
C
o
p
y
r
i
g
h
t

2
0
1
8
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 10:18 AM via
AN: 1801030 ; Wisnu Anggoro.; C++ Data Structures and Algorithms : Learn How to Write Efficient Code to Build Scalable and Robust Applications in C++
Account: ns335141

C++ Data Structures and
Algorithms

Wisnu Anggoro

BIRMINGHAM - MUMBAI

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++ Data Structures and Algorithms
Copyright 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Chaitanya Nair
Content Development Editor: Lawrence Veigas
Technical Editor: Supriya Thabe
Copy Editor: Safis Editing
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Aishwarya Gangawane
Graphics: Jisha Chirayil
Production Coordinator: Arvindkumar Gupta

First published: April 2018

Production reference: 1240418

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78883-521-3

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Contributors

About the author
Wisnu Anggoro is a Microsoft Certified Professional in C# programming and an
experienced C/C++ developer. He has been programming since junior high school (about 20
years ago) and started developing computer applications using the BASIC language in MS-
DOS. He has a lot of experience with smart card, desktop, and web application
programming.

He is currently a senior smart card software engineer at CIPTA, an Indonesian company
that specializes in the innovation and technology of smart cards.

I would like to thank God, whose blessings have made me who I am today. My wife, Vivin,
who has supported me to achieve all my dreams. To my beloved sons, Olav and Oliver, who
are very naughty sometimes but never fail to make me happy every day. To my parents for
their inspiration.

Also, I would like to show my gratitude to Benediktus Dwi Desiyanto, my mentor and
superior at CIPTA, who always helped me develop my skillsets.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the reviewer
Mark Elston is a software engineer at an automated test equipment firm working primarily
in IC and mobile device testing. His 30 years of experience include developing aircraft and
missile simulations for the Air Force and Navy, hardware control systems for NASA, and
tester operating systems for commercial products. He has also developed several Android
applications for fun. His latest passion is delving into the world of functional programming
and design.

I would like to thank my wife for her understanding when I had a chapter to finish
reviewing. I would also like to thank the Packt team for giving me the opportunity to work
with them on this project. It has been enlightening and entertaining. Finally, I would like
to thank the author for taking my comments into account. It is a pleasure to be part of a
project where your inputs are valued.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents
Chapter 1: Learning Data Structures and Algorithms in C++ 7

Technical requirements 7
Introduction to basic C++ 8

Creating your first code in C++ 8
Enhancing code development experience with IDE 10
Defining the variables using fundamental data types 11
Controlling the flow of the code 13

Conditional statement 13
Loop statement 17

Leveraging the variable capability using advanced data types 23
Developing abstract data types 28

Applying C++ classes to build user-defined ADTs 29
Playing with templates 35

Function templates 35
Class templates 38
Standard Template Library 40

Analyzing the algorithm 41
Asymptotic analysis 41
Worst, average, and best cases 45
Big Theta, Big-O, and Big Omega 46
Recursive method 47
Amortized analysis 47

Summary 48
QA section 48
Further reading 49

Chapter 2: Storing Data in Lists and Linked Lists 50
Technical requirements 50
Getting closer to an array 51
Building a List ADT 55

Fetching an item in the List 57
Inserting an item into the List ADT 57
Finding out the index of a selected item in the List ADT 58
Removing an item from the List ADT 59
Consuming a List ADT 60

Introduction to node 62
Building a Singly Linked List ADT 68

Fetching an item in the LinkedList class 69
Inserting an item in the LinkedList class 70

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[ii]

Getting the index of the selected item in the LinkedList 73
Removing an item from the LinkedList ADT 74
Consuming the LinkedList ADT 77

Building the Doubly Linked List ADT 80
Refactoring the Node<T> data type 81
Refactoring several operations in the LinkedList ADT 81

Removing an element 82
Inserting an element 85

Consuming the DoublyLinkedList ADT 88
Applying List and LinkedList using STL 90

std::vector 90
std::list 93

Summary 96
QA section 96
Further reading 97

Chapter 3: Constructing Stacks and Queues 98
Technical requirements 98
Building a Stack ADT 99

Fetching the item's value in the Stack ADT 100
Pushing the items of the Stack ADT 101
Popping the items from the Stack ADT 102
Consuming a Stack ADT 103

Another example of Stack ADT implementation 104
Building a Queue ADT 108

Getting a value from Queue ADT 109
Inserting an element into the Queue ADT 110
Removing an element from the Queue ADT 111
Consuming the Queue ADT 112

Building a Deque ADT 113
Fetching a value from a Deque 115
Enqueueing an element into the Deque ADT 115
Dequeuing an element from the Deque ADT 117
Consuming the Deque ADT 119

Summary 120
QA section 120
Further reading 121

Chapter 4: Arranging Data Elements Using a Sorting Algorithm 122
Technical requirements 122
Bubble sort 123
Selection sort 126
Insertion sort 129
Merge sort 134
Quick sort 140

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iii]

Counting sort 146
Radix sort 149
Summary 153
QA section 154
Further reading 154

Chapter 5: Finding out an Element Using Searching Algorithms 155
Technical requirements 155
Linear search 156

Developing a linear search algorithm 156
Implementing the linear search algorithm 157

Binary search 158
Developing binary search algorithm 158
Implementing binary search algorithm 160

Ternary search 161
Developing ternary search algorithm 161
Applying the ternary search algorithm 163

Interpolation search 164
Developing interpolation search algorithm 164
Applying interpolation search algorithm 166

Jump search 167
Developing jump search algorithm 168
Applying jump search algorithm 169

Exponential search 170
Developing exponential search algorithm 170
Invoking the ExponentialSearch() function 171

Sublist search 173
Designing sublist search algorithm 173
Performing sublist search algorithm 175

Summary 177
QA section 177
Further reading 178

Chapter 6: Dealing with the String Data Type 179
Technical requirement 179
String in C++ 180

Constructing a string using character array 180
Using std::string for more flexibility features 180

Playing with words 181
Rearranging a word to create an anagram 182
Detecting whether a word is a palindrome 184

Constructing a string from binary digits 187
Converting decimal to binary string 188
Converting binary string to decimal 191

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iv]

Subsequence string 193
Generating subsequences from a string 194
Checking whether a string is a subsequence of another string 196

Pattern searching 199
Summary 202
QA section 202
Further reading 203

Chapter 7: Building a Hierarchical Tree Structure 204
Technical requirements 204
Building a binary tree ADT 205
Building a binary search tree ADT 207

Inserting a new key into a BST 210
Traversing a BST in order 211
Finding out whether a key exists in a BST 212
Retrieving the minimum and maximum key values 213
Finding out the successor of a key in a BST 215
Finding out the predecessor of a key in a BST 217
Removing a node based on a given key 219
Implementing the BST ADT 222

Building a balanced BST (AVL) ADT 225
Rotating nodes 227
Inserting a new key 229
Removing a given key 231
Implementing AVL ADT 234

Building a binary heap ADT 236
Checking if the heap is empty 237
Inserting a new element into the heap 238
Fetching the element's maximum value 239
Removing the maximum element 239
Implementing a binary heap as a priority queue 240

Summary 243
QA section 243
Further reading 243

Chapter 8: Associating a Value to a Key in a Hash Table 244
Technical requirement 244
Getting acquainted with hash tables 245

Big data in small cells 245
Storing data in a hash table 246
Collision handling 247

Implementing a separate chaining technique 247
Generating a hash key 248
Developing an Insert() operation 249
Developing a Search() operation 250

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[v]

Developing a Remove() operation 251
Developing an IsEmpty() operation 252
Applying a HashTable ADT using a separate chaining technique in the code 253

Implementing the open addressing technique 256
Developing the Insert() operation 259
Developing a Search() operation 260
Developing the Remove() operation 261
Developing an IsEmpty() operation 262
Developing a PrintHashTable() operation 263
Applying an HashTable ADT using a linear probing technique in the code 263

Summary 267
QA section 267
Further reading 268

Chapter 9: Implementation of Algorithms in Real Life 269
Technical requirements 269
Greedy algorithms 270

Solving the coin-changing problem 270
Applying the Huffman coding algorithm 272

Divide and conquer algorithms 277
Solving selection problems 280
Solving matrix multiplication calculations 281

Dynamic programming 282
Fibonacci numbers 282
Dynamic programming and the coin-change problem 283

Brute-force algorithms 285
Brute-force search and sort 285
Strengths and weaknesses of brute-force algorithms 286

Randomized algorithms 286
Rаndоm algorіthm classification 288
Random number generators 288
Applications of randomized algorithms 290

Backtracking algorithms 291
Arranging furniture in a new house 292
Playing tic-tac-toe 293

Summary 294
QA section 295
Further reading 295

Other Books You May Enjoy 296

Index 299

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface
Data structures and algorithms are a must-learn for all programmers and software
developers. Learning data structures and algorithms can help us solve problems, not only in
programming but also in real life. Many people have found algorithms that solve
specific problems. When we have a different problem, we can take advantage of the
algorithm to solve it by ourselves.

In this book, we will begin by giving you a basic introduction to data structures and
algorithms in C++. We will then move on to learn how to store data in linked lists, arrays,
stacks, and so on. We will look at some interesting sorting algorithms such as insertion sort,
heap sort, merge sort, which are algorithms every developer should be familiar with. We
will also dive into searching algorithms, such as linear search, binary search, interpolation
and much more.

By the end of this book, you'll be proficient in the use of data structures and algorithms.

Who this book is for
This book is for developers who would like to learn data structures and algorithms in C++.
Basic C++ programming knowledge is recommended but not necessary.

What this book covers
, Learning Data Structures and Algorithms in C++, introduces basic C++

programming, including fundamental and advanced data types, controlling code flow, the
use of an Integrated Development Environment (IDE), and abstract data types, which will
be used in developing data structures. We will also analyze an algorithm using asymptotic
analysis, including worst-average-best cases and an explanation of Big Theta, Big-O, Big
Omega.

, Storing Data in Lists and Linked Lists, explains how to build a linear data type to
store data, that is, a list. It also will explain how to use the list data type we built earlier to
create another data type, which is a linked list. However, before we build a data type in this
chapter, we will be introduced to Node, the fundamental data type required to build a list
and linked list.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[2]

, Constructing Stacks and Queues, covers how to create stack, queue, and deque
data types, which are also linear data types. We also explain how to use these three types
and when we need to use them.

, Arranging Data Elements Using a Sorting Algorithm, talks about sorting elements
in a data structure. Here, we will learn how to arrange the order of elements using several
sorting algorithms; they are bubble sort, selection sort, insertion sort, merge sort, quick sort,
counting sort, and radix sort.

, Finding out an Element Using Searching Algorithm, walks us through the process
of finding an element in a data structure. By giving a value to the algorithm, we can find out
whether or not the value is in the data structure. There are seven sorting algorithms we are
going to discuss; they are linear, binary, ternary, interpolation, jump, exponential, and
sublist search.

, Dealing with the String Data Types, discusses how to construct a string data type
in C++ programming. Using a string data type, we can construct several words and then do
some fun stuff such as anagrams and palindromes. Also, we will learn about binary string,
which contains binary digits only, and subsequent string, which is derived from another
string. At last in this chapter, we'll discuss using pattern searching to find out a specific
short string in a large string.

, Building a Hierarchical Tree Structure, introduces the tree data structure, using
which we can construct a tree-like data type. Using the tree data structure, we can develop a
binary search tree; we can easily search any element in the tree using binary search
algorithm. The binary search tree we have built can be also balanced to prevent a skewed
tree. Also, in this chapter, we are going to implement a priority queue using a binary heap.

, Associating a Value to a Key in Hash Table, explains how to design a hash table,
which is a data structure that stores an element based on the hash function. A collision
might happen in a hash table data structure, so we also discuss how to handle the collision
using separate chaining and open addressing techniques.

, Implementation of Algorithms in Real Life, elaborates some algorithm paradigms
and implements them in the real world. There are six algorithm paradigms to discuss in this
chapter; they are greedy algorithms, Divide and Conquer algorithms, dynamic
programming, Brute-force algorithms, randomized algorithms, and backtracking
algorithms.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[3]

To get the most out of this book
To get through this book and successfully complete all the source code examples, you will
need the following specifications:

Desktop PC or Notebook with Windows, Linux, or macOS
GNU GCC v5.4.0 or above
Code Block IDE v17.12 (for Windows and Linux OS) or Code Block IDE v13.12
(for macOS)

Download the example code files
You can download the example code files for this book from your account at

. If you purchased this book elsewhere, you can visit
 and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at .1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
. We also have other code

bundles from our rich catalog of books and videos available at
. Check them out!

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[4]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:

.

Conventions used
There are a number of text conventions used throughout this book.

: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "After finishing the wizard, we will have a new project with a file."

A block of code is set as follows:

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 Node(T value) : Value(value), Next(NULL) {}

Any command-line input or output is written as follows:

g++ simple.cpp

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[5]

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"We can create a new project by clicking on the File menu, then clicking New, and then
selecting Project."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at .

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit , selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[6]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit .

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

11
Learning Data Structures and

Algorithms in C++
In this first chapter, we are going to build the solid foundations so we can go through the
following chapters easily. The topics we are going to discuss in this chapter are:

Creating, building, and running a simple C++ program
Constructing an abstract data type to make a user-defined data type
Leveraging the code with C++ templates and the Standard Template Library
(STL)
Analyzing the complexity of algorithms to measure the performance of the code

Technical requirements
To follow along with this chapter including the source code, we require the following:

A desktop PC or Notebook with Windows, Linux, or macOS
GNU GCC v5.4.0 or above
Code::Block IDE v17.12 (for Windows and Linux OS) or Code::Block IDE v13.12
(for macOS)
You will find the code files on GitHub

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[8]

Introduction to basic C++
Before we go through the data structures and algorithms in C++, we need to have a strong,
fundamental understanding of the language itself. In this section, we are going to build a
simple program, build it, and then run it. We are also going to discuss the fundamental and
advanced data types, and before we move on to algorithm analysis, we are going to discuss
control flow in this section.

Creating your first code in C++
In C++, the code is executed from the function first. The function itself is a collection
of statements to perform a specific task. As a result of this, a program in C++ has to contain
at least one function named . The following code is the simplest program in C++ that
will be successfully compiled and run:

Suppose the preceding code is saved as a file. We can compile the code using
the g++ compiler by running the following compiling command on the console from the
active directory where the file is placed:

g++ simple.cpp

If no error message appears, the output file will be generated automatically. If we run the
preceding compiling command on a Windows console, we will get a file named .
However, if we run the command on Bash shells, such as Linux or macOS, we will get a file
named .

We can specify the output file name using the option followed by the desired filename.
For instance, the following compiling command will produce the output file named

:

g++ simple.cpp -o simple.out

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[9]

Indeed, when we run the output file (by typing and then pressing Enter on a Windows
console or by typing and then pressing Enter on Bash shell), we won't see
anything on the console window. This is because we don't print anything to the console yet.
To make our file meaningful, let's refactor the code so that it can receive the
input data from the user and then print the data back to the user. The refactored code
should look as follows:

As we can see in the preceding code, we appended several lines of code so that the program
can print to the console and the user can give an input to the program. Initially, the
program displays text that asks the user to input an integer number. After the user types the
desired number and presses Enter, the program will print that number. We also defined a
new variable named of the data type. This variable is used to store data in an integer
data format (we will talk about variables and data types in the upcoming section).

Suppose we save the preceding code as ; we can compile it using the following
command:

g++ in_out.cpp

If we then run the program, we will get the following output on the console (I chose the
number in this example):

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[10]

Now, we know that to print text to the console, we use the command, and to
give some inputs to the program, we use the command. In the file,
we also see at the beginning of the file. It's used to tell the compiler
where to find the implementation of the and commands since their
implementation is stated in the header file.

And at the very beginning of the file, we can see that the line begins with double slashes
(). This means that the line won't be considered as code, so the compiler will ignore it. It's
used to comment or mark an action in the code so that other programmers can understand
our code.

Enhancing code development experience with
IDE
So far, we have been able to create a C++ code, compile the code, and run the code.
However, it will be boring if we have to compile the code using the Command Prompt and
then execute the code afterwards. To ease our development process, we will use an
integrated development environment (IDE) so that we can compile and run the code with
just a click. You can use any C++ IDE available on the market, either paid or free. However,
I personally chose Code::Blocks IDE since it's free, open source, and cross-platform so it can
run on Windows, Linux, and macOS machines. You can find the information about this
IDE, such as how to download, install, and use it on its official website at

.

Actually, we can automate the compiling process using a toolchain such as Make or CMake.
However, this needs further explanation, and since this book is intended to discuss data
structures and algorithms, the toolchain explanation will increase the total pages of the
book, and so we will not discuss this here. In this case, the use of IDE is the best solution to
automate the compiling process since it actually accesses the toolchain as well.

After installing Code::Blocks IDE, we can create a new project by clicking on the File menu,
then clicking New, and then selecting Project. A new window will appear and we can select
the desired project type. For most examples in this book, we will use the Console
Application as the project type. Press the Go button to continue.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[11]

On the upcoming window, we can specify the language, which is C++, and then define the
project name and destination location (I named the project). After finishing the
wizard, we will have a new project with a file containing the following code:

Now, we can compile and run the preceding code by just clicking the Build and run option
under the Build menu. The following console window will appear:

In the preceding screenshot, we see the console using in the line after
the line. The use of this line of code is to tell the compiler that the
code uses a named . As a result, we don't need to specify the in every
invocation of the and commands. The code should be simpler than before.

Defining the variables using fundamental data
types
In the previous sample codes, we dealt with the variable (a placeholder is used to store a
data element) so that we can manipulate the data in the variable for various operations. In
C++, we have to define a variable to be of a specific data type so it can only store the specific
type of variable that was defined previously. Here is a list of the fundamental data types in
C++. We used some of these data types in the previous example:

Boolean data type (), which is used to store two pieces of conditional data
only or

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[12]

Character data type (, , , and), which is used
to store a single ASCII character
Floating point data type (, , and), which is used to
store a number with a decimal
Integer data type (, , , and), which is used to store a
whole number
No data (), which is basically a keyword to use as a placeholder where you
would normally put a data type to represent no data

There are two ways to create a variable by defining it or by initializing it. Defining a
variable will create a variable without deciding upon its initial value. The initializing
variable will create a variable and store an initial value in it. Here is the code snippet for
how we can define variables:

And here is the sample code snippet of how initializing variables works:

The preceding code snippet is the way we initialize the variables using the copy
initialization technique. In this technique, we assign a value to the variable using an equals
sign symbol (). Another technique we can use to initialize a variable is the direct
initialization technique. In this technique, we use parenthesis to assign a value to the
variable. The following code snippet uses this technique to initialize the variables:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[13]

Besides copy initialization and direct initialization techniques, we can use uniform
initialization by utilizing curly braces. The following code snippet uses the so-called brace-
initialization technique to initialize the variables:

We cannot define a variable with a data type such as void because when we
define a variable, we have to decide what data type we are choosing so that we can store the
data in the variable. If we define a variable as , it means that we don't plan to store
anything in the variable.

Controlling the flow of the code
As we discussed earlier, the C++ program is run from the function by executing
each statement one by one from the beginning to the end. However, we can change this
path using flow control statements. There are several flow control statements in C++, but we
are only going to discuss some of them, since these are the ones that are going to be used
often in algorithm design.

Conditional statement
One of the things that can make the flow of a program change is a conditional statement. By
using this statement, only the line in the condition will be run. We can use the and

 keywords to apply this statement.

Let's modify our previous code so that it uses the conditional statement. The
program will only decide whether the input number is greater than or not. The code
should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[14]

As we can see, we have a pair of the and keywords that will decide whether the
input number is greater than or not. By examining the preceding code, only one
statement will be executed inside the conditional statement, either the statement under the

 keyword or the statement under the keyword.

If we build and run the preceding code, we will see the following console window:

From the preceding console window, we can see that the line
 is not executed at all since we have input a number that is greater than

.

Also, in the condition, we can have more than two conditional statements. We
can refactor the preceding code so that it has more than two conditional statements, as
follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[15]

Another conditional statement keyword is . Before we discuss this keyword, let's
create a simple calculator program that can add two numbers. It should also be capable of
performing the subtract, multiply, and divide operations. We will use the
keyword first. The code should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[16]

As we can see in the preceding code, we have four options that we have to choose from. We
use the conditional statement for this purpose. The output of the preceding
code should be as follows:

However, we can use the keyword as well. The code should be as follows after
being refactored:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[17]

And if we run the preceding code, we will get the same output compared with the
 code.

Loop statement
There are several loop statements in C++, and they are , , and . The

 loop is usually used when we know how many iterations we want, whereas and
 will iterate until the desired condition is met.

Suppose we are going to generate ten random numbers between to ; the loop is
the best solution for it since we know how many numbers we need to generate. For this
purpose, we can create the following code:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[18]

From the preceding code, we create another function besides , that is,
. The code will invoke the function ten times using the

loop, as we can see in the preceding code. The output we will get should be as follows:

Back to the others loop statements which we discussed earlier, which are and
 loop. They are quite similar based on their behavior. The difference is when

we use the loop, there is a chance the statement inside the loop scope is not run,
whereas the statement in the loop scope must be run at least once in the loop.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[19]

Now, let's create a simple game using those loop statements. The computer will generate a
number between to , and then the user has to guess what number has been generated
by the computer. The program will give a hint to the user just after she or he inputs the
guessed number. It will tell the user whether the number is greater than the computer's
number or lower than it. If the guessed number matches with the computer's number, the
game is over. The code should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[20]

From the preceding code, we can see that we have two variables, and
, handling the number that will be compared. There will be a probability

that is equal to . If this happens, the statement inside the
 loop scope won't be executed at all. The flow of the preceding program can be seen

in the following output console screenshot:

We have successfully implemented the loop in the preceding code. Although the
 loop is similar to the loop, as we discussed earlier, we cannot refactor

the preceding code by just replacing the loop with the loop. However,
we can create another game as our example in implementing the loop.
However, now the user has to choose a number and then the program will guess it. The
code should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[21]

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[22]

As we can see in the preceding code, the program has to guess the user's number at least
once, and if it's lucky, the guessed number matches with the user's number, so that we use
the loop here. When we build and run the code, we will have an output
similar to the following screenshot:

In the preceding screenshot, I chose number . The program then guessed . Since the
number is greater than my number, the program guessed another number, which is . It
then guessed another number based on the hint from me until it found the correct number.
The program will leave the loop if the user presses , as we can see in the
preceding code.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[23]

Leveraging the variable capability using
advanced data types
We have discussed the fundamental data type in the previous section. This data type is
used in defining or initializing a variable to ensure that the variable can store the selected
data type. However, there are other data types that can be used to define a variable. They
are enum (enumeration) and struct.

Enumeration is a data type that has several possible values and they are defined as the
constant which is called enumerators. It is used to create a collection of constants. Suppose
we want to develop a card game using C++. As we know, a deck of playing cards contains
52 cards, which consists of four suits (Clubs, Diamonds, Hearts, and Spades) with 13
elements in each suit. We can notate the card deck as follows:

If we want to apply the preceding data types (and), we
can use the following variable initialization:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[24]

Actually, enums always contain integer constants. The string we put in the element is
the constant name only. The first element holds a value of , except we define another value
explicitly. The next elements are in an incremental number from the first element. So, for
our preceding enum, is equal to , and the , , and
are , , and , respectively.

Now, let's create a program that will generate a random card. We can borrow the
 function from our previous code. The following is the

complete code for this purpose:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[25]

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[26]

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[27]

From the preceding code, we can see that we can access the data by using an integer
value. However, we have to cast the value so that it can fit the data by
using , which is shown as follows:

If we build and run the code, we will get the following console output:

Another advanced data type we have in C++ is structs. It is an aggregate data type which
groups multiple individual variables together. From the preceding code, we have the
and variables that can be grouped as follows:

If we add the preceding to our preceding code, we just need to refactor
the function as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[28]

If we run the preceding code (you can find the code as in the repository), we
will get the same output as .

Developing abstract data types
An abstract data type (ADT) is a type that consists of a collection of data and associated
operations for manipulating the data. The ADT will only mention the list of operations that
can be performed but not the implementation. The implementation itself is hidden, which is
why it's called abstract.

Imagine we have a DVD player we usually use in our pleasure time. The player has a
remote control, too. The remote control has various menu buttons such as ejecting the disc,
playing or stopping the video, increasing or decreasing volume, and so forth. Similar to the
ADT, we don't have any idea how the player increases the volume when we press the
increasing button (similar to the operation in ADT). We just call the increasing operation
and then the player does it for us; we do not need to know the implementation of that
operation.

Regarding the process flow, we need to take into account the ADT's implement abstraction,
information hiding, and encapsulation techniques. The explanation of these three
techniques is as follows:

Abstraction is hiding the implementation details of the operations that are
available in the ADT
Information hiding is hiding the data which is being affected by that
implementation
Encapsulation is grouping all similar data and functions into a group

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[29]

Applying C++ classes to build user-defined ADTs
Classes are containers for variables and the operations (methods) that will affect the
variables. As we discussed earlier, as ADTs implement encapsulation techniques for
grouping all similar data and functions into a group, the classes can also be applied to
group them. A class has three access control sections for wrapping the data and methods,
and they are:

Public: Data and methods can be accessed by any user of the class
Protected: Data and methods can only be accessed by class methods, derived
classes, and friends
Private: Data and methods can only be accessed by class methods and friends

Let's go back to the definition of abstraction and information hiding in the previous section.
We can implement abstraction by using or keywords to hide the
methods from outside the class and implement the information hiding by using a

 or keyword to hide the data from outside the class.

Now, let's build a simple class named , as shown in the following code snippet:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[30]

As we can see in the preceding code snippet, we cannot access the variable directly
since we assigned it as . However, we have two methods to access the
variable from the inside class. The methods will modify the value,
and the methods will return the value. The following is the code to
consume the class:

In the preceding code, we created a variable named of the type . Since then, the
 has the ability that has, such as invoking the and

methods. The following is the window we should see if we build and run the code:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[31]

Now, we can say that ADT has two functions, and they are
 and .

After discussing simple class, you might see that there's a similarity between structs and
classes. They both actually have similar behaviors. The differences are, however, that structs
have the default members, while classes have the default members. I
personally recommend using structs as data structures only (they don't have any methods
in them) and using classes to build the ADTs.

As we can see in the preceding code, we assign the variable to the instance of the
class by using its constructor, which is shown as follows:

However, we can initialize a class data member by using a class constructor. The
constructor name is the same as the class name. Let's refactor our preceding class so
it has a constructor. The refactored code should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[32]

As we can see in the preceding code, when we define the variable, we also initialize the
 private variable of the class. We don't need the method anymore to

assign the variable. Indeed, we will get the same output again if we build and run
the preceding code.

In the preceding code, we assign as the data type. However, we can also derive
a new class based on the base class. By deriving from the base class, the derived class will
also have the behavior that the base class has. Let's refactor the class again. We will
add a virtual method named . The virtual method is a method that has no
implementation yet, and only has the definition (also known as the interface). The derived
class has to add the implementation to the virtual method using the keyword, or
else the compiler will complain. After we have a new class, we will make a class
named that derives from the class. The code should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[33]

Now, we have two classes, the class (as the base class) and the class (as the
derived class). As shown in the preceding code, the class has to implement the

 method since it has been defined as a virtual method in the class.
The instance of the class can also invoke the method, even though it's not
implemented inside the class since the derived class derives all base class behavior. If
we run the preceding code, we will see the following console window:

Again, we can say that the ADT has two functions, and they are the and
 functions.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[34]

Another necessary requirement of ADT is that it has to be able to control all copy operations
to avoid dynamic memory aliasing problems caused by shallow copying (some members of
the copy may reference the same objects as the original). For this purpose, we can use
assignment operator overloading. As the sample, we will refactor the class so it now
has the operator. The code should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[35]

We have added a operator which is overloading in the class.
However, since we tried to access the variable in the base class from the derived
class, we need to make instead of . In the method,
when we copy to in , we can ensure that it's not a shallow
copy.

Playing with templates
Now, let's play with the templates. The templates are the features that allow the functions
and classes to operate with generic types. It makes a function or class work on many
different data types without having to be rewritten for each one. Using the template, we can
build various data types, which we will discuss later in this book.

Function templates
Suppose we have another class that is derived from the class, for instance, . We
are going to make a function that will invoke the and methods
for both the and instances. Without creating two separated functions, we can use
the template, which is shown as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[36]

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[37]

From the preceding code, we can see that we can pass both the and data types to
the function since we have defined the template
before the function definition. The is a keyword in C++, which is used to write a
template. The keyword is used for specifying that a symbol in a template definition or
declaration is a type (in the preceding example, the symbol is). As a result, the function
becomes generic and can accept various data types, and if we build and run the preceding
code, we will be shown the following console window:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[38]

Please ensure that the data type we pass to the generic function has the ability to do all the
operation invoking from the generic function. However, the compiler will compile if the
data type we pass does not have the expected operation. In the preceding function template
example, we need to pass a data type that is an instance of the class, so we can pass
either instance of the class or an instance of a derived class of the class.

Class templates
Similar to the function template, the class template is used to build a generic class that can
accept various data types. Let's refactor the preceding code by
adding a new class template. The code should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[39]

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[40]

As we can see in the preceding code, we have a new class named . It's a
template class and it can be used by any data type. However, we have to define the data
type in the angle bracket, as we can see in the preceding code, when we use the instances

 and . If we build and run the code, we will get the same output
as we did for the code.

Standard Template Library
C++ programming has another powerful feature regarding the use of template classes,
which is the Standard Template Library. It's a set of class templates to provide all functions
that are commonly used in manipulating various data structures. There are four
components that build the STL, and they are algorithms, containers, iterators, and functions.
Now, let's look at these components further.

Algorithms are used on ranges of elements, such as sorting and searching. The sorting
algorithm is used to arrange the elements, both in ascending and descending order. The
searching algorithm is used to look for a specific value from the ranges of elements.

Containers are used to store objects and data. The common container that is widely used is
vector. The vector is similar to an array, except it has the ability to resize itself automatically
when an element is inserted or deleted.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[41]

Iterators are used to work upon a sequence of values. Each container has its own iterator.
For instance, there are , , , and functions in the vector
container.

Functions are used to overload the existing function. The instance of this component is
called a functor, or function object. The functor is defined as a pointer of a function where
we can parameterize the existing function.

We are not building any code in this section since we just need to know that the STL is a
powerful library in C++ and that it exists, fortunately. We are going to discuss the STL
deeper in the following chapters while we construct data structures.

Analyzing the algorithm
To create a good algorithm, we have to ensure that we have got the best performance from
the algorithm. In this section, we are going to discuss the ways we can analyze the time
complexity of basic functions.

Asymptotic analysis
Let's start with asymptotic analysis to find out the time complexity of the algorithms. This
analysis omits the constants and the least significant parts. Suppose we have a function that
will print a number from to . The following is the code for the function:

Now, let's calculate the time complexity of the preceding algorithm by counting each
instruction of the function. We start with the first statement:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[42]

The preceding statement is only executed once in the function, so its value is . The
following is the code snippet of the rest statements in the function:

The comparison in the loop is valued at . For simplicity, we can say that the value
of the two statements inside the loop scope is since it needs to print the
variable, and for assignment () and addition ().

However, how much of the preceding code snippet is executed depends on the value of ,
so it will be or . The total instruction that has to be executed for the
preceding function is . Therefore, the complexity of the preceding

 function is:

And here is the curve that represents its complexity:

In all curve graphs that will be represented in this book, the x axis represents Input Size (n)
and the y axis represents Execution Time.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[43]

As we can see in the preceding graph, the curve is linear. However, since the time
complexity also depends on the other parameters, such as hardware specification, we may
have another complexity for the preceding function if we run the function on
faster hardware. Let's say the time complexity becomes 2n + 0.5, so that the curve will be as
follow:

As we can see, the curve is still linear for the two complexities. For this reason, we can omit
a constant and the least significant parts in asymptotic analysis, so we can say that the
preceding complexity is , as found in the following notation:

Let's move on to another function. If we have the nested loop, we will have another
complexity, as we can see in the following code:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[44]

Based on the preceding function, we can say that the complexity of the inner
 loop of the preceding function is . We then calculate the outer
 loop so it becomes , which equals .

Therefore, the complexity of the preceding code is:

The curve for the preceding complexity will be as follows:

And if we run the preceding code in the slower hardware, the complexity might become
twice as slow. The notation should be as follows:

And the curve of the preceding notation should be as follows:

As shown previously, since the asymptotic analysis omits the constants and the least
significant parts, the complexity notation will be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[45]

Worst, average, and best cases
In the previous section, we were able to define time complexity for our code using an
asymptotic algorithm. In this section, we are going to determine a case of the
implementation of an algorithm. There are three cases when implementing time complexity
in an algorithm; they are worst, average, and best cases. Before we go through them, let's
look at the following function implementation:

As we can see in the preceding function, it will find an index of target element
() from an array containing elements. Suppose we have the array

. Here are the cases we will find:

Worst case analysis is a calculation of the upper bound on the running time of
the algorithm. In the function, the upper bound can be an element that
does not appear in the , for instance, , so it has to iterate through all
elements of and still cannot find the element.
Average case analysis is a calculation of all possible inputs on the running time
of algorithm, including an element that is not present in the array.
Best case analysis is a calculation of the lower bound on the running time of the
algorithm. In the function, the lower bound is the first element of the

 array, which is . When we search for element , the function will only
iterate through the array once, so the doesn't matter.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[46]

Big Theta, Big-O, and Big Omega
After discussing asymptotic analysis and the three cases in algorithms, let's discuss
asymptotic notation to represent the time complexity of an algorithm. There are three
asymptotic notations that are mostly used in an algorithm; they are Big Theta, Big-O, and
Big Omega.

The Big Theta notation () is a notation that bounds a function from above and below, like
we saw previously in asymptotic analysis, which also omits a constant from a notation.

Suppose we have a function with time complexity . Since it's a linear function, we
can notate it like in the following code:

Now, suppose we have a function, , where is the Big-Theta of if the value,
, is always between and . Since
 has a constant of in the n variable, we will take a random lower bound which is

lower than , that is , and an upper bound which is greater than , that is . Please see the
following curve for reference:

From the time complexity, we can get the asymptotic complexity , so then we have
, which is based on the asymptotic complexity of . Now, we can decide

the upper bound and lower bound for . Let's pick for the lower bound and for
the upper bound. Now, we can manipulate the function as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[47]

Big-O notation (O) is a notation that bounds a function from above only using the upper
bound of an algorithm. From the previous notation, , we can say that the
time complexity of the is . If we are going to use Big Theta notation, we can say
that the worst case time complexity of is and the best case time complexity of

 is .

Big Omega notation is contrary to Big-O notation. It uses the lower bound to analyze time
complexity. In other words, it uses the best case in Big Theta notation. For the
notation, we can say that the time complexity is .

Recursive method
In the previous code sample, we calculated the complexity of the iterative method. Now,
let's do this with the recursive method. Suppose we need to calculate the factorial of a
certain number, for instance , which will produce . For
this purpose, we can use the recursive method, which is shown in the following code
snippet:

For the preceding function, we can calculate the complexity similarly to how we did for the
iterative method, which is since it depends on how much data is being processed
(which is). We can use a constant, for instance , to calculate the lower bound and the
upper bound.

Amortized analysis
In the previous section, we just discussed the single input, , for calculating the complexity.
However, sometimes we will deal with more than just one input. Please look at the
following function implementation:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[48]

And that's where amortized analysis comes in. Amortized analysis calculates the
complexity of performing the operation for varying inputs, for instance, when we insert
some elements into several arrays. Now, the complexity doesn't only depend on the input
only, but also the input. The complexity can be as follows:

We are going to discuss these analysis methods in more detail in the following chapters.

Summary
This chapter provided us with an introduction to basic C++ (simple program, IDE, flow
control) and all data types (fundamental and advanced data types, including template and
STL) that we will use to construct the data structures in the following chapters. We also
discussed a basic complexity analysis, and we will dig into this deeper in the upcoming
chapters.

Next, we are going to create our first data structures, that is, linked list, and we are going to
perform some operations on the data structure.

QA section
What is the first function in C++ which is executed for the first time?
Please list the fundamental data types in C++!
What can we use to control the flow of code?
What is the difference between enums and structs?
What are the abstraction, information hiding, and encapsulation techniques?
Please explain!

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

[49]

What is the keyword to create a template in C++?
What is the difference between the function template and the class template?
What is the difference between Big Theta, Big-O, and Big Omega?

Further reading
You can also refer to the following links:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

22
Storing Data in Lists and Linked

Lists
In the previous chapter, we discussed basic C++ programming, so that now we can build a
program and run it. We also tried to find out the complexity of the code flow using
algorithm analysis. In this chapter, we are going to learn about building the list and linked
list data structures and find out the complexity of each data structure. To understand all of
the concepts in these data structures, these are the topics we are going to discuss:

Understanding the array data type and how to use it
Building the list data structure using the array data type
Understanding the concept of node and node chaining
Building and using node chaining
Applying the Standard Template Library to implement the list and linked list

Technical requirements
To follow along with this chapter including the source code, we require the following:

A desktop PC or Notebook with Windows, Linux, or macOS
GNU GCC v5.4.0 or above
Code::Block IDE v17.12 (for Windows and Linux OS) or Code::Block IDE v13.12
(for macOS)
You will find the code files on GitHub at

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[51]

Getting closer to an array
An array is a series of elements with the same data type that is placed in contiguous
memory locations. This means that the memory allocation is assigned in consecutive
memory blocks. Since it implements contiguous memory locations, the elements of the
array can be individually accessed by the index. Let's take a look at the following array
illustration:

As we can see in the preceding illustration, we have an array containing five elements. Since
the array uses zero-based indexing, the index starts from 0. This index is used to access the
element value and to also replace the element value. The memory address stated in the
illustration is for example purposes only. In reality, the memory address might be different.
However, it illustrates that the memory allocation is contiguous.

Now, if we want to create the preceding array in C++, here is the code:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[52]

From the preceding code, we see that initializing an array is simple, and this is done by
defining the array data type, the array's name followed by a couple of square brackets (),
and the element's value. In the preceding code, our array's name is . We can access each
element by using the index. In the code, we print each element by iterating each element
and accessing the element value using . We also manipulate the value of indexes
and by using and . If we build and run the code, we will get
the following result:

As we can see in the preceding screenshot, we've got what we expected since we have
successfully initialized an array, accessed each element, and manipulated the element's
value.

The array data type doesn't have a built-in method to find out how many
elements the array has. Even though we already know that the number
of elements is five, we use to figure out the
number of elements. It's the best practice in array manipulation because,
sometimes, we don't know how many elements the array has.
However, this only works when the
construct is in the same scope as the definition of the array. If, for example,
we try this from a function that receives the array as a parameter, this will
fail.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[53]

There's an interesting fact about arrays we can access the array's element using a pointer.
As you may know, a pointer is a variable that holds the address instead of the value. And,
since we discussed earlier that each element in the array has its own address, we can access
each array's element using its address.

To use a pointer as an array, we need to initialize it to hold an array, as shown in the
following example:

After the preceding initialization, we have a pointer named that points to the first
element of an array containing five elements. However, the variable holds the first
array's element address at the start. To access the next address, we can increment the
variable () so that it will point to the next element. To get the value of the currently
selected address, we can use a wildcard symbol before the pointer name (); see the
following two lines of code:

*ptr
ptr

The former statement in the preceding code snippet will print out the value that the pointer
points to, and the latter will print the address that the pointer holds. Interestingly, since we
initialize the pointer as an array, we can access the value of each element and the
address as well by its index. Please take a look at the following code snippet:

ptr[i]
&ptr[i]

In the preceding code snippet, the former line will print the value of the selected element
and the latter will print the address of the selected element (since we added the apostrophe
symbol before the pointer name). Now, let's wrap them all to create a code, as
follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[54]

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[55]

And if we build and run the preceding code, we will get the following output:

As we can see in the preceding screenshot, we can access each element of the pointer array
by and . However, if we use pointer
increment, we have to remember that after increasing the pointer, it will no longer hold the
address of the array. The solution is that we need to decrement the pointer again, like we
did in the preceding code.

The array we discussed is also called a one-dimensional array. We can
also initialize a multidimensional array, for instance a array, by
using the following code:

The other implementation of the multi-dimensional array is similar to the
one-dimensional array.

Building a List ADT
A list is a sequence of items with similar data types, where the order of the item's position
matters. There are several common operations that are available in a List ADT, and they are:

, which will return the value of selected index, . If the index is out of
bounds, it will simply return .

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[56]

, which will insert the value at the position of index .
, which will return the index of the first occurrence of (if the value

doesn't exist, the return value is).
, which will remove the item in the index.

For simplicity, we are going to build a List ADT that accepts data
only, from zero (0) and higher.

Now, by using the array data type we discussed earlier, let's build a new ADT named
which contains the preceding operations. We need two variables to hold the list of items
() and the number of items in the list (). We will make them so
that it cannot be accessed from the outside class. All four operations described previously
will be also implemented in this class. In addition, we need a constructor, a destructor, and
a method to let us know the number of items that the class has, which is named

. Based on this requirement, the file will contain the following code:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[57]

Fetching an item in the List
Let's implement the method. It simply returns the value of the selected index.
However, we need to ensure that the passed to the method is not out of bounds. The
implementation should be as follows:

As we can see in the preceding code, the complexity of the method is since it
doesn't depend on the number of the elements.

Inserting an item into the List ADT
For the method, we need to increase the capacity of the variable each
time we insert a new item. After that, we need to iterate each item of the old

 variable and then assign them to the new variable. We also need to
ensure where we put the new item stated by the variable passed by the user. The
implementation should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[58]

As we can see in the preceding code, we need to counter variables and to assign an old
array to new array. Since it will iterate all elements of items, the number of items
matters. The complexity will be , where is in the number of the elements.

Finding out the index of a selected item in the
List ADT
The method will also iterate each items' list until it finds the matched value. The
return value of this method will be the index of . It will return if no result is found.
The implementation should be as follows:

As you can guess, the complexity of this method will be for the average and worst
case scenarios, since it will iterate through all list elements. However, in the best case, it can
be if is found at the first position.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[59]

Removing an item from the List ADT
The method will iterate all elements, and then assign the new array to hold
new elements. It will skip the selected to remove the item. The implementation
should be as follows:

Similar to the method, the complexity of the method is , even if
the user removes the first position.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[60]

Consuming a List ADT
Now, let's consume our new data type. We will initialize a new and give some
items to it. We will then insert several items again and find out if it works. Then, we will
remove an item that we previously searched for, and then search for the item again to
ensure it has now gone. Here is the code that we can find in the file of the

 project:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[61]

Fortunately, our data type works well and we can apply all the operations that
should have. If we build and run the project, we will get the following output:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[62]

Introduction to node
The node is the basic building block of many data structures which we will discuss in this
book. Node has two functions. Its first function is that it holds a piece of data, also known as
the Value of node. The second function is its connectivity between another node and itself,
using an object reference pointer, also known as the Next pointer. Based on this
explanation, we can create a data type in C++, as follows:

We will also use the following diagram to represent a single node:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[63]

Now, let's create three single nodes using our new data type. The nodes will contain
the values , , and for each node. The code should be as follows:

Note that, since we don't initialize the pointer for all nodes, it will be automatically
filled with the null pointer (). The illustration will be as follows:

It's time to connect the preceding three nodes so that it becomes a node chain. We will set
the pointer of to the object, set the pointer of to the
object, and keep the pointer of remaining to indicate that it's the end of
the chain. The code will be as follows:

By executing the preceding code snippet, the illustration of the preceding three nodes will
be as follows:

To prove that our code is working, we can add a function to print the node
chain. The following is the complete code for creating a data type, initializing the data
type, creating a node chain, and printing the chain:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[64]

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[65]

As we can see in the preceding code, we have a function to iterate the input
node until the pointer of the selected node is . And since we will use the

 function to prove that the node chain is working by running the preceding
code, we will get the following output:

Indeed, we get what we expected our node chaining is working and we have a new data
type named . However, a problem will occur since we can only store the data type
to the property of the data type. Should we create a new data type if we
want to deal with other data types, such as , , or ? Fortunately, the answer
is no. If we recall our discussion about Playing with Templates in , Learning Data
Structures and Algorithms in C++, we can refactor the preceding data type to handle not
only the data type, but also all various data types available in the C++ language. The

 class will now look as follows:

As we can see from the preceding code snippet, we added a constructor to the data type.
The initialization of the instance of the class can be simplified as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[66]

We can see that, now we just need a one line instruction to create a single node since it has a
constructor. The rest of the operation is the same as the previous full code in

. The full code for this template class should be as follows:

template <typename T>

 Node(T value) : Value(value){}

template<typename T>
Node<T> * node

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[67]

Also, we need to refactor the function to become a function template which
we have discussed in , Learning Data Structures and Algorithms in C++ since we
will pass a class template to it. Again, we will get a similar output when we run the
preceding code comparing it to the project, as follows:

Now, using our new data type, let's move on to creating the linked list.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[68]

Building a Singly Linked List ADT
The Singly Linked List (also known as the linked list) is a sequence of items linked with
each other. It's actually a chaining of nodes, where each node contains the item's value and
the next pointer. In other words, each item in the linked list has a link to its next item in the
sequence. The thing that differs between the linked list and the node chain is that the linked
list has a and a pointer. The informs the first item and the informs
the last item in the linked list. Similar to the List ADT, we discussed earlier, the linked list
has , , , and operations, where all of the operations
have the same functionality compared to . However, since we now have and

 pointers, we will also create others operations, and these are ,
, , and . The declaration of the

class should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[69]

As you can see in the preceding declaration code, we have the operation, which
has the same functionality as the , which is used to inform us about the number of
items in the class. There is also the operation to make it easier
to print the content of the class.

Fetching an item in the LinkedList class
The first operation we are going to discuss is . It will return the of the selected
index, however, it will return if the selected index is out of bounds. The
implementation of the method should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[70]

As we can see, the complexity of the operation is since it has to iterate through
the elements that the class has. However, in the best case, the complexity can
be if the selected index is . Unfortunately, as we discussed earlier, the complexity is
always in the List ADT, no matter which index is selected.

Inserting an item in the LinkedList class
Let's move on to the operation for the class. There are four cases for
this operation, and they are:

The new item is inserted at the beginning of the linked list, which is ,1.
so that it becomes the new .
The new item is added to an empty linked list. If the linked list has only one2.
element, both and will point to the only element.
The new item is inserted into the last of the linked list, which is , so it3.
becomes the new .
The new item is inserted in the other position of the linked list, where 4.

.

Now, let's create the implementation for inserting an operation. For cases 1 and 2, we can
solve these problems by creating an operation. The implementation of this
operation is simple and efficient, as we can see in the following code:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[71]

Based on the preceding code, the operation will create a new and then
assign it to the new . If the linked list is empty before applying this operation, the new

 will also become a new . For this, the complexity of this operation is ,
regardless of the number of the linked list element.

For case 3 in the inserting operation, we can implement the operation. This
operation is also simple and efficient. We just need to create a new and then assign it
to the new . The pointer of the previous will point to this new . The
code for this operation should be as follows:

Please note that we might run the operation when the linked list has no
element. If this occurs, case 2 will happen and we can simply invoke the
method. The complexity of the operation is , regardless of the number
of the linked list element. It will even invoke the operation since the

 operation's complexity is also .

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[72]

Now, for case 4, we need to traverse the elements of the linked list to find the two elements
where we want to insert the new element between them. We will call them and

. After we find them, we then create a new node, point the pointer of
 to the new node, and then point the pointer of the new node to the
. The implementation of the operation should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[73]

Since we need to traverse the element, the complexity of this operation is
. However, in the best case, the complexity is since we might insert a or a
 using this operation.

Getting the index of the selected item in the
LinkedList
To find out the position of the selected value, we need to traverse the elements. Once
the selected value is matched with the value of the current position, the method just needs
to return its current position index. The implementation of the operation should
be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[74]

Again, since we need to traverse the element, the complexity of this operation will be
. However, the selected value may be found in the first position so that the complexity

will be in the best case.

Removing an item from the LinkedList ADT
Similar to the inserting operation, the removing operation also has several cases, and they
are:

The removed item is in the , which is 1.
The removed item is in the , which is 2.
The removed item is in the other position of the linked list, where 3.

For case 1, the implementation is straightforward. We just need to point the pointer to
the node which is pointed by the pointer of the current (in other words, the
second element) and delete the first element of the linked list. Please see the following code:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[75]

As we can see in the preceding code, regardless of the number of the linked list element, the
complexity of the operation is .

For the operation, we have to traverse all list elements so that we have two
last nodes, which are in indexes and . Then, we set the pointer of the
node to point to . After that, we can safely remove the last node. Since this operation
must traverse all list elements, the complexity will be . The implementation of this
operation should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[76]

The last operation is the operation, which will remove the list element in-
between the first and the last element. In this operation, we need to traverse the list element
until the selected index is reached. Similar to the operation, we need to find the
element before and after the selected index. After we find them, we can link them together
and then we can safely remove the element in the selected index. The code will be as
follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[77]

As we can see in the preceding code, we will invoke the operation if the
 and will invoke the operation if the .

It's now clear that in the best case (when the is invoked), the complexity is
, and in the worst case (when the is invoked), the complexity is .

Consuming the LinkedList ADT
Now, it's time to consume our new data type in our code. We can use all of the
operations of the data type. We will try to initialize a new , add several items,
and then invoke the , , , and operations. Don't worry
about invoking these operations in a specific order; as long as we have instantiated the

 object, everything will work since we have restricted the out of bound
index problem. Without further ado, here's the code:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[78]

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[79]

There are commenting lines before each code line to indicate the expected result. To display
the element, we use the method with the following implementation:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[80]

And if we build and run the preceding project, we will see the
following window in our monitor:

Building the Doubly Linked List ADT
The Doubly Linked List is almost the same as the Singly Linked List, except the used
by Doubly Linked List has a pointer instead of only having the pointer. The
existence of the pointer will make the Doubly Linked List possible to move
backwards from to . As a result, we can reduce the complexity of
the operation to instead of , like we have in the Singly Linked
List data type. We are going to discuss this further later in this section. As of now, let's
prepare the new data type.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[81]

Refactoring the Node<T> data type
Before we build a Doubly Linked List, we need to add a pointer to the existing

 data type. To avoid any confusion, we will create a new data type
named with the following declaration:

DoublyNode<T> * Previous;

The only difference between and is the existence of the
 pointer (as well as the data type name absolutely). By using this new

 data type, we are going to refactor the preceding ADT into
the ADT.

Refactoring several operations in the LinkedList
ADT
Since the Doubly Linked List is similar to Singly Linked List, we can refactor our existing

 ADT to build a new ADT since they have the same
available operations but with different implementations. However, the implementation of
the and operations is the same for these two ADTs because the traversal
process for each element will still move in forwarding, so we won't discuss it anymore. And
since can move backwards, we will make a new operation named

 to leverage our data type. To make this clear,
here is the declaration of the data type:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[82]

DoublyLinkedList();

void PrintListBackward();

Removing an element
As we discussed earlier, in the , we can have for the complexity
of the operation. This can happen now since we have the pointer
in each element. To do so, we just need to pick the current node and then assign the
previous node of the current as the new . After that, we can safely remove the
last element. The implementation of the operation will be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[83]

For the operation, the pointer of the new must point to
, so we can refactor the operation as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[84]

// If there's still any element in the list,
 // the previous pointer of the Head
 // should point to NULL
 if(Head != NULL)
 Head->Previous = NULL;

And still, the complexity of the operation is .

For the operation, when we link the two nodes between the removed node, we
also need to point to the pointer of the right element to the left element. The
implementation will be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[85]

nextNode->Previous = prevNode;

The complexity of this operation is the same as the operation of the
data type; in the best case and in the worst case.

Inserting an element
Due to the existence of the pointer, we also need to refactor the inserting
operation in the data type. For the operation,
the pointer of the former must point to the new , so that we can have
the new operation as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[86]

 // If the current Head is exist,
 // the Previous pointer of the current Head
 // should point to the node
 if(Head != NULL)
 Head->Previous = node;

The complexity of this operation is still .

For the operation, we need to point the pointer of the new
to the node before it. The implementation of the operation will be as
follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[87]

 // Also, the previous pointer of the new node
 // should point to the current Tail
 node->Previous = Tail;

The complexity of this operation is still .

For the operation, we need to point the pointer of the node after the
new element to this new element. Also, the pointer of the new node points to the
node before this new node. The implementation of this operation will be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[88]

 node->Previous = prevNode;

 nextNode->Previous = node;

The complexity of this operation is still the same as the operation of
the data type; in the best case and in the worst case.

Consuming the DoublyLinkedList ADT
Since the and data types have the exact same
operations, we can use the code in the function of the file in the

 project to consume the data type. The
code works like a charm when I try it, and produces the exact same output as the output of
the project. However, since we now have a

 method, here is the code to apply to the backward movement in
the data type:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[89]

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[90]

And if we build and run the preceding code, it will be displayed in the following window:

Applying List and LinkedList using STL
C++ has three data types which we can use to store specific items such as ,

, and . can be used as ,
 can be used as , and can be used as

. They both have fetching, inserting, searching, and removing
operations. However, the method names they have are different with our developed data
type, and we are going to discuss this in this section. In this section, we are going to
discuss and only, since is similar to

.

std::vector
A vector, which is like an array, is a container to store a bunch of items contiguously.
However, the vector can double its size automatically if we insert a new item when its
capacity has been reached. Also, vectors have many member functions that arrays don't
have, and provide iterators that act like pointers but aren't.

Don't forget to include the vector header at the beginning of code file if we are going to use
the data type. To create a new vector object, we can initialize it as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[91]

The preceding code will create a new vector containing three elements. However, we can
initialize an empty vector and insert the vector using the method as follows:

To get the item of the specific index, we can use the method or we can use the square
bracket (), as we can see in the following code snippet:

However, it is better to always use the method instead of the operator when we
want to access the specific element by its index in a vector instance. This is because, when
we accidentally access the out of range position, the method will throw an

 exception. Otherwise, the operator will give an undefined behavior.

Another data type that is used when applying a vector is an iterator. This is a pointer that is
used to point to a specific position of the vector. Suppose we are going to insert a new item
in the vector. We need to initialize the iterator first before we execute the
method, as we can see in the following code snippet:

To insert a new item in the first position of the vector, we set the iterator to the beginning of
the vector and then pass it to the method as follows:

We can also insert a new item to the last position of the vector by setting the iterator to the
end of the vector and then passing it to the method as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[92]

The iterator is a past-the-end reference. In other words, trying to
get the value of will throw an exception.

And, to insert a new item into the middle of the vector, we can set the iterator to point to the
beginning of vector, and then we increase the iterator to the desired index. The following is
the code snippet that will insert a new item in the fourth position:

Since the vector is also the zero-indexing array, the fourth element is laid in the .

To search for the desired element, we can use the method provided by the vector.
However, to use this method, we need to include an algorithm header at the beginning of
the code file. This method needs three arguments the first position pointer (iterator), the
last position pointer (iterator), and the value we are going to find. The method will return
the position of the found item as the iterator. However, if no elements match, the function
returns the last position iterator. The code snippet to search for an item in the vector is as
follows:

The last operation we need is to remove an item from the desired index. We can use
the method provided by the vector. To use this method, we also need to include
the algorithm header. Similar to the method, we need to find out the beginning
of the vector first by using an iterator. We can then increment the iterator by as many as the
index positions we are going to remove. If we run the second element of the vector, the code
should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[93]

For the complete source code of this vector discussion, you can find on the
code repository of this book under the folder inside
the folder.

std::list
C++ has a built-in template class that implements the Doubly Linked List. Since then, it also
contains all of the operations that the data type has. Don't forget to
include the header at the beginning of code file if we are going to use the
data type. The usage of the iterator is also the same as the data type. We will
refactor our code in the file of the project so that we
can use the data type. The code should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[94]

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[95]

As we can see in the preceding code snippet, we need a method named
since the iterator of the data type is not a random access iterator, and so we need to
increment it as many times as the desired index. The implementation of this method is as
follows:

To print out the elements of the , we use the following method implementation:

And, if we build and run the project, we will get the following output:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[96]

Summary
We have successfully built our own data structures in C++ and have found out the time
complexity of each data structure. As we have discussed, each data structure has its own
strengths and drawbacks. For instance, by using , we can access the last element faster
than . However, in the , removing the first element will take even more
time, since we remove the first element since it needs to re-struct the array inside the .

In the next chapter, we are going to learn how to build other data structures based on the
data structures we have discussed in this chapter. These are stack, queue, and dequeue.

QA section
What does zero-based indexing mean in an array?
How do we find out how many elements an array has?
What does a pointer in C++ do?
Suppose we have a pointer named . How do we get the value of the address
that the points to?
Specify four common operations in List ADT.
A node has two functions, please specify.
What is the difference between a Singly Linked List and a Doubly Linked List?
What is the STL function that we can use for list and linked list in C++?

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Storing Data in Lists and Linked Lists Chapter 2

[97]

Further reading
For a complete summary of time complexity for each data structure that we have discussed
in this chapter, please take a look the following table:

Other reading sources you may find useful:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

33
Constructing Stacks and

Queues
In the previous chapter, we discussed several linear data types, which were list, linked list,
and Doubly Linked List. In this chapter, we are going to discuss other linear data types, and
those are stack, queue, and dequeue. The following are the topics we are going to discuss
regarding these three data types:

Building a Stack ADT and then fetching, pushing, and popping elements in this
ADT
Building a Queue ADT and then fetching, enqueuing, and dequeuing elements in
this ADT
Building a Dequeue ADT and then fetching, enqueuing, and dequeuing elements
in this ADT

Technical requirements
To follow along with this chapter, as well as the source code, we require the following:

A desktop PC or Notebook with Windows, Linux, or macOS
GNU GCC v5.4.0 or above
Code::Block IDE v17.12 (for Windows and Linux OS) or Code::Block IDE v13.12
(for macOS)
You will find the code files on GitHub at

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Constructing Stacks and Queues Chapter 3

[99]

Building a Stack ADT
A data type is a list with some restriction in the list's operations. It can only perform
the operations from one side, called the top. There are three basic operations in the
data type, and they are , , and . The operation is used to fetch
the value of the top position item only, the operation will insert the new item in the
top position, and the operation will remove the item in the top position. The stack is
also known as a Last In First Out (LIFO) data type. To support these three operations, we
will add one operation to the stack, which is , to indicate whether the stack has
elements or not. Please take a look at the following stack diagram:

As we can see in the preceding Stack diagram, we have storage containing a bunch of
numbers. However, the only opened side is the top side so that we can only put and take
the number from that side. We can also take a peek at the topmost number from the top
side.

In real life, we can imagine that the stack implementation is like when we wear many
bangles on our hand. We put on the bangles one by one on our hand only from one side.
While taking off the bangles, the last bangle we wear is the first bangle we can remove. Due
to this, this is the only time we have access to wearing and removing the bangles.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Constructing Stacks and Queues Chapter 3

[100]

Now, let's declare the class in C++. We are going to use our preceding
data type to build a data type. Similar to the data type, we need
an private variable to hold the number of items in the has. We also need
another private variable to hold the top node so that the operation can easily find the
value of the top item from this variable. The variable name will be . The following is
the declaration of the data type that we can find in the file:

As we can see in the preceding code snippet, and as we discussed earlier, we have another
method named . It's used to ensure that has at least one item before we
invoke the and operations, otherwise we will face a run-time error.

Fetching the item's value in the Stack ADT
In the data type, we can only get the value of the top node. Thus, the
operation will show the value of the node. The implementation of this operation is
simple, as we can see in the following code snippet:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Constructing Stacks and Queues Chapter 3

[101]

As we can see, the operation just returns the value of so that, no matter how many
items there are in , the complexity of this operation is O(1) for both the best case and
worst case scenario. And don't forget to invoke the method prior to the
invocation of the operation. We should not invoke the operation if there's no
item in since it can cause a run-time error. The method itself simply
returns if there's at least one item in ; otherwise it returns . The
implementation of gives us an O(1) complexity and should be as follows:

Pushing the items of the Stack ADT
As we discussed earlier, we can only add a new item from the top position of the stack.
Since the variable in the is similar to variable in the , we can
utilize the implementation of in the data type to be
implemented in the operation in the data type. The implementation of the

 operation should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Constructing Stacks and Queues Chapter 3

[102]

The preceding code snippet is similar to the implementation of the
operation in the data type, except it doesn't have a node. We just need to
create a new node, then link that to the current top node by setting the pointer of the
new node to the current top node. Obviously, the complexity of the operation is
O(1).

Popping the items from the Stack ADT
Again, removing an item in the data type is similar to the operation
in the since we can only access the top node. We simply remove the first node
and make the variable handle the second node. The implementation of the
operation should be as follows:

Since the operation in the data type adapts the operation in
, they both have the exact same time complexity, which is O(1) for best and

worst case scenario .

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Constructing Stacks and Queues Chapter 3

[103]

Consuming a Stack ADT
Now, it's time to play with our new data type. We are going to create our preceding
diagram using the operation, and then print the content of the class using
the operation. To ensure that the stack is not empty, we are going to use
the operation and we'll use the operation to get the topmost element to
print the value. The code should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Constructing Stacks and Queues Chapter 3

[104]

Based on the preceding code, the first number we store in the stack , in this case will
be at the bottom position of the stack. When we call the operation, the last stored
number will be removed first. The following output will be displayed if we build and run
the preceding code:

As we can see in the preceding output, the last number we put into the stack is the first
number we get when we invoke the operation.

Another example of Stack ADT implementation
Another implementation of the stack is when the programming language checks the
parenthesis expression's validity. For instance, in C++, we need to scope the bunch of lines
using curly braces (); or, when initializing an array, we need a square bracket () to
define the length of the array. It needs to ensure that the open curly brace has the closed
curly brace, or the open square bracket has the close square bracket. Let's see the following
possibility for the parenthesis expression:

{ () [{ }] }
{ ([) }]
{ () } [

There are three lines in the preceding parenthesis expression for possibilities. In the first
line, we can see that each opened parenthesis has its own closed parenthesis. It's also
matched for each opened parenthesis to find out the closed parenthesis. The proof that it is
a valid parenthesis expression is as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Constructing Stacks and Queues Chapter 3

[105]

In the second section, each opened parenthesis also has its closed parenthesis. However, the
first opened square bracket must find the closed square bracket before it finds the other
closed parentheses. In other words, the second line is an invalid parenthesis expression. The
proof is as follows:

In the last line, we can see that there's an opened squared bracket without the closed square
bracket. In this case, the stack will leave one element in the storage so that the parentheses
expression is invalid. The proof is as follows:

Applying the data type we built previously, let's design code to check the validity of
the parenthesis expression. Every time the code retrieves the opened parenthesis, it just
needs to store the opened parenthesis in the stack using the operation. When the
closed parenthesis comes, it needs to check whether the stack is empty. If so, the expression
must be invalid since there is no opened parenthesis to be closed. Then, we retrieve the top
element using the operation. If the value is not matched with the closed parenthesis,
it must be invalid as well. In contrast, if the parenthesis is matched, it just needs to remove
the top element by using the operation. Until the expression has been scanned, we
can decide whether the expression is valid if there's no element left in the stack. The code
for this scenario is as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Constructing Stacks and Queues Chapter 3

[106]

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Constructing Stacks and Queues Chapter 3

[107]

Then, we can invoke the preceding method using the following code snippet:

If we run the code and supply the following expression:

{ () [{ }] }

It will say that the expression is valid, as we can see in the following output:

You can try other parentheses expressions to ensure that the code we have built works.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Constructing Stacks and Queues Chapter 3

[108]

Building a Queue ADT
A queue data type is a list with some restrictions to the effect that the inserting operation
(enqueue) can only be performed from one side (called the back) and the removing
operation (dequeue) can only be performed from the other side (called the front). Similar to
the data type, we can develop the data type by using the data
type. For the operation, we can adopt the operation in the

 data type since we are going to insert an element from the back, which is
similar to the node in the data type. Also, for the operation,
we will use the implementation of the operation in the data
type. The data type is also known as the First In First Out (FIFO) data type since the
element that is inserted from the back of will travel to the front side before it can be
removed. Let's take a look at the following diagram showing the queue:

As we can see in the preceding diagram, there's a line of queueing numbers which has two
sides opened. We insert a number from the right side (which is the backside in the Queue)
and it then travels to the left side until it's at the frontside and is ready to dequeue. This

 data type is similar to a queue in real life, for instance, a queue at a theatre, where we
have to stand in a line from the back of the queue and wait until all of the people in front of
us have been served.

The following is the declaration of the data type. It's quite similar to the declaration
of the data type, so please take a look:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Constructing Stacks and Queues Chapter 3

[109]

Similar to a data type, the data type also adopts the data type.
However, it has two private nodes and instead of and in
the data type. It also has a operation to retrieve the front-most
element's value, an operation to insert a new element in the back, and a

 operation to remove the front-most element.

Getting a value from Queue ADT
As we discussed earlier, we can only fetch the front value of the queue. For this purpose, we
are going to implement the operation to get the value of the front element. The
implementation should be as follows:

Since it just returns the value of the front element, the time complexity for this operation is
O(1) for both best and worst case. Also, don't forget to invoke the operation
before invoking the operation to ensure that the queue is not empty. The
implementation of the operation for the data type is completely the same
as the implementation of the operation in the data type.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Constructing Stacks and Queues Chapter 3

[110]

Inserting an element into the Queue ADT
Inserting a new item in the data type can only be performed from the back side,
which means the newly inserted item will be pointed by the pointer, and the
pointer of the current element will point to this new element to create a new chaining node.
However, it can be applied if there's at least one element before we insert the new element.
If is empty when we are going to insert a new element, we have to set the new
element to be the front and the back element. Let's explore the following
operation's implementation:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Constructing Stacks and Queues Chapter 3

[111]

As we can see in the preceding code snippet, there are two conditions when inserting a new
element in the data type. However, it doesn't depend on the number of elements
inside the data type, so the time complexity for this operation is always O(1) for both best
and worst case.

Removing an element from the Queue ADT
Removing an element can also be performed from the front side only, which is done by
using the operation. This is similar to the operation in the

 data type removing the current front node and then assigning the next
element as the new front element. The implementation should be as follows:

Similar to the operation, the operation does not depend on the
number of items inside the data type. The time complexity of this operation is O(1) for both
best and worst case.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Constructing Stacks and Queues Chapter 3

[112]

Consuming the Queue ADT
Now, let's create a new instance that contains the different elements, as shown in the
earlier diagram. The element will be inserted by using the operation. We can
then display all queue elements by using the and operations. The code
should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Constructing Stacks and Queues Chapter 3

[113]

In contrast to the data type, the first element inserted into the queue will be the first
element that will be removed if we invoke the operation. We should get the
following output if we build and run the project:

Building a Deque ADT
A dequeue, which stands for double-ended queue, is a queue that can insert and remove
items from two sides: the front and back. To build this data structure, we are going to adopt
the data type we already built in the previous chapter. Similar to
the data type, the data type also has the operation to fetch the
front-most element's value. The operation in the data type will become

 in the data type, and the operation in the data
type will become in the data type. However, since we adopt the

 data type instead of , the implementation will be
different. Besides those operations, we are also going to build the following operations:

The operation to fetch the back-most element's value.
The operation to insert a new element into the front side. It
will be similar to the implementation of the operation in
the data type.
The operation to remove an element from the back side. It will
be similar to the implementation of the operation in
the data type.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Constructing Stacks and Queues Chapter 3

[114]

Let's take a look at the following diagram of the Deque data type:

Based on the preceding requirement, the declaration of the data structure should be
as follows:

Notice that we now use the data type instead of the data type since we
are going to use the implementation of the data type for the
data type.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Constructing Stacks and Queues Chapter 3

[115]

Fetching a value from a Deque
The implementation of the and operations for the data type is
the same as the implementation of the and operations for the
data type. For the operation, it just returns the value of the node. The
implementation should be as follows:

Since the implementation of this operation doesn't depend on the number of
elements, the complexity of this operation is O(1) for both best and worst case.

Enqueueing an element into the Deque ADT
There are two ways to enqueue a new element into the data type from the front
side and from the back side. To enqueue a new element from the front side, we can use the

 operation, which will create a new node and then assigns
the pointer of this new node to the current node. Also, if the current

 exists, the pointer of the current node points to the new node.
Now, the node will change to the new node. If it's the only node that resides in the

 data type, the node will also point to this new node. The implementation of
the operation should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Constructing Stacks and Queues Chapter 3

[116]

Similar to the operation, the operation will create a new
 node. The pointer of the current node will point to this new

node, and the pointer of this new node will point to the current node.
Now, we have a new back-most element, so we assign the node to the new
node. For simplicity, if there's no element before we enqueue a new element, just ignore the
preceding step and invoke the operation instead. The implementation
of the operation should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Constructing Stacks and Queues Chapter 3

[117]

The two enqueueing operations we have built do not depend on the number of
deque elements so their complexity is O(1) for both best and worst case.

Dequeuing an element from the Deque ADT
Similar to enqueueing a new element, dequeuing an element in the data type can
also be performed from both the front and back sides. When we are going to dequeue from
the front side, which is done by using the operation, we initially assign
the new to the pointer of the current node. If the new, current

 exists then it points its pointer to . Now, it's safe to delete the
frontmost element. The implementation of the operation should be as
follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Constructing Stacks and Queues Chapter 3

[118]

If we are going to dequeue an element from the back side, which is done by using
the operation, we initially assign the new node to
the pointer of the current node. Then, we just point the pointer of
the new, current node to so that it no longer points to the back-most element.
Now, it's safe to delete the back-most element. The implementation of
the operation should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Constructing Stacks and Queues Chapter 3

[119]

Both the and operations we have designed do not
depend on the number of the deque element, so we can say that the complexity of these two
operations is O(1) for both best and worst cases.

Consuming the Deque ADT
We are going to create a deque containing the elements shown in the preceding diagram.
Since the data type is similar to the data type, we are going to use the
operation to peek at the element's value. The elements' value will be displayed from back to
front. The code will be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Constructing Stacks and Queues Chapter 3

[120]

And if we run the preceding code, we get the following output:

Summary
In this chapter, we have successfully built others linear data types: the , , and

 data types. We can use the data type if we need storage that only has one side
to insert and remove an element, we can use the data type if we need storage which
has to insert and remove the element from a different side, and if we need storage that can
be accessed from two sides, both the front and back sides, we can use the data type.
Fortunately, the time complexity for all of the operations in these three data types is O(1),
and doesn't depend on the number of the elements in the data type. In the next chapter, we
are going to discuss various sorting algorithms to arrange the elements inside the data types
we have discussed so far.

QA section
Specify three basic operations in the data type!
What does LIFO refer to and with which data type (covered in this chapter) is it
associated?
Give an example of stack implementation in real life
What is stack implementation in a programming language?
What is deque also known as?
What is the difference between queue and deque?
Why is the complexity of the data types O(1)? Can you guess why the number of
elements in the data type doesn't affect the complexity?

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Constructing Stacks and Queues Chapter 3

[121]

Further reading
For reference, you can refer to the following links:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

44
Arranging Data Elements Using

a Sorting Algorithm
In the previous chapter, we discussed several linear data structures, such as linked list,
stack, queue, and dequeue. In this chapter, we are going to arrange data elements in a list
using some sorting algorithm techniques. The following are the popular sorting algorithms
that we are going to discuss in this chapter:

Bubble sort
Selection sort
Insertion sort
Merge sort
Quick sort
Counting sort
Radix sort

Technical requirements
To follow along with this chapter, as well as the source code, you are going to require the
following:

A desktop PC or Notebook with Windows, Linux, or macOS
GNU GCC v5.4.0 or above
Code Block IDE v17.12 (for Windows and Linux OS) or Code Block IDE v13.12
(for macOS)
You will find the code files on GitHub at

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[123]

Bubble sort
Bubble sort is a simple sorting algorithm, but it has a slow process time. It will divide an
input list into two parts a sublist of items already sorted on the right side and a sublist of
items remaining to be sorted in the rest of the list. If we are going to sort a list of elements in
ascending order, the algorithm will move the greatest value to the right position followed
by the second greatest value and so on, similar to air bubbles when they rise to the top.
Suppose we have an array of unsorted elements and are going to sort them using the bubble
sort algorithm. The following are the steps required to perform the sorting process:

Compare each pair of adjacent items, for instance with ,1.
 with , and so on.

Swap that pair if the items are not in the correct order. Since we are going to sort2.
in ascending order, the correct order will be ,

, and so on.
Repeat the first and second steps until the end of the array is reached.3.
By now, the largest item is in the last position. We can omit this item and repeat4.
step 1 until step 3 until no swap item is found.

Let's create an unsorted array containing six elements . By
using the bubble sort algorithm, we are going to sort this array. We will pick the first pair of
adjacent items, and . Since is greater than , we have to swap the position and
now the array becomes . Again, we compare to and
need to swap them, and since is the greatest item in the array, each pair of adjacent items
in comparison will swap the pair so that will be the last position in the array. By now,
the array will be .

The element is now in the correct position, so we don't need to include it in the repeated
step. In the remaining unsorted elements, we do the same process as we did in the
preceding step. First, we compare and , so no swapping is necessary, and then
compare and , where again no swapping is necessary. When we compare and ,
we need to swap these items so the array becomes . Again,
we compare and , and they need to be swapped so that is now in the correct
position. The array will then be . This function will go on until
there is nothing to be sorted.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[124]

Now, we can go further and develop C++ code for this sorting algorithm. We will have a
function named that passes an array and the length of the array as
arguments. The array we pass to this function will be sorted, so we need the
function provided by C++ STL in the namespace. In this function, we have
the variable to hold the remaining unsorted elements. In the
beginning, this variable is set with the length of the array. We then iterate all unsorted
elements until there are no swapped items, which is marked by the variable. As
we discussed earlier, when we iterate all unsorted elements, we swap each pair of adjacent
items if they are not in the correct position. The code should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[125]

As we can see in the preceding code, we used the flag to indicate whether
the iteration is needed or not. It's useful to stop the iteration if we pass a
sorted array to the function, so it will only need to iterate through the input
array elements once. So, the time complexity of this function is O(N) in the best case if we
pass a sorted array on the function. And since there's a nested iteration in
the iteration, the bubble sort time complexity for the worst case is O(N2). If we
build and run the preceding code, we should see the following output on the screen:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[126]

Selection sort
Similar to bubble sort, selection sort also divides an input list into two parts a sublist of
items already sorted in the left side and a sublist of items remaining to be sorted in the rest
of the list. If we are going to sort the input list in ascending order, the lowest items will be in
the leftmost position in the input list. These are the steps to perform a selection sort on a
given input list:

Find the first index of the unsorted sublist and mark it as . If it's the1.
first sorting iteration, the index should be .
Iterate through the elements of the unsorted sublist, starting at its first2.
element (the first time, it should be index through n - 1) and compare the
current value element in the iteration with the first index of the unsorted sublist.
If the value of the current index is lower than the value of the first index, set the
current index to .
After finishing the unsorted elements iteration, swap each value of the first index3.
of the unsorted and the .
Repeat step 1 and step 3 until the unsorted sublist has only one item remaining.4.

Let's borrow the unsorted array we used in the preceding bubble sort algorithm, which has
the items , and then perform the selection sort algorithm on
it. In the first iteration, we will pick as the first index of the unsorted sublist.
Then, we iterate through to and find that 17 is the lowest item in the
array. We can now swap and as in the following diagram:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[127]

Now, stores the sorted item. We can pick as the first index of the
unsorted sublist that holds 21. Through the iteration of the unsorted sublist, it is found
that 21 is the lowest item, so it's not swapped with anything. Please see the following
diagram:

Now, we've got as the first index of the unsorted sublist; it holds 26. Similar to
the previous iteration, it won't be swapped with anything since it's the lowest item in the
unsorted sublist, as we can see in the following diagram:

As of now, , , and have been sorted. The process will go on
until there is nothing left to be sorted.

Since we have now understood the concept of selection sort, we can develop a code to make
performing selection sorts a lot easier. Similar to the function, the selection
sort function will also pass an array that needs to be sorted and the length of the array. We
then pick the first position of each unsorted sublist to be swapped with the lowest item in
the current unsorted list. This will be repeated until the unsorted sublist remains at one
item. The code should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[128]

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[129]

As we can see in the preceding code, there's a nested loop in a loop. The outer
loop is used to iterate the unsorted sublist while the inner loop is used to find the
lowest item. Contrary to bubble sort, selection sort cannot detect whether an input list is
sorted at the beginning of the process, so the time complexity of this sorting algorithm is
O(N2) for both the best and worst cases. If we build and run the preceding code, we are
going to see the following output on the screen:

Insertion sort
Insertion sort is a sorting algorithm that is similar to arranging a hand of poker cards. This
sorting algorithm will also divide the list into a sorted and unsorted sublist in the sorting
process. For clarity, we pick an item as a reference, then go through the sorted sublist and
find the correct position based on performing a comparison. This process is repeated until
all the items are sorted, which means that we have to iterate through all of the array's
elements.

Let's use our previous array and then perform an insertion
sort algorithm on it. First, we set as the sorted sublist, so we pick as
the reference. Now, we compare the reference item, which is 21, with the sorted sublist. See
the following diagram:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[130]

Since 21 is lower than 43, 43 will be shifted to and since no more items are in the
sorted sublist, 21 is put into . Now, and are in the sorted
sublist, as we can see in the following diagram:

Now, we move to , which is 26. We will set it as a reference item rather than
iterating through the sorted sublist that contains 21 and 43. We will have something similar
to the following figure:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[131]

When 26 is compared with 43, 43 will be shifted to the place where 26 is. And since 26 is
greater than 21, 26 now occupies . By now, the array will be as follows:

Again, we pick 38 as the reference and then iterate through to the sorted sublist, which is 21,
26, and 43. Please see the following diagram:

When the reference item is compared with 43, 43 will be shifted to the place of the reference
item since it's lower than 43. Then, the reference item is compared with 26. Since it's greater
than 26, 38 will be in-between 26 and 43 as we can see in the following diagram:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[132]

We do the same preceding iteration for the remaining items, 17 and 30, until we've got a
sorted array as follows:

Now, let's design C++ code based on the preceding explanation. We need to iterate each
element to be the reference item and based on this reference item, we can iterate the sorted
sublist. The code should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[133]

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[134]

As we can see in the function, similarly to the
function there's also a nested loop in a loop. The outer loop is used to iterate
the unsorted sublist while the inner loop is used to find the correct position to insert the

. Indeed, this will make the time complexity of this sorting algorithm become
O(n2) for the worst case scenario. Fortunately, in the inner loop, we have an
comparison that will break the inner loop if the reference value is greater than the
biggest item in the sorted sublist. Imagine we pass a sorted list to
the function. This comparison will ignore the inner loop since it
will only execute once, so for the best case scenario the time complexity of this sorting
algorithm is O(n). The output on the screen should be as follows when we build and run the
preceding code:

Merge sort
Merge sort is an efficient sorting algorithm that divides the input array into two parts of a
sublist. It sorts each sublist and then merges them. To sort each sublist, the algorithm
divides the sublist in two again. If this sublist of the sublist can be divided into two halves,
then it will be. The idea of the merge sort is that it will merge all the sorted sublists into the
fully sorted list. Suppose we have an array containing these elements,

, as shown in the following diagram:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[135]

We can divide the array into two sublists, which are [7, 1, 5, 9] and [3, 6, 8, 2]. Then, the first
sublist can be divided as well to become [7, 1] and [5, 9]. We can sort these sublists and they
will be [1, 7] and [5, 9], and then we can merge this sublist so that it becomes [1, 5, 7, 9], as
shown in the following diagram:

By now, we have one sorted sublist. We need to sort another sublist, [3, 6, 8, 2]. We can
divide this sublist to become [3, 6] and [8, 2], and then sort them partially to become [3, 6]
and [2, 8]. These sublists can be merged and become [2, 3, 6, 8], as we can see in the
following diagram:

By now, we have two sorted sublists. Now, we can merge these two sublists to become [1, 2,
3, 5, 6, 7, 8, 9], as shown in the following diagram:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[136]

When designing a code for a merge sort, we need to have two functions to perform it. The
first function is the function, which passes an array, a start index, a middle index,
and an end index. This function is used when we have an array where each half part has
been sorted, for instance, [1, 5, 7, 9, 2, 3, 6, 8] as we did in the preceding diagram. The
function's implementation should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[137]

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[138]

As we can see in the preceding code, we need to store the sorted array as a
result of the two sorted sublists being merged. It will rearrange the array by merging these
two sublists. After this is completed, put all of the elements of the in the correct
order. This will copy the temporary array into the original array.

If we have a really random array, we need another function, named , to
separate the array into two sublists. The function's implementation should be as follows:

As we can see in the preceding code, the function will call itself incursively
until the halved sublist cannot be divided any more. It then invokes the function
we created previously to merge the two sorted sublists. To invoke the
function, we can make the following function using the preceding array we used in
the previous illustration:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[139]

As we can see in the function, we invoked the function and passed
an input array and the range of the element we desired to sort, which is from index to the
last element. The output of the preceding code (that has been saved in
the file) should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[140]

Now, we need to find the time complexity of this sorting algorithm. As we discussed
earlier, we have to divide the input array into two halved sublists, divide these sublists into
another two halved sublists, and so on until only one element remains in the sublists. The
sublist elements will be passed to the function, where the time complexity of the

 function is O(N) since it only contains one level while in the loop. The analysis for
the function that invokes the function will be as follows:

From the preceding analysis, we will have the level N when there's only one element in a
sublist so that it cannot be divided any more. In this case, we will have the following
formula:

Based on the preceding formula, for level N, we will have the time complexity before we
call the function, which is log N. Since the time complexity of the
function itself is O(N), the time complexity of the merge sort algorithm is O(N log N) for
both the best and worst case scenarios.

Quick sort
Quick sort is almost the same as the other sorting algorithms we have discussed so far as it
divides the input array into two sublists, which are the left sublist and the right sublist. In
quick sort, the process of dividing the array into two sublists is called partitioning. The
partition process will pick an item to become a pivot and it will then use the pivot to divide
the input into two sublists. If we are going to sort an array in ascending order, all items that
are lower than the pivot will be moved to the left sublist, and the rest will be in the right
sublist. After running the partition process, we will ensure that the pivot is in the correct
position in the array. Although we can choose the item that will be the pivot, we will
always choose the first item of the array as the pivot in this discussion.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[141]

Suppose we have an array . We are going to sort
the array by using the quick sort algorithm. Please see the following diagram:

First, we choose the first item as the pivot, which is 25. We then iterate through the
remaining elements and compare each item with the pivot. When we compare 21 and 12,
they are lower than the pivot so they will be in the left sublist, and won't be moved. The
elements 40, 37, and 43, are also not moved. However, they will be in the right sublist. Then,
we compare 14 with the pivot, and we can see that its value is lower. We need to move it to
the left sublist. To do that, we swap it with the first element in the right sublist, which is 40.
The last is element 28, but we don't need to move it since it's lower than the pivot. By now,
the array should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[142]

To complete the partition, we can swap the pivot with the last item in the left sublist, which
is 14. Although we have moved 14, it will be in the left sublist. By now, the pivot is in the
correct position and the array should be as follows:

As shown in the preceding diagram, we have two unsorted sublists: [14, 12, 21] as the left
sublist and [37, 43, 40, 28] as the right sublist. We will use the quick sort algorithm to sort
these sublists. Starting from the left sublist, we pick 14 as the pivot. We then compare 21
with the pivot and mark it as the right sublist. When we find 12, we swap it with 21 since it
should be in the left sublist. The array should be as follows:

As shown in the preceding diagram, 14 is the pivot, 12 is in the left sublist, and 21 is in the
right sublist. To complete the partition, we need to swap the pivot with the last item of the
left sublist. Because it only contains one element, we just swap 14 with 12, the only left
sublist item remaining. By now, the array should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[143]

As we can see in the preceding diagram, 14 is in the right position. Fortunately, 12 and 21
are also in the right position, so we now have all of the left sublist sorted. Now, we move to
the right sublist and pick 37 as the pivot. It compares with 43, and so it should be in the
right sublist. It then compares with 40, which is also in the right sublist. When it is
compared with 28, we have to swap 28 with 43 since 28 is lower than the pivot. The array
should look as follows:

Now, we can swap the pivot with the last item in the left sublist and then the pivot will be
in the right position afterwards. The array should be as follows:

Fortunately, 28 is now in the right position as well, so we can move it to the right sublist.
We pick 43 as the pivot and then compare it with 43 and mark 43 as being the right sublist.
Since we don't have any elements in the left sublist, with the result that the pivot is in the
correct position automatically, the last item, which is 43, is automatically in the right
position as well. The fully sorted array should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[144]

Now, let's create a C++ code to solve the quick sort algorithm. We need a
function that will divide an input array into left and right sublists and put the pivot in the
correct position. Then, we need a function to call the function
to recursively invoke itself to sort the left and right sublists. The code should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[145]

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[146]

If we build and run the preceding code, we should see the following output on the screen:

Since quick sort is similar to merge sort in dividing an input array into two sublists, the
time complexity of quick sort is O(N log N) for the best case scenario. In the worst case
scenario, we may pick the lowest or the greatest element as a pivot so that we have to iterate
through all elements. In this case, the time complexity will be O(N2).

Counting sort
Counting sort is a sorting algorithm that arranges items based on a key. Suppose we have
an array containing unsorted items with a range between 0 to 9; we can sort it by counting
the number of items based on the range as the key. Let's say we have an array of these
items . In a simple explanation, we
just need to count the frequency of the occurrence of each item. We then iterate through the
range from 0 to 9 to output the items in a sorted order. Initially, we will have an array
containing the following items:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[147]

Now, we count the occurrence frequency of each item. Items 1, 2, 3, 4 will occur only once,
items 5 and 9 occur twice, items 6 and 7 occur three times, and item 8 never occurs. This can
be seen in the following diagram:

Based on this collection, we can reconstruct the array from the lowest item so that we end
up with the following result:

Creating C++ code for counting sort is quite simple; we just need to prepare
the array with the item range as its length and then put the occurrence of
the item in that array. We can reconstruct the array based on the array.
The code should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[148]

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[149]

As we can see in the preceding code, we have two loop iterations. The first iteration is
used to iterate through the array elements and put them into the respective key. The second
one is used to reconstruct the initial array so that it will become a sorted list. Please note
that, even though there is a loop inside the second loop, it doesn't make the time
complexity of become O(N2). This is because the second loop iterates
through the counter (which is the key in counting sort) and only the loop iterates
through the array elements, so that, for both best and worst case scenarios, the time
complexity of this counting sort is O(N + k), where k is the number of keys. However, we
can ignore the variable if is very small so that the time complexity will be O(N). The
output of the preceding code should be as follows:

Radix sort
Radix sort is a sorting algorithm that is used if the items we are going to sort are in a large
range, for instance, from 0 to 9999. In this sorting algorithm, we sort from the
least significant (rightmost) digit until the most significant digit (leftmost). We are going to
involve the Queue data structure we learned in , Constructing Stacks and Queues
since we will be putting the equal digit in the queue. This means we need ten queues to
represent the digits from 0 to 9. Suppose we have an array with the following
elements {429, 3309, 65, 7439, 12, 9954, 30, 4567, 8, 882} as we can see in the following
diagram:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[150]

Then, we populate each item based on the least significant digit (the last digit) and store
them in their respective queue bucket. The diagram for this is as follows:

Since we put them in the queue, we can dequeue each bucket from 0 to 9. In the preceding
diagram, we enqueue the bucket from the top so we dequeue it from the bottom. The
diagram should be as follows:

Now, we can repeat the process, but this time for the second least significant digit (the
second digit from the left). If the item contains only one digit, the rest of the digits will be 0.
The collection should be as follows:

Again, we dequeue each bucket from 0 to 9 and should have the following array:

Move to the third digit from the left, and we can collect them into buckets as follows:

From the preceding diagram, we can rearrange the array by dequeuing each bucket from 0
to 9 as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[151]

Now, the last digit's position has to be collected (this is the most significant digit). Then, we
will have the following bucket diagram:

Finally, we can get a the fully sorted array by dequeuing all of the buckets from the lowest
digit to the greatest digit, as shown in the following diagram:

Now, let's design the code for this sorting algorithm in the C++ language. The first thing we
need to know in performing this algorithm is the greatest item in the inputted array. This is
because we need to iterate through the digit of the greatest item. Once we have found
the greatest item, we can iterate through the number of digits in the item by diving it by an
exponential, starting from , then , , and so on. To get the selected digit, we can
divide the selected item by its current exponential and then find the modulus, , of the
result. The code should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[152]

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[153]

As we can see in the preceding code, we can skip the first loop since it's only there to
find out the greatest item. The second loop is used to iterate to the number of digits, or
we can notate it as . Each iteration of will iterate through all of the array elements to
collect all of the items based on the key () as we did for counting sort. So, the time
complexity of the code inside the second loop will be the same as the time complexity
of the counting sort. So, the time complexity of the function will be O(d
(N+k)), and since we can ignore the variable if it's very small, the time complexity of a
radix sort will be O(d N) for both the best and worst case scenarios. The output on the
screen will be as follows if we build and run the preceding code:

Summary
By now, we have understood the sorting algorithms concept and have implemented all
common sorting algorithms in C++. We have looked at the slowest sorting algorithms that
give the time complexity as O(N2): bubble sort, selection sort, and insertion sort. However, if
we are lucky, we can have a time complexity of O(N) for both bubble sort and insertion sort
since they can detect whether we pass a sorted list. However, for selection sort, we will still
have a time complexity of O(N2) even after the input list is sorted.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

[154]

Other sorting algorithms that are faster than the three preceding algorithms are merge sort
and quick sort. Their time complexity is O(N log N) since they have to divide the input list
into two sublists. The last, and the fastest, sorting algorithm, are counting sort and radix
sort since their time complexity is O(N).

In the next chapter, we are going to discuss a technique to search for an item in an array or a
list by using a sorting algorithm.

QA section
Can we sort the left sublist and right sublist from the partition method in quick
sort using other sorting algorithms?
Suppose we have an array which consists of {4, 34, 29, 48, 53, 87, 12, 30, 44, 25, 93,
67, 43, 19, 74}. What sorting algorithm will give you the fastest time performance?
Why can merge sort and quick sort have O(N log N) for their time complexity?
What sorting algorithm is similar to arranging a hand of poker cards?
What is the best sorting algorithm if we are going to sort an array which consists
of {293, 21, 43, 1024, 8, 532, 70, 8283}?

Further reading
For reference purposes, you can refer to the following links:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

55
Finding out an Element Using

Searching Algorithms
In the previous chapter, we discussed various techniques to arrange a list by sorting it.
Now, in this chapter, we are going to discuss various techniques to search a specific value
on a list and find the index where it's stored. Several searching algorithms we are going to
discuss in this chapter need a sorted list, so we can apply one of the sorting algorithms we
discussed in the previous chapter. By the end of this chapter, we will be able to understand
and apply the following searching algorithms:

Linear search
Binary search
Ternary search
Interpolation search
Jump search
Exponential search
Sublist search

Technical requirements
To follow along with this chapter, including the source code, we require the following:

Desktop PC or Notebook with Windows, Linux, or macOS
GNU GCC v5.4.0 or above
Code Block IDE v17.12 (for Windows and Linux OS), or Code Block IDE v13.12
(for macOS)
You will find the code files on GitHub at

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

[156]

Linear search
Linear search is a simple searching algorithm to find out an item in a list using a sequential
method. It means that we start looking at the first item in the list, then move to the second
item, the third item, the fourth item, and so on. In , Storing Data in Lists and Linked
Lists and , Constructing Stacks and Queues, when we discussed data structure, we
designed a searching algorithm for each data structure we had. Actually, the searching
algorithm uses a linear searching algorithm.

Developing a linear search algorithm
To refresh our memory about linear algorithms, let's pick a random array that contains

. We then have to find the index where is
stored. As we can see in the array, is in index (since the array is zero-based indexing);
however, if we find an unexisting item, the algorithm should return . The following is the
method of linear search named :

As we can see in the implementation, we pass an array,
, , and the value we are going to search for. The algorithm then

iterates through the array from to . The algorithm will return the
index if the value is found. If the value is not stored in the array, it will simply return .

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

[157]

Implementing the linear search algorithm
Now, let's create a function to invoke a function, as follows:

In the preceding function, we try to find the position of value . The following
output occurs if we build and run the preceding code that is written in
the file:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

[158]

From the function, we see that it has to iterate all array elements until it
finds the searched value. In the best case scenario, the searched value will be at the first
index, so the time complexity would be O(1). However, the searched value might not be
found in the array, and the algorithm has to iterate until the end of the array's element; that
is the worst case scenario, with the O(N) time complexity.

Binary search
Binary search is a searching algorithm to find the position of the searched value in a list by
dividing the list into left and right sublists. Prior to performing this searching algorithm, we
have to sort the list using the sorting algorithms we discussed in the , Arranging
Data Elements Using a Sorting Algorithm.

Developing binary search algorithm
Suppose we have a sorted array containing these 15 elements

 and we need to find the position of . The
first thing the binary search does is to find the middle element, then compares it with the
searched value. Since we've got 15 elements on the list, the middle index is (since the
array is a zero-based index), and the value of the index is . Then, we compare with our
searched value, which is . Since the middle value is greater than the value we are looking
for, the searched value must be to the left of the middle index. So, we can take the left
subarray and have these elements: . Again, we perform
the binary search on this subarray and find the middle value is , which is lower than ,
so we take the right subarray and get these elements: . We now have only
three elements to be sorted, and, by performing the binary search on this subarray, we will
find the position of the value . The C++ code for the binary search algorithm is as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

[159]

As we can see in the preceding function, we call the function recursively
for a sublist it has after performing the function. The function will find
the position of the searched value if it finds the middle value equals the searched value.

As we can see in function implementation, we use
recursion instead of iteration to repeat function invocation. The usage of
recursion will make our function simpler and more natural; however,
recursion will be an infinite loop if you miss a basis case.
If you are interested in learning more about recursion, you can refer to the
book Learning C++ Functional Programming, Chapter 4, Repeating Method
Invocation Using Recursive Algorithms, published by Packt Publishing.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

[160]

Implementing binary search algorithm
The following is the function which invokes the function:

As shown in the preceding code, we are going to find the position of value in the array
containing 15 elements. The following screenshot demonstrates the output that we should
see on the console if we run the preceding code we can find in the
file:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

[161]

The time complexity of binary search algorithm is O (log N) in the worst case, since we have
to divide the array into two subarray, then again divide each subarray into two subarrays,
until we find the searched value, or until the subarray cannot be divided anymore;
however, this searching algorithm can give O(1) time complexity in the best case scenario, if
the searched value is stored in the middle position (for instance, if we search for in the
preceding array).

Ternary search
Ternary search is a searching algorithm that divides an input array into three
subarrays an array of the first third, an array of the last third, and an array between these
two areas. It needs to pick two indexes, which are
called and . These two indexes are calculated based
on the first index and the last index of the input array.

Developing ternary search algorithm
Suppose we have an array as we have in a binary search,

, and want to search for a value of . The array
contains 15 elements, so we will have the fifth index as the middle-left index
(), and ninth index as the middle-right index (

). By using these two indexes, we can find the searched value in each area using the
ternary search algorithm itself (recursive invocation). The code of a ternary search
algorithm in C++ is as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

[162]

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

[163]

As we can see in the preceding function implementation, after
defining and , we compare the elements at the two
indexes with the searched value to guess where the searched value is stored.

Applying the ternary search algorithm
To invoke the function, we can use the following function:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

[164]

If we build and run the preceding code, we are going to see the following output on the
console:

Since the area of the ternary search is always one third, the time complexity of this search
algorithm is O(log3 N) for the worst case. For the best case, the time complexity is O(1).

Interpolation search
Interpolation search is an improvement of the binary search algorithm in picking the
middle index. Instead of always picking the middle element to be checked to a searched
value like in a binary search, the middle index is not always at the middle position in an
interpolation search. The algorithm will calculate the middle index based on the searched
value, and pick the nearest element from the searched value. Similar to the binary search, in
the interpolation search we have to pass an array we want to search and define the lowest
index and the highest index, then calculate the middle index using the following formula:

Developing interpolation search algorithm
Let's borrow the array we used in the binary search algorithm, which is

, and find value . As we discussed
earlier, in binary search, we've got , , and as the middle index when it runs
recursively, before we find the position of (which means it needs four invocation
of function). However, by using interpolation search, we just need two
invocation of an interpolation search function. Let's prove it.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

[165]

Imagine we use the function, but just replace
the calculation with the formula in the preceding section. First, we pass the
array and have , , and (since we are going to
search value). Based on those values, we can calculate the middle index as follows:

The result of the preceding calculation is , and as an integer value, it will be .
The is and it doesn't equal to , but is lower than it. So we can eliminate
the until , and start the search from index . Now, we have

, , and . The middle index can be calculated as follows:

The result of the preceding calculation is obvious, which is . We now have
, and, since is stored at index , we have successfully found the position of the

searched value, and just need two invocations of the interpolation search function.

Because interpolation search is just an improvement of binary search, the implementation of
interpolation search in C++ is similar to the binary search implementation, except the way
we calculate the middle index. The implementation of should be
as follows:

// Find middle index
 int middleIndex =
 lowIndex + (
 (val - arr[lowIndex]) * (highIndex - lowIndex) /
 (arr[highIndex] - arr[lowIndex]));

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

[166]

Applying interpolation search algorithm
We can use the function similar to binary search to find the value , as shown in
the following code:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

[167]

This is the output that we should see if we build and run the preceding code, it will be
similar to a binary search, as we can see in the following screenshot:

As we discussed earlier, the time complexity of binary search is O(log N); however, the
interpolation search is faster than the binary search, since the interpolation search improves
the calculation of the middle index. The time complexity of the interpolation is O(log (log
N)) and still, for the best case, the time complexity of the algorithm is O(1).

Jump search
Jump search is a searching algorithm to find the position of a searched value in a sorted list
by dividing the array into several fixed-size blocks, jumping to the first index of the block,
then comparing the value of the block's first index with the searched value. If the value of
the block's first index is greater than the searched value, it jumps backward to the previous
block, then starts a linear search of the block.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

[168]

Developing jump search algorithm
Suppose we have an array containing
elements, and we want to find the position of value . We will set the jump step by the
square root elements number. Since the element number of the array is , the step will be

. We will now compare the value of index , , , and . When the algorithm
compares with , the value of is lower than the searched value. It
then jumps to and compares its value with . Since the value is lower than the
searched value, it jumps to and finds that is greater than . It then jumps
backward to , and performs the linear search on , , and

 to find the value and get the position of the value. The implementation of
jump search in C++ code is as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

[169]

Applying jump search algorithm
If we want to find the position of in the array, as we did earlier in this chapter, we can
use the following function:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

[170]

If we build and run the preceding code, we are going to see the following output on the
console:

Since we decide the jump step with , where is the array's elements number, we will
have the time complexity of jump search as O(N) for both best and worst cases.

Exponential search
Exponential search is similar to a jump search, since it also divides the input array into
several subarrays; however, in exponential search, the step we jump is increased
exponentially (2n). In exponential search, we initially compare the second index
(), then compare with the searched value. If the is
still lower than the searched value, we increase the exponentially to become ,

, , and so on, until the is higher than the searched value. Then we
can perform the binary search to the subarray defined by the .

Developing exponential search algorithm
Let's use the array we used in jump search,

, to perform an exponential search, and we will also find value . First, we
apply , then compare with the searched value, . Since
is lower than , the algorithm sets . is still lower than , then
moves to . And since its value is still lower than , it moves to and
finds that it's now greater than . After that, the algorithm performs the binary search
from to to find the searched value. The implementation of the
exponent search in C++ will be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

[171]

// Start comparing from index 1
int blockIndex = 1;

blockIndex *= 2;

As we can see in the preceding code, we don't need to calculate the step as we did in the
jump search, since the step is increased by exponential value.

Invoking the ExponentialSearch() function
To invoke the preceding function, we can use the following

 function code:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

[172]

If we build and run the preceding code, we are going to be displaying similar output to a
jump search, as follows:

To find the performance of this searching algorithm, we have to calculate all processes in
the algorithm, which are loop and a binary search invocation. In the loop
process, the algorithm takes , where is the index of the searched value. The
second process is the invocation of binary search. As we know, the time complexity of
binary search is O(log N); however, after the loop process, the number of array
elements are no longer , but . So, the second process' time complexity will be O(log i) as
well. As a result, whole processes in exponential search will be:

Since we can omit a constant value, the time complexity of this searching algorithm is
, where is the index of the searched value.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

[173]

Sublist search
Sublist search is used to detect a presence of one list in another list. Suppose we have a
single-node list (let's say the first list), and we want to ensure that the list is present in
another list (let's say the second list), then we can perform the sublist search to find it. For
instance, the first list contains these elements: , and the second list
contains these elements: . At a glance, we see that
the first list presents in the second list.

The sublist search algorithm works by comparing the first element of the first list with
the first element of the second list. If the two values don't match, it goes to the next element
of the second list. It does this until the two values match, then checks the succeeding
elements of the first list with the succeeding elements of the second list. If all elements
match, then it returns true, otherwise, it returns false.

Designing sublist search algorithm
Let's design the C++ program for this searching algorithm. First, we are going to develop
a function that will compare the first element of the first list with all
elements of the second list. The code should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

[174]

As we can see in the preceding function implementation, it calls itself
when moving to the next element of the second list. And when it finds
that , it performs
the function to ensure the remaining second list
elements match all the second list's elements. The implementation of
the function will be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

[175]

In the preceding code, we also see the function invokes
itself to prove that the next element of the two lists remains the same. This function will
return if it finds one element that doesn't match. Also, if it has iterated all elements of
the first list, it will return .

Performing sublist search algorithm
To perform the sublist search, we can invoke the function and pass two
lists. The following function will create two lists and invoke
the function:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

[176]

And if we build and run the preceding code, we will see the following output on the screen:

If we notate N as the number of first elements and M as the number of second elements, we
will have the time complexity of the sublist search as O(M N), since the algorithm will
iterate through each element of both the first and second lists.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

[177]

Summary
In this chapter, we discussed various searching algorithms, from the fastest searching
algorithm to the slowest searching algorithm. To get a faster searching algorithm, we can
use the interpolation search with O(log (log N)), since it can find the nearest middle index
from a searched value. The others are binary search with O(log N) and exponential search
with O(log i), where i is the index of searched value. The moderate searching algorithm is a
jump search, which has O(N) and the slowest algorithm is a linear algorithm with O(N)
complexity, since it has to check all list elements; however, contrary to other searching
algorithms we discussed in this chapter, the linear algorithm can also be applied to an
unsorted list.

In the next chapter, we are going to discuss several common algorithms that are frequently
used in data type to gain the best performance.

QA section
What is the simplest search algorithm?
How does linear search algorithm work?
Which is fastest binary search algorithm or ternary search algorithm?
Why does interpolation search algorithm become an improvement of binary
search algorithm?
If we have to choose between binary search algorithm and exponential search
algorithm, which should we pick to get the fastest execution time possibilities?
What is a similarity between jump search algorithm and exponential search
algorithm?
If we need to detect a presence of one list in another list, which search algorithm
should we use?

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

[178]

Further reading
For further reference, you can refer to the following links:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

66
Dealing with the String Data

Type
In the previous chapters, we have discussed several simple data structures, such as lists,
linked lists, strings, stacks, and queues. Now, starting from this chapter, we are going to
discuss non-linear data types. This chapter will discuss the data type, including
how to construct, use, and solve several problems in the data type. The following
are topics that will be discussed in this chapter:

Introducing the data type in C++
Finding out whether a string is an anagram or palindrome
Creating a sequence of binary digits as binary string
Generating a subsequence of a string
Searching a pattern in a string

Technical requirement
To follow along with this chapter, including the source code, we require the following:

Desktop PC or Notebook with Windows, Linux, or macOS
GNU GCC v5.4.0 or above
Code Block IDE v17.12 (for Windows and Linux OS), or Code Block IDE v13.12
(for macOS)
You will find the code files on GitHub at

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dealing with the String Data Type Chapter 6

[180]

String in C++
String is a data type that stores a collection of characters. This collection can form a word or
some information that can be understood by humans, it can also form a sentence from
several words. In this section, we are going to discuss how to construct and use the
data type in C++.

Constructing a string using character array
In C++, a string can be composed by using an array of characters. When we compose a
string using an array, we have to reserve a space to store a NULL character (\0) at the last
array's element to indicate the end of the string. Suppose we want to create a
variable containing a name of a person called James; we need an array with at least six
elements, since James is composed of five characters. Please take a look at the following
diagram:

As we can see in the preceding diagram, we need an array with at least six elements to store
a string containing five letters. There are several ways to create a string using character
arrays. These are some of them:

From the preceding pieces of code, the first line and second line are used to construct arrays
that set their length automatically based on initial elements. In the third and fourth lines, we
specify the length of the array. However, we can choose any one of the four preceding lines
of code to create a string variable named and containing as its value.

The problem comes when we need to modify the string by adding one character. For
example, since the array cannot be extended, we have to create another array with our
desired length, then copy the old array into the new one. To solve the problem, we can use

 class provided by C++, which we will discuss in the next subchapter.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dealing with the String Data Type Chapter 6

[181]

Using std::string for more flexibility features
There is a data type in the C++ Standard Template Library (STL). We can
use it to replace characters in an array, since it has more flexibility features. The biggest
advantage to using this data type instead of a characters array is that the
size of can be extended dynamically in runtime. Other functionalities that it
has are as follows:

: This function is used to get input from the user and then store it to a
character stream in memory

: This function is used to insert a character at the end of the string
: This function is used to remove the last character from the string

: This function is used to retrieve the number of character in the string
: This function returns an iterator pointing to the first character of the

string
: This function returns an iterator pointing to the last character of the string

: This function returns a reverse iterator pointing to the last character of
the string

: This function returns a reverse iterator pointing at the first character of
the string

We will use some of the preceding functions in a discussion later on in this chapter.

Playing with words
A collection of characters is used to construct a word or a sentence. The position of each
character in a word matters, since different character positions can cause the word to have
different meanings. For example, when you rearrange the characters in God, you will get
Dog.

There are two methods in strings to find another word from a word, or to ensure a word
has exactly the same spelling both forward and backward. Let's play with them.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dealing with the String Data Type Chapter 6

[182]

Rearranging a word to create an anagram
An anagram is a word that is produced by rearranging the letters of the word itself. Let's
take a look at the word ELBOW. We can say that BELOW is anagram of ELBOW, since
BELOW uses all the original letters of ELBOW exactly once. Not only from one word, an
anagram can also be created from, and can create, two or more words: SCHOOL MASTER is
an anagram of THE CLASSROOM, or FOURTH OF JULY is an anagram of JOYFUL
FOURTH.

Checking whether two strings are an anagram or not is quite easy. We just need to sort the
two and compare the sorted strings. They are an anagram if both sorted strings are exactly
the same. Take a look at the following C++ code:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dealing with the String Data Type Chapter 6

[183]

As we can see in the preceding function, beside sorting the two strings, we
transform the strings into uppercase, since anagram is not case sensitive. We also remove all
spaces in the strings, since space doesn't matter in an anagram. After we have sorted the
two strings, we can just compare them to determine if they are an anagram.

When invoking the function, we need to pass two strings as the argument. In
the following function, we ask the user to input the string using the
function before invoking the function. The implementation of the
function should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dealing with the String Data Type Chapter 6

[184]

The preceding code can be found in . If we build and run the file, we will get
the following output on the screen:

From the preceding code, we can see that the spaces, uppercase letters, and lowercase letters
don't matter. We have a result that Fourth of July and Joyful Fourth are an anagram.

The time complexity of the function will be O(N log N), where N is the total
characters on the one string, since we use to sort the string. is
doing comparison similar to quick sort.

Detecting whether a word is a palindrome
A palindrome is a string, or sequence of characters, that has the exact same spelling both
forward and backward. NOON, MADAM, RADAR, and ROTATOR are some examples of
the palindrome. Similar to the anagram, we can also construct a palindrome from more than
one word; for instance, A NUT FOR A JAR OF TUNA, or NO LEMON NO MELON.

To check if a string is palindrome, we have to compare each pair of characters, left character
and right character, starting from the most left and the most right character, then moving to
the middle. Please see the following diagram:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dealing with the String Data Type Chapter 6

[185]

Using the word ROTATOR, as we can see in the preceding diagram, we need to check the
character at index with , with , and with . Since all comparisons are true, the string
is a palindrome.

In C++, we can do it by iterating string elements. The iteration will break if it finds
unmatched pair characters, or it has iterated through elements. The code to check a
palindrome is as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dealing with the String Data Type Chapter 6

[186]

Similar to the function, the preceding implementation also
converts all characters to uppercase and removes spaces. After that, it runs a loop
procedure and compares each pair of characters. If it successfully iterates through all string
elements, we can say that the string is a palindrome. Otherwise, it will return , and it
means the string is not a palindrome.

To ease our understanding of the flow of the function,
we will use the loop iteration; however, the C++ STL has provided
the functionality to compare each pair of string elements.
We can replace the preceding code, from

 until
, with the following single

line of code:

To check whether a string is a palindrome or not, we need to invoke the
function and pass a string to it. We can ask the user to input a string by using
the function, as we can see in the following function:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dealing with the String Data Type Chapter 6

[187]

We can find the following code in the file. If we build and run the file, we
will get the following output on the console:

In the function, we have to iterate string elements N/2 times, so the time
complexity is O(N/2). And since we can omit constant, we can say that the time complexity
of the function is O(N).

Constructing a string from binary digits
A binary string is a string that represents a number in binary format and only contains
and . Supposing we have a number , the binary string will be , or the binary string of
is .

Binary string is usually used to hold non-traditional data, such as pictures. Suppose we
have the following black and white image:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dealing with the String Data Type Chapter 6

[188]

If black is represented by and white is represented by , we can create the following
binary string to represent the preceding image:

Converting decimal to binary string
As we have discussed in the previous section, the binary string of is . We can convert
a decimal number into a binary digit by dividing the number by until it cannot be divided
any more, and collect the remainder of each division. Here's the steps to convert into
binary digit:

9 4 1
4 2 0

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dealing with the String Data Type Chapter 6

[189]

2 1 0
1 0 1

Look at the remainder of each division, and read it from the bottom to the top. So that's why
we have as a binary digit of . Now, let's try another larger number, which is .
Here are the steps to convert to binary digit:

500 250 0
250 125 0
125 62 1
62 31 0
31 15 1
15 7 1
7 3 1
3 1 1
1 0 1

From our preceding calculation, we can see that the binary digit of is , since
we have to read the remainder from bottom to top. Now, it's time to write a C++ code to
convert a decimal number to a binary string. We will use the iteration, and it
will last if the division result is more than . The code should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dealing with the String Data Type Chapter 6

[190]

In the preceding function, we have to ensure the number
passed to the function is greater than . After that, we perform to divide the
number with and convert the remainder to the data type using the
function, then concatenate string result into a variable. It will last for as long
as is greater than .

To invoke the function, we just need to pass a single decimal
number that we can get from the user, as shown in the following function:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dealing with the String Data Type Chapter 6

[191]

The preceding code can be found in the file. If we build
and run the file, the following output will be displayed on the console:

Since it divides the decimal number by and divides the result by , again and again, the
time complexity of the function is O(N log N), where N is the
decimal number.

Converting binary string to decimal
In this section, we are going to write a code to convert binary string into a decimal number.
To do this, we are going to use to the power of formula () to get the decimal value. We
will multiply the last digit of the binary digit with , then multiply the next binary digit
with , and so on.

Let's use our binary digit from the previous section, which is 111110100, and convert it to a
decimal number. Please see the following diagram to find out the answer:

We will get the decimal number by adding all the results of multiplication. So,
 equals .

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dealing with the String Data Type Chapter 6

[192]

Now, let's write a C++ code to convert a binary string to a decimal number. We will iterate
through all string characters, then multiply each character by . The code should be as
follows:

As we can see in the preceding code, we call the iteration to iterate the string
elements backward. If we found character , we add with the current value of

. We just ignore if we found , since everything is multiplied by is and won't affect the
result. After iteration is finished, we just need to return the value stored by the
variable.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dealing with the String Data Type Chapter 6

[193]

To invoke the preceding function, we can use the following
 method:

The preceding code can be found in the file. If we build
and run the file, we will be shown the following output on the console:

It's quite easy to find out the time complexity of the function.
Since we have to iterate through the string elements, its time complexity is O(N), where N is
the length of a binary string.

Subsequence string
Subsequence string is a string derived from another string by deleting some characters
without changing the order of the remaining characters. Suppose we have a string: donut.
The subsequences of this word would be d, o, do, n, dn, on, don, u, du, ou, dou, nu, dnu, onu,
donu, t, dt, ot, dot, nt, dnt, ont, dont, ut, dut, out, dout, nut, dnut, onut, and donut.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dealing with the String Data Type Chapter 6

[194]

Generating subsequences from a string
To find out all subsequences of a string, we need to iterate through all characters of the
string. We also create a bit counter variable to mark which element position should be
considered to take as a subsequence, also known as a power set. The power set of is the
set of all subsets of . Suppose we have three characters in a string, which are xyz. The
power set of the string will be elements, which is as follows:

By using the power set, we can create the code to generate subsequence of a string, as
follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dealing with the String Data Type Chapter 6

[195]

As we can see in the preceding function, we generate
subsequences by using a bit counter. We then construct a new subsequence based on bit,
which is set in the bit counter variable. To invoke the function,
we can use the following function:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dealing with the String Data Type Chapter 6

[196]

The preceding code can be found in the file. If we build
and run the file, we will see the following output on the console:

Since the function has iterated times (for bit counter), and
inside this iteration it has had to iterate again through all string elements, the time
complexity of this function is O(N 2N), where N is the length of the input string.

Checking whether a string is a subsequence of
another string
We have successfully created code to generate subsequences of a string. Now we are going
to create a C++ code to check if a string is a subsequence of another string. To do so, we will
compare the character of two strings from the last character (the reason we compare from
the last character of the string is the simplicity of checking the index against , rather than
keeping track of the final index of both strings).

Suppose is a subsequence of a string of , is the index of , and is the index
of . It means that we will compare with . If matched,
continue until all suspected subsequence string characters have been checked. If not,
compare the last character of the suspected subsequence () with the character
before the last character of the string (). The code should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dealing with the String Data Type Chapter 6

[197]

As we can see in the preceding function implementation, if all
characters of the suspected subsequence string have been iterated (), the process is
done and the result is ; however, if all characters of the string have been iterated (

), the result will be . After that, we can recursively run the
function. To invoke the function, we can use the following function
implementation:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dealing with the String Data Type Chapter 6

[198]

The preceding code can be found in the file. If we build and
run the file, we will get the following output on our console:

As we can see in the function implementation, the function is
recursively invoked for all characters of the string, so that the time complexity of this
function is O(N), where N is the length of the string.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dealing with the String Data Type Chapter 6

[199]

Pattern searching
Pattern searching is an algorithm to find out the location of a string in another string. This
process is usually used in a word processor (such as Notepad or Sublime Text) to find a
word position in a document. Let's look at the sentence the quick brown fox jumps over the
lazy dog. If we need to find out the position of the word the, we can use this algorithm and
pass the as the pattern.

You might be confused with Regular Expression (regex) and pattern
searching, the latter of which we are going to discuss in this section. With
regex, we can check if a string satisfies a given pattern, while in this
section we'll be discovering how to find a string (called a pattern) in
another string. If you're interested in learning about RegEx in C++, you can
go to

To find the position of the pattern in a string, we have to iterate through the string's
elements from the beginning until the last possible element. In our preceding example, we
have a string containing 44 letters and want to search for a pattern of the, which contains
three letters. For this, we just need to iterate the string 42 times, since it's impossible to find
the in the 43rd and 44th character of the string.

In the string iteration, we start to iterate the pattern, then compare it with the characters of
the string. If all characters of the pattern are matched with string characters, the pattern is
found in the string. The following is the C++ code implementation:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dealing with the String Data Type Chapter 6

[200]

As we can see in the preceding function, we have to ensure that the
pattern size is lower than or equal to the target string size (). Then, we
iterate through the string elements from the beginning until the last possible element
(). Inside this iteration, we iterate
through the pattern to find out if it matches the target string. To invoke the preceding

 function, we can use the following function implementation:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dealing with the String Data Type Chapter 6

[201]

The preceding code can be found in . If we build and run the file,
we will have the following output on our console:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dealing with the String Data Type Chapter 6

[202]

As we know, we have to iterate through all possible target string elements (
) and then iterate through pattern elements; the time complexity of

the function is O(N (M - N)), where N is the length of pattern string
and M is the length of the target string.

Summary
In this chapter, we have discussed how to construct a string in C++ using . We
then used it to solve several problems in the data type. We can rearrange a string to
create another string, which is called an anagram. We also can detect if a string is a
palindrome if it has the exact same spelling both forward and backward. We have
discussed binary string, and can now convert a decimal number to binary string and vice
versa.

Another string problem we have solved is checking whether a string is a subsequence of
another string. Also, we have successfully generated all possible subsequences from a
string. Finally, we have learned how a word processor (such as Notepad or Sublime Text)
can find a word in a document using pattern searching.

In the next chapter, we are going to discuss another non-linear data structure, which is a
tree structure, and the algorithm implementation of this data structure.

QA section
What is the use of the character in characters array?
What is the difference between a and an iterator
in ?
How do you implement and in ?
What is the difference between an anagram and a palindrome?
What is the use of a binary string?
What is a subsequence of string?
What is the use of a bit counter variable when generating subsequences from a
string?
How many times is outer iteration performed in the pattern searching algorithm?

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Dealing with the String Data Type Chapter 6

[203]

Further reading
For further reference, please visit the following links:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

77
Building a Hierarchical Tree

Structure
In the previous chapter, we discussed using a string as a non-linear data structure and tried
to construct, use, and solve several problems in the data type. In this chapter, we
are going to discuss another non-linear data structure, which is a tree that stores data in a
hierarchical form.

In this chapter, we are going to discuss the following topics:

Introducing the tree data structure
Understanding the binary search tree
Balancing the binary search tree
Implementing the priority queue using a binary heap

Technical requirements
To follow along with this chapter, including the source code, you will require the following:

A desktop PC or Notebook with Windows, Linux, or macOS
GNU GCC v5.4.0 or above
Code Block IDE v17.12 (for Windows and Linux OS) or Code Block IDE v13.12
(for macOS)
You will find the code files on GitHub at

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[205]

Building a binary tree ADT
A binary tree is a hierarchical data structure whose behavior is similar to a tree, as it
contains root and leaves (a node that has no child). The root of a binary tree is the topmost
node. Each node can have at most two children, which are referred to as the left child and
the right child. A node that has at least one child becomes a parent of its child. A node that
has no child is a leaf. Please take a look at the following binary tree:

From the preceding binary tree diagram, we can conclude the following:

The root of the tree is the node of element 1 since it's the topmost node
The children of element 1 are element 2 and element 3
The parent of elements 2 and 3 is 1
There are four leaves in the tree, and they are element 4, element 5, element 6,
and element 7 since they have no child

This hierarchical data structure is usually used to store information that forms a hierarchy,
such as a file system of a computer.

To implement the binary in code, we need a data structure so that it can store the element's
key as well as pointers for left and right children. To do so, we can create the following

 class in C++:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[206]

The preceding data structure will store each node of the tree containing the
element key, along with the left and right pointers. We are also going to create a helper
function to create a new node, as follows:

The preceding function will ease us into inserting a new into an
existing tree. Now, let's create a binary tree, as shown in the preceding diagram by using
C++ code. Here are the steps:

Initialize the node containing element as follows:1.

After initializing the node, we can add two children to the 2.
node element and element , as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[207]

Next, we have to add two children for element , which are element and3.
element , as follows:

Finally, we are going to add two children for element , which are element and4.
element , as follows:

Building a binary search tree ADT
A binary search tree (BST) is a sorted binary tree, where we can easily search for any key
using the binary search algorithm. To sort the BST, it has to have the following properties:

The node's left subtree contains only a key that's smaller than the node's key
The node's right subtree contains only a key that's greater than the node's key
You cannot duplicate the node's key value

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[208]

By having the preceding properties, we can easily search for a key value as well as find the
maximum or minimum key value. Suppose we have the following BST:

As we can see in the preceding tree diagram, it has been sorted since all of the keys in the
root's left subtree are smaller than the root's key, and all of the keys in the root's right
subtree are greater than the root's key. The preceding BST is a balanced BST since it has a
balanced left and right subtree. We also can define the preceding BST as a balanced BST
since both the left and right subtrees have an equal height (we are going to discuss this
further in the upcoming section).

However, since we have to put the greater new key in the right subtree and the smaller new
key in the left subtree, we might find an unbalanced BST, called a skewed left or a skewed
right BST. Please see the following diagram:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[209]

The preceding image is a sample of a skewed left BST, since there's no right subtree. Also, we
can find a BST that has no left subtree, which is called a skewed right BST, as shown in the
following diagram:

As we can see in the two skewed BST diagrams, the height of the BST becomes taller since
the height equals to N - 1 (where N is the total keys in the BST), which is five. Comparing
this with the balanced BST, the root's height is only three.

To create a BST in C++, we need to modify our class in the preceding binary tree
discussion, Building a binary tree ADT. We need to add the properties so that we can
track the parent of each node. It will make things easier for us when we traverse the tree.
The class should be as follows:

There are several basic operations which BST usually has, and they are as follows:

 is used to add a new node to the current BST. If it's the first time we
have added a node, the node we inserted will be a node.

 is used to print all of the keys in the BST, sorted from the
smallest key to the greatest key.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[210]

 is used to find a given key in the BST. If the key exists it returns ,
otherwise it returns .

 and are used to find the minimum key and the maximum
key that exist in the BST.

 and are used to find the successor and
predecessor of a given key. We are going to discuss these later in the upcoming
section.

 is used to remove a given key from BST.

Now, let's discuss these BST operations further.

Inserting a new key into a BST
Inserting a key into the BST is actually adding a new node based on the behavior of the BST.
Each time we want to insert a key, we have to compare it with the node (if there's no
root beforehand, the inserted key becomes a root) and check whether it's smaller or greater
than the root's key. If the given key is greater than the currently selected node's key, then go
to the right subtree. Otherwise, go to the left subtree if the given key is smaller than the
currently selected node's key. Keep checking this until there's a node with no child so that
we can add a new node there. The following is the implementation of the
operation in C++:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[211]

As we can see in the preceding code, we need to pass the selected node and a new key to
the function. However, we will always pass the node as the selected node when
performing the operation, so we can invoke the preceding code with the
following function:

Based on the implementation of the operation, we can see that the time
complexity to insert a new key into the BST is O(h), where h is the height of the BST.
However, if we insert a new key into a non-existing BST, the time complexity will be O(1),
which is the best case scenario. And, if we insert a new key into a skewed tree, the time
complexity will be O(N), where N is the total number of keys in the BST, which is the worst
case scenario.

Traversing a BST in order
We have successfully created a new BST and can insert a new key into it. Now, we need to
implement the operation, which will traverse the BST in order from
the smallest key to the greatest key. To achieve this, we will go to the leftmost node and
then to the rightmost node. The code should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[212]

Since we will always traverse from the node, we can invoke the preceding code as
follows:

The time complexity of the function will be O(N), where N is the
total number of keys for both the best and the worst cases since it will always traverse to all
keys.

Finding out whether a key exists in a BST
Suppose we have a BST and need to find out if a key exists in the BST. It's quite easy to
check whether a given key exists in a BST, since we just need to compare the given key with
the current node. If the key is smaller than the current node's key, we go to the left subtree,
otherwise we go to the right subtree. We will do this until we find the key or when there are
no more nodes to find. The implementation of the operation should be as
follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[213]

Since we will always search for a key from the node, we can create another
function as follows:

The time complexity to find out a key in the BST is O(h), where h is the height of the BST. If
we find a key which lies in the root node, the time complexity will be O(1), which is the best
case. If we search for a key in a skewed tree, the time complexity will be O(N), where N is
the total number of keys in the BST, which is the worst case.

Retrieving the minimum and maximum key values
Finding out the minimum and maximum key values in a BST is also quite simple. To get a
minimum key value, we just need to go to the leftmost node and get the key value. On the
contrary, we just need to go to the rightmost node and we will find the maximum key
value. The following is the implementation of the operation to retrieve the
minimum key value, and the operation to retrieve the maximum key value:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[214]

We return if we cannot find the minimum or maximum value in the
tree, since we assume that the tree can only have a positive integer. If we
intend to store the negative integer as well, we need to modify the
function's implementation, for instance, by returning if no minimum
or maximum values are found.

As usual, we will always find the minimum and maximum key values from the node,
so we can invoke the preceding operations as follows:

Similar to the operation, the time complexity of the and
operations is O(h), where h is the height of the BST. However, if we find the maximum key
value in a skewed left BST, the time complexity will be O(1), which is the best case, since it
doesn't have any right subtree. This also happens if we find the minimum key value in a
skewed right BST. The worst case will appear if we try to find the minimum key value in a
skewed left BST or try to find the maximum key value in a skewed right BST, since the time
complexity will be O(N).

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[215]

Finding out the successor of a key in a BST
Other properties that we can find from a BST are the successor and the predecessor. We are
going to create two functions named and in C++. But before
we create the code, let's discuss how to find out the successor and the predecessor of a key
of a BST. In this section, we are going to learn about the successor first, and then we will
discuss the predecessor in the upcoming section.

There are three rules to find out the successor of a key of a BST. Suppose we have a key, ,
that we have searched for using the previous function. We will also use our
preceding BST to find out the successor of a specific key. The successor of can be found as
follows:

If has a right subtree, the successor of will be the minimum integer in the1.
right subtree of . From our preceding BST, if , will give
us since it's the minimum integer in the right subtree of . Please take a look
at the following diagram:

If does not have a right subtree, we have to traverse the ancestors of until we2.
find the first node, , which is greater than node . After we find node , we will
see that node is the maximum element in the left subtree of . From our
preceding BST, if , will give us since it's the first
greater ancestor compared with , which is . Please take a look at the
following diagram:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[216]

If is the maximum integer in the BST, there's no successor of . From the3.
preceding BST, if we run , we will get , which means no
successor has been found, since is the maximum key of the BST.

Based on our preceding discussion about how to find out the successor of a given key in a
BST, we can create a function in C++ with the following implementation:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[217]

However, since we have to find a given key's node first, we have to run prior to
invoking the preceding function. The complete code for searching for the
successor of a given key in a BST is as follows:

From our preceding operation, we can say that the average time complexity
of running the operation is O(h), where h is the height of the BST. However, if we try to find
out the successor of a maximum key in a skewed right BST, the time complexity of the
operation is O(N), which is the worst case scenario.

Finding out the predecessor of a key in a BST
If has a left subtree, the predecessor of will be the maximum integer in the left1.
subtree of . From our preceding BST, if , will
be since it's the maximum integer in the left subtree of . Please take a look at
the following diagram:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[218]

If does not have a left subtree, we have to traverse the ancestors of until we2.
find the first node, , which is lower than node . After we find node , we will
see that node is the minimum element of the traversed elements. From our
preceding BST, if , will give us since it's the first
lower ancestor compared with , which is . Please take a look at the following
diagram:

If is the minimum integer in the BST, there's no predecessor of . From the3.
preceding BST, if we run , we will get , which means no
predecessor is found since is the minimum key of the BST.

Now, we can implement the operation in C++ as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[219]

And, similar to the operation, we have to search for the node of a given key
prior to invoking the preceding function. The complete code for searching
for the predecessor of a given key in a BST is as follows:

Similar to our preceding operation, the time complexity of running the
 operation is O(h), where h is the height of the BST. However, if we try to

find out the predecessor of a minimum key in a skewed left BST, the time complexity of the
operation is O(N), which is the worst case scenario.

Removing a node based on a given key
The last operation in the BST that we are going to discuss is removing a node based on a
given key. We will create a operation in C++. There are three possible cases for
removing a node from a BST, and they are as follows:

Removing a leaf (a node that doesn't have any child). In this case, we just need to1.
remove the node. From our preceding BST, we can remove keys , , , and
since they are leaves with no nodes.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[220]

Removing a node that has only one child (either a left or right child). In this case,2.
we have to connect the child to the parent of the node. After that, we can remove
the target node safely. As an example, if we want to remove node , we have to
point the pointer of node to node and make the left node of
points to . Then, we can safely remove node .
Removing a node that has two children (left and right children). In this case, we3.
have to find out the successor (or predecessor) of the node's key. After that, we
can replace the target node with the successor (or predecessor) node. Suppose we
want to remove node , and that we want as its successor. Then, we can
remove node and replace it with node . Now, node will have two
children, node in the left and node in the right.

Also, similar to the operation, if the target node doesn't exist, we just need to
return . The implementation of the operation in C++ is as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[221]

Since we will always remove a node starting from the node, we can simplify the
preceding operation by creating the following one:

As shown in the preceding code, the time complexity of the operation is O(1) for
both case 1 (the node that has no child) and case 2 (the node that has only one child). For
case 3 (the node that has two children), the time complexity will be O(h), where h is the
height of the BST, since we have to find the successor or predecessor of the node's key.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[222]

Implementing the BST ADT
By now, we have a new ADT called class with the following declaration:

To instantiate a BST class, we can write the following code:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[223]

By running the preceding code, we now have an instance of the class which is stored in
the variable. For now, we can add several elements to the variable. We will
create a tree containing exactly the same elements of our preceding BST. The following code
snippet is used to insert several elements using the operation:

tree->Insert(key)

We can validate the elements by traversing the in order using
the operation, as follows:

tree->PrintTreeInOrder()

The preceding code snippet will print all of the keys in the tree in order, from the minimum
key until the maximum key.

Now, we are going to invoke the operation. We are going to try and find keys
and . As we already know, key exists, but key doesn't. Here is the code to invoke
the operation:

tree->Search(31)

tree->Search(18)

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[224]

We can also find the minimum and maximum keys in the tree using the and
 operations, as follows:

tree->FindMin()

tree->FindMax()

Again, to find the successor of a key we can use the operation, and to find the
predecessor of a key we can use the operation. We will find the successor
and predecessor of the keys we discussed in the previous section, that is, Finding out the
successor of a key in a BST and Finding out the predecessor of a key in a BST section . The code
will be as follows:

tree->Successor(31)

tree->Successor(15)

tree->Successor(88)

tree->Predecessor(12)

tree->Predecessor(29)

tree->Predecessor(3)

The last operation is . We will try to remove keys and . Then, we will call
the operation again to prove that the selected keys have been
removed. The code snippet will be as follows:

tree->Remove(15)

tree->Remove(53)

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[225]

tree->PrintTreeInOrder()

The full code can be found in the file of
the project. If we build and run the project, we will get the
following output on the console:

As we can see in the console's output, we've got all of the expected outputs for each
operation.

Building a balanced BST (AVL) ADT
As we discussed earlier in the Building a binary search tree ADT section, it's possible to have a
skewed tree (either left or right) and cause the time complexity of several operations to
become slow for O(h), where h is the height of the tree. In this section, we are going to
discuss a balanced binary search tree to ensure that we won't get a skewed tree. There are
several implementations needed to create a balanced BST. However, we will only focus on
the AVL tree, which was invented by Adelson-Velskii and Landis in 1962, and is named after
the inventors.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[226]

To make a balanced BST, we have to know the height of each node in the tree. So, we need
to modify the class by adding a new property named , as follows:

int Height;

This new property is used to track the height of each node. We will also create a new
method to fetch the height of a node, which is named , with the following
implementation:

Let's see our preceding BST from the previous section. If it is a balanced BST, when we
invoke it will return since there's no edge in node .
Also, = = = . On the other hand, to get
the tree's height, we just need to fetch the root's height, so in our preceding BST, we can
invoke .

An AVL tree is basically a BST, but it has a balanced height. All operations in the AVL tree
will be the same as they are in the BST, except for the and operations.
To find the height of each node, we need to find the maximum height between the left
subtree and the right subtree then add to the result. The following code is used to fetch
the height of a node:

We will add the preceding code to our new AVL and operations,
which we will discuss in the upcoming sections.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[227]

Rotating nodes
The balanced BST can be achieved if the difference of the node's left height and the node's
right height is no more than . Please see the following mathematical notation:

Based on the preceding notation, we can initialize the variable with the following
code:

If then the tree is left heavy and we need to rotate the left subtree. In
contrast, if then the tree is right heavy and we need to rotate the right
subtree. Please see the following diagram:

In the preceding diagram, we will get the right tree if we rotate the left tree to the right, and
will get the left tree if we rotate the right tree to the left. Based on this explanation, we can
create the and operations as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[228]

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[229]

We will use the preceding and operations in the upcoming
 and operations section.

Inserting a new key
Inserting a new key into an AVL tree is similar to inserting a new key in a BST. The
difference is that we need to check the balance of the inserted node and the parent nodes.
As we discussed earlier, we have the formula to make a balanced tree by balancing the left
and right nodes. After that, we can decide if we have to rotate it left or right. The
implementation of the operation in an AVL tree is as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[230]

 // Get the balance
 int balance =
 GetHeight(node->Left) - GetHeight(node->Right);

 // If left heavy
 if (balance == 2)
 {
 // Get left subtree's height
 int balance2 =
 GetHeight(node->Left->Left) -
 GetHeight(node->Left->Right);

 if (balance2 == 1)
 {
 node = RotateRight(node);
 }
 else
 {
 node->Left = RotateLeft(node->Left);
 node = RotateRight(node);
 }
 }
 // If right heavy
 else if (balance == -2)
 {
 // Get right subtree's height
 int balance2 =
 GetHeight(node->Right->Left) -
 GetHeight(node->Right->Right);

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[231]

 if (balance2 == -1)
 node = RotateLeft(node);
 else
 { // 1
 node->Right = RotateRight(node->Right);
 node = RotateLeft(node);
 }
 }

 // Refresh node's height
 node->Height = std::max(
 GetHeight(node->Left),
 GetHeight(node->Right)) + 1;

Since the implementation of the operation of the AVL tree is similar to
the operation of the BST, we can say that the time complexity of this operation is
the same, which is O(h). However, since we can ensure that the height is always balanced in
an AVL tree, the height will always be log N. So, the time complexity of the
operation of an AVL tree is O(log N), where N is the total number of elements of the tree.

Removing a given key
Removing a key in an AVL tree is also the same as removing a key in a BST. We also need to
check the balance after removing the key. Here is the implementation of the
operation in the AVL class, which has been updated with balance checking:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[232]

 // Only perform rotation if node is not NULL
 if (node != NULL)
 {
 // Get the balance
 int balance =
 GetHeight(node->Left) - GetHeight(node->Right);

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[233]

 // If left heavy
 if (balance == 2)
 {
 // Get left subtree's height
 int balance2 =
 GetHeight(node->Left->Left) -
 GetHeight(node->Left->Right);

 if (balance2 == 1)
 {
 node = RotateRight(node);
 }
 else
 {
 node->Left = RotateLeft(node->Left);
 node = RotateRight(node);
 }
 }
 // If right heavy
 else if (balance == -2)
 {
 // Get right subtree's height
 int balance2 =
 GetHeight(node->Right->Left) -
 GetHeight(node->Right->Right);

 if (balance2 == -1)
 node = RotateLeft(node);
 else
 { // 1
 node->Right = RotateRight(node->Right);
 node = RotateLeft(node);
 }
 }

 // Refresh node's height
 node->Height = std::max(
 GetHeight(node->Left),
 GetHeight(node->Right)) + 1;

 }

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[234]

Similar to the operation in the AVL tree, the time complexity of the
operation in the AVL tree will be O(log N), where N is the total number of elements of the
tree since we can ensure that the tree is balanced.

Implementing AVL ADT
By now, we will have the AVL class declaration, as follows:

As we can see in the preceding declaration code, we derive the class from the class,
which we discussed earlier. So, we just need to define the and
operations. Also, since we have to maintain the tree's balance, we need to use
the and operations.

We are now going to balance our preceding skewed left BST tree example which contains
the following keys: , , , , , and . To create an AVL tree, first we have to
instantiate an class instance as follows:

Next, we insert the first key, which is , as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[235]

Then, we insert key . The tree will look as follows:

Next, we will insert key . When the key is inserted, the tree becomes unbalance since
will be a child of . To keep it balanced, we will rotate it right the tree. The code will be as
follows:

Next, we insert into the tree. After inserting the key, the tree is still balanced since the
difference between the left subtree's height and right subtree's height is (remember this
notation). The code
should be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[236]

The next key is . When we insert the key, the tree becomes unbalanced again. So, will
be the parent of and . The parent of will be . Please see the following code:

The last key is . When we insert the key, the tree becomes unbalanced. Key will
become the root. Key will be the left child of key . Key will be the right child of the

 node, which is . The code will be as follows:

Building a binary heap ADT
A binary heap is a completely binary tree that is usually used to implement a priority
queue. Please look at the following binary tree which is representing the priority queue:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[237]

As we can see, each node has its own key and there's also a number below each node to
indicate the priority of the element (in this example, the maximum element has higher
priority). The priority queue is usually represented in an array, so we can have the
following array as a representation of the preceding priority queue tree:

To create a binary heap in C++, we will have the variable, which will be increased
when an element is inserted and will be decreased when an element is removed. There are
four basic operations in a priority queue, and they are as follows:

 is used to check whether the queue is empty
, similar to the operation in a Queue data structure, is used

to insert a new element into the queue
, similar to the operation in a Queue data structure, is used to

fetch the element with the greatest order
, similar to the operation in a Queue data structure, is

used to fetch the element with the greatest order before removing it from the
queue

Now, let's discuss these operations further in the upcoming sections.

We are going use a container in the C++ implementation of
the Binary Heap ADT. However, since the binary heap we've developed
starts from index while the vector container starts from index , we
won't use index in the vector container, instead filling index with to
indicate that it's not used.

Checking if the heap is empty
The variable can be used to indicate whether or not the heap is empty. We just
need to check if to determine that the heap is empty. The following is an
implementation of the operation:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[238]

The preceding sample code will run on O(1) since it's just simply getting the
value.

Inserting a new element into the heap
A new element will be inserted in the last vector. However, we need to shift the element up
to ensure that it will be in the right place based on the value of the element. To do so, we
need to create the operation, which will swap two adjacent elements so that the
vector will be in order. The implementation of the operation will be as follows:

After we have the operation, we can create the operation as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[239]

As we can see in the preceding operation, it invokes the operation as
well. Since the operation has a time complexity of O(log N), the
operation will also be the same.

Fetching the element's maximum value
Fetching the element's maximum value is quite simple since it is stored in the root, or, in
other words, it's in index . To do so, we just need to return :

Since it's a simple implementation, the time complexity for the operation is .

Removing the maximum element
To remove the maximum element from the priority queue, we will need to use
the operation. After we remove the element in root, we will place the
minimum value in root to replace the maximum element which was just removed. Then, we
need to shift the minimum value down to the leaf of the tree. To do so, we need to also
create the operation, as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[240]

As we discussed earlier, we will swap the last element of root and then shift down root.
Here is the implementation of the operation:

As we can see in the operation, the time complexity of the implementation is
O(log N). Since the operation invokes the operation, the time
complexity will be the same.

Implementing a binary heap as a priority queue
By now, we should have a class implementation as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[241]

We are going to create a priority queue using this data structure. The
following is the code snippet for the data structure:

Before we insert a new element, we can check whether the queue is empty by using the
following code snippet:

To insert a new element, we can use the following code snippet:

Again, we can check if the queue is empty by using the operation, as we
discussed earlier, and now it should say .

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[242]

Then, we insert three new elements as follows:

Until now, the maximum value in the queue is . To ensure this, we can call the
operation, as follows:

Also, we can extract the maximum value using the operation, as follows:

Now, if we invoke the operation again, it should return . The full code can be
found in the file in the project. If we build and run
the project, we will get the following output on the console:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a Hierarchical Tree Structure Chapter 7

[243]

Summary
In this chapter, we discussed the hierarchical data structure and stored information in the
form of a tree. We started our discussion by creating a tree from several , and
then built a binary search tree where we can search for a given key easily. Sometimes, we
can have a skewed tree in a binary search tree, and so we build an AVL tree, which can
balance all of the elements itself, so that now we can have a balanced binary tree. Another
tree data structure implementation is the binary heap, which we used to build a priority
queue, where we can access an element based on its priority.

In the next chapter, we are going to discuss how to construct and implement the hash
structure in algorithm design.

QA section
What is the difference between the class in a binary tree and
the class in a binary search tree?
What are the advantages of the binary search tree over the binary tree?
How can the AVL tree have a balanced tree?

Further reading
For futher references, please visit these links:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

88
Associating a Value to a Key in

a Hash Table
In the previous chapter, we discussed the hierarchical tree data type, which is a non-linear
data type, that stores data in a tree-like structure. In this chapter, we are going to discuss
another non-linear data type, the hash table, which stores data based on a key. The
following topics are discussed in this chapter:

Understanding hash tables
Preventing a collision in a hash table
Using a separate chaining technique to handle a collision
Using an open addressing technique to handle a collision

Technical requirement
To follow along with this chapter, including the source code, we require the following:

Desktop PC or Notebook with Windows, Linux, or macOS
GNU GCC v5.4.0 or above
Code::Blocks IDE v17.12 (for Windows and Linux OS), or Code::Blocks IDE
v13.12 (for macOS)
You will find the code files on GitHub at

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

[245]

Getting acquainted with hash tables
Suppose we want to store a collection of numbers, for instance, a phone number, and let's
say we have approximately 1,000,000 numbers. In previous chapters, we also discussed
several data structures, and here we can consider using one of them. We can use an array or
a list, but we have to provide a million slots of data in the array. If we need to add some
phone numbers again, we have to resize the array. Also, the operation of searching will be
costly, since we have to use a linear search algorithm with time complexity O(N), where the
time consumption will increase if we add data to the list. Indeed, we can use a binary search
algorithm with O(log N) time complexity if we manage to sort the elements of the list
containing the bunch of phone numbers; however, the insert operation will be costly, since
we have to maintain the sorted list.

Another data structure we can choose is the balanced binary search tree. It can give us a
moderate time complexity, since it will be O(log N) to insert, search, and remove the
operation; however, it still depends on the total number of elements in the tree.

Big data in small cells
To solve this problem, we are going to construct a hash table data type. This data type will
have a hash function to convert a given big phone number into a small integer value. By
using a hash table, we don't need to provide a million memory allocations; instead, we can
determine a table size for the hash table. Afterward, we will map the integer value to the
index of the hash table.

A phone number usually contains at least six to seven digits; however, for the sake of
simplicity, we will use three-digit phone numbers in the example in this section. Here is a
list of phone numbers we will use in several examples in upcoming sections:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

[246]

As we can see in the preceding list, we have 10 phone numbers, and each number is owned
by a person as stated in the Name column. We are going to store data in Phone Number
and Name column as a data pair in a hash table in the upcoming discussion.

Storing data in a hash table
In the preceding section, we have ten phone number to be inserted to a hash table. We will
try to store them in a hash table which has seven slot. As we have discussed in preceding
section, we need a hash function to get a hash key from the phone number so it can be
stored to the hash table. The hash key can be found by find out the remainder if we divide
the phone number by the total slot of the hash table, which is seven. Please see the
following table which contain the mapping of hash key (slot number) with the data.

Hash Key Data

0 [434, Dylan]

1 [806, Adam] - [722, Brynn] - [953, Frankie]

2 [548, Cameron]

3 [276, Jody]

4 [669, Terry]

5 [117, Lindsey]

6 [391, Dominic] - [895, Vanessa]

As we can see in the preceding table, there are several data that have same hash key, for
instance, key 1 has three data and key 6 has two data. However, since each slot in the hash
table can only contain one data, this cannot happen since it's called collision in hash table. To
solve this problem, we are going to discuss how to prevent the collision in next section.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

[247]

Collision handling
As we have discussed previously, there will be a possibility that one key is used by two
values or more, since we map a big key to a small key. This situation is called a collision,
where there is another key that will be mapped to an occupied slot. To solve this problem,
we need a collision handling technique. And here are the ways to handle collisions:

Separate chaining is a technique to point each cell in a hash table to a chaining
node, or a linked list. The same hash key for a different value will be stored in the
chaining node.
Open addressing is a technique to store all elements in the hash table itself. If a
collision is about to happen, the technique will find another slot by performing
some calculation to ensure a collision will not happen.

Now, let's implement all collision handling techniques in a hash table by developing several
ADTs in C++.

Implementing a separate chaining technique
Separate chaining is a collision handling technique that will make each cell in the hash
table point to a chaining node containing values with the same hash key. We are going to
create an ADT named to handle the preceding phone number list. Since the
phone number contains only numbers, it will be stored in the data type, and the owner
of the phone number name will be stored in the data type. However, if the phone
number we have are saved as format, we need to remove the dash (-)
character first.

The will be four basic operations and they are:

 is used to insert a new to the hash table. It
passes an as a key and a as a value. It then finds a hash key for the
inputted key. If the inputted key is found in the hash table, it will update the
value of the key. If no key is found, it will append a new node to the linked list
containing the inputted key and inputted value.

 is used to find the value of the inputted key. It will return the value if
the inputted key is found. If not, it will return an empty string.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

[248]

 is used to delete an existing inputted key. If the inputted key is not
found, it will do nothing.

 is used to tell the user if the hash table has at least one element or not.
If there is no element, it will return ; otherwise, it returns .

Since we will have four operations, we are going to have the following class declaration:

As we can see in the preceding declaration, we have a declaration to
generate a hash key for each inputted key. And since we need a chaining node, we declare a

 in data type containing data.

Generating a hash key
As we have discussed earlier, a hash key is obtained by finding out the remainder when we
divide the phone number with the total slot of table (table size). To generate the hash key,
we will implement the function as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

[249]

Since we have 10 data items, we define as . By using this function, we can get
a hash key for an inputted key in the operations of the . Since the
implementation of the function is quite simple, the time complexity of
this function will be O(1) for all cases.

Developing an Insert() operation
To insert a new pair of and to the hash table, we need to find out a hash key for
the inputted key. Then, we traverse to chaining node in the cell pointed by the hash key to
find if the the given new pair data exists. For instance, if the hash key is , we just need to
go to cell then traverse to the list in that cell to find out the inputted key. If the inputted
key is found, we update the value of that key. If the key is not found, we add the pair of
data to the back of the list. The implementation of operations should be as
follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

[250]

As we can see in the preceding code implementation, because is similar
to the operation in the ADT, we have an O(1) time
complexity for the best case if there's no hash key stored before in the hash table; however,
on average and in the worst cases, we will have an O(N) time complexity if we have to
traverse to the end of the list.

Developing a Search() operation
In a operation, we will get the value of an inputted key. To do so, first we need to
find out the hash key of the inputted key. Similar to the operation, we traverse to
the chaining node in the cell pointed by the hash key to find if the key. If the key is found,
we just need to return the value of the key. If not, the empty string will be returned instead.
The implementation of the operation should be as follows:

Similar to the operation, the best case time complexity will be O(1) if we found
the inputted key in the first element of the list; however, we will get O(N) for both the
average and the worst cases, since we may have to traverse to the end of the list.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

[251]

Developing a Remove() operation
In a operation, we erase a found key node from the chaining node in the cell
pointed by hash key. Similar to the and operation, we have to traverse
to the linked list until we find the inputted key. If the inputted key is found, we just need to
delete the node. If the inputted key doesn't exist, we simply do nothing. The
implementation of the operation will be as follows:

Again, we will have O(1) for the time complexity of the function for the best case if we
found the key in the first element of the linked list. We will also have an O(N) time
complexity for the average and the worst case if we have to traverse to all elements in the
linked list.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

[252]

Developing an IsEmpty() operation
Sometimes, we need to check whether a hash table is empty or not. To do so, we can check
if each cell in the hash table has a list that contains at least one element. The implementation
of the operation should be as follows:

As we can see in the preceding function implementation, we have to iterate the hash table
and find out if the cell is empty or not. By using the preceding implementation, we can get
an O(1) time complexity in the best case if the first cell is not empty; however, on average
and in the worst cases, the time complexity will be O(TABLE_SIZE).

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

[253]

Applying a HashTable ADT using a separate
chaining technique in the code
Before we apply the ADT using the separate chaining technique to the code,
let's see how a separate chaining technique works to handle collisions. First, we have phone
number , owned by . The phone number will generate for the hash key, so the
data will be stored in cell . Next is phone number , owned by , which will be
stored in cell . Phone number , owned by Adam in cell ; phone number , owned
by Lindsey in cell ; phone number , owned by in cell ; and phone number

, owned by in cell .

By now, everything has been running well, since no collision has occurred; however, if we
store the 7th data to the hash table, which is phone number owned by , it will
have as the hash key, but the hash key has been occupied by phone number . In this
situation, we will still store the data in cell , and link to the previous node in the same cell.
After storing all data in the hash table, we will have the following diagram:

Now, it's time to apply our ADT to the phone number list we had at the
beginning of this chapter. First, we have to instance a class in the code as
follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

[254]

To prove that is initialized with an empty element, we can invoke the
 operation as follows:

Then we can insert new data by using the operation, then checking if the hash
table is empty using the following code snippet:

Afterward, we can insert all remaining data to the hash table as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

[255]

By now, we have all data stored in the hash table. We can search if a key is present in the
hash table. Suppose we are going to search key , we can do the following:

Now, let's remove the key. The key should be not found if we search it again. The code
snippet is as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

[256]

As of now, we have tried all operations in the ADT. The following is the output
we will have onscreen if we build and run the project from the
repository:

Implementing the open addressing
technique
As we discussed earlier at beginning of this chapter, an open addressing technique stores all
elements in the hash table itself. A collision will not happen, since there is a calculation that
will be performed if a collision is about to happen. Based on this calculation, we can have
three types of open addressing technique Linear probing, quadratic probing, and double
hashing. The difference between the three is the formula for finding the next free space if
the hash key of the given element has been occupied:

In linear probing, if the hash key has been occupied by another element, we use
the following formula to find the next free space

, then increase from until a free slot is found. Here is the
explanation If is occupied, then try

. If the slot is still occupied, try

. Repeat it by increasing until a
free slot is found.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

[257]

In quadratic probing, if the hash key has been occupied by another element, we
use the following formula to find the next free space

, then increase from until a free slot is found. By using the
formula, we increase the hash key quadratically. Here is the explanation If

 is occupied, then try
. If the slot is still occupied, try
. Repeat it by increasing until a

free slot is found.
In double hashing, if the hash key has been occupied by another element, we use
the following formula to find the next free space

, then increase from until a free slot
is found. By using the formula, we increase the hash key quadratically. Here is
the explanation If

 is occupied, then try
. If the slot is still occupied, try

. Repeat it
by increasing until a free slot is found.

Since the three types of open addressing technique are similar yet different
in the formula for finding the next free slot, we will only discuss linear
probing in this book.

There are also four basic operations in linear probing techniques, similar to separate the
chaining technique. They are the , , , and
operations. These four operations have totally the same functionality as operations in the
separate chaining technique; however, we will add a new operation, ,
to prove that an inserted element is stored in the correct place. Based on the preceding
requirement, we will have class declaration as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

[258]

As we can see in the preceding code, we have put all the elements in an variable, and
marked a slot that has been deleted as . We will track the number of
elements in the hash table using the variable. Also, we need a new data type
named to be stored in the hash table. The implementation of the

 class is as follows:

Since we need to reset and initialize the and variables,
we will have a constructor implementation as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

[259]

Now, let's develop all operations we need in this ADT in the upcoming section.

We have a function in the linear probing technique;
however, it is exactly the same as the function in the
separate chaining technique. Therefore, we are not going to discuss it
anymore in this section.

Developing the Insert() operation
To insert a new element in a hash table, first we obtain a hash key from the key's element
using . After we have the hash key, we check if the slot is available. If it's
not available, we check another free slot using the linear formula we discussed at the
beginning of this section. Since the open addressing technique stored all elements in the
hash table itself at the beginning of the function implementation, we need to
check if all slots have been occupied. If there is no free slot, the function will do nothing.
Each time there's a new element to be added, we increase the variable to
track the total elements in the hash table. The implementation of the function will be as
follows:

 ++hashIndex;
 hashIndex %= TABLE_SIZE;

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

[260]

Please see the two bold statements in the preceding code snippet as follows:

++hashIndex;
hashIndex %= TABLE_SIZE;

That is the formula for calculating the next free slot in the linear probing technique. If we
want to use quadratic probing or double hashing, we just need to replace the two bold
statements with a correct calculation. In average and worst cases, the function
will give O(TABLE_SIZE) for the time complexity. For the best case, it can give an O(1) time
complexity.

Developing a Search() operation
Similar to the preceding operation, to search for a value of a key, we need to
obtain the hash key of that given key using . Then, we check the cell
which the index is the hash key. If the key in that cell matches with the given key, we just
need to return the value of the key. If not, we have to find another possible slot using the
linear probing calculation until the given key is found. If the given key is still not found, just
return an string to notify the user that the given key doesn't exist in the hash table.
The implementation of the function is as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

[261]

 // Keep looking for the key
 // using linear probing
 ++hashIndex;
 hashIndex %= TABLE_SIZE;

As we can see in the preceding code, there are bold statements to indicate that it's a linear
probing technique. We can change these statements with the quadratic probing or double
hashing calculations if we want to replace with one of those techniques. The time
complexity we will get from this operation is O(TABLE_SIZE) for the average and worst
cases. In the best case, we can get an O(1) time complexity.

Developing the Remove() operation
To remove an element by using a given key, first we have to search the position of the
element stored by using a hash key. If the given key is found, then delete the element. If not,
find another possible slot using a linear probing calculation, then delete the element if it's
found. Each time there's a new element to be removed, we decrease the
variable to track the total elements in the hash table. The implementation of the
operation will be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

[262]

 // Keep looking for the key
 // using linear probing
 ++hashIndex;
 hashIndex %= TABLE_SIZE;

Again, we have bold statements in the preceding code. They are the formula to find another
possible slot in the linear probing technique. Consider changing those statements if you
need to use quadratic probing or double hashing techniques. The time complexity we will
get from the operation is O(TABLE_SIZE) in both average and worst cases. In the
best case, we will get O(1) time complexity.

Developing an IsEmpty() operation
Since we have a variable that stores the total number of elements in the hash
table, to see if the hash table is empty, we just need to check if the variable
equals to . The implementation of the operation will be as follows:

Differ with operation in our previous separate chaining technique, it's
guaranteed to have O(1) time complexity for all cases with a operation in the
linear probing technique, since we have tracked the size of the hash table each time we've
performed and operation.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

[263]

Developing a PrintHashTable() operation
By iterating the hash table, we can collect the pairs of key and value, then print them to the
screen. We will use this operation to see if the new element we insert is
stored in the right place. The implementation of the operation will be as follows:

Since the operation will iterate through the hash table until the size of the table, the time
complexity of this operation is O(TABLE_SIZE) in all cases.

Applying an HashTable ADT using a linear
probing technique in the code
Before we apply the ADT we built using the linear probing technique
previously, we will first see how the linear probing technique handles a collision by
applying it to the phone number list we had at the beginning of this chapter. We will also
define as , which is the same as our previous separate chaining techniques, as
a comparison to separate the chaining technique.

First, we have phone number owned by , which will be stored in cell . The next
is phone number owned by , which will be stored in cell . Phone number
owned by in cell , phone number owned by

 in cell , phone number owned by in cell , and phone number
owned by in cell .

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

[264]

By now, all elements are stored in an appropriate hash key; however, if we insert the 7th

data into the hash table, a collision will occur, since phone number owned by
has as the hash key, and it's exactly the same as phone number owned by .
To prevent the collision, we use linear probing, which increases the hash key of collision
element, then performs modulo to it. In this case, we will get as a new hash key (

). Since cell is still free, we can store phone number owned by in that cell.

Next, for 8th until 10th data, they won't be stored in the hash table even if we perform the
 operation, since there is no free space anymore in the hash table. The illustration

will be as follows:

Now, let's apply the ADT we built using the linear probing technique in the
code to the phone number list we had at the beginning of this chapter. The usage of

 using the linear probing technique is quite similar to the one we built using the
separate chaining technique. We will try all operations as shown in the following
function:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

[265]

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

[266]

And if we build and run the preceding code in the project, we
will see the following output in the console:

From the preceding output, we can see that the order of all elements in the hash table is
exactly the same with our previous diagram. We can say that we have successfully
performed a linear probing technique.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

[267]

Since an open addressing technique just stores all elements in the hash
table itself, we have to define the equal to or greater than the
total of inserted elements, unless there will be some elements that cannot
be stored in the hash table. We can use separate chaining technique to
store all element in hash table.

There are several other hash table data types that have better performance,
such as perfect hashing, cuckoo hashing, and hopscotch hashing. If you
are interested in learning about these hashing methods, you can check
links in the Further reading section.

Summary
In this chapter, we have discussed another non-linear data type called a hash table.
Although a collision can happen to the hash table data type, we have learned how to handle
it by using a separate chaining technique or open addressing technique. Regarding the open
addressing technique, it has three different kinds of handling linear probing, quadratic
probing, and double hashing; however, they are relatively similar in terms of the
implementation, except for the way in which we find the next free slot if the hash key we
need to insert has been occupied.

In the next chapter, we are going to discuss common algorithm paradigms to design
algorithms specifically for a certain purpose.

QA section
What is collision in a hash table?
Specify techniques to handle collision in a hash table!
Specify four basic operations in a hash table?
How does we obtain hash key for each data?
Why do we need hash table data type although we have already had others data
type such as array, list, and linked list?

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

[268]

Further reading
For further references, please visit these following links:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

99
Implementation of Algorithms in

Real Life
So far, we have learned how to construct data structures and implement sorting and
searching algorithms. In this final chapter, we are going to discuss the implementation of
algorithms in real life. Here are the algorithms we are going to discuss:

Greedy algorithms
Divide and conquer algorithms
Dynamic programming
Brute-force algorithms
Randomized algorithms
Backtracking algorithms

Technical requirements
To follow along with this chapter, as well as the source code you require the following:

Desktop PC or Notebook with Windows, Linux, or macOS
GNU GCC v5.4.0 or above
Code::Blocks IDE v17.12 (for Windows and Linux OS) or Code::Blocks IDE v13.12
(for macOS)
You will find the code files on GitHub at

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementation of Algorithms in Real Life Chapter 9

[270]

Greedy algorithms
Greedy lg r thm w rk n levels. At h level, a d n is m d that r t b good,
without r g rd f r future n u n . G n r ll , th m n that some local t mum
chosen. Th tr t g t k what you can g t n w is th b for the e t s f algorithm.
Wh n th se lg r thms t rm n t , we h th t the l l t mum equal to th global
optimum. If this is the case, th n th lg r thm rr t; th rw , th lg r thm has
r du d a ub- t m l lut n. If th b lut best n w r n t r u r d, then m l

greedy algorithms are m t m u d t g n r t r x m t n w r , r th r than u ng th
m r m l t d algorithms g n r ll required t g n r t an x t n w r.

Local optimum is an optimization problem technique to find an optimal
solution (either maximal or minimal) within several candidate solutions.
This is in contrast to a global optimum, which is the optimal solution
among all possible solutions, not just those in several candidate solutions.

Solving the coin-changing problem
Suppose you are working at a cash counter at a theme park. There, you are provided all
different types of coins available in infinite quantities. You have to find the minimum
number of coins for making change. That's an illustration of a coin- h ng ng problem.

Let's consider the U.S. currency, t provide h ng , w r t dl d n th largest
d n m n t n. Thus, t give out $17.61 n h ng , w g v out a $10 b ll, a $5 b ll, tw $1 bills,
tw u rt r , n d m , nd n nn . B doing th , we r guaranteed t minimize the
numb r f b ll nd coins.

Let's analyze how coin changing works. To get the value for minimum coin change (let's call
it), we have to find the largest denomination that is smaller than or
equal to . After we find the denomination, we subtract

 with the denomination. Repeat this process until is
. The following is the solution of the coin-changing problem in C++ programming:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementation of Algorithms in Real Life Chapter 9

[271]

As we can see in the preceding function, the function will find the
minimum coin change for the given . For the best time performance, we
check whether there's still any denomination remaining in each denomination list iteration.
If is smaller than the smallest available denomination, we don't need to
continue the iteration. By doing this, we can have O(1) time complexity for the best case.
However, we will have O(N2) time complexity for both the average and the worst cases
where is the number of the denomination. To apply the preceding

 function, we can use the following function:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementation of Algorithms in Real Life Chapter 9

[272]

If we build and run the preceding code we will see the following output on the screen:

This algorithm d n t w rk n all monetary systems, but f rtun t l , we n prove th t t
d work n th U.S. m n t r t m.

Applying the Huffman coding algorithm
One of the l t ns f the greedy algorithms is Huffman coding. Huffman d ng used
in compression algorithm because it's a l l d t m r n. It will convert input
character into code. The most frequent character will have the smallest code and the least
frequent character will be the largest code. Th variable length codes gn d t n ut
h r t r are pr f x codes.

There are m nl tw m j r parts n Huffm n c d ng; building a Huffman tree from input
characters and traversing th Huffm n tr and gning codes t h r t r .

To build a Huffman tree, we need a node type that can hold a character and a frequency of
the character. We are going to use a priority queue as a minimum heap, we name the node
type , with implementation as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementation of Algorithms in Real Life Chapter 9

[273]

Then, we build the priority queue to construct the Huffman tree.

As we had discussed in , Building a Hierarchical Tree Structure,
we can use priority queue as representing of tree.

We will build a function named that will construct a Huffman tree by
using the given data with the following implementation:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementation of Algorithms in Real Life Chapter 9

[274]

Huffm n n d ng n be m ut d by f r t r t ng a tr f n d using the following steps:

Cr ting a l f node f r h mb l nd addding t to th r r t u u .1.
If th r m r th n n n d n th queue, remove th n d f highest r r t2.
(l w t probability) tw to get tw n d . Please see the following compare
function implementation we used in the preceding instance:

Cr t a new nt rn l node w th these tw n d h ldr n and w th the3.
probability u l to th sum f the tw nodes' r b b l t .

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementation of Algorithms in Real Life Chapter 9

[275]

Add th new node to th u u as follows:4.

Th remaining node th node; th tree m l t .5.

As we can see at the end of the function implementation, we have the
 function traverse the tree then display the data to user. The implementation

of the function is as follows:

Th r are two details th t mu t b n d r d w th Huffm n coding. F r t, the n d ng
information must be tr n m tt d t th t rt f th compressed f l , n otherwise it would
b m bl t decode. Th r are v r l w f d ng th .

F r m ll files, th t f tr n m tt ng this table would v rr d n possible v ng n
m r n, and the r ult will r b bl b f l expansion. Of course, th n be d t t d nd

th original left nt t. F r large files, th size of th table n t significant. Th second
r bl m th t, d r b d, this a tw - lg r thm. The f r t ll t the fr u n

data, and th second pass d the n d ng. Th obviously n t a d r bl property for a
program d l ng with large f l .

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementation of Algorithms in Real Life Chapter 9

[276]

T und r t nd Huffman encoding, l t' t k n x m l . Suppose we h v a f l th t contains
nl the h r t r , e, , , t, plus blank and n wl n . Su furth r th t th f l h

10 A's, 15 E's, 12 I's, 3 S' , 4 T' , 13 blanks, nd 1 n wl n . The following t bl h w that
Huffman Coding uses fewer bits:

Character Code Frequency

A 10

E 15

I 12

S 3

T 4

space 13

newline 1

Throughout th section, w w ll assume th t the number f characters is . Huffm n'
lg r thm n be d r b d w maintain a forest of trees. Th w ght f a tree u l t th

sum of th fr u n of t l v . t m , l t th tw tr , nd , f m ll t
w ght, br k ng ties rb tr r l , nd form a new tr w th ubtr and . At th
beginning f the algorithm, there are ngl -n d tr n f r h h r t r.

At th nd f the lg r thm, th r is one tr , nd th an t m l Huffman d ng tr . A
w rk d x m l will make th operation of the algorithm l r. In the following tree, th
w ght of h sub-tr shown n small t at th r t. The two trees f l w t weight r
merged t g th r, r t ng mult l tr . W w ll name the n w r t , th t futur m rg

n be t t d un mb gu u l . W h v m d th left h ld arbitrarily; n tie-br k ng
r dur n b u d. The t t l w ght f th n w tr is ju t the sum of th w ght of the
ld trees, and can thu be l m ut d:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementation of Algorithms in Real Life Chapter 9

[277]

It is l a m l m tt r to r t the n w tr , since w m r l n d t g t a n w node, set the
l ft nd right nt r , nd r rd th w ght.

A m l m l m nt t n f th r r t queue, u ng a list, w uld give an O(C2) lg r thm.
The choice f priority u u m l m nt t n depends on how large is. In th t l f
an ASCII h r t r t, small enough th t th u dr t running time acceptable. In
u h an l t n, v rtu ll ll th running time will b spent n th disk I/O required t

read the input f l nd write ut th m r d v r n.

Divide and conquer algorithms
An th r t hn u t d gn algorithms is d v d and n u r.

Th term d v d h w th t m ll r problems r solved r ur v l x t, f ur , base
. Th t rm n u r shows th t th solution t the original r bl m then f rm d from

th lut n t the ubproblems. You n th nk f a th rd rt f this algorithm c mb n .
Th mb n the lut n t the subproblems nt th lut n f r th r g n l r bl m.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementation of Algorithms in Real Life Chapter 9

[278]

Tr d t n ll , r ut n n wh h the text nt n t l t tw recursive calls are called d v d
and conquer algorithms, wh l r ut n whose t xt contains nl one r ur v ll and
f n ll combines th lut n t th sub r bl m to solve th r g n l r bl m. B u divide
nd conquer solves ubproblems r ur v l , each ub r bl m must be smaller than th

original problem, and th r mu t b a base f r ub r bl m . W generally n t th t th
ub r bl m b d j nted; that , be without v rl ng.

We can l r m mb r th t f a d v d and n u r lg r thm d v d , n u r, and
mb n . H r h w to v w the steps of the algorithm, um ng th t each divided t

creates tw ub r bl m :

S m d v d and n u r lg r thm r t more than two sub-problems. B u divide and
conquer creates t least tw ub r bl m , a d v d nd n u r algorithm m k mult l
r ur v ll . If w x nd ut tw more r ur v t , result looks l k this:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementation of Algorithms in Real Life Chapter 9

[279]

The following r some of the standard algorithms discussed in previous chapters that are
Divide and C n u r lg r thm :

B n r Search a searching lg r thm. In h t , th lg r thm m r th
n ut element w th the value of th m ddl element in rr . If the v lu m t h,

return the nd x f m ddl . Oth rw , f is l th n th m ddl element, then the
lg r thm r ur f r l ft d f the middle element; else, it r ur for right d f

middle element.
Qu k rt a sorting algorithm. The lg r thm k a pivot l m nt, r rr ng
the rr l m nt in u h a w th t ll elements m ll r th n th pivot l m nt
m v to l ft d of v t, and ll gr t r l m nt m v t r ght d . F n ll , th
lg r thm recursively rt the ub rr n the l ft and r ght of the pivot l m nt.

M rg sort l a rt ng lg r thm. Th lg r thm divides th array n tw
h lv , recursively rt them nd f n ll merges th tw rt d halves.

Here are some more examples of divide and conquer algorithm implementation solving
selection problems and solving matrix multiplication.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementation of Algorithms in Real Life Chapter 9

[280]

Solving selection problems
The selection r bl m r u r us t f nd th m ll t element in a ll t n of f n
l m nt . Of rt ul r nt r t f nd ng the m d n. Th ur when .

Although th lg r thm run n linear average t m , it h a w r t case f O(N2). S l t n n
l b solved n O(N l gN) w r t-case t m by sorting th elements, but f r a l ng t m it

w unknown wh th r or not l t n uld b m l h d n O(N) w r t- time. Th
b algorithm a m l r ur v tr t g . Assuming that n larger th n th cutoff point
wh r elements r simply rt d, an l m nt , kn wn as the v t, chosen. The r m n ng
elements are d v d d nt tw t , and . nt n elements th t are nf rm d to b
n larger th n , nd contains l m nt th t r no m ll r than . Finally, if ,
th n th m ll t l m nt in can be found b r ur v l m ut ng th m ll t
l m nt n . If , th n the v t the m ll t l m nt. Oth rw , th

smallest element n the m ll t element n . The main d ff r n
b tw n this algorithm nd quicksort th t there is only n ub r bl m t lv instead of
tw .

T get a good w r t case, however, the key idea to u n m r l v l of nd r t n.
Instead f finding th m d n fr m a sample f r nd m l m nt , w w ll f nd the m d n
fr m several subsets.

Th b pivot selection lg r thm is f ll w :

Arr ng th elements into groups of f v l m nt , ignoring th (t m t1.
f ur) xtr elements.
Find th m d n of each group. Th g v a l t of m d n .2.
F nd th m d n f . R turn this the v t, , then use as divider to get and3.

 sets as we discussed earlier.

We will u the t rm median f m d n f five rt t n ng t d r b the quick l t
lg r thm, which u th v t l t n rul g v n. We w ll n w show that m d n of five

partitioning guarantees that h r ur v subproblem roughly 70% as l rg th
original.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementation of Algorithms in Real Life Chapter 9

[281]

Solving matrix multiplication calculations
A fund m nt l num r l r bl m th mult l t n f two m tr . The following is a
s m l O(N3) lg r thm t compute , where , , and r m tr :

Th lg r thm f ll w on d r tl from th d f n t n f m tr x mult l t n. To compute
, we m ut the d t r du t f th r w in with th column in . As usual,

arrays begin at index . The C++ lut n of th preceding problem :

F r a l ng time, it was um d that O(N3) w r u r d for m tr x mult l t n. But
Strassen s lg r thm m r v d th complexity. Th b idea of Str n' lg r thm is t
d v d h matrix into quadrants. Th n, it is to h w th t:

In the preceding formulas, we do eight multiplications for matrices of size and
 additions. Th matrix dd t n t k O(N2) t m . If th m tr x mult l t n r d n

r ur v l , then th runn ng t m will be as follow:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementation of Algorithms in Real Life Chapter 9

[282]

A usual, there r d t l t n d r, such th case when n t a power of , but th
r basically m n r tr ubl . The Str n' lg r thm w r than a s m l O(N3) lg r thm

unt l is f rl l rg . It d not generalize for th wh r th m tr r r ; th t ,
when they nt n m n zero entries. Wh n run w th floating point ntr , t l stable
num r ll th n the classic lg r thm.

Dynamic programming
By now, w h v seen th t a r bl m n b m th m t ll x r d r ur v l n l be
x r d as a r ur v algorithm, in many cases ld ng a gn f nt rf rm n

improvement v r a more n v exhaustive search. Any r ur v m th m t l f rmul
uld be directly tr n l t d t a r ur v lg r thm, but th r l t that often the m l r

will not d justice t the r ur v lg r thm, nd n n ff nt r gr m will result. When we
u t that th l k l to b th case, we mu t r v d a l ttl more h l to the m l r, by

rewriting th recursive lg r thm a n nr ur v algorithm that t m t ll r rd the
n w r t th subproblems. On technique th t makes use f th approach is kn wn

dynamic r gr mm ng.

Fibonacci numbers
We saw that th natural r ur v r gr m t m ut the F b n numbers is v r
n ff nt. Here is the code to compute Fibonacci numbers in inefficient way:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementation of Algorithms in Real Life Chapter 9

[283]

It h a runn ng t m , , th t t f . Since t f
th m r urr n r l t n th F b n numb r nd has the m n t l nd t n ,
in f t gr w t the m r t as the F b n numb r nd thu x n nt l. On th th r
hand, n t compute (Fibonacci number of) all th t needed and , we
only need t r rd the tw most r ntl m ut d Fibonacci numb r . Please see the
following function implementation:

Th r n that th recursive algorithm slow b u f th algorithm u d to mul t
r ur n. To m ut , th r one ll t nd . H w v r, n r ur v l
makes a ll t nd , th r r actually tw r t ll t m ut . If one
draws out th entire algorithm, th n we n that computed three t m ,

m ut d f v times, computed ght times, nd n.

Dynamic programming and the coin-change
problem
G v n a value , if w want to m k changes for cents, and w h v an infinite u l of

h f valued n , h w m n w can w make the change?
Th rd r f n d n t matter.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementation of Algorithms in Real Life Chapter 9

[284]

F r x m l , for and , there r four solutions: , ,
, and . So, the output should b . F r and , there

r five solutions: , , , , and . S , the
output should be .

To count the total numb r of solutions, w n d v d all t solutions nto two t :

Solutions that d n t contain coin (r)
Solutions that contain t l t n

L t b th fun t n t unt th numb r of lut n . is the array of
coins we have, is the length of the array, and is value we have as change. Then, it can be
written the sum f nd . Th r f r , th
r bl m has the optimal ub tru tur r rt the r bl m n b lv d u ng solutions t

subproblems. The implementation of the function will be as follows:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementation of Algorithms in Real Life Chapter 9

[285]

The time m l x t f the above solution for th n h ng r bl m is O(m n).

Brute-force algorithms
A brut -f r algorithm consists of h k ng. For instance we have a text between nd ,
whether an urr n f a text pattern t rt there or not. Th n, after each tt m t, it h ft
th tt rn by exactly n t n t th r ght.

Th brut -f r algorithm r u r n r r ng h , nd a n t nt xtr in
addition t th tt rn and th text because we don't care about whitespace. During the

r h ng h , th text character c m r n n b d n n any rd r. The t m c m l x t
f this r h ng h is O(m n) (wh n r h ng for n n f r instance). Th

expected numb r of t xt h r t r m r n . The brute-force lg r thm r u r
mult l t n . The r ur v algorithm for the m problem, b d on the b rv t n th t

 r u r r t n .

Brute-force search and sort
A s u nt l r h n n un rd r d rr nd m l rt l t n rt and bubbl rt, for
instance are brut -f r lg r thm . In sequential r h, th lg r thm simply compares
successive elements of a g v n list with a g v n r h k until th r a m t h found r th
l t exhausted without f nd ng a m t h.

Th m l x t f a u nt l search lg r thm (n) n the w r t bl nd (1) n
th b t bl , d nd ng n wh r th d r d l m nt tu t d.

In a selection sort, th entire g v n l t f n l m nt is nn d to f nd its m ll t l m nt
and replace it w th the f r t element. Thu , th smallest l m nt is m v d t t f n l position
in the rt d l t. Th n, the l t scanned again, t rt ng w th th nd element, in order t
find th m ll t element among th n 1 and x h ng t with the nd l m nt. Th

nd m ll t l m nt is put n t f n l t n n th rt d list. After n-1 , th l t
sorted.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementation of Algorithms in Real Life Chapter 9

[286]

Th basic r t n of a selection rt th m r n . The m l x t f th
algorithm (n2) nd th numb r of k w is (n). Bubble rt n th r l t n of a
brute-force algorithm. In th lg r thm, adjacent l m nt of the list r m r d nd are
exchanged f they r ut f rd r.

Th b r t n f th bubbl rt is m r n then swap
. Th numb r of k m r n is the m f r ll rr f z n, nd (n2).

However, the numb r of key w d nd n th n ut and n the worst is (n2). Th
preceding m l m nt t n of bubble rt n b l ghtl improved f w t th x ut n f
th lg r thm wh n a thr ugh the list m k n exchanges (nd t ng th t the list has
b n sorted). Thu , in th b t case, th m l x t w ll b (n), and will be (n2) in the worst
case.

Strengths and weaknesses of brute-force
algorithms
The tr ngth f u ng a brut -f r r h r follows:

It h wide applicability nd is known for t m l t
It ld r n bl lg r thm for some m rt nt problems, such as searching,
string m t h ng, nd matrix multiplication
It yields t nd rd lg r thm f r simple m ut t n l tasks, such sum nd
r du t f n numb r , nd finding the m x mum r m n mum n a l t

Th w kn f the brute-force approach are follows:

It r r l ld ff nt lg r thm
S m brute-f r algorithms are unacceptably slow
It is neither as n tru t v n r as r t v as m th r d gn t hn u

Randomized algorithms
A r nd m z d algorithm a technique th t uses a ur of randomness rt of its l g .
It typically u d to reduce either th running t m , r t m complexity; r the m m r
used, r m l x t , in a standard algorithm. Th algorithm w rk by generating a
random numb r w th n a f d r ng f numb r and making d n b d n the
value.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementation of Algorithms in Real Life Chapter 9

[287]

The lg r thm uld help n a situation f doubt by fl ng a n or a dr w ng a card fr m a
deck n rd r t make a d n. S m l rl , this k nd f lg r thm uld h l d u a brut -
force r by r nd ml m l ng th n ut in rd r to obtain a lut n that m n t b

t m l, but would be g d n ugh f r the f d ur .

The algorithm is n th t r v , n addition to its n ut data, a tr m of random b t th t it
n u for th purpose f m k ng r nd m h . Even f r a fixed input, different runs f a

r nd m z d lg r thm may give different r ult ; thu t n v t bl th t a d r t n of th
r rt of a r nd m z d lg r thm w ll nv lv r b b l t t t m nt :

F r example, v n when th in ut f x d, th x ut n time of a randomized lg r thm a
random variable. I l t d x m l f r nd m z d algorithms n b traced back t th v r

rl d f m ut r n , but th central importance f th n t b m g n r ll
recognized only b ut 15 years ago. Am ng the k rl nflu n was th randomized
r m l t t t d v l d b Solovay and Strassen. R nd m z d lg r thm r u d wh n
r nt d w th a t m r m m r constraint, nd an v r g case solution n acceptable
ut ut. Du to th t nt l erroneous ut ut f th algorithm, an lg r thm kn wn
m l f t n is u d in rd r t b t the r b b l t f rr tn by r f ng runt m .

Am l f t n w rk b repeating the randomized algorithm several t m w th d ff r nt
r nd m subsamples f th n ut nd comparing their r ult . It is common f r randomized
lg r thm to amplify ju t rt of the process, too mu h m l f t n m n r the

running t m b nd the g v n n tr nt .

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementation of Algorithms in Real Life Chapter 9

[288]

R nd m z d lg r thm for t k such as rt ng and l t n gather nf rm t n b ut the
distribution f their input data by dr w ng r nd m samples. F r certain problems, t
useful to r nd m z th rd r n which th n ut d t is n d r d; in u h , one n
h w th t, f r every fixed rr f input d t , almost all rd r ng f th d t l d to

t bl rf rm n , v n though m rd r ng m cause th algorithm t fail. In a
similar w , randomized divide and conquer lg r thm are ft n based on r nd m

rt t n ng f th n ut. Pr t ll k ng, m ut r cannot g n r t m l t l random
numb r , randomized lg r thm n m ut r n are r x m t d u ng a
pseudorandom numb r generator n l f a true ur f r nd m number, u h the
dr w ng f a rd.

By n w, it is r gn z d th t, n a w d range of l t n , r nd m z t n an extremely
m rt nt t l f r the n tru t n f algorithms. Th r r two r n l types f dv nt g

that randomized lg r thm often h v . F r t, ft n th x ut n t m or r u r m nt f
a r nd m z d lg r thm smaller than that of th best d t rm n t lg r thm th t we kn w
of for th m r bl m. But even more tr k ngl , if we l k at the various randomized
lg r thm th t h v b n nv nt d. We f nd th t nv r bl they are xtr m l m l t

understand nd to m l m nt; ft n, th introduction of r nd m z t n suffices to nv rt a
m l nd n v deterministic lg r thm with w r t- behavior nt a r nd m z d

algorithm that performs well w th high probability n v r possible input.

R nd m algor thm classification
R nd m z d algorithms n b l f d in tw categories; they are:

Las V g : These lg r thm lw r du rr t or t mum r ult. The time
complexity f this lg r thm b d n a r nd m v lu and t m m l x t
v lu t d the x t d v lu . F r x m l , r nd m z d quicksort always sorts n

input rr nd expected w r t- t m m l x t f quicksort O(N L g N).
M nt C rl : These lg r thm pr du rr t r t mum result with some
probability. Th algorithms h v deterministic runn ng t m and t g n r ll

r t f nd out the w r t- t m complexity. F r example, this implementation
of Karger's algorithm produces minimum cut with probability gr t r th n r
equal to 1/n2 (n number f v rt) and has a w r t-case time m l x t of O
(E). Another example is the F rm t m th d for pr m l t t t ng.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementation of Algorithms in Real Life Chapter 9

[289]

Random number generators
Since our lg r thm r u r r nd m numbers, w must have a m th d t g n r t th m.
A tu ll , tru r nd mn v rtu ll m bl t d on a computer, since th numb r
will depend n th lg r thm, nd thu nn t bl be random. G n r ll , t uff to

r du ud r nd m numbers, wh h r numb r that r to b r nd m. Random
numb r have m n kn wn t t t l r rt ; pseudorandom numb r t f m t f these
r rt . Surprisingly, this mu h r said than d n .

Suppose w only n d t fl a n; thu , we mu t g n r t a (f r h d) or (for t l)
r nd ml . On w to d th is to x m n th t m l k. Th l k might record time
n nt g r that counts th numb r of seconds since m t rt ng t m . W uld th n u th

l w t b t. Th r bl m th t th d n t w rk w ll f a u n of r nd m numb r is
n d d. One second is a l ng t m , nd the l k might n t h ng at ll while th r gr m is
runn ng. Ev n f the time was recorded in un t f microseconds, f th program was runn ng
b t lf, the u n of numbers that w uld b g n r t d would b far fr m r nd m, n
the time b tw n ll to th g n r t r w uld be essentially d nt l n v r r gr m
nv t n.

W , then, that what r ll n d d is a u n f r nd m numb r . Th numbers
h uld r nd nd nt. If a n fl d nd heads appear, th n xt n fl h uld t ll

be u ll l k l t come up heads r tails. Th simplest m th d to g n r t r nd m numb r
 th linear ngru nt l generator, which are .

Here is the implementation of the class:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementation of Algorithms in Real Life Chapter 9

[290]

Applications of randomized algorithms
We will now work on writing a pr gr m t g n r t CAPTCHA to verify the u r. A
CAPTCHA (Completely Aut m t d Public Tur ng t t t t ll C m ut r nd Hum n
A rt) a t t t d t rm n wh th r th u r hum n or not. S , th task is t g n r t
un u CAPTCHA v r time and t t ll wh th r th user human or not b k ng u r t
nt r th m CAPTCHA as g n r t d ut m t ll nd h k ng the u r n ut w th th

g n r t d CAPTCHA.

The set f h r t r t g n r t CAPTCHA r stored n a h r t r that
nt n (a-z, A-Z, 0-9), th r f r z f 62.

T g n r t a un u CAPTCHA v r time, a random numb r generated using
, wh h g n r t a r nd m number b tw n 0 t 61. Th g n r t d

r nd m numb r t k n nd x t th h r t r array. thu g n r t a new
h r t r f nd this l run (length of CAPTCHA) t m to generate

CAPTCHA f g v n l ngth.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementation of Algorithms in Real Life Chapter 9

[291]

Here is the implementation of C++ code for generating a CAPTCHA:

Backtracking algorithms
Th l t lg r thm design t hn u w w ll examine b ktr k ng. As th name ugg t ,
w backtrack to f nd th lut n. We start w th one possible move ut of m n available
moves and tr t lv the r bl m; f w are able to lv the r bl m with th l t d m v
th n we will r nt th lut n, l we w ll b ktr k and l t m other m v nd tr t
solve it. If n n f th moves w rk out, we w ll l m th t there n solution f r th
problem. In m n , a b ktr k ng lg r thm m unt to a l v r m l m nt t n of
xh u t v r h, with g n r ll unf v r bl performance. Th n t always the ,

h w v r, and even , n some cases, th v ng v r a brute-force exhaustive search n b
gn f nt.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementation of Algorithms in Real Life Chapter 9

[292]

The pseudocode, a notation resembling a simplified programming language, for this
algorithm is as follows:

P rf rm n is, of ur , r l t v ; n O(N2) lg r thm f r rt ng is pretty bad, but n O(N5)
algorithm f r th tr v l ng l m n (r any NP- m l t) r bl m w uld be a l ndm rk
r ult.

Arranging furniture in a new house
A r t l example f a b ktr k ng lg r thm th problem f rr ng ng furn tur n a
new h u . Th r r many b l t to tr , but t ll only a f w are tu ll n d r d.
St rt ng w th n rr ng m nt, h of furn tur placed n m rt f the r m. If ll
th furn tur l d nd th wn r happy, then the lg r thm t rm n t . If we reach a

nt wh r all ub u nt placement f furn tur und r bl , w have t und the l t t
and tr n lt rn t v . Of ur , th m ght f r another undo and forth. If w f nd th t
w und all bl first t , th n there n placement of furn tur th t is t f t r .
Oth rw , w v ntu ll t rm n t with a t f t r arrangement.

Notice that, lth ugh th algorithm nt ll brut f r , it d not tr all b l t
d r tl . F r n t n , arrangements th t n d r placing th f in th kitchen r n v r
tr d. M n th r bad arrangements r discarded rl because n und r bl subset of the
arrangement is d t t d. The l m n t n of a l rg group f possibilities in n t kn wn
as run ng.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementation of Algorithms in Real Life Chapter 9

[293]

Playing tic-tac-toe
Tic-tac-toe is a dr w if both d l t m ll . B rf rm ng a r ful -by- analysis,
t not a d ff ult matter t n tru t n lg r thm that n v r loses nd always w n wh n
r nt d th rtun t . Th n be d n , b u certain t n r known tr and n

be handled b a lookup table. Other tr t g , such as taking the center u r wh n it is
available, m k th n l m l r. If th d n , th n b using a table we n always h
a move b d nl on th urr nt t n. Th m r general tr t g is to u n evaluation
fun t n to u nt f th g dn f a position. A t n th t a win for a m ut r m ght
g t th v lu of +1; a dr w uld g t 0; nd a t n th t the m ut r has l t would g t a

1. A position f r wh h th assignment n be d t rm n d by examining th board
kn wn a t rm n l position. If a t n is n t t rm n l, th v lu f th position is
d t rm n d b r ur v l assuming t m l l b b th d . Th is known as a m n m x
tr t g , b u one player (th hum n) is tr ng t m n m z the value of th position, while

the th r player (the m ut r) tr ng t m x m z it.

A u r position of P is n position, Ps, that r h bl fr m P by l ng n m v . If
the computer to move wh n in m t n, P, t recursively v lu t the v lu of ll th
successor t n . Th m ut r h th move w th th l rg t v lu ; th the v lu of
P. T v lu t n u r position, P , ll f P ' u r are recursively evaluated, nd
th m ll t v lu h n. Th m ll t v lu represents the most f v r bl reply for th
hum n player.

The m t costly m ut t n th where th m ut r k d to k the opening
m v . Since at th stage the g m is a f r d dr w, the m ut r l t u r 1. F r m r
complex games, such h k r nd h , it obviously nf bl t r h ll the w t
th terminal nodes. In th , we h v t t th r h ft r a certain d th f r ur n is
r h d. The n d wh r th r ur n is t d b m t rm n l n d . Th terminal
n d are v lu t d w th a fun t n that t m t th value of th position. For n t n , n a
chess r gr m, th v lu t n fun t n m ur such variables the relative m unt and
tr ngth f nd positional f t r . Th v lu t n fun t n crucial for success, because

th m ut r' m v selection b d n maximizing th function. Th b t m ut r h
r gr m h v ur r ngl h t t d v lu t n fun t n .

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementation of Algorithms in Real Life Chapter 9

[294]

Th basic m th d t n r the l k- h d f t r n g m programs is t m up w th
m th d th t v lu t fewer n d w th ut losing n nf rm t n. One m th d that we have
lr d seen to u a t bl to keep tr k f all t n th t h v been v lu t d. For
n t n , in the course of searching f r th f r t move, th r gr m w ll examine th t n .

If th v lu f th t n r v d, the second occurrence f a t n n d not b
r m ut d; it essentially becomes a t rm n l t n. Th d t structure th t r rd th is
known as a transposition table; it almost always implemented b h h ng. In m n ,
th n save n d r bl computation. F r instance, n a chess nd g m , where th r are
r l t v l few pieces, th t m v ng n ll w a search t g v r l l v l d r. Pr b bl
th m t gn f nt m r v m nt one n bt n n g n r l is kn wn as run ng.

Summary
In this chapter, we have discussed real-life applications of algorithms. We can solve a coin-
change problem using the greedy algorithm. We can improve matrix multiplication time
performance using the divide-and-conquer algorithm.

By using dynamic programming, we can improve the time complexity of Fibonacci number
by removing the recursion. Also, we can see that selection sort and bubble sort, which we
had discussed in a previous chapter, are brute-force algorithms.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementation of Algorithms in Real Life Chapter 9

[295]

Also, we have found that using a randomized algorithm could help in a situation of doubt,
such as flipping a coin or drawing a card fr m a deck n rd r t make a d n.

Finally, we used a backtracking algorithm to arrange furniture in a new house or to play a
tic-tac-toe.

QA section
What is the best algorithm we can use to solve change-coin problems?
Why is Strassen's algorithm better in multiplying a matrix?
What is a simple example of backtracking algorithm?
What algorithm do we use to generate CAPTCHA?

Further reading
For further reading, please visit the following links:

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

C++ High Performance
Viktor Sehr, Bj rn Andrist

ISBN: 978-1-78712-095-2

Benefits of modern C++ constructs and techniques
Identify hardware bottlenecks, such as CPU cache misses, to boost performance
Write specialized data structures for performance-critical code
Use modern metaprogramming techniques to reduce runtime calculations
Achieve efficient memory management using custom memory allocators
Reduce boilerplate code using reflection techniques
Reap the benefits of lock-free concurrent programming
Perform under-the-hood optimizations with preserved readability using proxy
objects
Gain insights into subtle optimizations used by STL algorithms
Utilize the Range V3 library for expressive C++ code
Parallelize your code over CPU and GPU, without compromising readability

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You May Enjoy

[297]

Mastering the C++17 STL
Arthur O'Dwyer

ISBN: 978-1-78712-682-4

Make your own iterator types, allocators, and thread pools.
Master every standard container and every standard algorithm.
Improve your code by replacing new/delete with smart pointers.
Understand the difference between monomorphic algorithms, polymorphic
algorithms, and generic algorithms.
Learn the meaning and applications of vocabulary type, product type and sum
type.

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You May Enjoy

[298]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

A
abstract
abstract data type (ADT)
 about
 C++ classes, applying to build user-defined

ADTs ,
 class templates ,
 developing
 function templates ,
 Standard Template Library
 templates, playing with
algorithm
 amortized analysis
 analyzing
 asymptotic analysis ,
 average case analysis
 backtracking algorithms
 best case analysis
 Big Omega
 Big Theta
 Big-O
 brute-force algorithms
 divide and conquer algorithms
 dynamic рrоgrаmmіng
 Greedy algorithms
 recursive method
 rаndоmіzеd algorithm
 technical requirements
 worst case analysis
amortized analysis
anagram
 creating
array , ,
asymptotic analysis ,
average case analysis

B
back
backtracking algorithms
 about
 furniture, arranging in new house
 tic-tac-toe, playing
balanced BST (AVL) ADT
 building ,
 implementing ,
 key, inserting
 key, removing
 nodes, rotating
begin()
best case analysis
Big Omega
Big Theta
Big-O
binary heap ADT
 building
 element's maximum value, fetching
 element, inserting
 empty state, checking
 implementing, as priority queue
 maximum element, removing
binary search algorithm
 about
 developing
 implementing
binary search tree ADT
 building
 implementing ,
 key existence, searching
 key successor, searching
 key, inserting
 maximum key value, retrieving
 minimum key value, retrieving

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

[300]

 node, removing based on given key
 predecessor, searching of key
 traversing
binary string
 constructing
 converting, to decimal
 decimal, converting ,
binary tree ADT
 building
brace-initialization
brute-force algorithms
 about
 brute-force search and sort
 strength
 weaknesses
bubble sort algorithm ,

C
C++
 about
 code development experience, enhancing with

IDE
 code flow, controlling
 code, creating ,
 conditional statement ,
 loop statement , ,
 variable capability, leveraging with advanced data

types
 variables, defining with fundamental data types

CAPTCHA
class templates ,
collision
collision handling technique
 open addressing
 separate chaining
conditional statement ,
copy initialization
counting sort algorithm , ,

D
data types
 used, for leveraging variable capability
Dequeue ADT

 building
 consuming
 element, dequeuing
 element, enqueuing
 value, fetching
direct initialization
divide and conquer algorithms
 about ,
 Binary Search
 matrix multiplication calculations, solving
 Merge sort
 Quicksort
 selection problems, solving
double-ended queue (dequeue) ,
Doubly Linked List
 building
 consuming
 element, inserting
 element, removing ,
 Node data type, refactoring
 operations, refactoring
dynamic рrоgrаmmіng
 about
 coin-change problem, solving
 Fibonacci numbers

E
end()
enqueue
enum (enumeration)
exponential search algorithm
 about
 developing
 ExponentialSearch() function, invoking

F
First In First Out (FIFO)
front
function object
function templates ,
functor
fundamental data types
 used, for defining variables

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

[301]

G
getline()
Greedy аlgоrіthmѕ
 about
 coin-changing problem, solving ,
 Huffman coding algorithm, applying , ,

H
hash function
hash tables
 about
 collision handling
 data type, constructing
 data, storing in
 technical requirement
HashTable ADT
 applying, linear probing technique used
 applying, separate chaining technique used
Huffman coding algorithm
 applying , ,
Huffman tree
 building

I
insertion sort , , ,
integrated development environment (IDE)
 code development experience, enhancing
interface
interpolation search
 about
 applying
 developing

J
jump search algorithm
 about
 applying
 developing

K
keyword

L
Last In First Out (LIFO)
linear probing technique
 used, for applying HashTable ADT ,
linear search algorithm
 about
 developing
 implementing
linked list
 about
 applying, with STL
List ADT
 building
 consuming
 index, searching from selected item
 item, fetching
 item, inserting into List class
 item, removing from List class
list
 about
 applying, with STL
loop statement , ,

M
merge sort , ,

N
node , ,

O
one-dimensional array
open addressing technique
 double hashing
 implementing
 Insert() operation, developing
 IsEmpty() operation, developing
 linear probing
 linear probing technique, used for applying

HashTable ADT
 PrintHashTable() operation, developing
 quadratic probing
 Remove() operation, developing
 Search() operation, developing

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

[302]

P
palindrome
 detecting
partitioning
pattern
pattern searching ,
pivot
pop_back()
power set
predecessor
 about
 searching, of key in BST
pruning
push_back()

Q
Queue ADT
 building
 consuming
 element, inserting
 element, removing
 value, obtaining
quick sort algorithm , ,

R
radix sort algorithm , ,
rbegin()
recursive method
Regular Expression (RegEx)
rend()
rаndоmіzеd algorithm
 about ,
 applications
 Las Vegas
 Monte Carlo
 random number generators
 rаndоm algоrіthm classification

S
selection sort ,
separate chaining technique
 about
 hash key, generating

 implementing
 Insert() operation, developing
 IsEmpty() operation, developing
 Remove() operation, developing
 Search() operation, developing
 used, for applying HashTable ADT ,
Singly Linked List
 building
 index, obtaining of selected item
 item, fetching in LinkedList class
 item, inserting in LinkedList class
 item, removing from LinkedList class
 LinkedList ADT, consuming
size()
skewed left
skewed right BST
Stack ADT
 building
 consuming
 example ,
 item value, fetching
 popping
 pushing
Standard Template Library (STL)
 about , ,
 used, for applying LinkedList
 used, for applying List
std list
std vector
string
 about
 constructing, as character array
 std string, using
sublist search algorithm
 about
 developing
 performing
subsequence string
 about
 checking
 subsequences, generating from string ,
successor
 searching, in BST

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

T
ternary search algorithm
 about
 applying
 developing
tic-tac-toe
 playing
transposition table
tеrmіnаl position

U
user-defined ADTs
 building, by C++ classes application

V
variables
 defining, with fundamental data types
 leveraging, with advanced data types
vector

W
word
 palindrome, detecting
 playing with
 rearranging, to create anagram
worst case analysis

Α
α–β рrunіng

 EBSCOhost - printed on 2/9/2023 10:18 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Learning Data Structures and Algorithms in C++
	Technical requirements
	Introduction to basic C++
	Creating your first code in C++
	Enhancing code development experience with IDE
	Defining the variables using fundamental data types
	Controlling the flow of the code
	Conditional statement
	Loop statement

	Leveraging the variable capability using advanced data types

	Developing abstract data types
	Applying C++ classes to build user-defined ADTs
	Playing with templates
	Function templates
	Class templates
	Standard Template Library

	Analyzing the algorithm
	Asymptotic analysis
	Worst, average, and best cases
	Big Theta, Big-O, and Big Omega
	Recursive method
	Amortized analysis

	Summary
	QA section
	Further reading

	Chapter 2: Storing Data in Lists and Linked Lists
	Technical requirements
	Getting closer to an array
	Building a List ADT
	Fetching an item in the List
	Inserting an item into the List ADT
	Finding out the index of a selected item in the List ADT
	Removing an item from the List ADT
	Consuming a List ADT

	Introduction to node
	Building a Singly Linked List ADT
	Fetching an item in the LinkedList class
	Inserting an item in the LinkedList class
	Getting the index of the selected item in the LinkedList
	Removing an item from the LinkedList ADT
	Consuming the LinkedList ADT

	Building the Doubly Linked List ADT
	Refactoring the Node<T> data type
	Refactoring several operations in the LinkedList ADT
	Removing an element
	Inserting an element

	Consuming the DoublyLinkedList ADT

	Applying List and LinkedList using STL
	std::vector
	std::list

	Summary
	QA section
	Further reading

	Chapter 3: Constructing Stacks and Queues
	Technical requirements
	Building a Stack ADT
	Fetching the item's value in the Stack ADT
	Pushing the items of the Stack ADT
	Popping the items from the Stack ADT
	Consuming a Stack ADT
	Another example of Stack ADT implementation

	Building a Queue ADT
	Getting a value from Queue ADT
	Inserting an element into the Queue ADT
	Removing an element from the Queue ADT
	Consuming the Queue ADT

	Building a Deque ADT
	Fetching a value from a Deque
	Enqueueing an element into the Deque ADT
	Dequeuing an element from the Deque ADT
	Consuming the Deque ADT

	Summary
	QA section
	Further reading

	Chapter 4: Arranging Data Elements Using a Sorting Algorithm
	Technical requirements
	Bubble sort
	Selection sort
	Insertion sort
	Merge sort
	Quick sort
	Counting sort
	Radix sort
	Summary
	QA section
	Further reading

	Chapter 5: Finding out an Element Using Searching Algorithms
	Technical requirements
	Linear search
	Developing a linear search algorithm
	Implementing the linear search algorithm

	Binary search
	Developing binary search algorithm
	Implementing binary search algorithm

	Ternary search
	Developing ternary search algorithm
	Applying the ternary search algorithm

	Interpolation search
	Developing interpolation search algorithm
	Applying interpolation search algorithm

	Jump search
	Developing jump search algorithm
	Applying jump search algorithm

	Exponential search
	Developing exponential search algorithm
	Invoking the ExponentialSearch() function

	Sublist search
	Designing sublist search algorithm
	Performing sublist search algorithm

	Summary
	QA section
	Further reading

	Chapter 6: Dealing with the String Data Type
	Technical requirement
	String in C++
	Constructing a string using character array
	Using std::string for more flexibility features

	Playing with words
	Rearranging a word to create an anagram
	Detecting whether a word is a palindrome

	Constructing a string from binary digits
	Converting decimal to binary string
	Converting binary string to decimal

	Subsequence string
	Generating subsequences from a string
	Checking whether a string is a subsequence of another string

	Pattern searching
	Summary
	QA section
	Further reading

	Chapter 7: Building a Hierarchical Tree Structure
	Technical requirements
	Building a binary tree ADT
	Building a binary search tree ADT
	Inserting a new key into a BST
	Traversing a BST in order
	Finding out whether a key exists in a BST
	Retrieving the minimum and maximum key values
	Finding out the successor of a key in a BST
	Finding out the predecessor of a key in a BST
	Removing a node based on a given key
	Implementing the BST ADT

	Building a balanced BST (AVL) ADT
	Rotating nodes
	Inserting a new key
	Removing a given key
	Implementing AVL ADT

	Building a binary heap ADT
	Checking if the heap is empty
	Inserting a new element into the heap
	Fetching the element's maximum value
	Removing the maximum element
	Implementing a binary heap as a priority queue

	Summary
	QA section
	Further reading

	Chapter 8: Associating a Value to a Key in a Hash Table
	Technical requirement
	Getting acquainted with hash tables
	Big data in small cells
	Storing data in a hash table
	Collision handling

	Implementing a separate chaining technique
	Generating a hash key
	Developing an Insert() operation
	Developing a Search() operation
	Developing a Remove() operation
	Developing an IsEmpty() operation
	Applying a HashTable ADT using a separate chaining technique in the code

	Implementing the open addressing technique
	Developing the Insert() operation
	Developing a Search() operation
	Developing the Remove() operation
	Developing an IsEmpty() operation
	Developing a PrintHashTable() operation
	Applying an HashTable ADT using a linear probing technique in the code

	Summary
	QA section
	Further reading

	Chapter 9: Implementation of Algorithms in Real Life
	Technical requirements
	Greedy algorithms
	Solving the coin-changing problem
	Applying the Huffman coding algorithm

	Divide and conquer algorithms
	Solving selection problems
	Solving matrix multiplication calculations

	Dynamic programming
	Fibonacci numbers
	Dynamic programming and the coin-change problem

	Brute-force algorithms
	Brute-force search and sort
	Strengths and weaknesses of brute-force algorithms

	Randomized algorithms
	Rаndоm algorіthm classification
	Random number generators
	Applications of randomized algorithms

	Backtracking algorithms
	Arranging furniture in a new house
	Playing tic-tac-toe

	Summary
	QA section
	Further reading

	Other Books You May Enjoy
	Index

