Lee Zhi Eng

Hands-On GUI
Programming
with C++ and Qt5

Build stunning cross-platform applications and widgets
with the most powerful GUI framework

Packt)

Hands-On GUI Programming
with C++ and Qt5

Build stunning cross-platform applications and widgets with
the most powerful GUI framework

Lee Zhi Eng

Packt

BIRMINGHAM - MUMBAI

EBSCChost -

Hands-On GUI Programming with C++ and
Qt5

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Alok Dhuri

Content Development Editor: Lawrence Veigas
Technical Editor: Mehul Singh

Copy Editor: Safis Editing

Project Coordinator: Prajakta Naik
Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Graphics: Jisha Chirayil

Production Coordinator: Nilesh Mohite

First published: April 2018
Production reference: 1260418
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78839-782-7

www.packtpub.com

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

. Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Contributors

About the author

Lee Zhi Eng is a self-taught programmer who has worked as an artist and programmer at
several game studios before becoming a part-time lecturer for 2 years at a university,
teaching game development subjects related to Unity and Unreal Engine.

He has not only taken part in various projects related to games, interactive apps, and virtual
reality, but has also participated in multiple projects that are more oriented toward software
and system development. When he is not writing code, he enjoys traveling, photography,
and exploring new technologies.

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

About the reviewer

Nibedit Dey is a technopreneur with multidisciplinary technology background. He holds a
bachelor's degree in biomedical engineering and a master's degree in digital design and
embedded systems. Before starting his entrepreneurial journey, he worked for L&T and
Tektronix for several years in different R&D roles. He has been using Qt to build complex
software products for the past 8 years. Currently, he is a healthcare innovation fellow at IIT,
Hyderabad, and is involved in the development of a new medical device.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.comand
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

EBSCChost -

Table of Contents

Preface 1
Chapter 1: Introduction to Qt 7
What is Qt? 8
Why use Qt? 9
Discovering tools in Qt 9

Qt Designer 10

Qt Quick Designer 11
Downloading and installing Qt 12
Setting up the working environment 15
Running our first Hello World Qt program 19
Summary 25
Chapter 2: Qt Widgets and Style Sheets 26
Introduction to Qt Designer 27
Basic Qt widgets 34

Qt Style Sheets 44
Summary 51
Chapter 3: Database Connection 52
Introducing the MySQL database system 53
Setting up the MySQL database 55
SQL commands 65
SELECT 66
INSERT 67
UPDATE 67
DELETE 68

JOIN 68
Database connection in Qt 74
Creating our functional login page 82
Summary 88
Chapter 4: Graphs and Charts 89
Types of charts and graphs in Qt 90
Line and spline charts 90

Bar charts 91

Pie charts 92

Polar charts 93

Area and scatter charts 94
Box-and-whiskers charts 96

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Table of Contents

Candlestick charts
Implementing charts and graphs
Creating the dashboard page
Summary

Chapter 5: Item Views and Dialogs
Working with item view widgets
Creating our Qt Widgets application
Making our List Widget functional
Adding functionality to the Tree Widget
Finally, our Table Widget

Working with dialog boxes
Creating File Selection Dialogs
Image scaling and cropping
Summary

Chapter 6: Integrating Web Content

Creating your own web browser
Adding the web view widget
Creating a Ul for a web browser
Managing browser history

Sessions, cookies, and cache
Managing sessions and cookies
Managing cache

Integrating JavaScript and C++
Calling JavaScript functions from C++
Calling C++ functions from JavaScript

Summary

Chapter 7: Map Viewer

Map display
Setting up the Qt location module
Creating a map display

Marker and shape display
Displaying position markers on a map
Displaying shapes on a map

Obtaining a user's location

Geo Routing Request

Summary

Chapter 8: Graphics View
Graphics View framework
Setting up a new project
Movable graphics items
Creating an organization chart
Summary

[ii]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

96

97
104
114

115
115
118
122
125
125

126
132
134
141

142
142
144
147
158
159
159
160
161
161
165
169

170
170
171
171
175
176
185
188
190
193

194
194
195
198
201
217

Table of Contents

Chapter 9: The Camera Module
The Qt multimedia module
Setting up a new project
Connecting to the camera
Capturing a camera image to file
Recording a camera video to file
Summary

Chapter 10: Instant Messaging

The Qt networking module
Connection protocols
Setting up a new project

Creating an instant messaging server
Creating TCP Server
Listening to clients

Creating an instant messaging client
Designing the user interface
Implementing chat features

Summary

Chapter 11: Implementing a Graphics Editor
Drawing vector shapes
Vector versus bitmap
Drawing vector shapes using QPainter
Drawing text
Saving vector images to an SVG File
Creating a paint program
Setting up a user interface
Summary

Chapter 12: Cloud Storage
Setting up the FTP server
Introducing FTP
Downloading FileZilla
Setting up FileZilla
Displaying the file list on the list view
Setting up a project
Setting up user interface
Displaying the file list
Writing the code
Uploading files to the FTP server
Downloading files from the FTP server
Summary

Chapter 13: Multimedia Viewers

218
218
218
223
228
229
231

232
232
232
234
235
235
237
240
241
244
249

250
250
250
252
254
255
260
260
269

270
270
270
271
273
278
279
279
280
281
285
291
294

295

[iii]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Table of Contents

Revisiting the multimedia module
Dissecting the module
The image viewer

Designing a user interface for the image viewer

Writing C++ code for image viewers
The music player

Designing a user interface for music players

Writing C++ code for music players
The video player

Designing a user interface for video players

Writing C++ code for video players
Summary

Chapter 14: Qt Quick and QML

Introduction to Qt Quick and QML
Introducing Qt Quick
Introducing QML

Qt Quick widgets and controls

Qt Quick Designer

Qt Quick layouts

Basic QML scripting
Setting up the project

Summary

Chapter 15: Cross-Platform Development
Understanding compilers
What is a compiler?
Build automation with Make
Build settings
Qt Project (.pro) File
Comment
Modules, configurations, and definitions
Platform-specific settings
Deploying to PC platforms
Windows
Linux
macOS
Deploying to mobile platforms
iOS

Android
Summary

Chapter 16: Testing and Debugging
Debugging techniques
Identifying the problem

295
295
297
297
299
302
302
304
309
309
310
312

313
313
313
315
321
324
325
326
326
337

338
338
338
339
340
341
342
342
343
344
344
346
354
356
356
358
360

361
361
362

[iv]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Table of Contents

Print variables using QDebug 362
Setting breakpoints 363
Debuggers supported by Qt 368
Debugging for PC 368
Debugging for Android devices 369
Debugging for macOS and iOS 369

Unit testing 371
Unit testing in Qt 371
Summary 373
Other Books You May Enjoy 374
Index 377

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

[v]

Preface

Qt 5, the latest version of Qt, enables you to develop applications with complex user
interfaces for multiple targets. It provides you with faster and smarter ways to create
modern Uls and applications for multiple platforms. This book will teach you how to
design and build graphical user interfaces that are functional, appealing, and user-friendly.

By the end of this book, you will have successfully learned about high-end GUI applications
and will be capable of building many more powerful, cross-platform applications.

Who this book is for

This book will appeal to developers and programmers who would like to build GUI-based
applications. Basic knowledge of C++ is necessary, and the basics of Qt would be helpful.

What this book covers

Chapter 1, Introduction to Qt, will give you a tour of Qt. In this book, you'll download the
SDK, install Qt, and, most importantly, install Qt Creator, which is used as both the user
interface designer and the IDE for writing and compiling C++ scripts.

Chapter 2, Qt Widgets and Style Sheets, will introduce you to the different types of widgets
generally used in Qt to develop desktop applications. You will learn the first step to create
your own application, which uses all kinds of widgets and customizations, using the
powerful style sheet mechanism provided by Qt, which is very similar to CSS for web.

Chapter 3, Database Connection, will introduce you to the MariaDB database and teach you
how to connect to it using Qt. You will first learn what is MariaDB database and how to call
simple SQL commands to fetch and insert data into a MariaDB database. We will then
create a simple but fully functional login page.

Chapter 4, Graphs and Charts, explores the Chart feature to allow users to easily render
different types of graphs and charts, such as pie chart, bar chart, and line graph. We will
make use of the knowledge learned from this chapter to create a dashboard page for an
application, which displays all kinds of statistical summary of their company and business.

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Preface

Chapter 5, Item Views and Dialogs, will teach you how to display a list of information by
using three different item view widgets—a list widget, tree widget, and table widget. You
will also learn how to prompt a message box to display error messages, warnings, and
confirmation. You will then create an application that can load, scale, and crop images.

Chapter 6, Integrating Web Content, will empower you to use the Qt WebEngine module
and make a simple web browser, which displays a web page. We will then go through what
is sessions, cookies, and cache and subsequently how to manage them with Qt WebEngine.
Finally, you will learn how to make your C++ code communicate with JavaScript content
through the WebChannel mechanism.

Chapter 7, Map Viewer, will focus on creating a map display. This map will be used to
display the location of places and people. You will learn how to implement the QtLocation
module, understand the coordinate system, display location markers on the map, and so on.

Chapter 8, Graphics View, will provide a platform to manage and interact with a large
number of custom-made graphical items and a view widget to visualize the items with
support for zooming and rotation. You will learn how to make an organization's chart page
that displays the structure of an organization and the relationships and relative ranks of its
parts and positions/jobs.

Chapter 9, The Camera Module, will explore how to display camera images using Qt. Qt
provides us with a multimedia module that enables us to easily take advantage of a
platform's multimedia capabilities, such as connecting to the camera of the computer.

Chapter 10, Instant Messaging, will discuss the networking module and help us to make our
own simple instant messaging program.

Chapter 11, Implementing a Graphics Editor, is divided into two sections, based on the two
types of graphics in the rendering world-bitmap graphics and vector graphics. Both are
quite different but essential to learning in order to understand 2D graphics rendering. You
will learn how to draw graphics using Qt in this chapter.

Chapter 12, Cloud Storage, will teach you how to upload different types of files to the FTP
server and display them in a list. The user will be able to download the file and open them
with different types of viewers depending on its file format.

Chapter 13, Multimedia Viewers, will deal with creating a media player instead of using the
default software on your computer. In this chapter, you will learn how to create an image
viewer, a music player, and a video player.

[2]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Preface

Chapter 14, Qt Quick and QML, will introduce you to the basics of QML scripting, which is
one of the most recent trends in the Qt world.

Chapter 15, Cross-Platform Development, will show you how to export applications to
different platforms without re-writing the code from scratch. You will learn some of the
essential settings and tips to look out for when porting applications to different platforms.
Besides PC platforms, you will also learn how to export applications to mobile platforms.

Chapter 16, Testing and Debugging, will teach you the essentials of how to use various
techniques to test and debug your Qt application.

To get the most out of this book

In order to successfully execute all the codes and instructions in this book, you would need
the following:

e A basic PC/Laptop

¢ A working internet connection
Qt5.10

MariaDB 10.2 (or MySQL Connector)
Filezilla Server 0.9

We will deal with the installation processes and details as we go through each chapter.

Download the example code files

You can download the example code files for this book from your account at
www . packtpub. com. If you purchased this book elsewhere, you can visit
www . packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

[31]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Preface

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/HandsfonfGUlfProgrammingfwith7CPP7andet5:ﬁlcasetheﬂfsanlipdahf
to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://www.packtpub.com/sites/default/files/
downloads/HandsOnGUIProgrammingwithCPPandQt5_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "We call the test () function at the MainWindow constructor.”

A block of code is set as follows:

void MainWindow: :test ()
{
int amount = 100;
amount -= 10;
gDebug () << "You have obtained" << amount << "apples!";

[4]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

EBSCChost -

Preface

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

MainWindow: :MainWindow (QWidget *parent)
OMainWindow (parent),
uil (new Ui::MainWindow)

ui->setupUi (this);
test ();
}

Any command-line input or output is written as follows:

*k*kkk*k* Start testing of MainWindow *****x*x*xkx
Config: Using QtTest library 5.9.1, Qt 5.9.1 (i386-l1little_endian-ilp32
shared (dynamlc) debug build; by GCC 5.3.0)

PASS : MainWindow: :initTestCase ()

PASS : MainWindow: :_g showIfNotHidden ()
PASS : MainWindow: :testString()

PASS : MainWindow: :testGui ()

PASS : MainWindow: :cleanupTestCase ()

Totals: 5 passed, 0 failed, O skipped, 0 blacklisted, 880ms
kkk Finished testing of MainWindow ****Xxxxx*

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"The third option is Toggle Bookmark, which lets you set a bookmark for your own
reference."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

[5]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

EBSCChost -

Preface

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.comn.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

[6]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Introduction to Qt

Qt (pronounced cute) has been used by software engineers and developers for more than
two decades to create cross-platform applications since its first release. After several
changes of ownership and numerous major code overhauls, Qt has become even more
feature rich and supports even more platforms than it used to. Qt not only excels in desktop
application development, but is also excellent for both mobile and embedded systems
development.

In this chapter, we will cover the following topics :

What is Qt?
Why use Qt?
Using tools in Qt

Downloading and installing Qt
e Setting up a working environment
e Running our first Hello World Qt program

Throughout this chapter, we will learn more about the history of Qt. Then, we'll proceed to
build our first example program using the latest version of Qt, which is Qt version 5. For the
convenience of our readers, we will simply refer to it as Qt throughout the book.

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Introduction to Qt Chapter 1

What is Qt?

Currently, the latest version of Qt (as this book is being written) is version 5.10. This version
incorporated a lot of new features as well as thousands of bug fixes, which makes Qt a
really powerful and stable development kit for software developers and system engineers
alike. Qt has a huge package of SDK (software development kit) that contains a wide range
of tools and libraries for helping developers get their job done without worrying too much
about technical issues related to a specific platform. Qt handles all the messy integration
and compatibility issues for you behind the curtain so you don't have to deal with them.
This will not only improve efficiency but also reduces development costs, especially when
you're trying to develop cross-platform applications that cater to a wider range of users.

There are two types of license for Qt:

e The first type is the Open Source License, which is free of charge, but only if your
project/product fits their terms and conditions. For example, if you made any
changes to the Qt's source code, it is an obligation for you to submit back those
changes to Qt developers. Failure to do so could result in serious legal issues, and
therefore, you might want to pick the second option instead.

¢ The second type of license is the Commercial License, which gives you full rights
to proprietary Qt source code modifications and keeps your application private.
But of course, these privileges come with a set of fees.

If you're just starting to learn Qt, don't get pushed back by these terms, as you're certainly
not going to modify the source code of Qt libraries or recompile it from source anyway, at
least not now.

For more information regarding Qt's licensing, please
visit https://www.qt.io/licensing-comparison.

[81]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Introduction to Qt Chapter 1

Why use Qt?

It's not hard to see why Qt stands a chance of winning against all other existing SDKs out
there in the market; first of all, cross-platform compatibility. You can hardly find any other
development kits that support so many platforms without writing different sets of code for
each platform. By eliminating these extra steps, programmers can just focus on developing
their applications without the need to worry about the implementation of each and every
platform-specific feature. Furthermore, your code will look clean without all the #ifdef
macros and having to load different dependencies for different platforms.

Qt generally uses C++, which is a compiled language that generates small and efficient code.
It is also well documented and follows a very consistent set of naming conventions, which
reduces the learning curve for the developer.

Do be aware that Qt does include a small amount of features that only work on specific
platforms. However, these are minimal and often for special use cases, such as Qt Sensors,
which only work on mobile platforms; Qt Web Engine, which only works on desktops; Qt
NFC, only for Android and Linux; and so on. Those are some very specific functionalities
that only exist on certain platforms that support them. Other than that, common features
are usually supported on all platforms.

Discovering tools in Qt

Qt comes with a set of tools that make programmers' lives easier. One of the tools is Qt
Creator (seen in the following screenshot), which is an IDE (integrated development
environment) that consists of a code editor and a GUI (graphical user interface) designer
that works hand-in-hand with other Qt tools, such as the compiler, debugger, and so on.
The most attractive tool among all is, of course, the GUI designer, which comes with two
different types of editors: one for widget-based applications, called Qt Designer, and
another for Qt Quick Application, called Qt Quick Designer. Both tools can be accessed
directly in Qt Creator when you open up a relevant file format. Qt Creator also includes a
built-in documentation viewer called Qt Assistant. It is really handy since you can look for
the explanation about a certain Qt class or function by simply hovering the mouse cursor
over the class name in your source code, and pressing the F1 key. Qt Assistant will then be
opened and show you the documentation related to the Qt class or function:

[91]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Introduction to Qt Chapter 1

77 main.cpp @ Debugging - Ot Creator - [m} X

File Edit Build Debug Analyze Tools

Window Help

> B+ OpeninHelpMode (1) n Br

Detailed Description

¥ | @ Debugging #include "mainwindow.h"

L Debugging pre #include <QApplication>
Welcome | Headers
E v [c Sources 4|V int main(int argc, char xargv[])

i ¢ QApplication Class

QApplication a(argc, argv);

E mainwindow.cpp MarinWindow w; .
v |/ Forms w.show(); The QApplication class manages the GUI

[mainwindow.ui

) application's control flow and main settings.
‘,' |) return a.exec(); More...

5 Header: #include <QApplication>

Projects gmake: QT += widgets
Inherits: QGuiApplication

¢ List of all members, including inherited
members

* Obsolete members

mmaindon” Properties
* autoSipEnabled * startDragDistan
: bool ce:int
e cursorFlashTi e startDragTime: .

(DI ~. Typetolocate (Ctrl+K)

Qt Designer

Qt Designer is normally used by developers to design GUISs for desktop applications, while
Qt Quick Designer is usually used for mobile and embedded platforms. With that being
said, both formats run just fine on both desktop and mobile formats, the only difference is
the look and feel, and the types of languages used.

The GUI file saved by Qt Designer carries the .ui extension, which is saved in XML format.
The file stores the attributes of each and every widget placed by the GUI designer, such as
position, size, margin, tooltip, layout direction, and so on. It also saves the signal-and-slot
event names within itself for easily connecting with the code in the later stages. This format
does not support coding and only works for Qt C++ projects, namely widget-based
application projects.

[10]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Introduction to Qt Chapter 1

Qt Quick Designer

On the other hand, Qt Quick Designer saves GUI files in both .ui.gml and . gml formats.
Qt Quick is a very different type of GUI system in terms of technological concept and
development approach, which we will cover in chapter 14, Qt Quick and QML. Instead of
XML format, Qt Quick Designer saves its data in a declarative language similar to
JavaScript called QML. QML not only allows the designer to customize their GUI in a CSS-
like (Cascading Style Sheets) fashion, it also allows the programmer to write functional
JavaScript within the QML file. As we mentioned earlier, . ui.qml is the file format used for
visual decoration only while . gml contains application logic.

If you're doing a simple program using Qt Quick, you don't have to touch any C++ coding
at all. That's especially welcoming for web developers because they can immediately pick
up Qt Quick and develop their own application without a steep learning curve; everything
is just so familiar to them. For much more complex software, you can even link C++
functions from QML, and vice versa. Again, if you're interested in learning more about Qt
Quick and QML, please head over to chapter 14, QtQuick and QML.

Since Qt Creator is also written in Qt libraries itself, it is also totally cross-platform. Hence,
you can use the same set of tools across different development environments and develop a
unified workflow for your team, resulting in better efficiency and cost-effectiveness.

Other than that, Qt comes with many different modules and plugins, which cover a wide
range of functionality you need for your projects. There is often no need for you to look for
other external libraries or dependencies and try and implement them yourself. The
abstraction layer of Qt makes the backend implementation invisible to the users and results
in a unified coding style and syntax. If you try to put together a bunch of external
dependencies yourself, what you'll find is each library has its own distinctive coding style.
It's quite a mess when mixing up all the different coding styles in the same project, unless
you make your own abstraction layer, which is a very time-consuming task. Since Qt
already includes most, if not all the modules that you need to create feature-rich
applications, there is no need for you to implement your own.

For more information regarding the modules that come with Qt, please
visit: http://doc.qt.io/gt-5/gtmodules.html.

That being said, there are also many third libraries out there that extend Qt for features that
Qt itself does not support, such as libraries that focus on game development or any other
features that are designed for the specific user group.

[11]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Introduction to Qt Chapter 1

Downloading and installing Qt

Without wasting any time, let's begin with our installation! To get the free installer for Open
Source Qt, first go to their website at https://www.qt . io. There, look for the button that
says Download Qt (the website might look different if they have updated it). Do note that
you might be downloading the free trial version for the Commercial Qt, which you cannot
use after 30 days. Make sure that you are downloading the open source version of Qt
instead. Also, you may want to pick the right installer for your platform, since there are
many different installers of Qt for different operating systemsWindows, macOS, and Linux.

You might wonder why the installer is so small in size—it is only around 19 MB. This is
because the unified online installer doesn't actually contain any of the Qt packages, but is
rather a downloader client which helps you to download all the relevant files and install
them to your computer once the download has completed. Once you have downloaded the
online installer, double-click on it and you will be presented with an interface like this (the
following example is running on a Windows system):

Ot Setup

Welcome to the Qt online installer

This installer provides you with the option to download either an open source or commerdal
version of Gt.

Commercial users: Flease log in with your Qt Account credentials.

Open source users: You have the option to log in using your Qt Account credentials (e.g.
your Qt Forum login). If you do not have a login yet, you have the option to create one in the
next step,

Ot Account - Get access to a variety of services
Packaging and pricing options

LGPL compliance & obligations

Choasing the right license for your project

[12]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Introduction to Qt Chapter 1

Click the Next button, and a DRM (Digital Rights Management) page will appear and ask
you to log in with your Qt account. If you don't have one, you can also create your account
on the same page:

<« Ot Setup

Qt Account — Your unified login to everything Qt

Please log in to Qt Account

Login |Email |

|Pass»‘-.'c-|‘d |

Forgot password?

Need a Qt Account?

Sign-up |'-.-'a|id email address |

|Pass»‘-.'c-|‘d |

|Cc-nﬁ|'m Password |

|:| [accept the service terms,

Settings Skip Cancel

Once you have logged in, you will see a message that says No valid commercial license
available in your Qt Account for this host platform. Don't worry about that, just click the
Next button to proceed.

[13]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Introduction to Qt

Chapter 1

Next, you will be asked to specify the installation path. The default path is usually just fine,
but you can change it to any other path as you please. Also, you can either leave the
Associate this common file types with Qt Creator option checked, or uncheck it manually

if otherwise.

After that, you will be presented with a series of checkboxes with which you can select the
version(s) of Qt you need to install to your computer. Typically, for new users, the default
options are sufficient. If you don't need some of the options, such as support for Qt on
Android, you can unselect them here to reduce the size of the download. You can always go
back and add or remove Qt components later if needed, using the Maintenance Tool:

< Qt Setup

Select Components

Please select the components you want to install,

v [m] ot
[m] Ot5.9.1
[]ats59.0
] atss
O ats7
Jatse
[Jatss
[]ats4
[Jats3
[Jots2a
[]ats20
[Jats514
O ats1.0
O atsn2
m] Teols

Default Select Al Deselect Al

*

Qt

This component will occupy
approximately 8.52 GiB on your hard
disk drive.

Next, you will be presented with the license agreement. Check the first option, which says I
have read and agree to the terms contained in the license agreements, and click the Next
button. Make sure you do read the terms and conditions stated in the license agreement!

[14]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Introduction to Qt Chapter 1

Finally, the installer will ask you to enter a name to create a start menu shortcut for Qt.
Once you're done, just click Next and then click Install. The download process will take a
couple of minutes to a couple of hours, depending on your internet speed. Once all the files
have been downloaded, the installer will automatically proceed to install the files to the
installation path that you have just set in one of the previous steps.

Setting up the working environment

Since you have installed the latest version of Qt, let's fire up Qt Creator and start messing
around by creating our first project! You should be able to find Qt Creator's shortcut icon
either on your desktop or somewhere within your start menu.

Let's look at the steps to set up our environment:

1. When you first start Qt Creator, you should see the following interface:

[Ot Creator - O X

Eile Edit Build Debug Analyze Tools Window Help

Projects “+ New Project & Open Project

Examples Sessions Recent Projects

1 [default (current session

Tutorials

New to Qt?

Learn how to develop
your own applications and
explore Qt Creator.

Get Started Now

; Qt Account

Release

- Online Community
’ a Blogs
".;_‘ e User Guide

P, Typeto locate (Ctrl+K) 1 Issues 2 SearchRes.. 3 Application... 4 CompileQu.. 5 Debugger.. 6 GeneralMe.. 8 TestResults =

[15]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Introduction to Qt Chapter 1

2. Before you start creating your first project, there are several settings that you
might want to tweak. Go to the top menu and select Tools | Options. A window
that looks something like this will pop up on the screen:

7 Options X
|Filter Environment
@ Envi ~ Interface System Keyboard External Tools MIME Types Locator Update
nvircnment

User Interface
Text Editor

Color: [] Reset
% FakeVim

Theme: Flat ~ | Current theme: Flat
@ Help Language: <System Language = -
{} C++ Reset Warnings
| ot quick

[Q} Build & Run
Q Debugger

x Designer
! Analyzer
IyEy .
.-‘I Version Control
E Devices

Code Pasting
) Qbs

m Test Settings v

cancal | [oy

3. There are quite a number of different categories available on the left of the
window. Each category represents a set of options you can set to customize how
Qt Creator will look and operate. You may not want to touch the settings at all,
but it's good to learn about them first. One of the first settings you might want to
change is the Language option, which is available in the Environment category.
Qt Creator provides us with an option to switch between different languages.
Although it doesn't support all languages, most of the popular ones are available,
such as English, French, German, Japanese, Chinese, Russian, and so on. Once
you have selected your desired language, click Apply and restart Qt Creator. You
must restart Qt Creator in order to see the changes.

[16]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Introduction to Qt Chapter 1

4. The next setting you probably need is the setting for indentation. By default, Qt
uses space indentation, in which four spaces will be added to your script
whenever you press the Tab key on your keyboard. Some people, like me, prefer
tab indentation instead. You can change the indentation setting at C++ category.

Do note that if you are contributing to Qt project's source code, it's
required that you use space indentation instead of tabs, which is the
coding standard and style of the Qt project.

5. Under the C++ category, you can find a Copy button located beside the Edit
button, somewhere in the top right position. Click it and a new window will pop
up.

6. Insert a code style name of your own, as you can't edit the default built-in coding
style. After you have created your own settings, click the Edit button. You can
now see the actual Tabs And Indentation settings under the General tab:

General Content Braces “switch™

Tabs And Indentation

Tab policy:

|Tabs Only A |

Tab size: Indent size:

Align continuation lines:

With Regular Indent -

7. Do note that even though there is a Tabs And Indentation setting located at
the Text Editor category, I believe it's an old setting that no longer has any effect
in Qt Creator. There is also a note written on the UI that says Code indentation is
configured in C++ and Qt Quick settings. A possible reason for this is that since
Qt Creator now supports both C++ project and QML projects, Qt developers
probably felt there was a need to separate the settings into two, so therefore the
old setting is no longer valid. I'm pretty sure this section on Text Editor will be
deprecated in the near future.

[17]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Introduction to Qt Chapter 1

8. Next, under the Build and Run category, you'll see a tab labeled Kits.

9. This is where you can set the compile settings for each platform. As you can see
from the next screenshot, my Qt does not support desktop build under MSVC
(Microsoft Visual Studio Compiler) because I never installed Visual Studio on my
computer. Instead, my Qt only supports desktop build under the MinGW
(Minimal GNU for Windows) compiler. From this window, you can check and
see if your Qt supports the platform and compiler you wanted for your project
and make changes to it if necessary. But for now, we'll just leave it as it is. To
learn more about what is a kit is and how to configure the build settings, please
head over to chapter 15, Cross-Platform Development:

Build & Run

General Kits Ot Versions Compilers Debuggers CMake

Mame

¥ Auto-detected
E| Android for armeabi-v7a (GCC 4.9, Qt 5.9. 1 for Android armv7)
Desktop Qt 5.9.1 MSVC2013 &4bit
@ Desktop Qt 5.9.1 MSVC2015 64bit
@ Desktop Ot 5.9.1 MSVC2017 64bit
G Deskino OF 5.9. 1 MnGW 320t (defaul)
Manual

10. Finally, we can link our project to our version control server at the Version
Control category.

11. Version control allows you or your team to submit code changes to a centralized
system so that each and every team member can obtain the same code without
passing files around manually. When you're working in a big team, it's very
difficult to manually keep track of the code changes, and even more so to merge
the code done by different programmers. Version control systems are designed to
solve these issues. Qt supports different types of version control systems, such as
Git, SVN, Mercurial, Perforce, and so on. Although this is a very useful feature,
especially if you're working in a team, we don't need to configure it for now:

[18]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Introduction to Qt Chapter 1

Version Control

General Bazaar ClearCase Git Gerrit Mercurial Subversion Perforce Cvs

Wrap submit message at: |72 characters | =

Submit message check script: | | Browse...
User/alias configuration file: | | Browse...
User fields configuration file: | | Browse...
55H prompt command: |';-.'in-ss|'|-askpass | Browse...

Reset VCS Cache

Running our first Hello World Qt program

A Hello World program is a very simple program that does nothing more than display an
output that says Hello, World! (or any other thing, not necessarily this) to show that the
SDK is working properly. We don't need to write very long code to produce a Hello

World program, we can do it using only the very minimum and the most basic code. In fact,
we don't have to write any code in Qt, as it will generate the code when you first create
your project!

Let's begin our project by following these steps:

1. To create a new project in Qt, click the New Project button located at the
welcome screen on your Qt Creator. Alternatively, you can also go to the top
menu and select File | New File or Project.

[19]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Introduction to Qt Chapter 1

2. After that, you will be presented with a window which lets you select a template
for your project or file. For this demonstration, we will pick Qt Widgets

Application:
[New File or Project *
Choose a template: All Templates A
Bl m Qt Widgets Application Creates a Qt application for the desktop. Indudes a
Application . Qt Console Application Qt Designer-based main window.
i ’ . _— Preselects a desktop Qt for building th ication if
Library 7] Ot Quick Application a(feasililfle. a desktop Qt for building the application i
Other Project

~7] Ot Quick Controls 2 Application

. Supported Platforms: Android Device
Mon-Ot Project

W/ Ot Canvas 30 Application Desktop
Import Project

Files and Classes
Ce+

Modeling

at

GLSL

General

Java

Python

Nim

. After that, set your project name and project directory. You can also check the
checkbox that says Use as default project location so that you can automatically
get the same path when you create a new project in Qt next time.

[20]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Introduction to Qt Chapter 1

4. Next, Qt Creator will ask you to select one or more kits for your project. For this
demonstration, we'll pick Desktop Qt with the MinGW compiler. Don't worry, as
you are allowed to add or remove kits from your project later on during

development:
x
€ [Ot Widgets Application
Kit Selection
Location
Ef’} Kits Qt Creator can use the following kits for project MyProject:
Details [m] Select all kits
Summary O E Android for armeabi-v7a (GCC 4.9, Qt 5.9.1 for Android armv7) 2
[] & pesktop Qt 5.9.1 MSVC2013 64bit
[0 & pesktop Ot 5.9.1 MSVC2015 64bit
[& pesktop Qt 5.9.1 MSVC2017 64bit
[pesktop Qt 5.9.1 MinGW 32bit
L
£ >

[21]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Introduction to Qt Chapter 1

5. After that, you will be presented with a page that says Class Information. This is
basically where you set the class name for your base window, but we're not going
to change anything, so just click the Next button to proceed:

*
€ [Ot Widgets Application
Class Information
Location
Kits Spedfy basic information about the dasses for which you want to generate skeleton source code files,
E» Details
) Class name: |MainWindow |
Summary
Base dass: QMainWWindow hd
Header file: |mainwindow.h |
Source file: |mainwindow.q:l|:| |

Generate form:

Form file: |mainwindow.ui |

6. Finally, it will ask you to link your project to your version control server. If you
have not added any to Qt before, you can click the Configure button, which will
bring you to the settings dialog that I showed you in the previous section of this
chapter.

7. For this demonstration, however, we'll keep the settings as <None> and press the
Finish button. Qt Creator will then proceed to generate the necessary files for
your project. After a second or two, Qt Creator will automatically switch to Edit
mode and you should be able to see the files it created for you under the Project
panel. You can open up any of the files by double-clicking on them in Qt Creator
and they will be shown in the editor located on the right-hand side:

[22]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Introduction to Qt Chapter 1

S

m MyProject
| @ MyProject.pro

Waelcome
n Headers
E e SOuUrces
Forms

8. Before we start compiling the project, let's open up the mainwindow.ui file
under the Forms directory in your project panel. Don't worry too much about the
user interface as we will cover it in the following chapter. What we need to do is
to click and drag the Label icon under the Display Widgets category to the center
of the window on the right, as shown in the following screenshot:

AT] Plain Text Edit
@ Spin Box

@ Double Spin Box
(D Time Edit Fexfabll
T DateEdit
Date/Time Edit

{2 Dial

m=w Horizontal Scroll Bar
E| Vertical Scroll Bar
-ﬂ= Horizontal Slider
SF Vertical Slider
Key Sequence Edit

W
© o D P

@ Text Browser Mame Used Text Shorteut
?ﬁe Graphics View

[23]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Introduction to Qt

Chapter 1

9. After that, double-click on the Text Label widget and change the text to Hello

World!. Once you're done, hit the Enter button on your keyboard:

Type Here

[] []
Mello World!
] []

10. The final step is to press the Run button located at the bottom left corner that

looks like this:

MyProject

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

[24]

Introduction to Qt Chapter 1

11. We would normally build the program first and then run the program, but Qt
Creator is smart enough to figure out that it needs to build it. However, it is still a
good habit to build and run your application separately. After a few seconds of
compiling, ... voila! You have created your first Hel1lo World program using Qt!:

B MainWindow - O *

Hello Warld!

Summary

The existence of tools such as Qt Creator has made designing applications' user interfaces
an easy and fun job for the developers. We no longer need to write a bunch of code just to
create a single button, or change a bunch just to adjust the position of a text label, since Qt
Designer will generate that code for us when we design our GUI. Qt has applied the
WYSIWYG (what you see is what you get) philosophy into the working pipeline and it
provides us with all the convenience and efficiency we need to get our jobs done.

In the next chapter, we will learn the ins and outs of Qt Creator and start designing our first
GUI with Qt!

[25]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Widgets and Style Sheets

One of the advantages of using Qt for software development is that it's very easy to design
a program's graphical user interface (GUI) using the tools provided by Qt. Throughout
this book, we will try and create a single project that involves many different components
and modules of Qt. We will go through each section of the project in each chapter, so that
you will eventually be able to grasp the entire Qt Framework and at the same time complete
demo projects, which is a really valuable item to add to your portfolio. You can find all the
source code at https://github.com/PacktPublishing/Hands-On-GUI-Programming-with-
C-QT5.

In this chapter, we will cover the following topics:

¢ Introduction to Qt Designer

¢ Basic Qt widgets

e Qt Style Sheets
In this chapter, we will take a deep look into what Qt can offer us when it comes to
designing sleek-looking GUIs with ease. At the beginning of this chapter, you will be

introduced to the types of widgets provided by Qt and their functionalities. After that, we
will walk through a series of steps and design our first form application using Qt.

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Widgets and Style Sheets Chapter 2

Introduction to Qt Designer

There are two types of GUI applications in Qt, namely Qt Quick Application and Qt
Widgets Application. In this book, we will cover mostly the latter, as it is the standard way
of designing a GUI for desktop applications, and Qt Quick is more widely used for mobile
and embedded systems:

1. The first thing we need to do is to open up Qt Creator and create a new project.
You can do so by either going to File | New File or Project, or by clicking the
New Project button located at the welcome screen:

7 Ot Creator
Eile Edit Euild Debug Analyze Tools Window Help

‘ Examples | Sessions

1 @ default (current session
‘ Tutorials |
New to Qt?

Learn how to develop
your own applications and
explore Qt Creataor.

‘ Get Started Now

[27]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Widgets and Style Sheets Chapter 2

2. After that, a new window will pop up and ask you to pick the type of project you
want to create. Choose Qt Widgets Application under the Application category
and click Choose..., Then, create a name for your project (I have chosen
Chapter2 for mine) and select the project directory by clicking the Browse...
button:

T Ot Widgets Application

Introduction and Project Location
I§> Location

Kits This wizard generates a Qt Widgets Application project. The application derives by default from QApplication and incudes an empty widget.
Details

Summary

Name: |Chapter2

Create in: |C:\,L.lsers\,Documents Browse...

[use as default project location

[28]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Qt Widgets and Style Sheets

Chapter 2

3. Next, you will be asked to select a kit for your project. If you are running this on a
Windows system and you have Microsoft Visual Studio installed, you can pick
the relevant kit with the MSVC compiler; otherwise, choose the one running
MinGW compiler. Qt normally comes with MinGW compiler pre-installed so you
don't need to download it separately. If you're running this on a Linux system,
then you will see the GCC kit, or the Clang kit if you're running this on macOS.
To learn more about Kits and Builds Settings, please check out chapter 15, Cross-

Platform Development:

Location

E> Kits

Details

Summary

€ [Ot Widgets Application

Kit Selection

Qt Creator can use the following kits for project Chapter2:
[m] select all kits

] & Desktop Qt 5.9.1 MSVC2013 64bit

] & Desktop Qt 5.9.1 MSVC2015 64bit

] & Desktop Qt 5.9.1 MSVC2017 64bit

I Desktop Qt 5.9.1 MinGW 32bit

Details ¥

Details ¥

Details ¥

Details ¥

[29]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Qt Widgets and Style Sheets Chapter 2

4. After that, the new project wizard will ask you to name your main window class.
We'll just go with the default settings and click the Next button to proceed:

*
€« [Ot Widgets Application
Class Information
Location
Kits Specify basic infarmation about the dasses for which you want to generate skeleton source code files.
E> Details
i Class name: |MainWindow |
Surnmary
Base dass: QMainWWindowe -
Header file: |mainwindow.h |
Source file: |mainwindow.q:p |

Generate form:

Form file: |mainwindow.ui |

[30]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Widgets and Style Sheets Chapter 2

5. Finally, you will be asked to link your version control tool to your project. By
linking a version control tool to your project, you will be able to keep every
revision of your code on a remote server and keep track of all the changes being
made to the project. This is especially useful if you're working in a team. In this
tutorial, however, we will not be using any version control, so let's just proceed
by clicking the Finish button:

*
€« [Ot Widgets Application
Project Management
Location
Kits Add as a subproject to project: | <Mone =
Details Add to version control: <Mone > A
ES? Summary

Eiles to be added in

C:\Users'leezhieng'\DocumentshChapteri:

ChapterZ _pro
main.cpp
mainwindow.cpp
mainwindow.h
mainwindow. ui

Einish Cancel

6. Once you're done with that, Qt Creator will open up your new project and you
will be able to see your project directory displayed at the top left corner, like so:

¥ | m Chapter2
LE?! Chapter2.pro
n Headers
ce SOUrCEs
v 4 Forms

lj mainwindow.ui

[31]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Widgets and Style Sheets Chapter 2

7. Now, open up mainwindow.ui by double-clicking on it on the project directory
panel. Qt Creator will then switch to another mode, called Qt Designer, which is
essentially a tool used to design widget-based GUIs for your program. Once Qt
Designer is activated, you will see a list of widgets available on the left panel and
a place for you to design your GUI on the right. Let's take a bit of time to get
ourselves familiar with Qt Designer's interface before we start learning how to
design our own UI:

[mainwindow.ui @ Chapter2 - Ot Creator - m] X

File Edit Build Debug Analyze Tools Window Help

Filter L L Object Class

v Layouf ~ Type Here ¥ MainWindow QMainWindow

= Vertical Layout % centralWidget [7] QWidget
= Uu] Horizontal Layou menuBar QMenuBar

asa U mainToolBar QToolBar

{44 Grid Layout ™ statusBar QStatusBar

ig Form Layout

Desig tr Spacers

[Bgdll Horizontal Spacer .
g Vertical Spacer

Debug
v Buttons

2%} Push Button

@ Tool < >
i Filter +y - A
& CheckB J . L MainWindow : QMainWindow
@ Command Link Button Property Value ~
~
Dialeg Button Box
v objectName MainWindow
Itern Views (Model-Based) Checkable
List View NonModal
Tree Vi
= s /] 140, 0, 400 300]
De [Preferred, Pref..
> o e R ¥ minimumSize 0x0
List Widaet Width 0
= fseg Height 0
§ Tree widget maximumSize 16777215 x 1677.
E Table Widget € sizelncrement 0x0 w

Signals & Slots Editor

Action Editor

Container G)

P. Typeto locate (Ctrl+K)

2 SearchRes.. 3 Application.. 4 CompleOu.. 5 Debugger 6 GeneralMe.. 8 TestResults

The following numbers represent the Ul shown in the preceding screenshot:

1. Menu bar: The menu bar is where you find all the basic functions of Qt Creator,
such as to create new projects, save files, change compiler settings, and so on.

2. Widget box: The widget box is sort of like a toolbox, where all the different
widgets provided by Qt Designer are being displayed and are ready to be used.
You can drag-and-drop any of the widgets from the widget box directly onto the
canvas in the form editor and they will appear in your program.

[32]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Widgets and Style Sheets Chapter 2

3. Mode selector: The mode selector is where you can quickly and easily switch
between source code editing or UI design by clicking the Edit or Design buttons.
You can also easily navigate to the debugger and profiler tools by clicking on
their respective buttons located on the mode selector panel.

4. Build shortcuts: There are three different shortcut buttons being displayed
here—Build, Run, and Debug. You can easily build and test run your application
by pressing the buttons here instead of doing so on the menu bar.

5. Form editor: This is where you apply your creative idea and design your
application's Ul You can drag and drop any of the widgets from the Widget Box
onto the canvas in the Form Editor for it to appear in your program.

6. Form toolbar: The form toolbar is where you can quickly select a different form
to edit. You can change to a different form by clicking on the drop-down box
located above the widget box and selecting the UI file you want to open with Qt
Designer. There are also buttons that allow you to switch between different
modes for the form editor and layout of your Ul

7. Object inspector: This is where all the widgets in your current . ui file are being
listed in a hierarchical fashion. The widgets are being arranged in the tree list in
accordance to its parent-child relationship with other widgets. The widgets'
hierarchy can be easily re-arranged by moving it in the form editor.

8. Property editor: When you select a widget from the object inspector window (or
from the form editor window), the properties of that particular widget will be
displayed on the property editor. You can change any of the properties here and
the result will instantly show up on the form editor.

9. Action editor and signals and slots editor: Both the action editor and signals and
slots editor are located in this window. You can create actions that are linked to
your menu bar and toolbar buttons by using the action editor. The signal and
slots editor is where you

10. Output panes: The output panes are where you look for issues or debugging
information when testing your application. It consists of several windows that
display different information, such as Issues, Search Results, Application
Output, and so on.

[33]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Widgets and Style Sheets Chapter 2

In a nutshell, Qt provides an all-in-one editor called Qt Creator. Qt Creator works hand-in-
hand with several different tools that come with Qt, such as the script editor, compiler,
debugger, profiler, and UI editor. The Ul editor, which you can see in the preceding
screenshot, is called Qt Designer. Qt Designer is the perfect tool for designers to design their
program's Ul without writing any code. This is because Qt Designer adopted the
WYSIWYG (what you see is what you get) approach by providing an accurate visual
representation of the final result, which means whatever you design with Qt Designer will
turn out exactly the same when the program is compiled and run. Do note that each tool
that comes with Qt can, in fact, be run individually, but if you're a beginner or just doing a
simple project, it's recommended to just use the Qt Creator, which connects all those tools
together in one interface.

Basic Qt widgets

Now, we will take a look at the default set of widgets available in Qt Designer. You can
actually create custom widgets by yourself, but that's an advanced topic which is out of the
scope of this book. Let's take a look at the first two categories listed on the widget
box—Layouts and Spacers:

bl Layouts
= .
== Vertical Layout

UU] Horizontal Layout
gi_gj Grid Layout

rF

44 Form Layout
i Spacers

[Horizontal Spacer
g Vertical Spacer

Layouts and Spacers are not really something that you can directly observe, but they can
affect the positions and orientations of your widgets:

1. Vertical Layout: A vertical layout widget lays out widgets in a vertical column,
from top to bottom.

2. Horizontal Layout: A horizontal layout widget lays out widgets in a horizontal
row, from left to right (or right to left for right-to-left languages).

[34]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Widgets and Style Sheets Chapter 2

3. Grid Layout: A grid layout widget lays out widgets in a two-dimensional grid.
Each widget can occupy more than one cell.

4. Form Layout: A form layout widget lays out widgets in a two-column field style.
Just as the name implies, this type of layout is best suited for forms of input
widgets.

Layouts provided by Qt are very important for creating quality applications and are really
powerful. Qt programs don't typically lay elements out using the fixed position because
layouts allow dialogs and windows to be dynamically resized in a sensible manner while
handling a varying length of text when it's localized in different languages. If you don't
make use of layouts in your Qt programs, its Ul may very look very different on different
computers or devices, which in most cases will create an unpleasant user experience.

Next, let's take a look at the spacer widget. A spacer is a non-visible widget that pushes
widgets along a specific direction until it reaches the limit of the layout container. Spacers
must be used within a layout, otherwise they will not carry any effect.

There are two types of spacer, namely the Horizontal Spacer and Vertical Spacer:

1. Horizontal Spacer: A horizontal spacer widget is a widget that occupies the
space within a layout and pushes other widgets within the layout along a
horizontal space.

2. Vertical Spacer: A vertical spacer is similar to a horizontal spacer, except it
pushes the widgets along the vertical space.

It's kind of hard to imagine how the Layouts and Spacers work without actually working
with them. Don't worry about that, as we will be trying it out in a moment. One of the most
powerful features of Qt Designer is that you can experiment with and test your layouts
without have to change and compile your code after each change.

Besides Layouts and Spacers, there are a few more categories, namely Buttons, Item Views,
Containers, Input Widgets, and Display Widgets. I won't go and explain every single one
of them as their names are pretty much self-explanatory. You can also drag and drop the
widget on the Form Editor to see what it does. Let's do it:

1. Click and drag the Push Button widget from the Widget Box to the Form Editor,
as shown in the following screenshot:

[35]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Qt Widgets and Style Sheets

Chapter 2

v Spacers

[Horizontal Spacer
E Vertical Spacer

b Buttons

Push Button s

R T T | I N PR
........... ® pushButton W -
m - "

Tool Button

(® Radio Button

. Check Box

e Command Link Button

2. Then, select the newly added Push Button widget, and you will see that all the
information related to this particular widget is now appearing on the Properties

Editor panel:

pushButton : QPushButton

Property
pushButton
enabled
geometry [(70, 40), 753 x 23]
sizePolicy [Minimum, Fixed, 0, 0]
minimurmSize 0x0
Width 0
Height 0

maximumb5ize 16777215 16777215
sizelncrement 0x0
baseSize 0x0
palette Inherited
font A [MS Shell Dig 2, 8]
cursor [} Arrow
mouseTracking |
tabletTracking [l
focusPalicy StrengFocus
contextMenuPolicy DefaultContextMenu
acceptDrops [l

[36]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Qt Widgets and Style Sheets Chapter 2

3. You can change the properties of the widget, such as appearance, focus policy,
tooltip, and so on programmatically in C++ code. Some properties can also be
edited directly in the Form Editor. Let's double-click on the Push Button and
change the text of the button, and then resize the button by dragging its edge:

[]] []
L] Submit] u
[] L]]

4. Once you're done with that, let's drag and drop a Horizontal Layout to the Form
Editor. Then, drag the Push Button to the newly added layout. You will now see
that the button automatically fits into the layout:

Filter

Type H
v Layouts ~ yperere

% Vertical Layout

ﬂ[l] Horizontal Layout

ggi Grid Layout 1
]

44 Form Layout

hd Spacers |
Bl Horizontal Spacer \ i i1
E Vertical Spacer |
v Buttons :
oK| Push Button

Subrit 2

@ Tool Button

(® Radio Button

i Check Box

@ Command Link Button

[37]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Qt Widgets and Style Sheets

Chapter 2

5. By default, the main window does not carry any layout effect, and therefore the
widgets will stay where they were originally placed, even when the window is
being resized, which does not look very good. To add a layout effect to the main
window, right-click on the window in the Form Editor, select Lay out, and finally
select Lay Out Vertically. You will now see the Horizontal Layout widget we
added previously is now automatically expanding to fit the entire window. This
is the correct behavior of a layout in Qt:

u
Type Here

Submit

Add Tool Bar

Remove Status Bar

Change objectMame...

Change toelTip..
Change whatsThis...
Change styleSheet...

Size Constraints

Promoted widgets...

Change signals/slots...

printed on 2/9/2023 9:19 AMvia .

Go to slot...
5] Ppaste Ctri+V

Select All Ctrl+A

Lay out Y E] Adjust Size Ctrl+)
I}l Lay Out Horizontally Ctrl+H
= Lay Out Vertically Ctrl+L
bl
: 2
4 LayOutina Grid Ctrl+G
LayOutina Form Layout
]

[38]

Al use subject to https://ww.ebsco.contermnms-of-use

EBSCChost -

Qt Widgets and Style Sheets

Chapter 2

6. Next, we can play around with the spacer and see what effect it has. We will drag
and drop a Vertical Spacer to the top of the layout containing the Push Button,
and then we'll place two Horizontal Spacers on both sides of the button, within

its layout:

Filter

u
Type Here

kS Layouts

= Vertical Layout
ﬂﬂ] Horizontal Layout
ggi Grid Layout

EE Form Layout

hd Spacers

B3] Horizontal Spacer < "

:

J

g Vertical Spacer
Y Buttons

2% | Push Button

@ Tool Button

(® Radio Button

i Check Box

@ Command Link Button

LTETIEE TR AR AR T A TR AR TR TR AR R TR VR TLANRR Y AL

Ny

I’.f.f.".".f.f.".".f.".".".f.".".f.f.".".f.".".".f.".".f.f.".".f.f.".".f.".".f.f.".".f.f.".".f."|

b

Submit

I’.f.f.".".f.".".".f.".".f.f.".".f.f.".".f.".".f.ﬁ".".ﬁﬁ".".ﬁ".".ﬁﬁ".".ﬁﬁ".".ﬁ".".".ﬂ‘t

The spacers will push all of the widgets located on both of their ends and occupy
the space itself. In this example, the Submit button will always stay at the bottom
of the window and keep its middle position, regardless of the size of the window.
This makes the GUI look good, even on different screen sizes.

Ever since we added the spacers to the window, our Push Button has been
squeezed to its minimum size. Let's enlarge the button by setting its
minimumSize property to 120 x 40, and you'll see that the button appears a lot

bigger now:

printed on 2/9/2023 9:19 AMvia

[39]

. Al'l use subject to https://ww. ebsco.con terns-of-use

Qt Widgets and Style Sheets Chapter 2
£ objectName pushButton
2 QWidget
= enabled

ALLLLEL

A

AL PTIRRRR ALY

> geometry

[(131, 1), 120x 40]

2 sizePolicy [inirpum, Fixed 0. 0]
¥ minimumSize 120x 40

Width 120

Height 40
> maximumbize 16777215 x 16777215
» sizelncrement 0x0

7. After that, let's add a Form Layout above the layout of the Push Button and a
Vertical Spacer below it. You will now see that the Form Layout is really thin
because it has been squeezed by the Vertical Spacers we placed earlier onto the
main window, which can be troublesome when you want to drag and drop a
widget into the Form Layout. To solve this problem, temporarily set the
layoutTopMargin property to 20 or higher:

Filter
v Layouts

E Vertical Layout
ﬂul] Horizontal Layout

232 Grid Layout

al
44 Form Layout

Spacers

.___,---—__..

Type Here

Vertical Spacer ~

layoutName foermLayout
layoutLeftMargin 0
layoutTopMargin 20
layoutRightMargin 0
layoutBottomMargin -~ 0

-
g8l Horizontal Spacer
~

e Command Link Button

Buttons e
Push Button o —
Tool Button -
(® Radio Butten
. Check Box

layoutHorizontalSpac... &

[40]

- printed on 2/9/2023 9:19 AMvia . Al use subject to https://wmv. ebsco.cont terns-of-use

Qt Widgets and Style Sheets Chapter 2

8. Then, drag and drop two Labels to the left side of the Form Layout and two Line
Edits to its right side. Double click on both of the labels and change their display
texts to Username: and Password:, respectively. Once you're done with that, set
the layoutTopMargin property of the Form Layout back to 0:

v Input Widgets

- = n
Combo Box Type Here
E Font Combo Box _
FE] Line Edit z
AT Text Edit \ -
[AL] Piain Text Edit —
] . Username: | [
B Spin Box |
= m Password: | t n

'%| Double SpinBox T

- - Fx.rx.rx.rx.rx.rx.rx.rrx.rx.rx.rx.rx.rx.rx.rx.rx.rx.rx.rx.r»i Submit Fx.rx.rx.rx.rrx.rx.rx.rx.rx.rx.rx.rx.rx.rx.rx.rx.rx.rx.rx.r{
hd Display Widgets
T Label

@ Text Browser
t—} Graphics View
EJ Calendar Widget
[42] LcD Number

l\\\\\\\\\\\\\\\\\\\{

Currently, the GUI looks pretty great, but the Form Layout is now occupying the
entire spacing in the middle, which is not very pleasant when the main window is
maximized. To keep the form compact, we'll do the following steps, which are a
little tricky:

9. First, drag and drop a Horizontal Layout above the form, and set its
layoutTopMargin and layoutBottomMargin to 20 so that the widgets that we
place in it, later on, are not too close to the Submit button. Next, drag and drop
the entire Form Layout, which we placed earlier into the Horizontal Layout.
Then, place Horizontal Spacers on both sides of the form to keep it centered. The
following screenshot illustrates these steps:

[41]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Widgets and Style Sheets

Chapter 2
[[]
»r Layouts Type Here
=1 .
=t Vertical Layout
I][ﬂ Horizontal Layout 1
Eﬁg Grid Layout

[aTa]5)
Bog

Form Layout

10. After that, we can make further adjustments to the GUI to make it look tidy
before we proceed to the next section, where we will be customizing the widgets'
style. Let's start off by setting the minimumsize property of the two Line Edit
widgets to 150 x 25. Then, set the layoutLeftMargin, layoutRightMargin,
layoutTopMargin, and layoutBottomMargin properties of the Form Layout to

25. The reason why we want to do this is that we will be adding an outline to the
Form Layout in the following section.

[42]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Qt Widgets and Style Sheets Chapter 2

11. Since the Push Button is now way too distanced from the Form Layout, let's set
the layoutBottomMargin property of the Horizontal Layout, which sets the
Form Layout to 0. This will make the Push Button move slightly above and
closer to the Form Layout. After that, we'll adjust the size of the Push Button to
make it align with the Form Layout. Let's set the minimumsize property of the
Push Button to 260 x 35, and we're done!:

u n [
Type Here
=
=
Username:
- }w.rmmmm{ }vmmwmmm{ i
Password:
}t.r.r.r.r.r.r.r.r.r.r.r.r.r.r.r.r{ Submit }t.r.r.r.r.r.r.r.r.r.r.r.r.r.r.r.r{
Z
=
[]]

You can also preview your GUI without building your program by going to Tools
| Form Editor | Preview. Qt Designer is a very handy tool when it comes to
designing sleek GUISs for Qt programs without a steep learning curve. In the
following section, we will learn how to customize the appearance of the widgets
using Qt Style Sheets.

[43]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Qt Widgets and Style Sheets Chapter 2

Qt Style Sheets

Qt's Widgets Application uses a styling system called Qt Style Sheets, which is similar to the
web technology's styling system—CSS (Cascading Style Sheet). All you need to do is write
the style description of the widget and Qt will render it accordingly. The syntax of Qt Style
Sheets is pretty much the same as CSS.

Qt Style Sheets has been inspired by CSS and thus they are both very similar to each other:
e Qt Style Sheets:
QLineEdit { color: blue; background-color: black; }

o CSS:

hl { color: blue; background-color: black; }

In the preceding example, both Qt Style Sheet and CSS contain a declaration block and a
selector. Each declaration consists of a property and value, which are separated by a colon.

You can change a widget's style sheet by using two methods—using C++ code directly or by
using the properties editor. If you're using C++ code, you can call the
QObject::setStyleSheet () function, like so:

myButton->setStyleSheet ("background-color: green");

The preceding code changes the background color of our push button widget to green. You
can also achieve the same result by writing the same declaration into the styleSheet
property of the widget in Qt Designer:

QPushButton#myButton { background-color: green }

To learn more about the syntax and properties of Qt Style Sheets, please refer to the
following link: http://doc.qt.io/qt-5/stylesheet-reference.html

[44]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Widgets and Style Sheets

Chapter 2

Let's continue with our project and apply a custom Qt Style Sheet to our GUI!

1. First, right-click on the Submit button and select Change styleSheet... A window
will pop up for you to edit the widget's Style Sheet:

™ Edit Style Sheet

Add Resource + Add Gradient + Add Color + Add Font

Valid Style Sheet

Cancel Help

2. Then, add the following to the Style Sheet Editor window:

border: 1lpx solid rgb (24,
border-radius: 5px;

background-color:
color: white;

155);

255);

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Widgets and Style Sheets Chapter 2

3. Once you're done, click the OK button and you should be able to see that the
Submit button changes its appearance to this:

(] (] (]

Type Here
LB
................... E
Lo Username: L
. lt:m.rmm:m{ ----------------------- -}w.wmmm{ .
L] Password S

, =
ltmx.r.rrmn.rm{ Pm.rm.rmmx.r{
..... J

.................... g.
.................... S
[n n

The Style Sheet we used earlier is pretty much self-explanatory. It enables the
borderline of the Push Button and sets the border color to dark blue using RGB
values. Then, it also applies a rounded corner effect to the button and changes its
background color to light blue. Finally, the Submit text has also been changed to

white.

[46]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Widgets and Style Sheets Chapter 2

4. Next, we want to apply a custom Style Sheet to the Form Layout. However, you
will notice that there is no Change styleSheet... option when right clicking on it.
This is because layouts do not carry that property with it. In order to apply
styling to the Form Layout, we must first convert it into a QWidget or QFrame
object. To do so, right-click on the Form Layout and select Morph into | QFrame:

Type Here
E
o o n
Marph into 4 i
Username: | | - ot
}t.r.r.r.r.rmmm.r.r,i =] Add form layout row, L
Password: | | QGroupBox
%
&< Cut Ctrl+X QTabWidget
o o
) Copy G QStackedWidget
}v.r.r.r.r.rmmm.r.r{ [@l Paste S OToolBox
= Select Ancestor 4
£ Select All Ctrl+A
Delete
Lay out b

5. Once you're done with that, you will notice it is now carrying the stylesheet
property and thus we are now able to customize its appearance. Let's right-click
on it and select Change styleSheet... to open up the Style Sheet Editor window.
Then, insert the following script:

#formFrame {

border: 1px solid rgb (24, 103, 155);
border-radius: 5px;
background-color: white; }

[47]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Widgets and Style Sheets Chapter 2

The word formFrame is referring to the widget's objectName property and it must match
the exact name of the widget, otherwise the style will not be applied to it. The reason why
we define the widget name for this example (which we didn't do in the previous one) is
because the style will also be applied to all its children if we don't specify the widget name.
You can try and remove #formFrame {} from the preceding script and see what
happens—now, even the Labels and Line Edits have borderlines, and that is not what we
intended to do. The GUI now looks like this:

u n [
Type Here
—_—
Z
=
Username:
- Pﬁmmmnm{ Pmnmmmn{ i
Password:
=
Pﬁmmmnm{ Pmnmmmn{
J
——
Z
=
[]]

6. Lastly, we want to have a nice-looking background, and we can do this by
attaching a background image. To do so, we first need to import the image into
Qt's resource system. Go to File | New File or Project...Then, select Qt under
the Files and Classes category. After that, pick the Qt Resource File and click the
Choose... button. The Qt resource system is a platform-independent mechanism
for storing binary files in the application's executable. You can basically store all
of those important files here, such as icon images or language files, directly into
your executable by using the Qt resource file. These important files will be
directly embedded into your program during the compilation process.

[48]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Widgets and Style Sheets Chapter 2

7. Then, key in the file name and set its location before pressing the Next button,
and follow this by clicking the Finish button. Now, you will see a new resource
file being created, which I named resource.qgrc:

[MNew File or Project *
Choose a template: All Templates hd
Prjecs D tttem Model Creates a Qt Resource file {.grc).
Application [Ot Designer Form Class
. [’ Ot Designer Form Supported Platforms: 2ndroid Device
Library Desktop

[[] Ot Resource File

Other Project [QML File (Ot Quick 2)
Mon-Ot Project [QtQuick UI File
Import Project [JsFile

Files and Classes
Ce+

Meodeling

Ot

GLSL

General

Java

Python

MNim

[49]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Widgets and Style Sheets Chapter 2

8. Open up resource.qrc with Qt Creator and select Add | Add Prefix. After that,
key in your preferred prefix, for example, /images. Once you're done with that,
select Add again and this time, pick Add Files. Add the image file provided by
the sample project called 1ogin_bg.png. Then, save resource.grc and right-
click on the image and select Copy Resource Path to Clipboard. After that, close
resource.qgrc and open up mainwindow.ui again:

¥ & fimages

I8 login_bg.png

Open File
Open With »
Rename File...

Copy Resource Path to Clipboard

9. The next thing we need to do is to right-click on the centralwidget object from

the Object Inspector and select Change styleSheet..., and then insert the
following script:

fcentralWidget {
border-image: url(:/images/login_bg.png);

[50]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Widgets and Style Sheets Chapter 2

10. The text within url () can be inserted by pressing Ctrl + V (or paste) because it
was copied to the clipboard when we selected Copy Resource Path to Clipboard
in the previous step. The final outcome looks like this:

u u
Type Here

AL T Y

Username: |
LI R R LRy R R R R AR RN TR TRR AR AT FLEEE LR e ey

Pasgword: |

|

Please make sure that you also build and run the application, and then check whether the
final outcome looks the same, as intended. There are a lot more things to tweak in order to
make it look truly professional, but so far it's looking pretty great!

Summary

Qt Designer really revolutionized the way we design program GUIs. Not only does it
include all the common widgets but it also has handy stuff like the layout and spacer, which
makes our program run perfectly fine on different types of monitors and screen sizes. Also,
notice that we have successfully created a working application with a beautiful user
interface without writing a single line of C++ code!

What we've learned in this chapter merely scratches the surface of Qt, as there are many
more features that we are yet to cover! Join us in the next chapter to learn how we can make
our program truly functional!

[51]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Database Connection

In the previous chapter, we learned how to create a login page from scratch. However, it is
not functional yet, as the login page is not connected to a database. In this chapter, you will
learn how to connect your Qt application to a MySQL (or MariaDB) database that validates
login credentials.

In this chapter, we will cover the following topics:

e Introducing the MySQL database system
e Setting up the MySQL database
SQL commands

Database connection in Qt

Functional login page

We will walk through this chapter in a step-by-step approach to discover the powerful
features that come with Qt and allow your application to connect directly to a database
without any additional third-party dependencies. Database querying is a huge topic by
itself, but we will be able to learn the most basic commands from scratch through examples
and practical methods.

Qt supports multiple different types of database systems:

e MySQL (or MariaDB)
SQLite (version 2 and 3)
IBM DB2

Oracle

ODBC

PostgreSQL

Sybase Adaptive Server

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Database Connection Chapter 3

Two of the most popular ones are MySQL and SQLite. The SQLite database is usually used
offline and it doesn't require any setup as it uses an on-disk file format for storing data.
Therefore, in this chapter, we will learn how to set up a MySQL database system instead,
and at the same time learn how to connect our Qt application to a MySQL database. The
C++ code used to connect to the MySQL database can be reused for connecting to other
database systems without many alterations.

Introducing the MySQL database system

MySQL is an open source database management system based on the relational model,
which is the most common method used by modern database systems to store information
for various purposes.

Unlike some other legacy models—such as an object database system or a hierarchical
database system—the relational model has been proven to be more user friendly and
performs well beyond the other models. That's the reason why most of the modern database
systems we see today are mostly using this method.

MySQL was originally developed by a Swedish company called MySQL AB, and its name
is the combination of My, the name of the daughter of the company's co-founder, and SQL,
the abbreviation for Structured Query Language.

Similar to Qt, MySQL has also been owned by multiple different people throughout its
history. The most notable acquisition happened in 2008, where Sun Microsystems bought
MySQL AB for $1 billion. One year later in 2009, Oracle Corporation acquired Sun
Microsystems, and so MySQL is owned by Oracle up to this day. Even though MySQL
changed hands several times, it still remains as an open source software that allows users to
change the code to suit their own purposes.

Due to its open source nature, there are also other database systems out there that were
derived/forked from the MySQL project, such as MariaDB, Percona Server, and so on.
However, these alternatives are not fully compatible with MySQL as they have modified it
to suit their own needs, and therefore some of the commands may be varied among these
systems.

[53]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Database Connection Chapter 3

According to a 2017 survey carried out by Stack Overflow, MySQL is the most widely used
database system among web developers, as we can see in the following screenshot:

MySQL 44.3%
SQL Server 30.8%
SQLite 21.2%
PostgreSQL 21.2%
MongoDB 16.8%
Oracle 13.2%
Redis 1.2%

Cassandra 2.5%

The survey result indicates that what you learn in this chapter can be applied to not just Qt
projects but also web, mobile app, and other types of applications.

Furthermore, MySQL and its variants are being used by big corporations and project
groups such as Facebook, YouTube, Twitter, NASA, Wordpress, Drupal, Airbnb, Spotify,
and so on and so forth. This means that you can easily get answers when encountering any
technical issues during development.

For more information regarding MySQL, please visit:
https://www.mysgl.com

[54]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Database Connection Chapter 3

Setting up the MySQL database

There are many different ways to set up your MySQL database. It really depends on the
type of platforms you are running, whether it is Windows, Linux, Mac, or any other type of
operating system; it will also depend on the purpose of your database—whether it's for
development and testing, or for a large-scale production server.

For large scale services (such as social media), the best way is to compile MySQL from the
source, because such as project requires a ton of optimization, configuration, and sometimes
customization in order to handle the large amount of users and traffic.

However, you can just download the pre-compiled binaries if you're going for normal use,
as the default configuration is pretty sufficient for that. You can install a standalone MySQL
installer from their official website or the download installation packages that come with
several other pieces of software besides MySQL.

In this chapter, we will be using a software package called XAMPP, which is a web server
stack package developed by a group called Apache Friends. This package comes with
Apache, MariaDB, PHP, and other optional services that you can add on during the
installation process. Previously, MySQL was part of the package, but it has since been
replaced with MariaDB starting from version 5.5.30 and 5.6.14. MariaDB works almost the
same as MySQL, except those commands involving advanced features, which we will not
be using in this book.

The reason why we use XAMPP is that it has a control panel that can easily start and stop
the services without using Command Prompt, and provides easy access to the configuration
files without you having to dig into the installation directory by yourself. It is very quick
and efficient for application development that involves frequent testings. However, it is not
recommended that you use XAMPP on a production server as some of the security features
have been disabled by default.

Alternatively, you may also install MySQL through other similar software packages such as
AppServ, AMPPS, LAMP (Linux only), WAMP (Windows only), ZendServer, and so on.

[55]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Database Connection Chapter 3

Now, let's learn how to install XAMPP:

1. First, go to their website at https://www.apachefriends.org and click on one of
the download buttons located at the bottom of your screen, which displays the
icon of your current operating system:

Apache Friends Download Add-ons Hosting Community About Search

XAMPP Apache + MariaDB + PHP + Perl

What is XAMPP?

XAMPP is the most popular PHP development
environment

XAMPP is a completely free, easy to install Apache distribution
containing MariaDB, PHP, and Perl. The XAMPP open source
package has been set up to be incredibly easy to install and to
use

Download 2R XAMPP for Windows A XAMPP for Linux o XAMPP for 08 X
Click here for other versions 7.1.9 (PHP 7.1.9) 7.1.9 (PHP 7.1.9) XAMPP-VM (PHP 7.1.9)

2. Once you click on the Download button, the download process should start
automatically within a few seconds, and it should proceed to install the program
once it's done. Make sure that Apache and MySQL/MariaDB are included before
the installation process starts.

[56]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Database Connection Chapter 3

3. After you have installed XAMPP, launch the control panel from the start menu or
from the desktop shortcut. After that, you may notice that nothing has happened.
This is because the XAMPP control panel is hidden within the taskbar by default.
You may display the control panel window by right-clicking on it and selecting
the Show / Hide option in the pop-up menu. The following screenshot shows
you what this looks like on a Windows machine. For Linux, the menu may look
slightly different, but overall it is very similar. For macOS, you must launch
XAMPP from the launchpad or from the dock:

Show [/ Hide
i Apache »
® MysaL 8
& Filedilla »
& Mercury r
Tomcat L
Cuit

525 PM
26/9/2017

4. Once you have clicked the Show / Hide option, you will finally see the control
panel window displayed on your screen. If you click the Show / Hide option
again, the window will be hidden away:

[57]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Database Connection Chapter 3

XAMPP Control Panel v3.2.2 [Compiled: Nov 12th 2015] — O >
D XAMPP Control Panel v3.2.2
Modules ;

\sul Netstat
Service Module PID(s) Port{s) Actions @ Netsia
Apache Start Admin Config Logs Bl Shel
MySQL Start Admin Config Logs ~ | Explorer
FileZilla Start Admin Config Logs F. Services
Mercury Start Admin Config Logs &) Help
Tomcat Start Admin Config Logs Ij. Quit

5:20:58 PM [main] there will be a security dialogue or things will break! So think ~

5:20:58 PM [main] about running this application with administrator rights!

5:20:58 PM [main] KAMPP Installation Directory: "c:\xampp\"

[
[
[
5:20:58 PM [main] Checking for prerequisites
5:21:34 PM [main] All prerequisites found
[
[
[

5:2

5:21:34 PM [main] Initializing Modules
5:21:35 PM [main] Starting Check-Timer
5:21:35 PM [main] Control Panel Ready

5. Their control panel is pretty much self-explanatory at first glance. On the left, you
can see the names of the services that are available in XAMPP, and on the right,
you will see the buttons that indicate Start, Config, Logs, and so on. For some
reason, XAMPP is showing MySQL as the module name but it is in fact running
MariaDB. Don't worry; both work pretty much the same since MariaDB is a fork
of MySQL.

6. In this chapter, we'll only need Apache and MySQL (MariaDB), so let's click the
Start buttons of these services. After a second or two, you'll see that the Start
buttons are now labeled as Stop, which means the services have been launched!:

IH XAMPP Control Panel v3.2.2
Modules
Service Module PID(s) Port(s) Actions
Apache 40344 Stop
MySaL 40532

[58]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Database Connection Chapter 3

7. To verify this, let's open up the browser and type localhost as the website
address. If you see something like the following image, it means that the Apache
web server has been successfully launched!:

E«J Welcome to XAMPP X 4+

€& @ loclhost/dashboard/ E1 ¢ Q, Search ¥ A T 9O O

Apache Friends Applications FAQs HOW-TO Guides PHPInfo phpMyAdmin

XAMPP Apache + MariaDB +
PHP + Perl

Welcome to XAMPP for Windows 7.1.1

You have successfully installed XAMPP on this systeml Now you can start using Apache, MariaDB, PHP and
other components. You can find more info in the FAQs section or check the HOW-TO Guides for getting started
with PHP applications.

Start the XAMPP Control Panel to check the server status.

8. Apache is very important here as we'll be using it to configure the database using
a web-based administrative tool called phpMyAdmin. phpMyAdmin is an
administrative tool for MySQL written in PHP scripting language, hence its
name. Even though it was originally designed for MySQL, it works pretty well
for MariaDB as well.

9. To access the phpMyAdmin control panel, type localhost/phpmyadmin on
your browser. After that, you should see something like this:

[59]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Database Connection Chapter 3

ol localhost £ 127.00.1 | phpht > =4

e O localhost/phpmyadmin/ c Q, Search + # ﬁ’ B 9 + =

php CT Server: 127.0.0.1
OHEleT &S | Databases =[] SQL (g, Status =7 Useraccounts |= Export ¥ More
Recent Favorites e e
=l e General setlings Database server
— | & New
. . = Server connection collation gj: * Server: 127.0.0.1 via TCP/IP
+| | information_schema - g - MariaDB
L= utf8mb4_unicode_ci v * Sener type: Mana
41 mysgl - = » Server version: 10.1.21-MariaDB

+.| | perfformance_schema - mariadb.org binary distribution
» Protocol version: 10
* User: root@localhost

* Server charset: UTF-8 Unicode
(utf8)

+. | phpmyadmin

r

[y
(W

[y

0

£’ Language @) | English v

LY
(D

(D

448 Theme: | pmahomme |~

* Apache/2.4.25 (Win32)

Rnsey 62%) OpenSSL/A1.0.2] PHP/7.1.4
;) « Database client version:
& More settings libmysgl - mysgind 5.0.12-dev -

20150407 - $ld:
b396954eeb2d1d9ed7902b8baed:
5

* PHP extension: mysgli & curl
& mbstring &

m Console * PHP version: 7.1.1 v

10. On the left-hand side of the page, you will see the navigation panel, which allows
you access to the different databases available in your MariaDB database. On the
right-hand side of the page are various tools that let you view table, edit table,
run SQL command, export data to spreadsheet, set privileges, and so on.

11. By default, you can only modify the General settings of the database on the
setting panel located on the right. You must select a database from the navigation
panel on the left before you are able to modify the settings of a particular
database.

12. A database is like a cabinet that you can store log books within. Each log book is
called a table and each table contains data, which is sorted like a spreadsheet.
When you want to obtain a data from MariaDB, you must specify which cabinet
(database) and log book (table) you would like to access before getting the data
from it. Hopefully, this will make you better understand the concept behind
MariaDB and other similar database systems.

[60]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Database Connection Chapter 3

13. Now, let's get started by creating our very first database! To do so, you can either
click the New button located above the database names on the navigation
panel or click the Databases button located at the top of the menu. Both buttons
will bring you to the Databases page, and you should be able to see this located
below the menu buttons:

Databases

i Create database &

| Database name Collation w _Create

14. After that, let's create our very first database! Type in your desired database
name and click the Create button. Once the database has been created, you will
be redirected to the Structure page, which will list down all the tables contained
in this database. By default, your newly created database doesn't contain any
tables, so you will see a line of text that says No tables found in database:

Cil Server: 127.0.0.1 » @ Database: test

44 Structure | L] SQL 4 Search [J Query =} Export [& Import ¥ More

‘v, No tables found in database.

|7 Create table

Mame: Mumber of columns: | 4 =

[61]

- printed on 2/9/2023 9:19 AMvia . Al use subject to https://wmv. ebsco.cont terns-of-use

Database Connection Chapter 3

15. Guess what we'll be doing next? Correct, we will create our first table! First, let's
insert the name of the table you want to create. Since we'll be doing a login page
later in this chapter, let's name our table user. We'll leave the default number of
columns as it is and click Go.

16. After that, you will be redirected to another page, which contains many columns
of input fields for you to fill in. Each column represents a data structure which
will be added to your table after it's been created.

17. The first thing you need to add to the table structure is an ID that will
automatically increase upon each new data insertion. Then, add a timestamp
column to indicate the date and time of the data insertion, which is good for
debugging. Last but not least, we will add a username column and password
column for login validation. If you're unsure on how to do this, please refer to the
following image. Make sure you follow the settings that are being circled in the

1mage:
Table name: | user Add |1 +| column(s) | Go
Structure

Name Type & Length/Values &) Default @ Null Index Al
- N/ N

id INT o Mone o O PRIMARY o

Pick from Central Columns PRIMARY

timestamp TIMESTAMP o CURRENT_TIMES™ |~ 0l - o 0l

Pick from Central Columns

username VARCHAR A 20 None A O .0

Pick from Central Columns

pasword VARCHAR ~ 20 None ~ U o] O

Pick from Central Columns

J L J
Table comments: Collation:
v

18. The type of the structure is very important and must be set according to its
intended purpose. For example, the id column must be set as INT (integer
number) as it must be a full number, while username and password must be set
as either VARCHAR or other similar data types (CHAR, TEXT, and so on) in
order for it to save the data correctly.

[62]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Database Connection Chapter 3

19. The timestamp, on the other hand, must be set to TIMESTAMP type, and must
set the default value to CURRENT_TIMESTAMP, which notifies MariaDB to
automatically generate the current timestamp upon data insertion.

20. Please note that the index setting for the ID column must be set to PRIMARY,
and make sure that the A_I (auto increment) checkbox is ticked. When you check
the A_I checkbox, an Add Index window will appear. You can keep the default
settings as they are and then you can click the Go button to complete the steps
and start creating the table:

Ao L =T GO] GO
Add index 4
be i
Index name: g ‘ PRIMAR
NT
Index choice: & PRIMARY
+ Options
FIME Column Size
v | id [int] ks
AR
= >
AR
GO Cancel

21. After you have created the new table, you should be able to see something similar
like the following image. You can still edit the structure settings anytime by
clicking the Change button; you can also remove any of the columns by clicking
on the Drop button located at the right-hand side of the column. Please note that
deleting a column will also remove all the existing data belonging to that column,
and this action cannot be undone:

[63]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Database Connection Chapter 3

m ey | g

Name Type Collation Attributes Null Default Comments Extra Action

id > int{11) No None AUTO_INCREMENT 47 Change @ Drop & Primary [Unique = More
timestamp timestamp Mo CURRENT_TIMESTAMP & Change @ Drop > Primary g Unique + More
username varchar{20) latin1_swedish_ci No None 7 Change @ Drop .5 Primary [g Unique + More
pasword varchar{20) latin1_swedish_ci No None &~ Change @ Drop .7 Primary ‘g Unique = More

22. Even though we'll usually add data to the database through our programs or web
pages, we can also add data directly on phpMyAdmin for testing purposes. To
add data using phpMyAdmin, first, you must create a database and table, which
we have done in the previous steps. Then, click the Insert button located at the
top of the menu:

CT Server: 127.0.0.1 » @ Database: test » §§ Table: user

= Browse 4 Structure L] SQL 4 Sear Export

o MySQL returned an empty result set (i.e. zero rows). (Query took 0.0006 seconds.)

SELECT * FRECM “user"

23. After that, you'll see that a form has appeared, which resembles the data
structure that we created previously:

Column Type Function Null Value
id int(11)

timestamp timestamp

~ CURRENT_TIMESTAMP | &=
username varchar(20)
pasword varchar(20)
Go

[64]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Database Connection Chapter 3

24. You can simply ignore the ID and timestamp values as they will be automatically
generated when you save the data. In this case, only username and password
need to be filled in. For the sake of testing, let's put test as the username and
123456 as the password. Then, click the Go button to save the data.

Please note that you should not save your password in a human-readable
format on your actual production server. You must encrypt the password
with a cryptographic hash function such as SHA-512, RIPEEMD-512,
BLAKE2b, and so on before passing it to the database. This will ensure
that the password is not readable by hackers in case your database is being
compromised. We will cover this topic at the end of this chapter.

Now that we have finished setting up our database and inserted our first test data, let's
proceed to learn some of the SQL commands!

SQL commands

Most of the popular relational database management systems, such as MySQL, MariaDB,
Oracle SQL, Microsoft SQL, and so on, use a type of declarative language called SQL
(Structured Query Language) to interact with the database. SQL was initially developed by
IBM engineers in the 1970s, but later on, it was further enhanced by Oracle Corporation
and other emerging tech companies of that era.

Today, SQL has become a standard of the American National Standards Institute (ANSI)
and of the International Organization for Standardization (ISO). SQL language has since
been adopted by many different database systems and has become one of the most popular
database languages in the modern era.

In this section, we will learn what some of the basic SQL commands you can use to interact
with your MariaDB database are, specifically for obtaining, saving, modifying, and deleting
your data from/to the database. These basic commands can be used in other types of SQL-
based database systems as well as under the ANSI and ISO standards. Only, some of the
more advanced/customized features could be different across different systems, so make
sure that you read the system manual before using these advanced features.

Alright, let's get started!

[65]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Database Connection Chapter 3

SELECT

Most of the SQL statements are one-word short and self-explanatory. This statement, for
example, is used to select one or more columns from a specific table and to obtain the data
from the said columns. Let's check out some of the sample commands that use the SELECT
statement.

The following command retrieves all the data of all the columns from the user table:
SELECT * FROM user;

The following command retrieves only the username column from the user table:
SELECT username FROM user;

The following command retrieves the username and password columns from the user
table with the condition that the id equals 1:

SELECT username, password FROM user WHERE id = 1;

You can try out these commands by yourself using phpMyAdmin. To do that, click the SQL
button located at the top of the menu in phpMyAdmin. After that, you can type the
command in the text field below and click Go to execute the query:

|:jiSEer‘a'Eer: 127.0.0.1 ») Dapase: test =g Table: user

|Z Browse @24 Stru Search | #¢ Insert

Run SQL query/queries on table test.user: &

1 SELECT * FROM user;

[66]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Database Connection Chapter 3

To learn more about the SELECT statement, please refer to the following

link:
https://dev.mysql.com/doc/refman/5.7/en/select.html

INSERT

Next, the INSERT statement is used to save new data into a database table. For example:

INSERT INTO user (username, password) VALUES ("test2", "123456");

The preceding SQL command inserts username and password data into the user table.
There are some other statements that can be used together with INSERT, such as
LOW_PRIORITY, DELAYED, HIGH_PRIORITY, and so on.

Please refer to the following link to learn more about these options:
https://dev.mysqgl.com/doc/refman/5.7/en/insert.html

UPDATE

The UPDATE statement modifies existing data in the database. You must specify a condition
for the UPDATE command as otherwise, it will modify every single piece of data in a table,
which is not our intended behavior. Try the following command, which will change the
username and password of the first user:

UPDATE user SET username = "testl", password = "1234321" WHERE id = 1;

The command will fail, however, if the user with ID 1 does not exist. The command will
also return the status 0 rows affected if the username and password data you provided
matches exactly with the one stored in the database (nothing to change). For more
information regarding the UPDATE statement, please refer to the following link:

https://dev.mysqgl.com/doc/refman/5.7/en/update.html

[67]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Database Connection Chapter 3

DELETE

The DELETE statement deletes data from a specific table of a database. For example, the
following command deletes a data from the user table that carries the ID 1:

DELETE FROM user WHERE id = 1;

Even though you can use this statement to delete unwanted data, it is not recommended to
delete any data from your database because the action cannot be undone. It is better to add
another column to your table called status and use that to indicate whether data should be
shown or not. For example, if your user deletes data on the front end application, set the
status of that data to (let's say) 1 instead of 0. Then, when you want to display data on the
front end, display only the data that carries a status of 0:

Name Type @

status TINYINT ~

Pick from Central Columns

This way, any data that has been accidentally deleted can be recovered with ease. You can
also use a BOOLEAN type for this if you only plan to use true or false. I usually use
TINYINT just in case I need a third or fourth status in the future. For more information
regarding the DELETE statement, you can refer to the following link:

https://dev.mysqgl.com/doc/refman/5.7/en/delete.html

JOIN

The advantage of using a relational database management system is that the data can be
easily joined together from different tables and can be returned to the user in a single bulk.
This greatly improves the productivity of the developers as it allows fluidity and flexibility
when it comes to designing a complex database structure.

[68]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Database Connection Chapter 3

There are many types of JOIN statements in MariaDB/MySQL—INNER JOIN, FULL
OUTER JOIN, LEFT JOIN, and RIGHT JOIN. All of these different JOIN statements
behave differently when executed, which you can see in the following image:

INNER JOIN LEFTJOIN RIGHT JOIN FULL OUTER JOIN

Most of the time, we'll be using the INNER JOIN statement, as it only returns the data that
has matching values in both tables, and thus only returns a small amount of the data that is
needed. The JOIN command is much more complicated than the others as you need to
design the tables to be join-able in the first place. Before we start testing the JOIN
command, let's create another table to make this possible. We will call this new

table department:

HName Type Collation Attributes Mull Default Comments Extra
n 1 id 25 int(11) Mo MNone AUTO_INCREMENT
n 2 name varchar(20}) latin1_swedish_ci Mo MNone

After that, add two departments, like so:

+ Options
—T— + id name

[] & Edit % Copy @ Delete 1 Marketing

[] & Edit %c Copy @ Delete 2 Engineering

[69]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Database Connection Chapter 3

Then, go to the user table, and at the structure page, scroll all the way to the bottom and
look for the form shown, then click the Go button:

¥c Add |1 =1 | column(s) after pasword hd Go

+ Indexes

Add a new column called deptID (which stands for department ID) and set its data type to
int (integer number):

MName Type Collation Attributes Null Default
m 1 id > int(11) Mo Mone
m 2 timestamp timestamp Mo CURRENT_TIMESTAMP
O 3 username varchar(20) latin1_swedish_ci Mo Mone
] 4 pasword varchar(20) latin1_swedish_ci Mo MNone
(D 5 deptiD int(11) No MNone)
[] & status timyint(4) Mo MNone

After that, set up a few test users and put each of their deptID as either 1 or 2:

+ Options

el + id timestamp username pasword deptlD status
[] & Edit %éCopy @ Delete 1 2017-03-28 15:10:51 test 123456 1 0
[] o Edit %cCopy @ Delete 2 2017-09-29 10:06:19 test2 123456 2 0
[] & Edit $&Copy @ Delete 3 2017-09-29 10:07:09 test3 123456 2 0
[] & Edit #¢ Copy @ Delete 4 2017-09-29 10:07:09 test4 123456 1 0

[70]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Database Connection Chapter 3

Please notice that I have also added the status column here for checking whether the user
has been deleted or not. Once you have done with that, let's try to run a sample command!:

SELECT my_user.username, department.name FROM (SELECT * FROM user WHERE
deptID = 1) AS my_user INNER JOIN department ON department.id =
my_user.deptID AND my_user.status = 0

That looks quite complicated at first glance, but it really isn't if you separate it into a few
parts. We'll start from the command within the () bracket first, in which we asked
MariaDB/MySQL to select all columns within the user table that carry deptID = 1:

SELECT * FROM user WHERE deptID = 1

After that, contain it within a () bracket and name this entire command as my_user. After
that, you can start joining your user table (now called my_user) with the department table
by using the INNER JOIN statement. Here, we also added some conditions for it to look up
the data, such as the ID of the department table must match the dept ID of my_user, and
the status value of my_user must be 0, indicating that the data is still valid and not tagged
as removed:

(SELECT * FROM user WHERE deptID = 1) AS my_user INNER JOIN department
ON department.id = my_user.deptID AND my_user.status = 0

Lastly, add the following code in front to complete the SQL command:
SELECT my_user.username, department.name FROM
Let's try the preceding command and see if the result is what you expected.

You can join infinite numbers of tables using this method as long as the tables are linked to
each another through matching columns.

To find out more about the JOIN statement, please visit the following link:
https://dev.mysgl.com/doc/refman/5.7/en/join.html

There are many other SQL statements that we have not covered in this chapter, but the ones
that we have covered are pretty much all you need to get started.

One last thing before we move on to the next section—we must create a user account for the
application to access to our MariaDB/MySQL database. First of all, go to your
phpMyAdmin home page and click User accounts on the top menu:

[71]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Database Connection Chapter 3

I T Server: 127.0.0.1

1 Databases [] SQL (§, Sta] Export [

Databases

[& Create database @

|-'Ja:abas»_= name | Collation ~| [Create |

Then, go to the bottom and look for this link called Add user account:

—I New ‘

& Add user account

Once you're in the Add user account page, type in the User name and Password
information in the Login Information form. Make sure that the Host name is set to Local:

Add user account

—I Login Information |

User name: 11
Use text field: :| | testuser |
Host name: 11
pstname Local E| |localhost | L]
=] d: 1
aSSWOr Use text field: E| |Il|ll||l |
Re-type:

Authentication Plugin —
Native MySQL authentication |V'

Generate passwaord:

i Generate___' ' |

[72]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Database Connection Chapter 3

Then, scroll down and set the Global privileges of the user. Enabling the options within the
Data section is well enough, but do not enable the other options as it might give hackers the
privilege to alter your database structure once your server has been compromised:

Data

SELECT
INSERT
UPDATE

DELETE

K & A A A

FILE

Once you have created the user account, follow the following steps to allow the newly-
created user access to the database called test (or any other table name of your choice):

& 7 Server: 127.0.0.1

| Databases) (i “1'u + More

Globl Database ange password Login Information

EL% privileges: User account testuser'@'%

| Database-specific privileges |

Database Privileges Grant Table-specific privileges Action
Mone

3

Add privileges on the following database(s):

dnaactbd_dna

phpmyadmin

@

[73]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Database Connection Chapter 3

After you have clicked the Go button, you have now given the user account the privilege to
access the database! In the next section, we'll be learning how to connect our Qt application
to the database.

Database connection in Qt

Now that we have learned how to set up a functional MySQL/MariaDB database system,
let's move a step further and discover the database connection module in Qt!

Before we continue working on our login page from the previous chapter, let's start off with
a new Qt project first so that it's easier to demonstrate the functionality solely related to
database connection and so that we don't get distracted by the other stuff. This time, we'll
go for the Terminal-style application called Qt Console Application, as we don't really
need any GUI for this demonstration:

D, Ot Widgets Application

. it Console Application

=7| Ot Quick Application

=7| Ot Quick Contrals 2 Application
W/ Ct Canvas 3D Application

After you have created the new project, you should only see two files in the project, that
is, [project_name].pro and main.cpp:

v @ DatabaseConnection
|m DatabaseConnection.pro
¥ e Sources

E. main.cpp

The first thing you need to do is to open up your project file (. pro), which in my case
is DatabaseConnection.pro, and add the sql keyword at the back of the first line, like so:

QT += core sql

[74]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Database Connection Chapter 3

As simple as that, we have successfully imported the sq1 module into our Qt project! Then,
open up main.cpp and you should see a very simple script that contains only eight lines of
code. This is basically all you need to create an empty console application:

#include <QCoreApplication>

int main(int argc, char *argvl([])

{
QCoreApplication a(argc, argv);
return a.exec();

}

In order for us to connect to our database, we must first import the relevant headers to
main.cpp, like so:

#include <QCoreApplication>

#include <QtSql>

#include <QSqglDatabase>

#include <QSqlQuery>

#include <QDebug>

int main (int argc, char *argvl([])

{
QCoreApplication a(argc, argv);
return a.exec();

}

Without these header files, we won't be able to use the functions provided by Qt's sq1
module, which we have imported previously. Additionally, we also added the QDebug
header so that we can easily print out any text on the console display (similar to

the std: : cout function provided by C++'s standard library).

Next, we'll add some code to the main. cpp file. Add the following highlighted code before
return a.exec():

int main(int argc, char *argvl[])
{
QCoreApplication a(argc, argv);
QSglDatabase db = QSqglDatabase: :addDatabase ("QMYSQL") ;
.setHostName ("127.0.0.1");
.setPort (3306) ;
.setDatabaseName ("test");
.setUserName ("testuser");
.setPassword ("testpass");
(db.open())

EEEEE

-~
Hh

gDebug () << "Connected!";

[75]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Database Connection Chapter 3

else

{
gDebug () << "Failed to connect.";
return 0;

}

return a.exec();

}

Do note that the database name, username, and password could be different from what you
have set in your database, so please make sure they are correct before compiling the project.

Once you are done with that, let's click the Run button and see what happens!:

Open Documents

DatabaseConnection.pro

Datab...ction main.cpp

(B 2. Typeto locate (Ctri+K)

[76]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Database Connection Chapter 3

If you see the following error, don't worry:

That is simply because you must install the MariaDB Connector (or MySQL Connector if
you're running MySQL) to your computer and copy the DLL file over to your Qt
installation path. Please make sure that the DLL file matches your server's database library.
You can open up your phpMyAdmin home page and see which library it is currently using.

For some reason, even though I'm running XAMPP with MariaDB, the library name here
shows libmysql instead of libmariadb, so I had to install MySQL Connector instead:

[771]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Database Connection Chapter 3

» Server: 127.0.0.1 via TCP/IP

s Server type: MariaDB

¢ Server version: 10.1.21-MariaDB - mariadb_org binary distribution
= Protocol version: 10

¢ User: root@localhost
» Server charset: UTF-8 Unicode (utfg)

Web server

+ Apache/2.4.25 (Win32) OpenSSL/1.0.2] PHP/7 1.1

« [atabase client version: libmysal - mysglnd 5.0 12-dev -
20150407 - id: hBB-EBSEEEdHih!’red?&ﬂEhBhaeEB?hEB?fﬂ adJe

5
¢ PHP extension: mysqli & curl & mbstring &)
» PHP version: 7.1.1

If you're using MariaDB, please download the MariaDB Connector at the
following link:

https://downloads.mariadb.org/connector-c

If you're using MySQL instead (or are having the same issue as I did),

please visit the other link and download MySQL Connector:
https://dev.mysql.com/downloads/connector/cpp/

[781]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Database Connection Chapter 3

After you have downloaded the MariaDB Connector, install it on your computer:

ﬁ MariaDB Connector C 64-bit Setup — X

Welcome to the MariaDB Connector C
64-bit Setup Wizard

—f

Mar io D B The Setup Wizard will install MariaDB Connector C &4-bit on
your computer. Click Next to continue or Cancel to exit the
Setup Wizard.

The preceding screenshot shows the installation process for a Windows machine. If you're
running Linux, you must download the right package for your Linux distribution. If you're
running Debian, Ubuntu, or one of its variants, download the Debian and Ubuntu
packages. If you're running Red Hat, Fedora, CentOS, or one of its variants, download the
Red Hat, Fedora, and CentOS packages. The installation for these packages are automated,
so you're good to go. However, if you're running neither of those, you'll have to download
one of the gzipped tar files listed on the download page that fits your system requirement.

For more information about installing MariaDB binary tarballs on Linux,

please refer to the following link:
https://mariadb.com/kb/en/library/installing-mariadb-binary-tarb
alls/

As for macOS, you need to use a package manager called Homebrew to install MariaDB
server.

[79]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Database Connection Chapter 3

For more information, check out the following link:
https://mariadb.com/kb/en/library/installing-mariadb-on-macos—us
ing-homebrew/

Once you have installed it, go to its installation directory and look for the DLL file
(libmariadb.dll for MariaDB or 1ibmysqgl.d1l1 for MySQL). For Linux and macQOS, it's
libmariadb.so or libmysql . so instead of DLL.

Then, copy the file over to your application's build directory (the same folder as your
application's executable file). After that, try and run your application again:

B CAOt\Tools\CtCreator\bin\gtcreator_process_stub.exe

If you still getting Failed to connect but without the QMYSQL driver not
loaded message, please check your XAMPP control panel and make sure that your
database service is running; also make sure that the database name, username, and
password that you put in the code is all the correct information.

Next, we can start playing around with SQL commands! Add the following code before
return a.exec():

QString command = "SELECT name FROM department";
Q0SglQuery query (db) ;
if (query.exec (command))
{
while (query.next ())
{
QString name = query.value ("name") .toString();
gDebug () << name;

[80]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Database Connection Chapter 3

The preceding code sends the command text to the database and synchronously waits for
the result to return from the server. After that, use a while loop to go through every single
result and convert it to a string format. Then, display the result on the console window. If
everything went right, you should see something like this:

i CAOt\Tools\CtCreator\ bin\gtcreator_process_stub.exe

Let's try out something more complex:
QString command = "SELECT my_user.username, department.name AS deptname
FROM (SELECT * FROM user WHERE status = 0) AS my_user INNER JOIN
department ON department.id = my_user.deptID";
Q0SglQuery query (db) ;
if (query.exec (command))
{
while (query.next ())
{
QString username = query.value ("username") .toString();
QString department = query.value ("deptname") .toString();
gDebug () << username << department;

[81]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Database Connection Chapter 3

This time, we used INNER JOIN to combine two tables to select the username and
department name. To avoid confusion regarding the variable called name, rename it to
deptname using the As statement. After that, display both the username and department
name on the console window:

B CAOt\Tools\CtCreator\bin\gtcreator_process_stub.exe

We're done... for now. Let's move on to the next section, where we will learn how to make
our login page functional!

Creating our functional login page

Since we have learned how to connect our Qt application to the MariaDB/MySQL database
system, it's time to continue working on the login page! In the previous chapter, we learned
how to set up the GUI of our login page. However, it didn't have any functionality at all as a
login page since it doesn't connect to the database and verify login credentials. Therefore,
we will learn how to achieve that by empowering Qt's sql module.

[82]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Database Connection Chapter 3

Just to recap—this is what the login screen looks like:

L]]
Type Here

Username: |

\ Password: |

T F - . -

T

The very first thing we need to do now is to name the widgets that are important in this
login page, which are the Username input, Password input, and the Submit button. You
can set these properties by selecting the widget and looking for the property in the property
editor:

[83]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Database Connection Chapter 3

u]
Type Here

Property Value Property Value
QObject QObject
objectName userlnput objectName passwordInput

A

Username: | \
TCEEEE T E R LR R LR R RERE LR

\ Password: |

.. F

LR SRR NN AR RN RY R — HELTENEE R R U
Property Value

QObject
objectName loginButton

Then, set the echoMode of the password input as Password. This setting will hide the
password visually by replacing it with dots:

* inputhask
> text
maxLength 32767
frame
echoMode Mormal > =
cursorPosition Normal
- MoEcho
alignment
dragEnabled PasswordEchoOnEdit
readOnly []
> placeholderText
cursorfoveStyle LogicalMowveStyle

clearButtonEnabled]

[84]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Database Connection Chapter 3

After that, right-click on the Submit button and select Go to slot... A window will pop up
and ask you which signal to use. Select clicked() and click OK:

7 Gotoslot
Select signal
clicked() QAbstractButton A
clicked(bool) QAbstractButton
pressed() CAbstractButton
released() QAbstractButton
toggled(bool) CAbstractButton
destroved(] O0hiect hd
Cancel

A new function called on_loginButton_clicked () will be automatically added to the
MainWindow class. This function will be triggered by Qt when the Submit button is pressed
by the user, and thus you just need to write the code here to submit the username and
password to the database for login verification. The signal and slots mechanism is a special
feature provided by Qt which is used for communication between objects. When one
widget is emitting a signal, another widget will be notified and will proceed to run a
specific function that is designed to react to the particular signal.

Let's check out the code.
First, add in the sql keyword at your project (.pro) file:

QT += core gui
sql
Then, proceed and add the relevant headers to mainwindow. cpp:

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>

#include <QtSql>
#include <QSqglDatabase>
#include <QSqlQuery>
#include <QDebug>
#include <QMessageBox>

[85]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Database Connection Chapter 3

Then, go back to mainwindow.cpp and add the following code to the
on_loginButton_clicked () function:

void MainWindow: :on_loginButton_clicked()

{

QString username = ui->userInput->text ();
QString password = ui->passwordInput->text();
gDebug () << username << password;

}

Now, click the Run button and wait for the application to start. Then, key in any random
username and password, followed by clicking on the submit button. You should now see
your username and password being displayed on the application output window in Qt
Creator.

Next, we'll copy the SQL integration code we have written previously into
mainwindow.cpp:
MainWindow: :MainWindow (QWidget *parent)
QMainWindow (parent),

ui (new Ui::MainWindow)

ui->setupUi (this);

db = QSglDatabase: :addDatabase ("QMYSQL");
db.setHostName ("127.0.0.1");
db.setPort (3306) ;
db.setDatabaseName ("test") ;
db.setUserName ("testuser");
db.setPassword("testpass");
if (db.open())
{

gDebug () << "Connected!";
else
{

gDebug () << "Failed to connect.";
}

[86]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Database Connection Chapter 3

Do note that I've used some random text for the database name, username, and password.
Please make sure you enter the correct details here and that they match with what you've
set in the database system.

One minor thing we have changed for the preceding code is that we only need to call db =
QSglDatabase: :addDatabase ("QMYSQL") in mainwindow. cpp without the class name
as the declaration QSglDatabase db has now been relocated to mainwindow.h:

private:
Ui::MainWindow *ui;
QSglDatabase db;

Lastly, we add in the code that combines the username and password information with the
SQL command, and send the whole thing to the database for execution. If there is a result
that matches the login information, then it means that the login has been successful,
otherwise, it means the login has failed:

void MainWindow: :on_loginButton_clicked()

{
QString username = ui->userInput->text ();
QString password = ui->passwordInput->text ();

gDebug () << username << password;

QString command = "SELECT * FROM user WHERE username = '" + username
+ "' AND password = '" + password + "' AND status = 0";
QSglQuery query (db) ;
if (query.exec (command))
{
if (query.size() > 0)
{
QMessageBox::information(this, "Login success.", "You
have successfully logged in!");

QMessageBox::information(this, "Login failed.", "Login
failed. Please try again...");

[87]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

EBSCChost -

Database Connection Chapter 3

Click the Run button again and see what happens when you click the Submit button:

WY MainWindow — O *

¥ Login success, >

o You have successfully logged in!

Username: |test1

Password: (esssss

Hip hip hooray! The login page is now fully functional!

Summary

In this chapter, we learned how to set up a database system and make our Qt application
connect to it. In the next chapter, we will learn how to draw graphs and charts using the
powerful Qt Framework.

[88]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Graphs and Charts

In the previous chapter, we learned how to retrieve data from a database using Qt's sq1
module. There are many ways to present this data to the users, such as displaying it in the
form of tables or diagrams. In this chapter, we will learn how to do the latter—presenting
data with different types of graphs and charts using Qt's charts module.

In this chapter, we will cover the following topics:

e Types of charts and graphs in Qt
e Charts and graphs implementation
e Creating the dashboard page

Since Qt 5.7, several modules that were only available for commercial users before have
become free for all the open source package users, which includes the Qt Charts module.
Therefore, it is considered a very new module for most Qt users who don't own the
commercial license.

Do note that, unlike most of the Qt modules that are available under an LGPLv3 license, the
Qt Chart module is offered under an GPLv3 license. Unlike LGPLv3, a GPLv3 license
requires you to release the source code of your application, while your application must
also be licensed under GPLv3. This means that you are not allowed to static-link Qt Chart
with your application. It also prevents the module from being used in proprietary software.

To learn more about the GNU licenses, please head over to the following
link: nttps://www.gnu.org/licenses/gpl-faqg.html.

Let's get started!

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Graphs and Charts Chapter 4

Types of charts and graphs in Qt

Qt supports most commonly used diagrams, and even allows the developer to customize
the look and feel of them so that they can be used for many different purposes. The Qt
Charts module provides the following chart types:

e Line and spline charts
Bar charts

Pie charts

Polar charts

Area and scatter charts
Box-and-whiskers charts
Candlestick charts

Line and spline charts

The first type of chart is the line and spline chart. These charts are typically presented as a
series of points/markers that are connected by lines. In a line chart, the points are connected
by straight lines to show the changes of the variables over a period of time. On the other
hand, spline charts are very similar to line charts except the points are connected by a
spline/curve line instead of straight lines:

Wildlife Population

180
160
140
120
100
B0
40
20
2017 2018 2019 2020 2021 2022
g B ears =—ge=Dolphins Whales
[901]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Graphs and Charts Chapter 4

Bar charts

Bar charts are one of the most commonly used diagrams beside line charts and pie charts. A
bar chart is quite similar to a line chart, except it doesn't connect the data along an axis.
Instead, a bar chart displays its data using individual rectangular shapes, where its height is
determined by the value of the data. This means that the higher the value, the taller the
rectangular shape will become:

Fiction Book Sales
$120,000.00
$100,000.00
$80,000.00
)
g M Young Adult
; $60,000.00 Classics
ﬁ B Mystery
7]
g $40,000.00 m Romance
O M Sci-Fi & Fantasy
$20,000.00
$0.00
2006 2007 2008 2009 2010
Year
[91]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Graphs and Charts Chapter 4

Pie charts

A pie chart, as its name implies, is a type of chart that looks like a pie. A pie chart presents
its data in the form of pie slices. The size of each slice of pie will be determined by the
overall percentage of its value compared to the rest of the data. Therefore, pie charts are
normally used to display fraction, ratio, percentage, or a share of a set of data:

Language Compositon of Australia

M English
M Chinese
Italian
M Other

M Unspecified

Sometimes, a pie chart can also be displayed in a donut shape (also known as donut chart):

Donut with a lemon glaze {100g)

g u

| _\’ /‘;

® Frotein 4.2% & Fat 16.6% & Othor 238% @ Carts 56.4%

[92]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Graphs and Charts

Polar charts

Polar charts present data in a circular graph, where the placement of the data is based on
both the angle and the distance from the center of the graph, which means the higher the
value of the data, the further away the point is from the center of the chart. You can display
multiple types of graphs within the polar chart, such as line, spline, area, and scatter to

visualize the data:

Plants in Wonderland

A Immortal Weed
4 Precious Flower
@ Magical Tree

North
East

[

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

93]

Graphs and Charts Chapter 4

If you are a gamer, you should have noticed this type of graph being used in some video
games to display the in-game character's attributes:

AGHTING

WERSATILITY FARMING

PUSHIMNG SUPPORTING

Area and scatter charts

An area chart displays its data as an area or shape to indicate volume. It's usually used to
compare the differences between two or more datasets.

[94]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Graphs and Charts

Chapter 4

Scatter charts, on the other hand, are used to display a collection of data points, and for

showing the non-linear relationship between two or more datasets.

Genetically Modified Predator
& Genetically Engineered A Narural
200
1804
&
160
¢
1404
§ o] % o2
~ LA
£ 1004 & A A
> A
@ 804 G AA AN
~l Fiy
60 AT A
40 by
204
0 7 u T /
5 10 15 20
Weight (kg)
[95]

printed on 2/9/2023 9:19 AMvia .

Al use subject to https://ww.ebsco.contermnms-of-use

Graphs and Charts Chapter 4

Box-and-whiskers charts

Box-and-whiskers charts present data as quartiles extended with whiskers that show the
variability of the values. The boxes may have lines extending vertically called whiskers.
These lines indicate variability outside the upper and lower quartiles, and any point outside
those lines or whiskers is considered an outlier. Box-and-whisker charts are most commonly
used in statistical analysis, such as stock market analysis:

Attendance for term 1

Absences

year 9 year 10 year 11 year 12 year 13 Setb

Candlestick charts

Candlestick charts are visually quite similar to the box-and-whiskers charts, except they are
used to represent the difference between the opening and closing value, while showing the
direction of the value (whether increasing or decreasing) through different colors. If the
value of a particular piece of data stays the same, the rectangular shape will not be shown at
all:

[96]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Graphs and Charts Chapter 4

Monthly Stock Price

[[]J’ l?ﬂ] .i T*d] ﬁﬂlﬂ.
0
; : . 1

$100

$90

Price

= Down O Up]
$70 - E Down O Up
I I I I I I I I I I I I I
Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan
2003 2004 2005 2006

For more information regarding the different types of charts supported by
Qt, please head over to the following
link: https://doc.qgt.io/qt-5/qtcharts—overview.html.

Qt supports most of the diagram types you need for your project. It is also extremely easy to
implement these diagrams in Qt. Let's see how we can do it!

Implementing charts and graphs

Qt makes drawing different types of diagrams easy by putting the complex drawing
algorithms behind different abstraction layers, and providing us with a set of classes and
functions that can be used to easily create these diagrams without knowing how the
drawing algorithm works behind the scenes. These classes and functions are all included in
the chart module that comes together with Qt.

Let's create a new Qt Widgets Application project and try to create our first chart in Qt.

After you have created the new project, open up the project file (. pro) and add the charts
module to your project, like so:

QT += core gui charts

[971]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Graphs and Charts Chapter 4

Then, open up mainwindow.h and add the following to include the header files that are
required for using the charts module:

#include <QtCharts>
#include <QChartView>
#include <QBarSet>
#include <QBarSeries>

The QtCharts and QtChartView headers are both essential for Qt's charts module. You
must include both of them for any type of chart to work at all. The other two headers,
namely QBarSetand QBarSeries, are used here because we're going to create a bar chart.
The headers that get included in your project will be different depending on the type of
chart you want to create.

Next, open mainwindow.ui and drag either Vertical Layout or Horizontal Layout to the
central widget. Then, select the central widget and click either Layout Horizontally or
Layout Vertically. The layout direction is not particularly important, as we will only create
a single chart here:

[mainwindow.ui @ CreateChart - Ot Creator
File Edit Build Debug Analyze Tools Window Help

Filter

u
TypeH 2
b Layouts ~ ype Hiere
= Vertical Layout

= \
U[I] Horizental Layout

[T]
< 1]
{11
a@

44 Form Layout

Grid Layout

Desig i Spacers |
B8l Horizontal Spacer ' I [.
g Vertical Spacer |

v Buttons

°%| Push Button

@ Tool Button

2 (® Radio Button

i Check Box

@ Command Link Button

Dialeg Button Box

A ltern Views (Model-Based)

[98]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Graphs and Charts

After that, right-click on the layout widget you just dragged to the central widget, and select
Morph into | QFrame. This will change the layout widget into a QFrame widget while still
maintaining its layout properties. If you create a QFrame from Widget Box, it won't have
the layout properties that we need. This step is important so that we can set it as the parent

of our chart later:

Marph into

Copy
Paste

Select All

Cut

Delete

Lay cut

Ctrl+X
Ctrl+C
Ctrl+V¥
Ctrl+A

OWidget
QFrame
QGroupBox
QTabWidget
QStackedWidget
OToolBox

Now open up mainwindow.cpp and add the following code:

MainWindow: :MainWindow (QWidget *parent)
QMainWindow (parent),
uil (new Ui::MainWindow)

ui->setupUi (this);

QBarSet
QBarSet
QBarSet
QBarSet
QBarSet

*set0
*setl
*set2
*set3
*set4d

QBarSeries *series

<<
<<
<<
<<
<<

*set0 =
*setl =
*set2 =
*set3 =
*setd =

10
50
30
50
90

<<
<<
<<
<<
<<

new
new
new
new
new

20
70
50
60
70

<<

<<

<<

<<

<<

QBarSet ("Jane") ;
QBarSet ("John") ;
QBarSet ("Axel") ;
QOBarSet ("Mary");
QBarSet ("Samantha") ;

30
40
80
70
50

<<
<<
<<
<<
<<

40
45
13
30
30

<<
<<
<<
<<
<<

50
80
80
40
16

<< 60;
<< 70;
<< 50;
<< 25;
<< 42;

new QBarSeries();

series—>append (set0) ;
series—>append (setl);

EBSCChost - printed on 2/9/2023 9:19 AMvia .

[99]

Al use subject to https://ww.ebsco.contermnms-of-use

Graphs and Charts Chapter 4

series—>append (set2);
series—>append (set3);
series—>append (set4);

}

The code above initializes all the categories that will be displayed in the bar chart. Then, we
also added six different items of data to each category, which will later be represented in the
form of bars/rectangular shapes.

The gBarsSet class represents a set of bars in the bar chart. It groups several bars into a bar
set, which can then be labeled. QBarSeries, on the other hand, represents a series of bars
grouped by category. In other words, bars that have the same color belong to the same
series.

Next, initiate the 0Chart object and add the series to it. We also set the chart's title and
enable animation:

QChart *chart = new QChart ();

chart->addSeries (series) ;

chart->setTitle ("Student Performance");
chart->setAnimationOptions (QChart::SeriesAnimations) ;

After that, we create a bar chart category axis and apply it to the bar chart's x axis. We used
a 0StringList variable, which is similar to an array, but explicitly for storing strings. The
QOBarCategoryAxis will then take the string list and populate it over the x axis:

QStringList categories;

categories << "Jan" << "Feb" << "Mar" << "Apr" << "May" << "Jun";
OBarCategoryAxis *axis = new QBarCategoryAxis();

axis—>append (categories);

chart->createDefaultAxes () ;

chart->setAxisX (axis, series);

Then, we create a chart view for Qt to render the bar chart and set it as a child of the frame
widget in the main window; otherwise, it won't be rendered on the main window:

QChartView *chartView = new QChartView (chart);
chartView->setParent (ui->verticalFrame) ;

[100]

- printed on 2/9/2023 9:19 AMvia . Al use subject to https://wmv. ebsco.cont terns-of-use

Graphs and Charts Chapter 4

Click the Run button in Qt Creator, and you should see something like this:

17 MainWindow — O ¥
Students Performance
® Jane ™ John = Axel ® Mary ® Samantha
90.0
67.5
45.0
0.0 I I I
Jan Feb Mar Apr May Jun

[101]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost

Graphs and Charts Chapter 4

Next, let's do a pie chart; it's really easy. First, instead of QBarsSet and QBarSeries, we
include QPieSeries and QPieSlice:

#include <QPieSeries>
#include <QPieSlice>

Then, create a QPieSeries object and set up the name and value of each data. After that,
set one of the slices to a different visual style and make it pop out from the rest. Then, create
a QChart object and link it with the QpPieSeriesobject that we have created:

QPieSeries *series = new QPieSeries();
series—>append ("Jane", 10);
series—>append ("Joe", 20);
series—>append ("Andy", 30);
series—>append ("Barbara", 40);
series—>append ("Jason", 50);

QPieSlice *slice = series->slices () .at(1l);
slice->setExploded(); // Explode this chart
slice->setLabelVisible(); // Make label visible
slice->setPen (QPen (Qt::darkGreen, 2)); // Set line color
slice->setBrush (Qt::green); // Set slice color

QChart *chart = new QChart ();
chart->addSeries (series);
chart->setTitle ("Students Performance");

Last, but not least, create the QChartVview object and link it with the 9Chart object we just
created. Then, set it as a child of the frame widget, and we're good to go!

QChartView *chartView = new QChartView (chart);
chartView—->setParent (ui->verticalFrame) ;

[102]

- printed on 2/9/2023 9:19 AMvia . Al use subject to https://wmv. ebsco.cont terns-of-use

Graphs and Charts Chapter 4

Press the Run button now, and you should be able to see something like this:

B MainWindow - O *

Students Performance

Jane W@los ™ Andy ® Barbara ™ Jason

For more examples of how to create different charts in Qt, please check out
their sample code at the following
link: nttps://doc.qgt.io/qt-5/gtcharts—examples.html.

Now that we've seen that it is easy to create graphs and charts with Qt, let's expand the
project we started in the previous chapters and create a dashboard for it!

[103]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Graphs and Charts Chapter 4

Creating the dashboard page

In the previous chapter, we created a functional login page that allows the user to sign in
using their username and password. What we need to do next is to create the dashboard
page, which the user will automatically get directed to upon successful login.

The dashboard page usually serves as a quick overview for the user about the status of their
company, business, project, assets, and/or other statistics. The following image shows an
example of what a dashboard page could look like:

SB Admin v2.0 =~ S~ a- &~
[+ 1
Dashboard
& Dashboard
oy . Pl —— 12 B |24 13
R Tables T e : |
Mesw Comments! Miw Tasis! . O Suppon Tickets!
@& Fommns | |
Wiew Detais o VW o L+ Whew DLy [+]
U
b Anga Chart Example Actiong » A NOERCHIONS Pandl
o New Comement

W 3 Néw Folldwers
3 Message Sent
B New Task

L Sener Rebooted
¥ Served Crashed!

A Server Mot Responding

™ New Order Placed

@B Payment Recened

bl Bar Chan Examiie Acong = Wi AN ATS

[orery T

[104]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Graphs and Charts Chapter 4

As you can see, there are quite a number of charts and graphs that are being used on the
dashboard page because it is the best way for displaying a huge number of data without
making the users feel overwhelmed. Moreover, graphs and charts can let the users
understand the overall situation easily without digging too much into the details.

Let's open up our previous project and open the mainwindow.ui file. The user interface
should look something like this:

[] L]
Type Here Object Class

¥ MainWindow OMainWindow
7] awidget

-2 [}l QHBoxLayout
> 0 horizontalLayout m QHBoxlayout

v

S T

verticalSpacer Bl Spacer

verticalspacer_2 Bad) Spacer
menuBar QMenuBar
main ToolBar QToolBar

Username: |:| statusBar QStatusBar

/

As you can see, we already have the login page now, but we need to add in another page
for the dashboard as well. For multiple pages to co-exist in the same program and to be able
to switch between different pages at any time, Qt provides us with something called
QStackedWidget.

A stacked widget is just like a book that you can add more and more pages to, but it shows
only one page at a time. Each page is a completely different GUI, so it won't interfere with
other pages in the stacked widget.

[105]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Graphs and Charts Chapter 4

Since the previous login page was not made with a stacked widget in mind, we have to
make some adjustments to it. First, drag and drop a stacked widget from the Widget Box to
the central widget of your application, and then, we need to move everything previously
under the central widget into the first page of the stacked widget, which we

renamed loginPage:

Object Class Object Class
MainWindow OMainWindow MainWindow { OMainWindow
v /= centralWidget (] awidget v = centralWidget __| OWidget
>] horizontallayout 2 [Jl] QHBoxlayout "~ stackedWidget 2 OStackedWidget \
>) horizontalLayout (I}l QHBoxLayout ¥ = loginPage [] Qwidget
wverticalSpacer B Spacer > I heriz..out 2 [}l OHBoxlayout
verticalSpacer_2 B Spacer > [l horiz..ayout (Il QHBoxLayout
menuBar OMenuBar verticalSpacer B8l Spacer
mainToolBar OToolBar verticalSpacer 2 Bl Spacer
statusBar Q5tatusBar \ % dashboardPage || QWidget Yy
menuBar OMenuBar
mainToolBar OToolBar
statusBar OStatusBar

Next, set all the layout settings of the central widget to 0, so that it contains no margin at all,
like so:

layoutMame verticalLayout
layoutLeftMargin
layoutTopMargin
layoutRightMargin
layoutBottomMargin
layoutSpacing
layoutStretch
layoutSizeConstraint SetDefaultConstraint

L O e Y Y e Y e e

After that, we must cut away the code in the style sheet property of the central widget, and
paste it to the login page's style sheet property. In other words, the background image,
button style, and other visual settings are now only applied to the login page.

[106]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Graphs and Charts

Chapter 4

Once you're done, you should be getting two completely different GUIs (the dashboard
page is empty for now) when switching between pages on the stacked widget:

Type Here .

Type Here

Dashboard Page -

Next, drag and drop a grid layout to the dashboard page, and apply Layout Vertically to

the dashboard page:

7 mainwindow.ui @ DashboardPage - Ot Creator

Eile Edit Build Debug Analyze

Filter

Tools Window Help

v Layouts

= Vertical Layout
Dﬂ] Horizontal Layout

[FINF]

pacers
[F#d Horizontal Spacer
E Vertical Spacer
w7 Buttons

2| Puszh Button

@ Tool Button

? (®) Radio Button

. 433 Grid Layout
i
43 FWmLWDM\\\‘h‘n-g__—
¥ o 5

Type Here 2

1

>

[107]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Graphs and Charts Chapter 4

After that, drag and drop six Vertical Layout into the Grid Layout, like so:

Filter

e Layouts A
= .

= Vertical Layout o 00| @ ——— —_— T i r
U[l] Horizontal Layout

ggi Grid Layout

Type Here

ig Form Layout
v Spacers
gl Horizontal Spacer
g Vertical Spacer
v Buttons

°%] Push Button

@ Tool Button

(@ Radic Button

i Check Box

@ Command Link Button

Dialog Button Box

[tem Views (Model-Baszed)

= f |
List View | I . !

N
N
N
N

QB Tree View
B Table View
Then, select each of the vertical layouts we just added to the grid layout, and turn it into
QFrame:
Maorph into k QWidget
Je cut Ctrl+X ST
= Copy Ctrl+C SITLEEI
- CiTabWidget
Select Ancestor L4 QStackedWidget
Select All Ctrl+A SITELE |
Delete .
Lay out k
[108]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Graphs and Charts Chapter 4

Just as we did in the charts implementation examples, we must turn the layout into a
QFrame (or QWidget) so that we can attach the chart on it as a child object. If you directly
drag a QF rame from the widget box and don't use morphing, the QF rame objects do not
have the layout properties, and hence the charts may not be resizing themselves to fit the
QFrame's geometry. Also, name those QF rame objects as chart1 to chart6 as we're going
to need them in the following steps. Once you're done with that, let's proceed to the code.

First, open your project (.pro) file and add the charts module, just as we did in the earlier
example in this chapter. Then, open up mainwindow.h and include all the headers
required. This time around, we also include the QLineSeries header for creating the line
chart:

#include <QtCharts>
#include <QChartView>

#include <QBarSet>
#include <QBarSeries>

#include <QPieSeries>
#include <QPieSlice>

#include <QLineSeries>

After that, declare the pointers for the charts, like so:

QChartView *chartViewBar;
QChartView *chartViewPie;
QChartView *chartViewLine;

Then, we'll add the code for creating a bar chart. This is the same bar chart we created
earlier in the chart implementation example, except it's now attached to the QF rame object
called chart1, and is set to enable anti-aliasing when rendering. The anti-aliasing feature
removes the jagged edges of all charts and thus makes the rendering appear smoother:

MainWindow: :MainWindow (QWidget *parent)
QMainWindow (parent),
ul (new Ui::MainWindow)

ui->setupUi (this);

////////BAR CHART/////////////
QBarSet *set0 = new QBarSet ("Jane"

’

)
QBarSet *setl = new QBarSet ("John");
QBarSet *set2 = new QBarSet ("Axel");
QBarSet *set3 = new QBarSet ("Mary");
QBarSet *setd4d = new QBarSet ("Samantha");
[109]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Graphs and Charts Chapter 4

*set0 << 10 << 20 << 30 << 40 << 50 << 60;
*setl << 50 << 70 << 40 << 45 << 80 << 70;
*set2 << 30 << 50 << 80 << 13 << 80 << 50;
*set3 << 50 << 60 << 70 << 30 << 40 << 25;
*setd << 90 << 70 << 50 << 30 << 16 << 42;

QBarSeries *seriesBar = new QBarSeries();
seriesBar->append (set0)
seriesBar->append (setl) ;
seriesBar->append (set2);
()
()

’

seriesBar->append (set3) ;

seriesBar—->append (set4

’

QChart *chartBar = new QChart();

chartBar->addSeries (seriesBar);

chartBar->setTitle ("Students Performance");
chartBar->setAnimationOptions (QChart::SeriesAnimations);

QStringlList categories;

categories << "Jan" << "Feb" << "Mar" << "Apr" << "May" << "Jun";
QBarCategoryAxis *axis = new QBarCategoryAxis();
axis->append(categories);

chartBar->createDefaultAxes () ;

chartBar->setAxisX (axis, seriesBar);

chartViewBar = new QChartView (chartBar);
chartViewBar->setRenderHint (QPainter::Antialiasing);
chartViewBar—->setParent (ui->chartl);

}

Next, we also add the code for the pie chart. Again, this is the same pie chart from the
previous example:

QPieSeries *seriesPie = new QPieSeries();
seriesPie->append ("Jane", 10);
seriesPie->append ("Joe", 20);
seriesPie->append ("Andy", 30);
seriesPie->append ("Barbara", 40);
seriesPie->append ("Jason", 50);

QPieSlice *slice = seriesPie->slices () .at(1);
slice->setExploded() ;
slice->setLabelVisible () ;
slice->setPen (QPen (Qt: :darkGreen, 2));
slice->setBrush (Qt::green);

QChart *chartPie = new QChart();
chartPie->addSeries (seriesPie);

[110]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Graphs and Charts Chapter 4

chartPie->setTitle ("Students Performance");

chartViewPie = new QChartView (chartPie);
chartViewPie->setRenderHint (QPainter::Antialiasing);
chartViewPie->setParent (ui->chart?2);

Finally, we also add a line graph to the dashboard, which is something new. The code is
very simple and very similar to the pie chart:

QLineSeries *seriesLine = new QLineSeries();
seriesLine->append (0,
seriesLine->append (2,
seriesLine->append (3,
seriesLine->append(7,
seriesLine->append (10, 5);
seriesLine->append (11, 10);
seriesLine->append (13, 3);
(17,
(18,
(201

)i
)i
).

’

D00 B oY

)i

seriesLine->append 6);
seriesLine->append 3);
seriesLine->append 2);

QChart *chartLine = new QChart ();
chartLine->addSeries (seriesLine);
chartLine->createDefaultAxes () ;
chartLine->setTitle ("Students Performance");

chartViewLine = new QChartView (chartLine);
chartViewlLine->setRenderHint (QPainter::Antialiasing);
chartViewLine->setParent (ui->chart3);

Once you're done with that, we must add a resize-event slot to the main window class, and
make the charts follow the size of their respective parent when the main window is being
resized. This can be done by first going to the mainwindow.h and adding in the event-
handler declaration:

protected:
void resizeEvent (QResizeEvent* event);

[111]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Graphs and Charts Chapter 4

Then, open up mainwindow.cpp and add the following code:

void MainWindow: :resizeEvent (QResizeEvent* event)

{
QOMainWindow: :resizeEvent (event) ;
chartViewBar->resize (chartViewBar->parentWidget () ->size());
chartViewPie->resize (chartViewPie->parentWidget () ->size());
chartViewLine->resize (chartViewLine->parentWidget () ->size());
I3

Do note that the QMainWindow: : resizeEvent (event) must be called first so that the
default behavior will be triggered before you call your custom methods below it.
resizeEvent () is one of the many event handlers provided by Qt for reacting to its
events, such as mouse events, window events, paint events, and so on. Unlike the signal-
and-slots mechanism, you need to replace the virtual function of the event handler to make
it do what you want it to do when the event is being called.

If we build and run the project now, we should be getting something like this:

B MainWindow

Students Performance Students Performance Students Performance

= Jane = John = Axel = Mary = Samantha Jane @Joe = Andy = Barbara ® Jason =

50.0 10.0
Jos
-
687.5 ‘ 8.0
45.0 | ‘ | 6.0
4.0
RN NN

0
Jan Feb Mar Apr May Jun 0.0 5.0 10.0 15.0

22.5

0.0

[112]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Graphs and Charts Chapter 4

Looks pretty neat, doesn't it! However, for the sake of simplicity and so as not to confuse
the readers, the charts are all hard-coded and are not using any data from the database. If
you intend to use data from the database, don't make any SQL query during program
startup, as this will make your program freeze if the data you're loading is very large, or
your server is very slow.

The best way to do it is to load the data only when you're switching from the login page to
the dashboard page (or upon switching to any other pages) so that the loading time is less
obvious to the user. To do this, right-click on the stacked widget and select Go to slot. Then,
select currentChanged(int) and click OK.

7 Goto slot
Select signal
destroyed(Q0bject™) QO0bject ~
objectMameChanged{Q5tring) QO0bject
currentChanged(int) Q5tackedWidget
widgetRemoved(int) Q5tackedWidget
custom ContextMenuRequested(QPoint) OWidget
windowlconChanoed(Clennd OWidoet 1
Cancel

After that, a new slot function will be created automatically by Qt. This function will be
called automatically when the stacked widget is switching between pages. You can check
which page it is currently switching over to by checking the arg1 variable. The argl value
will be 0 if the target page is the first page within stacked widget, or 1 if the target is the
second page, and so on.

You can submit the SQL query only when the stacked widget is showing the dashboard
page, which is the second page (arglequals to 1):

void MainWindow: :on_stackedWidget_currentChanged (int argl)
{
if (argl == 1)
{
// Do it here
}

[113]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Graphs and Charts Chapter 4

Phew! That's a lot to digest for this chapter! Hopefully, this chapter will help you
understand how to create a beautiful and informative page for your project.

Summary

The chart module in Qt is the combination of feature and visual aesthetic. Not only is it easy
to implement without the need to write a very long code just to display the chart, but it is
also customizable to suit your visual requirements. We really need to be thankful to Qt
developers for opening up this module and allowing non-commercial users to use it for
free!

In this chapter, we have learned how to create a really nice-looking dashboard, and display
different types of charts on it using the Qt Chart module. In the coming chapter, we will
learn how to use view widget, dialog boxes, and file-selection dialogs.

[114]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Item Views and Dialogs

In the previous chapter, we learned how to display data using different types of chart.
Charts are one of many ways to present information to the users on screen. It is very
important for your application to present vital information to the users so that they know
exactly what's happening to the application—whether data has been saved successfully, or
the application is waiting for the user's input, or warning/error messages that the users
should be aware of, and so on—it's all very important to ensure your application's user-
friendliness and usability.

In this chapter, we will cover the following topics :

e Working with item view widgets

e Working with dialog boxes

e Working with file selection dialogs
e Image scaling and cropping

Qt provides us with many types of widget and dialog that we can easily use to display
important information to the users. Let's check out what these widgets are!

Working with item view widgets

Other than displaying data using different types of chart, we can also display this data
using different types of item view. An item view widget presents data by rendering it
visually, usually along the vertical axis.

A two-dimensional item view, often known as a table view, displays data in both vertical
and horizontal directions. That allows it to display huge volumes of data within a compact
space, and enables the users to search for an item very quickly and easily.

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Item Views and Dialogs Chapter 5

There are two ways to display data in an item view. The most common method is to use the
model-view architecture, which uses three different components, model, view, and
delegate, to retrieve data from a data source and display it in the item view. These
components all make use of the signal-slot architecture provided by Qt to communicate
with each other:

e Signals from the model inform the view about changes to the data held by the
data source

e Signals from the view provide information about the user's interaction with the
items being displayed

e Signals from the delegate are used during editing to tell the model and view
about the state of the editor

The other method is the manual way, in which the programmer must tell Qt which data
goes into which column and row. This method is much simpler than the model-view, but
much slower when compared to its performance. However, for small amounts of data, the
performance issue can be negligible, making this a good approach.

If you open up Qt Designer, you will see the two different categories for Item View
Widgets, namely Item Views (Model-Based) and Item Widgets (Item-Based):

hd [tern Views (Model-Based)
List View
QB Tree View

B Table View
Column View

[termn Widgets (ltem-Based)

W
List Widget

] Tree Widget
B= Table Widget

Even though they might look the same, in actual fact the widgets within the two categories
work very differently. In this chapter, we will learn how to use the latter category, as it is
more straightforward and easy to understand, and able to serve as prerequisite knowledge
for the former category.

[116]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Item Views and Dialogs Chapter 5

Under the Item Widgets (Item-Based) category are three different widgets called List
Widget, Tree Widget, and Table Widget. Each of these item widgets displays data in a
different way. Pick the one that suits your needs:

==] =i
: : Root item : : Root item : : Root item
T Il [
— row =10 L EI'OW=C' — row =10
Erow=1
— row =1 . row =0
row = 2
— row = 2 ! EES row = 1
: : ! row =3 "
: B e it e .
o I~
c = c £ i =
5 5 5 5 row = 1
o | - - p=
] I I I
S e — row =2

As you can see from the preceding diagram, the List Widget displays its items in a one-
dimensional list, while the Table Widget displays its item in a two-dimensional table. Even
though the Tree Widget works almost similar to the List Widget, its items are displayed in
a hierarchical structure, in which each item can have multiple children items under it,
recursively. One good example of this is the filesystem in our operating system, which
displays the directory structure using the tree widget.

To illustrate the differences, let's create a new Qt Widgets application project and try it out
ourselves.

[117]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Item Views and Dialogs Chapter 5

Creating our Qt Widgets application

Once you have created the project, open up mainwindow.ui and drag the three different
item widgets to your main window. After that, select the main window and click the
Layout Vertically button located at the top:

Filter n
Type Here

hd Spacers e
Bl Horizontal Spacer
g Vertical Spacer

hd Buttons
I"-‘__K] Push Button

@ Tool Button

(® Radio Button

i Check Box

6 Cormmand Link Button

Dialog Butten Box

e Item Views (Model-Based)
List View

Q'EB Tree View
% Table View
Column View

hd Item Widget,
List Widget
S:8 Tree Widget

E Table Widget
> Containers

#.em-Based)

[118]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Item Views and Dialogs Chapter 5

Then, double-click on the List Widget and a new window will pop out. Here, you can add a
few dummy items to the List Widget by clicking the + icon, or remove them by selecting an
item from the list and clicking the - icon. Click the OK button to apply the final result to the
widget:

7 Edit List Widget >

Mew [tem
Mew tem
Mew [tem
Mew [tem

=H' — & 9 Properties <<

Cance

[119]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Item Views and Dialogs Chapter 5

You can do the same to the Tree Widget. It's almost the same as the List Widget, except that
you can add sub-items to an item, recursively. You can also add columns to the Tree Widget
and name the columns:

7 Edit Tree Widget x

Columns Items

1

v MNew [tem
v New Subitem
MNew Subitem
MNew ltem
MNew [tem
MNew [tem
v MNew [tem
v New Subitem
MNew Subitem

=I|h s = L | |8 @ Properties <<

Cancel

Finally, double-click on the Table Widget to open the Edit Table Widget window. Unlike
the other two item views, the Table Widget is a two-dimensional item view, which means
you can add columns and rows to it just like a spreadsheet. Each column and row can be
labeled with the desired name by setting it in the Columns or Rows tab:

[120]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Item Views and Dialogs Chapter 5

™ Edit Table Widget x

Columns Rows Items

Mew Column Mew Column Mew Column Mew Column

Mew Row

Mew Row

Mew Row

Mew Row

Properties <<

Cancel

It's really easy to understand how a widget works by using the Qt Designer. Just drag and
drop the widget into the window and play around with its settings, then build and run the
project to see the result for yourself.

[121]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Item Views and Dialogs Chapter 5

In this case, we have demonstrated the differences between the three item views widgets
without writing a single line of code:

Mew [term
Mew Item
Mew termn
Mew [term

w Mew ltemn

n ¥ MNew Subitem m
Mew Subitem
Mew ltem
Mew ltem
Bolimnna 1o e
Mew Column Mew Column Mew Column Mew Column ™ :
Mew Row
Mew Row
Mew Row
W
[L]

Making our List Widget functional

Writing code, however, is still required in order for the widgets to be fully functional in
your application. Let's learn how to add items to our item view widgets using C++ code!

[122]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Item Views and Dialogs Chapter 5

First, open up mainwindow.cpp and write the following code to the class constructor, right
after ui—>setupui (this):

ui->listWidget->addItem("My Test Item");

As simple as that, you have successfully added an item to the List Widget!

B MainWindow

Mew ltemn
Mew ltermn
Mew ltermn

(My Test [tern '

There is another way to add an item to the List Widget. But before that, we must add the
following headers to mainwindow. h:

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>
#include <QDebug>
#include <QListWidgetItem>

The gpebug header is for us to print out debug message, and the QListWidgetItem header
is for us to declare List Widget Item objects. Next, open up mainwindow.cpp and add the
following code:

QListWidgetItem* listItem = new QListWidgetItem;
listItem->setText ("My Second Item");
listItem—>setData (100, 1000);
ui->listWidget->addItem(listItem);

The preceding code does the same as the previous one-line code. Except, this time, I've
added an extra data to the item. The setData () function takes in two input variables—the
first variable is the data-role of item, which indicates how it should be treated by Qt. If you
put a value that matches the Ot : : ItemDataRole enumerator, the data will affect the
display, decoration, tooltip, and so on, and that may change its appearance.

[123]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Item Views and Dialogs Chapter 5

In my case, I just simply set a number that doesn't match any of the enumerators in
Qt::ItemDataRole so thatI can store it as a hidden data for later use. To retrieve the data,
you can simply call data () and insert the number that matches the one you've just set:

gDebug () << listItem->data (100);

Build and run the project; you should be able to see that the new item is now being added
to the List Widget:

B MainWindow

Mew [tem
Mew [tem
Mew [tem
Mew [tem

My Second ltem ’

For more information about Ot : : ITtemDataRole enumerators, please
check out the following
link: http://doc.gt.i0/qt-5/qgt .html#ItemDataRole-enum

As mentioned earlier, hidden data can be attached to a list item for later use. For example,
you could use the list widget to display a list of products ready to be purchased by the user.
Each of these items can be attached with its product ID so that when the user selects the
item and places it on the cart, your system can automatically identify which product has
been added to the cart by identifying the product ID stored as the data role.

In the preceding example, I stored custom data, 1000, in my list item and set its data role as
100, which does not match any of the Ot : : ItemDataRole enumerators. This way, the data
won't be shown to the users, and thus it can only be retrieved through C++ code.

[124]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Item Views and Dialogs Chapter 5

Adding functionality to the Tree Widget

Next, let's move on to the Tree Widget. It is actually not that different from the List Widget.
Let's take a look at the following code:

QTreeWidgetItem* treeltem = new QTreeWidgetItem;
treeltem->setText (0, "My Test Itenm");
ui->treeWidget->addTopLevelIltem (treeltem);

It's pretty much the same as the List Widget, except we have to set the column ID in the
setText () function. This is because the Tree Widget is somewhere between a List Widget
and a Table Widget—it can have more than one column but can't have any rows.

The most obvious distinction between a Tree Widget and other view widgets is that all its
items can contain children items, recursively. Let's look at the following code to see how we
can add a child item to an existing item in the Tree Widget:

QTreeWidgetItem* treeltem2 = new QTreeWidgetItem;
treeltem2->setText (0, "My Test Subitem");
treeltem->addChild (treeltem2) ;

It's really that simple! The final result looks like this:

Test Column

Mew ltern
Mew ltern

¥ My Test ltern

My Test Subite

Finally, our Table Widget

Next, let's do the same for the Table Widget. Technically, the items already exist and are
reserved in the Table Widget when the columns and rows are being created. What we need
to do is to create a new item and replace it with the (currently empty) item located at a
specific column and row, which is why the function name is called setItem (), instead of
addItem () used by the List Widget.

[125]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Item Views and Dialogs Chapter 5

Let's take a look at the code:

QTableWidgetItem* tableltem = new QTableWidgetItem;
tableItem->setText ("Testingl");
ui->tableWidget->setItem (0, 0, tableltem);

QTableWidgetItem* tableltem2 = new QTableWidgetItem;
tableItem2->setText ("Testing2");
ui->tableWidget->setItem(1l, 2, tableltem2);

As you can see from the code, I have added two sections of data to two different locations,
which translates into the following result:

MNew Column Mew Column Mew Column Mew Column "

Mew Row Testing
Mew Row Testing?

Mew Row

That's it! It's all that simple and easy to display data using item views in Qt. If you are

looking for more examples related to item views, please visit the following link:
http://doc.gt.io/gt-5/examples-itemviews.html

Working with dialog boxes

One very important aspect of creating a user-friendly application is the ability to display
vital information regarding the status of the application when a certain event (intended or
unintended) occurs. To display such information, we need an external window that can be
dismissed by the user once he/she has acknowledged the information.

Qt comes with this functionality, and it's all residing in the QMe ssageBox class. There are

several types of message box you can use in Qt; the most basic one uses just a single line of
code, like so:

QMessageBox::information (this, "Alert", "Just to let you know,
something happened!");

[126]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost

Item Views and Dialogs Chapter 5

There are three parameters you need to provide for this function. The first one is the parent
of the message box, which we have set as the main window. The second parameter is for the
window title, and the third parameter is for the message we want to deliver to the user. The
preceding code will produce the following result:

B Alert >

o Just to let you know, something happened!

The appearance shown here is running on a Windows system. The appearance may look
different on different operating systems (Linux, macOS, and so forth). As you can see, the
dialog box even comes with an icon located before the text. There are a few types of icon
you can use, such as information, warning, and critical. The following code shows you the
code for calling all the different message boxes with icons:

QMessageBox::question (this, "Alert", "Just to let you know, something

happened!");
QMessageBox: :warning (this, "Alert", "Just to let you know, something

happened!") ;
QMessageBox::information (this, "Alert", "Just to let you know,

something happened!");
OMessageBox::critical (this, "Alert", "Just to let you know, something

happened!");

The preceding code produces the following results:

B Alert w7 Alert *

o Just to let you know, something happened! Just to let you know, something happened!

= o

1 Alert W7 Alert ot

e Just to let you know, something happened! o Just to let you know, something happened!

[127]

- printed on 2/9/2023 9:19 AMvia . Al use subject to https://wmv. ebsco.cont terns-of-use

EBSCChost -

Item Views and Dialogs Chapter 5

If you don't need any icons, just call the QMessageBox: :about () function instead. You can
also set the buttons you want by picking from a list of standard buttons provided by Qt, for
example:

QOMessageBox::question (this, "Serious Question", "Am I an awesome guy?",
OMessageBox: :Ignore, QMessageBox::Yes);

The preceding code will produce the following result:

B " Seripus Question

9 Am | an awesome guy?
Yes Ignore

Since these are the built-in functions provided by Qt to create message boxes with ease, it
doesn't give developers the freedom to fully customize a message box. However, Qt does
allow you to create your message boxes manually using another method, which is much
more customizable than the built-in method. It takes a couple more lines of code, but is still
pretty simple to write:

OMessageBox msgBox;

msgBox.setWindowTitle ("Alert");

msgBox.setText ("Just to let you know, something happened!");
msgBox.exec () ;

The preceding code will produce the following result:

B Alert >

Just to let you know, something happened!

It looks just the same, you're telling me. What about adding our own icon and customized
buttons? No problem with that:

OMessageBox msgBox;
msgBox.setWindowTitle ("Serious Question");
msgBox.setText ("Am I an awesome guy?");

[128]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Item Views and Dialogs Chapter 5

msgBox.addButton ("Seriously Yes!", QMessageBox::YesRole);
msgBox.addButton ("Well no thanks", QMessageBox::NoRole);
msgBox.setIcon (QMessageBox: :Question);

msgBox.exec () ;

The preceding code produces the following result:

' Serious Question x

o Arm | an awesome guy?

Seriously Yes!| |Well no thanks

In the preceding code example, I have loaded the question icon that comes with Qt, but you
can also load your own icon from the resource file if you intended to do so:

OMessageBox msgBox;

msgBox.setWindowTitle ("Serious Question");
msgBox.setText ("Am I an awesome guy?");

msgBox.addButton ("Seriously Yes!", QMessageBox::YesRole);
msgBox.addButton ("Well no thanks", QMessageBox::NoRole);
QPixmap myIcon (":/images/icon.png");

msgBox.setIconPixmap (myIcon);

msgBox.exec () ;

Build and run the project now, and you should be able to see this fantastic message box:

B | Serous Question ot

Am | an awesome guy?
L] -
Seripusly Yes!| |'Well no thanks

[129]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Item Views and Dialogs Chapter 5

Once you have understood how to create your own message boxes, let's proceed to learn
about the event system that comes with the message box.

When a user is presented with a message box with multiple different choices, he/she would
expect a different reaction from the application when pressing a different button.

For example, when a message box pops up and asks the user whether they wish to quit the
program or not, the button Yes should make the program terminate, while the No button
will do nothing.

Qt's QMessageBox class provides us with a simple solution for checking the button event.
When the message box is being created, Qt will wait for the user to pick their choice; then, it
will return the button that gets triggered. By checking which button is being clicked, the
developer can then proceed to trigger the relevant event. Let's take a look at the example
code:

if (QMessageBox::question(this, "Question", "Some random question. Yes
or no?") == QMessageBox::Yes)
{
QOMessageBox: :warning (this, "Yes", "You have pressed Yes!");
3
else
{
QOMessageBox: :warning(this, "No", "You have pressed No!");

}

The preceding code will produce the following result:

B Cuestion >

0 Some random guestion. Yes or no?
Yes No \

y 4 A

B Yes ¢ X iNo: >

You have pressed Yes! I You have pressed Mo!

[130]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

EBSCChost -

Item Views and Dialogs Chapter 5

If you prefer the manual way to create your message box, the code for checking the button
event is slightly longer:

OMessageBox msgBox;
msgBox.setWindowTitle ("Serious Question");
msgBox.setText ("Am I an awesome guy?");
QPushButton* yesButton = msgBox.addButton ("Seriously Yes!",
QMessageBox: :YesRole) ;
QPushButton* noButton = msgBox.addButton ("Well no thanks",
QMessageBox: :NoRole) ;
msgBox.setIcon (QMessageBox: :Question);
msgBox.exec () ;
if (msgBox.clickedButton () == (QAbstractButton*) yesButton)
{

QMessageBox::warning (this, "Yes", "Oh thanks! :)");
}
else if (msgBox.clickedButton() == (QAbstractButton*) noButton)
{

QMessageBox: :warning (this, "No", "Oh why... :(");
}

Even though the code is slightly longer, the basic concept is pretty much the same—the
clicked button will always be able to be retrieved by the developer for triggering the
appropriate action. This time, however, instead of checking the enumerator, Qt directly
checks the button pointer instead, since the preceding code does not use the built-in
standard buttons from the QMessageBox class.

Build the project, and you should be able to get the following result:

B " Serious Question x

o Am | an awesome guy?
Serioysly Yes!| Well notha\ks

V4 N\

w
&
X
w
=
Q
x

[131]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Item Views and Dialogs Chapter 5

For more information regarding the dialog boxes, please visit the API

documents located at the following link:
http://doc.qt.io/gt-5/qgdialog.html

Creating File Selection Dialogs

Since we have covered the topic about message boxes, let's also learn about the other type of
dialog—the File Selection Dialog. The File Selection Dialog is also very useful, especially if
your application frequently deals with files. It is extremely unpleasant to ask users to key in
the absolute path of the file they wanted to open, so the File Selection Dialog is very handy
in this kind of situation.

Qt provides us with a built-in File Selection Dialog that looks exactly the same as the one we
see in our operating system, and therefore, it won't feel unfamiliar to the users. The File
Selection Dialog essentially only does one thing—it lets the user pick the file(s) or folder
they want and return the path(s) of the selected file(s) or folder; that's all. In fact, it is not in
charge of opening the file and reading its content.

Let's look at how we can trigger the File Selection Dialog. First, open up mainwindow.h and
add in the following header files:

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>

#include <QFileDialog>
#include <QDebug>

Next, open up mainwindow.cpp and insert the following code:

QString fileName = QFileDialog::getOpenFileName (this);
gDebug () << fileName;

[132]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Item Views and Dialogs Chapter 5

It's that simple! Build and run the project now, and you should get this:

Select File >
« « 4 s ThisPC » w @/ | Search This PC »p
Organize « S+ [0
A Folders (o) "
£2 Dropbox
[#Z] OneDrive - Desktop
~ [This PC B
I Deskiop ”—_E Documents
[£ Documents
; Downloads ; Downloads
J! Music
&=/ Pictures) Music
B videos
. Windows (C:)
. RECOVERY (D)] lctures
W W
File name: v| Al Files v

If the user has selected a file and pressed Open, the £ileName variable will be filled with
the absolute path of the selected file. If the user clicked the Cancel button, the fileName
variable will be an empty string.

The File Selection Dialog also contains several options that can be set during the
initialization step. For example:

QString fileName = QFileDialog::getOpenFileName (this, "Your title",
QDir::currentPath (), "All files (*.*) ;; Document files (*.doc *.rtf);;
PNG files (*.png)");
gDebug () << fileName;

There are three things that we have set in the preceding code they are as follows:

¢ The window title of the File Selection Dialog

e The default path that the users see when the dialog is being created
e File type filters

[133]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Item Views and Dialogs Chapter 5

The file type filter is very handy when you only allow the users to select a specific type of
file (for example, only JPEG image files) and hide the rest. Besides get OpenFileName (),
you can also use get SaveFileName (), which will allow the user to specify a filename that

does not already exist.

For more information regarding the File Selection Dialog, please visit the

API documents located at the following link:
http://doc.qgt.io/gt-5/gfiledialog.html

Image scaling and cropping

Since we learned about the File Selection Dialog in the previous section, I'd thought we
should learn something fun this time!

First off, let's create a new Qt Widgets Application. Then, open up mainwindow.ui and
create the following user interface:

[] [] []
}t.r:x::m.r:mm.r:mm.r:d }t::x::.r:mm.rmm:.wmi
[]]
Scale: I
Horizontal: I
Wertical: I
Browse Save
[]]

[134]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Item Views and Dialogs Chapter 5

Let's dissect this user interface into three parts:

e Top—Image preview:

e First, add a Horizontal Layout to the window.

e Then, add a Label widget into the Horizontal Layout we just
added, then set the text property to empty. Set both the label's
minimumSize and maximumSize properties to 150x150. Finally,
set the frameShape property under the QFrame category to Box.

¢ Add two Horizontal Spacers to the sides of the label to make it
centered.

e Middle—Sliders for adjustments:

¢ Add a Form Layout to the window, below the Horizontal Layout
we just added previously in step 1.

¢ Add three Labels to the Form Layout, and set their text property to
Scale:, Horizontal:,and Vertical: respectively.

¢ Add three Horizontal Sliders to the Form Layout. Set the
minimum property to 1 and maximum to 100. Then, set the
pageStep property to 1.

e Set the value property of the scale slider to 100.

¢ Bottom—Browse button and Save button:
e Add a Horizontal Layout to the window, below the Form Layout
we previously added during step 2.
¢ Add two Push Buttons to the Horizontal Layout and set their text
property to Browse and Save respectively.

e Lastly, delete the Menu Bar, Tool Bar, and Status Bar from the
central widget.

Now that we have created the user interface, let's dive into the coding! First, open up
mainwindow.h and add in the following headers:

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>
#include <QMessageBox>
#include <QFileDialog>
#include <QPainter>

[135]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Item Views and Dialogs Chapter 5

After that, add the following variables to mainwindow. h:

private:
Ui::MainWindow *ui;
bool canDraw;
QPixmap* pix;
QSize imageSize;
QSize drawSize;
QPoint drawPos;

Then, go back to mainwindow.ui and right-click on the Browse button, followed by
selecting Go to slot. Then, a window will pop up and ask you to select a signal. Pick the
clicked () signal located at the top of the list, and then press the OK button:

[Goto slot
Select signal
clicked() QAbstractButton A
clicked(bool) QAbstractButton
pressed() QAbstractButton
released() QAbstractButton
toggledibool) CAbstractButton
destrovedn OO0hiect hd
Cancel

A new slot function will be automatically added to your source file. Now, add the
following code to open up the File Selection Dialog when the Browse button is clicked. The
dialog only lists JPEG images and hides the other files:

vold MainWindow: :on_browseButton_clicked()

{
QOString fileName = QFileDialog::getOpenFileName (this, tr ("Open
Image"), QDir::currentPath(), tr("Image Files (*.Jjpg *.jpeg)"));

if (!'fileName.isEmpty())
{

QPixmap* newPix = new QPixmap (fileName) ;

if (!'newPix—>isNull())

{
if (newPix->width() < 150 || newPix->height () < 150)
{

[136]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Item Views and Dialogs

Chapter 5

QMessageBox: :warning (this,
tr ("Image size too small.

tr("Invalid Size"),
Please use an image

larger than 150x150."));
return;

pix =
imageSize
drawSize

canDraw

else

canDraw

QOMessageBox: :warning (this,
tr("Invalid or corrupted file.

newPix;

pix->size();
pix->size();

true;

false;

tr("Invalid Image"),

Please try again with

another image file."));

}

As you can see, the code checks whether any image has been selected by the user. If it has
its checks again and see whether the image resolution is at least 150 x 150. If no problem is
found, we will save the image's pixel map to a pointer called pix, then save the image size
to the imagesize variable, and the initial drawing size to the drawsize variable. Finally,

we set the canDraw variable to t rue.

After that, open up mainwindow.h again and declare these two functions:

public:

explicit MainWindow (QWidget *parent

~MainWindow () ;

0);

virtual void paintEvent (QPaintEvent *event);

void paintImage (QString fileName,

int x, int y);

The first function, paintEvent (), is a virtual function that automatically gets called
whenever Qt needs to refresh the user interface, such as when the main window is being
resized. We'll override this function and draw the newly loaded image onto the image
preview widget. In this case, we'll call the paintImage () function within the

paintEvent () virtual function:

void MainWindow: :paintEvent (QPaintEvent *event)

{

EBSCChost - printed on 2/9/2023 9:19 AMvia .

[137]

Al use subject to https://ww.ebsco.contermnms-of-use

Item Views and Dialogs Chapter 5

if (canDraw)

{
paintImage ("", ui->productImage->pos().x (), ui->productImage-
>pos () .y ());

}
After that, we'll write the paintImage () function in mainwindow. cpp:

void MainWindow: :paintImage (QString fileName, int x, int vy)
{

QPainter painter;

QImage savelmage (150, 150, QImage::Format_RGB16);

if (!'fileName.isEmpty())
{

painter.begin (&savelmage) ;

painter.begin(this);

if (!'pix—>isNull())

{
painter.setClipRect (x, vy, 150, 150);
painter.fillRect (QRect (x, vy, 150, 150), Qt::SolidPattern);
painter.drawPixmap (x - drawPos.x (), y - drawPos.y(),
drawSize.width (), drawSize.height (), *pix);

painter.end();

if (fileName != "")

{
savelmage.save (fileName) ;
QMessageBox::information (this, "Success", "Image has been
successfully saved!");

}

This function does two things—if we don't set the £ileName variable, it will proceed to
draw the image on top of the image preview widget, otherwise, it will crop the image based

on the dimension of the image preview widget and save it to the disk following the
fileName variable.

[138]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Item Views and Dialogs Chapter 5

We'll call this function again when the save button is being clicked. This time, we'll set the
fileName variable as the desired directory path and filename, so that the Qpainter class
can save the image correctly:

voilid MainWindow: :on_saveButton_clicked()

{

if (canDraw)

{
if (!pix—>isNull())
{
// Save new pic from painter
paintImage (QCoreApplication::applicationDirPath() +
"/image.jpg", 0, 0);
}

}

Lastly, right-click on each of the three sliders and select Go to slot. Then, select
valueChanged (int) and click OK.

™ Gotoslot
Select signal
rangeChanged(int,int) QAbstractSlider A
cliderfoved(int) QAbstractSlider
cliderPressed() QAbstractSlider
cliderReleased() QAbstractSlider
valueChanged(int) QAbstractSlider
destrovedi O0hiect <
Concel

After that, we'll write the code for the s1ot functions resulting from the previous step:

void MainWindow: :on_scaleSlider_valueChanged (int value)
{

drawSize = imageSize * value / 100;

update () ;
}

void MainWindow: :on_leftSlider_valueChanged (int value)

{

[139]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Item Views and Dialogs Chapter 5

drawPos.setX (value * drawSize.width() / 100 * 0.5);
update () ;
I3

void MainWindow::on_topSlider_valueChanged (int value)

{
drawPos.setY (value * drawSize.height() / 100 * 0.5);
update () ;

I3

The scale slider is basically for users to resize the image to their desired scale within the
image preview widget. The left slider is for the users to move the image horizontally, while
the top slider is used by the users to move the image vertically. By combining these three
different sliders, users can adjust and crop the image to their liking before proceeding to
upload the image to the server, or use it for other purposes.

If you build and run the project now, you should be able to get this result:

B MainWindow — O x

Scale: I

Horizontal; I

Vertical: I

Browse Save

You can click on the Browse button to select a JPG image file to load. After that, the image
should appear on the preview area. You can then move the sliders around for adjusting the
cropping size. Once you're satisfied with the result, click the Save button to save your
image in the current directory.

[140]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

EBSCChost -

Item Views and Dialogs Chapter 5

Do check out the sample code that comes together with this book if you want to learn more

about it in detail. You can find the source code at the following GitHub page: https://
github.com/PacktPublishing/Hands-On-GUI-Programming-with-C-QT5

Summary

Input and Output (I/O) are the essence of modern computer software. Qt allows us to
display our data in many different ways that are both intuitive and engaging to the end
users. Other than that, the event system that comes with Qt makes our life as a programmer
a lot easier, as it tends to automatically capture the user inputs through the powerful signal-
and-slot mechanism and in-response triggering custom-defined behaviors. Without Qt, we
would have a hard time trying to figure out how to reinvent the proverbial wheel, and
might eventually end up creating a less user-friendly product.

In this chapter, we have learned how to make use of the fantastic features that are provided
by Qt—view widgets, dialog boxes, and file selection dialogs used to display important
information to the users. Furthermore, we also went through a fun little project that taught
us how to scale and crop an image using Qt widgets for user inputs. In the next chapter, we
will go for something more advanced (and fun too), which is creating our very own web
browser using Qt!

[141]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Integrating Web Content

In the previous chapter, we learned how to use item views and dialogs in Qt. In this
chapter, we will learn how to integrate web content into our Qt application.

Starting from the dotcom era in the late 90s and early 2000s, our world has become more
and more connected by the internet. Naturally, the applications running on our computers
are also evolving in that direction. Nowadays, most—if not all—of our software is in some
way connected to the internet, usually to retrieve useful information and display it to their
users. The easiest way to do this is to embed a web browser display (also known as a web
view) into the application's user interface. That way, the users can not only view the
information, but do so in an aesthetic way.

By using the web view, developers can take advantage of its rendering capability and
decorate their contents using the powerful combination of HTML (Hypertext Markup
Language) and CSS (Cascading Style Sheets). In this chapter, we will explore Qt's web
engine module and create our very own web browser.

In this chapter, we will cover the following topics:

¢ Creating your own web browser
e Sessions, cookies, and cache
e Integrating JavaScript and C++

Without further ado, let's check out how to create our own web browser in Qt!

Creating your own web browser

Once upon a time, Qt used a different module called WebKit to render web contents on its
user interface. However, the WebKit module has been completely deprecated since version
5.5 and replaced by a new module called WebEngine.

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Integrating Web Content Chapter 6

The new WebEngine module is based on the Chromium framework built by Google, and it
will only work on the Visual C++ compiler on the Windows platform. Therefore, if you're
running Windows, please make sure that you have installed Microsoft Visual Studio on
your computer as well as all the MSVC components for Qt that match the version of Visual
Studio installed on your computer. Other than that, the Qt WebEngine component is also
required for this particular chapter. If you have skipped the components during Qt's
installation, all you need to do is to run the same installer again and install it there:

pd

« Ot 5.9.2 Setup

Select Components

Flease select the components you want to install,

O] UWP x64 (MSVC2015)
] UWP x86 (MSVC2015)
] UWP a7 (MSVC2017)

Qt5.9.2

This component will occupy
approximately 3.48 GiB on your hard

disk drive.
[] UWP x64 (MSVC2017) s dnive

[J UwP %86 (MSVC2017)
msvc2013 ed-bit
msve2015 32-hit
msvc2015 ed-bit
msve2017 64-bit

[Android =86

] Android ARMWT

[sources

[] Gt Charts

[Gt Data Visualization
[] Gt Purchasing

[¢t virtual Keyboard
Ct WebEngine

[Gt Network Auth (TP)
[1 ot Remote Objects (TP)

.~ L Y

Default Select All Deselect Al

[143]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Integrating Web Content Chapter 6

Adding the web view widget

Once you are ready, let's get started! First, open up Qt Creator and create a new Qt Widgets
Application project. After that, open up the project (.pro) file and add in the following text
to enable the modules:

QT += core guili webengine webenginewidgets

If you didn't install the MSVC component (on Windows) or the Qt WebEngine component,
error messages will appear at this point if you are trying to build the project. Please run the
Qt installer again if that's the case.

Next, open up mainwindow.h and add the following header files:

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>
#include <QWebEngineView>

After that, open up mainwindow.h and add the following code:
private:
Ui::MainWindow *ui;

QOWebEngineView* webview;

Then, add the following code:

MainWindow: :MainWindow (QWidget *parent)
QOMainWindow (parent),
ui (new Uil::MainWindow)

ui->setupUi (this);

webview = new QWebEngineView (ui->centralWidget);
webview—>load (QUrl ("http://www.kloena.com"));

[144]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Integrating Web Content Chapter 6

Build and run the program now and you should see the following result:

B MainWindow — O x

kloena

|I|.|Idigitul

OUR SERVICES.:

CONSULTANCY

Looking for ways to join the'design & tech industry? We are here to help.

It's actually that simple. You have now successfully placed a web view on your application!

[145]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Integrating Web Content Chapter 6

The reason why we're writing C++ code to create the web view is that the default Qt
Designer used by the Qt Creator doesn't have web view in the widget box. The preceding
code simply creates the QWebEngineView object, sets its parent object (in this case, the
central widget), and sets the URL of the web page before showing the web view widget. If
you want to use Qt Designer to place a web engine view on your Ul, you must run the
standalone Qt Designer located in your Qt installation directory. For example, if you're
running Windows, it's located in C:QtQt5.10.25.10.2msvc2017_64bin. Please note that
it's located in the directory with the compiler name that supports the web engine:

[Ot Designer - [m} *
File Edit Form View Settings Window Help

DD DD BLERE NEMETHE BN
Widget Box ﬁlx|

|[Fiter |
o

@=n Horizontal Scroll Bar
[vertical scroit Bar
{l= Horizontal Slider

Object Class

&P Vertical Slider [Property Editor 8 x

Key Sequence Edit

Filter E%v — f‘:

hd B playidgets Property Value
T Label

Text Browser
%; Graphics View
[12) calendar widget
LCD Number

|Rmrtelimmer 5 X

/ e Filter

<resource root>

Progress Bar
= Horizental Line

Il Vertical Line

Open6L Widget

9 QWebEngineView ' w
E_J

Signal/Slot... Actio... Resource B...

[146]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Integrating Web Content Chapter 6

Creating a Ul for a web browser

Next, we are going to turn this into a proper web browser. First, we need to add a few
layout widgets so that we can put other widgets in place afterwards. Drag a Vertical Layout
(1) onto the centralWidget and select the central Widget from the object list. Then, click the
Lay Out Vertically button (2) located at the top:

How.ui @ WebBrowser - Ot Creator
Build Debug Analyze Tools Window Help

Filter Tvpe
s Layouts ~ ypeHere 2 ®

= i
= Vertical Layout

UI]] Haorizontal Layout

Qi@a

2533 Grid Layout

[FIF1F]

ig Form Layout | -— -
b Spacers 1 =

gl Horizontal Spacer . [
g Vertical Spacer
i Buttons . . .

2] Push Button

@ Tool Button

(® Radic Button

i Check Box

@ Command Link Button
Dialeg Button Box

After that, select the newly added vertical layout, right-click and select Morph into |
QFrame. The reason why we're doing this is that we want to place the web view widget
under this QFrame object instead of the central widget. We must convert the layout widget
to a QFrame (or any QWidget-inherited) object so that it can adopt the web view as its child.
Finally, rename the QFrame object to webviewFrame:

[147]

- printed on 2/9/2023 9:19 AMvia . Al use subject to https://wmv. ebsco.cont terns-of-use

Integrating Web Content Chapter 6

Type Here

D B R Y R S B SRR, =
Morph into 2 QWwidget

" ek Cut Ctrl+X QFrame g

: _'_l. EU‘P‘}' Ctrl+C QGFD‘UPBD}[R

| Bl Ppaste Ctrl+V OTabWidget

v Select All Ctrl+ A O5tackedWidget

' ' Delete OToolBox

] LE]II' L Dl T e =}

Once you're done with that, let's drag and drop a Horizontal Layout widget above the
QFrame object. Now we can see that the size of both the Horizontal Layout widget and the
QFrame object are the same, and we don't want that. Next, select the QFrame object and set
its Vertical Policy to Expanding:

v sizePolicy [Preferred, Expanding, 0, 0]
Horizontal Policy Preferred

Vertical Policy Expanding i

Horizontal Stretch | Fixed

Wertical Stretch Mlnl.mum
o : Maxirmum
¥ minimumbSize Preferred
Width MinimumExpandin

Height

¥ maxmumbSize

[148]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Integrating Web Content Chapter 6

Then, you will see the top layout widget is now very thin. Let's temporarily set its height to

20, like so:
Type Here Property Value
e — [;
| E E layoutName horizontalLayout
T T T 5 layoutLeftMargin 0

B B I layoutTopMargin |20
layoutRightMargin 0
layoutBottemMargin - 0

layoutSpacing]

layoutStretch

layoutSizeConstraint SetDefaultConstraint

After that, drag and drop three push buttons to the horizontal layout and we can now set its
top margin back to 0:

Filter
G Layouts A

Type Here

g Vertical Layout
H[I[l Herizontal Layout

Gaa -
444 Gnd Layout

= 1r)
44 Form Layout

s Spacers

[F#l Horizontal Spacer
E Vertical Spacer

v Buttons

Push Button

Tool Button

(®) Radio Button

' Check Box

e Command Link Button

Dialog Button Box

[149]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Integrating Web Content Chapter 6

Set the buttons' labels to Back, Forward, and Refresh respectively. You may also use icons

instead of text to display on these buttons. If you wish to do that, simply set the text
property to empty and select an icon from the icon property. For the sake of simplicity, we'll

just display texts on the buttons for this tutorial.

Next, place a line edit widget on the right-hand side of the three buttons, followed by
adding another push button with a Golabel:

]] [
Type Here
Back Forward Refresh Go
[] []
= = =
[150]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Integrating Web Content Chapter 6

After that, right-click on each of the buttons and select Go to slot. A window will pop up,
select clicked() and press OK.

[Goto slot
Select signal
clicked() OAbstractButton A
clicked(bool) QAbstractButton
pressed() 2AbstractButton
released() OAbstractButton
toggled(bool) CQabstractButton
destroved() O0hiect v
Cancel

The signal functions for these buttons will look something like this:

vold MainWindow: :on_backButton_clicked()
{
webview->back () ;

}

vold MainWindow: :on_forwardButton_clicked()
{

webview—>forward() ;

}
vold MainWindow: :on_refreshButton_clicked()
{
webview—>reload() ;
}

void MainWindow: :on_goButton_clicked()
{

loadPage () ;
}

[151]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Integrating Web Content Chapter 6

Basically, the QwebEngineViewclass already provided us with functions such as back (),
forward () and reload (), so we just have to call these functions when the respective
button is pressed. The 1oadPage () function, however, is a custom function that we will
write:

void MainWindow: :loadPage ()

{
QString url = ui->addressInput->text();
if (lurl.startsWith("http://") && 'url.startsWith ("https://"))

{
url = "http://" + url;
}
ui->addressInput->setText (url);
webview—->1load (QUrl (url));
I3

Remember to add the declaration for loadPage () inmainwindow.h as well.

Instead of just calling the 1oad () function, I think we should do something more.
Normally, users will not include the http:// (or https://) scheme when typing the URL
of the web page, but it is required when we are passing the URL to the web view. To solve
this problem, we automatically check for the existence of the scheme. If none has been
found, we will manually add the http:// scheme to the URL. Also, don't forget to call it at
the beginning to replace the 1oad () function:

MainWindow: :MainWindow (QWidget *parent)
QMainWindow (parent),
uil (new Ui::MainWindow)

ui->setupUi (this);

webview = new QWebEngineView (ui->webviewFrame);
loadPage() ;

[152]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Integrating Web Content Chapter 6

Next, right-click on the text input and select Go to slot. Then, select returnPressed() and

click the OK button:
[Goto slot
Select signal
cursorPositicnChanged(int, int) OLineEdit A
editingFinished() QLinekdit
returnPressed() COLineEdit
selecticnChanged() CLineEdit
textChanged(C5tring) ClLineEdit
textFdited(CStrinm O ineFdit =
Cancel

This slot function will be called when the user presses the Return key on the keyboard once
they have finished typing the web page URL. Logically, the user would expect the page to
start loading not have to press the Go button every time they are done typing the URL. The
code is really simple, we'll just call the 1oadPage () function we just created in the previous
step:

void MainWindow: :on_addressInput_returnPressed()

{
loadPage () ;

}

Now that we have done a significant amount of code, let's build and run our project and see
how it turns out:

[153]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Integrating Web Content Chapter 6

B MainWindow — O *

Badk Forward Refresh Go

_v

The result shown doesn't really look that great. For some reason, the new web view doesn't
seem to scale properly even on an expanding size policy, at least on Qt version 5.10, which
is being used when writing this book. It might be fixed in the future version, but let's find a
way to solve this issue. What I did was to override an inherited function in the main
window called paintEvent (). Inmainwindow.h, simply add the function declaration, like
this:

public:
explicit MainWindow (QWidget *parent = 0);
~MainWindow () ;
void paintEvent (QPaintEvent *event);

Then, write its definition in mainwindow. cpp like so:

void MainWindow: :paintEvent (QPaintEvent *event)
{
QMainWindow: :paintEvent (event) ;
webview—->resize (ui->webviewFrame->size ());

[154]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Integrating Web Content Chapter 6

This paintEvent () function will be automatically called by Qt whenever the main
window needs to re-render its widgets (such as when the window is being resized). Since
this function will be called when the application is being initialized and also when the
window is being resized, we will use this function to manually resize the web view to fit
with its parent widget.

Build and run the program again and you should be able to get the web view to fit nicely,
regardless of how you resize the main window. Additionally, I also removed the menu bar,
toolbar, and status bar to make the whole interface look more tidy, since we're not using
any of those in this application:

B MainWindow — O *

Back Forward Refresh |hi:l:|:|:,.f,lflm\u.r\.u.'\ul.k:l-:::er1a.::::n1,.r Go

kloena
hinldigital

OUR SERVICES:
CONSULTANCY

Looking for ways to join the design & tech industry? We are here to help.

LATEST NEWS

Next, we need a progress bar to show users the current progression of the page load. To do
that, first we need to place a progress bar widget below the web view:

[155]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Integrating Web Content

Chapter 6

]
i

COUOTE SpTT T

Time Edit

Date Edit

Date/Tirme Edit

Dial

Harizontal Scroll Bar

Vertical Scroll Bar

Harizontal Slider

Vertical Slider

Key Sequence Edit
Display Widgets

Label

Text Browser

Graphics View

2| Calendar Widget

)

LCD Mumber

Progress Bar

IE BRI EC B tF=(©ElECH:

= Horizontal Line
|||| Vertical Line
[Z]] Open6L Widget

Back Forward Refresh |hth:u:ff'n"i\'u\'.kloena.com

Go

-

MName Used Text Shortcut Checkable

ToolTip

Then, add these two slot functions to mainwindow.h:

private slots:

void on_backButton_clicked();

void on_forwardButton_clicked();

void on_refreshButton_clicked();

void on_goButton_clicked();

void on_addressInput_returnPressed();
void webviewLoading (int progress);
void webviewLoaded() ;

Their function definition in mainwindow. cpp looks like this:

void MainWindow: :webviewLoading (int progress)

{

ui->progressBar->setValue (progress);

void MainWindow: :webviewLoaded ()

{

ui->addressInput->setText (webview->url () .toString());

EBSCChost - printed on 2/9/2023 9:19 AMvia

[156]

. Al'l use subject to https://ww. ebsco.con terns-of-use

Integrating Web Content Chapter 6

The first function, webviewLoading () simply takes the progression level (in the form of a
percentage value) from the web view and directly supplies it to the progress bar widget.

The second function webviewLoaded () will replace the URL text on the address input with
the actual URL of the web page loaded by the web view. Without this function, the address
input will not display the correct URL after you've pressed the back button or the forward
button. Once you're done, let's compile and run the project again. The result looks amazing:

B MainWindow — O *

Back Forward Refresh |htn:ls:ﬂmalaysia.yahoo.mmf?‘p=us | Go

#A Home Mail Search News Finance Sport Lifestyle Celebrity §S

YAHOO" Search for news, symbols or companies .

FINANCE

Finance Home Markets News My Portfolio My Screeners Currency Cc

Exploring the best ideas

in global markets

Straits Times Index Nikkei Hang Seng

344215 st 22,550.85 A 29.866.32

+18.98 (+0.55%) © L2770 (+0.42%) ¥ +158.38 (+0.53%
1 3

You will ask me, what's the actual use of this if I'm not making a web browser using Qt?
There are many other uses for embedding a web view into your application, for instance,
showing the latest news and updates of your product to the users through a nicely
decorated HTML page, which is a common method used by most of the online games in the
gaming market. The stream client, for example, also uses a web view to display the latest
games and discounts to their players.

[157]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Integrating Web Content Chapter 6

These are often called hybrid applications, which combine web content with native x, so
you can leverage both dynamic contents from the web as well as code running natively that
has the benefits of high performance and a consistent look and feel.

Other than that, you can also use it to display the printable report in HTML format. You can
easily send the report to the printer, or save it as a PDF file by calling
webview—>page () —>print () or webview->page () —>printToPdf ().

To learn more about printing from the web view, check out the following
link: nttp://doc.Qt.10/Qt-5/qwebenginepage.html#print.

You might also want to create the entire user interface of your program using HTML and
embed all the HTML, CSS and image files into Qt's resource package and run it locally from
the web view. The possibilities are endless, the only limit is your imagination!

To learn more about Qt WebEngine, check out the documentation here:
https://doc.Qt.i0/Qt-5/gtwebengine-overview.html.

Managing browser history

Qt's web engine stores all the links which the user has visited into an array structure for
later use. The web view widget uses this to move back and forth between history by calling
back () and forward ().

If you need to manually access this browsing history, add the following header to
mainwindow.h:

#include <QWebEnginePage>

After that, use the following code to obtain the browsing history in the form of a
QWebEngineHistory object:

QWebEngineHistory* history = QWebEnginePage::history();

You can get the entire list of visited links from history->items () or navigate between
history using functions such as back () or forward (). To clear the browsing history, call
history->clear (). Alternatively, you can also do this:

QWebEngineProfile::defaultProfile () ->clearAllVisitedLinks();

[158]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Integrating Web Content Chapter 6

To learn more about the QWwebEngineHistory class, visit the following
link: nttp://doc.Qt.10/Qt-5/qwebenginehistory.html.

Sessions, cookies, and cache

Just like any other web browser, the WebEngine module also supports mechanisms used to
store temporary data and persistent data for session and cache. Sessions and cache are very
important as they allow websites to remember your last visit and associate you with data,
such as a shopping cart. The definitions of a session, a cookie, and a cache are shown as
follows:

e Session: Normally, sessions are server-side files that contain user information
with a unique identifier, which gets sent from the client side to map them to a
specific user. In Qt, however, a session simply means a cookie that doesn't have
any expiration date, and hence it will be gone when the program is closed.

e Cookie: Cookies are client-side files that contain user information or any other
information that you want to save. Unlike sessions, cookies have an expiration
date which means they will remain valid and can be retrieved before reaching the
expiration date, even if the program has been closed and re-opened again.

¢ Cache: Caching is a method used to speed up page loading by saving the page
and its resources to a local disk during its first load. If the user loads the same
page again on the next visit, the web browser will reuse the cached resources
instead of waiting for the download to complete, which can significantly speed
up the page loading time.

Managing sessions and cookies

By default, webEngine doesn't save any cookie and treats all user information as temporary
sessions, which means when you close the program, your login session on the web page
will automatically become invalid.

To enable cookies on Qt's WebEngine module, first add the following header to

mainwindow. h:

#include <QWebEngineProfile>

[159]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Integrating Web Content Chapter 6

Then, simply call the following function to force persistent cookies:

QWebEngineProfile::defaultProfile () ->setPersistentCookiesPolicy (QWebEng
ineProfile::ForcePersistentCookies);

After calling the preceding function, your login session will continue to exist after closing
the program. To revert it to non-persistent cookies, we simply call:

QWebEngineProfile::defaultProfile () ->setPersistentCookiesPolicy (QWebEng
ineProfile: :NoPersistentCookies) ;

Other than that, you can also change the directory in which your Qt program stores the
cookies. To do that, add the following code to your source file:

QWebEngineProfile::defaultProfile () ->setPersistentStoragePath ("your
folder");

If, for some reason, you want to manually delete all the cookies, use the following code:

QWebEngineProfile: :defaultProfile () —>cookieStore () ->deleteAllCookies();

Managing cache

Next, let's talk about a cache. There are two types of cache which you can use in the web
engine module, namely, Memory Cache and Disk Cache. Memory Cache uses the
computer's memory to store the cache, which will be gone once you've closed the program.
On the other hand, Disk Cache saves all the files in the hard disk, and hence they will still
remain, even after you've turned off your computer.

By default, the web engine module saves all the cache to the disk, if you need to change
them to Memory Cache, call the following function:

QWebEngineProfile::defaultProfile () ->setHttpCacheType (QWebEngineProfile
: :MemoryHttpCache) ;

Alternatively, you can also disable caching completely by calling:

OWebEngineProfile::defaultProfile () —>setHttpCacheType (QWebEngineProfile
::NoCache) ;

[160]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Integrating Web Content Chapter 6

As for changing the folder to which your program saves the cache files, call the
setCachePath () function:

QWebEngineProfile::defaultProfile () —>setCachePath ("your folder");

Lastly, to delete all the cache files, call clearHttpCache ():

QWebEngineProfile::defaultProfile () ->clearHttpCache();

There are many other functions that you can use to change the settings related to cookies
and cache.

You can read more about it at the following
link: https://doc.Qt.i0/Qt-5/quwebengineprofile.html

Integrating JavaScript and C++

One powerful feature of using Qt's web engine module is that it can call JavaScript
functions from C++, as well as calling C++ functions from JavaScript. This makes it more
than just a web browser. You can use this to access features that are not supported by the
web browser standard, such as file management and hardware integration. Things like that
are not possible with W3C standards; hence, it is not possible to do it in native JavaScript.
However, you can implement these features using C++ and Qt, then simply call the C++
functions from your JavaScript. Let's take a look at how we can achieve this with Qt.

Calling JavaScript functions from C++
After that, add in the following code to the HTML file we just created:

<!DOCTYPE html><html>
<head>
<title>Page Title</title>
</head>
<body>
<p>Hello World!</p>
</body>
</html>

[161]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Integrating Web Content Chapter 6

These are the basic HTML tags which show you nothing other than a line of words that says
Hello World!. You can try and load it using your web browser:

c | ®

Hello World!

After that, let's go back to our Qt project and go to File | New File or Project and create a
Qt Resource File:

[New File or Project *
Choose a template: All Templates hd
Projects
Apolicati Ot tem Model Creates a Qt Resource file {.grc).
ication |
i Supported Platforms: Desktop
Library ™ h
Other Project wh Ot Designer Form Class

Mon-Ot Project —h
u

Import Project Ot Designer Form

Files and Classes

Ces | Ot Resource File
Meodeling ot

LY
Qt QML File (Ot Quick 2)
GLSL ami
General B,
) QitQuick Ul File
Java ui.gml

Python
J5Fil
Nim = e

[162]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Integrating Web Content Chapter 6

Then, open up the Qt resource file we just created and add in an /html prefix followed by
adding the HTML file to the resource file, like so:

~ | @ /html
G test.html
Add - Remove Remove Missing Files

Right-click on text.html while the resource file is still opened, then select Copy Resource
Path to Clipboard. Right after that, change the URL of your web view to:

webview->1load (QUrl ("grc:///html/test.html"));

You can use the link you just copied from the resource file, but make sure you add the URL
scheme grc:// at the front of the link. Build and run your project now and you should be
able to see the result instantly:

B MainWindow — | *

Hello World!

[163]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Integrating Web Content Chapter 6

Next, we need to set up a function in JavaScript that will be called by C++ in just a moment.
We'll just create a simple function that pops up a simple message box and changes the
Hello World! text to something else when called:

<!DOCTYPE html>

<html>
<head>
<title>Page Title</title>
<script>
function hello ()
{
document .getElementById ("myText") .innerHTML =
"Something happened!";
alert ("Good day sir, how are you?");
}
</script>
</head>
<body>
<p id="myText">Hello World!</p>
</body>
</html>

Note that I have added an ID to the Hello World! text so that we are able to find it and
change its text. Once you're done, let's go to our Qt project again.

Let's proceed to add a push button to our program UI, and when the button is pressed, we
want our Qt program to call the hello () function we just created in JavaScript. It's actually
very easy to do that in Qt; you simply call the runJavascript () function from the
QWebEnginePage class, like so:

void MainWindow: :on_pushButton_clicked()
{
webview->page () —>runJavaScript ("hello();");

}

[164]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Integrating Web Content Chapter 6

The result is pretty astounding, as you can see from the following screenshot:

B MainWindow - O 4 B MainWindow - O b4

Hello World! Something happened!

B Javascript Alert - gre:///htmlftest.., X

o Good day sir, how are you?

Press Me Press Me

You can do a lot more than just change the text or call a message box. For example, you can
start or stop an animation in an HTML canvas, show or hide an HTML element, trigger an
Ajax event to retrieve information from a PHP script, and so on and so forth... endless
possibilities!

Calling C++ functions from JavaScript

Next, let's take a look at how we can call C++ functions from JavaScript instead. For the sake
of demonstration, I'll put a text label above the web view and we will change its text using a
JavaScript function:

[165]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

EBSCChost -

Integrating Web Content

Chapter 6

Filter
T DoOOoTeE PIII OF

() Time Edit o

"% Date Edit

% Date/Tirne Edit
{J Dial

m=y Horizental Scroll Bar
@ Vertical Scroll Bar
‘m= Haorizontal Slider
5P Vertical Slider
Key Sequence Edit

i Dis;
T Label

@ Text Browser
ﬁ Graphics View
12| Calendar Widget
@ LCD Mumber

A This is some random text.

=] =]

Press Me

Normally, JavaScript can only work within the HTML environment and hence, is only able
to alter HTML elements and not something outside the web view. However, Qt allows us to
do just that by using the web channel module. So let's open up our project (. pro) file and

add the web channel module to the project:

QT += core gui webengine webenginewidgets webchannel

After that, open up mainwindow.h and add in the QWebChannel header:

#include <QMainWindow>
#include <QWebEngineView>
#include <QWebChannel>

[166]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Integrating Web Content Chapter 6

At the same time, we also declare a function called doSomething (), with a Q_INVOKABLE
macro in front of it:

Q_INVOKABLE void doSomething() ;

The 0_INVOKABLE macro tells Qt to expose the function to the JavaScript engine, and thus
the function can then be called from JavaScript (and QML, since QML is also based on
JavaScript).

Then in mainwindow. cpp, we'll have to first create a QWwebChannel object and register our
main window as a JavaScript object. You can register any Qt object as a JavaScript object as
long as it is derived from the QObject class.

Since we're going to call the doSomething () function from JavaScript, we must register the
main window to the JavaScript engine. After that, we also need to set the QWwebChannel
object we just created as the web channel of our web view. The code looks like the
following;:

QWebChannel* channel = new QWebChannel (this);
channel->registerObject ("mainwindow", this);
webview->page () —>setWebChannel (channel) ;

Once you're done with that, let's define the doSomething () function. We're just going to
do something simple—change the text label on our Qt GUI, and that's all:

void MainWindow: :doSomething ()
{

ui->label->setText ("This text has been changed by javascript!");
}

We're done with the C++ code, let's open up our HTML file. There are couple of things we
need to do to make this work. First, we need to include the gwebchannel. js script that is
embedded in your Qt program by default, so you don't have to search for that file in your
Qt directory. Add the following code in between the head tags:

<script type="text/javascript"
src="qgrc:///gtwebchannel/gwebchannel.js"></script>

Then, we create a QWebChannel object in JavaScript when the document is successfully
being loaded by web view and link the mainwindow variable to the actual main window
object from Qt (which we registered earlier in C++). This step must only be done after the
web page has been loaded (through window.onload callback); otherwise, there might be
problems creating the web channel:

var mainwindow;

[167]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Integrating Web Content Chapter 6

window.onload = function ()

{

new QWebChannel (Qt.webChannelTransport, function (channel)

{

mainwindow = channel.objects.mainwindow;
})i
}

After that, we create a JavaScript function that calls the doSomething () function:

function myFunction ()

{

mainwindow.doSomething () ;

}

Finally, add a button to the HTML body and make sure myFunction () is called when the
button is pressed:

<body>

<p id="myText">Hello World!</p>

<button onclick="myFunction ()">Do Something</button>
</body>

Build and run the program now and you should be able to get the following result:

B MainWindow - Od >

This iz some random text.

Hello World! Hello

2. Text changed

| Do Something | Do Something |

1.Click here

Press Me

[168]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Integrating Web Content Chapter 6

You can do a lot of useful things using this method other than altering the properties of a Qt
widget. For example, saving a file to the local hard disk, getting scanned data from a
barcode scanner, and so on. There is no longer any barrier between native and web
technology. However, do be extra aware of any possible security implications of this
technique. As the old saying goes:

"With great power comes great responsibility.”

Summary

In this chapter, we have learned how to create our own web browser and make it interact
with the native code. Qt provides us with the web channel technology that makes Qt a very
powerful platform for software development.

It takes advantage of both the power of Qt and the beauty of web technology, which means
you can have a lot more options when it comes to development and not just be limited to
Qt's methods. I'm really excited and can't wait to see what you can achieve with this!

Join us in the next chapter to learn how to create a map viewer similar to Google Maps,
using Qt!

[169]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Map Viewer

User location and map display are two features that have become more common these days
and have been used in various types of applications. They are commonly used for both
backend analytics and frontend display purposes.

The map viewer can be used for navigation, nearby point-of-interest lookup, location-based
services (such as calling for a taxi), and so on. You can use Qt to achieve most of it but you
will require an advanced database system, if you're going for something more complex.

In the previous chapter, we learned how to embed a web browser into your application. In
this chapter, we will try something more fun, which covers the following topics:

¢ Creating a map display

e Marker and shape display
e Obtaining a user's location
¢ Geo Routing Request

Let's proceed to create our own map viewer!

Map display

The Qt Location module provides developer access to geocoding and navigation
information. It can also allow the user to do a place search for which the data needs to be
retrieved, either from a server or from the user's device.

At the moment, Qt's map view does not support C++, only QML. This means that we can
only use QML script to alter anything related to the visual—displaying a map, adding a
marker, and so on; on the other hand, we can use the C++ classes provided by the module to
obtain information from a database or from a service provider, before displaying it to the
user via QML.

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Map Viewer Chapter 7

Just a quick note, QML (Qt Modeling Language) is a user interface markup language for Qt
Quick applications. Since QML is powered by the JavaScript framework, its coding syntax is
almost similar to the JavaScript. If you need an in-depth learning on QML and Qt Quick,
please proceed to chapter 14, Qt Quick and QML, as it is an entire chapter dedicated to it.

There are many tutorials out there that teach you how to create a fully fledged map viewer
using Qt Quick and QML language, but there isn't a lot that teaches you how to combine
C++ with QML. Let's get started!

Setting up the Qt location module

1. First, create a new Qt Widgets Application project.
2. After that, open up your project file (. pro) and add the following modules to

your Qt project:

QT += core gui location gml quickwidgets

Besides the 1ocation module, we also added qml and quickwidgets modules, which are
required by the map display widget in the next section. That is all we need to do for
enabling the 0t Location module in our project. Next, we will proceed to add the map
display widget to our project.

Creating a map display

Once you are ready, let's open up mainwindow.ui and remove the menuBar, toolBar, and
statusBar as we don't need any of those in this project:

Object Class

* MainWindow COMainWindow
menuBar COMenuBar
toolBar CiToolBar
statusBar S
.. Remove

Promote to ...
[171]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Map Viewer Chapter 7

After that, drag a QQuickWidget from the widget box to the UI canvas. Then, click on the
Lay Out Horizontally button located at the top of the canvas to add layout properties to it:

File Edit Build Debug Analyze Tools Window Help

Filter L] L] L]

&P Vertical Slider

Key Sequence Edit

» Display Widgets
5 Label

@ Text Browser
h Graphics View
12| Calendar Widget
SN (2] LCD Mumber

E] Progress Bar

E Herizontal Line
0 |||| Vertical Line
r [-7] OpenGL Widget
<7 OQuickWidget .

Then, set all the margin properties of the central widget to 0:

v

layoutMame verticalLayout
layoutleftMargin 0

layoutTopMargin 1]

layoutRightMargin 0

layoutBottomMargin 0

layoutSpacing 5]

layoutStretch 0

layoutSizeConstraint SetDefaultConstraint W

[172]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Map Viewer Chapter 7

Next, we need to create a new file called mapview.qml by going to File | New File or
Project.... After that, select Qt category and follow QML File (Qt Quick 2):

[Mew File or Project x
Choose a template: All Templates hd

Projects D at Iterr.1 Model Creates a QML file with boilerplate code, starting

S 0O ot Designer Form Class with “impart QtQuick 2.0"
Application
Library O a Designer Form Supported Platforms: 2ndroid Device
) [Ot Resource File Desktop

Other Project [QML File (Qt Quick 2)

Mon-Ot Project [l QtQuick Ul File

Import Project [l J5File

Files and Classes
Ce+

Meodeling

ot

GLSL

General

Java

Python

Mim

Once the QML file has been created, open it up and add the following code to include the
location and positioning modules to this file so that we can use its functions later:

import QtQuick 2.0
import QtLocation 5.3
import QtPositioning 5.0

[173]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Map Viewer Chapter 7

After that, we create a P1ugin object and name it osm (Open Street Map), we then create a
Map object and apply the plugin to its plugin property. We also set the

starting coordinates to (40.7264175, -73.99735), which is somewhere in New York.
Other than that, the default zoom level is set to 14, which is enough to have a good view
of the city:

Item
{
Plugin
{
id: mapPlugin
name: "osm"
}
Map
{
id: map

anchors.fill: parent

plugin: mapPlugin

center: QtPositioning.coordinate (40.7264175,-73.99735)
zoomLevel: 14

}

Before we're able to display the map on our application, we must first create a resource file
and add the QML file to it. This can be done by going to File | Create New File or Project....
Then, select Qt category and pick Qt Resource File.

Once the resource file has been created, add a prefix called qml, and add the QML file to the
prefix, like so:

v i@ /qml

bml mapview.gml

We can now open up mainwindow.ui and set the source property of the QQuickWidget
togrc:/gml/mapview.qgml. You may also click the button behind the source property to
select the QML file straight from the resources.

[174]

- printed on 2/9/2023 9:19 AMvia . Al use subject to https://wmv. ebsco.cont terns-of-use

Map Viewer

Chapter 7

Once you're done, let's compile and run our project and see what we've got! You can try
panning around and zooming in and out from the map using the mouse, too:

7 MainWindow

= & &
LSO IS/
. o R
0 W
o LR
- o
w N'e wo

wnsmmmuu l'!'.l £ Y 0F k

SOUARE
UICH - VILLAGE “Nomo’ 10
a3 /HISTORIC/ EASTVILLAGE
UNIVERSITY “'STR'CT T
Bty EiE : . -
. S Y s - &
- g ’ 5
SOHO L] m .
S
] UTTLE TALY Esra‘r.‘ﬂd Street

india Street/3
£
=l
E
1

Greenpaoint

Even though we can achieve the same result by using the web view widget, it will make us
write a ton of JavaScript code just to display a map like this. By using Qt Quick, we only

need to write a few simple lines of QML code and that's it.

Marker and shape display

In the previous section, we successfully created a map display, but that is just the beginning
of this project. We need to be able to display custom data in the form of markers or

shapes layered on top of the map, so that the user can understand the data.

[175]

- printed on 2/9/2023 9:19 AMvia . Al use subject to https://wmv. ebsco.cont terns-of-use

EBSCChost -

Map Viewer Chapter 7

Displaying position markers on a map

If I tell you my favorite restaurant is located at (40.7802655, -74.108644), you won't be
able to make sense of it. However, if those coordinates are being displayed on the map view
in the form of a location marker, instantly, you will have an idea of where it is. Let's see
how we can add position markers to our map view!

First of all, we need a marker image that should look something like this, or even better,
design your own marker:

After that, we need to register this image to our project's resource file. Open up
resource.qrc with Qt Creator and create a new prefix called images. Then, add the
marker image to the newly created prefix. Do make sure that the image has a transparent
background to look good on the map:

¥ @ fqml

bl mapview.gml

v | @ fimages

9 map-marker-icon.png

Next, open up mapview.gml and replace the code with the following:

Item
{

id: window

Plugin

{
id: mapPlugin
name: "osm"

[176]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Map Viewer Chapter 7

Image
{
id: icon
source: "qrc:///images/map-marker-icon.png"
sourceSize.width: 50
sourceSize.height: 50

}
MapQuickItem
{
id: marker
anchorPoint .x: marker.width / 4
anchorPoint.y: marker.height
coordinate: QtPositioning.coordinate (40.7274175,-73.99835)
sourceltem: icon
}
Map

id: map

anchors.fill: parent

plugin: mapPlugin

center: QtPositioning.coordinate (40.7264175,-73.99735)
zoomLevel: 14

Component .onCompleted:

{
map.addMapItem (marker)

}

In the preceding code, we first added an image object that will be used as the marker's
image. Since the original image is really huge, we have to resize it by setting the
sourceSize property to 50x50. We must also set the anchor point of the marker image
to the center-bottom of the image because that is where the tip of the marker is located.

[177]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Map Viewer Chapter 7

After that, we create a MapQuickItem object that will be served as the marker itself. Set the
marker image as the sourceItem of the MapQuickItem object, then add the marker to the
map by calling map.addMapIten (). This function must be called after the map has been
created and is ready to be displayed, which means we can only call it after

the Component . onCompleted event has been triggered.

Now that we're done with the code, let's compile and look at the result:

7 MainWindow — O by

s 7 % [R 5 RUOSE HILL -t L 3=
e : 7 B }’), & ﬂ' =] f g
= . Y7 ELATIRON A, |
- ldth Strest-8th " / X |
Avenue (ACELH ! BUILDING 23r:| 5Lree115: 4 -w* i

KIPS HAT |

Christopher “m
Street (PATHI (@
vm; | i

I

] '-:L'-HEENMEH '
vitLage Y 4 H,STD,,_,C,, | EASTVILLAGE

I UNIVERS v DISTRICT
Sprlng stmet \I'ILLAGE; (2t .‘
v r:___L MDHCI E‘ s
i LTSS 0%
__'; SO0HO

l!.'l\\ Ltrru: ITALY Egand Street ;

1.._- @GISHICERES;&amG D -l -l}ﬂ-‘.'eﬁdﬂer Dala £ ﬂ,a.:u-_u:' i Glﬂlﬂ:l.lla:rs Style © Maxim F
Even though it's now looking all good, we don't want to hardcode the marker in QML.

Imagine adding hundreds of markers to the map, it's simply impossible to manually add
each marker using a distinct set of code.

[178]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

EBSCChost -

Map Viewer Chapter 7

In order to create a function that allows us to dynamically create position markers, we need
to first separate the marker QML code from mapview.gml to a new QML file. Let's create a
new QML file called marker.gml and add it to the resource file:

¥ | @ fqml
E£| mapview.qml
E..;_;ﬁ rarker.qml
¥ @ fimages

Qo rmap-marker-icon.png

Next, remove both the MapQuickItem and Image objects from mapview.gml and move it
tomarker.gml:

import QtQuick 2.0
import QtLocation 5.3

MapQuickItem
{
id: marker
anchorPoint.x: marker.width / 4
anchorPoint.y: marker.height
sourceltem: Image
{
id: icon
source: "qgrc:///images/map-marker—icon.png"
sourceSize.width: 50
sourceSize.height: 50

}

As you can see from the preceding code, I have merged the Image object with the
MapQuickItem object. The coordinate property has also been removed as we will only set it
when putting the marker on the map.

[179]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Map Viewer Chapter 7

Now, open up mapview.qml again, and add this function to the Item object:

Item
{

id: window

Plugin

{
id: mapPlugin
name: "osm"

function addMarker (latitude, longitude)

{
var component = Qt.createComponent ("grc:///gml/marker.qml")
var item = component.createObject (window, { coordinate:
QtPositioning.coordinate (latitude, longitude) })
map.addMapItem(item)

I3

From the preceding code, we first created a component by loading the marker.qml file.
Then, we created an object/item from the component by calling createObject (). In the
createObject () function, we made the window object as its parent and set its position to
the coordinate supplied by the addMarker () function. Finally, we added the item to the
map for it to be rendered.

Whenever we want to create a new position marker, we'll just have to call this
addMarker () function. To demonstrate this, let's create three different markers by calling
addMarker () three times:

Map
{
id: map
anchors.fill: parent
plugin: mapPlugin
center: QtPositioning.coordinate (40.7264175,-73.99735)
zoomLevel: 14

Component .onCompleted:

{
addMarker (40.7274175,-73.99835)
addMarker (40.7276432,-73.98602)
addMarker (40.7272175,-73.98935)

[180]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Map Viewer Chapter 7

Build and run the project again, and you should be able to see something like this:

7 MainWindow

] [}

. i oo f i
Christopher : g
S'Imclt_i ATH) y m
@ - Ne

ViR on @ ¥
GREENWICH ‘ 1
viLLAGE ¥ E,’“HE?SEM{-
UNIVERSITY, / DISTRICT,
SprIrI\E Egrout VILLAGE.f ; !

:g o - 'fi____IHDHD i
T ;
- @ m
N, oo K] Aol |
y Ll Y

o

Al =
[
if o m

N YO A T[T)y)
Franklin Street) {;rrLE ALY Grind Street

T : © [B.D;:I m

'
"

CHINATOWN

..Tﬂlﬂ.F.l'n

Research Group @

We can go even further by adding a text label to each of the markers. To do that, first open
up marker.qgml, then add another module called QtQuick.Controls:

import QtQuick 2.0
import QtQuick.Controls 2.0
import QtLocation 5.3

After that, add a custom property to the MapQuickItem object called 1abelText:

MapQuickItem

{
id: marker
anchorPoint.x: marker.width / 4
anchorPoint.y: marker.height
property string labelText

[181]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Map Viewer

Chapter 7

Once you're done, change its sourceItem property into this:

sourceltem: Item
{
Image
{
id: icon
source: "qrc:///images/map-marker-icon.png"
sourceSize.width: 50
sourceSize.height: 50

Rectangle

{
id: tag
anchors.centerIn: label
width: label.width + 4
height: label.height + 2
color: "black"

Label

{
id: label
anchors.centerIn: parent
anchors.horizontalCenterOffset: 20
anchors.verticalCenterOffset: -12
font.pixelSize: 16
text: labelText
color: "white"

}

From the preceding code, we created an Item object to group multiple objects together.
Then, we created a Rectangle object to serve as the label background and a Label object

for the text. The text property of the Label object will get linked to the

labelText property of the MapQuickItem object. We can add another input to the

addMarker () function for setting the 1abelText property, like so:

function addMarker (name, latitude, longitude)

{

var component = Qt.createComponent ("qrc:///gml/marker.qml")

var item = component.createObject (window, { coordinate:

QtPositioning.coordinate (latitude, longitude), labelText: name })

map.addMapItem (item)

[182]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Map Viewer Chapter 7

Therefore, when we create the markers, we can call the addMarker () function like this:

Component .onCompleted:

{
addMarker ("Restaurant", 40.7274175,-73.99835)
addMarker ("My Home", 40.7276432,-73.98602)
addMarker ("School", 40.7272175,-73.98935)

I3

Build and run the project again and you should see this:

B MainWindow — O x
L
m U]
i N'e wao
wasHINGTON [0 Y O r I(

W SQUARE
EENWICH Uil LAGE +~ NOHO Sy
O HISTORIC Sl Home

UNIV DISTRICT <

¥ ™
E"("{:I VILLA _“g’
JE) &
g NOHO 3 $

g ¥ ALPHABE
@ s
om
SOHO _ -

Map © GISdence Research Group (@ University of Heidelberg | Data © OpenStreetMap contributors | Style 4

Pretty awesome isn't it? However, we're not done yet. Since we're most likely using C++ to
obtain data from the database through Qt's SQL module, we need to find a way to call the
OML function from C++.

To achieve that, let's comment out the three addMarker () functions in mapview.qgml and
open up mainwindow.h and the following headers:

#include <QQuickItem>
#include <QQuickView>

After that, open up mainwindow. cpp and call the QMetaObject : : invokeMethod ()
function, like this:

MainWindow: :MainWindow (QWidget *parent)
QMainWindow (parent),
uil (new Ui::MainWindow)

[183]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Chapter 7

Map Viewer

ui->setupUi (this);

QObject* target =
gobject_cast<QObject*> (ui->quickWidget—->rootObject ());
= "addMarker";

QString functionName
Qt : :AutoConnection,

QMetaObject: :invokeMethod (target, functionName,
Q_ARG(QVariant, "Testing"), Q_ARG(QVariant, 40.7274175),
Q_ARG(QVariant, -73.99835));
}
The preceding code might seem complex, but it's actually really simple if we dissect it and
analyze each of its arguments. The first argument of the preceding function is the object that
we want to call the function from, and in this case, it is the root object (the Item object in
mapview.qgml) of the map view widget. Next, we want to tell which function name we
want to call, and it is the addMarker () function. After that, the third argument is the
connection type used by the signal and slot system to invoke this method. For this, we'll just
let it be the default setting, which is Ot : : AutoConnection. The rest are the arguments that
are needed by the addMarker () function. We used the 0_ARG macro for indicating the type

and value of the data.
Finally, build and run the application again. You will see a marker with the label has been

added to the map, but this time, it's called from our C++ code instead of QML:

EBSCChost -

B MainWindow - m} s
i) [2 . y
iy m. o £ & ¥ 4
i | | m o £ ¢ £ /
Wt el 2
it nyaa] L S | 13
i e & i
] X :
Il & Christapher @ 3 3
\\ _“g:] :ESlrc E'l.lfl"."\Tl-] m m g
" : I
[= %
’Jl,ffr:f i| | m N e W @ ®
i | \
i /
Jf.lrl,;',: | wasHINGTON <@/ Y or k)
Tl E I\ — [L
] .. GREENWICH i
! | £ | VILLAGE L PORIc/ EASTVILLAGE [
el f | £] |']
ul'.‘JJ*““ =223 I @ Spring Street "y AC S &
. pring ree WL
-t ! Hollang 1, = 70 (C,E} 5 ;a/
' nqei = | OHO & & .
el | oL T ALPHABET.CITY !
o | Wl e @ ‘é‘ 5 / /
Jﬂ.'lﬂ" -g HII N ; cm 3 /
G185 | [om 50HO N m &
=)
g 4 | u |
'Jrlf’ N 2 E-'m m .‘g
J‘,'l ﬁlﬂ «Franklin Street [¢ {TiE TALY. Grand Street 1-2 "
j | B.0) "
I & = r % O E I
% | i 5 /
T I‘g P v
S & CHINATOWN LOWER EAST T E ’
~ Financial Cen!er,'lg TRIBECA js T —ol !
nofert =8 = £ 4
Map © GlSdence Research Group @ University of Heidelberg | Data © OpenStree contributors | Style @ Maxim R

[184]

printed on 2/9/2023 9:19 AMvia .

Al use subject to https://ww.ebsco.contermnms-of-use

EBSCChost -

Map Viewer Chapter 7

Displaying shapes on a map

Besides adding markers to the map, we can also draw different types of shapes on the map
to indicate an area of interest or serve as geofences, which give out warnings whenever a
target is entering or leaving the area covered by the shape. A geofence is a polygonal shape
that defines an area of interest or virtual geographic boundary on a map for location-based
services. Usually, geofences are used to trigger an alarm when a device is entering and/or
exiting a geofence. A good example of using a geofence is when you need a shopping
reminder, you can draw a geofence around the supermarket and attach a shopping list
along with the geofence. When you (and your phone) are entering the area of the geofence,
you will get a notification on your phone that reminds you what to buy. Wouldn't that be
great?

For more information about geofences, please
visit: https://en.wikipedia.org/wiki/Geo-fence

We won't be creating a functional geofence in this chapter as it is quite an advanced topic,
and it usually runs as a server-side service for checking and triggering an alarm. We will
only use Qt to draw the shape and display it visually on the screen.

To draw shapes on the map view widget, we'll create a few more QML files for each type of
shape and add them to the program's resources:

mapview.gqml

]

[ENNEW

marker.gml

]

circle.gml

]
[EN-JEMN:

rectangle.qml

am_polygon.gml

]

For each of the newly created QML files, we'll do something similar to the position marker.
For circle.qgml, it looks like this:

import QtQuick 2.0
import QtLocation 5.3

MapCircle
{

[185]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

EBSCChost -

Map Viewer Chapter 7

property int borderWidth
border.width: borderWidth
}

We only declare borderWidth in this file because we can directly set the other properties
later, when calling the createCircle () function. The same goes for rectangle.qgml:

import QtQuick 2.0
import QtLocation 5.3

MapRectangle
{
property int borderWidth
border.width: borderWidth
}

Repeat a similar step for polygon.gml:

import QtQuick 2.0
import QtLocation 5.3

MapPolygon
{
property int borderWidth
border.width: borderWidth
}

You can set other properties if you want, but for the sake of demonstration, we only change
a few of the properties such as color, shape, and border width. Once you're done, let's open
up mapview.qgml and define a few functions for adding the shapes:

Item
{

id: window

Plugin

{
id: mapPlugin
name: "osm"

function addCircle(latitude, longitude, radius, color, borderWidth)
{
var component = Qt.createComponent ("grc:///gml/circle.gml")
var item = component.createObject (window, { center:
QtPositioning.coordinate (latitude, longitude), radius: radius,
color: color, borderWidth: borderWidth })

[186]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

EBSCChost

Map Viewer Chapter 7

map.addMapItem (item)

function addRectangle (startlLat, startlLong, endLat, endLong, color,

borderWidth)

{
var component = Qt.createComponent ("qrc:///gml/rectangle.qgml™)
var item = component.createObject (window, { topleft:
QtPositioning.coordinate (startlLat, startlong), bottomRight:
QtPositioning.coordinate (endLat, endLong), color: color,
borderWidth: borderWidth })
map.addMapItem (item)

function addPolygon (path, color, borderWidth)
{

var component = Qt.createComponent ("grc:///gml/polygon.gml™)
var item = component.createObject (window, { path: path, color:
color, borderWidth: borderWidth })
map.addMapItem (item)

}

These functions are very similar to the addMarker () function, except it takes in different
arguments that are later passed to the createObject () function. After that, let's try and
create the shapes using the preceding function:

addCircle (40.7274175,-73.99835, 250, "green", 3);
addRectangle (40.7274175,-73.99835, 40.7376432, -73.98602, "red", 2)
var path = [{ latitude: 40.7324281, longitude: -73.97602 },

{ latitude: 40.7396432, longitude: -73.98666 },

{ latitude: 40.7273266, longitude: -73.99835 },

{ latitude: 40.7264281, longitude: -73.98602 }1;
addPolygon (path, "blue", 3);

The following are the shapes created using the functions we have just defined. I have called
each of the functions separately to demonstrate its outcome, hence the three different
windows:

[187]

- printed on 2/9/2023 9:19 AMvia . Al use subject to https://wmv. ebsco.cont terns-of-use

EBSCChost -

Chapter 7

|

Map Viewer
B MainWindow — Od >
Y N
| : — o
Ig Christapher m B MainWindow — (] 4
:E Street (FATH] . [@ ! - ’
. “ ; I “FLATIRON
; § | lath Street-8th e i !
J; m '{f' Avenue [ACE.L) RURSING 23’.':’ Streel (6)
L] ¥
| | .r'rl. /r - m ; KIPS
| GREENWIC] 1 | g m S "5‘
l g VILLAG . o {T‘&
E NYoA R &
|| = opring Streed I]
d Tiup,, = 78 {CE} |§ .
ﬂ-nql. - o ;
| - Im Christopher
| RRGES | Elstreet (FATHI —m
| — . .
III.' B MainWindow —
i - W@
] FLATIRGN
th Street-8th 1 IE
[=n.1e=-riiff“..E.Ll BL DING 23'.':’ SIEEL(e r k
L] ¥
LFral
|I f
ful ,;"-f" &
-1 .
Map-E) GISder o 5 = &
[‘ ¥ ALPHABET:CIT
I\;E Heidelberg | Data © OpenSireet
Im 2
E';l '“\\
REENWICH 3
VILLAGE L
UNIVE T |I
g Street VILLAGE, " 5
-.El NOHO. § g
N MLPHABET:CITY
a

i :
£
o D? m A
Map © GISdence Research Group @ Liniversity of Heidelberg | Data & OpenStreet

L] L] ' L
Obtaining a user's location
Qt provides us with a set of functions to retrieve a user's location information, but it will
only work if the user's device supports geopositioning. This should work on all modern

smartphones and might work on some of the modern computers as well.

[188]

printed o

Al use subject to https://ww.ebsco.contermnms-of-use

n 2/9/2023 9:19 AMvia .

EBSCChost

Map Viewer Chapter 7

To obtain the user's location using the 0t Location module, first let's open up
mainwindow.h and add the following header files:

#include <QDebug>
#include <QGeoPositionInfo>
#include <QGeoPositionInfoSource>

After that, declare the following s1lot function in the same file:

private slots:
void positionUpdated (const QGeoPositionInfo &info);

Right after that, open up mainwindow.cpp and add the following code to the place where
you want it to start getting the user's location. For demonstration purposes, I'll just call it
within the MainWindow constructor:

QGeoPositionInfoSource *source =
QGeoPositionInfoSource: :createDefaultSource (this);
if (source)

{

connect (source, &QGeoPositionInfoSource::positionUpdated,
this, &MainWindow::positionUpdated) ;
source—>startUpdates () ;

}
Then, implement the positionUpdated () function we declared earlier, like this:

void MainWindow: :positionUpdated (const QGeoPositionInfo &info)

{
gDebug () << "Position updated:" << info;

}

If you build and run the application now, you may or may not get any location information,
depending on the device you use to run the test. If you get debug messages like these:

serialnmea: No serial ports found
Failed to create Geoclue client interface. Geoclue error:
org. freedesktop.DBus.Error.Disconnected

[189]

- printed on 2/9/2023 9:19 AMvia . Al use subject to https://wmv. ebsco.cont terns-of-use

EBSCChost -

Map Viewer Chapter 7

Application Output

MapView @
a s a s a a
= = e
serialnmea: No serial ports found
Failed to create Geoclue client interface. Geoclue error:!: org.freedesktop.DBus.Error.Disconnecte
falsd Lol oD 2 Tl =12l e Bl od FS Ol g o e 4 P L - Foe i E N

Then you probably need to find some other devices for the test. Otherwise, you may get a
result similar to this:

Position updated: QGeoPositionInfo (QDateTime (2018-02-22 19:13:05.000 EST
Qt: :TimeSpec (LocalTime)), QGeoCoordinate(45.3333, -75.9))

I will leave you an assignment here which you can try and do by making use of the
functions that we have created thus far. Since you can now obtain the coordinates of your
location, try and further enhance your application by adding a marker to the map display to
show where you are currently located. That should be fun to work with!

Geo Routing Request

There is another important feature called Geo Routing Request, which is a set of functions
that help you plot out the route (often the shortest route) from point A to point B. This
feature requires a service provider; in this case, we will be using Open Street Map (OSM)
as it is completely free.

Do note that OSM is an online collaborative project, which means that if no one from your
area contributed the route data to the OSM server, then you won't be able to get an accurate
result. Optionally, you can also use paid services such as Mapbox or ESRI.

Let's see how we can implement Geo Routing Request in Qt! First, include the following
headers to our mainwindow.h file:

#include <QGeoServiceProvider>
#include <QGeoRoutingManager>
#include <QGeoRouteRequest>
#include <QGeoRouteReply>

[190]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Map Viewer Chapter 7

After that, add two slot functions to MainWindow class, namely, routeCalculated () and
routeError():

private slots:

void positionUpdated(const QGeoPositionInfo &info);

void routeCalculated (QGeoRouteReply *reply);

void routeError (QGeoRouteReply *reply, QGeoRouteReply::Error error,
const QString &errorString);

Once you're done, open up mainwindow.cpp and create a service provider object in the
MainWindow constructor method. We will be using the OSM service so we'll place the
acronym "osm" when initiating the QGeoServiceProvider class:

QGeoServiceProvider* serviceProvider = new QGeoServiceProvider ("osm");

Right after that, we'll get the pointer of the routing manager from the service provider
object we just created:

QGeoRoutingManager* routingManager = serviceProvider->routingManager () ;

Then, connect the finished () signal and error () signal from the routing manager with
the slot functions we just defined:

connect (routingManager, &QGeoRoutingManager::finished, this,
&MainWindow: : routeCalculated) ;

connect (routingManager, &QGeoRoutingManager::error, this,
&MainWindow: : routeError) ;

These slot functions will be triggered when there is a reply from the service provider upon a
successful request, or when the request is failed and returned with an error message
instead. The routeCalculated () slot function looks something like this:

void MainWindow: :routeCalculated (QGeoRouteReply *reply)
{
gDebug () << "Route Calculated";
if (reply->routes().size() != 0)
{
// There could be more than 1 path
// But we only get the first route
QGeoRoute route = reply->routes().at(0);
gDebug () << route.path();
3
reply—->deletelater();

[191]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Map Viewer Chapter 7

As you can see, the 0GeoRouteReply pointer contains route information sent by the service
provider upon a successful request. Sometimes it comes with more than one route, so in the
example, we just obtain the first route and display it through Qt's application output
window. Alternatively, you can use these coordinates to draw a path or animate your
marker along the route.

As for routeError () slot function, we'll just output the error string sent by the service
provider:

void MainWindow: :routeError (QGeoRouteReply *reply,
QGeoRouteReply: :Error error, const QString &errorString)

{
gDebug () << "Route Error" << errorString;
reply—->deletelater();

Once you're done with that, let's initiate a Geo Routing Request in the MainWindow
constructor method and send it to the service provider:

QGeoRouteRequest request (QGeoCoordinate (40.675895,-73.9562151),
QGeoCoordinate (40.6833154,-73.987715));
routingManager->calculateRoute (request) ;

Build and run the project now and you should see results like the following:

Application Output }_1

Mapliew @

Route Calculated

(QGeoCoordinate(40.67595, -73.95618), (GeoCoordinate(40.67593, -73.85607), QGeoCoordinate(48.67593, -73.95607)
QGeoCoordinate(40.67505, -73.95639), QGeoCoordinate(48.67505, -73.95639), (GeoCoordinate(40.87529, -73.95757),
QGeoCoordinate(40.67539, -73.95801), QGeoCoordinate(48.6755, -73.95852), (QGeocCoordinate(40.67576, -73.9597§),
QGeoCoordinate(40.6758, -73.95996), QGeoCoordinate(40.57641, -73.96287), (QGecCoordinate(40.67655, -73.96353),
QGeoCoordinate(40.67706, -73.96597), QGeoCoordinate(40.67767, -73.96886), (GeoCoordinate(40.57833, -73.972083),
QGeoCoordinate(40.67851, -73.97333), QGeoCoordinate(40.67868, -73.97354), (GeoCoordinate(40.57875, -73.97376),
QGeoCoordinate(40.67933, -73.97532), (QGeoCoordinate(40.68029, -73.97774), (QGeoCoordinate(40.68027, -73.97784),
QGeoCoordinate(40.568027, -73.97784), QGeoCoordinate(40.68025, -73.97798), QGeoCoordinate(40.6812, -73.9804),
QGeoCoordinate(40.68125, -73.98052), QGeoCoordinate(40.68125, -73.98052), (GeoCoordinate(40.58077, -73.98085),
QGeoCoordinate(40.68052, -73.98095), (QGeoCoordinate(40.67998, -73.98138), (GeoCoordinate(40.57998, -73.98138),
QGeoCoordinate(40.568088, -73.98371), QGeoCoordinate(40.68164, -73.98567), (GeoCoordinate(40.58196, -73.98648),
QGeoCoordinate(40.68211, -73.98687), (QGeoCoordinate(40.68244, -73.98773), (GeoCoordinate(40.58249, -73.98786),
QGeoCoordinate(40.68249, -73.98786), (QGeoCoordinate(40.68276, -73.98768), (GeoCoordinate(40.88313, -73.98743),
QGeoCoordinate(40.68313, -73.98743), QGeoCoordinate(40.68321, -73.98748), (GeoCoordinate(40.88329, -73.98771),
QGeoCoordinate(40.68329, -73.98771))

[192]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Map Viewer Chapter 7

Here comes another challenging assignment for you—try to put all these coordinates into
an array and create an addLine () function that takes in the array and draws a series of
straight lines that represent the route described by the Geo Routing service.

Geo Routing has been one of the most important features ever since GPS navigator systems
were invented. Hopefully, you will be able to create something useful after going through
the tutorial!

Summary

In this chapter, we have learned how to create our own map view similar to Google Maps.
We have learned how to create a map display, placing markers and shapes on the map, and
finally finding a user's location. Do note that you can also use the web view and call
Google's JavaScript mapping API to create a similar map display. However, using QML is
much simpler, lightweight (we don't have to load the entire web engine module just to use
the map), works very well on mobile and touch screens, and it can also be easily ported to
other map services. Hopefully, you can make use of this knowledge and create something
really awesome and useful.

In the next chapter, we will look into how to display information using graphical items.
Let's move on!

[193]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Graphics View

In the previous chapter, we learned about the importance of visual presentation for the user
by displaying coordinate data on a map. In this chapter, we will further explore the
possibility of graphics data representation using Qt's Graphics View framework.

In this chapter, we will cover the following topics:

¢ Graphics View framework
* Moveable graphics items
¢ Creating an organization chart

At the end of this chapter, you will be able to create an organization chart display using C++
and Qt's APIL Let's get started!

Graphics View framework

The Graphics View framework is part of the widgets module in Qt so it is already
supported by default, unless you're running Qt console application instead, which does not
need the widgets module.

The Graphics View view in Qt works pretty much like a whiteboard, where you can draw
anything on it using C/C++ code, such as drawing shapes, lines, text, and even images. This
chapter may be a little hard to follow for beginners but it will definitely be a fun project to
work with. Let's get started!

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Graphics View

Chapter 8

Setting up a new project

First, create a new Qt Widgets Application project. After that, open mainwindow.ui and

drag and drop the Graphics View widget onto the main window, like this:

Filter

LL-J Font Combo Box
Line Edit

[A) Text Edit

[AT) Piain Text Edit
@ Spin Box

@ Double Spin Box
(D Time Edit

£ Date Edit

% Date/Time Edit
& Dial

=y Horizontal Scroll Bar
@ Vertical Scroll Bar
‘u= Horizental Slider
P Vertical Slider
Key Sequence Edit

W
S Label

@ Text Browser
% Graphics View
12| Calendar Widget
[42) LcD Number

Display Widgets

Type Here

B

Then, create a layout for the graphics view by clicking on the Lay Out Vertically button at
the top of the canvas. After that, open up mainwindow.h and add the following headers

and variables:

#include
#include
#include
#include
#include
#include

<QGraphicsScene>
<QGraphicsRectItem>
<QGraphicsEllipseItem>
<QGraphicsTextItem>
<QBrush>

<QPen>

EBSCChost - printed on 2/9/2023 9:19 AMvia

[195]

. Al'l use subject to https://ww. ebsco.con terns-of-use

Graphics View Chapter 8

private:
Ui::MainWindow *ui;
QGraphicsScene* scene;

After that, open mainwindow.cpp. Once it is opened, add the following code:

MainWindow: :MainWindow (QWidget *parent)
QMainWindow (parent),
uil (new Ui::MainWindow)

ui->setupUi (this);

scene = new QGraphicsScene (this);
ui->graphicsView—>setScene (scene);

OBrush greenBrush (Qt::green);
QBrush blueBrush (Qt: :blue);
QPen pen (Qt::black);
pen.setWidth (2);

QGraphicsRectItem* rectangle = scene->addRect (80, 0, 80, 80, pen,
greenBrush) ;

QOGraphicsEllipseItem* ellipse = scene->addEllipse (0, -80, 200, 60,
pen, blueBrush);

QOGraphicsTextItem* text = scene->addText ("Hello World!",
QFont ("Times", 25));
}

Build and run the program now, and you should see something like this:

B MainWindow - [m] *

[196]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Graphics View Chapter 8

The code is a bit long so let me explain to you what it does and how it draws the graphics
onto the screen.

As I said earlier, the Graphics View widget is like a canvas or whiteboard that allows you
to draw anything you want on it. However, we also need something called Graphics Scene,
which is essentially a scene graph that stores all the graphical components in a parent—child
hierarchy before displaying them on the Graphics View, accordingly. Scene graph
hierarchy is something that the image that appears in the previous screenshot, where each
object could have a parent or children that link together:

In the preceding code, we first created a QGraphicsScene object and set it as the Graphics
Scene for our Graphics View widget:

scene = new QGraphicsScene (this);
ui->graphicsView—->setScene (scene);

[197]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Graphics View Chapter 8

In this example, however, we don't have to link the graphics items together so we'll just
create them independently, like so:

QOBrush greenBrush (Qt::green);

QGraphicsTextItem* text = scene->addText ("Hello World!", QFont ("Times",
25));

The gpen and QBrush classes are used to define the rendering style of these graphics items.
OBrush is usually for defining the background color and pattern for the item, while
oPen normally affects the outline of the item.

Qt provides many types of graphics items for the most common shapes, including;:

® OGraphicsEllipseItem— ellipse item

® OGraphicsLineItem - line item

® OGraphicsPathItem — arbitrary path item

® QGraphicsPixmapItem— pixmap item

® OGraphicsPolygonItem— polygon item

® OGraphicsRectItem —rectangular item

® OGraphicsSimpleTextItem— simple text label item
® OGraphicsTextItem— advanced formatted text item

For more information, please visit this link:
http://doc.gt.io/archives/qt-5.8/ggraphicsitem.html#details.

Movable graphics items

In the previous example, we have successfully drawn some simple shapes and text onto the
Graphics View widget. However, these graphics items are not interactive and thus don't
suit our purpose. What we want is an interactive organization chart where the user can
move the items around using mouse. It is actually really easy to make these items movable
under Qt; let's see how we can do that by continuing our previous project.

[198]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Graphics View Chapter 8

First, make sure you don't change the default interactive property of our Graphics View
widget, which is set to enabled (checkbox is checked):

Filter ey - A
araphicsView : QGraphicsView
Property Value ~
midLineWidth 0
v
verticalscrollBarPolicy ScrollBarfsh
horizontalScrollBarPolicy ScrollBarfshy
sizeAdjustPelicy Adjustignore
v
backgroundBrush

» foregroundBrush
interactive

» scenefect

alignment AlignHCente

» renderHints TextAntialias
dragMode MNoDrag

* cacheMode CacheMone
transformatienfnchor AnchorView!
resizefnchor MNofnchor W

L4 >

After that, add the following code below each of the graphics items we just created in the
previous Hello World example:

QGraphicsRectItem* rectangle = scene->addRect (80, 0, 80, 80, pen,
greenBrush) ;

rectangle->setFlag (QGraphicsItem: : ItemIsMovable) ;
rectangle—->setFlag (QGraphicsItem: :ItemIsSelectable);

QGraphicsEllipseltem* ellipse = scene->addkEllipse (0, -80, 200, 60, pen,
blueBrush) ;
ellipse->setFlag (QGraphicsItem: :ItemIsMovable);

[199]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

EBSCChost -

Graphics View Chapter 8

ellipse->setFlag(QGraphicsItem: :ItemIsSelectable);

QGraphicsTextItem* text = scene->addText ("Hello World!", QFont ("Times",
25));

text->setFlag (QGraphicsItem: : ItemIsMovable);

text->setFlag (QGraphicsItem: :ItemIsSelectable);

Build and run the program again, and this time you should be able to select and move the
items around the Graphics View. Do note that ItemIsMovable and

ItemIsSelectable both give you a different behavior—the former flag will make the item
movable by mouse, and the latter makes the item selectable, which typically gives it a visual
indication using dotted outline when selected. Each of the flags works independently and
will not affect the other.

We can test out the effect of ItemIsSelectable flag by using the signal and slot
mechanism in Qt. Let's go back to our code and add the following line:

ui->setupUi (this);

scene = new QGraphicsScene (this);
ui->graphicsView->setScene (scene);

connect (scene, &QGraphicsScene::selectionChanged, this,
&MainWindow: : selectionChanged) ;

The selectionChanged () signal will be triggered whenever you selected an item on the
Graphics View widget and the selectionChanged () slot function under our MainWindow
class will then be called (which we need to write). Let's open up mainwindow.h and add in
another header for displaying debug messages:

#include <QDebug>

Then, we declare the slot function, like this:

private:
Ui::MainWindow *uij;

public slots:
void selectionChanged() ;

[200]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Graphics View Chapter 8

After that open mainwindow. cpp and define the slot function, like this:

void MainWindow: :selectionChanged ()

{
gDebug () << "Item selected";

}

Now try and run the program again; you should see a line of debug messages that say Item
selection which appears whenever a graphics item has been clicked. It's really simple, isn't
it?

As for the TtemIsMovable flag, we won't be able to test it using the signal and slot method.
This is because all classes inherited from QGraphicsItem class are not inherited from the
QObject class, and therefore the signal and slot mechanism doesn't work on these classes.
This is intentionally done by Qt developers to make it lightweight, which improves the
performance, especially when rendering thousands of items on the screen.

Even though signal and slot is not an option for this, we can still use the event system,
which requires an override to the itemChange () virtual function, which I will demonstrate
in the next section.

Creating an organization chart

Let's proceed to learn how to create an organization chart using Graphics View. An
organization chart is a diagram that shows the structure of an organization and the
relationship hierarchy of its employee positions. It is easy to understand a company's
structure by using graphical representation; therefore it's best to use Graphics View instead
of, say, a table.

This time, we need to create our own classes for the graphics items so that we can make use
of Qt's event system, as well as have more control of how it's grouped and displayed.

[201]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Graphics View Chapter 8
First, create a C/C++ class by going to File | New File or Project:
7 New File X
Choose a template: All Templates hd

Files and Classes
Ce+

Meodeling

Ot

GLSL

General

Java

Python

MNim

D C++ Class
D C++ Source File
[C++ Header File

Creates a C++ header and a source file for a new
dass that you can add to a C++ project.

Supported Platforms: Android Device
Desktop

EBSCChost - printed on 2/9/2023 9:19 AMvia .

Al

[202]

use subject to https://wmv. ebsco.con terns-of -use

Graphics View

Chapter 8

Next, name our class as profileBox before clicking the Next and Finish button:

X
IC++ Class
Define Class
E» Details
Summary Class name: |profileBax] |

Base dass: | <Custom> A

[Indude QObject

[indude Qwidget

[1ndude QMainWindow

[indude QDedarativeltem - Qt Quidk 1
[tndude QQuickItem - Qt Quick 2

[indude Qsharedata

Header file: |proﬁ|ebox. h

Source file: |proﬁlebox. op

Path: |

Erowse. ..

Cancel

After that, open mainwindow.h and add in these headers:

#include <QWidget>

#include <QDebug>

#include <QBrush>

#include <QPen>

#include <QFont>

#include <QGraphicsScene>
#include <QGraphicsItemGroup>
#include <QGraphicsItem>
#include <QGraphicsRectItem>
#include <QGraphicsTextItem>
#include <QGraphicsPixmapItem>

[203]

- printed on 2/9/2023 9:19 AMvia . Al use subject to https://wmv. ebsco.cont terns-of-use

EBSCChost -

Graphics View Chapter 8

Then, open profilebox.h and make our profileBox class inherit QGraphicsItemGroup
instead:

class profileBox : public QGraphicsItemGroup
{
public:
explicit profileBox (QGraphicsItem* parent = nullptr);

After that, open profilebox.cpp and at the constructor of the class, set up QBrush, QpPen
and QFont, which will be used for rendering in a moment:

profileBox::profileBox (QGraphicsItem *parent)
QGraphicsItemGroup (parent)
{
QBrush brush (Qt::white);
QPen pen(Qt::black);
QFont font;
font.setFamily ("Arial");
font.setPointSize (12);
I3

After that, also in the constructor, create a QGraphicsRectItem, QGraphicsTextItem and
a QGraphicsPixmapItem:

QGraphicsRectItem* rectangle = new QGraphicsRectItem();
rectangle->setRect (0, 0, 90, 100);
rectangle—->setBrush (brush) ;

rectangle—->setPen (pen);

nameTag = new QGraphicsTextItem();
nameTag->setPlainText ("");
nameTag—>setFont (font) ;

QGraphicsPixmapIltem* picture = new QGraphicsPixmapItem();
QPixmap pixmap (":/images/person—-icon-blue.png");
picture->setPixmap (pixmap) ;

picture->setPos (15, 30);

Then, add these items to the group, which is the current class, since this class is inherited
from the QGraphicsItemGroup class:

this->addToGroup (rectangle) ;
this->addToGroup (nameTag) ;
this->addToGroup (picture);

[204]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Graphics View Chapter 8

Finally, set three flags for the current class, which are ItemIsMovable,
ItemIsSelectable and ItemSendsScenePositionChanges:

this->setFlag (QGraphicsItem: :ItemIsMovable) ;
this->setFlag (QGraphicsItem::ItemIsSelectable);
this->setFlag (QGraphicsItem: :ItemSendsScenePositionChanges) ;

These flags are very important because they are all disabled by default for performance
reasons. We have covered both ItemIsMovable and ItemIsSelectable in the previous
section, while ITtemSendsPositionChanges is something new. This flag makes the
graphics item notify Graphics Scene when it's being moved by the user, hence the name.

Next, create another function called init () for setting up the employee profile. For the
sake of simplicity, we only set the employee name, however, you can do more if you wish,
such as setting a different background color based on the rank, or changing their profile
picture:

void profileBox::init (QString name, MainWindow *window, QGraphicsScene*
scene)
{

nameTag->setPlainText (name) ;

mainWindow = window;

scene—>addItem(this);

}

Do notice that we also set the main window and Graphics Scene pointers here so that we
can use them later on. We must add the QGraphicsItem to a scene before it will render on
screen. In this case, we group all the graphics items into a QGraphicsItemGroup so we
only need to add the group to the scene instead of an individual item.

Do note that you must do a forward declaration for the MainWindow class in
profilebox.h after #include "mainwindow.h" to avoid the error that says recursive
header inclusion. At the same time, we also placed the MainWindow and
QGraphicsTextItem pointersin profilebox.h so that we can call them later:

#include "mainwindow.h"
class MainWindow;

class profileBox : public QGraphicsItemGroup
{
public:
explicit profileBox (QGraphicsItem* parent = nullptr);
void init (QString name, MainWindow* window, QGraphicsScene* scene);

[205]

- printed on 2/9/2023 9:19 AMvia . Al use subject to https://wmv. ebsco.cont terns-of-use

Graphics View Chapter 8

private:
MainWindow* mainWindow;
QGraphicsTextItem* nameTag;

You will also notice that I have used an icon in the QGraphicsPixmapItem as a decorative

Ve

A4

This icon is a PNG image that is stored within the resource file. You can get this image from

our sample project files on our GitHub page: http://github.com/PacktPublishing/Hands-
On-GUI-Programming-with-C-QT5

Let's create a resource file for your project. Go to File | New File or Project and select
the Qt Resource File option under Qt category:

[MNew File *
Choose a template: All Templates hd
Files and Classes D Qt ftem Model Creates a Qt Resource file (.grc).
C++ [Ot Designer Form Class
. Supported Platforms: Android Device
Modeling [Ot Designer Form Desktop

[[] Ot Resource File

Qi [QML File (Ot Quick 2)
GLsL [QtQuick Ul File
General [JsFile

Java

Python

Mim

[206]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Graphics View Chapter 8

After you have created an empty resource file, add a new prefix by going to Add |
AddPrefix. We will just call this prefix images:

Remaove Remaove Missing Files

Add Prefix

Prefix:

Language:

Then, select the newly created images prefix and click Add | Add Files. Add the icon
image to your resource file and save. You have now successfully added the image to your
project.

¥ | @ fimages

e person-icon-blue.png

If your prefix name or filename is different than the prefix name or
filename in this book, you may right-click on your image in the resource
tile and select Copy Resource Path to Clipboard and replace the one in
the code with your path.

¥ | @ fimages
e pErson-icon_bhln L
Open File

Open With r
Rename File...

Copy Resource Path to Clipboard

[207]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Graphics View Chapter 8

After that, open mainwindow.h and add in:
#include "profilebox.h"
Then, open mainwindow.cpp and add the following code to create a profile box manually:
MainWindow: :MainWindow (QWidget *parent)
QMainWindow (parent),
ul (new Ui::MainWindow)

ui->setupUi (this);

scene = new QGraphicsScene (this);
ui->graphicsView->setScene (scene);

connect (scene, &QGraphicsScene::selectionChanged, this,
&MainWindow: :selectionChanged) ;

profileBox* box = new profileBox();
box->init ("John Doe", this, scene);

}

Build and run the project now and you should see something like this:

B MainWindow — O >

John Doe

[208]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Graphics View

Chapter 8

Looks neat; but we're far from done. There are a few things left to be done—we must allow

the user to add or delete profile boxes with a user interface, and not by using code. At the
same time, we also need to add lines that connect different profile boxes to showcase the
relationship between different employees and their position within the company.

Let's start with the easy part. Open mainwindow.ui again and add a push button to the
bottom of the Graphics View widget and name it addButton:

v Layouts

% Vertical Layout

I”] Horizontal Layout
?E; Grid Layout

%E Form Layout

v Spacers
[Béd] Horizontal Spacer

Vertical Spacer

v
E Push Button

@ Tool Button

(@ Radio Button

i Check Box

@ Command Link Button

Buttons

= [
Type Here
[
Add
= [

Then, right-click on the push button and select Go to slot... After that, select the clicked
option and click Ok. A new slot function will be created for you automatically, called
on_addButton_clicked (). Add the following code to allow the user to create a profile

box when they click the Add button:

void MainWindow: :on_addButton_clicked ()

{
bool ok;

QString name = QInputDialog::getText (this, tr ("Employee Name"),
tr("Please insert employee's full name here:"), QLineEdit::Normal,

"John Doe",
Iname.isEmpty ())

if (ok &&
{

profileBox* box
box->init (name,

= new profileBox();
this, scene);

[209]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Graphics View Chapter 8

Instead of creating each profile box using code, users can now easily create any number of
profile boxes they want by clicking the Add button. A message box will also appear and let
the user type in the employee name before creating the profile box:

® ' Employee Name ? X

Please insert employee's full name here:

fohn Doe] |

[] e

Next, we'll create another class called profileLine. This time, we will make this class
inherit QGraphicsLineItem. The profileline.h basically looks like this:

#include <QWidget>
#include <QGraphicsItem>
#include <QPen>

class profileline : public QGraphicsLineItem

{

public:
profileline (QGraphicsItem* parent = nullptr);
void initLine (QGraphicsItem* start, QGraphicsItem* end);
void updatelLine () ;

QGraphicsItem* startBox;
QGraphicsItem* endBox;

private:

bi

Similar to profileBox class, we also create an init function for profilelLine class, called
the initLine () function. This function takes in two QGraphicsItem objects as the starting
point and ending point for rendering the line. Besides that, we also create an

updateLine () function to redraw the line whenever the profile boxes move.

[210]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Graphics View Chapter 8

Next, open profileline.cpp and add the following code to the constructor:

profileline::profileline (QGraphicsItem *parent)
QGraphicsLineltem (parent)

{
QPen pen(Qt::black);
pen.setWidth (2);
this->setPen (pen);

this->setZValue (-999);
I3

We used QpPen to set the color of the line to be black and its width to be 2. After that, we also
set the zvalue of the line to be ~999 so that it will always remain at the back of the profile
boxes.

After that, add the following code to our initLine () function so that it looks something
like this:

void profileline::initLine (QGraphicsItem* start, QGraphicsItem* end)
{

startBox = start;

endBox = end;

updatelLine () ;
}

What it does is basically set the boxes for it to position its starting point and ending point.
After that, call updateLine () function to render the line.

Finally, the updateLine () function looks like this:

void profilelLine: :updateline ()
{

if (startBox != NULL && endBox != NULL)

{

this->setlLine (startBox->pos() .x() +

startBox->boundingRect () .width () / 2, startBox->pos().y() +
startBox->boundingRect () .height () / 2, endBox->pos().x() +
endBox->boundingRect () .width() / 2, endBox->pos().y() +
endBox—->boundingRect () .height () / 2);

}
I3

The preceding code looks a little complicated, but it's really simple if I put it this way:

this->setlLine (x1, vy1, x2, vy2);

[211]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Graphics View Chapter 8

The values x1 and y1 are basically the center position of the first profile box while x2 and
y2 are the center position of the second profile box. Since the position value we get from
calling pos () starts from the top-left corner, we must get the bounding size of the profile

box and divide it by two to get its center position. Then, add that value to the top-left corner
position to offset it to the center.

Once you're done, let's open mainwindow. cpp again and add the following code to
the on_addButton_clicked () function:

volid MainWindow: :on_addButton_clicked()

{

bool ok;
QString name = QInputDialog::getText (this, tr ("Employee Name"),
tr("Please insert employee's full name here:"), QLineEdit::Normal,

"John Doe", &ok);
if (ok && !name.isEmpty())
{
profileBox* box = new profileBox();
box->init (name, this, scene);

if (scene->selectedItems () .size() > 0)

{
profilelLine* line = new profileline();
line->initLine (box, scene->selectedItems().at(0));
scene->addItem(line) ;
lines.push_back (line);

}

}

In the preceding code, we check whether there is any profile box selected by the user. If
there is none, we don't have to create any line. Otherwise, create a new profileLine object
and set the newly created profile box and the currently selected profile box as the startBox
and endBox properties.

After that, add the line to our Graphics Scene so that it will appear on the screen. Lastly,
store this profileLine object to a QList array so that we can use it later. The array
declaration looks like this in mainwindow.h:

private:
Ui::MainWindow *ui;
QGraphicsScene* scene;
QList<profilelLine*> lines;

[212]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Graphics View Chapter 8

Build and run the project now. You should be able to see the line appear when you created
the second profile box by clicking on the Add button, entering a name, and selecting OK
while the first box remains selected. However, you may notice a problem whenever you
move the profile box away from its original position—the lines simply won't update
themselves!:

B MainWindow — O hd

John Doe Jane Smith

Add

That is the main reason we put the lines into a QList array, so that we can update these
lines whenever a profile box has been moved by the user.

To do that, first, we need to override the virtual function in the profileBox class called
itemChanged (). Let's open profilebox.h and add the following line of code:

class profileBox : public QGraphicsItemGroup

{

public:
explicit profileBox (QGraphicsItem* parent = nullptr);
void init (QString name, MainWindow* window, QGraphicsScene* scene);
QVariant itemChange (GraphicsItemChange change, const QVariant
&value) override;

[213]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Graphics View Chapter 8

Then, open profilebox.cpp and add the code for itemChanged ():

QVariant profileBox::itemChange (GraphicsItemChange change, const
QVariant é&value)
{
if (change == QGraphicsItem::ItemPositionChange)
{
gDebug () << "Item moved";

mainWindow->updatelines () ;

}

return QGraphicsItem::itemChange (change, wvalue);

}

The itemChanged () function is a virtual function in QGraphicsItem class which will
automatically be called by Qt's event system when something has changed in the graphics
item, be it position change, visibility change, parent change, selection change, and so on.

Therefore, all we need to do is to override the function and add in our own custom behavior
to the function. In the preceding sample code, all we did was to call the updateLines ()
function in our main window class.

Next, open mainwindow. cpp and define the updateLines () function. As the function
name implies, what you're going to do in this function is to loop through all the profile line
objects stored in the lines array and update every single one of them, like so:

void MainWindow: :updateLines ()
{
if (lines.size () > 0)
{
for (int 1 = 0; 1 < lines.size(); i++)
{
lines.at (i) ->updatelLine();

}

[214]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

EBSCChost -

Graphics View

Chapter 8

Once you're done, build and run the project again. This time, you should be able to create
an organization chart, such as the following;:

® MainWindow

John Doe

o

/

Jane Smith

o

/

Jason Joe

o

N

Michael Lee

o

/N

Walter Dean|

o

Peter Parke

o

This is just a simpler version that shows you how you can make use of Qt's powerful
Graphics View system to display graphical representation of a set of data that can be easily

understood by an average Joe.

[215]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

EBSCChost -

Graphics View Chapter 8

One last thing before it's done-we have yet to cover how to delete the profile box yet. It's

actually pretty simple, let's open mainwindow.h and add the keyReleaseEvent ()
function, which looks like this:

public:
explicit MainWindow (QWidget *parent = 0);
~MainWindow () ;

void updateLines();
void keyReleaseEvent (QKeyEvent* event);

This virtual function will also get called by Qt's event system automatically when a
keyboard button is being pressed and released. The content of the function looks like this in
mainwindow.cpp:

void MainWindow: :keyReleaseEvent (QKeyEvent* event)

{

gDebug () << "Key pressed: " + event—->text();
if (event->key () == Qt::Key_Delete)
{
if (scene—->selectedItems () .size() > 0)
{

QGraphicsItem* item = scene->selectedItems().at (0);
scene->removeltem (item) ;

for (int i = lines.size() - 1; i >= 0; i--)
{
profilelLine* line = lines.at (i);
if (line->startBox == item || line->endBox ==
item)
{

lines.removeAt (i) ;
scene->removeltem(line);
delete line;

}

delete item;

[216]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Graphics View Chapter 8

What we did in this function is first to detect the keyboard button that's being pressed by
the user. If the button is Qt : :Key_Delete (delete button), then we'll check if the user
has selected any profile box by checking whether scene->selectedItems () .size () is
empty. If the user has indeed selected a profile box, then remove that item from the
Graphics Scene. After that, loop through the lines array and check whether any profile line
has connected to the profile box that has been deleted. Remove any lines that are connected
to the profile box from the scene and we're done:

B MainWindow - o X B MainWindow -] X

Before John Doe After John Doe

o o
/1 \

Jane Smith Michael Joe| Michael Joe|

e O o

Walter Lee Walter Lee

2 2

Add Add

This screenshot shows the result of deleting the Jane Smith profile box from the
organization chart. Notice that the lines connecting the profile box have been correctly
removed. That's it for this chapter; I hope you found this interesting and will perhaps go on
to create something even better than this!

Summary

In this chapter, we have learned how to create an application using Qt that allows the user
to easily create and edit an organization chart. We have learned about classes such as
QGraphicsScene, QGrapicsItem, QGraphicsTextItem, QGraphicsPixmapItem and so
on that help us to create an interactive organization chart in a short period of time. In the
upcoming chapter, we will learn how to capture images using our webcam!

[217]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

The Camera Module

After working your way through so many chapters with increasing difficulty, let's try out
something simpler and more fun for this chapter instead! We will learn how to access our
camera through Qt's multimedia module and take photos using it.

In this chapter, we will cover the following topics:

The Qt multimedia module

Connecting to the camera

e Capturing a camera image to file
¢ Recording a camera video to file

You can use this to create a video conference app, a security camera system, and more. Let's
get started!

The Qt multimedia module

The multimedia module in Qt is the module that handles a platform's multimedia
capabilities, such as media playback and the use of camera and radio devices. This module
covers a wide range of topics, but we will just focus on the camera for this chapter.

Setting up a new project
First, create a new Qt Widgets Application project.

Then, the first thing we need to do is to open up the project file (. pro) and add two
keywords—multimedia and multimediawidgets:

QT += core gui multimedia multimediawidgets

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

The Camera Module Chapter 9

By detecting these keywords in the project file, Qt will include the multimedia module and
all the widgets that are related to multimedia into your project when it compiles. The
multimedia module includes four major components which are listed as follows:

e Audio
e Video
e Camera
e Radio

Each component includes a range of classes that provide respective functionality. By using
this module, you no longer have to implement low-level, platform-specific code yourself.
Let Qt do the job for you. It's really that easy.

After you have finished adding the multimedia module, let's open mainwindow.ui and
drag and drop a Horizontal Layout on to the main window, shown as follows:

Filter

TypeH
i Layouts ~ —

= .
= Vertical Layout

UU] Horizontal Layout |
[} [
[rlelr] |
424 Gnd Layout S |
ig Form Layout = =

hd Spacers
&l Horizontal Spacer

g Vertical Spacer

n Buttons

o] Push Button

@ Tool Button

(® Radio Button

i Check Box

@ Command Link Button

Then, add a Label, Combo Box (name it deviceSelection), and a Push Button into the
Horizontal Layout we just added in the previous step. After that, add a Horizontal Spacer
between the combo box and a push button to push them apart from each other. Once you're

done, select the central widget and click on the Layout Vertically button located above the
workspace.

[219]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

The Camera Module Chapter 9

Then, add another Horizontal Layout to the bottom of the previous horizontal layout and
right-click on it and select Morph into | QFrame. After that, set its sizePolicy (Horizontal
Policy and Vertical Policy) settings to Expanding. Refer the following screenshot:

Horizontal Policy Preferred

Vertical Policy

Horizontal Stretch
Vertical Stretch

Expanding -
Fixed

Minirmum
Maximum

linimumsize Preferred
Width MinimumExpa...
Heght lgnored
laximumsize 2 RET

Your program's user interface should look something like this by now:

Type Here

Device B L sy g e Connect
[poseom00000m00060056 5560 55005500 ©8 005 0EHG5C06E0 D EE0G D Moo 00060506 © 56050@PE500 905 655 0063 656 96 BTG FDDEEEEAS m
[J] 6 © c 6 s © s 6 s © s o6 8 © o o8 o8 © o o © © o 8 © © o o © © o o © © 8 o o]
B T R A B e R B i B B i R =

[220]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

The Camera Module Chapter 9

The reason we convert the layout to a frame is so that we can set the sizePolicy (both
Horizontal policy and Vertical policy) to Expanding. However, if we just add a Frame
widget (which is essentially a QFrame) from the widget box, we don't get the layout
component on it which is needed for attaching the viewfinder later.

Next, right click on the QFrame again and select Change styleSheet. A window will pop up
for setting the style sheet of that widget. Add the following style sheet code to make the
background black:

™ Edit Style Sheet *

Add Resource » Add Gradient + Add Color = Add Font

background-color: rgh(D, 0, 0);

Valid Style Sheet Cancel Help

This step is optional; we made its background black just to indicate the viewfinder's
location. Once this is done, let's put another Horizontal Layout above the QFrame, such as
the following:

[221]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

The Camera Module

Chapter 9

- P.fi

Connect

After that, add two Push Buttons to the Horizontal Layout and a Horizontal Spacer to

keep them aligned to the right:

=
Type Here

- F.".f.".f.".f.".f.".f.".f.".f.".f.".f.".f.".f.".f.".f.".f.".".f.".f.".f.".f.".f.".f.".f.".f."I.".ﬂ".ﬂ".ﬂ".ﬂ".ﬂ".ﬁ".ﬂﬂ".ﬂ".ﬂ".ﬂ'&i

Capture

Connect

l’.f.".f.f.".f.".f.".f.".f.".f.".f.".f.".f.".f.".f.".f.".f.".f.".f.".f.".".f.".f.".f.".f.".f.".f.".f.".f.".f.".f.".f.".ﬂ".ﬂ".ﬂ".ﬂ".ﬂ".".ﬂ".ﬂ".ﬂ".ﬂ".ﬂ".ﬂ'&i

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

[222]

EBSCChost -

The Camera Module Chapter 9

That's it; we have finished setting up our project with the multimedia module and laid out
the user interface nicely for our next sections.

Connecting to the camera

Here comes the most exciting part. We are going to learn how to access our camera(s) using
Qt's multimedia module! First, open mainwindow.h and add the following headers:

#include <QMainWindow>
#include <QDebug>

#include <QCameraInfo>
#include <QCamera>

#include <QCameraViewfinder>
#include <QCameralmageCapture>
#include <QMediaRecorder>
#include <QUrl>

Next, add the following variable, as shown here:

private:
Ui::MainWindow *ui;
QCamera* camera;
QCameraViewfinder* viewfinder;
bool connected;

Then, open up mainwindow.cpp and add the following code to the class constructor to
initiate the 9Camera object. We then use the QCameraInfo class to retrieve a list of
connected cameras and fill in that information in the combo box widget:

MainWindow: :MainWindow (QWidget *parent)
QMainWindow (parent),
uil (new Ui::MainWindow)

ui->setupUi (this);

connected = false;
camera = new QCameraf();

gDebug () << "Number of cameras found:" <<
QCameralInfo::availableCameras () .count ();

QList<QCameraInfo> cameras = QCameralnfo::availableCameras();
foreach (const QCameralInfo &cameralInfo, cameras)

{

gDebug () << "Camera info:" << cameralInfo.deviceName () <<

[223]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

The Camera Module Chapter 9

cameralInfo.description() << cameralnfo.position();
ui->deviceSelection->addItem (cameralnfo.description());
I3

Let's build and run the project now. After that, check the debug output for any detected
cameras on your computer. The cameras that have been detected should also be displayed
in the drop-down box. If you are running on a laptop with a supported camera, you should
see it listed. If you're running a system with no built-in camera, then the debug output may
not display anything and the drop-down box will remain empty as well. If that's the case,
try plugging in an inexpensive USB camera and run the program again:

1 MainWindow — O s
Device: |USB2.0 PC CAMERA 7 Connect
EasyCamera
CyberLink Webcam Splitter Capture Record

After that, open up mainwindow.ui and right click on the Connect button, and select Go to
slot.... Select the clicked () option and click OK. Qt Creator will automatically create a
slot function for you; add the following code into the function, like so:

volid MainWindow: :on_connectButton_clicked()

{

if (!connected)

[224]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

The Camera Module Chapter 9

connectCamera () ;
else

camera—->stop () ;
viewfinder->deletelater () ;
ui->connectButton->setText ("Connect") ;
connected = false;

}

When the Connect button is being clicked, we first check whether the camera is already
connected by checking the connect variable. If it's not connected yet, we run the
connectCamera () function which we will define in the next step. If the camera is already
connected, we stop the camera, delete the viewfinder and set the Connect button's text to
Connect. Finally, set the connected variable to false. Do note that we're using
deletelater () here instead of delete (), which is the recommended way to delete a
memory pointer. deleteLater () is called on an object that lives in a thread with no
running event loop, the object will be destroyed when the thread finishes.

Next, we will add a new function in our MainWindow class called connectCamera (). The
function looks like the following code block:

void MainWindow: :connectCamera ()

{
QList<QCameralInfo> cameras = QCameralnfo::availableCameras/();
foreach (const QCameralInfo &cameralInfo, cameras)

{

gDebug () << cameralInfo.description() << ui->deviceSelection-
>currentText () ;
if (cameraInfo.description() == ui->deviceSelection-
>currentText ())
{

camera = new QCamera (cameralnfo);

viewfinder = new QCameraViewfinder (this);

camera—->setViewfinder (viewfinder) ;
ui->webcamLayout->addWidget (viewfinder) ;

connected = true;
ui->connectButton->setText ("Disconnect") ;

camera->start () ;

return;

[225]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

The Camera Module Chapter 9

}

In the connectCamera () function, we repeat what we did in the construction and get the
current list of connected cameras. Then, we loop through the list and compare the name of
the camera (stored in the description variable) with the currently selected device name
on the combo box widget.

If there's a matching name, it means the user is intending to connect to that particular
camera, and thus we will proceed to connect to that camera by initializing a QCamera object
and a new QCameraViewFinder object. We then link the viewfinder to the camera and
add the viewfinder to the layout with the black color background. Then, we set the
connected variable to t rue and set the Connect button's text to Disconnect. Finally, call
the start () function to start running the camera.

Build and run the project now. Select the camera you are intending to connect to and click
the Connect button. You should be able to connect to your camera and see yourself in the
program:

B MainWindow — O X
Device: |EasyCamera & Disconnect
Capture Record

[226]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

EBSCChost -

The Camera Module Chapter 9

If your camera is unable to connect, do the following steps to display any errors returned by
the operating system. First, open up mainwindow.h and add in the following slot
function:

private slots:
void cameraError (QCamera::Error error);

After that, open mainwindow.cpp and add the following code to connectCamera ()
function to connect the error () signal to the cameraError (), slot function:

void MainWindow: :connectCamera ()

{

QList<QCameraInfo> cameras = QCameralnfo::availableCameras();
foreach (const QCameralInfo &cameralInfo, cameras)
{

gDebug () << cameralnfo.description() << ui->deviceSelection-
>currentText () ;

if (cameraInfo.description() == ui->deviceSelection-—
>currentText ())
{

camera = new QCamera (cameralnfo);

viewfinder = new QCameraViewfinder (this);

camera->setViewfinder (viewfinder) ;
ui->webcamLayout->addWidget (viewfinder) ;

connect (camera, SIGNAL (error (QCamera::Error)), this,
SLOT (cameraError (QCamera: :Error)));

connected = true;
ui->connectButton->setText ("Disconnect");

camera->start ();

return;

}

The cameraError () slot function looks like this:

voilid MainWindow: :cameraError (QCamera: :Error error)

{

gDebug () << "Camera error:" << error;

connected = false;
camera->stop () ;

[227]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

The Camera Module Chapter 9

ui->connectButton->setText ("Connect") ;

}

In the preceding code, we display the error message and make sure the camera has
completely stopped, just in case. By looking at the error message, you should be able to
debug the problem more easily.

Capturing a camera image to file

We have learned how to connect to our camera using Qt's multimedia module in the
previous section. Now, we will try and capture a still image from the camera and save it
into a JPEG file. It's actually very very simple with Qt.

First, open mainwindow.h and add the following variable:

private:
Ui::MainWindow *ui;
QCamera* camera;
QCameraViewfinder* viewfinder;
QCameraImageCapture* imageCapture;
bool connected;

Then, right-click on the Capture button in mainwindow.ui and select Go to slot.... Then,
select clicked () and press OK. Now, a new slot function will be created for you in
mainwindow.cpp. Add the following code to capture an image from the camera:

void MainWindow: :on_captureButton_clicked()
{
if (connected)
{
imageCapture = new QCameralmageCapture (camera);
camera—->setCaptureMode (QCamera: :CaptureStillImage) ;
camera->searchAndLock () ;
imageCapture—->capture (gApp—>applicationDirPath());
camera->unlock () ;

[228]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

The Camera Module Chapter 9

What we did in the preceding code is basically create a new QCameraImageCapture object
and set its media object as the active camera. Then, set its capture mode as a still image.
Before we ask the QCameraImageCapture object to capture an image, we must lock the
camera so that the settings remain unchanged during the process of capturing the image.
You may unlock it by calling camera->unlock () after you have successfully captured the
image.

We used gApp->applicationDirPath () to get the application directory so that the image
will be saved alongside the executable file. You can change this to whatever directory you
want. You can also put your desired filename behind the directory path; otherwise, it will
save the images sequentially using the default filename format starting with
IMG_00000001.3pg, IMG_00000002.jpg, and so on.

Recording a camera video to file

After we have learned how to capture a still image from our camera, let's proceed to learn
how to record videos as well. First, open mainwindow.h and add the following variables:

private:
Ui::MainWindow *ui;
QCamera* camera;
QCameraViewfinder* viewfinder;
QCameraImageCapture* imageCapture;
OMediaRecorder* recorder;

bool connected;
bool recording;

Next, open mainwindow.ui again and right-click on the Record button. Choose Go to
slot... from the menu and select the c1icked () option, then, click the OK button. A slot
function will be created for you; then proceed to add the following code into the slot
function:

void MainWindow: :on_recordButton_clicked()
{
if (connected)
{
if (!'recording)
{
recorder = new QMediaRecorder (camera);
camera->setCaptureMode (QCamera: :CaptureVideo) ;
recorder->setOutputLocation (QUrl (gApp-—
>applicationDirPath()));

[229]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

The Camera Module Chapter 9

recorder—->record() ;
recording = true;

else

recorder->stop () ;
recording = false;

}

This time, we use a QMediaRecorder for recording video instead. We must also set the
camera's capture mode to QCamera: : Capturevideo before calling recorder->record ().

To check the error message produced by the media recorder during the recording stage, you
may connect the error () signal of the media recorder to a slot function like this:

void MainWindow: :on_recordButton_clicked()
{
if (connected)
{
if (!recording)
{
recorder = new QMediaRecorder (camera) ;
connect (recorder, SIGNAL (error (QMediaRecorder: :Error)),
this, SLOT (recordError (QMediaRecorder: :Error)));
camera->setCaptureMode (QCamera: :CaptureVideo) ;
recorder->setOutputLocation (QUrl (gApp-—
>applicationDirPath()));
recorder—->record() ;

recording = true;

}

else

{
recorder—->stop () ;
recording = false;

}

}
}
[230]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

The Camera Module Chapter 9

Then, simply display the error message in the s1ot function:

void MainWindow: :recordError (QMediaRecorder: :Error error)

{
gDebug () << errorString();

}

Do note that, at the time of writing this chapter, the OMediaRecorder class only supports
video recording on macOS, Linux, mobile platforms and Windows XP. It doesn't work on
Windows 8 and Windows 10 at the moment, but it will be ported over in one of the
upcoming versions. The main reason is that Qt is using Microsoft's Direct Show API to
record video on the Windows platform, but it has since been deprecated from the Windows
operating system. Hopefully, by the time you're reading this book, this feature has been
completely implemented in Qt for Windows 8 and 10.

If it hasn't, you may use third-party plugins that use Opencv API for recording video, such
as the Qt Media Encoding Library (QtMEL) AP], as a temporary solutions. Do note that the
code used in QtMEL is completely different than the one we're showing here in this chapter.

For more information about QtMEL, please check out the following link:
http://kibsoft.ru.

Summary

In this chapter, we have learned how to connect to our camera using Qt. We have also
learned how to capture an image or record a video from the camera. In the next chapter, we
will learn about the networking module and try and make an instant messenger using Qt!

[231]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

EBSCChost -

10

Instant Messaging

One important feature of corporate software is the ability to communicate with staff. Thus,
an internal instant messaging system is a crucial part of the software. By incorporating the
networking module in Qt, we can easily create a chat system out of it.

In this chapter, we will cover the following topics:

¢ Qt networking module
e Creating an instant messaging server
¢ Creating an instant messaging client

Creating an instant messaging system using Qt is a lot easier than you think. Let's get
started!

The Qt networking module

In the following section, we will learn about the Qt networking module and how it can help
us to achieve server-client communication via the TCP or UDP connection protocols.

Connection protocols

The networking module in Qt is the module that offers both low-level networking
functionality, such as TCP and UDP sockets, as well as high-level networking classes for
web integration and network communication.

In this chapter, we will use the TCP (Transmission Control Protocol) internet protocol for
our program instead of the UDP (User Datagram Protocol) protocol. The main difference is
that TCP is a connection-oriented protocol that requires all clients to establish a connection
to the server before they are able to communicate with each other.

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Instant Messaging Chapter 10

UDP on the other hand is a connectionless protocol that does not require a connection. The
client will just send whatever data it needs to send to the destination, without checking if
the data has been received by the other end. There are pros and cons for both protocols, but
TCP is much more suitable for our sample project. We want to make sure every chat
message is being received by the recipient, don't we?

The differences between both protocols are as follows:

o TCP:
¢ Connection-oriented protocol
e Suitable for applications that require high reliability, and it is less
critical toward its data transmission time

¢ The speed for TCP is slower than UDP

¢ Requires acknowledgment of receipt from the receiving client
before sending the next data

¢ There is an absolute guarantee that the data transferred remains
intact and arrives in the same order in which it was sent

e UDP:
¢ Connectionless protocol
e Suitable for applications that need fast, efficient transmission, such
as games and VOIP
e UDP is lightweight and faster than TCP because error recovery is
not attempted

e Also suitable for servers that answer small queries from huge
numbers of clients

e There is no guarantee that the data sent reaches its destination at all
as there is no tracking connections and no need for any
acknowledgment from the receiving client

Since we are not going for the peer-to-peer connection approach, our chat system will
require two different pieces of software—the server program and the client program. The
server program will act as the middleman (just like a postman) who receives all the
messages from all the users and sends them to the targeted recipients accordingly. The
server program will be locked away from the normal users in one of the computers in the
server room.

[233]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Instant Messaging Chapter 10

The client program, on the other hand, is the instant messaging software that is used by all
the users. This program is the one that is being installed on the users' computers. Users can
send their messages using this client program and see the messages sent by others as well.

The overall architecture of our messaging system looks something like this:

Client

Client

)
Hv

Let's proceed to setting up our project and enabling Qt's networking module! For this
project, we will start on the server program before working on the client program.

Setting up a new project

First, create a new Qt Console Application project. Then, open up the project file (. pro)
and add in the following module:

QT += core network
ot -= gui

You should have noticed that this project doesn't have any gui module (we make sure it's
explicitly removed) as we don't need any user interface for the server program. That is also
the reason why we chose Qt Console Application instead of the usual Qt Widgets
Application.

Actually, that's it—you have successfully added the networking module to your project. In
the next section, we will learn how to create the server program for our chat system.

[234]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Instant Messaging Chapter 10

Creating an instant messaging server

In the following section, we will learn how to create an instant messaging server that
receives messages sent by the users and redistributes them to their respective recipients.

Creating TCP Server

In this section, we will learn how to create a TCP server that constantly listens to a specific
port for incoming messages. For the sake of simplicity, we will just create a global chat
room in which every user can see the messages sent by each and every user within the chat
room, instead of a one-to-one messaging system with a friend list. You can easily improvise
this system to the latter once you have understood how a chat system functions.

First, go to File | New File or Project and choose C++ Class under the C++ category. Then,
name the class as server and select QObject as the base class. Make sure the Include
QObject option is ticked before proceeding to create the custom class. You should have also
noticed the absence of mainwindow.ui, mainwindow.h, and mainwindow. cpp. Thisis
because there is no user interface in a console application project.

Once the server class has been created, let's open up server.h and add in the following
headers, variables and functions:

#ifndef SERVER_H
#define SERVER_H

#include <QObject>
#include <QTcpServer>
#include <QTcpSocket>
#include <QDebug>
#include <QVector>

private:
QTcpServer* chatServer;
QVector<QTcpSocket*>* allClients;

public:
explicit server (QObject *parent = nullptr);
void startServer();
void sendMessageToClients (QString message);

public slots:
void newClientConnection();
void socketDisconnected();

[235]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Instant Messaging Chapter 10

void socketReadyRead() ;
void socketStateChanged (QAbstractSocket: :SocketState state);

Next, create a function called startServer () and add the following code to the function
definition in server. cpp:

void server::startServer ()

{
allClients = new QVector<QTcpSocket*>;

chatServer = new QTcpServer();
chatServer->setMaxPendingConnections (10) ;

connect (chatServer, SIGNAL (newConnection()), this,
SLOT (newClientConnection()));

if (chatServer->listen (QHostAddress::Any, 8001))
{
gDebug () << "Server has started. Listening to port 8001.";

else

gDebug () << "Server failed to start. Error: " + chatServer-—
>errorString();

}

We created a QTcpServer object called chat Server and made it constantly listen to port
8001. You can choose any unused port number ranging from 1024 to 49151. Other
numbers outside of this range are usually reserved for common systems, such as HTTP or
FTP services, so we better not use them to avoid conflicts. We also created a Qvector array
called allClients to store all the connected clients so that we can make use of it later to
redirect incoming messages to all users.

We also used the setMaxPendingConnections () function to limit the maximum pending
connections to 10 clients. You can use this method to keep the number of active clients to a
specific amount so that your server's bandwidth is always within its limit. This can ensure
good service quality and maintain a positive user experience.

[236]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost

Instant Messaging Chapter 10

Listening to clients

The chatServer will trigger the newConnection () signal whenever a client has connected
to the server, so we connect that signal to our custom slot function called
newClientConnection (). The slot function looks like this:

void server::newClientConnection ()

{

QTcpSocket* client = chatServer->nextPendingConnection();
QString ipAddress = client->peerAddress () .toString();
int port = client->peerPort();

connect (client, &QTcpSocket::disconnected, this,
&server: :socketDisconnected) ;

connect (client, &QTcpSocket::readyRead, this,
&server: :socketReadyRead) ;

connect (client, &QTcpSocket::stateChanged, this,
&server: :socketStateChanged) ;

allClients—->push_back (client);

gDebug () << "Socket connected from " + ipAddress + ":" +
QString: :number (port) ;
}

Every new client connected to the server is a QTcpSocket object, which can be obtained
from the QTcpServer object by calling nextPendingConnection (). You can obtain
information about the client such as its IP address and port number by calling
peerAddress () and peerPort (), respectively. We then store each new client into the
allClients array for future use. We also connect the client's disconnected (),
readyRead () and stateChanged () signals to its respective slot function.

When a client is disconnected from the server, the disconnected () signal will be
triggered, and subsequently the socketDisconnected (), slot function will be called.
What we are doing in this function is just displaying the message on the server console
whenever it happens, and nothing more. You can do anything you like here such as saving
the user's offline state to the database and so on. For the sake of simplicity, we will just print
out the message on the console window:

vold server::socketDisconnected ()

{
QTcpSocket* client = gobject_cast<QTcpSocket*> (Q0bject::sender());

QString socketIpAddress = client->peerAddress () .toString();
int port = client->peerPort();

[237]

- printed on 2/9/2023 9:19 AMvia . Al use subject to https://wmv. ebsco.cont terns-of-use

EBSCChost -

Instant Messaging Chapter 10

gDebug () << "Socket disconnected from " + socketIpAddress + ":" +
QString: :number (port) ;
}

Next, whenever a client is sending in a message to the server, the readyRead () signal will
be triggered. We have connected the signal to a slot function called socketReadyRead ()
and it looks something like this:

void server::socketReadyRead ()

{
QTcpSocket* client = gobject_cast<QTcpSocket*> (Q0bject::sender());
QString socketIpAddress = client->peerAddress () .toString();
int port = client->peerPort();

QString data = QString(client->readAll());

gDebug () << "Message: " + data + " (" + socketIpAddress + ":" +
QString: :number (port) + ")";

sendMessageToClients (data);

}

In the preceding code, we simply redirect the message to a custom function called
sendMessageToClients (), which handles passing the message to all connected clients.
We will look at how this function works in a minute. We use QObject : : sender () to get
the pointer of the object that emitted the readyRead signal and convert it to

the QTcpSocket class so that we can access its readall () function.

After that, we also connected another signal called stateChanged () to the
socketStateChanged () slot function. The slow function looks like this:

void server::socketStateChanged (QAbstractSocket::SocketState state)

{
QTcpSocket* client = gobject_cast<QTcpSocket*> (Q0bject::sender());
QString socketIpAddress = client->peerAddress () .toString();
int port = client->peerPort();

QString desc;

if (state == QAbstractSocket::UnconnectedState)

desc = "The socket is not connected.";
else if (state == QAbstractSocket::HostLookupState)

desc = "The socket is performing a host name lookup.";
else if (state == QAbstractSocket::ConnectingState)

desc = "The socket has started establishing a connection.";
else 1f (state == QAbstractSocket::ConnectedState)

[238]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Instant Messaging Chapter 10

desc = "A connection is established.";
else 1f (state == QAbstractSocket::BoundState)
desc = "The socket is bound to an address and port.";
else if (state == QAbstractSocket::ClosingState)
desc = "The socket is about to close (data may still be
waiting to be written).";
else if (state == QAbstractSocket::ListeningState)
desc = "For internal use only.";

gDebug () << "Socket state changed (" + socketIpAddress + ":" +
QString: :number (port) + "): " + desc;

}

This function gets triggered whenever a client's network state has changed, such as
connected, disconnected, listening, and so on. We will simply print out a relevant message
according to its new state so that we can debug our program more easily.

Now, let's look at what the sendMessageToClients () function looks like:

void server::sendMessageToClients (QString message)

{
if (allClients->size() > 0)
{

for (int i = 0; 1 < allClients->size(); i++)

{
if (allClients—->at (i)->isOpen() && allClients—>at (i)-
>isWritable())
{

allClients->at (i) ->write (message.toUtf8());

}

In the preceding code, we simply loop through the al1clients array and pass the message
data to all the connected clients.

Lastly, open up main.cpp and add the following code to start our server:

#include <QCoreApplication>
#include "server.h"

int main(int argc, char *argvl[])
{

QCoreApplication a(argc, argv);

server* myServer = new server();

[239]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Instant Messaging Chapter 10

myServer—>startServer () ;

return a.exec();

}

Build and run the program now, and you should see something like this:

i CAOt\Tools\OtCreator\ bin'\gtcreator_process_stub.exe — O *

It doesn't look like anything is happening except showing that the server is listening to port
8001. Don't worry, because we haven't created the client program yet. Let's proceed!

Creating an instant messaging client

In the following section, we will proceed to create our instant messaging client, which the
users will be using to send and receive messages.

[240]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Instant Messaging Chapter 10

Designing the user interface

In this section, we will learn how to design the user interface for the instant messaging
client and create functionality for it:

1. First, create another Qt project by going to File | New File or Project. Then select
Qt Widget Application under the Application category.

2. After the project has been created, open up mainwindow.ui and drag a Line Edit
and Text Browser to the window canvas. Then, select the central widget and click
the Lay Out Vertically button, located on the widget bar above, to apply the
vertical layout effect to the widgets:

Filter L] L] u

[Font Combo Box = Type Here
Line Edit 3

AT Test Edit
[AT) Prain Text £

@ Spin Box

1-2: Double Spin Box

(O Time edit

7 Date Edit

Date/Time Edit

1} Dial
m=y Horizontal Scroll Bar

E| Vertical Scroll Bar

'm'= Harizontal Slider L L -
S Vertical Slider

Key Sequence Edit 1

v Display Widgets

> Label
AT| Text Browser /

'f-;; Graphics View

3. After that, place a Horizontal Layout at the bottom and put the Line Edit into the
layout. Then, pull a Push Button from the widget box into the Horizontal Layout
and name it as sendButton; we also set its label as Send, like this:

[241]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Instant Messaging Chapter 10

[L] [
Type Here
L] [
Send
= = =

4. Once you're finished, drag and drop another Horizontal Layout and place it on
top of the text browser. After that, place a Label, Line Edit, and a Push Button
into the horizontal layout, like this:

]] [
Type Here
l\la_nje:: |Jnhr1 Doe | Connect
] []
Send
]]]
[242]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Instant Messaging Chapter 10

We call the line edit widget nameInput and set a default text for it as John Doe, just so the
user has a default name. Then, we call the push button connectButton and change its
label to Connect.

We have completed the user interface design for a very simple instant messaging program,
which will do the following tasks:

1. Connect to a server

2. Let a user set their name

3. Can see messages sent by all users

4. A user can type and send their messages for all to see

Compile and run the project now, you should see your program looking something like
this:

B | Chat Client — O X

Mame: |John Doe Connect

Send

[243]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Instant Messaging Chapter 10

Do note that I also changed the window title to Chat Client so that it looks slightly more
professional. You can do so by selecting the MainWindow object at the hierarchy window
and change its windowTit le property.

In the next section, we will start working on the programming part and implement the
features mentioned in the list above.

Implementing chat features

Before we start writing any code, we must first enable the networking module by opening
our project file (.pro) and add the network keyword there:

QT += core gul network

Next, open up mainwindow.h and add the following headers and variables:

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>
#include <QDebug>
#include <QTcpSocket>

private:
Ui::MainWindow *uij;
bool connectedToHost;
QTcpSocket* socket;

We set the connectedToHost variable to false by default in mainwindow. cpp:

MainWindow: :MainWindow (QWidget *parent)
QMainWindow (parent),
ui (new Ui::MainWindow)

ui->setupUi (this);
connectedToHost = false;

[244]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Instant Messaging Chapter 10

Once this is done, the first feature we need to implement is the server connection. Open up
mainwindow.ui, right-click on the Connect button, then choose Go to slot..., and pick
clicked (). After that, a slot function will be created for you automatically. Add in the
following code to the SLOT function:

void MainWindow: :on_connectButton_clicked ()

{

if (!connectedToHost)

{
socket = new QTcpSocket ();

connect (socket, SIGNAL (connected()), this,
SLOT (socketConnected()));

connect (socket, SIGNAL (disconnected()), this,
SLOT (socketDisconnected()));

connect (socket, SIGNAL (readyRead()), this,
SLOT (socketReadyRead()));

socket->connectToHost ("127.0.0.1", 8001);
else

QString name = ui->namelnput->text ();
socket—>write ("" + name.toUtf8() + " has
left the chat room.");

socket->disconnectFromHost () ;

}

What we did in the preceding code was basically check for the connectedToHost variable.
If the variable is false (meaning the client is not connected to the server), create a
QTcpSocket object called socket and make it connect to a hostat 127.0.0.1 on port
8801. The IP address 127.0.0. 1 stands for a localhost. Since this is only for testing
purposes, we will connect the client to our test server, which is located on the same
computer. If you're running the server on another computer, you may change the IP
address to a LAN or WAN address, depending on your need.

We also connected the socket object to its respective slot functions when connected (),
disconnected (), and readReady () signals were triggered. This is exactly the same as the
server code, which we did previously. If the client is already connected to the server and the
Connect (now labeled Disconnect) button is clicked, then send a disconnection message to
the server and terminate the connection.

[245]

- printed on 2/9/2023 9:19 AMvia . Al use subject to https://wmv. ebsco.cont terns-of-use

Instant Messaging Chapter 10

Next, we will look at the slot functions, which we connected to the socket object in the
previous step. The first one is the socketConnected () function, which will be called when
the client has successfully connected to the server:

void MainWindow: :socketConnected()

{

gDebug () << "Connected to server.";
printMessage ("Connected to server.");

QString name = ui->nameInput->text ();
socket->write ("" + name.toUtf8() + " has joined
the chat room.");

ui->connectButton->setText ("Disconnect");
connectedToHost = true;

}

First, the client will display a Connected to server. message on both the application
output and the text browser widget. We will see what the printMessage () function looks
like in a minute. Then, we take the user's name from the input field and incorporate it into a
text message and send it to the server so that all users are being notified. Finally, set the
Connect button's label to Disconnect, and set the connectedToHost variable to true.

After this, let's look at socketDisconnected (), which as its name implies, will be called
whenever the client is disconnected from the server:

void MainWindow: :socketDisconnected ()

{

gDebug () << "Disconnected from server.";
printMessage ("Disconnected from server.");

ui->connectButton->setText ("Connect") ;
connectedToHost = false;

}

The preceding code is quite straightforward. All it does is show disconnected messages on
both the application output and text browser widget, then sets the Disconnect button's label
to Connect and the connectedToHost variable to false. Do note that since this function
will only be called after the client has been disconnected from the server, we can no longer
send any message to the server at that point to notify it of the disconnection. You should
check for the disconnection at the server side and notify all users accordingly.

[246]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Instant Messaging Chapter 10

Then, there is the socketReadyRead () function, which will be triggered whenever the
server is sending data to the client. This function is even simpler than the previous ones, as
all it does is pass the incoming data to the printMessage () function and nothing else:

void MainWindow: :socketReadyRead ()

{
ui->chatDisplay->append (socket->readAll ());
}

Finally, let's look at what the printMessage () function looks like. Actually, it is just as
simple. All it does is to append the message to the text browser and it is done:

vold MainWindow: :printMessage (QString message)

{
ui->chatDisplay->append (message) ;

}

Last but not least, let's check out how to implement the function for sending messages to the
server. Open up mainwindow.ui, right-click on the Send button, select Go to slot..., and
choose the clicked () option. Once the slot function has been created for you, add the
following code to the function:

void MainWindow: :on_sendButton_clicked()

{

QString name = ui->namelnput->text();
QString message = ui->messagelnput->text ();
socket—>write ("" + name.toUtf8() + ": " +

message.toUtf8());

ui->messagelnput->clear();

}

First, we take the user's name and combine it with the message. Then, we set the name to a
blue color before sending the entire thing to the server by calling write (). After that, clear
the message input field, and we're done. Since the text browser accepts rich text by default,
we can use that to color our text by placing the text within the tags.

Compile and run the project now; you should be able to chat among yourselves on different
clients! Don't forget to turn on the server before connecting the clients. If everything goes
right, you should see something like this:

[247]

- printed on 2/9/2023 9:19 AMvia . Al use subject to https://wmv. ebsco.cont terns-of-use

Instant Messaging Chapter 10

B Chat Client - O * 8 Chat Client - O *
Name: |John Doe Connect Mame: |Jane Smith Disconnect
Connected to server. Connected to server.
John Doe has joined the chat room. Jane Smith has joined the chat room.
Jane Smith has joined the chat room. John Doe: Hello Jane, how are you?
John Doe: Hello Jane, how are you? Jane Smith: I'm fine, thanks! :)
Jane Smith: I'm fine, thanks! :) John Doe: Be right back.

John Doe: Be right back.
Disconnected from server,

Send Send

Meanwhile, you should also see all the activities on the server side as well:

B CAOt\Tools\CtCreator\bin\gtcreator_process_stub.exe — O x

That's it! We have successfully created a simple chat system using Qt. You are welcome to
improvise on this and create a fully fledged messaging system!

[248]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Instant Messaging Chapter 10

Summary

In this chapter, we learned how to create an instant messaging system using Qt's
networking module. In the following chapter, we will dive into the wonders of graphics

rendering using Qt.

[249]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

11

Implementing a Graphics Editor

Qt provides us with low-level graphics rendering using the Qpainter class. Qt is capable of
rendering both bitmap and vector images. In this chapter, we will learn how to draw shapes
using Qt, and finally, create a paint program of our own.

In this chapter, we will cover the following topics:

e Drawing vector shapes
¢ Saving vector images to an SVG file
e Creating a paint program

Are you ready? Let's get started!

Drawing vector shapes

In the following section, we will learn how to render vector graphics on our Qt application
using the QPainter class.

Vector versus bitmap

There are two types of format in computer graphics—bitmap and vector. Bitmap images
(also known as raster images) are images that are stored as a series of tiny dots called
pixels. Each pixel will be assigned a color and gets displayed on screen exactly how it's
stored—a one-to-one correspondence between the pixels and what is displayed on the
screen.

On the other hand, vector images are not based on bitmap patterns but rather use
mathematical formulas to represent lines and curves that can be combined to create
geometrical shapes.

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Implementing a Graphics Editor Chapter 11

The main characteristics of both formats are listed here:

e Bitmap:
e Usually a larger file size
e Cannot be enlarged into a higher resolution as the image quality
will be affected
e Used to display complex images with many colors, such as
photographs
e Vector:

e Very small in file size
e Graphics can be resized without affecting the image quality

¢ Only a limited amount of color can be applied to each shape (single
color, gradient, or pattern)

e Complex shapes require high-processing power to be generated

The diagram here compares bitmap and vector graphics:

pixels vectors Q

We will focus on learning how to draw vector graphics using Qt in this section, but we will
also cover bitmap graphics later in this chapter.

[251]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Implementing a Graphics Editor Chapter 11

Drawing vector shapes using QPainter

First, create another Qt project by going to File | New File or Project. Then select Qt Widget
Application under the Application category. After the project has been created, open up
mainwindow.h and add in the QPainter header:

#include <QMainWindow>
#include <QPainter>

After that, we also declare a virtual function called paintEvent (), which is a standard
event handler in Qt that gets called whenever there is something that needs to be painted,
be it a GUI update, a window resize, or when the update () function is being called
manually:

public:
explicit MainWindow (QWidget *parent = 0);
~MainWindow () ;
virtual void paintEvent (QPaintEvent *event);

Then, open up mainwindow.cpp and add the paintEvent () function:

void MainWindow: :paintEvent (QPaintEvent *event)
{

QPainter painter;

painter.begin (this);

// Draw Line
painter.drawLine (QPoint (50, 60), QPoint (100, 100));

// Draw Rectangle
painter.setBrush (Qt::BDiagPattern);
painter.drawRect (QRect (40, 120, 80, 30));

// Draw Ellipse

QPen ellipsePen;

ellipsePen.setColor (Qt::red);
ellipsePen.setStyle (Qt::DashDotLine) ;
painter.setPen(ellipsePen);
painter.drawEllipse (QPoint (80, 200), 50, 20);

// Draw Rectangle

QPainterPath rectPath;

rectPath.addRect (QRect (150, 20, 100, 50));

painter.setPen (QPen(Qt::red, 1, Qt::DashDotLine, Qt::FlatCap,
Qt::MiterJoin));

painter.setBrush (Qt::yellow);

painter.drawPath (rectPath);

[252]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Implementing a Graphics Editor Chapter 11

// Draw Ellipse

QPainterPath ellipsePath;
ellipsePath.addEllipse (QPoint (200, 120), 50, 20);
painter.setPen (QPen (QColor (79, 106, 25), 5, Qt::SolidLine,
Qt::FlatCap, Qt::MiterJoin));

painter.setBrush (QColor (122, 163, 39));

painter.drawPath (ellipsePath);

painter.end();

}

If you build the program now, you should see the following:

B MainWindow — O >

" N |

%,

The preceding code is really long. Let's break it down, so it's easier for you to understand.
Whenever the paintEvent () is called (usually it will be called once when the window
needs to be drawn), we call QPainter: :begin () to tell Qt we're about to draw something,
and we call gpainter: :end () when we're done. Therefore, the code that draws graphics
will be contained within QPainter: :begin () and QPainter: :end().

[253]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Implementing a Graphics Editor Chapter 11

Let's look at the following steps:

1. The first thing that we drew was a straight line, which is quite simple —just call
QPainter::drawLine () and insert the start point and end point values to the
function. Do note that the coordinate system used by Qt is in pixel format. Its
origin starts from the top-left corner of the application window and increases to
the right and bottom directions, depending on the x and y values. The increment
of the x value moves the position to the right direction, while the increment of the
y value moves the position to the bottom direction.

2. Next, draw a rectangle that has a hatching pattern within the shape. This time, we
called QPainter: :setBrush () to set the pattern, before calling drawRect ().

3. After that, we drew an elliptical shape with a dash-dot outline and hatching
pattern within the shape. Since we have already set the pattern in the previous
step, we don't have to do it again. Instead, we use the QPen class to set the
outline style before calling drawE1lipse (). Just remember that in Qt's terms, a
brush is used to define the inner color or pattern of a shape, while a pen is used to
define the outline.

4. The next two shapes are basically similar to the previous ones; we only changed

different colors and patterns so that you can see the distinctions between them
and the previous examples.

Drawing text

Additionally, you can also draw text using the gpainterclass. All you need to do is to call
QPainter::setFont () to set the font properties before calling QPainter: :drawText (),
like so:

QPainter painter;
painter.begin (this);

// Draw Text
painter.setFont (QFont ("Times", 14, QFont::Bold));
painter.drawText (QPoint (20, 30), "Testing");

// Draw Line
painter.drawlLine (QPoint (50, 60), QPoint (100, 100))

[254]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Implementing a Graphics Editor Chapter 11

The setFont () function is optional as you will get a default font if you don't specify it.
Once you're done, build and run the program. You should see the word Hello
World! displayed in the window:

B MainWindow — O >

H'E“ﬂ wﬂl‘ld! ——————————— ,

s -

4

As you can see here, the vector shapes are basically generated by Qt in real time, which
looks perfectly fine regardless of how you rescale the window and change its aspect ratio. If
you're rendering a bitmap image instead, its visual quality may get degraded when its
rescaled along with the window or changed in its aspect ratio.

Saving vector images to an SVG File

Beside drawing vector graphics, Qt allows us to save these graphics into a vector image file,
called the SVG (Scalable Vector Graphics) file format. The SVG format is an open format
used by a lot of software, including web browsers to display vector graphics. In fact, Qt can
also read SVG files and render them on screen, but we'll skip that for now. Let's check out
how we can save our vector graphics to an SVG file!

This example continues from where we left it in the previous section. Therefore, we don't
have to create a new Qt project and can just stick to the previous one.

[255]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Implementing a Graphics Editor

Chapter 11

First, let's add a menu bar to our main window if it doesn't already have one. Then, open
mainwindow.ui, and in the form editor, right-click on the MainWindow object on the
hierarchy window and select Create Menu Bar:

Object

Class

w MainWine

Create Menu Bar
Add Tool Bar
Create Status Bar

Change objectMame...

Change toolTip...
Change whatsThis...
Change styleSheet...

Size Constraints

Once you're done, add File to the menu bar, followed by Save as SVG underneath it:

printed on 2/9/2023 9:19 AMvia .

n
File | Type Here
| Save as SVG ﬁ
Type Here
Add Separator
n
= n
[256]

Al use subject to https://ww.ebsco.contermnms-of-use

Implementing a Graphics Editor

Chapter 11

Then, go to the Action Editor at the bottom and right-click on the menu option we just

added and select Go to slot...:

Mame @

E [j

actio..s_%

Mew...

Edit...
Goto slot...
Lzed In

Cut
Copy
Paste
Select all
Delete

lcon View

Detailed View

it
e as 5VG

—

Shortcut

A window will pop up and ask you to pick a signal. Choose triggered() and click OK. A

new slot function will be created for you in mainwindow. cpp. Before we open up

mainwindow.cpp, let's open up our project file(.pro)and add the following svg

module:

QT += core gui svg

The svg keyword tells Qt to add relevant classes to your project that can help you to handle
the SVG file format. Then, we also need to add two more headers to our mainwindow.h:

#include <QtSvg/QSvgGenerator>
#include <QFileDialog>

After that, open up mainwindow. cpp and add the following code to the slot function we

just added in the previous step:

void MainWindow: :on_actionSave_as_SVG_triggered()

{

QOString filePath

= QFileDialog: :getSaveFileName (this,

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

"Save SVG",

[257]

Implementing a Graphics Editor Chapter 11

", "SVG files (*.svg)");

if (filePath == "")
return;

QSvgGenerator generator;

generator.setFileName (filePath);
generator.setSize (QSize (this->width (), this->height()));
generator.setViewBox (QRect (0, 0, this->width(), this->height()));
generator.setTitle ("SVG Example");

generator.setDescription("This SVG file is generated by Qt.");

paintAll (&generator);
}

In the preceding code, we used QFileDialog to let the users choose where they want to
save their SVG file. Then, we used the QSvgGenerator class to export the graphics into an
SVG file. Finally, we called the paintall () function, which is a custom function we are
going to define in the next step.

Actually, we need to modify the existing paintAll () method and put our rendering code
into it. Then, pass the QSvgGenerator object into the function input as the paint device:

void MainWindow: :paintAll (QSvgGenerator *generator)

{

QPainter painter;

if (generator)

painter.begin (generator);
else

painter.begin (this);

// Draw Text
painter.setFont (QFont ("Times", 14, QFont::Bold));
painter.drawText (QPoint (20, 30), "Hello World!");

Therefore, our paintEvent () now simply looks like this in mainwindow. cpp:

void MainWindow: :paintEvent (QPaintEvent *event)

{
paintAll();

}

The procedure here might seem a little confusing, but what it does is basically call the
paintAll () function to draw all the graphics once when the window is being created, and
then you call paintAll () again when you want to save the graphics to an SVG file.

[258]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Implementing a Graphics Editor Chapter 11

The only difference is the paint device — one is the main window itself, which we use as the
drawing canvas, and for the latter one we will pass the QSvgGenerator object as the paint
device, which will save the graphics into an SVG file instead.

Build and run the program now, click File | Save SVG File, you should be able to save the
graphics into an SVG file. Try and open up the file with the web browser and see what it

looks like:

& ‘@‘ @ files//C/Users/leezhieng/Documents

Hello World! e |

AN
__
-

It seems like my web browser (Firefox) does not support the hatching pattern, but other
things turn out to be fine. Since vector graphics are generated by the program and the
shapes are not stored in the SVG file (only the mathematical formula and its variables are
stored), you may need to make sure the features that you use are supported by the user's
platform.

In the next section, we will learn how to create our own paint program and draw bitmap
images using it!

[259]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Implementing a Graphics Editor Chapter 11

Creating a paint program
In the following section, we will move over to the realm of pixels and learn how to create a

paint program using Qt. Users will be able to express their creativity by using different sizes
and colors of the brush to draw pixel images!

Setting up a user interface

Again, for this example, we will create a new Qt Widget Application. After that, open up
mainwindow.ui and add a menu bar to the main window. Then, add the following options

to the menu bar:

File | Brush Size Brush Color File Brush Size lm‘ T],:pe Here
[Save LS | Black & |
Clear L] White o |
Type Here Fed Ll
Add Separator Errear S |
Blue L]
 File lm Brush Color Type Here |
[om & i e |
Spx g
10px Ly
Type Here
Add Separator
i

[260]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Implementing a Graphics Editor Chapter 11

We have three menu items on the menu bar—File, Brush Size, and Brush Color. Under the
File menu are functions for saving the canvas into a bitmap file, as well as clearing the
entire canvas. The Brush Size category contains different options for the brush size; last but
not least, the Brush Color category contains several options for setting the brush color.

You can go for something more paint-like or Photoshop-like for the GUI design, but we will
use this for now for the sake of simplicity.

Once you're done with all that, open up mainwindow.h and add the following headers on

top:

#include
#include
#include
#include

<QMainWindow>
<QPainter>
<QMouseEvent>
<QFileDialog>

After that, we also declare a few virtual functions, like so:

public:
explicit MainWindow (QWidget *parent = 0);
~MainWindow () ;

virtual
virtual
virtual
virtual
virtual

void
void
void
void
void

mousePressEvent (QMouseEvent *event);
mouseMoveEvent (DMouseEvent *event);
mouseReleaseEvent (DMouseEvent *event);
paintEvent (QPaintEvent *event);
resizeEvent (QResizeEvent *event);

Besides the paintEvent () function which we used in the previous example, we can also
add a few more for handling mouse events and window resize events. Then, we also add
the following variables to our MainWindow class:

private:
Ui::MainWindow *ui;

QImage image;
bool drawing;

QPoint lastPoint;
int brushSize;
QColor brushColor;

After that, let's open up mainwindow.cpp and start with the class constructor:

MainWindow: :MainWindow (QWidget *parent)
QMainWindow (parent),
ui (new Ui::MainWindow)

ui->setupUi (this);

printed on 2/9/2023

9:19 AMvia .

[261]

Al use subject to https://ww.ebsco.contermnms-of-use

Implementing a Graphics Editor Chapter 11

image = QImage (this->size(), QImage: :Format_RGB32);
image.fill (Qt: :white);

drawing = false;
brushColor = Qt::black;
brushSize = 2;

}

We need to first create a QImage object, which acts as the canvas, and set its size to match
our window size. Then, we set the default brush color to black and its default size to 2.
After that, we will look at each of the event handlers and how they work.

First, let's take a look at the paintEvent () function, which we also used in the vector
graphics, example. This time, all it does is call gpainter: :drawImage () and render the
QImage object (our image buffer) on top of our main window:

void MainWindow: :paintEvent (QPaintEvent *event)
{
QPainter canvasPainter (this);
canvasPainter.drawImage (this->rect (), image, image.rect());

}

Next, we will look at the resizeEvent () function, which gets triggered whenever the
main window is being resized by the user. To avoid image stretching, we must resize our
image buffer to match the new window size. This can be achieved by creating a new
QImage object and setting its size the same as the resized main window, then copying the

previous QImage's pixel information and placing it at the exact same spot on the new image
buffer.

This means that your image will be cropped if the window size is smaller than the drawing,
but at least the canvas will not be stretched and distort the image when the window is
resized. Let's take a look at the code:

vold MainWindow: :resizeEvent (QResizeEvent *event)

{
QImage newlmage (event->size (), QImage::Format_RGB32);
newImage.fill (qRgb (255, 255, 255));

QPainter painter (&newlmage) ;
painter.drawImage (QPoint (0, 0), image);
image = newlImage;

[262]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Implementing a Graphics Editor Chapter 11

Next, we will look at the mouse event handlers, which we use to apply colors on the canvas.
First, the mousePressEvent () function, which will be triggered when we start pressing
our mouse button (left mouse button in this case). We are still not drawing anything at this
point, but set the drawing Boolean to t rue and save our cursor position to the lastPoint
variable:

volid MainWindow: :mousePressEvent (QMouseEvent *event)

{

if (event—->button() == Qt::LeftButton)
{

drawing = true;

lastPoint = event->pos|();

}

Then, here is the mouseMoveEvent () function, which will be called when the mouse cursor
is moved:

void MainWindow: :mouseMoveEvent (QMouseEvent *event)

{
if ((event->buttons() & Qt::LeftButton) && drawing)

{
QPainter painter (&image) ;
painter.setPen (QPen (brushColor, brushSize, Qt::SolidLine,
Qt::RoundCap, OQt::RoundJoin));
painter.drawlLine (lastPoint, event->pos());

lastPoint = event->pos();
this->update();

}

In the preceding code, we check if indeed we are moving the mouse while holding the left
mouse button. If we are, then we draw a line from the previous cursor position to our
current cursor position. Then, we save the current cursor position to the lastPoint
variable and call update () to notify Qt to trigger the paintEvent () function.

[263]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Implementing a Graphics Editor Chapter 11

Finally, when we release the left mouse button, the mouseReleaseEvent () will be called.
We simply set the drawing variable to false, and we're done:

voilid MainWindow: :mouseReleaseEvent (QMouseEvent *event)

{
if (event—->button () == Qt::LeftButton)

{

drawing = false;
}
}

If we build the program and run it now, we should be able to start drawing something on
our little paint program:

1 MainWindow — O >
File Brush Size Brush Color

H@\ko |

Even though we can draw something now, it's all the same brush size and with the same
color all the time. That's a little boring! Let's right-click on each of the options on the Brush
Size category in the main menu and select Go to slot..., then pick the triggered() option and
then press OK. Qt will then create the slot functions accordingly for us, and what we need
to do within these functions is basically change the brushSize variable, like so:

void MainWindow: :on_action2px_triggered()

{

brushSize = 2;

[264]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Implementing a Graphics Editor Chapter 11

void MainWindow: :on_actionbSpx_triggered()
{

brushSize = 5;

void MainWindow::on_actionlOpx_triggered()
{

brushSize = 10;
I3

The same goes for all the options under the Brush Color category. This time, we set the
brushColor variable accordingly:

void MainWindow: :on_actionBlack_triggered()
{
brushColor = Qt::black;

void MainWindow: :on_actionWhite_triggered()
{
brushColor = Qt::white;

void MainWindow: :on_actionRed_triggered()
{
brushColor = Qt::red;

void MainWindow::on_actionGreen_triggered()
{

brushColor = Qt::green;

void MainWindow::on_actionBlue_triggered()
{
brushColor = Qt::blue;

}

If you build and run the program again, you will be able to draw your images with a
variety of settings for your brush:

[265]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Implementing a Graphics Editor Chapter 11

"7 MainWindow — O x

File Brush Size Brush Color

AN

Other than that, we can also add an existing bitmap image to our canvas so that we can
draw on top of it. Let's say I have a penguin image in the form of a PNG image (called
tux.png), we can then add the following code to the class constructor:

MainWindow: :MainWindow (QWidget *parent)
QMainWindow (parent),
uil (new Ui::MainWindow)

ui->setupUi (this);

image = QImage (this->size (), QImage::Format_RGB32);
image.fill(Qt::white);

QOImage tux;

tux.load (gApp—>applicationDirPath () + "/tux.png");
QPainter painter (&image);

painter.drawImage (QPoint (100, 100), tux);

drawing = false;
brushColor = Qt::black;
brushSize = 2;

[266]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Implementing a Graphics Editor Chapter 11

The preceding code basically opens up the image file and moves it to position 100 x 100
before drawing the image onto our image buffer. Now we can see a penguin on the canvas
whenever we start the program:

B MainWindow — O >
File Brush 5ize Brush Color

Next, we will look at the Clear option under File. When the user clicks on this option on the
menu bar, we use the following code to clear the entire canvas (including the penguin) and
start all over again:

void MainWindow: :on_actionClear_triggered()
{

image.fill (Qt::white);

this->update();

[267]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Implementing a Graphics Editor Chapter 11

Finally, when the user clicks on the Save option under File, we open up a file dialog and let
the users save their artwork into a bitmap file. In the following code, we filter out the image
formats and only allow the users to save PNG and JPEG formats:

void MainWindow::on_actionSave_triggered()
{

QString filePath = QFileDialog::getSaveFileName (this, "Save Image",
""", "PNG (*.png);;JPEG (*.jpg *.Jjpeqg);;All files (*.*)");

if (filePath == "")
return;

image.save (filePath);

}

That's it, we have successfully created a simple paint program from scratch using Qt! You
may even combine the knowledge learned from this chapter with the previous chapter to
create an online collaborative whiteboard! The only limitation is your creativity. Lastly, I
would like to say thank you to all the readers for creating the following masterpiece, using
our newly created paint program:

B MainWindow - O X
File Brush Size Brush Color

[268]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Implementing a Graphics Editor Chapter 11

Summary

In this chapter, we have learned how to draw vector and bitmap graphics, and
subsequently we created our very own paint program using Qt. In the following chapter,
we will look into the aspects of creating a program that transfers and stores our data on to

the cloud.

[269]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

12

Cloud Storage

In the previous chapter, we learned how to draw images on-screen using Qt. In this chapter,
however, we are going learn something totally different, which is setting up our own file
server and linking it to our Qt application.

In this chapter, we will cover the following topics:

e Setting up the FTP server

e Displaying the file list on the list view
¢ Uploading files to the FTP server

e Downloading files from the FTP server

Let's get started!

Setting up the FTP server

In the following section, we will learn how to set up an FTP server, which stores all the files
uploaded by a user and allows them to download them at any time. This section is not
related to Qt, so if you already have a running FTP server, please skip this part and proceed
to the next section of this chapter.

Introducing FTP

FTP is an acronym for File Transfer Protocol. FTP is used to transfer files from one
computer to another on a network, usually over the internet. FTP is just one of the many
different forms of cloud storage technology, but it is also a simple one that you can easily
set up on your own computer.

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

EBSCChost -

Cloud Storage Chapter 12

There are many different FTP servers that have been developed by different groups of
people for a specific operating system. In this section of the chapter, we will learn how to set
up a FileZilla server, which runs on the Windows operating system. If you're running other
operating systems such as GNU, Linux, or macOS, there are many other FTP server
programs that you can use, such as VSFTP and Pure-FTPd.

On Debian, Ubuntu, or other similar variants of Linux, running sudo apt-get install
vsftpd on the Terminal will install and configure an FTP server. On macOS, open System
Preferences from the Apple menu and select Sharing. Then, click on the Service tab and
select FTP access. Finally, click the Start button to start running the FTP server.

If you already have a running FTP server, please skip to the next section, in which we'll start
learning about C++ programming.

Downloading FileZilla

FileZilla is really easy to set up and configure. It provides a fully functional and easy-to-use
user interface and doesn't require any prior experience to operate it. The first thing we need
to do is download FileZilla. We will do it as follows:

1. Open up your browser and hop over to https://filezilla-project.org. You
will see two download buttons located at the Home page.

2. Click on Download FileZilla Server and it will bring us to the download page:

IFAFileZilla.........

Floine Overview
FileZilla Welcome to the homepage of FileZilla@, the free FTP solution. Both a client and a server are
charge under the terms of the GNU General Public License.
Features
Screenshots Support is available through our forums, the wiki and the bug and feature request trackers.
Sy
Documentation In addition, you will find documentation on how to compile FileZilla and nightly builds for mu

FileZilla Server N .
Download < Quick download links

Community

Forum Download ! 4 Download
Project page FileZilla Client FileZilla Server
Wiki All platforms Windows only
G(;:gral Pick the client if you want to tran® iles. Get the server if you want toag®ke files av,
Support © News [

Contact

[271]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

EBSCChost -

Cloud Storage Chapter 12

3. Once you're at the download page, click on the Download FileZilla Server
button and start downloading the software. We're not going to use the FileZilla
Client, so you don't have to download that. Once everything is ready, let's
proceed to install the software.

4. Like most Windows software, the installation process is very straightforward.
Keep everything as default and click Next all the way until the installation
process begins. It will take a couple of minutes at most for the installation to
complete.

5. Once it's completed, click on the Close button and we're done!:

E FileZilla Server beta 0.9.60 Setup —

Installation Complete
Setup was completed successfully.
Completed

Create shortouts C:\ProgramDataMicrosoft\Windows'\Start Menu\Programs\FileZilla 5... »
Create shortout: C:\ProgramDataMicrosoft\Windows'\start Menu\ProgramsFileZila 5...
Create shortout: C:\ProgramDataMicrosoft\Windows'start Menu\ProgramsFileZila 5...
Create shortout: C:\Users\Public\Desktop\FileZilla Server Interface.Ink

Execute: "C:\Program Files (x86)\FileZilla Server\FileZila Server.exe” fadminport 14147
Execute: "C:\Program Files (x86)\FileZila Server\FileZila Server Interface.exe”™ fadmi...
Installing Service...

Execute: "C:\Program Files (x86)\FileZilla Server\FileZilla Server.exe” finstall auto

Put FileZilla Server Interface into registry...

Completed

tullsaft Inskall System 3.0

< Back Cancel

[272]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

EBSCChost -

Cloud Storage Chapter 12

Setting up FileZilla

Once you have installed FileZilla, the control panel will most likely open by itself.

1. Since this is the first time you have launched FileZilla, it will ask you to set up the
server. Keep the server IP address as 127.0.0. 1 (which means localhost) and
the admin port to 14147.

2. Key in your desired password for administrating the server and check on the
Always connect to this server option. Press Connect and the FTP server will now
start up! This is shown in the following screenshot:

Enter server to administrate - Filefilla Server x>

Please enter the address and port of the FileZilla Server installation you
want to administrate,

Hostname or IP address. To
Host: | 127.0.0.1 | refer to this computer, enter
localhost.

) Enter the administration port (14147 by
Port: 14147
= - default), not the FTP port.

Password: | I |

[+]:Always connect to this server;

[273]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Cloud Storage Chapter 12

3. After the FTP server has started running, we need to create a user account. Click
on the fourth icon from the left to open up the Users dialog:

FileZilla Server (127.0.0.1)

File Server

% cion @,

Copyright 2001-20Tk by Tim Kosse {tim kozse@filezila-project arg)
hittps:/Ailezillaproject orgf

Connecting to server 127.000.1:14147

Connected, waiting for authentication

Logged on
You appear to be behind a2 MAT router. Please configure the passive mode settings and fq

Waming: FTP over TLS is not enabled. users cannot securely log in.

4. Then, under the General page, click on the Add button located at the right side of
the window. Create an account by setting a username and press OK.

[274]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Cloud Storage Chapter 12

5. We don't have to set the user to any group for now, as user groups are only
useful when you have many users that have the same privilege settings since it is
easier to change all users settings at once or move users to different groups. Once
you have created the user, check on the Password option and key in your desired
password. It is always a good practice to put the password on your FTP account:

Users *
Account settings Users
Genera [Enable account
Shared folders PasonmeE ‘ I
Speed Limits -
i IP Filter Group membership: | <none: w

[Jeypass userlimit of server

Maximum connection count:

Connection limit per IP: IZI ,
Add Remove |
[JEorce TLS for user login

Description

You can enter some comments about the user
Cancel

[275]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Cloud Storage Chapter 12

6. After that, we will proceed to the Shared folders page and add a shared directory
for our newly created user.

7. Make sure the Delete and Append options are checked so that files that have the
same name can be replaced. We will be using that for updating our file list in a
moment:

Page: Shared folders Users
""" Senerd rlos
Directories Aliazes Read tester

Speed Limits H C:\Users\leezhien... Wite
- IP Filter Delete
Append
Directories
[Create
[Delete
List
< > | W

o

Add Remove Rename Set as home dir

A directory alias will also appear at the specified location. Aliases must contain the full vitual
path. Separate multiple aliases for one directory with the pipe character (|)

If using aliases. please avoid cyclic directory structures, it will only confuse FTP clients.

Cancel

[276]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Cloud Storage

Chapter 12

8. If you click on the third icon from the left, the FileZilla Server options dialog will
appear. You can basically configure everything here to suit your needs. For
instance, if you don't want to use the default port number 21, you can simply
change it on the options window, under the General settings page:

FileZilla Server Options

Y e st

- \Welcome message
i IP bindings
i TP Filter

- Passive mode settings

- Security settings

- Miscellaneous

- Admin Interface settings
- Logaing

- Speed Limits

- Filetransfer compression
- FTP aver TLS settings

- Autoban

General settings

Connection settings
Listen on these ports:

Max. number of users:

Performance settings

Mumber of threads:

Timeout settings
Connections timeout:

Mo Transfer timeout:

Legin timeout:

OK |

Cancel

List of ports between 1 and 65535, These

21

| ports are used both for plain FTP and explicit

2

[

bl

FTF over TLS. (Default port: 21)
(0 for unlimited users)

This value should be a multiple of the number of processors
installed on your system. Increase this value if your server
is under heavy load.

in seconds (1-9999, 0 for no timeout).
in seconds (600-9999, 0 for no timeout). This value spedifies
the time a user has to initiate a file transfer.

in seconds {1-9999, 0 for no timeout). This value spedfies
the time in which a new user has to login.

9. You can also set the speed limit for all users or a specific user under the Speed
Limits page. This can prevent your server from becoming low performance when
many users are downloading huge files at the same time:

printed on 2/9/2023 9:19 AMvia

[277]

. Al'l use subject to https://ww. ebsco.con terns-of-use

EBSCChost

Cloud Storage Chapter 12

FileZilla Server Options >
[} General settings Speed Limits

WE@WE Message Download Speed Limit

i~ IP hindings o .

‘.. IP Filter (®) Mo Limit () Constant Speed Limit of | 10 kB/s
- Passive mode settings () Use Speed Limit Rules:
- Security settings Add
- Miscellaneous
- Admin Interface settings Remove
- Logging
P
- Filetransfer compression

. Down

- FTP over TLS settings
- Autob,

Hinban Upload Speed Limit

{®) Mo Limit (") Constant Speed Limit of = 10 kB/s
() Use Speed Limit Rules:
Add
Remove
Up
Down
oK |
Cancel

Next, let's proceed to create our Qt project!

Displaying the file list on the list view

In the previous section, we successfully set up a FTP server and kept it running. In the
following section, we will learn how to create an FTP client program that displays the file
list, uploads files to the FTP server, and finally downloads files from it.

[278]

- printed on 2/9/2023 9:19 AMvia . Al use subject to https://wmv. ebsco.cont terns-of-use

Cloud Storage Chapter 12

Setting up a project
As usual, let's create a new project using Qt Creator. The following steps will help:

1. We can create a new project by going to File | New File or Project and
selecting Qt Widgets Application.

2. Once your project has been created, open your project (.pro) file and add the
network keyword so that Qt knows that you need the Networking module in
your project:

QT += core gui network

Setting up user interface

After that, open up mainwindow.ui and perform the following steps to design the upper
part of our user interface for uploading files:

1. Place a Label that says Upload File: on top of every other widget.

2. Put a horizontal layout and two Push Buttons alongside it that say Open and
Upload, under the Label respectively.

3. Place a Progress Bar under the Horizontal Layout.
4. Put a Horizontal Line followed by a Vertical Spacer at the bottom:

Type Here

[“]] Horizontal Layout

{b Label =——— {jpioad File: /

Line Edit ——= [T open — - Y
. =13
{uploadFilelnput) e Push Button
3 Progress Bar : {openButton and uploadButton)

{uploadProgress)

= Horizontal Line E Vertical Spacer

[279]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Cloud Storage Chapter 12

Next, we're going to construct the bottom part of the user interface that is used for
downloading files:

L] u n
Type Here

Upload File:

Open Upload

0%

‘E:} Label === pownload File:]l——_——[]ﬂ] Horizontal Layout
nefdt—t— | setfoder~

24| Push Button
{setFolderButton)

{downloadPath) L

———[] ListView

{fileList)

@ Progress Bar=——p=— 0%

{downloadProgress)

E Vertical Spacer

This time, our user interface is very similar to the upper part, except we have added a List
View before the second Progress Bar for displaying the file list. We put everything on the
same page for this example program so that it's simpler and less confusing to explain.

Displaying the file list
Next, we will learn how to save and display the file list on the FTP server. Actually, the FTP
server does provide the file list by default, and Qt was able to display it using the gt ftp

module back in older versions. However, since Version 5, Qt has completely dropped the
gt £tp module and this feature no longer exists.

[280]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Cloud Storage Chapter 12

If you're still interested in the old gt ftp module, you can still obtain its
source code on GitHub by visiting the following
link: https://github.com/qt/qtftp

In Qt, we use the QNetworkAccessManager class to communicate with our FTP server so
features that are specifically designed for FTP no longer work. But, don't worry, we will
look into some other alternative methods to achieve the same result.

The best method, in my opinion, is using an online database to store the file list and its
information (file size, format, status, and so on). If you're interested in learning how to
connect your Qt application to a database, please refer to chapter 3, Database Connection.
However, for the sake of simplicity, we will use another method that works just fine but is
less secure—by saving the file names directly on a text file and storing it on the FTP server.

If you're doing a serious project for your client or company, please do not
use this method. Check out chapter 3, Database Connection, and learn to
use an actual database instead.

Alright, just assume that there is no other way but to use the text file; how are we going to
do that? It's very simple: create a text file called files.txt and place it into the FTP
directory we just created at the very beginning of this chapter.

Writing the code

Next, open up mainwindow.h and add the following headers:

#include <QMainWindow>

#include <QDebug>

#include <QNetworkAccessManager>
#include <QNetworkRequest>
#include <QNetworkReply>
#include <QFile>

#include <QFileInfo>

#include <QFileDialog>

#include <QListWidgetItem>
#include <QMessageBox>

[281]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Cloud Storage Chapter 12

After that, add in the following variables and functions:

private:
Ui::MainWindow *ui;
ONetworkAccessManager* manager;

QString ftpAddress;
int ftpPort;
QString username;
QString password;

ONetworkReply* downloadFileListReply;
ONetworkReply* uploadFileListReply;

ONetworkReply* uploadFileReply;
ONetworkReply* downloadFileReply;

QStringList filelist;
QString uploadFileName;
QString downloadFileName;

public:
void getFilelist();

Once you are done with the previous step, open up mainwindow.cpp and add the
following code to the class constructor:

MainWindow: :MainWindow (QWidget *parent)
QOMainWindow (parent),
ui (new Ui::MainWindow)
ui->setupUi (this);

manager = new QONetworkAccessManager (this);

ftpAddress = "ftp://127.0.0.1/";

ftpPort = 21;

username = "tester"; // Put your FTP user name here
password = "123456"; // Put your FTP user password here

getFileList () ;

[282]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Cloud Storage Chapter 12

What we did was basically initialize the QNetworkAccessManager object and set up the
variables that store our FTP server's information, since we will be repeated using it many
times in later steps. After that, we will call the getFileList () function to start
downloading files.txt from our FTP server. The getFileList () function looks like the
following;:

volid MainWindow: :getFileList ()

{
QUrl ftpPath;
ftpPath.setUrl (ftpAddress + "files.txt");
ftpPath.setUserName (username) ;
ftpPath.setPassword (password) ;
ftpPath.setPort (ftpPort);

QONetworkRequest request;
request.setUrl (ftpPath);

downloadFileListReply = manager->get (request);
connect (downloadFileListReply, &QNetworkReply::finished, this,
&MainWindow: :downloadFileListFinished) ;

}

We used a QUr1 object to store the information about our server and the location of the file
we're trying to download, and then fed it to a QNetworkRequest object before sending it
off by calling QNetworkAccessManager: :get (). Since we have no idea when all the files
will get downloaded completely, we make use of Qt's SIGNAL and SLOT mechanisms.

We connected the finished () signal that comes from our
downloadFileListReply pointer (which points to a QNetworkReply object in
mainwindow.h) and linked it to the s1ot function downloadFileListFinished (), which
we defined as follows:

voilid MainWindow: :downloadFileListFinished ()
{
if (downloadFileListReply—->error () != QNetworkReply::NoError)
{
QMessageBox: :warning (this, "Failed", "Failed to load file
list: " + downloadFileListReply->errorString());

else

QOByteArray responseData;
if (downloadFileListReply—->isReadable())
{
responseData = downloadFileListReply->readAll();

[283]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Cloud Storage Chapter 12

}

// Display file list
ui->fileList->clear () ;
fileList = QString(responseData) .split(",");

if (filelist.size() > 0)
{
for (int i = 0; i < filelList.size(); i++)
{
if (fileList.at (i) !="")

{
ui->fileList->addItem(fileList.at (1));

}

t
The code is a bit long, so I have broken down the function into the following steps:

1. If any problems occur during the download, display a message box that tells us
the nature of the problem.

2. If everything went nicely and the download has completed, we will try and read
the data by calling downloadFileListReply | readAll ().

3. Then, clear the List Widget and start parsing the content of the text file. The
format we used here is very simple; we only used a comma symbol to separate
each file name: filenamel, filename2, filename, . .. Itis important that we
do not do this in the actual project.

4. Once we have called split (", ") to split the string into a string list, do a for
loop and display each file name on the List Widget.

To test whether the preceding code works or not, create a text file called files.txt and
add the following text to the file:

filenamel, filename2, filename3

[284]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Cloud Storage Chapter 12

Then, place the text file to your FTP directory and run your project. You should be able to
see it appear like this on the application:

= = [
Type Here

Upload File:

| Open pload

0%

Download File:

Set Folder

0%

Once it is working, we can clear away the content of the text file and proceed to our next
section.

Uploading files to the FTP server

Since we don't have any files in our FTP directory yet (except the file list), let's write the
code to allow us to upload our first file.

1. First, open mainwindow.ui and right click on the Open button. Then, select Go
to slot and select the clicked() option:

[285]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Cloud Storage Chapter 12

B MainWindow — O >

|pload File:

| Open pload

0%

Download File;

Set Folder
filenamel
filename?
filename3
0%

2. A slot function will be automatically created for you. Then, add the following

code to the function to open up the file selector window for our users to select
their desired file for upload:

void MainWindow: :on_openButton_clicked()

{
QString fileName = QFileDialog::getOpenFileName (this, "Select
File", gApp—>applicationDirPath());
ui->uploadFileInput->setText (fileName) ;

[286]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Cloud Storage Chapter 12

3. After that, repeat this step and do the same for the Upload button. This time, the
code for its s1lot function looks something like the following:

void MainWindow: :on_uploadButton_clicked()

{
QFile* file = new QFile (ui->uploadFilelInput->text());
QFileInfo fileInfo(*file);
uploadFileName = fileInfo.fileName () ;

QUrl ftpPath;

ftpPath.setUrl (ftpAddress + uploadFileName) ;
ftpPath.setUserName (username) ;
ftpPath.setPassword (password) ;
ftpPath.setPort (ftpPort) ;

if (file->open (QIODevice: :ReadOnly))

{
ui->uploadProgress—->setEnabled (true);
ui->uploadProgress—->setValue (0);

ONetworkRequest request;
request.setUrl (ftpPath) ;

uploadFileReply = manager->put (request, file);
connect (uploadFileReply,

SIGNAL (uploadProgress (qint64,gint64)), this,

SLOT (uploadFileProgress (gint64,gint64)));

connect (uploadFileReply, SIGNAL (finished()), this,
SLOT (uploadFileFinished()));

else

QMessageBox::warning(this, "Invalid File", "Failed to open
file for upload.");

}
The code looks a bit long, so let's break it down:

1. We used the QFile class for opening the file that we want to upload (the file path
is taken from ui->uploadFileInput->text ()). If the file doesn't exist, display
a message box to inform the user.

2. Then, we fill in the information of our FTP server and the upload destination into
a QUrl object before feeding it to a OQNetworkRequest object.

3. After that, we start reading the content of our file and provide it to the
ONetworkAccessManager: :put () function.

[287]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Cloud Storage Chapter 12

4. Since we have no idea when the file will get uploaded completely, we used the
SIGNAL and SLOT mechanisms provided by Qt. We linked the
uploadProgress () and finished () signals to our two custom slot function
called uploadFileProgress () and uploadFileFinised (), respectively.

The slot function uploadFileProgress () will tell us the current progress of our upload,
and therefore we can use it to set the progress bar:

void MainWindow: :uploadFileProgress (gqint64 bytesSent, gint64 bytesTotal)
{
qint64 percentage = 100 * bytesSent / bytesTotal;
ui->uploadProgress—->setValue ((int) percentage);

}

Meanwhile, the uploadFileFinished () function will be triggered when the file has been
completely uploaded:

void MainWindow: :uploadFileFinished()
{
if (uploadFileReply->error () != QNetworkReply::NoError)
{
QMessageBox: :warning (this, "Failed", "Failed to upload file: "
+ uploadFileReply->errorString());

QMessageBox::information(this, "Success", "File successfully
uploaded.");

}

We are not done with the preceding function yet. Since a new file has been added to the FTP
server, we must update the existing file list and replace the files.txt file stored within
the FTP directory. Since the code is slightly longer, we will break the code into several parts,
which all are occurring before showing the File successfully uploaded message box.

1. First, let's check whether the newly uploaded file has already existed within our
file list (replacing an old file on the FTP server). If it does, then we can skip the
entire thing; otherwise, append the filename to our fileList string list, as
shown in the following code:

// Add new file to file list array if not exist yet
bool exists = false;

if (fileList.size() > 0)

{

[288]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Cloud Storage Chapter 12

for (int i = 0; 1 < filelList.size(); 1i++)
{
if (filelist.at (i) == uploadFileName)
{
exists = true;
}
}
}
if (!'exists)
{
fileList.append (uploadFileName) ;
}

2. After that, create a temporary text file (files. txt) in our application's directory
and save the new file list in the text file:

// Create new files.txt

QString fileName = "files.txt";

QFile* file = new QFile (gApp—>applicationDirPath() + "/" +
fileName) ;

file->open (QIODevice: :ReadWrite);

if (filelist.size() > 0)
{
for (int j = 0; J < filelist.size(); Jj++)
{
if (fileList.at(3j) !="")
{
file->write (QString(fileList.at(j) + ",").toUt£f8());
}

}

file->close();

3. Finally, we use the QFile class to open the text file we just created, and we
upload it again to the FTP server to replace the old file list:

// Re—open the file
QFile* newFile = new QFile (gApp->applicationDirPath() + "/" +
fileName) ;
if (newFile->open (QIODevice: :ReadOnly))
{
// Update file list to server
QUrl ftpPath;
ftpPath.setUrl (ftpAddress + fileName);
ftpPath.setUserName (username) ;
ftpPath.setPassword (password) ;

[289]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost

Cloud Storage Chapter 12

ftpPath.setPort (ftpPort) ;

ONetworkRequest request;

request.setUrl (ftpPath);

uploadFilelListReply = manager->put (request, newFile);

connect (uploadFileListReply, SIGNAL(finished()), this,
SLOT (uploadFilelListFinished()));

file->close();

}

4. Again, we use the SIGNAL and SLOT mechanisms so that we are notified when
the file list has been uploaded. The s1ot function
uploadFileListFinished () looks something like the following:

void MainWindow: :uploadFileListFinished ()

{
if (uploadFilelListReply->error () != QONetworkReply::NoError)

{
QMessageBox: :warning (this, "Failed", "Failed to update

file list: " + uploadFilelListReply->errorString());
}

else

{
getFileList ();

}

5. We basically just call getFileList () again after we have updated the file list
into the FTP server. If you build and run the project now, you should be able to
upload your first file to your local FTP server, hooray!

[Goto slot
Select signal
clicked() QAbstractButton A
clicked(bool) QAbstractButton
pressed() CAbstractButton
released() QAbstractButton
toggledibool) CAbstractButton
destrovedi O0hiert v
Cancel

[290]

- printed on 2/9/2023 9:19 AMvia . Al use subject to https://wmv. ebsco.cont terns-of-use

Cloud Storage Chapter 12

Downloading files from the FTP server

Now that we have successfully uploaded our first file to the FTP server, let's create the
feature for downloading the file back onto our computer!

1. First, open mainwindow.ui again and right-click on the Set Folder button. Select
Go to slot... and pick the clicked() signal to create a s1ot function. The slot
function is very simple; it will just open up a file selection dialog, but this time it
will only let the user select a folder instead since we provided it with a
QFileDialog: :ShowDirsOnly flag:

vold MainWindow: :on_setFolderButton_clicked ()

{
OString folder = QFileDialog::getExistingDirectory (this,

tr ("Open Directory"), gApp->applicationDirPath(),
QFileDialog: :ShowDirsOnly) ;
ui->downloadPath->setText (folder) ;

}

2. Then, right click on the List Widget and select Go to slot... This time around, we
will pick the itemDoubleClicked (QListWidgetItem*) option instead:

B MainWindow = O *
Upload File:
| 1_227832.7G | | Open Upload
I
Download File:
| | Set Folder
B Success >
o File successfully uploaded.
0%
[291]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Cloud Storage Chapter 12

3. When the user double-clicks on an item in the List Widget, the following function
will be triggered, which kick-starts the download. The file name can be obtained
from the QListWidgetItem object by calling item—>text ():

void MainWindow::on_fileList_itemDoubleClicked (QListWidgetItem
*item)
{

downloadFileName = item->text ();

// Check folder

QString folder = ui->downloadPath->text ();

if (folder != "" && QDir(folder) .exists())

{
QUrl ftpPath;
ftpPath.setUrl (ftpAddress + downloadFileName);
ftpPath.setUserName (username) ;
ftpPath.setPassword (password) ;
ftpPath.setPort (ftpPort);

ONetworkRequest request;
request.setUrl (ftpPath);

downloadFileReply = manager->get (request);
connect (downloadFileReply,

SIGNAL (downloadProgress (gint64,gint64)), this,
SLOT (downloadFileProgress (gint64,gint64)));
connect (downloadFileReply, SIGNAL (finished()), this,

SLOT (downloadFileFinished()));
else

QMessageBox: :warning (this, "Invalid Path", "Please set the
download path before download.");

}

4. Just like what we did in the upload function, we also used the SIGNAL and SLOT
mechanisms here to obtain the progression of the download process as well as
the completed signal. The slot function downloadFileProgress () will be
called during the download process, and we used that to set the value of our
second progress bar:

void MainWindow: :downloadFileProgress (gint64 byteReceived,gint64
bytesTotal)
{

gint64 percentage = 100 * byteReceived / bytesTotal;

[292]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Cloud Storage Chapter 12

ui->downloadProgress—->setValue ((int) percentage);

}

5. Then, the slot function downloadFileFinished () will be called when the file
has been completely downloaded. What we're going to do after that is read all the
data of the file and save it to our desired directory:

void MainWindow: :downloadFileFinished ()

{

if (downloadFileReply->error () != QNetworkReply::NoError)
{
QMessageBox::warning(this, "Failed", "Failed to download
file: " + downloadFileReply->errorString());
}
else
{
QOByteArray responseData;
if (downloadFileReply->isReadable())
{
responseData = downloadFileReply->readAll();
}
if (!responseData.isEmpty())
{
// Download finished
QString folder = ui->downloadPath->text ();
QFile file(folder + "/" + downloadFileName);
file.open (QIODevice: :WriteOnly) ;
file.write ((responseData));
file.close();
QOMessageBox::information (this, "Success", "File
successfully downloaded.");
}
}
3
[293]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Cloud Storage Chapter 12

6. Build the program now and you should be able to download any files listed on

the file list!:
™ Gotoslot
Select signal
itemChanged(COListWidgetltern™) CListWidget A
itern Clicked(OListWidgetitern™) OListWidget
iternDoubleClicked(CListWidgetltern™) OListWidget
iternEntered (QListWidgetitem™) OListWidget
itermPressed (OListWidgetitem®) QListWidget
iternSelectinnChanaed Ol istWidnet =
Cancel

Summary

In this chapter, we learned how to create our own cloud storage client using Qt's
Networking module. In the following chapter, we will learn more about the multimedia
module and create our own multimedia player from scratch using Qt.

[294]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

13

Multimedia Viewers

In the previous chapter, we learned how to upload and download files through cloud
storage. Now, in this chapter, we are going to learn how to open these files, specifically
media files such as images, music, and videos, using Qt's multimedia module.

In this chapter, we will cover the following topics:

¢ Revisiting the multimedia module
¢ The image viewer

¢ The music player

e The video player

Let's get started!

Revisiting the multimedia module

In this chapter, we will be using the multimedia module again, which we covered
previously in chapter 9, The Camera Module. However, this time we will be using some
other parts of the module, so I thought it would be a good idea to dissect the module and
see what's inside it.

Dissecting the module

The multimedia module is a really large module that consists of many different parts, that
provide very different features and functionality. The main categories are as follows:

e Audio
¢ Video
o Camera
¢ Radio

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Multimedia Viewers Chapter 13

Do note that classes that handle image formats, such as QImage, QP ixmap, and so on, are
not a part of the multimedia module but rather the GUI module. This is because they are an
important part of the GUI that cannot be separated. Despite this, we will still cover the
QImage class within this chapter.

Under each category are subcategories that look something like the following:

e Audio:
e Audio output
e Audio recorder
e Video:
e Video recorder
¢ Video player
e Video playlist
e Camera:
e Camera viewfinder
e Camera image capture
e Camera video recorder
e Radio:

¢ Radio tuner (for devices that support analog radio)

Each of the classes is designed to fulfill a different purpose. For example,

the QSoundEffect is used for playing low latency audio files (such as WAV files).
QAudioOutput, on the other hand, outputs raw audio data to a specific audio device, which
gives you low-level control over your audio output. Finally, the OMediaPlayer is a high-
level audio (and video) player that supports many different high-latency audio formats.
You must understand the differences between all the classes before choosing the right one
for your project.

The multimedia module in Qt is such a huge beast that often confuses newcomers, but can
be advantageous if you know which to choose from. Another issue with the multimedia
module is that it may or may not work on your target platform. This is because underneath
all these classes are native implementations for specific platforms. If a particular platform
does not support a feature, or there is not yet an implementation for it, then you won't be
able to use those functionalities.

For more information regarding the different classes provided by Qt's
multimedia module, please visit the following link:
https://doc.gt.io/gqt-5.10/gtmultimedia-index.html

[296]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Multimedia Viewers Chapter 13

The image viewer

Digital images have become an important aspect of our daily life. Whether it's a selfie, prom
night photo, or a funny meme, we spend a lot of our time looking at digital images. In the
following section, we will learn how to create our own image viewer using Qt and C++.

Designing a user interface for the image viewer

Let's get started with creating our first multimedia program. In this section, we will create
an image viewer, which, as its name implies, opens up an image file and displays it on the
window:

1. Let's open up Qt Creator and create a new Qt Widgets Application project.

2. After that, open up mainwindow.ui and add a Label (name it
as imageDisplay) to the central widget, which will serve as the canvas for
rendering our image. Then, add a layout to the centralWidget by selecting it and
pressing Layout Vertically, located on top of the canvas:

File Type Here
o m m

[297]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Multimedia Viewers Chapter 13

3. You can remove the tool bar and status bar to give space to the Label. Also, set
the layout margins of the central widget to 0:

layoutName verticalLayout
layoutLeftMargin
layoutTopMargin
layoutRightMargin
layoutBottomMargin
layoutSpacing
layoutStretch
layoutSizeConstraint SetDefaultConst...

(=T =T — I — N — I]

4. After that, double-click on the menu bar and add a File action, followed by Open
File underneath it:

File | Type Here
Open File L3

| Type Here |
Add Separator

5. Then, under the Action Editor, right-click on the Open File action and select Go

to slot...:
1 New..
" Edit...
Go to slot...
Uszed In L4
&% Cut
¥ Copy
;_I Paste
Select all
® Delete
I]I:Ihj lcon View
Mame [£] Detailed View Shorteut
.....actionOpen 1] Open File

[298]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Multimedia Viewers Chapter 13

6. A window will pop out and ask you to pick a signal, so choose triggered() and

click OK:
™ Gotoslot
Select signal
changed() Cilction ”
howered() QhAction
toggledibool) Qfction
triggered() Clction
triggered({bool) Crlction
destroved() O0hiect hd
Corcel

A slot function will be created for you automatically, but we will keep that for the next
section. We are done with the user interface, and it is really that simple. Next, let's move on
and start writing our code!

Writing C++ code for image viewers

Let's get started by using the following steps:
1. First, open up mainwindow.h and add the following headers:

#include <QMainWindow>
#include <QFileDialog>
#include <QPixmap>
#include <QPainter>

[299]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Multimedia Viewers Chapter 13

2. Then, add the following variable, called imageBuffer, which will serve as the
pointer that points to the actual image data before rescaling. Then, add the
functions as well:

private:
Ui::MainWindow *ui;
QPixmap* imageBuffer;

public:
void resizeImage();
void paintEvent (QPaintEvent *event);

public slots:
void on_actionOpen_triggered();

3. Next, open up mainwindow.cpp and initialize the imageBuffer variable in the
class constructor:

MainWindow: :MainWindow (QWidget *parent)
QOMainWindow (parent),
ul (new Ui::MainWindow)

ui->setupUi (this);
imageBuffer = nullptr;
}

4. After that, add the following code to the slot function Qt created for us in the
previous section:

void MainWindow: :on_actionOpen_triggered()
{

QOString fileName = QFileDialog::getOpenFileName (this, "Open
Image File", gApp—->applicationDirPath (), "JPG (*.Jjpg *.jpeg);;PNG
(*.png)");

if (!fileName.isEmpty())

{
imageBuffer = new QPixmap (fileName) ;
resizeImage () ;

[300]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Multimedia Viewers Chapter 13

5. The preceding code basically opens up the file-selection dialog, and it creates a
QPixmap object with the selected image file. After all that is done, it will call the
resizeImage () function, which looks like the following code:

void MainWindow: :resizeImage ()

{

if (imageBuffer != nullptr)

{
QSize size = ui->imageDisplay->size();
QPixmap pixmap = imageBuffer->scaled(size,

Qt: :KeepAspectRatio);

// Adjust the position of the image to the center

QRect rect = ui->imageDisplay->rect ();
rect.setX ((this—>size().width() - pixmap.width()) / 2);
rect.setY ((this—>size().height () - pixmap.height()) / 2);

QPainter painter;
painter.begin(this);
painter.drawPixmap (rect, pixmap,
ui->imageDisplay->rect ());
painter.end();
}
}

What the resizeImage () function does is simply copy the image data from the
imageBuf fer variable and resize the image to fit the window size before displaying it on
the window's canvas. You could be opening an image that is way larger than your screen

resolution, and we don't want the image to get cropped when opening such a large image
file.

The reason why we use the imageBuffer variable is so that we can keep a copy of the
original data and not affect the image quality by resizing it many times.

Lastly, we also call this resizeImage () function within the paintEvent () function.
Whenever the main window is being resized or restored from a minimized state,
paintEvent () will automatically get called, and so will the resizeImage () function,
shown as follows:

void MainWindow: :paintEvent (QPaintEvent *event)

{

resizelmage () ;

[301]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Multimedia Viewers Chapter 13

That's it. If you build and run the project now, you should get a pretty neat image viewer
that looks like the following:

7 Image Viewer — O X

File

The music player

In the following section, we will learn how to build our own custom music player using Qt
and C++.

Designing a user interface for music players

Let's move on to the next project. In this project, we will be building an audio player using
Qt. Perform the following steps:

1. As with the previous project, we will be creating a 0t Widgets Application
project.
2. Openup the project file (.pro), and add inthe multimedia module:

QT += core gui multimedia

3. We added the multimedia text so that Qt includes classes related to the
multimedia module in our project. Next, open up mainwindow.ui, and refer to
the following screenshot to construct the user interface:

[302]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Multimedia Viewers Chapter 13

]] []
File Type Here

Dﬂ] Horizontal Layout 1 Q Label
\\ Mo song &—__-___
{}= Horizontal Slider = o0:00:000 ® 4= Herizontal Slider
E }tx.r.r.r.w .r.r.rrrm.r.r.r.wm.r.r.rl I é/

ok| Push Button [8d] Horizontal Spacer Dﬂ] Horizontal Layout

We basically added a Label at the top, followed by a Horizontal Slider and another

Label to show the current time of the audio. After that, we added three Push Buttons at the
bottom for the Play button, Pause button, and Stop button. Located at the right-hand side
of these buttons is another Horizontal Layout that controls the audio volume.

As you can see, all the Push Buttons have no icon for now, and it's very confusing which
button is for what purpose.

1. To add icons to the buttons, let's go to File | New File or Project and select Qt
Resource File under the Qt category. Then, create a prefix called icons, and add
the icon images to the prefix:

¥ @ ficons
I pausepng
» play.png
W stop.png
ﬁvolume.png

Remove Remove Missing Files

Add Files
Add Prefix

Prefix: |ﬂ::ons

Language:|

[303]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Multimedia Viewers

Chapter 13

2. After that, add those icons to the Push Button by setting its icon property and
selecting Choose Resource.... Then, set the pixmap property of the label, located
beside the volume slider, as the volume icon:

> text
textFormat
scaledContents Choose Resource...
v alignment Choose File...
Horizontal -
Wertical AlignVCenter
wenrdWiran [hd

3. After you have added the icons to the Push Button and Label, the user interface
should look a lot better:

File Type Here

1 = F.r.rIJ.rﬁ.r.rﬁ.ra'x.rm.rﬁ.r.wmi'@ —— I: e |

We're done with the user interface; let's move on to the programming part!

Writing C++ code for music players

To write the C++ code for music players, perform the following steps:

1. First and foremost, open up mainwindow.h and add the following headers:

#include <QMainWindow>
#include <QDebug>

printed on 2/9/2023 9:19 AMvia .

[304]

Al use subject to https://ww.ebsco.contermnms-of-use

Multimedia Viewers Chapter 13

#include <QFileDialog>
#include <QMediaPlayer>
#include <QMediaMetaData>
#include <QTime>

2. After that, add the player variable, which is a QMediaPlayer pointer. Then,
declare the functions that we're going to define later:

private:
Ui::MainWindow *ui;
OMediaPlayer* player;

public:
void stateChanged (QMediaPlayer: :State state);
void positionChanged(gint64 position);

3. Next, open up mainwindow.cpp and initialize the player variable:

MainWindow: :MainWindow (QWidget *parent)
QMainWindow (parent),
uil (new Ui::MainWindow)

ui->setupUi (this);

player = new QMediaPlayer (this);

player->setVolume (ui->volume->value()) ;

connect (player, &QMediaPlayer::stateChanged, this,
&MainWindow: : stateChanged) ;

connect (player, &QMediaPlayer: :positionChanged, this,
&MainWindow: :positionChanged) ;
}

The oMediaPlayer class is the main class that is used by our application to play
any audio file loaded by it. Thus, we need to know the state of the audio playing
and its current position. We can get this information by connecting its
stateChanged () and positionChanged () signals to our custom slot
functions.

4. The stateChanged () signal allows us to obtain information about the current
state of the audio playing. Then, we enable and disable the Push Button
accordingly:

void MainWindow: :stateChanged (QMediaPlayer::State state)
{

if (state == QMediaPlayer::PlayingState)

{

[305]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Multimedia Viewers Chapter 13

ui->playButton->setEnabled(false);
ui->pauseButton->setEnabled (true) ;
ui->stopButton->setEnabled (true);

}

else if (state == QMediaPlayer::PausedState)

{
ui->playButton->setEnabled (true);
ui->pauseButton->setEnabled (false);
ui->stopButton->setEnabled (true);

}

else if (state == QMediaPlayer::StoppedState)

{
ui->playButton->setEnabled (true);
ui->pauseButton->setEnabled (false);
ui->stopButton->setEnabled(false);

}

}

5. As for the positionChanged () and slot functions, we use them to set the
timeline slider, as well as the timer display:

voilid MainWindow: :positionChanged (gint64 position)
{
if (ui->progressbar->maximum() != player->duration())
ui->progressbar->setMaximum (player—->duration());

ui->progressbar—->setValue (position);

int seconds = (position/1000) % 60;
int minutes = (position/60000) % 60;
int hours = (position/3600000) % 24;

QTime time (hours, minutes, seconds);
ui->durationDisplay—->setText (time.toString());

}

6. Once you're done, open up mainwindow.ui and right-click on each of the Push
Buttons, and select Go to slot... followed by selecting the c1icked () signal. This
will generate a s1ot function for each of the Push Buttons. The code for these
slot functions is very simple:

void MainWindow: :on_playButton_clicked()
{
player->play () ;

void MainWindow: :on_pauseButton_clicked()

{

[306]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Multimedia Viewers Chapter 13

player->pause () ;

}

void MainWindow: :on_stopButton_clicked()
{

player->stop();
3

7. After that, right-click on both of the Horizontal Sliders, and select Go to slot...
followed by choosing the s1iderMoved () signal, and click OK:

™ Gotoslot
Select signal
actionTriggered(int) QébstractSlider A
rangeChanged(int,int) OAbstractslider
cliderfoved(int) QAbstractslider
cliderPreszed() OAbstractSlider
sliderReleased() CbbstractSlider
valueChanoed(int) OhhstractSlider ¥
Cancel

8. The sliderMoved () signal will be called whenever the user drags the slider to
change its position. We need to send this position to the media player and tell it
to adjust the audio volume or change the current audio position. Do be cautious
not to set the default position of your volume slider to zero. Consider the
following code:

void MainWindow: :on_volume_sliderMoved (int position)
{
player—->setVolume (position);

}

void MainWindow: :on_progressbar_sliderMoved (int position)
{
player—->setPosition (position);

}

9. Then, we need to add File and Open File actions to the menu bar, just like we did
in the previous example project.

[307 1]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Multimedia Viewers Chapter 13

10. Then, right-click on the Open File action in the Action Editor and select Go to
slot... After that, select triggered (), and let Qt generate a s1ot function for
you. Add the following code to the s1ot function for audio file selection:

void MainWindow: :on_actionOpen_File_triggered()
{
OString fileName = QFileDialog::getOpenFileName (this,
"Select Audio File", gApp->applicationDirPath(),
"MP3 (*.mp3);;WAV (*.wav)");
QFileInfo fileInfo(fileName) ;

player—->setMedia (QUrl::fromLocalFile (fileName));
if (player—->isMetaDataAvailable())

QOString albumTitle = player-—
>metaData (QMediaMetaData: :AlbumTitle) .toString () ;
ui->songNameDisplay—->setText ("Playing " + albumTitle);

ui->songNameDisplay—->setText ("Playing " +
fileInfo.fileName());

ui->playButton->setEnabled(true);
ui->playButton—->click();
}

The preceding simply opens up a file-selection dialog that only accepts MP3 and WAV files.
You can add other formats too if you wish, but the supported formats vary between
platforms; therefore, you should test it to make sure the format you want to use is
supported.

After that, it will send the selected audio file to the media player for preloading. Then, we
try to get the music's title from the metadata and display it on the Labelwidget. However,
this feature (obtaining metadata) may or may not be supported on your platform, so just in
case it won't show up, we replace it with the audio file name. Lastly, we enable the play
button and automatically start playing the music.

That's it. If you build and run the project now, you should be able to get a simple but fully
functional music player!

[308]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Multimedia Viewers Chapter 13

B Audio Player — O et
File
Playing demo_Jazz_Derby_Ful_Tradc.mp3

I 00:00:24

»n = L)] I

The video player

In the previous section, we have learned how to create an audio player. In this chapter, we
will further improvise our program and create a video player using Qt and C++.

Designing a user interface for video players

The next example is that of the video player. Since QMediaPlayer also supports video
output, we can use the same user interface and C++ code from the previous audio player
example, and just make some minor changes to it.

1. First, open project file (.pro) and add in another keyword, called
multimediawidgets:

QT += core gui multimedia multimediawidgets

2. Then, open up mainwindow.ui and add a Horizontal Layout (name it as
movieLayout) above the timeline slider. After that, right-click on the layout and
select Morph into | QFrame. We then set its sizePolicy property to Expanding,

Expanding:
v sizePolicy [Expanding, Exp...
Herizontal Policy Expanding
Wertical Policy Expanding
[309]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Multimedia Viewers Chapter 13

3. After that, we set the QFrame's background to black color by setting its
styleSheet property, like so:

background-color: rgb (0, 0, 0);

4. The user interface should look something like the following, and we're done:

n n n
File Type Here

Mo movie

Writing C++ code for video players

To write the C++ code for video players, we perform the following steps:

1. For mainwindow.h, there aren't many changes to it. All we need to do is to
include QvideoWidget in the header:

#include <QMainWindow>
#include <QDebug>
#include <QFileDialog>

[310]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost

Multimedia Viewers Chapter 13

#include <QMediaPlayer>
#include <QMediaMetaData>
#include <QTime>

#include <QVideoWidget>

2. Then, open mainwindow.cpp. We must define a QvideoWidget object and set it
as the video output target, before adding it to the layout of the QF rame object we
just added in the previous step:

MainWindow: :MainWindow (QWidget *parent)
QMainWindow (parent),
uil (new Ui::MainWindow)

ui->setupUi (this);
player = new QMediaPlayer (this);

QVideoWidget* videoWidget = new QVideoWidget (this);
player—>setVideoOutput (videoWidget) ;
ui->movielayout—->addWidget (videoWidget) ;

player—>setVolume (ui->volume->value()) ;

connect (player, &QMediaPlayer: :stateChanged, this,
&MainWindow: : stateChanged) ;

connect (player, &QMediaPlayer: :positionChanged, this,
&MainWindow: :positionChanged) ;
3

3. In the slot function thatgets called when the Open File action has been
triggered, we simply change the file-selection dialog to accept only MP4 and
MOV formats. You can add in other video formats too if you wish:

QString fileName = QFileDialog::getOpenFileName (this, "Select Movie
File", gApp—->applicationDirPath(), "MP4 (*.mp4);;MOV (*.mov)");

That's it. The rest of the code is literally the same as the audio player example. The main
difference with this example is that we defined the video output widget, and Qt will handle
the rest for us.

[311]

- printed on 2/9/2023 9:19 AMvia . Al use subject to https://wmv. ebsco.cont terns-of-use

Multimedia Viewers Chapter 13

If we build and run the project now, we should be getting a really slick video player, like
what you see here:

B Video Player — O >
File

Playing VID_20180310_171830.MP4

I 00:00:03

On a windows system, there was a case where the video player would
throw an error. This problem is similar to the one reported here: https://
stackoverflow.com/questions/32436138/video-play-returns-—
directshowplayerservicedoseturlsource-unresolved-error-cod

To resolve this error, simply download and install the K-Lite_Codec_Pack
which you can find here: nttps://www.codecqguide.com/download_k-
lite_codec_pack_basic.htm. After this, the video should play like a
charm!

Summary

In this chapter, we have learned how to create our own multimedia players using Qt. What
comes next is something quite different from our usual topics. In the following chapter, we
will learn how to use QtQuick and QML to create touchscreen-friendly, mobile-friendly,
and graphics-oriented applications.

[312]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

14

Qt Quick and QML

In this chapter, we are going to learn something very different from the rest of the chapters
in this book. Qt consists of two different methods for developing an application. The first
method is Qt Widgets and C++, which we have covered in all previous chapters. The second
method is using Qt Quick controls and the QML scripting language, which we will be
covering in this chapter.

In this chapter, we will cover the following topics :

e Introduction to Qt Quick and QML
e Qt Quick Widgets and Controls

e Qt Quick Designer

e Qt Quick Layouts

e Basic QML Scripting

Are you ready? Let's get started!

Introduction to Qt Quick and QML

In the following section, we will learn what Qt Quick and QML are, and how we can make
use of them to develop Qt applications without the need for writing C++ code.

Introducing Qt Quick

Ot Quick is a module in Qt that provides a whole set of user-interface engines and
language infrastructure for developing touch-oriented and visual-oriented applications.
Instead of using the usual Qt Widgets for user-interface design, developers who choose Qt
Quick will be using the Qt Quick objects and controls instead.

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Quick and QML Chapter 14

Furthermore, developers will be writing their code using the QML language, which has
similar syntax to JavaScript, rather than writing in C++ code. You can, however, use the C++
API provided by Qt to extend the QML application by cross-calling each language's
functions (calling C++ functions in QML, and vice versa).

Developers can choose which method they prefer for developing their applications by
choosing the right option when creating the project. Instead of choosing the usual Qt
Widgets Application option, developers can pick Qt Quick Application, which tells Qt
Creator to create different starting files and settings for your project that empowers the Qt
Quick modules:

Choose a template: All Templates -

Project: y ¥ i .
TO0J8CtS E Qt Widgets Application Creates a Qt Quick application that contains
Application an empty window.

Library

Other Project Qt Console Application Supported Platforms: Desktop
Non-Qt Project
Import Project . Qt Quick Application - Empty

Files and Classes
g Qt Quick Application - Scroll

Qt Quick Application - Stack
4 Qt Quick Application - Swipe

Qt Quick Application - Canvas 3D

e e g

When you're creating a Qt Quick Application project, Qt Creator will ask you to choose the
Minimal required Qt version for your project:

[314]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Quick and QML Chapter 14

, Define Project Details
Location

Build System Minimal required Qt version: |Qt5.10 ~

Detail .
- enlk Use Qt Virtual Keyboard

< Back Next > Cancel

Once you have selected a Qt version, Qt Quick Designer will determine which features to
enable and which widgets will appear on the QML Types window. We will talk more about
those in later sections.

Introducing QML

OML (Qt Modeling Language) is a user-interface markup language for designing touch-
friendly user interfaces, similar to how CSS works on HTML. Unlike C++ or JavaScript,
which are both imperative languages, QML is a declarative language. In declarative
programming, you only express the logic in your script without describing its control flow.
It simply tells the computer what to do, instead of how to do it. Imperative programing,
however, requires statements to specify actions.

[315]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Quick and QML Chapter 14

When you open up your newly created Qt Quick project, you will see main.qml and
MainForm.ui.gml in your project, instead of the usual mainwindow.h and
mainwindow. cpp files. You can see this in the project directory in the following screenshot:

@ OtQuick
| @ CtOuick.pro
¥ ce Sources
E. main.cpp
* | @ Resources
¥ | @ gqml.gre
L i/
bm main.gml

Lml MainForm.ui.gml

This is because the entire project will be mainly running on QML instead of C++. The only
C++ file you will see is main. cpp, and all that does is load the main.qml file during the
application startup. The code that does this in main. cpp is shown in the following code:

int main (int argc, char *argv([])
{
QGuiApplication app(argc, argv);

QOmlApplicationEngine engine;
engine.load (QUrl (QStringLiteral ("qrc:/main.gml")));
if (engine.rootObjects () .isEmpty())

return -1;

return app.exec();

}

You should have realized that there are two types of QML files, one with the extension
.aml, and another with extension .ui.qgml. Even though they are both running on the
same syntax and so forth, they serve a very different purpose in your project.

[316]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Quick and QML Chapter 14

First, the .ui.qgml file (with an extra .ui at the beginning) serves as the declarative file for
Qt Quick-based user interface design. You can edit a . ui.qgml file, using the Qt Quick
Designer visual editor, and easily design your application's GUI You can also add your
own code to the file, but there are some limitations on what code they can contain,
especially those related to logic code. When you run your Qt Quick application, the Qt
Quick engine will read through all the information stored in the .ui . qgml file and construct
the user interface accordingly, which is very similar to the .ui file used in Qt Widgets
applications.

Then, we have another file with only the . gml extension. This file is only used for
constructing the logic and functionality in your Qt Quick application, much like the .h and
. cpp files used in the Qt Widget application. These two different formats separate the
visual definitions of your application from its logic blocks. This allows the developer to
apply the same logic code to different user interface templates. You cannot open a . gml file
using Qt Quick Designer, since it is not used for GUI declaration. . gml files are written by
developers by hand, and they have no restrictions on the QML language features they use.

Let's look at the differences with both of these QML files by first opening up
MainForm.ui.qgml. By default, Qt Creator will open up the user interface designer (Qt
Quick Designer); however, let's move over to code-editing mode by pressing the Edit
button on the left panel:

Eilim Resources Imports

E Qt Quick - Basic

Welcome

— 1]

Border Image Flickzble Foous Soope
Dresign Ir
“. Image Mowse Area
Debug T
}" Rectangle Text Edit

Projects
E=

9 Text Input

* Qt Quick - Positioner

[317]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Qt Quick and QML Chapter 14

Then, you will be able to see the QML script that forms the user interface you just saw in the
design mode. Let's analyze this code to see how QML works compared to C++. The first
thing you see in the MainForm.ui.qgml is this line of code:

import QtQuick 2.6

This is quite straightforward; we need to import the 9t Quick module with the
appropriate version number. Different Qt Quick versions may have different functionalities,
and support different widget controls. Sometimes, even the syntax could be slightly
different. Please make sure you pick the right version for your project, and that it supports
the features you need. If you don't know which version to use, do consider the latest
version.

Next, we will see different GUI objects (which we call QML types) being declared between
two curly braces. The first one that we see is a Rectangle type:

Rectangle {
property alias mouseArea: mouseArea
property alias textEdit: textEdit

width: 360
height: 360

The Rectangle type, in this case, is the window background, much like the central widget
used in the Qt Widget Application project. Let's look at the other QML types that are under
the Rectangle:

MouseArea {
id: mouseArea
anchors.fill: parent

}

TextEdit {
id: textEdit
text: gsTr ("Enter some text...")
verticalAlignment: Text.AlignVCenter
anchors.top: parent.top
anchors.horizontalCenter: parent.horizontalCenter
anchors.topMargin: 20
Rectangle {
anchors.fill: parent
anchors.margins: -10
color: "transparent"
border.width: 1

[318]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Qt Quick and QML Chapter 14

}

The MousArea type, as its name implies, is an invincible shape that detects mouse clicks
and touch events. You can basically turn anything into a button by placing a MouseArea on
top of it. After that, we also have a TextEdit type, which acts exactly like a Line Edit
widget in a Qt Widget Application.

You may have noticed that there are two properties in the Rectangle declaration that carry
the alias keyword. These two properties expose the MouseArea and TextEdit types, and
allow other QML scripts to interact with them, which we will learn how to do next.

Now, open up main.qgml and look at its code:

import QtQuick 2.6
import QtQuick.Window 2.2

Window {
visible: true
width: 640

height: 480
title: gsTr ("Hello World")

MainForm {
anchors.fill: parent
mouseArea.onClicked: {
console.log(gsTr ('Clicked on background. Text: "' +
textEdit.text + '""'))

}

In the code above, there is a Window type that is only available by importing the
QtQuick.Window module. After setting the properties of the Window type, the

MainForm type is declared. This MainForm type is actually the entire user interface we saw
previously in MainForm.ui.qgml. Since the MouseArea and TextEdit types have been
exposed in MainForm.ui.qgml, we can now access and make use of them in main.gml.

[319]

- printed on 2/9/2023 9:19 AMvia . Al use subject to https://wmv. ebsco.cont terns-of-use

Qt Quick and QML Chapter 14

QML also uses the signal-and-slot mechanism provided by Qt, but in a slightly different
form of writing, since we're no longer writing C++ code. For example, we can see
onClicked being used in the code above, which is a built-in signal equivalent to

clicked () in a Qt Widgets Application. Since the . gm1 file is the place where we define
the application logic, we can define what happens when onC1licked is being called. On the
other hand, we cannot do the same in . ui.qgml since only visual-related code is allowed in
it. You will get warnings from Qt Creator if you try to write logic-related code ina .ui.qgml
file.

Just like the Qt Widgets Application, you can also build and run the project the same way as
before. The default example application looks something like this:

B Hello Werld — O >

Enter some text...

You might realize that the build process is pretty fast. This is because QML code doesn't get
compiled into binary by default. QML is an interpreted language, just like JavaScript, and
thus it doesn't need to be compiled in order for it to be executed. All the QML files will just
get packed into your application's resource system during the build process. Then, the QML
files will be loaded and interpreted by the Qt Quick engine once the application is started.

[320]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Qt Quick and QML Chapter 14

However, you can still choose to compile your QML scripts into binary, using the ot

Quick Compiler program included in Qt, to make the code execution slightly faster than
usual. It is an optional step that is not required unless you are trying to run your application
on an embedded system that has very limited resources.

Now that we have understood what Qt Quick and QML language are, let's take a look at all
the different QML types provided by Qt.

Qt Quick widgets and controls

In Qt Quick's realm, widgets and controls are known as QML types. By default, Qt Quick
Designer provides us with a set of basic QML types. You can also import additional QML
types that come with different modules. Furthermore, you can even create your own
custom QML types if none of the existing ones fit, your needs.

Let's take a look at what QML types come with Qt Quick Designer by default. First off, here
are the QML types under the Basic category:

= [t Quick - Basic

—F

Border Image Flickable Foous Soope

Miouse Arsa

T

Rectangle

4|

Text Imput

[321]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Qt Quick and QML Chapter 14

Let's have a look at the different options:

¢ Border Image: Border Image is a QML type that is designed to create scalable
rectangular shapes that can maintain their corner shapes and borders.

e Flickable: Flickable is a QML type that contains all its children types, and,
displays them within its clipping area. Flickable has also been extended and used
by the ListView and Gridview types for scrolling long content. It can also be
moved by a touchscreen flick gesture.

» Focus Scope: Focus Scope is a low-level QML type that is used to facilitate the
construction of other QML types that can acquire keyboard focus when being
pressed or released. We usually don't directly use this QML type, but rather use
other types that are directly inherited from it, such as GroupBox, ScrollvView,
StatusBar, and so on.

¢ Image: The Image type is pretty much self-explanatory. It loads an image either
locally or from a network.

e Item: The Item type is the most basic QML type for all visual items in Qt Quick.
All the visual items in Qt Quick inherit from this Item type.

e MouseArea: We have seen the example usage of the MouseArea type in the
default Qt Quick Application project. It detects mouse clicks and touch events
within a predefined area, and calls the clicked signal whenever it detects one.

e Rectangle: A Rectangle QML type is pretty similar to the Item type, except it
has a background that can be filled with solid color or a gradient. Optionally, you
can also add a border to it with its own color and thickness.

e Text: The Text QML type is also pretty self-explanatory. It simply displays a line
of text on the window. You can use it to display both plain and rich text with a
specific font family and font size.

e Text Edit: The Text Edit QML type is equivalent to the Text Edit widgetin Qt
Widgets Application. It allows the user to key in the text when being focused. It
can display both plain and formatted text, which is very different from the Text
Input type.

¢ Text Input: The Text Input QML type is equivalent to the Line Edit widget in Qt
Widgets Application, in that it can only display a single line of editable plain
text, which is different from the Text Edit type. You can also apply an input
constraint to it through a validator or input mask. It can also be used for
password input fields by setting the echoMode to Password or
PasswordEchoOnEdit.

[322]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Quick and QML Chapter 14

The QML types that we have discussed here are the most basic ones that come with Qt
Quick Designer by default. These are also the basic building blocks used for constructing
some other more complex QML types. There are many additional modules that come with
Qt Quick that we can import into our project, for example, if we add the following line to
our MainForm.ui.qgml file:

import QtQuick.Controls 2.2

A bunch of additional QML types will then appear on your Qt Quick Designer when you
switch over to Design mode:

Eilim Resources Imports

* (Ot Quick - Controls 2

Button Check Box

Check Delegate

Group Baox

Radio Button

Radic Delegate lamge Slider Fiousnd Basttomn

Spim Bos Swipe Delegate

[323]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Quick and QML Chapter 14

We won't go through all these QML types one by one, as there are too
many of them. If you are interested in learning more about these QML
types, please visit the following

link: nttps://doc.qgt.io/qt-5.10/gtquick-controls—gmlmodule.html

Qt Quick Designer

Next, we will look at the Qt Quick Designer layout for the Qt Quick Application project.
When you open up a .ui.qgml file, Qt Quick Designer, the designer tool included in the Qt
Creator toolset, will be launched automatically for you.

Those of you who have followed all the example projects since the very first chapter of this
book may realize the Qt Quick Designer looks a bit different from the one we have been
using all this time. This is because the Qt Quick project is very different from the Qt
Widgets project, so naturally the designer tool should also look different to suit its needs.

Let's look at how the Qt Quick Designer looks in the Qt Quick project:

7 MainFerm.ui.gml @ CtQuick - Ot Creator - [m} x

File Edit Build Debug Analze Tools
Library - B3 £ a\ MainForm.vi.gml
QMLTypes [JLEERTTEEE Imports [[7 [& | &

Window Help

~ Geometry

Sl s

eaJyasnow

Frame

Advanced

Navigator

Rectangle

QtQuick ~ Rectangle

Borde
|;I b co ions

Connections

| 2

[l ©. Type to locate (Ctrl+K) 2 SearchResults 3 Application 4 Comple Out.. 5 DebuggerC.. 6 GeneralMes.. B TestResilts =

[324]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Quick and QML Chapter 14

1. Library: The Library window displays all the QML types available for the current
project. You can click and drag it to the canvas window to add it to your UL You
can also create your own custom QML type and display it here.

2. Resources: The Resources window displays all the resources in a list, which can
then be used in your UI design.

3. Imports: The Imports window allows you to import different Qt Quick modules
into your current project.

4. Navigator: The Navigator window displays the items in the current QML file as a
tree structure. It's similar to the object operator window in the Qt Widgets
Application project.

5. Connections: The Connections window consists of several different tabs:
Connections, Bindings, Properties, and Backends. These tabs allow you to add
Connections (signal-and-slot), Bindings, and Properties to your QML file,
without switching over to Edit mode.

6. State Pane: State pane displays the different states in the QML project that
typically describe UI configurations, such as the UI controls, their properties and
behavior, and available actions.

7. Canvas: Canvas is the working area where you design your application Ul

8. Properties Pane: Similar to the property editor we used in Qt Widgets
Application projects, the Properties pane in the QML designer displays the
properties of the selected item. You can immediately see the result in the Ul after
changing the values here.

Qt Quick layouts

Just like the Qt Widget applications, a layout system also exists in Qt Quick applications.
The only difference is it's called the Positioners in Qt Quick:

* (t Quick - Positioner

[325]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Quick and QML Chapter 14

The most noticeable similarity is the Column and Row positioners. These two are exactly
the same as the Vertical Layout and Horizontal Layout in Qt Widgets Application. Besides
that, the Grid positioner is also the same as the Grid Layout.

The only extra thing in Qt Quick is the Flow positioner. The items contained within the
Flow positioner arrange themselves like words on a page, with items arranged in lines
along one axis, and lines of items placed next to each other along another axis.

Text items
flowing inside a
Flow item

Basic QML scripting

In the following section, we will learn how to create our very first Qt Quick application
using Qt Quick Designer and QML!

Setting up the project

Without further ado, let's put our hands on QML and create a Qt Quick application
ourselves! For this example project, we are going to create a dummy login screen using Qt
Quick Designer and a QML script. First, let's open up Qt Creator and create a new project
by going to File | New File or Project...

After that, select Qt Quick Application and press Choose.... After that, press Next all the
way until the project is created. We are just going to use all the default settings for this
example project, including the Minimal required Qt version:

[326]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Qt Quick and QML

Chapter 14

Define Project Details

Location
Build System Minimal required Qt version: | Qt5.10 ~
Detail .
P Details Use Qt Virtual Keyboard

< Back

Next =

Cancel

Once the project has been created, we need to add a few image files to our project, so that

we can use them later:

I —
— —
= —
qml 1 qml =
MainForm.ui.gml MainForm.ui.gm! CtQuick.pro.user main.gml main.cpp
autosave
>
I
lPSUM
LOREM
logo_sample.png background.jpg password-icon.p email-icon.png Builds
g

gml.grc

pro

CtQuick.pro

[327]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

EBSCChost -

Qt Quick and QML Chapter 14

You can get the source files (including these images) at our GitHub page:
http://github.com/PacktPublishing/Hands-On-GUI-Programming-with-

C-QT5

We can add these images to our project by right-clicking on the gm1 . grc file in the Project
pane and selecting Open in Editor. Add a new prefix called images, and add all the image

files into that prefix:

I

L m !
:-_=|£| main.gml
:-_=|£| MainFarm,ui.gml
¥ | @ /images
il background.jpg
B4 email-icon.png
== |ogo_sample.png

& password-icon.png

After that, open up MainForm.ui.qgml, and delete everything in the QML file. We start all

over by adding an Item type to the canvas, set its size to 400 x 400, and call it the
loginForm. After that, add an Image type underneath it, and call it background. We then

apply the background image to the Image type, and the canvas now looks like this:

[328]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Qt Quick and QML Chapter 14

~ Qt Quick - Basic

MNavigator
loginForm

background

Then, add a Rectangle type under the Image type (background), and open up the Layout
tab in the Properties pane. Enable both the vertical and horizontal anchor options. After
that, set the width to 402, the height to 210, and the vertical anchor margin to 50:

Advanced

* Layout
Anchors

Target parent

.

Margin = 0 -

Target parent

Margin = -

[329]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Quick and QML Chapter 14

Following that, we set the rectangle's color to #fc£9£4 and border color to #efedeb, then
set the border value to 1. The user interface so far looks something like this:

Mawigator
lo g inForm
- background

loginRect

Next, add an Image QML type under the rectangle, and set its anchor settings to top anchor
and horizontal anchor. We then set its top anchor margin to -110 and apply the logo
image to its image source property. You can turn the QML type's bounding rectangle
and stripes on and off by clicking on the little button located on top of your canvas, so that
it's easier to look at the result, especially when your canvas is full of stuff:

Show bounding rectangles and stripes for empty items (A).

[330]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Quick and QML Chapter 14

Then, we add three Rectangle types to the canvas under the loginRect rectangle, and

call them emailRect, passwordRect, and loginButton. The anchor settings for the
rectangles are shown as follows:

emailRect passwordRect

EBSCChost

- printed on 2/9/2023 9:19 AMvia

* [Layout
Anchors

Target

Margin

Target

Margin

Target

Margin

~ Layout
Anchors

Target

Margin &

Target

Margin &

Target

Margin

parent

-
-

parent

parent

.
-

parent

* Layout
Anchors

Target

Margin

Target

Margin

Target

Margin

parent

-

parent

parent

-
-

[331]

. Al'l use subject to https://ww. ebsco.con terns-of-use

Qt Quick and QML Chapter 14

Then, we set the border value of both the emailRect and passwordRect to 1, the
color to #ffffff and the bordercolor to #efedeb. As for the 1oginButton, we set the
border to 0, the radius to 2 and the color to #27ae61. The login screen now looks like

the following:
||ik: ‘;;5%;;)L(D Rk

Looks good so far. Next, we're going to add a Text Input, Image, MouseArea, and a
Text QML type to both the emailRect and the passwordRect. Since there are many QML
types here, I will list the properties that need to be set:

e TextInput:
e Selection color set to #4£0080

e Enable left anchor, right anchor, and vertical anchor
e Left anchor margin 20, right anchor margin 40 and vertical
margin 3
¢ Set echoMode to Password for password input only
e Image:
¢ Enable right anchor and vertical anchor
¢ Right anchor margin set to 10
¢ Set image source to email icon or password icon respectively
e Set image fill mode to PreserveAspectFit

[332]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Qt Quick and QML Chapter 14

¢ MouseArea:
e Enable fill parent item

o Text:

Set the text property to E-Mail and Password respectively
Text color set to #cbbdbd
Text alignment set to Left and Top

Enable left anchor, right anchor, and vertical anchor

Left anchor margin 20, right anchor margin 40, and vertical
margin -1

Once you're done, add a MouseArea and Text to the loginButton as well. Enable £i11
parent item for the MouseArea, and enable both vertical and horizontal anchors
for the Text QML type. Then, set its text property to LOGIN.

You don't have to follow all my steps by 100%, they are just a guideline for you to achieve a
similar result as the screenshot above. However, it's better for you to apply your own
design and create something unique!

Phew! After the long process above, our login screen should now look something like this:

i &g

|
&
LOGIN
[333]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Qt Quick and QML Chapter 14

One last thing we need to do before moving on to main.gml is to expose some of the QML
types in our login screen, so that we can link it to our main.qml file for logic programming.
We can, in fact, do this directly on the designer tool. All you need to do is to click on the
small rectangle icon located next to the object name, and make sure the three lines on the
icon are penetrating the rectangular box, like this:

Mavigator
loginForm
background
loginRect

ernailRect

e= emailln
emaillco
ema...uch

T ema..lay

passwordRect

= pas. put
pass...lcon

pas..uch

T pass..play

The QML types that we need to expose/export are emailInput (TextInput), emailTouch
(MouseArea), emailDisplay (Text), passwordInput (Textlnput), passwordTouch
(MouseArea), passwordDisplay (Text), and loginMouseArea (MouseArea). Once you
have done all that, let's open up main.qgml.

At first, our main.gml should look something like this, which will just open an empty
window:

import QtQuick 2.6
import QtQuick.Window 2.2

Window {
id: window
visible: true
width: 800
height: 600

[334]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

EBSCChost -

Qt Quick and QML Chapter 14

title: gsTr ("My App")
}

After that, add in the MainForm object, and set its anchor setting to anchors.fill:
parent. Then, print out a line of text, Login pressed, on the console window when the
loginButton is clicked (or touched, if running on the touch device):

Window {
id: window
visible: true
width: 800
height: 600
title: gsTr ("My App")

MainForm

{

anchors.fill: parent

loginMouseArea.onClicked:

{

console.log("Login pressed");

}

After that, we are going to program the behavior when the MouseArea on the email input is
clicked/touched. Since we are manually creating our own text field, instead of using the
TextField QML type provided by the QtQuick.Controls module, we must manually
hide and show the E-Mail and Password text displays, as well as changing the input focus
when the user clicks/touches down on the MouseArea.

The reason why I chose not to use the TextField type is that I can hardly customize the
TextField's visual presentation, so why don't I create my own? The code for doing
manual focus for the email input looks like the following:

emailTouch.onClicked:

{

emailDisplay.visible = false; // Hide emailDisplay
emailInput.forceActiveFocus () ; // Focus emaillInput
Qt .inputMethod.show () ; // Activate virtual keyboard

emailInput.onFocusChanged:

{

if (emailInput.focus == false && emailIlnput.text == "")

{

[335]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Qt Quick and QML Chapter 14

emailDisplay.visible = true; // Show emailDisplay if
emailInput is empty when loses focus

}

After that, do the same for the password field:

passwordTouch.onClicked:

{
passwordDisplay.visible = false; // Hide passwordDisplay
passwordInput.forceActiveFocus () ; // Focus passwordInput
Qt .inputMethod.show () ; // Activate virtual keyboard

passwordInput.onFocusChanged:

{

if (passwordInput.focus == false && passwordInput.text == "")

{
passwordDisplay.visible = true; // Show passwordDisplay if
passwordInput is empty when loses focus

}

That's it; we're done! You can now compile and run the program. You should get something
like this:

[336]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Qt Quick and QML Chapter 14

If you're not seeing the images, and are getting error messages that say Qt is unable to open
the images, please go back to your MainForm.ui.qgml and add in the prefix image/ to the
front of the source property. This is because Qt Quick Designer loads the images without
the prefix, while your final program needs the prefix. After you have added the prefix, you
may realize you no longer see the images getting displayed on Qt Quick Designer, but it
will work just fine in your final program.

I'm not sure if this is a bug or if they intended it like that. Hopefully, Qt's developers can get
it fixed, and we won't have to do that extra step anymore. That's it; hopefully, you have
understood the similarities and differences between Qt Widgets Application and Qt Quick
Application. You can now pick the best option from the two to fit your project's needs!

Summary

In this chapter, we have learned what Qt Quick is and how to create a program using the
QML language. In the following chapter, we are going to learn how to export our Qt project
to different platforms without much hassle. Let's go!

[3371]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

15

Cross-Platform Development

Qt has been known for its cross-platform capability since its first release. It was also one of
the main goals of the founders when they decided to create this framework, long before it
was taken over by Nokia, and later The Qt Company.

In this chapter, we will cover the following topics:

e Compilers

e Build settings

¢ Deploying to PC platforms

¢ Deploying to mobile platforms

Let's get started.

Understanding compilers

In this chapter, we will learn about the process of generating an executable file from a Qt
project. This process is what we call compile or build. The tool that is used for this purpose
is called a compiler. In the following section, we will learn what a compiler is and how to
use it to generate an executable file for our Qt project.

What is a compiler?

When we develop an application, either using Qt or any other software development kit,
we often have to compile our project into an executable, but what is actually going on when
we're compiling our project?

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Cross-Platform Development Chapter 15

A compiler is a piece of software that transforms computer code written in a high-level
programming language or computer instructions into a machine code or lower-level form
that can be read and executed by a computer. This low-level machine code is very different
depending on the operating system and computer processor you're running, but you don't
have to worry about it as the compiler will convert it for you.

That means all you need to worry about is writing your logic code in a human-readable
programming language, and let the compiler do the job for you. By using different
compilers, theoretically, you should be able to compile your code into executable programs
that can be run on different operating systems and hardware. I'm using the word
theoretically here because in practice it's actually much more difficult than just using
different compilers, you may also need to implement libraries that support the target
platform. However, Qt has already handled all this for you, so you don't have to do the
extra work.

In the current version, Qt supports the following compilers:

¢ GNU Compiler Collection (GCC): GCC is a compiler for Linux and macOS

e MinGW (Minimalist GNU for Windows): MinGW is a native software port of
GCC and GNU Binutils (binary utilities) for developing applications on Windows

e Microsoft Visual C++ (MSVC): Qt supports MSVC 2013, 2015, and 2017 for
building Windows applications

e XCode: XCode is the primary compiler used by developers who develop
applications for macOS and iOS

¢ Linux ICC (Intel C++ Compiler): Linux ICC is a set of compilers of C and C++
compilers developed by Intel for Linux application development

¢ Clang: Clang is a C, C++, Objective C, and Objective C++ frontend for the LLVM
compiler for Windows, Linux, and macOS

e Nim: Nim is the Nim compiler for Windows, Linux, and macOS

¢ QCC: QCC is the interface for compiling C++ applications for the QNX operating
system

Build automation with Make

In software development, Make is a build automation tool that automatically builds
executable programs and libraries from source code by reading configuration files called
Makefiles that specify how to derive the target platform. In a nutshell, a Make program
generates build configuration files and uses them to tell the compiler what to do before
generating the final executable program.

[339]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Cross-Platform Development Chapter 15

Qt supports two types of Make programs:

e gmake: It is the native Make program developed by the Qt team. It works best on
Qt Creator, and I strongly recommend using it for all Qt projects.
e CMake: On the other hand, although this is a very powerful build system, it
doesn't do all the things that qmake does specifically for a Qt project, such as:
¢ Running the Meta Object Compiler (MOC)
e Telling the compiler where to look for Qt headers
e Telling the linker where to look for Qt libraries

You have to do the preceding steps manually on CMake in order to successfully compile a
Qt project. You should use CMake only if:

¢ You're working on a non-Qt project but wish to use Qt Creator for writing the
code

* You're dealing with a massive project that requires complex configurations,
which gmake simply cannot handle

* You really love to use CMake and you know exactly what you're doing

Qt is really flexible when it comes to choosing the right tools for your project. It doesn't stick
to just its own build system and compiler. It gives the developers freedom to choose what
suits best for their projects.

Build settings

Before a project is compiled or built, the compiler needs to know several details before
proceeding. These details are known as the build settings, which are a very important
aspect of the compilation process. In the following section, we will learn what the build
settings are and how we can configure them in an accurate manner.

[340]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Cross-Platform Development Chapter 15

Qt Project (.pro) File

I'm sure you already know about the Qt Project File since we have mentioned it countless
times throughout the book. A . pro file is actually the project file used by gmake to build
your application, library, or plugin. It contains all the information, such as links to the
headers and source files, libraries required by the project, custom-build processes for
different platforms/environments, and so on. A simple project file could look something like
this:

QT += core gui widgets

TARGET = MyApp
TEMPLATE = app

SOURCES +=
main.cpp
mainwindow.cpp

HEADERS +=
mainwindow.h

FORMS +=
mainwindow.ui

RESOURCES +=
resource.qrc

It simply tells qmake which Qt modules should be included in the project, what the name of
the executable program is, what's the type of the application, and finally the links to the
header files, source files, form declaration files, and resource files that need to be included
in the project. All of this information is crucial in order for qmake to generate the
configuration files and successfully build the application. For a more complex project, you
may want to configure your project differently for different operating systems. This can also
be done easily in the Qt Project File.

To learn more about how you can configure your project differently for
different operating systems, please refer to the following link: http://
doc.qt.io/gt-5/gmake-language.html#scopes—-and-conditions.

[341]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Cross-Platform Development Chapter 15

Comment

You can add your own comments in the project file to remind yourself of the purpose of
adding a specific line of configuration, so that you won't forget why you added a line after
not touching it for a while. A comment starts with the hash symbol (#) after which you can
write anything since the build system will simply ignore the entire line of text. For example:

The following define makes your compiler emit warnings if you use
any feature of Qt which has been marked as deprecated (the exact

warnings

depend on your compiler). Please consult the documentation of the

deprecated API in order to know how to port your code away from it.
DEFINES += QT_DEPRECATED_WARNINGS

You can also add dash lines or use spaces to make your comment stand out from others:

Modules, configurations, and definitions

You can add different Qt modules, configuration options, and definitions to your project.
Let's take a look at how we can achieve these. To add additional modules, you simply add
the module keyword behind QT +=, like so:

QT += core gui sgl printsupport charts multimedia

Or you can also add in a condition in front to determine when to add a specific module to
your project:

greaterThan (QT_MAJOR_VERSION, 4): QT += widgets

You can also add configuration settings to your project. For example, we want to
specifically ask the compiler to follow the 2011 version of the C++ specifications (known as
C++11) when compiling our project, as well as making it a multithreaded application:

CONFIG += gt c++11 thread

[342]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Cross-Platform Development Chapter 15

You must use +=, not =, or qmake will not be able to use Qt's configuration
to determine the settings needed for your project. Alternatively, you can
also use —= to remove a module, configuration, and definition from your
project.

As for adding definitions (or variables) to our compiler, we use the DEFINES keyword, like
sO:

DEFINES += QT_DEPRECATED_WARNINGS

Qmake adds the values of this variable as a compiler C preprocessor macro (-D option)
before compiling your project. The earlier definition tells the Qt compiler to emit warnings
if you have used any feature of Qt that has been marked as deprecated.

Platform-specific settings

You can set different configurations or settings for different platforms, since not every
setting can fit all use cases. For example, if we want to include different header paths for
different operating systems, we can do the following:

win32:INCLUDEPATH += "C:/mylibs/extra headers"
unix:INCLUDEPATH += "/home/user/extra headers"

Alternatively, you can also put your settings in curly braces which behave like the i £
statements in a programming language:

win32 {
SOURCES += extra_code.cpp
}

You can check out all the settings you can use in your project file by
visiting the following link:
http://doc.qgt.io/gt-5/gmake-variable-reference.html.

[343]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Cross-Platform Development Chapter 15

Deploying to PC platforms

Let's move on to learn how to deploy our applications on platforms such as Windows,
Linux, and macOS.

Windows

In this section, we will learn how to deploy our application to different operating systems.
Even though Qt supports all major platforms out of the box, there might be some
configurations which you need to set in order to make your application easily deployable to
all platforms.

The first operating system we're going to cover is the most common one, Microsoft
Windows.

Starting from Qt 5.6, Windows XP is no longer supported by Qt.

There could be certain plugins that may not work properly on the Windows version you're
trying to deploy, so do check out the documentation before you decide to work on your
project. However, it's safe to say most of the features will work out of the box on Qt.

By default, the MinGW 32-bit compiler comes together with Qt when you're installing it to
your Windows PC. Unfortunately, it doesn't support 64-bit by default unless you compile
Qt from source. If you need to build 64-bit applications, you can consider installing the
MSVC version of Qt alongside the Microsoft Visual Studio. Microsoft Visual Studio can be
obtained for free from the following link: https://www.visualstudio.com/vs.

[344]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Cross-Platform Development Chapter 15

You can set up your compiler settings in Qt Creator by going to Tools | Options, then go to
the Build & Run category and select the Kits tab:

7 Options X
Buld . Run
. ~ Kits i i
[i] Environment General Qt Versions Compilers Debuggers CMake
~
. ~ Add
Text Editor Mame
Android for armeabi-v7a (GCC 4.9, Qt 5.9.1 for Android armv7) Clone
@ FakeVim Desktop Qt 5.9, 1 MSVC2013 64bit
© Desktop Qt 5.9.1 MSVC2015 64bit Remove
@ Help Desktop Qt 5.9.1 MSVC2017 64bit
A\ Deskiop Ot 5.9. 1 MnGW 33hit (default) v | Make Default
{} C++
P . Name: Desktop Qt %%{Qt:Version} MinGW 32bit =
/—'.,.]_ Ot Quick | z |
File system name: | |
(3 Buitd & run
Device type: Desktop
@ Debugger Device: Local PC (default for Desktop) - Manage...
X Designer Sysroot: | Browse...
B8 2nalyzer C: |MinGW 5.3.0 32bit for C -
Compiler: Manage...
e . C++ | MinGW 5.3.0 32bit for C++ =
! Version Control
Environment: No changes to apply. Change...
ﬂ Devices
- Debugger: GNU gdb 7.10.1 for MinGW 5.3.0 32bit Manage...
Code Pasting
Qt version: Qt 5.9.1 MinGW 32bit Manage...
Obs
} Qt mkspec: | >
@ Test Settings w| € >
G| [oy

As you can see, there are multiple kits that run on different compilers, in which you can
configure. By default, Qt already comes with five kits—one for Android, one for MinGW,
and three for MSVC (version 2013, 2015, and 2017). Qt will automatically detect the
existence of these compilers and configure these settings for you accordingly.

[345]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Cross-Platform Development Chapter 15

If you have not installed Visual Studio or Android SDK, there will be a red icon with an
exclamation mark appearing in front of the kit option. After you have installed the compiler
you need, try restarting Qt Creator. It will now detect the newly installed compilers. You
should have no problem compiling for the Windows platform as Qt will handle the rest for
you. We will talk more about the Android platform in another section.

Once you have compiled your application, open up the folder in which you installed Qt.
Copy the relevant DLL files to your application folder, and pack it together before
distributing it to your users. Without these DLL files, your users may not be able to run the
Qt application.

For more information, please visit the following
link: nttp://doc.qt.io/qt-5/windows—-deployment .html.

As for setting a custom icon for your application, you must add the following code to your
project (. pro) file:

win32:RC_ICONS = myappico.ico

The preceding code only works on Windows platforms, which is why we have to add the
win32 keyword before it.

Linux

Linux (or GNU/Linux) in general is considered a major operating system that dominates the
cloud/server market. Since Linux is not a single operating system (Linux is offered by
different vendors in the form of different Linux distributions that are not entirely
compatible) like Windows or macOS, it is very hard for developers to build their
applications and expect them to run flawlessly on different Linux distributions (distros).
However, if you develop your Linux application on Qt, there is a high chance that it will
work on most distributions, if not on all of the major distros out there, as long as the Qt
library exists on the target system.

[346]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Cross-Platform Development Chapter 15

The default kit selection on Linux is much simpler than Windows. Since a 64-bit application
has been mainstream and standard on most Linux distros for some time now, we only need
to include the GCC 64-bit compiler when installing Qt. There is also an option for Android,
but we will talk more about it later:

v Qt Quick Application - Empty + X
_ Kit Selection

Location

Build System The following kits can be used for project s

Details | Select all kits

< Kits
+| I Desktop Qt 5.10.1 GCC 64bit Details ~
Android has not been configured. Create Android kits. Details =

< Back Next = Cancel

If you are compiling your Linux application on Qt Creator for the first time, I'm pretty sure
you will get the following error:

Compile Output &

12:38:12: Could not determine which "make"™ command to run. Check the "make" step in the build configuration.
Error while building/deploying project Kiosk (kit: Desktop Qt 5.108.1 GCC &4bit)
When executing step "gmake"

[347]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Cross-Platform Development Chapter 15

This is because you have not installed the relevant tools required to build Linux
applications, such as Make, GCC, and other programs.

Different Linux distros have a slightly different method to install programs, but I won't be
explaining every single one of them here. In my case, I'm using an Ubuntu distro, so I did
was first opened up the terminal and typed the following command to install the build-

essential package which includes Make and GCC:

sudo apt—-get install build-essential

The preceding command only works on distros that inherit from Debian and Ubuntu, and
it may not work on other distributions such as Fedora, Gentoo, Slackware, and so on. You
should search for the appropriate command used by your Linux distro to install these
packages, as shown in the following screenshot:

v Terminal - kloena@kloena-VirtualBox: ~

File Edit WView Terminal Tabs Help

rena-VirtualBox:~$ sudo apt-get ins

[348]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Cross-Platform Development Chapter 15

Once you have installed the appropriate packages, restart Qt Creator and go to
Tools | Options. Then, go to the Build & Run category and open up the Kits tab. You
should now be able to select the compilers for both C and C++ options for your Desktop Kkit:

b Options + X
Filter Build & Run
@ Environment General Kits Qt Versions Compilers Debuggers Qbs CMake
Text Editor Name Add
) ~ Auto-detected
% Fakevim ! Desktop Qt 5.10.1 GEC 64bit Clone
Manual
@ Help
{} C++ Make Default
‘41 QrQuick MName: Desktop Qt %{Qt:Version} GCC 64bit =2
+
{: Build & Run File system name:
Q Debugger Device type:
1 Designer Device: Local PC (default for Desktop) o Manage...
B Analyzer Sysroot: Browse...
Iy -
Version Control (& <No compiler= =
Compiler: L N | Manage...
' Devices Ce4r | GEC (C, %86 64bit in /usr/bin) -
. . GCC (C, %86 32bit in /usr/bin) 3
Code Pasting Environment: Mo ch | Change...
| GCC 7(C, x86 64bit in /usr/bin} 3
@ Testing Debugger: Y cc 7 (c, x86 32bit in fusr/bin) | Manage...
Qt version: *| GCC (C, %86 64bit in /usr/bin) | Manage... =
GCC (C, x86 32bit in /usribin =
t b ncel of DK
GCC 7 (C, %86 64bit in fusr/bin) =
GCC 7 (C, x86 32bit in fusribin)

[349]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Cross-Platform Development Chapter 15

However, you might get another error that says cannot find -IGL when trying to compile
again:

Compile Output

DOT_NETWORK_LIE -DQT_CORE_LIB -I../../Kiosk -I. -I../../../0t/5.10.1/gcc_64/includ
5.18.1/gcc_64/include/QtGui -I../../../0t/5.18.1/gcc_G4/include/QtOml -I../../../0Q)
goo_G4/include/QtCore -I. -isystem Jusr/include/libdrm -I../../../0t/5.18.1/gcc_G4
g++ -Wl,-01 -WL,-rpath, /home/kloena/Qt/5.10.1/gcc_&4,/11b -0 Kiosk main.o grc_gml.o
10t50ml -1QtSMetwork -1Qt5Core -1GL -lpthread

fusrfbin/ld: cannot find -1GL

collect2: error: ld returned 1 exit status

Makefile:246: recipe for target 'Kiosk' failed

make: *x=% [Kiosk] Error 1

13:i86:34: The process "Jjusrfbin/make” exited with code 2.

Error while building/deploying project Kiosk (kit: Desktop Qt 5.10.1 GCC &4bit)
When executing step "Make"

13:06:34: Elapsed time: @0:06.

This is because Qt is trying to look for the OpenGL libraries, and it can't find them on your
system. This can be easily fixed by installing the Mesa development library package with
the following command:

sudo apt—-get install libgll-mesa-dev

[350]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Cross-Platform Development Chapter 15

Again, the preceding command only works on Debian and Ubuntu variants. Please look for
the appropriate command for your Linux distro if you're not running one of the Debian or
Ubuntu forks:

b Terminal - kloena@kloena-Virtual Box: ~

File Edit WView Terminal Tabs Help

|kloenagkloena-VirtualBox:~% sudo apt-get ins

Once the package has been installed, you should be able to compile and run your Qt
application without any problem:

[351]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Cross-Platform Development Chapter 15

M main.gml ¥ | Y Text
q

import QtQuick 2.9
import QtQuick.wWindow 2.2

v Window {
id: window
visible: tr
width: 480
height: 328
title: gsTr

b Hello World - + X

- Text {
id: tex
x®: 185
y: 152
text: g

font.pi Hello World!

17 1

Application Output | &= _

x
Jhome fKloena /Projects/ exited with code @
Starting fhome/kloena/Projects /@ HEE B EEE

As for using one of the other compilers that are less popular, such as Linux ICC, Nim, or
QCC, you must set it manually by clicking on the Add button located on the right-hand
side of the Kits interface, then key in all the appropriate settings to get it to work. Most
people do not use these compilers, so we'll just skip them for now.

When it comes to distributing Linux applications, it's a lot more complicated than Windows
or macOS. This is owing to the fact that Linux is not a single operating system, but rather a
bunch of different distros with their own dependencies and configurations, which makes
distributing programs very difficult.

[352]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Cross-Platform Development Chapter 15

The safest way is to compile your program statically, which has its own pros and cons. Your
program will become really huge in size, and that makes updating software a great burden
to users who have slow internet connections. Other than that, the Qt license also forbids you
from building statically if you're not doing an open source project and do not have a Qt
commercial license. To learn more about Qt's licensing options, please visit the following
link: https://wwwl.qgt.io/licensing-compariso.n.

Another method is to ask your users to install the right version of Qt before running your
application, but that will yield a ton of problems on the user side since not every user is
very tech savvy and has the patience to go through all those hassles to avoid the
dependency hell.

Therefore, the best way is to distribute the Qt library alongside your application, just like
we did on the Windows platform. The library might not work on some of the Linux distros
(rarely the case, but there is a slight possibility), but that can be easily overcome by creating
a different installer for different distros, and everyone's happy now.

However, due to security reasons, a Linux application doesn't usually look for its
dependencies in its local directory by default. You must use the SORIGIN keyword in the
executable's rpath setting in your qmake project (.pro) file:

unix: !'mac{

QMAKE_LFLAGS += -Wl,--rpath=$SORIGIN
OMAKE_RPATH=

}

Setting the OMAKE_RPATH clears the default rpath setting for the Qt libraries. This allows
for bundling the Qt libraries with the application. If you want the rpath to include the path
to the Qt libraries, don't set QMAKE_RPATH.

After that, just copy all the library files from the Qt installation folder to your application's
folder and remove its minor version numbers from the filename. For example, rename
1ibQtCore.so0.5.8.1to 1ibQtCore.so.5 and now it should be able to get detected by
your Linux application.

As for application icons, you can't apply any icon to Linux applications by default as it is
not supported. Even though some desktop environments such as KDE and GNOME do
support application icons, the icon has to be installed and configured manually, which is
not very convenient to the users. It may not even work on some user's PC since every distro
works a little bit differently than the others. The best way to set icons for your application is
to create a desktop shortcut (symlink) during installation and apply the icon to the shortcut.

[353]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Cross-Platform Development Chapter 15

macOS

In my opinion, macOS is the single most centralized operating system in the software
world. Not only is it designed to run only on the Macintosh machines, you are also required
to download or buy software only from the Apple App Store.

No doubt this has caused an uneasy feeling for some people who care about freedom of
choice, but on the other hand it also means that developers have less problems to deal with
when it comes to application building and distribution.

Other than that, macOS applications behave pretty much similar to a ZIP archive, where
each and every application has its own directory that carries the appropriate libraries with
it. Therefore, there is no need for the users to install the Qt libraries on their operating
system beforehand and everything just works out of the box.

As for the Kit Selection, Qt for macOS supports kits for Android, clang 64-bit, iOS, and iOS
Simulator:

[NN | Qt Widgets Application
. Kit Selection
Location
E> Kis The following kits can be used for project untitled:

Details Type to filter kits by name...

Sy B Select all kits
E Android for x86 (GCC 4.9, Ot 5.10.1 for Android x86) Detailsy,

I Desktop Qt 5.10.1 clang B4bit Detailsy,
E ot5.10.1 for iOS Details,
E 0t5.10.1 for i0S Simulator Detailsy,
Cancel Go Back " Continue

[354]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Cross-Platform Development Chapter 15

As of Qt 5.10 and above, Qt no longer supports 32-bit builds for macOS. Also, Qt does not
support OS X on PowerPC; and since Qt uses Cocoa internally, building for Carbon is also
not possible, please be aware of that.

Before compiling your macOS applications, please install Xcode from the App Store before
proceeding. Xcode is an integrated development environment for macOS, containing a suite
of software development tools developed by Apple for developing software for macOS and
iOS. Once you have installed Xcode, Qt Creator will detect its existence and automatically
set the compiler settings for you, which is great:

[NoN Preferences
Filter Build & Run
@ A General m Qt Versions ~ Compilers Debuggers Qbs CMake
Text Editor Name Add
¥ Auto-detected
@ FakeVim H Android for armeabi-v7a (GCC 4.9, Qt 5.10.1 for Android armv7) Clene
B Android for x86 (GCC 4.9, Qt 5.10.1 for Android x86) e
@ Help Desktop Qt 5.10.1 clang 64bit (default)
BN 5 40 1 far NS Make Default
{3 o+
\,1 Qt Quick Name: Desktop Qt %{Qt:Version} clang 64bit L}
|K'/\ Build & Run File system name:
@ pebugger Device type: Desktop <
X Designer Device: | Local PC (default for Desktop) B Manage...
[B® Analyzer Sysroot: Chaose...
mﬁ Version Control - -
G: GCC (C, xBE B4bit in /usr/bin) B
Compiler: Manage...
n Davices C++: | Clang (x86 64bit in /usr/bin) B
@ Code Pasting
Environment: No changes to apply. Change...
) retng
Debugger: = System LLDB at /Applications/Xcode.app/Contents/Developer/usr/bin/lidb B Manage...

Once you have compiled your project, the resulting executable program is a single app
bundle that can be easily distributed to your users. Since all the library files are packed
within the application bundle, it should work out of the box on the user's PC.

Setting application icons for Mac is quite a simple task. Just add the following line of code
to your project (. pro) file and we're good to go:

ICON = myapp.icns

Do note that the icon format is . icns, instead of . ico, which we usually use for Windows.

[355]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Cross-Platform Development Chapter 15

Deploying to mobile platforms

Apart from platforms such as Windows, Linux, and macOS, mobile platforms do hold equal
importance. There are many developers who would like to deploy their applications to
mobile platforms. Let's see how that's done. We will cover two major platforms, they are,
iOS and Android.

i0S
Deploying Qt applications on iOS is really simple and easy. Just like we did previously for
macQOS, you need to first install Xcode on your development PC:

% Applications

< = o ol v v]
Favorites Reminders R;;al Re;;t! Safari Samsung
Dropbox
E All My Files B u
¢ iCloud Drive g e ﬁ
@ AirDrop
— Skype Stickies System TeamViewer
PP Preferences
[=] Desktop i _
@ Documents / |, b @
o Downloads H

TextEdit The Unarchiver Time Machine

Devices

Remote Disc a

Q gt-unified-mac-... = @
Tags ’ \ s

Movie_Screen_Prefab uTorrent VLG Wielsoft
Denendency Walker

[356]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Cross-Platform Development Chapter 15

Then, restart Qt Creator. It should now detect the existence of Xcode, and it will then
automatically set the compiler settings for you:

e0e Preferences
Filter Build & Run
@ (o e General m Qt Versions Compilers Debuggers Qbs = CMake
Text Edito Name
ext Editor ¥ Auto-aetected iAdid
g EakeVim B Android for armeabi-v7a (GCC 4.9, Qt 5.10.1 for Android armv7) Clone
[Android for x86 {GCC 4.9, Qt 6.10.1 for Android x86) P
@ tep & Desktop Q1 5.10.1 clang 64bit (defautt)
g Qt5.10.1 forios Make Default
{} G+
-’—',']_ Qt Quick Name: Qt %{Qt:Version} for iOS E
|U) Build & Run File system name:
Q Debugger Device type: 108 Device o
f Designer Device: Lee Zhi Eng’s iPad (default for iOS) B Manage...
! Analyzer Sysroot: ontents/Developer/Platforms/iPhone0S. platform/Developer/SDKs/iPhone0S.sdk Choose...
mﬁ Version Gentrol .
(5% Apple Clang (arm64) &
Compiler: Manage...
I Devices C++: | Apple Clang (arm64) <
@ Code Pasting
Environment: No changes to apply. Change...
[+s]Y Testing
Debugger: System LLDB at /Applications/Xcode.app/Contents/Developer/usr/bin/lldb B Manage...
roohy carcel | (D

After that, just plug in your iPhone and hit the Run button!

Building iOS applications on Qt is really that easy. However, distributing them is not. This
is because iOS is a very closed ecosystem, just like a walled garden. You are not only
required to register as an app developer with Apple, you also need to code sign your iOS
applications before you're able to distribute it to your users. There is no way you can avoid
these steps if you want to build your apps for the iOS.

You can learn more about these by visiting the following
link: https://developer.apple.com/app-store/submissions.

[3571]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Cross-Platform Development Chapter 15

Android

Even though Android is a Linux-based operating system, it is very different when
comparing it to the Linux platforms that you run on your PC. To build Android
applications on Qt, you must first install Android SDK, Android NDK, and Apache ANT
to your development PC, regardless of whether you're running Windows, Linux, or macOS:

|#% Applications
0o ol B~ #~ M

Favorites
= Dropbox
E Al My Files . " .
7 iCloud Drive android-ndk-r11b android-sdk- apache-ant-1.8.6 App Store
Macosx
@ AirDrop

— 2 & W ©

|
@ Documents |1 Application Loader Automator Calculator Calendar
0 Downloads I

Devices
Remote Disc ' >

Q gt-unified-mac-... 2 ey
Contacts Dashboard Dictionary

Tags
) Movie_Screen_Prefab

[358]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Cross-Platform Development Chapter 15

These three packages are essential when it comes to building Android applications on Qt.
Once all of them have been installed, restart Qt Creator, and voila, it should have now
detected their existence and the build settings will now have been set automatically:

eCe Preferences
Filter Build & Run
@ Environment General m Qt Versions ~ Compilers ~ Debuggers Qbs CMake

Text Editor Name Add

¥ Auto-detected

@ FakeVim Android for armeabi-v7a (GCC 4.9, Qt 5.10.1 for Android armv7) Clone
@ Android for x86 (GCC 4.9, Qt 5.10.1 for Android x86) Remove
@ Help T Desktop Qt 5.10.1 clang 64bit (default)
Fl_Nt &40 1 faring Make Defal
{} C++
/J Qt Quick Name: Android for armeabi-v7a (GCC 4.9, Qt 5.10.1 for Android armv7) H,
[(1: Builg & Aun File system name:
@ Debugger Davice type: Android Device T
X Designer Device: Run on Android (default for Android) = Manage...
B8 Analyzer Sysroot: Choose...
Versien Control
C: Android GCC (C, arm-4.9) &
Compiler: Manage...
@ oeviees G+: | Android GCC (C++, am-4.9) 3
@ Code Pasting
Environment: No changes to apply. Change...

m Testing

Manage...

<>

Debugger: = Android Debugger for Android GCC (C++, arm-4.9)

ool carcel | (N

Lastly, you can configure your Android app by opening the AndroidManifect .xml file
with Qt Creator:

[359]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Cross-Platform Development

Chapter 15

Projects B AndroidManifest.xml ¥ML Source
v | m Package
hl
Lo Package name: |c0m. |
h Headers
o+ Sources Version code: 3 >
@ Resources Version name: |1.2 |

v @ Otherfiles

Minimum required SDK: | API 16: Android 4.1, 4.1.1

A android
gradlelwrapper Target SDK: APT 23: Android 6.0 -
resivalues I
= . . Application
.E. AndroidManifest.xml P
|j build.gradle Application name: |-- % YINSERT_APP_MAME%% — |
LI gradlew Activity name: |~ %%INSERT_APP_NAME%% — |
gradlew.bat
Run: | — %%INSERT_APP_LIB_NAME %% — |

Application icon:

Permissions

Indude default permissions for Qt modules. h

You can set everything here, such as the package name, version code, SDK version,
application icon, permissions, and so on.

Android is an open system compared to iOS, so there is no need for you to do anything
before you're able to distribute your applications to your users. You can, however, choose to
register as a Google Play developer if you want to distribute your apps on the Google Play
Store.

Summary

In this chapter, we have learned how to compile and distribute our Qt applications for
different platforms, such as Windows, Linux, macOS, Android, and iOS. In the next
chapter, we will learn different debugging methods that could save development time. Let's
check it out!

[360]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

16

Testing and Debugging

We often see the word debug when reading tutorials or articles related to programming. But
do you know what debugging means? A bug in programming terms means an error or
defect within a computer program that prevents the software from operating correctly,
which often leads to incorrect output or even a crash.

In this chapter, we will cover the following topics and learn how to debug our Qt project:

e Debugging techniques
e Debuggers supported by Qt
e Unit testing

Let's get started.

Debugging techniques

Technical issues occur all the time during the development process. To tackle these
problems, we need to find out all these issues and solve them before releasing our
application to the users, so as not to affect the company/team's reputation. The method used
to look for technical issues is called debugging. In this section, we will look at the common
debugging techniques used by professionals to ensure their program is reliable and of a
high quality.

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Testing and Debugging Chapter 16

Identifying the problem

The most important thing when it comes to debugging your program, regardless of
programming language or platform, is to know which part of your code is causing the
problem. There are several ways you can identify your problematic code:

¢ Ask the user at which point the bug happened; for example, which button was
pressed, what were the steps leading to the crash, and so on.

e Comment away part of your code, then build and run the program again to check
whether the problem still occurs or not. If it still does, continue to comment out
more code until you find the problematic line of code.

e Use the built-in debugger to check for the variable changes within your targeted
function by setting a data breakpoint. You can easily spot if one of your variables
has changed to an unexpected value or an object pointer has become an
undefined pointer.

e Make sure all the libraries that you included in the installer for your users have
matching version numbers with the ones used in your project.

Print variables using QDebug

You can also print out the value of a variable to the application output window, using the
QDebug class. QDebug is quite similar to std: : cout in the standard library, but the
advantage of using QDebug is that since it is part of Qt, it supports Qt classes out of the box,
and it is able to output its value without the need for any conversion.

To enable QDebug, we must first include its header:
#include <QDebug>
After that, we can call gDebug () to print out variables to the application output window:

int amount = 100;
gDebug () << "You have obtained" << amount << "apples!";

[362]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Testing and Debugging Chapter 16

The result will look like this:

Application Qutput f_-|

B8

You have obtained 1808 apples!

1 Issues(@' 2 SearchResults 3 Application Output 4 Compile Output

By using 0bebug, we will be able to check if our function is running correctly. You can just
comment out the particular line of code that contains gDebug () after you have finished
checking for the problem.

Setting breakpoints

Setting a breakpoint is another good way to debug your program. When you right-click on
the line number of your script in Qt Creator, you will get a pop-up menu with three
options, which you can see in the following screenshot:

#include "mainwindow.h"
#include <QApplication>

¥ dnt main(int argc, char #argv[])

-
4
L

Qépplication alargc, argwv);
MainWindow w;
8 Set Breakpoint at Line 7
Set Message Tracepoint at Line 7.,

Toggle Bookmark

[363]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Testing and Debugging

Chapter 16

The first option is called Set Breakpoint at Line..., which lets you set a breakpoint at a
specific line on your script. A red dot icon will appear beside the line number once you

have created a breakpoint:

#include "mainwindow.h"

#include "ui_mainwindow.h"

QMainWindow(parent),
v ui (new U4 ::MainW-indow)
i
L7 ui->setupli(this);
3

MainWindow: : ~MainWindow()
delete ui;

15

MainWindow: :MainWindow(QWidget =parent)

The second option is called Set Message Tracepoint at Line..., which prints a message
when the program reaches this particular line of code. An eye icon will appear beside the

line number once you have created a breakpoint:

#include "mainwindow.h"
#include "ui_mainwindow.h"

QMainWindow(parent),

v uil{new Udi::MainWindow)

i
& ui->setupld(this);

1

¥ MainWindow: :~MainWindow()
{

delete ui;

1

15

MainWindow: :MainWindow((QWidget *parent)

[364]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Testing and Debugging Chapter 16

The third option is Toggle Bookmark, which lets you set a bookmark for your own
reference. Let's create a function called test () to try out the breakpoint:

void MainWindow: :test ()

{

int amount = 100;
amount —-= 10;
gDebug () << "You have obtained" << amount << "apples!";

}
After that, we call the test () function at the MainWindow constructor:

MainWindow: :MainWindow (QWidget *parent)
QMainWindow (parent),
ul (new Ui::MainWindow)

ui->setupUi (this);
test ();
3

Then, press the start debug button located at the bottom left of your Qt Creator window:

Open Documents

mainwindow.cpp
Debugging

L pes Type to locate (Ctrl+K)

[365]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Testing and Debugging Chapter 16

You may get an error message that looks like this:

[Could Mot Run ot

e Unknown debugger type "Mo engine”

Unable to create a debugger engine of the type "Mo engine”

In this case, make sure your project kit has a debugger linked to it. If this error still occurs,
close your Qt Creator, go to your project folder and delete the . pro.user file. After that,
open up your project with Qt Creator. Qt Creator will reconfigure your project again, and

the debug mode should work by now.

Let's add two breakpoints to our code and run it. Once our program has been started, we
will see a yellow arrow appearing on top of the first red dot:

v yoid MainWindow: :test()

-
4
L

int amount = 188;

e 20 I amount —= 18;
[] qDebug() << "You have obtained" << amount << "apples!";

-
3
¥

This means that the debugger has stopped at the first breakpoint. The Locals and
Expression window, which is located on the right-hand side of your Qt Creator, will now

display the variable along with its value and type here:

Mame Value Type
amount 100 int
this "PMainWindow" MainWindow
[366]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Testing and Debugging Chapter 16

In the preceding image, you can see the value is still at 100 because at this point the minus
operation has not yet been run. The next thing we need to do is to click on the Step Into
button on top of the Stack window located at the bottom of your Qt Creator:

Debugger ~ I B =% [@ F threads: #1

Level Function File
1 MainWindow:t., mainwindow.cp Ep s
2 MainWindow:... mainwindow.cpp 9
3 gMain main.cpp 7
4 WinMain *16 gtrnain_win.cpp 104
3 main

After that, the debugger will move on to the next breakpoint, and here we can see the value
has decreased to 90 as expected:

Marne Value Type
amount 90 int
this "MainWindow" MainWindow

You can use this method to easily examine your application. To delete a breakpoint, you
just have to click on the red dot icon again.

Do note that you must run this in the debug mode. This is because when compiling in
debug mode, additional debugging symbols will be embedded into your application or
library that allow your debugger to gain access to information from the source code of the
binary, such as the name of identifiers, variables, and routines. This is also the reason why
your application or library will be much bigger in file size if compiled in debug mode.

[367]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Testing and Debugging Chapter 16

Debuggers supported by Qt

There are different types of debuggers that are supported by Qt. Depending on the platform
and compiler you're running for your project, the debugger used will also be different. The
following is the list of debuggers commonly supported by Qt:

e Windows (MinGW): GDB (GNU Debugger)

¢ Windows (MSVC): CDB (Debugging Tools for Windows)
e macOS: LLDB (LLVM Debugger), FSF GDB (Experimental)
e Linux: GDB, LLDB (Experimental)

¢ Unix (FreeBSD, OpenBSD, etc.): GDB

¢ Android: GDB

¢ iOS: LLDB

Debugging for PC

With GDB (GNU Debugger), there is no need for any manual setup if you're using MinGW
compiler on Windows, as it usually comes together with your Qt installation. If you're
running other operating systems such as Linux, you may need to install it manually before
linking it up with your Qt Creator. Qt Creator detects the existence of GDB and links it with
your project automatically. If it doesn't, you can easily find the GDB executable located in
your Qt directory and link it by yourself.

CDB (Debugging Tools for Windows) on the other hand, needs to be installed manually
on your Windows machine. Do note that Qt doesn't support the built-in debugger of Visual
Studio. Therefore, you need to install the CDB debugger separately by selecting an optional
component called debugging tools for windows while installing the Windows SDK. Qt
Creator also normally would recognize the existence of CDB and put it on the debugger list
under the Debuggers Options page. You can go to Tools | Options | Build and

Run | Debuggers to look for the settings as seen in the following screenshot:

[368]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Testing and Debugging Chapter 16

7 Options X

|Filter Build & Run

; A i i Debuggers
@ Environment General Kits QtVersions Compilers ag CMake

Text Editor MName Location Add

v Auto-detected Clone
% FakeVim GNU gdb 7.10.1 for MinGW 5.3.0 32bit CAOt\Te

Android Debugger for Android GCC (C++, arm-4.9) Chandroi Remove
@ Help Auto-detected CDB at C:\Program Files (x26)\Windows Kits\10\Debuggers\x86\cdb.exe C:\Progra
Auto-detected CDB at C\Program Files (x26)\Windows Kits\10\Debuggers\x64\cdb.exe Th\Progra

‘[} C+ Manual

] at Quick

m Build & Run
@ Debugger

f Designer
! Analyzer

Code Pasting
/% Qbs

Test Settings v < ?
Cancel Apply

Debugging for Android devices

Debugging for Android devices is slightly more complicated than for a PC. You must install
all the necessary packages for Android development, such as JDK (version 6 or later),
Android SDK, and Android NDK. Then you also need the Android Debug Bridge

(ADB) driver on the Windows platform to enable USB debugging, since the default USB
driver on Windows does not allow for debugging.

Debugging for macOS and iOS

As for macOS and iOS, the debugger used is LLDB (LLVM Debugger), which comes with
Xcode by default. Qt Creator will also recognize its existence and link it with your project
automatically.

[369]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Testing and Debugging Chapter 16

Every debugger is a little different from another and may behave differently on Qt Creator.
You can also run the non-GDB debuggers on their respective IDE (Visual Studio, XCode,
and so on), if you are familiar with those tools and know what you're doing.

If you need to add other debuggers to your project, you can go over
to Tools | Options | Build and Run | Kits and click Clone to copy an existing kit. Then,
under the Debuggers tab, click on the Add button to add a new debugger selection:

Genesal | Kits | GtVersons | Coepless | Debugers | Cake

Narng Location Add

Auta-detected | [pr—]
GMU gdb 7.8 for MinGW 4.9.2 32bit CAQH O\ Tooks\mingw482_32\bin\gdb.exg
Android Debugger for Android GOC (anm-4.9) Chandroid-ndk-rl0ditoolchamsharm-limux-
Andrgad Uehuggu for Android GCC [ﬂﬁ-d.ﬂ,‘ Chandrasd-ndk-rldd toolchans\«86-4 Q'-.pu
Andrgid Debugges for Android GOC (aarchbd-4.9) Chandraid-ndk-rl0d tealchaing arm-linu-
Android Debugger for Android GCC (x86_64-4.9) Chandraid- ndk-rl0dtoolchains':@6-4.94pr
Android Debugger for Android GCC (686-4.9) Cihandrod-ndk-rl0d\toolchains'oxBh-4. 9% pry
Androad Uehuggu for Android GCC [535-11.?_} Chandrosd-ndk-rldd toolchains\«86-4 Q'-.Fu

Aute-detected COB st C\Program Files (867 Windows Kits\10% Debuggers's86 edb.ece C\Program Files (x86)\Windows Kits\ 100 Del
Auto-detected CDB at C\Program Files (<B6)\Windows Kits\10% Debuggers'cfdcdb.ece C\Program Files (86 Windows Kits\100Del
Manual

Name: |GMU gdb 7.3 for MInGYY 4.9.2 32bit
Path: G QtWOt5 Tools mingw432_321bin'\gdD. exe B

Type:

Werson:

In the Name field, type in the descriptive name for the debugger so you can easily
remember its purpose. Then, specify the path to the debugger binary in the Path field so
that Qt Creator knows which executable to run when you start the debugging process.
Other than that, the Type and Version fields are used by Qt Creator to identify the types of
version of the debugger. In addition, Qt Creator shows the ABI version that will be used on
embedded devices in the ABIs field.

[370]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Testing and Debugging Chapter 16

To learn more about the in-depth information on how to set up different

debuggers in Qt, please visit the following link:
http://doc.qgt.io/gtcreator/creator-debugger-engines.html.

Unit testing

Unit testing is an automated process for testing an individual module, class, or method in
your application. Unit testing finds problems early in the development cycle. This includes
both bugs in the programmer's implementation and flaws or missing parts of the
specification for the unit.

Unit testing in Qt

Qt comes with a built-in unit testing module, which we can use by adding the
testlib keyword to our project file (. pro):

QT += core guil testlib

After that, add the following header to our source code:

#include <QtTest/QtTest>

Then, we can start testing our code. We must declare our test functions as private slots.
Other than that, the class must also inherit from the QOBject class. For example, I created
two text functions called testString () and testGui (), like so:

private slots:
void testString();
void testGui ();

The function definitions look something like this:

void MainWindow: :testString()

{

QString text = "Testing";

QVERIFY (text.toUpper () == "TESTING");
}

void MainWindow: :testGui ()

{
QTest::keyClicks (ui->1lineEdit, "testing gui");

[371]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

Testing and Debugging Chapter 16

QCOMPARE (ui->lineEdit->text (), QString("testing gui"));
I3

We used some of the macros provided by the QTest class, such as QVERIFY, QCOMPARE, and
so on, to evaluate the expression passed as its argument. If the expression evaluates to
true, the execution of the test function continues. Otherwise, a message describing the
failure is appended to the test log, and the test function stops executing.

We also used QTest: :keyClicks () to simulate mouse clicking in our application. In the
earlier example, we simulate clicking on the line edit widget on our main window widget.
Then, we input a line of text to the line edit and use QCOMPARE macro to test if the text has
been correctly inserting into the line edit widget. If anything wrong happened, Qt will show
us the problem in the application output window.

After that, comment out our main () function and use the QTEST_MAIN () function instead
to start testing our MainWindow class:

/*int main (int argc, char *argvl[])
{
QApplication a(argc, argv);
MainWindow w;
w.show () ;

return a.exec();
rx/
QTEST_MAIN (MainWindow)

If we build and run our project now, we should be getting similar results as follows:

k*kkkk* Start testing of MainWindow ******x*xk*x
Config: Using QtTest library 5.9.1, Qt 5.9.1 (i386-l1little_endian-ilp32
shared (dynamlc) debug build; by GCC 5.3.0)

PASS : MainWindow: :initTestCase ()

PASS : MainWindow: :_g showIfNotHidden ()
PASS : MainWindow: :testString()

PASS : MainWindow: :testGui ()

PASS : MainWindow: :cleanupTestCase ()

Totals: 5 passed, 0 failed, O skipped, 0 blacklisted, 880ms
kkkk*** Finished testing of MainWindow ****Xxxxxx*

There are many more macros that you can use to test your application.

For more information, please visit the following link:
http://doc.gt.io/gt-5/gtest.html#macros

[372]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Testing and Debugging Chapter 16

Summary

In this chapter, we have learned how to identify technical issues in our Qt project by using
multiple debugging techniques. Other than that, we have also learned about different
debuggers that are supported by Qt on different operating systems. Finally, we also learned
how to automate some of the debugging steps through unit testing.

That's it! We have reached the end of this book. Hopefully, you have found this book useful
on learning how to build your own applications from scratch using Qt. You can look for all
the source code on GitHub. I wish you all the best!

[373]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Mastering
the C++17 STL

Packt>

Mastering the C++17 STL
Arthur O'Dwyer

ISBN: 978-1-78712-682-4

Make your own iterator types, allocators, and thread pools.
Master every standard container and every standard algorithm.
Improve your code by replacing new/delete with smart pointers.

Understand the difference between monomorphic algorithms, polymorphic
algorithms, and generic algorithms.

Learn the meaning and applications of vocabulary type, product type and sum
type.

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

EBSCChost -

Other Books You May Enjoy

Stefan Bjérnander

C++17
By Example

C++17 By Example
Stefan Bjornander

ISBN: 978-1-78839-181-8

Acquire the key skills of ethical hacking to perform penetration testing
Learn how to perform network reconnaissance

Discover vulnerabilities in hosts

Attack vulnerabilities to take control of workstations and servers
Understand password cracking to bypass security

Learn how to hack into wireless networks

Attack web and database servers to exfiltrate data

Obfuscate your command and control connections to avoid firewall and IPS
detection

[375]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

EBSCChost -

Other Books You May Enjoy

Leave a review - let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

[3761]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

EBSCChost -

A

American National Standards Institute (ANSI) 65
AMPPS 55

Android 358, 359

Android NDK 358

Android SDK 346, 358

Apache 55

Apache ANT 358

Apache Friends 55

AppServ 55

area chart 94

B

bar chart 91
box-and-whiskers chart 96
build 338
build settings
about 340
comment 342
configurations 342, 343
definitions 342, 343
modules 342, 343
platform-specific settings 343
Qt Project (.pro) File 341

C

C++ code
writing, for image viewers 299, 301
writing, for music players 304, 307, 308
writing, for video players 310, 312
C++
functions, calling from JavaScript 165, 167, 169
integrating 161
cache
about 159

printed on 2/9/2023 9:19 AMvia

Index

managing 160
camera image
capturing, to file using Qt multimedia module
228,229
camera video
recording, to file using Qt multimedia module
229,231
camera
connecting, Qt multimedia module used 223,
227
candlestick charts 96
Cascading Style Sheet (CSS) 44, 142
chart
implementing 97, 99, 100
types, in Qt 20
Chromium 143
compile 338
compiler
about 338, 339
automation, building with Make tool 339, 340
Clang 339
GNU Compiler Collection (GCC) 339
Linux ICC (Intel C++ Compiler) 339
Microsoft Visual C++ (MSVC) 339
Minimalist GNU for Windows (MinGW) 339
Nim 339
QCC 339
XCode 339
cookie
about 159
managing 159
cryptographic hash function 65

D

dashboard page
creating 104, 105, 106,109, 111, 113

. Al'l use subject to https://ww. ebsco.con terns-of-use

database connection
inQt 74, 75,77, 79, 80, 81, 82
Debian 348

Gentoo 348
Geo Routing Request 190, 191, 192, 193
GNU licenses

reference link 89
graphical user interface (GUI) 26
Graphics View framework
about 194
movable graphics items 198, 199, 201
organization chart, creating 201, 202, 203, 204,
205,207, 208, 209, 210, 211, 212, 213, 214,

debugging techniques
about 361
breakpoints, setting 363, 365, 366, 367
for Android devices 369
for PC 368
macOS and iOS 369
problem, identifying 362

variables, printing with QDebug 362 215,216,217
DELETE statement Qt Widgets Application project, setting up 195,
reference link 68 197,198

dialog boxes graphs
working 126, 128, 130, 131 implementing 97, 99, 100
Digital Rights Management (DRM) 13 types, in Qt 90

F H

Fedora 348 Hello World Qt program
file list executing 19, 22, 23, 25
code, writing 281, 282, 283, 285 Homebrew 79
displaying 280, 281 Hypertext Markup Language (HTML) 142
displaying, list view 278
project, settingup 279 I
user interface, settingup 279, 280
file selection dialogs
creating 132

image viewer
about 297

C++ code, writing 299
reference link 134 C++, writing 301

File Transfer Protocol (FTP) 270, 271 user interface, designing 297, 299
files image
downloading, from FTP server 291, 292 cropping 134, 136, 138, 140
downloading, to FTP server 294 scaling 134, 136, 138, 140
uploading, to FTP server 285, 287, 288 INNER JOIN 82
FileZilla INSERT statement
downloading 271, 272 reference link 67
setting up 273, 274, 275, 276, 277 instant messaging client
URL 271 chat features, implementing 244, 245, 246, 247
FTP server creating 240
setting up 270 user interface, creating 244
functional login page user interface, designing 241, 243
creating 82, 83, 85, 86, 87, 88 instant messaging server
clients, listening 237
G creating 235

GCC 64-bit compiler 347 TCP Server, creating 235

[378]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

International Organization for Standardization MariaDB binary tarballs, on Linux

(ISO) 65 URL, forinstalling 79
iOS 356, 357 MariaDB Connector
item view widgets URL, for downloading 77
working 115 marker 175
Meta Object Compiler (MOC) 340
J Microsoft SQL 65
JavaScript Microsoft Visual Studio 143, 344
about 314 URL 344
functions, calling from C++ 161, 163, 164 MinGW 32-bit compiler 344
integrating 161 mobile platforms
JOIN statement Android 358, 359
reference link 71 deploying 356
iOS 356, 357
L model-view architecture 116
LAMP 55 modules, Qt.
layouts reference link 11
MSVC 143
about 34 . .
multimedia module

form layout 35
grid layout 35
horizontal layout 34
vertical layout 34
license, Qt
Commercial License 8
Open Source License 8
line and spline chart 90
Linux 346, 347, 348, 349, 350, 351, 353
List Widget
about 117
functional, creating 122, 124

about 295
dissecting 295, 296
reference link 296
music player
about 302
C++ code ,writing 304, 306, 308
user interface, designing 302, 304
MySQL AB 53
MySQL Connector
reference link 77
MySQL database system 53

LLDB (LLVM Debugger) 369 MySQL database
settingup 55, 56, 57, 59, 61, 62, 63, 65
M MySQL
about 53, 65
macOS 354, 355 URL 54
Make tool
about 339 ()
CMake 340
Open Street Map (OSM) 174, 190
gmake 340 Oracle SQL 65
Makefiles 339 racle
map display
about 170 P
creating 171, 173, 175 paint program
Qt location module, setting up 171 creating 260
MariaDB 53, 55, 65 user interface, setting up 260, 261, 263, 264,

[379]

EBSCChost - printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.con terns-of-use

267,268
PC platforms
deploying 344
Linux 346, 347, 348, 349, 350, 351, 353
macOS 354, 355
Windows 344, 345, 346
Percona Server 53
PHP 55
phpMyAdmin 59
pie charts 92
polar charts 93
position markers
displaying, on map 176,177,179, 180, 181,
182,184

Q

QGraphicsltem class
reference link 198
QStackedWidget 105
Qt Charts
reference link 97
Qt Console Application project
setting up 234
Qt Creator 279
Qt Designer 27, 29, 31
about 10
action editor 33
build shortcuts 33
form editor 33
form toolbar 33
menu bar 32
mode selector 33
object inspector 33
output panes 33
property editor 33
signals 33
slots editor 33
widget box 32
Qt Media Encoding Library (QtMEL) 231
Qt Modeling Language (QML)
about 171, 313, 315, 316, 317, 318, 320, 321
project, scripting 333
project, setting up 326, 328, 330, 331, 332,
335, 337
scripting 326

[380]

Qt multimedia module
about 218
used, for capturing camera image to file 228,
229
used, for connecting camera 223, 227
used, for recording camera video to file 229, 231
Qt networking module
about 232
connection protocols 232, 233, 234
Qt Project (.pro) File
about 341
reference link 341
Qt Quick Designer 11, 321
Qt Quick
about 313, 314, 321
controls 323
designer 324, 325
layouts 325, 326
widgets 323
widgets and controls 321
Qt Style Sheets 44, 47, 48, 51
Qt Style Sheets, syntax and properties
reference link 44
Qt WebEngine
reference link 158
Qt Widgets Application project
setting up 218, 219,220,221, 223
QT Widgets application
creating 118, 120
Qt widgets
about 34, 37, 39, 41, 43
layouts 34
spacers 34
Qt's licensing options
reference link 353
Qt's licensing
reference link 8
Qt, for Windows deployment
reference link 346
Qt
about 8
charts, types 90
database connectionin 74, 75, 77, 79, 80, 81,
82
downloading 12, 14

- printed on 2/9/2023 9:19 AMvia . Al use subject to https://wmv. ebsco.cont terns-of-use

EBSCChost -

graphs, types 90

installing 12, 14

tools, discovering 9

unit testing 371

using 9

working environment, settingup 15, 16, 18

S

Scalable Vector Graphics (SVG) 255
scatter charts 94
SELECT statement
reference link 66
session
about 159
managing 159
shape display 175
shapes
displaying, on map 185
signal-slot architecture 116
Slackware 348
spacers
about 34
horizontal spacer 35
vertical spacer 35
SQL commands
about 65
DELETE statement 68
INSERT statement 67
JOIN statement 68, 69, 70, 71, 73, 74
SELECT statement 66
UPDATE statement 67
StackOverflow 54
Structured Query Language (SQL) 53, 65
supported debuggers, Qt
about 368
CDB (Debugging Tools for Windows) 368
dGDB (GNU Debugger) 368
reference link 370
SVG file
vector images, saving 255, 256, 257, 259

—~

table view 115
Table Widget 117, 125

Transmission Control Protocol (TCP)

about 232

versus User Datagram Protocol (UDP) 233
Tree Widget

about 117

functionality, adding 125

U

Ubuntu 348
unit testing
about 371
inQt 371, 372
reference link 372
UPDATE statement
about 67
reference link 67
User Datagram Protocol (UDP)
about 232
versus Transmission Control Protocol (TCP) 233
user interface
designing, for image viewer 297, 299
designing, for music players 302, 304
designing, for video players 309
user's location
obtaining 188, 189

\'

vector images

saving, to an SVG file 255, 256, 257, 259
vector shapes

drawing 250

drawing, QPainter used 252, 254

text, drawing 254, 255

vector, versus bitmap 250, 251
video player

++ code, writing 312

about 309

C++ code, writing 310

reference link 312

user interface, designing 309
Visual C++ 143
Visual Studio 346

[381]

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

EBSCChost -

w

WAMP 55
web browser
creating 142
history, managing 158
Ul, creating 147, 149, 151, 153, 155, 157
view widget, adding 144
web view, printing
reference link 158
WebEngine 142
WebKit 142
What-You-See-Is-What-You-Get (WYSIWYG)
approach 34
widgets and controls, Qt Quick
Border Image 322
Flickable 322

Focus Scope 322

Image 322

ltem 322

MouseArea 322

Rectangle 322

Text 322

Text Edit 322

Text Input 322
Windows 344, 345, 346
Windows XP 344

X

XAMPP 55

Y4

ZendServer 55

printed on 2/9/2023 9:19 AMvia . All use subject to https://ww. ebsco.conl terns-of-use

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to Qt
	What is Qt?
	Why use Qt?
	Discovering tools in Qt
	Qt Designer
	Qt Quick Designer

	Downloading and installing Qt
	Setting up the working environment

	Running our first Hello World Qt program
	Summary

	Chapter 2: Qt Widgets and Style Sheets
	Introduction to Qt Designer
	Basic Qt widgets
	Qt Style Sheets
	Summary

	Chapter 3: Database Connection
	Introducing the MySQL database system
	Setting up the MySQL database
	SQL commands
	SELECT
	INSERT
	UPDATE
	DELETE
	JOIN

	Database connection in Qt
	Creating our functional login page
	Summary

	Chapter 4: Graphs and Charts
	Types of charts and graphs in Qt
	Line and spline charts
	Bar charts
	Pie charts
	Polar charts
	Area and scatter charts
	Box-and-whiskers charts
	Candlestick charts

	Implementing charts and graphs
	Creating the dashboard page
	Summary

	Chapter 5: Item Views and Dialogs
	Working with item view widgets
	Creating our Qt Widgets application
	Making our List Widget functional
	Adding functionality to the Tree Widget
	Finally, our Table Widget

	Working with dialog boxes
	Creating File Selection Dialogs
	Image scaling and cropping
	Summary

	Chapter 6: Integrating Web Content
	Creating your own web browser
	Adding the web view widget
	Creating a UI for a web browser
	Managing browser history

	Sessions, cookies, and cache
	Managing sessions and cookies
	Managing cache

	Integrating JavaScript and C++
	Calling JavaScript functions from C++
	Calling C++ functions from JavaScript

	Summary

	Chapter 7: Map Viewer
	Map display
	Setting up the Qt location module
	Creating a map display

	Marker and shape display
	Displaying position markers on a map
	Displaying shapes on a map

	Obtaining a user's location
	Geo Routing Request
	Summary

	Chapter 8: Graphics View
	Graphics View framework
	Setting up a new project
	Movable graphics items
	Creating an organization chart

	Summary

	Chapter 9: The Camera Module
	The Qt multimedia module
	Setting up a new project

	Connecting to the camera
	Capturing a camera image to file
	Recording a camera video to file
	Summary

	Chapter 10: Instant Messaging
	The Qt networking module
	Connection protocols
	Setting up a new project

	Creating an instant messaging server
	Creating TCP Server
	Listening to clients

	Creating an instant messaging client
	Designing the user interface
	Implementing chat features

	Summary

	Chapter 11: Implementing a Graphics Editor
	Drawing vector shapes
	Vector versus bitmap
	Drawing vector shapes using QPainter
	Drawing text

	Saving vector images to an SVG File
	Creating a paint program
	Setting up a user interface

	Summary

	Chapter 12: Cloud Storage
	Setting up the FTP server
	Introducing FTP
	Downloading FileZilla
	Setting up FileZilla

	Displaying the file list on the list view
	Setting up a project
	Setting up user interface
	Displaying the file list
	Writing the code

	Uploading files to the FTP server
	Downloading files from the FTP server
	Summary

	Chapter 13: Multimedia Viewers
	Revisiting the multimedia module
	Dissecting the module

	The image viewer
	Designing a user interface for the image viewer
	Writing C++ code for image viewers

	The music player
	Designing a user interface for music players
	Writing C++ code for music players

	The video player
	Designing a user interface for video players
	Writing C++ code for video players

	Summary

	Chapter 14: Qt Quick and QML
	Introduction to Qt Quick and QML
	Introducing Qt Quick
	Introducing QML

	Qt Quick widgets and controls
	Qt Quick Designer
	Qt Quick layouts
	Basic QML scripting
	Setting up the project

	Summary

	Chapter 15: Cross-Platform Development
	Understanding compilers
	What is a compiler?
	Build automation with Make

	Build settings
	Qt Project (.pro) File
	Comment
	Modules, configurations, and definitions
	Platform-specific settings

	Deploying to PC platforms
	Windows
	Linux
	macOS

	Deploying to mobile platforms
	iOS
	Android

	Summary

	Chapter 16: Testing and Debugging
	Debugging techniques
	Identifying the problem
	Print variables using QDebug
	Setting breakpoints

	Debuggers supported by Qt
	Debugging for PC
	Debugging for Android devices
	Debugging for macOS and iOS

	Unit testing
	Unit testing in Qt

	Summary

	Other Books You May Enjoy
	Index

