
C
o
p
y
r
i
g
h
t

2
0
1
8
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 12:46 PM via
AN: 1801011 ; Hussam Khrais.; Python for Offensive PenTest : A Practical Guide to Ethical Hacking and Penetration Testing Using Python
Account: ns335141

Python for Offensive PenTest

Hussam Khrais

BIRMINGHAM - MUMBAI

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Python for Offensive PenTest
Copyright 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: David Barnes
Acquisition Editor: Namrata Patil
Content Development Editor: Dattatraya More
Technical Editors: Nirbhaya Shaji and Sayali Thanekar
Copy Editor: Laxmi Subramanian
Project Coordinator: Shweta H Birwatkar
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Jisha Chirayil
Production Coordinator: Arvindkumar Gupta

First published: April 2018

Production reference: 1250418

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78883-897-9

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Contributors

About the author
Hussam Khrais is a senior security engineer, GPEN, and CEHHI with over 7 years of
experience in penetration testing, Python scripting, and network security. He spends
countless hours forging custom hacking tools in Python. He currently holds the following
certificates in information security:

GIAC Penetration Testing (GPEN)
Certified Ethical Hacker (CEH)
Cisco Certified Network Professional - Security (CCNP Security)

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents
Preface 1

Chapter 1: Warming up – Your First Antivirus-Free Persistence Shell 5
Preparing the attacker machine 5

Setting up internet access 7
Preparing the target machine 9
TCP reverse shell 13

Coding a TCP reverse shell 14
Server side 14
Client side 16

Data exfiltration – TCP 19
Server side 20
Client side 21

Exporting to EXE 26
HTTP reverse shell 31

Coding the HTTP reverse shell 31
Server side 32
Client side 34

Data exfiltration – HTTP 36
Client side 36
Server side 38

Exporting to EXE 40
Persistence 42

Making putty.exe persistent 44
Making a persistent HTTP reverse shell 48

Tuning the connection attempts 50
Tips for preventing a shell breakdown 53
Countermeasures 54
Summary 55

Chapter 2: Advanced Scriptable Shell 56
Dynamic DNS 56

DNS aware shell 57
Interacting with Twitter 59

Parsing a tweet in three lines 60
Countermeasures 62

Replicating Metasploit's screen capturing 63
Replicating Metasploit searching for content 67

Target directory navigation 70
Integrating low-level port scanner 72

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[ii]

Summary 75

Chapter 3: Password Hacking 76
Antivirus free keylogger 76

Installing pyHook and pywin 77
Adding code to keylogger 77

Hijacking KeePass password manager 80
Man in the browser 82

Firefox process 83
Firefox API hooking with Immunity Debugger 84
Python in Firefox proof of concept (PoC) 86
Python in Firefox EXE 89
Dumping saved passwords out of Google Chrome 90

Acquiring the password remotely 91
Submitting the recovered password over HTTP session 95

Testing the file against antivirus 96
Password phishing – DNS poisoning 97

Using Python script 100
Facebook password phishing 101
Countermeasures 105

Securing the online account 105
Securing your computer 106
Securing your network 106
Keeping a watch on any suspicious activity 106

Summary 108

Chapter 4: Catch Me If You Can! 109
Bypassing host-based firewalls 109

Hijacking IE 111
Bypassing reputation filtering in next generation firewalls 114

Interacting with SourceForge 115
Interacting with Google Forms 119

Bypassing botnet filtering 122
Bypassing IPS with handmade XOR encryption 123

Summary 127

Chapter 5: Miscellaneous Fun in Windows 128
Privilege escalation – weak service file 128
Privilege escalation – preparing vulnerable software 129
Privilege escalation – backdooring legitimate windows service 130
Privilege escalation – creating a new admin account and covering
the tracks 134
Summary 135

Chapter 6: Abuse of Cryptography by Malware 136

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iii]

Introduction to encryption algorithms 136
Protecting your tunnel with AES – stream mode 138

Cipher Block Chaining (CBC) mode encryption 139
Counter (CTR) mode encryption 139

Protecting your tunnel with RSA 144
Hybrid encryption key 150
Summary 154

Other Books You May Enjoy 155

Index 158

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Preface
Python is an easy-to-learn cross-platform programming language that has unlimited third-
party libraries. Plenty of open source hacking tools are written in Python and can be easily
integrated within your script. This book is divided into clear bite-size chunks, so you can
learn at your own pace and focus on the areas that are of most interest to you. You will
learn how to code your own scripts and master ethical hacking from scratch.

Who this book is for
This book is for ethical hackers; penetration testers; students preparing for OSCP, OSCE,
GPEN, GXPN, and CEH; information security professionals; cyber security consultants;
system and network security administrators; and programmers who are keen on learning
all about penetration testing.

What this book covers
, Warming up Your First Antivirus-Free Persistence Shell, prepares our Kali Linux

as the attacker machine. It also prepares out a target and gives a quick overview of the TCP
reverse shell, the HTTP reverse shell, and how to assemble those.

, Advanced Scriptable Shell, covers evaluating dynamic DNS, interacting with
Twitter, and the use of countermeasures to protect ourselves from attacks.

, Password Hacking, explains the usage of antivirus free loggers, hijacking the
KeePass password manager, Firefox API hooking, and password phishing.

, Catch Me If You Can!, explains how to bypass a host-based firewall outline,
hijack Internet Explorer, and bypass reputation filtering. We also interact with source forge
and Google forms.

, Miscellaneous Fun in Windows, focus on exploiting vulnerable software in
Windows and different techniques within privilege escalation. We'll also look into creating
backdoors and covering our tracks.

, Abuse of Cryptography by Malware, provides a quick introduction to encryption
algorithms, protecting your tunnel with AES and RSA, and developing hybrid-encryption
keys.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[2]

To get the most out of this book
You'll need an understanding of Kali Linux and the OSI model. Also, basic knowledge of
penetration testing and ethical hacking would be beneficial.

You will also need a 64-bit Kali Linux and a 32-bit Windows 7 machine with Python
installed, on Oracle VirtualBox. A system having a minimum of 8 GB RAM is
recommended.

Download the example code files
You can download the example code files for this book from your account
at . If you purchased this book elsewhere, you can
visit and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at .1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
. In case there's an update to the code, it

will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at . Check them out!

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[3]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:

Conventions used
There are a number of text conventions used throughout this book.

: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Now, if you pay a close attention to the service name which gets created by
Photodex software which is ."

A block of code is set as follows:

Any command-line input or output is written as follows:

apt-get install idle

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Go to Advanced system settings | Environment Variables."

Warnings or important notes appear like this.

Tips and tricks appear like this.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[4]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at .

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit , selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit .

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit .

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

11
Warming up – Your First

Antivirus-Free Persistence Shell
Nowadays, security solutions such as firewalls, IPS, and sandboxing are becoming more
and more advanced to prevent and detect cyber-attacks. So, being an advanced hacker
requires you to code your own script and tools to bypass these security solutions.

The following topics will be covered in this chapter:

Preparing the attacker machine
Preparing the target machine
TCP reverse Shell
HTTP reverse Shell
Persistence
Tuning connection attempts
Tips for preventing a shell breakdown
Countermeasures

Preparing the attacker machine
In this section, we will prepare our Kali Linux machine as the attacker. Note that we are
assuming that the operating system is already set up in VMware or VirtualBox. As of now,
we will be using VirtualBox for all our chapters.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[6]

We can check the version of any Linux OS by running the following command to
display the content from the file , which contains OS distribution
data. We will be using Kali Linux version 2018.1, as you can see from the following
screenshot:

It doesn't matter what your Kali version is. For this book, we will be using the latest version
available at the time of writing. Since, by default, Python is preinstalled in every Linux
distribution, we can get the version details from either the interactive shell by running the
command or by using , as shown in the following screenshot:

We will be using for now, which came preinstalled with our Linux
version.

So, let's go for networking a little bit. In this chapter, the Kali IP is . We can
check the Kali IP by running the command. This will return the network
interface configuration as shown here:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[7]

Setting up internet access
To set up the internet on our system, we just need to change the network mode to Network
Address Translation (NAT) in VirtualBox. NAT mode will mask all network activity as if it
came from your host OS, although VirtualBox can access external resources. To do this,
perform the following steps:

Click on the Devices menu from VirtualBox's menu bar1.
Go to Network and select Network Settings2.
Select the network mode as NAT and click on OK as shown in the following3.
screenshot:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[8]

Once you perform the preceding steps, you should be able to reach the internet, as long as
the VirtualBox host does. You can check internet access by running from the
terminal.

Now, if you don't have a GUI compiler for Python, you can just install it using the following
command:

apt-get install idle

Once it's installed, let's do a quick print program using IDLE (using Python-2.7), which we
installed using the previous command. Open a new Python file and type

. Run the program and save it on the desktop. Once you finish accessing the
internet, you now need to change the network mode back to Internal Network so that we
can reach out to our Windows target. This is shown in the following screenshot:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[9]

Note that the Windows target globally machine is sitting on the same
internal network as Kali attacker globally machine, , here.

And, as a last step, we should verify that we still got the same IP address, which is
 by running in the terminal.

if the IP changes, you can change the IP back by running

Preparing the target machine
In this section, we will be preparing our target. We are using a 32-bit Windows 7 machine as
our target. We will begin by installing Python 2.7.14+ version from

. After you begin the installation, you'll notice that Python will install other
handy tools such as and . We will be using to install third-party
libraries later on.

Similar to what we have done in Kali, we will create a quick and simple Python script just
to make sure that everything is working fine. Create a new file. Type , run
the script, and save it to the desktop. After this, we need to add Python to our path, so we
can start an interactive mode or interactive shell anywhere from the command line. Open a
command line and type ; you will see that Windows does not recognize the

 application by default, so we've got to add that manually.

Perform the following steps to achieve this:

Go to Advanced system settings | Environment Variables.1.
In System Variables, scroll down until you reach the variable Path. You will2.
need to append the Python path and the path here.
Copy the path where the Python application is installed and append it to the3.
Variable value.
Ensure that you insert a semicolon at the end, just to make sure that you append4.
it to our existing Variable value.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[10]

Also, copy the path where is installed from the folder and append5.
it to the Variable value as shown in the following screenshot:

Restart the machine so that it recognizes the new values we've just inserted.6.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[11]

After the restart is complete, open a command line and type and the7.
interactive shell will appear:

Now, to get connectivity with our Kali machine, make sure that the network8.
setting is set to Internal Network and the network name matches the name on
the Kali side, which is :

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[12]

Lastly, we need to give this machine an IP address on the same subnet as the Kali9.
machine. We can change the network settings by going to Network and
Internet/Network and Sharing Center from the control panel. Click on the Local
Area Connection and then click on Properties. From there, go to Internet
Protocol Version 4 (TCP/IPv4), enter the IP address as and the rest
as shown in the following screenshot. Then click on OK:

We have installed the Python compiler on the target machine just to have a
better way to explain the code and compile it. However, we will compile
the Python script into a standalone EXE later on, so it'll work on any target
without having a Python compiler installed.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[13]

TCP reverse shell
In this section, we will have a quick overview of TCP reverse shells, why we need a reverse
connection, and what a shell is. The best way to answer these questions is to study the
topology shown in the following figure:

Let's say that we have an Attacker connected somewhere on the Internet, and on the right
side we have our Target. So technically, we have a PC that is fully patched with a built-in
firewall enabled, and we have the corporate firewall in place. And most likely that
Corporate firewall is integrated with an IPS module or Antivirus software. So now, for the
attacker to access this protected PC, there are two major problems here. First, the attacker
needs to bypass the built-in or the host-based firewall on the operating system, which, by
default, will block any incoming connection to that PC unless it's explicitly permitted; and
the same rule goes for the corporate firewall as well.

But, if the attacker could somehow find a way to send a malicious file to the user, or maybe
trick that user into visiting our malicious website and downloading a malicious file, then we
might be able to compromise that PC or maybe the whole network. So, in order to bypass
the firewall root restriction, we need to make our target, which is the TCP client, initiate the
connection back to us. So, in this case, we are acting as a TCP server, and our target, or our
victim here, is acting as a TCP client and this is exactly why we need a reverse shell.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[14]

Now, we need to understand what a shell is in the first place. If we can initiate a
process on the target machine and bind that process to a network socket, in this case, it's
called a reverse shell. Hence, when we say that we sent a TCP reverse shell on port to
the target machine, it means that once the victim runs the file, we're expecting to receive a
reverse TCP connection on port . So, the destination port in this case will be , and we
should be listening on this port. So this port should be open in our Kali machine. Then, after
completing the TCP three-way handshake, we can send certain commands to the
victim/target, make the victim execute them, and get the result back to us.

Keep in mind that a combination of social engineering and client-side
attacks, which we discussed here, is the most powerful type of attack, and
is highly likely to succeed.

Coding a TCP reverse shell
In this section, we will call a sample TCP server on the Kali machine and a sample TCP
client on the target machine. Then, we will see how to execute some commands remotely
from the Kali machine.

Server side
Lets start with the server side. Building a TCP server in Python is quite simple:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[15]

As you can see from the preceding code, the script starts with importing the library,
which is responsible for coding a low-level network interface. The defines the
socket address as a pair: the host and port. In this case, it will be , and the
port is . The is the default mode for the socket type. Now, the bind
function specifies the Kali IP address and the listening port in a tuple format, which is

, and we should be listening on port to receive a connection.

Since we are expecting only a single connection from a single target, we'll be listening for a
single connection. So the backlog size, which specifies the maximum number of queued
connection, is ; and we define the listening value to be . Now, the function
returns the value of a pair of connection objects (), as well as the address (). The
address here is the target IP address and the source port used from the target to initiate the
connection back to us. Next, we will go into an infinite loop and get our command input
and send it to the target machine. This raw input is used to get the user input. If the user
input was , we will inform our target that we want to close the session, and then
we will close the session from our side. Otherwise, we will send a to the target,
and we will read and print the first KB of the received data from the target side.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[16]

Client side
Now, let's look into the client side script:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[17]

We import the to start the shell and the system. Next, the connection part is
quite simple. We define and object, and we specify the IP address of the Kali
machine and the port that we should initiate the connection on. The port that we are
listening to on the Kali machine should exactly match the port from which we initiate the
connection from the target machine. Similar to the server side, we will go into an infinite
loop and get the attacker command. If the attacker command is , or if there is
a keyword or string in the command, then we close the connection and break
the infinite loop, otherwise we will use the to start a shell in the system. We
will pass the command that we have received from the attacker machine to the

, and get the result or the error. Notice that the has a kind of self-
mechanism for exception handling. For instance, if we mistype a certain command on the
Kali side and send the wrong syntax to the target, instead of crashing the process, the

 handles the exception and returns the error.

Let's quickly try our script from the Python IDE that we used earlier for the
program. Run the server side first by clicking on Run and selecting Run Module. Just to
verify that we have opened a listener on port , run the following command:

 netstat -antp | grep "8080"

As you can see, has opened the port and we are listening. Run the target script
on the other VirtualBox. As shown in the following screenshot, we've got ten our shell from
an IP address of , which is the IP address of our Windows machine, and a source
port of :

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[18]

Let's explore the target machine a little bit starting with and :

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[19]

Let's go for . We now get the ARP table on the target machine:

As shown in the previous screenshot, on mistyping a command, instead of crashing the
script, the subprocess returns the wrong syntax error.

To quickly recap what we have done here so far, we have built a reverse TCP tunnel and
got the user input using the raw input. When we type , the raw input will get that
command and then we will send it to the target machine. Once received at the target side,
we initiate as a subprocess, send the error or the result back, and print it out on the
target side.

The shell will crash if you hit Enter a couple of times.

Data exfiltration TCP
In the previous section, we have seen how to navigate target directories. Now we will see
how to grab these files. Ensure that, before grabbing any data from the target machine, the
rules of engagement explicitly allow this.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[20]

Server side
So, let's start with the updated server side script:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[21]

The code indicates that this is not a normal command; this
command is used to transfer a file. So, both the server and the client must agree on this
indicator or formula. Now, the formula will be followed by and the path of the file
that we want to grab, for example, .

Client side
Now, let's take a look at the client side script:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[22]

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[23]

As mentioned previously, both the client and the server must agree on the formula.
So, on the client side, if we receive a grab string, we will split the command into two
sections, the section before and the section after , where the second section contains the
path and we will store the path in the path variable. Now, to make sure that our script will
not crash if something goes wrong during the transfer, we will use the exception handler.

Next, we send the variable to the function. So, the first thing that we'll do
in the function is to check whether the requested file exists in the first place or
not. If not, then we'll send the message to the server.

Next, we will read the file as pieces or chunks, where each piece or each chunk has a value
of 1 KB, and we will loop around until we reach the end of the file. And when we do so, we
need to send an indicator or a tag to the server side to indicate that we have reached the end
of the file. So, the string in the preceding code block is to indicate that we have
reached the end of the file.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[24]

Now, on the server side, we create a placeholder or file holder. We will store the received
bytes in , which is the file holder here. When the control enters the loop, and each
time we read 1 KB of data, it's written into . When it receives the string, it
means that we have reached the end of the file. So, the file is closed and the loop ends. Also,
if the server gets , it will print this out and break the loop.

Now, run the server script again and we'll be listening to port . Once we run the script
on the target side, we get the shell. Next, proceed to the directory and try to grab

 by running the command:

When we type the aforementioned command, it will trigger the statement on both the
client side as well as the server side. So, on the target when we receive a

, we will split up this command into two parts. The second part
contains , which is the file that we want to grab. We will store it in the path
variable as discussed previously. The code will check whether the file exists, read it in
chunks, and send it over to the server side. This gives a response at the server side:

.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[25]

Find the file on your desktop, it's called now, change the file extension to , and
rename the file, since we know that this is not an image but only a placeholder. Now, open

 using any PDF reader just to make sure that the file is not corrupt. It'll open
without any errors if it hasn't been corrupted.

Let's try with another one. Now, we'll grab :

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[26]

Since the file that we want to grab has the same extension as our file holder, which is ,
we don't need to change the file extension.

Try to grab any file that exists but the same rule applies here: change the name of the file
with its original extension. Let's try with a file that does not exist. Go back to our shell, and
type and it will throw an error, as shown in the following image:

This will crash our script on the target side, which you will see when you run .

You were probably expecting us to use a well-known protocol such as FTP, SCP, or secure
FTP to do the file transfer. But we used a very low-level file transfer over a TCP socket, so
you might ask why we performed it. Since these well-known protocols could be blocked on
the firewall, we won't be able to grab any files out. What we have done here is, instead of
initiating a new channel every time we want to transfer a file which may trigger the admin's
attention, create a single TCP socket, a single session, to gain access, doing a remote shell, as
well as for file transfer. This type of transfer is called an inline transfer, where we got a
single channel and a single session to perform all the desired actions.

Exporting to EXE
There are multiple methods to export your Python script into a standalone EXE file. Today
we'll use library. You can download the
version from .

First, proceed to install this library. It is a fairly simple process just follow the on-screen
prompts.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[27]

After you've finished the installation, open a Python window on the Windows machine and
import just to make sure that we can import this library without any exceptions.
Type and then import . If it doesn't throw a error, you're successful:

Now, create a folder named on your desktop. In this folder, you should have three
things: the binary file, setup file, and your script file. For
simplicity, rename the binary to .

The setup file, , will set the criteria for the final standalone EXE file:

In the script, we start by appending the binary into our directory. Then,
we set the to . Define the name of our script, . Set to

 and run this file.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[28]

Two folders will be created, called and , after performing the aforementioned
steps, as shown in the following screenshot:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[29]

So under the folder, we got our as a standalone, without any
dependencies. Now, on running , we will get the connection (provided the
server script from the previous section Data exfiltration, is running on the Kali side) and we
can see that a the process has been created on the Windows Task Manager, as
shown in the following screenshot:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[30]

So once again, perform a quick verification as follows:

Run 1.
Navigate through the directories2.
Grab a file such as and wait for its successful transfer:3.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[31]

Change the file extension to 4.
Now, open the image and, after successfully viewing it, terminate the5.

 process
Execute in the shell on your Kali machine6.
Once you hit Enter, it gets terminated on the target machine7.

HTTP reverse shell
In this section, we will discuss a higher-level Python reverse shell, which will be carried
over the HTTP protocol. The HTTP protocol is highly likely to be opened on the outbound
or egress firewall rules, since it's used for web surfing. Also, a lot of HTTP traffic is required
in every network, which makes monitoring much harder and the chances of us slipping up
are high. Let's see how it works.

First, we'll configure a simple HTTP server and a simple HTTP client and we'll use the
and methods to send data back and forth between these two entities. So, as mentioned
earlier, the client will initiate a reverse HTTP session back to our server using a method
and on the server side, once we receive a request, we'll start taking commands using
raw input, and we will send that command back to the target.

Once we give the command to the target, it'll initiate a subprocess: a subprocess.
Pass the command to that subprocess and it will post the result back to us using the
method. Just to make sure there is continuity for our shell, we will perform for 3
seconds. Then we will repeat the whole process all over again using the

 infinite loop. The code is much simpler than the previous TCP socket, especially in
the file transfer section, and this is because we are using a high-level protocol to transfer the
files and data. The next section deals with the coding part.

Coding the HTTP reverse shell
In this section, we'll cover the coding part for an HTTP reverse shell. On the client side,
we'll be using a very high-level library to send our and requests.

The library called , which is available at
, will make it much easier to do a or request in only a

single line. is a third-party library, so let's start by installing it. All you have to do
is navigate through the Command Prompt to the folder that contains its setup file and issue

.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[32]

To verify that the library has been installed successfully, open the Python interpreter, like
we did earlier for , and enter . If no exceptions are thrown here,
we're good to go:

Server side
The following block of code is on the server side:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[33]

On the server side, we'll use a built-in library named , to build a basic
HTTP server, which handles the client requests. Next, we define our Kali IP and the
listening port address by setting to . Then, we create a and

 object, and we will pass our listener IP, the , and a class
handler to the . The class handler defines what
should be done when the server receives a or request. The server will run forever
without coding a .

Now, if the server gets a request, it will grab the user input using the raw input and
will send back an HTML status, , which means OK. Now, the specifies
the header field definition. It's mandatory to set this value since our HTTP client has to
know the type of data. In this case, it's HTML text, . The

 function is equivalent to sending data in our previous TCP shell, and we
will be using this function to send the command that the user has input to our target.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[34]

If the server gets a request first, similar to , we will return an HTML status to
say that we got the without any problem. The
specifies how many bytes the data contains. Note that the returned value is a
string, but it has to be converted to an integer before passing it as a parameter to

. We will use the function to perform this. Finally, we'll print the
 variable, and in this case it'll be the command execution output. The server will

run forever using the function without coding a .
However, if we invoke Ctrl + C from the keyboard, it will break the loop.

Client side
The following block of code is on the client side:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[35]

Here, we use the subprocess to create a shell, and then we create a request to our Kali
server. Note that the function returns the text that we have got from sending the

 request. In this case, is the command that we should execute. Now, once we get
the command, we will start a subprocess, and the execution result or error will be sent as a

 method in just a single line. Then, the process will sleep for 3 seconds, and repeat all
over again. This part is just to be on the safe side in case we get a packet
drop or unexpected error.

Also, you can enhance this script by adding some exception handling
using the and functions.

Once we proceed to run the script on both sides, we will get our shell on the server side and
try navigating through the current working directories. Execute and you'll get
the complete IP configuration. Now, mistype a command and the error message will be
thrown, as shown in the following output:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[36]

At the end we terminate the session by executing on the server side. Once we
do this, we exit our script on the client side, whereas to exit the script on the server side we
need to hit on Ctrl + C on the keyboard to terminate the loop. The server will terminate by
showing a message.

Data exfiltration HTTP
As we did with our TCP reverse shell, we will do a file transfer from the target machine
back to the attacker machine.

Client side
Thankfully, the library supports submitting a file in just two lines:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[37]

Here, we will perform the same process as we did in the TCP socket. If we get a
command from the attacker machine, we will split this command into two parts, where the
second part contains the path directory or the path for the file that we want to grab. Next,
we will check whether the file is there. If not, we will notify the server about it immediately.
Now, in case the file was there, notice that we have appended to our URL,

 as an indicator that we will be transferring a file, not a
normal output since both use the method to transmit data. So, for instance, when
we send a file, let's say , we will send it with a in the URL. Also,
the library uses a special method called to submit
or send a file.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[38]

Server side
Now, on the server side, we've imported a new library called . This one is used to
handle the received file and store it locally. The following is the server side script:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[39]

If we receive a with a in the URL and the content type as
, it means that we'll get a file from the target machine, not the usual command output.

Then, we need to pass the received file, , and to
the class. The returned value of can be indexed like a
Python dictionary, where we have a key and a corresponding value. For instance, if we
create a Python dictionary called with a key and value as follows:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[40]

To get the value, , we just need to have the corresponding key, . On the client side, when
we submitted the file, we attached a tag or key called . So, we will use this
tag or key on the server side to receive that file. The will grab the keys and
its values and store them in an object called . But we're only interested in the value of

, which is the tag or key that contains the actual file we sent. Once we get that value,
we will write it into a placeholder called . In the end, we exit the function to prevent
any mix-up with ongoing file transfer posts.

To initiate the file transfer, perform the following steps:

Run the code the usual way on both machines (Run | Run Module)1.
Once we get the , proceed to perform a directory search with the 2.
command and try to grab a file, say , by running the command,

 Once we get the file on our server machine, rename the placeholder to3.
 and verify that we have running fine without any file

corruption. This can be done by executing the following from the Command
Prompt:

wine putty.exe

Go back to the shell and grab another file, say , just to test it.4.
Check whether you can read the contents after renaming the placeholder5.
Try to grab a non-existing file; you'll be presented with an error since it does not6.
exist in the first place

Exporting to EXE
In this section, similar to what we have done in our TCP socket, we will export and test our
HTTP reverse shell into an EXE, and test it after that.

Here, also you need to create a folder named on your desktop. As mentioned earlier,
the binary file, the setup file, and the script file should
be in the folder.

The setup file, , will be as shown here:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[41]

Perform the following steps to initiate the export:

Start by editing the setup file and change into1.
, which is the name of our script on the target side.

Execute the script.2.
Once we have finished, we will go to the folder and copy 3.
to the desktop.
Ensure that the server is already running. Once we get the , go to the4.
directories using the .
Try to grab a file, say , as we did in the previous sections.5.
After getting the file successfully on the server side, try other simple commands6.
such as and .
Try typing an incorrect command and check whether you are getting the proper7.
error message
At the end, terminate the session from our shell by executing the 8.
command
You can check to see that we have the process on our9.
Windows machine; once we execute , the process will disappear from
the list confirming its termination

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[42]

Persistence
Maintaining access is a very important phase of penetration testing. Let's assume that our
target has run our shell and all things are going fine. Then suddenly, the target just turned
off the computer. So, in this case, we'll lose everything. So, the key point here is that we
need to survive after a reboot or a shutdown by the target machine. Now, before proceeding
any further, some customers prohibit any modification to the target machine, so you've got
to make sure you set the right expectations with your customer before proceeding any
further.

If the modification is allowed, then we have three phases of execution as given here:

First, we'll copy ourselves in a different location and we are doing that just in case1.
our target deletes the shell file; so this copy is a backup. In this phase, two
parameters should be identified. First, the source path, which is the directory
where our shell exists or, in other words, the current working directory. The
second parameter is the destination path; here it is the folder.

Since each PC has a different username, we'll have to find this out as we
don't know the username profile that was on our target previously.

In the second phase, after copying our shell into the folder or2.
 directory, we need to add a registry key and point it out to the copied

file in the folder. Keep in mind that the first and second phases
should only run once after our backdoor gets installed on the target machine for
the first time.
The third phase is to start our reverse shell without repeating the preceding 23.
phases.

Since we don't know the current working directory or user profile, we've got to figure it out
in the first place. This will happen in the system reconnaissance phase.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[43]

Now, to break down the workflow for our persistence shell, take a look at this simple
flowchart:

Logically, we'll start with the system reconnaissance, Sys Reconn, phase and the output of
this phase will include two things. First, we will discover the current working directory of
our shell, and find out the user profile. The second output should be the destination path.
Next, we need to determine whether we are running for the first time on the target machine.
Now, you probably are wondering how can we do that. Well, thanks should go to the OS
library for simplifying the task for us. To achieve this, we will simply check whether our
script exists in the destination path or not. If it exists, then this is not the first time we are on
the target side since we have already done the first two phases. So, we will skip phases 1
and 2, and fire up our shell.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[44]

However, if this is the first time we have run on the target side, we will copy ourselves to
the destination path, which is what we do in phase 1. Then, we add a new registry key
pointing to this location, which is phase 2 here. Finally, we need to make sure that we get
our connection back to the Kali server. In two upcoming sections, you'll see everything in
action to provide more clarity on this concept. For ease of understanding, we'll break the
coding part into two parts. In the first part, we will make persistent, and in the
second part we will wrap up and integrate the persistent script with our previous HTTP
reverse shell.

Making putty.exe persistent
In this section, we'll make the program persistent. You can search on Google
and download PuTTY software for free. As we explained earlier, our script will start by
doing a system reconnaissance, and the output of this phase will either be the current
working directory or the destination of the user profile.

Now, let's translate this phase into a block of code as shown here these lines will perform
the reconnaissance phase for us:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[45]

The function will get the current working directory for us.

Now, on the we make a folder named with the that we
downloaded for this section and the script shown previously.

Let's see the output of the line using the Python interactive shell or the
Python interactive window:

Open Command Prompt and navigate to the current working directory, which is1.
Persistence. Start a Python interactive mode.
Execute and .2.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[46]

We get the current working directory here for our script. This result will be stored3.
on the path variable:

Looking back into the script, we invoke into the
subprocess and use this step to grab the name. Based on this, we can build
our destination path, which is the folder.

Enter the preceding variable into the Command Prompt. The output
will be a little noisy, so we will split the output and store the second part in a variable called

. The splitting criterion or parameter is based on the sign. Based on this, we will
split the output into two sections. The second section will be stored in a variable called

. Once we know this information, we can build our destination path, which is the
 folder.

We append and the string to have the destination's absolute path.
Notice that the here is not unknown anymore. At this point, we have
accomplished our reconnaissance phase successfully. Moving on to check whether it's the
first time that we have landed on this computer, we'll do this trick via an OS function called

. If does not exist in the folder, this means that it is
the first time we are running our script here because the next time PuTTY will be copied,
and the result of this statement, , will be

. Since this is our first time, we will copy , which is the source variable.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[47]

Next, we will add a registry key in the user space. Note that we used a user space, not a
machine space, on purpose. By using the user space, our script will work, even if we don't
have admin privileges. We've named the registry key string (you can change it
later to anything else) and point its value to our final destination. Here, we don't have a
shell; it's just . So, this part will be discussed in the next section. Before running
this script, let's verify that we've got nothing in the registry database related to our script.
Go to the Registry Editor by searching at Windows Start, and our path will be

, as shown at the bottom of the following screenshot, which doesn't have anything in it
now other than the entry:

Now, navigate to the folder and ensure that there is nothing left to be done.
Lastly, make sure that the PuTTY software itself is functional by opening it directly.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[48]

We'll run the script right now. If we do not get an exception or error, we'll verify the
database of the registry. You'll notice that we've got our registry key pointing to this
directory in and also PuTTY has been copied to the directory:

Now, close everything and restart VirtualBox. Once we boot our machine, if everything is
working fine, we should see that has been executed and the PuTTY window
should pop up.

In the next section, we will make our HTTP reverse shell more intelligent and perform all of
these steps within a built-in function.

Making a persistent HTTP reverse shell
In this section, we will make our HTTP reverse shell, which we coded earlier. Then, we will
export it to EXE, and give it a try and test it. Now, almost all of the hard work is done
already and at this point you should be familiar with every part of the code.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[49]

So for a quick recap, what we've done here is change to ,
which will be our EXE filename. The destination part will be the same, that is, the

 folder. Finally, we start our HTTP reverse shell as usual.

The setup file here will be as follows:

Let's try and export this code to EXE and the name here will be . Once it's
done, it should be in the folder. Now, we will test it on a non-admin account just to
show that no part on our shell requires admin privileges:

From Control Panel, create a standard user.1.
Create a quick password.2.
Copy the persistence file to ; so we can grab that file from the nonstandard user3.
once we log in to that account.
Log off and log in with the new standard account.4.
Find the file and copy it on the desktop.5.
As usual, before running that shell, verify that we've got nothing in the registry6.
database. This also applies for the folder.
Set up our listener on the Kali side, that is, run our HTTP server.7.
Once done, notice that the registry key has been added successfully and at the8.
end our file was able to find out the username and copy itself to the
folder successfully.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[50]

Let's verify that our shell is working as expected. Start the Task Manager on the9.
Windows machine.
Let's start by running at the server side, which is the IP10.
address of the Kali machine.
Check the table on the Windows side with and ensure that these11.
commands are working fine.
After successfully terminating the process, we will delete the 12.
file assuming that our target has deleted the shell file and restarted the client
machine.
Log in again and, if you can see the shell on the Kali machine, we've been13.
successful with our task.

Tuning the connection attempts
In all our previous sections, we have assumed that the attacker and the target machine are
in sync with time. This means that our server was up and listening all the time. Now, the
question is: What happens if the attacker machine was offline for some reason or the
connection did not happen properly? Well, our backdoor on the client side will crash and at
the same time give a pop up as an error message and dump a text file indicating an
exception error.

Currently, our Kali machine is not listening on any port. So, if the attacker initiates a TCP
SYN to make a connection with us, now, since the port is closed, our Kali machine will
reply with a TCP RST. Now, let's have a quick look at the packet level:

Enable Wireshark on the attacker machine by executing and1.
you can see that our script is not running there
Start a new live capture2.
Set the filter to TCP3.
Log in on the Windows machine4.
Since we are not listening to port , we are replying with TCP RST, as you can5.
see in the following screenshot:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[51]

Also, on the target side, our script will crash and throws away an exception or log message.
Navigate to the log file and you'll see that it says connection aborted because the target
machine actively refused it, as shown in the following screenshot:

Log in with the account, where we have the Python compiler. So we'll fix this issue
by creating an infinite loop with an exception handler, as shown here:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[52]

As you can see, a new function called is added to the script. So, using an
exception handler, whatever the reason may be, if we get an exception for initiating the
connection, we'll sleep for some random time between 1 to 10 seconds, and then try to
connect again. In a real-world scenario, you've got to be more patient and make it from 1 to
10 minutes. In the end, we pass the exception instead of raising it here. Now, the question
is: How to terminate the process, as we have two infinite loops? Since the single break
command won't do the job for us, the trick here is, if we terminate, then we will break the
whole function and retain a value of . And if the connection function retains the value of ,
then we will break the second loop, which will terminate the process eventually.

Now, let's quickly try and test this modification:

As we've done earlier, export the script to EXE1.
Ensure that the folder and the registry key are empty2.
Double-click on from the folder and run the script3.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[53]

And once we run our script here, notice that the target keeps trying to reach us until we run
our server and the connection attempts here will be anywhere between 1 to 10 seconds, as
shown in the following screenshot:

Now, once we start our listener on the server side, we have completed three-way
handshakes and got the request from our target, as shown in the following screenshot:

Check whether the registry key is there and whether the script has copied itself to
. So, the last thing to test is whether the termination process is working or not.

Ping and perform a . You can see that is gone
from the Windows Task Manager.

Tips for preventing a shell breakdown
As we have explained earlier, We created a shell by creating a subprocess and passing the
commands to this subprocess. Now, the point is that some commands cannot work
properly using this technique, such as the and commands, both of which will
not work in a shell. Now, for instance, let's say that we were able to get a shell to the client
PC and later on we discovered some kind of Telnet or FTP server connected on the same
internal network. Unfortunately, we cannot use the built-in Telnet client in the operating
system from our shell and this is because once we do so, the server will prompt us with a
username and password; this is called the interactive method and the shell will fail to
handle these types of interaction.

One solution is to use a special Python library called Pexpect. Pexpect allows your script to
interact with an application just as if a human were typing these commands. Now, last but
not least, always test the command locally in a VirtualBox before sending it to your target.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[54]

There are couple of points to mention here. First, we have a problem with clear text. Now,
all our traffic and file transfer was in clear text. This means that any IPS or network analyzer
will easily pick up our commands and may block that connection or at least raise a flag to
the system or the SOC team. Now, in , Catch Me If You Can!, we will address this
point by building a custom XOR encryption to encrypt all our traffic between the attacker
and the target machine.

The second point is: What if the hacker IP address was dynamically changed? Let's say that
the hacker is behind an ADSL or a proxy, where each time he connects to the internet his IP
address will change. Remember that we configured our target to connect to a fixed IP
address and eventually the connection will fail since that IP address will not be valid
anymore.

Countermeasures
In this section, we will see how we can protect ourselves from the attacks we explained in
this chapter. Now, if we think about it for a second: How could the attacker reach our
internal host to begin with? Well, we rely on a social engineering attack along with a client-
side attack to make it happen. The main key defense here is to start by securing people as
they are the weakest points in the whole system. So you've got to start securing your staff
on a regular basis with some management enforcement. Next, you should never rely on
antivirus software, a sandbox, or VMware, as modern malware has built-in mechanisms to
protect itself from being detected. Also, you should stay away from any suspicious
software, especially cracked files. Before you install any software,if it was a legitimate
software, verify file integrity using MD5 or the sha1 algorithm. If possible, use Data
Leaking Prevention (DLP) to detect any file transfer on the endpoint or in the network
transit path. Also, as a best practice, you can install something called Host-Based Intrusion
Detection System (HIDS) to collect the operating system logs and notice any modification
that is happening on the operating system logs. If possible, create a whitelist, and limit
which process is allowed to run on the operating system. During the security awareness
session, always inform nontechnical people to report any phishing email or suspicious files
to the network security team or to the security operator or analyst.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Warming up – Your First Antivirus-Free Persistence Shell Chapter 1

[55]

Summary
In this chapter, we started by preparing our attacker and target machines, and then
proceeded to learn and code TCP and an HTTP reverse shell. For each of these reverse
shells, we looked into data exfiltration and exporting the Python script into , which
made the attack independent of the Python compiler. We learned how to make the
connection persistent. We also looked into tuning connection attempts and
countermeasures to prevent the attacks we learned about.

In the next chapter, we'll cover DDNS, interactive Twitter, countermeasures, replicating
Metasploit screen capturing, target directory navigation, and integrating low-level port
scanners.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

22
Advanced Scriptable Shell

The problem with the back door, which we created in the previous chapter, is that if the
attacker IP changes we don't have a built-in mechanism to inform our target that it should
connect to the new IP address. In this chapter we will look into a method that lets you keep
a fixed reserved name for your attacker machine even if its IP changes.

The following are the topics that will be covered in this chapter:

Dynamic DNS
Interacting with Twitter
Replicating Metasploit's screen capturing
Replicating Metasploit searching for content
Integrating a low-level port scanner

Dynamic DNS
Now, one of the methods we'll discuss here is dynamic DNS. Let's say that the attacker IP is

 on day 1. Then, the next day, we get an IP address of . Then, how would
our target know the new IP address ? The answer is dynamic DNS (DDNS). It is a method
to preserve a unique name for you on a DNS server. While the reserved name is fixed, the
correlated IP address will change each time you change your public IP address. For
demonstration, we will use . It provides a free dynamic DNS service. So I have
previously preserved a name called . So on the target side,
instead of hard-coding the IP address on that script, we will do a DNS lookup for this name;
then we will retrieve the IP address to make the connection. Now, you're probably asking:
When the attacker IP address changes, how does know the new IP address to
update its DNS record? Well, the answer is via a software agent, which should be installed
on our Kali machine. The agent will connect to servers, and let them know our
new IP address.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Scriptable Shell Chapter 2

[57]

To save time, you can create a free account on . It should be quite simple and
straightforward. Then, reserve a name of your choice, In the next section, we will install No-
IP agent on our Kali Linux and modify the code in our previous TCP reverse shell version
to resolve a DNS lookup on , which will be the reserved name
that we will use for demonstration purposes.

DNS aware shell
In this section, we will start by installing the No-IP agent on our Kali Linux machine.
Ensure that our Kali machine is connected to the internet so that we can download and
install the agent software:

Parse to by executing:1.

cd /usr/local/src/

Download the agent software:2.

wget http://www.no-ip.com/client/linux/noip-duc-linux.tar.gz

Extract the file:3.

tar xf noip-duc-linux.tar.gz

 into the folder we just extracted:4.

cd noip-2.1.9-1/

Install the agent:5.

make install

So, at this point, it'll prompt you to enter your and , which you used to
register on the website. So I'll type my email address here. And now we can see
that is already registered to our account, and a new
configuration file has been created:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Scriptable Shell Chapter 2

[58]

Now, let's jump to the target machine. In Python, it's very simple to do a DNS lookup. It's
just a matter of a single line to resolve the IP address, and we will do that using
either or , as shown in the following code:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Scriptable Shell Chapter 2

[59]

Then, we store the result, which is the IP address of the attacker machine, in a variable
called . For now, we will just comment the function and print out the
result, just to make sure that our script is working fine here. So we'll run the module, and it
says the IP address is , as shown here:

>>>
Attacker IP is: 37.202.101.240
>>>

Let's go back to the attacker machine and verify our public IP address by searching
 in Google. If everything goes well we will see the same address that

the target identified as the updated public IP address of the attacker machine.

So since the IP variable stores our attacker IP, we will pass this value into the connect
function and use this value to connect back to the attacker machine.

Note that we have replaced the static IP address in
 with a variable called .

Interacting with Twitter
Now, we will discuss a technique that is used frequently these days: relying on well-known
servers to perform certain tasks or transfer a piece of information. This technique has been
used by a Russian malware. What the attackers did was they sent the data over their
Twitter account and made the target parse it later on. So, on the attacker machine, we just
send an order or command as a normal tweet to our Twitter account. Note that there is no
direct communication between the attacker and its target, which is really evil here. Later on,
the target will parse the tweet and execute that order. The benefits of doing this is are:

Twitter is a trusted website and it has a very good reputation; most likely, it's a
whitelisted website

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Scriptable Shell Chapter 2

[60]

This type of attack is very hard to detect, where an unskilled security team would
never have thought that this data could be malicious and one of my goals here
is to open your eyes to such malicious attacks

In the next section, from the Kali machine we will send from the Python string as a
normal tweet to our account. On the client side, we will parse the tweet, then we will print
out the result.

Now, technically speaking, anybody can view your tweet without even
logging into Twitter. I recommend you read the FireEye report to see how
attackers took advantage of this situation,

.

Believe it or not, in five lines of Python script, you will connect to the attacker page over
HTTPS retrieve the HTML and parse it and finally extract the data from the tweet.

Parsing a tweet in three lines
For this demonstration, I created an account on Twitter. My profile name is

.

So, I will log into my Twitter account from the Kali machine and send a tweet, and we will
see how easy it is to grab that tweet from the target machine. So let's get started by
first composing a new tweet (for example) and log out from
the account. Let's now have a quick look at the HTML page that gets created after posting
the tweet, by viewing the page source. Search and find the the tweet we just made. Then, if
we scroll to the left a little bit, notice the HTML meta tag parameters:

The first parameter, , has as a value, and the second parameter called
 contains our tweet. Now, we'll use these HTML tags to parse the HTML and

extract the tweet eventually.

Python has a library called Beautiful Soup, which is a very well-known tool used to parse
HTML pages. You can download it from:
.

To install this library, just navigate to the directory where Beautiful Soup exists, then
run and install it.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Scriptable Shell Chapter 2

[61]

Let's have a quick look at the code, which we will use on the target side:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Scriptable Shell Chapter 2

[62]

So using or the URL library, we'll browse to my Twitter home page. And once we
retrieve the HTML page, we'll store it on the variable. Then, we pass the HTML page
or a variable to the function. Remember the HTML meta tag that contains our tweet?
We will look for it using the function in Beautiful Soup. So, we will look for a

 and a value of . Using a regular expression, we will do a final filter to
print only the exact string between the quotation mark, which is basically the tweet that we
sent. On running the script you will see that we got back the same tweet that we sent.

So, we will clean the code a little bit by removing the command. We will log into
the Twitter account one more time and send another tweet. This time, we will tweet

. So, on the target side, we should be able to view the latest tweet on running the
script.

Keep in mind that we were able to get the tweet without any login or authentication. Now,
in the next section, you will see how you could use this information or script in a real-world
scenario.

Countermeasures
In this section, we'll discuss possible countermeasures for malware that is designed to
interact with Twitter. Now, notice that I said a possible countermeasure, because this is not
an easy job to do; and that's because of one of the following reasons:

Blocking Twitter
Terminating SSL

The first thing that may come to your mind is to simply block Twitter, and this will
definitely prevent the attack. However, what if you work for a social marketing company or
your daily job involves the use of Twitter? Then in this case, it's not an option. Also, it's not
only limited to Twitter. Imagine that the target downloads an image from Instagram, and
then, using stenography, the target parses a hidden text or hidden command within that
image. The second point you might think about is, we have seen that the Twitter home page
is using HTTPS, where the traffic is encrypted. And you might think that we can simply
terminate the SSL and see the traffic in clear text. So let's assume that we have such a device
for decryption, and we can see the tweet as clear text and the transit path. But the question
is: What resources do we need to check each single packet going back and forth from our
network to Twitter, as it could be 100 MB of data? Also, how we can distinguish between
the good and the bad one?

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Scriptable Shell Chapter 2

[63]

So let's say that we have a tweet saying, . So how can we tell that
this is a malicious or innocent site, without actively inspecting that website? And overall,
this will be a bigger headache in our process. Another point to consider here is: What if the
tweet itself was encrypted? So, instead of seeing hello world or , the attacker
could encrypt this tweet in AES and send it to Twitter, and decrypt it back once it reaches
the target side.

Also, what the attacker can do is mislead anyone watching the traffic. He can make the
malware parse hundreds of Twitter pages in addition to the hacker page, and this leads us
back into the resource issue which we discussed. Last but not least, the attacker can tweet
another IP to create a chain of connections. If you read the report from FireEye on how the
Russian malware works, then you will see that the attackers tweeted a link for an image
located on GitHub. So, the victim initiated a new session to GitHub, and that's what's called
a chained connection.

So if we think again about how we get infected with this malware, it will tell us that the
same countermeasures we discussed in the previous chapter are still valid in our current
scenario.

Replicating Metasploit's screen capturing
In this section, we will automate capturing a screenshot from the target machine and
retrieve it over HTTP reverse shell. Getting a screenshot from the target can be
useful to see what programs and activities are going on on the target side. In Metasploit
Meterpreter, there is a function called , which will take a snapshot from the
target machine and transfer it back to the attacker machine. So here, we will do something
similar in our existing HTTP shell. For this purpose, we will be using a library called

 at the target. This is a high-level image library in Python. The installation is quite
simple. You just need to run via .

Before doing that, just make sure that you have internet access. Once we install this library,
I will go to Devices|Network|Network Settings... in VirtualBox, and change the network
mode back to Internal Network as we did in the previous chapter. We will also give our
target the static IP address so that we can reach out to the attacker machine.

Make sure that we got a connection with our attacker by pinging its IP address .

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Scriptable Shell Chapter 2

[64]

In our HTTP code, we start by importing our library. So we import the
function and we need to add a new statement saying that, if we received a
keyword, then we will take a snapshot and save it to the current working directory with the
name . Then, we will transfer it back to the attacker machine:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Scriptable Shell Chapter 2

[65]

Let's now try and test the script. Ensure the HTTP Data Exfiltration Server script is running
at the attacker end. Once we get the run at the attacker go to the

 and change the file extension to so that we will be able to view the
screenshot. If we go to the target machine, you will see that our image is saved
on the same current working directory as our script.

Now, the problem with this is that it's very obvious that someone is doing some malicious
activity on our PC. Even if we remove the image after doing the transfer, there is still a
chance that the target could catch us. Now, to overcome this, we will use the OS's
directory to create a temporary directory and save the image over there. And once the
transfer is completed, we will remove the entire directory.

Python has a built-in library that uses the operating system's temporary directory. Let's
have a quick look. We will go to Command Prompt and open a Python interactive mode
and run . This will handle the task of creating a
directory. But before creating one, open the Windows directory. Run

, which will make a temporary directory for us and print out all the
directory names. Now, to get rid of this temporary directory, we will use another library
called . We will this one and we will create a new temporary directory.

Notice that, once we do this, a new folder is created in the directory. Now, we will
remove it by running since the variable contains the name of that

 folder:

To reflect these changes in our script, we will just go back and edit our target script:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Scriptable Shell Chapter 2

[66]

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Scriptable Shell Chapter 2

[67]

First, we'll create a directory and store its path in the variable. Then, we will
tell to save the in the newly created directory. Also we'll
modify the save directory. We will also need to reflect this change to the file transfer
function, so it knows the new path for the image file. The last thing is, once the transfer gets
completed, we have to make sure that the file gets closed since we cannot remove a file that
is currently opened by an application or a process. We will delete the whole directory.

Give it a try, and verify that we didn't leave any track behind. Try a filter on inside the
 directory, which is the filename or the image name, and we will see if anything shows

up by running the script as we did before. Once we get the at the attacker machine
run a . Once you get the screenshot on the attacker rename it, jump to the target
side, and see if any file has been created. You will see that there is nothing there because we
removed the directory after we did the transfer.

Replicating Metasploit searching for content
We will now code a Python function that will search into target directories and provide us
with a list of file locations for a certain specific file extension. For instance, say we need to
search for a PDF or document file on the target machine; instead of checking each directory,
we will add a new function to automatically do the job for us. This is very useful when you
first land in a target machine and try to explore as much data as possible such as
documents, PDF files, and so on. The coding part is quite easy. We will use the Python
library to do the job for us. So, as usual, I have added a new statement to specify that if
we get a keyword we will do the following:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Scriptable Shell Chapter 2

[68]

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Scriptable Shell Chapter 2

[69]

So first, we define the format as . Note that we are only interested in
the second part, which is the directory that we want to search and the file extension. Right
now, to clean the command and to split it into parameters, we will have to cut off
the first leading seven characters; and we will do so to get rid of the unwanted search string
and space. Now, if we count the first seven characters, it will be up to the directory here;
the output after doing that, will be much cleaner. Next, we split the string into path and file
extensions, and we store them in path and extension variables. So the first parameter will be
the , which will be stored in the path variable, and the second one will be stored in the
extension variable. Next, we define a list variable, and this one will be our placeholder to
store the file directories. Now, the actual function that will do the search for us is the

 function. This function will navigate all the directories specified in the
provided directory, and return three values: the , which is a string that
contains the path to the directory; the , which is a list of the names for the sub
directories in the ; and finally , which is a list of filenames in .

Next, we perform another loop to check each file in the list. If the files end with our
desired extension, such as , then we add the directory value into the list string. In the
end, the function represents a path relative to our file to the current
directory, and in our case, it's the directory. Finally, we'll post the result back to the
attacker side.

On running the script on both sides, as a start let's search for every PDF file in the
 directory by running:

search C:*.pdf

After this let's try to grab :

grab*C:\Users\hkrais\Documents\Module 3.pdf

We can also search for each text file in the system. It should be a huge list:

search C:*.txt

We can narrow down our search, and just do a search for the directory.

search C:\Users\hkrais\Desktop\.txt

And we have a file there called . Try to grab that one, and verify its content
as we did in the previous chapter.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Scriptable Shell Chapter 2

[70]

Target directory navigation
We will now address a directory navigation issue. Now, the problem is that browsing
directories is restricted to the shell working directories. For instance, if the target has
executed our Python script on the , then our working directory will be the

. And due to shell limitations, we cannot simply type and move on to another
directory. Remember we learned that some commands won't work in a shell, and is one
of them.

Once we run our previous TCP reverse shell on both sides, you will see our current
working directory is on the , where our Python exists. Notice what will happen
when a command is issued to change the current working directory to . Our
script will become non-responsive once we try the command, and this is
because the shell fails to handle the command properly. Now, to overcome this problem,
we need to explicitly tell the script to change its working directory. Again, that's because
our shell working directory is restricted to the working directory of our Python script.

The formula here will be followed by space, then the path that we want to go to. Then,
we will split up the received command based on the space into two variables. Thankfully,
changing the directory is a matter of a single line in Python. Finally, we send back a string
mentioning the new current working directory:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Scriptable Shell Chapter 2

[71]

Once we try the previous script, after typing , you will be able to see whether
we have changed or moved to the directory:

>>>
Shell> cd C:\Users
[+] CWD Is C:\Users
>>>

Try navigating to the location of the file that you want to . You will notice that, once
we are on the same directory as the file we want to , then we don't need to specify the
absolute path anymore. We can simply grab the file by specifying just the filename, as
follows:

grab*Module 3.pdf

This will get us the file on the Kali machine.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Scriptable Shell Chapter 2

[72]

Integrating low-level port scanner
During penetration testing, sometimes you encounter a scenario where your client is using
some kind of an internal server that is not accessible through the internet. And just because
of this they think it's secure. In this section, we will see how we can integrate a simple port
scanner with our script to prevent a possible attack.

Usually, once you get into your target machine, you start looking for other possible targets.
For example, if we were able to access machine A, then we can extend our attack and scan
machine B to see what ports and services are running on that machine. The other usages are
to make the target scan an online server on our behalf to hide our activities. Now, let's get to
the coding part. We will build a basic low-level scanner. It's named low-level because we
will use the built-in socket library and then build on it. The formula or the format for
sending scan requests is followed by a space, then the IP address followed by a colon,
and then the port list, for example :

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Scriptable Shell Chapter 2

[73]

Now, the first thing to do is to cut off the leading first character, so this part will be
removed. After that, we will split the right part into two sections. The first section is the IP
address that we want to scan, and we will store it in the variable. The second section is
the list of ports for which we want to check the access status, and it will be saved in
the variable. To keep the coding clean, an entire function called scanner is there to do
our stuff. So, we will pass the object, the , and the variables to this
function.

Once we get these variables, we will define as a variable, which stores our
scanning result. Now, remember that the ports are separated by a comma, like this:

, for example. So what we will do is, we will loop over each one of
these ports and try to make a connection using a library for each one of them.
Notice that I have used the function, where the function returns if the
operation succeeds. And, in our case, the operation succeeded, which means that the
connection happens and that the port is open. Otherwise, the port would be closed or the
host would be unreachable in the first place. In the end, we will close the socket and repeat
the whole process until the last port in our list here.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Scriptable Shell Chapter 2

[74]

So we'll go for port until we reach the last one. The result of our scan will be stored
in , and the sign is used to append the result. Finally, we send back the
result to our Kali machine. Since our Kali machine and the target are on the same virtual
subnet here, we should appear on the target table.

Lets proceed to the rest of the code:

On running our scripts on both sides, we will do an and this will give the IP
address of our Kali machine: . So, as a proof of concept, we can scan our Kali
machine from the target side and run Wireshark to confirm the scanning:

scan 10.0.2.15:21,23,80,443,445,137,138,8080

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Scriptable Shell Chapter 2

[75]

Once we run Wireshark and filter on TCP, we can see that the TCP session comes over. In
the scan result, we can see that port is opened and all others are closed:

>>>
[-] Port 21 is closed or Host is not reachable
[-] Port 23 is closed or Host is not reachable
[-] Port 80 is closed or Host is not reachable
[-] Port 443 is closed or Host is not reachable
[-] Port 445 is closed or Host is not reachable
[-] Port 137 is closed or Host is not reachable
[-] Port 139 is closed or Host is not reachable
[+] Port 8080 is opened
>>>

We can check the completed three-way handshake for TCP on port . We can see the
, , then that complete the three-way handshake; and we can see

that the target, after completing the three-way handshake, sends a request to close
the socket here because we opted to close the socket after scanning. If you still remember, in
the code here we said . So acts as an indicator to close the socket.

Now to double-check, we can open a terminal to see what process is using port :

netstat -antp | grep "8080"

We will see that it's opened by another Python script. But if we do the same for port , we
will get nothing since the port is closed.

Let's do another test: we will use a to open port :

ncat -lvp 21

Then, I will do the scan again to see whether the result is going to change. Right now, we
are listening on port since it's opened. So if we go back to our shell, and then repeat the
same scan; if it's working, we should see port open.

Summary
In this chapter, we learned about DDNS and the DDNS-aware shell. We also learned how to
interact with Twitter, and replicate Metasploit's screen capturing, and we searched for the
content and looked into target directory navigation. Last, we saw how to integrate a low-
level port scanner.

In the next chapter, we will learn about password hacking.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

33
Password Hacking

Most hackers assume that their target is running a legacy unpatched Windows XP, where
the antivirus is disabled, the firewall is turned off, and the IPS may not be in place. After all,
you may or may not hack into their systems. This is definitely not real-world penetration
testing.

In this chapter, we will deal with the following topics:

Antivirus free keylogger
Man in the browser
Firefox API hooking with Immunity Debugger
Python in Firefox proof of concept (POC)
Python in Firefox EXE
Password phishing
Countermeasures

Antivirus free keylogger
In this section, we will code a simple software keylogger, purely in Python. To do so, we
will be using a library called . The library wraps the low-level mouse and
keyboard hooks in Windows. As per the documentation, any application that
wishes to receive notification from a global input event must have a Windows message
pump. For this, we need another library, called .

So, let's start by installing these libraries.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[77]

Installing pyHook and pywin
You can download the library from

 and install it easily following the on-screen instructions.

Make sure that you do not have another Python instance running in the
background or you will get an error during installation.

Adding code to keylogger
The following is the script for keylogger:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[78]

Let's look into the steps in the script:

Import the and libraries, as shown in the previous1.
script, .

The library will handle low-level communication with a Windows
function called . This function will install a hook for us to
monitor the keyboard event.

Import the library, which will do the Windows message pumping for2.
us.
Define a string . This is where we will store all of the pressed keys.3.
Create and register a . Once the user hits any keyboard button, the4.

 function will be executed, and that action will be stored in the
event.
Start the hooking loop and pump out the messages.5.

Keep in mind that, as per the documentation, we must have a Windows
message pump here.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[79]

Since the and buttons are not handled properly. we need to6.
statically configure their values.

Keep in mind that we know whether the user input was Enter or Backspace, based
on their ASCII values.

Append the ASCII key to the variable, and finally write them in a7.
 file here. We can append the data and the text file instead of

writing over them, but it is suggested to use the write technique instead of the
append for more stability.
After intercepting the keyboard event, we need to return a value; otherwise,8.
we will simply disable the keyboard functionality.

So, let's do a quick test by running the module. We will create a new text file just for testing.
Lets type into the text Error! Hyperlink reference not valid.

Remember to use Backspace in between while typing the above lines. Notice that we will get
our key logs in the file that we created. It will look similar to the following:

keyloffe <BACK SPACE> <BACK SPACE> <BACK SPACE> gger test <Enter> hello
from python

Since we typed Backspace, you can see that we got in keylogs.

Now, terminate the and remove the files and .
Copy the name of the file so that we can export it to EXE using the setup file for

. You can then run the module. The EXE will be created. Now, let's do a
quick scan of the file named with AVG antivirus, just to see if we've got a
signature for this EXE file. If it says No threats detected, run the keylogger in EXE
format. Next, log into your Facebook account and notice that once we type even a single key
on the keyboard, we get that on our file. Enter your email address and
password to open the Facebook page and open the file. You can see your
password and the email there.

Keep in mind that you have to terminate the process
manually. Also, the file is located on the same directory as our
binary.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[80]

In the next section, we will see how to enhance our keylogger features.

Hijacking KeePass password manager
If you have ever worked with network engineers or system administrators who work on
multiple devices, then you have probably come across a password manager, simply because
remembering each password is impossible for them. Usually, they use a password manager
to securely store device credentials.

In this section, we will use a very common cross-platform software called KeePass and we
will see how we can hijack passwords with the help of this software. You can download
and install the software from . After installing:

Create a by clicking on the New icon. 1.
Define Master password and click on OK.2.

Next, click on eMail and create a new account or a new entry for the 3.
account by right-clicking and selecting the Add Entry... option.

Now, let's create a new entry for the PayPal account. Click on Homebanking,4.
then right-click and select the Add Entry... option.

So, let's log in and see whether we can use the password manager for the login.5.
Let's go to , the login page. In the case of
password manager, you need to copy and paste the username and the password
to the login page from the database. Note that in this case the keylogger will not
work, simply because the passwords are copied into the clipboard and it's just a
matter of copy and paste without touching the keyboard here.
For now, log out from your account.6.
In Python, to interact with a clipboard, you need a library called ,7.
which you can download from

.
Installing the library is quite simple. We just need to copy and paste8.
the library file into the folder.

If you experienced some issues while using the setup file, then do it
manually.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[81]

The directory is , then . The file is now installed.

Now, go to the folder and open the file to take a look at the9.
code.
We start by importing the libraries:10.

Then, we create a , which will store the clipboard content:11.

After that, we will go into an infinite loop to continuously check the clipboard:12.

If the clipboard content is not empty (here, empty means), then we will take
its value, and store it in a variable called . To make sure that we don't get
replicated items in our , before appending the variable into our ,
we will check whether the value is stored in the first place. If not, then this means
that it is a new item, and we will store it. In the end, we will print out our result,
or you could save it to a text file. Then, we will sleep for seconds, and check the
clipboard status again.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[82]

Now, let's run the the script and repeat the whole process one more time.13.
Let's see what happens once we copy the username and password of the Gmail14.
account. Once it is copied into the clipboard, our script will immediately get the
clipboard value and print it out.

Let's try with our stored PayPal account. Once we make a copy, we can see the15.
random password we entered earlier.

This is how the password manager works.

Man in the browser
In this section, we will discuss a new method. As you may already know, all browsers offer
to save your username and password when you submit the data into a login page. The next
time you visit the same login page, you will see that your username and password are
automatically filled in without typing a single letter. Also, there is dedicated third-party
software such as LastPass, that can do the same job for you. The point here is that, if the
target is using this method to log in, then neither the keylogger nor the clipboard methods
will work.

Let's take a quick look. We'll be using the LastPass plugin on the Firefox browser. Open the
browser here and go to the Gmail account. We will use the previous clipboard script before
logging into the Gmail account:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[83]

Run the script and then log into the Gmail account using LastPass. You will notice
that LastPass has inserted the email and password automatically.

After logging in successfully, you will notice that the clipboard script could not catch
anything here. Let's log out from the Gmail account.

In response to this, hackers have created a new attack, called man in the browser attack to
overcome this dilemma. In a nutshell, man in the browser attack intercepts the browser API
calls and extracts the data while it's in clear text, before it gets out to the network socket
where the SSL encryption happened.

Firefox process
We will debug and get inside the Firefox process now. Then, we will intercept the API calls
for a specific Function inside a DLL module:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[84]

This is the DLL and we will perform intercepting for a specific Function inside the DLL.
After that, we will extract data and continue the flow. In summary, the steps for doing so
are as follows:

Get the process ID of the browser process.1.
Attach our debugger to this process ID.2.
Specify the DLL library that we want to intercept, as well as the function name3.
inside the DLL. Keep in mind that we need to know the memory address of the
function so that we can continue the flow after intercepting.
Set a breakpoint and register a function.4.
In the function, we will print out the sensitive data from the memory5.
in clear text.
Wait for the debug event using the debug loop.6.
Once the debug event happens, execute the function.7.
After executing the function, we will return to the original process to8.
continue the normal flow.

In the next two sections, we will see these steps in action. It's much simpler than it appears
to be.

Firefox API hooking with Immunity Debugger
Firefox uses a function called to write data into a TCP socket. This function is
located inside a DLL module called . For this demonstration, we need to prepare
a Twitter account. Once that account is created and you are logged in, sign out of the
account and then log in again. Since we use LastPass, the login credentials will already
have been entered by LastPass. Once we click on the Log in button, what will happen
behind the scenes?

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[85]

Behind the scenes, Firefox will load the library and call the function to
submit the data (login ID and password). Once Firefox performs these steps, we'll set up a
breakpoint and intercept traffic. Let's start by installing the Immunity Debugger software
from . The installation part is quite
straightforward. Immunity Debugger will get the process ID of the browser process and
attach a debugger to the PID in one shot. We just need to attach the Firefox process from the
list of processes to attach shown when we go to File | Attach. By default, Immunity
Debugger will resolve the process ID and attach it for us. The next action is to specify the
DLL library and function name, that is, and , respectively. To do so,
you just need to go to View | Executable modules. Search for the proper DLL by checking
the Name field. Right-click on the highlighted DLL and then select View names. Scroll
down until you find the function.

So, at this point, we have accomplished the first four steps from our previous section on
the Firefox process.

Since we are doing the hooking manually using Immunity Debugger, we
don't need to specify a function.

To set a breakpoint, you just need to press F2 on your keyboard or right-click and specify a
Toggle breakpoint. Once you do that, hit the Play button a couple of times.

Now bring up the Firefox window again. Notice that each time we get a breakpoint, we will
be notified by the task manager located in the bottom of the Immunity Debugger screen.
Also, the execution will be stopped. You can see the paused window. It'll be paused unless
we manually hit the Play button once again. Now hit on the Log in button. To view the
memory content, just right-click and go to Address | Relative to ESP register, which is the
stack pointer. Then you just need to click on the Play button multiple times. Right-click on
one of the ESP registers and select Follow in Dump so that we can see the memory dump
here. Again we need to click on the Play button multiple times. Once again, right-click and
select Follow in Dump. After a few clicks we will first copy the memory dump in the new
text file and then we will terminate the debugger. You will see that there is the same
username and password that we used for logging into the Twitter account. The
username/email was . We can see that we got some hexa characters,
which we need to move back to ASCII. We can do this by checking with the ASCII code
table.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[86]

Let the following be the mail and password that we got above:

mail%5D= bigtasty321%40gmail.com
password%5D= %58123justyouandme%5D

 We will start with the email address. Notice that in hexa means in ASCII. So we got
 through . For the password, the is represented by a left bracket ()

and the is represented with a right bracket (). So, our username and password will be
set as follows:

mail%5D= bigtasty321@gmail.com
password%5D= [123justyouandme]

Now, we will try to log in to the Twitter account using the information that we have just
figured out here. So, go to the Twitter login page and copy the username and password,
and you will see that you can log in.

Keep in mind that all that this is just a manual method, and it was just an introduction to
the next section. In the next section, we will see how to get the same result using a Python
script.

Python in Firefox proof of concept (PoC)
In this section, we will write a Python script, that will automate the exact steps that we did
using Immunity Debugger. For this purpose, we will be using a Python library called

, to automate the debugging of the Firefox process. So, let's start by installing
this library. You can download the library from .

The steps mentioned in the Firefox process section, which we explained earlier can be
translated into code. Let's do this step by step:

First, we need to get the process ID and then attach it to a debugger. The code in1.
Python to do this is as follows:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[87]

As you can see, first we search for the Firefox process and then retrieve its process
ID. We will then attach the process ID to the debugger and pass a class called

 to the function.

In the class, we specify the DLL library that we want to2.
intercept as well as the function name, and we will resolve its memory address.
Let's look at the code:

You can see the DLL name and the function name . We have
resolved the memory address for the function. We then set the breakpoint, and
register the function. Notice that we need to pass some mandatory
information to the function, such as the process ID and the resolved
memory address for the function. You can see the and the . Notice
that we have named the function . When the breakpoint
occurs, parameters should be returned to the function. Now, the
question is: what are these parameters, and how could I know their number
here? The answer to these questions comes from the Mozilla Firefox developers
themselves.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[88]

If we open the 3.
 link, we will get more details about the PR

function parameters.

 is the function name and the purpose of this function is to write a
buffer of data to the file or socket. You can also see function parameters such as

, , and . If you still remember, in Immunity Debugger, we were
tracing the memory content each time we get a breakpoint to .

Here, a second parameter, , will give us a pointer to the memory address for
the submitted data; in our case, we are looking for the username and password.
So, all we need to do is resolve the memory address for this pointer. So, let's
reflect this in our code:

You can see that the three parameters are , , and ; we have already
mentioned . We pass them to our function. As we said,
our main interest is in the second parameter only, which is again the memory
pointer.

The last step we need to do is read the first 1 KB of the memory address for that4.
pointer, and this code will do the job for us:

Argument 2 contains parameter 2, which is the memory pointer and we will read
the first KB of that address.

So, at this point, we have completed the rest of the steps mentioned in the Firefox process
section executing the function and printing the memory dump.

When will a debug take care of completing the normal flow? In the previous section, using
Immunity Debugger, we tried doing that with a Twitter account. Let's try with a PayPal
account now:

Go to the PayPal login page and try to retrieve the login info.1.
Run the script. Once I log in, notice the output we get.2.
If we enter the wrong credentials, we will get a regret message from PayPal.3.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[89]

Interrupt the script and export the output into a text file here. To do this, go4.
to File | Save As..., to save the file in text format. Search for the username in the
text file. If you pay close attention, you will see that we got the login email ID as
well as the login password, and both of them in clear text. Now, let's verify that
these are the same credentials that were stored in LastPass.
Go to Sites | Finance | paypal.com then right-click and select Edit. If you click5.
on the eye icon beside the Password option, you can see the password which will
be the same as what we extracted from the Firefox process.

Before on moving to the next section, keep in mind that intercepting a
function like will badly affect the Firefox's process
performance, since the function will be called frequently. Each time we
intercept, this function, it will result in a delay and may crash the entire
process.

Python in Firefox EXE
In this section, we will enhance our previous PoC script to match the following:

Once you get a pass in the memory, print out the memory dump and stop1.
debugging to minimize performance issues
Export your script into a standalone EXE file, so it can be used in the2.
postexploitation phase (using)
Test it against antivirus3.
Try and make sure that it's fully functional by testing it while logging into4.
Twitter, Gmail, PayPal, and Facebook accounts

In the callback function, add a new statement to terminate the
debugging once we get a pass keyword. It's always a good thing before
sending this script to your target, to test it locally first. To do so, you may
need to change the setting in the setup file to the console mode.

To test the script, we will log in to the Facebook account:

Go to the login page of Facebook. As you will see, LastPass has entered our1.
username and password for us.
Run our script. You will get the Firefox process ID and the memory address for2.
the function.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[90]

Once we click on the Log In button, notice the credentials that we extracted from3.
the memory. You will see the email address and password.
Now, let's check whether this was really the correct password stored on LastPass.4.
To do this, first log out from Facebook and then go to Sites | Social; now, right-
click on Facebook.com and select Edit.
When you click on Edit, if you want to see the password value, you can see the5.
same that we got from our script.
Now, let's see whether the same tool and the same technique will work with6.
other websites. For this, we will close the Facebook page and go
to to login.
Let's run our tool and go to the PayPal account. You will see that we get the7.
username and password that we used for the login.
Now, let's verify that this is the same password and username stored on LastPass.8.
You just need to follow the same process as earlier.
We will try the same thing with Twitter by going to the Twitter log in page. 9.
Run the tool here as usual, and, once we hit on the Log In button, we can see the10.
email ID and the password.

As we saw earlier, these values are in hexa format, and need to be converted into ASCII.

A little reminder that neither the keylogger or the clipboard hijacking
techniques that we saw earlier, will work in a similar scenario, and this is
because we are not typing or pasting any data.

Dumping saved passwords out of Google
Chrome
In this section, we will discuss another password-hacking technique. This technique was
originally created to recover your password if you forget it. Here we will take advantage
and hack the saved password remotely. For this attack to work successfully, your target
should be using Google Chrome, and they should have previously saved the login
password. Let's look at how this works. Log into your Facebook account. You will notice a
prompt at the top-right corner of the screen, which asks you whether to save the password
with a Save password button. If our target has clicked on Save password, then we will be
able to grab that password remotely.

We will now see how to do that. To do this, we will Log out from Facebook first.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[91]

Acquiring the password remotely
Let's get started by understanding how Google Chrome stores and recovers the saved
password in the first place:

So, the first fact is, we should know that Google Chrome uses the Windows login password
as a key to do both the encryption and decryption phases. The second thing we need to
know is that encrypted passwords are stored in a SQLite database called Login Data DB
and that database is located in the path

.

Google Chrome calls a specific Windows API function called , which
utilizes the Windows login password as an encryption key. In reverse operation, a
Windows API is called to decrypt the password value back to clear
text. Now let's summarize how Chrome works in saving passwords.

Let's assume that our target has logged into Facebook for the first time. Google Chrome will
prompt them to save the password. If they click on Save password, then Google Chrome
will take this password in a clear-text format and call the API, which
will encrypt this password using the Windows login password and save it in the login data
database. Later on, when our target visits the Facebook page one more time, Google
Chrome will retrieve the encrypted password and pass it to the API
function. After that, we will get the clear text password. Then, Google Chrome will submit
it on your behalf.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[92]

Now technically, if we code a Python script to grab the encrypted password from the
Chrome database and pass that value to API function, then we
should be able to see the saved password in a clear text format after that; that's exactly what
we'll do here.

Before moving to the coding part, let's have a look at the SQL database. Here, we will be
using a free open source database browser for SQLite:

Navigate to SQLite, which gets created by Google Chrome. In my case, the path is1.

that Chrome creates its database, and we will copy the file to the
desktop.
We have to change the extension to SQLite so that we can import it in the2.
database browser.
So all we have to do right now is click on Open Database and go to the3.
Desktop to open .
Once we import it, you can see that there is a table called . 4.
Once we click on Browse Data, we can see some interesting columns:5.

 is the URL that the user navigated to when submitting the login
credentials, and in our case, it's a Facebook URL. The value, or

 and the are the values of the username
and the password that have been submitted.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[93]

We need to locate the SQLite database, as the directory is a variable6.
and will be different from one PC to another.

We need to grab the values of and and the
 columns from that database.

Finally, we pass to the function, or API7.
function, to decrypt it back into clear text.

So, let's start with the coding part:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[94]

We will start with importing the necessary libraries:

We will import , to resolve the Windows environment variable and find1.
out the Google Chrome SQL path.
Next, we import SQLite3 to read the Chrome SQLite database and fetch its raw2.
values.
We import , which provides a high-level library to call the Windows3.
API . Keep in mind that, in order to use this library, we
need to first install the library from

.

 is a Windows environment variable, which points to , then
, and then the path and that is half of our full path. So, once

we've got this part, all we have to do is append the second part of the path by adding
 to get the absolute path of the

 database.

If the target is logging into a site, which has an entry into the database, then sometimes
reading the Chrome database will return an error that the database is locked; and you will
get an exception called , once you run the Python script. In our
example, if the target is logged into Facebook at the time that we want to read from the
Chrome database, then we want to be able to do that. The workaround for this is to make a
copy of the login database and pull the data out of the copied database. So here, the copied
database has the name , and it's located on the same directory as the original one.
And, at this point, we have accomplished the first step of locating the database.

Since the original database can be locked, we will read data from the copied database. We'll
do this using the function, pointing to the copied database path:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[95]

Then, we create a cursor object so that we can execute the SQL queries to pull out the
desired columns. If you remember, the table name was and it has three important
columns, which are and , along with the .

So, we'll select these columns and fetch their values using a loop with a
function:

The result will be a list stored in a raw variable. Then, we'll print the first two values in this
list, which are and . So, by doing that at this point we have
achieved the second step of our plan, and we grabbed the data out of a Chrome database.

The last step would be to call the API function and pass the
encrypted password, which is by the way stored in the third element of our raw list. Finally
we'll print out the result:

Now, upon running the module you will see that we get three items: the URL, the
username, and the clear-text password.

Try to double-check that these are the correct credentials to log into my Facebook account.
Also try with other websites like Twitter, PayPal, and so on.

Submitting the recovered password over
HTTP session
In this section, we will modify our previous script to automate the submitting of the
recovered or hacked password over the HTTP session. And then, we will send it back to the
hacker machine, where the end result should be a standalone file, which can be used in
post-exploitation or as a function integrated with a new Python shell.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[96]

We will start our HTTP server on the Kali machine to receive the hacked password of the
target site. We will simply double-click on the Chrome Dumper EXE file. You will see that
we were able to have the saved password remotely out of a Chrome database. Here, we
grabbed the Facebook email and password, and also the Twitter account. Now, if we move
to the target machine, we will see that the following are the two sessions that are currently
open on the target site:

Testing the file against antivirus
We will be using the well-known website, VirusTotal, and will upload our Google Dumper
file.

For this, navigate to our file and Upload and scan file. Upload the
 file and scan the content.

You will see how many antivirus could raise a flag. Now, I would say that we got a fair
result if the number of antivirus raised is few, and if anybody can try and compile the script
using and test it, then they could have a different result.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[97]

Password phishing DNS poisoning
One of the easiest ways to manipulate the direction of the traffic remotely is to play with
DNS records. Each operating system contains a host file in order to statically map
hostnames to specific IP addresses. The host file is a plain text file, which can be easily
rewritten as long as we have admin privileges. For now, let's have a quick look at the host
file in the Windows operating system.

In Windows, the file will be located under . Let's
have a look at the contents of the file:

If you read the description, you will see that each entry should be located on a separate line.
Also, there is a sample of the record format, where the IP should be placed first. Then, after
at least one space, the name follows. You will also see that each record's that the IP address
begins first, then we get the hostname.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[98]

Now, let's see the traffic on the packet level:

Open Wireshark on our target machine and start the capture.1.
Filter on the attacker IP address:2.

We have an IP address of , which is the IP address of our attacker.
We can see the traffic before poisoning the DNS records. You need to click on
Apply to complete the process.

Open . Notice that once we ping the name3.
from the command line, the operating system behind the scene will do a DNS
lookup:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[99]

We will get the real IP address. Now, notice what happens after DNS
poisoning. For this, close all the windows except the one where the
Wireshark application is running.

Keep in mind that we should run as admin to be able to modify the host
file.

Now, even though we are running as an admin, when it comes to running an4.
application you should explicitly do a right-click and then run as admin.
Navigate to the directory where the file is located.5.
Execute and you will get the file. 6.
Run . You can see the original host here.7.
Now, we will enter the command:8.

echo 10.10.10.100 www.google.jo >> hosts

, is the IP address of our Kali machine. So, once the target goes to
, it should be redirected to the attacker machine.

Once again verify the host by executing .9.
Now, after doing a DNS modification, it's always a good thing to flush the DNS10.
cache, just to make sure that we will use the updated record. For this, enter the
following command:

ipconfig /flushdns

Now, watch what happens after DNS poisoning. For this, we will open our11.
browser and navigate to . Notice that on
Wireshark the traffic is going to the Kali IP address instead of the real IP address
of . This is because the DNS resolution for was

.
We will stop the capturing and recover the original file. We will then place12.
that file in the folder.
Now, let's flush the poisoned DNS cache first by running:13.

ipconfig /flushdns

Then, open the browser again. We should go to 14.
 right now. Now we are good to go!

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[100]

Using Python script
Now we'll automate the steps, but this time via a Python script.

Open the script and enter the following code:

The first thing we will do is change our current working directory to be the same as the
 file, and that will be done using the library. Then, using subprocesses, we will

append a static DNS record, pointing Facebook to : the Kali IP address. In
the last step, we will flush the DNS record. We can now save the file and export the script
into EXE.

Remember that we need to make the target execute it as admin. To do that, in the setup file
for the , we will add a new line, as follows:

So, we have added a new option, specifying that when the target executes the EXE file, we
will ask to elevate our privilege into admin. To do this, we will require administrator
privileges.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[101]

Let's run the setup file and start a new capture. Now, I will copy our EXE file onto the
desktop. Notice here that we got a little shield indicating that this file needs an admin
privilege, which will give us the exact result for running as admin. Now, let's run the file.
Verify that the file host gets modified. You will see that our line has been added.

Now, open a new session and we will see whether we got the redirection. So, let's start a
new capture, and we will add on the Firefox. As you will see, the DNS lookup for

 is pointing to our IP address, which is .

In the next section, we will see how we can take advantage of this for password phishing.

Facebook password phishing
In the previous section, we have seen that with a few lines of Python code we can redirect
traffic to the attacker machine instead of going to .
This time, we will see how an attacker can take advantage of manipulating the DNS record
for Facebook, redirect traffic to the phishing page, and grab the account password.

First, we need to set up a phishing page.

You need not be an expert in web programming. You can easily Google
the steps for preparing a phishing account.

To create a phishing page, first open your browser and navigate to the Facebook1.
login page. Then, on the browser menu, click on File and then on Save page as....
Then, make sure that you choose a complete page from the drop-down menu.
The output should be an file.2.
Now let's extract some data here. Open the folder from the code files3.
provided with this book. Rename the Facebook HTML page .
Inside this HTML, we have to change the login form. If you search for ,4.
you will see it. Here, we change the login form to redirect the request into a
custom PHP page called . Also, we have to change the request
method to instead of .

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[102]

You will see that I have added a page in the same 5.
directory. If you open the file, you will find the following script:

As soon as our target clicks on the Log In button, we will send the data as
a request to this and we will store the submitted data in our

 file; then, we will close it.

Next, we will create the file, where the target credentials will be6.
stored.
Now, we will copy all of these files into and start the Apache services. 7.
If we open the page locally, we will see that this is the phishing8.
page that the target will see.

Let's recap really quickly what will happen when the target clicks on the Log In button? As
soon as our target clicks on the Log In button, the target's credentials will be sent as
requests to . Remember that this will happen because we have modified the
action parameter to send the credentials to . After that, the will
eventually store the data into the file.

Now, before we start the Apache services, let me make sure that we get an IP address.

Enter the following command:1.

ifconfig eth0

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[103]

You can see that we are running on and we will also start the
Apache service using:

service apache2 start

Let's verify that we are listening on port , and the service that is listening is2.
Apache:

netstat -antp | grep "80"

Now, let's jump to the target side for a second.

In our previous section, we have used in our script. Here, we have already
modified our previous script to redirect the Facebook traffic to our attacker machine. So, all
our target has to do is double-click on the EXE file. Now, to verify:

 Let us start Wireshark and then start the capture.1.
We will filter on the attacker IP, which is :2.

Open the browser and navigate to :3.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[104]

Once we do this, we're taken to the phishing page instead. Here, you will see
the destination IP, which is the Kali IP address. So, on the target side, once
we are viewing or hitting , we are basically
viewing , which is set up on the Kali machine. Once the victim
clicks on the login page, we will send the data as a request to

, and we will store it into , which is currently
empty.

Now, log into your Facebook account using your username and password.4.
and jump on the Kali side and see if we get anything on the file.
You can see it is still empty. This is because, by default, we have no permission to
write data. Now, to fix this, we will give all files full privilege, that is, to read,
write, and execute:

chmod -R 777 /var/www/

Note that we made this, since we are running in a VirtualBox
environment. If you have a web server exposed to the public, it's bad
practice to give full permission to all of your files due to privilege
escalation attacks, as an attacker may upload a malicious file or
manipulate the files and then browse to the file location to execute a
command on his own.

Now, after giving the permission, we will and the Apache server just5.
in case:

service apache2 stop
service apache2 start

After doing this modification, go to the target machine and try to log into6.
Facebook one more time. Then, go to Kali and click on . You will
see the submitted data from the target side, and we can see the username and the
password.

In the end, a good sign for a phishing activity is missing the sign.

In the upcoming section, we will discuss how to protect yourself and secure your account
from these attacks. Also, you need to make sure to turn off your Apache server once you're
done with your assessment.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[105]

Countermeasures
In this section, we will discuss four methods that you can use to secure your online account.
Note that these are not the only available methods. However, following these steps should
give your account a fair level of security.

Securing the online account
So, let's start with using the security services provided by the vendor. I really recommend to
enable Step 2 authentication (or sometimes called one-time password) on all of your
accounts such as Gmail, LinkedIn, and PayPal whenever this option is available. And when
you do so, once you decide to log in, it'll ask you for the username and password. And the
second step is to enter the one-time password, which you will usually get via an SMS or
application, or even by email. Now, this one-time password will be valid only for 30
seconds or less.

Here are few links which guide you on how easy and powerful it is to enable this feature for
some services such as Gmail, Twitter, and so on:

Gmail provides SMS and Gmail mobile app:

Twitter provides mobile app and SMS:

Before moving to the next point, I need to mention that even after enabling Step 2
authentication, we're still vulnerable to session hijacking vulnerability, where an attacker
can hijack the session or the cookies after Step 2 authentication, and reinject that session on
his own. One more thing you want to pay attention to is the login. Each time a new device
is logged in your account, you will get a notification message, by email most likely, to
inform you with this strange access.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[106]

And it will give you some kind of information such as the operating system or the
timestamp. The preceding screenshot shows the Windows operating system, that has newly
signed to your account. Also, it will advise you what to do if this was a suspicious activity.

To avoid this, you need to make sure that your password itself should be complex enough,
and try to avoid trivial and weak passwords.

Securing your computer
We will now see how to secure your own device. When it comes to computers, the
following are the steps you need to consider:

Use a nonadmin account all the time
Keep your browser and system updated
Consider the countermeasures we discussed in the previous section

Securing your network
Now, let's see how to secure your own network to protect your data in transit. If you have
to use untrusted network, such as a cafe Wi-Fi, to access your sensitive data such as your
bank account or PayPal account, then you should use a trusted VPN to establish a secure
tunnel and prevent local LAN attacks. No doubt that VPN will add values such as
authentication and encryption, which will be used to defeat local LAN attacks such as man-
in-the-middle attacks.

Keeping a watch on any suspicious activity
Now, let's see how to keep your eyes open on anything abnormal on the login page, such as
a missing https in the URL field is a good indicator for phishing activity, where the attacker
can redirect your traffic to a malicious login page; or if the attacker is in between, like man-
in-the-middle attack, he can use a tool such as SSL strip to strip off the SSL encryption and
turn your data into clear text.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[107]

And if you are a security paranoid person, even if you see the label in green, you can
double-check the certificate status that you got from the website. For instance, this is a
screenshot of a Facebook server certificate:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Password Hacking Chapter 3

[108]

We can see that it's issued to all Facebook domain, and we can see that the issuer is
DigiCert.

Also, the certificate path will show us the health status for this certificate; and if there is any
sub-CA or subcertificate authority and intermediate certificate in between.

Next, we should be really careful on sites that your browser shows a certificate error before
showing the login page, as an attacker could set up a proxy server and provide you with a
fake certificate to intercept the traffic during a man-in-the-middle attack. Each browser may
show you a different notification for this certificate error.

For scam emails, keep in mind that no one should ask you about your password over email,
or even post a login link to you by email.

Summary
In this chapter, we saw how to configure a keylogger and also dealt with password
manager to securely store the device credentials. We also learned about a new
method Man in the Browser. Further, we saw the process of Firefox API hooking with
Immunity Debugger and performed the password phishing process.

In the end, we discussed the countermeasures on how to protect yourself and secure your
account from the attacks.

In the next chapter, we will set up our own hacking environment in VirtualBox.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

44
Catch Me If You Can!

In today's world, bypassing and hijacking software is all over the internet. However, clear
usage and execution is what makes you a good amateur hacker.

This can be achieved by choosing your tools correctly and following the necessary processes
to complete the tasks at hand impeccably.

In this chapter, we'll cover the following topics to help you achieve this:

Bypassing host-based firewalls
Hijacking IE
Bypassing repudiation filtering
Interacting with SourceForge
Interacting with Google Forms
Bypassing botnet filtering
Bypassing IPS with handmade XOR encryption

Bypassing host-based firewalls
In all our previous chapters, we assumed that any process on the target machine can initiate
a session to the internet without any restrictions. Now, in many enterprise networks, they
don't rely on the built-in Windows Firewall. Instead, they use an advanced host-based
firewall to limit what process can initiate a session to the internet, just like how the access
lists work. So, for instance, let's assume that the system administrator has allowed only
some business-needed processes to access the internet. For example, let's say that the system
administrator allowed the Windows update and the antivirus update, as well as the most
common browsers, such as Chrome, Internet Explorer, and Firefox. So, only these processes
are allowed to reach over the internet; any other process will be blocked. By implementing
such a policy, our backdoor has no chance to survive since it won't be listed in the
administrator list by default. Eventually, we don't get any shell to the attacker machine.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Catch Me If You Can! Chapter 4

[110]

However, if we find a way to somehow control Internet Explorer (IE) on our behalf using
our Python script and then force it to connect to our Kali HTTP server in the background
and transfer commands back and forth, then we can bypass the host-based firewall policy
here. Microsoft offers Component Object Model (COM) to enable interprocess
communication and programmatically create an object to control and automate multiple
Microsoft products, such as Outlook, Internet Explorer, Word, and Excel. Internet Explorer
is a built-in browser in all Windows versions; so, it should be available all the time in our
target and is usually whitelisted to security administrators as it is considered as a backup
browser in case other browsers fail. Another benefit of making Internet Explorer initiate the
connection on our behalf is if the target was using an internal proxy before connecting to
the internet, then you don't have to worry about knowing the proxy information as Internet
Explorer will take care of this on our behalf.

So, what we'll do here is we'll assume that the host-based firewall only allows some process
such as antivirus, Firefox, Internet Explorer, or Windows Update, and nothing else. In
response to this, in our Python script, we will define a COM object to control Internet
Explorer. Then, we will make Internet Explorer navigate to our HTTP server, which is
located on the Kali machine, and get the command to execute it.

Once we get the command that we need to execute, we will initiate a subprocess. We
retrieve the command to EXE. Then, using the COM object, we will take it back using our
Python script and initiate the as a subprocess. The result for the command, using
the COM object we will pass it to Internet Explorer and then post it to our website, which is
located on the Kali machine here. If you remember, this technique is very similar to our
previous HTTP reverse shell, but the key difference here is that we use Internet Explorer as
our web client instead of using the library, as we did earlier. The end result, from
the host-based firewall's perspective, is that the Python script did not initiate any session to
the outside world, it was Internet Explorer.

The following link will provide more insight on COM
protocol:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Catch Me If You Can! Chapter 4

[111]

Hijacking IE
As always, coding with Python will make your life much easier. Now, to use COM in
Python, you just need a Python for Windows or library. Since we've already installed
this library while creating our previous key-logger, we won't cover that again here. Now,
let's jump to the coding part:

Here, we start by creating an object instance and set the Visible option
to 0, which means that Internet Explorer will run in the background.

If we set the value to 1, then Internet Explorer window will show up to the
target desktop and this is something we don't want.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Catch Me If You Can! Chapter 4

[112]

Next, we start by going into an infinite loop, and navigate to our Kali IP address. We will
wait for the browser to finish loading. If the browser doesn't load the page entirely, we will
sleep for one second. Note that, when the browser has finished loading, will
have a value of and the second loop will be terminated.

Next, we retrieve the HTML page into a variable called ; then, we convert the
HTML entities into . Finally, we encode the command into ASCII string and ignore
any exception, which may have occurred while doing so. The final result will be the
command that we should execute and we will print it out. As with our previous shells, if we
get a command from the Kali machine, we will quit Internet Explorer instance
and the loop. If the command was not terminated, then we inject the command into a
shell and store the result in a variable called . Now, in order to submit or post the
using the COM technique, it requires to the first, and we used a built-in
Python function to do so. Then, at the end, we post the command execution
result along with the parameters, which we defined earlier. We have never used

 or , so we set them to their default values. The main parameter here is
the , which defines the destination URL that we wish to submit the data for.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Catch Me If You Can! Chapter 4

[113]

Let's jump to the attacker side a little bit and here we had the exact HTTP web server that
we used earlier in our HTTP reverse shell. After starting the script on the target side,
Internet Explorer will start in the background, as we can see from the Windows Task
Manager's Processes tab in the following screenshot:

As you can see, it's totally invisible to the user. The IE is running, but as we can see, the GUI
is not showing up in the Applications tab. On executing on the Kali machine, at
the victim side, we get the command. Let's go for directories and other
commands. You can also perform a quick :

dir
cd
whoami
arp -a
ping 10.10.10.100

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Catch Me If You Can! Chapter 4

[114]

The outputs will be similar to the following:

We got our shell fully functional here. So, one more time, let's just explain what just
happened here:

Our Python script has initiated an Internet Explorer process in the background
and we have used Internet Explorer to navigate to our command and control the
server on the Kali side.
Then, we transferred the data using and back and forth between them.
Now, at the end, note that it's not only limited to a shell. You can also transfer
files and submit data using COM protocol.
We will leave it to you to discover the other features that you can do with a COM
protocol.

Bypassing reputation filtering in next
generation firewalls
Next-generation firewalls are all-in-one firewalls. They have all the security features, such
as IPS, antivirus, anti-spam, and reputation filtering, in a single box. In this section, we will
discuss a major security feature, which can prevent us from getting our shell on our target.
Now, let's assume that we were able to plant our Python reverse shell successfully on our
target machine. Now, in a traditional firewall, if the access control list (ACL) was allowing
the traffic to the outside, then we will get our shell back successfully. But if the firewall was
doing reputation filtering, then what will happen is that once the client initiates a session
back to our Kali machine and reaches the firewall, the firewall will do a lookup and check
on the destination IP. Then, it checks whether the destination IP belongs to a malicious site.
This checking is based on an IP pool, which is a list of an IP that the firewall will download
from the vendor database. So, if this is a Cisco firewall, it will use a Cisco database. If this
firewall was a Palo Alto, it would use a Palo Alto pool. This database or a pool contains a
large list of IPs with its reputation rank.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Catch Me If You Can! Chapter 4

[115]

For example, let's say in the IP or in the database we have an IP of and it has a
rank of , which means it can totally be trusted. Also, we have an IP of , which
has a low rank of . This means that it has been reported as a malicious IP. Let's say that the
attacker IP address was . When the initiated session reaches the firewall with the
destination IP address of , if this IP was not whitelisted and has a low rank in the
IP database, then the firewall will drop the traffic and log the decision to the administrator.

The idea here is to use a server or website such as Google Forms to submit a text or maybe
to use SourceForge to upload the files. The benefit of doing so is, firstly, these two servers or
services are very well-known and have a high reputation rank out of . So, we are
expecting to see or Google Forms in the IP pool or on the IP
database with a rank of . Secondly, it may have never been flagged as suspicious to the
security administrator or to anyone watching the traffic in real time.

Interacting with SourceForge
In this section, we will see how easily we can upload files to SourceForge. SourceForge is
usually whitelisted from the reputation filtering perspective and probably never looked by
security administrators. SourceForge provides multiple ways to interact with its repository.
We will be using SCP, which is transferring the file over an SSH session. Now, creating an
account in SourceForge is easy and hence we will skip this part. Before we start, take a
minute and read the SourceForge documentation for using SCP and the format
needed, . I'll log into my account,
which I have already created and proceed to my profile. There, I have created a project
called with zero files currently.

Let's go to the coding part right now. We will be using two libraries to get our job done:

The first library is . is a Python implementation of the SSHv2 protocol,
providing both client and server functionality. The is a higher library built over

 that is used to transfer the file in just a matter of a single line.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Catch Me If You Can! Chapter 4

[116]

Before using any of these libraries, a prerequisite library called has to be installed
first from . The steps are
rather straight forward.

The next step is to install using the command:

pip install paramiko

The last step is to install the library. If you face any problems with the library setup
script, simply copy the library manually into Python site-packages directory. Simply paste
the scp script by navigating to Python27 | Lib | site-packages.

Lets look into rest of the script:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Catch Me If You Can! Chapter 4

[117]

So, our script will start with creating an instance using
the class. Now, when you connect to an SSH server for the first
time and if the SSH server keys are not stored on the client side, you will get a warning
message saying that the server keys are not cached in the system; it will prompt you to
accept these keys.

Open PuTTY software, connect to the SourceForge server with as
the hostname, port , and protocol SSH. Now, click on Open:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Catch Me If You Can! Chapter 4

[118]

We will get a warning pop up because the keys are not cached in the system. Now, since we
perform an automation, we will inform to accept these keys for the first time
without interrupting the session or prompting the user for it. This will be done
via , then .

The next step in the code block is to define the SourceForge server name that we want to
connect and upload our file to. Also, we provide the login credentials. After
providing and , we will authenticate ourselves to the SourceForge
server. After a successful authentication, the SSH session ID will be passed to
the function and the function will return the session ID
for us. Now, after performing this step, all we have to do is specify the file path that we
want to exfiltrate and upload it to our repository.

In this example, I have used Module 5 or the file. So, we will use the
function from the SCP to perform the upload and in the end we will close the session using
the function.

After running the script, we will get a successful authentication message as follows:

>>>
[+] Authenticating against web.sourceforge.net ...
[+] File is uploaded
[+] Closing the socket
>>>

Now, let's jump to the attacker side and verify that we got the file. First, install FileZilla FTP
client to access our repository:

apt-get install filezilla

Open the software by running and enter the name of the server/hostname,
username, password, and port number, as entered previously in the script to log into your
account. A warning message will be presented because we have logged in for the first time,
and if we scroll a little bit we can see that we got our file. has been uploaded here
successfully as shown in the following screenshot:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Catch Me If You Can! Chapter 4

[119]

Try to download this file by right-clicking on the filename and selecting Download. The
console prints that the file has been transferred successfully in the absence of errors.

Now, repeat the preceding steps for a extension to check whether you're successful.
Refresh the attacker side and view the contents. Make sure to remove the files from your
SourceForge repository once the penetration testing assessment is finished.

Interacting with Google Forms
In the previous section, we have seen how we can exfiltrate data into the SourceForge
website. Now, we will use Google Forms to submit normal text. Note that this text could be
a command execution output for our shell. The point here is, similar to SourceForge, Google
Forms has a pretty high reputation rank. Follow these steps to get started:

Log in to Google Forms1.
Create a new Google form by clicking Start a new form2.
Type the Question as 3.
In the Response tab keep the default name for the spreadsheet4.
Change type of the Question to Paragraph from the default Multiple choice5.
Once the form is created, click on Send6.
Copy the link that is provided to a Notepad or a text file7.
Go to the link we copied and submit a trivial text8.
Check the response in the Google Sheet that we created, which will be in your9.
Google Drive by this time

Now, we will code a Python script that will submit text data from the target side into our
Google Form and the best part here is that we can accomplish that without having to log in
into a Google account. Now, as usual, the best Python library to interact with web is

and we have used in the previous sections:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Catch Me If You Can! Chapter 4

[120]

Once again, the installation is quite easy: it's just . Now, what we
see here is the documentation for submitting an HTML form-encoded
request:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Catch Me If You Can! Chapter 4

[121]

Now, as per the documentation, we first define the URL for the submit form and, in our
case, it's the Google form URL. And the second parameter is our data in a dictionary format,
where we have a and a corresponding value. Keep in mind that the is the form
name and its value is our text data that we want to send.

Let's jump to our Google form link to discover the form name, which will be our in the
dictionary. Open the source code of the form that we created and, in HTML, search for
the string. If you take a close look, you will catch the HTML form name for
submitting a text. In our case, the form name which comes as the value of

 is :

At this point, we have discovered the name, which is what we need to automate the
process. Remember that the value is the data that we want to send or submit.

Copy the form name on a Notepad file for now. Then, we have to go to the
previous script and fill this information over there.
First copy, the URL of the form and assign it to the variable below the

 line and, at the end, append after removing
the part from the URL. Put the form name, , as the key and
the data for now will be :

Save the script. At this point, we have everything in place. Let's run the script and if
everything is working fine as expected, we should see added in our
form response.

In the next section, we will see how we can use this script in real world penetration testing.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Catch Me If You Can! Chapter 4

[122]

Bypassing botnet filtering
If you have read the previous sections in order, then at this point you should be able to grab
a command over Twitter without the need to log into Twitter and submit a text into a
Google form, also without logging into the Google account. Lastly, you should be able to
upload files to SourceForge. So, you might be asking: what can a hacker do with these
services?

Well, they can send a command such as as a tweet and then they can make
multiple infected targets to parse the tweet and execute the commands. After executing the
commands, we get the execution results, which can be submitted to a Google form.
Alternatively, if the command syntax or format was containing the keyword, then the
target will upload the files into our SourceForge repository.

Now, in modern firewalls, the botnet filtering feature is looking for a certain criteria or
parameter, like the application or protocol being used by the modern botnets such as IRC,
Dynamic DNS, as well as the number of sessions created from the inside to the outside host.
All of these will be considered by the modern or next-generation firewall to check whether
this traffic belonged to a botnet or not. Also, there is no need to mention that the reputation
filtering is also a part of these inspections and filtering.

The benefits for building a botnet based on well-known servers are that first, we don't use
IRC channels or Dynamic DNS. Next, we don't have to interact or have a direct interaction
with the attacker machine. The last point is that all of these servers or services are well
known and trusted.

If you do abuse these services and use them out of the lab environment,
you are violating the terms and agreement, and eventually you will be
prosecuted to the full extent of law accordingly as per the jurisdiction
prevalent in the concerned region.

Keep in mind that my point here is to open your eyes to similar types of attacks, so you can
be aware of them. So, what I want you to do is challenge yourself and try to combine and
squeeze all of these scripts into one advanced shell and then try to infect multiple virtual
machines running Windows 7 within your home lab environment. After that, or finally, you
will be able to control them and exfiltrate data. The last point which we didn't mention up
to this section is the encryption. In the next section, we will see how easily to build XOR
encryption and mask our clear-text traffic.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Catch Me If You Can! Chapter 4

[123]

Bypassing IPS with handmade XOR encryption
In this section, we will build a simple XOR encryption in Python. Now, traffic encryption is
one of the most powerful techniques to evade network analyzer or IPS sensors but first,
before jumping into the coding part, let's have a quick overview on how these devices work
in the first place.

Generally speaking, these devices can operate in two modes: the first mode, which is the
signature-based mode, where it inspects the packet parameters and data payloads, which
are passing through the sensor. Then, similar to an antivirus, it checks whether there is any
match against its signature database and based on the action specified for the matched rule,
it may drop or log the traffic. The second mode is behavior-based or anomaly-based, where
you install the IPS in the network and it will learn the types of the protocol, as well as the
packet rate passing through the sensor. Then, it'll build its database or its baseline database
based on the current network traffic.

For instance, in a network, let's say that we have 50 PCs that usually use SSH to access a
remote server. If the IPS is behavior-based, it will learn that on average we have 50 SSH
sessions and it will create a baseline for this. Later on, if any PC has used Telnet, then the
IPS will consider this protocol as a suspicious activity and may drop the bucket. Although
the Telnet session is a legitimate one, but since the IPS during the learning phase did not
notice any Telnet session, it won't be included in the IPS baseline and this incorrect behavior
is called false positive. This is why behavior-based IPSes are not frequently used due to
these false positives.

Now, we will code a very simple XOR encryption to mask our data payload. You're
probably thinking: why an XOR encryption? Why not create a SSH or HTTPs shell, since
these protocols provide encryption by design? Well, I do not recommend this because, in
many enterprise networks, you may find your target has installed a decryption device
where it can terminate the SSL and SSH. So basically, once the traffic comes into this device,
it will convert or remove the encryption from these protocols and convert it into clear text
before passing it to the IPS sensor for inspection. Technically, you won't have an end-to-end
encryption shell and if you shall face this decrypter device, you won't have any added
value.

Many modern firewalls or next-generation firewalls can terminate the SSL
and SSH encryption for inspection purposes.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Catch Me If You Can! Chapter 4

[124]

Let's jump to the coding part:

Let's look into the first section. We will generate a random key, which will be used for XOR
encryption. Now, our key should be complex enough and match the following criteria: it
should contain lowercase, uppercase, digits, and special characters here. Now, the loop
at the end defines the key size. The key size is 1 KB, which, if you remember in our TCP
shell, matches the TCP socket size. The empty string at the start will put the result
for the random strings into a sequence and finally, we will store it in a variable. So, all
in all, the loop will generate random strings, which match our criteria, and
the is used to gather these strings into a sequence.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Catch Me If You Can! Chapter 4

[125]

On running the code, a key for length will be generated that we can use for
encryption. If you run the script one more time, you will get a totally different key with the
same size:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Catch Me If You Can! Chapter 4

[126]

In the second part of XOR encryption, keep in mind that the key size should be equal to or
greater than the clear-text message. We will pass two values to the dedicated function

. The first parameter, , is the message that we want to encrypt or decrypt and
the second parameter, , is the XOR key. Notice that the same is used for both the
encryption and decryption processes. Also, the message could be the encrypted message
that we want to decrypt or the clear-text message that we want to encrypt. So, the XOR
operation is exactly the same when we encrypt or decrypt. The only difference is that when
we encrypt, we pass the message in a clear text and when we want to decrypt, we pass the
encrypted message. The following line from the script does both the XOR
encryption and decryption for us:

So, first, we split the message and the XOR key to a list of character pairs in a tuples format.
Next, we will go through each tuple and convert them into integers using the
function. Now, once they're converted into integers, we can perform an exclusive XOR on
them. Then, in the last part, we will convert the result back to ASCII, using the character or
the , function. In the end, we will merge the resulting array of characters as a
sequence, using the function here. So, in summary, we will print the clear-text
message then the encrypted version, and finally, the decrypted one.

After running the script, you'll see in the output the XOR key, the message that we passed,
the encrypted message, and the decrypted message.

Each time we run the script, a new key will be generated and hence a new encrypted
message will show up.

Once you generate your XOR key, make sure that the same key is
hardcoded into your Kali server script and the Windows backdoor;
otherwise, you won't be able to decrypt your messages.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Catch Me If You Can! Chapter 4

[127]

Summary
In this chapter, we've covered a wide range of topics ranging from bypassing firewalls to
interacting with websites. We've performed these tasks after usage of various tools and
different methodologies, which enabled us to attack the victim machine with our attacker
machine or encrypt and decrypt our messages.

In this next chapter, we'll cover privilege escalations pertaining to weak service file
permissions, preparing vulnerable software, breaching legitimate windows service via a
backdoor, and creating a new admin account.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

55
Miscellaneous Fun in Windows

In this chapter, we'll mainly focus on exploiting vulnerable software in Windows and
proceed to use different techniques within privilege escalation. Subsequently, we'll also
create backdoors and cover our tracks. This chapter will give a general idea of how we can
leverage the power of a Python script to our advantage.

The following topics will be covered in this chapter:

Privilege escalation weak service file
Privilege escalation preparing vulnerable software
Privilege escalation backdooring legitimate windows service
Privilege escalation creating a new admin account and covering the tracks

Privilege escalation weak service file
During a penetration testing phase, you may encounter a standard user where you don't
have full privilege to access or modify a filesystem due to the user access control (UAC)
and, each time you try to elevate your privilege, you will be prompted to the window that
asks you to enter the administrator password. In this section, we will discuss one of the
types of doing a privilege escalation attack, where you technically jump from a standard
user to an administrator or system privilege. These types of attacks, which we will discuss,
are called privilege escalation via service file permission weakness. The system will be
vulnerable if the location of a service executable file is modifiable by the standard user.
Then, it can be overwritten by another malicious executable. We may use this capability to
gain system privilege(s) by booting our own executable in place of the service executable.
Once the service is started after restarting the system, the replaced executable will run
instead of the original service executable. So, in summary, we have a system privilege and
we'll run an EXE, which belongs to a vulnerable software. Now, since this software EXE can
be written by a standard user and within a standard user profile, we can simply replace it
with a malicious EXE.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Miscellaneous Fun in Windows Chapter 5

[129]

So, this software EXE can be written or modified by a user space, using a standard user. So,
what we can do is, we can simply replace the software EXE with a malicious one. On the
next three boots, our EXE is going to take a place and will be executed with the power of
system privilege.

Here is a link on privilege escalation types with brief description for each
type:

. If you have
some time, I recommend that you read this article.

Privilege escalation preparing vulnerable
software
For this demonstration, I will be using a vulnerable software named Photodex taken from
an Exploit Database website. You can download this software from

. Once the software is downloaded, install this software on our
target machine. Once it's finished, restart the machine.

So now, let's try and create a standard account in our target Windows machine
by going to Control Panel | Add or remove user accounts | Create a new account. Let's call
this one . After creating the account log into the account and navigate
to the directory created while installation at drive and at the same time,
open the Task Manager.

You will be able to see the service name, which gets created by Photodex software, which is
 under the Services tab. To get more information about this service, click on

the Services button. In the Services window that opens, find the , right-click
on it and select Properties, you will be able to find the EXE file path for this service. Go and
have a look into that directory, in my case, it is

. Find the EXE file and right-click on it; notice that we don't
need any admin privilege to Rename, Delete, Copy, or even Cut this file. So, technically, if I
rename this file to , for instance, and then replace a malicious file instead of this one,
then we can take advantage of this vulnerability. Let's see what we can do with this
vulnerability. In the next section, we will create a new service EXE file purely in Python.
Then, we will replace the current one, which is the file and see what
privilege we can gain access by doing so.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Miscellaneous Fun in Windows Chapter 5

[130]

Privilege escalation backdooring legitimate
windows service
In this section, we will code a malicious service file to replace the legitimate one. Now, in
order to replace the service file, our new malicious service file should be able to
communicate with Windows service control manager. For instance, when you manually
Start, Stop, Pause, or Resume the service, the Windows service control manager will send a
signal or order to the EXE service file and in return, the service file should usually obey the
service control manager's order. If, for any reason, the service file or the EXE file did not
understand that signal, then the service control manager will fail to start the service and
you will get an error saying

.

Now, let's jump to the code:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Miscellaneous Fun in Windows Chapter 5

[131]

First of all, some part of my code is inherited from a script that I found on ActiveState
website. Here, you can find the original one

. The second thing I recommend is to read more about Microsoft service control
manager functionality. Here is a good start:

. Last but not least, library is a
prerequisite library to create a Windows service in Python. You can download it
from: . Our
code can be divided into two sections. The first section is about initializing. In this section,
we define a listener for Windows, that is, . Then, we pass a class
handler, so, whenever we get a signal from , we will pass it to the

 class.

Let's move to the second part:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Miscellaneous Fun in Windows Chapter 5

[132]

In the second section, we define the action to do when we get a service manager signal and
this will happen within the class. In the first two lines, we specify the service name
and the display name. Note that the name that I have chosen, which is , is
similar to the original one for Photodex software. So, if we open the service from the
Windows Task Manager, like we did in the previous section, the name exactly matches the
service name for the vulnerable software.

Next, we initialize the and define in functions style what to do when
we get a service manager signal. So, for example, if the service manager signal was pause,
then we will for time of seconds. Also, if the signal was
start, then we will tell the service manager that we are planning to run the service; this will
happen via reporting back a status through

. Then, within an exception handling, we will tell the service
manager that we are currently running up the service and we will call the
function. If any exception happened, then we will call the function here.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Miscellaneous Fun in Windows Chapter 5

[133]

Once we execute the function, we mark the flag as and we
will wait in a while loop for receiving a service stop signal from the service manager. If we
get this signal, we move to function, which will eventually switch the flag to .
Now, inside the function, we will do a similar procedure to what we did in the

 function. So, we will tell the service manager that we are planning to stop the
service then, we will execute the function and finally we will tell the service
manager that we are currently stopping the service. Now, within the function, we
mark the service status flag as to break the infinite loop in the function.
Now, if I export this script into EXE and replace it instead of the and
restart the machine, it should work fine. However, I want to go an extra mile and to prove
that we got system privilege. So, let's make sure that the exploitation worked fine. For this
purpose, I made a quick Python script to check whether we are running as admin or not:

This script will simply call the function from Windows. If the returned
value is , it means that we are a standard user; otherwise, it means that we have admin
privileges. To run this script, open Command Prompt as administrator and navigate to the

 then and type . We'll get
 as we are having admin privilege. This is because before initiating the Command

Prompt, I did a right-click and selected Run as administrator.

So, I'm going to use this little trick in our code, and I will inject the check admin script
within our malicious service. Obviously, it should be executed once the service gets started,
so it should be under the function. Once we run the service, we will create a text
file on the desktop and inside that text file we will see what privilege are we running into.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Miscellaneous Fun in Windows Chapter 5

[134]

So, we will now export the script into EXE like we did in the previous chapter, and at this
point, all we have to do is to replace the original EXE file with the generated one. Go to the
original one of the Photodex software. Since the software is vulnerable, we will be able to
replace this one. So, I'm going to rename this one to and I will simply copy and
paste our malicious file here. If everything is working fine our service should run without
any error and we should see a text file on the desktop and once we open it, should tell us
the privilege that we run into. After restarting, you'll notice a text file on the desktop.
If you open it, you'll see a text that says we are running as an administrator.

Privilege escalation creating a new admin
account and covering the tracks
In our previous section, we created a malicious Python service and replaced the legitimate
one with it. Once the system has started, we verified that we get a system or admin
privilege. Now, in this section, we'll see how we can create a new admin account and then
jump from the standard user to the admin account. So, what I have changed on the coding
part is adding the following section to the previous code, which in summary will create a
new admin account once the service gets started:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Miscellaneous Fun in Windows Chapter 5

[135]

So, keep in mind that I have added the aforementioned section under the function.
So here, we defined the new username called , and the group that it belongs to,
which is group. Next, we create a user and the group information profile
in a dictionary format. Then, inside the dictionary, we specify some values, such
as , , and . Finally, we create the new admin account and add it as
a group member to the group. In case any exception happened during
the creation phase, we will simply skip it. Now, before exporting the code into EXE and test,
quickly verify the usernames that we got on the machine by running in
Command Prompt and it will list the users in our machine.

Currently, we are logged into the account. So, let's go ahead and do the EXE
exporting here. Copy the script into the folder and rename it to . Now,
run the setup file. Then, copy the exported EXE file to replace our vulnerable software in
the folder. At this point, if everything is working fine, then
after a restart, we should see a new admin account listed called . Now, restart the
machine and log into the account. Fire up the Command Prompt. Now, if we
type , we will get a new username called .

If we type , we'll see at the bottom that we belong to the
 group. So, at this point, once we get admin privilege, we can do whatever

we want. So, let's go evil and clear the Windows event logs from the Event Viewer by
logging in with the Hacked admin account. This will help us cover our tracks.

Summary
In this chapter, we've learned the different ways to execute privilege escalation and exploit
the vulnerabilities. We started with exporting a file to EXE and then moved to target a
vulnerable software. After this, we initiated backdoor creation and subsequently covered
our tracks to avoid detection.

In the next chapter, we'll deal with different types of encryption algorithms.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

66
Abuse of Cryptography by

Malware
In this chapter, we will protect our tunnel with something more solid than a simple XOR, as
modern malware is using a well-known ciphering algorithm to protect its traffic in the
transit path.

The topics covered in this chapter are as follows:

Introduction to encryption algorithms
Protecting your tunnel with AES stream mode
Protecting your tunnel with RSA
Hybrid encryption key

Introduction to encryption algorithms
In this section, we'll have a quick overview of the most common encryption algorithms in
the cryptography world. Basically, there are two types of encryption algorithms. The first
one is called symmetric and the second one is called asymmetric. Now, this classification is
made based on the number of needed keys and how they are operated. Let's discuss the
difference between these algorithms a little bit, and we will start with the symmetric one.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Abuse of Cryptography by Malware Chapter 6

[137]

Now, symmetric encryption uses one key for both the encryption and the decryption
process and this key is shared on both the client and the server side. Now, the most
common examples of symmetric encryption are AES, Blowfish, RC4, and Triple DES. In
asymmetric encryption, we have the concept of the key pair, where we have a key called
public key that is used for encryption and we have a private key that is used for
decryption. Now, the key name implies that the public key can be published over the
untrusted network like the internet and doing so will cause no harm. On the other hand, the
private key should never leave the operating system or the machine that is intended to
decrypt the data. If the private key is leaked out of the operating system, then anybody who
has that private key can decrypt the traffic.

The client or the target has to generate his/her own key pair and the server or the attacker
has to generate his own keys. Now, after generating the key pair on each side, the operation
will be as follows. The client will hold his own private key, and the server's public key. On
the other hand, the server will hold his own private key and the client's public key. So, to
quickly recap, after switching over, at this point on the Kali side we have our own private
key and the target's public key. Also, on the target side, we have our own private key and
we also hold the Kali public key. So, reflecting this to our shell, when we get a reverse shell
prompt to enter our command to be executed, such as it will be encrypted using
the client's public key and we will send it over the tunnel.

When we enter in the shell prompt, before sending over the in a clear
text, we will use the target's public key to encrypt this message and we will send it over the
tunnel. No matter who's watching that traffic, only the client can decrypt it, and that's
because only the client is the one who holds the private key. Using the target private key,
we will decrypt the command and revert it to clear text, which is again,
the command. Now, when the client executes the , instead of sending
the output in clear text, the output will be encrypted using the server or Kali public key and
we will send it over the tunnel. Now, on the Kali side, once we get the encrypted message,
we will pass it over to our private key, which will be used to decrypt the traffic or to
decrypt the message and print it out in clear text. Now, the last thing I should mention
about asymmetric encryption are the most common examples of this algorithm, which are
the RSA and Pretty Good Privacy (PGP).

There are certain advantages and disadvantages to both methods. The asymmetric
algorithm is considered hard to break, more solid, and more secure than the symmetric one.
However, it requires more processes and is much slower than the symmetric one. So, the
question is, can we create a hybrid system or hybrid algorithm that can take advantage of
both the symmetric and asymmetric systems? The answer is yes.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Abuse of Cryptography by Malware Chapter 6

[138]

We will use the asymmetric algorithm to securely transfer a random and complex key.
Now, this key will be used later on to encrypt our transfer data using symmetric algorithm.
So, basically, here's the deal. The Kali machine will hold the target's public key, then we will
generate symmetric key on the Kali side. Now, we will take advantage of the asymmetric
public key of the target side and we will use it to encrypt the generated symmetric key and
send it over to the target side. Now, the target will decrypt the symmetric key using its
private key.

We will use the target private key to export or to decrypt the symmetric key here. So, at this
point, we can use this symmetric key for our tunnel encryption. Now, once we have
securely transferred the symmetric key, we can use it to encrypt each command or output
going through this tunnel. So, to recap really quickly, as soon as the target initiates a session
back to us on the Kali side, we will generate the symmetric key. Now, to securely transfer
this symmetric key, we will encrypt it using the target's public key, and send it over. On the
target side, we will decrypt that message and extract the symmetric key one more time. At
this point, we have the symmetric key on both ends. Now, we can securely transfer our
commands back and forth using the symmetric key. The last thing we should talk about are
the benefits for using a hybrid method, which are, first, we keep our generated symmetric
key secure by transferring it securely over the internet. Second, keep in mind that this is a
randomly generated key and will be changed on each connection. Instead of hardcoding the
key on both sides or on both ends, the key will change per connection. Moreover, we can
change the key whenever we want. So for example, in VPN IPSEC protocol you can set a
criteria where you can change the encryption key after a certain amount of time or after
consuming a certain bandwidth.

Protecting your tunnel with AES stream
mode
In this section, we will protect our TCP tunnel with AES encryption. Now, generally
speaking, AES encryption can operate in two modes, the Counter (CTR) mode encryption
(also called the Stream Mode) and the Cipher Block Chaining (CBC) mode encryption
(also called the Block Mode).

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Abuse of Cryptography by Malware Chapter 6

[139]

Cipher Block Chaining (CBC) mode encryption
The Block Mode means that we need to send data in the form of chunks:

For instance, if we say that we have a block size of 512 bytes and we want to send 500 bytes,
then we need to add 12 bytes additional padding to reach 512 bytes of total size. If we want
to send 514 bytes, then the first 512 bytes will be sent in a chunk and the second chunk or
the next chunk will have a size of 2 bytes. However, we cannot just send 2 bytes alone, as
we need to add additional padding of 510 bytes to reach 512 in total for the second chunk.
Now, on the receiver side, you would need to reverse the steps by removing the padding
and decrypting the message.

Counter (CTR) mode encryption
Now, let's jump to the other mode, which is the Counter (CTR) mode encryption or the
Stream Mode:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Abuse of Cryptography by Malware Chapter 6

[140]

Here, in this mode, the message size does not matter since we are not limited with a block
size and we will encrypt in stream mode, just like XOR does. Now, the block mode is
considered stronger by design than the stream mode. In this section, we will implement the
stream mode and I will leave it to you to search around and do the block mode.

The most well-known library for cryptography in Python is called . For Windows,
there is a compiled binary for it, and for the Kali side, you just need to run the setup file
after downloading the library. You can download the library from

. So, as a start, we will use without TCP or
HTTP tunneling:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Abuse of Cryptography by Malware Chapter 6

[141]

The code is quite straightforward. We will start by importing the library, and we will
import the class from library. Now, we use the library to create the
random and random . The counter length is bytes, and we will go for
bytes length for the key size in order to implement AES-256. Next, we create an encryption
object by passing the , the AES mode (which is again the stream or CTR mode) and the

 value. Now, note that the is required to be sent as a callable object. That's
why we used structure or construct, where it's a sort of anonymous
function, like a function that is not bound to a name. The decryption is quite similar to the
encryption process. So, we create a decryption object, and then pass the encrypted message
and finally, it prints out the decrypted message, which should again be clear text.

So, let's quickly test this script and encrypt my name. Once we run the script the encrypted
version will be printed above and the one below is the decrypted one, which is the clear-text
one:

>>>
]ox:|s
Hussam
>>>

So, to test the message size, I will just invoke a space and multiply the size of my name with
. So, we have times of the length here. The size of the clear-text message does not matter

here. No matter what the clear-text message was, with the stream mode, we get no problem
at all.

Now, let us integrate our encryption function to our TCP reverse shell. The following is the
client side script:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Abuse of Cryptography by Malware Chapter 6

[142]

What I have added was a new function for encryption and decryption for both sides and, as
you can see, the key and the counter values are hardcoded on both sides. A side note I need
to mention is that we will see in the hybrid encryption later how we can generate a random
value from the Kali machine and transfer it securely to our target, but for now, let's keep it
hardcoded here.

The following is the server side script:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Abuse of Cryptography by Malware Chapter 6

[143]

This is how it works. Before sending anything, we will pass whatever we want to send to
the encryption function first. When we get the shell prompt, our input will be passed first to
the encryption function; then it will be sent out of the TCP socket. Now, if we jump to the
target side, it's almost a mirrored image. When we get an encrypted message, we will pass it
first to the decryption function, and the decryption will return the clear-text value. Also,
before sending anything to the Kali machine, we will encrypt it first, just like we did on the
Kali side.

Now, run the script on both sides. Keep Wireshark running in background at the Kali side.
Let's start with the . So on the target side, we will able to decipher or decrypt the
encrypted message back to clear text successfully.

Now, to verify that we got the encryption in the transit path, on the Wireshark, if we right-
click on the particular IP and select Follow TCP Stream in Wireshark, we will see that the
message has been encrypted before being sent out to the TCP socket.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Abuse of Cryptography by Malware Chapter 6

[144]

Protecting your tunnel with RSA
In this section, we will be using the RSA asymmetric algorithm to protect our tunnel. Now,
to review the requirements for asymmetric encryption: as we said, each entity has its own
key pair; when I say key pair, I mean a public and a private key. The final key-pair
distribution will be as follows. The client will hold its own private key and the server's
public key. On the other side, the server or the Kali machine will hold its own private key
and the target's public key. So, when we want to send a message or command to our target
from the Kali side, first we will encrypt that message using the target's public key and then
we will send it over the tunnel in encrypted format. The target will grab that command or
message, and using its private key it can decrypt it and extract it back to clear text. The
reply, after executing the command, will be encrypted using the server's public key. After
that, we will send it out in encrypted format to the network and once we received that
message or that encrypted message on the Kali machine, we will use the Kali private key to
decrypt it back to clear text.

Now, the first step is to generate a key pair on both sides:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Abuse of Cryptography by Malware Chapter 6

[145]

So, we start with importing the class. Then, we create a new object to generate a key
with a size of bits. Now, this is the maximum size that can support, but the tax
that you will pay for having a complex key is the slowness. The more key size the more
secure, but slower will be the operation. Next, we export the keys in format.
supports other formats such as , which is binary encoding. The most common format is
the , which is also used on network devices such as firewalls and routers for VPN or
HTTPS access purposes. Now, after printing out the generated keys, we'll save them to
the and files.

Let's start, and run the Generate Keys script given previously on both sides, at target and
attacker. On the Kali side we will get the RSA private key and the public key. The begin and
the end of keys will be marked. We will get a similar result on the Windows side too. So,
what we'll do right now is we'll copy each key on the Kali machine end and save it to a
separate file. Let's start with the private key on the attacker machine and simply paste the
private key in a notepad file. Rename this file to . Now, let's go and do the
same for the public key. Let's call this one . After this, jump to the Windows
side and do what we have done on the Kali machine.

Now, as we did with the AES encryption, before integrating the encryption to our tunnel,
let's first have a look at how the encryption and decryption will work:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Abuse of Cryptography by Malware Chapter 6

[146]

Here, we first define an encryption function, where we will pass the message that we want
to encrypt, and a decryption function down below, just as we did in the AES case. Now,
after getting the clear-text message, we will open the public key file that will encrypt the
message for us and link the imported key into the object. Now, the
object will do the actual encryption for us.

The encryption function in the class takes two parameters. The first one is the plaintext
message and the second one can be simply discarded. Therefore, we have passed a value.
Another thing is that, the encryption output is returned in a tuple format. The first item
contains the encrypted text, so we'll print it out and for testing purposes I'm starting with
encrypting my name.

Let's jump to the decryption process and we will do something similar to the encryption
process by importing. Now, here's the key difference. In the decryption, we'll import the

 and pass the value and print it out in a clear text after doing the
decryption.

Let's try and run the script on the Windows side and if you encounter an error message
saying that we've got no file or directory for most likely, this error message is
because of the format for the saved file. View the complete extension and remove the
and make it for both public and private files.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Abuse of Cryptography by Malware Chapter 6

[147]

Here, we want to start by encrypting my name, and we will pass my name in clear text to
the encryption function. Now, once we import the public key for encryption, we will print
the encrypted message. Then, we will pass the encrypted message back to the decryption
function so we can print it out in clear-text format.

Right now, if we jump to the Kali side and run the script with a slight change in the
 function:

Now, notice that I have encrypted a message that has a size of bytes in the code block.
The point that I want to show you is that RSA is working as a block type and, per

 implementation, the block size is bytes.

Now, let's see what'll happen if I raised the message size by 1 byte. So, instead of
multiplying this one with , I will simply multiply with . So, an exception will be
thrown saying that the plaintext is too large to be handled.

So, the maximum size of the message must be bytes. Now, what I will do first is I will
integrate the RSA to our TCP tunnel and then I will show you how we can solve the block
size issue within a few lines of Python code. Now, the integration is quite similar to what
we have done in the previous section. Let's look into the client side script:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Abuse of Cryptography by Malware Chapter 6

[148]

So, I have created two functions: one for the encryption and a second one for the
decryption. Before sending any command, we will pass it first to the encryption function
and before printing any result, we will pass what we get to the decryption function. Now,
remember that the target holds its private key and the server's public key and the Kali
machine holds its private key and the client's public key. Now, go to the Kali machine and
open the public key which you had saved in the text file. Copy and paste the public key into
the variable. So, obviously, we would need to import these keys manually before exporting
the script on the target side into EXE format. Now, we will open the public key from the
target side that we have just generated. Remember, this public key should be located in the
public key variable on the Kali machine. Perform the same operation as the previous one.

Right now, it's time for the private key. So, the private key for the Kali machine will be
located on the script for the Kali machine. Copy-paste the private keys from the text files
into the strings on both server and client side and save them. Now, let's find out whether
our scripts will work after the integration to the TCP tunnel. Start Wireshark and run it on
the server side. Let's jump to the target side and, basically, we get a connection and a shell
prompt. Check the connection with something less heavy like .

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Abuse of Cryptography by Malware Chapter 6

[149]

Now, keep in mind that is less than bytes; so, we were able to encrypt it
successfully on the Kali machine and send it over to the target side. Also, since the output of
the executing on the target side is also less than bytes we get the reply
successfully. So, we have verified that the encryption is working here. Now, let's try with
another command say, .

You will notice that we have received the command successfully but for some reason we get
no output on the Kali side and this is because the execution output of the on the
client side or on the target side is larger than bytes, and therefore the script will crash as
we have exceeded the message size. Now, as I said earlier, this can be resolved by verifying
the message length and breaking it down into chunks, where each chunk should be less
than or equal to bytes. So, let's jump to the latest code, which resolves the bulk size
problem for us:

We have created an statement to check the size of the command execution output. For
instance, let's say the command that we got from Kali was . So, we'll see if the
output or the size of the output of is larger than bytes. If it's not, then we got
no problem: we will send the output to the function, then it will be sent directly
to the Kali machine. However, if the output was larger than bytes, we will split it into
chunks, where the maximum size for each chunk is bytes. The splitting will happen by
making a loop, where we'll start from until the length of our command execution
output. And each time we make a loop, we will increment our counter with bytes. So,
what we'll achieve by doing this is, the chunk variable will hold the split result, where the
first chunk will cut the result from to bytes and the second chunk will be from
to bytes, and so on, until reaching the length of the command output. Now, note that
each time we got a chunk we are good to go and we will send it immediately to the attacker
machine after for sure passing out or passing into the encryption function.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Abuse of Cryptography by Malware Chapter 6

[150]

Now, on the target side, since the maximum size of the received data is already known to
us, which is again bytes, instead of reading 1 KB and splitting into chunks again, we
will read one chunk each time. So, that's why we have changed the received value from
KB to bytes. So, now, after decrypting the chunk, if we got a clear-text message with
full size of bytes, this probably means that this message has been split into chunks on
the target side, right? So, the next message or chunk is related to the first one. Now, this is
why the stored variable will hold both of them, and when I say both, I mean

 message and the next coming . Finally, we will out the
.

If the command execution was larger than two messages or, in other
words, was larger than 1 KB, then we may need to link the third message
as well to the stored variable.

So, let's verify if our code is working right now. Start running the server side and the client
side. Let's start with the command that we failed to run earlier, that is . We will
see that we get the output in a single piece, even it is bigger than bytes. The same goes
for and directories.

RSA is also being used in developing something called ransomware. Now,
in ransomware, the attackers can encrypt the target files using a public key
and ask for money to provide the private key, which will decrypt their
important files.

Hybrid encryption key
At this point, you should be able to code and implement both the RSA asymmetric and the
AES symmetric encryption, and integrate both of them over our TCP shell. So, now, we will
implement a hybrid way to take advantage of both the algorithms. So let's quickly recap.
The client will hold its own private key, and the server or the Kali machine will hold the
target's public key. Once the TCP connection is started, the Kali machine will generate a
random AES key and we will securely send this key to the target side. The reason that I say
securely is because the transfer will happen via encryption or via encrypting the random
AES key with a target's public key. Once the target gets that message, it will decrypt it using
the target private key and extract the AES key back to clear text. At this point, both the Kali
and the target machines have the same random generated AES keys which can, and will, be
used for AES encryption. Now, the AES encryption at this point will be used to encrypt our
commands that will be transferred back and forth between the Kali machine and our target.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Abuse of Cryptography by Malware Chapter 6

[151]

Upon a new connection, both Kali and the target will repeat the whole
process, and a new random key will be derived. Now, this is why it's
called a hybrid method, since we are using the asymmetric algorithm to
securely transfer a generated symmetric key, which eventually will be
used to encrypt our commands.

So, let's jump to the coding part, which is sort of a mix between the symmetric and the
asymmetric. The following is the server side-script:

Upon completing the TCP three-way handshake, we will create two random values, which
are the and the . Their values are a combination of an uppercase, lowercase,
digits, and special characters. Before going to the infinite loop which will be used to
transfer the command that we want to be executed we'll encrypt these values with the
target's public key and then send it over:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Abuse of Cryptography by Malware Chapter 6

[152]

On the target side, and also before going into the infinite loop, we will decrypt the key and
the counter that we have received from the Kali machine; we will do this encryption using
our private key. Then, we will store them in a global variable, which will be used for AES
encryption. One more time, this will happen before going to the infinite loop. The definition
of our private key is under a function called . So, at this point, we get the
key and the values, and as I said, we'll use them for AES encryption. So, the
encrypt function and the decrypt function are used to protect our commands that will be
going back and forth between the Kali and the Windows machines. Now, once we are
within the infinite loop, we will use the AES's stream mode to protect our tunnel later on:

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Abuse of Cryptography by Malware Chapter 6

[153]

Now, let's run the scripts, start with the Kali side, then with Windows side. You will notice
that once we fire up the target, we get a random AES key that gets generated on the Kali
machine, which is then transferred to the target side.

If we open Wireshark and right-click on any IP and select Follow TCP Stream, we can see
that the AES key gets transferred successfully after being encrypted with the target's public
key.

So, once we get the key, everything that is being sent, will be encrypted using the AES's key
stream. So, when we run on the Kali machine and again click on Follow TCP
Stream, gets encrypted using the AES algorithm.

Let's try with another command, such as . If we stop this session by
typing and then re-establish a new session, you will see that we will get a new
random AES key generated as per the new session.

So, each time the target connects to the Kali machine, a new random key will be generated.

Technically speaking, you can enhance the script here and make both sides
change the AES key after a certain amount of time or after certain amount
of bytes being sent over, just like the IPSEC in VPN tunnel does.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Abuse of Cryptography by Malware Chapter 6

[154]

Summary
In this chapter, we've discussed a wide range of topics ranging from introduction to
encryption algorithms to discussing different types of algorithms. We've also implemented
AES and RSA to protect the tunnel during passage of information.

With this, we've arrived at the end of the book! I hope you've learned some great techniques
to test with Python.

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Kali Linux for Advanced Penetration Testing - Second Edition
Vijay Kumar Velu

ISBN: 978-1-78712-023-5

Select and configure the most effective tools from Kali Linux to test network
security
Employ stealth to avoid detection in the network being tested
Recognize when stealth attacks are being used against your network
Exploit networks and data systems using wired and wireless networks as well as
web services
Identify and download valuable data from target systems
Maintain access to compromised systems
Use social engineering to compromise the weakest part of the network the end
users

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You May Enjoy

[156]

Python Penetration Testing Cookbook
Rejah Rehim

ISBN: 978-1-78439-977-1

Learn to configure Python in different environment setups
Find an IP address from a web page using BeautifulSoup and Scrapy
Discover different types of packet sniffing script to sniff network packets
Master layer-2 and TCP/ IP attacks
Master techniques for exploit development for Windows and Linux
Incorporate various network- and packet-sniffing techniques using Raw sockets
and Scrapy

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You May Enjoy

[157]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

Index

A
access control list (ACL)
admin account
 creating
AES stream mode
 Cipher Block Chaining (CBC) mode encryption

 Counter (CTR) mode encryption ,
 TCP tunnel, protecting
anomaly-based mode
asymmetric
attacker machine
 internet access, setting up
 preparing

B
BeautifulSoup 3.2.1
 reference link
behavior-based mode
Block Mode ,
botnet filtering
 bypassing
 IPS, bypassing with handmade XOR encryption

,

C
chained connection
Cipher Block Chaining (CBC) mode encryption

,
COM protocol
 reference link
Component Object Model (COM)
connection attempts
 tuning ,
Counter (CTR) mode encryption , ,

D
data exfiltration, HTTP reverse shell
 client side
 server side ,
data exfiltration, TCP reverse shell
 client side , , ,
 server side
Data Leaking Prevention (DLP)
DNS aware shell ,
DNS poisoning
 about , ,
 Python script, used ,
dynamic DNS (DDNS)

E
encryption algorithms , ,

F
Facebook
 password phishing , , ,
false positive
Firefox API
 hooking, with Immunity Debugger , ,
Firefox browser
 about
 process ,

G
Google Chrome
 password remotely, acquiring , , , ,
 saved passwords, dumping
Google Forms
 interacting ,

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

[159]

H
Hijacking IE ,
host-based firewalls
 bypassing
 Hijacking IE , ,
Host-Based Intrusion Detection System (HIDS)
HTTP reverse shell
 about
 client side ,
 coding
 data exfiltration
 EXE file, exporting ,
 server side ,
HTTP session
 file, testing against antivirus
 recovered password, submitting ,
Hybrid encryption key ,
hybrid method

I
Immunity Debugger
 about
 URL, for installing
inline transfer
Internet Explorer (IE)
IPS
 bypassing, with handmade XOR encryption ,

K
KeePass password manager
 hijacking , ,
 reference link
keylogger
 about
 code, adding , ,
 pyHook library, installing
 pywin library, installing

L
LastPass
legitimate windows service
 backdooring , , ,

low-level port scanner
 integrating , ,

M
Metasploit screen capturing
 replicating , ,
Metasploit searching
 replicating, for content ,
 target directory navigation ,

N
Network Address Translation (NAT)
No-IP agent

P
password hacking, countermeasures
 about
 computer, securing
 network, securing
 online account, securing ,
 suspicious activity, viewing , ,
persistence
 about ,
 countermeasures
 HTTP reverse shell, creating
 putty.exe persistent, creating , ,
Photodex
 about
 URL, for downloading
Pretty Good Privacy (PGP)
private key
privilege escalation attack
privilege escalation types
 reference link
privilege escalation
 admin account, creating
 legitimate windows service, backdooring ,

, ,
 service file ,
 tracks, covering
 vulnerable software, preparing
proof of concept (POC)
public key
py2exe-0.6.9.win32-py2.7.exe version

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

 URL, for downloading
PyCrypto
 reference link
pyHook library
 installing
 URL, for downloading
Python 2.7.14+ version
 reference link
Python script
 using ,
Python
 in Firefox EXE ,
 in Firefox proof of concept (PoC) , ,
pywin library
 installing
 URL, for downloading
pywin32 library
 URL, for installing

R
reputation filtering
 bypassing, in firewall
 Google Forms, interacting ,
 SourceForge, interacting , ,
requests 2.7.0
 reference link
RSA asymmetric algorithm
 TCP tunnel, protecting , , , ,

S
service file
shell breakdown
 preventing

signature-based mode
SourceForge
 interacting , ,
 reference link
Stream Mode ,
symmetric

T
target machine
 preparing , ,
TCP reverse shell
 about
 client side , ,
 coding
 data exfiltration
 EXE file, exporting ,
 server side
TCP tunnel
 protecting, with AES stream mode
tracks
 covering
Twitter
 countermeasures
 interacting
 tweet, parsing ,

U
user access control (UAC)

W
winappdbg library
 URL, for downloading

 EBSCOhost - printed on 2/9/2023 12:46 PM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Warming up – Your First Antivirus-Free Persistence Shell
	Preparing the attacker machine
	Setting up internet access

	Preparing the target machine
	TCP reverse shell
	Coding a TCP reverse shell
	Server side
	Client side

	Data exfiltration – TCP
	Server side
	Client side

	Exporting to EXE

	HTTP reverse shell
	Coding the HTTP reverse shell
	Server side
	Client side

	Data exfiltration – HTTP
	Client side
	Server side

	Exporting to EXE

	Persistence
	Making putty.exe persistent
	Making a persistent HTTP reverse shell

	Tuning the connection attempts
	Tips for preventing a shell breakdown
	Countermeasures
	Summary

	Chapter 2: Advanced Scriptable Shell
	Dynamic DNS
	DNS aware shell

	Interacting with Twitter
	Parsing a tweet in three lines
	Countermeasures

	Replicating Metasploit's screen capturing
	Replicating Metasploit searching for content
	Target directory navigation

	Integrating low-level port scanner
	Summary

	Chapter 3: Password Hacking
	Antivirus free keylogger
	Installing pyHook and pywin
	Adding code to keylogger

	Hijacking KeePass password manager
	Man in the browser
	Firefox process

	Firefox API hooking with Immunity Debugger
	Python in Firefox proof of concept (PoC)
	Python in Firefox EXE
	Dumping saved passwords out of Google Chrome
	Acquiring the password remotely

	Submitting the recovered password over HTTP session
	Testing the file against antivirus

	Password phishing – DNS poisoning
	Using Python script

	Facebook password phishing
	Countermeasures
	Securing the online account
	Securing your computer
	Securing your network
	Keeping a watch on any suspicious activity

	Summary

	Chapter 4: Catch Me If You Can!
	Bypassing host-based firewalls
	Hijacking IE

	Bypassing reputation filtering in next generation firewalls
	Interacting with SourceForge
	Interacting with Google Forms

	Bypassing botnet filtering
	Bypassing IPS with handmade XOR encryption

	Summary

	Chapter 5: Miscellaneous Fun in Windows
	Privilege escalation – weak service file
	Privilege escalation – preparing vulnerable software
	Privilege escalation – backdooring legitimate windows service
	Privilege escalation – creating a new admin account and covering the tracks
	Summary

	Chapter 6: Abuse of Cryptography by Malware
	Introduction to encryption algorithms
	Protecting your tunnel with AES – stream mode
	Cipher Block Chaining (CBC) mode encryption
	Counter (CTR) mode encryption

	Protecting your tunnel with RSA
	Hybrid encryption key
	Summary

	Other Books You May Enjoy
	Index

