
C
o
p
y
r
i
g
h
t

2
0
1
8
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 10:26 AM via
AN: 1840541 ; Kamalmeet Singh, Adrian Ianculescu, Lucian-Paul Torje.; Design Patterns and Best Practices in Java : A Comprehensive Guide to Building Smart and
Reusable Code in Java
Account: ns335141

Design Patterns and Best
Practices in Java

Kamalmeet Singh
Adrian Ianculescu
Lucian-Paul Torje

BIRMINGHAM - MUMBAI

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Design Patterns and Best Practices in Java
Copyright 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Kunal Parikh
Acquisition Editor: Alok Dhuri
Content Development Editor: Nikhil Borkar
Technical Editor: Jash Bavishi
Copy Editor: Safis Editing
Project Coordinator: Ulhas Kambali
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Tania Dutta
Production Coordinator: Arvindkumar Gupta

First published: June 2018

Production reference: 1250618

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78646-359-3

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the authors
Kamalmeet Singh got his first taste of programming at the age of 15, and he immediately
fell in love with it. After getting his bachelor s degree in information technology, he joined a
start-up, and his love for Java programming grew further. After spending over 13 years in
the IT industry and working in different companies, countries, and domains, Kamal has
matured into an ace developer and a technical architect. The technologies he works with
include cloud computing, machine learning, augmented reality, serverless applications,
microservices, and more, but his first love is still Java.

I would like to thank my wife, Gundeep, who always encourages me to take up new
challenges and brings out the best in me.

Adrian Ianculescu is a software developer with 20 years of programming experience, of
which 12 years were in Java, starting with C++, then working with C#, and moving
naturally to Java. Working in teams ranging from 2 to 40, he realized that making software
is not only about writing code, and became interested in software design and architecture,
in different methodologies and frameworks. After living the corporate life for a while, he
started to work as a freelancer and entrepreneur, following his childhood passion to make
games.

Lucian-Paul Torje is an aspiring software craftsman who has been working in the software
industry for almost 15 years. He is interested in almost anything that has to do with
technology. This is why he has worked with everything from MS-DOS TSR to
microservices, from Atmel microcontrollers to Android, iOS, and Chromebooks, from
C/C++ to Java, and from Oracle to MongoDB. Whenever someone is needed to use new and
innovative approaches to solve a problem, he is keen to give it a go!

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the reviewer
Aristides Villarreal Bravo is a Java developer, a member of the NetBeans Dream
Team, and a Java User Groups leader. He lives in Panama. He has organized and
participated in various conferences and seminars related to Java, JavaEE, NetBeans, the
NetBeans platform, free software, and mobile devices. He is the author of jmoordb and
tutorials and blogs about Java, NetBeans, and web development.

Aristides has participated in several interviews on sites about topics such as
NetBeans, NetBeans DZone, and JavaHispano. He is a developer of plugins for NetBeans.

My m ther, father, and all family and friends.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents
Preface 1

Chapter 1: From Object-Oriented to Functional Programming 5
Java – an introduction 5
Java programming paradigms 6
Imperative programming 6

Real-life imperative example 6
Object-oriented paradigm 7

Objects and classes 7
Encapsulation 7
Abstraction 8
Inheritance 8
Polymorphism 9

Declarative programming 10
Functional programming 11

Working with collections versus working with streams 11
An introduction to Unified Modeling Language 12

Class relations 14
Generalization 15
Realization 15
Dependency 16
Association 16

Aggregation 16
Composition 17

Design patterns and principles 17
Single responsibility principle 18
Open/closed principle 20
Liskov Substitution Principle 20
Interface Segregation Principle 22
Dependency inversion principle 23

Summary 24

Chapter 2: Creational Patterns 26
Singleton pattern 26

Synchronized singletons 28
Synchronized singleton with double-checked locking mechanism 29
Lock-free thread-safe singleton 29
Early and lazy loading 30

The factory pattern 30
Simple factory pattern 31

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[ii]

Static factory 32
Simple factory with class registration using reflection 33
Simple factory with class registration using Product.newInstance 34

Factory method pattern 35
Anonymous concrete factory 37

Abstract factory 37
Simple factory versus factory method versus abstract factory 39

Builder pattern 39
Car builder example 40
Simplified builder pattern 42
Anonymous builders with method chaining 43

Prototype pattern 44
Shallow clone versus deep clone 45

Object pool pattern 45
Summary 47

Chapter 3: Behavioral Patterns 48
The chain-of-responsibility pattern 48

Intent 49
Implementation 49
Applicability and examples 51

The command pattern 52
Intent 52
Implementation 52
Applicability and examples 54

The interpreter pattern 55
Intent 55
Implementation 56
Applicability and examples 59

The iterator pattern 60
Intent 60
Implementation 60
Applicability and examples 62

The observer pattern 63
Intent 63
Implementation 63

The mediator pattern 64
Intent 65
Implementation 65
Applicability and examples 65

The memento pattern 66
Intent 66
Implementation 66
Applicability 68

The state pattern 69

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iii]

The strategy pattern 69
Intent 69
Implementation 70

The template method pattern 70
Intent 71
Implementation 71

The null object pattern 71
Implementation 72

The visitor pattern 72
Intent 73
Implementation 73

Summary 74

Chapter 4: Structural Patterns 75
Adapter pattern 76

Intent 76
Implementation 77
Examples 77

Proxy pattern 82
Intent 83
Implementation 83
Examples 84

Decorator pattern 86
Intent 87
Implementation 87
Examples 88

Bridge pattern 89
Intent 90
Implementation 90
Examples 91

Composite pattern 93
Intent 93
Implementation 94
Examples 95

Façade pattern 97
Intent 97
Implementation 98
Examples 99

Flyweight pattern 101
Intent 102
Implementation 102
Examples 103

Summary 107

Chapter 5: Functional Patterns 108

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iv]

Introducing functional programming 108
Lambda expressions 110
Pure functions 111
Referential transparency 111
First-class functions 111
Higher-order functions 112
Composition 112
Currying 113
Closure 113
Immutability 114
Functors 114
Applicatives 115
Monads 116

Introducing functional programming in Java 116
Lambda expressions 117
Streams 118
Stream creator operations 119
Stream intermediate operations 119
Stream terminal operations 122

Re-implementing OOP design patterns 122
Singleton 122
Builder 123
Adapter 124
Decorator 124
Chain of responsibility 125
Command 125
Interpreter 125
Iterator 126
Observer 126
Strategy 127
Template method 127

Functional design patterns 128
MapReduce 128

Intent 128
Examples 128

Loan pattern 129
Intent 129
Examples 130

Tail call optimization 130
Intent 130
Examples 131

Memoization 131
Intent 131
Examples 132

The execute around method 133
Intent 133

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[v]

Examples 133
Summary 134

Chapter 6: Let's Get Reactive 135
What is reactive programming? 135
Introduction to RxJava 137
Installing the RxJava framework 138

Maven installation 138
JShell installation 139

Observables, Flowables, Observers, and Subscriptions 140
Creating Observables 141

The create operator 142
The defer operator 142
The empty operator 143
The from operator 143
The interval operator 144
The timer operator 144
The range operator 144
The repeat operator 145

Transforming Observables 145
The subscribe operator 145
The buffer operator 146
The flatMap operator 146
The groupBy operator 148
The map operator 149
The scan operator 149
The window operator 149

Filtering Observables 150
The debounce operator 150
The distinct operator 150
The elementAt operator 151
The filter operator 151
The first/last operator 152
The sample operator 152
The skip operator 153
The take operator 153

Combining Observables 154
The combine operator 154
The join operator 155
The merge operator 156
The zip operator 156

Error handling 157
The catch operator 157
The do operator 158
The using operator 159

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[vi]

The retry operator 159
Schedulers 160
Subjects 162
Example project 162
Summary 166

Chapter 7: Reactive Design Patterns 167
Patterns for responsiveness 167

Request-response pattern 167
Asynchronous-communication pattern 174
Caching pattern 176
Fan-out and quickest-reply pattern 178
Fail-fast pattern 178

Patterns for resilience 179
The circuit-breaker pattern 179
Failure-handling pattern 180
Bounded-queue pattern 180
Monitoring patterns 181
Bulkhead pattern 181

Patterns for elasticity 182
Single responsibility pattern 182
Stateless-services pattern 184
Autoscaling pattern 186
Self-containment pattern 187

Patterns for message-driven implementation 187
Event-driven communication pattern 187
Publisher-subscriber pattern 188
Idempotency pattern 189

Summary 189

Chapter 8: Trends in Application Architecture 190
What is application architecture? 191
Layered architecture 191

Layered architecture with an example 194
Tiers versus layers 198
What does layered architecture guarantee? 198
What are the challenges with layered architecture? 198

Model View Controller architecture 199
MVC architecture with an example 202
A more contemporary MVC implementation 205
What does MVC architecture guarantee? 205
What are the challenges with MVC architecture? 206

Service-oriented architecture 206
Service-oriented architecture with an example 207
Web services 208

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[vii]

SOAP versus REST 208
Enterprise service bus 209
What does service-oriented architecture guarantee? 211
What are the challenges with service-oriented architecture? 211

Microservices-based Architecture 212
Microservice architecture with an example 212
Communicating among services 214
What does microservices-based architecture guarantee? 214
What are challenges with microservices-based architecture? 215

Serverless architecture 215
Serverless architecture with an example 216
Independence from infrastructure planning 221
What does serverless architecture guarantee? 222
What are the challenges with serverless architecture? 223

Summary 223

Chapter 9: Best Practices in Java 224
A brief history of Java 224

Features of Java 5 225
Features of Java 8 226
Currently supported versions of Java 227

Best practices and new features of Java 9 227
Java platform module system 227
JShell 231
Private methods in interfaces 234
Enhancements in streams 235
Creating immutable collections 236
Method addition in arrays 237
Additions to the Optional class 238
New HTTP client 239
Some more additions to Java 9 240

Best practices and new features of Java 10 242
Local variable type inference 242
copyOf method for collections 244
Parallelization of full garbage collection 245
Some more additions to Java 10 246

What should be expected in Java 11? 247
Summary 248

Other Books You May Enjoy 250

Index 253

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface
Having knowledge of design patterns enables you as a developer to improve your code
base, promote code reuse, and make the architecture more robust. As languages evolve, it
takes time for new features to be fully understood before they are adopted en masse. The
mission of this book is to ease the adoption of the latest trends and provide good practices
for programmers.

Who this book is for
This book is for every Java developer who wants to write quality code. This book talks
about a lot of best practices that quite often are missed by developers while coding. The
book also covers many design patterns. Design patterns are nothing but best practices to
solve particular problems that have been tried and tested by a developer community.

What this book covers
, From Object-Oriented to Functional Programming, gives an introduction to

different programming paradigms associated with the Java language.

, Creational Patterns, introduces the first in a series of design patterns; that is,
creational patterns. The chapter talks about various creational design patterns.

, Behavioral Patterns, talks about behavioral design patterns. It explains various
design patterns to manage behavior of code and objects.

, Structural Patterns, introduces you to structural design patterns and explains
various widely used design patterns to manage the structuring of objects.

, Functional Patterns, introduces readers to functional programming and patterns
associated with it.

, Let's Get Reactive, introduces you to reactive programming and Java's
implementation of it with examples.

, Reactive Design Patterns, further explores the pillars of reactive programming
and design patterns associated with these pillars.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[2]

, Trends in Application Architecture from MVC to Microservices and Serverless
Applications, explores architectural patterns that have been tried and tested by developers
over the years.

, Best Practices in Java, introduces us to the history of Java, best practices, and
updates available in the latest versions of Java, and, finally, what is expected in future from
Java.

To get the most out of this book
Readers with prior Java experience will be able to gain the most from this book. It is
recommended that readers try to explore and play around with the code examples
provided in various chapters.

Download the example code files
You can download the example code files for this book from your account at

. If you purchased this book elsewhere, you can visit
 and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at .1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[3]

The code bundle for the book is also hosted on GitHub at
. In case there's an

update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it from

.

Conventions used
There are a number of text conventions used throughout this book.

: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Make the method thread-safe by adding
the keyword to its declaration."

A block of code is set as follows:

Any command-line input or output is written as follows:

java --list-modules

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Before this change, you would need the complete Java Runtime Environment (JRE) as a
whole to be loaded on a server or a machine to run the Java application."

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[4]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at .

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit , selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit .

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

11
From Object-Oriented to
Functional Programming

The objective of this chapter is to introduce the reader to the fundamental concepts of
writing robust, maintainable, and extendable code using design patterns and the latest
features available in Java. In order to achieve our objective, we will cover the following
topics:

What are programming paradigms?
Imperative paradigm
Declarative and functional paradigms
Object-oriented paradigm
An overview of Unified Modeling Language
Object-oriented design principles

Java an introduction
In 1995, a new programming language was released, inspired by the well-known C++ and
the lesser known Smalltalk. Java was the name of this new language, and it tried to fix
most of the limitations its predecessors had. For example, one important feature of Java that
made it popular was write once and run anywhere; that is, you could develop your code on
a Windows machine and run it on a Linux or any other machine, all you needed was a JVM.
It provided additional features such as garbage collection, which freed up the developer
from needing to maintain memory allocation and deallocations; the Just in Time compiler
(JIT) made Java intelligent and fast, and removing features such as pointers made it more
secure. All the aforementioned features and the later addition of web support made Java a
popular choice among developers. Around 22 years later, in a world where new languages
come and disappear in a couple of years, Java version 10 has already been successfully
launched and adapted by the community, which says a lot about the success of Java.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

From Object-Oriented to Functional Programming Chapter 1

[6]

Java programming paradigms
What are programming paradigms? Since software development began, there have been
different approaches to designing programing languages. For each programming language,
we have a set of concepts, principles, and rules. Such a set of concepts, principles, and rules
is called a programming paradigm. In theory, languages are considered to fall under one
paradigm only, but, in practice, programming paradigms are mostly combined in one
language.

In the following section, we will highlight the programming paradigms on which Java
programming language is based, along with the major concepts that describe these
paradigms. These are imperative, object-oriented, declarative, and functional
programming.

Imperative programming
Imperative programming is a programming paradigm in which statements are written to
change the state of the program. This concept emerged at the beginning of computing and
is very close to the computer's internal structure. The program is a set of instructions that is
run on the processing unit, and it changes the state (which is stored as variables in the
memory) in an imperative manner. The name imperative implies the fact that the
instructions that are executed dictate how the program operates.

Most of the most popular programming languages today are based, more or less, on the
imperative paradigm. The best example of a mainly imperative language is C.

Real-life imperative example
In order to better understand the concept of the imperative programming paradigm, let's
take the following example: you're meeting a friend for a hackathon in your town, but he
has no idea how to get there. We'll explain to him how to get there in an imperative way:

From the Central Station, take tram 1.1.
Get off the tram at the third station.2.
Walk to the right, toward Sixth Avenue, until you reach the third junction.3.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

From Object-Oriented to Functional Programming Chapter 1

[7]

Object-oriented paradigm
The object-oriented paradigm is often associated with imperative programming, but, in
practice, both functional and object-oriented paradigms can coexist. Java is living proof that
supports this collaboration.

In the following section, we will briefly highlight the main object-oriented concepts as they
are implemented in the Java language.

Objects and classes
Objects are the main elements of an object-oriented programming (OOP) language. An
object holds both the state and the behavior.

If we think of classes as a template, objects are the implementation of the template. For
example, if human is a class that defines the behavior and properties that a human being
can have, you and I are objects of this human class, as we have fulfilled all the requirements
of being a human. Or, if we think of car as a class, a particular Honda Civic car will be an
object of this class. It will fulfill all the properties and behaviors that a car has, such as it has
an engine, a steering wheel, headlights, and so on, and it has behaviors of moving forward,
moving backward, and so on. We can see how the object-oriented paradigm can relate to
the real world. Almost everything in the real world can be thought of in terms of classes
and objects, hence it makes OOP effortless and popular.

Object-oriented programming is based on four fundamental principles:

Encapsulation
Abstraction
Inheritance
Polymorphism (subtyping polymorphism).

Encapsulation
Encapsulation basically means the binding of attributes and behaviors. The idea is to keep
the properties and behavior of an object in one place, so that it is easy to maintain and
extend. Encapsulation also provides a mechanism to hide unnecessary details from the
user. In Java, we can provide access specifiers to methods and attributes to manage what is
visible to a user of the class, and what is hidden.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

From Object-Oriented to Functional Programming Chapter 1

[8]

Encapsulation is one of the fundamental principles of object-oriented languages. It helps in
the decoupling of different modules. Decoupled modules can be developed and maintained
more or less independently. The technique through which decoupled modules/classes/code
are changed internally without affecting their external exposed behavior is called code
refactoring.

Abstraction
Abstraction is closely related to encapsulation, and, to some extent, it overlaps with it.
Briefly, abstraction provides a mechanism that exposes what an object does and hides how the
object does what it's supposed to do.

A real-world example of abstraction is a car. In order to drive a car, we don't really need to
know what the car has under the hood, but we need to know the data and behavior it
exposes to us. The data is exposed on the car's dashboard, and the behavior is represented
by the controls we can use to drive a car.

Inheritance
Inheritance is the ability to base an object or class on another one. There is a parent or base
class, which provides the top-level behavior for an entity. Every subclass entity or child
class that fulfills the criteria to be a part of the parent class can inherit from the parent class
and add additional behavior as required.

Let's take a real-world example. If we think of a as a parent class, we know a
 can have certain properties and behaviors. For example, it has an engine, doors,

and so on, and behavior-wise it can move. Now all entities that fulfill these criteria for
example, , , , and so on can inherit from and add on top of given
properties and behavior. In other words, we can say that a is a type of .

Let's see how this will look as code; we will first create a base class named . The
class has a single constructor, which accepts a (the vehicle name):

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

From Object-Oriented to Functional Programming Chapter 1

[9]

Now we can create a class with a constructor. The class is derived from the
 class, so it inherits and can access all the members and methods declared as

protected or public in the base class:

Polymorphism
In broad terms, polymorphism gives us an option to use the same interface for entities of
different types. There are two major types of polymorphism, compile time and runtime. Say
you have a class that has two area methods. One returns the area of a circle and it
accepts single integer; that is, the radius is input and it returns the area. Another method
calculates the area of a rectangle and takes two inputs, length and breadth. The compiler
can decide, based on the number of arguments in the call, which area method is to be
called. This is the compile-time type of polymorphism.

There is a group of techies who consider only runtime polymorphism as real
polymorphism. Runtime polymorphism, also sometimes known as subtyping
polymorphism, comes into play when a subclass inherits a superclass and overrides its
methods. In this case, the compiler cannot decide whether the subclass implementation or
superclass implementation will be finally executed, and hence a decision is taken at
runtime.

To elaborate, let's take our previous example and add a new method to the vehicle type to
print the type and name of the object:

We override the same method in the derived class:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

From Object-Oriented to Functional Programming Chapter 1

[10]

Now we can see subtyping polymorphism in action. We create one object and one
 object. We assign each object to a variable type because a is also a

. Then we invoke the method for each of the objects. For ,
which is an instance of the class, it will invoke the class.
For , which is an instance of the class, the method of the class
will be invoked:

Declarative programming
Let's go back to the real-life imperative example, where we gave directions to a friend on
how to get to a place. When we think in terms of the declarative programming paradigm,
instead of telling our friend how to get to the specific location, we can simply give him the
address and let him figure out how to get there. In this case, we tell him what to do and we
don't really care if he uses a map or a GPS, or if he asks somebody for instructions: Be at the
junction between Fifth Avenue and Ninth Avenue at 9:30 in the morning.

As opposed to imperative programming, declarative programming is a programming
paradigm that specifies what a program should do, without specifying how to do it.
Among the purely declarative languages are database query languages, such as SQL and
XPath, and regular expressions.

Declarative programming languages are more abstract compared to imperative ones. They
don't mimic the hardware structure, and, as a consequence, they don't change the
programs' states but transform them to new states, and are closer to mathematical logic.

In general, the programming styles that are not imperative are considered to fall in the
declarative category. This is why there are many types of paradigms that fall under the
declarative category. In our quest, we will look at the only one that is relevant to the scope
of our journey: functional programming.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

From Object-Oriented to Functional Programming Chapter 1

[11]

Functional programming
Functional programming is a sub-paradigm of declarative programming. As opposed to
imperative programming, functional programming does not change the internal state of the
program.

In imperative programming, the functions can be regarded more as sequences of
instructions, routines, or procedures. They not only depend on the state stored in the
memory but can also change that state. This way, invoking an imperative function with the
same arguments can produce different results depending on the current program's state,
and at the same time, the executed function can change the program's variables.

In functional programming terminology, functions are similar to mathematical functions,
and the output of a function depends only on its arguments, regardless of the program's
state, which, at the same time, remains unaffected by the execution of the function.

Paradoxically, while imperative programming has existed since computers were first
created, the basic concepts of functional programming dates back before that. Most
functional languages are based on lambda calculus, a formal system of mathematical logic
created in the 1930s by mathematician Alonzo Church.

One of the reasons why functional languages become so popular in those days is the fact
that they can easily run in parallel environments. This should not be confused with
multithreading. The main feature that allows functional languages to run in parallel is the
basic principle on which they reside: the functions rely only on the input arguments and
not on the program's state. That is, they can be run anywhere, and the results of the
multiple parallel executions are then joined and used further.

Working with collections versus working with
streams
Everyone working with Java is aware of collections. We use collections in an imperative
way: we tell the program how to do what it's supposed to do. Let's take the following
example in which we instantiate a collection of 10 integers, from 1 to 10:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

From Object-Oriented to Functional Programming Chapter 1

[12]

Now, we will create another collection in which we will filter in only the odd numbers:

At the end, we want to print the results:

As you can see, we wrote quite a bit of code to perform three basic operations: to create a
collection of numbers, to filter the odd numbers, and then to print the results. Of course, we
could do all the operations in only one loop, but what if we could do it without using a loop
at all? After all, using a loop means we tell the program how to do its task. From Java 8
onwards, we have been able to use streams to do the same things in a single line of code:

Streams are defined in the package, and are used to manage streams
of objects on which functional-style operations can be performed. Streams are the
functional correspondent of collections, and provide support for map-reduce operations.

We will further discuss streams and functional programming support in Java in later
chapters.

An introduction to Unified Modeling
Language
Unified Modeling Language (UML) is a modeling language that helps us to represent how
the software is structured; how different modules, classes, and objects interact with each
other, and what the relations between them are.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

From Object-Oriented to Functional Programming Chapter 1

[13]

UML is frequently used in association with object-oriented design, but it has a much
broader scope. However, that is beyond the scope of this book, so, in the next sections, we
will highlight the UML features relevant to this book.

In UML, we can define the structure and behavior of a system, and we can visualize the
model or parts of it through diagrams. There are two types of diagram:

Structure diagrams are used to represent the structure of a system. There are
many types of structure diagrams, but we are only interested in class diagrams.
object, package, and component diagrams are similar to class diagrams.
Behavior diagrams are used to describe the behavior of a system. Interaction
diagrams are a subset of behavior diagrams and are used to describe the flow of
control and data among different components of a system. Among the behavior
diagrams, the sequence diagram is used extensively in object-oriented design.

Class diagrams are the type of diagrams used most in object-oriented design and
development stages. They are a type of structure diagram, and are used to illustrate the
structure of classes and the relations among them:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

From Object-Oriented to Functional Programming Chapter 1

[14]

Class diagrams are useful for describing how the classes are structured in an application.
Most of the time, just looking at the structure can be enough to be able to understand how
the classes interact, but sometimes this is not enough. For those cases, we can use behavior
and interaction diagrams, of which the sequence diagram is used to describe class and
object interaction. Let's use a sequence diagram to show how the Car and Vehicle objects
interact in the inheritance and polymorphism example:

Class relations
In object-oriented programming, besides the inheritance relation that represents one of the
fundamental concepts, there are a few other class relations that help us to model and
develop complex software systems:

Generalization and realization
Dependency
Association, aggregation, and composition

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

From Object-Oriented to Functional Programming Chapter 1

[15]

Generalization
Inheritance is also called an is-a relationship because the class inherited from another class
can be used as the superclass.

When a class represents the shared characteristics of more than one class, it is called a
generalization; for example, Vehicle is a generalization of Bike, Car, and Truck. Similarly,
when a class represents a special instance of a general class, it is called a specialization, so a
Car is a specialization of Vehicle, as shown in the following diagram:

In UML terminology, the relation to describe inheritance is called Generalization.

Realization
If generalization is the corresponding term in UML for object-oriented inheritance,
realization, in UML, represents the implementation of an interface by a class in object-
oriented programming.

Let's assume we create an interface called Lockable, which is implemented only by
Vehicles that can be locked. In this case, a version of the previous diagram implementing
Lockable for the Car class will look like this:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

From Object-Oriented to Functional Programming Chapter 1

[16]

Dependency
Dependency is one of the most generic types of UML relationship. It is used to define that
one class depends in some way or other on another class, while the other class may or may
not depend on the first one. A dependent relationship is used to represent relations that do
not fall into one of the cases described in the following sections. Dependency is sometimes
called Uses-A relationship.

In general, in object-oriented programming languages dependency is used to describe
whether one class contains a parameter of the second class in the signature of a method, or
whether it creates instances of the second class by passing them to other classes without
using them (without invoking its methods):

Association
An association represents the relationship between two entities. There are two types of
association, namely composition and aggregation. In general, an association is represented
by an arrow, as shown in the following diagram:

An aggregation is a special type of association. If inheritance is considered to be the is-a
relationship, aggregation can be considered to be the HAS-A relationship.

Aggregation is used to describe a relation between two or more classes, when one class
contains the other from a logical point of view, but instances of the contained class can live
independently of the first class, outside of its context, or can be shared among other classes.
For example, a Department HAS-A Teacher; additionally, every Teacher must belong to
Department, but if a Department ceases to exist, a Teacher can still be active as shown in
the following diagram:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

From Object-Oriented to Functional Programming Chapter 1

[17]

As the name suggests, a class is a composition of another one. This is somewhat similar to
aggregation, with the difference being that the dependent class ceases to exist when the
main class ceases to exist. For example, a House is made up of a Room, but the Room
ceases to exist if the House is destroyed, as shown in the following diagram:

In practice, especially in languages such as Java that have garbage collectors, the boundary
between composition and aggregation is not so well defined. Objects are not destroyed
manually; when they are no longer referenced, they are automatically destroyed by the
garbage collector. For this reason, from a coding point of view, we should not really be
concerned if we deal with a composition or an aggregation relationship, but it's important if
we want to have a well-defined model in UML.

Design patterns and principles
Software development is a process that is not only about writing code, regardless of
whether you are working in a large team or on a one-person project. The way an
application is structured has a huge impact on how successful a software application is.

When we are talking about a successful software application, we are not only discussing
how the application does what it's supposed to do but also how much effort we put into
developing it, and if it's easy to test and maintain. If this is not done in a correct manner, the
skyrocketing development cost will result in an application that nobody wants.

Software applications are created to meet needs, which are constantly changing and
evolving. A successful application should also provide an easy way through which it can be
extended to meet the continuously changing expectations.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

From Object-Oriented to Functional Programming Chapter 1

[18]

Luckily, we are not the first to encounter these problems. Some of the problems have
already been faced and handled. These common problems can be avoided or solved if a set
of object-oriented design principles and patterns are applied while designing and
developing software.

The object-oriented design principles are also called SOLID. These principles are a set of
rules that can be applied when designing and developing software, in order to create
programs that are easy to maintain and develop. They were first introduced by Robert C.
Martin, and they are part of the agile software-development process. The SOLID principles
include the single responsibility principle, open/closed principle, Liskov Substitution
Principle, Interface Segregation Principle, and dependency inversion principle.

In addition to the design principles, there are object-oriented design patterns. Design
patterns are general reusable solutions that can be applied to commonly occurring
problems. Following Christopher Alexander's concept, design patterns were first applied to
programming by Kent Beck and Ward Cunningham, and they were popularized by the so-
called Gang Of Four (GOF) book in 1994. In the following section, we will present the
SOLID design principles, which will be followed by the design patterns in the next
chapters.

Single responsibility principle
The single responsibility principle is an object-oriented design principle that states that a
software module should have only one reason to change. In most cases, when writing Java
code, we will apply this to classes.

The single responsibility principle can be regarded as a good practice for making
encapsulation work at its best. A reason to change is something that triggers the need to
change the code. If a class is subject to more than one reason to change, each of them might
introduce changes that affect others. When those changes are managed separately but affect
the same module, one set of changes might break the functionality related to the other
reasons for change.

On the other hand, each responsibility/reason to change will add new dependencies,
making the code less robust and harder to change.

In our example, we will use a database to persist the objects. Let's assume that, for the Car
class, we will add methods to handle the database operations of create, read, update, and
delete, as shown in the following diagram:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

From Object-Oriented to Functional Programming Chapter 1

[19]

In this case, the Car will not only encapsulate the logic, but also the database operations
(two responsibilities are two reasons to change). This will make our classes harder to
maintain and test, as the code is tightly coupled. The Car class will depend on the database,
so if in the future we want to change the database system, we have to change the Car code.
This might generate errors in the Car logic.

Conversely, changing the Car logic might generate errors in the data persistence.

The solution would create two classes: one to encapsulate the Car logic and the other to be
responsible for persistence:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

From Object-Oriented to Functional Programming Chapter 1

[20]

Open/closed principle
This principle is as follows:

"Modules, classes, and functions should be open for extension but closed for
modifications."

Applying this principle will help us to develop complex and robust software. We must
imagine the software we develop is building a complex structure. Once we finish a part of
it, we should not modify it any more but build on top of it.

When developing software, it's the same. Once we have developed and tested a module, if
we want to change it, we must test not only the functionality we are changing but the entire
functionality it's responsible for. That involves a lot of additional resources, which might
not have been estimated from the beginning, and also can bring additional risks. Changes
in one module might affect functionality in others or on the whole. The following is a
diagrammatic representation:

For this reason, best practice is to try to keep modules unchanged once finished and to add
new functionality by extending them using inheritance and polymorphism. The
open/closed principle is one of the most important design principles being the base for most
of the design patterns.

Liskov Substitution Principle
Barbara Liskov states that, Derived types must be completely substitutable for their base types.
The Liskov Substitution Principle (LSP) is strongly related to subtyping polymorphism.
Based on subtyping polymorphism in an object-oriented language, a derived object can be
substituted with its parent type. For example, if we have a object, it can be used in the
code as a .

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

From Object-Oriented to Functional Programming Chapter 1

[21]

The LSP states that, when designing the modules and classes, we must make sure that the
derived types are substitutable from a behavior point of view. When the derived type is
substituted with its supertype, the rest of the code will operate with it as it is the subtype.
From this point of view, the derived type should behave as its supertype and should not
break its behavior. This is called strong behavioral subtyping.

In order to understand the LSP, let's take an example in which the principle is violated.
While we are working on the car-service software, we discover we need to model the
following scenario. When a car is left for service, the owner leaves the car. The service
assistant takes the key and, when the owner leaves, he goes to check that he has the right
key and that he has spotted the right car. He simply goes to unlock and lock the car, then he
puts the key in a designated place with a note on it so the mechanic can easily pick it up
when he has to inspect the car.

We already have defined a class. We are now creating a class and adding two
methods into the car class: lock and unlock. We add a corresponding method, so the
assistant checks the key matches the car:

The diagram is as follows:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

From Object-Oriented to Functional Programming Chapter 1

[22]

While working on our software, we realize that buggies are sometimes repaired through
the car service. As buggies are four-wheel cars, we create a Buggy class, which is inherited
from the Car:

Buggies don't have doors, so they cannot be locked or unlocked. We implement our code
accordingly:

We design our software to work with cars, regardless of whether they are buggies or not, so
in the future we might extend it with other types of cars. A problem may arise from the fact
that cars are expected to be locked and unlocked.

Interface Segregation Principle
The following quote is taken from

 link:

"Clients should not be forced to depend upon interfaces that they don't use."

When applied, the Interface Segregation Principle (ISP) reduces the code coupling,
making the software more robust, and easier to maintain and extend. ISP was first
announced by Robert Martin, when he realized that if the principle is broken and clients are
forced to depend on interfaces they don't use, the code becomes so tightly coupled that it's
almost impossible to add new functionality to it.

In order to better understand this, let's again take the car-service example (refer to the
following diagram). Now we need to implement a class named Mechanic. The mechanic
repairs cars, so we add a method of repair car. In this case, the Mechanic class depends
upon the I class. However, the Car class exposes a richer sets of methods than the Mechanic
class needs:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

From Object-Oriented to Functional Programming Chapter 1

[23]

This is a bad design because if we want to replace a car with another one, we need to make
changes in the Mechanic class, which violates the open/closed principle. Instead, we must
create an interface that exposes only the relevant methods required in the Mechanic class,
as shown in the following diagram:

Dependency inversion principle
"High-level modules should not depend on low-level modules. Both should depend on
abstractions."

"Abstractions should not depend on details. Details should depend on abstractions."

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

From Object-Oriented to Functional Programming Chapter 1

[24]

In order to understand this principle, we must explain the important concept of coupling
and decoupling. Coupling refers to the degree to which modules of a software system are
dependent on one another. The lower the dependency is, the easier it is to maintain and
extend the system.

There are different approaches to decoupling the components of a system. One of them is to
separate the high-level logic from the low-level modules, as shown in the following
diagram. When doing this, we should try to reduce the dependency between the two by
making them depend on abstractions. This way, any of them can be replaced or extended
without affecting other modules:

Summary
In this chapter, we presented the main programming paradigms used in Java. We have
learned that two different paradigms, such as imperative programming and functional
programming, can coexist in the same language; and we have learned how Java went from
pure, imperative object-oriented programming to integrating functional programming
elements.

Although Java introduced new functional elements, starting from version 8, it is at its core
still an object-oriented language. In order to write solid and robust code that is easy to
extend and maintain, we learned about the fundamental principles of object-oriented
programming languages.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

From Object-Oriented to Functional Programming Chapter 1

[25]

An important part of developing software is designing the structure and the desired
behavior of the components of our programs. This way, we can work on large systems, in
large teams, sharing our object-oriented designs within or between teams. In order to be
able to do this, we highlighted the main UML diagrams and concepts relevant to object-
oriented design and programming. We also use UML extensively in our book to describe
the examples.

After introducing the class relationships and showing how to represent them in diagrams,
we dove into the next section, where we described what the object-oriented design patterns
and principles are, and we presented the main principles.

In the next chapter, we will move on to presenting the group of design patterns dealing
with object creation in such a way that our code is robust and extendable.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

22
Creational Patterns

The objective of this chapter is to learn about creational patterns. Creational patterns are
patterns that deal with object creation. In this chapter, we will cover the following topics:

Singleton pattern
Simple factory pattern
Factory method patterns
Abstract factory pattern
Builder pattern
Prototype pattern
Object pool pattern

Singleton pattern
The singleton pattern is probably the most widely used design pattern since the inception
of Java. It is a simple pattern, easy to understand and to use. Sometimes it is used in excess,
and in scenarios where it is not required. In such cases, the disadvantages of using it
outweigh the advantages it brings. For this reason, the singleton is sometimes considered
an anti-pattern. However, there are many scenarios where singletons are necessary.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creational Patterns Chapter 2

[27]

As its name suggests, the singleton pattern is used to ensure that only a single instance of
an object can be created. In addition to that, it also provides global access to that instance.
The implementation of a singleton pattern is described in the following class diagram:

The implementation of the singleton pattern is very simple and consists of a single class. To
ensure that the singleton instance is unique, all singleton constructors should be made
private. Global access is done through a static method that can be globally accessed to get
the singleton instance, as shown in the following code:

When we need to use the singleton object somewhere in our code, we simply invoke it like
this:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creational Patterns Chapter 2

[28]

In the method, we check whether the instance is null. If the instance is not
null, it means the object was created before; otherwise, we create it using the new operator.
After that, in either case, it is not null anymore, so we can return the instance object.

Synchronized singletons
The code for synchronized singletons is simple and efficient, but there is a situation we
should take into consideration. If we use our code in a multithreading application, it may
be the case that two threads invoke the method at the same time when the
instance is null. When this happens, it may be the case that the first thread proceeds to
instantiate the singleton using the new operator, and, before finishing it, the second thread
checks whether the singleton is null. Since the first thread didn't finish instantiating it, the
second thread will find that the instance is null, so it will start instantiating it too.

This scenario may seem almost impossible, but if it takes a long time to instantiate the
singleton, the likelihood of it happening is high enough that it cannot be neglected.

The solution to this problem is very simple. We have to make the block that checks whether
the instance is null thread-safe. This can be done in the following two ways:

Making the method thread-safe by adding the
keyword to its declaration:

Wrapping the condition in a block.
When we use the block in this context, we need to specify an
object that provides the lock. We use the object for this, as
shown in the following code snippet:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creational Patterns Chapter 2

[29]

Synchronized singleton with double-checked
locking mechanism
The previous implementation is thread-safe but it introduces an unnecessary delay: the
block that checks whether the instance has already been created is synchronized. This
means that the block can be executed by only one thread at a time, but locking makes sense
only when the instance has not been created. When the singleton instance has already been
created, each thread can get the current instance in an unsynchronized manner.

Adding an additional condition before the block will move the thread-safe
locking only when the singleton has not been instantiated yet:

Note that is checked twice. This is necessary, because we have to make
sure a check is done in the block too.

Lock-free thread-safe singleton
One of the best implementations of the singleton pattern in Java relies on the fact that a
class is loaded a single time. By instantiating the static member directly when declared, we
make sure that we have a single instance of the class. This implementation avoids locking
mechanisms and additional checking to see whether the instance has already been created:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creational Patterns Chapter 2

[30]

Early and lazy loading
Singletons can be split into two categories, depending on when the instance object is
created. If the singleton is created when the application is started, it is considered an
early/eager instantiation. Otherwise, if the singleton constructor is invoked when the

 method is invoked for the first time, it is considered a lazy-loading
singleton.

The lock-free thread-safe singleton presented in the previous example is considered an
early-loading singleton in the first version of Java. However, in the latest version of Java,
classes are loaded when they are needed, so that version is also a lazy-loading version.
Furthermore, the moment that a class is loaded depends on the JVM implementation and
may differ from one version to another. Making design decisions based on JVM
implementation should be avoided.

Currently, there is no reliable option in Java for creating an early loading singleton. If we
really need an early instantiation, we should enforce it at the start of the application, by
simply invoking the method, as shown in the following code:

The factory pattern
As discussed in the previous chapter, inheritance is one of the fundamental concepts in
object-oriented programming. Along with subtyping polymorphism, it gives us the is/a
relationship. A object can be handled as a object. A object can be
handled as a object too. On one hand, this kind of abstraction makes our code
thinner, because the same piece of code can handle operations for both and
objects. On the other hand, it gives us the option to extend our code to new types of

 objects by simply adding new classes such as and without modifying it.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creational Patterns Chapter 2

[31]

When we deal with such scenarios, one of the trickiest parts is the creation of objects. In
object-oriented programming, each object is instantiated using the constructor of the
specific class, as shown in the following code:

This piece of code implies a dependency between the class which instantiates an object and
the class of the instantiated object. Such dependencies make our code tightly coupled and
harder to extend without modifying it. For example, if we need to replace with another
type, let's say , we need to change the code accordingly:

But there are two problems here. First of all, our class should be open for extension but
closed for modification (the open/closed principle). Second of all, each class should have
only one reason to change (the single responsibility principle). Changing the main code
each time we add a new class will break the open/closed principle, and having the main
class responsible for instantiating objects in addition to its functionality will break
the single responsibility principle.

In this case, we need to come up with a better design for our code. We can add a new class
that is responsible for instantiating objects. We are going to call the pattern based
on this class.

Simple factory pattern
The factory pattern is used to encapsulate the logic to instantiate objects referred through a
common interface. New classes can be added with minimal changes.

The implementation of a simple factory is described in the following class diagram:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creational Patterns Chapter 2

[32]

The class implements the code to instantiate and
. When the client needs an object, it calls the

method of the with the parameter indicating the type of object it requires.
 instantiates the corresponding concrete product and returns it. The

returned product is cast to the base class type so the client will handle any in the
same way, regardless of whether it is a or .

Static factory
Let's write a simple factory to create instances of vehicles. We have an abstract
class and three concrete classes inherited from it: , , and . The factory, also
called the static factory, will look like this:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creational Patterns Chapter 2

[33]

The factory looks very simple and is responsible for the instantiation of the
classes, complying with the single responsibility principle. It helps us to reduce coupling
because the client depends only on the interface, complying with the dependency
inversion principle. If we need to add a new class, we need to change the

 class, so the open/closed principle is broken.

We can improve the simple factory pattern to make it open for extension but closed for
modification by using a mechanism to register new classes that will be instantiated when
needed. There are two ways to achieve this:

Registering product class objects and instantiating them using reflection
Registering product objects and adding a method to each product
that returns a new instance of the same class as itself

Simple factory with class registration using reflection
For this method, we are going to use a map to keep the product IDs along with their
corresponding classes:

Then, we add a method to register new vehicles:

The method becomes the following:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creational Patterns Chapter 2

[34]

In certain situations, working with reflection is either impossible or discouraged. Reflection
requires a runtime permission that may not be present in certain environments. If
performance is an issue, reflection may slow the program and so should be avoided.

Simple factory with class registration using
Product.newInstance
In the previous code, we used reflection to instantiate new vehicles. If we have to avoid
reflection, we can use a similar factory where to register the new vehicle classes the factory
should be able to create. Instead of adding classes to the map, we are going to add instances
of each type of object we want to register. Each product will be able to create a new instance
of itself.

We start by adding an abstract method in the base class:

For each product, the method declared abstract in the base class must be implemented:

In the class, we are going to change the map to keep the IDs of the objects along
with the objects:

Then we register a new type of vehicle by passing an instance of it:

We change the method accordingly:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creational Patterns Chapter 2

[35]

Factory method pattern
The factory method pattern is an improvement upon the static factory. The class is
made abstract and the code to instantiate specific products is moved to subclasses that
implement an abstract method. This way, the class can be extended without being
modified. The implementation of a factory method pattern is described in the following
class diagram:

It's time for some example code. Let's assume we have a car factory. At the moment, we
produce two car models: a small sports car and a large family car. In our software, the
customer can decide whether they want a small car or a large car. To start with, we are
creating a class with two subclasses: and .

Now that we have the vehicle structure, let's build the abstract factory. Please note that the
factory does not have any code to create new instances:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creational Patterns Chapter 2

[36]

To add the code to create car instances, we subclass the , creating a
. The car factory has to implement the abstract method,

which is invoked from the parent class. Practically, the delegates the
concrete vehicle's instantiation to the subclasses:

In the client, we simply create the factory and create orders:

At this point, we realize how much profit a car factory can bring. It's time to extend our
business, and our market research tells us that there is a high demand for trucks. So let's
build a :

When an order is started, we use the following code:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creational Patterns Chapter 2

[37]

Anonymous concrete factory
We continue the previous code by adding a from where customers can select
a small bike or a large bike. We can do this without creating a separate class file; we can
simply create an anonymous class that extends the directly in the client
code:

Abstract factory
The abstract factory is an extended version of the factory method. Instead of creating a
single type of object, it is used to create a family of related objects. If the factory method had
one , the abstract factory has several classes.

The factory method has an abstract method that is implemented by each concrete factory
with the code to instantiate the abstract product. The abstract factory has one method for
each abstract product.

If we take the abstract factory pattern and we apply it to a family containing a single object,
then we have a factory method pattern. The factory method is just a particular case of the
abstract factory.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creational Patterns Chapter 2

[38]

The implementation of an abstract factory pattern is described in the following class
diagram:

The abstract factory pattern is composed of the following classes:

: This is the abstract class that declares the methods that are
creating types of products. It contains a method for each that
has to be created.

: Concrete classes that implement the methods declared in
the base class. There is a factory for each set of concrete
products.

: The base interfaces or classes for objects that are required.
A family of related products is made up of similar products from each hierarchy:

 and are from the first family of classes, which is
instantiated by ; the second family, and

, is instantiated by .

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creational Patterns Chapter 2

[39]

Simple factory versus factory method versus
abstract factory
We have talked about three ways to implement the factory pattern, namely, the simple
factory, the factory method, and the abstract factory pattern. If you are confused about
these three implementations, you are not to be blamed, as there is a lot of overlap between
them. Moreover, there is no single definition of these patterns, and experts may differ on
how they should be implemented.

The idea is to understand the core concept. At its core, we can say that the factory pattern is
all about delegating the responsibility for the creation of appropriate objects to a factory
class. If our factory is complex, that is, it should serve multiple types of objects or factories,
we can modify our code accordingly.

Builder pattern
The builder pattern serves the same purpose as the other creational patterns, but it does so
in a different way and for different reasons. When developing complex applications, the
code tends to become more complex. Classes tend to encapsulate more functionality and, at
the same time, class structures become more complex. As the functionality grows, more
scenarios need to be covered and, for these, different representations of classes are required.

When we have a complex class that we need to instantiate to different objects with different
structures or different internal states, we can use separate classes to encapsulate the
instantiation logic. These classes are called builders. Each time we need objects from the
same class with a different structure, we can create another builder to create such instances.

The same concept can be used not only for classes for which we need different
representations but also for complex objects composed of other objects.

Creating builder classes to encapsulate the logic to instantiate complex objects is consistent
with the single responsibility principle and with the open/closed principle. The logic to
instantiate a complex object is moved to a separate Builder class. When we need objects
with different structures, we can add new builder classes, so the code is closed for
modification and open for extension, as shown in the diagram:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creational Patterns Chapter 2

[40]

The following classes are involved in the builder pattern:

: The class whose objects we have to build. It is a complex or a
composite object of which we need different representations.

: The abstract class or interface which declares the parts from which the
product is built. Its role is to expose only the functionality required to build the

, hiding the rest of the functionality; it decouples the
from the higher-level class that builds it.

: A concrete builder that implements the methods declared in
the interface. In addition to the methods declared in the
abstract class, it has a method that returns the built product.

: A class that directs how the object is built. In some variants of the
builder pattern this class is removed, its role being taken by either the client or
the builder.

Car builder example
In this section, we are going to apply the builder pattern to our car software. We have a
class and we need to create instances of it. Depending on the components we add to the car,
we can build sedan cars and sports cars. When we start designing our software, we realize
the following:

The class is quite complex, and creating class objects is a complex operation
too. Adding all of the instantiation logic in the constructor will make the
class quite big.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creational Patterns Chapter 2

[41]

We need to build several types of cars. Usually, for this scenario, we add several
different constructors, but our intuition is telling us that this is not the best
solution.
In the future, we probably need to build different types of car objects. The
demand for semi-automatic cars is quite high already, so in the near future we
should be ready to extend our code without modifying it.

We are going to create the following class structure:

 is the builder base class and it contains four abstract methods. We created two
concrete builders: and . Each of the concrete
builders has to implement all of the abstract methods. The methods that are not required,
such as for the , are left empty or they can throw an
exception. Electric and gasoline cars have different internal structures.

The class uses the builders to create new car objects. and
 may be similar, with slight differences:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creational Patterns Chapter 2

[42]

But let's assume we want to build a hybrid car with an electric and a gasoline engine:

Simplified builder pattern
In some implementations of the builder pattern, the class can be removed. In our
class example, the logic it encapsulates is quite simple, so in that case we don't really need a
director. In this case, the simplified builder pattern would look like this:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creational Patterns Chapter 2

[43]

The code that was implemented in the class is simply moved to the . This
change is not recommended when the and classes are too complex or
when the builder is used to build an object from a stream of data.

Anonymous builders with method chaining
As described previously, the most intuitive way to deal with objects from the same class
that should take different forms is to create several constructors to instantiate them for each
scenario. Using builder patterns to avoid this is a good practice. In Effective Java, Joshua
Bloch proposes using inner builder classes and method chaining to replace multiple
constructors.

Method chaining is a technique to return the current object () from certain methods.
This way, the methods can be invoked in a chain. For example:

After we have defined more methods like this, we can invoke them in a chain:

But, in our case, we are going to make an inner class of the object. So, when
we need a new client, we can do the following:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creational Patterns Chapter 2

[44]

Prototype pattern
The prototype pattern is a pattern that seems more complicated than it really is. Practically,
it is just a method to clone objects. Why would we need to clone objects when, these days,
instantiating objects is not too costly in terms of performance? There are several situations
in which it is required to clone objects that are already instantiated:

When the creation of a new object relies on an external resource or a hardware-
intensive operation
When we need a copy of the same object with the same state without having to
redo all of the operations to get to that state
When we need an instance of an object without knowing to which concrete class
it belongs

Let's look at the following class diagram:

In the prototype pattern, the following classes are involved:

: This is the base class, or an interface that declares the
method that derived objects have to implement. In a simple scenario, we may not
have a base class, and a direct concrete class is sufficient.

: These classes implement or extend the method.
This method should always be implemented because it returns a new instance of
its type. If the method was implemented in the base class and we didn't
implement it in , when we invoked the method
on a object, it would return a base object.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creational Patterns Chapter 2

[45]

The method can be declared in an interface so classes implementing the method
have to implement the method. This enforcement is done at compile time. However, it is
not enforced on classes inherited from classes that implement the method in
hierarchies with more than one level.

Shallow clone versus deep clone
When cloning objects, we should be aware of the deepness of cloning. When we clone an
object that contains simple datatypes, such as and , or immutable objects, such as
strings, we should simply copy those fields to the new object, and that's it.

A problem arises when our objects contain references to other objects. For example, if we
have to implement a clone method for a class that has an engine and a list of four
wheels, we should create not only a new object but also a new and four new

 objects. After all, two cars cannot share the same engine and the same wheels. This is
called a deep clone.

Shallow cloning is a method of cloning only the object that is the subject of cloning. For
example, if we have to implement a clone method for a object, we are not going to
clone the object it points to. More than one object can point to the same

 object.

In practice, we should decide whether we need deep, shallow, or mixed cloning based on
each scenario. Usually, shallow cloning corresponds to the aggregation relation described
in , From Object-Oriented to Functional Programming, and deep cloning to the
composition relation.

Object pool pattern
The instantiation of objects is one of the most costly operations in terms of performance.
While in the past this could have been an issue, nowadays we shouldn't be concerned about
it. However, when we deal with objects that encapsulate external resources, such as
database connections, the creation of new objects becomes expensive.

The solution is to implement a mechanism that reuses and shares objects that are expensive
to create. This solution is called the object pool pattern and it has the following structure:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creational Patterns Chapter 2

[46]

The classes that are used in the object pool pattern are the following:

: A class that encapsulates the logic to hold and manage a list of
resources.

: A class that encapsulates a limited resource. The classes
are always referenced by the , so they will never be garbage
collected as long as the is not de-allocated.

: The class that uses resources.

When a needs a new , it asks for it from the . The pool
checks and takes the first available resource and returns it to the client:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creational Patterns Chapter 2

[47]

Then, when the finishes using the , it releases it. The resource is added
back to the tool so that it can be reused.

One of the best examples of resource pooling is database connection pooling. We maintain
a pool of database connections and let the code use connections from this pool.

Summary
In this chapter, we covered creational design patterns. We talked about variations of the
singleton, factory, builder, prototype, and object pool patterns. All these patterns are used
to instantiate new objects and give code flexibility and reusability while creating objects. In
the next chapter, we will cover behavioral patterns. While creational patterns help us to
manage the creation of objects, behavioral patterns provide an easy way to manage the
behavior of objects.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

33
Behavioral Patterns

The objective of this chapter is to learn about behavioral patterns. Behavioral patterns are
patterns that focus on object interaction, communication, and control flows. Most
behavioral patterns are based on composition and delegation rather than inheritance. We
will look at the following behavioral patterns in this chapter:

The chain-of-responsibility pattern
The command pattern
The interpreter pattern
The iterator pattern
The observer pattern
The mediator pattern
The memento pattern
The state pattern
The strategy pattern
The template method pattern
The null object pattern
The visitor pattern

The chain-of-responsibility pattern
Computer software is for processing information, and there are different ways of
structuring and processing that information. We already know that when we talk about
object-oriented programming, we should assign a single responsibility to each class in
order to make our design easy to extend and maintain.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Behavioral Patterns Chapter 3

[49]

Consider a scenario where multiple types of operations can be performed on a set of data
that comes with a client request. Instead of adding information about all the operations in a
single class, we can maintain different classes responsible for the different types of
operations. This helps us keep our code loosely coupled and clean.

These classes are called handlers. The first handler will receive the request and take a call if
it needs to perform an action, or pass it on to the second handler. Similarly, the second
handler checks and can pass on the request to the next handler in the chain.

Intent
The chain-of-responsibility pattern chains the handlers in such a way that they will be able
to process the request or pass it on if they are not able to do it.

Implementation
The following class diagram describes the structure and the actors of the chain-of-
responsibility pattern:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Behavioral Patterns Chapter 3

[50]

The following classes are involved in the preceding diagram:

Client: This is the main structure of the application that uses the pattern. It's
responsible for instantiating a chain of handlers and then for invoking the

 method on the first object.
Handler: This is the abstract class from which all the concrete handlers have to be
inherited. It has a method, which receives the request that
should be processed.
ConcreteHandlers: These are the concrete classes which implement a

 method for each case. Each keeps a
reference to the next in the chain and has to check whether it
can process the request; otherwise, it has to pass it on to the next

 in the chain.

Each handler should implement a method that is used by the client to set the next handler
to which it should pass the request if it's not able to process it. This method can be added to
the base class:

In each class, we have the following code, which checks whether it can
handle the request; otherwise, it passes it on:

The client is responsible for building the chain of handlers before invoking the head of the
chain. The call will be propagated until it finds the right handler that can process the
request.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Behavioral Patterns Chapter 3

[51]

Let's take our car service application example. We realize that each time a broken car comes
in, it is first checked by the mechanic, who fixes it if the problem is in their area of expertise.
If they're not able to, they send it on to the electrician. If they're not able to fix it, they pass it
on to the next expert. Here's how the diagram would look:

Applicability and examples
What follows is the applicability and examples of the chain-of-responsibility pattern:

Event handlers: For example, most GUI frameworks use the chain-of-
responsibility pattern to handle events. Let's say, for example, a window contains
a panel that contains some buttons. We have to write the event handler of the
button. If we decide to skip it and pass it on, the next one in the chain will be able
to handle the request: the panel. If the panel skips it, it will go to the window.
Log handlers: Similar to the event handlers, each log handler will log a specific
request based on its status, or it will pass it on to the next handler.
Servlets: In Java, (

) is used to filter requests or responses. The
 method also receives the filter chain as a parameter, and it can pass

the request on.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Behavioral Patterns Chapter 3

[52]

The command pattern
One of the most important things to do in object-oriented programming is to adopt a design
that lets us decouple the code. For example, let's imagine that we need to develop a
complex application in which we can draw graphic shapes: points, lines, segments, circles,
rectangles, and many more.

Along with the code to draw all kinds of shapes, we need to implement many operations to
handle the menu operations. In order to make our application maintainable, we are going
to create a unified way to define all those commands in such a way that it will hide the
implementation details from the rest of the application (which plays the client role).

Intent
The command pattern does the following:

Provides a unified way to encapsulate a command along with the required
parameters to execute an action
Allows the handling of commands, such as storing them in queues

Implementation
The class diagram of the command pattern is as follows:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Behavioral Patterns Chapter 3

[53]

We can distinguish the following actors in the preceding implementation diagram:

Command: This is the abstraction that represents the encapsulation of a
command. It declares the abstract method executed, which should be
implemented by all the concrete commands.
ConcreteCommand: This is the actual implementation of the Command. It has to
execute the command and deal with the parameters associated with each
concrete command. It delegates the command to the receiver.
Receiver: This is the class responsible for executing the action associated with the
command.
Invoker: This is the class that triggers the command. This is usually an external
event, such as a user action.
Client: This is the actual class that instantiates the concrete command objects and
their receivers.

Initially, our impulse is to deal with all possible commands in a big block:

However, we may decide to apply the command pattern for the drawing application. We
start by creating a command interface:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Behavioral Patterns Chapter 3

[54]

The next step is to define all the objects, such as menu items and buttons, as classes,
implementing the command interface and the method:

After we have repeated the previous operation, creating a class for each possible action, we
replace the block from the naive implementation with the following one:

We can see from our code that the invoker (the client that triggers the
method) and the receivers (the classes implementing the command interface) are
decoupled. We can easily extend our code without changing it.

Applicability and examples
The applicability and examples of the command pattern are as follows:

Undo/redo operations: The command pattern allows us to store the command
object in a queue. This way, we can implement undo and redo operations.
Composite commands: Complex commands can be composed of simple
commands using the composite pattern, and are run in a sequential order. In this
way, we can build macros in an object-oriented-design manner.
The asynchronous method invocation: The command pattern is used in
multithreading applications. Command objects can be executed in the
background in separate threads. The java.lang.Runnable is a command interface.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Behavioral Patterns Chapter 3

[55]

In the following code, the runnable interface acts as a command interface, and is
implemented by :

The client invokes the command to start a new thread:

The interpreter pattern
Computers are supposed to interpret sentences or evaluate expressions. If we have to write
a sequence of code that is supposed to deal with such a requirement, first of all, we need to
know the structure; we need to have an internal representation of the expression or the
sentence. In many situations, the most appropriate structure to use is a composite one
based on the composite pattern. We will further discuss the composite pattern in

, Structural Patterns, for now, we can think of composite representation as grouping objects
of a similar nature together.

Intent
The interpreter pattern defines the representation of the grammar along with the
interpretation.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Behavioral Patterns Chapter 3

[56]

Implementation
The interpreter pattern uses the composite pattern to define the internal representation of
the object structure. In addition to that, it adds the implementation to interpret an
expression and to convert it to the internal structure. For this reason, the interpreter pattern
falls within the behavioral patterns category. The class diagram is as follows:

The interpreter pattern is composed of the following classes:

Context: This is used to encapsulate the information that is global to the
interpreter and needs to be accessed by all concrete interpreters.
AbstractExpression: An abstract class or interface that declares the interpret
method executed, which should be implemented by all the concrete interpreters.
TerminalExpression: An interpreter class which implements the operations
associated with the terminal symbols of the grammar. This class must always be
implemented and instantiated, as it signals the end of the expression.
NonTerminalExpression: These are classes that implement different rules or
symbols of the grammar. For each one, there should be one class created.

The interpreter pattern is used in practice to interpret regular expressions. It's a good
exercise to implement the interpreter pattern for such a scenario; however, we'll choose a
simple grammar for our example. We are going to apply it to parse a simple function with
one variable: .

To make it even simpler, we are going to choose the Reverse Polish notation. This is a
notation in which the operands are added at the end of the operators. The 1 + 2 becomes 1 2
+; (1+2)*3 becomes 1 2 + 3 *. The advantage is that we no longer need parentheses, so it
simplifies our task.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Behavioral Patterns Chapter 3

[57]

The following code creates an interface for expressions:

Now we need to implement the concrete classes. We need the following elements:

Number: This will interpret the numbers
Operator classes (+,-,*,/): For the following example, we will use plus (+) and
minus (-):

Now we reach the difficult part. We need to implement the operators. The operators are
composite expressions, which are composed of two expressions:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Behavioral Patterns Chapter 3

[58]

Similarly, we have a minus implementation as follows:

We can see now that we've created the classes that allow us to build a tree in which
operations are nodes, and variables and numbers are leaves. The structure can be quite
complex and can be used to interpret an expression.

Now we have to write the code to build the tree using the classes we've created:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Behavioral Patterns Chapter 3

[59]

Applicability and examples
The interpreter pattern can be used whenever an expression should be interpreted and
transformed to its internal representation. The pattern cannot be applied to complex
grammars since the internal representation is based on a composite pattern.

Java implements the interpreter pattern in and it is used to interpret
regular expressions. First, when a regular expression is interpreted, a matcher object is
returned. The matcher uses the internal structure that was created by the pattern class
based on the regular expression:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Behavioral Patterns Chapter 3

[60]

The iterator pattern
The iterator pattern is probably one of the most well-known patterns in Java. Some Java
programmers are using it without being aware that the collection package is an
implementation of the iterator pattern, regardless of the type of the collection: array, list,
set, or any other types.

The fact that we can deal in the same way with a collection, regardless of whether it's a list
or an array, is because it provides a mechanism to iterate through its elements without
exposing its internal structure. What's more, the same unified mechanism is used by
different types of collections. The mechanism is called the iterator pattern.

Intent
The iterator pattern provides a way to traverse the elements of an aggregate object
sequentially without exposing its internal representation.

Implementation
The iterator pattern is based on two abstract classes or interfaces, which can be
implemented by pairs of concrete classes. The class diagram is as follows:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Behavioral Patterns Chapter 3

[61]

The following classes are used in the iterator pattern:

Aggregate: The abstract class that should be implemented by all the classes and
can be traversed by an iterator. This corresponds to the
interface.
Iterator: This is the iterator abstraction that defines the operations to traverse the
aggregate object along with the one to return the object.
ConcreteAggregate: Concrete aggregates can implement internally different
structures, but expose the concrete iterator, which deals with traversing the
aggregates.
ConcreteIterator: This is the concrete iterator that deals with a specific concrete
aggregate class. In practice, for each ConcreteAggregate, we have to implement a
ConcreteIterator.

Using the iterators in Java is probably one of the things every programmer does in daily
life. Let's see how we can implement an iterator. First of all, we should define a simple
iterator interface:

Then we implement a simple , which maintains an array of String values:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Behavioral Patterns Chapter 3

[62]

We nested the iterator class in the aggregate. This is the best option because the iterator
needs access to the internal variables of the aggregator. We can see here how it looks:

Applicability and examples
Iterators are popular in most programming languages these days. It is probably most
widely used in Java, along with the collections package. It is also implemented at the
language level when a collection is traversed with the following loop construction:

The iterator pattern can be implemented using the generics mechanism. This way, we can
make sure we can avoid runtime errors generated by forced castings.

Good practice when implementing new containers and iterators in Java is to implement the
existing and classes. When we
need aggregators with specific behaviors, we should also consider extending one of the
classes that were implemented in the package instead of creating a new
one.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Behavioral Patterns Chapter 3

[63]

The observer pattern
As we advance in this book, we keep mentioning how important decoupling is. When we
reduce dependencies, we can extend, develop, and test different modules without having to
know the implementation details of other modules. All we have to know is the abstraction
they implement.

However, modules should work together in practice. And it's not uncommon that changes
in one object are known by another object. For example, if we implement a class in a
game, the engine of the car should know when the accelerator changes its position. The
naive solution would be to have an class that checks from time to time the
accelerator position to see whether it has changed. A smarter approach would be to make
the accelerator call the engine to inform it about the changes. But this is not enough if we
want to have well-designed code.

If the class keeps a reference to the class, what happens when we
need to display on screen the position of ? This is the best solution: instead of
making the accelerator dependent on the engine, we should make both of them rely on
abstractions.

Intent
The observer pattern makes the state changes of one object observable to other objects that
are registered to be informed.

Implementation
The class diagram of the observer pattern is as follows:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Behavioral Patterns Chapter 3

[64]

The observer pattern relies on the following classes:

Subject: This is usually an interface that must be implemented by the classes and
should be observable. The observers that should be notified are registered using
the attach method. When they no longer have to be informed about the changes,
they are deregistered using the detach method.
ConcreteSubject: This is a class that implements the subject interface. It handles
the list of observers and it updates them about the changes.
Observer: This is an interface that is implemented by the objects that should be
updated by the changes in the subject. Each observer should implement the
update method, which informs them about the new state changes.

The mediator pattern
In many cases, when we design and develop software applications, we encounter many
scenarios where we have modules and objects that have to communicate with one another.
The easiest approach would be to make them in such a way that they know each other and
can send messages directly.

However, this might create a mess. If we imagine, for example, a communication app in
which each client has to connect to another one, it doesn't make sense for a client to manage
many connections. A better solution would be to connect to a central server and for the
server to manage the communication between the clients. The client sends the message to
the server and the server keeps the connection active to all the clients, and it can broadcast
messages to all required recipients.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Behavioral Patterns Chapter 3

[65]

Another example is where a specialized class is required to mediate between different
controls, such as buttons, dropdowns, and list controls, in a graphical interface. For
example, the graphical controls in a GUI can hold a reference to each other in order to
invoke their methods reciprocally. But obviously, this will create an extremely coupled
code in which each control depends on all the others. A better approach would be to make
the parent responsible for broadcasting messages to all the required controls when
something needs to be done. When something modifies in a control, it will notify the
window, which will check which controls need to be informed and then inform them.

Intent
The mediator pattern defines an object that encapsulates how a set of objects interacts,
reducing their dependency on one another.

Implementation
The mediator pattern is based on two abstractions: Mediator and Colleague, as shown in
the following class diagram:

The mediator pattern relies on the following classes:

Mediator: This defines how the participants are interacting. The operations
declared in this interface or abstract class are specific to each scenario.
ConcreteMediator: This implements the operations declared by the mediator.
Colleague: This is an abstract class or interface that defines how the participants
that need mediating should interact.
ConcreteColleague: These are the concrete classes implementing the Colleague
interface.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Behavioral Patterns Chapter 3

[66]

Applicability and examples
The mediator pattern should be used when there are lots of entities interacting in a similar
manner and those entities should be decoupled.

The mediator pattern is used in Java libraries to implement . The
class can be used to schedule threads to run one time or repeatedly at regular intervals. The
thread objects correspond to the class. The class implements
methods to manage the execution of background tasks.

The memento pattern
Encapsulation is one of the fundamental principles of object-oriented design. We also know
that each class should have a single responsibility. As we add functionality to our object,
we might realize that we need to save its internal state to be able to restore it at a later stage.
If we implement such functionality directly in the class, the class might become too
complex and we might end up breaking the single responsibility principle. At the same
time, encapsulation prevents us having direct access to the internal state of the object we
need to memorize.

Intent
The memento pattern is used to save the internal state of an object without breaking its
encapsulation, and to restore its state at a later stage.

Implementation
The memento pattern relies on three classes: Originator, Memento, and Caretaker, as
shown in the following class diagram:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Behavioral Patterns Chapter 3

[67]

The memento pattern relies on the following classes:

Originator: The originator is the object for which we need to memorize the state
in case we need to restore it at some point.
Caretaker: This is the class responsible for triggering the changes in the
originator or for triggering an action through which the originator returns to a
previous state.
Memento: This is the class responsible for storing the internal state of the
originator. Memento provides two methods by which to set and get a state, but
those methods should be hidden from the caretaker.

In practice, memento is much easier than it sounds. Let's apply it to our car service
application. Our mechanic has to test each car. They use an automatic device that measures
all the outputs of the car for different parameters (speed, gears, brakes, and so on). They
perform all the tests and have to re-check those that look suspicious.

We start by creating the class. We'll name it and we'll add
two member variables. represents the parameters of the car when the test is run.
This is the state of the object we want to save; the second member variable is result. This is
the measured output of the car and we don't need to store this in the memento. Here is the
originator with an empty-nested memento:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Behavioral Patterns Chapter 3

[68]

Now we run the car tests for different states:

Applicability
The memento pattern is used whenever rollback operations need to be implemented. It can
be used in all kinds of atomic transactions in which the object must be reverted to the initial
state if one of the actions fails.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Behavioral Patterns Chapter 3

[69]

The state pattern
A finite state machine is an important concept in computer science. It has a strong
mathematical base and it represents an abstract machine that can be in a finite number of
states. Finite state machines are used in all fields of computer science.

The state pattern is just an implementation of a finite state machine in object-oriented
design. The class diagram is as follows:

The strategy pattern
A particular situation specific to behavioral patterns is when we need to change the way to
solve a problem with another one. As we already learned in the first chapter, changing is
bad, while extending is good. So, instead of replacing a portion of code with another one,
we can encapsulate it in a class. Then we can create an abstraction of that class on which
our code depends. From that point, our code becomes very flexible, as we can now use any
class that implements the abstraction we just created.

Intent
The strategy pattern defines a family of algorithms, encapsulating each one, and makes
them interchangeable.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Behavioral Patterns Chapter 3

[70]

Implementation
The structure of the strategy pattern is practically the same as the state pattern. However,
the implementation and the intent are totally different:

The strategy pattern is quite simple:

Strategy: The abstraction of a specific strategy
ConcreteStrategy: The classes that implement the abstract strategy
Context: The class that runs a specific strategy

The template method pattern
The template method pattern, as the name suggests, provides a template for code, which
can be filled in by developers implementing different functionalities. The easiest way to
understand this is to think in terms of HTML templates. Most of the websites you visit
follow some kind of template. For example, there is usually a header, a footer, and a
sidebar, and in between, we have the core content. That means the template is defined with
a header, footer, and sidebars, and every content writer can use this template to add their
content.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Behavioral Patterns Chapter 3

[71]

Intent
The idea of using the template method pattern is to avoid writing duplicate code so that
developers can focus on core logic.

Implementation
The template method pattern is best implemented using an abstract class. The areas for
which we know about the implementation will be provided; the default implementation
and the areas that are to be kept open for implementation are marked abstract.

For example, think of a database fetch query at a very high level. We need to execute the
following steps:

Create a connection1.
Create a query2.
Execute the query3.
Parse and return the data4.
Close the connection5.

We can see that creating and closing the connection part will always remain the same. So,
we can add this as part of the template implementation. The remaining methods can be
implemented independently for different needs.

The null object pattern
The null object pattern is one of the lightest patterns covered in this book. Sometimes, it is
considered just a particular case of the strategy pattern, but it has its own section, given the
importance it has in practice.

If we develop programs using a test-driven approach, or if we simply want to develop a
module without having the rest of the application, we can simply replace the classes we
don't have with a mock class, which has the same structure but does nothing.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Behavioral Patterns Chapter 3

[72]

Implementation
In the following diagram, we can see that we simply create a NullClass, which can replace
the real class in our program. As mentioned before, this is just a particular case of the
strategy pattern in which we choose the strategy of doing nothing. The class diagram is as
follows:

The visitor pattern
Let's go back to the shapes application we introduced when talking about the command
pattern. We applied the command pattern, so we have to redo the operations implemented.
It's time to add a save functionality.

We might think that if we add an abstract method to the base shape class and if we
extend it for each of the shapes, we have the problem solved. This solution is maybe the
most intuitive, but not the best. First of all, each class should have a single responsibility.

Secondly, what happens if we need to change the format in which we want to save each
shape? If we are implementing the same methods to generate an XML out, do we then have
to change to JSON format? This design definitely does not follow the open/closed principle.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Behavioral Patterns Chapter 3

[73]

Intent
The visitor pattern separates an operation from the object structure on which it operates,
allowing the addition of new operations without changing the structure classes.

Implementation
The visitor pattern defines a set of operations in a single class: it defines one method for
each type of object from the structure it has to operate on. Adding a new set of operations
can be done simply by creating another visitor. The class diagram is as follows:

The visitor pattern is based on the following classes:

Element: This represents the base class for the object structure. All the classes in
the structure are derived from it and they must implement the accept(visitor:
Visitor) method.
ConcreteElementA and ConcreteElementB: These are concrete classes to which
we want to add external operations implemented in the Visitor class.
Visitor: This is the base Visitor class, which declares a method corresponding to
each ConcreteElementA. The name of the method is the same, but each method
is differentiated by the type it accepts. We can adopt this solution because in
Java, we can have methods with the same name and different signatures; but, if
needed, we can declare methods with different names.
ConcreteVisitor: This is the implementation of the visitor. When we need a
separate set of operations, we simply create another visitor.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Behavioral Patterns Chapter 3

[74]

Summary
In this section, we discussed various behavioral patterns. We looked at some of the most
commonly used behavioral patterns, such as the chain-of-responsibility, the command
pattern, the interpreter pattern, and so on. These patterns help us manage the behavior of
objects in a controlled manner. In the next chapter, we will look into structural patterns,
which help us manage complex structures.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

44
Structural Patterns

The objective of this chapter is to learn about structural patterns. Structural patterns are
patterns that focus on creating complex structures by making use of relations between
objects and classes. Most structural patterns are based on inheritance. In this chapter, we
will focus only on the following GOF patterns:

The adapter pattern
The proxy pattern
The bridge pattern
The decorator pattern
The composite pattern
The fa ade pattern
The flyweight pattern

There are other identified structural patterns that we may not be able to cover in detail, but
it is worth knowing about them. These are the following:

Marker interface: This uses an empty interface to mark specific classes (such as
serializable), thus making searching by interface name possible. For more
information, please read the article, Item 37 - using marker interfaces to define
types, at , which makes
reference to Effective Java (2nd Edition), written by Joshua Bloch.
Module: This groups classes together to implement the concept of software
modules. A modular architecture contains multiple patterns, which are explained
in a clear way by Kirk Knoernschild at

. Java 9 module is an example of this pattern read more
at

.
Extension object: This changes at runtime the existing object interface. More
information is available at

.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[76]

Twin: This adds multiple inheritance capabilities to languages that do not
support it. Java 8 has support for multiple inheritances of type by the addition of
default methods. Even so, the twin pattern can still be useful in some cases. The
Java design pattern com site has a good description of the twin pattern at

.

Adapter pattern
The adapter pattern provides a solution for code reusability; it adapts/wraps existing old
code to new interfaces, interfaces that were unknown at the design time of the original
code. In 1987, when the PS/2 port was designed, no one imagined that it would be
connected to a USB bus designed nine years later. Yet we can still use an old PS/2 keyboard
in our newest computer by connecting it to the USB port.

The adapter pattern is commonly used when working with legacy code, since by wrapping
the existing code and adapting it to the new code interface, we instantly gain access to the
old, already-tested, functionality. This can be done either by using multiple inheritances,
made possible in Java 8 by default interface implementation, or by using composition,
where the old object becomes a class attribute. The adapter pattern is also known as a
wrapper.

In cases where the old code needs to make use of the new code, and vice-versa, we need to
use a special adapter called a two-way adapter, which implements both interfaces (the old
and the new one).

The and classes from
JDK are adapters, since they adapt input/output stream objects from JDK1.0 to
reader/writer objects defined later, in JDK1.1.

Intent
The intent is to adopt an existing old interface to a new client interface. The goal is to reuse
as much as possible the old and already tested code, while being free to make changes to
the new interface.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[77]

Implementation
The following UML diagram models the interaction between the new client code and the
adapted one. The adapter pattern is usually implemented in other languages by using
multiple inheritance, which is partially possible starting from Java 8. We will use another
approach, which works with older Java versions too; we'll use aggregation. It is more
restrictive than inheritance since we are not going to get access to protected content, just the
adapter public interface:

We can distinguish between the following actors from the implementation diagram:

Client: The code client
Adapter: The adapter class that forwards the calls to the adaptee
Adaptee: The old code that needs to be adapted
Target: The new interface to support

Examples
The following code simulates the use of a PS/2 keyboard in a USB bus. It defines a PS/2
keyboard (adaptee), a USB device interface (target), a PS2ToUSBAdapter (adapter), and the
wires to link in order to make the device work:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[78]

The class models, as the name suggests, the ends of each wire. By default, all
wires are loose; therefore, we need a way to signal this. This is done by using the Null
object pattern the is our null object (a null replacement, which does not throw

). Take a look at this code:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[79]

The class models the wires from a USB or PS/2 device. It has two ends, which by
default are loose, as shown in the following code:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[80]

The USBPort, according to the USB specification, has four wires: 5V red, green, and white
wires for data, and a black wire for ground, as shown in the following code:

 is the adapter. It's the old device that we need to use, as shown in the
following code:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[81]

 is the target interface. It knows how to interface with a , as shown in
the following code:

 is our adapter class. It knows how to do the wirings so that the old
device can still be used by the new , as shown in the following code:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[82]

The output is as follows:

As expected, our device is wired to the USB port and ready to be used. All the wirings are
done and, for example, if the USB port sets the red wire to 5 volts, that value reaches the
keyboard, and if the keyboard sends data via the green wire, it will reach the USB port.

Proxy pattern
Whenever you work with Enterprise or Spring beans, mocked instances, and implement
AOP, make RMI or JNI calls to another object with the same interface, or directly/indirectly
use , there is a proxy object involved. Its purpose is to provide
a surrogate for a real object, with exactly the same footprint. It delegates the work to it
while doing something else before or after the call. Types of proxy include the following:

Remote proxy: This delegates the work to a remote object (different process,
different machine), an Enterprise bean, for example. Wrapping existing non-Java
old code (for example, C/C++) by using JNI, either manually or automatically (for
example, by using SWIG to generate the glue code see

), is a form of a remote proxy pattern, since it uses a
handle (pointer in C/C++) to access the actual object.
Protection proxy: This does security/rights checks.
Cache proxy: This uses memorization to speed up calls. One of the best examples
is the Spring method, which caches the results of a method for the
specific parameters and does not call the actual code, but returns from the cache
the previously calculated result.
Virtual and smart proxies. These add functionality to the method, such as
logging performance metrics (creating an , with an for the
desired methods and defining an advice) or doing lazy initialization.

The main difference between an adapter and a proxy is that the proxy provides exactly the
same interface. The decorator pattern enhances the interface, while the adapter changes the
interface.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[83]

Intent
The intent is to provide a surrogate for a real object in order to better control it. It is a
handle to a real object that behaves like it, thus making the client code to use it just as it
would use the real object.

Implementation
The following diagram models the proxy pattern. Notice that since both the real and the
proxy subjects implement the same interface, they can be interchangeable:

We can distinguish between the following actors in the implementation diagram:

Subject: The existing interface used by the client
RealSubject: The real object's class
ProxySubject: The proxy class

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[84]

Examples
The following code simulates a remote proxy that looks up a bean from the localhost EJB
context. Our remote proxy is a geometry calculator running in another JVM. We will use a
factory method to make both our proxy and real objects to demonstrate that they are
interchangeable. The proxy version takes longer to compute, since we also simulate the JNI
lookup part and send/retrieve the result. Take a look at the code:

This is our subject, the interface that we want to implement. It simulates the modeling of
both the and the interfaces, as shown in the
following code:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[85]

This is our real subject, the one that knows how to perform the actual geometry
calculations, as shown in the following code:

This is our proxy subject. Notice that it has no business logic; it delegates it to the real
subject after it manages to establish a handle to it, as shown in the following code:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[86]

The following output shows that the proxy manages to link to the real object and perform
the required calculations:

Decorator pattern
There are times when we need to add or remove functionality to/from existing code,
without affecting it, and when it is not practical to make a subclass. The decorator comes in
handy in these cases because it allows doing so without changing the existing code. It does
this by implementing the same interface, aggregating the object that it is going to decorate,
delegating all the common interface calls to it, and implementing in the child classes the
new functionality. Apply this pattern to classes with a lightweight interface. In other cases,
it is a better choice to extend the functionality by injecting the desired strategies into the
component (strategy pattern). This will keep the changes local to a specific method, without
the need to re-implement the other ones.

The decorated object and its decorator should be interchangeable. The decorator's interface
must fully conform to the decorated object's interface.

Since it uses recursion, new functionality can be achieved by composing decorators. In this
aspect, it resembles the composite pattern, which composes multiple objects with the intent
to form complex structures that act as one. The decorator can be viewed as the piece of
glass or the sheet of card from a passpartout (a picture or photograph mounted between a piece
of glass and a sheet of card), where the picture/photograph itself is the decorated object.
Strategy, on the other hand, can be viewed as the artist's signature on that
picture/photograph.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[87]

The swing class is an example of a decorator because, it allows adding new
functionalities, such as a scroll bar, around an existing container, and it can be done
multiple times, as shown in this code:

Intent
The intent is to dynamically extend the existing object's functionality without changing its
code. It conforms to the original interface and is able to extend the functionally by using
composition, rather than subclassing.

Implementation
The following diagram models the decorator pattern. It shows that the extended
component and the decorated component can be replaced, one with the other. The
decorator can be applied recursively; it can be applied to an existing component
implementation but also applied to another decorator, or even to itself. The decorator
interface is not fixed to the component interface; it can add extra methods, which may be
used by the decorator's children, as shown in this diagram

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[88]

We can distinguish between the following actors in the implementation diagram:

Component: This is the abstract component (it can be an interface)
ComponentImplementation: This is one of the components we would like to
decorate
Decorator: This is an abstract component decorator
ExtendedComponent: This is the component decorator that adds the extra
functionality

Examples
The following code shows how a simple print ASCII text can be enhanced to print the hex
equivalent string for the input, besides the actual text:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[89]

 is the component to be decorated. Notice that it knows only how to print
 text. We want to make it print in hexadecimal as well; we can do this using this code

 is the decorator. It can be applied to other
components as well. Let's say we want to implement a component . We
may still use our existing decorator to make it print hex as well.

The following output displays the current functionality (ASCII) plus the newly added
functionality (hexadecimal display):

Bridge pattern
During software design, we may face the problem that the same abstraction can have
multiple implementations. This is mostly visible when doing cross-platform development.
Examples could include a line-feed line break on Linux or the existence of a registry on
Windows. A Java implementation that needs to get specific system information, by running
specific OS calls, will definitely need to be able to vary the implementation. One way to do
this is by using inheritance, but this will bind the children to a specific interface, which may
not exist on different platforms.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[90]

In these cases, it is advisable to use the bridge pattern, since it allows moving away from a
proliferation of classes that extend a specific abstraction to nested generalizations, a term
coined by Rumbaugh, where we handle the first generalization, and then the other, thus
multiplying all the combinations. This works fine if all subclasses are equally important and
the same implementation methods are used by multiple interface objects. If, for some
reason, a lot of code gets duplicated, this a sign that this pattern is not the right choice for
the specific problem.

Intent
The intent is to decouple the abstraction from the implementation to allow them to vary
independently. It does this by using inheritance, both in the public interface and in the
implementation.

Implementation
The following diagram shows a possible bridge implementation. Notice that both the
abstraction and the implementation can change, not only the interface but also the
implementation code. For example, the refined abstraction could make use of the

 that only the offers:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[91]

We can distinguish between the following actors in the implementation diagram:

Abstraction: This is the abstract component
Implementation: This is the abstract implementation
Refined: This is the refined component
SpecificImplementation: This is the concrete implementation

Examples
The following code presents an email client that makes use of an implementation based on
the running platform. It can be enhanced with a factory method pattern to create the
specific platform implementation:

 is our implementation abstraction class. It specifies what each
implementation needs to offer in our case, to forward a message given by text. Both the
following implementations, Windows, and POSIX, know how to do the task:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[92]

The abstraction, , sends a message using the platform-specific
implementation. The refined abstraction sends a message to a specific
group . Other possible refined abstractions could include
platform-specific code and calls to the platform implementation. Here's the code:

The following output shows that all the message clients sent a message using the Windows
implementation:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[93]

Composite pattern
The composite pattern, as the name suggests, is used when composing objects into a
complex structure that acts as one (refer to the following diagram). Internally, it is using
data structures, such as trees, graphs, arrays, or linked lists to represent the model:

The JVM offers the best example of a composite pattern, since it is usually implemented as a
stack machine (for portability reasons). Operations are pushed and popped from the
current thread stack. For example, to calculate what 1 + 4 - 2 equals, it pushes 1, pushes 4,
and executes add. The stack now has only value 5, pushes 2, and executes minus. Now the
stack has only value 3, which is popped. The operation 1 + 4 + 2 - (reversed polish notation)
can be easily modeled using the composite pattern, where each node is either a value,
complex value, or an operand. Each node has a perform method that performs the
operation (push, execute, and pop or combine, depending on the type).

Composite makes use of recursive composition, where each part, leaf, or node is handled in
the same manner by the client code.

Intent
The intent is to enable the modeling of objects into a tree or graph-like structures and treat
them in the same manner. The client code does not need to know whether a node is an
individual object (leaf node) or a composition of objects (a node with children, such as the
root node); the client code can make an abstraction of these details and treat them
uniformly.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[94]

Implementation
The following diagram shows that the client uses the component interface
method. That method is implemented differently in root and leaf nodes. A root node can
have 1 to n children; the leaf node has none. When the number of children is 2 and there are
no cycles, then we have the case of a binary tree:

We can distinguish between the following actors in the implementation diagram:

Client: The client code
Component: The abstract node
Leaf: The leaf node
Composite: The composite node that has children that can be composite or leaf
nodes

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[95]

Examples
The following code models an arithmetic expression calculator. The expression is
constructed as a composite and has only one method . This gives the current
value; for leaf, it is the leaf numeric value, and for composite nodes, it is the children-
composed value:

The client code creates a (1+4)-2 arithmetic expression and prints its value, as shown in the
following code:

 is our composite interface; it knows only how to return an integer
value, which represents the value for the arithmetic expression
(composition) or a hold value (leaf), as shown in
the following code:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[96]

 and are the current supported arithmetic types. They know
how to represent a plus (+) and minus (-) arithmetic expression.

As expected, a (1+4)-2 arithmetic expression returns 3 and the values get printed to the
console, as shown in the following screenshot:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[97]

Fa ade pattern
Many complex systems are reducible to just a couple of their use cases, exposed by the
subsystems. By doing so, the client code does not need to know about the internals of the
subsystem. In other words, the client code is decoupled from it and it takes less time for the
developer to use it. This is known as a fa ade pattern, where the fa ade object is responsible
for exposing all the subsystem's functionality. This concept resembles encapsulation, where
we hide the internals of an object. With fa ade, we hide the internals of a subsystem and
expose just the essentials. The consequence is that the user is limited to the functionality
exposed by the fa ade, and is not able to use/reuse specific functionality from the
subsystem.

The fa ade pattern needs to adopt the internal subsystem interface (many interfaces) to the
client code interface (one interface). It does this by creating a new interface, while the
adapter pattern adapts to and from existing interfaces (sometimes more than one old class
is needed to provide the desired functionality to the new code). The fa ade does for
structures what the mediator does for object communication it unifies and simplifies
usage. In the first case, the client code accesses a subsystem's functionality by using the
fa ade object; in the second case, objects that are not aware of one another (loose coupled)
can interact by using a mediator/facilitator.

Intent
The intent is to provide a single unified interface for a complex subsystem. This simplifies
the usage of big and complex systems by providing the interface for the most important use
cases.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[98]

Implementation
The following diagram shows how a subsystem's usage can be simplified and decoupled
from the client code. The fa ade is the entry point to the subsystem; therefore, the
subsystem code can easily be switched to a different implementation. The client
dependencies can also be managed more easily and are more visible:

We can distinguish the following actors in the implementation diagram:

Client: The subsystem client code
Fa ade: The subsystem interface
Subsystem: The classes defined in the subsystem

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[99]

Examples
Coffee machines are like fa ades for the coffee grinders and coffee brewers, because they
hide their functionalities. The following code simulates a coffee machine that grinds coffee
beans, brews the coffee, and places it in a coffee cup.

The issue, as you will find out from the following code, is that we cannot get fine-sized
ground coffee (we have to grind the beans a little longer), since the
method knows only how to make coarse-sized ground coffee. This could be fine for some
coffee drinkers but not for all:

, , and are the item classes that we are going to use:

 is our fa ade. It offers a single method that returns a
containing :

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[100]

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[101]

To make a coffee, we use different machines, such as a coffee grinder and a coffee maker.
They are all Superstar Inc. products. The fa ade machine is a virtual machine; it's just an
interface to our existing machines and knows how to make use of them. Unfortunately, it
isn't highly configurable, but it gets the job done for most of the existing coffee drinkers.
Let's look at this code:

The following output shows that our fa ade managed to serve our morning coffee:

Flyweight pattern
Creating objects costs time and resources. The best examples are Java constant string
creation, , or , since they
never create instances; they return immutable cached instances. To speed up (and keep the
memory footprint low), applications use object pools. The difference between the object
pool pattern and the flyweight pattern is that the first (creation pattern) is a container that
keeps mutable domain objects, while the flyweight (structure pattern) is an immutable
domain object. Since they're immutable, their internal state is set on creation, and the
extrinsic state is given from outside on each method call.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[102]

Most web applications use connection pools a database connection is created/obtained,
used, and sent back to the pool. Since this pattern is so common, it has a name: Connection
Flyweight (see). Other resources, such as
sockets or threads (thread pool pattern), also make use of object pools.

The difference between flyweight and fa ade is that the first knows how to make many
small objects, while the latter makes a single object that simplifies and hides the complexity
of a subsystem, made of many objects.

Intent
The intent is to reduce memory footprint by sharing state among similar objects. It can be
done only if the huge number of objects can be reduced to a few that are representative,
that do not rely on object equality, and their state can be externalized.

Implementation
The following diagram shows that the flyweight object is returned from the pool and, to
function, it needs the external state (extrinsic) passed as an argument. Some flyweights can
share state with others, but this is not an enforced rule:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[103]

We can distinguish the following actors in the implementation diagram:

Client: The client code.
FlyweightFactory: This creates flyweights if they do not exist, and returns them
from the pool if they exist.
Flyweight: The abstract flyweight.
ConcreateShareableFlyweight: The flyweight designed to be have a shared state
with its peers.
ConcreateUnshareableFlyweight: The flyweight that does not share its state. It
could be composed from multiple concrete flyweights for example, a structure
made out of 3D cubes and spheres.

Examples
The following code simulates a 3D world with an attached physics engine. Since creating
new 3D objects is heavy and costly in terms of memory, once created they will be the same
and just moved from one place to another. Imagine a 3D world with a lot of rocks, trees,
bushes, and different textures. By having only one rock of a kind, a tree, bush (they could
share some textures) and just remembering where they are located, we save a lot of
memory and we are still able to fill with them a considerable large-sized terrain:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[104]

Our 3D world is currently constructed only from cubes and spheres. They can be grouped
together to form more complex forms, as shown in the following code:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[105]

The class represents the flyweight factory. It knows how to construct them and pass
itself as and extrinsic state. The class, besides the rendering part, makes use of the
expensive physics engine that knows how to model collisions. Let's see the code:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[106]

The 3D objects, and , are the flyweights, they do not have an identity. The
 class knows their identity and attributes (location, color, texture, and size). Take a

look at this code:

The following output shows that even if there was already a cube in the 3D world, adding
another will make it collide with the existing objects another cube and a sphere. None of
them have identity; they are all representatives of their type:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Structural Patterns Chapter 4

[107]

Summary
In this chapter, we learned about the GOF structural patterns. We looked at their
descriptions and intent and illustrated their use with sample code. We learned why, when,
and how to apply them, and also looked at the subtle differences between them. We also
briefly covered other less known structural patterns.

In the following chapters, we will see how some of these patterns change in the functional
and reactive world.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

55
Functional Patterns

The objective of this chapter is to learn about functional patterns and the changes to the
traditional patterns added by the introduction of a functional style of programming that is
now possible in the most important programming languages. Java 8 brought in functional
features that added a new level of abstraction, affecting the way we write some of the
object-oriented design patterns, even making some of them irrelevant. In this chapter, we
will see how design patterns are changed, or even replaced, by the new language features.
In his paper, Design Patterns in Dynamic Languages, Peter Norvig noticed that 16 out of the
23 design patterns are simpler or replaced by existing language features in dynamic
languages, such as Dylan. The full paper is available at

. In this chapter, we are going to see what can be replaced, and how and what the
new emerged patterns are. As Peter Norvig said in his paper, Long ago, subroutine call was
just a pattern, as languages evolve, expect the patterns to change or be replaced.

To run the code from this chapter, we used the jshell REPL utility available in Java and
accessible from

 in Windows.

Introducing functional programming
During the 1930s, the mathematician Alonzo Church developed lambda calculus. This was
the starting point for the functional programming paradigm, since it provided the
theoretical grounds. The next step was the design of LISP (short for List Programming) in
1958, by John McCarthy. LISP is the first functional programming language, and some of its
flavors, such as Common LISP, are still used today.

In functional programming (often abbreviated to FP), functions are first-class citizens; this
means that software is built by composing functions, rather than objects, as OOP. This is
done in a declarative way, Tell don't ask, by composing functions, promoting immutability,
and avoiding the side effects and shared data. This leads to a more concise code that is
resilient to changes, predictable, and easier to maintain and read by business people.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional Patterns Chapter 5

[109]

Functional code has a higher signal-to-noise ratio; we have to write less code to achieve the
same thing as in OOP. By avoiding side effects and data mutations, and relying on data
transformation, the system becomes much simpler, and easier to debug and fix. Another
benefit is the predictability. We know that the same function for the same input will always
give the same output; therefore, it can also be used in parallel computation, called before or
after any other function (the CPU/compiler does not need to make assumptions on the call
order) and its return value can be cached once calculated, thus improving performance.

Being a declarative type of programming, it focuses more on what needs to be done, in
contrast to the imperative style, where the focus is on how it should be done. A sample
flow can be seen in the following diagram:

The functional programming paradigm uses the following concepts and principles:

Lambda expressions
Pure functions
Referential transparency
First-class functions
Higher-order functions
Function composition
Currying
Closure
Immutability

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional Patterns Chapter 5

[110]

Functors
Applicatives
Monads

Lambda expressions
The name comes from lambda calculus, where the Greek letter lambda () is used to bind a
term to a function. The lambda terms are either variables (x, for example),
abstractions such as .x.M, where M is the function or applications, where two terms, M
and N, are applied one to another. With the constructed (composed) terms, it is now
possible to do expression reduction and/or conversion. Lambda-expression reduction can
be tested online by using interpreters, such as the one available at Berkeley:

.

The following is an example of a lambda-calculus lambda expression for calculating the
circle radius square when the x, y coordinates are known:

It is mathematically defined an n-ary function:

The application is as follows:

Here is the curried version (notice the extra reduction step):

The main benefit of using lambda expressions over statements is that lambda expressions
can be composed and reduced to simpler forms.

Java 8 introduced lambda expressions (made available before by using anonymous classes)
and the implementation makes use of the invoke dynamic introduced in Java 7, instead of
anonymous classes for performance (too many generated classes that need to be loaded)
and customization (future changes) reasons.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional Patterns Chapter 5

[111]

Pure functions
A pure function is a function that has no side effects and its output is the same for the same
input (predictable and cacheable). A side effect is an action that modifies the outside
context of the function. Examples of this include to the following:

Writing to a file/console/network/screen
Modifying an outside variable/state
Calling a non-pure function
Starting a process

Side effects are sometimes unavoidable or even desirable I/O or low-level operations are
examples of code with side effects (von Neumann machines work because of side effects).
As a rule of thumb, try to isolate the functions with side effects from the rest of the code.
Haskell and other functional programming languages use monads for the task. We will
have an introductory section on monads later.

Since the output of a pure function is predictable, it can also be replaced with the cached
output; this is why pure functions are said to provide referential transparency. Pure
functions are easier to read and understand in his book, Clean Code, Robert Martin writes:

"Indeed, the ratio of time spent reading versus writing is well over 10 to 1. We are
constantly reading old code as part of the effort to write new code. ...[Therefore,] making it
easy to read makes it easier to write."

Favoring pure functions in the code enhances productivity and allows newcomers to spend
less time reading the new code and more time using and fixing it.

Referential transparency
Referential transparency is the property of a function to be replaceable with its return value
for the input. The benefits are tremendous, since this favors memorization (caching of the
return value) and parallelization of the call to the specific function. Testing such a function
is also easy.

First-class functions
First-class functions are functions that can be treated much like the objects from the object-
oriented programming created, stored, used as parameters, and returned as values.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional Patterns Chapter 5

[112]

Higher-order functions
Higher-order functions are functions that can take other functions as parameters, create,
and return them. They promote code reuse by making use of existing and already-tested
small functions. For example, in the following code, we calculate the average in Celsius for
the given temperatures in Fahrenheit:

jshell> IntStream.of(70, 75, 80, 90).map(x -> (x - 32)*5/9).average();
$4 ==> OptionalDouble[25.5]

Notice the use of the lambda expression inside the higher-order map function. The same
lambda expression can be utilized in multiple places to convert temperatures.

jshell> IntUnaryOperator convF2C = x -> (x-32)*5/9;
convF2C ==> $Lambda$27/1938056729@4bec1f0c
jshell> IntStream.of(70, 75, 80, 90).map(convF2C).average();
$6 ==> OptionalDouble[25.5]
jshell> convF2C.applyAsInt(80);
$7 ==> 26Function

Composition
In mathematics, functions are composed/chained together by using the output of a function
as the input of the next. The same rule applies in functional programming, where first-class
functions are used by higher-order functions. The preceding code already contains such an
example see the use of the pure function inside the map function.

To make the function composition more visible, we may rewrite the conversion formula by
making use of the method:

jshell> IntUnaryOperator convF2C = ((IntUnaryOperator)(x ->
x-32)).andThen(x -> x *5).andThen(x -> x / 9);
convF2C ==>
java.util.function.IntUnaryOperator$$Lambda$29/1234776885@dc24521
jshell> convF2C.applyAsInt(80);
$23 ==> 26

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional Patterns Chapter 5

[113]

Currying
Currying is a process used to transform an n-ary function into a series or unary functions,
and it was named after Haskell Curry, an American mathematician. The form

 is the curried form of . For the square radius presented formula
earlier, , a curried version, without the use of BiFunction, would use
apply multiple times. A single application of a function would just replace the parameter
with a value, as we saw earlier. The following code shows how to curry a two-parameter
function, for n parameters there will be n calls to the class's apply
function:

jshell> Function<Integer, Function<Integer, Integer>> square_radius = x ->
y -> x*x + y*y;
square_radius ==> $Lambda$46/1050349584@6c3708b3
jshell> List<Integer> squares = Arrays.asList(new Tuple<Integer,
Integer>(1, 5), new Tuple<Integer, Integer>(2, 3)).stream().
map(a -> square_radius.apply(a.y).apply(a.x)).
collect(Collectors.toList());
squares ==> [26, 13]

Closure
Closure is a technique to implement lexical scoping. Lexical scoping allows us to access the
outer context variables inside the inner scope. Imagine that in our previous example the y
variable had already been assigned a value. The lambda expression could remain a unary
expression and still use the y as a variable. This could lead to some very hard-to-find bugs,
as in the following code, where we would expect that the return value of our function
remains the same. The closure captures the current value of an object, as we can see in the
following code, where our expectation is that the function will always add 100 to
the given input, but it does not:

jshell> Integer a = 100
a ==> 100
jshell> Function<Integer, Integer> add100 = b -> b + a;
add100 ==> $Lambda$49/553871028@eec5a4a
jshell> add100.apply(9);
$38 ==> 109
jshell> a = 101;
a ==> 101
jshell> add100.apply(9);
$40 ==> 110

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional Patterns Chapter 5

[114]

Here, we would expect to get 109, but it replies with 110, which is correct (101 plus 9 equals
110); our a variable changed from 100 to 101. Closures need to be used with precaution,
and, as a rule of thumb, use the final keyword to limit the changes. Closures are not always
evil; they can be handy in cases where we want to share the current state (and be able to
modify it whenever needed). For example, we would use closure in an API that requires a
callback providing a database connection (abstract connection); we would use different
closures, each one providing a connection based on some specific database-provider
settings, usually read from a properties file known in the outer context. It can be used to
implement the template pattern in a functional way.

Immutability
In Effective Java, Joshua Bloch offered the following advice: "Treat objects as immutable." The
reason this advice needs to be taken into consideration in the OOP world lies in the fact that
mutable code has many moving parts; it is too complex to be easily understood and fixed.
Promoting immutability simplifies the code and allows developers to focus on the flow
instead not on the side effects that a piece of code could have. The worst side effects are
the ones where a small change in one place can produce catastrophic results in another
(Butterfly effect). A mutable code can sometimes be hard to parallelize and often resorts to
different locks.

Functors
Functors allow us to apply functions to the given containers. They know how to unwrap
the value from the wrapped object, apply the given function, and return another functor
containing the resulted/transformed wrapped object. They are useful because they abstract
multiple idioms, such as collections, futures (promises), and Optionals. The following code
demonstrates the use of the functor from Java, where could be a given
value as a result of applying a function to an existing wrapped value (of):

jshell> Optional<Integer> a = Optional.of(5);
a ==> Optional[5]

Now we apply the function to the wrapped integer object with value of 5 and we get a new;
optional holding value of 4.5:

jshell> Optional<Float> b = a.map(x -> x * 0.9f);
b ==> Optional[4.5]
jshell> b.get()
$7 ==> 4.5

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional Patterns Chapter 5

[115]

 is a functor similar to Maybe (Just|Nothing) from Haskell it even has a static
 method that returns an optional with no value (nothing).

Applicatives
Applicatives add a new level of wrapping instead of applying a function to a wrapped
object, the function is wrapped too. In the following code, the function is wrapped in an
optional. To prove one of the applicatives' usages, we also provide an identity (everything
remains the same) optional in case the desired function (in our case) is
empty. Since there is no syntax sugar to automatically apply a wrapped function, we need
to do that manually see the code. Notice the usage of the Java 9 added
method , which returns another lazily, in case our input
Optional is empty:

jshell> Optional<String> a = Optional.of("Hello Applicatives")
a ==> Optional[Hello Applicatives]
jshell> Optional<Function<String, String>> upper =
Optional.of(String::toUpperCase)
upper ==> Optional[$Lambda$14/2009787198@1e88b3c]
jshell> a.map(x -> upper.get().apply(x))
$3 ==> Optional[HELLO APPLICATIVES]

This is our applicative that knows how to uppercase the given string. Let's see the code:

jshell> Optional<Function<String, String>> identity =
Optional.of(Function.identity())
identity ==>
Optional[java.util.function.Function$$Lambda$16/1580893732@5c3bd550]
jshell> Optional<Function<String, String>> upper = Optional.empty()
upper ==> Optional.empty
jshell> a.map(x -> upper.or(() -> identity).get().apply(x))
$6 ==> Optional[Hello Applicatives]

The preceding code is our applicative that applies the identity function (output is the same
as input) to the given string.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional Patterns Chapter 5

[116]

Monads
A monad applies a function that returns a wrapped value to a wrapped value. Java
contains examples such as , , and the already-presented

. The function does this by applying the given function, as the following
code demonstrates, to a list of ZIP codes that may or may not exist in a ZIP code map:

jshell> Map<Integer, String> codesMapping = Map.of(400500, "Cluj-Napoca",
75001, "Paris", 10115, "Berlin", 10000, "New York")
codesMapping ==> {400500=Cluj-Napoca, 10115=Berlin, 10000=New York,
75001=Paris}
jshell> List<Integer> codes = List.of(400501, 75001, 10115, 10000)
codes ==> [400501, 75001, 10115, 10000]
jshell> codes.stream().flatMap(x -> Stream.ofNullable(codesMapping.get(x)))
$3 ==> java.util.stream.ReferencePipeline$7@343f4d3d
jshell> codes.stream().flatMap(x ->
Stream.ofNullable(codesMapping.get(x))).collect(Collectors.toList());
$4 ==> [Paris, Berlin, New York]

Haskell makes use of the following monads (imported in other functional programming
languages). They are also important for the Java world because of their powerful concepts
of abstraction (see):

The reader monad allows sharing and reading from an environment state. It
provides edge capabilities between the mutable part and the immutable part of a
software.
The writer monad is used for appending state to multiple writers much like the
logging process that logs to multiple writers (console/file/network).
The state monad is a reader and a writer at the same time.

To grasp the concepts of the functor, applicatives, and monads, we recommend checking
out

 and
. There are also some great collections of functional goodies

available in the cyclops-react library at .

Introducing functional programming in Java
Functional programming is based on Streams and Lambda expressions, both introduced in
Java 8. Libraries such as Retrolambda allow Java 8 code to run on older JVM runtimes, such
as Java 5,6, or 7 (typically used for Android development).

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional Patterns Chapter 5

[117]

Lambda expressions
Lambda expressions are syntax sugar for the use of the package
interfaces. The most important ones are the following:

: An operation that consumes two input arguments and
returns no result, usually used in the maps method. It has support for
chaining by using the method.

: A function that accepts two arguments and produces a
result, used by calling its method.

: An operation upon two operands of the same type,
producing a result of the same type as the operands, used by calling its inherited

 method. It statically offers the and methods, which return
the lesser/greater of the two elements.

: A Boolean return function of two arguments (also called
predicates), used by calling its method.

: An operation that consumes a single input argument. Just like its
binary counterpart, it supports chaining and is applied by calling its
method, as in the following example, where the consumer is the

 method:

jshell> Consumer<Integer> printToConsole = System.out::println;
print ==> $Lambda$24/117244645@5bcab519
jshell> printToConsole.accept(9)
9

: A function that accepts one argument and produces a result. It
transforms the input, not mutate. It can be used directly by calling its apply
method, chained using and composed by using the method,
as shown in the following sample code. This allows our code to stay DRY (short
for Don't Repeat Yourself) by composing new functions out of existing ones:

jshell> Function<Integer, Integer> square = x -> x*x;
square ==> $Lambda$14/1870647526@47c62251
jshell> Function<Integer, String> toString = x -> "Number : " +
x.toString();
toString ==> $Lambda$15/1722023916@77caeb3e
jshell> toString.compose(square).apply(4);
$3 ==> "Number : 16"
jshell> square.andThen(toString).apply(4);
$4 ==> "Number : 16"

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional Patterns Chapter 5

[118]

: A Boolean return function of one argument. In the following
code, we are going to test whether a string is completely lowercase:

jshell> Predicate<String> isLower = x -> x.equals(x.toLowerCase())
isLower ==> $Lambda$25/507084503@490ab905
jshell> isLower.test("lower")
$8 ==> true
jshell> isLower.test("Lower")
$9 ==> false

: This is a supplier of values:

jshell> String lambda = "Hello Lambda"
lambda ==> "Hello Lambda"
jshell> Supplier<String> closure = () -> lambda
closure ==> $Lambda$27/13329486@13805618
jshell> closure.get()
$13 ==> "Hello Lambda"

: A specialized function that acts on a single operand that
produces a result of the same type as its operand; it can be replaced with

.

Streams
Streams are a pipeline of functions that transform, instead of mutating, data. They have
creators, intermediate, and terminal operations. To obtain values out of the stream, the
terminal operations need to be called. Streams are not data structures, and they cannot be
reused, once consumed it remains closed if collected a second
time, exception: stream has already been operated
upon or closed will be thrown.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional Patterns Chapter 5

[119]

Stream creator operations
Streams can be sequential or parallel. They can be created from the interface,
JarFile, ZipFile, or BitSet, and, starting from Java 9, from the
method. The class supports the method, which may
return a parallel stream or a serial stream. It is possible to construct streams of various
types, such as boxed primitives (Integer, Long, Double) or other classes, by calling the
appropriate . The result of calling it for a primitive type is a
specialized Stream of the following: , , or . Those
specialized stream classes can construct streams by using one of their static methods, such
as , , , , , ,

, or . Getting a stream of data from a
object can be easily done by calling the method, also present in a static form in
the class, where it is used to get all the lines from a file given by Path. The
class provides other stream creator methods, such as , , and

.

Java 9 added more classes that return streams besides the already mentioned ,
such as the class (the method) or the class (the

 and methods).

Stream intermediate operations
The intermediate stream operations are applied lazily; this means that the actual call is
done only after the terminal operation gets called. In the following code, using names
randomly generated online using , the search
will stop once the first valid name is found (it just returns a object):

jshell> Stream<String> stream = Arrays.stream(new String[] {"Benny
Gandalf", "Aeliana Taina","Sukhbir Purnima"}).
...> map(x -> { System.out.println("Map " + x); return x; }).
...> filter(x -> x.contains("Aeliana"));
stream ==> java.util.stream.ReferencePipeline$2@6eebc39e
jshell> stream.findFirst();
Map Benny Gandalf
Map Aeliana Taina
$3 ==> Optional[Aeliana Taina]

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional Patterns Chapter 5

[120]

Stream intermediate operations contain operations such as these:

: Sets the current stream as a serial stream.
: Sets the current stream as possibly parallel stream. As a rule of

thumb, use parallel streams for large data sets where parallelization adds a
performance boost. In our code, doing the operations in parallel will lead to a
performance decrease, since the cost of parallelization is bigger than the gain,
plus we are processing some entries that otherwise won't get processed:

jshell> Stream<String> stream = Arrays.stream(new String[] {"Benny
Gandalf", "Aeliana Taina","Sukhbir Purnima"}).
...> parallel().
...> map(x -> { System.out.println("Map " + x); return x; }).
...> filter(x -> x.contains("Aeliana"));
stream ==> java.util.stream.ReferencePipeline$2@60c6f5b
jshell> stream.findFirst();
Map Benny Gandalf
Map Aeliana Taina
Map Sukhbir Purnima
$14 ==> Optional[Aeliana Taina]

: Processes the input in an unordered fashion. It makes the output
order indeterministic for sequence streams and can lead to performance
improvements for the parallel execution by allowing some aggregate functions,
such as distinct or to be implemented more efficiently.

: Closes resources used by the stream using the given input
handler. The stream makes use of it to close the input file,
such as in the following code, where it is automatically closed, but the stream can
also be manually closed by calling the method:

jshell> try (Stream<String> stream =
Files.lines(Paths.get("d:/input.txt"))) {
...> stream.forEach(System.out::println);
...> }
Benny Gandalf
Aeliana Taina
Sukhbir Purnima

: Filters the input by applying a predicate.
: Transforms the input by applying a function.

: Replaces the input with the values from a stream based on a
mapping function.

: Uses to return distinct values.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional Patterns Chapter 5

[121]

: Sorts the input based on the natural/given comparator.
: Allows consuming the values held by the stream without changing

them.
: Truncates the stream elements to the given number.

: Discards the first n elements from the stream.

The following code shows the usage of the , , and methods. It calculates
the converted-to-Euro expenses for a business trip. The first and the last expenses are non-
business related, so they need to be filtered out (as an alternative, the method
could be used as well). The method is printing the expenses used in the expense total:

jshell> Map<Currency, Double> exchangeToEur = Map.of(Currency.USD, 0.96,
Currency.GBP, 1.56, Currency.EUR, 1.0);
exchangeToEur ==> {USD=0.96, GBP=1.56, EUR=1.0}
jshell> List<Expense> travelExpenses = List.of(new Expense(10,
Currency.EUR, "Souvenir from Munchen"), new Expense(10.5, Currency.EUR,
"Taxi to Munich airport"), new Expense(20, Currency.USD, "Taxi to San
Francisco hotel"), new Expense(30, Currency.USD, "Meal"), new Expense(21.5,
Currency.GBP, "Taxi to San Francisco airport"), new Expense(10,
Currency.GBP, "Souvenir from London"));
travelExpenses ==> [Expense@1b26f7b2, Expense@491cc5c9, Expense@74ad ...
62d5aee, Expense@69b0fd6f]
jshell> travelExpenses.stream().skip(1).limit(4).
...> peek(x -> System.out.println(x.getDescription())).
...> mapToDouble(x -> x.getAmount() * exchangeToEur.get(x.getCurrency())).
...> sum();
Taxi to Munich airport
Taxi to San Francisco hotel
Meal
Taxi to San Francisco airport
$38 ==> 92.03999999999999

Besides the method presented earlier, Java 9 introduced
 and . Their purpose is to allow developers to better handle infinite

streams. In the following code, we will use them to limit the numbers printed between 5
and 10. Removing the upper limit (set by) will result in an infinite print of
increasing numbers (at some point, they will overflow but still continue to increase use x ->
x + 100_000, for example, in the iterate method):

jshell> IntStream.iterate(1, x-> x + 1).
...> dropWhile(x -> x < 5).takeWhile(x -> x < 7).
...> forEach(System.out::println);

The output is 5 and 6, as expected, since they are bigger than 5 and smaller than 7.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional Patterns Chapter 5

[122]

Stream terminal operations
Terminal operations are values or side-effect operations that traverse the pipeline of the
intermediate operations and make the appropriate calls. They can process the returned
values (,) or they can return any of the following:

An iterator (such as the and methods)
A collection (, , by using the Collectors ,

, , , , or)
A specific element (,)
An aggregation (reduction) that could be any of these:

Arithmetic: , , or ,
, and specific only to
, , and .

Boolean: , , and
.

Custom: By using the or methods.
Some of the available Collectors include , ,

, , and .

Re-implementing OOP design patterns
In this section, we are going to review some of the GOF patterns in light of the new features
available in Java 8 and 9.

Singleton
The singleton pattern can be re-implemented by using closure and . The Java
hybrid code can make use of the interface, such as in the following code,
where the singleton is an enum (according to functional programming, the singleton types
are those that have only one value, just like enums). The following example code is similar
to the one from , Creational Patterns:

jshell> enum Singleton{
...> INSTANCE;
...> public static Supplier<Singleton> getInstance()
...> {
...> return () -> Singleton.INSTANCE;

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional Patterns Chapter 5

[123]

...> }

...>

...> public void doSomething(){

...> System.out.println("Something is Done.");

...> }

...> }
| created enum Singleton
jshell> Singleton.getInstance().get().doSomething();
Something is Done.

Builder
The Lombock library introduces the builder as part of its features. By just using the

 annotation, any class can automatically gain access to a method, as the
Lombock example code shows at :

Person.builder().name("Adam Savage").city("San
Francisco").job("Mythbusters").job("Unchained Reaction").build();

Other pre-Java 8 implementations made use of reflection to create a generic builder. The
Java 8+ generic builder version can be implemented by leveraging the supplier and
the composition, as shown in the following code:

jshell> class Person { private String name;
...> public void setName(String name) { this.name = name; }
...> public String getName() { return name; }}
| replaced class Person
| update replaced variable a, reset to null
jshell> Supplier<Person> getPerson = Person::new
getPerson ==> $Lambda$214/2095303566@78b66d36
jshell> Person a = getPerson.get()
a ==> Person@5223e5ee
jshell> a.getName();
$91 ==> null
jshell> BiConsumer<Person, String> changePersonName = (x, y) ->
x.setName(y)
changePersonName ==> $Lambda$215/581318631@6fe7aac8
jshell> changePersonName.accept(a, "Gandalf")
jshell> a.getName();
$94 ==> "Gandalf"

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional Patterns Chapter 5

[124]

Adapter
The best example is the usage of the map function that performs an adaptation from the old
interface to the new interface. We are going to reuse the example from , Structural
Patterns, with a small twist; the map simulates the adapter code:

jshell> class PS2Device {};
| created class PS2Device
jshell> class USBDevice {};
| created class USBDevice
jshell> Optional.of(new PS2Device()).stream().map(x -> new
USBDevice()).findFirst().get()
$39 ==> USBDevice@15bb6bea

Decorator
The decorator can be implemented by leveraging the function composition. For example,
adding logging to an existing function call can be done, as shown earlier, by using the
stream method and log to the console from the provided peek .

Our , Structural Patterns, decorator example can be rewritten in functional style;
notice that the decorator is used to consume the same input as the initial decorated
consumer:

jshell> Consumer<String> toASCII = x -> System.out.println("Print ASCII: "
+ x);
toASCII ==> $Lambda$159/1690859824@400cff1a
jshell> Function<String, String> toHex = x -> x.chars().boxed().map(y ->
"0x" + Integer.toHexString(y)).collect(Collectors.joining(" "));
toHex ==> $Lambda$158/1860250540@55040f2f
jshell> Consumer<String> decorateToHex = x -> System.out.println("Print
HEX: " + toHex.apply(x))
decorateToHex ==> $Lambda$160/1381965390@75f9eccc
jshell> toASCII.andThen(decorateToHex).accept("text")
Print ASCII: text
Print HEX: 0x74 0x65 0x78 0x74

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional Patterns Chapter 5

[125]

Chain of responsibility
The chain of responsibility can be implemented as a list of handlers (functions), each one
performing a specific action. The following example code makes use of closure and a
stream of functions that all apply, one after another, on the given text:

jshell> String text = "Text";
text ==> "Text"
jshell> Stream.<Function<String, String>>of(String::toLowerCase, x ->
LocalDateTime.now().toString() + " " + x).map(f ->
f.apply(text)).collect(Collectors.toList())
$55 ==> [text, 2017-08-10T08:41:28.243310800 Text]

Command
The intent is to convert a method into an object to store it and call it later, be able to track its
calls, log, and undo. This is the basic usage of the class.

In the following code, we are going to create a list of commands and execute them one by
one:

jshell> List<Consumer<String>> tasks = List.of(System.out::println, x ->
System.out.println(LocalDateTime.now().toString() + " " + x))
tasks ==> [$Lambda$192/728258269@6107227e, $Lambda$193/1572098393@7c417213]
jshell> tasks.forEach(x -> x.accept(text))
Text
2017-08-10T08:47:31.673812300 Text

Interpreter
The interpreter's grammar can be stored as a map of keywords with the corresponding
action stored as a value. In , Creational Patterns, we used a mathematical
expression evaluator that accumulates the result in a stack. This can be implemented by
having the expressions stored in a map and accumulate the result by using reduce:

jshell> Map<String, IntBinaryOperator> operands = Map.of("+", (x, y) -> x +
y, "-", (x, y) -> x - y)
operands ==> {-=$Lambda$208/1259652483@65466a6a,
+=$Lambda$207/1552978964@4ddced80}
jshell> Arrays.asList("4 5 + 6 -".split(" ")).stream().reduce("0 ",(acc, x)
-> {
...> if (operands.containsKey(x)) {
...> String[] split = acc.split(" ");

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional Patterns Chapter 5

[126]

...> System.out.println(acc);

...> acc = split[0] + " " +
operands.get(x).applyAsInt(Integer.valueOf(split[1]),
Integer.valueOf(split[2])) + " ";
...> } else { acc = acc + x + " ";}
...> return acc; }).split(" ")[1]
0 4 5
0 9 6
$76 ==> "3"

Iterator
The iterator is partially implemented by the usage of the sequence that the streams provide.
Java 8 added the method, which receives a consumer as a parameter and behaves
just like the previous loop implementation, as can be seen in the following example code:

jshell> List.of(1, 4).forEach(System.out::println)
jshell> for(Integer i: List.of(1, 4)) System.out.println(i);

The output for each example is 1 and 4, as expected.

Observer
The observer pattern got replaced in Java 8 with lambda expressions. The most obvious
example is the replacement. The old code, using anonymous class
listeners, got replaced with a simple function call:

The new code is just one line:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional Patterns Chapter 5

[127]

Strategy
The strategy can be replaced by a function. In the following example code, we apply a 10%
discount strategy to all our prices:

jshell> Function<Double, Double> tenPercentDiscount = x -> x * 0.9;
tenPercentDiscount ==> $Lambda$217/1990160809@4c9f8c13
jshell> List.<Double>of(5.4, 6.27,
3.29).stream().map(tenPercentDiscount).collect(Collectors.toList())
$98 ==> [4.86, 5.643, 2.9610000000000003]

Template method
The template method can be implemented to allow the injection of specific method calls
when the template offers the order of calls. In the following examples, we will add specific
calls and set their content from outside. They may have specific content already inserted.
The code can be simplified by using a single method that received all the runnables:

jshell> class TemplateMethod {
...> private Runnable call1 = () -> {};
...> private Runnable call2 = () -> System.out.println("Call2");
...> private Runnable call3 = () -> {};
...> public void setCall1(Runnable call1) { this.call1 = call1;}
...> public void setCall2(Runnable call2) { this.call2 = call2; }
...> public void setCall3(Runnable call3) { this.call3 = call3; }
...> public void run() {
...> call1.run();
...> call2.run();
...> call3.run();
...> }
...> }
| created class TemplateMethod
jshell> TemplateMethod t = new TemplateMethod();
t ==> TemplateMethod@70e8f8e
jshell> t.setCall1(() -> System.out.println("Call1"));
jshell> t.setCall3(() -> System.out.println("Call3"));
jshell> t.run();
Call1
Call2
Call3

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional Patterns Chapter 5

[128]

Functional design patterns
In this section, we are going to learn about the following functional design patterns:

MapReduce
Loan pattern
Tail call optimization
Memoization
The execute around method

MapReduce
MapReduce is a technique used for massive parallel programming, developed by Google,
which emerged as a functional design pattern because of the ease of expression. In
functional programming, it is a form of a monad.

Intent
The intent is to break existing tasks into multiple smaller ones, run them in parallel, and
aggregate the result (reduce). It is expected to improve performance for big data.

Examples
We will demonstrate the usage of the MapReduce pattern by parsing and aggregating logs
from multiple web services based on a given Sleuth span and calculating the overall
duration for each hit endpoint. The logs are taken from

 and split into the corresponding service log file.
The following code reads in parallel all the logs, maps, sorts, and filters the relevant log
entries, collects and reduces (aggregates) the result. If there is a result, it gets printed to the
console. The imported date/time classes are used for the ordering comparison. The

 code needs to handle , as shown in this code:

jshell> import java.time.*
jshell> import java.time.format.*
jshell> DateTimeFormatter dtf = DateTimeFormatter.ofPattern("yyyy-MM-dd
HH:mm:ss.SSS")
dtf ==> Value(YearOfEra,4,19,EXCEEDS_PAD)'-'Value(MonthOf ...
Fraction(NanoOfSecond,3,3)
jshell> try (Stream<Path> files = Files.find(Paths.get("d:/"), 1, (path,

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional Patterns Chapter 5

[129]

attr) -> String.valueOf(path).endsWith(".log"))) {
...> files.parallel().
...> flatMap(x -> { try { return Files.lines(x); } catch (IOException e) {}
return null;}).
...> filter(x -> x.contains("2485ec27856c56f4")).
...> map(x -> x.substring(0, 23) + " " + x.split(":")[3]).
...> sorted((x, y) -> LocalDateTime.parse(x.substring(0, 23),
dtf).compareTo(LocalDateTime.parse(y.substring(0, 23), dtf))).
...> collect(Collectors.toList()).stream().sequential().
...> reduce((acc, x) -> {
...> if (acc.length() > 0) {
...> Long duration =
Long.valueOf(Duration.between(LocalDateTime.parse(acc.substring(0, 23),
dtf), LocalDateTime.parse(x.substring(0, 23), dtf)).t oMillis());
...> acc += "n After " + duration.toString() + "ms " + x.substring(24);
...> } else {
...> acc = x;
...> }
...> return acc;}).ifPresent(System.out::println);
...> }
2016-02-26 11:15:47.561 Hello from service1. Calling service2
After 149ms Hello from service2. Calling service3 and then service4
After 334ms Hello from service3
After 363ms Got response from service3 [Hello from service3]
After 573ms Hello from service4
After 595ms Got response from service4 [Hello from service4]
After 621ms Got response from service2 [Hello from service2, response from
service3 [Hello from service3] and from service4 [Hello from service4]]

Loan pattern
The Loan pattern ensures that a resource is deterministically disposed of once it goes out of
scope. A resource could be one of a database connection, file, socket, or any object that
handles a native resource (memory, system handles, connections of any type). This is
similar in intent to the Dispose Pattern described on MSDN.

Intent
The intent is to free the user from the burden of releasing unused resources once they are
used. The user may forget to call the release method of the resource, resulting in a leak.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional Patterns Chapter 5

[130]

Examples
One of the most-used templates when working with database transaction is getting a
transaction, making the appropriate calls, and making sure to commit or rollback on
exception and close the transaction. This can be implemented as a loan pattern, where the
moving part is the calls within the transaction. The following code shows how this can be
achieved:

jshell> class Connection {
...> public void commit() {};
public void rollback() {};
public void close() {};
public void setAutoCommit(boolean autoCommit) {};
...> public static void runWithinTransaction(Consumer<Connection> c) {
...> Connection t = null;
...> try { t = new Connection(); t.setAutoCommit(false);
...> c.accept(t);
...> t.commit();
...> } catch(Exception e) { t.rollback(); } finally { t.close(); } } }
| created class Connection
jshell> Connection.runWithinTransaction(x -> System.out.println("Execute
statement..."));
Execute statement...

Tail call optimization
Tail call optimization (TCO) is a technique used by some compilers to call a function
without using stack space. Scala makes use of it by annotating the recursive code with the

 annotation. This basically tells the compiler to use a special loop, called
trampoline, that repeatedly runs functions. A function call could be in one of the
states done or more to call. On done, it returns the result (head), and on more, it returns
the current loop without the head (tail). This pattern is already made available to us by the
cyclops-react library.

Intent
The intent is to enable recursive calls without blowing up the stack. It is intended to be used
only for a high number of recursive calls, for a few calls, it may decrease performance.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional Patterns Chapter 5

[131]

Examples
John McClean, the maintainer of cyclops-react, demos the usage of TCO that
calculates numbers in the Fibonacci sequence at

. The code is clean and simple to understand; it
basically accumulates Fibonacci numbers starting from the initial states a and b, f(0) = 0,
f(1) = 1 and applying the f(n) = f(n-1) + f(n-2) functions:

Memoization
Calling the preceding Fibonacci implementation multiple times will result in a waste of
CPU cycles, since some steps are the same and we are guaranteed that, for the same input,
we'll always get the same output (pure function). To speed up the call, we can cache the
output, and for the given input, just return the cached result, instead of actually calculating
it.

Intent
The intent is to cache the result of a function for a given input and use it to speed up further
calls to the same function given the same input. It should be used only for pure functions,
since they provide referential transparency.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional Patterns Chapter 5

[132]

Examples
In the following example, we are going to reuse the Fibonacci code and add a Guava cache.
The cache will hold the returned values of Fibonacci while the key is the input number. The
cache is configured to limit the memory footprint both in size and time:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional Patterns Chapter 5

[133]

The output is as follows:

The execute around method
The preceding code seems to repeat itself when measuring the performance of each version
of the code. This can be fixed with the execute around method pattern, by wrapping the
executed business code inside a lambda expression. A good example of this pattern is the
before and after unit test setup/teardown functions. This is similar to the template method
and the loan pattern described before.

Intent
The intent is to free the user for some certain actions that are to be executed before and after
a specific business method.

Examples
The code mentioned in the previous example contains duplicated code (code smell). We'll
apply the execute around pattern to simplify the code and make it easier to read. A possible
refactoring can make use of lambda, as we can see:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Functional Patterns Chapter 5

[134]

Summary
In this chapter, we learned what functional programming means, the features provided by
the latest Java versions, and how they've changed some of the existing GOF patterns. We
also made use of some functional programming design patterns.

In the next chapter, we'll dive into the reactive world and learn how to create responsive
applications with RxJava.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

66
Let's Get Reactive

This chapter will describe the reactive programming paradigm and why it works very well
for languages with functional elements. The reader will be familiarized with the concepts
behind reactive programming. We will present the elements used from both the observer
pattern and the iterator pattern in creating a reactive application. The examples will make
use of the Reactive Framework and a Java implementation called RxJava (version 2.0).

We will cover the following topics:

What is reactive programming?
Introduction to RxJava
Installing RxJava
Observable, Flowable, Observers, and Subscriptions
Creating Observables
Transforming Observables
Filtering Observables
Combining Observables
Error-handling
Schedulers
Subjects
Example project

What is reactive programming?
According to The Reactive Manifesto (), reactive
systems have the following attributes:

Responsive: The system responds in a timely manner in a consistent and
predictable way.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[136]

Resilient: The system is resilient to faults and can quickly recover from them.
Elastic: The system maintains its responsiveness under varying workloads, by
increasing or decreasing the resources allocated. This is done by dynamically
finding and fixing bottlenecks. This is not to be confused with scalability. An
elastic system needs to be scalable up and down according to need see

.
Message-driven: They rely on asynchronous message-passing that ensures loose
coupling, isolation, location transparency, and fault tolerance.

The need is real. Nowadays, a non-responsive system is considered buggy and will be
avoided by customers. A non-responsive website will have a low rank in search engines,
according to :

"responsive design is Google's recommended design pattern"

A reactive system is an architectural style of composing a complex system by using
elements, some built with reactive programming techniques.

Reactive programming is a paradigm that relies on asynchronous data streams. It is an
event-driven subset of asynchronous programming. In contrast, reactive systems are
message-driven, that means that the recipient is known upfront, while for events the
recipients can be any observer.

Reactive programming is more than event-based programming because it makes use of
data flows it emphasizes the flow of data rather than the flow of control. Earlier, events
such as mouse or keyboard events, or backend events, such as new socket connection on
the server, would have been handled in a thread event loop (thread-of-execution). Now
everything can be used to create a data stream; imagine that the JSON REST response from
one of the backend endpoints becomes a data stream and it can be awaited, filtered, or
merged with some other response from a different endpoint. This approach provides a lot
of flexibility by removing the need for the developer to explicitly create all the boilerplate
code that handles the asynchronous calls in multi-core and multi-CPU environments.

One of the best and most overused examples of reactive programming examples is the
spreadsheet example. Defining a stream (flow) is similar to declaring that the value of
Excel's C1 cell equals the content of the B1 cell plus the A1 cell. Whenever the A1 or B1 cells
are updated, the change is observed and reacted upon, and the side-effect is that the C1
value gets updated. Now imagine that C2 to Cn cells are equal to the content of A2 to An
plus B2 to Bn; the same rule applies to all.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[137]

Reactive programming is applied using some of the following programming abstractions,
some taken from the functional programming world:

Futures/promises: These provide the means to act on values that are to be
provided somewhere in the near future.
Stream: This provides the data pipeline, just like a train track that provides the
infrastructure for the train to run on.
Dataflow variables: These are results of the functions applied to the stream
function's input variables, just like the spreadsheet cell that is set by applying the
plus mathematical function on the two given input parameters.
Throttling: This mechanism is used in real-time processing environments,
including hardware such as digital signal processors (DSP), to regulate the
speed of input-processing by dropping elements in order to catch up with the
input speed; it is used as a back-pressure strategy.
Push mechanism: This is similar to the Hollywood principle since it reverses the
calling direction. Once the data is available, the relevant observers in the flow are
called to do the processing of the data; in contrast, the pull mechanism grabs the
information in a synchronous way.

There are numerous Java libraries and frameworks that allow programmers to write
reactive code, such as Reactor, Ratpack, RxJava, Spring Framework 5, and Vert.x. With the
addition of the JDK 9 Flow API, reactive programming is made available for developers
without the need to install additional APIs.

Introduction to RxJava
RxJava is an implementation of reactive extension (a library for composing asynchronous
and event-based programs by using observable sequences) ported from the Microsoft .NET
world. In 2012, Netflix realized that they needed a paradigm shift since their architecture
could not cope with their huge customer base, so they decided to go reactive by bringing
the power of the reactive extension to the JVM world; this is how RxJava was born. There
are other JVM implementations besides RxJava, such as RxAndroid, RxJavaFX, RxKotlin,
and RxScale. This approach gave them the desired boost, and by making it publicly
available, it also offered us the opportunity to use it.

RxJava JAR is licensed under the Apache Software License, version 2.0, and available in the
central maven repository.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[138]

There are a couple of external libraries that make use of RxJava:

: A latency and fault-tolerant library designed to isolate points of access
to remote systems

: An HTTP log-following library usable in the same way as

: This uses RxJava with JDBC connections to the
stream

Installing the RxJava framework
In this section, we'll cover RxJava installation from Maven (Gradle, SBT, Ivy, Grape,
Leiningen, or Buildr steps are similar) and usage from Java 9's REPL Jshell.

Maven installation
Installing the RxJava framework is easy. The JAR file and the dependent project reactive
stream are available under maven at

.

In order to use it, include this maven dependency in your file:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[139]

Installing in Gradle, SBT, Ivy, Grape, Leiningen, or Buildr is similar; check out
 for more information

on what needs to be added to the file.

JShell installation
We will discuss JShell in detail in , Best Practices in Java, for now, let's take a look
at it from the RxJava perspective. Installing the RxJava framework in JShell is done by
setting the classpath to both RxJava and reactive streams JAR files. Notice the use of the
colon on Linux and the semi-colon on Windows as the file path separator:

"c:Program FilesJavajdk-9binjshell" --class-path
D:Kitsrxjavarxjava-2.1.3.jar;D:Kitsrxjavareactive-streams-1.0.1.jar

The following error will be displayed on your screen:

The preceding error happened because we forgot to import the relevant Java class.

Following code handles this error:

Now we've managed to create our first observable. In the following sections, we will learn
what it does and how to use it.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[140]

Observables, Flowables, Observers, and
Subscriptions
In ReactiveX, an observer subscribes to an Observable. When the Observable emits data, the
observer reacts by consuming or transforming the data. This pattern facilitates concurrent
operations because it does not need to block while waiting for the Observable to emit
objects. Instead, it creates a sentry in the form of an observer that stands ready to react
appropriately whenever new data in the form of an Observable is available. This model is
referred to as the reactor pattern. The following diagram, taken from

, explains the flow of Observables:

Reactive's Observable is similar to the imperative Iterable. It addresses the same problem
but the strategy is different. The Observable works by pushing changes, once available,
asynchronously, while the Iterable pulls the changes mechanism in a synchronous way. The
way to deal with the errors is different too; one uses an error callback while the other uses
side-effects, such as throwing exceptions. The following table shows the differences:

Event Iterable Observable
Get Data
Error
Done

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[141]

Connecting an observer to an Observable is done by using the subscribe (,
,) method. The observer implements some subset of

the following methods (only the is mandatory):

: This is called whenever the Observable emits an item and the method
takes the item emitted by the Observable as a parameter

: This is called to indicate that it has failed to generate the expected data
or has encountered some other error and takes the exception/error as its
parameter

: This is called when there is no more data to emit

From design perspectives, the Reactive Observable enhances the Gang of Four's Observer
pattern by adding the capability to signal on completion and on error by using the
and callbacks.

There are two types of Reactive Observables:

Hot: Starts emitting as soon as possible even if no subscribers are attached.
Cold: Waits for at least one subscriber to attach before starting to emit data,
therefore at least one subscriber may see the sequence from the beginning. They
are called "Connectable" observables and RxJava has operators that enable
creating such Observables.

RxJava 2.0 introduced a new type of Observable, called Flowable. The new
 is a back-pressure-enabled base reactive class, while the

Observable is not anymore. Back-pressure is a set of strategies used to cope with situations
when the observables emit more data that the subscribers can handle.

The RxJava Observable should be used for small sets of data (no more than 1,000 elements
at its longest) in order to prevent or for GUI events, such as mouse
moves or touch events at a small frequency (1,000 Hz or less).

Flowables are to be used when dealing with more than 10,000 elements, reading (parsing)
files from disk, which works well with back-pressure, reading from a database through
JDBC, or doing blocking and/or pull-based data reads.

Creating Observables
The following operators are used to create Observables from scratch, out of existing objects,
arrays of other data structure, or by a sequence or timer.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[142]

The create operator
Creating Observables from scratch can be done by calling one of the following

 methods (operators):

Create
Generate
UnsafeCreate

The following example shows how to construct an Observable from scratch. Call
until the observer is not disposed, and programmatically in
order to get a 1 to 4 range of numbers:

As we can see in the preceding screenshot, the output is as expected, range from 1 to 4, and
the sequence gets disposed of after usage.

The defer operator
Creating a new Observable for each observer once the observer connects can be done by
calling the method. The following code shows the usage of for the case when
we supply a number:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[143]

The console print-line method outputs 123, which is the Observable-wrapped integer.

The empty operator
Creating empty, a never sending item, can be done by calling the or

 methods.

The from operator
Converting from an arrays, futures, or other objects and data structures can be done by
calling one of the following methods:

: Converts an array to an Observable
: Converts a callable that supplies a value to an Observable

: Converts a future provided value to an Observable
: Converts an iterable to an Observable

: Converts a reactive publisher stream to an Observable
: Converts a given object to an Observable

The following example creates an Observable out of a list of letters ():

The entire array of , , and is consumed and printed to the console by the
 method.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[144]

The interval operator
Creating an Observable that emits a sequence of integers spaced by a particular time
interval can be done by using the method. The following example never stops; it
continuously prints the tick number every one second:

Trying to stop the timer won't help (not even Ctrl + C, just close the window), it will
continue to print the incremented number to the console every one second, just as
instructed.

The timer operator
Emitting a single item after a given delay can be done by using the timer method.

The range operator
Creating ranges of sequential numbers can be achieved by using the following methods:

: Signals a range of long values, the first after some initial delay
and the following periodically

: Emits a sequence of integers within a specified range

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[145]

The repeat operator
In order to repeat a particular item or a specific sequence use:

: Repeats the sequence of items emitted by the given Observable source a
number of times or forever (depending on the input)

: Repeats the sequence of items emitted by the Observable source
until the provided stop function returns true

: Emits the same values as the initial Observable with the exception
of

The following code repeats the given value of until the condition is satisfied:

It repeats to the console three times until has value 3 which is bigger than 2. As an
exercise, replace with and check the console.

Transforming Observables
These are the operators that transform items emitted by an Observable.

The subscribe operator
These are the methods used by a subscriber to consume the emissions and notifications
from an Observable, such as , , and . The Observable
methods used for subscribing are:

: Consumes each item emitted by this Observable and blocks
until the Observable completes.

: Subscribes to the Observable and consumes events on the
current thread.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[146]

: Subscribes to the Observable and receives notifications for each
element until the Predicate returns false.

: Subscribes to the Observable and receives notifications for each
element.

: Subscribes the given observer to this Observable. The observer can
be given as callbacks, observer implementations, or subtypes of the abstract

 class.

The buffer operator
The method is used to create bundles of a given size, then pack them as lists. The
following code shows how, out of 10 numbers, we created two bundles, one with six and
the other with the remaining four items:

The flatMap operator
Transforming the given Observables into a single Observable either by the arrival order
(), keeping the last emitted (), or by preserving the original order
() can be done by using one of the following operators: ,

, , ,
, , , ,

or . The following example shows how by randomly choosing the
order of observables, the content of the output changes. (, ,
and):

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[147]

The implementation is appending the string to each of the given , , and
 strings, therefore, the output is , , and .

The implementation is appending the string to each of the given , , and
 strings, as follows:

Because of the random delay, the order is different from the expected , , and ;
running it a couple of times will output the expected order.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[148]

Following snippet shows a different output.

The implementation is appending the string to the last element from the
given , , and strings list.

Notice the usage of . Without this call, nothing gets printed since the
emissions are delayed.

The groupBy operator
 is used to divide an Observable into a set of Observables that each emit a different

group of items. The following code groups strings by the starting letter and then prints the
keys and the group data for the specific key. Notice that the groups are Observables that
can be used to construct other dataflows.

The following output shows the groups by the first letter as a group and also the group key,
which is the first letter:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[149]

The map operator
Applying a function for each item that transforms the Observable can be achieved with:

: Casts the result to a given type
: Applies a specified function to each item emitted

The scan operator
Transformations that make use of accumulation can be done using the method. The
following code makes use of it by emitting the current sum of elements:

The window operator
The method is used to periodically subdivide items from an Observable into
Observable windows and burst-emit those windows. The following code shows that using
a window of one element does nothing, while using three elements at a time outputs their
sum:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[150]

Filtering Observables
These are the operators that selectively emit items from a given Observable based on a
given condition/constraint.

The debounce operator
Emitting only after a specific timespan has passed can be done using these methods:

: Mirrors the initial Observable, except that it drops items emitted by
the source that are followed by another item within a period of time

: Emits only those items that are not followed by another
emitted item within a specified time window

In the following example, we'll drop items that are fired before our debounce timespan of
100 ms has passed; in our case it is just the last value managed. Again, by using the test
scheduler, we advance the time:

The distinct operator
This removes distinct items emitted by an Observable using the following methods:

: Emits only distinct elements
: Emits only elements that are distinct from their

immediate predecessors

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[151]

In the following code, we will see how to use the method in order to remove
duplicates from a given sequence:

We can see that the duplicate string has been removed from the output.

The elementAt operator
In order to get an element by index, use the method. The following code prints
the third element in the list:

The filter operator
Using on the following method allows emitting only those items from an Observable that
pass a test (predicate/type test):

: Emit only elements that satisfy a specified predicate
: Emit only those elements of the specified type

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[152]

The following code shows the usage of the method, used to filter out elements not
starting with the letter :

The first/last operator
These methods are used to return the first and last occurrence of an item, based on the
given condition. There are blocking versions available too. The available

 are:

: Returns the first item emitted by the Observable
: Returns the first item emitted by the Observable

: Returns the first item emitted by the Observable
: Returns a that emits only the very first item

: Returns a that emits only the very first item
: Returns a that emits only the very first Single

: Returns the last item emitted by the Observable
: Returns the last item emitted by the Observable

: Returns a that emits only the very last Single

The sample operator
Use this operator in order to emit a specific item (specified by the sampling time period or
the throttle duration). provides the following methods:

: Emits the most recently emitted item (if any) emitted within a given
time period

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[153]

: Emits only the first item emitted during the given sequential
time window

: Emits only the last item emitted during the given sequential
time window

The skip operator
Removes the first and last n elements from the output Observable. The following code
shows how to skip the first three elements from a given input:

Calling the method would output 1 and 2 only.

The take operator
This emits only the first and last n elements from a given Observable. The following
example shows how to take only the first three elements from an Observable numeric
range:

Using the method with the same parameter will output 3, 4, and 5.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[154]

Combining Observables
These are operators used to combine multiple Observables.

The combine operator
Combining the latest-emitted value from two or more Observables is done by calling one of
these methods:

: Emits an item that aggregates the latest values of each of the
sources

: Merges the given Observable into the current instance

The following example (runs forever) shows the result of combining two interval
observables with different timespans the first emits every 6 ms, the other every 10 ms:

The execution of the preceding code needs to be stopped by pressing Ctrl + C since it creates
an infinite list. The output is as expected, it contains the combined values of both sequences
based on the creating timestamp.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[155]

The join operator
Combining two Observables based on a given window can be done by calling one of the
following methods:

: Joins the items emitted by two Observables based on overlapping
durations using an aggregation function

: Joins the items emitted by two Observables into groups based on
overlapping durations using an aggregation function

The following example uses join to combine two Observables, one firing every 100 ms, the
other every 160 ms and taking values from the first every 55 ms and from the second every
85 ms:

The preceding code executes forever and needs to be manually stopped.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[156]

The merge operator
Merging multiple Observables into a single Observable with all the emissions from the all
the given emissions can be achieved by calling:

: Flattens the many input sources into one Observable, without any
transformation

: Flattens the many input sources given as arrays into one
Observable, without any transformation

: Flattens the many input sources given as arrays into
one Observable, without any transformation and without being interrupted by
errors

: Flattens the many input sources into one Observable,
without any transformation and without being interrupted by errors

: Flattens this and the given source into one Observable, without any
transformation

In the following example, we will merge parts of the original 1 to 5 range in a way that it
contains all the entries but in a different order:

The zip operator
Combining multiple Observables into a single Observable based on a combiner function
can be done by calling:

: Emits the results of a specified combiner function applied to combinations
of multiple items emitted by the given Observables

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[157]

: Emits the results of a specified combiner function applied to
combinations of multiple items emitted by the given Observables Iterable

: Emits the results of a specified combiner function applied to
combinations of this and the given Observable

The following code shows how can be applied to the elements emitted from a range of
1 to 5 to a range of 10 to 16 (more elements) based on string-concatenation combiner. Notice
that the extra emission (number 16) does not get applied since there is no counterpart to be
applied to:

Error handling
The Observables contain a couple of operators that allow error handling, swallowing
exceptions, transforming exceptions, call-finally blocks, retrying the failed sequence, and
disposing resources even if an error occurs.

The catch operator
These operators enable recovering from errors by continuing the sequence:

: Instructs an Observable to pass control to another
Observable given by a supplier, instead of invoking when something
goes wrong

: Instructs an Observable to emit a default supplied by a
function, in case of error

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[158]

: Instructs an Observable to emit a supplied default, in case
of error

: Instructs an Observable to pass control to another
Observable instead of invoking in case something goes wrong

The following example shows how to use the method; calling it
without the trick will stop the flow and output at the end. By deferring
the call to the exception-throwing code and applying on it, we can
continue the sequence and use the default supplied value:

The do operator
These are used to register an action to take upon a specific life cycle event. We can use them
to mimic the final statement behavior, release resources allocated upstream, do
performance measurements, or do other tasks that do not depend on the success of the
current call. RxJava Observables enable this by providing the following methods:

: Registers an action to be called when the current Observable invokes
either or or gets disposed

: Registers an action to be called after the current Observable
invokes either or

: Registers an action to be called when the sequence is disposed
: Registers callbacks for the appropriate method,

depending on the life cycle events of the sequence (subscription, cancellation,
requesting)

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[159]

: Registers an action to be called when the current Observable
invokes either or

Following snippet shows usage of commands mentioned earlier:

In the preceding example, we can see that the life cycle events order is: subscribe, terminate,
complete, or error, and finally by registering a print to console action on each event.

The using operator
The using operator has a counterpart in Java called try-with-resources. It basically does the
same enables creating a disposable resource that gets released at a given time (when the
Observable gets released). RxJava 2.0 method implements this behavior.

The retry operator
These are operators to use in the case of a failure that is recoverable, such as a service that is
temporarily down. They work by resubscribing in the hope that this time it will complete
without error. The available RxJava methods are the following:

: Replays the same flow in case of error forever until it succeeds
: Retries until the given stop function returns true

: Replays the same flow in case of error forever until it succeeds based
on a retry logic function that receives the error/exception

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[160]

In the following example, we use which contains only two values to create a retry logic
that retries twice to run the failed sequence after a time period or 500 multiplied by the
retry count. This approach can be used when connecting to non-responding web services,
especially from mobile devices where each retry consumes the device battery:

Schedulers
Observables are agnostic in terms of thread scheduling in a multithreading environment,
this is the job of a scheduler. Some of the operators presented variants that can take a
scheduler as a parameter. There are specific calls that allow observing the flow either from
downstream (the point where the operator is used, this is the case of) or
irrespective of call position (the call position does not matter, as this is the case of
the method). In the following example, we will print the current thread from
upstream and downstream. Notice that in the case of , the thread is always
the same:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[161]

Notice the thread main usage from the method:

Notice that the thread main is no longer used from the method.

RxJava 2.0 offers more schedulers available from the
 factory, each one serving a specific purpose:

: Returns a instance intended for computational
work

: Returns a instance intended for I/O work
: Returns a instance for work requiring strongly-sequential

execution on the same background thread
: Returns a instance that executes the given work in a

FIFO manner on one of the participating threads

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[162]

: Returns a instance that creates a new thread for each
unit of work

: Converts into a new
instance and delegates the work to it

There is a only for special testing purpose, called
. We have used it already since it allows

manually advancing a virtual time, thus making it perfect for testing flows that are time-
dependent without having to wait for the time to pass (for example, unit tests).

Subjects
Subjects are Observable and Subscriber hybrids since they both receive and emit events.
There are five Subjects available in RxJava 2.0:

: Emits only the last value emitted by the source Observable
followed by a completion

: Emits the most recent emitted value and then any value
emitted by the source Observable

: Emits to a subscriber only those items that are emitted by the
source after the time of the subscription

: Emits to any subscriber all of the items that were emitted by
the source, even if there is no subscription

: Allows only a single Subscriber to subscribe to it during its
lifetime

Example project
In the following example, we will show the usage of RxJava in the real-time processing of
the temperature received from multiple sensors. The sensor data is provided (randomly
generated) by a Spring Boot server. The server is configured to accept the sensor name as a
configuration so that we may change it for each instance. We'll start five instances and
display warnings on the client side if one of the sensors outputs more than 80 degrees
Celsius.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[163]

Starting multiple sensors is easily done from bash with the following command:

The server-side code is simple, we have only one REST controller configured to output the
sensor data as JSON, as shown in the following code:

The sensor data is randomly generated in the constructor (notice the usage of
the Lombock library to get rid of the setter/getter code):

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[164]

Now that we have our server started, we can connect to it from the RxJava-enabled client.

The client code makes use of the rxapache-http library:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[165]

 is our client data. It is a snapshot of what the server can offer. The
rest of the information is ignored by Jackson data binder:

In the preceding code, we set up and started the HTTP client by setting the TCP/IP timeouts
and the number of connections allowed:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Let's Get Reactive Chapter 6

[166]

The preceding code creates a list of URLs based on a range, converts it to a list of responses,
flattens the response bytes into a string, converts the string to JSON, and prints the result to
the console. In the case of temperatures greater than 90, it will print a warning message. It
does all this by running in the I/O Scheduler, repeatedly every 500 ms, and in case of errors,
it returns default values. Notice the usage of Try monad, because the checked exceptions
are thrown by the lambda code, that needs to be handled either by converting to an
unchecked expression that can be handled by RxJava in or handle it locally in the
lambda block.

Since the client spins forever, the partial output is as follows:

Summary
In this chapter, we learned about reactive programming and then focused on one of the
most-used reactive libraries available RxJava. We learned about reactive programming
abstractions and their implementation in RxJava. We made the first steps into the RxJava
world with concrete examples by understanding how Observables, schedulers, and
subscriptions work, the most-used methods, and how are they used.

In the next chapter, we will learn about the most-used reactive programming patterns and
how to apply them in our code.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

77
Reactive Design Patterns

In the last chapter, we discussed the reactive programming style and highlighted the
importance of going reactive. In this chapter, we will revisit the four pillars of reactive
programming, namely responsive, resilient, elastic, and message-driven, one by one, and
learn about the various patterns for implementing each of these pillars. We will cover the
following topics in this chapter:

Patterns for responsiveness
Patterns for resilience
Patterns for elasticity
Patterns for message-driven communication

Patterns for responsiveness
Responsiveness means how interactive the application is. Does it interact with its users in a
timely manner? Does clicking a button do what it is supposed to do? Does the interface get
updated when it is meant to? The idea is that the application should not make the user wait
unnecessarily and should provide immediate feedback.

Let's look at some of the core patterns that help us implement responsiveness in an
application.

Request-response pattern
We will start with the simplest design pattern, the request-response pattern, which
addresses the responsiveness pillar of reactive programming. This is one of the core
patterns that we use in almost every application. It is our service that takes a request and
returns a response. A lot of other patterns are directly or indirectly dependent on this, so it
is worth spending a few minutes to understand this pattern.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reactive Design Patterns Chapter 7

[168]

The following diagram shows a simple request-response communication:

There are two parties to a request-response relationship. One entity makes a request and
the second entity fulfills the request. A requester can be a browser asking for details from a
server or a service asking for data from other service. Both parties need to agree upon the
request and response formats. These can be in the form of XML, HTML, String, JSON, and
so on; as long as both entities understand the communication, it is valid to use any format.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reactive Design Patterns Chapter 7

[169]

We will take a simple servlet-based example to start with. You might not be using a servlet-
based implementation in real-world projects, unless you are working on a legacy
application, yet it is important to understand the basics as they are the starting point for
most of the modern-day frameworks we use.

We will create an employee service here that will handle and requests:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reactive Design Patterns Chapter 7

[170]

The previous code should give you an idea of how a simple request-response pattern
works. and are two of the most important types of communication available. ,
as the name suggests, is used to fetch any data, information, artifacts from the server,
whereas adds new data to a server. About 10-12 years ago, you would have seen
HTML embedded in servlets as well. But, of late, things have moved on to better and more
maintainable designs. In order to maintain the separation of concerns and loose coupling,
we try to keep our presentation layer, or frontend code, independent of our server-side
code. This gives us freedom to create application programming interfaces (API) that can
cater to a wide variety of clients, whether it be a desktop application, a mobile application,
or a third-party-service-calling application.

Let's take it a step further and talk about RESTful services to maintain our APIs. REST
stands for Representational State Transfer. The most common REST implementation is
over HTTP, which is done by implementing , , , and ; that is, handling
CRUD operations.

Let's take a look at these four core operations:

: Fetches data as a list or single entity. Say we have an Employee entity:
 will return a list of all the employees in the system.

 will return a specific employee record.

: Adds data for a new entity. will add a new employee
record to the system.

: Updates the data for an entity. will update an
existing employee record in the system.

: Deletes an existing entity record. will delete
an existing employee record from the system.

As mentioned earlier, you will almost never write the explicit code to handle requests and
responses directly. There are many frameworks, such as Struts, Spring, and so on, that help
us avoid writing all the boilerplate code and focus on our core business logic.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reactive Design Patterns Chapter 7

[171]

Here is a quick Spring-based example; as you will see, we can avoid a lot of boilerplate
code:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reactive Design Patterns Chapter 7

[172]

As you can see, we are using a Plain Old Java Object (POJO) class and making it handle all
our REST calls. There is no need to extend the or manage init or destroy
methods.

If you are aware of Spring MVC, you can move onto the next pattern. For those who are
new to the Spring framework, it's worth spending a few minutes to understand the
working behind the previous example.

When you are using the Spring framework, you need to tell it about your server. So, in your
, add the following:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reactive Design Patterns Chapter 7

[173]

Here we have told that we are using Spring's dispatcher servlet, and any requests
for pattern/service should be forwarded to our spring code. In addition to the previous
code lines, we also need to provide spring with the configuration. This can be done in both
Java-class-based or XML-based configurations. We have told to look for the
configuration in .

Here is a sample class-based configuration:

As you can see, this is a very basic configuration file. You can also add database
configurations, security aspects, and so on. Any further discussion on Spring MVC is out of
scope for this book.

To run the previous code, we need to include certain JAR files for spring and other
dependencies. These dependencies can be managed in different ways; for example, one
might prefer adding Jars to repositories, or use Maven, Gradle, and so on. Again, a
discussion of these tools is out of the scope of this book. Here are the dependencies that can
be added to Maven for your benefit:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reactive Design Patterns Chapter 7

[174]

Asynchronous-communication pattern
While we are discussing the responsive pillar of reactive programming, another important
pattern one needs to consider is the asynchronous-communication pattern. While the
request-response pattern makes sure that all the requests get successful responses, it does
not take care of the fact that some of the requests might take a large amount of time to
respond. The asynchronous-communication pattern helps our application to remain
responsive, even if we are doing bulk tasks. The way we achieve responsiveness or quick
responses is by making the core-task execution asynchronous. Think of it as your code
requesting a service to do a certain task, say, updating the data in a database; the service
receives the data and immediately responds that it has received the data. Note that the
actual writing to the database has not been done yet, but a success message is returned to
the calling method.

A more relevant example would be when a service is required to do a complex task, such as
generating an Excel report by calculating the tax liability for each employee, which needs to
be calculated on the fly, based on the salary and tax details provided by each employee. So,
when the tax-reporting service receives a request to generate such a report, it will simply
return a response acknowledging receipt of the request and the UI will show a message to
refresh the page after a few minutes to see the updated report link. In this way, we are not
blocking the end user, and he/she can do other tasks while the report is being generated at
the backend.

Asynchronous communication is handled at multiple levels; for example, when a call is
made to a server by a browser, our JavaScript frameworks, such as ReactJS or AngularJS,
intelligently render the screen based on the amount of data received and asynchronously
wait for data pending. But, here, we will focus more on Java-induced asynchronous
communication. The simplest way to handle asynchronous tasks in Java is through threads.

Let's take an example. We have a scenario where we want to display an employee list on
the UI, and, at the same time, compile a report with some complex calculations and send it
to admin.

The following code shows how the code will look using the synchronous type of method
calls:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reactive Design Patterns Chapter 7

[175]

Let's say fetching the data takes one second, generating the report takes four seconds, and
emailing the report takes two seconds. We are making the user wait for seven seconds for
his/her data. We can make the reporting asynchronous to make the communication faster:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reactive Design Patterns Chapter 7

[176]

We have moved the report generation and emailing parts out of the critical path, and the
main thread now returns immediately after fetching the records. The reporting
functionality is achieved in a separate thread. Other than threads, another important
method of achieving asynchronous communication is with message queues and message-
driven beans.

Caching pattern
Yet another pattern that may be used to make sure your application is responsive is to
implement caching. Caching will make sure that similar types of requests are handled in a
faster manner by caching the results. We can implement a cache at different levels, such as
the controller level, service-layer level, data-layer level, and so on. We can also implement a
cache before the request hits the code; that is, at the server or load-balancer level.

For the sake of this chapter, let's take a very simple example to see how caching helps us to
improve performance. Let's take a simple webservice that returns data for an employee:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reactive Design Patterns Chapter 7

[177]

This method fetches data from the database and returns it to the end user.

There are many cache implementations available in Java. For the sake of this example, let's
create a very simple caching mechanism:

Now let's update our method to make use of caching:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reactive Design Patterns Chapter 7

[178]

We can see the first time an employee's details are sought, they will not be found in the
cache, and the normal flow for fetching data from the database will be executed. At the
same time, this data is added to the cache. So, any subsequent requests to fetch data for the
same employee would not need to hit the database.

Fan-out and quickest-reply pattern
In some applications, speed is very important, especially where real-time data is being
handled, for example, on a betting site, where it is important to calculate the odds based on
a live event. A goal scored in the last five minutes of time, for a match that was otherwise
even, will dramatically change the odds in favor of a team, and you want this to be
reflected on the website in a fraction of a second, before people start adding bets.

In such a case, where the speed of request handling is important, we would like multiple
instances of the service to process the request. We will accept the response from the service
that responded first, and discard other service requests. As you can see, this approach does
guarantee speed, but it comes at a cost.

Fail-fast pattern
The fail-fast pattern states that if a service has to fail, it should fail fast and respond to
calling entities as soon as possible. Think of this scenario: you have clicked a link and it
shows you a loader. It makes you wait for three to four minutes and then shows an error
message, Service not available, please try again after 10 minutes. Well, service not
available is one thing, but why make someone wait just to tell them that the service is not
available right now. In short, if a service has to fail, it should at least do it quickly to
maintain a decent user experience.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reactive Design Patterns Chapter 7

[179]

One example of a fail-fast implementation is if your service is dependent on another
service, you should have a quick mechanism to check if the third-party service is up or not.
This can be done using a simple ping of the service. So, before sending an actual request
and waiting for the response, we maintain health checks of the services. This is more
important if our service is dependent on multiple services. It will be good to check the
health of all the services before we start the actual processing. If any of the services are not
available, our service will immediately send a response to wait, rather than partially
processing the request and then sending a failure.

Patterns for resilience
When we are thinking about the resiliency of the application, we should try to answer the
following questions: Can the application handle failure conditions? If one component of the
application fails, does it bring down the whole application? Is there a single point of failure
in the application?

Let's look at some patterns that will help us to make our application resilient.

The circuit-breaker pattern
This is an important pattern to implement both resilience and responsiveness in the system.
Often, when a service fails in a system, it impacts other services as well. For example,
service X calls service Y in the system to get or update some data. If service Y is
unresponsive for some reason, our service X will make a call to service Y, wait for it to
timeout, and then fail itself. Think of a scenario where service X itself is called up by
another service P, and so on. We are looking at a cascading failure here, which will
eventually bring down the whole system.

The circuit-breaker pattern, inspired by an electric circuit, suggests that, instead of letting
the failure propagate, we should restrict the failure to a single service level; that is, we need
a mechanism for service X to understand that service Y is unhealthy and the handle the
situation. One way to handle the situation could be for service X to call service Y, and if it
observes that service Y is not responding after N number of retries, it considers the service
to be unhealthy and reports it to the monitoring system. At the same time, it stops making
calls to service Y for a fixed amount of time (say, we set a 10-minute threshold).

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reactive Design Patterns Chapter 7

[180]

Service X than gracefully handles this failure based on the importance of the actions
performed by service Y. For example, if service Y is responsible for updating account
details, service X will report a failure to the calling services, or for all services Y was
performing to log the details of transactions, service X will add the logging details to a
fallback queue, which can be cleared by service Y when it is back up.

The important factor here is not to let a single service failure bring down the whole system.
Calling services should figure out which are the unhealthy services and manage a fallback
approach.

Failure-handling pattern
Another important aspect for maintaining resilience in a system is asking the question, If
one or more components or services go down, will my system still be able to function
properly? For example, take an e-commerce site. There are many services and
functionalities working together to keep the site up, such as product searches, product
catalogs, recommendation engines, review components, the shopping cart, payment
gateways, and so on. If one of the services, such as the search component, goes down due to
load or hardware failure, will that impact end users' ability to place an order? Ideally, these
two services should be created and maintained independently. So, if a search service is not
available, the user can still place orders for items in the shopping cart or select items
directly from the catalog and purchase them.

The second aspect of handling a failure is gracefully handling any requests to failed
components. For the previous example, if a user tries to use the search functionality (say,
the search box is still available on the UI), we should not show user a blank page or make
him/her wait forever. We can show him/her the cached results or show a message that the
service will be up in the next few minutes with recommended catalog.

Bounded-queue pattern
This pattern helps us maintain the resilience and responsiveness of the system. This pattern
states that we should control the number of requests a service can handle. Most modern
servers provide a request queue, which can be configured to let it know how many requests
should be queued before requests are dropped and a server-busy message is sent back to
the calling entity. We are extending this approach to the services level. Every service should
be based on a queue, which will hold the requests to be served.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reactive Design Patterns Chapter 7

[181]

The queue should have a fixed size, which is the amount the service can handle in a specific
amount of time, say, one minute. For example, if we know that service X can handle 500
requests in one minute, we should set the queue size to 500, and any other requests will be
sent a message about the service being busy. Basically, we do not want the calling entities
to wait for a long duration and impact the performance of the overall system.

Monitoring patterns
To maintain the resilience of the system, we need ways to monitor our services'
performance and availability. There are multiple types of monitoring we can add to
applications and services; for example, for responsiveness we can add a periodic ping to the
application and validate how much time a response takes or we can check on the CPU and
RAM usage of the system. If you are using a third-party cloud, such as Amazon Web
Services (AWS), you get in built support for this kind of monitoring; otherwise one can
write simple scripts to check the current state of health. Log monitoring is used to check
whether errors or exceptions are being thrown in the application and how critical they are.

With monitoring in place, we can add alerting and automated error handling into the
system. Alerting might mean sending email messages or text messages based on the
severity of the problem. An escalation mechanism can also be built in; say, if the problem
does not get solved in X amount of time, a message is sent to the next-level escalation point.
By using automated error handling, we can make a call if additional instances of services
need to be created, a service needs to be restarted, and so on.

Bulkhead pattern
Bulkhead is a term borrowed from cargo ships. In a cargo ship, the bulkhead is a wall built
between different cargo sections, which makes sure that a fire or flood in one section is
restricted to that section and other sections are not impacted. You've surely guessed what
we are trying to suggest: failure in one service or a group of services should not bring down
the whole application.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reactive Design Patterns Chapter 7

[182]

To implement the bulkhead pattern, we need to make sure that all our services work
independently of each other and failure in one will not create a failure in another service.
Techniques such as maintaining a single-responsibility pattern, an asynchronous-
communication pattern, or fail-fast and failure-handling patterns help us to achieve the
goal of stopping one failure propagating throughout the whole application.

Patterns for elasticity
An application must react to variable load conditions. If the load increases or decreases, the
application should not be impacted and should be able to handle any load level without
impacting the performance. One unmentioned aspect of elasticity is that your application
should not use unnecessary resources. For example, if you expect your server to handle one
thousand users per minute, you will not set up an infrastructure to handle ten thousand
users as you will be paying 10 times the required cost. At the same time, you need to make
sure that if the load increases, your application does not get choked.

Let's take a look at some of the important patterns that help us maintain the elasticity of the
system.

Single responsibility pattern
Also known as the simple-component pattern or microservices pattern, the single-
responsibility pattern is kind of an extension to the single-responsibility principle for OOP.
We already discussed the single-responsibility principle in this book in the initial chapters.
At a basic level, when applied to object-oriented programming, the single-responsibility
principle states that a class should have only one reason to change. Taking that definition
further to an architecture level, we broaden the scope of this principle to components or
services. So now we are defining our single-responsibility pattern to mean that a
component or service should be responsible for only a single task.

One needs to divide the application into smaller components or services, where each
component is responsible for only one task. Dividing the service into smaller ones will
result in microservices, which are easier to maintain, scale, and enhance.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reactive Design Patterns Chapter 7

[183]

To illustrate the point further, let's say we have a service called
. This service takes the base salary and uses it to calculate

the total salary, including variable and fixed components, and, finally, calculates tax:

Though it looks logical to calculate this whenever a salary is updated, what if we only need
to calculate tax? Say, an employee updates tax-saving details, why do we need to calculate
all salary details again and not just update the tax data. A complex service not only
increases the execution time by adding unnecessary calculations but also hinders scalability
and maintainability. Say we need to update the tax formula, we will end up updating code
that has a salary calculation detail as well. The overall regression scope area increases.
Additionally, say we know salary updates are not common but tax calculations are updated
for every tax-saving-detail update, also the tax calculation is complex in nature. It might
have been easier for us to keep on a smaller-capacity server and

 on a separate, bigger machine, or have more than one instance
of .

A rule of thumb to check whether your service is doing exactly one task is to try to explain
it in plain English and look for the word , for example, if we say this service updates
salary details calculates tax, or this service modifies the data format uploads it to
storage. The moment we see in our explanation of the service, we know this can be
broken down further.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reactive Design Patterns Chapter 7

[184]

Stateless-services pattern
To make sure our services are scalable, we need to make sure we build them in a stateless
manner. By stateless, we mean that the service does not retain any state from the previous
calls and treats every request as a fresh, new one. The advantage this approach gives us is
that we can easily create replicas of the same service and make sure it does not matter
which service instance is handling the request.

For example, let's say we have ten instances of an service, which is
responsible for serving me , and returning data for a specific
employee. It does not matter which instance is serving the request, the user will always end
up getting the same data. This helps us to maintain the elastic property of the system, as we
can spin up any number of instances on the go and bring them down based on the load on
the service at that point in time.

Let's look at a counter example; say we are trying to maintain the state of a user's actions
using sessions or cookies. Here, the actions are performed on the
service:

State 1: John has a successful login.

State 2: John has requested Dave's employee details.

State 3: John requests salary details, as he is on Dave's details page, and the system returns
Dave's salary.

In this case, the State 3 request does not mean anything unless we have the information
from the previous state. We get a request and then we look at the
session to understand who is asking for the details and for whom the request is being
made. Well, maintaining the state is not a bad idea, but it can hinder scalability.

Say we see the load increasing for the service and plan to add a second
server into the cluster. The challenge is that, say the first two requests went to Box 1 and the
third request went to Box 2. Now Box 2 does not have a clue who is asking for salary details
and for whom. There are solutions such as maintaining sticky sessions or copying sessions
across the Boxes or keeping information in a common database. But these require
additional work to be done and this defeats the purpose of quick autoscaling.

If we think of each request as independent that is, self-sufficient in terms of providing the
information being asked for, by whom, the current state of the user, and so on we can
stop worrying about maintaining the states of users.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reactive Design Patterns Chapter 7

[185]

For example, a simple change in request call from
 now provides information on whose details are

being asked for. Regarding who is asking for the details that is, authentication of the
user we can use techniques such as token-based authentication or sending a user token
with a request.

Let's take a look at JWT-based authentication. JWT stands for JSON Web Token. JWT is
nothing more than JSON embedded in a token or string.

Let's first look at how to create a JWT token:

Similarly, we will write a method to take a token and get the details from token:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reactive Design Patterns Chapter 7

[186]

A complete discussion on JWT is out of scope for this book, but the previous code should
help us to understand the basic concept of JWT. The idea is to add any critical information
about the requesting entity in a token, so that we need not maintain a state explicitly. The
token can be sent in the request as part of the params or header, and the servicing entity
will parse the token to determine if the request is, indeed, coming from a valid party.

Autoscaling pattern
This is more of a deployment pattern than development pattern. But it is important to
understand this, as it will impact our development practices. Autoscaling is directly related
to the elastic property of the application. A service can be scaled up or down to handle a
higher or lower number of requests in two ways: vertical scaling and horizontal scaling.
Vertical scaling usually refers to adding more power to the same machine, and horizontal
scaling refers to adding more instances that can load share. As vertical scaling is normally
costly and has limits, when we talk about autoscaling we are usually referring to horizontal
scaling.

Autoscaling is implemented by monitoring the instance-capacity usage and making a call
based on that. For example, we can set a rule that whenever the average CPU usage of a
cluster of instances that are hosting a service goes beyond 75%, a new instance should be
booted to reduce the load on other instances. Similarly, we can have a rule that whenever
the average load reduces below 40%, an instance is killed to save costs. Most of the cloud
service providers, such as Amazon, provide inbuilt support for autoscaling.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reactive Design Patterns Chapter 7

[187]

Self-containment pattern
In simple words, self-containment means that an application or service should be self-
sufficient or able to work as a standalone entity without depending on any other entity.
Let's say we have a service for that tackles general employee data handling
and another service for . Let's say we have given responsibility for
maintaining database connections to the service. So, every time the

 service needs a database handled, it calls the service's
 method. This adds an unwanted dependency, which means that,

unless the service is up and working fine, our service
will not function properly. So, it is logical that the service should
maintain its own database connection pool and operate in an autonomous manner.

Patterns for message-driven implementation
If we rely on message-based communication, we avoid tight coupling, enhance elasticity, as
the components can grow or shrink without worrying about other components, and handle
failure conditions, as one component's issues will not propagate to other components.

The following are the main design patterns one needs to be aware of when using reactive
application programming.

Event-driven communication pattern
Event-driven communication is when two or more components message each other based
on some event. An event can be adding new data, updating the data state, or removing
data. For example, on addition of a new employee record to the system, an email needs to
be sent to the manager. So the service or component responsible for managing employee
records will message the component responsible for the emailing functionality on addition
of a new record. There are multiple ways to handle this communication, but the most
common method is through Message queues. The event-triggering component adds a
message to the queue, and the receiver reads this message and performs its part of the
action: in this case, sending an email to the manager.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reactive Design Patterns Chapter 7

[188]

The idea behind the event-driven pattern is that both the components are independent of
each other, but, at the same time, can communicate with each other and take the required
actions. In the previous example, the emailing component is independent of the component
adding the record. If the emailing component is not able to process the request
immediately, it will not impact the addition of the record. The emailing component might
be under load or be down for some reason. When the emailing component is ready to
process the message, it will read from the queue and performs the action is it required to
do.

Publisher-subscriber pattern
Commonly known as the Pub-Sub pattern, this can be thought of as an extension to event-
driven communication. In event-driven communication, one action triggers an event, on the
basis of which another component needs to perform some action. What if multiple
components are interested in listening to a message? What if the same component is
interested in listening to multiple types of message? The problem is solved by using the
concept of topics. In broader terms, we can think of an event as a topic.

Let's revisit the example where an employee-record addition event needs to trigger an
email to the manager. Let's say there are other components, such as a transportation
system, salary management system, and so on, which also need to perform some action
based on the event that a new employee record is added. In addition, let's say that the
emailing-the-manager component is also interested in events such as updating an employee
record and deleting an employee record; in these cases, too, an email to the manager should
also be triggered.

So, we have a topic called Employee Added, another for Employee Updated, and one for
Employee Deleted. The component responsible for managing the employee data will
publish all these events to queues, and hence is called a publisher. The components
interested in one or more of these topics will subscribe to these topics, and are called
subscribers. Subscribers will listen to the topics they are interested in and take action based
on the message received.

The Pub-Sub pattern helps us implement loose coupling among components, as the
subscriber need not be aware who the publisher is and vice versa.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reactive Design Patterns Chapter 7

[189]

Idempotency pattern
When we are aiming for message-driven and asynchronous communication, it can bring
some challenges along. For example, if a duplicate message is added to the system, will it
corrupt the state? Say we have a bank-account update service, and we send a message to
add $1,000 to the account. What if we have a duplicate message? How will the system make
sure it does not add the money twice just because a duplicate message is received? Also,
how will this system differentiate between a duplicate message and a new message?

There are various techniques that can be used to handle to this problem. The most common
is to add a message number or ID to each message, so the system can make sure that each
message with a unique ID gets processed only once. Another way is to keep the previous
state and new state in the message say the old balance was X and the new balance is
Y and the system is responsible for applying the validation to make sure the state
mentioned in the message (old balance) matches the system's state.

The bottom line is that, whenever we build a system, we need to make sure our application
is able to take care of the scenario that a message sent repeatedly gets gracefully handled
and does not corrupt the system's state.

Summary
In this chapter, we have talked about the patterns that help us maintain the reactive nature
of an application, or, in other words, help us implement the four pillars of reactive
programming, namely, responsiveness, resilience, elasticity, and message-driven
communication.

In the next chapter, we will continue our journey and explore some contemporary aspects
of a well-architected application.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

88
Trends in Application

Architecture
Whenever we start working on an application, the first thing we need to decide is the
design or architecture we are going to use. As the software industry has matured in the last
few decades, the way we used to design the systems has also changed. In this chapter, we
will discuss some of the important architecture trends we have seen in the recent past and
which are still relevant to date. We will try to analyze the good, the bad, and the ugly of
these architectural patterns and figure out which pattern will be able to solve what type of
problem. We will cover following topics in this chapter:

What is application architecture?
Layered architecture
Model View Controller architecture
Service-oriented architecture
Microservices-based architecture
Serverless architecture

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[191]

What is application architecture?
When we start building an application, we have a set of requirements, and we try to design
a solution that we feel will fulfill all the requirements. This design is known as application
architecture. One important factor to consider is that your architecture should not only take
care of current requirement, but should also anticipate expected future changes and take
them into consideration. Quite often, there are some unspecified requirements, known as
non-functional requirements, that you need to take care of. Functional requirements will
be given as part of the requirements document, but architects or senior developers are
expected to figure out non-functional requirements themselves. Performance needs,
scalability needs, security requirements, maintainability, enhanceability, availability of
applications, and so on, are some of the important non-functional requirements that need to
be considered when architecting a solution.

The fact that makes the skill of application architecting both interesting and challenging is
that there is no fixed set of rules. The architecture or design that worked for one application
may not work for another; for example, a banking solution architecture may look different
than an e-commerce solution architecture. Also, within one solution, different components
may need to follow different design approaches. For example, you may want one of the
components to support HTTP-REST based communication, whereas for another
component, you may go for message queues for communication. The idea is to identify the
best available approach for the current problem.

In the following sections, we will discuss some of the most common and effective
architecting styles in JEE applications.

Layered architecture
We try to divide our code and implementation into different layers, and each layer will
have a fixed responsibility. There is no fixed set of layering that can be applied to all the
projects, so you may need to think about what kind of layering will work for the project in
hand.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[192]

The following diagram shows a common layered architecture, which can be a good starting
point when thinking about a typical web application:

The design has the following layers:

Presentation layer
Controller/web service layer
Service layer
Business layer
Data access layer

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[193]

The Presentation layer is the layer that holds your UI, that is, HTML/JavaScript/JSPs, and
so on. This is the layer that the end user can directly interact with.

The Controller/web service layer is the entry point for a request from a third party. This
request can come from the presentation layer (mostly) or from another service; for example,
a mobile or desktop application. As this is the entry point for any request, this layer will
apply to any initial level checks, data cleanups, validations, security requirements, such as
authentication and authorization, and so on. Once this layer is satisfied, the request is
accepted and processed.

The Service layer, also known as the application layer, is responsible for providing
different services, such as adding a record, sending emails, downloading a file, generating a
report, and so on. In a small-scale application, we can merge the service layer with the web
service layer, especially when we know that the service layer will only handle requests
from the web. If the current service can be called from other services as well, it is better to
keep the service separate from the web service or controller.

The Business layer holds all the business-related logic. For example, in an employee data
management service, if the system is trying to promote an employee as manager, it is the
responsibility of this layer to apply all the business checks, including whether the employee
has relevant experience, whether they are already serving as a deputy manager, whether
last year's appraisal rating matches with the required rules, and so on. Sometimes, if the
application or service in question does not have a strong set of business rules, the business
layer is merged with the application layer. On the other hand, you may want to further
divide the business layer into sublayers in case your application demands strong
implementation of business rules. Again, there is no fixed set of guidelines that you need to
follow while implementing a layered design, and the implementation can change based on
your application or service needs.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[194]

The Data access layer is the layer responsible for managing all data-related operations,
such as fetching data, representing data in the required format, cleaning data, storing data,
updating data, and so on. While creating this layer, we can use an object relational
mapping (ORM) framework or create our own handlers. The idea here is to keep other
layers free from worrying about data handling, that is, how data is being stored. Is it
coming from another third-party service or being stored locally? These and similar
concerns are the responsibility of this layer only.

Cross-cutting concerns are the concerns that each layer needs to handle; for example, each
layer is responsible for checking whether the request is coming from the proper channel
and no unauthorized request gets served. Each layer may want to record the entry and exit
of a request by logging each message. These concerns can be handled through common
utilities that are used and spread across the layers or can be handled by each layer
independently. It is usually a good idea to keep these concerns independent of core
business or application logic, using techniques such as aspects-oriented programming
(AOP).

Layered architecture with an example
To understand the layered architecture style further, let's take a look at the code and design
example. Let's take a very simple requirement, where we need to get a list of employees
from a database.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[195]

First of all, let's try to visualize the requirement in terms of layers by looking at this
diagram:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[196]

We have created four layers, in this case. The presentation layer can be thought of as a
simple HTML with JavaScript. You may want to use sophisticated frameworks, such as
ReactJS or AngularJS, to keep things organized at the presentation layer, but in this
example we have a simple presentation layer, where, say, on clicking the Show Employee
List button, an AJAX call is made to the controller layer, and the employee data is fetched.

Here is a simple JavaScript function that fetches the data for employees and displays it on
the UI:

You can see that the presentation layer is not aware of the implementation of the next layer;
all it is aware of is an API that should provide it with the required data.

Next, we move to the web service or controller layer. The responsibility of this layer is to
make sure that requests are coming in the proper format and from the proper source. There
are many frameworks available in Java, such as Spring Security and Java Web Token,
which help us implement the authorization and authentication of each request.
Additionally, we can create interceptors for this purpose. For the sake of keeping this
chapter simple, we will focus on core functionality, that is, get data from the next layers and
return it to the calling function. Take a look at this code:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[197]

Again, we can see that the current layer does not know who is calling it and does not know
the implementation of the next layer.

Similarly, we have a service layer:

We have kept this layer ridiculously simple for the sake of this example. You could ask,
why do we need an extra layer and not call the data access layer (DAL) from the controller
itself? This can be done if you are sure that the only way to fetch employee data is through
the controller. But we recommend having a service layer, as there will be cases when some
other service needs to call our service, so we need not have duplicate business or DAL calls.

If you look closely, we have skipped the business layer. The idea is that you need not have
all the layers just for sake of it. At the same time, you can break a layer into multiple layers
or introduce new layers, based on the requirement in hand. In this case, we did not have
any business rules to be implemented, so we have omitted the layer. On the other hand, if
we wanted to implement some business rules, such as some of the employee records should
be hidden from some specific roles, or they should be modified before being shown to the
end user, we will implement a business layer.

Let's move on to our last layer here the data-access layer. In our example, our DAL is
responsible for fetching data and returning to the calling layer. Take a look at this code:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[198]

Tiers versus layers
In the real world, we see the words tier and layer being used interchangeably. For example,
you must have heard the terms presentation tier or presentation layer referring to the same set
of code. Though there is no harm in interchanging the terms when referring to a set of code,
you need to understand that the term tier is used when we are dividing code based on
physical deployment requirements, and layers are more concerned with logical segregation.

What does layered architecture guarantee?
Layered architecture guarantees us the following:

Code organization: Layered architecture helps us implement code in a way in
which each code layer is implemented independently. Code is more readable; for
example, if you want to look at how particular data is accessed from a database,
you can straightaway look at the DAL and ignore the other layers.
Ease of development: As code is implemented in different layers, we can
organize our teams in a similar way, where one team is working on the
presentation layer and another on the DAL.

What are the challenges with layered
architecture?
The challenges with layered architecture are as follows:

Deployment: As the code is still somewhere tightly coupled, we cannot
guarantee that we can deploy each layer independently of one another. We may
still end up doing a monolithic deployment.
Scalability: As we are still looking at the whole application as a monolithic
deployment, we cannot scale components independently of one another.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[199]

Model View Controller architecture
Another widely used criteria for organizing code is by following the Model View
Controller (MVC) architectural design pattern. As the name suggests, we are thinking
about organizing our application into three parts, namely a model, a view, and a controller.
Following MVC helps us maintain a separation of concerns and allows us to better organize
our code. Take a look at the following:

Model: A model is the representation of the data. Data is a critical part of any
application. It is the responsibility of the model layer to organize and implement
logic to manage and modify data properly. It takes care of any events that need
to happen in case some data is modified. In short, the model has the core
business implementation.
View: Another important part for any application is the view, that is, the part
with which the end user interacts. The view is responsible for displaying
information to the end user and taking inputs from the user. This layer needs to
make sure that the end user is able to get the intended functionality.
Controller: As the name suggests, the controller controls the flow. When some
action happens on the view, it will let the controller know, which in turn will
take a call to determine whether this action impacts the model or the view.

As MVC is an old pattern, interpreted and used by architects and developers in a different
manner, you may find different implementations of MVC patterns available. We will start
with a very simplified implementation and then move to Java-specific implementations.

The following diagram gives us a basic understanding of the MVC flow:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[200]

As we can see, the end user interacts with the controller in terms of an action, such as a
form submission or a button click. The controller takes this request and updates data in the
model. Finally, the view component gets updates based on the manipulation that has
happened on the model. The updated view is rendered for the user to see and perform
further actions.

As already mentioned, MVC is an old pattern, with its initial usage in desktop and static
applications. The pattern has been interpreted and implemented differently by many web
frameworks. In Java too, there are many frameworks providing web MVC implementation.
Spring MVC is one of the most commonly used frameworks, so it is worth taking a look at.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[201]

The following diagram explains the flow of control in Spring MVC at a high level:

Let's take a closer look at the flow:

1: Spring MVC follows the front controller pattern, which means that all the
requests initially have to flow through a single point, in this case, a dispatcher
servlet
2: The front controller then delegates the request to the controller that is meant to
handle the particular request
3: The controller then manipulates or updates the model based on the given
request, and returns the model requested by the end user
4: The framework then selects the view that is meant to handle the current
request and passes the model to it
5: The view, generally JSPs, renders the data based on the model provided
6: The final response, usually HTML, is sent back to the calling agent or browser

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[202]

MVC architecture with an example
To clarify things further, let's look at a sample implementation. To start with, we will add
the following to :

We have told our that all the requests with pattern should be redirected to
our front controller, that is, for Spring MVC. We have also
mentioned the location of our configuration class file. This is our configuration file:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[203]

We have told our application that we will be using the WebMVC framework and also the
location of our components. In addition, we are letting the application know the location
and format of our views through the view resolver.

Here is a sample controller class:

We can see that this controller fetches the data in form of model, and lets the application
know the appropriate view to respond to the current request. A object is
returned, which has information about both the view and the model.

The controller gets passed to the view, which in this case is employees.jsp:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[204]

As we can see, all this view JSP is doing is to create an HTML that displays employee
details in tabular form.

Spring MVC is more of a classical way of implementing MVC. In more recent times, we
have tried to move away from JSPs to maintain separation of concerns. In modern
applications, the view is normally independent of the server-side code and is completely
rendered on the frontend using JavaScript frameworks such as ReactJS, AngularJS, and so
on. Although the core principles of MVC still hold true, the communication may look
different.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[205]

A more contemporary MVC implementation
For a rich internet application, the MVC implementation may look more like this diagram:

The core idea is that the model and view are completely independent. The controller
receives communication from both the view and model and updates them based on the
actions triggered. For example, when the user clicks a button on submit new employee
record, the controller receives this request and in turn updates the model. Similarly, when a
model gets updated, it notifies the controller, which then updates the view to reflect the
correct model state.

What does MVC architecture guarantee?
MVC architecture guarantees the following:

Separation of concerns: Similar to layered architecture, MVC guarantees a
separation of concerns, that is, the view, model, and controller can be looked at
as different components that need to be developed and maintained
independently.
Ease of deployment: There are different aspects of the application, that is, the
model, view, and controller can be developed independently, by different teams.
Although you would need to integrate these components to get the complete
picture.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[206]

What are the challenges with MVC architecture?
The challenges with MVC architecture are as follows:

Scalability: As we still need to deploy the whole application as a single unit,
MVC cannot guarantee scalability. As we cannot scale only the parts relating to
performance, the application needs to be scaled as a whole.
Testability: The testability of the application is not straightforward with MVC.
Although we can test one component independently, we need to integrate all the
parts before we can test one functionality end to end.

Service-oriented architecture
When we talk about the service-oriented architecture (SOA) approach, we are talking
about our application in terms of various services or reusable units. For example, let's take a
look at an e-commerce shopping system, such as Amazon. It can be thought of as a
combination of multiple services rather than a single application. We can think of a search
service responsible for implementing a products search, a shopping cart service that will
implement the maintenance of a shopping cart, a payment handling service that is
independently handling payments, and so on. The idea is to break your application into
services that can be developed, deployed, and maintained independently of one another.

To understand the advantage of the service-oriented architecture approach, let's consider a
case where we are able to divide the application into 10 independent services. So, we have
reduced the complexity of the architecture by 10 times. We are able to divide the team into
10 parts, and we know it is easier to maintain smaller teams. Also, it gives us freedom to
architect, implement, deploy, and maintain each service independently. If we know that
one particular service can be achieved better in one language or framework, whereas
another service can be implemented in a totally different language or framework, we can
do that easily. With independent deployment, we have the advantage of scaling each
service independently based on its usage. Also, we can make sure that if one service is
down or facing any issues, the other services are still able to respond without any issues.
For example, if, for some reason, in an e-commerce system, we have an unresponsive search
service, it should not impact the normal shopping cart and purchase feature.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[207]

Service-oriented architecture with an example
Suppose we are creating an employee management system that is responsible for creating,
editing, and deleting record and, managing employee documents, leave plans, appraisals,
transportation, and so on. Starting with this monolithic definition, let's start dividing it into
different services. We will end up having a core service, a

 service, a service, and so on. The very first
advantage of this kind of breaking up into smaller services means we can design and
develop these independently now. So the big 50-person team can be divided into 8-10
smaller, easy-to-manage teams, each owning its own service. We have loosely coupled
services, which means making changes is also easier, as changing in leave rules does not
mean you need to update the whole code. This kind of SOA approach also helps us with a
phased delivery if required; for example, if I do not want to implement a leave
management service right now, it can wait until the second release.

The following diagram should visually explain what an SOA design would like look for the
preceding example:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[208]

We can see that every service has an independent identity. But a service can interact with
one another if required. Also, it is not uncommon for services to share resources, such as a
database and storage.

For every service, we need to understand three core components:

Service provider: The component that is providing the service. The service
provider registers the services with the services directory.
Service consumer: The component that is consuming the service. The service
consumer can look for a service in the services directory.
Services directory: The services directory contains a list of the services. It
interacts with both the provider and the consumer to update and share services
data.

Web services
Web services, as the name suggests, are services available over the web or the internet. Web
services have helped popularize service-oriented architecture, as they have made it easy to
think about an application in terms of services exposed over the internet. There are many
ways to expose a service over the internet, Simple Object Access Protocol (SOAP)
and REST being the two most common ways of implementation.

SOAP versus REST
Both SOAP and REST help in exposing services over the internet, but they are very
different in nature.

A SOAP packet is XML based and needs to be in a very specific format. Here are the main
components of a SOAP packet:

Envelope: Identifies an XML packet as a SOAP message
Header: Optional element to provide header information
Body: Contains requests and responses for the service
Fault: Optional element mentioning state and error

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[209]

This is what a SOAP packet would look like:

REST does not have so many rules and formats. A REST service can be implemented by
supporting one or more of , , , and methods over HTTP.

A sample JSON REST payload for a request would look like this:

As we can see, there is no overhead, such as defining a proper packet structure, such as
SOAP. Because of its simplicity, REST-based web services have become popular in the last
few years.

Enterprise service bus
While we are discussing service-oriented architecture, it is important to understand what
role enterprise service bus (ESB) can play to improve communication. You may end up
creating several different services while developing different applications for your
organization. At certain levels, these services need to interact with oen another. This can
add a lot of complications. For example, one service understands XML-based
communication, whereas another service expects all communication in JSON, and another
service expects FTP-based input. Additionally, we need to add features such as security,
queuing of requests, data cleanup, formatting, and so on. ESB is the solution to all our
problems.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[210]

The following diagram shows how different services can communicate with ESB
independently:

We can see that any number of services are interacting with ESB. One service may be
written in Java, another in .Net, and others in other languages. Similarly, one service may
expect a JSON-based packet, whereas another may need XML. It is the responsibility of ESB
to make sure these services are interacting with one another smoothly. ESB also helps in
service orchestration, that is we can control the sequencing and flow.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[211]

What does service-oriented architecture
guarantee?
Service-oriented architecture guarantees the following:

Ease in development: As we can divide the application into various services, it
becomes easy for teams to work on different services without impacting one
another work.
Loose coupling: Each service is independent from the other, so if we change a
service implementation, keeping the API request and response the same, the user
need not know what has changed. For example, earlier, a service was fetching
data from a database, but we introduced caching and made changes so that the
service first fetches data from the cache. The caller services need not even know if
something has changed within the service.
Testability: Each service can be tested independently. Therefore, to test one
service, you do not need to wait for the complete code to be ready.

What are the challenges with service-oriented
architecture?
The challenges with service-oriented architecture are as follows:

Deployment: Although we are thinking in terms of services, we are still
architecting at the logical level and not considering independent deployment of
these services. In the end, we may end up dealing with the deployment of a
monolithic application that is difficult to enhance and maintain.
Scalability: Scalability is still a major challenge with SOA. We are still dealing
with larger services and mostly the service segregation is at the logical level and
not at the physical level. So, scaling a single service or part of a service is tough.
Most importantly, if we are using ESB, which itself is a large piece of
deployment, scaling it can be a nightmare.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[212]

Microservices-based Architecture
Microservices-based architecture, as the name suggests, recommends dividing your
services into a fine-grained level. There are different schools of thoughts when it comes to
microservices; some will argue that it is just a fancy name for service-oriented architecture.
We can definitely consider microservices as an extension of service-oriented architecture,
but there are many features that make microservices different.

Micorservices take service-oriented architecture to the next level. SOA thinks of services at
a feature level, whereas microservices take it to a task level. For example, if we have an
email service for sending and receiving emails, we can have microservices such as a spell
check, spam filter, and so on, each of which handles one specialized task.

An important differentiating factor that the concept of microservices brings in, with respect
to SOA, is the fact that each microservice should be independently testable and deployable.
Although these features are desirable with SOA, they become mandatory with
microservices-based architecture.

Microservice architecture with an example
Let's look at a simple example to understand how microservices can help us. Let's say we
need to build a feature on an e-commerce site, where you can upload pictures of products.
When a product's image is uploaded, the service needs to save the image and also create a
scaled version (suppose we want to keep all product images at a standard resolution of
1,280 720). In addition, we also need to create a thumbnail version of the image. In short,
we are trying to do the following tasks in a single service.

The image upload service helps you to do the following:

Receive a product image.1.
Upload the image to storage.2.
Update the database with relevant information.3.
Scale the image to the standard resolution (1,280 * 720).4.
Upload the scaled image to storage.5.
Generate a thumbnail version of the image.6.
Upload the thumbnail to storage.7.
Return success.8.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[213]

Well, all the aforementioned tasks look important for a product image to be uploaded, but
that looks like too much for the service. The microservices architecture can help us out in
such scenarios. For example, we can rethink the service as the following microservices.

The image upload service helps you to do the following:

Receive a product image.1.
Upload the image to storage.2.
Update the database with relevant information.3.
Return success.4.

The scaled image service helps you to do the following:

Scale the image to the standard resolution (1,280*720).1.
Upload the scaled image to storage.2.

The thumbnail service helps you to do the following:

Generate a thumbnail version of the image.1.
Upload the thumbnail to storage.2.

You can still go ahead and create an upload to store service independently. So how fine-
grained you want your services to be will depend on your system. Finding the right level of
granularity is very important, as well as being a tricky task. If you do not properly break
your bigger services into microservices, you will not be able to realize the advantages of
microservices, such as scalability, ease of deployment, testability, and so on. On the other
hand, if your microservices are too fine grained, you will unnecessarily end up maintaining
too many services, which also means effort to make these services communicate with one
another and handling-performance issues.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[214]

Communicating among services
Looking at the previous example, one obvious question that comes to mind is this: How
would the scaled image service and thumbnail service be triggered? Well, there are many
options. The most common ones are REST-based communication, where the upload service
can make a REST call to the other two services, or message queue-based communication,
where the upload service would add a message to the queue that can be processed by other
services, or a state-based workflow, where the upload service will set a state in the database
(for example, ready for scaling) that will be read by other services and processed.

Based on the application needs, you can take a call as to which communication method is
preferred.

What does microservices-based architecture
guarantee?
Microservices-based architecture guarantees the following:

Scalability: One major challenge that we faced in all the previous architecture is
scalability. Microservices help us to implement distributed architecture and
hence support loose coupling. It is easier to scale these loosely coupled services,
as each service can be deployed and scaled independently.
Continuous delivery: In today's fast-paced needs of businesses, continuous
delivery is an important aspect required by applications. As we are dealing with
many services rather than a single monolithic application, it is much easier to
modify and deploy a service as per requirements. In short, it is easy to push
changes to production as one need not deploy the whole application.
Ease in deployment: Microservices can be developed and deployed
independently. So we do not need a bing bang deployment for the whole
application; only the service effected can be deployed.
Testability: Each service can be tested independently. If we have defined the
request and response structure of each service properly, we can test the service as
a standalone entity without worrying about other services.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[215]

What are challenges with microservices-based
architecture?
The challenges with microservices-based architecture are as follows:

Dependency on devops: As we need to maintain multiple services that are
interacting with one another through messages, we need to make sure all the
services are available and monitored properly.
Maintaining the balance: Maintaining the right amount of microservices is a
challenge in itself. If we have too fine-grained services, we have challenges such
as deploying and maintaining too many services. On the other hand, if we have
too few larger services, we will end up losing out on the advantages provided by
microservices.
Repeated code: As all our services are independently developed and deployed,
some of the common utilities need to be copied to different services.

Serverless architecture
In all the architectural styles we have discussed so far, there is one common factor:
dependency on the infrastructure. Whenever we are designing for an application, we need
to think about important factors, such as these: How will the system scale up or scale
down? How will the performance needs of the system be met? How will the services be
deployed? How many instances and servers will we need? What will be their capacity?
And so on.

These questions are important and at the same time tricky to answer. We have already
moved from dedicated hardware to cloud-based deployments, which has eased our
deployments, but still we need to plan for infrastructure requirements and answer all the
aforementioned questions. Once hardware is acquired, whether on the cloud or otherwise,
we need to maintain the health of it, and make sure that services are getting scaled based on
their need, for which heavy devops involvement is required. Another important issue is
underusage or overusage of the infrastructure. If you have a simple website, where you are
not expecting too much traffic, you still need to provision some infrastructure capacity to
handle the request. If you know you are expecting high traffic during only a few hours in
the day, you need to intelligently manage your infrastructure to scale up and down.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[216]

To solve all the aforementioned problems, a completely new style of thinking has evolved,
which is known as serverless deployment, or, in other words, providing functions as a
service. The idea is that the development team should only worry about the code, and
cloud service providers will take care of the infrastructure needs, including scaling of the
functionalities.

What if you could pay only for the amount of computing power you use? What if you need
not provision any infrastructure capacity beforehand? What if the service provider itself
takes care of the scaling up of the computing capacity required, managing if there is a
single request per hour or a million requests per second on its own?

Serverless architecture with an example
If we have got your attention already, let's take a very simple example to bring the point
home. We will try to create a simple greetings example, where the function as a service
implementation will greet the user. We will use the AWS Lambda function for this
example.

Let's create our class with an example greeting function:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[217]

This simple function reads the input parameters from the query string and creates a
greeting message, which is embedded into a message tag of JSON and returned to the caller.
We will need to create a JAR file from this. If you are using maven, you could simply use a
shade package such as mvn clean package shade:shade.

Once you have a JAR file ready, the next step is to create a Lambda function and upload the
JAR. Go to your AWS account, choose Lambda service | Create function | Author from
scratch, and provide the required values. Take a look at this screenshot:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[218]

You need to provide the Name and Runtime environment. Based on what your lambda
function is supposed to do, you will be giving it permissions. For example, you may be
reading from storage, accessing queues or databases, and so on.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[219]

Next, we upload the JAR file and save it to the lambda function, as shown in the following
screenshot. Provide a fully qualified path for the handler
function :

Now, we test our function by setting a test event. Take a look at this screenshot:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[220]

And, finally, clicking the Test button will show the response as follows:

{

"isBase64Encoded": false,

"headers": {},

"body": "{"message":"Hello Guest"}",

"statusCode": "200"
 }

We have created a successful lambda function, but we need to understand how to call it.
Let's create an API for calling this function. Amazon provides us with the API Gateway for
this purpose. From Designer, under Add triggers, choose API Gateway, as shown in this
screenshot:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[221]

And, finally, add API Gateway configuration. Take a look at this screenshot:

Once you add the configuration, you will be provided with an API link, which, when hit,
will print the required JSON:

{"message":"Hello Guest"}

Or, if the name query parameter is provided, it will print .

Independence from infrastructure planning
One important and core idea of this whole exercise is to realize that we have created an API
without setting up any machine or server. We simply created a JAR file and uploaded on
Amazon. We are not worried about load or performance anymore. We don't think about
whether we will use Tomcat or Jboss or any other server. We are not thinking about
whether the API will get one hit or one million hits in a day. We will only pay for the
number of requests and the computational power used.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[222]

Please note that we used the API to call the function and returned a simple message. Much
more complex implementations are supported easily. For example, a function can be
triggered from a message queue, database change, or storage and, similarly, can access
other cloud provider services, such as a database, storage, messaging, emailing, and so on,
along with third-party services.

Though we have used the Amazon Lambda example in this book, we do not recommend
any specific vendor. The idea is to just explain the usage of serverless architecture. All the
major cloud players, such as Microsoft, Google, IBM, and so on, provide their own
implementation of serverless functions as service deployments. Readers are advised to
choose as per their need and usage, after comparing their vendors of choice.

What does serverless architecture guarantee?
Serverless architecture guarantees the following:

Freedom from infrastructure planning: Well, if not completely, up to a large
extent, serverless architecture helps us focus on code and lets the service
provider take care of the infrastructure. You need not think about scaling up and
down your services and adding auto scaling or load-balancing logic.
Cost effective: As you are paying only for the actual usage or actual traffic, you
are not worried about maintaining minimum infrastructure levels. If your site is
not getting any hit, you are not paying anything for the infrastructure (based on
your cloud service provider conditions).
Next step up from microservices: If you are already implementing
microservices-based architecture, it will be an easy progression to serverless
architecture. With function-based serverless implementation, it is easier to
deploy a service implemented in the form a function.
Continuous delivery: Like microservices, we can achieve continuous delivery
with serverless architecture, as one function update will not impact the whole
application.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Trends in Application Architecture Chapter 8

[223]

What are the challenges with serverless
architecture?
The challenges with serverless architecture are as follows:

Vendor-based limitation: Various vendors can have limitations imposed when
they provide functions as a service. For example, with Amazon, the maximum
duration a server can execute for is five minutes. So, if you need to create a
function that is doing heavy processing and can take more time than the limit
imposed, Lambda functions may not be for you.
Managing distributed architecture: Maintaining a large number of functions can
get tricky. You need to keep a track of all the implemented functions and make
sure an upgrade in one function API does not break other calling functions.

Summary
We talked about various architectural styles in this chapter, starting from layered
architecture, MVC architecture, service-oriented architecture, microservices, and, finally,
serverless architecture. One obvious question that comes to mind is: Which is the best
among these styles of designing an application. The answer to this question is also pretty
obvious it depends on the problem at hand. Well, if there was one architecture that could
apply to all the problems, everyone would have been using that, and we would have talked
only about that particular architecture style.

An important thing to note here is that these architectural styles are not mutually exclusive;
in fact, they complement one another. So, most of the time, you may end up using a hybrid
of these architectural styles. For example, if we are working on a service-oriented
architecture-based design, we may see that the internal implementation of these services
may be done based on layered or MVC architectures. Also, we may end up breaking some
of the services into microservices, and out of these microservices some may get
implemented as a function in a serverless manner. The crux is, you will have to choose the
design or the architecture based on the current problem you are trying to solve.

In the next chapter, we will focus on some of the latest trends and updates in recent Java
version upgrades.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

99
Best Practices in Java

In this chapter, we will talk about best practices in Java 9 and 10. Java has come a long way
from Version 1.0, which was released in 1995 to the most recent version, Java 10. We will
take a quick look at Java's journey from its inception to where it stands today, but we will
focus more on recent changes brought in by Java 9 and 10.

In this chapter, we will cover the following topics:

A brief history of Java
Best practices and new features of Java 9
Best practices and new features of Java 10

A brief history of Java
Java 1 was initially launched in 1995, and its Enterprise edition, or Java EE, was launched in
1999 with Java 2. Considering the fact that Java has been around for more than 20 years,
there is no doubt that Java has what it takes to be the language of choice when it comes to
building complex Enterprise applications.

Let's take a look at the features that made Java an instant hit:

Object-oriented: Object-oriented languages are easy to learn, as they are closer to
the real world. For developers already working with object-oriented languages,
such as C++, it was easier to shift to Java, making it a popular choice.
Platform independent: Write once and execute anywhere is the mantra for Java. As
Java code is compiled into bytecode, which gets interpreted by JVM, there is no
restriction on where to code and where to execute. We can develop a Java
program on a Linux machine and run it on a Windows or macOS machine
without any problem.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Best Practices in Java Chapter 9

[225]

Security: As Java code gets converted to bytecode, which runs within the Java
Virtual Machine (JVM), it is considered secure, as it cannot access any memory
outside JVM. Additionally, Java does not support pointers, and memory
management is completely the responsibility of JVM, making the language
secure.

Along with core Java, what popularized the language further was the introduction of
concepts such as servlets with J2EE. The internet was getting popular, and with the ease of
use and security features provided by Java, it became an important language in web
application development. Further concepts, such as multithreading, helped in achieving
better performance and resource management.

Java 1.2 was called Java 2 because of the major changes it brought along in the form of the
Enterprise edition. Java 2 was so popular that the next two versions, 1.3 and 1.4, were
popularly known as Java 2 versions only. Then came Java 5, which brought along some
important features and, it was given an independent identity.

Features of Java 5
Java 5 brought generics into the picture. Before generics, many of the data structures, such
as Lists and Maps, were not typesafe. That is, you could have added a person and a vehicle
into the same list and then tried to perform actions, which could result in errors.

Another important feature brought in by Java 5 was autoboxing, which helps the
conversion between primitive type classes and corresponding wrapper classes. Enums, too,
got a new life with Java 5. They could not only keep constant values, but could keep data
and behavior as well.

Methods were provided with varargs. You were no longer forced to give the exact number
of elements if they were of the same type. For example, you could simply write
stringMethod(String... str) and pass any number of strings to this method. Java 5 also
introduced annotations, which were enhanced in later versions, and became an integral
part of many frameworks.

There were many other enhancements in Java 5, which made the release an important point
in the history of Java.

After Java 5, Java 6 and 7 were other important versions, but major changes were brought
along by Java 8.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Best Practices in Java Chapter 9

[226]

Features of Java 8
Java 8 is another important milestone release in the history of Java. Along with many other
features, such as opening interfaces for the first time to allow static and default method
definition, the and were introduced; the two core additions are streams
and Lambda expressions.

Streams can be thought of as pipelines of data, in which we can perform two types of
operations: intermediate and terminal. Intermediate operations are the ones that are
applied on the stream to transform data, but the result is still a stream; for example,
and . For example, in a stream of integer data, with an apply function such as filter
out all even numbers or add N to each number, we end up having a resultant stream.
Whereas, terminal operations result in concrete output. For example, the sum function on a
stream of integer data will return a final number as the output.

With Lambda expressions, Java has its first encounter with functional programming.
Lambdas help us implement functional interfaces, which are interfaces with a single
unimplemented method. Unlike older versions where we had to create a class or
anonymous class, we can now create a Lambda function to implement a functional
interface. A classic example is runnable to implement multithreading. Take a look at this
code:

We have covered some details on streams and lambdas already in , Functional
Patterns.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Best Practices in Java Chapter 9

[227]

Currently supported versions of Java
At the time of writing this book, two versions are officially supported by Oracle for Java.
These are Java 8 and Java 10. Java 8 is the long-term support version, and Java 10 is the
rapid-release version. Java 9 was another rapid-release version, released in September 2017,
and stopped receiving updates from January 2018. Java 8 was released in March 2014, and
is expected to have commercial support until January 2019 and non-commercial support
until December 2020. Java 10 was released in March 2018 and an expected end of life in
September 2018. At the same time, when Java 10 is going out of support, we expect Java 11
to be released, which will be another long-term support version such as Java 8.

As we can see, Java 9 and 10 are the more recent versions, so it makes sense to understand
all the new features they have brought in and some of the best practices when using these
new versions.

Best practices and new features of Java 9
The most important and biggest change brought along by Java 9 is the implementation of
Project Jigsaw or the Java platform module system. Before this change, you would need the
complete Java Runtime Environment (JRE) as a whole to be loaded on a server or a
machine to run a Java application. With Project Jigsaw, you can decide what libraries need
to be loaded for an application. Apart from the module system, Java 9 also added jshell to
Java's arsenal, a boon for people who have worked in languages such as Ruby on Rails,
Python, and so on. This comes with similar features. We will discuss modules and Jshell in
detail, along with a few other significant changes brought by Java 9, which impact how we
code in Java.

Java platform module system
If Java 8 helped us change the way we were coding, Java 9 is more about how files and
modules are loaded when an application runs.

To get started, let's see how Java 9 has divided the whole application into modules. All you
need to do is run this code:

java --list-modules

You will see a module list similar to the one in the following screenshot:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Best Practices in Java Chapter 9

[228]

The advantage we have now is that we can choose which modules will be used by our
application instead of adding all the modules by default.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Best Practices in Java Chapter 9

[229]

To understand the power of modules, let's look at an example. Let's try to create a very
simple calculator application that provides just and methods, to keep it
simple.

Let's create the class in :

Now let's create a module in :

We need not provide explicitly. It will be added by default, as all
the modules are requires by default. But we have kept it just to be explicit.

Now compile the classes:

javac -d output/classes provider/com.example/module-info.java
provider/com.example/com/example/calc/Calculator.java

And, finally, create the JAR:

jar cvf output/lib/example.jar -C output/classes/

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Best Practices in Java Chapter 9

[230]

So, we have a module ready that can serve add and subtract functionality. Let's see how to
use this module by creating a user class in

:

Again, we will need to create module in :

Let's compile the methods, this time into :

javac --module-path output/lib -d output/userclasses
user/com.example.user/module-info.java
user/com.example.user/com/example/user/User.java

Create , as shown here:

jar cvf output/lib/user.jar -C output/userclasses/

Finally, run the class:

java --module-path output/lib -m com.example.user/com.example.user.User

The preceding code explains how modules work in Java 9. Before moving on to the next
topic, let's take a look at jlink, which adds power to Java modularization:

jlink --module-path output/lib --add-modules com.example,com.example.user -
-output calculaterjre

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Best Practices in Java Chapter 9

[231]

Please note that you will need to add to , as our
 is dependent on the module. Once you are able to create your

custom JRE, you can run it as the following:

./calculaterjre/bin/java -m com.example.user/com.example.user.User

You can see that we are able to create our own little JRE. To get an idea of how compact and
lightweight our little executable is, let's run again:

calculaterjre/bin/java --list-modules w

This returns the following:

com.example
com.example.user
java.base@9.0.4

Compare it to the modules that we listed initially that came with Java 9 by default. We can
get an idea of how lightweight our new deployable unit is.

JShell
We have already given some examples of JShell usage previously in this book. Here, we
will take a more descriptive view of JShell. If you have worked in languages, such as
Python or Ruby on Rails, you must have noticed the cool shell feature or Read-Eval-Print
Loop (REPL) tool. The idea is to try out and experiment with the language before you go
and do the real implementation. It was about time that Java added a similar feature to it.

Jshell is an easy way to get started with Java. You can write code snippets, see how they
work, look at the behavior of different classes and methods without actually writing
complete code, and play around with Java. Let's take a closer look to get a better
understanding.

Let's start the shell first. Note Java 9 is a prerequisite and should have been
added to your system path.

Just type and it will take you to the jshell prompt with a welcome message:

$ jshell
| Welcome to JShell -- Version 9.0.4
| For an introduction type: /help intro
jshell>

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Best Practices in Java Chapter 9

[232]

Let's try out a few simple commands to get started:

jshell> System.out.println("Hello World")
 Hello World

A simple . There is no need to write, compile, or run the class:

jshell> 1+2
$1 ==> 3
jshell> $1
$1 ==> 3

When we type in the shell, we get the result in a variable: . Note that we can use this
variable in later commands:

jshell> int num1=10
num1 ==> 1
jshell> int num2=20
num2 ==> 2
jshell> int num3=num1+num2
num3 ==> 30

In the preceding commands, we created a couple of variables and used those later.

Let's say I want to try out a code to see how it will work in a real application. I can do that
with the shell. Suppose I want to write a method and try it out, to assess if it is returning the
expected results and whether it will fail under certain circumstances. I can do all that in the
shell as follows:

jshell> public int sum(int a, int b){
...> return a+b;
...> }
| created method sum(int,int)
jshell> sum(3,4)
$2 ==> 7
jshell> sum("str1",6)
| Error:
| incompatible types: java.lang.String cannot be converted to int
| sum("str1",6)
| ^----^

I created a method and saw how it will behave with different inputs.

You can also use JShell as a tutorial, to learn all the functions that are available for an object.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Best Practices in Java Chapter 9

[233]

For example, suppose I have a , and I want to know about all the methods that
are available for this. All I need to do is write and press Tab:

jshell> String str = "hello"
str ==> "hello"
jshell> str.

The output is as follows:

There are additional help commands provided by jshell. The first one you may want to use
is to give you all the commands. Another useful command is to check all
the packages that are already imported:

jshell> /import
|
 import java.io.*
|
 import java.math.*
|
 import java.net.*
|
 import java.nio.file.*
|
 import java.util.*
|
 import java.util.concurrent.*
|
 import java.util.function.*
|
 import java.util.prefs.*
|
 import java.util.regex.*
|
 import java.util.stream.*

You can import additional packages and classes to the shell and use them.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Best Practices in Java Chapter 9

[234]

Finally, will let you close the shell:

jshell> /exit
| Goodbye

Private methods in interfaces
Java 8 allowed us to add default and static methods to interfaces, where you were required
to implement only unimplemented methods in the interface. Now, as we are allowed to
add default implementations, it may be possible that we want to break our code into
modules or pull out common code in a method that can be used by other functions. But we
do not want to expose this common method. To solve this, Java 9 has allowed private
methods in interfaces.

The following code shows a perfectly valid implementation of an interface in Java 9, which
has a helper private method used by a default method:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Best Practices in Java Chapter 9

[235]

Enhancements in streams
Java 8 brought us the wonderful feature of streams, which has helped operations on lists
and sets of data very easily and efficiently. Java 9 has further enhanced the usage of streams
to make them more useful. Here we will discuss important enhancements in streams:

Takewhile: Java 8 gave us a filter that would check each element against a filter
condition. For example, suppose from a stream we need all numbers less than 20.
There may be a case where we want the list of all the numbers before we meet
the condition and ignore the rest of the input. That is, when the first time filter
condition is breached, ignore the rest of the input, and something such as the
return or exit command is executed.

The following code showcases the case where all numbers are returned unless the
condition that the number is less than 20 is met. All the data after the condition is
met once is ignored:

jshell> List<Integer> numList = Arrays.asList(10, 13, 14, 19, 22,
19, 12, 13)
numList ==> [10, 13, 14, 19, 22, 19, 12, 13]
jshell> numList.stream().takeWhile(num -> num <
20).forEach(System.out::println)

The output is as follows:

10
13
14
19

Dropwhile: This is almost a reverse of . Dropwhile makes sure to
drop all the inputs unless a given condition is met and after the condition is met
once, all the data is reported as output.

Let's take the same example as takewhile to make things clear:

jshell> List<Integer> numList = Arrays.asList(10, 13, 14, 19, 22,
19, 12, 13)

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Best Practices in Java Chapter 9

[236]

numList ==> [10, 13, 14, 19, 22, 19, 12, 13]
jshell> numList.stream().dropWhile(num -> num <
20).forEach(System.out::println)

The output is as follows:

22
19
12
13

Iterate: Java 8 already had support for , but with Java 9 we can
add a predicate condition, making it closer to a loop with a terminating
condition.

The following code shows a replacement of the loop condition that has a variable
initiated to 0, incremented by 2, and printed until the number is less than 10:

jshell> IntStream.iterate(0, num -> num<10, num ->
num+2).forEach(System.out::println)

The output is as follows:

0
2
4
6
8

Creating immutable collections
Java 9 gives us factory methods to create immutable collections. For example, to create an
immutable list, we use List.of:

jshell> List immutableList = List.of("This", "is", "a", "List")
immutableList ==> [This, is, a, List]
jshell> immutableList.add("something")
| Warning:
| unchecked call to add(E) as a member of the raw type java.util.List
| immutableList.add("something")
| ^----------------------------^
| java.lang.UnsupportedOperationException thrown:
| at ImmutableCollections.uoe (ImmutableCollections.java:71)
| at ImmutableCollections$AbstractImmutableList.add
(ImmutableCollections.java:77)
| at (#6:1)

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Best Practices in Java Chapter 9

[237]

Similarly, we have , , and . Let's take a look at the usage:

jshell> Set immutableSet = Set.of(1,2,3,4,5);
immutableSet ==> [1, 5, 4, 3, 2]
jshell> Map immutableMap = Map.of(1,"Val1",2,"Val2",3,"Val3")
immutableMap ==> {3=Val3, 2=Val2, 1=Val1}
jshell> Map immutableMap = Map.ofEntries(new
AbstractMap.SimpleEntry<>(1,"Val1"), new
AbstractMap.SimpleEntry<>(2,"Val2"))
immutableMap ==> {2=Val2, 1=Val1}

Method addition in arrays
We have talked about streams and collections so far. There are a few additions to arrays as
well:

Mismatch: This tries to match two arrays and returns the index of the first
element where the arrays mismatch. It returns if both arrays are the same:

jshell> int[] arr1={1,2,3,4}
arr1 ==> int[4] { 1, 2, 3, 4 }
jshell> Arrays.mismatch(arr1, new int[]{1,2})
$14 ==> 2
jshell> Arrays.mismatch(arr1, new int[]{1,2,3,4})
$15 ==> -1

We created an integer array. The first comparison shows that the array
mismatched at index 2. The second comparison shows that both arrays are the
same.

Compare: This compares two arrays lexicographically. You can also specify start
and end indexes, which is an optional argument:

jshell> int[] arr1={1,2,3,4}
arr1 ==> int[4] { 1, 2, 3, 4 }
jshell> int[] arr2={1,2,5,6}
arr2 ==> int[4] { 1, 2, 5, 6 }
jshell> Arrays.compare(arr1,arr2)
$18 ==> -1
jshell> Arrays.compare(arr2,arr1)
$19 ==> 1
jshell> Arrays.compare(arr2,0,1,arr1,0,1)
$20 ==> 0

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Best Practices in Java Chapter 9

[238]

We created two arrays and compared them. When both arrays are equal, we will
get 0 output. If the first one is larger lexicographically, we will get ; otherwise,
we will get . In the last comparison, we provided start and end indexes of
arrays to be compared. So, only the first two elements were compared for both
arrays, which were equal, and hence 0 was the output.

Equals: As the name suggests, the equals method checks whether the two arrays
are equal. Again, you can provide start and end indexes:

jshell> int[] arr1={1,2,3,4}
arr1 ==> int[4] { 1, 2, 3, 4 }
jshell> int[] arr2={1,2,5,6}
arr2 ==> int[4] { 1, 2, 5, 6 }
jshell> Arrays.equals(arr1, arr2)
$23 ==> false
jshell> Arrays.equals(arr1,0,1, arr2,0,1)
$24 ==> true

Additions to the Optional class
Java 8 gave us the class to handle null values and null pointer
exceptions. Java 9 added a few more methods:

: The method
 performs the given action if the

 value is present; otherwise, is performed. Let's take a
look at a few examples:

jshell> Optional<String> opt1= Optional.ofNullable("Val")
opt1 ==> Optional[Val]

jshell> Optional<String> opt2= Optional.ofNullable(null)
opt2 ==> Optional.empty

jshell> opt1.ifPresentOrElse(v->System.out.println("found:"+v),
()->System.out.println("no"))
found:Val

jshell> opt2.ifPresentOrElse(v->System.out.println("found:"+v),
()->System.out.println("not found"))
not found

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Best Practices in Java Chapter 9

[239]

Or: As the Optional object can have a value or null, the or function helps in a case
when you need to return the current Optional object if it has some legit value or
else return some other Optional object.

Let's take a look at a few examples:

jshell> Optional<String> opt1 = Optional.ofNullable("Val")
opt1 ==> Optional[Val]

jshell> Optional<String> opt2 = Optional.ofNullable(null)
opt2 ==> Optional.empty

jshell> Optional<String> opt3 = Optional.ofNullable("AnotherVal")
opt3 ==> Optional[AnotherVal]

jshell> opt1.or(()->opt3)
$41 ==> Optional[Val]

jshell> opt2.or(()->opt3)
$42 ==> Optional[AnotherVal]

As is not null, it is returned when used with or; whereas is null, and
hence is returned.

Stream: Streams have become popular after Java 8, so Java 9 gives us a method to
convert an Optional object to streams. Let's take a look at a few examples:

jshell> Optional<List> optList =
Optional.of(Arrays.asList(1,2,3,4))
optList ==> Optional[[1, 2, 3, 4]]

jshell> optList.stream().forEach(i->System.out.println(i))
[1, 2, 3, 4]

New HTTP client
Java 9 brings a new sleek HTTP client API with HTTP/2 support. Let's take a closer look by
running an example in jshell.

To use , we need to start jshell with the
module. The following command tells jshell to add the required module:

jshell -v --add-modules jdk.incubator.httpclient

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Best Practices in Java Chapter 9

[240]

Now lets import the API:

jshell> import jdk.incubator.http.*;

Create an object using the following code:

jshell> HttpClient httpClient = HttpClient.newHttpClient();
httpClient ==> jdk.incubator.http.HttpClientImpl@6385cb26
| created variable httpClient : HttpClient

Let's create a request object for a URL :

jshell> HttpRequest httpRequest = HttpRequest.newBuilder().uri(new
URI("https://www.packtpub.com/")).GET().build();
httpRequest ==> https://www.packtpub.com/ GET
| created variable httpRequest : HttpRequest

Finally, make the call to the URL. The result will be stored in the object:

jshell> HttpResponse<String> httpResponse = httpClient.send(httpRequest,
HttpResponse.BodyHandler.asString());
httpResponse ==> jdk.incubator.http.HttpResponseImpl@70325e14
| created variable httpResponse : HttpResponse<String>

We can check the response status code and even print the body:

jshell> System.out.println(httpResponse.statusCode());
200
jshell> System.out.println(httpResponse.body());

We can see how easy it is to use and there is no need to include heavy third-party libraries
for HTTP clients.

Some more additions to Java 9
So far, we have discussed the core additions to Java 9 that will impact your day-to-day
coding life. Let's take a look at some more feature additions, which may not have that big
an impact but are still good to know about:

Improvement in Javadocs: Java 9 brings in improvements in Javadocs, such as
support for HTML 5, the addition of search capabilities, and the addition of
module information to existing Javadocs functionality.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Best Practices in Java Chapter 9

[241]

Multi-release JAR: Suppose you have different versions of a class that should
run on different Java versions. For example, Java has two different versions, one
you know will support Java 8 and another for Java 9. You will create both class
files and include them while creating the JAR file. The correct version of the file
will be picked based on the JAR that is being used with Java 7 or Java 9.

Process API improvements: Java 5 gave us the Process Builder API, which helps
in spawning new processes. Java 9 brings in and

 APIs for better control and for gathering
more information about the processes.

Try with resources improvements: Java 7 brought in a feature where you could
use a try block to manage resources and help in removing a lot of boilerplate
code. Java 9 has further improved it so that you need not introduce a new
variable in the try block to use try with the resources.

Let's take a look at a small example to understand what we mean. The following
is the code that you would have written before Java 9:

jshell> void beforeJava9() throws IOException{
...> BufferedReader reader1 = new BufferedReader(new
FileReader("/Users/kamalmeetsingh/test.txt"));
...> try (BufferedReader reader2 = reader1) {
...> System.out.println(reader2.readLine());
...> }
...> }
| created method beforeJava9()

The code after Java 9 is as follows:

jshell> void afterJava9() throws IOException{
...> BufferedReader reader1 = new BufferedReader(new
FileReader("/Users/kamalmeetsingh/test.txt"));
...> try (reader1) {
...> System.out.println(reader1.readLine());
...> }
...> }
| created method afterJava9()

Diamond operator with anonymous classes: Up to Java 8, you could not have
used a diamond operator with inner classes. This restriction is removed in Java 9.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Best Practices in Java Chapter 9

[242]

We have covered most of the important features of Java 9 that will impact the way you
code in Java. Using the aforementioned practices will help us utilize Java's capabilities to
the fullest. But we know there are additional changes that are brought about by Java 10, so
in the next section we will discuss some of the important features that impact our code
further.

Best practices and new features of Java 10
Java 10 is the latest and current version for Java. Like previous versions, this too brings in
some interesting feature additions to the language. Some features we will be able to interact
with directly when we code, but there are other improvements that work behind the scenes,
such as improved garbage collection, which improves the overall experience of users. In
this section, we will discuss some of the important features added by Java 10.

Local variable type inference
This is probably the biggest change in Java 10 that will impact the way you used to code.
Java is always known as a strict type language. Well, it still is, but with Java 10 you have the
liberty of using when declaring local variables instead of providing proper type.

Here is an example:

We are able to define and use variables without specifying the type. But this feature is not
without its set of restrictions.

You cannot declare a class scope variable as . For example, following code will show a
compiler error:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Best Practices in Java Chapter 9

[243]

Even in the local scope, var can be used only if a compiler can infer the type of the variable
from right-hand side of the expression. For example, the following is fine:

However, this is not fine:

However, you can always use the following:

There are other situations where you cannot use . For example, you cannot define the
method return type or method arguments with var.

The following is not allowed:

This is not allowed either:

Even though you can use var to declare your variables with var, a word of caution is
necessary. You need to be careful how you are declaring your variable to maintain the
readability of the code. For example, you may come across this line in your code:

Can you make out anything about this variable sample? Is it a string or an integer? You
could argue that we can give a proper naming convention while naming our variables, such
as strSample or intSample. But what if your type is a bit complex? Take a look at this:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Best Practices in Java Chapter 9

[244]

In this case, you may want to make sure you are using a proper type-based declaration to
avoid code readability concerns.

Another area where you need to be careful when declaring collections is . For
example, this is now legitimate in Java:

You can very well see the problem here. The compiler has inferred the preceding list
containing objects, whereas your code may be looking for a list of integers. So we are
expecting some serious runtime errors in such cases. So, it is better to always be explicit in
such cases.

So, in short, is a great addition to Java and can help us code faster but we need to be
careful while using it to avoid code readability and maintenance issues.

copyOf method for collections
The method is introduced to create an unmodifiable copy of collections. For
example, suppose you have a list and you need an immutable or unmodifiable copy, you
can use the function. If you have used collections, you may wonder how it is
different than , which promises to do the same
thing, that is create an unmodifiable copy of the collection. Well, although both methods
give us an unmodifiable copy, when we use on a collection, say a list, it returns a
list that cannot further be modified plus any changes to the original list do not impact the
copied list. On the other hand, does return an
unmodifiable list in the aforementioned case, but this list will still reflect any modifications
in the original list.

Let's take a closer look to make things clearer:

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Best Practices in Java Chapter 9

[245]

Similarly, we can use the function for sets, hashmaps, and so on, to create an
unmodifiable copy of the objects.

Parallelization of full garbage collection
In languages such as C and C++, it was the developer's responsibility to allocate and de-
allocate the memory. This can be tricky because if the developer makes a mistake, such as
forgetting to deallocate an allocated piece of memory, it can cause an out of memory issue.
Java handled this problem by providing garbage collection. The responsibility of allocating
and deallocating the memory is moved from the developer to Java.

Java maintains its memory using two mechanisms: the stack and heap. You must have seen
two different errors, namely and , representing
the fact when one of the memory areas is full. Memory in the stack is visible only to the
current thread. Thus the cleanup is straightforward; that is, when the thread leaves the
current method, the memory on the stack gets released. Memory in the heap is trickier to
manage as it can be used throughout the application; hence, specialized garbage collection
is required.

Over the years, Java has improved garbage collection (GC) algorithms to make them more
and more effective. The core idea is that if a memory space allocated to an object is not
getting referenced anymore, the space can be freed up. Most of the GC algorithms divide
memory allocated into young generation and old generation. From usage, Java was able to
mark that most of the objects become eligible for GC early on or during the initial GC cycle.
For example, objects defined in a method are active only until the method is active and once
the response is returned, the local scope variable becomes eligible for GC.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Best Practices in Java Chapter 9

[246]

The G1 collector, or garbage-first garbage collector, was first introduced in Java 7 and was
made default in Java 9. The garbage collection is mainly done in two phases. In phase one,
the garbage collector marks the elements that can be removed or cleaned; that is, they are
no longer referenced. The second phase actually cleans the memory. Also, these phases run
independently on different units with different generations of memory allocated. The G1
collector can do most of the activities concurrently behind the scenes without stopping the
application, except the full garbage collection. The full garbage collection is needed when
partial GCs that usually clean younger generation memory are not sufficiently cleaning the
space.

With Java 10, the full garbage collection can be done by parallel threads. This was done
earlier in a single threaded mode. This improves the overall GC performance when it comes
to full GC.

Some more additions to Java 10
We have covered most of important feature additions to Java 10, but there are a few more
that are worth discussing here:

Time-based release versioning: Well, this is not exactly a new feature, but more
of the way Java has recommended how it will be versioning future releases. If
you are in Java for the long term, it is worth understanding how Java versions
are being released.

The release number is in the following format:

Java has decided to release a new feature version every six months. Keeping this
in mind, the Java 11 release is scheduled in September 2018, six months after Java
10 was released. The idea is to keep getting the latest changes every six months.
There are two schools of thought; one supporting this arrangement, as users will
get changes frequently, but a second group says it will give developers less time
to get accustomed to a release.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Best Practices in Java Chapter 9

[247]

So, if you look at a release number 10.0.2.1, you know this belongs to feature
release 10, with no interim release, update release 2, and patch 1.

Graal compiler: The compiler is a computer program that takes the code as input
and converts it to machine language. Java's JIT compilers convert the code to
bytecode, which then gets converted to machine language by a JVM. With Java
10, you can use the experimental Graal compiler on a Linux machine. A point to
note is that this is still in the experimental stage and is not recommended for
production.

Application class data sharing: This is another internal update to Java, so you
may not notice it while coding, but it is good to know about it. The idea is to
reduce the startup time for a Java application. A JVM loads classes on application
startup. If you do not update your files, earlier JVM would still reload all the
classes. With Java 10, JVM will create this data once and add it to an archive, and
if the classes are not updated next time, it will need not reload the data. Also, if
multiple JVMs are running, this data can be shared across them. Again, this
update is not a visible one but will improve the overall performance of the
applications.

We have covered most of the important features of Java 10 so far. Before closing this
chapter, let's take a look at what the future has in store for Java; that is, what can be
expected from Java 11 and when is it scheduled for release?

What should be expected in Java 11?
Java 11 is expected to be released somewhere around September 2018. It is worth taking a
look at some of the important features expected in Java 11:

Local variable syntax for Lambda expression: Java 10 brought in a feature where
we can use var while declaring the local variables, but it is not allowed to be used
with Lambda expression right now. This restriction is supposed to go away with
Java 11.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Best Practices in Java Chapter 9

[248]

Epsilon-low overhead garbage collector: This JEP or JDK enhancement proposal
talks about implementing a no-op garbage collector. In other words, this garbage
collector is supposed to mainly focus on memory allocation and not implement
any memory reclamation mechanism. It may be hard to imagine an application
that does not need any garbage collections, but this is targeted at a set of
applications that do not allocate too much heap memory or reuse the objects
allocated, where in a sense, not too many objects become inaccessible or short-
lived jobs. There are different opinions when it comes to the usefulness of a no-
op garbage collector, but it going to be an interesting addition to Java
nonetheless.

Dynamic class file constants: This JEP or JDK enhancement proposal extends the
current Java class file format to support a new constant pool form,

. The idea here is to reduce the cost and disruption of
creating new forms of materializable class-file constants.

Apart from the mentioned additions, Java 11 also proposes to remove a couple of modules,
such as Java EE and CORBA. These modules were already deprecated in Java 9, and are
supposed to be completely removed in Java SDK 11.

Also, Java 11 is supposed to be the long-term support (LTS) release. This means that,
unlike Java 9 and 10, where the JDK support is limited to a few months, Java 11 will be
supported for two to three years. Java has decided to release the LTS version every three
years, so if we expect Java 11 to be released in September 2018, the next LTS version can be
expected in 2021.

Summary
In this chapter, we talked about some important features and best practices in Java. We
started our journey from the very beginning of Java releases and touched upon some
important milestones for Java. We talked about important Java releases, such as Java 5 and
Java 8, which kind of changed the way we code in Java by introducing features such as
Generics, Autoboxing, Lambda expressions, Streams, and so on.

Then we got into details about more contemporary releases, that is, Java 9 and Java 10. Java
9 has given us modularization. We can now think of Java code in terms of various modules
and choose the ones that are needed for our application. Java 9 also added JShell to its
arsenal, which helps us try out and experiment with the language without actually writing
and compiling classes. Java 9 added the capability of defining private methods in interfaces.
In addition, we also got new features in streams, collections, arrays, and so on with Java 9.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Best Practices in Java Chapter 9

[249]

Java 10 gives us the flexibility of declaring variables with the keyword without
explicitly mentioning object types. We discussed the limitation of using var and why we
need to be careful when using var to declare objects to avoid jeopardizing the readability
and maintainability of the code. We also talked about methods to create immutable
copies of collections and garbage collection improvements in Java 10.

Finally, we talked about what we can expect in Java 11, such as additions to garbage
collection and using var with Lambda. Java 11 is expected to be a long-term release, unlike
Java 9 and 10. And, as per the Oracles 3-year policy, the next long-term release should be
expected somewhere in 2021, after Java 11.

Java has come a long way since its creation and it keeps on re-inventing itself time and time
again. There is a lot more to come in the future, and it will be interesting to view Java's
future growth.

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Java 9 Data Structures and Algorithms
Debasish Ray Chawdhuri

ISBN: 978-1-78588-934-9

Understand the fundamentals of algorithms, data structures, and measurement
of complexity
Find out what general purpose data structures are, including arrays, linked lists,
double ended linked lists, and circular lists
Get a grasp on the basics of abstract data types stack, queue, and double ended
queue
See how to use recursive functions and immutability while understanding and in
terms of recursion
Handle reactive programming and its related data structures
Use binary search, sorting, and efficient sorting quicksort and merge sort
Work with the important concept of trees and list all nodes of the tree, traversal
of tree, search trees, and balanced search trees
Apply advanced general purpose data structures, priority queue-based sorting,
and random access immutable linked lists
Gain a better understanding of the concept of graphs, directed and undirected
graphs, undirected trees, and much more

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You May Enjoy

[251]

Java 9 Programming Blueprints
Jason Lee

ISBN: 978-1-78646-019-6

Learn how to package Java applications as modules by using the Java Platform
Module System
Implement process management in Java by using the all-new process handling
API
Integrate your applications with third-party services in the cloud
Interact with mail servers using JavaMail to build an application that filters spam
messages
Learn to use JavaFX to build rich GUI based applications, which are an essential
element of application development
Write microservices in Java using platform libraries and third-party frameworks
Integrate a Java application with MongoDB to build a cloud-based note taking
application

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You May Enjoy

[252]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

A
abstract factory
Adapter pattern
 about ,
 examples ,
 implementation
 intent
Amazon Web Services (AWS)
applicability and examples, chain-of-responsibility

pattern
 event handlers
 log handlers
 servlets
applicability and examples, command pattern
 asynchronous method invocation
 composite commands
 undo/redo operations
application architecture
application programming interfaces (API)
applicatives
aspects-oriented programming (AOP)
association
 about
 aggregation
asynchronous-communication pattern ,
attach method
attributes, reactive systems
 elastic
 message-driven
 resilient
 responsive
autoscaling pattern

B
bounded-queue pattern
Bridge pattern

 about
 actors
 examples ,
 implementation
 intent
buffer operator
builder pattern
 about ,
 anonymous builders, with method chaining
 car builder example
 simplified builder pattern
bulkhead pattern

C
caching pattern ,
catch operator
chain-of-responsibility pattern
 about ,
 applicability and examples
 implementation ,
 intent
circuit-breaker pattern
class diagram, chain-of-responsibility pattern
 Client
 ConcreteHandler
 Handler
class diagram, command pattern
 Client
 ConcreteCommand
 Invoker
 Receiver
class diagram, interpreter pattern
 AbstractExpression
 Context
 NonTerminalExpression
 TerminalExpression

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

[254]

class diagram, iterator pattern
 Aggregate
 ConcreteAggregate
 ConcreteIterator
 Iterator
class diagram, mediator pattern
 Colleague
 ConcreteColleague
 ConcreteMediator
 Mediator
class diagram, memento pattern
 caretaker
 memento
 originator
class diagram, observer pattern
 ConcreteSubject
 Observer
 Subject
class diagram, strategy pattern
 ConcreteStrategy
 Context
 Strategy
class diagram, visitor pattern
 ConcreteElementA and ConcreteElementB
 ConcreteVisitor
 Element
 Visitor
class relations, UML
 about
 association
 dependency
 generalization
 realization
closure
Colleague interface
combine operator
command pattern
 about ,
 applicability and examples
 implementation
 intent
Composite pattern
 about
 examples
 implementation

 intent
composition
ConcreteAggregate
ConcreteElementA
ConcreteIterator
controller
create operator
currying process

D
debounce operator
declarative programming
Decorator pattern
 about ,
 examples ,
 implementation
 implementation diagram, actors
 intent
deep clone
defer operator
Dependency inversion principle
design patterns
design principles
detach method
distinct operator
do operator
Don't Repeat Yourself (DRY)

E
early/eager instantiation
elasticity pattern
 about
 autoscaling pattern
 self-containment pattern
 single responsibility pattern
 stateless-services pattern
elementAt operator
empty operator
enterprise service bus (ESB)
error handling
 about
 catch operator, using
 do operator, using
 retry operator, using

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

[255]

 using operator, using
event-driven communication pattern
execute around method
 about
 examples
 intent
extension object

F
factory method pattern
 about
 anonymous concrete factory
 versus abstract factory
factory pattern
 about
 abstract factory
 factory method pattern
 factory method, versus abstract factory
 simple factory pattern
 simple factory pattern, versus factory method
fail-fast pattern
failure-handling pattern
Façade pattern
 about
 actors
 examples ,
 implementation
 intent
filter operator
first-class functions
first/last operator
flatMap operator
flowable
Flyweight pattern
 about
 actors
 examples ,
 implementation
 intent
from operator
functional design patterns
 about
 execute around method
 MapReduce
 memoization

 Tail call optimization (TCO)
functional programming, in java
 about
 lambda expressions
 stream creator operations
 stream intermediate operations
 stream terminal operations
 streams
functional programming
 about ,
 applicatives
 closure
 collections, versus streams working
 composition
 currying process
 first-class functions
 functors
 higher-order functions
 immutability
 lambda expression
 monads
 pure function
 referential transparency
functors

G
Gang Of Four (GOF) patterns ,
garbage collection (GC)
groupBy operator

I
idempotency pattern
immutability
imperative programming
 about
 example
Interface Segregation Principle (ISP)
interpreter pattern
 about ,
 applicability and examples
 implementation ,
 intent
interval operator
iterator pattern

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

[256]

 about ,
 applicability and examples
 implementation ,
 intent

J
Java 10
 application class data sharing
 copyOf method for collections
 feature additions
 Graal compiler
 Local variable type inference
 local variable type inference
 parallelization of full garbage collection
 time-based release monitoring
Java 11
 expected features
Java 5
 features
Java 8
 features
Java 9
 additions, to Optional class
 enhancements, in streams ,
 feature additions ,
 immutable collections
 Java platform module system ,
 JShell
 method addition, in arrays
 new HTTP client
 private methods, in interfaces
Java programming
 paradigms
Java Runtime Environment (JRE) ,
Java Virtual Machine (JVM)
Java
 features
 history
 supported versions
javax.servlet.Filter
 reference link
join operator
JShell
 about
 installation

JSON Web Token (JWT)
Just in Time compiler (JIT)

L
lambda expression
layered architecture
 about
 benefits
 Business layer
 challenges
 Controller/web service layer
 Data access layer
 example , ,
 Presentation layer
 Service layer
 tiers, versus layers
Liskov Substitution Principle (LSP) ,
List Programming (LISP)
load pattern
 about
 examples
 intent

M
map operator
MapReduce
 about
 examples
 intent
 load pattern
marker interface
maven
 reference
mediator pattern
 about ,
 applicability and examples
 implementation
 intent
memento pattern
 about
 applicability
 implementation
 intent
memoization

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

[257]

 about
 examples
 intent
merge operator
message-driven implementation patterns
 about
 event-driven communication pattern
 idempotency pattern
 publisher-subscriber pattern
microservice architecture
 about
 benefits
 challenges
 communication
 example ,
model
Model View Controller architecture
 about
 benefits
 challenges
 contemporary MVC implementation
 controller
 example ,
 model
 view
module
monads
 about
 reference link
monitoring patterns

N
null object pattern
 about
 implementation

O
object pool pattern
object relational mapping (ORM) framework
object-oriented paradigm
 about
 abstraction
 encapsulation
 inheritance

 object and classes
 polymorphism
Observable, filtering
 about
 debounce operator, using
 distinct operator, using
 elementAt operator, using
 filter operator, using
 first/last operator, using
 sample operator, using
 skip operator, using
 take operator, using
Observables, combining
 combine operator, using
 join operator, using
 merge operator, using
 zip operator, using
Observables, creating
 create operator, using
 defer operator, using
 empty operator, using
 from operator, using
 interval operator, using
 range operator, using
 repeat operator, using
 timer operator, using
Observables, transforming
 buffer operator, using
 flatMap operator, using
 groupBy operator, using
 map operator, using
 scan operator, using
 subscribe operator, using
 window operator, using
Observables
 about
 cold
 combining
 creating
 filtering
 hot
 transforming
observer pattern
 about ,
 implementation

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

[258]

 intent
observers
OOP design patterns
 adapter
 builder
 chain of responsibility
 command
 decorator
 interpreter
 iterator
 observer
 reimplementing
 singleton
 strategy
 template method
Open/closed principle

P
Plain Old Java Object (POJO)
prototype pattern
 about
 shallow clone, versus deep clone
Proxy pattern
 about
 cache proxy
 examples ,
 implementation
 intent
 protection proxy
 remote proxy
 Virtual and smart proxies.
publisher-subscriber pattern
pure function

Q
quickest-reply pattern

R
range operator
reactive programming ,
referential transparency
repeat operator
Representational State Transfer (REST)
 about

 versus SOAP
request-response pattern , ,
resilience patterns
 about
 bounded-queue pattern
 bulkhead pattern
 circuit-breaker pattern
 failure-handling pattern
 monitoring patterns
responsiveness patterns
 about
 asynchronous-communication pattern
 caching pattern
 fail-fast pattern
 fan-out pattern
 quickest-reply pattern
 request-response pattern
retry operator
RxJava framework
 installing
 JShell installation
 Maven installation
RxJava
 about
 example project

S
sample operator
scan operator
schedulers ,
self-containment pattern
serverless architecture
 about
 benefits
 challenges
 example , , ,
 independence, from infrastructure planning
service-oriented architecture (SOA)
 about
 benefits
 challenges
 components
 enterprise service bus (ESB)
 example ,
 web services

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

shallow clone
 versus deep clone
simple factory pattern
 about
 simple factory pattern, with class registration

using Product.newInstance
 simple factory pattern, with registration using

reflection
 static factory
 versus factory method
single responsibility pattern ,
singleton pattern
 about ,
 early loading
 lazy loading
 lock-free thread-safe singleton
 synchronized singleton, with double-checking

locking mechanism
 synchronized singletons
skip operator
Smalltalk
SOAP
 versus REST
SOLID
 Dependency inversion principle
 Interface Segregation Principle (ISP)
 Liskov Substitution Principle (LSP)
 open/closed principle
 single responsibility pattern
state pattern
stateless-services pattern
strategy pattern
 about ,
 implementation
 intent
stream creator operations
stream intermediate operations
stream terminal operations
streams
subjects
subscribe operator
subscriptions
synchronized singleton

 about
 with double-checked locking mechanism

T
Tail call optimization (TCO)
 about
 examples
 intent
take operator
template method pattern
 about ,
 implementation
 intent
The Reactive Manifesto
 reference
timer operator
twin

U
Unified Modeling Language (UML)
 about ,
 behavior diagrams
 class relations
 structural diagrams
update
using operator

V
view
visitor pattern
 about ,
 implementation
 intent

W
window operator

Z
zip operator

Λ
λ Calculus Interpreter
 reference link

 EBSCOhost - printed on 2/9/2023 10:26 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: From Object-Oriented to Functional Programming
	Java – an introduction
	Java programming paradigms
	Imperative programming
	Real-life imperative example

	Object-oriented paradigm
	Objects and classes
	Encapsulation
	Abstraction
	Inheritance
	Polymorphism

	Declarative programming
	Functional programming
	Working with collections versus working with streams

	An introduction to Unified Modeling Language
	Class relations
	Generalization
	Realization
	Dependency
	Association
	Aggregation
	Composition

	Design patterns and principles
	Single responsibility principle
	Open/closed principle
	Liskov Substitution Principle
	Interface Segregation Principle
	Dependency inversion principle

	Summary

	Chapter 2: Creational Patterns
	Singleton pattern
	Synchronized singletons
	Synchronized singleton with double-checked locking mechanism
	Lock-free thread-safe singleton
	Early and lazy loading

	The factory pattern
	Simple factory pattern
	Static factory
	Simple factory with class registration using reflection
	Simple factory with class registration using Product.newInstance

	Factory method pattern
	Anonymous concrete factory

	Abstract factory
	Simple factory versus factory method versus abstract factory

	Builder pattern
	Car builder example
	Simplified builder pattern
	Anonymous builders with method chaining

	Prototype pattern
	Shallow clone versus deep clone

	Object pool pattern
	Summary

	Chapter 3: Behavioral Patterns
	The chain-of-responsibility pattern
	Intent
	Implementation
	Applicability and examples

	The command pattern
	Intent
	Implementation
	Applicability and examples

	The interpreter pattern
	Intent
	Implementation
	Applicability and examples

	The iterator pattern
	Intent
	Implementation
	Applicability and examples

	The observer pattern
	Intent
	Implementation

	The mediator pattern
	Intent
	Implementation
	Applicability and examples

	The memento pattern
	Intent
	Implementation
	Applicability

	The state pattern
	The strategy pattern
	Intent
	Implementation

	The template method pattern
	Intent
	Implementation

	The null object pattern
	Implementation

	The visitor pattern
	Intent
	Implementation

	Summary

	Chapter 4: Structural Patterns
	Adapter pattern
	Intent
	Implementation
	Examples

	Proxy pattern
	Intent
	Implementation
	Examples

	Decorator pattern
	Intent
	Implementation
	Examples

	Bridge pattern
	Intent
	Implementation
	Examples

	Composite pattern
	Intent
	Implementation
	Examples

	Façade pattern
	Intent
	Implementation
	Examples

	Flyweight pattern
	Intent
	Implementation
	Examples

	Summary

	Chapter 5: Functional Patterns
	Introducing functional programming
	Lambda expressions
	Pure functions
	Referential transparency
	First-class functions
	Higher-order functions
	Composition
	Currying
	Closure
	Immutability
	Functors
	Applicatives
	Monads

	Introducing functional programming in Java
	Lambda expressions
	Streams
	Stream creator operations
	Stream intermediate operations
	Stream terminal operations

	Re-implementing OOP design patterns
	Singleton
	Builder
	Adapter
	Decorator
	Chain of responsibility
	Command
	Interpreter
	Iterator
	Observer
	Strategy
	Template method

	Functional design patterns
	MapReduce
	Intent
	Examples

	Loan pattern
	Intent
	Examples

	Tail call optimization
	Intent
	Examples

	Memoization
	Intent
	Examples

	The execute around method
	Intent
	Examples

	Summary

	Chapter 6: Let's Get Reactive
	What is reactive programming?
	Introduction to RxJava
	Installing the RxJava framework
	Maven installation
	JShell installation

	Observables, Flowables, Observers, and Subscriptions
	Creating Observables
	The create operator
	The defer operator
	The empty operator
	The from operator
	The interval operator
	The timer operator
	The range operator
	The repeat operator

	Transforming Observables
	The subscribe operator
	The buffer operator
	The flatMap operator
	The groupBy operator
	The map operator
	The scan operator
	The window operator

	Filtering Observables
	The debounce operator
	The distinct operator
	The elementAt operator
	The filter operator
	The first/last operator
	The sample operator
	The skip operator
	The take operator

	Combining Observables
	The combine operator
	The join operator
	The merge operator
	The zip operator

	Error handling
	The catch operator
	The do operator
	The using operator
	The retry operator

	Schedulers
	Subjects
	Example project
	Summary

	Chapter 7: Reactive Design Patterns
	Patterns for responsiveness
	Request-response pattern
	Asynchronous-communication pattern
	Caching pattern
	Fan-out and quickest-reply pattern
	Fail-fast pattern

	Patterns for resilience
	The circuit-breaker pattern
	Failure-handling pattern
	Bounded-queue pattern
	Monitoring patterns
	Bulkhead pattern

	Patterns for elasticity
	Single responsibility pattern
	Stateless-services pattern
	Autoscaling pattern
	Self-containment pattern

	Patterns for message-driven implementation
	Event-driven communication pattern
	Publisher-subscriber pattern
	Idempotency pattern

	Summary

	Chapter 8: Trends in Application Architecture
	What is application architecture?
	Layered architecture
	Layered architecture with an example
	Tiers versus layers
	What does layered architecture guarantee?
	What are the challenges with layered architecture?

	Model View Controller architecture
	MVC architecture with an example
	A more contemporary MVC implementation
	What does MVC architecture guarantee?
	What are the challenges with MVC architecture?

	Service-oriented architecture
	Service-oriented architecture with an example
	Web services
	SOAP versus REST

	Enterprise service bus
	What does service-oriented architecture guarantee?
	What are the challenges with service-oriented architecture?

	Microservices-based Architecture
	Microservice architecture with an example
	Communicating among services
	What does microservices-based architecture guarantee?
	What are challenges with microservices-based architecture?

	Serverless architecture
	Serverless architecture with an example
	Independence from infrastructure planning
	What does serverless architecture guarantee?
	What are the challenges with serverless architecture?

	Summary

	Chapter 9: Best Practices in Java
	A brief history of Java
	Features of Java 5
	Features of Java 8
	Currently supported versions of Java

	Best practices and new features of Java 9
	Java platform module system
	JShell
	Private methods in interfaces
	Enhancements in streams
	Creating immutable collections
	Method addition in arrays
	Additions to the Optional class
	New HTTP client
	Some more additions to Java 9

	Best practices and new features of Java 10
	Local variable type inference
	copyOf method for collections
	Parallelization of full garbage collection
	Some more additions to Java 10

	What should be expected in Java 11?
	Summary

	Other Books You May Enjoy
	Index

