth solution of the definite solution problem (8.3.1), (8.3.2),
(8.3.3) exists in the region Q = [0, 1] × [0,T]. Now we consider the definite solution
problem of the difference equation corresponding to the definite solution problem
(8.3.1)–(8.3.3). We have

iφ ̄t − [b(x)φx]x̄ + β|φ|
2φ + f (x)φ = 0, (8.3.13)

φ|sh = 0, φ|t=0 = u0(x), (8.3.14)

where b(x) = a(x + h
2 ). We have the following convergence theorem.
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Theorem 8.3.4. If the conditions of Lemma 8.3.2 are satisfied, assuming u(x, t), φ(x, t)
are the solutions of problem (8.3.1)–(8.3.3) and problem (8.3.13), (8.3.14), respectively,
we have

‖u − φ‖Ω(T) = O(k + h
2). (8.3.15)

Proof. Because u(x, t) is the smooth solution of the definite solution problem
(8.3.1)–(8.3.3), we have, according to the Taylor expansion,

iut − [b(x)ux]x̄ + β|u|
2u + fu = O(k + h2),

where b(x) = a(x + h
2 ). Let ε(x, t) = u(x, t) − φ(x, t). Then we have

iε ̄t − [b(x)εx]x̄ + β(|u|
2u − |φ|2φ) + fε = O(k + h2), (8.3.16)

ε|sh = 0, ε|t=0, (8.3.17)

β(|u|2u − |φ|2φ) = β|u|2(u − φ) + βφ(|u|2 − |φ|2)

= β|u|2ε + βφ(|u| + |φ|)(|u| − |φ|).

Since it is assumed that the solutions of (8.3.1)–(8.3.3) are smooth and bounded, from
Lemma 8.3.2 we can get the uniformly bounded estimate of the differential solutionφ,
so we have

󵄨󵄨󵄨󵄨ε̄β(|u|
2u − |φ|2φ)󵄨󵄨󵄨󵄨 ≤ M|ε|

2,

whereM = |β|[‖u‖2L∞ + ‖φ‖L∞ (‖u‖L∞ + ‖φ‖L∞ )]. Note that, when f is a real function, the
estimate is irrelevant to f . Using Lemma 8.3.3, we get

‖ε‖2Ω(T) ≤ 2
󵄩󵄩󵄩󵄩O(k + h

2)󵄩󵄩󵄩󵄩
2
Ωe
(2M+1)T .

The proof is complete.

Theorem 8.3.5. The solution φ of the difference equations (8.3.13), (8.3.14) is stable
with respect to the norm ‖ ⋅ ‖Ω in accordance with the initial value.

Proof. The proof is similar to Theorem 8.3.4.

For the six-point symmetric (Crank–Nicolson) format, we have

iφ ̄t −
1
2
[(bφx)x̄ + (bφx(t − k))x̄] +

β
2
[󵄨󵄨󵄨󵄨φ(t)
󵄨󵄨󵄨󵄨
2φ(t) + 󵄨󵄨󵄨󵄨φ(t − k)

󵄨󵄨󵄨󵄨
2φ(t − k)]

+ f (x) 1
2
[φ(t) + φ(t − k)] = 0, (8.3.18)

φ|sh = 0, φ|t=0 = u0(x), (8.3.19)

where b(x) = a(x + h
2 ). We have the following results.
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Theorem 8.3.6. Assuming u(x, t), φ(x, t) are the solutions of problem (8.3.1)–(8.3.3)
and problem (8.3.18), (8.3.19), respectively, we have

‖u − φ‖Ω(T) = O(k
2 + h2). (8.3.20)

Proof. The proof is similar to Theorem 8.3.4.

Theorem 8.3.7. The difference equations (8.3.18), (8.3.19) are stable with respect to the
norm ‖ ⋅ ‖Ω in accordance with the initial value.

For the solution of the nonlinear algebraic equations (8.3.13), (8.3.14), we can gen-
erally use the chase-after iterative method.

Numerical calculations show that the following conservation scheme of problem
(8.3.1)–(8.3.3):

iφ ̄t −
1
2
[(bφx)x̄ + (bφx(t − k))x̄] +

β
4
[󵄨󵄨󵄨󵄨φ(t)
󵄨󵄨󵄨󵄨
2
+ 󵄨󵄨󵄨󵄨φ(t − k)

󵄨󵄨󵄨󵄨
2
] ⋅ (φ(t) + φ(t − k))

+ f (x) 1
2
[φ(t) + φ(t − k)] = 0, (8.3.21)

φ|sh = 0, φ|t=0 = u0(x), (8.3.22)

has better conserved properties than the six-point symmetric scheme. Therefore, the
calculation results are good. For example, in [45], the definite solution problem

{{{
{{{
{

iut + uxx + 2|u|2u = 0,
u|t=0 = sech(x + 10) exp[2i(x + 10)],
u|x=±15 = 0

was calculated using the format of (8.3.21) and it has better accuracy than the exact
solution

u(x, t) = sech(x + 10 − 4t) exp[2i(x + 10) − 3it].

The numerical methods for solving the nonlinear Schrödinger equation and their
system (including multi-dimensional) can be found in [102, 113, 119].

8.4 Numerical study of the RLW equation

For the regularized long wave (RLW) equation

ut + ux + uux − uxxt = 0, (8.4.1)
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the existence and uniqueness of its solution have been proved by Benjamin, Bona,
andMahony in [22].Weuse the following three-layer difference scheme to approximate
it:

ωn+1
m−1 − (2 + h

2)ωn+1
m + ω

n+1
m+1 = ω

n−1
m−1 − (2 + h

2)ωn−1
m

+ ωn−1
m+1 − kh(1 + ω

n
m) ⋅ (ω

n
m+1 − ω

n
m−1). (8.4.2)

Obviously, the truncation error of the format of (8.4.2) and equation (8.4.1) is

h2

6
uxxx(1 + u) + (k

2/6)uttt .

In the actual calculation, if u ≪ 1 and ut ∼ ux, then, when h = k, the two termsmay be
canceled. Using this scheme, we calculated the interaction of two solitons and three
solitons, respectively, as shown in Figure 8.6.

Figure 8.6: The interaction of two solitons and three solitons.

More accurate difference scheme calculations showed that the stronger two solitons
were inelastic and had a small vibrational tail.

Other differential formats of (8.4.1), such as

u ̄t − ux̂ +
1
2
(u2)x̂ − uxx̄ ̄t = 0 (8.4.3)

and

u ̄t − ux̂ +
1
3
((u2)x̂ + uux̂) − uxx̄ ̄t = 0, (8.4.4)

can be used.
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8.5 Numerical study of the nonlinear Klein–Gorden equation

For the nonlinear wave equation

utt − uxx + F
󸀠(u) = 0, (8.5.1)

the different forms of F󸀠(u) play an important role in the study of solitons, such as

F󸀠(u, λ) = sin u + λ sin 2u (double sine-Gordon), (8.5.2)
F󸀠(u, λ) = sin u (sine-Gordon), (8.5.3)
F󸀠(u) = −u − u3 (φ4

−), (8.5.4)
F󸀠(u) = u − u3 (φ4

+), (8.5.5)

F󸀠(u) =

{{{{{{
{{{{{{
{

π
4 , 2nπ < u ≤ (2n + 1)π,
0, u = nπ,
− π4 , (2n + 1)π < u < (2n + 2)π,

n = 0,±1,±2, . . . .

(8.5.6)

For the sine-Gordon equation, two simple calculationmethods have been considered,
one of which is the simple leapfrog format, written

un+1m = −u
n−1
m +

k2

h2
[unm+1 + u

n
m−1] + 2[1 −

k2

h2
]unm − k

2 sin unm. (8.5.7)

The linear stability analysis shows that this form is unstable when k = h and
can be overcome when k = 0.95h. It makes a numerical calculation for the two-kink
case. Another format is to convert the original equation into a system of first-order
equations, i.e.,

{
ux + ut = v,
vx − vt = sin u.

(8.5.8)

Introducing ξ = t − x and η = t + x, (8.5.8) can be reduced to

uη =
1
2
v, vξ = −

1
2
sin u. (8.5.9)

This is called the characteristic form. The characteristic line is a straight line, using
the pre-correction format to solve the ordinary differential equations. Although this
format is more accurate, the iterative is time-consuming.

In [7], Ablowitz et al. proposed a new scheme. For equation (8.5.1), denote unm =
u(mh, nh), vnm = u((m +

1
2 )h, (n +

1
2 )h), ωm = ut(mh,0), and

v0m =
1
2
(u0m + u

0
m+1) +

h
4
(ωm + ωm+1) −

h2

8
F󸀠(

u0m + u
0
m+1

2
) + O(h3), (8.5.10)
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un+1m = −u
n
m + v

n
m + v

n
m−1 −

h2

4
F󸀠(

vnm + v
n
m−1

2
) + O(h4), (8.5.11)

vn+1m = −v
n
m + u

n+1
m+1 + u

n+1
m −

h2

4
F󸀠(

un+1m+1 + u
n+1
m

2
) + O(h4) (8.5.12)

and choose the periodic condition un2p+h = u
n
h, where 2p is the period.

The collision of the two solitons of the double sine-Gordon equation and the
φ4-equation are calculated by the formats of (8.5.10), (8.5.11), and (8.5.12). The results
are shown in Figure 8.7.

Figure 8.7: The collision of the two solitons of the double sine-Gordon equation and the
φ4-equation.

8.6 Numerical study of the stability problem for a class
of nonlinear waves

The plasma dynamics equations are a set of complex equations. Min Yu has given the
high-low-frequency and two-fluid plasma dynamics equations with no external mag-
netic field and uniform initial density. In [86], under a certain assumption, the author
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gives the one-dimensional plane form of this system, i.e.,

𝜕ni
𝜕t
+
𝜕(nivi)
𝜕x
= 0, (8.6.1)

𝜕vi
𝜕t
+ vi
𝜕vi
𝜕x
+
𝜕φ
𝜕x
= 0, (8.6.2)

𝜕2φ
𝜕x2
− eφ−ψ

2
1−ψ

2
2 + ni = 0, (8.6.3)

μ𝜕ψ1
𝜕t
+
𝜕2ψ2
𝜕x2
− (eφ−ψ

2
1−ψ

2
2 − 1)ψ2 = 0, (8.6.4)

μ𝜕ψ2
𝜕t
−
𝜕2ψ1
𝜕x2
+ (eφ−ψ

2
1−ψ

2
2 − 1)ψ1 = 0, (8.6.5)

where ni is the ion density, vi is the ion velocity, ne = eφ−ψ
2
1−ψ

2
2 is the low frequency

electronnumber density,φ is thepotential function,ψ1,ψ2 are the amounts describing
the high-frequency field amplitude, and μ is a constant.

If we let ni(x, t), vi(x, t), φ(x, t), and

ψ(x, t) = √ψ2
1(x, t) + ψ2

2(x, t)

be the functions of ξ = x − ct, then we find that the equations for the solitary wave
solution of this system must be satisfied. We have

d2φ
dξ 2
= eφ−ψ

2
− (1 − 2

c2
)φ−

1
2 , (8.6.6)

d2ψ
dξ 2
= (eφ−ψ

2
− 1 + a2)ψ, (8.6.7)

ni = (1 −
2
c2
)φ−

1
2 , (8.6.8)

vi = c[1 − (1 −
2
c2
φ)
− 12
], (8.6.9)

where a, c are the parameters, c represents the propagation velocity of the solitary
wave, and a represents the deviation of the frequency of the high-frequency electric
field with respect to some fixed frequency.

Equations (8.6.6) and (8.6.7) form a closed system, whose definite solution condi-
tions are

φ = 0, x → ±∞, (8.6.10)
ψ = 0, x → ±∞. (8.6.11)

The solution of (8.6.6), (8.6.7), (8.6.10), and (8.6.11) and its properties are discussed in
[23], in which the solitary wave solutions of various parameters a and c are given by
numerical calculation. Are these solitary waves stable? This is amatter of concern and
the question must be answered. Because the equations (8.6.1)–(8.6.5) are quite com-
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plex, it is difficult to get the answer by the analytical qualitative analysis. Shen et al.
have considered the stability of such waves through actual numerical calculation.

The initial conditions of (8.6.1)–(8.6.5) are

ni(x,0) = n
0
i (x), vi(x,0) = v

0
i (x), ψ1|t=0 = ψ

0
1 (x), ψ2|t=0 = ψ

0
2 (x). (8.6.12)

Assume, when x → ±∞,

ni → 1, vi → 0, φ→ 0, ψ1 → 0, ψ2 → 0. (8.6.13)

We see that the Cauchy problem of problem (8.6.1)–(8.6.5) is an infinite-interval
problem. For finite-difference calculations, the finite-interval approximate calculation
always brings some errors. Therefore, the transformation of the spatial variable can be
implemented by

ξ = th λx. (8.6.14)

This transformation changes the interval (−∞,∞)of x to the interval (−1,+1)of ξ . Then
the equations correspondingly becomes

𝜕ni
𝜕t
+ λ(1 − ξ 2)𝜕nivi

𝜕ξ
= 0, (8.6.15)

𝜕vi
𝜕t
+ λ(1 − ξ 2)vi

𝜕vi
𝜕ξ
+ λ(1 − ξ 2)𝜕φ

𝜕ξ
= 0, (8.6.16)

λ2(1 − ξ 2) 𝜕
𝜕ξ
(1 − ξ 2)𝜕φ

𝜕ξ
− eφ−ψ

2
1−ψ

2
2 + ni = 0, (8.6.17)

μ𝜕ψ1
𝜕t
+ λ2(1 − ξ 2)𝜕ψ2

𝜕ξ
− (eφ−ψ

2
1−ψ

2
2 − 1)ψ2 = 0, (8.6.18)

μ𝜕ψ2
𝜕t
− λ2(1 − ξ 2) 𝜕

𝜕ξ
(1 − ξ 2)𝜕ψ1

𝜕ξ
+ (eφ−ψ

2
1−ψ

2
2 − 1)ψ1 = 0. (8.6.19)

Obviously, ξ → ±1, ni → 1, vi → 0, φ→ 0, ψ1 → 0, and ψ2 → 0.
Equations (8.6.15) and (8.6.16) are the hydrodynamic equations. We use the

method of Richtmyer as follows:

vk+1j+ 12
− vkj+ 12
△t
+ λ(1 − ξ 2j+ 12

)vkj+ 12

vkj+ 12
− vkj− 12
△ξj

+ λ(1 − ξ 2j+ 12
)
φk
j+1 − φ

k
j

△ξj+ 12
= 0, when vkj+ 12

≥ 0, (8.6.20)

vk+1j+ 12
− vkj+ 12
△t
+ λ(1 − ξ 2j+ 12

)vkj+ 12

vkj+ 32
− vkj+ 12
△ξj+1

+ λ(1 − ξ 2j+ 12
)
φk
j+1 − φ

k
j

△ξj+ 12
= 0, when vkj+ 12

< 0, (8.6.21)
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nk+1j − n
k
j

△t
+ λ(1 − ξ 2j )v

k+1
j− 12

nkj − n
k
j−1

△ξj− 12

+ λ(1 − ξ 2j )n
k
j

vk+1j+ 12
− vk+1j− 12
△ξj

= 0, when vk+1j− 12
≥ 0, (8.6.22)

nk+1j − n
k
j

△t
+ λ(1 − ξ 2j )v

k+1
j− 12

nkj+1 − n
k
j

△ξj+ 12

+ λ(1 − ξ 2j )n
k
j

vk+1j+ 12
− vk+1j− 12
△ξj

= 0, when vk+1j− 12
< 0. (8.6.23)

We know that, for (8.6.17), (8.6.18), the display format is absolutely unstable and the
implicit format is absolutely stable, but in order to facilitate the calculation, we can
use the following semi-implicit format:

μ
ψk+1
1j − ψ

k
1j

△t
= −λ2(1 − ξ 2j )

1
△ξj
[
1 − ξ 2j+ 12
△ξj+ 12

ψk
2j+1 − (

1 − ξ 2j+ 12
△ξj+ 12
+
1 − ξ 2j− 12
△ξj− 12
)ψk

2j

+
1 − ξ 2j− 12
△ξj− 12

ψk
2j−1] + (e

φk
j −(ψ

k
1j)

2−(ψk
2j)

2
− 1)ψk

2j, (8.6.24)

μ
ψk+1
2j − ψ

k
2j

△t
= λ2(1 − ξ 2j )

1
△ξj
[
1 − ξ 2j+ 12
△ξj+ 12

ψk+1
1j+1 − (

1 − ξ 2j+ 12
△ξj+ 12
+
1 − ξ 2j− 12
△ξj− 12
)ψk+1

1j

+
1 − ξ 2j− 12
△ξj− 12

ψk+1
1j+1] − (e

φk
j −(ψ

k
1j)

2−(ψk
2j)

2
− 1)ψk

1j. (8.6.25)

In this way, the two equations can be solved directly without iteration. It is easy to
derive that such a format needs to satisfy the stability requirements, so we have

△t ≤ μ
2
△ x2.

After obtaining ni, ψ1, ψ2, we use the iterative method to solve (8.6.17) as follows:

λ2(1 − ξ 2j )
1
△ξj
[
1 − ξ 2j+ 12
△ξj+ 12

φk+1,s+1
j+1 − (

1 − ξ 2j+ 12
△ξj+ 12
+
1 − ξ 2j− 12
△ξj− 12
)φk+1,s+1

j

+
1 − ξ 2j− 12
△ξj− 12

ψk+1,s+1
j−1 ] − e

φk+1,s
j −(ψ

k+1
1j )

2−(ψk+1
2j )

2
+ nk+1j = 0. (8.6.26)

Shen et al. made numerical calculations by using the difference scheme
(8.6.20)–(8.6.26) for problem (8.6.15)–(8.6.18) of a class of so-called nonlinear ini-
tial conditions with a single peak. Numerical results show that this type of wave
form has no change, which shows the better stability of the solitary wave of problem
(8.6.1)–(8.6.5), as shown in Figure 8.8.
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Figure 8.8: The waveforms of φ under a class of weakly nonlinear initial value conditions.

In addition,we obtain the following conserved quantities for equations (8.6.1)–(8.6.5):

∫
∞

−∞
(ni − 1)dx = constant,

∫
∞

−∞
vidx = constant,

∫
∞

−∞
(eφ−ψ

2
1−ψ

2
2 − 1)dx = constant,

∫
∞

−∞
|ψ|2dx = constant,

∫
∞

−∞
(ψ2

1x − ψ
2
2x +

1
2
φ(n + eφ−ψ

2
1−ψ

2
2) +

1
2
nv2)dx = constant.

We can use the above conserved quantities to test the conservation of the difference
scheme.
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9 The geometric theory of solitons

9.1 Bäcklund transformation and the surface with total curvature
K = −1

As we have seen earlier, the Bäcklund transform can be used to find another soliton
solution from one soliton solution of the sine-Gordon equation. By the nonlinear su-
perposition principle, it is easy to get the special solution of nonlinear equations by
algebraic operation; this is a very clever method. In the following, we present the geo-
metric approach taken by Chern and Terng. The relationship between the sine-Gordon
equation and the K = −1 surface and the study of the geometric properties of its solu-
tion show that the problem of solving the sine-Gordon equation can be reduced to the
problem of finding another K = −1 surface from a K = −1 surface.

Let M(u, v) be a planar region, R3 be a three-dimensional Euclidean space, and
x : M → R3 be a surface. At each point on the surface, we take a unit right-handed
orthogonal frame [x; e1, e2, e3], (eα, eβ) = δαβ, (e1, e2, e3) = 1, 1 ≤ α, β ≤ 3. Suppose e3 is
the normal vector. Then we have the motion equations

dx =∑
α
wαeα, w3 = 0, (9.1.1)

deα =∑
β
wαβeβ, wαβ + wβα = 0, (9.1.2)

where wα, wαβ are two differential one-forms.
We call

I = w2
1 + w

2
2(= dx ⋅ dx),

II = w1w13 + w2w23(= −de3dx)

the first and second fundamental forms of the surface, respectively.
We take the exterior differential for (9.1.1) and (9.1.2) and obtain the following

structural equation:

{{{
{{{
{

dw1 = w12 ∧ w2,

dw2 = w1 ∧ w12,

II = −(dx, de3) = aw2
1 + 2bw1w2 + cw2

2 ,

(9.1.3)

so

{{{
{{{
{

w13 = aw1 + bw2,

w23 = bw1 + cw2,

dw12 = −Kw1 ∧ w2 (Gauss equation),
(9.1.4)

https://doi.org/10.1515/9783110549638-009
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where K = ac − b2 is the Gauss curvature. We have

{
dw13 = w12 ∧ w23,

dw23 = w12 ∧ w13.
(9.1.5)

Therefore,w12 is only related to the first fundamental form, which is called the contact
form of the surface. Equation (9.1.5) is called Codazzi’s equation. Nowwe consider the
surface of K = −1. Taking the coordinates of the curvature line

{{{
{{{
{

w1 = sinψdu, w2 = cosψdv,
w13 = cosψdu, w23 = − sinψdv,
w12 = −ψvdu − ψudv

(9.1.6)

and inserting these into the Gauss equation, we get

ψuu − ψvv = − cosψ sinψ. (9.1.7)

We know from (9.1.7) that

I = sin2 ψdu2 + cos2 ψdv2,

II = sinψ cosψ(dv2 − du2), (9.1.8)

so 2ψ is the angle of the asymptote dψ
du = ±1. Moreover, it can be seen from equa-

tion (9.1.8), being a function of (u, v), 2ψ is the solution of the sine-Gordon equation.
On the contrary, from the basic theorem of surface theory, any solution of the sine-
Gordon equation can be regarded as the angle between the asymptotes of a K = −1
surface. Thus, the problem of finding the solution to the sine-Gordon equation comes
down to the problem of finding the K = −1 surface. We know that the K = −1 surface
is a pseudo-spherical surface, that is, a singular horn-shaped surface. We can give the
correspondence between K = −1 surfaces through a match-fixing clue.

The clue refers to the family of straight lines depending on two parameters (u, v)
of the Euclidean space. We have

y = χ(u, v) + λn(u, v), (9.1.9)

where n2 = 1 and χ(u, v) is generally expressed as a surface. If we fix (u, v), then (9.1.9)
denotes a straight linewhich passes through point χ(u, v) and has the direction n(u, v).
If (u(t), v(t)) is a curve on the surface, then

y(t, λ) = χ(u(t), v(t)) + λn(u(t), v(t))

is a ruled surface. The sufficient and necessary condition of the surface is

|n, dx, dn| = 0, (9.1.10)
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where |n, dx, dn| represents themixedproduct determinant of n,dx, anddn and (9.1.10)
is a binary homogeneous equation with respect to du, dv. If its ratio has two different
real solutions, then there should be two family curves corresponding to the surface.
The straight lines passing through the clue of each of the curves in the family form
a developable surface. Then two families of developable surfaces are obtained and
each developable surface has a ridge line. The whole of the ridge lines of each family
of developable surfaces constitutes a surface, known as the focal surface. Thus, we
obtain two focal surfaces, denoted s and s󸀠, where each of the lines in clue (9.1.9) is the
common tangent of s and s󸀠. Thus, by means of these common tangents, clue (9.1.9)
gives a transformation between the focal surface s and the focal surface s󸀠, i.e.,

l : s→ s󸀠,

that is, if p󸀠 = l(p), then p(∈ s) and p󸀠(∈ s󸀠) have the common tangent l, which belongs
to the clue (9.1.9).

Definition 9.1.1. The clue is called match-fixing if (1) |pp󸀠| = γ (constant), that is, the
distance between the corresponding points is a fixed value and (2) ⟨e3(p), e󸀠3(p)⟩ = τ
(constant), that is, the angle between the normal direction of the corresponding points
is a fixed value.

Theorem 9.1.2 (Bäcklund). The two focal surfaces of the match-fixing clue have corre-
sponding constant Gauss curvatures

K = −sin
2 τ
r2
.

In particular, if r = sin τ, then K = −1, so the problem of constructing another
K = −1 surface from a given K = −1 surface comes down to the problem of construct-
ing a match-fixing clue from a given K = −1 surface. In this case, one only needs to
determine the direction of each line in the desired clues. At this time, the problem is
reduced to solving a complete integrable differential equation,

dα + sin αw = cos τw13, (9.1.11)

where α represents the angle between the straight line and the main direction of the
tangent point (i.e., the direction of theu curve) in the desired clue.Weget the following
completely integrable first-order partial differential equations from (9.1.6), (9.1.11):

{
sin τ(αu − ψv) = cos τ cos α cosψ + sin α sinψ,
sin τ(αv − ψu) = − cos τ sin α sinψ − cos α cosψ.

(9.1.12)

At this time, the first and second fundamental forms of the desired surface are

I󸀠 = cos2 αdu2 + sin2 αdv2,
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II󸀠 = cos α sin α(du2 − dv2),

respectively. It can be seen that 2α is a solution of the sine-Gordon equation. By (9.1.12),
if a solution 2ψ of the sine-Gordon equation is given, then another solution 2α of the
sine-Gordon equation can be solved. Since (9.1.12) is completely integrable, it is only
needed to solve an ordinary differential equation.

Tenenblat and Terng further discuss the Bäcklund theorem of n-dimensional sub-
manifolds in a 2n − 1-dimensional Euclidean space and the high-dimensional gener-
alization of the sine-Gordon equation [291, 292].

9.2 Lie group and the nonlinear evolution equations

In Chapter 2, we have pointed out in detail the inverse scatteringmethod of solving the
nonlinear evolution equations established by Gardner, Greene, Kruskal, and Miura
and Ablowitz, Kaup, Newell, and Suger (AKNS). Chern and Peng [47] pointed out that
the algebraic basis of these equations is formed by Lie groups and their structural
equations. They started from the structure of the 2× 2 real unimodular Lie group SL(2)
and naturally and concretely gave the high-order Korteweg–de Vries (KdV) equation
and the modifiedi KdV (MKdV) equation, so that the geometric significance of these
equations is clear. The use of group operations is also more convenient; Sasaki [268]
further established the relationship between the AKNS equations and the negative
constant curvature surfaces.

Assume

SL(2;R) = {X = (a b
c d
)|ad − bc = 1} (9.2.1)

is the group of all 2 × 2 real unimodular matrices. Its right invariant Maurer–Cartan
form is

w = dxX−1 = (w
1
1 , w2

1
w1
2 w2

2
), (9.2.2)

where

w1
1 + w

1
2 = 0.

The structural equation of SL(2;R) or the Maurer–Cartan equation is

dw = w ∧ w (9.2.3)

or, in more detail,

{{{
{{{
{

dw1
1 = w

2
1 ∧ w

1
2,

dw2
1 = 2w

1
1 ∧ w

2
1 ,

dw1
2 = 2w

1
2 ∧ w

1
1 .

(9.2.4)
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Suppose v is a neighborhood in the (x, t)-plane and consider the smooth map

f : v → SL(2;R). (9.2.5)

Then these equations become the functions of (x, t) after mapping in Lie groups. We
have

{{{
{{{
{

w1
1 = ηdx + Adt,

w2
1 = qdx + Bdt,

w1
2 = rdx + Cdt,

(9.2.6)

where the coefficients are all functions of (x, t). Because

dw1 = w
2
1 ∧ w

1
2 = (qdx + Bdt) ∧ (rdx + Cdt)

= qrdx ∧ dx + (qC − Br)dx ∧ dt + BCdt ∧ dt,

on the other hand,

dw1
1 = Axdx ∧ dt + Atdt ∧ dt + ηd

2x + Ad2t
+ ηtdt ∧ dx + ηxdx ∧ dx,

dw2
1 = 2w

1
1 ∧ w

2
1 = 2(ηdx + Adt) ∧ (qdx + Bdt)

= 2ηqdx ∧ dx + 2(ηB − Aq)dx ∧ dt
+ 2ABdt ∧ dt.

In addition,

dw2
1 = qxdx ∧ dx + qtdt ∧ dx + qd

2x + Bxdxdt

+ Btdt ∧ dt + Bd
2t.

Of course, dw1
2 can be calculated similarly. We obtain

{{{
{{{
{

−ηt + Ax − qC + rB = 0,
−qt + Bx − 2ηB + 2qA = 0,
−rt + Cx − 2rA + 2ηA = 0.

(9.2.7)

Assume η = constant, that is, η is a parameter independent of x, t. Now we consider
some special cases:

(1) r = +1, η is a constant, q = u(x, t). At this time, solving A from the third formula
of (9.2.7) and B from the first formula of (9.2.7), we have

{
A = ηC + 1

2Cx ,
B = − 12Cxx − ηCx + uC.

(9.2.8)
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Inserting (9.2.8) into the second equation of (9.2.7), we get

ut = K(u), (9.2.9)

where

K(u) = uxC + 2uCx + 2η
2Cx −

1
2
Cxxx . (9.2.10)

As an example, we choose

C = η2 − 1
2
u. (9.2.11)

Then we obtain, from (9.2.9),

ut =
1
4
uxxx −

3
2
uux . (9.2.12)

This is the well-known KdV equation.
We can naturally choose C to be the arbitrary polynomial of η. Because (9.2.10)

only contains η2, we can assume that C is the polynomial of η2. Letting

C = ∑
0≤j≤n

Cj(x, t)η
2(n−j), (9.2.13)

where Cj(x, t) are the functions of x, t, inserting (9.2.13) into (9.2.10), and letting the
coefficient of η2 be zero, we get

C0 = constant, (9.2.14)

Cj+1,x = −
1
2
uxCj − uCj,x +

1
4
Cj,xxx . (9.2.15)

We note that the latter is just a cyclic formula for the conservation density of the KdV
equation. The right-hand side of (9.2.9) can be written as

Kn(x) = uxCn + 2uCn,x −
1
2
Cn,xxx = −2Cn+1,x , (9.2.16)

where the last equality is introduced as a definition. Furthermore, an infinite sequence
ofCj canbe introduced.Assume that (9.2.14) holds for all j, 0 ≤ j <∞, and the equation

ut = Kn(u) (9.2.17)

is called the nth-order KdV equation. It can be shown that C is a polynomial of u and
the derivative of x. For example, we obtain

2C1 = −u,
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2Cj+1 = − ∑
1≤k≤j

CkCj+1−k − u ∑
0≤k≤j

CkCj−k

+
1
2
∑

0≤k≤j−1
CkCj−k,xx

−
1
4
∑
1≤k≤j

Ck,xCj−k,x , j = 1, 2, . . . . (9.2.18)

In particular,

2C2 =
3
4
u2 − 1

4
uxx ,

2C3 = −
5
8
u3 + 5

16
u2x +

5
8
uuxx −

1
16
uxxxx . (9.2.19)

(2) q = r = V(x, t) and η is a parameter independent of x, t. Then (9.2.7) becomes

{{{
{{{
{

Ax = V(C − B),
Vt = Bx − 2ηB + 2VA,
Vt = Cx + 2ηC − 2VA.

(9.2.20)

The last two equations in (9.2.20) can be written as

{
{
{

(C − B)x = 4VA − 2η(B + C),

Vt =
1
2
(B + C)x + η(C − B).

(9.2.21)

Letting

C − B = ηP, C + B = Q, A = ηR, (9.2.22)

the above equations become

{{{
{{{
{

Rx = VP,
Px = 4VR − 2Q,
Vt =

1
2Qx + η2P.

(9.2.23)

Eliminating P, Q, we get

Vt = M(V), (9.2.24)

where

M(V) = η2Rx
V
+ (VR)x −

1
4
(
Rx
V
)
xx
.

Choosing R = η2 − 1
2V

2, equation (9.2.24) becomes

Vt =
1
4
Vxxx −

3
2
V2Vx . (9.2.25)

This is the well-known MKdV equation.
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9.3 Prolongation structure of the nonlinear equations

The differential manifoldM and the n-form ideal I, if the so-called exterior extension
refers to the n − 1-form P onM and the coefficients take on the differentiable function
onM, also satisfy

dP ⊂ F∗(M) ∧ P + I , (9.3.1)

where F∗(M) is the 1-form onM. The concept of exterior extension was first proposed
by Wohlquist and Estabrook in 1975 and applied to the KdV equation. They presented
the KdV equation as a set of equivalent external differential forms of closed ideal, ex-
tended this closed ideal, successfully found the inverse scattering problem and Bäck-
lund transform for the KdV equation, andmade a similar discussion for the nonlinear
Schrödinger equation [76]. Morris, Corones, and Gibbon et al. discussed the exterior
extension structure of the shallow water wave equation with gravitation, the Hirota
equation, the nonlinear Schrödinger, the high-order KdV equation, and the self-dual
Yang–Mills equation [184, 52, 53, 48, 187, 69, 68, 186, 185, 188]. It can be seen that
the prolongation structure method is not only suitable for a large number of nonlin-
ear evolution equations, but can also be naturally extended to the high-dimensional
space, so it has more advantages than the inverse scattering method in this respect.
This differential geometry method may become the theoretical basis of the inverse
scattering method.

Now we consider the prolongation structure method for the KdV equation. As-
sume we have the following KdV equation:

ut + uxxx + 12uux = 0. (9.3.2)

Letting z = ux and p = zx = uxx, (9.3.2) can be written as the following first-order
equation:

ut + px + 12uz = 0. (9.3.3)

For the five-dimensionalmanifoldM{x, t, u, z, p}, the basis of the dual spaceT∗(M)
of the tangent space is {dx, dt, du, dz, dp}. We introduce the two-forms in the two-
dimensional submanifold {x, t, u(x, t), z(x, t), p(x, t)} ofM to obtain

{{{
{{{
{

α1 = du ∧ dt − zdx ∧ dt,
α2 = dz ∧ dt − pdx ∧ dt,
α3 = −du ∧ dx + dp ∧ dt + 12uzdx ∧ dt,

(9.3.4)

where d represents the exterior derivative and ∧ denotes the exterior product. The first
two items of (9.3.4) correspond to the entries of the new variables and the latter one
corresponds to the item of the original equation. By direct calculation, we obtain
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{{{
{{{
{

dα1 = dx ∧ α2,
dα2 = dx ∧ α3,
dα3 = −12dx ∧ (zα1 + uα2).

(9.3.5)

Therefore, {α1, α2, α3} forms a closed ideal on manifoldM and the two-forms equation
(9.3.4) is zero when restricted to themanifold S2 = {u(x, t), z(x, t), p(x, t)}. Then the KdV
equation is derived from the external form. For the given five-dimensional differen-
tiable manifoldM and the closed ideal generated by αi and dαi, there exist additional
extension variables yi(i = 1, 2, . . . ,m), while {yi} spans an m-dimensional manifold at
each point of the originalmanifoldM(x, t, u, z, p), which extends anm+5-dimensional
fiber bundle. Then the enlarged ideal I󸀠 can be generated in the fiber bundle. The gen-
erators of I󸀠 include not only αi, but also include the introduced m one-forms wi due
to the extension variables yi. These wi are called the exterior extension forms. For ex-
terior extension variables yi, we have the following Pfaff form wK :

wK = dy
K + FK(x, t, u, z, p, yi)dx

+ GK(x, t, u, z, p, yi)dt. (9.3.6)

This must satisfy the closed ideal condition

dwK =
3
∑
i=1

f ikαi +
m
∑
i=1

ηik ∧ wi, (9.3.7)

where ηik are one-forms. From (9.3.5) and (9.3.6), we can obtain the first-order partial
differential equations of FK andGK . These equations are generally nonlinear, because
they contain the commutator terms

∑
i
(Gi 𝜕Fk

𝜕yi
− F i 𝜕G

k

𝜕yi
)dx ∧ dt. (9.3.8)

If Fk and Gk only depend on yk, this yk determines a general conservation law and yi

is called potential. If FK and GK depend on extension variables yi(i ̸= k), then yk is
called pseudo-potential. The existence of the pseudo-potential is the key that leads to
the Bäcklund transform.

We define the following commutator:

[F ⋅ G]k ≡ F
iGk
,yi − G

iFk,yi. (9.3.9)

By (9.3.7) and eliminating f ik, we find that Fk(u, z, p, yi) and Gk(u, z, p, yi) satisfy the
following partial differential equations:

Fk,z = 0, Fk,p = 0, Fk,u + G
k
,p = 0, (9.3.10)
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zGk
,u + pG

k
,z − 12uzG

k
,p + G

iFk,yi − F
iGk
,yi = 0. (9.3.11)

From the integrable conditions of equations (9.3.10) and (9.3.11), it is easy to find the
following expressions of Fk and Gk:

{{{
{{{
{

Fk = 2Xk + 2uXk
2 + 3u

2Xk
3 ,

Gk = −2(p + 6u2)Xk
2 + 3(z

2 − 8u3 − 2up)Xk
3

+8Xk
4 + 8uX

k
5 + 4u

2Xk
6 + 4zX

k
7 .

(9.3.12)

Inserting the forms of Fk, Gk given by (9.3.12) into (9.3.11), we get the following series
of commutator relations:

{{{
{{{
{

[X1,X3] = [X2,X3] = [X1,X4] = [X2,X6] = 0,
[X1,X2] = −X7, [X1,X7] = X5, [X2,X7] = X6,
[X1,X5] + [X2,X4] = 0, [X3,X4] + [X1,X6] + X7 = 0.

(9.3.13)

Forcing this open algebraic structure to be close to a finite-dimensional Lie alge-
bra and using the Jacobi identity, we obtain a further relation. We introduce the new
generators X8, X9. We have

[X3,X4] = −X8, [X1,X5] = X8

and demand

X9 =
8
∑
m=1

cmXm, (9.3.14)

where cm are constants. We also demand the generators 1 through 8 in (9.3.13) to be
linearly independent. Using the Jacobi identity, we obtain

cm = 0(m ̸= 7, 8), c7 = −c8 ≡ λ,

where λ is an arbitrary constant. Finally, we get the closed Lie algebra constituted by
{X1, . . . ,X8}. We have

{{{{{{{{{{{{{{
{{{{{{{{{{{{{{
{

[X1,X2] = −X7, [X2,X5] = −X9/λ,
[X4,X7] = −λX5,
[X1,X5] = X9, [X2,X3] = X6, [X5,X6] = X9/λ,
[X1,X6] = −X9/λ, [X3,X4] = −X8,
[X5,X7] = −X5 − λX6,
[X1,X7] = X5, [X4,X5] = −λX9, [X6,X7] = X6,
[X2,X4] = −X9, [X4,X6] = X9, X9 ≡ λ(X7 − X8).

(9.3.15)
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It is not difficult to get the eight-dimensional relationship of this algebra. Choose the
basis vectors to be

bk =
𝜕
𝜕yk
(k = 1, . . . , 8), (9.3.16)

where yk are the coordinate sets of extension variables and the nondegenerate repre-
sentations of generators are the following:

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

X1 =
1
2
[b1 + exp(2y3)

−b2 + y8b3 + y7b5 + (y
2
8 − λ)b8],

X2 =
1
2
[b7 + 2b8],

X3 =
1
3
b6,

X4 = −
1
2
λ[b1 + exp(2y3)b2 + y8b3 − b4

+ (
3
2λ
)y6b5 + (y

2
8 − λ)b8],

X5 = −
1
2
[exp(2y3)b2 + y8b3 + (y

2
8 + λ)b8],

X6 = b8,

X7 =
1
2
[b3 +

1
2
b5 + 2y8b8],

X8 =
1
4
b5.

(9.3.17)

By (9.3.12), writing the eight display expressions in the Pfaff form, we have

{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{
{

wk = dy
k + Fkdx + Gkdt,

w1 = dy1 + dx − 4λdt,
w2 = dy2 + exp(2y3)dx − 4 exp(2y3)(u + λ)dt,
w3 = dy3 + y8dx + [2z − 4y8(u + λ)]dt,
w4 = dy4 + 4λdt,
w5 = dy5 + y7dx + (z − 6y6)dt,

w6 = dy6 + u
2dx + (z2 − 8u3 − 2up)dt,

w7 = dy7 + udx − (p + 6u
2)dt,

w8 = dy8 + (2u + y
2
8 − λ)dx − 4

⋅ [(u + λ)(2u + y28 − λ) −
1
2
p − zy8]dt.

(9.3.18)

Using (9.3.18), we obtain the soliton solution, Bäcklund transformation of the KdV
equation, and the corresponding inverse scattering problem.
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In fact, from w8 = 0, letting y8 = y, we have

{{
{{
{

yx = −(2u + y
2 − λ),

yt = −4[(u + λ)(2u + y
2 − λ) + 1

2
p − zy].

(9.3.19)

The first equation of (9.3.19) is Riccati’s equation. Letting

y = ψx/ψ, (9.3.20)

we get

ψxx + (2u − x)ψ = 0. (9.3.21)

This corresponds to the one-dimensional Schrödinger equation of the KdV equation.
From the Pfaff form w3, we have

y = −y3,x .

By (9.3.20) and w2, we have

y3 = − lnψ.

Letting φ = ψx, we deduce from (9.3.20) that

y = φ/ψ.

Letting

w9 ≡ ψw8 − φw3,

w10 ≡ −ψw3,

we have

{{{
{{{
{

w9 = dφ − (2u − λ)ψdx + {2zφ − [4(u + λ)
× (2u − λ) + 2p]ψ}dt,

w10 = dφ − φdx − [2zψ − 4(u + λ)φ]dt.
(9.3.22)

From (9.3.22), we see that ψx = φ and φx + (2u − λ)φ = 0 are the first-order scattering
equations of the KdV equation.

On theotherhand, assume theKdVequationhas another solutionu󸀠 = u󸀠(u, z, p, yi)
and satisfies

{{{
{{{
{

α󸀠1 = du
󸀠 ∧ dt − z󸀠dx ∧ dt,

α󸀠2 = dz
󸀠 ∧ dt − p󸀠dx ∧ dt,

α󸀠3 = −du
󸀠 ∧ dx + dp󸀠 ∧ dt + 12u󸀠z󸀠dx ∧ dt.

(9.3.23)

 EBSCOhost - printed on 2/10/2023 3:23 PM via . All use subject to https://www.ebsco.com/terms-of-use



9.3 Prolongation structure of the nonlinear equations | 221

By direct calculation, we get

u󸀠 = −u − y2 + λ. (9.3.24)

Since u = 0 is a solution of the KdV equation, u󸀠0 = −y
2 + λmust be the solution. From

(9.3.19), we have

{
yx = −(y

2 − λ),

yt = 4λ(y
2 − λ) = −4λyx .

(9.3.25)

Its analytic integral is y = λ1/2 tanh[λ1/2(x − x0 − 4λt)] and u󸀠0 is the analytic soliton
solution.

From the Pfaff form w7, we obtain

u = −y7,x = −wx .

Equation (9.3.24) can be written as

− w󸀠x = wx − y
2 + λ = wx + yx − 2wx . (9.3.26)

After integrating and incorporating the integral constant in the potential, we have

y = w − w󸀠, (9.3.27)

so (9.3.24) can finally be written as

− w󸀠x − wx = u
󸀠 + u = λ − (w󸀠 − w)2. (9.3.28)

Then, letting λ = k2, by (9.3.25) as well as (9.3.27), we write the second equation of
(9.3.19) as

w󸀠t + wt = 4(u
󸀠2u2 + u󸀠u + u2) + 2(w󸀠 − w)(z󸀠 − z). (9.3.29)

Combining (9.3.28) and (9.3.29), we immediately obtain the Bäcklund transform of the
KdV equation.
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10 Global existence and blow up for the nonlinear
evolution equations

10.1 Nonlinear evolution equations and the integral estimation
method

Recently, with the development of the soliton problem and theory, amultitude of non-
linear evolution equations with soliton solution have attracted more and more atten-
tion, such as the Korteweg–de Vries (KdV) equation, nonlinear Schrödinger equation,
regularized long wave (RLW) equation, and nonlinear Klein–Gordon equation. Apart
from the important feature of having solitons, these equations have other obvious
physical properties, such as the unity of dispersion and nonlinearity, some degree of
volatility but also a certain degree of smoothness of their solutions, and the decay and
dispersion of the solution as t → ∞ (or x → ∞). Because of the intimate connection
between these equations and the physical problems, the solvingmethods and the the-
oretical research of their characteristics have already gone beyond the traditional re-
searchmethods. For instance, the occurrence of the inverse scattering method, which
is completely new, accurate, and very important, has opened up a newway for the the-
oretical research of differential equations, the Bäcklund transform method, and the
extension structure method established by exterior differential forms in differential
geometry and Lie groups. At the same time, we cannot imitate some traditional meth-
ods with regard to the theoretical research itself of such kinds of nonlinear partial dif-
ferential equations. For example, for the KdV equation and the nonlinear Schrödinger
equation, although their solutions have a good smoothness, we can only make esti-
mates with the energy integration because of the nonexistence of the maximum value
principle. However, an unusual aspect of this kind of integral estimate is that wemust
fully use the various conservation laws. As Lax put it: “The main feature of the KdV
equation is the infinite number of conservation laws.” In view of proving the existence
and uniqueness of the global solution of this kind of nonlinear equations, we have the
following methods. (1) Make a good integral a priori estimate and establish the local
solution in [0, t1] by the use of various approximatemethods, where t1 depends on the
initial data. Next, establish the local solution in [t1, t2], where t2 − t1 depends on the
norm ‖u(t1)‖; since we have the a priori estimate ‖u(t)‖ ≤ constant, the solution can be
extended from t1, t2, . . . to any finite interval [0,T]. (2) Themethod of vanishing viscos-
ity (or parabolic regularization method) goes as follows. Look for the global solution
uε of the viscous approximate equation and use the uniformboundedness of uε and its
derivatives with regard to the small parameter ε and let ε → 0. Then we obtain the de-
sired solution. (3) The functional analysismethodconsists in transforming theoriginal
equation to the standard differential operator form and using some known theorem of
the differential operator to obtain the existence of the global solution, where it needs

https://doi.org/10.1515/9783110549638-010
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224 | 10 Global existence and blow up for the nonlinear evolution equations

to be validated specifically whether the existence conditions of the differential oper-
ator are satisfied. (4) The Galerkin approximate method makes use of the notion that
we can use the uniform estimation of the Galerkin approximate solution to obtain the
global solution. In these various methods of proving the existence of the global solu-
tion, whatever it is, the integral a priori estimate plays a decisive role. Indeed, we can-
not obtain the global solutionof all nonlinear evolution equations byuse of the apriori
estimate. For instance, the “blow up” phenomenon exists in some multi-dimensional
nonlinear wave equations and the nonlinear Schrödinger equation, as the L2 norm of
the solution or its first-order derivative tends to infinity as (t → t1) (t1 is finite). How-
ever, we can obtain its global solution when the L2 norm of the initial data is suitably
small. All these problems have attracted the attention and interest of many people. At
present, for the problems of definite solutions of this kind of nonlinear equation, we
mainly focus on the periodic initial value problemor the initial value problemand less
emphasis is put on the initial boundary value problem.Generally speaking, there exist
many difficulties concerning the formulation of the boundary value problem and the
existence study of the solution for this kind of equations (for example, the KdV equa-
tion). Therefore, the results on this subject are relatively scarce. For the initial value
problem, we usually assume its solution tends to zero as |x| →∞, which is a reason-
able requirement. For instance, for the KdV equation, we have proved that, as long as
the initial data tend to zero with certain decay rate as |x| → ∞, its solution decays
with the corresponding rate. Of course, this requirement is not necessary. If the ini-
tial condition is approximated by the periodic boundary condition, the requirement
could be substituted by another initial condition. We still make this assumption for
the initial value problem. In addition, the following results, obtained for the definite
solution problems, also hold for the periodic initial value problem or the initial value
problem.

10.2 Periodic initial value problem and initial value problem for
the KdV equation

The existence and uniqueness of the solution to the KdV equation were first obtained
by Sjöberg [280]. He considered the following definite solution problem:

{{{
{{{
{

ut = uux + δuxxx , δ ̸= 0,
u(x,0) = f (x), ∀x ∈ R,
u(x, t) = u(x + 1, t), ∀x, t,

(10.2.1)

and obtained the following result.

Theorem 10.2.1. Assume f (x) is a function with period 1 and its derivatives until the
third derivative belong to L2. Then, if δ ̸= 0, there exists a unique solution to prob-
lem (10.2.1).
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We use the following differential difference scheme corresponding to (10.2.1):

{{{{{{
{{{{{{
{

𝜕
𝜕tuN (x, t) = [uN (xr , t)D0uN (xr , t) + D0u2N (xr , t)]/3

+ δD+D2
−uN (xr , t) (r = 1, 2, . . . ,N),

uN (xr ,0) = f (xr) (r = 1, 2, . . . ,N),
uN (xr , t) = uN (xr+N , t), ∀x, t,

(10.2.2)

where h = 1
N , xr = rh, andD+,D−, andD0 represent the difference operators.We define

hD+g(xr) = g(xr+1) − g(xr),
hD−g(xr) = g(xr) − g(xr−1),
2hD0g(xr) = g(xr+1) − g(xr−1).

Then we can prove the local existence of the solution to problem (10.2.1). Using the
three conservation laws of (10.2.1),

∫
1

0
u2(x, t)dx = ∫

1

0
f 2(x)dx = α1 = constant, (10.2.3)

∫
1

0
(u

2

3
− δu2x)dx = ∫

1

0
( f

3

3
− δf 󸀠 2(x))dx = α2 = constant, (10.2.4)

∫
1

0
(u4 − 12δuu2x + 36δ

2uxx/5)dx

= ∫
1

0
(f 4 − 12δff 󸀠 2 + 36δ2f 󸀠󸀠 2/5)dx = α3 = constant (10.2.5)

and making a priori estimates of integration, we can prove the existence of the global
solution for problem (10.2.1) and the uniqueness can easily be obtained by the energy
inequality. Lax first proved the uniqueness of solution to the Cauchy problem of the
KdV equation

ut + uux + uxxx = 0, (−∞ < x < +∞, t > 0), (10.2.6)
u|t=0 = u0(x), (−∞ < x < +∞), (10.2.7)

over (−∞,+∞) [153], where the solution refers to u(⋅, t) ∈ C∞ (−∞ < x < +∞) and
where u and its derivatives to x all tend to zero (|x| → ∞). Assume v is other solution
of problem (10.2.6), (10.2.7). We have

{
vt + vvx + vxxx = 0,
v|t=0 = u0(x)

and we let w = u − v, so we obtain the following linear equation of w:

wt + uwx + wvx + wxxx = 0.
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We multiply the above equation by w and integrate with respect to x ∈ (−∞,+∞).
Then, after integration by parts, we get the following relation:

d
dt

1
2
∫
+∞

−∞
w2dx + ∫

+∞

−∞
(vx −

1
2
ux)w

2dx = 0. (10.2.8)

Let E(t) = 1
2 ∫
+∞
−∞ w2dx, max |2vx − ux| = m. From (10.2.8), we get

d
dt
E(t) ≤ mE(t),

and then

E(t) ≤ E(0)emt .

Since E(0) = 0, we find E(t) = 0 (t > 0). Thus, w ≡ 0. As described in [290], for the
following periodic initial value problem of the KdV equation:

{{{{{{{{{
{{{{{{{{{
{

ut + uux + μuxxx = 0, (0 ≤ t ≤ T ,0 < x < 1),
u(x,0) = u0(x), (0 ≤ x ≤ 1),
u(0, t) = u(1, t), (0 ≤ t ≤ T),
ux(0, t) = ux(1, t), (0 ≤ t ≤ T),
uxx(0, t) = uxx(1, t), (0 ≤ t ≤ T),

(10.2.9)

using the fourth-order small parameter method, that is, considering the solution
uε(x, t) of the following definite problem corresponding to problem (10.2.9):

uεt + uuεx + μuεxxx + εuεxxxx = 0, (ε > 0), (0 ≤ t ≤ T , 0 < x < 1), (10.2.10)
uε(x,0) = u0ε(x), (0 ≤ x ≤ 1), (10.2.11)

𝜕juε
𝜕xj
(0, t) = 𝜕

juε
𝜕xj
(1, t), (0 ≤ t ≤ T), (j = 0, 1, 2, 3), (10.2.12)

it tends to the solution of (10.2.9) as ε → 0. We assume u0ε ∈ C∞([0, 1]), such that

dju0ε(0)
dxj
=
dju0ε(1)
dxj
, ∀j ≥ 0,

and we suppose u0ε converges weakly to u0 in H1(Ω)(ε → 0). Here we useΩ to denote
the interval (0, 1), while Hs(Ω)(s ≥ 0 and is integer) is the Sobolev space

{v | v(x) ∈ L2(Ω),Djv(x) ∈ L2(Ω),0 ≤ j ≤ s},

‖v‖Hs(Ω) = {
s
∑
j=0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕jv
𝜕xj
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(Ω)
}
1/2

.
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We know from [163] that the solution uε of problem (10.2.10)–(10.2.12) exists and satis-
fies

uε ∈ L
∞(0,T ; L2(Ω)) ∩ L2(0,T ;H2(Ω)), (10.2.13)

where L∞(0,T ;Hs) represents the function space defined over [0,T] and takes values
in Hs. We define u(x, t) as the function of x belonging to Hs. For t ∈ [0,T],

sup
0≤t≤T

󵄩󵄩󵄩󵄩u(⋅, t)
󵄩󵄩󵄩󵄩s <∞.

The term L2(0,T ;Hs) represents the function space in which u(x, t) as a function of x
belongs to Hs for each t ∈ [0,T] and ∫T0 ‖u(x, t)‖

2
sdt <∞. From (10.2.13), we have

{{{
{{{
{

𝜕uε
𝜕x
∈ L2(0,T ;H1(Ω)) ⊂ L2(0,T ; L∞(Ω)),

uε
𝜕uε
𝜕x
∈ L2(0,T ; L2(Ω)).

(10.2.14)

We deduce from (10.2.10) that

𝜕uε
𝜕t
+ μ𝜕

3uε
𝜕x3
+ ε𝜕

4uε
𝜕x4
= −uε
𝜕uε
𝜕x
∈ L2. (10.2.15)

From this, the boundary conditions, and the smoothness theorem of linear equation,
we deduce

𝜕uε
𝜕t
∈ L2(Q), uε ∈ L

2(0,T ;H4(Ω)),

where Q = Ω × [0,T]. (10.2.16)

We now make a priori estimates for the solution of problem (10.2.10)–(10.2.12).

Lemma 10.2.2. If u0 ∈ L2(Ω), then we have

‖uε‖L∞(0,T ;L2(Ω)) ≤ c, (10.2.17)

√ε
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕2uε
𝜕x2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2(Q)
≤ c, (10.2.18)

where the constant c is independent of ε.

Proof. Multiplying (10.2.10) by uε and integrating with respect to x, we have, under
the periodic conditions (10.2.12),

1
2
d
dt
󵄩󵄩󵄩󵄩uε(t)
󵄩󵄩󵄩󵄩
2
L2 + ε∫Ω

(
𝜕2uε
𝜕x2
)
2
dx = 0.

From this, we immediately get (10.2.17) and (10.2.18).
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Lemma 10.2.3. For all functions v(x) ∈ H3(Ω), we have

‖v‖L4(Ω) ≤ c‖v‖
11/12
L2(Ω)(‖v‖L2(Ω) +

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
d3v
dx3
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2(Ω)
)

1
12

, (10.2.19)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
dv
dx

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L4(Ω)
≤ c‖v‖7/12L2(Ω)(‖v‖L2(Ω) +

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
d3v
dx3
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2(Ω)
)

5
12

. (10.2.20)

Proof. By the interpolation representation in Chapter 1 of [164],

[H3(Ω),H0(Ω)] 11
12
= H

1
4 (Ω),H0(Ω) = L2(Ω),

and H
1
4 (Ω) ⊂ L4(Ω), we deduce

‖v‖L4(Ω) ≤ c‖v‖H 1
4 (Ω)
≤ c‖v‖

1
12
H3(Ω)‖v‖

11
12
H0(Ω),

that is, we get (10.2.19). Similarly, [H3(Ω),H0(Ω)] 7
12
= H

5
4 (Ω),

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
dv
dx

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L4(Ω)
≤ c‖v‖

H
5
4 (Ω)
,

so we obtain (10.2.20).

Lemma 10.2.4. If u0(x) ∈ H1(Ω), then we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕uε
𝜕x

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L∞(0,T ;L2(Ω)) ≤ c, (10.2.21)

√ε
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕3uε
𝜕x3
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2(Q)
≤ c, (10.2.22)

where the constant c is independent of ε.

Proof. Multiplying (10.2.10) by

ψ1(uε) = u
2
ε + 2μ
𝜕2uε
𝜕x2
,

integrating with respect to x, and using the periodic boundary conditions, we get

d
dt
∫
Ω
[ 1
3
u3ε − μ(

𝜕uε
𝜕x
)
2
]dx + ε∫

Ω

𝜕4uε
𝜕x4
(u2ε + 2μ

𝜕2uε
𝜕x2
)dx = 0,

or

d
dt
∫
Ω
[ 1
3
u3ε − μ(

𝜕uε
𝜕x
)
2
]dx − 2ε∫

Ω

𝜕3uε
𝜕x3

uε
𝜕uε
𝜕x

dx − 2με∫
Ω
(
𝜕3uε
𝜕x3
)
2
dx = 0. (10.2.23)
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Then we get

μ d
dt

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕uε
𝜕x

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(Ω)
+ 2με
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕3uε
𝜕x3
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(Ω)

= 1
3
d
dt
∫
Ω
u3εdx − 2ε∫

Ω
uε
𝜕uε
𝜕x
𝜕3uε
𝜕x3

dx. (10.2.24)

Integrating (10.2.24) with respect to t and dividing by μ yields

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕uε
𝜕x

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(Ω)
+ 2ε∫

t

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕3uε
𝜕x3
(σ)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2
dσ

=
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
du0
dx

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2
+ 1
3μ
∫
Ω
u3ε(x, t)dx −

1
3μ
∫
Ω
u30(x)dx

− 2ε
μ
∫
t

0
∫
Ω
uε
𝜕uε
𝜕x
𝜕3uε
𝜕x3

dxdσ. (10.2.25)

Since
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω
u3ε(t)dt
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 󵄩󵄩󵄩󵄩uε(t)

󵄩󵄩󵄩󵄩L∞(Ω)󵄩󵄩󵄩󵄩uε(t)󵄩󵄩󵄩󵄩2L2(Ω)
≤ c1
󵄩󵄩󵄩󵄩uε(t)
󵄩󵄩󵄩󵄩L∞(Ω) (due to (10.2.17))

≤ c2
󵄩󵄩󵄩󵄩uε(t)
󵄩󵄩󵄩󵄩
1
2
L2(Ω)(
󵄩󵄩󵄩󵄩uε(t)
󵄩󵄩󵄩󵄩L2(Ω) +

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕uε(t)
𝜕x

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2(Ω)
)
1/2

≤ c3(1 +
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕uε(t)
𝜕x

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2(Ω)
)
1/2
(due to (10.2.17))

≤ c4 +
3|μ|
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕uε(t)
𝜕x

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(Ω)
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω
uε
𝜕uε
𝜕x
⋅
𝜕3uε
𝜕x3

dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 󵄩󵄩󵄩󵄩uε(t)

󵄩󵄩󵄩󵄩L4(Ω)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕uε
𝜕x

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L4(Ω)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕3uε
𝜕x3
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2(Ω)

≤ c5
󵄩󵄩󵄩󵄩uε(t)
󵄩󵄩󵄩󵄩
3/2
L2 (
󵄩󵄩󵄩󵄩uε(t)
󵄩󵄩󵄩󵄩L2 +
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕3uε(t)
𝜕x3
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2
)
1/2

⋅
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕3uε(t)
𝜕x3
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2(Ω)

(by (10.2.19), (10.2.20))

≤ c6(1 +
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕3uε(t)
𝜕x3
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2
)
1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕3uε(t)
𝜕x3
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2(Ω)

≤ c7 +
|μ|
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕3uε(t)
𝜕x3
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(Ω)
(by (10.2.17)).

(Note that, for v ∈ H1(Ω), we have ‖v‖L∞(Ω) ≤ c‖v‖1/2L2 (‖v‖L2 + ‖
𝜕u
𝜕x ‖L2 )

1/2.) Considering
the last inequality, from (10.2.25) we deduce

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕uε(t)
𝜕x

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(Ω)
+ 2ε∫

t

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕3uε(σ)
𝜕x3
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(Ω)
dσ
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≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
du0
dx

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(Ω)
+ 1
3|μ|
∫
Ω
|u0|

3dx

+ 1
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕uε(t)
𝜕x

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(Ω)
+ ε∫

t

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕3uε(σ)
𝜕x3
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(Ω)
dσ + c. (10.2.26)

Thus, we obtain

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕3uε(t)
𝜕x3
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(Ω)
+ ε∫

t

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕3uε(σ)
𝜕x3
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(Ω)
dσ ≤ c.

This immediately yields (10.2.21) and (10.2.22).

Using equation (10.2.10), we have

𝜕uε
𝜕t
= −uε
𝜕uε
𝜕x
− μ𝜕

3uε
𝜕x3
− ε𝜕

4uε
𝜕x4
.

By (10.2.21) and (10.2.22), we have

𝜕uε
𝜕t

uniformly bounded in L2(0,T ;H−2(Ω)). (10.2.27)

Thus, by (10.2.17), (10.2.18), (10.2.21), (10.2.22), and (10.2.17), we choose a subsequence
of uε, still denoted by uε, such that

uε → u weakly in L∞(0,T ; L2(Ω)),
𝜕uε
𝜕x
→ 𝜕u
𝜕x

weakly in L∞(0,T ; L2(Ω)),

𝜕uε
𝜕t
→ 𝜕u
𝜕t

weakly in L∞(0,T ;H−2(Ω)).

From the first and second results, we infer that uε → uweakly in L∞(0,T ;H1(Ω)). From
the second result, we deduce that uε → u strongly in L∞(0,T ; L2(Ω)). Using (10.2.13),
taking the limit in (10.2.10), (10.2.11), and (10.2.12), and applying

uε
𝜕uε
𝜕x
→ u𝜕u
𝜕x

(10.2.28)

weakly in L∞(0,T ; L1(Ω)), it is not difficult to obtain equation (10.2.10),→ ut + uux +
μuxxx = 0, so we get the desired solution. We have the following theorem.

Theorem 10.2.5. Suppose that μ ∈ R, μ ̸= 0, u0(x) ∈ H1(Ω), and u0(0) = u0(1). Then
there exists a function u(x, t), u ∈ L∞(0,T ;H1(Ω)), that satisfies

u, ux ∈ L
∞(0,T ; L2(Ω)), (10.2.29)

ut + uux + μuxxx = 0, (10.2.30)
u(x,0) = u0(x), (10.2.31)
u(0, t) = u(1, t). (10.2.32)
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Theorem 10.2.6. Assume that μ ∈ R, μ ̸= 0, u0(x) ∈ H2(Ω), and dju(0)
dxj =

dju(1)
dxj (j = 0, 1).

Then the function of the definite solution problem (10.2.9) is unique.

Remark. If u0 ∈ L∞(Ω̄) and

dju0(0)
dxj
=
dju0(1)
dxj
, ∀j ≥ 0,

then the solution of (10.2.9) satisfies u ∈ L∞(Ω̄).

As described in [31], for the initial value problem

{
ut + uux + uxxx − εuxxt = 0, (t > 0,−∞ < x < +∞),
u(x,0) = g(x), (−∞ < x < +∞),

(10.2.33)

the uniformly a priori estimate of the solution uε with respect to εwas established and
the existence and uniqueness of the solution for the initial value problem of the KdV
equation

ut + uux + uxxx = 0, (−∞ < x < +∞, t > 0),
u(x,0) = g(x), (−∞ < x < +∞)

(10.2.34)

were proved. For the existence and uniqueness theorem of solution for all kinds of
definite solution problems to the more general class of KdV equations, complex KdV
equations, and the higher-order KdV equations, we refer the reader to [31, 71, 104, 110,
161, 294, 320].

10.3 Periodic initial value problem for a class of nonlinear
Schrödinger equations

We consider the following periodic initial value problem for a class of nonlinear
Schrödinger equations:

iujt − ujx + β(x)q(σ21|u1|
2 + σ31|u2|

2)uj
+ kj(x)uj = 0, (j = 1, 2, 0 < x < 2π, t > 0), (10.3.1)

uj|t=0 = u
j
0(x), 0 ≤ x ≤ 2π, j = 1, 2, (10.3.2)

uj(x, t) = uj(x + 2π, t), ∀x, t ≥ 0, j = 1, 2, (10.3.3)

where i = √−1, σ21, and σ31 are positive constants and β(x) is a bounded real func-
tion with period 2π. q(s) ≥ 0, s ∈ [0,+∞), and kj(x) (j = 1, 2) are bounded real func-
tions with period 2π. uj(x, t) are the unknown functions. uj0(x) (j = 1, 2) are the given
complex-valued functions with period 2π. We define the inner

(f , g) = ∫
2π

0
f ḡdx, a(u, v) = ∫

2π

0

𝜕u
𝜕x
𝜕v̄
𝜕x

dx.
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We first make an a priori estimate for the solution of the problem (10.3.1)–(10.3.3).

Lemma 10.3.1. If the following conditions are satisfied: (i) β(x), q(s), kj(x) are real func-
tions and (ii) uj0(x) ∈ L

2, then the solutions uj(x, t) of problem (10.3.1)–(10.3.3) satisfy the
following equality:

󵄩󵄩󵄩󵄩uj(t)
󵄩󵄩󵄩󵄩
2
L2 =
󵄩󵄩󵄩󵄩u

j
0
󵄩󵄩󵄩󵄩
2
L2 (j = 1, 2). (10.3.4)

Proof. Multiplying (10.3.1) by ūj and integrating with respect to x, we get

i(ujt , uj) + a(uj, uj) + (β(x)q(σ21|u1|
2 + σ31|u2|

2)uj, uj) + (kj(x)uj, uj) = 0. (10.3.5)

Since a(uj, uj) ≥ 0, β(x) is a real function and

(βquj, uj) = ∫
2π

0
β(x)q|uj|

2dx,

(kjuj, uj) = ∫
2π

0
kj(x)q|uj|

2dx.

Then, taking the imaginary part of (10.3.5), we immediately get (10.3.4).

Lemma 10.3.2. If the following conditions hold: (i) σ21 and σ31 are real numbers and
β(x), kj(x), and q(s) are all real functions and (ii) uj0(x) ∈ L2, β(x) and Q(σ21|u10|

2 +
σ31|u20|

2) ∈ L1, where Q(s) = ∫s0 q(z)dz, then the solution of problem (10.3.1)–(10.3.3)
satisfies

σ21‖u1x‖
2
L2 + σ31‖u2x‖

2
L2 + ∫

2π

0
β(x)Q(σ21|u1|

2 + σ31|u2|
2)dx

+ ∫
2π

0
[k1(x)σ21|u1|

2 + k2(x)σ31|u2|
2]dx

= σ21
󵄩󵄩󵄩󵄩u

1
0x
󵄩󵄩󵄩󵄩
2
L2 + σ31
󵄩󵄩󵄩󵄩u

2
0x
󵄩󵄩󵄩󵄩
2
L2 + ∫

2π

0
β(x)Q(σ21

󵄨󵄨󵄨󵄨u
1
0
󵄨󵄨󵄨󵄨
2 + σ31
󵄨󵄨󵄨󵄨u
2
0
󵄨󵄨󵄨󵄨
2)dx

+ ∫
2π

0
[k1(x)σ21

󵄨󵄨󵄨󵄨u
1
0
󵄨󵄨󵄨󵄨
2 + k2(x)σ31

󵄨󵄨󵄨󵄨u
2
0
󵄨󵄨󵄨󵄨
2]dx. (10.3.6)

Proof. Multiplying (10.3.1) by ūjt and integrating with respect to x, we have

i(ujt , ujt) + (ujx , ujxt) + (β(x)q(σ21|u1|
2 + σ31|u2|

2)uj, ujt) + (kjuj, ujt) = 0. (10.3.7)

Because

Re(ujx , ujxt) =
1
2
d
dt
‖ujx‖

2
L2 ,

Re(kjuj, ujt) =
d
dt

1
2
∫
2π

0
kj(x)|uj|

2dx,
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Re(β(x)q(σ21|u1|
2 + σ31|u2|

2)u1, σ21u1t) + Re(β(x)q(σ21|u1|
2 + σ31|u2|

2)u2, σ31u2t)

= 1
2
∫
2π

0
β(x)q(σ21|u1|

2 + σ31|u2|
2) 𝜕
𝜕t
(σ21|u1|

2 + σ31|u2|
2)dx

= d
dt

1
2
∫
2π

0
β(x)Q(σ21|u1|

2 + σ31|u2|
2)dx.

Taking the imaginary part of (10.3.7), multiplying for j = 1 by σ21, multiplying for j = 2
by σ31, and adding the resultants, we obtain

1
2
d
dt
(σ21‖u1‖

2
L2 + σ31‖u2‖

2
L2) +

1
2
d
dt
∫
2π

0
β(x)Q(σ21|u1|

2 + σ31|u2|
2)dx

+ 1
2
d
dt
∫
2π

0
[k1(x)σ21|u1|

2 + k2(x)σ31|u2|
2]dx = 0.

That is, we obtain (10.3.6).

Lemma 10.3.3. If the conditions of Lemma 10.3.2 hold, kj(x) (j = 1, 2) are bounded real
functions, q(s) ≥ 0, β(x) ≥ 0, and they are bounded, σ21 > 0, and σ31 > 0, then, for the
solution of problem (10.3.1)–(10.3.3), we have the following estimates:

‖u1x‖
2
L2 ≤ c1, ‖u2x‖

2
L2 ≤ c2,

∫
2π

0
β(x)Q(σ21|u1|

2 + σ31|u2|
2)dx ≤ c3,

(10.3.8)

where the constants c1, c2 only depend on the initial functions and their derivatives.

Proof. By (10.3.6) and the lemma conditions, we immediately get the results.

Corollary 10.3.4. We have

2
∑
j=1
‖uj‖L∞ ≤ c4, (10.3.9)

where the constant c4 only depends on the initial functions and their derivatives.

Proof. From the conclusion of the lemma and the Sobolev inequality, (10.3.9) imme-
diately follows.

Lemma 10.3.5. If the conditions of Lemma 10.3.3 hold and we assume that uj0(x) ∈ H
2

(j = 1, 2), then the solution of problem (10.3.1)–(10.3.3) satisfies the following estimates:

sup
0≤t≤T
‖u1t‖

2
L2 ≤ c5, sup

0≤t≤T
‖u2t‖

2
L2 ≤ c6, (10.3.10)

where the constants c5, c6 only depend on the initial functions and their derivatives up
to the second order.
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Proof. Differentiating equation (10.3.1) with respect to t, multiplying by ūjt, and inte-
grating, we get

i(ujtt , ujt) + (ujxt , ujxt) + (β(x)
d
dt
ujq(σ21|u1|

2 + σ31|u2|
2), ujt) + (kjujt , ujt) = 0. (10.3.11)

Because

(β(x) d
dt
ujq(σ21|u1|

2 + σ31|u2|
2), ujt)

= ∫
2π

0
β(x)q(σ21|u1|

2 + σ31|u2|
2)|ujt |

2dx + ∫
2π

0
β(x)q󸀠 𝜕
𝜕t
(σ21|u1|

2 + σ31|u2|
2)ujūjtdx,

𝜕
𝜕t
󵄨󵄨󵄨󵄨uj(t)
󵄨󵄨󵄨󵄨
2 = ujt ūj + ujūjt .

Therefore,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
2π

0
β(x)q󸀠 𝜕
𝜕t
(σ21|u1|

2 + σ31|u2|
2)ujūjtdx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ c1
󵄩󵄩󵄩󵄩q
󸀠(σ21|u1|

2 + σ31|u2|
2)󵄩󵄩󵄩󵄩L∞ ∫2π0 dx[|u1t | ⋅ |ū1| + |u2| ⋅ |u1t |]|uj||ujt |

≤ c2[‖u1t‖
2
L2 + ‖u2t‖

2
L2].

Taking the imaginary part of (10.3.11), we obtain

d
dt
[󵄩󵄩󵄩󵄩u1t(t)
󵄩󵄩󵄩󵄩
2
L2 +
󵄩󵄩󵄩󵄩u2t(t)
󵄩󵄩󵄩󵄩
2
L2] ≤ c3[

󵄩󵄩󵄩󵄩u1t(t)
󵄩󵄩󵄩󵄩
2
L2 +
󵄩󵄩󵄩󵄩u2t(t)
󵄩󵄩󵄩󵄩
2
L2].

By the Grönwall inequality and the lemma conditions, we immediately get (10.3.10).

Now we define the generalized solution of the definite solution problem
(10.3.1)–(10.3.3). The space 2π-periodic functions uj(x, t) ∈ L∞(0,T ;H1), ujt ∈ L∞(0,T ;
L2) (j = 1, 2), and Q(σ21|u10|

2 + σ31|u20|
2) ∈ L1 (where Q(s) = ∫s0 q(z)dz) are called the

generalized solutions of the definite solution problem (10.3.1)–(10.3.3), if the integral
equality is satisfied, so we have

i(ujt , vj) + (ujx , vjx) + (β(x)ujq(σ21|u1|
2 + σ31|u2|

2), vj) + (kjuj, vj) = 0,
∀vj(x) ∈ H

1, t ≥ 0, j = 1, 2, (10.3.12)

(uj|t=0, vj) = (u
j
0(x), vj), (j = 1, 2). (10.3.13)

By the Galerkin approximate method or writing (10.3.1) as an integral equation, we
have

uj(x, t) = S(t)uj0(x) + ∫
t

0
S(t − τ)[q(σ21

󵄨󵄨󵄨󵄨u1(x, τ)
󵄨󵄨󵄨󵄨
2

+ σ31
󵄨󵄨󵄨󵄨u2(x, τ)

󵄨󵄨󵄨󵄨
2)uj + kj(x) ⋅ uj(x, τ)]dτ,
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where S(t) = 1
√2πit

e
−x2 t
4πi . Using the contraction mapping principle, we can easily get

the local existence of solution to problem (10.3.1)–(10.3.3). Based on above a priori
estimates, we get the following theorem.

Theorem 10.3.6. If the following conditions are satisfied: (i) σ21 ≥ 0, σ31 ≥ 0, and the
2π-period real function β ≥ 0, (ii) q(s) is a real function, q(s) ∈ C1, q(s) ≥ 0, s ∈ [0,∞),
and kj(x) are bounded real functions with period 2π, and (iii) u

j
0 are periodic complex-

valued functions and uj0(x) ∈ H
2, then the generalized solution of the definite solution

problem (10.3.1)–(10.3.3) exists.

Theorem 10.3.7. If q(s) ∈ C1, s ∈ [0,∞), and kj(x) are bounded functions, then the
generalized solution of the definite solution problem (10.3.1)–(10.3.3) is unique.

Proof. Assume that there are two pairs of generalized solutions, uj, zj (j = 1, 2), of
(10.3.1)–(10.3.3). Let wj = uj − zj, j = 1, 2. Then we obtain from (10.3.12)

i(wjt , vj) + (wjx ,wjx) + (β(x)ujq(σ21|u1|
2 + σ31|u2|

2) − β(x)zjq(σ21|z1|
2

+ σ31|z2|
2), vj) + (kjwj, vj) = 0, vj ∈ H

1, t > 0, (10.3.14)
wj|t=0 = 0. (10.3.15)

In particular, choose vi = wi in (10.3.14). Because

q(σ21|u1|
2 + σ31|u2|

2)uj − q(σ21|z1|
2 + σ31|z2|

2)zj
= q󸀠( ̃z)[σ21(|u1|

2 − |z1|
2) + σ31(|u2|

2 − |z2|
2)]uj

+ q(σ21|z1|
2 + σ31|z2|

2)(uj − zj),

where ̃z is between |u1|2 + |u2|2 and |z1|2 + |z2|2, we have

󵄨󵄨󵄨󵄨(β(x)q(σ21|u1|
2 + σ31|u2|

2)uj − β(x)q(σ21|z1|
2 + σ31|z2|

2)zj,wj)
󵄨󵄨󵄨󵄨

≤ max 󵄨󵄨󵄨󵄨β(x)
󵄨󵄨󵄨󵄨[(|σ21| + |σ31|)

󵄩󵄩󵄩󵄩q
󸀠( ̃z)󵄩󵄩󵄩󵄩L∞‖uj‖L∞ 2

∑
j=1
(‖uj‖L∞ + ‖zj‖L∞)

+ 󵄩󵄩󵄩󵄩q(σ21|z1|
2 + σ31|z2|

2)󵄩󵄩󵄩󵄩L∞]( 2
∑
k=1
|wk |, |wj|).

Taking the real part of (10.3.14) and summing with respect to j, we get

1
2
d
dt

2
∑
j=1
‖wj‖

2
L2 ≤ c

2
∑
j=1
‖wj‖

2
L2 .

By the Gronwall inequality and wj(0) = 0, we immediately get uj = zj.
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Remark 10.3.8. For the initial value and boundary value problems of nonlinear
Schrödinger equations (10.3.1), where its solution in addition to satisfying (10.3.1) also
satisfies the initial condition (10.3.2) and

uj|x=0 = uj|x=1 = 0, (10.3.16)

the conclusion of the above Theorem 10.3.6 and Theorem 10.3.7 are still valid.

Remark 10.3.9. If the initial functions and the coefficients of equation have a higher
smoothness, the classical global solution of the problem (10.3.1)–(10.3.3) can be ob-
tained by using the method of taking the difference quotient of the equation.

The well-posedness of the global solution for a more generalized class of nonlin-
ear Schrödinger equations, the multi-dimensional nonlinear Schrödinger equation,
and the system of nonlinear Schrödinger equations of the integral type is described in
[90, 103, 105, 243, 282, 296, 322, 323].

10.4 Initial value problem for the nonlinear Klein–Gordon
equation

We now consider the initial value problem for the following nonlinear Klein–Gordon
equation:

{{{{{{
{{{{{{
{

𝜕2u
𝜕t2
− Δu +m2u = −λ|u|2u, x ∈ R3, t > 0,

u(x,0) = f (x), x ∈ R3,
𝜕u
𝜕t
(x,0) = g(x), x ∈ R3,

(10.4.1)

where m > 0, λ > 0, Δ ≡ 𝜕
2

𝜕x21
+ 𝜕

2

𝜕x22
+ 𝜕

2

𝜕x23
. We will use the functional method of the

abstract differential operator to prove the existence of the global solution of the initial
value problem (10.4.1).

We first turn problem (10.4.1) into the first-order system of the variable t. We have

{{{{{{
{{{{{{
{

𝜕v
𝜕t
− Δu +m2u = −λ|u|2u,

𝜕u
𝜕t
= v,

u(x,0) = f (x), v(x,0) = g(x),
or

{{{{{
{{{{{
{

dφ(t)
dt
− (

0 I
Δ −m2 0

)φ(t) = J(φ(t)),

φ(x,0) = (f (x)
g(x)
),

(10.4.2)
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where

φ = (u
v
), J(φ) = ( 0

−λ|u|2u
)

and I is the unit matrix.
We will use the general Hilbert space theorem to prove the existence and unique-

ness of the global solution for problem (10.4.2). We first choose the Hilbert spaceℋ =
L2(R3) and let B2 = −Δ + m2. It is easy to know that B2 is closed. We useℋB to denote
the direct sumℋB = D(B) ⊕ D(ℋ), which has the following inner product:

(⟨u, v⟩, ⟨u, v⟩)B ≡ (Bu,Bu) + (v, v).

Letting

A = i( 0 I
−B2 0
), i = √−1, (10.4.3)

it is easy to verify thatA is a symmetric operator inℋB andhas the domain of definition
D ≡ D(B2)⊕D(B). A is also closed. We further write (10.4.2) into the following operator
equation form:

{
{
{

dφ
dt
= −iAφ + J(φ),

φ(0) = φ0 = ⟨f (x), g(x)⟩.
(10.4.4)

Now we first estimate the solution of (10.4.1).

Lemma 10.4.1. Assume that u ∈ C∞0 (R
3). Then we have

‖u‖L6 ≤ k‖Bu‖L2 . (10.4.5)

Proof. Denote 𝜕u𝜕xi as uxi . Then we have

󵄨󵄨󵄨󵄨u(x)
󵄨󵄨󵄨󵄨
4 ≤ 4∫ 󵄨󵄨󵄨󵄨uxiu

3󵄨󵄨󵄨󵄨dxi.

Integrating with respect to xj for fixed j ̸= i, we get

󵄨󵄨󵄨󵄨u(x)
󵄨󵄨󵄨󵄨
6 ≤ K(∫ 󵄨󵄨󵄨󵄨ux1u

3󵄨󵄨󵄨󵄨dx1)
1/2
(∫ 󵄨󵄨󵄨󵄨ux2u

3󵄨󵄨󵄨󵄨dx2)
1/2
(∫ 󵄨󵄨󵄨󵄨ux3u

3󵄨󵄨󵄨󵄨dx3)
1/2
.

Integrating the above inequality and applying the Schwartz inequality, we get

∫
R3
|u|6dx ≤ K(∫

R3
󵄨󵄨󵄨󵄨ux1u

3󵄨󵄨󵄨󵄨dx)
1/2
(∫

R3
󵄨󵄨󵄨󵄨ux2u

3󵄨󵄨󵄨󵄨dx)
1/2
(∫

R3
󵄨󵄨󵄨󵄨ux3u

3󵄨󵄨󵄨󵄨dx)
1/2
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≤ K(∫
R3
|u|6dx)

3/4
(∫

R3
|ux1 |

2dx)
1/4
(∫

R3
|ux2 |

2dx)
1/4
(∫

R3
|ux3 |

2dx)
1/4
.

Then it is easy to deduce

(∫
R3
|u|6dx)

1/6
≤ K(‖ux1‖L2 + ‖ux2‖L2 + ‖ux3‖L2)

= K(‖k1û‖L2 + ‖k2û‖L2 + ‖k3û‖L2 )

≤ K󵄩󵄩󵄩󵄩(Σk
2
i +m

2)1/2û󵄩󵄩󵄩󵄩L2 = K‖Bu‖L2 ,

where

û(t, k) = 1
2π3/2
∫
R3
e−ix⋅ku(x, t)dx,

(x ⋅ k =
3
∑
i=1

xi ⋅ ki).

Lemma 10.4.2. Assume that u1, u2, u3 ∈ D(B). Then

‖u1u2u3‖L2 ≤ K‖Bu1‖L2‖Bu2‖L2‖Bu3‖L2 . (10.4.6)

Proof. Let u ∈ D(B). Because B is essentially self-conjugate in C∞0 (R
3), we choose a

sequence of functions un ∈ C∞0 (R
3) such that un

L2
󳨀󳨀→ u and Bun

L2
󳨀󳨀→ Bu. Choosing a

subsequence of un, still denoted by un, un converges to u point-wise. Since

󵄩󵄩󵄩󵄩u
3
n − u

3
m
󵄩󵄩󵄩󵄩L2 =
󵄩󵄩󵄩󵄩(un − um)(u

2
n + unum + u

2
m)
󵄩󵄩󵄩󵄩L2

≤ K‖un − um‖L6
󵄩󵄩󵄩󵄩(u

2
n + unum + u

2
m)
󵄩󵄩󵄩󵄩L3

≤ K‖un − um‖L6(‖un‖
2
L6 + ‖un‖6 ⋅ ‖um‖L6

+ ‖um‖
2
L6) ≤ K‖Bun − Bum‖L2(‖Bum‖

2
L2

+ ‖Bun‖L2‖Bum‖L2 + ‖Bum‖
2
L2),

{u3n} is a Cauchy sequence in L
2 and since it converges to u3 point-wise, u3 ∈ L2. Passing

to the limit in the above inequality, we have

‖u‖3L6 =
󵄩󵄩󵄩󵄩u

3󵄩󵄩󵄩󵄩L2 ≤ K‖Bu‖
3
L2 .

Applying the Hölder inequality twice, the conclusion of the lemma immediately fol-
lows.

Lemma 10.4.3. For all φ1, φ2 ∈ ℋ, J satisfies

󵄩󵄩󵄩󵄩J(φ1)
󵄩󵄩󵄩󵄩L2 ≤ K‖φ1‖

3
L2 ,

󵄩󵄩󵄩󵄩J(φ1) − J(φ2)
󵄩󵄩󵄩󵄩L2 ≤ C(‖φ1‖L2 , ‖φ2‖L2)‖φ1 − φ2‖L2 .
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Proof. Letting φi = ⟨ui, vi⟩, from Lemma 10.4.2 we deduce

󵄩󵄩󵄩󵄩J(φ1)
󵄩󵄩󵄩󵄩L2 =
󵄩󵄩󵄩󵄩λu

2
1 ū1
󵄩󵄩󵄩󵄩L2 ≤ K‖Bu1‖

3
L2 ≤ K‖φ1‖

3
L2 ,

󵄩󵄩󵄩󵄩J(φ1) − J(φ2)
󵄩󵄩󵄩󵄩L2 =
󵄩󵄩󵄩󵄩λ(u

2
1 ū1 − u

2
2ū2)
󵄩󵄩󵄩󵄩L2

≤ K‖B(u1 − u2)‖L2(‖Bu1‖
2
L2 + ‖Bu1‖L2‖Bu2‖L2 + ‖Bu2‖

2
L2)

≤ K‖φ1 − φ2‖L2(‖φ1‖
2
L2 + ‖φ1‖L2‖φ2‖L2 + ‖φ2‖

2
L2).

The lemma follows.

Lemma 10.4.4. Assume that φ1, φ2 ∈ D(A). Then

󵄩󵄩󵄩󵄩AJ(φ1)
󵄩󵄩󵄩󵄩L2 ≤ K‖φ1‖

2
L2‖Aφ1‖L2 ,

󵄩󵄩󵄩󵄩A(J(φ1) − J(φ2))
󵄩󵄩󵄩󵄩L2

≤ C(‖φ1‖L2 , ‖φ2‖L2 , ‖Aφ1‖L2 , ‖Aφ2‖L2)‖Aφ1 − Aφ2‖L2 .

Proof. Let φi = ⟨ui, vi⟩. Then ui ∈ D(B2), vi ∈ D(B). We calculate

‖Buxi‖
2
L2 =
󵄩󵄩󵄩󵄩(Σk

2
i +m

2)1/2kiû
󵄩󵄩󵄩󵄩
2
L2 ≤
󵄩󵄩󵄩󵄩(Σk

2
i +m

2)û󵄩󵄩󵄩󵄩
2
L2

= 󵄩󵄩󵄩󵄩B
2u󵄩󵄩󵄩󵄩

2
L2 .

Thus, by Lemma 10.4.2, we have

󵄩󵄩󵄩󵄩(u
2ū)xi
󵄩󵄩󵄩󵄩L2 =
󵄩󵄩󵄩󵄩2uuxi ū + u

2ūxi
󵄩󵄩󵄩󵄩L2 ≤ K‖Bu‖

2
L2 ⋅ ‖Buxi‖L2

≤ K‖Bu‖2L2
󵄩󵄩󵄩󵄩B

2u󵄩󵄩󵄩󵄩L2 ,

so

󵄩󵄩󵄩󵄩AJ(φ1)
󵄩󵄩󵄩󵄩
2
L2 = λ

2󵄩󵄩󵄩󵄩Bu
2
1 ū1
󵄩󵄩󵄩󵄩
2
L2

= λ2
3
∑
i=1

󵄩󵄩󵄩󵄩(u
2
1 ū1)xi
󵄩󵄩󵄩󵄩
2
L2 + λ

2m2󵄩󵄩󵄩󵄩u
2
1 ū1
󵄩󵄩󵄩󵄩
2
L2

≤ K(‖Bu1‖
4
L2
󵄩󵄩󵄩󵄩B

2u1
󵄩󵄩󵄩󵄩
2
L2 +m

2‖Bu1‖
6
L2)

≤ K‖Bu1‖
4
L2
󵄩󵄩󵄩󵄩B

2u1
󵄩󵄩󵄩󵄩
2
L2 ≤ K‖φ1‖

4
L2‖Aφ1‖

2
L2 .

Thus, we have proved the first equality. In order to prove the second equality, by
Lemma 10.4.2 and the above equality, we have

1
4
󵄩󵄩󵄩󵄩(u

2ū1 − u
2
1 ū2)xi
󵄩󵄩󵄩󵄩
2
L2 ≤
󵄩󵄩󵄩󵄩u

2
1(ū1 − ū2)xi

󵄩󵄩󵄩󵄩
2
L2 +
󵄩󵄩󵄩󵄩(u

2
1 − u

2
2)(ū2)xi
󵄩󵄩󵄩󵄩
2
L2

+ 󵄩󵄩󵄩󵄩2(u1)xi(|u1|
2 − |u2|

2)󵄩󵄩󵄩󵄩
2
L2 +
󵄩󵄩󵄩󵄩2(u1 − u2)xi |u2|

2󵄩󵄩󵄩󵄩
2
L2
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≤ K(‖Bu1‖
4
L2
󵄩󵄩󵄩󵄩B

2(u1 − u2)
󵄩󵄩󵄩󵄩
2
L2 +
󵄩󵄩󵄩󵄩B

2u2
󵄩󵄩󵄩󵄩
2
L2
󵄩󵄩󵄩󵄩B(u1 + u2)

󵄩󵄩󵄩󵄩
2
L2
󵄩󵄩󵄩󵄩B

2(u1 − u2)
󵄩󵄩󵄩󵄩
2
L2)

≤ K(‖φ1‖
4
L2
󵄩󵄩󵄩󵄩A(φ1 − φ2)

󵄩󵄩󵄩󵄩
2
L2

+ ‖Aφ2‖
2
L2(‖φ1‖L2 + ‖φ2‖L2)

󵄩󵄩󵄩󵄩A(φ1 − φ2)
󵄩󵄩󵄩󵄩
2
L2).

Thus,

󵄩󵄩󵄩󵄩A(J(φ1) − J(φ2))
󵄩󵄩󵄩󵄩
2
L2 = λ

2󵄩󵄩󵄩󵄩B(u
2
1 ū1 − u

2
2ū2)
󵄩󵄩󵄩󵄩
2
L2

= λ2
3
∑
i=1

󵄩󵄩󵄩󵄩(u
2
1 ū1 − u

2
2ū2)xi
󵄩󵄩󵄩󵄩
2
L2 +m

2λ2󵄩󵄩󵄩󵄩u
2
1 ū1 − u

2
2ū2
󵄩󵄩󵄩󵄩
2
L2

≤ C(‖φ1‖L2 , ‖φ2‖L2 , ‖Aφ2‖L2)
󵄩󵄩󵄩󵄩A(φ1 − φ2)

󵄩󵄩󵄩󵄩
2
L2

+ C(‖φ1‖L2 , ‖φ2‖L2)
󵄩󵄩󵄩󵄩A(φ1 − φ2)

󵄩󵄩󵄩󵄩
2
L2 ,

where we have used the inequality ‖Bu‖L2 ≤ K‖B2u‖L2 many times. The lemma fol-
lows.

Lemma 10.4.5. Suppose u(x, t) is the solution of (10.4.1) over [0,T], where u(x,0) =
f (x) ∈ D(B2) and ut(x,0) = g(x) ∈ D(B). Then we have

E(t) = 1
2
∫[󵄨󵄨󵄨󵄨Bu(x, t)

󵄨󵄨󵄨󵄨
2 + 󵄨󵄨󵄨󵄨ut(x, t)

󵄨󵄨󵄨󵄨
2 + λ

2
󵄨󵄨󵄨󵄨u(x, t)
󵄨󵄨󵄨󵄨
4]dx3,

independent of t.

Proof. Let φ(t) = ⟨u(x, t), ut(x, t)⟩. Since, for each t ∈ [0,T], φ(t) ∈ D(A), we have
u(⋅, t) ∈ D(B2), ut(⋅, t) ∈ D(B) ∀t ∈ [0,T]. Since φ(t) is strongly differentiable, u and ut,
as the functions of L2(R3), are strong differentiable and

{{{{
{{{{
{

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
B(u(t + h) − u(t)

h
− ut(t))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2
→ 0, h→ 0,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
ut(t + h) − ut(t)

h
− utt(t)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2
→ 0, h→ 0.

(10.4.7)

We deduce that the first two terms of E(t) are differentiable. In order to prove its third
term is also differentiable, we deduce from Lemma 10.4.1 and the Hölder inequality
that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
u(u(t + h) − u(t)

h
− ut(t))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2

≤ ‖u‖1/2L2 ‖Bu‖
1/2
L2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
B(u(t + h) − u(t)

h
− ut(t))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2
.
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We deduce from this and (10.4.7) that u2(x, t) is strong differentiable, so

∫ 󵄨󵄨󵄨󵄨u(x, t)
󵄨󵄨󵄨󵄨
4dx = (u2(t), u2(t))

is strong differentiable. Also, E(t) is strong differentiable and

E󸀠(t) = 1
2
(But ,Bu) +

1
2
(utt , ut) +

λ
2
(uut , u

2) + 1
2
(Bu,But) +

1
2
(ut , utt) +

λ
2
(u2, uut)

= 1
2
(ut ,B

2u + utt + λ|u|
2u) + 1

2
(B2u + utt + λ|u|

2u, ut) = 0,

where we have used the differential equation which u satisfies.

With the above basic estimation of the solution of problem (10.4.1) and applying
the following existence theorem for the solution of the abstract differential operator,
we can get the existence, uniqueness, and smoothness of the solution of (10.4.1).

We now consider the operator equation (10.4.4). Assume A is a self-conjugate op-
erator in some Hilbert spaceℋ. Suppose that J is a nonlinear map fromD(A) toℋ. Our
problem is to find what conditions J should satisfy to ensure that, for any φ0 ∈ D(A),
there exists a unique function φ(t), t ∈ [0,∞), which belongs toℋ and satisfies

{
{
{

dφ
dt
= −iAφ + J(φ),

φ(0) = φ0.
(10.4.8)

We have the following theorems.

Theorem 10.4.6 (Local existence). Suppose that A is a self-conjugate operator in the
Hilbert spaceℋ and J is a map from D(A) to D(A), satisfying
(H0) ‖J(φ)‖L2 ≤ C(‖φ‖L2 )‖φ‖L2 ;
(H1) ‖AJ(φ)‖L2 ≤ C(‖φ‖L2 , ‖Aφ‖L2 )‖Aφ‖L2 ;
(H2

0) ‖J(φ) − J(ψ)‖L2 ≤ C(‖φ‖L2 , ‖ψ‖L2 )‖φ − ψ‖L2 ;
(H2

1 ) ‖A(J(φ) − J(ψ))‖L2 ≤ C(‖φ‖L2 , ‖Aφ‖L2 , ‖ψ‖L2 , ‖Aψ‖L2 )‖Aφ − Aψ‖L2 , ∀φ,ψ ∈ D(A);

where each constant C is amonotone increasing function of the signified norm. Then, for
all φ0 ∈ D(A), there exists T > 0 such that (10.4.8) has a unique continuously differen-
tiable solution on [0,T) and, for all φ0 ∈ {φ|‖φ‖L2 ≤ a, ‖Aφ‖L2 ≤ b}, T can be selected to
hold uniformly.

Theorem 10.4.7 (Local smoothness). (a) Assume A is a self-conjugate operator in the
Hilbert spaceℋ and J is a map of

D(Aj)→ D(Aj), (1 ≤ j ≤ n)
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and satisfies (for j − 0, 1, . . . , n)
(Hj) ‖AjJ(φ)‖L2 ≤ C(‖φ‖L2 , . . . , ‖A

jφ‖L2 )‖A
jφ‖L2 ;

(H2
j ) ‖A

j(J(φ) − J(ψ))‖L2 ≤ C(‖φ‖L2 , ‖ψ‖L2 , . . . , ‖A
jφ‖L2 , ‖A

jψ‖L2 )‖A
jφ − Ajψ‖L2 ,

∀φ,ψ ∈ D(Aj);
where each constant C is a monotone increasing function of its variables. Then, for
all φ0 ∈ D(An), n ≥ 1, there exists Tn > 0 such that (10.4.8) on [0,Tn) has a unique
solution φ(t) ∈ D(An), t ∈ [0,Tn). If φ0 belongs to

{φ 󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩A

jφ󵄩󵄩󵄩󵄩L2 ≤ aj, j = 0, 1, . . . , n},

then it is possible to select T to hold uniformly.
(b) If one increases the hypotheses from (a), for j < n, J has the following properties. If

φ is j times strong continuously differentiable, φ(k)(t) ∈ D(An−k), and An−kφ(k)(t) is
continuous (for all k ≤ j), then J(φ(t)) is j times differentiable. As

djJ(φ(t))
dtj
∈ D(An−j−1), An−j−1djJ(φ(t))/dtj

is continuous, the solution obtained by (a) is n times strongly differentiable about t
and

djφ(t)
dtj
∈ D(An−j).

Theorem 10.4.8 (Global existence and smoothness). Assume that A is a self-conju-
gate operator in the Hilbert space ℋ, n is a positive integer, and J is a map of D(Ai) →
D(Aj) (1 ≤ j ≤ n) and satisfies (for 1 ≤ j ≤ n):
(H0) ‖J(φ)‖L2 ≤ C(‖φ‖L2 )‖φ‖L2 ;
(H󸀠j ) ‖A

jJ(φ)‖L2 ≤ C(‖φ‖L2 , . . . , ‖A
j−1φ‖L2 )‖A

jφ‖L2 , j = 1, 2, . . . , n;
(HL

j ) ‖A
j(J(φ)−J(ψ))‖L2 ≤ C(‖φ‖L2 , . . . , ‖A

j−1φ‖L2 , ‖A
j−1ψ‖L2 )‖A

jφ−Ajψ‖L2 ,∀φ,ψ ∈ D(A
j),

j = 1, 2, . . . , n;

where C is a monotone increasing function of all its variables. Suppose φ0 ∈ D(An) and
‖φ(t)‖ is bounded on any finite interval, guaranteed by Theorem 10.4.7 (a) that the solu-
tion exists. Then there exists the strongly differentiable function φ(t) in D(An), which, in
[0,∞), satisfies

{
φ󸀠(t) = −iAφ(t) + J(φ(t)),
φ(0) = φ0.

(10.4.9)

Furthermore, if J satisfies the assumption of Theorem 10.4.7 (b), then φ(t) is n times
strongly differentiable and djφ(t)

dtj ∈ D(A
n−j).

Using the a priori estimates of Lemmas 10.4.1–10.4.5 and Theorems 10.4.6–10.4.8,
we get the existence theorem of problem (10.4.1).
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Theorem 10.4.9. Suppose λ > 0, m > 0, and

f ∈ D(−Δ +m2), g ∈ D((−Δ +m2)1/2).

Then there exists a unique function u(x, t), t ∈ R, x ∈ R3, such that t → u(⋅, t) is a twice
strongly differentiable function of t in L2(R3). For all t, u(⋅, t) ∈ D(−Δ+m2), u(x,0) = f (x),
ut(x,0) = g(x), which satisfies

utt − Δu +m
2u = −λ|u|2u. (10.4.10)

For all t, the map ⟨f , g⟩ 󳨃→ ⟨u(⋅, t), ut(⋅, t)⟩ is continuous.

Proof. By Lemma 10.4.3 and Lemma 10.4.4, we know that J satisfies the conditions
(H2

0), (H
2
1 ) of Theorem 10.4.6 as well as (H0), (H󸀠1). Thus, the unique local solution φ(t)

exists in [0,T). By Lemma 10.4.5, E(t) is a constant for all t ∈ [0,T). Since

1
2
󵄩󵄩󵄩󵄩φ(t)
󵄩󵄩󵄩󵄩
2
L2 ≤

1
2
󵄩󵄩󵄩󵄩φ(t)
󵄩󵄩󵄩󵄩
2
L2 +

λ
4
∫
R3
󵄨󵄨󵄨󵄨u(x, t)
󵄨󵄨󵄨󵄨
4dx3

= E(t) = E(0),

we know ‖φ(t)‖ is bounded in [0,T). From Theorem 10.4.8, we know that the solution
exists for all t ≥ 0. The proof is complete.

For some other nonlinear evolution equations and their systems, using the
method of abstract differential operators to prove their existence and uniqueness,
we refer the reader to [44, 101, 260, 275].

10.5 RLW equation and Galerkin method

We use the Galerkin method to prove the existence of solution for the RLW equation
and discuss the smoothness of solution.

Consider the following initial boundary value problem for the general RLW equa-
tion:

ut + f (u)x − uxxt = g(x, t), (10.5.1)
u|t=0 = u0(x), (10.5.2)
u|x=0 = u|x=1 = 0. (10.5.3)

In the following proof of the existence of solution for the problem (10.5.1)–(10.5.3), we
require the following two lemmas of the Sobolev space.

Lemma 10.5.1. If u ∈ H1(0, 1), then there exists a constant C > 0, which is independent
of u, such that

sup
0≤x≤1

󵄨󵄨󵄨󵄨u(x)
󵄨󵄨󵄨󵄨 ≤ C‖u‖

1/2
L2(0,1)(‖u‖L2(0,1) + ‖ux‖L2(0,1))

1/2. (10.5.4)
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Lemma 10.5.2. Assume f ∈ Ck(R), k ≥ 1, and f (0) = 0. If u(x, t) ∈ L∞(0,T ;Hk(0, 1)),
then f (u(x, t)) ∈ L∞(0,T ;Hk(0, 1)) and the following inequalities hold:

󵄩󵄩󵄩󵄩f (u(t))
󵄩󵄩󵄩󵄩H1(0,1) ≤ M

󵄩󵄩󵄩󵄩u(t)
󵄩󵄩󵄩󵄩H1(0,1)

and

󵄩󵄩󵄩󵄩f (u(t))
󵄩󵄩󵄩󵄩Hk(0,1) ≤ Ck(1 +

󵄩󵄩󵄩󵄩u(t)
󵄩󵄩󵄩󵄩
k−1
Hk−1)󵄩󵄩󵄩󵄩u(t)󵄩󵄩󵄩󵄩Hk , (k ≥ 2), (10.5.5)

where M and Ck are constants.

We let (0, 1) = Ω, Q = Ω × [0,T], T > 0.
We have the following theorem.

Theorem 10.5.3. Assume T > 0 is a real number,

g(x, t) ∈ L∞(0,T ; L2(Ω)), u0(x) ∈ H
1
0(Ω),

and f (s) ∈ C1(R). Then there exists a unique function u(x, t), (x, t) ∈ Q, which satisfies

u ∈ L∞(0,T ;H1
0(Ω)), (10.5.6)

ut ∈ L
∞(0,T ;H1

0(Ω)), (10.5.7)
ut + (f (u))x − uxxt = g(x, t), in Q, (10.5.8)
u(x,0) = u0(x). (10.5.9)

Remark. Without loss of generality, we assume f (0) = 0. In fact, if f (0) ̸= 0, then we
have

ut + (h(u))x − uxxt = g(x, t),

where h(s) = f (s) − f (0), which is equivalent to (10.5.8).

Proof. First of all, we see that (10.5.9) ismeaningful. In fact, we know from (10.5.6) and
(10.5.7) that u(x, t) can be determined at t = 0. We prove this theorem by the Galerkin
method, which involves the following threemajor steps: (i) construct the approximate
solution of equation (10.5.8), (ii) make a priori estimates for the approximate solution,
and (iii) take the limit for the approximate solution.

As a first step, we construct the approximate solution. Suppose {wν} are the basis
functions of the spaceH1

0. For anym ∈ N,w1,w2, . . . ,wn are linearly independent. Con-
struct the approximate solution of equation (10.5.8), um = um(x, t) = ∑mν=1 gνm(t)wμ(x),
where the coefficients gνm can be determined by the following equation:

(umt ,wν) + a(u
m
t ,wν) + ((f (u

m))x ,wν) = (g,wν), ν = 1, 2, . . . ,m, (10.5.10)
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where a(u, v) = ∫10
𝜕u
𝜕x ⋅
𝜕v
𝜕xdx. Since u0 ∈ H

1
0(Ω), there exist constants Cνm(ν = 1, 2, . . . ,m)

such that

u0m → u0, strongly in H1
0(Ω), m→∞, (10.5.11)

while u0m = ∑
m
ν=1 Cνmwν.

If we add the initial condition to equation (10.5.10), um(0) = u0m, then we ob-
tain a system of ordinary differential equations with respect to the unknown function
gνm, with the initial condition gνm(0) = Cνm. Because the basis functions {wν}ν∈N are
linearly independent, the coefficient matrix of gνm is invertible. Therefore, the local
solution of this equation exists. Thus, the solution {gνm(t)}1≤ν≤m of (10.5.10) exists in
[0, tm). Since we establish the a priori estimates in the following step, its solution can
be extended from [0, tm) to [0,T] for arbitrary finite positive constant T.

As a second step, we make a priori estimates. Multiplying both sides of equations
(10.5.10), satisfied by the approximate solution by gνm(t), and summing with respect
to ν from 1 tom, we get

1
2
d
dt
(󵄩󵄩󵄩󵄩u

m󵄩󵄩󵄩󵄩
2 + a(um, um)) − (f (um), 𝜕u

m

𝜕x
) = (g, um). (10.5.12)

If we let

h(x, t) = ∫
um(x,t)

0
f (s)ds,

then

𝜕h
𝜕x
= f (um)𝜕u

m

𝜕x
.

Since wν ∈ H1
0(Ω), h(0, t) = h(1, t) = 0, we have

(f (um), 𝜕u
m

𝜕x
) = h(1, t) − h(0, t), ∀t.

From (10.5.12), we obtain

d
dt
(󵄩󵄩󵄩󵄩u

m󵄩󵄩󵄩󵄩
2 + a(um, um)) ≤ 󵄩󵄩󵄩󵄩g(t)

󵄩󵄩󵄩󵄩
2 + 󵄩󵄩󵄩󵄩u

m󵄩󵄩󵄩󵄩
2.

By Grönwall’s lemma, when u0m
H1
0(Ω)󳨀󳨀󳨀󳨀󳨀→ u0, we obtain

󵄩󵄩󵄩󵄩u
m󵄩󵄩󵄩󵄩H1

0(Ω)
≤ c, ∀t ∈ [0,T], (10.5.13)

where c is independent ofm. Thus, it can be seen that um belongs to the bounded set
of L∞(0,T ;H1

0(Ω)). Therefore, u
m → u weakly star in L∞(0,T ;H1

0(Ω)).
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Wenow try to get the estimates of umt . Multiplying both sides of equations (10.5.10)
by g󸀠νm(t) and summing with respect to ν from 1 tom, we get

󵄩󵄩󵄩󵄩u
m
t
󵄩󵄩󵄩󵄩
2 + a(umt , u

m
t ) ≤
󵄨󵄨󵄨󵄨(f (u

m)x , u
m
t )
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨(g, u

m
t )
󵄨󵄨󵄨󵄨

≤ 󵄩󵄩󵄩󵄩f (u
m)x
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩u

m
t
󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩g(t)
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩u

m
t
󵄩󵄩󵄩󵄩.

Then, by Lemma 10.5.1 and estimate (10.5.13), we obtain

󵄩󵄩󵄩󵄩u
m
t
󵄩󵄩󵄩󵄩H1

0(Ω)
≤ c, ∀t ∈ [0,T), (10.5.14)

where c is independent ofm. Thus, umt belongs to the bounded set of L∞(0,T ;H1
0(Ω)).

Therefore, there exists a subsequence of {umt } such that

um → u, weakly star in L∞(0,T ;H1
0(Ω)). (10.5.15)

Thus, um belongs to the bounded set of H1(Q) for allm. By Rellich’s embedding theo-
rem, we have um → u strongly in L2(Q) and there exists a subsequence of um almost
everywhere converging to u.

As the third step, we take the limit for the approximate solution. We first consider
the case of the nonlinear terms. From Lemma 10.5.2 and (10.5.13), we have

󵄩󵄩󵄩󵄩f (u
m)󵄩󵄩󵄩󵄩H1(Ω) ≤ c, t ∈ [0,T), (10.5.16)

where the constant c is independent ofm. Therefore,

f (um)x → χ, weakly star in L∞(0,T ; L2(Ω)). (10.5.17)

Because um belongs to the bounded set of H1(Ω) and f is continuous in R, we have

f (um)→ f (u) almost everywhere in Q. (10.5.18)

By (10.5.13), Lemma 10.5.1, and Lemma 10.5.2, we have

󵄩󵄩󵄩󵄩f (u
m)󵄩󵄩󵄩󵄩L2(Q) ≤ c, ∀m, t ∈ [0,T]. (10.5.19)

We deduce from (10.5.18) and (10.5.19) that

f (um)→ f (u), weakly star in L2(Q). (10.5.20)

Thus, we obtain

f (um)x → f (u)x , according to the distribution of sense in Q. (10.5.21)

From (10.5.17) and (10.5.21), we have f (u)x = χ, so

f (um)x → f (u)x , weakly star in L∞(0,T ; L2(Ω)). (10.5.22)
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Lettingm > ν, from (10.5.6), we have

(umt ,wν) + a(u
m
t ,wν) + (f (u

m)x ,wν) = (g,wν). (10.5.23)

By (10.5.15) and (10.5.22), we get

(umt ,wν)→ (ut ,wν), weakly star in L∞(0,T),
a(umt ,wν)→ a(ut ,wν), weakly star in L∞(0,T), (10.5.24)
(f (um)x ,wν)→ (f (u)x ,wν), weakly star in L∞(0,T).

Thus, lettingm→∞ in (10.5.23), we get

(ut ,wν) + a(ut ,wν) + (f (u)x ,wν) = (g,wν) for all ν. (10.5.25)

Since {wν} is dense in H1
0(Ω), we have

(ut , v) + a(ut , v) + (f (u)x , v) = (g, v), ∀v ∈ H
1
0(Ω),

and u satisfies the conditions (10.5.6)-(10.5.8) of Theorem 10.5.3.
Now we verify that u satisfies the initial condition. In fact, since um → u weakly

star in L∞(0,T ; L2(Ω)), we have

∫
T

0
(um, v)dt → ∫

T

0
(u, v)dt, ∀v ∈ L1(0,T ; L2(Ω)). (10.5.26)

By (10.5.15), we have

∫
T

0
(umt , v)dt → ∫

T

0
(ut , v)dt, ∀v ∈ L

1(0,T ; L2(Ω)). (10.5.27)

We now consider v(x, t) = θ(t)w(x), w(x) ∈ L2(Ω), and θ ∈ C1(0,T) such that
θ(0) = 1, θ(T) = 0. If we choose v = θ󸀠w in (10.5.26) and v = θw in (10.5.27), we obtain

lim
m→∞
(um(0),w) = (u(0),w), ∀w ∈ L2(Ω),

so um(0)→ u(0) weakly in L2(Ω). Therefore, u(0) = u0.
The uniqueness remains to be proved. Suppose that there are two solutions u, v

corresponding to the same initial condition. If we let w = u − v, then we have

{
wt − wxxt + f (u)x − f (v)x = 0,
w(x,0) = 0, w(0, t) = w(1, t) = 0.

Then w satisfies
1
2
d
dt
(‖w‖2 + ‖wx‖

2) = (f (u) − f (v),wx). (10.5.28)

By Lemma 10.5.1, Lemma 10.5.2, and (10.5.28), we get

d
dt
(‖w‖2 + ‖wx‖

2) ≤ C‖wx‖
2,

where C > 0 is independent of t. Thus w ≡ 0.
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In the following, we discuss the regularity of the weak solution. We choose the
base functions of theGalerkinmethod tobe the eigenfunctions of the one-dimensional
Laplacian operator, so we can obtain a higher regularity of the solution. Suppose that
{ψν}ν∈N are the eigenfunctions of the one-dimensional Laplacian operator in L2(Ω).
Then we know from [164] that {ψν} is the complete orthonormal system in L2(Ω) and
H1
0(Ω). We know ψν ∈ Hk(Ω), where k is any positive integer, and we let Vk be the

closure of the linear combination of ψν in Hk(Ω).

Theorem 10.5.4. Assume g(x, t) ∈ L∞(0,T ;Hk(Ω)) such that

D2νg ∈ L∞(0,T ;H1
0(Ω)), ν = 0, 1, 2, . . . , j,

and k − 2j ≥ 1, f (s) = s2
2 , and u0 ∈ V

k+1. Then, for every nonnegative integer k, there only
exists a function u(x, t), which is defined in Q and satisfies the following conditions:

u ∈ L∞(0,T ;Hk+1(Ω)), (10.5.29)
D2νu ∈ L∞(0,T ;H1

0(Ω)), ν = 0, 1, 2, . . . , j, k + 1 − 2j ≥ 1, (10.5.30)
ut ∈ L

∞(0,T ;Hk+2(Ω)), (10.5.31)
D2νut ∈ L

∞(0,T ;H1
0(Ω)), ν = 0, 1, 2, . . . , j, k + 2 − 2j ≥ 1, (10.5.32)

ut + uux − uxxt = g, in L∞(0,T ; L2(Ω)), (10.5.33)
u(x,0) = u0(x). (10.5.34)

Proof. Assume um(x, t) is the approximate solution definedby Theorem 10.5.3.We con-
sider the eigenfunctions ψν instead of wν and we have

(umt ,ψν) + (f (u
m)x ,ψν) − (u

m
xxt ,ψν) = (g,ψν), ν = 1, . . . ,m, (10.5.35)

um(0) = u0m, (10.5.36)

where u0m → u0 strongly in Hk+1(Ω). We note that

Δpψν = (−λν)
pψν

for all p, where p is a nonnegative integer.
We will use the induction to prove (under the assumptions of the theorem)

󵄩󵄩󵄩󵄩u
m(t)󵄩󵄩󵄩󵄩Hk+1 ≤ C, ∀t ∈ [0,T], (10.5.37)
󵄩󵄩󵄩󵄩u

m
t (t)
󵄩󵄩󵄩󵄩Hk+1 ≤ C, ∀t ∈ [0,T], (10.5.38)

where the constant C > 0 is independent ofm, t.
First, similar to the proof of Theorem 10.5.3, we choose the base functions to be

the eigenfunctions of the one-dimensional Laplacian operator. From the assumptions
of Theorem 10.5.3, (10.5.13), and (10.5.14), we have

󵄩󵄩󵄩󵄩u
m
xxt(t)
󵄩󵄩󵄩󵄩 ≤ C, (10.5.39)
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where the constant C > 0 is independent ofm, t. In fact, multiplying (10.5.10) on both
sides by (−λν)g󸀠νm and summing with respect to ν, we get

󵄩󵄩󵄩󵄩u
m
xt
󵄩󵄩󵄩󵄩
2 + 󵄩󵄩󵄩󵄩u

m
xxt
󵄩󵄩󵄩󵄩
2 = −(g, umxxt) + (f (u

m)x , u
m
xxt)

≤ ‖g‖󵄩󵄩󵄩󵄩u
m
xxt
󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩f (u

m)x
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩u

m
xxt
󵄩󵄩󵄩󵄩.

By Lemma 10.5.2 and (10.5.13), we immediately get (10.5.39). Thus, for k = 0, (10.5.37)
and (10.5.38) follow.

Remark. Replacing the arbitrary base {wν}, considering the special base {ψν}, and
using the assumptions of Theorem 10.5.3, we improve the results and obtain

ut ∈ L
∞(0,T ;H2(Ω) ∩ H1

0(Ω)),

ut + (f (u))x − uxxt = g(x, t), weakly star in L∞(0,T ; L2(Ω)),

instead of (10.5.7) and (10.5.8), respectively.

Suppose that (10.5.37) and (10.5.38) hold for k ≥ 0. We prove these also hold for
k + 1. It is noticed that while q > 0 is an odd integer, we have

Dqf (um) = c0u
mDqum + c1Du

mDq−1um + ⋅ ⋅ ⋅ + c q−1
2
D

q−1
2 um.

Therefore,

(Df (um),D2k+2um) = ±(Dk+1f (um),Dk+2um), (10.5.40)
(Df (um),D2k+4um) = ±(Dk+2f (um),Dk+3um). (10.5.41)

Multiplying (10.5.35) on both sides by (−λν)k+1gνm and summing with respect to ν, we
get

(umt ,D
2k+2um) + (f (um)x ,D

2k+2um) − (D2umt ,D
2k+2um) = (g,D2k+2um).

By (10.5.40), we have

(Dk+1umt ,D
k+1um) + (Dk+2umt ,D

k+2um) = −(Dkg,Dk+2um) ± (Dk+1f (um),Dk+2um),

or

1
2
d
dt
(󵄩󵄩󵄩󵄩D

k+1um󵄩󵄩󵄩󵄩
2 + 󵄩󵄩󵄩󵄩D

k+2um󵄩󵄩󵄩󵄩
2)

≤ 1
2
󵄩󵄩󵄩󵄩D

kg󵄩󵄩󵄩󵄩
2 + 1

2
󵄩󵄩󵄩󵄩D

k+1f (um)󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩D

k+2um󵄩󵄩󵄩󵄩
2.

By the induction hypothesis and Lemma 10.5.2, we have

󵄩󵄩󵄩󵄩D
k+2um(t)󵄩󵄩󵄩󵄩 ≤ C, ∀t ∈ [0,T], (10.5.42)
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where the constant C > 0 is independent ofm, t. Similarly, multiplying both sides by
(−λν)k+2g󸀠νm and summing with respect to ν, we get

󵄩󵄩󵄩󵄩D
k+2umt
󵄩󵄩󵄩󵄩
2 + 󵄩󵄩󵄩󵄩D

k+3umt
󵄩󵄩󵄩󵄩

= −(Dk+1g,Dk+3umt ) ± (D
k+2f (um),Dk+3umt )

≤ 2󵄩󵄩󵄩󵄩D
k+1g󵄩󵄩󵄩󵄩

2 + 2󵄩󵄩󵄩󵄩D
k+2f (um)󵄩󵄩󵄩󵄩

2 + 1
4
󵄩󵄩󵄩󵄩D

k+3umt
󵄩󵄩󵄩󵄩
2.

By the induction hypothesis, Lemma 10.5.2, and (10.5.42), we have

󵄩󵄩󵄩󵄩D
k+2umt (t)

󵄩󵄩󵄩󵄩 ≤ C, ∀t ∈ [0,T], (10.5.43)

where the constant C > 0 is independent of m, t. By (10.5.42) and (10.5.43), we imme-
diately obtain (10.5.37) and (10.5.38).

Remark. Theorem 10.5.4 also holds for f (s) = Csn, where C is a constant and n > 0 is
an even integer.

For other nonlinear evolution equations and the use of the Galerkin method and
the vanishing viscosity method to study these equations, we refer the reader to [106–
108, 110, 111, 117].

10.6 Asymptotic behavior of solutions as t → ∞ and the blow up
problem

For a class of nonlinear evolution equations, the local L2 norms of their smooth solu-
tions may tend to zero as t → ∞. We will illustrate this with a simple method. In ad-
dition, for some nonlinear evolution equations, although local solutions exist, global
solutions do not exist. In fact, when t → t1 (finite), the L2 norm of its solutionwill tend
to infinity. This phenomenon is called blow up of the solution. It has been found that
many nonlinear evolution equations have this property.

Nowwe consider the initial value problem of the following generalized KdV equa-
tion:

ut + (uxx − f (u) − u)x = 0, (x ∈ R, t > 0) (10.6.1)
u|t=0 = φ(x), x ∈ ℝ. (10.6.2)

Lemma 10.6.1. Assume that u(x, t) is the classical solution of problem (10.6.1), (10.6.2)
and satisfies:
(i) lim|x|→∞(|u| + |ux| + |uxx|)(x, t) = 0, ∀t ≥ 0;
(ii) f (s) is a real-valued continuous function and f (s)s ≥ 0.
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If we let F(u) = ∫u0 f (s)ds, then F ≥ 0 and we have

󵄩󵄩󵄩󵄩u(t)
󵄩󵄩󵄩󵄩 = ‖φ‖, ∀t ≥ 0.

Proof. Multiplying (10.6.1) by u, we get

(u2)t + (u
2)xxx − (3(ux)

2)x − (2f (u)u)x + (2F(u))x − (u
2)x = 0.

Integrating with respect to x over (−∞,∞), we immediately get the conclusion.

Theorem 10.6.2. Assume that u(x, t) is the classical solution of problem (10.6.1),
(10.6.2) and satisfies (i), (ii). We also suppose

f (u)u ≥ F(u). (10.6.3)

Then we have

∫
∞

0
∫
r

−r
(|u|2 + |ux|

2)dxdt <∞, ∀r > 0. (10.6.4)

If we further assume that there exists a positive constant α such that

(1 − α)f (u)u ≥ F(u), 0 < α < 1, (10.6.5)

then we have

∫
r

−r
|u|2 → 0, t →∞, ∀r > 0. (10.6.6)

Proof. Suppose A is the function of x and A ∈ C3. Multiplying (10.6.2) by A, we get

(Au2)t + {A(u
2)xx − Ax(u

2)x + Axxu
2 − 3A(ux)

2 − 2Af (u)u + 2AF(u) − Au2}x
+ (−Axx + Ax)u

2 + 3Ax(ux)
2 + 2Ax(f (u)u − F(u)) = 0. (10.6.7)

Further assume that A satisfies Ax > 0, −Axxx + Ax > 0, and |A|, |Ax|, and |Axx are
bounded. Obviously, it is easy to find this kind ofA. Integrating (10.6.7) over (−∞,∞)×
[0,T], by (10.6.3) and Lemma 10.6.1, we have

∫
∞

0
∫
r

−r
(u2 + u2x)dxdt <∞. (10.6.8)

If (10.6.5) is also satisfied, then we have

∫
∞

0
∫
r

−r
f (u)u(x, t)dxdt <∞. (10.6.9)

We now use the concept of Morawetz [182] to show

∫
r

−r
u2dx → 0, t →∞, ∀r ≥ 0.
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Assume B(x) ∈ C∞0 (ℝ), 0 ≤ B(x) ≤ 1, and

B(x) = {
1, |x| ≤ r,
0, |x| ≥ 2r.

Then, from (10.6.7), we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
2r

−2r
Bu ⋅ utdx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ C ∫

2r

−2r
[u2 + u2x + f (u)u]dx.

Let 0 < t1 < t. Then we have

(t − t1)∫
r

−r
u2(x, t)dx ≤ (t − t1)∫

2r

−2r
Bu2(x, t)dx

≤ ∫
t

0
∫
2r

−2r
Bu2(x, τ)dxdτ + 2∫

t

t1
(τ − t1)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
2r

−2r
Bu ⋅ ut(x, τ)dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
dτ.

Let t1 = t − 1. Then

∫
r

−r
u2(x, t)dx ≤ C ∫

t

t−1
∫
2r

−2r
[u2 + u2x + f (u)u]dxdτ.

From (10.6.8) and (10.6.9), we obtain

∫
r

−r
u2(x, t)dx → 0, t →∞, ∀r > 0.

Remark. If f (u) = up, p ≥ 3, p is an odd integer. Then it is easy to verify that condi-
tion (ii) of Lemma 10.6.1, (10.6.3), and (10.6.5) are all satisfied.

We now consider two examples of the blow up of the solution.

Example 10.6.3. Consider the following initial value problem:

utt − uxx = u
n (n > 1), (10.6.10)

u(x,0) = u0(x) (x ∈ ℝ), (10.6.11)
ut(x,0) = v0(x) (x ∈ ℝ). (10.6.12)

It is easy to prove, if u0, v0 ∈ C∞0 (ℝ), there exists a local solution u of problem
(10.6.10)–(10.6.12). We will show that, if we suitably choose u0 and v0, F(t) =
∫ℝ u

2(x, t)dx will tend to infinity in a finite time. Now suppose that we can find α > 0
and initial values u0, v0 such that
(A): (F(t)−α)󸀠󸀠 ≤ 0, ∀t ≥ 0;
(B): (F(t)−α)󸀠 < 0, t < 0.
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Figure 10.1: The graph of F (t)−α .

Then F(t)−α obviously tends to zero in a finite time. Thus F(t) → ∞, as shown in
Figure 10.1.

For condition (B), just choose u0, v0 with the same symbol over (−∞,+∞). Then
it is satisfied automatically, because

(F(0)−α)󸀠 = −αF(0)−1−αF󸀠(0)

= −2αF(0)−1−α ∫ u0v0dx < 0.

Thus, we only need to check condition (A). Since F(t) ≥ 0, in order to prove (A), we
only need to show Q(t) ≥ 0, where

Q(t) = (−α)−1Fα+2(F−α)󸀠󸀠 = F󸀠󸀠F − (α + 1)(F󸀠)2.

Because

F󸀠(t) = 2∫ uutdx,

F󸀠󸀠(t) = 2∫(uutt + u
2
t )dx

= 4(α + 1)∫ u2tdx + 2∫(uutt − (2α + 1)u
2
t )dx,

Q(t) = 4(α + 1){(∫ u2dx)(∫ u2tdx) − (∫ uutdx)
2
}

+2F(t){∫ uuttdx − ∫(2α + 1)u
2
tdx}.

The right-hand side of the above equation is positive by the Schwartz inequality, so we
only need to make H(t) ≥ 0, where

H(t) = ∫ uuttdx − (2α + 1)∫ u
2
tdx

= ∫ un+1dx + ∫ uuxxdx − (2α + 1)∫ u
2
tdx

= ∫ un+1dx − ∫ u2xdx − (2α + 1)∫ u
2
tdx.
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The energy conservation of (10.6.10)–(10.6.12) is

E(t) = 1
2
∫(u2t + u

2
x)dx −

1
n + 1
∫ un+1dx,

where, E(t) is independent of t, so if we choose α such that

2(2α + 1) = n + 1,

we have

H(t) = −(n + 1)E(t) + 2α∫ u2xdx

= −(n + 1)E(0) + 2α∫ u2xdx. (10.6.13)

Therefore, if E(0) < 0 and α = 1
4 (n − 1) > 0, then H is always strictly positive. Now,

choosing u0 ≥ 0, v0 ≥ 0, condition (B) is satisfied. We multiply u0 by a positive con-
stant such that E(0) < 0 (when n + 1 > 2, this is possible). Then, for any initial value,
F(t) will tend to infinity in a finite time.

If we consider the following equation:

utt − uxx = −u
n, (10.6.14)

then it is easy to see that H(t) still satisfies (10.6.13). If n is an even number and we
choose u0(x) ≤ 0, v0(x) ≤ 0, and u0 to be sufficiently large such that E(0) ≤ 0, then
condition (B) is satisfied. Its solution also blows up in a finite time. On the other hand,
if n is an odd number, because E(t) ≥ 0, the conclusion is unclear, which is not sur-
prising. For example, for the case of −u3, we know that it has a global solution.

Example 10.6.4. We consider the initial value problem of the following high-dimen-
sional nonlinear Schrödinger equation:

{
iut = Δu + |u|

p−1u, x ∈ ℝn, t > 0,
u|t=0 = φ(x), x ∈ ℝn.

(10.6.15)

We have the following result.

Theorem 10.6.5. If the following conditions are satisfied:
(i) E(0) = ∫ℝn (|∇φ|

2 − 2
p+1 |φ|

p+1)dx ≤ 0;
(ii) Im∫ℝn rφ̄φrdx > 0, where r2 = |x|2;
(iii) P > 1 + 4

n ;

then ‖∇u(t)‖L2 and ‖u(t)‖L∞ tend to infinity in a finite time.
Remark. Condition (ii) is easy to verify. For example, choosing

φ(x) = ei|x|
2
ψ(x),
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where ψ(x) is an arbitrary real-valued function, direct calculations yield

Im∫
ℝn

rφ̄φrdx = 2∫ r
2|ψ|2dx > 0.

For the blow up phenomena of solutions to other nonlinear evolution equations
and the asymptotic properties of solutions as t → ∞, we refer the reader to [87, 109,
137, 143, 160, 177, 182, 321, 324].

10.7 Definite solutions problem for the Zakharov equations and
some other coupling nonlinear evolution equations

In the soliton study of plasma physics, for the interaction between lasers and plasma,
Zakharov gave a class of important equations, known as Zakharov equations. Namely,

𝜕2n
𝜕t2
− 𝜕

2n
𝜕x2
− 𝜕

2|ε|
𝜕x2
= 0, (10.7.1)

iεt + εxx − nε = 0, (10.7.2)

where n indicates the perturbation (fluctuation) of the ion density, which is a real-
valued function of variables x, t. ε represents the electric field, which is a complex-
valued function of variables x, t. Zakharov discovered the soliton solutions of (10.7.1)
and (10.7.2) and investigated the features of these solitons. We now study them from
the perspective of differential equations. For this purpose, introducing the potential
function φ, (10.7.1) will transform into the following equations:

𝜕n
𝜕t
−
𝜕2φ
𝜕x2
= 0, (10.7.3)

𝜕φ
𝜕t
− (n + |ε|2) = 0. (10.7.4)

We discuss the periodic initial value problem of (10.7.2)–(10.7.4), i.e., we aim to obtain
the solutions ε(x, t), φ(x, t)with period 2π with respect to x, such that they satisfy the
following initial conditions:

n(x,0) = n0(x),φ(x,0) = φ0(x),
ε(x,0) = ε0(x), (−∞ < x <∞),

(10.7.5)

where we suppose that n0(x), φ0(x), and ε0(x) are all functions with period 2π.
We use the Galerkin method to construct the approximate solution for problem

(10.7.2)–(10.7.5) and make an a priori estimate about the approximate solution, to ob-
tain the following theorems.

Theorem 10.7.1. If ε0(x) ∈ H6, φ0(x) ∈ H4, n0(x) ∈ H4, and they are functions with
period 2π, then the local classical solution of problem (10.7.2)–(10.7.5) exists.
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According to the a priori estimates, we can extend the local solution to a wide
range and obtain its global solution. We have the following theorem.

Theorem 10.7.2. If the conditions of Theorem 10.7.1 are satisfied, then the global clas-
sical solution of problem (10.7.2)–(10.7.5) exists.

If we further improve the smoothness of initial functions, we get the following
smooth solution.

Theorem 10.7.3. If ε0(x) ∈ H8, φ0(x) ∈ H6, n0(x) ∈ H6, and they are functions with pe-
riod 2π, then the globally smooth solution (i.e., the solution is a second-order derivative
in t) of problem (10.7.2)–(10.7.5) exists and is unique.

With the above results, it is easy to study the periodic initial problem of Zakharov
equations, namely, to get the solutions n(x, t), ε(x, t) with period 2π with respect to x
for (10.7.1), (10.7.2), such that they satisfy the following initial conditions:

n(x,0) = n0(x),
𝜕n
𝜕t
(x,0) = n1(x),

ε(x,0) = ε0(x),
(10.7.6)

where n0(x), n1(x), and ε0(x) are all functions with period 2π.

Theorem 10.7.4. If n0 ∈ H6, n1 ∈ H4, ε0 ∈ H8, and they are functions with period 2π,
then the globally classical solution of problem (10.7.1), (10.7.2), (10.7.6) exists and is
unique.

For the following Cauchy problem of a kind of coupled KdV and nonlinear
Schrödinger equations:

iεt + aεxx − bnε = 0, (10.7.7)

nt +
1
2
[βnxx + n

2 + |ε|2]x = 0, (10.7.8)

ε|t=0 = ε0(x), n|t=0 = n0(x), (−∞ < x <∞), (10.7.9)

we have the following result.

Theorem 10.7.5. If (i) ε0(x), n0(x) ∈ Hs (s ≥ 3) and (ii) the constant coefficients a
and bβ have opposite signs, then the global solutions for the Cauchy problem and the
periodic problemof (10.7.7), (10.7.8) exist andare unique, and the solutions satisfy n(x, t),
ε(x, t) ∈ L∞(0,T ;Hs).

For the results of the global solutions to the coupled equations of some other non-
linear evolution equations, we refer the reader to [109, 112, 319, 321].
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11 The soliton movements of elementary particles
in nonlinear quantum field

11.1 The elementary particles and solitons in nonlinear quantum
field

What is a soliton? What are the differences between a soliton and elementary parti-
cles? These problems are worthy of being investigated. Although the concept of the
soliton was discovered and proposed approximately 200 years ago and it has been
used extensively in physics andother fields, its real significance andwide applications
inmany areas in science and engineering are currently not well known. Therefore, the
soliton is worthy of extensive investigation. Obviously, the soliton is in essence differ-
ent from the microscopic particles, such as the elementary particles.

It is well known that the concept of the soliton comes from water waves, which
were first observed by Russell in 1834 in themovement of surfacewater waves inwater
channelswith suitablewidths. Russell, who rode on ahorse, observed that the solitary
waterwaveswere formed in the channels and propagated several kilometers along the
water channels maintaining their amplitude and outlines. These properties are very
interesting because the transport features of the soliton are completely different from
the features of elementary particles. This means that significant differences between
solitons and elementary particles exist. It is necessary to research these differences.

Evidently, the soliton is not an elementary particle. The soliton exists in water
waves, so some people thought the soliton cannot be used to describe the corpuscle
features of particles. In order to solve this problem, we have to recall and elucidate the
process of confirmation of the features of wave-corpuscle duality of the elementary
particles.

As is well known, around the year 1900 humans discovered that the microscopic
particles, such as the photon, electron, and proton, possess a wave-corpuscle duality.
This feature was first verified for the photon, which was found studying optical phe-
nomena. Thus,we thought that light ismerely an electromagneticwave. In accordance
with this theory, the energy of the light should be distributed continuously in the light
wave.However, the results obtained from the experiments of the “light-electron effect”
and “Compton scattering” of the light rejected the above conclusion and indicated fur-
ther that the energy of light does not follow a continuous but a discrete distribution;
it has a quantum feature. As far as monochromatic light is concerned, the unit of the
smallest energy is ℏν, where ℏ is the Planck constant and ν is the frequency of the light
wave [239]. Thus, the concept of “light quantum”or “photon”was introduced and con-
firmed. Subsequently, on the basis of the concept of “quantum”, proposed by Planck
and Einstein, De Broglie also postulated that quantum features exist for microscopic
particles, such as electrons and protons. Scientists affirmed that all microscopic parti-
cles havenot only corpuscle features, but alsowave features, as is the case for photons,

https://doi.org/10.1515/9783110549638-011
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whose wave feature is clearly exhibited and embodied in the process of propagation.
At the same time, De Broglie further gave the representation of wave-corpuscle dual-
ity, which is P = ℏ/λ and E = ℏω, where P and E are the momentum and energy of
the microscopic particle and λ and ω are its wavelength and frequency, respectively.
The relation was called the De Broglie formula. De Broglie’s idea was soon confirmed
by experimental physicists by means of experiments showing the stripes of fraction
of an electron beam passing through crystal foils, which are similar to the fraction
experiments of X-rays through crystal [239].

Soon afterwards, similar results were obtained from experiments with molecular
beams and atoms. These results indicated obviously that the microscopic particles all
have a wave-corpuscle duality. The theory of quantum fields, which is a branch of
physics still in development, was established just to describe these features.

The solitons that appeared in the above phenomena are also thought to possess
wave-corpuscle duality, because the soliton has not only wave features, but also cor-
puscle features, because it maintains both a constant size and a constant outline in its
propagations, which are properties that reveal analogy to particles. From this perspec-
tive, it would be natural to think that the soliton belongs to the microscopic particles
mentioned above. In practice, Born, in the metaphase of 1900, tried to add a nonlin-
ear term to the Maxwell equation, serving as a revision. He proposed and used fur-
ther the localized singular point of the nonlinear equation to describe the electrons in
this system. However, his theory did not include these successful conclusions of wave
mechanics, so his new idea was not developed much further soon afterwards. Subse-
quently, De Broglie did further develop this idea, trying tomake the theory of his ideal
of dual solutions correspond to the description of the localization of microscopic par-
ticles. This theory itself hadmany flaws or weak points and thereupon, this theory has
also not been developed [239].

On the other hand, a lot of experimental results were presented that showed that
the elementary particles have an inner structure. For example, hadrons are composed
of quarks or stratons, which were accepted widely. However, this experimental evi-
dence does not suffice and direct evidence for the existence of free quarks has not
been found up to this day, although many studies and experiments have been car-
ried out. Thanks to the experimental results of deep inelastic scattering, we know
that the mass of quarks, which are inside the hadrons, is very small (about several
decades to several hundredsMeV). If they do really exist, then these particles with the
above masses should have been easily discovered in the accelerator experiments, but
this is not the case. The contradiction between these results compels us to think that
these quarks are bound inside the hadrons and cannot be separated. This hypothesis
is called “quark bound” or “quark imprisonment” [116, 222].

In the research of “quark imprisonment” some people thought the mass of the
quark is very great, greater than that of the hadrons, so huge binding energies should
be releasedwhen the hadrons are formed. Thenwemust expend huge energies to sep-
arate the quarks from the hadrons. In this case the quarks are “partly bound or impris-
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oned”. However, the “permanent imprisonment of the quark” can also occur. There-
fore, the phenomenon theories of the “string model” and the “pocket model” were
successively proposed to describe the “quark imprisonment”. In “the pocket model”,
the “MTT pocket” and “SLAC pocket” are proposed and included, but their starting
points are different although the quarks are all bound in the matter structure resem-
bling the pockets. These pockets may be thought of as some conformations of the soli-
tons. In these models, the quarks are proposed to act as small insects. The solitons
provide suitable bunkers or structures for the insects (quarks), or the insects can only
be present on the edges of the pockets. Then huge energies (> 10MeV) must be used,
in order for these insects (quarks) to be separated. Clearly, this cannot be done, so if
this theory is correct, we cannot observe the existence of free quarks [116, 222].

The stringmodel indicates that the hadron is a string and the quarks are attached
on the edges of the strings. This is analogous to the superconductive effect; the vac-
uums in the external part of the hadrons serve as a superconductive phase and the
superconductive strings in the inner part of the hadrons resemble or mount the “mag-
netic lines”. However, in type-II superconductors, the magnetic fields cannot pene-
trate into them, but they can be bound in the magnetic line tubes. In this case, we can
assume that the dumpling field between the quarks can also be bound on a string.
However, others thought that a lot of magnetic monopole dipoles are considered in
the vacuums, so the vacuum phases can occur as a special “imprisonment phase”,
different from the normal phase, which provides a vacuum pressure, which impels
the dumpling fields in the hadrons to bind into the pocket, so the latter cannot escape
again. This phenomenon resembles the effect of extrusion of the bubbles in the liquid
solutions.

The magnetic monopoles were proposed by Dirac in 1931. Subsequently, ’t Hooft
[289] discovered in 1974 that the magnetic monopoles are a solution of a nonlinear
equation, which is also analogous to the features of the soliton. Therefore, we call it a
soliton.

As a matter of fact, we can easily explain and elucidate plenty of basic problems
for the magnetic monopole in the elementary particle physics using the concept of
the soliton, in which some nonlinear equations are serving as the classical or approx-
imate equations of the particles in the localized quantumfield.We can find the soliton
solutions of these equations and investigate their properties further. Because theories
of elementary particles should possess the relativity covariant feature and Lorentz in-
variance, the sine-Gordon equation andφ4 equation are quite suitable to describe the
dynamic properties of the elementary particles in elementary particle physics.

Tsung-Dao Lee et al. [49, 154] researched deeply the movement properties of soli-
tons in elementary particle systems. Their investigations indicated clearly that quark
fields are basic fields, but they do not represent the lowest energy state, as their soli-
ton states are the lowest energy state. Therefore, the hadrons observed in the natu-
ral world are just a kind of soliton. Using this theory and its conclusion, Lee et al.
explained the problem of “quark imprisonment”. Subsequently, they elucidated that
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only if the vacuum is an ideal dielectric mediumwith a certain resistance to the color,
then the hadrons are believed to be solitons. In the explanation of “quark imprison-
ment”, it is not necessary to introduce again the concept of the Higgs boson. At the
same time, they subdivided the solitons into the topological and nontopological soli-
tons [116, 222].

What are topological and nontopological solitons? Their investigations indicate
that, in the renormalization theory of relativity localized fields, all solitons, especially
stable solitons, must meet the Euler–Lagrange (EL) field equation obtained from the
principle of minimum action for the Hamitonian δS = 0 and the stability condition
of δ2S > 0. In order to meet these requirements, two methods and lines are used. The
differences between the twomethods are only that their groups should be divided into
topological and nontopological solitons. A necessary condition of stable existence of
the topological solitons is the existence of a degeneracy vacuum state (basic state).
Therefore, there are different degeneracy vacuum states (basic states) in the space at
infinity. This implies that the systems couldhavedifferent border conditions. Ifwe con-
sider the topological soliton, then its border conditions of the space at infinity should
have different forms lacking the soliton solution. The different border conditions can
be expressed by the distinctions of the topological feature. If the quantum numbers of
topological charges are introduced again, thenwe can judge the stability of the soliton
in accordance with the conservation feature of topological charge [116, 222].

Considering nontopological solitons, the case is different from topological soli-
tons. Concretely speaking, it does not demand the condition of existence of degener-
acy vacuum states (basic states). The soliton solutions of the corresponding equations
all have the same border conditions in the space at infinity, no matter the soliton so-
lution. This implies that the bell soliton belongs to this kind of solution. However, the
nonlinear systems having nontopological solitons must satisfy the added condition
of conservation of topological charge and there must exist a scalar field. Therefore,
the solutions of nontopological solitons have a generality and are widespread in the
spaces having any dimensions.

In fact, the theory of nontopological solitons is mainly applied in quantum color
dynamics (QCD). QCD is the study of a theory of strong interactions. Its foundation
is based on the nonabelian gauge theory. Its field equation should also be nonlinear,
but its solutions are very difficult to find. At present, small solutions of nontopologi-
cal solitons can be found in special cases. For example, the Knot shape solution in a
one-dimensional space, the vortex solution in a two-dimensional space, the ’t Hooft
magnetic unijunction soliton in a three-dimensional space, and the instanton solution
in Eu’s four-dimensional space were only found. These problems will be investigated
in detail in the following sections.

As far as the topological soliton is concerned, it may help us to solve the questions
of UA(1) symmetry of localized gauge invariance in the electromagnetic theory, so we
could construct the images of “quark imprisonment of topology” and the topological
method of “mechanical color blindness” (the hadron states which are observed are all
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colorless) in QCD [116, 289]. At the same time, the static solutions with the nonsources
in the nonabelian gauge field equations can provide an instance that contains not the
singular points and is an organic unity possessing self-constant stability constructed
and formed by the mutual actions and dependence between the field and the source.
Otherwise, it can also give reasonably dynamic explanations for the quantum num-
bers, such as the baryonnumber and the singular number. On the other band, because
the soliton is a general solution of corresponding classical fields, we can think that
the solution gives the main and predominant contributions in the functional integral.
Therefore, the above results clearly show that the movements of the solitons in the
field equations play quite important rules for revealing the properties of microscopic
particles in elementary particle physics.

On the other hand, the above soliton theory also promotes the development of
mathematical science in the theories of quantum fields. This is due to the fact that the
behavior of the amplitude of the solitons varies approximately inversely proportion-
ally to the changes of their coupling coefficients. We could supply a new theoretical
method, which is beyond the perturbation theory, in elementary particle physics. At
the same time, the topological stability of the soliton comes from the dynamic mech-
anism and topologic features of field configurations, so the stability of nontopologi-
cal solitons is reached thanks to the dynamic variation of the soliton amplitude with
varying time [313]. In this case, the Noether theorem gives the conservation quan-
tity – Noether charges. In practice, the stability of he topological solitons is related
to the topological conservation quantity, which is not related to the invariance of La-
grange function existed in non-Abel theory and topogical features. However, the sta-
bility of he nontopological solitons is determinated by dynamic features of its am-
plitude and nöether charges in nöether theory. Therefore, the investigations of these
equations promote the development of homotopy and fiber bundles in topological
science [129, 131, 313]. On the contrary, in order to better know and understand the
features of topological and nontopological solitons, we should research topology and
homotopy [129, 131, 313].

What is topology? Topology is a concept in mathematics, related to the changing
properties of collection and assembly of a series of quantities and vectors, which can
be defined by the features of open sets in the measurement space. We now assume
that S is a subset cluster and τ is a subset family, in which the members are called
an open set. This open set is defined as follows. If we assume that A is a subset in the
measurement spaceX and each point of setAhas a spherical neighboring domain ∈ A,
then A is called the open set of X. If τ meets the following conditions: (1) s and the
empty set φ exist and they are also the open sets, (2) the cross set of two open sets is
one open set, and (3) the parallel set of several open sets is one open set, then we say
that τ is one topology space of the assembly s. The assembly s and the topology τ are
together called one topologic space, which is represented by (s, t).

Homotopy is a very important concept in topology and relates to the concept of
mapping. The latter is a transformation between two topological spaces and can be
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represented by X → Y , which indicates the correspondence between the topological
spaces of X and Y [129, 131, 313]. Therefore, the homotopy delineates the feature of the
correspondence or mapping. Thereby, if the homotopy is equivalent to or describes
the features of the mapping and it is expressed by f0, f1 : X → Y , then we say that f0
has homotopy with f1, or, in other words, we can change to f1 from f0 between f0 and
f1 in space Y through one continuous deformation F. The change can be expressed as
f0 ≅ f1 : X → Y . Thus, F is called one homotopy from f0 to f1. Therefore, the homotopy
relation is one equivalent relation [79, 189, 279]. It has very important significances
and is used widely in topology.

11.2 The movements of topological solitons in one-dimensional
space

We now use Derrick’s theorem to investigate the movements of elementary particles
in one-dimensional space. In this case, the Lagrange function ℒ [65, 116, 222] of the
system is defined as

L󸀠(x) = 1
2
𝜕μφ𝜕

μφ − U(φ), (11.2.1)

where L󸀠 = ℒ. If U(φ) = 0, it corresponds to the vacuum state of the system. U(φ) > 0
in equation (11.2.1) describes a scalar field, in which the statically nonsingular soliton
solution does not exist, except for the case where the dimension of the space is D = 1.
The reasons are described as follows.

If φs(x) is the soliton solution having an energy of H = V1 + V2, where

V1 = ∫(Δφs(x))
2dlx, V2 = ∫Uφs(x)d

lx,

then the energy corresponding to the field configuration φs(x/a) can be represented
by

H(a) = aD−2V1 + a
DV2.

However, H must be stable for any variation. Especially, for the variation of one
scalar field, we must have

δH(a)
δa

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨a=1
= (D − 2)V1 + DV2 = 0.

Because V1 and V2 are all positive, this equation has a solution in the case where
D = 1, so the above result can be confirmed. Obviously, this conclusion can be gener-
alized to the scalar field cases withmany dimensions, rather than only the scalar field
with D = 1.
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For the pure Yang–Mills theory, which possesses a compact specification group,
we can verify that one variant of Derrick’s theorem, in a D-dimensional space (except
for D = 4), is a transformation of Aμ = 0, only for the static state solution with the
limit energy for the equation of a pure specification field. This solution was obtained
byColemanusing the scale-free property,which is similar to the scalar case. The above
description is known as the theorem of “no-go” in quantum field theory. This means
that the pure scalar field has only the one-dimensional soliton solution. Then the pure
Yang–Mills field has only the four-dimensional soliton solution other than this solu-
tion; it has no other soliton solution [66].

Because the dynamic nontopological solitons are related to time, they are not con-
trolled and limited in this theorem. At the same time, this theory neither limits the
static scalar solitons in two- and three-dimensional spaces. In practice, the spiral and
magnetic monopole soliton solutions, which will be described in the following sec-
tions, also belong to this case. Otherwise, we can affirm that the spurious particle or
the instanton that appears when D = 4 is an exception to Coleman’s and Deser’s the-
orems.

We now investigate the features of topological solitons in a one-dimensional
space [82]. Because the topological solitons demand a degeneracy vacuum, the mini-
mumofV is not one.Wenowassume theminimumofV is zero, as shown inFigure 11.1.

Figure 11.1: The form of V(φ), where V(a) = V(b) = V ⋅ ⋅ ⋅ = 0.

From equation (11.2.1), we obtain the dynamic equation, which is represented by

𝜕2φ
𝜕x2
−
dV
dφ
= 0.

Let φ = φ(x) be a real field, unrelated to time. Then we obtain

1
2
(
𝜕φ
𝜕x
)
2
− V(φ) = constant. (11.2.2)

This equation corresponds to the dynamic equation of the particle in the nonrela-
tivity theory, inwhich the space coordinate isφ, the time coordinate is x, and themass
of the particle is 1. Therefore, equation (11.2.2) is the dynamic equation of the particle
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Figure 11.2: The form of −V .

with amass of 1. Equation (11.2.2) shows the energy conservation of the particle, where
its potential is −V , which is exhibited in Figure 11.2.

In this case, the kinetic energy of the particle is 1
2 (

dφ
dx )

2. We now assume that the
particle is at a point at x = −∞. If the particle is promoted to the right direction, then
it will move, following the direction of the curve. At x = +∞, the particle can reach
point b. In this case, the corresponding energy is still limited. This means that the
particle is not dispersed. The soliton solution is shown in Figure 11.3.

Figure 11.3: The solution of topological solitons.

Clearly, the energy of the soliton is bound between a and b, where dφ/dx → 0 and
V → 0. However, its boundary conditions at x = ±∞ are different from the above
results, so the solution is called the topological soliton. It may be thought to be the
solution having the lowest energy and meeting the boundary conditions of φ = a at
x → −∞ and φ = b at x → +∞. Therefore, it is stable. The soliton formed in this
case is called a positive soliton. If the soliton is at point b at x = −∞ and at point a at
x = +∞, then the soliton formed in this case is called the solution of a negative soliton.
Therefore, the positive andnegative solitons both exist in this case using classical field
theories.

Therefore, the soliton solutions formed from equation (11.2.2) can in this case be
presented together by

x − x0 = ∫
φ

φ0

dφ󸀠

√2V(φ󸀠)
, (11.2.3)
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where x0 is a constant. On the other hand, we can obtain the dynamic solution of the
soliton, if only the Lorentz transformation corresponding to the above soliton solu-
tions is finished, because equation (11.2.1) possesses “/”.

In practice, the most general dynamic equations used are φ4-field equations with
thepotentialU(φ) = (β/4)(φ2−m2/β)2 and the sine-Gordon equationwith thepotential
U(φ) = sin eφ in the one-dimensional case. They all have knot soliton solutions. Their
dynamic equations all have the Lorentz invariant features.

For example, the Lagrange function corresponding to theφ4-field equation theory
can be expressed by

L = ∫ L󸀠dx = ∫[ 1
2
𝜕αφ𝜕

αφ − β
4
(φ2 −m2/β)2]dx (α = 0, 1), (11.2.4)

where L󸀠 = ℒ. We transform φ󸀠 = √βφ/m, x󸀠 = mx, so equation (11.2.4) becomes

L = m
3

β
∫[

1
2
𝜕αφ
󸀠𝜕αφ󸀠 − 1

4
(φ󸀠2 − 1)2]dx. (11.2.5)

The corresponding equation can be presented as

(𝜕2x − 𝜕
2
t )φ
󸀠 + φ󸀠(1 − φ󸀠) = 0. (11.2.6)

In order to find the static solutions for equation (11.2.6), it is easily written as

φ󸀠xx + φ
󸀠(1 − φ󸀠2) = 0. (11.2.7)

The solutions of equation (11.2.7) are easily found. We have

φ󸀠 = ±1 (vacuum state), (11.2.8)

φ󸀠 = ± tanh(
x󸀠 − x󸀠0
√2
), (11.2.9)

where “+” expresses the knot soliton and “−” expresses the anti-knot soliton.
Thus, the soliton solutions of the φ4-field equation in equation (11.2.2) should be

presented as

φ = ±(m/√β) (vacuum state), (11.2.10)

φ = ±( m
√β

th(m(x − x0)
√2
)), (11.2.11)

where “+” expresses the knot soliton and “−” expresses the anti-knot soliton.
If V(φ) = β

4 (φ
2 −m2/β)2 is substituted into equation (11.2.3), then its solution can

be obtained immediately, which is shown in Figure 11.4, inwhich the following energy
difference between the knot soliton solution and the vacuum state can be found:

Eknot − Evacuum = 2√2m
3/3β. (11.2.12)
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Figure 11.4: The images of a knot soliton localized at x0 and its distribution of energy density.

The nongeneral topology chargeK󸀠 associatedwith the knot soliton is called the twist-
ing number. It is due to the conservation of the flow Jμ that the latter is expressed by

Jμ =
1
2
εμL𝜕

νφ (ε01 = ε10 = 1, ε00 = ε11 = 0).

Then

K󸀠 = ∫
∞

−∞
J0dx =

1
2
∫
∞

−∞

dφ
dx

dx = 1
2
φ(x)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

−∞
. (11.2.13)

Clearly, K󸀠 = 1 and −1 correspond to the knot and anti-knot solitons, respectively.
They represent the states of nongeneral mapping, while K󸀠 = 0 corresponds to the
vacuum state. Because the topologic charges are absolutely conserved in this case, it
is, in general, difficult to dissipate and apply the field configurations to the vacuum
state. This means that the action of the field configurations seems to be one infinite
potential barrier, which prevents its variation and decay to the vacuum state. How-
ever, this change can bemade if a large amount of energy is added. This indicates that
the knot soliton is quite stable. This stability of the soliton can be thought to be the
results produced by the degenerate vacuum. In this case, the two vacuum states may
be transformed to each other in the case of variation of ϕ → −φ. The knot state is in-
serted just between two vacuum states at x = ±∞. They approach each vacuum state
at the infinitely large position. However, they are only evidently different at x = x0,
where the energy density is at its maximum. In this case, the homotopy image is a
general image which maps the field energy φ = ±1 to the points x = ±∞. Therefore, it
is necessary to obtain infinite energy, in order to change and distort the images of the
knot state to any vacuum state.

As is described above, the knot soliton can be used to describe the hadrons. The
image of the “SLAC pocket” of the quark model for the hadrons [18, 82] is a theory
based on the above theory, in which the quarks are distributed on the edges of the
pockets, as shown in Figure 11.4, and cannot escape from the pocket. Therefore, this
theory can explainwhywehave not observed the free quarks up to now, so it is natural
to deduce the existence of the phenomenon of “quark imprisonment” in this case.
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11.3 The movements of topological solitons in two-dimensional
space

The investigations indicated that the properties of topological solitons in a two-
dimensional space resemble those of vortex structures formed by the magnetic flux
quantization in the type-II superconductors. Thus, we first must know the proper-
ties of magnetic flux quantization formed in the type-II superconductors, in order to
elucidate the features of the topological soliton [116, 222].

As is well known, superconductors can be made from some specific elements,
compounds or alloys, when their temperature T is lower than the critical tempera-
ture Tc, i.e., T ≤ Tc, in which the electric current in the superconductor will flow for-
ever without being damped, or, in other words, without any resistance. Such a phe-
nomenon is referred to as perfect conductivity. This has been observed in some experi-
ments, when the materials are in the superconducting state. In this case, all magnetic
fluxes in the materials repel each other completely. This will result in the presence
of zero magnetic fields inside the superconducting material. Similarly, the magnetic
fluxes induced by an external magnetic field cannot penetrate into the superconduct-
ing materials. This phenomenon is called perfect anti-magnetism or the Maissner ef-
fect [241] and is illustrated in Figure 11.5.

Figure 11.5:Maissner effect in the superconductor.

How can this phenomenon be explained? After more than 40 years of research,
Bardeen, Cooper, and Schreiffier proposed the new idea of Cooper pairs of electrons
and established the microscopic theory of superconductivity at low temperature to
explain and elucidate the superconductive phenomenon. This is called the Bardeen–
Cooper–Schreiffier (BCS) theory of superconductivity [14, 17, 51, 272, 298], which was
established in 1957 on the basis of the mechanism of electron-phonon interaction
proposed by Frohlich.

According to this theory, the electrons with opposite momenta and anti-parallel
spins form the pairs, when their attraction due to the interaction between the elec-
tron and phonon in these materials overcomes and exceeds the Coulomb repulsion
between them. The Cooper pairs condense to form a minimum energy state, resulting
in some quantum states, which are highly ordered and coherent over a long range,
in which there is essentially no energy exchange between the electron pairs and the
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lattice. Thus, the electron pairs are no longer scattered by the lattice and flow freely
without electric resistance. Then the superconductivity appears. The electron pair in
a superconductive state is somewhat similar to a diatomic molecule, but it is not as
tightly bound as a molecule. The size of an electron pair, which gives the coherent
length, is approximately 10−4 cm. A simple calculation shows that there can be up to
106 electron pairs in a sphere of 10−4 cm in diameter. Therefore, perturbation to any of
the electron pairs would certainly affect all others. Thus, various macroscopic quan-
tum effects can be expected to occur in the materials, which are some coherent and
long range ordered states. Magnetic flux quantization and a vortex structure in the
type-II superconductors occur in this case.

As far as quantization of magnetic flux is concerned, we consider mainly the su-
perconductive rings. Assume that a magnetic field is applied at T > Tc. Then the mag-
netic flux lines ϕ0 produced by the external field pass through and penetrate into the
body of the ring. When the temperature of the superconductive material is lowered to
a value below Tc, if the external magnetic field is removed, then the magnetic induc-
tions inside the body of the circular ring are equal to zero (B = 0) because the ring
is in the superconductive state and the magnetic field produced by the superconduc-
tive current cancels the magnetic field in the ring. However, a part of the magnetic
fluxes in the hole of the ring remains because the induced current in the ring van-
ishes. These residual magnetic fluxes are referred to as frozen magnetic fluxes. It was
observed experimentally that the frozenmagnetic fluxes are discrete or quantized. Us-
ing the macroscopic quantum wave function from the theory of superconductivity, it
canbe shown that themagnetic fluxes are givenbyφ =∯ L󸀠ds = nϕ0 (n = 0, 1, 2, 3 . . . ),
where L󸀠 = L,ϕ0 = hc/2e = 2.07×10−15Wb is the flux quantum, representing the flux of
one magnetic flux line. This means that the magnetic fluxes passing through the hole
of the ring can only be amultiple ofϕ0 [84, 271, 272]. In otherwords, themagnetic field
lines are discrete. What does this imply? If themagnetic fluxes of an appliedmagnetic
field are exactly n, then the magnetic fluxes through the hole are nϕ0. However, what
are the magnetic fluxes through the hole if the fluxes of an applied magnetic field are
(n + 1/4)ϕ0? According to the results, the magnetic fluxes cannot be (n + 1/4)ϕ0. As
a matter of fact, it should only be nϕ0. Similarly, if the fluxes of an applied magnetic
field are (n+ 3/4)ϕ0, the magnetic fluxes passing through the hole are not (n+ 3/4)ϕ0,
but rather (n+1)ϕ0. Therefore, themagnetic fluxes passing through the hole of the cir-
cular ring are always quantized. An experiment conducted in 1961 surely proved this.
It indicated that magnetic flux does exhibit discrete or quantized characteristics on
a macroscopic scale. The above experiment was the first demonstration of a macro-
scopic quantum effect. Based on the quantization of magnetic flux, we can build a
“quantum magnetometer” which can be used to measure weak magnetic fields with
a sensitivity of 3 × 10−7 Oersted. A slight modification of this device would allow us to
measure electric currents with strengths as low as 2.5 × 10−9 A.

We now research the structure of vortex lines in type-II superconductors. The su-
perconductors discussed above are referred to as type-I superconductors. This type of

 EBSCOhost - printed on 2/10/2023 3:23 PM via . All use subject to https://www.ebsco.com/terms-of-use



11.3 The movements of topological solitons in two-dimensional space | 269

Figure 11.6: Current and vortex lines distributions in a type-II superconductor.

superconductor exhibits the Maissner effect perfectly when the external applied field
is higher than a critical magnetic value Hc, as shown in Figure 11.6.

There exists another type of materials, such as the NbTi alloy and the Nb3Sn com-
pound, in which the magnetic field partially penetrates inside the material when the
external field H is greater than the lower critical magnetic field Hc, but less than the
upper critical field Hc [49, 129, 131, 154, 222, 239, 289, 313]. This kind of supercon-
ductor is classified as type-II superconductors and is characterized by a Ginzburg–
Landau (GL) parameter, K, greater than 1/√2, i.e., K > 1/√2. Studies using the Bitter
method showed that the penetration of a magnetic field results in some small regions
changing from the superconductive to the normal state. These small regions in the
normal state are of cylindrical shape and regularly arranged in the superconductor,
as shown in Figure 11.6. Each cylindrical region is called a vortex (or magnetic field
line) [84, 271, 272]. The vortex lines are similar to the vortex structure formed in a tur-
bulent flow of fluid. Both theoretical analysis and experimental measurements have
shown that the magnetic flux associated with one vortex is exactly equal to one mag-
netic flux quantum,ϕ0. When the applied fieldH ≥ Hc1, themagnetic field penetrates
into the superconductor in the form of vortex lines, increasing one by one; the vortex
lines or magnetic lines within the cylindrical structure are inserted one by one with
the unit ofϕ0 = hc/2e into type-II superconductors in an order forming amixed phase.
These vortex line structures of quantization are called the Abrikosov structure of the
superconductor. In ideal type-II superconductors and stable states, these vortex lines
are constructed and arranged as triangular structures. The structures can be obtained
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from the solutions of thenonlinearGL equation, using themacroscopic quantumwave
function under the action of an externally applied magnetic field in the superconduc-
tors. Therefore, it is correct.

Nielsen andOlesen applied the above theories to quantumfield theory to research
the properties of vortex lines in a Higgs field. They thought that scalar Higgs fields re-
semble the functions of ordered parameters in the superconductors. Thus, the relativ-
ity field theory of the similar Abel-type Higgs model also has static vortex solutions.
We investigate the properties of Abelian and nonabelian vortex soliton solutions in
the following section.

(1) The properties of solutions of Abelian vortex solitons.

In the two-dimensional case, the Lagrange density in the Abel-type Higgs model
can be represented by

L󸀠 = − 1
4
FμνF

μν +
1
2
(Dμφ)

∗Dμφ − 1
4
β(φφ∗ − m

2

β
)
2
, (11.3.1)

Fμν = 𝜕μAν − 𝜕νAμ, Dμφ = (𝜕μ − ieAμ)φ, (11.3.2)

where L󸀠 = ℒ, indicating the interaction between the electromagnetic field Aμ(x) and
the complex scalar Higgs field φ(x). From the EL equation and equation (11.3.1), we
obtain the corresponding dynamic equation [84, 159, 190, 227], which is as follows:

𝜕μFμν = jμ = −
1
2
ie(φ∗𝜕μφ − φ𝜕μφ

∗) + e2Aμφφ
∗, (11.3.3)

DμD
μφ = −βφ(φφ∗ −m2/β). (11.3.4)

Equations (11.3.3)–(11.3.4) are just GL equations in this case, but their solutions
are very difficult to find. Thus, we have to fit them into the cylindrical coordinates to
find the asymptotic solutions in this ansatz [21, 189].

We now assume

A0 = 0, A = θ̂A(r), φ = f (r)einθ , r2 = x2 + y2. (11.3.5)

Then equations (11.3.3)–(11.3.4) become

−
1
r
d
dr
(r d

dr
f) + [(n

r
− eA)

2
+ (β2 −m2/β)]f = 0, (11.3.6)

−
d
dr
(
1
r
d
dr
(rA)) + (Ae2 − ne

r
)f 2 = 0. (11.3.7)

In order to find the asymptotic solutions of equations (11.3.6)–(11.3.7), we require that
the energy of the vortex lines of unit length is limited. This implies that the vortex
fields must have the following asymptotic solutions:

f (r)→ 1 − const exp[1 − r/ξ ]m/β1/2 (r →∞), (11.3.8)
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A(r)→ (n/er) + const exp[1 − r/δ] (r →∞), (11.3.9)

where the particle mass in the Higgs scalar field is ms = √2m, but the particle mass
in the directive field Aμ(x) ismA = me/√β. The spontaneous break of symmetry of the
field occurs when the conditions cause self-interactions to form of the φ4 scalar field
and the imaginary mass of the particles. In this case, the standard particles – pho-
tons – “eat off” the Goldstone particles generated by it, so it increases its own mass.
The corresponding coherent length ξ = √2/ms gives the scale of the space change of
the Higgs field. The penetration depth of the electromagnetic field δ = 1/mA describes
the amplitude of space variation of the field. These space variations of the solution of
the vortex soliton are shown in Figure 11.7, where the GL parameter is represented by

K = δ/ξ = ms/√2mA = √β/e. (11.3.10)

Figure 11.7: The variations of φ(r) and H(r) of the vortex lines.

Clearly, the superconductors are separated into two kinds when using this parameter,
i.e., if K < 1/√2, then it is a type-I superconductor, but it is a type-II superconductor
if K > 1/√2, in which case a Nielsen–Olesen vortex soliton appears in this system.
However, there is possibly a potential Nielsen–Olesen solution of the vortex soliton
for any K in this system.

Now, we discuss again the topologic features of these vortex solitons [14, 37, 298].
We now focusmainly on F12 in equation (11.3.2) for finding the features of themag-

netic vortex along the Z direction, or, in other words, we should find the sizes of the
flux through the unit area in the (x, y)-plane by virtue of the above theory. In this case,
we use the parameter φ = |φ|eiα to change the quantity of the Higgs field. Then the
fluxes through the area formed by the closed loop P in Figure 11.8 can be represented
by

φ(r) = ∫ F12dxdy = ∫
P
Aidx

i = −
1
e
∫
P
𝜕iαdx

i,

where jμ = 0 along the line P is used. From the demand for a single value feature of
φ(x), we obtain

φ(r) = 1
e
[𝜕(2π) − 𝜕(0)] = 2π

e
n = nφ0, (n = 0,±1,±2, . . .). (11.3.11)
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Figure 11.8: The integration along path P surrounding the vortices.

This indicates that the fluxes formed in this case are quantized. The quantum fluxes
are just total topologic charges of the vortices surrounded by the path P.

In order to explain the topology features of the magnetic fluxes, we here notice
that the vacuum states can be determined by the condition |φ| = φ0 = √m2/2β.

In this model, because we require only that the energy of the vortex line of unit
length is limited, there is necessarily a plural scalar field. Its asymptotic form should
be represented by φ(θ) = einθφ0, where θ is the polar angle in the two-dimensional
plane and n is an integer due to the requirement of a single value feature. This implies
that we can only determinate φ for a phase factor α = nθ. This indicates that there
is one degenerate round vacuum in the plural plane, marked by the parameter α. We
now assume that the round in the (x, y)-plane is represented by R. When the round
is shifted, the phase factor α(x, y) = χ(θ) can be changed from zero to 2πn. Thus, χ(θ)
gives just one image, which is formed bymeans of the mapping from the real round to
the round in one plural φ inner space, as shown in Figure 11.9. This mapping can be
represented by U(1)→ S1. Therefore, the class of the image is characterized by

π1(U(1)) = Z (the integer set). (11.3.12)

Figure 11.9: The image from the plural φ-plane to the (x, y)-plane.

Equation (11.3.12) indicates that there are possibly infinite vortices with discrete fluxes
φ = nφ0 (n = 0,±1,±2, . . .) in this case,where the integer,whichmarks the class of each
homotopy, is called thewinding number. Equation (11.3.12) expresses also the rotation
number in theφ-plane corresponding to a rotation of 2π in the (x, y)-plane. Therefore,
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the pure fluxes of the vortex are directly proportional to the winding number. Mean-
while, if the winding numbers constructed by the field are nonzero, then the corre-
sponding fluxes are also nonzero. Owing to the conservation of topological charges,
the configuration of the field having certain winding numbers cannot be changed as
the configuration without winding numbers, i.e., it cannot become and deform con-
tinuously to the case of α(θ) = constant, because it would require infinite amounts
of energy. This means that the solutions of the vortex soliton obtained as mentioned
above are stable, so the shapes of the vortices are constant in the process of topologic
variations and it is a nongeneral mapping.

On the other hand, we can also find the energy of each vortex line. For the vortex
with n unit magnetic flux, its energy of unit length can be represented by [298]

εn > nπm
2√2k/β, (k > 1/√2),

εn = nπ
2m2/β = nπm2A/e2, (k = 1√2), (11.3.13)

εn > nπm
2/β, (k < 1/√2).

As far as the interaction between the vortex lines is concerned, they are possibly
attracting each other when k > 1/√2, they are mutually repulsive when k < 1/√2, and
the nature of the interaction is uncertain when k = 1√2, or they may have any inter-
action. Matrion et al. found that ε2 > 2ε1 for all k < 1/√2 using the numerical simula-
tion method. The investigations affirmed that the presence of two types of quantized
vortices is not advantageous for the energy in a type-II superconductor. Bogomolny
obtained the same conclusion for the unit fluxes at n ≥ 2 using the general analytic
method of energy functionals. Thus, one vortex, which has n unit magnetic fluxes,
can split into n unit vortices having the same topology and equivalent configurations
at k > 1/√2.

(2) The properties of solutions of nonabelian vortex solitons.

Tze and Ezawn extended and promoted the above Higgs model to research the
properties of nonabelian vortex solitons. They obtained the following results.

For a specifical groupG, if we demand that the energy of unit length of a static vor-
tex solution having axial symmetry is limited, then this implies that the Higgs scalar
must be a covariance constant, when the radius tends to infinity. In this casewe obtain
the following relation:

lμφ = (𝜕μ − iet
αAμ)φ→ 0 (r →∞) and (r2 = x2 + y2), (11.3.14)

where tα is amatrix expression generating an element group acting in theφ-plane and
Aαμ is the specific field, whichmust be accompanied by an expression belonging to the
G group. Considering these conditions, we found that the values of the φ-field, at any
two points P1 and P2 along the path P at the position of a great r, are represented by

φ(P2) = s(P2,P1)φ(P1), (11.3.15)
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where s(P2,P1) = T exp[−ie ∫P2P1 t
αAαμ(x)dx

μ] is the nonintegrable factor and T is the
operator arranging the time of the matrix along the path. For the ring path marked by
the angle parameter θ, the group decided by the phase factor s(θ) determines the sort
of allowed vortices in this model. For example, the Abel model

s(θ) = einθ ∈ U(1) (11.3.16)

leads to the vortex solutions having the allowed fluxes φn = nφ0 (n = 0,±1, . . .).
However, for the case where G = SU(2), the results are different from the above

results. If the gauge invariance of the double state Higgs scalar is broken, then we
obtain

s(θ) = exp(2inθτ3) ∈ SU(2). (11.3.17)

In this case, from the total symmetry of SU(2), we confirm that this theory cannot have
a vortex solution. Because π1(SU(2)) = 0, this indicates clearly that any simple vortex
solution candeform continuously due to the vacuum, so this solutionhas no topologic
stability.

However, when the scalar triplet state is used to break the symmetry, this will lead
to the following relation:

s(θ) = exp(2inθτ3) ∈ SO(3). (11.3.18)

In this case, we can obtain the following relation from the homotopy theory:

π1(SO(3)) = π1(SU(2)/Z2) = Z2. (11.3.19)

This implies that this theory possibly has the flux unit solutions of 0, +1, and −1, in-
stead of other vortices. This indicates that the Abelian theory and the nonabelian the-
ory are different; the latter has only some limited solutions.

11.4 The magnetic unipolar solutions in three-dimensional
spaces

The so-called magnetic unipolar is a minimum magnet element that has only one
magnetic pole. This concept was introduced into the quantum field by Dirac in 1931
[116, 222]. Its appearance and properties are described below.

As is known from quantum field theory, the wave function ψ(x1, x2, x3, t) can be
multiplied by a phase factor eir to give anotherwave functionΨ = eirψ. In this case, the
phase factor r is a function of (x1, x2, x3, t), i.e., Ψ(x1, x2, x3, t) = exp[ir(x1, x2, x3, t)]ψ(x1,
x2, x3, t).

In this case, we have the relation

𝜕Ψ
𝜕xi
= eir( 𝜕
𝜕xi
+ iΠi)ψ (here Πi =

𝜕r
𝜕xi
) (i = 1, 2, 3).
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Therefore, when r is related to (x1, x2, x3, t), this operator has the transformation rela-
tion of 𝜕𝜕xi →

𝜕r
𝜕xi
+ iΠi. This is similar to the change in relationship of the momentum

operator of the electron in the electric field A, i.e., p̂→ p̂ + eAi or
𝜕
𝜕xi
→ 𝜕𝜕xi + ieAi.

If Πi = eAi, the two relations mentioned above are identical. This means that the
nonintegrable factor r(x1, x2, x3, t) introduced is identical to the electromagnetic po-
tential A, introduced here. When we follow a closed loop once, the total change of the
phase r can be represented by

(Δr)loop + 2πn = ∮
loop
Πidxi = e∮Aidxi = e∬look face

of loop

H󸀠dS,

where n is the integer and H󸀠 = ℋ = ∇ × A,∬H󸀠dS is the magnetic flux through the
loop hook face surrounding the closed curve, which is related closely to the variation
of the phase.

We now consider the domain in which ψ approaches zero. If ψ = 0, then r is com-
pletely uncertain, but if ψ approaches zero, then its small variation will result in ev-
ident changes of r. If the two conditions are satisfied along one line, then this line
is called the node line. Thus, several node lines can occur at the position of ψ = 0.
We now assume that some wave functions contain only one node line that has only
one end point. In this case, this end point is the singular point of the field. If we take
a closed hook face, which surrounds the singular point (where (Δr)loop = 0), then
e is multiplied by the total of magnetic fluxes in the closed loop to obtain 2πn, i.e.,
e∯H󸀠dS = 2πn, where H󸀠 = ℋ.

If the magnetic fluxes traversing the closed hook face are not zero, this implies
that there is only one magnetic unipolar in this closed hook face. If its strength is
expressed by qn, then the result,∯H󸀠dS = 4πqm, is true. This conclusion is consistent
with the Gauss theorem in the study of electricity. Thus, it may be called the Gauss
theorem in magnetism. This indicates that the magnetic fluxes traversing any closed
facewhich surrounds themagnetic unipolar are equal to 4π timesqn,whereqm = ne/2.
This indicates clearly that the particle charges are related closely to the strength of the
magnetic unipolar. Therefore, we conclude that the charges of all charged particles
must be quantized in nature.

Otherwise, if the magnetic unipolars appear in quantum theory, then it is quite
necessary to obtain this conclusion from quantum mechanics. Similarly, if the mag-
netic unipolar really exists, then the Maxwell electromagnetic equations in electro-
magnetism can be express in a symmetric form. Just so, plenty of experimental and
theoretical research has been carried out after Dirac’smagnetic unipolar ideawas pro-
posed, seeking to demonstrate the existence of themagnetic unipolar in nature and in
laboratory settings. Blas and Cabrera, from Stanford University, have measured accu-
rately the changes ofmagnetic fluxes in superconductive niobium coils. After 151 days,
they observed and measured a sudden increase of magnetic flux in one experiment,
which they thought was induced by magnetic unipolars. Thus, they claimed to have
demonstrated the existence of the magnetic unipolar.
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However, herewe should point out that there are somebothersomenode lines and
singular strings in Dirac’s magnetic unipolar, which are not natural and easy to un-
derstand. ’t Hooft in the Netherlands in 1974 [289] and Polyakov in the Soviet Union in
1975–1977 [251] both pointed out that the mass of the magnetic unipolar exceeds that
of the proton approximately 5 000 times (while others thought that the mass of the
magnetic unipolar is 1016 times greater than that of the proton), so they thought that
magnetic unipolars could not have singular strings, but represent a soliton solution
of the nonlinear partial differential equation if the Dirac electromagnetic U(1) specifi-
cation group is inserted into the nonabelian compact specification group. Just so, we
here investigate further the properties of the magnetic unipolar using Dirac’s model.

First, we research the ’t Hooft structure [289] of compact electric dynamics, as
shown in Figure 11.10, in which Φ is the magnetic flux coming into the ball and P0 is
a path surrounding the magnetic line, where the potential along P0 must be a pure
specific.

Figure 11.10: The compact electric dynamics structure by ’t Hooft.

Because of the single value feature for the whole charge field, we obtain

Φ = ∮P0Aidx
i =

2πn
e
.

For the Abel theory, the fluxes must flow fully out from the ball. This means that
the outside line P0 cannot shift and change continuously to a constant (P0 → P1 →
P2 → ⋅ ⋅ ⋅ → the south pole). This implies that one Dirac spring is required in the case
of an Abelian magnetic unipolar. On the other hand, if the electromagnetic U(1) spec-
ification group is put into one nonabelian compact group, then themagnetic unipolar
is not required to attach to the singular spring. For example, in the SO(3) specification
field, the rotation of 4π can vary as a constant in the south pole because its degrees of
freedom are increased in the specification transform. Therefore, this theory includes
the magnetic unipolar without the spring. Then the magnetic unipolar without the
spring and with the magnetic charge of qm = n/2e (n = ±1,±2, . . .) also exists in this
case. In order to carry out this idea, ’t Hooft et al. [289] investigated the properties of
the interactionbetween the specificationfieldsAμ and theHiggs isospin vector fieldφu
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having SO(3) specification invariance using the following Lagrange density function
possessing SO(3) specification invariance in the south pole:

L󸀠 = − 1
4
FαμνF

αμν +
1
2
Dμφ

αDμφα −
β
4
(φαφα −m2/β)2,

Fαμν = 𝜕μA
α
ν − 𝜕νA

α
μ + eε

abcAbμA
c
ν , (11.4.1)

Dμφ
α = 𝜕μφ

α + eεabcAbμφ
c (a = 1, 2, 3).

Obviously, this is the Georgi–Glashowmodel of electromagnetic interactions hav-
ing SO(3) specification invariance, namely, the Georgi–Glashow model of weak elec-
tromagnetic interaction. It describes the features of the photonwithoutmass and hav-
ing a dual and charging middle vector boson. The latter acquired the masses from the
Higgsmechanism. In this case, the existence of the degenerated vacuum ofφ2

0 = m
2/β

results in the spontaneous break of symmetry of the SO(3) specification, so the U(1)
specification symmetry remains the invariance.

By means of the EL equation and from equation (11.4.1) we obtain the classic dy-
namic equations:

DμFαμν = −eε
abcφbDrφ

c,

DμDμφ
α = −βφa(φα −m2/β). (11.4.2)

Meanwhile, ’t Hooft and Polyakov found the solution of themagnetic unipolar for
the case of static spherical symmetry [49], which is expressed by

Aa0 = 0, Aαi = εaijxi[1 − K(r)]er
2,

φa = −xaH(r)/er
2, r2 = x2 + y2 + z2. (11.4.3)

They represent the simple forms of the radial equations of equation (11.4.2) as

r2K󸀠󸀠 = K(K2 − 1) + KH2,

r2H󸀠󸀠 = 2HK2 + β/e2(H2 − c2r2H) (c = Mc/β
1/2). (11.4.4)

Here, we are interested only in the solutions having the same solutions of asymp-
totic forms along the outward direction of the radius of the spheroid, which is sig-
nificant because it approaches one pure specification (Faμν = 0) (K(0) = ±1), which
is shown in Figure 11.11. This solution is called the magnetic unipolar. The energy or
mass of one magnetic unipolar was obtained using the numerical calculation, which
is represented by

M = 4z m
eβ

f (β/e2) = M
α
f (β/e2),

where α = e2/4z, f is a monotonous, slowly rising function, f (0) = 1, and Mω is the
mass of the vector boson. Because 1/α = 137, we estimate Mω ≈ 50GeV, so we know
that the mass of the magnetic unipolar is very great.
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Figure 11.11: The magnetic unipolar solution.

As is well known, the quantities of topologic invariants are the magnetic charges in a
three-dimensional space. In order to elucidate the topologic nongenerality or stability
of soliton solutions, ’t Hooft structured electromagnetic tensors having the specifica-
tion invariant [116, 222], which are represented by

Fμν = φ
αFαμν −

1
e
εabcφαDμφ

c,

φa = φa/|φ|. (11.4.5)

They have rewritten the above equations as

Fμν = 𝜕μBν − 𝜕νBμ −
1
e
εabcφa𝜕μφ

b𝜕νφ
c,

Bμ = φ
aAaμ. (11.4.6)

Substituting equation (11.4.3) into equation (11.4.6), we obtain

Fij = εijkχk/er
3. (11.4.7)

Based on the topological concept and its significance [141], Fij should correspond
to themagnetic field of a pointmagnetic unipolarwith amagnetic charge of qm = 1/2e.
If the symbols in equation (11.4.3) are all changed, thenweobtain the values of an anti-
magnetic unipolar [21, 227]. At present, we elucidate the sources of the topology of the
magnetic charge.

If there is no singularity of the spring in Bμ, then the magnetic flow that appears
in this case can be expressed as

∗jμ = 𝜕
ν∗Fμν =

1
2e
εμναβε

abc𝜕ν(φa𝜕αφb𝜕βφc).

Wecanverify that jμ is the conservation, i.e., 𝜕∗μ jμ = 0.However, this topologic flow
is not the Noether flow. The charge associatedwith this topologic flow cannot form the
symmetry of the Lagrange quantity. In this case, themagnetic flux or magnetic charge
is denoted

Φ = 4zqm = ∫ d
3x∗j0 = 𝜕

ν∗Fμν =
1
2e
∮
s2k
εijkφ̄

a𝜕jφ̄
b𝜕kφ̄

c(d2σ)i, (11.4.8)
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where s2k is a ball with radius R (in the limit case, R → ∞). Because the ball can be
expressed by two parameter coordinates ξα (α = 1, 2), the above representation can be
expressed by

4zqm =
1
e
∮
s2k
d2ξ[2

2
εαβε

abcφa𝜕aφ
b𝜕βφ

c] =
1
e
∫ d2ξ√g (g = det(𝜕αφ

a𝜕βφ
a)).

(11.4.9)
We know that the integration is 4π times the Kronecker indicator for the mapping

of s2k → s2φ. The Kronecker indicator is certainly an integer, so we obtain qm = n/2e.
To sum up, the appearance of the magnetic unipolar soliton led to the following

results:
(1) The model may appear or result in the dyon solution from Julia’s and Zee’s

consistent assumptions Aa0 = χaJ(r)/er
2 by introducing an electric field [293]. These

dyons have limited energies and continuous electric charges and magnetic charges of
qm = 1/2e. In quantum theory, the permission values of electric charges become the
discrete values of q = ne [293].

(2) This theory can be extended to the specification group with high ranks, such
as SU(3). In this case, some new magnetic unipolars having different charges can be
formed.

(3) In the limited case of β → 0, in which the condition of H(r) → C(r) (here
r →∞) can be kept, Prasad and Sommerfied [253] obtained serious solutions of equa-
tion (11.4.4), which are represented by

K(r) = Cr/sh(Cr), H(r) = C(r)coth(Cr) − 1.

(4) Hasenfratz, ’t Hooft, and Jackiw [125] and Rebbi pointed out that, if SU(2) is
used to add the Lorentz scalar having the isospin double state to the unipolar model,
the magnetic unipolar can be added into the isospin state, so its angular momentum
becomes 1/2. In this case, the complex system formed meets the rule of Dirac–Fermi
statics. Therefore, we conclude that the spin comes from the isospin in this case.

(5) From the above research, we affirm that, in the SU(2) model, the magnetic
unipolar exists with qm = 1/2e. However, we cannot affirm whether solutions exist
withmanymagnetic charges and limited energy.We cannow think by the above inves-
tigations that the model having suited and decided spherical symmetry does not have
a SU(2) spherically symmetric magnetic unipolar solution with |qm| > 1/2e. However,
in the SU(3) model, the magnetic unipolar solution having many magnetic charges
and spherical symmetry exists [136].

(6) The solutions having topological stability and static limited energy cannot be
formed or structured in a three-dimensional system in which the long range field can-
not be formed. This is due to the fact that the long range specification field requires
an infinite barrier in the three-dimensional space, which can provide the topologic
stability to stop the damping of the soliton to a general vacuum state [305].
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11.5 The topological soliton – instanton – in four-dimensional
space

As iswell known, the topological soliton – instanton–was first researched byBelavin,
Polyakov, Schwarz, and Tyupkin (BPST) in a four-dimensional space [21]. They first
obtained the solution of the dynamic equations of a nonabelian specification field in
the case of SU(2), which is a solution without the source and is called the instanton.
In this case, the specification potential is analytical in the total Euler space. However,
the strength of the field exists only in the localized time-space region, where the Euler
energy and momentum are zero. In this section, we first describe BPST’s work.

In the four-dimensional case, the Lagrange density function of a specification
field in the BPST model is denoted

L󸀠 = − 1
4
FaμνF

a
μν (μ, ν = 1, 2, 3, 4), (11.5.1)

where L󸀠 = ℒ and Faμν = 𝜕μA
a
ν − 𝜕νA

a
μ + gC

abcAbμA
c
ν . . . (C

abc = structure constant).
We now consider the specific group SU(2) and use the following matrix represen-

tations:

Aμ = A
a
μτ

a/2, Fμν = F
a
μντ

2/2,

where τa is a 2 × 2 polly matrix. Utilizing again the following relations:

[τa, τb] = 2iεabcτc, Tr τaτb = 2δab

Tr τaτbτc = 2iεabc (Tr = find trace), (11.5.2)

we can obtain the following field equation from the EL equation:

DμFμν = 𝜕μF
a
μν − ig[Aμ, Fμν] = 0. (11.5.3)

From this equation, we can determine that there is only one topological invariant in
this theory, which is called the Pontryagin indicator, or second Chen’s number, and
corresponds to π3(SU(2)) = Z. In this case, the topologic charge Q is defined as

Q = g2

32π2
∫ dx4 Tr(εμναβFαβFμν) = 0,

where n = 0,±1,±2,±3, . . . and Q = n is the number covered by SU(2) in the case of
topologic reflection, which is expressed by the homotopy class of g(x). Here, g(x) is
the matrix of the specification group. In the specification of A0 = 0, the topological
charge equals the changes of the winding number between t = −∞ and t = +∞.

In this physical system, we introduce again the following inequality:

∫ d4x Tr(Fμν −
1
2
εμναβFαβ)

2
≥ 0. (11.5.4)
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This condition is equal to adding one limit for the following quasi-energy:

E = 1
2
∫ d4x Tr(FμνFμν) ≥ 8π

2|Q|, (11.5.5)

where Q may be simplified further, i.e., if Aμ has no singularity, so 𝜕μ𝜕νAλ = 𝜕ν𝜕μAλ,
then

Tr( 1
2
εμναβFαβFμν) =

𝜕
𝜕μ
(2εμναβ Tr(Aν𝜕αAβ +

2g
3i
AνAαAβ)), (11.5.6)

where the representation on the right side of equation (11.5.6) is not related to the spec-
ification characterization, but 2εμναβ Tr(Aν𝜕αAβ +

2g
3i AνAαAβ) is related to the specifica-

tion features. If equation (11.5.3) is integrable and g = 1, then Q can also be expressed
as

Q = 1
16π2
∬

s3
[2εμναβ Tr(Aν𝜕αAβ +

2g
3i
AνAαAβ)]d

3σμ. (11.5.7)

In order to make Aμ approach zero, we demand Aμ to have a pure specification.
We have

Aμ(x) = ig
−1(x)𝜕μg(x), x ∈ s3 (11.5.8)

at r → ∞. Clearly, equation (11.5.5) gives the limitation for the energy E, which in-
dicates that the energy E of the soliton solution having a nongeneral charge has cer-
tainly a lower limit. If Fμν = εμναβFαβ/2 in this case, then we should obtain or use the
lower limit of the energy in equation (11.5.5). When this condition holds, the above
field equations are satisfied automatically because DμFμν = Dμ(εμναβFαβ/2) = 0 (this is
one identity for the field without singular string).

From the assumptions of spherical symmetry of the specification field, we obtain

Aμ(x) = if (r)g
−1(x)𝜕μg(x), r2 = x21 + x

2
2 + x

2
3 + x

2
4, g(x) =

x4 − ixaτa

r
. (11.5.9)

Substituting equation (11.5.9) into equation (11.5.8), we find that the following self-
dual condition is met:

rf 󸀠 ∓ 2f (1 − f ). (11.5.10)

Finding the solutions of equation (11.5.10), we obtain the nongeneral solution,
which is

f (r) = r2/(r2 + β󸀠2). (11.5.11)

This solution is called the instanton,whereβ󸀠 expresses the size of the instanton in
the length dimension. The instanton is localized at any position and has any volume.
From this solution and equation (11.5.9), we find

Aμ = ir
2g−1𝜕μg/(r

2 + β󸀠2), Fμν = 4β
󸀠2σμν/(r

2 + β󸀠2), (11.5.12)

where σij = [τi, τj]/4i, σi4 = τi/2 = −σij.
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In this case, the instanton’s Pontryagin indicator isQ = 1. Because Fμν → 0, when
r →∞, Aμ also approaches one pure specification. In this case, if the parallel shift of
xμ → xμ−aμ ismade, another solution of the instanton is also obtained at position xμ =
aμ. At the same time, there is also the anti-instanton at this position, which represents
the change of g to g+ in the first equation in equation (11.5.12). This solution should
meet the following equation [242]:

Fμν = −(
1
2
εμναβFαβ) =

4β2

(γ2 + β2)2
σμν ,

where σij = σij, σi4 = −σi4. Its topologic charge is β󸀠. For Fμν = ±
1
2εμναβFαβ and |Q| = 1,

other solutions do not exist, except for the above specification transformation. At the
same time, the single instanton formed is represented by five parameters, in which
four parameters determine its position and the remainder determines its size.

However, we point out that the instanton is not a real physical particle. It is only
a solution of the field equation in the four-dimensional physical space, which does
not exist in the real world. We should also point out that the instanton process that
appears indicates only the dynamic features of the solution of the field equation in
the process of imaginary time, which is quite similar to the tunnel effect in quantum
mechanics. Thus, it can be thought of as a classical solution (or the path) linking two
classical vacuums of Δn = 1 in imaginary time. This relation can be expressed by

|i⟩ anti-instanton←󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀 |i + 1⟩ and |i⟩󳨀󳨀󳨀󳨀󳨀󳨀󳨀→
instanton

|i + 1⟩.

Just so, the solution is called “instanton”, but there is no interaction between the
two instantons. If the quantum fluctuation is considered in this process, then the in-
teraction between the instanton and anti-instanton also exists. Although the interac-
tion exists in this process, its features are different from those in the Euclidean space.
In the latter, the instanton is a real physical particle and the instanton’s tunnel effect
can be observed experimentally. Then the effects can be explained by the perturbation
method. Hence, the instanton is also called a quasi-particle. On the other hand, the
instantons are related to strong interaction theory (QCD). Therefore, instanton physics
is an important subject in modern physics.

Several researchers [49, 82, 154] have introduced the concept of the instanton into
the general theory of relativity on the basis of the similarity between the strength of
the specification field Fμν and the metric tensor Rμν in the Reimann space. Thus, they
are referred to as attractive instantons. The importance of attractive instantons can
be envisioned by the process in which they are inserted between different vacuums
(Rμναβ = 0) of Minkowski spaces to improve the method of investigation of difficult
problems. On the other hand, in so-called superspecification theory, superattractive
instantons also exist. These investigations on instantons are also quite significant.

 EBSCOhost - printed on 2/10/2023 3:23 PM via . All use subject to https://www.ebsco.com/terms-of-use



11.6 The nontopological soliton and its properties | 283

11.6 The nontopological soliton and its properties

The nontopological soliton is different from the topological soliton. It does not require
the existence of the degeneracy vacuum, but its border conditions at infinity are the
same as those of field equations without soliton solutions. Meanwhile, it again de-
mands the condition of existence of conservation rules for the addition for charges
and scalar fields [116, 222]. Therefore, a simplified method, which is used to produce
one nontopological soliton, is to introduce one complex number field [318]. We have

φ = φ1 + iφ2, φ = φ1 − iφ2, (11.6.1)

whereφ1 andφ2 are the Fermi field. Here we only discuss the features of solutions in a
one-dimensional space. The corresponding Lagrange density function is represented
by

L󸀠 = 1
2
𝜕φ∗

𝜕xμ
𝜕φ
𝜕xμ
− U(φ∗φ), (11.6.2)

where L󸀠 = ℒ. Using the EL equation and from equation (11.6.2), we obtain the corre-
sponding dynamic equation:

𝜕2φ
𝜕x2μ
− φ 𝜕φ
𝜕(φ∗φ)

U(φ∗φ) = 0. (11.6.3)

Utilizing the above equations, we obtain

N = i∫(φ∗φ̇ − φ̇∗φ)dx, (11.6.4)

which is a conservation quantity. We here assume

φ∗ 𝜕φ
𝜕x
−
𝜕φ∗

𝜕x
φ = 0 at x = ±∞.

In this system, because L󸀠 = ℒ is not changed under the transformation of φ →
φeiθ, the Hamilton function H󸀠 = ℋ is also invariable, soℋ is not related to θ. There-
fore, we can hypothesize that N is the conjugate momentum of θ. From the Hamilton
equation, we obtain Ṅ = 𝜕H󸀠/𝜕θ = 0, where H󸀠 = ℋ. Therefore, N is a conserved
quantity. In classical field theory, N may be any real number. Because θ is, in essence,
a phase variable, if θ → θ + 2π, then φ → φ. Here, N resembles the momentum and
must be an integer. This means thatℋ does not certainly relate to its conjugate coor-
dinates. In quantum field theory, if N is an integer, then θ is thought to be a cyclical
variable, so θ may be thought of as a phase variable. This is the exact reason behind
the introduction of the complex field mentioned above.
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When N ̸= 0,φ is certainly related to time. In this case, we can verify that, if N
is fixed, the solution having minimum energy, which relates to time, must meet the
following formula of the harmonic oscillator:

φ = σ(x)e−iωt . (11.6.5)

Inserting equation (11.6.5) into equation (11.6.3), we obtain

d2σ
dx2
+ ω2σ − σ d

dσ2
− U = 0.

Integrating the above equation, we obtain

1
2
(
dσ
dx
)
2
− σV(σ) = constant, (11.6.6)

where

V = 1
2
(U − ω2σ2), U = U(σ2). (11.6.7)

Because nontopological solitons do not need degeneracy vacuums, we may
choose U(0) = 0, where the form of U(σ) is shown in Figure 11.12.

In order to acquire the nontopologic soliton solution, we here choose V = 1
2 (U −

ω2σ2), which is shown in Figure 11.13, where U(φ∗φ) − ω2φ∗φ = 0. Except for the
solution of φ = 0 in this equation, a solution φ ̸= 0 also exists.

In the case of the mechanical simulation in the nonrelativity, the potential of the
particle should be −V . Its form is shown in Figure 11.14. When x = −∞, the particle at
pointOwillmove to pointA along the curve. Subsequently, it will return to the original
position frompointA. However, the particle will return again to pointOwhen x = +∞.
This feature of movement of the particle can be easily obtained.

Figure 11.12: The potential curve in equation (11.6.7).

Figure 11.13: The curve of 1
2 (U − ω

2σ2).
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Figure 11.14: The form of V(σ).

From equation (11.6.7), we obtain the general solution, denoted

x − x0 = ∫
σ

A

dσ
√2V(σ)

, (x = x0, at σ = A). (11.6.8)

Evidently, the energy of the field without dispersion is bound in a limited region
in space. Therefore, we affirm that this solution is a soliton. Obviously, the solution
approaches zero when x = ±∞. Therefore, it is one nontopological soliton. Its outline
is shown in Figure 11.15.

Figure 11.15: The outline of soliton solution φ(x).

We see in Figure 11.12 that U → m2σ2, at σ → 0, where m2 is a constant. However, if
we use function V in Figure 11.14, then we verify

ω < m. (11.6.9)

If we now choose U = m2φ∗φ
1+ε2 [(1 − g

2φ∗φ)2 + ε2], then we obtain the following
solution from its movement equation:

φ = 1
g
[

a
1 +√1 − a cosh y

]
1/2
e−iωt , (11.6.10)

where

a = (1 + ε2)(m2 − ω2) y = 2√m2 − ω2(x − x0).

In equation (11.6.10), if we choose |x| → ∞, then we obtain the asymptotic solu-
tion, denoted

φ ∝ 1
g
√m2 − ω2e−√m

2−ω2(x−x0). (11.6.11)
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This is a damping solution. At |x| →∞, it will damp to zero. Therefore, this solu-
tion satisfies the definition of nontopologic soliton. Therefore, the asymptotic solution
in equation (11.6.11) has generality, because we can demonstrate its correctness by us-
ing other methods.

In fact, we can explain and elucidate the stability of the above soliton [116, 222] as
follows.

As is well known, all nonlinear field equations have solutions of plane waves,
which can be represented by

φ = √ N
2ωQ

eiK⃗x⃗−iωt (ω = √m2 + K⃗2). (11.6.12)

Clearly, this is because the variation of amplitudes of the plane waves approaches
zero or infinity when the volume of the system approaches infinity, i.e.,Ω→∞. Thus,
we can ignore the higher-order terms of the field in the above Lagrange function. If we
retain only the first-order term, then it is changed to equation (11.6.12). In this case, we
obtain the following straight line relation between the energy and the conservation
quantity N:

Eplan = Nω ≥ Nm. (11.6.13)

However, as far as the soliton solution is concerned, its energy is a nonlinear func-
tion of N . From equation (11.6.9), we know ω < m, where we can hypothesize that the
solution of the nontopologic soliton is an analytical continuation and extension of the
above plane wave, i.e., it is the result of the extension fromω ≥ m toω < m. Therefore,
we deduce that the minimum energy Esoliton of the nontopologic soliton solution has
the following relation:

Esoliton < Nm (11.6.14)

for any conservation quantityN and any coupling content g. Otherwise, we know that
the conservation quantity N and the phase angle of complex number field θ = ωt are
conjugate variables, so we acquire the relations of Ṅ = −𝜕H󸀠/𝜕N and θ̇ = 𝜕H󸀠/𝜕N,
whereH󸀠 = ℋ. Because θ̇ = ω and the eigenvalue ofℋ for any solution is the energy E,
the above relation can be written

ω = dE
dN
. (11.6.15)

For the plane wave, ω is not related to N, so E = Nω. However, this relation does
not exist for thenontopologic solitonbecausewe should consider the relationbetween
ω and N . If we consider the limit case of ω→ m−, from equation (11.6.11) we obtain

N → 2m∫ |φ|2dx ≈ √m2 − ω2 → 0.
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From the integration of equation (11.6.15) and the relation of ω < m, we finally
obtain

Esoliton = ∫
N

0
ωdN < m∫

N

0
dN = mN , (11.6.16)

fromwhich we conclude Esoliton < Eplane. This means that a nontopologic soliton solu-
tion exists in the one-dimensional space and the minimum energy state of the system
is not the plane wave, but the soliton state. Therefore, we determine that the soliton
solution is always stable in this system. At the same time, we can demonstrate that
the soliton solution is theminimum energy state and very stable in a two-dimensional
space.

The above investigations exhibit clearly that the static soliton solution exists in
the one-dimensional space. If the result is further extended to a (3 + 1)-dimensional
space, thenwe can deduce by Derrick’s theorem that the pure scalar fields do not have
a static soliton, but if one inner symmetry group exists in the nonlinear scalar field,
then there is possibly a soliton solution, such as {eiαi(t)Ti }φc(x), where Ti is the gen-
erator of the expression of group G in the scalar field φ and αi(t) is the parameter
of the group relating to time t. When the G group is a nonabelian group, Tsung-Dao
Lee et al. [49, 154] researched its properties. Others have also demonstrated that the
nontopologic soliton is stable only if the I3 = ±I3max component of φc(x) is nonzero
[49, 82, 318], while Zhou Guang Zhao et al. [318] researched the soliton solutions of
scalar fields having the nonabelian inner symmetry using a G = SU(2) isospin group.
These investigations are very significant to understand the essence of soliton solutions
in quantum field theory.
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12 The theory of soliton movement
of superconductive features

12.1 The macroscopic quantum effects in the superconductor and
its soliton movement properties

So-called macroscopic quantum effects refer to a quantum phenomenon that occurs
on a macroscopic scale. Such effects are obviously different from the microscopic
quantum effects as described by quantum mechanics. It has been experimentally
demonstrated [10, 93–95, 157–159, 196, 221, 226, 227, 232, 233, 241, 263–265] that
macroscopic quantum effects are the phenomena that occur in superconductors.
Superconductivity is a physical phenomenon in which the resistance of a material
suddenly vanishes when its temperature is lower than a certain value, Tc, which is
referred to as the critical temperature of superconducting materials. Modern theories
[17, 51, 271, 272] tell us that superconductivity arises from the irresistible motion of
superconductive electrons. As such,wewant to answer, amongst others, the following
questions. How is the macroscopic quantum effect formed?What are its essential fea-
tures? What are the properties and rules of motion of superconductive electrons in a
superconductor? Up to now, these problems have not been studied systematically. We
will study these problems in this chapter. The experimental observations of properties
of macroscopic quantum effects in superconductors are described as follows.

(1) Superconductivity of material. As is well known, superconductors can be pure
elements, compounds, or alloys. To date, more than 30 single elements and up to
a hundred alloys and compounds have been found to possess the characteristics
[10, 93–95, 157–159, 196, 221, 226, 227, 232, 233, 241, 263–265] of superconductors.
When T ≤ Tc, any electric current in a superconductor will flow forever without being
damped. Such a phenomenon is referred to as perfect conductivity. Moreover, it has
been observed experimentally that, when a material is in the superconducting state,
any magnetic flux in the material is completely repelled, resulting in zero magnetic
fields inside the superconducting material. Similarly, a magnetic flux applied by an
external magnetic field cannot penetrate into superconductingmaterials. Such a phe-
nomenon is calledperfect anti-magnetismor theMaissner effect.Meanwhile, there are
also other features associated with superconductivity, which are not presented here.

How can this phenomenon be explained? After more than 40 years of research,
Bardeen, Cooper, and Schreiffier (BCS) proposed the new idea of Cooper pairs of
electrons and established the microscopic theory of superconductivity at low tem-
peratures, the BCS theory [17, 51, 271, 272], in 1957, on the basis of the mechanism of
electron-phonon interactions proposed by Frohlich [84, 85]. According to this theory,
electrons with opposite momenta and antiparallel spins form pairs when the attrac-
tion between the electron and phonon in these materials overcomes the Coulomb
repulsion between them. The so-called Cooper pairs condense to a minimum energy

https://doi.org/10.1515/9783110549638-012
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state, resulting in quantum states, which are highly ordered and coherent over the
long range and in which there is essentially no energy exchange between the electron
pairs and the lattice. Thus, the electron pairs are no longer scattered by the lattice but
flow freely, resulting in superconductivity. The electron pairs in a superconductive
state are somewhat similar to a diatomic molecule, but are not as tightly bound as a
molecule. The size of an electron pair, which gives the coherent length, is approxi-
mately 10−4 cm. A simple calculation shows that there can be up to 106 electron pairs
in a sphere of 10−4 cm in diameter. There must be mutual overlap and correlation
when so many electron pairs are brought together. Therefore, perturbation to any of
the electron pairs would certainly affect all others. Thus, various macroscopic quan-
tum effects can be expected in amaterial with such coherence and long range ordered
states. Magnetic flux quantization, vortex structures in type-II superconductors, and
the Josephson effect [138–140] in superconductive junctions are only some examples
of the phenomena of macroscopic quantummechanics.

(2) Quantizated effect of magnetic flux. Consider a superconductive ring. Assume
that amagnetic field is applied at T > Tc. Then themagnetic flux linesϕ0 produced by
the external field pass through and penetrate into the body of the ring. We now lower
the temperature to a value below Tc and then remove the external magnetic field. The
magnetic induction inside the body of the circular ring equals zero (B⃗ = 0), because
the ring is in the superconductive state and the magnetic field produced by the su-
perconductive current cancels the magnetic field, which was within the ring. How-
ever, part of the magnetic fluxes in the hole of the ring remain, because the induced
current in the ring vanishes. This residual magnetic flux is referred to as “the frozen
magnetic flux”. It has been observed experimentally that the frozen magnetic flux is
discrete or quantized. Using the macroscopic quantumwave function in the theory of
superconductivity, it can be shown that the magnetic flux is established by Φ󸀠 = nϕ0
(n = 0, 1, 2, . . . ), where ϕ0 = hc/2e = 2.07 × 10−15Wb is the flux quantum, representing
thefluxof onemagnetic flux line. Thismeans that themagnetic fluxes passing through
the hole of the ring can only bemultiples ofϕ0 [10, 93–95, 157–159, 227, 241, 263–265].
In other words, the magnetic field lines are discrete. What does this imply? If the mag-
netic flux of the appliedmagnetic field is exactly n, then themagnetic flux through the
hole is nϕ0, which is not difficult to understand. However, what is the magnetic flux
through the hole if the applied magnetic field is (n + 1/4)ϕ0? According to the above,
the magnetic flux cannot be (n + 1/4)ϕ0. In fact, it should be nϕ0. Similarly, if the ap-
plied magnetic field is (n + 3/4)ϕ0, then the magnetic flux passing through the hole is
not (n + 3/4)ϕ0, but rather (n + 1)ϕ0. Therefore, the magnetic fluxes passing through
the hole of the circular ring are always quantized.

An experiment conducted in 1961 surely proves this to be so, indicating that the
magnetic flux does exhibit discrete or quantized characteristics on a macroscopic
scale. The above experiment was the first demonstration of themacroscopic quantum
effect. Based on quantization of the magnetic flux, we can build a “quantum mag-
netometer”, which can be used to measure weak magnetic fields with a sensitivity
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of 3 × 10−7 Oersted. A slight modification of this device would allow us to measure
electric currents with strengths as low as 2.5 × 10−9 A.

(3) Quantization of magnetic flux lines in type-II superconductors. The supercon-
ductors discussed above are referred to as type-I superconductors. This type of super-
conductor exhibits a perfect Maissner effect when the external applied field is higher
than a critical magnetic value H⃗c. There exist other types of materials, such as the
NbTi alloy and Nb3Sn compounds, in which the magnetic field partially penetrates
inside the material when the external field H⃗ is greater than the lower critical mag-
netic field H⃗c1, but less than the upper critical field H⃗c2 [10, 93, 94, 241, 263–265].
This kind of superconductor is classified as type-II superconductors and is charac-
terized by a Ginzburg-Landau (GL) parameter greater than 1/2. Studies using the Bitter
method showed that the penetration of a magnetic field results in some small regions
changing from the superconductive to the normal state. These small regions in the
normal state are of cylindrical shape and regularly arranged in the superconductor,
as shown in Figure 12.1. Each cylindrical region is called a vortex (or magnetic field
line) [10, 93–95, 157–159, 227, 241, 263–265]. The vortex lines are similar to the vor-
tex structure formed in a turbulent flow of fluid. Both theoretical analysis and experi-
mental measurements have shown that the magnetic flux associated with one vortex
is exactly equal to one magnetic flux quantum ϕ0, when the applied field H⃗ ≥ H⃗c1,
the magnetic field penetrating into the superconductor in the form of vortex lines, in-
creases step-wise. For an ideal type-II superconductor, stable vortices are distributed
in a triangular pattern. The superconducting current and magnetic field distributions
are shown in Figure 11.1 in Chapter 11. For other, nonideal type-II superconductors, the
triangular pattern of distribution can be observed in small local regions, even though
its overall distribution is disordered. It is evident that the vortex line structure is quan-
tized. This has been verified by many experiments and can be considered a result of
the quantization of the magnetic flux. Furthermore, it is possible to determine the en-

Figure 12.1: Quantum diffraction effect in the superconductor junction.
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ergy of each vortex line and the interaction energy between the vortex lines. Parallel
magnetic field lines are found to repel each other while anti-parallel magnetic lines
attract each other.

(4) The Josephson effect of superconductivity junctions [138–140]. As is well
known in quantum mechanics, microscopic particles, such as electrons, have a wave
property and can penetrate through a potential barrier. For example, if two pieces
of metal are separated by an insulator of a width of tens of Ångströms, an electron
can tunnel through the insulator and travel from one metal to the other. If a voltage
is applied across the insulator, a tunnel current can be produced. This phenomenon
is referred to as a tunneling effect. If two superconductors replace the two pieces of
metal in the above experiment, a tunneling current can also occur when the thickness
of the dielectric is reduced to about 30Å. However, this effect is fundamentally differ-
ent from the tunneling effect discussed above in quantum mechanics and is referred
to as the Josephson effect.

Evidently, this is due to the long range coherent effect of the superconductive elec-
tron pairs. Experimentally, it was demonstrated that such an effect could be produced
via many types of junctions involving a superconductor, such as superconductor-
metal-superconductor junctions, superconductor-insulator-superconductor junc-
tions, and superconductor bridges. These junctions can be considered as supercon-
ductors with a weak link. On the one hand, they have properties of bulk superconduc-
tors. For example, they are capable of carrying certain superconducting currents. On
the other hand, these junctions possess unique properties, which a bulk supercon-
ductor does not. Some of these properties are summarized in the following.

(A) When a direct current (dc) passing through a superconductive junction is
smaller than a critical value Ic, the voltage across the junction does not change with
the current. The critical current Ic can range from a few tens of µA to a few tens of mA.

(B) If a constant voltage is applied across the junction and the current passing
through the junction is greater than Ic, a high-frequency sinusoidal superconducting
current occurs in the junction. The frequency is given by υ = 2 eV/h in the microwave
and far-infrared regions of (5–1000)×109 Hz. The junction radiates a coherent electro-
magnetic wave with the same frequency. This phenomenon can be explained as fol-
lows. The constant voltage appliedacross the junctionproduces analternating Joseph-
son current that, in turn, generates an electromagnetic wave with frequency υ. The
wave propagates along the planes of the junction. When the wave reaches the surface
of the junction (the interface between the junction and its surroundings), part of the
electromagnetic wave is reflected from the interface and the rest is radiated, resulting
in the radiation of the coherent electromagneticwave. The power of radiation depends
on the compatibility between the junction and its surroundings.

(C) When an external magnetic field is applied over the junction, the maximum
dc, Ice, is reduced due to the effect of the magnetic field. Furthermore, Ic changes pe-
riodically as the magnetic field increases. The Tc–H curve resembles the distribution
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of light intensity in the Fraunhofer diffraction experiment, shown in Figure 12.1. This
phenomenon is called quantum diffraction of the superconductivity junction.

(D)Whena junction is exposed to amicrowaveof frequencyυand if the voltage ap-
plied across the junction is varied, then it can be seen that the dc passing through the
junction increases suddenly at certain discrete values of the electric potential. Thus,
a series of steps appear on the dc I–V curve and the voltage at a given step is related
to the frequency of the microwave radiation by nυ = 2 eV n/h (n = 0, 1, 2, 3 . . . ). More
than 500 steps have been observed in experiments.

Josephson first derived these phenomena theoretically and each was experimen-
tally verified subsequently. All these phenomena are, therefore, called Josephson ef-
fects [138–140]. In particular,

(1) and (3) are referred to as dc Josephson effects while (2) and (4) are referred to
as alternating current (ac) Josephson effects. Evidently, Josephson effects are macro-
scopic quantum effects, which can be explained well by the macroscopic quantum
wave function. If we consider a superconducting junction as a weakly linked super-
conductor, the wave functions of the superconducting electron pairs in the supercon-
ductors on both sides of the junction are correlated due to a definite difference in their
phase angles. This results in a preferred direction for the drifting of the superconduct-
ing electron pairs and a Josephson dc is developed in this direction. If amagnetic field
is applied to the plane of the junction, themagnetic field produces a gradient of phase
difference, whichmakes the maximum current oscillate along with the magnetic field
and radiation of the electromagnetic wave occurs. If a voltage is applied across the
junction, the phase difference will vary with time and result in the Josephson effect.
In view of this, the change in the phase difference of wave functions of superconduct-
ing electrons plays an important role in the Josephson effect, which will be discussed
in more detail in Section 12.5.

The discovery of the Josephson effect opened the door for a wide range of applica-
tions of superconductor theory. Properties of superconductors have been explored to
produce the superconducting quantum interferometer-magnetometer, sensitive am-
meter, voltmeter, electromagnetic wave generator, detector, frequency mixer, etc.

12.2 The properties of Boson condensation and spontaneous
coherence of macroscopic quantum effects
in the superconductor

12.2.1 The nonlinear model of theoretical description for the macroscopic quantum
effects

From the above studies, we know that the macroscopic quantum effect is obviously
different from the microscopic quantum effect, the former having been observed for
physical quantities, such as resistance, magnetic flux, vortex line, and voltage.
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In the latter, the physical quantities, characteristics ofmicroscopic particles, such
as energy, momentum, and angular momentum, are quantized. Thus, it is reasonable
to believe that the fundamental nature and the rules governing these effects are dif-
ferent.

We know that the microscopic quantum effect is described by quantum mechan-
ics. However, the question what the mechanisms of macroscopic quantum effects are
remains. How can these effects be properly described?

Andwhat are the states ofmicroscopic particles in the systemswheremacroscopic
quantum effects occur? In other words, what are the essential features of macroscopic
quantum states? These questions need to be addressed.

We know that materials are composed of a great number of microscopic parti-
cles, such as atoms, electrons, and nuclei, which exhibit quantum features. We then
assume that the macroscopic quantum effects result from the collective motion and
excitation of these particles under certain conditions, such as extremely low temper-
atures, high pressure, and high density. Under such conditions, a huge number of mi-
croscopic particles paired with each other condense in a low-energy state, resulting
in a high order and long range coherence. In such a highly ordered state, the collec-
tive motion of a large number of particles is the same as themotion of single particles.
Since the latter is quantized, the collective motion of the many particle system gives
rise to amacroscopic quantumeffect. Thus, the condensation of the particles and their
coherent state play an essential role in the macroscopic quantum effect.

What is the concept of condensation?Onamacroscopic scale, theprocess of trans-
forming gas into liquid, as well as that of changing vapor into water, is called conden-
sation. This, however, represents a change in the state of molecular positions and is
referred to as condensation of positions. The phase transition from a gaseous state
to a liquid state is a first-order transition in which the volume of the system changes
and the latent heat is produced, but the thermodynamic quantities of the systems are
continuous and have no singularities. Theword condensation in the context ofmacro-
scopic quantum effects has a special meaning. The condensation concept discussed
here is similar to the phase transition from gas to liquid, in the sense that the pressure
depends only on the temperature, not on the volume. Thus, it is essentially different
from the first-order phase transition, such as that from vapor towater. It is not the con-
densation of particles into a high-density material in normal space. On the contrary,
it is the condensation of particles to a single-energy state or to a low-energy state with
a constant or nonexistent momentum. It is thus also called a condensation of mo-
mentum. This differs from a first-order phase transition and theoretically it should
be classified as a third-order phase transition, even though it is really a second-order
phase transition, because it is related to the discontinuity of the third derivative of
a thermodynamic function. Discontinuities can be clearly observed when measuring
specific heat or magnetic susceptibility of certain systems when condensation occurs.
The phenomenon results from a spontaneous breakdown of symmetry of the system
due to nonlinear interactions within the system under some special conditions, such
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as extremely low temperatures andhighpressure. Different systemshavedifferent crit-
ical temperatures of condensation. For example, the condensation temperature of a
superconductor is its critical temperature Tc (see also [197, 198, 209, 213, 245, 259]).

From the above discussions on the properties of superconductors, we know, even
though the microscopic particles involved can be either bosons or fermions, that the
ones that actually condense are either bosons or quasi-bosons, since fermions are
bound as pairs. Bosons obey the Bose–Einstein statistics, so the condensation is re-
ferred to as Bose–Einstein condensation [19, 29, 30, 166]. Properties of bosons are dif-
ferent from those of fermions, as they do not follow the Pauli exclusion principle and
there is no limit to the number of particles occupying the same energy levels. At finite
temperatures, bosons can distribute in many energy states and each state can be oc-
cupied by one or more particles, while some states may not be occupied at all. Due to
the statistical attractions between bosons in the phase space (consisting of general-
ized coordinates andmomenta), groups of bosons tend to occupy one quantumenergy
state under certain conditions. Then, when the temperature of the system falls below
a critical value, the majority or all bosons condense to the same energy level (e.g., the
ground state), resulting in Bose condensation and a series of interesting macroscopic
quantum effects. Different macroscopic quantum phenomena are observed because
of differences in the fundamental properties of the constituting particles and their in-
teractions in different systems.

In the highly ordered state of these phenomena, the behavior of each condensed
particle is closely related to the properties of the system. In this case, the wave func-
tionϕ = feiθ orϕ = √ρeiθ of themacroscopic state [19, 29, 30] is also thewave function
of an individual condensed particle. The macroscopic wave function is also called the
order parameter of the condensed state. This term was used to describe the super-
conductive states in the study of these macroscopic quantum effects. The essential
features and fundamental properties of macroscopic quantum effects are given by the
macroscopic wave functionϕ and it can be further shown that the macroscopic quan-
tum states, such as the superconductive states, are coherent and are Bose condensed
states formed through second-order phase transitions after the symmetry of the sys-
tem is broken due to nonlinear interactions in the system.

In the absence of any externally applied field, the Hamiltonian of a given macro-
scopic quantum system can be represented by the macroscopic wave function ϕ and
written as

H = ∫ dxH󸀠 = ∫ dx[− 1
2
|∇ϕ|2 − α|ϕ|2 + λ|ϕ|4], (12.2.1)

where H󸀠 = ℋ represents the Hamiltonian density function of the system. The unit
system in which m = ℏ = c = 1 is used here for convenience. If an externally applied
electromagnetic field does exist, the Hamiltonian given above should be replaced by

H = ∫ dxH󸀠 = ∫ dx[− 1
2
󵄨󵄨󵄨󵄨∇ − ie

∗A⃗ϕ󵄨󵄨󵄨󵄨
2
− α|ϕ|2 + λ|ϕ|4 +

⃗H̃2

8π
] (12.2.2)
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or, equivalently,

H = ∫ dxH󸀠 = ∫ dx[− 1
2
󵄨󵄨󵄨󵄨(𝜕j − ie

∗Aj)ϕ
󵄨󵄨󵄨󵄨
2
− α|ϕ|2 + λ|ϕ|4 + 1

4
Fji.F

ji],

where Fji = 𝜕jAi − 𝜕iAj is the covariant field intensity, H⃗ = ∇ × A⃗ is the magnetic field
intensity, e is the charge of an electron, e∗ = 2e, A⃗ is the vector potential of the elec-
tromagnetic field, and α and λ can be said to be some of the interaction constants.
The above Hamiltonians in equations (12.2.1) and (12.2.2) have been used in the study
of superconductivity by many scientists, including de Gennes [57], Saint-James et al.
[285], Kivshar [145, 146], Bullough [38, 39], Huepe [130], Sonin [281], and Davydov
et al. [56]. They can also be derived from the free energy expression of a supercon-
ductive system given by Landau et al. [150, 152]. As a matter of fact, the Lagrangian
function of a superconducting system can be obtained from the well-known GL equa-
tion [8, 9, 91, 92, 96–98, 150] using the Lagrangian method. The Hamiltonian func-
tion of a system can then be derived using the Lagrangian approach. The results, of
course, are the same as equations (12.2.1) and (12.2.2). Evidently, the Hamiltonian op-
erator corresponding to equations (12.2.1) and (12.2.2) represents a nonlinear function
of the wave function of a particle, where the nonlinear interaction is caused by the
electron-phonon interaction and by the vibration of the lattice in the BCS theory in the
superconductors. Therefore, it truly exists. Evidently, the Hamiltonians of the systems
are different from those in quantummechanics and a nonlinear interaction related to
the state of the particles is involved in equations (12.2.1) and (12.2.2). Hence, we can
expect that the states of particles depicted by the Hamiltonian also differ from those
in quantummechanics and the Hamiltonian can describe the features of macroscopic
quantum states including superconducting states. These problems are treated in the
following pages. Evidently, the Hamiltonians in equations (12.2.1) and (12.2.2) possess
U(1) symmetry, that is, they remain unchanged while undergoing the following trans-
formation:

ϕ( ⃗r, t)→ ϕ󸀠( ⃗r, t) = e−iQjθϕ( ⃗r, t),

where Qj is the charge of the particle, θ is a phase, and, in the case of one dimen-
sion, each term in the Hamiltonian in equation (12.2.1) or equation (12.2.2) contains
the product of ϕj(x, t). From this, we obtain

ϕ󸀠1(x, t)ϕ
󸀠
2(x, t) . . .ϕ

󸀠
n(x, t) = e

−i(Q1+Q2+⋅⋅⋅+Qn)θϕ1(x, t)ϕ2(x, t) . . .ϕn(x, t).

Since charge is invariant under the transformation and neutrality is required for
the Hamiltonian, (Q1 + Q2 + ⋅ ⋅ ⋅ + Qn) = 0 in such a case. Furthermore, since θ is inde-
pendent of x, ∇ϕj → e−iθQj∇ϕj, so each term in the Hamiltonian in equation (12.2.1) is
invariant under the above transformation or it possesses U(1) symmetry.
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If we rewrite equation (12.2.1) as follows:

H󸀠 = − 1
2
(∇ϕ)2 + Ueff(ϕ), Ueff(ϕ) = −αϕ

2 + λϕ4, (12.2.3)

then we see that the effective potential energy Ueff(ϕ) in equation (12.2.3) has two sets
of extrema and ϕ0 = 0, but the minimum is located at

ϕ0 = ±√α/2λ = ⟨0|ϕ|0⟩, (12.2.4)

rather than ϕ0 = 0. This means that the energy at ϕ0 = ±√α/2λ is lower than that at
ϕ0 = 0. Therefore,ϕ0 = 0 corresponds to the normal ground state, whileϕ0 = ±√α/2λ
is the ground state of the macroscopic quantum systems.

In this case, the macroscopic quantum state is the stable state of the system. This
shows that the Hamiltonian of a normal state differs from that of the macroscopic
quantum state, in which the two ground states satisfy ⟨0|ϕ|0⟩ ̸= −⟨0|ϕ|0⟩ under the
transformation ϕ → −ϕ. In other words, they no longer have U(1) symmetry, so the
symmetry of the ground states has been destroyed. The reason for this is evidently the
nonlinear term λϕ4 in the Hamiltonian of the system. Therefore, this phenomenon is
referred to as a spontaneous breakdown of symmetry. According to Landau’s theory of
phase transition, the systemundergoes a second-order phase transition in such a case
and the normal ground state ϕ0 = 0 is changed to the macroscopic quantum ground
state ϕ0 = ±√α/2λ. Proof will be presented in the following example.

In order to make the expectation value in a new ground state zero in the macro-
scopic quantum state, the following transformation [221, 232] is made:

ϕ󸀠 = ϕ + ϕ0, (12.2.5)

so that

⟨0|ϕ󸀠|0⟩ = 0. (12.2.6)

After this transformation, the Hamiltonian density of the system becomes

H󸀠(ϕ + ϕ0) =
1
2
|∇ϕ|2 + (6λϕ2 − α)ϕ2 + 4λϕ0ϕ

3 + (4λϕ3
0 − 2αϕ0)ϕ + λϕ

4 − αϕ2
0 + λϕ

4
0.

(12.2.7)
Inserting equation (12.2.4) into equation (12.2.7), we have ⟨ϕ0|(4λϕ2

0−2α)|ϕ0⟩ = 0.
Consider now the expectation value of the variation δH󸀠/δϕ in the ground state, i.e.,
⟨0|(δH󸀠/δϕ)|0⟩ = 0. Then, from equation (12.2.1), we get

⟨0|δH
󸀠

δϕ
|0⟩ = ⟨0| − ∇2ϕ + 2αϕ − 4λϕ3|0⟩ = 0. (12.2.8)

After the transformation of equation (12.2.6), this becomes

∇2ϕ0 + (4λϕ
2
0 − 2α)ϕ0 + 12λϕ0⟨0|ϕ

2|0⟩ + 4λ⟨0|ϕ3|0⟩ − (2α − 12λϕ2
0)⟨0|ϕ|0⟩ = 0,

(12.2.9)
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where the terms ⟨0|ϕ3|0⟩ and ⟨0|ϕ|0⟩ are both zero, but the fluctuation 12λϕ0⟨0|ϕ2|0⟩
of the ground state is not zero. However, for a homogeneous system, at T = 0K, the
term ⟨0|ϕ2|0⟩ is very small and can be neglected.

Then equation (12.2.9) can be written as

− ∇2ϕ0 − (4λϕ
2
0 − 2α)ϕ0 = 0. (12.2.10)

Obviously, two sets of solutions, ϕ0 = 0 and ϕ0 = ±√α/2λ, can be obtained from
the above equation.We can demonstrate that the former is unstable and that the latter
is stable.

If the displacement is very small, i.e., ϕ0 → ϕ0 + δϕ0 = ϕ󸀠0, then the equation
satisfied by the fluctuation δϕ0 is relative to the normal ground state ϕ0 = 0 and is

∇2δϕ0 − 2αδϕ0 = 0. (12.2.11)

Its solution attenuates exponentially, indicating that the ground state ϕ0 = 0 is
unstable. On the other hand, the equation satisfied by the fluctuation δϕ0 relative to
the ground stateϕ0 = ±√α/2λ is ∇2δϕ0 − 2αδϕ0 = 0. Its solution, δϕ0, is an oscillatory
function and thus themacroscopic quantum state ground stateϕ0 = ±√α/2λ is stable.
Further calculations show that the energy of the macroscopic quantum ground state
is lower than that of the normal state by ε0 = −α2/4λ < 0. Therefore, the ground state
of the normal phase and that of the macroscopic quantum phase are separated by an
energy gap of α2/4λ, so, at T = 0K, all particles can condense to the ground state
of the macroscopic quantum phase rather than filling the ground state of the normal
phase. Based on this energy gap,we conclude that the specific heat of themacroscopic
quantum systems has an exponential dependence on the temperature and the critical
temperature is given by Tc = 1.11ωp exp[−1/(3λ/α)N(0)] [221, 232]. This is a feature of
the second-order phase transition. The results are in agreement with those of the BCS
theory of superconductivity.

Therefore, the transition from the state ϕ0 = 0 to the state ϕ0 = ±√α/2λ and the
corresponding condensation of particles are second-order phase transitions. This is
obviously the result of a spontaneous breakdown of symmetry due to the nonlinear
interaction λϕ4.

In the presence of an electromagnetic field with a vector potential A⃗, the Hamil-
tonian of the system is given by equation (12.2.2). It still possesses U(1) symmetry.
Since the existence of the nonlinear terms in equation (12.2.2) has been demonstrated,
a spontaneous breakdown of symmetry can be expected. Now consider the following
transformation:

ϕ(x) = 1
√2
[ϕ1(x) + iϕ2(x)]→

1
√2
[ϕ1(x) + ϕ0 + iϕ2(x)]. (12.2.12)

Since ⟨0|ϕ1|0⟩ = 0 under this transformation, equation (12.2.2) becomes

H󸀠 = 1
4
(𝜕iAj − 𝜕jAi)

2 −
1
2
(∇ϕ2)

2 −
1
2
(∇ϕ1)

2 +
(e∗)2

2
[(ϕ1 + ϕ0)

2 + ϕ2
2]A

2
i − e
∗ϕ0Ai∇ϕ2
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+ e∗(ϕ2∇ϕ1 − ϕ1∇ϕ2)Ai −
1
2
(−12λϕ2

0 + 2α)ϕ
2
1 −

1
2
(12λϕ2

0 + 2α)ϕ
2
2

+ 4λϕ0ϕ1(ϕ
2
1 + ϕ

2
2) + 4λ(ϕ

2
1 + ϕ

2
2)
2
− ϕ0(4λϕ

2
0 + 2α)ϕ1 − αϕ

2
0 + λϕ

2
0. (12.2.13)

We see that the effective interaction energy of ϕ0 is still given by

Ueff(ϕ0) = −αϕ
2
0 + λϕ

4
0 (12.2.14)

and is in agreement with that given in equation (12.2.4). Therefore, using the same
argument, we conclude that the spontaneous symmetry breakdown and the second-
order phase transition also occur in the system. The system changes from the ground
state of the normal phase ϕ0 = 0 to the ground state ϕ0 = ±√α/2λ of the condensed
phase in such a case. The above result can also be used to explain the Meissner effect
and to determine its critical temperature in the superconductor. Thus, quantum states
are formed through a second-order phase transition following a spontaneous symme-
try breakdown due to nonlinear interaction in the system, regardless of the existence
of any external field macroscopic quantum states, such as the superconducting state.

12.2.2 The features of the coherent state of macroscopic quantum effects

Proof that the macroscopic quantum state described by equations (12.2.1) and (12.2.2)
is a coherent state, using either the second quantization theory or the solid state quan-
tum field theory, is presented in the following paragraphs.

As discussed above, when δH󸀠/δϕ = 0, from equation (12.2.1), we have

∇2ϕ − 2αϕ + 4λ|ϕ|2ϕ = 0. (12.2.15)

It is a time-independent nonlinear Schrödinger equation (NLSE), which is similar
to the GL equation. Expanding ϕ in terms of the creation and annihilation operators,
b+p and bp, we have

ϕ = 1
√V̄
∑
p

1
√2εp
(bpe
−ipx + b+pe

ip.x), (12.2.16)

where V̄ is the volume of the system. After a spontaneous breakdown of symmetry,
ϕ0, the ground-state of ϕ, is no longer zero, but ϕ0 = ±√α/2λ. The operation of the
annihilation operator on |ϕ0⟩ no longer gives zero, i.e.,

bp|ϕ0⟩ ̸= 0. (12.2.17)

A new field ϕ󸀠 can then be defined in accordance with the transformation equa-
tion (12.2.5), where ϕ0 is a scalar field and satisfies equation (12.2.10) in such a case.
Evidently, ϕ0 can also be expanded into

ϕ0 = −
1
√V̄
∑
p

1
√2εp
(ζpe
−ip.x + ζ +p eip.x). (12.2.18)
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The transformation between the fields ϕ and ϕ󸀠 is obviously a unitary transfor-
mation. We have

ϕ󸀠 = UϕU−1 = e−sϕes = ϕ + ϕ0, (12.2.19)

where

S = i∫ dx󸀠[ϕ󸀠(x󸀠, t)ϕ0(x
󸀠, t) − ϕ0(x

󸀠, t)ϕ(x󸀠, t)]. (12.2.20)

ϕ and ϕ󸀠 satisfy the following commutation relation:

[ϕ󸀠(x󸀠, t),ϕ(x, t)] = iδ(x󸀠 − x). (12.2.21)

From equation (12.2.6), we now have ⟨0|ϕ󸀠|0⟩ = ϕ󸀠0 = 0. The ground state |ϕ
󸀠
0⟩ of

the field ϕ󸀠 thus satisfies

bp
󵄨󵄨󵄨󵄨ϕ
󸀠
0⟩ = 0. (12.2.22)

From equation (12.2.6), we obtain the following relationship between the annihi-
lation operator ap of the new field ϕ󸀠 and the annihilation operator bp of the ϕ field:

ap = e
−Sbpe

S = bp + ζp, (12.2.23)

where

ζp =
1
(2π)3/2
∫

dx
√εp
[ϕ0(x, t)e

ip.x + iϕ∗0(x, t)e−ip.x]. (12.2.24)

Therefore, the new ground state |ϕ󸀠0⟩ and the old ground state |ϕ0⟩ are related
through |ϕ󸀠0⟩ = e

S|ϕ0⟩.
Thus, we have

ap
󵄨󵄨󵄨󵄨ϕ
󸀠
0⟩ = (bp + ζp)

󵄨󵄨󵄨󵄨ϕ
󸀠
0⟩ = ζp
󵄨󵄨󵄨󵄨ϕ
󸀠
0⟩. (12.2.25)

According to the definition of the coherent state, from equation (12.2.25) we see
that the new ground state |ϕ󸀠0⟩ is a coherent state. Because such a coherent state is
formed after the spontaneous breakdown of symmetry of the system, it is referred to
as a spontaneous coherent state. When ϕ0 = 0, the new ground state is the same
as the old state, which is not a coherent state. The same conclusion can be directly
derived from the BCS theory [17, 51, 271, 272]. In the BCS theory, the wave function of
the ground state of a superconductor is written

󵄨󵄨󵄨󵄨ϕ
󸀠
0⟩ =∏

k
(μk + υkâ

+
ka
+
−k)|ϕ0⟩ =∏

k
(μk + υkb̂

+
k−k)|ϕ0⟩ ∼ η

󸀠 exp(∑
k

υk
μk

b̂+k−k)|ϕ0⟩,

(12.2.26)
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where b̂+k−k = â
+
k â
+
−k . This equation shows that the superconducting ground state is a

coherent state. Hence, we conclude that the spontaneous coherent state in supercon-
ductors is formed after the spontaneous breakdown of symmetry.

By reconstructing a quasi-particle operator-free new formulation of the Bogo-
liubov–Valatin transformation parameter dependence [297], Lin et al. [165] demon-
strated that the BCS state is not only a coherent state of single Cooper pairs, but also
the squeezed state of the double Cooper pairs, and reconfirmed thus the coherent
feature of the BCS superconductive state.

12.2.3 The boson condensed features of macroscopic quantum effects

We will now employ the method used by Bogoliubov in the study of superfluid 4He
to prove that the above state is indeed a Bose condensed state. In order to do so, we
rewrite equation (12.2.16) in the following form [196, 221, 226, 227, 232, 233]:

ϕ(x) = 1
√V̄
∑
p
qpe

ipx , qp =
1
√2εp
(bp + b

+
−p). (12.2.27)

Since the field ϕ describes a boson, such as the Cooper electron pair in a super-
conductor, Bose condensation can occur in the system. We will apply the following
traditional method in quantum field theory. Consider the following transformation:

bp = √N0δ(p) + γp, b+p = √N0δ(p) + βp, (12.2.28)

where N0 is the number of bosons in the system and δ(p) = {1, if p=00, if p ̸=0 . Substituting
equations (12.2.27) and (12.2.28) into equation (12.2.1), we arrive at the Hamiltonian
operator of the system as follows:

H = (
4λN2

0
ε20V̄
−

α
ε0
)√N0(γ0 + γ

+
0 + β0 + β

+
0) +∑

P
(

4λ
ε0εP

N0
V̄
− εp)(γ

+
pβ
+
−p + γpβ−p) +

4λN2
0

ε20V̄

−
2N0α
ε0
+
λN0
ε0V̄
∑
p

1
εp
(β+pβ
+
−p + βpβ−p + γ

+
pγ
+
−p + γpγ−p + 2γ

+
pβ
+
p + 2β

+
pγp)

+∑
p
(εp −

α
2ε0
+

4λN0
ε0εpV̄
)(γ+pγp + β

+
pβp) +∑

P

4λ
ε0εP

N0
V̄
+ O(
√N0

V̄
) + O(N0

V̄2 ).

(12.2.29)

Because the condensed density N0/V̄ must be finite, it is possible that the higher-
order terms0(√N0/V̄) and0(N0/V̄2)maybeneglected. Next,we perform the following
canonical transformation:

γp = u
∗
pcp + υpc

+
−p, βp = u

∗
pdp + υpd

+
−p, (12.2.30)
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where νp and μp are real and satisfy (μ2p − ν
2
p) = 1. This introduces another transforma-

tion,

ςp =
1
√2
(upγ
+
p − υpγ−p + upβ

+
p − υpβ−p), η+p =

1
√2
(upγ
+
p − υpγ−p − upβ

+
p + υpβ−p),

(12.2.31)
so the following relations are obtained:

[ςp,H] = gpςp +Mpς
+
−p, [ηp,H] = g

󸀠
pηp +M

󸀠
pη
+
−p, (12.2.32)

where

{
gp = Gp(u2p + υ

2
p) + Fp2upυp, Mp = Fp(u2p + υ

2
p) + Gp2upυp,

g󸀠p = G
󸀠
p(u

2
p + υ

2
p) + F

󸀠
p2upυp, M

󸀠
p = F
󸀠
p(u

2
p + υ

2
p) + G

󸀠
p2upυp,

(12.2.33)

while

Gp = εp −
α
2εp
+ 6ξ 󸀠p, Fp = −

α
2εp
+ 6ξ 󸀠p, G󸀠p = εp −

α
2εp
+ 2ξ 󸀠p, F󸀠p =

α
2εp
− 2ξ 󸀠p,

(12.2.34)
where ξ 󸀠p = λNo/(ε0εpV̄).

We will now study two cases to illustrate the concepts.
(A) LetM󸀠p = 0. Then it can be seen from equation (12.2.32) that η+p is the creation

operator of elementary excitation and its energy is given by

g󸀠p = √ε2p + 4εpξ 󸀠p − 2α. (12.2.35)

Using this concept, we obtain the following form from equations (12.2.32) and
(12.2.34):

(u󸀠p)
2
=
1
2
(1 +

G󸀠p
g󸀠p
) and (υ󸀠p)

2
=
1
2
(−1 +

G󸀠p
g󸀠p
). (12.2.36)

From equation (12.2.32), we know that ξ+p is not a creation operator of the elemen-
tary excitation, so another transformation must be made. We have

Bp = χpς
󸀠
p + μpς

󸀠+
p , |χp|

2 − |μp|
2 = 1. (12.2.37)

We can then prove that

[Bp, [Bp, H̄]] = EpBp, (12.2.38)

where Ep = √12εpξ 󸀠p + ξ 2p − 2α.
Now, inserting equations (12.2.30), (12.2.37), and (12.2.38) and M󸀠p = 0 into equa-

tion (12.2.29), after some reorganization, we have

H̄ = U + E0 + ∑
p>0
[Ep(B

+
pBp + B

+
−pB−p) + g

󸀠
p(η
+
pηp + η

+
−pη−p)], (12.2.39)
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where

E0 = −2∑
p>0

Ep|μp|
2 = −∑

p>0
(g󸀠p − Ep). (12.2.40)

Both U and E0 are now independent of the creation and annihilation operators of the
bosons. U + E0 gives the energy of the ground state. N0 can be determined from the
condition of δ(U + E0)/δNo, so we obtain the following formula:

N0
V̄
=
αε0
4λ
=
1
2
ε0ϕ

2
0. (12.2.41)

This is the condensed density of the ground state ϕ0. From equations (12.2.36),
(12.2.37), and (12.2.40), we arrive at

g󸀠p = √ε2p − α, Ep = √ε2p − α. (12.2.42)

These correspond to the energy spectra of η+p and B+p , respectively, and they are
similar to the energy spectra of the Cooper pair and phonon in the BCS theory. Substi-
tuting equation (12.2.42) into equation (12.2.36), we have

u󸀠 2p =
1
2
(1 +

2ε2p − α

2√ε2p − αep
), υ󸀠 2p =

1
2
(−1 +

2ε2p − α

2√ε2p − αεp
). (12.2.43)

(B) In the case where Mp = 0, a similar approach can be used to arrive at the
energy spectrum corresponding to ξ+p as Ep = √ε2p + α, while that corresponding to

A+p = χpη
+
p + μpη−p is g

󸀠
p = √ε2p + α, where

u2p =
1
2
(1 +

2ε2p + α

2εp√ε2p + α
), υ2p =

1
2
(−1 +

2ε2p + α

2εp√ε2p + α
). (12.2.44)

Based on experiments in quantum statistical physics, we know that the occupa-
tion number of the level with an energy of εp, for a system in thermal equilibrium at
certain temperature (T ̸= 0), is shown as

Np = ⟨b
+
pbp⟩ =

1
eεp/KBT − 1

, (12.2.45)

where ⟨. . .⟩ denotes the Gibbs average, defined as ⟨. . .⟩ = sp[e−H/KBT ...]
SP[e−H/KBT ] , where SP denotes

the trace in aGibbs statistical description.WhenT → 0K, themajority of thebosons or
Cooper pairs in a superconductor condense to the ground state with p→ 0. Therefore,
⟨b+0b0⟩ ≈ N0, whereN0 is the total number of bosons or Cooper pairs in the system and
N0 ≫ 1, i.e., ⟨b+b⟩ = 1 ≪ ⟨b+0b0⟩.
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As can be seen from equations (12.2.27) and (12.2.28), the number of particles is
extremely large when they lie in the condensed state, that is,

ϕ0 = ϕp=0 =
1
√2ε0V̄
(b0 + b

+
0). (12.2.46)

Because (γ0|ϕ0⟩ = 0 and (β0|ϕ0⟩ = 0, b0 and b+0 can be taken to be √N0. The
average value of ϕ∗ϕ in the ground state then becomes

⟨ϕ0|ϕ
∗ϕ|ϕ0⟩ = ⟨ϕ

∗ϕ⟩0 =
1

2ε0V̄
⋅ 4N0 =

2N0
ε0V̄
. (12.2.47)

Substituting equation (12.2.41) into equation (12.2.47), we see that

⟨ϕ∗ϕ⟩0 =
α
2λ

or ⟨ϕ∗⟩0 = ±√
α
2λ
,

which is the ground state of the condensed phase, or the superconducting phase, that
we have seen. Thus, the densityN0/V̄ of the condensed phase or the superconducting
phase formed after the Bose condensation coincides with the average value of the bo-
son’s (or Cooper pair’s) field in the ground state.We can then conclude from the above
investigation shown in equations (12.2.1) and (12.2.2) that the macroscopic quantum
state or the superconducting ground state formed after the spontaneous symmetry
breakdown is indeed a Bose–Einstein condensed state. This clearly shows the essence
of the nonlinear properties of macroscopic quantum effects.

In the last fewdecades, Bose–Einstein condensation has been observed in a series
of remarkable experiments using weakly interacting atomic gases, such as vapors of
rubidium, sodium lithium, and hydrogen. Its formation and properties have been ex-
tensively studied. These studies show that Bose–Einstein condensation is a nonlinear
phenomenon, analogous to nonlinear optics, and that the state is coherent and can
be described by the following NLSE or the Gross–Pitaevskii equation [100, 249, 250]:

i𝜕ϕ
𝜕t󸀠
= −
𝜕2ϕ
𝜕x󸀠 2
− λ|ϕ|3 + V(x)ϕ, (12.2.48)

where t󸀠 = t/ℏ, x󸀠 = x√2m/ℏ. This equation was used to discuss the realization of the
Bose–Einstein condensation in the (D + 1) dimensions (D = 1, 2, 3) by Bullough et al.
[38, 39]. Also, Elyutin et al. [74, 75] gave the corresponding Hamiltonian density of a
condensate system as follows:

H󸀠 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕ϕ
𝜕x󸀠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
+ V(x󸀠)|ϕ|2 − 1

2
λ|ϕ|4, (12.2.49)

where H󸀠 = ℋ, the nonlinear parameters of λ are defined as λ = −2Naa1/a20, N is
the number of particles trapped in the condensed state, a is the ground state scatter-
ing length, and a0 and a1 are the transverse (y, z) and the longitudinal (x) condensa-
tion sizes (without self-interaction), respectively. Note that integrations over y and z
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have been carried out in obtaining the above equation. λ is positive for condensation
with self-attraction (negative scattering length). The coherent regime was observed
in Bose–Einstein condensation of lithium. The specific form of the trapping potential
V(x󸀠) depends on the details of the experimental setup. Work on Bose–Einstein con-
densation based on the above Hamiltonian model was carried out and reported by
Barenghi et al. [259].

It is not surprising to see that equation (12.2.48) is exactly the same as equation
(12.2.15), corresponding to the Hamiltonian density in equation (12.2.49). As used in
this study, it is also equivalent to equation (12.2.1). This prediction confirms the correct-
ness of the above theory for Bose–Einstein condensation. As a matter of fact, imme-
diately after the first experimental observation of this condensation phenomenon, it
was realized that the coherent dynamics of the condensedmacroscopic wave function
could lead to the formation of nonlinear solitary waves. For example, self-localized
bright, dark, and vortex solitons, formed by increased (bright) or decreased (dark or
vortex) probability densities, respectively, were experimentally observed, particularly
for the vortex solution, which has the same form as the vortex lines found in type
II-superconductors and superfluids. These experimental results were in concordance
with the results of the above theory. In the following sections of this text, wewill study
the solitonmotions of quasi-particles inmacroscopic quantumsystems, superconduc-
tors, and superfluid systems. We will see that the dynamic equations in macroscopic
quantum systems do have such soliton solutions.

12.2.4 Differences between macroscopic quantum effects and the microscopic
quantum effects and their nonlinear quantum mechanic features

From the above discussion we may understand the nature and characteristics of
macroscopic quantum systems. It is interesting to compare the macroscopic and mi-
croscopic quantum effects. Here we give a summary of the main differences between
them.

(1) Concerning the origins of these quantum effects, the microscopic quantum
effect is produced when microscopic particles, which have only a wave feature, are
confined in a finite space or are constituted as matter, while the macroscopic quan-
tum effect is due to the collective motion of the microscopic particles in systems with
nonlinear interaction. It occurs through second-order phase transition following the
spontaneous breakdown of symmetry of the systems.

(2) From the point of view of their characteristics, the microscopic quantum ef-
fect is characterized by quantization of physical quantities, such as energy, momen-
tum, and angular momentum, wherein themicroscopic particles remain constant. On
the other hand, the macroscopic quantum effect is represented by discontinuities in
macroscopic quantities, such as resistance, magnetic flux, vortex lines, and voltage.
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Themacroscopic quantumeffects can be directly observed in experiments on amacro-
scopic scale, while the microscopic quantum effects can only be inferred from other
effects related to them.

(3) The macroscopic quantum state is a condensed and coherent state, but the
microscopic quantumeffect occurs in determinant quantization conditions,which are
different for bosons and fermions. So far, only bosons or combinations of fermions
have been found in macroscopic quantum effects.

(4) The microscopic quantum effect is a linear effect, in which the microscopic
particles are in an expanded state, their motions being described by linear differen-
tial equations, such as the Schrödinger equation, the Dirac equation, and the Klein–
Gordon equations.

On the other hand, the macroscopic quantum effect is caused by nonlinear inter-
actions. The motions of the particles are described by nonlinear partial differential
equations, such as the NLSE (12.2.17).

We conclude that the macroscopic quantum effects are, in essence, a nonlinear
quantum phenomenon, in which the properties of microscopic particles, such as the
electron in superconductors, are describedby anNLSE, suchas equations (12.2.15) and
(12.2.48). The corresponding Hamiltonians of the systems are also nonlinear. There-
fore, we affirm that themacroscopic quantum systems possess the nonlinear quantum
mechanical properties, so their effects and properties should be described by nonlin-
ear quantummechanics [220, 228, 230, 231, 235, 238, 240], whereasmicroscopic quan-
tum effects are described by traditional quantummechanics.

12.3 The soliton movements of electrons in superconductors
It is clear from the previous section that the superconductivity of amaterial is a kind of
nonlinear quantum effect, formed after the breakdown of the symmetry of the system
due to the electron-phonon interaction, which is a nonlinear interaction.

In this section, we discuss the properties of the motion of superconductive elec-
trons in superconductors and the relation of the solutions of dynamic equations to the
above macroscopic quantum effects. The study presented here shows that the super-
conductive electrons move in the form of a soliton, which results in a series of macro-
scopic quantum effects in superconductors. Therefore, the properties and motions of
the quasi-particles are important for understanding the properties of superconductiv-
ity and macroscopic quantum effects.

12.3.1 The soliton features of motion of electrons in steady superconductors

As is well known, in the superconductor the states of the electrons are often repre-
sented by a macroscopic wave function. We have

ϕ( ⃗r, t) = f ( ⃗r, t)ϕ0e
iθ( ⃗r,t), or ϕ = √ρeiθ ,
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as mentioned above, where ϕ2
0 = α/2λ. Landau et al. [56, 152] used the wave func-

tion to give the free energy density function f of a superconducting system, which is
represented by

fs = fn −
ℏ2

2m
|∇ϕ|2 − α|ϕ|2 + λ|ϕ|4 (12.3.1)

in the absence of any external field. If the system is subjected to an electromagnetic
field specified by a vector potential A⃗, the free energy density of the system is of the
following form:

fs = fn −
ℏ2

2m

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(∇ −

ie∗

cℏ
A⃗)ϕ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
− α|ϕ|2 + λ|ϕ|4 + 1

8π
⃗H̃2, (12.3.2)

where e∗ = 2e, ⃗H̃ = ∇×A⃗, α and λ are some interaction constants related to the features
of the superconductor,m is themass of an electron, e∗ is the charge of a superconduc-
tive electron, c is the velocity of light, h is the Planck constant, ℏ = h/2π, and fn is the
free energy of the normal state. The free energy of the system is Fs = ∫ fsd3x. In terms
of the conventional field, Fij = 𝜕jAi−𝜕iAj (j, i = 1, 2, 3), the term

⃗H̃2/8π can bewritten as
FjiF ji/4. Equations (12.3.1) and (12.3.2) show the nonlinear features of the free energy
of the systems becauseϕ( ⃗r, t) is the nonlinear function of thewave function of the par-
ticles. Thus, we predict that the superconductive electrons have many new properties
compared to the normal electrons. From δFs/ϕ = 0, we get

ℏ2

2m
∇2ϕ − αϕ + 2λϕ3 = 0 (12.3.3)

in the absence of external fields and

ℏ2

2m
(∇ −

ie∗

cℏ
A⃗)

2
ϕ − αϕ + 2λϕ3 = 0 (12.3.4)

in the presence of an external field, as well as

⃗J = +e
∗ℏ
2mi
(ϕ∗∇ϕ − ϕ∇ϕ∗) − e

∗

mc
|ϕ|2A⃗. (12.3.5)

Equations (12.3.3)–(12.3.5) are the well-known GL equations [8, 9, 91, 92, 96–98]
in steady state and a time-independent Schrödinger equation. Here, equation (12.3.3)
is the GL equation in the absence of external fields. It is the same as equation (12.2.15),
which was obtained from equation (12.2.1). Equation (12.3.5) can be obtained from
equation (12.2.2). Therefore, equations (12.2.1) and (12.2.2) are the Hamiltonians cor-
responding to the free energy in equations (12.3.1) and (12.3.2).

From equations (12.3.3) and (12.3.4) we clearly see that superconductors are non-
linear systems. GL equations containing the nonlinear term of 2λϕ3 are fundamen-
tal equations of superconductors, describing the motion of the superconductive elec-
trons. However, the equations contain two unknown functions ϕ and A⃗, which make
them extremely difficult to resolve.
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We first study the properties of motion of superconductive electrons in the case
where there is no external field. Then we consider only a one-dimensional pure su-
perconductor [199, 203], where

ϕ = ϕ0φ(x, t), ξ 󸀠 2(T) = ℏ2/2m|α|, x󸀠 = x/ξ 󸀠(T), (12.3.6)

where ξ 󸀠(T) is the coherent length of the superconductor, which depends on the tem-
perature. For a uniform superconductor, ξ 󸀠(T) = 0.94ξ0[Tc/(Tc − T)]2, where Tc is
the critical temperature and ξ0 is the coherent length of superconductive electrons at
T = 0. Under the boundary conditions φ(x󸀠 = 0) = 1 and φ(x󸀠 → ±∞) = 0, from
equations (12.3.3) and (12.3.5), we easily find the following solution:

φ = ±√2 sec h[x − x0
ξ 󸀠(T)
]

or

ϕ = ±√α
λ
sec h[x − x0

ξ 󸀠(T)
] = ±√

α
λ
sec h[
√2mα
ℏ
(x − x0)]. (12.3.7)

This is a well-knownwave packet type soliton solution. It can be used to represent
the bright soliton occurring in the Bose–Einstein condensate found by Perez-Garcia
et al. [244]. If the signs of α and λ in equation (12.3.3) are reversed, we get the following
kink soliton solution under the boundary conditions of φ(x󸀠 = 0) = 0 and φ(x󸀠 →
±∞) = ±1:

ϕ = ±(α/2λ)1/2 tanh{[mα(x − x0/ℏ
2)]

1/2
}. (12.3.8)

The energy of the soliton described by (12.3.7) is given by

Esol = ∫
∞

−∞
[
ℏ2

2m
(
dϕ
dx
)
2
− αϕ2 − λϕ4]dx = 4ℏα3/2

3λ√2m
. (12.3.9)

We assume here that the lattice constant r0 = 1. The energy of the above soliton
can be compared with the ground state energy of the superconducting state, Eground =
−α2/4λ. Their difference can be represented by

Esol − Eground = α
3/2(√α + 16ℏ

3√2m
)/2λ > 0.

This indicates clearly that the soliton is not in the ground state, but in an excited
state of the system. Therefore, the soliton is a quasi-particle.

From the above discussion, we see that, in the absence of external fields, the
superconductive electrons move in the form of solitons in a uniform system. These
solitons are formed by a nonlinear interaction among the superconductive electrons,
which suppresses the dispersive behavior of electrons. A soliton can carry a certain
amount of energywhilemoving in superconductors. It can be demonstrated that these
soliton states are very stable.
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12.3.2 The features of soliton motion of electrons in superconductors under
the action of an electromagnetic field

We now consider the motion of superconductive electrons in the presence of an elec-
tromagnetic field A⃗. Its equation ofmotion is denotedby equations (12.3.4) and (12.3.5).
Assume now that the field A⃗ satisfies the London gauge∇.A⃗ = 0 [167] and that the sub-
stitution of ϕ( ⃗r, t) = φ( ⃗r, t)eiθ( ⃗r) into equations (12.3.4) and (12.3.5) [199, 203] yields

J =
e∗ϕ2

0
m
(ℏ∇θ − e

∗

c
A⃗)φ2 (12.3.10)

and

∇2φ − [(∇θ − e
∗

ℏc
A⃗)

2
φ] − 2m
ℏ2
(α − 2λϕ2

0φ
2)φ = 0. (12.3.11)

For bulk superconductors, J is a constant (permanent current) for a certain value
of A⃗ and it can thus be taken as a parameter.

Let B2 = m2J2/ℏ2(e∗)2ϕ4
0, b = 2mα/ℏ

2 = ξ−2. From equations (12.3.10) and (12.3.11)
[235, 238], we obtain

(ℏ∇θ − e
∗

c
A⃗) = Jm

e∗ϕ2
0φ2 , (12.3.12)

d2φ
dx2
= −

d
dφ

Ueff(φ), Ueff(φ) =
B2

2φ2 −
1
2
bφ2 +

1
4
bφ4, (12.3.13)

where Ueff is the effective potential of the superconductive electron, as schematically
shown in Figure 12.2. Comparing this case with that in the absence of external fields,
we find that the equations have the same form and the electromagnetic field changes
only the effective potential of the superconductive electron. When A⃗ = 0, the effective
potential well is characterized by double wells. In the presence of an electromagnetic
field, there are still two minima in the effective potential, corresponding to the two

Figure 12.2: The effective potential energy in equation (12.3.18).
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ground states of the superconductor in this condition. This shows that the sponta-
neous breakdown of symmetry still occurs in the superconductor, so the supercon-
ductive electrons also move in the form of solitons. To obtain the soliton solution, we
integrate equation (12.3.13) and get

x = ∫
φ

φ1

dφ
√2[E − Ueff(φ)]

, (12.3.14)

where E is a constant of integration which is equivalent to the energy and φ1 is the
lower limit of the integral, determined by the value of φ at x = 0, i.e., E = Ueff(φ0) =
Ueff(φ1). We introduce the following dimensionless quantities: φ2 = u, E = bε/2, 2d̃ =
4J2mλ/[(e∗)2d2], φ2 = u and, after performing the transformation u → −u, equation
(12.3.14) can be written in the following form:

−√2bx = ∫
u

u1

du
√u3 − 2u2 − 3εu − 2d̃2

. (12.3.15)

It can be seen from Figure 12.3 that the denominator in the integrand in equation
(12.3.15) approaches zero linearly when u = u1 = φ2

1, but approaches zero gradually
when u = u2 = φ2

0. Thus [205, 206], we have

u(x) = φ2(x) = u0 − g sec h
2(√

1
2
gbx) = u1 + g tan h

2(√
1
2
gbx), (12.3.16)

where g = u0 − u1 and satisfies

(2 + g)2(1 − g) = 27d̃2, 2u0 + u1 = 2, u20 + 2u0u1 = −2ε, u1u
2
0 = 2d̃

2. (12.3.17)

It can be seen from equation (12.3.16) that, for a large part of the sample, u1 is
very small and may be neglected; the solution u is very close to u0. We then get from

Figure 12.3: Changes of ϕ(x) and |H̃(x)| with x in equations (12.3.18) and (12.3.19).
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equation (12.3.16)

φ(x) = φ0 tan h(√
1
2
gbx). (12.3.18)

Substituting the above into equation (12.3.12), the electromagnetic field A⃗ in the
superconductors can be obtained. We have

A⃗ = −
⃗Jmc
(e∗)2ϕ2

0

1
φ2 −
ℏc
e∗
∇θ =

⃗Jmc
(e∗)2ϕ2

0φ
2
0
cot h(√ 1

2
gbx) − ℏc

e∗
∇θ.

For a large portion of the superconductor, the phase change is very small. Using
H⃗ = ∇ × A⃗, the magnetic field can be determined and is given [205, 206] by

H⃗ =
⃗Jmc√2gb
(e∗)2ϕ2

0φ
2
0
[cot h3(√ 1

2
gbx) + cot h(√ 1

2
gbx)]. (12.3.19)

Equations (12.3.18) and (12.3.19) are analytical solutions of the GL equations
(12.3.14) and (12.3.15) in the one-dimensional case, which are shown in Figure 12.2
and Figure 12.3, respectively. Equation (12.3.18) or (12.3.16) shows that the supercon-
ductive electron in the presence of an electromagnetic field is still a soliton. However,
its amplitude, phase, and shape are different from those in a uniform superconductor
and in the absence of external fields. The soliton here is obviously influenced by the
electromagnetic field, as reflected by the change in the form of the solitary wave. This
is why a permanent superconducting current can be established by the motion of
superconductive electrons in a certain direction in such a superconductor; solitons
have the ability to maintain their shape and velocity while in motion.

It is clear from Figure 12.4 that H̃(x) is large where ϕ(x) is small and vice versa.
When x → 0, H̃(x) reaches a maximum, while ϕ(x) approaches zero. On the other
hand, when x →∞,ϕ(x) becomes very large, while H̃(x) approaches zero. This shows
that the system is still in the superconductive state. These are exactly the well-known

Figure 12.4: Proximity effect in an S-N junction.
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behaviors of vortex lines or magnetic flux lines in type-II superconductors [205, 206].
With this, we conclude the explanation of macroscopic quantum effects in type-II su-
perconductors using the GL equation of motion of superconductive electrons under
action of an electromagnetic field.

Recently, Caradoc-Davies et al. [43], Matthews et al. [174], and Madison et al. [169]
observed vertex solitons in the Bose–Einstein condensates. Tonomure [295] experi-
mentally observed magnetic vortices in superconductors. These vortex lines in the
type-II superconductors are quantized. The macroscopic quantum effects are well de-
scribed by the nonlinear theory discussed above, demonstrating the correctness of the
theory.

We now proceed to determine the energy of the soliton given by (12.3.18). From
earlier discussions, we know the energy of the soliton is given by

E = ∫
+∞

−∞
[
1
2
(
dφ
dx
)
2
+
b
2
φ2 −

b
4
φ4 −

B2

2φ2 ]dx ≈ φ
2
0[

2bφ2
0

3
− 1 + b

2
(1 −

φ2
0
2
)] −

B2

2φ2
0
,

which depends on the interaction between superconductive electrons and the electro-
magnetic field.

From the above discussion, we understand that, for a bulk superconductor, the
superconductive electrons behave as solitons, regardless of the presence of external
fields. Thus, the superconductive electrons are a special type of soliton. Obviously,
the solitons are formed because the nonlinear interaction λ|ϕ|2ϕ suppresses the dis-
persive effect of the kinetic energy in equations (12.3.3) and (12.3.4). They move in the
form of solitary waves in the superconducting state. In the presence of external elec-
tromagnetic fields, we demonstrate theoretically that a permanent superconductive
current is established and that the vortex lines or magnetic flux lines also occur in
type-II superconductors.

12.3.3 The properties of soliton movement of the electrons in superconductive
junctions and its relation to the macroscopic quantum effects

(1) The features of the motion of electrons in an S-N junction and the proximity ef-
fect. The superconductive junction consists of a superconductor (S) which contacts a
normal conductor (N), in which the latter can be superconductive. If this is the case,
this phenomenon is referred to as the proximity effect. This is obviously the result of
the long range coherent properties of superconductive electrons. It can be regarded
as the penetration of electron pairs from the superconductor into the normal conduc-
tor or a result of diffraction and transmission of superconductive electron waves. In
this phenomenon, superconductive electrons can occur in the normal conductor, but
their amplitudes are much smaller than in the superconductive region, so the nonlin-
ear term λ|ϕ|2ϕ in the GL equations (12.3.4) and (12.3.5) can be neglected. Because of
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this, GL equations in the normal and superconductive regions have different forms.
On the S side of the S-N junction, the GL equation [207] is

ℏ2

2m
(∇ −

ie∗

ch
A⃗)ϕ − αϕ + 2λϕ3 = 0, (12.3.20)

while that on the N side of the junction is

ℏ2

2m
(∇ −

ie∗

ch
A⃗)ϕ − α󸀠ϕ = 0. (12.3.21)

Thus, the expression for ⃗J remains the same on both sides. We have

⃗J = e
∗ℏ
2mi
(ϕ∗∇ϕ − ϕ∇ϕ∗) − (e

∗)2

mc
|ϕ|2A⃗. (12.3.22)

In the S region, we obtain a solution of equation (12.3.20), which is given by
equation (12.3.16) or equations (12.3.18) and (12.3.19). In the N region, from equations
(12.3.21) and (12.3.22), we easily obtain

{{{
{{{
{

φ2 =
1
2
√(ε󸀠)2 − 4d̃2 sin(2√b󸀠x) + ε

󸀠

2
,

ϕ2
N = φ

2ϕ2
0e
−2iθ =

1
2
√(ε󸀠)2 − 4d̃2 sin(2√b󸀠x)e−i2θ + ε

󸀠

2
ϕ2
0e
−i2θ ,

(12.3.23)

where

b󸀠 = 2mα
󸀠

ℏ2
=

1
̄ξ 󸀠 2
, 2d̃2 = 4 ⃗J2mλ

(e∗)2α󸀠 2
, E󸀠 = b

󸀠

2
ε󸀠.

Here, ε󸀠 is an integral constant. A graph of ϕ vs. x in both the S and the N regions,
as shown in Figure 12.4, coincides with that obtained by Blackburn [25]. The solution
given in equation (12.3.23) is the analytical solution in this case. On the other hand,
Blackburns resultwas obtainedby expressing the solution in terms of elliptic integrals
and then integrating numerically. From this, we see that the proximity effect is caused
by diffraction or transmission of the superconductive electrons.

(2) The Josephson effect in S-insulator (I)-S and S-N-S as well as S-I-N-S junctions.
An S-N-S or an S-I-S consists of a normal conductor or an insulator sandwiched be-
tween two superconductors, as schematically shown in Figure 12.5a. The thickness of
the normal conductor or the insulator layer is referred to as L and we choose the z co-
ordinate such that the normal conductor or the insulator layer is located at −L/2 ≤ x ≤
L/2. The features of S-I-S junctions were studied by Jacobson et al. [135]. We will treat
this problem using the above ideas and methods [200, 214].

The electrons in the superconducting regions (x ≥ L/2) are depicted by the GL
equation (12.3.20). Its solution is given by equation (12.3.18). After eliminating u1 from
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Figure 12.5: Superconductive junction of S-N(I)-S and S-N-I-S.

equation (12.3.17) [25, 135], we have J = (e∗αu0/2)√(1 − u0)α/(mλ). Setting dJ/du0 = 0,
we get the maximum current Jc = (e∗α/3)√α/(3mλ).

This is the critical current of a perfect superconductor, corresponding to the three-
fold degenerate solution of equation (12.3.17), i.e., u1 = u0.

From equation (12.3.22), we have A⃗ = −m ⃗Jc/[(e∗)2ϕ2
0φ

2]. Using the London gauge,
∇.A⃗ = 0 [200, 214], we get d2θ/dx2 = mJ/(e∗ϕ2

0ℏ)
d
dx (1/φ

2). Integrating the above equa-
tion twice, we get the change of the phase to be

Δθ = mJ
e∗ϕ2

0ℏ
∫(

1
φ2 −

1
φ2
∞
)dx, (12.3.24)

where φ2 = u and φ2
∞ = u0. Here we have used the following de Gennes boundary

conditions in obtaining equation (12.3.24):

dϕ
dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨|x|→∞
= 0, dθ

dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨|x|→∞
= 0, ϕ(|x|→∞) = ϕ∞. (12.3.25)

If we substitute equations (12.3.15)–(12.3.18) into equation (12.3.24), the phase shift of
the wave function from an arbitrary point x to infinity can be obtained directly from
the above integral. It takes the following form:

ΔθL(x →∞) = − tan
−1√

u1
u0 − u1

+ tan−1√
u1

u − u1
. (12.3.26)

For the S-N-S or S-I-S junctions, the superconducting regions are located at |x| ≥ L/2
and the phase shift in the S region is thus

Δθs = 2ΔθL(
L
2
→∞) ≈ 2 tan−1√

u1
us − u1
. (12.3.27)
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According to the results in (12.3.21) and (12.3.22) and the above similar method, the
change of the phase in the I or N region of the S-N-S or S-I-S junctionmay be expressed
[200, 214] as

ΔθN = −2 tan
−1[

2e∗h󸀠
̇J
√ α2
8mλ

tan(
√b󸀠L
2
)] +

m ̇JL
2e∗h󸀠μ0

, (12.3.28)

where

h󸀠 = √8mλ
α2
̇J

2e∗
tan(ΔθN/2)
tan(√b󸀠L/2)

and m ̇JL
2e∗h󸀠μ0

is an additional term to satisfy the boundary conditions (12.3.25) thatmaybeneglected
in the case being studied. Near the critical temperature (T < Tc), the current passing
through a weakly linked superconductive junction is very small, i.e., j ≪ 1, so we
obtain

μ󸀠1 = 4j
2mλ/[(e∗)2α2] = 2Ā2 and g󸀠 = 1.

Since ηφ2 and dφ2/dx are continuous at the boundary x = L/2, we have

dμs
dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x=L/2
=
dμN
dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x=L/2
, ηsμs|x=L/2 = ηNμN |x=L/2,

where ηs and ηN are the constants related to features of superconductive and normal
phases in the junction, respectively. These [200, 214] give

2√b󸀠Ā sin(2ΔθN ) = ε1[1 − cos(2Δθs)] sin(√b󸀠L),

cos(√b󸀠L) sin(2Δθs) = ε sin(2ΔθN ) + sin(2Δθs + ΔθN ),

where ε1 = ηN/ηS. From the two equations, we obtain

sin(Δθs + ΔθN ) =
2√2mλ ̇J
e∗α
√b󸀠 sin(√b󸀠L).

Thus,

̇J = ̇Jmax sin(Δθs + ΔθN ) = ̇Jmax sin(Δθ), (12.3.29)

where

̇Jmax =
e∗αs

2√2mλb󸀠
⋅

1
sin(√b󸀠L)

, Δθ = Δθs + ΔθN . (12.3.30)

Equation (12.4.5) is the well-known example of the Josephson current. From Sec-
tion 12.1 we know that the Josephson effect is a macroscopic quantum effect. We have
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seen that this effect can be explained by nonlinear quantum theory. This again shows
that the macroscopic quantum effect is just a nonlinear quantum phenomenon.

From equation (12.4.6), we see that the Josephson critical current is inversely pro-
portional to sin(√b󸀠L), which means that the current increases suddenly whenever
√b󸀠L approaches nπ, suggesting some resonant phenomena occur in the system. This
has not been observed before. Moreover, e∗α/2√2mλb󸀠 = e∗ℏαs/4m√λαN , which is
related to (T − Tc)2.

Finally, it is worthwhile to mention that no explicit assumption was made in the
above on whether the junction is a potential well (α < 0) or a potential barrier (α > 0).
The results are thus valid and the Josephson effect in equation (12.3.29) occurs both
with potential wells and with potential barriers.

We now study the Josephson effect in the S-N-I-S junction as shown schemati-
cally in Figure 12.5b. It can be regarded as amulti-layer junction consisting of an S-N-S
and S-I-S junction. If appropriate thicknesses for the N and I layers are used (approxi-
mately 20–30Å), the Josephson effect similar to that discussed above can occur. Since
the derivations are similar to those in the previous sections, we will skip much of the
details and give the results in the following. The Josephson current in the S-N-I-S junc-
tion is still given by

̇J = ̇Jmax sin(Δθ),

but, where

Δθ = Δθs1 + ΔθN + ΔθI + Δθs2

and

̇Jmax =
1
√b󸀠N
{

ε1 sinh(√b󸀠NL)

2[cosh(√b󸀠NL) − cos(2ΔθN )]
}

×
1

√[1 + cos(2ΔθN )][1 + cos(2ΔθI )] −√[1 − cos(2ΔθN )][1 − cos(2ΔθI )]

−
1
√b󸀠N
{

ε1√[1 − cos2(2ΔθN )] sinh(√b󸀠NL)

2[cosh(√b󸀠NL) − cos(2ΔθN )]2 − 1 + cos2(2ΔθN )
}

×
1

√[1 − cos(2ΔθN )][1 − cos(2ΔθI )] +√[1 + cos(2ΔθN )][1 + cos(2ΔθI )]
,

it can be shown that the temperature dependence of Jmax is Jmax ∝ (Tc − T0)2, which
is similar to the results obtained by Blackburn et al. [25] for the S-N-I-S junction and
those by Romagnan et al. [93] using the Pb-PbO-Sn-Pb junction. Here, we obtain the
same results using a completely different approach. This indicates again that we can
theoretically obtain some results which agree with the experimental data.
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12.4 The soliton movement features of the electrons with time
dependence in the superconductor

12.4.1 The dynamic equations of the superconductive electron and its soliton
solutions

We have so far only studied the properties of the motion of superconductive electrons
in steady states in superconductors, as described by the time-independent GL equa-
tion. In such a case, the superconductive electronsmove as solitons. What are the fea-
tures of time-dependent motion in nonequilibrium states of a superconductor? Nat-
urally, this motion should be described by the time-dependent GL (TDGL) equation
[8, 9, 67, 91, 92, 96–98]. Unfortunately, there are many different forms of the TDGL
equation under different conditions. The following is commonly used when an elec-
tromagnetic field A⃗ is involved:

Γ[ℏ
𝜕
𝜕t
− 2ieμ(r)]ϕ = −1

2m
(ℏ∇ −

2ie
c
A⃗)

2
+ αϕ − λ|ϕ|2ϕ (12.4.1)

and

⃗J = σ[− 1
c
𝜕A⃗
𝜕t
− ∇μ(r)] + ieℏ

m
(ϕ∗∇ϕ − ϕ∇ϕ∗) − 4e

2

mc
A⃗|ϕ|2, (12.4.2)

where i = √−1,∇×∇×A⃗ = 1
c
𝜕
𝜕t (−

1
c
𝜕A⃗
𝜕t −∇μ)+

4π ⃗J
c ,σ is the conductivity in thenormal state,

Γ is an arbitrary constant, and μ is the chemical potential of the system. In practice,
equation (12.4.1) is simply a time-dependent Schrödinger equation with a damping
effect.

In certain situations, the following forms of the TDGL equation are also used:

iℏ𝜕ϕ
𝜕t
= −
ℏ2

2m
(∇ −

2ie
ℏc

A⃗)
2
ϕ + αϕ − λ|ϕ|2ϕ (12.4.3)

or

i(ℏ 𝜕
𝜕t
− i2eμ)ϕ = 1

Γ
(α − λ|ϕ|2)ϕ + ξ

󸀠 2

Γ
(∇ −

2ie
ℏc

A⃗)
2
ϕ, (12.4.4)

where ξ 󸀠 = ℏ/√2m and equation (12.4.3) is a NLSE under an electromagnetic field hav-
ing soliton solutions. However, these solutions are very difficult to find andno analytic
solutions have been obtained. An approximate solution was obtained by Kusayanage
et al. [149] by neglecting the φ3 term in equation (12.4.1) or equation (12.4.3) in the
case where A⃗ = (0, H̃x,0), μ = −KẼx, H⃗ = (0,0, H̃), and E⃗ = (Ẽ,0,0), where H⃗ is
the magnetic field and E⃗ is the electric field. We will solve the TDGL equation in the
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case of weak fields in the following. The TDGL equation (12.4.4) can be written in the
following form [116, 224] when A⃗ is very small:

iℏ𝜕ϕ
𝜕t
+
ℏ2

2mΓ
∇2ϕ + λ
Γ
|ϕ|2ϕ = (α

Γ
− 2eμ)ϕ, (12.4.5)

where α and Γ are material-dependent parameters, λ is the nonlinear coefficient, and
m is the mass of the superconductive electron. Equation (12.4.5) is actually an NLSE in
a potential field α/Γ − eμ. Cai and Bhattacharjee [42] and Davydov [56] used it in their
studies of superconductivity. However, this equation is also difficult to solve. In the
following, we show how Pang solved the equation in the one-dimensional case.

For convenience, let t󸀠 = t/ℏ, x󸀠 = x√2mΓ/ℏ. Then equation (12.4.5) becomes

i𝜕ϕ
𝜕t󸀠
+
𝜕2ϕ
𝜕x󸀠 2
+
λ
Γ
|ϕ|2ϕ = [α

Γ
− 2eμ(x󸀠)]ϕ. (12.4.6)

If we let α/Γ − 2eμ = 0, then equation (12.4.6) is the usual NLSE, whose solution [116,
224] is of the following form:

ϕ0
s = φ0(x

󸀠, t󸀠)eiθ0(x
󸀠 ,t󸀠), (12.4.7)

φ0(x
󸀠, t󸀠) = √

Γ(υ2e − 2υcυe)
2λ

× sec h[√
(υ2e − 2υcυe)

4
(x󸀠 − υet

󸀠)], (12.4.8)

where θ0(x󸀠, t󸀠) = vs(x󸀠 − vct󸀠)/2. In the case where α/Γ − 2eμ ̸= 0, let μ = KẼx󸀠, where
K is a constant, and assume that the solution [135, 200] is of the following form:

ϕ = φ󸀠(x󸀠, t󸀠)eiθ(x
󸀠 ,t󸀠). (12.4.9)

Substituting equation (12.4.9) into equation (12.4.7), we get

− φ󸀠 𝜕θ
𝜕t󸀠
− φ󸀠( 𝜕θ
𝜕t󸀠
)
2
+
𝜕2φ󸀠

𝜕(x󸀠)2
+
λ
Γ
(φ󸀠)3 = (2KeẼx󸀠 + α

Γ
)φ󸀠, (12.4.10)

𝜕φ󸀠

𝜕t󸀠
+ 2𝜕φ

󸀠

𝜕x󸀠
𝜕θ
𝜕x󸀠
+ φ󸀠 𝜕

2θ
𝜕(x󸀠)2
= 0. (12.4.11)

Now letφ󸀠(x󸀠, t󸀠) = φ(ξ ), ξ = x󸀠−u(t󸀠), u(t󸀠) = −2ẼKe(t󸀠)2+vt󸀠+d, where u(t󸀠) describes
the accelerated motion of ϕ󸀠(t󸀠). The boundary condition at ξ 󸀠 → ∞ requires ϕ(ξ )
to approach zero rapidly. When 2𝜕θ/𝜕ξ − u̇ ̸= 0, equation (12.4.11) can be written as
φ2 = g(t󸀠)
(𝜕θ/𝜕ξ−u̇/2) , or

𝜕θ
𝜕x󸀠
=
g(t󸀠)
φ2 +

u̇
2
, (12.4.12)
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where u̇ = du/dt󸀠. Integration of equation (12.4.12) yields

θ(x󸀠, t󸀠) = g(t󸀠) ∫
x󸀠
0

dx󸀠󸀠

φ2 +
u̇
2
x󸀠 + h(t󸀠), (12.4.13)

where h(t󸀠) is an undetermined constant of integration. From equation (12.4.13), we
get

𝜕θ
𝜕t󸀠
= ġ(t󸀠) ∫

x󸀠
0

dx󸀠󸀠

φ2 −
gu̇
φ2 +

gu̇
φ2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x󸀠=0 + ü2 x󸀠 + ḣ(t󸀠). (12.4.14)

Substituting equations (12.4.13) and (12.4.14) into equation (12.4.10), we have

𝜕2φ
𝜕(x󸀠)2
= [(2KẼex󸀠+α

Γ
)+

ü
2
x󸀠+ḣ(t󸀠)+ u̇

2

4
+ġ ∫

x󸀠
0

dx󸀠󸀠

φ2 +
gu̇
φ2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x󸀠=0]φ− λΓφ3+
g2

φ3 . (12.4.15)

Since 𝜕2φ/𝜕(x󸀠)2 = d2φ/dξ 2, which is a function of ξ only, the right-hand side
of equation (12.4.15) is also a function of ξ only, so it is necessary that g(t󸀠) = g0 =
constant and

(2KẼex󸀠 + α
Γ
) +

ü
2
x󸀠 + ḣ(t󸀠) + u̇

2

4
+
gu̇
f 2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x󸀠=0 = V̄(ξ ).

Next, we assume that V0(ξ ) = V̄(ξ ) − β, where β is real and arbitrary. Then

2KẼex󸀠 + α
Γ
= V0(ξ ) −

ü
2
x󸀠 + [β − gu̇

φ2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x󸀠=0 − ḣ(t󸀠) − u̇
2

4
]. (12.4.16)

Obviously, in this case,V0(ξ ) = 0 and the function in the brackets in equation (12.4.16)
is a function of t󸀠. Substituting equation (12.4.16) into equation (12.4.15) [116, 224], we
get

𝜕2φ̃
𝜕ξ 2
= βφ̃ − λ

Γ
φ̃3 +

g20
φ̃3 . (12.4.17)

This shows that φ̃ is the solution of equation (12.4.17) when β and g are constant. For
large |ξ |, we assume that |φ̃| ≤ β/|ξ |1+Δ, when Δ is a small constant. To ensure that φ̃
and d2ϕ̃/dξ 2 approach zero when |ξ |→∞, only the solution corresponding to g0 = 0
in equation (12.4.17) is kept. It can be shown that this soliton solution is stable in such
a case. Therefore, we choose g0 = 0 and obtain the following from equation (12.4.12):

𝜕θ/𝜕x󸀠 = u̇/2. (12.4.18)

Thus, we obtain from equation (12.4.16)

2KẼex󸀠 + α
Γ
= −

ü
2
x󸀠 + β − ḣ(t󸀠) − u̇

2

4
,

h(t󸀠) = (β − α
Γ
−
1
4
υ2)t󸀠 − 4

3
(KẼe)2(t󸀠)3 + eυKẼ(t󸀠)2.

(12.4.19)
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Substituting equation (12.4.19) into equations (12.4.13) and (12.4.14), we obtain

θ = (−2KẼet󸀠 + 1
2
υ)x󸀠 + (β − α

Γ
−
1
4
υ2)t󸀠 − 4

3
(KẼe)2(t󸀠)3 + eυKẼ(t󸀠)2. (12.4.20)

Finally, substituting equation (12.4.20) into equation (12.4.17), we get

𝜕2φ̃
𝜕ξ 2
− βφ̃ + λ
Γ
φ̃3 = 0. (12.4.21)

When β > 0, the solution of equation (12.4.21) is of the following form:

φ̃ = √2βΓ/λ sec h(√βξ ). (12.4.22)

Thus [135, 200],

ϕ = √2βΓ
λ

sec h[√β(√2mΓ
ℏ2

x + 2eKEt
2 − υt − d
ℏ

)]

× exp{i[(−2eKEt
ℏ
+
υ
2
)√

2mΓ
ℏ2

x + (β − α
Γ
−
1
4
υ2) t
ℏ
−
4(eKẼ)2t3

3ℏ3
+
υKeẼt2

ℏ
]}.

(12.4.23)

This is also a soliton solution, but its shape, amplitude, and velocity have been
changed relative to that of equation (12.4.8). It can be shown that equation (12.4.15)
does indeed satisfy equation (12.4.6), so equation (12.4.6) has a soliton solution. It can
also be shown that this soliton solution is stable.

12.4.2 The properties of soliton motion of the electrons in superconductors

For the solution of equation (12.4.23), we define a generalized time-dependent wave
number, k = 𝜕θ𝜕x󸀠 = v

2 − 2KẼet
󸀠, and a frequency

ω = − 𝜕θ
𝜕t󸀠
= 2KẼex󸀠 − (β − α

Γ
−
1
4
υ2) + e(KẼe)2(t󸀠)2

− 2KẼeυt󸀠 = 2KẼex󸀠 − β − α
Γ
+ k2. (12.4.24)

The usual Hamilton equations for the superconductive electron (soliton) in the
macroscopic quantum systems are still valid. They can be written [116, 224] as

dk
dt󸀠
= −
𝜕ω
𝜕x󸀠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨k
= −2KẼe.

Then the group velocity of the superconductive electrons can be denoted by

υg =
dx󸀠

dt󸀠
=
𝜕ω
𝜕k

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x󸀠 = 2(υ2 − 2KẼet󸀠) = υ − 4KẼet󸀠. (12.4.25)
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This means that the frequency ω of the soliton still serves as Hamiltonian in the case
of nonlinear quantum systems. Hence, the following relation still exists:

dω
dt󸀠
=
dω
dk

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x󸀠 dkdt󸀠 + 𝜕ω𝜕x󸀠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨k

dx󸀠

dt󸀠
= 0,

which is similar to that in the usual stationary linear medium [167, 205, 206].
The relations in equations (12.4.24) and (12.4.25) show that the superconductive

electrons move as if they were classical particles with a constant acceleration in the
invariant electric field, for which the acceleration is given by −4KẼe. If v > 0, the
soliton initially travels toward the overdense region. It then suffers a deceleration and
its velocity changes sign. The soliton is then reflected and accelerated toward the un-
derdense region. The penetration distance into the overdense region depends on the
initial velocity v.

From the above studies, we see that the time-dependentmotion of a superconduc-
tive electron still resembles that of a soliton in the nonequilibrium state of a super-
conductor. Therefore, we conclude that electrons in superconductors are essentially
solitons in both time-independent steady state and time-dependent dynamic state sys-
tems. This means that the soliton motion of the superconductive electrons causes the
superconductivity of thematerial. Then the superconductors have a complete conduc-
tivity andnonresistance property because the solitons canmove overmacroscopic dis-
tances, retaining their amplitude, velocity, energy, and other quasi-particle features.
In such a case, the motions of the electrons in the superconductors are described by
the NLSEs (12.3.3), (12.3.4), (12.4.1), (12.4.3), or (12.4.5). According to the soliton theory,
the electrons in the superconductors are localized and have a wave-corpuscle duality
due to the nonlinear interaction, which is completely different from electrons as de-
scribed by quantum mechanics. Therefore, the electrons in superconductors should
be described in terms of nonlinear quantummechanics [221, 232].

12.5 The transmission features of magnetic flux lines along
the Josephson junctions

12.5.1 The transmission equation of magnetic flux lines

We have learned that, in a homogeneous bulk superconductor, the phase θ( ⃗r, t) of
the electron wave function ϕ( ⃗r, t) = f ( ⃗r, t)eiθ( ⃗r,t) is constant, independent of position
and time. However, in an inhomogeneous superconductor, such as a superconduc-
tive junction discussed above, θ( ⃗r, t) becomes dependent on ⃗r and t. In the previous
section, we discussed the Josephson effects in the S-N-S or S-I-S and S-N-I-S junc-
tions, starting from the Hamiltonian and the GL equations satisfied by ϕ( ⃗r, t), and
showed that the Josephson current,whether dc or ac, is a function of the phase change
φ = Δθ = θ1 − θ2. The dependence of the Josephson current on “󸀠” is clearly seen in
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equation (12.3.29). This clearly indicates that the Josephson current is caused by the
phase change of the superconductive electrons. Josephson himself derived the equa-
tions satisfied by the phase difference φ, known as the Josephson relations, through
his studies on both the dc and ac Josephson effects. The Josephson relations for the
Josephson effects in superconductor junctions can be summarized as follows:

Js = Jm sinφ, ℏ𝜕φ
𝜕t
= 2eV , ℏ 𝜕φ

𝜕x󸀠
= 2ed󸀠H̄y/c, ℏ

𝜕φ
𝜕y
= 2ed󸀠H̄x󸀠/c, (12.5.1)

where d’ is the thickness of the junction. Because the voltage V and magnetic field
H⃗ are not determined, equation (12.5.1) is not a complete set of equations. Generally,
these equations are solved simultaneouslywith theMaxwell equation∇×H⃗ = (4π/c) ⃗J.
Assuming that themagnetic field is applied in the (x, y)-plane, i.e., H⃗ = (H̄x , H̄y ,0), the
above Maxwell equation becomes

𝜕
𝜕x

H̄y(x, y, t) −
𝜕
𝜕y

H̄x(x, y, t) =
4π
c
J(x, y, t). (12.5.2)

In this case, the total current in the junction is given by

J = Js(x, y, t) + Jn(x, y, t) + Jd(x, y, t) + J0.

In the above equation, Js(x, y, t) is the superconductive current density, Jn(x, y, t) is the
normal current density in the junction (Jn = V/R(V) if the resistance in the junction
is R(V) and a voltage V is applied at two ends of the junction), Jd(x, y, t) is called the
displacement current, given by Jd = CdV(t)/dt, where C is the capacity of the junction,
and J0 is a constant current density. Solving the equations in equations (12.4.23) and
(12.5.2) simultaneously, we get

∇2φ − 1
v20
(
𝜕2φ
𝜕t2
− γ0
𝜕φ
𝜕t
) =

1
λ2J

sinφ + I0, (12.5.3)

where

v0 = √c2/4πCd󸀠, γ0 = 1/RC, λJ = √c2/4πCd󸀠, I0 = 4e
∗πJ0/c

2ℏ, e∗ = 2e.

Equation (12.5.3) is the equation satisfied by the phase difference. It is a sine-
Gordon equationwith a dissipative term. From equation (12.5.1), we see that the phase
difference ϕ depends on the external magnetic field H⃗, so the magnetic flux in the
junction Φ󸀠 = ∫ H̄ds = ∮ A⃗d ⃗l = cℏ

e∗ ∮φdl can be specified in terms of φ, where A⃗ is the
vector potential of the electromagnetic field and d ⃗l is the line element of vortex lines.
The nonlinear equation (12.5.3) represents the transmission of superconductive vortex
lines. Therefore, we know clearly that the Josephson effect and the related transmis-
sion of the vortex line, or magnetic flux, along the junctions are also nonlinear prob-
lems. The sine-Gordon equation given above has been extensively studied by many
scientists, including Kivshar and Malomed. We will solve it here using different ap-
proaches.
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12.5.2 The transmission features of magnetic flux lines

Assuming that the resistance R in the junction is very high, so that Jn → 0, or, equiv-
alently, γ0 → 0, and setting I0 = 0, equation (12.5.3) reduces to

∇2φ − 1
v20

𝜕2φ
𝜕t2
=

1
λ2J

sinφ. (12.5.4)

We defineX = x/λJ , T = v0t/λJ . Then, in the one-dimensional case, the above equation
becomes

𝜕2φ
𝜕X2 −
𝜕2φ
𝜕T2
= sinφ.

This is the one-dimensional sine-Gordonequation. Ifweassume thatφ=φ(X,T) =
φ(θ󸀠), where

θ󸀠 = X󸀠 − X󸀠0 − vT
󸀠, X󸀠 = x√hc/2eLI0, T󸀠 = T√2eI0/hc,

then the above equation becomes

(1 − v2)φ2
θ󸀠(θ󸀠) = 2(A󸀠 − cosφ),

where A󸀠 is a constant of integration. Thus [116, 224], we have

∫
φ(θ)

φ0

[(A󸀠 − cosφ)]−1/2dφ = √2δv󸀠θ󸀠,

where v󸀠 = 1/√1 − v2, δ = ±1. Choosing A = 1, we have

∫
φ(θ󸀠)
π
[sin(φ/2)]−1/2dφ = 2νθ󸀠.

Then a kink soliton solution can be obtained from the above equation, denoted by

±νθ󸀠 = ln[tan(φ/2)], or φ(θ󸀠) = 4 tan−1[exp(±νθ󸀠)].

Thus, we obtain

φ(X󸀠,T󸀠) = 4 tan−1{exp[δν(X󸀠 − X󸀠0 − vT
󸀠)]}. (12.5.5)

From the Josephson relations, we obtain the electric potential difference across
the junction, which is represented by

V = ℏ
2e

dφ
dT󸀠
=

φ0
2cπ

dφ
dT󸀠
= 2δvν√2Ioe

ℏc2
φ0
2cπ

sec h[ν(X󸀠 − X󸀠0 − vT
󸀠)],
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where φ0πℏc = 2 × 10−7 Gauss/cm
−2 is a quantum fluxon and c is the speed of light.

In this case, a similar expression for the magnetic field can be derived from the above
results. We have

H̄z =
ℏ
2e

dφ
dX󸀠
=

φ0
2cπ

dφ
dX󸀠
= ±2δν√2Ioe

ℏc2
φ0
2cπ

sec h[ν(X󸀠 − X󸀠0 − vT
󸀠)].

We can then determine themagnetic flux through a junction with length L and a cross
section of 1 cm2. The result is denoted

Φ󸀠 = ∫
∞

−∞
Hx(x, t)dx = B

󸀠
0 ∫
∞

−∞
Hx(X
󸀠,T󸀠)dX󸀠 = δφ0.

Therefore, the kink (δ = ±1) carries a single quantum of magnetic flux in the extended
Josephson junction. Such an excitation is often called a fluxon and the sine-Gordon
equation or equation (12.5.3) is often referred to as the transmission equation of the
quantum flux or fluxon. The excitation corresponding to δ = −1 is called an anti-
fluxon. A fluxon is an extremely stable formation, which can be easily controlled with
the help of external effects. It may be used as a basic unit of information.

This result shows clearly that magnetic flux in superconductors is quantized and
this is a macroscopic quantum effect as mentioned in Section 12.1. The transmission
of the quantum magnetic flux through the superconductive junctions is described by
the above nonlinear dynamic equations (12.5.3) and (12.5.4). The energy of the soliton
can be determined and it is given by E = 8m2/β, wherem2/β = 1/λ2J .

However, the boundary conditions must be considered for real superconductors.
Various boundary conditions have been considered and studied. For example, we can
assume the following boundary conditions for a one-dimensional superconductor:
φx(0, t) = φx(L, t) = 0. Lamb obtained the following soliton solution for the sine-
Gordon equation (12.5.4):

φ(x, t) = 4 tan−1[h(x)g(t)], (12.5.6)

where h and g are the general Jacobian elliptical functions and satisfy the following
equations:

[h(x)]2 = a󸀠h4 + (1 + b󸀠)h2 − c󸀠, [g(x)]2 = c󸀠h4 + b󸀠h2 − a󸀠,

where a’, b’, and c’ are arbitrary constants. Coustabile et al. also gave the plasma oscil-
lation, breathing oscillation, and vortex line oscillation solutions for the sine-Gordon
equation under certain boundary conditions. All of these can be regarded as the soli-
ton solution under the given conditions. The solutions of equation (12.5.4) in the two-
and three-dimensional cases can also be found. In the two-dimensional case, the so-
lution is given by

φ(X,Y ,T) = 4 tan−1[g(X,Y ,T)
f (X,Y ,T)

], (12.5.7)
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where

X = x/λJ , Y = y/λJ , T = v0t/λJ ,
f = 1 + a(1, 2)ey1+y2 = a(2, 3)ey2+y3a(3, 1)ey1+y3 ,
g = ey1 + ey2 + a(1, 2)a(2, 3)a(3, 1)ey1+y2+y3 ,

y1 = piX + qiY −Ωiτ − y
0
i , p

2
i + q

2
i −Ω

2
i = 1, (i = 1, 2, 3),

a(i, j) =
(pi − pj)2 + (qi − qj)2 + (Ωi −Ωj)2

(pi + pj)2 + (qi + qj)2 + (Ωi +Ωj)2
, (1 ≤ i ≤ j ≤ 3),

where pi, qi, andΩi satisfy the following formula:

det

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p1 q1 Ω1
p2 q2 Ω2
p3 q3 Ω3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0.

In the three-dimensional case, the solution can also be found. We have

φ(X,Y , Z,T) = 4 tan−1[g(X,Y , Z,T)
f (X,Y , Z,T)

], (12.5.8)

where X, Y , and T are similarly defined as in the two-dimensional case given above
and Z = z/λJ . The functions f and g are defined as

f = dX2e
y1+y2 + dY3e

y2+y3 + dZ3e
y1+y3 + 1, g = ey1 + ey2 + ey3 + dX2dY3dZ3e

y1+y2+y3 ,

yi = ai1X + ai2Y + ai3 + biT − Ci, a2i1 + a
2
i2 + a

2
i3 − b

2
i = 1, (i = X,Y , Z),

with

d(i, j) =
∑3k=1[(aik − ajk)

2 − (bi − bj)2]
∑3k[(aik + ajk)2 − (bi + bj)2]

, (1 ≤ j ≤ 3),

where y3 is a linear combination of y1 and y2, i.e., y3 = αy1 + βy2.
We now discuss the sine-Gordon equation with a dissipative term γ0𝜕φ/𝜕t. First

we make the following substitutions to simplify the equation:

X = x/λJ , T = v0t/λJ = t/ωJ , a = γ0λ
2
J /v0, B󸀠 = I0λ

2
J .

In terms of these new parameters, the one-dimensional sine-Gordon equation
(12.5.3) can be rewritten as

𝜕2φ
𝜕X2 −
𝜕2φ
𝜕T2
− a𝜕φ
𝜕T
= sinφ + B󸀠. (12.5.9)

The analytical solution of equation (12.5.6) is not easily found. Now let

α =
1 − v20
a2v20
, η = 1

√α
X − v0T
av0
, q󸀠 = av0

√1 − v20
, φ = π + φ󸀠. (12.5.10)
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Equation (12.5.6) then becomes

𝜕2φ
𝜕η2
+ q󸀠 𝜕φ
𝜕η
+ sinφ − B󸀠 = 0. (12.5.11)

This equation is the same as that of a pendulum being driven by a constant external
moment and a frictional force which is proportional to the angular displacement. The
solution of the latter is well known; generally there exists a stable soliton solution. Let
Y = dφ󸀠/dη. Then equation (12.5.11) can be written as

𝜕Y
𝜕η
+ q󸀠Y + sinφ󸀠 − B󸀠 = 0. (12.5.12)

For 0 < B󸀠 < 1, we let B󸀠 = sinφ0 (0 < φ0 < π/2) and φ󸀠 = π − φ0 + φ1. Then equation
(12.5.12) becomes

Y 𝜕Y
𝜕η
= −q󸀠Y + sinφ0 + sin(φ1 − φ0). (12.5.13)

Expanding Y as a power series of φ1, i.e., Y = ∑n Cnφ
n
1 , inserting it into equa-

tion (12.5.13), and comparing the coefficients of terms of the same power of φ1 on
both sides, we get

c1 = −
q󸀠

2
±√

q󸀠 2
4
+ cosφ0, c2 = −

1
q󸀠 + 3c1

sinφ0
2
,

c3 =
1

q󸀠 + 4c1
(−2c22 −

cosφ0
6
), c4 =

1
q󸀠 + 5c1

(−5c2c3 −
sinφ0
24
), (12.5.14)

etc. Substituting these cn into Y = dφ󸀠/dη = ∑n cnφ
2
1, the solution of φ1 can be found

by integrating η = ∫ dφ1/∑n cnφ
2
1 . In general, this equation has a soliton solution or

elliptical wave solution. For example, when dφ󸀠/dη = c1φ1 + c2φ2
1 + c3κ

3
1 , it can be

found that

η = 2
√A − C

F(√A − B
A − C
, sin−1(√A − φ1

A − B
)),

where F(k,φ1) is the first Legendre elliptical integral and A, B, and C are constants.
The inverse function φ1 of F(k,φ1) is the Jacobian amplitude φ1 = am F. Thus,

sin−1(√A − φ1
A − B
) = am√A − C

A − B
η or √A − φ1

A − B
= sn(√A − C

A − B
η),

where sn F is the Jacobian sine function. Introducing the symbol csc F = 1/ sn F, the
solution can be written as

φ1 = A − (A − B)[csc(√
A − C
A − B

η)]
2
. (12.5.15)
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This is an elliptic function. It can be shown that the corresponding solution at
|η|→∞ is a solitary wave.

It can be seen from the above discussion that the quantum magnetic flux lines
(vortex lines)movealonga superconductive junction in the formof solitons. The trans-
mission velocity v0 can be obtained from h = αv0√(1 − v20) and cn in equation (12.5.14).
It is given by

v0 = 1/√1 + [α/h(φ0)]
2
.

That is, the transmission velocity of the vortex lines depends on the current I0
injected and the characteristic decaying constant α of the Josephson junction. When
α is finite, the greater the injection current I0 is, the faster the transmission velocity
will be; when I0 is finite, the greater α is, the smaller v0 will be. These are realistic
conclusions.

12.6 Conclusions

We here first reviewed the properties of superconductivity and macroscopic quantum
effects, which are different from themicroscopic quantum effects, obtained from some
experiments. The macroscopic quantum effects are caused by the collective motion of
microscopic particles, such as electrons in superconductors, after the symmetry of the
system is broken due to nonlinear interactions. Such interactions result in Bose con-
densation and self-coherence of particles in these systems. Meanwhile, we also stud-
ied the properties of themotion of superconductive electrons and arrived at the soliton
solutions of the time-independent and time-dependent Ginzburg-Landau equation in
superconductors, which are, in essence, a kind of nonlinear Schrödinger equation.
These solitons, with wave-corpuscle duality, come to being due to the nonlinear inter-
actions arising from the electron-phonon interactions in superconductors, in which
the nonlinear interaction suppresses the dispersive effect of the kinetic energy in these
dynamic equations. Thus, soliton states of the superconductive electrons, which can
move over macroscopic distances retaining the energy, momentum, and other quasi-
particle properties, are formed. Meanwhile, we used these dynamic equations and
their soliton solutions to obtain and explain these macroscopic quantum effects and
superconductivity of the systems. Effects such as quantization of magnetic flux in su-
perconductors and the Josephson effect of superconductivity junctions prompted us
to conclude that the superconductivity and macroscopic quantum effects are a kind
of nonlinear quantum effects that arise from the soliton motions of superconductive
electrons. This shows clearly that the study of the features of macroscopic quantum
effects and of the properties of motion of microscopic particles in the superconductor
has significant importance in physics.
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13 The soliton movements in condensed state
systems

13.1 Soliton movements of helium atoms in superfluid systems

13.1.1 The macroscopic quantum effects in helium superfluid

As is well known, helium is a common inert gas. It is also the most difficult gas to
liquefy. There are two isotopes of helium, 4He and 3He, with the former being the
major constituent in a normal helium gas. The boiling temperatures of 4He and 3He
are 4.2 K and 3.19 K, respectively. The critical pressure for 4He is 1.15 atm. Because of
their light mass, both 4He and 3He have extremely high zero-point energies and re-
main in gaseous form from room temperature down to a temperature near the abso-
lute zero. Helium attains the solid state due to cohesive forces only when the inter-
atomic distances become sufficiently small under high pressure. For example, a pres-
sure of 25–34 atm is required in order to solidify 3He. For 4He, when it is crystallized
at a temperature below 4K, it neither absorbs nor releases heat, i.e., the entropies of
the crystalline and liquid phases are the same and only its volume is changed in the
crystallization process. However, 3He absorbs heat when it is crystallized at a temper-
ature T < 3.19 K under pressure. In other words, the temperature of 3He rises during
crystallization under pressure. This endothermic crystallization process is called the
Pomeranchuk effect. This indicates that the entropy of liquid 3He is lower than that of
3He in its crystalline phase. That is, the liquid phase represents a more ordered state
[29, 30, 142, 246]. These peculiar characteristics are the result of the unique internal
structures of 4He and 3He. Both 4He and 3He can crystallize in a body-centered cubic
(bcc) or hexagonal close-stacked structure.

A phase transition for 4He will occur at a pressure of 1 atm and a temperature of
2.17 K. Above this temperature, 4He has no difference from a normal liquid and this
liquid phase is referred to as He-I. However, when the temperature is below 2.17 K,
the liquid phase, referred to as He-II, is completely different from He-I and attains a
superfluid state. This superfluid state can pass through capillaries with a diameter of
less than 10−6 cm, without experiencing any resistance. The superfluid state has a low
viscosity (< 10−11 P) and its fluid velocity is independent of the pressure difference over
the capillary and its length. If a test tube is inserted into liquid He-II in a container, the
level of liquid He-II inside the test tube is the same as that in the container. If the test
tube is pulledup, theHe-II inside the test tubewill rise along the innerwall of the tube,
climb over the mouth of the tube and then flow back to the container along the outer
wall of the tube, until the liquid level inside the test tube reaches the same level as that
in the container. On the other hand, if the test tube is lifted up above the container, the
liquid in the test tube drips directly into the container until the tube becomes empty.
This property is called the superfluidity of 4He [19, 29, 30, 70, 142, 166, 202, 246].

https://doi.org/10.1515/9783110549638-013
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Experiments [142, 246] have shown that the quantization of current circulation
and vortex structures, similar to those of magnetic flux in a superconductor, can exist
in 4He-II and in superfluid 3He. In terms of the phase θ of the macroscopic wave func-
tion of a superfluid helium atom, its velocity vs is given by vs = ℏ∇θ/m, wherem is the
mass of the helium atom. vs satisfies the following quantization condition:

∮ vsdr = nℏ/m, (n = 1, 2, 3, . . .).

The above suggests that the circulation velocity of the superfluid helium atom is
quantized with a quantum of n/m. In other words, as long as the superfluid is rotat-
ing, a newwhirl in the superfluid is developedwhenever the circulation of the current
is increased by n/m, i.e., the circulation of the whirl (or energy of the vortex lines) is
quantized. An experiment was done in 1963 to measure the energy of the vortex lines
and the results obtained were consistent with the theoretical prediction. The quan-
tization of the circulation was thus proved, which is a macroscopic quantum effect,
completely different from a normal fluid.

If the helium superfluid flows, without rotation, through a tube with a varying
diameter, then∇× v⃗s = 0 and it can be shown, based on the above quantization condi-
tion, that the pressure is the same everywhere inside the tube, even though the fluid
flows faster at a point where the diameter of the tube is smaller and slower where the
diameter is larger.

Firbake and Maston in the U.S.A. observed the macroscopic quantum effect of
4He-II experimentally once again. When the superfluid 4He-II was set into rotational
motion in a cup, a whirl would be formed when the temperature of the liquid was
reduced to below the critical temperature. In this case, an effective viscosity devel-
ops between the fluid and the cup, which is very similar to normal fluid in a cup being
stirred. The surface of the superfluid becomes inclined at a certain angle and the cross
section of the liquid surface has the shape of a parabola, due to the combined effects
of gravitational and centrifugal forces. Fluid distant from the center has a tendency to
converge toward its center, which is balanced by the centrifugal force, and a dynamic
equilibrium is reached. The angular momentum of such a whirl is very small and con-
sists of only a small number of discrete quantum packets. The angular momentum of
the quantum packets can be obtained via quantum theory. In other words, the whirl
can exist only in discrete form over a certain range in certain materials, such as su-
perfluid helium. Firbake and Maston managed to obtain a sufficiently large angular
momentum in their experiment and were able to observe the whirl’s surface shape
using visible light. They used a thin layer of rotating helium superfluid in their experi-
ment. While the rotating superfluid was illuminated from both the top and the bottom
by laser beams with a wavelength of 6328Å from a He–Ne laser, the whirls formed
were observed. Alternate bright and dark interference fringes were formed when the
reflected beams were focused on an observing screen. The analysis of the interference
pattern showed that the surface was indeed inclined at an angle. Based on this, the
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shape of the surface can be correctly constructed. The observed interference pattern
was found in excellent agreement with those predicted by the theory. This experiment
further confirmed the existence of quantized vortex rings in the 4He superfluid.

The mechanisms of superfluidity and vortex structure in 4He and 3He have been
extensively studied and the reader is encouraged to read Barenghi et al. [19] for a re-
view of recent work.

13.1.2 The nonlinear theory of macroscopic quantum effects in a superfluid system

How to theoretically explain the superfluidity and themacroscopic quantum effects of
4He is still a subject of current research. In the 1940s, Bogoliubov calculated the crit-
ical temperature of Bose–Einstein condensation in 4He based on an ideal boson gas
model [29, 30, 166]. The value of the critical temperature Bogoliubov obtained was
3.3 K, quite close to the experimental value of 2.17 K. In Bogoliubov’s model, some 4He
atoms condense to the state with minimal energy at a temperature below Tc and a
Bose–Einstein condensation state is formed [19, 29, 30, 70, 166, 202]. Pang [202, 221,
232] believed that the macroscopic quantum phenomena occurring in superfluid he-
lium could be attributed to Bose–Einstein condensation of the 4He atoms. When the
temperature of liquid 4He is below Tc, the symmetry of the system breaks due to non-
linear interactions within the system. Thus, some of the 4He atoms spontaneously
condense to the state of lower energy. When the temperature approaches the absolute
zero, all the 4He atoms will condense to the state with zero momentum. According to
the relation λ = ℏ/p, the wavelength of each 4He atom is infinite and an ordered state
over the entire space can be formed in this case, which leads to a highly ordered and
long range coherent state. Thus, the macroscopic quantum effect could appear in the
systems. In the following, we study the nature of the macroscopic quantum effect in
helium superfluid using a nonlinear theory.

(1) The soliton movements of helium atoms in the superfluid and nonrelativistic
case.

As mentioned above, the helium atoms form a quantum liquid without viscosity
in the superfluid state at temperatures below 2.17 K, which is very similar to the su-
perconducting state and thus also described by a macroscopic wave function ϕ( ⃗r, t)
similar to that in equation (11.2.1) in Chapter 11. Here, ϕ( ⃗r, t) is also called an order
parameter of the helium superfluid or an effective wave function of helium atoms.

It is known that the effective wave function of helium atoms, ϕ( ⃗r, t), satisfies the
following Gross–Pitaevskii (GP) equation, which was derived by Gross and Pitaevskii
in 1950 [100, 248, 249]:

iℏ𝜕ϕ
𝜕t
= −
ℏ2

2m
∇2ϕ + λ|ϕ|2ϕ − μ󸀠ϕ, (13.1.1)
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where λ is a nonlinear interaction coefficient and μ󸀠 is a constant related to the ground
state energy of a helium atom. This equation is similar to the above GL equation for
superconducting electrons. This is understandable because the superfluid, similar to
a superconducting system, is also a nonlinear systemdue to the existence of nonlinear
interaction λ|ϕ|2ϕ( ⃗r, t). Equation (13.1.1) is a nonlinear Schrödinger equation and was
extensively used by some researchers in their studies of superfluidity. A similar equa-
tion was derived by Dewitt in 1966. According to Dewitt investigation, λ in Eq. (13.1.1)
should be a negative value.

The corresponding Lagrangian density function of the system can be obtained
and is given by

L󸀠 = iℏ
2
(ϕ𝜕ϕ

∗

𝜕t
− ϕ∗ 𝜕ϕ
𝜕t
) −
ℏ2

2m
|∇ϕ|2 − λ

2
|ϕ|4 + μ󸀠|ϕ|2, (13.1.2)

where L󸀠 = ℒ. In the one-dimensional case where μ = 0, equation (13.1.1) is the usual
nonlinear Schrödinger equationwhose solution is of the following form [194, 198, 204,
208, 209]:

ϕ0 = φ0(x, t)e
iθ0(x,t), (13.1.3)

where

φ0(x, t) = √
(v2e − 2vcve)

2|λ|
× sec h[√

(v2e − 2vcve)
4
(x − vet)] (13.1.4)

and θ0(x, t) = ve(x−vct)/2, ve and vc are the groupandphase velocities of the superfluid
helium atom, respectively.

In the one-dimensional case where μ ̸= 0, if we let t󸀠 = t/ℏ and x󸀠 = x√(2m/ℏ2),
then equation (13.1.1) becomes

i𝜕ϕ
𝜕t
= −
𝜕2ϕ
𝜕2x󸀠
+ λ|ϕ|2ϕ − μ󸀠ϕ. (13.1.5)

Assume that the solution is of the following form [15, 162]:

ϕ = φ(x󸀠, t󸀠)eiθ(x
󸀠 ,t󸀠). (13.1.6)

Substituting equation (13.1.6) into equation (13.1.5), we get

− φ 𝜕θ
𝜕t󸀠
− φ( 𝜕θ
𝜕t󸀠
)
2
+
𝜕2φ
𝜕(x󸀠)2
+ λ(φ)3 = μ󸀠φ (13.1.7)

and

𝜕φ
𝜕t󸀠
+ 2 𝜕φ
𝜕x󸀠
𝜕θ
𝜕x󸀠
+ φ 𝜕

2θ
𝜕(x󸀠)2
= 0. (13.1.8)
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Now let φ(x󸀠, t󸀠) = φ(ξ ), ξ = x󸀠 −u(t󸀠), u(t󸀠) = vt󸀠 +d, where u(t󸀠) describes the acceler-
ated motion of φ(x󸀠, t󸀠). The boundary condition at ξ 󸀠 →∞ requires φ(ξ ) to approach
zero rapidly. When 2𝜕θ/𝜕ξ − u̇ ̸= 0, equation (13.1.8) can be written as

φ2 =
g(t󸀠)

(𝜕θ/𝜕ξ − u̇/2)

or

𝜕θ
𝜕x󸀠
=
g(t󸀠)
φ2 +

u̇
2
, (13.1.9)

where g(t󸀠) is an undetermined constant of integration and u̇ = du/dt󸀠. Integration of
(13.1.9) yields

θ(x󸀠, t󸀠) = g(t󸀠) ∫
x󸀠

0

dx󸀠󸀠

φ2 +
u̇
2
x󸀠 + h(t󸀠), (13.1.10)

where h(t󸀠) is an undetermined constant of integration. From equation (13.1.10), we
get

𝜕θ
𝜕t󸀠
= ġ(t󸀠) ∫

x󸀠

0

dx󸀠󸀠

φ2 −
gu̇
φ2 +

gu̇
φ2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x󸀠=0
+
ü
2
x󸀠 + ḣ(t󸀠). (13.1.11)

Substituting equations (13.1.10) and (13.1.11) into equation (13.1.7), we have

𝜕2φ
𝜕(x󸀠)2
= [−μ󸀠 + ü

2
x󸀠 + ḣ(t󸀠) + u̇

2

4
+ ġ ∫

x󸀠

0

dx󸀠󸀠

φ2 +
gu̇
φ2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x󸀠=0
]φ − λφ3 +

g2

φ3 . (13.1.12)

Since 𝜕2φ/𝜕(x󸀠)2 = d2φ/dξ 2, which is a function of ξ only, the right-hand side of equa-
tion (13.1.12) is also a function of ξ only, so it is necessary that g(t󸀠) = g0 = constant
and

−μ󸀠 + ü
2
x󸀠 + ḣ(t󸀠) + u̇

2

4
+
gu̇
f 2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x󸀠=0
= V(ξ ).

Next, we assume that V0(ξ ) = V(ξ ) − β, where β is real and arbitrary. Then

− μ󸀠 = V0(ξ ) −
ü
2
x󸀠 + [β − gu̇

φ2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x󸀠=0
− ḣ(t󸀠) − u̇

2

4
]. (13.1.13)

Obviously,V0(ξ ) = 0 and the function in the brackets in equation (13.1.13) is a function
of t󸀠. Substituting equation (13.1.12) into equation (13.1.11) [198, 209], we get

𝜕2φ
𝜕ξ 2
= βφ − λφ3 +

g20
φ3 . (13.1.14)
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This shows that φ is the solution of equation (13.1.14) when β and g are constant. For
large |ξ |, we may assume that |φ| ≤ β/|ξ |1+Δ when Δ is a small constant. To ensure
that φ and d2φ/dξ 2 approach zero when |ξ |→∞, only the solution corresponding to
g0 = 0 in equation (13.1.14) is kept. It can be shown that this soliton solution is stable.
Therefore, we choose g0 = 0 and obtain the following from equation (13.1.9):

𝜕θ
𝜕x󸀠
=
u̇
2
. (13.1.15)

Thus, we obtain from equation (13.1.11)

− μ󸀠 = ü
2
x󸀠 + β − ḣ(t󸀠) − u̇

2

4
, (13.1.16)

where

h(t󸀠) = (β − 1
4
v2 + μ󸀠)t󸀠.

Substituting equation (13.1.16) into equations (13.1.10) and (13.1.11), we obtain

θ = 1
2
vx󸀠 + (β + μ󸀠 − 1

4
v2)t󸀠. (13.1.17)

Finally, substituting equation (13.1.17) into equation (13.1.14), we get

𝜕2φ
𝜕ξ 2
− βφ + λφ3 = 0. (13.1.18)

When β > 0, the solution of equation (13.1.18) [116, 224] is of the following form:

φ = √ 2β
|λ|

sec h(√βξ ). (13.1.19)

Thus, the solution of equation (13.1.14) can be obtained [204, 208] and represented by

ϕ = √ 2β
|λ|

sec h{√β[x󸀠 − v(t󸀠 − t󸀠0)]} exp{i[vx
󸀠/2 − (β + v2/4 − μ󸀠)t]} (13.1.20a)

or

ϕ = √ 2β
|λ|

sec h{
√2mβ
ℏ
[(x−x0)−v

󸀠t]} exp{i[mv󸀠x/ℏ−(β+v2/4−μ󸀠)t/ℏ]}, (13.1.20b)

where β is an arbitrary constant, v and v󸀠 are the group velocity of the helium atom
in the (x󸀠, t󸀠)-coordinate and (x, t)-coordinate, respectively, and x0 = v󸀠t0. This is a
bell-type soliton solution, but its shape, amplitude, and velocity have been changed
as compared to that of equation (13.1.4). It can be shown that equation (13.1.20) does
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indeed satisfy equation (13.1.1), so equation (13.1.1) has a soliton solution. It can also
be shown that this soliton solution is stable.

This soliton in equation (13.1.20) consists of an envelop and a carrier wave, the
former being denoted

φ(x, t) = √2β/|λ| sec h{√2mβ[(x − x0) − v
󸀠t]/ℏ},

which is a bell-type soliton with an amplitude of√2β/|λ|, and the latter being denoted

exp{i[mv󸀠x/ℏ − (β + v󸀠 2/4 − μ󸀠)t/ℏ]}.

The envelop φ(x, t) denotes the dynamic feature of the mass centre of the helium
atom. Its position is at x0, its amplitude is √2β/|λ|, and its width is W 󸀠 = 2πℏ√2mβ.
Thus, the size of the soliton isW 󸀠√2β|λ| = 2πℏ√m|λ|, which is a constant. This result
shows clearly that the helium atom has a well-determined size and is localized at x0.
Therefore, we conclude that the helium atom in a superfluid system possesses wave
and corpuscle features.

In the three-dimensional case, equation (13.1.1) becomes

iℏ𝜕ϕ
𝜕t
= −
ℏ2

2m
[
𝜕2ϕ
𝜕x2
+
𝜕2ϕ
𝜕y2
+
𝜕2ϕ
𝜕z2
] − μ󸀠ϕ + λ|ϕ|2ϕ. (13.1.21)

If we assume that X = a1x + a2y + a3z, where a1, a2, and a3 are some constants,
then the above dynamic equation becomes

iℏ𝜕ϕ
𝜕t
=
ℏ2

2m
(a21 + a

2
2 + a

2
3)
𝜕2ϕ
𝜕X2 − μ

󸀠ϕ + 2λ󵄨󵄨󵄨󵄨ϕ
2󵄨󵄨󵄨󵄨ϕ.

Its solution can be obtained using the samemethodmentioned above. The soliton
solution is represented [116, 224] by

ϕ = √ 2β
|λ|B

sec h{√β[(X󸀠 − X󸀠0) − vet
󸀠]} × exp{i[veX

󸀠/2 − (β + v2e/4 − μ
󸀠)t󸀠]}, (13.1.22)

where

X󸀠 − X󸀠0 = a1(x
󸀠 − x󸀠0) + a2(y

󸀠 − y󸀠0) + a3(z
󸀠 − z󸀠0), t󸀠 = t/ℏ,

x󸀠 = x√(2m/ℏ2), x󸀠0 = x0√(2m/ℏ2), y󸀠 = y√(2m/ℏ2), y󸀠0 = y0√(2m/ℏ2),

z󸀠 = z√(2m/ℏ2), z󸀠0 = z0√(2m/ℏ2),

B = √a21 + a22 + a
2
3.
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This solution is still a bell-type soliton in a three-dimensional space.
From these results, we know that the motion of helium atoms in a superfluid sys-

tem are described by the nonlinear Schrödinger equation (13.1.1) or (13.1.22). Its solu-
tion is a soliton, which is expressed by equation (13.1.20) or equation (13.1.22). This
exhibits clearly that the motion of the helium atoms in a superfluid system has a non-
linear quantum feature. Therefore, the system undergoes a second-order phase tran-
sition and changes from the normal He-I state to the superfluid He-II state at 2.17 K.
When this happens, the nonlinear interactions generated in the system suppress the
dispersion effect of helium atoms, so the superfluid helium atoms behave as solitons
due to the spontaneous Bose condensation. Because solitons can preserve their en-
ergy, momentum, wave form, and other properties as quasi-particles throughout their
motion, the superfluidity occurs naturally when the liquid helium moves as solitons.

In this case, we can prove that the superfluid helium atom (soliton) moves with a
uniform speed and we can determine its speed from the solution (13.1.20). For exam-
ple, from (13.1.20) we find that the wave number of the soliton is k = 𝜕θ/𝜕x󸀠 = v/2 and
its frequency can be denoted by ω = 𝜕θ/𝜕t󸀠 = β + v2/4 − μ󸀠 = β − μ󸀠 + k2. Thus, the
acceleration and group velocity of the helium soliton satisfy the following relations
[204, 208]:

dk
dt󸀠
= −
𝜕ω
𝜕x󸀠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨k
= 0

and

vg =
dx󸀠

dt󸀠
=
𝜕ω
𝜕k
= 2k = v,

respectively. That is, the group velocity of the helium soliton, vg , is a constant, v, and
the helium atomsmove in the form of a solitonwith constant velocity in the superfluid
state. This is a basic feature of the superfluidity and the above discussion gives a clear
physical interpretation of the phenomenon. In such a case, the mass of the helium
soliton can be determined from (13.1.20), that is,

M = ∫
∞

−∞
|ϕ|2dx = 4

λℏ
√mβ = constant.

The energy of the helium soliton is denoted

E = ∫
∞

−∞
[
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕ϕ
𝜕t󸀠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
+
1
2
λ|ϕ|4 − μ󸀠|ϕ|2]dx󸀠 = 4

√2mβ
3λℏ
(4 + β) − μ󸀠M + 1

2
Mv2

= E0 +
1
2
Mv2, (13.1.23)

where

E0 =
4√2mβ
3λℏ
(4 + β) − μ󸀠M.
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The results exhibit clearly that the helium soliton in the superfluid system has
features of a classical particle.

(2) The theoretical explanation of macroscopic quantummechanics in helium su-
perfluid.

Wenowdiscuss theproperties of circulation (vortex lines) producedby themotion
of superfluid helium atoms, using the above result. The properties are defined by the
velocity of superfluid helium atom, that is,

Q = ∫
r
vsdr. (13.1.24)

In terms of the phase, θ(x, t), of the macroscopic wave function of superfluid helium,
the velocity of the superfluid can be written as

vs =
ℏ
m
∇θ. (13.1.25)

Earlierwe concluded fromequation (13.1.20) that the velocity of the superfluid is equal
to 2 times the group velocity of the soliton, i.e., vs = 2v. This indicates that the motion
of the soliton is the motion of the superfluid and the vortex lines in superfluid are a
result of soliton motion of the superfluid helium atoms. The phase difference along a
closed path is given by the line integral corresponding to the circulation of the veloc-
ity vs. We have

Δθ = ∮
r
∇θdr = m

ℏ
∮
r
vsdr. (13.1.26)

Thus, the circulation is related to the phase difference Δθ of the superfluid helium
atoms. If the path of integration lies in a multiply connected domain or it encloses a
vortex line, then ∇θ(r) ̸= 0. Furthermore, if ϕ(r) ̸= 0 and it is single-valued, then we
have Δθ = 2π and

Q = ∮
r
vsdr = n

h
m
, (n = 1, 2, 3, . . .), (13.1.27)

where n is an integer. Equation (13.1.27) implies that, whenever the velocity of the ro-
tating superfluid helium exceeds a critical velocity, the vortex can be produced in the
superfluid. The circulation (the vortex) is quantized and is given a value by an integer
multiple of h/m. Thus, a macroscopic quantum effect occurs in the superfluid system,
consistentwith the experimental resultmentioned above. Therefore, the nonlinear GP
equation indeed gives an adequate description of “quantum vortex” in superfluid he-
lium. Thus, the superfluid can be viewed as a Bose condensate with local interactions
[100, 248, 249].

The concept of “quantumvortex”was proposed first byGinzburg andPitaevskii in
1960, but quantization of vortices in a superfluid was earlier suggested, by Onsager in
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1949 [194], on the basis of classical vortex flows and turbulence. The superfluidity of
4He and its quantum vortex lines and loops, weak turbulence, and dissipative vortex
dynamics in the superfluids were studied by Barenghi et al. [19], Roberts et al, Pis-
meu and Rica, and many others, all using the nonlinear Schrödinger equation or the
GP equation given above (see Barenghi et al. [19], Donnely [70], Avenel et al. [15], and
Lindensmith et al. [162]). Experimental observations of these vortices were reported
early by Yamchuk [312], Packard [195], and Zieve et al. [325, 326]. Numerical simula-
tions were presented by Frish [83], Pomeau and Rica [252], and Schwarz [273, 274]. The
energy of the vortex lines was also measured.

If the superfluid liquid does not rotate, then ∇ × vs = (h/m)∇ × ∇θ = 0 and the su-
perfluid velocity field is a conservative fieldwithout rotation. This suggests that, when
the superfluid helium flows through a tube with a graduate decreasing diameter, the
pressure inside the tube is equal everywhere, irrespective of the diameter of the tube.
This is completely different from that of a normal fluid, but it has been demonstrated
experimentally. Moreover, the macroscopic wave function ϕ(x, t), given in (13.1.20),
approaches zero when x approaches∞. That is,ϕ(x, t) vanishes at the boundary. This
implies that the superfluid density ρs(∝ |ϕ|2) should also approach zero at the bound-
ary. The value of ρs wasmeasured in 1970 and it was found that its value dropped from
the value in the bulk to zero over a few atomic layers. This gave a direct verification of
the theoretical results.

In the last fewdecades, Bose–Einstein condensation has been observed in a series
of remarkable experiments using weakly interacting atomic gases, such as vapors of
rubidium, sodium lithium, and hydrogen. Its properties have been extensively stud-
ied. These studies show that Bose–Einstein condensation is a nonlinear phenomenon,
analogous to nonlinear optics, and that the state is coherent and can be described by
the following nonlinear Schrödinger equation or the GP equation [100, 248, 249]:

i𝜕ϕ
𝜕t󸀠
= −
𝜕2ϕ
𝜕x󸀠 2
− λ|ϕ|3 + V(x)ϕ, (13.1.28)

where t󸀠 = t/ℏ, x󸀠 = x√2m/ℏ. This equation was used to discuss the realization of the
Bose–Einstein condensation in the d + 1 dimensions (d = 1, 2, 3) by Bullough et al.
[38, 39]. Elyutin et al. [74, 75] gave the corresponding Hamiltonian density, H, of a
condensate system as follows:

H󸀠 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕ϕ
𝜕x󸀠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
+ V(x󸀠)|ϕ|2 − 1

2
λ|ϕ|4, (13.1.29)

where H󸀠 = H, the nonlinear parameters of λ are defined as λ = −2Naa1/a20, N is the
number of particles trapped in the condensed state, a is the ground state scattering
length, anda0 anda1 are the transverse (y, z) and the longitudinal (x) condensate sizes
(without self-interaction), respectively. Note that integrations over y and z have been
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carried out in obtaining the above equation. λ is positive for condensation with self-
attraction (negative scattering length). The coherent regime was observed in Bose–
Einstein condensation in lithium. The specific form of the trapping potential V(x󸀠)
depends on the details of the experimental setup. Work on Bose–Einstein condensa-
tion based on the above Hamiltonianmodel was carried out and reported by Barenghi
et al. [15].

It is not surprising to see that equation (13.1.28) is exactly the same as equation
(13.1.1). This prediction confirms the correctness of the above nonlinear theory for
Bose–Einstein condensation. As a matter of fact, immediately after the first experi-
mental observation of this condensation phenomenon, it was realized that the coher-
ent dynamics of the condensedmacroscopicwave function could lead to the formation
of nonlinear solitary waves. For example, self-localized bright, dark, and vortex soli-
tons, formedby an increased (bright) or decreased (dark or vortex) probability density,
respectively, were experimentally observed, particularly for the vortex solution which
has the same form as the vortex lines found in superfluids. These experimental results
were in concordance with the results of the above theory.

13.1.3 The soliton motion of superfluid helium atoms in a relativistic case

The GP equation (13.1.1) is not relativistic and neither takes the gravitational field into
consideration. Anandan [12] and others extended the theory to include the relativis-
tic effect. The generalized relativistic equation of motion for the quantum superfluid
helium is given by

𝜕2ϕ
𝜕t2
− V2ϕ + α2ϕ = −λ󸀠|ϕ|2ϕ, (13.1.30)

where

α2 = m
2c2

ℏ2
, λ󸀠 = 2mλ

ℏ2
.

Equation (13.1.30) is called the Gross–Pitaevskii–Anandan equation. It is in essence a
type of ϕ4 equation. Anandan did not find its solutions. Instead, he gave an order of
magnitude estimate of ϕ = φeiθ for all types of solutions using the Einstein–Planck
law. Aswill be shownbelow, an exact solution of equation (13.1.30) is actually possible
[210, 215].

Let us assume the following trial solution [234, 236]:

ϕ(x, y, z, t) = φ(Z)eiθ , (13.1.31)

where

Z = p⃗. ⃗r −Ωt, θ = k⃗. ⃗r − ωt = k1x + k2y + k3z − ωt.
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Substituting equation (13.1.31) into equation (13.1.30), the latter can be written

(Ω2 − p2)d
2φ
dZ2
+ (α2 + k2 − ω2)φ + λ󸀠φ3 = 0 (13.1.32)

in terms of k⃗ = (k1, k2, k3) and p⃗ = (p1, p2, p3), whereωΩ = k⃗.p⃗. In the integrate equation
(13.1.32), we finally obtain the solution of equation (13.1.30) [210, 215] as follows:

ϕ(x, y, z, t) = φ(Z)eiθ = √w
R
sec h[√w(p⃗. ⃗r −Ωt)]ei(k⃗. ⃗r−ωt), (13.1.33)

where

w = ω
2 − α2 − k2

Ω2 − p2
, R = λ󸀠

2(Ω2 − p2)
. (13.1.34)

This is a soliton solution of the wave packet type and its group velocity is v.
From the above study, we see that the time-dependent motion of superfluid he-

lium atoms still resembles that of a soliton, so we conclude that the superfluid helium
atoms are, in essence, a soliton, because it is the soliton motion of the superfluid he-
lium atoms that causes the superfluidity. Because the solitons can move over macro-
scopic distances retaining their amplitude, velocity, and energy, the motion of the liq-
uid helium necessarily resembles superfluidity. In such a case, the motions of the su-
perfluid helium atoms are described by the nonlinear Schrödinger equation (13.1.1).
According to the soliton theory, the superfluid helium atoms are localized and have a
wave-corpuscle duality due to the nonlinear interaction which suppresses the disper-
sive effect of the kinetic energy in equation (13.1.30). Obviously, the nonlinear interac-
tion is caused by the self-interaction among the heliumatoms.We seek the direction of
the development of quantum mechanics through this investigation, so the nonlinear
theory of helium superfluid can truly serve as the theoretical foundation establishing
nonlinear quantummechanics.

13.2 The soliton movement and macroscopic quantum effects in
physical systems

13.2.1 The macroscopic quantum effects in superfluids

From the above discussion, we clearly understand the nature and characteristics
of macroscopic quantum systems, which are completely different from microscopic
quantum effects on single particles, described by linear quantum mechanics. It is
interesting to compare the two, so here we give a summary of the main differences.

(1) From the point of view of their characteristics, the microscopic quantum effect
is characterized by the quantization of physical quantities, such as energy, momen-
tum, and angular momentum. On the other hand, the macroscopic quantum effect
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is represented by discontinuities in macroscopic quantities, such as resistance, mag-
netic flux, vortex lines, and voltage. The macroscopic quantum effects can be directly
observed in experiments on the macroscopic scale, while the microscopic quantum
effects can only be inferred from other effects related to them.

(2) Concerning the origins of these quantum effects, the microscopic quantum
effect is produced when microscopic particles, which have only a wave feature, are
confined in a finite space, or are constituted as matter, while the macroscopic quan-
tum effect is due to the collective motion of the microscopic particles in systems with
nonlinear interaction. It occurs through second-order phase transitions following the
spontaneous breakdown of symmetry of the systems.

(3) Themacroscopic quantum state is a condensed and coherent state, but themi-
croscopic quantumeffect occurs in determinedquantization conditions,which are dif-
ferent for thebosons and fermions. So far, only thebosonsor combinations of fermions
have been found in macroscopic quantum effects.

(4) The microscopic quantum effect is a linear effect, in which the microscopic
particles are in an expanded state, their motions being described by linear quantum
mechanics and the linear Schrödinger equation, the Dirac equation, and the Klein–
Gordon equations. On the other hand, the macroscopic quantum effect is caused
by nonlinear interactions. Linear quantum mechanics failed to describe it, but it
can be described by nonlinear partial differential equations such as the nonlinear
Schrödinger equation (13.1.28) or equation (13.1.1).

We conclude that the macroscopic quantum effects are, in essence, a nonlinear
quantum effect or phenomenon. Because its nature and fundamental characteristics
are different from those of the microscopic quantum effects, it may be said that the ef-
fects should be depicted by a new nonlinear quantum theory, instead of linear quan-
tum mechanics. Therefore, this investigation shows the necessity to develop nonlin-
ear quantum theory [234, 236]. The macroscopic quantum effects mentioned above
can serve as the experimental foundation establishing a new approach to nonlinear
quantummechanics.

13.2.2 The relation between soliton movement in superconductors and superfluids

Macroscopic quantum effects are nonlinear phenomena. The Bardeen–Cooper–
Schreiffier (BCS) theory of superconductivity and the modern theory of superfluidity
are both nonlinear theories and have been well established. A basic feature of the
nonlinear theories is that the Hamiltonian and free energy Lagrangian functions of
the systems are nonlinear functions of the wave function of microscopic particles as
given in equations (13.1.1) and (13.1.2), respectively. The dynamic equation becomes
a nonlinear Schrödinger equation as shown in equations (13.1.1) and (13.1.28), due to
the nonlinear nature of the samples. Thesemicroscopic particles behave differently in
such systems from those in linear quantum mechanics and become as some solitons
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with a wave-corpuscle duality, because the nonlinear interactions balance and sup-
press the dispersive effect of the kinetic energy in these dynamic equations. In such
a case, these particles are in an ordered coherent state or a Bose–Einstein condensed
state. These states occur following a second-order phase transition and spontaneous
break of symmetry of the systems under the nonlinear interactions. In this process,
the nonlinear interactions play a very important role. The BCS theory indicates that
the nonlinear interaction is caused by the electron–phonon interaction due to the
vibration of the lattice and exists truly in the superconductor, but the nonlinear inter-
action is not involved in linear quantum mechanics. It also suggests that one should
pay particular attention to nonlinear interactions in order to establish a correct and
newquantum theory, so the right direction for solving problems encountered by linear
quantummechanics is to establish a nonlinear quantum theory.

Therefore, present theories of superconductivity and superfluids could build the
foundation for establishing nonlinear quantum theory. On what foundation should a
new theory be based? How can a comprehensive nonlinear quantum theory be estab-
lished? We will discuss how the superconductive and superfluid theories differ from
those of linear quantummechanics.

(a) The Hamiltonian or Lagrangian function and the free energy of these systems
are all dependent on and are nonlinear functions of the wave function ϕ( ⃗r, t) of the
microscopic particles, i.e., the superconductive electron or superfluid helium. These
go directly against the fundamental hypothesis of linear quantum mechanics, which
suggests that the Hamiltonian of the system is independent of the wave functions of
the microscopic particle. It was exactly because of this nonlinear feature in the the-
ories of superconductivity and superfluidity that they were able to correctly describe
the nonlinear behavior of superconductivity and superfluidity and successfully ex-
plain these macroscopic quantum effects. Lacking such a nonlinear feature was also
the reason for other theories to fail. For example, althoughFrohlich’s superconducting
theory [84] gave the correct superconductingmechanism, electron–phonon coupling,
in 1951 he failed to establish a complete superconducting theory because his theory
was based on linear perturbation theory of linear quantummechanics. Therefore, the
new nonlinear theory should abandon this hypothesis.

(b) The fundamental dynamic equations in linear quantum mechanics are a lin-
ear Schrödinger equation and theKlein–Gordonequations,whicharewave equations.
They are linear equations of the wave function of the particles. As a result, solutions
of these linear equations cannot describe the wave-corpuscle duality of microscopic
particles as discussed in Chapter 11. On the other hand, the Ginzburg-Landau equa-
tions (13.1.1) and (13.1.28) and the GP equation (13.1.28), satisfied by the quasi-particles
(e.g., the superconductive electron and the superfluid helium atom), as well as theϕ4

equation (13.1.30) in the superfluid, are nonlinear Schrödinger equations and the ϕ4

equation of the wave function of the quasi-particles. With these nonlinear equations,
the experiments on superconductivity and superfluidity, as well as other macroscopic
quantum effects, can be explained. This suggests that, in establishing a new theory,
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the linear dynamic equationmust be replacedwith a nonlinear equation. Fortunately,
all the nonlinear equations mentioned above are natural generalizations of the linear
Schrödinger equation or Klein–Gordon equations and are the dynamic equations in
linear quantum mechanics. Therefore, the new nonlinear quantum theory should be
developed on the basis of linear quantum mechanics rather than anything else. Cer-
tainly, it is still necessary to further examine whether these dynamic equations have
the correct space-time symmetries and what physical invariance they might possess.
Thus, it seems that only nonlinear dynamic equations or Hamiltonians which satisfy
the required symmetries of space-time and invariances of physical quantities can be
adopted in the new theory.

(c) It is well known that the nonlinear dynamic equations describing supercon-
ductivity and superfluidity states admit stable soliton solutions. This shows that the
microscopic particles in linear quantum mechanics evolve into solitons in nonlinear
systems due to nonlinear interactions. It is therefore natural to use the concept of soli-
tons in thedescription ofmicroscopic particles in nonlinear systems.A soliton is a new
form of physical entity, one which cannot be described by linear theory. According to
modern soliton theory, a soliton, which differs completely from a microscopic parti-
cle in linear quantum mechanics, possesses wave-particle duality. Its wave property
appears in the form of a traveling solitary wave which has all the essential features
of wave motion, including frequency, period, amplitude, group and phase velocities,
diffraction, transmission, and reflection. Its corpuscle feature is reflected by the sta-
ble shape analogous to a classical particle, even after going through a collision with
another particle, a definite energy, momentum and mass, its uniform motion in free
space and its motion with a constant acceleration in the presence of a constant exter-
nal field, etc. This suggests that modern soliton theory should be an integral part of
any new theory on nonlinear quantummechanics.

To summarize,we see clearly that thedirection for developing anewquantum the-
ory is only likely through nonlinear quantum mechanics. The superconductivity, su-
perfluidity, macroscopic quantum effects, and soliton theory prepare and provide the
sufficient conditions for establishing the nonlinear quantum mechanics, the former
being the experimental foundation. Its mathematical basis is formed by the nonlinear
partial differential equations and soliton theory. Therefore, the conditions establish-
ing the nonlinear quantummechanics are already sufficient in present cases.

(d) In this chapter we review the properties of superconductivity, superfluidity,
and macroscopic quantum effects, which are different from the microscopic quantum
effects obtained from some experiments. The macroscopic quantum effects occurring
on the macroscopic scale are caused by the collective motion of microscopic particles
after the symmetry of the system is broken due to nonlinear interactions. Such inter-
actions result in Bose condensation of particles in these systems. Meanwhile, we also
study the properties of motion of superconductive electrons and superfluid helium
atoms and arrived at the soliton solutions of the Ginzburg-Landau equation in super-
conductors and of the GP equation in superfluidity, which are, in essence, a kind of
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nonlinear Schrödinger equation. These solitons, with wave-corpuscle duality, are due
to the nonlinear interactions arising from the electron–phonon interaction in super-
conductors or self-interaction of helium atoms in the superfluids in which the nonlin-
ear interaction suppresses the dispersive effect of the kinetic energy in these dynamic
equations. Meanwhile, we use these dynamic equations and their soliton solutions to
obtain and further explain these macroscopic quantum effects, such as the quantiza-
tion of magnetic flux in superconductors and the Josephson effect of superconductiv-
ity junctions, as well as quantized vortex rings in the superfluid 4He.We conclude that
the superconductive electrons and the superfluid helium atoms are some solitons and
that the superconductivity, superfluidity, andmacroscopic quantum effects are a kind
of nonlinear quantum effects that arise from the soliton motions of superconductive
electrons and superfluid helium atoms, respectively.

Therefore, studying the essences of macroscopic quantum effects and the prop-
erties of motion of microscopic particles in the superconductor and superfluid has
important significance. From these studies, we see that the superconductive elec-
trons and the superfluid helium atoms can be described by the nonlinear Schrödinger
equations. The superconductivity, superfluidity, and macroscopic quantum effects
observed can serve as the experimental foundations establishing nonlinear quantum
mechanics and the present superconductive and superfluid theories can serve as the
theoretical foundations of nonlinear quantummechanics.

13.3 The soliton excitations in the anti-ferromagnetic systems

13.3.1 Dynamic features of solitons under the action of magnon–phonon
interaction

The collective excitation and motion of magnons due to magnon–phonon interac-
tions or magnon–magnon interactions in Heisenberg anti-ferromagnetic systems
have been extensively studied by Pang et al. [201, 211, 212, 216–219] and many other
scientists [55, 170, 172, 254]. The results show that the characteristics of the collective
excitation in these systems are quite different from those in ferromagnetic systems.
In this section, we present some results obtained by Pang et al. based on collective
excitation in anisotropic Heisenberg anti-ferromagnets with magnon–phonon and
magnon–magnon interactions by using the double-sublattice model [219].

When the double-sublattice model is used, the Hamiltonian of the Heisenberg
anti-ferromagnet can be expressed [219] as

H = T + V + 1
2

A
∑
n

A
∑
δ
[ξn,n+δS

x
nS

x
n+δ + ηn,n+δS

y
nS

y
n+δ + Jn,n+δS

z
nS

z
n+δ]

+
1
2

B
∑
j

B
∑
δ
[ξj,j+δS

x
j S

x
j+δ + ηj,j+δS

y
j S

y
j+δ + Jj,j+δS

z
j S

z
j+δ], (13.3.1)
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where

T = m
2
∑
n
u̇2n, V =

mυ20
r0
∑
n
(un+1 − un − u0)

are the kinetic and potential energies of lattice oscillations, respectively, m is the
“mass” of a spin, r0 is the lattice constant, v0 is the sound velocity in the crystal which
we set equal to unity in subsequent calculations, and Skn(j) (k = x, y, z) is the spin com-
ponent at site n(j) in the k-direction. We apply the transformation S+n(j) = S

x
n(j) + iS

y
n(j)

and change equation (13.3.1) into

H = T + V + 1
2

A
∑
n

A
∑
δ
[Jn,n+δS

z
nS

z
n+δ +

1
2
(ξn,n+δ + ηn,n+δ)(S

+
nS
−
n+δ + S

−
nS
+
n+δ)

+
1
4
(ξn,n+δ − ηn,n+δ)(S

+
nS
+
n+δ + S

−
nS
−
n+δ)]

1
2

B
∑
j

B
∑
δ
[Jjj+δS

z
j S

z
j+δ +

1
4
(ξjj+δ + ηjj+δ)(S

+
j S
−
j+δ + S

−
j S
+
j+δ)

+
1
4
(ξjj+δ − ηjj+δ)(S

+
j S
+
j+δ + S

−
j S

_
j+δ)]. (13.3.2)

We again use the Dyson–Maleev representation of the spin operators in virtue of
Bose creation and annihilation operators [77, 255–257]. We have

S+a = √2S(1 −
a+a
4S
)a, S−a = √2Sa

+(1 − a
+a
4S
), Sza = S − a

+a,

S+b = √2Sb
+(1 − b

+b
4S
), S−b = √2S(1 −

b+b
4S
)b, Szb = b

+b − S,

where a+(a) and b+(b) are the creation (annihilation) operators of the Heisenberg
magnon field on the two sublattices. Taking into account the symmetry of the sub-
lattices A and B and the fact that the A and B sublattices are neighbors of each other,
the Hamiltonian in equation (13.3.2) can be approximately written [219] as

H ≈ T + V − J0NS
2 + S

A
∑
n

A
∑
δ
Jn,n+δa

+
nan + S

B
∑
j

B
∑
δ
JJ,j+δb

+
j bj

+
S
2

A
∑
n

A
∑
δ
(ξn,n+δ − ηn,n+δ)(anb

+
n+δ + bn+δa

+
n)

+
S
2

A
∑
n

A
∑
δ
(ξn,n+δ + ηn,n+δ)(anbn+δ + a

+
nb
+
n+δ)

−
B
∑
j

B
∑
δ
JJ,j+δa

+
j ajb
+
j+δbj+δ
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−
1
8

A
∑
n

A
∑
δ
(ξn,n+δ − ηn,n+δ)(a

+
nananb

+
n+δ + anb

+
n+δbn+δbn+δ)

+ a+nan+δa
+
nan + b

+
n+δbn+δa

+
nbn+δ

−
1
8

A
∑
n

A
∑
δ
(ξn,n+δ + ηn,n+δ)(a

+
nananbn+δ + anbn+δb

+
n+δbn+δ)

+ a+nbn+δa
+
nan + anb

+
n+δb
+
n+δbn+δ, (13.3.3)

where the last four terms are anomalous terms resulting frommagnon–magnon inter-
actions. They can be neglected because they are weak compared to magnon–phonon
interactions. The above Hamilltonian can become simple, which will be considered
first in the following section.

We can here apply the methods of Makhankov and Fedyanin et al. [170, 172] and
Pang [219] to study the properties of the collective excitations of themagnons in a one-
dimensional anti-ferromagnetic system. In the Heisenberg representation, the equa-
tions of the operators af and bf of sublattices A and B can, after some proper transfor-
mations, be written as

iℏȧf = [af ,H] ≈ S∑
δ
Jff+δaf + S/2

A
∑
δ
(ξff+δ − ηff+δ)bj+δ + S/2∑

δ
(ξff+δ + ηff+δ)b

+
j+δ,

(13.3.4)

iℏḃf = [bf ,H] ≈ S∑
δ
Jff+δbf + S/2

A
∑
δ
(ξff+δ − ηff+δ)aj+δ + S/2∑

δ
(ξff+δ + ηff+δ)a

+
j+δ.

(13.3.5)

We further assume that the wave function of the collective excitation state of the
quasi-particles in the system is of the following form:

󵄨󵄨󵄨󵄨φ(t)⟩ =
1
λ
[2 +

A
∑
n
φan(t)a

+
n +

A
∑
j
φbj(t)a

+
j ]|0⟩, (13.3.6)

where |0⟩ is the vacuum state (ground state), aai and bai are expression coefficients
related to the characteristics of the magnons, which obviously are functions of time
and space, and λ is a normalization constant.

Note that

⟨φ(t)󵄨󵄨󵄨󵄨af
󵄨󵄨󵄨󵄨φ(t)⟩ = αaf /λ

2 = φaf , ⟨φ(t)
󵄨󵄨󵄨󵄨bf
󵄨󵄨󵄨󵄨φ(t)⟩ = αbf /λ

2 = φbf

is the Schrödinger probability amplitude of the magnon. Using these representations,
from equations (13.3.4) and (13.3.5), we have

iℏφ̇f = S∑
δ
Jff+δφaf + S/2∑

δ
(ξff+δ − ηff+δ)φbj+δ(t) + S/2∑

δ
(ξff+δ + ηff+δ)φ

∗
bj+δ, (13.3.7)
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iℏφ̇bf = S∑
δ
Jff+δφbf + S/2∑

δ
(ξff+δ − ηff+δ)φaj+δ(t) + S/2∑

δ
(ξff+δ + ηff+δ)φ

∗
aj+δ.

(13.3.8)

If the oscillation amplitude of the lattice is small and the magnon–phonon inter-
action is also weak, we proceed to the continuum limit for the coefficients and the
probability amplitude. Dropping the terms with higher derivatives as a result, we get

Jf ,f+1 ≈ J0 − J1r0
𝜕uf
𝜕x
, ξf ,f+1 ≈ ξ0 − ξ1r0

𝜕uf
𝜕x
, ηf ,f+1 ≈ η0 − η1r0

𝜕uf
𝜕x
,

φnf±1 ≈ φnf ± r0
𝜕
𝜕x

φn󸀠f +
1
2
r20
𝜕2

𝜕x2
φn󸀠f + ⋅ ⋅ ⋅ , (n = a, b, n

󸀠 = b, a) etc., (13.3.9)

where we get the following from the Heisenberg equations for φf :

iℏ(φf )t = 2SJ0φf + S(ξ0 − η0) + S(ξ0 + η0)φ
∗
f +

S
2
(ξ0 − η0)r

2
0φfxx

+
S
2
(ξ0 + η0)r

2
0φ
∗
fxx − S(ξ1 − η1)r0ufxφf − S(ξ1 + η1)r0ufxφ

∗
f − 2J1Sr0ufxφf ,

(13.3.10)

where r0 is the average distance between neighbouring sites. Using equation (13.3.9)
and bearing in mind the symmetry of the sublattices, we easily derive the following
approximate equations of motion for φaf and φbf :

iℏφ̇af ≈ 2SJ0φaf + S(ξ0 − η0)φbf + S(ξ0 − η0)φ
∗
bf +

S
2
(ξ0 − η0)r

2
0
𝜕2
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φaf
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0
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φaf , (13.3.11)

iℏφ̇bf ≈ 2SJ0φbf + S(ξ0 − η0)φaj + S(ξ0 − η0)φ
∗
aj +
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φbf . (13.3.12)

We define φf (t) = φaf (t) + φbf (t) and obtain

iℏφ̇f ≈ 2SJ0φf + S(ξ0 − η0)φf + S(ξ0 + η0)φ
∗
bj +

S
2
(ξ0 − η0)r

2
0
𝜕2

𝜕x2
φf

+
S
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2
0
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φf .

(13.3.13)
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Clearly, equation (13.3.11) is, in essence, a nonlinear Schrödinger equation of the
magnons.

We [219] have previously discussed the part representing the lattice oscillations.
From equation (13.3.3) we have

⟨φ(t)󵄨󵄨󵄨󵄨H
󵄨󵄨󵄨󵄨φ(t)⟩ = T + V −

1
2
S2
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∑
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∑
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1
2
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∑
n

B
∑
δ
Jnn+δ −

A
∑
n
(S

A
∑
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Jnn+δ)|φan|

2

+
B
∑
j
(S

B
∑
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Jjj+δ)|φbj|

2 +
1
2
S

A
∑
j

A
∑
δ
(ξnn+δ − ηjj+δ)(φanφ

∗
bj+δ + φ

∗
anφbj+δ).

(13.3.14)

It should be point out that, with thewave function in the form of equation (13.3.6),
the anomalous terms in the original Hamiltonian have already been removed.

We here use the classical Hamiltonian equation

−M(uf )tt =
𝜕
𝜕uf
⟨φ(t)󵄨󵄨󵄨󵄨H

󵄨󵄨󵄨󵄨φ(t)⟩, (13.3.15)

whereM is the mass of a lattice point (atom, for example) and uf is its displacement,
a classical quantity. Having in mind the symmetry of the sublattices A and B as well
as the fact that the neighbors of sublattice A belong to sublattice B and vice versa and
using again

A
∑
n
(S

A
∑
δ
Jnn+δ)|φan|

2 = S
A
∑
n
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∑
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B
∑
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Jjj+δ)|φbj|

2 = S
b
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2

from equations (13.3.14) and (13.3.15), we obtain

−Müaf =
𝜕
𝜕uaf
⟨φ(t)󵄨󵄨󵄨󵄨H

󵄨󵄨󵄨󵄨φ(t)⟩ = K(2uaf − ubf+1 − ubf−1) + SJ1[|φbf+1|
2 − |φbf+1|

2]

+
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S(ξ1 − η1)[φaf (φ

∗
bf+1 − φ

∗
bf−1) + φ

∗
af (φbf+1 − φbf−1)],

−Mübf =
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+
1
2
S(ξ1 − η1)[φbf (φ

∗
af+1 − φ

∗
af−1) + φ

∗
bf (φaf+1 − φaf−1)].

AssumingMa ≈ Mb ≈ M, we have

−Müaf = K(2uaf − ubf+1 − ubf−1) + SJ1[|φbf+1|
2 − |φbf+1|

2]

+
1
2
S(ξ1 − η1)[φaf (φ

∗
bf+1 − φ

∗
bf−1) + φ

∗
af (φbf+1 − φbf−1)],
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−Mübf = K(2ubf − uaf+1 − uaf−1) + SJ1[|φaf+1|
2 − |φaf+1|

2]

+
1
2
S(ξ1 − η1)[φbf (φ

∗
af+1 − φ

∗
af−1) + φ

∗
bf (φaf+1 − φaf−1)],

where K is the force coefficient K = mC20/2r0.
Defining uf = uaf + ubf , we have no difficulty in obtaining the following equation

for the continuum approximation:

−Muftt ≈ −Kr
2
0ufxx + J1Sr0𝜕/𝜕x(|φf |

2)x +
1
4
(ξ1 − η1)Sr0𝜕/𝜕x(|φf |

2). (13.3.16)

Equations (13.3.13) and (13.3.16) form a complete set of equations for the collective
excitations in a Heisenberg anti-ferromagnetic systemwith magnon–phonon interac-
tions. Now we proceed to find the solutions to the equations.

In the case of a quasi-steady state, we assume

u(x, t) = u(ς), φ(x, t) = φ(ς)eiθ (ς = x − vt). (13.3.17)

Substituting equation (13.3.17) into equation (13.3.16) [55, 212, 254], we have

(−Kr20 −Mv2) 𝜕
2

𝜕ς2
uf = [J1 +

1
4
(ξ1 − η1)]Sr0

𝜕
𝜕ς
|φf |

2. (13.3.18)

By solving the above equation, we get

𝜕uf
𝜕x
=
𝜕uf
𝜕ς
= [J1 +

1
4
(ξ1 − η1)]Sr0(Kr

2
0 −Mv2)−1|φf |

2 + C󸀠, (13.3.19)

where C󸀠 is an integration constant to be determined from the boundary conditions.
Substituting equation (13.3.19) into equation (13.3.13) and solving this, we immediately
find the characteristics of the magnons caused by magnon–phonon coupling in an
isotropic anti-ferromagnet.

For simplicity, we consider here only the anisotropic anti-ferromagnet with ξ = η
(the other cases, of course, can be discussed in the same way). In this case, J > ξ and
J < ξ correspond to the easy magnetic axis (0z) and the easy magnetic plane (x0y) in
an anti-ferromagnet, respectively. Equation (13.3.13) reduces to

iℏφt = 2J0Sφ + 2ξ0Sφ
∗ + Sξ0r

2
0φ
∗
xx − 2J1Sr0uxφ − 2ξ1Sr0uxφ

∗. (13.3.20)

Its conjugate equation reads

− iℏφ∗t = 2J0Sφ
∗ + 2ξ0Sφ + Sξ0r

2
0φxx − 2J1Sr0uxφ

∗ − 2ξ1Sr0uxφ, (13.3.21)

where we have dropped the subscripts of u(t) and φ(t).
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We now perform the transformation φ± = φ ± φ∗. Then the following equations
[201] can be obtained from equations (13.3.20) and (13.3.21):

iℏφ̇+ = 2S(J0 + ξ0)φ− − Sξ0r
2
0
𝜕2

𝜕x2
φ− − 2(J1 − ξ1)Sr0

𝜕u
𝜕x

φ−,

iℏφ̇− = 2S(J0 + ξ0)φ+ + Sξ0r
2
0
𝜕2

𝜕x2
φ+ − 2(J1 + ξ1)Sr0

𝜕u
𝜕x

φ+.
(13.3.22)

These are some coupling nonlinear Schrödinger equations of φ+ and φ− and their so-
lutions are quite difficult to findout.However, in the casewhere v ≪ C0 or v2 ≪ Kr20/M,
we obtain the following nonlinear dynamic equation of φ+(x, t) and φ−(x, t):

− ℏ2φ̈+ = 4S
2(J20 − ξ

2
0)φ+ − 4S

2ξ 20r
2
0
𝜕2

𝜕x2
φ+ − 8(J1J0 − ξ1ξ0)S

2r0
𝜕u
𝜕x

φ+, (13.3.23)

− ℏ2φ̈− = 4S
2(J20 − ξ

2
0)φ− − 4S

2ξ 20r
2
0
𝜕2

𝜕x2
φ− − 8(J1J0 − ξ1ξ0)S

2r0
𝜕u
𝜕x

φ−. (13.3.24)

Adding equation (13.3.23) to equation (13.3.24) and substituting equation (13.3.19) into
them, we finally get

φtt − A0φxx − B0φ − C0|φ|
2φ = 0, (13.3.25)

where

A0 =
4ξ 20S

2r20
ℏ2
> 0, C0 =

16J1S3r20(J0J1 − ξ0ξ1)
ℏ2(K󸀠r20 −Mv2)

,

B0 =
1
ℏ2
[4S2(J20 − ξ

2
0) − 8S

2r0(J0J1 − ξ0ξ1)C].
(13.3.26)

Very clearly, equation (13.3.25) is a φ4-equation, instead of the nonlinear Schrö-
dinger equation, but it is still the samewith the dynamic equation (11.2.6) in nonlinear
quantum mechanics [223, 225, 229, 237, 238]. Obviously, this is due to the interaction
between themagnonsor the coupling effect between thedouble sublattices in the anti-
ferromagnets, although the motion of the magnons in a single ferromagnetic chain is
describedbyanonlinear Schrödinger equation in equation (13.1.1),whichalso appears
in the case of a single ferromagnetic chain as mentioned above. However, in the anti-
ferromagnets, the features of the magnons are still described as a soliton because the
φ4-equation is a representation or result of the nonlinear Schrödinger equation in the
relativistic case [223, 225, 229, 237, 238]. Therefore, they share some features. In order
to verify this point, we now find the soliton solutions of equation (13.3.25).

We can prove that, for the anti-ferromagnet magnetized along the z-direction, the
magnon–phonon coupling in this direction plays an important part in forming a lo-
calized soliton. As a first step, we take equation (13.3.25) [55, 116, 212, 217, 219, 224, 254]
and assume

ϕ = f (x − vt) exp[i(k󸀠x − ωt)]. (13.3.27)
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Inserting this into equation (13.3.25) [55, 212, 216–219, 254], we have

K󸀠A0 = vω, (v
2 − A0)

d2f
dς2
+ (B0 + A0K

󸀠 2 − ω2)f 3 = 0.

After integration, this becomes

(
df
dς
)
2
= −

C0
2(A0 − v2)

f 4 + B0A0 + ω
2(A0 − v0)

A0(A0 − v2)
f 2 = 0,

where Pang [217, 219] has set the integration constant equal to zero because of the
boundary conditions. Integrating once more, we arrive at

x = ∫
f (x,t0)

f (0,0)
[

C0f 2

2(A0 − v2)
(f 20 − f

2)]
1/2
df + constant, (13.3.28)

where

f 20 =
2

A0C20
[B0A0 + ω

2(A0 − v0)], K󸀠 = vω/A0.

In the case where ω2 < (A0B0)/(A0 − v2), there are nontopological bell-type soli-
ton solutions for equation (13.3.25) if the requirements C0/(A0 − v2) > 0 and f 20 > 0
are satisfied. In other words, if J0 > ξ0 and at the same time either J0J1 > ξ0ξ1, v <
min[√K/mr0, 2ξ0Sr0/ℏ] or J0J1 < ξ0ξ1, 2ξ0S0r0 < ℏ < v < √K/mr0, then its normalized
solitary wave is

φ = √
r0
2Ws

sec h(x − υt
Ws
)ei(k

󸀠x−ωt), (13.3.29)

where

k󸀠 = υω
A0
, Ws =

4(A0 − υ2)
C0r0

, ω2 =
A0B0
A0 − υ2

−
d2A0C20

16(A0 − υ2)2
,

where v is the velocity of the soliton.
Equation (13.3.29) indicates clearly that themagnon in an anti-ferromagnetmoves

as a bell-type soliton; its outline and features are the same as those described by the
nonlinear Schrödinger equation in equation (13.1.31) or equation (13.1.1). It is clear that
the magnon is still a soliton in nonlinear anti-ferromagnetic systems, as its essence
and basic features have not changed, even though it satisfies the φ4-equation in non-
linear quantummechanics [223, 225, 229, 237, 238] because the nonlinear interactions
in the anti-ferromagnets are still due to the magnon–phonon or magnon–magnon in-
teractions. Therefore, the nonlinear nature of magnons does not change in the anti-
ferromagnets.
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However, if and v2 − A0 > 0, i.e., C0/(A0 − v2) > 0, equation (13.3.23) also has
another topological soliton solution, which is denoted by

φ = √
r0
2Ws

tanh(x − υt
Ws
)ei(k

󸀠x−ωt). (13.3.30)

At the same time, it can be seen from equation (13.3.26) that C0 = 0 and B0 = 0
because J0 = ξ0, J1 = ξ1 in the isotropic anti-ferromagnets, so there is no solution to
equation (13.3.25) in this case.

It can be seen from the above conditions that localized solitons can be excited
by the nonlinear magnon–phonon coupling only for the magnetic anti-ferromagnet
axis. To the best of our knowledge, this has never been observed before and no par-
allel observations have been made in ferromagnets. In the case being discussed, the
coupling of the longitudinal lattice oscillations with the magnons, which results in a
nonlinear interaction, causes a remarkable change in the transverse exchange integral
of the anti-ferromagnet. It is the nonlinear interaction caused by the coupling that is
vital for the formation of the soliton. In this case, the velocity of the soliton satisfies
v < min[√K/mr0, 2ξ0Sr0/ℏ].

13.3.2 Properties of motion of solitons under the action of magnon–magnon
interactions

We have so far only considered the collective excitation caused by magnon–phonon
interactions. In fact, when the magnon–magnon interactions in a system become too
strong to be neglected, a new nonlinear interaction source will contribute to the col-
lective excitation in anti-ferromagnetic systems. The formation process and the prop-
erties of these collective excitations will change accordingly if this interaction is taken
into consideration. TheHamiltonian of the system in this case is still givenby equation
(13.3.1), but the interaction term now includes direct interactions between neighbor-
ing magnons and other two-magnon effects, such as influences of a magnon on the
transfer of other magnons and on magnon “resonance.”

Pang [84, 201, 211, 215, 218, 234, 236] employed the following quasi-average field
approximation to treat the effects of the anomalous correlation terms in equation
(13.3.1) on the soliton formation and the quasi-particle energy in the collective excita-
tion [219]:

a+nananb
+
n+δ = ⟨a

+
nan⟩anb

+
n+δ + ⟨anb

+
n+δ⟩a
+
nan − ⟨a

+
nan⟩⟨anb

+
n+δ⟩,

a+nana
+
nb
+
n+δ = ⟨a

+
nan⟩a

+
na
+
n+δ,

. . .

Then the Hamiltonian of the system (13.3.1) becomes

H = E0 + S
A
∑
n

A
∑
δ
Jn,n+δa

+
nan + S

B
∑
j

B
∑
δ
Jj,j+δb
+
nbn
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+
1
2
S

A
∑
n

A
∑
δ
(ξn,n+δ − ηn,n+δ)(anb

+
n+δ + a

+
nbn+δ)

+
1
2
S

A
∑
n

A
∑
δ
(ξn,n+δ − ηn,n+δ)(anbn+δ + a

+
nb
+
n+δ)

−
A
∑
n

A
∑
δ
Jn,n+δ(⟨a

+
nan⟩b

+
n+δbn+δ + ⟨b

+
n+δbn+δ⟩a

+
nan)

−
1
8

A
∑
n

A
∑
δ
(ξn,n+δ − ηn,n+δ)[(⟨a

+
nan⟩ + ⟨b

+
n+δbn+δ⟩)(anb

+
n+δ + a

+
nbn+δ)

+ (⟨anb
+
n+δ⟩ + ⟨a

+
nbn+δ⟩)(a

+
nan + b

+
n+δbn+δ)]

−
1
8

A
∑
n

A
∑
δ
(ξn,n+δ + ηn,n+δ)[(⟨a

+
nan⟩ + ⟨b

+
n+δbn+δ⟩)(anbn+δ + a

+
nb
+
n+δ)], (13.3.31)

where

E0 = T + V − J0NS
2 +

A
∑
n

A
∑
δ
Jn,n+δ⟨a

+
nan⟩⟨b

+
n+δbn+δ⟩

−
1
8

A
∑
n

A
∑
δ
(ξn,n+δ − ηn,n+δ)[(⟨a

+
nan⟩ + ⟨b

+
n+δbn+δ⟩)(anb

+
n+δ + a

+
nbn+δ)]. (13.3.32)

From the second quantum Hamiltonian in equation (13.3.32) and the same method
mentioned above, with the aid of Makhankov et al. [170, 172] and Pang’s method [201,
211, 216–219], we obtain the following equations of motion for the operators af and bf
in the Heisenberg representation:

iℏ
𝜕af
𝜕t
= [af ,H], iℏ

𝜕bf
𝜕t
= [bf ,H].

Then, using the Schrödinger probability amplitude defined by equation (13.3.6),
we have

φaf = ⟨φ(t)
󵄨󵄨󵄨󵄨af
󵄨󵄨󵄨󵄨φ(t)⟩ = αaf /λ

2, φbf = ⟨φ(t)
󵄨󵄨󵄨󵄨bf |φ(t)⟩ = αbf /λ

2,

from which we finally derive the following nonlinear equation for φaf and φbf :

iℏφ̇af = S∑
δ
Jff+δφaf + S/2∑

δ
(ξff+δ − ηff+δ)φbj+δ(t) + S/2∑

δ
(ξff+δ + ηff+δ)φ

∗
bj+δ

−∑
δ
Jff+δ|φbf+δ|

2φaj −
1
8
∑
δ
(ξff+δ − ηff+δ)[(|φaf |

2 + |φbf+δ|
2)φbf+δ

+ |φaf |
2φ∗bf+δ + |φaf |

2φbf+δ]

−
1
8
∑
δ
(ξff+δ + ηff+δ)(|φaf |

2 + |φbf+δ|
2)φ∗bf+δ. (13.3.33)
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Interchanging the symbols a and b in equation (13.3.31), we get the corresponding
equation forφbf .We thenproceed to the continuum limit as before, dropping the terms
with higher than third derivatives and taking into account the symmetry of sublattices
A and B and the distribution characteristics mentioned above, to approximate φf (t) =
φaf (t) + φbf (t) as

iℏφ̇ ≈ 2J0Sφ + (ξ0 − η0)Sφ
∗ + S(ξ0 − η0)φ +

1
2
Sr20(ξ0 + η0)

𝜕2

𝜕x2
φ∗ + 1

2
Sr20(ξ0 − η0)

𝜕2

𝜕x2
φ

− (2J1 + ξ1 − η1)Sr0
𝜕u
𝜕x

φ − (ξ1 − η1)Sr0
𝜕u
𝜕x

φ∗ − [2J1 + (ξ0 − η0)/8]|φ|
2φ

− ν(ξ0 + η0)|φ|
2φ∗, (13.3.34)

where the subscript of the function in equation (13.3.32) has been dropped and a
parameter ν has been introduced, which equals 1/16 in the case studied. Equation
(13.3.34) differs from equation (13.3.13) only by an additional term and the disper-
sion effects being neglected. There will be no correlation between magnon–magnon
interactions and magnon–phonon interactions and they become two independent
nonlinear interaction sources. Meanwhile, equation (13.3.15) still expresses the lattice
oscillations. Therefore, we can solve problems of this type by combining equation
(13.3.19) with equation (13.3.34).

It can be proved that there is still no soliton solution for isotropic anti-ferro-
magnets even if the interactions betweenmagnons are taken into account. In the case
of isotropy, equation (13.3.34) becomes

iℏφ̇ ≈ 2J0S(φ + φ
∗) + J0Sr

2
0
𝜕2

𝜕x2
φ∗ − 2J1Sr0

𝜕u
𝜕x
(φ + φ∗) − 2J0|φ|

2(φ − νφ∗).

Its conjugation equation reads

−iℏφ̇∗ = 2J0S(φ + φ
∗) + J0Sr

2
0
𝜕2

𝜕x2
φ − 2J1Sr0

𝜕u
𝜕x
(φ + φ∗) − 2J0|φ|

2(φ∗ + νφ).

Introducing φ±(t) = φ(t)±φ∗(t) and applying the samemethod mentioned above, we
obtain

ℏ2φ̈ = −4J0S
2r20
𝜕2

𝜕x2
φ − 8J201S(1 − ν)|φ|

2φ. (13.3.35)

Comparing this with equation (13.3.25), we now have B0 = 0 and only nonlinear terms
exist. Therefore, soliton solutions of a type similar to equation (13.3.25) cannot be
found for this equation [116, 201, 216–219, 224], thereby completing the proof. It can
then be concluded that, in the case of isotropic Heisenberg anti-ferromagnetic chains,
neither magnon–phonon interactions nor interactions between magnons can result
in a collective excitation of the type of nontopological solitons, which is similar to the
situation in isotropic ferromagnetic chains [178, 179].
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For anisotropic anti-ferromagnets, we also limit our discussion to the cases of the
magnetic axis (0z) and the magnetic plane (x0y), where equation (13.3.34) reduces to

iℏφ̇ ≈ 2J0Sφ+ 2Sξ0φ
∗ + ξ0Sr

2
0
𝜕2

𝜕x2
φ∗ − 2J1Sr0

𝜕u
𝜕x

φ− 2Sξ0r0
𝜕u
𝜕x

φ∗ − 2J0|φ|
2φ− ν2ξ0|φ|

2φ∗.
(13.3.36)

Again introducing φ±(t) = φ(t) ± φ∗(t) and adopting the same method applied to
equations (13.3.21)–(13.3.23), we arrive at the following equation for φ(x, t):

− ℏ2φ̈ = 4(J20 − ξ
2
0 )S2φ − 4ξ 20 S2r20

𝜕2

𝜕x2
φ − 8(J0J1 − ξ0ξ1)Sr0

𝜕u
𝜕x

φ − 8(J30 − ν2ξ 20 )S|φ|2φ.
(13.3.37)

Similar to the derivations of equations (13.3.4)–(13.3.6), we obtain

φtt − Aφxx + Bφ − g
󸀠|φ|2φ = 0, (13.3.38)

where

A = A0 = 4ξ0S
2r20/ℏ

2, B = B0 = [4S
2(J20 − ξ

2
0 )/ℏ

2] + 8(J0J1 − ξ0ξ1)Sr0C0,

g󸀠 = C0 + 8S(J
2
0 − ν

2ξ 20 )/ℏ2.
(13.3.39)

Therefore, equation (13.3.38) has the same soliton solution as equation (13.3.25) or
equation (13.3.29). Simply replacing C0, A0, and B0 in equations (13.3.25) and (13.3.29)
by g, A, and B, respectively, we get the solutions. Therefore, taking into account
magnon–magnon interaction only changes the amplitude and velocity of the soliton
and does not alter the fundamental nature of the magnon solitons. The magnon–
magnon interactions enhance the effects of the nonlinear interactions and thereby
prompt the formation of more stable solitons. This is because g is always greater than
C0 if the magnon solitons exist. Furthermore, J0 ≫ J1 and ξ0 ≫ ξ1. We see that, in the
presence of magnon–magnon interactions, they are the soliton solution of only the
type described in equations (13.3.25) or (13.3.29) in the velocity range of v2 < A. In this
case, we have

ω2 =
AB

A − υ2
−

r20Ag
2

16(A − υ2)2
=

AB
A − υ2
−
r20
16

A
A − υ2
[g + 8S(J20 − υ

2ξ 20)]
2
. (13.3.40)

It was found that the nonlinear excitations of magnons can still be described by
equation (13.3.25) or equation (13.3.38). The only differences are the coefficients in
these equations. Therefore, the magnon solitons in nonlinear anti-ferromagnetic sys-
tems obey the laws of nonlinear quantummechanics.

The above investigations indicate clearly that the properties of the magnons can
be described well by nonlinear quantummechanics [223, 225, 229, 237, 238]. Magnons
can become solitons under the action of the nonlinear interactions. Then themagnons
have both a wave feature, a solitary wave or a spin wave, and a corpuscle feature, as
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a localized particle. The nonlinear interactions are generated by virtue of the inter-
action between moving magnons or between a moving magnon and phonon. These
interactions are always existent in the anti-ferromagnets, so the nature of the wave-
corpuscle features of themagnons cannot be changed, i.e., thewave-corpuscle feature
of the magnons is its inherent nature. Therefore, nonlinear quantum mechanics is a
suitable theory to describe the properties of magnons in anti-ferromagnets. Once the
magnon–magnon andmagnon–phonon interactions are not considered, the magnon
has only a spin wave feature.

In practice, the above nonlinear interactions are always existent in all anti-
ferromagnets, but the generation mechanism of magnon–phonon coupling and of
magnon–magnon interactions are different, although their effects on the nonlinear
interaction and the formation of solitons are the same [223, 225, 229, 237, 238]. In
the first place, the mechanism of localized nonlinear collective excitation (magnon
soliton) caused by the first type is the breaking of kinetic symmetry, that is, it is
caused by the interaction between the magnon and lattice oscillation. In a steady
state, the magnon soliton and the localized deformation, which depend on lattice os-
cillation, propagate together with the same speed along the anti-ferromagnetic chain.
The mechanism of excitation caused by the second type is the spontaneous breaking
of symmetry brought about by the magnon–magnon interactions in the single-axis
anisotropic anti-ferromagnet. Both mechanisms result in structural anisotropy and
collective excitation. As mentioned, once the two mechanisms cancel each other in
isotropic anti-ferromagnetic chains, no soliton can exist, as in the case for ferromag-
netic chains. This also indicates that soliton excitation of magnons in such systems
is determined by the anisotropy of the system. As long as the anisotropy exists in a
given system, the magnon–phonon coupling and nonlinear interactions between the
magnons will make the magnons “self-trapping” as a soliton in a range of dimen-
sion 2Ws in the one-dimensional chains and a stable magnon soliton will propagate
along the anti-ferromagnetic chain. When the anisotropy changes, the amplitude, the
momentum, and the number of the solitons all change accordingly.

On the other hand, the formation of magnon solitons due to nonlinear interac-
tions in anisotropic anti-ferromagnetic chains leads tomany interesting physical phe-
nomena. Indeed, anomalies have been observed in experiments. Attempts have been
made to explain them using the magnetic soliton model, even though analytical ex-
pressions in place of equations (13.3.11) and (13.3.12) have not been obtained. Formore
detailed descriptions, the reader is referred to the work by Mikeska and Steiner [178,
179]. For example, Boucher et al. [35, 36] used the soliton concept to explain the phe-
nomenon of nuclear spin-lattice relaxation (NSLR) in an anti-ferromagnetic chain of
(CH3)4NMnCl3, even though a theoretical expression for magnetic solitons has not
been obtained. Through measurement, Boucher et al. obtained the ratio T−11 of NSLR
of 15N in the anti-ferromagnet, as a function of the external field H (2 kAm−1 < H <
80 kAm−1) and temperature T (2K ≤ T ≤ 4.2K), and observed that T−11 diverged expo-
nentially withH/T at a certain temperature. With the analytical results for the soliton
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given above, we can explain the excitation and the behavior of the soliton in such
systems, which in turn validates the correctness of the above theory.

We now find the specific heat of the anti-ferromagnets, at which the temperature
effect of the system should be considered. The inner energy of the magnon excited in
the anti-ferromagnetic systems can be represented [28, 155] by

U(T) =∑
k
⟨a+kak⟩Tℏωk +∑

k
⟨b+kbk⟩Tℏωk ≈ 2∑

k
ℏωk/[exp(ℏωk/KBT)]. (13.3.41)

In the cubic crystal system, we can approximately represent the frequency of the
magnon, which is directly proportional to its wavevector k, so its dispersion relation
can approximately be denoted by ℏω ≈ 8ℏS(J20 − vξ

2
0)kr0, by equation (13.3.40) in the

long wave approximation of kr0 ≪ 1, which is the same as that of the acoustical
phonon in the same systems. We assume the anti-ferromagnet is a bcc crystal which
is composed of two mutually penetrating simple cubic sublattices, in which the side
length of each sublattice is denoted by a. When ℏωk ≫ KBT, the following relation
[27, 28, 155] can be obtained:

U(T) =
2Nr30
8π3
.4π ∫
∞

0

ℏωkk2dk
[exp(ℏωk/KBT) − 1]

=
2N(KBT)4

2π2[8Sℏ(J20 − νξ
2
0)]

3 ∫
∞

0
x3[e−x + e−2x + ⋅ ⋅ ⋅]dx. (13.3.42)

Thus, we obtain the specific heat in the form of

Cm =
𝜕U(T)
𝜕T
=

13,71KB
[48Sℏ(J20 − νξ

2
0)]

3 (KBT)
3 ∝ (KBT)

3. (13.3.43)

This result is basically consistent with the experimental data.
It should also be pointed out that the effects of external fields are not included in

our discussion. If any such field is present and it is in the direction along the easy
magnetic axis, then its effect, due to the opposite magnetization directions of the
two sublattices, will be equivalent to a periodic external field of period 2r0 which
will strengthen the discreteness of the lattice and thus invalidates the continuum ap-
proximation. However, if the direction of the external field is perpendicular to the
anti-ferromagnetic spin direction, the continuumapproximationwill still be valid. For
this reason, earlier experimental and theoretical studies were concentratedmainly on
transverse fields, rather than longitudinal fields.

13.3.3 The nonlinear properties of magnons in different anti-ferromagnetic systems

Xu and Pang [55, 254–257] further studied nonlinear excitations and properties of
magnons in anti-ferromagnetic molecular crystals, such as Ni(C2H8N2)2–NO2(CIO4)
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(NENP) andNi(C3H10N2)2NO2(CIO4) (NINO), using the abovemodel andmethod. Their
molecular structure is represented in Figure 13.1, where NENP’s space group is Pn21a
and NINO’s space group belongs to Pbn21. The constant crystal structures have the
following dimensions: a = 15.223 nm, b = 8.295 nm, c = 10.300nm for NENP and
a = 15.384 nm, b = 8.507 nm, c = 10.590nm for NINO. In two molecular crystals, their
molecular structures are all composed of Ni2+ ionic chains, which are arranged along
the c-axis, in which the distance between two Ni2+ ions is approximately 5.15 nm in
each chain, but between two Ni2+ ions from different chains, the distance is approx-
imately 8.295 nm, as shown in Figure 13.1. There are many nonmagnetic perchlorate
anions between the two chains and the Ni2+ ions are related with a nitrogen atom and
an oxygen atom by means of covalent bonds formed by the nitrite base in the same
chain.

Figure 13.1:Molecular structures of NENP and NINO crystals.

The localized crystal structure of the Ni2+ ions is a distorted octahedron. Its funda-
mental surface is perpendicular to the c-axis and has the space group Pn21a. There is
also an inversion center in point near arranged along he c-axis, the ions chains com-
pounds, the distance between two Ni2+ ions is approximately the size of one Ni2+ ion.
This structure has Ni2+ ions forming two magnetic tracks, one of which has a high
spin state with S = 1. The octahedron configuration also makes Ni2+ ions form two
magnetic tracks. One has dxy symmetry in the fundament surface, the other has d2Z
symmetry along the axis of the chain. There is also the strong superposition of the
magnetic tracks of d2Z due to the influence of nitrite bases along the chain axis. These
structural properties predict that the Ni2+ ions in one chain form anti-ferromagnetic-
like interactions because of very weak interactions. Renard et al. [54, 262] discovered
that the rate of the interactions between the chains relative to that in one chain is
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about 4 × 10−4. Therefore, NENP and NIPO are good anisotropic anti-ferromagnetic
chains for the Heisenberg model. Its Hamiltonian [308] is of the following form:

H = T + V + 2∑
nm

JnmS
z
nS

z
m + 2∑

nm
ξm(SxnS

x
m + S

y
nS

y
m) + 2D∑

n
(Szn)

2
+ 2E∑

n
[(Sxn)

2
− (Syn)

2
],

where D and E are the anisotropic energies of single ions and Jnm is the interaction
energy of spin ions in one chain.

We studied [35, 36, 307–309] the properties of magnons in anti-ferromagnetic
molecular crystals with order parameter conservation (OPCAFMs), such as the mag-
netic compound CeAs, which was first investigated by Bose [32–34], in which the
Hamiltonian is

HBose =∑
nm

JnmS
z
nS

z
m −

1
2
∑
nm
Δ nm(S

+
nS
+
m + S
−
nS
−
m) − h∑

n
Szn.

For an OPCAFM which contains the magnon–phonon interaction, we gave its
Hamiltonian for nonlinear collective excitation by

H = T + V +∑
nm

JnmS
z
nS

z
m −

1
2
∑
nm
(S+nS
+
m + S
−
nS
−
m) − h∑

n
Szn + h∑

m
Szm.

On the other hand, we [307–311] researched the properties of magnons and the
motion rules in double ferromagnetic anti-ferromagnetic interactions, such as CsNiF3
as one-dimensional Heisenberg anti-ferromagnet. CsNiF3 has, in fact, a hexagonal
crystal structure [142], with P63/mmc and an MMC crystal structure. Its lattice con-
stants are a = b = 62.1 nm and c = 52 nm. In this structure, the public face of
the octahedron is composed of NF6, which is homogeneously arranged along the
c-axis, with the chains separated by the Cs ions. The coupling interaction between
the Ni2+ ions along the c-axis possesses the ferromagnetic feature, but we find an
anti-ferromagnetic feature along the a and b chains [144, 168, 261]. Therefore, we
think that CsNiF3 is a ferromagnet with two chains and a chain–chain interaction. In
such a case, its Hamiltonian is represented by

H = −J1∑
nδ
SzAnS

z
An+δ − J1∑

nδ
SBnSBn+δ + J2∑

n
SAnSBn + D∑

n
(SzAn)

2
+ D∑

n
(Bn)

2.

We used the above methods to obtain the dynamic equations of these magnons
from the above Hamiltonians for these anti-ferromagnetic systems. These results indi-
cate these dynamic equations are all similar to equation (13.3.25) or (13.3.38). Their dif-
ferences are only distinctions of the parameters and coefficients. This indicates clearly
that the nonlinear interactions in these systems are still due to the interactions be-
tween themovingmagnons andphonons or between themovingmagnons. Therefore,
the properties andmotion rules of themagnons also have the wave-corpuscle duality,
so they can still be described by nonlinear quantummechanics.
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