
C
o
p
y
r
i
g
h
t

2
0
1
8
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 10:11 AM via
AN: 1817502 ; Ayobami Adewole.; C# and .NET Core Test-Driven Development : Dive Into TDD to Create Flexible, Maintainable, and Production-ready .NET Core
Applications
Account: ns335141

C# and .NET Core Test-Driven
Development

Ayobami Adewole

BIRMINGHAM - MUMBAI

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

C# and .NET Core Test-Driven Development
Copyright 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Merint Mathew
Acquisition Editor: Chaitanya Nair
Content Development Editor: Priyanka Sawant
Technical Editor: Ruvika Rao
Copy Editor: Safis Editing
Project Coordinator: Vaidehi Sawant
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Jason Monteiro
Production Coordinator: Deepika Naik

First published: May 2018

Production reference: 1160518

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78829-248-1

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

To my mother, Modupe Adewole, and my father, Adegoke Adewole, for believing in me and
buying me my first computer. Also, to my siblings and partner for their love and support.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Contributors

About the author
Ayobami Adewole comes from Ibadan city in Nigeria. He is very passionate about
computers and what they can be programmed to do. He is an ardent lover of the .NET stack
of technologies and has developed several cutting-edge enterprise applications using the
platform.

He offers consultancy services on VoIP and Unified Communication technologies,
Customer Relationship Management Systems, Business Process Automation, Enterprise
Application Development, and Quality Assurance.

I would like to specially thank Chaitanya Nair, Priyanka Sawant, Ruvika Rao, and the
other staff at Packt for their dedication, patience, and support throughout the course of
writing the book. I would also like to thank Gaurav Aroraa for taking the time to review
the book.

Special thanks to my parents, siblings, and partner for their unwavering support while I
was writing the book.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the reviewer
Gaurav Aroraa has an MPhil in computer science. He is a Microsoft MVP, lifetime member
of Computer Society of India (CSI), advisory member of IndiaMentor, certified as a Scrum
trainer/coach, XEN for ITIL-F, and APMG for PRINCE-F and PRINCE-P. He is an open
source developer, contributor to TechNet Wiki, and the founder of Ovatic Systems Private
Limited. During his 20 year career, he has mentored thousands of students and industry
professionals. In addition to this, he's written 100+ white papers for research scholars and
various universities across the globe.

I'd like to thank my wife, Shuby Arora, and my angel daughter, Aarchi Arora, as well as
the team at Packt.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents
Preface 1

Chapter 1: Exploring Test-Driven Development 6
Difficulty in maintaining code 6
How does bad code appear? 7

Tight coupling 8
Code smell 9
Bad or broken designs 10
Naming the program elements 11
Source code readability 12
Poor source code documentation 13
Non-tested code 13

What we can do to prevent bad code 14
Loose coupling 14
Sound architecture and design 15
Preventing and detecting code smell 16
C# coding conventions 17
Succinct and proper documentation 17
Why test-driven development? 18
Building for longevity 18

The principles of test-driven development 19
Origin of TDD 20
TDD misconceptions 21
Benefits of TDD 22
Types of tests 22

Unit tests 22
Integration tests 23
System testing 23
User acceptance testing 24

Principles of TDD 24
Writing the tests 24
Writing the code 25
Running the tests 25
Refactoring 25

Doing TDD the wrong way 26
The TDD cycle 26
Summary 28

Chapter 2: Getting Started with .NET Core 29
.NET Core framework 30

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[ii]

.NET Standard 31

.NET Core components 32
Supported languages 33
When to choose .NET Core over .NET Framework 33

Cross-platform requirements 33
Ease of deployment 34
Scalability and performance 34

Limitations of .NET Core 34
Structure of a .NET Core application 35

ASP.NET Core MVC project structure 35
wwwroot folder 35
Models, Views, and Controllers folders 36
JSON files – bower.json, appsettings.json, bundleconfig.json 36
Program.cs 36
Startup.cs 36

Tour of Microsoft's Visual Studio Code editor 38
Installing .NET Core on Linux 38
Installing and setting up Visual Studio Code on Linux 41
Exploring Visual Studio Code 41

A look at the new features of C# 7 45
Tuples enhancement 45
Out keyword 46
Ref locals and returns 47

Ref locals 48
Ref returns 48

Local function 49
Patterns matching 49
Digit separator and binary literal 51

Creating an ASP.NET MVC Core application 51
Summary 53

Chapter 3: Writing Testable Code 54
Warning signs when writing untestable code 55

Tight coupling 55
Monster Constructor 57
Classes with more than one responsibility 59
Static objects 61

Law of Demeter 61
Train Wreck 64

The SOLID architecture principles 65
Single Responsibility Principle 66
Open-Closed Principle 70
Liskov Substitution Principle 74
Interface Segregation Principle 76
Dependency Inversion Principle 78

Setting up a DI container for ASP.NET Core MVC 83

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iii]

Summary 85

Chapter 4: .NET Core Unit Testing 86
The attributes of a good unit test 87

Readable 87
Unit independence 88
Repeatable 89
Maintainable and runs fast 89
Easy to set up, non-trivial, and with good coverage 90

Unit testing framework ecosystem for .NET Core and C# 90
.NET Core testing with MSTest 91
.NET Core testing with NUnit 93
xUnit.net 97

How to configure xUnit.net 98
xUnit.net test runners 103
Test parallelism 104

Unit testing consideration for ASP.NET MVC Core 106
Unit testing controllers 107
Unit testing razor pages 110

Structuring unit tests with xUnit 111
xUnit.net shared test context 114
Live unit testing with Visual Studio 2017 Enterprise 117
Proving unit test results with xUnit.net assertions 120
The test runners available on both .NET Core and Windows 121

ReSharper 122
Summary 123

Chapter 5: Data-Driven Unit Tests 124
The benefits of data-driven unit testing 125

Tests brevity 125
Inclusive testing 127

xUnit.net theory attribute for creating data-driven tests 128
Inline data-driven unit tests 128
Property data-driven unit tests 131

MemberData attribute 132
ClassData attribute 136

Integrating data from other sources 138
SqlServerData attribute 138
Custom attribute 140

Summary 144

Chapter 6: Mocking Dependencies 146
The benefits of mocking objects 147

Fast running tests 147
Dependencies isolation 148

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iv]

Refactoring legacy code 149
Wider test coverage 149

The shortcomings of mocking frameworks 149
Interface explosion 150
Extra complexity 150
Mock explosion 150

Hand-rolling mocks versus using a mocking framework 150
Mocking concept 151
Benefits of hand-rolling mocks 151
Mocks and stubs 152
Hand-rolled mock 155

Mocking objects using Moq framework 156
Mocking methods, properties, and callback 157

Properties 159
Matching parameters 160
Events 162
Callbacks 162
Mock customization 163

CallBase 164
Mock repository 164
Implementing multiple interfaces in a mock 165

Verification method and property invocations with Moq 165
LINQ to mocks 170
Advanced Moq features 171

Mocking internal types 172
Summary 173

Chapter 7: Continuous Integration and Project Hosting 174
Continuous integration 175

CI workflow 175
Single source code repository 176
Build automation 176
Automated tests 176
Identical test and production environments 177
Daily commit 177

Benefits of CI 177
Quick bugs detection 177
Improved productivity 178
Reduced risks 178
Facilitating continuous delivery 178

CI tools 178
Microsoft Team Foundation Server 179
TeamCity 179
Jenkins 179

Continuous delivery 179
Benefits of continuous delivery 180

Lower risks 180

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[v]

Quality software products 180
Reduced costs 180

GitHub online project hosting 181
Project hosting 181

Branching with GitHub Flow 183
Pull request 186
Reviewing changes and merging 187

Basic Git commands 188
Configuration commands 189
Initializing repository commands 190
Change commands 191
Branching and merging commands 192

Configuring GitHub WebHooks 194
Consuming WebHooks 194
GitHub WebHook 195

Events and payloads 195
Setting up your first WebHook 197

TeamCity CI platform 201
TeamCity concepts 202
Installing TeamCity Server 203
TeamCity CI workflow 206
Configuring and running build 207

Summary 212

Chapter 8: Creating Continuous Integration Build Processes 213
Installing the Cake Bootstrapper 214

Installation 214
PowerShell security 216
Cake Bootstrapper installation steps 217

Step 1 217
Step 2 218
Step 3 218

Writing build scripts in C# 219
Task 219
TaskSetup and TaskTeardown 220
Configuration and preprocessor directives 221
Dependencies 222
Criteria 223
Cake's error handling and finally block 225
LoanApplication build script 226

Cake Extension for Visual Studio 229
Cake templates 230
Task Runner Explorer 231
Syntax highlighting 233

Using Cake tasks to build steps 234
CI with Visual Studio Team Services 236

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[vi]

Setting up a project in VSTS 236
Installing Cake into VSTS 242
Adding a build task 244

Summary 250

Chapter 9: Testing and Packaging the Application 252
Executing xUnit.net tests with Cake 253

Executing xUnit.net tests in .NET projects 253
Executing xUnit.net tests in .NET Core projects 255

.NET Core versioning 257
Versioning principle 257
Installer 258
Package manager 259
Docker 259
Semantic Versioning 260

.NET Core packages and metapackages 261
Metapackage 262
Microsoft.AspNetCore.All metapackage 263

Packaging for NuGet distribution 264
dotnet publish command 264
Creating a NuGet package 267

Summary 269

Other Books You May Enjoy 271

Index 274

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface
How do you verify that your cross-platform .NET Core application will work wherever it is
deployed? As your business, team, and the technical environment evolves, can your code
evolve with it? You can simplify your code base, make finding and fixing bugs trivial, and
ensure your code does what you think it does by following the principles of test-driven
development.

This book guides developers through the process of creating robust, production-ready C# 7
and .NET Core applications by establishing a professional test-driven development process.
To do this, you will begin by learning the stages of the TDD life cycle, some best practices,
and some anti-patterns.

After covering the basics of TDD in the first chapter, you will get right into creating a
sample ASP.NET Core MVC application. You will learn how to write testable code with
SOLID principles, and set up dependency injection.

Next, you will learn how to create unit tests using the xUnit.net testing framework, and
how to use its attributes and assertions. Once you have the basics in place, you will learn
how to create data-driven unit tests and how to mock dependencies in your code.

At the end of this book, you will wrap up by creating a healthy continuous integration
process, using GitHub, TeamCity, VSTS, and Cake. Finally, you will modify the Continuous
Integration build to test, version, and package a sample application.

Who this book is for
This book is for .NET developers who would like to build quality, flexible, easy-to-
maintain, and efficient enterprise applications by implementing the principles of test-
driven development.

What this book covers
, Exploring Test-Driven Development, introduces you to how you can improve your

coding habits and code by learning and following the proven principles of test-driven
development.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[2]

, Getting Started with .NET Core, introduces you to the super-cool new cross-
platform capabilities of .NET Core and C# 7. You will learn by doing as we create an
ASP.NET MVC application on Ubuntu Linux with test-driven development principles.

, Writing Testable Code, demonstrates that, in order to reap the benefits of a test-
driven development cycle, you must write code that is testable. In this chapter, we will
discuss the SOLID principles for creating testable code and learn how to set up our .NET
core application for dependency injection.

, .NET Core Unit Testing, presents the unit testing frameworks available for .NET
Core and C#. We will use the xUnit framework to create a shared test context of setup and
teardown code. You will also understand how to create basic unit tests and prove the
results of your unit tests with xUnit assertions.

, Data-Driven Unit Tests, presents concepts that allow you to test your code over a
variety of inputs by running over a set of data, either inline or from a data source. In this
chapter, we will create data-driven unit tests or theories in xUnit.

, Mocking Dependencies, explains that mock objects are simulated objects that
mimic the behavior of real objects. In this chapter, you will learn how to use the Moq
framework to isolate the class you're testing from its dependencies using mock objects
created with Moq.

, Continuous Integration and Project Hosting, focuses on the goal of the test-driven
development cycle of quickly providing feedback on code quality. A continuous integration
process extends this feedback cycle to uncovering code integration issues. In this chapter,
you will begin creating a continuous integration process that can provide rapid feedback on
code quality and integration issues across a development team.

, Creating Continuous Integration Build Processes, explains that a great continuous
integration process brings together many different steps into an easily repeatable process.
In this chapter, you will configure TeamCity and VSTS to use a cross-platform build
automation system called Cake to clean, build, restore package dependencies and test your
solution.

, Testing and Packaging the Application, teaches you to modify the Cake build script
to run your suite of xUnit tests. You will finish up the process by versioning and packaging
an application for distribution on the various platforms that .NET Core supports.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[3]

To get the most out of this book
C# programming and working knowledge of Microsoft Visual Studio is assumed.

Download the example code files
You can download the example code files for this book from your account at

. If you purchased this book elsewhere, you can visit
 and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at .1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
. In case there's an

update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:

.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[4]

Conventions used
There are a number of text conventions used throughout this book.

: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "For the test to pass, you have to implement the production code iteratively.
When the following method is implemented,
the test method is expected to pass."

A block of code is set as follows:

Any command-line input or output is written as follows:

sudo apt-get update
sudo apt-get install dotnet-sdk-2.0.0

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Visual Studio Code will attempt to download the required dependencies for the Linux
platform, Omnisharp for Linux and .NET Core Debugger."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[5]

General feedback: Email and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at .

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit , selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit .

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

11
Exploring Test-Driven

Development
In order to craft robust, maintainable, and scalable software applications, software
development teams and stakeholders must make certain important decisions early in the
software development process. These decision makers must adopt the software industry's
tested and proven best practices and standards throughout the different stages of software
development.

The quality of software projects can quickly degrade when developers build the code base
using development approaches, coding styles, and practices that automatically make source
code rigid and difficult to maintain. This chapter points out the habits and practices that
result in writing bad code and should therefore be avoided. The programming habits,
development styles, and approaches that should be learned to facilitate writing clean and
maintainable code are explained.

In this chapter, we will cover the following topics:

Difficulty in maintaining code
How bad code gets that way
What we can do to prevent bad code
The principles of test-driven development
The test-driven development cycle

Difficulty in maintaining code
There are two types of code good code and bad code. The syntax of both types of code
may be correct when compiled and running the code can give the expected results.
However, bad code leads to serious issues when it comes to extending or even making little
changes to the code, due to the way it was written.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Test-Driven Development Chapter 1

[7]

When programmers write code using unprofessional approaches and styles, this often
results in bad code. Also, the use of unreadable coding styles or formats as well as not
properly and effectively testing code are all precursors to bad code. Code can be written
poorly when programmers sacrifice professionalism in order to meet approaching
deadlines and project milestones.

I have come across a few software projects that rapidly become legacy software projects
that are abandoned because of incessant production bugs and the inability to incorporate
change requests from users easily. This is because these software applications were
deployed into production with a severe accumulation of technical debts through bad code
written by software developers as a result of making poor design and development
decisions and using programming styles known to cause future maintenance problems.

Source code elements methods, classes, comments, and other artifacts should be easy to
read, understand, debug, refactor, and extend if required by another developer other than
the original developer; otherwise, bad code has already been written.

You know you have bad code when, extending or adding new features, you break the
existing working features. This can also happen when there are portions of code that cannot
be decoded or any changes to them will bring the system to a halt. Another reason for bad
code is usually because of nonadherence to object-oriented and Don't Repeat Yourself
(DRY) principles or wrong use of the principles.

DRY is an important principle in programming, which aims at breaking
down a system into small components. These components can easily be
managed, maintained, and reused in order to avoid writing duplicate
code and having different parts of code performing the same function.

How does bad code appear?
Bad code doesn't just appear in a code base; programmers write bad code. Most of the time,
bad code can be written because of any of the following reasons:

Use of wrong approaches by developers when writing code that is often
attributed to tight coupling of components
Faulty program designs
Bad naming conventions for program elements and objects

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Test-Driven Development Chapter 1

[8]

Writing code that is not readable as well as having a code base without proper
test cases, thus causing difficulty when there is a need to maintain the code base

Tight coupling
Most legacy software applications are known to be tightly coupled, with little or no
flexibility and modularity. Tightly coupled software components lead to a rigid code base
which can be difficult to modify, extend, and maintain. As most software applications
evolve over time, big maintenance issues are created when components of applications are
tightly coupled. This is due to the changes in requirements, user's business processes, and
operations.

Third-party libraries and frameworks reduce development time and allow developers to
concentrate on implementing users' business logic and requirements without having to
waste valuable productive time reinventing the wheel through implementing common or
mundane tasks. However, at times, developers tightly couple the applications with third-
party libraries and frameworks, creating maintenance bottlenecks that require great efforts
to fix when the need arises to replace a referenced library or framework.

The following code snippet shows an example of tight coupling with a third-party
library:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Test-Driven Development Chapter 1

[9]

Code smell
Code smell is a term that was first used by Kent Beck, which indicates deeper issues in the
source code. Code smell in a code base can come from having replications in the source
code, use of inconsistent or vague naming conventions and coding styles, creating methods
with a long list of parameters, and having monster methods and classes, that is methods or
classes that know and do too much thereby violating the single responsibility principle. The
list goes on and on.

A common code smell in the source code is when a developer creates two or more methods
that perform the same action with little or no variation or with program details or facts that
ought to be implemented in a single point replicated in several methods or classes, leading
to a code base that is not easy to maintain.

The following two ASP.NET MVC action methods have lines of code that create a strongly-
typed list of strings of years and months. These lines of code, that could easily have been
refactored into a third method and called by both methods, have been replicated in these
two methods:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Test-Driven Development Chapter 1

[10]

Another common code smell occurs when developers create methods with a long list of
parameters, as in the following method:

Bad or broken designs
Quite often, the structure or design and patterns used in implementing an application can
result in bad code, most especially when object-oriented programming principles or design
patterns are wrongly used. A common anti-pattern is spaghetti coding. It is common
among developers with little grasp of object-orientation and this involves creating a code
base with unclear structures, little or no reusability, and no relationships between objects
and components. This leads to applications that are difficult to maintain and extend.

There is a common practice among inexperienced developers, which is the unnecessary or
inappropriate use of design patterns in solving application complexity. The design patterns
when used incorrectly can give a code base bad structure and design. The use of design
patterns should simplify complexity and create readable and maintainable solutions to
software problems. When a pattern is causing a readability issue and overtly adding
complexity to a program, it is worth reconsidering whether to use the pattern at all, as the
pattern is being misused.

For example, a singleton pattern is used to create a single instance to a resource. The design
of a singleton class should have a private constructor with no arguments, a static variable
with reference to the single instance of the resource, and a managed public means of
referencing the static variable. A singleton pattern can simplify the access to a single-shared
resource but can also cause a lot of problems when not implemented with thread safety in
mind. Two or more threads can access the line at the same
time, which can create multiple instances of the resource if the line is evaluated to , as
with the implementation shown in the following code:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Test-Driven Development Chapter 1

[11]

Naming the program elements
Meaningful and descriptive element naming can greatly improve the source code's
readability. It allows easy comprehension of the logical flow of the program. It is amazing
how software developers still give names to program elements that are too short or not
descriptive enough, such as giving a variable a letter name or using acronyms for variable
naming.

Generic or elusive names for elements lead to ambiguity. For example, having a method
name as or at first glance results in subjective interpretations.
The same is applicable to using vague names for variables. For example:

While program element naming in itself is an art, names are to be selected to define the
purposes as well as succinctly describe the elements and ensure that the chosen names
comply with the standards and rules of the programming language being used.

More information on acceptable naming guidelines and conventions is
available at:

.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Test-Driven Development Chapter 1

[12]

Source code readability
A good code base can be easily distinguished from a bad one by how quickly a new team
member or even the programmer can easily understand it after leaving it for a few years.
Quite often, because of tight schedules and approaching deadlines, software development
teams tend to compromise and sacrifice professionalism to meet deadlines, by not
following the recommended best practices and standards. This often leads them to produce
code that is not readable.

The following code snippet will perform what it is intended to do, although it contains
elements written using terrible naming conventions and this affects the code's readability:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Test-Driven Development Chapter 1

[13]

Poor source code documentation
Code can be easily understood when written using the programming language's coding
style and convention while avoiding the bad code pitfalls discussed earlier. However,
source code documentation is very valuable and its importance in software projects cannot
be overemphasized. Brief and meaningful documentation of classes and methods can give
developers a quick insight into their internal structures and operations.

Understanding a complex or poorly written class becomes a nightmare when there is no
proper documentation in place. When the original programmer that wrote the code is no
longer around to provide clarifications, valuable productive time can be lost trying to
understand how the class or method is implemented.

Non-tested code
Though many articles have been written and discussions have been initiated at various
developers' conferences on different types of testing test-driven development, behavior-
driven development, and acceptance test-driven development it is very concerning that
there are developers that continuously develop and ship software applications that are not
thoroughly tested or tested at all.

Shipping applications that are poorly tested can have catastrophic consequences and
maintenance problems. Notable is NASA's Mars Climate Orbiter launched on December
11, 1998 that failed just as the orbiter approached Mars, due to a software error caused by
an error in conversion where the orbiter's program code was calculating a metric in pounds
instead of newtons. A simple unit testing of the particular module responsible for
calculating the metrics could have detected the error and maybe prevented the failure.

Also, according to the State of Test-First Methodologies 2016 Report, a survey of the adoption
of test-first methodologies of more than 200 software organizations from 15 different
countries, conducted by a testing services company named QASymphony, revealed that
nearly half of the survey respondents had not implemented a test-first methodology in the
applications they had developed.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Test-Driven Development Chapter 1

[14]

What we can do to prevent bad code
Writing clean code requires a conscious effort of maintaining professionalism and
following best industry standards throughout the stages of the software development
process. Bad code should be avoided right from the onset of software project development,
because the accumulation of bad debt through bad code can slow down software project
completion and create future issues after the software has been deployed to production.

To avoid bad code, you have to be lazy, as the general saying goes that lazy programmers
are the best and smartest programmers because they hate repetitive tasks, such as having to
go back to fix issues that could have been prevented. Try to use programming styles and
approaches that avoid writing bad code, to avoid having to rewrite your code in order to fix
avoidable issues, bugs, or to pay technical debts.

Loose coupling
Loose coupling is the direct opposite of tight coupling. This is a good object-oriented
programming practice of separation of concerns by allowing components to have little or
no information of the internal workings and implementation of other components.
Communication is done through interfaces. This approach allows for an easy substitution
of components without many changes to the entire code base. The sample code in the Tight
coupling section can be refactored to allow loose coupling:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Test-Driven Development Chapter 1

[15]

Sound architecture and design
Bad code can be avoided through the use of a good development architecture and design
strategy. This will ensure that development teams and organizations have a high-level
architecture, strategy, practices, guidelines, and governance plans that team members must
follow to prevent cutting corners and avoiding bad code throughout the development
process.

Through continuous learning and improvement, software development team members can
develop thick skins towards writing bad code. The sample code snippet in the Bad or broken
designs section can be refactored to be thread-safe and avoid thread-related issues, as shown
in the following code:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Test-Driven Development Chapter 1

[16]

Preventing and detecting code smell
Programming styles and coding formats that result in code smell should be avoided. By
adequately paying attention to the details, bad code pointers discussed in the Code smell
section should be avoided. The replicated lines of code in the two methods of the source
code mentioned in the Code smell section can be refactored to a third method. This avoids
replication of code and allows for easy modifications:

Also, the method with a long list of parameters in the Code smell section can be refactored to
use C# Plain Old CLR Object (POCO) for clarity and reusability:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Test-Driven Development Chapter 1

[17]

Development teams should have guidelines, principles, and coding conventions and
standards developed jointly by the team members and should be constantly updated and
refined. These, when used effectively, will prevent code smell in the software code base and
allow for the easy identification of potential bad code by team members.

C# coding conventions
Using the guidelines in C# coding conventions facilitates the mastery of writing clean,
readable, easy to modify, and maintainable code. Use variable names that are descriptive
and represent what they are used for, as shown in the following code:

Also, having more than one statement or declaration on a line clogs readability. Comments
should be on a new line and not at the end of the code. You can read more about C# coding
conventions at:

.

Succinct and proper documentation
You should always try to write self-documenting code. This can be achieved through good
programming style. Write code in such a manner that your classes, methods, and other
objects are self-documenting. A new developer should be able to pick your code and not
have to be stressed out before understanding what the code does and its internal structure.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Test-Driven Development Chapter 1

[18]

Coding elements should be descriptive and meaningful to provide an insight to the reader.
In situations where you have to document a method or class to provide further clarity,
adopt the Keep It Simple Short (KISS) approach, briefly stating the reasons for a certain
decision. Check the following code snippet; nobody wants to have to read two pages of
documentation for a class containing 200 lines of code:

KISS also known as Keep it Simple, Stupid, is a design principle that
states that most systems work at their best when they are kept simple
rather than making them unnecessarily complex. The principle aims at
aiding programmers to keep the code simple as much as possible, to
ensure that code can be easily maintained in the future.

Why test-driven development?
Each time I enter a discussion with folks not practicing test-driven development, they
mostly have one thing in common, which is that it consumes time and resources and it does
not really give a return on investment. I usually reply to them by asking which is better,
detecting bugs and potential bottlenecks and fixing them while the application is being
developed or hotfixing bugs when the application is in production? Test-driven
development will save you a lot of problems and ensure you produce robust and issue-free
applications.

Building for longevity
To avoid future problems resulting from issues when making modifications to a system in
production as a result of changes in user requirements, as well as bugs which get exposed
because of inherent bad code in a code base and accumulated technical debt, you need to
have the mindset of developing with the future in mind and embracing changes.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Test-Driven Development Chapter 1

[19]

Use flexible patterns and always employ good object-oriented development and design
principles when writing code. The requirements of most software projects change over their
life cycles. It is wrong to assume that a component or part might not change, so try and put
a mechanism in place to allow the application to be graceful and accept future changes.

The principles of test-driven development
Test-driven development (TDD) is an iterative agile development technique that
emphasizes test-first development, which implies that you write a test before you write
production-ready code to make the test pass. The TDD technique focuses on writing clean
and quality code by ensuring that the code passes the earlier written tests by continuously
refactoring the code.

TDD, being a test-first development approach, places greater emphasis on building well-
tested software applications. This allows developers to write code in relation to solving the
tasks defined in the tests after a thorough thought process. It is a common practice in TDD
that the development process begins with writing the tests code before the actual
application code is written.

TDD introduces an entirely new development paradigm and shifts your mindset to begin
thinking about testing your code right before you even start writing the code. This contrasts
with the traditional development technique of deferring code testing to the later stage of
the development cycle, an approach known as test last development (TLD).

TDD has been discussed at several conferences and hackathons. Many technology
advocates and bloggers have blogged about TDD, its principles, and its benefits. At the
same time, there have been many talks and articles written against TDD. The honest truth is
TDD rocks, it works, and it offers great benefits when practiced correctly and consistently.

You might probably be wondering, like every developer new to TDD, why write a test first,
since you trust your coding instinct to write clean code that always works and usually will
test the entire code when you've done coding. Your coding instinct may be right or it may
not. There is no way to validate this assumption until the code is validated against a set of
written test cases and passes; trust is good, but control is better.

Test cases in TDD are prepared with the aid of user stories or use cases of the software
application being developed. The code is then written and refactored iteratively until the
tests pass. For example, a method written to validate the length of a credit card might
contain test cases to validate the correct length, incorrect length, and even when the null or
empty credit card is passed as a parameter to the method.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Test-Driven Development Chapter 1

[20]

Many variants of TDD have been proposed ever since it was originally popularized. A
variant is behavior-driven development (BDD) or acceptance test driven development
(ATDD), which follows all the principles of TDD while the tests are based on expected
user-specified behavior.

Origin of TDD
There is literally no written evidence as to when the practice of TDD was introduced into
computer programming or by which company it was first used. Nevertheless, there is an
excerpt from Digital Computer Programming, by D.D. McCracken, in 1957, which indicated
that the concept of TDD was not new and had been used by earlier folks, though the
nomenclature apparently was different.

The first attack on the checkout problem may be made before coding has
begun. In order to fully ascertain the accuracy of the answers, it is
necessary to have a hand-calculated check case with which to compare the
answers which will later be calculated by the machine. This means that
stored program machines are never used for a true one-shot problem.
There must always be an element of iteration to make it pay.

Also, in the early 1960s, folks at IBM ran a project (Project Mecury) for NASA where they
utilized a technique like TDD where half-day iterations were done and the development
team performed a review of the changes made. This was a manual process and cannot be
compared to the automated tests we have today.

TDD was originally popularized by Kent Beck. He attributed it to an excerpt he read in an
ancient book where TDD was described with the simple statements, you take the input tape,
manually type in the output tape you expect, then program until the actual output tape matches the
expected output. The concept of TDD was redefined by Kent Beck when he developed the
first xUnit test framework at Smalltalk.

It is safe to say that the Smalltalk community used TDD long before it became widespread
because SUnit was used in the community. Not until SUnit was ported to JUnit by Kent
Beck and other enthusiasts was it that TDD became widely known. Since then different
testing frameworks have been developed. A popular tool is the xUnit, with ports available
for a large number of programming languages.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Test-Driven Development Chapter 1

[21]

TDD misconceptions
Developers have different opinions when it comes to TDD. Most developers do complain
about the time and resources required to practice TDD fully and how practicing TDD might
not be feasible, based on tight deadlines and schedules. This perception is common among
developers just adopting the technique, on the premise that TDD requires writing double
code and that time spent doing this could have been used to work on developing other
features, and that TDD is best suited for projects with small features or tasks and will be
time-wasting with little return on investment for large projects.

Also, some developers complain that mocking can make TDD very difficult and frustrating,
as the required dependencies are not to be implemented at the same time the dependent
code is being implemented but should be mocked. Using the traditional approach of testing
last, the dependencies can be implemented and all the different parts of the code can be
tested afterwards.

Another popular misconception is that in the real sense tests cannot be written until the
design is determined which relies on code implementation. This is not true, as adopting
TDD will ensure there is a clear-cut plan on how the code implementation is to be done,
which in turn gives a proper design which can aid the creation of efficient and reliable tests
for the intended code to be written.

Some folks at times use TDD and unit testing interchangeably, taking them to be the same.
TDD and unit testing are not the same. Unit testing involves practicing TDD at the smallest
unit or level of coding, which is a method or function, while TDD is a technique and design
approach that encompasses unit testing and integration testing, as well as acceptance
testing.

Developers new to TDD often think you must completely write the tests before writing the
actual code. The reverse is the case as TDD is an iterative technique. TDD favors
exploratory processes where you write the tests and you write enough code. If it fails, you
refactor the code until it passes and you can move on to implementing the next feature of
your application.

TDD is not a silver bullet that automatically fixes all your bad coding behaviors. You can
practice TDD and still write bad code or even bad tests. This is possible if the TDD
principles and practices are not correctly used, or even when trying to use TDD where it's
not practical to use it.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Test-Driven Development Chapter 1

[22]

Benefits of TDD
TDD, when done correctly and appropriately, can give a good return on investment as it
facilitates the development of self-testing code, which yields robust software applications
with fewer or no bugs. This is because most of the bugs and issues that might appear in
production would have been caught and fixed during the development stage.

Documenting the source code is a good coding practice, but in addition to source code
documentation, tests are miniature documentations of the source code as they serve as a
quick way to understand how a piece of code works. The test will show the expected input
together with the expected output or outcomes. The structure of an application can be
easily understood from the tests, as there will be tests for all the objects as well as tests for
the methods of the objects, showing their usage.

Practicing TDD correctly and continuously helps you to write elegant code with good
abstraction, flexible design, and architecture. This is true because, to effectively test all parts
of an application, the various dependencies need to be broken down into components that
can be tested in isolation and later tested when integrated.

What makes a code clean is when the code has been written using best industry standards,
can be easily maintained, is readable, and has tests written to validate its consistent
behavior appropriately . This indicates that a code without testing is a bad code as there is
no specific way of directly verifying its integrity.

Types of tests
Testing software projects can take different forms and is often carried out by the developers
and test analysts or specialists. Testing is carried out to ascertain that the software meets its
specified expectation, to identify errors if possible, and to validate that the software is
usable. Most programmers often take testing and debugging to be the same. Debugging is
carried out to diagnose errors and issues in software and take the possible corrective
measures.

Unit tests
This is a level of testing that involves testing each unit that constitutes the components of a
software application. This is the lowest level of test and it is done at the method or function
level. It is primarily done by programmers, specifically to show code correctness and that
the requirement has been correctly implemented. A unit test usually has one or more inputs
and outputs.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Test-Driven Development Chapter 1

[23]

It is the first level of test usually done in software development and it is designed to isolate
units of software systems and test them independently or in isolation. Through unit testing,
inherent issues and bugs in systems can be easily detected earlier in the development
process.

Integration tests
An integration test is done by combining and testing different units or components that
must have been tested in isolation. This test is to ensure that the different units of an
application can work together to satisfy the user requirements. Through integration tests,
you can uncover bugs in the system when different components interact and exchange
data.

This test can be carried out by programmers, software testers, or quality assurance analysts.
There are different approaches that can be used for integration testing:

Top down: Top-level components are integrated and tested first before the lower
level components
Bottom up: Lower-level components are integrated and tested before top level
components
Big bang: All components are integrated together and tested at once

System testing
This level of test is where you validate the entire integrated system to ensure it complies
with the specified user requirements. This test is usually performed immediately after the
integration test and is carried out by dedicated testers or quality assurance analysts.

The whole software system suite is tested from the user's perspective to identify hidden
issues or bugs and usability problems. A rigorous testing of the implemented system is
done with the real inputs that the system is meant to process and output is validated
against the expected data.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Test-Driven Development Chapter 1

[24]

User acceptance testing
User acceptance tests are usually written to specify how software applications work. These
tests are intended for business users and programmers and are used to determine if the
system meets the expectations and user-specific requirements, and whether the system has
been developed completely and correctly based on the specifications. This test is conducted
by end users in collaboration with the system developers to determine whether to accept
the system formally or make adjustments or modifications.

Principles of TDD
The practice of TDD helps with the design of clean code and serves as a buffer against
regression in a large code base. It allows developers to determine easily whether newly
implemented features have broken other features that were previously working through
the instant feedback obtainable when the tests are run. The working principles of TDD are
explained in the following diagram:

Writing the tests
This is the initial step of the technique, where you have to write the tests that describe a
component or feature to be developed. The component can be the user interface, business
rule or logic, data persistence routine, or a method implementing a specific user
requirement. The tests need to be brief and should contain the required data input and
desired outcome expected by the component being tested.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Test-Driven Development Chapter 1

[25]

While writing the tests, technically you have solved half of the development task, because
the design of the code is usually conceived through the thought pattern and process put
into writing the tests. It becomes easier to tackle the difficult code after the easier code,
which is the test that has been written. At this point, as a TDD newcomer, the tests are not
expected to be 100% perfect or have full code coverage, but with continuous practice and
adequate refactoring, this can be achieved.

Writing the code
After the tests have been written, you should write enough code to implement the feature
for the tests you wrote earlier. Bear in mind that the goal here is to try to employ good
practices and standards in writing the code to make the test pass. All the approaches that
lead to writing bad or stinking code should be avoided.

Try to avoid test overfitting, a situation where you write code just to make the tests pass.
Instead you should write the code to implement the feature or user requirements fully, so
as to ensure that every possible use case of the feature is covered to avoid situations where
the code has different behaviors when executed by the test cases and when in production.

Running the tests
When you are sure you have enough code to make the test pass, you should run the test,
using the test suite of your choice. At this point, the test might pass or fail. This depends on
how you have written the code.

A thumb rule of TDD is to run the tests several times until the tests pass. Initially, when
you run the test before the code is fully implemented, the test will fail, which is the
expected behavior.

Refactoring
To achieve full code coverage, both the tests and the source code have to be refactored and
tested several times to ensure that a robust and clean code is written. Refactoring should be
iterative until full coverage is achieved. The refactoring step should remove duplicates from
code and attempt to fix any signs of code smell.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Test-Driven Development Chapter 1

[26]

The essence of TDD is to write clean code and in turn solid applications, depending on the
type of tests being written (unit, acceptance, or integration tests). Refactoring can be
localized to just a method or it can affect multiple classes. When refactoring, for example,
an interface or multiple methods in a class, it is recommended you make the changes
gradually, taking it one test at a time until all the tests and their implementation code are
refactored.

Doing TDD the wrong way
As interesting as practicing TDD can be, it can also be wrongly done. Programmers new to
TDD can sometimes write monster tests that are way too large and defeat the purpose of
test brevity and being able to perform the TDD cycle quickly, leading to a waste of
productive development time.

Partial adoption of the technique can also reduce the full benefit of TDD. In situations
where only a few developers in a team use the technique and others don't, this will lead to
fragmented code where a portion of code is tested and another portion is not, resulting in
an unreliable application.

You should avoid writing tests for code that are naturally trivial or not required; for
example, writing tests for object accessors. Tests should be run frequently, especially
through the use of test runners, build tools, or continuous integration tools. Failing to run
the tests often can lead to a situation where the true reflection of the state of the code base is
not known even when changes have been made and components are probably failing.

The TDD cycle
The TDD technique follows a tenet known as the red-green-refactor cycle, with the red state
being the initial state, indicating the commencement of a TDD cycle. At the red state, the
test has just been written and will fail when it is run.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Test-Driven Development Chapter 1

[27]

The next state is the green state and it shows that the test has passed after the actual
application code has been written. Code refactoring is essential to ensure code
completeness and robustness. Refactoring will be repeatedly done until the code meets
performance and requirement expectations:

At the beginning of the cycle, the production code to run the test against has not been
written, so it is expected that the test will fail. For example, in the following code snippet,
the method has not been implemented yet, and when the

 unit test method is run, it should fail:

For the test to pass, you have to implement the production code iteratively. When the
following method is implemented, the

 test method is expected to pass:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Test-Driven Development Chapter 1

[28]

When the test is run and it passes, showing a green color depending on the test runner you
are using, this provides an immediate feedback to you on the status of the code. This gives
you confidence and inner joy that the code works correctly and behaves as it is intended to.

Refactoring is an iterative endeavor, where you continuously modify the code you have
earlier written to pass the test until it has attained the state of production-ready code and
that it fully implements the requirements and will work for all possible use cases and
scenarios.

Summary
Most potential software project maintenance bottlenecks can be avoided through the use of
the principles and coding patterns discussed in this chapter. Attaining professionalism
requires consistency to be disciplined and holds true to good coding habits, practices, and
having a professional attitude towards TDD.

Writing clean code that is easy to maintain pays off in the long term as less effort will be
required to make user-requested changes and users will be kept happy when the
application is always available for use with few or no bugs.

In the next chapter, we will explore the .NET Core framework, and its capabilities and
limitations. Also, we will take a tour of Microsoft Visual Studio Code before reviewing the
new features available in Version 7 of the C# programming language.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

22
Getting Started with .NET Core

When Microsoft released the first version of .NET Framework, a platform for creating,
running, and deploying services and applications, it was a game changer and a revolution
in the Microsoft development community. Several cutting-edge applications were
developed with the initial version of the framework and then several versions were
released afterwards.

.NET Framework has thrived and matured over the years with support for multiple
programming languages and the inclusion of several features to make programming on the
platform easy and worthwhile. But as robust and appealing the framework is, there is the
limitation of restricting the development and deployment of applications to Microsoft-only
operating system variants.

In order to create a cloud-optimized, cross-platform implementation of .NET Framework
for developers to solve the limitations of .NET Framework, Microsoft started the
development of a .NET Core platform using the .NET Framework. With the introduction of
Version 1.0 of .NET Core in 2016, application development on the .NET platform took on a
new dimension, as .NET developers could now build applications that worked on
Windows, Linux, macOS, and cloud, embedded, and IoT devices with ease. .NET Core is
compatible with .NET Framework, Xamarin, and Mono through the .NET Standard.

This chapter will introduce the super cool new cross-platform capabilities of .NET Core and
C# 7. We will be learning as we create an ASP.NET MVC application on Ubuntu Linux with
TDD. In this chapter, we will cover the following topics:

.NET Core framework
The structure of a .NET Core application
A tour of Microsoft's Visual Studio Code Editor
A look at the new features of C# 7
Creating an ASP.NET MVC Core application

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with .NET Core Chapter 2

[30]

.NET Core framework

.NET Core is a cross-platform open source development framework that runs on Windows,
Linux, and macOS and cross architecture with support for x86, x64, and ARM. .NET Core
was forked from .NET Framework, which technically makes it a subset of the latter, though
streamlined line, and modular. .NET Core is a development platform that gives you great
flexibility in developing and deploying applications. The new platform frees you from
hassles usually experienced during application deployment. Thus, you don't have to worry
about managing versions of application runtime on deployment servers.

Currently, in Version 2.0.7, .NET Core includes the .NET runtime with great performance
and many features. Microsoft claims it's the fastest version of .NET platform. It has more
APIs and more project templates have been added, such as those for developing ReactJS
and AngularJS applications that run on .NET Core. Also, Version 2.0.7 has a set of
command-line tools that enables you to build and run command-line applications with ease
on the different platforms, as well as simplified packaging and support for Visual Studio
for Macintosh. A big by-product of .NET Core is the cross-platform modular web
framework, ASP.NET Core, which is a total redesign of ASP.NET and runs on .NET Core.

.NET Framework is robust and contains several libraries for use in application
development. However, some of the framework's components and libraries can couple with
the Windows operating system. For example the library depends on
Windows GDI, which is why .NET Framework cannot be considered cross-platform even
though it has different implementations.

In order to make .NET Core truly cross-platform, components such as Windows Forms and
Windows Presentation Foundation (WPF) that have strong dependence on the Windows
OS have been removed from the platform. ASP.NET Web Forms and Windows
Communication Foundation (WCF) have also been removed and replaced with ASP.NET
Core MVC and ASP.NET Core Web API. Additionally, Entity Framework (EF) has been
streamlined to make it cross-platform and named Entity Framework Core.

Also, because of the dependency that .NET Framework has on the Windows OS, Microsoft
could not open the code base. However, .NET Core is fully open source, hosted on GitHub,
and has a thriving developer community, constantly working on new features and
extending the scope of the platform.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with .NET Core Chapter 2

[31]

.NET Standard

.NET Standard is a Microsoft-maintained set of specifications and standards that all .NET
platforms must adhere to and implement. It formally specifies the APIs that are meant to be
implemented by all variants of the .NET platform. There are currently three development
platforms on the .NET platform .NET Core, .NET Framework, and Xamarin. The .NET
platform is needed to provide uniformity, and consistency, and makes it easier to share
codes and reuse libraries on the three variants of .NET platform.

.NET platform provides the definition of a set of uniform Base Class Libraries APIs to be
implemented by all .NET platforms, to allow developers to easily develop applications and
reusable libraries across the .NET platforms. Currently in Version 2.0.7, .NET Standard
provides new APIs that were not implemented in Version 1.0 of .NET Core but are now
implemented in Version 2.0. More than 20,000 APIs have been added to the runtime
components.

Additionally, .NET Standard is a target framework, which means that you can develop
your application to target a specific version of .NET Standard, allowing the application to
run on any .NET platform that implements the standard, and you can easily share codes,
libraries, and binaries among the different .NET platforms. When building your application
to target .NET Standard, you should know that higher versions of .NET Standard have
more APIs available for use but are not implemented by many platforms. It is always
recommended that you target a lower version of the standard, which will guarantee that it's
implemented by many platforms:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with .NET Core Chapter 2

[32]

.NET Core components

.NET Core, being a general-purpose application-development platform, is made up of
CoreCLR, CoreFX, SDK and CLI tools, application host, and dotnet application launcher:

The CoreCLR, also known as .NET Core Runtime, is at the heart of the .NET Core and is a
cross-platform implementation of the CLR; the original .NET Framework CLR has been
refactored to produce the CoreCLR. The CoreCLR, which is the Common Language
Runtime, manages usage and references to objects, communication and interactions of
objects written in different programming languages supported in, and performs garbage
collection by releasing objects from memory when they are no longer in use. The CoreCLR
comprises of the following:

Garbage collector
Just in Time (JIT) compiler
Native interop
Base .NET types

CoreFX is a set of framework or foundational libraries of the .NET Core and it provides
primitive datatypes, filesystems, application composition types, consoles, and basic
utilities. The CoreFX contains a streamlined library of classes.

.NET Core SDK contains a set of tools including command-line interface (CLI) tools and
compilers for the different languages supported, used for building applications and
libraries to run on .NET Core. The SDK tools and language compilers provide
functionalities to make coding easier and faster by giving developers easy access to
language components supported by CoreFX libraries.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with .NET Core Chapter 2

[33]

In order to launch a .NET Core application, the dotnet application host is the component
responsible for the selection and hosting of the required runtime for the application. .NET
Core has a console application as the main application model and other application models,
such as ASP.NET Core, Windows 10 Universal Windows Platform, and Xamarin Forms.

Supported languages
.NET Core 1.0 supported only C# and F#, but with the release of .NET Core 2.0, VB.NET is
now supported by the platform. The compilers for the supported languages run on .NET
Core and provide access to the underlying features of the platform. This is possible because
.NET Core implements .NET Standard specifications and exposes APIs that are available in
the .NET Framework. The supported languages and .NET SDK tools can be integrated into
different editors and IDEs, giving you different editor options for use in developing
applications.

When to choose .NET Core over .NET Framework
Both .NET Core and .NET Framework are well suited for use in developing robust and scalable
enterprise applications; this is because the two platforms are built on solid code bases and
provide a rich set of libraries and routines that simplify most development tasks. The two
platforms share many similar components, hence code can be shared across the two
development platforms. However, the two platforms are distinct, the selection of .NET
Core has the preferred development platform that should be influenced by the
development approach as well as the deployment needs and requirements.

Cross-platform requirements
Clearly, when the application you are developing is to be run on multiple platforms, .NET
Core should be used. .NET Core being cross-platform makes it suitable for developing
services and web applications that can run on Windows, Linux, and macOS. Also, with the
introduction of Visual Studio Code by Microsoft an editor with full support for .NET
Core that provides intellisense and debugging functionalities, as well as other IDE features
that were traditionally available only in Visual Studio IDE.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with .NET Core Chapter 2

[34]

Ease of deployment
With .NET Core, you can install different versions side-by-side, a feature that is not
available when using .NET Framework. With the side by side installation of .NET Core,
several applications can be installed on a single server, enabling each application to run on
its own version of .NET Core. Lately, there has been a lot of attention focused on containers
and application containerization. Containers are used for creating standalone packages of
software applications, including the runtimes needed to make the applications run in
isolation, away from other applications on a shared operating system. Containerizing .NET
applications is much better when .NET Core is used as the development platform. This is
because of its cross-platform support, thereby allowing deployment of applications to
containers of different operating systems. Also, the container images created with .NET
Core are smaller and more lightweight.

Scalability and performance
Using .NET Core, developing applications that use microservices architecture is relatively
easier. With microservice architecture, you can develop applications that use a mix of
different technologies, such as services developed with PHP, Java, or Rails. You can use
.NET Core to develop microservices to be deployed on cloud platforms or containers. With
.NET Core, you can develop applications that are scalable and can run on high-
performance computers or high-end servers, allowing your application to easily serve
hundreds of thousands of users.

Limitations of .NET Core
While .NET Core is robust, easy to use, and provides several benefits when used in
application development, it is currently not suitable for all development problems and
scenarios. Microsoft dropped several technologies that are available on .NET Framework
from .NET Core to make it streamlined and cross-platform. Because of this, those
technologies are not available for use in .NET Core.

When your application will use a technology not available in .NET Core, for example using
WPF or Windows Forms for the presentation layer, WCF Server implementation, or even
third-party libraries that do not currently have the .NET Core version, it is preferable and
recommended that you develop the application using .NET Framework.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with .NET Core Chapter 2

[35]

Structure of a .NET Core application
With the release of .NET Core 2.0, new templates were added, providing more options for
the different application types that can be run on the platform. In addition to the existing
project templates, the following single-page application (SPA) templates were added:

Angular
ReactJS
ReactJS and Redux

The console application in .NET Core has a similar structure to that of .NET Framework,
whereas ASP.NET Core has several new components, including folders and files, that were
not in the previous versions of ASP.NET.

ASP.NET Core MVC project structure
ASP.NET web framework has fully matured over the years, transitioning from web forms
to MVC and Web API. ASP.NET core is a new web framework for developing web
applications and Web APIs that can run on .NET Core. It is a leaner and more streamlined
version of ASP.NET that is easy to deploy with in-built dependency injection. ASP.NET
Core can be integrated with frameworks such as AngularJS, Bootstrap, and ReactJS.

ASP.NET Core MVC, similar to ASP.NET MVC, is the framework for building web
applications and APIs, using the Model View Controller pattern. Like ASP.NET MVC, it
supports model binding and validation, tag helpers, and uses Razor syntax for the Razor
pages and MVC views.

The structure of the ASP.NET Core MVC application differs from that of ASP.NET MVC,
with the addition of new folders and files. When you create a new ASP.NET Core project
from Visual Studio 2017, Visual Studio for Mac, or through the CLI tools from the solution
explorer, you can see the new components added to the project structure.

wwwroot folder
In ASP.NET Core, the newly-added folder is used to hold libraries and static
content, such as images, JavaScript files and libraries, and CSS and HTML for easy access
and to serve directly to web clients. The folder contains , images, , and

 folders for organizing the static contents of a site.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with .NET Core Chapter 2

[36]

Models, Views, and Controllers folders
Similar to the ASP.NET MVC project, an ASP.NET MVC core application's root folder also
contains Models, Views, and Controllers, following the convention of the MVC pattern, for
proper separation of web application files, codes, and presentation logic.

JSON files bower.json, appsettings.json,
bundleconfig.json
Some other files introduced are , which contains all the application
settings, , which contains entries for managing client-side packages including
CSS and JavaScript frameworks used in the project, and , which
contains entries for configuring bundling and minification for the project.

Program.cs
Like C# console applications, ASP.NET Core has the class, which is an important
class that contains the entry point to the application. The file has the method used
to run the application and it is used to create an instance of for creating a
host for the application. The class to be used by the application is specified in the

 method:

Startup.cs
The class is needed by ASP.NET Core applications to manage the application's
request pipeline, configure services, and for dependency injection.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with .NET Core Chapter 2

[37]

Different classes can be created for different environments; for example, you can
create two classes in your application, one for the development environment and
the other for production. You can also specify that a class be used for all
environments.

The class has two methods , which is compulsory and is used to
determine how the application should respond to HTTP requests, and

, which is optional and is used to configure services before the
 method is called. Both methods are called when the application starts:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with .NET Core Chapter 2

[38]

Tour of Microsoft's Visual Studio Code
editor
Developing .NET Core applications has been made much easier, not only because of the
sleekness and robustness of the platform but also through the introduction of Visual
Studio Code, a cross-platform editor that runs on Windows, Linux, and macOS. You don't
need to have Visual Studio IDE installed on your system before you can create applications
on .NET Core.

Visual Studio Code, though not as powerful and features-packed as the Visual Studio IDE,
does have in-built productivity tools and features that make creating .NET Core
applications with it seamless. You can also install extensions for several programming
languages from Visual Studio Marketplace into Visual Studio Code, giving you the
flexibility to edit code written in other programming languages.

Installing .NET Core on Linux
To show the cross-platform feature of .NET Core, let's set up a .NET Core development
environment on Ubuntu 17.04 desktop version. Before installing Visual Studio Code, let's
install .NET Core on the Ubuntu OS. First, you need to do a one-time registration of the
Microsoft Product feed, which is done by registering the Microsoft signature key before
adding the Microsoft Product feed to the system:

Launch the system terminal and run the following commands to register the1.
Microsoft signature key:

curl https://packages.microsoft.com/keys/microsoft.asc | gpg --
dearmor > microsoft.gpg
sudo mv microsoft.gpg /etc/apt/trusted.gpg.d/microsoft.gpg

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with .NET Core Chapter 2

[39]

Register the Microsoft Product feed with this command:2.

sudo sh -c 'echo "deb [arch=amd64]
https://packages.microsoft.com/repos/microsoft-ubuntu-zesty-pro
d zesty main" > /etc/apt/sources.list.d/dotnetdev.list

To install .NET Core SDK and the other components required to develop .NET3.
Core applications on the Linux operating system, run the following commands:

sudo apt-get update
sudo apt-get install dotnet-sdk-2.0.0

The commands will update the system and you should see the Microsoft4.
repository from earlier added among the list of repositories where Ubuntu will
attempt to get updates from. After the update, the .NET Core tool will be
downloaded and installed on the system. The information displayed on your
terminal screen should be similar to what is in the following screenshot:

When the installation completes, create a new folder inside the folder5.
and name it . Change the directory to the newly created folder and
create a new console application to test the installation. See the following
commands, and the screenshot for the outcome of the commands:

cd /home/user/Documents/testapp
dotnet new console

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with .NET Core Chapter 2

[40]

This gives the following output:

You would see on the terminal as .NET Core is creating the project and the6.
required files. After the project has been successfully created,

 will be displayed on the terminal. Inside the folder, an
folder, , and files would have been added by the
framework.
You can proceed to run the console application using the command.7.
This command will compile and run the project before displaying

 on the terminal.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with .NET Core Chapter 2

[41]

Installing and setting up Visual Studio Code on
Linux
Visual Studio Code, being a cross-platform editor, can be installed on many variants of
Linux OS, with packages for other Linux distributions being added gradually. To install
Visual Studio Code on Ubuntu, perform the following steps:

Download the package meant for Ubuntu and Debian variants of Linux1.
from .
Install the downloaded file from the terminal, which will install the editor, the2.

 repository, and signing key, to ensure the editor can be automatically
updated when the system update command is run:

sudo dpkg -i <package_name>.deb
sudo apt-get install -f

After a successful installation, you should be able to launch the newly installed3.
Visual Studio Code editor. The editor has a slightly similar look and feel to that
of Visual Studio IDE.

Exploring Visual Studio Code
With the successful installation of Visual Studio Code on your Ubuntu instance, you need
to perform initial environment setup before you can begin writing code using the editor:

Launch Visual Studio Code from the Start menu and install the C# extension to1.
the editor from Visual Studio Marketplace. You can launch the extension by
pressing Ctrl + Shift + X, through the View menu and clicking Extension, and by
clicking directly on the Extension tab; this will load a list of available extensions,
so click and install the C# extension.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with .NET Core Chapter 2

[42]

When the extension has been installed, click on the Reload button to activate the2.
C# extension in the editor:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with .NET Core Chapter 2

[43]

Open the folder of the console application you earlier created; to do that, click on3.
the File menu and select Open Folder or press Ctrl + K, Ctrl + O. This will open
the file manager; browse to the path of the folder and click open. This will load
the content of the project in Visual Studio Code. In the background, Visual Studio
Code will attempt to download the required dependencies for the Linux
platform, Omnisharp for Linux and .NET Core Debugger:

To create a new project, you can use the Integrated Terminal of the editor4.
without having to go through the system terminal. Click on the View menu and
select Integrated Terminal. This will open the Terminal tab in the editor, where
you can type the commands to create a new project:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with .NET Core Chapter 2

[44]

In the opened project, you will see a notification that requires assets to build and5.
debug the applications that are missing. If you click Yes, in the Explorer tab, you
can see a tree with and files added. Click
the file to load the file into the editor. From the Debug menu select
Start Debugging or press F5 to run the application; you should see

 displayed on the editor's Debug Console:

When you launch Visual Studio Code, it loads with the state it was in when it was closed,
opening the files and folders that you last accessed. The editor's layout is easy to navigate
and work with, and comes with areas such as:

Status bar showing you information about the files you currently have opened.
Activity bar provides access to the Explorer view for viewing your project folders
and files, and Source Control view for managing a project's source versioning.
Debug view for watching variables, breakpoints and debugging-related
activities, Search view allows you to search folders and files. Extension view
allows you to see available extensions that can be installed into the editor.
Editor area for editing the project files, allowing you to open up to three files for
editing simultaneously.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with .NET Core Chapter 2

[45]

Panel regions show different panels for Output, Debug Console, Terminal, and
Problems:

A look at the new features of C# 7
The C# programming language has matured over the years; more language features and
constructs are being added with the release of each version. A language that originally was
only being developed in house by Microsoft and run only on Windows operating systems
is now open source and cross-platform. This is made possible through .NET Core and
Version 7 (7.0 and 7.1) of the language, which added flavors and improved the available
features of the language. The roadmap of the language, especially Version 7.2 and 8.0,
promises to add more features to the language.

Tuples enhancement
Tuples were introduced into C# language in Version 4 and are used in the simplified form
to provide structure with two or more data elements, allowing you to create methods that
can return two or more data elements. Before C# 7, referencing the elements of a tuple was
done by using Item1, Item2, ...ItemN, where N is the number of elements in the tuple
structure. Starting from C# 7, tuples now support semantic naming of the contained fields
with the introduction of cleaner and more efficient ways of creating and using tuples.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with .NET Core Chapter 2

[46]

You can now create tuples by directly assigning each member to a value. This assignment
creates a tuple containing elements Item1, Item2:

You can also create tuples that have semantic names for the elements contained in the
tuple:

The names tuple, instead of having fields as Item1, Item2, will have fields that can be
referenced as and at compile time.

You can create your method to return a tuple with two or more data elements when using
POCO might be overkill:

Out keyword
In C#, arguments or parameters can be passed by reference or value. When you pass an
argument by reference to a method, property, or constructor, the value of the parameter
will be changed and the changes made will be retained when the method or constructor
goes out of scope. With the use of the keyword, you can pass a method's argument as a
reference in C#. Prior to C# 7, to use the keyword, you had to declare a variable before
passing it as an argument to a method:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with .NET Core Chapter 2

[47]

In C# 7, you can now pass out variables to a method without having to declare the variables
first, with the preceding code snippet now looking like the following, which prevents you
from mistakenly using the variables before they are assigned or initialized and gives the
code clarity:

Support for the implicit type out variable has been added to the language, allowing the
compiler to infer the types of variables:

Ref locals and returns
C# language has always had the keyword, which allows you to use and return
reference to variables defined elsewhere. C# 7 adds another feature, locals and

, which improves performance and allows you to declare helper methods that
were not possible with the earlier versions of the language. The locals and

 keyword have some restrictions you cannot use them with the methods
and you cannot return a reference to a variable with the same execution scope.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with .NET Core Chapter 2

[48]

Ref locals
The local keyword allows you to store references in a local variable by declaring local
variables with the keyword and add the keyword before a method call or
assignment. For example, in the following code, the string variable references

; changing the value of also changes the value of and vice
versa:

Ref returns
You can also use the keyword as a return type of methods. To achieve this, add the
keyword to the method signature and inside the method body, add after the
keyword. In the following code snippet, an array of string is declared and initialized. The
fifth element of the string array is then returned by the method as a reference:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with .NET Core Chapter 2

[49]

Local function
The local or nested function, allows you to define a function inside another function. This
feature has been available in some programming languages for years, but was just
introduced in C# 7. It is desirable to use when you need a function that is small and will not
be reusable outside the context of the method:

Patterns matching
C# 7 includes patterns, a language element feature that allows you to perform a method
dispatch on properties besides object types. It extends the language constructs already
implemented in override and virtual methods for implementing dispatch for types and
data elements. The and expressions have been updated in Version 7.0 of the
language to support pattern matching, so you can now use the expressions to determine
whether an object of interest has a specific pattern.

Using the pattern expression, you can now write code that contains routines with
algorithms that manipulate elements with unrelated types. The expressions can now be
used with a pattern in addition to being able to test for a type.

The introduced patterns matching can take three forms:

Type patterns: This entails checking whether an object is of a type before
extracting the value of the object into a new variable defined within the
expression:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with .NET Core Chapter 2

[50]

Var patterns: Creates a new variable with the same type as the object and assigns
the value:

Constant patterns: Checks whether the supplied object is equivalent to a
constant expression:

With the updated switch expression, you can now use patterns as well as conditions in case
causes and switch on any types besides the base or primitive types while allowing you to
use the when keyword to additionally specify rules to the pattern:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with .NET Core Chapter 2

[51]

Digit separator and binary literal
A new syntatic sugar has been added to C# 7, which is the digit separator. This construct
greatly improves code readability, especially when handling large numbers of different
numeric types supported in C#. Prior to C# 7, manipulating large numeric values to have
separators was a bit messy and unreadable. With the introduction of the digit separator,
you can now use an underscore () as a separator for digits:

Also newly introduced in this version is binary literals. You can now create binary literals
by simply including as a prefix to binary values:

Creating an ASP.NET MVC Core application
ASP.NET Core provides an elegant way of building web applications and APIs that run on
Windows, Linux, and macOS, owing to the .NET Core platform's tool and SDK that
simplify developing cutting-edge applications and support side-by-side with application
versioning. With ASP.NET Core, your applications have a smaller surface area which
improves performance as you only have to include the NuGet packages required to run
your applications. ASP.NET Core can also be integrated with client-side libraries and
frameworks, allowing you to develop web applications using the CSS and JS libraries you
are already familiar with.

ASP.NET Core runs with Kestrel, a web server included in the ASP.NET Core project
templates. Kestrel is an in-process cross-platform HTTP server implementation based on
libuv, a cross-platform asynchronous I/O library that makes building and debugging
ASP.NET Core applications much easier. It listens to HTTP requests and then packages the
request details and features into an object. Kestrel can be used as a
standalone web server or with IIS or Apache web servers where the requests received by
the other web servers are forwarded to Kestrel, a concept known as reverse proxy.

ASP.NET MVC Core provides you with a testable framework for modern web application
development using the Model View Controller pattern, which allows you to fully practice
test-driven development. Newly added to ASP.NET 2.0 is the support for Razor pages,
which is now the recommended approach to develop user interfaces for ASP.NET Core
web applications.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with .NET Core Chapter 2

[52]

To create a new ASP.NET MVC Core project:

Open Visual Studio Code and access the integrated terminal panel by selecting1.
Integrated Terminal from the View menu. On the terminal, run the following
commands:

cd /home/<user>/Documents/
mkdir LoanApp
cd LoanApp
dotnet new mvc

After the application has been created, open the project's folder using Visual2.
Studio Code and select the file. You should notice a notification on
the top bar of the screen, Required assets to build and debug are missing from
'LoanApp'. Add them?; select Yes:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with .NET Core Chapter 2

[53]

Press F5 to build and run the MVC application. This tells the Kestrel web server3.
to run the application and launches the default browser on the computer with the

 address:

Summary
The .NET Core platform, though new, is rapidly maturing, with Version 2.0.7 introducing
many features and enhancements that simplify building different types of cross-platform
applications. In this chapter, we have taken a tour of the platform, introduced the new
features of C# 7, and set up a development environment on Ubuntu Linux, while creating
our first ASP.NET MVC Core application.

In the next chapter, we will explain what to look out for in order to avoid writing codes that
are untestable and we will later walk you through SOLID principles that can help you write
testable and quality code.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

33
Writing Testable Code

In , Exploring Test-Driven Development, pitfalls that should be avoided when
writing code to prevent code smell were explained. While writing good code is in itself an
art, the process of writing code that can be efficiently tested requires extra efforts and
commitment on the part of the developers to write clean code that can be repeatedly tested
without any hassle.

It is true that practicing TDD improves code production and encourages writing good code
that is robust and maintainable. Nevertheless, time spent doing TDD can be wasted and the
technique's return on investment might not be obtained if developers involved in software
projects write code that is untestable. This can usually be traced to the use of bad code
design architecture and not adequately or effectively using object-oriented design
principles.

Writing tests is as important as writing the main code. It is stressful and really difficult
writing tests for code that is untestable, which is the reason why untestable code should be
avoided in the first place. Code can be untestable for different reasons, such as when the
code does too much (Monster Code), it violates the single responsibility principle, there is
wrong use of architecture, or faulty object-oriented design.

In this chapter, we will cover the following topics:

Warning signs when writing untestable code
Law of Demeter
The SOLID architecture principles
Setting up DI Container for ASP.NET Core MVC

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[55]

Warning signs when writing untestable code
Effective and continuous practice of TDD can improve the code-writing process, making
testing easier, which results in improved code quality and robust software application.
However, when a project's code base contains portions of codes that are untestable, writing
unit or integration tests becomes extremely difficult or nearly impossible.

Software development teams cannot emphatically validate the consistent behavior of the
functionalities and features of an application when there is untestable code in a software
project's code base. To avoid this preventable situation, writing code that is testable is not
an option but a must for every serious development team that values quality software.

Untestable code results from the violation of common standards, practices, and principles
that have been proven and tested to improve the quality of code. While professionalism
comes with repeated use of good practices and experience, there are some common bad
code designs and writing approaches that are common sense even to a beginner, such as the
use of global variables when not required, tight coupling of code, hard-coding
dependencies, or values that can change in code.

In this section, we will discuss some common anti-patterns and pitfalls that you should
watch out for when writing code as they can make writing tests for your production code
difficult.

Tight coupling
Coupling is the extent to which objects depend on or are closely related to one another. To
explain this further, when a class is tightly coupled to

, changing the latter can affect the behavior or modify the state of
the former.

The majority of untestable code is usually a result of inherent dependencies scattered in
different portions of the codes, usually through the use of concrete implementations of
dependencies causing a mixing of concerns that otherwise should be separated across
application boundaries.

Unit testing code with tightly coupled dependencies will lead to testing the different objects
that are tightly coupled. Dependencies that should ideally be easy to mock when injected
into the constructor, during unit testing will not be possible. This can often slow down the
overall testing process as all the dependencies would have to be constructed in the code
under test.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[56]

In the following snippet, is tightly coupled to . This
is because has been instantiated with the new keyword in
the constructor. Changes made to will affect

, which can cause it to break. Also, unit testing any method contained in
 will always cause to be constructed:

An approach to resolve the tight coupling in is through the use of
Dependency Injection (DI). Since cannot be tested in isolation, as

 object will have to be instantiated in the constructor,
 will be injected into , through the constructor:

With injected, testing becomes easier as this
allows you to write a test where you mock the implementation of ,
allowing you to test in isolation.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[57]

Alternatively, can be injected through properties or members of
the class instead of passing the dependency through the
constructor:

With the dependency injected either through the constructor or property,
and have now become loosely coupled, thereby making the writing
of unit tests and mocking easy.

To make a class loosely coupled and testable, you have to ensure that the class does not
instantiate other classes and objects. Instantiating objects inside constructors or methods of
a class can result in preventing the injection of mock or dummy objects while attempting to
get the code under a test harness.

Monster Constructor
To test a method, you have to instantiate or construct the class containing the method. The
most common mistake developers make is to create what I call Monster Constructor, which
is simply a constructor that does too much work or real work, such as performing I/O
operations, database calls, static initialization, reading some large files, or establishing
communication with external services.

When you have a class designed with a constructor that initializes or instantiates objects
other than value objects (list, array, and dictionary), the class technically has a nonflexible
structure. This is a bad class design because the class automatically becomes strongly tied
to the classes it is instantiating, making unit testing difficult. Any class with this design also
violates the single responsibility principle, because the creation of an object graph is a
responsibility that can be delegated to another class.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[58]

Testing methods in a class with a constructor that does a great deal of work comes with
great costs. In essence, to test the methods in a class with the preceding design, you are
compelled to go through the pain of creating the dependent objects in the constructor. If the
dependent object makes a database call when constructed, this call will be repeated each
time a method in that class is tested, making testing slow and painful:

In the preceding code snippet, the object graph construction is being done in
the constructor, which will definitely make the class difficult to test. It is a
good practice to have a lean constructor, that does little work and has little knowledge of
other objects, especially what they can do but not how they do it.

Sometimes developers use a test hack, which involves creating multiple constructors for a
class. One of the constructors will be designated as a test-only constructor. While using this
approach can allow the class to be tested in isolation, there is a bad side to it. For example,
the class created with multiple constructors can have other classes referencing it and
instantiating it using the constructor that does a lot of work. This can make testing those
dependent classes very difficult.

The following code snippet illustrates the bad design of creating a separate constructor
solely for the purpose of testing the class:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[59]

There are important warning signs that can aid you in designing a loosely coupled class
with a constructor that does little work. Avoid the use of the operators in the
constructor, to allow the injection of dependent objects. You should initialize and assign to
the appropriate fields all objects injected through the constructor. Lightweight value objects
instantiation should also be done in the constructor.

Also, avoid static method calls, this is because static calls cannot be injected or mocked.
Also, the use of iterations or conditional logic inside the constructor should be avoided;
each time the class is tested, the logic or loop will be executed, causing excessive overhead.

Design your class with testing in mind, don't create dependent objects or collaborators in
the constructor. When your classes need to be dependent on other classes, inject the
dependencies. Ensure the creation of value objects only. When you create object graphs in
your code, use factory methods to achieve this. Factory methods are used for creating objects.

Classes with more than one responsibility
Ideally, a class should have only one responsibility. When you design your class with more
than one responsibility, it is possible to have interactions between responsibilities in the
class that will make code modifications difficult and testing the interactions in isolation
nearly impossible.

There are indicators that can clearly point out that a class is doing too much and has more
than one responsibility. For example, when you are struggling with giving a class a name
and you probably end up with the word in the class name, it's a clue that the class does
too much.

Another sign of a class with multiple responsibilities is when the fields in the class are used
only in some methods or when the class has static methods that operate only on parameters
and not on the class fields. Additionally, a class does too much when it has a long list of
fields or methods and many dependent objects passed into the class constructor.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[60]

The class in the following snippet has the dependencies neatly injected
into the constructor, making it loosely coupled with the dependencies. However, the class
has more than one reason to change; the class has a mix of both methods with code for data
retrieval and business rules processing:

The method should not be in in order to make the class
maintainable and be easily tested. should be refactored with

 in a data access layer class.

Classes with the qualities described in this section can be difficult to debug and test. Also, it
might be difficult for new team members to understand the inner workings of the
class quickly. If you have a class with these attributes in your code base, it is advisable to
refactor it by identifying the responsibilities and separating them into different classes and
naming the classes as per their responsibilities.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[61]

Static objects
Using static variables, methods, and objects in code can be useful as these allow the objects
to have the same value throughout all instances of the object, as only one copy of the object
is created and put in memory. However, testing code containing statics, especially static
methods, can create testing issues because you cannot override static methods in a subclass
and using mocking frameworks to mock static methods is a very daunting task:

When you create static methods that maintain states, such as in the
 method in in the preceding snippet, the static

methods cannot be subclassed or extended using polymorphism. Also, the static method
cannot be defined using interfaces, thereby making mocking impossible, since most
mocking frameworks work effectively with interfaces.

Law of Demeter
Software applications are complex systems made up of different components that
communicate to achieve the overall purposes of solving real-life problems and business
process automations. In reality, the components have to coexist, interact, and share
information across the component's boundary without the different concerns getting mixed
up, to promote component reusability and overall system flexibility.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[62]

In software programming, there are technically no hardcore laws defined that must be
stringently followed. However, various principles and laws have been formulated that
serve as guidelines and can assist software developers and practitioners, and facilitate
building software applications that have components with high cohesion and loose
coupling to encapsulate data adequately and ensure that quality source codes are produced
that can be easily understood and extended, thereby reducing the maintenance costs of
software. One of these laws is the Law of Demeter (LoD).

LoD, also known as the principle of least knowledge, is an important design approach or
rule for developing object-oriented software applications. The rule was formulated at
Northeastern University in 1987 by Ian Holland. With the proper knowledge of this principle,
software developers can write code that is easy to test and build software applications with
fewer or no bugs. The formulation of the law is that:

Each unit should have only limited knowledge about other units: only
units "closely" related to the current unit.

Each unit should only talk to its friends; don't talk to strangers.

LoD emphasizes low coupling, which effectively means an object should have little or very
limited information about another object. Relating LoD to a typical class object, the methods
in a class should only have limited knowledge about other methods of closely related
objects.

LoD serves as heuristics for software developers to facilitate information-hiding in modules
and components of software. LoD has two forms the object or dynamic form and class or
static form.

The class form of LoD is formulated as:

A method (M) of a class (C) should only send messages to objects of the following classes:

Argument classes of M including C
Instance variables of C
Classes of instances created within M
Properties or fields of C

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[63]

And the object form of LoD is formulated as:

Within an M, messages can only be sent to the following objects:

Parameters of M, which include the enclosing object.
An immediate part-object, which is the object that M called on the enclosing
object returns, including attributes of the enclosing object, or an element of a
collection that is an attribute of the enclosing object:

The preceding code clearly violates LoD, this is because does not really
care about as it does not keep any reference to it. In the code,

 is already talking to , a stranger. This code is not really
reusable because both and will be required by any
class or code attempting to reuse them, though technically is not used
beyond the constructor.

Writing unit tests for will require that the object graph be created.
 should be created in order for to be available. This

creates coupling in the system, if is refactored, which is possible anyway,
so there is the risk that this might break , causing the unit test to stop
running.

While the class can be mocked, to test in isolation, this
can sometimes make the test unreadable, it is better that the coupling is avoided so that you
can write code that is flexible and can be easily tested.

To refactor the preceding code snippet, and make it comply with LoD and take its
dependencies from the class constructor, thereby eliminating an extra dependency on

 and reduce coupling in the code:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[64]

Train Wreck
Another anti-pattern that violates LoD is what is called Train Wreck or Chain Calls. This is
a chain of functions and occurs when you have a series of C# methods that are appended to
each other all in a single line of code. You will know you have written a code with Train
Wreck when you are spending time trying to figure out what the line of code does:

You might be wondering how this phenomenon violates LoD. First, the code lacks
readability and it is not maintainable. Also, the line of code is not reusable as there are three
method calls in only a single line of code.

This line of code can be refactored by minimizing the interactions and eliminating the
method chaining so as to make it comply with the principle of don't talk to strangers. This
principle explains that a calling point or method should only interact with one object at a
time. With the elimination of the methods chain, the resulting code can be reused elsewhere
without having to struggle to understand what the piece of code does:

An object should have limited knowledge and information of other objects. Also, methods
in an object should have little awareness of the object graph of the application. Through
conscious efforts, using LoD, you can build software applications that are loosely coupled
and maintainable.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[65]

The SOLID architecture principles
Software application development procedures and methodologies, from the first step to the
last step, should be simple and easily understood by both novices and experts. These
procedures, when used in combination with the right principles, make the process of
developing and maintaining software applications easy and seamless.

Developers from time to time adopt and use different development principles and patterns
in order to simplify complexities and make software applications code bases maintainable.
One such principle is the SOLID principle. This principle has proven to be very useful and a
must-know for every serious programmer of object-oriented systems.

SOLID is an acronym of the five basic principles of developing object-oriented systems. The
five principles are for class design and are denoted as:

S: Single Responsibility Principle
O: Open-Closed Principle
L: Liskov Substitution Principle
I: Interface Segregation Principle
D: Dependency Inversion Principle

The principles were first consolidated under the acronym SOLID and popularized by Robert
C. Martins (popularly known as Uncle Bob) in the early 2000s. The five principles are meant
for class design, and when abided by, can assist with dependency management, which will
avoid the creation of rigid code bases tangled with dependencies here and there.

Proper understanding and use of the SOLID principles can enable software developers to
achieve a very high degree of cohesion and write quality code that can be easily understood
and maintained. With SOLID principles, you can write clean code and build software
applications that are robust and scalable.

Indeed, Uncle Bob clarified that SOLID principles are not laws or rules but are heuristics
that have been observed to work in several cases. To use the principles effectively, you have
to search your code and check for portions where the principles are violated and then
refactor them.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[66]

Single Responsibility Principle
The Single Responsibility Principle (SRP) is the first of the five SOLID principles. The
principle states that a class must at any point in time have only one reason to change. This
simply means that a class should only perform one duty at a time or have one
responsibility.

The business requirements of software projects are not usually fixed. Before a software
project is shipped and, indeed, throughout the life cycle of a software, requirements change
from time to time and developers have to adapt the code base to the changes. In order for
the software application to meet its business needs and adapt to changes, it is imperative
that flexible design patterns are used and classes have a single responsibility at all times.

Additionally, it is important to understand that when a class has more than one
responsibility, making even the minutest change can have a great impact on the entire code
base. Changes made to the class can cause ripple effects leading to functionalities or other
methods that have been working earlier to break. For example, if you have a class that
parses a file, while at the same time it makes a call to a web service to retrieve
information that is not related to the file parsing, the class has more than one reason
to change. Changes in the web service call will affect the class, though the changes are not
related to the file parsing.

The design of the class in the following snippet clearly violates
SRP. has two responsibilities the first is to calculate house and car loans
and the second is to parse loan rates from XML files and XML strings:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[67]

The dual responsibility status of the class creates several issues. First, the
class becomes very volatile, because changes to one responsibility might affect the other.
For instance, a change to the structure of the XML contents to be parsed for the rates might
necessitate that the class be rewritten, tested, and redeployed; despite that, changes have
not been made to the second concern, which is the loan calculation.

The tangled code in the class can be fixed by redesigning the class and
separating the responsibilities. The new design will be to move the responsibility of XML
rates parsing into a new class and leaving the loan calculation concern in the
existing class:

With the class extracted from , can now be
used as a dependency in . Changes made to any method in
will not affect since they now handle different concerns and each class
has only one reason to change:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[68]

Having the concerns separated creates great flexibility in the code base and allows for easy
testing of the two classes. With the new design, changes made to cannot affect

 and the two classes can be unit tested in isolation.

Responsibilities should not be mixed in a class. You should avoid muddling up
responsibilities together in a class, which leads to monster classes that do too much.
Instead, if you can think of a reason or motivation to change a class, then it already has
more than one responsibility; split the class into classes, each containing only a single
responsibility.

In a similar manner, a first glance at the class in the following snippet
might not outrightly indicate that concerns are muddled up. But if you carefully examine
the class, both data access and business logic codes are mixed in the class, making it violate
SRP:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[69]

The class can be refactored by separating the business logic code of calculating a car loan
rate into a new class , this will allow the class to only
contain code related to the data layer, thereby making it adhere to SRP:

With the business logic code separated into the class, the
class now has has only one dependency, which is the entity framework. Going
forward, can be easily maintained and tested. The new
class also adheres to SRP:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[70]

When you have concerns in your code well-managed, the code base will have high
cohesion and will be flexible and easy to test and maintain in the future. With high
cohesion, the classes will be loosely coupled and changes to the classes will have little
probability of breaking the entire system.

Open-Closed Principle
The approach for designing and eventually writing production code should be the one that
allows new functionalities to be added to a project's code base without having to make
many changes, change several portions or classes of the code base, or break existing
functionalities that were already working and in good condition.

If, for any reason, you make changes to a method in a class and as a result of the changes,
changes have to be made to several parts or modules, it's an indication of a problem with
the code design. This is what the Open-Closed Principle (OCP) addresses, to allow your
code base design to be flexible, so that you can easily make modifications and
enhancements.

The OCP states that software entities, such as classes, methods, and modules, should be
designed to be open for extension, but closed for modification. This principle can be
achieved through inheritance or design patterns, such as factory, observer, and strategy
patterns. It is where classes and methods can be designed to allow the addition of new
functionalities to be used by the existing code, without actual modification or changes
made to the existing code but by extending the behavior of the existing code.

In C#, with the proper use of object abstraction, you can have sealed classes that are closed
for modification while the behavior of the classes can be extended through derived classes.
Derived classes are children or subclasses of the sealed classes. Using inheritance, you can
create classes that add more features by extending their base class without modifying the
base class.

Consider the class in the following snippet, which has a
method that must be able to calculate the loan details for any type of loan passed into it.
Without using the OCP, the requirement can be computed with the use of
statements.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[71]

The class has a rigid structure, which necessitates much work when a
new type is to be supported. For example, if you intend to add more types of customer
loans, you have to modify the method and add additional
statements to accommodate the new types of loans. violates the OCP
since the class is not closed for modification:

To make the class open for extension and closed for modification, we can
use inheritance to simplify the refactoring. will be refactored to allow
subclasses to be created from it. Making a base class will facilitate the
creation of two derived classes, and . The
business logic for calculating the different types of loans has been removed from
the method and implemented in the two derived classes, as seen in the
following snippet:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[72]

The conditions have been removed from the method in the
 class. Instead of having the

 line of code, the new
class now contains logic for obtaining car loan calculations:

The class has been created from with a
 method that overrides the base method in

. Any changes made to will not affect the
 method of its base class:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[73]

If a new type of loan is introduced, let's say a postgraduate study loan, a new
class, , can be created to extend and
implement the method without having to make any modifications to the

 class.

Technically, observing the OCP implies that classes and methods in your code should be
opened for extension, meaning the classes and methods can be extended to add new
behaviors to support new or changing application requirements. And the classes and
methods are closed for modification, which means you can't make changes to the source
code.

In order to make open for changes, we made it a base class that other
types were derived from. Alternatively, we can create an
abstraction, instead of using classical object inheritance:

The class can now be created to implement the
interface. Which will necessitate that the methods and properties defined in the interface
will be explicitly implemented by the class.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[74]

The class can also be created to implement ,
with the object injected into it through the constructor, similar to

. The method can be implemented with the specific
code required to calculate a house loan. Any other type of loan can be added by simply
creating the class and making it implement the interface:

Using OCP, you can create software applications that are flexible with behaviors that can be
easily extended, thereby avoiding a code base that is rigid and lacks reusability. Through
appropriate use of OCP, by effectively using code abstraction and objects polymorphism,
you can make changes to a code base without having to change many parts and with little
effort. You really don't have to recompile the code base to achieve this.

Liskov Substitution Principle
 The Liskov Substitution Principle (LSP), which can sometimes referred to as Design by
Contract, is the third of the SOLID principles and was first put forward by Barbara Liskov.
LSP states that a derived or subclass should be substitutable for the base or superclass
without having to make modifications to the base class or generating any runtime errors in
the system.

LSP can be further explained using the following mathematical notation let S be a subset
of T, an object of T could be substituted for an object of S without breaking the existing
working functionalities of the system or causing any type of errors.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[75]

To illustrate the concepts of LSP, let's consider a super class with a method. If
 has two derived classes, and , both having an overridden

implementation of the method, wherever is requested, both and
 should be usable in place of the class. The derived classes have an is

a relationship with , because is a and is a .

In order to design your classes and implement them to be LSP-compliant, you should
ensure that the derived classes elements are designed by contract. The derived classes
method definitions should be somewhat similar to that of the base class, though the
implementation can be different because of the different business requirements.

Also, it is important that the implementation of the derived classes doesnot violate
whatever constraints are implemented in the base classes or interfaces. When you partially
implement an interface or base class, by having methods that are not implemented, you are
violating LSP.

The following code snippet has a base class, with a
method and two derived classes, and ,
which have methods and can have different implementations:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[76]

If LSP is not violated in the preceding snippet, the and
 derived class can be used in place of wherever a

reference to is required. This is demonstrated in the method,
shown in the following snippet:

Interface Segregation Principle
The Interface is an object-oriented programming construct that is used by objects to define
the methods and properties they expose, and to facilitate interactions with other objects. An
interface contains related methods with empty bodies but no implementation. An interface
is a useful construct in object-oriented programming and design; it allows the crafting of
software applications that are flexible and loosely coupled.

The Interface Segregation Principle (ISP) states that interfaces should be modest, by
containing definitions for only properties and methods that are needed, and clients should
not be forced to implement interfaces that they don't use, or depend on methods they don't
need.

To implement the ISP in your code base effectively, you should favor the creation of simple
and thin interfaces that have methods that are logically grouped together to solve a specific
business case. With the creation of thin interfaces, the methods contained in the class code
can be easily implemented with great flexibility while keeping the code base clean and
elegant.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[77]

On the other hand, if you have fat or bloated interfaces that have methods with
functionalities that are not required in the classes that implement the interface, you are
more likely to violate the ISP and create coupling in the code, which will result in a code
base that cannot be easily tested.

Instead of having a bloated or fat interface, you can create two or more thin interfaces with
the methods logically grouped and have your class implement more than one interface, or
let the interfaces inherit from other thin interfaces, a phenomenon known as multiple
inheritance, supported in C#.

The interface in the following snippet violates the ISP. It can be
considered a polluted interface because the only class it implements does not require
the method as it is not needed by the class:

The class has the and
 methods that are required to fulfill the requirements of the

class. By implementing , is forced to have an
implementation for the method, which is not needed:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[78]

The preceding can be refactored into two cohesive interfaces that have
methods that can be logically grouped together. With the small interfaces, the code can be
written with great flexibility and unit testing the classes that implement the interface is
easy:

With refactored into two interfaces, can be refactored
to remove the method that is not required:

An anti-pattern to watch out for while implementing interfaces that comply with the ISP is
the creation of one interface per method, in an attempt to create thin interfaces; these can
lead to the creation of several interfaces, resulting in a code base that will be difficult to
maintain.

Dependency Inversion Principle
Rigid or bad designs can make changes to components or modules of software applications
very difficult and create maintenance issues. These nonflexible designs can often break
functionalities that might earlier be working. These can come in the forms of incorrect use
of principles and patterns, bad code, and coupling of different components or layers,
thereby making the maintenance process a very difficult one.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[79]

When you have a rigid design in an application code base, examining the code closely will
reveal that the modules are tightly coupled, making changes difficult. Making changes to
any of the modules can create the risk of breaking another module that was working before.
Observing the last of the SOLID principles the Dependency Inversion Principle (DIP)
can eliminate any coupling of modules, making the code base flexible and easy to maintain.

The DIP has two forms, both intended to achieve code flexibility and loose coupling
between objects and their dependencies:

High-level modules should not depend on low-level modules; both should
depend on abstractions
Abstractions should not depend on details; details should depend on abstractions

When high-level modules or entities are directly coupled to low-level modules, making
changes to the low-level modules can often have a direct impact on the high-level modules,
causing them to change, creating a ripple effect. In practical terms, it is when changes are
made to higher level modules that the low-level modules should change.

Also, you can apply DIP wherever you have classes that have to talk to or send messages to
other classes. The DIP advocates the well-known principle of layering, or separation of
concerns, in application development:

The class in the preceding code snippet represents a high-level
module, while the Entity Framework that was passed to the class constructor is
a low-level module responsible for CRUD and data layer activities. While a nonprofessional
developer might not see anything wrong in the code structure, it violates the DIP. This is
because the class depends on the class and an
attempt to makes changes to the inner code of will trickle up to

, causing it to change which will result in the violation of the
OCP.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[80]

We can refactor the class to have a good design and comply
with the DIP. This will necessitate the creation of an interface and make

 implement the interface:

 can be coded against the interface, thereby breaking the
coupling or direct dependence on and instead depending on the abstraction.
Coding against means the interface will be
injected in the constructor of or by using Property Injection:

With the refactoring done, now uses dependency inversion and
depends on abstraction . In future, if changes are made to the
class, it can no longer affect the class and will not violate the
OCP.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[81]

While injected to through the constructor is very
elegant, the can also be injected into through a
public property:

Additionally, DI can be done through Interface Injection, where object references are passed
using interface actions. It simply means interfaces are used to inject dependencies. The
following snippet explains the concept of dependency using an interface injection.

 is created with the method definition. A second
interface, , is created containing the method, which
accepts as an argument and will inject the dependency:

Now, let's create the class to implement the interface and
have a code implementation for , to inject the repository
into the class as dependency for use in the code:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[82]

Next, we can create concrete implementations of the dependency,
 and , which both contain implementations of

the method for parsing loan rates from XML and REST sources:

To wrap it up, we can test the Interface Injection concept using the interfaces and the classes
created in the preceding snippets. A concrete object of is constructed, which
is injected into the class, through the interface, and any of
the two implementations of the interface can be used to construct it:

Any of the three techniques described in this section can be effectively used to inject
dependencies into your code wherever it is required. Appropriate and effective use of DIP
can facilitate the creation of loosely coupled applications that can be easily maintained.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[83]

Setting up a DI container for ASP.NET Core
MVC
Central to ASP.NET Core is DI. The framework provides built-in DI services to allow
developers to create loosely coupled applications and prevent instantiation or construction
of dependencies. Using the built-in DI services, your application code can be set up to use
DI, and dependencies can be injected into methods in the class. While the default
DI container has some cool features, you can still use other known, matured DI containers
in ASP.NET core applications.

You can configure your code to use DI in two modes:

Constructor Injection: The interfaces required by a class are passed or injected
via the class's public constructor. Constructor injection is not possible using a
private constructor, an will be thrown when this
is attempted. In a class with an overloaded constructor, only one of the
constructors can be used for DI.
Property Injection: Dependencies are injected into a class by using public
interface properties in the class. Any of the two modes can be used to request
dependencies, which will be injected by the DI container.

A DI container, also known as an Inversion of Control (IoC) container, is typically a class
or factory that can create classes with their associated dependencies. Before a class with
injected dependencies can be successfully constructed, the project must be designed or set
up to use DI, and the DI container must have been configured with the dependency types.
In essence, the DI will have a configuration containing mappings of the interfaces to their
concrete classes and will use this configuration to resolve the requested dependencies for
the classes that require them.

The ASP.NET Core built-in IoC container is depicted by the interface
and you can configure it using the method in the class. The
container has a default support for constructor injection. In the
method, services and platform features such as Entity Framework core and ASP.NET MVC
core can be defined:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[84]

The ASP.NET Core inbuilt container has some extension methods, such as ,
, and , that you can use to add additional services. The application

dependencies can be configured using the method, which takes two
generic-type arguments, the first is the interface and the second is the concrete class. The

 method maps the interface to the concrete class, so the service is created
every time it is requested. The container uses this configuration to inject the interfaces for
every object that requires it in the ASP.NET MVC project.

Other extension methods for configuring services are the and
methods. only creates a service once per request:

The method creates a service only the first time it is requested and keeps it
in memory, making it available for use for subsequent requests of the service. You can
instantiate the singleton yourself or simply leave it for the container to do:

The built-in IoC container for ASP.NET Core is lightweight and has limited features, but
basically you can use it for DI configuration in your applications. However, you can replace
it with other IoC containers available in .NET, such as Ninject or Autofac.

Using DI will simplify your application development experience and enable you to craft
code that is loosely coupled and can easily be tested. In a typical ASP.NET Core MVC
application, you should use DI for dependencies, such as Repositories, Controllers,
Adapters, and Services, and avoid static access to services or .

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Writing Testable Code Chapter 3

[85]

Summary
Using the object-oriented design principles in this chapter will assist you in mastering the
skills required to write clean, flexible, easy-to-maintain, and easy-to-test code. The LoD and
the SOLID principles explained in the chapter can serve as guidelines for creating loosely
coupled, object-oriented software applications.

In order to reap the benefits of a TDD cycle, you must write code that is testable. The
SOLID principles covered describes appropriate practices that can facilitate the writing of
testable code that can be easily maintained and then enhanced when needed. The last
section of the chapter focused on setting up and using a dependency-injection container for
an ASP.NET Core MVC application.

In the next chapter, we will discuss the attributes of a good unit test, the .NET ecosystem of
unit testing frameworks available for use in creating tests, what to consider when unit
testing ASP.NET MVC Core projects, and we will delve into the unit testing property on the
.NET Core platform using the xUnit library.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

44
.NET Core Unit Testing

Unit testing has been one of the most discussed concepts in software development in the
last few years. Unit testing is not a new concept in software development; it has been
around for quite a while, since the early days of the Smalltalk programming language.
Based on the increased advocacy for quality and robust software applications, software
developers and testers have come to realize the great benefits unit testing can offer in terms
of software product quality improvement.

Through unit testing, developers are able to identify errors in code quickly, which increases
the development team's confidence in the quality of the software product being shipped.
Unit testing is primarily carried out by programmers and tests, and this activity involves
the breaking down of the requirements and functionalities of an application into units that
can be tested separately.

Unit tests are meant to be small and run frequently, especially when changes are made to
the code, to ensure the working functionalities in a code base are not broken. When doing
TDD, the unit test must be written before writing the code to be tested. The test usually
serves as an aid for designing and writing the code, and is effectively a documentation for
the design and specification of the code.

In this chapter, we will explain how to create basic unit tests and prove the results of our
unit tests with xUnit assertions. This following topics will be covered in this chapter:

The attributes of a good unit test
The current unit testing framework ecosystem for .NET Core and C#
Unit testing considerations for ASP.NET MVC Core
Structuring unit tests with xUnit
Proving unit test results with xUnit assertions
The test runners available on both .NET Core and Windows

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[87]

The attributes of a good unit test
A unit test is a piece of code written to test another code. It is sometimes referred to as the
lowest-level test because it is used to test code at the lowest level of an application. The unit
test calls the method or class under test to validate and assert assumptions about the logic,
function, and behavior of the code being tested.

The main purpose of unit testing is to validate a unit of code under test, to ascertain that the
piece of code does what it is designed to do and not otherwise. Through unit testing, the
correctness of a unit of code can be proven, this can be achieved only if the unit test is
written well. While unit testing will prove the correctness and help to discover bugs in
code, code quality might not be improved if the code being tested is poorly designed and
written.

When you write your unit tests properly, you can to a certain degree, have confidence that
your application will behave correctly when shipped. Through the test coverage obtainable
from test suites, you can have the metrics of tests written for methods, classes, and other
objects in your code base, and you are provided with meaningful information on how
frequently they are being run, along with counts of how many times the tests pass or fail.

With the available test metrics, every stakeholder involved in software development can
have access to objective information that can be used to improve the software development
process. Unit testing, when iteratively done, can add value to the code by improving the
reliability and quality of the code. This is possible through testing the code for errors the
test is run repeatedly many times, a concept known as regression testing, to locate errors
that might occur as the software application matures and components that were working
earlier break.

Readable
This characteristic of unit tests can not be overemphasized. Similar to the code under test,
unit tests should be easy to read and understand. The coding standards and principles are
also applicable to tests. Anti-patterns, such as magic numbers or constants, should be
avoided as they can clutter tests and make them difficult to read. Integer in the
following test is a magic number, as it was directly used. This affects the test readability
and clearity:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[88]

There is a good test structuring pattern that can be adopted, it's widely known as the triple
A or 3A pattern , , and which separates the test setup from its
verification. You are to ensure that the required data input by the test is arranged, followed
by the lines of code to act on the method under test, and assert that the results from the
method under test meet the expectation:

While there is no strict naming convention for tests, you should ensure that the name of a
test represents a specific business requirement. The test name should have the expected
input as well as state the expected output,

, this is because, besides serving the
purpose of testing application-specific functionality, unit tests are also a rich source of
documentation of the source code.

Unit independence
A unit test should basically be a unit, it should be designed and written in a form that
allows it to run independently. The unit under test, in this case a method, should have been
written to depend subtly on other methods. If possible, the data needed by the methods
should be taken through the method parameters or should be provided within the unit, it
should not have to request or set up data externally for it to function.

The unit test should not depend on or be affected by any other tests. When unit tests are
dependent on each other, if one of the tests fails when run, all other dependent tests will
also fail. All the needed data by the code under test should be provided by the unit test.

Similar to the Single Responsibility Principle discussed in , Getting Started with .NET
Core, a unit should have only one responsibility and only once concern at any time. The unit
should have a single task at any point in time to allow it to be testable as a unit. When you
have a method that practically does more than a single task, it is simply a wrapper for units
and should be decomposed into the basic units for easy testing:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[89]

The issue with the test in this snippet is that there is a lot happening at the same time. And
if the test fails, there is no specific way to check which of the method calls caused the
failure. This test can be broken down into different tests for clarity and easy maintenance.

Repeatable
A unit test should be easy to run without having to modify it each time it is to run. In
essence, a test should be ready to run repeatedly without modification. In the following
test, the test method is not repeatable, because the
test has to be modified each time it is run. To avoid this scenario, it is preferable to mock
the object:

Maintainable and runs fast
Unit tests should be written in a manner that allows them to run quickly. The test should be
easy to implement and any member of a development team should be able to run it.
Because software applications are dynamic and continue to evolve, tests for the code base
should be easy to maintain as the underlying code under test changes. To have tests that
run faster, try to minimize dependencies as much as you can.

Oftentimes, most programmers get this aspect of unit testing wrong, they write unit tests
that have inherent dependencies, which in turn makes the tests slower to run. A quick rule
of thumb to give you a clue that you are doing something wrong with your unit test, is that
they are very slow to run. Also, when you have unit tests that make calls to backend servers
or perform some tedious I/O operations, it is an indication of test smells.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[90]

Easy to set up, non-trivial, and with good
coverage
Unit tests should be easy to set up and decoupled from any direct or external dependencies.
The external dependencies should be mocked using a suitable mocking framework.
Appropriate object setup should be done in setup methods or test class constructors.

Avoid redundant codes that can clog the tests and ensure the tests contain only codes that
are relevant to the methods being tested. Also, tests should be written for units or methods.
For example, writing tests for class getters and setters might be considered too trivial.

Lastly, good unit tests should have good code coverage. All execution paths in a method
under test should be covered and all the tests should have defined criteria that can be
tested.

Unit testing framework ecosystem for .NET
Core and C#
The .NET Core development platform has been designed to fully support testing. This can
be attributed to the adopted architecture. It makes TDD on the .NET Core platform
relatively easy and worthwhile.

There are several unit testing frameworks available for use in .NET and .NET Core. The
frameworks essentially provide easy and flexible ways of writing and executing unit tests
directly from your preferred IDEs, code editors, through dedicated test runners, or
sometimes through the command line.

There exists a thriving ecosystem of test frameworks and suites on the .NET platform. The
frameworks contain a variety of adapters that are available for use in creating unit test
projects and for continuous integration and deployment.

This ecosystem of frameworks has been inherited by the .NET Core platform. This makes
practicing TDDs on .NET Core very easy. Visual Studio IDE is open and extensive, making
it faster and easy to install test plugins and adapters from different test frameworks from
NuGet for use in test projects.

There are quite a number of testing frameworks that are free and open source, used for
various types of tests. The most popular of the frameworks are MSTest, NUnit, and
xUnit.net.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[91]

.NET Core testing with MSTest
Microsoft MSTest is the default testing framework that ships with Visual Studio and is
developed by Microsoft, which originally was part of the .NET framework but is also
included in .NET Core. The MSTest framework is used to write load, functional, UI, and
unit tests.

MSTest can be used as a uniform application platform support as well as in testing a wide
range of applications Desktop, Store, Universal Windows Platform (UWP), and ASP.NET
Core. MSTest is delivered as a NuGet package.

MSTest-based unit test projects can be added to an existing solution containing projects to
be tested following the steps of adding a new project to a solution in Visual Studio 2017:

Right-click the existing solution in Solution Explorer, select Add and select New1.
Project. Or, to create a new test project from scratch, click on the File menu,
select New, and select Project.
In the displayed dialog box, select Visual C#, click the .NET Core option.2.
Select MSTest Test Project (.NET Core) and give a desired name to the project.3.
Then click OK:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[92]

Alternatively, when creating a new project or adding a new project to an existing solution,
select the Class Libary (.NET Core) option and add references to MSTest from NuGet.
Install the following packages to the class library project from NuGet, using the NuGet
package manager console or GUI option. You can run the following command from the
NuGet package manager console:

Install-Package MSTest.TestFramework
Install-Package dotnet-test-mstest

Irrespective of which method was used to create the MSTest test project, Visual Studio will
automatically create a or file. You can rename the class or delete it
to create a new test class, which will be decorated with an MSTest attribute,
which indicates that the class will contain test methods.

The actual test methods will be decorated with the attribute, marking them as
tests, which will make the tests runnable by the MSTest test runner. MSTest has a rich
collection of helper classes that can be used to verify the expectations of unit tests:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[93]

You can run the test method from the Test
Explorer window in Visual Studio 2017. This window can be opened from the menu,
select Windows, and select Test Explorer. Right-click on the test and select Run Selected
Tests:

You can also run the tests from the console. Open the command prompt window and
change the directory to the folder containing the test project, or the solution folder if you
want to run all test projects in the solution. Run the command. The projects
will be built, while the available tests are discovered and executed:

.NET Core testing with NUnit
NUnit is a testing framework originally ported from Java's JUnit and can be used to test
projects written in all programming languages available on the .NET platform. Currently
on Version 3, its open source testing framework was released under MIT License.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[94]

NUnit testing framework includes an engine and console runners. Additionally, it has test
runners that are used for testing applications that run on mobile devices Xamarin
Runners. The NUnit test adapters and generator can essentially make testing using Visual
Studio IDE seamless and relatively easy.

Testing .NET Core or .NET Standards applications using NUnit requires that the NUnit 3
Version of Visual Studio test adapter be used. The NUnit test project template needs to be
installed in order to be able to create an NUnit test project, which is usually done once.

NUnit adapters can be installed into Visual Studio 2017 with these steps:

Click the Tools menu, then select Extension and Updates1.
Click on the Online option and in the search text box, type to filter to2.
available NUnit adapters
Select NUnit 3 Test Adapter and click Download3.

This will download the adapter and install it as a template into Visual Studio 2017, you
have to restart Visual Studio for this to take effect:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[95]

Alternatively, you can install the NUnit 3 Test Adapter directly from NuGet each time you
want to create a test project.

To add an NUnit test project to your existing solution, follow these steps:

Right-click the solution in Solution Explorer, select Add, New Project.1.
In the dialog box, select Visual C#, then select the .NET Core option.2.
Select Class Library (.NET Core) then give the desired name to the project.3.
Add and packages to the project4.
from NuGet:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[96]

After the project setup is complete, you can write and run unit tests. Similar to MSTest,
NUnit has attributes that are used to set up test methods and test classes.

The attribute is used to mark a class as a container for test methods.
The attribute is used to decorate test methods and make the methods callable from
the NUnit test runner.

NUnit has other attributes that are used for some setup and testing purposes.
The attribute is used to decorate a method that is called one time only
before all child tests are run. A similar attribute is , which is used to decorate a
method that is called before each test is run:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[97]

The test can be run from the Test Explorer window, similar to the way it was run with the
MSTest test project. Also, the test can be run from the command line, using .
However, you have to add Microsoft.NET.Test.Sdk Version 15.5.0 as reference to the
NUnit test project:

xUnit.net
xUnit.net is an open source unit testing framework for the .NET platform that is used to
test projects written in F#, VB.NET, C#, and other .NET-compliant programming languages.
xUnit.net was written by the inventor of Version 2 of NUnit and is licensed under Apache
2.

xUnit.net can be used to test traditional .NET platform applications, which includes console
and ASP.NET applications, the UWP Application, mobile device applications, and .NET
Core applications with ASP.NET Core inclusive.

Unlike in NUnit or MSTest, where the test class is decorated with and
 attributes, respectively, the xUnit.net test class does not require attribute

decoration. The framework automatically detects all test methods in all public classes in the
test project or assembly.

Also, the test setup and tear down attributes are not available in xUnit.net, a parameterless
constructor can be used instead to set up test objects or mock dependencies. The test class
can implement the interface and do objects or dependencies cleanup in
the method:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[98]

xUnit.net supports two major types of tests facts and theories. Facts are tests that are
always true; they are tests without parameters. Theories are tests that will only be true
when passed a particular set of data; they are essentially parameterized tests. and

 attributes are used to decorate facts and theories tests, respectively:

The attribute is used in to decorate a theory test to supply
test data to the test methods to be used during test execution.

How to configure xUnit.net
Configuration of xUnit.net comes in two flavors. xUnit.net allows the configuration file to
be JSON or XML-based. The xUnit.net configuration must be done for each assembly under
test. The configuration file to be used for xUnit.net is dependent on the development
platform of the application being tested, though the JSON configuration file can be used on
all platforms.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[99]

To use a JSON configuration file, after creating your test project in Visual Studio 2017, you
should add a new JSON file to the root folder of the test project and name it

:

After adding the file to the project, you must instruct Visual Studio to copy the file to
the output folder of your project, where it can be located by xUnit test runners. To do this,
you should follow these steps:

Right-click the JSON configuration file from Solution Explorer. Select Properties1.
from the Menu option, this will display a dialog with title xunit.runner.json
Property Pages.
On the Properties Window page, change the option of Copy to Output Directory2.
from Never to Copy if newer and click the OK button:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[100]

This will ensure that the configuration file is always copied to the output folder when
changes are made. The supported configuration elements in xUnit are placed inside a top-
level JSON object in the configuration file, as seen in the configuration here:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[101]

When a version of Visual Studio that has JSON support is used, it will automatically detect
the schema based on the configuration file name. Also, context help will be made available
in Visual Studio IntelliSense while editing the file. The various
configuration elements with their acceptable values are explained in this table:

Key Values
The configuration element is the

 JSON schema type, which can take three values
to determine whether application domains are
used , , and .
Application domains are used by desktop runners only
and will be ignored by non-desktop runners.
Default value should always be , which
indicates that the application domain should be used if
available. When set to , it will require the use
of application domains, and if set to ,
application domains will not be used.
The configuration element is
the JSON schema type and should be set to

 if you want to enable diagnostic messages during
test discovery and execution.
The configuration
element is the JSON schema type and should
be set to if you want to enable internal diagnostic
messages during test discovery and execution.
The configuration element
is the JSON schema type. You should set this
value to a positive integer if you want to enable a long-
running test; setting the value to disables the
configuration. You should enable

 to get notifications for long-
running tests.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[102]

The configuration element is
the JSON schema type. Set the value to the
maximum number of threads to be used when
parallelizing. Setting the value to will maintain the
default behavior, which is the number of logical
processors on your computer. Setting to implies that
you do not wish to set a limit to the number of threads
used for tests parallelization.
The configuration element is the
JSON schema type. When this is set to , the
display name will be the method excluding the class
name. Set the value to , which is the
default value, indicating that the default display name
will be used, which is the class name and method
name.
The configuration element is
the JSON schema type. Setting the value to

 will make the test assembly parallelize with other
assemblies.
The configuration
element is the JSON schema type. Setting the
value to true will make the tests run in parallel in the
assembly, which allows tests in the different test
collections to be run in parallel. Tests in the same test
collection will still run sequentially. Setting this to

 will disable parallelization in the test assembly.

The configuration element is
the JSON schema type and should be set to

 to pre-enumerate theories to ensure there is an
individual test case for each theory data row. When
this is set to , a single test case for each theory is
returned without pre-enumerating the data ahead of
time.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[103]

The configuration element is the
JSON schema type and should be set to if you
want to enable shadow copying when running tests in
different application domains. This configuration
element is ignored if the tests are being run without
application domains.

The other configuration file option that can be used for desktop and PCL test projects in
xUnit.net is the XML configuration. You should add an file to your test project
if it does not already have one.

In the file, under the section, you can add the configuration
elements with their values. When using the XML configuration file, xUnit has to be
appended to the configuration elements explained in the preceding table. For example,
the element in the JSON configuration file will be written as

:

xUnit.net test runners
In xUnit.net, there are two actors responsible for running unit tests written using the
framework xUnit.net runner and the test framework. A test runner is the program that
can also be a third-party plugin that searches for tests in assemblies and activates the tests
discovered. The xUnit.net test runner depends on the library to
discover and execute tests.

The test framework is the code with the implementation of test discovery and execution.
The test framework links the discovered test against the and

 libraries. The libraries live alongside the unit tests.
 is another useful library of xUnit.net that contains the

abstractions that the test runners and tests frameworks use in communicating.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[104]

Test parallelism
Test parallelization was introduced in xUnit.net as of Version 2. This feature allows
developers to run multiple tests in parallel. Test parallelization is needed because large
code bases usually have several thousand tests running, which need to be run multiple
times.

These code bases have this huge number of tests because there needs to be assurance that
the code for the features works and is not broken. They also take advantage of the super-
fast computing resources now available to run parallel tests, thanks to advancements in
computer hardware technology.

You can write tests that use parallelization and take advantage of the cores available on the
computer, thereby making tests run faster, or let xUnit.net run multiple tests in parallel.
The latter is usually preferred, which ensures tests can be run at the speed of the computer
running them. In xUnit.net, test parallelism can be at the framework level, where the
framework support is running multiple tests in the same assembly in parallel, or
parallelism in test runners, where a runner can run multiple test assemblies in parallel.

Tests are run in parallel using test collections. Each test class is a test collection, and tests
within a test collection will not be run in parallel against each other. For example, if the
tests in are run, the test runner will run the two tests in the class
sequentially because they belong to the same test collection:

Tests in separate test classes can run in parallel because they belong to separate test
collections. Let's modify and take the test
method into a separate test class, :

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[105]

If we run the tests, the total time spent running both and
 will be reduced because they are in different test classes, which puts

them in different test collections. Also, from the Test Explorer window, you can observe the
running icon used to mark both tests, to indicate they are both running:

Tests in separate test classes can be configured to not run in parallel. This is done by
decorating the classes using the attribute with the same name. If the

 attribute is added to and :

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[106]

Tests in the and classes will not be run in
parallel because the classes belong to the same test collection based on the attribute
decoration.

Unit testing consideration for ASP.NET MVC
Core
The ASP.NET Core MVC development paradigm breaks a web application down into three
distinct parts the , , and , as per the tenets of the MVC
architectural pattern. The Model-View-Controller (MVC) pattern facilitates the creation of
web applications that are easy to test and maintain, and have a clear separation of concerns
and boundaries.

The MVC pattern provides a clear separation between presentation logic and business
logic, with easy scalability and maintainability. It was originally designed for use with
desktop applications but has since gained much use and popularity with web applications.

The ASP.NET Core MVC projects can be tested in the same manner that you test other
types of .NET Core projects. ASP.NET Core supports the unit testing of controller classes,
razor pages, page models, business logic, and the application data access layer. To build
robust MVC applications, the various application components have to be tested in isolation
and later tested when integrated.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[107]

Unit testing controllers
The ASP.NET Core MVC Controller classes handle users interactions, which translates to
the request on the browser. The controller gets the appropriate model and selects a view to
render that displays the user interface. The controller reads a user's input data, events, and
interactions from the view, and passes it to the model. The controller validates the input it
receives from the view and then performs the business operation that modifies the state of
the data model.

The classes should be lightweight and contain the minimal logic needed to
render the view based on a user's interactions to allow easy testing and maintenance. The
controller should verify the state of the model and ascertain the validity, call the
appropriate code that performs business logic validation and manages data persistence,
and later display the appropriate view to the user.

When unit testing the class, the main aim is to test the controller action
method's behavior in isolation, this should be done without muddling up the test with
other important MVC constructs such as model binding, routing, filters, and other custom
controller utility objects. These other constructs, if custom-written, should be unit tested
differently and later tested as a whole with the controller using integration testing.

Review the class of the project, the class
contains the four action methods that are added when the project is created in Visual
Studio:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[108]

The class currently contains action methods with the basic logic of
returning views. In order to unit test the MVC project, a new xUnit.net test project should
be added to the solution, to keep the tests separate from the actual project code. Add
the test class to the newly created test project.

The tests methods to be written in will verify that the objects are returned by
both the and action methods of the class:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[109]

The tests written in the preceding controller test are basic and very simplistic. To
demonstrate controller unit testing further, the class code can be updated to
support dependency injection, which will allow the methods to be tested through object
mocking. Also, by using to add errors, the invalid model state can be
tested:

 was injected into through the class constructor, and
in the test class, will be mocked using the Moq Framework. In the

 test method, the mock object is set up with the list of required by the
 method in the class:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[110]

Unit testing razor pages
In ASP.NET MVC, views are the components that are used for rendering a web
application's user interface. The view presents information contained in the model in a
suitable and easy-to-understand output format, such as HTML, XML, XHTML, or JSON.
The view generates output to the user based on the update performed on the model.

Razor pages make coding features on pages relatively easier. A razor page is similar to a
razor view, with the addition of the directive. The directive must be the first
directive in the page, it automatically converts the file into an MVC action handling
requests without going through the controller.

In ASP.NET Core, razor pages can be tested to ensure they work correctly in isolation and
as an integrated application. Razor page testing can involve testing the data access layer
codes, page components, and page models.

The following code snippet shows a unit test that verifies that a page model redirects
correctly:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[111]

Structuring unit tests with xUnit
Similar to the manner in which an application's code base is structured to allow easy
readability and for effective source code maintenance, unit tests should be structured. This
is to facilitate easy maintenance and quick running of tests using the test runners from
Visual Studio IDE.

A testcase is a test class containing test methods. It is usually common to have one test class
per class under test. Another common practice of structuring tests among developers is to
have a nested class for each method being tested or to have one base test class for the class
under test and one subclass for every tested method. Also, there is the test class per feature
approach, where all the test methods that collectively validate a feature of an application
are grouped in a testcase.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[112]

These test-structuring approaches promote the DRY principle and essentially faciliate code
reusability while writing tests. There is no single approach that is best suited for all
purposes, choosing a particular approach should be based on circumstances around the
application development and come after effective communication with team members.

Going the one-class-per-test or one-class-per-method route depends on individual
preference and sometimes convention or agreement when working in a team, with each
approach having it pros and cons. When you use the one-class-per-test approach, you have
tests for methods in the class being tested all in the test class, as opposed to the one-class-
per-method approach, where you have one test in the class as they pertain to the method
being tested, though sometimes it is possible to have more than one test in the class as long
as they are relevant to the method:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[113]

Two test classes, and , will be created. Both classes will extend
the class and will have a method each, following the unit testing
approach of one method per test class:

It is important to note that giving test cases and test methods meaningful and descriptive
names can go a long way in making them meaningful and easy to understand. It is
appropriate that the name of the test methods should contain the names of the method or
feature being tested. Optionally, it can be further descriptive to add the expected result in
the name of the test method, prefixed by :

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[114]

xUnit.net shared test context
The test context setup is done in the test class constructor, since the test setup is not
applicable in xUnit. For every test, xUnit creates a new instance of the test class, which
implies that the codes in the class constructor are run for each test.

Oftentimes, it is desirable for unit test classes to share a test context because it can be
expensive to create and clean up test contexts. xUnit offers three approaches to achieve this:

Constructor and dispose: Sharing setup or cleanup code without having to share
the object instances
Class fixtures: Sharing object instances across tests in a single class
Collection fixtures: Sharing object instances across multiple test classes

You should use constructor and dispose when you want a fresh test context for every test in
a test class. In the following code, the context object will be constructed and disposed for
every test method in the class:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[115]

The class fixtures approach is used when you intend to create a test context that will be
shared among all the tests in the class and will be cleaned up when the all the tests have
finished running. To use the class fixture, you have to create a fixture class with a
constructor that will contain the codes for the objects to be shared. The test class should
implement and you should add the fixture class as a constructor
argument to the test class:

The class in the following snippet implements with
 passed as the parameter. is injected into the test class

constructor:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[116]

Similar to class fixtures, collection fixtures is used to create a test context that is shared
among tests, but this time the tests can be in several classes. The test context creation will be
done once for all the test classes and the cleanup, if implemented, will be executed after all
the tests in the test classes have finished running.

To use the collection fixture:

Create a fixture class with a constructor similar to the way you created it with1.
class fixture.
You can implement on the fixture class if there should be a code2.
cleanup, which will be put in the method:

A definition class will be created that will have no code and3.
have added, since it's purpose is for defining the
collection definition. Decorate the class with the
attribute and give a name for the test collection:

Add the attribute to the test classes and use the name earlier4.
used for the collection definition class attribute.
Add a constructor with the fixture as argument if the test classes will require5.
instances of the fixture:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[117]

Live unit testing with Visual Studio 2017
Enterprise
Visual Studio 2017, Enterprise edition, has a live unit testing feature that automatically runs
tests that are affected by the changes you make to your code base in real time. The tests are
run in the background and the results are presented in Visual Studio. This is a cool IDE
feature that provides you with instant feedback on the changes you are making to a
project's source code.

Live unit testing in Visual Studio currently supports NUnit, MSTest, and xUnit. Live unit
testing can be configured from the Tools menu select Options from the top-level menu,
and select Live Unit Testing in the left pane of the Options dialog. The Live Unit Testing
configuration options available can be tweaked from the Options dialog:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[118]

Live Unit Testing can be enabled from the Test menu by selecting Live Unit Testing, and
selecting Start:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[119]

After Live Unit Testing is enabled, other available options on the Live Unit Testing menu
will be displayed. In addition to Start, there will be Pause, Stop, and Reset Clean. The
menus functions are described here:

Pause: This temporarily suspends Live Unit Testing, which preservs unit testing
data collected but hides the test coverage to catch up with
all the edits that have been made while it was paused, and updates the glyphs
appropriately
Stop: Stops Live Unit Testing and deletes all collected unit test data
Reset Clean: Restarts Live Unit Testing by stopping it and starting it again
Options: Opens the Options dialog to configure Live Unit Testing

In the following screenshot, the coverage visualization can be seen when Live Unit Testing
is enabled. Every line of code is updated and decorated with green, red, and blue to
indicate that the line of code is covered by a passing test, a failing test, or not covered by
any test:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[120]

Proving unit test results with xUnit.net
assertions
xUnit.net assertions verify the behavior of methods under tests. An assertion validates the
condition that is expected to be true for the results being expected. When an assertion fails,
the current execution of the test is terminated and an exception is thrown. The following
table explains the assertions available in xUnit.net:

Assertion Description
Validates that an object equals another object
Validates that an object does not equal another object
Verifies that two objects are of the same type
Verifies that two objects are not of the same type
Is an overloaded assertion/method and verifies that a string
contains a given substring or a collection contains an object
Is an overloaded assertion/method and verifies that a string
does not contain a given substring or a collection does not contain
an object
Verifies that the code does not throw exceptions
Verifies that a value is in a given inclusive range
Verifies that an object is of a given type or derived type
Verifies that a collection is empty
Verifies that a collection is not empty
Verifies that an expression is false
Verifies that an expression is true
Verifies that an object is of a given type
Verifies that an object is not of a given type
Verifies that an object reference is null
Verifies that an object reference is not null
Verifies that a value is not in a given inclusive range
Verifies that the code throws an exact exception

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[121]

The following snippet uses some of the xUnit.net assertion methods described in the
preceding table. The unit test method shows how assertion methods can be
used when doing unit testing in xUnit.net, to verify methods behaviors:

The test runners available on both .NET
Core and Windows
The .NET platform has a large ecosystem of test runners that can be used with the popular
test platforms NUnit, MSTest, and xUnit. The test frameworks have test runners shipped
with them that facilitate the smooth running of the tests. Additionally, there are also several
open source and commercial test runners that can be used with the available test platforms,
one of which is ReSharper.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[122]

ReSharper
ReSharper is a Visual Studio extension for .NET Developers, developed by JetBrains. Its
test runner is by far the most popular among the test runners available on the .NET
platform, the ReSharper productivity tool provides other functionalities that enhance
programmers' productivity. It has a unit test runner that can assist you in running and
debugging unit tests based on xUnit.net, NUnit, MSTest, and couple of other test
frameworks.

ReShaper can detect tests written on the .NET and .NET Core platforms for the available
test frameworks. ReSharper adds icons to the editor, which can be clicked to Debug or Run
tests:

Unit tests are run by ReSharper using the Unit Test Sessions window. ReSharper's Unit Test
Sessions window allows you to run any number of unit test sessions in parallel,
independently of each other. But only one session can be run at a time when running in the
debugging mode.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

.NET Core Unit Testing Chapter 4

[123]

You can filter the tests using the unit test tree, which gives you a structure of your tests. It
shows which tests failed, passed, or have not been run. Also, by double-clicking on a test,
you can directly navigate to the source:

Summary
Unit tests can improve the quality of your code and the overall quality of your application.
The tests can also serve as a rich source of commentary and documentation for the source
code. Creating high-quality unit tests is a skill that should be consciously learned following
the guidelines discussed in this chapter.

In this chapter, attributes of a good unit test were discussed. We also extensively discussed
unit testing procedures using the testing features available in the xUnit.net framework. The
live unit testing feature in Visual Studio 2017 was explained and, using the xUnit.net

 attribute, assertions were used to create basic unit tests.

In the next chapter, we will explore data-driven unit tests, another important aspect of unit
testing, which facilitates using data from different sources, such as from database or CSV
files, to execute unit tests. This is made possible through the xUnit.net attribute.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

55
Data-Driven Unit Tests

In the last chapter, we discussed the attributes of good unit tests, as well as the two types of
test supported by xUnit.net, Fact and Theory. Also, we walked through the creation of unit
tests using the rich set of test assertions that are available in the xUnit.net unit testing
framework.

Unit tests written for a software project should be run repeatedly right from the
development stage, during deployment, during maintenance, and, effectively, throughout
the life cycle of the project. Often, these tests should be run on different data inputs
following the same execution steps, while the tests, and essentially, the code being tested
are expected to have consistent behavior, irrespective of the data input.

Running tests on different sets of data can be achieved by creating or replicating existing
tests with similar steps operating on the different desired data inputs. The issue with this
approach is maintenance, since changes to the test's logic will have to be affected in the
various replicated tests. xUnit.net solves this challenge through its data-driven unit tests
feature, known as theories, which allows tests to be run on different sets of test data.

Data-driven unit tests, which can also be referred to as data-driven testing automation in
xUnit.net, are tests decorated with the attribute and have data passed in as
parameters to these tests. Data passed to data-driven unit tests can come from a variety of
sources, which can be inline through the use of the attribute. Data can also
come from specific data sources, such as obtaining data from a flat file, web service, or from
a database.

The sample data-driven unit tests explained in , .NET Core Unit Testing, use an
inline approach. There are other attributes that can be used for providing data to the
tests and .

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data-Driven Unit Tests Chapter 5

[125]

In this chapter, we will walk through the creation of data-driven unit tests using the
xUnit.net framework and cover the following topics:

The benefits of data-driven unit testing
The xUnit.net attribute for creating data-driven tests
Inline data-driven unit tests
Property data-driven unit tests
Integrating data from other sources

The benefits of data-driven unit testing
Data-driven unit testing is a concept known to provide great insight into code behavior,
due to it being able to execute tests with different sets of data. The insight gained through
data-driven unit testing can assist in making informed decisions about application
development approaches and can identify potential areas that need improvement.
Strategies can be formulated from reports and code coverage available from data unit tests,
which can later be used to refactor code with potential performance issues and bugs in the
application logic.

Some of the benefits of data-driven unit testing are explained in the following sections.

Tests brevity
Through data-driven tests, it is easier to reduce redundancy while still maintaining
comprehensive test coverage. This is because test code duplication can be avoided. Tests
that would have been traditionally duplicated to test different datasets can now be reused
for different datasets. When there are tests that have similar structures but with dissimilar
data, this is an indication that the tests can be refactored as data-driven tests.

Let's review the class and the corresponding
test class in the following snippets. This will provide a valuable insight into why data-
driven testing can simplify testing while providing brevity of code when compared with
the traditional approach to writing tests.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data-Driven Unit Tests Chapter 5

[126]

 extends the class to override the
method to perform calculations related to a car loan and returns a object that will be
validated using xUnit.net assertions:

To verify the consistent behavior of the class, the object
returned by the method will be validated using the following test
scenarios when the method argument has different , ,
and combinations. The test method
in the class validates each of the scenarios described:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data-Driven Unit Tests Chapter 5

[127]

The method in the preceding snippet contains
lines of code with data to test the method twice. This test clearly contains
duplicate code with the test tightly coupled to the test data. Also, the test code is not clean
because when more test scenarios are added, the test method will have to be modified by
adding more lines of code, thereby making the test large and clumsy. With data-driven
testing, this scenario can be avoided and having repeated code in tests can be eliminated.

Inclusive testing
Software application quality can be improved when business people and quality assurance
testers are carried along in the automated testing process. They can populate the data
source with the data required to execute the tests, with little technical knowledge required,
especially when using data files as a data source. The tests can be run multiple times using
different datasets to test the code thoroughly in order to ensure robustness.

Using data-driven testing, you have a clear separation of your tests and data. Tests that
would have otherwise been muddled up with the data will now be separated using the
appropriate logic. This ensures that the data source can be modified without making
changes to the tests using them.

The overall quality of the application is improved through data-driven unit tests as you can
have good coverage with the various datasets and have metrics to use to fine-tune and
optimize the application being developed for improved performance in place.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data-Driven Unit Tests Chapter 5

[128]

xUnit.net theory attribute for creating data-
driven tests
In xUnit.net, data-driven tests are known as theories. They are tests decorated with the

 attribute. When a test method is decorated with the attribute, it must
additionally be decorated with a data attribute, which will be used by the test runner to
determine the source of the data to be used in executing the test:

When a test is marked as data theory, the data fed into it from the data source is directly
mapped to the parameters of the test method. Unlike the regular test decorated with
the attribute, which is executed only once, the number of times a data theory is
executed is based on the available data rows fetched from the data source.

At least one data attribute is required to be passed as the test method argument for
xUnit.net to treat the test as data-driven and execute it successfully. The data attribute to be
passed to the test can be any of , , and . These data
attributes are derived from .

Inline data-driven unit tests
Inline data-driven testing is the most basic or simplest way of writing data-driven tests
using the xUnit.net framework. Inline data-driven tests are written using the
attribute, which is used to decorate the test method in addition to the attribute:

Inline data-driven tests can be used when the test method requires parameters that are
simple and does not accept class instantiation as an parameter. The major
drawback of using the inline data-driven test is the lack of flexibility. Inline data used with
a test cannot be reused with another test.

When you are using the attribute in a data theory, the data rows are hard-
coded and passed inline into the test method. The desired data to be used for the test can be
of any data type and is passed as a parameter into the attribute:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data-Driven Unit Tests Chapter 5

[129]

An inline data-driven test can have more than one attribute with the
parameters to the test method specified. The syntax of multi data theory is
specified in the following code:

The method can be changed to have
three inline data rows, and more data rows can be added to the test as desired. To have
clean tests, it is recommended to not have more than the necessary or required inline data
per test:

When writing inline data-driven unit tests, you must ensure that the number of parameters
in the test method match the parameters in the data rows passed to the
attribute; otherwise, the xUnit test runner will throw
a . The attribute in the

 method in the following snippet has
been modified to take two parameters:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data-Driven Unit Tests Chapter 5

[130]

When you run the data theory test in the preceding snippet, the xUnit test runner test fails
with , as shown in the following screenshot, because two
parameters and were passed to the attribute instead of the
expected one parameter:

When you run an inline data-driven test, xUnit.net will create the number of tests, based on
the number of attributes or data rows added to the test method. In the
following snippet, xUnit.net will create two tests, one for the attribute with
the argument and the second for the argument :

If you run the test method in Visual
Studio using the test runner, the test should successfully run and pass. The two tests
created based on the attributes can be differentiated by the parameters passed into them
from the attribute:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data-Driven Unit Tests Chapter 5

[131]

Now, let's modify the test method in
the section, The benefits of data-driven unit testing, to use to load the test data
instead of hard-coding the test data directly in the code of the test method:

In Visual Studio, the preceding code snippet will give a syntax error, with the IntelliSense
context menu showing the error An attribute argument must be a constant expression,
type of expression or array creation expression of an attribute parameter type:

Using properties or custom types as parameter types in the attribute is not
allowed, which indicates that the new instance of the class cannot be used as an
argument to the attribute. This is the limitation of the attribute
as it cannot be used to load data from properties, classes, methods, or custom types.

Property data-driven unit tests
The lack of flexibility encountered when writing inline data-driven tests can be overcome
through the use of property data-driven tests. Property data-driven unit tests are written in
xUnit.net through the use of the and attributes. Using the two
attributes, data theories can be created with data loaded from disparate data sources, such
as files or databases.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data-Driven Unit Tests Chapter 5

[132]

MemberData attribute
The attribute is used when data theories are to be created and loaded with
data rows coming from following data sources:

Static property
Static field
Static method

When using , the data source must return independent object sets that are
compatible with . This is because the property is
enumerated by the method before the test method is executed.

 test method in the, The benefits
of data-driven unit testing section, can be refactored to use the attribute to load
the data for the test. A static method, , is created to return
a object using the statement to return the object to the test method:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data-Driven Unit Tests Chapter 5

[133]

 attribute requires that the name of the data source is passed to it as a
parameter for subsequent invocation to load the data rows for the test execution. The name
of the static method, property, or field can be passed as a string into the
attribute in this form :

Alternatively, the data source name can be passed to the attribute through
the use of the expression, which is a C# keyword that is used to get the string name
of a variable, type, or member. The syntax is :

Similar to using static method with the attribute, static fields and properties
can be used to provide datasets to data theories.

 can be refactored to use a static
property in place of the method:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data-Driven Unit Tests Chapter 5

[134]

A static property, , is created to return , which is
required to make it qualify for use as a parameter to the attribute.
is subsequently used as a parameter to the attribute:

Whenever is run, two tests are
created that correspond to the two datasets returned by either the static method or property
used as the data source.

Following the preceding approach requires that the static method, field, or property used to
load the tests data is located in the same class as the data theory. In order to have tests well-
organized, it is sometimes required that the tests method is separated in different classes
from the static methods or properties used for loading the data:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data-Driven Unit Tests Chapter 5

[135]

When the test method is written in a separate class different from the static method, you
have to specify the class containing the method in the attribute,
using , and assign the containing class, using the class name, as shown in the
following snippet:

When using the static method, the method can also have a parameter, which you might
want to use when processing the data. For example, you can pass an integer value to the
method to specify the number of records to return. This parameter can be passed directly
from the attribute to the static method:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data-Driven Unit Tests Chapter 5

[136]

The method in can be refactored to take an integer parameter to
be used to limit the number of records to be returned for populating the data rows required
for the execution of :

ClassData attribute
 is another attribute that can be used to create data-driven tests by using data

coming from a class. The attribute takes a class that can be instantiated to
fetched data that will be used to execute the data theories. The class with the data must
implement with each data item returned as an array.
The method must also be implemented.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data-Driven Unit Tests Chapter 5

[137]

Let's create a class to be used to provide data to test the
 method. will return

 objects of :

After the class has been implemented,
 can be decorated with the

 attribute with passed as the attribute parameter to specify that
 will be instantiated to return data required for the execution of the test

method:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data-Driven Unit Tests Chapter 5

[138]

Implementing the enumerator can be flexibly done using any suitable approach, either by
using a class property or a method. Before the test is run, the xUnit.net framework will call

 on the class. While using the attribute for passing data to your
tests, you always have to create a dedicated class to contain your data.

Integrating data from other sources
While you can write basic data-driven tests with the xUnit.net theory attributes discussed
earlier, there are times where you want to do more, such as connecting to an SQL Server
database table to fetch data to be used in executing your tests. Earlier versions of xUnit.net
had other attributes from that allow you to easily get data from
different sources to be used in your tests. The package is no
longer available in xUnit.net v2.

However, the classes in are available in sample projects
at: The code from the sample
projects can be copied to your project if you wish to use this attribute.

SqlServerData attribute
Inside the folder of the projects, there are files that can be copied to your
project to give you the functionality of getting data by connecting directly to an SQL Server
database or any data source that can be accessed using OLEDB. The four classes located in
the folder are , ,

, and .

It is important to note that since .NET Core does not support OLEDB, the preceding
extension cannot be used in a .NET Core project. This is because OLEDB technology was
based on COM, which is dependent on components that are available only on Windows.
But you can use this extension in a regular .NET project.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data-Driven Unit Tests Chapter 5

[139]

The code listing provided in the xUnit.net repository on GitHub has the
attribute that can be used to decorate data theories to fetch data for test execution directly
from Microsoft SQL Server database tables.

To test the attribute, you should create a database in your instance of SQL
Server and name it . Create a table with the name ; it should have a
column named . Populate the table with sample data to be used for the test:

The class runs with an method to verify a
word is a palindrome, as shown in the following snippet. A palindrome is a word that can
be read in both directions for example, or . A quick way to check this without
an algorithm implementation is to reverse the word and use the string
method to check if the two words are equal:

To test the method, a test method,
, will be implemented which will be

decorated with the attribute. This attribute requires three parameters the
database server address, the database name, and the select statement for retrieving the data
from the table or view containing the data to be loaded for the test:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data-Driven Unit Tests Chapter 5

[140]

When is run, the
attribute is executed to fetch the records from the database table to be used for executing
the test method. The number of tests to be created depends on the available records in the
table. In this case, three tests will be created and executed:

Custom attribute
Similar to the attribute available in the xUnit.net GitHub repository, you
can create a custom attribute to load data from any source. A custom attribute class must
implement , which is an abstract class that represents a data source to be
used by a theory. The custom attribute class must override and implement the
method. This method returns , which is used to wrap the
content of the dataset to be returned.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data-Driven Unit Tests Chapter 5

[141]

Let's create a custom attribute that can be used to load data from a file for
use in data-driven unit tests. The class will have a constructor that takes two parameters.
The first is a string argument containing the full path to the file. The second argument
is a Boolean value, which when , specifies if the first row of data contained in the
file should be used as the column header and when , specifies ignoring column
headers in the file, meaning the CSV data starts from the first row.

The custom attribute class is , which implements the
class. The class is decorated with the attribute, which has the following
parameters to specify the valid application elements to apply the
attribute, to specify if the multiple instances of the attribute can be
specified on a single application element, and to specify if the attribute can be
inherited by derived classes or overriding members:

The next step is to implement the method, which will override the
implementation available in the class. This method uses
the class in the namespace to read the contents of the file
a line at a time. A second utility method, , is implemented to convert the CSV
data to an integer for integer values:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data-Driven Unit Tests Chapter 5

[142]

The created custom attribute can now be used with the xUnit.net attribute to
provide data to theories from files.

The test method will be modified to use
the newly created attribute to get the data for the test execution from a file:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data-Driven Unit Tests Chapter 5

[143]

When you run the test method in the
preceding snippet in Visual Studio, there will be three tests created by the test runner. This
should correspond to the number of records or data lines retrieved from the file. The
test information can be viewed from the Test Explorer:

The custom attribute can retrieve data from any file, irrespective of the
numbers of columns present on a single line. The records will be fetched and passed to the

 attribute in the test method.

Let's create a method with two integer parameters, and . The
method will calculate the greatest common divisor of integer values, and

. The greatest common divisor of the two integers is the largest value that
divides the two integers:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data-Driven Unit Tests Chapter 5

[144]

Now, let's write a test method to verify the method.
 will be a data theory and have three integer

parameters , , and . The method will check if
 supplied in the parameter matches what the method returns when

called. The data for the tests will be loaded from a file:

Based on the value provided in the file, the tests will be created. The following
screenshot shows the outcome of when run. Three tests
were created; one passed and two failed:

Summary
Data-driven unit testing is an important concept of TDD that brings many benefits, by
allowing you to test your code base extensively with real-life data from multiple data
sources, giving you the insight needed to tweak and refactor code for better performance
and robustness.

In this chapter, we covered the benefits of data-driven testing and how to write effective
data-driven tests using the inline and properties attributes of xUnit.net. Furthermore, we
explored data-driven unit testing using the attribute available in xUnit.net. This
allows you to unit test your code for appropriate validation and verification over a wide
range of inputs coming from different data sources.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data-Driven Unit Tests Chapter 5

[145]

While the default data source attributes provided by xUnit.net are very useful, you can
further extend the class and create a custom attribute to load data from
another source. We walked through the implementation of the custom attribute to
load test data from a file.

In the next chapter, we will delve into another important and useful TDD concept,
dependencies mocking. Mocking allows you to effectively unit test your methods and
classes in isolation without having to construct or execute the code of the dependencies
directly.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

66
Mocking Dependencies

In , Data-Driven Unit Tests, we discussed data-driven unit testing using the xUnit
framework, which allows us to create tests that run on data from different sources, such as
flat files, databases, or inline data. Now, we will explain the concepts of mocking
dependencies and explore how to use the Moq framework to isolate your class that is being
tested from its dependencies, using mock objects created with Moq.

There are usually objects dependencies in the code base of software projects, whether for a
simple or a complex project. This is because the various objects need to interact and share
information across boundaries. However, to effectively unit test the objects and isolate their
behaviors, each object must be tested in isolation, irrespective of the dependencies it has on
other objects.

In order to achieve this, the dependent objects in a class are replaced with mocks to allow
the object being tested to be effective when tested in isolation, without having to go
through the pain of constructing the dependent objects, which sometimes might not be
fully implemented or may be impractical to construct at the time the object being tested is
written.

Mock objects are used to simulate or mimic real objects for the purpose of code testing.
Mock objects are used to replace real objects; they are created from real interfaces or classes
and used to verify interactions. Mock objects are essential instances of classes referenced in
another class to be tested and are used to simulate the behavior of these classes. Since the
components of a software system need to interact and collaborate, mock objects are used to
replace the collaborators. A mock object, when used, verifies that the usage is correct and is
as expected. Mocks can be created using a mocking framework or library or, alternatively,
by generating code for them through handwritten mock objects.

The Moq framework will be explored in detail in this chapter and will be used to create
mock objects. Moq is a fully functional mocking framework that can be set up easily. It can
be used to create mock objects for use in unit tests. Moq has several basic and advanced
features expected of a mocking framework to create useful mocks and essentially write
good unit tests.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[147]

In this chapter, we will cover the following topics:

The benefits of mocking objects
The shortcomings of mocking frameworks
Hand-rolling mocks versus using the mocking framework
Mocking objects using Moq framework

The benefits of mocking objects
In a well-architected software system, there are usually objects that interact and coordinate
to accomplish set objectives based on the business or automation requirements. Quite often,
these objects are complex and rely on other external components or systems, such as
databases, SOAP, or REST services for data and internal state updates.

Most developers are beginning to adopt TDD because of the many benefits that practicing it
can offer and due to the awareness that it is the responsibility of programmers to write
quality code that is bug free and well tested. However, some developers object to mocking
objects due to several assumptions. For example, adding mock objects to unit tests increases
the total time required to write unit tests. This assumption is false because using mock
objects offers several benefits, as explained in the following sections.

Fast running tests
The main characteristics of a unit test are that it should run very quickly and should give
consistent results even when executed multiple times with the same set of data. However,
to effectively run a unit test and maintain this attribute of having unit tests that are
efficients and run quickly, it is important to have mock objects set up where there are
dependencies in the code being tested.

For example, in the following code snippet, the class has a dependency
on Entity Framework's class which creates a connection to a database server for
database operations. To write a unit test for the method in the

 class will necessitate that the object be constructed. The
 object can be mocked to avoid the expensive operation of opening and closing

database connections each time a unit test is run for that class:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[148]

In a software system, based on the requirements, there will be the need to access external
systems, such as large files, databases, or web connections. Interacting directly with these
external systems in a unit test increases the runtime of the test. Therefore, it is desirable to
mock these external systems to allow the tests to run quickly. The benefits of unit testing
can be lost when you have long running tests that apparently waste productive time. A
developer in such a situation can stop running the tests or totally stop unit testing on the
assertion that unit testing is time wasting.

Dependencies isolation
Using dependencies mocking, you technically create alternatives to the dependencies in
your code that you can experiment with. When you have a mock implementation of
dependencies in place, you can make changes and test the effect of the changes in isolation
since the tests will be running against mock objects and not the real objects.

When you have the dependencies isolated, you can focus on the test being run, thereby
limiting the scope of your test to the code that really matters for the test. In essence, with
the reduced scope, you can easily refactor the code being tested as well as the test itself,
giving you a clear picture of areas where the code can be improved.

In order to test the class in the following snippet in isolation, the
 object that the class depends on can be mocked out. This will limit the scope of

the unit tests to only the class:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[149]

Also, keeping the scope of the test small through isolation of dependencies makes the test
easy to understand and facilitates easy maintenance. Increasing the scope of the test by not
mocking dependencies eventually makes test maintenance difficult and reduces the high
level detailed coverage of the test. Since the dependencies will have to be tested, this can
result in less detail being tested due to increased scope.

Refactoring legacy code
Legacy source code is the code that was written by you or someone else usually without
tests or using an old framework, architecture, or technology. Such a code base can be
difficult to rewrite or maintain. It can sometimes be tangled code that cannot be easily read
and understood and as such is very difficult to change.

When faced with the daunting task of maintaining a legacy code base, especially a code
base written without adequate or proper testing, writing unit tests for such code can be
difficult, and a waste of time, and can result in a lot of hard work. However, using a
mocking framework can greatly simplify the refactoring process, as the new code being
written can be isolated from the existing code and tested using mock objects.

Wider test coverage
With mocks, you are sure of a wide test coverage, as you can easily use mock objects to
simulate possible exceptions, execution scenarios, and conditions that otherwise would be
difficult without mocks. For example, if you have a method that purges or drops a database
table, it is safer to test this method using mock objects than run it on a live database each
time the unit test is run.

The shortcomings of mocking frameworks
While mocking frameworks are very useful during TDD in that they simplify unit testing
through the use of mock objects, they, however, have some limitations and downsides that
can impact the design of the code or through excessive usage lead to the creation of tangled
tests containing irrelevant mock objects.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[150]

Interface explosion
The architecture of the majority of the mocking frameworks necessitates that interfaces
should be created in order to mock objects. In essence, you cannot mock a class directly; it
has to be through the interface implemented by the class. In an attempt to mock
dependencies during unit testing, an interface is created for each object or dependency to be
mocked, even if the interface is not required to use the dependency in production code.
This results in the creation of too many interfaces, a condition known as interface
explosion.

Extra complexity
Most mocking frameworks use reflection or create proxies to invoke the methods and create
the mocks required in unit tests. This process is slow and adds overhead to the unit testing
process. This is noticeable especially when it is desired to mock interactions between all
classes and dependencies using mocks, which can lead to a situation where a mock returns
other mocks.

Mock explosion
With the availability of several mocking frameworks, it is easier to get familiar with
mocking concepts and create mocks for unit testing. However, a developer can start to
over-mock, a situation where every object seems like a mock candidate. Also, having too
many mocks can lead to writing fragile tests, making your tests prone to breaking when the
interface changes. When you have too many mocks, this ends up slowing down the test
suites and consequently increases development time.

Hand-rolling mocks versus using a mocking
framework
Using a mocking framework can facilitate a smooth unit testing experience, especially
when unit testing a portion of code with dependencies in which mock objects are created
and substituted for the dependencies. While it is easier using mocking frameworks, you
might sometimes prefer to hand-roll mock objects for your unit tests and not add extra
complexity or additional libraries to your project or code base.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[151]

Hand-rolled mocks are classes that are created for the purpose of testing and used to
replace production objects. These created classes will have equivalent methods as the
production classes with the same definitions and return values to effectively simulate the
production classes and to use as substitute for dependencies in unit tests.

Mocking concept
The first step in creating mocks should be dependency identification. The goal of unit
testing should be to have clean code and tests that run as quickly as possible with good
coverage. You should identify dependencies that can slow down your tests. These are
candidates for mocking, for example, a web service or database call.

The approach for creating mock objects can vary based on the type of dependencies being
mocked. However, the concepts of mocking can follow the basic concepts that mock objects
should return specific predefined values when the methods are invoked. There should be
an appropriate validation mechanism in place to ensure the methods of the mock were
called and the mock object can throw an exception if configured based on the test
requirements.

It is important to understand the types of mock objects to effectively hand-roll mock
objects. There are two types of mock objects that can be created dynamic and static mock
objects. Dynamic objects can be created through reflection or proxy classes. This is similar
to how mocking frameworks work. Static mock objects can be created by having classes
that implement an interface and sometimes the actual concrete class that is the dependency
to be mocked. You are essentially creating static mock objects when you hand-roll mocks
objects.

Reflection can be used to create mock objects. Reflection in C# is a useful construct that
allows you to create an object that is an instance of a type, as well as getting or binding a
type to an existing object and invoking the available fields and method in the type.
Additionally, you can use reflection to create objects that describe modules and assemblies.

Benefits of hand-rolling mocks
Hand-rolling your mocks can sometimes be an effective approach to use, when you intend
to have full control of your test setup and specify the behavior of the test setup. Also, when
the test is relatively simple, using a mocking framework is not an option; it is better to roll
the mock and keep everything simple.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[152]

When using mocking frameworks, making changes to the real object being mocked will
necessitate changes to the mock objects wherever they are used. This is because changes
made to the dependency will break the tests. If, for example, the method name on the
dependent object changes, you have to change this in the dynamic mocks. Thus, changes
have to be made in several parts of the code base. With hand-rolled mocks, you only have
to make the changes at one point only since you are in control of what method is presented
to the tests.

Mocks and stubs
Mocks and stubs are both similar because they are used to replace class dependencies or
collaborators and most mocking frameworks provide the features to create both. Stubs can
be hand-rolled in the same manner you hand-roll mocks.

So what really differentiates mocks from stubs? Mocks are used to test collaboration. This
includes verifying the expectations of the actual collaborator. Mocks are programmed to
have the expectation containing the details of method invocations to be received, while
stubs are used to simulate collaborators. Let's explain this further with an illustration.

A stub can be used to represent the result from a database. In place of a database call to
return a set of data, a C# list can be created with the data that can be used in executing a
test. If the stub above the dependency interaction of the test is not validated, the test will
only be concerned with the data.

The class in the following snippet has a method that
accepts a list of objects to be retrieved from a database:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[153]

The test for the method, ,
in the following snippet uses a stub, which is a list of objects that is passed as a
parameter to the method, instead of making a database call to get the list
of objects to be used for the class:

The class in the following snippet has a DI that connects
to the database to fetch records. The class has a constructor, where the
object is injected. The class has a method that calls
the method on the dependency, which in turn makes a call to get a list of
objects from the database:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[154]

Unlike when using a stub, a mock will verify that a method in a dependency is called. This
implies that the mock object will have a setup of the method to be called in the dependency.
In the class in the following snippet, a mock object is created from

:

In the constructor of the class, the data to be returned by the mock
object is first created, followed by the method set up in the line

. The mock object is then passed to the
 constructor,

.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[155]

Hand-rolled mock
We can hand-roll a mock object to test the class. The mock object to be
created will implement the interface and will be used for the purpose of
unit testing only since it is not needed in the production code. The mock object will return a
list of objects, which will simulate the actual call to the database:

The class created can now be used in the class to
mock in place of using a mock object created from a mock framework.
In the constructor of the class, the class will be
instantiated and injected into the class, which is used in the class:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[156]

Because is used as a concrete class for the
interface, a dependency of the class, whenever the method is
called on the interface, the method of

 will be called to return the data required for the test to run.

Mocking objects using Moq framework
Selecting a mock framework to use for mocking objects is important for a smooth unit
testing experience. However, there are no written rules to be followed for this. You can
consider some factors and features of the mocking framework when selecting a mocking
framework for use in your tests.

Performance and available features should be the first factors to be considered when
selecting a mocking framework. You should examine the way the mocking framework
creates mocks; frameworks that use inheritance, virtual, and static methods cannot be
mocked. Other features to look out for can be methods, properties, events, and even if the
framework supports LINQ.

Additionally, nothing beats simplicity and the ease of use of a library. You should go for a
framework that is easy to use, with good documentation of the available features. In the
subsequent sections of this chapter, the other concepts of mocking will be explained using
the Moq framework, an easy-to-use strongly typed library.

When using Moq, the mock object is an actual dummy class that is created for you using
reflection, which contains the implementation of methods contained in an interface that is
being mocked. In the Moq setup, you will specify the interface you want to mock and the
methods that the test class requires to effectively run the tests.

To use Moq, you need to install the library through the NuGet package manager or through
the NuGet console:

Install-Package Moq

 To explain mocking with Moq, let's create an interface with two
methods, , which retrieves car loans from the database as a list, and a

 method that returns a list of objects:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[157]

The class uses the Entity Framework as the ORM for data access and
retrieval and implements . The two methods, and

, have been implemented by the class:

Let's create a mock object for to test the two methods without having to
depend on any concrete class implementation.

Creating a mock object is easy with Moq:

In the preceding line of code, a mock object has been created which implements the
 interface. The object can be used as a regular implementation of
 and injected into any class that has as the

dependency.

Mocking methods, properties, and callback
Before the methods of the mock objects can be used in the test, they need to be set up. This
setup is preferably done in the constructor of the test class after the mock object is created
and before the object is injected into the class that requires the dependency.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[158]

First, the data to be returned by the method to be set up will have to be created; this is the
dummy data to be used in the test:

At the point of setting up the method, the return data will be passed to it as well as any
method parameter, if applicable. In the following line of code, the method is
set up with the list of the objects passed as the return data. This means that whenever
the method is invoked in the unit test using the mock object, the list created
earlier will be returned as the method return value:

You can have a lazy evaluation of the method return value. This is a syntax sugar available
with the use of LINQ:

Moq has an object, which can be used to specify a matching condition for a parameter in
the method being set up. refers to the argument being matched. Assuming the

 method has a string parameter, the syntax of the method setup
can be changed to include the parameter with the return value:

It is possible to set up a method that returns a different return value each time it is invoked.
For example, the setup of the method can be done to return different sizes of
the list each time the method is called:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[159]

In the preceding snippet, a random number is generated between and , to set. This will
ensure that the size of the list to be returned by the method varies with each
invocation. The first time the method is called, the method is
called, while the code in the is executed with subsequent calls to the

 method.

A feature of Moq is the provision of testing for exceptions. You can set up the method to
test for exceptions. In the following method setup, the method throws

 when called:

Properties
If you have a dependency that has properties to be set which are used in the method calls,
you can set dummy values for such properties using the Moq method.
Let's add two properties to the interface, and :

With the Moq method, you can specify that the property should have a
behavior, which in essence implies that whenever the property is requested, the value set in
the method will be returned:

The lines of code in the preceding snippet set the property to an enum
value, , and to . Whenever the properties are requested in a test, the set
values will be returned to the calling points.

Setting the properties using the method automatically sets the property as
a stub and will allow the values of the properties to be tracked and provide a default value
for the property.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[160]

Also, while setting up the property, you can use the method, which accepts a
lambda expression to specify a type for a call to a property setter and allows you to pass the
value into the expression:

Similar to is , which is used to specify a setup on the type for a call to a
property getter:

Recursive mocking allows you to mock complex object types, especially nested complex
types. For example, you might want to mock the property in the complex type
of the type. The Moq framework can traverse this graph to mock the property in an
elegant way:

You can stub all the properties available on a mock, using the
method. This method will specify that all properties on the mock have a property behavior
set. By generating the default value for each property in the mock, the default property is
generated using the property of the Moq framework:

Matching parameters
When using Moq to create mock objects, you can match arguments to ensure that the
expected parameters are passed during a test. Using this feature, you can ascertain the
validity of the arguments passed into a method while the method is called while being
tested. This is applicable only to methods that have arguments and the matching will be
done during the method setup.

Using Moq's keyword, you can specify different expressions and validations for the
method parameter during setup. Let's add a method definition to
the interface. The implementation in the class accepts
an integer parameter, which is the service year for a loan and returns a list of car loan
defaulters. The method code is shown in the following snippet:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[161]

Now, let's set up the method in the
constructor to accept a different value for the parameter using Moq's keyword:

A list of objects has been created, which will be passed to the method of
the mock setup. The method will now accept the value in the
range specified, since the method has been used with both the upper and
lower range value supplied.

The class has other useful methods for specifying the matching conditions for a method
during setup instead of having to specify a particular value:

 is used for specifying a regular expression to match a string argument
 is used to specify a value that matches a given predicate

 is used to match any value of the type specified
 is used to match any value specified in a parameter

You can create a custom matcher and use it in method setup. For example, let's create a
custom matcher, , for the method to ensure a
value greater than is not supplied as an argument. Creating a custom matcher is done by
using :

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[162]

The created matcher can now be used in a method setup of a mock object:

Events
Moq has a feature that allows you to raise an event on the mock object. To raise an event,
you use the method. The method has two parameters. The first is a Lambda
expression with the event subscribed for the event to be raised on the mock. The second
argument provides a parameter that will be included in the event. To raise a

 event on the mock object with an empty
argument, you can use the following line of code:

Real use cases are used when you want to have a mock object raise an event in response to
an action or raise an event in response to a method invocation. When setting up a method
on a mock to allow events to be raised, the method on the mock is replaced with
the method, which indicates that when the method is called in the test, an event
should be raised:

Callbacks
Using the method of Moq, you can specify the callback to be invoked before and
after a method is called. There are some test scenarios that might not be easily tested using
the simple mock expectations. In such complex scenarios, you can use a callback to execute
specific actions when the mock objects are called. The method accepts an action
parameter, which will be executed based on whether the callback is set up before or after
the method invocation. The action can be an expression to be evaluated or another method
to be called.

For example, you can have a callback set up to change the data after a specific method has
been called. This feature allows you to create tests that offer more flexibility while
simplifying test complexities. Let's add a callback to the mock object.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[163]

The callback can be a method that will be invoked or a property that you need to set with
values:

The preceding snippet has two callbacks set up for the method setup.
The method is called before the actual

 method is invoked and
will be called after the method has been called on the mock
object. adds a new object to the and

 removes the first element in the list:

Mock customization
When using the Moq framework, you can further customize mock object, to enhance the
effective unit testing experience. The enum can be passed into Moq's
object constructor to specify the behavior of the mock. The enum members are ,

, and :

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[164]

When a member is selected, the mock will not throw any exceptions. The default
values will always be returned. This means null will be returned for reference types, and
zero or empty arrays and enumerables will be returned for value types:

Selecting a member will make the mock throw exceptions for every call on the
mock that does not have a proper setup. Lastly, the member is the default
behavior of the mock, which technically equals the enum member.

, when initialized during a mock construction, is used to specify whether the base
class virtual implementation will be invoked for mocked dependencies if no setup is
matched. The default value is . This is useful when mocking HTML/web controls of
the namespace:

Instead of having mock objects creation code scattered across your tests, you can avoid
repetitive code by using , available in Moq for creating and verifying
mocks in a single location, thereby ensuring that you can do mock configuration by setting

, , and and verifying the the mocks in one place:

In the preceding code snippet, a mock repository is created with ,
and two mock objects are created, each with the mock, overriding the
default specified in the repository. The last statement is an invocation of
the method to verify all expectations on all the mock objects created in the
repository.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[165]

Additionally, you can implement multiple interfaces in a single mock. For example, we can
create a mock that implements and later implements the
interface using the method, which is used to add an interface implementation to a
mock and to specify a setup for it:

Verification method and property invocations
with Moq
Mock behaviors are specified during the setup. This is the expected behavior of an object
and the collaborator. While unit testing, mocking is not complete until all the mocked
dependencie's invocations have been verified. It can be helpful to be aware of the number
of times methods were executed or properties accessed.

The Moq framework has useful verification methods that can be used to verify mocked
methods and properties. Also, the structure contains useful members showing the
number of calls that can be allowed on a method.

The method can be used to verify that a method invocation, together with the
supplied parameters performed on a mock, match what was earlier configured during the
mock setup and used with the default , which is . To explain
verification concepts in Moq, let's create a class that depends on

 for data and add a method, , to it to
return a list of loan defaulters older than years of age. is injected to

 through the constructor:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[166]

To test the class, we will create a test class that uses
dependency mocking to isolate for unit testing. will
contain a constructor for setting up a mock for , required by
the class:

 constructor contains a mock set up for the
 method of the interface, with the arguments

expectation and the return value. Let's create a test method,
, to test

. After the assert statements, there is the method to check
if was called once:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[167]

The method takes two arguments: the method to be verified and the
structure. was used, which specifies that the mocked method should only be
called once.

, when used, is to specify that a mocked method should
be called in the minimum number of times specified in the value of the
parameter. This can be used to verify that a method was called in the number of times
specified:

In the preceding test snippet, was passed to the method. The
test, when run, will fail with because the
method was only called once in the code being tested:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[168]

 can be used to specify that a mocked method should be called a
minimum of one time, which means the method can be called many times in the code being
tested. We can modify the method in

 to take a second parameter as
 to validate after the test is run that the was

called at least once in the code being tested:

 can be used to specify the maximum number of times
that a mocked method should be called in the code being tested. The parameter
is used to pass the value for the maximum invocation time for a method. This can be used
to limit the calls allowed to a mocked method. A Moq exception is thrown if the method is
called more than the value specified:

 is similar to or , but with the
difference being that the mocked method can only be called at most one time. A Moq
exception is thrown if the method is called more than once, but if the method is not called
when the code is run, no exception will be thrown:

 can be used in the
method to specify that the mocked method should be called between and

 and the enum used to specify whether to include or exclude the range
specified:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[169]

 is very useful when you want to specify that a mocked
method should be called at the specified. If the mocked method is called fewer
times than the specified or more times, a Moq exception will be generated with
a detailed description of the expectation and what failed:

Also important is . When used, it can verify that a mocked method is never
used. You can use this when you don't want a mocked method to be invoked:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[170]

A mocked property verification is done in a similar manner to mocked methods using the
 and methods. The method is used to verify that a

property was set on the mock. Also, the method is used to validate that a
property was read on a mock, regardless of the value contained in the property:

To verify that a property has been set on a mock, irrespective of whatever value was set,
you can use the method with this syntax:

At times, you might want to validate that a particular value was assigned to a property on
the mock. You can do this by assigning the value to verify to the property in the
method:

The method introduced in Moq 4.8 can be used to ascertain that
no calls were made other than the ones already verified. The method is used
to verify all expectations, irrespective of if they have been flagged as verifiable.

LINQ to mocks
Language-Integrated Query (LINQ) is a language construct introduced in .NET 4.0, which
provides query capabilities in the .NET Framework. LINQ has query expressions that are
written in a declarative query syntax. There are different implementations of LINQ-LINQ
to XML, used for querying XML documents, LINQ to entities, which is used for ADO.NET
Entity Framework operations, LINQ to objects used for querying .NET collections, files,
strings, and so on.

Throughout this chapter, we have created mock objects using Lambda expressions syntax.
Another exciting feature available in the Moq framework is LINQ to mocks, which allows
you to set up mocks using LINQ like syntax.

LINQ to Mocks is great for simple mocks, and for stubbing out dependencies when you
really do not care about the verification. Using the method, you can create a mock
object of the specified type.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[171]

You can use LINQ to Mocks to have multiple setups done on a single mock and recursive
mocks, using LINQ like syntax:

In the preceding mock initialization, the and properties were set up as
stubs, with the default values for the properties, when accessed during the tests invocation.

Advanced Moq features
Sometimes, the default values provided by Moq might not be suitable for some test
scenarios and you need to create a custom default value generation approach to
complement what Moq currently provides, which are and

. This can be done through extending or
, which are available in Moq 4.8 and higher:

The class created the sub-classes
 and implemented default values for both

 and . For any type of , is returned and an empty list is
created with a of any type. can now be used in mock
creation, in the constructor:

The variable in the preceding snippet will contain a string of zero characters
since the implementation in indicates that the type
should be assigned an empty string.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[172]

Mocking internal types
Depending on your project requirements, you might need to create mock objects for
internal types. Internal types or members in C# are accessible only within files in the same
assembly. Mocking internal types can be done by adding custom attributes to
the file of the concerned projects.

If the assembly containing the internal types does not already have the
file, you can add it. Also, when the assembly is not strongly-named, you can add the

 attribute, which has the public key excluded. You have to specify
the name of the project to share visibility with, which in this case should be the test project.

If you change the access modifier to internal, you will get the error,
. It is inaccessible due to its protection level. To be able to test ,

without changing the access modifier, we then add the file to the
project, and add the required attribute with the test project name specified in order to share
the assembly that contains with the test project:

The attribute added to the file is shown in the following snippet:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mocking Dependencies Chapter 6

[173]

Summary
The Moq framework, when used together with the xUnit.net framework, can deliver a
smooth unit testing experience and make the overall TDD process worthwhile. Moq
provides powerful features that, when used effectively, can simplify the creation of
dependencies mocking for unit tests.

Mock objects created with Moq can allow you to substitute the concrete dependencies in
your unit tests for the created mocks created by you in order to isolate different units in
your code for testing and subsequent refactoring, which can facilitate crafting elegant
production-ready code. Also, you can use mock objects to experiment and test features
available in dependencies that otherwise might not be easily done by using the live
dependencies.

In this chapter, we have explored the basics of mocking, and extensively used mocks in unit
tests. Also, we configured mocks to set up methods and properties and return exceptions.
Some other features provided by the Moq library were explained and mocks verification
was covered.

Project hosting and continuous integration will be covered in the next chapter. This will
include test and enterprise approaches to automate the running of tests to ensure that
quality feedback can be provided on the code coverage.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

77
Continuous Integration and

Project Hosting
In , .NET Core Unit Testing, we explored the various unit testing frameworks
available for .NET Core and C# and later explored in detail the xUnit.net framework. We
then moved on to the important concepts of data-driven unit tests in , Data-
Driven Unit Tests, which facilitate the creation of unit tests that can be executed with data
loaded from disparate data sources. In , Mocking Dependencies, we explained in
details dependencies mocking, where we walked through creation of simulated objects
using the Moq framework.

Effective practice of TDD can assist with providing useful and insightful feedback on the
quality of the code base of software projects. With continuous integration, the process of
build automation and code automated tests are taken to the next level, allowing
development teams to take advantage of the basic and advanced features available in
cutting edge modern source code version control systems.

Proper continuous integration setup and practice yield a rewarding continuous delivery
where a software project development process is done in such a way that it can be shipped
or delivered to production through the life cycle of the project.

In this chapter, we will explore the concepts of continuous integration and continuous
delivery. This chapter will cover the following topics:

Continuous integration
Continuous delivery
GitHub online project hosting
Basic Git commands
Configuring GitHub WebHooks
TeamCity continuous integration platform

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[175]

Continuous integration
Continuous integration (CI) is a software development practice where the source code of
software projects is integrated by members of a software development team daily into a
repository. It is preferably started at an early stage of the development process. The code
integration is usually carried out by a CI tool that performs the verification of the code
using an automated build script.

In a development team, there are often multiple developers working on different portions
of a project, with the source code of the project hosted in a repository. Each developer can
have a local version or working copy of the main branch or mainline on their computer.

A developer working on a feature will make a change to the local copy, and test the code
using a set of prepared automated tests to ensure that the code works and does not break
any existing working functionalities. Once this can be verified, the local copy is updated
with the latest from the repository. If there are any conflicts resulting from the update,
these conflicts need to be resolved before eventually committing or integrating the work
done into the mainline.

The source code repository facilitates adequate versioning of the code base of projects, by
keeping snapshots and versions of source files also the changes made overtime. Developers
can revert or checkout an earlier version of commits made if necessary. The repository can
be hosted locally on the team's infrastructure, such as having an onsite Microsoft Team
Foundation Server or a cloud-based repository, such as GitHub, Bitbucket, and a host of
others.

CI workflow
CI requires that a proper workflow be put in place. The first major integral part of CI is the
setup of a working source code repository. This is needed to keep track of all the changes
made by the contributors to the project and for coordinating the different activities.

In order to implement a robust and effective CI setup, the following areas need to be
covered and properly set up.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[176]

Single source code repository
To effectively use the source code repository, all the required files needed to successfully
build a working version of a project should be put in a single source code repository. The
files should include the source files, properties files, database scripts, and schema, as well
as third-party libraries and assets used.

Other configuration files can also be put in the repository, especially development
environment configurations. This will ensure the developers on the project have a
consistent environment setup. New members of the development team can easily set up
their environment, using the configuration available in the repository.

Build automation
The build automation step of the CI workflow is to ensure that changes in the a project's
code base are detected and automatically tested and built. The build automation is usually
done with the help of build scripts, which analyze the changes to be made and the
compilation needed to be done. The source code should be regularly built, preferably daily
or nightly. The success of a commit is measured based on if the code base has been
successfully built.

The build automation scripts should be able to build the system with or without the tests.
This should be configurable in the build. Irrespective of whether the developer's IDEs have
in-built build management in place, there should be a central build script configured on the
server to ensure the project can be built and easily run on the development server.

Automated tests
The code base should have automated tests that cover a large percentage of possible test
combinations using relevant test data. The automated tests should be developed using a
suitable test framework that can cover all tiers or parts of the software project.

With proper automation tests in place, bugs in the source code can be easily detected when
the automation build script runs. Integrating automated tests into the build process will
ensure that good test coverage and reports of failing or passing tests are provided to
facilitate refactoring of the code.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[177]

Identical test and production environments
In order to have a smooth CI experience, it is important to ensure that the test and
production environments are identical. Both environments should have similar hardware
and operating system configurations, as well as environment setup.

Also, for applications that use databases, both the test and production environments should
have the same versions. The runtimes and libraries should also be similar. However,
sometimes it might not be possible to test in every instance of the production environment,
such as desktop applications, but you must ensure that a replica of the production
environment is used in testing.

Daily commit
The overall health of the code base is determined by the successful build process run. The
project's mainline should be regularly updated with commits from the developers. It is the
responsibility of the developer making commits to ensure that the code is tested before
pushing to the repository.

In cases where a commit from the developer breaks the build, this should not be
procrastinated. A rollback can be done to fix the issue in isolation before committing the
changes again. The projects mainline or main branch should always be in good health.
Daily commits of changes is usually preferable.

Benefits of CI
Incorporating CI into development process can be greatly valuable to a development team.
The CI process provides numerous benefits, some of which are explained next.

Quick bugs detection
With a CI process in place, automated tests are run frequently and bugs can be discovered
on time and fixed, yielding a robust system of high quality. CI will not automatically
eliminate the bug in the system; developers must strive to write clean code that is well
tested. However, CI can facilitate the timely detection of bugs that otherwise would have
crept into production.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[178]

Improved productivity
A development team's overall productivity can be enhanced through CI as developers are
freed from mundane or manual tasks, which would have been automated as part of CI the
process. Developers can focus on the important tasks of developing the system's features.

Reduced risks
Sometimes, due to inherent complexities, software projects tend to overshoot budgets and
timelines due to underestimation of requirements and other issues. CI can assist in
reducing the risks associated with software development. With frequent code commits and
integration, a clearer picture of the state of the project can be established and any potential
issue can be easily isolated and dealt with.

Facilitating continuous delivery
For a development team that uses CI, continuous or frequent deployment becomes
relatively easy. This is because new features or requirements can be quickly delivered and
shipped. This will allow the users to provide adequate and useful feedback on the product,
which can be used to further refine the software and increase the quality.

CI tools
There are quite a number of CI tools available, each with different features that facilitate
easy CI and provide a good structure for the deployment pipeline. The choice of a CI tool
depends on several factors, including:

The development environment, program language, frameworks, and application
architecture
The development team's composition, level of experience, skills, and capabilities
The deployment environment setup, operating system, and hardware
requirements

Some of the popular and most used CI tools are explained next. These CI tools, when
effectively used, can assist a development team in achieving quality standards in software
projects.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[179]

Microsoft Team Foundation Server
Microsoft Team Foundation Server (TFS) is an integrated server suit containing a set of
collaborative tools to increase the productivity of software development teams. TFS provide
tools that can integrate with IDEs, such as Visual Studio, Eclipse, and many more IDEs
and code editors.

TFS provides sets of tools and extensions that facilitate a smooth CI process. Using TFS, the
process of building, testing, and deploying applications can be automated. TFS provides
great flexibility by supporting wide ranges of programming languages and source code
repositories.

TeamCity
TeamCity is an enterprise level CI tool by JetBrains. It has support for a bundled .NET CLI
and, similar to TFS, it provides support for automated deployment and composite builds.
TeamCity can verify and run automated tests on the server before the code is committed
through the plugins available for IDEs.

Jenkins
Jenkins is an open source CI server that can be run as a standalone or in a container, or
installed through native system packages. It is self-contained and capable of automating
testing, build related tasks, and application deployment. Through a set of chain-tools and
plugins, Jenkins can integrate with IDEs and source code repositories.

Continuous delivery
Continuous delivery is a sequel or an extension of CI. It is a set of software development
practices that make sure that a project's code can be deployed to a test environment that is
identical to the production environment. Continuous delivery ensures that all changes are
up-to-date and can be shipped and deployed to production, immediately once the changes
have passed the automated tests.

It is widely known that practicing CI will facilitate good communication among team
members and can eliminate potential risks. Development teams need to take this a step
further by practicing continuous delivery to ensure that their development activities are
beneficial to customers. This can be made possible by ascertaining that the application is
deployable and production-ready at any stage of the development cycle.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[180]

Through effective communication and collaboration of members of a development team,
continuous delivery can be achieved. This requires that the major parts of the application
delivery process are automated through a developed and refined deployment pipeline. At
any point in time, the application being developed should be deployable. The product
owner or the customer will determine when the application is deployed.

Benefits of continuous delivery
Through continuous delivery, a software development team's productivity can be
improved while also reducing the cost and turnaround time of releasing software
applications into production. The following are the reasons why your team should practice
continuous delivery.

Lower risks
Similar to CI, continuous delivery assists in lowering risks usually associated with software
releases and deployment. This can ensure zero downtime and an application's high
availability because the frequent changes made are regularly integrated and production-
ready.

Quality software products
Software products are readily made available to the end users due to the automation of the
testing, build, and deployment process. Users will be able to give useful and valuable
feedback that can be used to further refine and improve the quality of the application.

Reduced costs
Software project development and release costs can be greatly reduced, due to automation
of the different parts of the development and deployment processes. This is because costs
associated to incremental and continuous changes are eliminated.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[181]

GitHub online project hosting
GitHub is a source code hosting platform for version control that allows development team
members to collaborate and work on software projects, irrespective of their geographical
location. GitHub currently houses several open source and proprietary projects in different
programming languages.

GitHub provides basic and advanced features that make collaboration easier. It is
essentially a web-based source code repository or hosting service using Git as the version
control system, based on Git's distributed versioning behavior.

It is interesting to know that top companies such as Microsoft, Google, Facebook, and
Twitter host their open source projects on GitHub. Basically, any CI tool can be used with
GitHub. This gives development teams the flexibility to choose CI tools based on their
budgets, working with GitHub.

In addition to the source code hosting service provided by GitHub, public web pages can
also be hosted through GitHub for free. This feature allows GitHub users to create personal
websites that are related to the open source projects being hosted.

GitHub supports both public and private project repository hosting. Anyone can see the
files and the commit history of a public repository, while private repository access is
restricted to only the added members. Private repository hosting on GitHub comes with a
cost.

Project hosting
To create a project repository and have access to GitHub's features, you need to first create
a GitHub account. This can be done by navigating to . Upon a
successful account creation, you can proceed to create a project repository.

A GitHub repository is used to organize project folders, files, and assets. The files can be
images, videos, and source files. It is a common practice in GitHub for a repository to have
a file that contains a concise description of the project. Optionally, a software
license file can be added to the project.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[182]

The following steps describes how to create a new repository in GitHub:

Log in to GitHub with the account created.1.
Navigate to new or from the upper-right corner of the2.
screen, next to the account's avatar or profile picture, click on the + icon.
A drop-down menu is displayed where you can select New repository:3.

Name the repository and provide a project description.4.
Select Public, to make the repository publicly accessible.5.
Select Initialize this repository with a README, to include a file in the6.
project.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[183]

Finally, click on Create repository, to create and initialize the repository:7.

Branching with GitHub Flow
GitHub has a branch-based workflow known as GitHub Flow, with great supports and
tools for development teams to collaborate and frequently deploy projects.

GitHub Flow facilitates the following:

Creating branches from a new or existing repository
Creating, editing, renaming, moving, or deleting files
Sending a pull request from branches based on agreed changes

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[184]

Making changes on a branch as needed
Merging pull requests when a branch is ready to be merged
Housekeeping and cleaning up branches by using the delete button in the pull
request or on the branches page

Creating branches from a project is core to Git and is an extension to GitHub, which is the
central concept of GitHub Flow. Branches are created to try out new concepts, and ideas or
for working on a feature fix. A branch is a different version of the repository.

When creating a new branch, the usual practice is to create the branch off the master
branch. This will create a copy of all the files and configurations contained in the master at
that time. The branch is technically independent of the master as changes made on a branch
do not affect the master branch. However, new updates can be pulled from the master to
the branch and changes made on the branch can be merged back to the master.

The following diagram on GitHub, further explains the GitHub flow of the project branch,
where committed changes to a branch are merged to the master through a pull request:

The master branch must always be deployable at any time. Changes on created branches
should only be merged to the master branch after a pull request has been opened. The
changes will later be carefully reviewed and accepted after passing the necessary validation
and automated tests.

To create a new branch from the repository created earlier, perform the
following steps:

Navigate to the repository.1.
Click the dropdown located at the top of the file list with the caption Branch:2.
master.
Type a descriptive branch name that provides meaningful information about the3.
branch in the new branch text box.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[185]

Click on the highlighted link with the branch name supplied to create the branch:4.

For now, the newly created branch and the master branch are exactly the same. You can
begin to make changes to the created branch, by adding and modifying source files.
Changes are committed directly to the branch and not the master.

Committing changes facilitates the proper tracking of changes made to the branch over
time. A commit message is provided every time changes are to be committed. The commit
messages provide a detailed description of what the changes are about. It is important to
always provide commit messages because Git tracks changes using commits. This can
facilitate easy collaboration on a project, with the commit messages providing a history of
the changes made.

In the repository, each commit is a distinct unit of change. If the working code base breaks
as a result of a commit, or the commit introduces a bug, the commit can be rolled back.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[186]

Irrespective of whether the changes you made to the code base are small or large, you can
initiate a pull request at any time during the project development process. Pull requests are
central to collaboration in GitHub as these facilitate the discussion and review of commits
made.

To open a pull request, click the New pull request tab. You will be taken to the pull request
page, where you can provide a comment or description for the request, and click the New
pull request button:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[187]

When you open a pull request, the owners or maintainers of the project are notified about
the pending changes and your intention to have a merge. Necessary feedback can be
provided to further refine the code after an appropriate review has been done on the
changes made to the branch. The pull request shows the differences of the files and contents
of your branch and the master branch. If the contributions made are deemed to be okay,
they will be accepted and merged to the master branch:

After a pull request has been initiated, the changes are reviewed by the participating team
members and comments are provided based on the current position of the repository. You
can continue to make changes while a pull request is open, and any comments associated
with the review will be shown on the unified pull request view. Comments are written in
markdown and contain pre-formatted text blocks, images, and emoji.

Once the pull request has been reviewed and accepted, they will be merged into the master
branch. The following steps can be followed to merge requests in GitHub. Click the Merge
pull request button to merge the changes into master. Then click Confirm merge, which
will merge the commits on the branch to the master:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[188]

A history of pull requests are kept in GitHub and can be searched later on to determine
why the pull requests were initiated while providing access to the review done and the
comments added.

Basic Git commands
Git is a distributed version control system (DVCS). The branching system of Git is very
robust and makes it stand out among other version control systems. Using Git, several
branches of a project can be created, independent of each other. The process of creation,
merging, and deletion of branches are seamless and very fast.

Git greatly supports the concept of frictionless context switching, where you can easily
create a branch to explore your ideas, create and apply patches, make commits, merge the
branches, and later switch back to the earlier branch you were working on. The branching
workflow being used will determine whether to create a branch for each feature or group of
features, while easily switching between the branches to test the features.

Your development can get organized and be productive with Git, by having different
branches for your production, test, and development, thereby controlling the flow of files
and commits that go into each branch. By having a good repository structure, you can
easily and quickly experiment with new ideas and delete the branches when done.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[189]

Git has a rich set of useful commands that when mastered provide full access to its internals
and allow basic and advanced source code versioning operations. Git provides command
line interface and graphical user interface clients for the Windows, Macintosh, and Linux
operating systems. The commands can be run from the Terminal on Mac and Linux, while
in Windows there is Git Bash, an emulator used to run Git from the command line.

The available commands on Git are used to perform the initial setup and configuration of
the source code repository, sharing and updating projects, branching and merging, as well
as various source code versioning related operations.

Configuration commands
There are a set of commands that can be used to configure user information that cut across
all local repositories on the computer where Git is installed. The command is
used to get and set global repository options. It accepts the option which is
followed by the specific configuration to get or set entries from the global file.

To set the global username that will be attached to all commit transactions, run the
following:

git config --global user.name "[name]"

The global user email address can also be set. This will attach the set email address to all
commit transactions. Run the following command to achieve that:

git config --global user.email "[email address]"

For good aesthetics, you can enable colorization of the command line output, using the
following command:

git config --global color.ui auto

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[190]

Initializing repository commands
The command is used to create an empty Git repository as well as to reinitialize
an existing repository. When the command is run, a directory is created
alongside sub-directories to hold objects, , , template files, and an
initial HEAD file, which references the HEAD of the master branch. In its simplest form,
the command passes the repository name, and this creates a repository with the
specified name:

git init [repository-name]

To update and pick newly added templates or relocate a repository to another location,
 can be rerun in an existing repository. The command will not overwrite the

configurations already in the repository. The full command synopsis is as
follows:

git init [-q | --quiet] [--bare] [--template=<template_directory>]
 [--separate-git-dir <git dir>] [--shared[=<permissions>]] [directory]

Let's discuss the preceding command in detail:

The or option when used will print errors and warning messages
while other output messages are suppressed.
The option is used to create a bare repository.

 is used to specify the folder where the
templates will be used.

 is used to indicate the directory or path to
the repository, or the path to move the repository to, in case of re-initialization.

 is
the option is used to notify Git that the repository is to be shared among many
users. Users that are in the same group can push into the repository.

Using the command, the existing repository can be cloned into a new directory.
The command creates remote-tracking branches for all the branches in the cloned
repository. It will download the project and its entire version history. The

 command can simply be used by passing the URL of the repository as an option:

git clone [url]

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[191]

The URL passed to the command will contain information of the transport protocol, the
address of the remote server, and the repository path. The protocols Git supports are SSH,
Git, HTTP, and HTTPS. The command has other options that can be passed to it, to
configure the repository to be cloned.

Change commands
Git has a set of useful commands that are used to check the status of files in the repository,
review updates made to the files, and commit changes made to the project files.

The command is used to show the working status of the repository. The
command essentially gives a summary of the files that have changed and are staged for the
next commit. It displays the paths of the files that have differences between the current
HEAD commit and the index file. It also displays the paths of the files that have differences
between the index file and the working tree as well as paths of the files that are not
currently being tracked by Git but have not been added in the file:

git status

The command uses the content found in the working tree to update the index. It
basically adds file content to the index. It is used to add the current content of existing
paths. It can be used to remove paths that no longer exist in the tree or add content with the
part of the changes made to the working tree.

The practice is usually to run the command several times before performing a commit. It
adds the content of the files as it was at the time when the command was run. It takes
options that are used for tweaking its behavior:

git add [file]

The command is used to record or store the content of the index in a commit
together with the commit message supplied by the user to describe the changes made to the
project files. The changes must have been added, using , before the command is
run.

The command is flexible and the usage allows different options for recording the changes.
An approach is to list the files with changes as parameters to the commit command, which
informs Git to ignore changes staged in the index and store the current contents of the listed
files.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[192]

Also, switch can be used with the command to add changes from all files that are listed
in the index and are not in the working tree. Switch is used to specify the commit
message:

git commit -m "[commit message]"

Sometimes, it is desirable to display the differences or changes between the index and the
working tree, changes available between two files or blob objects. The command
is used for this purpose. When the option is passed to the command, Git
displays the differences between the staging and the last file version:

git diff

The command removes files from the working tree and the index. The files to be
removed are passed as an option to the command. The files passed to the command as
arguments are deleted from the working directory and staged for deletion. When the

 option is passed to the command, Git does not delete the file from the working
directory, but removes it from the version control:

git rm [files]

The command can be used to unstage and preserve the contents of files that
have already been staged in a repository. The command is used to reset the current to
a specified state. Also, it can be used to modify the index and working tree, based on the
option specified.

The command has three forms. The first and second forms are used to copy the entries from
tree to the index, while the last form is used to set the current branch to a particular
commit:

git reset [-q] [<tree-ish>] [--] <paths>
git reset (--patch | -p) [<tree-ish>] [--] [<paths>]
git reset [--soft | --mixed [-N] | --hard | --merge | --keep] [-q]
[<commit>]

Branching and merging commands
The command is core to the Git version control system. It is used to create,
move, rename, delete, and list available branches in a repository. The command has several
forms and accepts different options used to set up and configure repository branches.
When the command is run on Bash, without specifying an option, the
available branches in the repository are listed. This is similar to using the option.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[193]

To create a new branch, the command is run with the branch name as the
argument:

git branch [branch name]

The option is used to delete the branch specified, and the option is used
to create a copy of the specified branch alongside its .

To update the files in a working tree or branch to match what is available in another
working tree, the command is used. The command is used to switch branch
or to restore working tree files. Similar to , it has several forms and accepts
different options.

When the command is run with the branch name passed as an argument, Git switches to
the branch specified, updates the working directory, and points the HEAD at the branch:

git checkout [branch name]

As discussed in the previous section, branching concepts allow development teams to try
out new ideas and create new versions of a project from existing ones. The beauty of
branching lies in being able to incorporate changes from one branch to another, in essence
joining or merging branches or development lines together.

In Git, the command is used for the purpose of integrating development
branches created from a branch into a single branch. For example, if there is a development
branch, created from a master branch to test a certain feature, when the

 command is run, Git will retrace the changes that have been made to the
branch. This is because it was spurned from the master branch until the latest branch and
stores these changes on the master branch in a new commit:

git merge [branch name]
git merge --abort
git merge -- continue

Quite often, the merge process can result in conflicts between files of the different branches.
Running the command will abort the merge process and restore the
branches back to the pre-merge state. After the conflicts encountered have been resolved,

 can be run to re-run the merge process.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[194]

Configuring GitHub WebHooks
A WebHook is an event notification delivered through an HTTP POST. A WebHook is
often referred to as a web callback or HTTP push API. A WebHook provides a mechanism
by which an application delivers data to other applications in real time as they arrive.

A WebHook differs from a regular API in that there is no continuous resource utilization
through polling of data to get the latest data. The subscriber or consuming application
receives the data when it is available through a URL that must have been registered with
the WebHook provider. A WebHook is effective and efficient for both the provider of the
data and the consumer.

Consuming WebHooks
To receive notifications or data from a WebHook, the consuming application needs to
register a URL with the provider. The provider will deliver the data through POST to the
URL. The URL must be publicly accessible from the web and be reachable.

The WebHook provider usually delivers the data through HTTP POST as JSON, XML, or as
a form data through multipart or URL encoded. The implementation of the API at the URL
of the subscriber will be influenced by the mode of data delivery used by the WebHook
provider.

Quite often, there are situations that require that WebHooks be debugged. This might be to
troubleshoot an error. This can sometimes be challenging because of the asynchronous
nature of WebHooks. First, the data from the WebHook must be understood. This can be
achieved using tools that can get and parse WebHook requests. Based on the knowledge of
the structure and content of the WebHook data, the requests can be mocked in order to test
the URL API code to resolve the issue.

When consuming data from a WebHook, it is important to be security aware and factor this
into the design of the consuming application. Because the callback URL that the WebHook
provider will POST data to is publicly available, it can be subject to malicious attacks.

A common and easy approach is to append to the URL a mandatory authentication token
that will be verified on each request. Also, basic authentication can be built around the URL
to verify the party initiating the POST before accepting and processing the data.
Alternatively, the provider can sign every WebHook request, if the request signing is
already implemented at the provider's end. The signature of every request posted will be
verified by the consumer.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[195]

Depending on the frequency of events generation from the subscriber, a lot of requests can
be raised by WebHooks. If the subscriber is not properly designed to handle such large
requests, this can lead to high resource utilization, both in terms of bandwidth and server
resources. When resources are fully utilized and used up, the consumer might no longer be
able to handle more requests, resulting in a denial of service of the consumer application.

GitHub WebHook
In GitHub, WebHooks serve as a means of delivering notifications to an external web
server when events occur. GitHub WebHooks allow you to set up your projects that are
hosted on GitHub to subscribe to the desired events available on the
platform. When the event occurs, GitHub sends a payload to the configured endpoint.

WebHooks are configured on any of the repository or at the organizational level. Once
successfully configured, the WebHook will be triggered every time a subscribed event or
action is triggered. GitHub allows for the creation of up to 20 WebHooks per event for a
repository or organization. The WebHooks, after installation, can be triggered on a
repository or organization.

Events and payloads
At the point of WebHook configuration in GitHub, you can specify which events you want
to receive requests from GitHub. WebHook requests data is termed payloads in GitHub. It
is smarter to subscribe to only the events for the data that is needed so as to limit the HTTP
requests sent to the application server from GitHub. By default, even a WebHook created
on GitHub is subscribed to the event. Event subscriptions can be modified through
the GitHub web or API.

Some of the available events that can be subscribed to on GitHub are explained in the
following table:

Event Description
This is the default event and is raised when there is a Git push to a
repository. This also includes editing tags or branches and commits made
via API actions that update references
Raised whenever a branch or tag is created.
Raised whenever a branch or tag is deleted.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[196]

Raised whenever an issue is assigned, unassigned, labeled, unlabeled,
opened, edited, milestoned, de-milestoned, closed, or reopened.
Raised whenever a repository is created, deleted (organization hooks only),
archived, unarchived, made public, or made private.
This is a wildcard event and indicates that the URL should be notified for
any event.

A full list of all available events on GitHub is available at
.

The event has a payload that contains more detailed information. Every event in
GitHub has a specific payload format that describes the information required for that event.
Besides the specific fields peculiar to an event, each event includes in the payload the user
or sender who triggers the event.

Also, included in the payload is the repository or organization that the event occurred on
and the application that the event is related to. Payloads cannot exceed 5 MB in size. An
event that produces a payload with a size larger than 5 MB will not be fired. A payload
delivered to the URL usually contains several headers, some of which are explained in the
following table. When a new WebHook is created, GitHub sends a ping to the configured
URL, as an indicator that the WebHook configuration was successful:

Header Description
User agent initiating the request. This will always have the prefix

.

Contains the name of the event that triggered the delivery.
A GUID to identify the delivery.
This header contains the HMAC hex digest of the response body.
This header will be sent if the WebHook is configured with a
secret. The content of the header is generated using the
function and the secret as the HMAC key.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[197]

Setting up your first WebHook
To configure a WebHook, we will use the repository created earlier.
Click on the Settings page of the repository, click on Webhooks, and click on Add
webhook:

GitHub will ask you to authenticate the action. Supply your GitHub account password to
continue. The WebHook configuration page will be loaded, where you can configure the
options for the WebHook:

In the Payload URL field, provide the endpoint of the web application server.1.
Since we will be running the from Visual Studio, we will use
the following URL: .
Change the Content type dropdown to application/json, to allow GitHub to2.
send the payload via POST as JSON.
Next, choose the option Let me select individual events. This will display a full3.
list of available WebHook events.
Select the events that you want the WebHook to subscribe to.4.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[198]

Finally, click on the Add webhook button, to finish the configuration:5.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[199]

Once the WebHook has been created, GitHub will attempt to send a ping to the configured
URL in the WebHook. The URL specified, , is a
local development and not publicly available. It is therefore not reachable by GitHub,
causing the WebHook request to fail:

To expose the development environment to the internet to make it accessible to GitHub, we
can use Ngrok, a tool to create a public URL for exposing a local web server. Navigate to

 to download Ngrok for your operating system.

Run the following command to tell Ngrok to expose port to the internet:

ngrok http -host-header="localhost:54113" 54113

Ngrok will create a public URL that will be accessible and forwarded to the specified port
on your development PC. In this case, Ngrok generated as
the URL that will be forwarded to port :

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[200]

Next, update the payload URL for the WebHook created earlier to
. Click on the Update WebHook button to

save the changes. Under Recent Deliveries tab, click on the GUID for the payload that
failed to deliver. This will open up a screen showing the JSON payload, with a request and
response.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[201]

Click on the Redeliver button. This will display a dialog box asking you if want to redeliver
the payload. Click on Yes, redeliver this payload button. This will attempt to POST the
JSON payload to the new endpoint specified in the payload URL field. This time, the
payload delivery will be successful with HTTP response code , indicating that the
endpoint was contacted successfully:

You can program the consumer web application to process the payload data the way you
want. With the successful configuration, GitHub will POST the payload to the endpoint
whenever any event subscribed to in the WebHook is raised.

TeamCity CI platform
TeamCity is a platform-independent CI tool by JetBrains. It is a user-friendly CI tool
specifically built with software developers and engineers in mind. TeamCity is a robust and
powerful CI tool because of the capability to fully optimize the integration cycle.

TeamCity can also run builds in parallel simultaneously on different platforms and
environments. Using TeamCity, you can have customized statistics on code quality, build
duration, or even create custom metrics. It has a feature for running code coverage and it
has a duplicates finder.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[202]

TeamCity concepts
In this section, some basic terms regularly used in TeamCity will be explained. This is
necessary in order to understand some of the concepts required to successfully configure
the build steps as well as artifacts needed for a quality continuous process. Let's have a look
at some basic terms:

Project: This is the software project being developed. It can be a release or
specific version. Also, it includes the collection of Build Configurations.
Build Agent: This is the software that executes a build process. It is installed
independently from the TeamCity Server. They can both reside on the same
machine or on separate machines running similar or different operating systems.
For production purposes, it is usually recommended that they both are installed
on different machines for optimal performance.
TeamCity Server: The TeamCity Server monitors the Build Agents while using
compatibility requirements to distribute builds to connected agents, and it
reports the progress and results. The information in the results include the build
history, logs, and build data.
Build: This is the process of creating a specific version of a software project.
Triggering a build process places it in the Build Queue and will be started when
there is an available agent to run it. The Build Agent sends Build Artifacts to the
TeamCity Server upon completion of the build.
Build Queue: This is a list containing builds that have been triggered and yet to
be started. The TeamCity Server reads the queue for pending builds and
distributes the build to compatible Build Agents the moment the agent is idle.
Build Artifacts: These are files generated by a build. These can include files,
executables, installers, reports, log files, and so on.
Build Configuration: This is a collection of settings describing a build procedure.
This includes VCS Roots, Build Steps, and Build Triggers.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[203]

Build Step: A Build Step is represented by a build runner with integration with a
build tool, such as MSBuild, a code analysis engine, and a testing framework,
such as xUnit.net. The build step is essentially a task to be executed, which can
contain many steps that are sequentially executed.
Build Trigger: This is a set of rules that triggers a new build on certain events,
such as when a VCS triggers a new build when TeamCity detects changes in the
configured VCS Roots.
VCS Root: This is a collection of version control settings, including paths to
sources, credentials, and other settings that define the way TeamCity
communicates with a version control system.
Change: This is a modification to the source code of the project. A Change is
termed pending for a certain Build Configuration when the Change has been
committed to the version control system, but not yet included in a build.

Installing TeamCity Server
TeamCity can be hosted locally on a development team's server infrastructure or by
integrating TeamCity with cloud solutions. This allows virtual machines to be provisioned
to run TeamCity. A TeamCity installation will comprise of the server installation and a
default Build Agent.

To install the TeamCity Server, navigate to the JetBrains download site to get the free
professional edition of the TeamCity Server which comes with free licence key that unlocks
3 Build Agents and 100 Build Configurations. If you are on the Windows operating system,
run the download , which is bundled with Tomcat Java JRE 1.8. Follow the dialog
prompts to extract and install the TeamCity core files.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[204]

During the installation, you can set up the port that TeamCity will be listening to or leave it
at default . If the installation is successful, TeamCity will open in the browser,
prompting you to complete the installation process by specifying the Data Directory
Location on the server. Specify the path and click Proceed:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[205]

After the Data Directory Location path has been initialized, you will be taken to the
database selection page, where you will be given the option of selecting any of the
supported databases. Select Internal (HSQLDB) and click the Proceed button:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[206]

The database configuration will take a few seconds, before you are presented with the
license agreement page. Accept the license agreement and click on the Continue button.
The next page is the admin account creation page. Create the account with the desired
credentials to finish the installation. After the installation is completed, you will be directed
to the overview page:

TeamCity CI workflow
The TeamCity build life cycle describes the data flow between the server and the agents.
This is basically the information passed to the agents and the process of retrieving the
results by TeamCity. The workflow describes the manner in which configured build steps
for projects are executed end to end:

The TeamCity Server detects a change in the VCS Root and persists this in the1.
database.
The Build Trigger notices the change in the database and adds a build to the2.
queue.
The TeamCity Server assigns the build on the queue to a compatible idle Build3.
Agent.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[207]

The Build Agent executes the build steps. During the execution of the build steps,4.
the agents sends reports of the build progress to the server. The Build Agent
reports the build progress to the TeamCity Server to allow for real time
monitoring of the build process.
The Build Agent sends Build Artifacts to the TeamCity Server upon completion5.
of the build.

Configuring and running build
Essentially, a project should contain configuration and project properties required to run a
successful build. Using the TeamCity CI server, the steps required to run tests, perform
environmental checks, compile, build, and make available a deploy-ready version of a
project can be automated end to end.

The installed TeamCity Server can be accessed locally at the port specified during
installation. In this case, we will use . To create a TeamCity
project, navigate to the server URL and log in using the earlier created credentials. Click on
the Projects menu and click on the Create Project button.

You will be presented with several project options for creating the project from a
repository, manually, or connecting to any of GitHub, Bitbucket, or Visual Studio Team
Services. Click on the From GitHub.com button to connect TeamCity to the

 repository we created earlier on GitHub:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[208]

The Add Connection dialog is displayed where TeamCity will be connected to GitHub. A
new GitHub OAuth application needs to be created to successfully connect TeamCity to
GitHub. To create a new OAuth application in GitHub, perform the following steps:

Navigate to .1.
In the homepage URL field, supply the URL of the TeamCity Server:2.

.
Supply in the3.
Authorization callback URL.
Click on the Register application button to complete the registration. A new4.
client secret and client ID will be created for you:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[209]

The new client ID and client secret created will be used to fill the fields in the add5.
connection dialog on TeamCity to create a connection from TeamCity to GitHub.
Click on the Save button to save the settings:

The next step is to authorize TeamCity to have access to the VCS. This can be6.
done by clicking the Sign in to GitHub button. A page will be displayed where
you have to authorize TeamCity to access both public and private repositories in
the GitHub account. Click Authorize to complete the process.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[210]

TeamCity will initiate a connection to GitHub to retrieve the list of7.
available repositories that you can select from. You can filter the list to select the
desired repository:

Connection to the selected repository will be verified by TeamCity. If this is8.
successful, Create Project will be displayed. On this page, the project and Build
configuration name will be displayed. You can modify this if required. Click the
Proceed button to continue with the project setup:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[211]

In the next screen, TeamCity will scan the connected repository for available9.
configured build steps. You can click on the Create Build Step button to add a
build step:

In the New Build Step screen, you have to select the build runner from the10.
dropdown.
Specify a descriptive name for the build step.11.
Next select the command that you want the build runner to execute. Fill in all the12.
other required fields
Click the Save button to save the build step:13.

Once the build step is saved, the list of the available build steps will be displayed14.
where you can add more build steps as desired following the same procedure.
Also, you can reorder the build steps and can detect build steps, by clicking the
Auto-detect build steps button.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Continuous Integration and Project Hosting Chapter 7

[212]

After configuring the build steps, you can run the build by clicking on the run15.
link on the top menu of the TeamCity web page. This will redirect to you to the
build result page where you can view the progress of the build and subsequently
review it or edit the Build Configuration:

Summary
In this chapter, we have extensively explored the concept of CI, a software development
practice that assists development teams in integrating their code frequently. Developers are
expected to check the code several times a day, which is then verified by an automated
build process, using a CI tool.

Also, common terminologies of CI be for continuous delivery were discussed. We
explained the steps on how to host software projects on GitHub and online hosting
platforms and later discussed basic Git commands.

The process of creating GitHub WebHooks to configure integrations with build
management systems was explored. Finally, a step-by-step description of installing and
configuring the TeamCity CI platform was given.

In the next chapter, we will explore Cake Bootstrapper and configure TeamCity to use a
cross-platform build automation system called Cake to clean, build, and restore package
dependencies and test our project.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

88
Creating Continuous Integration

Build Processes
Continuous feedback, frequent integration, and timely deployment, which all result from
the practice of continuous integration, can greatly reduce the risks associated with the
software development process. A development team can improve productivity, reduce the
amount of time required to deploy, and benefit tremendously from CI.

In , Continuous Integration and Project Hosting, we set up TeamCity, a robust
continuous integration tool, that simplifies and automates the process of managing source
code check-ins and changes, testing, building, and deploying the software project. We
walked through the creation of build steps in TeamCity and connected it to our

 project in GitHub. TeamCity has in-built features that allow it to
connect to software projects hosted on GitHub or Bitbucket.

The CI process brings many different steps together into an easily repeatable process. These
steps vary based on the software project type, but there are steps that are common and
applicable to most projects. These steps can be automated using a build automation system.

In this chapter, we will configure TeamCity to use a cross-platform build-automation
system, called Cake, to clean, build, and restore package dependencies, and test the

 solution. Later in the chapter, we will explore the build-step creation
with a Cake task in Visual Studio Team Services. We will cover the following topics:

Installing the Cake Bootstrapper
Writing build scripts in C#
Cake extension for Visual Studio
Using Cake tasks to build steps
CI with Visual Studio Team Services

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[214]

Installing the Cake Bootstrapper
Cake is a cross-platform build-automation framework. It is a build-automation framework
for compiling codes, running tests, copying files and folders, as well as running build-
related tasks. Cake is open source with the source code hosted on GitHub.

Cake has the feature to make working with file system paths easy and has functionality for
manipulating XML, starting processes, I/O operations, and parsing Visual Studio Solutions.
Using Cake build-related activities can be automated using C# domain-specific language.

It employs a dependency-based programming model for build automation, through which
tasks are declared alongside dependencies between the tasks. The dependency-based
model is ideal and suitable for build automation because the majority of automation build
steps are idempotent.

Cake is truly cross-platform; its NuGet package, Cake.CoreCLR, allows it to run on
Windows, Linux, and Mac using .NET Core. It has a NuGet package that can be used to run
on Windows relying on .NET Framework 4.6.1. Also, it can use the Mono framework to run
on Linux and Max, with Mono Version 4.4.2 recommended.

Irrespective of the CI tool being used, Cake has consistent behavior across all supported
tools. It has wide support for most tools used during builds, which include MSBuild,
ILMerge, Wix, and Signtool.

Installation
In order to use the Cake Bootstrapper, Cake needs to be installed. The easy approach to
install Cake and test run the installation is to clone or download a file, which is the
Cake build example repository located at: . The
example repository contains a simple project and all the files necessary to run the Cake
script.

In the example repository, there are certain files of interest and .
They are the bootstrapper scripts that ensure that the needed dependencies by Cake
together with Cake and the necessary files are installed. These scripts make invoking Cake
easier. The file is the build script; the build script can be renamed, but the
bootstrapper will locate the file by default. The

/ file is the package configuration that instructs the
bootstrapper script which NuGet packages to install in the folder.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[215]

Extract the downloaded example repository archive file. On Windows, open a PowerShell
prompt and execute the bootstrapper script by running . On Linux and Mac,
open the terminal and run . The bootstrapper script will detect that Cake is not
installed on the computer and automatically download it from NuGet.

Based on the bootstrapper script execution, upon completion of Cake download, the
downloaded sample script will run, which will clean up the output directory,
and restore referenced NuGet packages before building the project. When the
file runs, it should clean the test project, restore the NuGet packages, and run the unit tests
in the project. The and will be presented as shown in
the following screenshot:

The Cake Bootstrapper can be installed by downloading it from the Cake Resources
repository hosted on GitHub (), which
contains configuration files and bootstrappers. The bootstrapper will download Cake and
the necessary tools required by the build script, thereby avoiding storing binaries in the
source code repository.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[216]

PowerShell security
Often, PowerShell can prevent the running of the file. You can get an error on
the PowerShell screen that cannot be loaded because running scripts is disabled
on the system. This restriction in running the file is due to the default security settings
available in PowerShell.

Open the PowerShell window and change the directory to the folder of the Cake build
example repository that was downloaded earlier, and run the command. If
the execution policy on the system has not been changed from the default, this should give
you the following error:

To view the current execution policy configurations on the system, run the
 command on the PowerShell screen; this command will present

a table with the available scopes and execution policies, like in the following screen. Based
on the way you run PowerShell, you might have different settings on your instance:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[217]

To change the execution policy to allow the scripts to run subsequently, run the
 command, which is intended to

change the process scope from undefined to . Running the command will
display a warning with a prompt on the PowerShell screen stating your PC might be
exposed to security risks. Type Y for Yes and press Enter. The following screenshot shows
what is displayed on the PowerShell screen when the command is run:

This will change the execution policy of the PC and allow PowerShell scripts to be run.

Cake Bootstrapper installation steps
The steps to install Cake Bootstrapper are similar for the platforms with little differences.
Perform the following steps to set up the boostrapper.

Navigate to the Cake resource repository to download the boostrapper. For Windows,
download the PowerShell file and for Mac and Linux, download the
bash file.

On Windows, open a new PowerShell window and run the following command:

Invoke-WebRequest https://cakebuild.net/download/bootstrapper/windows -
OutFile build.ps1

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[218]

On Mac, run the following command from a new shell window:

curl -Lsfo build.sh https://cakebuild.net/download/bootstrapper/osx

On Linux, open a new shell to run the following command:

curl -Lsfo build.sh https://cakebuild.net/download/bootstrapper/linux

Create a Cake script to test the installation. Create a file; which should be
placed in the same location as the file:

The Cake script created in Step 2 can now be run by invoking the Cake Bootstrapper.

On Windows, you need to instruct PowerShell to allow running scripts, this is done by
changing the Windows PowerShell script execution policy. The PowerShell script execution
can fail due to the execution policy.

To execute the Cake script, run the following command:

./build.ps1

On Linux or Mac, you should run the following command to give the current owner
permission to execute the script:

chmod +x build.sh

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[219]

Once the command has been run, the bootstrapper can be invoked to run the Cake script
created in Step 2:

./build.sh

Writing build scripts in C#
Automating the build and deployment tasks using Cake allows you to avoid issues and
headaches associated with project deployments. A build script usually contains the steps
and logic required to build and deploy the source code alongside configuration files and
other artifacts of a project.

Using the sample file available on the Cake resource repository can be a
starting point for writing a build script for a project. However, to achieve more, we will
walk through some basic Cake concepts that can facilitate writing robust scripts for
automating build and deployment tasks.

Task
At the core of the build automation with Cake is the task. A task in Cake is a simple unit of
work that is used to carry out a specific action or activity in a desired defined order. Tasks
in Cake can have specified criteria, associated dependencies, and error handling.

A task can be defined by using the method, with the task name or caption passed into
it as an argument:

For example, the task in the following snippet cleans the folder to
delete the contents. When the task is run, the method will be invoked:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[220]

Cake allows you to use C# to use the async and await features in a task to create
asynchronous tasks. Essentially, a task itself will run synchronously with a single thread,
but the code contained in a task can benefit from the asynchronous programming features
and utilize asynchronous APIs.

Cake has the method that can be used to add a collection of items or a
delegate that yields a collection of items as actions to a task. When a delegate is added to a
task, the delegate will be executed after the task is executed:

Define by chaining it to the method, as in the following snippet:

TaskSetup and TaskTeardown
 and are used to wrap code to execute actions that you want the

build to perform before and after the execution of each task. These methods are especially
useful when performing actions such as configuration initializations and custom logging:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[221]

Similar to and for task, Cake has the and
methods that can be used to execute actions that are intended to run before the first task
and after the last task, respectively. These methods are useful in a build automation, with a
good use case being, for example, when you intend to start up some server and services
before running tasks and for the cleanup activities afterwards. The or
methods are to be called before to ensure they work correctly:

Configuration and preprocessor directives
Cake operations can be controlled through the use of environment variables, configuration
files, and by passing arguments into the Cake executable file. This is based on a specified
priority in which the configuration file overrides the environment variables and arguments
passed into Cake, and then overrides entries defined in both environment variables and the
configuration file.

For example, if you intend to specify the tool path, which is the directory that cake checks
when restoring tools, you can create the environment variable name
and set the value to the Cake tools folder path.

When using configuration file, the file should be placed in the same directory as the
 file. The Cake tools path can be specified in the configuration file, like in the

following snippet, which overrides whatever is set in the environment variable:

The Cake tools path can be passed directly into Cake, which will override what is set in
both the environment variable and configuration file:

cake.exe --paths_tools=./tools

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[222]

Cake has values that are used by default for the configuration entries, if they are not
overridden using any of the methods for configuring Cake. The available configuration
entries are shown here with their default values and how to configure them using the
configuration methods:

Preprocessor directives are used in Cake to reference assemblies, namespaces, and scripts. The
preprocessor line directives run before the script is executed.

Dependencies
Often, you will create tasks whose execution will depend on the completion of other tasks;
to achieve this, you use the and methods. To create a task
that is dependent on another task, use the method. In the following build
script, Cake will execute before is executed:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[223]

Using the method, you can define task dependencies with reversed
relationships. This implies that where the tasks that depend on a task are defined in that
task. The preceding build script can be refactored to use the reversed relationship:

Criteria
When criteria is used in the Cake script, it allows you to control the flow of the execution of
the build script. A criteria is a predicate that must be fulfilled for the task to execute. The
criteria does not affect the execution of the succeeding task. Criteria is used to control task
execution based on specified configurations, environmental states, repository branches, and
any other desired options.

In the simplest form, you can use the method to specify the criteria of the
execution of a particular task. For example, if you want to clean the folder
only in the afternoon, you can specify the criteria as in the following script:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[224]

You can have a task whose execution is dependent on another task; in the following script,
the criteria for the task will be set when the task is created, while the criteria
for the task evaluation will be done during task execution:

A more useful use case will be to write a Cake script with criteria that checks a local build
and executes some actions that will clean, build, and deploy a project. Four tasks will be
defined, one for each of the actions to be performed and the fourth to chain the actions
together:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[225]

Cake's error handling and finally block
Cake has error handling techniques that you can use to recover from errors or graciously
handle exceptions whenever they occur during the build process. Sometimes build steps
call external services or processes; invocation of these external dependencies might cause
errors that can cause the overall build to fail. A robust build should handle such exceptions
without stopping the entire build process.

The method is a task extension that is used when you need to act on an exception
generated in the build. Instead of forcefully terminating the script, you can write code to
handle the error in the method:

Sometimes you might want to ignore the error thrown and just continue the execution of a
task that generates the exception; you can use the task extension to
achieve this. When using the method, you cannot use the
method with it:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[226]

If you wish to report the exception generated in a task, and still allow the exception to
propagate and take its course, use the method. If, for any reason, an
exception is thrown inside the method, it is swallowed:

Also, you can use the method to defer any thrown exception till the task
being executed is completed. This will ensure that the task executes all actions specified in
it before the exception is thrown and the script fails:

Lastly, you can use the method to execute any action, irrespective of the outcome
of the task's execution:

LoanApplication build script
To demonstrate the power of Cake, let's write a Cake script to build the
project. The Cake script will clean the project folder, restore all package references, build
the entire solution, and run unit test projects in the solution.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[227]

The following script sets arguments to be used throughout the script, defines the directories
and the tasks to clean the folder of the project, and restores
packages using the method. NuGet packages can be restored by
using the method, which in turn uses the
command:

The later portion of the script contains tasks to build the entire solution using the
 method, which builds the solution using the command,

using settings provided in the object. The test projects are
executed using the method, which runs the tests in all the test projects in
the solution using and the settings provided in the

 object:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[228]

The Cake Bootstrapper can be used to run the Cake file by invoking the bootstrapper
from the PowerShell window. When the bootstrapper is invoked, Cake will use the task
definition available in the file to commence execution of the defined build tasks.
When the execution begins, the progress and status of the execution is presented in the
PowerShell window:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[229]

The progress of the execution of each task will be displayed on the PowerShell window
with all the activities that Cake is currently undergoing. When the build execution
completes, the duration of the execution of each task in the script will be displayed along
with the total execution time of all the tasks:

Cake Extension for Visual Studio
The Cake Extension for Visual Studio Add-in brings language support for Cake build
scripts to Visual Studio. The extension supports new templates, a task runner explorer, and
the ability to bootstrap Cake files. Cake Extension for Visual Studio can be downloaded at
Visual Studio Market Place (

).

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[230]

The file downloaded from the marketplace is essentially a file. This file
contains the contents of the Cake extensions to be installed in Visual Studio. When the
downloaded file is run, it will install Cake support for Visual Studio 2015 and 2017:

Cake templates
After installing the extension, a Cake template will be added to the available options in
Visual Studio when creating new projects. The extension will add four different Cake
project templates types:

Cake Addin: This is a project template for creating Cake Addin
Cake Addin Unit Test Project: This is the project template for creating unit tests
for Cake Addin and it includes samples that serve as guidelines
Cake Addin Unit Test Project (empty): This is the project template for creating
unit tests for Cake Addin but without the sample included
Cake Module: This template is used to create the Cake module and it comes with
samples

The following image shows the different Cake project templates:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[231]

Task Runner Explorer
In a Visual Studio solution that uses a Cake script for build automation, the Cake task
runner will be triggered when the file is discovered. Cake Extension activates
the Task Runner Explorer integration, which allows you to run Cake tasks with the
bindings included directly in Visual Studio.

To open the Task Runner Explorer, right-click the Cake Script (file) and select
Task Runner Explorer from the displayed context menu; it should open the Task Runner
Explorer with all the tasks available in the Cake script listed in the window:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[232]

Sometimes, Task Runner Explorer might not be displayed in the context menu when you
right-click the Cake Script. If so, click on View menu, select Other Windows, and select
Task Runner Explorer to bring it up:

As a result of the Cake Extension installation, the Build menu of Visual Studio will now
have an entry for Cake Build, which can be used to install the Cake config file, PowerShell
bootstrapper, and Bash bootstrapper if they are not already configured in the solution:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[233]

You can now execute each task directly from Task Runner Explorer by double-clicking it or
through right-clicking it and selecting Run. The progress of the task execution will be
displayed on Task Runner Explorer:

Syntax highlighting
Cake extension adds a syntax highlighting feature to Visual Studio. This is a common
feature of IDEs, where source code are presented in different formats, colors, and fonts. The
source code highlighting is done based on defined groups, categories, and sections.

After the installation of the extension, any file with the extension can be opened in
Visual Studio with complete task and syntax highlighting. There is currently no IntelliSense
support for the script files in Visual Studio; this feature is expected to come later.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[234]

The following screenshot shows the syntax highlighting of a file in Visual
Studio:

Using Cake tasks to build steps
Using Task Runner Explorer to run build tasks written in Cake scripts is easier and more
convenient. This is usually done through Cake Extension for Visual Studio or by directly
invoking the Cake bootstrapper file. However, there is an alternative that is more efficient,
which is to run the Cake build script using the TeamCity CI tool.

The TeamCity build steps can be used to execute Cake scripts as part of the build steps
execution processes. Let's create a build step that executes the Cake script for the

 project by following these steps:

Click on Add Build Step to open a New Build Step window.
In the Runner type, select PowerShell, since the Cake bootstrapper file will be
invoked by PowerShell.
Give the build step a descriptive name in the text field.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[235]

In the Script option, select File. This is because it is a file that will be
invoked and not a direct PowerShell script.
To select the Script file, click on the tree icon; this will load the available files and
folders available in the project hosted on GitHub. Select the file in the
list of displayed files.
Click on the Save button to save the changes and create the build step:

The new build step should appear in the list of available build steps configured for the
project in TeamCity. In the Parameters Description tab, information about the build step
will be displayed showing the runner type and PowerShell file to be executed, as seen in
the following screenshot:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[236]

CI with Visual Studio Team Services
Microsoft Visual Studio Team Services (VSTS) is the cloud version of the Team
Foundation Server (TFS). It provides great features that allow developers to collaborate on
software project development. Similar to TFS, it provides an easy and simplified server
management experience with enhanced connectivity with remote sites.

VSTS provides great experience for development teams practicing CI and Continuous
Delivery (CD). It has support for Git repositories for source control, easy-to-understand
reports, and customizable dashboards for monitoring the overall progress of software
projects.

Also, it has in-built features and tools for build and release management, planning and
tracking projects, managing code defects, and issues using the Kanban and Scrum methods.
It equally has an in-built wiki for information dissemination with a development team.

You connect to VSTS through the internet, using Microsoft accounts that need to have been
created by the developers. However, development teams in an organization can configure
VSTS authentication to work with Azure Active Directory (Azure AD), or set up Azure AD
with security features, such as IP address restrictions and multi-factor authentication.

Setting up a project in VSTS
To get started with VSTS, navigate to to
create a free account. You can sign in with a Microsoft account, if you have created one, or
using your organization's Active Directory authentication. You should be redirected to the
following screen:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[237]

In VSTS, each account has it own customized URL, which contains a team project
collection, for example, . You should specify the URL; in
the field and select the Version control to use with the projects. VSTS currently supports
Git and Team Foundation Version Control. Click continue to proceed with the account
creation.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[238]

After the account creation, click on the Projects menu to navigate to the Projects page, and
then click on New Project to create a new project. This will load the project creation screen
where you will specify the project name, description, the Version control to use, and the
work item process. Click on the Create button to complete the project creation:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[239]

After the project creation is completed, you will be presented with the getting started
screen. The screen provides options of cloning existing projects or pushing an existing
project to it. Let's import the project we created earlier on GitHub. Click
on the Import button to begin the import process:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[240]

At the Import screen, specify the source type, and URL to the GitHub repository, and
provide the GitHub login credentials. Click on the Import button to begin the import
process:

You will be presented with a screen showing the import progress. The import process
might take some time based on the size of the project to be imported. When the process
completes, an Import successful message will be displayed on the screen:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[241]

Click on Click here to navigate to code view to view the files and folders imported by
VSTS. The Files screen will present the available files and folders in the project with the
commits and date details:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[242]

Installing Cake into VSTS
Cake has a VSTS extension that allows you to run the Cake script directly from the VSTS
build task relatively easily. With the extension installed into VSTS, the Cake script would
not have to be run using PowerShell, like when running Cake scripts in TeamCity.

Navigate to the Cake Build URL on Visual Studio Marketplace:
. Click on the Get it free button to begin the

installation of the Cake extension into VSTS:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[243]

Clicking the Get it free button will redirect to the VSTS Visual Studio | Marketplace
integration page. On this page, select the account where you intend to install Cake and click
the Install button:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[244]

When the installation is successful, you will be presented with a message stating that all is
set, similar to what is in the following screenshot. Click on Proceed to account button to
redirect you to your VSTS account page:

Adding a build task
After the successful installation of Cake into VSTS, you can proceed to configure how your
code will be built and how the software will be deployed. VSTS provides easy approaches
for building your source code and shipping your software.

To create a VSTS build that is powered by Cake, click on Build and Release and select the
Builds submenu. This will load the build definition page; click the +New button on this
page to begin the build-creation process.

A screen will be displayed, where the repository is selected, see the following screenshot.
The screen provides options of selecting the repository from different sources:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[245]

After selecting the repository source, click on the Continue button to load the template
screen. On this screen, you can choose the build template to use for configuring the build.
VSTS has featured templates for the various supported project types. Each template is
configured with build steps related to the template project:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[246]

Scroll down to the bottom of the template list or simply type in the search box to
select the Empty template. Hover the mouse over the template to activate the Apply button,
and click on the button to proceed to the task creation page:

When the Tasks screen loads, click on the + button to add a task to the build. Scroll through
the list of displayed task templates to select Cake or use the search box to filter the list to
Cake. Click the Add button to add the Cake task to the list of tasks available on the phase
of the build:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[247]

After adding the Cake task, click on the task to load the property screen. Click on the
Browse button to select the file containing the build scripts for the

 project to be associated with the build task. You can modify the
Display name and change the Target and Verbosity properties. Also, if there are
arguments to be passed to the Cake script, you can supply them in the provided field:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[248]

Click on the Save & queue menu and select Save & queue to ensure the build created will
be queued on the hosted agent. This will load up the build definition and queue screen
where you can specify the comment and the Agent queue:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[249]

A hosted agent is the software that runs the build job. Using a hosted
agent is the simplest and easiest way for build execution. The hosted
agent is managed by the VSTS team.

If the build is queued successfully, you should get a notification on the screen showing the
build number stating that the build has been queued:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[250]

Click on the build number to navigate to the build execution page. The hosted agent will
process the queue and execute the configured tasks for the build in the queue. The build
agent will show the progress of build execution. After the completion of the execution, the
success or failure of the build will be reported:

VSTS offers great benefits and simplifies the CI and CD processes. It provides tools and
features that allow different IDE to easily integrate with it and makes end-to-end
development and project testing relatively easy.

Summary
In this chapter, we explored the Cake build automation in detail. We walked through the
steps of installing Cake and the Cake Bootstrapper. Later, we explored the process of
writing Cake build scripts and task creation with sample tasks that can be used for various
build activities.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating Continuous Integration Build Processes Chapter 8

[251]

Also, we created a build script for the project, with the build script
containing tasks to clean, restore, and build all projects in the solution and build the unit
test projects contained in the solution.

We later created a build step in TeamCity that executes the Cake script by using PowerShell
as the runner type. Later in the chapter, we walked through setting up Microsoft Visual
Studio Team Services, installing Cake into VSTS, and configuring a build step with the
Cake task.

In the final chapter, we will explore how to execute xUnit.net tests with Cake scripts. Later
in the chapter, we will explore .NET Core versioning, .NET Core packaging, and
metapackages. We will package the project for NuGet distribution.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

99
Testing and Packaging the

Application
In , Creating Continuous Integration Build Processes, we walked through the
installation and setup of the Cake automation building tool. Also, we extensively
demonstrated the process of writing build scripts using Cake with its rich, C# domain-
specific languages. We also covered installing Cake Extension for Visual Studio and
running Cake scripts using the Task Explorer window.

The benefits of CI process brings to software development cannot be overemphasized; it
facilitates the easy fixing of bugs in project's code base through early and quick detection.
Using CI, running and reporting test coverage of unit tests projects can be automated
alongside the project build and deployment.

In order to utilize the features of the CI process effectively, the unit test projects in a code
base should run and test coverage reports that should be generated by the CI tool. In this
chapter, we will modify the Cake build script to run our suite of xUnit.net tests.

Later in this chapter, we will explore .NET Core versioning and how it can affect
application development. We will finish up the chapter by packaging the

 project for distribution on the various platforms .NET Core supports.
Later, we will explore how to package the .NET Core application for sharing on NuGet.

The following topics will be covered in this chapter:

Executing xUnit.net tests with Cake
.NET Core versioning
.NET Core packages and metapackages
Packaging for NuGet distribution

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and Packaging the Application Chapter 9

[253]

Executing xUnit.net tests with Cake
In , Creating Continuous Integration Build Processes, in the LoanApplication build
script section, we walked through the process of creating and running build steps using the
Cake automation build script. Running unit tests and getting the test results and coverage
from Visual Studio IDE, Visual Studio Code, or any other suitable IDE for building .NET
and .NET Core applications is easier with the assistance of the xUnit console runner and
xUnit adapter. However, for the CI process and the build process to be complete and
effective, unit test projects should be compiled and executed as part of the build steps.

Executing xUnit.net tests in .NET projects
Cake has a rich support for running xUnit.net tests. Cake has two aliases for running the
different versions of xUnit.net tests xUnit for running earlier versions of xUnit.net and
xUnit2 for Version 2 of xUnit.net. To use commands for the alias, the ToolPath to xUnit.net
must be specified within the class or include the tool directive in the

 file, to instruct Cake to get the binaries required to run xUnit.net tests from
NuGet.

Here is the syntax for including the tool directive for xUnit.net:

#tool "nuget:?package=xunit.runner.console"

Cake's is overloaded with different forms for running the xUnit.net version
tests in the specified assemblies. The alias resides in Cake's
namespace. The first form is , which
is used to run all xUnit.net tests in the specified assemblies in the parameter.
The following script shows how to get the test assemblies to be executed into
the object using the method and passing it to the method:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and Packaging the Application Chapter 9

[254]

The alias is
similar to the first form, with the addition of the class for specifying
options of how Cake should execute the xUnit.net tests. The following snippet describes the
usage:

Alternatively, the alias allows the passing of the of string, which is
expected to contain the paths to the assemblies of the xUnit.net Version 2 test projects to be
executed. The form is and the
following snippet describes the usage:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and Packaging the Application Chapter 9

[255]

Executing xUnit.net tests in .NET Core projects
In order to complete a build process successfully, it is important to run test projects in a
solution to verify that the code works correctly. Running xUnit.net tests in a .NET Core
project is relatively easy, by using the dotnet test command through the
alias. To have access to some other features of the dotnet-xunit tool, it is preferred to run
the test using .

Unit tests in .NET Core projects are executed by running the command. This
command supports all the major unit test frameworks available for writing .NET Core tests,
provided that the framework has a test adapter that the command can
integrate to expose available unit test features.

Using the dotnet-xunit framework tool to run .NET Core tests provides access to features
and settings in xUnit.net and is the preferred way of executing .NET Core tests. To get
started, the dotnet-xunit tool should be installed into a .NET Core test project by editing the

 file and including the entry in the
section. The and packages
should be added so as to be able to execute the tests using the or

 commands:

Additionally, there are other arguments which can be used to customize the behavior of
xUnit.net framework during .NET Core unit tests execution when the
command is used. These arguments and their usages can be displayed by running

 command on the terminal.

Cake has aliases that can be used to invoke the dotnet SDK commands to execute xUnit.net
tests. The alias restores NuGet packages used in a solution using
the command. Also, alias is responsible for building
a .NET Core solution by using the command. Unit tests in test project are
executed using the alias which uses the command. See the
following Cake snippet for the usage of the aliases.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and Packaging the Application Chapter 9

[256]

Alternatively, the alias can be used to execute xUnit.net tests for .NET
Core projects. is a general purpose alias in Cake that can be used to
execute any dotnet tool. This is done by supplying the tool name and the required
arguments, if any. exposes the additional features available in the

 command, which gives the flexibility of effectively tweaking the way the
unit tests are executed. When the alias is used, command-line arguments
are to be passed manually into the alias. See the usage of the alias in the following snippet:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and Packaging the Application Chapter 9

[257]

.NET Core versioning
Versioning the .NET Core SDK and runtime makes the platform easy to understand and
allows better agility. The .NET Core platform essentially is distributed as a unit that
consists of the different distributions of the frameworks, tools, installer, and NuGet
packages. Also, versioning the .NET Core platform gives great flexibility as regards side-
by-side application development on different platforms of .NET Core.

Beginning from .NET Core 2.0, a top-level version number that is easy to comprehend was
used to version .NET Core. Some components of .NET Core version together while some do
not. However, starting from Version 2.0, there is a consistent versioning strategy adopted
for .NET Core distributions and components, these include the web pages, installers, and
NuGet packages.

The versioning model used in .NET Core is based on the framework's runtime component
 version numbers. Similar to the runtime versioning, the SDK version

uses version numbers with an additional independent that
combines features and patch semantics for the SDK.

Versioning principle
As of Version 2.0 of .NET Core, the following principles were adopted:

Version all .NET Core distributions as x.0.0, for example 2.0.0 for the first release
and then move forward together

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and Packaging the Application Chapter 9

[258]

File and package names should clearly represent the component or collection and
its version, leaving version divergence reconciliation to minor and major version
boundaries
Clear communication should exist between the high-order versions and installers
that chain multiple components

Also, beginning from .NET Core 2.0, the version numbers were unified for the shared
framework and associated runtime, the .NET Core SDK and the associated .NET Core CLI
and metapackage. Using single version numbers makes it easier
to identify the version of the SDK to install on the development machine and what version
the shared framework should be when moving application production environments.

Installer
Downloads for the daily builds and releases conforms to the new naming scheme. The
installer UI available in the downloads was also modified to display both the names and
versions of the components being installed as from .NET Core 2.0. The naming scheme
format is here:

Also, the format shows in detail what is being downloaded, the version it is, on what OS it
can be used, and whether it is readable. See the examples of the format as shown below:

Descriptions of the website and UI strings contained in the installers are maintained and
kept simple, accurate, and consistent. Sometimes an SDK release can contain more than one
version of the runtime. In that case, the installer UX shows only the SDK version and
installed runtime on the summary page when the installation process completes. This is
applicable to the installers for both Windows and macOS.

Also, .NET Core Tools might be required to be updated, without necessarily updating the
runtime. In which case, the SDK version is incremented, for example, to 2.1.2. The Runtime
version will be incremented when next there is an update, while for example, both the
Runtime and SDK, when updated the next time, will be shipped as 2.1.3.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and Packaging the Application Chapter 9

[259]

Package manager
The flexibility of the .NET Core platform allows the distribution not to be done solely by
Microsoft; the platform can be distributed by other entities. The platform's flexibility makes
it easy to distribute installers and packages for Linux distribution owners. As well making
it seamless for package maintainers to add .NET Core packages to their package managers.

The minimum package set details include which is
the .NET runtime with the specific major+minor version combination indicated and
available in the package manager for this package. The includes forward
major, minor, patch versions as well as update rolls. Also included in the package set is
the which is the SDK with the highest specified version of
the shared frameworks and the latest host which is .

Docker
Similar to the installer and package manager, the docker tag takes the naming convention
in which the version number is placed before the component name. The available docker
tags include the runtime versions listed here:

The SDK version is increased when the .NET Core CLI tools that are included in the SDK
are fixed and reshipped with an existing Runtime, for example, when the version is
increased from Version 2.1.1 to version 2.1.2. Also, it is important to note that the SDK tags
are updated to represent the SDK version and not the Runtime. Based on this, the Runtime
will catch up with the SDK version numbering the next time it ships, for example, both the
SDK and Runtime will take Version number 2.1.3 in the next release.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and Packaging the Application Chapter 9

[260]

Semantic Versioning
Semantic Versioning is used in .NET Core to provide descriptions of the type and and
degree of change that occur in a version of .NET Core. Semantic Versioning (SemVer) uses
the versioning pattern:

The and parts of SemVer are optional and not part of
supported releases. They are used specifically for nightly builds, local builds from source
targets, and unsupported preview releases.

The part of the versioning is incremented when an old version is not being
supported anymore, there is an adoption of a newer version of an existing
dependency, or the setting of a compatibility quirk is toggled off. is incremented
whenever there is a newer version of an existing dependency or there is a new
dependency, a Public API surface area, or a new behavior is added. is incremented
whenever there is a newer version of an existing dependency, support for a newer
platform, or there are bug fixes.

When is incremented, and are reset to zero. Similarly, when is
incremented, is reset to zero while is not affected. This implies that whenever
there are multiple changes, the highest element affected by the resulting changes is
incremented while the other parts are reset to zero.

Usually, preview versions have appended to
the version, for example, 2.1.1-preview1-final. Developers can select the desired features
and level of stability based on the two types of releases of .NET Core available, which are
Long-Term Support (LTS) and Current.

The LTS version is a relatively more stable platform, supported for a longer period while
new features are added less frequently. The Current version adds new features and APIs
more frequently, but there is a shorter allowed duration to install updates with more
frequent updates being made available and a shorter support period than for LTS.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and Packaging the Application Chapter 9

[261]

.NET Core packages and metapackages
The .NET Core platform is shipped as a set of packages that are typically called
metapackages. The platform is essentially made of NuGet packages, this contributes to it
being lightweight and easily distributable. The packages in .NET Core provide both
primitives and higher level data types and common utilities available in the platform. Also,
each package directly maps to an assembly both with the same name;

 assembly is the package for .

Packages in .NET Core are defined as fine-grained. This comes with great benefits as the
resulting application developed on the platform has small print and only contains packages
that are referenced and used in the project. Unreferenced packages are not shipped as part
of the application distribution. Additionally, fine-grained packages can provide differing
OS and CPU support as well as dependencies peculiar to only one library. .NET Core
packages usually ship using the same schedule as the platform support. This allows fixes to
be distributed and installed as lightweight package updates.

Some of the NuGet packages available for .NET Core are listed here:

: This is the .NET Core package, which includes ,
, , , and .

: This package contains the types for loading, inspecting,
and activating types, including , , and .

: A set of types for querying objects, including and
.

: Types for generic collections, including and
.

: Types for HTTP network communication, including
 and .

: Types for reading and writing to local or networked,
disk-based storage, including file and directory.

Referencing a package in your .Net Core project is relatively easy. For example, if you
include in your project, you can reference it in the project, as shown
here:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and Packaging the Application Chapter 9

[262]

Metapackage
Metapackage is a reference or dependency that is added to a .NET Core project in addition
to the already referenced target framework in the project. For example, you can add

 or to a .NET Core project.

At times, it is required to use a set of packages in a project. This is done through the use of
metapackages. Metapackages are groups of packages that are often used together. Also,
metapackages are NuGet packages that describe a group or set of packages. Metapackages
can create a framework for the packages when the framework is specified.

When you reference a metapackage, essentially a reference is made to all the packages
contained in the metapackage. In essence, this makes the libraries in the packages available
for IntelliSense during project development with Visual Studio. Also, the libraries will be
available when the project is being published.

In a .NET Core project, a metapackage is referenced by the framework targeted in the
project, which implies that a metapackage is strongly associated or tied to a specific
framework. Metapackages give access to groups of packages that have already been
confirmed and tested to work together.

The .NET Standard metapackage is the , which constitutes a set of
libaries in the .NET Standard. This is applicable to the different variants of the .NET
platforms: .NET Core, .NET Framework and Mono framework.

 and are the
main .NET Core metapackages. describes the set of libraries
that constitute the .NET Core distribution and depends on .

 describes the set of facades that enable
the mscorlib-based Portable Class Libraries (PCLs) to work on .NET Core.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and Packaging the Application Chapter 9

[263]

Microsoft.AspNetCore.All metapackage
 is the metapackage for ASP.NET Core. The metapackage

comprises packages supported and maintained by the ASP.NET Core team, supported
packages by Entity Framework Core, as well as the internal and third-party dependencies
used by both ASP.NET Core and Entity Framework Core.

The available default project templates that target ASP.NET Core 2.0 use the
 package. The version numbers of ASP.NET Core version

and Entity Framework Core are similar to that of the
metapackage. All available features in ASP.NET Core 2.x and Entity Framework Core 2.x
are included in the package.

When you create an ASP.NET Core application that references
the metapackage, .NET Core Runtime Store is made
available for your usage. .NET Core Runtime Store exposes the required runtime assets to
run ASP.NET Core 2.x applications.

During deployment, assets from the referenced ASP.NET Core NuGet packages are not
deployed together with the application, the assets are in the .NET Core Runtime Store.
These assets are precompiled for performance gain, to speed up application startup time.
Also, it is desirable to exclude packages that are not used. This is done by using the
package-trimming process.

To use packages, it should be added as a reference to the
.NET Core project file, like in the following XML config:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and Packaging the Application Chapter 9

[264]

Packaging for NuGet distribution
.NET Core's flexibility is not only limited to the application's development, it extends to the
deployment process. Deploying .NET Core applications can take two forms framework-
dependent deployment (FDD) and self-contained deployment (SCD).

Using the FDD approach requires that there is a system-wide .NET Core installed on the
machine where the application will be developed. The installed .NET Core runtime will be
shared by your application and other applications deployed on the machine.

This allows your application to be portable between the versions or installations of the
.NET Core framework. Also, with this approach, your deployment will be lightweight and
only contain your application's code and the third-party libraries used. When using this
approach, files are created for your application, which allows it to be launched from
the command line.

SCD allows you to package your application together with the .NET Core libraries and
.NET Core runtime that are required to make it run. Essentially, your application does not
rely on the presence of installed .NET Core on the deployment machine.

When using this approach, an executable file, which essentially is a renamed version of the
platform-specific .NET Core host will be packaged as part of the application. This
executable file is on Windows or on Linux and macOS. Similar to when the
application is deployed using the framework-dependent approach, files are created for
your application that allows it to be launched.

dotnet publish command
The command is used to compile the application, and to check the
application's dependencies before copying the application and the dependencies into a
folder in preparation for deployment. The execution of the command is the only officially
supported way of preparing the .NET Core application for deployment. The synopsis is
here:

dotnet publish [<PROJECT>] [-c|--configuration] [-f|--framework] [--force]
[--manifest] [--no-dependencies] [--no-restore] [-o|--output] [-r|--
runtime] [--self-contained] [-v|--verbosity] [--version-suffix]

dotnet publish [-h|--help]

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and Packaging the Application Chapter 9

[265]

When the command is run, the output will contain the Intermediate Language (IL) code
contained in a assembly, a file that contains the project's dependencies, a

 file that specifies the expected shared runtime, and the
application's dependencies copied from the NuGet cache into the output folder.

The command's argument and options are explained here:

: To specify the project to be compiled and published, it defaults to the
current folder.

: This option is used to specify the build configuration, it
takes the and values, the default value is .

: The target framework option, when specified
with the command, will publish the application for the target framework.

: Used to force dependencies to be resolved, similar to deleting the
 file.

: Displays the help for the command.
: For specifying one or more target

manifests to be used in trimming the packages published with the application.
: This option is used to ignore project-to-project references

but restores the root project.
: This is to instruct the command not to perform an implicit

restore.
: This is for specifying the path of the

output directory. If the option is not specified, it defaults to
 for an FDD or

 for an SCD.
: The option is for publishing the

application for a given runtime, used only when creating an SCD.
: Is for specifying an SCD. When a runtime identifier is

specified, its default value is true.
: For specifying the verbosity level of the

 command. The allowed values are , , ,
, and .

: For specifying the version suffix to be
used when replacing the asterisk () in the version field of the project file.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and Packaging the Application Chapter 9

[266]

An example of the command usage is running on the command line.
This publishes the project in the current folder. To publish the project
that was used in this book, you can run the command. This will publish
the application using the framework specified in the project. The projects in the solution
that the ASP.NET Core application depends on will be built alongside. See the following
screenshot:

A folder is created in the folder where all the compiled files and
the dependencies will be copied to:

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and Packaging the Application Chapter 9

[267]

Creating a NuGet package
NuGet is the package manager for .NET, it is an open source package manager that
provides an easier way of versioning and distributing libraries for applications built on
both .NET Framework and the .NET Core platform. The NuGet gallery is the .NET central
package repository for hosting all packages used by both package authors and consumers.

Using the .NET Core's command makes it easy to create NuGet packages.
When this command is run, it builds a .NET Core project and creates a NuGet package
from it. NuGet dependencies of a packed .NET Core project will be added to the
file, to ensure they're resolved when the package is installed. The following command
synopsis is shown:

dotnet pack [<PROJECT>] [-c|--configuration] [--force] [--include-source]
[--include-symbols] [--no-build] [--no-dependencies]
 [--no-restore] [-o|--output] [--runtime] [-s|--serviceable] [-v|--
verbosity] [--version-suffix]
dotnet pack [-h|--help]

The command's argument and options are explained here:

 is to specify the project to pack, which can be a path to a directory or a
 file. It defaults to the current folder.

: This option is used to define the build configuration. It
takes the and values. The default value is .

: Used to force dependencies to be resolved similar to deleting the
 file.

: Displays the help for the command.
: It's to specify that the source files be included in the

folder in the NuGet package.
: To generate the symbols.

: This is to instruct the command to not build the project before
packing.

: This option is used to ignore project-to-project references
but restores the root project.

: This is to instruct the command not to perform an implicit
restore.

: This is for specifying the path of the
output directory to place the built packages.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and Packaging the Application Chapter 9

[268]

: This option is to specify the target
runtime to restore the packages for.

: Is for setting the serviceable flag in the package.
: For specifying the verbosity level of the command.

The allowed values are , , , , and
.

: For specifying the version suffix to be
used when replacing the asterisk () in the version field of the project file.

Running the command will pack the project in the current directory. To pack
the project, we can run the following command:

dotnet pack
C:\LoanApplication\LoanApplication.Core\LoanApplication.Core.csproj --
output nupkgs

When the command is run, the project will be built and packed
into the file in the project folder. The file
will be created, which is an archive file containing the packed project's libraries:

After the application has been packed, it can be published to the NuGet gallery by using the
 command. In order to be able to push packages to NuGet, you need

to register for NuGet API keys. These keys are to be specified as options with the
 command when uploading packages to NuGet.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and Packaging the Application Chapter 9

[269]

Run the
 command to push the created NuGet package to the

gallery, which will make it available for use by other developers. When the command is
run, a connection will be established to the NuGet server to push the package under your
account:

After the package has been pushed to NuGet gallery, when you log in to your account, you
can find the pushed package in the list of published packages:

When you upload your package to the NuGet gallery, other programmers can search for
your package directly from Visual Studio by using the NuGet package manager and add a
reference to the libraries in their projects.

Summary
In this chapter, we started by executing the xUnit.net test with Cake. Also, we extensively
discussed .NET Core versioning, the concepts, and how it affects application development
on the .NET Core platform. Later, we packaged the project that was
used in this book for NuGet distribution.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and Packaging the Application Chapter 9

[270]

You have been taken through an exciting TDD journey in this book. Using the xUnit.net
unit test framework, the concept of TDD was introduced and discussed extensively. Data-
driven unit tests were covered, which allow you to test your code with data from different
data sources.

The Moq framework was used to introduce and explain how to unit test code with
dependencies. The TeamCity CI server was used to explain the concepts of CI. Cake, a
cross-platform build system was explored and used to create build steps executed in
TeamCity. Also, Microsoft VSTS, another CI tool, was used to execute Cake scripts.

Finally, effective use of TDD is greatly rewarding in terms of the quality of code and
resulting application. With continuous practices, all the concepts explained in this book can
become part of your day-to-day programming routine.

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

.NET Core 2.0 By Example
Rishabh Verma, Neha Shrivastava

ISBN: 978-1-78839-509-0

Build cross-platform applications with ASP.NET Core 2.0 and its tools
Integrate, host, and deploy web apps with the cloud (Microsoft Azure)
Leverage the ncurses native library to extend console capabilities in .NET Core
on Linux and interop with native code
Reuse existing .NET Framework and Mono assemblies from .NET Core 2.0
applications
Develop real-time web applications using ASP.NET Core
Learn the differences between SOA and microservices and get started with
microservice development using ASP.NET Core 2.0
Walk through functional programming with F# and .NET Core from scratch

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You May Enjoy

[272]

.NET Standard 2.0 Cookbook
Fiqri Ismail

ISBN: 978-1-78883-466-7

Create a .NET Standard 2.0 library
Use System.IO within the .NET Standard 2.0
Make use of your legacy .NET libraries with the new .NET Core standard
Explore the thread support to create a multithreaded .NET Standard 2.0 library
Create a .NET Standard 2.0 library and use it with an Android and iOS
application
Implement various Visual Studio 2017 diagnostics and debugging tools
Create a NuGet Package and submit the package to the NuGet Package Manager
Use Visual Studio 2017 azure tools to deploy the application to Azure
Test and deliver a .NET Standard 2.0 library

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You May Enjoy

[273]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

.

.NET Core application
 ASP.NET Core MVC project structure
 structure
.NET Core components
 application host
 CoreCLR
 CoreFX
 dotnet application launcher
 SDK and CLI tools
.NET Core framework
 .NET Standard
 about
 and .NET core, selection between
 Core components
 limitations
 supported languages
.NET Core metapackages ,
.NET Core packages
.NET Core projects
 xUnit.net tests, executing
.NET Core testing
 NUnit, using
 with MSTest
.NET Core versioning
 about
 Docker
 installer
 package manager
 principle
 Semantic Versioning
.NET Core
 NuGet packages
 test runners
 unit testing framework ecosystem
.NET projects

 xUnit.net tests, executing
.NET Standard

3
3A pattern

A
acceptance test–driven development (ATDD)
ASP.NET Core MVC project structure
 about
 controllers folders
 JSON files
 models
 Program.cs
 Startup.cs
 views
 wwwroot folder
ASP.NET Core MVC
 DI container, setting up
ASP.NET MVC Core application
 creating
ASP.NET MVC Core
 about
 unit testing consideration
Autofac

B
bad code
 appearance
 preventing, ways
bad or broken designs
behavior-driven development (BDD)
benefits, CI
 ease of delivery
 improved productivity
 quick bugs detection

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

[275]

 reduced risks
benefits, continuous delivery
 lower risks
 quality software products
benefits, mocking objects
 dependencies isolation
 fast running test
 legacy code, refactoring
 wider test coverage
branches
build scripts, Cake
 configuration options
 criteria
 dependencies
 error handling
 finally block feature
 LoanApplication build script ,
 preprocessor directives
 task
 TaskSetup
 TaskTeardown
 writing

C
C# 7 features
 binary literal
 digit separator
 local or nested function
 out keyword
 patterns matching
 ref keyword
 ref local keyword
 tuples enhancement
C# 7
 features
C# coding conventions
 reference
C# Plain Old CLR Object (POCO)
C#
 build scripts, writing
 unit testing framework ecosystem
Cake bootstrapper
 installation
 installation link
 installing

Cake Extension for Visual Studio Add-in
Cake Extension, for Visual Studio
 about ,
 syntax highlighting
 Task Runner Explorer
Cake tasks
 used, for building build steps
Cake templates
 Addin
 Addin Unit Test Project
 Addin Unit Test Project (empty)
 Module
 types
Cake
 about
 builds
 used, for executing xUnit.net tests
Callback method
 using
callback
 mocking
Chain Calls
CI tools
 Jenkins
 Microsoft Team Foundation Server (TFS)
 TeamCity
CI workflow
 about
 automated tests
 build automation
 daily commit
 identical test
 production environments
 single source code repository
code maintenance
 difficulty
code smell
command-line interface (CLI)
Continuous Delivery (CD)
 about ,
 benefits
continuous integration (CI)
 about
 benefits
 tools

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

[276]

 using, with Visual Studio Team Services
 workflow
Current

D
data integration
 custom attribute, using ,
 SqlServerData attribute, using
data-driven tests
 creating, with xUnit.net theory attribute
data-driven unit testing
 benefits
 brevity
 inclusive testing
data
 inserting, from other sources
Dependency Injection (DI)
Dependency Inversion Principle (DIP) ,
Design by Contract
DI container
 configuration, in Constructor Injection mode
 configuration, in Property Injection mode
 setting up, for ASP.NET Core MVC
distributed version control system (DVCS)
Docker
Don't Repeat Yourself (DRY) principles
dotnet-xunit tool
dynamic objects

E
Entity Framework (EF)
events
 raising, on mock object

F
facts
features, .NET Core
 cross-platform requirements
 ease of deployment
 scalability and performance
features, Moq
 internal types, mocking
framework-dependent deployment (FDD)

G
Git commands
 about
 change commands
 configuration commands
 git branch command
 merging command
 repository commands
GitHub Flow
 actions
 branching with
 changes, merging
 changes, reviewing
GitHub WebHooks
 about
 configuring
 consuming
 events
 events, reference
 payloads
 setting up ,
GitHub
 online project hosting
 reference

H
hand-rolling mocks, versus mocking framework
 about ,
 benefits
 mocking concept
 mocks
 stubs

I
inline data-driven unit tests ,
installation, Cake bootstrapper
 about
 PowerShell security, using ,
 reference
 steps ,
integration tests
 about
 big bang
 bottom up

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

[277]

 top down
interface explosion
Interface Segregation Principle (ISP) ,
Inversion of Control (IoC)

J
Jenkins
JUnit
Just in Time (JIT) compiler

K
Keep It Simple Short (KISS)

L
Language-Integrated Query (LINQ)
Law of Demeter (LoD)
 about
 class (static form)
 object (dynamic) form
 Train Wreck (Chain Calls)
libuv
Liskov Substitution Principle (LSP)
live unit testing
 Visual Studio 2017 Enterprise, using
Long Term Support (LTS)
loose coupling

M
methods
 mocking
Microsoft Team Foundation Server (TFS)
Microsoft.AspNetCore.All metapackage
mock object customization
 about
 CallBase, initializing
 mock repository
 multiple interfaces, implementing in mock
mocking frameworks
 shortcomings
 versus hand-rolling mocks
mocking objects
 benefits
 Moq framework, using
Model View Controller (MVC)

Monster Code
Monster Constructor
Moq framework
 advanced features
 LINQ, conversion to mocks
 property invocations ,
 using, with mocking objects
 verification method ,
MSTest
 used, for .NET Core testing

N
naming guidelines and conventions
 reference
Ngrok
 download link
Ninject
non-tested code
NuGet distribution
 dotnet publish command ,
 package, creating ,
 packaging
NuGet
 Intermediate Language (IL)
NUnit
 used, for .NET Core testing ,

O
online project hosting, GitHub
 project hosting
Open-Closed Principle (OCP) ,

P
package manager
parameters
 matching
patterns matching
 about
 constant pattern
 type patterns
 var patterns
Portable Class Libraries (PCLs)
prevention ways, for bad code
 C# coding conventions

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

[278]

 code smell, detecting
 longevity, building
 loose coupling
 proper documentation
 sound architecture and design
 test-driven development
principle of least knowledge
program elements
 naming
project hosting
 about
 branching, with GitHub Flow
properties
 mocking ,
property data-driven unit tests
 about
 ClassData attribute
 MemberData attribute ,

Q
QASymphony

R
razor pages
regression testing
ReSharper

S
self-contained deployment (SCD)
Semantic Versioning (SemVer)
shortcomings, mocking frameworks
 extra complexity
 interface explosion
 mocks explosion
Single Responsibility Principle (SRP) ,
single-page application (SPA)
SOLID architecture principles
 about
 Dependency Inversion Principle (DIP) ,
 Interface Segregation Principle (ISP)
 Liskov Substitution Principle (LSP)
 Open-Closed Principle (OCP) ,
 Single Responsibility Principle (SRP) ,
source code

 documentation
 readability
spaghetti coding
static mock objects
SUnit
system testing

T
task
Team Foundation Server (TFS)
TeamCity
TeamCity CI
 Build
 Build Agent
 Build Artifacts
 Build Queue
 Build Step
 Build Trigger
 build, configuring ,
 build, executing ,
 Change
 platform
 project
 Server, installing
 TeamCity Server
 VCS Root
 workflow
Test Last Development (TLD)
test parallelism
test runners
 about
 ReSharper
test-driven development (TDD)
 about
 benefits
 code, writing
 cycle ,
 misconceptions
 origin
 principles
 refactoring
 tests, executing
 tests, writing
 wrong practice
testcase

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

[279]

tests
 integration tests
 system testing
 types
 unit tests
 user acceptance testing
theories
tight coupling
ToolPath
Train Wreck
triple A
tuples

U
unit test results
 proving, with xUnit.net assertions
unit test, characteristics
 fast execution
 good coverage
 maintainable
 non-trivial
 readable
 repeatable
 set up ease
 unit independence
unit testing framework ecosystem
 C#
 for .NET Core
unit testing
 about
 controllers
 razor pages
unit tests
 about
 characteristics
 inline data-driven unit tests
 property data-driven unit tests
 structuring, with xUnit
Universal Windows Platform (UWP)
untestable code
 writing, warning signs
user acceptance testing

V
VB.NET
Visual Studio 2017 Enterprise
 live unit testing
Visual Studio Code
 .NET Core, installing on Linux
 about ,
 exploring ,
 installing, on Linux
 reference
 setting up, on Linux
Visual Studio Marketplace
 reference ,
Visual Studio Team Services (VSTS)
 build task, adding ,
 Cake, installing
 CI, using
 project, setting up , ,
 reference

W
warning signs, for writing untestable code
 class, with multiple responsibility
 Monster Constructor, creating
 static methods, using
 static objects, using
 tight coupling
WebHook
Windows
Windows Communication Foundation (WCF)
Windows Presentation Foundation (WPF)

X
Xamarin Runners
xUnit.net assertions
 used, for proving unit test results
xUnit.net tests
 executing, in .NET Core projects
 executing, with Cake
xUnit.net theory attribute
 for creating data-driven tests
xUnit.net
 about
 configuring ,

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

 shared test context ,
 test parallelism ,
 test runners

xUnit
 about
 used, for structuring unit tests

 EBSCOhost - printed on 2/9/2023 10:11 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Exploring Test-Driven Development
	Difficulty in maintaining code
	How does bad code appear?
	Tight coupling
	Code smell
	Bad or broken designs
	Naming the program elements
	Source code readability
	Poor source code documentation
	Non-tested code

	What we can do to prevent bad code
	Loose coupling
	Sound architecture and design
	Preventing and detecting code smell
	C# coding conventions
	Succinct and proper documentation
	Why test-driven development?
	Building for longevity

	The principles of test-driven development
	Origin of TDD
	TDD misconceptions
	Benefits of TDD
	Types of tests
	Unit tests
	Integration tests
	System testing
	User acceptance testing

	Principles of TDD
	Writing the tests
	Writing the code
	Running the tests
	Refactoring

	Doing TDD the wrong way

	The TDD cycle
	Summary

	Chapter 2: Getting Started with .NET Core
	.NET Core framework
	.NET Standard
	.NET Core components
	Supported languages
	When to choose .NET Core over .NET Framework
	Cross-platform requirements
	Ease of deployment
	Scalability and performance

	Limitations of .NET Core

	Structure of a .NET Core application
	ASP.NET Core MVC project structure
	wwwroot folder
	Models, Views, and Controllers folders
	JSON files – bower.json, appsettings.json, bundleconfig.json
	Program.cs
	Startup.cs

	Tour of Microsoft's Visual Studio Code editor
	Installing .NET Core on Linux
	Installing and setting up Visual Studio Code on Linux
	Exploring Visual Studio Code

	A look at the new features of C# 7
	Tuples enhancement
	Out keyword
	Ref locals and returns
	Ref locals
	Ref returns

	Local function
	Patterns matching
	Digit separator and binary literal

	Creating an ASP.NET MVC Core application
	Summary

	Chapter 3: Writing Testable Code
	Warning signs when writing untestable code
	Tight coupling
	Monster Constructor
	Classes with more than one responsibility
	Static objects

	Law of Demeter
	Train Wreck

	The SOLID architecture principles
	Single Responsibility Principle
	Open-Closed Principle
	Liskov Substitution Principle
	Interface Segregation Principle
	Dependency Inversion Principle

	Setting up a DI container for ASP.NET Core MVC
	Summary

	Chapter 4: .NET Core Unit Testing
	The attributes of a good unit test
	Readable
	Unit independence
	Repeatable
	Maintainable and runs fast
	Easy to set up, non-trivial, and with good coverage

	Unit testing framework ecosystem for .NET Core and C#
	.NET Core testing with MSTest
	.NET Core testing with NUnit
	xUnit.net
	How to configure xUnit.net
	xUnit.net test runners
	Test parallelism

	Unit testing consideration for ASP.NET MVC Core
	Unit testing controllers
	Unit testing razor pages

	Structuring unit tests with xUnit
	xUnit.net shared test context
	Live unit testing with Visual Studio 2017 Enterprise
	Proving unit test results with xUnit.net assertions
	The test runners available on both .NET Core and Windows
	ReSharper

	Summary

	Chapter 5: Data-Driven Unit Tests
	The benefits of data-driven unit testing
	Tests brevity
	Inclusive testing

	xUnit.net theory attribute for creating data-driven tests
	Inline data-driven unit tests
	Property data-driven unit tests
	MemberData attribute
	ClassData attribute

	Integrating data from other sources
	SqlServerData attribute
	Custom attribute

	Summary

	Chapter 6: Mocking Dependencies
	The benefits of mocking objects
	Fast running tests
	Dependencies isolation
	Refactoring legacy code
	Wider test coverage

	The shortcomings of mocking frameworks
	Interface explosion
	Extra complexity
	Mock explosion

	Hand-rolling mocks versus using a mocking framework
	Mocking concept
	Benefits of hand-rolling mocks
	Mocks and stubs
	Hand-rolled mock

	Mocking objects using Moq framework
	Mocking methods, properties, and callback
	Properties
	Matching parameters
	Events
	Callbacks
	Mock customization
	CallBase
	Mock repository
	Implementing multiple interfaces in a mock

	Verification method and property invocations with Moq
	LINQ to mocks
	Advanced Moq features
	Mocking internal types

	Summary

	Chapter 7: Continuous Integration and Project Hosting
	Continuous integration
	CI workflow
	Single source code repository
	Build automation
	Automated tests
	Identical test and production environments
	Daily commit

	Benefits of CI
	Quick bugs detection
	Improved productivity
	Reduced risks
	Facilitating continuous delivery

	CI tools
	Microsoft Team Foundation Server
	TeamCity
	Jenkins

	Continuous delivery
	Benefits of continuous delivery
	Lower risks
	Quality software products
	Reduced costs

	GitHub online project hosting
	Project hosting
	Branching with GitHub Flow
	Pull request
	Reviewing changes and merging

	Basic Git commands
	Configuration commands
	Initializing repository commands
	Change commands
	Branching and merging commands

	Configuring GitHub WebHooks
	Consuming WebHooks
	GitHub WebHook
	Events and payloads
	Setting up your first WebHook

	TeamCity CI platform
	TeamCity concepts
	Installing TeamCity Server
	TeamCity CI workflow
	Configuring and running build

	Summary

	Chapter 8: Creating Continuous Integration Build Processes
	Installing the Cake Bootstrapper
	Installation
	PowerShell security
	Cake Bootstrapper installation steps
	Step 1
	Step 2
	Step 3

	Writing build scripts in C#
	Task
	TaskSetup and TaskTeardown
	Configuration and preprocessor directives
	Dependencies
	Criteria
	Cake's error handling and finally block
	LoanApplication build script

	Cake Extension for Visual Studio
	Cake templates
	Task Runner Explorer
	Syntax highlighting

	Using Cake tasks to build steps
	CI with Visual Studio Team Services
	Setting up a project in VSTS
	Installing Cake into VSTS
	Adding a build task

	Summary

	Testing and Chapter 9: Packaging the Application
	Executing xUnit.net tests with Cake
	Executing xUnit.net tests in .NET projects
	Executing xUnit.net tests in .NET Core projects

	.NET Core versioning
	Versioning principle
	Installer
	Package manager
	Docker
	Semantic Versioning

	.NET Core packages and metapackages
	Metapackage
	Microsoft.AspNetCore.All metapackage

	Packaging for NuGet distribution
	dotnet publish command
	Creating a NuGet package

	Summary

	Other Books You May Enjoy
	Index

