Wisnu Anggoro

C++ Data
Structures and
Algorithms

Learn how to write efficient code to build scalable and
robust applications in C++

L1 Packb

C++ Data Structures and
Algorithms

Learn how to write efficient code to build scalable and robust
applications in C++

Wisnu Anggoro

Packt

BIRMINGHAM - MUMBAI

ost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

C++ Data Structures and Algorithms

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Chaitanya Nair

Content Development Editor: Lawrence Veigas
Technical Editor: Supriya Thabe

Copy Editor: Safis Editing

Project Coordinator: Prajakta Naik
Proofreader: Safis Editing

Indexer: Aishwarya Gangawane

Graphics: Jisha Chirayil

Production Coordinator: Arvindkumar Gupta

First published: April 2018
Production reference: 1240418
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78883-521-3

www.packtpub.com

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

»~ Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Contributors

About the author

Wisnu Anggoro is a Microsoft Certified Professional in C# programming and an
experienced C/C++ developer. He has been programming since junior high school (about 20
years ago) and started developing computer applications using the BASIC language in MS-
DOS. He has a lot of experience with smart card, desktop, and web application
programming.

He is currently a senior smart card software engineer at CIPTA, an Indonesian company
that specializes in the innovation and technology of smart cards.

I would like to thank God, whose blessings have made me who I am today. My wife, Vivin,
who has supported me to achieve all my dreams. To my beloved sons, Olav and Oliver, who
are very naughty sometimes but never fail to make me happy every day. To my parents for
their inspiration.

Also, I would like to show my gratitude to Benediktus Dwi Desiyanto, my mentor and
superior at CIPTA, who always helped me develop my skillsets.

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

About the reviewer

Mark Elston is a software engineer at an automated test equipment firm working primarily
in IC and mobile device testing. His 30 years of experience include developing aircraft and
missile simulations for the Air Force and Navy, hardware control systems for NASA, and
tester operating systems for commercial products. He has also developed several Android
applications for fun. His latest passion is delving into the world of functional programming
and design.

[would like to thank my wife for her understanding when I had a chapter to finish
reviewing. I would also like to thank the Packt team for giving me the opportunity to work
with them on this project. It has been enlightening and entertaining. Finally, I would like
to thank the author for taking my comments into account. It is a pleasure to be part of a
project where your inputs are valued.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Table of Contents

Chapter 1: Learning Data Structures and Algorithms in C++ 7
Technical requirements 7
Introduction to basic C++ 8

Creating your first code in C++ 8
Enhancing code development experience with IDE 10
Defining the variables using fundamental data types 11
Controlling the flow of the code 13
Conditional statement 13

Loop statement 17
Leveraging the variable capability using advanced data types 23
Developing abstract data types 28
Applying C++ classes to build user-defined ADTs 29
Playing with templates 35
Function templates 35

Class templates 38
Standard Template Library 40
Analyzing the algorithm 41
Asymptotic analysis 41
Worst, average, and best cases 45
Big Theta, Big-O, and Big Omega 46
Recursive method 47
Amortized analysis 47
Summary 48
QA section 48
Further reading 49

Chapter 2: Storing Data in Lists and Linked Lists 50
Technical requirements 50
Getting closer to an array 51
Building a List ADT 55

Fetching an item in the List 57
Inserting an item into the List ADT 57
Finding out the index of a selected item in the List ADT 58
Removing an item from the List ADT 59
Consuming a List ADT 60
Introduction to node 62
Building a Singly Linked List ADT 68
Fetching an item in the LinkedList class 69

Inserting an item in the LinkedList class 70

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Table of Contents

Getting the index of the selected item in the LinkedList
Removing an item from the LinkedList ADT
Consuming the LinkedList ADT
Building the Doubly Linked List ADT
Refactoring the Node<T> data type
Refactoring several operations in the LinkedList ADT
Removing an element
Inserting an element
Consuming the DoublyLinkedList ADT
Applying List and LinkedList using STL
std::vector
std::list
Summary
QA section
Further reading

Chapter 3: Constructing Stacks and Queues

Technical requirements

Building a Stack ADT
Fetching the item's value in the Stack ADT
Pushing the items of the Stack ADT
Popping the items from the Stack ADT
Consuming a Stack ADT

Another example of Stack ADT implementation

Building a Queue ADT
Getting a value from Queue ADT
Inserting an element into the Queue ADT
Removing an element from the Queue ADT
Consuming the Queue ADT

Building a Deque ADT
Fetching a value from a Deque
Enqueueing an element into the Deque ADT
Dequeuing an element from the Deque ADT
Consuming the Deque ADT

Summary

QA section

Further reading

Chapter 4: Arranging Data Elements Using a Sorting Algorithm
Technical requirements
Bubble sort
Selection sort
Insertion sort
Merge sort
Quick sort

73
74
77
80
81
81
82
85
88
90
90
93
96
96
97

98

98

99
100
101
102
103
104
108
109
110
111
112
113
115
115
117
119
120
120
121

122
122
123
126
129
134
140

[ii]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Table of Contents

Counting sort
Radix sort
Summary

QA section
Further reading

Chapter 5: Finding out an Element Using Searching Algorithms

Technical requirements
Linear search
Developing a linear search algorithm
Implementing the linear search algorithm
Binary search
Developing binary search algorithm
Implementing binary search algorithm
Ternary search
Developing ternary search algorithm
Applying the ternary search algorithm
Interpolation search
Developing interpolation search algorithm
Applying interpolation search algorithm
Jump search
Developing jump search algorithm
Applying jump search algorithm
Exponential search
Developing exponential search algorithm
Invoking the ExponentialSearch() function
Sublist search
Designing sublist search algorithm
Performing sublist search algorithm
Summary
QA section
Further reading

Chapter 6: Dealing with the String Data Type
Technical requirement
String in C++
Constructing a string using character array
Using std::string for more flexibility features
Playing with words
Rearranging a word to create an anagram
Detecting whether a word is a palindrome
Constructing a string from binary digits
Converting decimal to binary string
Converting binary string to decimal

146
149
153
154
154

155
155
156
156
157
158
158
160
161
161
163
164
164
166
167
168
169
170
170
171
173
173
175
177
177
178

179
179
180
180
180
181
182
184
187
188
191

[iii]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Table of Contents

Subsequence string
Generating subsequences from a string

Checking whether a string is a subsequence of another string

Pattern searching
Summary

QA section
Further reading

Chapter 7: Building a Hierarchical Tree Structure

Technical requirements

Building a binary tree ADT

Building a binary search tree ADT
Inserting a new key into a BST
Traversing a BST in order
Finding out whether a key exists in a BST
Retrieving the minimum and maximum key values
Finding out the successor of a key in a BST
Finding out the predecessor of a key in a BST
Removing a node based on a given key
Implementing the BST ADT

Building a balanced BST (AVL) ADT
Rotating nodes
Inserting a new key
Removing a given key
Implementing AVL ADT

Building a binary heap ADT
Checking if the heap is empty
Inserting a new element into the heap
Fetching the element's maximum value
Removing the maximum element
Implementing a binary heap as a priority queue

Summary

QA section

Further reading

Chapter 8: Associating a Value to a Key in a Hash Table
Technical requirement
Getting acquainted with hash tables
Big data in small cells
Storing data in a hash table
Collision handling
Implementing a separate chaining technique
Generating a hash key
Developing an Insert() operation
Developing a Search() operation

193
194
196
199
202
202
203

204
204
205
207
210
211
212
213
215
217
219
222
225
227
229
231
234
236
237
238
239
239
240
243
243
243

244
244
245
245
246
247
247
248
249
250

[iv]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Table of Contents

Developing a Remove() operation 251
Developing an IsEmpty() operation 252
Applying a HashTable ADT using a separate chaining technique in the code 253
Implementing the open addressing technique 256
Developing the Insert() operation 259
Developing a Search() operation 260
Developing the Remove() operation 261
Developing an IsEmpty() operation 262
Developing a PrintHashTable() operation 263
Applying an HashTable ADT using a linear probing technique in the code 263
Summary 267
QA section 267
Further reading 268
Chapter 9: Implementation of Algorithms in Real Life 269
Technical requirements 269
Greedy algorithms 270
Solving the coin-changing problem 270
Applying the Huffman coding algorithm 272
Divide and conquer algorithms 277
Solving selection problems 280
Solving matrix multiplication calculations 281
Dynamic programming 282
Fibonacci numbers 282
Dynamic programming and the coin-change problem 283
Brute-force algorithms 285
Brute-force search and sort 285
Strengths and weaknesses of brute-force algorithms 286
Randomized algorithms 286
Random algorithm classification 288
Random number generators 288
Applications of randomized algorithms 290
Backtracking algorithms 291
Arranging furniture in a new house 292
Playing tic-tac-toe 293
Summary 294
QA section 295
Further reading 295
Other Books You May Enjoy 296
Index 299

[v]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Preface

Data structures and algorithms are a must-learn for all programmers and software
developers. Learning data structures and algorithms can help us solve problems, not only in
programming but also in real life. Many people have found algorithms that solve

specific problems. When we have a different problem, we can take advantage of the
algorithm to solve it by ourselves.

In this book, we will begin by giving you a basic introduction to data structures and
algorithms in C++. We will then move on to learn how to store data in linked lists, arrays,
stacks, and so on. We will look at some interesting sorting algorithms such as insertion sort,
heap sort, merge sort, which are algorithms every developer should be familiar with. We
will also dive into searching algorithms, such as linear search, binary search, interpolation
and much more.

By the end of this book, you'll be proficient in the use of data structures and algorithms.

Who this book is for

This book is for developers who would like to learn data structures and algorithms in C++.
Basic C++ programming knowledge is recommended but not necessary.

What this book covers

Chapter 1, Learning Data Structures and Algorithms in C++, introduces basic C++
programming, including fundamental and advanced data types, controlling code flow, the
use of an Integrated Development Environment (IDE), and abstract data types, which will
be used in developing data structures. We will also analyze an algorithm using asymptotic
analysis, including worst-average-best cases and an explanation of Big Theta, Big-O, Big
Omega.

Chapter 2, Storing Data in Lists and Linked Lists, explains how to build a linear data type to
store data, that is, a list. It also will explain how to use the list data type we built earlier to
create another data type, which is a linked list. However, before we build a data type in this
chapter, we will be introduced to Node, the fundamental data type required to build a list
and linked list.

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Preface

Chapter 3, Constructing Stacks and Queues, covers how to create stack, queue, and deque
data types, which are also linear data types. We also explain how to use these three types
and when we need to use them.

Chapter 4, Arranging Data Elements Using a Sorting Algorithm, talks about sorting elements
in a data structure. Here, we will learn how to arrange the order of elements using several
sorting algorithms; they are bubble sort, selection sort, insertion sort, merge sort, quick sort,
counting sort, and radix sort.

Chapter 5, Finding out an Element Using Searching Algorithm, walks us through the process
of finding an element in a data structure. By giving a value to the algorithm, we can find out
whether or not the value is in the data structure. There are seven sorting algorithms we are
going to discuss; they are linear, binary, ternary, interpolation, jump, exponential, and
sublist search.

Chapter 6, Dealing with the String Data Types, discusses how to construct a string data type
in C++ programming. Using a string data type, we can construct several words and then do
some fun stuff such as anagrams and palindromes. Also, we will learn about binary string,
which contains binary digits only, and subsequent string, which is derived from another
string. At last in this chapter, we'll discuss using pattern searching to find out a specific
short string in a large string.

Chapter 7, Building a Hierarchical Tree Structure, introduces the tree data structure, using
which we can construct a tree-like data type. Using the tree data structure, we can develop a
binary search tree; we can easily search any element in the tree using binary search
algorithm. The binary search tree we have built can be also balanced to prevent a skewed
tree. Also, in this chapter, we are going to implement a priority queue using a binary heap.

Chapter 8, Associating a Value to a Key in Hash Table, explains how to design a hash table,
which is a data structure that stores an element based on the hash function. A collision
might happen in a hash table data structure, so we also discuss how to handle the collision
using separate chaining and open addressing techniques.

Chapter 9, Implementation of Algorithms in Real Life, elaborates some algorithm paradigms
and implements them in the real world. There are six algorithm paradigms to discuss in this
chapter; they are greedy algorithms, Divide and Conquer algorithms, dynamic
programming, Brute-force algorithms, randomized algorithms, and backtracking
algorithms.

[2]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Preface

To get the most out of this book

To get through this book and successfully complete all the source code examples, you will
need the following specifications:

e Desktop PC or Notebook with Windows, Linux, or macOS
e GNU GCC v5.4.0 or above

¢ Code Block IDE v17.12 (for Windows and Linux OS) or Code Block IDE v13.12
(for macOS)

Download the example code files

You can download the example code files for this book from your account at
www . packtpub. com. If you purchased this book elsewhere, you can visit
www . packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/CPP-Data-Structures—-and-Algorithms. We also have other code
bundles from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

[31]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Preface

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://www.packtpub.com/sites/default/files/
downloads/CPPDataStructuresandAlgorithms_ColorImages.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "After finishing the wizard, we will have a new project with amain. cpp file."

A block of code is set as follows:

// in_out.cpp
#include <iostream>

int main ()

{

int 1i;

std::cout << "Please enter an integer value: ";
std::cin >> 1i;

std::cout << "The value you entered is " << i;

std::cout << "\n";
return 0;

}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

class Node

{

public:
T Value;
Node<T> * Next;

Node (T value) : Value(value), Next (NULL) {}
bi

Any command-line input or output is written as follows:

g++ simple.cpp

[4]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Preface

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"We can create a new project by clicking on the File menu, then clicking New, and then
selecting Project.”

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.comn.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

[5]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Preface

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

[6]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Learning Data Structures and
Algorithms in C++

In this first chapter, we are going to build the solid foundations so we can go through the
following chapters easily. The topics we are going to discuss in this chapter are:

¢ Creating, building, and running a simple C++ program
¢ Constructing an abstract data type to make a user-defined data type

¢ Leveraging the code with C++ templates and the Standard Template Library
(STL)

¢ Analyzing the complexity of algorithms to measure the performance of the code

Technical requirements

To follow along with this chapter including the source code, we require the following:

¢ A desktop PC or Notebook with Windows, Linux, or macOS
e GNU GCC v5.4.0 or above

e Code::Block IDE v17.12 (for Windows and Linux OS) or Code::Block IDE v13.12
(for macOS)

¢ You will find the code files on GitHub—nttps://github.com/PacktPublishing/
CPP-Data-Structures—and-Algorithms

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

Introduction to basic C++

Before we go through the data structures and algorithms in C++, we need to have a strong,
fundamental understanding of the language itself. In this section, we are going to build a
simple program, build it, and then run it. We are also going to discuss the fundamental and
advanced data types, and before we move on to algorithm analysis, we are going to discuss
control flow in this section.

Creating your first code in C++

In C++, the code is executed from the main () function first. The function itself is a collection
of statements to perform a specific task. As a result of this, a program in C++ has to contain
at least one function named main (). The following code is the simplest program in C++ that
will be successfully compiled and run:

int main ()

{

return 0;

}

Suppose the preceding code is saved as a simple. cpp file. We can compile the code using
the g++ compiler by running the following compiling command on the console from the
active directory where the simple. cpp file is placed:

g++ simple.cpp

If no error message appears, the output file will be generated automatically. If we run the
preceding compiling command on a Windows console, we will get a file named a . exe.
However, if we run the command on Bash shells, such as Linux or macOS, we will get a file
named a.out.

We can specify the output file name using the —o option followed by the desired filename.
For instance, the following compiling command will produce the output file named
simple.out:

g++ simple.cpp —-o simple.out

[81]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

Indeed, when we run the output file (by typing a and then pressing Enter on a Windows
console or by typing . /a.out and then pressing Enter on Bash shell), we won't see
anything on the console window. This is because we don't print anything to the console yet.
To make our simple. cpp file meaningful, let's refactor the code so that it can receive the
input data from the user and then print the data back to the user. The refactored code
should look as follows:

// in_out.cpp
#include <iostream>

int main ()

{
int 1i;
std::cout << "Please enter an integer value: ";
std::cin >> 1i;
std::cout << "The value you entered is " << ij;
std::cout << "\n";
return 0;

}

As we can see in the preceding code, we appended several lines of code so that the program
can print to the console and the user can give an input to the program. Initially, the
program displays text that asks the user to input an integer number. After the user types the
desired number and presses Enter, the program will print that number. We also defined a
new variable named i of the int data type. This variable is used to store data in an integer
data format (we will talk about variables and data types in the upcoming section).

Suppose we save the preceding code as in_out . cpp; we can compile it using the following
command:

g++ in_out.cpp

If we then run the program, we will get the following output on the console (I chose the
number 3 in this example):

Please enter an integer value: 3

The value you entered is 3

[91]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

Now, we know that to print text to the console, we use the std: : cout command, and to
give some inputs to the program, we use the std: : cin command. In the in_out . cpp file,
we also see #include <iostream> at the beginning of the file. It's used to tell the compiler
where to find the implementation of the std: : cout and std: : cin commands since their
implementation is stated in the iostream header file.

And at the very beginning of the file, we can see that the line begins with double slashes
(//). This means that the line won't be considered as code, so the compiler will ignore it. It's
used to comment or mark an action in the code so that other programmers can understand
our code.

Enhancing code development experience with
IDE

So far, we have been able to create a C++ code, compile the code, and run the code.
However, it will be boring if we have to compile the code using the Command Prompt and
then execute the code afterwards. To ease our development process, we will use an
integrated development environment (IDE) so that we can compile and run the code with
just a click. You can use any C++ IDE available on the market, either paid or free. However,
I personally chose Code::Blocks IDE since it's free, open source, and cross-platform so it can
run on Windows, Linux, and macOS machines. You can find the information about this
IDE, such as how to download, install, and use it on its official website at http://www.
codeblocks.org/.

Actually, we can automate the compiling process using a toolchain such as Make or CMake.
However, this needs further explanation, and since this book is intended to discuss data
structures and algorithms, the toolchain explanation will increase the total pages of the
book, and so we will not discuss this here. In this case, the use of IDE is the best solution to
automate the compiling process since it actually accesses the toolchain as well.

After installing Code::Blocks IDE, we can create a new project by clicking on the File menu,
then clicking New, and then selecting Project. A new window will appear and we can select
the desired project type. For most examples in this book, we will use the Console
Application as the project type. Press the Go button to continue.

[10]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

On the upcoming window, we can specify the language, which is C++, and then define the
project name and destination location (I named the project FirstApp). After finishing the
wizard, we will have a new project with amain. cpp file containing the following code:

#include <iostream>
using namespace std;

int main ()

{
cout << "Hello world!" << endl;
return 0;

}

Now, we can compile and run the preceding code by just clicking the Build and run option
under the Build menu. The following console window will appear:

-

= Terminal
Hello world!

Process returned 0 (8x0) execution time : 0.007 s
Press ENTER to continue.

In the preceding screenshot, we see the console using namespace stdin the line after

the #include <iostream> line. The use of this line of code is to tell the compiler that the
code uses a namespace named std. As a result, we don't need to specify the std: : in every
invocation of the cin and cout commands. The code should be simpler than before.

Defining the variables using fundamental data
types

In the previous sample codes, we dealt with the variable (a placeholder is used to store a
data element) so that we can manipulate the data in the variable for various operations. In
C++, we have to define a variable to be of a specific data type so it can only store the specific
type of variable that was defined previously. Here is a list of the fundamental data types in
C++. We used some of these data types in the previous example:

¢ Boolean data type (bool), which is used to store two pieces of conditional data
only—true or false

[11]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

e Character data type (char, wchar_t, char16_t, and char32_t), which is used
to store a single ASCII character

e Floating point data type (float, double, and long double), which is used to
store a number with a decimal

e Integer data type (short, int, long, and long long), which is used to store a
whole number

e No data (void), which is basically a keyword to use as a placeholder where you
would normally put a data type to represent no data

There are two ways to create a variable—by defining it or by initializing it. Defining a
variable will create a variable without deciding upon its initial value. The initializing
variable will create a variable and store an initial value in it. Here is the code snippet for
how we can define variables:

int ivar;
char32_t cVar;
long long llVar;
bool boVar;

And here is the sample code snippet of how initializing variables works:

int ivar = 100;

char32_t cvar = 'a';

long long llVar = 9223372036854775805;
bool boVar = true;

The preceding code snippet is the way we initialize the variables using the copy
initialization technique. In this technique, we assign a value to the variable using an equals
sign symbol (=). Another technique we can use to initialize a variable is the direct
initialization technique. In this technique, we use parenthesis to assign a value to the
variable. The following code snippet uses this technique to initialize the variables:

int ivar (100);

char32_t cVar('a');

long long 11Var (9223372036854775805) ;
bool boVar (true);

[12]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Learning Data Structures and Algorithms in C++ Chapter 1

Besides copy initialization and direct initialization techniques, we can use uniform
initialization by utilizing curly braces. The following code snippet uses the so-called brace-
initialization technique to initialize the variables:

int ivar{100};

char32_t cvVar{'a'};

long long 11vVar{9223372036854775805};
bool boVar{true};

We cannot define a variable with a void data type such as void vvar because when we
define a variable, we have to decide what data type we are choosing so that we can store the
data in the variable. If we define a variable as void, it means that we don't plan to store
anything in the variable.

Controlling the flow of the code

As we discussed earlier, the C++ program is run from the main () function by executing
each statement one by one from the beginning to the end. However, we can change this
path using flow control statements. There are several flow control statements in C++, but we
are only going to discuss some of them, since these are the ones that are going to be used
often in algorithm design.

Conditional statement

One of the things that can make the flow of a program change is a conditional statement. By
using this statement, only the line in the t rue condition will be run. We can use the if and
else keywords to apply this statement.

Let's modify our previous in_out . cpp code so that it uses the conditional statement. The
program will only decide whether the input number is greater than 100 or not. The code
should be as follows:

// 1f.cbp
#include <iostream>

using namespace std;

int main ()

{
int 1i;
cout << "Please enter an integer value: ";
cin >> 1i;

[13]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

cout << "The value you entered is ";

if(i > 100)
cout << "greater than 100.";
else

cout << "equals or less than 100.";

cout << endl;
return 0;

}

As we can see, we have a pair of the if and else keywords that will decide whether the
input number is greater than 100 or not. By examining the preceding code, only one
statement will be executed inside the conditional statement, either the statement under the
if keyword or the statement under the else keyword.

If we build and run the preceding code, we will see the following console window:

[Terminal

Please enter an integer value: 156
The value you entered is greater than 100.

Process returned 0 (0x0) execution time : 1.775 s
Press ENTER to continue.

From the preceding console window, we can see that the line std: :cout << "equals or
less than 100."; isnot executed at all since we have input a number that is greater than
100.

Also,inthe if. . .else condition, we can have more than two conditional statements. We
can refactor the preceding code so that it has more than two conditional statements, as
follows:

// 1f_ElseIf.cbp
#include <iostream>

using namespace std;

int main ()
{
int i;
cout << "Please enter an integer value: ";
cin >> 1i;
cout << "The value you entered is ";

if(i > 100)

[14]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Learning Data Structures and Algorithms in C++

Chapter 1

else

cout << "greater than 100.";
else 1f(i < 100)
cout << "less than 100.";

cout << "equals to 100";

cout << endl;
return 0;

Another conditional statement keyword is switch. Before we discuss this keyword, let's
create a simple calculator program that can add two numbers. It should also be capable of
performing the subtract, multiply, and divide operations. We will use the if. . .else
keyword first. The code should be as follows:

// If_ElseIf_2.cbp
#include <iostream>

using namespace std;

int ma

{

int

cout
cout
cout
cout
cout
cout

cout

in

i,

<<
<<
<<
<<
<<
<<

<<

0

a, b;

"Operation Mode: " << endl;
"1. Addition" << endl;

"2. Subtraction" << endl;
"3. Multiplication" << endl;
"4, Division" << endl;

"Please enter the operation mode:
cin >> 1i;

"Please enter the first number:

cin >> a;

cout

<<

"Please enter the second number:

cin >> b;

cout << "The result of ";
if(i == 1)

cout << a << " 4+ " << b << " is " <<
else if (i == 2)

cout << a << " - " <K< b << " is " <<
else if (i == 3)

cout << a << " * " << b << " is " <<
else if (i == 4)

cout << a << " / " <K< b << " is " <<

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject

4

"

[15]

()

https://ww. ebsco. conl t er ms- of - use

Learning Data Structures and Algorithms

in C++ Chapter 1

cout << endl;
return 0;

As we can see in the preceding code, we have four options that we have to choose from. We
use the if. . .else conditional statement for this purpose. The output of the preceding

code should be as follows:

_
¢ Terminal

Operation Mode:
1. Addition

2. Subtraction
3. Multiplication
4. Division

Please enter the operation mode:

the first number:
the second number:
of 12 - 4 is 8

Please enter
Please enter
The result

Process returned 0 (@x8)
Press ENTER to continue.

execution time :

2

L2

4

10.009 s

However, we can use the switch keyword as well. The code should be as follows after

being refactored:

// Switch.cbp
#include <iostream>

using namespace std;

int main

0

{
int i, a, b;
cout << "Operation Mode: " << endl;
cout << "1. Addition" << endl;
cout << "2. Subtraction" << endl;
cout << "3. Multiplication" << endl;
cout << "4. Division" << endl;
cout << "Please enter the operation mode: ";
cin >> i;
cout << "Please enter the first number: ";
cin >> a;
cout << "Please enter the second number: ";
cin >> Db;
cout << "The result of ";
[16]

EBSCChost - printed on 2/9/2023 10: 18 AMvi a

. Al'l use subject to https://ww. ebsco.con terns-of-use

EBSCChost

Learning Data Structures and Algorithms in C++ Chapter 1

switch (1)
{
case 1:
cout << a << " 4+ " << b << " is " << a + b;
break;
case 2:
cout << a << " - " << b << " is " << a - b;
break;
case 3:
cout << a << " * " << b << " is " << a * b;
break;
case 4:
cout << a << " / " << b <K< " is " << a / b;
break;

cout << endl;
return 0;

}

And if we run the preceding code, we will get the same output compared with the
If_ElseIf_2.cbp code.

Loop statement

There are several loop statements in C++, and they are for, while, and do...while. The
for loop is usually used when we know how many iterations we want, whereas while and
do...while will iterate until the desired condition is met.

Suppose we are going to generate ten random numbers between 0 to 100; the for loop is
the best solution for it since we know how many numbers we need to generate. For this
purpose, we can create the following code:

// For.cbp

#include <iostream>
#include <cstdlib>
#include <ctime>

using namespace std;

int GenerateRandomNumber (int min, int max)
{
// static used for efficiency,
// so we only calculate this value once
static const double fraction =

[17]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

1.0 / (static_cast<double> (RAND_MAX) + 1.0);

// evenly distribute the random number
// across our range
return min + static_cast<int> (
(max — min + 1) * (rand() * fraction));

int main ()

{
// set initial seed value to system clock
srand(static_cast<unsigned int> (time (0)));

// loop ten times
for (int i=0; 1 < 10; ++1)
{
cout << GenerateRandomNumber (0, 100) << " ";
3

cout << "\n";

return 0;

}

From the preceding code, we create another function besides main (), that s,
GenerateRandomNumber (). The code will invoke the function ten times using the for
loop, as we can see in the preceding code. The output we will get should be as follows:

-
-~

Terminal
62 57 7 21 90 11 40 37 70 8

Process returned @ (0x0) execution time : ©.834 s
Press ENTER to continue.

Back to the others loop statements which we discussed earlier, which are while and
do...while loop. They are quite similar based on their behavior. The difference is when
we use the while loop, there is a chance the statement inside the loop scope is not run,
whereas the statement in the loop scope must be run at least once in the do. . .while loop.

[18]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

Now, let's create a simple game using those loop statements. The computer will generate a
number between 1 to 100, and then the user has to guess what number has been generated
by the computer. The program will give a hint to the user just after she or he inputs the
guessed number. It will tell the user whether the number is greater than the computer's
number or lower than it. If the guessed number matches with the computer's number, the
game is over. The code should be as follows:

// While.cbp
#include <iostream>
#include <cstdlib>
#include <ctime>

using namespace std;

int GenerateRandomNumber (int min, int max)
{
// static used for efficiency,
// so we only calculate this value once
static const double fraction =
1.0 / (static_cast<double> (RAND_MAX) + 1.0);

// evenly distribute the random number
// across our range
return min + static_cast<int>(
(max — min + 1) * (rand() * fraction));

int main ()

// set initial seed value to system clock
srand(static_cast<unsigned int>(time (0)));

// Computer generate random number
// between 1 to 100
int computerNumber = GenerateRandomNumber (1, 100);

// User inputs a guessed number

int userNumber;

cout << "Please enter a number between 1 to 100: ";
cin >> userNumber;

// Run the WHILE loop
while (userNumber != computerNumber)
{
cout << userNumber << " is ";
if (userNumber > computerNumber)
cout << "greater";

[19]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

else
cout << "lower";
cout << " than computer's number" << endl;
cout << "Choose another number: ";
cin >> userNumber;

cout << "Yeeaayy.. You've got the number." << endl;
return 0;

}

From the preceding code, we can see that we have two variables, computerNumber and
userNumber, handling the number that will be compared. There will be a probability
that computerNumber is equal to userNumber. If this happens, the statement inside the
while loop scope won't be executed at all. The flow of the preceding program can be seen
in the following output console screenshot:

e Terminal

Please enter a number between 1 to 180: 32
32 is lower than computer's number
Choose another number: 84

84 is greater than computer's number
Choose another number: 45

45 is lower than computer's number
Choose another number: 76

76 is lower than computer's number
Choose another number: 80

80 is lower than computer's number
Choose another number: 82

82 is lower than computer's number
Choose another number: 83

Yeeaayy.. You've got the number.

Process returned 0 (8x0) execution time : 38.478 s
Press ENTER to continue.

We have successfully implemented the while loop in the preceding code. Although the
while loop is similar to the do. . .while loop, as we discussed earlier, we cannot refactor
the preceding code by just replacing the while loop with the do. . .while loop. However,
we can create another game as our example in implementing the do. . .while loop.
However, now the user has to choose a number and then the program will guess it. The
code should be as follows:

// Do-While.cbp
#include <iostream>
#include <cstdlib>
#include <ctime>

[20]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

using namespace std;
int GenerateRandomNumber (int min, int max)

// static used for efficiency,
// so we only calculate this value once
static const double fraction =
1.0 / (static_cast<double> (RAND_MAX) + 1.0);

// evenly distribute the random number
// across our range
return min + static_cast<int> (
(max — min + 1) * (rand() * fraction));

int main ()

// set initial seed value to system clock
srand (static_cast<unsigned int> (time(0)));

char userChar;
int iMin = 1;
int iMax = 100;

int iGuess;

// Menu display
cout << "Choose a number between 1 to 100, ";

cout << "and I'll guess your number." << endl;
cout << "Press L and ENTER if my guessed number is lower than
yours";

cout << endl;

cout << "Press G and ENTER if my guessed number is greater than
yours";

cout << endl;

cout << "Press Y and ENTER if I've successfully guessed your
number!";

cout << endl << endl;

// Run the DO-WHILE loop
do
{
iGuess = GenerateRandomNumber (iMin, iMax) ;
cout << "I guess your number is " << iGuess << endl;
cout << "What do you think? ";
cin >> userChar;
if (userChar == 'L' || userChar == '1")
iMin = iGuess + 1;

[21]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Learning Data Structures and Algorithms in C++

Chapter 1

else if (userChar == 'G' || userChar ==
iMax = iGuess - 1;
3
while (userChar != 'Y' && userChar != 'y');
cout << "Yeeaayy.. I've got your number."

return 0;

}

<< endl;

As we can see in the preceding code, the program has to guess the user's number at least
once, and if it's lucky, the guessed number matches with the user's number, so that we use
the do. . .while loop here. When we build and run the code, we will have an output

similar to the following screenshot:

Terminal

Choose a number between 1 to 100, and I'll guess your number.

Press L and ENTER if my guessed number is lower than yours
and ENTER if my guessed number is greater than yours
and ENTER if I've successfully guessed your number!

your number is 81
you think? g
your number is 28
you think? 1
your number is 49
you think? 1
your number is 60
you think? g
your number is 56
you think? y
Yeeaayy.. I've got your number.

Process returned 0 (0x0) execution time : 62.904 s
Press ENTER to continue.

In the preceding screenshot, I chose number 56. The program then guessed 81. Since the
number is greater than my number, the program guessed another number, which is 28. It
then guessed another number based on the hint from me until it found the correct number.
The program will leave the do. . .while loop if the user presses y, as we can see in the

preceding code.

[22]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Learning Data Structures and Algorithms in C++ Chapter 1

Leveraging the variable capability using
advanced data types

We have discussed the fundamental data type in the previous section. This data type is
used in defining or initializing a variable to ensure that the variable can store the selected
data type. However, there are other data types that can be used to define a variable. They
are enum (enumeration) and struct.

Enumeration is a data type that has several possible values and they are defined as the
constant which is called enumerators. It is used to create a collection of constants. Suppose
we want to develop a card game using C++. As we know, a deck of playing cards contains
52 cards, which consists of four suits (Clubs, Diamonds, Hearts, and Spades) with 13
elements in each suit. We can notate the card deck as follows:

enum CardSuits

{
Club,
Diamond,
Heart,
Spade

bi

enum CardElements

{
Ace,
Two,
Three,
Four,
Five,
Six,
Seven,
Eight,
Nine,
Ten,
Jack,
Queen,
King

bi

If we want to apply the preceding enum data types (CardSuits and CardElements), we
can use the following variable initialization:

CardSuits suit = Club;
CardElements element = Ace;

[23]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

Actually, enums always contain integer constants. The string we put in the enum element is
the constant name only. The first element holds a value of 0, except we define another value
explicitly. The next elements are in an incremental number from the first element. So, for
our preceding CardSuits enum, Club is equal to 0, and the Diamond, Heart, and Spade
are 1, 2, and 3, respectively.

Now, let's create a program that will generate a random card. We can borrow the
GenerateRandomNumber () function from our previous code. The following is the
complete code for this purpose:

// Enum.cbp
#include <iostream>
#include <cstdlib>
#include <ctime>

using namespace std;

enum CardSuits

{
Club,
Diamond,
Heart,
Spade

bi

enum CardElements

{
Ace,
Two,
Three,
Four,
Five,
Six,
Seven,
Eight,
Nine,
Ten,
Jack,
Queen,
King

bi

string GetSuitString(CardSuits suit)
{

string s;

[24]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Learning Data Structures and Algorithms in C++

Chapter 1

switch (suit)
{
case Club:
s = "Club";
break;
case Diamond:
s = "Diamond";
break;
case Heart:
s = "Heart";
break;
case Spade:
s = "Spade";
break;

return s;

string GetElementString(CardElements element)

{

string e;

switch (element)
{

case Ace:
e = "Ace";
break;

case Two:
e = "Two";
break;

case Three:
e = "Three";
break;

case Four:
e = "Four";
break;

case Five:
e = "Five";
break;

case Six:
e = "Six";
break;

case Seven:
e = "Seven";
break;

case Eight:
e = "Eight";

[25]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conl termnms-of -

EBSCChost -

Learning Data Structures and Algorithms in C++

Chapter 1

break;

case Nine:
e = "Nine";
break;

case Ten:
e = "Ten";
break;

case Jack:
e = "Jack";
break;

case Queen:
e = "Queen";
break;

case King:
e = "King";
break;

return e;

int GenerateRandomNumber (int min, int max)

// static used for efficiency,
// so we only calculate this value once
static const double fraction =
1.0 / (static_cast<double> (RAND_MAX) + 1.0);

// evenly distribute the random number
// across our range
return min + static_cast<int> (
(max — min + 1) * (rand() * fraction));

int main ()

// set initial seed value to system clock
srand (static_cast<unsigned int> (time(0)));

// generate random suit and element card
int iSuit = GenerateRandomNumber (0, 3);
int iElement = GenerateRandomNumber (0, 12);

CardSuits sult = static_cast<CardSuits> (
iSuit);

CardElements element = static_cast<CardElements> (
iElement) ;

[26]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

EBSCChost -

Learning Data Structures and Algorithms in C++ Chapter 1

cout << "Your card is ";
cout << GetElementString(element);
cout << " of " << GetSuitString(suit) << endl;

return 0;

}

From the preceding code, we can see that we can access the enum data by using an integer
value. However, we have to cast the int value so that it can fit the enum data by
using static_cast<>, which is shown as follows:

int iSuit = GenerateRandomNumber (0, 3);
int iElement = GenerateRandomNumber (0, 12);

CardSuits suit = static_cast<CardSuits> (iSuit);
CardElements element = static_cast<CardElements> (iElement) ;

If we build and run the code, we will get the following console output:

-
-

Terminal
Your card is Ten of Diamond

Process returned 0 (8x0) execution time : 0.011 s
Press ENTER to continue.

Another advanced data type we have in C++ is structs. It is an aggregate data type which
groups multiple individual variables together. From the preceding code, we have the suit
and element variables that can be grouped as follows:

struct Cards

{
CardSuits suit;
CardElements element;

bi

If we add the preceding st ruct to our preceding Enum. cbp code, we just need to refactor
themain () function as follows:

int main ()

{
// set initial seed value to system clock
srand(static_cast<unsigned int> (time (0)));

Cards card;
card.suit = static_cast<CardSuits> (
GenerateRandomNumber (0, 3));

[27]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

card.element = static_cast<CardElements> (
GenerateRandomNumber (0, 12));

cout << "Your card is ";
cout << GetElementString(card.element);
cout << " of " << GetSuitString(card.suit) << endl;

return 0;

}

If we run the preceding code (you can find the code as St ruct . cbp in the repository), we
will get the same output as Enum. cbp.

Developing abstract data types

An abstract data type (ADT) is a type that consists of a collection of data and associated
operations for manipulating the data. The ADT will only mention the list of operations that
can be performed but not the implementation. The implementation itself is hidden, which is
why it's called abstract.

Imagine we have a DVD player we usually use in our pleasure time. The player has a
remote control, too. The remote control has various menu buttons such as ejecting the disc,
playing or stopping the video, increasing or decreasing volume, and so forth. Similar to the
ADT, we don't have any idea how the player increases the volume when we press the
increasing button (similar to the operation in ADT). We just call the increasing operation
and then the player does it for us; we do not need to know the implementation of that
operation.

Regarding the process flow, we need to take into account the ADT's implement abstraction,
information hiding, and encapsulation techniques. The explanation of these three
techniques is as follows:

e Abstraction is hiding the implementation details of the operations that are
available in the ADT

¢ Information hiding is hiding the data which is being affected by that
implementation

¢ Encapsulation is grouping all similar data and functions into a group

[28]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

Applying C++ classes to build user-defined ADTs

Classes are containers for variables and the operations (methods) that will affect the
variables. As we discussed earlier, as ADTs implement encapsulation techniques for
grouping all similar data and functions into a group, the classes can also be applied to
group them. A class has three access control sections for wrapping the data and methods,
and they are:

e Public: Data and methods can be accessed by any user of the class

¢ Protected: Data and methods can only be accessed by class methods, derived
classes, and friends

e Private: Data and methods can only be accessed by class methods and friends

Let's go back to the definition of abstraction and information hiding in the previous section.
We can implement abstraction by using protected or private keywords to hide the
methods from outside the class and implement the information hiding by using a
protected or private keyword to hide the data from outside the class.

Now, let's build a simple class named Animal, as shown in the following code snippet:

class Animal

{
private:
string m_name;

public:
void GiveName (string name)
{
m_name = name;

}

string GetName ()
{
return m_name;
}
bi

[29]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

As we can see in the preceding code snippet, we cannot access the m_name variable directly
since we assigned it as private. However, we have two public methods to access the
variable from the inside class. The GiveName () methods will modify the m_name value,
and the GetName () methods will return the m_name value. The following is the code to
consume the Animal class:

// Simple_Class.cbp
#include <iostream>

using namespace std;

class Animal

{
private:
string m_name;

public:
void GiveName (string name)

{

m_name = name;

string GetName ()
{

return m_name;
bi
int main ()

Animal dog = Animal () ;
dog.GiveName ("dog") ;

cout << "Hi, I'm a " << dog.GetName () << endl;

return O;

}

In the preceding code, we created a variable named dog of the type Animal. Since then, the
dog has the ability that Animal has, such as invoking the GiveName () and GetName ()
methods. The following is the window we should see if we build and run the code:

[30]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

Terminal

i, I'm a dog

Process returned ® (8x0) execution time : 0.012 s
Press ENTER to continue.

Now, we can say that Animal ADT has two functions, and they are GiveName (string
name) and GetName ().

After discussing simple class, you might see that there's a similarity between structs and
classes. They both actually have similar behaviors. The differences are, however, that structs
have the default public members, while classes have the default private members. I
personally recommend using structs as data structures only (they don't have any methods
in them) and using classes to build the ADTs.

As we can see in the preceding code, we assign the variable to the instance of the Animal
class by using its constructor, which is shown as follows:

Animal dog = Animal () ;

However, we can initialize a class data member by using a class constructor. The
constructor name is the same as the class name. Let's refactor our preceding Animal class so
it has a constructor. The refactored code should be as follows:

// Constructor.cbp
#include <iostream>

using namespace std;

class Animal

{
private:
string m_name;

public:
Animal (string name) : m_name (name)

{

string GetName ()
{

return m_name;

bi

[31]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

int main ()
{
Animal dog = Animal ("dog");

cout << "Hi, I'm a " << dog.GetName () << endl;

return 0;

}

As we can see in the preceding code, when we define the dog variable, we also initialize the
m_name private variable of the class. We don't need the GiveName () method anymore to
assign the private variable. Indeed, we will get the same output again if we build and run
the preceding code.

In the preceding code, we assign dog as the Animal data type. However, we can also derive
a new class based on the base class. By deriving from the base class, the derived class will
also have the behavior that the base class has. Let's refactor the Animal class again. We will
add a virtual method named MakeSound (). The virtual method is a method that has no
implementation yet, and only has the definition (also known as the interface). The derived
class has to add the implementation to the virtual method using the override keyword, or
else the compiler will complain. After we have a new Animal class, we will make a class
named Dog that derives from the Animal class. The code should be as follows:

// Derived_Class.cbp
#include <iostream>

using namespace std;

class Animal

{
private:
string m_name;

public:
Animal (string name) : m_name (name)

{

}

// The interface that has to be implemented
// in derived class

virtual string MakeSound() = 0;

string GetName ()
{

[32]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

return m_name;

bi

class Dog : public Animal

{

public:
// Forward the constructor arguments
Dog(string name) : Animal (name) {}

// here we implement the interface
string MakeSound() override

{

return "woof-woof!";
bi

int main ()

{
Dog dog = Dog("Bulldog");

cout << dog.GetName () << " is barking: ";
cout << dog.MakeSound() << endl;

return 0;

}

Now, we have two classes, the Animal class (as the base class) and the Dog class (as the
derived class). As shown in the preceding code, the Dog class has to implement the
MakeSound () method since it has been defined as a virtual method in the Animal class.
The instance of the Dog class can also invoke the GetName () method, even though it's not
implemented inside the Dog class since the derived class derives all base class behavior. If
we run the preceding code, we will see the following console window:

: Terminal
Bulldog is barking: woof-woof!

Process returned 0 (8x0) execution time : 0.813 s
Press ENTER to continue.

Again, we can say that the Dog ADT has two functions, and they are the GetName () and
MakeSound () functions.

[33]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

Another necessary requirement of ADT is that it has to be able to control all copy operations
to avoid dynamic memory aliasing problems caused by shallow copying (some members of
the copy may reference the same objects as the original). For this purpose, we can use
assignment operator overloading. As the sample, we will refactor the Dog class so it now
has the copy assignment operator. The code should be as follows:

// Assignment_Operator_Overload.cbp
#include <iostream>

using namespace std;

class Animal

{
protected:
string m_name;

public:
Animal (string name) : m_name (name)

{

// The interface that has to be implemented
// in derived class
virtual string MakeSound() = 0;

string GetName ()

{

return m_name;
bi

class Dog : public Animal

{

public:
// Forward the constructor arguments
Dog(string name) : Animal (name) {}

// Copy assignment operator overloading
void operator = (const Dog &D)

{

m_name = D.m_name;

// here we implement the interface
string MakeSound () override

{

[34]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Learning Data Structures and Algorithms in C++ Chapter 1

return "woof-woof!";
bi

int main ()

{
Dog dog = Dog("Bulldog");
cout << dog.GetName () << " is barking: ";
cout << dog.MakeSound() << endl;

Dog dog2 = dog;
cout << dog2.GetName () << " is barking: ";
cout << dog2.MakeSound() << endl;

return 0;

}

We have added a copy assignment operator which is overloading in the Dog class.
However, since we tried to access the m_name variable in the base class from the derived
class, we need to make m_name protected instead of private. In the main () method,
when we copy dog to dog2 in Dog dog2 = dog;, we can ensure that it's not a shallow

copy.

Playing with templates

Now, let's play with the templates. The templates are the features that allow the functions
and classes to operate with generic types. It makes a function or class work on many
different data types without having to be rewritten for each one. Using the template, we can
build various data types, which we will discuss later in this book.

Function templates

Suppose we have another class that is derived from the Animal class, for instance, cat. We
are going to make a function that will invoke the GetName () and MakeSound () methods
for both the Dog and Cat instances. Without creating two separated functions, we can use
the template, which is shown as follows:

// Function_Templates.cbp
#include <iostream>

using namespace std;

class Animal

[35]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

EBSCChost -

Learning Data Structures and Algorithms in C++ Chapter 1

{
protected:
string m_name;

public:
Animal (string name) : m_name (name)

{

// The interface that has to be implemented
// in derived class
virtual string MakeSound() = 0;

string GetName ()

{

return m_name;
bi

class Dog : public Animal

{

public:
// Forward the constructor arguments
Dog(string name) : Animal (name) {}

// Copy assignment operator overloading
void operator = (const Dog &D)

{

m_name = D.m_name;

// here we implement the interface
string MakeSound () override

{

return "woof-woof!";

bi

class Cat : public Animal

{

public:
// Forward the constructor arguments
Cat (string name) : Animal (name) {}

// Copy assignment operator overloading
void operator = (const Cat &D)

{

[36]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

m_name = D.m_name;

// here we implement the interface
string MakeSound() override

{

return "meow-meow!";
bi

template<typename T>
void GetNameAndMakeSound (T& theAnimal)
{

cout << theAnimal.GetName () << " goes ";
cout << theAnimal.MakeSound() << endl;

int main ()

{
Dog dog = Dog("Bulldog");
GetNameAndMakeSound (dog) ;

Cat cat = Cat ("Persian Cat");
GetNameAndMakeSound (cat) ;

return 0;

}

From the preceding code, we can see that we can pass both the Dog and Ccat data types to
the GetNameAndMakeSound () function since we have defined the <typename T> template
before the function definition. The typename is a keyword in C++, which is used to write a
template. The keyword is used for specifying that a symbol in a template definition or
declaration is a type (in the preceding example, the symbol is T). As a result, the function
becomes generic and can accept various data types, and if we build and run the preceding
code, we will be shown the following console window:

-

Terminal

Bulldog goes woof-woof!
Persian Cat goes meow-meow!

Process returned 0 (0x8) execution time : 0.009 s
Press ENTER to continue.

[37]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

Please ensure that the data type we pass to the generic function has the ability to do all the
operation invoking from the generic function. However, the compiler will compile if the
data type we pass does not have the expected operation. In the preceding function template
example, we need to pass a data type that is an instance of the Animal class, so we can pass
either instance of the Animal class or an instance of a derived class of the Animal class.

Class templates

Similar to the function template, the class template is used to build a generic class that can
accept various data types. Let's refactor the preceding Function_Template.cbp code by
adding a new class template. The code should be as follows:

// Class_Templates.cbp
#include <iostream>

using namespace std;

class Animal

{
protected:
string m_name;

public:
Animal (string name) : m_name (name)

{

}

// The interface that has to be implemented
// in derived class

virtual string MakeSound() = 0;

string GetName ()

{

return m_name;
i

class Dog : public Animal

{

public:
// Forward the constructor arguments
Dog(string name) : Animal (name) {}

// Copy assignment operator overloading

[38]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

void operator = (const Dog &D)

{

m_name = D.m_name;

// here we implement the interface
string MakeSound () override

{

return "woof-woof!";

bi

class Cat : public Animal

{

public:
// Forward the constructor arguments
Cat (string name) : Animal (name) {}

// Copy assignment operator overloading
void operator = (const Cat &D)
{

m_name = D.m_name;

// here we implement the interface
string MakeSound () override

{

return "meow-meow!";

bi

template<typename T>

void GetNameAndMakeSound (T& theAnimal)

{
cout << theAnimal.GetName () << " goes ";
cout << theAnimal.MakeSound() << endl;

template <typename T>
class AnimalTemplate
{
private:

T m_animal;

public:
AnimalTemplate (T animal) : m_animal (animal) {}

[39]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

void GetNameAndMakeSound ()
{

cout << m_animal.GetName () << " goes ";
cout << m_animal.MakeSound() << endl;

bi
int main ()

Dog dog = Dog("Bulldog");
AnimalTemplate<Dog> dogTemplate (dog) ;
dogTemplate.GetNameAndMakeSound () ;

Cat cat = Cat ("Persian Cat");
AnimalTemplate<Cat> catTemplate (cat);
catTemplate.GetNameAndMakeSound () ;

return 0;

}

As we can see in the preceding code, we have a new class named AnimalTemplate.It'sa
template class and it can be used by any data type. However, we have to define the data
type in the angle bracket, as we can see in the preceding code, when we use the instances
dogTemplate and catTemplate. If we build and run the code, we will get the same output
as we did for the Function_Template.cbp code.

Standard Template Library

C++ programming has another powerful feature regarding the use of template classes,
which is the Standard Template Library. It's a set of class templates to provide all functions
that are commonly used in manipulating various data structures. There are four
components that build the STL, and they are algorithms, containers, iterators, and functions.
Now, let's look at these components further.

Algorithms are used on ranges of elements, such as sorting and searching. The sorting
algorithm is used to arrange the elements, both in ascending and descending order. The
searching algorithm is used to look for a specific value from the ranges of elements.

Containers are used to store objects and data. The common container that is widely used is
vector. The vector is similar to an array, except it has the ability to resize itself automatically
when an element is inserted or deleted.

[40]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

Iterators are used to work upon a sequence of values. Each container has its own iterator.
For instance, there are begin (), end (), rbegin (), and rend () functions in the vector
container.

Functions are used to overload the existing function. The instance of this component is
called a functor, or function object. The functor is defined as a pointer of a function where
we can parameterize the existing function.

We are not building any code in this section since we just need to know that the STL is a
powerful library in C++ and that it exists, fortunately. We are going to discuss the STL
deeper in the following chapters while we construct data structures.

Analyzing the algorithm

To create a good algorithm, we have to ensure that we have got the best performance from
the algorithm. In this section, we are going to discuss the ways we can analyze the time
complexity of basic functions.

Asymptotic analysis

Let's start with asymptotic analysis to find out the time complexity of the algorithms. This
analysis omits the constants and the least significant parts. Suppose we have a function that
will print a number from 0 to n. The following is the code for the function:

void Looping (int n)
{

int 1 = 0;
while (i < n)
{

cout << 1 << endl;
i=1i+4+ 1;

}

Now, let's calculate the time complexity of the preceding algorithm by counting each
instruction of the function. We start with the first statement:

int 1 = 0;

[41]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Learning Data Structures and Algorithms in C++ Chapter 1

The preceding statement is only executed once in the function, so its value is 1. The
following is the code snippet of the rest statements in the Looping () function:

while (i < n)

{
cout << 1 << endl;
i=1i+4+ 1;

}

The comparison in the while loop is valued at 1. For simplicity, we can say that the value
of the two statements inside the while loop scope is 3 since it needs 1 to print the i
variable, and 2 for assignment (=) and addition (+).

However, how much of the preceding code snippet is executed depends on the value of n,
soitwillbe (1 + 3) * nor 4n. The total instruction that has to be executed for the
preceding Looping () functionis 1 + 4n. Therefore, the complexity of the preceding
Looping () function is:

Time Complexity(n) = 4n + 1

And here is the curve that represents its complexity:

In all curve graphs that will be represented in this book, the x axis represents Input Size (n)
and the y axis represents Execution Time.

[42]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

As we can see in the preceding graph, the curve is linear. However, since the time
complexity also depends on the other parameters, such as hardware specification, we may
have another complexity for the preceding Looping () function if we run the function on

faster hardware. Let's say the time complexity becomes 2n + 0.5, so that the curve will be as
follow:

As we can see, the curve is still linear for the two complexities. For this reason, we can omit
a constant and the least significant parts in asymptotic analysis, so we can say that the
preceding complexity is n, as found in the following notation:

Time Complexity(n) = n

Let's move on to another function. If we have the nested while loop, we will have another
complexity, as we can see in the following code:

void Pairing (int n)
{

int 1 = 0;

while (i < n)
{
int j = 0;

while(j < n)

{
cout << i << ", " << j << endl;
j=3+ 1

[43]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

Based on the preceding Looping () function, we can say that the complexity of the inner
while loop of the preceding Pairing () functionis 4n + 1. We then calculate the outer
while loop soitbecomes1 + (n * (1 + (4n + 1) + 2),whichequals1 + 3n + 4an’,
Therefore, the complexity of the preceding code is:

Time Complexity(n) = 4n’ + 3n + 1

The curve for the preceding complexity will be as follows:

4n2+3n+1

And if we run the preceding code in the slower hardware, the complexity might become
twice as slow. The notation should be as follows:

Time Complexity(n) = 8n° + 6n + 2

And the curve of the preceding notation should be as follows:

4 8n%6n+2

4n%3n+1

As shown previously, since the asymptotic analysis omits the constants and the least
significant parts, the complexity notation will be as follows:

Time Complexity(n) = n2

[44]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

Worst, average, and best cases

In the previous section, we were able to define time complexity for our code using an
asymptotic algorithm. In this section, we are going to determine a case of the
implementation of an algorithm. There are three cases when implementing time complexity
in an algorithm; they are worst, average, and best cases. Before we go through them, let's
look at the following Search () function implementation:

int Search(int arr[], int arrSize, int x)
{
// Iterate through arr elements
for (int i = 0; i < arrSize; ++1i)
{
// If x is found
// returns index of x
if (arr[i] == x)
return i;

}

// If x is not found
// returns -1
return -1;

}

As we can see in the preceding Search () function, it will find an index of target element
(x) from an arr array containing arrSize elements. Suppose we have the array {42, 55,
39, 71, 20, 18, 6, 84}.Here are the cases we will find:

e Worst case analysis is a calculation of the upper bound on the running time of
the algorithm. In the Search () function, the upper bound can be an element that
does not appear in the arr, for instance, 60, so it has to iterate through all
elements of arr and still cannot find the element.

e Average case analysis is a calculation of all possible inputs on the running time
of algorithm, including an element that is not present in the arr array.

e Best case analysis is a calculation of the lower bound on the running time of the
algorithm. In the Search () function, the lower bound is the first element of the
arr array, which is 42. When we search for element 42, the function will only
iterate through the arr array once, so the arrsize doesn't matter.

[45]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

Big Theta, Big-O, and Big Omega

After discussing asymptotic analysis and the three cases in algorithms, let's discuss
asymptotic notation to represent the time complexity of an algorithm. There are three
asymptotic notations that are mostly used in an algorithm; they are Big Theta, Big-O, and
Big Omega.

The Big Theta notation (0) is a notation that bounds a function from above and below, like
we saw previously in asymptotic analysis, which also omits a constant from a notation.

Suppose we have a function with time complexity 4n + 1. Since it's a linear function, we
can notate it like in the following code:

f(n) = 4n + 1

Now, suppose we have a function, g (n), where £ (n) is the Big-Theta of g (n) if the value,
f (n), is always between c1*g (n) (lower bound) and c2*g(n) (upper bound). Since
f (n) has a constant of 4 in the n variable, we will take a random lower bound which is
lower than 4, that is 3, and an upper bound which is greater than 4, that is 5. Please see the
following curve for reference:

From the £ (n) time complexity, we can get the asymptotic complexity n, so then we have
g(n) = n, which is based on the asymptotic complexity of 4n + 1.Now, we can decide
the upper bound and lower bound for g (n) = n. Let's pick 3 for the lower bound and 5 for
the upper bound. Now, we can manipulate the g (n) = n function as follows:

3.g(n) = 3.n
5.g(n) = 5.n

[46]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Learning Data Structures and Algorithms in C++ Chapter 1

Big-O notation (O) is a notation that bounds a function from above only using the upper
bound of an algorithm. From the previous notation, £ (n) = 4n + 1, we can say that the
time complexity of the £ (n) is 0 (n). If we are going to use Big Theta notation, we can say
that the worst case time complexity of £ (n) is 6 (n) and the best case time complexity of
f(n)isO(1).

Big Omega notation is contrary to Big-O notation. It uses the lower bound to analyze time
complexity. In other words, it uses the best case in Big Theta notation. For the £ (n)
notation, we can say that the time complexity is Q (1).

Recursive method

In the previous code sample, we calculated the complexity of the iterative method. Now,
let's do this with the recursive method. Suppose we need to calculate the factorial of a
certain number, for instance 6, which will produce6 * 5 * 4 * 3 * 2 * 1 = 720.For
this purpose, we can use the recursive method, which is shown in the following code
snippet:

int Factorial (int n)

{
if(n == 1)
return 1;

return n * Factorial(n - 1);

}

For the preceding function, we can calculate the complexity similarly to how we did for the
iterative method, which is £ (n) = n since it depends on how much data is being processed
(which is n). We can use a constant, for instance c, to calculate the lower bound and the
upper bound.

Amortized analysis

In the previous section, we just discussed the single input, n, for calculating the complexity.
However, sometimes we will deal with more than just one input. Please look at the
following sumOfDivision () function implementation:

int SumOfDivision (
int nArr[], int n, int mArr[], int m)

{
int total = 0;

[47]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Learning Data Structures and Algorithms in C++ Chapter 1

for(int i = 0; i < n; ++1)
{
for(int j = 0; J < m; ++3)
{
total += (nArr[i] * mArr[jl);

}
}

return total;

}

And that's where amortized analysis comes in. Amortized analysis calculates the
complexity of performing the operation for varying inputs, for instance, when we insert
some elements into several arrays. Now, the complexity doesn't only depend on the n input
only, but also the m input. The complexity can be as follows:

Time Complexity(n, m) = n - m

We are going to discuss these analysis methods in more detail in the following chapters.

Summary

This chapter provided us with an introduction to basic C++ (simple program, IDE, flow
control) and all data types (fundamental and advanced data types, including template and
STL) that we will use to construct the data structures in the following chapters. We also
discussed a basic complexity analysis, and we will dig into this deeper in the upcoming
chapters.

Next, we are going to create our first data structures, that is, linked list, and we are going to
perform some operations on the data structure.

QA section

What is the first function in C++ which is executed for the first time?

Please list the fundamental data types in C++!

What can we use to control the flow of code?
What is the difference between enums and structs?

What are the abstraction, information hiding, and encapsulation techniques?
Please explain!

[48]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Learning Data Structures and Algorithms in C++ Chapter 1

What is the keyword to create a template in C++?
What is the difference between the function template and the class template?
What is the difference between Big Theta, Big-O, and Big Omega?

Further reading

You can also refer to the following links:

http://www.learncpp.com/

https://www.geeksforgeeks.org/analysis-of-algorithms—-set—-1-asymptotic—
analysis/

https://www.geeksforgeeks.org/analysis-of-algorithms—-set-2-asymptotic—
analysis/

https://www.geeksforgeeks.org/analysis-of-algorithms—-set-3asymptotic—
notations/

[49]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Storing Data in Lists and Linked
Lists

In the previous chapter, we discussed basic C++ programming, so that now we can build a
program and run it. We also tried to find out the complexity of the code flow using
algorithm analysis. In this chapter, we are going to learn about building the list and linked
list data structures and find out the complexity of each data structure. To understand all of
the concepts in these data structures, these are the topics we are going to discuss:

¢ Understanding the array data type and how to use it

Building the list data structure using the array data type

Understanding the concept of node and node chaining

Building SinglyLinkedList and DoublyLinkedList using node chaining

Applying the Standard Template Library to implement the list and linked list

Technical requirements

To follow along with this chapter including the source code, we require the following:

¢ A desktop PC or Notebook with Windows, Linux, or macOS
e GNU GCC v5.4.0 or above

e Code::Block IDE v17.12 (for Windows and Linux OS) or Code::Block IDE v13.12
(for macOS)

¢ You will find the code files on GitHub at https://github.com/
PacktPublishing/CPP-Data—-Structures—and-Algorithms

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

Getting closer to an array

An array is a series of elements with the same data type that is placed in contiguous
memory locations. This means that the memory allocation is assigned in consecutive
memory blocks. Since it implements contiguous memory locations, the elements of the
array can be individually accessed by the index. Let's take a look at the following array

illustration:
Memory Address 0x0400 0x0401 O0x0402 0x0403 0x0404
Content | 21 | 47 | 87 | 35| 92
Index 0 1 2 3 4

As we can see in the preceding illustration, we have an array containing five elements. Since
the array uses zero-based indexing, the index starts from 0. This index is used to access the
element value and to also replace the element value. The memory address stated in the
illustration is for example purposes only. In reality, the memory address might be different.
However, it illustrates that the memory allocation is contiguous.

Now, if we want to create the preceding array in C++, here is the code:

// Project: Array.cbp
// File : Array.cpp

#include <iostream>
using namespace std;
int main ()

{

// Initialize an array
int arr[] = { 21, 47, 87, 35, 92 };

// Access each element

cout << "Array elements: ";
for(int 1 = 0; 1 < sizeof (arr)/sizeof (*arr); ++1i)
cout << arr[i] << " ";

cout << endl;

// Manipulate several elements
arr([2] = 30;

[51]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

arr[3] = 64;

// Access each element again

cout << "Array elements: ";
for(int i = 0; i < sizeof (arr)/sizeof (*arr); ++1i)
cout << arr[i] << " ";

cout << endl;

return 0;

}

From the preceding code, we see that initializing an array is simple, and this is done by
defining the array data type, the array's name followed by a couple of square brackets ([1),
and the element's value. In the preceding code, our array's name is arr. We can access each
element by using the index. In the code, we print each element by iterating each element
and accessing the element value using arr [1]. We also manipulate the value of indexes 2
and 3 by using arr[2] = 30and arr[3] = 64.If we build and run the code, we will get
the following result:

-

Terminal

Array elements: 21 47 87 35 92
Array elements: 21 47 30 64 92

Process returned 0 (0x0) execution time : 0.004 s
Press ENTER to continue.

As we can see in the preceding screenshot, we've got what we expected since we have
successfully initialized an array, accessed each element, and manipulated the element's
value.

The array data type doesn't have a built-in method to find out how many
elements the array has. Even though we already know that the number

of elements is five, we use sizeof (arr) /sizeof (*arr) to figure out the
number of elements. It's the best practice in array manipulation because,
sometimes, we don't know how many elements the array has.

However, this only works when the sizeof (arr) /sizeof (*arr)
construct is in the same scope as the definition of the array. If, for example,

we try this from a function that receives the array as a parameter, this will
fail.

[52]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

There's an interesting fact about arrays—we can access the array's element using a pointer.
As you may know, a pointer is a variable that holds the address instead of the value. And,
since we discussed earlier that each element in the array has its own address, we can access
each array's element using its address.

To use a pointer as an array, we need to initialize it to hold an array, as shown in the
following example:

int * ptr = new int([5] { 21, 47, 87, 35, 92 };

After the preceding initialization, we have a pointer named pt r that points to the first
element of an array containing five elements. However, the pt r variable holds the first
array's element address at the start. To access the next address, we can increment the ptr
variable (pt r++) so that it will point to the next element. To get the value of the currently
selected address, we can use a wildcard symbol before the pointer name (*ptr); see the
following two lines of code:

cout << *ptr << endl;
cout << ptr << endl;

The former statement in the preceding code snippet will print out the value that the pointer
points to, and the latter will print the address that the pointer holds. Interestingly, since we
initialize the ptr pointer as an array, we can access the value of each element and the
address as well by its index. Please take a look at the following code snippet:

cout << ptr[i] << endl;
cout << &ptr[i] << endl;

In the preceding code snippet, the former line will print the value of the selected element
and the latter will print the address of the selected element (since we added the apostrophe
symbol before the pointer name—=&ptr [i]). Now, let's wrap them all to create a code, as
follows:

// Project: Array_As_Pointer.cbp
// File : Array_As_Pointer.cpp

#include <iostream>
using namespace std;
int main ()

{

// Initialize the array length
int arrLength = 5;

[53]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

// Initialize a pointer
// to hold an array
int * ptr = new int[arrLength] { 21, 47, 87, 35, 92 };

// Display each element value
// by incrementing the pointer (ptr++)
cout << "Using pointer increment" << endl;
cout << "Value\tAddress" << endl;
while (*ptr)
{

cout << *ptr << "\t";

cout << ptr << endl;

ptr++;

// Since we have moved forward the pointer five times
// we need to move it back
ptr = ptr - 5;

// Display each element value
// by accessing pointer index (ptr[])
cout << "Using pointer index" << endl;
cout << "Value\tAddress" << endl;
for(int 1 = 0; i < arrLength; ++i)
{

cout << ptr[i] << "\t";

cout << g&ptr[i] << endl;

return 0;

[54]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

And if we build and run the preceding code, we will get the following output:

Terminal

Using pointer increment
Address
0x2043c20
0x2843c24
0x2043c28
0x2043c2c
0x2043c30

Using pointer index
Address
Ox2043c20
Ox2043c24
Ox2043c28
0x2043c2c
0x2043c30

Process returned 0 (0x0) execution time : 0.002 s
Press ENTER to continue.

As we can see in the preceding screenshot, we can access each element of the pointer array
by Using pointer increment and Using pointer index.However, if we use pointer
increment, we have to remember that after increasing the pointer, it will no longer hold the
address of the array. The solution is that we need to decrement the pointer again, like we
did in the preceding code.

The array we discussed is also called a one-dimensional array. We can
also initialize a multidimensional array, for instance a 3 x 5 array, by

using the following code:
int multiArray[][] = new int[3][5];

The other implementation of the multi-dimensional array is similar to the
one-dimensional array.

Building a List ADT

A list is a sequence of items with similar data types, where the order of the item's position
matters. There are several common operations that are available in a List ADT, and they are:

e Get (i), which will return the value of selected index, i. If the i index is out of
bounds, it will simply return -1.

[55]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

e Insert (i, v),which will insert the v value at the position of index 1.

e Search (v), which will return the index of the first occurrence of v (if the v value
doesn't exist, the return value is -1).

e Remove (i), which will remove the item in the i index.

For simplicity, we are going to build a List ADT that accepts int data
only, from zero (0) and higher.

Now, by using the array data type we discussed earlier, let's build a new ADT named List
which contains the preceding operations. We need two variables to hold the list of items
(m_items) and the number of items in the list (m_count). We will make them private so
that it cannot be accessed from the outside class. All four operations described previously
will be also implemented in this class. In addition, we need a constructor, a destructor, and
a method to let us know the number of items that the List class has, which is named
Count (). Based on this requirement, the List . h file will contain the following code:

// Project: List.cbp
// File : List.h
#ifndef LIST_H
#define LIST_H

#include <iostream>

class List
{
private:
int m_count;
int * m_items;

public:

List ();
~List ();
int Get (int index);
void Insert (int index, int wval);
int Search (int wval);
void Remove (int index);
int Count ();

bi

#endif // LIST_H

[56]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

Fetching an item in the List

Let's implement the Get () method. It simply returns the value of the selected index.
However, we need to ensure that the index passed to the method is not out of bounds. The
implementation should be as follows:

int List::Get (int index)
{
// Check if the index is out of bound
if (index < 0 || index > m_count)
return -1;

return m_items[index];

}

As we can see in the preceding code, the complexity of the Get () method is 0 (1) since it
doesn't depend on the number of the List elements.

Inserting an item into the List ADT

For the Insert () method, we need to increase the capacity of the m_items variable each
time we insert a new item. After that, we need to iterate each item of the old

m_items variable and then assign them to the new m_items variable. We also need to
ensure where we put the new item stated by the index variable passed by the user. The
implementation should be as follows:

void List::Insert (int index, int wval)
{
// Check if the index is out of bound
if(index < 0 || index > m_count)
return;

// Copy the current array
int * oldArray = m_items;

// Increase the array length
m_count++;

// Initialize a new array
m_items = new int[m_count];

// Fill the new array with inserted data
for (int i=0, j=0; i < m_count; ++i)

{

[57]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

if (index == 1)

{
m_items[i] = val;

3

else

{
m_items[i] = oldArray[j];
++3;

}

// Remove copied array
delete [] oldArray;
}

As we can see in the preceding code, we need to counter variables i and j to assign an old
array to new array. Since it will iterate all elements of List items, the number of items
matters. The complexity will be 0 (N), where is N in the number of the List elements.

Finding out the index of a selected item in the
List ADT

The Search () method will also iterate each items' list until it finds the matched value. The
return value of this method will be the index of List. It will return -1 if no result is found.
The implementation should be as follows:

int List::Search (int wval)
{
// Looping through the array elements
// return the array index if value is found
for (int i=0; i < m_count; ++i)
{
if(m_items[i] == wval)
{
return i;
}
}

return -1;

}

As you can guess, the complexity of this method will be 0 (n) for the average and worst
case scenarios, since it will iterate through all list elements. However, in the best case, it can
be 0 (1) if val is found at the first position.

[58]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

Removing an item from the List ADT

The Remove () method will iterate all List elements, and then assign the new array to hold
new List elements. It will skip the selected index to remove the item. The implementation
should be as follows:

void List::Remove (int index)

{
// Check if the index is out of bound
if(index < 0 || index > m_count)
return;

// Copy the current array
int * oldArray = m_items;

// Decrease the array length
m_count—-—;

// Initialize a new array
m_items = new int[m_count];

// Fill the new array
// and remove the selected index
for (int i=0, j=0; i < m_count; ++i, ++7)
{
if (index == j)
{
++3;

m_items[i] = oldArravyI[jl;

// Remove copied array
delete [] oldArray;
}

Similar to the Insert () method, the complexity of the Remove () method is O (N), even if
the user removes the first position.

[59]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

Consuming a List ADT

Now, let's consume our new List data type. We will initialize a new List and give some
items to it. We will then insert several items again and find out if it works. Then, we will
remove an item that we previously searched for, and then search for the item again to
ensure it has now gone. Here is the code that we can find in the main. cpp file of the

List.cbp project:

// Project: List.cbp
// File : main.cpp
#include "List.h"

using namespace std;

int main ()

{
// Initialize a List
List list = List();

// Add several items to the List
list.Insert (0, 21);
list.Insert (1, 47)
list.Insert (2, 87);
list.Insert (3, 35)
list.Insert (4, 92)

// Print current List

cout << "List elements:" << endl;
for(int i = 0; i < list.Count(); ++i)
{

cout << list.Get (i) << " ";

}

cout << endl << endl;

// Insert several items in the middle of the List
list.Insert (2, 25);

list.Insert (2, 71);

// Print the List again

cout << "New List elements:" << endl;
for(int i = 0; i < list.Count(); ++i)
{

cout << list.Get (i) << " ";

}

cout << endl << endl;

[60]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Storing Data in Lists and Linked Lists Chapter 2

}

// Search value 71
cout << "Search element 71" << endl;

int result = list.Search(71);
if (result == -1)
cout << "71 is not found";
else
cout << "71 is found at index " << result;

cout << endl << endl;

// Remove index 2

cout << "Remove element at index 2" << endl;
list.Remove (2);

cout << endl;

// Print the List again

cout << "New List elements:" << endl;
for(int i = 0; i < list.Count(); ++1i)
{

cout << list.Get (i) << " ";

3
cout << endl << endl;

// Search value 71 again
cout << "Search element 71 again" << endl;
result = list.Search(71);

if (result == -1)
cout << "71 is not found";
else
cout << "71 is found at index " << result;

cout << endl;

return 0;

Fortunately, our List data type works well and we can apply all the operations that List
should have. If we build and run the List . cbp project, we will get the following output:

[61]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

EBSCChost

Storing Data in Lists and Linked Lists Chapter 2

Terminal

List elements:
21 47 B7 35 92

New List elements:
21 47 71 25 BT 35 92

Search element 71
71 is found at index 2

Remove element at index 2

New List elements:
21 47 25 BT 35 92

Search element 71 again
71 is not found

Process returned 0 (0x0) execution time : 0.0803 s
Press ENTER to continue.

Introduction to node

The node is the basic building block of many data structures which we will discuss in this
book. Node has two functions. Its first function is that it holds a piece of data, also known as
the Value of node. The second function is its connectivity between another node and itself,
using an object reference pointer, also known as the Next pointer. Based on this
explanation, we can create a Node data type in C++, as follows:

class Node
{
public:
int Value;
Node * Next;
bi

We will also use the following diagram to represent a single node:

Value Next

[62]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Storing Data in Lists and Linked Lists

Chapter 2

Now, let's create three single nodes using our new Node data type. The nodes will contain

the values 7, 14, and 21 for each node. The code should be as follows:

Node * nodel = new Node;
nodel->Value = 7;

Node * node2 = new Node;
node2->Value = 14;

Node * node3 = new Node;
node3->Value = 21;

Note that, since we don't initialize the Next pointer for all nodes, it will be automatically

filled with the null pointer (NULL). The illustration will be as follows:

7 NULL 14 NULL

21

NULL

It's time to connect the preceding three nodes so that it becomes a node chain. We will set
the Next pointer of node1 to the node2 object, set the Next pointer of node2 to the node3
object, and keep the Next pointer of node3 remaining NULL to indicate that it's the end of

the chain. The code will be as follows:

nodel->Next = node2;
node2->Next = node3;

By executing the preceding code snippet, the illustration of the preceding three nodes will

be as follows:

21

NULL

To prove that our code is working, we can add a PrintNode () function to print the node
chain. The following is the complete code for creating a Node data type, initializing the data

type, creating a node chain, and printing the chain:

// Project: Node_Chain.cbp
// File : main.cpp
#include <iostream>

using namespace std;

class Node

[63]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Storing Data in Lists and Linked Lists

Chapter 2

{

public:
int Value;
Node * Next;

bi

void PrintNode (Node * node)
{
// It will print the initial node
// until it finds NULL for the Next pointer
// that indicate the end of the node chain
while (node != NULL)
{
cout << node->Value << " -—> ";
node = node->Next;

cout << "NULL" << endl;

int main ()
{
/] == +——— +
/7 7 | NULL |
/] == +——— +
Node * nodel = new Node;

nodel->Value = 7;

/] == +——— +
// | 14 | NULL |
/] == +——— +
Node * node2 = new Node;

node2->Value = 14;

/] == +——— +
// 1 21 | NULL |
/] == +——— +
Node * node3 = new Node;

node3->Value = 21;

/] == +——— + A +——— + A
/7 7o +--—->| 14 | NULL | | 21
/] == +——— + A +——— + A
nodel->Next = node2;
/] == +——— + A +——— + A
/7] 7 t-————>| 14 | > 21
/] == +——— + A +——— + A
[64]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

node2->Next = node3;

// Print the node
PrintNode (nodel) ;

return 0;

}

As we can see in the preceding code, we have a PrintNode () function to iterate the input
node until the Next pointer of the selected node is NULL. And since we will use the
PrintNode () function to prove that the node chain is working by running the preceding
code, we will get the following output:

e Terminal
7 -> 14 -> 21 -> NULL

Process returned 0 (@x@) execution time : 0.003 s
Press ENTER to continue.

Indeed, we get what we expected—our node chaining is working and we have a new data
type named Node. However, a problem will occur since we can only store the int data type
to the Value property of the Node data type. Should we create a new Node data type if we
want to deal with other data types, such as float, bool, or char? Fortunately, the answer
is no. If we recall our discussion about Playing with Templates in chapter 1, Learning Data
Structures and Algorithms in C++, we can refactor the preceding Node data type to handle not
only the int data type, but also all various data types available in the C++ language. The
Node class will now look as follows:

template <typename T>
class Node
{
public:
T Value;
Node<T> * Next;

Node (T value) : Value(value), Next (NULL) {}
bi

As we can see from the preceding code snippet, we added a constructor to the data type.
The initialization of the instance of the class can be simplified as follows:

Node<float> * nodel = new Node<float>(4.93);
Node<float> * node2 new Node<float> (6.45);
Node<float> * node3 = new Node<float>(8.17);

[65]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

We can see that, now we just need a one line instruction to create a single node since it has a
constructor. The rest of the operation is the same as the previous full code in
Node_Chain. cbp. The full code for this Node template class should be as follows:

// Project: Node_Chain_Template.cbp
// File : main.cpp
#include <iostream>

using namespace std;

template <typename T>
class Node
{
public:
T Value;
Node<T> * Next;

Node (T value) : Value(value){}
bi

template<typename T>
void PrintNode (Node<T> * node)
{
// It will print the initial node
// until it finds NULL for the Next pointer
// that indicate the end of the Node Chain
while (node != NULL)
{
cout << node->Value << " -> ";
node = node—>Next;

cout << "NULL" << endl;

/] A== f———— +
// 1 4.93 | NULL |
/] A== f———— +

Node<float> * nodel = new Node<float>(4.93);

/] A== f———— +
// 6.45 | NULL
/] A== f———— +

Node<float> * node2 = new Node<float> (6.45);

[66]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

/] == +——— +
// | 8.17 | NULL |
/] A== +——— +

/] == +——— + A +——— + A +——— +
// 1 4.93 | +-———=>| 6.45 | NULL | | 8.17 | NULL |
/] == +——— + A +——— + A +——— +
nodel->Next = node2;

/] == +——— + A +——— + A +——— +
// 1 4.93 | +————>| 6.45 | +-———>| 8.17 | NULL |
/] == +——— + A - + A +——— +
node2->Next = node3;

// Print the node
PrintNode (nodel) ;

return 0;

}

Also, we need to refactor the PrintNode () function to become a function template—which
we have discussed in chapter 1, Learning Data Structures and Algorithms in C++ since we
will pass a class template to it. Again, we will get a similar output when we run the
preceding code comparing it to the Node_Chain. cbp project, as follows:

Lot Terminal

4.93 -> 6.45 -> 8.17 -= NULL

Process returned © (8x0) execution time : 0.088 s
Press ENTER to continue.

Now, using our new Node<T> data type, let's move on to creating the linked list.

[67]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Storing Data in Lists and Linked Lists Chapter 2

Building a Singly Linked List ADT

The Singly Linked List (also known as the linked list) is a sequence of items linked with
each other. It's actually a chaining of nodes, where each node contains the item's value and
the next pointer. In other words, each item in the linked list has a link to its next item in the
sequence. The thing that differs between the linked list and the node chain is that the linked
list has a Head and a Tail pointer. The Head informs the first item and the Tail informs
the last item in the linked list. Similar to the List ADT, we discussed earlier, the linked list
has Get (), Insert (), Search (), and Remove () operations, where all of the operations
have the same functionality compared to List. However, since we now have Head and
Tail pointers, we will also create others operations, and these are InsertHead (),
InsertTail (), RemoveHead (), and RemoveTail (). The declaration of the LinkedList
class should be as follows:

template <typename T>
class LinkedList
{
private:
int m_count;

public:
// The first node in the list
// or null if empty
Node<T> * Head;

// The last node in the list
// or null if empty
Node<T> * Tail;

// Constructor
LinkedList () ;

// Get () operation
Node<T> * Get (int index);

// Insert () operation

void InsertHead(T val);

void InsertTail(T wval);

void Insert (int index, T val);

// Search() operation
int Search(T wval);

// Remove () operation
void RemoveHead() ;

[68]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Storing Data in Lists and Linked Lists Chapter 2

void RemoveTail () ;
void Remove (int index);

// Additional operation
int Count ();
void PrintList ();

}i

As you can see in the preceding declaration code, we have the Count () operation, which
has the same functionality as the List, which is used to inform us about the number of
items in the LinkedList class. There is also the PrintList () operation to make it easier
to print the content of the LinkedList class.

Fetching an item in the LinkedList class

The first operation we are going to discuss is Get (). It will return the Node of the selected
index, however, it will return NULL if the selected index is out of bounds. The
implementation of the Get () method should be as follows:

template <typename T>
Node<T> * LinkedList<T>::Get (int index)
{
// Check if the index is out of bound
if (index < 0 || index > m_count)
return NULL;

// Start from the Head
Node<T> * node = Head;

// Iterate through the linked list elements
// until it finds the selected index
for(int i = 0; i < index; ++i)

{

node = node—>Next;

// Simply return the node result
return node;

[69]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

As we can see, the complexity of the Get () operation is O (N) since it has to iterate through
the N elements that the LinkedList class has. However, in the best case, the complexity can
be 0 (1) if the selected index is 0. Unfortunately, as we discussed earlier, the complexity is
always 0 (1) in the List ADT, no matter which index is selected.

Inserting an item in the LinkedList class

Let's move on to the Insert () operation for the LinkedList class. There are four cases for
this operation, and they are:

1. The new item is inserted at the beginning of the linked list, which is index = 0,
so that it becomes the new Head.

2. The new item is added to an empty linked list. If the linked list has only one
element, both Head and Tail will point to the only element.

3. The new item is inserted into the last of the linked list, which is index = N, so it
becomes the new Tail.

4. The new item is inserted in the other position of the linked list, where index = 1
to N-1.

Now, let's create the implementation for inserting an operation. For cases 1 and 2, we can
solve these problems by creating an InsertHead () operation. The implementation of this
operation is simple and efficient, as we can see in the following code:

template <typename T>
void LinkedList<T>::InsertHead (T val)
{

// Create a new Node

Node<T> * node = new Node<T> (val);

// The current Head will no longer become a Head
// so the Next pointer of the new Node will

// point to the current Head

node->Next = Head;

// The new Node now become the Head
Head = node;

// If the linked list is empty
// The Tail is also the Head
if (m_count == 0)

Tail = Head;

[70]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

// One element is added
m_count++;

}

Based on the preceding code, the InsertHead () operation will create a new Node and then
assign it to the new Head. If the linked list is empty before applying this operation, the new
Node will also become a new Tail. For this, the complexity of this operationis 0 (1),
regardless of the number of the linked list element.

For case 3 in the inserting operation, we can implement the InsertTail () operation. This
operation is also simple and efficient. We just need to create a new Node and then assign it
to the new Tail. The Next pointer of the previous Tail will point to this new Tail. The
code for this operation should be as follows:

template <typename T>
void LinkedList<T>::InsertTail (T wval)

{
// If the linked list is empty,
// just simply invoke InsertHead()
if (m_count == 0)
{
InsertHead (val);
return;

}

// Create a new Node
Node<T> * node = new Node<T>(val);

// The current Tail will no longer become a Tail
// so the Next pointer of the current Tail will
// point to the new node

Tail->Next = node;

// The new Node now become the Tail
Tail = node;

// One element is added
m_count++;

}

Please note that we might run the InsertTail () operation when the linked list has no
element. If this occurs, case 2 will happen and we can simply invoke the InsertHead ()
method. The complexity of the InsertTail () operationis 0 (1), regardless of the number
of the linked list element. It will even invoke the InsertHead () operation since the
InsertHead () operation's complexity is also O (1).

[71]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

Now, for case 4, we need to traverse the elements of the linked list to find the two elements
where we want to insert the new element between them. We will call them prevNode and
nextNode. After we find them, we then create a new node, point the Next pointer of
prevNode to the new node, and then point the Next pointer of the new node to the
nextNode. The implementation of the Insert () operation should be as follows:

template <typename T>
void LinkedList<T>::Insert (int index, T val)
{
// Check if the index is out of bound
if(index < 0 || index > m_count)
return;

// If inserting a new Head
if (index == 0)
{
InsertHead (val) ;
return;
}
// If inserting a new Tail
else if (index == m_count)
{
InsertTail (val);
return;

// Start to find previous node
// from the Head
Node<T> * prevNode = Head;

// Traverse the elements until

// the selected index is found
for(int i = 0; i < index - 1; ++1i)
{

prevNode = prevNode->Next;

// Create the next node which is
// the element after previous node
Node<T> * nextNode = prevNode->Next;

// Create a new node
Node<T> * node = new Node<T> (val);

// Insert this new node between
// the previous node and the next node
node->Next = nextNode;

[72]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

prevNode—>Next = node;

// One element is added
m_count++;

}

Since we need to traverse the List element, the complexity of this Insert () operation is
0 (N) . However, in the best case, the complexity is 0 (1) since we might insert a Head or a
Tail using this operation.

Getting the index of the selected item in the
LinkedList

To find out the position of the selected value, we need to traverse the List elements. Once
the selected value is matched with the value of the current position, the method just needs
to return its current position index. The implementation of the Search () operation should
be as follows:

template <typename T>
int LinkedList<T>::Search (T val)
{
// If LinkedList is empty,
// just return NOT_FOUND
if (m_count == 0)
return -1;

// Need to count the index
int index = 0;

// Traverse from the Head node
Node<T> * node = Head;

// Traverse until the selected value
// is matched with the wvalue
// of the current position,

while (node->Value != val)
{

index++;

node = node—->Next;

// This will happen

// if the selected value
// is not found

if (node == NULL)

[73]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

return -1;

}

return index;

}

Again, since we need to traverse the List element, the complexity of this operation will be
0 (N) . However, the selected value may be found in the first position so that the complexity
will be 0 (1) in the best case.

Removing an item from the LinkedList ADT

Similar to the inserting operation, the removing operation also has several cases, and they
are:

1. The removed item is in the Head, which is index = 0

N-1

3. The removed item is in the other position of the linked list, where index = 1 to
N-2

2. The removed item is in the Tail, which is index

For case 1, the implementation is straightforward. We just need to point the Head pointer to
the node which is pointed by the Next pointer of the current Head (in other words, the
second element) and delete the first element of the linked list. Please see the following code:

template <typename T>
void LinkedList<T>::RemoveHead ()
{
// Do nothing if list is empty
if (m_count == 0)
return;

// Save the current Head
// to a new node
Node<T> * node = Head;

// Point the Head Pointer
// to the element next to the current Head
Head = Head->Next;

// Now it's safe to remove
// the first element
delete node;

[74]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists

Chapter 2

// One element is removed
m_count—--—;

}

As we can see in the preceding code, regardless of the number of the linked list element, the

complexity of the RemoveHead () operationis O (1).

For the RemoveTail () operation, we have to traverse all list elements so that we have two
last nodes, which are in indexes N-1 and N-2. Then, we set the Next pointer of the N-2
node to point to NULL. After that, we can safely remove the last node. Since this operation
must traverse all list elements, the complexity will be 0 (N) . The implementation of this

operation should be as follows:

template <typename T>
void LinkedList<T>::RemoveTail ()
{
// Do nothing if list is empty
if (m_count == 0)
return;

// If List element is only one
// just simply call RemoveHead ()
if (m_count == 1)
{

RemoveHead () ;

return;

// Start to find previous node
// from the Head
Node<T> * prevNode = Head;

// This is the candidate of

// removed items which is

// the element next to the prevNode
Node<T> * node = Head->Next;

// Traverse the elements until
// the last element
while (node—->Next != NULL)
{
prevNode = prevNode->Next;
node = node—->Next;

// the prevNode now becomes the Tail
// so the Next pointer of the prevNode

[75]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

// point to NULL
prevNode—>Next = NULL;
Tail = prevNode;

// Now it's safe to remove
// the last element
delete node;

// One element is removed
m_count—--—;

}

The last operation is the Remove () operation, which will remove the list element in-
between the first and the last element. In this operation, we need to traverse the list element
until the selected index is reached. Similar to the Insert () operation, we need to find the
element before and after the selected index. After we find them, we can link them together
and then we can safely remove the element in the selected index. The code will be as
follows:

template <typename T>
volid LinkedList<T>::Remove (int index)
{
// Do nothing if list is empty
if (m_count == 0)
return;

// Do nothing if index is out of bound
if(index < 0 || index >= m_count)
return;

// If removing the current Head
if (index == 0)
{
RemoveHead () ;
return;
}
// If removing the current Tail
else if(index == m_count - 1)
{
RemoveTail () ;
return;

// Start to traverse the list
// from the Head
Node<T> * prevNode = Head;

[76]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

// Find the element before

// the selected index

for(int i = 0; i < index - 1; ++1i)
{

prevNode = prevNode->Next;

// The removed element is after
// the prevNode
Node<T> * node = prevNode->Next;

// The nextNode will be the neighbor of
// prevNode if the node is removed
Node<T> * nextNode = node->Next;

// Link the prevNode to nextNode
prevNode—->Next = nextNode;

// It's now safe to remove
// the selected index element
delete node;

// One element is removed
m_count—--—;

}

As we can see in the preceding code, we will invoke the RemoveHead () operation if the
index = 0 and will invoke the RemoveTail () operation if the index = m_count - 1.
It's now clear that in the best case (when the RemoveHead () is invoked), the complexity is
0 (1), and in the worst case (when the RemoveTail () is invoked), the complexity is O (N).

Consuming the LinkedList ADT

Now, it's time to consume our new LinkedList data type in our code. We can use all of the
operations of the data type. We will try to initialize a new LinkedList, add several items,
and then invoke the Get (), Insert (), Search (), and Remove () operations. Don't worry
about invoking these operations in a specific order; as long as we have instantiated the
LinkedList object, everything will work since we have restricted the out of bound

index problem. Without further ado, here's the code:

// Project: Singly_Linked_List.cbp
// File : main.cpp

#include <iostream>

#include "Node.h"

[77]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

#include "LinkedList.h"
using namespace std;

int main ()
{
// NULL
LinkedList<int> linkedList = LinkedList<int>();

// 43->NULL
linkedList.InsertHead (43);

// 76->43->NULL
linkedList.InsertHead (76);

// 76->43->15->NULL
linkedList.InsertTail (15);

// 76->43->15->44->NULL
linkedList.InsertTail (44);

// Print the list element

cout << "First Printed:" << endl;
linkedList.PrintList ();

cout << endl;

// 76->43->15->44->100->NULL
linkedList.Insert (4, 100);

// 76=>43->15->48->44->100->NULL
linkedList.Insert (3, 48);

// 22->76->43->15->48->44->100->NULL
linkedList.Insert (0, 22);

// Print the list element

cout << "Second Printed:" << endl;
linkedList.PrintList ();

cout << endl;

// Get value of the second index
// It should be 43
cout << "Get value of the second index:" << endl;
Node<int> * get = linkedList.Get (2);
if (get != NULL)
cout << get->Value;
else
cout << "not found";

[78]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

cout << endl << endl;

// Find the position of value 15

// It must be 3

cout << "The position of value 15:" << endl;
int srch = linkedList.Search (15);

cout << srch << endl << endl;

// Remove first element

cout << "Remove the first element:" << endl;
linkedList .Remove (0) ;

// 76->43->15->48->44->100->NULL
linkedList.PrintList ();

cout << endl;

// Remove fifth element

cout << "Remove the fifth element:" << endl;
linkedList .Remove (4);

// 76->43->15->48->100->NULL
linkedList.PrintList ();

cout << endl;

// Remove tenth element

cout << "Remove the tenth element:" << endl;
linkedList .Remove (9);

// Nothing happen

// 76->43->15->48->100->NULL
linkedList.PrintList ();

cout << endl;

return 0;

}

There are commenting lines before each code line to indicate the expected result. To display
the List element, we use the PrintList () method with the following implementation:

template <typename T>
void LinkedList<T>::PrintList ()
{

Node<T> * node = Head;

while (node != NULL)
{

std::cout << node->Value << " —-> ";
node = node—>Next;

[79]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

std::cout << "NULL" << std::endl;
}

And if we build and run the preceding Singly_Linked_List.cbp project, we will see the
following window in our monitor:

! Terminal

First Printed:
76 -> 43 -> 15 -> 44 -> NULL

Second Printed:
22 -> 76 -> 43 -> 15 -> 48 -> 44 -> 100 -> NULL

Get value of the second index:
43

The position of value 15:
3

Remove the first element:
76 -> 43 -> 15 -> 48 -> 44 -> 100 -> NULL

Remove the fifth element:
76 -> 43 -> 15 -> 48 -= 100 -> NULL

Remove the tenth element:
76 -> 43 -> 15 -> 48 -> 1080 -> NULL

Process returned 0 (0x08) execution time : ©.006 s
Press ENTER to continue.

Building the Doubly Linked List ADT

The Doubly Linked List is almost the same as the Singly Linked List, except the Node used
by Doubly Linked List has a Previous pointer instead of only having the Next pointer. The
existence of the Previous pointer will make the Doubly Linked List possible to move
backwards from Tail to Head. As a result, we can reduce the complexity of

the RemoveTail () operation to O (1) instead of O (N), like we have in the Singly Linked
List data type. We are going to discuss this further later in this section. As of now, let's
prepare the new Node data type.

[80]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Storing Data in Lists and Linked Lists Chapter 2

Refactoring the Node<T> data type

Before we build a Doubly Linked List, we need to add a Previous pointer to the existing
Node data type. To avoid any confusion, we will create a new data type
named DoublyNode with the following declaration:

template <typename T>
class DoublyNode

{
public:
T Value;
DoublyNode<T> * Previous;
DoublyNode<T> * Next;

DoublyNode (T value);
i

The only difference between Node<T> and DoublyNode<T> is the existence of the
Previous pointer (as well as the data type name absolutely). By using this new
DoublyNode data type, we are going to refactor the preceding LinkedList ADT into
the DoublyLinkedList ADT.

Refactoring several operations in the LinkedList
ADT

Since the Doubly Linked List is similar to Singly Linked List, we can refactor our existing
LinkedList ADT to build a new DoublyLinkedList ADT since they have the same
available operations but with different implementations. However, the implementation of
the Get () and Search () operations is the same for these two ADTs because the traversal
process for each element will still move in forwarding, so we won't discuss it anymore. And
since DoublyLinkedList can move backwards, we will make a new operation named
PrintListBackward () to leverage our DoublyLinkedList data type. To make this clear,
here is the declaration of the DoublyLinkedList<T> data type:

template <typename T>
class DoublyLinkedList
{
private:
int m_count;

public:
// The first node in the list

[81]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Storing Data in Lists and Linked Lists Chapter 2

// or null if empty
DoublyNode<T> * Head;

// The last node in the list
// or null if empty
DoublyNode<T> * Tail;

// Constructor
DoublyLinkedList () ;

// Get () operation
DoublyNode<T> * Get (int index);

// Insert () operation

void InsertHead(T val);

void InsertTail (T val);

void Insert (int index, T val);

// Search () operation
int Search (T val);

// Remove () operation
void RemoveHead() ;

void RemoveTail () ;

void Remove (int index);

// Additional operation

int Count ();

void PrintList ();

void PrintListBackward();
bi

Removing an element

As we discussed earlier, in the DoublyLinkedList, we can have O (1) for the complexity
of the RemoveTail () operation. This can happen now since we have the Previous pointer
in each element. To do so, we just need to pick the current Tail node and then assign the
previous node of the current Tail as the new Tail. After that, we can safely remove the
last element. The implementation of the RemoveTail () operation will be as follows:

template <typename T>
void DoublyLinkedList<T>::RemoveTail ()
{

// Do nothing if list is empty

if (m_count == 0)

[82]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Storing Data in Lists and Linked Lists Chapter 2

return;

// If List element is only one
// just simply call RemoveHead ()
if (m_count == 1)
{

RemoveHead () ;

return;

// Save the current Tail
// to a new node
DoublyNode<T> * node = Tail;

// Point the Tail Pointer
// to the element before the current Tail
Tail = Tail->Previous;

// Set the new Next pointer of the new Tail
// to NULL since we are going to delete

// the last element

Tail->Next = NULL;

// Now it's safe to remove
// the last element
delete node;

// One element is removed
m_count—--—;

}

For the RemoveHead () operation, the Previous pointer of the new Head must point to
NULL, so we can refactor the RemoveHead () operation as follows:

template <typename T>
void DoublyLinkedList<T>::RemoveHead ()
{
// Do nothing if list is empty
if (m_count == 0)
return;

// Save the current Head
// to a new node
DoublyNode<T> * node = Head;

// Point the Head Pointer
// to the element next to the current Head

[83]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Storing Data in Lists and Linked Lists Chapter 2

Head = Head->Next;

// Now it's safe to remove
// the first element
delete node;

// If there's still any element in the list,
// the previous pointer of the Head
// should point to NULL
if (Head != NULL)
Head->Previous = NULL;

// One element is removed
m_count—--—;

}
And still, the complexity of the RemoveHead () operationis O (1).

For the Remove () operation, when we link the two nodes between the removed node, we
also need to point to the Previous pointer of the right element to the left element. The
implementation will be as follows:

template <typename T>
void DoublyLinkedList<T>::Remove (int index)
{
// Do nothing if list is empty
if (m_count == 0)
return;

// Do nothing if index is out of bound
if (index < 0 || index >= m_count)

return;

// If removing the current Head

if (index == 0)

{
RemoveHead () ;
return;

}

// If removing the current Tail

else if (index == m_count - 1)
{

RemoveTail () ;

return;

// Start to traverse the list

[84]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost

Storing Data in Lists and Linked Lists

Chapter 2

// from the Head
DoublyNode<T> * prevNode = Head;

// Find the element before
// the selected index
for(int i = 0; i < index - 1; ++1i)
{
prevNode = prevNode->Next;

// The removed element is after
// the prevNode
DoublyNode<T> * node = prevNode—->Next;

// The nextNode will be the neighbor of
// prevNode if the node is removed
DoublyNode<T> * nextNode = node—->Next;

// Link the prevNode to nextNode
prevNode—->Next = nextNode;
nextNode->Previous = prevNode;

// It's now safe to remove
// the selected index element
delete node;

// One element is removed
m_count—--—;

}

The complexity of this operation is the same as the Remove () operation of the LinkedList

data type; 0 (1) in the best case and 0 (N) in the worst case.

Inserting an element

Due to the existence of the Previous pointer, we also need to refactor the inserting

operation in the LinkedList data type. For the InsertHead () operation,

the Previous pointer of the former Head must point to the new Head, so that we can have

the new InsertHead () operation as follows:

template <typename T>
void DoublyLinkedList<T>::InsertHead (T val)
{
// Create a new Node
DoublyNode<T> * node = new DoublyNode<T> (val);

[85]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

// The current Head will no longer become a Head
// so the Next pointer of the new Node will

// point to the current Head

node->Next = Head;

// If the current Head is exist,
// the Previous pointer of the current Head
// should point to the node
if (Head != NULL)
Head->Previous = node;

// The new Node now become the Head
Head = node;

// If the linked list is empty
// The Tail is also the Head
if (m_count == 0)

Tail = Head;

// One element is added
m_count++;

}
The complexity of this InsertHead () operationisstill 0 (1).

For the InsertTail () operation, we need to point the Previous pointer of the new Tail
to the node before it. The implementation of the InsertTail () operation will be as
follows:

template <typename T>
void DoublyLinkedList<T>::InsertTail (T wval)
{
// If the linked list is empty,
// just simply invoke InsertHead()
if (m_count == 0)
{
InsertHead (val) ;
return;

// Create a new Node
DoublyNode<T> * node = new DoublyNode<T> (val);

// The current Tail will no longer become a Tail
// so the Next pointer of the current Tail will
// point to the new node

Tail->Next = node;

[86]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

// Also, the previous pointer of the new node
// should point to the current Tail
node->Previous = Tail;

// The new Node now become the Tail
Tail = node;

// One element is added
m_count++;

}
The complexity of this InsertTail () operationisstill 0 (1).

For the Insert () operation, we need to point the Previous pointer of the node after the
new element to this new element. Also, the Previous pointer of the new node points to the
node before this new node. The implementation of this operation will be as follows:

template <typename T>
void DoublyLinkedList<T>::Insert (int index, T wval)
{
// Check if the index is out of bound
if(index < 0 || index > m_count)
return;

// If inserting a new Head
if (index == 0)
{
InsertHead (val);
return;
3
// If inserting a new Tail
else if (index == m_count)
{
InsertTail (val);
return;

// Start to find previous node
// from the Head
DoublyNode<T> * prevNode = Head;

// Traverse the elements until

// the selected index is found
for(int i = 0; i < index - 1; ++1i)
{

prevNode = prevNode->Next;

[87]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

// Create the next node which is
// the element after previous node
DoublyNode<T> * nextNode = prevNode->Next;

// Create a new node
DoublyNode<T> * node = new DoublyNode<T> (val);

// Insert this new node between
// the previous node and the next node

node—->Next = nextNode;
node->Previous = prevNode;
prevNode—->Next = node;

nextNode—->Previous = node;

// One element is added
m_count++;

}

The complexity of this operation is still the same as the Insert () operation of
the LinkedList data type; O (1) in the best case and 0 (N) in the worst case.

Consuming the DoublyLinkedList ADT

Since the LinkedList<T> and DoublyLinkedList<T> data types have the exact same
operations, we can use the code in the main () function of the main. cpp file in the
Singly_Linked_List.cbp project to consume the DoublyLinkedList data type. The
code works like a charm when I try it, and produces the exact same output as the output of
the Singly_Linked_List.cbp project. However, since we now have a
PrintListBackward () method, here is the code to apply to the backward movement in
the DoublyLinkedList data type:

// Project: Doubly_Linked_List.cbp
// File : main.cpp

#include <iostream>

#include "DoublyNode.h"

#include "DoublyLinkedList.h"

using namespace std;

int main ()
{
// NULL
DoublyLinkedList<int> linkedList = DoublyLinkedList<int>();

[88]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Storing Data in Lists and Linked Lists

Chapter 2

// it will be printed backwardly
// 43->NULL
linkedList.InsertHead (43);

// 43->76->NULL
linkedList.InsertHead (76);

// 15->43->76->NULL
linkedList.InsertTail (15);

// 44->15->43->76->NULL
linkedList.InsertTail (44);

// Print the list element

cout << "First Printed:" << endl;
linkedList.PrintListBackward() ;
cout << endl;

// 100->44->15->43->76->NULL
linkedList.Insert (4, 100);

// 100->44->48->15->43->76->NULL
linkedList.Insert (3, 48);

// 100->44->48->15->43->76->22->NULL
linkedList.Insert (0, 22);

// Print the list element

cout << "Second Printed:" << endl;
linkedList.PrintListBackward() ;
cout << endl;

return 0;

[89]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Storing Data in Lists and Linked Lists Chapter 2

And if we build and run the preceding code, it will be displayed in the following window:

o Terminal

First Printed:
44 -> 15 -> 43 -> 76 -> NULL

Second Printed:
100 -> 44 -> 48 -> 15 -> 43 -> T

Process returned 0 (0x0) execution time : 0.0804 s
Press ENTER to continue.

Applying List and LinkedList using STL

C++ has three data types which we can use to store specific items such as List,
SinglyLinkedList, and DoublyLinkedList. std: :vector can be used as List,
std::forward_list can be used as SinglyLinkedList, and std::1ist can be used as
DoublyLinkedList. They both have fetching, inserting, searching, and removing
operations. However, the method names they have are different with our developed data
type, and we are going to discuss this in this section. In this section, we are going to
discuss std: :vector and std: :1ist only, since std: : forward_list is similar to std: :
list.

std::vector

A vector, which is like an array, is a container to store a bunch of items contiguously.
However, the vector can double its size automatically if we insert a new item when its
capacity has been reached. Also, vectors have many member functions that arrays don't
have, and provide iterators that act like pointers but aren't.

Don't forget to include the vector header at the beginning of code file if we are going to use
the std: :vector data type. To create a new vector object, we can initialize it as follows:

// Initialize a vector
vector<int> vectorlist = { 35, 41, 94 };

[90]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Storing Data in Lists and Linked Lists Chapter 2

The preceding code will create a new vector containing three elements. However, we can
initialize an empty vector and insert the vector using the push_back () method as follows:

// Initialize a vector
vector<int> vectorList;
vectorList.push_back (35);
vectorList.push_back (41);
vectorList.push_back (94);

To get the item of the specific index, we can use the at () method or we can use the square
bracket ([1), as we can see in the following code snippet:

// Get item's value based on the index
int 1 = vectorList.at (1);
int j = vectorList[0];

However, it is better to always use the at () method instead of the [] operator when we
want to access the specific element by its index in a vector instance. This is because, when
we accidentally access the out of range position, the at () method will throw an
out_of_range exception. Otherwise, the [] operator will give an undefined behavior.

Another data type that is used when applying a vector is an iterator. This is a pointer that is
used to point to a specific position of the vector. Suppose we are going to insert a new item
in the vector. We need to initialize the iterator first before we execute the insert ()
method, as we can see in the following code snippet:

// Initialize an iterator
vector<int>::iterator itr;

To insert a new item in the first position of the vector, we set the iterator to the beginning of
the vector and then pass it to the insert () method as follows:

// Insert an item to the first position
itr = vectorList.begin();
vectorList.insert (itr, 58);

We can also insert a new item to the last position of the vector by setting the iterator to the
end of the vector and then passing it to the insert () method as follows:

// Insert an item to the last position
itr = vectorList.end();
vectorList.insert (itr, 37);

[91]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

EBSCChost -

Storing Data in Lists and Linked Lists Chapter 2

The end () iterator is a past-the-end reference. In other words, trying to
get the value of * (vectorList.end()) will throw an exception.

And, to insert a new item into the middle of the vector, we can set the iterator to point to the
beginning of vector, and then we increase the iterator to the desired index. The following is
the code snippet that will insert a new item in the fourth position:

// Insert an item to the 4th position
itr = vectorlList.begin();
vectorList.insert (itr + 3, 67);

Since the vector is also the zero-indexing array, the fourth element is laid in the index = 3.

To search for the desired element, we can use the £ind () method provided by the vector.
However, to use this method, we need to include an algorithm header at the beginning of
the code file. This method needs three arguments—the first position pointer (iterator), the
last position pointer (iterator), and the value we are going to find. The method will return
the position of the found item as the iterator. However, if no elements match, the function
returns the last position iterator. The code snippet to search for an item in the vector is as
follows:

// Search 41 element
// It should be found

itr = find (vectorList.begin(), vectorList.end(), 41);
if (itr != vectorList.end())

cout << "Element found in vectorList: " << *itr;
else

cout << "Element not found in vectorList";
cout << endl << endl;

The last operation we need is to remove an item from the desired index. We can use

the erase () method provided by the vector. To use this method, we also need to include
the algorithm header. Similar to the insert () method, we need to find out the beginning
of the vector first by using an iterator. We can then increment the iterator by as many as the
index positions we are going to remove. If we run the second element of the vector, the code
should be as follows:

// Remove the 2nd element
itr = vectorList.begin();
vectorList.erase (itr + 1);

[92]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Storing Data in Lists and Linked Lists Chapter 2

For the complete source code of this vector discussion, you can find on the
code repository of this book under the vector folder inside
the Chapter02 folder.

std::list

C++ has a built-in template class that implements the Doubly Linked List. Since then, it also
contains all of the operations that the DoublyLinkedList data type has. Don't forget to
include the 1ist header at the beginning of code file if we are going to use the std: :1ist
data type. The usage of the iterator is also the same as the vector data type. We will
refactor our code in the main. cpp file of the Doubly_Linked_List.cbp project so that we
can use the 1ist data type. The code should be as follows:

int main ()

{
// Initialize a linked list
list<int> linkedList;

// 43->NULL
linkedList.push_front (43);

// 76->43->NULL
linkedList.push_front (76);

// 76->43->15->NULL
linkedList.push_back (15);

// 76->43->15->44->NULL
linkedList.push_back (44);

// Print the list element

cout << "First Printed:" << endl;
PrintLinkedList (linkedList);

cout << endl;

// 76->43->15->44->100->NULL
list<int>::iterator itr = GetIterator(linkedList.begin(), 4);
linkedList.insert (itr, 100);

// 76->43->15->48->44->100->NULL
itr = GetlIterator (linkedList.begin(), 3);
linkedList.insert (itr, 48);

[93]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

// 22->76->43->15->48->44->100->NULL
linkedList.insert (linkedList.begin (), 22);

// Print the list element

cout << "Second Printed:" << endl;
PrintLinkedList (linkedList);

cout << endl;

// Get value of the second index
// It should be 43
cout << "Get value of the second index:" << endl;
itr = GetlIterator (linkedList.begin(), 2);
if(itr != linkedList.end())
cout << *itr;
else
cout << "not found";
cout << endl << endl;

// Find the position of value 15
// It should be found
itr = find (linkedList.begin(), linkedList.end(), 15);
if (itr !'= linkedList.end())

cout << "Element found in linkedList: " << *itr;
else

cout << "Element not found in linkedList";
cout << endl << endl;

// Remove first element

cout << "Remove the first element:" << endl;
itr = linkedList.begin();

linkedList.erase (itr);

// 76->43->15->48->44->100->NULL
PrintLinkedList (linkedList);

cout << endl;

// Remove fifth element

cout << "Remove the fifth element:" << endl;
itr = GetlIterator (linkedList.begin(), 4);
linkedList.erase (itr);

// 76->43->15->48->100->NULL

PrintLinkedList (linkedList);

cout << endl;

return 0;

[94]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

As we can see in the preceding code snippet, we need a method named GetIterator ()
since the iterator of the 1ist data type is not a random access iterator, and so we need to
increment it as many times as the desired index. The implementation of this method is as
follows:

list<int>::iterator GetlIterator(list<int>::iterator it, int x)
{

for(int i = 0; i < x; ++1i, ++it);

return it;

}

To print out the elements of the 1ist, we use the following method implementation:

void PrintLinkedList (const list<int>& 1list)

{
for (auto 1 : 1list)
{
std::cout << 1 << " —> ",
}
cout << "NULL" << endl;
}

And, if we build and run the std_List . cbp project, we will get the following output:

@ ® © Terminal

First Printed:
76 -> 43 -> 15 -> 44 -> NULL

Second Printed:
22 -> 76 -»> 43 -> 15 -> 48 -> 44 -> 1600 -> NULL

Get value of the second index:
43

Element found in linkedList: 15

Remove the first element:
76 -> 43 -> 15 -> 48 -> 44 -> 100 -> NULL

Remove the fifth element:
76 -> 43 -> 15 -> 48 -> 100 -=> NULL

Process returned 0 (0x0) execution time : 0.016 s
Press ENTER to continue.

[95]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Storing Data in Lists and Linked Lists Chapter 2

Summary

We have successfully built our own data structures in C++ and have found out the time
complexity of each data structure. As we have discussed, each data structure has its own
strengths and drawbacks. For instance, by using List, we can access the last element faster
than LinkedList. However, in the List, removing the first element will take even more
time, since we remove the first element since it needs to re-struct the array inside the List.

In the next chapter, we are going to learn how to build other data structures based on the
data structures we have discussed in this chapter. These are stack, queue, and dequeue.

QA section

e What does zero-based indexing mean in an array?

¢ How do we find out how many elements an array has?

e What does a pointer in C++ do?

¢ Suppose we have a pointer named ptr. How do we get the value of the address
that the pt r points to?

e Specify four common operations in List ADT.

¢ A node has two functions, please specify.

e What is the difference between a Singly Linked List and a Doubly Linked List?

e What is the STL function that we can use for list and linked list in C++?

[96]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Storing Data in Lists and Linked Lists

Chapter 2

Further reading

For a complete summary of time complexity for each data structure that we have discussed
in this chapter, please take a look the following table:

Data _ e
Structure | OPerAUOR [Tt Case | Worst Case

Get() 0(1) 0(1)

Lis Insert() O(N) O(N)

Search() 0(1) o)

Remove() O(N) O(N)

Get() 0(1) o)

Singly Linked Insert() o) o)

List Search() 0(1) o)

Remove() 0o(1) O(N)

Get() 0(1) O(N)

Doubly Linked| Insert() 0(1) O(N)

List Search() 0(1) o)

Remove() o(1) O(N)

Other reading sources you may find useful:

printed on 2/9/2023 10:18 AMvia .

[971]

® https://www.geeksforgeeks.org/list-cpp-stl/

® http://www.cplusplus.com/reference/list/list/

® http://www.cplusplus.com/reference/vector/vector/

Al use subject to https://ww. ebsco. conlterms-of-use

Constructing Stacks and
Queues

In the previous chapter, we discussed several linear data types, which were list, linked list,
and Doubly Linked List. In this chapter, we are going to discuss other linear data types, and
those are stack, queue, and dequeue. The following are the topics we are going to discuss
regarding these three data types:

e Building a Stack ADT and then fetching, pushing, and popping elements in this
ADT

e Building a Queue ADT and then fetching, enqueuing, and dequeuing elements in
this ADT

e Building a Dequeue ADT and then fetching, enqueuing, and dequeuing elements
in this ADT

Technical requirements

To follow along with this chapter, as well as the source code, we require the following:

¢ A desktop PC or Notebook with Windows, Linux, or macOS
e GNU GCC v5.4.0 or above

e Code::Block IDE v17.12 (for Windows and Linux OS) or Code::Block IDE v13.12
(for macOS)

e You will find the code files on GitHub at https://github.com/
PacktPublishing/CPP-Data-Structures—and-Algorithms

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Constructing Stacks and Queues Chapter 3

Building a Stack ADT

A stack data type is a list with some restriction in the list's operations. It can only perform
the operations from one side, called the top. There are three basic operations in the Stack
data type, and they are Top (), Push (), and Pop (). The Top () operation is used to fetch
the value of the top position item only, the Push () operation will insert the new item in the
top position, and the Pop () operation will remove the item in the top position. The stack is
also known as a Last In First Out (LIFO) data type. To support these three operations, we
will add one operation to the stack, which is IsEmpty (), to indicate whether the stack has
elements or not. Please take a look at the following stack diagram:

TN

Push() Pop()

91 Top()
88
59
8 g— IsEmpty() = false

47

iy <

32

Stack

As we can see in the preceding Stack diagram, we have storage containing a bunch of
numbers. However, the only opened side is the top side so that we can only put and take
the number from that side. We can also take a peek at the topmost number from the top
side.

In real life, we can imagine that the stack implementation is like when we wear many
bangles on our hand. We put on the bangles one by one on our hand only from one side.
While taking off the bangles, the last bangle we wear is the first bangle we can remove. Due
to this, this is the only time we have access to wearing and removing the bang]les.

[99]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Constructing Stacks and Queues Chapter 3

Now, let's declare the stack class in C++. We are going to use our preceding LinkedList
data type to build a Stack data type. Similar to the LinkedList data type, we need

an m_count private variable to hold the number of items in the Stack has. We also need
another private variable to hold the top node so that the Top () operation can easily find the
value of the top item from this variable. The variable name will be m_t op. The following is
the declaration of the stack data type that we can find in the Stack.h file:

template <typename T>
class Stack

{

private:
int m_count;
Node<T> * m_top;

public:
Stack () ;
bool IsEmpty();
T Top();
void Push (T val);
void Pop();
bi

As we can see in the preceding code snippet, and as we discussed earlier, we have another
method named IsEmpty (). It's used to ensure that Stack has at least one item before we
invoke the Top () and Pop () operations, otherwise we will face a run-time error.

Fetching the item's value in the Stack ADT

In the Stack data type, we can only get the value of the top node. Thus, the Top ()
operation will show the value of the m_t op node. The implementation of this operation is
simple, as we can see in the following code snippet:

template <typename T>

T Stack<T>::Top()

{
// Just return the value
// of m_top node
return m_top->Value;

[100]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost

Constructing Stacks and Queues Chapter 3

As we can see, the operation just returns the value of m_top so that, no matter how many
items there are in Stack, the complexity of this operation is O(1) for both the best case and
worst case scenario. And don't forget to invoke the IsEmpty () method prior to the
invocation of the Top () operation. We should not invoke the Top () operation if there's no
item in Stack since it can cause a run-time error. The IsEmpty () method itself simply
returns FALSE if there's at least one item in Stack; otherwise it returns TRUE. The
implementation of IsEmpty () gives us an O(1) complexity and should be as follows:

template <typename T>
bool Stack<T>::IsEmpty ()
{

// return TRUE if there are no items
// otherwise, return FALSE
return m_count <= 0;

Pushing the items of the Stack ADT

As we discussed earlier, we can only add a new item from the top position of the stack.
Since the top variable in the Stack is similar to Head variable in the LinkedList, we can
utilize the implementation of InsertHead () in the LinkedList data type to be
implemented in the Push () operation in the Stack data type. The implementation of the
Push () operation should be as follows:

template <typename T>
void Stack<T>::Push(T val)
{
// Create a new Node
Node<T> * node = new Node<T> (val);

// The Next pointer of this new node
// will point to current m_top node
node—>Next = m_top;

// The new Node now becomes the m_top node
m_top = node;

// One item is added
m_count++;

[101]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Constructing Stacks and Queues Chapter 3

The preceding code snippet is similar to the implementation of the InsertHead ()
operation in the LinkedList data type, except it doesn't have a Tail node. We just need to
create a new node, then link that to the current top node by setting the Next pointer of the
new node to the current top node. Obviously, the complexity of the Push () operation is
o).

Popping the items from the Stack ADT

Again, removing an item in the stack data type is similar to the RemoveHead () operation
in the LinkedList since we can only access the top node. We simply remove the first node
and make the m_top variable handle the second node. The implementation of the Pop ()
operation should be as follows:

template <typename T>
void Stack<T>::Pop ()
{
// Do nothing if Stack is empty
1f (IsEmpty ())
return;

// Prepare the current m_top
// to remove
Node<T> * node = m_top;

// The new m_top node will be
// the Next pointer of the current m_top node
m_top = m_top—>Next;

// Now it's safe to remove
// the first element
delete node;

// One item is removed
m_count——;

}

Since the Pop () operation in the Stack data type adapts the RemoveHead () operation in
LinkedList, they both have the exact same time complexity, which is O(1) for best and
worst case scenario .

[102]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Constructing Stacks and Queues Chapter 3

Consuming a Stack ADT

Now, it's time to play with our new Stack data type. We are going to create our preceding
diagram using the Push () operation, and then print the content of the stack class using
the Pop () operation. To ensure that the stack is not empty, we are going to use

the IsEmpty () operation and we'll use the Top () operation to get the topmost element to
print the value. The code should be as follows:

// Project: Stack.cbp
// File : main.cpp
#include <iostream>
#include "Stack.h"

using namespace std;

int main ()
{
// NULL
Stack<int> stackInt = Stack<int>();

// Store several numbers to the stack
stackInt.Push (32
stackInt.Push (
stackInt.Push (
stackInt.Push (

(

(

’

stackInt.Push
stackInt.Push

// list the element of stack
while (!stackInt.IsEmpty())
{
// Get the top element
cout << stackInt.Top() << " - ";

// Remove the top element
stackInt.Pop();
}

cout << "END" << endl;

return 0;

[103]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Constructing Stacks and Queues Chapter 3

Based on the preceding code, the first number we store in the stack—32, in this case—will
be at the bottom position of the stack. When we call the Pop () operation, the last stored
number will be removed first. The following output will be displayed if we build and run
the preceding code:

@S & Terminal
91 - 88 - 59 - 18 - 47 - 32 - END

Process returned 0 (@x0) execution time : 0.002 s
Press ENTER to continue.

As we can see in the preceding output, the last number we put into the stack is the first
number we get when we invoke the Pop () operation.

Another example of Stack ADT implementation

Another implementation of the stack is when the programming language checks the
parenthesis expression's validity. For instance, in C++, we need to scope the bunch of lines
using curly braces ({ }); or, when initializing an array, we need a square bracket ([]) to
define the length of the array. It needs to ensure that the open curly brace has the closed
curly brace, or the open square bracket has the close square bracket. Let's see the following
possibility for the parenthesis expression:

P11}
1

i)
—_~ -~~~
~ —_
O~ -
—_ - -

There are three lines in the preceding parenthesis expression for possibilities. In the first
line, we can see that each opened parenthesis has its own closed parenthesis. It's also
matched for each opened parenthesis to find out the closed parenthesis. The proof that it is
a valid parenthesis expression is as follows:

— T~
{()XI{}1}

~ ~——

[104]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Constructing Stacks and Queues Chapter 3

In the second section, each opened parenthesis also has its closed parenthesis. However, the
first opened square bracket must find the closed square bracket before it finds the other
closed parentheses. In other words, the second line is an invalid parenthesis expression. The
proof is as follows:

{C0) } 1]
AN

In the last line, we can see that there's an opened squared bracket without the closed square
bracket. In this case, the stack will leave one element in the storage so that the parentheses
expression is invalid. The proof is as follows:

{ ()} I

— X\

Invalid

Invalid

Applying the stack data type we built previously, let's design code to check the validity of
the parenthesis expression. Every time the code retrieves the opened parenthesis, it just
needs to store the opened parenthesis in the stack using the Push () operation. When the
closed parenthesis comes, it needs to check whether the stack is empty. If so, the expression
must be invalid since there is no opened parenthesis to be closed. Then, we retrieve the top
element using the Top () operation. If the value is not matched with the closed parenthesis,
it must be invalid as well. In contrast, if the parenthesis is matched, it just needs to remove
the top element by using the Pop () operation. Until the expression has been scanned, we
can decide whether the expression is valid if there's no element left in the stack. The code
for this scenario is as follows:

bool IsValid (char expression|[])

{

int n = strlen(expression);
Stack<char> stackChar = Stack<char>();

for (int i = 0; i < n; ++i)

{
// If input is opened parenthesis
// just store it in the stack
if (expression[i] == '{")

[105]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Constructing Stacks and Queues

Chapter 3

stackChar.Push('{");
}
else if (expression[i] == "[")
{
stackChar.Push('[");
}
else if (expression[i] =

{

stackChar.Push (' (");
3
// Check when the input
// 1s closed parenthesis
else 1f (
expression[i] == '}'
expression([i] == ']’
expression([i] == ")")

// If the stack is empty

// or the last parenthesis is different

// than the one we are closed,
// then the expression is wrong

if (expression[i] == '}' &&
(stackChar.IsEmpty () || stackChar.Top ()
return false;

else if (expression[i] == ']"' &&
(stackChar.IsEmpty () || stackChar.Top ()
return false;

else if (expression[i] == '")' &&
(stackChar.IsEmpty () || stackChar.Top ()

return false;
else
stackChar.Pop () ;

// If the stack is empty,
// the expression is valid
// otherwise it's invalid
if (stackChar.IsEmpty())
return true; //
else
return false;

{"))

[106]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Constructing Stacks and Queues Chapter 3

Then, we can invoke the preceding Isvalid () method using the following code snippet:

int main ()

{
// Prepare array for storing
// the expression
char expr[1000];

// Ask user to input the expression

cout << "Please type the parenthesis expression ";
cout << "then press ENTER!" << endl;

cin >> expr;

// Check the validity
bool bo = IsValid(expr);

// Notify the user
cout << endl;

cout << "The " << expr << " expression is ";
if (bo)

cout << "valid";
else

cout << "invalid";
cout << endl;

return 0;

}
If we run the code and supply the following expression:
{ ()Y IL {11

It will say that the expression is valid, as we can see in the following output:

Terminal
Please type the parenthesis expression then press ENTER!

{O{11}

The {()[{}]1} expression is valid

Process returned @ (0x0) execution time : 26.543 s
Press ENTER to continue.

You can try other parentheses expressions to ensure that the code we have built works.

[107]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Constructing Stacks and Queues Chapter 3

Building a Queue ADT

A queue data type is a list with some restrictions to the effect that the inserting operation
(enqueue) can only be performed from one side (called the back) and the removing
operation (dequeue) can only be performed from the other side (called the front). Similar to
the stack data type, we can develop the Queue data type by using the LinkedList data
type. For the Enqueue () operation, we can adopt the InsertTail () operation in the
LinkedList data type since we are going to insert an element from the back, which is
similar to the Tail node in the LinkedList data type. Also, for the Dequeue () operation,
we will use the implementation of the RemoveHead () operation in the LinkedList data
type. The Queue data type is also known as the First In First Out (FIFO) data type since the
element that is inserted from the back of Queue will travel to the front side before it can be
removed. Let's take a look at the following diagram showing the queue:

Dequeue() Front()

Queue

35|/ 91| 26 || 78 || 44 || 12 1—\

T Engueue()

IsEmpty() = false

As we can see in the preceding diagram, there's a line of queueing numbers which has two
sides opened. We insert a number from the right side (which is the backside in the Queue)
and it then travels to the left side until it's at the frontside and is ready to dequeue. This
Queue data type is similar to a queue in real life, for instance, a queue at a theatre, where we
have to stand in a line from the back of the queue and wait until all of the people in front of
us have been served.

The following is the declaration of the Queue data type. It's quite similar to the declaration
of the stack data type, so please take a look:

template <typename T>

class Queue

{

private:
int m_count;
Node<T> * m_front;
Node<T> * m_back;

public:

[1081]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Constructing Stacks and Queues Chapter 3

Queue () ;
bool IsEmpty();
T Front ();
void Enqueue (T val);
void Dequeue () ;
bi

Similar to a Stack data type, the Queue data type also adopts the LinkedList data type.
However, it has two private nodes—m_front and m_back instead of Head and Tail in
the LinkedList data type. It also has a Front () operation to retrieve the front-most
element's value, an Enqueue () operation to insert a new element in the back, and a
Dequeue () operation to remove the front-most element.

Getting a value from Queue ADT

As we discussed earlier, we can only fetch the front value of the queue. For this purpose, we
are going to implement the Front () operation to get the value of the front element. The

implementation should be as follows:

template <typename T>

T Queue<T>::Front ()

{
// Just return the value
// of m_front node
return m_front->Value;

}

Since it just returns the value of the front element, the time complexity for this operation is
O(1) for both best and worst case. Also, don't forget to invoke the IsEmpty () operation
before invoking the Front () operation to ensure that the queue is not empty. The
implementation of the IsEmpty () operation for the Queue data type is completely the same
as the implementation of the IsEmpty () operation in the stack data type.

[1091]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Constructing Stacks and Queues Chapter 3

Inserting an element into the Queue ADT

Inserting a new item in the Queue data type can only be performed from the back side,
which means the newly inserted item will be pointed by the m_back pointer, and the Next
pointer of the current element will point to this new element to create a new chaining node.
However, it can be applied if there's at least one element before we insert the new element.
If Queue is empty when we are going to insert a new element, we have to set the new
element to be the front and the back element. Let's explore the following Enqueue ()
operation's implementation:

template <typename T>
void Queue<T>::Enqueue (T val)

{

// C
Node

if(m

{

else

}

reate a new Node
<T> * node = new Node<T>(val);

_count == 0)

// 1f the queue is empty
// the new node will be
// m_front and m_back
node—->Next = NULL;
m_front = node;

m_back = m_front;

// If there's at least one element

// in the queue, the current m_back element
// won't be the Back element anymore

// so the Next pointer of the current m_back
// point to the new node

m_back->Next = node;

// The new Node now become the Back position
m_back = node;

// One element is added
m_count++;

- printed on 2/9/2023 10:18 AMvia .

[110]

Al use subject to https://ww. ebsco. conlterms-of-use

Constructing Stacks and Queues Chapter 3

As we can see in the preceding code snippet, there are two conditions when inserting a new
element in the Queue data type. However, it doesn't depend on the number of elements
inside the data type, so the time complexity for this operation is always O(1) for both best
and worst case.

Removing an element from the Queue ADT

Removing an element can also be performed from the front side only, which is done by
using the Dequeue () operation. This is similar to the RemoveHead () operation in the
LinkedList data type—removing the current front node and then assigning the next
element as the new front element. The implementation should be as follows:

template <typename T>
void Queue<T>::Dequeue ()
{
// Do nothing if list is empty
if (m_count == 0)
return;

// Save the current Front
// to a new node
Node<T> * node = m_front;

// Point the Front pointer
// to the element next to the current Front
m_front = m_front->Next;

// Now it's safe to remove
// the first element
delete node;

// One element is removed
m_count——;

}

Similar to the Enqueue () operation, the Dequeue () operation does not depend on the
number of items inside the data type. The time complexity of this operation is O(1) for both
best and worst case.

[111]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Constructing Stacks and Queues Chapter 3

Consuming the Queue ADT

Now, let's create a new Queue instance that contains the different elements, as shown in the
earlier diagram. The element will be inserted by using the Enqueue () operation. We can
then display all queue elements by using the Front () and Dequeue () operations. The code
should be as follows:

// Project: Queue.cbp
// File : main.cpp
#include <iostream>
#include "Queue.h"

using namespace std;

int main ()
{
// NULL
Queue<int> queuelInt = Queue<int>();

// Enqueue several numbers to the queue
queuelnt.Enqueue (35);
queuelnt.Enqueue (91
queuelnt.Enqueue (
queuelnt.Enqueue (
(
(

)i
)i
)i
).
)

queuelnt.Enqueue ;

2
7
4
queuelnt.Enqueue (1

6
8
4
2y .

’

// list the element of queue
while (!queuelInt.IsEmpty())

{
// Get the front element
cout << queuelInt.Front() << " - ";

// Remove the front element
queuelnt.Dequeue () ;

;
cout << "END" << endl;

return 0;

[112]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Constructing Stacks and Queues Chapter 3

In contrast to the Stack data type, the first element inserted into the queue will be the first
element that will be removed if we invoke the Dequeue () operation. We should get the
following output if we build and run the Queue. cbp project:

De Terminal
35 - 91 - 26 - T8 - 44 - 12 - END

Process returned 0 (@x0) execution time : 0.006 s
Press ENTER to continue.

Building a Deque ADT

A dequeue, which stands for double-ended queue, is a queue that can insert and remove
items from two sides: the front and back. To build this data structure, we are going to adopt
the DoublyLinkedList data type we already built in the previous chapter. Similar to

the Queue data type, the Dequeue data type also has the Front () operation to fetch the
front-most element's value. The Enqueue () operation in the Queue data type will become
EnqueueBack () in the Dequeue data type, and the Dequeue () operation in the Queue data
type will become DequeueFront () in the Dequeue data type. However, since we adopt the
DoublyLinkedList data type instead of LinkedList, the implementation will be
different. Besides those operations, we are also going to build the following operations:

e The Back () operation to fetch the back-most element's value.

e The EnqueueFront () operation to insert a new element into the front side. It
will be similar to the implementation of the InsertHead () operation in
the DoublyLinkedList data type.

e The bequeueBack () operation to remove an element from the back side. It will
be similar to the implementation of the RemoveTail () operation in
the DoublyLinkedList data type.

[113]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Constructing Stacks and Queues Chapter 3

Let's take a look at the following diagram of the Deque data type:
DequeueFront() Front() Back)

Deque DequeueBack()

\ Y - /
/» 35 (| 91| 26 || 78 || 44 || 12 ‘_\
EnqueueFront() T EnqueueBack()
IsEmpty() = false

Based on the preceding requirement, the declaration of the Deque data structure should be

as follows:

template <typename T>
class Deque
{
private:
int m_count;

DoublyNode<T> * m_front;
DoublyNode<T> * m_back;

public:
Deque () ;
bool IsEmpty();
T Front ();
T Back();

void EnqueueFront (T val);
void EnqueueBack (T wval);
void DequeueFront () ;

void DequeueBack () ;

bi

Notice that we now use the DoublyNode data type instead of the Node data type since we
are going to use the implementation of the DoublyLinkedList data type for the Deque

data type.

[114]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Constructing Stacks and Queues Chapter 3

Fetching a value from a Deque

The implementation of the Front () and IsEmpty () operations for the Deque data type is
the same as the implementation of the Front () and IsEmpty () operations for the Queue
data type. For the Back () operation, it just returns the value of the m_back node. The
implementation should be as follows:

template <typename T>
T Deque<T>::Back ()
{

// Just return the value
// of m_back node
return m_back->Value;

}

Since the implementation of this operation doesn't depend on the number of Deque
elements, the complexity of this operation is O(1) for both best and worst case.

Enqueueing an element into the Deque ADT

There are two ways to enqueue a new element into the Deque data type—from the front
side and from the back side. To enqueue a new element from the front side, we can use the
EnqueueFront () operation, which will create a new DoublyNode node and then assigns
the Next pointer of this new node to the current m_front node. Also, if the current
m_front exists, the Previous pointer of the current m_front node points to the new node.
Now, the m_front node will change to the new node. If it's the only node that resides in the
Deque data type, the m_back node will also point to this new node. The implementation of
the EnqueueFront () operation should be as follows:

template <typename T>
void Deque<T>::EnqueueFront (T val)
{
// Create a new Node
DoublyNode<T> * node = new DoublyNode<T> (val);

// The current m_front will no longer become a m_front
// so the Next pointer of the new Node will

// point to the current m_front

node->Next = m_front;

// If the current m_front is exist,
// the previous pointer of the current m_front
// should point to the node

[115]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Constructing Stacks and Queues Chapter 3

if (m_front != NULL)
m_front->Previous = node;

// The new Node now become the m_front
m_front = node;

// If the deque is empty
// The m_back is also the m_front
if (m_count == 0)

m_back = m_front;

// One element is added
m_count++;

}

Similar to the EnqueueFront () operation, the EnqueueBack () operation will create a new
DoublyNode node. The Next pointer of the current m_back node will point to this new
node, and the Previous pointer of this new node will point to the current m_back node.
Now, we have a new back-most element, so we assign the m_back node to the new

node. For simplicity, if there's no element before we enqueue a new element, just ignore the
preceding step and invoke the EnqueueFront () operation instead. The implementation

of the EnqueueBack () operation should be as follows:

template <typename T>
void Deque<T>::EnqueueBack (T val)
{
// If the deque is empty,
// just simply invoke EnqueueFront ()
if (m_count == 0)
{
EnqueueFront (val) ;
return;

// Create a new Node
DoublyNode<T> * node = new DoublyNode<T> (val);

// The current m_back will no longer become a m_back
// so the Next pointer of the current m_back will

// point to the new node

m_back->Next = node;

// Also, the previous pointer of the new node
// should point to the current m_back
node->Previous = m_back;

[116]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Constructing Stacks and Queues Chapter 3

// The new Node now become the m_back
m_back = node;

// One element is added
m_count++;

}

The two enqueueing operations we have built do not depend on the number of
deque elements so their complexity is O(1) for both best and worst case.

Dequeuing an element from the Deque ADT

Similar to enqueueing a new element, dequeuing an element in the Deque data type can
also be performed from both the front and back sides. When we are going to dequeue from
the front side, which is done by using the DequeueFront () operation, we initially assign
the new m_front to the Next pointer of the current m_front node. If the new, current
m_front exists then it points its Previous pointer to NULL. Now, it's safe to delete the
frontmost element. The implementation of the DequeueFront () operation should be as
follows:

template <typename T>
void Deque<T>::DequeueFront ()
{
// Do nothing if deque is empty
if (m_count == 0)
return;

// Save the current m_front
// to a new node
DoublyNode<T> * node = m_front;

// Point the m_front Pointer
// to the element next to the current m_front
m_front = m_front->Next;

// Now it's safe to remove
// the first element
delete node;

// If there's still any element in the deque,
// the previous pointer of the m_front
// should point to NULL
if (m_front != NULL)
m_front->Previous = NULL;

[117]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost

Constructing Stacks and Queues Chapter 3

// One element is removed
m_count—--—;

}

If we are going to dequeue an element from the back side, which is done by using

the DequeueBack () operation, we initially assign the new m_back node to

the Previous pointer of the current m_back node. Then, we just point the Next pointer of
the new, current m_back node to NULL so that it no longer points to the back-most element.
Now, it's safe to delete the back-most element. The implementation of

the DequeueBack () operation should be as follows:

template <typename T>
void Deque<T>::DequeueBack ()
{
// Do nothing if deque is empty
if (m_count == 0)
return;

// If deque element is only one
// just simply call DequeueFront ()
if (m_count == 1)
{
DequeueFront () ;
return;

// Save the current m_back
// to a new node
DoublyNode<T> * node = m_back;

// Point the m_back Pointer
// to the element before the current m_back
m_back = m_back->Previous;

// Set the new Next pointer of the new m_back
// to NULL since we are going to delete

// the last element

m_back->Next = NULL;

// Now it's safe to remove
// the last element
delete node;

// One element is removed
m_count——;

[118]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Constructing Stacks and Queues Chapter 3

Both the DequeueFront () and DequeueBack () operations we have designed do not
depend on the number of the deque element, so we can say that the complexity of these two
operations is O(1) for both best and worst cases.

Consuming the Deque ADT

We are going to create a deque containing the elements shown in the preceding diagram.
Since the Deque data type is similar to the Queue data type, we are going to use the Back ()
operation to peek at the element's value. The elements' value will be displayed from back to
front. The code will be as follows:

// Project: Deque.cbp
// File : main.cpp
#include <iostream>
#include "Deque.h"

using namespace std;
int main ()
{

// NULL

Deque<int> deque = Deque<int>();

// Enqueue several numbers to the deque

// 26
deque.EnqueueFront (26);
// 26 - 178

deque.EngqueueBack (78) ;

// 26 — 78 — 44
deque.EnqueueBack (44) ;

// 91 - 26 - 78 - 44
deque.EnqueueFront (91);

// 35 - 91 - 26 — 78 - 44
deque.EnqueueFront (35);

// 35 - 91 - 26 - 78 — 44 - 12
deque.EnqueueBack (12) ;

// list the element of queue
while (!deque.IsEmpty())
{

// Get the front element

cout << deque.Back() << " - ";

// Remove the front element
deque.DequeueBack () ;

[119]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Constructing Stacks and Queues Chapter 3

}
cout << "END" << endl;

return 0;

}

And if we run the preceding code, we get the following output:

—
o E

Terminal
12 - 44 - TB - 26 - 91 - 35 - END

Process returned 0 (@x0) execution time : 0.003 s
Press ENTER to continue.

Summary

In this chapter, we have successfully built others linear data types: the stack, Queue, and
Deque data types. We can use the stack data type if we need storage that only has one side
to insert and remove an element, we can use the Queue data type if we need storage which
has to insert and remove the element from a different side, and if we need storage that can
be accessed from two sides, both the front and back sides, we can use the Deque data type.
Fortunately, the time complexity for all of the operations in these three data types is O(1),
and doesn't depend on the number of the elements in the data type. In the next chapter, we
are going to discuss various sorting algorithms to arrange the elements inside the data types
we have discussed so far.

QA section

e Specify three basic operations in the stack data type!

e What does LIFO refer to and with which data type (covered in this chapter) is it
associated?

¢ Give an example of stack implementation in real life

e What is stack implementation in a programming language?
e What is deque also known as?

e What is the difference between queue and deque?

e Why is the complexity of the data types O(1)? Can you guess why the number of
elements in the data type doesn't affect the complexity?

[120]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Constructing Stacks and Queues Chapter 3

Further reading

For reference, you can refer to the following links:

® http://www.geeksforgeeks.org/stack-data-structure/

® http://www.geeksforgeeks.org/queue-data-structure/

® http://www.geeksforgeeks.org/deque-set-1-introduction-applications/
® https://visualgo.net/en/list?slide=4

® https://visualgo.net/en/list?slide=5

® https://visualgo.net/en/list?slide=7

[121]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Arranging Data Elements Using
a Sorting Algorithm

In the previous chapter, we discussed several linear data structures, such as linked list,
stack, queue, and dequeue. In this chapter, we are going to arrange data elements in a list
using some sorting algorithm techniques. The following are the popular sorting algorithms
that we are going to discuss in this chapter:

e Bubble sort
Selection sort

Insertion sort
e Merge sort
Quick sort
Counting sort

e Radix sort

Technical requirements

To follow along with this chapter, as well as the source code, you are going to require the
following;:

¢ A desktop PC or Notebook with Windows, Linux, or macOS
e GNU GCC v5.4.0 or above

¢ Code Block IDE v17.12 (for Windows and Linux OS) or Code Block IDE v13.12
(for macOS)

e You will find the code files on GitHub at https://github.com/
PacktPublishing/CPP-Data—-Structures—and-Algorithms

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

Bubble sort

Bubble sort is a simple sorting algorithm, but it has a slow process time. It will divide an
input list into two parts—a sublist of items already sorted on the right side and a sublist of
items remaining to be sorted in the rest of the list. If we are going to sort a list of elements in
ascending order, the algorithm will move the greatest value to the right position followed
by the second greatest value and so on, similar to air bubbles when they rise to the top.
Suppose we have an array of unsorted elements and are going to sort them using the bubble
sort algorithm. The following are the steps required to perform the sorting process:

1. Compare each pair of adjacent items, for instance array [0] with array[1],
array[1] with array[2], and so on.

2. Swap that pair if the items are not in the correct order. Since we are going to sort
in ascending order, the correct order will be array [0] <= array[1], array[1]
<= array[2], and so on.

3. Repeat the first and second steps until the end of the array is reached.

4. By now, the largest item is in the last position. We can omit this item and repeat
step 1 until step 3 until no swap item is found.

Let's create an unsorted array containing six elements—{43, 21, 26, 38, 17, 30}.By
using the bubble sort algorithm, we are going to sort this array. We will pick the first pair of
adjacent items, 43 and 21. Since 43 is greater than 21, we have to swap the position and
now the array becomes {21, 43, 26, 38, 17, 30}.Again, we compare 43 to 26 and
need to swap them, and since 43 is the greatest item in the array, each pair of adjacent items
in comparison will swap the pair so that 43 will be the last position in the array. By now,
the array will be {21, 26, 38, 17, 30, 43}.

The element 43 is now in the correct position, so we don't need to include it in the repeated
step. In the remaining unsorted elements, we do the same process as we did in the
preceding step. First, we compare 21 and 26, so no swapping is necessary, and then
compare 26 and 38, where again no swapping is necessary. When we compare 38 and 17,
we need to swap these items so the array becomes {21, 26, 17, 38, 30, 43}.Again,
we compare 38 and 30, and they need to be swapped so that 38 is now in the correct
position. The array will thenbe {21, 26, 17, 30,38, 43}. This function will go on until
there is nothing to be sorted.

[123]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

Now, we can go further and develop C++ code for this sorting algorithm. We will have a
function named BubbleSort () that passes an array and the length of the array as
arguments. The array we pass to this function will be sorted, so we need the swap ()
function provided by C++ STL in the std namespace. In this function, we have

the unsortedElements variable to hold the remaining unsorted elements. In the
beginning, this variable is set with the length of the array. We then iterate all unsorted
elements until there are no swapped items, which is marked by the isSwapped variable. As
we discussed earlier, when we iterate all unsorted elements, we swap each pair of adjacent
items if they are not in the correct position. The code should be as follows:

// Project: Bubble_Sort.cbp
// File : Bubble_Sort.cpp

#include <iostream>
using namespace std;

void BubbleSort (int arr[], int arrSize)
{

// Flag for swapping element

bool isSwapped;

// The value will be decreased

// every time one element has been sorted

int unsortedElements = arrSize;

do

{
// If there's at least two element are swapped
// it will be true
isSwapped = false;

// Iterate through the array's element
for(int i = 0; i < unsortedElements - 1; ++1i)
{
if (arr[i] > arr([i+1])
{
swap (arr[i], arr[i+l]);
isSwapped = true;

// After iteration, the last element has been sorted
// so it will be ignored in the next iteration
——unsortedElements;

}

// Do comparison again if there's swapped element
P g IS

[124]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

// otherwise, all array's elements have been sorted
while (isSwapped) ;

int main ()

{
cout << "Bubble Sort" << endl;

// Initialize a new array
int arr[] = {43, 21, 26, 38, 17, 30};

int arrSize = sizeof (arr)/sizeof (*arr);

// Display the initial array

cout << "Initial array: ";
for (int i=0; 1 < arrSize; ++i)
cout << arr[i] << " ";

cout << endl;

// Sort the array with BubbleSort algorithm
BubbleSort (arr, arrSize);

// Display the sorted array

cout << "Sorted array : ";
for (int i=0; 1 < arrSize; ++i)
cout << arr[i] << " ";

cout << endl;

return 0;

}

As we can see in the preceding code, we used the isSwapped flag to indicate whether

the do. . .while iteration is needed or not. It's useful to stop the iteration if we pass a
sorted array to the BubbleSort () function, so it will only need to iterate through the input
array elements once. So, the time complexity of this function is O(N) in the best case if we
pass a sorted array on the function. And since there's a nested for iteration in

the do. . .while iteration, the bubble sort time complexity for the worst case is O(N2). If we
build and run the preceding code, we should see the following output on the screen:

Terminal

Bubble Sort
Initial array: 43 21 26 38 17 30

Sorted array : 17 21 26 30 38 43

Process returned 0@ (0x0) execution time : 0.020 s
Press ENTER to continue.

[125]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Arranging Data Elements Using a Sorting Algorithm Chapter 4

Selection sort

Similar to bubble sort, selection sort also divides an input list into two parts—a sublist of
items already sorted in the left side and a sublist of items remaining to be sorted in the rest
of the list. If we are going to sort the input list in ascending order, the lowest items will be in
the leftmost position in the input list. These are the steps to perform a selection sort on a
given input list:

1. Find the first index of the unsorted sublist and mark it as minIndex. If it's the
first sorting iteration, the index should be 0.

2. Iterate through the elements of the unsorted sublist, starting at its first
element (the first time, it should be index 1 through 7 - 1) and compare the
current value element in the iteration with the first index of the unsorted sublist.
If the value of the current index is lower than the value of the first index, set the
current index to minIndex.

3. After finishing the unsorted elements iteration, swap each value of the first index
of the unsorted sublist and the minIndex.

4. Repeat step 1 and step 3 until the unsorted sublist has only one item remaining.

Let's borrow the unsorted array we used in the preceding bubble sort algorithm, which has
the items {43, 21, 26, 38, 17, 30}, and then perform the selection sort algorithm on
it. In the first iteration, we will pick array [0] as the first index of the unsorted sublist.
Then, we iterate through array[1] to array[5] and find that 17 is the lowest item in the
array. We can now swap array [0] and array [4] as in the following diagram:

218 261 P38 30

[126]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

Now, array[0] stores the sorted item. We can pick array [1] as the first index of the
unsorted sublist that holds 21. Through the iteration of the unsorted sublist, it is found
that 21 is the lowest item, so it's not swapped with anything. Please see the following
diagram:

17 26" /38 (43| 30

Now, we've got array [2] as the first index of the unsorted sublist; it holds 26. Similar to
the previous iteration, it won't be swapped with anything since it's the lowest item in the
unsorted sublist, as we can see in the following diagram:

17 || 21 38 43 30

Asof now, array[0], array[1], and array [2] have been sorted. The process will go on
until there is nothing left to be sorted.

Since we have now understood the concept of selection sort, we can develop a code to make
performing selection sorts a lot easier. Similar to the BubbleSort () function, the selection
sort function will also pass an array that needs to be sorted and the length of the array. We
then pick the first position of each unsorted sublist to be swapped with the lowest item in
the current unsorted list. This will be repeated until the unsorted sublist remains at one
item. The code should be as follows:

// Project: Selection_Sort.cbp
// File : Selection_Sort.cpp

[127]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

#include <iostream>
using namespace std;

void SelectionSort (int arr[], int arrSize)

{
// variable to store the index of the minimum value
// in each iteration
int minIndex;

// Iterate until the N-1 elements
for(int i = 0; i < arrSize - 1; ++1i)
{

// Set the first unsorted element

// as the minimum value

minIndex = i;

// Iterate through the unsorted elements only
for(int j = i + 1; j < arrSize; ++3j)
{

// set the new minimum value

// 1f the saved minimum value is higher

// than the current index value

if (arr[j] < arr[minIndex])

minIndex = j;

// Swap the the first unsorted element
// with the minimum value
swap (arr[i], arr[minIndex]);

int main ()

{

cout << "Selection Sort" << endl;
// Initialize a new array
int arr([] = {43, 21, 56, 78, 97, 30};

int arrSize = sizeof (arr)/sizeof (*arr);

// Display the initial array

cout << "Initial array: ";
for (int i = 0; 1 < arrSize; ++1i)
cout << arr[i] << " ";

cout << endl;

// Sort the array with SelectionSort algorithm

[128]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

SelectionSort (arr, arrSize);

// Display the sorted array

cout << "Sorted array : ";
for (int i = 0; 1 < arrSize; ++1i)
cout << arr[i] << " ";

cout << endl;

return 0;

}

As we can see in the preceding code, there's a nested for loop in a for loop. The outer for
loop is used to iterate the unsorted sublist while the inner for loop is used to find the
lowest item. Contrary to bubble sort, selection sort cannot detect whether an input list is
sorted at the beginning of the process, so the time complexity of this sorting algorithm is
O(N2) for both the best and worst cases. If we build and run the preceding code, we are
going to see the following output on the screen:

-

=) Terminal
Selection Sort
Initial array: 43 21 26 38 17 30
Sorted array : 17 21 26 30 38 43

Process returned 0 (0x8) execution time : 0.082 s
Press ENTER to continue.

Insertion sort

Insertion sort is a sorting algorithm that is similar to arranging a hand of poker cards. This
sorting algorithm will also divide the list into a sorted and unsorted sublist in the sorting
process. For clarity, we pick an item as a reference, then go through the sorted sublist and
find the correct position based on performing a comparison. This process is repeated until
all the items are sorted, which means that we have to iterate through all of the array's
elements.

Let's use our previous array {43, 21, 26, 38, 17, 30} and then perform an insertion
sort algorithm on it. First, we set array [0] as the sorted sublist, so we pick array[1] as
the reference. Now, we compare the reference item, which is 21, with the sorted sublist. See
the following diagram:

[129]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

A =) e

Since 21 is lower than 43, 43 will be shifted to array [1] and since no more items are in the
sorted sublist, 21 is put into array [0]. Now, array[0] and array[1] are in the sorted
sublist, as we can see in the following diagram:

21 43 26 38 17 30

Now, we move to array [2], which is 26. We will set it as a reference item rather than
iterating through the sorted sublist that contains 21 and 43. We will have something similar
to the following figure:

21 43 38 17 30

[130]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

When 26 is compared with 43, 43 will be shifted to the place where 26 is. And since 26 is
greater than 21, 26 now occupies array [1]. By now, the array will be as follows:

21 26 43 38 17 30

Again, we pick 38 as the reference and then iterate through to the sorted sublist, which is 21,
26, and 43. Please see the following diagram:

21 26 43 17 30

When the reference item is compared with 43, 43 will be shifted to the place of the reference
item since it's lower than 43. Then, the reference item is compared with 26. Since it's greater
than 26, 38 will be in-between 26 and 43 as we can see in the following diagram:

20N BEEN FEEN FgEN | 17 || 30

[131]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Arranging Data Elements Using a Sorting Algorithm Chapter 4

We do the same preceding iteration for the remaining items, 17 and 30, until we've got a
sorted array as follows:

17 21 26 30 38 43

Now, let's design C++ code based on the preceding explanation. We need to iterate each
element to be the reference item and based on this reference item, we can iterate the sorted
sublist. The code should be as follows:

// Project: Insertion_Sort.cbp
// File : Insertion_Sort.cpp

#include <iostream>
using namespace std;

void InsertionSort (int arr[], int arrSize)
{
// Iterate to all array's element
for(int i = 0; i < arrSize; ++1i)
{
// Set the current element
// as reference value
int refvalue = arr([i];

// variable to shift the element
// to right position
int J;

// Iterate through the sorted element
// to insert the reference value
// in right position
for(j =1 - 1; 3 >= 0; --7)
{
// if the value of the current index
// 1s greater than the reference value then
// move the current value to right side
// otherwise, put the reference value
// in the current index

[132]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

EBSCChost -

Arranging Data Elements Using a Sorting Algorithm

Chapter 4

if(arr[j] > refvalue)
arr[j+1] = arr[j];
else
break;

// here's the line to put the reference value

// in the current index (the right position)
arr[j + 1] = refvValue;

int main ()

{

cout << "Insertion Sort" << endl;

// Initialize a new array
int arr[] = {43, 21, 26, 38, 17, 30};
int arrSize = sizeof (arr)/sizeof (*arr);

// Display the initial array

cout << "Initial array: ";

for (int i=0; 1 < arrSize; ++i)
cout << arr[i] << " ";

cout << endl;

// Sort the array with InsertionSort algorithm
InsertionSort (arr, arrSize);

// Display the sorted array

cout << "Sorted array : ";

for (int i=0; 1 < arrSize; ++i)
cout << arr[i] << " ";

cout << endl;

return 0;

[133]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

EBSCChost -

Arranging Data Elements Using a Sorting Algorithm Chapter 4

As we can see in the InsertionSort () function, similarly to the SelectionSort ()
function there's also a nested for loop in a for loop. The outer for loop is used to iterate
the unsorted sublist while the inner for loop is used to find the correct position to insert the
refvalue. Indeed, this will make the time complexity of this sorting algorithm become
O(n2) for the worst case scenario. Fortunately, in the inner for loop, we have an if
comparison that will break the inner for loop if the reference value is greater than the
biggest item in the sorted sublist. Imagine we pass a sorted list to

the InsertionSort () function. This if comparison will ignore the inner for loop since it
will only execute once, so for the best case scenario the time complexity of this sorting
algorithm is O(n). The output on the screen should be as follows when we build and run the
preceding code:

_

! Terminal
Insertion Sort
Initial array: 43 21 26 38 17 30
Sorted array : 17 21 26 30 38 43

Process returned @ (@x0) execution time : ©.813 s
Press ENTER to continue.

Merge sort

Merge sort is an efficient sorting algorithm that divides the input array into two parts of a
sublist. It sorts each sublist and then merges them. To sort each sublist, the algorithm
divides the sublist in two again. If this sublist of the sublist can be divided into two halves,
then it will be. The idea of the merge sort is that it will merge all the sorted sublists into the
fully sorted list. Suppose we have an array containing these elements, {7, 1, 5, 9, 3,
6, 8, 2},asshown in the following diagram:

[134]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

We can divide the array into two sublists, which are [7, 1, 5, 9] and [3, 6, 8, 2]. Then, the first
sublist can be divided as well to become [7, 1] and [5, 9]. We can sort these sublists and they
will be [1, 7] and [5, 9], and then we can merge this sublist so that it becomes [1, 5, 7, 9], as
shown in the following diagram:

1
-III 5 e Il

By now, we have one sorted sublist. We need to sort another sublist, [3, 6, 8, 2]. We can
divide this sublist to become [3, 6] and [8, 2], and then sort them partially to become [3, 6]
and [2, 8]. These sublists can be merged and become [2, 3, 6, 8], as we can see in the
following diagram:

1

[2 3 6 8

By now, we have two sorted sublists. Now, we can merge these two sublists to become [1, 2,
3,5,6,7,8,9], as shown in the following diagram:

[135]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Arranging Data Elements Using a Sorting Algorithm Chapter 4

When designing a code for a merge sort, we need to have two functions to perform it. The
first function is the Merge () function, which passes an array, a start index, a middle index,
and an end index. This function is used when we have an array where each half part has
been sorted, for instance, [1,5,7, 9, 2, 3, 6, 8] as we did in the preceding diagram. The
function's implementation should be as follows:

void Merge (
int arrl[],
int startIndex,
int middleIndex,
int endIndex)

// Numbers of elements that will be sorted
// from startIndex until endIndex
int totalElements = endIndex - startIndex + 1;

// Temporary array to store merged array
int * tempArray = new int[totalElements];

// Index of left subarray
// arr[startIndex ... middleIndex]
int leftIndex = startIndex;

// Index of right subarray
// arr[middleIndex + 1 ... endIndex]
int rightIndex = middleIndex + 1;

// Index of merged array
int mergedIndex = 0;

// Merge the two subarrays
while (leftIndex <= middlelIndex && rightIndex <= endIndex)
{
if (arr[leftIndex] <= arr[rightIndex])
{
// Store the left subarray's element
// 1f it's lower than the right one
tempArray[mergedIndex] = arr[leftIndex];

// Go to next left subarray index
++leftIndex;

else
// Store the right subarray's element

// if it's lower than the left one
tempArray[mergedIndex] = arr[rightIndex];

[136]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

// Go to next right subarray index
++rightIndex;

// Go to next merged array index
++mergedIndex;

// If there're any remaining element in left subarray
// that is not stored to merged array yet
while (leftIndex <= middleIndex)

{
tempArray[mergedIndex] = arr[leftIndex];

// Go to next left subarray index
++leftIndex;

// Go to next merged array index
++mergedIndex;

// If there're any remaining element in right subarray
// that is not stored to merged array yet
while (rightIndex <= endIndex)

{
tempArray[mergedIndex] = arr[rightIndex];

// Go to next right subarray index
++rightIndex;

// Go to next merged array index
++mergedIndex;

// Now, the merged array has been sorted
// Copy the elements to the original array
for (int i1 = 0; i < totalElements; ++1i)

{

arr[startIndex + 1] = tempArrayl[i];

// Remove the temporary array tempArray
delete[] tempArray;

return;

[137]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Arranging Data Elements Using a Sorting Algorithm Chapter 4

As we can see in the preceding code, we need tempArray to store the sorted array as a
result of the two sorted sublists being merged. It will rearrange the array by merging these
two sublists. After this is completed, put all of the elements of the tempArray in the correct
order. This will copy the temporary array into the original array.

If we have a really random array, we need another function, named MergeSort (), to
separate the array into two sublists. The function's implementation should be as follows:

void MergeSort (
int arrl[],
int startIndex,
int endIndex)

// Only perform sort process
// if the end index is higher than start index
if (startIndex < endIndex)

{
// Find middle index
int middleIndex = (startIndex + endIndex) / 2;

// Sort left subarray
// arr[startIndex ... middleIndex]
MergeSort (arr, startIndex, middleIndex);

// Sort right subarray
// arr[middleIndex + 1 ... endIndex]
MergeSort (arr, middleIndex + 1, endIndex);

// Merge the left and the right subarray
Merge (arr, startIndex, middleIndex, endIndex);

return;

}

As we can see in the preceding code, the MergeSort () function will call itself incursively
until the halved sublist cannot be divided any more. It then invokes the Merge () function
we created previously to merge the two sorted sublists. To invoke the MergeSort ()
function, we can make the following main () function using the preceding array we used in
the previous illustration:

int main ()

{

cout << "Merge Sort" << endl;

// Initialize a new array

[138]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

int arr[] = {7, 1, 5, 9, 3, 6, 8, 2};
int arrSize = sizeof (arr)/sizeof (*arr);

// Display the initial array

cout << "Initial array: ";
for (int i=0; 1 < arrSize; ++i)
cout << arr[i] << " ";

cout << endl;

// Sort the array with MergeSort algorithm
MergeSort (arr, 0, arrSize - 1);

// Display the sorted array

cout << "Sorted array : ";
for (int i=0; 1 < arrSize; ++i)
cout << arr[i] << " ";

cout << endl;

return 0;

}

As we can see in the main () function, we invoked the MergeSort () function and passed
an input array and the range of the element we desired to sort, which is from index 0 to the
last element. The output of the preceding code (that has been saved in

the Merge_Sort . cpp file) should be as follows:

=
-, .

Terminal

Merge Sort
Initial array: 7
1

Sorted array

Process returned @ (8x0) execution time : 0.013 s
Press ENTER to continue.

[1391]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

Now, we need to find the time complexity of this sorting algorithm. As we discussed
earlier, we have to divide the input array into two halved sublists, divide these sublists into
another two halved sublists, and so on until only one element remains in the sublists. The
sublist elements will be passed to the Merge () function, where the time complexity of the
Merge () function is O(N) since it only contains one level while in the loop. The analysis for
the MergeSort () function that invokes the Merge () function will be as follows:

o Tevel 1: Merge(N/ZO)
e Tevel 2: Merge(N/Zl)
e Tevel 3: Merge(N/Zz)
o Tevel 4: Merge(N/24)
e Level n: Merge (N/2%)

From the preceding analysis, we will have the level N when there's only one element in a
sublist so that it cannot be divided any more. In this case, we will have the following
formula:

N x

= =1= N=2% = z =log(N)

Based on the preceding formula, for level N, we will have the time complexity before we
call the Merge () function, which is log N. Since the time complexity of the Merge ()
function itself is O(N), the time complexity of the merge sort algorithm is O(N ¢ log N) for
both the best and worst case scenarios.

Quick sort

Quick sort is almost the same as the other sorting algorithms we have discussed so far as it
divides the input array into two sublists, which are the left sublist and the right sublist. In
quick sort, the process of dividing the array into two sublists is called partitioning. The
partition process will pick an item to become a pivot and it will then use the pivot to divide
the input into two sublists. If we are going to sort an array in ascending order, all items that
are lower than the pivot will be moved to the left sublist, and the rest will be in the right
sublist. After running the partition process, we will ensure that the pivot is in the correct
position in the array. Although we can choose the item that will be the pivot, we will
always choose the first item of the array as the pivot in this discussion.

[140]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

Suppose we have an array {25, 21, 12, 40, 37, 43, 14, 28}. We are going to sort
the array by using the quick sort algorithm. Please see the following diagram:

25 FZ218 B2 FA0N B3 R43N 14T 128

First, we choose the first item as the pivot, which is 25. We then iterate through the
remaining elements and compare each item with the pivot. When we compare 21 and 12,
they are lower than the pivot so they will be in the left sublist, and won't be moved. The
elements 40, 37, and 43, are also not moved. However, they will be in the right sublist. Then,
we compare 14 with the pivot, and we can see that its value is lower. We need to move it to
the left sublist. To do that, we swap it with the first element in the right sublist, which is 40.
The last is element 28, but we don't need to move it since it's lower than the pivot. By now,
the array should be as follows:

[141]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

To complete the partition, we can swap the pivot with the last item in the left sublist, which
is 14. Although we have moved 14, it will be in the left sublist. By now, the pivot is in the
correct position and the array should be as follows:

14 |1 2112 mES8 | 37 43 40 28

As shown in the preceding diagram, we have two unsorted sublists: [14, 12, 21] as the left
sublist and [37, 43, 40, 28] as the right sublist. We will use the quick sort algorithm to sort
these sublists. Starting from the left sublist, we pick 14 as the pivot. We then compare 21
with the pivot and mark it as the right sublist. When we find 12, we swap it with 21 since it
should be in the left sublist. The array should be as follows:

As shown in the preceding diagram, 14 is the pivot, 12 is in the left sublist, and 21 is in the
right sublist. To complete the partition, we need to swap the pivot with the last item of the
left sublist. Because it only contains one element, we just swap 14 with 12, the only left
sublist item remaining. By now, the array should be as follows:

25 37 43 40 28

12 114 21 |25 37 43 40 28

[142]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

As we can see in the preceding diagram, 14 is in the right position. Fortunately, 12 and 21
are also in the right position, so we now have all of the left sublist sorted. Now, we move to
the right sublist and pick 37 as the pivot. It compares with 43, and so it should be in the
right sublist. It then compares with 40, which is also in the right sublist. When it is
compared with 28, we have to swap 28 with 43 since 28 is lower than the pivot. The array
should look as follows:

12 14 21 25 37

Now, we can swap the pivot with the last item in the left sublist and then the pivot will be
in the right position afterwards. The array should be as follows:

28 BIdN B BN 28 ESdE 40 || 43

Fortunately, 28 is now in the right position as well, so we can move it to the right sublist.
We pick 43 as the pivot and then compare it with 43 and mark 43 as being the right sublist.
Since we don't have any elements in the left sublist, with the result that the pivot is in the
correct position automatically, the last item, which is 43, is automatically in the right
position as well. The fully sorted array should be as follows:

12 1140 |20 125 || 28 || 37 |40 43

[143]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

Now, let's create a C++ code to solve the quick sort algorithm. We need a Partition ()
function that will divide an input array into left and right sublists and put the pivot in the
correct position. Then, we need a QuickSort () function to call the Partition () function
to recursively invoke itself to sort the left and right sublists. The code should be as follows:

// Project: Quick_Sort.cbp
// File : Quick_Sort.cpp

#include <iostream>
using namespace std;

int Partition/(
int arrl[],
int startIndex,
int endIndex)

// Set the first item as pivot
int pivot = arr[startIndex];

// Left sublist and right sublist
// are initially empty
int middleIndex = startIndex;

// Iterate through arr[l ... n - 1]
for (int i = startIndex + 1; i <= endIndex; ++1i)
{
if (arr[i] < pivot)
{
// the current item is on the left sublist
// prepare a seat by shifting middle index
++middleIndex;

// the arr[middleIndex] 1is

// the member of right sublist,

// swap it to the current item which is
// member of left list

swap (arr[i], arr[middleIndex]);

// By now, the arr[middleIndex] item is

// member of left sublist.

// We can swap it with the pivot

// so the pivot will be in the correct position

// which is between left sublist and right sublist
swap (arr[startIndex], arr[middleIndex]);

[144]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

// return the index of pivot
// to be used by next quick sort
return middleIndex;

void QuickSort (
int arrl[],
int startIndex,
int endIndex)

// Only perform sort process
// 1f the end index is higher than start index
if (startIndex < endIndex)
{
// Retrieve pivot position from Partition() function
// This pivotIndex is the index of element that is already
// in correct position
int pivotIndex = Partition(arr, startIndex, endIndex);

// Sort left sublist

// arr[startIndex ... pivotIndex - 1]
QuickSort (arr, startIndex, pivotIndex - 1);
// Sort right sublist

// arr[pivotIndex + 1 ... endIndex]
QuickSort (arr, pivotIndex + 1, endIndex);

int main ()
cout << "Quick Sort" << endl;
// Initialize a new array
int arr[] = {25, 21, 12, 40, 37, 43, 14, 28};

int arrSize = sizeof (arr)/sizeof (*arr);

// Display the initial array

cout << "Initial array: ";
for (int i=0; 1 < arrSize; ++i)
cout << arr[i] << " ";

cout << endl;

// Sort the array with QuickSort algorithm
QuickSort (arr, 0, arrSize - 1);

// Display the sorted array
cout << "Sorted array : ";

[145]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Arranging Data Elements Using a Sorting Algorithm Chapter 4

for (int i=0; 1 < arrSize; ++i)
cout << arr[i] << " ";
cout << endl;

return 0;

}

If we build and run the preceding code, we should see the following output on the screen:

,

' Terminal

Quick Sort

Initial array: 25 21 12 40 37 43 14 28
Sorted array : 12 14 21 25 28 37 40 43

Process returned @ (0x0) execution time : 0.008 s
Press ENTER to continue.

Since quick sort is similar to merge sort in dividing an input array into two sublists, the
time complexity of quick sort is O(N ¢ log N) for the best case scenario. In the worst case
scenario, we may pick the lowest or the greatest element as a pivot so that we have to iterate
through all elements. In this case, the time complexity will be O(N’).

Counting sort

Counting sort is a sorting algorithm that arranges items based on a key. Suppose we have
an array containing unsorted items with a range between 0 to 9; we can sort it by counting
the number of items based on the range as the key. Let's say we have an array of these
items—{9, 6, 5, 6, 1, 7, 2, 4, 3, 5, 7, 7, 9, 6}.Inasimple explanation, we
just need to count the frequency of the occurrence of each item. We then iterate through the
range from 0 to 9 to output the items in a sorted order. Initially, we will have an array
containing the following items:

[146]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

Now, we count the occurrence frequency of each item. Items 1, 2, 3, 4 will occur only once,
items 5 and 9 occur twice, items 6 and 7 occur three times, and item 8 never occurs. This can

be seen in the following diagram:

Based on this collection, we can reconstruct the array from the lowest item so that we end
up with the following result:

2 3 4 5 5 6 6 6 7 ifi T 9)

Creating C++ code for counting sort is quite simple; we just need to prepare
the counterArray[] array with the item range as its length and then put the occurrence of

the item in that array. We can reconstruct the array based on the counterArray (] array.
The code should be as follows:

// Project: Counting_Sort.cbp
// File : Counting_Sort.cpp

#include <iostream>
using namespace std;

void CountingSort (int arr([], int arrSize)

{
// Create key/counting array
// with assumption that all element value
// are from 0 to 9

[147]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

int counterSize = 10;
int * counterArray = new int [counterSize];

// Increase the respective counter by 1
for(int i = 0; i < arrSize; ++1)
{

++counterArraylarr[i]];

// Counter for iterating the arrCounter array
int arrCounter = 0;

for(int i = 0; i1 < counterSize; ++1i)
{
while (counterArray[i] > 0)

{
// Restore element to list
arr [arrCounter++] = i;

// Decrease counter by 1
——counterArray[i];

int main ()

{

cout << "Counting Sort" << endl;
// Initialize a new array
int arr[] = {9, 6, 5, 6, 1, 7, 2, 4, 3, 5, 7, 7, 9, 6};

int arrSize = sizeof (arr)/sizeof (*arr);

// Display the initial array

cout << "Initial array: ";
for (int i=0; 1 < arrSize; ++i)
cout << arr[i] << " ";

cout << endl;

// Sort the array with BubbleSort algorithm
CountingSort (arr, arrSize);

// Display the sorted array

cout << "Sorted array : ";
for (int i=0; 1 < arrSize; ++i)
cout << arr[i] << " ";

cout << endl;

[148]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

return 0;

}

As we can see in the preceding code, we have two for loop iterations. The first iteration is
used to iterate through the array elements and put them into the respective key. The second
one is used to reconstruct the initial array so that it will become a sorted list. Please note
that, even though there is a while loop inside the second for loop, it doesn't make the time
complexity of CountingSort () become O(N’). This is because the second for loop iterates
through the counter (which is the key in counting sort) and only the while loop iterates
through the array elements, so that, for both best and worst case scenarios, the time
complexity of this counting sort is O(N + k), where k is the number of keys. However, we
can ignore the k variable if k is very small so that the time complexity will be O(N). The
output of the preceding code should be as follows:

@S & Terminal

Counting Sort
Initial array: 9
1

65617 4 5779
Sorted array : 23 4 55 6 Td D

Process returned @ (0x0) execution time : 0.002 s
Press ENTER to continue.

Radix sort

Radix sort is a sorting algorithm that is used if the items we are going to sort are in a large
range, for instance, from 0 to 9999. In this sorting algorithm, we sort from the

least significant (rightmost) digit until the most significant digit (leftmost). We are going to
involve the Queue data structure we learned in chapter 3, Constructing Stacks and Queues
since we will be putting the equal digit in the queue. This means we need ten queues to
represent the digits from 0 to 9. Suppose we have an array with the following
elements—{429, 3309, 65, 7439, 12, 9954, 30, 4567, 8, 882} as we can see in the following
diagram:

|| 429 |[3309]| 65 |[7439]| 12 |[9954][30 |[4567]| 8 || 882 ||

[149]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

Then, we populate each item based on the least significant digit (the last digit) and store
them in their respective queue bucket. The diagram for this is as follows:

882 3309
30 | [12] [9954]| 65] [4567|| 8 |[429]
0 1 2 3 4 5 6 7 8 9

Since we put them in the queue, we can dequeue each bucket from 0 to 9. In the preceding
diagram, we enqueue the bucket from the top so we dequeue it from the bottom. The
diagram should be as follows:

| 30 || 12 |[882 |[9954]|| 65 |[4567]] 8 || 429 |[3309][7439]

Now, we can repeat the process, but this time for the second least significant digit (the
second digit from the left). If the item contains only one digit, the rest of the digits will be 0.
The collection should be as follows:

[8 [12 |[429][30 | 882

0 1 2 3 4 5 6 7 8 9

Again, we dequeue each bucket from 0 to 9 and should have the following array:

|| 8 |[3309] 12][429 || 30 |[7439][9954]|| 65 |[4567]| 882 ||

Move to the third digit from the left, and we can collect them into buckets as follows:

(3309 [429 | [4567]
0

1 2 3 4 5 6 7 8 9

From the preceding diagram, we can rearrange the array by dequeuing each bucket from 0
to 9 as follows:

8 |[12 || 30 || 65 |[3309]| 429 |[7439][4567][882 | [9954 |

[1501]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

Now, the last digit's position has to be collected (this is the most significant digit). Then, we
will have the following bucket diagram:

882

12

1 2 3 4 5 6 7 8 9

iy
w
o N
IIIIIIIIEII!II

Finally, we can get a the fully sorted array by dequeuing all of the buckets from the lowest
digit to the greatest digit, as shown in the following diagram:

8 |[12 || 30 || 65 |[429 || 882 |[3309]|4567]|7439]]9954]

Now, let's design the code for this sorting algorithm in the C++ language. The first thing we
need to know in performing this algorithm is the greatest item in the inputted array. This is
because we need to iterate through the digit of the greatest item. Once we have found

the greatest item, we can iterate through the number of digits in the item by diving it by an
exponential, starting from 1, then 10, 100, and so on. To get the selected digit, we can
divide the selected item by its current exponential and then find the modulus, 10, of the
result. The code should be as follows:

// Project: Radix_Sort.cbp
// File : Radix_Sort.cpp

#include <iostream>
#include "Queue.h"

using namespace std;

void RadixSort (int arr[], int arrSize)

{
// Create ten buckets for each digits
// (0 = 9)

Queue<int> * buckets = new Queue<int>[10];

// Find the largest element

int largestElement = arr[0];
for(int i = 0; i < arrSize; ++1)
{

if (largestElement < arr[i])

[151]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Arranging Data Elements Using a Sorting Algorithm

Chapter 4

largestElement = arr[i];

// Iterate through every digit
// using exponetial (10%exp) to find the digit
for(int exp = 1; largestElement/exp > 0; exp *= 10)
{
// Iterate the array's elements
for(int i = 0; i < arrSize; ++1)
{
// Move element into respective bucket
buckets|[(arr[i]/exp)%$10] .Enqueue (arr[i]);

// Reconstruct the array starting from
// the smallest digit in the buckets
// Reset the array counter before reconstructing
int arrCounter = 0;
for(int i = 0; i < 10; ++i)
{
// Get all elements from the buckets
while (!buckets[i].IsEmpty())
{
// Get the front element
// then restore element to array
arr[arrCounter++] = buckets[i].Front();

// Remove the front element
buckets[i] .Dequeue () ;

return;

int main ()

{

cout << "Radix Sort" << endl;
// Initialize a new array
int arr[] = {429, 3309, 65, 7439, 12, 9954, 30, 4567, 8,

int arrSize = sizeof (arr)/sizeof (*arr);

// Display the initial array

cout << "Initial array: ";
for (int i=0; 1 < arrSize; ++i)
cout << arr[i] << " ";
[152]

882};

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

cout << endl;

// Sort the array with QuickSort algorithm
RadixSort (arr, arrSize);

// Display the sorted array

cout << "Sorted array : ";
for (int i=0; 1 < arrSize; ++i)
cout << arr[i] << " ";

cout << endl;

return 0;

}

As we can see in the preceding code, we can skip the first for loop since it's only there to
find out the greatest item. The second for loop is used to iterate to the number of digits, or
we can notate it as d. Each iteration of d will iterate through all of the array elements to
collect all of the items based on the key (k) as we did for counting sort. So, the time
complexity of the code inside the second for loop will be the same as the time complexity
of the counting sort. So, the time complexity of the RadixSort () function will be O(d
(N+k)), and since we can ignore the k variable if it's very small, the time complexity of a
radix sort will be O(d ¢ N) for both the best and worst case scenarios. The output on the
screen will be as follows if we build and run the preceding code:

/T

' Terminal

Radix Sort
Initial array: 429 3309 65 7439 12 9954 30 4567 8 882

Sorted array : 8 12 30 65 429 882 3309 4567 7439 9954

Process returned @ (@x0) execution time : 0.814 s
Press ENTER to continue.

Summary

By now, we have understood the sorting algorithms concept and have implemented all
common sorting algorithms in C++. We have looked at the slowest sorting algorithms that
give the time complexity as O(N’): bubble sort, selection sort, and insertion sort. However, if
we are lucky, we can have a time complexity of O(N) for both bubble sort and insertion sort
since they can detect whether we pass a sorted list. However, for selection sort, we will still
have a time complexity of O(N°) even after the input list is sorted.

[153]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Arranging Data Elements Using a Sorting Algorithm Chapter 4

Other sorting algorithms that are faster than the three preceding algorithms are merge sort
and quick sort. Their time complexity is O(N log N) since they have to divide the input list
into two sublists. The last, and the fastest, sorting algorithm, are counting sort and radix
sort since their time complexity is O(N).

In the next chapter, we are going to discuss a technique to search for an item in an array or a
list by using a sorting algorithm.

QA section

e Can we sort the left sublist and right sublist from the partition method in quick
sort using other sorting algorithms?

e Suppose we have an array which consists of {4, 34, 29, 48, 53, 87, 12, 30, 44, 25, 93,
67,43, 19, 74}. What sorting algorithm will give you the fastest time performance?

e Why can merge sort and quick sort have O(N ¢ log N) for their time complexity?
e What sorting algorithm is similar to arranging a hand of poker cards?

e What is the best sorting algorithm if we are going to sort an array which consists
of {293, 21, 43,1024, 8, 532, 70, 8283}?

Further reading

For reference purposes, you can refer to the following links:

® https://www.geeksforgeeks.org/sorting-algorithms/
® https://visualgo.net/en/sorting

[154]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Finding out an Element Using
Searching Algorithms

In the previous chapter, we discussed various techniques to arrange a list by sorting it.
Now, in this chapter, we are going to discuss various techniques to search a specific value
on a list and find the index where it's stored. Several searching algorithms we are going to
discuss in this chapter need a sorted list, so we can apply one of the sorting algorithms we
discussed in the previous chapter. By the end of this chapter, we will be able to understand
and apply the following searching algorithms:

e Linear search
¢ Binary search
e Ternary search

Interpolation search

Jump search

Exponential search
Sublist search

Technical requirements

To follow along with this chapter, including the source code, we require the following:

¢ Desktop PC or Notebook with Windows, Linux, or macOS
o GNU GCC v5.4.0 or above

e Code Block IDE v17.12 (for Windows and Linux OS), or Code Block IDE v13.12
(for macOS)

¢ You will find the code files on GitHub at https://github.com/
PacktPublishing/CPP-Data-Structures-and-Algorithms

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

Linear search

Linear search is a simple searching algorithm to find out an item in a list using a sequential
method. It means that we start looking at the first item in the list, then move to the second
item, the third item, the fourth item, and so on. In chapter 2, Storing Data in Lists and Linked
Lists and chapter 3, Constructing Stacks and Queues, when we discussed data structure, we
designed a searching algorithm for each data structure we had. Actually, the searching
algorithm uses a linear searching algorithm.

Developing a linear search algorithm

To refresh our memory about linear algorithms, let's pick a random array that contains

{43, 21, 26, 38, 17, 30, 25, 18}.We then have to find the index where 30 is
stored. As we can see in the array, 30 is in index 5 (since the array is zero-based indexing);
however, if we find an unexisting item, the algorithm should return -1. The following is the
method of linear search named LinearSearch():

int LinearSearch(
int arrl[],
int startIndex,
int endIndex,
int val)

// Iterate through the start index
// to the end index and
// return the searched value's index
for(int i = startIndex; 1 < endIndex; ++1)
{

if (arr[i] == val)

{

return ij;
}
}

// return -1 if no val is found
return -1;

}

As we can see in the LinearSearch () implementation, we pass an array,

startIndex, endIndex, and the value we are going to search for. The algorithm then
iterates through the array from startIndex to endIndex. The algorithm will return the
index if the value is found. If the value is not stored in the array, it will simply return -1.

[156]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

Implementing the linear search algorithm

Now, let's create amain () function to invoke a LinearSearch () function, as follows:

int main ()

{

cout << "Linear Search" << endl;

// Initialize a new array
int arr([] = {43, 21, 26, 38, 17, 30, 25, 18};
int arrSize = sizeof (arr)/sizeof (*arr);

// Define value to be searched
int searchedvValue = 30;

// Find the searched value using Linear Search
int i = LinearSearch(arr, 0, arrSize - 1, searchedvValue);

// Notify user the result

// if the return is not -1,

// the searched value is found

if(i !'= -1)

{
cout << searchedValue << " is found in index ";
cout << 1 << endl;

}

else

{
cout << "Could not find value " << searchedValue;
cout << endl;

return 0;

}

In the preceding main () function, we try to find the position of value 30. The following
output occurs if we build and run the preceding code that is written in
the Linear_Search. cpp file:

Terminal

Linear Search
30 is found in index 5

Process returned 0 (8x0) execution time : 0.053 s
Press ENTER to continue.

[157]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

From the LinearSearch () function, we see that it has to iterate all array elements until it
finds the searched value. In the best case scenario, the searched value will be at the first
index, so the time complexity would be O(1). However, the searched value might not be
found in the array, and the algorithm has to iterate until the end of the array's element; that
is the worst case scenario, with the O(N) time complexity.

Binary search

Binary search is a searching algorithm to find the position of the searched value in a list by
dividing the list into left and right sublists. Prior to performing this searching algorithm, we
have to sort the list using the sorting algorithms we discussed in the chapter 4, Arranging
Data Elements Using a Sorting Algorithm.

Developing binary search algorithm

Suppose we have a sorted array containing these 15 elements {3, 8, 11, 15, 16, 23,
28, 30, 32, 39, 42, 44, 47, 48, 50} and we need to find the position of 16. The
first thing the binary search does is to find the middle element, then compares it with the
searched value. Since we've got 15 elements on the list, the middle index is 7 (since the
array is a zero-based index), and the value of the index is 30. Then, we compare 30 with our
searched value, which is 16. Since the middle value is greater than the value we are looking
for, the searched value must be to the left of the middle index. So, we can take the left
subarray and have these elements: {3, 8, 11, 15, 16, 23, 28}. Again, we perform
the binary search on this subarray and find the middle value is 15, which is lower than 16,
so we take the right subarray and get these elements: {16, 23, 28}. We now have only
three elements to be sorted, and, by performing the binary search on this subarray, we will
find the position of the value 16. The C++ code for the binary search algorithm is as follows:

int BinarySearch (
int arrl[],
int startIndex,
int endIndex,
int val)

// Only perform searching process
// 1f the end index is higher than
// or equals to start index
if (startIndex <= endIndex)
{

// Find middle index

[1581]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

int middleIndex = startIndex + (endIndex - startIndex) / 2;

// If the middle index's value is the searched value
// then return the index
if (arr[middleIndex] == val)
{
return middleIndex;
3

// If the middle index's value is greater than the searched

value

// then perform another Binary Search to the left sub
array

// arr[startIndex ... middleIndex - 1]

else if (arr[middleIndex] > wval)

{
return BinarySearch (arr, startIndex, middleIndex - 1,
val);

3

// If the middle index's value is lower than the searched

value

// then perform another Binary Search to the right sub
array

// arr[middleIndex + 1 ... endIndex]

else

{
return BinarySearch(arr, middleIndex + 1, endIndex,
val);

// Just in case no any value found
return -1;

}

As we can see in the preceding BinarySearch () function, we call the function recursively
for a sublist it has after performing the BinarySearch () function. The function will find
the position of the searched value if it finds the middle value equals the searched value.

As we can see in BinarySearch () function implementation, we use
recursion instead of iteration to repeat function invocation. The usage of
recursion will make our function simpler and more natural; however,
recursion will be an infinite loop if you miss a basis case.

If you are interested in learning more about recursion, you can refer to the
book Learning C++ Functional Programming, Chapter 4, Repeating Method
Invocation Using Recursive Algorithms, published by Packt Publishing.

[159]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Finding out an Element Using Searching Algorithms Chapter 5

Implementing binary search algorithm

The following is the main () function which invokes the BinarySearch () function:
int main ()
{

cout << "Binary Search" << endl;

// Initialize a new array

int arr(] = {3, 8, 11, 15, 16, 23, 28, 30, 32, 39, 42, 44, 47,
48, 50};
int arrSize = sizeof (arr)/sizeof (*arr);

// Define value to be searched
int searchedvValue = 16;

// Find the searched value using Binary Search
int i = BinarySearch(arr, 0, arrSize - 1, searchedValue);

// Notify user the result

// if the return is not -1,

// the searched value is found

if(i !'= -1)

{
cout << searchedValue << " is found in index ";
cout << i1 << endl;

}

else

{
cout << "Could not find value " << searchedValue;
cout << endl;

return 0;

}

As shown in the preceding code, we are going to find the position of value 16 in the array
containing 15 elements. The following screenshot demonstrates the output that we should
see on the console if we run the preceding code we can find in the Binary_Search.cpp
file:

Terminal

Binary Search
16 is found in index 4

Process returned @ (@x0) execution time : 0.007 s
Press ENTER to continue.

[1601]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Finding out an Element Using Searching Algorithms Chapter 5

The time complexity of binary search algorithm is O (log N) in the worst case, since we have
to divide the array into two subarray, then again divide each subarray into two subarrays,
until we find the searched value, or until the subarray cannot be divided anymore;
however, this searching algorithm can give O(1) time complexity in the best case scenario, if
the searched value is stored in the middle position (for instance, if we search for 30 in the
preceding array).

Ternary search

Ternary search is a searching algorithm that divides an input array into three
subarrays—an array of the first third, an array of the last third, and an array between these
two areas. It needs to pick two indexes, which are

called middleLeftIndex and middleRight Index. These two indexes are calculated based
on the first index and the last index of the input array.

Developing ternary search algorithm

Suppose we have an array as we have in a binary search, {3, 8, 11, 15, 16, 23, 28,
30, 32, 39, 42, 44, 47, 48, 50}, and want to search for a value of 16. The array
contains 15 elements, so we will have the fifth index as the middle-left index
(middleLeftIndex = 4), and ninth index as the middle-right index (middleRightIndex
= 8). By using these two indexes, we can find the searched value in each area using the
ternary search algorithm itself (recursive invocation). The code of a ternary search
algorithm in C++ is as follows:

int TernarySearch (
int arrl[],
int startIndex,
int endIndex,
int val)

// Only perform searching process
// 1f the end index is higher than
// or equals to start index
if (startIndex <= endIndex)
{
// Find index of area of the first third
int middleLeftIndex = startIndex + (endIndex — startIndex)
/ 3;

// Find index of area of the last third

[161]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

int middleRightIndex =
middleLeftIndex + (endIndex - startIndex) / 3;

// If val is at middleLeftIndex
// then return middleLeftIndex
if (arr[middlelLeftIndex] == val)
{
return middleLeftIndex;
3
// If val is at middleRightIndex
// then return middleRightIndex
else if (arr[middleRightIndex] == wval)
{
return middleRightIndex;
3
// If val is at the are of the first third
// then perform another Ternary Search to this subarray
// arr[startIndex ... middleLeftIndex - 1]
else if (arr[middleLeftIndex] > wval)
{
return TernarySearch (
arr,
startIndex,
middleLeftIndex - 1,
val);
3
// If val is at the area of the last third
// then perform another Ternary Search to this subarray
// arr[middleRightIndex + 1 ... endIndex]
else if (arr[middleRightIndex] < wval)
{
return TernarySearch (
arr,
middleRightIndex + 1,
endIndex,
val);
3
// The val is at the area
// between middlelLeftIndex and middleRightIndex
// arr[middlelLeftIndex + 1 ... middleRightIndex - 1]
else
{
return TernarySearch (
arr,
middleLeftIndex + 1,
middleRightIndex - 1,
val);

[162]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

// Just in case no any value found
return -1;

}

As we can see in the preceding TernarySearch () function implementation, after
defining middleLeftIndex and middleRight Index, we compare the elements at the two
indexes with the searched value to guess where the searched value is stored.

Applying the ternary search algorithm

To invoke the TernarySearch () function, we can use the following main () function:
int main ()
{

cout << "Ternary Search" << endl;

// Initialize a new array

int arr[] = {3, 8, 11, 15, 16, 23, 28, 30, 32, 39, 42, 44, 47,
48, 50};
int arrSize = sizeof (arr)/sizeof (*arr);

// Define value to be searched
int searchedValue = 16;

// Find the searched value using Ternary Search
int i = TernarySearch(arr, 0, arrSize - 1, searchedValue);

// Notify user the result

// i1f the return is not -1,

// the searched value is found

if(i !'= -1)

{
cout << searchedValue << " is found in index ";
cout << 1 << endl;

3

else

{
cout << "Could not find value " << searchedValue;
cout << endl;

return 0;

[163]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

If we build and run the preceding code, we are going to see the following output on the
console:

-

=) Terminal

Ternary Search
16 is found in index 4

Process returned 8 (8x8) execution time : 9.820 s
Press ENTER to continue.

Since the area of the ternary search is always one third, the time complexity of this search
algorithm is O(log3 N) for the worst case. For the best case, the time complexity is O(1).

Interpolation search

Interpolation search is an improvement of the binary search algorithm in picking the
middle index. Instead of always picking the middle element to be checked to a searched
value like in a binary search, the middle index is not always at the middle position in an
interpolation search. The algorithm will calculate the middle index based on the searched
value, and pick the nearest element from the searched value. Similar to the binary search, in
the interpolation search we have to pass an array we want to search and define the lowest
index and the highest index, then calculate the middle index using the following formula:

(highIndex — lowIndex)]

iddleIndex = lowIndex + l— [lowIndez]) -
uddieindes = towindes [(Uﬁ array|lowIndec]) array[highIndez] — arrayllowIndexz)

Developing interpolation search algorithm

Let's borrow the array we used in the binary search algorithm, whichis {3, 8, 11, 15,
16, 23, 28, 30, 32, 39, 42, 44, 47, 48, 50}, and find value 16. As we discussed
earlier, in binary search, we've got 30, 15, and 23 as the middle index when it runs
recursively, before we find the position of 16 (which means it needs four invocation

of BinarySearch () function). However, by using interpolation search, we just need two
invocation of an interpolation search function. Let's prove it.

[164]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Finding out an Element Using Searching Algorithms Chapter 5

Imagine we use the BinarySearch () function, but just replace
the middleIndex calculation with the formula in the preceding section. First, we pass the
array and have lowIndex = 0, highIndex = 14,and val = 16 (since we are going to
search value 16). Based on those values, we can calculate the middle index as follows:
middleIndex = 0 + [(16 - 3)- M]
(50 — 3)

The result of the preceding calculation is 3. 87, and as an integer value, it will be 3.

The array[3] is 15 and it doesn't equal to 16, but is lower than it. So we can eliminate

the array[0] until array [3], and start the search from index 4. Now, we have lowIndex
= 4,highIndex = 14,and val = 16. The middle index can be calculated as follows:

14 — 4
middleIndex = 4 + | (16 — 16) - -((50—_1%

The result of the preceding calculation is obvious, which is 4. We now have middleIndex
= 4, and, since 16 is stored at index 4, we have successfully found the position of the
searched value, and just need two invocations of the interpolation search function.

Because interpolation search is just an improvement of binary search, the implementation of
interpolation search in C++ is similar to the binary search implementation, except the way
we calculate the middle index. The implementation of InterpolationSearch () should be
as follows:

int InterpolationSearch (
int arrl[],
int lowIndex,
int highIndex,
int val)

if (lowIndex <= highIndex)
{
// Find middle index
int middleIndex =
lowIndex + (
(val - arr[lowIndex]) * (highIndex - lowIndex) /
(arr[highIndex] - arr[lowIndex]));

// If the middle index's value is the searched value
// then return the index
if (arr[middleIndex] == val)

{

[165]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

EBSCChost

Finding out an Element Using Searching Algorithms Chapter 5

return middleIndex;
3
// If the middle index's value is greater than the searched
value
// then perform another Interpolation Search to the left
sub array
// arr[lowIndex ... middleIndex - 1]
else if (arr[middleIndex] > wval)
{
return InterpolationSearch(arr, lowIndex, middleIndex -
1, val);
3
// If the middle index's value is lower than the searched
value
// then perform another Interpolation Search to the right
sub array
// arr[middleIndex + 1 ... highIndex]
else
{
return InterpolationSearch (arr, middleIndex + 1,
highIndex, wval);

// Just in case no any value found
return -1;

Applying interpolation search algorithm

We can use the main () function similar to binary search to find the value 16, as shown in
the following code:

int main ()

{

cout << "Interpolation Search" << endl;

// Initialize a new array

int arr(] = {3, 8, 11, 15, 16, 23, 28, 30, 32, 39, 42, 44, 47,
48, 50};
int arrSize = sizeof (arr)/sizeof (*arr);

// Define value to be searched
int searchedvValue = 16;

// Find the searched value using Interpolation Search

[166]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

int i = InterpolationSearch(arr, 0, arrSize - 1,
searchedValue) ;

// Notify user the result

// 1f the return is not -1,

// the searched value is found

if(i !'= -1)

{
cout << searchedValue << " is found in index ";
cout << 1 << endl;

3

else

{
cout << "Could not find value " << searchedValue;
cout << endl;

}

return 0;

}

This is the output that we should see if we build and run the preceding code, it will be
similar to a binary search, as we can see in the following screenshot:

@S & Terminal

Interpolation Search
16 is found in index 4

Process returned 0 (0x0) execution time : 0.002 s
Press ENTER to continue.

As we discussed earlier, the time complexity of binary search is O(log N); however, the
interpolation search is faster than the binary search, since the interpolation search improves
the calculation of the middle index. The time complexity of the interpolation is O(log (log
N)) and still, for the best case, the time complexity of the algorithm is O(1).

Jump search

Jump search is a searching algorithm to find the position of a searched value in a sorted list
by dividing the array into several fixed-size blocks, jumping to the first index of the block,
then comparing the value of the block's first index with the searched value. If the value of
the block's first index is greater than the searched value, it jumps backward to the previous
block, then starts a linear search of the block.

[167]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

Developing jump search algorithm

Suppose we have an array containing {8, 15, 23, 28, 32, 39, 42, 44, 47, 48}
elements, and we want to find the position of value 39. We will set the jump step by the
square root elements number. Since the element number of the array is 10, the step will be
N10 = 3. We will now compare the value of index 0, 3, 6, and 9. When the algorithm
compares array [0] with 39, the value of array [0] is lower than the searched value. It
then jumps to array [3] and compares its value with 39. Since the value is lower than the
searched value, it jumps to array [6] and finds that 42 is greater than 39. It then jumps
backward to array[6], and performs the linear search on array[6], array[7], and
array[8] to find the value 39 and get the position of the value. The implementation of
jump search in C++ code is as follows:

int JumpSearch (
int arrl[],
int arrSize,
int val)

// It's impossible to search value
// in array contains zero or less element
if (arrSize <= 0)
{
return -1;

}

// Defining step used to jump the array
int step = sqgrt(arrSize);

// Start comparing from index O
int blockIndex = 0;

// Increase the blockIndex by the step
// 1f blockIndex is lower than array size
// and the value of element in blockIndex
// is still lower than searched value
while (blockIndex < arrSize && arr[blockIndex] < val)
{
blockIndex += step;
3

// After find the blockIndex,

// perform Linear Search to the sub array

// defined by the blockIndex

// arr[blockIndex - step blockIndex or arrSize]
return LinearSearch (

[168]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Finding out an Element Using Searching Algorithms

Chapter 5

arr,

blockIndex - step,

min (blockIndex, arrSize),
val);

Applying jump search algorithm

If we want to find the position of 39 in the array, as we did earlier in this chapter, we can
use the following main () function:

int main ()

{

cout << "Jump Search" << endl;

// Initialize a new array

int arr[] = {8, 15, 23, 28, 32, 39, 42, 44, 47, 48};
int arrSize = sizeof (arr)/sizeof (*arr);
// Define value to be searched
int searchedvalue = 39;
// Find the searched value using Jump Search
int i = JumpSearch(arr, arrSize, searchedvValue);
// Notify user the result
// if the return is not -1,
// the searched value is found
if(i !'= -1)
{
cout << searchedValue << " is found in index ";
cout << i1 << endl;
}
else
{
cout << "Could not find value " << searchedValue;

cout << endl;

return 0;

[169]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

EBSCChost -

Finding out an Element Using Searching Algorithms Chapter 5

If we build and run the preceding code, we are going to see the following output on the
console:

& S & Terminal

Jump Search
39 is found in index 5

Process returned @ (0x0) execution time : 0.004 s
Press ENTER to continue.

Since we decide the jump step with YN, where N is the array's elements number, we will
have the time complexity of jump search as O(VN) for both best and worst cases.

Exponential search

Exponential search is similar to a jump search, since it also divides the input array into
several subarrays; however, in exponential search, the step we jump is increased
exponentially (2"). In exponential search, we initially compare the second index
(blockIndex = 1), then compare array[1] with the searched value. If the array[1] is
still lower than the searched value, we increase the blockIndex exponentially to become 2,
4, 8, and so on, until the array [blockIndex] is higher than the searched value. Then we
can perform the binary search to the subarray defined by the blockIndex.

Developing exponential search algorithm

Let's use the array we used in jump search, {8, 15, 23, 28, 32, 39, 42, 44, 47,
48}, to perform an exponential search, and we will also find value 39. First, we

apply setblockIndex = 1, then compare array[1] with the searched value, 39. Since 15
is lower than 39, the algorithm sets blockIndex = 2.array[2] is still lower than 39, then
moves to array [4]. And since its value is still lower than 39, it moves to array[8] and
finds that it's now greater than 39. After that, the algorithm performs the binary search
from array[4] to array[8] to find the searched value. The implementation of the
exponent search in C++ will be as follows:

int ExponentialSearch (
int arr[],
int arrSize,
int wval)

// It's impossible to search value
// in array contains zero or less element

[170]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Finding out an Element Using Searching Algorithms Chapter 5

if (arrSize <= 0)
{

return -1;

// Start comparing from index 1
int blockIndex = 1;

// Increase the blockIndex exponentially
// 1f blockIndex is lower than array size
// and the value of element in blockIndex
// is still lower than searched value
while (blockIndex < arrSize && arr[blockIndex] < wval)
{
blockIndex *= 2;

// After find the blockIndex,
// perfom Binary Search to the sub array
// defined by the blockIndex
// arr[blockIndex / 2 blockIndex or arrSize]
return BinarySearch (
arr,
blockIndex / 2,
min (blockIndex, arrSize),
val);

}

As we can see in the preceding code, we don't need to calculate the step as we did in the
jump search, since the step is increased by exponential value.

Invoking the ExponentialSearch() function

To invoke the preceding ExponentialSearch () function, we can use the following
main () function code:

int main ()

{

cout << "Exponential Search" << endl;

// Initialize a new array
int arr(] = {8, 15, 23, 28, 32, 39, 42, 44, 47, 48};
int arrSize = sizeof (arr)/sizeof (*arr);

// Define value to be searched
int searchedvValue = 39;

[171]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

// Find the searched value using blockIndex Search
int i = ExponentialSearch(arr, arrSize, searchedvValue);

// Notify user the result

// 1f the return is not -1,

// the searched value is found

if(i !'= -1)

{
cout << searchedValue << " is found in index ";
cout << 1 << endl;

3

else

{
cout << "Could not find value " << searchedValue;
cout << endl;

return 0;

}

If we build and run the preceding code, we are going to be displaying similar output to a
jump search, as follows:

Terminal

Exponential Search
39 is found in index 5

Process returned 0 (8x0) execution time : 0.083 s
Press ENTER to continue.

To find the performance of this searching algorithm, we have to calculate all processes in
the algorithm, which are while loop and a binary search invocation. In the while loop
process, the algorithm takes 0 (1og i), where i is the index of the searched value. The
second process is the invocation of binary search. As we know, the time complexity of
binary search is O(log N); however, after the while loop process, the number of array
elements are no longer N, but i. So, the second process' time complexity will be O(log i) as
well. As a result, whole processes in exponential search will be:

O(log i) + O(log 1) = 2 O(log 1i)

Since we can omit a constant value, the time complexity of this searching algorithm is
O(log i), where i is the index of the searched value.

[172]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

Sublist search

Sublist search is used to detect a presence of one list in another list. Suppose we have a
single-node list (let's say the first list), and we want to ensure that the list is present in
another list (let's say the second list), then we can perform the sublist search to find it. For
instance, the first list contains these elements: 23 -> 30 -> 41, and the second list
contains these elements: 10 -> 15 -> 23 -> 30 -> 41 -> 49. Ata glance, we see that
the first list presents in the second list.

The sublist search algorithm works by comparing the first element of the first list with

the first element of the second list. If the two values don't match, it goes to the next element
of the second list. It does this until the two values match, then checks the succeeding
elements of the first list with the succeeding elements of the second list. If all elements
match, then it returns true, otherwise, it returns false.

Designing sublist search algorithm

Let's design the C++ program for this searching algorithm. First, we are going to develop
a SublistSearch () function that will compare the first element of the first list with all
elements of the second list. The code should be as follows:

bool SublistSearch (
Node * firstList,
Node * secondList)

// If both are NULL,
// Jjust return true
if(firstList == NULL && secondList == NULL)
{
return true;

}

// If one is NULL but the other is not,
// just return false
if((firstlList != NULL && secondList == NULL) ||
(firstList == NULL && secondList != NULL))
{
return false;

}

// Compare the value, if not match,
// check next element of second list
if (firstlList—->Value == secondList->Value)

[173]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

// If matched, check deeper
if (CompareAllMatchedElements (
firstList,
secondList))

return true;

// Check next element of the first list
return SublistSearch (firstList, secondList->Next);

}

As we can see in the preceding SublistSearch () function implementation, it calls itself
when moving to the next element of the second list. And when it finds

that firstList->Value == secondList->Value, it performs

the CompareAllMatchedElements () function to ensure the remaining second list
elements match all the second list's elements. The implementation of

the CompareAllMatchedElements () function will be as follows:

bool CompareAllMatchedElements (
Node * ptrl,
Node * ptr2)

// ptr2 cannot be NULL

// since it will be compared

// to ptrl

if(ptrl != NULL && ptr2 == NULL)
return false;

// It's the end of the first list element
if (ptrl == NULL)
return true;

// Compare value of each list
if (ptrl->Value == ptr2->Value)
{
// Compare next element
return CompareAllMatchedElements (
ptrl->Next,
ptr2->Next) ;
}
else
{

return false;

[174]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

}

In the preceding code, we also see the CompareAllMatchedElements () function invokes
itself to prove that the next element of the two lists remains the same. This function will
return false if it finds one element that doesn't match. Also, if it has iterated all elements of
the first list, it will return t rue.

Performing sublist search algorithm

To perform the sublist search, we can invoke the SublistSearch () function and pass two
lists. The following main () function will create two lists and invoke
the SublistSearch () function:

int main ()

{

cout << "Sublist Search" << endl;

// Initialize first list
// 23 => 30 -> 41
Node * nodel_c = new Node () ;

nodel_c->Value = 41;
Node * nodel_b = new Node () ;
nodel_b->Value = 30;

nodel_b->Next = nodel_c;
Node * nodel_a = new Node () ;
nodel_a->Value = 23;
nodel_a->Next = nodel_b;

// Print the first list
cout << "First list : ";
PrintNode (nodel_a);

// Initialize second list

// 10 => 15 -=> 23 —=> 30 -> 41 -> 49
Node * node2_f = new Node();
node2_f->Value 49;

Node * node2_e = new Node();
node2_e->Value 41;
node2_e->Next = node2_f;
Node * node2_d = new Node();
node2_d->Value = 30;
node2_d->Next = node2_e;
Node * node2_c = new Node();
node2_c->Value = 23;
node2_c—->Next = node2_d;

[175]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Finding out an Element Using Searching Algorithms

Chapter 5

Node * node2_b = new Node();
node2_b->Value = 15;
node2_b->Next = node2_c;
Node * node2_a = new Node();
node2_a->Value = 10;
node2_a->Next = node2_b;

// Print the second list
cout << "Second list: ";
PrintNode (node2_a) ;

// Notify user the result

// if the return is true

// the searched value is found
cout << "Result: second list is ";
if (SublistSearch (nodel_a, node2_a))

{
cout << "found";
}
else
{
cout << "not found";
}
cout << " in first list." << endl;

return 0;

}

And if we build and run the preceding code, we will see the following output on the screen:

Terminal

Sublist Search

First list : 23 -> 30 -> 41 -> NULL

Second list: 10 -> 15 -> 23 -> 30 -> 41 -> 49 -> NULL
Result: second list is found in first list.

Process returned 0 (8x8) execution time : 0.175 s
Press ENTER to continue.

If we notate N as the number of first elements and M as the number of second elements, we
will have the time complexity of the sublist search as O(M - N), since the algorithm will

iterate through each element of both the first and second lists.

[176]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Finding out an Element Using Searching Algorithms Chapter 5

Summary

In this chapter, we discussed various searching algorithms, from the fastest searching
algorithm to the slowest searching algorithm. To get a faster searching algorithm, we can
use the interpolation search with O(log (log N)), since it can find the nearest middle index
from a searched value. The others are binary search with O(log N) and exponential search
with O(log i), where i is the index of searched value. The moderate searching algorithm is a
jump search, which has O(VN) and the slowest algorithm is a linear algorithm with O(N)
complexity, since it has to check all list elements; however, contrary to other searching
algorithms we discussed in this chapter, the linear algorithm can also be applied to an
unsorted list.

In the next chapter, we are going to discuss several common algorithms that are frequently
used in string data type to gain the best performance.

QA section

e What is the simplest search algorithm?
e How does linear search algorithm work?
e Which is fastest—binary search algorithm or ternary search algorithm?

e Why does interpolation search algorithm become an improvement of binary
search algorithm?

e If we have to choose between binary search algorithm and exponential search
algorithm, which should we pick to get the fastest execution time possibilities?

e What is a similarity between jump search algorithm and exponential search
algorithm?

e If we need to detect a presence of one list in another list, which search algorithm
should we use?

[177]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Finding out an Element Using Searching Algorithms Chapter 5

Further reading

For further reference, you can refer to the following links:

https:
https:
https:
https:
https:
https:

[/ wWww .
[/ wWww .
//wWww .
//wWww .
[/ wWww .

//WwWw .

geeksforgeeks

geeksforgeeks.
geeksforgeeks.
geeksforgeeks.
geeksforgeeks.

geeksforgeeks.

.org/linear-search/
org/binary-search/
org/jump-search/
org/interpolation-search/
org/exponential-search/

org/binary-search-preferred-ternary-search/

printed on 2/9/2023 10:18 AMvia .

Al use subject to htt

[178]

ps:// ww. ebsco. conl t er ns- of - use

Dealing with the String Data
Type

In the previous chapters, we have discussed several simple data structures, such as lists,
linked lists, strings, stacks, and queues. Now, starting from this chapter, we are going to
discuss non-linear data types. This chapter will discuss the st ring data type, including
how to construct, use, and solve several problems in the st ring data type. The following
are topics that will be discussed in this chapter:

e Introducing the string data type in C++

¢ Finding out whether a string is an anagram or palindrome
¢ Creating a sequence of binary digits as binary string

¢ Generating a subsequence of a string

e Searching a pattern in a string

Technical requirement

To follow along with this chapter, including the source code, we require the following:

¢ Desktop PC or Notebook with Windows, Linux, or macOS
o GNU GCC v5.4.0 or above

e Code Block IDE v17.12 (for Windows and Linux OS), or Code Block IDE v13.12
(for macOS)

e You will find the code files on GitHub at https://github.com/
PacktPublishing/CPP-Data-Structures-and-Algorithms

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Dealing with the String Data Type Chapter 6

String in C++

String is a data type that stores a collection of characters. This collection can form a word or
some information that can be understood by humans, it can also form a sentence from
several words. In this section, we are going to discuss how to construct and use the string
data type in C++.

Constructing a string using character array

In C++, a string can be composed by using an array of characters. When we compose a
string using an array, we have to reserve a space to store a NULL character (\0) at the last
array's element to indicate the end of the string. Suppose we want to create a string
variable containing a name of a person called James; we need an array with at least six
elements, since James is composed of five characters. Please take a look at the following
diagram:

Jlaim|je|[s|\0

As we can see in the preceding diagram, we need an array with at least six elements to store
a string containing five letters. There are several ways to create a string using character
arrays. These are some of them:

char name[] = "James";
char name[] = {'J', 'a', 'm', 'e', 's', '\0'};
char name[6] = "James";
char name[6] = {'J', 'a', 'm', 'e', 's', '\0'}

From the preceding pieces of code, the first line and second line are used to construct arrays
that set their length automatically based on initial elements. In the third and fourth lines, we
specify the length of the array. However, we can choose any one of the four preceding lines
of code to create a string variable named name and containing James as its value.

The problem comes when we need to modify the string by adding one character. For
example, since the array cannot be extended, we have to create another array with our
desired length, then copy the old array into the new one. To solve the problem, we can use
std: :string class provided by C++, which we will discuss in the next subchapter.

[180]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Dealing with the String Data Type Chapter 6

Using std::string for more flexibility features

There is a std: : string data type in the C++ Standard Template Library (STL). We can
use it to replace characters in an array, since it has more flexibility features. The biggest
advantage to using this data type instead of a characters array is that the

size of std: : string can be extended dynamically in runtime. Other functionalities that it

has are as follows:

e getline (): This function is used to get input from the user and then store it to a
character stream in memory

e push_back (): This function is used to insert a character at the end of the string

e pop_back () : This function is used to remove the last character from the string

e size (): This function is used to retrieve the number of character in the string

® begin (): This function returns an iterator pointing to the first character of the
string

e end () : This function returns an iterator pointing to the last character of the string

e rbegin (): This function returns a reverse iterator pointing to the last character of
the string

e rend () : This function returns a reverse iterator pointing at the first character of
the string

We will use some of the preceding functions in a discussion later on in this chapter.

Playing with words

A collection of characters is used to construct a word or a sentence. The position of each
character in a word matters, since different character positions can cause the word to have
different meanings. For example, when you rearrange the characters in God, you will get
Dog.

There are two methods in strings to find another word from a word, or to ensure a word
has exactly the same spelling both forward and backward. Let's play with them.

[181]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Dealing with the String Data Type Chapter 6

Rearranging a word to create an anagram

An anagram is a word that is produced by rearranging the letters of the word itself. Let's
take a look at the word ELBOW. We can say that BELOW is anagram of ELBOW, since
BELOW uses all the original letters of ELBOW exactly once. Not only from one word, an
anagram can also be created from, and can create, two or more words: SCHOOL MASTER is
an anagram of THE CLASSROOM, or FOURTH OF JULY is an anagram of JOYFUL
FOURTH.

Checking whether two strings are an anagram or not is quite easy. We just need to sort the
two and compare the sorted strings. They are an anagram if both sorted strings are exactly
the same. Take a look at the following C++ code:

bool IsAnagram(
string stril,
string str2)

// Anagram is not case sensitive
// so we convert all characters
// to uppercase
transform(

strl.begin(),

strl.end(),

strl.begin(),

::toupper) ;
transform(

str2.begin(),

str2.end(),

str2.begin(),

::toupper) ;

// Anagram does not care about space
// so we remove all spaces if any
strl.erase(
remove (
strl.begin(),
strl.end(),
! ')I
strl.end());
str2.erase(
remove (
str2.begin(),
str2.end(),
! ')I
str2.end());

[182]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Dealing with the String Data Type Chapter 6

// Then, we sort stringl and string?2
sort (strl.begin(), strl.end());
sort (str2.begin(), str2.end());

// If they both are anagram,
// they will be exactly same after sorted
return strl == str2;

}

As we can see in the preceding IsAnagram () function, beside sorting the two strings, we
transform the strings into uppercase, since anagram is not case sensitive. We also remove all
spaces in the strings, since space doesn't matter in an anagram. After we have sorted the
two strings, we can just compare them to determine if they are an anagram.

When invoking the IsAnagram() function, we need to pass two strings as the argument. In
the following main () function, we ask the user to input the string using the getline ()
function before invoking the IsAnagram () function. The implementation of the main ()
function should be as follows:

int main ()

{

cout << "Anagram" << endl;

// Input stringl

string stringl;

cout << "Input string 1 -> ";
getline(cin, stringl);

// Input string2

string string2;

cout << "Input string 2 -> ";
getline(cin, string2);

// Check if they are anagram
cout << "'" << stringl << "' and '";
cout << string2 << "' are ";
if (IsAnagram(stringl, string2))
{
cout << "anagram";
}
else
{
cout << "NOT anagram";

}

cout << endl;

[183]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Dealing with the String Data Type Chapter 6

return 0;

}

The preceding code can be found in Anagram. cpp. If we build and run the file, we will get
the following output on the screen:

_

' Terminal

Anagram

Input string 1 -> Fourth of July

Input string 2 -> Joyful Fourth

'"Fourth of July' and 'Joyful Fourth' are anagram

Process returned 8 (0x0) execution time : 32.331 s
Press ENTER to continue.

From the preceding code, we can see that the spaces, uppercase letters, and lowercase letters
don't matter. We have a result that Fourth of July and Joyful Fourth are an anagram.

The time complexity of the IsAnagram () function will be O(N log N), where N is the total
characters on the one string, since we use std: : sort () to sort the string. std: :sort () is
doing comparison similar to quick sort.

Detecting whether a word is a palindrome

A palindrome is a string, or sequence of characters, that has the exact same spelling both
forward and backward. NOON, MADAM, RADAR, and ROTATOR are some examples of
the palindrome. Similar to the anagram, we can also construct a palindrome from more than
one word; for instance, A NUT FOR A JAR OF TUNA, or NO LEMON NO MELON.

To check if a string is palindrome, we have to compare each pair of characters, left character
and right character, starting from the most left and the most right character, then moving to
the middle. Please see the following diagram:

.
RIOTIA|IT|IO|R

T~

[184]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Dealing with the String Data Type Chapter 6

Using the word ROTATOR, as we can see in the preceding diagram, we need to check the
character at index 0 with 6, 1 with 5, and 2 with 4. Since all comparisons are true, the string
is a palindrome.

In C++, we can do it by iterating string elements. The iteration will break if it finds
unmatched pair characters, or it has iterated through N/2 elements. The code to check a
palindrome is as follows:

bool IsPalindrome (
string str)

// Palindrome is not case sensitive
// so we convert all characters
// to uppercase
transform(
str.begin(),
str.end (),
str.begin(),
::toupper) ;

// Palindrome does not care about space
// so we remove all spaces if any
str.erase(
remove (
str.begin(),
str.end (),
"),

str.end());

// ——-— Palindrome detector ——-—

// Starting from leftmost and rightmost elements
// of the str

int left = 0;

int right = str.length() - 1;

// Comparing the current leftmost
// and rightmost elements
// until all elements are checked or
// until unmatched characters are found
while (right > left)
{
if(str[left++] != strright--1])
{

return false;

[185]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Dealing with the String Data Type Chapter 6

// If all characters which are compared
// are same, it must be palindrome
return true;
// —-—-— End of palindrome detector —---—

}

Similar to the IsAnagram () function, the preceding IsPalindrome () implementation also
converts all characters to uppercase and removes spaces. After that, it runs a while loop
procedure and compares each pair of characters. If it successfully iterates through all string
elements, we can say that the string is a palindrome. Otherwise, it will return FALSE, and it
means the string is not a palindrome.

To ease our understanding of the flow of the IsPalindrome () function,
we will use the while loop iteration; however, the C++ STL has provided
the std: :equal () functionality to compare each pair of string elements.

We can replace the preceding code, from // --- Palindrome
detector -—-until
// —-— End of palindrome detector ---, with the following single

line of code:

return std::equal (str.begin(), str.begin() + str.size() /
2, str.rbegin());

To check whether a string is a palindrome or not, we need to invoke the IsPalindrome ()
function and pass a string to it. We can ask the user to input a string by using
the getline () function, as we can see in the following main () function:

int main ()
{

cout << "Palindrome" << endl;

// Input string

string str;

cout << "Input string -> ";
getline(cin, str);

// Check if it is palindrome
cout << "'" << str << "' is ";
if (IsPalindrome (str))
{
cout << "a palindrome";
}
else
{

cout << "NOT a palindrome";

[186]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

EBSCChost -

Dealing with the String Data Type Chapter 6

}

cout << endl;

return 0;

}

We can find the following code in the Palindrome. cpp file. If we build and run the file, we
will get the following output on the console:

=
;O o

Terminal

Palindrome
Input string -> A nut for a jar of tuna
'A nut for a jar of tunma' is a palindrome

Process returned @ (@x0) execution time : 13.151 s
Press ENTER to continue.

In the IsPalindrome () function, we have to iterate string elements N/2 times, so the time
complexity is O(N/2). And since we can omit constant, we can say that the time complexity
of the IsPalindrome () function is O(N).

Constructing a string from binary digits

A binary string is a string that represents a number in binary format and only contains 0
and 1. Supposing we have a number 3, the binary string will be 11, or the binary string of 9
is1001.

Binary string is usually used to hold non-traditional data, such as pictures. Suppose we
have the following black and white image:

[187]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Dealing with the String Data Type Chapter 6

If black is represented by 0 and white is represented by 1, we can create the following
binary string to represent the preceding image:

111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
1111111111111110000000000112211121111111
111111111111100000000000001211122111111
1111111111100000000000000000111221111211
1111111111000000000000000000011221111211
1111111110000000000000000000001211111211
1111111110000000000000000000000111111211
1111111100000000000000000000000111111211
1111111100000000000000000000000011111211
1111111000000000000000000000000011111211
1111111000000000000000000000000011111211
111111100000000000000000000000000111111
111111100000000000000000000000000111111
111111000000000000000000000000000111111
111111000000000000000000000000000111111
111111100000000000000000000000000111111
1111111000000000000000000000000001111211
1111111000000000000000000000000011111211
1111111000000000000000000000000011111211
1111111100000000000000000000000011111211
1111111100000000000000000000000111111211
1111111110000000000000000000001211111211
1111111111000000000000000000001211111211
1111111111100000000000000000011221111211
1111111111110000000000000001111221111211
111111111111110000000000001211122111111
111111111111111100000001111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111

Converting decimal to binary string

As we have discussed in the previous section, the binary string of 9 is 1001. We can convert
a decimal number into a binary digit by dividing the number by 2 until it cannot be divided
any more, and collect the remainder of each division. Here's the steps to convert 9 into
binary digit:

9 is divided by 2 is 4, remainder is 1

4 is divided by 2 is 2, remainder is 0

[188]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Dealing with the String Data Type Chapter 6

2 is divided by 2 is 1, remainder is 0
1 is divided by 2 is 0, remainder is 1

Look at the remainder of each division, and read it from the bottom to the top. So that's why
we have 1001 as a binary digit of 9. Now, let's try another larger number, which is 500.
Here are the steps to convert 500 to binary digit:

is 250, remainder is
is 125, remainder is
is 62, remainder is
is 31, remainder is
is 15, remainder is

500 is divided by
250 is divided by
125 is divided by
62 is divided by
31 is divided by

NN DNDDNDDNDDNDDNDDNDDND
rRrRrRRROROO

15 is divided by is 17, remainder is
7 is divided by is 3, remainder is
3 is divided by is 1, remainder is
1 is divided by is 0, remainder is

From our preceding calculation, we can see that the binary digit of 500is 111110100, since
we have to read the remainder from bottom to top. Now, it's time to write a C++ code to
convert a decimal number to a binary string. We will use the do. . .while iteration, and it
will last if the division result is more than 0. The code should be as follows:

string DecimalToBinaryString(
int decimalNumber)

// Initial result
string binaryString = "0";

// Only perform this procedure
// if decimalNumber is greater than 0
if (decimalNumber > 0)
{
// Reset result
binaryString = "";

// Declare a variable for division process
div_t dv{};

// Initialize the division quot
dv.quot = decimalNumber;

// Perform these procedure
// until the quot is 0
do
{
dv = div(dv.quot, 2);
binaryString = to_string(dv.rem) + binaryString;

[189]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Dealing with the String Data Type Chapter 6

3
while (dv.quot) ;

// return the binary string
return binaryString;

}

In the preceding DecimalToBinaryString () function, we have to ensure the number
passed to the function is greater than 0. After that, we perform std: :div () to divide the
number with 0 and convert the remainder to the st ring data type using the to_string()
function, then concatenate string result into a binaryString variable. It will last for as long
as dv.quot is greater than 0.

To invoke the DecimalToBinaryString () function, we just need to pass a single decimal
number that we can get from the user, as shown in the following main () function:

int main ()

{

cout << "Decimal To Binary String" << endl;

// Input a decimal number

int decNum;

cout << "Input a decimal number -> ";
cin >> decNum;

// Convert to binary string
string binaryString = DecimalToBinaryString (decNum) ;

// Show the result to user

cout << "Binary string of " << decNum;
cout << " is '" << binaryString;
cout << "'" << endl;

return 0;

[190]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Dealing with the String Data Type Chapter 6

The preceding code can be found in the Decimal_To_BinaryString.cpp file. If we build
and run the file, the following output will be displayed on the console:

@ S & Terminal

Decimal To Binary String
Input a decimal number -> 500

Binary string of 500 is '111110100'

Process returned @ (@x0) execution time :
Press ENTER to continue.

Since it divides the decimal number by 2 and divides the result by 2, again and again, the
time complexity of the DecimalToBinaryString () functionis O(N log N), where N is the
decimal number.

Converting binary string to decimal

In this section, we are going to write a code to convert binary string into a decimal number.
To do this, we are going to use 2 to the power of n formula (27) to get the decimal value. We
will multiply the last digit of the binary digit with 2°, then multiply the next binary digit
with 2, and so on.

Let's use our binary digit from the previous section, which is 111110100, and convert it to a
decimal number. Please see the following diagram to find out the answer:

1/1(11|1]0(1(0]|0

1x28 1x27 1x26 1x2° ox24 1x22 1x22 ox2! ox20

256 + 128 + 64 + 32 + 16 + 0 + 4 + 0 + O

We will get the decimal number by adding all the results of 2" multiplication. So, 256 +
128 + 64 + 32 + 16 + 0 + 4 + 0 + 0equals 500.

[191]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Dealing with the String Data Type Chapter 6

Now, let's write a C++ code to convert a binary string to a decimal number. We will iterate
through all string characters, then multiply each character by 2”. The code should be as
follows:

int BinaryStringToDecimal (
string binaryString)

// Initial result
int decNumber = 0;

// variable for current power base
int n;

// Declare reverse iterator
string::reverse_iterator it;

// Iterate all characters in binaryString
// from the last character to the first character
for (
it = binaryString.rbegin(), n = 0;
it != binaryString.rend();
++it, ++n)

// if character 'l' is found

// add decNumber with power of current base
char ¢ = *it;

if(c == "1")

{

decNumber += pow (2, n);

// return the decimal
return decNumber;

}

As we can see in the preceding code, we call the reverse iteration to iterate the string
elements backward. If we found character 1, we add decNumber with the current n value of
2". We just ignore if we found 0, since everything is multiplied by 0 is 0 and won't affect the
result. After iteration is finished, we just need to return the value stored by the decNumber
variable.

[192]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Dealing with the String Data Type Chapter 6

To invoke the preceding BinaryStringToDecimal () function, we can use the following
main () method:

int main ()

{

cout << "Binary String To Decimal" << endl;

// Input binary string

string binaryString;

cout << "Input binary string -> ";
getline (cin, binaryString);

// Convert to decimal
int decNumber = BinaryStringToDecimal (
binaryString);

// Show the result to user
cout << "Decimal of '" << binaryString;
cout << "' is " << decNumber << endl;

return O;

}

The preceding code can be found in the BinaryString_To_Decimal.cpp file. If we build
and run the file, we will be shown the following output on the console:

Terminal

Binary String To Decimal
Input binary string -> 11111016860

Decimal of '111110100' is 500

Process returned @ (0x0) execution time : 5.306 s
Press ENTER to continue.

It's quite easy to find out the time complexity of the BinaryStringToDecimal () function.
Since we have to iterate through the string elements, its time complexity is O(N), where N is
the length of a binary string.

Subsequence string

Subsequence string is a string derived from another string by deleting some characters
without changing the order of the remaining characters. Suppose we have a string: donut.
The subsequences of this word would be—d, o, do, n, dn, on, don, u, du, ou, dou, nu, dnu, onu,
donu, t, dt, ot, dot, nt, dnt, ont, dont, ut, dut, out, dout, nut, dnut, onut, and donut.

[193]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Dealing with the String Data Type Chapter 6

Generating subsequences from a string

To find out all subsequences of a string, we need to iterate through all characters of the
string. We also create a bit counter variable to mark which element position should be
considered to take as a subsequence, also known as a power set. The power set of S is the
set of all subsets of S. Suppose we have three characters in a string, which are xyz. The
power set of the string will be 2" elements, which is as follows:

BIT —-> SUBSET

000 —-> Empty subset

001 —-> "x"
010 —> "y"
011 —> "xy"
100 —> "z"
101 —> "xz"
110 => "yz"

111 —> "xyz"

By using the power set, we can create the code to generate subsequence of a string, as
follows:

vector<string> GenerateSubsequences (
string str)

// Return value is stored
// on vecString
vector<string> vecString;

// Retrieve str length
int strlLen = str.size();

// bitCounter is used to check
// character position
int bitCounter = pow (2, strLen);

// Check from 000..001 to 111..111
// Empty subset is ignored
for (int i = 1; 1 < bitCounter; ++1)
{
// Temporary variable
// to store current subsequence
string subsequence = "";

// Construct the new subsequence string
for (int j = 0; j < strlen; J++)

[194]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Dealing with the String Data Type Chapter 6

// Check if j—-th bit in the bitCounter is set
// If so, pick j-th character from str

if (1 & (1 << 9))

{

subsequence += str[j];

// Put it to vector
vecString.push_back (subsequence) ;

// Return the vector
return vecString;

}

As we can see in the preceding GenerateSubsequences () function, we generate
subsequences by using a bit counter. We then construct a new subsequence based on bit,
which is set in the bit counter variable. To invoke the GenerateSubsequences () function,
we can use the following main () function:

int main ()
{

cout << "Subsequence Generator" << endl;

// Input string

string str;

cout << "Input string -> ";
getline(cin, str);

// Generate subsequences
vector<string> myvector = GenerateSubsequences (
str);

// Show the result to user

cout << "All subsequences of '" << str;

cout << "':" << endl;

for (
vector<string>::iterator it = myvector.begin();
it !'= myvector.end();
++it)

cout << *it << " ",

}

cout << endl;

[195]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Dealing with the String Data Type Chapter 6

return 0;

}

The preceding code can be found in the Subsequence_Generator. cpp file. If we build
and run the file, we will see the following output on the console:

-
;e

5! Terminal

Subsequence Generator

Input string -=> donut

All subsequences of 'donut':

d o do n dn on don u du ou dou nu dnu onu donu t dt ot dot nt dnt ont dont ut du
t out dout nut dnut onut donut

Process returned 0 (8x8) execution time : 2.131 s
Press ENTER to continue.

Since the GenerateSubsequences () function has iterated 2" times (for bit counter), and
inside this iteration it has had to iterate again through all string elements, the time
complexity of this function is O(N -2"), where N is the length of the input string.

Checking whether a string is a subsequence of
another string

We have successfully created code to generate subsequences of a string. Now we are going
to create a C++ code to check if a string is a subsequence of another string. To do so, we will
compare the character of two strings from the last character (the reason we compare from
the last character of the string is the simplicity of checking the index against 0, rather than
keeping track of the final index of both strings).

Suppose strl is a subsequence of a string of str2, x is the index of str1, and y is the index
of str2. It means that we will compare str1[x - 1] with str2[y -1].If matched,
continue until all suspected subsequence string characters have been checked. If not,
compare the last character of the suspected subsequence (str1[x - 1]) with the character
before the last character of the string (str2[y - 21]). The code should be as follows:

bool IsSubSequence (
string stril,
string str2,
int x,
int vy)

// If all characters in strl
// have been checked,

[196]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Dealing with the String Data Type Chapter 6

// it means that the strl is subsequence
// of str2

if (x == 0)

{

return true;

// There is some characters in str2
// that don't matched with stril

// so return false

if (y == 0)

return false;

// If last characters of two strings are matching,
// continue to check another character
if (strl[x - 1] == str2[y - 11])

return IsSubSequence(strl, str2, x - 1, yv - 1);
3
// If not, check the second last of str2
else

{

return IsSubSequence(strl, str2, x, y - 1);

}

As we can see in the preceding IsSubSequence () function implementation, if all
characters of the suspected subsequence string have been iterated (x == 0), the process is
done and the result is t rue; however, if all characters of the string have been iterated (y
==0), the result will be false. After that, we can recursively run the IsSubSequence ()
function. To invoke the function, we can use the following main () function
implementation:

int main ()
{
cout << "Subsequence String" << endl;
cout << "Check if 1st string is a ";
cout << "subsequence of 2nd string" << endl;

// Input first string

string stringl;

cout << "Input 1st string -> ";
getline(cin, stringl);

// Input second string

[197]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Dealing with the String Data Type Chapter 6

string string2;
cout << "Input 2nd string -> ";
getline(cin, string2);

// Check if strl is subsequence of str2
cout << "'" << stringl << "' is ";
if (IsSubSequence (

stringl,

string2,

stringl.size(),

string2.size()))

{
cout << "subsequence";
}
else
{
cout << "NOT subsequence";
}
cout << " of '" << string2;
cout << "'" << endl;

return 0;

}

The preceding code can be found in the Subsequence_String. cpp file. If we build and
run the file, we will get the following output on our console:

Terminal

Subsequence String
Check if 1st string is a subsequence of 2nd string
Input 1st string -> dut

Input 2nd string -= donut
'dut' is subsequence of 'donut'

Process returned @ (0x0) execution time : 8.889 s
Press ENTER to continue.

As we can see in the IsSubSequence () function implementation, the function is
recursively invoked for all characters of the 2™ string, so that the time complexity of this
function is O(N), where N is the length of the 2™ string.

[1981]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Dealing with the String Data Type Chapter 6

Pattern searching

Pattern searching is an algorithm to find out the location of a string in another string. This
process is usually used in a word processor (such as Notepad or Sublime Text) to find a
word position in a document. Let's look at the sentence—the quick brown fox jumps over the
lazy dog. If we need to find out the position of the word the, we can use this algorithm and
pass the as the pattern.

You might be confused with Regular Expression (regex) and pattern
searching, the latter of which we are going to discuss in this section. With
regex, we can check if a string satisfies a given pattern, while in this
section we'll be discovering how to find a string (called a pattern) in
another string. If you're interested in learning about RegEx in C++, you can
gotohttp://www.cplusplus.com/reference/regex/.

To find the position of the pattern in a string, we have to iterate through the string's
elements from the beginning until the last possible element. In our preceding example, we
have a string containing 44 letters and want to search for a pattern of the, which contains
three letters. For this, we just need to iterate the string 42 times, since it's impossible to find
the in the 43" and 44" character of the string.

In the string iteration, we start to iterate the pattern, then compare it with the characters of
the string. If all characters of the pattern are matched with string characters, the pattern is
found in the string. The following is the C++ code implementation:

vector<int> SearchPattern (
string targetString,
string patternString)

vector<int> vecIndex;

// Retrieve string length
int strlLen = targetString.size();
int patLen = patternString.size();

// Only perform the following procedure
// if pattern string is not longer than
// target string
if (patLen <= strlen)
{
// Iterate through target string elements
// from the beginning until
// the last possible element where
// pattern is at the last position

[199]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Dealing with the String Data Type Chapter 6

for(int 1 = 0; i <= strlen - patlLen; ++i)
{

int J;

// Start comparing pattern string
for(j = 0; Jj < patlLen; ++3)
{
// Quit from inner for-loop
// if character is not matched
if (targetString[i + J] !=
patternString[j])

break;

// If inner for-loop is done
// it means that pattern is found
// in the target string
if (j == patlen)
{
// store the index in vector
vecIndex.push_back (i) ;

// Return the vector
return vecIndex;

}

As we can see in the preceding SearchPattern () function, we have to ensure that the
pattern size is lower than or equal to the target string size (patLen <= strLen). Then, we
iterate through the string elements from the beginning until the last possible element
(for(int i = 0; i <= strLen - patLen; ++1i)).Inside this iteration, we iterate
through the pattern to find out if it matches the target string. To invoke the preceding
SearchPattern () function, we can use the following main () function implementation:

int main ()
{

cout << "Pattern Searching" << endl;

// Input target string

string targetStr;

cout << "Input target string -> ";
getline(cin, targetStr);

[200]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Dealing with the String Data Type Chapter 6

// Input pattern string

string patternStr;

cout << "Input pattern string -> ";
getline (cin, patternStr);

// Find the pattern

vector<int> myvector = SearchPattern (
targetStr,
patternStr);

// Show the result to user

cout << "'" << patternStr << "' is ";
if (myvector.size() > 0)
{
cout << "found at index ";
for (
vector<int>::iterator it = myvector.begin();
it != myvector.end();
++it)
{
cout << *it << " ",
3
3
else
{
cout << "NOT found";
3

cout << endl;

return 0;

}

The preceding code can be found in Pattern_sSearching.cpp. If we build and run the file,
we will have the following output on our console:

-

Terminal

Pattern Searching
Input target string -> the quick brown fox jumps over the lazy dog
Input pattern string -> the

"the' is found at index © 31

Process returned 0 (8x0) execution time : 4.915 s
Press ENTER to continue.

[201]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Dealing with the String Data Type Chapter 6

As we know, we have to iterate through all possible target string elements (strLen -
patLen) and then iterate through pattern elements; the time complexity of

the SearchPattern () functionis O(N - (M - N)), where N is the length of pattern string
and M is the length of the target string.

Summary

In this chapter, we have discussed how to construct a string in C++ using std: : string. We
then used it to solve several problems in the st ring data type. We can rearrange a string to
create another string, which is called an anagram. We also can detect if a string is a
palindrome if it has the exact same spelling both forward and backward. We have
discussed binary string, and can now convert a decimal number to binary string and vice
versa.

Another string problem we have solved is checking whether a string is a subsequence of
another string. Also, we have successfully generated all possible subsequences from a
string. Finally, we have learned how a word processor (such as Notepad or Sublime Text)
can find a word in a document using pattern searching.

In the next chapter, we are going to discuss another non-linear data structure, which is a
tree structure, and the algorithm implementation of this data structure.

QA section

e What is the use of the NULL character in characters array?

e What is the difference between a begin () and an rbegin () iterator
instd::string?

¢ How do you implement rbegin () and rend () in std: :string?

e What is the difference between an anagram and a palindrome?

e What is the use of a binary string?

e What is a subsequence of string?

e What is the use of a bit counter variable when generating subsequences from a
string?

e How many times is outer iteration performed in the pattern searching algorithm?

[202]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Dealing with the String Data Type Chapter 6

Further reading

For further reference, please visit the following links:

® https://en.wikipedia.org/wiki/String_ (computer_science)
® https://www.geeksforgeeks.org/stdstring-class—-in-c/

® https://en.wikipedia.org/wiki/Sort_ (C%$2B%2B)

® http://en.cppreference.com/w/cpp/algorithm/equal

® https://www.dcode.fr/binary-image

® http://en.cppreference.com/w/cpp/numeric/math/div

® https://en.wikipedia.org/wiki/Subsequence

® https://www.geeksforgeeks.org/power—-set/

® https://en.wikipedia.org/wiki/Power_set

® https://www.geeksforgeeks.org/given-two-strings—-find-first-string-
subsequence-second/

® https://www.geeksforgeeks.org/subarraysubstring-vs—-subsequence—-and-
programs-to-generate-them/

® https://www.geeksforgeeks.org/searching-for-patterns—-set-1-naive-
pattern-searching/

® https://www.dcode.fr/binary-image

[203]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Building a Hierarchical Tree
Structure

In the previous chapter, we discussed using a string as a non-linear data structure and tried
to construct, use, and solve several problems in the st ring data type. In this chapter, we
are going to discuss another non-linear data structure, which is a tree that stores data in a
hierarchical form.

In this chapter, we are going to discuss the following topics:

e Introducing the tree data structure

e Understanding the binary search tree

¢ Balancing the binary search tree

e Implementing the priority queue using a binary heap

Technical requirements

To follow along with this chapter, including the source code, you will require the following:

¢ A desktop PC or Notebook with Windows, Linux, or macOS
e GNU GCC v5.4.0 or above

¢ Code Block IDE v17.12 (for Windows and Linux OS) or Code Block IDE v13.12
(for macOS)

¢ You will find the code files on GitHub at https://github.com/
PacktPublishing/CPP-Data—-Structures—and-Algorithms

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Building a Hierarchical Tree Structure Chapter 7

Building a binary tree ADT

A binary tree is a hierarchical data structure whose behavior is similar to a tree, as it
contains root and leaves (a node that has no child). The root of a binary tree is the topmost
node. Each node can have at most two children, which are referred to as the left child and
the right child. A node that has at least one child becomes a parent of its child. A node that
has no child is a leaf. Please take a look at the following binary tree:

From the preceding binary tree diagram, we can conclude the following:

¢ The root of the tree is the node of element 1 since it's the topmost node
e The children of element 1 are element 2 and element 3
¢ The parent of elements 2 and 3 is 1

¢ There are four leaves in the tree, and they are element 4, element 5, element 6,
and element 7 since they have no child

This hierarchical data structure is usually used to store information that forms a hierarchy,
such as a file system of a computer.

To implement the binary in code, we need a data structure so that it can store the element's
key as well as pointers for left and right children. To do so, we can create the following
TreeNode class in C++:

class TreeNode
{
public:
int Key;
TreeNode * Left;
TreeNode * Right;
bi

[205]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

EBSCChost

Building a Hierarchical Tree Structure Chapter 7

The preceding TreeNode data structure will store each node of the tree containing the
element key, along with the left and right pointers. We are also going to create a helper
function to create a new node, as follows:

TreeNode * NewTreeNode (
int key)

// Create a new node
TreeNode * node = new TreeNode;

// Assign a key
node->Key = key;

// Initialize Left and Right pointer
node->Left = NULL;
node->Right = NULL;

return node;

}

The preceding NewTreeNode () function will ease us into inserting a new TreeNode into an
existing tree. Now, let's create a binary tree, as shown in the preceding diagram by using
C++ code. Here are the steps:

1. Initialize the root node containing element 1 as follows:

// Creating root element
TreeNode * root = NewTreeNode (1) ;

2. After initializing the root node, we can add two children to the root
node—element 2 and element 3, as follows:

/*
Add children to root element
1
/ \
2 3
*/
root->Left = NewTreeNode (2);
root->Right = NewTreeNode (3);

[206]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Building a Hierarchical Tree Structure Chapter 7

3. Next, we have to add two children for element 2, which are element 4 and
element 5, as follows:

/*
Add children to element 2
1
/ \
2 3
/ \
4 5
*/
root->Left->Left = NewTreeNode (4);
root->Left->Right = NewTreeNode (5);

4. Finally, we are going to add two children for element 3, which are element 6 and
element 7, as follows:

/*
Add children to element 3
1
/N
2 3
/ \ / \
4 56 7
*/

root->Right->Left = NewTreeNode (6);
root->Right->Right = NewTreeNode (7);

Building a binary search tree ADT

A binary search tree (BST) is a sorted binary tree, where we can easily search for any key
using the binary search algorithm. To sort the BST, it has to have the following properties:

e The node's left subtree contains only a key that's smaller than the node's key
¢ The node's right subtree contains only a key that's greater than the node's key
¢ You cannot duplicate the node's key value

[207]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Building a Hierarchical Tree Structure Chapter 7

By having the preceding properties, we can easily search for a key value as well as find the
maximum or minimum key value. Suppose we have the following BST:

As we can see in the preceding tree diagram, it has been sorted since all of the keys in the
root's left subtree are smaller than the root's key, and all of the keys in the root's right
subtree are greater than the root's key. The preceding BST is a balanced BST since it has a
balanced left and right subtree. We also can define the preceding BST as a balanced BST
since both the left and right subtrees have an equal height (we are going to discuss this
further in the upcoming section).

However, since we have to put the greater new key in the right subtree and the smaller new
key in the left subtree, we might find an unbalanced BST, called a skewed left or a skewed
right BST. Please see the following diagram:

[208]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Building a Hierarchical Tree Structure Chapter 7

The preceding image is a sample of a skewed left BST, since there's no right subtree. Also, we
can find a BST that has no left subtree, which is called a skewed right BST, as shown in the
following diagram:

As we can see in the two skewed BST diagrams, the height of the BST becomes taller since
the height equals to N - 1 (where N is the total keys in the BST), which is five. Comparing
this with the balanced BST, the root's height is only three.

To create a BST in C++, we need to modify our TreeNode class in the preceding binary tree
discussion, Building a binary tree ADT. We need to add the Parent properties so that we can
track the parent of each node. It will make things easier for us when we traverse the tree.
The class should be as follows:

class BSTNode
{
public:
int Key;
BSTNode * Left;
BSTNode * Right;
BSTNode * Parent;
bi

There are several basic operations which BST usually has, and they are as follows:

e Insert () isused to add a new node to the current BST. If it's the first time we
have added a node, the node we inserted will be a root node.

® PrintTreeInOrder () is used to print all of the keys in the BST, sorted from the
smallest key to the greatest key.

[209]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Building a Hierarchical Tree Structure Chapter 7

e Search () is used to find a given key in the BST. If the key exists it returns TRUE,
otherwise it returns FALSE.

e FindMin () and FindMax () are used to find the minimum key and the maximum
key that exist in the BST.

e Successor () and Predecessor () are used to find the successor and
predecessor of a given key. We are going to discuss these later in the upcoming
section.

e Remove () is used to remove a given key from BST.

Now, let's discuss these BST operations further.

Inserting a new key into a BST

Inserting a key into the BST is actually adding a new node based on the behavior of the BST.
Each time we want to insert a key, we have to compare it with the root node (if there's no
root beforehand, the inserted key becomes a root) and check whether it's smaller or greater
than the root's key. If the given key is greater than the currently selected node's key, then go
to the right subtree. Otherwise, go to the left subtree if the given key is smaller than the
currently selected node's key. Keep checking this until there's a node with no child so that
we can add a new node there. The following is the implementation of the Insert ()
operation in C++:

BSTNode * BST::Insert (BSTNode * node, int key)
{
// If BST doesn't exist
// create a new node as root
// or it's reached when
// there's no any child node
// so we can insert a new node here
if (node == NULL)
{
node = new BSTNode;
node->Key = key;
node->Left = NULL;
node->Right = NULL;
node->Parent = NULL;
}
// If the given key is greater than
// node's key then go to right subtree
else if (node->Key < key)
{
node->Right = Insert (node->Right, key);

[210]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Building a Hierarchical Tree Structure Chapter 7

node->Right->Parent = node;
}
// If the given key is smaller than
// node's key then go to left subtree
else

{
node->Left = Insert (node->Left, key);
node->Left->Parent = node;

}

return node;

}

As we can see in the preceding code, we need to pass the selected node and a new key to
the function. However, we will always pass the root node as the selected node when
performing the Insert () operation, so we can invoke the preceding code with the
following Insert () function:

void BST::Insert (int key)
{

// Invoking Insert () function
// and passing root node and given key
root = Insert (root, key);

}

Based on the implementation of the Insert () operation, we can see that the time
complexity to insert a new key into the BST is O(h), where h is the height of the BST.
However, if we insert a new key into a non-existing BST, the time complexity will be O(1),
which is the best case scenario. And, if we insert a new key into a skewed tree, the time
complexity will be O(N), where N is the total number of keys in the BST, which is the worst
case scenario.

Traversing a BST in order

We have successfully created a new BST and can insert a new key into it. Now, we need to
implement the PrintTreeInOrder () operation, which will traverse the BST in order from
the smallest key to the greatest key. To achieve this, we will go to the leftmost node and
then to the rightmost node. The code should be as follows:

void BST::PrintTreelInOrder (BSTNode * node)
{
// Stop printing if no node found
if (node == NULL)
return;

[211]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Building a Hierarchical Tree Structure Chapter 7

// Get the smallest key first
// which is in the left subtree
PrintTreeInOrder (node->Left);

// Print the key
std::cout << node->Key << " ";

// Continue to the greatest key
// which is in the right subtree
PrintTreeInOrder (node->Right) ;

}

Since we will always traverse from the root node, we can invoke the preceding code as
follows:

void BST::PrintTreeInOrder ()

{
// Traverse the BST
// from root node
// then print all keys
PrintTreeInOrder (root) ;
std::cout << std::endl;
3

The time complexity of the PrintTreeInOrder () function will be O(N), where N is the
total number of keys for both the best and the worst cases since it will always traverse to all
keys.

Finding out whether a key exists in a BST

Suppose we have a BST and need to find out if a key exists in the BST. It's quite easy to
check whether a given key exists in a BST, since we just need to compare the given key with
the current node. If the key is smaller than the current node's key, we go to the left subtree,
otherwise we go to the right subtree. We will do this until we find the key or when there are
no more nodes to find. The implementation of the Search () operation should be as
follows:

BSTNode * BST::Search (BSTNode * node, int key)
{

// The given key is

// not found in BST

if (node == NULL)

return NULL;
// The given key is found
else if (node->Key == key)

[212]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Building a Hierarchical Tree Structure

Chapter 7

return node;
// The given is greater than
// current node's key
else if (node->Key < key)
return Search (node->Right,
// The given is smaller than
// current node's key
else
return Search (node->Left,

}

key) ;

key) ;

Since we will always search for a key from the root node, we can create another Search ()

function as follows:

bool BST::Search(int key)
{
// Invoking Search()
// and passing root node
BSTNode * result =

// If key is found,
// otherwise returns FALSE
return result == NULL ?
false :
true;

}

operation

Search (root,

key) ;

returns TRUE

The time complexity to find out a key in the BST is O(h), where & is the height of the BST. If
we find a key which lies in the root node, the time complexity will be O(1), which is the best
case. If we search for a key in a skewed tree, the time complexity will be O(N), where N is
the total number of keys in the BST, which is the worst case.

Retrieving the minimum and

maximum key values

Finding out the minimum and maximum key values in a BST is also quite simple. To get a
minimum key value, we just need to go to the leftmost node and get the key value. On the
contrary, we just need to go to the rightmost node and we will find the maximum key
value. The following is the implementation of the FindMin () operation to retrieve the
minimum key value, and the FindMax () operation to retrieve the maximum key value:

int BST::FindMin (BSTNode * node)
{
if (node == NULL)
return -1;
else if (node->Left == NULL)

[213]

printed on 2/9/2023 10:18 AMvia .

Al use subject to https://ww. ebsco. conlterms-of-use

Building a Hierarchical Tree Structure Chapter 7

return node->Key;
else
return FindMin (node->Left);

int BST::FindMax (BSTNode * node)

if (node == NULL)
return -1;
else if (node->Right == NULL)
return node->Key;
else
return FindMax (node->Right);
3

We return -1 if we cannot find the minimum or maximum value in the
tree, since we assume that the tree can only have a positive integer. If we
intend to store the negative integer as well, we need to modify the
function's implementation, for instance, by returning NULL if no minimum
or maximum values are found.

As usual, we will always find the minimum and maximum key values from the root node,
so we can invoke the preceding operations as follows:

int BST::FindMin ()
{

return FindMin (root);

}

int BST::FindMax ()
{

return FindMax (root) ;

}

Similar to the Search () operation, the time complexity of the FindMin () and FindMax ()
operations is O(h), where h is the height of the BST. However, if we find the maximum key
value in a skewed left BST, the time complexity will be O(1), which is the best case, since it
doesn't have any right subtree. This also happens if we find the minimum key value in a
skewed right BST. The worst case will appear if we try to find the minimum key value in a
skewed left BST or try to find the maximum key value in a skewed right BST, since the time
complexity will be O(N).

[214]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Building a Hierarchical Tree Structure Chapter 7

Finding out the successor of a key in a BST

Other properties that we can find from a BST are the successor and the predecessor. We are
going to create two functions named Successor () and Predecessor () in C++. But before
we create the code, let's discuss how to find out the successor and the predecessor of a key
of a BST. In this section, we are going to learn about the successor first, and then we will
discuss the predecessor in the upcoming section.

There are three rules to find out the successor of a key of a BST. Suppose we have a key, k,
that we have searched for using the previous Search () function. We will also use our
preceding BST to find out the successor of a specific key. The successor of k can be found as
follows:

1. If k has a right subtree, the successor of k will be the minimum integer in the
right subtree of k. From our preceding BST, if k = 31, Successor (31) will give
us 53 since it's the minimum integer in the right subtree of 31. Please take a look
at the following diagram:

./value
(29

its successor

2. If x does not have a right subtree, we have to traverse the ancestors of k until we
find the first node, n, which is greater than node k. After we find node n, we will
see that node k is the maximum element in the left subtree of n. From our
preceding BST, if k = 15, Successor (15) will give us 23 since it's the first
greater ancestor compared with 15, which is 23. Please take a look at the
following diagram:

its successor

value

[215]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Building a Hierarchical Tree Structure Chapter 7

3. If k is the maximum integer in the BST, there's no successor of k. From the
preceding BST, if we run Successor (88), we will get -1, which means no
successor has been found, since 88 is the maximum key of the BST.

Based on our preceding discussion about how to find out the successor of a given key in a
BST, we can create a Successor () function in C++ with the following implementation:

int BST::Successor (BSTNode * node)
{
// The successor is the minimum key value
// of right subtree
if (node->Right != NULL)
{
return FindMin (node->Right);
}
// If no any right subtree
else
{
BSTNode * parentNode = node—>Parent;
BSTNode * currentNode = node;

// If currentNode is not root and

// currentNode is its right children

// continue moving up

while ((parentNode != NULL) &&
(currentNode == parentNode->Right))

currentNode = parentNode;
parentNode = currentNode->Parent;

// If parentNode is not NULL
// then the key of parentNode is
// the successor of node
return parentNode == NULL ?
-1
parentNode->Key;

[216]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Building a Hierarchical Tree Structure Chapter 7

However, since we have to find a given key's node first, we have to run search () prior to
invoking the preceding Successor () function. The complete code for searching for the
successor of a given key in a BST is as follows:

int BST::Successor (int key)

{
// Search the key's node first
BSTNode * keyNode = Search (root, key);

// Return the key.
// If the key is not found or
// successor is not found,
// return -1
return keyNode == NULL ?
-1
Successor (keyNode) ;

}

From our preceding Successor () operation, we can say that the average time complexity
of running the operation is O(h), where h is the height of the BST. However, if we try to find
out the successor of a maximum key in a skewed right BST, the time complexity of the
operation is O(N), which is the worst case scenario.

Finding out the predecessor of a key in a BST

1. If k has a left subtree, the predecessor of k will be the maximum integer in the left
subtree of k. From our preceding BST, if k = 12, Predecessor (12) will

be 7 since it's the maximum integer in the left subtree of 12. Please take a look at
the following diagram:

its predecessor

[217]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Building a Hierarchical Tree Structure Chapter 7

2. If k does not have a left subtree, we have to traverse the ancestors of k until we
find the first node, n, which is lower than node k. After we find node n, we will
see that node n is the minimum element of the traversed elements. From our
preceding BST, if k = 29, Predecessor (29) will give us 23 since it's the first
lower ancestor compared with 29, which is 23. Please take a look at the following
diagram:

its predecessor

value

G

3. If k is the minimum integer in the BST, there's no predecessor of k. From the
preceding BST, if we run Predecessor (3), we will get -1, which means no
predecessor is found since 3 is the minimum key of the BST.

Now, we can implement the Predecessor () operation in C++ as follows:

int BST::Predecessor (BSTNode * node)
{
// The predecessor is the maximum key value
// of left subtree
if (node->Left != NULL)
{
return FindMax (node->Left);
}
// If no any left subtree
else
{
BSTNode * parentNode = node->Parent;
BSTNode * currentNode = node;

// If currentNode is not root and

// currentNode is its left children

// continue moving up

while ((parentNode != NULL) &&
(currentNode == parentNode->Left))

currentNode = parentNode;
parentNode = currentNode->Parent;

[218]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Building a Hierarchical Tree Structure Chapter 7

}

// If parentNode is not NULL
// then the key of parentNode is
// the predecessor of node
return parentNode == NULL ?

-1 :

parentNode->Key;

}

And, similar to the Successor () operation, we have to search for the node of a given key
prior to invoking the preceding Predecessor () function. The complete code for searching
for the predecessor of a given key in a BST is as follows:

int BST::Predecessor (int key)

{
// Search the key's node first
BSTNode * keyNode = Search (root, key);

// Return the key.
// If the key is not found or
// predecessor is not found,
// return -1
return keyNode == NULL °?

-1

Predecessor (keyNode) ;

}

Similar to our preceding Successor () operation, the time complexity of running the
Predecessor () operation is O(h), where h is the height of the BST. However, if we try to
find out the predecessor of a minimum key in a skewed left BST, the time complexity of the
operation is O(N), which is the worst case scenario.

Removing a node based on a given key

The last operation in the BST that we are going to discuss is removing a node based on a
given key. We will create a Remove () operation in C++. There are three possible cases for
removing a node from a BST, and they are as follows:

1. Removing a leaf (a node that doesn't have any child). In this case, we just need to
remove the node. From our preceding BST, we can remove keys 7, 15, 29, and 53
since they are leaves with no nodes.

[219]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Building a Hierarchical Tree Structure Chapter 7

2. Removing a node that has only one child (either a left or right child). In this case,
we have to connect the child to the parent of the node. After that, we can remove
the target node safely. As an example, if we want to remove node 3, we have to
point the Parent pointer of node 7 to node 12 and make the left node of 12
points to 7. Then, we can safely remove node 3.

3. Removing a node that has two children (left and right children). In this case, we
have to find out the successor (or predecessor) of the node's key. After that, we
can replace the target node with the successor (or predecessor) node. Suppose we
want to remove node 31, and that we want 53 as its successor. Then, we can
remove node 31 and replace it with node 53. Now, node 53 will have two
children, node 29 in the left and node 88 in the right.

Also, similar to the Search () operation, if the target node doesn't exist, we just need to
return NULL. The implementation of the Remove () operation in C++ is as follows:

BSTNode * BST::Remove (
BSTNode * node,
int key)

// The given node is

// not found in BST

if (node == NULL)
return NULL;

// Target node is found
if (node->Key == key)
{
// If the node is a leaf node
// The node can be safely removed
if (node->Left == NULL && node->Right == NULL)
node = NULL;
// The node have only one child at right
else if (node->Left == NULL && node->Right != NULL)
{
// The only child will be connected to
// the parent's of node directly
node->Right->Parent = node->Parent;

// Bypass node
node = node->Right;
}
// The node have only one child at left
else if (node->Left != NULL && node->Right == NULL)
{
// The only child will be connected to

[220]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Building a Hierarchical Tree Structure Chapter 7

// the parent's of node directly
node->Left->Parent = node->Parent;

// Bypass node
node = node->Left;

3
// The node have two children (left and right)

else

{

// Find successor or predecessor to avoid quarrel
int successorKey = Successor (key);

// Replace node's key with successor's key
node—->Key = successorKey;

// Delete the old successor's key
node->Right = Remove (node->Right, successorKey);

}
// Target node's key is smaller than

// the given key then search to right
else if (node->Key < key)
node->Right = Remove (node—->Right, key);
// Target node's key is greater than
// the given key then search to left

else
node->Left = Remove (node->Left, key);

// Return the updated BST
return node;

}

Since we will always remove a node starting from the root node, we can simplify the
preceding Remove () operation by creating the following one:

void BST::Remove (int key)
{

root = Remove (root, key);

}

As shown in the preceding Remove () code, the time complexity of the operation is O(1) for
both case 1 (the node that has no child) and case 2 (the node that has only one child). For
case 3 (the node that has two children), the time complexity will be O(h), where / is the
height of the BST, since we have to find the successor or predecessor of the node's key.

[221]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Building a Hierarchical Tree Structure

Chapter 7

Implementing the BST ADT

By now, we have a new ADT called BST class with the following declaration:

class BST
{
private:
BSTNode * root;

protected:

BSTNode * Insert (BSTNode * node, int key);

void PrintTreeInOrder (BSTNode * node);

BSTNode * Search (BSTNode * node, int key);

int FindMin (BSTNode * node);

int FindMax (BSTNode * node);

int Successor (BSTNode * node);

int Predecessor (BSTNode * node);

BSTNode * Remove (BSTNode * node, int v);

public:
BST();

void Insert (int key);
void PrintTreeInOrder () ;
bool Search (int key);

int FindMin () ;

int FindMax () ;

int Successor (int key);
int Predecessor (int key);
void Remove (int v);

bi
To instantiate a BST class, we can write the following code:

// Instantiate BST instance
BST * tree = new BST;

[222]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Building a Hierarchical Tree Structure Chapter 7

By running the preceding code, we now have an instance of the BST class which is stored in
the t ree variable. For now, we can add several elements to the t ree variable. We will
create a tree containing exactly the same elements of our preceding BST. The following code
snippet is used to insert several elements using the Insert () operation:

// Define key value to be inserted to BST
int keys[] = {23, 12, 31, 3, 15, 7, 29, 88, 53};

// Inserting keys
for (const int& key : keys)
tree->Insert (key);

We can validate the elements by traversing the tree in order using
the PrintTreeInOrder () operation, as follows:

// Traversing tree in order
// then print all keys

cout << "Tree keys: ";
tree->PrintTreeInOrder () ;

The preceding code snippet will print all of the keys in the tree in order, from the minimum
key until the maximum key.

Now, we are going to invoke the Search () operation. We are going to try and find keys 31
and 18. As we already know, key 31 exists, but key 18 doesn't. Here is the code to invoke
the operation:

// Search key 31
// it should be found

cout << "Search key 31: ";
bool b = tree->Search(31);
if (b)

cout << "found";
else

cout << "NOT found";
cout << endl;

// Search key 18
// it should NOT be found
cout << "Search key 18: ";
b = tree->Search(18);
if (b)

cout << "found";
else

cout << "NOT found";
cout << endl;

[223]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Building a Hierarchical Tree Structure Chapter 7

We can also find the minimum and maximum keys in the tree using the FindMin () and
FindMax () operations, as follows:

// Retrieving minimum and maximum key

cout << "Min. Key : " << tree->FindMin();
cout << endl;
cout << "Max. Key : " << tree->FindMax();

cout << endl;

Again, to find the successor of a key we can use the Successor () operation, and to find the
predecessor of a key we can use the Predecessor () operation. We will find the successor
and predecessor of the keys we discussed in the previous section, that is, Finding out the
successor of a key in a BST and Finding out the predecessor of a key in a BST section . The code
will be as follows:

// Finding successor

// Successor (31) should be 53

// Successor (15) should be 23

// Successor (88) should be -1 or NULL
cout << "Successor(31) = ";

cout << tree—->Successor(31l) << endl;
cout << "Successor(l5) = ";

cout << tree—->Successor(l5) << endl;
cout << "Successor(88) = ";

cout << tree—->Successor(88) << endl;

// Finding predecessor

// Predecessor (12) should be 7

// Predecessor (29) should be 23

// Predecessor (3) should be -1 or NULL
cout << "Predecessor(12) = ";

cout << tree—->Predecessor(l2) << endl;
cout << "Predecessor(29) =";

cout << tree—->Predecessor (29) << endl;
cout << "Predecessor(3) = ";

cout << tree—->Predecessor(3) << endl;

The last operation is Remove (). We will try to remove keys 15 and 53. Then, we will call
the PrintTreeInOrder () operation again to prove that the selected keys have been
removed. The code snippet will be as follows:

// Removing a key
cout << "Removing key 15" << endl;
tree->Remove (15) ;
cout << "Removing key 53" << endl;
tree->Remove (53) ;

[224]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Building a Hierarchical Tree Structure Chapter 7

// Printing all keys again

// Key 15 and 53 should be disappeared
cout << "Tree keys: ";
tree->PrintTreelInOrder () ;

The full code can be found in the Binary_Search_Tree. cpp file of
the Binary_Search_Tree.cbp project. If we build and run the project, we will get the
following output on the console:

| o Y_Yo

Terminal

Binary Search Tree
Tree keys: 3 7 12 15 23 29 31 53 88
Search key 31: found
Search key 18: NOT found
i Keyiti3
. Key : B8
Successor(31)
Successor(15)
Successor(88)
Predecessor(12)
Predecessor(29)
Predecessor(3) = -1
Removing key 15
Removing key 53
Tree keys: 3 7 12 23 29 31 88

Process returned @ (0x0) execution time : 0.821 s
Press ENTER to continue.

As we can see in the console's output, we've got all of the expected outputs for each
operation.

Building a balanced BST (AVL) ADT

As we discussed earlier in the Building a binary search tree ADT section, it's possible to have a
skewed tree (either left or right) and cause the time complexity of several operations to
become slow for O(h), where & is the height of the tree. In this section, we are going to
discuss a balanced binary search tree to ensure that we won't get a skewed tree. There are
several implementations needed to create a balanced BST. However, we will only focus on
the AVL tree, which was invented by Adelson-Velskii and Landis in 1962, and is named after
the inventors.

[225]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Building a Hierarchical Tree Structure Chapter 7

To make a balanced BST, we have to know the height of each node in the tree. So, we need
to modify the BSTNode class by adding a new property named Height, as follows:

class BSTNode

{

public:
int Key;
BSTNode * Left;
BSTNode * Right;
BSTNode * Parent;
int Height;

i

This new property is used to track the height of each node. We will also create a new
method to fetch the height of a node, which is named GetHeight (), with the following
implementation:

int AVL::GetHeight (BSTNode * node)
{
// Return the Height of the node
// Return -1 if the node is NULL
return node == NULL ?
-1
node->Height;
}

Let's see our preceding BST from the previous section. If it is a balanced BST, when we
invoke GetHeight (7) it will return 0 since there's no edge in node 7.

Also, GetHeight (15) =GetHeight (29) = GetHeight (53) = 0. On the other hand, to get
the tree's height, we just need to fetch the root's height, so in our preceding BST, we can
invoke GetHeight (23).

An AVL tree is basically a BST, but it has a balanced height. All operations in the AVL tree
will be the same as they are in the BST, except for the Insert () and Remove () operations.
To find the height of each node, we need to find the maximum height between the left
subtree and the right subtree then add 1 to the result. The following code is used to fetch
the height of a node:

std::max (GetHeight (T->Left), GetHeight (T->Right)) + 1;

We will add the preceding code to our new AVL Insert () and Remove () operations,
which we will discuss in the upcoming sections.

[226]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Building a Hierarchical Tree Structure Chapter 7

Rotating nodes

The balanced BST can be achieved if the difference of the node's left height and the node's
right height is no more than 1. Please see the following mathematical notation:

|GetHeight (node—->Left) - GetHeight (node->Right) | < 1

Based on the preceding notation, we can initialize the balance variable with the following

code:
int balance =
GetHeight (node->Left) - GetHeight (node->Right);
If balance == 2 then the tree is left heavy and we need to rotate the left subtree. In
contrast, if balance == -2 then the tree is right heavy and we need to rotate the right
subtree. Please see the following diagram:
Right
Rotation
Left
Rotation

In the preceding diagram, we will get the right tree if we rotate the left tree to the right, and
will get the left tree if we rotate the right tree to the left. Based on this explanation, we can
create the RotateLeft () and RotateRight () operations as follows:

BSTNode * AVL::RotateLeft (BSTNode * node)

{
// The node must have a right child

// Create a new node as a result
// that will be a balanced node
BSTNode * balancedNode = node->Right;

// the balanced node will replace
// the current node
balancedNode->Parent = node->Parent;

// the current node will be child
// of the balanced node
node->Parent = balancedNode;

[227]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Building a Hierarchical Tree Structure Chapter 7

// The right child of current node
// will be balanced node's left child
node->Right = balancedNode->Left;

// If balanced node has left child

// point the parent to the current node

if (balancedNode->Left != NULL)
balancedNode->Left->Parent = node;

// The left child of balanced node
// will be the current node
balancedNode->Left = node;

// Refresh the node's height

node->Height = std::max(
GetHeight (node->Left),
GetHeight (node->Right)) + 1;

// Refresh the balanced node's height

balancedNode->Height = std::max(
GetHeight (balancedNode->Left),
GetHeight (balancedNode->Right)) + 1;

// return balancedNode
return balancedNode;

BSTNode * AVL::RotateRight (BSTNode * node)

{
// The node must have a left child

// Create a new node as a result
// that will be a balanced node
BSTNode * balancedNode = node->Left;

// the balanced node will replace
// the current node
balancedNode->Parent = node->Parent;

// the current node will be child
// of the balanced node
node—->Parent = balancedNode;

// The left child of current node
// will be balanced node's right child
node->Left = balancedNode->Right;

// If balanced node has right child

[228]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Building a Hierarchical Tree Structure Chapter 7

// point the parent to the current node
if (balancedNode->Right != NULL)
balancedNode->Right->Parent = node;

// The right child of balanced node
// will be the current node
balancedNode->Right = node;

// Refresh the node's height

node->Height = std::max(
GetHeight (node->Left),
GetHeight (node->Right)) + 1;

// Refresh the balanced node's height

balancedNode->Height = std::max(
GetHeight (balancedNode->Left),
GetHeight (balancedNode->Right)) + 1;

// return balancedNode
return balancedNode;

}

We will use the preceding RotateLeft () and RotateRight () operations in the upcoming
Insert () and Remove () operations section.

Inserting a new key

Inserting a new key into an AVL tree is similar to inserting a new key in a BST. The
difference is that we need to check the balance of the inserted node and the parent nodes.
As we discussed earlier, we have the formula to make a balanced tree by balancing the left
and right nodes. After that, we can decide if we have to rotate it left or right. The
implementation of the Insert () operation in an AVL tree is as follows:

BSTNode * AVL::Insert (BSTNode * node, int key)
{
// If AVL tree doesn't exist
// create a new node as root
// or it's reached when
// there's no any child node
// so we can insert a new node here
if (node == NULL)
{
node = new BSTNode;
node->Key = key;
node->Left = NULL;

[229]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Building a Hierarchical Tree Structure Chapter 7

node->Right = NULL;
node->Parent = NULL;
node->Height = 0;
}
// If the given key is greater than
// node's key then go to right subtree
else if (node->Key < key)
{
node->Right = Insert (node->Right, key);
node->Right->Parent = node;
}
// If the given key is smaller than
// node's key then go to left subtree
else

{
node->Left = Insert (node->Left, key);
node->Left->Parent = node;

// Get the balance
int balance =
GetHeight (node—->Left) - GetHeight (node->Right);

// If left heavy
if (balance == 2)

{
// Get left subtree's height
int balance2 =
GetHeight (node->Left->Left) -
GetHeight (node->Left->Right) ;
if (balance2 == 1)
{
node = RotateRight (node);
}
else
{
node->Left = Rotateleft (node->Left);
node = RotateRight (node);
}
}
// If right heavy
else if (balance == -2)
{

// Get right subtree's height

int balance2 =
GetHeight (node->Right->Left) -
GetHeight (node—->Right->Right) ;

[230]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Building a Hierarchical Tree Structure Chapter 7

if (balance2 == -1)

node = Rotateleft (node);
else
{//1

node->Right = RotateRight (node->Right) ;
node = Rotateleft (node);

}

// Refresh node's height

node->Height = std::max(
GetHeight (node—->Left),
GetHeight (node->Right)) + 1;

// Return the updated AVL tree
return node;

}

Since the implementation of the Insert () operation of the AVL tree is similar to

the Insert () operation of the BST, we can say that the time complexity of this operation is
the same, which is O(h). However, since we can ensure that the height is always balanced in
an AVL tree, the height will always be log N. So, the time complexity of the Insert ()
operation of an AVL tree is O(log N), where N is the total number of elements of the tree.

Removing a given key

Removing a key in an AVL tree is also the same as removing a key in a BST. We also need to
check the balance after removing the key. Here is the implementation of the Remove ()
operation in the AVL class, which has been updated with balance checking:

BSTNode * AVL::Remove (BSTNode * node, int key)
{
// The given node is
// not found in AVL tree
if (node == NULL)
return NULL;

// Target node is found
if (node->Key == key)

// If the node is a leaf node

// The node can be safely removed

if (node->Left == NULL && node->Right == NULL)
node = NULL;

// The node have only one child at right

[231]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Building a Hierarchical Tree Structure Chapter 7

else if (node->Left == NULL && node->Right != NULL)
{
// The only child will be connected to
// the parent's of node directly
node->Right->Parent = node->Parent;

// Bypass node
node = node->Right;
}
// The node have only one child at left
else if (node->Left != NULL && node->Right == NULL)
{
// The only child will be connected to
// the parent's of node directly
node->Left->Parent = node->Parent;

// Bypass node
node = node->Left;
3
// The node have two children (left and right)
else
{
// Find successor or predecessor to avoid quarrel
int successorKey = Successor (key);

// Replace node's key with successor's key
node—->Key = successorKey;

// Delete the old successor's key
node->Right = Remove (node->Right, successorKey);

}
// Target node's key is smaller than

// the given key then search to right
else if (node->Key < key)
node->Right = Remove (node—->Right, key);
// Target node's key is greater than
// the given key then search to left
else
node->Left = Remove (node->Left, key);

// Only perform rotation if node is not NULL
if (node != NULL)
{
// Get the balance
int balance =
GetHeight (node—->Left) - GetHeight (node—->Right);

[232]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Building a Hierarchical Tree Structure Chapter 7

// If left heavy
if (balance == 2)
{
// Get left subtree's height
int balance2 =
GetHeight (node->Left->Left) -
GetHeight (node->Left->Right) ;

if (balance2 == 1)
{
node = RotateRight (node);
}
else
{
node->Left = Rotateleft (node->Left);
node = RotateRight (node);
}
}
// If right heavy
else if (balance == -2)
{
// Get right subtree's height
int balance2 =
GetHeight (node->Right->Left) -
GetHeight (node—->Right->Right) ;

if (balance2 == -1)
node = Rotateleft (node);

else

{//1
node->Right = RotateRight (node->Right) ;
node = Rotateleft (node);

}

// Refresh node's height

node->Height = std::max(
GetHeight (node->Left),
GetHeight (node->Right)) + 1;

}

// Return the updated AVL tree
return node;

[233]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Building a Hierarchical Tree Structure Chapter 7

Similar to the Insert () operation in the AVL tree, the time complexity of the Remove ()
operation in the AVL tree will be O(log N), where N is the total number of elements of the
tree since we can ensure that the tree is balanced.

Implementing AVL ADT

By now, we will have the AVL class declaration, as follows:

class AVL : public BST
{
private:

BSTNode * root;

int GetHeight (BSTNode * node);

BSTNode * RotatelLeft (BSTNode * node);

BSTNode * RotateRight (BSTNode * node);

BSTNode * Insert (BSTNode * node, int key);
*

BSTNode Remove (BSTNode * node, int key);
public:
AVL();

void Insert (int v);
void Remove (int v);
bi

As we can see in the preceding declaration code, we derive the AVL class from the BST class,
which we discussed earlier. So, we just need to define the Insert () and Remove ()
operations. Also, since we have to maintain the tree's balance, we need to use

the RotateLeft () and RotateRight () operations.

We are now going to balance our preceding skewed left BST tree example which contains
the following keys: 69, 62, 46, 32, 24, and 13. To create an AVL tree, first we have to
instantiate an AVL class instance as follows:

// Instantiate BST instance
AVL * avlTree = new AVL;

Next, we insert the first key, which is 69, as follows:

// Insert first key
avlTree->Insert (69);

[234]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Building a Hierarchical Tree Structure Chapter 7

Then, we insert key 62. The tree will look as follows:

/*
Add key 62
69
/
62
*/
avlTree->Insert (62);

Next, we will insert key 46. When the key is inserted, the tree becomes unbalance since 46
will be a child of 62. To keep it balanced, we will rotate it right the tree. The code will be as

follows:
/ *
Add key 46
it will rotate right since
the balance = 2
62
/ 0\
46 69
*/

avlTree—->Insert (46);

Next, we insert 32 into the tree. After inserting the key, the tree is still balanced since the
difference between the left subtree's height and right subtree's height is 1 (remember this
notation— | GetHeight (node->Left) - GetHeight (node->Right) | < 1). The code
should be as follows:

/*
Add key 32
62
/N
46 69
/
32
*/

avlTree->Insert (32);

[235]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Building a Hierarchical Tree Structure Chapter 7

The next key is 24. When we insert the key, the tree becomes unbalanced again. So, 32 will
be the parent of 24 and 46. The parent of 32 will be 62. Please see the following code:

/*
Add key 24
it will rotate right since
the balance = 2
62

/N
32 69

/N
24 46

*/

avlTree->Insert (24);

The last key is 13. When we insert the key, the tree becomes unbalanced. Key 32 will
become the root. Key 46 will be the left child of key 62. Key 62 will be the right child of the
root node, which is 32. The code will be as follows:

/*
Add key 13
it will rotate right since
the balance = 2
32
/N
24 62
/ /N
13 46 69
*/

avlTree->Insert (13);

Building a binary heap ADT

A binary heap is a completely binary tree that is usually used to implement a priority
queue. Please look at the following binary tree which is representing the priority queue:

[236]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Building a Hierarchical Tree Structure Chapter 7

As we can see, each node has its own key and there's also a number below each node to
indicate the priority of the element (in this example, the maximum element has higher
priority). The priority queue is usually represented in an array, so we can have the
following array as a representation of the preceding priority queue tree:

58 (49 (27 |132|14| 8 | 3

1 2 3 4 5 6 7

To create a binary heap in C++, we will have the heapsize variable, which will be increased
when an element is inserted and will be decreased when an element is removed. There are
four basic operations in a priority queue, and they are as follows:

® IsEmpty () is used to check whether the queue is empty

e Insert (), similar to the Enqueue () operation in a Queue data structure, is used
to insert a new element into the queue

e GetMax (), similar to the Peek () operation in a Queue data structure, is used to
fetch the element with the greatest order

e ExtractMax (), similar to the Dequeue () operation in a Queue data structure, is
used to fetch the element with the greatest order before removing it from the
queue

Now, let's discuss these operations further in the upcoming sections.

We are going use a vector container in the C++ implementation of

the Binary Heap ADT. However, since the binary heap we've developed
starts from index 1 while the vector container starts from index 0, we
won't use index 0 in the vector container, instead filling index 0 with -1 to
indicate that it's not used.

Checking if the heap is empty

The heapSize variable can be used to indicate whether or not the heap is empty. We just
need to check if heapSize = 0 to determine that the heap is empty. The following is an
implementation of the IsEmpty () operation:

bool BinaryHeap::IsEmpty ()

{
// Heap is empty if only
// heapSize = 0

[237]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Building a Hierarchical Tree Structure Chapter 7

return heapSize == 0;

}

The preceding sample code will run on O(1) since it's just simply getting the heapSize
value.

Inserting a new element into the heap

A new element will be inserted in the last vector. However, we need to shift the element up
to ensure that it will be in the right place based on the value of the element. To do so, we

need to create the sShiftUp () operation, which will swap two adjacent elements so that the
vector will be in order. The implementation of the ShiftUp () operation will be as follows:

void BinaryHeap::ShiftUp (int index)
{
// Do nothing in root
if (index == 1)
return;

if (vect[index] > vect[p(index)])

{
// Swap Upwards
std::swap (vect [index], vect[p(index)]);

// Recurse until root
ShiftUp (p(index));

}
After we have the ShiftUp () operation, we can create the Insert () operation as follows:

void BinaryHeap::Insert (int key)
{
// Add a new element in vector
if (heapSize + 1 >= (int)vect.size())
vect .push_back (0) ;

// Store the key in the vector last position
vect [++theapSize] = key;

// Shift upwards
ShiftUp (heapSize);

[238]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Building a Hierarchical Tree Structure Chapter 7

As we can see in the preceding Insert () operation, it invokes the ShiftUp () operation as
well. Since the ShiftUp () operation has a time complexity of O(log N), the Insert ()
operation will also be the same.

Fetching the element's maximum value

Fetching the element's maximum value is quite simple since it is stored in the root, or, in
other words, it's in index 1. To do so, we just need to return vect [1]:

int BinaryHeap::GetMax ()
{
// Return root's key
return vect[1];

}

Since it's a simple implementation, the time complexity for the GetMax () operationis O (1).

Removing the maximum element

To remove the maximum element from the priority queue, we will need to use

the ExtractMax () operation. After we remove the element in root, we will place the
minimum value in root to replace the maximum element which was just removed. Then, we
need to shift the minimum value down to the leaf of the tree. To do so, we need to also
create the ShiftDown () operation, as follows:

void BinaryHeap::ShiftDown (int 1)
{
// For non-existing index
// just do nothing
if (i > heapSize)
return;

// Initialize swapId
int swapIld = i;

// Compare with left child, if exists
if (1(i) <= heapSize && vect[i] < vect[l(1)])
swapId = 1(1);

// Compare with right child, if exists
if (r(i) <= heapSize && vect[swapId] < vect[r(i)])
swapId = r(i);

[239]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Building a Hierarchical Tree Structure Chapter 7

// Swap with the larger of the two children
if (swapId != 1)
{

// Swap downwards with the larger

// of the two children

std::swap (vect[i], vectl[swapId]);

// Recurse until the index
ShiftDown (swapId);

}

As we discussed earlier, we will swap the last element of root and then shift down root.
Here is the implementation of the ExtractMax () operation:

int BinaryHeap::ExtractMax ()

{
// Maximum value is in root
int maxVal = vect[1];

// Swap with the last existing leaf
std::swap (vect[1l], vectlheapSize--]);

// Fix heap property downwards
ShiftDown (1) ;

// Return the maximum value
return maxVal;

}

As we can see in the shiftDown () operation, the time complexity of the implementation is
O(log N). Since the ExtractMax () operation invokes the ShiftDown () operation, the time
complexity will be the same.

Implementing a binary heap as a priority queue

By now, we should have a BinaryHeap class implementation as follows:

class BinaryHeap

{

private:
std::vector<int> vect;
int heapSize;

// three helper navigation function

[240]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Building a Hierarchical Tree Structure

Chapter 7

int p(int i) { return i>>1; } // i/2
int 1(int i) { return i<<1; } // i*2
int r(int i) { return (i<<1)+1; } // i*2+1

void ShiftUp (int index);
void ShiftDown (int 1i);

public:
BinaryHeap () ;

bool IsEmpty();
void Insert (int key);
int ExtractMax();
int GetMax () ;
bi

We are going to create a priority queue using this BinaryHeap data structure. The

following is the code snippet for the BinaryHeap data structure:

// Instantiate priority queue
BinaryHeap * priorityQueue = new BinaryHeap();

Before we insert a new element, we can check whether the queue is empty by using the

following code snippet:

// Check if the queue is empty
// it should be TRUE
cout << "Is queue empty? ";
bool b = priorityQueue->IsEmpty();
if (b)
cout << "TRUE";
else
cout << "FALSE";
cout << endl;

To insert a new element, we can use the following code snippet:

// Insert a new element
priorityQueue->Insert (14);
cout << "Insert 14 to queue" << endl;

Again, we can check if the queue is empty by using the IsEmpty () operation, as we

discussed earlier, and now it should say FALSE.

[241]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Building a Hierarchical Tree Structure Chapter 7

Then, we insert three new elements as follows:

// Insert others elements
priorityQueue->Insert (53);
priorityQueue->Insert (8);
priorityQueue->Insert (32);

Until now, the maximum value in the queue is 53. To ensure this, we can call the GetMax ()
operation, as follows:

// Peek the maximum element

// It should be 53

cout << "GetMax () = ";

cout << priorityQueue->GetMax();
cout << endl;

Also, we can extract the maximum value using the ExtractMax () operation, as follows:

// Extract maximum element

cout << "ExtractMax() = ";

cout << priorityQueue->ExtractMax () ;
cout << endl;

Now, if we invoke the GetMax () operation again, it should return 32. The full code can be
found in the Binary_Heap.cpp file in the Binary_Heap. cbp project. If we build and run
the project, we will get the following output on the console:

DE Terminal

Priority Queue

Is queue empty? TRUE

Insert 14 to queue

Is queue empty? FALSE

Insert 53, 8 and 32 to queue

GetMax() = 53
ExtractMax() = 53
GetMax() = 32

Process returned 0 (0x0) execution time : 0.003 s
Press ENTER to continue.

[242]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Building a Hierarchical Tree Structure Chapter 7

Summary

In this chapter, we discussed the hierarchical data structure and stored information in the
form of a tree. We started our discussion by creating a tree from several TreeNodes, and
then built a binary search tree where we can search for a given key easily. Sometimes, we
can have a skewed tree in a binary search tree, and so we build an AVL tree, which can
balance all of the elements itself, so that now we can have a balanced binary tree. Another
tree data structure implementation is the binary heap, which we used to build a priority
queue, where we can access an element based on its priority.

In the next chapter, we are going to discuss how to construct and implement the hash
structure in algorithm design.

QA section

e What is the difference between the TreeNode class in a binary tree and
the TreeNode class in a binary search tree?

e What are the advantages of the binary search tree over the binary tree?
e How can the AVL tree have a balanced tree?

Further reading

For futher references, please visit these links:

® https://visualgo.net/en/bst

® https://www.geeksforgeeks.org/binary-tree-data-structure/
® https://en.wikipedia.org/wiki/Binary_search_tree

® http://en.cppreference.com/w/cpp/language/range—for

® https://en.wikipedia.org/wiki/Binary_heap

® https://visualgo.net/en/heap

® https://www.geeksforgeeks.org/binary-heap/

[243]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Associating a Value to a Key in
a Hash Table

In the previous chapter, we discussed the hierarchical tree data type, which is a non-linear
data type, that stores data in a tree-like structure. In this chapter, we are going to discuss
another non-linear data type, the hash table, which stores data based on a key. The
following topics are discussed in this chapter:

¢ Understanding hash tables

¢ Preventing a collision in a hash table

¢ Using a separate chaining technique to handle a collision
¢ Using an open addressing technique to handle a collision

Technical requirement

To follow along with this chapter, including the source code, we require the following;:

Desktop PC or Notebook with Windows, Linux, or macOS
GNU GCC v5.4.0 or above

Code::Blocks IDE v17.12 (for Windows and Linux OS), or Code::Blocks IDE
v13.12 (for macOS)

You will find the code files on GitHub at https://github.com/
PacktPublishing/CPP-Data-Structures—and-Algorithms

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Associating a Value to a Key in a Hash Table Chapter 8

Getting acquainted with hash tables

Suppose we want to store a collection of numbers, for instance, a phone number, and let's
say we have approximately 1,000,000 numbers. In previous chapters, we also discussed
several data structures, and here we can consider using one of them. We can use an array or
a list, but we have to provide a million slots of data in the array. If we need to add some
phone numbers again, we have to resize the array. Also, the operation of searching will be
costly, since we have to use a linear search algorithm with time complexity O(N), where the
time consumption will increase if we add data to the list. Indeed, we can use a binary search
algorithm with O(log N) time complexity if we manage to sort the elements of the list
containing the bunch of phone numbers; however, the insert operation will be costly, since
we have to maintain the sorted list.

Another data structure we can choose is the balanced binary search tree. It can give us a
moderate time complexity, since it will be O(log N) to insert, search, and remove the
operation; however, it still depends on the total number of elements in the tree.

Big data in small cells

To solve this problem, we are going to construct a hash table data type. This data type will
have a hash function to convert a given big phone number into a small integer value. By
using a hash table, we don't need to provide a million memory allocations; instead, we can
determine a table size for the hash table. Afterward, we will map the integer value to the
index of the hash table.

A phone number usually contains at least six to seven digits; however, for the sake of
simplicity, we will use three-digit phone numbers in the example in this section. Here is a
list of phone numbers we will use in several examples in upcoming sections:

No. | Phone Number Name
1 434 Dylan
2 391 Dominic
3 806 Adam
4 117 Lindsey
5 548 Cameron
6 669 Terry
7 722 Brynn
8 276 Jody
9 953 Frankie
10 895 Vanessa

[245]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Associating a Value to a Key in a Hash Table Chapter 8

As we can see in the preceding list, we have 10 phone numbers, and each number is owned
by a person as stated in the Name column. We are going to store data in Phone Number
and Name column as a data pair in a hash table in the upcoming discussion.

Storing data in a hash table

In the preceding section, we have ten phone number to be inserted to a hash table. We will
try to store them in a hash table which has seven slot. As we have discussed in preceding
section, we need a hash function to get a hash key from the phone number so it can be
stored to the hash table. The hash key can be found by find out the remainder if we divide
the phone number by the total slot of the hash table, which is seven. Please see the
following table which contain the mapping of hash key (slot number) with the data.

Hash Key [Data

[434, Dylan]

[806, Adam] - [722, Brynn] - [953, Frankie]
[548, Cameron]

[276, Jody]

[669, Terry]

[117, Lindsey]

[391, Dominic] - [895, Vanessa]

N[O |~ ||,]O

As we can see in the preceding table, there are several data that have same hash key, for
instance, key 1 has three data and key 6 has two data. However, since each slot in the hash
table can only contain one data, this cannot happen since it's called collision in hash table. To
solve this problem, we are going to discuss how to prevent the collision in next section.

[246]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

Collision handling

As we have discussed previously, there will be a possibility that one key is used by two
values or more, since we map a big key to a small key. This situation is called a collision,
where there is another key that will be mapped to an occupied slot. To solve this problem,
we need a collision handling technique. And here are the ways to handle collisions:

¢ Separate chaining is a technique to point each cell in a hash table to a chaining
node, or a linked list. The same hash key for a different value will be stored in the
chaining node.

¢ Open addressing is a technique to store all elements in the hash table itself. If a
collision is about to happen, the technique will find another slot by performing
some calculation to ensure a collision will not happen.

Now, let's implement all collision handling techniques in a hash table by developing several
ADTs in C++.

Implementing a separate chaining technique

Separate chaining is a collision handling technique that will make each cell in the hash
table point to a chaining node containing values with the same hash key. We are going to
create an ADT named HashTable to handle the preceding phone number list. Since the
phone number contains only numbers, it will be stored in the int data type, and the owner
of the phone number name will be stored in the st ring data type. However, if the phone
number we have are saved as 123-456-789 format, we need to remove the dash (-)
character first.

The HashTable will be four basic operations and they are:

e Insert () isused to insert a new pair<int, string> to the hash table. It
passes an int as a key and a string as a value. It then finds a hash key for the
inputted key. If the inputted key is found in the hash table, it will update the
value of the key. If no key is found, it will append a new node to the linked list
containing the inputted key and inputted value.

e Search () is used to find the value of the inputted key. It will return the value if
the inputted key is found. If not, it will return an empty string.

[247]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

e Remove () is used to delete an existing inputted key. If the inputted key is not
found, it will do nothing.

e IsEmpty () is used to tell the user if the hash table has at least one element or not.
If there is no element, it will return TRUE; otherwise, it returns FALSE.

Since we will have four operations, we are going to have the following class declaration:

#define TABLE_SIZE 7

class HashTable
{

private:
std::list<std::pair<int, std::string>>
tableList [TABLE_SIZE];

int HashFunction (int key);

public:
HashTable () ;

void Insert (int key, std::string value);
std::string Search(int key);
void Remove (int key);
bool IsEmpty();
}i

As we can see in the preceding declaration, we have a HashFunction () declaration to
generate a hash key for each inputted key. And since we need a chaining node, we declare a
tableList in std::1ist data type containing pair<int, string> data.

Generating a hash key

As we have discussed earlier, a hash key is obtained by finding out the remainder when we
divide the phone number with the total slot of table (table size). To generate the hash key,
we will implement the HashFunction () function as follows:

int HashTable::HashFunction (int key)

{
return key % TABLE_SIZE;

}

[248]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

Since we have 10 data items, we define TABLE_SIZE as 7. By using this function, we can get
a hash key for an inputted key in the operations of the HashTable. Since the
implementation of the HashFunction () function is quite simple, the time complexity of
this function will be O(1) for all cases.

Developing an Insert() operation

To insert a new pair of int and string to the hash table, we need to find out a hash key for
the inputted key. Then, we traverse to chaining node in the cell pointed by the hash key to
find if the the given new pair data exists. For instance, if the hash key is 5, we just need to
go to cell 5 then traverse to the list in that cell to find out the inputted key. If the inputted
key is found, we update the value of that key. If the key is not found, we add the pair of
data to the back of the list. The implementation of Insert () operations should be as
follows:

void HashTable::Insert (int key, string value)

{

bool isKeyFound = false;

// Get hash key from hash function
int hashKey = HashFunction (key);

// Iterate through chaining node (linked list)
// in selected cell
for (auto &keyValue : tablelList[hashKey])
{
// 1if the key is found
// update the data
if (keyValue.first == key)
{
isKeyFound = true;
keyValue.second = value;

}

// If key is not found,
// append at the back
if (!isKeyFound)
tablelist [hashKey] .emplace_back (key, value);

[249]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

As we can see in the preceding code implementation, because emplace_back () is similar
to the InsertTail () operation in the DoublyLinkedList ADT, we have an O(1) time
complexity for the best case if there's no hash key stored before in the hash table; however,
on average and in the worst cases, we will have an O(N) time complexity if we have to
traverse to the end of the list.

Developing a Search() operation

In a Search () operation, we will get the value of an inputted key. To do so, first we need to
find out the hash key of the inputted key. Similar to the Insert () operation, we traverse to
the chaining node in the cell pointed by the hash key to find if the key. If the key is found,
we just need to return the value of the key. If not, the empty string will be returned instead.
The implementation of the Search () operation should be as follows:

string HashTable::Search (int key)

{
// Get hash key from hash function
int hashKey = HashFunction (key);

// Iterate through chaining node (linked list)
// in selected cell
for (auto &keyValue : tableList [hashKey])
{

// 1f the key is found

// return the value of name

if (keyValue.first == key)

{

return keyValue.second;

}

}

// If this statement is reached

// it means that the key is not found
// so just return empty string

return "";

}

Similar to the Insert () operation, the best case time complexity will be O(1) if we found
the inputted key in the first element of the list; however, we will get O(N) for both the
average and the worst cases, since we may have to traverse to the end of the list.

[250]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

Developing a Remove() operation

In a Remove () operation, we erase a found key node from the chaining node in the cell
pointed by hash key. Similar to the Insert () and Search () operation, we have to traverse
to the linked list until we find the inputted key. If the inputted key is found, we just need to
delete the node. If the inputted key doesn't exist, we simply do nothing. The
implementation of the Remove () operation will be as follows:

void HashTable: :Remove (int key)

{
// Get hash key from hash function
int hashKey = HashFunction (key);

// Get the cell
auto &cell = tablelList[hashKey];

// Tranverse the chaining node (linked list)
for (auto it = cell.begin(); it !'= cell.end(); ++it)
{
// 1if the key is found
// then delete the list's element
if (it->first == key)
{
cell.erase(it);
break;

}

// Note: if key is not found just do nothing
}

Again, we will have O(1) for the time complexity of the function for the best case if we
found the key in the first element of the linked list. We will also have an O(N) time
complexity for the average and the worst case if we have to traverse to all elements in the
linked list.

[251]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Associating a Value to a Key in a Hash Table Chapter 8

Developing an IsEmpty() operation

Sometimes, we need to check whether a hash table is empty or not. To do so, we can check
if each cell in the hash table has a list that contains at least one element. The implementation
of the IsEmpty () operation should be as follows:

bool HashTable::IsEmpty ()

{

}

// Initialize total element
int totalElement = 0;

// Count all elements in table hash
for (int i = 0; i < TABLE_SIZE; ++1)

{
totalElement += (int)tablelList([i].size();

// If the total element is not zero
// the hash table must not be empty
if totalElement > 0

return false;

}

// If this statement is reached
// it means that total element is zero
return true;

As we can see in the preceding function implementation, we have to iterate the hash table
and find out if the cell is empty or not. By using the preceding implementation, we can get
an O(1) time complexity in the best case if the first cell is not empty; however, on average
and in the worst cases, the time complexity will be O(TABLE_SIZE).

[252]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Associating a Value to a Key in a Hash Table Chapter 8

Applying a HashTable ADT using a separate
chaining technique in the code

Before we apply the HashTable ADT using the separate chaining technique to the code,
let's see how a separate chaining technique works to handle collisions. First, we have phone
number 434, owned by Dylan. The phone number will generate 0 for the hash key, so the
data will be stored in cell 0. Next is phone number 391, owned by Dominic, which will be
stored in cell 6. Phone number 806, owned by Adam in cell 1; phone number 117, owned
by Lindsey in cell 5; phone number 548, owned by Cameron in cell 2; and phone number
669, owned by Terry in cell 4.

By now, everything has been running well, since no collision has occurred; however, if we
store the 7™ data to the hash table, which is phone number 722 owned by Brynn, it will
have 2 as the hash key, but the hash key 2 has been occupied by phone number 548. In this
situation, we will still store the data in cell 2, and link to the previous node in the same cell.
After storing all data in the hash table, we will have the following diagram:

[434, Dylan]
[806, Adam] & [953, Frankie]
[548, Cameron] [722, Brynn]
[276, Jody]
[669, Terry]
[117, Lindsey]
[391, Dominic] |mssss=| [895, Vanessa] |

o s~ WM =0

Now, it's time to apply our HashTable ADT to the phone number list we had at the
beginning of this chapter. First, we have to instance a HashTable class in the code as
follows:

HashTable * hashTable = new HashTable();

[253]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

To prove that HashTable is initialized with an empty element, we can invoke the
IsEmpty () operation as follows:

// Check if hash table is empty
bool b = hashTable->IsEmpty () ;
if (b)

cout << "Hash table is empty";
else

cout << "Hash table is not empty";
cout << endl;

Then we can insert new data by using the Insert () operation, then checking if the hash
table is empty using the following code snippet:

// Adding a data then
// check if hash table is empty
cout << "Adding a data" << endl;
hashTable->Insert (434, "Dylan");
b = hashTable->IsEmpty () ;
if (b)

cout << "Hash table is empty";
else

cout << "Hash table is not empty";
cout << endl;

Afterward, we can insert all remaining data to the hash table as follows:

// Adding others data
hashTable->Insert (391, "Dominic");
hashTable->Insert (806, "Adam");
hashTable->Insert (117, "Lindsey");
hashTable->Insert (548, "Cameron");
hashTable->Insert (669, "Terry");
hashTable->Insert (722, "Brynn");
hashTable->Insert (276, "Jody");
hashTable->Insert (953, "Frankie");
hashTable->Insert (895, "Vanessa");

[254]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

By now, we have all data stored in the hash table. We can search if a key is present in the
hash table. Suppose we are going to search key 669, we can do the following:

// Search key 669

// it should be found

int key = 669;

cout << "Search value for key ";

cout << key << endl;

string name = hashTable->Search (key);

if (name != "")

{
cout << "Value for key " << key;
cout << " is " << name;

}

else

{
cout << "Value for key " << key;
cout << " is not found";

}

cout << endl;

Now, let's remove the 669 key. The key should be not found if we search it again. The code
snippet is as follows:

// Remove key 669

// then search the key

// it should not be found

cout << "Remove node of key ";

cout << key << endl;

hashTable->Remove (key) ;name = hashTable->Search (key);

if (name != "")

{
cout << "Value for key " << key;
cout << " is " << name;

}

else

{
cout << "Value for key " << key;
cout << " is not found";

}

cout << endl;

[255]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Associating a Value to a Key in a Hash Table Chapter 8

As of now, we have tried all operations in the HashTable ADT. The following is the output
we will have onscreen if we build and run the Hash_Table_SC. cbp project from the
repository:

[
Yo

Terminal

Hash Table - Separate Chaining
Hash table is empty

Adding a data

Hash table is not empty

search value for key 669
Value for key 669 is Terry
Remove node of key 669

Value for key 669 is not found

Process returned 0 (8x8) execution time : 0.604 s
Press ENTER to continue.

Implementing the open addressing
technique

As we discussed earlier at beginning of this chapter, an open addressing technique stores all
elements in the hash table itself. A collision will not happen, since there is a calculation that
will be performed if a collision is about to happen. Based on this calculation, we can have
three types of open addressing technique—Linear probing, quadratic probing, and double
hashing. The difference between the three is the formula for finding the next free space if
the hash key of the given element has been occupied:

e In linear probing, if the hash key has been occupied by another element, we use
the following formula to find the next free space— (HashFunction (key) + n)
$ TABLE_SIZE, then increase n from 0 until a free slot is found. Here is the
explanation—If HashFunction (key) % TABLE_SIZE is occupied, then try
(HashFunction (key) + 1) % TABLE_SIZE. If the slot is still occupied, try
(HashFunction (key) + 2) % TABLE_SIZE. Repeat it by increasing n until a
free slot is found.

[256]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

EBSCChost -

Associating a Value to a Key in a Hash Table Chapter 8

e In quadratic probing, if the hash key has been occupied by another element, we
use the following formula to find the next free space— (HashFunction (key) +
n’) % TABLE_SIZE, then increase n from 0 until a free slot is found. By using the
formula, we increase the hash key quadratically. Here is the explanation—If
HashFunction (key) % TABLE_SIZE is occupied, then try

(HashFunction (key) + 1%) % TABLE_SIZE. If the slot is still occupied, try
(HashFunction (key) + 2°) % TABLE_SIZE. Repeat it by increasing n until a
free slot is found.

¢ In double hashing, if the hash key has been occupied by another element, we use
the following formula to find the next free space— (HashFunction (key) +
n*HashFunction (key)) % TABLE_SIZE, then increase n from 0 until a free slot
is found. By using the formula, we increase the hash key quadratically. Here is
the explanation—If (HashFunction (key) + 1*HashFunction (key)) %
TABLE_SIZE is occupied, then try (HashFunction (key) +
2*HashFunction (key)) % TABLE_SIZE. If the slot is still occupied, try
(HashFunction (key) + 3*HashFunction(key)) % TABLE_SIZE. Repeat it
by increasing n until a free slot is found.

Since the three types of open addressing technique are similar yet different
in the formula for finding the next free slot, we will only discuss linear
probing in this book.

There are also four basic operations in linear probing techniques, similar to separate the
chaining technique. They are the Insert (), Search (), Remove (), and IsEmpty ()
operations. These four operations have totally the same functionality as operations in the
separate chaining technique; however, we will add a new operation, PrintHashTable (),
to prove that an inserted element is stored in the correct place. Based on the preceding
requirement, we will have HashTable class declaration as follows:

#define TABLE_SIZE 7

class HashTable
{
private:
int currentSize;
HashElement * *arr;
HashElement * deletedElement;

int HashFunction (int key);

public:

[257]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Associating a Value to a Key in a Hash Table Chapter 8

HashTable () ;

void Insert (int key, std::string value);
std::string Search (int key);
void Remove (int key);
bool IsEmpty();
void PrintHashTable () ;
bi

As we can see in the preceding code, we have put all the elements in an arr variable, and
marked a slot that has been deleted as deletedElement. We will track the number of
elements in the hash table using the currentSize variable. Also, we need a new data type
named HashElement to be stored in the hash table. The implementation of the
HashElement classis as follows:

class HashElement
{
public:
int Key;
std::string Value;

HashElement (int key, std::string value)

{
this->Key = key;
this->Value = value;

bi

Since we need to reset current Size and initialize the arr and deletedElement variables,
we will have a HashTable constructor implementation as follows:

HashTable: :HashTable ()

{
// Initialize current size as 0
currentSize = 0;

// Initialize table

arr = new HashElement * [TABLE_SIZE];

for(int 1 = 0 ; 1 < TABLE_SIZE ; ++i)
arr[i] = NULL;

// Specify deleted node content
deletedElement = new HashElement (-1, "");

[258]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

Now, let's develop all operations we need in this HashTable ADT in the upcoming section.

We have a HashFunction () function in the linear probing technique;
however, it is exactly the same as the HashFunction () function in the
separate chaining technique. Therefore, we are not going to discuss it
anymore in this section.

Developing the Insert() operation

To insert a new element in a hash table, first we obtain a hash key from the key's element
using HashFunction (). After we have the hash key, we check if the slot is available. If it's
not available, we check another free slot using the linear formula we discussed at the
beginning of this section. Since the open addressing technique stored all elements in the
hash table itself at the beginning of the Insert () function implementation, we need to
check if all slots have been occupied. If there is no free slot, the function will do nothing.
Each time there's a new element to be added, we increase the current Size variable to
track the total elements in the hash table. The implementation of the function will be as
follows:

void HashTable::Insert (int key, string value)
{
// It's impossible to store a new element
// if hash table doesn't have free space
if (currentSize >= TABLE_SIZE)
return;

// Create a temporary element
// to be inserted to hash table
HashElement * temp =

new HashElement (key, value);

// Get hash key from hash function
int hashIndex = HashFunction (key);

// Find next free space
// using linear probing

while (arr[hashIndex] != NULL &&
arr [hashIndex]->Key != key &&
arr [hashIndex]->Key != -1)

{
++hashIndex;

hashIndex %= TABLE_SIZE;

[259]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Associating a Value to a Key in a Hash Table Chapter 8

// If there's new element to be inserted
// then increase the current size

if (arr[hashIndex] == NULL ||
arr [hashIndex]->Key == -1)
{
++currentSize;
arr [hashIndex] = temp;

}

Please see the two bold statements in the preceding code snippet as follows:

++hashIndex;
hashIndex %= TABLE_SIZE;

That is the formula for calculating the next free slot in the linear probing technique. If we
want to use quadratic probing or double hashing, we just need to replace the two bold
statements with a correct calculation. In average and worst cases, the Insert () function
will give O(TABLE_SIZE) for the time complexity. For the best case, it can give an O(1) time
complexity.

Developing a Search() operation

Similar to the preceding Insert () operation, to search for a value of a key, we need to
obtain the hash key of that given key using HashFunction (). Then, we check the cell
which the index is the hash key. If the key in that cell matches with the given key, we just
need to return the value of the key. If not, we have to find another possible slot using the
linear probing calculation until the given key is found. If the given key is still not found, just
return an empty string to notify the user that the given key doesn't exist in the hash table.
The implementation of the search () function is as follows:

string HashTable::Search (int key)

{
// Get hash key from hash function
int hashIndex = HashFunction (key);

// Find the element with given key
while (arr[hashIndex] != NULL)&& arrl[hashIndex]->Key !=
deletedElement—>Key)
{

// If element is found

// then return its value

if (arr[hashIndex]->Key == key)

return arr[hashIndex]->Value;

[260]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

EBSCChost -

Associating a Value to a Key in a Hash Table Chapter 8

// Keep looking for the key
// using linear probing
++hashIndex;
hashIndex %= TABLE_SIZE;

}

//If not found return null
return "";

}

As we can see in the preceding code, there are bold statements to indicate that it's a linear
probing technique. We can change these statements with the quadratic probing or double
hashing calculations if we want to replace with one of those techniques. The time
complexity we will get from this operation is O(TABLE_SIZE) for the average and worst
cases. In the best case, we can get an O(1) time complexity.

Developing the Remove() operation

To remove an element by using a given key, first we have to search the position of the
element stored by using a hash key. If the given key is found, then delete the element. If not,
find another possible slot using a linear probing calculation, then delete the element if it's
found. Each time there's a new element to be removed, we decrease the currentSize
variable to track the total elements in the hash table. The implementation of the Remove ()
operation will be as follows:

void HashTable: :Remove (int key)

{
// Get hash key from hash function
int hashIndex = HashFunction (key);

// Find the element with given key
while (arr[hashIndex] != NULL &&

arr [hashIndex]->Key != deletedElement->Key)
{

// If element is found

// then mark the cell as deletedElement

if (arr[hashIndex]->Key == key)

{

arr[hashIndex] = deletedElement;

// Reduce size
—-—currentSize;

// No need to search anymore

[261]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Associating a Value to a Key in a Hash Table Chapter 8

return;

}

// Keep looking for the key
// using linear probing
++hashIndex;
hashIndex %= TABLE_SIZE;

}

// Note: if key is not found just do nothing
}

Again, we have bold statements in the preceding code. They are the formula to find another
possible slot in the linear probing technique. Consider changing those statements if you
need to use quadratic probing or double hashing techniques. The time complexity we will
get from the Remove () operation is O(TABLE_SIZE) in both average and worst cases. In the
best case, we will get O(1) time complexity.

Developing an IsEmpty() operation

Since we have a currentSize variable that stores the total number of elements in the hash
table, to see if the hash table is empty, we just need to check if the currentsize variable
equals to 0. The implementation of the IsEmpty () operation will be as follows:

bool HashTable::IsEmpty ()
{

return currentSize == 0;

}

Differ with IsEmpty () operation in our previous separate chaining technique, it's
guaranteed to have O(1) time complexity for all cases with a IsEmpty () operation in the
linear probing technique, since we have tracked the size of the hash table each time we've
performed Insert () and Remove () operation.

[262]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

Developing a PrintHashTable() operation

By iterating the hash table, we can collect the pairs of key and value, then print them to the
screen. We will use this PrintHashTable () operation to see if the new element we insert is
stored in the right place. The implementation of the operation will be as follows:

voilid HashTable::PrintHashTable ()
{
// Iterate through array
for(int i = 0 ; i < currentSize; ++1i)
{
// Just print the element
// if it exist

if (arr([i] != NULL && arr[i]->Key != -1)
{
cout << "Cell: " << 1i;
cout << " Key: " << arr[i]->Key;
cout << " Value: " << arr[i]->Value;

cout << std::endl;

}

Since the operation will iterate through the hash table until the size of the table, the time
complexity of this operation is O(TABLE_SIZE) in all cases.

Applying an HashTable ADT using a linear
probing technique in the code

Before we apply the HashTable ADT we built using the linear probing technique
previously, we will first see how the linear probing technique handles a collision by
applying it to the phone number list we had at the beginning of this chapter. We will also
define TABLE_SIZE as 7, which is the same as our previous separate chaining techniques, as
a comparison to separate the chaining technique.

First, we have phone number 434 owned by Dylan, which will be stored in cell 0. The next

is phone number 391 owned by Dominic, which will be stored in cell 6. Phone number 806
owned by Adam in cell 1, phone number 117 owned by

Lindsey in cell 5, phone number 548 owned by Cameron in cell 2, and phone number 669

owned by Terry in cell 4.

[263]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

By now, all elements are stored in an appropriate hash key; however, if we insert the 7"
data into the hash table, a collision will occur, since phone number 722 owned by Brynn
has 2 as the hash key, and it's exactly the same as phone number 548 owned by Cameron.
To prevent the collision, we use linear probing, which increases the hash key of collision
element, then performs modulo to it. In this case, we will get 3 as anew hash key ((2 + 1)
% 7). Since cell 3 is still free, we can store phone number 722 owned by Brynn in that cell.

Next, for 8" until 10" data, they won't be stored in the hash table even if we perform the
Insert () operation, since there is no free space anymore in the hash table. The illustration
will be as follows:

[434, Dylan]
[806, Adam]
[548, Cameron]
[722, Brynn]
(669, Terry]
[117, Lindsey]
[391, Dominic]

o O B W N = O

Now, let's apply the HashTable ADT we built using the linear probing technique in the
code to the phone number list we had at the beginning of this chapter. The usage of
HashTable using the linear probing technique is quite similar to the one we built using the
separate chaining technique. We will try all operations as shown in the following main ()
function:

int main ()

{
cout << "Hash Table - Open Addressing - Linear Probe";
cout << endl;

HashTable * hashTable = new HashTable();

// Check if hash table is empty
bool b = hashTable->IsEmpty () ;
if (b)

cout << "Hash table is empty";
else

cout << "Hash table is not empty";
cout << endl;

// Adding a data then

[264]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Associating a Value to a Key in a Hash Table Chapter 8

// check if hash table is empty
cout << "Adding a data" << endl;
hashTable->Insert (434, "Dylan");
b = hashTable->IsEmpty () ;
if (b)

cout << "Hash table is empty";
else

cout << "Hash table is not empty";
cout << endl;

// Adding others data
hashTable->Insert (391, "Dominic");
hashTable->Insert (806, "Adam");
hashTable->Insert (117, "Lindsey");
hashTable->Insert (548, "Cameron");
hashTable->Insert (669, "Terry");
hashTable->Insert (722, "Brynn");
hashTable->Insert (276, "Jody");
hashTable->Insert (953, "Frankie");
hashTable->Insert (895, "Vanessa");

// Print the table
hashTable->PrintHashTable () ;

// Search key 669

// it should be found

int key = 669;

cout << "Search value for key ";

cout << key << endl;

string name = hashTable->Search (key);

if (name != "")

{
cout << "Value for key " << key;
cout << " is " << name;

}

else

{
cout << "Value for key " << key;
cout << " is not found";

}

cout << endl;

// Remove key 669

// then search the key

// it should not be found
cout << "Remove node of key ";
cout << key << endl;
hashTable->Remove (key) ;

[265]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Associating a Value to a Key in a Hash Table

Chapter 8

name = hashTable—->Search (key);

if (name != "")

{
cout << "Value for key " << key;
cout << " is " << name;

}

else

{
cout << "Value for key " << key;
cout << " is not found";

}

cout << endl;

return 0;

}

And if we build and run the preceding code in the Hash_Table_OP_LP

will see the following output in the console:

ec Terminal

Hash Table - Open Addressing - Linear Probe
Hash table is empty

Adding a data

Hash table is not empty

Key: 434 Value: Dylan
Key: 806 Value: Adam
Key: 548 Value: Cameron
Key: 722 Value: Brynn
Key: 669 Value: Terry
Key: 117 Value: Lindsey
Key: 391 Value: Dominic
Search value for key 669

Value for key 669 is Terry
Remove node of key 669

Value for key 669 is not found

H]
1
2
3
4
5
5

Process returned 8 (0x0) execution time : 8.0803 s

Press ENTER to continue.

. cbp project, we

From the preceding output, we can see that the order of all elements in the hash table is
exactly the same with our previous diagram. We can say that we have successfully

performed a linear probing technique.

[266]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Associating a Value to a Key in a Hash Table Chapter 8

Since an open addressing technique just stores all elements in the hash
table itself, we have to define the TABLE_SIZE equal to or greater than the
total of inserted elements, unless there will be some elements that cannot
be stored in the hash table. We can use separate chaining technique to
store all element in hash table.

such as perfect hashing, cuckoo hashing, and hopscotch hashing. If you
are interested in learning about these hashing methods, you can check

o There are several other hash table data types that have better performance,
links in the Further reading section.

Summary

In this chapter, we have discussed another non-linear data type called a hash table.
Although a collision can happen to the hash table data type, we have learned how to handle
it by using a separate chaining technique or open addressing technique. Regarding the open
addressing technique, it has three different kinds of handling—linear probing, quadratic
probing, and double hashing; however, they are relatively similar in terms of the
implementation, except for the way in which we find the next free slot if the hash key we
need to insert has been occupied.

In the next chapter, we are going to discuss common algorithm paradigms to design
algorithms specifically for a certain purpose.

QA section

What is collision in a hash table?
Specify techniques to handle collision in a hash table!

Specify four basic operations in a hash table?

How does we obtain hash key for each data?

Why do we need hash table data type although we have already had others data
type such as array, list, and linked list?

[267]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Associating a Value to a Key in a Hash Table Chapter 8

Further reading

For further references, please visit these following links:

https://www.geeksforgeeks.org/hashing-data-structure/

https://www.geeksforgeeks.org/implementing-hash-table-open-addressing-
linear—-probing-cpp/

https://visualgo.net/en/hashtable

http://ga.geeksforgeeks.org/4988/ga.geeksforgeeks.org/4988/what-is—
perfect-hashing

https://www.geeksforgeeks.org/cuckoo-hashing/
https://github.com/Tessil/hopscotch-map

[268]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Implementation of Algorithms in
Real Life

So far, we have learned how to construct data structures and implement sorting and
searching algorithms. In this final chapter, we are going to discuss the implementation of
algorithms in real life. Here are the algorithms we are going to discuss:

Greedy algorithms

Divide and conquer algorithms
e Dynamic programming

Brute-force algorithms

Randomized algorithms

Backtracking algorithms

Technical requirements

To follow along with this chapter, as well as the source code you require the following:

¢ Desktop PC or Notebook with Windows, Linux, or macOS
o GNU GCC v5.4.0 or above

e Code::Blocks IDE v17.12 (for Windows and Linux OS) or Code::Blocks IDE v13.12
(for macOS)

¢ You will find the code files on GitHub at https://github.com/
PacktPublishing/CPP-Data-Structures-and-Algorithms

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Implementation of Algorithms in Real Life Chapter 9

Greedy algorithms

Greedy algorithms work in levels. At each level, a decision is made that appears to be good,
without regard for future consequences. Generally, this means that some local optimum is
chosen. The strategy take what you can get now is the basis for these types of algorithm.
When these algorithms terminate, we hope that the local optimum is equal to the global
optimum. If this is the case, then the algorithm is correct; otherwise, the algorithm has
produced a sub-optimal solution. If the absolute best answer is not required, then simple
greedy algorithms are sometimes used to generate approximate answers, rather than using the
more complicated algorithms generally required to generate an exact answer.

Local optimum is an optimization problem technique to find an optimal
solution (either maximal or minimal) within several candidate solutions.
This is in contrast to a global optimum, which is the optimal solution
among all possible solutions, not just those in several candidate solutions.

Solving the coin-changing problem

Suppose you are working at a cash counter at a theme park. There, you are provided all
different types of coins available in infinite quantities. You have to find the minimum
number of coins for making change. That's an illustration of a coin-changing problem.

Let's consider the U.S. currency, to provide change, we repeatedly dispense the largest
denomination. Thus, to give out $17.61 in change, we give out a $10 bill, a $5 bill, two $1 bills,
two quarters, one dime, and one penny. By doing this, we are guaranteed to minimize the
number of bills and coins.

Let's analyze how coin changing works. To get the value for minimum coin change (let's call
it changingNominal), we have to find the largest denomination that is smaller than or
equal to changingNominal. After we find the denomination, we subtract
changingNominal with the denomination. Repeat this process until changingNominal is
0. The following is the solution of the coin-changing problem in C++ programming;:

void MinimalChangeCoin (double changingNominal)
{
// All denominations of U.S. Currency
double denom[] =
{0.01, 0.05, 0.10, 0.25, 1, 2, 5, 10, 20, 50, 100};
int totalDenom = sizeof (denom) / sizeof (denom[0]);

// Initialize result as a vector

[270]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

EBSCChost -

Implementation of Algorithms in Real Life

Chapter 9

vector<double> result;

// Traverse through all denomination

for

{

(int 1 = totalDenom - 1; 1 >= 0; —--1)

// Find denominations
while (changingNominal >= denom[i])
{
changingNominal -= denom[i];
result.push_back (denom[i]);

// If there's no any denomination
// that can be given just exit the loop
if (changingNominal < denom[O0])

break;

// Print result

for

(int 1 = 0; i1 < result.size(); ++1i)
cout << result[i] << " ";

cout << endl;

}

As we can see in the preceding MinimalChangeCoin () function, the function will find the
minimum coin change for the given changingNominal. For the best time performance, we
check whether there's still any denomination remaining in each denomination list iteration.
If changingNominal is smaller than the smallest available denomination, we don't need to
continue the iteration. By doing this, we can have O(1) time complexity for the best case.
However, we will have O(N’°) time complexity for both the average and the worst cases
where N is the number of the denomination. To apply the preceding

MinimalChangeCoin () function, we can use the following main () function:

int main ()

{

cout << "Coin Change Problem" << endl;

// Initialize the change nominal
float change = 17.61;

// Getting the minimal

cout << "Minimal number of change for ";
cout << change << " is " << endl;
MinimalChangeCoin (change) ;

return 0;

printed on 2/9/2023 10:18 AMvia .

[271]

Al use subject to https://ww. ebsco. conlterms-of-use

EBSCChost -

Implementation of Algorithms in Real Life Chapter 9

}

If we build and run the preceding code we will see the following output on the screen:

.
D¢ Terminal

Coin Change Problem
Minimal number of change for 17.61 1is

10 5 2 6.25 0.25 0.1 0.01

Process returned 0 (8x0) execution time : 0.003 s
Press ENTER to continue.

This algorithm does not work in all monetary systems, but fortunately, we can prove that it
does work in the U.S. monetary system.

Applying the Huffman coding algorithm

One of the applications of the greedy algorithms is Huffman coding. Huffman coding is used
in compression algorithm because it's a lossless data compression. It will convert input
character into code. The most frequent character will have the smallest code and the least
frequent character will be the largest code. The variable length codes assigned to input
characters are prefix codes.

There are mainly two major parts in Huffman coding; building a Huffman tree from input
characters and traversing the Huffman tree and assigning codes to characters.

To build a Huffman tree, we need a node type that can hold a character and a frequency of
the character. We are going to use a priority queue as a minimum heap, we name the node
type MinHeapNode, with implementation as follows:

class MinHeapNode
{
public:
// Input character
char Data;

// Frequency of the character
unsigned Frequency;

// Left and right child
MinHeapNode * LeftChild, * RightChild;

// Constructor
MinHeapNode (char data, unsigned freq)

[272]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Implementation of Algorithms in Real Life Chapter 9

// Initialize left and right child
LeftChild = NULL;
RightChild = NULL;

this->Data = data;
this->Frequency = freqg;

bi
Then, we build the priority queue to construct the Huffman tree.

As we had discussed in chapter 7, Building a Hierarchical Tree Structure,
we can use priority queue as representing of tree.

We will build a function named HuffmanCodes () that will construct a Huffman tree by
using the given data with the following implementation:

void HuffmanCodes (char data[], int freqgl], int dataSize)

{
MinHeapNode * left, * right, * top;

// Create a min heap & inserts all characters of datal]
priority_queue<MinHeapNode*, vector<MinHeapNode*>, compare>

minHeap;
for (int i = 0; 1 < dataSize; ++1)
minHeap.push (new MinHeapNode (data[i], freq[i]));

// Iterate while size of heap doesn't become 1
while (minHeap.size() != 1)
{

// Extract the two minimum

// freq items from min heap

left = minHeap.top();

minHeap.pop () ;

right = minHeap.top();
minHeap.pop () ;

// Create a new internal node with

// frequency equal to the sum of the

// two nodes frequencies. Make the

// two extracted node as left and right children
// of this new node. Add this node

[273]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost

Implementation of Algorithms in Real Life Chapter 9

// to the min heap '$' is a special value
// for internal nodes, not used
top = new MinHeapNode (
'$', left->Frequency + right->Frequency);

top->LeftChild = left;
top->RightChild = right;

minHeap.push (top);

// Print Huffman codes using

// the Huffman tree built above

PrintCodes (minHeap.top (), "");
3

Huffman encoding can be computed by first creating a tree of nodes using the following steps:

1. Creating a leaf node for each symbol and addding it to the priority queue.

2. If there is more than one node in the queue, remove the node of highest priority
(lowest probability) twice to get two nodes. Please see the following compare
function implementation we used in the preceding priority_gqueue instance:

class compare

{
public:
bool operator () (
MinHeapNode * left,
MinHeapNode * right)

return (
left->Frequency > right->Frequency) ;

}i

3. Create a new internal node with these two nodes as children and with the
probability equal to the sum of the two nodes' probabilities.

[274]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Implementation of Algorithms in Real Life Chapter 9

4. Add the new node to the queue as follows:

top = new MinHeapNode (
'$', left->Frequency + right->Frequency);

5. The remaining node is the root node; the tree is complete.

As we can see at the end of the Huf fmanCodes () function implementation, we have the
PrintCodes () function traverse the tree then display the data to user. The implementation
of the function is as follows:

void PrintCodes (MinHeapNode * root, string str)

{

if (!root)

return;
if (root—->Data != 'S"'")
{
cout << root->Data << ": ";

cout << str << endl;

}

PrintCodes (root->LeftChild, str + "0");
PrintCodes (root->RightChild, str + "1");
}

There are two details that must be considered with Huffman coding. First, the encoding
information must be transmitted at the start of the compressed file, since otherwise it would
be impossible to decode. There are several ways of doing this.

For small files, the cost of transmitting this table would override any possible savings in
compression, and the result will probably be file expansion. Of course, this can be detected and
the original left intact. For large files, the size of the table is not significant. The second
problem is that, as described, this is a two-pass algorithm. The first pass collects the frequency
data, and the second pass does the encoding. This is obviously not a desirable property for a
program dealing with large files.

[275]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Implementation of Algorithms in Real Life Chapter 9

To understand Huffman encoding, let's take an example. Suppose we have a file that contains
only the characters a, e, i, s, t, plus blank spaces and newlines. Suppose further that the file has
10 A's, 15 E's, 121's, 3 S's, 4 T's, 13 blanks, and 1 newline. The following table shows that
Huffman Coding uses fewer bits:

Character | Code |Frequency
A 111 10

E 10 15

I 00 12

S 11011 (3

T 1100 |4

space 01 13

newline |11010]1

Throughout this section, we will assume that the number of characters is C. Huffman's
algorithm can be described as we maintain a forest of trees. The weight of a tree is equal to the
sum of the frequencies of its leaves. C—1 times, select the two trees, T1 and T2, of smallest
weight, breaking ties arbitrarily, and form a new tree with subtrees T1 and T2. At the
beginning of the algorithm, there are C single-node trees—one for each character.

At the end of the algorithm, there is one tree, and this is an optimal Huffman coding tree. A
worked example will make the operation of the algorithm clear. In the following tree, the
weight of each sub-tree is shown in small type at the root. The two trees of lowest weight are
merged together, creating multiple trees. We will name the new root T1, so that future merges
can be stated unambiguously. We have made the left child arbitrarily; any tie-breaking
procedure can be used. The total weight of the new tree is just the sum of the weights of the
old trees, and can thus be easily computed:

[276]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Implementation of Algorithms in Real Life Chapter 9

(OO OCRONORONO.

52 6 do

T
J o -

It is also a simple matter to create the new tree, since we merely need to get a new node, set the
left and right pointers, and record the weight.

A simple implementation of the priority queue, using a list, would give an O(C2) algorithm.
The choice of priority queue implementation depends on how large C is. In the typical case of
an ASCII character set, C is small enough that the quadratic running time is acceptable. In
such an application, virtually all the running time will be spent on the disk I/O required to
read the input file and write out the compressed version.

Divide and conquer algorithms

Another technique to design algorithms is divide and conquer.

The term divide shows that smaller problems are solved recursively—except, of course, base
cases. The term conquer shows that the solution to the original problem is then formed from
the solutions to the subproblems. You can think of a third part of this algorithm as combine.
This combines the solutions to the subproblems into the solution for the original problem.

[277]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Implementation of Algorithms in Real Life Chapter 9

Traditionally, routines in which the text contains at least two recursive calls are called divide
and conquer algorithms, while routines whose text contains only one recursive call and
finally combines the solutions to the subproblems to solve the original problem. Because divide
and conquer solves subproblems recursively, each subproblem must be smaller than the
original problem, and there must be a base case for subproblems. We generally insist that the
subproblems be disjointed; that is, be without overlapping.

We can easily remember the steps of a divide and conquer algorithm as divide, conquer, and
combine. Here is how to view the steps of the algorithm, assuming that each divided step
creates two subproblems:

divide

solve
subproblem

solve

conquer subproblem

combine

Some divide and conquer algorithms create more than two sub-problems. Because divide and
conquer creates at least two subproblems, a divide and conquer algorithm makes multiple
recursive calls. If we expand out two more recursive steps, result looks like this:

[278]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Implementation of Algorithms in Real Life Chapter 9

solve
conguer L L n subproblem subproblem

The following are some of the standard algorithms discussed in previous chapters that are
Divide and Conquer algorithms:

e Binary Search is a searching algorithm. In each step, the algorithm compares the
input element x with the value of the middle element in array. If the values match,
return the index of middle. Otherwise, if x is less than the middle element, then the
algorithm recurs for left side of the middle element; else, it recurs for right side of
middle element.

e Quicksort is a sorting algorithm. The algorithm picks a pivot element, rearranges
the array elements in such a way that all elements smaller than the pivot element
move to left side of pivot, and all greater elements move to right side. Finally, the
algorithm recursively sorts the subarrays on the left and right of the pivot element.

e Merge sort is also a sorting algorithm. The algorithm divides the array in two
halves, recursively sorts them and finally merges the two sorted halves.

Here are some more examples of divide and conquer algorithm implementation solving
selection problems and solving matrix multiplication.

[279]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww. ebsco. confterms-of -use

Implementation of Algorithms in Real Life Chapter 9

Solving selection problems

The selection problem requires us to find the i*" smallest element in a collection of s of 1
elements. Of particular interest is finding the median. This occurs when i = [n/2].

Although this algorithm runs in linear average time, it has a worst case of O(N’). Selection can
easily be solved in O(N logN) worst-case time by sorting the elements, but for a long time it
was unknown whether or not selection could be accomplished in O(N) worst-case time. The
basic algorithm is a simple recursive strategy. Assuming that 7 is larger than the cutoff point
where elements are simply sorted, an element v, known as the pivot, is chosen. The remaining
elements are divided into two sets, S1 and S2. S1 contains elements that are confirmed to be
no larger than v, and S2 contains elements that are no smaller than v. Finally, if i < |s1],
then the i"" smallest element in s can be found by recursively computing the k™" smallest
elementin s1.If i = |S1]|+1, then the pivot is the k™ smallest element. Otherwise, the i"™"
smallest element in Sisthe (i — |S1| — 1) smallest element in 2. The main difference
between this algorithm and quicksort is that there is only one subproblem to solve instead of
two.

To get a good worst case, however, the key idea is to use one more level of indirection.
Instead of finding the median from a sample of random elements, we will find the median
from several subsets.

The basic pivot selection algorithm is as follows:

1. Arrange the N elements into N/5 groups of five elements, ignoring the (at most
four) extra elements.

2. Find the median of each group. This gives a list M of N/5 medians.

3. Find the median of M. Return this as the pivot, v, then use as divider to get s1 and
S2 sets as we discussed earlier.

We will use the term median of median of five partitioning to describe the quick select
algorithm, which uses the pivot selection rule given. We will now show that median of five
partitioning guarantees that each recursive subproblem is roughly 70% as large as the
original.

[280]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Implementation of Algorithms in Real Life Chapter 9

Solving matrix multiplication calculations

A fundamental numerical problem is the multiplication of two matrices. The following is a
simple O(N°) algorithm to compute C = AB, where 3, B, and C are NxN matrices:

[A1,1 A, , i Ay, Az,z] [B1,1 B,., ;5 By Bz,zJ = [C1,1 Cyo 7 Cupy Cz,z]

The algorithm follows on directly from the definition of matrix multiplication. To compute
Ci, 3, we compute the dot product of the i"" row in A with the 7" column in B. As usual,
arrays begin at index 0. The C++ solution of the preceding problem is:

void multiply(int A[][N], int B[] [N], int C[][N])
{
for (int i = 0; 1 < N; i++)
{
for (int j = 0; j < N; J++)

}

For a long time, it was assumed that O(N°) was required for matrix multiplication. But
Strassen’s algorithm improved this complexity. The basic idea of Strassen's algorithm is to
divide each matrix into quadrants. Then, it is easy to show that:

1,

Jis

1,1

Jis

1,

N
N
iy

1

Q000
B
Wwww
+ + + +
P
B o

1 1
2 2
1 1
2 = 1

2, 2, 1,2 2,

In the preceding formulas, we do eight multiplications for matrices of size N/2 x N/2 and
4 additions. The matrix additions take O(N’) time. If the matrix multiplications are done
recursively, then the running time will be as follow:

T(N) = 8T(N/2) + O(N)

[281]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Implementation of Algorithms in Real Life Chapter 9

As usual, there are details to consider, such as the case when N is not a power of 2, but these
are basically minor troubles. The Strassen's algorithm is worse than a simple O(N’) algorithm
until N is fairly large. It does not generalize for the case where the matrices are sparse; that is,
when they contain many zero entries. When run with floating point entries, it is less stable
numerically than the classic algorithm.

Dynamic programming

By now, we have seen that a problem can be mathematically expressed recursively can also be
expressed as a recursive algorithm, in many cases yielding a significant performance
improvement over a more naive exhaustive search. Any recursive mathematical formula
could be directly translated to a recursive algorithm, but the reality is that often the compiler
will not do justice to the recursive algorithm, and an inefficient program will result. When we
suspect that this is likely to be the case, we must provide a little more help to the compiler, by
rewriting the recursive algorithm as a nonrecursive algorithm that systematically records the
answers to the subproblems. One technique that makes use of this approach is known as
dynamic programming.

Fibonacci numbers

We saw that the natural recursive program to compute the Fibonacci numbers is very
inefficient. Here is the code to compute Fibonacci numbers in inefficient way:

long long fib(int n)
{
if (n <= 1)
return 1;
else
return fib(n - 1) + fib(n - 2);

[282]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Implementation of Algorithms in Real Life Chapter 9

It has a running time, T (N), that satisfies T (N) > T (N-1) + T (N-2).Since T (N) satisfies
the same recurrence relation as the Fibonacci numbers and has the same initial conditions, T (N)
in fact grows at the same rate as the Fibonacci numbers and is thus exponential. On the other
hand, since to compute F, (Fibonacci number of N) all that is needed is F,—-1 and F -2, we
only need to record the two most recently computed Fibonacci numbers. Please see the
following £ib2 () function implementation:

long long fib2 (int n)
{
if(n <= 1)
return 1;

long long last = 1;
long long nextToLast = 1;
long long answer = 1;

for(int i = 2; i <=n; ++1)

{
answer = last + nextTolLast;
nextToLast = last;
last = answer;

}

return answer;

}

The reason that the recursive algorithm is so slow is because of the algorithm used to simulate
recursion. To compute F,, there is one call to F,~1 and F,~2. However, since F,~1 recursively
makes a call to F,—2 and F,-3, there are actually two separate calls to compute F,—2. If one
draws out the entire algorithm, then we can see that F,-3 is computed three times, F -4 is
computed five times, F,—5 is computed eight times, and so on.

Dynamic programming and the coin-change

problem
Given a value N, if we want to make changes for N cents, and we have an infinite supply of
eachof S = { s1, s2, .. , sm} valued coins, how many ways can we make the change?

The order of coins does not matter.

[283]

- printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Implementation of Algorithms in Real Life Chapter 9

For example, forN = 4and s = {1, 2, 3}, there are four solutions: {1,1,1,1}, {1,1,2},
{2,2},and {1, 3}. So, the output should be 4. ForN = 10ands = {2, 5, 3, 6}, there
are five solutions: {2,2,2,2,2},{2,2,3,3},{2,2,6},{2,3,5},and {5, 5}. So, the
output should be 5.

To count the total number of solutions, we can divide all set solutions into two sets:

¢ Solutions that do not contain mth coin (or S,)

e Solutions that contain at least one S,

Let count (S[], m, n) be the function to count the number of solutions. S[] is the array of
coins we have, m is the length of the array, and n is value we have as change. Then, it can be
written as the sum of count (S[], m-1, n) and count (S[], m, n-Sm).Therefore, the
problem has the optimal substructure property as the problem can be solved using solutions to
subproblems. The implementation of the count () function will be as follows:

int count (int S[], int m, int n)
{

int x, vy;

// Base case (n = 0)
int table[n + 1][m];

// Fill the enteries for 0 wvalue case

// (n = 0)

for (int i = 0; 1 < m; ++1i)
table[0] [i] = 1;

// Fill rest of the table entries in bottom
// up manner
for (int 1 = 1; 1 < n + 1; ++1)
{
for (int j = 0; 3 < m; ++3)
{

//solutions count including S[7j]

x = (i - S[3] >= 0) 2
table[i - S[311[7]
0;

//solutions count excluding S[7]
y = (j > 1) ? table[i][j-1] : O;

// total count
table[1][3] = x + v;

[284]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Implementation of Algorithms in Real Life Chapter 9

}

return table[n] [m-1];

}

The time complexity of the above solution for the coin change problem is O(m ¢ n).

Brute-force algorithms

A brute-force algorithm consists of checking. For instance we have a text between 0 and n-m,
whether an occurrence of a text pattern starts there or not. Then, after each attempt, it shifts
the pattern by exactly one position to the right.

The brute-force algorithm requires no preprocessing phase, and a constant extra space in
addition to the pattern and the text because we don't care about whitespace. During the
searching phase, the text character comparisons can be done in any order. The time complexity
of this searching phase is O(m ¢ n) (when searching for am-1 b in an for instance). The
expected number of text character comparisons is 2n. The brute-force algorithm requires n-1
multiplications. The recursive algorithm for the same problem, based on the observation that
an = an/2 * an/2 requires © (1og (n)) operations.

Brute-force search and sort

A sequential search in an unordered array and simple sorts—selection sort and bubble sort, for
instance—are brute-force algorithms. In sequential search, the algorithm simply compares
successive elements of a given list with a given search key until either a match is found or the
list is exhausted without finding a match.

The complexity of a sequential search algorithm is © (1) in the worst possible case and O(1) in
the best possible case, depending on where the desired element is situated.

In a selection sort, the entire given list of n elements is scanned to find its smallest element
and replace it with the first element. Thus, the smallest element is moved to its final position
in the sorted list. Then, the list is scanned again, starting with the second element, in order to
find the smallest element among the 7 — 1 and exchange it with the second element. The
second smallest element is put in its final position in the sorted list. After n-1 passes, the list is
sorted.

[285]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Implementation of Algorithms in Real Life Chapter 9

The basic operation of a selection sort is the comparison A[§] < A[min]. The complexity of the
algorithm is @(n2) and the number of key swaps is O(n). Bubble sort is another application of a
brute-force algorithm. In the algorithm, adjacent elements of the list are compared and are
exchanged if they are out of order.

The basic operation of the bubble sort is comparison A[j+1] < A[j] thenswapA[j] and
A[j+1]1. The number of key comparisons is the same for all arrays of size n, and is O(n2).
However, the number of key swaps depends on the input and in the worst case is ©(n2). The
preceding implementation of bubble sort can be slightly improved if we stop the execution of
the algorithm when a pass through the list makes no exchanges (indicating that the list has
been sorted). Thus, in the best case, the complexity will be ©(n), and will be ©(n2) in the worst
case.

Strengths and weaknesses of brute-force
algorithms

The strengths of using a brute-force approach are as follows:

e It has wide applicability and is known for its simplicity

o [t yields reasonable algorithms for some important problems, such as searching,
string matching, and matrix multiplication

e [t yields standard algorithms for simple computational tasks, such as sum and
product of n numbers, and finding the maximum or minimum in a list

The weaknesses of the brute-force approach are as follows:

e It rarely yields efficient algorithms
e Some brute-force algorithms are unacceptably slow
e It is neither as constructive nor as creative as some other design techniques

Randomized algorithms

A randomized algorithm is a technique that uses a source of randomness as part of its logic.
It is typically used to reduce either the running time, or time complexity; or the memory
used, or space complexity, in a standard algorithm. The algorithm works by generating a
random number within a specified range of numbers and making decisions based on the
value.

[286]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Implementation of Algorithms in Real Life Chapter 9

The algorithm could help in a situation of doubt by flipping a coin or a drawing a card from a
deck in order to make a decision. Similarly, this kind of algorithm could help speed up a brute-
force process by randomly sampling the input in order to obtain a solution that may not be
optimal, but would be good enough for the specified purposes.

The algorithm is one that receives, in addition to its input data, a stream of random bits that it
can use for the purpose of making random choices. Even for a fixed input, different runs of a
randomized algorithm may give different results; thus it is inevitable that a description of the
properties of a randomized algorithm will involve probabilistic statements:

Input :
PR » Algorithm <«—outeut

(a) Deterministic algorithm structure

Input Z
P » Algorithm — <«—2utPut

Random Input
(b) Randomized algorithm structure

For example, even when the input is fixed, the execution time of a randomized algorithm is a
random variable. Isolated examples of randomized algorithms can be traced back to the very
early days of computer science, but the central importance of the concept became generally
recognized only about 15 years ago. Among the key early influences was the randomized
primality test developed by Solovay and Strassen. Randomized algorithms are used when
presented with a time or memory constraint, and an average case solution is an acceptable
output. Due to the potential erroneous output of the algorithm, an algorithm known as
amplification is used in order to boost the probability of correctness by sacrificing runtime.
Amplification works by repeating the randomized algorithm several times with different
random subsamples of the input and comparing their results. It is common for randomized
algorithms to amplify just parts of the process, as too much amplification may increase the
running time beyond the given constraints.

[287]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Implementation of Algorithms in Real Life Chapter 9

Randomized algorithms for tasks such as sorting and selection gather information about the
distribution of their input data by drawing random samples. For certain problems, it is
useful to randomize the order in which the input data is considered; in such cases, one can
show that, for every fixed array of input data, almost all orderings of the data lead to
acceptable performance, even though some orderings may cause the algorithm to fail. In a
similar way, randomized divide and conquer algorithms are often based on random
partitioning of the input. Practically speaking, computers cannot generate completely random
numbers, so randomized algorithms in computer science are approximated using a
pseudorandom number generator in place of a true source of random number, such as the
drawing of a card.

By now, it is recognized that, in a wide range of applications, randomization is an extremely
important tool for the construction of algorithms. There are two principal types of advantages
that randomized algorithms often have. First, often the execution time or space requirement of
a randomized algorithm is smaller than that of the best deterministic algorithm that we know
of for the same problem. But even more strikingly, if we look at the various randomized
algorithms that have been invented. We find that invariably they are extremely simple to
understand and to implement; often, the introduction of randomization suffices to convert a
simple and naive deterministic algorithm with worst-case behavior into a randomized
algorithm that performs well with high probability on every possible input.

Random algorithm classification

Randomized algorithms can be classified in two categories; they are:

¢ Las Vegas: These algorithms always produce correct or optimum result. The time
complexity of this algorithms is based on a random value and time complexity is
evaluated as the expected value. For example, randomized quicksort always sorts an
input array and expected worst-case time complexity of quicksort is O(N Log N).

e Monte Carlo: These algorithms produce correct or optimum result with some
probability. These algorithms have deterministic running time and it is generally
easier to find out the worst-case time complexity. For example, this implementation
of Karger's algorithm produces minimum cut with probability greater than or
equal to 1/n2 (n is number of vertices) and has a worst-case time complexity of O
(E). Another example is the Fermet method for primality testing.

[288]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

EBSCChost -

Implementation of Algorithms in Real Life Chapter 9

Random number generators

Since our algorithms require random numbers, we must have a method to generate them.
Actually, true randomness is virtually impossible to do on a computer, since these numbers
will depend on the algorithm, and thus cannot possibly be random. Generally, it suffices to
produce pseudorandom numbers, which are numbers that appear to be random. Random
numbers have many known statistical properties; pseudorandom numbers satisfy most of these
properties. Surprisingly, this is much easier said than done.

Suppose we only need to flip a coin; thus, we must generate a 0 (for heads) or 1 (for tails)
randomly. One way to do this is to examine the system clock. The clock might record time as
an integer that counts the number of seconds since some starting time. We could then use the
lowest bit. The problem is that this does not work well if a sequence of random numbers is
needed. One second is a long time, and the clock might not change at all while the program is
running. Even if the time was recorded in units of microseconds, if the program was running
by itself, the sequence of numbers that would be generated would be far from random, since
the time between calls to the generator would be essentially identical on every program
invocation.

We see, then, that what is really needed is a sequence of random numbers. These numbers
should appear independent. If a coin is flipped and heads appear, the next coin flip should still
be equally likely to come up heads or tails. The simplest method to generate random numbers
is the linear congruential generator, which are x,, x,,

Here is the implementation of the Random class:

static const int A = 1;
static const int M 10;

class Random

{
private:
int state;

public:
explicit Random(int initialValue = 1);

int randomInt ();
double randomO_1();
int randomInt (int low, int high);
bi

Random: :Random (int initialValue)

[289]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Implementation of Algorithms in Real Life Chapter 9

if (initialValue < 0)
initialValue += M;

state = initialValue;
if (state == 0)
state = 1;

}

int Random: :randomInt ()
{
return state = (A * state) % M;

}

double Random: :randomO_1 ()

{

return static_cast<double> (randomInt ()) / M;

}

int main ()
{

return 0;

}

Applications of randomized algorithms

We will now work on writing a program to generate CAPTCHA to verify the user. A
CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans
Apart) is a test to determine whether the user is human or not. So, the task is to generate
unique CAPTCHA every time and to tell whether the user is human or not by asking user to
enter the same CAPTCHA as generated automatically and checking the user input with the
generated CAPTCHA.

The set of characters to generate CAPTCHA are stored in a character array chrs[] that
contains (a-z, A-Z, 0-9), therefore size of chrs[] is 62.

To generate a unique CAPTCHA every time, a random number is generated using rand ()
function (rand () $62), which generates a random number between 0 to 61. The generated
random number is taken as index to the character array. chrs[] thus generates a new
character of captcha[] and this loop runs n (length of CAPTCHA) times to generate
CAPTCHA of given length.

[290]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Implementation of Algorithms in Real Life Chapter 9

Here is the implementation of C++ code for generating a CAPTCHA:

string GenerateCaptcha (int n)

{

time_t t;
srand ((unsigned) time(&t)); //all characters

char * chrs = "abcdefghijklmnopqrstuvwxyzABCDEFGHI"
"JKLMNOPQRSTUVWXYZ0123456789";

// Generate n characters from above set and
// add these characters to captcha.
string captcha = "";

while (-—n)
captcha.push_back (chrs[rand() % 621);

return captcha;

Backtracking algorithms

The last algorithm design technique we will examine is backtracking. As the name suggests,
we backtrack to find the solution. We start with one possible move out of many available
moves and try to solve the problem; if we are able to solve the problem with the selected move
then we will print the solution, else we will backtrack and select some other move and try to
solve it. If none of the moves work out, we will claim that there is no solution for the
problem. In many cases, a backtracking algorithm amounts to a clever implementation of
exhaustive search, with generally unfavorable performance. This is not always the case,
however, and even so, in some cases, the savings over a brute-force exhaustive search can be
significant.

[291]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

Implementation of Algorithms in Real Life Chapter 9

The pseudocode, a notation resembling a simplified programming language, for this
algorithm is as follows:

Pick a starting point.
while (Problem is not solved)
For each path from the starting point.
check if selected path is safe, if yes select it
and make recursive call to rest of the problem

If recursive calls returns true,
then return true.
else
undo the current move and return false.
End For

If none of the move works out, return false, NO SOLUTON.

Performance is, of course, relative; an O(N°) algorithm for sorting is pretty bad, but an O(N°)
algorithm for the traveling salesman (or any NP-complete) problem would be a landmark
result.

Arranging furniture in a new house

A practical example of a backtracking algorithm is the problem of arranging furniture in a
new house. There are many possibilities to try, but typically only a few are actually considered.
Starting with no arrangement, each piece of furniture is placed in some part of the room. If all
the furniture is placed and the owner is happy, then the algorithm terminates. If we reach a
point where all subsequent placement of furniture is undesirable, we have to undo the last step
and try an alternative. Of course, this might force another undo and so forth. If we find that
we undo all possible first steps, then there is no placement of furniture that is satisfactory.
Otherwise, we eventually terminate with a satisfactory arrangement.

Notice that, although this algorithm is essentially brute force, it does not try all possibilities
directly. For instance, arrangements that consider placing the sofa in the kitchen are never
tried. Many other bad arrangements are discarded early because an undesirable subset of the
arrangement is detected. The elimination of a large group of possibilities in one step is known
as pruning.

[292]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

Implementation of Algorithms in Real Life Chapter 9

Playing tic-tac-toe

Tic-tac-toe is a draw if both sides play optimally. By performing a careful case-by-case analysis,
it is not a difficult matter to construct an algorithm that never loses and always wins when
presented the opportunity. This can be done, because certain positions are known traps and can
be handled by a lookup table. Other strategies, such as taking the center square when it is
available, make the analysis simpler. If this is done, then by using a table we can always choose
a move based only on the current position. The more general strategy is to use an evaluation
function to quantify the goodness of a position. A position that is a win for a computer might
get the value of +1; a draw could get 0; and a position that the computer has lost would get a
—1. A position for which this assignment can be determined by examining the board is
known as a terminal position. If a position is not terminal, the value of the position is
determined by recursively assuming optimal play by both sides. This is known as a minimax
strategy, because one player (the human) is trying to minimize the value of the position, while
the other player (the computer) is trying to maximize it.

A successor position of P is any position, Ps, that is reachable from P by playing one move. If
the computer is to move when in some position, P, it recursively evaluates the value of all the
successor positions. The computer chooses the move with the largest value; this is the value of
P. To evaluate any successor position, Ps, all of Ps's successors are recursively evaluated, and
the smallest value is chosen. This smallest value represents the most favorable reply for the
human player.

The most costly computation is the case where the computer is asked to pick the opening
move. Since at this stage the game is a forced draw, the computer selects square 1. For more
complex games, such as checkers and chess, it is obviously infeasible to search all the way to
the terminal nodes. In this case, we have to stop the search after a certain depth of recursion is
reached. The nodes where the recursion is stopped become terminal nodes. These terminal
nodes are evaluated with a function that estimates the value of the position. For instance, in a
chess program, the evaluation function measures such variables as the relative amount and
strength of pieces and positional factors. The evaluation function is crucial for success, because
the computer's move selection is based on maximizing this function. The best computer chess
programs have surprisingly sophisticated evaluation functions.

[293]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Implementation of Algorithms in Real Life Chapter 9

The basic method to increase the look-ahead factor in game programs is to come up with
methods that evaluate fewer nodes without losing any information. One method that we have
already seen is to use a table to keep track of all positions that have been evaluated. For
instance, in the course of searching for the first move, the program will examine the positions.
If the values of the positions are saved, the second occurrence of a position need not be
recomputed; it essentially becomes a terminal position. The data structure that records this is
known as a transposition table; it is almost always implemented by hashing. In many cases,
this can save considerable computation. For instance, in a chess end game, where there are
relatively few pieces, the time savings can allow a search to go several levels deeper. Probably
the most significant improvement one can obtain in general is known as a—f pruning.

Summary

In this chapter, we have discussed real-life applications of algorithms. We can solve a coin-
change problem using the greedy algorithm. We can improve matrix multiplication time
performance using the divide-and-conquer algorithm.

By using dynamic programming, we can improve the time complexity of Fibonacci number
by removing the recursion. Also, we can see that selection sort and bubble sort, which we
had discussed in a previous chapter, are brute-force algorithms.

[294]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

EBSCChost -

Implementation of Algorithms in Real Life Chapter 9

Also, we have found that using a randomized algorithm could help in a situation of doubt,
such as flipping a coin or drawing a card from a deck in order to make a decision.

Finally, we used a backtracking algorithm to arrange furniture in a new house or to play a

tic-tac-toe.

QA section

What is the best algorithm we can use to solve change-coin problems?

Why is Strassen's algorithm better in multiplying a matrix?

What is a simple example of backtracking algorithm?
What algorithm do we use to generate CAPTCHA?

Further reading

For further reading, please visit the following links:

https:

[/ wWwww

of-coins/

https:
https:
https:
https:
https:

//www .
//www .
//www .
//www .

//WWwW .

.geeksforgeeks.org/greedy-algorithm-to-find-minimum-number-—

uscurrency.gov/denominations
immihelp.com/newcomer/usa-currency—coins.html
geeksforgeeks.org/greedy-algorithms—-set-3-huffman-coding/
geeksforgeeks.org/strassens-matrix-multiplication/

geeksforgeeks.org/randomized-algorithms/

printed on 2/9/2023 10:18 AMvia .

[295]

Al use subject to https://ww. ebsco. conlterms-of-use

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Performance

C++ High Performance
Viktor Sehr, Bjérn Andrist

ISBN: 978-1-78712-095-2

e Benefits of modern C++ constructs and techniques

e Identify hardware bottlenecks, such as CPU cache misses, to boost performance
e Write specialized data structures for performance-critical code

¢ Use modern metaprogramming techniques to reduce runtime calculations

¢ Achieve efficient memory management using custom memory allocators

¢ Reduce boilerplate code using reflection techniques

¢ Reap the benefits of lock-free concurrent programming

e Perform under-the-hood optimizations with preserved readability using proxy
objects

¢ Gain insights into subtle optimizations used by STL algorithms
e Utilize the Range V3 library for expressive C++ code
e Parallelize your code over CPU and GPU, without compromising readability

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

EBSCChost -

Other Books You May Enjoy

Mastering
the C++17 STL

Mastering the C++17 STL
Arthur O'Dwyer

ISBN: 978-1-78712-682-4

Make your own iterator types, allocators, and thread pools.
Master every standard container and every standard algorithm.
Improve your code by replacing new/delete with smart pointers.

Understand the difference between monomorphic algorithms, polymorphic
algorithms, and generic algorithms.

Learn the meaning and applications of vocabulary type, product type and sum
type.

[297]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

EBSCChost -

Other Books You May Enjoy

Leave a review - let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

[298]

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

EBSCChost -

A

abstract 28
abstract data type (ADT)
about 28
C++ classes, applying to build user-defined
ADTs 29, 35
class templates 38, 40
developing 28
function templates 35, 38
Standard Template Library 40
templates, playing with 35
algorithm
amortized analysis 47
analyzing 41
asymptotic analysis 41, 44
average case analysis 45
backtracking algorithms 291
best case analysis 45

Big Omega 46
Big Theta 46
Big-O 46

brute-force algorithms 285
divide and conquer algorithms 277
dynamic programming 282
Greedy algorithms 270
recursive method 47
randomized algorithm 286
technical requirements 269
worst case analysis 45
amortized analysis 47
anagram
creating 182
array 51,53, 55
asymptotic analysis 41, 44
average case analysis 45

Index

B

back 108
backtracking algorithms
about 291
furniture, arranging in new house 292
tic-tac-toe, playing 293
balanced BST (AVL) ADT
building 225, 226
implementing 234, 236
key, inserting 229
key, removing 231
nodes, rotating 227
begin() 181
best case analysis 45
Big Omega 46
Big Theta 46
Big-O 46
binary heap ADT
building 236
element's maximum value, fetching 239
element, inserting 238
empty state, checking 237
implementing, as priority queue 240
maximum element, removing 239
binary search algorithm
about 158
developing 158
implementing 160
binary search tree ADT
building 207
implementing 222, 225
key existence, searching 212
key successor, searching 215
key, inserting 210
maximum key value, retrieving 213
minimum key value, retrieving 213

printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conltermns-of-use

EBSCChost -

node, removing based on given key 219
predecessor, searching of key 217
traversing 211
binary string
constructing 187
converting, to decimal 191
decimal, converting 188, 191
binary tree ADT
building 205
brace-initialization 13
brute-force algorithms
about 285
brute-force search and sort 285
strength 286
weaknesses 286
bubble sort algorithm 123, 125

C

C++
about 8
code development experience, enhancing with
IDE 10
code flow, controlling 13
code, creating 8, 10
conditional statement 13, 17
loop statement 17, 20, 22
variable capability, leveraging with advanced data
types 23
variables, defining with fundamental data types
11
CAPTCHA 290
class templates 38, 40
collision 247
collision handling technique
open addressing 247
separate chaining 247
conditional statement 13, 17
copy initialization 12
counting sort algorithm 146, 147, 149

D

data types
used, for leveraging variable capability 23
Dequeue ADT

printed on 2/9/2023 10:18 AMvia .

[300]

building 113
consuming 119
element, dequeuing 117
element, enqueuing 115
value, fetching 115

direct initialization 12

divide and conquer algorithms
about 278, 279
Binary Search 279

matrix multiplication calculations, solving 281

Merge sort 279

Quicksort 279

selection problems, solving 280
double-ended queue (dequeue) 108, 113
Doubly Linked List

building 80

consuming 88

element, inserting 85

element, removing 82, 85

Node data type, refactoring 81

operations, refactoring 81
dynamic programming

about 282

coin-change problem, solving 283

Fibonacci numbers 282

E

end() 181
enqueue 108
enum (enumeration) 23
exponential search algorithm
about 170
developing 170

ExponentialSearch() function, invoking 171

F

First In First Out (FIFO) 108
front 108
function object 41
function templates 35, 38
functor 41
fundamental data types

used, for defining variables 11

Al use subject to https://ww. ebsco. conlterms-of-use

EBSCChost -

G

getline() 181
Greedy algorithms
about 270
coin-changing problem, solving 270, 272
Huffman coding algorithm, applying 272, 275,
277

H

hash function 245
hash tables
about 245
collision handling 247
data type, constructing 245
data, storing in 246
technical requirement 244
HashTable ADT
applying, linear probing technique used 263

applying, separate chaining technique used 253

Huffman coding algorithm
applying 272,276,277
Huffman tree
building 272

insertion sort 129, 131, 132, 134
integrated development environment (IDE)
code development experience, enhancing 10
interface 32
interpolation search
about 164
applying 166
developing 164

J

jump search algorithm
about 167
applying 169
developing 168

K

keyword 37

printed on 2/9/2023 10:18 AMvia .

[301]

L

Last In First Out (LIFO) 99
linear probing technique
used, for applying HashTable ADT 263, 266
linear search algorithm
about 156
developing 156
implementing 157
linked list
about 68
applying, with STL 90
List ADT
building 55
consuming 60
index, searching from selected item 58
item, fetching 57
item, inserting into List class 57
item, removing from List class 59
list
about 55
applying, with STL 90
loop statement 17, 20, 22

merge sort 134, 138, 140

N

node 62, 65, 67

O

one-dimensional array 55

open addressing technique
double hashing 257
implementing 256
Insert() operation, developing 259
IsEmpty() operation, developing 262
linear probing 256
linear probing technique, used for applying

HashTable ADT 263

PrintHashTable() operation, developing 263
quadratic probing 257
Remove() operation, developing 261
Search() operation, developing 260

Al use subject to https://ww. ebsco. conlterms-of-use

P implementing 247
Insert() operation, developing 249

palindrome ISEmpty() operation, developing 252
detecting 184 Remove() operation, developing 251
partitioning 140 Search() operation, developing 250
pattern 199 used, for applying HashTable ADT 253, 255
pattern searching 199, 202 Singly Linked List
pivot 140 building 68
pop_back() 181 index, obtaining of selected item 73
power set 194 item, fetching in LinkedList class 69
predecessor item, inserting in LinkedList class 70
about 215 item, removing from LinkedList class 74
searching, of key in BST 217 LinkedList ADT, consuming 77
pruning 292 size() 181
push_back() 181 skewed left 208
skewed right BST 208
Q Stack ADT
Queue ADT building 99
building 108 consuming 103
consuming 112 example 104, 107
element, inserting 110 item value, fetching 100
element, removing 111 popping 102
value, obtaining 109 pushing 101
quick sort algorithm 140, 142, 143 Standard Template Library (STL)
about 7, 40, 181
R used, for applying LinkedList 90
radix sort algorithm 149, 151, 153 used, for applying List 90
rbegin() 181 std list 93
recursive method 47 std vector 90
Regular Expression (RegEx) 199 string
rend() 181 about 180
randomized algorithm constructing, as character array 180
about 286. 288 std string, using 181
application; 290 sublist search algorithm
Las Vegas 288 about 173
Monte Carlo 288 developing 173
random number generators 289 performing 175
random algorithm classification 288 subsequence string
about 193
S checking 196
subsequences, generating from string 194, 196

selection sort 126, 127
separate chaining technique
about 247
hash key, generating 248

successor
searching, in BST 215

[302]

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

T Vv

ternary search algorithm variables
about 161 defining, with fundamental data types 11
applying 163 leveraging, with advanced data types 23
developing 161 vector 90
tic-tac-toe
playing 293 W
transposition table 294 word
terminal position 293 palindrome, detecting 184
playing with 181
U rearranging, to create anagram 182
user-defined ADTs worst case analysis 45

building, by C++ classes application 29

A

o—f pruning 294

EBSCChost - printed on 2/9/2023 10:18 AMvia . Al use subject to https://ww.ebsco. conlterms-of-use

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Learning Data Structures and Algorithms in C++
	Technical requirements
	Introduction to basic C++
	Creating your first code in C++
	Enhancing code development experience with IDE
	Defining the variables using fundamental data types
	Controlling the flow of the code
	Conditional statement
	Loop statement

	Leveraging the variable capability using advanced data types

	Developing abstract data types
	Applying C++ classes to build user-defined ADTs
	Playing with templates
	Function templates
	Class templates
	Standard Template Library

	Analyzing the algorithm
	Asymptotic analysis
	Worst, average, and best cases
	Big Theta, Big-O, and Big Omega
	Recursive method
	Amortized analysis

	Summary
	QA section
	Further reading

	Chapter 2: Storing Data in Lists and Linked Lists
	Technical requirements
	Getting closer to an array
	Building a List ADT
	Fetching an item in the List
	Inserting an item into the List ADT
	Finding out the index of a selected item in the List ADT
	Removing an item from the List ADT
	Consuming a List ADT

	Introduction to node
	Building a Singly Linked List ADT
	Fetching an item in the LinkedList class
	Inserting an item in the LinkedList class
	Getting the index of the selected item in the LinkedList
	Removing an item from the LinkedList ADT
	Consuming the LinkedList ADT

	Building the Doubly Linked List ADT
	Refactoring the Node<T> data type
	Refactoring several operations in the LinkedList ADT
	Removing an element
	Inserting an element

	Consuming the DoublyLinkedList ADT

	Applying List and LinkedList using STL
	std::vector
	std::list

	Summary
	QA section
	Further reading

	Chapter 3: Constructing Stacks and Queues
	Technical requirements
	Building a Stack ADT
	Fetching the item's value in the Stack ADT
	Pushing the items of the Stack ADT
	Popping the items from the Stack ADT
	Consuming a Stack ADT
	Another example of Stack ADT implementation

	Building a Queue ADT
	Getting a value from Queue ADT
	Inserting an element into the Queue ADT
	Removing an element from the Queue ADT
	Consuming the Queue ADT

	Building a Deque ADT
	Fetching a value from a Deque
	Enqueueing an element into the Deque ADT
	Dequeuing an element from the Deque ADT
	Consuming the Deque ADT

	Summary
	QA section
	Further reading

	Chapter 4: Arranging Data Elements Using a Sorting Algorithm
	Technical requirements
	Bubble sort
	Selection sort
	Insertion sort
	Merge sort
	Quick sort
	Counting sort
	Radix sort
	Summary
	QA section
	Further reading

	Chapter 5: Finding out an Element Using Searching Algorithms
	Technical requirements
	Linear search
	Developing a linear search algorithm
	Implementing the linear search algorithm

	Binary search
	Developing binary search algorithm
	Implementing binary search algorithm

	Ternary search
	Developing ternary search algorithm
	Applying the ternary search algorithm

	Interpolation search
	Developing interpolation search algorithm
	Applying interpolation search algorithm

	Jump search
	Developing jump search algorithm
	Applying jump search algorithm

	Exponential search
	Developing exponential search algorithm
	Invoking the ExponentialSearch() function

	Sublist search
	Designing sublist search algorithm
	Performing sublist search algorithm

	Summary
	QA section
	Further reading

	Chapter 6: Dealing with the String Data Type
	Technical requirement
	String in C++
	Constructing a string using character array
	Using std::string for more flexibility features

	Playing with words
	Rearranging a word to create an anagram
	Detecting whether a word is a palindrome

	Constructing a string from binary digits
	Converting decimal to binary string
	Converting binary string to decimal

	Subsequence string
	Generating subsequences from a string
	Checking whether a string is a subsequence of another string

	Pattern searching
	Summary
	QA section
	Further reading

	Chapter 7: Building a Hierarchical Tree Structure
	Technical requirements
	Building a binary tree ADT
	Building a binary search tree ADT
	Inserting a new key into a BST
	Traversing a BST in order
	Finding out whether a key exists in a BST
	Retrieving the minimum and maximum key values
	Finding out the successor of a key in a BST
	Finding out the predecessor of a key in a BST
	Removing a node based on a given key
	Implementing the BST ADT

	Building a balanced BST (AVL) ADT
	Rotating nodes
	Inserting a new key
	Removing a given key
	Implementing AVL ADT

	Building a binary heap ADT
	Checking if the heap is empty
	Inserting a new element into the heap
	Fetching the element's maximum value
	Removing the maximum element
	Implementing a binary heap as a priority queue

	Summary
	QA section
	Further reading

	Chapter 8: Associating a Value to a Key in a Hash Table
	Technical requirement
	Getting acquainted with hash tables
	Big data in small cells
	Storing data in a hash table
	Collision handling

	Implementing a separate chaining technique
	Generating a hash key
	Developing an Insert() operation
	Developing a Search() operation
	Developing a Remove() operation
	Developing an IsEmpty() operation
	Applying a HashTable ADT using a separate chaining technique in the code

	Implementing the open addressing technique
	Developing the Insert() operation
	Developing a Search() operation
	Developing the Remove() operation
	Developing an IsEmpty() operation
	Developing a PrintHashTable() operation
	Applying an HashTable ADT using a linear probing technique in the code

	Summary
	QA section
	Further reading

	Chapter 9: Implementation of Algorithms in Real Life
	Technical requirements
	Greedy algorithms
	Solving the coin-changing problem
	Applying the Huffman coding algorithm

	Divide and conquer algorithms
	Solving selection problems
	Solving matrix multiplication calculations

	Dynamic programming
	Fibonacci numbers
	Dynamic programming and the coin-change problem

	Brute-force algorithms
	Brute-force search and sort
	Strengths and weaknesses of brute-force algorithms

	Randomized algorithms
	Rаndоm algorіthm classification
	Random number generators
	Applications of randomized algorithms

	Backtracking algorithms
	Arranging furniture in a new house
	Playing tic-tac-toe

	Summary
	QA section
	Further reading

	Other Books You May Enjoy
	Index

